Solutions

20. Recall that a nonempty subset N of an R-module M is a submodule if
and only if, for every z,y € N and every r € R, we have that x +1y € N.

So let z,y € N = U2, N; and r € R be given. Then, for some 7,5 € N
with ¢ < j, we have that £ € N; and y € N;. Hence, z,y € IV;. Since
N, is given to be a submodule, we have that = + ry € N;. Therefore,
x + ry € N, completing the proof.

21. Suppose, to get a contradiction, that M is free over the set {a1,...,a,} C
M. First, we claim that n = 1. For otherwise we have that

—az-a1+a1-a3=0-a1+0-as.

But then we have that M = (a1), which is impossible because (2, z) is not
principle.

22. The main computational tool to use in problems like this is the Chinese Re-
mainder Theorem (see Exercises 10.3.16 and 10.3.17 in Dummit & Foote).
In the particular case of quotient rings of Q[z], the Chinese Remainder
Theorem states that if a(x),b(x) € Q[x] have no nonconstant common
divisor, then Q[z]/a(x)b(x) = Q[z]/a(x) ® Q[z]/b(x). Our goal is then to
break-up and re-group the summands of V' to get expressions in invariant
factor and elementary divisor form, all the while using the Chinese Re-
mainder Theorem to guarantee that we still have the same Q[z]-module.

In this case, we get

V= Qlal/(e + 1 @ Qlal/ (e ~ 1)(a® +1)* & Qlal/ (@ + D — 1)
= Qlal/(w + 1 & Qlol/(z — 1) © Qlal/(&* + 1)? © Qlal /(& + 1)?
® Q]
= Qla)/(

Qlz]/(z = 1) (elementary divisor form)

[2]/(z 4+ 1)} (z — 1) ® Q[z]/(x® + 1)*(z + 1)%(x — 1) (invariant factor form)

23. Suppose that R is an integral domain, and let z,y € Tor(M) and r € R
be given. Then there exist r1,72 € R\{0} such that 1z = roy = 0. Thus,
since R is an integral domain (and so commutative), we have that rory # 0
and ror(z +ry) = 0. Thus, z+ry € Tor(M), so Tor(M) is a submodule.

To show that Tor(M/ Tor(M)) = 0, let z + Tor(M) € Tor(M/ Tor(M))
be given. We want to show that z € Tor(M). Now, for some r3 € R\{0},
we have that r3(z + Tor(M)) € Tor(M). Since Tor(M) is a submodule
(as we just proved), this implies that r3z € Tor(M), i.e, for some ry €
R\{0},r4r3z = 0. Since R is an integral domain, r4r3 # 0, so z € Tor(M),
as desired.

To give a ring R and a module M for which Tor(M) is not a submodule,
we obviously need R to be not an integral domain. In fact, it suffices to
take R = M = Z/6Z and consider M as a module over itself acting by the
usual multiplication. Then we have 2,3 € Tor(M), but 2+ 3 ¢ Tor(M).



24.

25.

26.

Let d = (m,n). First, note that

Zm@b (Zazz) (1®1),

80 Ziy, 7 Ly, is a cyclic group generated by the element 1 ® 1. Moreover,
since m(1® 1) =n(1® 1) =0, the order of Z,, ®z Z, divides d. Thus, to
complete the proof, it remains only to show that 1 ® 1 has order at least

d.
Note that the map ¢: Z,, X Z;, — Zq defined by

¢(a mod n,b mod m) = ab mod d

is bilinear over Z. It therefore follows from the universal property of tensor
products that the map ®: Z,, ®z Z,,, — Z4 given by

®((a mod n) ® (b mod m)) = ab mod d

is a well-defined Z-module homomorphism. Since ® maps 1 ® 1 to an
element of order d in Zg4, 1 ® 1 must have order at least d, as needed.

(Recall that an R-module M is a torsion R-module if Tor(M) = M.)
Suppose that G is a finite abelian group, and let g € G be given. We want
to show that g € Tor(G). Since G is finite, the submodule {ng : n € Z}
is finite. Thus, there exist distinct m,n € Z such that mg = ng, i.e,
(m —n)g = 0. Since m —n # 0, this shows that g € Tor(G), as desired.

For an example of an infinite abelian group M that is a torsion Z-module,
put M = &$2,7Z/27, where the Z-module structure on M is inherited from
Z/2Z in the usual way. Then we have 2z = 0 for each z € M.

Hompg(®A;, B) ~ [[, Homg(4;, B):

We want to identify a given homomorphism ¢: @& A; — B with a tuple
(¢1,p2,-..) of homomorphisms ¢;: A; — B. This may be achieved by
setting

vila) = ¢(0,...,0,a,0,...), a € A;. (1)

where the a is the ith argument of . It is straightforward to verify that
this is an group homomorphism. Moreover, if R is commutative, then this
map is an R-module homomorphism.

To show that this mapping is moreover an isomorphism, we need to show
that, given a tuple (¢1, @a,...), we can recover a unique homomorphism
v: @ A; — B satisfying equation (1). That equation (1) defines a homo-
morphism ¢: ®A; — B follows from the observation that elements of ©A;
are finite sums of elements of the form (0,...,0,a,0,...). Therefore, if we
use (1) to define the map ¢ on elements of the form (0,...,0,q,0,...),
then there exists a unique way to linearly extend ¢ to a map on ®A;.

Hompg(A4, [ B;) = ][; Homg(A, B;):



Given a homomorphism ¢: A — [] Bj, define a tuple (¢1, g2, ... ) of maps
pj: A — Bj by setting

pla) = (p1(a), p2(a),...).

The reader may verify that this establishes the desired isomorphism.



