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Linear Supergeometry

>

Super vector space: V = V& V.

Example: k™" := k™ @ k", superspace of dimension m|n.
Superalgebra: super vector space with product respecting
parity.

Commutative Superalgebra: ab = (—1)P(2)P(b) pa,

Prototype of commutative superalgebra: polynomial
superalgebra.

Klxi.. . Xm,&1 ... &n] = Sym(x1 ... xm) @ A (&1 ... &n)

Supermodules: modules over commutative superalgebras.
AmIn = A @ k™" free A-module of dimension m|n.

AT = Ag @ kM & Ay @ K"
Al M= Ay ® k" @& Ay @ k™
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The General Linear Supergroup

The General Linear supergroup GL(m|n)(A): it is the group of
invertible parity preserving linear transformations of the module
A,

GL(mIn)(A) = { &+ ATI" — AT, invertible } = {(X f)}

ny

¢ parity preserving is equivalent to:
e x, y block invertible matrices with coefficients in Ap.
e &, ) matrices with coefficients (nilpotenti) in Aj.

GL(m|n) is a representable functor.
GL(m|n) : (salg) — (sets), GL(m|n)(A) = Hom(k[GL(m|n)], A).

(salg) = category of commutative superalgebras
(sets) = category of sets
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The Berezinian

Ber( /2. g ) = det(D) tdet(A— BD71C)
= det(A)~tdet(D — CA~1B)

Ber is multiplicative, i.e. it is a group morphism
Ber : GL(m|n)(R) — R*

Ber(XY') = Ber(X)Ber(Y)

x=(25)

is invertible if and only if A and D are invertible, since B and C are
nilpotents (nilpotent entries).

Notice the matrix
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The concept of Superspace and Supervariety

A superspace S = (|S|, Os) is a topological space |S| with a sheaf
of superalgebras Os such that Og , is a local a superalgebra.

A superspace is a differentiable supermanifold if locally isomorphic
to the superspace RPI9, its topological space is RP and the
structural sheaf is

G @ A(Er. .. €9).

A superspace is a algebraic supervariety or a superscheme if its
topological space is the topological space of a scheme Xj and its
structural sheaf is a quasicoerent sheaf of Ox, modules.

Examples: k™" GL(m|n) C M(m|n).
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The Funtor of points in supergeometry

For each superspace, supervariety and superscheme we can
associate the functor of points which characterizes completely the
geometric space.

» Differentiable Supermanifolds. Define the funtor of points of
M as:

(smflds) LR (sets)

T — Hom(smﬂds)(Ta M) = Hom(salg)(O(M)a o(T))

» Algebraic Supervarieties (Superschemes). Define the funtor of
points of M as:

(sschemes) LR (sets)

T - Hom(sschemes)(T7 M)



The General linear Supergroup

Example revisited: GL(m|n).
» Differentiable Case.

GL(m|n)(T) = Hom(saig) (C*(x;j) @ A(&k)[u™, v, O(T))

u = det(x;j)1<ij<m; v = det(Xj)m+1<ij<n



The General linear Supergroup

Example revisited: GL(m|n).
» Differentiable Case.

GL(m|n)(T) = Hom gug)(C*°(xij) @ A(&)[u™t, v, O(T))
u = det(xjj)1<ij<m v = det(Xj)m+1<ij<n

> Algebraic Case.

GL(m|n)(T) = Hom(saigy ([xjj, Ewl[u™, v™1], O(T))
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Morphisms between supermanifolds: Supersymmetry

Using the functor of points notation we can easily define

morphisms:
Example:
o RW(T) — RWX(T)
t — t+ 616>
91 — 91
92 (g 92

» Differentiable Supermanifolds.
Chart’s theorem. There is a bijection between morphisms
of superdomains R™" — RPI9 and the set of p + g-uples
(t1...tp,01...04) of sections in O(R™").

» Algebraic case. Theorem. The morphisms between
superschemes (supervariety) X — Y correspond bijectively
to morphisms of the superalgebras of global sections
o(Y) — O(X).
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» Supergroups: Supermanifolds with group structure.

Supergroups «—  Hopf Superalgebras

» Quantum Groups:

Quantum Groups «+—  Hopf Algebras

Attention: No functor of points for quantum groups!
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Homogeneous Spaces
Classically if G is a Lie (algebraic) group and H a closed subgroup,
there exists a unique manifold (variety) structure on G/H with the

universal property:
G

K<—G/H
In supergeometry we have:

Theorem(F -Lledo-Varadarajan, 2007). Let G is a Lie supergroup
and H a closed subgroup. Then there exists a unique
supermanifold structure on G/H with the universal property. The
functor of points of G/H is:

T+— G(T)/H(T)

Algebraic case: Solution proposed by A. Masuoka, A. Zubkov.
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The ordinary Minkowski and conformal spaces

Classically the complex Minkowski space M can be realized as big
(open) cell inside the grassmannian variety G(2,4) = SL4(C)/P,

= {4 ) csu)

{5 ) s as{(3 )

The group leaving M invariant is:

p— {(/\Z g)} C SL,(C)

In this way the actions of the Poincare’ P on M and the conformal
group SL4(C) on the grassmannian G(2,4) appear naturally.
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PxM — M
L 0 M, 0 1 0
<NL R)’(A 112>P“ - <N+RAL—1 112>P“

P =M, x H. M, ={N} acts as translations and

H— {(é g) | detl - detR — 1} ~ STy(C) x SLy(C) x C*

In the basis of the Pauli matrices

(10 (01 (0 =i (1 0
UO_ 0 1 9 01 = 1 07 02 = I 0 9 03_ 0 _17

an arbitrary matrix A can be written as

0 3 1 2
a a X"+ X7 X —Ix
A= 1 12 = X00'0+X10'1+X2O'2+X30'3 = 1 ) 0 3 5
a1 ax X"+ Ix X0 =X
and (x%, x1, x2, x3) are the ordinary coordinates of Minkowski

space. det A — (x0)2 _ (x1)2 _ (x2)2 — (X3)2.



Real Classical Minkowski
There is a natural conjugation 6 on the big cell (Minkowski space):

a_ (@ B _ (a7
() - - 3)

The fixed point set is My = {A € My(C) | AT = A}, the real
Minkowski space.



Real Classical Minkowski
There is a natural conjugation 6 on the big cell (Minkowski space):

a_ (@ B _ (a7
() - - 3)

The fixed point set is My = {A € My(C) | AT = A}, the real
Minkowski space. The complex group SO(6,C) = P, acting on M
corresponds to the real form SO(4,2) acting on Mg and its spin
group SU(2,2). The hermitian form on C* left invariant by this

real form is
T 0 / 4
(u,v) =u'Fv, F= YR u,veCh
The subgroup Pgr leaving Mg invariant is

Pr = . 0 N hermiti d det(L) e R
R = NL L_i__]_ 5 ermitian an € y

and its action on Mg is

A N+ LAt
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Complex Super Flag manifold and Minkowski superspace

F = F(2]0,2|1;4]1) € G(2(0;4/1) x G, = G(2|1; 4|1) flag of 2|0,
2|1 subspaces in C*I*.

F(T) = SL(4[1)(T)/H(T)

Ui, Uy big cells in G(2|0;4|1) and Gy = G(2|1;4|1).

/ I 0
((A) , (B B)) € Ui(T) x Uy(T)
« 0 1

Uy is inside U, iff
A= B+ fa Twistor relations

(A, «, 3) coordinates for the Minkowski superspace.



The subgroup of SL(4|1) that leaves the big cell invariant is:

L 0 0
NL R Ry
dp 0 d

Its action on the super Minkowski space is:
A— R(A+xa)L™' + N,

a— d(a+ )L™t
B— d'R(B+ x)



Real Super Minkowski space
The real form of SL(4|1) is given by the involution:

SL(4J1)(R) ——  3L(4[1)(R) L—(g (1)> F:G (1))

g —— g =LKL



Real Super Minkowski space
The real form of SL(4|1) is given by the involution:

SLA(R) ——  SLALR) (0. F=(2))

g —— ey N 'O

The conjugation on the Poincaré supergroup reads:

RI™ 0 0
g5 = | —LITIMIRTT — 1Mot LT
—jd ™I\ 0 d1

The fixed points are those that satisfy the conditions:
L=RTN =l MU= (ML L

After a translation one gets the more familiar form for the reality
conditions:

1 _
MLt = ML+ S Yotol™t, M =Mt



On the big cells U; x Uy in F we have:

1 0 0
gt = | -AT—afpt 1 —jaf
—jpt 0 1

The real points are given by

A=—A"—jala, B =—jal.
We can make a convenient change of coordinates,

I — L. t
A=A+ —ja'a,
2
so the reality condition is
A=At

So we obtain the real Minkowski space time.
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Quantum chiral Super Minkowski space

We need a quantum deformation of the grassmannian and flag
supermanifolds.
We start with the quantum matrix superalgebra.

Mq(m|n) =ger Cq < ajj > /Im
where the ideal Iy is generated by the Manin relations:

ajaj = (_1)7T(3U)7r(a,-/)q(—l)p(i)+lai,a,-1-7 j<I
ajai; = (—1)”(3U)”(akf)q(_1)p(j)+1akja,-j, i<k
ajar = (—1)" @@ a a0 i< kj>1 or i>kj<I
ajjar — (—1)7@7™(@w) gy 5, =

(_]_)77(aij)7"(akj)(q_1 — q)akja,-/ i< k,j<lI

p(i)=0if 1 <i<m, p(i) =1 otherwise and 7(a;;) = p(i) + p(j)
denotes the parity of aj;.



Quantum General Linear Supergroup
GLg(m|n) =ger Mq(m|n)(D1_1, D2_1>
where D;71, D71 are even indeterminates such that:
DiD;'=1=D1"'D;, DDy '=1=D'D;
and
D1 =qer desm(_q)_I(U)ala(l) < mo(m)

Dy =ger desn(_q)l(a)am-i-l,m—f—a(l) -+ dmi-n,m+o(n)

are the quantum determinants of the diagonal blocks.
Mgq(m|n), GLg(m|n) are bialgebras with the usual comultiplication
and counit:

Alag) =) an@ay,  e(aj) =6j.

GLg(m|n) is also an Hopf superalgebra.
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We define quantum super Grassmannian of 2|0 planes in 4|1
dimensional superspace as the non commutative superalgebra Gry
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The quantum minors are all of the invariants under the natural
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The Supergrassmannian
We define quantum super Grassmannian of 2|0 planes in 4|1
dimensional superspace as the non commutative superalgebra Gry
generated by the following quantum super minors in GL4(4/1):

Djj = anajp — q tapaj, 1<i<)j<4 Dss = as1as2

Dijs = ajiasz — g *apas, 1<i<4

The quantum minors are all of the invariants under the natural
GL>(2) coaction.

Problem: determine all of the commutation and Plucker relations
between the quantum minors.

Theorem: Gry is a quantum homogeneous superspace for the
quantum supergroup GLg(4[1), i. e., we have a coaction given via
the restriction of the comultiplication of GLg(4/1):

Algr, : Grg — GLg(4|1) @ Gryg.



Quantum Super Minkowski

The quantum super Minkowski M, is realized as the big cell inside

the quantum super grassmannian: we invert the quantum minor
D12.
M, is defined as the subring of Gry generated by:

— DDy} 01301—21) 1 1
t= = = 7 = (=Dos DY, DisD
<—D24D121 D14Dyy' (=D2sDrz'. DisDz )

Mg admits the following presentation:

tirtio = q tioti, tsjtaj = q ' tajts), 1<;<2, 3<i<4
t31t42 = ta2t31, t3ota; = ta1tzo + (q‘l — q)taotay,
Ts1T52 = —q L TsaTs1, tjjTsj = q_lTSjtijy 1<,<2

ti1Ts2 = T2t tioTs1 = Ts1tio + (q_l — q)ti1Ts2.



Theorem There is a natural coaction of the quantum super
Poincare’ group P4 on the quantum super Minkowski space:

Ay, : Mg — Pg@ M,

where
Pq = GLq(4|1))//q

where /I, is the (two-sided) ideal in GL4(4/1) generated by

81j, 82j, for ./: 374 and Y15, 725



