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Mathematics

Positive Characteristic Phenomena in Linear Series

Abstract

This dissertation addresses several questions regarding the behavior of linear series on

projective curves over a field of positive characteristic—in particular, how the phenomena

of wild ramification and inseparability can give different results from those established by

Eisenbud and Harris for characteristic 0. We begin by classifying the conditions under which

a linear series can be wildly ramified and when that wild ramification can be considered

minimal. We then use these results to establish criteria for when a given space of linear

series with prescribed ramification has its expected dimension and contains only separable

linear series.

Next, we show that a formula given by Osserman for the number of separable linear series

on the projective line with given ramification also counts the number of separable limit linear

series on a genus 0 curve of compact type. We then use this result to give an example of a

limit linear series which cannot be obtained as the limit of any family of linear series with

given ramification. And we finish by showing that, unlike in characteristic 0, it is possible

for a family of linear series specializing to a refined limit linear series on a curve of compact

type to have ramification specializing to a node if the ramification at that node is wild.
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CHAPTER 0

Introduction and Preliminary Material

Let C be a nonsingular projective curve over an algebraically closed field K. This in-

troduction will briefly outline the definitions and basic theory regarding linear series on C

(adapted from the exposition in [10, Chapter 2]).

0.1. Line Bundles, Divisors, and Linear Series

Given a line bundle L on C (i.e. a locally free OC-module of rank 1), we have by [6,

Theorem II.5.19] that the space of global sections Γ(C,L ) is finite dimensional. In particular,

by [6, Theorem II.8.15] the space of differential forms Ω1
C is a line bundle on C, and we define

the genus of C to be g := dim Γ(C,Ω1
C).

A divisor on C is a finite formal sum D =
∑

i aiPi, where the ai are integers and the Pi

are points of C. The degree of D is degD :=
∑

i ai and we say that D is effective if ai ≥ 0 for

each i. Given a nonzero rational function f on C, we can define a divisor D(f) :=
∑

P∈C aPP ,

where aP is the order of f at P . A divisor D is principal if there is a rational function f

with D = D(f), and we call two divisors D and D′ linearly equivalent if D−D′ is principal.

Given a divisor D on C, we can define a line bundle OC(D) whose global sections are 0

together with all nonzero rational functions f on C such that D(f) + D is effective (i.e., if

D is positive at some P ∈ C, then OC(D) allows poles up to that order at P , while if D

is negative at P , then OC(D) imposes zeros of at least that order at P ). By [10, Theorem

2.1.2], the map D 7→ OC(D) from divisors on C to line bundles on C is surjective, with two

divisors mapping to isomorphic line bundles if and only if they are linearly equivalent. In

particular, if L is a line bundle on C, then L ∼= OC(D) for some divisor D on C, and we

can define the degree of L to be deg L := degD (since by [6, Corollary II.6.10], a principal
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divisor has degree 0, linearly equivalent divisors have the same degree and therefore the

degree of a line bundle is well-defined).

We can now make the following definition:

Definition 0.1.1. A linear series of degree d and rank r on C (notated as a grd) is a pair

(L , V ), where L is a line bundle on C of degree d and V ⊆ Γ(C,L ) is an (r+1)-dimensional

subspace of global sections of L .

Remark 0.1.1.1. We can say the following about how d and r are related:

• It is always the case that d ≥ r. In particular:

• The Riemann-Roch theorem [10, Theorem 2.2.1] gives that if L is a line bundle of

degree d > 2g − 2, then r ≤ Γ(C,L )− 1 ≤ d− g.

• On the other hand, Clifford’s inequality [10, Corollary 2.2.13] gives that if L has

degree 0 ≤ d ≤ 2g− 2, then (d+ 1− g)+ ≤ dim Γ(C,L ) ≤ d
2

+ 1. In particular, this

implies that r ≤ d
2
.

Notation. We will use the notation x+ := max (x, 0) throughout.

0.2. Vanishing and Ramification

0.2.1. The Vanishing Sequence. If (L , V ) is a grd on C, we have that L ∼= OC(D)

for some divisor D of degree d. Each nonzero section s ∈ V then corresponds to a section

of OC(D), a rational function f such that D(f) + D is an effective divisor, and s vanishes

according to the “shifted” divisor D(s) = D(f) + D. Since D(s) is an effective divisor of

degree d, the vanishing of s at any point of C does not exceed d.

Given a point P ∈ C, let V (−aP ) be the subspace of V consisting of sections which

vanish to order at least a at P . If we then consider the sequence

V ⊇ V (−P ) ⊇ V (−2P ) ⊇ · · · ⊇ V (−dP ) ⊇ V (−(d+ 1)P ) = 0

we have by [10, Proposition 2.2.7] that the dimension drops by at most 1 at each step.
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Definition 0.2.1. The vanishing sequence a•(P ) = a0(P ), a1(P ), . . . , ar(P ) of (L , V )

at P is the sequence of orders of vanishing at P of sections of V .

That is, the ai(P ) correspond to the points in the sequence of subspaces above where the

dimension drops. If we define the corresponding ramification sequence by αi(P ) := ai(P )− i

for 0 ≤ i ≤ r, we observe that the vanishing sequence is strictly increasing and bounded

above by d, while the ramification sequence is nondecreasing and bounded above by d − r.

If αi(P ) = 0 for each i, then (L , V ) is unramified at P . Otherwise, it is ramified at P and

P is a ramification point. The ramification weight of (L , V ) at P is
∑r

i=0 αi(P ).

0.2.2. Basepoints. If P is a point such that every section in V vanishes at P (this is

equivalent to a0(P ) being nonzero), then P is a basepoint of (L , V ). Following [10, Remark

2.1.8], we can canonically replace any linear series with a linear series of smaller degree such

that P is no longer a basepoint (we will call this “subtracting off” of the basepoint P ).

The significance of this process comes from the fact that by [6, Theorem II.7.1 and Remark

II.7.8.1], there is a bijection between basepoint-free grds on C and nondegenerate morphisms

C → Pr of degree d (determined up to automorphism of Pr).

0.2.3. Wild Ramification and Inseparability.

Definition 0.2.2. Given nonnegative integers r and d ≥ r, an (r, d)-sequence is a se-

quence of nonnegative integers a• = 0 ≤ a0 < a1 < · · · < ar ≤ d. If p is a fixed prime, an

(r, d)-sequence a• is wild if
∏

i<j
aj−ai
j−i ≡ 0 modulo p. Otherwise, the sequence is tame.

Remark 0.2.2.1. We have that
∏

i<j
aj−ai
j−i is the determinant of the matrix aij =

(
aj
i

)
,

and therefore an integer.

We can first observe that the vanishing sequence a•(P ) of a grd on C at a point P is an

(r, d)-sequence. If the characteristic of K is p > 0, we say that the grd is wildly ramified at

P if the vanishing sequence is a wild sequence (otherwise, it is tamely ramified).
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Definition 0.2.3. A linear series on C is inseparable if every point is a ramification

point. Otherwise, it is separable.

The total amount of ramification possible for a separable linear series is determined by

the following formula:

Theorem 0.2.4 (Plücker formula). Let (L , V ) be a separable grd on C. Then

∑
P∈C

r∑
i=0

αi(P ) ≤ (r + 1)(d− r) + r(r + 1)g

with equality if and only if (L , V ) is everywhere tamely ramified. In particular, (L , V ) can

only have finitely many ramification points.

This result was first proved in characteristic 0 by Eisenbud and Harris [2, Proposition

1.1] and extended to arbitrary characteristic by Osserman [8, Proposition 2.4]. The key

point in the proof is that a linear series is inseparable if and only if the determinant of the

matrix Aij(P ) =
(
aj(P )

i

)
is zero (modulo p) for every P ∈ C. We can immediately conclude:

Corollary 0.2.4.1. An inseparable grd is wildly ramified at every point. As such, insep-

arability is not possible if K has characteristic 0.

We will discuss further consequences of the Plücker formula in Section 3.1.
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CHAPTER 1

Tame and Wild Sequences

1.1. A Classification of Wild Sequences

This section will be devoted to the proof of the following result, which classifies the

circumstances under which it is possible for a linear series to be wildly ramified:

Theorem 1.1.1. Given a prime p, there exists a wild (r, d)-sequence for every triple

(r, d, p) except in the following cases:

• r = 0, d = r, or d < p

• r = npk − 2 and d = r + 1 = npk − 1 for k ≥ 1 and 1 ≤ n < p

Before we detail the proof, we can immediately state the following:

Corollary 1.1.2. If K is an algebraically closed field of characteristic p > 0, there

exists an inseparable grd on P1
K for every r and d ≥ r unless the triple (r, d, p) satisfies an

exceptional case from Theorem 1.1.1.

Proof. If the triple (r, d, p) satisfies one of the exceptional cases from Theorem 1.1.1,

then a grd on any nonsingular projective curve over K cannot be wildly ramified at any

point, and so must be separable. Conversely, if (r, d, p) is not exceptional, then there exists

an (r, d)-sequence a• such that the matrix aij =
(
aj
i

)
has determinant zero. As such, we have

that the determinant of the matrix Aij(t) =
(
aj
i

)
taj−i is identically zero and, following the

proof of [2, Proposition 1.1], we see that the morphism P1
K → Pr

K given in affine coordinates

by t 7→ (ta1−a0 , . . . , tar−a0) defines an inseparable grd on P1
K . �

Remark 1.1.3. If a curve C has genus g ≥ 2, then by Remark 0.1.1.1, a grd on C (with

r > 0) can only satisfy the exceptional case d < p: If d > 2g − 2, then r ≤ d − g ≤ d − 2,
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so d = r and d = r + 1 are not possible. Conversely, if d ≤ 2g − 2, then r ≤ d
2
. As such,

d = r is not possible and d = r + 1 is only possible if d = 2 and r = 1. If p = 2, then the

(1, 2)-sequence 0, 2 is wild, while if p > 2, then we have the exceptional case d < p.

1.1.1. The Proof of Theorem 1.1.1. For the following statements, assume that r and

d ≥ r are nonnegative integers and p is a prime.

Given k ≥ 1, we say that an (r, d)-sequence a• has a collision of order k (or k-collision)

whenever aj − ai is a multiple of pk for i < j. A sequence is then wild exactly when it has

more total collisions (of all orders) than the unramified sequence 0, 1, . . . , r (that is, when

the ai are not maximally distributed modulo powers of p).

We can define a partial order on (r, d)-sequences by a• ≤ b• if ai ≤ bi for every 0 ≤ i ≤ r.

A wild sequence a• is strongly minimal if a• ≤ b• for every wild sequence b• and weakly

minimal if every sequence b• with b• ≤ a• is tame.

Proposition 1.1.4. If r = 0, d = r, or d < p, then every (r, d)-sequence is tame, while

if 0 < r < p ≤ d, then the sequence 0, 1, . . . , r − 1, p is a strongly minimal wild sequence.

Proof. A (0, d)-sequence a• = a0 is vacuously tame because
∏

i<j
aj−ai
j−i = 1 is the empty

product. If d = r, then the only possible (r, d)-sequence is the unramified (and so tame)

sequence 0, 1, . . . , d. If d < p, then aj−ai < p for any (r, d)-sequence a•, so the sequence has

no collisions and must be tame. Finally, if 0 < r < p ≤ d, then the unramified sequence has

no collisions, but 0, 1, . . . , r − 1, p has the collision of p with 0 and so is wild. Furthermore,

every (r, d)-sequence a• with ar < p must be tame, so 0, 1, . . . , r−1, p is strongly minimal. �

Now assume that p ≤ r < d and let k ≥ 1 be the largest with pk ≤ r.

Proposition 1.1.5. If 0 ≤ ` ≤ k is the largest such that r ≡ 0 modulo p`, let 0 < s < p`+1

such that r ≡ −s modulo p`+1. Then 0, 1, . . . , r − 1, r + s is a weakly minimal wild sequence

for any d ≥ r + s. In particular, if r ≡ −1 modulo p, then 0, 1, . . . , r − 1, r + 1 is a strongly

minimal wild sequence for any d ≥ r + 1.
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Proof. Assume first that ` = 0. Then r ≡ −s modulo p, and in particular, r does not

collide with 0. Given t ≤ s, replacing r with r + t in the unramified sequence shifts every

collision involving r to the right t spaces (in particular, the collision between r and r − p

becomes a collision between r+t and r−p+t, where we note that r−p+t ≤ r−p+s ≤ r−1).

As such, the sequence 0, 1, . . . , r − 1, r + t is wild if and only if the entry r + t collides with

0. By assumption, r + s collides with 0, while r + t does not collide with 0 for t < s, so

the sequence 0, . . . , r− 1, r + s is weakly minimal. In particular, if s = 1, then the sequence

a• = 0, . . . , r − 1, r + 1 is strongly minimal since a• ≤ b• for every (r, d)-sequence b• except

the unramified sequence.

Now assume that ` > 0. In this case, r and s are both multiples of p`, and so collide to

order `. Let r − npm (with 1 ≤ n < p and 1 ≤ m ≤ k) be an entry that collides with r to

order m. If npm > t for a given t ≤ s (since s < p`+1, this is always the case if m > `), then

replacing r with r + t in the unramified sequence shifts this collision to the right t spaces

as above. If npm ≤ t, then shifting to the right t spaces involves first shifting npm spaces,

at which point the collision is “wrapped around” to become a collision between r + npm

and 0, and then shifting the remaining t − npm spaces. Since r is a multiple of p` with

` ≥ m, the collision between r + npm and 0 will have order at least m. Furthermore, the

order will be greater than m if and only if m = ` and r + npm is a multiple of p`+1. This

says exactly that replacing r with r + t gives a wild sequence if and only if r collides with

r − t to order ` and this collision increases in order when “wrapped”. By assumption, the

first collision to increase in order is the collision between r and r − s, which says exactly

that 0, 1, . . . , r − 1, r + s is wild and 0, 1, . . . , r − 1, r + t is tame for t < s. As above, this

establishes that the wild sequence 0, 1, . . . , r − 1, r + s is weakly minimal. �

Next, a complete block is a subsequence of the unramified sequence of the form

mpk,mpk + 1, . . . , (m+ 1)pk − 1
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where 0 ≤ m < p. By assumption, the unramified sequence contains at least one complete

block 0, 1, . . . , pk − 1. Given an entry a in a complete block, there are pk−` entries in any

other complete block that collide with a to order `. Similarly, within the same complete

block as a, there are pk−` − 1 entries that collide with a to order ` (a does not collide with

itself). As such, in an unramified sequence consisting of n complete blocks, any entry a

contributes n(pk−1 + pk−2 + · · · + p + 1) − k total collisions. In particular, the number of

collisions removed by deleting an entry does not depend on the choice of entry.

Proposition 1.1.6. If r ≡ −2 modulo pk, then every (r, r + 1)-sequence is tame. Fur-

thermore, if d ≥ r + 2, then 0, 1, . . . , r − 1, r + 2 is a strongly minimal wild sequence.

Proof. Let r = npk − 2 for some 2 ≤ n ≤ p. Then the unramified sequence consists of

n− 1 complete blocks plus a block missing its final entry, npk − 1. As such, every (r, r+ 1)-

sequence is obtained from the unramified sequence by deleting an entry and adding npk− 1.

In particular, every (r, r + 1)-sequence (including the unramified sequence) is obtained by

deleting an entry from a sequence of n complete blocks and therefore has the same number

of collisions. This says exactly that a wild sequence is not possible.

Conversely, assume that d ≥ r + 2. If p 6= 2, then we have that r ≡ −2 modulo p. If

p = 2, then r = 2 · 2k − 2 = 2k+1 − 2. Since k ≥ 1, this says exactly that r ≡ 0 modulo 2

but that r ≡ −2 modulo 4. In either case, we have from Proposition 1.1.5 that the sequence

0, 1, . . . , r − 1, r + 2 is wild. �

Proposition 1.1.6 establishes the last of the exceptional cases. The following result proves

the existence of a wild sequence in all other situations:

Proposition 1.1.7. If r = npk + s for some 1 ≤ n < p and 0 ≤ s ≤ pk − 3, then the

sequence 0, 1, . . . , npk − 2, npk, . . . , r, r + 1 is wild for any d ≥ r + 1.

Proof. In this case, the unramified sequence consists of n complete blocks followed by a

block of length s+1. Consider first the subsequence 0, 1, . . . , npk−1 formed by the complete
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blocks. We have that deleting the entry npk−1 removes n(pk−1+pk−2+· · ·+p+1)−k collisions

with this subsequence, while separately adding r + 1 creates n(pk−1 + pk−2 + · · · + p + 1)

collisions with this subsequence. Since s ≤ pk−3, npk−1 and r+1 can collide to order at most

k− 1, so replacing npk− 1 with r+ 1 creates at least one collision with the complete blocks.

Furthermore, any collision between npk − 1 and the final block of length s + 1 corresponds

to a “mirror-image” collision between r + 1 and the final block: If npk − 1 collides with

npk + t for some 0 ≤ t ≤ s, then r + 1 collides to the same order with npk + s − t. As

such, the number of collisions with the final block is unchanged. This says exactly that

0, 1, . . . , npk − 2, npk, . . . , r, r + 1 is a wild sequence. �

Proposition 1.1.7 completes the proof of Theorem 1.1.1.

1.2. Minimal Wild Sequences

As above, let r and d ≥ r be nonnegative integers, p a prime, and, in the case that p ≤ r,

k ≥ 1 the largest with pk ≤ r.

Definition 1.2.1. An (r, d)-index is a sequence of nonnegative integers α• = 0 ≤ α0 ≤

α1 ≤ · · · ≤ αr ≤ d − r. Given an (r, d)-index α•, we can associate a unique (r, d)-sequence

a• defined by ai = αi + i for 0 ≤ i ≤ r, and we say that α• is wild if a• is wild (and similarly

with the other properties of (r, d)-sequences).

Remark 1.2.1.1. We observe that the ramification sequence α•(P ) of a grd on a curve C

at a point P ∈ C is an (r, d)-index.

Proposition 1.2.2. Assume that r = npk + s with 0 ≤ s ≤ pk − 1 and d < pk+1. Then

given an (s, d− npk)-index α•, the (r, d)-index α• = 0, . . . , 0, α0, . . . , αs is wild if and only if

α• is wild. In particular, α• is weakly minimal if and only if α• is weakly minimal.

Proof. Let a• be the (r, d)-sequence associated to α•. Then a• consists of n complete

blocks followed by s+ 1 entries not exceeding pk+1−1. Any of these final entries contributes
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exactly n(pk−1 + pk−2 + · · · + p + 1) collisions with the entries in the complete blocks, and

this is true for any choice of α•, including the unramified index 0, . . . , 0. As such, we can

determine if a• is wild simply by counting the collisions within the final s+ 1 entries. Since

shifting every entry by npk does not change the number of collisions, this says exactly that

α• is wild if and only if α• is wild. Furthermore, given a wild (s, d− npk)-index β• and the

corresponding wild (r, d)-index β•, we have that β• ≤ α• if and only if β• ≤ α•, which says

exacly that α• is weakly minimal if and only if α• is weakly minimal. �

Corollary 1.2.3. If r = npk + s with 0 ≤ s ≤ pk− 3 and the triple (s, s+ 1, p) satisfies

one of the exceptional cases from Theorem 1.1.1, then the wild sequence found in Proposition

1.1.7 is weakly minimal. If we also have that d = r + 1, then it is strongly minimal.

Proof. The wild sequence in Proposition 1.1.7 corresponds to the index 0, . . . , 0, 1, . . . , 1︸ ︷︷ ︸
s+2

.

If (s, s + 1, p) satisfies an exceptional case from Theorem 1.1.1, then every (s, s + 1)-index

is tame, so every (r, r + 1)-index that ends with fewer than s + 2 1’s must be tame by

Proposition 1.2.2. �

Remark 1.2.3.1. If there exists a wild (s, s + 1)-index, then by Proposition 1.2.2, a

weakly minimal wild (s, s+ 1)-index determines a weakly minimal wild (r, r + 1)-index. As

such, we can determine a weakly minimal wild (r, r + 1)-index by reducing to the case that

r = s and iterating this process.

We conclude this chapter by collecting the previous results into the following classification

of minimal wild indices:

Theorem 1.2.4. For any r and d ≥ r such that the triple (r, d, p) does not satisfy an

exceptional case from Theorem 1.1.1, there exists a weakly minimal wild index of one (or

both) of the following forms: 0, . . . , 0, 1, . . . , 1 or 0, . . . , 0, t for some t ≤ d− r. In particular:

(1) If r < p ≤ d, then 0, . . . , 0, p− r is a strongly minimal wild index.
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(2) If r ≡ −1 modulo p and d ≥ r+ 1, then 0, . . . , 0, 1 is a strongly minimal wild index.

(3) If r ≡ −2 modulo pk and d ≥ r+2, then 0, . . . , 0, 2 is a strongly minimal wild index.

(4) If p = 2 and d ≥ r+2, then every weakly minimal wild index is of the form 0, . . . , 0, 1,

0, . . . , 0, 1, 1, or 0, . . . , 0, 2.

(5) If 2 < p ≤ r and d ≥ r + 2, then either 0, . . . , 0, 1, . . . , 1︸ ︷︷ ︸
<p

or 0, . . . , 0, 2 is a weakly

minimal wild index.

(6) If d ≥ r + p − 1 and p 6= 2, then either 0, . . . , 0, t (for some t < p) or 0, . . . , 0, 1, 1

is a weakly minimal wild index.

Furthermore, a wild index not of one of these forms is not weakly minimal.

Proof. The existence result follows from Propositions 1.1.4 and 1.1.5 and Corollary

1.2.3, and statements (1), (2), and (3) follow from Propositions 1.1.4, 1.1.5, and 1.1.6,

respectively.

Next, assume that r = npk + s with 0 ≤ s ≤ npk − 3. We have from Corollary 1.2.3 that

the wild index from Proposition 1.1.7 is weakly minimal if the triple (s, s+ 1, p) satisfies one

of the exceptional cases in Theorem 1.1.1. There are two possible ways that this can happen:

• s + 1 < p (this includes the case s = 0): Then s + 2 ≤ p, so the weakly minimal

wild index 0, . . . , 0, 1, . . . , 1︸ ︷︷ ︸
s+2

finishes with at most p 1’s.

• s = mp` − 2 for some 1 ≤ m < p and 1 ≤ ` < k: Then if d ≥ r + 2, we have that

0, . . . , 0, 2 is a weakly minimal wild index by Proposition 1.1.5 (this is true even if

p = 2 by the argument in the proof of Proposition 1.1.6).

As in Remark 1.2.3.1, if neither of these conditions holds, then we can reduce to the case that

r = s, and iterate until one of these conditions is satisfied. In the case p = 2, this establishes

statement (4). If p 6= 2, then s + 2 = p implies that r ≡ −2 modulo p, so 0, . . . , 0, 2 is a

weakly minimal wild index by Proposition 1.1.5. As such, if this is not the case, then we

must have that s+ 2 < p, which establishes statement (5).
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To establish statement (6), assume that d ≥ r + p − 1 and r ≥ p > 2 (statement (1)

covers the case 0 < r < p). If r is not a multiple of p, then we can write r ≡ −t modulo p

for some 0 < t < p, and then 0, . . . , 0, t is a weakly minimal wild index by Proposition 1.1.5.

Otherwise, assume that r is a multiple of p. If r = npk, then we can apply the above result

with s = 0 to see that 0, . . . , 0, 1, 1 is a weakly minimal wild index. Otherwise, we can write

r = npk +s, where s is also a multiple of p. Since p 6= 2, we can again reduce to the case that

r = s and iterate this process, which must terminate with the weakly minimal wild index

0, . . . , 0, 1, 1.

Lastly, assume that the final statement fails for some triple (r, d, p). In particular, let r be

the smallest such that there exists d ≥ r, a prime p, and a weakly minimal wild (r, d)-index

α• which is not of one of the given forms. Then:

• Since every (r, r + 1)-index is of the form 0, . . . , 0, 1, . . . , 1, we have that d ≥ r + 2.

• Since each strongly minimal wild index in statements (1), (2), and (3) is of the form

0, . . . , 0, t, we have that r ≥ p with r 6≡ −1 or −2 modulo pk.

• By Proposition 1.1.5, the largest t needed to achieve a wild index of the form

0, . . . , 0, t is t = pk+1 − r, so α• is not weakly minimal if αr ≥ pk+1 − r.

As such, we can write r = npk + s with 0 ≤ s ≤ pk − 3 and we can assume without loss

of generality that d < pk+1. By Proposition 1.1.7, the (r, d)-index 0, . . . , 0, 1, . . . , 1︸ ︷︷ ︸
s+2

is wild.

Since α• is not of this form, only the final s + 1 entries can be nonzero, so we have that

α• = 0, . . . , 0, αnpk , . . . , αr. By Proposition 1.2.2, this says exactly that the (s, d−npk)-index

αnpk , . . . , αr is a weakly minimal wild index not of one of the given forms. However, since

s < r, this contradicts the assumed minimality of r and the result follows. �
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CHAPTER 2

Brill-Noether Theory and Inseparability

This chapter will use results from the previous chapter to establish criteria for when spaces

of linear series with prescribed ramification have their expected dimension and contain only

separable linear series. We begin with the following preliminary material:

Let Cg be a nonsingular projective curve of genus g over an algebraically closed field K,

r and d ≥ r nonnegative integers, and a• and b• (r, d)-sequences. Then if α• and β• are the

corresponding (r, d)-indices, we can define:

• ρ0 := g − (r + 1)(g + r − d) = (r + 1)(d− r)− rg (the Brill-Noether number);

• ρ1 := ρ0 −
r∑

i=0

αi;

• ρ2 := ρ0 −
r∑

i=0

(αi + βi);

• ρ̂1 := g −
r∑

i=0

(ai + (r − i)− (d− g))+ = g −
r∑

i=0

(αi − (d− (g + r)))+

• ρ̂2 := g −
r∑

i=0

(ai + br−i − (d− g))+ = g −
r∑

i=0

(αi + βr−i − (d− (g + r)))+.

By [10, Proposition 2.6.1], there exists a space Gr
d(Cg) which contains grds on Cg. Then,

given Q1, . . . , Qn distinct points of Cg and aj• (r, d)-sequences for 1 ≤ j ≤ n (with associated

(r, d)-indices αj
•), we can set Gr

d(Cg, {(Qj, a
j
•)}j) to be the space of grds on Cg with vanishing

sequence at least aj• at Qj. Following [10, Proposition 2.7.3], we will refer to

ρ := ρ0 −
n∑

j=0

r∑
i=0

αj
i

as the expected dimension of the space Gr
d(Cg, {(Qj, a

j
•)}j).
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If Cg is assumed to be a general curve (cf. [10, Remark 2.5.6]), and P and Q are general

points of Cg, then we have the following result due to Osserman [9, Theorem 1.1]:

Theorem 2.0.1. The space Gr
d(Cg, (P, a•), (Q, b•)) is nonempty if and only if ρ̂2 ≥ 0, in

which case it has the expected dimension ρ2.

Remark 2.0.1.1. If b• is the unramified sequence, then we have that ρ2 = ρ1 and ρ̂2 = ρ̂1,

so Theorem 2.0.1 gives that the space Gr
d(Cg, (P, a•)) of linear series with vanishing imposed

only at P is nonempty if and only if ρ̂1 ≥ 0, in which case it has the expected dimension ρ1.

Remark 2.0.2. Note also that since we can write

ρ2 = g −
r∑

i=0

(ai + br−i − (d− g))

we have that ρ̂2 ≤ ρ2 (and similarly ρ̂1 ≤ ρ1), with equality if d ≤ g + r.

2.1. A Criterion For Expected Dimension

Assume that there exists a grd on Cg with vanishing sequence a• at P and b• at Q.

Proposition 2.1.1. In this situation, we have that br ≤ r+ρ1. In particular, if d ≤ g+r,

then

br ≤ d− r(g + r − d)−
r∑

i=0

αi ≤ d

Proof. Assume that br = r + ρ1 + s for some s > 0. Then:

ρ2 = g −
r∑

i=0

(ai + br−i − (d− g))

≤ g −

(
r∑

i=1

(ai + (r − i)− (d− g))

)
− (a0 + (r + ρ1 + s)− (d− g))

=

(
g −

r∑
i=0

(ai + (r − i)− (d− g))

)
− ρ1 − s

= −s

14



As such, if br > r+ρ1, then ρ̂2 ≤ ρ2 < 0, so by Theorem 2.0.1, the space of linear series with

this vanishing must be empty. In particular, if d ≤ g + r, we have

r + ρ1 = r + ρ0 −
r∑

i=0

αi = d− r(g + r − d)−
r∑

i=0

αi ≤ d

�

Proposition 2.1.2. If d ≥ g + r, then

br ≤ (d− g) + ρ̂1 = d−
r∑

i=0

(αi − (d− (g + r)))+ ≤ d

In particular, if d = g + r, we have that

br ≤ d−
r∑

i=0

αi

Proof. Because there exists a grd which vanishes to a• at P , the space Gr
d(Cg, (P, a•))

is nonempty. This means that the sequence a• gives ρ̂1 ≥ 0. We can also assume that P is

not a basepoint of the grd, which gives a0 = 0.

Assume that br = (d− g) + ρ̂1 + s for some s > 0. Then:

ρ̂2 = g −
r∑

i=0

(ai + br−i − (d− g))+

≤ g −

(
r∑

i=1

(ai + (r − i)− (d− g))+

)
− (a0 + ((d− g) + ρ̂1 + s)− (d− g))+

=

(
g −

r∑
i=1

(ai + (r − i)− (d− g))+

)
− ρ̂1 − s

In the last equality, we are using that a0 = 0 and that (ρ̂1 + s)+ = ρ̂1 + s. The assumption

that d ≥ g + r gives that (a0 + r − (d− g))+ = 0, so

ρ̂1 = g −
r∑

i=1

(ai + (r − i)− (d− g))+
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and ρ̂2 ≤ −s. As such, if br > (d − g) + ρ̂1, then ρ̂2 < 0 and the space of linear series with

this vanishing must be empty. In particular:

(d− g) + ρ̂1 = (d− g) + g −
r∑

i=0

(ai + (r − i)− (d− g))+

= d−
r∑

i=0

(ai − i− (d− (g + r)))+

= d−
r∑

i=0

(αi − (d− (g + r)))+ ≤ d

Taking d = g + r then gives the final inequality. �

Now let C0 be the nodal curve obtained by gluing a copy of P1 to Cg at the point Q.

Definition 2.1.3. Given a nodal curve C0 defined as the union of two nonsingular

projective curves C1 and C2 glued at a point Q, a limit linear series (or limit grd) on C0

is a pair of grds, (L 1, V 1) on C1 and (L 2, V 2) on C2, such that a1
i (Q) + a2

r−i(Q) ≥ d for

0 ≤ i ≤ r (where aj•(Q) is the vanishing sequence of (L j, V j) at Q). The vanishing sequence

(respectively, ramification sequence) of a limit grd at a nonsingular point is the vanishing

sequence (respectively, ramification sequence) of the corresponding grd at that point.

If c• is the complementary sequence to b• (i.e. the (r, d)-sequence given by ci := d−br−i for

0 ≤ i ≤ r), then every limit grd on C0 with vanishing sequence b• at Q on the Cg component

must have vanishing sequence at least c• at Q on the P1 component. This gives:

Corollary 2.1.4. If d ≤ g + r then

c0 ≥ r(g + r − d) +
r∑

i=0

αi

while if d ≥ g + r, then

c0 ≥
r∑

i=0

(αi − (d− (g + r)))+
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With Corollary 2.1.4 in mind, we can then define d′ := d− σ, where

(2.1) σ :=


r(g + r − d) +

r∑
i=0

αi d ≤ g + r

r∑
i=0

(αi − (d− (g + r)))+ d ≥ g + r

Proposition 2.1.5. Let P ′1, . . . , P
′
n−1 be distinct nonsingular points on the P1 component

of C0 and a1
•, . . . , a

n−1
• (r, d)-sequences. If K has characteristic p > 0, assume that the triple

(r, d′, p) satisfies one of the exceptional cases from Theorem 1.1.1. Then the space of limit

linear series Gr
d(C0, {(P ′j , aj•)}j, (P, a•)) has the expected dimension if it is nonempty.

Proof. Since b• and c• are complementary sequences, we can establish this result by

checking that the spaces Gr
d(P1, {(P ′j , aj•)}j, (Q, c•)) and Gr

d(Cg, (P, a•), (Q, b•)) each have

the expected dimension if they are nonempty and then applying [10, Corollary 3.3.9]. Since

Cg, P , and Q were assumed to be general, the statement on Cg follows from Theorem

2.0.1. Furthermore, by Corollary 2.1.4, the sequence a• forces a basepoint at Q on the P1

component. Then subtracting off this basepoint (cf. Section 0.2.2) produces an isomorphism

between the spaces Gr
d(P1, {(P ′j , aj•)}j, (Q, c•)) and Gr

d′(P1, {(P ′j , aj•)}j, (Q, c• − c0)) (i.e. we

are lowering the degree from d to d′). By Corollary 1.1.2, it is not possible for any grd′ on

P1 to be inseparable, so we can therefore apply [10, Proposition 2.8.2] (the Eisenbud-Harris

result for linear series on P1 in characteristic 0) to see that Gr
d′(P1, {(P ′j , aj•)}j, (Q, c• − c0))

has the expected dimension if it is nonempty. �

Theorem 2.1.6. Let K be an algebraically closed field of characteristic p > 0, g, r, and

d ≥ r nonnegative integers, and a• an (r, d)-sequence with a0 = 0. If we set d′ := d−σ, where

σ is as defined in (2.1), above, assume that the triple (r, d′, p) satisfies one of the exceptional

cases from Theorem 1.1.1. Then there exists a nonsingular projective curve C of genus g

and P1, . . . , Pn distinct points on C such that given (r, d)-sequences a1
•, . . . , a

n−1
• , the space

Gr
d(C, {(Pj, a

j
•)}j, (Pn, a•)) has the expected dimension if it is nonempty.
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Proof. By Winters’s theorem on families of curves [10, Theorem 3.4.4], there exists a

nonsingular curve B, a point b0 ∈ B, and a genus g family of curves π : X → B, such that:

• The total space X and the fibers X|b are nonsingular for b 6= b0;

• The fiber X0 = X|b0 is isomorphic to the nodal curve C0;

• There exist disjoint sections P1, . . . , Pn of π with each P1, . . . , Pn−1 specializing to

P ′1, . . . , P
′
n−1, respectively, and Pn specializing to P .

By Proposition 2.1.5, the space Gr
d(X0, {(Pj, a

j
•)}j, (Pn, a•)) has exactly the expected

dimension if it is nonempty. We can therefore apply “specialization” [10, Proposition 3.4.2] to

π to see that for a fixed choice of (r, d)-sequences aj•, the spaces Gr
d(X|b, {(Pj, a

j
•)}j, (Pn, a•))

can only be nonempty of greater than expected dimension for finitely many points b ∈ B.

As such, there is a nonempty open subset U ⊆ B such that Gr
d(X|b, {(Pj, a

j
•)}j, (Pn, a•)) is

either empty or has the expected dimension for every b ∈ U . We obtain such an open subset

for each of the finitely many choices of the aj•, and taking their intersection gives a nonempty

open subset V ⊆ B such that for every b ∈ V and any choice of (r, d)-sequences aj•, the space

Gr
d(X|b, {(Pj, a

j
•)}j, (Pn, a•)) has the expected dimension if it is nonempty. We can then fix

any point b1 ∈ V and set C := X|b1 . �

Our main result is then the following:

Corollary 2.1.7. Let g, r, d, K, and a• satisfy the assumptions of Theorem 2.1.6.

Then if C is a general nonsingular projective curve of genus g over K with n general marked

points P1, . . . , Pn, and a1
•, . . . , a

n−1
• are (r, d)-sequences, the space Gr

d(C, {(Pj, a
j
•)}j, (Pn, a•))

has the expected dimension if it is nonempty and contains only separable linear series.

Proof. By [10, Corollary 4.2.4], the property of the space Gr
d(C, {(Pj, a

j
•)}j, (Pn, a•))

having the expected dimension if it is nonempty is open in families of curves with marked

points. As such, the existence result from Theorem 2.1.6 is sufficient to establish the result

for a general n-marked curve. Furthermore, in the case that the space is nonempty, we can
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apply Propositions 2.1.1 and 2.1.2 to the point Pn and any other general point Q to see that

the vanishing sequence at Q of any grd in the space is in fact an (r, d′)-sequence and so cannot

be a wild sequence. Since by Corollary 0.2.4.1 an inseparable linear series is wildly ramified

at every point, Gr
d(C, {(Pj, a

j
•)}j, (Pn, a•)) can only contain separable grds. �

Remark 2.1.7.1. The significance of this result is the following: Without involving the

sequence a• in the assumptions of Theorem 2.1.6, we have by [10, Theorem 2.7.7] that the

space Gr
d(C, {(Pj, a

j
•)}j, (Pn, a•)) has its expected dimension as long as the triple (r, d, p)

satisfies an exceptional case from Theorem 1.1.1. By including a• in the initial conditions,

we only need the weaker assumption that (r, d′, p) satisfies an exceptional case.

2.1.1. Examples. For the following examples, set ρ := ρ1 and ρ̂ := ρ̂1. Because the

statement of Theorem 2.1.6 is trivial if the space Gr
d(C, (P, a•)) is empty, we will assume

that ρ̂ ≥ 0.

Example 2.1.8. In the the case that d ≥ g+ r, we observe that ρ̂ = g−σ, and so σ ≤ g.

If we have that αr = d−r and αi ≤ d−(g+r) for i < r, then σ = αr−(d−(g+r)) = g, so we

achieve the maximum value for σ (and therefore the minimum value of d− g for d′ = d−σ).

In particular, we can take αi = 0 for i < r, in which case we have ρ = r(d− (g + r)).

Example 2.1.9. Now consider the case that d ≤ g + r. We note that in this case

ρ = (d− r)− r(g + r − d)−
r∑

i=0

αi = d− r − σ = d′ − r

If we take αi = 0 for each i, we achieve a minimum value of σ = r(g + r− d), while we need

σ ≤ d− r in order to achieve ρ̂ = ρ ≥ 0. This gives that r(g + r − d) ≤ d− r and therefore

d− r ≤ g ≤ r + 1

r
(d− r)

If we let 0 ≤ s ≤ d
r
− 1 such that g = d − r + s, we have that σ = sr +

∑r
i=0 αi and

ρ = d− (s+ 1)r −
∑r

i=0 αi. Assuming that αi = 0 for i < r, we can consider three cases:
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• Since s ≤ d
r
− 1, we can take αr = d− (s+ 1)r. Then ρ = 0 and d′ = r.

• If s ≤ d−1
r
− 1, we can take αr = d− (s+ 1)r − 1. Then ρ = 1 and d′ = r + 1.

• Assume that d ≥ p > r > 0 and s > 0. If d−p ≥ sr, taking αr = d−sr−p+1 gives

ρ = p− r− 1 and d′ = p− 1 < p. Conversely, if d− p < sr, we can achieve the same

result by taking αr = 0: We have that ρ = ρ0 = d− (s+ 1)r and d′ = d− sr < p.

In particular, the α• in each example produces a d′ which might (depending on p in the

d′ = r + 1 case) allow (r, d′, p) to satisfy one of the exceptional cases from Theorem 1.1.1.

We finish this section by observing that if we take a• to be the unramified sequence in

Corollary 2.1.7, we achieve the following:

Corollary 2.1.10. Let g, r, and d be nonnegative integers such that r ≤ d < g + r, p

a prime, and s := g + r − d as in Example 2.1.9. Assume that one of the following holds:

• d = (s+ 1)r (or equivalently, d = rg
r+1

+ r);

• d = (s+ 1)r + 1 and r = npk − 2 for k ≥ 1 and 1 ≤ n < p;

• d < p+ sr.

Then every grd on a general nonsingular projective curve of genus g over an algebraically

closed field of characteristic p must be separable. In particular, this is always true if ρ0 = 0.

Proof. If we assume that d < g + r and a• is the unramified sequence, we have from

Example 2.1.9 that σ = sr and so d′ = d − sr. For each of the listed conditions, the triple

(r, d′, p) satisfies an exceptional case from Theorem 1.1.1, and so the result follows from

Corollary 2.1.7.

Furthermore, we have that ρ0 = g − (r + 1)(g + r − d) cannot equal 0 unless d ≤ g + r.

If d = g + r, then ρ0 = 0 implies g = 0, which in turn gives that d = r. Otherwise, we have

that d < g + r and we can apply the above result: Because d − (s + 1)r = ρ = ρ0, ρ0 = 0

implies that d = (s+ 1)r, which gives the exceptional case d′ = r. �

20



2.2. The Value of ρ̂ Assuming Minimal Wild Ramification

In this section, we briefly examine the consequences of the classification of weakly minimal

wild indices from the previous chapter for the value of ρ̂.

Let C be a general nonsingular projective curve of genus g over an algebraically closed field

of characteristic p > 0, P and Q general points of C, and r and d ≥ r nonnegative integers

such that the triple (r, d, p) does not satisfy one of the exceptional cases from Theorem 1.1.1.

Then by Theorem 1.2.4, there exists a weakly minimal wild (r, d)-index of either one or both

of the following forms: α• = 0, . . . , 0, t, where t ≤ d− r, or β• = 0, . . . , 0, 1, . . . , 1︸ ︷︷ ︸
s

. Assuming

that r ≤ d− g, we can then calculate ρ̂ for each of the following spaces:

• For the space Gr
d(C, (P, α•), (Q,α•)), we have:

ρ̂ =


2(d− r − t)− g r + t ≥ d− g

g r + t ≤ d− g

• For the space Gr
d(C, (P, α•), (Q, β•)), we have:

ρ̂ =


g − t− s r = d− g

d− r − t r + t ≥ d− g > r

g r + t ≤ d− g

• For the space Gr
d(C, (P, β•), (Q, β•)), we have:

ρ̂ =


g − 2s r = d− g

g − (2s− (r + 1))+ r + 1 = d− g

g r + 2 ≤ d− g

In the particular case that r < p ≤ d, we have that t = p− r and that there is no weakly

minimal wild index of the form β•. As such, we only need to calculate ρ̂ in the first of the
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above cases. Since 2(d− p) < g implies that d− p < g, and therefore that r+ t = p > d− g,

we have that 2(d−p) < g implies that ρ̂ < 0. By Theorem 2.0.1, this in turn implies that the

space Gr
d(C, (P, α•), (Q,α•)) must be empty. Since by Corollary 0.2.4.1, an inseparable grd on

C is wildly ramified at P and Q, and is therefore contained in this space, we can conclude:

Proposition 2.2.1. Assuming that r < p ≤ d and 2(d − p) < g ≤ d − r, there are no

inseparable grds on C.

In the case that r ≥ d − g, we have that ρ̂ = ρ = ρ0 −
∑r

i=0(αi + βi), and so only the

respective ramification weights of α• and β• matter for the calculation of ρ̂. Assuming that

neither α• nor β• is strongly minimal, we have the following from Theorem 1.2.4:

• If p = 2 and d ≥ r + 2, then either α• or β• has ramification weight at most 2.

• If p > 2 and d ≥ r + p− 1, then either α• has ramification weight less than p or β•

has ramification weight 2.

• If p > 2 and d ≥ r + 2, then either β• has ramification weight less than p or α• has

ramification weight 2.

If we in fact have that α• is strongly minimal, then it either has ramification weight less

than p or ramification weight 2.
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CHAPTER 3

Limit Linear Series in Positive Characteristic

Given a projective nodal curve, its dual graph is the graph with vertices (respectively,

edges) indexed by the components (respectively, nodes) of the curve. A projective nodal

curve is of compact type if its dual graph is a tree.

Let C0 be a projective nodal curve of compact type over an algebraically closed field K

and let Γ be its dual graph. Given a vertex v ∈ V (Γ) (respectively, an edge e ∈ E(Γ)),

let Cv (respectively, Qe) be the corresponding component (respectively, node). We can now

generalize Definition 2.1.3 to curves of compact type:

Definition 3.0.1. A limit linear series (or limit grd) on C0 is a tuple of grds on each Cv such

that: Given e ∈ E(Γ) with v, v′ ∈ V (Γ) the adjacent vertices, we have that a
(e,v)
i +a

(e,v′)
r−i ≥ d

for each 0 ≤ i ≤ r, where a
(e,v)
• is the vanishing sequence at Qe of the grd on Cv (we will refer

to these as the Eisenbud-Harris inequalities).

A limit linear series is refined if a
(e,v)
i + a

(e,v′)
r−i = d for every e ∈ E(Γ) and 0 ≤ i ≤ r.

Otherwise, it is crude. The vanishing sequence (respectively, ramification sequence) of a

limit linear series at a nonsingular point is the vanishing sequence (respectively, ramification

sequence) of the corresponding grd at that point. We observe that if a limit grd is refined, the

vanishing sequences a
(e,v)
• and a

(e,v′)
• at each node are either both tame or both wild. For this

reason, we will refer to a refined limit grd being tamely ramified or wildly ramified at a node.

In this chapter, we will establish some generalizations of the Plücker formula that cover

separable limit linear series and give a formula for the number of separable limit g1
ds on a

genus 0 curve of compact type.

23



3.1. Some Consequences of The Plücker Formula

We begin by recalling the statement of the Plücker formula (Theorem 0.2.4):

Theorem (Plücker formula). Given a separable grd on a nonsingular projective curve C

of genus g over K, we have that

∑
P∈C

r∑
i=0

αi(P ) ≤ (r + 1)(d− r) + r(r + 1)g

with equality if and only if the grd is everywhere tamely ramified.

In order to extend this result, we will need to define separability and inseparability in

the context of limit grds:

Definition 3.1.1. A limit grd on C0 is separable (respectively, quasi-separable) if it is

separable on every (respectively, at least one) component of C0. Otherwise, it is inseparable

(respectively, totally inseparable).

Given an edge e ∈ E(Γ) with adjacent vertices v and v′ and a limit grd on C0, we define

the crudeness index at the corresponding node of C0 to be

cr(e) :=
r∑

i=0

α
(e,v)
i +

r∑
i=0

α
(e,v′)
i − (r + 1)(d− r)

where α
(e,v)
• is the ramification sequence on the component of C0 corresponding to v. We

observe that cr(e) ≥ 0 with equality for every e ∈ E(Γ) if and only if the limit grd is refined.

We can then extend the Plücker formula to C0 as follows:

Corollary 3.1.2. Given a separable limit grd on C0, we have that

∑
P

r∑
i=0

αi(P ) +
∑

e∈E(Γ)

cr(e) ≤ (r + 1)(d− r) + r(r + 1)g

where the first sum is over all nonsingular points P ∈ C0 and with equality if and only if

there is no wild ramification, including at the nodes.
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Proof. Given a vertex v ∈ V (Γ), let Ev(Γ) be the set of edges adjacent to v. Then if

the corresponding component Cv has genus gv, the Plücker formula gives that

∑
P

r∑
i=0

αi(P ) +
∑

e∈Ev(Γ)

r∑
i=0

α
(e,v)
i ≤ (r + 1)(d− r) + r(r + 1)gv

where the first sum is over all nonsingular points P ∈ Cv. The result then follows by summing

this inequality over v ∈ V (Γ), using that
∑

v∈V (Γ) gv = g by [10, Corollary 3.1.9] and that

|V (Γ)| = |E(Γ)| + 1, and observing that wild ramification at any point on a component

(including at a node) gives strict inequality for the Plücker formula on that component and

therefore for the sum over all components. �

The proof of the Plücker formula from [2, Proposition 1.1] and [8, Proposition 2.4] gives

that a separable grd on a nonsingular projective curve C of genus g over K given by a pair

(L , V ) induces a nonzero section s of the line bundle L ⊗(r+1) ⊗ (Ω1
C)⊗(r+1

2 ). As in the

proof of [4, Theorem 3], the order of vanishing of s at a point P ∈ C (we will call this the

differential weight w(P ) of (L , V ) at P ) satisfies the following semicontinuity condition:

Lemma 3.1.3. Given a family of nonsingular projective curves Ct over K, each with a

marked point P (t) ∈ Ct, and a family of separable grds on each Ct such that the differential

weights w(P (t)) are constant for t 6= 0, we have that w(P (0)) ≥ w(P (t)) with equality if and

only if there is no ramification specializing to the point P (0) other than along P (t).

Furthermore, we have that the differential weight at P ∈ C satisfies w(P ) ≥
∑r

i=0 αi(P ),

with equality if and only if (L , V ) is tamely ramified at P . In particular:

Corollary 3.1.4. In the situation of Lemma 3.1.3, if the ramification along P (t) is

tame, then we achieve the result of Lemma 3.1.3 with the ramification weight
∑r

i=0 αi(P (t))

in place of the differential weight w(P (t)).

Example 3.1.4.1. This result fails if the ramification along P (t) is wild: Assuming that

K has characteristic p > 0, let P1
t be a genus 0 family over K and define a g1

p+1 on each P1
t
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by the map x 7→ xp+1 + txp. We have that for t 6= 0, each g1
p+1 is wildly ramified to order1

p at 0, but tamely ramified to order p+ 1 at 0 on P1
0. In particular, the ramification weight

at 0 increases while, as indicated by Lemma 3.1.3, the differential weight remains constant.

Remark 3.1.5. In the case of an inseparable grd on C, we have from [8, Proposition 2.4]

that the section s is the zero section, and so we will consider w(P ) =∞ for every P ∈ C.

If we consider a limit grd on C0 and an edge e ∈ E(Γ) with adjacent vertices v and v′, we

can define the differential crudeness index at the node corresponding to e to be

dcr(e) := w(e, v) + w(e, v′)− (r + 1)(d− r)

where w(e, v) is the differential weight on the component corresponding to v. We observe

that dcr(e) ≥ cr(e) with equality if and only if the limit grd is tamely ramified at that node on

both components. In particular, this gives that dcr(e) ≥ 0, with equality for every e ∈ E(Γ)

if and only if the limit grd is refined and tamely ramified at every node. We can use the

differential crudeness index to restate Corollary 3.1.2:

Lemma 3.1.6. Given a separable limit grd on C0, we have that

∑
P

w(P ) +
∑

e∈E(Γ)

dcr(e) = (r + 1)(d− r) + r(r + 1)g

where the first sum is over all nonsingular points P ∈ C0.

Proof. The proof of the Plücker formula from [2, Proposition 1.1] shows that given a

separable grd on a nonsingular projective curve C of genus g, we have that

∑
P∈C

w(P ) = (r + 1)(d− r) + r(r + 1)g

As in the proof of Corollary 3.1.2, we can apply this result to each component of C0 and

then sum to achieve the final result. �
1We define the order of ramification of a g1d at a point in the next section (3.2).
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3.2. Separable Limit Linear Series on a Genus 0 Curve

If C is a nonsingular projective curve over K, a basepoint free g1
d on C with vanishing

sequence 0, a1(P ) at a point P ∈ C corresponds (cf. Section 0.2.2) to a morphism C → P1

which is ramified to order eP := a1(P ) at P . As such, given points P1, . . . , Pn of C and

positive integers e1, . . . , en with ei ≤ d for each i, we will use the notation G1
d(C, {Pi, ei}i) to

denote the space of g1
ds on C which are ramified to order ei at Pi.

Lemma 3.2.1. Given a refined limit g1
d on C0 that is basepoint free except at the nodes,

subtracting off the basepoints at the nodes induces a bijection between such limit g1
ds and

tuples of maps to P1 on each component such that:

• The order of ramification at each node is the same on both adjacent components;

• If dv is the degree of the map on the component corresponding to the vertex v ∈ V (Γ),

we have that ∑
v∈V (Γ)

dv −
∑

e∈E(Γ)

ee = d

where ee is the order of ramification at the node corresponding to the edge e ∈ E(Γ).

Proof. Consider a refined limit g1
d on C0 with no basepoints other than at the nodes.

Then if e ∈ E(Γ) is an edge with adjacent vertices v, v′ ∈ V (Γ) and a
(e,v)
• is the corresponding

vanishing sequence, we have that a
(e,v)
0 + a

(e,v′)
1 = d = a

(e,v′)
0 + a

(e,v)
1 . As such, the node

corresponding to e is ramified to order ee := a
(e,v)
1 − a

(e,v)
0 = a

(e,v′)
1 − a

(e,v′)
0 on each of the

adjacent components. Furthermore, subtracting off the basepoints at the nodes gives that

the degree dv of the induced map on the component corresponding to the vertex v is given

by dv = d−
∑

e∈Ev(Γ) a
(e,v)
0 , where the sum is over all edges e adjacent to v. Then

∑
v∈V (Γ)

dv =
∑

v∈V (Γ)

d− ∑
e∈Ev(Γ)

a
(e,v)
0

 = |V (Γ)|d−
∑

v∈V (Γ)

∑
e∈Ev(Γ)

a
(e,v)
0
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For every edge e, we can label one of its adjacent vertices as v and the other as v′. Then,

using that |V (Γ)| = |E(Γ)|+ 1, we have

∑
v∈V (Γ)

dv = |V (Γ)|d−
∑

v∈V (Γ)

∑
e∈Ev(Γ)

a
(e,v)
0

= d+ |E(Γ)|d−
∑

e∈E(Γ)

(
a

(e,v)
0 + a

(e,v′)
0

)
= d+

∑
e∈E(Γ)

(
d− a(e,v′)

0

)
−
∑

e∈E(Γ)

a
(e,v)
0

= d+
∑

e∈E(Γ)

a
(e,v)
1 −

∑
e∈E(Γ)

a
(e,v)
0

= d+
∑

e∈E(Γ)

ee

Conversely, consider a tuple of maps to P1 on each component with the given properties,

and fix an edge e with adjacent vertices v and v′. If we remove v from Γ, we can associate

every edge with one of its adjacent vertices and thus define a bijection ϕv : V (Γ)\{v} → E(Γ)

(in particular, ϕv(v
′) = e). Next, because Γ is a tree, we have that the subgraph obtained

by removing the edge e consists of two components, Y(e,v) (which we can assume contains v)

and Z(e,v) (which will then contain v′). We can then define

a
(e,v)
0 := d− dv −

∑
w∈V (Y(e,v))\{v}

(
dw − eϕv(w)

)
=

∑
w∈V (Z(e,v))

(
dw − eϕv(w)

)

Since eϕv(w) ≤ dw for every w, we have that 0 ≤ a
(e,v)
0 < d. If we then define

a
(e,v)
1 := ee + a

(e,v)
0 = d− (dv − ee)−

∑
w∈V (Y(e,v))\{v}

(
dw − eϕv(w)

)

we have that a
(e,v)
0 < a

(e,v)
1 ≤ d. Furthermore, we have that

a
(e,v′)
0 + a

(e,v)
1 = d− (dv − ee)−

∑
w∈V (Y(e,v))\{v}

(
dw − eϕv(w)

)
+

∑
w∈V (Z(e,v′))

(
dw − eϕv′ (w)

)
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Since V
(
Z(e,v′)

)
= V

(
Y(e,v)

)
and ϕv′(v) = e, this equation reduces to a

(e,v′)
0 + a

(e,v)
1 = d.

Finally, given any vertex v, we have that

dv +
∑

e∈Ev(Γ)

a
(e,v)
0 = dv +

∑
e∈Ev(Γ)

∑
w∈V (Z(e,v))

(
dw − eϕv(w)

)
= dv +

∑
w∈V (Γ)\{v}

(
dw − eϕv(w)

)
= d

As such, by adding basepoints at the nodes such that the node corresponding to the edge e

has vanishing sequence a
(e,v)
• on the component corresponding to the vertex v, we define a

refined limit g1
d on C0 which is basepoint free at all other points. �

For the remainder of this section, assume that C0 is a general n-marked curve of genus 0

(i.e. C0 has marked points P1, . . . , Pn such that the marked points and nodes on each com-

ponent are general) and, given r ≤ d, let a1
•, . . . , a

n
• be (r, d)-sequences (with corresponding

(r, d)-indices αj
•) such that

∑n
j=1

∑r
i=0 α

j
i = (r + 1)(d − r). This condition is equivalent to

the expected dimension of the space of limit linear series Gr
d(C0, {(Pj, a

j
•)}j) being ρ = 0.

Lemma 3.2.2. A separable limit grd on C0 with vanishing sequence aj• at Pj is refined and

unramified at every point which is not a node or one of the Pj.

Proof. We can apply Corollary 3.1.2 with g = 0 to obtain that

(r + 1)(d− r) =
n∑

j=1

r∑
i=0

αj
i ≤

∑
P

r∑
i=0

αi(P ) +
∑

e∈E(Γ)

cr(e) ≤ (r + 1)(d− r)

where the second sum is over all nonsingular points P ∈ C0. We can immediately conclude

that all the above inequalities must in fact be equalities, which says exactly that cr(e) = 0

for every e ∈ E(Γ) and that if P is a nonsingular point other than one of the Pj, αi(P ) = 0

for every 0 ≤ i ≤ r. As such, the result follows. �
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Next, assume that K has characteristic p > 2 and let e1, . . . , en be positive integers

satisfying ei ≤ d, ei < p, and
∑

i(ei − 1) = 2d− 2.

Theorem 3.2.3. Assuming that n ≥ 3, the number of separable limit g1
ds on C0 ramified

to ei at Pi is equal to the number of (n−3)-tuples of positive integers e′2, . . . , e
′
n−2 such that if

e, e′, e′′ is the triple e1, e2, e
′
2, the triple e′n−2, en−1, en, or a triple of the form e′i−1, ei, e

′
i, then:

• e+ e′ + e′′ is odd and less than 2p;

• e, e′, and e′′ satisfy the triangle inequality.

Remark 3.2.3.1. This extends Osserman’s result [12, Theorem 1.4] which establishes

this formula as the number of separable g1
ds on P1 ramified to ei at general points Qi ∈ P1.

We will prove this first in the case that C0 is the curve Cn consisting of a chain of n− 2

copies of P1 glued at nodes P ′2, . . . , P
′
n−2 such that P1 and P2 are on the first component,

Pn−1 and Pn are on the last component, and Pi is on the component containing P ′i−1 and P ′i

(i.e. each component contains exactly three of the Pi and P ′i ).

Proposition 3.2.4. The result of Theorem 3.2.3 holds if C0 is the chain Cn.

Proof. If n = 3, then the curve C3 is just P1 with three marked points and the result

follows from [12, Theorem 1.4]. Assuming that n ≥ 4, consider a separable limit g1
d on Cn

ramified to ei at Pi. By Lemma 3.2.2, this limit g1
d is refined and unramified except at the

points Pi and P ′i . In particular, by Lemma 3.2.1, each node P ′i is ramified to the same order

e′i on both adjacent components. We can then check that the tuple e′2, . . . , e
′
n−2 satisfies the

desired conditions: If di is the degree of the induced map on the component containing the

point Pi for 3 ≤ i ≤ n− 2, the Riemann-Hurwitz formula [10, Example 2.3.6] gives that

(e′i−1 − 1) + (ei − 1) + (e′i − 1) = 2di − 2
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so we have e′i−1 +ei+e′i = 2di+1. By [12, Theorem 4.2], there exists a separable g1
di

ramified

to e′i−1 at P ′i−1, ei at Pi, and e′i at P ′i on this component only if di < p. As such,

2di + 1 ≤ 2(p− 1) + 1 = 2p− 1

so e′i−1 + ei + e′i is odd and less than 2p. Furthermore, since e′i−1, ei, and e′i each do not

exceed di, we have that

e′i−1 + ei − e′i = (e′i−1 + ei + e′i)− 2e′i = 2(di − e′i) + 1 ≥ 1

which establishes that e′i ≤ e′i−1 + ei (and similarly, ei ≤ e′i−1 + e′i and e′i−1 ≤ ei + e′i).

Finally, the equations e1 + e2 + e′2 = 2d2 + 1 and e′n−2 + en−1 + en = 2dn−1 + 1 establish the

corresponding result for the triples e1, e2, e
′
2 and e′n−2, en−1, en.

Conversely, consider a tuple of positive integers e′2, . . . , e
′
n−2 with the desired properties.

Given 3 ≤ i ≤ n − 2, we have that e′i−1 + ei + e′i is at least 3 and odd, so we can write

e′i−1 + ei + e′i = 2di + 1 for some positive integer di. By the triangle inequality, we have that

e′i ≤ e′i−1 + ei = (e′i−1 + ei + e′i)− e′i = 2di + 1− e′i

which implies that e′i ≤ di (and similarly, e′i−1 ≤ di and ei ≤ di). Furthermore, since

e′i−1 + ei + e′i < 2p, we have that 2di + 1 ≤ 2p− 1, so di < p. Then [12, Theorem 4.2] gives

that there exists a unique separable g1
di

ramified to e′i−1 at P ′i−1, ei at Pi, and e′i at P ′i on

the component containing the point Pi. By repeating this process with the triples e1, e2, e
′
2

and e′n−2, en−1, en, we similarly achieve positive d2 and dn−1 such that there exists a unique

separable g1
d2

on the first component and a unique separable g1
dn−1

on the last component

with the correct ramification.
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Finally, by summing the equations

(e1 − 1) + (e2 − 1) + (e′2 − 1) = 2d2 − 2

(e′i−1 − 1) + (ei − 1) + (e′i − 1) = 2di − 2 for 3 ≤ i ≤ n− 2

(e′n−2 − 1) + (en−1 − 1) + (en − 1) = 2dn−1 − 2

and using that
∑

i(ei − 1) = 2d− 2, we obtain

2d− 2 + 2
n−2∑
i=2

(e′i − 1) =
n−1∑
i=2

(2di − 2)

which can be rearranged to become

d+ e′2 + · · ·+ e′n−2 = d2 + · · ·+ dn−1

By Lemma 3.2.1, this says exactly that our g1
di

s on the components of Cn determine a refined

limit g1
d which is separable on every component of Cn and ramified to ei at Pi. We have

therefore established a correspondence between such limit g1
ds and tuples e′2, . . . , e

′
n−2 with

the desired properties, and the result follows. �

Remark 3.2.5. Because the number specified in Theorem 3.2.3 is the number of separable

g1
ds on P1 ramified to order ei at Qi, where Q1, . . . , Qn are any general marked points, we

have that this number is invariant under any reordering of the ei, and so we can assign it

the notation N(e1, . . . , en) without ambiguity.

Proof of Theorem 3.2.3. Assume that C0 has a component P1
v (corresponding to a

vertex v of Γ) containing m ≥ 4 combined marked points and nodes. We have by Lemma

3.2.2 that a separable limit g1
d on C0 ramified to ei at Pi is refined, and therefore has a

well-defined ramification order at each node. For each tuple {ee}e∈E(Γ) of such orders, we

have by Proposition 3.2.4 and Remark 3.2.5 that there are the same number of separable

g1
ds on P1

v ramified to ei at Pi and to ee at every node corresponding to an edge e ∈ Ev(Γ) as
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separable limit g1
ds on Cm with the same ramification. In particular, we can replace P1

v with

the curve Cm without changing the number of separable limit g1
ds on C0. As such, we can

assume that every component of C0 contains exactly three marked points and nodes.

We can then complete the proof by induction on n: If n = 3, then the result follows

by [12, Theorem 1.4]. Otherwise, choose a component of C0 containing two marked points

(by Remark 3.2.5, we can label these points as Pn−1 and Pn) and a node P . As above, a

separable limit g1
d on C0 ramified to ei at Pi has a well-defined ramification order e at P . We

can then remove this component from C0 (replacing it with a marked point at P ) and use

the inductive hypothesis to calculate the number of such limit g1
ds as

∑
eN(e1, . . . , en−2, e),

where the sum is over all possible values of e. We have that N(e1, . . . , en−2, e) is the number

of tuples e′2, . . . , e
′
n−3 satisfying the conditions listed in Theorem 3.2.3—in particular, that

the triple e′n−3, en−2, e has odd sum less than 2p and satisfies the triangle inequality. Since

the proof of Proposition 3.2.4 shows that the triple e, en−1, en also has this property, we

therefore have (by relabeling e as e′n−2) that

∑
e

N(e1, . . . , en−2, e) = N(e1, . . . , en)

and the result follows. �
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CHAPTER 4

Results on Families of Linear Series

In this chapter, we will examine some specific results of Eisenbud and Harris regarding

the behavior of families of linear series. We will begin by constructing a limit g1
d that cannot

be obtained as the limit of any family of g1
ds with given ramification (by [3, Proposition 3.1],

such a limit g1
d does not exist in characteristic 0). We will then examine what happens when

a family of linear series specializing to a limit linear series on a curve of compact type has

ramification specializing to a node.

4.1. A Non-Smoothable Limit Linear Series

Let K be an algebraically closed field of characteristic p > 2, A a discrete valuation ring

with residue field K, B = SpecA, and π : X → B a family of curves such that:

• π is flat and proper and has sections P1, . . . , Pn;

• The total space X is nonsingular;

• If b0 and b1 are the closed and generic points of B, respectively, then the fiber

X1 = X|b1 is nonsingular and the fiber X0 = X|b0 is a curve of compact type.

Then given integers r ≤ d and (r, d)-sequences a1
•, . . . , a

n
• , we have from [10, Theorem 4.1.5]

that there exists a space Gr
d(X/B, {(Pi, a

i
•)}i) whose fiber over b1 (respectively, b0) is iso-

morphic to the space of grds (respectively, limit grds) on X1 (respectively, X0) with vanishing

sequence at least ai• at Pi.

Lemma 4.1.1. The space Gr
d(X/B, {(Pi, a

i
•)}i) has an open subspace Gr,sep

d (X/B, {(Pi, a
i
•)}i)

(respectively, Gr,qs
d (X/B, {(Pi, a

i
•)}i)) whose fiber over b1 contains separable grds on X1 and

whose fiber over b0 contains separable (respectively, quasi-separable) limit grds on X0.
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Proof. Since by [10, Theorem 4.1.5] the space Gr
d(X/B, {(Pi, a

i
•)}i) is compatible with

base-change, we can assume by [1, Proposition 2.2.14] that the family X/B has a sec-

tion specializing to every component of the special fiber X0. Then, following the proof

of [11, Theorem II.4.3], we can define the inseparable (respectively, totally inseparable) sub-

space of Gr
d(X/B, {(Pi, a

i
•)}i) fiber-by-fiber as the union (respectively, intersection) of the

closed subspaces obtained by imposing enough ramification along the sections specializing

to each component of the fiber X0 such that the Plücker formula forces inseparability on

that component. We therefore obtain closed subspaces which contain inseparable grds on

the fiber X1 and inseparable (respectively, totally inseparable) limit grds on the fiber X0.

Since the complement of this space is then the space Gr,sep
d (X/B, {(Pi, a

i
•)}i) (respectively,

Gr,qs
d (X/B, {(Pi, a

i
•)}i)), the result follows. �

Proposition 4.1.2. Assume that X1 is isomorphic to P1 and that X0 is a general n-

marked curve of genus 0, and let e1, . . . , en be positive integers satisfying ei ≤ d, ei < p, and∑
i(ei− 1) = 2d− 2. Then if G1

d denotes the closure of the fiber G1,sep
d (X1, {(Pi, ei)}i) inside

G1
d(X/B, {(Pi, ei)}i), the fiber of G1

d over b0 contains only separable limit g1
ds.

Proof. We begin by observing the following:

• By Lemma 4.1.1, G1,sep
d (X/B, {(Pi, ei)}i) is an open subspace ofG1

d(X/B, {(Pi, ei)}i).

• By [12, Theorem 1.4], the fiber G1,sep
d (X1, {(Pi, ei)}i) contains a finite number of

g1
ds, and by Theorem 3.2.3, the fiber G1,sep

d (X0, {(Pi, ei)}i) contains the same (finite)

number of limit g1
ds.

• In particular, each fiber of G1,sep
d (X/B, {(Pi, ei)}i) has the expected dimension ρ = 0.

We can then apply “smoothing” [10, Corollary 4.1.7] along with [7, Proposition 3.2.7] to see

that the space G1,sep
d (X/B, {(Pi, ei)}i) is universally open and flat over B. In particular, this

implies that none of the separable limit g1
ds on X0 are isolated, and so each is contained in

the fiber of G1
d over b0. By [5, Corollary 15.5.2], the number of limit g1

ds in the fiber of G1
d

over b0 is at most the number of g1
ds in the fiber over b1, that is, the number of separable g1

ds

35



on X1 ramified to ei at Pi. Since this number is equal to the number of separable limit g1
ds

on X0 with the same ramification conditions, we can therefore conclude that they are the

only limit g1
ds in the fiber of G1

d over b0. �

Remark 4.1.2.1. Since G1
d is also proper over B (this follows from [10, Theorem 4.1.5]),

we have in fact that every separable g1
d on X1 specializes to a limit g1

d on X0.

We have from Lemma 4.1.1 that the totally inseparable subspace of G1
d(X/B, {(Pi, ei)}i)

is closed, so an inseparable g1
d on X1 must specialize to a totally inseparable limit g1

d on X0.

We can therefore conclude the following:

Corollary 4.1.3. Under the assumptions of Proposition 4.1.2, the fiber over b0 of the

closure of G1
d(X1, {(Pi, ei)}i) contains only separable or totally inseparable limit g1

ds.

Example 4.1.4 (A Non-Smoothable Limit g1
d). Let C0 be a curve consisting of two copies

of P1 glued at 0 (we will denote these as P1
s and P1

i ). Then, assuming that p > 3, choose

general points P1, . . . , Pn on P1
s and Q1, Q2 on P1

i (with none of the Pi or Qj equal to 0 or

∞) and integers e1, . . . , en such that 2 ≤ ei < p and
∑

i(ei − 1) ≤ p− 2.

If we let g(x) be a formal antiderivative of the polynomial (x − P1)e1−1 · · · (x − Pn)en−1

(g is then a nonconstant polynomial of degree at most p− 1), we can define F : P1 → P1 to

be the Frobenius map x 7→ xp and G : P1 → P1 the map x 7→ g(x)
xp . Then F is an inseparable

map of degree p ramified to order p at every point of P1, while by [11, Lemma I.4.1], G

is a separable map of degree p ramified to order p at 0, to order ei at Pi, and to order

e∞ := p − deg g at ∞. As such, by Lemma 3.2.1 we can define a refined limit g1
p on C0 by

using the map F on P1
i and the map G on P1

s (this limit g1
p is, in particular, quasi-separable

but not separable).

Since
∑

i(ei − 1) = deg g − 1, setting e′1 = p− 1 and e′2 = 3 gives that

n∑
i=1

(ei − 1) + (e∞ − 1) +
2∑

j=1

(e′j − 1) = 2p− 2
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Then Corollary 4.1.3 gives that for any genus 0 family of curves degenerating to C0 with

sections specializing to the Pi (including P∞ =∞) and Qj, it is not possible for a family of g1
ps

which are ramified to ei and e′j along the sections corresponding to Pi and Qj, respectively,

to specialize to this limit g1
p.

Remark 4.1.4.1. One example of such a genus 0 family of curves is the family of P1s

given by hyperbolas xy = t inside P1 × P1 which degenerates to the union of the axes at

t = 0. Specifically, each P1 is a fiber of the projection X → A1, where X ⊂ P1 × P1 × A1

is defined by the equation x1y1 = tx0y0. Each P1 is isomorphic to each axis by projection

to that axis, and we can use these isomorphisms to construct sections corresponding to the

marked points on the axes.

Remark 4.1.4.2. Each of the assumptions of Proposition 4.1.2 are needed for this result,

most importantly that the family of g1
ds preserves imposed ramification. In Section 4.3, we

give an example of a quasi-separable limit g1
d of the type constructed above that can be

obtained as the limit of a family of g1
ds that does not satisfy this assumption. Furthermore,

in the next section (4.2), we show that the result fails for a family of higher genus curves,

thus establishing the necessity of the genus 0 assumption. Finally, we have by [3, Example

3.2] that the result fails for families of grds if r > 1, even in characteristic 0.

4.2. Fully Ramified Linear Series on Curves of Higher Genus

Given positive integers d ≥ 2 and g = 2d− 2, we have from [10, Theorem 2.6.2] that the

number of g1
ds on a general curve of genus g over K is given by1

(4.1)
(2d− 2)!

(d− 1)!d!
=

1

d

(
2d− 2

d− 1

)
This situation corresponds to a Brill-Noether number of ρ0 = 0, so we furthermore have by

Corollary 2.1.10 that they all must be separable.

1This quantity is the Catalan number Cd−1 =
(
2d−2
d−1

)
−
(
2d−2

d

)
and therefore an integer.
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We next consider the nodal curve C0 consisting of a copy of P1 with g elliptic curves

glued at general points Q1, . . . , Qg.

Proposition 4.2.1. A limit g1
d on C0 is separable if and only if it is separable on the P1,

in which case it is refined and ramified to order 2 at each node (and otherwise unramified)

on the P1, while each elliptical tail has vanishing sequence d−2, d at the node and is ramified

to order 2 at three other points.

Proof. By Remark 0.1.1.1, the degree of the basepoint-free linear series on each elliptical

tail must be at least 2, and so the vanishing sequence at the node can be at most d − 2, d.

The Eisenbud-Harris inequalities then give that each node on the P1 must be ramified to

order at least 2. By the Plücker formula, (tame) ramification to order 2 at g = 2d− 2 nodes

uses all the allowed ramification for a separable g1
d on P1. As such, separability on the P1

forces a vanishing sequence of exactly d − 2, d at the node, and therefore separability, on

each elliptical tail, with the remaining ramification following from the Plücker formula. �

We can observe further that a g1
2 on an elliptic curve C ramified to order 2 at a point Qj

must be the complete linear series given by the line bundle OC(2Qj) (together with all of

its global sections) and is therefore unique. This gives that, as in the proof of [13, Theorem

2.5], we can identify the space G1,sep
d (C0) with the space G1,sep

d (P1, {(Qi, 2)}i) of separable

g1
ds on P1 that are ramified to order 2 at g general points.

Corollary 4.2.2. The number of separable limit g1
ds on C0 does not exceed the quantity

given in (4.1), above, with equality if and only if d < p.

Proof. By [12, Theorem 1.4], the number of separable g1
ds on P1 ramified to order 2

at g general points is given by N(2, . . . , 2︸ ︷︷ ︸
g

) from Remark 3.2.5. By Theorem 3.2.3, we can

describe N(2, . . . , 2︸ ︷︷ ︸
g

) as the number of (g − 3)-tuples of positive integers e′2, . . . , e
′
g−2 such

that the triples 2, 2, e′2, e′g−2, 2, 2, and e′i−1, 2, e
′
i for 3 ≤ i ≤ g − 2 have odd sum less than 2p
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and satisfy the triangle inequality. In particular, we can use the triangle inequality to see

that e′2 and e′g−2 can be at most 3, which gives in turn that e′3 and e′g−3 can be at most 4.

Because g = 2d − 2, continuing this process inductively gives maximum possible values of

e′g
2
±1 = d− 1 and e′g

2
= d. As such, the triple with the largest sum is e′g

2
−1 + 2 + e′g

2
= 2d+ 1,

which is smaller than 2p exactly when d < p.

In the case that d < p, there are no inseparable g1
ds on P1, and so we can apply the

characteristic 0 result from [13, Corollary 5.6] to achieve the equality of N(2, . . . , 2︸ ︷︷ ︸
g

) and

(4.1). We can therefore conclude that (4.1) counts all separable g1
ds on P1 ramified to order

2 at g general points when d < p, but that there are strictly fewer if d ≥ p. �

We can now use this result to give a higher-genus counterexample to Proposition 4.1.2.

By Winters’s theorem [10, Theorem 3.4.4], we can construct a genus g family of curves X/B

such that the total space X, the curve B, and the generic fiber X1 are nonsingular and the

special fiber X0 (over a point b0 ∈ B) is isomorphic to the curve C0.

Proposition 4.2.3. In the case that d ≥ p, the fiber over b0 of the closure G1
d(X1) inside

G1
d(X/B) contains an inseparable limit g1

d.

Proof. Because the base B is a nonsingular curve, we have that the closure G1
d(X1) is

finite and flat, and therefore that its fiber over b0 has the same degree as its generic fiber, given

by (4.1). As above, we can identify the space G1,sep
d (X0) with the space G1,sep

d (P1, {(Qi, 2)}i),

which by [12, Theorem 1.4] contains N(2, . . . , 2︸ ︷︷ ︸
g

) reduced points. We can then use Corollary

4.2.2 to conclude that the degree of G1,sep
d (X0) is strictly smaller than (4.1), and therefore

that G1,sep
d (X0) cannot contain the special fiber of G1

d(X1). As such, the result follows. �

Because there are no inseparable g1
ds on X1, we can therefore conclude:

Corollary 4.2.4. Assuming that d ≥ p, there exists a family of separable g1
ds on X1

which specializes to an inseparable limit g1
d on X0.
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4.3. When Ramification Specializes to a Node

If we again consider the family of curves π : X → B from Section 4.1, we will now seek to

determine what happens when a family of grds specializing to a limit grd on X0 has ramification

specializing to a node of X0.

Because it is not possible for ramification to specialize to a node of X0 along a section of

π if X is nonsingular, we will use the following result (cf. [3, Theorem 2.6]):

Lemma 4.3.1. By making a base change and blowing up a node Q of X0 to resolve the

resulting singularities, we obtain a family π′ : X ′ → B′ whose generic fiber X ′1 is isomorphic

to X1 and whose special fiber X ′0 is derived from X0 by inserting of a chain of P1s at the

node Q such that any ramification initially specializing to Q now specializes along a section

of π′ to one of the inserted components (with all other components of X0 unaffected).

Our main result is then the following:

Proposition 4.3.2. If the limit grd on X0 is refined and tamely ramified at a node Q,

then the limit grd on X ′0 resulting from blowing up Q as in Lemma 4.3.1 is unramified on

every inserted component except at the nodes. Conversely, if it is wildly ramified at Q, the

limit grd on X ′0 is inseparable on every inserted component.

Proof. Assume that the limit grd on X0 is refined and let α• and β• be the ramification

sequences at Q. Assuming that blowing up the node Q inserts a chain of n copies of P1 glued

at nodes P1, . . . , Pn−1, let α1
•, . . . , α

n
• and β1

• , . . . , β
n
• be (r, d)-indices such that the limit grd

on X ′0 has ramification sequences αj
• at Pj and βj

• at Pj−1 on the jth component (where we

let P0 and Pn be the nodes on the ends of the chain). If we set α0
• := α• and βn+1

• := β•, the

Eisenbud-Harris inequalities at the node Pj for 0 ≤ j ≤ n give us that

(4.2)
r∑

i=0

αj
i +

r∑
i=0

βj+1
i ≥ (r + 1)(d− r)
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Furthermore, if we let ρj be the Brill-Noether number associated to the jth component for

1 ≤ j ≤ n, we have that

ρj ≤ (r + 1)(d− r)−
r∑

i=0

αj
i −

r∑
i=0

βj
i

and therefore that the space Gr
d(P1, (Pj, α

j
•), (Pj−1, β

j
•)) is empty by Theorem 2.0.1 unless

(4.3)
r∑

i=0

αj
i +

r∑
i=0

βj
i ≤ (r + 1)(d− r)

Combining inqualities (4.2) and (4.3) gives that

(r + 1)(d− r)−
r∑

i=0

βi ≤
r∑

i=0

αn
i ≤ · · · ≤

r∑
i=0

α1
i ≤

r∑
i=0

αi = (r + 1)(d− r)−
r∑

i=0

βi

and that

(r + 1)(d− r)−
r∑

i=0

αi ≤
r∑

i=0

β1
i ≤ · · · ≤

r∑
i=0

βn
i ≤

r∑
i=0

βi = (r + 1)(d− r)−
r∑

i=0

αi

where in each case the last equality comes from the fact that our limit grd is refined. This

shows that each αj
• has the same ramification weight as α• and that each βj

• has the same

ramification weight as β• and, in particular, that inequality (4.2) is an equality for each

0 ≤ j ≤ n. As such, the Eisenbud-Harris inequalities αj
i + βj+1

r−i ≥ d − r become equalities

for all 0 ≤ i ≤ r, and we can conclude that αj
• = α• and βj

• = β• for each j.

If α• and β• are tame, then the grd on each inserted component must be separable. Because∑r
i=0 αi +

∑r
i=0 βi = (r+ 1)(d− r), we have by the Plücker formula that all the ramification

on each component must be at the nodes. Conversely, if α• and β• are wild, then the Plücker

formula gives that separability on any of the inserted components is not possible. �

By Lemma 4.3.1, any ramification specializing to a node of X0 specializes after blowup to

a nonsingular point on an inserted component. However, Lemma 3.1.3 gives that this can’t

happen if the inserted components are unramified at all nonsingular points. Therefore:
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Corollary 4.3.3. If the limit grd on X0 is refined, it is only possible for ramification to

specialize to a node of X0 if the limit grd is wildly ramified at that node.

This result indicates that it should be possible for ramification to specialize to a node of

X0 even if the limit grd on X0 is refined as long as there is wild ramification at that node.

The following example shows that this is indeed the case:

Example 4.3.4. Consider a genus 0 family of curves degenerating to a nodal curve C0

consisting of two copies of P1 glued at 0. Then, assuming that p > 3, we can define a

limit g1
p on C0 by using the map x 7→ 1−xp−1

xp on each component. Because this limit g1
p is

(wildly) ramified to order p at the node on both components and unramified at all other

points (cf. the Artin-Schreier map [10, Example 2.3.12]), we have from Lemma 3.1.3 that

any family of g1
ps specializing to this limit g1

p must have all ramification specializing to the

node. Specifically, if we use the family of P1s given by hyperbolas xy = t inside P1 × P1

degenerating to the union of the axes at t = 0 (cf. Remark 4.1.4.1), we can define a g1
p on

each P1 by the map

x 7→ 1− xp−1 + tx

xp + tp−2

If we take t → 0, we get the desired g1
p on the x-axis. Furthermore, writing x = t

y
and

clearing denominators gives

1− xp−1 + tx

xp + tp−2
=
yp − tp−1y + t2yp−1

tp + tp−2yp

Factoring out tp−2 from the denominator, subtracting the denominator from the numerator,

and factoring out −t2 from the numerator then gives the equivalent g1
p

y 7→ 1− yp−1 + tp−3y

yp + t2

Since we assumed that p > 3, taking t→ 0 gives the desired g1
p on the y-axis.
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Remark 4.3.4.1. In this situation, Proposition 4.3.2 gives that the limit g1
p resulting

from blowing up the origin is inseparable on each inserted component. In particular, since

the ramification at each node matches that of the original limit g1
p at the origin, we have

that the g1
p on each inserted component is the Frobenius map x 7→ xp.

4.3.1. Comparison with Characteristic 0. In [3, Proposition 2.5], Eisenbud and

Harris proved that in characteristic 0, the limit grd on X0 is refined if and only if there is no

ramification specializing to a node of X0. Example 4.3.4 provides a positive characteristic

counterexample, but by strengthening what we mean by ‘refined’, we can rephrase Corollary

4.3.3 to recover one direction of this statement in arbitrary characteristic:

Proposition 4.3.5. It is not possible for ramification to specialize to a node of X0 whose

differential crudeness index is 0.

Their proof simply uses the Plücker formula together with the semicontinuity statement

from Lemma 3.1.3 to show that it is only possible to get less than the expected amount of

ramification at the nonsingular points of X0 if some ramification is specializing to a node.

As such, if we add a separability condition, we can use the statement of the Plücker formula

from Lemma 3.1.6 to recover the biconditional result in arbitrary characteristic:

Proposition 4.3.6. If the limit grd on X0 is separable, then it has differential crudeness

index 0 at every node if and only if there is no ramification specializing to a node of X0.

4.3.2. Non-Smoothability Revisited. We conclude this section with an example that

simultaneously provides a counterexample to the converse of Proposition 4.3.5 and demon-

strates the necessity in Proposition 4.1.2 that the family of g1
ds preserve imposed ramification.

Example 4.3.7. Consider the genus 0 family inside P1×P1 given by hyperbolas xy = t3

which degenerates to the union of the axes at t = 0 (we will again call this nodal curve C0).
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We can then define a g1
p on each P1 using the map

x 7→ x+ t

xp + t3p−1

Writing x = t3

y
and manipulating as in Example 4.3.4 gives the equivalent g1

p

y 7→ 1− typ−1

yp + t

Taking t→ 0 gives a limit g1
p on C0 defined by the map x 7→ x

xp on the x-axis and the map

y 7→ 1
yp

on the y-axis. The resulting g1
p on the x-axis is separable and ramified to order p− 1

at 0 and ∞, while the g1
p on the y-axis is inseparable and ramified to order p at every point.

In particular, this limit g1
p is crude, with vanishing sequence 1, p at the node on the x-axis

and 0, p on the y-axis. Furthermore, each g1
p in the family is (wildly) ramified to order p at

the point (x, y) = ( p
√
−t3p−1, p

√
−t), which specializes to the origin as t→ 0.

We can determine further the behavior of the family by blowing up the origin as in Lemma

4.3.1. In this case, the exceptional divisor is contained in P2 and given by equations xy = t3,

xY = yX, xZ = tX, and yZ = tY , where X, Y , and Z are the corresponding homogeneous

coordinates. In particular, the exceptional divisor corresponds to the coordinate axes XY =

0, which gives that the blowup inserts two copies of P1 at the node. If we consider the affine

chart given by Z 6= 0, we obtain coordinates x̄ = X/Z and ȳ = Y/Z. These in turn give new

equations x = tx̄ and y = tȳ, and let us rewrite our family of g1
ps as

x̄ 7→ x̄+ 1

x̄p + t2p−1

or, using that x̄ȳ = t, equivalently as

ȳ 7→ ȳp + tȳp−1

1 + tp−1ȳp

Then taking t→ 0 gives a limit g1
p on the new components defined by the map x̄ 7→ x̄+1

x̄p on

the x̄-axis and the map ȳ 7→ ȳp on the ȳ-axis. The resulting g1
p on the x̄-axis is separable and
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ramified to order p at 0 and to order p − 1 at ∞, while the g1
p on the ȳ-axis is inseparable

and ramified to order p at every point. We also note that each g1
p in this family is (wildly)

ramified to order p at (x̄, ȳ) = ( p
√
−t2p−1, p

√
−t1−p), which specializes to (0,∞) as t→ 0.

As such, following blowup of the node of the curve C0, we obtain a curve C ′0 consisting

of a chain of four copies of P1, with the internal components glued at 0 and each external

component glued at 0 to its adjacent internal component at∞, and a limit g1
p on C ′0 defined

in order by the maps x 7→ x
xp , x 7→ x+1

xp , x 7→ xp, and x 7→ 1
xp . In particular, we get vanishing

sequences 1, p and 0, p−1 at the first node and 0, p on each side of the second and third nodes.

We also note that our family of g1
ps has ramification specializing to the third node. As such,

we have a refined limit g1
p such that the second and third nodes have nonzero differential

crudeness index and with ramification specializing to one, but not both, of these nodes.

Remark 4.3.7.1. Because the limit g1
d on C ′0 is refined, we have that the the result of

a subsequent blowup of any of the nodes can now be completely determined by Proposition

4.3.2. In particular, as in Remark 4.3.4.1, blowing up the second or third nodes will only

result in the insertion of more components on which the g1
p is the inseparable Frobenius map.

Remark 4.3.7.2. Recall that the limit g1
p defined by the maps on the middle two compo-

nents of C ′0, considered as the union of the axes in P1×P1, is given by x 7→ x+1
xp on the x-axis

and the map y 7→ yp on the y-axis. By setting g(x) = x + 1, we see that this limit g1
p is of

exactly the form constructed to be non-smoothable in Example 4.1.4. Because this limit g1
p

can in fact be obtained as the limit of a family of g1
ps, we will briefly discuss why this does not

present a counterexample to Proposition 4.1.2. The key point is the fact that Proposition

4.1.2 requires the family to not only preserve imposed ramification, but in particular that

the imposed ramification be to order strictly less than p. Because our family of g1
ps has a

point that is wildly ramified, it does not satisfy this condition.

With the above in mind, we will conclude with the following result:
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Corollary 4.3.8. Under the assumptions of Proposition 4.1.2, any family of g1
ds on X1

specializing to an inseparable limit g1
d on X0 must have a point ramified to order at least p.

If d = p, this is equivalent to the family being wildly ramified at at least one point.

Proof. Because the result is trivial in the case that the family is inseparable, we will

assume that we have a family of separable g1
ds. By the Plücker formula, the total amount of

ramification of each g1
d is 2d− 2 and, assuming that none of the ramification is specializing

to a node of X0, we can make a base change such that all of the ramification specializes to

nonsingular points of X0 along sections of π. In particular, if it is the case that all of the

ramification is to order less than p, Proposition 4.1.2 gives that the resulting limit g1
d on X0

must be separable.

In the case that there is ramification specializing to a node of X0, we can blow up that

node as in Lemma 4.3.1 such that all ramification specializes along sections to nonsingular

points of the new special fiber X ′0. Because this process preserves the original limit g1
d on

X0, we can conclude the result as above. �
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