
Solutions

20. Recall that a nonempty subset N of an R-module M is a submodule if
and only if, for every x, y ∈ N and every r ∈ R, we have that x + ry ∈ N .

So let x, y ∈ N = ∪∞
i=1Ni and r ∈ R be given. Then, for some i, j ∈ N

with i ≤ j, we have that x ∈ Ni and y ∈ Nj . Hence, x, y ∈ Nj . Since
Nj is given to be a submodule, we have that x + ry ∈ Nj . Therefore,
x + ry ∈ N , completing the proof.

21. Suppose, to get a contradiction, that M is free over the set {a1, . . . , an} ⊂
M . First, we claim that n = 1. For otherwise we have that

−a2 · a1 + a1 · a2 = 0 · a1 + 0 · a2.

But then we have that M = 〈a1〉, which is impossible because 〈2, x〉 is not
principle.

22. The main computational tool to use in problems like this is the Chinese Re-
mainder Theorem (see Exercises 10.3.16 and 10.3.17 in Dummit & Foote).
In the particular case of quotient rings of Q[x], the Chinese Remainder
Theorem states that if a(x), b(x) ∈ Q[x] have no nonconstant common
divisor, then Q[x]/a(x)b(x) ∼= Q[x]/a(x) ⊕ Q[x]/b(x). Our goal is then to
break-up and re-group the summands of V to get expressions in invariant
factor and elementary divisor form, all the while using the Chinese Re-
mainder Theorem to guarantee that we still have the same Q[x]-module.

In this case, we get

V ∼= Q[x]/(x + 1)2 ⊕ Q[x]/(x − 1)(x2 + 1)2 ⊕ Q[x]/(x + 1)2(x − 1)
∼= Q[x]/(x + 1)2 ⊕ Q[x]/(x − 1) ⊕ Q[x]/(x2 + 1)2 ⊕ Q[x]/(x + 1)2

⊕ Q[x]/(x − 1) (elementary divisor form)
∼= Q[x]/(x + 1)2(x − 1) ⊕ Q[x]/(x2 + 1)2(x + 1)2(x − 1) (invariant factor form)

23. Suppose that R is an integral domain, and let x, y ∈ Tor(M) and r ∈ R
be given. Then there exist r1, r2 ∈ R\{0} such that r1x = r2y = 0. Thus,
since R is an integral domain (and so commutative), we have that r2r1 	= 0
and r2r1(x+ ry) = 0. Thus, x+ ry ∈ Tor(M), so Tor(M) is a submodule.

To show that Tor(M/ Tor(M)) = 0, let z + Tor(M) ∈ Tor(M/ Tor(M))
be given. We want to show that z ∈ Tor(M). Now, for some r3 ∈ R\{0},
we have that r3(z + Tor(M)) ∈ Tor(M). Since Tor(M) is a submodule
(as we just proved), this implies that r3z ∈ Tor(M), i.e, for some r4 ∈
R\{0}, r4r3z = 0. Since R is an integral domain, r4r3 	= 0, so z ∈ Tor(M),
as desired.

To give a ring R and a module M for which Tor(M) is not a submodule,
we obviously need R to be not an integral domain. In fact, it suffices to
take R = M = Z/6Z and consider M as a module over itself acting by the
usual multiplication. Then we have 2, 3 ∈ Tor(M), but 2 + 3 /∈ Tor(M).
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24. Let d = (m, n). First, note that
∑

(ai ⊗ bi) =
(∑

aibi

)
(1 ⊗ 1),

so Zn ⊗Z Zm is a cyclic group generated by the element 1 ⊗ 1. Moreover,
since m(1⊗ 1) = n(1 ⊗ 1) = 0, the order of Zn ⊗Z Zm divides d. Thus, to
complete the proof, it remains only to show that 1 ⊗ 1 has order at least
d.

Note that the map ϕ : Zn × Zm → Zd defined by

ϕ(a mod n, b mod m) = ab mod d

is bilinear over Z. It therefore follows from the universal property of tensor
products that the map Φ: Zn ⊗Z Zm → Zd given by

Φ((a mod n) ⊗ (b mod m)) = ab mod d

is a well-defined Z-module homomorphism. Since Φ maps 1 ⊗ 1 to an
element of order d in Zd, 1 ⊗ 1 must have order at least d, as needed.

25. (Recall that an R-module M is a torsion R-module if Tor(M) = M .)
Suppose that G is a finite abelian group, and let g ∈ G be given. We want
to show that g ∈ Tor(G). Since G is finite, the submodule {ng : n ∈ Z}
is finite. Thus, there exist distinct m, n ∈ Z such that mg = ng, i.e,
(m − n)g = 0. Since m − n 	= 0, this shows that g ∈ Tor(G), as desired.

For an example of an infinite abelian group M that is a torsion Z-module,
put M = ⊕∞

i=1Z/2Z, where the Z-module structure on M is inherited from
Z/2Z in the usual way. Then we have 2x = 0 for each x ∈ M .

26. HomR(⊕Ai, B) � ∏
i HomR(Ai, B):

We want to identify a given homomorphism ϕ : ⊕ Ai → B with a tuple
(ϕ1, ϕ2, . . . ) of homomorphisms ϕi : Ai → B. This may be achieved by
setting

ϕi(a) = ϕ(0, . . . , 0, a, 0, . . . ), a ∈ Ai. (1)

where the a is the ith argument of ϕ. It is straightforward to verify that
this is an group homomorphism. Moreover, if R is commutative, then this
map is an R-module homomorphism.

To show that this mapping is moreover an isomorphism, we need to show
that, given a tuple (ϕ1, ϕ2, . . . ), we can recover a unique homomorphism
ϕ : ⊕ Ai → B satisfying equation (1). That equation (1) defines a homo-
morphism ϕ : ⊕Ai → B follows from the observation that elements of ⊕Ai

are finite sums of elements of the form (0, . . . , 0, a, 0, . . . ). Therefore, if we
use (1) to define the map ϕ on elements of the form (0, . . . , 0, a, 0, . . . ),
then there exists a unique way to linearly extend ϕ to a map on ⊕Ai.

HomR(A,
∏

Bj) �
∏

j HomR(A, Bj):
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Given a homomorphism ϕ : A → ∏
Bj , define a tuple (ϕ1, ϕ2, . . . ) of maps

ϕj : A → Bj by setting

ϕ(a) = (ϕ1(a), ϕ2(a), . . . ).

The reader may verify that this establishes the desired isomorphism.
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