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Reflection groups

Let h be a finite-dimensional C-vector space and let W ⊆ GL(h) be a finite
group of linear transformations of h.

The set of reflections in W is

R = {r ∈W | codim(fix(r))= 1}.

The linear group W is a reflection group if it is generated by R . In any
case we define

A = {fix(r) | r ∈R} and h◦ = h\
⋃

H∈A

H .
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Dunkl operators

For each r ∈R we fix a linear form αr with zero set fix(r), and a collection
c = (cr )r∈R of complex numbers with the properties

cr = cwrw−1 and cr−1 = cr for all w ∈W and r ∈R .

Given a vector v ∈ h, the corresponding Dunkl operator is defined by

Dv = ∂v −
∑
r∈R

cr
αr (v)

αr
(1− r),

which is an element of the algebra D(h◦)oW generated by
polynomial-coefficient differential operators on h◦ and the group W . Dunkl
observed that they commute (for real reflection groups; Dunkl-Opdam later
proved it in general).
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The rational Cherednik algebra

The rational Cherednik algebra is the subalgebra Hc =Hc(W ,h) of
D(h◦)oW generated by C[h], the group W , and the Dunkl operators Dv

for v ∈ h.
Since the Dunkl operators commute, they give rise to a map C[h∗]→Hc ,
and the PBW theorem states that multiplication induces an isomorphism

C[h]⊗CW ⊗C[h∗]∼=Hc .
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First questions

As with any algebra depending on a parameter, one hopes to obtain a
description of the parameters c for which the rational Cherednik algebra
satisfies (or does not satisfy) various structural properties. The simplest of
these is: for which values of c is the ring Hc simple?

Another natural question is the following: we observe that by construction
Hc acts on C[h]. What is the set of c such that the Hc -module C[h] is
simple?

These questions turn out to have nice answers, whose explanation requires
a bit more machinery.
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The category Oc

The PBW theorem suggests, in analogy with Lie theory, that we should
consider the category Oc consisting of finitely-generated Hc -modules on
which each Dunkl operator Dv acts locally nilpotently.

The category Oc contains, for each E ∈ Irr(CW ), the standard object

∆c(E )= IndHc

C[h∗]oW
(E )∼=C[h]⊗E ,

which comes equipped with a Hermitian contravariant form 〈·, ·〉c
compatible with the Hc -action. The quotient

Lc(E )=∆c(E )/rad(〈·, ·〉c)

is the unique irreducible quotient of ∆c(E ), and these give a complete set
of irreducible objects of Oc .
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Why category Oc?

The category Hc -mod is very complicated. Certain structural features of
Hc depend only on Oc :

(a) Every finite-dimensional Hc -module is in Oc .
(b) If I is a primitive ideal in Hc then I = AnnHc

(L) for some irreducible
object L= Lc(E ) of Oc . (Ginzburg’s version of Duflo’s theorem).

(c) Hc is simple if and only if Oc is a semi-simple category.
(d) There is an analog of Schur-Weyl duality, known as the

Knizhnik-Zamolodchikov functor, relating Oc to the category of
modules over the Hecke algebra of W .
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The braid group of W

The braid group of W is the fundamental group

BW =π1(h
◦/W ,p) for a fixed base-point p ∈ h◦/W .

Given H ∈A a reflecting hyperplane for W , there is a distinguished
generator of monodromy TH ∈BW . The group algebra of W is the
quotient of the group algebra of BW by

nH−1∏
i=0

(TH −ζiH)= 0 for H ∈A ,

where nH is the order of the point-wise stabilizer WH of H and
ζH = e2πi/nH is a primitive nHth root of 1.
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The Hecke algebra of W

Let q = (qH ,i )H∈A ,0≤i≤nH−1 be a collection of formal variables with the
property

qH ,i = qw(H),i for all H ∈A and 0≤ i ≤ nH −1.

The Hecke algebra HW of W is the quotient of the group algebra of the
braid group BW by the relations

nH−1∏
i=0

(TH −ζiHqH ,i )= 0 for H ∈A .
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Fiber functors

Each object of Oc is in particular a finitely-generated C[h]-module, or in
other words a coherent sheaf on h. Given p ∈ h, we therefore obtain a
right-exact fiber functor to the category VectC of finite-dimensional
C-vector spaces,

Fp :Oc → VectC, M 7→M(p).

When p ∈ h◦, this functor is actually exact and (by a case-by-case analysis,
thanks to work of many mathematicians)

End(Fp)∼=HW ,c

where HW ,c is a certain specialization (at “q = e2πic ”) of the finite Hecke
algebra HW of W , which acts by monodromy on Fp.
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The KZ functor

For any choice of p ∈ h◦ we may and will regard the functor Fp as taking
values in HW ,c -mod, and we refer to it as the KZ functor. The KZ
functor:
(a) is represented by a projective object PKZ,c of Oc ,
(b) is fully faithful on projectives in Oc (that is, satisfies the double

centralizer property familiar from Schur-Weyl duality).
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Totally aspherical parameters

A direct description of PKZ,c is possible in certain cases (this is due to
Losev): Let A=C[h∗]/C[h∗]W>0 be the co-invariant algebra of W and put

Mc = IndHc

C[h∗]oW
(A)∼=C[h]⊗A.

Thus by Frobenius reciprocity

Hom(Mc ,M)= (eM)C[h
∗]W>0 .

Losev has observed that this functor is isomorphic to the KZ functor (that
is, Mc

∼=PKZ,c) if and only if the parameter is totally aspherical: that is, if
and only if each object M of Oc which is not fully supported is killed by
M 7→ eM.
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Aspherical parameters

A parameter c is aspherical if HceHc 6=Hc , or in other words if the functor
M 7→ eM from Hc -mod to eHce-mod is not an equivalence. It turns out to
be enough to check this condition on Oc . For the monomial groups
G (`,m,n), we know the set of aspherical values (Dunkl-G.) is a certain
explicit finite union of hyperplanes in the parameter space but for most
exceptional groups their calculation remains an important open problem.

The technique that is available for the groups G (`,m,n) but not for the
exceptional groups has to do with certain representation-valued orthogonal
polynomials generalizing Jack polynomials.
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A conjecture for totally aspherical parameters

Meanwhile, one might conjecture that c is totally aspherical provided the
inequalities

−1 ≤ cH ,i ≤ 0 for all H ∈A and 1≤ i ≤ nH −1

all hold, where

cH ,i =
1
nH

∑
r∈WH

(1−det(r)i )cr .

Since the Hecke parameter in HW ,c is qH ,i = e2πicH ,i , this conjecture would
imply the nice algebraic description

HW ,c
∼= EndHc

(C[h]⊗A)

of the Hecke algebra (for any Hecke parameter, we can choose a
compatible Cherednik parameter in the range [−1,0]).
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Finite-dimensional representations

One of the most natural questions one might ask is: what are the
finite-dimensional irreducible Hc -modules? It amounts to the same thing to
ask: for which pairs E and c is Lc(E ) finite-dimensional?

For the group G (`,m,n) and a fixed parameter c , one can compute the set
of E for which Lc(E ) is finite-dimensional using crystal operators on level `
Fock space (Shan-Vasserot, previously conjectured by Etingof).

It seems to be a difficult problem in general to fix E first, and then find the
set of c for which Lc(E ) is finite dimensional. But for E = triv (and for
certain other cases for the monomial groups, due to Gerber-Norton) we
have an answer.
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Varagnolo-Vasserot and Etingof’s work

For W a Weyl group and cr constant, Varagnolo-Vasserot proved that
Lc(triv) is finite-dimensional if and only if c is a positive rational number
whose denominator is an elliptic number for W (technique: realize the
Cherednik algebra as a convolution algebra coming from an affine
Steingberg variety).

Etingof settled the case in which W is a real reflection group, and the
parameter is no longer assumed constant. He used a formula relating the
contravariant form on Lc(triv) to the Macdonald-Mehta integral that
arising in statistical mechanics. Etingof’s work gives Varagnolo-Vasserot’s
as a corollary (though this is not trivial).
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Poincaré polynomials

The Poincaré polynomial PW (q) of W is the graded dimension of the
coinvariant algebra of W . If W is a Coxeter group, this is also equal to the
length generating function for W , and it factors as

PW (q)=
n∏
i=1

[di ]q where d1, . . . ,dn are the degrees of W

and [di ]q = 1+q+q2+·· ·+qdi−1 is the q-analog of di . In the Coxeter case
with two conjugacy classes of reflections, there is a two-variable version of
the length-generating function PW in which one distinguishes between
conjugacy classes of simple reflections.
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The principal Schur elements

For a complex reflection group, there is another q-analog of the order of W
which turns out to be important for us. Namely, assuming the existence of
a symmetrizing trace on the Hecke algebra with certain favorable properties
(as conjectured by Broué), one may associate a Schur element to each
irreducible representation of W , which is a polynomial in the Hecke
parameters. The Schur element SW of the trivial representation is then the
desired q-analog of |W |, and is equal to PW if W is a Coxeter group.
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When is Lc(triv) finite dimensional?

With Daniel Juteau we prove:

Theorem (G. - Juteau)
The representation Lc(triv) is finite dimensional if and only if for each
maximal parabolic subgroup W ′ <W , the parameter c lies on a positive
hyperplane H such that (SW /SW ′)(H)= 0.

The method obtains this theorem as a corollary of a more general theorem
which is independent of the symmetrizing trace conjecture and relates the
support of a module in category Oc to certain multi-variable analogs of
Bessel functions, the Dunkl exponential functions. Etingof’s result is a
consequence.

It would be very interesting to carry out a similar program for other
representations E (but this will require several new ideas).
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The group G13

As an example, we might consider the two-dimensional irreducible
reflection group labeled G13 in the Shephard-Todd notation. It has two
conjugacy classes of reflections, all of order 2, and we write c and d for the
corresponding Cherednik parameters. On the next page we draw the set of
points 0≤ c ,d ≤ 1 for which Lc(triv) is finite-dimensional in this case.
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