A Growth Model

in a Random Environment

Janko Gravner, UC Davis
Craig Tracy, UC Davis
Harold Widom, UC Santa Cruz

Oriented Digital Boiling (ODB)

Interface:

$$
\left\{(x, y): x \in \mathbb{Z}, y \leq h_{t}(x)\right\}, t=0,1,2, \ldots
$$

Height function rules:

1. $h_{t} \leq h_{t+1}$.
2. If $h_{t}(x-1)>h_{t}(x)$, then $h_{t+1}(x)=h_{t}(x-1)$.
3. Else, $h_{t+1}(x)=h_{t}(x)+1$ with prob p_{x}.

Alternatively, toss p_{x}-coins in advance to get indep. Bernoulli rv's $\varepsilon_{x, t}$. Think of the points (x, t) for which $\varepsilon_{x, t}=1$ as marked. Then

$$
\mathbf{h}_{\mathrm{t}}(\mathrm{x})=\boldsymbol{\operatorname { m a x }}\left\{\mathrm{h}_{\mathrm{t}-\mathbf{1}}(\mathrm{x}-1), \mathrm{h}_{\mathrm{t}-1}(\mathrm{x})+\varepsilon_{\mathrm{x}, \mathrm{t}-\mathbf{1}}\right\} .
$$

We will assume that the initial state is $h_{0}(x)=$ 0 if $x=0$, otherwise $-\infty$.

Eventually: p_{x} i.i.d., with d.f. F.

Path description

A space-time point $(x, t), x \leq t$, has backwards lightcone:
$\mathcal{L}(x, t)=\left\{\left(x^{\prime}, t^{\prime}\right): 0 \leq x^{\prime} \leq x, x^{\prime} \leq t^{\prime}<x^{\prime}+t-x\right\}$.

Let H be the longest sequence $\left(x_{1}, t_{1}\right), \ldots,\left(x_{k}, t_{k}\right)$ of marked points such that

1. $x_{i-1} \leq x_{i}$,
2. $x_{i}-x_{i-1}+1 \leq t_{i}-t_{i-1}$.

Alternatively, let $m=t-x$ and $n=x+1$, and A a random $m \times n$ matrix with Bernoulli entries $\varepsilon_{i, j}$, where $P\left(\varepsilon_{i, j}=1\right)=p_{j}$. Label columns as usual, but rows started at the bottom. Then $H=H(m, n)$ is the longest sequence of 1 's in A, with

column index non-decreasing and row index strictly increasing

Then

$$
h_{t}(x)=H(m, n)
$$

This is often called a last passage property. From now on, we formulate all the results for H, with $n=\alpha m$.

$$
\begin{array}{llllllll}
-\infty & 0 & 1 & 0 & 1 & 0 & 0 & 1 \\
-\infty & 0 & 1 & 1 & 1 & 0 & 1 & 1 \\
-\infty & 0 & 0 & 1 & 0 & 0 & 1 & 1 \\
-\infty & 1 & 1 & 0 & 1 & 1 & 0 & 1 \\
-\infty & 0 & 1 & 0 & 0 & 0 & 1 & 0 \\
& 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}
$$

"Remembrance of Things Past"

Ulam's problem of estimating the longest increasing subsequence in a random permutation of length n.

Strong Law Type Results: Hammersley (1972), Logan-Shepp, Vershik-Kerov (1977), \& AldousDiaconis (1995)

Fluctuations: Baik-Deift-Johansson (1999)

Methods: subadditivity, exclusion process representation, random Young tableaux, RMT techniques (including Riemann-Hilbert).

The largest increasing sequence in a random (0,1)-matrix: Seppäläinen (1998), limiting shape:

$$
\lim _{t \rightarrow \infty} \frac{h_{t}(x)}{t}, \quad x / t \quad \text { constant }
$$

Johansson (1999-2000) computed the fluctuations in (universal regime of) this limit law, by a RMT approach

The disordered case, when p_{x} are initially chosen at random, is related to the SeppäläinenKrug model (1999).

The main theorem for the homogeneous case

Assume $p_{x} \equiv p$.

If $0<\alpha<(1-p) / p$, then define

$$
\begin{aligned}
c= & 2 \sqrt{\alpha} \sqrt{p(1-p)}+(1-\alpha) p \\
g= & \alpha^{-1 / 2}(p(1-p))^{1 / 6} \times \\
& ((1-\alpha) \sqrt{p(1-p)}+(1-2 p) \sqrt{\alpha})^{2 / 3}
\end{aligned}
$$

Then, as $m \rightarrow \infty$,

$$
P\left(\frac{H-c m}{g \cdot m^{1 / 3}} \leq s\right) \rightarrow F_{2}(s)
$$

where

$$
F_{2}(s)=\exp \left(-\int_{s}^{\infty}(x-s) q(x)^{2} d x\right)
$$

and q solves

$$
q^{\prime \prime}=s q+2 q^{3}, \quad q(s) \sim \mathrm{Ai}(s) \text { as } s \rightarrow \infty
$$

Main steps in proving the theorem

1. dual RSK algorithm gives a bijection between (0,1)-matrices with $k 1$'s and pairs (P, Q) such that P^{t} and Q are semistandard Young tableaux (of the same shape) of size k. Most importantly, the length of the first row in P is $H=h_{t}(x)$. This gives, with $r=p /(1-p)$,

$$
\begin{gathered}
P\left(h_{t}(x) \leq h\right)=(1-p)^{m n} \sum_{\substack{\lambda \in \mathcal{P} \\
\ell(\lambda) \leq h}} r^{|\lambda|} d_{\lambda}(m) d_{\lambda^{\prime}}(n) . \\
d_{\lambda}(m)=\# \text { SSYT's of shape } \lambda
\end{gathered}
$$

using integers $\{1, \ldots, m\}$
2. Gessel's theorem (1990) \& Borodin-Okounkov identity (1999) then establish the connections between the sum above and determinants of matrices and operators, the final result being

$$
P\left(h_{t}(x) \leq h\right)=\operatorname{det}\left(I-K_{h}\right),
$$

where $K_{h}: \ell^{2} \rightarrow \ell^{2}$ is given by its $(j, k)-$ entry

$$
\sum_{\ell=0}^{\infty}\left(\varphi_{-} / \varphi_{+}\right)_{h+j+\ell+1}\left(\varphi_{+} / \varphi_{-}\right)_{-h-k-\ell-1}
$$

K_{h} product of two matrices: (j, k)-entries

$$
\begin{aligned}
& a_{j k}^{+}(h)=\frac{1}{2 \pi i} \int(1+r z)^{n}(z-1)^{m} \times \\
& z^{-m+h+j+k} d z \\
& a_{j k}^{-}(h)=\frac{1}{2 \pi i} \int(1+r z)^{-n}(z-1)^{-m} \times \\
& z^{m-h-j-k-2} d z .
\end{aligned}
$$

The contours for both integrals go around the origin once counterclockwise; in the second integral 1 is inside and $-r^{-1}$ is outside.
3. Scaling:

$$
h=c m+s m^{1 / 3}, j=m^{1 / 3} x, k=m^{1 / 3} y
$$

and compute integrals asymptotically. Use the steepest descent method:

- Two saddles points coincide. Location determines c
- Double zero, hence the $m^{1 / 3}$ scaling.
- Variance normalization determined by coefficient of third derivative
- Limit is a Fredholm determinant with Airy kernel.
- The main technical effort is in establishing trace-class convergence of the approximations.

Another Connection with Random

Matrices.

In GUE (Tracy-Widom, 1993) The largest eigenvalue $\lambda_{\text {max }}$ obeys the limit law

$$
P\left((\lambda \max -\sqrt{2 n}) \cdot \sqrt{2} n^{1 / 6} \leq s\right) \rightarrow F_{2}(s),
$$

as $s \rightarrow \infty$.
The limit laws for the largest eigenvalue in GOE and GSE (Tracy-Widom, 1996) also arise as limit laws for increasing path problems (Baik-Rains, 2000) and associated growth processes (Baik-Rains, Prähofer-Spohn)

No known intuitive connection between largest eigenvalues and increasing paths without using the RSK correspondence. With RSK Johansson (2000) has given a discrete orthogonal polynomial ensemble approach to increasing subsequence problems. In this formulation one has discrete analogues of the distribution of the largest eigenvalue.

Inhomogeneous ODB

Now assume that A is an $m \times n$ random matrix with $P\left(\varepsilon_{i j}=1\right)=p_{j}$. Here p_{j} are i.i.d., with $P\left(p_{j} \leq x\right)=F(x)$, where $F:[0,1] \rightarrow[0,1]$ is a distribution function. (H is the longest increasing path of 1 's in A.)

This corresponds to a random environment version of ODB: every $x \in \mathbb{Z}$ decides before the dynamics starts, at random according to F, on the probabilities of its coin flips.

- Time constant can be explicitly determined in terms of F.
- Quenched and annealed fluctuations differ.
- If the right tails of F are sufficiently thin, there is a composite (or glassy) regime for small $\alpha=n / m$. This regime can be identified with a different fluctuations scaling.
Lemma: Once p_{1}, \ldots, p_{n} are determined, the distribution of H does not depend on their order.

Time Constant

p has distr fn F and $\langle\cdot\rangle$ is integration w.r.t. $d F$.

$$
\begin{aligned}
b & :=\operatorname{maxsupp} d F \\
c & :=c(\alpha, F)=\lim _{m \rightarrow \infty} \frac{H}{m} .
\end{aligned}
$$

Define the following critical values:

$$
\begin{aligned}
\alpha_{c} & :=\left\langle\frac{p}{1-p}\right\rangle^{-1} \\
\alpha_{c}^{\prime} & :=\left\langle\frac{p(1-p)}{(b-p)^{2}}\right\rangle^{-1}
\end{aligned}
$$

Theorem: If $b=1$, then $c(\alpha, F)=1$ for all α, while if $b<1$, then
$c(\alpha, F)=\left\{\begin{array}{l}b+\alpha(1-b)\left\langle\frac{p}{b-p}\right\rangle \\ \text { if } \alpha \leq \alpha_{c}^{\prime}, \\ a+\alpha(1-a)\left\langle\frac{p}{a-p}\right\rangle \text { if } \alpha_{c}^{\prime} \leq \alpha \leq \alpha_{c}, \\ 1 \text { if } \alpha_{c} \leq \alpha .\end{array}\right.$
Here $a=a(\alpha, F) \in[b, 1]$ is the unique solution to

$$
\alpha\left\langle\frac{p(1-p)}{(a-p)^{2}}\right\rangle=1
$$

Fluctuations, quenched case, pure regime:

 Theorem: Assume that $b<1$ and $\alpha_{c}^{\prime}<\alpha<$ α_{c}. Then there exists a sequence of random variables $c_{n} \in \sigma\left\{p_{1}, \ldots, p_{n}\right\}$ and a constant $g \neq$ 0 (both depending on α) such that, as $m \rightarrow \infty$,$$
P\left(\left.\frac{H-c_{n} m}{g \cdot m^{1 / 3}} \leq s \right\rvert\, p_{1}, \ldots, p_{n}\right) \rightarrow F_{2}(s),
$$

almost surely, for any fixed s. The proof is a uniform version of the proof for fixed p.

Fluctuations, annealed case, pure regime: Theorem Assume that $b<1$ and $\alpha_{c}^{\prime}<\alpha<\alpha_{c}$. Let a be as before and

$$
\tau^{2}=\operatorname{Var}\left(\frac{(1-a) p}{a-p}\right)
$$

Then, as $m \rightarrow \infty$,

$$
\frac{H-c m}{\tau \sqrt{\alpha} \cdot m^{1 / 2}} \xrightarrow{d} N(0,1) .
$$

Fluctuations, composite regime: Assume (a technical condition and) that

$$
1-F(b-x) \sim K x^{\eta}, \text { as } x \rightarrow 0,
$$

for some K and $\eta>2$. Then $\alpha_{c}^{\prime}>0$. Assume also that $b<1$ and $\alpha<\alpha_{c}^{\prime}$, and let

$$
\tau^{2}=b(1-b)\left(\frac{1}{\alpha}-\frac{1}{\alpha_{c}^{\prime}}\right) .
$$

Theorem: As $m \rightarrow \infty$,

$$
P\left(\left.\frac{H-c_{n} m+2 \tau \sqrt{n}}{\tau \cdot \sqrt{n}} \leq s \right\rvert\, p_{1}, \ldots, p_{n}\right) \rightarrow \Phi(s)
$$

almost surely, for any fixed s.

Theorem: For $s>0$, as $m \rightarrow \infty$,

$$
P\left(\frac{H-c m}{\gamma \cdot n^{1-1 / \eta}} \leq s\right) \rightarrow e^{-s^{\eta}},
$$

where $\gamma=(K \alpha)^{-1 / \eta}\left(1-\alpha / \alpha_{c}^{\prime}\right)$.

Why are the fluctuations increased?

The maximal increasing path has a nearly vertical segment of length asymptotic to ($1-$ $\alpha / \alpha_{c}^{\prime}$) m in (or near) the column of A which uses the largest probability p_{1}. Therefore, this vertical part of the path dominates the fluctuations, as the rest presumably has $o(\sqrt{m})$ fluctuations. (These are most likely not of the order exactly $m^{1 / 3}$ as they correspond to the critical case $\alpha=\alpha_{c}^{\prime}$.) The variables in the p_{1}-column are Bernoulli with variances about $b(1-b)$, thus the contribution of the vertical part to the variance is about

$$
\left(b(1-b)\left(1-\alpha / \alpha_{c}^{\prime}\right) m\right)^{1 / 2}=\tau \sqrt{n} .
$$

Annealed fluctuations are governed by p_{1} since

$$
c_{n}=c-\left(1-\alpha / \alpha_{c}^{\prime}\right)\left(b-p_{1}\right)+o\left(b-p_{1}\right) .
$$

Future directions, open problems

- What happens in either critical case?
- Is this approach suitable for determining large deviation rates?
- What happens for different growth models or different initial states? For example, nothing is known about the (two-sided) DB given by
$h_{t+1}(x)=\max \left\{h_{t}(x-1), h_{t}(x+1), h_{t}(x)+\varepsilon_{x, t}\right\}$.

