Lie algebra-valued 1-form

\[\omega = d \log (\cdot) : T_0 G \rightarrow \mathfrak{g} \]

Example \(G = \text{GL}(n, \mathbb{R}) \) non-invertible matrices

\[\mathfrak{g} = \mathfrak{gl}(n, \mathbb{R}) \] non matrices with bracket = matrix commutator

The mapping

\[G \ni x \mapsto g^x(0) \in \mathbb{R}^{n^2} \]

gives \(G \) a differentiable structure

If \(X^A_B \) are the components of a vector at \(\mathfrak{g}_0 = T_0 \text{GL}(n) \) the Jacobian for left multiplication \(L_x \) is just \(g^A_B \)

i.e. The left invariant vector field with coordinates \(g^A_X \) (or in a matrix notation, just \(g X \)).

So a basis for left-invariant vector fields are the operators

\[e^A_B = g^A_C \frac{\partial}{\partial g^B_C} \]

whose algebra is easy to calculate

\[[e^A_B, e^C_D] = \delta^C_B e^A_D - \delta^A_D e^C_B \]
Their duals
\[\omega^A_B \left(e^C_P \right) = \delta^A_D \delta^C_B \]
are given by
\[\omega^A_B = (g^{-1})_C^A \, d g^C_B \]
because
\[d g^C_B \left(\frac{\partial}{\partial x^C} \right) = \delta^C_D \delta^D_B \]
so \(g^{-1} \) removes the factor \(g \).

Often write \(\omega = g^{-1} \, d g \), the same computation works for any Lie group written as an embedding in \(GL(n, \mathbb{R}) \).

Notice, left invariance is obvious, under \(g \rightarrow h g \), \(\omega \rightarrow (h g)^{-1} d (h g) \)
\[= g^{-1} \, h^{-1} \, h \, d g = \omega \]

Notice also that \(\omega \) obeys a "zero curvature" condition called the Maurer–Cartan equation:

Define a "covariant derivative" or "connexion"
\[\nabla = Id + \omega \]
matrix-valued operator
Then
\[\nabla^2 = 0 \iff d \omega + \omega \wedge \omega = 0 \]
because
\[\nabla = d + g^{-1} (d g) = g^{-1} d g \text{ as an operator} \]
\[\Rightarrow \nabla^2 = g^{-1} d g \, g^{-1} d g = g^{-1} d^2 g = 0 \]

Also \(\omega \) can be used to from left invariant tensors, such a metric
\[d s^2 = \text{tr} (\omega \otimes \omega) \text{ also right-invariant} \]
\[\Rightarrow \text{Right } G \text{-action are isometries} \]
Lengths of Curves

Given a curve \(\gamma : \mathbb{R} \to N \), the velocity vector
\[v : t \to \frac{d\gamma}{dt} \in T_{\gamma(t)}N \]

i.e. \(v = \frac{d\gamma}{dt} \) viewing \(\mathbb{R} \) as a manifold.

Call the restriction \(\gamma \) to \(I = [a, b] \subset \mathbb{R} \)

a segment or a path \(\gamma \). Define the length of \(\gamma \) via
\[L(\gamma) = \int_a^b \sqrt{g(\frac{d\gamma}{dt}, \frac{d\gamma}{dt})} \, dt \]

(assuming \(g \) is proper).

We can make \((M, g) \) a metric space by defining
\[d((\gamma, a), (\gamma, b)) = \inf_{\gamma} L(\gamma) \]

over piecewise differentiable segments of \(\gamma \).

Notice that keeping \(v(\theta) \) unchanged but changing parameterizations

\[\begin{array}{c}
\theta \\
\hline \\
I \\
\hline \\
[0,1] \\
\hline \\
\gamma \\
\hline \\
t \end{array} \]

\[u \]

\[\frac{dt}{du} = \frac{d\theta}{dt} \frac{dt}{du} \]

but this Jacobian factor is canceled by the change of integration variable

\[dt = du \frac{dt}{du} \]

Le. \(L(\gamma) \) is a functional of **unparameterized paths**.

For many applications, the square root is inconvenient.
It is more convenient to study the energy integral

$$E(C) = \frac{1}{2} \int_a^b dt \, g(\dot{C}, \dot{C})$$

but $E(\gamma)$ is a functional of parameterized paths. Both $E(\gamma)$ and $\mathcal{L}(\gamma)$ are extremized by geodesics. For this we need to study variations and action principles. In fact, there is even a third action principle which gives \mathcal{R} also a metric.

Exercise: Show $\omega^A_B = (g^{-1})^A_C \, dq^C_B$ is the Cartan Maurer-Cartan form for $G\mathfrak{g}_W$.
Review Exercises

1. Show \(\text{div}(\text{Ric} - \frac{1}{2}g_s) = 0 \)

The tensor \(G \) is called the Einstein tensor. Look up "Einstein's Principle".

Why was the tensor \(G \) important for Einstein?