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Question 1

Let M be a square n x n matrix. For each of the following situations, give a
formula for det A/’ in terms of det A/

(i) M’ equals M save that the third and fourth rows have been swapped.
|
A M= — At M
(i) M' = MT.

det Mt = Aot M

(iii) M’ is the exactly same as M except that the last column has been replaced
by the first column.

CelumrS
det /4( = /2 ’

£De o Jerme J

(iv) M’ = AM.

Aot /fzil = 7] " Aot M

(v) M'"= MN where N is some n X n matrix.

£M /M( — (ﬂ’cf A/). AoA M

(vi) M’ is obtained from M by applying the row operation R3 — Rz + 13 Ry.
At mt = A el

To be continued...



Now compute the following determinants: Hint: Think before you leap!
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Question 2

Define what it means for:
(i) Vectors vy, g, ..., v, to be linearly independent.
77\€ Oh/y. gela Ao~ tom X UL T it T X,V SO

/5 {)(’(:‘ O/Z:“‘:'a)(n = O

(ii) Vectors vy, vs, ..., vy, to span a vector space V.
V= 7/0/10,_7‘ — U‘,.,,/a/," 3 r&}

(iii) Vectors vy, vy, . .., v, to be a basis for a vector space V.

2}-I/”'/‘)-Z a4~ Z;r"ﬁ4"9 lL‘C'{p/),Q((»(ﬂAI LJ/}?" A

Now try this problem:

(a) Draw the collection of all unit vectors in R2.

(b) Let S, = {(é) ,:v} where x is a unit vector (i.e., ||z|| = 1) in R2. For

which unit vectors « is S, a basis for R?? Briefly explain your answer
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Question 3

Let

12
]\[_(3 6)'

Compute the eigenvalues and associated eigenvectors of M.

M/‘lgw) GfA) = (/\‘/)(Q—'é) -( = :\[;1,-:;)

To be continued...



Let & be any positive integer. What are the eigenvalues and associated eigenvec-
tors of M*? Include a brief explanation of your result.
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Now suppose that the matrix N is nilpotent. Ie.
NF=0

for some positive integer & > 2. Show that zero is the only possible eigenvalue
for N.
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Poll:

Would you prefer online lecture notes or a commercial textbook for this course?
(Circle one, your choice will not affect your 8rade for this test/course in any way. )
‘\

ONLINE NOTES
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