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Roadmap for today

1 Motivation

2 Cycle Spaces of G

3 Determinant and Basis Construction for Lat(C)
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Graphs

Definition
Call the set of vertices and edges, graph G = (V,E), an
(undirected) connected graph, possibly with loops and multiedges.
A cycle of G is a connected subgraph of G with each vertex having
degree two. Denote the set of cycles of G as C(G).
A spanning tree of G is a acyclic connected subgraph of G
containing all of V.

Example
1

2

3

4
5 6

G = K4 cycle s. tree
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Graphs

Definition
For A ⊂ E, let χA ∈ {0, 1}n be the indicator vector of a cycle A of
graph G, where χi = 1 if ei ∈ E and 0 if not.

Example

χ{1,3,5,6} = (1, 0, 1, 0, 1, 1)

A.Chavez (UCD) Lattice of Cycles ADM 2021 4 / 32



An Appetizer: The Cycle Double Cover Conjecture

A bridge is a single edge whose removal disconnects G.
For any bridgeless graph G, there exists a list of cycles that
contains every edge of G exactly twice.
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An Appetizer: The Cycle Double Cover Conjecture

A bridge is a single edge whose removal disconnects G.
For any bridgeless graph G, there exists a list of cycles that
contains every edge of G exactly twice.




What if we consider positive integer combinations of cycles?

The semi-group generated by the cycles of G
SG(C(G)) =

{∑
A∈C nAχA : nA ∈ Z≥0

}
always contains (2, . . . , 2).

Moral: Linear Algebra and Graph Theory play well together!
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Cycle spaces of a graph
Let K be a field, usually Q or Fp := Z/pZ for prime p.
For A ⊆ E, let χA denote the characteristic vector of A.

Definition
For a collection A of subsets of E, define the linear hull of A as

Lin.HullK(A) :=

{∑
A∈A

nAχA : nA ∈ K

}
.

For A = C(G) and K = Q, this the rational cycle space of G.
Considering integer combinations of A, define the lattice of A as

Lat(A) :=

{∑
A∈A

nAχA : nA ∈ Z

}
⊂ ZE

For A = C(G) we call this the cycle lattice of G.
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Lattice of undirected K4

Consider the complete graph K4 and its set of cycles (as rows of a
matrix):

C =



1 1 1 1 0 0
1 1 0 0 0 1
1 0 1 0 1 1
1 0 0 1 1 0
0 1 0 1 1 1
0 1 1 0 1 0
0 0 1 1 0 1



A basis for the row space of C forms a basis for Lat(C(K4)) whose
rational cycle space has dimension 6.
What about Lat(C(G)) for a general graph G?
Is there always a basis of only cycles of G?
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Definition
G is r-vertex (or r-edge) connected if the removal of r − 1 vertices
(or edges) does not disconnect it.
A fundamental cycle for a spanning tree T, ci(e,T), is the unique
cycle contained in T ∪ e for e ∈ E \ T.

Example (Fundamental Cycles)
Consider the red spanning tree T on K4 and the remaining edges e1, e4,
and e5. Then the corresponding fundamental cycles are:

1

2

3

4
5 6

⇒




T ci(e1,T) ci(e5,T) ci(e4,T)
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Prior work
The rational cycle space has been characterized via series classes of E,
where e, f ∈ E are in series if they are in the same cycles (an equivalence
relation).

Proposition (Goddyn et al., 1999)
For any graph G = (V,E) with cycles C,

Lin.HullQ(C) ={p ∈ QE : p(e) = 0 for any bridge e,

and p(f ) = p(g) for f and g in series}.

Remark: This implies Lin.HullQ(C) and Lat(C) are full dimensional
when G is 3-edge-connected (equivalently, bridgeless and has only
trivial series classes).

What about an explicit basis?
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Prior work
Computing dimension and specific bases for directed graphs and undirected
graphs over F2 is well-understood:

Proposition (Can be found in Diestel, Section 1.9)
Consider the connected graph G with cycles C over K = Z/2Z. Then

for T a spanning tree of G, the collection of fundamental cycles of
T with respect to E\T forms a basis of Lin.HullK(C).
dim(Lin.HullK(C)) = |E| − |V|+ 1.

Example (Recall: dim(Lin.HullQ(C(K4))) = 6 for undirected K4)
The dimension of Lin.HullZ/2Z(C(K4)) = 6− 4 + 1 = 3, corresponding
with the fundamental cycle basis below:

⇒

{ }
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Undirected graphs and non-binary fields

For the rational cycle space and cycle lattice over undirected
cycles and for non-binary fields, our goals are:

Goal 1: Determine the
F determinant of the cycle lattice, and
F dimension of the rational cycle space.

Goal 2: Describe the associated bases using only cycles.

Goal 3: Determine the complexity of finding bases.
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Determinant of Lat(C)

Proposition (Averkov, C., De Loera, Gillespie - 2020)

If G = (V,E) is a 3-edge-connected graph with cycles C, then
det(Lat(C)) = 2|V|−1.

Example
Considering the matrix of cycles of K4 that span Lat(C),

A =



1 1 1 1 0 0
1 1 0 0 0 1
1 0 1 0 1 1
1 0 0 1 1 0
0 1 0 1 1 1
0 1 1 0 1 0

 ,

we have det(A) = 8 = 24−1.
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Characterizing edge (vertex) connectivity on a graph

Theorem (Menger’s theorem)
Let G be an undirected graph and u, v ⊂ V. Then the minimum number
of edges (vertices) to disconnect u and v is equal to the maximum
number of edge-disjoint (vertex-disjoint) paths connecting u and v.

Example (Cycle Double Cover Conj. for cycle lattice!)
For u and v of K4, by Menger’s theorem, we can use these paths to
show that 2χe ∈ Lat(C).

v

u

⇒

v

u

v

u

P

Q

e
⇒ 2χe = χP∪e + χQ∪e − χP∪Q
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Proof that det(Lat(C)) = 2|V|−1

We can express L = det(Lat(C)) in terms of group indices,[
Z|E| : L

]
.

This implies

2|E|

L
=
[
L : 2Z|E|

]
= 2dimZ/2Z

(
L/2Z|E|

)
.

The first equality is by comparison of determinants. The second
follows from interpreting L/2ZE as a vector space of ZE/2ZE.

The space of cycles over Z/2Z has dimension |E| − |V|+ 1
(Diestel).

Thus, we can compute L directly:

2|E|

L
= 2|E|−|V|+1 ⇒ L = 2|E|−(|E|−|V|+1) = 2|V|−1.
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A basis for Lat(C)

Theorem (Averkov, C., De Loera, Gillespie - 2020)
If G = (V,E) is a 3-edge-connected graph with circuits C, and if T is a
spanning tree of G, let

CT :=
{
χci(e,T) : e ∈ E \ T

}
,

and let
XT := {2χt : t ∈ T} ,

where ci(e,T) denotes the unique cycle contained in e ∪ T ⊂ E. Then
the collection CT ∪ XT is a basis for the cycle lattice of G.

One drawback: these are not all cycles! . . . but we can handle that.
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A basis of cycles for Lat(C)
Some notation first:

Definition
A semi-fundamental cycle of G is the symmetric difference of two
fundamental cycles, denoted ci(e1, e2,T), of a given spanning tree T
and edges e1, e2 ∈ E\T.

Example

For K4 with spanning tree, , the symmetric difference of

fundamental cycles whose intersection is edge 1 is:

e1

e2

e1

e2
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A basis of cycles for Lat(C)

Theorem (Averkov, C., De Loera, Gillespie - 2020)
If G is a connected graph, then a cycle lattice basis of G exists. If T is a
spanning tree of G, then the basis may be chosen to be
semi-fundamental with respect to T.

We prove this by giving an algorithm to construct a basis consisting of
cycles of G for a given spanning tree T:
S1: Use ci(e1,T) and ci(e2,T) to form a semi-fundamental cycle.
S2: Use same ci(ei,T) to indicate a unique edge t of G.
S3: Contract G by t and repeat process on G/t.

End: This inductively produces cycles, that along with the fundamental
cycles of T, form a basis.
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Generating a Cycle Lattice Basis for K4

Recall K4:

and the fundamental cycles we computed before:
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Generating a Cycle Lattice Basis for K4

Step 1: Use the symmetric difference of ci(e1,T) and ci(e2,T) to
uniquely find a semi-fundamental cycle:

e1

e2

e1

e2
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Generating a Cycle Lattice Basis for K4

Step 2: Identify the unique edge that the fundamental cycles share.
This is the edge labeled 1:

e1

e2

e1

e2
⋂ ⇒
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Generating a Cycle Lattice Basis for K4

Step 3: Contract K4 by 1 and repeat process on K4/1. Contraction
means identify the vertices adjacent to the edge 1:

⇒ ⇒
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Generating a Cycle Lattice Basis for K4

Step 1: We now identify two fundamental cycles on K4/1:

e3

e4 produces
and

e3

e4

which identifies the symmetric difference of fundamental cycles:

e3

e4 e4

e3
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Generating a Cycle Lattice Basis for K4

Step 2: Identify the unique edge that the fundamental cycles share.
This is the edge labeled 2:

e3

e4
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Generating a Cycle Lattice Basis for K4

Step 3: Contract K4/1 by 2 and repeat process on K4/1/2:

contracts to

Final Steps: This identifies two final fundamental cycles and their
symmetric difference gives us the last basis:

e5 e5

e6 e6
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Example of Cycle Lattice Basis for K4

The basis constructed contains the following fundamental and
semi-fundamental cycles:

B =

{
e1

e2

e3

e4

e5

e6

}

Check: the missing cycle is a linear combination of basis elements,

= + + - - -
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Basis size and computational complexity

Corollary (Averkov, C., De Loera, Gillespie - 2020)
Let G = (V,E) is a connected graph with m edges and n ≥ 2 vertices,
and let T be a spanning tree of G. Then a lattice cycle basis of G may
be constructed in time O(mn) such that each cycle has length at most
2 diam(T).

Proof.
Any semi-fundamental cycle lattice basis with respect to T has the
desired property. In particular, note that a fundamental cycle of T has
length at most diam(T) + 1, and thus a semi-fundamental cycle, as the
symmetric difference of two intersecting fundamental cycles, has
length at most 2diam(T).

A.Chavez (UCD) Lattice of Cycles ADM 2021 29 / 32



Notes on field K of characteristic p

Theorem (Averkov, C., De Loera, Gillespie - 2020)
Let G = (V,E) be a 3-edge-connected graph with m edges and n
vertices, and let K be a field of characteristic p.

Then Lin.HullK(C(G)) is a K-vector space of dimension

dimK(Lin.HullK(C(G))) =

{
m, if p 6= 2,
m− n + 1, if p = 2.

If p 6= 2, then any lattice basis of Lat(C(G)) reduces modulo p to a
linear basis of Lin.HullK(C(G)).

If p = 2, then any basis of the classical binary cycle space maps to
a linear basis of Lin.HullK(C(G)) under the natural inclusion map.
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Future Work

Generalize cycle-basis approach to matroids.
Explore the semi-group generated by cycles of graphs ... seems
difficult!
Can refined structural results be useful for addressing the Cycle
Double Cover Conjecture???
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