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On Image of TQFT representations of mapping class groups

Abstract

We study the image of TQFT representations of mapping class groups with boundary. Especially, we

are looking for the irreducibilty and denseness of TQFT representations of mapping class groups of surfaces

with boundary. We proved the representations are always irreducible for SU(2)-TQFT at prime level. We

also show the representations are Zariski dense when g = 0 and quantum parameter A is a transcendental

number.
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CHAPTER 1

Introduction

A (2+1)-dimensional topological quantum field theory(TQFT) is a monoidal functor from the category

of 3-dimensional cobordisms to the category of finite dimensional vector spaces. That is, The functor takes

an oriented surface to a finite dimensional vector space and takes a cobordism connecting two surfaces to

a linear transformation between the vector spaces that been assigned to the surfaces. Naturally, a (2+ 1)-

dimensional TQFT gives us:

• A (quantum) invariant of closed 3-manifolds: A monoidal functor send tensor unit to tensor unit,

so a TQFT sends the empty set to the base field k. A closed 3-manifold can be considered as a

cobordism connecting two empty set. Thus the TQFT send it to a number in the base field k.

• A (projective) representation of the mapping class group of a closed surface: A TQFT assigns to

each surface a vector space. Identify mapping classes as mapping cylinders. Then applying TQFT

we get an action of the mapping class group on the vector space assigned to the surface.

(2+ 1)-dimensional TQFTs can be constructed from modular tensor categories. In our work, we con-

sider the TQFT constructed by a modular category combinatorially defined using Kauffman bracket. It is

also called SU(2) Chern-Simons TQFT because the modular tensor category defined by Kauffman bracket

have the same monoidal structure as the representation theory of quantum enveloping algebra of su(2).

In general, TQFTs constructed using modular tensor categories are not anomaly-free. That is, when

we compose two actions(equivalently, glue two cobordisms), a constant factor appears. Thus, by TQFT

representations of mapping class groups, we actually mean projective representations of mapping class

groups or linear representation of some central extensions of mapping class groups.

Kauffman bracket defines a braided tensor category. After taking the quantum parameter A in the Kauff-

man relation be some root of unity, one can truncate the category at a certain level. This operation gives us a

modular tensor category. Moreover, With some special choice of A. The modular tensor category is unitary.

We will explain the notations of tensor categories in Chapter 2.

1



SU(2)-TQFT representations are important examples for studying mapping class groups. It is still an

open problem that whether mapping class groups are linear, by linear, we mean existing a faithful finite

dimensional representation. The only two known families of finite dimensional representations of mapping

class groups are homology representations and TQFT representations. SU(2)-TQFT representations are the

first interesting case of the latter case. It provide interesting examples in both geometric topology [12] and

quantum algebra [9].

In this paper, we are studying the image of mapping class groups in their SU(2)-TQFT representations.

Usually we understand this question in the following order: We start with irreducibility, so we can restrict

the image into blocks. Then we check the (in)finiteness of the image. If the image is finite then we have a

finite quotient (e.g., Weil representation). Otherwise, we study its closure under Zariski topology or Analytic

topology.

The historical results of this problem are listed below:

• When A is a 4r-th root of unity, and r is an odd prime number. The representations are irreducible

for closed surfaces. [21]

• When A is a 4pq-th root of unity, and p, q are odd prime numbers. The representations are irre-

ducible for closed surface of genus 2. [13]

• When A is a 8r-th root of unity, and r is an odd prime number. The representation for the close

surface of genus 2 decomposes into two irreducible sub-representations. [13]

• When A is a 4r-th root of unity. The representations are irreducible for all surfaces with boundary

if one of the boundary component is colored by 1. [11]

• When A is a 4r-th root of unity, and r is an odd prime number. The representation is irreducible

for a one-holed torus.(The original work is on SO(3)-TQFT, but the proof generalize to SU(2)

word-by-word) [18]

• When A is a 4r-th root of unity, and r 6= 2,3,4,6,10 and g ≥ 2. There exist an element in the

mapping class group with genus greater than 1 has infinite order in the image. [17]

• When A is a 4r-th root of unity, and r is an odd prime number. The finiteness of the image is known

for one-holed torus. [7] [17]

• When A is a 4r-th root of unity, and r 6= 2,3,4,6,10. The braid group representations from the braid

structure have analytic dense image.(The representation is also called Jones representation) [6] [15]
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• When A is generic. The braid group representations from the braid structure have Zariski dense

image. [15]

• When A is a 4r-th root of unity, and r is an odd prime number. The representations have dense

image for closed surfaces with genus at least 2. [16]

Our results are on the representations of mapping class groups with boundary. To get a vector space, the

boundary components of the surface should be colored by simple objects of the modular tensor category.

Our result is the following:

THEOREM 1.0.1. When A is a 4p-th root of unity, and p is an odd prime number. The representations

is irreducible for surfaces with boundary with arbitrary colors on the boundary components.

THEOREM 1.0.2. When A is a transcendental number, the representation have Zariski dense image for

n-holed sphere with arbitrary colors on the boundary components.

We remark that for surfaces have no genus, the mapping class groups are actually pure braid groups. To

define an action, we only need braid structure on the defining monoidal category. Thus the above theorem

make sense in this way.

The idea of our proof is by first looking at small surfaces. Then we glue them up to large surfaces

in different ways. By comparing different decompositions, we can get information of the image of the

representation for the large surface.

The first part of the thesis will serve as a exposition on modular category and 3-dimensional TQFTs.

The second part will be our work on this image problem, together with some possible problems for the

future work and relations to other questions in the field. The detail structure of the thesis is listed below:

• In Chapter 2, we begin with the definition of modular tensor categories(MTC). Important com-

putations and invariants of MTC will be introduced. We will also introduce the modular tensor

category defined by Kauffman’s bracket.

• In Chapter 3, we revisit the construction of the Reshetikhin-Turaev TQFT.

• In Chapter 4, we give a short introduction to mapping class groups. Then we will give a combina-

torial description of the mapping classes on the SU(2)-representation.

• In Chapter 5, we first introduce different versions of cross-lamination lemma. Then we prove 1.0.1

using induction on both genus and number of boundary components.
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• In Chapter 6, we study how irreducibility together with block-diagonal surjectivity implies surjec-

tivity. then we proof 1.0.2 by induction on number of boundary components.

• In Chapter 7, we discuss some future works and connections to some other works in the field.
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CHAPTER 2

Modular Tensor Categories

A modular tensor category is a structure that generalizes the representation theory of quantum groups.

The goal of this chapter is reviewing the formal definition of a modular tensor category, together with the

computation of some important invariants of modular tensor categories. We end this chapter by introducing

the modular tensor category from the Kauffman bracket, which will be used to construct the SU(2)-TQFT

in later chapters. For a detailed treatment of materials in this chapter, we refer readers to Chapter 2 and 12

of Turaev’s book [23] and Chapter 2 and 8 of [4].

2.1. Definition of a Modular Tensor Category

The goal of this section is to give the formal definition of a modular tensor category(MTC), from a

category theoretical point of view. Roughly speaking, a modular tensor category is a semi-simple abelian

category with an extra tensor product operation and with other structures. The tensor product can be realized

as a categorical generalization of the tensor product in the category of vector spaces. A category with tensor

product is called a monoidal category(in some of the literature, such a category is called a tensor category).

We start this section with the formal definition of monoidal category.

DEFINITION 2.1.1. A monoidal category is a category C with

(1) A bifunctor ⊗ called tensor product bifunctor, ⊗ : C ×C → C

(2) A natural isomorphism a called the associator, aX ,Y,Z : (X⊗Y )⊗Z→ X⊗ (Y ⊗Z)

(3) A object 1 called unit, with an isomorphism ι : 1⊗1→ 1

and subject to the following two axioms.
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(1) The pentagon axiom: The diagram

((W ⊗X)⊗Y )⊗Z

W ⊗ (X⊗Y )⊗Z (W ⊗X)⊗ (Y ⊗Z)

W ⊗ ((X⊗Y )⊗Z) W ⊗ (X⊗ (Y ⊗Z))

aW⊗X ,Y,Z

aW,X ,Y⊗idZ

aW,X⊗Y,Z aW,X ,Y⊗Z

idW⊗aX ,Y,Z

is commutative for all objects W,X ,Y,Z in C .

(2) The unit axiom: The functors L1 : X → 1⊗X and R1 : X → X ⊗1 of left and right multiplication

by 1 are autoequivalences of C .

The definition of monoidal category is a generalization of the category of vector spaces. The next

definition generalize the dual space of a vector space.

DEFINITION 2.1.2. An object X∗ in C is said to be a left dual of X if there exist morphism evX :

X∗⊗X → 1 and coevX : 1→ X⊗X∗, called the evaluation and coevaluation, such that the compositions

X coevX⊗idX−−−−−−→ (X⊗X∗)⊗X
aX ,X∗ ,X−−−−→ X⊗ (X∗⊗X)

idX⊗evX−−−−−→ X ,

X∗ idX⊗coevX−−−−−−→ X∗⊗ (X⊗X∗)
a−1

X∗ ,X ,X∗−−−−→ (X∗⊗X)⊗X∗
evX⊗idX∗−−−−−→ X∗

are identity morphisms.

A modular tensor category is a fusion category with modular data. We start with formal definition of a

fusion category.

DEFINITION 2.1.3. Let C be a finite k-linear abelian rigid semisimple monoidal category. We call C a

fusion category if

• bifunctor ⊗ is bilinear on morphisms,

• End(1,1)∼= k.

Examples of fusion categories include category of vector spaces and representation theories of finite

dimensional Hopf algebras. To define modular data, we need the category to be braided and ribbon. By word

braided and ribbon, we denote natural isomorphisms that represent ’crossing’ and ’full twist’ respectively.
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DEFINITION 2.1.4 (Braiding). A braiding on a monoidal category C is a natural isomorphism bX ,Y :

X⊗Y → Y ⊗X such that the hexagonal diagrams

X⊗ (Y ⊗Z) (Y ⊗Z)⊗X

(X⊗Y )⊗Z Y ⊗ (Z⊗X)

(Y ⊗X)⊗Z Y ⊗ (X⊗Z)

bX ,Y⊗Z

aY,Z,XaX ,Y,Z

bX ,Y⊗idZ

aY,X ,Z

idY⊗bX ,Z

and

(X⊗Y )⊗Z Z⊗ (X⊗Y )

X⊗ (Y ⊗Z) (Z⊗X)⊗Y

X⊗ (Z⊗Y ) (X⊗Z)⊗Y

bX⊗Y,Z

a−1
Z,X ,Ya−1

X ,Y,Z

idX⊗bY,Z

a−1
X ,Z,Y

bX ,Z⊗idY

commute for all X ,Y and Z in C . A braided monoidal category is a pair consisting of a monoidal

category and a braiding.

DEFINITION 2.1.5 (Ribbon). A twist on a braided rigid monoidal category C is θ ∈Aut(idC ) such that

θX⊗Y = (θX ⊗θY )◦bX ,Y ◦bY,X

for all X and Y in C . A ribbon tensor category is a braided rigid monoidal category equipped with a twist

satisfying (θX)
∗ = θX∗ .

Before we give the definition of a modular tensor category. We discuss the notion trace in rigid monoidal

categories. In the context of the category of finite dimensional k-vector spaces. we can define trace as a

linear map from Hom(V,V )→ k ∼= Hom(1,1). But in an arbitrary rigid monoidal category, there is no such

a canonical map from Hom(V,V ) to Hom(1,1). The most natural analoge of trace is the map left quantum

trace TrL : Hom(V,V ∗∗)→ Hom(1,1) and right quantum trace TrR : Hom(V, ∗∗V )→ Hom(1,1) defined as

following,

TrL(a) : 1 coevv−−−→V ⊗V ∗
a⊗idV∗−−−−→V ∗∗⊗V ∗

evV∗−−→ 1

7



TrR(a) : 1 coev∗V−−−→ ∗V ⊗V
id∗V⊗a−−−−→ ∗V ⊗ ∗∗V ev∗∗V−−−→ 1

In the ribbon category, one can construct a natural isomorphism φV : V → V ∗∗ such that for any a ∈

Hom(V,V ) one has

(2.1) TrL(φV a) = TrR(aφ
−1
V )

In some literature, the natural isomorphism ψV are called a spherical structure on category C . For a

ribbon category, we can define a trace map from Hom(V,V ) to Hom(1,1)∼= k.

The construction of ψ is given as the following composition. For proof of Equation 2.1 we refer readers

to Section 8.10 of [4].

(2.2) ψV :=V θV−→V
idV⊗coevV∗−−−−−−→V ⊗V ∗⊗V ∗∗

bV,V∗⊗idV∗∗−−−−−−→V ∗⊗V ⊗V ∗∗
evV⊗idv∗∗−−−−−→V ∗∗

Let C be a ribbon category. We define the S-matrix of C to be S := (sXY )X ,Y∈Irr(C ) where sXY =

Tr(bY,X ◦bX ,Y ).

DEFINITION 2.1.6. A pre-modular tensor category is a ribbon fusion category. It is said to be modular

if its S-matrix is non-degenerate.

We end this section by giving the statement of the Mac Lane strictness theorem for monoidal cate-

gories. One important corollary of the theorem is that one can use tensor networks to present tensors and

compositions of morphisms of a monoidal category.

THEOREM 2.1.7. (Mac Lane strictness theorem)We call a monoical category strict if the natural trans-

formation a, L1 and R1 defined in Definition 2.1.1 are identities. A monoidal category is monoidally equiv-

alent to a strict monoidal category.

2.2. Modular Invariant and Computations

In this section, we will first introduce the graphical calculus for a modular tensor category. Then we

define some invariant of modular tensor cateogries which will be used to define topological invariant and

tqft in later sections.
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2.2.1. Graphical calculus. One of the most important corollary of the Mac Lane strictness theorem

is that we can remove parentheses and identity objects in a product of objects of a monoidal category by

assuming the category is strict. With this property, we can present morphisms by tensor networks.

The tensor network should be read upward, and from left to right. Objects are represented by colored

strands and morphisms are represented by their name in boxes. For example, a morphism f : X → Y is

represented by

f

X

Y

We represent composition of morphisms by stacking a new tensor network on the top. Tensoring a new

object by putting a colored strand on the right. For example, the composition U ⊗V
f⊗g−−→ X ⊗Y h−→ Z is

represented by

h

f g

U V

X Y

Z

.

If the category is rigid, we use a upward or downward arrow to define X and dual of X , and use U-turn to

define evaluations and co-evaluations. For example, the identity X id⊗coev−−−−→ X ⊗ ∗X ⊗X ev⊗id−−−→ X = X id−→ X

is represented by

9



X

=

X

If the category is braided, we present braiding in its most natural way, i.e. by overcrossing and undercrossing.

We call category with b braided because the morphism represented by the tensor network with crossings is

up to isotopy, Reidemeister move 2 and Reidemeister move 3. This is straightforward by the hexagon axiom,

the definition of functor b and the functoriality of b respectively.

The twist θX is represented by the following graph

θ

X

=

X

For our purpose, k will be a algebraic closed field with characteristic 0. In this case, when X is irreducible,

Hom(X ,X) is 1-dimensional. We will also denote the scalar by θX .

Notice that from the definition of ribbon category. Given an object X in a ribbon category, we can get:

(1) A framed link invariant: We can realize the framed knot as a directed ribbon colored by X , which

can be realized as an element in Hom(1,1) = k.

(2) A projective representation of braid group Bk: The Bk acting on Hom(X⊗k,X⊗k) by stacking the

morphism on the bottom. The hexagon axiom and functoriality of b ensure that the representation

is well defined.

We close this subsection by a graph representing the entries of S-matrix:

sXY =

X
>

Y
<

.
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2.2.2. Modular Invariants. In this subsection, we define some modular invariants for modular tensor

cateogories. These invariants are used to define the Reshetikhin-Turaev invariant for 3-manifold in the next

chapter.

In a modular tensor category C , we define quantum dimension of an object V to be the trace of the

identity map.

dim(V ) = Tr(idV ) :=

V
>

Notice that in a modular tensor category, dimV = dimV ∗. The total dimension of a modular tensor category

is defined to be

D =

√
∑

i∈Irr(C )

dim2Vi

In the rest of the section, we will adopt the convention that uncolored strand are considered as summation

over all irreducibles in the modular tensor category with the weight of Vi be di = dimVi. Sometimes, we also

call it Ω color.

We define

p± := ∑
i∈I

θ
±
i d2

i

and T -matrix to be

Ti j = δi jθi.

By computation, we have the following lemma which is crucial in later sections.

LEMMA 2.2.1. The following identities hold:

(2.3) θ∓1

i

= p±1
θ±1

i

.

11



2.3. MTC from the Kauffman Bracket

In this section, we will introduce the modular tensor category generated by the Kauffman bracket. We

first introduce a skein theoretic spherical monoidal category. Then we make the category abelian by taking

the Karoubi envelope. Then we define a braid structure that is compatible with the spherical structure of the

category by Kauffman bracket. In the Kauffman bracket, there is an coefficient A. We show that for generic

A, the category is semisimple. If A is a 4r-th root of unity, the category have a modular quotient.

2.3.1. Quantum Integers. In this section and the rest of the paper. We will adopt the notation of

quantum integer and quantum factorial. They are defined as following:

[n] =
An−A−n

A−A−1

[n]! = [n][n−1]...[1].

We remark that in the most literature of quantum algebra, people use letter q as the quantum parameter

instead of A we used here. The relation between q and A are q = A2. The only advantage of using A here is

that one can avoid fractional exponents.

2.3.2. The Temperley-Lieb Category.

DEFINITION 2.3.1. The Temperley-Lieb category is a strict monoidal C-category. The objects are nat-

ural numbers and n ∈ N is represented by n dots on the real line. The morphism space Hom(m,n) are

C-span of planar tangle diagrams in R× [0,1] with n boundary components on R×{1} and m boundary

components on R×{0}. The composition of morphisms are represented by putting one diagram on top of

the other and evaluate closed circle by a factor of −A2−A−2. Tensoring with an object(resp. morphisms)

is represented by putting dots(resp. diagram) on the right side.

We denote the Temperley-Lieb category with coefficient A by CA, and the tensor generating object by X.

The tensor generating object X in the Temperley-Lieb category is self dual. The coevaluation morphism

and the evaluation morphism are given by the cup diagram and the cap diagram. The dual of a morphism is

defined to be the flip of the diagram. By definition, coevaluation is cosymmetric and evaluation is symmetric.

The category CA is not abelian because the kernel and cokernel of some morphisms do not exist. For

instance, X⊗X is not isomorphic to 1. but the kernel of the evaluation morphism does not exist.

12



The Temperley-Lieb category can be made abelian without adding new morphisms. The correct con-

struction is called Karoubi envelope.

2.3.3. Karoubi Envelope. In a category C , a idempotent of C is an endomorphism e : A→ A with

e ◦ e = e. The Karoubi envelope of category C is the category of idempotents in C . The formal definition

of the Karoubi envelope of a preadditive category is given below.

DEFINITION 2.3.2. Let C be a preadditive category, its Karoubi envelope KAR(C ) is defined as follows:

• Objects are idempotent morphisms e : X → X in C ;

• Morphisms between (X ,e1) and (Y,e2) are morphisms f ∈Mor(X ,Y ) such that f = e2 ◦ f ◦e1. The

composition of morphisms in KAR(C ) is identical as the composition of morphisms in C .

In general, the Karoubi envelope of a preadditive category is pseudo-abelian(i.e every idempotent mor-

phism admit a kernel) which is weaker than an abelian category. But in the case of Temperley-Lieb category,

the Karoubi envelope of CA is an abelian category after the additive completion.

DEFINITION 2.3.3. We denote the additive completion of a category C by Mat(C ). The objects of

Mat(C ) are direct sum of objects in C . The morphisms are matrices with entries morphisms in C .

To state the theorem of the abelianess of Mat(Kar(CA)), we need to first introduce a set of projectors

which are called Jones-Wenzl’s projectors.

DEFINITION 2.3.4. The c-th Jones-Wenzl’s projector is an endomorphism of X⊗c defined recursively as

follows.

(2.4)

c

=

c−1

+
[c−1]
[c]

c−1

c−2 .

The properties of the Jones-Wenzl projectors are summarized in the following proposition.

13



PROPOSITION 2.3.5. The c-th Jones-Wenzl projector pc satisfies the following properties:

(1) idX⊗c has coefficient 1 in the expansion of pc.

(2) Evaluation and coevaluation of adjacent strand annihilate pc.

(3) p2
c = pc.

The proof of the above proposition is not trivial. We refer readers to Wenzl’s original paper [24] for the

computation.

The following theorem says that the additive completion of the Karoubi envelope of CA is semisimple.

THEOREM 2.3.6. Let A be generic or a transcendental complex number. Mat(Kar(CA)) is a semisimple.

Moreover, Jones-Wenzl projectors gives a complete set of isomorphism classes.

The Proposition 2.3.5 implies

(1) The Jones-Wenzl projectors are simple objects in Mat(Kar(CA)).

(2) dim(Hom(pi⊗ p j, pk)) ≤ 1 with equality hold if and only if |i− j| ≤ k ≤ i+ j and i+ j+ k is an

even number. Moreover, Hom(pi⊗ p j, pk) is generated by the following diagram:

i
j k :=

pi

p j pkj k

i

i− j+k
2

−i+ j+k
2

i+ j−k
2

The above theorem is proved by expanding idpi⊗p j in terms of the above morphisms. The computation

in [2] shows that when A is generic or transcendental, the coefficients are nonzero for all admissible k, which

implies:

pi⊗ p j = p|i− j|⊗ p|i− j|+2⊗ . . .⊗ p|i+ j|.

However, When A is a 4r-th root of unity, the nonzero coefficients property fails. To get a semisimple

category, we need to kill the ideal of negligible objects and morphisms.

DEFINITION 2.3.7. Let C be a spherical monoidal category. A morphism f in C is called negligible if

Tr(g◦ f ) = 0 for all g. An object X is called negligible if idX is negligible.

It is easy to check that negligible objects is a monoidal ideal. After taking the quotient of the negligible

ideal. We denote CA be the quotient Mat(Kar(CA))/{negligibles}.

14



If A is generic or transcendental, the negligible ideal is trivial, and the following theorem summarizes

the property of CA when A is a 4r-th root of unity.

THEOREM 2.3.8. Let A be a 4r-th root of unity. The quotient category CA is semisimple. Moreover,

{p0, p1, . . . , pr−2} gives a complete set of isomorphism classes.

2.3.4. Kauffman bracket and modular structure. The category CA admit a nontrivial braiding struc-

ture, given by the Kauffman bracket below:

=−A −A−1 ; =−A2−A−2.

It is easy to check that the braid structure generated by the Kauffman’s bracket satisfies the hexagon relation

and the full twist is compatible with the spherical structure. Moreover, if A is a 4r-th root of unity, the

category CA is modular.

THEOREM 2.3.9. [23] Let r ≥ 3 be an integer, and A be a primitive 4r-th root of unity. Then the pair

(CA,{Vi}0≤i≤n−2) is a modular tensor category with S matrix

Si j = (−1)i+ j[(i+1)( j+1)].

2.3.5. Hermitian structure of the category. When A be a 4r-th root of unity, The category (CA admit

a Hermitian structure, that is, its morphism spaces are Hermitian vector spaces. In this subsection, we

construct the Hermitian structure and construct sets of orthogonal basis of the Hermitian vector spaces using

trivalent graphs.

Before we define the Hermitian space, we define the conjugation of a diagram D ∈ R× [0.1] be its

mirror reflection respect to line R× 1/2. We denote the conjugation of D by −D. The conjugation extend

to a conjugation in the morphism space Hom(v,w) in CA as follows:

n

∑
i=1

kiDi =
n

∑
i=1

ki(−Di).

One can check the conjugation defined above is compatible with the crossings and the full twists.

The Hermitian product of morphisms f ,g ∈ Hom(V,W ) is defined as follows:

〈 f ,g〉= Tr( f ◦g).
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It is easy to check that 〈·, ·〉 is sesquilinear.

In the rest of the section, we consider the Hermitian vector spaces of form

Hom(Xc1⊗Xc2⊗ ...Xcn ,1)

, where X` is isomorphic to the `-th Jones-Wenzl’s projector.

We use trivalent graphs to present vector in the morphism space. Locally, a trivalent vertex is equivalent

to the following diagram as earlier sections:

i
j k :=

pi

p j pkj k

i

i− j+k
2

−i+ j+k
2

i+ j−k
2

We have numerical restrictions for the adjacent projectors (i, j,k) because of the following lemma about

the fusion rule of CA.

LEMMA 2.3.10. Assume A be a 4n-th root of unity, set n be ∞ if A is transcendental. Let Xi be the object

represented by i-th Jones-Wenzl projector. We have

Hom(Xi⊗X j⊗Xk,1)≤ 1

with equality hold if i+ j+ k ≡ 0 mod 2 with following numerical conditions:

i) |i− j| ≤ k ≤ i+ j,

ii) i+ j+ k ≤ 2n−4.

We call a triple (i, j,k) admissible if the above conditions are satisfied.

Any morphism in CA is tensor generated by such ’trivalent’ morphisms. Based on this fact, we define a

set of basis of the morphism space of CA as following.

Let n ≥ 3 and ~c = (c1,c2, . . . ,cn) be a integer valued vector with 0 ≤ ci ≤ n− 2. Define V0,n;~c be the

vector space Hom(Xc1 ⊗Xc2 ⊗ ..⊗Xcn ,1). Let Γ be a uni-trivalent tree with n vertex with degree one. The

edges adjacent to the one-edged vertices are colored by c1,c2, . . . ,cn respectively. An admissible coloring of

the graph Γ gives a vector in V0,n;~c. The set of admissible colorings is a set of basis of V0,n;~c.
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For example,

V0,4;1,1,3,3 =

〈 1

1

2 3

3
;

1

1

3

3

〉
.

PROPOSITION 2.3.11. For a given uni-trivalent Γ with n one-edged vertices with their adjacent edges

colored by~c, the set of admissible colorings is a set of orthogonal basis of Vn,~c.

For each Γ, we get a set of orthogonal basis for the morphism space. The change of basis formula can be

derived as the following. For any pair of tree Γ and Γ′ associated to Vn;~c, we can get Γ′ from Γ by a sequence

of the following move:

−→

Locally, the change of basis formula is given by

a

b

i
d

c

= ∑
j

j

j

ab
i
dc

d

a

j

b

c

j

b c

j

a d

.

Notice that the closed graphs are scalars.

In [3], theorem 4.11. they checked that when A = e
iπ
2r , The Hermitian form is either positive definite or

negative definite, depending on the projectors on the boundary.

2.3.6. Relation with representation theory of quantum sl(2). The representation category of Uq(sl(2))

and CA have the same fusion rule when taking q = A2. This two categories are both modular but they are

not equivalent as modular categories. One can easily see this by looking at the quantum dimension(trace of

the identity morphism) of the generating object. In CA, the quantum dimension of the generating object is

−(A2 +A−2), but in Rep(Uq(sl(2))), the quantum dimension of the generation object is q+q−1.

In Rep(Uq(sl(2))), the generating object X is self dual, that is, there exist an isomorphism s : X → X∗.

However, this morphism is not canonical in the sense that it can not extend to a autoequivalence of the
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modular category. One can get CA by negating the evaluations and coevaluations of the odd dimensional

irreducible representations, by doing so, the quantum dimension of the odd dimensional irreducible repre-

sentations is also negated. The sign trick make it possible to remove the arrows in the diagrams for certain

modular tensor categories.
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CHAPTER 3

Three Dimensional Topological Quantum Field Theory

3.1. Reshetikhin-Turaev invariant

In this section, we revisit the Reshetikhin-Turaev invariant for closed 3-manifolds. Details of this part

of the material can be found in the Reshetikhin and Turaev’s original paper [19] or Turaev’s book [23]. For

our purpose, we only concern TQFTs over the field of complex numbers C.

3.1.1. Link surgeries in the 3-sphere. Let L be a framed link in S3 with components K1,K2, . . .Km and

B be a 4-ball bounded by the S3. For each of the link component Ki, we take Ui as its neighborhood and glue

a 2-handle B2×B2 along its boundary. The glueing map is taken to be:

Ui = S1×B2 = ∂B2×B2.

Let the resulting 4-manifold be WL and its boundary be ML. A theorem by Thom shows that each closed ori-

ented 3-manifold can be realized as the boundary of a 4-manifold. Thus every 3-manifold can be constructed

by the surgery along some link L in a 3-sphere.

3.1.2. Invariant of closed 3-manifolds. We can always realize a link in 3-sphere as a link inR3. Given

a modular tensor category C describe in the last section. We can evaluate a colored link in R3. Thus, we

want to make this link invariant a 3-manifold invariant.

To define the invariant of the link, we define a new color called Ω color for the tensor category.

Ω = ΣVi∈I(dimVi)Vi

where I is the set of isomorphism classes of irreducible objects.

THEOREM 3.1.1. D−m−1〈LΩ〉 is a topological invariant of pairs (W,∂W = M), where (W,M) is the

result of the link surgery of L in S3. Moreover, D−m−1〈LΩ〉 is an invariant of framed 3-manifold.

Every 3-manifold have a canonical framing, so the theorem above actually gives a 3-manifold invariant

by choosing the canonical framing.
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COROLLARY 3.1.2. Let σ(L) be the signature of the 4-manifold constructed above.

RT (M) = (
p+
p−

)σ(L)D−m−1〈LΩ〉

is a 3-manifold invariant.

Notice that we realize a 3-manifold as an Ω-colored link diagram in S3. Thus it is natural to extend

the definition of Reshetikhin-Turaev invariant to oriented 3-manifolds with colored links inside. We end the

section with the definition of extended Reshetikhin-Turaev invariant.

DEFINITION 3.1.3. The extended RT-invariant of a colored link K in a 3-manifold ML is defined to be

RT (ML,K) = (
p+
p−

)σ(L)D−m−1〈LΩ∪K〉

3.2. Universal Construction of TQFT

In this section, we will give the definition of a TQFT and describe the universal construction. By uni-

versal construction, one can reconstruct the topological quantum field theory from a multiplicative invariant

of closed 3-manifolds if the invariant comes from a non-degenerate topological quantum field theory.

An (n+ 1)d-topological quantum field theory(TQFT) is a symmetric tensor functor from the category

of (n+1)-dimensional cobordisms to the category of finite dimensional vector spaces. We fix the notation

of our cobordism category before giving the formal definition of (n+1)-d TQFT.

DEFINITION 3.2.1. We denote Cob(n+1) to be the category of n+1-dimensional cobordisms with:

• Objects: Oriented n-dimensional closed manifold Σ.

• Morphisms: Oriented n+ 1-dimensional manifolds with orientations on their boundary compo-

nents(i.e. a choice of a trivialization of their normal bundle). A morphism from Σ1 to Σ2 is denoted

by (M,∂−, f− : ∂−
∼−→ Σ1,∂+, f+ : ∂+

∼−→ Σ2).

DEFINITION 3.2.2. A (n+1)-d topological quantum field theory Z contains the following data:

• Assigning each n-dimensional oriented closed manifold Σ a finite dimensional vector space Z(Σ).

• Assigning each n+ 1-dimensional cobordism (M,∂−, f− : ∂−
∼−→ Σ1,∂+, f+ : ∂+

∼−→ Σ2) a linear

transformation Z(M) from Z(Σ1) to Z(Σ2).

Together with the following Axioms:
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• Z( /0) = k, Z(Σ1tΣ2) = Z(Σ1)⊗Z(Σ2).

• Z(Σrev) = Z(Σ)∗

• Z(Σ× [0,1],Σ, id,Σ, id) = idZ(Σ)

• Z(M1t f M2) = Z(M1)◦Z(M2).

Notice that if we have an (n+1)-d topological quantum field theory, we get a topological invariant for

closed (n+1)-manifolds instantly because an (n+1)-dimensional manifold can be realized as a cobordism

connecting two emptyset. Thus, the TQFT functor Z send the manifold to an element of Hom(C,C) = C.

In the rest of this section, we answer the following question: If we have a topological invariant of (n+1)-

manifolds, when does this invariant come from a (n+ 1)-dimensional TQFT? If so, can we recover the

TQFT from the invariant?

To construct an (n+ 1)-dimensional TQFT from a multiplicative invariant τ , we need to associate a

vector space to each n-manifold Σ. The idea of the construction is by first taking the vector space spanned

by all (n+1)-manifolds with Σ as their boundary. We denote this large vector space by τ(Σ). The invariant

gives us a bilinear form:

〈·, ·〉 :τ(Σ)× τ(Σ) →C

(H1,H2) →τ(H1∪Σ H2)

Let τ(Σ) denotes the reduced vector space by taking the quotient of the kernel of the bilinear form. The

construction above does not always derive a TQFT, even the topological invariant comes from a TQFT.

Because the resulting vector space may not be the original one. We noticed that if the resulting functor τ is

a TQFT, then τ must be cobordism generated.(τ(Σ) is spanned by cobordisms with Σ as boundary.)

The following uniqueness theorem answers the question that when we can recover the TQFT from the

invariant.

THEOREM 3.2.3. (Turaev) If Z1,Z2 are (n+1)-TQFTs which coincide as invariants on (n+1)-dimensional

closed manifolds and Z1 is cobordism generated, then Z1 and Z2 are equivalent.

From the construction, The following proposition is straight forward:

PROPOSITION 3.2.4. [2] Let Z be a non-degenerate n-TQFT and suppose that for each (n + 1)-

dimensional cobordism it holds Z(M) = Z(M). Then for each Σ there is a C-antilinear isomorphism i :

Z(Σ)→ Z∗(Σ) defined by extending C-antilinearly the map · : Mor( /0,Σ)→Mor(Σ, /0) defined by [M]→ [M].

This equips Z(Σ) with a MCG(Σ)-invariant Hermitian form 〈·, ·〉.
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3.3. TQFT from Kauffman Bracket

In this section, we apply the universal construction to the Reshetikhin-Turaev invariant defined over the

MTC from Kauffman bracket(See section 2.3). We will not get a TQFT instantly because the vector space

associated to a torus is infinite dimensional [8]. The solution to this problem is by taking a central extension

to the cobordism category. The universal construction gives a TQFT after the central extension.

We define the extended 3-dimensional cobordism category C̃ob3 as the following

DEFINITION 3.3.1. Denote C̃ob3 be the category of 3-dimensional extended cobordisms. The objects

are oriented compact surfaces Σ equipped with a lagrangian subspace L. Morphisms are 3-dimensional

cobordisms with an integer. The composition of two cobordisms

(M, f− : ∂M → Σ1, f+ : ∂+M→ Σ0,m) ∈Mor((Σ1,L1),(Σ0,L0))

and

(N,g− : ∂N → Σ0,g+ : ∂+M→ Σ2,n) ∈Mor((Σ0,L0),(Σ2,L2))

is defined as the cobordism:

(Ntg−◦ f−1
+

M, f− : ∂M → Σ1,g+ : ∂+M→ Σ2,m+n−µ(K1,L0,K2)) ∈Mor((Σ1,L1),(Σ2,L2))

where in µ the Maslov index with:

(1) K1 = {x ∈ H(Σ0;R)|( f−1
+ )∗(x) ∈ ( f−1

− )∗(L1)}

(2) K2 = {x ∈ H(Σ0;R)|(g−1
− )∗(x) ∈ (g−1

+ )∗(L2)}

For the extended category, we get a TQFT by the universal construction.

THEOREM 3.3.2. [3] The universal construction applied to the extended RT invariants of 3-manifolds

and to the category C̃ob3 yields a TQFT. Moreover, The vector spaces associated to closed surfaces is

equipped with a mapping class group invariant Hermitian form 〈·, ·〉. If A = e
iπ
2r , the Hermitian form is

positive definite.

We skip the proof of the theorem here. For details of this topic, we refer readers to the original paper.

A mapping cylinder in C̃ob3 is represented by a pair ( f ,n) where f is a mapping cylinder and n is an

integer. That is, we get a central extension of mapping class groups which act on the vector space associated

to some surface Σ. Equivalently, the mapping class group MCG(Σ) acts on Z(Σ) projectively.
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CHAPTER 4

Mapping Class Group on Surfaces

In this chapter, we revisit the definition of a mapping class group, and give a combinatorial description

of the mapping class groups action on the vector spaces coming from the SU(2)-TQFT.

4.1. Basic Definitions and Properties of Mapping Class Groups

Let S be the surface with or without boundary. The mapping class group of S is defined to be

MCG(S) = Di f f (S;∂S)/{isotopy}.

A example of a mapping class is Dehn twist around a simple closed curve γ . We denote this mapping

class by Dγ . Dγ equals the except on a cylinder neighborhood of γ . On the cylinder, we cut the surface along

γ and glue it back after twisting 2π .

THEOREM 4.1.1. [5] Mapping class group is generated by Dehn twist.

MCG(Σ) is embeded in Mor(S,S). Thus one get mapping class group representations from TQFT, if

the TQFT is defined on extended cobordism category. One get representations for the central extensions of

mapping class groups. Equivalently, projective representations for mapping class groups.

THEOREM 4.1.2. [5][The inclusion homomorphism]Let S be a closed subsurface of a surface S′. As-

sume that S is not homeomorphic to a closed annulus and no component of S′− S is an open disk. Let

η : MCG(S)→ MCG(S′) be the induced map. Let α1, . . .αm donote the boundary components of S that

bound once-punctured disks in S′−S and let {β1,γ1}, . . . ,{βn,γn} denote the pairs of boundary components

of S that bound annuli in S′−S. Then the kernel of η is the free abelian group:

ker(η) =< Tα1 , . . . ,Tαm ,Tβ1T−1
γ1

, . . . ,TβnT−1
γn

>

In particular, if no connected component of S′−S is an open annulus, an open disk, or an open once marked

disk, then η is injective.
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We finish this section by the classification theorem of mapping classes.

THEOREM 4.1.3. [5] Let g,n ≥ 0. Each mapping class f ∈ MCG(Σg,n) is periodic, Dehn twist, or

pseudo-Anosov. Further, pseudo-Anosov mapping classes are neither periodic nor reducible.

4.2. The Mapping Class Group Action

In this section, we give a combinatorial description of the SU(2)-TQFT representation.

By definition, MCG(Σ) acting on the vector space spanned by all 3-manifold with ∂M = Σ with some

linear relation. The action is defined to be gluing mapping cylinders to Σ. To make this action more explicit,

we allow links in the cobordism. We have the following proposition describing the projective action of the

mapping class groups.

PROPOSITION 4.2.1. Let Z be the TQFT comes from CA. Σg and Hg are standard surface and handle-

body with genus g respectively. Z(Σg) is generated by Z(Hg,L). Moreover, Dγ(Z(Hg,L)) = Z(Hg,L∪ γΩ).

By considering the parallel strands as tensor product of the generating object of CA, We can replace

parallel strands by summation of colored strands using Equation 2.4. According to Equation 2.3, A Dehn

twist along γ bounds a disk that perpendicular to a strand colored by i. Then the action of the Dehn twist is

by multiplying (−1)iAi(i+2). As in section 2.3, we can define a set of basis for Z(Σg).

PROPOSITION 4.2.2. [3] Let Γ be a trivalent graph that contract to Hg, An admissible coloring of

graph Γ gives a set of orthogonal basis of Z(Σg).

Specifically, when A be a 4p-th root of unity where p is an odd prime number, we have the follow-

ing straight forward proof for the proposition. We present this proof here because the distinct eigenvalue

property mentioned below are crucial in our proof.

Let (γ1,γ2, . . . ,γn) be a set of curves in Σg such that each γi bounds a disk in Hg that perpendicular to one

edge of Γ. Let H ⊂MCG(Σg) be the subgroup generated by {Dγi |1≤ i≤ n}. Notice that (−1)iAi(i+2) are all

distinct for 0≤ i≤ p−2. Thus the eigenspaces of H are all one-dimensional. Each of such eigenspaces are

generated by skeins represented by admissible colorings of Γ. The Hermitian structure is MCG-invariant.

Thus these eigenspaces are orthogonal to each other.

The first irreducibility theorem for the TQFT representation is proved by Justin Roberts.
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THEOREM 4.2.3. [21]Let A be a 4p-th root of unity and p ≥ 3 be a prime integer. Then Z(Σg) is

irreducible under the action of MCG(Σg).

The following lemma utilize the prime condition.

LEMMA 4.2.4. Let A be a 4p-th root of unity and p ≥ 3 be a prime integer. ti ∈ Z(Σ1) be the vec-

tor represented by i parallel (−1)-framed Ω colored skeins along the longitude of the solid torus. Then

t1, t2, . . . tp−2 generate V (Σ1).

PROOF. We define the Hopf pairing

[·, ·] : Z(Σ1)×Z(Σ2)→ C

by gluing two copy of solid torus along their boundary to get a sphere and then evaluating the skeins in the

3-sphere. Since the S-matrix of CA is non-degenerate, the Hopf pairing is non-degenerate.

Let vi be the skein colored by i along the longitude of the solid torus. We compute:

[ti,v j] = [v0,Di
αv j] = [v0,((−1) jA j( j+2))iv j] = ((−1) jA j( j+2))i[ j+1]

Thus the matrix {[ti,v j]}i j is equal to a Vandermonde matrix times a diagonal matrix. (−1) jA j( j+2) are all

distince for all j when p is prime, The first factor is invertible. The second factor is obviously invertible

because the diagonal entry [ j+1] 6= 0 when 0≤ j ≤ p−2. This proves {ti}0≤i≤p−2 generate Z(Σg). �

Now we give the proof of Roberts’ theorem.

PROOF. Let v0 be the vector in Z(Σg) representing the empty skein in Hg. The above lemma shows that

we generate Z(Σg) by applying Dehn twists on v0. Let (γ1,γ2, . . . ,γn) be a set of curves in Σg such that each

γi bounds a dick in Hg that perpendicular to one edge of Γ and H ⊂MCG(Σg) be the subgroup generated

by {Dγi |1 ≤ i ≤ n}. Subrepresentations of MCG(Σg) must be summations of eigenspaces of H. Thus, the

subrepresentation containing the eigenspace generated by v0 is Z(Σg). �

The action of the mapping class group naturally generalize to surfaces with boundaries. We consider the

vector space generated by skein spaces in Hg but with projectors on its boundary. Without special notice,

we will assume working with category CA, where A is a 4p-th root of unity where p be a prime number.
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We denote by Vg,b;~c be the vector space generated by skein space in Hg with b projectors on its boundary.

The projectors are~c = (c1,c2, . . .cn) respectively. When g = 0, Vg,b;~c can be realized as morphism space in

CA:

Vg,b;c1,c2,...,cb = Hom(X1⊗X2⊗ . . .⊗Xb,1).

As in section 2.3 and the case for closed surfaces. we have the following description for some sets of

orthogonal basis of Vg,b;~c: We choose a trivalent graph Γ such that the handlebody Hg retracts to Γ, and fix

the colors of the edge adjacent to the uni-vertices to be c1,c2, . . . ,cb. The set of admissible colorings of Γ is

a set of orthogonal basis for Vg,b;~c.
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CHAPTER 5

Proof of Irreducibility Theorem

In this chapter, We prove the Theorem 1.0.1. As in the setting of the theorem, we assume A be a 4p-th

root of unity where p is an odd prime number in this Chapter.

5.1. Cross-lamination Lemma for Irreducibility

The following lemma is the unitary version of the cross-lamination lemma in [15].

LEMMA 5.1.1. [15] Consider a positive definite Hermitian vector space X over some field F that is

a (projective) representation of some group G, and G1, G2 are two subgroups. Suppose X =
⊕

I Vi(resp.

{X =
⊕

J Wj}) be an irreducible multiplicity free decomposition under the action of some central extension

G̃1(resp. G̃2) of G1(resp. G2). Define a graph C(X ,G1,G2) on the set of irreducible summands, with an

edge connecting Vj and Wk if there exists some element v ∈Vj and w ∈Wj such that [v,w] 6= 0.

If the graph is connected, then X is irreducible as a representation of G.

Note that decompositions in Lemma 5.1.1 do not depend on the choice of central extensions. So when

proving irreducibility, G and G̃ will not be distinguished. As discussed in [21], the central extension does

not affect the irreducibility.

With the setting of Lemma 5.1.1, each Wj(resp. Vi) is connected with some Vi(resp. Wj) since Wj(resp.

Vi) is not {0} as a vector space. Thus, to prove irreducibility, we just need to prove one side of this bipartite

graph is connected. We formulate it in the following corollary.

COROLLARY 5.1.2. With the assumptions in Lemma 5.1.1, we can conclude irreducibility with one of

the following conditions on the graph.

(a) For all i, j ∈ I, Vi, Vj are connected by some path.

(b) For all j ∈ J, there exist an i ∈ I such that Vi connected to Wj.
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5.2. Two Base Cases

In this section, we discuss two base cases, where the surfaces are sphere with 4 punctures and one-holed

torus.

5.2.1. Sphere with 4 Punctures.

LEMMA 5.2.1. V0,4;a,b,c,d is irreducible under the action of PB4 for all admissible a,b,c,d. By admissi-

ble, we mean the vector space associated has positive dimension.

PROOF. The Dehn twist around γ1 and γ2 gives 2 orthogonal decompositions:

V0,4;a,b,c,d =

min{a+b,c+d,2p−4−a−b,2p−4−c−d}⊕
i=max{|a−b|,|c−d|};i≡a−b mod 2

Vi,

V0,4;a,b,c,d =

min{a+d,c+b,2p−4−a−d,2p−4−c−b}⊕
j=max{|a−d|,|b−c|};i≡a−d mod 2

Wj,

where Vi (resp. Wj) are spanned by the single vector vi (resp. w j).

a d

b c

γ1

γ2 vi =

a

b

i
d

c

;w j =

b c

j

a d

When p is an odd prime, (−1)iAi(i+2) are different for different i. Thus, both decompositions are multi-

plicity free because they have different eigenvalues under the action of Dγt (t = 1,2).

By Lemma 5.1.1, the irreducibility of the representation ofPB4 is equivalent to the connectivity of the

graph C(V0,4;a,b,c,d ,< Dγ1 >,< Dγ2 >). Before we proceed, we give change of basis formula [2] for {vi} and
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{w j} below.

vi = ∑
j

 a b i

c d j

w j = ∑
j

j

j

ab
i
dc

d

a

j

b

c

j

w j

where we follow the conventions in [2]:

< a,b,c >=
b

a

c

;

〈
a b i

c d j

〉
=

j

ab
i
dc

Vi and Wk are connected is equivalent to the span of vi in {w j} has non-zero coefficient on wk. According to

Corollary 5.1.2 case (a), Our strategy is to to find some i such that Vi is connected to Wj for all j.

Without loss of generality, we assume a−b ≥ |c−d|(otherwise, we rotate the symbols), write va−b as

summation of w j:

(5.1) va−b = Σ j

 a b a−b

c d j

w j

If j is admissible, < b,c, j > and < a,d, j > are nonzero, so we just need to check the tetrahedron

symbols. Theorem 2 of [2] gives an explicit formula for the tetrahedron symbol. As in [2], Let m1 =

(a+ b+ i)/2, m2 = (a+ d + j)/2, m3 = (b+ c+ j)/2, m4 = (i+ d + c)/2; n1 = (a+ b+ c+ d)/2, n2 =

(b+ i+d + j)/2, n3 = (a+ i+ c+ j)/2.

(5.2)

〈
a b i

c d j

〉
=

minnt

∑
z=maxms

∏s,t [ns−mt ]!
[a]![b]![c]![d]![i]![ j]!

(−1)z[z+1]!
∏s[ns− z]!∏t [z−mt ]!
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In general, the tetrahedron symbol is a summation over z for all maxt nt ≤ z≤mins ms. in our case, we only

have one summand because maxt nt = z = mins ms. which is

(5.3)

〈
a b a−b

c d j

〉
=

∏s,t [ns−mt ]!
[a]![b]![c]![d]![a−b]![ j]!

(−1)z[z+1]!
∏s[ns− z]!∏t [z−mt ]!

Then we need to check the q-factorials in the above formula are less than p to make sure all factors are

nonzero. Note that 2(ns−mt) can be realized as summation of two labels of an admissible triple subtracting

the other one, which is always less than 2(p−2). Thus ns−mt ≤ p−2, which implies [ns−mt ]! 6= 0; z is

half of the sum of labels of an admissible triple, so z≤ p−2, [z+1]! 6= 0.

The above computation showed that Va−b is connected to Wj for all j. By Corollary 5.1.2(a), V0,4;a,b,c,d

is irreducible under the action of PB4.

�

5.2.2. One-holed Torus. This case has been studied by G. Patrick and G. Masbaum [18]. They proved

irreducibility of Vg,1;2a for any g when p is an odd prime. In our case, we just need g = 1 to start the

induction, and for completeness, we put a more elementary proof here, and we would like to thank Julien

Korinman [14] for teaching us the proof.

LEMMA 5.2.2. Let p be an odd prime, 1≤ a≤ p−3
2 , V1,1;2a is irreducible under the action of MCG(Σ1,1).

PROOF. In [18], their computation showed that the Hopf pairing (see figure below) 〈,〉 of V1,1;2a is a

nondegenerate bilinear form.

2a
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Let v j be the lollipop basis shown below, and wi = Di
β

v0 be the vector derived from applying Dehn twist

along β to v0 i times .

γ

β v j =
2a

a+ j

We compute the Hopf pairing of wi and v j, where 0≤ i, j ≤ p−a−2:

< wi,v j >=< Di
β

v0,v j >=< v0,Di
γv j >= (−1)i jAi( j+a)(2+ j+a) < v0,v j >

When p is an odd prime, (−1) jA( j+a)(2+ j+a) are distinct complex numbers, so matrix V = {(−1)i jAi( j+a)(2+ j+a)}i j

is a Vandermonde matrix, thus invertible. {< wi,v j >}i j = V · diag{< v0,v j >}. < v0,v j >6= 0 (c. f. [18]

Page 100), so the product of the two matrices is invertible, which implies {wi} spans V1,1;2a.

Consider the bipartite graph C(V1,1;2a,< Dβ >,< Dγ >). < v0 > is invariant under the action of Dγ ,

and the decomposition under the action of < Dγ > is multiplicity free. The argument above showed that

v0 have component in all eigenspaces of Dβ and each eigenspaces are 1-dimensional. That is, < v0 > is

connected to all eigenspaces of < Dβ >, and all the eigenspaces are multiplicity free due to eigenvalue test.

By Corollary 5.1.2(a), V1,1;2a is irreducible.

�

5.3. The Induction

In this section, we will develop the induction steps. The idea is the following: We can decompose the

representation by restricting it to a mapping class group of a subsurface S′ ⊂ S. Usually S−S′ is a cylinder

α× I. The decomposition depends on the choice of α on S. Two different such decompositions will produce

a bipartite graph described in Lemma 5.1.1. Thus, to prove the representation is irreducible, one just need

to show the graph is connected.

The following three lemmas provide us the tools for the induction on genus g and the number of bound-

aries b.

LEMMA 5.3.1. Let p be an odd prime and g ≥ 1, Suppose Vg,1,c and Vg−1,2;i, j are irreducible as

MCG(Σg,1) and MCG(Σg−1,2) representation respectively for all admissible c, i, j, then Vg,2;a,b is an ir-

reducible representation of MCG(Σg,2) for all a,b.
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α

β

γ

PROOF. Let S be a representative of surface Σg,b as above. We restrict Vg,2;a,b to the image of MCG(S−

α × I)→MCG(S) and the image of MCG(S− (β ∪ γ)× I)→MCG(S) respectively. According to Theo-

rem 3, the kernels of group homomorphisms above factor though the corresponding representations. Notice

MCG(S−α × I) ∼= MCG(Σ0,3)×MCG(Σg,1) and MCG(S− (β ∪ γ)× I) ∼= MCG(Σ0,4)×MCG(Σg−1,2)

Thus, with the assumptions in this lemma., Vg,2;a,b has the following two irreducible decompositions accord-

ingly.

Vg,2;a,b =
⊕

c
Ac =

⊕
c

Vg,1;c⊗V0,3;c,a,b;Vg,2;a,b =
⊕
i, j

Bi, j =
⊕
i, j

Vg−1,2;i, j⊗V0,4;i, j,a,b,

where Ac and Bi, j are invariant spaces of Dα and Dβ ×Dγ respectively. They are spanned by the graphs

shown below:

Ac =<

a

b

c
>;Bi, j =<

a

b

i

j

> .

When p is odd prime, these invariant spaces have different eigenvalues for the Dehn twists, so the

decompositions are multiplicity free for all central extensions.

According to Lemma 5.1.1, we just need to prove the bipartite graph C(Vg,2;a,b,MCG(S−α×I),MCG(S−

(β ∪ γ)× I)) is connected.

Note that if (c, i, j) is an admissible triple, Ac and Bi, j are connected because the following element will

be in the intersection of Ac and Bi, j.

a

b

c
i

j

∈ Ac∩Bi, j
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Then notice for all c, (c, p−3
2 , p−3

2 ) will be an admissible triple, so all Ac are connected to B p−3
2 , p−3

2
. B p−3

2 , p−3
2

is

of positive dimension for all g. Thus, Vg,2;a,b is an irreducible MCG(Σg,2) representation by Corollary 5.1.2.

�

If all boundaries are colored by 0, we should consider it as the closed surface. This case not only shows

up in the question itself, but also contribute to the induction. Although closed surface case have been proved

by Roberts [21], we still put this case in our induction for completeness.

LEMMA 5.3.2. Let p be an odd prime and g ≥ 2. Assume Vg−1,2;i,i is irreducible under the action of

MCG(Σg−1,2) for all i. Then Vg,0 is irreducible under the action of MCG(Σg).

α β

PROOF. Let S be a representative of Σg,0 as above. We restrict Vg,0 to the representation of subgroups of

the image of MCG(S−α×I) and the image of MCG(S−β×I) in MCG(S) respectively. By Theorem 4.1.2,

the kernels factor though the corresponding representations. Note that both MCG(S−α× I) and MCG(S−

β × I) are isomorphic to MCG(Σg−1,2). Thus, with the assumptions in this lemma, Vg,0 has the following

two irreducible decompositions accordingly.

Vg,0 ∼=⊕iAi =Vg−1,2;i,i;Vg,0 ∼=⊕ jB j =Vg−1,2; j, j

Where Ai and B j are invariant spaces of Dα and Dβ respectively. They are spanned by the graphs shown

below, where uncolored edges run over all admissible colors.

Ai =< i >;B j =< j >

When p is odd prime, these invariant spaces have different eigenvalues, so the decompositions are

multiplicity free for all central extension of MCG(Σg). Notice the following element is in the intersection
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of Ai and B j:

i j ∈ Ai∩B j.

Argument above showed that the bipartite graph < Vg,0;MCG(S−α × I),MCG(S−β × I) > is complete.

Thus, the representation is irreducible by Lemma 5.1.1. �

Before we introduce the next lemma, we define ≺ to be the lexicographical order on pair (g,b).

LEMMA 5.3.3. Let p be an odd prime and (g,b) /∈ X = {(0,1),(0,2),(0,3),(0,4),(1,1),(1,2)} and

b ≥ 0. Consider vector space Vg,b;~c with b ≥ 1 and one of the boundary is colored by a 6= p− 2. If Vg′,b′;~c′

is irreducible under the action of MCG(Σg′,b′) for all (g′,b′) ≺ (g,b) and any color ~c′, Vg,b;~c is irreducible

under the action of MCG(Σg,b).

α β

a

g1,b1 g2,b2

PROOF. Since (g,b) /∈ X , we can find (g1,b1) ≺ (g,b) and (g2,b2) ≺ (g,b) satisfying g = g1 + g2 and

b = b1 + b2− 1. By restricting to the group actions of MCG(S−α × I) and MCG(S−β × I), we can de-

compose the representation Vg,b,~c = Vg1+g2,b1+b2+1;~c1,~c2,a in following two ways, where the indexes i and j

run over all colors such that the corresponding vector spaces are of positive dimension.

Ai =Vg1,b1+1;~c1,i⊗Vg2,b2+2;~ci,i,a

B j =Vg1,b1+2;~c1a, j⊗Vg2,b2+1;~c2, j

Where Ai and B j are invariant spaces of Dα and Dβ respectively. They are spanned by the graphs shown

below, where the uncolored edges run over all admissible colors.

Ai =<
i

a

>;B j =<
j

a

> .
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i(resp. j) run through all colors such that both of their tensor factor have positive dimension. For instance,

if both g1 and g2 are positive, i and j run through all colors satisfying parity condition. If g1 or g2 is zero,

then we have extra inequality constraints for i and j, but these constraints always reduce to an interval.

By the assumption, V = ⊕iAi(resp.V = ⊕ jB j) is an irreducible and multiplicity free (by checking

eigenvalues of the Dehn twist around the circle in the graph) decomposition under the group action of

MCG(Σg1,b1+1)×MCG(Σg2,b2+2) (resp. MCG(Σg1,b1+2)×MCG(Σg2,b2+1)), and we noticed that if (i, j,a) is

an admissible triple, Ai and B j are connected because the following element is in the intersection:

i j
a

∈ Ai∩B j

Now we prove the following claim: Suppose i ≥ i′ and there exist j, j′ such that (i, j,a) and (i′, j′,a) are

admissible triples, then there exist some j′′ such that (i, j′′,a) and (i−2, j′′,a) are admissible triples.

If (i− 2, j,a) is admissible, we are done. Otherwise, one of the inequality conditions must fail, so we

have either i+ j = a or j− i = a:

Case 1 i+ j = a: i′+ j′ ≥ a and i′ < i implies j′ > j, so B j+2 is not {0}. Let j′′ = j + 2, we check

(i−2)+ j′′ = a, |(i−2)− j′′|= |i−4+ j| ≤ |i−4|+ j. Since i > i′, i≥ 2, so |i−4|+ j≤ i+ j = a.

Thus (i−2, j+2,a) is an admissible triple.

Case 2 j− i = a: j′− i′ ≤ a and i′ < i implies j′ < j, so B j−2 is not {0}. Let j′′ = j− 2, we check

|(i− 2)− j′′| = a, (i− 2)+ j′′ = j− i+ 2i− 4 ≥ j− i = a. Thus (i− 2, j− 2,a) is an admissible

triple.

We take i′ to be the least i such that Ai 6= 0. The claim said B j′′ is connected to Ai and Ai−2. This gives

us paths connect all pairs of adjacent A′is. Together with Corollary 5.1.2(b), we proved Vg1+g2,b1+b2+1;~c1,~c2,a

is irreducible.

�

5.4. Proof of Theorem 1.0.1

PROOF OF THEOREM 1.0.1. We are going to do induction on the lexicographical order ≺ of pairs (g,

b). We just need to show that for all Vg,b;~c where (g,b) /∈ {(0,1),(0,2),(0,3),(0,4),(1,1),(1,2)}, The

irreducibility of Vg,b;~c is implied by some Vg′,b′;~c′ satisfying (g′,b′)≺ (g,b).
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We first consider the case that one of the boundary is colored by p− 2. Because summation on colors

on the boundary should be an even number, b≥ 2. Pick another boundary that is colored by i. We have the

following isomorphism of MCG(Σg,b−1) representations:

Vg,b;~c
∼=V0,3;p−2,i,p−2−i⊗Vg,b−1;~c,p−2−i\{p−2,i}

By this, we lower the number of boundary components by 1.

If b≥ 1 and none of the boundary is colored by p−2, and (g,b) /∈{(0,1),(0,2),(0,3),(0,4),(1,1),(1,2)},

Lemma 5.3.3 implies it is enough to show Vg′,b′;~c′ are irreducible for all (g′,b′)≺ (g,b).

If b = 0 and g≤ 2, Lemma 5.3.2 implies it is enough to show Vg,2;i,i is irreducible.

If (g,b) = (1,2), Lemma 5.3.1 implies it is enough to show V1,1;a is irreducible.

For Base cases:

• (g,b) = (0,1),(0,2),(0,3). The vector spaces are either 0 or 1-dimensional.

• (g,b) = (1,0). This is Weil representation, and it is irreducible.

• (g,b) = (0,4) and (1,1). We proved them in section 4.

The above induction proves Vg,b;~c is irreducible for all g,b and all coloring~c. �
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CHAPTER 6

Proof of Denseness Theorem

6.1. Background for denseness theorem

6.1.1. Zariski Denseness and Analytic Denseness. Let K be a infinite field, the Zariski topology on

Kn, or a subset of Kn, is the coarsest topology that solution set of a polynomial equation is closed. We

interpret Lie group SL(n,C) as a subset of Cn2
. For projective special linear group PSL(n,C), We consider

the topology induced by the map SL(n,C)→ PSL(n,C). For SL(n,R) and SU(n,C), we consider the subset

topology of the Zariski topology of SL(n,C).

The analytic topology is the topology defined by the Euclidean metric.

It is obvious that the Zariski topology is much coarser than the analytic topology. However, The fol-

lowing theorem by Chevallay states that these two topology are equivalent when we consider the closed

subgroups of SU(n,C).

THEOREM 6.1.1. (Chevallay)Every analytically closed subgroup of SU(n,C) is Zariski closed.

The case we studied in this chapter is the Zariski image of the braid group in PSL(n,C). The Analytic

closed subgroup of PSL(n,C) are difficult to work with. Working with the Zariski topology can help us rule

out many nasty possibilities.

6.1.2. Lemmas for Induction. In this subsection, we introduce some tools to study image of group

homomorphisms that were developed by Ribet [15,20] and others and that originate with Goursat’s Lemma.

In generic q case, we no longer have the Hermitian form on the skein spaces. Thus, we rephrase

Lemma 5.1.1.

LEMMA 6.1.2. [15] Consider a vector space X over some field F is a (projective) representation of

some group G, and G1, G2 are two subgroups. Let X =
⊕

I Vi(resp. {X =
⊕

J Wj}) be an irreducible

multiplicity free decomposition under the action of some central extension G̃1(resp. G̃2) of G1(resp. G2).

Define a directed graph C(X ,G1,G2) on the set of irreducible summands, with an edge from Vj to Wk if there

exists some element v ∈Vj has nonzero component in Wk.
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If the graph is strongly connected, then X is irreducible as a representation of G.

The following theorem is often called non-commutative Chinese remainder theorem. That locally sur-

jectivity implies global surjectivity.

THEOREM 6.1.3. Suppose that each of G1,G2, . . . ,Gl is a minimal simple Lie group or a non-abelian

finite simple group, and suppose that

H ⊂ G = G1×G2× . . .×Gl

is a closed subgroup that surjects onto each factor Gk. Then H is a diagonal subgroup of G.

In our case, The Gamma is the Zariski closure of the mapping class group and Gi are complex simple

Lie groups. Thus, we have a corollary for our case.

COROLLARY 6.1.4. If

f : Γ→ PSL(W1)×PSL(W2)× . . .×PSL(Wn)

is surjective when restrict to Γ→ Gi for all i, and non of pairs Wi and Wj are isomorphic or dual to each

other, then f is surjective.

Lastly, we need the following surjectivity theorem for the induction purpose.

THEOREM 6.1.5. Let V be a finite-dimensional complex representation of a connected Lie group G, Let

H ⊂ G be a closed, connected subgroup, and let

V |H ∼=
n⊕

k=1

Wk

be the decomposition of the restricted representation. Suppose that:

(1) V is G-irreducible.

(2) At most one of Wi is of dimension 2 and at most one of Wi is of dimension 1.

(3) For every j 6= k, the summands Wj and Wk are neither isomorphic nor dual as projective represen-

tation of H.

(4) For each j, H surjects onto PSL(Wj).

Then G suject to PSL(V ).
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PROOF. Let L be the Lie algebra of G, K ⊂ L be the corresponding Lie algebra of H. Then we have the

splitting

gl(V ) = sl(V )⊕C

. The non-commutative Chinese remainder theorem for Lie algebra gives us that H is jointly surjective:

H �
⊕

k

sl(Wk)

.

Meanwhile we have the partial decomposition

sl(V ) =
⊕
j 6=k

Wj⊗W ∗k ⊕
⊕

k

sl(Wk)⊕Cn−1

.

Notice that if for some i, dimWi > 2, then Wi �W ∗i as sl(Wi) representation. Together with the 3rd

assumption in the theorem, Wi⊗W ∗j and Wj⊗W ∗i are both unique in the decomposition in the sense that

they are not isomorphic to each other and all other summands as a representation of H. That is, The off-

diagonal blocks are multiplicity free if and only if at most one of Wi satisfying dimWi ≤ 2. In the rest of the

proof, we discuss it case by case. Without lose of generality, we assume the dimWi ≤ dimWj if i≤ j.

Case 1 dimW2 ≥ 3.

As we discussed above, the off diagonal summands are multiplicity free in this case. so the

image of L in sl(V ) contains a subset of the off-diagonal blocks Wj⊗W ∗k and some subspace of

Cn−1. We can make a directed graph Γ with a directed edge k→ j for every off-diagonal block

Vj⊗V ∗k which is in the image of L. We claim Γ is complete.

First, we prove Γ is strongly connected. Assuming otherwise, Γ would have a strongly con-

nected component C with no outward edges. In this case
⊕

k∈C Wk would be a non-trivial subrep-

resentation of L. G is connected, so
⊕

k∈C Wk is also a subrepresentation of G, contradicting the

hypothesis that V is irreducible.

Second, we prove that Γ is transitively closed. Suppose that i→ k→ j is a path of length two

using three distinct vertices. Choose two operators

Y ∈ Hom(Wl,Wk)∼=Wk⊗W ∗l
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X ∈ Hom(Wk,Wj)∼=Wk⊗W ∗l

whose product

XY ∈ Hom(Wl,Wj)∼=Wj⊗W ∗l

is non-zero. Then [X ,Y ] is a non-zero element in Wj⊗W ∗l . The image of L thus contains some

elements of Wj⊗W ∗l , and therefore it contains all of them and Γ is transitively closed.

If Γ is both strongly connected and transitively close, then it is the complete directed graph.

In the final step, choose some basis of V that refines the decomposition of V |H . In this basis, the

image of L contains all off-diagonal elementary matrices, so there commutators gives us all of

sl(V )

Case 2 n≥ 3 and dimW2 = 2, dimW1 = 1.

Define V ′ =
⊕n

k=2Wk. The identical argument as in case 1 shows that sl(V ′) is in the image of

L. Thus we have decomposition

sl(V ) = sl(V ′)⊕V ′⊕V ′∗⊕C

as representation of sl(V ′). The decomposition is multiplicity free since dimV ′ ≥ 3. V is irre-

ducible as L representation, so The image of L contains both V and V ∗. The commutators will give

us all of sl(V ).

Case 3 n = 2 and dimW2 = 2, dimW1 = 1.

In this case, the V is a 3-dimensional representation. we list all the Lie subalgebra of sl(V ).

Only sl(V ) itself makes V irreducible.

�

6.1.3. Simple Lie Algebras and Their Representation Theory. In this subsection, we review some

basic concept of root spaces and representation theories of simple Lie algebras which can be found in

standard Lie algebra textbooks. Then we introduce a lemma that is conjectured by the Greg Kuperberg and

supported by David Speyer.

Let g be a simple Lie algebra over C and h be one of its Cartan subalgebra. h is a maximal commutative

Lie subalgebra in a sense that there is no commutative Lie subalgebra strictly contains h. Since the repre-

sentation theory of g is semisimple. Without loss of generality, Let X be a simple representation of g. We
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restrict X as a representation of h. X decomposes to 1-dimensional sub-representations due to the following

elementary lemma from linear algebra.

LEMMA 6.1.6. Let S be a set of n×n matrices. If the matrices are pairwise commutative then they are

simultaneously diagonalizable.

Notice that each eigenspaces W of h defines a functional λ on h by h(w) = λ (h)ẇ for all h ∈ h and

w ∈W . Functionals comes from the eigenspaces of h are called weights of X . Weights of the adjoint

representation are called roots. the set of roots is symmetric respect to the origin, that is, if a ∈ h∗ is a root,

then −a is also a root. Moreover, all eigenspaces corresponding to the nonzero roots are 1-dimensional. We

denote the eigenspace correspond to root α by gα . The set of roots of g in h∗ are called root system of g.

Notice that all Cartan subalgebras of simple Lie algebra g are conjugate to each other. The root system is

independent of the choice of h.

Roots span h∗. There is a inner product structure 〈·, ·〉 on h∗ defined by extending a inner product on the

set of roots. The inner product in defined as following: Let α and β be two roots, xα ∈ g be an element in

gα and yα ∈ g be the unique element in g−α such that

K(xα ,yα) := Tr(ad(xα)ad(yα)) = 1.

The inner product 〈β ,α〉 is defined to be β ([xα ,yα ]). We remark that {xα ,yα , [xα ,yα ]} is a standard sl2

triple. The isometry group of the root system is called Weyl group.

Let Φ be the set of roots of g. We pick a generic vector t in the R-span Φ. Denote the set of positive

roots by

Φ+ = {α ∈Φ|〈α, t〉 ≥ 0}

and denote the set of negative roots Φ− by the other half. For different choices of t, the sets of positive roots

are equivalent up to the action of the Weyl group. We denote nilpotent subalgebras

n− =
⊕

α∈Φ+

gα ; n+ =
⊕

α∈Φ−

gα .

Root systems of Lie algebras are used to study the representation theories of Lie algebras. Before we

proceed, we first remind the reader the universal enveloping algebra and the PBW theorem.

Let g be a Lie algebra over C. Let U(g) be its universal enveloping algebra. That is, U(g) is the

universal object in the category of associative unital algebras that contains g. It is a easy consequence from
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the defintion that the representation theory of U(g) is equivalent to the representation theory of g. A explicit

representation of U(g) is T (g)/I, where T (g) is the tensor algebra of g and I is the ideal generated by

a⊗b−b⊗a− [a,b] for all a,b ∈ g. In the rest of the paper, we omit ⊗ symbol without confusion.

The following theorem named after Henri Poincaré, Garrett Birkhoff, and Ernst Witt discusses the basis

of universal enveloping algebra.

THEOREM 6.1.7. Let g be a lie algebra over field K, and I is a total ordered set such that {xi}i∈I is a

set of basis of g. Then

{xn1
i1 xn2

i2 ...x
nt
it |i1 < i2 < .. . < it ∈ I;n1,n2 . . .nt ∈ N}

is a set of basis of U(g).

COROLLARY 6.1.8. Let g be a simple Lie algebra over C, and n−,n+,h defined as above. Then we

have

U(g) =U(n−)U(h)U(n+).

Let X be a finite dimensional irreducible representation of the simple Lie algebra g. We denote Xµ be

the eigenspace corresponding to weight µ . A elementary computation shows that gαXµ ⊂ Xµ+α . Since X

is finite dimensional, there exist a weight λ such that Xλ 6= 0 and U(n+)Xλ = 0. Because X is irreducible,

Xλ is of dimension one. Moreover, we have Un−Xλ = X . The following lemma is useful for treating the

denseness problem for base cases. Where we prove denseness only by looking at the eigenvalues of some

mapping class.

LEMMA 6.1.9. [22]Let g be a simple Lie algebra over C and fix a Cartan subalgebra h. Let D(λ ) be

the set of weights in the weight diagram of the irreducible representation V with highest weight λ . Consider

S(λ ) = λ −D(λ ) as a set of vectors in h∗. The elements of S(λ ) which can not be written as sum of other

elements are roots of g.

PROOF. Let Φ+ be the set of positive roots of g. C = S(λ )∩Φ+, C′ = Φ+−C and vλ be a vector in Vλ .

By PBW theorem, U(n−) is spanned by monomials of form fc1 fc2 . . . fcm fc′1
fc′2

. . . fc′n where fc ∈ g−c and ci ∈

C, c′j ∈C′. Notice U(n−)(vλ ) =V , then V is generated by monomials of form fc1 fc2 . . . fcm fc′1
fc′2

. . . fc′nvλ .

According to the definition of set C′ and D(λ ), λ − c′j /∈ D(λ ). Thus fc′j vλ = 0 for all c′j ∈C′, V (λ ) is

spanned by fc1 fc2 . . . fcmvλ . If weight λ ′ ∈ D(λ ) such that λ −λ ′ indecomposable in S(λ ), then λ ′ is either

λ or vλ ′ = fcivλ for some fci ∈ g−ci and ci ∈C. This proves λ −λi = ci is a positive root. �
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6.2. Proof of Theorem 1.0.2

The proof is by induction on number of boundaries. The induction begins at b = 4.

LEMMA 6.2.1. Let A be a transcendental complex number. P̃B4 is dense in the algebraic group

SL(V0,4;a,b,c,d) if dimV0,4;a,b,c,d ≥ 2.

PROOF. • The representation is irreducible.

We adapt the notations of section 4.1 and claim the graph C(V0,4;a,b,c,d ,< Dγ1 >,< Dγ2 >) is

complete.

We still have the change of basis formula (1) in section 4.1. To prove the vi have a non-zero

component in Wj, need to show coefficient

(6.1)

〈
a b i

c d j

〉
=

minnt

∑
z=maxms

∏s,t [ns−mt ]!
[a]![b]![c]![d]![i]![ j]!

(−1)z[z+1]!
∏s[ns− z]!∏t [z−mt ]!

6= 0.

Notice that when consider it as a rational function of A, the degree is different among its summands.

Thus, the leading term only appeared in one of the summands. Since A transcendental, it is not a

root of any rational function, so the coefficient is not zero. We proved the graph is complete and

the representation is irreducible.

• The image is infinite.

Consider two consecutive colors vi and vi+2. Let λi and λi+1 be the eigenvalues of Dγ1 respec-

tively. λi+2/λi =−A4i+8. A is not a root of unity. Thus, the image is infinite.

• The closure of the image is SL(V0,4;a,b,c,d)

Assume the Zariski closure of the image is a semisimple Lie group G. the action of Dγ1 have

the following eigenvalue set under some central extension:

X = {Ai2 |i ∈ [max{|a−b|, |c−d|},min{|a+b|, |c+d|}], i≡ a−b mod 2}

Let’s assume i start at i0 and end at in, There exist an element a ∈ g= Lie(G), the eigenvalues for a

acting on V0,4;a,b,c,d is λ0 =C+ i20,λ1 =C+(i0 +2)2, . . . ,λn =C+(in)2 for some constant C. We

claim g is sln+1.

Notice in the weight space h∗, λ0 is the highest weight under some choice of simple roots.

λ0−λ1 satisfying the following properties:
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(1) λ0−λ1 is not repeated, that is, λ0−λ1 6= λk−λ j for any (k, j) 6= (0,1).

(2) λ0−λ1 is indecomposable, that is λ0−λ1 can not be written as positive integral linear com-

bination of λ0−λk for k 6= 1.

By Speyer’s lemma, λ0− λ1 is a root. Consider the action of Wλ0−λ1 on the weight diagram. It

send λk to λk plus (or minus) some copy of λ0− λ1. Because λ0− λ1 is not repeated, Wλ0−λ1

interchanges λ0 and λ1 and fix all other λk.

Then we prove for all k, λ0 − λk is indecomposable. Assume otherwise, say λ0 − λk =

∑t αt(λ0− λt). the decomposition is preserved by the Weyl group action. We have λ1− λk =

∑t αt(λ1−λt). These two equation together implies ∑t αt = 1. Thus λ0−λk is indecomposable

for all k.

Use Speyer’s lemma again, we know all λ0−λk are roots. Consider the action of Wλ0−λk . It

interchanges λ0 and λk. Otherwise, λ0−Wλ0−λk(λ0) will be multiple of λ0−λk. The action also

have to fix all other λi. Assume otherwise, it send λi to λ j. then λ0−λ j = λ0−λi+(λi−λ j) which

is equal to λ0−λi plus multiple of λ0−λk, so the indecomposable condition is contradicted.

Wλ0−λk generate Sn+1. The Lie algebra g have an (n+ 1)-dimensional irreducible representa-

tion and has Sn+1 as a sub-quotient group of its Weyl group. g have to be sln+1.

�

To apply Theorem 6.1.5, we need the following proposition about irreducibility.

PROPOSITION 6.2.2. For A any transcendental number, V0,b;~c is irreducible as a representation of PBb.

PROOF. The proof is identical to Lemma 5.3.3. Notice that we find a element in the intersection of Vi

and Wj. In transcendental case, this means we have directed edges of both direction. �

The following lemma gives a criterion that for some specific decomposition, the components is not

isomorphic nor dual to each other.

LEMMA 6.2.3. Let A be a transcendental number, and c1,c2 . . .cn be a sequence of fixed non-decreasing

natural numbers and n≥ 3. Then there is no pair of elements in {V0,n+1;a,c1,..cn |a≤ 2c1} are isomorphic or

dual to each other.
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a γ

c1 c2

PROOF. Consider the Dehn twist around the curve γ that bounds the first two boundaries. The eigen-

value set will be Ea = {Ai2 |max{cn−∑
n−1
k=2 ck, |a− c1|} ≤ i ≤ min{a+ c1,∑

n
k=2 ck}} up to some central

extension. For different a, we claim either the cardinality of the eigenvalue set will be different or the set of

ratios of eigenvalues are different which is an invariant under central extensions.

Suppose a,a′ ≤ c1 such that Ea and E ′a have the same cardinality. Then the interval for i will be of the

same length. To make the set of ratios of eigenvalues the same, the interval should start and end at the same

place. Since we assumed a,a′ ≤ 2c1 ≤ 2c2, so at least one of the boundary of the interval is determined by

a or a′. Thus we proved the claim. �

Now we can give the proof of Theorem 1.0.2 by induction:

PROOF. The case number of boundary components b = 4 is proved in Lemma 6.2.1.

Suppose the Zariski closure of the image of PBi in PSL(V0,i;~c) is surjective for all i ≤ n and coloring~c.

we prove PBn+1 has a dense image in PSL(V0,n+1;~c′) for any~c′.

Let G be the Zariski closure of PBn+1. G contains elements of infinite order, so G must be of positive

dimension. G is generated by 1-dimensional subgroups that densely generated by Dehn twists, so G is

connected.

Without loss of generality, assume ~c′ = (c0,c1,c2 . . .cn) such that ci ≤ c j if i ≤ j. Then we can have a

decomposition of V0,n+1;~c′ by restricting to a subgroup H = MCG(S′)∼= PBn.

V0,n+1;~c′ =
c0+c1⊕

i=c1−c0

V0,n;i,c2,c3,...cn

According to Lemma 6.2.3, all summands are not isomorphic nor dual to each other.

To apply Theorem 6.1.5, we prove the dimension of the summands satisfying (2) of Theorem 6.1.5.

If the number of boundary component b ≥ 4, the dimension of the vector spaces V0,b;~c have dimension

1 if and only if one of the colors is equal to the summation of colors on all other boundaries. In our case,

b≥ 5, n≥ 4, i≤ c0 + c1. dimV0,n;i,c2,c3,...cn = 1 if and only if i = cn− cn−1− . . .− c2, so it happens at most

once.
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Next, we consider the 2-dimensional summands. We fix a uni-trivalent tree Γ with n boundary vertex

colored by ~c. If dimV0,n;~c = 2, then we have 2 admissible coloring for Γ. Fix an edge e that have different

colors a and a+2 in the two different admissible colorings. Cut the tree at e, the tree Γ split to Γ1 and Γ2,

and coloring e by a and a+ 2 both give unique admissible coloring for Γ1 and Γ2. This implies Γ1 and Γ2

can only have 3 boundary vertices and n = 4. When n = 4, we can check by hand that at most for only one

i≤ c0 + c1, dimV0,n;i,c2,c3,...cn = 2.

By Theorem 6.1.5, G surjects onto PSL(V0,n+1;~c′).

�
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CHAPTER 7

Open Problems and Future Work

In this section, we present some possible future projects and the relation between our work with other

works. There are two interest directions for the future work.

(1) The denseness property for SO(3)-TQFT representations.

(2) The irreducibilty property for TQFT-representations comes from other modular tensor categories.

7.1. Denseness Problem at Root of Unity

The denseness problem at root of unity have been studied by Freedman, Larsen, Wang [6] [16] and

Kuperberg [15]. In [6] and [15]. They studied the denseness property of the Jones representation. That is,

the natural braid group Bn action on the vector space Hom(X⊗n
1 ,Xc). In [6], they also proved the denseness

of SO(3)−T QFT representations when p = 5 and g+ b 6= 1. The reason that the denseness problem for

those cases are tractable is because:

(1) The starting case is two dimensional. One can prove the surjectivity using the ADE classification.

(2) The eigenvalue set of certain Dehn twist contains only two elements.

In our case, the starting case is g = 0,b = 4 and g = 1,b = 1. As p grow, the dimension of V0,4;a,b,c,d and

V1,1;a will increase. Thus it is hopeless for us to rule out all possible subgroups. Another method is by

looking at eigenvalue sets of some certain mapping classes. Since the eigenvalue of the Dehn twists are

all powers of A, thus of finite order. According to the classification Theorem 4.1.3 of mapping classes, we

should look at the pseudo-Anosov mapping classes. Computing the eigenvalues of these operators are still

open. Jorgen Andersen, Gregor Masbaum and Kenji Ueno suggested the following conjecture.

CONJECTURE 1. [1] A Pseudo-Anosov mapping class is represented in TQFT by matrices of infinite

order, except for finitely many values of level r.

So far, Gregor Masbaum computed the eigenvalue of D−1
γ1

Dγ2 acting on V0,4;1,1,1,3. The eigenvalues are

not root of unity, which proves the denseness of the representation in this case.
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In [14], Julien Korinman have the following theorem about the finiteness of the image of the mapping

class group of one-holed torus.

THEOREM 7.1.1. Assume A is a 4r-th root of unity and the boundary is colored 2c. For r ≥ 4, we have:

(1) If 2c = r−2 or 2c = r−3 and r is odd, then the representation has finite image.

(2) If 2c≤ r−3 and r is an odd prime, then the representation has infinite image.

Korinman’s method relies on the irreducibility of the representation. That is, one may verify the finite-

ness condition for more representations with our irreducibility result. However, his method does not provide

information of eigenvalues of any mapping classes.

7.2. TQFT from Other MTCs

Another direction of this program is to look at the image of the mapping class group representation

where the TQFT comes from other MTCs.

Our method may partly generalize to those MTCs come from other quantum groups. Especially for

quantum groups of rank 2, Greg Kuperberg invented a graphical calculus called spiders plays the same role

as the skeins in this paper.

Although the first few examples of TQFTs comes from Lie algebras. There are other interesting MTCs

that are not from quantum groups.

One can construct a MTC from a spherical fusion category by taking its quantum double(see chapter

7 and 8 of [4]). The braided structure of the MTC comes from the associator of the fusion category. Paul

Gustafson [10] studied the TQFT representation comes from the quantum double of Vecω
G , where G is a finite

group and ω is a 3-cocycle of G. Vecω
G is the category of G-graded vector space with a twisted associative

isomorphism. After taking the skeleton, the associative natural isomorphism is a 3-cocycle.

Gustafson proved the following theorem regarding the image of the TQFT representation:

THEOREM 7.2.1. [10] The image of any twisted Dijkgraaf-Witten representation of a mapping class

group of an orientable, compact surface with or without boundary is finite. In particular, the image of any

such braid group representation is finite.
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