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A Distance for Circular Heegaard Splittings

Abstract

For a knot K ⊂ S3, its exterior E(K) = S3\η(K) has a singular foliation by Seifert surfaces

of K derived from a circle-valued Morse function f : E(K)→ S1. When f is self-indexing and has

no critical points of index 0 or 3, the regular levels that separate the index-1 and index-2 critical

points decompose E(K) into a pair of compression bodies. We call such a decomposition a circular

Heegaard splitting of E(K). We define the notion of circular distance (similar to Hempel distance)

for this class of Heegaard splitting and show that it can be bounded under certain circumstances.

Specifically, if the circular distance of a circular Heegaard splitting is too large: (1) E(K) can’t

contain low-genus incompressible surfaces, (2) a minimal-genus Seifert surface for K is unique up

to isotopy, and (3) the tunnel number of K must be large.
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CHAPTER 1

Introduction

In the study of classical knot theory, it is often the case that questions about a knot can be

translated into questions about a 3-manifold (and vice-versa). Hence, we can study knots with

tools from the theory of 3-manifolds. In particular, for a knot K in a 3-manifold M , we study

its complement C(K) = M\K or its (compact) exterior E(K) = M\η(K), where η(K) is an

open regular neighborhood of K in M . The classification of 3-manifolds is a central problem in

low-dimensional topology, and decomposition theorems lie at its heart.

Decompositions of 3-manifolds are typically created via surfaces. Hierarchies are a primary

example of this methodology (cf. [Ja]), although the present work concerns itself with Heegaard

splittings of 3-manifolds. This is a decomposition of a 3-manifold M into two handlebodies H1, H2

via a closed separating surface Σ (called a Heegaard surface) such that H1 ∩H2 = ∂H1 = ∂H2 = Σ

and H1 ∪ H2 = M . By a theorem of Moise [Mo], every closed, orientable 3-manifold admits a

triangulation T . We can then construct a Heegaard splitting of M using the second barycentric

subdivision of T . Hence, every closed, orientable 3-manifold has a Heegaard splitting.

Although Heegaard surfaces separate a 3-manifolds into standard components, they aren’t

“elementary” surfaces of 3-manifolds. A Heegaard surface Σ for a 3-manifold M can be compressed

(via properly embedded compression disks) into a less complicated surface through standard cut-

and-paste techniques. In fact, Σ can be compressed to a 2-sphere S2 on both sides (though, not

necessarily simultaneously) since Σ bounds handlebodies to both sides. A more useful property for

a surface to have is to not compress entirely to a 2-sphere. In other words, we’d like for there to

be a surface F ⊂ M that can’t be compressed (to either side if F is orientable). Such a surface is

called incompressible and can be thought of as an elementary part of M .

Although they aren’t incompressible surfaces, we can study how compressible Heegaard surfaces

are to both sides simultaneously. Harvey [Harv] described a way to assign a simplicial complex to

a compact, orientable surface F . The vertices of this complex are isotopy classes of simple closed
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curves on F that do not bound disks in F and are not parallel into ∂F (we call these curves essential

in F ). We draw an edge between two distinct vertices if they have representatives that are disjoint

on F . The remainder of this simplicial complex C(F ) is built as a flag complex (filling in simplices

for vertices with representatives in F that are pairwise disjoint from one another in F ), though we

will only concern ourselves with its 1-skeleton C(F ).

For a Heegaard splitting H1∪ΣH2 = M , Hempel [Hemp] defined a measure of incompressibility

of Σ in M . A pair of compression disks Di ⊂ Hi (i = 1, 2) have boundary curves that lie on Σ.

These curves are representatives of vertices in C(Σ), and we can use the graph distance to measure

how far separated they are in C(Σ). The minimum distance in C(Σ) between the boundaries of all

pairs of compression disks D1 ⊂ H1, D2 ⊂ H2 is called the (Hempel) distance of Σ, denoted d(Σ).

We can define standard classifications of Heegaard splittings using this notion. We say M is: (1)

reducible if d(Σ) = 0, (2) weakly reducible if d(Σ) = 1, and (3) strongly irreducible if d(Σ) ≥ 2.

Distance has been used in many settings (cf. [BS], [Bir], [E], [Thom]) to prove various results

both algebraic and geometric in nature.

In [Hart], Hartshorn showed that incompressible surfaces can be used to bound the distance of

Heegaard splittings of closed, orientable 3-manifolds. In particular, he shows that for any 3-manifold

M that contains an incompressible surface of genus g ≥ 1, the distance d(Σ) of any Heegaard

splitting Σ of M is bounded by 2g. Scharlemann and Tomova [ScTom] elaborate on this idea and

use Cerf theoretical arguments to show that there is a similar bound if we replace the incompressible

surface with a strongly irreducible Heegaard splitting P ; that is, d(Σ) ≤ 2 − χ(P ) = 2g(P ). We

recall the notion of distance of a Heegaard splitting and state these theorems precisely later.

Let K ⊂ S3 be a knot. In [MG], Manjarréz-Gutiérrez employed a circle-valued Morse function

f : E(K) → S3 to induce a circular handle decomposition of the exterior E(K) of K. She then

adapted the ideas of [ST2] to create a notion of circular thin position of such decompositions of

E(K). We elaborate on these ideas and develop notions of circular Heegaard splittings and of

circular distance of circular Heegaard splittings.

Circular Heegaard splittings are different from the usual Heegaard splittings of 3-manifolds in

two important ways: (i) the Heegaard surface is not closed and (ii) the Heegaard surface is comprised

of two connected components. Both of these pose a challenge to the definition of a circular distance.
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We show that methods of Hartshorn carry over to this setting, but much care needs to be taken in

their adaptation. We show how the shift from Heegaard splittings of closed manifolds to circular

Heegaard splittings of knot exteriors restricts these methods. We also provide analogous technical

lemmas for this new setting. Once these have laid a solid foundation for Hartshorn-like methods,

we define the circular distance of a circular Heegaard splitting and show that it behaves as expected

using these methods.

We then prove the main theorem:

Theorem 4.1.1 (Main Theorem). Let K ⊂ S3 be a knot whose exterior E(K) has a circular

Heegaard splitting (F, S) such that F is incompressible. If its exterior E(K) contains a closed,

orientable, essential surface G of genus g, then cd(F, S) ≤ 2g.

An immediate corollary follows and bears striking resemblance to Hartshorn’s theorem for closed

3-manifolds; if we consider essential surfaces disjoint from F , we get a bound in the usual curve

complex for S:

Corollary 4.1.1. Let K ⊂ S3 be a knot whose exterior E(K) has a circular Heegaard splitting

(F, S) such that F is incompressible. If its exterior E(K) contains a closed, orientable, essential

surface G of genus g that can be isotoped to be disjoint from F , then d(S) ≤ 2g.

Once this has been shown, we demonstrate other applications:

Theorem 4.2.1. Let K ⊂ S3 be a knot whose exterior E(K) has a circular Heegaard splitting

(F, S) such that F is incompressible. If F ′ is an incompressible Seifert surface for K with genus g

that is not isotopic to F , then d(S) ≤ 2g + 1.

Corollary 4.2.1. Let K ⊂ S3 be a knot whose exterior E(K) has a circular Heegaard splitting

(F, S) such that F is a Seifert surface of K that realizes the Seifert genus g(K). If d(S) > 2g(K)+1,

then F is the unique Seifert surface of minimal genus for K up to isotopy.

Theorem 4.3.1. Let K ⊂ S3 be a knot whose exterior E(K) has a locally thin circular Heegaard

splitting (F, S). If Σ is a strongly irreducible Heegaard splitting of genus g for E(K), then cd(F, S) ≤

2g.

3



Corollary 4.3.1. Let K ⊂ S3 be a knot whose exterior E(K) has a locally thin circular

Heegaard splitting (F, S), and suppose τ = {τ1, . . . , τt} is a tunnel system for K. If the Heegaard

splitting Σ induced by τ is strongly irreducible, then cd(F, S) ≤ 2t + 2. In particular, if K has

tunnel number t(K) and possesses such a strongly irreducible Σ, then cd(F, S) ≤ 2t(K) + 2.
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CHAPTER 2

Background and Definitions

2.1. Knots and Links

For a positive integer n, let Sn = S1 t · · · t S1 be a disjoint union of n circles. Let M3 be a

compact 3-manifold. Two smooth embeddings f, g : Sn → M are called isotopic if there exists a

homotopy h : S1 × [0, 1]→M such that

(1) f = h|Sn×{0}

(2) g = h|Sn×{1}

(3) for all 0 ≤ t ≤ 1, h|Sn×{t} is an embedding.

We define a link in M to be the isotopy class of a smooth embedding f : Sn →M , and we set n to

be the number of components of the link. A knot in M is defined to be a link with one component.

For a link L ⊂ M , the 3-manifold C(L) = M\L is called the complement of L in M . We

distinguish this from the compact exterior of L in M , denoted by E(L) = M\η(L).

For a link L ⊂ M , a compact, orientable surface F ⊂ M whose boundary ∂F is the link will

be called a Seifert surface of L. It should be noted that such a surface always exists for any link

in S3.

A handlebody is closed regular neighborhood of a graph Γ. A graph that is a deformation retract

of a handlebody will be called a spine of the handlebody. See Figure 2.5.

For a link L ⊂ M , a tunnel system for L is a collection τ = {τ1, . . . , τn} of arcs properly

embedded in M\L such that M\η(L ∪ τ) is a handlebody. The smallest number of arcs needed

to construct a tunnel system for L is called the tunnel number t(L) of L. A tunnel system that

realizes the tunnel number of L will be called minimal. In should be noted that every link in S3

has a tunnel system. This can be proven using a link diagram in the plane, adding a vertical tunnel

at each crossing.
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2.2. 3-MANIFOLDS AND HEEGAARD SPLITTINGS

A link L ⊂ M is said to be fibered if there exists a fibration f : S3\L → S1 such that each

component Li has a neighborhood framed as S1 ×D2 (with Li ∼= S1 × {0}) where fS1×(D2\{0}) is

the map (x, y) 7→ y
|y| . This framing condition is in place to specify behavior near L since M\L is

not compact.

2.2. 3-Manifolds and Heegaard Splittings

Compressibility and Irreducibility

Let M be a 3-manifold and F ⊂M be a compact, orientable surface properly embedded in M .

We say that F is compressible in M if there exists a disk D ⊂M to either side of F such that

(1) F ∩D = ∂D ⊂ F ,

(2) ∂D is not ∂-parallel into ∂F , and

(3) ∂D does not bound a disk in F ; that is, ∂D is a curve essential in F .

Such a disk D is called a compressing disk for F in M . See Figure 2.1. If there are no compressing

disks for F in M , we say that F is incompressible in M . An incompressible surface F is called

essential in M if it also not ∂-parallel into ∂M .

Figure 2.1. A compression of the surface F via the compressing disk D.

Let η(D) ⊂M be an open regular neighborhood of a compressing disk D for a surface F ⊂M .

Denote by D+ and D− the two disk components of ∂η(D) so that A = ∂η(D)\(D+ ∪D−) ⊂ F is

an annulus. Then the surface (F\A) ∪ (D+ ∪ D−) will be called a compression of F in M . The

process of replacing F with a compression of F will be called compressing F in M .

6



2.2. 3-MANIFOLDS AND HEEGAARD SPLITTINGS

If M has non-empty boundary and for a compact surface F we have (F, ∂F ) ⊂ (M,∂M), we

say F is properly embedded in M if both F is embedded in M and ∂F is embedded in ∂M . A

properly embedded surface F ⊂ M is said to be ∂-compressible if there exists a disk D ⊂ M such

that

(1) D ∩ F = α ⊂ ∂D and D ∩ ∂M = β ⊂ ∂D,

(2) α ∪ β = ∂D with α ∩ β = ∂α = ∂β, and

(3) α does not cobound a disk with another arc in ∂F ; that is, α is an arc essential in F .

Such a disk D above is called a ∂-compressing disk for F in M . See Figure 2.2 If there are no

∂-compressing disks for F in M , we say that F is ∂-incompressible in M .

Figure 2.2. A ∂-compression of the surface F via the compressing disk D.

Let η(D) ⊂M be an open regular neighborhood of a ∂-compressing disk D for a surface F ⊂M .

Denote by D+ and D− the two disk components of ∂η(D) parallel to D so that ∂η(D)\(D+∪D−) =

η(α) ∪ η(β) is an annulus. Then the surface (F\η(α) ∪ (D+ ∪D−) will be called a ∂-compression

of F in M . The process of replacing F with a ∂-compression of F will be called ∂-compressing F

in M .

A 3-manifold M is called irreducible if every S2 ⊂M bounds a 3-ball to at least one side. We

say an irreducible 3-manifold M is Haken if it contains an incompressible, orientable surface F

with positive genus.

Theorem 2.2.1 (Asphericity). For any knot K ⊂ S3, πn(E(K)) is trivial for n ≥ 2.

This follows from the sphere theorem and a theorem of Whitehead. A full proof can be found

in [Rolf]. In particular, the Asphericity Theorem tells us that knot complements (and exteriors) in
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2.2. 3-MANIFOLDS AND HEEGAARD SPLITTINGS

S3 contain no essential 2-spheres; that is, for a knot K ⊂ S3, both C(K) and E(K) are irreducible

3-manifolds.

Morse Theory and Heegaard Splittings

Let 0 ≤ k ≤ n be integers. An n-dimensional k-handle is an n-ball Bn = Bk × Bn−k. When

the dimension is immaterial or clear from context, we abbreviate this to a k-handle. The term

Bk × {0} will be called the core of a k-handle, and the term {0} ×Bn−k will be called its co-core.

We see in the boundary

Sn−1 = ∂Bn = [(∂Bk)×Bn−k] ∪ [Bk × (∂Bn−k)] = [Sk−1 ×Bn−k] ∪ [Bk × Sn−k−1].

The term Sk−1 × Bn−k is referred to as the attaching region of the k-handle. In the case k = 0,

we take S−1 = ∅ and “attaching a 0-handle” is the same as adding a disjoint Bn. In our context,

a handlebody as described in the section above will be regarded as a single 3-dimensional 0-handle

with 1-handles glued to its boundary along their attaching regions. If we connect via radial line

segements the cores of the 1-handles to the core of the 0-handle, the resulting graph may be regarded

as a spine of the handlebody. See Figure 2.3. The four types of 3-dimensional handles are shown

in Figure 2.4.

Figure 2.3. Using the cores of 1-handles to define a spine of a 3-dimensional handlebody.

Let F be a compact, connected, orientable surface. Define W0 = (F × I) ∪ T , where T is a

collection of 2-handles attached to F × {1}. If there are any S2 components in ∂W0, we fill them

8



2.2. 3-MANIFOLDS AND HEEGAARD SPLITTINGS

Figure 2.4. The four types of 3-dimensional handles and their attaching regions (in red).

with 3-handles. The resulting 3-manifold W is called a compression body. We denote by ∂−W the

surface F×{0} and ∂+W = ∂W\∂−W . The union of a graph and the inner boundary ∂W\(F×{0})

that is a deformation retract of W is called a spine of W . A handlebody is considered a trivial

compression body in the sense that ∂+W = ∅. See Figure 2.5.

Let M be a compact, orientable n-manifold. A smooth function f : M → [0, 1] is called Morse if

all of its critical points are non-degenerate and occur at different critical values. The non-degeneracy

condition implies that at each critical point p ∈M of f there is a coordinate patch x = (x1, . . . , xn)

with p identified with the origin such that

f(x) = f(p)− x2
1 − · · · − x2

k + x2
k+1 + · · ·+ x2

n.

We call k ∈ {0, 1, . . . , n} the index of the critical point p. Given a Morse function f : M → [0, 1], it

is well-known (cf. [Mi]) that M has the homotopy type of a CW-complex with one cell of dimension

k for each critical point of f with index k. In particular, M has the homotopy type of a collection

of n-dimensional k-handles, one for each index-k critical point of f , glued together. It is easy to

see in this description that an index-k critical point of f is an index-(n−k) critical point of −f . In

this sense, a k-handle is thought of as an “upside-down” (n− k)-handle, and this can also be seen

as Bn = Bk ×Bn−k = Bn−k ×Bk from the definition of a k-handle.

For a Morse function f : M → [0, 1], if the critical values of all index-k critical points are less than

the critical values of all index-` critical points whenever k < `, then we say f is self-indexing. In the

context of compact, orientable 3-manifolds, a self-indexing Morse function (with ∂M ⊂ f−1{0, 1})

defines a decomposition of M into two compression bodies V0, V1, where V0 contains the 0- and

1-handles and V1 contains the 2- and 3-handles. Any regular level separating the 1-handles from

9



2.2. 3-MANIFOLDS AND HEEGAARD SPLITTINGS

Figure 2.5. A handlebody H and a compression body W with representative spines
for each.

the 2-handles is a closed surface Σ ⊂ M . The triple (Σ;V0, V1) is called a Heegaard splitting of

M . We call Σ a Heegaard surface for M . We often abbreviate the triple (Σ;V0, V1) as Σ when

the compression bodies are immaterial or clear from context. Because every compact, orientable

3-manifold M admits a self-indexing Morse function [Mi], a Heegaard splitting (Σ;V0, V1) always

exists for M .

Let (Σ;V0, V1) be a Heegaard splitting for the compact, orientable 3-manifold M . Let σ0 and σ1

be spines for V0 and V1, respectively. We see that M\(σ0∪σ1) ∼= Σ×(0, 1). We can use this product

structure to define a function h : M → [0, 1] where h−1(t) ∼= Σ for all 0 < t < 1 and h−1(i) = σi for

i = 1, 2. Such a function h is called a sweep-out of M induced by Σ (or just a sweep-out when M

and Σ are clear from context).
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2.2. 3-MANIFOLDS AND HEEGAARD SPLITTINGS

There is one class of Heegaard splitting that will be of particular interest. A knot K ⊂ S3

always has a tunnel system τ so that H = S3\η(K ∪ τ) is a handlebody. Then V = S3\int(H) is

a compression body with ∂+V = ∂η(K). If we take Σ = ∂H = ∂−V , we see that (Σ;H,V ) is a

Heegaard splitting of E(K). We say that Σ is the Heegaard splitting induced by the tunnel system

τ .

Surfaces in Handlebodies and Compression Bodies

Let ∆ be a collection of compressing disks for a compression body W . If compressing ∂−W in

W along all disks in ∆ produces ∂+W and possibly a collection of S2 components, then ∆ is called

a complete disk system for W . If there are no S2 components in the resulting compression, then ∆

is called a minimal complete disk system for W .

In a compression body W , let γ be a curve in ∂+W . Using the product structure of W , we

stretch γ across W to ∂−W to create an annulus γ × [0, 1]. An annulus created in this fashion is

called a spanning annulus of W . If γ is essential in ∂+W , we say that γ × [0, 1] is an essential

spanning annulus of W . See Figure 2.6.

Figure 2.6. An essential (blue) spanning annulus and a inessential, ∂-parallel span-
ning annulus (red) for a compression body. The boundary curves of the inessential
∂-parallel on the inner and outer boundary components of the compression body.

Theorem 2.2.2 (cf. [Ja]). The only compact, connected, orientable, incompressible, ∂-incompressible,

surfaces in a compression body that aren’t parallel into the boundary are essential disks and essen-

tial spanning annuli. In a handlebody, such surfaces can only be essential disks.
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2.3. THE CURVE COMPLEX

2.3. The Curve Complex

Constructing the Complex of Curves

As outlined in the introduction, the following construction is due to Harvey [Harv] as he studied

the asymptotic geometry of a surface’s Teichmúller space. To a compact, orientable (possibly

disconnected) surface F , we assign a 1-dimensional simplicial complex C(F ) as follows:

(1) For each isotopy class of closed curves essential in F , add a vertex.

(2) Add an edge between distinct vertices if there are representatives of each isotopy class

(one from each vertex) that are disjoint in F .

This construction may be continued to construct a higher-dimensional simplicial complex by

requiring that this complex be a flag complex. The result is called the curve complex of F . We will

only concern ourselves with the 1-skeleton C(F ) of this complex and still refer to it as the “curve

complex” of F . See Figure 2.7.

Figure 2.7. A surface F and the subgraph of its curve complex C(F ) induced by
the vertices representing the colored curves.
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For a pair of essential curves γ1, γ2 in the same connected component of F , we define the distance

dC(γ1, γ2) between γ1 and γ2 to be the graph distance in C(F ) between the vertices [γ1] and [γ2].

If γ1 and γ2 lie in different connected components, then we take the convention dC([γ1], [γ2]) =∞.

We also use the convention that dC([γ], ∅) = 0 for any essential curve γ ⊂ F . We often abbreviate

and abuse the notation dC(γ1, γ2) to denote the distance between γ2 and γ2, omitting the brackets

denoting isotopy classes of the curves.

Types of Heegaard Splittings

Let Σ be a Heegaard splitting of a closed, orientable 3-manifold M . The surface Σ is com-

pressible in many ways to both sides in the handlebodies H1 and H2. Our goal is to measure how

compressible Σ is to both sides. We collect all compressing disks of Σ in H1 into the set Γ1 and all

compressing disks of Σ in H2 into the set Γ2. In order to compare these sets, we appeal to the curve

complex C(Σ) of the Heegaard surface; that is, where the two sets could potentially intersect.

Each disk in Γ1 ∪ Γ2 has a boundary curve γ ⊂ Σ that is essential in Σ. The isotopy class [γ]

is represented by a vertex in C(Σ). Denote by Vi ⊂ C(Σ) the collection of vertices of C(Σ) defined

in this way by the set Γi (for i = 1, 2).

The (Hempel) distance d(Σ) of a Heegaard splitting Σ [Hemp] is the minimum graph distance

dC along C(Σ) from an element of [γ1] ∈ V1 to an element of [γ2] ∈ V2; that is,

d(Σ) = min{dC(∂α, ∂β) | α ∈ Γ1, β ∈ Γ2}.

If d(Σ) = 0, there exist compressing disks of Σ to both sides whose boundaries are isotopic in

Σ. If we isotope these disks so that their boundary curves coincide, then the disks can be glued

together to form a S2 that intersects Σ in a curve essential in Σ. In particular, the Heegaard

splitting must be reducible or is a genus-one Heegaard splitting of S1 × S2.

If d(Σ) ≤ 1, there exist compressing disks of Σ to both sides whose boundaries can be isotoped

to be disjoint. This implies the Heegaard splitting is weakly reducible as defined in [CG]; that is,

there exist essential disks Di ⊂ Vi for i = 1, 2 such that ∂D1 ∩ ∂D2 = ∅. Observe that reducible

Heegaard splittings are indeed weakly reducible splittings since we can isotope the boundary of one

disk to be disjoint from the other.
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If d(Σ) ≥ 2, Σ is strongly irreducible [CG]; that is, each essential disk V1 intersects each essential

disk in V2.

Hartshorn [Hart] and Scharlemann-Tomova [ScTom] relate the existence of essential surfaces

to strongly irreducible Heegaard surfaces, respectively, to the distance of a Heegaard splitting. We

state these theorems below:

Theorem 3.0.3 ( [Hart]). Let M be a Haken 3-manifold containing an orientable incompress-

ible surface of genus g. Then any Heegaard splitting of M has distance at most 2g.

Theorem 2.3.1 ( [ScTom]). Suppose P and Q are Heegaard splittings of a closed 3-manifold

M . Then either d(P ) ≤ 2g(Q) or Q is isotopic to P or to a stabilization of P .

2.4. Circular Handle Decompositions

In the following section, much of the notation and definitions follow from Manjarréz-Guti’errez

[MG].

Let K ⊂ S3 be a knot. Let F : S3\K → S1 be a Morse function and define f : E(K) → S1 to

be the restriction F |E(K). Since a fundamental cobordism of f can be isotoped to have no local

maxima or minima [Mi], we assume that all critical points of f have index 1 or 2.

We construct a handle decomposition of E(K) from f as follows: Choose R a regular level of

f between an index-1 and an index-2 critical point. There are many such choices: We assume R

is chosen to have smallest genus among all choices. If f has no critical points, then K is fibered

and there is only one choice for R. Otherwise, we see that the critical points of f define collections

N = {N1, . . . , Nk} and T = {T1, . . . , Tk} of 1- and 2-handles, respectively. We assume the handles

in N1 appear first after R and, moreover, that the handles in Ni appear before the handles in Ti

and that the handles in Ti appear before the handles in Ni+1 (taking all indices modulo k where

necessary). Construct the compact manifold

H = (R× I) ∪ (N1 ∪ T1) ∪ · · · ∪ (Nk ∪ Tk)
14
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by flowing R along E(K) via the gradient of f , attaching handles from N and T as prescribed by

the critical points of f . Choose a regular level Si separating Ni from Ti; that is,

Si ∼= ∂[(R× I) ∪ (N1 ∪ T1) ∪ · · · ∪Ni]\[∂E(K) ∪ (R× {0})].

Call Si a thick level of f and set S = ∪ki=1Si. Similarly, choose a regular level Fi separating Ti from

Ni+1; that is,

Fi = ∂[(R× I) ∪ (N1 ∪ T1) ∪ · · · ∪ (Ni ∪ Ti)]\[∂E(K) ∪ (R× {0})].

Call Fi a thin level of f and set F = ∪ki=1Fi.

We also define

Wi = (collar of Fi) ∩ (Ni ∪ Ti),

which is a 3-manifold with boundary ∂Wi = Fi ∪ Fi+1 ∪ (Wi ∩ ∂E(K)). The thick level Si defines

a compact (but not closed!) Heegaard surface for Wi, dividing it into compression bodies

Ai = (collar of Fi) ∪Ni and Bi = (collar of Si) ∪ Ti.

The boundary ∂Ai can be seen as the union of three components; that is, ∂Ai = Si ∪ Fi ∪ ∂vAi,

where ∂vAi = ∂Ai ∩ ∂E(K). We call ∂vAi the vertical boundary of Ai. We can similarly define

∂vBi = ∂Bi ∩ ∂E(K) to be the vertical boundary of Bi. Note that the vertical boundary is an

annulus.

Observe that Fk is diffeomorphic to R. The function f defines a diffeomorphism φ : R → R.

When K is fibered, φ is called the monodromy of K. In this case, we see that

E(K) = H/(R× {0}) = φ(R× {1}).

See Figure 2.8. This construction is well-defined - a different choice of R merely translates the

labels of the sets N and T by the same amount.

Definition 2.4.1. The collection D = {(Wi;Ai, Bi)}ki=1 will be called the circular handle

decomposition of E(K) induced by f .
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Figure 2.8. A circular handle decomposition of a knot exterior and an arbitrary
section Wi.

Definition 2.4.2. For a closed, connected surface S 6= S2 define its complexity c(S) = 1−χ(S).

If S has a nonempty boundary, define c(S) = 1 − χ(S), where S denotes S with its boundary

components capped off with disks. We define c(S2) = 0 and c(D2) = 0. If S is disconnected, define

c(S) =
∑
c(Si), where S =

∐
i Si and each Si is connected.

Definition 2.4.3. For a knot K ⊂ S3 with circular handle decomposition D for E(K), the

circular width cw(D) of the decomposition D is the multiset of integers {c(Si)}ki=1, and |cw(D)| = k

is the number of thick levels in D. The circular width cw(E(K)) of the knot exterior E(K) is

defined to be the minimal circular width among all circular handle decompositions of E(K). The

minimum is taken using the lexicographic ordering on multisets of integers.

The pair (E(K),D) is in circular thin position if D realizes the circular width of E(K). When

K is a fibered knot, we define cw(E(K)) = ∅, so |cw(E(K))| = 0. If |cw(E(K))| = 1, we say that

K is almost-fibered.

Manjarréz-Gutiérrez [MG] examined knot exteriors using this setup in her doctoral dissertation.

In addition to analyzing the behavior of circular width under some common knot operations, she

showed:

Theorem 2.4.1 ( [MG]). Let K ⊂ S3 be a knot. At least one of the following holds:

(1) K is fibered;
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Figure 2.9. An admissible circular handle decomopsition of a knot exterior and its
only section W . The pair (F, S) describes a circular Heegaard splitting of the knot
exterior.

(2) K is almost-fibered;

(3) K contains a closed essential surface in its complement. Moreover, this closed essential

surface is in the complement of an incompressible Seifert surface of K;

(4) K has at least two non-isotopic, incompressible Seifert surfaces.

The point we emphasize here is that circular thin position can be used to show the existence

of multiple, non-isotopic, incompressible Seifert surfaces for a knot in S3.

One other result from her work follows from Scharlemann-Thompson [ST2] in their work on

thin position for 3-manifolds:

Theorem 2.4.2 ( [MG]). If (E(K),D) is in circular thin position, then

(1) Each Heegaard splitting Si of Wi is strongly irreducible.

(2) Each Fi is incompressible in E(K).

(3) Each Si is a weakly incompressible surface in E(K).

The converse of this theorem is not true in general. That is, a circular handle decomposition

satisfying the three properties above need not be thin.

Definition 2.4.4. A circular handle decomposition D is said to be locally thin if the thin levels

Fi are incompressible and the thick levels Si are weakly incompressible.
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A circular handle decomposition most resembles a Heegaard splitting when there is only one

thick level and one thin level. We will focus on this case, which we call admissible:

Definition 2.4.5. Let K ⊂ S3 be a knot with exterior E(K), and let D be a circular handle

decomposition of E(K). We say that D is admissible if D = {(W ;A,B)}; that is, D contains only

one thick level S and one thin level F . For an admissible decomposition, the pair (F, S) will be

called a circular Heegaard splitting of E(K).

Remark 2.4.1. If K ⊂ S3 is a fibered knot, we can construct a circular Heegaard splitting

(F0, F1) of E(K) using a parallel copy F1 of the fiber surface F0 and setting the thick level S = F1.

In this sense, fibered knots also admit circular Heegaard splittings even when the circle-valued

Morse function has no critical points.
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CHAPTER 3

Elementary Compressions and Circular Distance

Let M be a closed, orientable 3-manifold with a Heegaard splitting (H1, H2; Σ). Suppose M

contains an essential, orientable surface G of genus g. Hartshorn [Hart] has shown that the distance

of Σ is bounded by twice the genus of G; that is, d(Σ) ≤ 2g. He uses what he calls an elementary

compression of G ∩ H1 into H2 to define a sequence of isotopies of G across Σ that controls the

distance of Σ. Since we will use these ideas extensively, we outline his argument below:

Theorem 3.0.3 ( [Hart]). Let M be a Haken 3-manifold containing an orientable incompress-

ible surface of genus g. Then any Heegaard splitting of M has distance at most 2g.

Outline of proof: (1) Isotope G so that it intersects each Hi (i = 1, 2) in incompress-

ible, properly embedded components.

(2) Show that an elementary compression G′ of G preserves the incompressibility of G in H1.

Specifically, if each component of G ∩ H1, say, is incompressible in H1, then so is each

component of G′∩H1. We note that we may lose the incompressibility of some components

of G′ ∩H2.

(3) Show that the distance in the curve complex C(Σ) between any curve in G ∩ Σ and any

curve in G′ ∩ Σ is at most one.

(4) Use a result of Kobayashi [K] to isotope G so that the components of G ∩ H1 contain

exactly one essential disk.

(5) Use elementary compressions to produce a sequence of isotopies of G such that the final

embedding G′ is such that no component of G′∩H1 is a disk and that exactly one compo-

nent of G′ ∩H2 is an essential disk. Performing these isotopies in such a minimal fashion

bounds d(Σ) by the number of elementary compressions in this sequence.

(6) Finally, show that the number of elementary compressions necessary for this kind of se-

quence of isotopies is no greater than 2g.
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�

We will adapt this method to circular Heegaard splittings of knot complements and the closed,

essential surfaces they contain. We address the first three steps in this chapter while the last three

steps are addressed in the next.

3.1. Surfaces in Compression Bodies

Let K ⊂ S3 be a knot whose exterior E(K) has a circular Heegaard splitting (F, S). Suppose

G ⊂ E(K) is an essential, orientable surface of genus g. Consider its intersection G ∩ A with the

compression body A. If there is a ∂-compressible component G0 of G ∩A, then there exists a disk

D properly embedded in A so that D ∩ A = ∂D = α ∪ β, where α ⊂ G0 ∩ A and β ⊂ ∂A =

(S ∪ F ) ∪ (A ∩ ∂E(K)).

Suppose β ∩ ∂(E(K)) = ∅. Let η(α) ⊂ G0 be an open regular neighborhood of α. Push η(α)

along D and slightly into B. This effectively removes a (two-dimensional) 1-handle from G0 and

attaches a 1-handle in B to G0. The result is an isotopy of G. See Figure 3.1.

Definition 3.1.1. The move just described is called a ∂∗-compression of G from A into B. It

is also known as an isotopy of type A of G across S ∪ F .

If G admits a ∂∗-compression from A into B, we say G is ∂∗-compressible from A into B.

If G isn’t ∂∗-compressible from A into B, then we say G is ∂∗-incompressible from A.

Remark 3.1.1. Unless otherwise specified, a definition or claim about the compression body

A will also hold symmetrically for the compression body B.

Lemma 3.1.1. Suppose G′ is the result of a ∂∗-compression of G from A into B. Then χ(G′ ∩

A) = χ(G ∩A) + 1, and χ(G′ ∩B) = χ(G ∩B)− 1.

Proof. Notice that, in the definition of ∂∗-compression, the removal of the neighborhood η(α)

from G0 removes an open disk and two edges from G0. The net effect on χ(G0) is an addition of

1. Similarly, for G ∩ B, we have added that open disk and two edges to G ∩ B. The net effect on

χ(G ∩B) is the subtraction of 1. �
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Figure 3.1. A ∂-compression of G from A into B.

In light of the definition of distance of a Heegaard splitting in the previous chapter, we would

like to omit any ∂∗-compressions that create inessential disk components. This happens only if

G ∩ A has a ∂-parallel annulus component. However, since ∂∗-compressions avoid ∂(E(K)), this

∂-parallel annulus would be parallel into either S or F but not ∂(E(K)).

Definition 3.1.2. Let G ∩ A contain an annular component G0 that is parallel into either S

or F . This annulus will be called a ∂∗-parallel annulus. A ∂∗-compression of A0 will be called an

annular compression from A into B.

Any ∂∗-compression of G from A into B that is not an annular compression will be called an

elementary compression.

Remark 3.1.2. Unless otherwise stated, annular compressions of G from A into B will always

be followed by the isotopy carrying the resulting inessential disk across S ∪ F . The net effect is to

push the ∂∗-annulus out of A. In particular, χ(G ∩ A) = χ(G′ ∩ A) after an annular compression

of G from A into B.

The incompressible and ∂-incompressible surfaces in compression bodies have been classified

[BO]. These surfaces are ∂-parallel or they are essential disks or essential spanning annuli. We need

a similar classification of incompressible and ∂∗-incompressible surfaces in the compression bodies

defined by a circular Heegaard splitting of E(K). This classification allows for one additional type

of surface.
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Recall that we can identify A ∼= (F × I) ∪N , where N is a collection of 1-handles attached to

F × {1}. Choose an arc γ properly embedded in F × {1} that is disjoint from the attaching disks

for N . Thus, γ × I ⊂ A is a properly embedded disk D in A that is disjoint from N .

Definition 3.1.3. The disk D = γ× I constructed above is called a product disk of A. The arc

γ will be called a spanning arc of F . We call D inessential in A if γ is inessential in F . Otherwise,

D is said to be essential in A. See Figure 3.2.

A product disk of B is defined similarly by identifying B ∼= (S × I) ∪ T ∼= (F × I) ∪N ′, where

T is a collection of 2-handles and N ′ is a collection of 1-handles dually equivalent to T .

Figure 3.2. A piece of A showing an essential (blue) and inessential (red) product
disk of A.

Lemma 3.1.2. Let K ⊂ S3 be a knot whose exterior E(K) has an admissible circular handle de-

composition D. Suppose G is a compact, connected, non-∂-parallel surface that is ∂∗-incompressible

from A and can be isotoped to be disjoint from ∂vA. Then G is either an essential disk or an essential

spanning annulus.

Proof. The proof is similar to [BO]. We include it here for completeness.

First isotope G so that G ∩ ∂vA = ∅. Let G be some component of G ∩ A. For the sake of

contradiction, suppose that G0 is neither an essential disk nor an essential spanning annulus. Let
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∆ be a minimal, complete disk system for A (this can be taken to be the co-cores of the 1-handles

in the set N of D). Through a standard innermost-disk/outermost-arc argument, we may isotope

G0 so that G0 ∩∆ = ∅. Cutting A along ∆ yields a manifold V ∼= F × I.

If (∂V )∩G = ∅, then G is closed. This would imply that G is compressible; hence, we conclude

that (∂V ) ∩G 6= ∅. Without loss of generality, let’s say that F ∩G 6= ∅.

Because G0 is not a spanning annulus, we know that π1(G0, S ∩ G0, ?) is non-trivial for some

basepoint ? ∈ S. We also observe that π1(V, F ) is trivial. These observations together show

that there must exist an essential arc α properly embedded in S cobounding a disk D with some

essential arc β in G0. In particular, G0 is ∂-compressible by another innermost-disk/outermost-arc

argument. Using this disk, either it is a ∂-compressing disk for G0 or we can use it to find such a

disk. Since we assumed that G0∩∂vA = ∅, this ∂-compression may be taken to be a ∂∗-compression.

From this contradiction, we conclude that G0 can only be an essential disk or an essential

spanning annulus. �

Lemma 3.1.3. Let K ⊂ S3 be a knot whose exterior E(K) has an admissible circular handle de-

composition D. Suppose G is a compact, connected, non-∂-parallel surface that is ∂∗-incompressible

from A and cannot be isotoped to be disjoint from ∂vA. Then G is an essential disk.

Proof. First isotope G to intersect ∂vA in a minimal number of arcs. The intersection σ =

G ∩ ∂vA will be a collection of at least two parallel, essential spanning arcs of ∂vA. Furthermore,

we can isotope σ to be vertical with respect to the identification A ∼= (F × I) ∪ N . Specifically,

each arc in σ map be considered to be identified with {x} × I for some x ∈ ∂F . Unless otherwise

specified, we now take all isotopies of G to fix σ.

Now, as in the previous lemma, we may find a minimal, complete disk system ∆ for A. We

then use a standard innermost-disk/outermost-arc argument to isotope G disjoint from ∆ so that

G lies in a manifold V ∼= F × I.

Choose a collection of arcs Γ properly embedded in F ×{1} that are disjoint from the attaching

disks of the 1-handles in N . Furthermore, choose Γ so that G\η(Γ) is a disk. Observe that each

arc γi ∈ Γ is a spanning arc for some essential product disk Di of A. These resulting product disks

E = {Di}Ni=1 constitute a minimal complete (product) disk system for the handlebody V .
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For sake of contradiction, we assume G is not a product disk. Then G is either (i) χ(G) ≤ 0

or (ii) a disk that is not a product disk. Suppose χ(G) ≤ 0 and that the genus of G is at least

one. Then we can choose an essential arc in G with both endpoints in S. An argument similar to

Lemma 3.1.2 shows that there is a ∂∗-compression disk for G from A. This contradiction implies

that the genus of G is zero.

In this case, ∂G is comprised of at least two components; otherwise, we are in case (ii) above.

Then G contains an essential arc whose endpoints lie in different components of ∂G and in the same

surface, either F or S. Once again, an argument similar to Lemma 3.1.2 yields a ∂∗-compression

disk for G from A. Therefore, G must have only one boundary component; that is, G is a disk so

that χ(G) = 1. We conclude that G can only be a disk. �

Corollary 3.1.1. Let K ⊂ S3 be a knot whose exterior E(K) has an admissible circular handle

decomposition (F, S). The only compact, connected, orientable, properly embedded surfaces in the

compression body A that are not ∂-parallel, are incompressible, and are ∂∗-incompressible from A

are essential disks and essential spanning annuli.

3.2. Behavior of Elementary Compressions

Recall the setting at the beginning of Hartshorn’s argument. There is an incompressible surface

G of genus g inside a 3-manifold M , and M has a Heegaard splitting (H1, H2, ; Σ). Hartshorn estab-

lished that ∂-compressions of G ∩H1 from H1 don’t alter the incompressibility of the components

of G ∩ H1. We show the same of G ∩ A and G ∩ B if the circular Heegaard splitting is circular

locally thin.

Our first objective is to show that an essential surface G ⊂ E(K) can be isotoped to intersect

S ∪ F in curves that are essential in both S and F . This is not immediately obvious due to the

fact that S is weakly incompressible.

Lemma 3.2.1. Let K ⊂ S3 be a knot whose exterior E(K) has a locally thin circular handle

decomposition D. Suppose that E(K) contains a closed, orientable incompresible surface G that

intersects S ∪ F in a minimal number of curves. Then

(i) G ∩A and G ∩B are incompressible in A and B, respectively.

(ii) G ∩ (S ∪ F ) is a collection of simple closed curves that are essential in S ∪ F .
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(iii) there are no ∂-parallel annulus components of either G∩A or G∩B. In particular, there are

no ∂∗-parallel annuli in G ∩A or G ∩B.

Proof. The proof is nearly identical to [Hart]. We include the argument here for completeness.

(i) Without loss of generality, assume that G∩A has a component compressible in A. Then there

is a disk D properly embedded in A such that ∂D doesn’t bound a disk in G∩A. Because G

is incompressible in E(K), there is a second disk D′ in G such that ∂D′ = ∂D. Observe here

that D′ ∩ (S ∪ F ) 6= ∅ since ∂D doesn’t bound a disk in G ∩A. Because E(K) is irreducible,

the disks D and D′ cobound a ball in E(K). We can then isotope G so that D′ may be pushed

through this ball and entirely out of A, into B, and off of S ∪ F . This reduces the number of

components in G ∩ (S ∪ F ), contradicting the assumption of minimality.

(ii) Without loss of generality, suppose that c is a curve in G∩∂A that is inessential in ∂A. Then

there is a disk D in ∂A with ∂D = c. Because G is incompressible in E(K), there is another

disk D′ in G such that ∂D′ = c as well.

Consider the surface G′ = (G\D′)∪D. Since E(K) is irreducible, we see that G is actually

isotopic to G′. Hence, we may push D from G′ slightly off of S∪F to make G′ intersect S∪F

in fewer components.

(iii) Without loss of generality, assume that A has a ∂-parallel annulus component G0. Because G

is closed, G ∩ ∂E(K) = ∅ so that G ∩ ∂vA = ∅. Hence, any ∂-parallel component is actually

∂∗-parallel. Therefore, any such component can be pushed out of A and into B so as to reduce

the number of components in G ∩ (S ∪ F ).

�

Now that G intersects S ∪F in such a desirable fashion, we would like to show that elementary

compressions preserve this structure. Moreover, we need to show that they exist in the first place.

Lemma 3.2.2. Let K ⊂ S3 be a knot whose exterior E(K) has an admissible, locally thin

circular handle decomposition (F, S). Suppose that G ⊂ E(K) is a closed, connected, orientable,

incompressible surface. If G intersects S ∪ F in a minimal number of curves and χ(G ∩ A) < 0,

then there is an elementary compression of G ∩A from A into B.
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Proof. Since G is incompressible in E(K), it follows that G∩∂A 6= ∅. By Lemma 3.2.1, G∩A

is incompressible in A. If all components of G ∩ A are disks and annuli, then χ(G ∩ A) ≥ 0. Our

assumption that χ(G ∩ A) < 0 implies that there is some component of G ∩ A that is neither a

disk nor an annulus. In particular, G ∩ A has a ∂-compressible component. If this ∂-compression

isn’t a ∂∗-compression, we can assume that this component is ∂∗-incompressible (otherwise, we are

done). By Lemma 3.1.2, this component must be either a disk or an annulus. Neither such surface

is ∂-compressible since no component of G ∩ A is a ∂∗-parallel annulus. We conclude then that

there must be a ∂∗-compression of some component of G∩A. Because this ∂∗-compression doesn’t

take place on a ∂∗-parallel annulus, it is an elementary compression of G from A into B. �

Lemma 3.2.3. Let K ⊂ S3 be a knot whose exterior E(K) has an admissible circular handle

decomposition (F, S). Suppose that G is a compact, orientable, incompressible surface properly

embedded in A with no ∂∗-parallel components such that G∩ ∂vA has at most one component and

that G ∩ ∂A 6= ∅. If χ(G ∩ A) < 0, then there is an elementary compression of G ∩ A from A into

B.

Proof. If G ∩A has no such elementary compression, then by 3.1.1 each of its components is

either an essential disk or essential spanning annulus. But then we would have χ(G ∩A) ≥ 0, and

this contradicts our hypothesis. �

Lemma 3.2.4. Let K ⊂ S3 be a knot whose exterior E(K) has an admissible circular handle

decomposition (F, S). Suppose that G is a compact, orientable surface properly embedded in E(K)

so that G ∩ A is incompressible in A and that each component of G ∩ (S ∪ F ) is essential in ∂A.

Denote by G′ the embedding of G after an elementary compression from A into B. Then:

(i) G′ is also incompressible in A.

(ii) The components of G′ ∩A are also essential in ∂A.

Proof. This proof is nearly identical to that found in [Hart]. We include it here for complete-

ness.

(i) Suppose G is compressed in A via the disk D ⊂ A with boundary ∂D = α ∪ β, where α ⊂ G

and β ⊂ ∂A\∂vA. We can choose a neighborhood D × I of this disk in such a way that
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(∂D)× I = (α ∪ β)× I keeps α× I ⊂ G and β × I ⊂ ∂A\∂vA. The elementary compression

of G along D replaces α × I with two disks D × (∂I). Name these disks D0 = D × {0} and

D1 = D × {1}. We can then consider D0 and D1 as submanifolds of G′.

Assume that G′ is compressible in A, and let c ⊂ G′ be the boundary curve of some

compressing disk D′ ⊂ A. We can isotope c to be disjoint from D0 and D1 so that an

innermost-disk argument moves D′ disjoint from D0 and D1 as well. Reversing the elemen-

tary compression from above, we can view D′ now as a compressing disk from G, thereby

contradicting the incompressibility of G ∩A.

(ii) Let Σ = ∂A = S ∪ F . Suppose instead that there is a component c′ ⊂ G′ ∩ Σ that bounds

a disk D ⊂ Σ. Then c′ must come from an elementary compression of G from A into B;

otherwise, c′ is an inessential curve in G ∩ Σ and we contradict our assumption that G ∩ (Σ)

was a collection of curves essential in Σ. Thus, we take β ⊂ Σ to be the defining arc of this

∂∗-compression. The proof now proceeds by cases dependent on the number of components

of G ∩ Σ that β joins.

One component - If β joins only one component of G ∩ Σ, the compression breaks c into

two components. One of these components is the curve c′ from above, and we name the other

curve c′′. Either the disk D contains c′′ or it doesn’t.

We first assume that c′′ ⊂ D. Then c′′ itself must bound a disk in D. Hence, c′ is

isotopic to the original curve c so that c is inessential in Σ. This contradiction implies that

c′′ lies outside of the disk D. If this is the case, we can isotope D so that its boundary can

be decomposed into two arcs in Σ: the arc β from the elementary compression and the arc

γ = c′\β. If D′ is the disk realizing the compression of G ∩ Σ with ∂D′ = α ∪ β (α ∈ G),

then the union D′′ = D ∪D′ is a disk such that ∂D′′ = α ∪ γ ⊂ G. If we push the interior of

D′′ slightly into A, then D′′ constitutes a compressing disk for G in A. This contradicts the

incompressibility of G in A. See Figure 3.3.

Two components - If β instead joins two components c0, c1 of G ∩Σ, then observe that c′

is the only curve of G′∩Σ affected by the compression. There are two ways that c′ can bound

D: either D contains β or it doesn’t.
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Figure 3.3. The local result of compressing G along the curve β connecting a single
component of ∂G. The disk D mentioned in the proof of Lemma 3.2.4 is shaded
red.

If D contains β, then reversing the compression pinches D into two disks with boundaries

c0 and c1, respectively. Hence, both c0 and c1 are contained inside a disk and themselves

bound disks. This contradicts our assumption that c0 and c1 were both essential in Σ.

If β lies outsideD, then reversing the compression is the same as gluing a (two-dimensional)

1-handle onto D, thereby creating two boundary components (namely, c0 and c1). That is, D

is converted into an annulus. From our arguments in (i) above, this annulus must be inessen-

tial in A so that it is ∂-parallel. Hence, the ∂∗-compression must have been used instead for

an annular compression rather than our assumed elementary compression. See Figure 3.4.

�

3.3. Circular Distance

The necessity of the requirement that the intersections G∩ (S ∪F ) be essential in S ∪F stems

from our utilization of the curve complex of S ∪F . In the sequence of isotopies that we eventually
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Figure 3.4. The local result of compressing G along the curve β connecting two
components c0, c1 ⊂ ∂G. The disk D mentioned in the proof of Lemma 3.2.4 is
shaded red.

create, we need to be able to compare intersection curves from one term of the sequence to the

intersection curves of the next. The following lemma makes this idea more precise.

Lemma 3.3.1. Let K ⊂ S3 be a knot whose exterior E(K) has an admissible circular handle

decomposition (F, S). Suppose that G is a compact, orientable surface properly embedded in E(K).
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Denote by G′ the embedding of G after a ∂∗-compression from A into B, and let c ⊂ G ∩ (S ∪ F )

and c′ ⊂ G′ ∩ (S ∪ F ) be curves essential in S ∪ F . Then dC(c, c
′) ≤ 1.

Proof. The argument again follows very closely to [Hart]. We include it here for completeness.

Call Σ = S ∪ F . Let D be the disk that realizes the ∂∗-compression with ∂D = α ∪ β, where

α ⊂ G ∩A and β ⊂ Σ.

If the ∂∗-compression is annular, then c is entirely removed from S ∪ F as a result. Hence,

any c′ chosen from G′ ∩ Σ must be disjoint from c so that dC(c, c
′) = 1. We now assume that the

∂∗-compression is, in fact, an elementary compression of G from A into B.

If c is not affected by the compression, then c can be made disjoint from c′ so that dC(c, c
′) ≤ 1.

Therefore, we assume that c is indeed affected by the compression. We proceed by cases dependent

on whether the arc β joins one component or two different components of G ∩ Σ.

Two components - If β joins two components c0, c1 of G ∩ Σ, then we can choose closed collar

neighborhoods η0 and η1, respectively, so that β ∩ int(η0 ∪ η1) = ∅. Let ĉ0 and ĉ1 be the boundary

components of η0 and η1, respectively, where β ∩ (ĉ0 ∪ ĉ1) = ∅. Then ĉ0 is isotopic to c0 and ĉ1

is isotopic to c1, and the curve δ resulting from the compression is disjoint from both ĉ0 and ĉ1.

Hence, because c is either c0 or c1, any component c′ of G′ ∩ Σ can be chosen so that it is disjoint

from c. Therefore, dC(c, c
′) ≤ 1. See Figure 3.5.

Figure 3.5. The local result of compressing G along the curve β connecting two
components c0, c1 ⊂ ∂G.

One component - If β joins the same component c of G∩Σ, then we consider a normal push-off G

of G so that G∩G = ∅. In particular, G can be chosen so that it is disjoint from the ∂∗-compression

disk D. Denote by cε ⊂ G ∩ Σ the image of c under the push-off.
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We then perform the elementary compression of S from A into B. The curve c is thereby

pinched into the pair of curves c′0, c
′
1 ⊂ G′ ∩ Σ, both of which are now disjoint from cε. Hence, c is

isotopic to a curve that is disjoint from any component c′ of G′∩Σ. Thus, dC(c, c
′) = 1. See Figure

3.6.

Figure 3.6. The local result of compressing G along the curve β connecting two
components c0, c1 ⊂ ∂G.

�

Definition 3.3.1. Let K ⊂ S3 be a knot whose exterior E(K) has an admissible circular

handle decomposition (F, S). Denote by ΓA the set of all essential disks and essential spanning

annuli of A. Similarly, define the set ΓB for B.

For the circular Heegaard splitting (F, S), we define its circular distance to be

cd(F, S) = min{dC(∂Sα, ∂Sβ) + dC(∂Fα, ∂Fβ) | α ∈ ΓA, β ∈ ΓB}.

and the thick distance of S to be

td(S) = min{dC(∂Sα, ∂Sβ) | α ∈ ΓA, β ∈ ΓB}.

In the case of a fibered knot K ⊂ S3, we immediately find td(S) = 0 for any circular Heegaard

splitting (F, S) of E(K). This is realized by a vertical, essential annulus A in E(K)\η(F0). This

annulus is cut by S into a pair of essential spanning annuli α ⊂ A and β ⊂ B with ∂Sα = ∂Sβ.

Hence, the only non-zero contribution to the circular distance cd(F, S) comes from its thin level F .

From a theorem of Johnson’s [Jo], we know that dC(∂Fα, ∂Fβ) ≤ 4. Hence, this annulus A also

gives an upper bound to any circular Heegaard splitting (F, S) of E(K) of a fibered knot:
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Lemma 3.3.2. Let K ⊂ S3 be a fibered knot and (F, S) be a circular Heegaard splitting for its

exterior E(K). Then cd(F, S) ≤ 4.

Remark 3.3.1. Because we have this bound, we will now only consider those knots in S3 that

are not fibered. In particular, the results that follow do not necessarily hold for fibered knots.

When we remove the essential spanning annuli and product disks from ΓA and ΓB and regard

S as a Heegaard splitting of E(K)\η(F ), the thick distance td(S) is the usual Hempel distance

d(S). In some sense, we can view the thick distance as a generalization of Hempel distance. As

such, the usual notions of reducibility and weak reducibility of Heegaard splittings are extended to

include essential spanning annuli and essential product disks. Specifically, for a circular Heegaard

splitting (F, S), we say that (F, S) is:

• reducible if cd(F, S) = 0,

• weakly reducible if cd(F, S) = 1, and

• strongly irreducible if cd(F, S) ≥ 2.

For non-fibered knots, we also note that we have the inequalities

0 ≤ td(S) ≤ cd(F, S) ≤ d(S) ≤ td(S) + 2.

The last inequality follows since, for any essential spanning annulus in a compression body, there

is an essential disk that is disjoint from it.
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CHAPTER 4

Bounding Circular Distance

This first part of this chapter is devoted to the proof of the Main Theorem 4.1.1. We go on

to give several applications of circular distance. These include a partial validation of a conjecture

of Majarréz-Gutiérrez [MG] as well as a sketch of a proof of a theorem analagous to a result of

Scharlemann and Tomova [ScTom].

4.1. Proof of the Main Theorem

In this section, we complete our proof of the analog to Hartshorn’s theorem for an incompressible

surface G ⊂ E(K) and a circular Heegaard splitting (F, S) of E(K). We recall that we must isotope

G so that G ∩ A contains exactly one essential disk or essential spanning annulus α. Our goal is

to then isotope G across S so that G ∩B contains exactly one essential disk or essential spanning

annulus β. Then α and β realize an upper bound for the circular distance cd(F, S).

To compute this bound explicitly, our isotopy of G across S must control the distances of the

curves of intersection G ∩ (S ∪ F ). If G′ is the result of an elementary compression of G ∩A from

A into B, then Lemma 3.3.1 says the distance between a curve c′ ∈ G′ ∩ (S ∪ F ) and a curve

c ∈ G ∩ (S ∪ F ) is at most one. Hence, the upper bound we compute is exactly the number of

elementary compressions of G∩A from A into B across S in order to produce the essential disk or

essential spanning annulus β.

Our first goal, then, is to produce the essential disks or essential spanning annuli α and β.

Lemma 4.1.1. Let K ⊂ S3 be a knot whose exterior E(K) has an admissible circular handle

decomposition (F, S) such that F is incompressible and td(S) ≥ 2. Suppose that G is a closed,

connected, orientable, essential surface in E(K) such that each component of G∩(S∪F ) is essential

in either S or F and that each component of G ∩ A is incompressible in A. If G ∩ B contains an
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essential disk or an essential spanning annulus, then there is a sequence of isotopies

G ' G0 ' G1 ' · · · ' Gk ' Gk+1 ' · · · ' Gn

of G such that

• Each component of Gi ∩A is incompressible in Ai for each 0 ≤ i ≤ n;

• Each component of Gi ∩ (S ∪ F ) is essential in either S or F ;

• For any choice of components ci ∈ Gi ∩ (S ∪ F ) that belong to the same component of

S ∪ F , dC(ci, ci+1) ≤ 1 for 0 ≤ i ≤ n− 1.

• For 0 ≤ i ≤ k, at least one component of Gi ∩B is an essential disk or essential spanning

annulus.

• For k + 1 ≤ i ≤ n − 1, no component of either Gi ∩ A or Gi ∩ B is an essential disk or

essential spanning annulus;

• The final isotopy from Gn−1 to Gn ensures that Gn∩A contains exactly one essential disk

or essential spanning annulus component;

• We must have k ≤ n− 2.

Proof. First, remove from G∩A any ∂∗-parallel annuli via annular compressions to form G0.

If none exist, we take G0 = G. Because td(S) ≥ 2, no component of G ∩ A is an essential disk or

essential spanning annulus so that χ(G0 ∩A) < 0. Some component of G0 must meet S in a curve

essential in S since, otherwise, G may be passed through S so as to lie entirely in A or B. Hence,

there is an elementary compression of G0 ∩A from A into B across S. Performing this elementary

compression creates Ĝ1, an isotopy of G0 that differs only by an elementary compression. Now

remove from Ĝ1 ∩ A any ∂∗-parallel annuli via annular compressions. As before, if none exist, we

taken G1 = Ĝ1. Continue in this fashion to create the remaining Gi for 2 ≤ i ≤ k.

We choose k to be the greatest integer such that Gk ∩B contains an essential disk or essential

spanning annulus. Such an integer exists by Lemma 3.1.1. Starting with Gk, continue the procedure

above to create Gi for k+1 ≤ i ≤ n, choosing n to be the smallest integer such that Gn∩A contains

an essential disk or essential spanning annulus component. We note here that k ≤ n − 2 because

td(S) ≥ 2. The first three bullet points are shown using Lemmas 3.2.1 and 3.3.1.
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If Gn ∩ A contains any essential disk components, then there is only one such component;

otherwise, χ(Gn ∩A) ≥ χ(Gn−1 ∩A) + 2 which contradicts Lemma 3.1.1.

It is possible, however, that Gn ∩ A contains two essential spanning annuli. If this is indeed

the case, then these annuli must have come from a pair-of-pants component of Gn−1 ∩A. Observe

that there is an alternative elementary compression of this component across F . See Figure 4.1.

Performing this elementary compression produces a single essential spanning annulus in Gn ∩ A.

This shows the fourth, fifth, and sixth bullet points.

Figure 4.1. If there is an elementary compression through F coming from a pair of
pants, then there is an alternative elementary compression through S that we make
instead.

To show the final bullet point, we notice that Gi∩A and Gi∩B cannot both contain an essential

disk and an essential annulus since td(S) ≥ 2 and F is incompressible. If k = n − 1, there must

be components ck ⊂ Gk ∩ S and cn = ck+1 ⊂ Gn ∩ S such that ck bounds an essential disk or an

essential spanning annulus in Gn ∩A. The third bullet point shows that dC(ck, cn) ≤ 1. Hence, we
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would have td(S) ≤ 1 and contradict our assumption that td(S) ≥ 2. Then k ≤ n− 2 and we have

shown the final bullet point. �

Again, we emphasize the symmetry between A and B in this lemma. That is, we could have

started with an essential disk or essential spanning annulus in G∩A instead. We could then perform

our sequence of isotopies via elementary compressions of G from B into A. We also take a moment

here to observe that either χ(Gn ∩A) ≤ 1 or χ(Gn ∩B) ≤ 1.

If no such essential disk or essential annulus exists in either G ∩ A or G ∩B, then we can still

produce one in the same fashion as above.

Lemma 4.1.2. Let K ⊂ S3 be a knot whose exterior E(K) has an admissible circular handle

decomposition (F, S) such that F is incompressible and td(S) ≥ 2. Suppose that G is a closed,

connected, orientable, essential surface in E(K) such that each component of G∩(S∪F ) is essential

in either S or F and that each component of G∩A is incompressible in A. If neither G∩A nor G∩B

contain an essential disk or an essential spanning annulus, then there is a sequence of isotopies

G ' G−m ' G1−m ' · · · ' G0 ' G1 ' · · · ' Gn

of G such that

• Each component of Gi ∩ A is incompressible in Ai for −m ≤ i ≤ 0 and Gi ∩ B is incom-

pressible in Bi for 0 ≤ i ≤ n;

• Each component of Gi ∩ (S ∪ F ) is essential in either S or F ;

• For any choice of components ci ∈ Gi ∩ (S ∪ F ) that belong to the same component of

S ∪ F , dC(ci, ci+1) ≤ 1 for −m ≤ i ≤ n− 1.

• There is exactly one component of G−m ∩A and Gn ∩B that is either an essential disk or

an essential spanning annulus;

• For 1 −m ≤ i ≤ n − 1, no component of either Gi ∩ A or Gi ∩ B is an essential disk or

essential spanning annulus.

Proof. Since both G∩A and G∩B contain no essential disks or essential spanning annuli, it

follows that both χ(G∩A) < 0 and χ(G∩B) < 0. Hence, G∩A has an elementary compression from

A into B across S. We define the sequence of isotopies as before to get the Gi for −m ≤ i ≤ −1.
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Then G−m ∩ A contains exactly one essential disk or essential spanning annulus. Now starting

at G0, but reversing the roles of A and B in the previous lemma, gives us the Gi surfaces for

1 ≤ i ≤ n. Then Gn ∩B contains exactly one essential disk or essential spanning annulus. All the

noted properties of the sequence are now satisfied via the proof of Lemma 4.1.1. �

Theorem 4.1.1 (Main Theorem). Let K ⊂ S3 be a knot whose exterior E(K) has a circular

Heegaard splitting (F, S) such that F is incompressible. If its exterior E(K) contains a closed,

orientable, essential surface G of genus g, then cd(F, S) ≤ 2g.

Proof. We may isotope G so that it intersects S ∪ F in a minimal number of curves. We

divide the argument into two cases: (i) td(S) ≥ 2 and (ii) td(S) ≤ 1

We first assume that td(S) ≥ 2. By Lemma 3.2.1, this embedding of G satisfies the conditions

of Lemmas 4.1.1 and 4.1.2. From these lemmas, we conclude that there must exist a sequence

of isotopies G0 ' · · ·Gn such that G0 ∩ A and Gn ∩ B both contain exactly one essential disk or

essential spanning annulus each. Call these components PA ⊂ G0∩A and PB ⊂ Gn∩B, respectively.

We also choose a sequence of curves ci ⊂ Gi ∩ (S ∪ F ) such that c0 ∈ ∂PA and cn ∈ ∂PB

We bound n by first observing that χ(G) = χ(G0 ∩ A) + χ(G0 ∩ B) because G ' G and

G ∩ (S ∪ F ) is a collection of circles with Euler characteristic zero. Since G0 ∩ A contains exactly

one essential disk or essential spanning annulus, we use Lemma 3.1.1 to show inductively that

χ(G) = χ(G0 ∩A) + χ(G0 ∩B)

2− 2g ≤ 1 + χ(G0 ∩B)

1− 2g ≤ χ(G0 ∩B)

1− 2g ≤ χ(Gn ∩B)− n

1− 2g ≤ 1− n

n ≤ 2g.

Since n was chosen to be the smallest integer such that Gn ∩ B contains an essential disk or

essential spanning annulus, we then need n elementary compressions of G to move from having an
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essential disk or essential spanning annulus in A to having one in B. Hence, we can bound the

circular distance of the decomposition as

cd(F, S) ≤ dC(c0, cn) ≤ n ≤ 2g.

We now assume that td(S) ≤ 1. The remarks following Definition 3.3.1 show that cd(F, S) ≤ 3.

If cd(F, S) ≤ 2, then cd(F, S) ≤ 2g trivially. Hence, the only other case we need to consider is when

cd(F, S) = 3 with g = 1. We show now that this is impossible.

Observe that td(S) = 1 and d(S) = 3 when cd(F, S) = 3 and S is strongly irreducible. Suppose

that G ∩ B contains an essential disk or essential spanning annulus. Then we are able to recover

the sequence of isotopies constructed in Theorem 4.1.1 until we reach the final paragraph of the

proof. The last bullet point follows from the fact that cd(F, S) = 3; that is, Gi ∩ A and Gi ∩ B

cannot both contain essential disks and essential spanning annuli for any 0 ≤ i ≤ n. Hence, n > k.

If k = n−1, there would exist components ck ⊂ Gk∩S and cn ⊂ Gn∩S such that ck bounds an

essential disk or essential spanning annulus PB ⊂ Gn ∩ B and that cn bounds an essential disk or

essential spanning annulus PA ⊂ Gk ∩A. Moreover, because td(S) = 1, we see that dC(ck, cn) = 1.

The strong irreducibility of S shows PA and PB cannot both be disks. A similar contradiction

in cd(F, S) = 3 is found, without loss of generality, if PA is a disk and PB is an annulus. We then

see that PA and PB are both annuli. However, dC(∂FPA, ∂FPB) ≤ 1 so that cd(F, S) ≤ 2 again.

We conclude that k ≤ n− 2.

If neither G ∩ A nor G ∩ B contain an essential disk or essential spanning annulus, then we

are able to recover the sequence constructed in Theorem 4.1.2 in its entirety. The Euler charac-

teristic argument above then shows that cd(F, S) ≤ 2, thereby contradicting the requirement that

cd(F, S) = 3. �

Corollary 4.1.1. Let K ⊂ S3 be a knot whose exterior E(K) has a circular Heegaard splitting

(F, S) such that F is incompressible. If its exterior E(K) contains a closed, orientable, essential

surface G of genus g that can be isotoped to be disjoint from F , then d(S) ≤ 2g.

Proof. The proof of Theorem 4.1.1 holds. Moreover, we can realize the bound on cd(F, S)

without using essential spanning annuli. �
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4.2. Circular Distance Bound via an Alternate Seifert Surface

It was conjectured in [MG] that it may be possible that Seifert surfaces of minimal genus

appear as the thin levels of thin circular handle decompositions. We provide a partial affirmation

of this conjecture; however, because Seifert surfaces are not closed, more justification is needed in

order to prove this fact. We first state a uniqueness theorem as a corollary to the following theorem:

Theorem 4.2.1. Let K ⊂ S3 be a knot whose exterior E(K) has a circular Heegaard splitting

(F, S) such that F is incompressible. If F ′ is an incompressible Seifert surface for K with genus g

that is not isotopic to F , then d(S) ≤ 2g + 1.

Corollary 4.2.1. Let K ⊂ S3 be a knot whose exterior E(K) has a circular Heegaard splitting

(F, S) such that F is a Seifert surface of K that realizes the Seifert genus g(K). If d(S) > 2g(K)+1,

then F is the unique Seifert surface of minimal genus for K up to isotopy.

We adapt our work from the previous section to the case where the closed surface G ⊂ E(K) is

instead taken to be properly embedded with non-empty boundary. Chapter 3 classifies the compact,

connected, incompressible, ∂∗-incompressible surfaces that may appear in the compression bodies

A and B, and Lemma 3.2.3 indicates when elementary compressions exist.

The next step is to mimic Theorems 4.1.1 and 4.1.2. We do this by replacing the closed surface

G with an incompressible Seifert surface F ′ for the knot K. We first notice that Lemma 3.2.1 is

still applicable in this setting; that is, we can still isotope F ′ to (i) intersect S in curves that are

essential in S and (ii) intersect A and B so that F ′ ∩A and F ′ ∩B are incompressible in A and B,

respectively. In addition, Scharlemann and Thompson [ST1] show that F ′ may be assumed to be

disjoint from the thin level F (as F , too, is an incompressible Seifert surface for K).

Observe that if F ′ is disjoint from F , then F ′ ∩ A and F ′ ∩ B contain no essential spanning

annuli. Hence, we first consider the case where one of either F ′ ∩A or F ′ ∩B contains an essential

disk component, and then we consider the case where neither F ′∩A nor F ′∩B contain any essential

disks.

Lemma 4.2.1. Let K ⊂ S3 be a non-fibered knot whose exterior E(K) has a circular Heegaard

splitting (F, S) such that F is incompressible. Suppose further that F ′ is an incompressible Seifert
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surface for K disjoint from and non-isotopic to F such that F ′ ∩ S is a collection of simple closed

curves that are essential in S.

If F ′ ∩A contains an essential disk and each component of F ′ ∩A is incompressible in A, then

there exists a sequence of isotopies

F ′ ' F ′0 ' F ′1 ' · · · ' F ′m ' · · · ' F ′n

such that

• Each component of F ′i ∩ S is essential in S;

• Each component of F ′i ∩A is incompressible in A;

• For any choice of components ci ∈ F ′i ∩S and ci+1 ∈ F ′i+1 ∩S, we have dC(ci, ci+1) ≤ 1 for

0 ≤ i ≤ n− 1;

• F ′n ∩B contains exactly one essential disk component;

• F ′i ∩ A contains an essential disk component for each 0 ≤ i ≤ m, and neither F ′i ∩ A nor

F ′i ∩B contain any essential disk components for m+ 1 ≤ i ≤ n− 1.

Proof. If F ′ ∩ A contains any ∂∗-parallel annuli, use annular compressions to remove them

from B and define the resulting surface F ′0; if not, then define F ′0 = F ′. Because td(S) ≥ 2 and

F ′0∩F = ∅, we see that F ′0∩B contains no essential disks or essential spanning annuli. This imples

that F ′0 ∩ B is ∂∗-compressible. Perform an elementary compression to form F̂ ′1. Now proceed

inductively (as in the proof of Theorem 4.1.1) and let m be the smallest integer such that either (i)

F ′m ∩ B contains an essential disk component or (ii) χ(F ′m ∩ B) = 0 and F ′m contains no essential

disk components.

If F ′m ∩ B contains an essential disk component, recall that χ(F ′ ∩ B) = χ(F ′m−1 ∩ B) + 1 by

Lemma 3.1.1. If F ′m ∩B were to contain more that one essential disk component, then it would be

the case that χ(F ′m ∩B ≥ χ(F ′m−1 ∩B) + 2. This contradicition dictates that m = n in this case.

If χ(F ′m ∩ B) = 0 and F ′m ∩ B contains no essential disk components, then F ′m ∩ B must

be a collection of annuli. Note that none of these annuli are ∂∗-parallel by construction. If all

of these annuli intersect ∂vB, they would also intersect S since F ′m ∩ F = ∅. We may then

isotope F ′m to lie entirely in A. We then see that F ′m is a properly embedded surface in B that is

connected, incompressible, and disjoint from both S and F . Additionally, ∂F ′m ⊂ ∂vB has exactly
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one component. Therefore, F ′m must be isotopic to F , which contradicts the assumption of the

lemma.

We can now choose an annulus in F ′m∩B that is disjoint from ∂vB. Being disjoint from F , this

annulus must be ∂∗-compressible. We perform the elementary compression to create F̂ ′m+1 and then

form F ′m+1 by removing any ∂∗-parallel annuli via annular compressions as before. Set n = m+ 1.

We then find χ(F ′n ∩B) = 1 so that F ′n ∩B contains exactly one essential disk component.

It cannot be the case that both F ′ ∩ A nor F ′ ∩ B contain essential disk components as S is

strongly irreducible. We conclude n > m. If m = n− 1, then there exist curves cm ⊂ F ′m ∩ S and

cm+1 = cn ⊂ F ′n ∩S so that cm bounds an essential disk in F ′m ∩A and cn bounds an essential disk

in F ′n ∩B. Then d(S) ≤ 1 so that this contradiction allows us to conclude that m ≤ n− 2.

The remaining points of the lemma follow as in the proof of Lemma 4.1.1. �

Lemma 4.2.2. Let K ⊂ S3 be a knot whose exterior E(K) has a circular Heegaard splitting

(F, S) such that F is incompressible. Suppose further that F ′ is an incompressible Seifert surface

for K disjoint from and non-isotopic to F such that F ′ ∩ S is a collection of simple closed curves

that are essential in S.

If neither F ′ ∩A nor F ′ ∩B contains any essential disk components, and if each component of

F ′ ∩A and F ′ ∩B is essential in A and B, respectively, then there exists a sequence of isotopies

F ′−m ' F ′−m+1 ' · · · ' F ′0 ' F ′ ' F ′)1 ' · · · ' F ′n

such that

• Each component of F ′i ∩ S is essential in S;

• Each component of F ′i ∩A and F ′i ∩B is essential in A and B, respectively;

• For any choice of components ci ∈ F ′i ∩S and ci+1 ∈ F ′i+1 ∩S, we have dC(ci, ci+1)leq1 for

−m ≤ i ≤ n− 1;

• Both F ′−m ∩ A and F ′n ∩ B contain exactly one essential disk component, and no F ′i ∩ A

or F ′i ∩B contains any essential disk components for −m+ 1 ≤ i ≤ n− 1.

Proof. This is nearly identical to the proof of Lemma 4.1.2. �

We now prove Theorem 4.2.1:
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Proof of Theorem 4.2.1. This proof is similar to the Main Theorem (4.1.1). If d(S) ≤ 1,

then the theorem follows; hence, we assume d(S) ≥ 2.

First, isotope F ′ so that it intersects S in a minimal number of components. Regardless of

whether or not F ′∩A and F ′∩B contain essential disk components, Lemmas 4.2.1 and 4.2.2 prove

there exists a sequence F ′0, . . . , F
′
n of Seifert surfaces isotopic to F ′ such that F ′0 ∩ B and F ′n ∩ A

each contain exactly one essential disk component. Moreover, F ′i ∩S is a collection of simple closed

curves that are essential in S for all 0 ≤ i ≤ n, and χ(F ′i+1 ∩A) = χ(F ′i ∩A) + 1.

In any case, let cB be the boundary of the essential disk in F ′0 ∩B and cA be the boundary of

the essential disk in F ′n ∩ A. For 0 ≤ i ≤ n − 1, we have dC(ci, ci+1) ≤ 1. By setting c0 = cB and

cn = cA, repeated application of the triangle inequality shows that dC(cA, cB) ≤ n (cf. the proof of

the Main Theorem). Moreover, we find

χ(F ′) = χ(F ′0 ∩A) + χ(F ′0 ∩B)

1− 2g ≤ 1 + χ(F ′0 ∩B)

−2g ≤ χ(F ′0 ∩B)

−2g ≤ χ(F ′n ∩B)− n

−2g ≤ 1− n

n ≤ 2g + 1.

so that

d(S) ≤ dC(cA, cB) ≤ n ≤ 2g + 1.

�

4.3. Circular Distance Bound via a Strongly Irreducible Heegaard Splitting

For a closed 3-manifold M , suppose we are given two strongly irreducible Heegaard splittings

P and Q. Scharlemann and Tomova [ScTom] showed that (assuming trivial intersection and

stabilization cases don’t occur) the Hempel distance of P is bounded by Q similar to Hartshorn’s
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bound for incompressible surfaces. That is, d(P ) ≤ 2 − χ(Q) = 2g(Q). We outline an analogous

theorem in this section.

Theorem 4.3.1. LetK ⊂ S3 be a knot whose exterior E(K) has a locally thin circular Heegaard

splitting (F, S). If Σ is a strongly irreducible Heegaard splitting of genus g for E(K), then cd(F, S) ≤

2g.

Corollary 4.3.1. Let K ⊂ S3 be a knot whose exterior E(K) has a circular locally thin

circular Heegaard splitting (F, S), and suppose τ = {τ1, . . . , τt} is a tunnel system for K. If the

Heegaard splitting Σ induced by τ is strongly irreducible, then cd(F, S) ≤ 2t+ 2. In particular, if

K has tunnel number t(K) and possesses such a strongly irreducible Σ, then cd(F, S) ≤ 2t(K) + 2.

Proof. This follows from Theorem 4.3.1 by observing that the genus of Σ is t+ 1. �

Corollary 4.3.2. Let K ⊂ S3 be a knot whose exterior E(K) has a circular locally thin

circular Heegaard splitting (F, S), and suppose t(K) = 1. Then cd(F, S) ≤ 4.

Proof. For any tunnel τ realizing t(K), the Heegaard splitting induced by τ is strongly irre-

ducible and has genus two. �

Lemma 4.3.1. Let K ⊂ S3 be a knot whose exterior E(K) has an admissible circular handle

decomposition {(W ;A,B)}. Any Heegaard splitting Σ of E(K) must intersect both the thin level

F and the thick level S.

Proof. Note that Σ splits E(K) into a handlebody H and a compression body C that contains

the peripheral torus ∂E(K). Observe that a meridian curve γ ⊂ ∂E(K) of η(K) must intersect F

and S since these are both Seifert surfaces of K. A push-off of γ into E(K) can be taken to be

part of a spine for H so that Σ must intersect both F and S. �

We now extend a standard 1-parameter sweep-out argument (cf. [Schul]) to compact surfaces

G with non-empty boundary and circular Heegaard splittings.

Lemma 4.3.2. Let M be a compact 3-manifold with a strongly irreducible Heegaard splitting

Σ. Suppose G ⊂ M is a compact, orientable, incompressible, properly embedded surface that
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Figure 4.2. A Heegaard surface Σ juxtaposed with a circular Heegaard splitting
(F, S) of E(K). The shaded region constitutes the compression body component of
the Heegaard splitting of E(K) defined by Σ.

intersects ∂M in curves essential in ∂M . Then Σ may be isotoped to intersect G in curves that are

essential (or ∂-parallel) in both Σ and G.

Proof. Let σ0 and σ1 be spines for the compression bodies in the Heegaard splitting defined

by Σ. Let h : M → [0, 1] be a sweep-out of M induced by σ0 = h−1(0) and σ1 = h−1(1), where

h−1
(

1
2

)
= Σ. We denote Σt = h−1(t), At = h−1([0, t]), and Bt = h−1([t, 1]). Possibly after an

isotopy of G, we can assume that σ0 and σ1 transversally intersect G in a finite collection of points

and curves essential in ∂M . We also note here that, for any 0 < t < 1, each component of Σt ∩G

is essential or ∂-parallel in G because G is incompressible.

For small ε > 0, observe that Aε and B1−ε intersect G in some essential spanning annuli and

possibly some compression disks for Σε and Σ1−ε. If there are no disks in G ∩ At for any time

0 < t < 1, then there are no disks in G ∩ Bt either. We then take Σ1/2 to be the required isotopy

of Σ. So we assume that, for some times tA and tB where 0 < tA < tB < 1, there is at least one

disk in G ∩AtA and at least disk in G ∩BtB .

As t increases from 0 to 1, the disks and annuli in G ∩At will merge and split in various ways;

but, for any 0 ≤ t ≤ 1, there cannot be disks in At ∩ G and Bt ∩ G simultaneously since Σt ' Σ
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is strongly irreducible. Because there is an essential disk in AtA ∩ G, there aren’t any in BtA .

Similarly, there are essential disks in BtB ∩ G, so there can’t be any in AtB ∩ G. Therefore, for

some value T ∈ (tA, tB), there can’t be any essential disks in either AT or BT . Hence, ΣT is an

isotopy of Σ that intersects G in curves that are essential in Σ and are either essential or ∂-parallel

in G. �

Lemma 4.3.3. Let K ⊂ S3 be a knot whose exterior E(K) has a locally thin admissible circular

handle decomposition {(W ;A,B)}. Suppose G ⊂ W is a compact, orientable, incompressible,

properly embedded surface such that ∂G ⊂ ∂+A ∪ ∂+B and neither ∂G ∩ ∂+A nor ∂G ∩ ∂+B is

empty. Further assume that each curve in ∂G ∩ ∂W is essential in ∂W\∂vW and that, for any

spines of A and B, G intersects the graph portions of both spines. Then the thick level S may be

isotoped to intersect G in curves that are either essential or ∂-parallel in both S and G.

Proof. We appeal to a sweep-out argument as in the previous lemma, using the thick level

S to sweep out the compact 3-manifold W . We keep the same notation but note that, for each

i = 0, 1, the spine σi is a graph joined to a a surface homeomorphic to the thin level F . The

presence of essential disks to both sides of Σt near σ0 and σ1 is guaranteed by the intersection of G

with their graph portions. The proof then follows identically as before since ∂G ⊂ h−1({0, 1}). �

We can now sketch a proof of Theorem 4.3.1:

Sketch of proof of Theorem 4.3.1. First observe that Lemma 4.3.1 shows that Σ must

intersect both F and S. We can then apply Lemma 4.3.2 to Σ and the incompressible Seifert surface

F so that Σ ∩ F is a collection of curves essential in both Σ and F (and possibly some ∂-parallel

in F ).

Let N = E(K)\η(F ). We either have Σ′ = Σ ∩N compressible in N or we don’t.

Σ′ is incompressible in N : If Σ′ is incompressible in N , then we apply Lemma 4.3.3 to Σ′ and

the strongly irreducible Heegaard splitting S of N to get a new embedding of S (which we will still

call S) such that S ∩ Σ′ is a collection of curves that are essential or ∂-parallel in S.

We would like to employ Lemmas 4.1.1 and 4.1.2, but they do not account for ∂-parallel curves

in S. There are new cases that occur for a ∂∗-compression to join together or pinch apart curves of
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Σ′∩S together when we allow for ∂-parallel curves of S. These cases aren’t already accommodated

by Lemmas 4.1.1 and 4.1.2:

(1) we join one ∂-parallel curve to another to form an inessential curve,

(2) we join an essential curve to itself to form a ∂-parallel curve and another essential curve,

(3) we join one ∂-parallel curve to an essential curve to form another essential curve

(4) we join one ∂-parallel curve to itself to form a pair of essential curves,

(5) we join a pair of essential curves to form a ∂-parallel curve.

The first case describes an annular compression since we only have one boundary component of

F and S. We perform all possible annular compressions before performing an elementary compres-

sion. The only case of an elementary compression which does not maintain at least one essential

curve is the last one. Every other case offers elements of C(S) for us to use to compare essential

disks and essential spanning annuli of A and B. We need to avoid the final case so as not to remove

all essential curves from Σ′ ∩ S.

If we can avoid this final case, the proof of Lemmas 4.1.1 and 4.1.2 can then be applied to the

compact surface with boundary Σ′. We can then apply the proof of the Main Theorem (4.1.1) to

Σ in E(K) so that cd(F, S) ≤ 2g(Σ).

If we cannot avoid the final case, then there is an isotopy of Σ′ in the sequence such that

Σ′ ∩S is entirely comprised of curves that are ∂-parallel in S. Hence, either we can use elementary

compressions to end up with an essential spanning annulus in A, or the only spanning annuli we

find are ∂-parallel.

If there is a ∂-parallel annulus A in A, then it cannot abut a another ∂-parallel annulus in B;

otherwise, Σ would be ∂-parallel in E(K). Therefore, A abuts a surface G that is incompressible in

N such that χ(G < 0. Then G admits an elementary compression across S that splits a ∂-parallel

curve of Σ′ ∩ S into at least one essential curve in S. Furthermore, performing this elementary

compression turns A into a pair of pants in A. Hence, there is another elementary compression this

pair of pants across F that results in a pair of essential spanning annuli (cf. Figure 4.1). Therefore,

a ∂-parallel annulus can be used to produce an essential spanning annulus, call it α, in A.

We now wish to produce an essential disk or essential spanning annulus β in B. Either we

can use elementary compressions of Σ′ from B into A to eventually produce such a surface, or we
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eventually end up with ∂-parallel annuli in B. We can use one of these ∂-parallel annuli to produce

a pair of essential spanning annuli. Choose one of them to be β. The proof of the Main Theorem

4.1.1 can then be applied so that we need at most 2g(Σ′) elementary compressions to start with α

and isotope Σ′ so that Σ′ ∩B contains β. Hence, we obtain the bound cd(F, S) ≤ 2g(Σ).

Σ′ is compressible in N : Now Σ′ is either compressible to one side or to both sides (but not

simultaneously since it is weakly incompressible). The proof proceeds by cases:

Subcase - Σ′ compressible only to one side: Let V be the region in N bounded by Σ′ that

contains a compressing disk. Take ∆ to be a collection of compressing disks for Σ′ in N that is

maximal in the sense that no two disks in Σ′ are parallel in V . If we compress Σ′ along ∆ to get the

surface Σ′′, then Σ′′ is incompressible to one side (as ∆ was taken to be maximal). Observe that

the 2-handle Addition Lemma makes Σ′′ incompressible to the other side as well. This is due to the

fact that Σ is a strongly irreducible Heegaard splitting of E(K), and a reversal of the compressions

along ∆ would produce a pair of disjoint compressing disks (one to each side of Σ). Hence, we have

just shown that E(K) is Haken so that we can apply the Main Theorem (4.1.1) and find (again

loosely) that cd(F, S) ≤ 2g(Σ).

Subcase - Σ′ compressible to both sides: Compressing Σ′ in N as much as possible to one side

yields a surface Σ′1, and compressing Σ′ in N as much as possible to the other side yields another

surface Σ′2. We find all components of Σ′1 and Σ′2 must be incompressible to both sides since Σ

has been maximally compressed and is a strongly irreducible Hegaard splitting of E(K). We then

apply Corollary 4.1.1 to bound cd(F, S) ≤ 2g(Σ). �
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