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Mathematics

Affine Springer fibers, Hilbert schemes and knots

Abstract

Symmetry is abundant in mathematics, and often appears in the guise of representation

theory. It often appears in unexpected places, and due to its highly structured nature can

be a powerful tool in the study of other mathematical objects. This thesis is concerned

with examples of such phenomena in the realm of geometric representation theory. More

specifically, we study Hilbert schemes on singular plane curves and smooth surfaces as well

as affine Springer fibers from various points of view in three stand-alone chapters, which

are more interrelated than might seem to the untrained eye. In Chapter II, we relate

Haiman’s isospectral Hilbert scheme of points on the plane to certain very unramified

elements in the loop Lie algebra of a split reductive group. These elements have already

been studied in the work of Goresky, Kottwitz, and MacPherson. This novel connection

gives evidence for a conjecture by Bezrukavnikov. In Chapter III, we study a certain

subalgebra of the Weyl algebra on 2m variables acting on the homology of Hilbert schemes

of points of a reduced complex planar curve with m irreducible components. We compute

the representation in the fundamental example of the node and furthermore compute parts

of the action in the case of m lines intersecting in the plane. A majority of the results in

Chapters II-III are original. In Chapter IV, we study (geometric) representations of the

trigonometric DAHA in (twisted) type A with certain rational parameters. For untwisted

type A, the chapter is mainly expository. The main technical result in the twisted case is

a new combinatorial classification of the irreducible representations of the DAHA which

follows from the study of a map defined by Lusztig.
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Chapter 1

Introduction

This thesis contains several chapters dealing with different topics in geometric represen-

tation theory. Most of the chapters are standalone, but contain results closely related to

each other and taken together shed light for example on the Oblomkov-Rasmussen-Shende

conjecture for torus links and elucidate the connection between trigonometric Cherednik

algebras and quantum affine algebras in type A.

In this introduction, we outline the main results of the various chapters, and discuss

their motivation and how they relate to one another. For more detailed overviews of

the chapters, including theorem statements and comparisons to results already in the

literature, see the introduction to each individual chapter.

1.1 How this thesis is organized

In Chapter 2, we study the equivalued unramified affine Springer fibers also considered

by Goresky-Kottwitz-Macpherson, and show these bear a close connection to Haiman’s

work on the Hilbert scheme of points on the plane. This chapter is mostly based on the

results of [49].

In Chapter 3, we focus on Hilbert schemes of points on curves with locally planar

singularities. We present an action of a subalgebra of a Weyl algebra on their homologies,

and determine the corresponding representation in the case of a node. We also illustrate

the connection to the Coulomb branches of Braverman-Finkelberg-Nakajima. The results

of this chapter are based on [48] as well as the upcoming work [21].
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In Chapter 4, we study the trigonometric double affine Hecke algebras in type A with

rational equal parameters as well as in type B with certain rational unequal parameters,

using geometry of nilpotent orbits of certain θ-representations. We also make explicit

some of the combinatorial constructions of Lusztig-Yun in these cases and suggest further

topics of study. The results of this chapter are mainly new, although in the type A case

they mainly give a new interpretation to existing results of Cherednik, Vasserot, and

Suzuki.

1.2 Borel-Moore homology of Affine Springer fibers

In Chapter 2, we consider the unramified equivalued affine Springer fibers studied by

Goresky-Kottwitz-MacPherson [25] and their relation to the isospectral Hilbert scheme

of Mark Haiman [38]. This may be thought of as the conceptual heart of this thesis,

although we make little reference from the latter chapters to this one. Most of the results

here are based on the paper [49], although an error in the proof of Theorem 1.2.1 pointed

out to us by Eric Vasserot and Peng Shan has now been taken into account and some

results been modified accordingly.

Let G/C be a connected reductive group and T ⊂ B ⊂ G as usual. Denote g := Lie(G)

and let K = C((t)),O = C[[t]]. If γ ∈ g(K), the affine Springer fiber Spγ in the affine

Grassmannian GrG = G(K)/G(O) is a sub-ind-scheme whose closed points are

Spγ = {gG(O)|g−1γg ∈ g(O)}.

Replacing the affine Grassmannian by an affine flag variety, one obtains analogous sub-ind-

schemes of partial affine flag varieties. While most of the results of this thesis concern the

affine Grassmannian case, natural extensions of many notions to the partial (including

the full) affine flag variety setting are straightforward and interesting variations of the

main statements should be expected.

The element γ is unramified and equivalued iff it is conjugate to an element of the

form γ = atd, where a ∈ treg, d ≥ 0 is an integer and t = Lie(T ). This is why sometimes

these elements are called diagonal.
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Using the methods of Goresky-Kottwitz-MacPherson [25, 26], we compute the equiv-

ariant BM homology of SpP
γ when P is a maximal compact subgroup. In this case, we

simply denote SpP
γ = Spγ. This is by definition a reduced sub-ind-scheme of the affine

Grassmannian of G. Fix a maximal torus and a Borel subgroup T ⊂ B ⊂ G, and de-

note Lie(T ) = t,Lie(B) = b,Lie(G) = g. Let moreover the cocharacter lattice of T be

Λ := X∗(T ) ∼=
⊕r

i=1 Zεi for the fundamental weights {εi}ri=1 determined by B and some

ordering thereof. Here r is the rank of G. Denote by C[Λ] = C[X∗(T )] the group alge-

bra of the cocharacter lattice. This can be canonically identified with functions on the

Langlands dual torus T∨, or as the 3d N = 4 Coulomb branch for (T, 0) as in [?].

Our first result is the following theorem, proved as Theorem 3.0.1.

Theorem 1.2.1. Let ∆ =
∏

α yα ∈ H∗T (pt) be the Vandermonde element. The equivariant

Borel-Moore homology of Xd := Sptdz for a reductive group G is up to multiplication by

∆d canonically isomorphic as a (graded) C[Λ]⊗ C[t]-module to the ideal

J
(d)
G =

⋂
α∈Φ+

Jdα ⊂ C[Λ]⊗ C[t].

In particular, there is a natural algebra structure on ∆dHT
∗ (Spγ) inherited from C[Λ]⊗C[t],

and J
(d)
G is a free module over C[t].

Throughout, HT
∗ (−) denotes the equivariant BM homology, see Section 2.3 for details.

In a few places, we also use the ordinary T -equivariant homology as in [26]; it is denoted

HT
∗,ord(−).

In [25], the following theorem is proved.

Theorem 1.2.2. Let γ = atd. Then the T (C)-equivariant homology of Spγ is a C[T ∗T∨] =

C[Λ]⊗ C[t]-module such that

HT
∗,ord(Spγ) =

C[Λ]⊗ C[t∗]∑
α∈Φ+

∑d
k=1(1− α∨)kC[Λ]⊗ ker(∂kα)

.

The ordinary T (C)-equivariant homology of S̃pγ is a C[W̃ ]⊗ C[t]-module such that

HT
∗,ord(S̃pγ)

∼=
C[W̃ ]⊗ C[t∗]∑

α∈Φ+

∑d
k=1(1− α∨)kC[W̃ ]⊗ ker(∂kα) +

∑
α∈Φ+

∑d
k=1(1− α∨)k−1(1− sα)C[W̃ ]⊗ ker(∂kα)

.
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In our study of Hecke correspondences on singular plane curves, which in this thesis

is written in Chapter 3, but historically came first, we encountered a similar space for

the case of the singularity {xy = 0}, suggesting some direct relationship between the

homology spaces of the Hilbert schemes of the latter and the equivariant homology of the

affine Springer fiber. Further computations based on predictions from knot homology of

full twists [17] and the Migliorini-Shende-Viviani formula as well as the knowledge of fine

compactified Jacobians of reducible plane curves in [67] then solidified this belief and also

made us look for a proof of the main Theorem 1.2.1. As explained further in Chapters

2 and 3, we conjecture the following for Hilbert schemes of points on n projective lines

intersecting at a point on the plane:

Conjecture 1.2.3. Let C be the unique projective model of {xdn = yn} with rational

components and no other singular points than the origin. Then as An-representations

(see the next section) we have⊕
n

H∗(Hilbn(C)) ∼=
C[x1, . . . , xn, y1, . . . , yn]∑

i<j

∑d
k=1(xi − xj)k ker((∂yi − ∂yj)k)

.

Forgetting about knot-theoretic motivations, our results raise many interesting math-

ematical questions. In particular, Theorem 1.2.1 connects the Procesi bundle on the

Hilbert scheme to the affine Springer fibers in question, and one expects a relationship to

the Hilbert schemes of points as above as well. While not explicated here, in upcoming

joint work with Gorsky and Oblomkov [29], we show that it is in fact possible to produce

sheaves on the Hilbert scheme from any elliptic affine Springer fiber in the affine Grass-

mannian. Note that this class of examples is basically orthogonal to the considerations

in this thesis. From an automorphic point of view, the elliptic elements are the most

interesting ones one could look at and were exploited in Ngô Bao Chaû’s (and Laumon’s

and Waldspurger’s) monumental proof of the fundamental lemma [72].

1.3 Hilbert schemes of points of singular plane curves

Let us begin with some history. In [4,37,70], and later [71], Hecke correspondences given

by elementary modifications of sheaves on smooth surfaces are studied. In particular,
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vertex algebras and similar structures arise in the K-theory and (co)homology of these

moduli spaces, as predicted by e.g. the AGT conjecture in physics [1]. Although there

is no clear mathematical explanation as to why various cohomology theories of moduli

spaces of sheaves on surfaces should yield representation-theoretically interesting algebras,

it is by now widely accepted that this is a fruitful way to study one through the other.

Namely, the cohomological Hall algebras of recent years [45,95] are a wide generalization

of this framework to moduli of sheaves on (noncommutative) Calabi-Yau spaces.

We are intentionally being vague about what kind of sheaves one considers in the

above setup. The one relevant to this thesis is the case of moduli of zero-dimensional

ideal sheaves, in which case the moduli spaces are the familiar Hilbert schemes of points

on surfaces. By a straightforward yet miraculous theorem of Fogarty, these moduli spaces

are smooth for ideal sheaves of arbitary length, making their study at least a little more

accessible.

In [83], the passage from smooth surfaces to possibly singular curves lying on these

surfaces was initiated. In this case, the Hilbert schemes become singular (Lagrangian)

subvarieties of the smooth Hilbert schemes on surfaces, and one wonders how much of the

above action is retained. Getting rid of the fixed surface in the first place and studying

correspondences on projective singular irreducible curves, Rennemo then recovers a Weyl

algebra in two variables acting on ⊕
n≥0

H∗(C
[n]).

In [48], this result was extended to possibly reducible but nonetheless reduced curves,

the precise result is in Chapter 3, Theorem 3.0.4. The essential technical tool in both our

and Rennemo’s approach is Fulton-MacPherson’s bivariant Borel-Moore homology. More

intestingly, in the simplest case of a reducible curve, that of the transverse intersection of

two lines, the representation we recover is already quite nontrivial, and has an apparent

relation to the results in Chapter 2, although we have not been able to make this precise.

As stated earlier, our approach relies on working without a fixed global surface and

instead using some results of Migliorini-Shende and Maulik-Yun [65, 68] on the total

families of relative Hilbert schemes of points on locally versal deformations of locally
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planar curves. It would be interesting to know if we can directly recover the action on

the level of the singular spaces that appear, namely flag Hilbert schemes, and whether we

could recover this action directly from that of Nakajima and Grojnowski. Physics seems

to suggest a post-hoc motivation for these correspondence algebras [6]; in fact they should

be subalgebras of the Coulomb branch of a 3dN = 4 gauge theory with gauge group GLn

and matter Ad⊕V . We briefly discuss this relationship in Section ??, based on upcoming

joint work with Niklas Garner [21].

Lastly, we want to mention a relation to curve-counting on Calabi-Yau threefolds, one

of the favorite topics in physical mathematics of the last twenty-five years. Suppose our

curve lies in a CY3 X. As shown by Pandharipande and Thomas [78, Appendix B], there

are integers ng so that

q1−ga
∑
n

χ(C [n])qn =

ga∑
g=gc

ng
q1−ga

(1− q)2−2ga
,

where gc, ga are the geometric and arithmetic genera of C. The numbers ng should then

be then exactly the ”local contributions” to the Gopakumar-Vafa invariants of X. In fact,

at least if C is integral, the numbers ng have a more direct interpretation as well, as coef-

ficients in a certain change-of-variables in the generating function for χ(P≤nH∗(Jac(C)),

where Jac(C) is the compactified Jacobian studied elsewhere in this thesis under the alias

”affine Springer fiber”, and P≤n is a certain filtration on its cohomology, called the per-

verse filtration. For more details on the relevant curve-counting we refer to [78, 83], and

for more on the perverse filtration we refer to [65, 68], as well as [15] in a more general

setting.

1.4 Trigonometric DAHAs and Lusztig-Yun theory

In work of Lusztig-Yun [60–63] and Liu [53], geometric representations of the trigonometric

DAHA H′(G) associated to a reductive group G are constructed using a Springer theory

for Z/m-graded Lie algebras. In particular, all the integrable representations can be

constructed via spiral inductions, which are an analogue of parabolic induction in the

affine setting, or alternatively a finite-dimensional model of parahoric induction.
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The representation categories which then appear, in the guise of blocks of perverse

sheaves on a graded piece of the nilcone, describe Whittaker modules O{λ0} for H′ (in

analogy to the Lie algebra case). More precisely, the index {λ0} corresponds to fixing the

eigenvalues of the polynomial part of H′ by a choice of facet in the building of G(K).

In the special case when the Z/m-grading is induced by an outer involution θ, the

categories O{λ} have recently been studied by Vilonen- Xue [91] in the form of character

sheaves for complex symmetric pairs. Their methods, however, do not have a straight-

forward relationship to those of Lusztig-Yun. In particular, it is interesting to consider

the block decomposition of Lusztig-Yun and try to compare it to the results in [91]. As

a first step in this direction, we produce in Chapter 4 an explicit description of the block

decomposition of Lusztig-Yun.

By a conjecture of Xue, the blocks can be described in this case via blocks of products

of type A Hecke algebras at q = −1, and as the author has learned from her, this is indeed

the case. The finite Hecke algebras at roots of unity that appear from the construction

of [36] seem to be in a Koszul-like duality with the Cherednik algebras, and promising

candidates for the Hecke algebras in question appear in recent work of Losev and Shelley-

Abrahamson [54]. We hope to understand these connections in future work.

It is however not clear what the DAHA-theoretic meaning of these blocks is. While

block theory of rational Cherednik algebras is fairly well understood [94], in the trigono-

metric case such a study is still lacking.

The paper [91] singles out objects such as biorbital complexes and cuspidal character

sheaves in the relevant categories of perverse sheaves, following Lusztig. The nearby cycles

construction of Grinberg-Vilonen-Xue [36] implies that cuspidal sheaves in the principal

Lusztig-Yun block correspond to representations of certain finite Hecke algebras (with

unequal parameters) at roots of unity. On the other hand, Vasserot’s construction implies

that these cuspidal character sheaves correspond to finite-dimensional representations of

H′(G).

As to the biorbital complexes, it is known by work of Varagnolo-Vasserot that the

7



categories O{λ0} admit a geometrically defined functor

KZ : O{λ0} → h−mod,

where h is the affine Hecke algebra of the same type, and the biorbital complexes should

be in bijection with irreducible finite-dimensional representations of the latter. This is

true in type A, as shown in [89].

Section ?? is devoted to defining parabolic induction and restriction functors for

trigonometric DAHAs. While we do not study properties of these functors further, they

suggest a crystal structure on the irreducible representations of trigonometric Cherednik

algebras of type A, given by induction and restriction. By results of [89], should such a

crystal structure exist, one expects the resulting crystal to be a Uq(ŝlm)-crystal with a

surjection to the crystal Uq(ŝlm).

One of the attractive properties about Lusztig-Yun theory is the fact one can compute

Jordan-Hölder multiplicities and (dimensions of) Ext-groups using certain hyperplane

arrangements introduced by Lusztig in [61, 63]. While we do not explain this connec-

tion further, we compute the hyperplane arrangements in some examples and refer the

interested reader to [90] for more explanations.
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Chapter 2

Unramified affine Springer fibers

2.1 Introduction

In this chapter, we study a family of affine Springer fibers depending on a connected

reductive group G over C and a positive integer d. Recall that an affine Springer fiber

SpP
γ is a sub-ind-scheme of a partial affine flag variety FlP (see [96] and Section 2.2) that

can be informally thought of as a zero-set of a vector field for an element of the loop Lie

algebra of G, γ ∈ g⊗ C((t)). For us, γ = ztd, where z is any regular semisimple element

in g(C). Without loss of generality, we may take z to be an element of Lie(T )reg, where

T is a fixed maximal torus of G. In fact, all of our results hold for γ ∈ Lie(T )reg ⊗C((t))

that are equivalued, but for simplicity we only consider this case.

Using the methods of Goresky-Kottwitz-MacPherson [25, 26], we compute the equiv-

ariant BM homology of SpP
γ when P is a maximal compact subgroup. In this case, we

simply denote SpP
γ = Spγ. This is by definition a reduced sub-ind-scheme of the affine

Grassmannian of G. Fix a maximal torus and a Borel subgroup T ⊂ B ⊂ G, and de-

note Lie(T ) = t,Lie(B) = b,Lie(G) = g. Let moreover the cocharacter lattice of T be

Λ := X∗(T ) ∼=
⊕r

i=1 Zεi for the fundamental weights {εi}ri=1 determined by B and some

ordering thereof. Here r is the rank of G. Denote by C[Λ] = C[X∗(T )] the group alge-

bra of the cocharacter lattice. This can be canonically identified with functions on the

Langlands dual torus T∨, or as the 3d N = 4 Coulomb branch for (T, 0) as in [?].

Our first result is the following theorem, proved as Theorem 3.0.1.
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Theorem 2.1.1. Let ∆ =
∏

α yα ∈ H∗T (pt) be the Vandermonde element. The equivariant

Borel-Moore homology of Xd := Sptdz for a reductive group G is up to multiplication by

∆d canonically isomorphic as a (graded) C[Λ]⊗ C[t]-module to the ideal

J
(d)
G =

⋂
α∈Φ+

Jdα ⊂ C[Λ]⊗ C[t].

In particular, there is a natural algebra structure on ∆dHT
∗ (Spγ) inherited from C[Λ]⊗C[t],

and J
(d)
G is a free module over C[t].

Throughout, HT
∗ (−) denotes the equivariant BM homology, see Section 2.3 for details.

In a few places, we also use the ordinary T -equivariant homology as in [26]; it is denoted

HT
∗,ord(−).

2.1.1 Anti-invariants and subspace arrangements

Let W be the finite Weyl group associated with G and sgn be the one-dimensional repre-

sentation of W where all reflections act by −1. Observe that there is a natural left action

W × T → T , and therefore actions

W × T ∗T∨ → T ∗T∨,W × C[T ∗T∨]→ C[T ∗T∨].

Note that the cocharacter lattice Λ = X∗(T ) naturally identifies with the character lattice

of T∨. In particular, C[Λ] ∼= C[T∨], where the left-hand side denotes group algebra and

the right-hand side denotes ring of regular functions. The cotangent bundle of T∨ is

trivial, and in particular has fibers t. Therefore C[Λ]⊗ C[t] ∼= C[T ∗T∨].

Using the description of the equivariant Borel-Moore homology given in Theorem 2.1.1,

we expect a relationship between the cohomology of Spγ and the sgn-isotypic component

of the natural diagonal W -action on C[T ∗T∨]. First of all, it is not hard to see the

following result.

Theorem 2.1.2. Let IG ⊆ C[T ∗T∨] be the ideal generated by W -alternating regular func-

tions in C[T ∗T∨] with respect to the diagonal action. Then there is an injective map

IdG ↪→ J
(d)
G = HT

∗ (Spγ).
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Consequently, any W -alternating regular function on T ∗T∨ has a unique expression

as a cohomology class in HT
∗ (Spγ), where γ = zt.

In the case when G = GLn, this isotypic part for the corresponding action on T ∗t∨ was

studied by Haiman [38] in his study of the Hilbert scheme of points on the plane. More

specifically, he considered the ideal I ⊂ C[x1, . . . , xn, y1, . . . , yn] generated by the anti-

invariant polynomials, and proved that it is first of all equal to J =
⋂
i 6=j〈xi − xj, yi − yj〉

and moreover free over the y-variables. Note that if f ∈ C[x±,y], it is by definition of the

form f = g
(x1···xn)k

for some g ∈ C[x,y] and k ≥ 0. Since the denominator is a symmetric

polynomial, g ∈ C[x,y] is alternating for the diagonal Sn-action if and only if f is so. In

particular, in the localization C[x±,y] we have that Ix ∼= IGLn for IG as in Theorem 2.1.2.

Let us quickly sketch how the Hilbert scheme of points Hilbn(C2) enters the picture.

Let A ⊂ C[x,y] be the space of antisymmetric polynomials for the diagonal action of Sn.

From for example [41, Proposition 2.6], we have that

Proj
⊕
m≥0

Am ∼= Hilbn(C2).

In addition,

Proj
⊕
m≥0

Im ∼= Xn,

where

Xn
∼= (C2n ×C2n/Sn Hilbn(C2))red

is the so-called isospectral Hilbert scheme. The superscript red means that we are taking

the reduced fiber product, or fiber product in category of varieties instead of schemes.

By results of [39], we have Im =
⋂
i 6=j〈xi−xj, yi− yj〉m, so that Idx

∼= J
(d)
GLn

. In Section

2.4, we prove our next main result following this line of ideas.

Theorem 2.1.3. There is a graded algebra structure on⊕
d≥0

∆dHT
∗ (Spztd).

When G = GLn, we have

Proj
⊕
d≥0

∆dHT
∗ (Spztd)

∼= Yn,

where Yn is the isospectral Hilbert scheme on C∗ × C.
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We next observe that the natural map ρ : Xn → Hilbn(C2) restricts to a map Yn →

Hilbn(C∗ × C). Define the Procesi bundle on Hilbn(C2) to be P := ρ∗OXn . By results

of Haiman, this is a vector bundle of rank n!. We then have the following corollary to

Theorem 2.1.3.

Corollary 2.1.4. We have that

H0(Hilbn(C∗ × C,P ⊗O(d)) = J
(d)
GLn

= ∆d ·HT
∗ (Spγ),

where γ = ztd.

Our results can be at least interpreted in terms of the Coxeter arrangement for the root

data of G or G∨. More precisely, C[X∗(T )] can be thought of as the ring of functions on

the dual torus T∨ ∼= (C∗)n, which in turn is the complement of “coordinate hyperplanes”

in t∨ ∼= X∗(T ) ⊗Z C for the basis given by fundamental weights determined by B. Note

that the resulting divisor is independent of B.

There is another hyperplane arrangement in this space, determined by Φ∨, which is

called the Coxeter arrangement, and can be viewed as the locus where at least one of the

positive coroots vanishes. In the exponentiated notation, this is exactly the divisor

V =
⋃
α

Vα =

{ ∏
α∈Φ+

(1− xα∨) = 0

}
⊂ T∨.

Let us go back to t∨ for a while. We may “double” the Coxeter hyperplane arrangement

inside t∨ to a codimension two arrangement in t⊕ t∨ as follows. Each α∨ corresponds to

a positive root α for G, whose vanishing locus is a hyperplane V∨α in t. Both α, α∨ also

determine hyperplanes inside t ⊕ t∨ by the same vanishing conditions, and by abuse of

notation we will denote these also by Vα,V∨α . By intersecting, we then get a codimension

two subspace Vα ∩ V∨α . It is clear from the description that the union of these subspaces

as α runs over Φ+ is defined by the ideal⋂
α∈Φ+

〈yα, xα∨〉 ⊂ C[t⊕ t∨].

Here xα∨ and yα are the linear functionals associated to α∨, α. Localizing away from

the coordinate hyperplanes in t∨, we then see that the ideal JG ⊂ C[T ∗T∨] from earlier
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determines a doubled Coxeter arrangement inside T ∗T∨. In fact, it is immediate from the

description that its Zariski closure inside T ∗t∨ equals
⋃
α Vα ∩ V∨α . In the GLn case, this

doubled subspace arrangement coincides with the one studied by Haiman. In [40, Problem

1.5(b)], Haiman poses the question of what happens for other root systems. Reinterpreting

the doubling procedure to mean the root system and its (Langlands) dual in T ∗T∨, instead

of taking V ⊗ C2 ⊂ t⊗ C2, we have freeness of JG in “half of the variables” by Theorem

2.1.1, which answers the question in loc. cit.

There are several other corollaries to Theorem 2.1.1 that we now illustrate.

Let G = GLn. It is a conjecture of Bezrukavnikov (private communication) that under

the lattice action of Λ on H∗(S̃pγ), where γ = zt, we also have

H∗(S̃pγ)
Λ ∼= DHn

and

H∗(Spγ)
∼= DHsgn

n .

While we are not able to prove said conjecture, we are able to prove an analogous statement

in Borel-Moore homology for the coinvariants under the lattice action, see Theorem 2.4.16.

Theorem 2.1.5. We have

H∗(Spγ)Λ
∼= DHsgn

n .

Let us then discuss the freeness over Sym(t) of the ideals J
(d)
G and related ideals

in more detail. For example, in type A, it is clear that the simultaneous substitution

xi 7→ xi + c, c ∈ C, i = 1, . . . , n leaves JG invariant, so that the freeness over Sym(t) of⋂
i 6=j〈xi − xj, yi − yj〉 ⊂ C[x,y] can be deduced from that of JG. We remark that the

results of Section 2.4.3 can also be used to show this statement.

Theorem 2.1.6. Let G = GLn and J =
⋂
i 6=j〈xi − xj, yi − yj〉 ⊂ C[x,y]. Then we

have ∆d · HT
∗ (Spγ)

∼= Jdx ⊂ C[x±,y], where the subscript x denotes localization in the

x-variables. In particular, Jd ⊂ C[x,y] is free over C[y] := C[y1, . . . , yn].

It is somewhat subtle that Theorem 2.1.1 does not immediately imply the freeness

over Sym(t) of the ideals in C[T ∗T∨],C[T ∗t∨] generated by the anti-invariants, even in
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type A. Of course, one would hope for a similar description as Haiman’s for arbitary G,

but it seems likely some modifications are in order outside of type A [22, 24].

Haiman’s original proof [39] of a related stronger statement, “the Polygraph Theorem”,

implying the freeness of the anti-invariant ideal I and its powers over C[y], and thus

freeness of Jd = J (d) over C[y], involves rather subtle commutative algebra. Until recently,

it has been the only way of showing the freeness of J (d) without giving a clear conceptual

explanation. On the other hand, Theorem 2.1.6 gives a quite hands-on explanation of

this phenomenon. It does not seem to be impossible to use the representation-theoretic

interpretation of J (d) and the Sn-action on HT
∗ (Spγ) to try to directly attack freeness of

Id.

In fact, recent work of Gorsky-Hogancamp [?] on knot homology gives another proof of

Theorem 2.1.6. Their results also rest on results of Elias-Hogancamp [17] on the HOMFLY

homology of (n, dn)-torus links, which involves some quite nontrivial computations with

Soergel bimodules. In this chapter, the complexity of the freeness statement is hidden in

the cohomological purity of Spγ as proved by Goresky- Kottwitz-MacPherson [27].

2.1.2 Relation to braids

Let us first consider a general connected reductive group G. Any γ ∈ g ⊗ C((t)) gives

a nonconstant (polynomial) loop [γ] ∈ Hom(SpecC[t±], treg/W ), through which we get a

conjugacy class β ∈ π1(treg/W ) ∼= BrW . Note that we do not have a natural choice of

basepoint, so that β is not a bona fide element of the braid group, but just a conjugacy

class.

Let now G = GLn. Then the braid closure β is a knot or link in S3. For links in the

three-sphere, it is natural to consider various link invariants, such as the triply graded

Khovanov-Rozansky homology (or HOMFLY homology) [52]. This is an assignment

β 7→ HHH(β)

of Z⊕3-graded Q-vector spaces to braids, which factors through Markov equivalence. The

invariant HHH(−) was recently generalized to y-ified HOMFLY homology in [?]. It is

an assignment of Z⊕3-graded C[y1, . . . , ym]-modules to braids, and has many remarkable
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properties. We will discuss these in more detail in Section 2.5.

We are mostly interested in HY(−) for the braid associated to γ = ztd, following

previous parts of this introduction. In this case, β is the (nd)th power of a Coxeter braid

coxn (positive lift of the Coxeter element in Sn). In particular, β is the (d)th power of

the full twist braid coxnn. Note that ince β is central, it is alone in its conjugacy class and

thus an actual braid. Taking the braid closure of β, it is well-known that we recover the

(n, dn) torus link T (n, dn).

Remark 2.1.7. The closures of powers of the Coxeter braids coxmG and their relation to

affine Springer theory has appeared in the literature in several places [32, 75, 89], in the

case where m is prime to the Coxeter number of G. The case we consider is the one where

m is a multiple of the Coxeter number.

Now, progress in knot homology theory by several people [?, 17, 31, 66] has lead to

an identification of the Hochschild degree zero part of the y-ified HOMFLY homology of

(n, nd)-torus links and the ideals Jd =
⋂
i<j〈xi − xj, yi − yj〉 from above. In particular,

combining these results and Theorem 3.0.1, we get the following corollary, proved in

Corollary 2.5.4.

Corollary 2.1.8. There is an isomorphism of C[x±,y]-modules

∆dHT
∗ (Spγ)

∼= HY(FTd
n)a=0 ⊗C[x] C[x±]

for γ = ztd.

Remark 2.1.9. Assuming the purity of affine Springer fibers, one is able to deduce further

corollaries to our results. If

γ =


a1t

d1

. . .

ant
dn

 ,

the construction above gives us a pure braid β whose braid closure has linking numbers

dij = min(di, dj) between components i, j.
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By [?, Proposition 5.5], if β has ”parity”, ie. HHH(β) is only supported in even or

odd homological degrees, we have the following isomorphism of bigraded vector spaces

HYa=0(β) ∼= ∩i<j(xi − xj, yi − yj)dij .

By equivariant formality of H∗(Spγ), we then have in analogy to the equivalued case that∏
i<j

(yi − yj)dijHT
∗ (Spγ)

∼=
⋂
i<j

〈xi − xj, yi − yj〉dij ⊗C[x] C[x±] ∼= HYa=0(β)⊗C[x] C[x±].

Remark 2.1.10. It is not clear to us what the correct analogues, if any, of these link-

theoretic notions are for other root data. While the definition of the HOMFLY homology

as Hochschild homology of certain complexes of Soergel bimodules [50] certainly makes

sense in all types, many aspects of the theory, including the y-ification process, are unde-

veloped at the time. Work in progress by Hogancamp and Makisumi addresses some of

these questions.

It is also interesting whether the resulting (Hochschild) homology of the (complex

corresponding to the) full twist is parity, or related to JG for other types.

2.1.3 Hilbert schemes of points on curves

It is useful to think of the link β from the previous section as the link of the plane curve

singularity which is the pullback along γ of the universal spectral curve over treg/Sn.

Recall that the link of C ⊂ C2 at p ∈ C is the intersection of C with a small three-

sphere centered at p. In particular, Link(C, p) is a compact one-manifold inside S3, i.e.

a link in the previous sense. Motivated by conjectures of Gorsky-Oblomkov-Rasmussen-

Shende [32, 73] there should then be a relationship of the affine Springer fibers, Hilbert

schemes of points on the plane and link homology to the Hilbert schemes of the plane

curve singularities {xn = ydn}. Namely, for G = GLn and

γ =


a1t

d

. . .

ant
d


the characteristic polynomial of γ is

P (x) =
∏
i

(x− aitd).
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We may assume that ai = ζ i for ζ a primitive nth root of unity, in which case P (x) =

xn − tdn. This determines a spectral curve in A2 with coordinates (x, t), with a unique

singularity at zero. It has a unique projective model with rational components and no

other singularities. Call this curve C.

The compactified Jacobian of any curve C, denoted Jac(C), is by definition the moduli

space of torsion-free rank one, degree zero sheaves on C. It is known by eg. [72] that in the

case when C has at worst planar singularities (and is reduced), we have a homeomorphism

of stacks

Jac(C) ∼= Jac(C)×
∏
x∈Csing Jac(Cx)

∏
x∈Csing

Jac(Cx), (2.1.1)

where Jac(Cx) is a local version of the compactified Jacobian at a closed point x ∈

C, sometimes also called the Jacobi factor. In the case when C = {xn = tdn}, we

have just a unique singularity and rational components, so that Eq. (2.1.1) becomes a

homeomorphism between the moduli of fractional ideals in Frac(C[[x, y]]/xn − ydn) and

the compactified Jacobian. From the lattice description of the affine Grassmannian, it is

not too hard to show that this former space actually equals Spγ [96].

It is an interesting problem to determine the Hilbert schemes of points C [n] on these

curves. These are naturally related to the compactified Jacobians via an Abel-Jacobi

map, which has a local version as well. In the case when C is integral, it is known that

this map becomes a Pn−2g-bundle for g � 0. In general we only know that it is so for a

union of irreducible components of the compactified Jacobian, of which there are infinitely

many in the case when C has locally reducible singularities.

In [?], we have initiated an approach to computing H∗(C
[n]) where C is reducible,

using a certain algebra action on

V :=
⊕
n≥0

H∗(C
[n]).

Note that this is a bigraded vector space, where one of the gradings is given by the number

of points (n, 0), and the other one is given by the homological degree (0, j).
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Theorem 2.1.11 ( [?]). Let

Am := C[x1, . . . , xm, ∂y1 , . . . , ∂ym ,
∑
i

∂xi ,
∑
i

ym] ⊂Weyl(A2m),

where xi carries the bigrading (1, 0) and yi the bigrading (1, 2). Suppose C is locally

planar and has m irreducible components. Then there is a geometrically defined action

Am × V → V.

Roughly speaking, the action on V is given as follows. For a fixed component Ci of

C, the operator xi : V → V adds points, and ∂yi removes them. These are defined using

a choice of a point ci ∈ Ci and a corresponding embedding C [n] ↪→ C [n+1]. On the other

hand, the operator
∑

i ∂xi : V → V removes a ”floating” point and
∑

i yi adds a floating

point. These are defined as Nakajima correspondences.

The original computation of T -equivariant homology of affine Springer fibers in [26]

for G = GL2 bears a striking resemblance to the second main result in [?]. In particular,

if C is the union of two projective lines along a point,

V ∼=
C[x1, x2, y1, y2]

(x1 − x2)C[x1, x2, y1 + y2]
.

Furthermore, when G = GL2, we have

HT
∗,ord(Sptz) =

C[x±1 , x
±
2 , y1, y2]

(x1 − x2)C[x±1 , x
±
2 , y1 + y2]

.

Here HT
∗,ord(−) means the Borel construction of ordinary T -equivariant homology. See

Theorem 2.6.5 for a more general statement.

Based on computations in [?] and some new examples in Section 2.6, we are lead to

conjecture the following.

Conjecture 2.1.12. Let C be the (unique) compactification with rational components and

no other singularities of the curve {xn = ydn}. Then as a bigraded An-module, we have

V :=
⊕
m≥0

H∗(C
[m],Q) ∼=

C[x1, . . . , xn, y1, . . . , yn]∑
i 6=j
∑d

k=1(xi − xj)k ker(∂yi − ∂yj)k
. (2.1.2)
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2.1.4 Organization

The organization of the chapter is as follows. In Section 2.2 we give background on affine

Springer fibers. In Section 2.3 we compute the torus equivariant Borel-Moore homology

of the affine Springer fibers we are interested in, following Goresky-Kottwitz-MacPherson

and Brion. In Section 2.4, we give background on Hilbert schemes of points on the plane

and relate results from the previous sections with those of Haiman. We also discuss our

results and their implications in this direction for arbitrary G in Section 2.4.4. In Section

2.5, we relate the equivariant Borel-Moore homology of affine Springer fibers with braid

theory, and in the type A case with the knot homology theories of Khovanov-Rozansky

and Gorsky-Hogancamp. Finally, in Section 2.6 we compute some new examples and

make a conjecture describing the structure of the homology of Hilbert schemes of points

on the plane curves {xn = ydn}.

2.2 Affine Springer fibers

In this section, we define the affine Springer fibers we are considering. For more details

on the definitions, see the notes of Yun [96]. Let G be a connected reductive group over

C. Choose T ⊂ B ⊂ G a maximal torus and a Borel subgroup as per usual. We denote

the Lie algebras of G,B, T respectively by g, b, t.

Denote the lattice of cocharacters X∗(T ) = Λ and the Weyl group W . Let the extended

affine Weyl group be W̃ := Λ oW . We use this convention to align with [26].

If R is a C-algebra and F represents an fpqc sheaf out of Aff/C, we let F (R) be the

associated functor of points evaluated at R (for an excellent introduction to these notions

in the context we are interested in, see notes of Zhu [97]). Often when R = C, we omit it

from the notation and simply refer by F to the closed points.

Denote the affine Grassmannian of G by GrG and its affine flag variety by FlG. These

are naturally ind-schemes. If G = GLn, we will often write just Grn and Fln. Write

K = C((t)) and O = C[[t]]. Then GrG(C) = G(K)/G(O) and Fl(C) = G(K)/I, where

I is the Iwahori subgroup corresponding to the choice of B and the uniformizer t. Let

T̃ := T oGrot
m be the extended torus, where a ∈ Grot

m scales t by t 7→ at.
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There is a left action of T (C) on GrG(C) and FlG(C) = G(K)/I. This action is

topological in the analytic topology. Its fixed points are determined using the following

Bruhat decompositions:

G(K) =
⊔
λ∈Λ

ItλG(O) =
⊔
w∈W̃

ItwI.

Since T (C) acts nontrivially on the real affine root spaces in I, and fixes the cosets tλG(O),

twI respectively, we see that the fixed point sets are discrete, and in a natural bijection

with Λ, W̃ .

Definition 2.2.1. Let γ ∈ Lie(G) ⊗C K. The affine Springer fibers Spγ ⊂ GrG and

S̃pγ ⊂ FlG are defined as the reduced sub-ind-schemes of GrG and FlG whose complex

points are given by

Spγ(C) = {gG(K)|g−1γg ∈ Lie(G)⊗C O}

S̃pγ(C) = {gI|g−1γg ∈ Lie(I)}.

2.3 Equivariant Borel-Moore homology of affine Springer

fibers

In this section, we prove the main theorem of this chapter, Theorem 3.0.1. We thank Eric

Vasserot and Peng Shan for pointing out a mistake in the previous formulation and proof

of Lemma 2.3.10.

2.3.1 Borel-Moore homology

We now review equivariant Borel-Moore homology. The paper [?] is the main reference

for this section. For a projective (but not necessarily irreducible) variety X, one defines

the Borel-Moore homology as H∗(X) := H−∗(X,ωX), where ωX is the Verdier dualizing

complex in Db
c(X). Note that we use H∗(−) for Borel-Moore homology, not the usual

singular or étale homologies.

For a T -variety X, where T ∼= Gn
m is a diagonalizable torus, imitating the Borel con-

struction of equivariant (co)homology is not completely straightforward, as the classifying
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space BT is not a scheme-theoretic object. However, using approximation by m-skeleta

as in [?], or a simplicial resolution of BT as in [?], one gets around the issue by defining

HT
k (X) := Hk+2mn(X ×T ETm), m ≥ dimX − k/2.

Here ETm := (Cm+1 − 0)d with the T -action (t1, . . . , td) · (v1, . . . , vd) = (t1v1, . . . , tdvd).

This action is free, and the quotient ETm → (Pm)d is a principal T -bundle.

The above definition of HT
k (X) is independent of m as follows from the Gysin isomor-

phism Hk+2m′n(X×T ETm′)→ Hk+2mn(X×T ETm) for m′ ≥ m ≥ dimX−k/2. Note that

HT
∗ (X) is a graded module over H∗T (X) via the cap product and in particular a graded

module over HT
∗ (pt).

Recall that X is equivariantly formal (see [25, 26]) if the Leray spectral sequence

Hp(BT,Hq(X))⇒ Hp+k
T (X)

degenerates at E2. If X is equivariantly formal, then HT
∗ (X) is a free H∗T (pt)-module [?,

Lemma 2].

The above definition of HT
∗ (−) enjoys some of the usual localization properties, as

studied e.g. in [?]. For example, we have an ”Atiyah-Bott” formula [?, Lemma 1].

Theorem 2.3.1. Suppose the T -action on X has finitely many fixed points. Let i∗ :

HT
∗ (XT ) → H∗(X) be the C[t]-linear map given by the inclusion of the fixed-point set to

X. Then i∗ becomes an isomorphism after inverting finitely many characters of T .

From the perspective of commutative algebra, it is useful to note the following from [?,

Proposition 3].

Proposition 2.3.2. If X is equivariantly formal, then

HT
∗ (X) ∼= HomC[t](H

∗
T (X),C[t]).

The map is given by

α 7→ (β 7→ pX∗(β ∩ α)),

where pX : X ×T ET → BT is the projection.
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Another localization theorem was proved in [25, Theorem 7.2] for T -equivariant (co)homology.

As in [?, Corollary 1], it is translated to Borel-Moore homology as follows.

Proposition 2.3.3. Let X be an equivariantly formal T -variety containing only finitely

many orbits of dimension ≤ 1. Then HT
∗ (X) ∼= i−1

∗ H
T
∗ (X) ⊂ HT

∗ (XT )⊗ C(t) consists of

all tuples (ωx)x∈XT of rational differential forms on t satisfying the following conditions.

1. The poles of each ωx are contained in the union of singular hyperplanes and have

order at most one. Recall that a singular hyperplane in t is the vanishing set of dχ,

where Xkerχ 6= XT and kerχ is the codimension one subtorus of T defined by χ.

2. For any singular character χ and for any connected component Y of Xkerχ, we have

Resχ=0

(∑
x∈Y T

ωx

)
= 0.

As the number of orbits of dimension ≤ 1 is finite, and the closure of each one-

dimensional orbit contains exactly two fixed points (see [25]), it is natural to form the

graph whose vertices are the fixed points and edges correspond to one-dimensional orbits.

We call the associated weighted graph whose edges are labeled by the differentials dχ of

singular characters the GKM graph.

Note that it is easy to recover H∗(X) from HT
∗ (X) for equivariantly formal varieties

by freeness, as shown in [?, Proposition 1]. Namely, we have

Proposition 2.3.4. Let T ′ ⊂ T be a subtorus. Then

HT ′

∗ (X) ∼=
HT
∗ (X)

Ann(t′) ·H∗
,

where Ann(t′) ⊂ C[t] is the annihilator of t′ = Lie(T ′). In particular, when T ′ is trivial,

we get

H∗(X) =
HT
∗ (X)

C[t]+HT
∗ (X)

.

Ultimately, we are interested in the equivariant Borel-Moore homology of the ind-

projective varieties Sptdz. Suppose now that X = lim−→Xi is an ind-scheme over C given

by a diagram

X0 ⊂ X1 ⊂ X2 ⊂ · · ·
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where the maps are T -equivariant closed immersions and each Xi is projective. By proper-

ness and the definition of HT
∗ (−), there are natural pushforwards

HT
∗ (Xi)→ HT

∗ (Xi+1),

using which we define

HT
∗ (X) := lim−→HT

∗ (Xi).

The usual (non-equivariant) Borel-Moore homology is defined similarly. Note that since

the Xi are varieties we are still abusing notation and mean Xi(C) when taking homology.

Remark 2.3.5. While H∗(−) and HT
∗ (−) could be defined for any finite-dimensional

locally compact, locally contractible and σ-compact topological space X using the sheaf-

theoretic definition [?, Corollary V.12.21.], it is not true that this definition gives the same

answer for X(C) as the above definition (there’s always a map in one direction). For

example, if X(C) = lim−→[−m,m] ∼= Z is the colimit of the discrete spaces [−m,m] ⊂ Z,

which are of course also the C-points of a disjoint union of 2m + 1 copies of A0, then

H−∗(X,ωX) ∼= CZ is the homology of the one-point compactification of Z with the cofinite

topology, while treating X as an ind-variety we get H∗(X) ∼= C⊕Z.

Call a T -ind-scheme X equivariantly formal if each Xi is equivariantly formal and

T -stable. Call it GKM if each Xi has finitely many orbits of dimension ≤ 1. We have the

following corollary to Theorem 2.3.3.

Corollary 2.3.6. Let X be an equivariantly formal GKM T -ind-scheme. Then HT
∗ (X) ⊂

HT
∗ (XT )⊗C(t) consists of all tuples (ωx)x∈XT of rational differential forms on t satisfying

the conditions in Theorem 2.3.3.

Proof. By assumption, we have inclusions of T -fixed points XT
i → XT

i+1 and their union

is XT . Taking the colimit of HT
∗ (Xi) ↪→ HT

∗ (XT
i ), we get by exactness

ι : HT
∗ (X) := lim−→HT

∗ (Xi) ↪→ to lim−→HT
∗ (XT

i ) =: HT
∗ (XT ),

which becomes an isomorphism when tensoring with C(t). Any tuple (ωx)x∈XT of rational

differential forms (of top degree) on t inside ι−1
∗ H

T
∗ (X) has some i such that it is in the

image of ι−1
∗ H

T (Xi). By Proposition 2.3.3, it therefore satisfies the desired conditions.
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Remark 2.3.7. While the number of fixed points and one-dimensional orbits might now

be infinite, we may still form the (possibly infinite) GKM graph.

2.3.2 The SL2 case

We first prove Theorem 3.0.1 in the case G = SL2. Recall that T̃ = T (C) × C∗ ⊂

G((t)) denotes the extended torus. As shown in [26, Lemma 6.4], for G = SL2 the one-

dimensional T̃ -orbits of Xd := Sptdz are given as follows. If we identify SpT̃tdz = Z, then

there is an orbit between a, b ∈ Z if and only if |a − b| ≤ d. Moreover, T̃ acts on this

orbit through the character (in fact, real affine root) (α, a+ b) ∈ X∗(T̃ ) ∼= Λ×Z. Identify

further the differential of this character by y + (a+ b)t ∈ C[̃t].

Recall that the affine Grassmannian of SL2 decomposes as the the disjoint union

of finite-dimensional Schubert cells GrmSL2
:= SL2(O)tλSL2(O). Let Gr≤mSL2

= GrmSL2
=⊔

l≤m GrlSL2
. It is clear that the subvarieties X≤md := (Sptdz)

≤m = Sptdz ∩Gr≤mSL2
are

T̃ -stable. The corresponding GKM graph is just the induced subgraph formed by the

vertices [−m,m] ⊂ Z. In particular, we may compute H T̃
∗ (Xm) using Theorem 2.3.3 for

the corresponding GKM graphs. Note that each such graph in this case is a chain of

complete graphs on d vertices glued along d − 1 vertices. Let us first practice the case

when the length of the chain is one, i.e. we are computing the T̃ -equivariant Borel-Moore

homology of the classical Springer fiber spe ⊂ Gr(2d, d), where e is the square of a regular

nilpotent element (see [?]). This is essentially a projective space of dimension d.

Example 2.3.8. Let d = 1. Then the GKM graph of spe is two vertices joined by a line,

with the character y + t. Theorem 2.3.3 then tells us that

i∗ : HT
∗ (spTe )→ HT

∗ (spe)

is injective and (i∗)
−1HT

∗ (spe) consists of rational differential forms (ω0, ω1) so that

Resy=−t(ω0 + ω1) = 0

with poles of order at most one and along y = −t. In particular, any polynomial linear

combination of a = (dydt
y+t

, −dydt
y+t

) and b = (dydt, 0) satisfies these requirements and is the
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most general choice, so we conclude HT
∗ (X) is a free C[y, t]-module with basis a, b. As

spe = P1 is smooth, we further use the Atiyah-Bott localization theorem to conclude that

a = [P1].

From now on, we will save notation and write each tuple of differential forms (ω1, . . . , ωq) =

(f1dydt, . . . , fqdydt) simply as (f1, . . . fq).

Let us now compute HT
∗ (Sptz) for G = SL2 for illustrative purposes. This is very

similar to Example 2.3.8.

Proposition 2.3.9. If d = 1 and G = SL2, then H T̃
∗ (Sptz) is the C[t, y]-linear span of

a = (. . . , 0, 0, 1, 0, 0, . . .)

and

bi = (. . . , 0,
1

(2i+ 1)t+ y
,

−1

(2i+ 1)t+ y
, 0, . . .),

where the 1 in a is at the 0th position and the nonzero entries in bi are at the ith and

(i+ 1)th positions, respectively. In particular,

H T̃
∗ (X)

t ·H T̃
∗ (X)

∼= HT
∗ (X)

is isomorphic to the C[y]-linear span of a and b′i = (. . . , 0, 1/y,−1/y, 0, . . .).

Proof. By the discussion above, the GKM graph has vertices Z and edges exactly between

i, i + 1 for all i. Indeed, it is well-known that X1 is just an infinite chain of projective

lines. The weights of the edges for the T̃ -action are given by the character (2i + 1)t + y

by [26, Lemma 6.4.]. Applying Corollary 2.3.6 we get the first claim. Setting t to zero

recovers HT
∗ (X), so that we get the second result.

Lemma 2.3.10. Let d ≥ 1. Then the T̃ -equivariant Borel-Moore homology of Xd = Sptdz

is the C[t, y]-linear span of
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a0 = (. . . , 0, 0, 1, 0, 0, . . .)

a1 = (. . . , 0, 0,
1

y + t
,
−1

y + t
, 0, . . .)

...

ad−1 = (. . . , 0, 0,
1∏d−1

i=1 (y + it)
,

−
(
d−1

1

)
(y + t)

∏d−1
i=2 (y + (i+ 1)t)

, . . . ,
(−1)d−1

(
d−1
d−1

)
(
∏d−1

i=1 (y + (d− 1 + i)t)
, 0, . . .)

bk = (. . . , 0, 0,

(
d
0

)
f

(1)
k

,
−
(
d
1

)
f

(2)
k

, . . . ,
(−1)d

(
d
d

)
f

(d)
k

, 0, . . .), k ∈ Z,

where

f
(j)
k =

j−1∏
i=0

(y + (2k + i+ j)t)
d∏

i=j+1

(y + (2k + i+ j)t), j = 1, . . . , d.

Here the nonzero entries in ai are at 0, . . . , i and the nonzero entries in bk are at k, . . . , k+

d.

In particular, letting t = 0,

HT
∗ (Xd) ⊆ HT

∗ (Λ)

is the C[y]-linear span of

a′0 = (. . . , 0, 0, 1, 0, 0, . . .)

a′1 = (. . . , 0, 0,
1

y
,
−1

y
, 0, . . .)

...

b′k = (. . . , 0, 0,

(
d
0

)
yd
,
−
(
d
1

)
yd

, . . . ,
(−1)d−1

(
d
d−1

)
yd

(−1)d
(
d
d

)
yd

, 0, . . .), k ∈ Z.

Note that if we write C[Λ] = C[x±], then in the monomial basis a′0 = x0, a′1 = 1−x
y

, and

b′k = xk(1− x)d/yd.

Proof. Let us first check the residue conditions of Corollary 2.3.6. Note that a0, . . . , ad−1

are just b0 for some smaller d, in particular it is enough to check the conditions for bk.

There is an orbit between k+ j and k+ j′ whenever |j− j′| ≤ d, and T̃ acts on said orbit

via χ = y + (2k + j + j′)t. In particular, we need to prove that

Resy=−(2k+j+j′)t

(
(−1)j

(
d
j

)
f

(j)
k

+
(−1)j

′(d
j′

)
f

(j′)
k

)
= 0.

26



First, we compute that

f
(j)
k =

∏
i 6=j,1≤i≤d

(y + (2k + i+ j)t),

so the residue at y = −(2k + j + j′)t of 1/f
(j)
k equals

1∏
i 6=j,j′(i− j′)t

=
(j − j′)∏
i 6=j′(i− j′)t

=
(j − j′)

(−1)j′(j′)!(d− j′)!
.

If we multiply this by

(−1)j
(
d

j

)
,

we get
(j − j′)d!

(−1)j′+j(j′)!(d− j′)!j!(d− j)!
,

which is antisymmetric under switching j and j′. By linearity of taking residues, we get

the result.

We need to show the reverse inclusion. Let spd be the Spaltenstein variety of d-planes

in C2d stable under the (d, d)-nilpotent element. From [?, page 448], we know that Xd

is an infinite chain of spd glued along spd−1. In addition, X≤md from the beginning of

Section 2.3.2 is a chain of 2m copies of spd glued along spd−1. From the form of the GKM

graph it is immediate that the T -equivariant Borel-Moore homology of X≤md as a graded

C[y, t]-module looks like that of a chain of 2m copies of Pd consecutively glued along Pd−1.

In particular, HT
∗ (X≤md ) has rank 1 over C[y, t] in degrees ≤ 2d−2 and rank 2m in degree

2d. Since the classes bi for i = −m, . . . ,m are linearly independent over C[y, t] and there

are 2m of them, the bi must span HT
2d(X

≤m
d ). Taking the colimit, the first result follows.

The second result is immediate from the form of f
(j)
k and setting t = 0.

Remark 2.3.11. In [26, Section 12], the analogues of the classes bk are played by the

polynomials denoted fk,d in loc. cit. They are the ones attached to ”constellations” of

one-dimensional orbits.

Remark 2.3.12. In Proposition 2.3.9 and Lemma 2.3.10, the polynomials f
(j)
k that appear

seem to be related to the affine Schubert classes in HT
∗ (Xd) given by intersections by G(O)-

orbits on GrSL2 . In case the components (∼= spd) are rationally smooth, which we suspect
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to be true but could not find a reference for, f
(j)
k are exactly the inverses to T̃ -equivariant

Euler classes of the kth irreducible component at the fixed point j ∈ Λ. Note that rational

smoothness follows from for example Poincaré duality.

2.3.3 The general case

In this section, we prove Theorem 3.0.1. The GKM graph for T̃ acting on Sptdz is always

infinite; indeed we have the following.

Lemma 2.3.13. The vertices of the GKM graph of Sptdz are Λ = X∗(T ) and there is an

edge λ→ µ whenever λ− µ = kα, where α ∈ Φ+ and k ≤ d.

Proof. From [26, Lemma 5.12], we know that the one-dimensional T̃ -orbits are (Sptdz)1 =⋃
α∈Φ+(Spαtdz)1 and Spαtdz ∩ Spβ

tdz
= Λ unless β = α. In particular, we are reduced to the

semisimple rank 1 case which is reduced to the SL2 case by [26, Lemma 8.1] and the SL2

case is handled by Lemma 6.4 in loc. cit..

We also need the following corollary to Lemma 2.3.10.

Corollary 2.3.14. Let α ∈ Φ+, and let yα ∈ C[t] = H∗T (pt) be the linear functional

corresponding to α. Denote Xα
d := Spαztd := Spztd ∩GrHα. For any G and α ∈ Φ+(G, T ),

we have

ydαH
T
∗ (Xα

d ) = Jdα = 〈yα, 1− α∨〉d ⊂ HT
∗ (Λ) = C[Λ]⊗ C[t].

Here 〈S〉 means the ideal in C[Λ]⊗ C[t] generated by the subset S.

Proof. Since Xα
d is an unramified affine Springer fiber of valuation d for a semisimple

rank one group, it is a disjoint union of infinite chains of Spaltenstein varieties spd, as

explained in Section 2.3.2. More precisely, it is a disjoint union of such over Λ/〈α∨〉 inside

Xd. Identify HT
∗ (Λ) with C[Λ] ⊗ C[t] and write its elements C[t]-linear combinations

of xλ := xλ ⊗ 1. From Lemma 2.3.10 and [26, Lemma 6.4], we have that H∗T (Xα
d ) ⊂

H∗(Λ)⊗ C(t) is the C[t]-linear span of

xλ(1− xα∨)d

ydα
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and
(1− xα∨)k

ykα

for k = 0, . . . , d− 1. In particular, ydαH
∗
T (Spαzt) ⊂ C[Λ]⊗ C[t] is identified with the ideal

Jdα = 〈(1− xα∨)d, (1− xα∨)d−1yα, . . . , (1− xα
∨
)yd−1
α , ydα〉.

Theorem 2.3.15. Let ∆ =
∏

α yα ∈ H∗T (pt) be the Vandermonde element. The equivari-

ant Borel-Moore homology of Xd := Sptdz for a reductive group G is up to multiplication

by ∆d canonically isomorphic as a (graded) C[Λ]⊗ C[t]-module to the ideal

J (d) =
⋂
α∈Φ+

Jdα ⊂ C[Λ]⊗ C[t].

In particular, there is a natural algebra structure on ∆dHT
∗ (Spγ) inherited from C[Λ]⊗C[t],

and J (d) is a free module over C[t].

Proof. By [26, Lemma 5.12] and Corollary 2.3.6, we have that HT
∗ (Xd) =

⋂
αH

T
∗ (Xα

d ) ⊂

HT
∗ (Λ)⊗ C(t). By equivariant formality and Corollary 2.3.6, we furthermore have that

∆d ·HT
∗ (Xd) ⊂ HT

∗ (Λ)

is a free C[t]-module. Since Jdα = ydαH
T
∗ (Spαtdz) contains ∆, we must have ∆d ·HT

∗ (Xd) ⊆ Jdα

for all α. Inverting ∆, we see that

∆d ·HT
∗ (Xd)∆

∼=

(⋂
α

Jdα

)
∆

.

But ∆d · HT
∗ (Sptz) was free over C[t], so by [?, Lemma 6.14], we have that J (d) = ∆d ·

HT
∗ (Xd).

Remark 2.3.16. A priori, it is not at all obvious that HT
∗ (Spαtdz) would be a C[Λ]-

submodule of HT
∗ (Λ). The product structure on HT

∗ (Λ), while obvious in the algebraic

statements, is geometrically a convolution product. In fact, it is the convolution product

on the affine Grassmannian of T , as discussed in [?], and more recently [?] in the guise of

a ”3d N = 4 Coulomb branch for (T, 0)”. Moreover, it is also nontrivial that ydαH
T
∗ (Spαtdz)

should have a natural subalgebra structure.

29



Remark 2.3.17. It seems difficult to carry out analysis similar to Remark 2.3.12 for the

case of general G. Erik Carlsson has informed us that he has performed computations

related to Xd using affine Schubert calculus (see also [?]). It would be interesting to relate

the two approaches.

2.3.3.1 The affine flag variety

In this section, we consider Yd = S̃pγ, where γ = ztd. We focus on the case d = 1. The

T̃ -fixed points of Yd are in a natural bijection with W̃ = Λ o W . For G = SL2, it is

known that Y1 is an infinite chain of projective lines again, and if we write elements of

W̃ as (k, w), k ∈ Z, w ∈ {1, s}, there are one-dimensional orbits precisely between (k, 1)

and (k, s) as well as (k + 1, 1) and (k, s), see [26, Section 13].

Lemma 2.3.18. When G = SL2, we have that H T̃
∗ (Y1) ⊂ H T̃

∗ (W̃ ) is the C[y, t]-linear

span of the classes

a0 = (. . . , 0, 0, 1, 0, 0, . . .)

bk = (. . . 0, 0,
1

y + 2kt
,− 1

y + 2kt
, 0, 0, . . .)

b′k = (. . . 0, 0,
1

y + (2k − 1)t
, 0, 0,− 1

y + (2k − 1)t
, 0, 0, . . .)

where bk has nonzero entries at positions (k, 1) and (k, s) and similarly b′k has nonzero

entries at (k, 1) and (k − 1, s). In particular, by setting t = 0, we get that HT
∗ (Y1) is{

1− s
y

,
1− x
y

, 1

}
· C[Λ]⊗ C[t] ⊂ C[W̃ ]⊗ C[t].

Proof. The residue conditions needed to apply Corollary 2.3.6 are almost exactly the same

as in Proposition 2.3.9. The second claim follows from the fact that in C[W̃ ], we may

compute

−(1−s)·(λ, 1)+(1−α∨)·(λ, 1) = −(λ, 1)+(λ, s)+(λ, 1)−(λ+1, 1) = (λ, s)−(λ+1, 1) = −b′k|t=0y.

Corollary 2.3.19. Let yα ∈ C[t] = H∗T (pt) be the linear functional corresponding to α

and Y α
d := S̃p

α

ztd := S̃pztd ∩ FlHα. For any G and α ∈ Φ+(G, T ), we have

J̃α := yαH
T
∗ (Y α

1 ) =
{

1− sα, 1− xα
∨
, yα

}
· C[Λ]⊗ C[t] ⊂ C[W̃ ]⊗ C[t].
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Proof. This is similar to Corollary 2.3.14 and [26, page 547]. The affine Springer fiber

Y α
1 is again a disjoint union of infinite chains of projective lines indexed by Λ/〈α∨〉.

From this fact and the previous Corollary, we get that HT
∗ (Y α

1 ) is the C[t]-linear span of

xλ(1−xα)
yα

, (1−sα)xλ

yα
and 1. Multiplying by yα, we get the result.

Theorem 2.3.20. For any reductive group G,

∆ ·HT
∗ (Y1) =

⋂
α

J̃α ⊂ C[W̃ ]⊗ C[t]

and furthermore J̃G is a free module over C[t]. Here ∆ =
∏

α yα as before.

Proof. The proof is entirely similar to Theorem 3.0.1.

Remark 2.3.21. It is not at all clear from this description whether ∆·H T̃
∗ (Y1) has an alge-

bra structure. Based on Conjecture 2.4.13 and the fact that there is a (noncommutative)

algebra structure when d = 0, it seems that this could be the case.

2.3.3.2 Equivariant K-homology

In this section, we state a version of Theorem 3.0.1 in K-homology. We omit detailed

proofs because they are entirely parallel to those in previous sections.

In [?], more general equivariant cohomology theories, such as the equivariant K-theory

of (reasonably nice) T -varieties is studied from the GKM perspective. Let KT (X) be the

equivariant (topological) K-theory of a T -variety X. Following Proposition 2.3.2, define

the equivariant K-homology of X as

HomR(T )(K
T (X), R(T )),

where R(T ) is the representation ring of T over C. In particular, fixing an isomorphism

T ∼= Gn
m, we have R(T ) ∼= C[y±1 , . . . , y

±
n ].

Adapting the description of [?, Theorem 3.1], Proposition 2.3.3, and Lemma 2.3.6, we

have an analogue of Corollary 2.3.6 in K-homology.

Proposition 2.3.22. Let X be an equivariantly formal GKM T -ind-scheme. Then KT (X) ⊂

KT (XT )⊗C(t) consists of all tuples (ωx)x∈XT of rational differential forms on T satisfying

the following conditions.
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1. The poles of each ωx are contained in the union of singular divisors (i.e. of the form

{yχ = 1} and have order at most one.

2. For any singular character χ and for any connected component Y of Xkerχ, we have

Resyχ=1

(∑
x∈Y T

ωx

)
= 0.

From this, it directly follows that we have the following complementary versions of

Theorems 3.0.1 and 2.3.20.

Theorem 2.3.23. Let ∆′ =
∏

α∈Φ+(1 − yα) ∈ R(T ) be the Vandermonde element. The

equivariant K-homology of Xd := Sptdz for a reductive group G is up to multiplication by

(δ′)d canonically isomorphic as a C[Λ]⊗R(T )-module to the ideal

(J ′)(d) :=
⋂
α∈Φ+

(J ′α)d ⊂ C[Λ]⊗R(T ).

Here J ′α := 〈1 − yα, 1 − xα
∨〉. The algebra structure on (∆′)dHT

∗ (Spγ) is given by the

convolution product on KT (Λ)

Theorem 2.3.24. For any reductive group G,

∆ ·KT (Y1) =
⋂
α

J̃ ′α ⊂ C[W̃ ]⊗R(T ).

Here

J̃ ′α =
{

1− xα∨ , 1− yα, 1− sα
}
C[Λ]⊗R(T ) ⊂ C[W̃ ]⊗R(T ).

2.4 The isospectral Hilbert scheme

2.4.1 Definitions

In this section, we define the relevant Hilbert schemes of points and list some of their

properties. We then discuss the relationship of the results in Section 2.2 to the Hilbert

scheme of points and the isospectral Hilbert scheme.

Definition 2.4.1. The Hilbert scheme of points on the complex plane, denoted Hilbn(C2),

is defined as the moduli space of length n subschemes of C2. Its closed points are given

by

{I ⊂ C[x, y]| dimC C[x, y]/I = n},
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where I is an ideal.

Definition 2.4.2. The isospectral Hilbert scheme Xn is defined as the following reduced

fiber product:

Xn C2n

Hilbn(C2) C2n/Sn

ρ ·/Sn

σ

We have the following localized versions, of interest to us.

Definition 2.4.3. The Hilbert scheme of points on C∗ ×C is the moduli space of length

n subschemes of C∗ × C.

Note that C∗ × C is affine, so that the closed points of Hilbn(C∗ × C) are given by

{I ⊂ C[x±, y]| dimC C[x±, y]/I = n, I ideal}. In fact, Hilbn(C∗×C) is naturally identified

with the preimage π−1((C∗ × C)n/Sn) under the Hilbert-Chow map

Hilbn(C2)→ C2n/Sn.

Definition 2.4.4. The isospectral Hilbert scheme on C∗ × C is denoted Yn, and defined

to be the following reduced fiber product:

Yn (C∗ × C)n

Hilbn(C∗ × C) (C∗ × C)n/Sn

ρ ·/Sn

σ

Let A = C[x,y]sgn be the space of alternating polynomials. This is to be interpreted

in two sets of variables, ie. taking the sgn-isotypic part for the diagonal action. We recall

the following theorem of Haiman.

Theorem 2.4.5 ( [39]). Consider the ideal I ⊂ C[x,y] generated by A. Then for all

d ≥ 0,

Id = J (d) =
⋂
i 6=j

〈xi − xj, yi − yj〉d ⊆ C[x,y]. (2.4.1)

Moreover, Id is a free C[y]-module, and by symmetry, a free C[x]-module.

Remark 2.4.6. J (d) is not free over C[x,y].
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We have the following corollary to Theorem 3.0.1, as stated earlier.

Corollary 2.4.7. The ideal J (d) ⊂ C[x,y] is free over C[y].

The ideals Id = Jd = J (d) and the space of alternating polynomials naturally emerge

in the study of Hilbert schemes of points on the plane.

Theorem 2.4.8. The schemes Hilbn(C2) and Xn admit the following descriptions:

Hilbn(C2) ∼= Proj

(⊕
d≥0

Ad

)
(2.4.2)

and

Xn
∼= Proj

(⊕
d≥0

Jd

)
. (2.4.3)

Proof. See [42, Proposition 2.6].

Corollary 2.4.9. We have

Hilbn(C∗ × C) ∼= Proj

(⊕
d≥0

Adx

)
(2.4.4)

and

Yn ∼= Proj

(⊕
d≥0

Jdx

)
, (2.4.5)

where the subscript x denotes localization in the xi.

Proof. Both of these equations describe blow-ups; the first along the diagonals in (C∗ ×

C)n/Sn and the second along the diagonals in (C∗ × C)n. Note that (J (d))x = J
(d)
x since

localization commutes with intersection. Since blowing up commutes with restriction to

open subsets [84, Lemma 30.30.3], Theorem 2.4.8 gives the result.

There are several relevant sheaves on Hilbn(C2) and Xn that relate to HT
∗ (Spγ) and

HT
∗ (S̃pγ) naturally. From the Proj construction we naturally get very ample line bundles

O?(1) on both ? = Xn and ? = Hilbn(C2). Note that it is immediate from the construction

that

OXn(1) = ρ∗OHilbn(C2)(1).
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On Hilbn(C2) there is also a tautological rank n bundle T whose fiber at I is given by

C[x,y]/I. Its determinant bundle can be shown to equal O(1).

As noted before, Hilbn(C∗×C) is the preimage under the Hilbert-Chow map of (C∗×

C)n/Sn, it is a (Zariski) open subset of Hilbn(C2). Similarly, Yn = ρ−1(Hilbn(C∗×C)) ⊂

Xn is an open subset. Restriction then gives very ample line bundles

OYn(1) = OXn(1)|Yn , OHilbn(C∗×C)(1) = OHilbn(C2)(1)|Hilbn(C∗×C).

Definition 2.4.10. Let OXn be the structure sheaf of the isospectral Hilbert scheme.

Define the Procesi bundle P := ρ∗OX on Hilbn(C2).

In particular, H0(Hilbn(C2),P ⊗O(d)) = Jd.

Theorem 2.4.11 (The n! theorem, [39]). The Procesi bundle is locally free of rank n! on

Hilbn(C2).

Localizing the ideal J at x, we get the following result.

Proposition 2.4.12. Let γ = ztd ∈ gln ⊗K as before. Then

H0(Hilbn(C× C∗),P ⊗O(d)) = J (d)
x
∼= ∆dHT

∗ (Spγ). (2.4.6)

Proof. We have by definition that

H0(Hilbn(C× C∗),P ⊗O(d)) = H0(Yn,OYn(d)).

Since Yn ⊂ Xn is in fact a principal open subset determined by
∏n

i=1 xi ∈ C[x±,y]Sn ,

restriction to the open subset coincides with localization. So we get

H0(Yn,OYn(d)) = J (d)
x .

By Theorem 3.0.1, we conclude

H0(P ⊗O(d),Hilbn(C∗ × C)) ∼= ∆dHT
∗ (Spγ).
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Although it is not clear to us what the cohomology of the affine Springer fiber S̃pγ in

FlG describes in these terms, we make the following conjecture.

Conjecture 2.4.13. As graded C[y1, . . . , yn]-modules, we have

H0(P ⊗ P∗ ⊗O(d),Hilbn(C∗ × C)) ∼= ∆d ·HT
∗ (S̃pztd). (2.4.7)

Example 2.4.14. When d = 0, the above conjecture states

H0(P ⊗ P∗,Hilbn(C∗ × C)) = C[W̃ ]⊗ C[y] = C[x±,y] oW ∼= HT
∗ (S̃pz).

If it is also true for d = 1, Theorem 2.3.20 implies that

H0(P ⊗ P∗ ⊗O(1),Hilbn(C∗ × C)) ∼= J̃GLn .

Remark 2.4.15. The motivation for Conjecture 2.4.13 is as follows. In [?], Gordon and

Stafford relate J
(d)
n and the Procesi bundle to the spherical representation of the trigono-

metric DAHA in type A. For d = 1, the antisymmetrized version of this representation

has the same size (as an Sn-representation) as P ⊗ P , as does HT
∗ (S̃ptz). Since HT

∗ (S̃ptz)

also carries a trigonometric DAHA-action (at c = 0) by results of Oblomkov-Yun [75], it is

plausible to conjecture that it is ”the same” module as the Gordon-Stafford construction

would give.

2.4.2 Diagonal coinvariants and Bezrukavnikov’s conjecture

When G = GLn, it is known that the fibers of the Procesi bundle P , as introduced in the

previous section, at torus-fixed points in Hilbn(C2) afford the regular representation of

Sn [39], and in particular have dimension n!. On the other hand, they appear as quotients

of the ring of diagonal coinvariants (sometimes also called diagonal harmonics)

DHn := C[x,y]/C[x,y]Sn+ ,

which is now known to be (n + 1)n−1- dimensional. Additionally, it is known that the

isotypic component DHsgn
n has dimension Cn, where Cn is the nth Catalan number, and

that its bigraded character is given by

(en,∇en).
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Here (−,−) is the Hall inner product on symmetric functions over Q(q, t) and ej denotes

the jth elementary symmetric function. The operator ∇ is the nabla operator introduced

by Garsia and Bergeron [8].

As far as the relation with affine Springer theory goes, from work of Oblomkov-Yun,

Oblomkov-Carlsson and Varagnolo-Vasserot [75], [?], [89], it follows that we have, up to

regrading,

H∗(S̃pγ′)
∼= DHn, H

∗(Spγ′)
∼= DHsgn

n ,

where γ′ is an endomorphism of Kn = span{e1, . . . , en}K given by γ′(ei) = ei+1, i =

1, . . . , n − 1 and γ′(en) = te1. Note that in this case, γ′ is elliptic so that Spγ′ and S̃pγ′

are projective schemes of finite type and thus their cohomologies are finite dimensional.

In fact, after adding some equivariance to the picture the cohomologies in question be-

come the finite-dimensional representations of the trigonometric and rational Cherednik

algebras with parameter c = n+1
n
.

It is a conjecture of Bezrukavnikov (private communication) that under the lattice

action of Λ on H∗(S̃pγ), where γ = zt, we also have

H∗(S̃pγ)
Λ ∼= DHn

and

H∗(Spγ)
Λ ∼= DHsgn

n .

So far, we are not able to prove this conjecture, but can prove its analogue in Borel-

Moore homology, where we replace invariants by coinvariants.

Theorem 2.4.16. We have

H∗(Spγ)Λ
∼= DHsgn

n .

Proof. Using Theorem 3.0.1, we compute that

H∗(Spγ)
∼=
HT
∗ (Spγ)

〈y〉
.

As the actions of C[x±] and C[y] commute, the result is still a C[x±]-module. Taking

coinvariants, we have

H∗(Spγ)Λ :=
H∗(Spγ)

〈1− x〉H∗(Spγ)
∼=

HT
∗ (Spγ)

〈1− x,y〉HT
∗ (Spγ)

.
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The last equality follows from the isomorphism theorems for modules. Here 〈1−x〉 means

the set {1− x1, . . . , 1− xn} and y means the set {y1, . . . , yn}.

On the other hand,

JGLn/〈x1 − 1, . . . , xn − 1, y1, . . . , yn〉JGLn

may be identified with J/〈x1 − 1, . . . , xn − 1, y1, . . . , yn〉J, where

J :=
⋂
i 6=j

〈xi − xj, yi − yj〉 ⊂ C[x,y]

since quotient and localization commute. Since J is translation-invariant with respect to

xi 7→ xi + c, i = 1, . . . , n, so that

J/〈x1 − 1, . . . , xn − 1, y1, . . . , yn〉J ∼= J/〈x,y〉J.

On the other hand, we have that J/〈x,y〉J ∼= DHsgn
n by the fact that the left-hand

side is the space of sections of O(1) on the zero-fiber of the Hilbert-Chow map inside

Hilbn(C2) [39, Proposition 6.1.5].

Corollary 2.4.17. One has

dimq,tH∗(Spγ)Λ = 〈en,∇en〉,

and dimCH∗(Spγ)Λ = Cn, where Cn is the nth Catalan number.

Remark 2.4.18. In the spirit of Conjecture 2.4.13, it seems likely that the approach from

above can be used to show that H∗(S̃pγ)Λ
∼= DHn. Both would follow from an explicit

description of H0(P ⊗ P ,Hilbn(C2)).

2.4.3 Rational and elliptic versions

We now comment on the relation of our results to Hilbn(C2) and Hilbn(C∗ × C∗). These

are known to quantize to the full DAHA and the rational Cherednik algebra of gln. Let

us start with the elliptic version. In Theorem 2.3.23, the description of the K-homology

of Spγ is given. As blow-up commutes with restriction to opens, we have the following

analogue to Theorem 2.4.8 and Corollary 2.4.9.
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Corollary 2.4.19. We have

Hilbn(C∗ × C∗) ∼= Proj

(⊕
d

Adx,y

)
(2.4.8)

and

Y ′n
∼= Proj

(⊕
d

(J ′)d

)
. (2.4.9)

Here the subscript x,y denotes localization in
∏
xi and

∏
yi, and Y ′n is the isospectral

Hilbert scheme on C∗ × C∗.

Analogously to Proposition 2.4.12, we have the following.

Proposition 2.4.20. We have

H0(P ⊗O(d),Hilbn(C∗ × C∗)) ∼= (∆′)dKT (Sptdz) (2.4.10)

Let now Gr +GLn :=
⊔
λ∈Λ+ Grλ be the positive part of the affine Grassmannian. Let

Sptdz ∩ Gr+
GLn

Then the T -fixed points in both are identified with Λ+ and their classes

in C[Λ] with the monomials without negative powers. Intersecting ∆dHT
∗ (Sptdz) with

HT
∗ (Λ+) gives J (d) ⊂ C[x,y]. From the proof of Theorem 3.0.1, it is not hard to see that

this agrees with ∆dHT
∗ (Sp+

tdz
). In particular, we have

Theorem 2.4.21.

H0(P ⊗O(d),Hilbn(C2)) ∼= ∆dHT
∗ (Sp+

tdz
).

2.4.4 Other root data

In this section, we consider a general connected reductive group G. As we will see, many

things from the above discussion are not as straightforward.

In [39], Haiman discusses the extension of his n! and (n + 1)n−1 conjectures to other

groups. The naturally appearing space here is T ∗t with its diagonal W - action. In the case

of a general reductive group, Gordon [24] has proved that there is a canonically defined

doubly graded quotient ring RW of the coinvariant ring

C[T ∗t]/C[T ∗t]W+
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whose dimension is (h + 1)r for the Coxeter number h and rank r. It is also known that

sgn ⊗ RW affords the permutation representation of W on Q/(h + 1)Q for Q the root

lattice of G. It would be interesting to compare the lattice-invariant parts of H∗(Spγ)

and H∗(S̃pγ) to this quotient in other Cartan-Killing types.

We have now seen how the antisymmetric pieces of spaces of diagonal coinvariants

appear from affine Springer fibers in the affine Grassmannian. On the other hand, we

have seen that in type A, the antisymmetric part of C[x,y] plays the main role in the

construction of the isospectral Hilbert scheme Xn as a blow-up. From solely the point of

view of Weyl group representations, it would be then natural to consider the sgn-isotypic

part of C[T ∗t],C[T ∗T∨].

We now restate and prove Theorem 2.1.2.

Theorem 2.4.22. Let IG ⊆ C[T ∗T∨] be the ideal generated by W -alternating polynomials

in C[T ∗T∨] with respect to the diagonal action. Then there is an injective map

Id ↪→ J
(d)
G = ∆dHT

∗ (Spγ).

Proof. Write (x,y) = (x1, . . . , xr, y1, . . . , yr) for the coordinates on T ∗T∨ determined by

xi = exp(εi) and where the yi are the cotangent directions. Let f(x,y) ∈ IG and let

α ∈ Φ+ be a positive root. Denote by sα the corresponding reflection. Without loss

of generality we may take f(x,y) to be W -antisymmetric. Then at points (x,y) where

exp(α∨) = 1, ∂α = 0 we must have sα · f(x,y) = −f(x,y) = f(x,y) for any sα. Thus

f(x,y) = 0 on the subspace arrangement defined by JG, and by the Nullstellensatz f ∈ JG.

Taking dth powers and observing that JdG ⊆ J
(d)
G for any d gives the result.

Proposition 2.4.23. There is a natural graded algebra structure on⊕
d≥0

J
(d)
G

given by multiplication of polynomials:

J
(d1)
G × J (d2)

G → J
(d1+d2)
G .

Proof. Suppose fi ∈
⋂
α∈Φ+〈1− α∨, yα〉

i
, i = 1, 2. Then f1f2 ∈ 〈1− α∨, yα〉d1+d2 for all α,

so that J
(d1)
G J

(d2)
G ⊆ J

(d1+d2)
G .
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The following Theorem was communicated to the author by Mark Haiman.

Theorem 2.4.24.

YG := Proj

(⊕
d≥0

J
(d)
G

)
is a normal variety.

Proof. The powers of an ideal generated by a regular sequence are integrally closed, as is

an intersection of integrally closed ideals. Therefore, each of the ideals J
(d)
G is integrally

closed, and so is the algebra ⊕
d≥0

J
(d)
G .

By construction, the ring is an integral domain, so YG is by definition normal. See

also [39, Proposition 3.8.4] for the proof of this statement in type A.

Remark 2.4.25. This Proj-construction is sometimes called the symbolic blow-up. Since

we do not know if JdG = J
(d)
G , and likely this is not the case, the ring

⊕
d≥0 J

(d)
G is not gen-

erated in degree one. However, if we did have translation invariance in the Λ-direction in

this case, we could deduce results about the geometry of the double Coxeter arrangement

in T ∗t∨ by similar arguments as in type A. It would be reasonable to suspect YG also

has a map to the “W -Hilbert scheme” or some crepant resolution but we do not discuss

these possibilities any further. It should be mentioned that in [22], Ginzburg studies the

“isospectral commuting variety”. He has proved that its normalization is Cohen-Macaulay

and Gorenstein. It would be interesting to know how this variety relates to the variety

YG.

2.5 Relation to knot homology

Gorsky and Hogancamp have recently defined y-ified Khovanov-Rozansky homology HY(−)

[?]. It is a deformation of the triply-graded knot homology theory of Khovanov and

Rozansky [52], which is often dubbed HOMFLY homology, for it categorifies the HOM-

FLY polynomial. In this section, we discuss the relationship of the results in previous

sections to these link homology theories.
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Recall that the HOMFLY homology of a braid closure β can be defined [52] as the

Hochschild homology of a certain complex of Soergel bimodules called the Rouquier com-

plex. We denote the triply graded homology of β by HHH(β).

As stated above, there exists a nontrivial deformation of this theory, called y-ification,

which takes place in an enlarged category of curved complexes of y-ified “Soergel bimod-

ules”. It was defined in [?] and in practice is still defined as the Hocschild homology

of a deformed Rouquier complex. We denote the y-ified homology groups of a braid

closure L = β ⊂ S3 by HY(L). They are triply graded modules over a superpolyno-

mial ring C[x1, . . . , xm, y1, . . . , ym, θ1, . . . , θm], where m is the number of components in

L. The θ-grading comes from Hochschild homology, and we will mainly be interested in

the Hochschild degree zero part. We will denote this by HY(L)a=0. See [?, Definition 3.4]

for the precise definitions.

Definition 2.5.1. Let coxn ∈ Brn be the positive lift of the Coxeter element of Sn. The

dth power of the full twist is the braid FTd
n := coxndn .

Remark 2.5.2. The element FTn is a central element in the braid group and it is known

to generate the center.

Theorem 2.5.3 ( [?]). We have HY(FTd
n)a=0 ∼= Jd ⊂ C[x,y].

Corollary 2.5.4. There is an isomorphism of C[x±,y]-modules

∆dHT
∗ (Spγ)

∼= HY(FTd
n)a=0 ⊗C[x] C[x±]

for γ = ztd.

Following Theorem 3.0.1 for G = GLn, it is interesting to consider the homologies

of the powers of the full twist as d → ∞. By [43], it is known that the a = 0 part of

the ordinary HOMFLY homology of FT∞n is given by a polynomial ring on generators

g1, . . . , gn of degrees 1, . . . , n, which coincide with the exponents of G, and in particular

with the equivariant BM homology of the affine Grassmannian. In the context of loc.

cit. the corresponding algebra appears as the endomorphism algebra of a categorified
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Jones-Wenzl projector. The corresponding statement in y-ified homology is stronger, and

states

HY(FT∞n ) ∼= C[g1, . . . , gn, y1, . . . , yn].

Theorem 2.5.5. Consider the system of maps

∆ ◦ i∗ : ∆dHT
∗ (Sptdz)→ ∆d+1HT

∗ (Sptd+1z).

Taking the colimit in the category of C[x±,y]-modules, we have

lim−→∆dHT
∗ (Sptdz)

∼= C[g1, . . . , gn, y1, . . . , yn] ⊂ C[x±,y],

where gi is of y-degree i. In particular,

lim−→∆dHT
∗ (Sptdz)

∼= HY(FT∞n ).

Proof. We have

lim−→∆dHT
∗ (Sptdz) =

(⊕
d

∆dHT
∗ (Sptdz)

)
/∆αi = αi+1 = lim−→

d

HT
∗ (Sptdz) = HT

∗ (GrGLn).

Remark 2.5.6. Note that the algebra from above is exactly the localization of the projec-

tive coordinate ring of Yn at ∆. On the other hand, this is the coordinate ring of the open

affine where the points on the (isospectral) Hilbert scheme have distinct y-coordinates,

and by [39, Section 3.6], this has coordinate ring C[g1, . . . , gn, y1, . . . , yn].

We record the following theorem from [?, Theorem 1.14], relating commutative algebra

in 2n variables to the link-splitting properties of HY(−).

Theorem 2.5.7. Suppose that a link L can be transformed to a link L′ by a sequence

of crossing changes between different components. Then there is a homogeneous “link

splitting map”

Ψ : HY(L)→ HY(L′)

which preserves the Q[x,y, θ]-module structure. If, in addition, HY (L) is free as a Q[y]-

module, then Ψ is injective. If the crossing changes only involve components i and j, then

the link splitting map becomes a homotopy equivalence after inverting yi − yj, where i, j

label the components involved.
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The cohomological purity of Spγ should be compared to the parity statements in [?,

Definitions 1.16, 3.18, 4.9]. Namely, we have the following Theorem.

Theorem 2.5.8 ( [?], Theorem 1.17). If an r-component link L is parity then

HY(L) ∼= HHH(L)⊗ C[y]

is a free C[y]-module.

In particular, HY(L)/y HY(L) ∼= HHH(L) as triply graded vector spaces.

Consequently any link splitting map identifies HY(L) with a Q[x,y, θ]- submodule of

HY(split(L)).

In the case of the powers of the full twist, Theorem 2.5.7 is easy to understand. Namely,

inverting yi−yj we simply remove the ideal (xi−xj, yi−yj) from the intersection J . This

also clearly holds for J (m). Let us consider similar properties for the anti-invariants,

following Haiman [41].

Lemma 2.5.9. The ideal I factorizes locally as the product of I for parabolic subgroups

of Sn.

Proof. Let g be a generator of

I ′ = I(x1, y1, . . . , xr, yr)I(xr+1, yr+1, . . . , xn, yn),

alternating in the first r and last n− r indices. Let h be any polynomial which belongs to

the localization JQ at every point Q 6= P in the Sn-orbit of P , but doesn’t vanish at P .

Then f = Alt(gh) belongs to I. The terms of f corresponding to w ∈ Sn not stabilizing

P belong to JP , by construction of h. Since g alternates with respect to the stabilizer

of P , the remaining terms sum to a unit times g, or more precisely g
∑

wP=P wh. Hence

g ∈ IP . This means that I and Im factorize locally as products of the corresponding

ideals in the first r and last n− r indices.

It is curious to note that a similar property holds for the affine Springer fibers. As

shown in [26, Theorem 10.2], we have the following relationship between equivariant
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(co)homology of Spγ and the corresponding affine Springer fiber of an “endoscopic” group.

This is to say, G′ has a maximal torus isomorphic to T and its roots with respect to this

torus can be identified with a subset of Φ(G, T ). If G′ is such a group for G = GLn (which

in this case can just be identified with a subgroup of G), we have an isomorphism

HT
i (Spγ;C)S ∼= HT

i−2r(X
T
γT

;C)S, (2.5.1)

where S is the multiplicative subset generated by (1−α∨), where the coroots α∨ run over

all coroots not corresponding to G′. If we denote this set by Φ(G)+ − Φ(G′)+, then r

is the cardinality of this finite set times d. For general diagonal γ, or alternatively the

pure braids discussed in the introduction, r is the degree of the corresponding product

of Vandermonde determinants, or in the automorphic form terminology the homological

transfer factor. The fact that this localization corresponds exactly to link splitting in

y-ified homology (after using the Langlands duality x ↔ y) is in the author’s opinion

quite beautiful and deep.

2.6 Hilbert schemes of points on planar curves

2.6.1 Hilbert schemes on curves and compactified Jacobians

In the case G = GLn, which we will assume to be in from now on, the affine Grassmannian

has a description as the space of lattices:

G(K)/G(O) = {Λ ⊆ Kn|Λ⊗O K = Kn,Λ a projective On-module}

We may think of Spγ as {Λ|γΛ ⊆ Λ}. If γ is regular semisimple, the characteristic

polynomial of γ determines a polynomial Pγ(x) in O[x], which equals the minimal poly-

nomial of γ. Denote A = O[x]/Pγ(x), F = Frac(A). As a vector space, we then have

F = K[x]/Pγ(x) ∼= Kn, and Spγ can be identified with the space of fractional ideals in

F . On the other hand, this is by definition the Picard factor or local compactified Picard

associated to the germ O[[x]]/Pγ(x) of the plane curve C = {Pγ(x) = 0} [2].

By eg. Ngô’s product theorem [72], there is a homeomorphism of stacks

Jac(C) ∼= Jac(C)×
∏
x∈Csing Jac(Cx)

∏
x∈Csing

Jac(Cx).
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Call γ elliptic if it has anisotropic centralizer overK, or equivalently Pγ(x) is irreducible

over K. There has been a lot of work in determining the compactified Jacobians of C, in

particular in the cases where Pγ(x) = tn − xm, gcd(m,n) = 1 [30,59,76,79].

There is always an Abel-Jacobi map AJ : C [n] → Pic(C) given by IZ 7→ IZ ⊗O(ny),

where y is any smooth point on C. It is known that for elliptic γ this becomes a Pn−2g-

bundle for n > 2g. For nonelliptic γ as we are interested in, there is no such stabilization.

On the local factors it is known AJ is an isomorphism for n > 2g, and in the nonelliptic

case it is known that AJ is a dominant map to a union of irreducible components of

Pic(C)x.

In addition to the relationship of C [n] with the compactified Jacobians, conjectures

of Oblomkov-Rasmussen-Shende [73, 74] predict that they in fact determine the knot

homologies of the links of singularities of C and vice versa. For simplicity, assume C has

a unique singularity at zero, and let C
[n]
0 be the punctual Hilbert scheme of subschemes

of length n in C supported at zero.

Then [73, Conjecture 2] states

Conjecture 2.6.1.

V0 :=
⊕
n≥0

H∗(C
[n]
0 ) ∼= HHHa=0(L).

Remark 2.6.2. On the level of Euler characteristics, this is known to be true by [64].

We should mention that there is yet another reason to care about C [n]; the Hilbert

schemes and their Euler characteristic generating functions are closely related to BPS/DT

invariants as shown in [77,78]. In [77] some of the examples we are interested in are studied.

In earlier work [?], the author considered the Hilbert schemes of points on reducible,

reduced planar curves C/C. The main result in loc. cit is as follows.

Theorem 2.6.3 ( [?], Theorem 1.1). If C =
⋃m
i=1 Ci is a decomposition of C into ir-

reducible components, the space V =
⊕

n≥0H∗(C
[n],Q) carries a bigraded action of the

algebra

A = Am := Q[x1, . . . , xm, ∂y1 , . . . , ∂ym ,
m∑
i=1

yi,
m∑
i=1

∂xi ],
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where V =
⊕

n,d≥0 Vn,d is graded by number of points n and homological degree d. More-

over, the operators xi have degree (1, 0) and the operators ∂yi have degree (−1,−2) in this

bigrading. In effect, the operator
∑
yi has degree (1, 2) and the operator

∑
∂xi has degree

(−1, 0).

Example 2.6.4. In the case x2 = y2, we have

V =
C[x1, x2, y1, y2]

(x1 − x2)C[x1, x2, y1 + y2]

as C[x1, x2, y1 + y2, ∂x1 + ∂x2 , ∂y1 , ∂y2 ]-modules.

2.6.2 Conjectural description in the case C = {xn = ydn}
As discussed in the introduction, the representation in Example 2.6.4 very similar to the

main result in [26] when G = GL2 and d = 1. We now recall said theorem.

Theorem 2.6.5. Let G be a connected reductive group and γ = ztd as before. Then the

ordinary (i.e. not Borel-Moore) T -equivariant homology of Spγ is a C[Λ]⊗C[t∗]-module,

where t acts by derivations, and

HT
∗,ord(Spγ)

∼=
C[Λ]⊗ C[t]∑

α∈Φ+

∑d
k=1(1− xα∨)kC[Λ]⊗ ker(∂kα)

.

Example 2.6.6. If G = GL2, d = 1, we have

HT
∗,ord(Spγ) =

C[x±1 , x
±
2 , y1, y2]

(1− x1x
−1
2 C[x±1 , x

±
2 , y1 + y2]

.

The above examples, as well as Examples 2.6.17, 2.6.16 and Theorem 3.0.1 motivate

us to conjecture the following.

Conjecture 2.6.7. Let C = {xn = ydn} be the compactification with unique singularity

and rational components of the curve defined by the affine equation {xn = ydn}. Then as

a bigraded An-module (see Theorem 2.6.3), we have

V :=
⊕
n≥0

H∗(C
[n],Q) ∼=

Q[x1, . . . , xn, y1, . . . , yn]∑
i 6=j
∑d

k=1(xi − xj)k ⊗ ker(∂yi − ∂yj)k
. (2.6.1)
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Remark 2.6.8. In some sense, passing from the equivariant homology of affine Springer

fibers to the Borel-Moore version involves only half of the variables, namely the equivariant

parameters. It is not immediate from the construction of the Am- action in [?] what the

analogous procedure would be to pass to H∗(C [n]) from H∗(C
[n]). It would be interesting

to know, at least on the level of bigraded Poincaré series, how to compare V to the ideal

Jd ⊂ C[x,y], assuming that Conjecture 2.6.7 is true. The q, t-character of Jd is by work

of Haiman [39] known to be given by the following inner product of symmetric functions:

dimq,t J
d = (∇dpn1 , en).

Thanks to work of Gorsky and Hogancamp [?] we then also know that (up to regrading)

the bigraded character of HY a=0(T (n, dn)) is given by the same formula.

For some support for the conjecture, let us consider the following examples.

Theorem 2.6.9 ( [?]). When C = {x2 = y2}, we have that

V =
⊕
n≥0

H∗(C
[n]) ∼=

C[x1, x2, y1, y2]

C[x1, x2, y1 + y2](x1 − x2)
(2.6.2)

as an A2-module, where

A2 = C[x1, x2, ∂x1 + ∂x2 , y1 + y2, ∂y1 , ∂y2 ] ⊂Weyl(A4).

Remark 2.6.10. Note that we get an extremely similar looking result for HH
∗ (Spdiag(t,−t))

and H∗(C
•), where C• =

⊔
n≥0C

[n] is the Hilbert scheme of points on the curve C = {x2 =

y2} ⊂ P2.

Remark 2.6.11. We are no longer using equivariant homology, but have replaced the

equivariant parameters by the fundamental classes of the components of the global curve

C. It does make sense to consider the equivariant cohomology for the Hilbert schemes of

points on C = {xn = ydn}, but we do not know how to produce a nice action of a rank

n torus in this case and whether it would agree with expectations. Note that there is

a natural (C∗)2-action on C and its Hilbert schemes, coming from the (C∗)2-action with

weights (d, 1) on the plane.
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Remark 2.6.12. In general, we may describe the Hilbert schemes C [2] explicitly for

C = {xn = ydn}. Fix a decomposition into irreducible components C =
⋃n
i=1Ci. Since

C has n rational components, there is a component Mi
∼= Sym2P1 ∼= P2 for each i,

and for each i < j we have a component Nij
∼= Blpt(P1 × P1), see [?, Example 5.9].

The
(
n
2

)
components Nij all intersect along an exceptional P1 that can be identified with

Hilb2(C2, 0). Denote this line by E. We have Mi∩Mj = ∅ for all i 6= j, and Mi∩Njk
∼= P1

if i = j or i = k, and Mi∩Njk = ∅ otherwise. Denote these lines of intersection by Li. It is

helpful to picture them as naturally isomorphic to Ci. The Li do not intersect each other,

but intersect Hilb2(C2, 0) at points corresponding to the slopes of the corresponding lines

Ci.

The homology of C [2] in degree two is spanned by [Li], i = 1, . . . , n and E. Denote the

fundamental class [Ci] ∈ H2(C [1]) by yi. Using the An-action, we have elements

xiyi = [Li] ∈ H2(C [2]), i = 1, . . . , n, and xiyj = [Lj]− [E], i 6= j.

Hence we have the relations

(xi − xj)(yi + yj) = 0 ∀i, j

(xi − xj)yk = 0 k 6= i, j.

Using these relations, we may express all the classes [Li], i = 1, . . . , n and [E] as linear

combinations of xiyi and for example x1y2. Since

dimCH2(C [2]) = n+ 1,

there cannot be any other relations in this degree. This verifies equation (2.6.1) of Con-

jecture 2.6.7 in degree q2t2.

2.6.3 Compactified Jacobians and the MSV formula

Homologically, we have the following relationship between the cohomology of the compact-

ified Jacobians and the Hilbert schemes of points C [n], proved independently by Maulik-

Yun and Migliorini-Shende.
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Theorem 2.6.13 ( [65, 68]). Let π : C → B be a locally versal deformation of C, and

π[n] : C[n] → B, πJ : Jac(C)→ B be the relative Hilbert schemes of points and compactified

Jacobians of π. Then, inside Db
c(B)[[q]], we have⊕

n≥0

qnRπ[n]
∗ C =

⊕qi pRiπJ∗C
(1− q)(1− qL)

,

where L is the Lefschetz motive (ie. the constant local system on B in this case.)

For reducible curves, the bigraded structure can be also computed from the theorem

of Migliorini-Shende-Viviani [69, Theorem 1.16].

Theorem 2.6.14. Let {CS → BS}S⊂[m] be an independently broken family of reduced

planar curves (see [69] for the definition), such that all the CS → BS are H-smooth, ie.

their relative Hilbert schemes of points have smooth total spaces, and such that the families

CS → BS admit fine compactified Jacobians J(CS) → BS. Then, inside Db
c(
⊔
BS)[[q]],

we have:

(qL)1−g
⊕
n≥0

qnRπ[n]
∗ C = Exp

(
(qL)1−g

⊕
qiIC(ΛiR1πsm∗C[−i])

(1− q)(1− qL)

)
(2.6.3)

= Exp

(
(qL)1−g

⊕
qi pRiπJ∗C

(1− q)(1− qL)

)
. (2.6.4)

Here, g : BS → N is the upper semicontinuous function giving the arithmetic genus of the

fibers, and L is the Lefschetz motive.

Remark 2.6.15. Later, we will use the substitution L 7→ t2, which recovers the Poincaré

polynomial.

We turn to a more complicated example of C [n].

Example 2.6.16. Consider the (projective completion with unique singularity of the)

curve {x3 = y3}, ie. three lines on a projective plane intersecting at a point.

We are interested in computing the stalk of the left hand side of (2.6.3) at the central

fiber. On the right, the exponential map is a sum over all distinct decompositions of C =

C1 ∪ C2 ∪ C3 into subcurves. By symmetry, there are only three fundamentally different
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ones: the decomposition into three disjoint lines, the decomposition into a node and a

line, and the trivial decomposition. Since we know that the fine compactified Jacobians

of nodes and lines are points [69], these terms on the right hand side are relatively easy

to compute. Namely, for the three lines we have
(

qL
(1−q)(1−qL)

)3

, and
(

qL
(1−q)(1−qL)

)2

for the

decompositions to a node plus a line.

As to the last term on the right, C has arithmetic genus one, so is its own fine

compactified Jacobian, as shown by Melo-Rapagnetta-Viviani [?]. Moreover, C can be

realized as a type III Kodaira fiber in a smooth elliptic surface f : E → T , where T

is a smooth curve. Let Σ be the singular locus of f . By the decomposition theorem of

Beilinson-Bernstein-Deligne-Gabber [5], we have from eg. [16, Example 1.8.4]

Rf∗QE[2] = QT [2]⊕ (IC(R1f sm∗ QE)⊕ G)⊕QT

where G is a skyscraper sheaf on Σ with stalks H2(f−1(s))/〈[f−1(s)]〉. Note that the rank

of this sheaf is the number of irreducible components of the fiber minus one.

The terms in the above direct sum are ordered so that we first have the second perverse

cohomology sheaf pH2(Rf∗QE[2]), then the first one inside the parentheses and lastly the

zeroth perverse cohomology sheaf. Since the base is smooth IC(R1) = R1 and its stalk is

zero at the central fiber. This gives that the numerator of our last term is 1 + 2qL+ q2L.

In total, we have∑
n≥0

qnH∗(C [n]) =

(
qL

(1− q)(1− qL)

)3

+ 3

(
qL

(1− q)(1− qL)

)2

+ (2.6.5)

1 + 2qL + q2L
(1− q)(1− qL)

, (2.6.6)

which we compute to be

q6L3 − 2q5L2 + q4L2 + q3L2 + q4L− 2q3L + q2L + q2 − 2q + 1

(1− q)3(1− qL)3
(2.6.7)

Let us now consider the simplest example where d > 1.

Example 2.6.17. Similarly, we may consider the projective model of the curve C = {x4 =

y2}, which has two rational components that are parabolas. This also has arithmetic genus
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one and by the same line of reasoning as above we have∑
n≥0

qnH∗(C [n]) =

(
qL

(1− q)(1− qL)

)2

+
1 + qL + q2L

(1− q)(1− qL)

=
q4L2 − q3L + q2L− q + 1

(1− q)2(1− qL)2
.

Let us now compute the Hilbert series, as predicted by Conjecture 2.6.7, in the cases

of Examples 2.6.16, 2.6.17.

Example 2.6.18. In the case of Example 2.6.16, write

Ui = (xj − xk)C[x1, x2, x3, yj + yk, yi], k 6= i 6= j 6= k.

Denote by gr dimV the (q, t)-graded dimension of a bigraded vector space V . Then

gr dim(U1 + U2 + U3) = gr dim(U1) + gr dim(U2) + gr dim(U3)

− gr dim((U1 + U2) ∩ U3)− gr dim(U1 ∩ U2)

and we compute that:

(U1 + U2) ∩ U3 =(x1 − x3)C[x1, x2, x3, y1 + y2 + y3]

+ (x1 − x2)(x2 − x3)y3C[x1, x2, x3, y1 + y2 + y3],

U1 ∩ U2 =(x1 − x2)C[x1, x2, x3, y1 + y2 + y3].

We then have

gr dim(U1 + U2) ∩ U3 =
q + q4t2

(1− q)3(1− qt2)

and

gr dim(U1 ∩ U2) =
q2

(1− q)3(1− qt2)
.

Hence

gr dim(V ) =
1

(1− q)3(1− qt2)3
− 3

q

(1− q)3(1− qt2)2
+

q + q2 + q4t2

(1− q)3(1− qt2)
,

which can be checked to equal the right-hand side of (2.6.7).
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Example 2.6.19. In the case of Example 2.6.17, write

U =(x1 − x2)C[x1, x2, y1 + y2],

U ′ =(x1 − x2)2 (C[x1, x2, y1 + y2]⊕ C[x1, x2, y1 + y2](y1 − y2)) .

Then U ∩U ′ = (x1−x2)2C[x1, x2, y1 + y2], and we have that the right hand side of (2.6.1)

equals

1

(1− q)2(1− qL)2
− q

(1− q)2(1− qL)2
− q2(1 + qL)

(1− q)2(1− qL)

+
q2

(1− q)2(1− qL)
=
q4L2 − q3L + q2L− q + 1

(1− q)2(1− qL)2
.

As a continuation of Examples 2.6.16, 2.6.17, let us verify that the Poincaré series

agrees with the Oblomkov-Rasmussen-Shende conjectures in both cases, since this result

does not appear in the literature.

Proposition 2.6.20. If C = {x3 = y3}, then under the substitutions

qL 7→ T−1, q 7→ Q,

we have the following equality in Z[[q, t]]:∑
n≥0

qnH∗(C
[n]
0 ) = f000(Q, 0, T ),

where f000(Q,A, T ) denotes the triply graded Poincaré series of

HHH(T (3, 3)).

Note that we are considering the punctual Hilbert schemes C
[n]
0 here.

Proof. From [17, page 9], we have

f000(Q,A, T ) =
1 + A

(1−Q)3

(
(T 3Q2 +Q3T 2 − 2T 2Q2 − 2TQ3 − 2QT 3

+ T 3 +Q3 + TQ2 +QT 2 + TQ) + (T 2Q2

− 2TQ2 − 2QT 2 + T 2 +Q2 + TQ+ T + T )A+ A2
)
.

It is quickly verified that letting A = 0 and doing the substitution above gives the result.
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Remark 2.6.21. In fact, [17] compute the polynomials fv(A,Q, T ) corresponding to

HOMFLY homologies of certain complexes Cv, where v is any binary sequence, using a

recursive description. All of these complexes are supported in even degree, and it would

be interesting to know how the corresponding pure braids are realized as affine Springer

fibers. It would also be interesting to understand these recursions either on Hilbn(C2) or

in terms of affine Springer fibers for GLn.

The case C = {x2 = y4} is slightly more straightforward.∑
n≥0

qnH∗(C
[n]
0 ) = (1− L2)2

∑
n≥0

qnH∗(C [n])

can be checked to equal with the Poincaré polynomial of HHHa=0(T (2, 4)) for example as

follows. From [73, Corollary 15], we have

P (HHHa=0(T (2, 4))) =
Q2 + (1−Q)(T 2 +QT )

(1−Q)2T 2
.
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Chapter 3

Hilbert schemes of points on singular

curves

In this chapter, we turn to another incarnation of Hilbert schemes, namely those corre-

sponding to Hilbert schemes of points on singular plane curves. This chapter is essentially

a reproduction of [48].

Let C be a complex, reduced, locally planar curve. We are interested in studying

the homologies of the Hilbert schemes of points C [n]. In the case when C is integral,

work of Rennemo, Migliorini-Shende, Maulik-Yun [65, 68, 83] relates these homologies

to the homology of the compactified Jacobian of C equipped with the perverse filtration.

Furthermore, work of Migliorini-Shende-Viviani [69] considers an extension of these results

to reduced but possibly reducible curves.

Following Rennemo, we approach the problem of computing the homologies of the

Hilbert schemes in question from the point of view of representation theory. In [83],

a Weyl algebra in two variables acting on V :=
⊕

n≥0H
BM
∗ (C [n]) was constructed for

integral locally planar curves, and V was described in terms of the representation theory

of the Weyl algebra. The superscript BM denotes Borel-Moore homology. When C has

m irreducible components, we construct an algebra A acting on V , where A is an explicit

subalgebra of the Weyl algebra in 2m variables. The main result is the following.

Theorem 3.0.1. If C =
⋃m
i=1Ci is a decomposition of C into irreducible components, the
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space V =
⊕

n≥0H∗(C
[n],Q) carries a bigraded action of the algebra

A = Am := Q[x1, . . . , xm, ∂y1 , . . . , ∂ym ,

m∑
i=1

yi,

m∑
i=1

∂xi ],

where V =
⊕

n,d≥0 Vn,d is graded by number of points n and homological degree d. More-

over, the operators xi have degree (1, 0) and the operators ∂yi have degree (−1,−2) in this

bigrading. In effect, the operator
∑
yi has degree (1, 2) and the operator

∑
∂xi has degree

(−1, 0).

Remark 3.0.2. The algebra A does not depend on C, but only on the number of com-

ponents m.

Remark 3.0.3. An argument similar to [83, Theorem 1.2] shows that V is free over

Q[xi] for any i = 1, . . . ,m, and also over Q[
∑m

i=1 yi]. Through the ORS conjectures (see

below), this may be seen as a version of Rasmussen’s remark in [82] that the triply-graded

homology of the link L of C is free over the homology of an unlink corresponding to a

component of L.

In Section 3.1 we will discuss the relevant geometry, namely the deformation theory

of locally planar curves. In particular, we prove that the relative families of (flag) Hilbert

schemes have smooth total spaces, which is crucial for applying a bivariant homology

formalism, described in Section 3.2.1.

We then define the action of the generators of A on V by explicit geometric construc-

tions in Section 3.2, and prove the commutation relations in Section 3.3.

In Section 3.4, we describe the representation V of the algebra A2 in the example of

the node. More precisely, we have

Theorem 3.0.4. When C = {x2 = y2} ⊂ P2, we have that

V ∼=
Q[x1, x2, y1, y2]

C[x1, x2, y1 + y2](x1 − x2)
(3.0.1)

as an A-module, where

A = Q[x1, x2, ∂x1 + ∂x2 , y1 + y2, ∂y1 , ∂y2 ] ⊂Weyl(A4).
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Remark 3.0.5. Although seeing the algebra A for the first time immediately raises the

question whether we can define the operators ∂xi or multiplication by yi separately, i.e.

extend this action to the whole Weyl algebra, this example shows that it is in fact not

possible to do this while retaining the module structure for V .

Locally planar curve singularities are connected naturally to topics ranging from the

Hitchin fibration [72] to HOMFLY-PT homology of the links of the singularities [32, 73].

For example, from [73] we have

Conjecture 3.0.6. If C has a unique singularity at 0, its link is by definition the inter-

section of C with a small three-sphere around 0. There is an isomorphism

V c
0
∼= HHHa=0(Link of C),

where V c
0 =

⊕
n≥0H

∗(C
[n]
0 ) is the cohomology of the punctual Hilbert scheme, and HHH(−)

is the triply graded HOMFLY-PT homology of Khovanov and Rozansky [51].

This conjecture is still wide open. Recently, advances on the knot homology side have

been made by Hogancamp, Elias and Mellit [17, 44, 66], who compute the HOMFLY-PT

homologies of for example (n, n)-torus links using algebraic techniques. As the (n, n)-

torus links appear as the links of the curves C = {xn = yn} ⊂ P2, a partial motivation

for this work was to study the Hilbert schemes of points on these curves.

Remark 3.0.7. There are many natural algebras acting on HHH(−), for example the

positive half of the Witt algebra as proven in [52]. It might be possible that the actions

of the operators µ+ =
∑

i ∂xi and xi on V are related to this action.

In the case where C = {xp = yq} for coprime p and q there is an action of the

spherical rational Cherednik algebra of SLn with parameter c = p/q on the cohomology

of the compactified Jacobian of C [75, 89], or rather its associated graded with respect

to the perverse filtration, which is intimately related to the space V . For arbitrary torus

links, it might still be true that V or its variants carry some form of an action of a rational

Cherednik algebra.
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3.1 Geometry of Hilbert schemes of points

We describe the general setup for this chapter. Fix C/C a locally planar reduced curve

and let C =
⋃m
i=1 Ci be a decomposition of C to irreducible components. We will be

working with versal deformations of C.

Definition 3.1.1. If X is a projective scheme, a versal deformation of X is a map of

germs π : X → B such that B is smooth, π−1(0) = X, and given π′ : X ′ → B′ with

π′−1(b′) = X there exists φ : B′ → B such that b′ 7→ 0 and π′ is the pullback of π along

φ. If T0B coincides with the first-order deformations of X, or in other words the base B

is of minimal dimension, we call π a miniversal deformation.

We call a family of locally planar reduced complex algebraic curves over a smooth

base B locally versal at b ∈ B if the induced deformations of the germs of the singular

points of π−1(b) are versal. We are interested in smoothness of relative families of Hilbert

schemes of points for such deformations, needed for example for Lemma 3.3.3.

Definition 3.1.2. If X → B is any family of projective schemes, and P (t) is any Hilbert

polynomial, we denote the relative Hilbert scheme of this family by X P (t). By definition,

Hilbert schemes are defined for families [35], and we note here that at closed points b ∈ B

the fibers of the relative Hilbert scheme are exactly HilbP (t)(Xb).

We now consider the tangent spaces to (relative) Hilbert schemes.

Lemma 3.1.3. For any projective scheme X and a flag of subschemes X1 ⊂ · · · ⊂ Xk in

X with fixed Hilbert polynomials P1(t), . . . , Pk(t), the Zariski tangent space is given by

T(X1,...,Xn) Hilb
−−→
P (t)(X) ∼= H0(X,N(X1,...,Xm)/X),

where the sections of the normal sheaf N(X1,...,Xm)/X ⊆
⊕k

i=1NXi/X are tuples (ξ1, . . . , ξk)

of normal vector fields such that ξi|Xj = ξj modulo NXj/Xi whenever Xi ⊇ Xj. The normal

sheaf is by definition the sheaf of germs of commutative diagrams of homomorphisms of

OX-modules of the form

Ik ⊂ Ik−1 ⊂ · · · ⊂ I1

OXk → OXk−1
→ · · · → OX1

σk σk−1 σ1 (3.1.1)
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Proof. Note that from first-order deformation theory it immediately follows that if k = 1

we have TX1 HilbP (t)(X) ∼= H0(NX1/X , X) = H0(X,HomOX1
(I1/I2

1 ,OX1)), where I1 is

the ideal sheaf of X1. For the proof of the result for flag Hilbert schemes we refer to [85,

Proposition 4.5.3].

The following proposition is proved in e.g. [86, Proposition 17], and we reprove it here

for convenience of the reader.

Proposition 3.1.4. Let π : C → B′ be a versal deformation of C, a reduced locally planar

curve. Then the total space of the family π[n] : C[n] → B′ is smooth.

Proof. Let B ⊂ C[x, y] be a finite dimensional smooth family of polynomials containing

the local equation for C and all polynomials of degree at most n, such that the associated

deformation is versal. Consider the family of curves over B given by CB := {(f ∈ B, p ∈

C2)f(p) = 0}. Denote the fiber over f by Cf and let Z ⊂ Cf be a subscheme of length n.

By e.g. [85, Section 4], there is always an exact sequence

0→ H0(NZ/Cf , Z)→ TZC
[n]
B → TfB → Ext1

OCf
(IZ ,OZ)

For squarefree f , there is always some open neighborhood U of f such that C
[n]
U

is reduced of pure dimension n + dimB [65, Proposition 3.5]. Since B is smooth and

H0(NZ/Cf , Z) has dimension n (see e.g. [12]), it is enough to prove that the last Ext-

group vanishes to get smoothness of the total space C
[n]
U at Z.

Now from the short exact sequence

0→ IZ → OCf → OZ → 0

taking Hom to OZ we have

· · · → Ext1
OCf

(OCf ,OZ)→ Ext1
OCf

(IZ ,OZ)→ Ext2
OCf

(OZ ,OZ) = 0→ · · ·

As Ext1
OCf

(OCf ,OZ) ∼= H1(OZ , Cf ) = 0 and the sequence is exact, we must have

Ext1
OCf

(IZ ,OZ) = 0
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as well. So the total space is smooth.

Now if C → B is the miniversal deformation, by versality there are compatible iso-

morphisms C ∼= C × (Ct, 0) and B ∼= B × (Ct, 0) for some t, see e.g. [33]. Hence we have

smoothness for any versal family.

We now consider the relative flag Hilbert scheme of a versal deformation. If S is a

smooth complex algebraic surface, its nested Hilbert scheme of points S[n,n+1] is smooth

by results of [12,88].

Remark 3.1.5. This nested Hilbert scheme S[n,n+1], together with the ordinary Hilbert

scheme of n points S[n] are the only flag Hilbert schemes of points on S that are smooth,

as shown in [12,88].

We also have the following result.

Proposition 3.1.6. The total space of the relative family C[n,n+1] → B is smooth.

Proof. This is a local question, so we can assume that C is the germ of a plane curve

singularity in C2.

From Lemma 3.1.3, we have that at (J ⊂ I) ∈ C[n,n+1] the tangent space is ker(φ−ψ),

where

φ : HomC[x,y](I,C[x, y]/I)→ HomC[x,y](J,C[x, y]/I), and

ψ : HomC[x,y](J,C[x, y]/J)→ HomC[x,y](J,C[x, y]/I)

are the induced maps given by restriction and further quotient. Here φ−ψ is the difference

of the maps from the direct sum. This is precisely the requirement needed for the normal

vector fields in question.

Suppose again that B ⊂ C[x, y] is a finite dimensional smooth family of polynomials

containing the local equation for C and all polynomials of degree at most n+ 1, such that

the associated deformation is versal.

Consider the inclusion C[n,n+1]
B ↪→ B × (C2)[n,n+1]. We have an exact sequence

0→ Tf,J⊂IC[n,n+1]
B → TfB × TJ⊂I(C2)[n,n+1] → C[x, y]/J
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where the last map is given by

f + εg,

η1

η2

 7→ (φη1)(f)− g mod J . By the assump-

tion on B the last map is surjective, hence Tf,J⊂IC[n,n+1]
B has dimension dim(C2)[n,n+1] +

dimB − n+ 1 = n+ 1 + dimB, as expected, and the total space is smooth.

Again, if C → B is the miniversal deformation, by versality there are compatible

isomorphisms C ∼= C× (Ct, 0) and B ∼= B× (Ct, 0) for some t, see e.g. [33]. Hence we have

smoothness for any versal family.

Another result we will also need is the description of the components and dimensions

of the irreducible components of C [n].

Proposition 3.1.7. For any locally planar reduced curve C =
⋃m
i=1 Ci, the irreducible

components of C [n] are given by

(Csm
1 )[r1] × · · · × (Csm

m )[rm],
∑
i

ri = n.

Here Csm
i denotes the smooth locus of Ci. In particular, there are

(
n+m−1

n

)
irreducible

components of C [n], all of dimension n.

Proof. That (Csm)[n] is dense in C [n] can be found e.g. in [67, Fact 2.4]. The schemes

(Csm
1 )[r1]×· · ·×(Csm

m )[rm] are disjoint. They are of dimension n, smooth and connected, so

irreducible, and as (r1, . . . , rm) runs over all possibilities, cover (Csm)[n]. Taking closures

we get the result.

3.2 Definition of the algebra A

Let V =
⊕

i≥0H∗(C
[n],Q), where we take singular homology in the analytic topology.

This is mostly for simplicity, a majority of the results work with Z coefficients. A notable

exception is Section 3.4, where Q-coefficients are essential. From now on we will be

suppressing the coefficients from our notation. V is naturally a bigraded Q-vector space,

graded by the number of points n and homological degree d. We denote by Vn,d the (n, d)-

graded piece of V . We define the following operators on V , following ideas of Rennemo [83]

(and that originally go back to Nakajima and Grojnowski [37,70]).
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Definition 3.2.1. 1. Let ci ∈ Csm
i be fixed smooth points and ιi : C [n] → C [n+1] be

the maps Z 7→ Z ∪ ci. Let xi : V → V be the operators given by (ιi)∗. These are

homogeneous of degree (1, 0) and only depend on the component the points ci lie

in, see Lemma 3.2.2 below.

2. Let di : V → V be the operators given by the Gysin/intersection pullback map (ιi)
!.

These are homogeneous of degree (−1,−2), and well defined since the ιi are regular

embeddings. See Lemma 3.2.3 below for a proof of this latter fact.

Lemma 3.2.2. The maps ιci and ιc′i are homotopic whenever ci, c
′
i ∈ Csm

i . In particular

the corresponding pushforwards induce the same operators xi on V .

Proof. Take any path ci(t) from ci to c′i and consider the homotopy C [n] × [0, 1]→ C [n+1]

given by (Z, t) 7→ Z ∪ ci(t).

Lemma 3.2.3. The map ιx is a regular embedding.

Proof. This is a property which is local in the analytic topology ( [3, Chapter 2, Lemma

2.6]). Suppose Z ⊂ C is a subscheme of length n which contains x with multiplicity k.

If U is an analytic open set around x such that the only component of Z contained

in U (closure in the analytic topology) is x. Then locally around Z the morphism is

isomorphic to

U [k] × (C\U)[n−k] ↪→ (U)[k+1] × (C\U)[n−k],

where the map is given on factors by adding x and the identity map, respectively. The first

map in local coordinates looks exactly like the inclusion C[k] → C[k+1] given as follows. If

we identify coordinates on C[k] with symmetric functions ai in the roots of some degree

k polynomial, i.e. coefficients of a monic polynomial of degree k, the map is given by∑k−1
i=0 aiz

i 7→ (z − x)
∑k−1

i=0 aiz
i. But this last map is linear in the ai and of rank k, in

particular a regular embedding.

Consider the following diagram.

C [n,n+1]

C [n] C [n+1]

p q (3.2.1)

62



To define the operators µ+ and µ−, we want to define correspondences in homology

between C [n] and C [n+1]. This is done as follows. By Propositions 3.1.4, 3.1.6, we may

embed C into a smooth locally versal family π : C → B so that the relative family C[n]

is smooth and π−1(0) = C. After possibly doing an étale base extension, we may also

assume that the family also has sections si : B → C hitting only the smooth loci of the

fibers and so that si(0) = ci.

Consider now the diagram

C [n,n+1]

C [n] C [n+1]

C[n,n+1]

C[n] C[n+1]

p q

i

i i

p̃ q̃

(3.2.2)

where i is the inclusion of the central fiber. Since C[n] is smooth, from Property 7 in

Section 3.2.1, we have that

H∗(C[n,n+1] → C[n]) ∼= HBM
∗−2n−dimB(C[n,n+1]).

Denote the fundamental class of C[n,n+1] under this isomorphism as [p̃]. Then pulling back

[p̃] along i to H∗(C [n,n+1] → C [n]) gives us a canonical orientation, using which we define

p! : H∗(C
[n]) → H∗(C

[n,n+1]) as p!(α) = α · i∗([p̃]). The definition of q! is identical, where

we replace C [n] by C [n+1].

We are finally ready to define the operators µ+ and µ−.

Definition 3.2.4. Let µ± : V → V be the Nakajima correspondences µ+ = q∗p
!, and

µ− = p∗q
!. These are operators of respective bidegrees (1, 2) and (−1, 0).

Remark 3.2.5. The n-degree in the above maps is easy to see from the definition. The

homological degrees follow from the definition of the Gysin maps using i∗[p̃], which sits

in homological degree 2n + 2, and the fact that degrees are additive under the bivariant

product.
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We are now ready to define the algebra(s) A.

Theorem 3.2.6. The operators defined in Definitions 3.2.1, 3.2.4 satisfy the following

commutation relations: [di, µ+] = [µ−, xi] = 1, and the rest are trivial.

Remark 3.2.7. For m = 1 we recover Theorem 1.2 in [83].

Definition 3.2.8. Fix m ≥ 1. Let Am be the Q-algebra generated by the symbols

x1, . . . , xm, d1, . . . , dm, µ+, µ−

with the relations

[di, µ+] = [µ−, xi] = 1, [xi, xj] = [xi, di] = [xi, µ+] = [di, µ−] = 0.

Remark 3.2.9. We can realize Am inside Weyl(A2m
Q ) as follows: Let A2m have coordinates

x1, . . . , xm, y1, . . . , ym

and di = ∂yi , k =
∑m

i=1 ∂xi , j =
∑m

i=1 yi. Then from the commutation relations, we

immediately have that Am is isomorphic to the subalgebra 〈xi, ∂yi ,
∑m

i=1 ∂xi ,
∑m

i=1 xi〉 ⊂

Weyl(A2m
Q ).

Remark 3.2.10. Although Am depends on m we will be suppressing the subscript from

the notation from here on. It should be evident from the context which m we are consid-

ering.

Let us give an outline of the proof of Theorem 3.2.6. We first prove the trivial com-

mutation relations in Subsections 3.3.1, 3.3.2. We then prove in Subsection 3.3.3 that

[di, µ+] = 1 with the aid of the bivariant homology formalism, and then in a similar vein

that [µ−, xi] = 1.

3.2.1 Bivariant Borel-Moore homology

We now describe the bivariant Borel-Moore homology formalism from [20]. Suppose we

are in a category of ”nice” spaces; for example those that can be embedded in some Rn.

We will not define bivariant homology here, but for us the most essential facts about it

are the following ones:
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1. The theory associates to maps X
f−→ Y a graded abelian group H∗(X

f−→ Y ). We

will be working over Q throughout also with bivariant homology.

2. Given maps X
f→ Y

g→ Z, there is a product homomorphism

H i(X
f→ Y )⊗Hj(Y

g→ Z)→ H i+j(X
g◦f→ Z).

For α ∈ H i(X
f→ Y ) and β ∈ Hj(Y

g→ Z) we thus get a product α ·β ∈ H i+j(X
g◦f→

Z).

3. For any proper map X
f→ Y and any map Y

g→ Z there is a pushforward homo-

morphism f∗ : H∗(X
g◦f→ Z)→ H∗(Y

g→ Z).

4. For any cartesian square

X ′ X

Y ′ Y

g f

there is a pullback homomorphism H∗(X
f→ Y ) → H∗(X ′

g→ Y ′). (Recall that a

cartesian square is a square where X ′ ∼= X ×Y Y ′.)

5. Product and pullback commute: Given a tower of cartesian squares

X ′ X

Y ′ Y

Z ′ Z

h′′

f ′ fα

h′

g′ gβ

h

we have h∗(α · β) = h′∗(α) · h∗(β) in H∗(X ′
g′◦f ′→ Z ′).

6. Product and pushforward commute: Given

X
f→ Y

g→ Z
h→ W

with α ∈ H∗(X
g◦f→ Z) and β ∈ H∗(Z

h→ W ), we have f∗(α · β) = f∗(α) · β in

H∗(Y
h◦g→ W ).
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7. For any space X, the groups H i(X → pt) and H i(X
id→ X) are by construction

canonically identified with HBM
−i (X) and H i(X), respectively. These are called

the associated covariant and contravariant theories, respectively. Note that the

three bivariant operations recover the usual homological operations of cup and cap

product, proper pushforwards in homology and arbitrary pullbacks in cohomology.

8. If Y is a nonsingular variety and f : X → Y is any morphism, the induced homo-

morphism

H∗(X
f→ Y )→ H∗−2 dimY (X → pt) = HBM

2 dimY−∗(X)

given by taking the product with [Y ] ∈ H−2 dimY (Y → pt) is an isomorphism. Again

the last equality is given by the associated covariant theory. In such a situation we

will frequently identify H∗(X → Y ) with HBM
2 dimY−∗(X). In particular, if X has a

fundamental class [X] ∈ HBM
2 dimX(X), this induces a class [X] ∈ H2(dimY−dimX)(X →

Y ).

9. Any class α ∈ H i(X
f→ Y ) defines a Gysin pull-back map f ! : HBM

∗ (Y )→ HBM
∗−i (X)

by

f !(β) := α · β, ∀β ∈ HBM
∗ (Y ).

3.3 Proof of the commutation relations

3.3.1 Proof of the trivial commutation relations for xi and di

We now show that [xi, xj] = 0 for all i, j. This is fairly easy; under either composition

ιi ◦ ιj, ιj ◦ ιi we map Z 7→ Z ∪ xi ∪ xj and as (ιi ◦ ιj)∗ = xixj, we get xixj = xjxi.

The next step is to describe the Gysin maps and their commutation relations. Denote

these as before by di = (ιxi)
! : H∗(C

[n])→ H∗−2(C [n−1]).

Proposition 3.3.1. We have [di, dj] = 0 and [di, xj] = 0.

Proof. Let α ∈ H∗(C [n]). As we saw before, ιxi ◦ ιxj = ιxj ◦ ιxi . By functoriality of the

Gysin maps, [di, dj] = 0.
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Now choosing a representative for α, we see that

dixj(α) = (ιj)
![ιi(α)] = [Z ∈ α|ci, cj ⊂ Z].

However, we also have

xjdi(α) = xj[Z
′ ∈ α|ci ⊂ Z ′] = [Z ∈ α|ci, cj ⊂ Z].

When the points are equal in the above, that is to say i = j, we pick a linearly equivalent

point c′i near ci. Since the inclusion maps ιci , ιc′i are homotopic in this case by Lemma

3.2.2, we still have [di, xj] = 0.

3.3.2 Proof of the trivial commutation relations for Nakajima

operators

As we saw before, the definition of the Nakajima operators requires making sense of

the Gysin morphisms p! and q!, which is done using the bivariant homology formalism.

Recall that we are working with a fixed family C → B as in Section 3.2, guaranteeing

smoothness of C[n] and C[n,n+1]. In this section and later on, all commutative diagrams

should be thought of as commutative diagrams of topological spaces (corresponding to

the analytic spaces of the varieties under consideration) and living over B, such that we

may restrict to the central fiber and obtain similar squares with calligraphic Cs replaced

by regular Cs, i.e. our curve of interest. We will denote these restrictions in homology

computations by the subscript 0.

Proposition 3.3.2. We have [xi, µ+] = 0 and [di, µ−] = 0.

Proof. Consider the following commutative diagram:

C[n,n+1] C[n+1,n+2]

C[n] C[n+1] C[n+2]

ι′′i

p q q′p′

ιi ι′i

(3.3.1)

Here ιi, ι
′
i are defined as adding points at the sections si to C[n], C[n+1] respectively, and

ι′′i is adding points at the section si as follows: (Z1 ⊂ Z2) 7→ (Z1 ∪ si ⊂ Z2 ∪ si).
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We have by definition that xiµ+ = ((ι′si)∗q∗p
!)0, where the subscript 0 denotes restric-

tion to the central fiber.

In Diagram 3.3.1, the square formed by the maps ι′i, q, q
′ and ι′′i is commutative, so

on homology we have (ι′i)∗q∗p
! = q′∗(ι

′′
i )∗p

!. Similarly, the square formed by the maps

ιi, p
′, p, ι′′i is commutative. Because of the fact that pushforward and the Gysin maps in

bivariant homology also commute in this case, as explained in Section 3.2.1 (Property 7),

we get q′∗(ι
′′
i )∗p

! = q′∗(p
′)!(ιi)∗. Restricting to C we have (q′∗(p

′)!(ιi)∗)0 = µ+xi.

Similarly, for the other commutation relation we have µ−di = (p∗q
!(ι′i)

!)0 = (p∗(ι
′′
i )

!(q′)!)0 =

((ιi)
!p′∗(q

′)!)0 = diµ−.

Let us explain the restriction to central fiber once and for all. For example, in the last

computation if α ∈ H∗(C [n]), we have

µ−diα = i∗[p̃] · ι!iα = i∗[p̃] · i∗[d̃i] · α,

where i∗[d̃i] = [di] is the fundamental class corresponding to the Gysin map ι!i and [d̃i]

is the corresponding class in the family. Since the product and pullback commute in the

bivariant theory,

i∗[p̃] · i∗[d̃i] · α = i∗([p̃] · [d̃i]) · α.

Similarly, diµ−α = [di] · i∗[p̃] ·α = i∗([d̃i] · [p̃]) ·α. So composing our operators in the family

and then deducing the result for C is justified.

3.3.3 Proof that [µ−, xi] = [di, µ+] = 1

To compute the desired commutation relation, we compare the composition of the opera-

tors di, µ+ on V in either order. By abuse of notation we will first consider di and µ+ as

operators acting on the space V =
⊕

n≥0H
BM
∗ (C[n]), and then use the properties of the

bivariant theory, more precisely the ability to pull back in cartesian squares (Property 5

in Section 3.2.1), to restrict to the special fiber and get an action on V .

Consider the diagrams
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C[n,n+1] Xi

C[n] C[n+1] C[n]

κ qθ
p

λ̃i

ι̃i

κ̃i q̃i

λi
ιi

(3.3.2)

and

C[n−1,n]

C[n] C[n−1] C[n]

θ′

p′ κ′

q′

λ′i

ι′i

(3.3.3)

where the two labels on the arrows denote the corresponding map f : Y → Z and a

bivariant class α ∈ H∗(X f→ Y )

In the first diagram Xi = C[n,n+1] ×C[n+1] C[n] is the fiber product, and the square

containing Xi is cartesian. The morphisms ιi, ι
′
i correspond to adding a point at the

sections si : B → C. The bivariant classes θ, λi, κ and their primed versions are the ones

defined by fundamental classes, using the fact that the targets are smooth. The classes

λ̃i and κ̃i are the cartesian pullbacks of λi and κ, respectively.

Let α ∈ H∗(C[n]). We first compute

diµ+(α) = λ′i · q∗(θ · α) = q̃∗(λ̃i · θ · α) (3.3.4)

µ+di(α) = q′∗(θ
′ · λ′i · α). (3.3.5)

Let us elaborate on the first computation a little bit. Here θ is the fundamental class and

the isomorphism HBM
∗−n−1(C[n,n+1]) ∼= H∗(C[n,n+1] → C[n]) of the Borel-Moore homology

group with the bivariant one is given by product with the fundamental class θ. On the

other hand, the Gysin pullback ι!i is by definition equal to the product in the bivariant

theory with λi. In the first equation of (3.3.4), we then use that the diagram in (3.3.2)

in is cartesian.

Let fi : C[n−1,n] → Xi be given by (Z1 ⊂ Z2) 7→ (Z1 ∪ si ⊂ Z2 ∪ si, Z1 ∪ si), and

gi : C[n] → Xi be given by Z 7→ (Z ⊂ Z ∪ si, Z).

Lemma 3.3.3. For all i, [Xi] = (fi)∗([C[n−1,n]]) + (gi)∗([C[n]]).

Proof. By Proposition 3.1.4 and Proposition 3.1.6 the total spaces of the relative families

C[n] → B and C[n,n+1] → B are smooth.

69



Consider the fiber product Xi. The images of fi and gi cover all of Xi. On the level

of points (of the fibers) this is easy to see; we are looking at pairs consisting of a flag

of subschemes of lengths n, n + 1 and a subscheme of length n that project to the same

length n + 1 subscheme in the cartesian square (3.3.2). Since the points in the image

contain si, either the above pairs come from adding si to both parts of the flag as well as

taking the second factor to be Z1 ∪ si, or by creating a new flag by adding si to Z and

taking Z to be the second factor.

By [83, Lemma 3.4], the intersection of the images of fi and gi is codimension one

in Xi. Consider a point(Z ⊂ Z ∪ si, Z) ∈ Im(fi) ∩ Im(gi), which can also be written as

(Z ′ ∪ si ⊂ Z ′ ∪ si ∪ si, Z ′ ∪ si). We can then remove the smooth point si from both of the

factors unambiguously. So the intersection is isomorphic to C[n−1]. On the complement

of the intersection the maps fi, gi are scheme-theoretic isomorphisms, because we can

unambiguously remove the point si from (Z ⊂ Z ∪ si, Z) or (Z1 ∪ si ⊂ Z2 ∪ si, Z1 ∪ si).

Hence, the images of fi, gi yield a partition of Xi to irreducible components. In particular,

the fundamental class [Xi] is the sum of the fundamental classes of the images, which are

by definition the pushforwards in question.

Corollary 3.3.4. We have [Xi] = (fi)∗(θ
′ · λ′i) + (gi)∗[C[n]].

Proof. By Lemma 3.3.3 [Xi] = (fi)∗([C[n−1,n]]) + (gi)∗([C[n]]). Rewrite [C[n−1,n]] as follows.

First of all note that

θ′ · λ′i ∈ H2 dim C[n]−2 dim C[n−1,n]

(C[n−1,n] → C[n]) ∼= HBM
2 dim C[n−1,n](C[n,n+1]).

The last isomorphism is given by Property 8 in Section 3.2.1, ie. taking the product with

[C[n]] ∈ H∗(C[n] → pt). On the other hand, we know that θ′ · λ′i · [C[n]] has to be [C[n−1,n]]

by the same isomorphism. Plugging this into the result of Lemma 3.3.3 gives

[Xi] = (fi)∗(θ
′ · λ′i) + (gi)∗([C[n]]).
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Using Corollary 3.3.4, we have

diµ+(α) = (q̃i)∗(λ̃i · θ · α) = (q̃i)∗([Xi] · α) = (q̃i)∗((fi)∗(θ
′ · λ′i) · α) + (q̃i)∗((gi)∗[C[n]] · α).

(3.3.6)

The last equality follows by linearity of the pushforward. From Property 6 in Section

3.2.1, we have that the pusforward is also functorial and commutes with products. Hence

we have

(q̃i)∗((fi)∗(θ
′ ·λ′i) ·α) + (q̃i)∗((gi)∗[C[n]] ·α) = (q̃i ◦ (fi))∗(θ

′ ·λ′i ·α) + (q̃i ◦ (gi))∗(α). (3.3.7)

Since q̃i ◦ fi = q′, we get

(q̃i ◦ (fi))∗(θ
′ · λ′i · α) = q′∗(θ

′ · λ′i · α).

Finally, since q̃i ◦ (gi) = id,

(q̃i ◦ (gi))∗(α) = id∗(α).

Substituting these into Eq. (3.3.7), we get

(q̃i ◦ (fi))∗(θ
′ · λ′i · α) + (q̃i ◦ (gi))∗(α) = q′∗(θ

′ · λ′i · α) + id∗(α) = µ+di(α) + α. (3.3.8)

Suppose now that α0 is a class in H∗(C
[n]). Then by the fact that pushforward,

pullback, and the product in the bivariant theory commute, ((q̃i)0)∗((λ̃i)0 · θ0 · α0) =

(q′0)∗((θ
′)0 · (λ′i)0 · α0) + id∗(α0) and diµ+ = µ+di + id : V → V , as desired.

The case of [µ−, xi] is much similar; here we have

µ−xi(α) = (p)∗(κ · (ιi)∗(α)) = (p ◦ ι̃i)∗(κ̃i · α)

and

xiµ−(α) = (ι′i ◦ p′)∗(κ′ · α).

Under the identification of H∗(X
q̃→ C[n]) with HBM

∗+2 dim C[n](X) we have κ̃i = [Xi]. This

follows from

κ̃i · [C[n]] = κ̃i · λi · [C[n+1]] = λ̃i · κ[C[n+1]] = λ̃i · [C[n,n+1]] = [Xi],
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where the last equality is the fact that Xi is a Cartier divisor in C[n,n+1]. Using Lemma

3.3.3 we get

κ̃i = [Xi] = (fi)∗[C[n−1,n]] + (gi)∗[C[n]] = (fi)∗(κ
′) + (gi)∗[C[n]].

A computation similar to (3.3.6) now shows µ−xi(α) = xiµ−(α) + α as needed, and the

restriction to the special fiber works exactly the same way. This finishes the proof of

Theorem 3.2.6 and thus of Theorem 3.0.1.

3.4 Example: The node

In this section we describe the representation V for the the curve {xy = 0} ⊆ P2
C, which

is the first nontrivial curve singularity with two components.

3.4.1 Geometric description of C [n]

One first thing we may ask is how the components in Proposition 3.1.7 look like? Ran [80]

describes the geometry of the Hilbert scheme of points on (germs of) nodal curves very

thoroughly. For n = 0, 1 we get a point and C itself, whereas C [2] is a chain of three

rational surfaces, that intersect their neighbors transversely along projective lines. More

generally, C [n] is a chain of n + 1 irreducible components of dimension n, consecutive

members of which meet along codimension one subvarieties.

Lemma 3.4.1. Denote by Mn,k the irreducible component of C [n], where generically we

have k points on the component y = 0 of C, and on the component x = 0 we have n− k

points. Then

Mn,k
∼= BlPk−1×Pn−k−1(Pk × Pn−k).

Proof. First of all, Pk ×Pn−k has natural coordinates given by coefficients of polynomials

(a(x), b(y)) of degrees k and n − k. It is also natural to identify the roots of these

polynomials with the corresponding subschemes in C1, C2
∼= P1. From (a(x), b(x)) we

construct an ideal in the homogeneous coordinate ring of C by taking the product

I = (y, a(x))(x, b(x)) = (xy, xa(x), yb(y), a(x)b(y)).
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This determines a length n subscheme so a point in Mn,k. Note that this map is invertible

outside the locus where we have at least one point from each axis at the origin.

We can further write a(x)b(y) = a0b0 + a0b
′(y) + b0a

′(x) mod (xy), where a(x) =

a0 +a′(x), b(y) = b0 +b′(y) and a′(x), b′(x) have no constant term. Consider now the limit

of I = I1 as the products of the coordinates of the roots of a(x), b(y) separately go to

zero linearly, i.e. let t→ 0 in a0 = At, b0 = Bt and in the corresponding family of ideals

It. Since this is a flat family, the limiting ideal I0 = limt→0 It has the same colength and

support on the locus where at least one point from each axis is at the origin. In particular

(a0b0 + a0b
′(y) + b0a

′(x))/t→ Ab′(y) +Ba′(x) as t→ 0, and

lim
t→0

It = (xy, xa′(x), yb′(y), Ab′(y) +Ba′(x)).

Since all ideals in the locus of Mn,k with at least one point from each axis at the origin

can be written in this form, and (A : B) ∈ P1 determines the limiting ideal completely,

we can identify (A : B) with the normal coordinates (a0 : b0) and the natural map

π : Mn,k = (Csm
1 )[k] × (Csm

2 )[n−k] → Pk × Pn−k

is the blowup along the locus where both a(x) and b(y) have zero as a root.

See also [81] for a similar blow-up description.

The intersections of the components can also be seen in this description.

Lemma 3.4.2. We have En
k,k+1 = Mn,k ∩Mn,k+1

∼= Pn−k−1 × Pk and all the other inter-

sections are trivial.

Proof. We continue in the notation of the proof of Lemma 3.4.1. Denote the locus where

at least one point from either axis is at the origin in Mn,k by Ln,k. Suppose then that

we are outside Ln,k ∪ Ln,k̃ inside Mn,k ∩Mn,k̃. Then only one point is at the origin and

the this locus is identified naturally with the complement of the corresponding locus in

Pn−k−1 × Pk if k + 1 = k̃ and is empty otherwise. We are thus left to studying the loci

Ln,k.
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Consider again points I = (xy, xa′(x), yb′(y)), Ab′(y) + Ba′(x)) in Ln,k and points

Ĩ = (xy, xã′(x), yb̃′(y)), Ãb̃′(y) + B̃ã′(x)) in Ln,k̃.

First, restrict I to the x-axis i.e. let y = 0. Then I|y=0 = (xa′(x), Ba′(y)). If B = 0

this has colength k + 1 since a′(x) is of degree k. If B 6= 0 the colength is k.

Similarly, we get the colengths of Ĩ|y=0 to be k̃ or k̃ + 1 depending on whether B̃ is

nonzero or not. Without loss of generality we can assume k̃ > k. In this case the only

possibility for I, Ĩ to be in the intersection Mn,k ∩Mn,k+1 is to have k+ 1 = k̃, B = 0 and

B̃ 6= 0.

A similar analysis for the y-axis shows that we must have Ã = 0 and A 6= 0. So in

particular, the intersections En
k,k̃

are isomorphic to Pn−k−1 × Pk if k + 1 = k̃ and empty

otherwise.

Now one may compute what V is. There is a natural stratification of a blowup to

the exceptional divisor and its complement. These both come with affine pavings, so a

particularly easy way to compute the cohomologies of C [n], or at least the Betti numbers,

is to count these cells. We have

Proposition 3.4.3. The bigraded Poincaré series for the space V =
⊕

n≥0H∗(C
[n]) is

given by

PV (q, t) =
q2t2 − q + 1

(1− q)2(1− qt2)2
.

The grading corresponding to t is the homological degree, whereas q keeps track of the

grading given by number of points.

Proof. It is easily confirmed that the Poincaré polynomials of the components are given

by

PMn,k
(t) = t2

(
k−1∑
i=0

t2i

)(
n−k−1∑
i=0

t2i

)
+

(
n−k∑
i=0

t2i

)(
k∑
i=0

t2i

)
.

Similarly, the Poincaré polynomials of the intersections are given by

QEnk,k+1
(t) =

(
k∑
i=0

t2i

)(
n−k−1∑
i=0

t2i

)
, k ≤ n− 1,
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0 2 4 6 8 10 · · ·

0 1 0 0 0 0 0 · · ·

1 1 2 0 0 0 0 · · ·

2 1 3 3 0 0 0 · · ·

3 1 4 5 4 0 0 · · ·

4 1 5 7 7 5 0 · · ·

5 1 6 9 10 9 6 · · ·
...

...
...

...
...

...
...

. . .

Table 3.1. The dimensions Vn,d i.e. the Betti numbers of C [n]. The columns are labeled
by homological degree d and the rows by the number of points n.

and
∑n

k=0 PMn,k
(t)−

∑n−1
k=0 QEnk,k+1

(t) is by Mayer-Vietoris the Poincaré polynomial of C [n].

It is easy to see that
∑

n≥0 q
n
(∑n

k=0 PMn,k
(t)−

∑n−1
k=0 QEnk,k+1

(t)
)

= PV (q, t).

Figure 3.1 shows the graded dimension of V as a bigraded vector space.

3.4.2 Computation of the A-action

We will now investigate the action of the algebra A = 〈x1, x2, µ+, µ−, d1, d2〉Q on V .

Consider V•,2n =
⊕

i Vi,2n ⊂ V , i.e. all the classes in homological degree 2n. Denote

by [Mn,k] the fundamental class of the irreducible component Mn,k of C [n] as described in

the previous subsection.

Theorem 3.4.4. The fundamental classes [Mn,k] ∈ Vn,2n generate V•,2n as a Q[x1, x2]-

module.

Proof. This is equivalent to proving that the maps xi|Vk,2n are jointly surjective for k ≥ n.

Dualizing the maps to pullbacks x∗i |Vk,2n in cohomology, this condition is to say that the

operators x∗i : H<2k+2(C [k+1])→ H∗(C [k]) must satisfy
⋂

kerx∗i = 0.

We have the following diagram for the components of C [n] and their intersections.
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En
0,1 En

1,2 En
2,3 · · ·

Mn,0 Mn,1 Mn,2 Mn,3 · · ·

Since C [n] is a chain of the components Mk,n−k intersecting transversally, without triple

intersections, the Mayer- Vietoris sequence in homology for unions splits to short exact

sequences:

0→
n−1⊕
k=0

Hi(E
n
k,k+1)→

n⊕
k=0

Hi(Mn,k)→ Hi(C
[n])→ 0

Dually, we have an exact sequence the other way around in cohomology. By our blow-

up description of π : Mn,k 7→ Pn−k×Pk, we have as graded vector spaces that (see e.g. [34],

Chapter 6):

H∗(Mn,k) =
π∗H∗(Pn−k × Pk)⊕H∗(P(NPn−k×Pk/Pn−k−1×Pk−1))

π∗H∗(Pn−k−1 × Pk−1)
.

In particular, we can write

H∗(Pn−k × Pk) = Q[an,k, bn,k]/(a
n−k+1
n,k , bk+1

n,k )

as well as

H∗(P(NPn−k×Pk/Pn−k−1×Pk−1)) = Q[a′n,k, b
′
n,k, ζn,k]/(a

′n−k
n,k , b′kn,k, (ζn,k − a′n,k)(ζn,k − b′n,k)),

where ζn,k = c1(O(1)).

Since the classes

a′′in,kb
′′j
n,k ∈ π

∗H∗(Pn−k−1 × Pk−1) ∼= Q[a′′n,k, b
′′
n,k]/(a

′′n−k
n,k , b′′kn,k)

are in π∗H∗(Pn−k×Pk) identified with ain,kb
j
n,k where i < n−k, j < k and in the exceptional

divisor with a′in,kb
′j
n,k, the quotient map as graded Q-modules is the one identifying ain,kb

j
n,k

with a′in,kb
′j
n,k.

All in all, we can write as a graded Q-vector space that

H∗(Mn,k) = 〈1, an,k, bn,k, . . . , an−kn,k b
k
n,k, ζn,k, . . . , ζn,ka

n−k−1
n,k bk−1〉Q. (3.4.1)
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Example 3.4.5. We have that H∗(M2,0) = Span{1, a3,0, a
2
3,0}, as expected, since M2,0

∼=

P2
C. We also have that H∗(M2,1) = Span{1, a2,1, a

2
2,1, b2,1, a2,1b2,1, a

2
2,1b2,1, ζ2,1, ζ2,1a2,1}.

Having described the cohomology of the components Mn,k we can get back to our

exact sequence. Identify

H∗(Pn−k−1 × Pk) ∼= Q[µn,k, νn,k]/(µ
n−k
n,k , ν

k+1
n,k ).

Lemma 3.4.6. Under the inclusion En
k,k+1 ↪→ Mn,k we have µn,k 7→ an,k − ζn,k and

νn,k 7→ bn,k− ζn,k in cohomology. Similarly, under the inclusion En
k,k+1 ↪→Mn,k+1 we have

µn,k 7→ an,k+1 − ζn,k+1 and νn,k 7→ bn,k+1 − ζn,k+1.

Proof. The class of µn,k in the intersection is the class dual to the the line Lyn,k, where

we fix all points in En
k,k+1 at the origin except for one at the y-axis. Similarly the class

of νn,k is the line Lxn,k where we have but one point on the x-axis. Under the blowup

πn,k : Mn,k → Pn−k × Pk the class of Lyn,k in Mn,k is given by the total transform, which

satisfies [Lyn,k] + ζn,k = an,k. The computation for the other three cases is nearly identical

and we omit it.

Example 3.4.7. When n = 2 the Hilbert scheme C [2] has the following components:

M2,0
∼= M2,2

∼= P2 and M2,1
∼= Blpt(P1 × P1). The intersections are E2

0,1
∼= E2

1,2
∼= P1. The

fundamental class of the first intersection is denoted µ2,0 and that of the second one is

denoted µ2,1. Under the inclusion E2
0,1 ↪→ M2,0, the class µ2,0 is identified with a2,0, and

under the inclusion E2
0,1 ↪→M2,1 with a2,1−ζ2,1. Similarly, under the inclusion E2

1,2 ↪→M2,1

the class µ2,1 is identified with a2,1 − ζ2,1, whereas under the inclusion E2
1,2 ↪→ M2,2 it is

identified with a2,2.

As follows from the definition of the maps ιi : C [n] → C [n+1], we can consider them

as restricted to Mn,k. They induce, by abuse of notation, maps in cohomology x∗i :

H∗(Mn+1,k+i−1)→ H∗(Mn,k). We can describe these maps explicitly.

Lemma 3.4.8. In the basis of (3.4.1), we have

x∗1 : ain+1,kb
j
n+1,k 7→ ain,kb

j
n,k
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and

ζn+1,ka
i
n+1,kb

j
n+1,k 7→ ζn,ka

i
n,kb

j
n,k.

Similarly,

x∗2 : ain+1,k+1b
j
n+1,k+1 7→ ain,kb

j
n,k

and

ζn+1,k+1a
i
n+1,k+1b

j
n+1,k+1 7→ ζn,ka

i
n,kb

j
n,k.

Proof. We are adding one fixed smooth point i.e. embedding C [n] ↪→ C [n+1] as a divisor.

Blowing down the components it is immediate that the a-classes go to the a-classes and the

b-classes go to the b-classes. We can treat the classes in the exceptional divisor separately,

where everything reduces again to embedding products of projective spaces as above. In

addition, we need that x∗1ζn+1,k+1 = ζn,k, which is saying that the normal bundle of the

exceptional divisor of Mn+1,k+1 restricts to that of the exceptional divisor of Mn,k under

the embedding ι1 : Mn,k → Mn+1,k+1. In the notation of Lemma 3.4.1 we have that the

map ι1 is on Mn,k given by multiplying a(x) by x− c for some fixed c 6= 0. In particular,

the centers of the blowups become identified, and the restriction of the normal bundle of

the exceptional divisor of Mn+1,k+1 is the normal bundle of Mn,k.

Having the above lemmas at our hands, we want to prove that the intersections of the

kernels of the x∗i are only the fundamental classes.

The basic object of study here is the commutative diagram⊕n
k=0H

<2n(Mn,k) H<2n(C [n])

⊕n−1
i=0 H

∗(Mn−1,i) H∗(C [n−1])

(3.4.2)

We can explicitly describe the kernels on the left: for each Mn,k, only the classes

ζn,ka
k−1
n,k b

n−k−1
n,k are in their intersection. In particular the intersection of the kernels is

nonempty. But this can be remedied on the right, as follows. By Lemma 3.4.6 and the
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Mayer-Vietoris sequence, inside the intersection we can check that

x∗2(
∑
k

λkζn,ka
k−1
n,k b

n−k−1
n,k ) =

∑
k

λkx
∗
2(ζn,k)a

k−1
n−1,kb

n−k−1
n−1,k

=
∑
k

λkx
∗
2(an,k − an,k+1 + ζn,k+1)ak−1

n−1,kb
n−k−1
n−1,k

=
∑
k

λk(an−1,k−1 − an−1,k)a
k−1
n−1,kb

n−k−1
n−1,k

=
∑
k

λkan−1,k−1a
k−1
n−1,kb

n−k−1
n−1,k ,

which is 0 if and only if λk = 0 for all k. Repeating this for x∗1 we have

x∗1(
∑
k

λkζn,ka
k−1
n,k b

n−k−1
n,k ) =

∑
k

λkbn−1,k−1a
k−1
n−1,kb

n−k−1
n−1,k = 0

if and only if λk = 0 for all k. In particular, we see that the image of the fundamental

class of the exceptional divisor is also nonzero, i.e. it is not in the kernel and
⋂
i kerx∗i = 0

on the right.

This finishes the proof of Theorem 3.4.4.

Having Theorem 3.4.4 at our hands, we can finally restate Theorem 3.0.4:

Theorem 3.4.9. Consider the following bigraded vector space: let V ′′ = Q[x1, x2, y1, y2]

with xi in degree (1, 0) and yi in degree (1, 2). Consider the action of A′ = Q〈xi, ∂yi ,
∑
yi,
∑
∂xi〉

on this space as differential operators, and let U be the submodule Q[x1, x2, y1+y2](x1−x2).

Define V ′ = V ′′/U . Then V ∼= V ′ as A = Q[x1, x2, d1, d2, µ+, µ− ∼= A′-modules.

Proof. That A′ is isomorphic to A in this case follows from the commutation relations

when sending xi 7→ xi, ∂yi 7→ di and
∑
yi 7→ µ+,

∑
∂xi 7→ µ−. We can identify V ′ and V

as A-modules as follows: let the monomial yi1y
j
2/i!j! correspond to the fundamental class

of Mi+j,i. It is then clear that on the diagonal
⊕

n≥0 Vn,2n the operators d1, d2, µ+, µ−

act as the corresponding differential operators in A′. Namely, the Gysin maps d1, d2 are

given by intersection, from which it follows that d1[Mi+j,i] = [Mi+j−1,i−1] and d2[Mi+j,i] =

[Mi+j−1,i]. This can be compared to the fact that for example ∂y1y
i
1y
j
2/i!j! = yi−1

1 yj2/(i−

1)!j!.
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By the commutation relations, [di+1
1 , µ+] = (i+ 1)di1, so

[di+1
1 , µ+]yi1y

j
2/i!j! = (i+ 1)yj2/j!, [dj+1

2 , µ+]yi1y
j
2/i!j! = (j + 1)yi1/i!

and in particular

di+1
1 µ+y

i
1y
j
2/i!j! = (i+ 1)yj2/j!, d

j+1
2 µ+y

i
1y
j
2/i!j! = (j + 1)yi1/i!.

Since µ+y
i
1y
j
2/i!j! =

∑i+j+1
k=0 cky

k
1y

i+j+1−k
2 for some constants ck, we must have ck = 0

unless k = i or k = i + 1, in which case we have ck = 1/i!j!. This shows that µ+ can

be identified with multiplication by y1 + y2 on the diagonal, and below the diagonal since

it commutes with the action of x1, x2. The operator µ− acts on the diagonal as zero by

degree reasons. An argument similar to the above shows that µ− acts below the diagonal

by ∂x1 + ∂x2 .

Since the maps xi are jointly surjective on the rows by Theorem 3.4.4, we get a

surjection φ : Q[x1, x2, y1, y2] � V. This is an A-module homomorphism by above. Its

kernel contains U , since (x1 − x2) · 1 = 0 and the actions of xi and µ+ commute with the

xi.

Consider then the graded dimensions/Poincaré series of V ′ and V . We have

PV ′(q, t) = PV ′′(q, t)− PU(q, t) =
1

(1− q)2(1− qt2)
− q(1− qt2)

(1− q)2(1− qt2)2
= PV (q, t),

and since kerφ ⊇ U , we must have kerφ = U .

3.5 Coulomb branches and correspondence algebras

In joint work with Garner [21], we study these Hilbert schemes as generalized affine

Springer fibers in the sense of [7]. In this Section together with Section ?? give an

introduction to this circle of ideas. Let G/C be reductive, g = Lie(G), and V be a(n

algebraic) representation of G. Let K = C((t)) and O = C[[t]]. Let GrG be the affine

Grassmannian of G.

Definition 3.5.1. Let v ∈ V (K). Define the generalized affine Springer fiber associated

to v as the reduced ind-scheme

Mv(C) := {g ∈ G(K)|g−1.v ∈ V (O)}/G(O).
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Remark 3.5.2. Note that the definition of Mv also depends on G, V . Since we will only

be working with G = GLn, V = Ad⊕Cn, we omit these from the notation.

Remark 3.5.3. The ”classical” affine Springer fibers are the case when V = Ad.

3.5.1 Springer representations

In [7], associated to the datum (G, V ), certain convolution algebras were defined as follows.

Definition 3.5.4. Define the BFN space of (G, V ) as

Note that the C-points are given by the set

RG,V (C) = {(g, s) ∈ G(K)× V (O)}/G(O).

Theorem 3.5.5 (Braverman-Finkelberg-Nakajima). There is a natural convolution prod-

uct on AG,V := H
G(O)
∗ (RG,V ), making AG,V an associative, commutative algebra with unit.

3.6 Hilbert schemes of points on curve singularities

Let Ĉ := SpecR be a germ of a reduced plane curve singularity and write R = C[[x,t]]
f

.

Definition 3.6.1. The Hilbert scheme of N points on Ĉ is defined as the reduced scheme

Ĉ [n] := Hilbn(Ĉ) := {colength n ideals in R}.

Remark 3.6.2. In particular, the reduced scheme

Hilb•(Ĉ) :=
⊔
N≥0

HilbN(Ĉ)

is naturally the moduli space of nonzero ideals on Ĉ.

We now state and prove our main theorem.

Theorem 3.6.3. For any Ĉ, there is a generalized Ad⊕Cn-affine Springer fiber Mv ⊂

GrG so that there is an isomorphism of schemes

ϕ : Mv → Hilb•(C)
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Proof. Note that we can interpret Ĉ and Ĉ [n] as follows. If f(x, y) is a degree n polynomial

in x, by reducedness of Ĉ we may write as C[[t]] = O-modules that

C[[x, t]]

f
= 〈1, x, . . . , xn−1〉O, (3.6.1)

where 〈S〉O denotes the free O-module generated by a set S.

Taking the total ring of fractions of R, we see that as C((t)) = K-vector spaces

Frac(R) ∼=
∏d

i=1 Fi
∼= Kn where d is the number of irreducible factors overK of f and Fi are

finite extensions of K so that
∑

i[Fi : K] = n. There is a natural injection R ↪→ Frac(R),

and we choose an isomorphism φ : Frac(R) ∼= Kn identifying R with On and 1 ∈ R with

the vector e1 = (1, 0, . . . , 0) in Kn. We may moreover choose φ so that in the standard

basis of Kn, x has the form

γ =



0 0 · · · 0 a1

1 0 · · · 0 a2

0 1
. . . 0 a3

...
. . . . . .

...
...

0 · · · 0 1 an


so that e1, γe1, . . . , γ

n−1e1 is a O-basis of On. Recall that a matrix of the above form is

called the companion matrix of the polynomial a1 + a2t+ · · ·+ ant
n.

By definition, O-lattices in Frac(R) stable under x are identified with (nonzero) frac-

tional R-ideals. The variety of (nonzero) ideals in R is then identified with fractional

ideals in Frac(R) contained in R, and under φ, we get

Hilb•(Ĉ) ∼= X := {Λ ⊂ On|γΛ ⊂ Λ}.

Now for any Λ, there is an element g ∈ G(K) so that gΛ = On. It is well defined up to

the stabilizer of On which is G(O). In particular, g−1e1 ∈ Λ. Because γg−1On ⊂ g−1On,

we have gγg−1 ∈ Lie(G(O)).

By sending Λ to (g, gγg−1, g−1e1), get a map from X to the scheme

Mv = {(g, γ′, e)|g−1γ′g = γ, ge = e1}/G(O).
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Conversely, to any (g, γ′, e) satisfying these conditions we can associate

Λ = 〈e, γ′e, . . . , γ′n−1e〉O ⊂ On.

Then γΛ = γg−1On = g−1γ′On ⊂ g−1On = Λ. As these constructions are inverse to each

other, we have X ∼= Mv.

Finally, composing with the isomorphism to Hilb•(Ĉ) we get that

Hilb•(Ĉ) ∼= Mv.

By Definition 3.5.1 the space Mv is the generalized Ad⊕Cn-affine Springer fiber for v =

(γ, e1).
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Chapter 4

Geometric representation theory of

trigonometric DAHA

In this final chapter, which is slightly separate from the rest of the thesis, we give an

introduction to the work of Lusztig-Yun and provide examples (most of which are not

found or are scattered around the literature) of their theory in type A. This ties most

closely to the theory of affine Springer fibers and we spend some time elucidating this

connection.

4.1 Graded Lie algebras

Let G be a semisimple simply connected algebraic group over an algebraically closed field

k. Let g be its Lie algebra and θ an order m ∈ N ∪ {∞} semisimple automorphism of G.

Then dθ induces a Z/m-grading g =
⊕

i∈Z/m gi. Let Ni = gi ∩N , where N is the cone of

nilpotent elements in g. Without loss of generality we can let i = 1. There is an action

K × gi → gi by conjugation, called a θ-representation in the literature. Lusztig and Yun

have studied the K := Gθ-equivariant constructible sheaves on N1. Denote the derived

category of constructible sheaves on Ni by DK(Ni).

Theorem 4.1.1 ( [60], Theorem 0.6). There is a canonical direct sum decomposition into

full subcategories

DK(Ni) =
⊕

(M,m∗,C)

DK(Ni)(M,m∗,C),
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Figure 4.1. The hyperplane arrangement H1 for A2, c =
1
n .

where M is a pseudo-Levi subgroup in G, m∗ is a Z-grading on its Lie algebra compatible

with the Z/m-grading of g, and C is a cuspidal local system. The equivalence classes of

triples (M,m∗, C) are called admissible systems, and the full subcategories DK(Ni)(M,m∗,C)

are called blocks.

Denote the category of K-equivariant perverse sheaves with middle perversity on Ni
by PK(Ni). Let I(Ni) be the set of isomorphism classes of simple objects in this category,

and B the set of blocks.

In this chapter, we are mainly interested in the principal block, with the notable

exception of Section 4.4.

We will review the type A edge cases where θ is either inner or the Cartan involution.

4.2 Spirals and spiral induction

Let A be a

4.3 Trigonometric double affine Hecke algebras

In this section, we review trigonometric double affine Hecke algebras and the classification

of their irreducible representations at a rational parameter in type A, due to Cherednik,

Suzuki, and Vasserot [13, 87,90].

Let G/C be a connected reductive group. Fix a pinning T ⊂ B ⊂ G and denote the

associated Weyl group W . Define the extended affine Weyl group as W̃ := W nX∗(T ).

The affine Weyl group W aff is a canonical subgroup so that W̃/W aff is a finite group. In
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Figure 4.2. The hyperplane arrangement H1 for A2, c = 1.

fact, it is a cyclic group unless we are in type D4, which we will for simplicity of exposition

not consider in this thesis. Denote a lift of a generator of this cyclic group by π, and the

the set of simple reflections in W aff determined by the pinning S. We choose π so that

πsi = si+1π.

Definition 4.3.1. The trigonometric DAHA H of W̃ is defined as follows. As a vector

space, it is the tensor product

C[W̃ ]⊗C C[t]⊗ C[u].

Moreover,

1. The factors C[W̃ ] and C[t] under their natural embeddings are subalgebras.

2. The element u is central.

3. For all v ∈ t∗, si ∈ S, we have siv − sivsi = ciu〈αi, v〉, and πv = πvπ.

The grading is defined by assigning u degree 2 and W̃ degree zero (implying t∗ has degree

2). The numbers ci are in general images of a conjugacy-invariant function S → C.

Definition 4.3.2. The specialization of H at c ∈ C, is defined as

Hc := H/(u+ c).

Note that this is only a filtered algebra. We will also call Hc the trigonometric DAHA as

no confusion is likely to arise.
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Remark 4.3.3. Below we will simply speak of H associated to G and in Section 4.4, to

the pair (G, θ). In these cases the numbers ci are as in [62, Section 2.5]. In particular if

G = GLn, ci = 1 for all i, and if (G, θ) = (GLn, g 7→ g−t), the number for the short roots

is 1 and for the long roots it’s 1/2.

4.3.1 The case G = GLn

In this subsection, we consider G = GLn and parameters of the form c = 1/m, where

m is an integer. We will state a classification of all Hc-modules in ”category O”, due to

Cherednik, Vasserot, and Suzuki [13, 87,90].

Remark 4.3.4. In [87], Suzuki uses slightly different notation. Namely, his ”parameter

of the degenerate double affine Hecke algebra” is the reciprocal of our c, or in other words

the parameter usually called ”t” in the literature. This can easily be seen by comparing

Definition 4.3.2 and [87, Definition 3.1]. Note also that in the work of Lusztig-Yun [60]

and in earlier work of Lusztig [56], the numbers ci are related to ours by a factor of two

(having to do with the normalization in pairing of roots and coroots).

Definition 4.3.5. Let Oc be the full subcategory of Hc-fgmod consisting of those Hc-

modules M so that

1. M is locally C[t]-finite (note that this implies that we have a generalized weight

space decomposition M = ⊕ζ∈t∗Mζ),

2. The generalized weight spaces are contained in X∗(T )+mu∗, where u∗ is the element

in X∗(T )⊕ Z dual to u.

Theorem 4.3.6. The set of isomorphism classes of irreducible representations in Oc is

in bijection with the set of dimension n nilpotent representations of the cyclic quiver with

m vertices.

Proof. This is proved e.g. in [87, Theorem 7.2], but we give another proof here using

results of [53, 60, 90], which boils essentially down to a tautology for those familiar with

Springer theory. In loc. cit., it is shown that the irreducible modules in Oc can be

identified with irreducible G0-equivariant perverse sheaves on gnil1 . Since G = GLn, it is
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clear that these are parameterized by G0-orbits on gnil1 . On the other hand, these are

by definition the nilpotent representations of dimension n of the cyclic quiver with m

vertices.

4.4 Block decomposition for the split symmetric pair

in type A

The following corollary is an immediate consequence of Theorem 4.1.1

Corollary 4.4.1. There is a map

Ψ : I(Ni)→ B

associating to each simple perverse sheaf its block.

We will determine this map (called ”map 3.5” in [60]) in the case G = SLN , θ : g 7→

g−t, N odd. The even N case is similar but we omit it for notational simplicity.

In principle, the methods here are generalizable to arbitary symmetric spaces, but as

Lemma 4.4.2 is somewhat ad hoc and Lusztig’s results largely apply classification results,

we leave this for the future.

Lemma 4.4.2. Let λ = (m · im + (m − 1) · im−1 + · · · + 1 · i1). Consider the sequence

z1 ≤ z2 ≤ · · · ≤ zm′ where m − (2i + 1) appears exactly im times for i = 0, . . . , bm/2c.

Then suppose that

h = diag(z1, . . . , zm′ ,−zm′ , . . . ,−z1),

e is the upper-triangular matrix with nonzero entries 1 exactly at (i, j) wherever zi−zj = 2,

and f is the unique element so that [e, f ] = h. Then (e, h, f) is a normal sl2-triple in g

and e ∈ Oλ.

Proof. The involution θ is conjugate to the transpose along the antidiagonal. It is then

clear h ∈ g0 and e, f ∈ g1. As to checking the Jordan type, we are immediately reduced

to the case of a regular nilpotent, in which case this is standard.

Having the lemma at hand, we can now easily compute the algebra l. By definition,

lλ :=
⊕

j{g ∈ gj|[h, g] = 2jg}
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Lemma 4.4.3. Let λ be written as above. For e ∈ Oλ,

l = SO(
∑
j

(2j + 1) · i2j+1)× Sp(
∑
j

2j · i2j)

Proof. Let Φ′ = {(α, i) ∈ Φ × Z/2|gi(α) 6= 0}. Label the positive roots of GLn by

(i, j), 1 ≤ i < j ≤ n. Then g0(i, j) = Ei,i+1 − Ej,j+1 and g1(i, j) = Ei,i+1 + Ej,j+1,

where Eij is the elementary symmetric matrix. By construction, gi(α) for (α, i) ∈ Φ′ are

eigenspaces for the adjoint action of h. It is clear that transposing gives the corresponding

negative eigenspaces. In particular, lk is the sum of gk(ij) where zi − zj = 2k. Since

[gi1(α1), gi2(α2)] ⊆ gi1+i2(α1 + α2), the subspaces lodd = ⊕i≡1 mod 2li, leven = ⊕i≡0 mod 2li

are Lie subalgebras. Moreover, they are of the form sp(a) and so(b), respectively.

Example 4.4.4. We have

l15 = g0

l5 = SO(5) = g0

l311 = SO(5)

l32 = SO(3)× Sp(2)

Remark 4.4.5. In [92, 93], Vinberg defined carrier algebras for nilpotent orbits in θ-

representations to classify them. The algebra l is a canonical subalgebra of the carrier

algebra. The computer program [14] is very useful in computing carrier algebras.

We view this association in terms of [60, Section 2.9]. Namely, we have the following

Lemma.

Lemma 4.4.6. To each (O,L) it is possible to associate a pseudo-Levi subgroup L and

compatible Z-grading l∗ of its Lie algebra by the method loc. cit. Up to conjugacy this

only depends on λ, and we get an actual representative by choosing x ∈ Oλ.

Then x ∈ l◦1, where ◦ denotes the open L0-orbit. Restriction of L to l◦1 gives a shifted

irreducible L0-equivariant local system on l◦1. Its IC extension (after shifting) gives a

simple L0-equivarint perverse sheaf L1 on l1.

By [60, Section 1.5] and [57, Section 7.5] we can associate to L1 a Levi subgroup M

of L and a compatible grading of its Lie algebra.
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4.4.1 Some combinatorics of symbols

In this subsection, we review Lusztig symbols for Sp(2n) and SO(N) following [58, Chap-

ters 11-13]. We then use symbols and the classical Springer correspondence to prove

Theorem 4.4.11.

4.4.1.1 Sp(2n)

Suppose G = Sp(2n). Consider the set of all ordered pairs (A,B), where A ⊂ {0, 1, 2, . . .}

and B ⊂ {1, 2, 3, . . .} are finite. The reader is advised to visualize these as abaci on two

runners. Consider further the subset Ψ̃2n, where

1. {i, i+ 1} 6⊂ A,B for arbitary i,

2. |A|+ |B| is odd,

3.
∑

a∈A a+
∑

b∈B b = n+
(|A|+|B|

2

)
.

Consider the equivalence relation (A,B) ∼ ({0} ∪ (A + 2), {1} ∪ (B + 2)). The set of

equivalence classes for this relation is denoted ΨSp(2n).

Lemma 4.4.7 (Classical Springer correspondence for Sp(2n)). There is a bijection

ΨSp(2n) → I(N )

that restricts to bijections

Ψ
(i)
Sp(2n) → I(N )(i).

Remark 4.4.8. Here and in the next section, it is useful to think about the similarity

classes.

Proposition 4.4.9. There is an injection Poe(2n) ↪→ ΨSp(2n) given by

4.4.1.2 SO(2n+ 1)

Suppose G = SO(2n + 1). Consider the set of all unordered pairs {A,B}, where A,B ⊂

{0, 1, 2, . . .} are finite. Consider the subset given by the conditions

1. {i, i+ 1} 6⊂ A,B for arbitary i,
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2.
∑

a∈A a+
∑

b∈B b = n+ (|A|+|B|)2−2(|A|+|B|)
2

.

Consider the equivalence relation given by {A,B} ∼ {{0} ∪ (A+ 2), {0} ∪ (B + 2)), and

let the set of equivalence classes for this relation be Ψ′2n+1.

Lemma 4.4.10 (Classical Springer correspondence for SO(2n+ 1)). There is a bijection

Ψ′SO(2n+1) → I(N )

that restricts to bijections

Ψ
(i)
SO(2n+1) → I(N )(i).

4.4.1.3 Determination of the blocks

Theorem 4.4.11. There is a commutative square

I(N1) B

{(λ, τ)} {(a, b)|a(a+ 1) + b2 ≤ N}

Φ

Φ′

where the vertical maps are bijections and Φ is combinatorially determined by the algo-

rithm in Proposition 4.4.12.

Proposition 4.4.12. The map

Φ′ : {(λ, τ)} → {(a, b)|a(a+ 1) + b2 ≤ N}

coincides with [60, 3.5.].

1. Given (λ, τ), associate the algebra l as in Lemma 4.4.6 to λ. Then l is of the form

so(a)× so(b)× gl(n).

2. As in Lemma 4.4.6, associate an L0-equivariant IC complex on l1 as in the Lemma.

On the level of component groups, it is given by restriction of τ to the carrier, as

shown in [60].

3. This gives us two symbols σ1, σ2, one for so(a) and one for sp(b).

4. As in loc. cit., we can now use the graded Springer correspondence of [57] to de-

termine the admissible system (λ, τ) is coming from by determining the cores of

σ1, σ2.
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