Lecture #6

Diffeomorphisms

Theorem. If \(\varphi : M \rightarrow N \) is a local diffeomorphism at \(P \), then
\[
d\varphi : T_P M \rightarrow T_{\varphi(P)} N
\]
is a vector space isomorphism.

Conversely, if \(d\varphi : T_P M \rightarrow T_{\varphi(P)} N \) is an isomorphism
for some differentiable map at \(P \),
then \(\varphi \) is a local diffeomorphism at \(P \).

For the converse apply the inverse function theorem to the differentiable map
\[
\tilde{\varphi} : \mathbb{R}^n \rightarrow \mathbb{R}^n \quad \text{via} \quad \tilde{\varphi} = \varphi \circ \Phi \circ \Psi
\]
where \((\Psi, \Phi, \Psi)\) is a chart at \(P \) and \(\Phi(P) \)
and use the fact that the Jacobian is the matrix
of the map \(d\varphi \) in the coordinate basis.

For the forward direction, \(d\varphi^{-1} \) is easily checked
to be the required inverse \(\Phi^{-1} \).

The Tangent Bundle is a Manifold

Let \(TM = \{(P, V_P) : P \in M, V_P \in T_PM\} \)

We call \(TM \) the tangent bundle. To see
that \(TM \) is a manifold we need to build
an atlas. Start with an atlas \(\{(U_a, (x_1, x_2, \ldots, x_n))\} \)
for \(M \). At each \(P \in M \), \(T_PM \) has a basis \(\left\{ \frac{\partial}{\partial x^i} \right\} \).

Take as chart map
\[
\psi_a = (P, V_P = \left(\frac{\partial}{\partial x^i} \right)_P) \rightarrow (x^1, \ldots, x^n; v_1, \ldots, v^n)
\]

\[V_a = \{(P, V_P) : P \in U_a, V_P \in T_PM\} \subseteq \mathbb{R}^{2n}\]

From chart to chart \(\psi_i^a \) is a
linear transformation
\[
\text{Clearly differentiable.}
\]

The Jacobian of a diffeomorphism \(\mathbb{R}^n \rightarrow \mathbb{R}^n \)
Vector Fields

"Sections of the tangent bundle.

A vector field is a map

\[X: M \rightarrow TM \]

\[\mu \]

\[P \rightarrow (p, v_p) \]

and say \(X \) is differentiable if it is differentiable as a map between manifolds.

In a chart \(\varphi = (x^1, \ldots, x^n) \)

\[X(p) = X^i(p) \frac{\partial}{\partial x^i}(p) \]

and differentiability of \(X \) requires differentiability of the component functions

\[p \rightarrow X^i(p) \]

Notice that a vector field defines a mapping

\[X: \mathbb{R} \rightarrow \mathcal{F}_M \] via \((Xf)(p) = X^i(p) \frac{\partial f}{\partial x^i}(p) \)

the directional derivative of \(f \) in the direction of \(X \) at \(p \).

Suppose \(X, Y \) are differentiable vector fields and \(f: M \rightarrow \mathbb{R} \) is \(C^\infty \) then \(X(f) \) and \(Y(f) \) are both differentiable functions. Hence we may consider \(X(Y(f)) \).
Calculate in a chart

\[
X(YH) = X(\frac{\partial Y}{\partial x})
\]

\[
= X\frac{\partial}{\partial x} \left(Y\frac{\partial}{\partial x} \right)
\]

\[
= X\frac{\partial}{\partial x} Y + X\frac{\partial}{\partial x} \left(\frac{\partial}{\partial x} \right)
\]

\[
\Rightarrow (XY - YX) = [X, Y]
\]

\[
= (x\frac{\partial}{\partial x} Y - y\frac{\partial}{\partial y} x) \frac{\partial}{\partial x}
\]

is a vector field. The vector field \([X, Y]\)

is called the (Lie) bracket of \(X\) and \(Y\).

It is differentiable when \(X\) and \(Y\) are.

Properties of \([\cdot, \cdot]\) : \(\Lambda^2 \mathfrak{X}(M) \rightarrow \mathfrak{X}(M)\)

(i) \([X, Y] = -[Y, X]\) antisymmetry

(ii) \([aX + bY, Z] = a[X, Z] + b[Y, Z]\) linear

(iii) \([X, Y], Z] + cyclic = 0\) Jacobi

(iv) \([fX, gY] = f g [X, Y] + fX(g) Y - gX(f) X\)

Leibnitz

Given a vector field \(X\)

we can search for integral curves such

that for any \(p \in \mathfrak{X},\) \(\nu_p = \phi'(t)\) where \(\phi(t) = p\)
To solve this problem we must study a system of ODE: In coordinates \(x^i \)
\[
X = x^i \frac{\partial}{\partial x^i} \quad \text{and} \quad x^i(0) = \phi^i \circ \tau(\sigma^i)
\]

so components are
\[
x_i(x(0)) = \frac{dx^i(t)}{dt}
\]

with some initial condition, the start of the integral curve \(x^i(0) = \phi^i \circ \tau(\sigma^i) \).

Small time existence of solutions to the system \(X^i = \dot{x}^i \) is guaranteed by Picard's theorem.

The curves \(\tau_t(\sigma) \) allow us to define a Lie derivative
\[
(\mathcal{L}_X \tau)(\sigma) = \lim_{t \to 0} \frac{\tau(t) \circ \tau(\sigma) - \tau(\sigma)}{t}
\]

Exercises
1. Find out what it means for a manifold to be orientable.
 Give examples of an orientable and a non-orientable differentiable structure.
2. Check the properties of the Lie bracket.