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LECTURES ON AFFINE HECKE ALGEBRAS AND

MACDONALD’S CONJECTURES

ALEXANDER A. KIRILLOV, JR.

Abstract. This paper gives a review of Cherednik’s results on the
representation-theoretic approach to Macdonald polynomials and related spe-
cial functions. Macdonald polynomials are a remarkable 2-parameter family
of polynomials which can be associated to every root system. As special cases,
they include the Schur functions, the q-Jacobi polynomials, and certain spher-
ical functions on real and p-adic symmetric spaces. They have a number of
elegant combinatorial properties, which, however, are extremely difficult to
prove. In this paper we show that a natural setup for studying these polyno-
mials is provided by the representation theory of Hecke algebras and show how
this can be used to prove some of the combinatorial identities for Macdonald
polynomials.

Introduction

This paper is based on a series of lectures delivered by the author at Harvard Uni-
versity in the Fall of 1994. The aim of these lectures was to give a self-contained
exposition of the recent result of Cherednik ([C6]), who proved Macdonald’s in-
ner product identities (see [M2]) for arbitrary root systems, using the algebraic
structure he called “double affine Hecke algebra”. These identities, conjectured by
Macdonald, give a very elegant formula for the norms of Macdonald polynomials –
a remarkable two-parameter family of orthogonal polynomials associated with root
systems. Macdonald polynomials have been the object of intensive study since their
introduction in 1988, and a lot of special cases of the inner product identities have
been proved; however, no uniform proof which would work for all root systems was
known. The major discovery of Cherednik was that Macdonald polynomials natu-
rally appear in the representation theory of affine Hecke algebras, which provided
him with the tools for proving the inner product identities.

These lectures were intended for non-specialists; for this reason all the neces-
sary definitions (including that of Macdonald polynomials and Hecke algebras) and
motivations are included in the course. Some technical details of the proofs are
omitted; an experienced reader can always fill in the gaps. However, it is assumed
that the reader is familiar with finite-dimensional and affine root systems and Weyl
groups. A short introduction to these notions can be found in [Hu1, Chapter III];
for more detailed expositions we refer the reader to [B], [Hu2]. See also a recent
survey of Koornwinder [Ko1] for a discussion of the relation between the geometry
of root systems and the theory of orthogonal polynomials.
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These lectures are of an expository nature and do not contain any new results. I
include the references to the original papers in each lecture. Also, I must stress that
these lectures were written under the strong influence of the (unpublished) courses
of Ivan Cherednik (Yale, Fall 1991) and Howard Garland (Yale, Spring 1993) and a
series of talks by Ian Macdonald (Yale, October 1993, and Leiden University, May
1994). A large part of my lectures (most of Lectures 2–4,6,7) follow Macdonald’s
exposition, so all credits for these lectures belong to him; of course, I am completely
responsible for any errors that could be found in these notes.
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version of these notes. Finally, I want to thank Joshua Scott for correcting my
English.

Note added in proof. After this paper was submitted for publication, the author
received a copy of a review by Macdonald [M7], which serves the same purpose as
our paper. However, our exposition is somewhat different from Macdonald’s, so we
suggest that the reader look at both papers to get a better perspective.

Lecture 0: History and motivations

These lectures are devoted to the study of a remarkable family of symmetric
polynomials – Macdonald polynomials, and in particular, to the proof of Macdon-
ald’s inner product identities. We give here a brief introduction to these notions and
try to explain their importance. Formal definitions will be given later on; therefore,
readers who are not interested in motivations can skip this lecture.

Let us start with the algebra C[x] = C[x1, . . . , xn]. For brevity, for a multi-

index λ = (λ1, . . . , λn) ∈ Zn
+ we denote xλ = xλ1

1 . . . xλnn . The symmetric group
Sn naturally acts on C[x], and therefore we can define the subspace of symmetric
polynomials Λn ⊂ C[x]. Note that we are treating Λn as a vector space, not as an
algebra.

The space Λn plays an important role in combinatorics and has been thoroughly
studied. We refer the reader to the excellent monograph by Macdonald [M6] for
detailed information. We will be interested in only a small part of the theory: we
will construct certain bases in Λ.

The simplest basis is given by the monomial functions mλ, which are defined
as follows. Denote by Pn the set of partitions of length n, i.e. the set of λ =
(λ1, . . . , λn) ∈ Zn

+ satisfying the condition

λ1 ≥ λ2 · · · ≥ λn ≥ 0.(0.1)

We define the monomial functions mλ by

mλ =
∑

µ∈Sn(λ)

xµ, λ ∈ Pn(0.2)
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where Sn(λ) is the orbit of λ under the action of the symmetric group, i.e. the set
of all µ ∈ Zn

+ that can be obtained from λ by a permutation of components. For
example, if λ = (r, 0, . . . , 0), then mλ =

∑n
i=1 x

r
i . The elements mλ form a basis

in Λn, which follows from the obvious fact that every Sn-orbit in Zn
+ contains a

unique partition.
Another important basis in the space of symmetric polynomials is given by the

Schur functions, which are defined by

sλ =

∑
w∈Sn sgn(w)xw(λ+ρ)∏

i<j(xi − xj)
, λ ∈ Pn(0.3)

where sgn(w) is the sign of w, and ρ = (n − 1, n − 2, . . . , 0) ∈ Zn
+. Even though

formula (0.3) is written as a fraction, Schur functions are in fact polynomials, since
every antisymmetric polynomial is divisible by

∏
i<j(xi − xj). It is easy to show

that the matrix, expressing sλ in terms of mλ, is triangular:

sλ = mλ + linear combination of mµ with µ < λ,

where < is the lexicographic order on partitions: µ < λ if
∑

λi =
∑

µi and
µ1 = λ1, . . . , µk−1 = λk−1, µk < λk for some k.

The Schur functions have a number of remarkable properties (see [M6]); for
example, they naturally appear as the characters of irreducible representations of
the group GLn(C).

Both the monomial functions and the Schur functions can also be defined by
certain orthogonality properties. Let us consider elements of the space C[x] as
complex-valued functions on the n-dimensional real vector space Rn = {(t1, . . . , tn)}.
This can be done by assigning to the variable xk the function xk(t1, . . . , tn) = e2πitk

and then extending it by multiplicativity and linearity. Note that xk = x−1
k . These

functions are well-defined on the torus T = Rn/Zn, and∫
T

xλ dt =

{
1, λ = 0,

0 otherwise.

The monomial basis can be uniquely characterized by the following two condi-
tions:

(i) The triangularity condition:

mλ = xλ + lower terms,(0.4)

where “lower terms” means a linear combination of xµ with µ < λ.
(ii) The orthogonality condition:∫

T

mλmµ dt = 0 for λ 6= µ.(0.5)

The Schur functions sλ can be defined in a similar manner. Using the explicit
formula (0.3), it is not hard to show that sλ are uniquely defined by the triangularity
condition similar to (0.4) and the following orthogonality condition:∫

T

∏
i<j

|xi − xj |2sλsµ dt = 0 for λ 6= µ.(0.6)

Having noticed this, it is natural to ask what happens if we consider a more
general orthogonality condition. Let us fix k ∈ Z+ and define Jkλ ∈ Λn by the same
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triangularity condition (0.4) together with the following orthogonality condition:∫
T

∏
i<j

|xi − xj |2kJkλJkµ dt = 0 for λ 6= µ.(0.7)

Note that since xi − xj = x−1
i − x−1

j , the kernel
∏ |xi − xj |2k can be rewritten as

follows: ∏
i<j

|xi − xj |2k =
∏
i6=j

(
1− xi

xj

)k
.

As before, it can be shown that these conditions uniquely define the polynomials
Jkλ . They are called the Jack polynomials (see [J], [St]). For k = 0, 1 the Jack
polynomials coincide with the monomial functions and with the Schur functions,
respectively. For k = 1/2 these polynomials can be interpreted as zonal spherical
functions on certain symmetric spaces (see [St]).

Of course, we could have replaced the kernel
∏ |xi − xj |2k by almost any sym-

metric function and used it to define a family of orthogonal polynomials. However,
the Jack polynomials have a number of interesting properties which single them
out. Here is one of them: these polynomials (after some simple renormalization)
are the eigenfunctions of the following second order differential operator:

L2 =
∑ ∂2

∂t2i
+ k(k − 1)

∑
i6=j

1

2 sin2(
ti−tj

2 )
.(0.8)

In the physical language, this is the Schrödinger operator for a quantum-mechanical
system of n points on a circle with the potential of pairwise interaction proportional
to 1/r2, where r is the distance between the points. This system was studied by
Sutherland([Su]) and Calogero, Ragnisco and Marchioro ([CRM]), who proved that
it is completely integrable: there are n algebraically independent symmetric differ-
ential operators which commute with each other and with L2. These differential
operators play the same role the first integrals, or conservation laws, play in classical
mechanics.

It should be noted that completely integrable systems occupy a very special
place in quantum mechanics. In a certain sense, they are the only systems allowing
complete analysis. However, very few examples of completely integrable systems
are known.

Another striking property of Jack polynomials is related with the calculation of
the norms

‖Jkλ‖2 =
1

n!

∫
T

∏
|xi − xj |2kJkλ (t)Jkλ (t) dt.

In the cases k = 0, 1, which correspond to the monomial basis mλ and the Schur
functions sλ respectively, this is easy to do. The answer is |mλ|2 = 1/|Wλ|, |sλ|2 =
1, where Wλ is the stabilizer of λ in the symmetric group Sn.

In general, however, computing these norms is a very difficult combinatorial
problem. One might expect to get a very complicated formula. However, by some
miracle, the answer is given by a very simple product (see [M6]):

‖Jkλ‖2 =
∏
i<j

k−1∏
m=0

λi − λj + k(j − i) +m

λi − λj + k(j − i)−m
.(0.9)
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This formula is non-trivial even for λ = 0. In this case, Jk0 = 1 and therefore
the calculation of the norm reduces to the calculation of the constant term of∏

i6=j
(
1− xi

xj

)k
. It is an instructive exercise to check that for λ = 0, formula (0.9)

can be rewritten as follows:

Constant term

∏
i6=j

(
1− xi

xj

)k =
(nk)!

(k!)n
.(0.10)

This is a special case of Dyson formula, conjectured by Dyson ([Dy]) in 1962 and
proved in [Gu], [W] (see also [Go]).

Both the relation with integrable systems and the combinatorial formulas like
(0.10) show that the Jack polynomials are indeed a very special family of symmetric
polynomials. But it turns out that it is just the beginning. The Jack polynomials
can be generalized in at least two ways. First, one can replace the symmetric
group Sn by an arbitrary Weyl group (or even more general Coxeter group), acting
on the appropriate analogue of the space of polynomials. The definition of the
Jack polynomials can be generalized to this case, which was done by Heckman and
Opdam in [HO]; they called these new polynomials “Jacobi polynomials associated
with root systems”.

Second, one can introduce a q-analogue of these polynomials by replacing the

product (xi − xj)
k by

∏k−1
i=0 (xi− q2ixj), and similarly for other root systems. This

gives a family of polynomials depending on q. The obtained polynomials are called
the Macdonald polynomials (see [M1], [M2]). As special cases, these polynomials not
only include the Jack polynomials, but also Hall polynomials and certain spherical
functions on p-adic groups, which shows that it is a truly remarkable family of
polynomials.

A question that naturally arises is, do the Macdonald polynomials have the
same nice properties as the Jack polynomials. For example, can they be described
as eigenfunctions of a commuting family of differential (or difference) operators?
Are there analogues of the constant term identity (0.10), and, more generally, of
the inner product identity (0.9)? Can one describe what are the denominators of
the coefficients of these polynomials?

These and many other questions were studied by many mathematicians, starting
with Macdonald himself, who proved the inner product identity for the group Sn
and conjectured an analogue of formula (0.9) for arbitrary Weyl group (see Theo-
rem 2.4 below). Many other special cases were proved case-by-case (see references in
Lecture 2). However, all the attempts to find a uniform proof within the framework
of combinatorics or the theory of special functions failed.

The breakthrough was achieved by Cherednik, who used representation-theoretic
methods. Roughly speaking, the main idea of these methods can be formulated as
follows: if we show that the Macdonald polynomials naturally appear in the repre-
sentation theory of some algebraic structure, such as a group or an algebra, then we
can translate known properties of this structure into statements about Macdonald
polynomials. For example, the Jack polynomials with k = 1

2 , as was mentioned
above, appear as zonal spherical functions on certain symmetric spaces for SLn,
and the differential operator L2, given by (0.8), is nothing but the second order
Laplace-Beltrami operator. Thus, in this case we can construct other differential
operators commuting with L2 using higher Laplace operators, i.e. the elements of
the center of the universal enveloping algebra of the corresponding Lie algebra.
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In his paper [C6], Cherednik found a representation-theoretic interpretation of
Macdonald polynomials for arbitrary Weyl group (and arbitrary values of k, q),
using some generalization of Hecke algebras. This allowed him to give a very elegant
construction of the large family of commuting difference operators, for which the
Macdonald polynomials are the eigenfunctions. As an application of his technique,
he gave an elegant uniform proof of Macdonald’s inner product conjectures.

In these lectures we will give an exposition of Cherednik’s method. The empha-
sis will not be on the proof of Macdonald’s inner product identities themselves, but
rather on the understanding of the algebraic structure hidden behind these polyno-
mials. Once we understand this structure, the proof of the inner product identities
is not too difficult. Moreover, the same technique can be used to prove some other
properties of these polynomials, such as various symmetry and integrality proper-
ties, but this will not be covered in these lectures.

Finally, we note that there is also another representation-theoretic interpreta-
tions of Macdonald polynomials, which also gives a natural proof of many of their
properties. This approach was developed in a series of papers of Pavel Etingof and
the author (see [EK1], [EK2], [EFK]). It is based on the representation theory
of the Lie algebra sln, or the corresponding quantum group. However, this ap-
proach works only for the polynomials associated with the symmetric group and
fails for other Weyl groups. The relation between this construction and Cherednik’s
approach is still unknown.

Lecture 1: Commuting families of differential operators, Jacobi

polynomials and Hecke algebras

This lecture is of an introductory nature. Here we will illustrate the main idea of
this course: for certain families of special functions (Jacobi polynomials, Macdonald
polynomials), there exist algebraic structures hidden behind them which give a nat-
ural explanation of many interesting properties of these polynomials. An example
of such properties is the eigenfunctions of a large family of commuting differential
(difference) operators. For simplicity, we start with the classical (differential) case,
which is more geometrical. In fact, complete proofs for the differential case are
more difficult than for the difference one, but since we are not giving proofs in this
lecture, the differential case is quite transparent.

We start with a brief survey of the theory of Jacobi polynomials following the
papers of Heckman and Opdam [HO], [H1], [O1], [O2]. We do not give any proofs;
unless otherwise stated, all the proofs can be found in the above mentioned papers
of Heckman and Opdam (though some of the results had been known before). Let
V be a vector space over C, and let R ⊂ V be a (reduced, irreducible) root system of
rank n = dim V . We denote by S[V ] the symmetric algebra of V , i.e. the algebra of
polynomial functions on V ∗. For every p ∈ S[V ] we denote by ∂p the corresponding
differential operator with constant coefficients on V . We use the standard notations
( , ), R+, αi, Q, P,W . . . for the inner product in V , positive roots, basis of simple
roots, root lattice, weight lattice, Weyl group, etc. A reader who does not feel quite
comfortable with the root systems can always assume that we are working only with
the root system An−1, in which case all the notions above can be described very
explicitly as follows:

V = {v ∈ Cn|v1 + · · ·+ vn = 0}
inner product: (a, b) =

∑
aibi
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root system: R = {εi−εj}i6=j , where εi = (0, . . . , 1, 0, . . . , 0) (1 in the ith place),
R+ = {εi − εj}i<j

simple roots: αi = εi − εi+1, i = 1, . . . , n− 1
Weyl group: W = Sn acts on V by permutation of components; simple reflections

si are transpositions (i, i+ 1).
root lattice Q = {λ ∈ Zn|∑λi = 0}
weight lattice: P ' Zn/Z(1, . . . , 1)
dominant weights: P+ = {λ ∈ Zn|λ1 ≥ · · · ≥ λn}/Z(1, . . . , 1)
We write λ ≤ µ if µ − λ ∈ Q+. Let C[P ] be the group algebra of the weight

lattice; it is spanned by the formal exponentials eλ, λ ∈ P . We can interpret them
as functions on V by eλ(v) = e(λ,v). Again, for the root system An−1 the algebra
C[P ]W can be identified with the algebra C[x±1

1 , . . . , x±1
n ]/(x1 . . . xn = 1), and thus

we essentially recover the classical theory of symmetric polynomials discussed in
Lecture 0.

We will denote by C[P ](eα − 1)−1 the ring of functions on V which have the
form f/g, where f, g ∈ C[P ] and g is a product of factors of the form eα−1, α ∈ R.

Let us fix for every α ∈ R a number kα ∈ Z+ such that kw(α) = kα for every w ∈
W , and define the following W -invariant differential operator in V (the Calogero-
Sutherland-Olshanetsky-Perelomov operator):

L2 = ∆−
∑
α∈R+

kα(kα − 1)
(α, α)

(eα/2 − e−α/2)2
,(1.1)

where ∆ is the Laplace operator. For the root system An−1 this operator coincides
with the Schrödinger operator (0.8), considered in [Su]. The generalization above
was suggested by Olshanetsky and Perelomov (see [OP] and references therein).

It was shown in [CRM] that in the An case the operator L2 defines a completely
integrable system, i.e. there are n algebraically independent differential operators
commuting with L2 and with each other. The following theorem generalizes the
complete integrability to arbitrary root systems.

Theorem 1.1 (Heckman, Opdam). Let D be the ring of differential operators on
V with coefficients from the ring C[P ](eα−1)−1. Let D = {∂ ∈ D|∂ is W -invariant,
[∂, L2] = 0}. Then there exists “Harish-Chandra isomorphism” γ : D ' (S[V ])W

such that for a homogeneous p, γ−1(p) = ∂p+ lower order operators. In particular,
γ(L2) =

∑
v2
i , vi being an orthonormal basis in V .

Moreover, for most root systems (in particular, for An, Bn, Dn with n ≥ 4)
it is shown in [OOS] that under suitable restrictions the Sutherland operator, its
rational and elliptic analogues (with 1

sinh2 x
replaced by 1

x2 and ℘(x), respectively),
and their modifications are the only differential operators of the form ∆ + V (h)
which satisfy this complete integrability property.

Remark. It is relatively easy to construct γ and show that it is injective (and thus,
D ⊂ (S[V ])W ); the difficult part is to prove that γ is surjective.

This theorem naturally gives rise to the following questions:

1. What are the eigenfunctions of ∂ ∈ D and what are their properties?
2. Why is it that D ' (S[V ])W ? Is there any natural explanation for this fact

that leads to a construction of γ−1?
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3. Is it possible to extend γ−1 from symmetric to all polynomials, that is, to
construct for every v ∈ V a differential operatorDv such that (1) Dv commute
and (2) wDvw

−1 = Dwv for every w ∈ W in such a way that γ−1(v) = Dv?

We will try to answer these questions. Let us start with the last one. Here the
answer is obviously “no”. It is so even in the case of the root system of type A1 (sl2
case), where L2 = d2

dx2 +C 1
sinh2 x

, which obviously is not a square of any first-order
differential operator.

This is analogous to the definition of the Dirac operator in physics. Recall
that the Dirac operator was introduced as an attempt to find a square root of the
Laplace operator. Such a square root does not exist in the class of scalar-valued
differential operators. However, if one considers differential operators with values
in the Clifford algebra, then such a square root does exist, and it is called the Dirac
operator.

Similar construction is possible here, and the corresponding algebraic structure
– parallel to that of Clifford algebra – is a degenerate affine Hecke algebra. Before
describing it, let us slightly reformulate the problem.

Let

δk =
∏

α∈R+

(eα/2 − e−α/2)kα ,

ρk =
1

2

∑
α∈R+

kαα.
(1.2)

Now, define

M2 = δ−k(L2 − (ρk, ρk))δ
k.(1.3)

Proposition 1.2.

M2 = ∆−
∑
α∈R+

kα
1 + eα

1− eα
∂α.(1.4)

Proposition 1.3. 1. M2 preserves the space C[P ]W of Weyl group invariant
polynomials, and so do all the operators from δ−kDδk.

2. Let mλ =
∑

µ∈Wλ e
µ, λ ∈ P+ be the basis of orbit-sums in C[P ]W . Then the

action of M2 is triangular in this basis:

M2mλ = (λ, λ + 2ρk)mλ +
∑
µ<λ

cλµmµ.

Thus, we can restrict ourselves to considering only the action of M2 on C[P ]W

and study only symmetric polynomial eigenfunctions.

Definition. Jacobi polynomials Jλ ∈ C[P ]W , λ ∈ P+ are defined by the following
conditions:

1. Jλ = mλ + lower order terms.
2. M2Jλ = (λ, λ + 2ρk)Jλ.

It is easy to show that these conditions define Jλ uniquely. These polynomials
have a number of interesting properties; for example, they are orthogonal with
respect to a certain inner product which will be discussed in the next lecture.
For special values of kα these polynomials can be interpreted as zonal spherical
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functions on certain Riemannian symmetric spaces for the Lie group G associated
with the root system R (see [H1]). In the case of the root system of type An,
the polynomials Jλ are known under the name “Jack polynomials” and can be
interpreted as vector-valued zonal spherical functions for arbitrary k ∈ Z+ (see
[EFK]).

Let us return to questions 2 and 3 above: is it possible to introduce commuting
operators Dv, v ∈ V such that wDvw

−1 = Dwv for any w ∈ W , and M2 =
∑

D2
vi +

const, vi an orthonormal basis in V ? As we have seen before, if Dv are differential
operators acting on scalar functions, then the answer is “no”. Therefore, it is
natural to try solving this problem using some larger class of operators. This can
be done in two ways; in fact, they are closely related and can be considered as
special cases of a general approach (see [C3], [C5]), but we will not go into details
here.

1. We can let D be matrix-valued differential operators: it is possible to intro-
duce Dv which act on functions with values in some vector space E, and a
linear map E → C such that any matrix-valued differential operator which is
obtained as a symmetric polynomial of Dvi can be pushed forward to some
scalar differential operator. In this way one can get the commuting family
of differential operators discussed above from the symmetric polynomials in
Dvi . This approach was studied in detail by Matsuo ([Ma]), who considered
E = C[W ]. This construction will not be used in these lectures.

2. We can let D be scalar valued operators involving not only differentiation
but also the action of the Weyl group (which acts on functions by permuting
arguments). These operators are not local; however, it is possible to choose
them in such a way that symmetric polynomials of Dvi preserve the subspace
C[P ]W of Weyl group invariant polynomials, and their restrictions to C[P ]W

coincide with certain differential operators. In particular,

(∑
D2
vi

)
|C[P ]W =

M2.

We will be most interested in this last approach. In the next lectures we will
use it in the difference case to get a difference analogue of this commuting family
of differential operators, study their polynomial eigenfunctions (Macdonald poly-
nomials), and prove Macdonald’s inner product identities. In this lecture we will
illustrate the ideas with a “baby example”. Namely, let us consider the rational
degeneration of the above differential operators. Introduce a rescaling operator At

by (Atf)(v) = f(tv). Consider L2(t) = t−2A−1
t L2At. Then it is easy to see that as

t→ 0, L2(t) has a limit, which we will call Lrat2 :

Lrat2 (v) = ∆−
∑
α∈R+

kα(kα − 1)
(α, α)

(α, v)2
.(1.5)

Similarly, we can get the rational degeneration of M2:

M rat
2 (v) = ∆−

∑
α∈R+

kα
1

(α, v)
∂α.(1.6)

Consider the sln case, that is, the root system of type An−1. Then V ⊂ Cn,
and we can identify functions on V with functions on Cn which are invariant with
respect to the translations (x1, . . . , xn) 7→ (x1 + c, . . . , xn + c). In this case all kα
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are equal: kα = k and M rat
2 takes the form

M rat
2 =

∑
∂2
i + 2k

∑
i<j

1

xi − xj
(∂i − ∂j),(1.7)

where ∂i = ∂
∂xi

.

We will show how one can obtain an expression for M rat
2 of the form M rat

2 =∑
D2
i using so-called differential-difference operators introduced by Dunkl (see

[H2]). Let bij be the following operator:

bijf =
sijf − f

xi − xj
,(1.8)

where sij acts on functions of x1, . . . , xn by permutation of arguments: xi ↔ xj .
Note that bij preserves the space C[x1, . . . , xn], since xnym − xmyn is divisible by
x− y. Also, it is easy to see that wbijw

−1 = bw(i)w(j) for any w ∈ Sn.
Define the rational Dunkl operators by

Di = ∂i − k
∑
j 6=i

bij(1.9)

(sometimes they are also called local Dunkl operators, as opposed to the operators
with trigonometric coefficients which are called global).

Theorem 1.4. 1. wDiw
−1 = Dw(i) for any w ∈ Sn.

2. [Di, Dj] = 0.

Proof. (1) is trivial. Let us prove (2). Obviously, [Di, Dj ] contains only terms linear
in k and quadratic in k. Since [∂i, blm] = 0 if i 6= l,m, the term linear in k is equal
to −k([∂i, bji]− [∂j , bij ]). Since bij = −bji, this equals k[∂i + ∂j , bij ] = 0.

Standard arguments show that in order for the term quadratic in k to vanish it
is necessary and sufficient that bij satisfy the classical Yang-Baxter equation:

[b12, b13] + [b12, b23] + [b13, b23] = 0.

This can be proved by direct calculation, which is rather boring. We will show
another way to prove it later.

For every operator of the form D =
∑

w∈Sn Dww, where Dw is a differential
operator with rational coefficients, define the associated differential operator by

Res
(∑

Dww
)

=
∑

Dw.(1.10)

Note that if D preserves the space of symmetric polynomials, then so does ResD,
and D|C[P ]W = ResD|C[P ]W .

Theorem 1.5.
∑

D2
i is Sn-invariant, preserves C[x1, . . . , xn]Sn and Res

(∑
D2
i

)
= M rat

2 .

Proof. Invariance of (
∑

D2
i ) and the fact that it preserves C[xi]

Sn follow from the
previous theorem. To calculate Res(

∑
D2
i ), write

∑
D2
i =

∑
i

∂2
i − k

∑
j 6=i

(∂ibij + bij∂i) + 4k2
∑
j 6=i
l6=i

bijbil

 .
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Since bij |C[x]Sn = 0 (this is the crucial step!), we have

Res
∑

D2
i = Res(

∑
i

(∂2
i − k

∑
j 6=i

bij∂i)).

It is easy to check that

bij∂i = (xi − xj)
−1(sij − 1)∂i = (xi − xj)

−1(∂jsij − ∂i)

and thus

Res
(∑

D2
i

)
=
∑
i

∂2
i − k

∑
j 6=i

(xi − xj)
−1(∂j − ∂i)

 = M rat
2 .

Corollary. M rat
2 can be included in a commutative family of symmetric dif-

ferential operators M rat
1 =

∑
∂i,M

rat
2 , . . . ,M rat

n with coefficients from
C[x1, . . . , xn](xi − xj)

−1.

Proof. Take M rat
r = Res

∑
Dr
i .

Thus, we have proved in this baby example an analogue of the complete in-
tegrability of Theorem 1.1 and given an explicit construction of these differential
operators. However, even in this case there remain some questions:

1. How did we get the expressions for Di and bij? Is there a way to guess them?
2. Why do bij satisfy the Yang-Baxter equation?

The answer to these questions is that there exists a simple algebraic construction
which allows us to get the expressions for bij as well as their properties without
any calculation. This is the degenerate affine Hecke algebra.

Definition. The degenerate affine Hecke algebra for the root system An−1 is the
algebra H ′

n over C spanned by its two subalgebras C[Sn] and C[x1, . . . , xn] with
the relations

xi+1si − sixi = sixi+1 − xisi = h,

xisj = sjxi if i 6= j, j + 1,
(1.11)

where h ∈ C is a fixed constant, and si = si,i+1, i = 1 . . . n − 1 are the standard
generators of Sn.

For h = 0 this algebra coincides with the semidirect product C[Sn] n C[x] (for
brevity, we write C[x] for C[x1, . . . , xn]). Therefore, we can consider H ′

n as a
deformation of C[Sn] n C[x].

Theorem 1.6. H ′
n = C[Sn] · C[x] = C[x] · C[Sn]; that is, every g ∈ H ′

n can be
uniquely written in either of the following forms:

g =
∑
w∈Sn

pw(x)w =
∑
w∈Sn

wqw(x),(1.12)

where pw, qw ∈ C[x].

We refer the reader to [C5] and references therein for the proof. Note that it
is obvious that every element can be written in either of the forms in (1.12); the
difficult part is to prove the uniqueness.
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Remark. Of course, a degenerate affine Hecke algebra can be defined for any root
system, and the analogue of Theorem 1.6 is also true; see [C5].

Now, let E be any module over Sn. Define the induced module Ê = Ind
H′
n

C[Sn] E.

It follows from the theorem above that as a vector space (and, moreover, as a C[x]-

module), Ê ' E ⊗ C[x]. In particular, let us take E = C with the trivial action of

Sn. Then Ê ' C[x], and we get the following proposition:

Proposition 1.7. There exists a unique action of H ′
n on C[x] such that

1. p ∈ C[x] ⊂ H ′
n acts by multiplication by p.

2. ŝi1 = 1, where ŝ denotes the action of an element s ∈ Sn ⊂ H ′
n on C[x].

Proposition 1.8. In the above defined representation,

ŝi = si + hbi,i+1,(1.13)

where si is the usual action of Sn on C[x] (by permutation of xi), and bij is defined
by (1.8).

Proof. It is easy to see that the conditions ŝi1 = 1 and the commutation relations
(1.11) uniquely define the operators ŝi on C[x]. But the ŝi defined by formula (1.13)
satisfy both ŝi1 = 1 (obvious) and (1.11), which can be shown by a rather short
explicit calculation.

Thus, we see that the operators bij which we defined before have a very natural
interpretation in terms of the degenerate affine Hecke algebra: they describe the
action of H ′

n in the induced representation. This allows us to prove easily the
classical Yang-Baxter equation for bij . Indeed, it follows from Propositions 1.7 and
1.8 that the ŝi defined by (1.13) satisfy the braid relations:

ŝ1ŝ2ŝ1 = ŝ2ŝ1ŝ2.

Let us define R12 = s1ŝ1, R23 = s2ŝ2, and R13 = s1R23s1 = s2R12s2 (check this
last identity!). A simple calculation shows that the braid relation for ŝi implies the
quantum Yang-Baxter equation for Rij :

R12R13R23 = R23R13R12.

Since Rij = 1 + hbij , it is a standard fact that the quantum Yang-Baxter equation
for Rij implies the classical Yang-Baxter equation for bij .

Thus, we have shown that using the notion of the degenerate affine Hecke algebra
along with the “Poincare-Birkhoff-Witt theorem”, 1.6, we can easily and naturally
derive formula (1.9) for Di and prove all the required properties. This is the main
idea of this course. In the next lectures we will explain in detail how a similar
approach works in the difference case.

Note that the proof of Theorem 1.6 is rather difficult and requires about as
many calculations as a straightforward proof of the Yang-Baxter equations, so use
of affine Hecke algebras does not allow us to avoid the calculations. The advantage
of this approach is that it allows us to organize the calculations in a much clearer
way.

Remark. If we want to apply the construction above to the trigonometric case –
that is, to the original operator L2 rather than to its rational degeneration – than we
need to make certain changes. Namely, in this case we cannot construct Dv which
commute and satisfy the relation wDvw

−1 = Dwv. However, we can construct
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something very close to it: we can construct Dv such that they commute and their
commutation relations with Sn are given by formula (1.11); in other words, they
satisfy the relations of a degenerate affine Hecke algebra. This still allows us to get
a commuting family of differential operators, since it is known that C[x]Sn is the
center of H ′

n.

Lecture 2: Macdonald polynomials and difference operators

In this lecture we start a systematic study of the difference case. We will not
refer to the first lecture (except as a motivation).

In this lecture we define the q-analogue of the Jacobi polynomials discussed in
Lecture 1. Unless otherwise stated, the results in this lecture are due to Macdonald
([M1], [M2]; see also the exposition in [M6, Chapter VI]).

We begin by fixing the notation. Let V be a finite-dimensional vector space
over R with a positive definite, symmetric, bilinear form (·, ·), and let R ⊂ V be
a reduced, irreducible root system. We fix a decomposition of R into positive and
negative roots: R = R+ t R− and denote by α1, . . . , αn the basis of simple roots
in R+. For every root α define its dual root α∨ = 2α

(α,α) . Let Q =
⊕

Zαi be

the root lattice, Q+ =
⊕

Z+αi, P = {λ ∈ V |(λ, α∨i ) ∈ Z} the weight lattice,
and P+ = {λ ∈ V |(λ, α∨i ) ∈ Z+} the cone of dominant integral weights. P has
a natural basis of fundamental weights ωi : (ωi, α

∨
j ) = δij . In a similar way, let

Q∨ =
⊕

Zα∨i be the coroot lattice, Q∨
+ =

⊕
Z+α

∨
i , P∨ = {λ ∈ V |(λ, αi) ∈ Z} the

coweight lattice, P∨
+ = {λ ∈ V |(λ, αi) ∈ Z+} the dominant coweights, and bi the

fundamental coweights: (bi, αj) = δij . As usual, we define the highest root θ ∈ R
by the condition θ − α ∈ Q+ for all α ∈ R. Let ρ = 1

2

∑
α∈R+

α; then (ρ, α∨i ) = 1,

so ρ ∈ P .
For every α ∈ R, let sα be the corresponding reflection, and let W be the Weyl

group generated by the sα. Then W acts on P and thus on the group algebra C[P ].
We denote the subspace of W -invariants in C[P ] by C[P ]W ; elements of C[P ]W will
be called “symmetric polynomials”.

An example of a basis in C[P ]W is given by the orbit-sums: mλ =
∑

µ∈Wλ e
µ, λ ∈

P+. This basis is orthogonal with respect to the following inner product on C[P ]:

〈f, g〉0 = 1
|W | [f ḡ]0, where the bar involution is defined by eλ = e−λ, and [ ]0 is the

constant term: [
∑

aλe
λ]0 = a0.

This basis admits the following generalization. Assigned to every α ∈ R we have
a variable tα subject to the conditions tα = tw(α) (thus, we have at most 2 different
t’s). Let q be another independent variable and let Cq,t = C(q, tα) be the field of
rational functions in tα, q. Define the inner product on Cq,t[P ] by

〈f, g〉q,t =
1

|W | [f ḡ∆q,t]0(2.1)

where the bar involution is extended by Cq,t linearity, and

∆q,t =
∏
α∈R

∞∏
i=0

1− q2ieα

1− t2αq
2ieα

= ∆+
q,t∆

+
q,t,(2.2)

where

∆+
q,t =

∏
α∈R+

∞∏
i=0

1− q2ieα

1− t2αq
2ieα

.(2.3)
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Both ∆ and ∆+ should be considered as Laurent series in q, tα with coefficients
from C[P ]; then the inner product also takes values in the Laurent series. It is easy
to see that this inner product is non-degenerate and W -invariant. If tα = 1 for all
α, then this inner product coincides with previously defined 〈·, ·〉0.
Theorem 2.1(Macdonald). There exists a unique family of symmetric polynomials
Pλ ∈ Cq,t[P ]W , λ ∈ P+ satisfying the following conditions:

1. Pλ = mλ +
∑

µ<λ aλµmµ,

2. 〈Pλ, Pµ〉q,t = 0 if λ 6= µ.

These polynomials are called Macdonald polynomials (see [M1], [M2]), and form
a basis in Cq,t[P ]W . Note that the theorem above is not trivial: since < is not a
complete order, one cannot get Pλ by orthogonalization of mλ.

Remark. Our notation differs slightly from the original notation of Macdonald:

what we denote by q, tα in his notations would be q1/2, t
1/2
α .

Examples. 1. If tα = 1, then Pλ = mλ does not depend on q.
2. If tα = q for all α, then Pλ = χλ are the Weyl characters.
3. If q, t → 1 in such a way that tα = qkα , kα ∈ Z+ fixed, then Pλ → Jλ, where

Jλ are the Jacobi polynomials defined in the previous lecture as eigenfunctions
of some differential operator M2. Indeed, we have ∆+

q,t → δk, and it suffices
to check that M2 is self-adjoint with respect to the inner product 〈f, g〉 =

1
|W | [f ḡ(δδ̄)

k]0 = 〈fδk, gδk〉0. This is equivalent to the fact that L2 is self-

adjoint with respect to 〈 , 〉0, which is obvious.
4. If q = 0, t2α = 1/p, where p is prime, then Pλ can be interpreted as zonal

spherical functions on certain symmetric spaces for p-adic groups.
5. For the root system A1 Macdonald polynomials coincide with the so-called

q-ultraspherical polynomials ([AI]), which are a special case of Askey-Wilson
polynomials ([AW]). More generally, Macdonald polynomials for the non-
reduced root systemBC1 are precisely continuous q-Jacobi polynomials, which
are again a special case of Askey-Wilson polynomials.

For simplicity, we only consider in these lectures the case where tα = qkα for
some kα ∈ Z+. It is not an important restriction: all the results we prove can
be generalized to the case where q, t are independent variables. However, the case
where tα = qkα is easier from the technical point of view; for example, formula (2.2)
takes the form

∆q,t =
∏
α∈R

kα−1∏
i=0

(1 − q2ieα),

thus allowing us to avoid infinite products. We will use the notations 〈 , 〉k,∆k

for 〈 , 〉q,t,∆q,t, etc. Also, it will be convenient to denote ρk = 1
2

∑
α∈R+ kαα. We

always consider q as a formal variable; the results also hold if q is a complex number
provided that it is not a root of unity.

As in the differential case, for some special values of k the Macdonald polyno-
mials can be interpreted as zonal spherical functions on certain q-symmetric spaces
associated with the group G (see [N]).

Sketch of proof of Theorem 2.1. To prove the theorem, it suffices to find an oper-
ator D : Cq[P ]W → Cq[P ]W such that
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1. Dmλ =
∑

µ∈P+

µ≤λ

cλµmµ.

2. cλλ are distinct.
3. D is self-adjoint with respect to the inner product 〈 , 〉q.t.

Let us construct such an operator.

Definition. A weight λ ∈ P+ is called minuscule if 0 ≤ (λ, α∨) ≤ 1 for every
α ∈ R+.

It is easy to see that a weight λ 6= 0 can be minuscule only if λ is one of the
fundamental weights. Indeed, let φ be the highest root for the root system R∨;
then φ =

∑
niα

∨
i , ni > 0. Thus, (λ, φ) ≤ 1 implies that λ = 0 or λ = ωr for some

r such that nr = 1. The following lemma describes the set of minuscule weights.

Lemma 2.2. (see [B], [V]) The set of all minuscule weights is a system of repre-
sentatives for P/Q: every λ ∈ P can be uniquely written in the form λ = b+ α for
some minuscule weight b and α ∈ Q.

This implies that there are no non-zero minuscule weights for the root systems
E8, F4, G2 and that the number of minuscule weights is always less than or equal
to the rank of the root system with equality only for An.

Let π ∈ P∨ be a minuscule coweight: 0 ≤ (π, α) ≤ 1 for all α ∈ R+. Define Tπ :
Cq[P ] → Cq[P ] by Tπ(eλ) = q2(λ,π)eλ (this requires adding appropriate fractional
powers of q to Cq). Let Dπ be defined by

Dπ(f) =
∑
w∈W

w

(
Tπ(∆+f)

∆+

)
=
∑
w∈W

w

( ∏
α∈R+

(α,π)=1

1− q2kαeα

1− eα
Tπ(f)

)
.(2.4)

Let us prove that Dπf ∈ Cq[P ]W for every f ∈ Cq[P ]. It is obvious from (2.4)
that Dπf is a W -invariant rational function with poles only at eα − 1 = 0 and all
the poles are simple. Thus, δDπf (where δ =

∏
α∈R+(eα/2 − e−α/2) is the Weyl

denominator) is a W -anti-invariant element of Cq[P ]. It is well known that this
implies that Dπf ∈ Cq[P ]W .

The triangularity condition (1) above can be easily verified by direct calculation,
which also shows that cλλ = q2(π,ρk)

∑
w∈W q2(π,w(λ+ρk)) (to show this one needs

the identity ρk − w(ρk) =
∑

α∈R+∩w−1R−
kαα). It is also easy to deduce from (2.4)

and the definition of the inner product that Dπ is self-adjoint.
Finally, one can check that for all root systems having non-zero minuscule

coweights, with the exception of Dn, there exists a minuscule coweight π such
that the corresponding eigenvalues cλλ are distinct. For Dn it is not so, but there
exists a linear combination of operators Dπ corresponding to minuscule coweights
such that the eigenvalues are distinct. This proves the theorem for all cases where
non-zero minuscule coweights exist, that is, for all cases except E8, F4, G2.

The above proof used the fact that π is a minuscule coweight: otherwise, Dπf
could have products of the form (1− eα)(1 − q2eα) . . . in the denominator. Thus,
this proof fails for the root systems E8, F4, G2. This, however, can be fixed, but this
requires a certain ingenuity; we refer the reader to the original papers of Macdonald.

The operators Dπ have some interesting properties. Here is one of them:

Proposition 2.3. If π1, π2 are minuscule coweights, then Dπ1 , Dπ2 commute.
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The proof of this proposition is straightforward.

Example. Let R ⊂ V be of type An−1; we identify V with a subspace in Rn given

by the condition
∑

λi = 0. Then eλ 7→ xλ1
1 . . . xλnn , where λ = (λ1, . . . , λn) ∈

V ⊂ Rn, gives an isomorphism of Cq[P ] with the space of homogeneous polynomi-

als in x±1
i of degree zero. In this case all the fundamental weights (=coweights)

ω1, . . . , ωn−1 are minuscule, and the corresponding operators take the form

Dr =
∑
w

w
( ∏

i,j
i≤r<j

xi − q2kxj
xi − xj

T1...r

)
= r!(n− r)!

∑
I⊂{1...n}
|I|=r

∏
i∈I
j /∈I

xi − q2kxj
xi − xj

TI ,

(2.5)

where TI =
∏

i∈I Ti, (Tif)(x1, . . . , xn) = f(x1, . . . , q
2xi, . . . , xn).

In this example, we have constructed a commuting family of difference opera-
tors, and the number of independent operators is equal to the rank of the root
system. This family is the natural quantum analogue of the commuting families of
differential operators considered in Lecture 1. However, this analogy fails for other
root systems since the number of difference operators we get from the minuscule
coweights is in general less than the rank of the root system.

This discrepancy can be resolved as follows: for any root system there exists a
commuting family of difference operators, and the number of independent operators
is equal to the rank of the root system, but not all of them can be obtained from
minuscule coweights. One of the main goals of the subsequent lectures will be
construction of these difference operators based on the representation theory of
affine Hecke algebras. In general, explicit expressions for these operators are rather
complicated, which makes them impossible to guess; the fact that the operators
corresponding to the minuscule coweights can be written by such a simple formula
as in (2.4) is a lucky exception. Van Diejen ([D]) also found explicit formulas for
these operators for the non-reduced root system BCn and, even more generally, for
the 5-parameter family of Koornwinder polynomials ([Ko2]), which generalize both
Macdonald polynomials for BCn and Askey-Wilson polynomials; however, these
formulas are rather complicated.

Now we can formulate Macdonald’s inner product identity.

Theorem 2.4. (Macdonald’s inner product identity)

〈Pλ, Pλ〉k =
∏

α∈R+

kα−1∏
i=1

1− q2(α∨,λ+ρk)+2i

1− q2(α∨,λ+ρk)−2i

=
∏

α∈R+

kα−1∏
i=1

[(α∨, λ+ ρk) + i]

[(α∨, λ+ ρk)− i]
,

(2.6)

where [n] = 1−q2n
1−q2 .

This formula was conjectured by Macdonald, who proved it for the root systems
of type A (see [M6, Chapter VI, Example 1]). Also, it was proven for the root
system BC1 (see [AW]). The first proof for an arbitrary root system was given by
Cherednik; we will give this proof in the following lectures.
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Examples. 1. Let kα = 1. Then Pλ = χλ are the Weyl characters, and (2.6)
reduces to 〈χλ, χλ〉1 = 1, which is well-known.

2. Let λ = 0. Then Pλ = 1, and (2.6) reduces to

1

|W | [∆q,t]0 =
∏

α∈R+

kα−1∏
i=1

[(α∨, ρk) + i]

[(α∨, ρk)− i]
,(2.7)

which is known as constant term identities. These identities were first con-
jectured by Macdonald ([M3]), though some special cases had been known
before. The classical (q = 1) case of these identities was proven by Opdam
([O3]), who used the technique of shift operators, which we will discuss later.
In the general case, these identities had been proven case-by-case for most
root systems, with the exception of the E series (see [BZ], [GG], [Ha], [K]).

In the case where all kα coincide: kα = k, (2.7) can be rewritten in the
following form:[ ∏

α∈R+

k−1∏
i=0

(1− q2ieα)(1− q2i+2e−α)

]
0

=
∏[

kdi
k

]
,(2.7′)

where [ ab ] = [a]!
[b]![a−b]! is the q-binomial coefficient, and di are the exponents

of the Weyl group W , or the degrees of the free generators of (S[V ])W . This
reformulation is not trivial: it involves some identities for the Poincaré series
of W , which can be found in [M4]. In particular, for An−1 the exponents are
2, 3, . . . , n, and formula (2.7′) becomes∏

i<j

k−1∏
l=0

(
1− q2l

xi
xj

)(
1− q2l+2 xj

xi

)
0

=
[nk]!

[k]!n
.(2.8)

It is also worth noting that if we let k → ∞ in (2.7′), then the formula
we get is closely related with the denominator identity for the corresponding
affine root system, which is also due to Macdonald.

Lecture 3: Affine Hecke algebras and induced representations

In this lecture we define and study the affine Hecke algebras. Most of the results
we give in this lecture are due to Lusztig ([L]); some special cases of these results
were first proven by Bernstein and Zelevinsky (unpublished).

We start with the definition of an affine Weyl group. In the notation of the

previous sections, let V̂ = V ⊕ Rδ; we will interpret elements of V̂ as functions on

V by (v + kδ)(v′) = (v, v′) + k. Define the affine root system R̂ = R × Zδ and

the positive affine roots R̂+ = {α + kδ|α ∈ R, k > 0 or α ∈ R+, k ≥ 0}. The

basis of simple roots in R̂+ is given by α0 = −θ + δ, α1, . . . , αn. Equivalently,

R̂+ = {α̂ ∈ R̂|α̂ is non-negative on C}, where C = {v ∈ V |αi(v) ≥ 0, i = 0 . . . n} is
the positive affine Weyl chamber.

For every α̂ ∈ R̂ we define the reflection sα̂ : V̂ → V̂ by

sα̂ : λ̂ 7→ λ̂− (λ, α∨)α̂,(3.1)



268 ALEXANDER A. KIRILLOV, JR.

where λ̂ = λ+mδ, α̂ = α+kδ. Note that this action preserves R̂. The dual action of
sα̂ on V is just the reflection of V with respect to the (affine) hyperplane α̂(v) = 0:

sα̂ : v 7→ v − α̂(v)α∨.(3.2)

We will use the notation s0 . . . sn for sα0 . . . sαn . Let the affine Weyl group W a

be the group generated by sα̂. Then the following facts are well-known:

Theorem 3.1. 1. W a = W n τ(Q∨), where the action of α∨ ∈ Q∨ on V̂ is
given by

τ(α∨) : λ̂ 7→ λ̂− (α∨, λ)δ.(3.3)

(Respectively, the dual action on V is given by τ(α∨) : v 7→ v + α∨.)
In particular, s0 = τ(θ∨)sθ = sθτ(−θ∨).

2. W a is generated by s0, . . . , sn with the relations s2i = 1 and the Coxeter
relations: for i 6= j

sisjsi . . . = sjsisj . . . mij terms on each side,(3.4)

where mij are defined in the standard way from the corresponding affine

Dynkin diagram. (For the root system Â1 there are no Coxeter relations,
which is sometimes formally expressed by letting mij = ∞.)

3. For every w ∈W a, its length l(w) with respect to the generators s0, . . . , sn is
equal to

l(w) = |R̂+ ∩w−1R̂−|.(3.5)

4. Let w = sil . . . si1 be a reduced expression. Define the associated sequence of
affine roots by

α(1) = αi1 , α
(2) = si1(αi2 ), . . . , α

(l) = si1 . . . sil−1
(αil).(3.6)

Then

{α(1), . . . , α(l)} = R̂+ ∩ w−1R̂−.

5. C is a fundamental domain for the action of W a on V .

Define the extended affine Weyl group W̃ as the semidirect product W̃ = W n
τ(P∨), where the action of τ(P∨) is given by the same formulas as we had before

for τ(Q∨). Note that the action of the extended Weyl group on V̂ preserves R̂. It

is easy to see that W a is a normal subgroup in W̃ and that W̃/W a ' P∨/Q∨ is
a finite abelian group, whose elements are in one-to-one correspondence with the
minuscule coweights (see Lemma 2.2).

Let us define the length l(w̃) of an arbitrary w̃ ∈ W̃ by formula (3.5). In general,

W̃ is not a Coxeter group, and l(w̃) cannot be interpreted as the length of a reduced
decomposition. Moreover, there are elements of length 0. Define

Ω = {w̃ ∈ W̃ |l(w̃) = 0} = {w̃ ∈ W̃ |w̃(C) = C}.

Obviously, Ω is a subgroup, and it follows from Theorem 3.1(5) that W̃ = ΩnW a;
hence, Ω ' P∨/Q∨. This means that every element of Ω has the form πr = τ(br)wr

for some minuscule coweight br and wr ∈W a. It is also useful to note that πr acts
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on the simple roots α0 . . . αn by some permutation; in particular, πr(α0) = αr.

Thus, we get the following description of W̃ :

W̃ = Ω n W a,

with the relation πsiπ
−1 = sj if π(αi) = αj .

We will need some properties of the length function l(w̃).

Lemma 3.2. 1. l(πw̃) = l(w̃), π ∈ Ω

2. l(w̃si) =

{
l(w̃) + 1, w̃(αi) ∈ R̂+

l(w̃)− 1, w̃(αi) ∈ R̂−

3. If w ∈ W,λ ∈ P∨, then

l(wτ(λ)) =
∑
α∈R+

|(λ, α) + χ(wα)|,(3.7)

where χ(α) = 0 if α ∈ R+ and χ(α) = 1 if α ∈ R−.

Proof. (1) is obvious from the definition; (2) follows from (1) and the standard
results about affine Weyl groups; (3) can be derived straightforwardly from the
definition of length.

Corollary 3.3. 1. If λ ∈ P∨, then l(τ(λ)) = 2(λ+, ρ), where λ+ is the dominant
coweight lying in the W -orbit of λ.

2. If λ ∈ P∨
+ , then l(wτ(λ)) = l(w) + l(τ(λ)).

3. If (λ, αi) = 0 for some i ∈ {1, . . . , n}, then l(τ(λ)si) = l(siτ(λ)) = l(τ(λ))+1.
4. If (λ, αi) = −1, then l(siτ(λ)) = l(τ(λ)) − 1.

Now we can define the braid group.

Definition 3.4. The braid group B is the group generated by the elements Tw̃, w̃ ∈
W̃ subject to the following relations:

TvTw = Tvw if l(vw) = l(v) + l(w), v, w ∈ W̃ .(3.8)

In particular, this implies that the elements Tπ, π ∈ Ω form a subgroup in B
which is isomorphic to Ω; abusing the language, we will use the same notation π
for Tπ. Also, we will write Ti for Tsi , i = 0 . . . n.

Lemma 3.5. Tw̃si = Tw̃Ti if w̃si is a reduced expression, and Tw̃si = Tw̃T
−1
i

otherwise.

Proof. Immediately follows from Lemma 3.2(2).

Theorem 3.6.

B = Ω n B(T0, T1, . . . , Tn),

where B(T0, . . . , Tn) is the group with generators T0, . . . , Tn and relations (3.4)
(Coxeter relations), and the action of Ω on Ti is given by πTiπ

−1 = Tj if π(αi) = αj.

Proof. This theorem immediately follows from the previous results and the following
well-known result, due to Iwahori and Matsumoto: for any two reduced expressions
for an element w̃ ∈W a one can be obtained from another by a sequence of Coxeter
relations (3.4) without using the relations s2i = 1.

Now we can do one of the most crucial steps. Define elements Y λ ∈ B for λ ∈ P∨

thus:
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1. If λ ∈ P∨
+ , then Y λ = Tτ(λ).

2. If λ = µ− ν, with µ, ν ∈ P∨
+ , then Y λ = Y µ(Y ν)−1.

Theorem 3.7. 1. Y λ is well-defined for all λ, and Y λY µ = Y λ+µ.
2. Let τ(λ) = πrsil . . . si1 be a reduced expression, and let α(1), . . . , α(l) be the

associated sequence of affine roots (see (3.6)). Then Y λ = πrT
εl
il
. . . T ε1

i1
,

where εi = 1 if the corresponding α(i) has the form α(i) = α + kδ, α ∈ R+,
and εi = −1 otherwise. In particular, if λ ∈ P∨

+ , then all εi = 1; and if
λ ∈ P∨

− , then all εi = −1.

Proof. (1) It follows from Corollary 3.3(1) that Tτ(λ+µ) = Tτ(λ)Tτ(µ) if λ, µ ∈ P∨
+ .

This implies (1).
As for (2), the proof consists of several steps which we briefly outline. Let us

call an affine root α̂ R-positive if α̂ = α+ kδ, α ∈ R+.

Lemma. For any (not necessarily reduced) expression τ(λ) = πrsil . . . si1 denote

Ỹ λ = πrT
εl
il
. . . T ε1

i1
, where the signs εi are determined as in the statement of the

theorem. Then Ỹ λ does not depend on the choice of the expression for τ(λ).

Proof. First, show that if τ(λ) = xs2i y = xy, x, y ∈ W̃ are two expressions for

τ(λ), then the corresponding expressions for Ỹ λ are equal. Indeed, the sequence of
roots associated with the first expression differs from the second one by insertion
of the pair α(k) = y−1αi, α

(k+1) = y−1(−αi). Since precisely one of these roots is
R-positive, we have T

εk+1

i T εk
i = 1.

Similarly, if τ(λ) = x(sisj)
mijy = xy, x, y ∈ W̃ , where mij is as in (3.4), are two

expressions for τ(λ), then the sequence of roots associated with the first expression
differs from the second one by insertion of the set of roots {y−1βk}βk∈R<αi,αj>,
where R < αi, αj > is the root system of rank two spanned by αi, αj . Moreover,
these roots appear in their natural cyclic order: one can choose an orientation in
Rαi ⊕ Rαj such that the roots βk appear in the counterclockwise order. Both of
these facts can be easily checked case-by-case, since one has to consider only root
systems of rank 2. Since the condition of being an R-positive root specifies a half-
space, we see that among the roots y−1βk precisely half (i.e. mij) are R-positive,
and they are grouped together. Thus, the corresponding part of the expression for
Ỹ λ has the form

TiTjTi . . .︸ ︷︷ ︸
p “+” signs

. . . T−1
i T−1

j . . .︸ ︷︷ ︸
mij “−” signs

. . . TiTj︸ ︷︷ ︸
mij−p “+” signs

or

T−1
i T−1

j T−1
i . . .︸ ︷︷ ︸

p “−” signs

. . . TiTj . . .︸ ︷︷ ︸
mij “+” signs

. . . T−1
i T−1

j︸ ︷︷ ︸
mij−p “−” signs

for some p. In both cases, this product is equal to 1, which completes the proof of
the lemma.

Now it is relatively easy to prove (2). Indeed, let λ ∈ P∨
+ , and let τ(λ) =

πrsil . . . si1 be a reduced expression. Then {α(1), . . . , α(l)} = {α̂ ∈ R̂+|τ(λ)α̂ ∈
R̂−}, and explicit calculation shows that all of them are R-positive, and therefore

Ỹ λ = πrTil . . . Ti1 = Y λ. The previous lemma and the fact that α̂ is R-positive iff
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τ(λ)α̂ is R-positive imply that Ỹ λỸ µ = Ỹ λ+µ. Thus, Ỹ λ = Y λ for all λ ∈ P∨,
which concludes the proof of (2).

Thus, the subgroup generated by Y λ is isomorphic to the coweight lattice P∨.

Lemma 3.8. 1. The elements Y λ, λ ∈ P∨, T1, . . . , Tn generate B as a group.
2. If (λ, αi) = 0 for some i, 1 ≤ i ≤ n, then TiY

λ = Y λTi.
3. If (λ, αi) = 1 for some i, 1 ≤ i ≤ n, then Y λ = TiY

siλTi. (Note: This is not
a misprint: there are two Ti’s and no T−1

i in the formula.)

Proof. 1. Since every w̃ ∈ W̃ can be written as w̃ = τ(br)w for some minuscule
(and thus, dominant) weight br and w ∈ W a, it follows from Lemma 3.5 that
Y λ, T0, T1, . . . Tn generate B. Similarly, it follows from s0 = τ(θ∨)sθ that T0

can be written in terms of Y θ∨ and T1, . . . , Tn.
2. If λ ∈ P∨

+ , then (2) follows immediately from Corollary 3.3(3). For general λ
this statement follows from the fact that every λ can be written in the form
λ = µ− ν with µ, ν ∈ P∨

+ , (µ, αi) = (ν, αi) = 0.
3. Suppose λ ∈ P∨

+ . Introduce π = λ + si(λ) = 2λ − α∨i ; then π ∈ P∨
+ . If

l(τ(λ)) = 2(λ, ρ) = p, then l(τ(π)) = 2p−2, and it follows from Lemma 3.2(2)
that l(τ(λ)si) = p − 1. Thus, if we write siτ(π) = (τ(λ)si)(τ(λ)) (it is easy

to see that it is in fact an identity in W̃ ), then both left-hand and right-
hand sides are reduced expressions, and thus TiY

π = Tτ(λ)siY
λ = Y λT−1

i Y λ,
which is equivalent to the desired equality.

If λ /∈ P∨
+ , then it can be written as λ = µ − ν, with µ, ν ∈ P∨

+ , (µ, αi) =
1, (ν, αi) = 0, and thus the statement follows from the previous arguments.

Now we can give a definition of an affine Hecke algebra. Suppose that for every

α ∈ R̂ we have a variable tα such that tα = tw(α) for every w ∈ W̃ (thus, there are
at most two different t’s). Let Ct = C(tα) be the field of rational functions in tα.

Definition. The affine Hecke algebra Ĥ is the quotient of the group algebra Ct[B]
by the ideal generated by the following relations:

(Ti − ti)(Ti + t−1
i ) = 0, i = 0, . . . , n,(3.9)

where ti = tαi (in particular, t0 = tα0 = tθ).

Note that these relations imply that T−1
i = Ti + (t−1

i − ti).

In a similar way, we can define Ha as a subalgebra of Ĥ generated by T0, . . . , Tn
and the non-affine Hecke algebra H as a subalgebra generated by T1, . . . , Tn, so

H ⊂ Ha ⊂ Ĥ (which is a complete analogue of W ⊂ W a ⊂ W̃ ). We will also use

the notation Ct[Y ] for the commutative subalgebra in Ĥ generated by Y λ.

Theorem 3.9. Ĥ = ΩnHa, where the action of Ω on Ti is the same as in Theorem
3.6.

Lemma 3.10. One has the following relations in Ĥ:

TiY
λ − Y si(λ)Ti = (ti − t−1

i )
Y si(λ) − Y λ

Y −α∨i − 1
, i = 1, . . . , n(3.10)

(from now on, expressions of the form A
B stand for B−1A, though in this case the

order is not important).
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Remark. It is easy to see that the right-hand side is in fact a polynomial, i.e. lies
in Ct[Y ].

Proof. First, simple calculation shows that if this relation is true for Y λ and Y µ,
then it is also true for Y λ+µ and Y −λ. Thus, it suffices to prove (3.10) when
(λ, αi) = 0 or (λ, αi) = 1. If (λ, αi) = 0, (3.10) reduces to TiY

λ = Y λTi, which is

Lemma 3.8(2). Similarly, if (λ, αi) = 1, then Y si(λ) = Y λ−α∨i , and (3.10) reduces
to TiY

λ − Y si(λ)Ti = (ti − t−1
i )Y λ, which is an immediate corollary of Lemma 3.8

and the identity Ti = T−1
i + (ti − t−1

i ).

Theorem 3.11. 1. Ĥ = H · Ct[Y ], where the commutation relations of H and
Y are given by (3.10).

2. Every element of Ĥ can be uniquely written in either of the following forms:

h =
∑
w∈W

pw(Y )Tw =
∑
w∈W

Twqw(Y ).(3.11)

3. The subalgebra in Ĥ generated by Y λ is isomorphic to the group algebra of
the coweight lattice: Ct[Y ] ' Ct[P

∨].

Proof. One direction is rather easy. First, it follows from Lemma 3.8 that the

elements Tw, w ∈ W and Y λ, λ ∈ P∨ generate Ĥ as an algebra. Now relations
(3.10) imply that every element h can be written in the form h =

∑
w Twqw(Y ),

which proves the existence part of the theorem.
To prove uniqueness, we must show that these elements are linearly independent.

This is more difficult, and we do not give the proof here, referring the reader to [L,
Lemma 3.4].

Theorem 3.12. The center of Ĥ coincides with the subspace of W -invariants in

Ct[Y ] ⊂ Ĥ: Z(Ĥ) = Ct[Y ]W .

Proof. It is easy to check, using (3.10), that Ct[Y ]W ⊂ Z(Ĥ). On the other hand,

in the specialization ti = 1 we have Z(Ĥ) = C[Y ]W , which is easy to prove; thus,
the same must be true for generic ti.

We will also need some information about the representations of Ĥ. The general

theory of representations of Ĥ is rather complicated (see [L]); however, we will
use only representations of some special form. Namely, let E be an arbitrary
representation of H ; it is known that for generic values of ti the finite-dimensional
Hecke algebra H is isomorphic to the group algebra Ct[W ], and thus has the same

representations. Define a representation Ê of Ĥ as the induced representation: Ê =

IndĤHE. It follows from Theorem 3.11 that as a vector space, Ê = Ct[Y ]⊗ E, and
Ct[Y ] acts by left multiplication. In particular, let us take the trivial representation

of H ; that is, let E = Ct, Ti 7→ ti, i = 1, . . . , n. Then we get an action of Ĥ on the
space Ct[Y ].

Theorem 3.13. The above defined action of Ĥ on Ct[Y ] is given by

Y λ 7→ Y λ

Ti 7→ tisi + (ti − t−1
i )

si − 1

Y −α∨i − 1
, i = 1, . . . , n

(3.12)

where si stands for the usual action of W on Ct[Y ]: siY
λ = Y si(λ).



LECTURES ON AFFINE HECKE ALGEBRAS AND MACDONALD’S CONJECTURES 273

Proof. Immediately follows from Lemma 3.10.

Proposition 3.14. The above defined representation of Ĥ is faithful.

Remark. The degenerate affine Hecke algebra which we defined in Lecture 1 (for
the root system An−1) can be obtained as the following degeneration of the affine

Hecke algebra Ĥ : write (formally) Y λ = tyλ/h. Then as t → 1 the relations for
yλ, Ti become the relations of the degenerate affine Hecke algebra.

Lecture 4: Double affine Hecke algebras and commuting difference

operators

In this lecture, we will start applying the results about the affine Hecke algebras,
which we discussed before, to the Macdonald’s theory. Unless otherwise stated, all
constructions and results in this lecture are due to Cherednik.

Recall that for any root system we have defined the affine Hecke algebra Ĥ which
has two descriptions:

1. Ĥ is generated by elements T0, . . . , Tn and by π ∈ Ω with relations

Coxeter relations for Ti, i = 0, . . . , n

(Ti − ti)(Ti + t−1
i ) = 0, i = 0, . . . , n

πTiπ
−1 = Tj if π(αi) = αj .

(4.1)

2. Ĥ = H · Ct[Y ], where H is the Hecke algebra generated by T1, . . . , Tn with
the relations above, Ct[Y ] is the algebra generated by Y λ, λ ∈ P∨ such that
Y λ+µ = Y λY µ (thus, Ct[Y ] ' Ct[P

∨]), and the commutation relations be-
tween Ti, Y

λ are

TiY
λ = Y λTi if (λ, αi) = 0

TiY
λ − Y si(λ)Ti = (ti − t−1

i )Y λ if (λ, αi) = 1.

Our goal is to use this algebra (along with its action on Ct[Y ] defined in Theo-
rem 3.13) to construct a commuting family of difference operators, similar to the
construction in Lecture 1 where the degenerate affine Hecke algebra was used to
construct a commuting family of differential operators.

Note, however, that in Lecture 1 both the operators ∂i = ∂
∂xi

and the degenerate
affine Hecke algebra were used to construct commuting differential operators; one
can say that we have used the algebra generated by ∂i, xi and ŝi. It turns out
that in order to construct a commuting family of difference operators, one needs a
q-analogue of this larger algebra. Such an analogue was constructed by Cherednik,
who called it “the double affine Hecke algebra”. This is an algebra generated by
three sets of variables:

1. Ti, i = 1 . . . n
2. Y λ, λ ∈ P∨

3. Xµ, µ ∈ P

Here Y λ, Ti satisfy the relations of the affine Hecke algebra above. Since W is
the Weyl group for R∨ as well as for R, we can define the relations between Xµ

and Ti to be the relations of the affine Hecke algebra for the root system R∨, i.e.
the same relations as above with Y λ replaced by Xµ, µ ∈ P and αi replaced by α∨i .

However, in this realization it is rather difficult to describe the relations between
Y λ, Xµ. For this reason, let us replace the generators Y λ, Ti with π ∈ Ω, T0, . . . , Tn
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which generate the same affine Hecke algebra ĤY . Thus, instead of describing the
relations between Y λ and Xµ we will write the relations between T0, π and Xµ.

Let us consider the affine weight lattice P̂ = {µ+kδ|µ ∈ P, k ∈ 1
mZ} ⊂ V̂ , where

m ∈ Z+ is the smallest integer such that m(λ, µ) ∈ Z for every λ ∈ P∨, µ ∈ P .

Then we have a natural action of the extended affine Weyl group W̃ = W n τ(P∨)

on P̂ and thus on the group algebra C[P̂ ] spanned by X µ̂. Let q be an independent
variable, and Cq the field of rational functions in q1/m. Define the embedding

C[P̂ ] ⊂ Cq[P ] by Xδ = q−2. The action of W̃ on C[P̂ ] can be extended by Cq-
linearity to Cq[P ]; in particular,

τ(λ)Xµ = q2(λ,µ)Xµ

s0X
µ = Xµ(Xθq2)−(µ,θ∨).

Definition 4.1. Let Cq,t be the field of rational functions in q, tα. Then the double
affine Hecke algebra H is an algebra over Cq,t which is generated by the elements
π ∈ Ω, T0, . . . , Tn, X

µ, µ ∈ P subject to the following relations:

1. The relations (a)–(c) of the affine Hecke algebra between Ti, πr.
2. Xµ+ν = XµXν, X0 = 1.
3.

TiX
µ = XµTi if (µ, α∨i ) = 0

TiX
µ −Xsi(µ)Ti = (ti − t−1

i )Xµ if (µ, α∨i ) = 1.
(4.2)

Here i = 0 . . . n, and α∨0 = −θ∨.
4. πXµπ−1 = Xπ(µ).

Note that relation (4.2) for i = 0 reads T0X
µ − Xµ+θq2T0 = (t0 − t−1

0 )Xµ if
(µ, θ∨) = −1.

Obviously, the subalgebra generated by π, T0 . . . Tn satisfies the relations of the

affine Hecke algebra Ĥ defined in the previous lecture (later we will prove that this

subalgebra is in fact isomorphic to Ĥ). Thus, we can define the elements Y λ, λ ∈ P∨

in H. Similarly, the subalgebra generated by T1, . . . , Tn, X
µ satisfies the relations

of affine Hecke algebra for the root system R∨. We will denote these affine Hecke

subalgebras by ĤY and ĤX respectively. In fact, in the above definition Xµ and
Y λ play a symmetric role: H could be just as well defined as the algebra generated
by Y λ, T ′0, T1, . . . , Tn, π

′ ∈ Ω∨ (see details in [C7]). It is also worth noting that it
is rather difficult to write down explicitly the commutation relations between Xµ

and Y λ.
For the root system An−1 the algebra H can be described topologically: in this

case H is a deformation of the algebra C[BTn]/(Ti − ti)(Ti + t−1
i ) = 0, where BTn

is the braid group of n points on a torus. Under this isomorphism, Xi corresponds
to the i-th point going around the x-cycle on the torus, Yi corresponds to the i-th
point going around the y-cycle on the torus, and Ti corresponds to the transposition
of the i-th and i+ 1-th points (see [C1, Definition 4.1]).

Theorem 4.2. Every element h ∈ H can be uniquely written in the form∑
λ,µ,w

aλµwX
µY λTw, aλµw ∈ Cq,t.
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Proof. The existence of such a representation is a standard exercise; the unique-
ness is highly non-trivial, and we postpone the proof until the next lecture (see
Corollary 5.8).

Theorem 4.3. The following formulas give a representation of H in Cq,t[X ]:

Xµ 7→ Xµ

π : Xµ 7→ Xπ(µ), π ∈ Ω

Ti 7→ tisi + (ti − t−1
i )

si − 1

X−αi − 1
, i = 0, . . . , n.

Proof. This theorem follows from the analogous statement for affine Hecke algebras
(Theorem 3.13). Indeed, all the identities we have to check involve at most two Ti’s,
and every pair of vertices in an affine Dynkin diagram belongs to some subdiagram
of finite type (with the exception of the root system Â1). The case of Â1 can be
easily checked by direct calculation.

Example. In this representation, T0 acts as follows:

T0 : Xµ 7→
(
t0(X

θq2)−(µ,θ∨) + (t0 − t−1
0 )

(Xθq2)−(µ,θ∨) − 1

Xθq2 − 1

)
Xµ.(4.3)

It turns out that this representation is faithful (we will prove it later). We will
identify elements of H with the corresponding operators on Cq,t[X ].

Let f ∈ C[Y ]W = Z(ĤY ).

Lemma 4.4. The operators f ∈ C[Y ]W = Z(ĤY ) ⊂ H preserve the subspace
Cq,t[X ]W ∈ Cq,t[X ].

Proof. Note first that it immediately follows from the formulas in Theorem 4.3 that
p ∈ Cq,t[X ] is W -invariant if and only if Tip = tip for all i = 1, . . . , n. Now, let

p ∈ Cq,t[X ]W . Then Tifp = fTip = tifp (since C[Y ]W is the center of ĤY ), and
thus fp ∈ Cq,t[X ]W .

It is clear from Theorem 4.3 that for every h ∈ H the corresponding operator on
Cq,t[X ] can be written in the form

h =
∑
λ∈P∨
w∈W

gλ,wτ(λ)w(4.4)

for some gλ,w ∈ Cq,t[X ](Xα − 1)−1 (recall that τ(λ) acts on Cq,t[X ] by Xµ 7→
q2(λ,µ)Xµ). In particular, the same is true for Y λ ∈ ĤY ⊂ H. For every operator
of the form (4.4) define its restriction by

Res
(∑

gλ,wτ(λ)w
)

=
∑

gλ,wτ(λ).(4.5)

This definition is chosen so that (1) ResD is a difference operator (that is, it only
involves the operators τ(λ) and rational functions in X , not the action of W ) and
(2) if D preserves Cq,t[X ]W , then so does ResD, and (ResD)|Cq,t[X]W = D|Cq,t[X]W .

Then Lemma 4.4 immediately implies:

Theorem 4.5. The operators Lf = Res f, f ∈ Cq,t[Y ]W commute and are W -
invariant.
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Proof. First, Lf |Cq,t[X]W = f |Cq,t[X]W . Thus, LfLgp = LgLfp for every symmetric

polynomial p. Since both Lf , Lg are difference operators (they do not contain
the action of the Weyl group), it is a well-known fact that this implies LfLg =
LgLf .

Thus, we have constructed a commutative family of W -invariant difference oper-
ators on Cq,t[X ], labeled by f ∈ Cq,t[Y ]W . In the subsequent lectures we will discuss
the relation of these operators with the theory of Macdonald polynomials. In par-
ticular, we will show that this family includes the Macdonald’s difference operators
Dπ, constructed in Lecture 2 for minuscule coweights, and that the eigenfunctions
of Lf are Macdonald polynomials.

Example. Let R be of type A1. In this case there is only one positive root α,
and only one minuscule (co)weight ρ = α/2. The reduced expression for τ(ρ) is
τ(ρ) = πρs1, where πρ = τ(ρ)s1 is the element of zero length; it acts on simple
affine roots by permuting α1 = α and α0 = −α + δ. Therefore, Y ρ = Tτ(ρ) =

πρT1, Y
−ρ = T−1

1 πρ = πρT
−1
0 = πρ(T0 + (t−1 − t)).

In this case Cq,t[X ] is just the space of polynomials in X±1/2, where X = Xα,
and the action of the extended Weyl group is given by

τ(ρ)X = q2X

πρX = q−2X−1,

so the action of the corresponding affine Hecke algebra is given by

Y ρ =πρ

(
ts1 + (t− t−1)

s1 − 1

X−1 − 1

)
= τ(ρ)

(
t + (t− t−1)

1 − s1
X − 1

)
,

Y −ρ =πρ

(
ts0 + (t− t−1)

s0 − 1

q2X − 1
+ (t−1 − t)

)
=τ(ρ)s1

(
tτ(α)s1 + (t− t−1)

τ(α)s1 − q2X

q2X − 1

)
=tτ(−ρ) + (t− t−1)τ(ρ)

τ(−α) − q2X−1s1
q2X−1 − 1

=tτ(−ρ) + (t− t−1)
τ(−ρ) −X−1τ(ρ)s1

X−1 − 1
.

Thus,

ResY ρ = tτ(ρ)

ResY −ρ =
tX−1 − t−1

X−1 − 1
τ(−ρ) + (t− t−1)

1

X − 1
τ(ρ),

so

Res(Y ρ + Y −ρ) =
tX − t−1

X − 1
τ(ρ) +

tX−1 − t−1

X−1 − 1
τ(−ρ),

which is nothing but the Macdonald’s difference operator D1 for the root system
A1 (cf. formula (2.5)), multiplied by t−1.
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Lecture 5: Macdonald’s difference operators from double affine

Hecke algebras

Let us recall some results from the last lecture. We have defined the double
affine Hecke algebra H which is generated by the elements Tw, w ∈ W,Y λ, λ ∈
P∨, Xµ, µ ∈ P . Also, we have defined its action on the space Cq,t[X ], where Xµ

acts by multiplication, and Ti, i = 0 . . . n act by

Ti 7→ tisi + (ti − t−1
i )

si − 1

X−αi − 1
.

This allowed us to construct a large family of commuting difference operators on
Cq,t[X ]W .

In this lecture we will establish a connection between this construction and Mac-
donald’s theory; the variables q, tα used in the definition of the double affine Hecke
algebra will be identified with the parameters q, tα of Macdonald polynomials. The
main result of this lecture is Theorem 5.9, which shows that the Macdonald’s op-
erators Dπ introduced in Lecture 2 are special cases of the operators Lf obtained
from the double affine Hecke algebra.

All the results of this lecture are due to Cherednik ([C7]).
Let us rewrite the action of Ti on Cq,t[X ] as follows:

Ti = siG(αi),

where

G(α) = tα + (tα − t−1
α )

1− sα
Xα − 1

=
tαX

α − t−1
α

Xα − 1
− (tα − t−1

α )
sα

Xα − 1
.

(5.1)

Then G(α) satisfy

w̃G(α)w̃−1 = G(w̃(α)), α ∈ R̂, w̃ ∈ W̃ .

Using this, we can rewrite for arbitrary w̃ ∈ W̃ the action of Tw̃ as follows

Tw̃ = w̃G(α(l)) . . . G(α(1)),

where α(i) are defined from a reduced expression for w̃ as in (3.6). Recall that

{α(1), . . . , α(l)} = Rw̃ := R̂+ ∩ w̃−1R̂−.(5.2)

We will also need the expressions for Y λ. Recall (see Theorem 3.7(2)) that if
τ(λ) = πsil . . . si1 is a reduced expression, then Y λ = πT εl

il
. . . T ε1

i1
for some choice

of signs εi ∈ {±1}. Since T−1
i = Ti + (t−1

i − ti), this implies that

Y λ = τ(λ)G±(α(l)) . . . G±(α(1))(5.3)

for some choice of the signs ±, where G+(α) = G(α) and

G−(α) = G(α) − (tα − t−1
α )sα =

tαX
α − t−1

α

Xα − 1
− (tα − t−1

α )
Xαsα
Xα − 1

.(5.4)

These expressions for Tw̃, Y
λ are rather complicated because the formula for

G±(α) is a sum of two terms, one of which contains sα. We want to define some
notion of “leading term” of Tw̃ in such a way that the terms with sα from (5.1),
(5.4) (or at least as many of them as possible) would not contribute to the leading
term, thus making it easy to compute.
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We start with the definition of a new order on P∨.

Definition 5.1. Let λ, µ ∈ P∨. We write λ l µ if

1. λ+ < µ+, where λ+ is the dominant coweight lying in the orbit of λ, and
similarly for µ+,

or
2. λ+ = µ+ and λ > µ (note that we are reversing the inequality!).

Note that this is only a partial order: there exist λ, µ that cannot be compared
with respect to this order.

Proposition 5.2. Let w̃ = τ(λ)w ∈ W̃ , w ∈ W and α̂ = α + kδ ∈ Rw̃ (see
definition of Rw̃ in (5.2)). Write w̃sα̂ = τ(λ′)w′, w′ ∈W . Then:

1. If α̂ ∈ R (i.e., if k = 0), then λ′ = λ.
2. If α̂ /∈ R (i.e., k > 0), then λ′ l λ.

This proposition can be easily proved by direct calculation.
Let us define the notion of the leading term. Let T be an operator on Cq,t[X ] of

the form

T =
∑

λ∈P∨,w∈W
gλ,w(X)τ(λ)w,(5.5)

where gλ,w are some rational functions in X .

Definition 5.3. Let T be an operator of the form (5.5). Assume that it can be
written in the following form:

T =
∑
w

gλ0,w(X)τ(λ0)w +
∑

λlλ0,w

gλ,w(X)τ(λ)w

for some λ0 and that at least one of gλ0,w 6=0. Then we say that
∑

w gλ0,w(X)τ(λ0)w
is the leading term of T and denote it by 〈T 〉.
Remark. Not every operator has a leading term. Also, it is not true that the leading
term of a product is the product of the leading terms.

Example 5.4. Consider Y λ, λ ∈ P∨− . Then it is easy to see that Rτ(λ) contains
only roots α̂ = α + kδ with k > 0. Also, by Theorem 3.7(2), all the signs in
expression (5.3) should be −1. Therefore, we have

Y λ = τ(λ)G−(α(l)) . . . G−(α(1)).

Substituting in this formula expression (5.4) for G−(α) and using Proposition
5.2 and some simple arguments from the theory of affine Weyl groups, we see that
the leading term of Y λ can be obtained by replacing each G−(α) in the expression
above by

tαX
α − t−1

α

Xα − 1
,

in other words, by throwing away the term containing sα. Thus,

〈Y λ〉 = τ(λ)
∏

α∈Rτ(λ)

tαX
α − t−1

α

Xα − 1

=

 ∏
α∈τ(λ)Rτ(λ)

tαX
α − t−1

α

Xα − 1

 τ(λ)

(5.6)
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(note that this is a product of commuting expressions).

More generally, to find the leading term of Tw̃ we have to separate the affine and
non-affine roots in Rw̃. Let us introduce the notations

R0
w̃ = Rw̃ ∩R+ = {α̂ = α+ kδ ∈ Rw̃|k = 0}

R>0
w̃ = {α̂ = α+ kδ ∈ Rw̃|k > 0}.(5.7)

Lemma 5.5. For every w̃ ∈ W̃ there exists a reduced expression w̃ = πw, π ∈
W̃ , w ∈ W such that R0

w̃ = Rw. (Thus, R>0
w̃ = w−1Rπ.)

Idea of proof. Take all reduced expressions w̃ = πw with w ∈ W and choose the
one with minimal l(π); then use Lemma 3.2(2).

Corollary. It is possible to choose a reduced expression for w̃ in such a way that
its associated sequence of roots α(i) looks as follows:

α(l), . . . , α(k)︸ ︷︷ ︸
R>0
w̃

, α(k−1), . . . , α(1)︸ ︷︷ ︸
R0
w̃

.

Theorem 5.6. 1. Let w̃ = πw be as in Lemma 5.5. Then

〈Tw̃〉 =

 ∏
α∈w̃R>0

w̃

tαX
α − t−1

α

Xα − 1

πTw.(5.8)

2. Let λ ∈ P∨. Then

〈Y λ〉 =
∑
w

gw(X)τ(λ)w

for some rational functions gw.

We could have made more precise statements about the leading term of Y λ, but
this is not necessary for our purposes.

Proof. (1) Write

Tw̃ = w̃G(α(l)) . . . G(α(k))G(α(k−1)) . . .G(α(1))

where α(l), . . . , α(k) ∈ R>0
w̃ , α(k−1), . . . , α(1) ∈ R0

w̃ (see the Corollary above). Then,
due to Proposition 5.2, we have

〈Tw̃〉 = w̃

 ∏
α∈R>0

w̃

tαX
α − t−1

α

Xα − 1

G(α(k−1)) . . . G(α(1))

=

 ∏
α∈w̃R>0

w̃

tαX
α − t−1

α

Xα − 1

πwG(α(k−1)) . . . G(α(1))

=

 ∏
α∈w̃R>0

w̃

tαX
α − t−1

α

Xα − 1

πTw.

(2) Follows from formula (5.3) for Y λ and Proposition 5.2.
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Theorem 5.7. The operators

XµTw̃, w̃ ∈ W̃

on Cq,t[Y ] are linearly independent.

Proof. It suffices to check that their leading terms are linearly independent. As for
them, if w̃ = τ(λ)w = πw′, w, w′ ∈ W then

< XµTτ(λ)w >=Xµ
∏

α∈w̃R>0
w̃

tαX
α − t−1

α

Xα − 1
πTw′

=Xµ
∏

α∈w̃R>0
w̃

tαX
α − t−1

α

Xα − 1
τ(λ)ww′−1

Tw′ .

Thus, it is easy to see that relation
∑

λ,µ,w aλ,µ,wX
µTτ(λ)w = 0 is possible only

if
∑

µ,w aλ,µ,wX
µTτ(λ)w = 0. Since in the decomposition w̃ = τ(λ)w = πw′, π de-

pends only on λ, the linear independence of 〈XµTτ(λ)w〉 with fixed λ follows from
the fact that Tw are linearly independent over the field of rational functions of X ,

which is based on the similar theorem for the affine Hecke algebra ĤX (Proposi-
tion 3.14).

Corollary 5.8. 1. Elements XµY λTw, λ ∈ P∨, µ ∈ P,w ∈ W , are linearly
independent in H.

2. Cq,t[X ] is a faithful representation of H.

3. The subalgebra ĤY ⊂ H spanned by Y λ, Tw is isomorphic to the affine Hecke

algebra Ĥ defined in Lecture 3, and similarly for ĤX .

Theorem 5.9. Let π ∈ P∨ be a minuscule coweight. Define fπ =
∑

w∈W Y w(π),
and Lπ = Res fπ, where Res is defined by (4.5). Then

Lπ =
∑
w∈W

w

 ∏
α∈R

(α,π)=1

tαX
α − t−1

α

Xα − 1
τ(π)

 .(5.9)

Proof. Let us calculate the leading term of Lπ. It follows from the calculations
of the leading term for Y λ (Example 5.4 and Theorem 5.6(2)) that < Lπ > has
the form g(X)τ(π−), where π− is the antidominant coweight lying in the orbit of
π: π− ∈ P∨

− , π− ∈ Wπ. It follows from Theorem 5.6(2) that τ(π−) can come

only from Y π− ; using the calculation of the leading term for antidominant weight
(Example 5.4), we see that the coefficient of τ(π−) is equal to

|Wπ |
∏
α∈R

(α,π−)=1

tαX
α − t−1

α

Xα − 1
τ(π−),

where Wπ is the stabilizer of π in W .
This gives us the leading term of Lπ. Since π is minuscule, it is known that

there are no dominant coweights λ with λ < π, and thus λ l π− ⇐⇒ λ ∈ Wπ.
Thus, Lπ contains only the terms of the form gw(X)τ(w(π)), which can be easily
calculated, since we know one of them (with τ(π−)) and Lπ is W -invariant. This
gives formula (5.9).
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Comparing formula (5.9) with the expression for Macdonald’s difference operator
Dπ defined in Lecture 2, we see that they coincide up to a constant factor. Thus,
we see that the operators Lf , f ∈ C[Y ]W form a commutative algebra of difference
operators which includes the Macdonald’s difference operators – as was promised
in Lecture 2.

Lecture 6: Macdonald polynomials revisited

As usual, we start with recollections of some results of the previous lectures.
Recall that we have defined the double affine Hecke algebra H which is generated
by Xµ, µ ∈ P, Y λ, λ ∈ P∨, Tw, w ∈ W . This algebra acts on the space Cq,t[X ].
Moreover, if f ∈ Cq,t[Y ]W ⊂ H, then the corresponding operator preserves the
subspace Cq,t[X ]W and its restriction to this space coincides with some W -invariant
difference operator Lf . Also, we checked that the Lf ’s commute and that if π is

a minuscule coweight, f =
∑

w Y
w(π), then up to a constant factor, Lf is the

Macdonald’s difference operator Dπ defined in Lecture 2.
In this lecture we will prove that Macdonald polynomials are eigenfunctions of

Lf for any f ∈ Cq,t[Y ]W . For simplicity, from now on we assume that tα = qkα for
some kα ∈ Z+; thus, the field Cq,t, considered in the previous lectures becomes Cq.
As before, the results of this lecture are due to Cherednik ([C6]).

Let us start with proving that Lf are triangular in the basis of mλ.

Definition. Define a partial order on P as follows: λ ≺ µ if λ+ < µ+ or λ+ = µ+

and λ < µ, where, as before, λ+ is the dominant weight lying in the orbit of λ.

Note that this order is similar to but not the same as the order l on P∨ which
we used in the previous lecture.

Lemma 6.1. Let λ ∈ P∨. Then the action of Ct[Y ] ⊂ H on Cq[X ] has the follow-
ing triangularity property:

Y λXµ =
∑
ν�µ

cµνX
ν .

Also, if µ ∈ P+, then cµµ = q2(λ,µ+ρk).

(Recall that ρk = 1
2

∑
α∈R+ kαα.)

Proof. Assume first that λ ∈ P∨
+ . Then the statement of the Lemma follows from

the following two facts, which can be verified by direct calculation:
(1) Y λ = τ(λ)G(α(l)) . . . G(α(1)) (see (5.3)), where α(i) run through the set

Rτ(λ) = {α̂ = α+ kδ|α ∈ R+, 0 ≤ k < (λ, α)}.
(2) If α̂ = α+ kδ is such that α ∈ R+, then

G(α̂)Xµ =

{
tαX

µ + . . . if (µ, α∨) ≥ 0

t−1
α Xµ + . . . if (µ, α∨) < 0

where the dots stand for a linear combination of Xν with ν ≺ µ.
If λ is not dominant, we can write Y λ = Y µ(Y ν)−1, µ, ν ∈ P∨

+ . Since the
inverse of a triangular matrix is also triangular, the statement for λ follows from
the statements for µ, ν.

Lemma 6.1 immediately gives the triangularity of Lf . As before, let mµ =∑
ν∈WµX

ν for µ ∈ P+ be the basis of orbit-sums in C[X ]W . We do not consider
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mµ for non-dominant µ, so whenever a formula contains mµ it is always assumed
that µ ∈ P+.

Theorem 6.2. Let f ∈ Cq[Y ]W , µ ∈ P+. Then

Lfmµ = f(q2(µ+ρk))mµ +
∑
ν<µ

aµνmν ,(6.1)

where, by definition, f(qµ) is the polynomial in q obtained by substituting q(λ,µ) for
Y λ in the expression for f .

Thus, it makes sense to talk about the eigenfunctions of Lf . Since a dominant
weight µ is uniquely determined by the values f(qµ) for all f ∈ C[Y ]W , it is easy
to see that for every dominant µ there exists a unique common eigenfunction of Lf
in Cq[X ]W with the highest term Xµ. Later we will show that these eigenfunctions
are nothing but Macdonald polynomials; this gives a new, uniform proof of the
existence of Macdonald polynomials.

To prove that the eigenfunctions are Macdonald polynomials, we must check
that they are orthogonal with respect to Macdonald’s inner product. Recall that
it was defined in Lecture 2 as follows: for f, g ∈ Cq[X ] we let

〈f, g〉k =
1

|W | [f ḡ∆k]0,(6.2)

where the q-linear bar involution is defined by Xµ = X−µ, [ ]0 is the constant term,
and

∆k =
∏
α∈R

kα−1∏
i=0

(1− q2iXα).(6.3)

This inner product is non-degenerate, q-linear, symmetric and W -invariant.
However, it turns out that we need to modify this inner product. Let us introduce

the following involution on Cq: q
ι = q−1 and extend it to Cq[X ] by letting (Xµ)ι =

Xµ. Define the Cherednik’s inner product by

〈f, g〉′k = [f ḡιµk]0,(6.4)

where

µk =
∏

α∈R+

kα∏
i=1−kα

(qiXα/2 − q−iX−α/2).(6.5)

This inner product is neither symmetric nor W -invariant; still, it is better suited
for our needs than Macdonald’s inner product. Note that the weight function µ
defined by (6.5) is very close to Macdonald’s weight function ∆k. More precisely,

µk = (−1)
∑
kαq−

∑
kα(kα−1)∆k

ϕk
δ
,(6.6)

where as before,

δ =
∏

α∈R+

(Xα/2 −X−α/2),

and

ϕk =
∏

α∈R+

(qkαXα/2 − q−kαX−α/2).

Note also that µ̄k = µιk.



LECTURES ON AFFINE HECKE ALGEBRAS AND MACDONALD’S CONJECTURES 283

Proposition 6.3. Let f, g ∈ Cq[X ]. Then

1. 〈f, g〉′ = (〈g, f〉′)ι.
2. If f, g ∈ Cq[X ]W , then

〈f, g〉′k = (−1)
∑
kαq−

∑
kα(kα−1)dk〈f, gι〉k,(6.7)

where

dk = q
∑
kα
∑
w∈W

q−2
∑
α∈Rw kα .

Proof. (1) is trivial in view of µ̄ιk = µk. To prove (2), note that [f ḡιµ]0 =
1
|W |

∑
w[f ḡιw(µ)]0, and the result follows from the identity∑

w∈W
w(ϕk/δ) =

∑
w

∏
α∈R+

q±kα = dk,(6.8)

where we take the sign “+” if w(α) ∈ R+ and “−” otherwise. This identity can be
proved in a standard way, by considering the highest term.

Remark. It is known (see [M4]) that dk can be written in the following form:

dk =
∏

α∈R+

q(α∨,ρk)+kα − q−((α∨,ρk)+kα)

q(α∨,ρk) − q−(α∨,ρk)
.(6.9)

However, we will not use this formula.

Theorem 6.4. Let Pλ, λ ∈ P+ be the Macdonald polynomials (see Theorem 2.1).
Then

1. P ι
λ = Pλ.

2. 〈Pλ, Pµ〉′k = 0 if λ 6= µ.
3. Pλ’s are uniquely defined by the triangularity condition Pλ = mλ+lower terms

and the orthogonality condition (2) above.

Proof. (1) Since ∆ι = const ·∆, we see that [P ι
λP̄

ι
µ∆]0 = 0 for µ 6= λ, and thus P ι

λ

satisfy the definition of Macdonald polynomials.
(2) follows from (1) and the previous proposition; (3) is obvious since the Chered-

nik’s inner product is non-degenerate.

Let us now define the notion of an adjoint operator. Let h be an operator on
Cq[X ]; define the corresponding adjoint operator h∗ by the condition

〈hf, g〉′k = 〈f, h∗g〉′k.
An effective way to calculate adjoints is as follows. Define a simpler involution

h 7→ h† by

[h(f)ḡι]0 = [f h†(g)
ι
]0;

thus, h† is the adjoint to h with respect to the inner product 〈 , 〉′0. This adjoint is
relatively easy to calculate; in particular,

p(X) ∈ Cq[X ] =⇒ p† = p̄ι

w̃ ∈ W̃ =⇒ w̃† = w̃−1

(this last condition justifies the introduction of ι in the definition of the inner
product: otherwise it would not hold for τ(λ)).
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On the other hand, the involutions ∗ and † are related by a simple rule

h∗ = µ−1
k h†µk,

which obviously follows from the definitions. In particular, this implies that p∗ = p̄ι

for p ∈ Cq[X ].

Theorem 6.5. 1. T ∗i = T−1
i .

2. (Y λ)∗ = Y −λ.

Proof. (1) Since T−1
i = Ti+(t−1

i − ti), t
∗
i = t−1

i , it suffices to prove that (Ti− ti)
∗ =

Ti − ti. From the definition of the action of Ti we get by direct calculation that

Ti − ti =
tiX

−αi/2 − t−1
i Xαi/2

X−αi/2 −Xαi/2
(si − 1).(6.10)

Since

s∗i = µ−1siµ = −ϕ−1
k siϕk =

t−1
i Xαi/2 − tiX

−αi/2

tiXαi/2 − t−1
i X−αi/2 si,

we get

(Ti − ti)
∗ =(s∗i − 1)

t−1
i Xαi/2 − tiX

−αi/2

Xαi/2 −X−αi/2

=
t−1
i Xαi/2 − tiX

−αi/2

Xαi/2 −X−αi/2 (si − 1) = Ti − ti.

(2) It suffices to prove this formula for λ ∈ P∨
+ , in which case it follows from

Theorem 3.7, the previous statement and π∗ = π−1, π ∈ Ω, which again can be
proved by direct calculation.

This means that we can consider ∗ as an involution on Cq[Y ] which is defined by
(f(q)Y λ)∗ = f ιY −λ; in particular, this involution preserves Cq[Y ]W .

Theorem 6.6. Macdonald polynomials are eigenfunctions of Lf , f ∈ Cq[Y ]W :

LfPλ = f(q2(λ+ρk))Pλ.

Proof. Since Lf |Cq [X]W = f |Cq[X]W , it suffices to prove that Macdonald polynomials

are eigenfunctions of f ∈ Cq[Y ]W . Since ∗ preserves Cq[Y ]W , Theorem 6.2 implies
that both f and f∗ are upper-triangular in the basis of Pλ. On the other hand, by
Theorem 6.4, Pλ’s are orthogonal with respect to the Cherednik’s inner product.
This is only possible if f is diagonal. The eigenvalues are given by (6.1).

Proposition 6.7. The operators Lf , f ∈ Cq[Y ]W are self-adjoint with respect to
Macdonald’s inner product.

Proof. It suffices to prove that their restrictions to Cq[X ]W are self-adjoint, which
follows from the fact that they are diagonalized in the basis of Macdonald polyno-
mials.

This completes a large part of this course: we have constructed a commuting
family of difference operators, whose eigenfunctions are the Macdonald polynomials.
In the next lecture we will use this construction to prove the inner product identities.
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Lecture 7: Proof of Macdonald’s inner product identities

Recall that we have defined an action of the double affine Hecke algebraH on the
space Cq[X ]. Also, we have defined Cherednik’s inner product 〈 , 〉′k on Cq[X ] such
that with respect to this inner product (Y λ)∗ = Y −λ, and on symmetric functions
〈 , 〉′k coincides up to a factor with Macdonald’s inner product 〈 , 〉k.

In this lecture we will use the action of H to prove Macdonald’s inner product
identities (see Theorem 2.4). From now on, we assume for simplicity that all kα’s
are equal: kα = k, so that all tα = t = qk. In fact, it is not much more difficult
to repeat all the arguments in the general case; later we will outline the necessary
changes.

The proof presented here is due to Cherednik. However, our exposition follows
that of Macdonald ([M5]), who simplified the original arguments of Cherednik. For

example, the operator Ĝ below was introduced by Macdonald.
The idea of the proof is quite simple. First note that due to Proposition 6.3, the

calculation of 〈Pλ, Pλ〉k is equivalent to the calculation of 〈Pλ, Pλ〉′k. Using the large
set of operators we have constructed, we want to prove the theorem by induction on

k. Let us write P
(k)
λ to stress the dependence of Macdonald polynomials on k. We

want to construct some operator G : Cq[X ]W → Cq[X ]W (shift operator), which
would shift k → k + 1. More precisely, we want:

(1) GP
(k)
λ+ρ = const · P (k+1)

λ for some easily computable constant.

(2) 〈Gf, g〉′k+1 = 〈f, Ĝg〉′k for some operator Ĝ.

If we construct such an operator, then the calculation of 〈P (k+1)
λ , P

(k+1)
λ 〉′k+1 can

be reduced to the calculation of 〈P (k)
λ+ρ, ĜGP

(k)
λ+ρ〉′k, or – if we know the diagonal

entries of ĜG – to the calculation of 〈P (k)
λ+ρ, P

(k)
λ+ρ〉′k. Repeating the process, we

reduce the question to the calculation of 〈P (0)
λ+kρ, P

(0)
λ+kρ〉′0, which is trivial.

In the differential (q = 1) case, the shift operators were introduced by Opdam
(see [O3], [H3]). The construction for arbitrary q described below is due to Chered-
nik ([C6]).

To define G, Ĝ, we need the following operators:

X = ϕ−k =
∏

α∈R+

(q−kXα/2 − qkX−α/2)

Y = ϕ∨−k(Y ) =
∏

α∈R+

(q−kY α∨/2 − qkY −α∨/2)

Ŷ = ϕ∨k (Y ) =
∏

α∈R+

(qkY α∨/2 − q−kY −α∨/2).

(7.1)

It is easily seen from the previous results that X ι = (−1)|R
+|X̄ = ϕk,X ∗ =

(−1)|R
+|X and Y∗ = (−1)|R

+|Y, Ŷ∗ = (−1)|R
+|Ŷ.

Now, define the shift operators by

G = X−1Y, Ĝ = ŶX .(7.2)

Theorem 7.1. G, Ĝ preserve Cq[X ]W .

Proof. Recall that f ∈ Cq[X ]W ⇐⇒ (Ti − t)f = 0 for all i (this follows, for
example, from formula (6.10)). Define Cq[X ]−W = {f ∈ Cq[X ]|(Ti + t−1)f = 0}.
It is easy to see that as q → 1, this definition becomes the usual definition of
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anti-invariant polynomials. Now, to prove the theorem it suffices to prove that

X (Cq[X ]W ) = Cq[X ]−W ,Y(Cq[X ]W ) ⊂ Cq[X ]−W , Ŷ(Cq[X ]−W ) ⊂ Cq[X ]W . In
fact, once we prove that X (Cq[X ]W ) ⊂ Cq[X ]−W , the statement that this embed-
ding is an isomorphism can be easily proved by deformation arguments, since in
the limit q → 1 this statement is well known. Thus, the theorem follows from the
lemma below.

Lemma.

(Ti + t−1)X =
t−1X−αi/2 − tXαi/2

t−1Xαi/2 − tX−αi/2X (Ti − t)

(Ti + t−1)Y =
t−1Y −α∨i /2 − tY α∨i /2

t−1Y α∨i /2 − tY −α∨i /2
Y(Ti − t)

(Ti − t)Ŷ =
tY −α∨i /2 − t−1Y α∨i /2

tY α∨i /2 − t−1Y −α∨i /2
Ŷ(Ti + t−1).

This lemma is proved by direct calculation, using the identity TiX
αi/2−X−αi/2Ti

= (t− t−1)Xαi/2.

Now we can formulate the main property of the shift operators.

Theorem 7.2. Let f, g ∈ Cq[X ]W . Then

〈Gf, g〉′k+1 =
dk+1

dk
〈f, Ĝg〉′k,(7.3)

where dk is defined in Proposition 6.3.

Remark. Since µk+1 = ϕk+1ϕ−kµk, it is easy to see that 〈Gf, g〉′k+1 = 〈f,Yϕk+1g〉′k.
But this is of little use, since Yϕk+1 does not preserve Cq[X ]W ; thus, to find,
say, 〈Pλ,Yϕk+1mµ〉′k we have to calculate the highest term of the projection of
Yϕk+1mµ on Cq[X ]W , which is very difficult.

Proof. The proof is based on the following simple idea, which we have already used
before. Let P = 1

|W |
∑

w∈W w be the usual symmetrizer. Then for every f ∈ Cq[X ]

we have [f ]0 = [Pf ]0. Thus, if Pf = Pg, then [f ]0 = [g]0. Also, we will need the
following proposition.

Proposition 7.3. Let P− = 1
|W |

∑
w∈W (−1)l(w)w be the usual antisymmetrizer.

Then for every f ∈ Cq[X ]W we have

P−Yf = P−Ŷf.
The proof of this proposition is non-trivial and requires an introduction of a new

interesting operator – the q-antisymmetrizer. We will give this proof in the next
lecture.

Now let us prove the theorem. By definition,

〈Gf, g〉′k+1 = [(Gf)ḡιµk+1]0 = [(Gf)ḡιP(µk+1)].

Since µk+1 = ϕk+1ϕ−kµk = ϕk+1Xµk, and Xµk is antisymmetric (this is the
crucial step!), we have P(µk+1) = P−(ϕk+1)Xµk = 1

|W |dk+1δXµk (see formula

(6.8)).
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Similarly, P(X 2µk) = 1
|W |dkδXµk, and thus,

P(µk+1) =
dk+1

dk
P(X 2µk).

Substituting this in the expression for 〈Gf, g〉′k+1, we get

〈Gf, g〉′k+1 =
dk+1

dk
[X−1Y(f)ḡιX 2µk]0

=
dk+1

dk
[P(Y(f)ḡιXµk)]0 =

dk+1

dk
[P−(Y(f))ḡιXµk]0.

Using Proposition 7.3, we can replace in the last formula Y by Ŷ , and thus

〈Gf, g〉′k+1 =
dk+1

dk
[XŶ(f)ḡιµk]0

=
dk+1

dk
〈X Ŷf, g〉′k =

dk+1

dk
〈f, ŶXg〉′k,

which completes the proof of Theorem 7.2.

This theorem immediately implies that the shift operators indeed shift the pa-
rameter k of Macdonald polynomials:

Theorem 7.4. 1. GP
(k)
λ+ρ = qk|R

+|ck(λ)P
(k+1)
λ , where

ck(λ) =
∏

α∈R+

(q−k+(α∨,λ+(k+1)ρ) − qk−(α∨,λ+(k+1)ρ)),(7.4)

and GP
(k)
λ = 0 if λ− ρ /∈ P+.

2. For k ≥ 0, ĜP
(k+1)
λ = q−k|R

+|ĉk(λ)P
(k)
λ+ρ, where

ĉk(λ) =
∏

α∈R+

(qk+(α∨,λ+(k+1)ρ) − q−k−(α∨,λ+(k+1)ρ)).(7.5)

Proof. First, it is easy to prove, using Lemma 6.1, that GP
(k)
λ+ρ = qk|R

+|ckmλ+ . . . .

Thus, to prove (1) it suffices to check that 〈GP (k)
λ+ρ,mµ〉′k+1 = 0 if µ < λ. Due

to Theorem 7.2, this is equivalent to 〈P (k)
λ+ρ, Ĝmµ〉′k = 0. Since Ĝmµ is a linear

combination of mν with ν ≤ µ+ρ (this also follows from Lemma 6.1), the statement
follows from the definition of Macdonald polynomials. (2) is proved in a similar
way.

Now we can prove Macdonald’s inner product identities. Let us introduce

M ′
k(λ) = 〈P (k)

λ , P
(k)
λ 〉′k.

Proposition 7.5.

M ′
k+1(λ) = (−1)|R

+| dk+1

dk

ĉk(λ)

ck(λ)
M ′

k(λ+ ρ).(7.6)



288 ALEXANDER A. KIRILLOV, JR.

Proof. Using the previous theorem, we can write

M ′
k+1(λ) =(ck(λ)ck(λ)ι)−1〈GP (k)

λ+ρ, GP
(k)
λ+ρ〉′k+1

=
dk+1

dk
(ck(λ)ck(λ)ι)−1〈P (k)

λ+ρ, ĜGP
(k)
λ+ρ〉′k

=
(ĉk(λ)ck(λ))ι

ck(λ)ck(λ)ι
dk+1

dk
〈P (k)

λ+ρ, P
(k)
λ+ρ〉′k = (−1)|R

+| dk+1

dk

ĉk(λ)

ck(λ)
M ′

k(λ+ ρ).

Corollary 7.6. Let Mk(λ) = 〈P (k)
λ , P

(k)
λ 〉k = d−1

k (−1)k|R
+|qk(k−1)|R+|M ′

k(λ) (see
Proposition 6.3). Then

Mk+1(λ) =
∏

α∈R+

1− q2(α∨,λ+(k+1)ρ)+2k

1− q2(α∨,λ+(k+1)ρ)−2k
Mk(λ+ ρ).(7.7)

Applying this corollary k − 1 times and using M1(λ) = 1 for all λ ∈ P+ (this is
equivalent to saying that the Weyl characters are orthonormal), we get the Mac-
donald’s inner product identities, formulated in Lecture 2:

Theorem 7.7. (Macdonald’s inner product identities) If all kα = k, then

〈Pλ, Pλ〉k =
∏

α∈R+

k−1∏
i=1

1− q2(α∨,λ+kρ)+2i

1− q2(α∨,λ+kρ)−2i
.

To prove the inner product identities in the case where kα are not necessarily
equal (see Theorem 2.4), we have to introduce the shift operators separately for
the long and short roots. They are defined in precisely the same way as before, but
with the product in (7.1) taken only over long (respectively, short) roots. Repeating
the steps above with necessary changes, we can prove that the shift operators for
long roots (respectively, short roots) shift the corresponding kα by one. This gives
the proof of the general Macdonald’s inner product identities (2.6). We refer the
reader to [C6] for details.

Lecture 8: q-symmetrizers

In this lecture we prove Proposition 7.3 and thus complete the proof of the

inner product identities. Recall that we want to prove P−Yf = P−Ŷf for every

f ∈ Cq[X ]W , where P− is the antisymmetrizer and Y, Ŷ are defined by (7.1). Unfor-
tunately, the commutation relations between w ∈W and Y λ are very complicated,
making direct calculation impossible. However, there is a bypass, which involves
the introduction of the so-called “q-antisymmetrizer”. This does not seem to be
closely related with Macdonald’s theory, but it is interesting enough in itself, so we
spend some time discussing these new operators.

Let us start with describing the kernel of the antisymmetrizer.

Theorem 8.1. In any finite-dimensional representation V of W we have

KerP− =
∑
i

Ker(1 − si).(8.1)

Proof. Denote Vi = Ker(1 − si), V
′ =

∑
Vi.

Lemma. V ′ is W -invariant.
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Proof. It suffices to prove siVj ⊂ Vi + Vj . Let v ∈ siVj ; then sj(siv) = siv.
Introduce v± = 1

2 (v±siv). Then v = v++v−, siv = v+−v−, and thus sj(v+−v−) =
v+− v−, so v+ − v− ∈ Vj . Since by definition v+ ∈ Vi, we see that v ∈ Vi + Vj .

Let us return to the proof of the theorem. Obviously, it suffices to prove this
theorem for an irreducible representation. In this case, V ′ can be either 0 or V .
But:

V ′ = 0 ⇐⇒ all Vi = 0 ⇐⇒
for all i, (1− si) is invertible ⇐⇒

for all i, si = −1 in V ⇐⇒
V is the sign representation.

Thus, for an irreducible V we have

V ′ =

{
0, if V is the sign representation

V otherwise.

This coincides with KerP−.

Note that (8.1) also holds for the representation of W in the space of polynomials
Cq[X ], since this representation is a direct sum of finite-dimensional representations.

The main idea of the proof of Proposition 7.3 is to describe KerP− in Cq[X ]
using the action of the Hecke algebra H generated by T1, . . . , Tn rather than the
action of W , and then use the commutation relations of H with Y .

Let us introduce the following element of H , which we will call the q-antisym-
metrizer:

Pq
− = d−1

∑
w∈W

(−t)−l(w)Tw,(8.2)

where d =
∑

w∈W t−2l(w).
It is easy to see that as q → 1 this element becomes the usual antisymmetrizer

P−.

Theorem 8.2. 1. For every i = 1, . . . , n, Pq
− is divisible by Ti − t both on the

left and on the right.
2. We have the following properties for the action of Pq

− on Cq[X ]:

KerPq
− = KerP−

ImPq
− = Cq[X ]−W = {f ∈ Cq[X ]|(Ti + t−1)f = 0}.

3. Pq
− is a projector.

Proof. (1) Since w 7→ wsi is an involution of the Weyl group, W is a union of pairs
w,wsi where w is such that l(wsi) = l(w) + 1. Thus,

Pq
− = d−1

∑
l(wsi)=l(w)+1

(−t)−l(w)Tw(1− t−1Ti).

Divisibility on the left is proved similarly.
(2) It follows from (1) that KerPq

− ⊃ ∑Ker(Ti − t) =
∑

Ker(si − 1). On the
other hand, for q = 1 this inclusion is an equality by Theorem 8.1. Since the rank of
an operator cannot increase under specialization, we see that KerPq

− = KerP− =∑
Ker(1 − si). Similarly, (1) implies that ImPq

− ⊂ Cq[X ]−W ; since the dimension

of Cq[X ]−W is independent of q, we see that ImPq
− = Cq[X ]−W . (Of course, to
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make sense of these dimension arguments we must consider Cq[X ] as a filtered space
and note that both P− and Pq

− preserve this filtration.)

(3) is trivial: let v ∈ Cq[X ]−W . Then Tiv = −t−1v, so Twv = (−t)−l(w)v, and
Pq
−v = v.

Corollary. For f ∈ Cq[X ],P−f = 0 ⇐⇒ Pq
−f = 0.

Thus, to prove Proposition 7.3 it suffices to prove Pq
−(Y − Ŷ)f = 0 for every

f ∈ Cq[X ]W . Using the fact that Cq[X ] is a faithful representation of H, it is easy
to prove that this last condition is equivalent to

Pq
−(Y − Ŷ) =

∑
hi(Ti − t) for some hi ∈ ĤY(8.3)

as elements of ĤY .
Now, we can do the following trick. Since (8.3) is an identity in ĤY , it suffices

to prove it in any faithful representation of ĤY . Let us prove it in Cq[Y ] (see
Lecture 3). Now we can repeat the same chain of arguments in reverse order: (8.3)

⇐⇒ Pq
−(Y − Ŷ)f = 0 for every f ∈ Cq[Y ]W ⇐⇒ P−(Y − Ŷ)f = 0. But this

last condition is trivial: since Y, Ŷ act on Cq[Y ] by multiplication, and W acts by

w : Y λ 7→ Y w(λ), we have w0(Y) = (−1)|R
+|Ŷ , w0(Ŷ) = (−1)|R

+|Y, where w0 is the

longest element of the Weyl group. Since P− is divisible by (1 + (−1)|R
+|w0), we

have P−(Y − Ŷ) = 0. This completes the proof of Proposition 7.3, and thus, the
proof of Macdonald’s inner product identities.
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