A Growth Model

in a Random Environment

Janko Gravner, UC Davis Craig Tracy, UC Davis Harold Widom, UC Santa Cruz

Oriented Digital Boiling (ODB)

Interface:

 $\{(x,y) : x \in \mathbb{Z}, y \leq h_t(x)\}, t = 0, 1, 2, \dots$ Height function rules:

- 1. $h_t \leq h_{t+1}$.
- 2. If $h_t(x-1) > h_t(x)$, then $h_{t+1}(x) = h_t(x-1)$.
- 3. Else, $h_{t+1}(x) = h_t(x) + 1$ with prob p_x .

Alternatively, toss p_x -coins in advance to get indep. Bernoulli rv's $\varepsilon_{x,t}$. Think of the points (x,t) for which $\varepsilon_{x,t} = 1$ as *marked*. Then

 $h_t(x) = \max\{h_{t-1}(x-1), h_{t-1}(x) + \varepsilon_{x,t-1}\}.$ We will assume that the initial state is $h_0(x) = 0$ if x = 0, otherwise $-\infty$.

Eventually: p_x i.i.d., with d.f. F.

Path description

A space-time point $(x, t), x \leq t$, has backwards lightcone:

 $\mathcal{L}(x,t) = \{ (x',t') : 0 \le x' \le x, x' \le t' < x'+t-x \}.$

Let H be the longest sequence $(x_1, t_1), \ldots, (x_k, t_k)$ of marked points such that

1.
$$x_{i-1} \leq x_i$$
,

2. $x_i - x_{i-1} + 1 \le t_i - t_{i-1}$.

Alternatively, let m = t - x and n = x + 1, and A a random $m \times n$ matrix with Bernoulli entries $\varepsilon_{i,j}$, where $P(\varepsilon_{i,j} = 1) = p_j$. Label columns as usual, but rows started at the bottom. Then H = H(m, n) is the *longest* sequence of 1's in A, with

column index non-decreasing and row index strictly increasing

Then

$$h_t(x) = H(m, n)$$

This is often called a *last passage property*. From now on, we formulate all the results for H, with $n = \alpha m$.

"Remembrance of Things Past"

Ulam's problem of estimating the longest increasing subsequence in a random permutation of length n.

Strong Law Type Results: Hammersley (1972), Logan–Shepp, Vershik–Kerov (1977), & Aldous– Diaconis (1995)

Fluctuations: Baik–Deift–Johansson (1999)

Methods: subadditivity, exclusion process representation, random Young tableaux, RMT techniques (including Riemann-Hilbert).

The largest increasing sequence in a random (0,1)-matrix: Seppäläinen (1998), limiting shape:

$$\lim_{t \to \infty} \frac{h_t(x)}{t}, \quad x/t \quad \text{constant}$$

Johansson (1999–2000) computed the fluctuations in (universal regime of) this limit law, by a RMT approach

The disordered case, when p_x are initially chosen at random, is related to the Seppäläinen–Krug model (1999).

The main theorem for the homogeneous case

Assume $p_x \equiv p$.

If $0 < \alpha < (1-p)/p$, then define

$$c = 2\sqrt{\alpha}\sqrt{p(1-p)} + (1-\alpha)p,$$

$$g = \alpha^{-1/2} (p(1-p))^{1/6} \times ((1-\alpha)\sqrt{p(1-p)} + (1-2p)\sqrt{\alpha})^{2/3}$$

Then, as $m \to \infty$,

$$P\left(\frac{H-c\,m}{g\cdot m^{1/3}}\leq s\right)\to F_2(s),$$

where

$$F_2(s) = \exp\left(-\int_s^\infty (x-s)q(x)^2 \, dx\right)$$

and q solves

$$q'' = sq + 2q^3$$
, $q(s) \sim \operatorname{Ai}(s)$ as $s \to \infty$.

Main steps in proving the theorem

1. dual RSK algorithm gives a bijection between (0,1)-matrices with k 1's and pairs (P,Q) such that P^t and Q are semistandard Young tableaux (of the same shape) of size k. Most importantly, the length of the first row in P is $H = h_t(x)$. This gives, with r = p/(1-p),

$$P(h_t(x) \le h) = (1-p)^{mn} \sum_{\substack{\lambda \in \mathcal{P} \\ \ell(\lambda) \le h}} r^{|\lambda|} d_{\lambda}(m) d_{\lambda'}(n).$$

$$d_{\lambda}(m) = \#SSYT$$
's of shape λ

using integers $\{1, \ldots, m\}$

 Gessel's theorem (1990) & Borodin–Okounkov identity (1999) then establish the connections between the sum above and determinants of matrices and operators, the final result being

$$P(h_t(x) \le h) = \det(I - K_h),$$

where $K_h: \ell^2 \to \ell^2$ is given by its (j,k)-entry

$$\sum_{\ell=0}^{\infty} (\varphi_{-}/\varphi_{+})_{h+j+\ell+1} (\varphi_{+}/\varphi_{-})_{-h-k-\ell-1}.$$

 K_h product of two matrices: (j,k)-entries

$$a_{jk}^{+}(h) = \frac{1}{2\pi i} \int (1+rz)^n (z-1)^m \times z^{-m+h+j+k} dz,$$

$$a_{jk}^{-}(h) = \frac{1}{2\pi i} \int (1+rz)^{-n} (z-1)^{-m} \times z^{m-h-j-k-2} dz.$$

The contours for both integrals go around the origin once counterclockwise; in the second integral 1 is inside and $-r^{-1}$ is outside.

3. Scaling:

$$h = cm + sm^{1/3}, j = m^{1/3}x, k = m^{1/3}y$$

and compute integrals asymptotically. Use the **steepest descent method**:

- Two saddles points coincide. Location determines \boldsymbol{c}
- Double zero, hence the $m^{1/3}$ scaling.
- Variance normalization determined by coefficient of third derivative
- Limit is a Fredholm determinant with **Airy kernel**.
- The main technical effort is in establishing trace-class convergence of the approximations.

Another Connection with Random Matrices.

In **GUE** (Tracy-Widom, 1993) The largest eigenvalue λ_{max} obeys the limit law

 $P\left((\lambda_{\max} - \sqrt{2n}) \cdot \sqrt{2n^{1/6}} \le s\right) \to F_2(s),$ as $s \to \infty$.

The limit laws for the largest eigenvalue in **GOE** and **GSE** (Tracy-Widom, 1996) also arise as limit laws for **increasing path problems** (Baik-Rains, 2000) and associated **growth pro-cesses** (Baik-Rains, Prähofer-Spohn)

No known intuitive connection between largest eigenvalues and increasing paths without using the **RSK correspondence**. With RSK Johansson (2000) has given a **discrete orthogonal polynomial ensemble** approach to increasing subsequence problems. In this formulation one has discrete analogues of the distribution of the largest eigenvalue.

Inhomogeneous ODB

Now assume that A is an $m \times n$ random matrix with $P(\varepsilon_{ij} = 1) = p_j$. Here p_j are i.i.d., with $P(p_j \leq x) = F(x)$, where $F : [0,1] \rightarrow [0,1]$ is a distribution function. (H is the longest increasing path of 1's in A.)

This corresponds to a **random environment** version of ODB: every $x \in \mathbb{Z}$ decides before the dynamics starts, at random according to F, on the probabilities of its coin flips.

- Time constant can be explicitly determined in terms of *F*.
- Quenched and annealed fluctuations differ.
- If the right tails of F are sufficiently thin, there is a *composite* (or *glassy*) regime for small $\alpha = n/m$. This regime can be identified with a different fluctuations scaling.

Lemma: Once p_1, \ldots, p_n are determined, the distribution of H does not depend on their order.

Time Constant

p has distr fn F and $\langle \cdot \rangle$ is integration w.r.t. dF.

$$b := \max \operatorname{supp} dF,$$

$$c := c(\alpha, F) = \lim_{m \to \infty} \frac{H}{m}.$$

Define the following critical values:

$$\alpha_c := \left\langle \frac{p}{1-p} \right\rangle^{-1}$$
$$\alpha'_c := \left\langle \frac{p(1-p)}{(b-p)^2} \right\rangle^{-1}$$

Theorem: If b = 1, then $c(\alpha, F) = 1$ for all α , while if b < 1, then

٠

$$c(\alpha, F) = \begin{cases} b + \alpha(1-b) \left\langle \frac{p}{b-p} \right\rangle & \text{if } \alpha \leq \alpha'_c, \\ a + \alpha(1-a) \left\langle \frac{p}{a-p} \right\rangle & \text{if } \alpha'_c \leq \alpha \leq \alpha_c, \\ 1 & \text{if } \alpha_c \leq \alpha. \end{cases}$$

Here $a = a(\alpha, F) \in [b, 1]$ is the unique solution to

$$\alpha \left\langle \frac{p(1-p)}{(a-p)^2} \right\rangle = 1.$$

Fluctuations, quenched case, pure regime: Theorem: Assume that b < 1 and $\alpha'_c < \alpha < \alpha_c$. Then there exists a sequence of random variables $c_n \in \sigma\{p_1, \ldots, p_n\}$ and a constant $g \neq 0$ (both depending on α) such that, as $m \to \infty$,

$$P\left(\frac{H-c_nm}{g\cdot m^{1/3}}\leq s \mid p_1,\ldots,p_n\right) \to F_2(s),$$

almost surely, for any fixed s. The proof is a uniform version of the proof for fixed p.

Fluctuations, annealed case, pure regime: Theorem Assume that b < 1 and $\alpha'_c < \alpha < \alpha_c$. Let a be as before and

$$\tau^2 = \operatorname{Var}\left(\frac{(1-a)p}{a-p}\right)$$

Then, as $m \to \infty$,

$$\frac{H-cm}{\tau\sqrt{\alpha}\cdot m^{1/2}} \stackrel{d}{\longrightarrow} N(0,1).$$

Fluctuations, composite regime: Assume (a technical condition and) that

$$1 - F(b - x) \sim K x^{\eta}$$
, as $x \to 0$,

for some K and $\eta > 2$. Then $\alpha'_c > 0$. Assume also that b < 1 and $\alpha < \alpha'_c$, and let

$$\tau^2 = b(1-b)\left(\frac{1}{\alpha} - \frac{1}{\alpha'_c}\right).$$

Theorem: As $m \to \infty$,

$$P\left(\frac{H-c_nm+2\tau\sqrt{n}}{\tau\cdot\sqrt{n}}\leq s\mid p_1,\ldots,p_n\right)\to\Phi(s),$$

almost surely, for any fixed s.

Theorem: For s > 0, as $m \to \infty$,

$$P\left(\frac{H-cm}{\gamma \cdot n^{1-1/\eta}} \le s\right) \to e^{-s^{\eta}},$$

where $\gamma = (K\alpha)^{-1/\eta} (1 - \alpha/\alpha'_c)$.

Why are the fluctuations increased?

The maximal increasing path has a nearly vertical segment of length asymptotic to $(1 - \alpha/\alpha'_c)m$ in (or near) the column of A which uses the largest probability p_1 . Therefore, this vertical part of the path dominates the fluctuations, as the rest presumably has $o(\sqrt{m})$ fluctuations. (These are most likely *not* of the order exactly $m^{1/3}$ as they correspond to the critical case $\alpha = \alpha'_c$.) The variables in the p_1 -column are Bernoulli with variances about b(1-b), thus the contribution of the vertical part to the variance is about

$$(b(1-b)(1-\alpha/\alpha'_c)m)^{1/2} = \tau\sqrt{n}.$$

Annealed fluctuations are governed by p_1 since

$$c_n = c - (1 - \alpha / \alpha'_c) (b - p_1) + o(b - p_1).$$

Future directions, open problems

- What happens in either critical case?
- Is this approach suitable for determining large deviation rates?
- What happens for different growth models or different initial states? For example, nothing is known about the (two-sided)
 DB given by

 $h_{t+1}(x) = \max\{h_t(x-1), h_t(x+1), h_t(x) + \varepsilon_{x,t}\}.$