Contents

1 Getting to Know ΩB_n ... 2
 1.1 Introduction .. 2
 1.2 Some Basic Definitions .. 2
 1.3 Shuffles and Multiplication ... 5

2 The Free Lie Algebra .. 9
 2.1 Getting from $Q[A^*]$ to $Lie[A]$.. 9
 2.2 Getting to Know $Lie[A]$ Better .. 11

3 Fun with Idempotents ... 14
 3.1 The $I(n)$ Idempotents ... 14
 3.2 $Lie^+[A]$ and $Lie^-[A]$.. 17
 3.3 Defining I_p and Finding an Expression in Terms of x_q 18
 3.4 The Action of B_n on a Product of Signed Lie Polynomials 20
 3.5 Identities Involving $Y(\phi, q)$... 22
 3.6 Expressing x_p in Terms of I_q .. 25
 3.7 Computing $I_p I_q$... 26

4 A Complete Family of Minimal Orthogonal Idempotents 29
 4.1 $\sum_{\lambda \vdash n} E_\lambda = Id$.. 30
 4.2 Orthogonality .. 32
 4.3 Minimality ... 34
 4.4 Conclusion ... 35
 4.4.1 A Commutative Subalgebra .. 35
 4.4.2 Conjecture ... 36
 4.4.3 A Word on the Radical ... 36
Chapter 1

Getting to Know ΩB_n

1.1 Introduction

This paper aims to explore the structure of Mantaci and Reutenauer’s [5] descent algebra ΩB_n which is a subalgebra of $\mathbb{Q}[B_n]$. First it is necessary to define the hyperoctahedral group B_n. After introducing more notation and terminology, we can define ΩB_n. In later chapters we’ll show ΩB_n is an algebra and we’ll eventually find a complete family of minimal orthogonal idempotents. We build up to this result by introducing the Free Lie Algebra on an alphabet A and examining ΩB_n’s action on products of Lie polynomials. First we find an idempotent $I(n)$ that lives in ΩB_n and projects to $\text{Lie}_n[A]$. From it, we build the I_p which are another basis for ΩB_n, and from the I_p we build the E_λ, which are complete minimal and orthogonal idempotents.

Acknowledgements: The definitions and computations made throughout this paper were motivated foremost by the lectures of Nantel Bergeron [1]. Mantaci and Reutenauer developed the definition of ΩB_n in [5], which is analogous to Solomon’s descent algebra ΣA_{n-1}. The multiplication table for ΣA_{n-1} is given in [4] along with definitions for idempotents analogous to the $I(n), I_p, \text{ and } E_\lambda$ which are adapted to ΩB_n and discussed in Chapters 3 and 4 of this paper. The work with the Free Lie Algebra is developed in [3] and [2], and also discussed in [4]. Adaptations of definitions and computations to ΩB_n were made under the guidance of Nantel Bergeron for which I am very grateful.

1.2 Some Basic Definitions

The hyperoctahedral group B_n is the wreath product of \mathfrak{S}_n, the symmetric group on n letters, by C_2, the cyclic group of order 2. B_n is more commonly
pictured as $n \times n$ permutation matrices with entries ± 1. For example:

\[
\begin{pmatrix}
0 & -1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{pmatrix}
\]

Under this presentation, it is clear $|B_n| = 2^n n!$.

However, we will view an element $\sigma \in B_n$ as a permutation of \{±1, ±2, ... , ±n\} (noting $\sigma(x) = y$ if and only if $\sigma(-x) = -y$). We’ll depict σ as follows. Suppose

\[
\begin{align*}
\sigma: & \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \\
\downarrow & \quad \downarrow & \quad \downarrow & \quad \downarrow & \\
-5 & \quad 4 & \quad 3 & \quad -1 & \quad 2
\end{align*}
\]

Then we’ll write $\sigma = \overline{54312}$ (moving the negative signs on the left to bars on top, so that we really don’t think of 5 as negative 5, but as an entirely different number incomparable to 5).

Another way to think of $\sigma \in B_n$ that will be consistent with our later notation is as $\phi_{\sigma}(\tau_{\sigma})$ where $\tau_{\sigma} = |\sigma_1||\sigma_2|\cdots|\sigma_n|$ and $\phi_{\sigma} : \{1, 2, \ldots, n\} \to \{\pm 1\}$, $\phi_{\sigma} : i \mapsto \text{sgn}(\sigma_i)$. The ϕ tells us where to place the bars. For example, if $\tau = 54312$ and $\phi : i \mapsto (-1)^i$, then $\phi(\tau) = \overline{54312}$. If we think of the -1 overhead as being the indication of a bar, we can also think of $\phi(\tau)$ as $\overline{\tau_1 \tau_2 \ldots \tau_n}$. Notice that $\tau_{\sigma} \in S_n$. Since ϕ takes values in $\{\pm 1\}$ this is another easy way to see B_n as a wreath product. (Although we can certainly use this notation to talk about $\phi(\sigma)$ where $\sigma \in B_n$.) Let the group algebra $\mathbb{Q}[B_n]$ be formal sums of elements in B_n with rational coefficients.

Now we’ll define descents and descent classes. We’ll call the linear span of these descent classes ΩB_n, our descent algebra. (see [5])

Definition $\sigma \in B_n$ has a descent in $i \in \{1, 2, \ldots, n-1\}$ if $|\sigma(i)| > |\sigma(i+1)|$ and $\text{sgn}(\sigma(i)) = \text{sgn}(\sigma(i+1))$, or if $\text{sgn}(\sigma(i)) \neq \text{sgn}(\sigma(i+1))$ (although I like to think of this latter sort of descent as a "cut" because we don’t compare values with opposite sign).

Example $\sigma = \overline{2745316}$ has a descent in 2, 4, 5, and 6. (Note the descents in 2,5, and 6 come from sign changes.)

The next definition will be useful in describing our descent classes.

Definition A signed composition p of $n \in \mathbb{Z}$, denoted $p \models n$, is a sequence of nonzero integers $p = (p_1p_2\ldots p_k)$ such that $\sum_{i=1}^{k} |p_i| = n$.

We call the p_i the parts of p, and we will denote k the number of parts of p by $k(p)$. Again, we’ll put a bar on top of negative numbers (instead of to the left).
Ordinarily, we would place commas between the parts of \(p \), but for now we will suppress the commas if \(p \) consists of single digits or variables.

Example \(p = (13\overline{22}) \) is a signed composition of 9 with 5 parts.

We can put a partial ordering on the signed compositions by refinement with respect to signs. We say \(p \leq q \) if \(p \) is a finer composition than \(q \).

Example Let \(q = (4\overline{32}) \). Referring to the example above, \(p < q \). Note \(q \) is maximal with respect to this partial ordering because we cannot combine parts with different signs.

It is easy to show there are \(2 \cdot 3^{n-1} \) signed compositions of \(n \). Consider the map

\[
\phi : \{|p|p \models n\} \to 2^{\{\pm1,\pm2,\ldots,\pm n-1\}}
\]

which sends

\[
p = (p_1p_2\ldots p_k) \mapsto \{p_1, \text{sgn}(p_2) \cdot (|p_1| + |p_2|), \ldots, \text{sgn}(p_{k-1}) \cdot (|p_1| + \ldots + |p_{k-1}|)\}.
\]

For example, \(\phi((13\overline{22})) = \{1,4,\overline{5},8\} \). \(\phi \) has kernel of size 2 (\(p = (n) \) and \(p = (\overline{n}) \)) and the image of \(\phi \) is of size \(3^{n-1} \), since in composing such a set, for each number \(i \in \{1,2,\ldots,n-1\} \) we have three mutually exclusive choices: don’t include \(i \) in the set, include +\(i \) in the set, or include −\(i \) in the set.

Definition The **descent shape** of \(\sigma = \sigma_1\sigma_2\cdots \sigma_n \in B_n \) is the signed composition \(p = (p_1 \ldots p_k) \) such that descents of \(\sigma \) occur in \(|p_1|, |p_1|+|p_2|, \ldots, \) and \(|p_1|+\ldots+|p_{k-1}| \), and \(\text{sgn}(p_j) = \text{sgn}(\sigma_{|p_1|+|p_2|+\cdots+|p_j|}) \). (Note that the whole “\(p_j^{th} \) chunk” of \(\sigma \) has the same sign by the way descent was defined, i.e. \(\text{sgn}(p_1) = \text{sgn}(\sigma_1) = \text{sgn}(\sigma_2) = \cdots = \text{sgn}(\sigma_{|p_1|}) \), etc.) Furthermore, \(p \) is the maximal signed composition satisfying this. (So if \(\sigma \) has \(k-1 \) descents, then \(p \) has \(k \) parts.)

Example The descent shape of \(\sigma = 51\overline{36}\overline{79}24\overline{8} \) is \(p = (13\overline{22}) \).

A nice way to read off the descent shape of \(\sigma \) is to make a cut in \(\sigma \) everywhere there is a sign change and everywhere there is a descent, then read off \(p \) by the sizes of the cut chunks, and assigning signs accordingly. For example, for \(\sigma = 5\overline{34}1\overline{2} \) we cut as \(5\overline{34}1\overline{2} \) and read off \(p = (\overline{21}) \).

Now we can begin talking about elements in \(\mathbb{Q}[B_n] \) called descent classes.

Definition The **descent class**

\[
x_p = \sum_{\sigma: \text{descent shape of } \sigma \geq p} \sigma.
\]
Example \(x_{[123]} = 123 + 132 + 231 + 123 \)

Definition \(\Omega B_n = \) the linear span of \(\{ x_p \}_{p \in \mathbb{N}} \).

In the next section we will show that \(\Omega B_n \) is an algebra with basis \(\{ x_p \}_{p \in \mathbb{N}} \) by finding coefficients \(\alpha_{p,q}^r \) such that \(x_p x_q = \sum_{r \in \mathbb{N}} \alpha_{p,q}^r x_r \). Furthermore, because the \(x_p \) are indexed by signed compositions, the dimension \(\dim \Omega B_n = 2 \cdot 3^{n-1} \).

1.3 Shuffles and Multiplication

The goal of this section is to show

\[
x_p x_q = \sum_{r \in \mathbb{N}} \alpha_{p,q}^r x_r
\]

(where \(\alpha_{p,q}^r \) are the number of matrices with column sum \(q \) and row sum \(p \) and content \(r \). Note that, as defined below, having a given row and column sum are interrelated concepts in the way they respect signs) and hence that \(\Omega B_n \) is a subalgebra of \(\mathbb{Q}[B_n] \). (see [4]

It turns out that the way the descent classes multiply models how cards shuffle. Let’s examine how cards shuffle more closely.

Denote the shuffle product by the symbol \(\cup \). It will be clear by the following example what we mean by \(E_1 \cup E_2 \):

Example \(12 \cup 34 = 1234 + 1324 + 1342 + 3124 + 3142 + 3412 \) Notice that 12 stays in that relative order as a subword of 12 \(\cup \) 34, as does 34. We can view a shuffle (of distinct integers) as a sum of permutations and hence as an element in \(\mathbb{Q}[B_n] \).

Clearly the shuffle product is commutative and associative. How do shuffles compose? We could expand the shuffles into sums of permutations and then compose them in \(\mathbb{Q}[B_n] \). We can make our computations shorter by noting that shuffling and then permuting is the same as permuting then shuffling, i.e. \((23145) \cdot (12 \cup 34 \cup 5) = 23 \cup 14 \cup 5 \). Hence we have:

Example

\((1 \cup 2345) \cdot (12 \cup 34 \cup 5) \)
\[
(12345 + 21345 + 23145 + 23415 + 23451) \cdot (12 \cdot 34 \cdot 5) \\
= 12 \cdot 34 \cdot 5 + 21 \cdot 34 \cdot 5 + 23 \cdot 14 \cdot 5 + 23 \cdot 41 \cdot 5 + 23 \cdot 45 \cdot 1 \\
= (12 + 21) \cdot 34 \cdot 5 + (14 + 41) \cdot 23 \cdot 5 + 1 \cdot 23 \cdot 45 \\
= 1 \cdot 2 \cdot 34 \cdot 5 + 1 \cdot 23 \cdot 4 \cdot 5 + 1 \cdot 23 \cdot 45
\]

Note we can write this as a sum of terms that look like \(E_1 \cup E_2 \cup \ldots \cup E_m \) that yield \(12 \ldots n \) when concatenated as \(E_1 E_2 \cdots E_m \) because these shuffles are all performed on a deck in that original order. Consider the term \(41 \cup 23 \cup 5 \) appearing above. Because 1 and 4 appear out of order here, they must appear in different segments of the first shuffle \((1 \cup 2345) \) and hence \(14 \cup 23 \cup 5 \) must also occur in the sum. When added together they yield \(1 \cup 4 \cup 23 \cup 5 = 1 \cup 23 \cup 4 \cup 5 \).

So we have a sum of permutations from \(1 \cup 2345 \) cut as \(1 \cup 23 \cup 4 \cup 5 \) which corresponds to our answer in the example above.

Since we know the numbers occur in the order \(12 \ldots n \), only the cardinalities of each block matter. We can associate \(E_1 \cup E_2 \cup \ldots \cup E_k \) with the composition \(q = (|E_1||E_2|\cdots|E_k|) \) where \(|E_i|\) is the length of the block \(E_i \) and associate \(p = (|F_1|\cdots|F_h|) \) with \(F_1 \cup \cdots \cup F_h \). In fact we can call the shuffles \(E_q \) and \(E_p \). Then their product is a sum of shuffles obtained from the compositions filling a \(k \times h \) matrix with row sum \(q \) and column sum \(p \). We will denote the row sum \((\sum_{i=1}^{h} m_{1i}, \sum_{i=1}^{h} m_{2i}, \ldots, \sum_{i=1}^{h} m_{ki}) \) of a matrix \(M = (m_{ij}) \) by the composition \(r(M) \) and the column sum \((\sum_{i=1}^{k} m_{1i}, \ldots, \sum_{i=1}^{k} m_{hi}) \) as \(c(M) \). By \(w(M) \) we will denote the composition obtained from reading the entries of \(M \) from left to right, row by row. Then in this notation, the argument above shows:

\[
E_q \cdot E_p = \sum_{M: r(M) = q, c(M) = p} E_{w(M)}.
\]

In the above discussion, none of the \(\sigma \)'s involved negative signs. Because barring is an involution, it is clear that the bars apportion in the matrix as follows. We bar an entry in the matrix if it occurs in a barred column or barred row but not both. So we must modify the definition of \(E_q \) to \(q_i = \ldots \)
$|E_i|$ and q_i is barred if and only if E_i is barred, and we must also modify the statements $r(M) = q$, $c(M) = p$ to mean we apportion bars on the entries of M accordingly. Hence $r(M) = q$, $c(M) = p$ are interrelated, as opposed to separate independent statements. This gives us a nice association between shuffles and signed compositions.

Example $(1 \uparrow \uparrow 2 3 4 5 \downarrow \downarrow)$ $(12 \uparrow \uparrow 3 4 \downarrow \downarrow 5 \downarrow \downarrow)$ $(1 \uparrow \uparrow 2 3 4 \downarrow \downarrow 5 \downarrow \downarrow) \cdot (1 \uparrow \uparrow 2 3 4 \downarrow \downarrow 5 \downarrow \downarrow) = 1 \uparrow \uparrow 2 3 4 5 \downarrow \downarrow 5 \downarrow \downarrow 1 \uparrow \uparrow 2 3 4 5 \downarrow \downarrow$

So the matrices we count now for this example are:

\[
\begin{pmatrix}
2 & 2 & 1 \\
1 & 1 & 1
\end{pmatrix},
\begin{pmatrix}
2 & 2 & 1 \\
1 & 1 & 1
\end{pmatrix},
\begin{pmatrix}
2 & 2 & 1 \\
1 & 1 & 1
\end{pmatrix}
\]

Note that the signed compositions we read off above coincide with the shuffles in the answer. In terms of real-world card shuffles, we can think of the bars as meaning we turn the card face up (or down)–which is clearly an involution.

To see how these shuffles relate to ΩB_n, we introduce the anti-automorphism

\[
*: \mathbb{Q}[B_n] \rightarrow \mathbb{Q}[B_n]
\]

\[
*: \sigma \mapsto \sigma^{-1}
\]

extended algebraically. It is an anti-automorphism because $(\sigma \tau)^{-1} = \tau^{-1} \sigma^{-1}$.

What does $*$ do to ΩB_n? Let’s examine it on a particular descent class x_p. Let $n = 9, p = (1322T)$. Consider any σ that occurs as a summand of x_p. Because σ has shape p or less fine (coarser), it is clear which σ_i are barred and that $\sigma_2 < \sigma_3 < \sigma_4$, $|\sigma_5| < |\sigma_6|$, $\sigma_7 < \sigma_8$. Descents may or may not occur (because of the “less fine”) in 1. To figure out what σ^{-1} is we want to rearrange the σ_i in increasing order. If

\[
\begin{array}{cccccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
\downarrow & \downarrow \\
5 & 1 & 3 & 6 & 7 & 9 & 2 & 4 & 8
\end{array}
\]

then σ^{-1} is encoded by the same picture with the arrows pointing up \uparrow. We can rearrange entire columns, yielding:

\[
\begin{array}{cccccccccc}
2 & 7 & 3 & 8 & 1 & 4 & 5 & 9 & 6 \\
\uparrow & \uparrow \\
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9
\end{array}
\]

and read $\sigma^{-1} = 273814596$ off the top row. In doing this rearranging, since $\sigma_2 < \sigma_3 < \sigma_4$ when we rearrange

\[
\begin{array}{cccc}
\sigma_2 & \sigma_3 & \sigma_4 \\
\downarrow & \downarrow & \downarrow
\end{array}
\]

we have 234 in that relative
order appearing in σ^{-1}. Likewise 56 and 78 will occur in that relative order.
In this manner we see every possible σ occurring as a summand in x_p will have
an inverse appearing in $1 \cup 234 \cup 56 \cup 78 \cup 9$. So $x_p^* = E_p$ in the notation for
shuffles used above.

Hence

$$
x_p x_q = ((x_p x_q)^*)^* = (x_q^* x_p^*)^* = (E_q \cdot E_p)^* = \left(\sum_{M \in \{M : r(M) = q, c(M) = p \}} E_w(M) \right)^*
$$

$$
= \sum_{M \in \{M : r(M) = q, c(M) = p \}} (E_w(M))^*
$$

$$
= \sum_{M \in \{M : c(M) = p \}} x_w(M),
$$

Or we can write

$$
x_p x_q = \sum \alpha_{p,q,r} x_r \tag{1.1}
$$

where $\alpha_{p,q,r} = |\{M : c(M) = p, r(M) = q, w(M) = r\}|$. In particular $\alpha_{p,q} \in \mathbb{Z}$.

8
Chapter 2

The Free Lie Algebra

2.1 Getting from $\mathbb{Q}[A^\ast]$ to $\text{Lie}[A]$

In this next section, we will introduce the free Lie algebra on an alphabet A and develop certain Lie polynomials that will be useful in decomposing $\mathbb{Q}[A^\ast]$.

Let A be an alphabet, $A = \{a_1 < a_2 < \cdots < a_f\}$. For our purposes, we stipulate that if $a_i \in A$ then $\pi_a \in A$ as well. (We'll often let $A = \{1, 2, \ldots, \pi, 1, 2, \ldots, n\}$.) If $w = w_1 w_2 \cdots w_k$ where $w_i \in A$ then we say the length of w, denoted $|w|$, is equal to k. Let A^\ast be all words on A and A^n be all words on A of length n. That is, $A^n = \{w \in A^\ast : |w| = n\}$. Note, we use the symbol $|$ to denote absolute value of numbers, length of words, and cardinality of sets depending on context. We denote by $\mathbb{Q}[A^\ast]$ all formal sums with finite support of words in A^\ast with coefficients in \mathbb{Q}.

The free Lie algebra on A turns out to be generated by brackets of elements of A. For instance, typical elements look like a or $[a, b]$ or $[c, [a, b]]$ etc. There are also relations on the brackets, namely

$$[f, g] = -[g, f] \quad \text{and} \quad [f, [g, h]] + [g, [h, f]] + [h, [f, g]] = 0$$

(2.1)

where $f, g,$ and h are elements of the free Lie algebra. It is much easier to think of the free Lie algebra, $\text{Lie}[A]$ as the image of these brackets in $\mathbb{Q}[A^\ast]$ under the map which sends

$$[f, g] \mapsto fg - gf.$$

(2.2)

We'll speak of $[f, g]$ and $fg - gf$ interchangeably.

By a simple inductive argument employing the identities 2.1 above, it is easy to show that any bracketing may be represented as a standard left bracket, that is, something of the form $[[\cdots [[w_1, w_2], w_3], \ldots], w_k]$.

Just as $\mathbb{Q}[A^*] = \oplus_{n \geq 0} \mathbb{Q}[A^n]$ is a graded algebra, $Lie[\mathcal{A}] = \oplus_{n \geq 0} Lie_n[\mathcal{A}]$ where $Lie_n[\mathcal{A}]$ is generated by left bracketings of n letters, i.e., under our identification 2.2 above $Lie_n[\mathcal{A}] \subset \mathbb{Q}[A^n]$.

Because we are thinking of $Lie[\mathcal{A}]$ as sitting inside $\mathbb{Q}[A^*]$, it would be nice if we could find a map projecting $\mathbb{Q}[A^*]$ onto $Lie[\mathcal{A}]$ or find a family of maps projecting $\mathbb{Q}[A^n]$ to $Lie_n[\mathcal{A}]$. We could achieve this by defining an operator Θ_n that takes a word $w = w_1 w_2 \cdots w_n$ to its standard left bracket $[[[w_1, w_2], w_3], \ldots, w_n]$. (see [3]) In order to do this consider the right action of B_n on the positions of letters in words of $\mathbb{Q}[A^n]$. If A includes \overline{a}_i as well as a_i then the barring operation of B_n makes sense as well. For example, $\overline{a b c d e a a} \cdot 2 \overline{1} 3 7 4 6 5 = \overline{b a c d a e}$.

Definition Let $\Theta_n = \prod_{i=2}^n (1 - \gamma_i) = \sum_{S: S \subseteq \{2, \ldots, n\}} (-1)^{|S|} \prod_{i \in S} \gamma_i$ where $\gamma_i = i 1 2 \cdots i - l + 1 + i + 2 \cdots n$.

It will be clear by the following induction that Θ_n is the operator we want. Let $w = w_1 w_2$. Notice that $w \cdot \Theta_2 = w \cdot (1 - \gamma_2) = w_1 w_2 - w_2 w_1 = [w_1, w_2]$.

Let $w = w_1 \cdots w_n$. By our inductive hypothesis, $w_1 \cdots w_{n-1} \cdot \Theta_{n-1} = [[[w_1, w_2], \ldots, w_{n-2}], w_{n-1}]$. We can think of Θ_{n-1} as sitting in B_n by just letting it fix n. Indeed, since γ_i fixes $i + 1, i + 2, \ldots$ we can consider γ_i as an element of B_j for any $j > i$. Thus $\Theta_n = \Theta_{n-1}(1 - \gamma_n)$.

$$w \cdot \Theta_n = w \cdot \Theta_{n-1}(1 - \gamma_n)$$
$$= w_1 \cdots w_{n-1} \cdot \Theta_{n-1} w_n (1 - \gamma_n)$$
(where the w_n just sort of hanging out there is concatenated on

$$= [[[w_1, w_2], \ldots, w_{n-2}], w_{n-1}] w_n (1 - \gamma_n)$$
$$= [\cdots [w_1, w_2], \ldots, w_{n-1}] w_n - w_n [\cdots [w_1, w_2], \ldots, w_{n-1}]$$
$$= [[[w_1, w_2], \ldots, w_{n-2}], w_{n-1}], w_n] \text{ is} = \text{the left bracketing of } w$$

Hence $\mathbb{Q}[A^n] \Theta_n \subset Lie_n[\mathcal{A}]$.

In fact, it can be shown that $\Theta_n \in \Omega B_n$. (see [2]) We want to show this because then we know Θ_n^* is a sum of shuffles, and we can use this fact in later computations. Let

$$y_q = \sum_{\sigma: \text{descent shape of } \sigma \text{ is } p} \sigma.$$

Then clearly $x_p = \sum_{q: q \geq p} y_q$, so by the inclusion-exclusion principle,

$$y_q = \sum_{p: p \geq q} (-1)^{k(q) - k(p)} x_p.$$

Now consider $\prod_{i \in S} \gamma_i$ where $S = \{i_1 < i_2 < \ldots < i_k\}$. This product is the permutation $i_k i_{k-1} \cdots i_1 1 2 \cdots \hat{i}_1 \cdots \hat{i}_k \cdots n$, which has k descents and then an increasing sequence of $(n - k)$ numbers. Hence this product appears in
\[y(11 \cdots 1(n-k)) \] And, in fact, \(y(11 \cdots 1(n-k)) \) is the sum of all permutations with \(k \) descents and an increasing sequence of \((n-k)\) numbers (all unbarred), so as we sum over all \(S \) of cardinality \(k \), we get all of \(y(11 \cdots 1(n-k)) \).

\[
\Theta_n = \sum_{S: S \subseteq \{2, \ldots, n\}} (-1)^{|S|} \prod_{i \in S} \gamma_i
\]

\[
= \sum_{k=0}^{n-1} \sum_{S: S \subseteq \{2, \ldots, n\}, |S|=k} (-1)^k \prod_{i \in S} \gamma_i
\]

\[
= \sum_{k=0}^{n-1} (-1)^k y(11 \cdots 1(n-k))
\]

\[
= \sum_{k=0}^{n-1} \sum_{p: p \geq (11 \cdots 1(n-k))} (-1)^{k(p)-1} x_p.
\]

2.2 Getting to Know \(\text{Lie}[A] \) Better

The following proposition (from [1]) will show that \(\text{Lie}_n[A] \subset \mathbb{Q}[A^n] \Theta_n \) and hence that \(\mathbb{Q}[A^n] \Theta_n = \text{Lie}_n[A] \). It will also be useful in dealing with \(\text{Lie} \) polynomials later on. But first we need to introduce some more definitions.

We will make extensive use of the following scalar product \(\langle , \rangle \).

Definition For words \(u, v \in [A^*] \) let

\[
\langle u, v \rangle = \begin{cases}
1 & \text{if } u = v \\
0 & \text{otherwise}
\end{cases}
\]

and extend linearly to \(\mathbb{Q}[A^*] \).

One important fact to notice about \(\langle , \rangle \) is that

\[\text{for any } w \in \mathbb{Q}[A^*], \quad w = \sum_{u \in A^*} \langle w, u \rangle u. \quad (2.3) \]

(Also note that this expression is the same if we sum over non-empty \(u \), i.e. over \(u \in A^* - 1 \).) Another useful fact is that for \(\tau \in \mathbb{Q}B_n \), \(\langle u \tau, v \rangle = \langle u, v \tau^* \rangle \).

This is easy to see, because \(u \sigma = v \) if and only if \(u = v \sigma^{-1} \).

Let \(\mathbb{Q}_\omega [A^*] \otimes \mathbb{Q}[A^*] \) be the completion of the tensor product of \(\mathbb{Q}[A^*] \) under the shuffle product with \(\mathbb{Q}[A^*] \) under the concatenation product. So

\[
\mathbb{Q}_\omega [A^*] \otimes \mathbb{Q}[A^*] = \left\{ \sum_{u,v \in \mathbb{Q}[A^*]} f_{u,v} u \otimes v : \begin{array}{ll}
\text{for fixed } u, \sum f_{u,v} v & \in \mathbb{Q}[A^*] \\
\text{for fixed } v, \sum f_{u,v} u & \in \mathbb{Q}[A^*]
\end{array} \right\}
\]
Then we can define a map
\[\Delta : \mathbb{Q}[A^*] \rightarrow \mathbb{Q}_\cup \cup [A^*] \otimes \mathbb{Q}[A^*] \]
by sending a letter in the alphabet
\[\Delta : a \mapsto a \otimes 1 + 1 \otimes a \]
and extending algebraically.

Note
\[\Delta(w) = \sum_{u,v \in A^*} \langle w, u \cup v \rangle u \otimes v \quad (2.4) \]
because \(\Delta(w) = \Delta(w_1 w_2 \ldots w_n) = (w_1 \otimes 1 + 1 \otimes w_1)(w_2 \otimes 1 + 1 \otimes w_2) \cdots (w_n \otimes 1 + 1 \otimes w_n) = \sum_{S \subseteq \{1, \ldots, n\}} w_S \otimes w_{S^c} \) because in each summand we have a choice of whether to pick \(w_i \otimes 1 \) or \(1 \otimes w_i \) from each factor—which means we get \(w_i \) on one side of the \(\otimes \) but not the other. So for one summand, as \(i \) varies from 1 to \(n \) we get all of \(w \) assorted on either side of the \(\otimes \). That is to say, the summand looks like \(w_S \otimes w_{S^c} \), where the subword \(w_S = w_{i_1} w_{i_2} \ldots w_{i_k} \) for \(S = \{i_1 < i_2 < \ldots < i_k\} \), and \(S^c \) denotes the complement of \(S \). So we can write the above sum as \(\Delta(w) = \sum_{u,v \in A^*} \langle w, u \cup v \rangle u \otimes v \).

Proposition 1 Given \(p \in \mathbb{Q}[A^n] \), the following are equivalent:

1. \(p \in \text{Lie}_n[A] \)
2. \(\Delta(p) = p \otimes 1 + 1 \otimes p \)
3. \(\langle p, u \cup v \rangle = 0 \) unless \(u = 1 \) or \(v = 1 \) (the empty word, sometimes denoted \(\emptyset \))
4. \(p \cdot \Theta_n = np \)

Proof
(1) \(\implies \) (2) Induct on \(n \). The \(n = 0 \) case is trivial, and if \(n = 1 \) then \(p = a \in A \) and by definition, \(\Delta(a) = a \otimes 1 + 1 \otimes a \).

\(p \in \text{Lie}_n[A] \) so \(p = [r, s] \) where clearly \(r \in \text{Lie}_j[A], s \in \text{Lie}_k[A] \) and \(j, k < n \). Hence \(\Delta(p) = \Delta(rs - sr) = \Delta(r) \Delta(s) - \Delta(s) \Delta(r) = (r \otimes 1 + 1 \otimes r)(s \otimes 1 + 1 \otimes s) - (s \otimes 1 + 1 \otimes s)(r \otimes 1 + 1 \otimes r) \) by the inductive hypothesis. By expanding these terms, we see \(\Delta(p) = (rs - sr) \otimes 1 + 1 \otimes (rs - sr) = p \otimes 1 + 1 \otimes p \).

(2) \(\implies \) (3) \(\Delta(p) = p \otimes 1 + 1 \otimes p \). Recall \(\Delta(p) = \sum_{u,v \in A^*} \langle p, u \cup v \rangle u \otimes v \) by equation 2.4. Equating terms, clearly \(\langle p, u \cup v \rangle = 0 \) unless \(u = 1 \) or \(v = 1 \).
(3) \implies (4) p \cdot \Theta_n = \sum_{u \in A^*} \langle p \cdot \Theta_n, u \rangle u = \sum_{u \in A^*} \langle p, u \cdot \Theta_n^* \rangle u = \sum_{u \in A^*} \langle p, u \cdot (\sum_{k=0}^{n-1} \sum_{p \geq (1-1(n-k))} (-1)^{k(p)-1} x_p^*) \rangle u. \quad \text{But, by assumption, } \langle p, u \cup v \rangle = 0 \quad \text{unless } u \cup v \text{ is an empty shuffle.} \quad x_p^* \text{ is an empty shuffle exactly when } k(p) = 1; \quad \text{in this case, when } p = (n), \quad \text{and hence } x_p^* = x_p = 12 \cdots n = \text{Id} \text{ the identity of } B_n. \quad \text{So } p \cdot \Theta_n = \sum_{u \in A^*} \langle p, u \cdot (\sum_{k=0}^{n-1} \text{Id}) \rangle u = \sum_{u \in A^*} n(p, u \cdot \text{Id}) u = np.

(4) \implies (1) p \cdot \Theta_n = np. \quad \text{We already showed that } \mathbb{Q}[A^n]\Theta_n \subset \text{Lie}_n[A]. \quad \text{Hence } np \in \text{Lie}_n[A] \text{ which implies } p \in \text{Lie}_n[A].

\[\square\]

One consequence of this is that \(\frac{1}{n}\Theta_n\) is an idempotent. Another is that, in particular, if \(p \in \text{Lie}_n[A]\) then \(\frac{n}{n'} p \in \text{Lie}_n[A] \subset \mathbb{Q}[A^n]\) so \(\frac{n}{n'} p \cdot \Theta_n = n(\frac{1}{n} p) = p\) which implies \(p \in \mathbb{Q}[A^n]\Theta_n\). Hence \(\text{Lie}_n[A] \subset \mathbb{Q}[A^n]\Theta_n\), so

\[\text{Lie}_n[A] = \mathbb{Q}[A^n]\Theta_n.\]

In the next section we will define other idempotents that will be useful in finding a basis of idempotents for \(\Omega B_n\). We will use Proposition 1 to show they actually are in \(\text{Lie}_n[A]\).
Chapter 3

Fun with Idempotents

3.1 The $I_{(n)}$ Idempotents

Now we will define the $I_{(n)}$ idempotents (see [4]), and use Proposition 1 to show they project into $\text{Lie}_u[A]$ as well.

Let

$$D = \sum_{u \in A^* - 1} u \otimes u \in Q_u[A^*] \otimes Q_u[A^*].$$

Note $1 + D = \sum_{u \in A^*} u \otimes u$. Then

$$D^k = \sum_{u_1, u_2, \ldots, u_k \in A^* - 1} u_1 \cup u_2 \cup \cdots \cup u_k \otimes u_1 u_2 \cdots u_k$$

But $u_1 \cup u_2 \cup \cdots \cup u_k = u_1 u_2 \cdots u_k x_q^*$ where $q_i = |u_i|$. For w to appear in this shuffle, we need $\sum_{i=1}^k |u_i| = |w|$, hence $q = |w|$. Thus

$$D^k = \sum_{w \in A^*} w \otimes \left(\sum_{u_1, u_2, \ldots, u_k \in A^* - 1} \langle w, u_1 \cup u_2 \cup \cdots \cup u_k \rangle u_1 \cdots u_k \right)$$

Now we know that if $u = u_1 \cdots u_k$, the right-hand side of the tensor becomes

$$\sum_{u \in A^* - 1} \langle w x_q, u \rangle u = w x_q.$$
(unsigned) compositions there are of $|w|$. To note the fact that q has all positive parts, we may write $q \leq (|w|)$.

$$D^k = \sum_{w \in A^*} w \otimes (\sum_{q \in A^* \geq k, \text{ positive}, k(q) = k} \langle wx_q, u \rangle u) = \sum_{w \in A^*} w \otimes (\sum_{q \leq (|w|) \atop k(q) = k} wx_q)$$

Let $\Phi = \log(1 + D)$. Note this infinite formal sum is well-defined in $Q \cup \cup [A^*] \otimes Q[A^*]$. Then

$$\Phi = \log(1 + D) = \sum_{k \geq 1} \frac{(-1)^{k-1}}{k} D^k$$

$$= \sum_{k \geq 1} \frac{(-1)^{k-1}}{k} \sum_{w \in A^*} w \otimes (\sum_{q \leq (|w|) \atop k(q) = k} wx_q)$$

$$= \sum_{w \in A^*} w \otimes \left(\sum_{q \leq (|w|)} \frac{(-1)^{k(q)-1}}{k(q)} x_q \right)$$

We will define

Definition Let $I_{(n)} = \sum_{q \leq (n)} \frac{(-1)^{k(q)-1}}{k(q)} x_q$ and $I_{[w]} = w I_{(|w|)}$.

So $\Phi = \sum_{w \in A^*} w \otimes I_{[w]}$. It is clear from the above definition that $I_{[w]} \in Q[A^{|w|}]$.

The following string of equations will show that $I_{[w]} \in Lie_{|w|}[A]$.

$$(Id \otimes \Delta)(1 + D) = \sum_{w \in A^*} w \otimes \Delta(w)$$

$$= \sum_{w \in A^*} w \otimes \left(\sum_{u,v \in A^*} \langle w, u \cup u \rangle u \otimes v \right)$$

$$= \sum_{u,v \in A^*} \left(\sum_{w \in A^*} \langle w, u \cup u \rangle w \right) \otimes u \otimes v$$

$$= \sum_{u,v \in A^*} u \cup u \otimes u \otimes v$$

$$= \left(\sum_{u \in A^*} u \otimes u \otimes 1 \right) \cdot \left(\sum_{v \in A^*} v \otimes 1 \otimes v \right)$$

$$= \exp(\sum_{u \in A^*} u \otimes I_{[u]} \otimes 1) \cdot \exp(\sum_{v \in A^*} v \otimes 1 \otimes I_{[v]})$$

which is clear since $\exp(\sum_{w \in A^*} w \otimes w) = \sum_{w \in A^*} w \otimes I_{[w]}$.
\[
\begin{align*}
&= \exp \left(\sum_{u \in A^*} u \otimes I_{[u]} \otimes 1 + \sum_{v \in A^*} v \otimes 1 \otimes I_{[v]} \right) \\
&= \exp \left(\sum_{w \in A^*} w \otimes I_{[w]} \otimes 1 + w \otimes 1 \otimes I_{[w]} \right) \\
&= \exp \left(\sum_{w \in A^*} w \otimes (I_{[w]} \otimes 1 + 1 \otimes I_{[w]}) \right)
\end{align*}
\]

But also \((Id \otimes \Delta)(1 + D) = (Id \otimes \Delta)(\exp(\Phi))\)

\[
\begin{align*}
&= (Id \otimes \Delta) \left(\sum_{n \geq 0} \frac{\left(\sum_{w \in A^*} w \otimes I_{[w]} \right)^n}{n!} \right) \\
&= \sum_{n \geq 0} \frac{\left(\sum_{w \in A^*} w \otimes \Delta(I_{[w]}) \right)^n}{n!} \\
&= \exp \left(\sum_{w \in A^*} w \otimes \Delta(I_{[w]}) \right)
\end{align*}
\]

Hence \(\exp(\sum_{w \in A^*} w \otimes (I_{[w]} \otimes 1 + 1 \otimes I_{[w]})) = \exp(\sum_{w \in A^*} w \otimes \Delta(I_{[w]}))\) which implies \(\sum_{w \in A^*} w \otimes (I_{[w]} \otimes 1 + 1 \otimes I_{[w]}) = \sum_{w \in A^*} w \otimes \Delta(I_{[w]})\) and thus

\[
I_{[w]} \otimes 1 + 1 \otimes I_{[w]} = \Delta(I_{[w]}).
\]

By Proposition 1, \(I_{[w]} \in \text{Lie}_n[A]\). If we let our alphabet be \(A = \{1, 2, \ldots, n, \bar{1}, \bar{2}, \ldots, \bar{n}\}\) and let \(w_0 = 12\cdots n\) which we can think of as the identity, then \(I_{[w_0]} = w_0 I(n) = I(n)\) and so

\[
I(n) \in \text{Lie}_n[A].
\]

Now we will show that \(I(n)\) actually projects to \(\text{Lie}_n[A]\). Suppose \(p \in \text{Lie}_n[A]\). Then

\[
p I(n) = \sum_{u \in A^*} \langle p I(n), u \rangle u
\]

\[
= \sum_{u \in A^*} \langle p \sum_{q \leq (n)} (-1)^{k(q)-1} \frac{k(q)}{k(q)} x_q , u \rangle u
\]

\[
= \sum_{u \in A^*} \sum_{q \leq (n)} (-1)^{k(q)-1} \frac{k(q)}{k(q)} \langle p, ux_q^* \rangle u = \sum_{u \in A^*} \langle p, ux_q^* \rangle u
\]

since \(ux_q^*\) is a shuffle unless \(q = (n)\) (or \(q = (\bar{n})\)), and \(\langle p, \text{shuffle} \rangle = 0\) for a non-empty shuffle.

\[
\sum_{u \in A^*} \langle px(n), u \rangle u = \sum_{u \in A^*} \langle p, u \rangle u
\]

= \(p\)

16
In particular, \(I_n \in \text{Lie}_n[A] \) so \(I_n I(n) = I(n) \) which means \(I(n) \) is an idempotent. The above equations show \(\text{Lie}_n[A] I(n) = \text{Lie}_n[A] \). Since we already had a realization of \(\text{Lie}_n[A] \subset \mathbb{Q}[A^n] \), this shows that \(\text{Lie}_n[A] \subset \mathbb{Q}[A^n] I(n) \). Furthermore, recall for \(w \in \mathbb{Q}[A^n] \), \(w I(n) \notin \text{Lie}_n[A] \) so \(\mathbb{Q}[A^n] I(n) \subset \text{Lie}_n[A] \).

Thus we have found an idempotent such that

\[
\mathbb{Q}[A^n] I(n) = \text{Lie}_n[A].
\]

Now we will break down \(\text{Lie}[A] \) further.

3.2 \(\text{Lie}^+[A] \) and \(\text{Lie}^-[A] \)

Definition

Let \(\text{Lie}^+[A] = \{ p \in \text{Lie}[A] : p = \overline{p} \} \), \(\text{Lie}^-[A] = \{ p \in \text{Lie}[A] : p = -\overline{p} \} \).

Claim \(\text{Lie}[A] = \text{Lie}^+[A] \oplus \text{Lie}^-[A] \)

The proof of the claim is clear if we consider the map

\[
\Psi : \text{Lie}[A] \to \text{Lie}^+[A] \oplus \text{Lie}^-[A]
\]

\[
p \mapsto \left(\frac{p + \overline{p}}{2}, \frac{p - \overline{p}}{2} \right)
\]

\[\square\]

It is clear that \(\Psi \) respects the grading of \(\text{Lie}[A] \), that is to say, \(\text{Lie}_n[A] = \text{Lie}^+_n[A] \oplus \text{Lie}^-_n[A] \) where \(\text{Lie}^+_n[A] = \{ p \in \text{Lie}_n[A] : p = \overline{p} \} \), and \(\text{Lie}^-_n[A] = \{ p \in \text{Lie}_n[A] : p = -\overline{p} \} \).

Let

\[
I^+_n = \frac{I(n) + \overline{I(n)}}{2}, \quad I^-_n = \frac{I(n) - \overline{I(n)}}{2}.
\]

Then \(I^+_n + I^-_n = I(n) \). Clearly \(I^+_n \in \text{Lie}^+_n[A] \) and \(I^-_n \in \text{Lie}^-_n[A] \) and each of these operators fixes those respective spaces. Since barring is an involution, \(I(n) I(n) = I(n) \) and \(I(n) \overline{I(n)} = \overline{I(n)} I(n) = I(n) \). Hence \(I^+_n \) and \(I^-_n \) are both idempotents, and \(I^+_n I^-_n = 0 \).

Let \(n = |w| \). If \(u = w I(n) \) then \(\overline{w I(n)} = \overline{u} \). So \(I^+_n \) projects into \(\text{Lie}^+_n[A] \), \(I^-_n \) projects into \(\text{Lie}^-_n[A] \). These idempotents are orthogonal and their sum projects to all of \(\text{Lie}_n[A] \). Hence it must be that

\[
\mathbb{Q}[A^n] I^+_n = \text{Lie}^+_n[A] \quad \text{and} \quad \mathbb{Q}[A^n] I^-_n = \text{Lie}^-_n[A].
\]

For convenience, for \(\epsilon \in \{ \pm 1 \} \) let

\[
I^\epsilon_n = \begin{cases} I^+_n & \text{if } \epsilon = +1 \\ I^-_n & \text{if } \epsilon = -1 \end{cases}
\]
So \(I'_n = \frac{x_1 + x_2}{2} \).

3.3 Defining \(I_p \) and Finding an Expression in Terms of \(x_q \)

Definition Given \(p | n \) where \(k(p) = k \), let \(\epsilon_i = \text{sgn}(p_i) \). Then we define

\[
I_p = \sum_{S_1 + S_2 + \cdots + S_k = (1, 2, \ldots, n)} \prod_{i=1}^{k} I_{[S_i]} I_{[S_i]} \cdots I_{[S_i]}
\]

Above we used the notation:

\(S_1 + S_2 + \cdots + S_k = \{1, 2, \ldots, n\} \)

to mean \(\{1, 2, \ldots, n\} \) is the disjoint union of the \(S_i \)'s. That is, \(\bigcup_{i=1}^{k} S_i = \{1, \ldots, n\} \) and \(\forall i, j \ S_i \neq \emptyset \) and \(S_i \cap S_j = \emptyset \). Also, we always order \(S_j \) as \(S_j = \{i_1 < i_2 < \cdots < i_r\} \), so that by \(I_{[S_i]} = \prod_{i=1}^{k} I_{[S_i]} \) we mean \(i_1 i_2 \cdots i_r I_{(r)} \).

It turns out that \(I_q \) is a linear combination of \(x_r \), and that the \(x_r \) is a linear combination of \(I_q \)'s, from which we see that \(\{I_q\}_{q \vdash n} \) is also a basis of \(\Omega B_n \). In order to compute such an expression it is necessary to introduce special notation to keep track of signs and bars. We will introduce the notation throughout the body of the next claim, and will use it in subsequent computations.

Claim

\[
I_q = \frac{1}{2^k} \sum_{\phi(1, \ldots, k) \rightarrow \{\pm 1\}} \sum_{r \leq \phi(q)} \frac{(-1)^{k(r)-k}}{k(r, q)} Y(\phi(q), q) x_r. \tag{3.1}
\]

Notation: We will follow Garsia and Reutenauer's notation [4] and call

\[
k(r, q) = \prod_{i=1}^{k} k(r_{(i)})
\]

where \(r = (r_{(1)} r_{(2)} \cdots r_{(k)}) \) concatenated together, and \(r_{(i)} \vdash |q_i| \). \(k(r, q) \) says we cut \(r \) as \(q \) dictates and then count the sizes of the pieces.

For \(w \in \mathbb{Q}[A^*] \) and \(\phi_i \in \{\pm 1\} \), we say

\[
\phi_w = \begin{cases} w & \text{if } \phi_i = 1 \\ \overline{w} & \text{if } \phi_i = -1. \end{cases}
\]

Note that \(\overline{w} = w \), so that if \(\phi_i = -1 \) then \(\overline{w} = w \). We will also make use of the symbols \(\epsilon_i \) which will generally denote the sign of some part of a composition, where as \(\phi \) usually denotes a map that distributes bars.
We also introduce the following notation:

\[
\Upsilon_i(\phi, q) = \begin{cases} -1 & \text{if } \phi_i < 0 \text{ and } q_i < 0 \\ 1 & \text{otherwise} \end{cases}
\]

and

\[
\Upsilon(\phi, q) = \prod_{i=1}^{k(q)} \Upsilon_i(\phi, q)
\]

Proof We will now compute \(I_q \) in terms of \(x_r \)’s using the fact that \(I_{(n)} = \sum_{r:r\leq(n)} \frac{-1}{\epsilon(r)} x_r \). Let \(q \models n \) where \(k(q) = k \) and \(\epsilon_i = \text{sgn}(q_i) \).

\[
I_q = \sum_{s_1 + \ldots + s_k = (1, \ldots, n) \atop |S_i| = |q_i|} I_{[s_1]} I_{[s_2]} \ldots I_{[s_k]}
\]

\[
= \sum_{s_1 + \ldots + s_k = (1, \ldots, n) \atop |S_i| = |q_i|} S_1 (I_{(q_1)}) + \epsilon_1 \overline{I}_{(q_1)}) \ldots S_k (I_{(q_k)}) + \epsilon_k \overline{I}_{(q_k)})
\]

Above, we used the notation \([n] = \{1, 2, \ldots, n\} \) for brevity—well, actually, to make the equation fit on the page. We will make further use of this notation where necessary. Later, we will pull the \(S_i \)'s out to the left of the expression, understanding that \(x_r(\phi) \) acts only on that piece of \(S_1 S_2 \ldots S_k \). Note that \(\overline{x_p} = x_p \) so that we can get rid of the bars over the \(x_r \)'s in the above expression. For example \(\overline{x_{[13221]}} = x_{[13221]} \). Now we can simplify the product of terms that look like \(x_r(\phi) + \epsilon_i \overline{x_r(\phi)} \) by using the \(\phi \) on top notation we introduced above. Let \(\phi \) be a map \(\phi : \{1, 2, \ldots, k\} \to \{\pm 1\} \) and let \(\phi_i \) denote \(\phi(i) \). From each of the \(k \) factors in the former product, we have a choice of whether to choose \(x_r(\phi) \) or \(\overline{x_r(\phi)} \), each series of choices corresponds to some \(\phi \), of which there are a total of \(2^k \). Hence

\[
\prod_{i=1}^{k} (x_{r(i)} + \epsilon_i \overline{x_{r(i)})} = \sum_{\phi} x_{r_{\phi_1}} x_{r_{\phi_2}} \ldots x_{r_{\phi_k}}
\]

Of course, we still have to deal with the factor of \(\epsilon_i \) that is multiplied by \(x_{r(i)} \). This is negative only if \(\epsilon_i = -1 \) (i.e. \(q_i < 0 \)) and we actually chose the barred term out of the product, i.e. if \(\phi_i = -1 \) as well. To be more specific, what is really important is whether \(r_{(i)} \) is barred (since later on we will have \(\phi \) acting on signed compositions, not just positive ones). This information is encoded in the symbol defined in the beginning of this section \(\Upsilon_i(\phi, q) \), because this is negative when both \(\phi_i \) and \(q_i \) are. The product of these signs is \(\Upsilon(\phi, q) \).
Now something really nice happens. The S_i’s disappear, so to speak. \[
\sum_{s_1} S_k x_{r_1} \cdots x_{r_k} = 12 \cdots n \sum_{r_1, \ldots, r_k} x_{r_1} \cdots x_{r_k} = x_r.
\] Why is this? Well, $x_{r(i)}$ mixes up S_i but doesn’t touch the other S_j. So we end up getting something that has the descent structure of $x_{r(i)}$ on the S_i piece, and may or may not have descents leading in or out of this ith chunk. As we sum over all such $S_1 + \cdots + S_k = \{1, \ldots, n\}$, we certainly get all rearrangements of $12 \cdots n$ that have this descent shape, i.e. the descent shape of $r = (r_1, \ldots, r_k)$. The composition we call r is made by concatenating the $r(i)$, so we get that r is a finer composition than $(|q_1| \cdots |q_k|)$.

By an even further abuse of the ϕ notation, we can call the composition we obtain by barring $r = \phi_1 \phi_2 \cdots \phi_k$ in that manner $\phi(r)$. Also, instead of considering functions of $\phi(r)$ where $r \leq q$, we can consider functions of r where $r \leq \phi(q)$. Now we are ready to further simplify the equations above using this new notation.

\[
I_q = \frac{1}{2^k} \sum_{s_1, \ldots, s_k = n} \sum_{r_1, \ldots, r_k} \frac{1}{k(r_1) \cdots k(r_k)} \prod_{\phi} \sum_{x_{r_1} \cdots x_{r_k}} \sum_{\phi \in \{\{1, \ldots, k\} \rightarrow \{\pm 1\} \cap r \leq \phi(q)} \frac{-1^{k(r) - 1}}{k(r, q)} \prod \frac{1}{k(r_1) \cdots k(r_k)} \prod \frac{1}{k(r)} \prod \frac{1}{k(r_1, q, \phi)} \prod \frac{1}{k(r_1, q, \phi)}
\]

Now we would like to find out what $I_p x_q$ and $I_p I_q$ are. In order to do that, we first study the more general action of x_q.

3.4 The Action of B_n on a Product of Signed Lie Polynomials

Now we would like to find out what $I_p x_q$ and $I_p I_q$ are. In order to do that, we first study the more general action of x_q.

For $Q \in \text{Lie}[A]$ we say Q is a homogeneous Lie polynomial if for some j, $Q \in \text{Lie}_j[A]$ and we call $j = \deg(Q)$ the degree of Q. For example, the degree of Θ_n is n. Given a collection of homogeneous Lie polynomials Q_1, Q_2, \ldots, Q_m and $S = \{i_1 < i_2 < \cdots < i_r\} \subset \{1, 2, \ldots, m\}$ we will call $Q_S = \sum_{i \in S} Q_i$. By $\deg(Q_S)$ we mean $(\deg(Q_{i_1}) \deg(Q_{i_2}) \cdots \deg(Q_{i_r}))$ which is a composition...
of the sum of degrees of the Q_i. Furthermore, if $Q_i \in \text{Lie}^\epsilon[A]$, we can say $\text{sgn}(Q_i) = \epsilon_i$. If this happens, we can call Q_i a signed Lie polynomial.

Lemma Let Q_i be homogeneous signed Lie polynomials for which $\epsilon_i = \text{sgn}(Q_i)$ and $\sum_{i=1}^{m} \text{deg}(Q_i) = n$. Let $p \models n$ where $k(p) = k$ and $\phi_i = \text{sgn}(p_i)$. Then

$$Q_1 Q_2 \cdots Q_m x_p = \sum_{\sum_{i=1}^{m} \text{deg}(Q_i(S_i)) = |\phi_i|} \Upsilon(p, \text{sgn}(Q_i)) Q_{S_1} Q_{S_2} \cdots Q_{S_k}$$

Proof

$$Q_1 Q_2 \cdots Q_m x_p = \sum_{u \in A^*} \langle Q_1 Q_2 \cdots Q_m, u \rangle u$$

$$= \sum_{u \in A^*} \langle Q_1 Q_2 \cdots Q_m, u x_p^* \rangle u$$

$$= \sum_{u_1, \ldots, u_k \in A^* | |u_i| = |\phi_i|, u_1 \cdots u_k = u} \langle Q_1 \cdots Q_m, \phi_1 u_1 \cdots \phi_k u_k \rangle u$$

Now remember our friend Δ. We can define an analogue of it $\Delta^{k-1} : Q[A^*] \rightarrow \bigotimes^k Q[A^*]$, that sends for $a \in A$, $\Delta^{k-1} : a \mapsto a \otimes 1 \otimes \cdots \otimes 1 + 1 \otimes a \otimes \cdots \otimes 1 + \cdots + 1 \otimes \cdots \otimes 1 \otimes a$. Also analogously to equation 2.4,

$$\Delta^{k-1}(f) = \sum_{u_1, \ldots, u_k \in A^*} \langle f, u_1 \otimes \cdots \otimes u_k \rangle u_1 \otimes \cdots \otimes u_k.$$

So $\langle Q_1 \cdots Q_m, \phi_1 u_1 \cdots \phi_k u_k \rangle$ is actually the coefficient of $\phi_1 \otimes \cdots \otimes \phi_k$ in $\Delta^{k-1}(Q_1 \cdots Q_m)$.

Following the proof of Proposition 1, we also have that $Q \in \text{Lie}[A]$ if and only if $\Delta^{k-1}(Q) = Q \otimes \cdots \otimes 1 + \cdots + 1 \otimes \cdots \otimes Q$. Since Δ^{k-1} extends algebraically, $\Delta^{k-1}(Q_1 \cdots Q_m) = \sum_{S_1 + \cdots + S_k = [m]} Q_{S_1} \otimes \cdots \otimes Q_{S_k}$. This has a coefficient on $\phi_1 \otimes \cdots \otimes \phi_k$ of $\prod_{i} \langle Q_{S_i}, \phi_i \rangle = \prod_{i} \langle Q_{S_i}, u_i \rangle$ when ϕ_i occurs in Q_{S_i}, so in particular, $\deg(Q_{S_i}) \models |u_i|$. Hence the coefficient

$$\langle Q_1 \cdots Q_m, \phi_1 u_1 \cdots \phi_k u_k \rangle = \sum_{S_1 + \cdots + S_k = [m], \deg(Q_{S_i}) \models |u_i|} \langle Q_{S_1}, u_1 \rangle \cdots \langle Q_{S_k}, u_k \rangle$$

$$= \sum_{S_1 + \cdots + S_k = [m], \deg(Q_{S_i}) \models |u_i|} \langle Q_{S_1}, \phi_1 u_1 \rangle \cdots \langle Q_{S_k}, \phi_k u_k \rangle.$$

21
So, to continue:

\[Q_1 Q_2 \cdots Q_m x_p = \sum_{u \in A^*} \sum_{\sigma_1 + \cdots + \sigma_k = 1, \ldots, m} \phi_1 \phi_2 \cdots \phi_k \langle Q_{\sigma_1} Q_{\sigma_2} \cdots Q_{\sigma_k}, u \rangle u \]

\[= \sum_{\sigma_1 + \cdots + \sigma_k = 1, \ldots, m} \phi_1 \phi_2 \cdots \phi_k Q_{\sigma_1} Q_{\sigma_2} \cdots Q_{\sigma_k} \]

\[= \sum_{\sigma_1 + \cdots + \sigma_k = 1, \ldots, m} \Upsilon(p, \sigma) Q_{\sigma_1} Q_{\sigma_2} \cdots Q_{\sigma_k} \]

because \(Q_i = \epsilon_i Q_i \). Notice \(Q_{S_i} \) is signed (its sign is \(\prod_{j \in S_i} \epsilon_j \)). Hence, each time we remove a bar from atop a \(Q_{S_i} \), it contributes a negative sign exactly when \(\text{sgn}(Q_{S_i}) < 0 \). But it’s only actually barred when \(\phi_i = \text{sgn}(p_i) < 0 \). As \(i \) varies from 1 to \(k \), this information is encoded in \(\Upsilon(p, \sigma) \).

Using this lemma, we will be able to compute \(I_{p, n} \) and \(I_p J_q \). In order to do this, we require some identities involving \(\Upsilon(\phi, q) \). Proving these identities involves some lengthy computations. The reader may want to skip to the next section.

3.5 Identities Involving \(\Upsilon(\phi, q) \)

Claim Let \(\phi, \psi : \{1, 2, \ldots, k(p)\} \to \{\pm 1\} \). Let \(p \models n \). Then \(\psi_i \neq \phi_i \) if and only if

\[\Upsilon_i(\phi(p), p) \Upsilon_i(\psi(\phi(p), \phi(p)) = -\Upsilon_i(\psi(p), p) \Upsilon_i(\phi(\psi(p), \psi(p)) \tag{3.2} \]

Proof Suppose \(\phi_i \neq \psi_i \). Without loss of generality let \(\phi_i(p)_i < 0 \), hence \(\psi_i(p)_i > 0 \). Since \(\phi \) and \(\psi \) differ on \(i \), \(\psi(\phi(p))_i = -p_i \). Then what is \(\Upsilon_i(\phi(p), p) \Upsilon_i(\psi(\phi(p), \phi(p)) \) ? It is negative; we can think of it as \(\Upsilon_i(-1, p) \Upsilon_i(\psi(\phi(p), -1) = 1 \Upsilon_i(-1, p) \Upsilon_i(-p, -1) = 1 \). So the product on the left-hand side of equation 3.2 is negative, because \(p_i \) is either positive or negative. On the other hand, \(\Upsilon_i(\psi(p), p) \Upsilon_i(\phi(\psi(p), \psi(p)) = \Upsilon_i(+1, p) \Upsilon_i(\phi(\psi(p), +1) = +1 \) which is always positive. So each time \(\phi \) and \(\psi \) differ, the signs of the expressions in equation 3.2 are different.

Suppose \(\phi \) and \(\psi \) agree at the \(i^{th} \) place. So \(\psi(\phi(p))_i = p_i \). Then \(\Upsilon_i(\phi(p), p) \Upsilon_i(\psi(\phi(p), \phi(p)) = \Upsilon_i(\phi(p), p) \Upsilon_i(p, \phi(p)) = +1 \) because the above terms are the same—and \((\pm 1)^2 = +1 \) Likewise, \(\Upsilon_i(\psi(p), p) \Upsilon_i(\phi(\psi(p), \psi(p)) = +1 \) when \(\phi \) and \(\psi \) agree at the \(i^{th} \) place. So the signs of the expressions in equation 3.2 are the same.

Hence \(\Upsilon_i(\phi(p), p) \Upsilon_i(\psi(\phi(p), \phi(p)) = -\Upsilon_i(\psi(p), p) \Upsilon_i(\phi(\psi(p), \psi(p)) \) exactly when \(\phi \) and \(\psi \) differ on \(i \).
Claim

\[
\frac{1}{2^{k(p)}} \sum_{\phi, \psi} \Upsilon(\phi(p), p) \Upsilon(\psi\phi(p), \phi(p)) x_{\psi\phi(p)} = x_p. \tag{3.3}
\]

Proof Notice that \(\phi\) and \(\psi\) commute and so \(x_{\psi\phi(p)} = x_{\phi\psi(p)}\). First we will show that \(\Upsilon(\phi(p), p) \Upsilon(\psi\phi(p), \phi(p)) = -\Upsilon(\psi(p), p) \Upsilon(\phi\psi(p), \psi(p))\) when \(\phi_i \neq \psi_i\) for an odd number of \(i\). This will simplify the above sum greatly.

Case 1: Suppose \(\phi\) and \(\psi\) differ on an odd number of places. We can cancel all the terms out of the products where they agree (recall \(\Upsilon\) is a product of \(\Upsilon_i\)'s).

Then we are looking at two products of an odd number \((2m + 1)\) of plus and minus ones. Suppose the first cancelled product contains \(j\) negative signs. Then by equation 3.2 the second cancelled product will contain \(2m + 1 - j\) negative signs. But these two numbers are of opposite parity, so the entire products are of opposite sign, i.e. \(\Upsilon(\phi(p), p) \Upsilon(\psi\phi(p), \phi(p)) = -\Upsilon(\psi(p), p) \Upsilon(\phi\psi(p), \psi(p))\).

Hence the coefficient of \(x_{\psi\phi(p)}\) is negative that of \(x_{\phi\psi(p)}\), and equation 3.3 is reduced to

\[
\frac{1}{2^{k(p)}} \sum_{\phi} \sum_{\psi \text{ that differ from } \phi \text{ on an even number of places}} \Upsilon(\phi(p), p) \Upsilon(\psi\phi(p), \phi(p)) x_{\psi\phi(p)}.
\]

Case 2: Suppose \(\phi\) and \(\psi\) differ on an even number of places. Now instead of cancelling the \(x_{\phi\psi(p)}\) term with the \(x_{\phi\psi(p)}\) term, we construct \(\phi'\) and \(\psi'\) to do the job. Assume \(\phi \neq \psi\). Let \(j\) be the first place that \(\phi\) and \(\psi\) differ on. Choose \(\phi'\) to differ from \(\phi\) only on \(j\). So \(\phi'(p)_j = -\phi(p)_j\) and for all \(i \neq j\), \(\phi'(p)_i = \phi(p)_i\).

Let \(\psi'\) differ from \(\psi\) only in \(j\) as well. Note that \(\phi'\) and \(\psi'\) differ from each other in an even number of places, so they occur in our slightly simplified sum above. Also, \(\phi'(\psi'(p)) = \psi(\psi'(p))\), so \(x_{\phi'(\psi'(p))} = x_{\phi\psi(p)}\), but

\[
\Upsilon(\phi(p), p) \Upsilon(\psi\phi(p), \phi(p)) = -\Upsilon(\phi'(p), p) \Upsilon(\psi\phi'(p), \phi'(p)).
\]

Why is this? Well, the products are exactly the same except for the \(j\)th term by the way \(\phi'\) and \(\psi'\) were constructed. So all we have to do is compare \(\Upsilon_j(\phi(p), p) \Upsilon_j(\psi\phi(p), \phi(p))\) to \(\Upsilon_j(\phi'(p), p) \Upsilon_j(\psi\phi'(p), \phi'(p))\). Now, since \(\phi\psi(p)_j = -\phi(p)_j\), \(\Upsilon_j(\phi(p), p) \Upsilon_j(\psi\phi(p), \phi(p)) = \Upsilon_j(\phi(p), p) \Upsilon_j(-p, \phi(p)) = \text{sgn}(\phi(p)_j)\).

And \(\Upsilon_j(\phi'(p), p) \Upsilon_j(\psi\phi'(p), \phi'(p)) = \Upsilon_j(-\phi(p), p) \Upsilon_j(\psi\phi(p), -\phi(p)) = \Upsilon_j(-\phi(p), p) \Upsilon_j(-p, -\phi(p)) = \text{sgn}(-\phi(p)_j) = -\text{sgn}(\phi(p)_j)\). Since we constructed \(\phi'\) and \(\psi'\) in a well-defined manner (i.e. we would use \(\phi\) and \(\psi\) to cancel them out as well), every term in the above sum cancels except when \(\phi = \psi\). This obviously happens \(2^{k(p)}\) times, once for each \(\phi\). To sum up:

\[
\frac{1}{2^{k(p)}} \sum_{\phi, \psi} \Upsilon(\phi(p), p) \Upsilon(\psi\phi(p), \phi(p)) x_{\psi\phi(p)}
\]

□
\[
\begin{align*}
&= \frac{1}{2^{k(p)}} \sum_{\phi: \{1, \ldots, k(p)\} \to \{\pm 1\}} \Upsilon(\phi(q), p) \Upsilon(\phi(\phi(p)), \phi(p)) x_{\phi\phi(p)} \\
&= \frac{1}{2^{k(p)}} \sum_{\phi: \{1, \ldots, k(p)\} \to \{\pm 1\}} \Upsilon(\phi(p), p) \Upsilon(\phi, q)x_p \\
&= \frac{1}{2^{k(p)}} \sum_{\phi: \{1, \ldots, k(p)\} \to \{\pm 1\}} (-1)^2 x_p \\
&= x_p.
\end{align*}
\]

\[\Box\]

Claim Let \(p, q \models n, k(p) = k(q) = k \). Pick \(\sigma \in \mathcal{S}_k \). Let \(p \cdot \sigma \) be the composition obtained from permuting the parts of \(p \) according to \(\sigma \). Then

\[
\sum_{\phi} \Upsilon(\phi(q), q) \Upsilon(\phi(q), p \cdot \sigma) = \begin{cases} 2^k & \text{if } \forall i, \sgn(p_{\sigma_i}) = \sgn(q_i) \\ 0 & \text{otherwise.} \end{cases} \tag{3.4}
\]

Proof Suppose there exists a \(j \) for which \(\sgn(p_{\sigma_j}) = -\sgn(q_j) \). As we sum over all \(\phi \), half of the time \(\phi(q)_j \) is negative and hence \(\Upsilon_j(\phi(q), q) \Upsilon_j(\phi(q), p \cdot \sigma) = \Upsilon_j(-1, q) \Upsilon_j(-1, -q) = -1 \). The other half the time, \(\phi(q)_j \) is positive which means \(\Upsilon_j(\phi(q), q) \Upsilon_j(\phi(q), p \cdot \sigma) = +1 \). Thus

\[
\begin{align*}
\sum_{\phi} \Upsilon(\phi(q), q) \Upsilon(\phi(q), p \cdot \sigma) & = \sum_{\phi: \phi(q)_j > 0} \Upsilon_j(\phi(q), q) \Upsilon_j(\phi(q), p \cdot \sigma) \prod_{i: i \neq j} \Upsilon_i(\phi(q), q) \Upsilon_i(\phi(q), p \cdot \sigma) \\
& \quad + \sum_{\phi: \phi(q)_j < 0} \Upsilon_j(\phi(q), q) \Upsilon_j(\phi(q), p \cdot \sigma) \prod_{i: i \neq j} \Upsilon_i(\phi(q), q) \Upsilon_i(\phi(q), p \cdot \sigma) \\
& = \sum_{\phi: \phi(q)_j > 0} (+1) \prod_{i: i \neq j} \Upsilon_i(\phi(q), q) \Upsilon_i(\phi(q), p \cdot \sigma) \\
& \quad + \sum_{\phi: \phi(q)_j < 0} (-1) \prod_{i: i \neq j} \Upsilon_i(\phi(q), q) \Upsilon_i(\phi(q), p \cdot \sigma) \\
& = 0
\end{align*}
\]

because for each \(\phi \) there exists a unique \(\phi' \) agreeing with \(\phi \) on all \(i \neq j \) and differing exactly on \(j \).

Now suppose \(\sgn(p_{\sigma_i}) = \sgn(q_i) \) for all \(i \). Then \(\Upsilon_i(\phi(q), p \cdot \sigma) = \Upsilon_i(\phi(q), q) \) for all \(i \). Hence

\[
\sum_{\phi} \Upsilon(\phi(q), q) \Upsilon(\phi(q), p \cdot \sigma) = \sum_{\phi} \Upsilon(\phi(q), q) \Upsilon(\phi(q), q) = \sum_{\phi} (-1)^2 = 2^k.
\]

\[\Box\]

Equations 3.3 and 3.4 are really quite remarkable. Who would have thought all those awful signs would drop out so nicely?
3.6 Expressing x_p in Terms of I_q

We will put the work of section 3.5 to use in the following claim. Recall that, in keeping with the notation of Garsia and Reutenauer [4], by $k(q, p)$ we mean the product of how many parts of q (which is finer than p) match up to the parts of p. That is, q is a concatenation of $q_i \models p_i$ and $k(q, p) = \prod_{i=1}^{k(p)} k(q(i))$. By $k!(q, p)$ we mean $k!(q, p) = \prod_{i=1}^{k(p)} k(q(i))!$.

Claim

$$x_p = \sum_{q: q \leq p; \phi: \{1, \ldots, k(q)\} \rightarrow \{\pm 1\}} \frac{1}{k!(q, p)} \Upsilon(\phi(q), q) I_{\phi(q)}$$

Proof

$$\sum_{q: q \leq p; \phi: \{1, \ldots, k(q)\} \rightarrow \{\pm 1\}} \frac{1}{k!(q, p)} \Upsilon(\phi(q), q) I_{\phi(q)}$$

$$= \sum_{q: q \leq p; \phi} \frac{1}{k!(q, p)} \Upsilon(\phi(q), q) \sum_{\psi: |\psi| = |\phi(q)|} \frac{1}{2k(q)} \frac{-1}{k(r, q)} \Upsilon(\psi \phi(q), \phi(q)) x_r$$

the above expression plugs in equation 3.1 and takes into account that $k(q) = k(\phi(q))$. Below, we switch the order of summation:

$$= \frac{1}{2^{k(q)}} \sum_{q: q \leq p} \frac{1}{k!(q, p)} \Upsilon(\phi(q), q) \sum_{r: r \leq \phi(q)} \frac{-1}{k(r, q)} \Upsilon(\psi \phi(q), \phi(q)) x_{\psi(r)}$$

$$= \frac{1}{2^{k(q)}} \sum_{q: q \leq p} \frac{1}{k!(q, p)} \frac{-1}{k(r, q)} \Upsilon(\phi(q), q) \Upsilon(\psi \phi(q), \phi(q)) x_{\psi(r)}$$

$$= \frac{1}{2^{k(q)}} \sum_{q: q \leq p} \frac{1}{k!(q, p)} \frac{-1}{k(r, q)} \Upsilon(\phi(q), q) \Upsilon(\psi \phi(q), \phi(q)) x_{\psi(r)}$$

$$= \frac{1}{2^{k(q)}} \sum_{q: q \leq p} \frac{1}{k!(q, p)} \frac{-1}{k(r, q)} x_r$$

by equation 3.3.

$$= x_p$$

Note, the last step of the proof comes from [4]. According to Garsia and Reutenauer \[\sum_{q: r \leq q \leq p} \frac{1}{k!(q, p)} \frac{-1}{k(r, q)} = 0\] unless $r = p$, in which case the sum is clearly 1. Also note that the above claim along with equation 3.1 show that \(\{I_p\}_{p=1}^{n}\) is a basis of ΩB_n.

□
3.7 Computing $I_p I_q$

Claim $I_p x_q = 0$ if $k(p) < k(q)$. If $k(p) = k(q)$, then

$$I_p x_q = \sum_{s_1 + \cdots + s_k = 1, \ldots, n} \sum_{\sigma \in \mathfrak{S}_k \mid \sigma_q = q} \Upsilon(q, p \cdot \sigma I_{[s_1]}^{\sigma_1} \cdots I_{[s_k]}^{\sigma_k}) \quad (3.5)$$

Proof Let $m = k(p)$, $\epsilon_i = \text{sgn}(p_i)$ and $k = k(q), \phi_i = \text{sgn}(q_i)$, and let $Q_i = I_{[s_i]}^{\epsilon_i}$.

By the lemma of Section 3.4, then

$$I_p x_q = \sum_{s_1 + s_2 + \cdots + s_m = (1, \ldots, n)} I_{[s_1]}^{\epsilon_1} I_{[s_2]}^{\epsilon_2} \cdots I_{[s_m]}^{\epsilon_m} x_q$$

$$= \sum_{s_1 + s_2 + \cdots + s_m = (1, \ldots, n)} Q_1 Q_2 \cdots Q_m x_q$$

$$= \sum_{s_1 + s_2 + \cdots + s_m = (1, \ldots, n)} \sum_{\text{deg}(Q_{k}) = |q_1|} \Upsilon(q, \text{sgn}(Q_T)) Q_T x_q$$

$$= 0 \text{ if } m < k.$$

When $m < k$ there is no way to find T_i such that $T_1 + \cdots + T_k = \{1, 2, \ldots, m\}$, so the sum is empty and hence 0. But what if $m = k$? Then the only way to find $T_i \neq \emptyset$ such that $T_1 + T_2 + \cdots + T_k = \{1, 2, \ldots, k\}$ is to have $|T_i| = 1$. So each of these set decompositions corresponds to some permutation of $\{1, 2, \ldots, k\}$, i.e. to some $\sigma \in \mathfrak{S}_k$. Hence

$$I_p x_q = \sum_{s_1 + s_2 + \cdots + s_m = (1, \ldots, n)} \sum_{\text{deg}(Q_{k}) = |q_1|} \Upsilon(q, \text{sgn}(Q_{S})) Q_{S_1} \cdots Q_{S_k}$$

resubstitute for the Q_i’s and recall $\text{deg}(I_{[s_i]}^{\epsilon_i}) = |s_i|$

$$= \sum_{s_1 + s_2 + \cdots + s_m = (1, \ldots, n)} \sum_{\text{deg}(Q_{S_i}) = |q_1|} \Upsilon(q, \text{sgn}(I_{[s_i]}^{\epsilon_i})) I_{[s_1]}^{\sigma_1} \cdots I_{[s_k]}^{\sigma_k}$$

Recall $\text{sgn}(I_{[s_i]}^{\epsilon_i}) = \epsilon_i = \text{sgn}(p \cdot \sigma)$.

$$= \sum_{s_1 + s_2 + \cdots + s_m = (1, \ldots, n)} \sum_{\text{deg}(Q_{S_i}) = |q_1|} \Upsilon(q, p \cdot \sigma I_{[s_1]}^{\epsilon_1} \cdots I_{[s_k]}^{\epsilon_k}) \text{ if } k(q) = k(p).$$

\Box

Definition Given a signed composition $p \models n$, define the symbol $\lambda(p)$ to be the composition obtained from p by rearranging p’s positive parts in decreasing
order then p's negative parts in decreasing order of absolute value. We can think of \(\lambda(p) = (\lambda^+, \lambda^-) \) as a signed partition of \(n \).

Example \(\lambda(132\bar{2}1) = (321\bar{2}1) \)

Notice there is a permutation \(\sigma \in \mathfrak{S}_{k(p)} \) that acts on \(p \) to obtain \(\lambda(p) \). We can talk about \(\text{Stab} \ p \) being those permutations that fix \(p \). Note that \(|\text{Stab} \ p| = |\text{Stab} \ \lambda(p)| \) because they are in the same orbit of this action.

Now we will finally compute what \(I_p I_q \) is for certain \(p,q \).

Lemma If \(\lambda(p) = \lambda(q) = \lambda \) then

\[
I_p I_q = |\text{Stab} \ \lambda| I_q. \tag{3.6}
\]

Proof Let \(k = k(q) = k(p) \). The first line of the next string of equations is a consequence of equation 3.1, and the next two lines come from equation 3.5.

\[
I_p I_q = I_p \left(\sum_{\phi: |\phi| = \{\pm 1\}} \frac{1}{2^k} \Upsilon(\phi(q), q) x_{\phi(q)} \text{ coefficients of compositions with > k parts} \right)
\]

\[
= \frac{1}{2^k} \sum_{\phi} \Upsilon(\phi(q), q) I_p x_{\phi(q)}
\]

\[
= \frac{1}{2^k} \sum_{\phi} \Upsilon(\phi(q), q) \sum_{s_1 + \cdots + s_k = n} \sum_{|S_i| = |p_i|, |S_{\sigma_i}| = |q_i|} \Upsilon(\phi(q), p \cdot \sigma) I_{p_{S_{\sigma_1}}}^\phi \cdots I_{p_{S_{\sigma_k}}}^\phi
\]

\[
= \frac{1}{2^k} \sum_{s_1 + \cdots + s_k = n} \sum_{|S_i| = |p_i|} I_{p_{S_{\sigma_1}}}^\phi \cdots I_{p_{S_{\sigma_k}}}^\phi \Upsilon(\phi(q), q) \Upsilon(\phi(q), p \cdot \sigma)
\]

Recalling the remarkable equation 3.4:

\[
= \sum_{s_1 + \cdots + s_k = (1, \ldots, n)} \sum_{|S_i| = |p_i|} I_{p_{S_{\sigma_1}}}^\phi \cdots I_{p_{S_{\sigma_k}}}^\phi
\]

We emphasized that the \(\epsilon_i \) denote the sign of \(p_i \) by superscripting with a \(p \), because we want to make the substitution \(\epsilon_{\sigma_i}^p = \epsilon_{q_i}^q \) (which comes from equation 3.4: \(\text{sgn}(p_{\sigma_i}) = \text{sgn}(q_i) \) for all \(i \)).

How many such \(\sigma \in \mathfrak{S}_k \) are there such that \(p \cdot \sigma = q \)? Since \(q \) lies in the orbit of \(p \) under the action of \(\mathfrak{S}_k \), it is clear there are \(|\text{Stab} \ p| = |\text{Stab} \ \lambda| \) such \(\sigma \). Additionally, summing over the \(S_i \) is the same as if we relabel and sum over \(S_{\sigma_i} \). And the condition \(|S_i| = |p_i| \) is equivalent to \(|S_{\sigma_i}| = |p_{\sigma_i}| \) which happens
to be equal to \(|q_i|\). Now we can complete our computation.

\[
I_p I_q = \sum_{\sigma_i \in S_{S_1}} \sum_{\pi_i \in S_{S_k}} I^{\pi_1}_{[S_{S_1}]} \cdots I^{\pi_k}_{[S_{S_k}]}
\]

relabelling \(S_{S_i}\) by \(T_i\) and substituting \(\epsilon_{T_i} = \epsilon_{I}^{q_i}\) yields:

\[
= |Stab| \sum_{T_1 + \cdots + T_k = 1, \ldots, n} I^{\pi_1}_{[T_1]} \cdots I^{\pi_k}_{[T_{S_k}]}
\]

Hence we have generated more idempotents, namely \(\frac{1}{|Stab|} I_p\). Remark: The argument that keeps track of the signs in Section 3.5 shows that \(I_p I_q = 0\) if there exists no \(\sigma \in S_k\) such that for all \(i\), \(p_{\sigma_i} = q_i\), but there is a \(\sigma\) such that \(|p_{\sigma_i}| = |q_i|\).

The next idempotents we will construct from the above ones form a complete family of minimal orthogonal idempotents. They are really the crux of the paper, because they are elements of \(\Omega B_n\) and they decompose \(Q[B_n]\) as completely as possible in a nice way.
Chapter 4

A Complete Family of Minimal Orthogonal Idempotents

Definition Let \(\lambda \) be a signed partition of \(n \). Then we define

\[
E_\lambda = \frac{1}{k!} \sum_{p: \lambda(p) = \lambda} I_p.
\]

The goal of this chapter is to prove the following theorem. (see [4])

Theorem 1 \(\{E_\lambda\}_{\lambda \vdash n} \) are a complete family of minimal orthogonal idempotents.

Claim \(E_\lambda \) is an idempotent.

Proof It is quite easy to show the \(E_\lambda \)'s are idempotents using equation 3.6.

\[
E_\lambda E_\lambda = \frac{1}{k!} \sum_{p: \lambda(p) = \lambda} I_p \frac{1}{k!} \sum_{q: \lambda(q) = \lambda} I_q = \frac{1}{k!k!} \sum_{p: \lambda(p) = \lambda, q: \lambda(q) = \lambda} I_p I_q
\]

\[
= \frac{1}{k!k!} \sum_{p: \lambda(p) = \lambda, q: \lambda(q) = \lambda} |\text{Stab}_\lambda| I_q
\]

How many \(p \) are there such that \(\lambda(p) = \lambda \)? As many as there are in the orbit of \(\lambda \) under the action of \(\mathfrak{S}_k \), which we denote \(|\text{Orb}\lambda| \).
While we’re at it, notice if \(\lambda(q) = \lambda \) then \(E_\lambda(q)I_q = I_q \) since
\[
E_\lambda(q)I_q = I_q
\] (4.1)

4.1 \(\sum_{\lambda; \lambda \vdash n} E_\lambda = Id \)

In order to show that the \(E_\lambda \) are a complete family of idempotents, we need the following lemma.

Lemma

\[
\sum_{\lambda; \lambda \vdash n} E_\lambda = Id
\]

Proof We need to return to our work with \(1 + D = \sum_{w \in A^*} w \otimes w = \exp(\Phi) \) from Section 3.1.

\[
\sum_{w \in A^*} w \otimes w
\]
\[
= \exp \left(\sum_{w \in A^*} w \otimes I_w \right)
\]
\[
= \sum_{k \geq 0} \frac{1}{k!} \left(\sum_{w \in A^*} w \otimes I_w \right)^k
\]
\[
= \sum_{k \geq 0} \frac{1}{k!} \sum_{u_1, \ldots, u_k \in A^*} u_1 \cup \cdots \cup u_k \otimes I_{[u_1]}I_{[u_2]} \cdots I_{[u_k]}
\]
\[
= \sum_{k \geq 0} \frac{1}{k!} \sum_{u_1, \ldots, u_k \in A^*} \sum_{w \in A^*} \langle w, u_1 \cup \cdots \cup u_k \rangle w \otimes I_{[u_1]} \cdots I_{[u_k]}
\]
\[
= \sum_{k \geq 0} \frac{1}{k!} \sum_{w \in A^*} w \otimes \left(\sum_{u_1, \ldots, u_k \in A^*} \langle w, u_1 \cup \cdots \cup u_k \rangle I_{[u_1]} \cdots I_{[u_k]} \right)
\]

Let \(n = |w| \). Then \(w \) occurs in \(u_1 \cup \cdots \cup u_k \) only if \(|u_1| + \cdots + |u_k| = n \) and each \(u_i \) is a subword of \(w \). In other words \(w_{S_1} = u_i \) and \(S_1 + S_2 + \cdots + S_k = \{1, \ldots, n\} \),
where $|S_i| = |u_i|$. As we sum over all such set decompositions and all such possible subwords, we generate exactly those shuffles that w occurs in. So we can rewrite the sum

$$
\sum_{w \in A^*} w \otimes w = \sum_{k \geq 0} \frac{1}{k!} \sum_{w \in A^*} w \otimes \left(\sum_{u_1, \ldots, u_k \in A^*} \sum_{S_1 + S_2 + \ldots + S_k = (1 \ldots n)} I_{[u_1]} \cdots I_{[u_k]} \right)
$$

Since $w_{S_i} = u_i$, we can view $I_{[S_1]} \cdots I_{[S_k]}$ as w acted upon by $I_{[S_1]} \cdots I_{[S_k]}$. So the expression becomes

$$
\sum_{k \geq 0} \frac{1}{k!} \sum_{w \in A^*} w \otimes \left(\sum_{\{u_1, \ldots, u_k\} \in A^*} \sum_{S_1 + S_2 + \ldots + S_k = (1 \ldots n)} w I_{[S_1]} \cdots I_{[S_k]} \right).
$$

Now our sum doesn’t really involve any u_i’s anymore, because as we sum over S_i’s they tell us that the u_i’s must be of the form w_{S_i}’s. The only thing we care about are the varying possible lengths of the u_i’s. But all the different lengths of the u_1, \ldots, u_k correspond to all the different positive compositions of $n = |w|$ with k parts. Continuing:

$$
\sum_{w \in A^*} w \otimes w
= \sum_{k \geq 0} \frac{1}{k!} \sum_{w \in A^*} w \otimes \sum_{p: |p| = n, k(p) = k} I_{[S_1]} \cdots I_{[S_k]}
= \sum_{k \geq 0} \frac{1}{k!} \sum_{w \in A^*} w \otimes \sum_{p: p \leq (n), k(p) = k} I^+_{[S_1]} + I^-_{[S_1]} \cdots I^+_{[S_k]} + I^-_{[S_k]}
= \sum_{k \geq 0} \frac{1}{k!} \sum_{w \in A^*} w \otimes \sum_{p: p \leq (n), k(p) = k} \sum_{r: \{1, \ldots, k\} \to \{\pm 1\}} I^r_{[S_1]} \cdots I^r_{[S_k]}
= \sum_{k \geq 0} \frac{1}{k!} \sum_{w \in A^*} w \otimes \sum_{p: p \leq (n), k(p) = k} \sum_{r: \{1, \ldots, k\} \to \{\pm 1\}} \epsilon_r I^r_{[S_1]} \cdots I^r_{[S_k]}
$$

where ϵ_r is now $\text{sgn}(p_i)$ since we incorporated the signs into the positive compositions.
\[
\sum_{w \in A^*} w \otimes w \sum_{k \geq 0} \frac{1}{k!} \sum_{\lambda \vdash k} I_p \\
= \sum_{w \in A^*} w \otimes w \sum_{k \geq 0} \sum_{\lambda \vdash k} \frac{1}{k!} \sum_{p: \lambda(p) = \lambda} I_p \\
= \sum_{w \in A^*} w \otimes w \sum_{k \geq 0} \sum_{\lambda \vdash k} E_{\lambda} \\
= \sum_{w \in A^*} w \otimes w \left(\sum_{\lambda \vdash k} E_{\lambda} \right)
\]

All of the above implies that \(w = \sum_{\lambda \vdash |w|} E_{\lambda} \) and hence

\[
\sum_{\lambda \vdash |w|} E_{\lambda} = \text{Id},
\]

the identity of \(\Omega B_n \).

\(\square \)

4.2 Orthogonality

The \(E_{\lambda} \in \Omega B_n \) act on \(\mathbb{Q}[A^*] \). Since the \(E_{\lambda} \) are complete idempotents, they project onto subspaces of \(\mathbb{Q}[A^*] \), all of which sum to \(\mathbb{Q}[A^*] \) itself. In fact, we will show that that sum is a direct one by examining the spaces that the \(E_{\lambda} \) project to more closely.

Definition Given \(Q_i \in \text{Lie}_{k_i}[A] \), if \(\deg(Q_i) = |q_i| \) and \(\text{sgn}(Q_i) = \text{sgn}(q_i) \), we say the Lie polynomial \(Q_1 Q_2 \cdots Q_m \) is of type \(q = (q_1 q_2 \cdots q_m) \). We call

\[
\frac{1}{m!} \sum_{\sigma \in S_m} Q_{\sigma_1} \cdots Q_{\sigma_m}
\]

the symmetrized product of \(Q_1 \cdots Q_m \) and we say it has shape \(\lambda \) if \(\lambda(q) = \lambda \).

The Poincare-Birkhoff-Witt Theorem implies that the enveloping algebra on \(\text{Lie}[A] \) is \(\mathbb{Q}[A^*] \) and hence that these symmetrized products span \(\mathbb{Q}[A^*] \). (see [3]) One important result of this is that knowing how \(\Omega B_n \) acts on products of signed Lie polynomials tells us how it acts on all of \(\mathbb{Q}[A^*] \).

Definition Given a signed partition \(\lambda \vdash n \), let \(HS_{\lambda} \) be the subspace of \(\mathbb{Q}[A^*] \) spanned by symmetrized products of shape \(\lambda \).

Recall we know \(\text{Lie}[A] = \text{Lie}^+[A] \oplus \text{Lie}^-[A] \). Hence we can find a basis of
$\text{Lie}[A]$ that looks like $\{P^+_1, P^+_2, \ldots\} \cup \{P^-_1, P^-_2, \ldots\}$, where P^ϵ_i are signed Lie polynomials of sign ϵ_i. It follows from the Poincare-Birkhoff-Witt Theorem that $\{\text{symmetrized products of } P^\epsilon_1 P^\epsilon_2 \cdots P^\epsilon_n\}$ where $i_1 \geq i_2 \geq \cdots \geq i_n$, and if $i_j = i_{j+1}$ then $\epsilon_j > \epsilon_j$, is a basis of $Q[A]$. (see [3], [4]) So another result of the Poincare-Birkhoff-Witt Theorem is $Q[A^*] = \bigoplus \lambda \vdash n HS_\lambda$, or more specifically that $Q[A_n] = \bigoplus \lambda \vdash n HS_\lambda$.

Claim $E_\lambda \in HS_\lambda$

Proof Let $\lambda \vdash n$, $k = k(\lambda)$. Recall that if $\lambda(p) = \lambda$ then under the action of S_k we can get from λ to p.

$$E_\lambda = \frac{1}{k!} \sum_{p, \lambda(p) = \lambda} I_p$$

$$= \frac{1}{k!} \sum_{\sigma \in S_k} \frac{1}{|\text{Stab}\lambda|} I_{\lambda, \sigma}$$

$$= \frac{1}{k!} \sum_{\sigma \in S_k} \frac{1}{|\text{Stab}\lambda|} I_{[S_1]} \cdots I_{[S_k]}$$

$$= \frac{1}{|\text{Stab}\lambda|} \sum_{\sigma \in S_k} \frac{1}{k!} \sum_{|S_i| = \lambda_{\sigma_i}} I_{[S_1]} \cdots I_{[S_k]}$$

$$= \frac{1}{|\text{Stab}\lambda|} \sum_{|S_i| = \lambda_{\sigma_i}} \frac{1}{k!} \sum_{S_1 + \cdots + S_k = \{1, \ldots, n\}} I_{[S_1]} \cdots I_{[S_k]}$$

Something symmetrized $\in HS_\lambda$

Hence $E_\lambda \in HS_\lambda$. Clearly the right action by E_λ symmetrizes, i.e. for $w \in Q[A^n], wE_\lambda \in HS_\lambda$. So E_λ projects into HS_λ, i.e. $Q[A^n]E_\lambda \subset HS_\lambda$. But since we know they are complete, $\sum_{\lambda \vdash n} E_\lambda = 12 \cdots n = Id$, we know

$$Q[A^n] = Q[A^n] \sum_{\lambda \vdash n} E_\lambda = \sum_{\lambda \vdash n} Q[A^n]E_\lambda = \bigoplus_{\lambda \vdash n} HS_\lambda.$$

This tells us that E_λ projects to all of HS_λ. In fact, this gives us that the E_λ are orthogonal. Since they are projection maps, E_λ decomposes as

$$E_\lambda = \sum_{\mu \vdash n} E_\lambda E_{\mu}$$
with $E_\lambda E_\mu \in HS_\mu$. Since our sum above is a direct sum, this decomposition is unique. We already know $E_\lambda E_\lambda = E_\lambda$, so for $\mu \neq \lambda$, $E_\lambda E_\mu = 0$. In other words, (using the Kroenecker delta) we have proven the following lemma.

Lemma

$$E_\lambda E_\mu = \delta_{\lambda,\mu} E_\lambda.$$

□

4.3 Minimality

Furthermore, these E_λ are a minimal family of complete orthogonal idempotents.

Lemma The E_λ are minimal with respect to being complete and orthogonal.

Suppose they were not. Then we could find non-zero E' and E'' such that for some λ, $E_\lambda = E' + E''$, $E'E'' = 0$, and $E'E_\mu = E''E_\mu = 0$ for $\mu \neq \lambda$. Then the right ideal decomposes as $E_\lambda \Omega B_n = E' \Omega B_n + E'' \Omega B_n$. But don’t forget, we can also think of this as a vector space over \mathbb{Q}, so we can write the sum as $V = V_1 \oplus V_2$. Since E', E'' are non-zero, V_1, V_2 are also non-zero. Recall that one basis for ΩB_n is $\{I_p\}_{p=n}$. So $\{E_\lambda I_p\}_{p=n}$ contains a basis for the ideal $E_\lambda \Omega B_n$. Recall we showed in equation 4.1 that $E_\lambda(p) I_p = I_p$. Hence

$$E_\lambda I_p = E_\lambda E_{\lambda(p)} I_p = \begin{cases} I_p & \text{if } \lambda(p) = \lambda \\ 0 & \text{if } \lambda(p) \neq \lambda. \end{cases}$$

This gives us that a basis for our ideal/vector space V is $\{I_p\}_{\lambda(p)=\lambda}$. For $f \in V_1$, we know we can write $f = \sum_{\lambda(p)=\lambda} c_p I_p$ in terms of our basis for V. Pick an $f \in V_1$ such that $\sum_{\lambda(p)=\lambda} c_p = c \neq 0$. We know such an f exists since such linear combinations are in V. Without loss of generality, $f \in V_1$. Using this f, we will show V_1 contains all of $\{I_p\}_{\lambda(p)=\lambda}$ and hence is equal to V. Pick any q such that $\lambda(q) = \lambda$. Then

$$f I_q = \sum_{\lambda(p)=\lambda} c_p I_p I_q = \sum_{\lambda(p)=\lambda} c_p |Stab\lambda| I_q = |Stab\lambda| I_q \sum_{\lambda(p)=\lambda} c_p = c |Stab\lambda| I_q.$$

Since V_1 is an ideal, $f I_q \in V_1$ which implies $I_q \in V_1$. Thus $V_1 = V$ and hence $V_2 = 0$, which is a contradiction. Because we cannot break down the E_λ into smaller orthogonal pieces, we say they are minimal.

□

Thus we have completed the proof of Theorem 1, too.
4.4 Conclusion

4.4.1 A Commutative Subalgebra

Finding the \(\{E_{\lambda}\}_{\lambda \vdash n}\) is nice in and of itself, because they break down \(\mathbb{Q}[A^n] \) (with \(A = \{a_1, a_2, \ldots, a_f, \overline{a}_1, \overline{a}_2, \ldots, \overline{a}_f\} \)) into the smallest possible really "nice" pieces. Because they are orthogonal, multiplication in \(\text{span}\{E_{\lambda}\}_{\lambda \vdash n}\) is quite easy to compute. Clearly the span of \(\{E_{\lambda}\}_{\lambda \vdash n}\) forms a commutative subalgebra of \(\Omega B_n \). But we don’t have a very intuitive picture of what the \(E_{\lambda}\)’s are. We would like another basis of \(\text{span}\{E_{\lambda}\}_{\lambda \vdash n}\) for which we do have a more intuitive feel. We might want to ask what is \(\text{span}\{E_{\lambda}\}_{\lambda \vdash n}\) in terms of shuffles (or anti-shuffles)? One way to answer this question is to find an alternate basis for \(\text{span}\{E_{\lambda}\}_{\lambda \vdash n}\) that is a nicer expression in terms of \(x_p\)’s. Or we could do this for some subalgebra of \(\text{span}\{E_{\lambda}\}_{\lambda \vdash n}\).

For instance, analogous results have been found for Solomon’s descent algebra, \(\Sigma A_{n-1} = \text{span}\{x_p\}_{p \leq (n)} \subset \mathbb{Q}[S_n]\) (since no bars are involved) in [1], [3], and [4]. Consider \(\text{span}\{Y_i\}_{i=1}^{\infty} \subset \Sigma A_{n-1}\) where

\[
Y_i = \sum_{\ell \vdash i} \overline{\ell}^i.
\]

(Recall the definition of \(y_p\) from Section 2.1.) These \(Y_i\) expressible in terms of the analogous \(E_{\lambda(n)}^\Sigma\) so multiplication in \(\text{span}\{Y_i\}_{i=\infty}^{\infty}\) is commutative and easy to compute.

\[
\sum_{h=1}^{n} \binom{z - h + n}{n} Y_i = \sum_{(\ell^{\infty}) \vdash \lambda(n) \text{ positive}} \sum_{\|\ell\| \vdash \ell} \varepsilon_{\lambda(n)}^{\ell} = \sum_{(\ell^{\infty}) \vdash \lambda(n)} \sum_{\|\ell\| \vdash \ell} \varepsilon_{\lambda(n)}^{\ell}
\]

The first equality comes from [1], [3], [4]. Why is the second equality true? In [4], they defined for \(\lambda \vdash n \) a positive partition,

\[
E_{\lambda(n)}^\Sigma = \frac{1}{k!} \sum_{\lambda(p)=\lambda} I_p \text{ where } I_p = \sum_{|S_i|=p_i} I_{[S_1]} \cdots I_{[S_k]},
\]

Recall that \(I_{(n)} = I_{(n)}^+ + I_{(n)}^- \), so \(I_p = \sum_{\phi:|k(p)|=\{\pm 1\}} \sum_{s_1 + \cdots + s_k = n} I_{[S_1]} \cdots I_{[S_k]} = k! \sum_{\lambda(p)=\lambda} E_{\lambda}. \)

So, in fact, \(\text{span}\{Y_i\} \subset \text{span}\{E_{\lambda}\}\) and we do have a nice commutative subalgebra of \(\Omega B_n \). The \(Y_i\) model particular shuffles of a deck of \(n \) cards. One may want to know what happens when such a shuffle is iterated \(m \) times. This is rather difficult to compute directly, but if we change basis to express the problem
in terms of E_λ, finding an answer is quite easy. Of course, span$\{Y_\lambda\}_{\lambda \in \Sigma \mathcal{A}} \subset \Omega \mathcal{B}$, but we would hope to find a larger subalgebra of span$\{E_\lambda\}_{\lambda \in \mathcal{A}}$ than this.

4.4.2 Conjecture

Although I was unable to prove it as yet, I propose that span$\{Y_\lambda\}_{\lambda \in \Sigma \mathcal{A}}$ form a commutative subalgebra of $\Omega \mathcal{B}$ as well, where

$$Y_\lambda^+ = \sum_{\gamma \in \mathcal{A}} \gamma \lambda \cdot \gamma \quad \text{and} \quad Y_\lambda^- = \sum_{\gamma \in \mathcal{A}} \gamma \lambda \cdot \gamma$$

If one wanted to develop the study of $\Omega \mathcal{B}$ further, this is one direction s/he could take—it certainly warrants further research. Another avenue might be to develop such idempotents for the other generalizations of Solomon’s algebra that are discussed in [5].

4.4.3 A Word on the Radical

In [4] it is shown that for A an algebra of $m \times m$ matrices, the radical

$$\sqrt{A} = \{ a \in A : \text{trace } ax = 0 \text{ for all } x \in A \}. \tag{4.2}$$

We can identify elements of $\Omega \mathcal{B}$ with their images under the left regular representation of $\mathbb{Q}[B_n]$. Following steps taken in [4], (since $\tau \sigma = \sigma$ if and only if $\tau = \text{Id}$, for $\tau, \sigma \in B_n$) for $f \in \mathbb{Q}[B_n]$,

$$\text{trace } f = \sum_{\sigma \in B_n} \langle f, \sigma \rangle = 2^n n!$$

if we think of $f \in \mathbb{Q}[B_n]$ as words in an alphabet $A = \{1, \ldots, n, \overline{1}, \ldots, \overline{n}\}$. Note that Id occurs exactly once in each x_p, so trace $x_p = 2^n n!$. One nice result of this is trace $(x_p - x_q) = 0$.

What is trace $(x_q - x_{\lambda(q)})x_r$? $(x_q - x_{\lambda(q)})x_r = \sum_{M : r^{(M)} = r} x_{w(M)} - \sum_{N : r^{(N)} = r} x_{w(N)}$. But $\lambda(q) = q \cdot \sigma$ for some $\sigma \in \mathfrak{S}_k(q)$. If $N = (n_{ij})$, let $\sigma = (n_{ij})$. Then if N is such that $r(N) = r, c(N) = \lambda(q)$, we see $r(N^\sigma) = r, c(N^\sigma) = q$. So

$$\text{trace } (x_q - x_{\lambda(q)})x_r = \sum_{M : r^{(M)} = r} \text{trace } (x_{w(M)} - x_{w(M^\sigma - 1)}) = 0.$$

Now we can prove the following claim.
Claim

\[\sqrt{\Omega B_n} = \text{span}\{x_q - x_{\lambda(q)}\}_{q=n} \]

Proof Recall that by equation 4.1 it must follow that \(E_{\lambda} \notin \sqrt{\Omega B_n} \). Also by equation 4.2, \(x_q - x_{\lambda(q)} \in \sqrt{\Omega B_n} \). The \(E_{\lambda} \) are clearly independent, and so are the \(x_q - x_{\lambda(q)} \). By a dimension argument our claim clearly follows.

\[\square \]

Furthermore, we have also shown that

\[\text{span}\{E_{\lambda}\}_{\lambda \vdash n} \cong \Omega B_n / \sqrt{\Omega B_n} \]

so that \(\text{span}\{E_{\lambda}\} \) is semi-simple and \(\Omega B_n \) is not.

Recall that a major goal of this paper was to find the \(E_{\lambda} \)'s and exhibit their properties. Not only have we used them to decompose \(\mathbb{Q}[A^*] \), but we have also found some nice combinatorial results concerning their span. Our work with the radical has shown another remarkable fact about the \(E_{\lambda} \). All this serves to justify (to the author at any rate) that it was a worthy undertaking to find them in the course of this paper.
Bibliography

