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Tableaux on Periodic Skew Diagrams and
Irreducible Representations of the Double
Affine Hecke Algebra of Type A

Takeshi Suzuki and Monica Vazirani

1 Introduction

As is well known, Young diagrams consisting of n boxes parameterize isomorphism
classes of finite-dimensional irreducible representations of the symmetric group &,, of
degree n, and moreover the structure of each irreducible representation is described in
terms of tableaux on the corresponding Young diagram; namely, a basis of the represen-
tation is labeled by standard tableaux, with which the action of G,, generators is explic-
itly described. This combinatorial description due to A. Young has played an essential
role in the study of the representation theory of the symmetric group (or the affine Hecke
algebra), and its generalization to the (degenerate) affine Hecke algebra H,(q) of GL,
has been given in [3, 8, 9], where skew Young diagrams appear on combinatorial side.

The purpose of this paper is to introduce an “affine analogue” of skew Young di-
agrams and tableaux, which give a parameterization and a combinatorial description of
a family of irreducible representations of the double affine Hecke algebra H,,(q) of GL,,
over a field F, where q € [ is a parameter of the algebra.

The double affine Hecke algebra was introduced by Cherednik [2, 4] and has since
been used by him and by several authors to obtain important results about diagonal
coinvariants, Macdonald polynomials, and certain Macdonald identities.

In this paper, we focus on the case where ¢ is not a root of 1, and we consider rep-

resentations of H,,(q) that are X-semisimple; namely, we consider representations which
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have a basis of simultaneous eigenvectors with respect to all elements in the commuta-
tive subalgebra F[x] = F[x{' x5, ... ,xE" £5'] of Ha(q). (In [8, 9], such representations
for affine Hecke algebras are referred to as “calibrated.”)

On combinatorial side, we introduce periodic skew diagrams as skew Young di-
agrams consisting of infinitely many boxes satisfying certain periodicity conditions. We
define a tableau on a periodic skew diagram as a bijection from the diagram to Z which
satisfies the condition reflecting the periodicity of the diagram.

Periodic skew diagrams are natural generalization of skew Young diagrams and
have appeared in [5] (or implicitly in [1]), but the notion of tableaux on them seems new.

To connect the combinatorics with the representation theory of the double affine
Hecke algebra H,(q), we construct, for each periodic skew diagram, an H,(q)-module
that has a basis of F[X]-weight vectors labeled by standard tableaux on the diagram by
giving the explicit action of the H,,(q) generators.

Such modules are X-semisimple by definition. We show that they are irreducible,
and that our construction gives a one-to-one correspondence between the set of periodic
skew diagrams and the set of isomorphism classes of irreducible representations of the
double affine Hecke algebra that are X-semisimple.

The classification results here recover those of Cherednik’s in [5] (see also [6]),
but, in this paper, we provide a detailed proof based on purely combinatorial arguments
concerning standard tableaux on periodic skew diagrams.

Note that the corresponding results for the degenerate double affine Hecke alge-
bra of GL,, easily follow from a parallel argument.

An outline of the paperis as follows. Section 2 is a review of the affine root system
and the extended affine Weyl group of E[n.

The contents of Section 3 are purely combinatorial. We introduce periodic skew
diagrams and tableaux on them in Sections 3.1 and 3.2, respectively. These combinato-
rial objects are considered worth studying in themselves, and here we investigate their
relation with the affine Weyl group and content functions. The set of tableaux on a pe-
riodic skew diagram admits an action of the extended affine Weyl group W, and it turns
out that this action is simply transitive and gives a bijective correspondence between the
tableaux and the elements of W. In Section 3.5, we explicitly describe the subset W cor-
responding to the set of the standard tableaux, which is the most interesting class from
the view point of the representation theory.

We study content functions, in particular, those associated with standard tab-
leaux, in Section 3.6. The results obtained here lay the foundation to show our construc-

tion exhausts all X-semisimple irreducible modules.
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In Section 4, we introduce the double affine Hecke algebra and apply the combi-
natorics studied in Section 3 to its representation theory.

We remind the reader in Section 4.1 of the definition of the algebra H, (q) and re-
view intertwining operators, which were also introduced by Cherednik and are elemen-
tary tools in the representation theory of Hy(q).

We derive some of rigid properties of X-semisimple modules in Section 4.2. Then
we give a combinatorial and explicit construction of the representations of Hy,(q) in
Section 4.3 using tableaux on periodic skew diagrams. The related combinatorics is sim-
ilar to and inspired by that in [9] for the affine Hecke algebra.

Note that the statements of Section 4.2 also hold in the case that q is a root of
unity. However, when q is a root of unity, the combinatorial description of the modules is
incredibly complicated.

It is proved in Section 4.4 that we have constructed all the X-semisimple irre-
ducible representations and that they are distinct up to diagonal shift of periodic skew
diagrams. This gives the classification of the X-semisimple irreducible representations
of Hn(q).

2 The affine root system and Weyl group

Let Q denote the field of rational numbers, and let Z denote the ring of integral numbers.

We use the notation

ZZk:{HGZh’LZk} (21)
fork € Z, and
il ={,1+1,...,5} (2.2)

fori,j € Zwithi <j.
2.1 The affine root system
Let n € Zs,. Let h be an (n + 2)-dimensional vector space over Q with the basis

{eY,€Y,..., e c,dk

b= (@@4) @ Qc ® Qd. (2.3)
i=1
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Introduce the nondegenerate symmetric bilinear form (|) on by

(e'ley) =835, (etle) = (&'1d) =0,
(cld)=1,  (cle) = (dd) = 0.

Puth =@} ,Qe and h = h © Qc.

Let h* = (@?:1 Qei) ® Qc* @ Q5 be the dual space of h, where €, c*, and § are the
dual vectors of €Y/, ¢, and d, respectively.

We identify the dual space b* of ) as a subspace of h* via the identification h* =
b*/Q6 = h* @ Qc*.

The natural pairing is denoted by (|) : b* x h — Q. There exists an isomorphism
h* — b such that e; — e, 8 — ¢, and ¢* — d. We denote by ¢V € h the image of ¢ € b*
under this isomorphism. Introduce the bilinear form (|) on h* through this isomorphism.
Note that

@) ={InYy=(Y 1Y) (¢nep). (2.5)
Putoy; =ei—€5 (1 <i#j<n)and oy = at4341 (1 <i<n—1). Then

n:{ocll)ocZ)"')(xTL71} .

give the system of roots, positive roots, and simple roots of type A,,_1, respectively.
Put &y = —x1n + 0, and define the set R of (real) roots, R of positive roots, and IT

of simple roots of type A(T:L by

R={a+ks|xeR, keZ},
RT = {a+ks|aeR", keZsofU{—a+ks|axeR", keZs}, (2.7)

ﬁ:{ao,Oﬂ,...,OCn,]}.

2.2 Affine Weyl group

Definition 2.1. For n € Z>;,, the extended affine Weyl group W,, of gl,, is the group de-
fined by the following generators and relations:

(1) generators:

80,81,y S 1, T (2.8)



Double Affine Hecke Algebras 1625

(2) relations forn > 3:

st=1 (ieon—1]),

$i8jSi = sj5is; (1—j = +Tmodn),

sisj = s8¢ (i—j # £1modn), (2.9)
msy =sim (i€ [0,n—2]), TSn_1 = ST,
= 'n=1;

(3) relations forn = 2:

st=s7=1,
TISo = S17T, TS = ST, (2.10)
= =1

The subgroup W,, of Wi generated by the elements sj,s3,...,sn,_1 is called the
Weyl group of gl,,. The group W,, is isomorphic to the symmetric group of degree n.
In the following, we fix n € Z>, and denote W =W, and W = W,,.

Put
n
P =P Ze. (2.11)
i1
Put Tc, = 7sn_1---82871 and Te, = m "1, w1 (1 € [2,n]). Then there exists a group

embedding P — W such that e; ~ T.,. By T, we denote the element in W corresponding
tomn € P. It is well known that the group W is isomorphic to the semidirect product P x W
with the relation wryw™! = T,).

The group W acts on § by

si(h) =h—(xh)ay’ forie[l,n—1], hep,

1 - (2.12)
T, (h) =h+ (§|h)ey — (<ei|h> + z(6|h>)c forie [1,n], h€h.
The dual action on h* is given by
si(¢) = ¢ — (alQ)oy  forie [1,n—1], ¢ € b,
. (2.13)

Te () = C+ (8|0)ei — ((eiIC) + %(6|C)>6 forie [1,n], h € p*.
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With respect to these actions, the inner products on § and h* are W-invariant. Note that
the set R of roots is preserved by the dual action of W on §*. Note also that the action of
W preserves the subspace h = h @ Qc, and the dual action of W on b* (called the affine

action) is described as follows:

si(0) = ¢ — (alQ)oy forie [1,n—1], ¢ € b,
. (2.14)
T, (Q) =C+ (8|C)es forie[l,n], hep”.

For « € R, there exists i € [0,n — 1] and w € W such that w(«;) = «. We set s, = ws;w ™.

Then s, is independent of the choice of i and w, and we have
sa(h) =h— (a | h)a” (2.15)

for h € h. The element s, is called the reflection corresponding to «. Note that s,, = s;.
Forw e \/\/, set

R(w) =R* nw™ 'R, (2.16)

where R~ = R\ R*. The length (w) of w € W is defined as the number #R(w) of elements
in R(w). For w € W, an expression w = 7¥s;,s;, - - - 55, is called a reduced expression if

m = l(w). It can be seen that

RW) = {sj, -85, (%5,), 85,0 -+ 855 (%5, ), -+, %5, } (2.17)

if w = 7¥s;, 55, - - - 55, is a reduced expression.
Define the Bruhat order < in W by

x = w <= x is equal to a subexpression of a reduced expression of w. (2.18)

We will review some fundamental facts in the theory of Coxeter groups, which

are often used in this paper. See, for example, [7] for proofs.

Lemma 2.2. (i) Letw € Wand1i € [0,n — 1]. Then

L(wsi) > (w) &= w() € RY,
. (2.19)
L(siw) > L(w) &= w ' (o) € R.

(ii) (Strong exchange condition.) Let « € R* and let w € W with a reduced ex-
pression w = 7"syi, S, -+ Si, - If L (wsy) < lL(w), then there exists p € [1,k| such that

WS = TU'Si, S, -~ Si, - -~ Si, (omitting s; ). Further o = sy, 8¢, ,, -~ si,,, (o, ). O
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Let I be a subset of [0,n — 1]. Put

ﬁ;z{oql iEI}gﬁ,
Wi=(si|iel)CW, (2.20)
Ry = {o € R | so € Wi}.

The subgroup W is called the parabolic subgroup corresponding to IT;. Define
W!={weW|Rw)NR] =o}. (2.21)

The following fact is well known.

Proposition 2.3. (i) WI = {w € W | L(ws,,) > L(w) Yo € TTy).

(ii) For any w € W, there exist a unique x € W! and a unique y € W; such that
w = xy. Namely, the set W! gives a complete set of minimal length coset representatives
for W/W. O

2.3 Notation
For any integer i, we introduce the following notation:
ei:ei—kéeﬁ*, ez/:e;/—kcef), (2.22)

wherei=i+knwithie [l,n]andk € Z.

Put ojj = €;—¢; and oQg = ei\’fe]y foranyi,j € Z. Noting thatep—e7 = §+en—€1 =
xo, wereset oy = €; — €i41 and o = € — €Y, foranyic Z.

The following is easy.

Lemma 2.4. (i) &i4n j+n = oy foralli,j € Z.
(ii) R= {ayj 11,j € Z, i # jmodn} as a subset of h*.
(iii) Rt = {ay5 11, € Z, i #Zjmodn and i < j} as a subset of h*. O

Define the action of W on the set Z of integers by

sij)=j+1 forj=1mod n,
si(j)=j—1 forj= i+ 1 mod n,

(2.23)
si(j)=j forj# i, 1+ 1 mod n,

n(j) =j+1 Vi
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It is easy to see that the action of t¢, (i € [1,1]) is given by

Te,(j) =j+n forj= i mod n,

Te,(j) =j forj# imod n,
and that the following formula holds for any w € W:
w(i+n)=w({)+n Vj.

Lemma 2.5. Letw € W.

(i) w(ej) = ew() and w(ej’) = e}/ ; foranyj € Z.
(if) (i) = otww() and w(a)) = o, forany i,j € Z.

(2.24)

(2.25)

O

Proof. (i) It is enough to check the statement whenw = s; (i € [1,n — 1]) and whenw =

Te; (1 € [1,n]). Letj = j+knwithj € [I,n]and k € Z. Fori € [I,n — 1], we have si(¢;) =

€ — (i | )i = €5 — (o | €j)oi. This leads to si(ej) = €,(j). Fori € [1,n], we have

Te,(€5) = €5 + (ei | €)d = € + (ei | €;)8. This leads to T, (€j) = €<, j)-

(ii) The proof follows directly from (i).

3 Periodic skew diagrams and tableaux on them

Throughout this paper, we let F denote a field whose characteristic is not equal to 2.

3.1 Periodic skew diagrams

Form € Z>1 and { € Z>o, put

Pre={re€Z™m 21w > > um, 0> w1 — i},

where p; denotes the ith component of y, that is, p = (uy, 12, ..

introduce the following subsets of Z™ x Z™:

ATni,e = {(7\»”) € 33:12 X i):n,/zp‘i >y (te[1,m]),

~

e = {()\)H) € fAP;e X ﬁ;‘gp\i > (ie1,m]),

Mz L=

i=1

(M—m)=n

M—w)=n

}

)

}.

(3.1)

., Hm). Fixn € Z>;, and

(3.2)
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1,211,311 1,4(1,5

2,1]2,2(23

Figure 3.1

~

For (A, 1) € J}}, ,, define the subsets A/ and )T/\u(m,_e) of Z? by

Mu={(a,b)€Z*ael,m], be [ug+1,Ad},

_ 3.3

Mty = {(a +km,b—k) € Z% | (a,b) € M/, k e Z}. (3:)
Let A/pu[k] = A/p + k(m, —¢). Obviously we have

Mo = L Muld = | ] (Mu+k(m,—-0). (3.4)

keZ keZ

The set A/ is the so-called skew diagram (or skew Young diagram) associated
with (A, p).

We call the set ?\//\u(m‘%) the periodic skew diagram associated with (A, p).

We will denote A/u(m,%) just by A/u when m and { are fixed.

Example3.1. (i)Letn=7,m =2,and { = 3. Put A = (5,3), u = (1,0). Then (A, n) € 5;;1;@

and we have

Mu={(1,2),(1,3),(1,4),(1,5),(2,1),(2,2),(2,3)}. (3.5)

The set A/ is expressed by Figure 3.1 (usually, the coordinates in the boxes are omitted).

The periodic skew diagram

Mig, 5= auk =] W+ k@, -3) (3.6)

kez keZ
is expressed by Figure 3.2.
Generally, periodic skew diagrams are defined as follows (see [5]).

Definition 3.2. For y € Z?, a subset A C Z? is called a y-periodic skew diagram (or a

periodic skew diagram of period v) if it satisfies the following conditions.
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~1,5
b A/ul1]

} A/u[0] = A/p

A/u-1]

Figure 3.2

(D1) The set A is invariant under the parallel translation by y:

and hence the group Zvy acts on A.

(D2) A fundamental domain of the action of Zy on A consists of finitely many
elements. This number is called the degree of A.

(D3)If (a,b) € Aand (a+i,b+j) € Afori,j € Z>o, then the rectangle {(a+1i’, b+j’) |
i’ €[0,1],j’ € [0,j]} is included in A.

Let D7 denote the set of all y-periodic skew diagram of degree n, and put
D" ={A €D} |VaecZ Ibec Zsuchthat (a,b) € A}. (3.8)

Namely, D)™ is the subset of DY consisting of all diagrams without empty rows.
Note that an element in D, , is regarded as a (classical) skew Young diagram of
degree n.

Lemma 3.3. Lety € Z2.
(i) If D} # @,theny € Z<o X ZxoOrYy € Z>0 X Z<o.
(11) IfD;“#@,thenVGZE XZgo OI"YEZS,1 XZZO. O
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Proof. (i) Since D} = D™, itis enough to prove that D} = @ fory € Z>1 x Z>1.

Suppose DZ‘mﬁ # @ for some m € Z>; and { € Z>1, and take A € Dzlm,z)- Then
A ={(a,b) € A|a e [l,m]}is a fundamental domain of the action of Z(m, {) on A.

Let (a,b) € A. Then condition (D1) implies {(a+km, b+k€) ez C A, and condition
(D3) implies {(a,b +k)}xez € A, and hence {(a,b +k{)}xez C A. This implies that the fun-
damental domain A contains infinitely many elements. This contradicts condition (D2),
and hence we have D}, ,) =@ form € Z>; and { € Z>;.

(ii) By (i), it is enough to show that D7g',) = @ for all { € Z, and this is easy. [ |

-~

Letm € Z>1 and { € Z>o. For (A, ) € 7, ,, it is easy to see that the set )T/\H(m,fe)
satisfies conditions (D1), (D2), and (D3) in Definition 3.2, and hence we have ?\//\u(m oy €

Dzlmfﬁ'

Proposition 3.4. Letn € Z>,, m € Z>1, and { € Z>o. The correspondence ﬁﬁ,eﬂgym Ly
given by (A, ) — m is a surjection. Moreover, its restriction to 5;;3@ gives a bijection

Ime = Dim o) (3.9)
O

Proof. Takeany A € Dff, .
Fix ip € Z<o such that the ipth row of A is not empty. Fori > iy, define A; and

recursively by the following relations:

max{b € Z|(i,b) € A} iftheithrow is not empty,

Ai1 if the ith row is empty,
(3.10)

min{b € Z| (i,b) € A} —1 if the ith row is not empty,
Hi =
Ai1 if the ith row is empty.

PutA = (A, A2,...,An)and p = (g, uz2, ..., tm). Then it follows from condition (D3) (with
i1=0) that

{laab)eAla=i}=[m+1,N] (i€l,m]) (3.11)
and hence

Mu={(a,b) e Alac[l,m]}. (3.12)
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It follows from condition (D1) that A/p is a fundamental domain of Z(m, —{) on A and

A= L] Witk —0) = Mg, o (3.13)
kEZ

In particular, we have fA/p = n.

Note that Ag = Ay, + { and po = pm + £ by condition (D1).

Now, condition (D3) implies that A; > Ai;7 and py > w4 foralli > iy, in particu-
lar, forall i € [1,m — 1]. This yields A € /35;({ and u € CT’;E Therefore, the correspondence
ﬁgﬂ — D?m,fﬁ) is surjective.

Now, it is clear from the discussion above that the correspondence (A, ) — 7\//1

gives a bijection 5:;38 — DR o) u

3.2 Tableaux on periodic skew diagram

Fix n € Z>». Recall that a bijection from a skew Young diagram, say A/, of degree n to

the set [1,n] is called a tableau on A/p.

Definition 3.5. Fory € Z? and A € DY, abijection T : A — Z is said to be a y-tableau on
A if T satisfies

Tu+y)=T(w+n YueA. (3.14)

Let Tab, (A) denote the set of all y-tableaux on A.
In this paper, we mostly treat periodic skew diagrams associated with (A, u) €

dn  forsomem € Z>q and { € Z>o. For (A, u) € Jy, ,, we always choose (m, () as a period

of ?\//\u We use the abbreviated notation

Tab(A/n) = (nT:ag)(W) (3.15)

for (A, n) € 3:;,2, and we let a tableau on ?T/\u mean an (m, —{)-tableau on ?T/\u
Remark 3.6. A tableau on }T/\LL is determined uniquely from the values on a fundamental
domain of )T/\}l with respect to the action of Zvy. It also holds that any bijection from a

fundamental domain of Zy to the set [1,1] uniquely extends to a tableau on X/\}i
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50167 }}\/”

12 [ 13 ] 14

Figure 3.3

There exists a unique tableau Tg‘/” =T on 7\//TL such that

i-1

To(wi+5) =) (Ac—m) +j forie [I,m],je [1,A— . (3.16)
k=1

We call Ty the row reading tableau on 7\//;

Example 3.7. Letn=7,m=2,{=3and A = (5,3), u = (1,0). The tableau Ty on 7\//\p given
above is pictured in Figure 3.3.

Proposition 3.8. Let (A, ) € 5;;2 The group W acts on the set Tab(?T/\u) by

(WT)(w) = w(T(w)) (3.17)
forwe W, T e Tab()T/\u),andueA//IL. O

Proof. It is obvious that wT is a bijection. It is enough to verify that wT satisfies condi-
tion (3.14) in Definition 3.5. Putting y = (m, —{), we have

WT(u+vy) =w(T(u+v)) =w(T(u) +n) =wT(u) +n. (3.18)

Therefore, wT satisfies (3.14). [ |
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ForeachT e Tab(?x//TL), define the map

Pr: W — Tab(A/p) (3.19)

by Y1 (w) =wT (w e W),

Proposition 3.9. Let (A, ) € ﬁg,e. Forany T € Tab()\//;), the correspondence Yt is a
bijection. O

Proof. Itis enough to show the statement for T = T, given by (3.16). We prove the surjec-
tivity first. Take any S € Tab(?\//\u) and put i = S(T, ' (1)) fori € [1,n]. Suppose i — 15 = kn
for some ,j € [1,n] and some k € Z. Then S(T, ' (j) + k(m,—0)) =15 + kn =1, = S(Ty ' (1)),
and hence T, ' (j) + k(m, —€) = T, ' (i). This means k = 0 and i = j.

Letri = r; + kin withr; € [I,n] and k; € Z. Then we have shown that r; # r; for
i,j € [1,n] such that i # j. This ensures that there exists x € W such that x(i) = r; for
ki ks

Kigkz ...k we have w(i) = r; for any i € [1,n] and hence

wTy = S on the fundamental domain A/u. This implies wTy = S.

alli € [1,n]. Puttingw :=x -7
It is easy to see that the choice of w for each S is unique, and hence the injectivity
follows. |

The following formula follows directly from the definition (3.17) of the action
of W.

Lemma3.10. T-'(w (1)) = (WT)~ (i) forany T € Tab(A/p), w € W, and i € Z. O

3.3 Content and weight

Let C denote the map from Z? to Z given by C(a,b) =b — a for (a,b) € Z2.
For atableauT € Tab(?T/TL), define the map C#“‘ : 7 — 7 by

C’T‘7“(i) =C(T'(1) (ez), (3.20)

and call C}’* the content of T. We simply denote C}’* by Ct when (A, ) is fixed.

Lemma 3.11. LetT € Tab(?\//IL). Then
(i) Cr(i+n)=Cr(i) — (¢ +m) foralli e Z;
(ii) Cy1(i) = CT(w'(i)) forallw € W and i € Z. O



Double Affine Hecke Algebras 1635
Proof. (i) Put (a,b) =T '(i) € 7\//\u Then T(a+m,b—{) =T(a,b) + n =1+ n. We have

Cr(i+n)=C(T '(i+n)) =Cla+m,b—1{)

(3.21)
=b-a)—l+m)=Ct(1) — ({+m).
(ii) The proof follows directly from Lemma 3.10. [ |
ForT e Tab(7\//\u), we define (t € b* by
(r = Z CT(i)ei + (2 +m)c*. (3.22)
i=1
Then (1 belongs to the lattice
PLPazer = (@Zei> ® Zc*. (3.23)
i=1

Note that the action (2.14) of W on h* preserves P. Lemma 3.11 immediately implies the

following.

Lemma 3.12. LetT € Tab()\//\p). Then
(i) (¢ | €Y) = Ct(i) foralli € Z;
(i1) w(Ct) = G forallw € W. 0

3.4 The affine Weyl group and row increasing tableaux
Let (A, 1) € I3

Definition 3.13. A tableau T € Tab(?\//ﬂ) is said to be row increasing (resp., column in-

creasing) if

(a,b),(a,b+1) € A/p = T(a,b) < T(a,b+1), 520
— 3.24
(resp., (a,b),(a+1,b) € A/u=>T(a,b) < T(a+1,b)).

AtableauT € Tab(?\//\u) which is row increasing and column increasing is called a stan-
dard tableau (or a row-column increasing tableau).

Denote by TabR(A//:L) (resp., Tab®® ()T/\p)) the set of all row increasing (resp., stan-
dard) tableaux on )\//\u

-~

For (Aa H) € 3:;1,2’ put

oe=[1,n—=1/{n,na...,nm1}, (3.25)
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where n; = Z;}:1()\j — ;) fori € [1,m — 1]. We write R{fu = R}, K Wi, = Wi, , and
WA= = W« Note that R{_, € R, and Wy, = Wa, i, x W,y X oo x Wiy, ©
W. Recall that the correspondence {1 : W — Tab(MA/u) given by w — wT is bijective
(Proposition 3.9) forany T € Tab(?T/TL).

Proposition 3.14. Let (A, ) € jﬁw. Then

R _ .
P (Tab(\/)) = WA, (3.26)
or, equivalently, TabR()\//Il) = WA HTo=[wTy | w € WA—H). 0

Proof. First we will prove WA—#Ty C Tab®(A/p).

Take (a,b),(a,b+ 1) € )\//TL and put Tp(a,b) = i. Then To(a,b+ 1) = i+ 1 and
o4 € RLH. If w € WM ¥ then we have 1(ws;) > L(w). This means w(o;) = Ew(i) — Ew(i+1) €
R*. Hence, w(i) < w(i + 1), or, equivalently, wTp(a,b) < wTy(a,b + 1). Therefore, wT, €
Tab®(A/p) for allw € WA,

Next, we will prove WA #Ty D Tab®(A/p).

ForT € TabR(A//\u), take w € W such that wTy = T. We have to show that w ¢
WA R, Let oy € R{ﬂl. Put (a,b) = Ty '(i). Then Ty '(j) = (a,b +j — ). Since wT, is row
increasing, we have wTy(a,b) < wTp(a,b +j — i) and hence w(i) < w(j). This means that
w(ay;) € R*. Therefore, «i; ¢ R(w) = R* Nw~'R~. This proves R(w) N R)tu = @ and hence
we WA—R, [ |

3.5 The set of standard tableaux
The next lemma follows easily.

Lemma 3.15. Let (A, 1) € 3%, ; and T € Tab"®(A/p). If (a,b) € A/pand (a+1,b+1) € /i,
then T(a+1,b4+1)—T(a,b) > 1. O

As a direct consequence of Lemma 3.15, we obtain the following result, which

will be used in the next section.
Proposition 3.16. Let (A, u) € 3:;,@ and TS € TabRC(ﬂ). If Ct =Cs,then T =S. O

Our next purpose is to describe the subset of W which corresponds to TabRC(?\//IL)
under the correspondence Y7 (T € TabRCO\//Tx)).

Lemma 3.17. Let (A, ) € 5*;1’2. Letw € Wand i € [0,n — 1] such that wT, € TabRc()\//TL)
and 1(w) > 1(s;yw). Then s;wTy € TabRCO\//\u). O
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Proof. We have w € W*~* by Proposition 3.14. Put x = s;yw. Since R(w) = R(x) LI{x " (a;)},
we have x € WA+, Hence, xTo € Tab®(A/p).

Suppose xTy ¢ Tab"® (7\//\u). Then there exist (a,b) and (a + 1,b) in )\//IL such that

xTo(a,b) > xTo(a+1,b),

(3.27)

wTo(a,b) < wTp(a+1,b).
This implies xTp(a,b) =i+ 1+ kn and xTo(a + 1,b) =1+ kn for some k € Z.

On the other hand, we have x ' («;) € R* as l(w) > l(x). Therefore, it follows
that x (1) < x '(1 + 1) and hence x '(i + kn) < x~"(i + 1 + kn). Therefore, we have
To(a+1,b) < To(a,b), and this is a contradiction. [ |

For T € Tab"® (7\//71.), put
VM= {weW|(traY) ¢{-1,1)Va e R(w)}. (3.28)
Lemma 3.18. Let (A, u) € ﬁge Then
ZYM C WA, (3.29)
O

Proof. Take w € W such that w ¢ W**. Then, it follows that there exists j € [0,n —1]
such that s; € W»_,, and 1(ws;) < l(w). Then Lemma 2.2(ii) implies that o; € R(w). By

sj € Wa_y,, we have ({1, | «)) = —1. Hence, we have w ¢ Z?({”, and thus we proved that

ZYH WA u
0

Theorem 3.19. Let (A, p) € ﬁ;}w and T € Tab"® ()T/\u). Then

RC _— .
or, equivalently, TabRC(}\//IL) _ Z7T\/ nT -

Proof

Step 1. First we will prove the statement for the row reading tableau To, namely, we will
prove Tab"®(A/p) = Z% "To.

Let us see Z')T?”To C Tab®(A/p), that is, wTo € Tab"¢(A/p) for all w € Z}T‘?”. We
proceed by induction on l(w).

Ifwe Z?g“ with L(w) = 0, then w = 7* for some k € Z and it is obvious that wTj
is row-column increasing. Suppose that wTy is row-column increasing for all w € Z')T? "
with 1(w) < k.
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Takew € Zg” with 1(w) = k. Note that w € WA~* by Lemma 3.18. Take x € W and
i€ [0,n — 1] such that w = s;x and l(w) = 1(x) + 1. -

Note that R(w) = R(x) U {x~"(o)}, and hence x € Z@g”. By the induction hypoth-
esis, we have xTy € TabRc(?\//\u). Suppose that wTy & TabRC(?\//\p). Then wTj is not col-
umn increasing because wT, is row increasing by Proposition 3.14. Therefore, there exist
(a,b),(a+1,b) € A/ such that

xTo(a,b) < xTo(a+1,b),
(3.31)
wTo(a,b) > wTp(a+1,b).

This implies that xTo(a,b) =1+ knand xTo(a + 1,b) =i+ 1 + kn for some k € Z. We have

<CT0 ‘ x ! (0‘1/)> = <CT0 | x! (a¥+kn)>
=Cr,(x "(i+kn)) — Cr, (x "(i+1+kn)) (3.32)

—b—a—(b—(a+1))=1.

This contradicts that w € Z')T‘?” and hence we have wTj € TabRC(A//IL).

Next, let us prove Z'}T(Z”To > Tab®®(A/p1). We will show thatw € Z?Z” for all w such
that wlp € TabRC()\//IL) by induction on l(w). If (w) = 0, then R(w) = @ andw € Z}T‘?”. Let
k € Z>1 and suppose that the statement is true for all w with l(w) < k.

Take w € W such that wT, € TabRC(A//TL) and l(w) = k. Take x € Wand i € [0,n—1]
such that w = six and (w) = l(x) + 1. By Lemma 3.17, we have xTo € TabRC(?\//TL). By the
induction hypothesis, we have x € Z'?é“. Since R(w) = R(x) U {x~'(«})}, it is enough to

prove

0= <CT0 ! X! ((XY)> =Cr, (Xi] (l)) —Cr, (Xi] (i+ 1)) 7+l (3.33)

We put T = xTj in the rest of the proof.

Suppose o = 1. Put (a,b) = T '(i). Then T-'(i4+1) = (a+j+1,b+j) for somej € Z.
Ifj < 0, then we have (a,b—1) € A/pandi+1=T(a+j+1,b+j) < T(a,b—1) < T(a,b) = i.
This is a contradiction. If j > 0, then (a + 1,b) € )\//IL andi+1 > T(a+1,b) > i. This is
a contradiction too. Therefore, we must havej = 0 and hence T"'(i + 1) = (a + 1,b). But
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then we have
wTo(a,b) =siT(a,b) =i+1>1=s;T(a+1,b) =wTp(a+1,b) (3.34)

and this contradicts the assumption wT, € TabRC()\//IL). Therefore, o # 1.
Suppose 0 = —1. Put (a,b) = T~'(i). Then similar argument as above implies that
T 'i4+1)=(a,b+1). This yields a contradiction too. -
Therefore, we have w € Z}/" and thus we proved that Tab" (M) = 2.

Step 2. By Step 1, foreach T € TabRC(A//TL), there exists wt € Z?g” such that T = wTp.

First we will show that zw;' € Z?“ forallz € Z'}TTZ”.

Assume that zwy' ¢ Zy“ for some z € Z'g“. Then there exists « € R(zw;') such
that (Cr | oV) = £1.

If « € wrR*, then putting B = w;'(«), we have B € R(z) and (i1, | BY) =
{(CwrT, | WT(BY)) = £1. This contradicts the choice z € Z'??”.

If o ¢ wrR™, then putting p = —w7 ' («), we have B € R(wt) and (¢t | BY) = £1.
This contradicts the choice wr € Z'g“.

Therefore, zw;' € Z}/* forall z € Z?g“. Similarly, one can show that zwt € Z?g”

forall z € Z}'". Hence, the correspondence z - zwy ' gives a bijection from Z}/* to 23",

whose inverse is given by z — zwy. Therefore, we have

RC — N N
zT = zwt Ty € Tab(A/p) & zwt € Z?g” = ze 2" (3.35)

3.6 Content of standard tableaux

Letn € Z>;,m € Z>y,and { € Z>o. Let (A, 1) € ﬁ;;ye and T € TabRC(A//TL). Putk ={+mand
F = Ct. Then it is easy to check that the map F: Z — Z satisfies the following.

(C1)F(i+n) =F@1i) —«foralli e Z.

(C2) Forany p € Zand i,j € F'(p) such thati < jand [i,j]n F~'(p) = {i,j}, there
exist a unique k. € F'(p — 1) and a unique k, € F~'(p + 1) such thati < k_ < j, and
i < k4 < j, respectively.

Notice that condition (C1) implies that #F ' (p) is finite for all p € Z.

Conversely, suppose that a map F : Z — Z satisfying conditions (C1) and (C2) is
given. Then it can be seen that F is a content associated with some standard tableau on

some periodic skew diagram, as in the following proposition.
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Proposition 3.20. Letn € Z>, and k € Z>1. Suppose that the map F : Z — Z satisfies
conditions (C1) and (C2) above. Then there exist m € [1,k], (A,n) € A,*{‘,K,m, and T €

TabRC(A//IL) such that F = Cr. O
Proof
Step 1. Forp € F(Z) & (F(i) € Z| i € Z}, put d, = #F ' (p), which (C1) implies is finite. Let
ig),ig), - ,ii,d") be the integers such that ig) < ii,z) << i&dp) and

Fl(p) = {i(p”,ig), . ,i;dv)}. (3.36)

It follows from condition (C1) that d, = d,_« and

=i, AP =i il =i (3.37)

(1)

il
forallp € F(Z).

The following statement follows easily from condition (C2) and an induction ar-

gument (on j).

Claim 1. Letp € F(Z).
(i) Ifp+1€eF(Z)andiy <ill, thend, —dp,1 = 0or 1, and it holds that

iy <i1<aj)+1 (€ [1,dpsn]),

(3.38)

i >0 (e [2,dp)).

ii) fp+1eFZ and i) > i) ,thend, —d, ;1 =0or—1, and it holds that
P p+1 P P

>k (e1,dp)),
(3.39)

0 <0 (e [2,dpin])

p+1
(iii) Ifp+1 ¢ F(Z), then d, = 1.

Step 2. Fixpo € F(Z) and r € Z. We will define a subset A = A, , of Z? as follows.
Forp € F(Z), define p as the minimum number in F(Z) N Z-.,,.
There exists a unique sequence {(a]g), bg>)}pep<z) in Z? satisfying the initial con-

dition

(apy,bpy) = (r,po +7) (3.40)
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(1) (1)
(1) ;1) ol '
Y 1'p+1 ] ]
il i)
(i) (i) (iid)
Figure3.4 (i)iy) <), (i) iy > i), and (iil) p > p + 1.

and the recursion relation

(@, b)) +1) ifp=p+1, iy <illl;, Figure 3.4(i),

(@, 687) =< (@l —1,6{1) ifp=p+1,1i, >}, Figure 3.4(ii),

(ab) =108 + p—p—1) ifp >p+ 1, Figure 3.4(iii).
(3.41)

Put

(@, b)) = (af) +i=1,0)) +5=1)  (p € F(Z), ] € [2,dp]), (3.42)
and put

A={(a), b)) eZ?* | p e F(Z), e 1,dp]}. (3.43)

Note that (ag ), bg )) will be the most northwest box in )\//IL on the diagonal with content p.

Step 3. Now, we will check that the set A satisfies conditions (D1), (D2), and (D3) in
Definition 3.2.

Check (D1). Forp € F(Z), put
t=t{sepp+ck—1NF2Z)[5=s+1,i" <il)|}, (3.44)
and put m, = k — {,. Then £,,m,, € [0,k] and m,, = a]g) — agJ)rK by (3.41). Moreover, it

follows from (3.37) that the number ¢, is independent of p, and so is m = m,,.

Since bg) — ag) g,),(,bgl,() = (ag) +m, bg) —k+m), and hence

= p, we have (a
(aSlK,bglK) = (a) +m,bY) —k +m) (3.45)

forallj € [1,d,]. Therefore, A satisfies condition (D1) withy := (m, —k 4+ m).
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Check (D2). PutE = {(ag>,bg>) |pe[l,x]NF(Z), j €[1,dp]}. Then E gives a fundamental
domain of the action of Zy on A, and the set E is in one to one correspondence with the
set F-1([1,«]), by the definition of d,,. Hence, we have E = #F~'([1,«]) = n by (C1) and thus
condition (D2) is checked.

Check (D3). Note that Claim 1 above implies that

(a,b),(a+1,b+1) e A= (a+1,b),(a,b+1) € A. (3.46)

Suppose that condition (D3) does not hold. Then there exist (a,b) € A and (i,j) € Z>o X
Z>0\{(0,0),(1,0), (0, 1)} for which it holds that

(a+i,b+j") e A= (i,j') = (0,0) or (i,). (3.47)

Fix such (a,b) and (i, j).

First, suppose that j —i = 0. Then by (3.42), i(= j) must be 1. This implies that
(a+1,b),(a,b+1) € A. This is a contradiction and hencei—j # 0.

Next, suppose thatj —i > 0. Let (a,b) = (a{”,b{"”) and (a +1i,b +3) = (alF,bl).
Notethatp—s=j—1>0.

If k = 1, then we have ag) —a\” =i > 0. On the other hand, it follows from the
definitions (3.41), (3.42) of{(a@,b](Oj))}pGF(Z)y]-e“,dp] that ag) > ag) > a]g) and the equali-

(M

ties hold onlyifr=1ands,s+1,...,p—1 € F(Z) andig” <l << i%”.This implies

thati=0and (al';,,b\";,) = (a,b +j’) € Aforallj’ € [0,]]. This is a contradiction.

Ifk # 1, then (ai,kf]),b%kf])) =(a+i—1,b+j—1) € Aand hence (a+i,b+j—1) € A
by (3.46). This is a contradiction since (i,j — 1) # (0,0), (1,j).

By similar argument, a contradiction is derived when j — i < 0. This means that
(D3) holds for A, and hence A = D,
is clear that A contains empty rows only if m = 0, that implies F(Z) = Z and ig) <i

for all p € Z by (3.41). But then it follows that iglK

. We show that A contains no empty rows. It

(1)
p+1

< ig) and this contradicts (3.37).

,—K+m)

~
*M
m,L*

Therefore, we have A € Dm , o1, equivalently, A = ?\//\LL for some (A, ) €

,—K+1m)

Step 4. Define themap T : A — Z by T(a](;),bg)) = ig). Obviously, we have F = Co T~ '. It
follows from (3.37) and (3.45) that T is a tableau on A. Moreover, Claim 1 in Step 1 implies

that T is row-column increasing, namely, T € TabRc(?\//TL). This completes the proof. N

Form € Z>1, define an automorphism w, of Z™ by

WA= Am+ 0+ A +TA2+1,000 A g +1), (3.48)
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for A = (A1,A2,...,Am) € Z™. Let (w,) denote the free group generated by w.,, and let
(Wwm)actonZ™ x Z™ by W - (A, 1) = (Wm - A, Wiy - 1) for (A, 1) € Z™ x Z™. Note that (wn,)

preserves the subsets BA;‘Z and ﬁ;{te of Z™ x 7Z™.

Proposition 3.21. Let m, m’ € [I,n] and {, {’ € Z>o. Let (A\,n) € gﬂe and (n,v) € 5;;11,,@,.
The following are equivalent:

(a) C}/* =CY" forsome T € Tab®C(A/1t) and S € Tab*’(n/v),

(b) m=m' =1 and?\//; :n//?/—i— (r,7) for some r € Z,

(c) m=m',{=¢"and (n,v) = wl, - (A, p) for somer € Z. O

Proof. Firstwe will prove (a)&(b).

It is easy to see that (b) implies (a). To see that (a) implies (b), recall the proof
of Proposition 3.20, where the relations (3.41), (3.42) together with the initial condition
(3.40) determine the periodic skew diagram A, » = {(a](g),bg)) lp e FZ),je(l,dp]} and
its period uniquely for each py € F(Z) and r € Z.

Note that

Aporr =Apor + (1 =1,1" —71) (3.49)
forr, v’ € Z.

Put F = Ct. As in the proof of Proposition 3.20, we put d, = fF~'(p) forp € F(Z),
and let ig) < i&,z) < < i&,d“) be the integers such that F~'(p) = {ig), '11(32), .. ,i%d")}-

Put (ag),bg)) = T (ig)). Then it is easy to see that the sequence {(ag),
b@)}pg(z)‘je“ .4, satisfies the relations (3.41), (3.42). Therefore, we have

Au= {T71 (H@) lpeFZ),je [1>dp}} =Apo,r (3.50)

for some po € F(Z) and r € Z. Similarly, we have n//:/ = Ap, v for some r’ € Z (with the
same po € F(Z)). Now, it follows from (3.49) that (a) implies (b).

The equivalence (b)&(c) follows from Proposition 3.4 and the formula

/\ —
wh MWl n =Mp—(rr) (rez), (3.51)

which is verified by a simple calculation. [ |

4 Representations of the double affine Hecke algebra

Let F denote a field whose characteristic is not equal to 2.
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4.1 Double affine Hecke algebra of type A

LetqeF.
The double affine Hecke algebra was introduced by Cherednik [2, 4].

Definition 4.1. Letn € Zx;.

(i) The double affine Hecke algebra H,, (q) of GL., is the unital associative algebra
over F defined by the following generators and relations:
(1) generators:

NS
to,t],...,’cn_1,7'[i1,x1i ,xzjE ,...,xf1,£i1; (4.1)
(2) relations forn > 3:

(ti—q)(ti+1)=0 (ielo,n—1]),
it =ttit; (j=i+Imodn),

tity = 4ty (J ;ﬁij:]modn),

! =n =1,
i =ty (e o,n—2), Tty 170 = to,
xix; ' =x;'x =1 (1€[l,n]), (4.2)

xix; =xxi (i,j € [1,n]),

tixity = qxi1 (1€ [l,n—1]), toxnto = & 'qxy,
tix; =xt (j Z1,i+ Tmodn),

=% (Te[1,n—1]), Xnm ' =& X1,
g =g =1, gFh=net! (heHa(q);

(3) relations forn = 2:

(ti—a)(t+1) =0 (te01]),

) = n=1, ot =14, ! = to,
-1 -1 .
xixg ' =x{ ' xi =1 (1€[1,2]), X1X2 = X2X1,
: (4.3)
tixity = gqxz, toxato = & gxy,
-1 _ —1 _ -1
X170 = X2, X | =& X1,

gg =g =1, gFh=nt*! (heHy(q).
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(ii) Define the affine Hecke algebra H,,(q) of GL,, as the subalgebra of H,,(q) generated by

{to)t1)"' ,tnf‘l)ﬂi]}'

Remark 4.2. It is known that the subalgebra of H,,(q) generated by

{t1,t2,...,tn,hxf],xzﬂ,... x 1 (4.4)

y ot

is also isomorphic to Hy (q).

Forv =73 ;Vviei+vcc* € P, put
XY =x7"xy% X EYeL (4.5)

Let X denote the commutative group {x¥ | v € P} C Hy,(q). The group algebra
Flx] = F[x' xd', ... xE" £F1] is a commutative subalgebra of H,,(q).

For w € W with a reduced expression w = 7t"s;, si, - - - 8, , put
tw = 7'[“(1'_1 tiz . 'tik- (46)

Then t,, does not depend on the choice of the reduced expression, and {t,,},, . forms a
basis of the affine Hecke algebra H,(q) C Hn(q).

It is easy to see that {thv}wew,vep and {xVt,,} respectively, form basis

weWw,vep»
of H,(q). In particular, we have following.

Proposition 4.3. H,(q) = H.(q)F[X] = F[X]Hn(q). O

Define an element ¢; of H,,(q) by
di=ti(1—-x*)+1—q (ie[o,n—1]). (4.7)

By direct calculations, we have the following.
Lemma 4.4. The following hold in H, (q):
d)lcb]:q))(bl (I,JE[O,TL—‘I},)i_él:l:]mOdTL),
q)id)jd)i:cbj(bi(bj (i,j c [0,11—1], jEi:ﬁ:]IIlOd‘n.), (4.8)

$F=(1—ax*)(1—qx ™) (ieon—1)). =

Forw € W with a reduced expression w = ©t"sj, si, - - - Si,, put

Gw =T di, b, - by (4.9)



1646 T. Suzuki and M. Vazirani

Then ¢,, does not depend on the choice of the reduced expression by Lemma 4.4. For an
Hn(q)-module M, the element ¢, € F{n(q) is regarded as a linear operator on M, and ¢,
is called an intertwining operator.

The following formula follows easily.
Lemma 4.5. $,,x¥ =x"™¢,, foranyw € Wand~v € P. O

Lemma 4.6. Forw € \/V,

dw=tw [[ O=x+ > tfy (4.10)

aER(w) yeEW, y<w
for some fy € F[X]. O
Proof. The proof follows from the expression (2.17) of R(w) and induction on 1(w). [ |

Let X* denote the set of characters of X:
X* = Homgroup (X, GL; (F)). (4.11)

Consider the correspondence P — X* which maps ¢ € P to the character q° € x* defined
by

q°(xi) = qlcled) (ie[1,n]), q°(&) = gicle), (4.12)

or, equivalently, defined by q(x¥) = qev™ (v € P). Through this correspondence, P is
identified with the subset

{x e x*Ix(x¥) € g% (Vv € P)} (4.13)

of ¥* where g% ={q" | r € Z).
For an H,,(q)-module M and ¢ € P, define the weight space M and the general-
ized weight space Mg of weight ¢ with respect to the action of F[X] by

MC _ {v cM | (XV _ q(C\VV>)v — 0 for anyv € P},

. 4.14
Mgcen: U {VEM| (Xv_q@WV))kv:OforanyveP}. ( )

k>1

For an H,(q)-module M, an element { € P is called a weight of M if M; # 0, and an
element v € M (resp., M2™) is called a weight vector (resp., generalized weight vector)

of weight C.
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The following statement can be verified by direct calculations.

Proposition 4.7. Let M be an H,(q)-module. Let ¢ € P and v € M. Then the following
hold, for allw € W:
(1) PwMe € Muy(e) and ¢, ME™ € MET, ;

@
(11) d)w*‘ PV = H“€R<W> (] N q1+<(\oc\/))(] _ q1*<C\ocV>)v_ O
For C € P,put
Ze ={we W[ (") ¢{-1,1}Va € R(w)}. (4.15)

Note that Z., = 2" for (\,u) € 5;( and T € Tab"C(A/p).

As a direct consequence of Proposition 4.7, we have the following.

Proposition 4.8. Suppose that q is not a root of 1. Let M be an H,,(q)-module and € P.
Forw € Z., the map

bw : Mg — My (4.16)

is a linear isomorphism. O

4.2 X-semisimple modules

Remark 4.9. Throughout Section 4.2, the lemmas and propositions are still true and re-
quire almost no modification of their statements or proofs, even if k is not an integer or
if q is a root of unity. However, we impose these restrictions so that the combinatorics
developed in Section 3 describes the structure of the X-semisimple modules. When we
relax the condition k € Z but still require q generic, one can extend the combinatorial

description with appropriate reformulation.

Fixn € Z>,. Let q € F and suppose that q is not a root of 1.
Fixk € Zandput P, =P+ kc* ={{ € P|({|c) =«

Definition 4.10. Define 0%%(H,,(q)) as the set consisting of those H,, (q)-modules M which

is finitely generated and admits a decomposition

M= M, (4.17)

CEP

with dimM; < oo for all ¢ € P..
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We say that a module M € 0%%(H,(q)) is X-semisimple.
In the following, we will see some general properties of H,(q)-modules in
0% (Hn(q)). The results and argument used in the proofs are essentially the same as those

for the affine Hecke algebra (see, e.g., [9]).

Lemma 4.11. Let M € 0%(H,(q)). Leti € [0,n— 1] and let { € P, be such that (¢ | &) = 0.
Then M, = {0}.

Proof. Suppose that there exists v € M \ {0}. Then we have

(x* = T)tiv =2(1 — q)v #0,
4.18
(xot — 1)2tiv =0. ( )

This implies t;v € M#* \ M, which contradicts the assumption M = @, ., M. [ |

Lemma 4.12. Let L be an irreducible H,, (q)-module which belongs to O%%(H,,(q)). Let v be

anonzero weight vector of L. Then L = 3 i, Foy,v. O

Proof. PutN =3 i, Fd,,v C L. Since L =} | i Ft,,v by Proposition 4.3, it is enough
to prove that t,,v € N for all w € W. We proceed by induction on 1(w).

It is clear that t,,v € N for w of length zero.

Let k € Z>1 and suppose that t,,v € N for allw € W with l(w) < k. Takew € W
with a reduced expression w = 7t"si, si, - - - si,, (and hence l(w) = k). By Lemma 4.6, we
have ¢,,v = er\/\/,xjw gwx txv with some coefficients g, € F.

If gyww # 0, then t,wv =g}, (Gwv— 3~ Gwxtxv) € N.

Suppose gww = 0. By Lemma 4.6, this means

[T (0-q“=") =0, (4.19)

xER(W)

where ( € P, is the weight of v. Hence, there exists p € [1,k] such that

H (1- q<c\av>) £0, H (1- q<cmv>) —0, (4.20)

xER(Y) x€R(si,Y)

wherey = si,,,si, ., - i, This implies (¢ |y~ " (') = (y(¢) | ¢’ ) = 0. By Lemma 4.11,

p

we have L) = 0 and hence ¢,v = 0.
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Let Gyv = 3 | cviy <y Juxtxv With gyx € F. Multiplying the equality ¢yv = 0 by

m'ty, ti, - - i, we have

JuytwV == ) guuTti b, -ty Ty, (4.21)
x<y

Note that gyy = [Tyerpy) (1 — q{¢*")) £ 0 by (4.20), and it is easy to verify that the right-
hand side of (4.21) is in N using the induction hypothesis. Therefore, t,,v € N. [ |

For { € P, let W[(] denote the stabilizer of :
W[ = {weW|w() =} (4.22)

Lemma 4.13. Let L be an irreducible H,, (q)-module which belongs to ©%*(H,(q)). Let { be
a weight of L and let v € L;. Then ¢,,v = 0 forall w € W[¢] \ {1}. O

Proof. Letw € W[(] \ {1} with a reduced expression w = 7t"s;, si, - - - 51,

Put R[] ={e € R| (¢ | «V) =0}

Then, R[(] is a subroot system of R and W[(] is the corresponding Coxeter group.
Moreover, it follows that a system of positive (resp., negative) roots is given by R[¢] N R"
(resp., R[] NR™).

Therefore, for w € W([(] \ {1}, there exists a reflection s, (x € R[¢] N R") such that
w(x) € R[JNR™ CR™.

Now, Lemma 2.2(ii) implies that there exists p € [0,n — 1] such that wsy

; Y
TUSi, 81yt Si, 1 Si,. oo Si. Putting y = sy ,sq,,,-sq,, we have (Cly ' («)))

(y(Q) | cx}f)} =0.Lemma 4.11 implies that L, ) = 0 and hence v = Grrs, sy, 5, Pyv =0,
|

Proposition 4.14. Let L be an irreducible H,(q)-module which belongs to 0%5(H,(q)).
Then diml, < 1forall ¢ € P,. O

Proof. The proof follows directly from Lemma 4.12 and Lemma 4.13. |

Lemma 4.15. Let L be an irreducible H,, (q)-module which belongs to ©%*(H,,(q)). Let ¢ be
a weight of Land leti € [0,n — 1] such that (¢ | &) € {~1,1}. Then ¢p;v=0forve L,. O

Proof. Suppose (¢ | ) = 1 and letv € L \ {0}. Suppose ¢p;v # 0. Put W ={weW|

ws; € W[(]}. Then it follows from Lemma 4.12 that

Z A Prdhiv="v (4.23)

wew’

for some {a,, € F}, i
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For w € W’ such that l(ws;) < l(w), we have ¢, = (s, di. Proposition 4.7(ii)
implies that

Grwbiv = Pewd?V = by (1— gAY (1 = g1 (el (4.24)

anditisOas (C| o) = 1.
For w € W’ such that L(ws;) > L(w), we have ¢, $iv = dns,v = 0 by Lemma 4.13.
Therefore, the left-hand side of (4.23) is 0 and this is a contradiction. [

4.3 Representations associated with periodic skew diagrams
In the rest of this paper, we always assume that q is not a root of 1.

Letn € Zzz, m e 221 R and { Zzo.

~

For (A, u) € d7, , set

Visw = P Fer (4.25)
TETab ®(A/ 1)

Define linear operators %; (i € [1,1]), %, and t; (i € [0,n — 1]) on V(A, 1) by

~ C i
xvr = q<T v,

VT = VT,
_gl+Ti _ —
71] a VT T (1 vr  if ;T € Tab®¢(A/p), (4.26)
{iVT = 1 a q
—q : RC(y /o
T VT if ;T ¢ Tab™ ™ (A/p),
where
T =Cr(i)—Cri+ 1) =(¢r o) (1€0,n—1]). (4.27)
The following lemma is easy and ensures that the operator t; is well defined.
Lemma 4.16. Ct(i) —Cy(i+ 1) #0foranyi€ [O,n—1]andT € TabRCO\//\u). O

Theorem 4.17. Let (A, n) € g;ye. There exists an algebra homomorphism 6, ,, : H,(q) —

Endr(V(A, ) such that

exyu(ti) I'Ei (iE [O,Tl—”), 9)\‘“(7'[) =1,
(4.28)
ex,u(xi) =Xi (i € [1,1’1}), e?\,u(‘tﬂ) = q€+m. O
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Proof. The defining relations of H,,(q) can be verified by direct calculations (see [9], for a

sample of calculation for the affine Hecke algebra). [ |

Note that the H,,(q)-module V(A u) for (A, n) € ;?;,e belongs to O%%(H,(q)) with
K={4+m.
Theorem 4.18. Let (A, ) € 5;}11.
(i) VA, B) = Drerapre7in V(A w),,,and V(A )., = Fvr forall T € Tab"®(A/p).
(ii) The Hy (q)-module V(A, u) is irreducible. O

Proof. (i) The proof follows directly from Proposition 3.16.

(ii) Let N be a nonzero submodule of V(), ). Since N contains at least one weight
vector, we can assume that vy € N for some T € Tab"® (?\//\u). -

Let S € TabR¢ ()T/\u). By Theorem 3.19, there exists ws € Z'?/” such that S = wsT.

Putvs = ¢ vr € N. Since the intertwining operator

bws : VL), — VA Wyg o0y = VO 1), (4.29)

is a linear isomorphism by Proposition 4.8, we have vs € \7()\, e \{O}

N Fvs = V(A, 1). Therefore, we have N D
V(A, 1) and hence N = V(A, u). Therefore, V(A, u) is irreducible. n

Now, it follows from (i) that B e

4.4 Classification of X-semisimple modules

Fixn € Z>; and k € Z>1. Let q € F and suppose that q is not a root of 1.
Our next and final purpose is to show that the modules V(?x, u) we constructed in

Section 4.3 exhausts all irreducible modules in 9% (H,(q)).

Lemma 4.19. Let L be an irreducible H,, (q)-module which belongs to 0%*(H,,(q)). For any
weight { € P of Land i,j € Z such thati < j and

(C]af) =0, (4.30)
there existk, € [i+1,j—1]and k_ € [i+1,j — 1] such that
(Clage,)y=—1,  (Clagr )=1, (4.31)

respectively. O
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Proof. We proceed by induction on j —i.

For any weight ¢ of L and i € Z, we have (C | ') # 0 by Lemma 4.11. Therefore,
we have nothing to prove when j —i = 1. Let r > 1 and assume that the statement holds
whenj—i<r.

In order to complete the induction step, it is enough to prove the existence of k4

for a weight (of L and i,j € Z such thatj — i =rand
{keli+1,j-11{Cla%) =0} =2. (4.32)

Fix a nonzero weight vectorv € L;.

Case 1. Suppose(( | «) = +1 and (¢| &) = £1. Then the statement holds with k. =
j—land ks =i+1.

Case 2. Suppose (¢ | «y) = —Tand (¢ | o’ ;) = 1. Then we have (¢ | &/ 4; ;) = 0. If i+ 1 #
j — 1, then there exist k € [i 4+ 1,j — 1] such that ({| «,;,,) = 1, and hence (¢ | &}, ) =
(¢l o)) + (¢l &1y, ) = 0. In this contradicts the choice (4.32) of i,j. Therefore we have
j —1i = 2. This case, we have (¢ | oY) = —1 and (¢ | o’;) = 1. Hence, Lemma 4.15 implies
that ¢iv = 0 and ¢i,1v = 0, which gives t;v = qv and t;, v = —v, respectively. But then we

have
—qzv =titigqtiv=tigtitisiv=qv, (4.33)

and this is a contradiction as ¢ is not a root of 1. Therefore, this case is not possible.

Case 3. Suppose (¢ | «) =1and (¢| &’ ;) = —1. A similar argument as in Case 2 implies

that this case is not possible.

Case 4. Suppose (C|«Y) # +1. Then ¢p;v # 0 by Proposition 4.7 and hence s;(() is a
weight of L. By (si({) | ocivﬂj) = 0, the induction hypothesis implies that there exists
ki € [L+2,j— 1] suchthat (C] oy, ) = (si(Q) | &, 1y, ) = F1. Hence the statement holds.

Case 5. Suppose (C | oc}i1> # =£1. Then ¢;_1v # 0 and a similar argument as in Case 4

implies that there exists k+ € [i+1,j — 2] such that (¢ | &g}, ) = F1.
This completes the proof. [ |

Theorem 4.20. Letn € Z>;, and k € Z>1. Let L be an irreducible Hn(q)—module which be-

longs to O%°(H,,(q)). Then there exist m € [1,k] and (A, p) € ﬁm,m such that L = V(A, ).
0
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Proof

Step 1. Let ¢ € P, be a weight of L. Define F; : Z — Zby F.(i) = (C | €)) (i € Z).

It is easy to see that F; satisfies condition (C1) in Proposition 3.20, and the ex-
istence of k4 in condition (C2) follows from Lemma 4.19. Note that the uniqueness of
k4 in (C2) follows automatically from the condition that [i,j] N FE1 (p) = {i,j}, setting
p = F:(1) here. Suppose, without loss of generality, that there were another choice of k/ ,
with ky < ki. It follows (C | “Lk'ﬁ = 0, and applying Lemma 4.19 here gives the ex-
istence of an i’ between k4 and k. and hence i < i’ < j with (C| «}{,) = 0. This gives
i'e FE1 (p), a contradiction.

Therefore, Proposition 3.20 implies that there exist m € [1,n], T € Tab(A//\u), and
A e ﬁ{‘y,(,m such that F; = Cy, or, equivalently, ¢ = (.

Step 2. Recall that Z; = Z?/“. Takeu € L \ {0}. For eachw € Z'?/”, put

Ow = H (1—q1+<c‘“v>)»
xER(W) (4.34)
Uy = 0;\,1 dwu.

Here, note that o,, # 0 and u,, # 0 forallw € Z)‘/” by Proposition 4.8.

Put N = ZWEZC Fopu = ) ezl
space is linearly independent by Prop051t10n 3.16, we have N = P

7. Fu,, C L. Since u,, € L, , and each weight

7. Fu
A/ 1 we
weZy

By Theorem 3.19, one can define wg € Z)T‘7” by S =wgTforall S € Tab®¢ ()\//\p), and
define a linear map p : V(A, 1) — Lby p(vs) = U (S € Tab®® (A//TJ.)). It is obvious that p is
injective and its image is N.

Let us see that p is an H, (q)-homomorphism.

Letw € Z}/*. Leti € [0,n— 1] be such that 1(s;w) < L(w). Then we have s;w € Z}‘/FL

and o, = (1 — '+ {Clsw) " (@))g | Therefore,

b = 0, bidpwu = 0, PI P ut
(1 g'Hsw@liad)y (1 g w@ley g 1p u (4.35)

(] _q +w )“X >)usiw.

Leti € [0,n — 1] be such that I(s;w) > L(w). If siw ¢ ZMu then (¢ |w'(«))) = 1 and
hence ¢;u,, = 0 by Lemma 4.15. If s;w € ZT/”, then we have og,,, = (1 —q'~ (cw= @ Myg,,
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and

-1 -1
biuy = 0y, dipwu =0y, Pl

(4.36)
— (1= gl
Therefore, in both cases, we have
(1=a" Oy, (sawe Z4),
bity = . (4.37)
0 (siw ¢ ZT/”).
This implies
) RC _—
p(tivs) = tip(vs) (1 elo,n—-1],Se Tab(?x/p.)). (4.38)

Moreover, it is easy to see that

p(xivs) =xip(vs) (i€ [1,n]),  p(&vs) =E&p(vs),  p(mvs) =mp(vs)  (4.39)

forall S € TabRC(?\//\u). Therefore, p is an Hn(q)—homomorphism and it gives an isomor-
phism V(A, u) = N of H,,(q)-modules. Since L is irreducible, we have L =N = V(A, ). H

Corollary 4.21. Let L be an irreducible H,,(q)-module which belongs to O3%(H,(q)). Let

v € L be anonzero weight vector of weight ¢ € PK. Then

L= P Fowv, (4.40)
weZ,
and ¢,v # 0 forallw € 2. O

Theorem 4.22. Let m,m’ € Z>; and {,{’ € Z>o. Let (A, ) € 3’;{1{ and (n,v) € 51‘{‘2 Then

the following are equivalent:

(@) VA, u) =V(n,v),
(b) m=m',L=¢"and A\/u=mn/v + (r,7r) for some r € Z,
(c) m=m',£=1{"and (n,v) = wl, - (A, n) for somer € Z. O

Proof. The proof follows from Step 1 in the proof of Theorem 4.20 and Proposition 3.21.
|

Let IrrO%(H,,(q)) denote the set of isomorphism classes of all simple modules

in 0%(Hn(q)). Combining Theorems 4.20 and 4.22, we obtain the following classification

theorem, which is announced in [5] in more general situation.
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Corollary 4.23 (cf.[5]). Letn € Z>, and k € Z>;. The correspondences (A, i) — 7\//T1 and
A u) — V(A, w) induce the following bijections, respectively:

L] D eemy/ZONN) & | ] (@ e/ {wm)) 5 IrOE (Fln(q)).  (4.41)
mell,k] me[l,«] O

Remark 4.24. We gave a direct and combinatorial proof for Theorems 4.20 and 4.22 and
Corollary 4.23 based on the tableaux theory on periodic skew diagrams.

An alternative approach to prove these results is to use the result in [10, 11],
where the classification of irreducible modules over H,(q) of a more general class is ob-
tained. Actually, it is easy to see that the H,,(q)-module V(A, ) coincides with the unique
simple quotient L(A, ) of the induced module M(A, i) with the notation in [10].

Remark 4.25. It is easy to derive the corresponding results for the degenerate affine

Hecke algebra by a parallel argument.
Remark 4.26. There exists an algebra involution t: H, (q) — H,(q) such that

Wt) =qt;' (ieo,n—1]), W) =,

W) =x' (Ge[ln)), u&=¢". (4.42)

The composition 0, ,, o t: Hn(q) — V(A, p) gives an H,, (q)-module structure on V(A, i) on
which £ acts as a scalar g~ ™. We let V*(A, ) denote this H,, (q)-module. The correspon-
dence (A, ) — V*(A, n) induces a bijection

L] @/ {wm)) — Trr0s (A (q)) (4.43)

me(l,k]

forallk € Z>,.
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