
The Minkowski and conformal superspaces

Rita Fioresi, February 14, 2012



Linear Supergeometry

! Super vector space: V = V0 ⊕ V1.
Example: km|n := km ⊕ kn, superspace of dimension m|n.



Linear Supergeometry

! Super vector space: V = V0 ⊕ V1.
Example: km|n := km ⊕ kn, superspace of dimension m|n.

! Superalgebra: super vector space with product respecting
parity.



Linear Supergeometry

! Super vector space: V = V0 ⊕ V1.
Example: km|n := km ⊕ kn, superspace of dimension m|n.

! Superalgebra: super vector space with product respecting
parity.

! Commutative Superalgebra: ab = (−1)p(a)p(b)ba.



Linear Supergeometry

! Super vector space: V = V0 ⊕ V1.
Example: km|n := km ⊕ kn, superspace of dimension m|n.

! Superalgebra: super vector space with product respecting
parity.

! Commutative Superalgebra: ab = (−1)p(a)p(b)ba.
Prototype of commutative superalgebra: polynomial
superalgebra.

k[x1 . . . xm, ξ1 . . . ξn] = Sym(x1 . . . xm)⊗ ∧(ξ1 . . . ξn)



Linear Supergeometry

! Super vector space: V = V0 ⊕ V1.
Example: km|n := km ⊕ kn, superspace of dimension m|n.

! Superalgebra: super vector space with product respecting
parity.

! Commutative Superalgebra: ab = (−1)p(a)p(b)ba.
Prototype of commutative superalgebra: polynomial
superalgebra.

k[x1 . . . xm, ξ1 . . . ξn] = Sym(x1 . . . xm)⊗ ∧(ξ1 . . . ξn)

! Supermodules: modules over commutative superalgebras.



Linear Supergeometry

! Super vector space: V = V0 ⊕ V1.
Example: km|n := km ⊕ kn, superspace of dimension m|n.

! Superalgebra: super vector space with product respecting
parity.

! Commutative Superalgebra: ab = (−1)p(a)p(b)ba.
Prototype of commutative superalgebra: polynomial
superalgebra.

k[x1 . . . xm, ξ1 . . . ξn] = Sym(x1 . . . xm)⊗ ∧(ξ1 . . . ξn)

! Supermodules: modules over commutative superalgebras.
Am|n := A⊗ km|n free A-module of dimension m|n.

Am|n
0 := A0 ⊗ km ⊕ A1 ⊗ kn

Am|n
1 := A0 ⊗ kn ⊕ A1 ⊗ km



The General Linear Supergroup

The General Linear supergroup GL(m|n)(A): it is the group of
invertible parity preserving linear transformations of the module
Am|n:

GL(m|n)(A) :=
{

φ : Am|n −→ Am|n, φ invertible
}

=

{(

x ξ
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The General Linear Supergroup

The General Linear supergroup GL(m|n)(A): it is the group of
invertible parity preserving linear transformations of the module
Am|n:

GL(m|n)(A) :=
{

φ : Am|n −→ Am|n, φ invertible
}

=

{(

x ξ
η y

)}

φ parity preserving is equivalent to:
• x , y block invertible matrices with coefficients in A0.
• ξ, η matrices with coefficients (nilpotenti) in A1.

GL(m|n) is a representable functor.

GL(m|n) : (salg) −→ (sets), GL(m|n)(A) = Hom(k[GL(m|n)],A).

(salg) = category of commutative superalgebras
(sets) = category of sets



The Berezinian

Ber

(

A B
C D

)

= det(D)−1det(A− BD−1C )

= det(A)−1det(D − CA−1B)

Ber is multiplicative, i.e. it is a group morphism
Ber : GL(m|n)(R) −→ R∗

Ber(XY ) = Ber(X )Ber(Y )



The Berezinian

Ber

(

A B
C D

)

= det(D)−1det(A− BD−1C )

= det(A)−1det(D − CA−1B)

Ber is multiplicative, i.e. it is a group morphism
Ber : GL(m|n)(R) −→ R∗

Ber(XY ) = Ber(X )Ber(Y )

Notice the matrix

X =

(

A B
C D

)

is invertible if and only if A and D are invertible, since B and C are
nilpotents (nilpotent entries).
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The concept of Superspace and Supervariety

A superspace S = (|S |,OS ) is a topological space |S | with a sheaf
of superalgebras OS such that OS,x is a local a superalgebra.

A superspace is a differentiable supermanifold if locally isomorphic
to the superspace Rp|q, its topological space is Rp and the
structural sheaf is

C∞
Rp ⊗∧(ξ1 . . . ξq).

A superspace is a algebraic supervariety or a superscheme if its
topological space is the topological space of a scheme X0 and its
structural sheaf is a quasicoerent sheaf of OX0 modules.

Examples: km|n, GL(m|n) ⊂ M(m|n).



The Funtor of points in supergeometry
For each superspace, supervariety and superscheme we can
associate the functor of points which characterizes completely the
geometric space.

! Differentiable Supermanifolds. Define the funtor of points of
M as:

(smflds)
hM−→ (sets)
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The Funtor of points in supergeometry
For each superspace, supervariety and superscheme we can
associate the functor of points which characterizes completely the
geometric space.

! Differentiable Supermanifolds. Define the funtor of points of
M as:

(smflds)
hM−→ (sets)

T −→ Hom(smflds)(T ,M) = Hom(salg)(O(M),O(T ))

! Algebraic Supervarieties (Superschemes). Define the funtor of
points of M as:

(sschemes)
hM−→ (sets)

T −→ Hom(sschemes)(T ,M)



The General linear Supergroup

Example revisited: GL(m|n).

! Differentiable Case.

GL(m|n)(T ) = Hom(salg)(C
∞(xij)⊗ ∧(ξkl)[u−1, v−1],O(T ))

u = det(xij)1≤i ,j≤m, v = det(xij)m+1≤i ,j≤n



The General linear Supergroup

Example revisited: GL(m|n).

! Differentiable Case.

GL(m|n)(T ) = Hom(salg)(C
∞(xij)⊗ ∧(ξkl)[u−1, v−1],O(T ))

u = det(xij)1≤i ,j≤m, v = det(xij)m+1≤i ,j≤n

! Algebraic Case.

GL(m|n)(T ) = Hom(salg)(k[xij , ξkl ][u−1, v−1],O(T ))



Morphisms between supermanifolds: Supersymmetry
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Morphisms between supermanifolds: Supersymmetry

Using the functor of points notation we can easily define
morphisms:
Example:

φT : R1|2(T ) −→ R1|2(T )
t '→ t + θ1θ2

θ1 '→ θ1

θ2 '→ θ2

! Differentiable Supermanifolds.
Chart’s theorem. There is a bijection between morphisms
of superdomains Rm|n −→ Rp|q and the set of p + q-uples
(t1 . . . tp, θ1 . . . θq) of sections in O(Rm|n).

! Algebraic case. Theorem. The morphisms between
superschemes (supervariety) X −→ Y correspond bijectively
to morphisms of the superalgebras of global sections
O(Y ) −→ O(X ).
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Supergroups and Quantum Groups

! Supergroups: Supermanifolds with group structure.

Supergroups ←→ Hopf Superalgebras

! Quantum Groups:

Quantum Groups ←→ Hopf Algebras

Attention: No functor of points for quantum groups!
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there exists a unique manifold (variety) structure on G/H with the
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In supergeometry we have:

Theorem(F.-Lledo-Varadarajan, 2007). Let G is a Lie supergroup
and H a closed subgroup. Then there exists a unique
supermanifold structure on G/H with the universal property. The
functor of points of G/H is:

T '→ G (T )/H(T )

Algebraic case: Solution proposed by A. Masuoka, A. Zubkov.



The ordinary Minkowski and conformal spaces

Classically the complex Minkowski space M can be realized as big
(open) cell inside the grassmannian variety G (2, 4) = SL4(C)/Pu
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The ordinary Minkowski and conformal spaces

Classically the complex Minkowski space M can be realized as big
(open) cell inside the grassmannian variety G (2, 4) = SL4(C)/Pu

with

Pu =

{(

L M
0 R

)

∈ SL4(C)

}

M =

{(

112 0
A 112

)

Pu

}

⊂ SL4(C)/Pu, A =

{(

a11 a12

a21 a22

)}

The group leaving M invariant is:

P =

{(

L 0
NL R

)}

⊂ SL4(C)

In this way the actions of the Poincare’ P on M and the conformal
group SL4(C) on the grassmannian G (2, 4) appear naturally.



P ×M −→ M
(

L 0
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)

,

(

112 0
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)

Pu '→
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P ×M −→ M
(

L 0
NL R

)

,

(

112 0
A 112

)

Pu '→

(

112 0
N + RAL−1 112

)

Pu

P = M2 ! H. M2 = {N} acts as translations and

H =

{(

L 0
0 R

)

, detL · detR = 1

}

∼= SL2(C)× SL2(C)× C
×

In the basis of the Pauli matrices

σ0 =

(

1 0
0 1

)

, σ1 =

(

0 1
1 0

)

, σ2 =

(

0 −i
i 0

)

, σ3 =

(

1 0
0 −1

)

,

an arbitrary matrix A can be written as

A =

(

a11 a12

a21 a22

)

= x0σ0+x1σ1+x2σ2+x3σ3 =

(

x0 + x3 x1 − ix2

x1 + ix2 x0 − x3

)

,

and (x0, x1, x2, x3) are the ordinary coordinates of Minkowski
space.

det A = (x0)2 − (x1)2 − (x2)2 − (x3)2.



Real Classical Minkowski
There is a natural conjugation θ on the big cell (Minkowski space):

θ : A =

(

α β
γ δ

)

'→ A† =

(

ᾱ γ̄
β̄ δ̄

)

.

The fixed point set is M×
R = {A ∈ M2(C) | A† = A}, the real

Minkowski space.



Real Classical Minkowski
There is a natural conjugation θ on the big cell (Minkowski space):

θ : A =

(

α β
γ δ

)

'→ A† =

(

ᾱ γ̄
β̄ δ̄

)

.

The fixed point set is M×
R = {A ∈ M2(C) | A† = A}, the real

Minkowski space. The complex group SO(6, C) ∼= Pu acting on M
corresponds to the real form SO(4, 2) acting on MR and its spin
group SU(2, 2). The hermitian form on C4 left invariant by this
real form is

(u, v) = u†Fv , F =

(

0 I
−I 0

)

, u, v ∈ C
4.

The subgroup PR leaving MR invariant is

PR =

{(

L 0

NL L†
−1

)

, N hermitian and det(L) ∈ R

}

,

and its action on MR is

A '→ N + L†
−1

AL−1.
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Complex Super Flag manifold and Minkowski superspace

F = F (2|0, 2|1; 4|1) ⊂ G (2|0; 4|1) × G2 = G (2|1; 4|1) flag of 2|0,
2|1 subspaces in C4|1.

F (T ) = SL(4|1)(T )/H(T )

U1, U2 big cells in G (2|0; 4|1) and G2 = G (2|1; 4|1).









I
A
α



 ,





I 0
B β
0 1







 ∈ U1(T )× U2(T )

U1 is inside U2 iff

A = B + βα Twistor relations

(A,α,β) coordinates for the Minkowski superspace.



The subgroup of SL(4|1) that leaves the big cell invariant is:





L 0 0
NL R Rχ
dϕ 0 d





Its action on the super Minkowski space is:

A −→ R(A + χα)L−1 + N,

α −→ d(α + ϕ)L−1,

β −→ d−1R(β + χ)



Real Super Minkowski space
The real form of SL(4|1) is given by the involution:

SL(4|1)(R)
ξ

−−−−→ S̄L(4|1)(R)

g −−−−→ g ξ := L(xθ)−1L
L =

(

F 0
0 1

)

, F =

(

0 1
1 0
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Real Super Minkowski space
The real form of SL(4|1) is given by the involution:

SL(4|1)(R)
ξ

−−−−→ S̄L(4|1)(R)

g −−−−→ g ξ := L(xθ)−1L
L =

(

F 0
0 1

)

, F =

(

0 1
1 0

)

The conjugation on the Poincaré supergroup reads:

g ξ =







R†−1
0 0

−L†
−1

M†R†−1
− L†

−1
ϕ†χ† L†

−1
−jL†

−1
ϕ†

−j d̄−1χ† 0 d̄−1






.

The fixed points are those that satisfy the conditions:

L = R†−1
, χ = −jϕ†, ML−1 = −(ML−1)† − jL†

−1
ϕ†ϕL−1

After a translation one gets the more familiar form for the reality
conditions:

M ′L−1 ≡ ML−1 +
1

2
jL†

−1
ϕ†ϕL−1, M ′ = −M ′†.



On the big cells U1 × U1 in F we have:

g ξ =





11 0 0
−A† − α†β† 11 −jα†

−jβ† 0 1



 .

The real points are given by

A = −A† − jα†α, β = −jα†.

We can make a convenient change of coordinates,

A′ ≡ A +
1

2
jα†α,

so the reality condition is

A′ = −A′†,

So we obtain the real Minkowski space time.
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Quantum chiral Super Minkowski space
We need a quantum deformation of the grassmannian and flag
supermanifolds.
We start with the quantum matrix superalgebra.

Mq(m|n) =def Cq < aij > /IM

where the ideal IM is generated by the Manin relations:

aijail = (−1)π(aij )π(ail )q(−1)p(i)+1
ailaij , j < l

aijakj = (−1)π(aij )π(akj )q(−1)p(j)+1
akjaij , i < k

aijakl = (−1)π(aij )π(akl )aklaij , i < k, j > l or i > k, j < l

aijakl − (−1)π(aij )π(akl )aklaij =

(−1)π(aij )π(akj )(q−1 − q)akjail i < k, j < l

p(i) = 0 if 1 ≤ i ≤ m, p(i) = 1 otherwise and π(aij) = p(i) + p(j)
denotes the parity of aij .



Quantum General Linear Supergroup

GLq(m|n) =def Mq(m|n)〈D1
−1,D2

−1〉

where D1
−1, D2

−1 are even indeterminates such that:

D1D
−1
1 = 1 = D1

−1D1, D2D2
−1 = 1 = D2

−1D2

and

D1 =def

∑

σ∈Sm
(−q)−l(σ)a1σ(1) . . . amσ(m)

D2 =def

∑

σ∈Sn
(−q)l(σ)am+1,m+σ(1) . . . am+n,m+σ(n)

are the quantum determinants of the diagonal blocks.
Mq(m|n), GLq(m|n) are bialgebras with the usual comultiplication
and counit:

∆(aij) =
∑

aik ⊗ akj , ε(aij) = δij .

GLq(m|n) is also an Hopf superalgebra.



The Supergrassmannian
We define quantum super Grassmannian of 2|0 planes in 4|1
dimensional superspace as the non commutative superalgebra Grq
generated by the following quantum super minors in GLq(4|1):

Dij = ai1aj2 − q−1ai2aj1, 1 ≤ i < j ≤ 4, D55 = a51a52

Di5 = ai1a52 − q−1ai2a51, 1 ≤ i ≤ 4.

The quantum minors are all of the invariants under the natural
GL2(2) coaction.
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The Supergrassmannian
We define quantum super Grassmannian of 2|0 planes in 4|1
dimensional superspace as the non commutative superalgebra Grq
generated by the following quantum super minors in GLq(4|1):

Dij = ai1aj2 − q−1ai2aj1, 1 ≤ i < j ≤ 4, D55 = a51a52

Di5 = ai1a52 − q−1ai2a51, 1 ≤ i ≤ 4.

The quantum minors are all of the invariants under the natural
GL2(2) coaction.
Problem: determine all of the commutation and Plucker relations
between the quantum minors.
Theorem: Grq is a quantum homogeneous superspace for the
quantum supergroup GLq(4|1), i. e., we have a coaction given via
the restriction of the comultiplication of GLq(4|1):

∆|Grq : Grq −→ GLq(4|1) ⊗ Grq.



Quantum Super Minkowski

The quantum super Minkowski Mq is realized as the big cell inside
the quantum super grassmannian: we invert the quantum minor
D12.
Mq is defined as the subring of Grq generated by:

t =

(

−D23D
−1
12 D13D

−1
12

−D24D
−1
12 D14D

−1
12

)

τ = (−D25D
−1
12 ,D15D

−1
12 )

Mq admits the following presentation:

ti1ti2 = q ti2ti1, t3j t4j = q−1 t4j t3j , 1 ≤ j ≤ 2, 3 ≤ i ≤ 4

t31t42 = t42t31, t32t41 = t41t32 + (q−1 − q)t42t31,

τ51τ52 = −q−1τ52τ51, tijτ5j = q−1τ5j tij , 1 ≤ j ≤ 2

ti1τ52 = τ52ti1, ti2τ51 = τ51ti2 + (q−1 − q)ti1τ52.



Theorem There is a natural coaction of the quantum super
Poincare’ group Pq on the quantum super Minkowski space:

∆̃|Mq : Mq −→ Pq ⊗Mq

where
Pq = GLq(4|1))/Iq

where Iq is the (two-sided) ideal in GLq(4|1) generated by

g1j , g2j , for j = 3, 4 and γ15, γ25


