115 Homework 7

Due Friday November 19

Question 1 (Midterm *déjà vu.*) Prove that the system of congruences

\[x \equiv a_1 \mod m_1, \ldots, x \equiv a_r \mod m_r, \]

has a unique solution modulo \(m_1 \ldots m_r \) when \(m_1, \ldots, m_r \) are pairwise relatively prime.

Question 2 (Rosen 6.1.10) What is the remainder when \(6^{2000} \) is divided by 11?

Question 3 (Rosen 6.1.34) Show that if \(p \) is prime and \(0 < k < p \), then

\[(p - k)!(k - 1)! \equiv (-1)^k \mod p. \]

Question 4 (Rosen 6.1.40,41) Utilize the fact that if \(p \) is prime and \(0 < k < p \) then \(p \left(\frac{p}{k} \right) \) to show that integers \(a \) and \(b \) obey \((a + b)^p = a^p + b^p \mod p \). Now give an inductive proof of Fermat’s little theorem.

Question 5 (Rosen 6.2.2) Show 45 is pseudoprime base 17 and 19.

Question 6 (Rosen 6.2.20) Show all Carmichael numbers are squarefree.