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Abstract

Many important computations in commutative algebra are known to be NP-hard. Despite

their apparent intractability, these algebra problems—including computing the dimension of

an algebraic variety, and computing the Hilbert series, projective dimension, and regularity

of a homogeneous ideal—are indispensable in both applications and theoretical work. This

dissertation advances our understanding of hard commutative algebra problems in several

ways.

First, we introduce families of parameterized random models for monomial ideals, and

derive the expected values and asymptotic behavior of important algebraic properties of

the ideals and their varieties. The surprising result is that many theoretically intractable

computations on monomial ideals are easily approximated by simple ratios among number

of generators, number of variables, and degrees of generators. Though these approximations

are not deterministic, they are guaranteed to hold asymptotically almost surely.

We derive threshold functions in the random models for Krull dimension, (strong) gener-

icity, projective dimension, and Cohen-Macaulayness. In particular, we prove that in a

rigorous sense, almost all monomial ideals have the maximum projective dimension pos-

sible according to the Hilbert Syzygy Theorem, and that almost no monomial ideals are

Cohen-Macaulay. Furthermore, we derive specific parameter ranges in the models for which

the minimal free resolution of a monomial ideal can be constructed combinatorially via the

algebraic Scarf complex. We also give a threshold for every value of the Krull dimension.

Following recent advances in optimization and computer science, another chapter of this

thesis demonstrates how machine learning can be used as a tool in computational commu-

tative algebra. We use supervised machine learning to train a neural network to select the

best algorithm to perform a Hilbert series computation, out of a portfolio of options, for

each new instance of this problem. We also explore how accurately a neural network can

predict NP-hard monomial ideal invariants such as dimension and projective dimension, us-

ing features of the ideals that are computable in polynomial time. We provide compelling
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evidence that answers to these hard problems can be predicted for new instances based only

on the historical data of previously seen examples.

Finally, we implement integer linear programming reformulations of computations on

ideals, to take advantage of the sophisticated solving methods now available for this particular

class of problems. We demonstrate significant timing improvements in computations such

as dimension and degree, especially for large instances of these problems. We define new

polytopes useful for enumerative problems in commutative algebra, including enumerating

all monomial ideals with a particular Hilbert function, and enumerating the possible Betti

tables for a particular Hilbert function.
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CHAPTER 1

Introduction

This is a dissertation about varieties of polynomial ideals, about graphs and simplicial

complexes, about phase transitions and asymptotic thresholds, about minimal free resolu-

tions and projective dimension, about integer programming and lattice polytopes, about

pivot rules in a Hilbert series algorithm, and about supervised learning on artificial neural

networks. Not only are there intimate relationships among the topics in this apparently

miscellaneous list, there is also a single, fundamental theme underlying the entire collection.

That theme, which permeates every page of this dissertation, is the pursuit of faster, simpler

methods for hard problems in computer algebra.

To make the notion of a hard problem precise, we begin with some fundamental concepts

from computational complexity theory. A decision problem in complexity theory is a class of

instances, or specific inputs, on which a true-or-false statement can be evaluated. For exam-

ple, the subset sum problem is: given a set of integers, is there a subset of them which sums

to zero? A particular instance of this problem is: Is there a subset of {1,−3, 8,−2, 4,−13, 5}

that sums to zero?

The time complexity of an algorithm is measured with respect to the size of an instance.

For instance, let n be the number of elements in a set of integers. Then the “brute-force”

approach to solving the subset sum problem, which iterates over every possible subset, sums

its elements, and then checks if the result is equal to zero, requires 2n iterations in the worst

case. Taking the cost of integer addition to be essentially negligible, the brute-force algorithm

takes O (2n) (“big oh” of 2n) steps, which roughly means “no more than a constant multiple

of 2n” (see Definition 1.1.12). This is an exponential algorithm since the complexity grows

exponentially as n does.
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As another example, matrix multiplication is the problem that takes two n× n matrices

and computes their product. The standard algorithm taught in any intro linear algebra class

uses n3 multiplications and n3−n2 additions; its time complexity is O (n3). The complexity

of this algorithm is polynomial in the input size. (There are faster algorithms than this one,

by the way—see [Lan11].)

The matrix multiplication problem is not a decision problem, but we could state a decision

version of it, for instance: is the product of two matrices equal to the zero matrix? If a

problem admits a polynomial-time algorithm, then so does the decision version, since we can

simply compute the answer in polynomial time, then check for equality.

The complexity class P is the class of all decision problems that admit a polynomial-time

(in the input size) algorithm. Another important complexity class is NP, the class of all

decision problems for which a proposed solution can be verified in polynomial time. The

subset sum problem belongs to NP, because given a set A of n integers together with a

candidate solution B ⊆ A, checking whether B sums to zero takes polynomial time.

Every problem in P is also in NP, since an algorithm which quickly solves a problem can

also quickly check a solution. Amazingly, whether or not P=NP remains an open question

nearly 50 years after it was first formulated precisely [Coo71,GJ79]. There is no intuitive

reason why the existence of polynomial-time verification of given solutions should imply a

polynomial-time algorithm for finding a solution. On the other hand, all that is required for

proving P6=NP is proving that even one problem in NP, like the subset sum problem, cannot

admit a polynomial-time algorithm. Despite half a century of focused efforts from the most

brilliant minds in computer science, this has never been done.

Deepening the mystery is the notion of NP-completeness. For two decision problems Q1

and Q2, we say that Q1 polynomially transforms to Q2 if for any instance x of Q1, there is

an algorithm which produces an instance y of Q2, in polynomial time in the size of x, such

that the answer to x is yes if and only if the answer to y is yes. (See [PS98, Chapter 15].) A

problem Q is NP-hard if every problem in NP polynomially transforms to Q. If Q is in NP

and NP-hard, we say that Q is NP-complete. If a polynomial-time algorithm is ever found
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for an NP-complete problem Q, this means that every other problem in NP can be solved

in polynomial time, too. This, also, has never been done, despite 50 years of attempts to

efficiently solve many famous problems known to be NP-complete. These include the subset

sum problem, as well as:

• The traveling salesperson problem: Given the locations of n cities, and the pairwise

distances between cities, what is the minimum length of a tour , a trip that begins

and ends in the same city, and visits every other city exactly once? (Decision version:

is there a trip of length ≤ K?)

• The minimum vertex cover problem: Given a graph on n vertices, what is the

minimum size of a vertex cover , a subset of vertices such that every edge of the

graph contains at least one element in the subset? (Decision version: is there a

vertex cover of size ≤ K?)

• The Boolean satisfiability problem: Given n Boolean variables, and m logical clauses

of the variables together with operations OR, AND, and NOT, is there an assignment

of true and false values to the variables that makes every clause true?

There are many other interesting NP-complete problems; for these and further theory of

algorithmic complexity, see [PS98,Kar72,GJ79].

The problems studied in this thesis, concerning computations on ideals in polynomial

rings, are all at least as hard as NP-hard problems. One hard problem in commutative

algebra is the ideal membership problem: given a polynomial f ∈ k[x1, . . . , xn], and an ideal

I = 〈f1, . . . , fr〉, is f ∈ I? Mayr and Meyer famously proved in [MM82] that this problem

is EXPSPACE-complete. The class EXPSPACE contains all problems that can be solved

with exponential space complexity , and strictly contains both P and NP; thus the ideal

membership problem is strictly harder than any NP-complete problem. One property of an

ideal that relates to computational complexity is its regularity (see Definition 1.3.19). The

regularity of an ideal I gives a bound on the degrees of the polynomials in a Gröbner basis

of I [BS87b], a ubiquitous method for computations with multivariate polynomials. Unfor-

tunately, [MM82] along with [BS88] shows that in the worst case, this degree complexity is
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double exponential in n, the number of variables of the ring (i.e., an exponential function of

an exponential function of n).

In practice, many polynomial computations are reduced to computations on monomial

ideals; for instance, computing dimension, degree, and the Hilbert series of an ideal. The

initial ideal of a polynomial ideal is a monomial ideal, which preserves many fundamental

invariants of the original ideal, such as dimension and degree [CLO07]. Computations on

an initial ideal provide bounds for other invariants of a polynomial ideal, such as projective

dimension and regularity [HH11]. Monomial ideals are the simplest polynomial ideals,

with varieties that are always unions of linear subspaces, yet they are general enough to

capture the entire range of possible values for many invariants such as the Hilbert series of

an ideal [Eis95].

Even for the apparently simpler case of monomial ideals, problems like computing the

dimension of a variety are hard. In fact, the decision version of this problem—is the di-

mension of monomial ideal I no more than K?—is NP-complete [BS92] (see Section 3.1).

Other problems, like finding the Hilbert series of a monomial ideal, computing its projective

dimension, or constructing a minimal free resolution, are at least as hard.

This dissertation is inspired by probabilistic and computational methods that have been

successfully applied to hard problems in other fields of mathematics and computer science.

Chapter 2 introduces new families of parameterized random models for monomial ideals,

and in Chapters 3 to 6 we prove the expected values and asymptotics of important algebraic

properties of random monomial ideals. The techniques in these chapters are similar to those

of probabilistic combinatorics , notably the classic random graphs of Erdős-Rényi and Gilbert

[ER59,Gil59], and more recent work on random simplicial complexes (e.g., [LM06,CF16,

Kah09,BK18,BHK11]). One notable model, which first appeared in print in [DPS+19],

is called the ER-type model, because of its resemblance to Erdős-Rényi random graphs:

Definition (Definition 2.1.1). A random monomial ideal I ∼ I(n,D, p) in the polyno-

mial ring S = k[x1, . . . , xn] is produced by randomly selecting its generators independently,
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with probability p = p(n,D) ∈ (0, 1) each, from the set of all monomials in S of positive

degree no more than D.

Random monomial ideals give insight into how invariants are distributed. The surprising

result is that many theoretically intractable computations on monomial ideals are determined

by simple ratios among number of generators, number of variables, and degrees of generators.

Though these classifications are not deterministic, they are guaranteed to hold asymptotically

almost surely, and give good approximations in small cases. An example is the dimension

of ER-type model random monomial ideals:

Theorem (Theorem 3.3.2). Fix n, so p(n,D) = p(D), and let I ∼ I(n,D, p). For

0 ≤ t < n, if p = ω (D−t−1) and p = o (D−t), then dim(S/I) = t asymptotically almost

surely as D →∞.

A second parameterized family of random monomial ideals that is important in this thesis

is the graded model :

Definition (Definition 2.2.3). A random monomial ideal M ∼M(n,D, p) in the poly-

nomial ring S = k[x1, . . . , xn] is produced by randomly selecting its generators independently,

with probability p = p(n,D) ∈ (0, 1) each, from the set of all monomials in S of total degree

exactly D.

When a monomial ideal is generic (see Section 1.3.6), there is an elegant combinatorial

method for computing its minimal free resolution via the (algebraic) Scarf complex [BPS98,

MS04] (see Section 1.3.5). For the graded model, we prove that p(D) = D−n+3/2 is a

threshold (see Section 1.1.2) for the genericity of a monomial ideal.

Theorem (Theorem 5.1.1). Let S = k[x1, . . . , xn], M ∼ M(n,D, p), and p = p(D). As

D → ∞, p = D−n+3/2 is a threshold for M being (strongly) generic. In other words, if If

p(D) = o
(
D−n+3/2

)
then M is (strongly) generic a.a.s., and if p(D) = ω

(
D−n+3/2

)
then M

is (strongly) generic asymptotically almost surely.

This implies that the Scarf algorithm is correct asymptotically almost surely when p =

o
(
D−n+3/2

)
. On the other hand, in Section 5.2 we use combinatorial methods for computing
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Betti numbers, especially those developed in [Ale17b], to show that for p = ω
(
D−n+2−1/n

)
,

the Scarf complex of M ∼M(n,D, p) will almost surely be strictly smaller than the minimal

free resolution. This and other thresholds for the graded model, many of which appear

in [DHKS19], are summarized in Figure 1.1.

↑
trivial
ideal

↑
linearly
many
gens.

p(D) −→

|
D−n+1

|
0

|
1

|
D−n+2− 1

n

|
D−n+ 3

2

|
o (1)

pdim = 0 pdim = n

CM not Cohen-Macaulay P[CM]=pn

generic not generic

Scarf ?? not Scarf

Figure 1.1. Typical homological properties and thresholds for random mono-
mial ideals M ∼M(n,D, p), when n is fixed and D →∞.

In Section 3.4 and Chapter 6, computations on ideals are reformulated as integer linear

programming problems to take advantage of the sophisticated solving methods now available

for this particular class of problems. Figures 3.4 and 3.5 illustrate the dramatic practical

improvements gained by this method, which are currently being developed for incorporation

into the Macaulay2 computer algebra system [GS].

In Chapter 7, we demonstrate how machine learning can be used as a tool in computa-

tional commutative algebra. by training a neural network to select the best algorithm to

perform a Hilbert series computation (see Section 1.4.2), out of a portfolio of options, for

each new instance of this problem. The premise of this research is that statistics on algorithm

performance, gathered from sufficient samples on some distribution of algebraic inputs, can

be used to learn “good choices” when running these algorithms on new inputs. The fea-

sibility of learning algorithm choices has been demonstrated in other areas of math and
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computer science. One example is learning optimal heuristics for branch-and-bound meth-

ods in integer and mixed-integer optimization [MALW14,KDN+17]. In [XHHLB08], Xu

et al. used learning to design a “meta” SAT solver that selected, from a portfolio of different

SAT solvers, the best choice for each instance of the problem. Researchers in combinatorial

optimization have recently outlined some machine learning methodologies designed to apply

generally to problems in their field (e.g., [BNVW17, DKZ+17, GR15]). The goal of this

portion of the dissertation is to adapt these methodologies for computations in commutative

algebra and algebraic geometry.

Also in Chapter 7, we explore how accurately a neural network (see Section 1.5.1) can

predict NP-hard monomial ideal invariants such as dimension and projective dimension, using

as input the same inexpensive features used for the algorithm selection problem. Examples

of features (see Section 7.1) are number of minimal generators, average support size of

generators, average proportion of generators that each variable divides, etc. In Section 7.3

we see compelling evidence that a neural network can predict the answers to these hard

problems based only on a data set of randomly generated examples.

1.1. Random graphs and simplicial complexes

1.1.1. Probability basics. A random variable is a map X : Ω→ R from a probability

space (Ω,Σ, P ) to the real numbers, R. The expected value or expectation of X, written

E [X], is defined by,

(1.1.1) E [X] =

∫
Ω

X(ω) dP (ω).

It follows from linearity of the integral that expectation is linear, i.e. E [aX + bY ] = aE [X]+

bE [Y ] for constants a, b and random variables X, Y . The variance of X, written Var [X], is

defined by,

(1.1.2) Var [X] = E
[
(X − E [X])2

]
= E

[
X2
]
− E [X]2 .
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The covariance of two random variables, written Cov [X, Y ], is defined by

(1.1.3) Cov [X, Y ] = E [(X − E [X]) (Y − E [Y ])] = E [XY ]− E [X]E [Y ] .

It follows that when X, Y are independent , Cov [X, Y ] = 0. The converse is not true. When

Ω is a discrete probability space, as will often be the case in the following chapters, the

Lebesgue integral of Equation (1.1.1) takes the simpler form,

(1.1.4) E [X] =
∑
ω∈Ω

ω P [X = ω] .

When X is a non-negative integer-valued random variable, it satisfies the following useful

inequalities:

(1.1.5) P [X > 0] ≤ E [X] , and

(1.1.6) P [X = 0] ≤ Var [X]

E [X]2
.

Equations (1.1.5) and (1.1.6) are sometimes called, respectively, the first moment method

and second moment method [AS92], since the bounds are in terms of, respectively, expecta-

tion (the first moment) and variance (the second moment). Equation (1.1.5) can be thought

of as a special case of Markov’s inequality, and Equation (1.1.6) as a special case of Cheby-

shev’s inequality. For these inequalities and other basics of measure-theoretic probability,

we recommend [Bil95].

An indicator random variable 1A for an event A takes the value

(1.1.7) 1A =


1, if event A occurs,

0, otherwise.
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The expected value and variance of an indicator random variable satisfy

E [1A] = P [A] ,(1.1.8)

Var [1A] = P [A] (1− P [A]) .(1.1.9)

The union bound says that if A1, . . . , Ar are a collection of events, then the probability

that at least one of them occurs (i.e., the probability of their union), satisfies

(1.1.10) P

[
r⋃
i=1

Ai

]
≤

r∑
i=1

P [Ai] .

If the Ai are independent and identically distributed (abbreviated i.i.d.), with P [Ai] = p for

all i, then the union bound implies the following useful inequality:

1− (1− p)r ≤ rp.

We often consider a sequence of probabilistic events A(n), for n in the natural numbers

N, and analyze the asymptotic behavior of limn→∞A(n). The following asymptotic notation

and abbreviations will be used throughout the text.

Definition 1.1.11 (Asymptotically almost surely). If A(n) is a sequence of probabilistic

events, then A happens asymptotically almost surely , abbreviated a.a.s., if

lim
n→∞

P [A(n)] = 1.

Definition 1.1.12 (Asymptotic notation). For two non-negative, real-valued functions

f(x), g(x) of the same variable, we

(1) write f = O (g) , and say “f is ‘big o’ of g,” if there exists a constant c < ∞ such

that lim
x→∞

f(x)/g(x) ≤ c,

(2) write f = o (g) , and say “f is ‘little o’ of g,” if lim
x→∞

f(x)/g(x) = 0,

(3) write f = Ω (g) , and say “f is ‘big omega’ of g,” if there exists a constant C < ∞

such that lim
x→∞

f(x)/g(x) ≥ C,

(4) write f = ω (g), and say “f is ‘little omega’ of g,” if lim
x→∞

f(x)/g(x) =∞, and

9



(5) write f = Θ (g), and say “f is ‘big theta’ of g,” if both f = O (g) and f = Ω (g).

Note that the equality signs are a traditional part of this notation, and do not represent

literal mathematical equality.

1.1.2. Random graphs. Though usually called the Erdős-Rényi random graph, the

following model was introduced by Gilbert [Gil59] as well as Erdős and Rényi [ER59].

Definition 1.1.13 (Erdős-Rényi random graph). Given parameters n ∈ N and p ∈ (0, 1),

a random graph G has vertex set [n] = {1, . . . , n}, and edge set given by

(1.1.14) P [e ∈ E(G)] = p for all e ∈ E(Kn).

The resulting probability distribution, on the space of all graphs with vertex set [n], is

denoted by G(n, p). We write G ∼ G(n, p) to indicate that G is a graph sampled according

to G(n, p).

Figure 1.2 displays some Erdős-Rényi graphs produced by randomly selecting edges to

draw, according to Equation (1.1.14), when compiling this document. A useful feature

of the Erdős-Rényi random graph model is that the events e ∈ E(G) are i.i.d. This often

simplifies computing probabilities of events described in terms of sets of edges, such as in

the following two propositions. The proofs are explained in detail, as an illustration of some

of the probabilistic arguments used to prove the main theorems of this dissertation.

Proposition 1.1.15. Fix a labeled graph H on n vertices, and let G ∼ G(n, p). Then

P [G = H] = p#E(H)(1− p)(
n
2)−#E(H).

Proof. Let 1e be the indicator random variable for the event “e ∈ E(G).” Since G, H

are both graphs on vertex set [n], the event “G = H” occurs if and only if E(G) = E(H),

which occurs if and only if

1e =


1 e ∈ E(H),

0 e 6∈ E(H),
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Figure 1.2. Erdős-Rényi random graphs sampled from the distributions
G(20, 0.05) (top left), G(20, 0.25) (top right), G(40, 0.05) (bottom left), and
G(40, 0.25) (bottom right).

for every edge e = {i, j} of the complete graph Kn. Since the 1e are independent,

P [G = H] = P

∧
e∈H

{1e = 1} ∧
∧

e 6∈E(H)

{1e = 0}


=

∏
e∈E(H)

P [1e = 1]
∏

e 6∈E(H)

P [1e = 0]

=
∏

e∈E(H)

p
∏

e6∈E(H)

(1− p).

The first product has #E(H) factors, by definition, and since there are
(
n
2

)
edges in Kn, the

second product has
(
n
2

)
−#E(H) factors, and the proposition follows. �
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Proposition 1.1.16. Let G ∼ G(n, p). Then for every i ∈ [n],

E [deg(i)] = np− p.

Proof. The degree of vertex i is equal to the number of edges of G that contain i, so

E [deg(i)] = E

[∑
j 6=i

1{i,j}

]

=
∑
j 6=i

E
[
1{i,j}

]
=
∑
j 6=i

P [e ∈ G] =
∑
j 6=i

p = (n− 1)p.

The second line follows from linearity of expectation (Equation (1.1.1)), and the third from

the fact about indicator variables, E [1A] = P [A] (Equation (1.1.8)). �

Definition 1.1.17 (Monotone property). For two graphs G,H on vertex set [n], we say

that G ≤ H if the edges of G are a subset of the edges of H. We think of a graph theoretic

property A as the collection of all graphs with that property. Property A is called monotone

if G ∈ A and G ≤ H implies that H ∈ A.

For example, the property of being connected is monotone, because adding edges to a

connected graph always results in a graph that is still connected.

Definition 1.1.18 (Threshold function). For a graph property A, we say that t(n) is a

threshold function for A if

lim
n→∞

P [G(n, p(n)) ∈ A] =


0, p(n) = o (t(n)) ,

1, p(n) = ω (t(n)) .

The following proposition is to demonstrate the usefulness of the first- and second moment

methods in proofs of threshold behavior. This example is taken from [AS92, Chapter 10],

although a different proof is given here.

12



Proposition 1.1.19. For G ∼ G(n, p), the function t(n) = 1/n is a threshold for the

property of being triangle-free.

Proof. For each triple of vertices {i, j, k} ⊂ [n], let 1ijk be the indicator random variable

for the event “G contains the triangle with vertices {i, j, k}.” Then

P [1ijk] = P [{i, j} ∈ E(G) ∧ {j, k} ∈ E(G) ∧ {i, k} ∈ E(G)] = p3

by independence. Now let X be the random variable that counts the number of triangles in

G, so

(1.1.20) X =
∑

{i,j,k}⊆[n]

1ijk

and therefore

E [X] = E

 ∑
{i,j,k}⊆[n]

1ijk

 =
∑

{i,j,k}⊆[n]

E [1ijk] =

(
n

3

)
p3.

By the first moment method,

lim
n→∞

P [X > 0] ≤ lim
n→∞

E [X] = lim
n→∞

(
n

3

)
p3.

The event X > 0 means G has at least one triangle. To establish the first side of the

threshold, suppose p = o (1/n), so by definition limx→∞ np = 0. Then

lim
n→∞

(
n

3

)
p3 ≤ lim

n→∞
n3p3 = lim

n→∞
(np)3 = 0,

so G is triangle-free a.a.s. To compute Var [X], we apply its definition (Equation (1.1.2)) to

Equation (1.1.20) to get:

(1.1.21) Var [X] =
∑

{i,j,k}⊆[n]

Var [1ijk] +
∑

{i,j,k}6={i′,j′,k′}

Cov [1ijk,1i′j′k′ ] .

By Equation (1.1.8), each term in the first sum is Var [1ijk] = p3(1 − p3). For the second

sum, we note that if the triangles on vertices {i, j, k} and vertices {i′, j′, k′} have no edges in

common, then 1ijk and 1i′j′k′ are independent and have zero covariance. Since the triangles

13



cannot have two or three edges in common without being identical, the only interesting

possibility when there is exactly one edge in common, i.e., exactly two vertices in common.

In this case P [1ijk ∧ 1ijk′ ] = p5, since there are five edges which must included in G with

independent probability p each, and so Cov [1ijk,1i′j′k′ ] = p5−p6. For each set {i, j, k} ⊆ [n],

there are three choices of {i′, j′, k′} with this situation, so Equation (1.1.21) becomes

(1.1.22) Var [X] =

(
n

3

)
(p3 − p6)− 3

(
n

3

)
(p5 − p6).

By the second moment method,

P [X = 0] ≤ Var [X]

E [X]2
=

(
n
3

)
(p3 − p6)− 3

(
n
3

)
(p5 − p6)(

n
3

)2
p6

=
1− 3p2 + 2p3(

n
3

)
p3

.

Let p = ω (1/n), then limn→∞ P [X = 0] = 0, and therefore G has a nonzero number of

triangles a.a.s. �

A much more famous threshold for random graphs is the threshold for connectedness

proved in [ER59]:

Theorem 1.1.23. For G ∼ G(n, p), the function t(n) = ln(n)/n is a threshold for the

property of being connected.

The proof of Theorem 1.1.23 is beyond the scope of this introduction. However, it

is useful for demonstrating one way to visualize a family of distributions governed by a

threshold law. See Figure 1.3. Each square in the image corresponds to an (n, p) pair,

for every n ∈ {20, . . . , 50}, and values of p between 0 and 0.3, taken at intervals of 0.01.

For each (n, p) pair of parameters, the color of the square shows the proportion of random

samples G ∼ G(n, p) that were connected, with darker shades representing higher sample

probabilities of connectedness. For each fixed n, the probability of being connected increases

as p increases, from 0 to 1, and as n grows the shift in the phase transition follows the

threshold function p = ln(n)/n (dotted white curve). Furthermore, the transition becomes

sharper as n increases.
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Figure 1.3. Visualizing the connectedness threshold of Erdős-Rényi random
graphs. Each square in the image corresponds to a value n between 20 and
50, and a value of p between 0 and 0.3. For each (n, p) pair of parameters,
100 random graphs G ∼ G(n, p) were sampled and tested for connectedness
using the Graphs package in Macaulay2. The color of the square indicates the
sample probability of bring connected, from white (probability zero) to black
(probability one). The known threshold function p = ln(n)/n is the dotted
line, and follows the approximate center of the empirical phase transition.

Figure 1.3 demonstrates that although a threshold function is defined asymptotically, it

describes a pattern that often emerges at small finite values. That is, knowing whether p is

below or above ln(n)/n gives a good prediction of whether G is connected, even for small

n.

1.1.3. Random simplicial complexes.

Definition 1.1.24 (Simplicial complex). An (abstract) simplicial complex on [n] is a

collection ∆ of subsets of [n] that is closed under taking subsets. That is, if σ ∈ ∆ and

15



τ ⊆ σ, then τ ∈ ∆. Each σ ∈ ∆ is called a face of ∆. The elements of [n] are called the

vertices of ∆. The facets of ∆ are the faces that are maximal with respect to containment.

Definition 1.1.25 (Dimension of a simplicial complex). If σ is a face of the simplicial

complex ∆, we define dim σ = #σ − 1. The dimension of ∆ is the maximum dimension of

one of its faces, i.e.,

(1.1.26) dim ∆ = max
σ∈∆

(dimσ) = max
σ∈∆

(#σ − 1).

Definition 1.1.27 (f -vector). The f -vector of a simplicial complex is defined by fi =

# faces of dimension i.

Example 1.1.28. Let ∆ be the simplicial complex on [6] with facets {1, 2, 3, 4}, {4, 5, 6},

and {1, 5}. Figure 1.4a shows the poset of faces of ∆, ordered by containment, while Fig-

ure 1.4b depicts a geometric realization of ∆. The dimension of ∆ is three. Its f -vector

is

f(∆) = (1, 6, 11, 5, 1).

Definition 1.1.29 (d-skeleton). The d-skeleton of a simplicial complex ∆ is written ∆d,

and consists of the collection of faces of ∆ of dimension no more than d.

Example 1.1.30. The 1-skeleton of a simplicial complex contains its vertices along with

subsets of the form {i, j}. The 1-skeleton is therefore a graph, sometimes called the un-

derlying graph of the simplicial complex. Figure 1.4c depicts the 1-skeleton of ∆ from

Example 1.1.28.

Several random models for simplicial complexes have been studied in recent years, in-

cluding the following.

Definition 1.1.31 (Linial-Meshulam model [LM06,BHK11]). Start with the complete

1-skeleton on [n]. A random two-dimensional simplicial complex X is sampled by including

triangles T = {i, j, k} ⊆ [n] according to

P [T ∈ E(X)] = p for all T.
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∅

{1} {2} {3} {4} {5} {6}

{1, 2} {1, 3} {2, 3} {1, 4} {2, 4} {3, 4} {1, 5} {4, 5} {4, 6} {5, 6} {1, 6}

{1, 2, 3} {1, 2, 4} {1, 3, 4} {2, 3, 4} {4, 5, 6}

{1, 2, 3, 4}

(a) The poset of faces of ∆, ordered by containment.

1

2
4

5

6

3

(b) A geometric realization of ∆.

1

2
4

5

6

3

(c) The 1-skeleton of ∆.

Figure 1.4. Several representations of the simplicial complex ∆ from Exam-
ple 1.1.28, which has facets {1, 2, 3, 4},{4, 5, 6}, and {1, 5}.

This model is analogous to the Erdős-Rényi graph model after “moving up a dimension.”

A natural next step is to generalize to an arbitrary dimension.

Definition 1.1.32 (Meshulam-Wallach model [MW09]). Start with the complete (d−

1)-skeleton on [n]. A random d-dimensional simplicial complex X is sampled by including

d-faces f according to

P [f ∈ E(X)] = p for all F ⊆ [n].

The next model, on the other hand, generates a random simplicial complex directly from

an Erdős-Rényi random graph.
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Definition 1.1.33 (Random clique complex model [Kah07, Kah09]). Given n and p,

sample G ∼ G(n, p). The clique complex X is defined by attaching a d-face to every clique

of size d + 1 in G. In other words, X is the largest simplicial complex that has G as its

1-skeleton.

Properties of interest for random simplicial complexes include higher-dimensional ana-

logues of connectivity, the appearance and disappearance of nontrivial homology groups, and

their fundamental groups [BHK11].

In [CF16], Costa and Farber introduced a multi-parameter model for random simplicial

complexes that includes each of these models as a special case.

Definition 1.1.34 (Costa-Farber model). Select a vector p = (p0, p1, p2, . . .), with 0 ≤

pi ≤ 1 for all i. The faces of a simplicial complex X on [n] are sampled one dimension at a

time. Each vertex is included according to

P [{i} ∈ E(X)] = p0.

The edges are then chosen according to

P [{i, j} ∈ E(X)] =


p1 {i}, {j} ∈ E(X),

0 otherwise.

and so forth. For each dimension d, possible d-faces are included with independent proba-

bility pd, given that they are supported on the lower-dimensional faces already sampled.

Viewed as special cases of the Costa-Farber model, the random models already mentioned

can be described by the following particular choices of parameters:

• Erdős-Rényi: p = (1, p, 0, 0, 0, . . .).

• Linial-Meshulam: p = (1, 1, p, 0, 0, 0, . . .).

• Meshulam-Wallach: p = (1, 1, . . . , 1︸ ︷︷ ︸
d

, p, 0, 0, . . .).

• Clique complex: p = (1, p, 1, 1, 1, . . .).
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1.2. Ideals and varieties

Throughout this dissertation k is a field, and S refers to S = k[x1, . . . , xn], the ring of

polynomials in the variables x1, . . . , xn, with coefficients in k. Given a set of polynomials

{f1, f2, . . . , fm}, the ideal generated by f1, . . . , fm is written I = 〈f1, f2, . . . , fm〉, and equals

I = {p1f1 + p2f2 + · · ·+ pmfm : pi ∈ S},

the set of S-linear combinations of the generating set. For F an infinite set of polynomials, the

ideal I = 〈F 〉 is defined as the smallest subset of S that contains F , is closed under addition,

and “absorbs products,” i.e., is closed under multiplication by elements of S. However, by

the Hilbert basis theorem (see, e.g., Chapter 1 of [BWK93]), every ideal of S is finitely

generated . In other words, there exists a finite set of polynomials {f1, . . . , fm} such that

I = 〈F 〉 = 〈f1, . . . , fm〉.

Definition 1.2.1 (Affine variety). The variety of I, written V(I), is the set

{~v ∈ kn : f(~v) = 0 for all f ∈ I}.

Equivalently, if {f1, . . . , fm} generate I, then V(I) is the set of simultaneous solutions

over k to the system {f1 = 0, f2 = 0, . . . , fm = 0}.

Example 1.2.2. Let I = 〈x2 + y2 − 1, x− y〉 ⊂ R[x, y]. Then V(I) = {(
√

2/2,
√

2/2) ,(
−
√

2/2,−
√

2/2
)
}, the two points of R2 that lie both on the circle x2 + y2 = 1 and on the

line x = y. See Figure 1.5a. On the other hand, let J = 〈x2 + y2 − 1〉 ⊂ R[x, y]. Then V(J)

contains infinitely many points; namely, all points of R2 that lie on the circle x2 + y2 = 1.

See Figure 1.5b.

In addition to defining the variety of an ideal, we can also define the ideal of a variety .

Given V a subset of kn, the ideal of V is the set of all polynomials that simultaneously vanish

at every ~v ∈ V :

I(V) = {f ∈ S : f(~v) = 0 for all ~v ∈ V }.
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x

y

(a) The variety of I =
〈
x2 + y2 − 1, x− y

〉
⊂

R[x, y] consists of the two points (in black) that si-
multaneously satisfy x2 + y2− 1 = 0 and x− y = 0.

x

y

(b) The variety of J =
〈
x2 + y2 − 1

〉
⊂

R[x, y] is a 1-dimensional curve (circle) in
R2.

Figure 1.5. First examples of varieties of polynomial ideals.

The dimension of a variety is its dimension as a subspace of kn. Intuitively, if V(I) is

a finite set of points, then dimV(I) = 0, if V(I) a union of lines, curves, and points, then

dimV(I) = 1, and so forth.

Example 1.2.3. For I = 〈x2 + y2 − 1, x− y〉 ⊂ R[x, y], dimV(I) = 0 since V(I) is finite.

For J = 〈x2 + y2 − 1〉 ⊂ R[x, y], dimV(J) = 1 since V(J) is a one-dimensional curve.

The formal definition of dimension uses the algebraic notion of the Krull dimension of a

ring, and is explained in Section 1.2.3.

The following standard definitions and theorems appear in any algebra text; e.g., [Rot02].

We review them briefly without much comment.

Definition 1.2.4 (Radical of an ideal and radical ideals). The radical of an ideal I is

defined by
√
I = {f ∈ S : fm ∈ I for some m ≥ 1}.

An ideal I is called a radical ideal if
√
I = I.

Definition 1.2.5 (Prime and primary ideals). An ideal I ⊂ S is prime if it is proper

(i.e., not equal to the ring itself), and ab ∈ I implies that a ∈ I or b ∈ I.

An ideal I ⊂ S is primary if it is proper and ab ∈ I and b /∈ I imply that an ∈ I for

some n ≥ 1.
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Proposition 1.2.6. If I is primary, then
√
I is prime.

Definition 1.2.7 (Primary decomposition, associated primes). A primary decomposition

of I is a finite set of primary ideals J1, . . . , Jr satisfying

(1.2.8) I = J1 ∩ J2 ∩ · · · ∩ Jr.

A primary decomposition is called irredundant if no Ji can be omitted from Equation (1.2.8).

The prime ideals
√
J1, . . . ,

√
Jr are called the associated primes of I.

Theorem 1.2.9 (Lasker-Noether theorem). Every proper ideal I ⊂ S has a primary

decomposition, and the set of associated primes of I is unique.

Definition 1.2.10 (Minimal primes). A prime ideal p is a minimal prime of I if I ⊆ p

and there is no prime p′ such that I ⊆ p′ ( p. Equivalently, the minimal primes of I are the

minimal elements in the set of associated primes of I.

Definition 1.2.11 (Ideal quotient). Given I ⊂ S and J ⊂ S, the ideal quotient 〈I : J〉,

also called colon ideal is an ideal defined by

〈I : J〉 = {f ∈ S : fj ∈ I for all j ∈ J}.

We will see in Section 1.4.2 that the ideal quotient 〈I : J〉 arises quite naturally as the

kernel of the quotient map from S/I to S/(I + J).

When k is algebraically closed , then (by definition) every root of a polynomial with

coefficients in k is an element of k. This leads to the following important theorem.

Theorem 1.2.12 (Hilbert’s Nullstellensatz). Let I be an ideal of S = k[x1, . . . , xn] for k

algebraically closed. Then

(1) V(I) = ∅ if and only if I = S.

(2) I(V(I)) =
√
I.
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Statements (1) and (2) are often known as the weak Nullstellensatz and strong Null-

stellensatz, respectively. Rotman [Rot02] has a nice and simple proof for the case k = C

(Chapter 5), in addition to the more general version (Chapter 10).

Example 1.2.13. For an example of why algebraically closure is necessary in Theo-

rem 1.2.12, let I = 〈x2 + 1〉 ⊂ R[x]. Then V(I) = ∅ even though I is not equal to R[x].

Remark 1.2.14. Version (1) of Hilbert’s Nullstellensatz can be viewed as a method for

certifying the infeasibility of various combinatorial problems, by expressing combinatorial

constraints as polynomials and then proving that the ideal they generate is the entire poly-

nomial ring. This view, and its fascinating connections to computational complexity and

NP-completeness, was the subject of the 2008 Ph.D. dissertation of my academic sister,

Susan Margulies [Mar08].

Remark 1.2.15. The results proved in this dissertation hold over arbitrary fields, un-

less explicitly stated otherwise. Although algebraic closure and characteristic are generally

crucial to proofs in commutative algebra, the combinatorial nature of monomial ideals (Sec-

tion 1.2.1) often allows us to skirt these considerations. For instance, both versions of

Theorem 1.2.12 still hold for monomial ideals even if k is not algebraically closed, so results

about dimension such as Theorem 3.3.2 are true even over fields like R. Furthermore, the

characteristic of k, on which invariants like the minimal free resolution of an ideal (Sec-

tion 1.3) usually depend, even for monomial ideals, will turn out to be unimportant in the

main results on resolutions, Theorems 4.2.2 and 5.2.1. In particular, the last non-zero total

Betti number (Definition 1.3.14) of the resolution of a monomial ideal, and hence its pro-

jective dimension, is invariant under characteristic. (One way to see this is via Alexander

duality for monomial ideals, which is not covered in this introduction but is explained in

great detail in [MS04] and [HH11].)

1.2.1. Monomial ideals. Recall that S always denotes k[x1, . . . , xn]. A monomial of

S is a polynomial with a single term. For example, x3y7z and x9z2 are two monomials in

k[x, y, z]. In general, we will write xα as shorthand for the monomial xα = xα1
1 x

α2
2 · · ·xαnn .
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The vector α is called the exponent vector of this monomial. For example, the exponent

vector of x9z2 ∈ k[x, y, z] is (9, 0, 2). We call I ⊆ S a monomial ideal if I can be generated

by G = {g1, . . . , gm} where every gi is a monomial.

Example 1.2.16. The ideal I = 〈x2 + 3y, x2 − 2y2, y2 − y〉 ⊂ k[x, y] is a monomial ideal

with monomial generating set {x2, y}.

Proposition 1.2.17 (Unique minimal generators). Every monomial ideal has a unique

minimal monomial set of generators.

Proposition 1.2.18 (Prime and irreducible monomial ideals). A monomial ideal of S =

k[x1, . . . , xn] is prime (Definition 1.2.5) if and only if it is generated by a subset of the

variables {x1, . . . , xn}.

A monomial ideal is called irreducible if it cannot be written as the proper intersection

of two monomial ideals. A monomial ideal I is irreducible if and only if it is generated by

pure powers of the variables, i.e.

I =
〈
xa1i1 , x

a2
i2
, . . . , xari,r

〉
.

1.2.2. Squarefree monomial ideals and the Stanley-Reisner correspondence.

Definition 1.2.19 (Squarefree). A monomial xα is called squarefree if every αi ∈ α is

either one or zero. A squarefree monomial ideal is an ideal with a generating set of squarefree

monomials. The support of xα is the set {xi : αi > 0}, written supp(xα). The squarefree

part of xα is
∏

xi∈supp(xα) xi, and is written
√
xα.

Example 1.2.20. The ideal 〈x1x3x4, x1x2, x3x4x5〉 ⊂ k[x1, . . . , x5] is a squarefree mono-

mial ideal. The ideal 〈x3
1x3x4, x1x

3
2, x3x4x5〉 is not. The support of x3

1x3x4 is supp(x3
1x3x4) =

{x1, x3, x4}, and its squarefree part is
√
x3

1x3x4 = x1x3x4.

A few useful facts about squarefree monomial ideals are collected here, all of which can

be found, with proofs, in Chapter 1 of [HH11].
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Proposition 1.2.21. If I is a monomial ideal with minimal generators G = {g1, . . . , gr},

then
√
I is a squarefree monomial ideal generated by {√g1, . . . ,

√
gr}.

Corollary 1.2.22. A monomial ideal is radical if and only if it squarefree.

Example 1.2.23. Even when G is a minimal generating set for I, the set {√g : g ∈ G}

may not be a minimal generating set for
√
I. For example, let G = {x3yz, xy3z, xyz3,

x2y2z2w2, w3}, I = 〈G〉 ⊂ k[x, y, z, w]. Although these five monomials minimally generate

I, their squarefree parts are, respectively, xyz, xyz, xyz, xyzw, and w. Therefore {√g : g ∈

G} = {xyz, xyzw,w} even though
√
I is minimally generated by {xyz, w}. This example

also shows that we can have two minimal generators of I such that g 6= g′ but
√
g =
√
g′.

Proposition 1.2.24. A squarefree monomial ideal is the intersection of its minimal

primes (Definition 1.2.10), each of which is a monomial prime ideal.

Monomial ideals have a complementary structure to simplicial complexes in the following

sense: a simplicial complex is closed “downwards,” with a unique maximal set of facets

along with everything smaller in the partial order of containment, while a monomial ideal

is closed “upwards,” with a unique minimal set of monomials along with everything larger

in the partial order of divisibility. When a monomial ideal is squarefree, its generators are

essentially subsets of the variables, and this complementarity becomes literal.

Definition 1.2.25 (Stanley-Reisner ideal). If ∆ is a simplicial complex on [n], then the

Stanley-Reisner ideal of ∆, I∆, is the squarefree monomial ideal of S defined by

(1.2.26) I∆ = 〈xi1 · · ·xir : {i1, . . . , ir} 6∈ ∆〉 .

The Stanley-Reisner ring of ∆, which encodes all k-linear combinations of the faces of ∆, is

S/I∆.

Theorem 1.2.27. The definition of I∆ in Equation (1.2.26) defines a bijection between

simplicial complexes on [n] and squarefree monomial ideals in k[x1, . . . , xn].

See, for example, [MS04, Theorem 1.7].
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I∆ = 〈x1x6, x2x5, x2x6,
x3x5, x3x6, x1x4x5〉

Figure 1.6. The simplicial complex ∆ from Example 1.1.28 (left). The sub-
set {1, 4, 6} is a non-face, but not a minimal one, since it properly contains
the non-face {1, 6}. The monomials x1x4x6 and x1x6 are both elements of
I∆ by definition, but x1x4x6 is a redundant generator because it is a multiple
of x1x6. The minimal generators of the Stanley-Reisner ideal I∆ (right) are
exactly those that come from minimal non-faces of the complex.

Example 1.2.28. Equation (1.2.26) says that I∆ is generated by the monomials corre-

sponding to the non-faces of ∆. Recall the simplicial complex from Example 1.1.28 which

had facets {1, 2, 3, 4}, {4, 5, 6}, and {1, 5}. The subset {1, 4, 6} is not a face of this complex,

so the monomial x1x4x6 belongs to I∆. Similarly {1, 6} is not a face, so x1x6 ∈ I∆. Since

x1x6 divides x1x4x6, the latter monomial is not a minimal generator. This motivates the

definition of a minimal non-face of ∆: a non-face all of whose proper subsets are faces.

Because containment of faces corresponds to divisibility of monomials in I∆, the minimal

generators of I∆ are given by the minimal non-faces of ∆. In an example like Figure 1.6,

they can be listed by simply inspecting the figure.

Through the Stanley-Reisner correspondence, any random model for graphs or simplicial

complexes can be viewed as a random model for square-free monomial ideals, and vice

versa (see Section 2.4). The random models in Chapter 2 are much more general, as they

are distributions over all monomial ideals and not just squarefree ones. Even so, squarefree

monomial ideals will appear in many computations in later chapters. For instance, computing

the probabilistic dimension of a random monomial ideal relies on a hypergraph defined by its

(squarefree) radical in Sections 3.2 and 3.3, and the irreducible decomposition of a monomial
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ideal is described in ?? by first converting a general monomial ideal into a squarefree one in

a new set of variables. This process is called polarization.

Definition 1.2.29 (Polarization of a monomial ideal). Let I be a monomial ideal of

S = k[x1, . . . , xn] with minimal generators G = {g1, . . . , gr}, with gi = x
αi,1
1 · · ·xαi,nn . The

polarization of I is a squarefree monomial ideal defined by generators z1, . . . , zr, where zi is

obtained from gi by replacing each power x
αi,j
j with the product xj,1xj,2 · · ·xj,αi,j . Formally,

polarization(I) =

〈
n∏
j=1

αi,j∏
k=1

xj,k

〉
.

The polarization is an ideal of k[x1,1, . . . , x1,m1 , x2,1, . . . , x2,m2 , . . . , xn,1, . . . , xn,mn ], where

mj = maxαi,j.

Example 1.2.30. The actual process of polarization is simpler than the process of writing

down the correct notation in the definition. For instance, if I = 〈x2y2, y3, xz2〉, then

polarization(I) = 〈x1x2y1y2, y1y2y3, x1z1z2〉 ,

and lives in the ring k[x1, x2, y1, y2, y3, z1, z2].

1.2.3. The dimension of a monomial ideal. The Krull dimension of a ring R is

defined as the supremum of the lengths of chains of distinct prime ideals in R. For instance,

the Krull dimension of the polynomial ring S = k[x1, . . . , xn] is n. A maximal chain of prime

ideals in S is

〈0〉 ⊂ 〈x1〉 ⊂ 〈x1, x2〉 ⊂ · · · ⊂ 〈x1, . . . , xn〉 ,

which has n proper containments. Note that the ring S itself is not considered a prime ideal.

That there are no chains of greater length requires additional justification, see Chapter 8

of [Eis95].

If I is a prime ideal of R, its codimension is the supremum of lengths of chains of distinct

primes descending from I. For instance, the prime ideal I = 〈x1, . . . , xr〉 of S, for r ≤ n, has
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codimension r, evidenced by the chain

〈0〉 ⊂ 〈x1〉 ⊂ 〈x1, x2〉 ⊂ · · · ⊂ 〈x1, . . . , xr〉 .

Hence dim I = n− r.

For I not assumed prime, codim I is the minimum codimension of a prime containing I.

Example 1.2.31. The ideal J = 〈xy3, x3y〉 ⊂ k[x, y] is not prime. J is contained by

the prime ideals 〈x〉 and 〈y〉, which each have codimension 1, and by 〈x, y〉, which has

codimension 2. Therefore codim J = 1. Since dim k[x, y] = 2, dim J = 1.

Example 1.2.31 illustrates how codim I can be computed combinatorially in the case

that I is a monomial ideal of S = k[x1, . . . , xn]. Let pT denote the prime ideal generated by

{xi ∈ T}. Since the prime monomial ideals of k[x1, . . . , xn] are exactly those given by pT for

T ⊆ S, the codimension of I is equal to

(1.2.32) codim I = min{#T : I ⊆ pT}.

Furthermore, for every T ⊆ {x1, . . . , xn}, I ⊆ pA if and only if for every monomial

g ∈ I, at least one xi ∈ T divides g. So computing the codimension of a monomial ideal is

equivalent to finding the smallest subset T with this property. It is convenient to recast this

as finding a minimum vertex cover of a hypergraph defined by the generators of I. This is

explained in detail in Section 3.1.

1.3. Resolutions of monomial ideals

1.3.1. Minimal free resolutions. Minimal free resolutions are an important and cen-

tral topic in commutative algebra. For instance, in the setting of modules over finitely gen-

erated graded k-algebras, the numerical data of these resolutions encode the Hilbert series,

Castelnuovo-Mumford regularity and other fundamental invariants. Minimal free resolutions

also provide a starting place for a myriad of homology and cohomology computations. An

essential resource on minimal free resolutions in the general commutative algebra setting

is [Eis95].
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Definition 1.3.1 (Minimal free resolution). Let M be a finitely generated S-module. A

free resolution of M is an exact chain complex

0←−M
δ0←− F0

δ1←− F1
δ2←− F2

δ3←− · · ·

where the Fi are free S-modules. The S-module homomorphisms δi are sometimes called

differentials for reasons that have nothing to do with combinatorial commutative algebra.

When S has a grading, we define a graded free resolution by adding the requirement that all

differentials be homogeneous of degree zero. This is accomplished by “twisting” or grading

the summands of Fi appropriately, so each Fi is written

(1.3.2) Fi =
r⊕
j=1

S(−ai,j).

The integer r is called the rank of Fi. A minimal (graded) free resolution is one where the

rank of each Fi is minimal over all free resolutions of I.

This definition requires a minimal free resolution to simultaneously minimize the rank of

every Fi; a priori, it is not clear that such an object exists, let alone is unique. The next

theorem is quite wonderful.

Theorem 1.3.3. The minimal (graded) free resolution of a finitely generated S-module

M exists, is unique up to isomorphism, and is a direct summand of any free (graded) reso-

lution of M .

For a proof see, e.g., [Eis95, Theorem 20.2]. In light of Theorem 1.3.3, it is common to

say “the” minimal free resolution of M when referring to any isomorphic copy.

Example 1.3.4. Let I = 〈x2y, yz3, x2z2〉 ⊆ k[x, y, z]. To build a free resolution of S/I,

we begin by setting F0 = S, and letting δ0 be the canonical quotient map π : S → S/I.

0←− S/I
π←− S ←− · · · .

The kernel of π is I. Since I consists of all S-linear combinations of x2y, yz3, and x2z2,

we can write I =
{

[x2y yz3 x2z2] · [f1 f2 f3]T : [f1 f2 f3]T ∈ S3
}

, and recognize I as the
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image of δ1 : S3 → S where δ1 is left-multiplication by [x2y yz3 x2z2]. We write this

(1.3.5) 0←− S/I
π←− S

[x2y yz3 x2z2]
←−−−−−−−−− S3 ←− · · · .

Call the standard basis elements of F1 = S3 e1 = [1 0 0]T , e2 = [0 1 0]T , and e3 = [0 0 1]T .

As defined in Equation (1.3.5), δ1 sends e1, a degree-zero element of S3, to x2y ∈ S, which

has degree three. To compensate, we redefine deg(e1) = −3. Similarly, we redefine deg(e2) =

deg(e3) = −4. After these shifts, δ1 is homogeneous of degree 0, and we record the shifts

this way:

0←− S/I
π←− S

[x2y yz3 x2z2]
←−−−−−−−−− S(−3)

⊕
S(−4)
⊕

S(−4)

←− · · · .

Next, we need to find ker δ1, and define F2 and δ2 so that δ2 : F2 → S3 satisfies im δ2 = ker δ1.

The module F2 is called the (first) syzygy module of I and consists of all relations among the

generators of I. For instance, the generators x2y and yz3 have the relation z3·x2y−x2·yz3 = 0.

This means that the column vector z3e1 − x2e2 = [z3 − x2 0]
T

of S3 belongs to ker δ1,

since δ1(z3e1 − x2e2) = [x2y yz3 x2z2] · [z3 − x2 0]
T

= 0. Similarly, from the relations

z2 · x2y − y · x2z2 = 0, and x2 · yz3 − yz · x2z2 = 0, we find two more elements of ker δ1:

z2e1−ye3 and x2e2−yze3. The reader familiar with the Buchberger algorithm for computing

Gröbner bases will notice that we are computing S-pairs . [CLO05] is highly recommended

for its computational explanation of free resolutions based on Gröbner basis theory.

We define F2 to have three basis elements and δ2 as the map that sends them to z3e1−x2e2,

z2e1−ye3 and x2e2−yze3, respectively. For reasons that will become clear in the next section,

we will name the basis elements of F3 as e{1,2}, e{1,3}, and e{2,3}, respectively. Finally we
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shift the basis elements to make δ2 degree zero.

0←− S/I
π←− S

[x2y yz3 x2z2]
←−−−−−−−−− S(−3)

⊕
S(−4)
⊕

S(−4)

[
z3 z2 0
−x2 0 x2

0 −y −yz

]
←−−−−−−−−− S(−6)

⊕
S(−5)
⊕

S(−6)

←− · · · .

The next step in the resolution is finding ker δ2, which is the module of relations on the

syzygy module F2, or the second syzygy module. Pairwise, the columns of

[
z3 z2 0
−x2 0 x2

0 −y −yz

]
are

S-linearly independent, but there is a relation on all three of them, since the first column is

equal to z times the second column minus the third. In other words, ker δ2 is generated by

e{1,2} − ze{1,3} + e{2,3}, so we define δ3 =
[

1
−z
1

]
to take a single basis element of F3 to this

syzygy on F2. Since δ3 is injective, it has trivial kernel, so the construction terminates and

we have found a free resolution of S/I.

(1.3.6) 0←− S/I
π←− S

[x2y yz3 x2z2]
←−−−−−−−−− S(−3)

⊕
S(−4)
⊕

S(−4)

[
z3 z2 0
−x2 0 x2

0 −y −yz

]
←−−−−−−−−− S(−6)

⊕
S(−5)
⊕

S(−6)

[
1
−z
1

]
←−−− S(−6)←− 0.

But wait a second! Since we can write one of the columns of

[
z3 z2 0
−x2 0 x2

0 −y −yz

]
as a S-linear

combination of the other two, that means that two columns were sufficient to generate all

syzygies. If we lose the redundant syzygy and define δ2 by the smaller matrix
[
z2 0
0 x2
−y −yz

]
, then

we can define F2 as a free module of rank 2 instead of 3, while still satisfying im δ2 = ker δ1.

Now there are no nontrivial relations on the generators of F2, so the resolution ends after

the first syzygy module, with a smaller free resolution:

(1.3.7) 0←− S/I
π←− S

[x2y yz3 x2z2]
←−−−−−−−−− S(−3)

⊕
S(−4)
⊕

S(−4)

[
z2 0
0 x2
−y −yz

]
←−−−−−− S(−5)

⊕
S(−6)

←− 0.
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Since I cannot have fewer than three generators, and at least two syzygies are needed to

generate all of their relations, it is impossible to find a smaller free resolution. Therefore

Equation (1.3.7) is the (up to isomorphism) minimal free resolution of S/I.

In general the minimal free resolution of a monomial ideal may be characteristic-dependent .

As explained in Remark 1.2.15, we can safely ignore this issue in the proofs of this thesis.

1.3.2. Projective dimension and Cohen-Macaulayness.

Definition 1.3.8 (Projective dimension). The projective dimension of an S-module M ,

written pdimM is defined as the minimum number of nonzero syzygy modules in a (graded)

free resolution, equivalently the number of nonzero syzygy modules in the minimal (graded)

free resolution of M .

In general algebra settings, projective dimension refers to the minimum length of a pro-

jective resolution: one where all modules of the chain complex are required to be projective,

but not necessarily free. This distinction is unnecessary in our setting of finitely generated

modules over polynomial rings, since in this case a module is projective if and only if it is

free. This powerful result was conjectured by Serre and eventually proved by Quillen [Qui76]

and, independently, Suslin [Sus76].

Example 1.3.9. Continuing Example 1.3.4, let S = k[x, y, z] and let I = 〈x2y, yz3, x2z2〉.

Then pdim(S/I) = 2.

For finitely generated modules over polynomial rings, Hilbert proved an elegant upper

bound on the number of nonzero syzygy modules in a minimal resolution.

Theorem 1.3.10 (Hilbert syzygy theorem). Let S = k[x1, . . . , xn]. For every finitely

generated S-module M , pdimM ≤ n. In other words, M has a free resolution of the form

0←−M ←− F0 ←− F1 ←− · · · ←− Fm ←− 0,

where m ≤ n.
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Appendix A3 of [Eis95] proves a more general statement using modern homological

algebra. There is also a lovely computational proof of Theorem 1.3.10 in [CLO05] based on

Gröbner bases of modules.

Definition 1.3.11 (Cohen-Macaulay). An S-module is called Cohen-Macaulay if its

Krull dimension equals its depth. For S a polynomial ring, depthS/I = n − pdimS/I by

the Auslander-Buchsbaum theorem [Eis95, Corollary 19.10]. Therefore for an ideal I of a

polynomial ring S, S/I is Cohen-Macaulay if and only if

(1.3.12) dim(S/I) = pdim(S/I).

Since ideals of polynomial rings are the focus of this thesis, we will avoid going into full

depth about Cohen-Macaulayness, and take Equation (1.3.12) as its definition.

Example 1.3.13. Recall pdim(S/I) = 2 for I = 〈x2y, yz3, x2z2〉 ⊆ S = k[x, y, z]. To

find dim(S/I), use Proposition 3.1.2: the support hypergraph of I is the complete graph on

vertex set {x, y, z}, which has transversal number 2. Since S is generated by three variables,

dim(S/I) = 3− 2 = 1. Therefore S/I is not Cohen-Macaulay.

1.3.3. Graded Betti numbers and regularity.

Definition 1.3.14 (Total and graded Betti numbers). Let F be a minimal graded free

resolution of a graded S-module M , with the free modules of the chain complex written, as

before, in the form

Fi =
⊕
j

S(−ai,j).

The index i is called the homological degree of Fi. Because F is unique up to isomorphism

(Theorem 1.3.3), both the rank of Fi and the multiset of grades {{ai,j : S(−ai,j) ∈ Fi}} are

invariants of M . The ranks of the free modules are called the total Betti numbers of M , and

written with a single index:

βi(M) = rk(Fi).
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The graded Betti numbers of M count the number of free S-modules of each grade in each

homological degree. They are written with two indices:

βi,j(M) = # of copies of S(−j) in Fi.

Example 1.3.15. Let M = k[x, y, z]/ 〈x2y, yz3, x2z2〉 whose minimal graded resolution

appears in Example 1.3.4. The total Betti numbers of M are β0 = 1, β1 = 3, and β2 = 2,

with βi = 0 for all other i. The graded Betti numbers of M are β0,0 = 1, β1,3 = 1, β1,4 = 2,

β2,5 = 1, and β2,6 = 1, with βi,j = 0 for all other pairs i, j.

The graded Betti numbers of M are often collected in a table called the Betti table of

M . The columns correspond to homological degrees, and the rows correspond to grades. To

save space, we take into account the fact that βi,j = 0 whenever j < i, and place βi,i+k in

the ith column and kth row. Indexing starts at (0, 0) in the top left.

Example 1.3.16. The Betti table of M from the Example 1.3.15 is

0 1 2
total: 1 3 2

0: 1 . .
1: . . .
2: . 1 .
3: . 2 1
4: . . 1

.

Remark 1.3.17. In Macaulay2, the command betti res M will create a Betti table in

exactly this format, and the command tex betti res M conveniently returns the LATEX

code for typesetting it.

Remark 1.3.18. The projective dimension of M is the largest column index in the Betti

table of M .

Definition 1.3.19 (Regularity). The Castelnuovo-Mumford regularity (or simply regu-

larity) ofM is written regM , and defined as the greatest integer k such that the βi,i+j(M) = 0

for all j > k.
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Bayer and Stillman showed that (under a few assumptions) the degree complexity of a

Gröbner basis with respect to reverse lexicographic order is bounded above by the regularity

of the ideal [BS87a], so understanding this invariant has great computational significance.

Remark 1.3.20. The regularity of M is the largest row index in the Betti table of M .

Example 1.3.21. From the Betti table in Example 1.3.16, we see by the number of rows

that M = k[x, y, z]/ 〈x2y, yz3, x2z2〉 has regularity 4.

1.3.4. The Taylor complex. When I is a monomial ideal, the syzygies on its gen-

erators are determined by least common multiples (lcm’s) of generators. For instance, in

Example 1.3.4, the monomials yz3 and x2z2 are related by x2 · yz3 − yz · x2z2 = 0 and thus

the module homomorphism defined by e1 7→ x2y, e2 7→ yz3, e3 7→ x2z2 contains x2e2 − yze3

in its kernel. The fact that lcm(yz3, x2z2) = x2yz3 has degree 6 means that the syzygy is in

degree 6, and the basis element of F2 mapped to x2e2 − yze3 needs a degree shift of 6. This

syzygy corresponds to one of the direct summands of F2 equal to S(−6) in Equation (1.3.6).

In general, if I is a monomial ideal minimally generated by {g1, . . . , gs}, then every two

minimal generators gi, gj satisfy the relation

(1.3.22)
lcm(gi, gj)

gj
· gi −

lcm(gi, gj)

gi
· gj = 0.

Thus
lcm(gi,gj)

gj
ei − lcm(gi,gj)

gi
ej will belong to the first syzygy module. Suppose e{i,j} is a basis

element of F2 and δ2 is defined so δ2e{i,j} =
lcm(gi,gj)

gj
ei − lcm(gi,gj)

gi
ej; then this basis element

must be shifted by the degree of lcm(gi, gj), so the free module S(− deg lcm(gi, gj)) shows

up as a direct summand of F2.

As we saw in Example 1.3.4, including a basis element e{i,j} for every syzygy on a gi, gj

pair is sure to generate the entire syzygy module F2. The caveat is that redundant relations

may be included.

These constructions readily extend to higher syzygy modules and motivate the definition

of the Taylor complex of a monomial ideal, which encodes all possible syzygies on sets of

the generators and gives a universal recipe for a free resolution of any monomial ideal.
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In general, though, the Taylor complex has many redundant generators and is far from a

minimal resolution.

Definition 1.3.23 (Taylor complex). Let I = 〈G〉 be a monomial ideal with minimal

generating set G = {g1, . . . , gr}. For each subset L of {1, . . . , r} let mL = lcm(gi | i ∈ L).

Let αL ∈ Nn be the exponent vector of mL and let S(−αL) be the free S-module with one

generator in multidegree aI . The Taylor complex of S/I is the Zn-graded module

(1.3.24) F =
⊕

L⊆{1,...,r}

S(−αL)

with basis denoted by {eL}L⊆{1,...,r}, and equipped with the differential:

(1.3.25) δ(eI) =
∑
i∈L

sign(i, L) · mL

mL\i
· eL\i,

where sign(i, L) is (−1)j+1 if i is the jth element in the ordering of L. This is a free resolution

of S/I over S with 2r terms; the terms are in bijection with the 2r subsets of G, and the

term corresponding to L ⊆ G appears in homological degree #L.

Example 1.3.26. The resolution in Equation (1.3.6) is actually the Taylor complex of

M = C[x, y, z]/ 〈x2y, yz3, x2z2〉.

Example 1.3.27. Let I = 〈xw, z3, y3w, xyz2〉 ⊂ C[x, y, z, w]. The Taylor complex is

depicted in Figure 1.7. The differentials δ are omitted from the figure for readability, but are

easily described using Equation (1.3.25). For instance, δ1, using the order of basis elements

in the figure, is given by the matrix

(1.3.28)


z3 y3 0 yz2 0 0

−xw 0 xy 0 y3w 0

0 −x 0 0 −z3 xz2

0 0 −z −w 0 −y2w


.

Since the Taylor complex is a free resolution, it contains the minimal free resolution as a

direct summand. The minimal free resolution is shown in black in Figure 1.7, with the rest

35



0←− S ←−

S(−
[

1
0
0
1

]
)

⊕

S(−
[

0
0
3
0

]
)

⊕

S(−
[

0
3
0
1

]
)

⊕

S(−
[

1
1
2
0

]
)

←−

S(−
[

1
0
3
1

]
)

⊕

S(−
[

1
3
0
1

]
)

⊕

S(−
[

1
1
3
0

]
)

⊕

S(−
[

1
1
2
1

]
)

⊕

S(−
[

0
3
3
1

]
)

⊕

S(−
[

1
3
2
1

]
)

←−

S(−
[

1
1
3
1

]
)

⊕

S(−
[

1
3
3
1

]
)

⊕

S(−
[

1
3
2
1

]
)

⊕

S(−
[

1
3
3
1

]
)

←− S(−
[

1
3
3
1

]
)←− 0,

Figure 1.7. The Taylor complex of I = 〈xw, z3, y3w, xyz2〉 ⊂ C[x, y, z, w]
(see Definition 1.3.23). The minimal free resolution of I is strictly contained
in the Taylor complex, and is supported on the free modules drawn in black.
The Taylor complex additionally includes the free modules drawn in gray.

of the Taylor complex in gray. Note that the redundant submodule of the Taylor complex in

homological degree 1 is S(−
[

1
3
2
1

]
). This corresponds to the redundancy of the last column of

δ1 in Equation (1.3.28), which is an S-linear combination of the second and fourth columns.

There is a common property of the modules in Figure 1.7 that appear in the Taylor

complex but not in the minimal free resolution: they have multidegrees that appear more

than once. This is not a coincidence, by the following theorem.

Theorem 1.3.29. Any free resolution of an S-module M can be decomposed as the direct

sum of the minimal free resolution of M and sequences of the form

0←− S(−α)←− S(−α)←− 0,

i.e. pairs of free modules in consecutive homological degrees, shifted by identical multide-

grees.

See [Eis06].
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Remark 1.3.30. As a corollary, any multidegree which appears exactly once in the Taylor

resolution must be part of the minimal free resolution. The converse is not true, as seen in

Example 1.3.27. A copy of S(−
[

1
3
3
1

]
) appears in homological degree 3 of the minimal free

resolution, even though this multidegree apears three times in the Taylor resolution. The

copies of S graded by unique multidegrees are a subset, possibly strict, of the copies of S

that appear in the minimal free resolution. This fact motivates the definition of the Scarf

complex of a monomial ideal.

1.3.5. The Scarf complex.

Definition 1.3.31. Let I = 〈G〉 be a monomial ideal with minimal generating set G =

{g1, . . . , gr}, and all other notation as in Definition 1.3.23. The Scarf complex of I is defined

as the subcomplex of the Taylor complex with basis

{eL : L ⊆ {1, . . . , r} and mL 6= mK for all K ⊆ {1, . . . , r}, K 6= L}.

In other words, the Scarf complex is the Taylor complex restricted to modules whose multi-

degree shifts are unique.

Remark 1.3.32. The Scarf complex is named for mathematical economist Herbert Scarf,

and should not be confused with the non-capitalized scarf complex, which is a disturbing

emotional obsession with neckwear.

By Remark 1.3.30, the Scarf complex is always contained in the minimal free resolution.

In general, it may not be a resolution. Its maps are inherited from the Taylor complex, but

after restriction, the chain complex need not be exact. If the Scarf complex is exact, it is a

resolution of S/I contained in the minimal free resolution and therefore equal to the minimal

free resolution.

Definition 1.3.33. If S/I is resolved by the Scarf complex of I, we say that the ideal I

is Scarf .
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Figure 1.8. The Scarf complex of I = 〈xw, z3, y3w, xyz2〉 ⊂ C[x, y, z, w],
indicated in black, is the subcomplex of the Taylor complex supported on all
submodules S(−a) such that a appears exactly once in the Taylor complex.
The maps between modules are inherited from the Taylor complex. The min-
imal free resolution of S/I strictly contains the Scarf complex of I in this

example; it is additionally supported on the submodule S(−
[

1
3
3
1

]
) in homolog-

ical degree 3 (shown in dark gray).

Example 1.3.34. The Scarf complex of I = 〈xw, z3, y3w, xyz2〉 ⊂ k[x, y, z, w], from

Example 1.3.27, is the subcomplex of the Taylor resolution indicated in black in Figure 1.8.

In this example, I is not Scarf, since it is strictly contained in the minimal free resolution.

Computationally, the Taylor complex has the desirable feature that its modules and

differentials have an explicit general formula. Naively, one could simply construct the Taylor

complex first, then reduce each syzygy module to a minimal set of generators, much in the

same way that we constructed the full 4× 6 matrix in Equation (1.3.28), then noticed that

one of the columns was already in the module generated by the other five. This idea falls

apart with consideration of just how extreme the non-minimality of the Taylor complex

can be. For instance, consider an ideal with 20 monomial generators in 4 variables. The

Taylor complex has 220 faces, one for each subset of the generators. On the other hand,

by the Hilbert syzygy theorem (Theorem 1.3.10), the length of the minimal resolution is
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at most 4. Therefore the superfluous basis elements of the Taylor complex must include at

least all
(

20
5

)
basis elements in homological degree 5, all

(
20
6

)
in homological degree 6, and so

forth—totaling over a million!

The Scarf complex also has an explicit general formula that makes it easy to write

down, and it is at most the size of the minimal resolution, so we never do any “extra”

work. Unfortunately, it isn’t guaranteed to be a resolution. The best situation would be to

somehow know whether or not the Scarf complex will be a resolution before computing it.

In fact, there is a simple condition on the minimal generators of a monomial ideal I that

guarantees that I is Scarf. This is the topic of the next section.

1.3.6. Genericity and strong genericity.

Definition 1.3.35 (Strongly generic monomial ideal). A monomial ideal I is strongly

generic if no variable appears with the same nonzero exponent in two distinct minimal

generators of I.

Example 1.3.36. In k[x, y, z, w], J1 = 〈x5yz2, x2w6, y3, zw7〉 is strongly generic, but

J2 = 〈x5yz, x2w6, y3, zw7〉 is not, because z1 is the highest power of z dividing two different

minimal generators of J2.

In [BPS98], Bayer, Peeva and Sturmfels proved that strongly generic monomial ideals

are always Scarf.

Example 1.3.37. Because J1 = 〈x5yz2, x2w6, y3, zw7〉 ⊂ k[x, y, z, w] is strongly generic,

we can determine the Betti numbers of J1 combinatorially. Every subset of size zero and one
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has a unique lcm, so β0 = 1 and β1 = 4. The lcms of the other subsets are:

lcm(x5yz2, x2w6) = x5yz2w6, lcm(x5yz2, x2w6, y3) = x5y3z2w6,

lcm(x5yz2, y3) = x5y3z2, lcm(x5yz2, x2w6, zw7) = x5yz2w7,

lcm(x5yz2, zw7) = x5yz2w7, lcm(x5yz2, y3, zw7) = x5y3z2w7,

lcm(x2w6, y3) = x2y3w6, lcm(x2w6, y3, zw7) = x2y3zw7,

lcm(x2w6, zw7) = x2zw7,

lcm(y3, zw7) = y3zw7, lcm(x5yz2, x2w6, y3, zw7) = x5y3z2w7.

The repeated lcm’s are shown in gray. Discarding these, we find that β2 = 5, β3 = 2, and

β4 = 0.

The more general definition of a generic monomial ideal is found in Miller and Sturmfels

[MS04]. First we need a related definition.

Definition 1.3.38. For monomials m = xα1
1 · · ·xαnn and m′ = xβ11 · · ·xβnn , we say that m

strongly divides m′ if αi < βi whenever αi 6= 0.

Example 1.3.39. The monomial x1x3 strongly divides x2
1x

3
3, but not x1x

3
3.

Definition 1.3.40 (Generic monomial ideal). A monomial ideal I is generic if whenever

two distinct minimal generators gi and gj have the same positive degree in some variable, a

third generator gk strongly divides lcm(mi,mj).

Miller and Sturmfels proved that monomial ideals that are generic in this broader sense

are always Scarf, too.

Example 1.3.41. The ideal J2 = 〈x5yz, x2w6, y3, zw7〉 from Example 1.3.36 is generic

but not strongly generic. Even though x5yz and zw7 share the same positive power of z,

their lcm is x5yzw7, and there is another minimal generator, namely x2w6, which strongly
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divides this. An enumeration of the lcd’s of subsets reveals that J2 has the same total Betti

numbers as J1, namely β = (1, 4, 5, 2).

Although being generic/strongly generic is sufficient for a monomial ideal to be Scarf, it

is not necessary. For example, the ideal

I =
〈
x2

1x6x
2
8, x1x4x

2
7x8, x1x3x4x5x8, x1x2x5x6x7, x

2
1x

2
3x5

〉
of k[x1, . . . , x8] is resolved by its Scarf complex even though it is not generic. To learn how

to generate these kinds of examples, see Section 5.2.

1.4. Hilbert functions and series

Let k be a field, and R a k-algebra.

Definition 1.4.1 (Graded ring). A Z-grading on R is a decomposition

(1.4.2) R =
⊕
d∈Z

Rd,

that is compatible with the algebra multiplication: for f ∈ Ra and g ∈ Rb, fg ∈ Ra+b. We

say that R is a graded ring or graded algebra.

An example of a graded ring is the polynomial ring S = k[x1, . . . , xn], where each Sd is

the set of homogeneous polynomials of degree d. This grading is called the standard grading

of k[x1, . . . , xn]. If I is a homogeneous ideal of S, then the quotient ring R = S/I is also

graded, with the direct sum decomposition:

(1.4.3) R =
⊕
d≥0

(S/I)d =
⊕
d≥0

Sd/(I ∩ Sd).

Definition 1.4.4 (Hilbert function). The Hilbert function of a graded ring R, written

h(R, d), is the function h(R, d) : Z→ Z≥0 defined by

(1.4.5) h(R, d) = dimkRd.
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In other words, the Hilbert function maps d to the dimension, as a vector space over k,

of the d-graded part of the ring R.

Definition 1.4.6. The Hilbert series of R is the generating function of the Hilbert

function h(R, d). That is,

(1.4.7) H(R, t) =
∑
d∈Z

h(R, d)td.

Of particular interest to us is the case when R = S/I for a homogenous ideal I of

a polynomial ring S. In this case the Hilbert function always has a rational generating

function which takes the form

(1.4.8) H(R, t) =
P (t)

(1− t)k
,

where P (t) is a polynomial, and k = dimR [Sta07].

When I is a monomial ideal, the Hilbert function of S/I counts the number of monomials

in each degree that are not in I. These monomials are called the standard monomials of

S/I. The set of standard monomials can be visualized geometrically as a staircase in the

lattice of monomials, as illustrated in Figure 1.9.

1.4.1. Bounds on Hilbert functions. Not all non-negative integer sequences can be

the Hilbert function of a graded k-algebra. In 1927, Macaulay gave a complete characteri-

zation of allowable Hilbert functions [Mac27], which is briefly summarized here. First, we

need a lemma about the so-called Macaulay expansion of an integer:

Lemma 1.4.9. Let j be a positive integer. Then each positive integer a has a unique

expansion

a =

(
aj
j

)
+

(
aj−1

j − 1

)
+ · · ·+

(
ak
k

)
,

where aj ≥ aj−1 ≥ ak ≥ k ≥ 1.

For a proof of this and Theorem 1.4.11, see the original paper [Mac27], or a more modern

exposition such as [HH11].
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(a)
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(b)

Figure 1.9. The staircase diagram of a monomial ideal I in two variables
x, y (left). Every lattice point (a, b) that is “under the staircase” corresponds
to the standard monomial xayb of S/I. The Hilbert function of S/I counts
the number of standard monomials of each degree. This can be visualized as
counting lattice points “under the staircase” in each degree (right).

Definition 1.4.10. Let a =
(
aj
j

)
+
(
aj−1

j−1

)
+ · · · +

(
ak
k

)
be the Macaulay expansion of a

with respect to j. Define

a〈j〉 =

(
aj + 1

j + 1

)
+

(
aj−1 + 1

j

)
+ · · ·+

(
ak + 1

k + 1

)
.

Theorem 1.4.11 (Macaulay’s Theorem). Let h : Z≥0 → Z≥0. The following are equiva-

lent:

(1) h is the Hilbert function of a standard graded k-algebra

(2) h(0) = 1, and h(j + 1) ≤ h(j)〈j〉 for all j > 0.

Macaulay’s theorem is actually constructive—his proof describes how to create a par-

ticular kind of monomial ideal, called a lex-segment ideal , with Hilbert function h, where

h is any function satisfying Theorem 1.4.11. A monomial ideal I is lex-segment if xa ∈ I

whenever xa >lex x
b and xb ∈ I. If I is lex-segment, then the degree-j component Ij consists
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of the dimk Ij lexicographically largest monomials in Sj. Macaulay’s theorem shows that for

any Hilbert function h of a homogenous ideal, there exists a unique lex-segment ideal Ilex

such that h(S/Ilex) = h.

Further consequences of Macaulay’s theorem come from the intimate relationship between

the Hilbert function and the Betti numbers of a graded k-algebra. Macaulay’s paper also

proved that for a given Hilbert function, the lex-segment ideal with that Hilbert function

will always have maximum total Betti numbers among the set of ideals with the Hilbert

function. In 1993 Bigatti [Big93] and, independently, Hulett [Hul93] established that lex-

segment ideals also maximize graded Betti numbers, as long as k has characteristic zero. This

established explicit bounds on the growth of graded Betti numbers of a monomial ideal. In

1996 Pardue [Par96] extended this theorem to an arbitrary field.

Theorem 1.4.12 (Bigatti-Hulett-Pardue theorem). Let I be an ideal of the polynomial

ring S = k[x1, . . . , xn] and let Ilex be the unique lex-segment ideal such that h(S/I) =

h(S/Ilex). Then, the corresponding graded Betti numbers satisfy the inequality βi,j(I) ≤

βi,j(Ilex) for all i, j.

1.4.2. Recursive computation of Hilbert series. By computing an initial ideal,

finding the Hilbert series H(S/I, t) of any ideal reduces to finding the Hilbert series of a

monomial ideal. State-of-the-art implementations for computing Hilbert series are based on

a recursive algorithm introduced in [BS92], and improved in [Big97] with the use of pivots.

In each step of the algorithm, a pivot monomial P is chosen which strictly divides at

least one minimal generator of I. Then by the exact sequence

(1.4.13) 0 −→ S/ 〈I : P〉 ·P−→ S/I −→ S/(I + 〈P〉) −→ 0,

the computation is decomposed, with respect to P :

(1.4.14) H(S/I, t) = H(S/(I + 〈P〉), t) + tdegPH(S/ 〈I : P〉 , t).
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The recursion continues until hitting base cases, monomial ideals with one of the following

two structures:

(1) Ideals generated only by pure powers of the variables; i.e. I =
〈
xa1i1 , · · · , x

ak
ik

〉
. In

this case the numerator of the Hilbert series of I is
∏k

j=1 1− taj .

(2) Ideals generated by pure powers along with one non-trivial power product xb11 · · ·xbnn .

In this case the Hilbert series of I is
∏k

j=1(1− taj)− t|b|
(∏k

j=1(1− taj−bj)
)

.

There are many choices for P at every step, and many “pivot rules” for making this choice.

With any pivot rule the correct answer is eventually computed, but the number of base cases

and timing of the algorithm are highly dependent on the rule, and no single heuristic performs

best over all kinds of input. In [Big97] Bigatti demonstrates this variability with several

explicit examples. In Section 7.2 we will explain the various pivot rule choices in detail,

and show how machine learning can be applied to the algorithm selection problem of how

to choose a pivot rule that performs this recursive computation using the least number of

steps/base cases.

1.5. Supervised machine learning

Machine learning is rapidly becoming ubiquitous in artificial intelligence, data analysis,

and applied mathematics. The fundamental principle underlying machine learning is that

meaningful patterns and predictions can be extrapolated from large quantities of empirical

data, even in the absence of any known logical or scientific framework.

For example, a dermatologist learning to diagnose skin cancer is typically given logical

instructions for differentiating suspicious skin lesions and moles, like, “if the shape is asym-

metrical, perform a biopsy.” These classification rules are imperfect, but simple to state and

remember. Perhaps we suspect that cancerous lesions have other characteristic features too

subtle for humans to recognize, and want to train a computer, equipped with a camera far

superior to the human eye, to attempt this classification task. Rather than programming it

with logical rules, the computer’s software would instead be fed a training set of possibly

millions of images, each with a label of 1=benign or −1=malignant. Each image x is a
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matrix of pixel values in some space X of real matrices. The software’s task is to find, i.e.

“learn”, a function h : X → {1,−1} that “fits” the training images in the sense that h(x)

returns the correct label for x for as many of the training images x as possible. Now, when

the camera sees an unknown image z, the value of h(z) predicts whether this new image is

benign or malignant. This is an example of supervised machine learning , since the training

data was correctly labeled using outside supervision (for instance, actual biopsy results). An

immense, rapidly-growing body of literature is concerned with the theory and best practices

of how to fit a hypothesis function, h, to the given training data to maximize predictive

accuracy. Section 1.5.1 only introduces some basics.

In any supervised learning problem there is an indispensable, but often unspoken, as-

sumption being made: that the training examples have patterns that are representative of

the larger class of unknown instances. For identifying skin cancer, it seems reasonable to

expect that the features of malignant skin growths in a sample of human patients are repre-

sentative of their features in the general human population. If the training images were of

rats, this might not be a reasonable assumption. A different kind of unreasonableness would

be to attempt to train an algorithm to predict winning lottery numbers. No matter how

many training examples we provide, of sequences of numbers labeled with whether ot not

they won that day, and no matter how expertly we designed the training model and tuned its

parameters, there is no meaningful pattern or correlation that could predict numbers from

a uniformly random distribution.

In 1993, Bayer and Mumford famously asked: What can be computed in algebraic ge-

ometry? [BM92]. One question posed in this thesis is, instead: What can be predicted in

algebraic geometry? In other words, are the algebraic properties of rings, ideals, and varieties

governed by subtle patterns that, though they have thus far evaded rigorous mathematical

proof, can nonetheless be learned from data and used to make predictions for new examples?

Or do the invariants of these objects behave so randomly and unpredictably that machine

learning is impossible?
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Chapter 7 explores this question in two ways. In Section 7.2, we consider algorithm

selection in computer algebra, for the specific problem of learning how to choose good pivots

for the recursive Hilbert series computation described in Section 1.4.2. We show that training

a neural network to make these decisions on the fly results in better performance than using

any fixed choice of pivot rule. In Section 7.3, we try to directly predict the values of several

NP-hard invariants: dimension, projective dimension, and regularity. The predictions are

not always correct, but are very often no more than one away from the correct answer.

Both tasks are modeled as supervised learning problems, where the training inputs are

statistics on minimal generating sets of monomial ideals (see Section 7.1), and the training

labels are either the best choice of pivot, or the correct value of the algebraic invariant, as

appropriate, for each ideal. The success of both experiments establishes beyond a doubt the

feasibility of machine learning for problems in commutative algebra and algebraic geometry.

The particular methodology chosen—supervised learning using hand-crafted features to train

a neural network with the particular architecture and loss function described in the next

section—found patterns in the training data that successfully extrapolated to new unseen

examples. There are other machine learning methods and variations that could be applied

to these problems, and the pursuit of better performance and robustness is just beginning.

However, as a proof of concept, Chapter 7 of this thesis establishes for the first time the

feasibility of machine learning in commutative algebra.

We now explain the particular methodology used.

1.5.1. Supervised learning on neural networks. A neural network , whose name

derives from its origins as a simple model of neuronal activity in the human brain, is a directed

graph consisting of nodes (neurons) and weighted directed edges. See Figure 1.10. The first

layer of the network is the entries of x(0) = (x
(0)
1 , . . . , x

(0)
d ), a vector in Rd representing the

input to the problem. For learning images, for example, the value of x
(0)
i could be the

intensity of the ith pixel.

The hidden layers of the network contain nodes whose values are determined by the

weights of the directed edges and a chosen activation function θ. Let x
(l)
i represent the ith
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node in the lth layer, and let w
(l)
ij represent the weight on the directed edge from x

(l)
i to

x
(l+1)
j . Then the value of x

(l+1)
j is calculated via

x
(l+1)
j = θ(w

(l)
j · x(l)) = θ

(
ml∑
i=1

w
(l)
ij x

(l)
i

)
,

where ml is the number of nodes in layer l. See Figure 1.10 for an illustration. It is typical

to add a first entry x
(l)
0 = 1 to each layer so that w(l) · x(l) can be an affine function of x(l),

and not just linear.

In the first neural networks, which used the so-called perceptron model, the activation

function θ was the sign function:

θ(x) = sign(x) =


1 x ≥ 0,

−1 x < 0.

A friendly introduction to perceptron learning is the textbook [AMMIL12]. The sign

function is reminiscent of the way that a biological neuron will either fire or not, depending

on if it receives enough electrical signals to surpass some threshold, with no middle ground.

Since neural networks have been repurposed for machine learning, several other activation

functions have become popular, including the sigmoid function,

θ(x) = σ(x) =
ex

1 + ex
,

the hyperbolic tangent function,

θ(x) = tanh(x) =
ex − e−x

ex + e−x
,

and the rectified linear unit function (ReLU ),

θ(x) = ReLU(x) =


x x ≥ 0,

0 x < 0.

48



1

x
(0)
1

x
(0)
2

...

x
(0)
d

input

1

x
(1)
1

x
(1)
2

...

x
(1)
m1

1

x
(2)
1

x
(2)
2

...

x
(2)
m2

· · ·

· · ·

· · ·

· · ·

· · ·

w
(0)
01

w
(0)
11

1

x
(L)
1

x
(L)
2

...

x
(L)
mL

x(L+1) h(x)

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

output|—————– hidden layers —————–|

Figure 1.10. The anatomy of a neural network. The directed edge from node

x
(l)
i to node x

(l+1)
j has weight w

(l)
ij , and the value of node x

(l+1)
j is calculated

by θ(w
(l)
j · x(l)), for a chosen activation function θ. Only a few weights have

been labeled in the figure, for better readability. Input nodes (on the left) are
the data or features of each input x, and the output, h(x), is calculated by
θ(x(L+1)). The goal is to find the weights that maximize the number of correct
outputs over the set of training examples.

All four of these common choices for θ are depicted in Figure 1.11. One advantage of the

sigmoid and hyperbolic tangent functions is that they are everywhere differentiable. An

advantage of ReLU is that it maintains the piecewise linear simplicity of the perceptron

model, but allows each neuron to be “more or less” activated depending on the signals it

receives, instead of only on or off. The ReLU function, though not differentiable at x = 0,

nonetheless has an easily computed piecewise linear derivative.
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(c) Sigmoid function, σ(x)
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(d) Hyperbolic tangent function, tanh(x)

Figure 1.11. Some common choices for activation functions inside neural
networks.

The importance of differentiability is its key role in training the neural network, which

is the process of finding optimal values for the weights w
(l)
ij in the network. By optimal,

we mean the weights that minimize an objective function called the loss function of the

network. There are multiple ways to define the loss, or error, of the network on the training

data set. For classification problems, the loss function could be as simple as the number of

misclassified training examples:

(1.5.1) L(X) =
∑
x∈X

1h(x)6=t(x),
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where X is the set of training inputs, h(x) is the label for x ∈ X that was output by

the neural network, and t(x) is the true label for x (which is known by us, the omniscient

supervisors). The loss function in Equation (1.5.1) makes sense if h(x) is, for instance, the

output from a perceptron node, which always equals −1 or 1.

In Chapter 7, we consider problems in the realm of multi-class classification, as opposed

to simpler binary classification such as benign vs. malignant tumors. For instance, to use

an actual example from Chapter 7, suppose the input is monomial ideals generated in no

more than 20 variables, and the goal is predicting their projective dimension. By the Hilbert

Syzygy Theorem (Theorem 1.3.10), the possible values/labels are integers between 0 and

20. (Recall that pdim(S/I) = 0 if and only if I = 〈0〉.) To predict the right label, the last

layer of the network contains 21 nodes, one for each label, equipped with sigmoid activation

functions, so that we output a vector s containing 21 real numbers between 0 and 1. For

instance:

(1.5.2) s(I) = [0, 0, 0, 0.05, 0.08, 0.23, 0.48, 0.98, 0.07, 0.12, 0, 0.02, 0, 0.01, 0, 0, 0, 0, 0, 0, 0].

The value of the ith entry is interpreted as a prediction of how “confident” the network is

that I has projective dimension i. Of course, to interpret h(I) as a probability distribution,

the vector has to be normalized in some way. We do this by applying the so-called softmax

function:

(1.5.3) f(s)i =
esi∑21
j=1 e

sj
.

For instance, applying a softmax to Equation (1.5.2) results in the probability distribution:

h(I) = f(s(I)) = [0.04, 0.04, 0.04, 0.04, 0.05,0.05, 0.07, 0.11, 0.04, 0.05,(1.5.4)

0.04, 0.04, 0.04, 0.04, 0.04,0.04, 0.04, 0.04, 0.04, 0.04, 0.04],

after rounding to two decimal places. From either Equation (1.5.2) or Equation (1.5.4) we

take the maximum entry as the predicted output; in this case, we predict that pdim(S/I) = 7.
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Now, rather than simply tallying the number of correct versus incorrect predictions, we

use a cross-entropy loss function, defined on a single example x by:

(1.5.5) LCE(x) = −
21∑
i=1

t(x)i lnh(x)i,

where t(x) is the true labeling of x (with a one in the entry corresponding to the correct

label, and zeroes elsewhere) and h(x) is the distribution predicted by the softmax function

applied to the output, as in Equation (1.5.4). Note that by the definition of the softmax

function, all entries of h(x) are strictly positive and thus Equation (1.5.5) is well-defined.

In our example, if the true projective dimension were indeed 7, then t(I) would be the

standard basis vector e8, and LCE(I) would be − ln(0.11) ≈ 2.2. If, on the other hand, the

true projective dimension were 8, we would calculate LCE(I) = − ln(0.05) ≈ 3.0.

The loss for a training set X is the sum over all x ∈ X of LCE(x):

(1.5.6) LCE(X) =
∑
x∈X

LCE(x),

and our final optimization problem is: find the weights w
(l)
ij of the neural network which

minimize LCE(X).

To find (or at least approximate) the optimal weights, we use the standard machine

learning technique of gradient descent . Informally, the partial derivatives of the loss function,

with respect to the individual neurons in the network, show the contribution each weight

makes to the total error; the weights are then nudged in the direction of decreasing the

error. This process is iterated until the gradient is zero, demonstrating that we have a found

a local (and hopefully global) minimizer of the loss function. Since gradient descent is a

central topic of machine learning theory, we refer the interested reader to introductory texts

such as [AMMIL12, Str19]. One of the concerns of this theory is how to choose good

step sizes for the gradient descent algorithm, determining the amounts that the weights are

adjusted in each iteration, so that the algorithm converges quickly without getting stuck in

a shallow local minimum. See, e.g., [TMDQ16] and the references therein.
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CHAPTER 2

Random models for monomial ideals

This chapter introduces some natural combinatorial models for studying the probabilistic

behavior of monomial ideals and their coordinate rings.

This is not the first time that problems in commutative algebra have been studied prob-

abilistically. Since at least the 1930’s, when Littlewood and Offord studied the expected

number of real roots of a polynomial with random coefficients [LO38], algebraists and alge-

braic geometers have studied the typical properties of polynomials with generic coefficients.

Work now considered classical includes the study of random varieties, defined by random

coefficients on a fixed Newton polytope support, as in [Kac43,Kou76,Stu98] and the ref-

erences therein. The field of smooth analysis studies how algorithmic performance varies

under random perturbations of the problem input. Contributions to algebraic geometry

based on this method of analysis include [BP09] and [BC11]. More recently, Ein, Erman,

and Lazarsfeld [EEL15] (see also [EL12, EEL16]), studied the Betti numbers of modules

defined by uniformly random Boij-Söderberg coefficients [ES09].

Common to all of these examples, however, are probability models based on random coef-

ficients. In contrast, this thesis studies discrete random models, inspired by the combinatorial

theory of commutative algebra developed in texts including [Sta07,BS92,BS87b,BPS98,

MS04, GS93, Hà14, HH11, CP17]. The heart of combinatorial commutative algebra is

that algebraic properties of polynomial ideals and rings may be derived from combinatorial

relationships among the monomials appearing in polynomial generating sets.

Via the Stanley-Reisner correspondence (Section 1.2.2), monomial ideals are a general-

ization of simplicial complexes, and thus of graphs. Ever since the seminal paper of Erdös

and Rényi [ER59], probabilistic methods have been indispensable to graph theory (see,

e.g., [AS92,Bol01] and the references therein).The astonishing discovery of Erdős and Rényi
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was that global properties of random combinatorial objects, even ones which are hard to char-

acterize in general, display emergent behaviors like phase transitions and thresholds when

studied asymptotically. This work continues in their tradition by proving that important

global properties of random monomial ideals, and their coordinate rings, are also governed

by phrase transitions and thresholds. Identifying these emergent phenomena sheds light on

the theory of combinatorial commutative algebra, and informs computation by quantifying

“typical behavior.”

2.1. The Erdős-Rényi-type model

Definition 2.1.1 (Erdős-Rényi-type random monomial ideals). Let k be a field and

S = k[x1, . . . , xn].

Given an integer D and a parameter p = p(n,D), 0 ≤ p ≤ 1, sample a random generating

set of monomials B according to

(2.1.2) P [xα ∈ B] = p for all xα = xα1 · · · xαnn ∈ k[x1, . . . , xn] with 1 ≤ |α| ≤ D

Denote by B(n,D, p) the resulting Erdős-Rényi-type distribution on sets of monomials of

total degree at most D in k[x1, . . . , xn]. If B ⊂ S is any fixed set of monomials of degree at

most D each and B ∼ B(n,D, p), then

(2.1.3) P [B = B] = p#B(1− p)(
D+n
D )−#B−1.

Since an ideal may be generated by many different sets B, B(n,D, p) induces a different

distribution on ideals of k[x1, . . . , xn], which will be denoted by I(n,D, p). The notation

I ∼ I(n,D, p) indicates that B ∼ B(n,D, p) and I = 〈B〉.

Theorem 2.1.4. Let I ⊆ S be a fixed monomial ideal generated in degree at most D,

and let I ∼ I(n,D, p). Then

(2.1.5) P [I = I] = pβ1(S/I)(1− p)
∑D
d=1 h(S/I,d).
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Proof. Fix I ⊆ S generated in degree at most D and let G be the unique minimal set

of generators of I. Then, I = I if and only if B ⊇ G and no monomial xα such that xα 6∈ I

is in B. Let A1 denote the event that each of the β1(S/I) elements of G is in B and let A2

denote the event that no monomial xα such that xα 6∈ I is in B. Then, the event I = I is

equivalent to the event A1 ∩ A2. Since the events A1 and A2 are independent, P [I = I] =

P [A1 ∩ A2] = P [A1]P [A2]. Observe that P [A1] = pβ1(S/I), since each of the β1(S/I) elements

of G is chosen to be in B independently with probability p and P [A2] = (1 − p)
∑D
d=1 hI(d),

since there are exactly
∑D

d=1 h(S/I, d) monomials of degree at most D not contained in I

(recall we do not consider the constant monomial), and each of them is excluded from B

independently with probability 1− p. �

2.2. The graded model

Definition 2.2.1. Fix a degree bound D > 0. The graded model for random monomials

selects generators according to probabilities that depend on total degree. That is, a set of D

parameters p(n,D) = (p1(n,D), . . . , pD(n,D)) with 0 ≤ pi(n,D) < 1 for each i, is selected,

and then the random generating set B is sampled according to:

P [pα ∈ B] = pα.

With respect to any particular total degree |α|, the probability of each monomial with that

degree being chosen is the same as any other.

The analogue of Theorem 2.1.4 for G(n,D,p), which has an almost identical proof, is as

follows:

Theorem 2.2.2. Fix n, D, and the graded model parameters p(n,D) = (p1, . . . , pD). For

any fixed monomial ideal I ⊆ S, random monomial ideals from the graded model distribution

I ∼ G(n,D,p) satisfy the following:

P (I = I) =
D∏
d=1

p
β1,d(S/I)

d (1− pd)hI(d),
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where β1,d(S/I) is the number of degree-d minimal generators of I (see Definition 1.3.14),

and h(S/I, d) is its Hilbert function.

2.2.1. A special case of the graded model. In Chapters 4 and 5, we consider random

monomial ideals in n variables, where each monomial of degree D has the same probability

p of appearing as a generator. We define this as follows:

Definition 2.2.3 (Graded model for random monomial ideals). A generating set G is

sampled according to

P [xα ∈ G] =


p |α| = D,

0 otherwise,

for all xα ∈ S = k[x1, . . . , xn]. We then set M = 〈G〉.

It is important to note that in Definition 2.2.3, G is always a minimal generating set.

Given the three parameters n, D, and p, we denote this model by M(n,D, p), and write

M ∼M(n,D, p).

This notation is chosen to make it easy to distinguish ideals coming from the ER-type

model, I ∼ I(n,D, p), from ideals in this special graded model, M ∼ M(n,D, p). Though

the symbol G was used in Section 1.1.2 to indicate a random graph, this should cause no

confusion with its use in later chapters to indicate a random minimal generating set in the

special graded model.

2.3. The general model

Fix a degree bound D > 0. To each monomial xα ∈ k[x1, . . . , xn] with 0 < deg(xα) ≤ D,

the general model for random monomials assigns an arbitrary probability 0 ≤ pa ≤ 1 of

selecting the monomial xα:

(2.3.1) P [xα] = pa.
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Hence the general model has many parameters, namely {pa : a ∈ Nn \ {0}, |a| ≤ D}. It is

clear that that, for a fixed n and fixed degree bound D, the ER-type model is a special case

of the general model, where pa = p(n,D) does not depend on a.

2.4. Specialization to random simplicial complexes and graphs

A corollary of Theorem 2.1.4 follows directly from the well-known formulas for Stanley-

Reisner rings:

Corollary 2.4.1. If I is a square-free monomial ideal, then the probability of I under

the ER-type model is determined by the number of minimal non-faces and faces of the

associated simplicial complex.

The relationship between our models for random monomial ideals and the Costa-Farber

model can be made precise in the following way: there exists a choice of parameters pa in

(2.3.1) such that the resulting distribution on square-free monomial ideals in S = k[x1, . . . , xn]

is precisely the distribution on the abstract simplicial complexes on [n] under the Costa-

Farber model.

Theorem 2.4.2 (See [Wil18]). Let p̃ = (p̃0, p̃1, . . . , p̃r, 0, . . . , 0) denote the n-vector of

probabilities in the Costa-Farber model for random simplicial complexes. Let Y ⊂ ∆
(r)
n be

a simplicial complex on [n] of dimension at most r and let IY be the Stanley-Reisner ideal

corresponding to Y . Fix D = r + 1 and specify the following probabilities pa, where a ∈ Nn

and 0 < ||a||1 ≤ r + 1, for the general monomial model (2.3.1):

(2.4.3) pa =


1− p̃deg(xα)−1, if 0 6= a ∈ {0, 1}n,

0, otherwise.

Then, PCF (Y ) = P (IY ), where the former is probability under the Costa-Farber model

and the latter under the distribution on random monomial ideals induced by the general

model (2.3.1).
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In other words, the specification of probabilities in Theorem 2.4.2 recovers the Costa-

Farber model on random simplicial complexes as a sub-model of the model (2.3.1) on random

monomial ideals. Note that this specification of probabilities can be considered as an instance

of the graded model with support restricted to the vertices of the unit hypercube.

Proof. From [CF16, Equation (1)], the following probability holds under the Costa-

Farber model:

PCF (Y ) =
r∏
i=0

p̃
fi(Y )
i (1− p̃i)ei(Y ),

where fi(Y ) denotes the number of i-dimensional faces of Y and ei(Y ) denotes the number of

i-dimensional minimal non-faces of Y (i.e., the number of i-dimensional non-faces of Y that

do not strictly contain another non-face). The minimal non-faces of Y correspond exactly to

the minimal generators of the Stanley-Reisner ideal IY . Thus, IY has exactly ei(Y ) minimal

generators of degree i + 1, that is, ei(Y ) = β1,i+1(S/IY ). Each i-dimensional face of Y

corresponds to a degree i+ 1 standard square-free monomial of IY , hence we have a Hilbert

function valuehIY (i+ 1) = fi(Y ). Next, note that the specification of probabilities in (2.4.3)

depends only on the degree of each monomial, so that if deg(xα) = deg(xa
′
), then pa = pa′ .

Hence, for each 1 ≤ j ≤ r + 1, we denote by pj the probability assigned to the degree j

monomials in (2.4.3), so pj = 1− p̃j−1. We now apply Theorem 2.2.2 to conclude that

P (IY ) =
r+1∏
j=1

p
β1,j
j (1− pj)hIY (j) =

r∏
i=0

(1− p̃i)ei(Y )p̃
fi(Y )
i = PCF (Y ), as desired.

�

Remark 2.4.4. There are other models that do not sample individual monomials, but

instead sample ensembles of monomials all at the same time. Examples of these include

methods to generate random integer partitions and Ferrers diagrams [Pit97], and random

lattice polytopes [BM05].
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CHAPTER 3

Krull dimension

3.1. Dimension as a vertex cover problem

Recall that a hypergraph H = (V,E) is defined as a set V , called the vertex set of H,

together will a collection E of subsets of V . We call E the edges of H. This definition is a

strict generalization of the definition of a graph, since a graph is just a hypergraph where

every edge has cardinality two. A clutter is a hypergraph where no edge is contained in any

other. For the basics of hypergraphs see [Cor01].

A vertex cover of H, also called a hitting set or a transversal , is a set T ⊆ V such that

every edge in E has a nonempty intersection with T . A vertex cover T is minimal if no

proper subset of T is a vertex cover. The vertex cover number of H, also called transversal

number , is denoted c(H) and defined as the minimum cardinality of a vertex cover of H.

Definition 3.1.1 (Support hypergraph). Recall that the support of xa11 · · ·xann is the set

{xi : ai > 0}. Given a set of monomials B = {m1, . . . ,mr} in k[x1, . . . , xn], define the support

hypergraph of B, written HB, by:

(1) V (HB) = {x1, . . . , xn}, and

(2) E(HB) = {supp(mi) : 1 ≤ i ≤ r}.

Proposition 3.1.2. Let B = {m1, . . . ,mr} be a set of monomials in S = k[x1, . . . , xn],

and let I = 〈B〉. Then:

(1) T is a vertex cover of HB if and only if I ⊆ pT .

(2) T is a minimal vertex cover of HB if and only if pT is a minimal prime of I.

(3) codim I = c(HB).

(4) dim I = n− c(HB).

59



x1 x2

x3

x4

x5

Figure 3.1. The support hypergraph of the monomials B =
{x3

1x
2
2x3, x

4
1, x

2
3x

2
4, x4x

3
5} ⊂ k[x1, . . . , x5]. Since the vertex cover number

of HB is 2, the codimension of I = 〈B〉 is also 2. Therefore dim I = 3.

Proof. To prove statement (1), let T be a vertex cover of HB. For each m ∈ B, there

exists xi ∈ T ∩ supp(m). This means that xi divides m and therefore m ∈ pT . Since this

holds for every generator m of the ideal I, I ⊆ pT . On the other hand, if I ⊆ pT then

every monomial in I is divisible by at least one xi ∈ T . In particular every m ∈ B is

divisible by at least one xi ∈ T and thus xi ∈ T ∩ supp(m). As this holds for all m ∈ B,

T is a vertex cover of HB. Since T1 ⊆ T2 if and only if pT1 ⊇ pT2 , T is minimal if and

only pT is, proving statement (2). From Equation (1.2.32), codim I = min{#T : I ⊆ pT},

and this quantity equals c(HB) = min{#T : T is a vertex cover of HB} by statement (1).

This proves statement (3), and since we are working in the ring S which has dimension n,

statement (4) immediately follows. �

Example 3.1.3. Suppose B = {x3
1x

2
2x3, x

4
1, x

2
3x

2
4, x4x

3
5} ⊂ k[x1, . . . , x5] and I = 〈B〉. The

support hypergraph of B, HB is illustrated in Figure 3.1. The minimal vertex covers of

the hypergraph are {x1, x4} and {x1, x3, x5}, so the vertex cover number is 2. Therefore

dim I = 3 by Proposition 3.1.2.
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Proposition 3.1.2 was already well-established in the literature for hypergraphs with edges

defined by minimal generating sets of squarefree monomial ideals; see for example Chapter

2 of [GV11]. Instead of the previous proof, we could have justified extending to arbitrary

generating sets of arbitrary monomial ideals with a few observations. To argue that B can

be non-minimal, note that the unique minimal generators G of a monomial ideal are a subset

of any monomial generating set B. Thus any vertex cover of HB is also a vertex cover of

HG. On the other hand, suppose T is a vertex cover of HG, and let b ∈ B. Since I = 〈G〉,

b is divisible by at least one g ∈ G and hence supp(g) ⊆ supp(b). Since T ∩ supp(g) 6= ∅,

it follows that T ∩ supp(b) 6= ∅. Therefore T is a vertex cover of HB as well. This shows

that HG and HB have the same vertex covers and therefore Proposition 3.1.2 holds for any

monomial generating set of I.

To extend to non-squarefree monomial ideals, note that V(
√
I) = V(I) and therefore

dim
√
I = dim I. Since B′ = {SF(b) : b ∈ B} is a set of monomials generating

√
I, by

Proposition 1.2.21, dim I = n − c(HB′). Now we simply observe that HB = HB′ by the

construction of the support hypergraph.

It is very convenient that Proposition 3.1.2 gives a combinatorial description of the di-

mension and codimension of I = 〈B〉 for any choice of B. We will see in Chapter 3 that when

B comes from a random distribution, calculating the probabilistic dimension is simplified by

being able to sidestep questions about minimality.

On the other hand, it is sometimes preferable to work with an irredundant set of hyper-

graph edges; for instance in the proof of Theorem 3.2.1. For this reason we will make an

additional definition.

Definition 3.1.4 (Reduced support hypergraph). For a monomial set B = {m1, . . . ,mr}

in k[x1, . . . , xn], define the reduced support hypergraph of B, written Hred
B , as the hypergraph

obtained from HB by deleting all edges in E(HB) that strictly contain another edge in

E(HB).

Example 3.1.5. Suppose B = {x3
1x

2
2x3, x

4
1, x

2
3x

2
4, x4x

3
5} ⊂ k[x1, . . . , x5], whose support

hypergraphHB is illustrated in Figure 3.1. Since the edge {x1, x2, x3} ofHB strictly contains
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x1 x2

x3

x4

x5

Figure 3.2. The reduced support hypergraph Hred
B for B =

{x3
1x

2
2x3, x

4
1, x

2
3x

2
4, x4x

3
5} ⊂ k[x1, . . . , x5]. Let I = 〈B〉, then

√
I has

minimal generating set G = {x1, x3x4, x4x5, and Hred
B = HG.

another, we delete it to create the reduced support hypergraph of B, Hred
B . The reduced

support hypergraph is illustrated in Figure 3.2.

Remark 3.1.6. By construction, the reduced support hypergraph of any set of monomials

is a clutter .

Remark 3.1.7. Let I ⊂ S be a monomial ideal, and let G be the unique minimal

generating set of
√
I. Then for any set of monomials B such that I = 〈B〉, the reduced

support hypergraph of B is equal to the support hypergraph of G.

The minimum vertex cover problem is a classic example of an NP-complete problem.

It was one of the original 21 problems that Karp proved is NP-complete [Kar72], using a

reduction from Boolean satisfiability, which Cook established the NP-completeness of only

one year prior [Coo71]. From this section it follows that bounding the size of a minimum

vertex cover reduces to bounding the codimension of a monomial ideal. An explicit reduction

is given in [BS92], along with a justification for why the problem belongs to NP. Bayer and

Stillman state the result this way:
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Proposition 3.1.8. The following problem is NP-complete: Given a monomial ideal

J ⊂ k[x1, ..., xn], and an integer K, is the codimension of J < K?

Remark 3.1.9. In Proposition 3.1.8, we are considering the computational complexity

with respect to increasing n.

Remark 3.1.10. The minimum vertex cover problem is already NP-complete for graphs,

not even hypergraphs. So codimension/dimension of monomial ideals is already NP-complete

for squarefree monomial ideals generated in degree two, which have only O (n2) minimal

generators.

3.2. Krull dimension probabilities in the ER-type model

The relationship between dimension and hypergraph transversals leads to a complete

characterization of the probability of producing a monomial ideal with a particular fixed

dimension in the ER-type model (Theorem 3.2.1). Explicitly computing the values given by

Theorem 3.2.1 requires an exhaustive combinatorial enumeration, which is demonstrated for

several special cases in Theorem 3.2.5. Nevertheless, where the size of the problem makes

enumeration prohibitive, Theorem 3.2.1 gives that P [dim I = t] is always a polynomial in p

of a specific degree depending on n and D, and thus can be approximated by numerically

evaluating (or statistically estimating) P [dim I = t] for a sufficient number of values of p,

then interpolating. We will see in the next section that asymptotically, dimension can be

classified via threshold functions, bypassing these computational considerations.

Theorem 3.2.1. Let I ∼ I(n,D, p). For any integer t, 0 ≤ t ≤ n, the probability that

I has dimension t is given by a polynomial in p of degree
∑t+1

i=1

(
D
i

)(
n
i

)
. More precisely,

P [dim I = t] =
∑

C∈Cn−t

∏
σ∈E(C)

1− (1− p)(
D
#σ)

∏
σ′⊂{x1,...,xn}
σ 6⊆σ′∀σ∈E(C)

(1− p)(
D
#σ),

where Cn−t is the set of all clutters on {x1, . . . , xn} with vertex cover number n− t.

Proof. Let B be the random set of monomials generating I. By Proposition 3.1.2,

P [dim I = t] = P
[
c(Hred

B ) = n− t
]
. Let Cn−t denote the set of clutters on {x1, . . . , xn} with
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transversal number n− t. Then c(Hred
B ) = n− t if and only if Hred

B = C for some C ∈ Cn−t.

As these are disjoint events, we have:

(3.2.2) P [dim I = t] =
∑

C∈Cn−t

P
[
Hred

B = C
]
.

Let σ ⊂ {x1, . . . , xn}. There are
(
D

#σ

)
monomials supported on σ, so

(3.2.3) P [σ ∈ E(HB)] = 1− (1− p)(
D
#σ), and P [σ 6∈ E(HB)] = (1− p)(

D
#σ).

Both expressions are polynomials in p of degree exactly
(
D

#σ

)
. Now Hred

B = C if only if:

(1) every edge σ of C is an edge of HB, and

(2) every σ′ ⊂ {x1, . . . , xn} such that σ′ does not contain any σ ∈ E(C) is not an edge

of HB.

Note that condition (2) is equivalent to: Any edge of HB which is not an edge of C is not

minimal. Since edges are included in HB independently, this shows that

(3.2.4) P
[
Hred

B = C
]

=
∏

σ∈E(C)

P [σ ∈ E(HB)]
∏

σ′⊂{x1,...,xn}
σ 6⊆σ′∀σ∈E(C)

P [σ′ 6∈ E(HB)] .

We now prove two useful properties of the index sets in (3.2.4). First, every σ ∈ E(C)

satisfies #σ ≤ t+ 1. To show this, suppose σ ∈ E(C) with #σ > t+ 1. Since C is a clutter,

no proper subset of σ is an edge of C, so for every σ′ ∈ E(C), σ′ 6= σ, σ′ contains at least one

vertex not in σ. Hence the set T = {x1, . . . , xn}\σ intersects every edge of C except σ. By

taking the union of T with any one vertex in σ, we create a transversal of C of cardinality

#T + 1 = n−#σ + 1 < n− t, contradicting C ∈ Cn−t.

The second property is: if σ′ is a subset of {x1, . . . , xn} satisfying σ 6⊆ σ′ for all σ ∈ E(C),

then #σ′ ≤ t. To prove this, suppose #σ′ > t. By assumption no edge of C is a subset of

σ′, so every edge of C contains at least one vertex in the set T = {x1, . . . , xn}\σ′. Hence T

is a transversal of C with #T = n−#σ′ < n− t, a contradiction.

Thus the first product in (3.2.4) is taken over subsets of cardinality at most t+ 1, while

the second is taken over subsets of cardinality at most t. Furthermore, no σ ⊆ {x1, . . . , xn}
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can appear in both index sets. Since each subset that does appear contributes a polynomial

in p of degree
(
D

#σ

)
, the result is that P

[
Hred

B = C
]

is a polynomial in p of degree no greater

than
∑t+1

i=1

(
D
i

)(
n
i

)
. Since (3.2.2) is a sum of such polynomials, P [dim I = t] has the same

degree bound.

To prove this bound is achieved, we show there is a particular clutter for which Equa-

tion (3.2.4) has degree exactly
∑t+1

i=1

(
D
i

)(
n
i

)
, and for every other clutter the expression is

of strictly lower degree. Consider the hypergraph Kt+1
n that contains all

(
n
t+1

)
edges of

cardinality t+ 1 and no other edges. Then Kt+1
n ∈ Cn−t and

P
[
Hred

B = Kt+1
n

]
=

∏
σ∈{x1,...,xn}

#σ=t+1

P [σ ∈ E(HB)]
∏

σ∈{x1,...,xn}
|σ|≤t

P [σ 6∈ E(HB)]

=
(

1− (1− p)(
D
t+1)
)( n

t+1)
(1− p)Dn+(D2)(n2)+···+(Dt )(

n
t)

which has the correct degree. On the other hand, if C ∈ Cn−t and C 6= Kt+1
n , then at least

one edge σ of C is not an edge of Kt+1
n ; hence #σ ≤ t. All subsets properly containing

σ are neither edges of C, nor do they satisfy condition (2) above, hence these subsets are

not indexed by either product in Equation (3.2.4). In particular there are positively many

subsets of cardinality t+ 1 which do not contribute factors to P
[
Hred

B = C
]
. �

Using the formula of Theorem 3.2.1 requires an enumeration of all clutters on n vertices

with transversal number n− t. When t is very small or very close to n this is tractable, as

we see in the following theorem.

Theorem 3.2.5. Let I ∼ I(n,D, p). Then,

(a) P [dim I = 0] =
(
1− (1− p)D

)n
.

(b) P [dim I = 1] =
∑n−1

j=0

(
n
j

)
(1− (1− p)D)j(1− p)D(n−j)

(
1− (1− p)(

D
2)
)(n−j2 )

.

(c) P [dim I = n− 1] = −(1− p)(
n+D
n )−1 +

∑n
j=1(−1)j−1

(
n
j

)
(1− p)(

n+D
n )−1−(n+D−jn ).

(d) P [dim I = n] = (1− p)(
n+D
n )−1.

Proof. Part (a): For B ∼ B(n,D, p), I = 〈B〉, I is zero dimensional if and only if

Hred
B ∈ Cn. There is a single clutter on n vertices with transversal number n: the one with
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edge set {{x1}, {x2}, . . . , {xn}}. Hence by Theorem 3.2.1,

(3.2.6) P [dim I = 0] =
n∏
i=1

1− (1− p)(
D

#{xi}) =
(
1− (1− p)D

)n
.

Part (b): I is one-dimensional if and only if Hred
B ∈ Cn−1. We wish to describe Cn−1.

Suppose C is a clutter on n vertices and exactly j of the vertices are contained in a 1-

edge. Then j 6= n else C would be the clutter from part (a), so let 0 ≤ j ≤ n− 1, and

denote by V the set of these j vertices. Then V is a subset of any transversal of C. Let

W = {x1, . . . , xn}\V , then it can be shown that c(C) = n − 1 if and only E(C) = {{xi} :

xi ∈ V } ∪ {{xi, xk} | xi, xk ∈ W,xi 6= xk}. Hence P
[
Hred

B = C
]

equals

∏
xi∈V

P [{xi} ∈ E(HB)]
∏

xi,xk∈W

P [{xi, xk} ∈ E(HB)]
∏
xi∈W

P [{xi} 6∈ E(HB)](3.2.7)

= (1− (1− p)D)j
(

1− (1− p)(
D
2)
)(n−j2 )

(1− p)D(n−j).

The expression for P [dim I = 1] is obtained by summing over all
(
n
j

)
ways of selecting the j

1-edges, for each 0 ≤ j ≤ n− 1.

Part (c): For the case of (n − 1)–dimensionality, Theorem 3.2.1 requires us to consider

clutters with transversal number 1: clutters where some vertex appears in all the edges.

However, for this case we can give a simpler argument by looking at the monomials in B

directly. Now the condition equivalent to (n−1)–dimensionality is that there is some xi that

divides every monomial in B.

Fix an i, then there are
(
n+D
D

)
− 1−

(
n+D−1
D−1

)
monomials that xi does not divide. If Fi

is the event that xi divides every monomial in B, then P [Fi] = (1 − p)(
n+D
D )−1−(n+D−1

D−1 ). To

get an expression for (n − 1)-dimensionality, we need to take the union over all Fi, which

we can do using an inclusion-exclusion formula considering the events that two variables

divide every monomial, three variables divide every monomial, etc. Finally, we subtract the

probability that B is empty.

Part (d): Since only the zero ideal has Krull dimension n, this occurs if and only if B is

empty, which has probability (1− p)(
n+D
D )−1. �
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Remark 3.2.8. For n ≤ 4, Theorem 3.2.5 specifies the complete probability distribution

of Krull dimension induced by I(n,D, p), for any integer D.

3.3. Krull dimension thresholds in the ER-type model

For arbitrary t, explicitly computing P [dim I = t] is difficult. In fact, it follows from

Proposition 3.1.8 that any formula for Cn−t, the set of clutters with cover number n − t, is

exponential (unless P=NP). For this reason, the results of this section are quite powerful.

Even though bounding the dimension of a monomial ideal is an NP-complete problem as n

increases, in the case of I ∼ I(n,D, p), the dimension of I behaves according to threshold

laws that hold for arbitrarily large n.

Lemma 3.3.1. Fix integers n and t, with 1 ≤ t ≤ n. If B ∼ B(n,D, p) and p(D) =

o (D−t), then a.a.s. B will contain no monomials of support size t or less as D tends to

infinity.

Proof. By the first moment method, the probability that B contains some monomial

of support at most t is bounded above by the expected number of such monomials. As

the number of monomials in n variables with support of size at most t is strictly less than(
n
t

)(
D+t
t

)
, the expectation is bounded above by the quantity p

(
n
t

)(
D+t
t

)
. This quantity tends

to zero when p(D) = o (D−t) and n and t are constants, thus establishing the lemma. �

Theorem 3.3.2. Fix integers n and t with 1 ≤ t ≤ n, and let p = p(D). Then for

I ∼ I(n,D, p), D−t is a threshold function for the property that dim I ≤ t− 1. In other

words,

(3.3.3) lim
D→∞

P [dim I ≤ t− 1] =


0, if p = o (D−t) ,

1, if p = ω (D−t) .

Proof. Let p = o (D−t). Consider HB, the support hypergraph of B. By Lemma 3.3.1,

a.a.s. every monomial in B has support of size t + 1 or more, so every edge of HB has size
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t+ 1 or more. This implies that every set of (n− t) variables is a vertex cover of HB; hence

c(HB) ≤ n− t. By Proposition 3.1.2, dim I ≥ t a.a.s.

Now, let p = ω (D−t). For each σ ⊂ {x1, . . . , xn} with #σ = t, define Xσ = #{b ∈ B :

supp(b) = σ}. For each D, the number of possible such b is
(
D
t

)
. This is because each b is of

the form
∏
{xi ∈ σ} multiplied by a monomial in t variables (the variables of σ) of degree

no greater than D − t.

Thus, E [Xσ] =
(
D
t

)
p and this tends to infinity as D does, whenever p = ω (D−t). Further,

Var [Xσ] ≤ E [Xσ], as Xσ is a sum of independent indicator random variables. Hence we can

apply the second moment method to conclude that as D tends to infinity,

P [Xσ = 0] ≤ Var [Xσ]

E [Xσ]2
≤ 1(

D
t

)
p
→ 0.

In other words, a.a.s. B will contain a monomial with support σ. Since σ was an arbitrary

t-subset of the variables {x1, . . . , xn}, it follows that the same holds for every choice of σ.

By the union bound, P [Xσ = 0 for at least one σ with #σ = t] is bounded above by the

sum of their probabilities and tends to zero, as there are finitely many such σ. Then, a.a.s.

HB contains every edge of size t. This means that for any set T of n − t or fewer vertices,

HB contains an edge disjoint from T . Thus c(HB) ≥ n− t+ 1, and we use Proposition 3.1.2

again to conclude that dim I ≤ t− 1 a.a.s.

�

Corollary 3.3.4. Fix integers n and t with 0 ≤ t ≤ n. Then for I ∼ I(n,D, p(D)), if

p(D) satisfies both p = ω
(
D−(t+1)

)
and p = o (D−t), as D →∞, then dim I = t asymptoti-

cally almost surely.

Proof. Theorem 3.3.2 establishes a threshold result for each choice of constant t. But,

if both p = ω
(
D−(t+1)

)
and p = o (D−t) hold, then the theorem gives that events dim(I) > t

and dim(I) < t each hold with probability tending to 0. Therefore the probability of their

union also tends to 0, establishing the result. �
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Figure 3.3. Visualizing the zero-dimensional threshold of ER-type model
random monomial ideals in three variables. Each square in the image corre-
sponds to a maximum degree D between 2 and 30, and a value of p between
0 and 0.4. For each (D, p) pair of parameters, 100 random monomial ideals
I ∼ I(3, D, p) were sampled using the RandomMonomialIdeals package in
Macaulay2, and their dimension computed with the methods of Section 3.4.
The color of the square indicates the sample probability of dimension zero,
from white (probability zero) to black (probability one). The phase transi-
tion follows the threshold function p = 1/D (dotted white curve) proved in
Theorem 3.3.2.

3.4. Fast dimension computations using integer linear programming

In addition to its theoretical use in the proofs of Sections 3.2 and 3.3, the vertex cover

characterization of dimension is practical for faster computation of this invariant. Using an

integer linear programming formulation of the minimum vertex cover problem to compute the

dimension of a monomial ideal outperforms, often dramatically, the algorithms for computing

dimension that are currently available in Macaulay2.

Proposition 3.4.1. Let I ⊆ k[x1, . . . , xn] be a monomial ideal generated by G =

{g1, . . . , gr}. Then codim(I) is equal to the optimal objective value of the following integer

69



program:

minimize:
n∑
i=1

xi

subject to: xi ∈ {0, 1}, 1 ≤ i ≤ n,∑
xi∈supp(gj)

xi ≥ 1, 1 ≤ j ≤ r,

which has n binary variables and r linear constraints.

Proof. For any feasible solution (x1, . . . , xn), set T = {xi : xi = 1}. Then T is a vertex

cover of HG, because for each gj ∈ G, the inequality
∑

xi∈supp(gj)
xi ≥ 1 enforces that at least

one xi ∈ supp(gj) is in T . The vertex cover number of HG is thus equal to the minimum

number of xi’s in any feasible solution. �

Figures 3.4 and 3.5 compares the native dimension computation of Macaulay2 with the

integer linear programming reformulation. A few clarifying comments are in order. In

Macaulay2, the command dim I calls different functions in Macaulay2 depending on whether

I is an object of type Ideal or MonomialIdeal; in the latter case, faster combinatorial

algorithms are used rather than the most general dimension algorithm. All ideals in these

experiments were defined as type MonomialIdeal. Once each instance I was defined in

Macaulay2, two computations were timed:

(1) Wall time (using the Macaulay2 function elapsedTiming) to return dim I,

(2) Wall time (using the Macaulay2 function elapsedTiming) to write the integer pro-

gram corresponding to the dimension of I to an external ZIMPL file, call SCIP to

solve the IP, write the solution to a file, and read the answer into Macaulay2 as an

integer of type ZZ.

The reason for measuring wall time rather than CPU time is that the latter is handled in

Macaulay2 by the command timing, which does not register the CPU usage of the external

SCIP command. Though SCIP has its own timing functions, calling these would not account

for the time used to reformulate the problems and handle file input/output, and would
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50 0.08 0.39
60 0.19 0.19
70 0.81 0.33
80 1.86 0.71
90 4.91 0.55
100 12.53 0.45
110 28.46 1.01
120 68.03 0.55
130 127.04 0.54
140 350.54 1.18
150 636.82 1.81
200 NaN 1.29
250 NaN 1.44
300 NaN 0.97
350 NaN 0.95
400 NaN 1.03
450 NaN 1.32
500 NaN 0.96

Figure 3.4. Time to compute the dimension of squarefree monomial ideals
with 50 generators of degree 20 in n variables, as n increases, using Macaulay2

alone (M2) versus writing the integer program of Proposition 3.4.1 to a ZIMPL
file, calling SCIP to solve it, and reading the solution back into Macaulay2 (IP).
For each value of n, timing for each method was averaged over (the same) 10
random instances. These averages, displayed in the table on the right, were
used to generate the plot on the left. To demonstrate the performance of the
IP method, the table includes its average timing for even larger instances. See
Appendix A.2 for details about source code and reproducing this test.

make the speed of the SCIP method seem even more dramatic. Since the purpose of these

experiments is to demonstrate a practical improvement for the computer algebra user, it

seems most fair to measure the user’s experience running each method from start to finish

from within a Macaulay2 session.
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10 0.01 0.02
20 0.07 0.03
30 0.38 0.33
40 0.95 0.27
50 4.03 0.55
60 8.79 1.40
70 12.91 2.18
80 27.11 1.95
90 47.95 2.06
100 106.39 2.36
125 NaN 6.67
150 NaN 7.81
175 NaN 12.44
200 NaN 61.44

Figure 3.5. Time to compute the dimension of squarefree monomial ideals
with m generators of degree 30 in 100 variables, as m increases, using
Macaulay2 alone (M2) versus writing the integer program of Proposition 3.4.1
to a ZIMPL file, calling SCIP to solve it, and reading the solution back into
Macaulay2 (IP). For each value of m, timing for each method was averaged
over (the same) 10 random instances. These averages, displayed in the ta-
ble on the right, were used to generate the plot on the left. To demonstrate
the performance of the IP method, the table includes its average timing for
even larger instances. See Appendix A.2 for details about source code and
reproducing this test.
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CHAPTER 4

Projective dimension

4.1. Monomial ideals with large projective dimension

Let I = 〈G〉 ⊆ S be a monomial ideal with minimal generating setG. In 2017 Alesandroni

proved a combinatorial criterion for G that is equivalent to the statement pdim(S/I) = n.

See [Ale17a,Ale17b] for details and proofs. Only the statement is given here.

Let L be a set of monomials. An element m = xα1
1 · · ·xαnn ∈ L is a dominant monomial

(in L) if there is a variable xi such that the xi exponent of m, αi, is strictly larger than the

xi exponent of any other monomial in L. If every m ∈ L is a dominant monomial, then L

is a dominant set. For example, L1 = {x3
1x2x

2
3, x

2
2x3, x1x

3
3} is a dominant set in k[x1, x2, x3],

but L2 = {x3
1x2x

2
3, x

2
2x3, x

3
1x

3
3} is not.

Theorem 4.1.1. [Ale17b, Theorem 5.2, Corollary 5.3] Let I ⊆ S be a monomial ideal

minimally generated by G. Then pdim(S/I) = n if and only if there is a subset L of G with

the following properties:

(1) L is dominant.

(2) #L = n.

(3) No element of G strongly divides lcm(L). (Definition 1.3.38.)

More precisely, if L ⊆ G satisfies conditions (1), (2) and (3), then the minimal free resolution

of S/I has a basis element with multidegree lcm(L) in homological degree n. On the other

hand, if there is a basis element with multidegree xα and homological degree n, then G must

contain some L′ satisfying 1, 2, 3 and the condition lcm(L′) = xα.
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4.2. Most monomial ideals have large projective dimension

Definition 4.2.1. When L is any set of minimal generators of M that satisfies the three

conditions of Theorem 4.1.1, then L witnesses pdim(S/M) = n, and we will call L a witness

set . The monomial xα ∈ S is a witness lcm if L is a witness set and xα = lcm(L).

The distinction between witness sets and witness lcm’s is important, as several witness

sets can have a common lcm. We found it useful to think of the event “xα is a witness lcm”

in geometric terms, as illustrated in Figure 4.1 for the case of n = 3.

The monomials of total degree D are represented as lattice points in a regular (n − 1)-

simplex with side lengths D. Given xα = xα1
1 · · ·xαnn , the n inequalities x1 ≤ α1, . . . , xn ≤ αn

determine a new regular simplex ∆α (shaded). If L is a dominant set that satisfies #L = n

and lcm(L) = xα, then L must contain exactly one lattice point from the interior of each

facet of ∆α. (Monomials on the boundary of a facet are dominant in more than one variable.)

Meanwhile, the strong divisors of xα are the lattice points in the interior of ∆α. The event

“xα is a witness lcm” occurs when at least one generator is chosen in the interior of each

facet of ∆α, and no generators are chosen in the interior of ∆α.

Understanding the probability of witness sets and witness lcm’s is crucial to the proof of

the following theorem, which establishes a threshold for the projective dimension of random

monomial ideals.

Theorem 4.2.2. Let S = k[x1, . . . , xn], M ∼ M(n,D, p), and p = p(D). As D → ∞,

p = D−n+1 is a threshold for the projective dimension of S/M. If p = o (D−n+1) then

pdim(S/M) = 0 a.a.s., and if p = ω (D−n+1) then pdim(S/M) = n a.a.s.

In other words, the case of equality in Hilbert’s syzygy theorem is the most typical

situation for non-trivial ideals.

The rest of this section comprises the proof of Theorem 4.2.2 and two of its consequences.

First we show that for p below the threshold, usually pdim(S/M) = 0. Let

mn(D) =

(
D + n− 1

n− 1

)
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denote the number of monomials in n variables of degree D. This is a polynomial in D of

degree n− 1 and can be bounded, for D sufficiently large, by

(4.2.3)
1

(n− 1)!
Dn−1 ≤ mn(D) ≤ 2

(n− 1)!
Dn−1.

Proposition 4.2.4. If p = o (D−n+1) then pdim(S/M) = 0 a.a.s. as D →∞.

Proof. For each xα ∈ S, let Xα be the random variable indicating that xα ∈ G (Xα = 1)

or xα 6∈ G (Xα = 0). We define X =
∑

α∈S Xα, so that X records the cardinality of the

random minimal generating set G. By Markov’s inequality,

P [X > 0] = P [X ≥ 1] ≤ E [X] =
∑
α∈S
|α|=D

E [Xα] = mn(D)p.

Letting D →∞, we have

lim
D→∞

P [X > 0] = lim
D→∞

mn(D)p = 0,

since po (D−n+1). So #G = 0, equivalently M = 〈0〉, with probability converging to 1 as

D → ∞. Therefore below the threshold D−n+1, almost all random monomial ideals have

pdim(S/M) = 0. �

For the case p = ω (D−n+1), we use the second moment method. Recall that xα ∈ S is a

witness lcm to pdim(S/M) = n if and only if there is a dominant set L ⊆ G with #L = n,

lcm(L) = xα, and no generator in G strongly divides xα. For each α, we define an indicator

random variable wα that equals 1 if xα is a witness lcm and 0 otherwise. Next we define Wa,

for integers a > 1, and W by

Wa =
∑

|α|=D+a
αi≥a∀i

wα, W =
A∑

a=n−1

Wa,

where A = b(p/2)−
1

n−1 c − n. The random variable Wa counts most witness lcm’s of degree

D+a. The reason for the restriction αi ≥ a is easily explained geometrically. In general, the

probability that xα is a witness lcm depends only on the side length of the simplex ∆α (see
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Figure 4.1). If, however, the facet defining inequalities of ∆α intersect outside of the simplex

of monomials with degree D, the situation is more complicated and has many different cases.

The definition of Wa bypasses these cases, and this does not change the asymptotic analysis.

In Lemma 4.2.7, we compute the order of P [wα] and use this to prove that E [W ] →

∞ as D → ∞ in Lemma 4.2.9. Then in Lemma 4.2.10, we prove Var [W ] = o
(
E [W ]2

)
and thus that the right-hand side of Equation (1.1.6) goes to 0 as D → ∞. In other

words, P [W > 0] → 1, meaning that M ∼ M(n,D, p) will have at least one witness to

pdim(S/M) = n with probability converging to 1 as D → ∞. This proves the second side

of the threshold and establishes the theorem.

We first give the value of P [wα] for an exponent vector α with |α| = D + a and αi ≥ a

for all i. The monomials of degree D that divide xα form the simplex ∆α, and those that

strongly divide xα form the interior of ∆α. Thus there are mn(a) divisors and mn(a − n)

strong divisors of xα in degree D. Recall that for xα to be a witness lcm, for each variable

xi there must be at least one monomial xβ in G with xβ in the relative interior of the facet

of ∆α parallel to the subspace {xi = 0}. In other words, there must be an xβ ∈ G satisfying

βi = αi and βj < αj for all j 6= i. Therefore xα−β is a monomial of degree a without xi

and with positive exponents for each of the other variables. See Figure 4.1. The number of

such monomials is mn−1(a−n+ 1). The relative interiors of the facets of ∆α are disjoint, so

the events that a monomial appears in each one are independent. Additionally, G must not

contain any monomials that strongly divide xα, and the probability of this is qmn(a−n) where

q = 1− p. Therefore, for α with |α| = D + a and αi ≥ a for all i,

(4.2.5) P [wα] =
(
1− qmn−1(a−n+1)

)n
qmn(a−n).

By linearity of expectation, a consequence of this formula is

(4.2.6) E [Wa] = mn(D + a− na)
(
1− qmn−1(a−n+1)

)n
qmn(a−n),

because the number of exponent vectors α with |α| = D + a and αi ≥ a for all i is mn(D +

a− na).
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Lemma 4.2.7. Let α be an exponent vector with a = |α| −D ≤ p−
1

n−1 and αi ≥ a for all

i. Then,

(4.2.8)
1

2
pn (mn−1(a− n+ 1))n ≤ P [wα] ≤ pn (mn−1(a− n+ 1))n .

Proof. The union-bound implies that

1− qmn−1(a−n+1) ≤ pmn−1(a− n+ 1).

The upper bound on P [wα] follows from applying this inequality to the expression in (4.2.5).

For the lower-bound, note that P [wα] is bounded below by the probability that exactly one

monomial is chosen to be in G from the relative interior of each facet of ∆α, and no other

monomials are chosen in ∆α. The probability of this latter event is given by

pn (mn−1(a− n+ 1))n qmn(a)−n

since there are mn−1(a−n+1) choices for the monomial picked in each facet. Now we use the

fact that mn(a) ≤ mn(A) ≤ p/2 (and this is the reason for the choice of A = b(p/2)−
1

n−1 c−n)

to conclude

qmn(a)−n ≥ 1− (mn(a)− n)p ≥ 1− (a+ n)n−1

(n− 1)!
p ≥ 1

2
.

�

Lemma 4.2.9. If p = ω (D−n+1) then lim
D→∞

E [W ] =∞.

Proof. If limD→∞ p > 0, then E [Wn−1] ≥ mn(D − 1)pn which goes to infinity in D.

Instead assume that p = ω (D−n+1) , p = o (1). From Lemma 4.2.7, we have

P [wα] ≥ 1

2
pn (mn−1(a− n+ 1))n ≥ 1

2
pn
(

(a− n)n−2

(n− 2)!

)n
.

For n−1 ≤ a ≤ A with A = b(p/2)−
1

n−1 c−n, one gets a = o (D), and hence for D sufficiently

large, na < D/2, which means D + a− na > D/2. Therefore

mn(D + a− na) ≥ Dn−1

2n−1(n− 1)!
.
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Since mn(D+ a− na) is the number of exponent vectors α with |α| = D+ a and αi ≥ a for

all i,

E [Wa] =
∑

|α|=D+a
αi≥a ∀i

P [wα] ≥ cnD
n−1pn(a− n)n(n−2)

where cn > 0 is a constant that depends only on n. Summing up over a gives the bound

E [W ] =
A∑

a=n−1

E [Wa] ≥ cnD
n−1pn

A∑
a=n−1

(a− 2n)n
2−2n.

The function f(A) =
∑A

a=n−1(a − 2n)n
2−2n is a polynomial in A with leading term t =

An
2−2n+1/(n2− 2n+ 1). Since A is proportional to p−

1
n−1 , for p sufficiently small f(A) ≥ t/2

and so

E [W ] ≥ cnD
n−1pn

p−
n2−2n+1
n−1

2(n2 − 2n+ 1)
= c′nD

n−1p

and Dn−1p goes to infinity as D →∞. �

Lemma 4.2.10. If p = ω (D−n+1) then

lim
D→∞

Var [W ]

E [W ]2
= 0.

Proof. Since W is a sum of indicator variables wα, we can bound Var [W ] by

Var [W ] ≤ E [W ] +
∑
(α,β)

Cov [wα, wβ] .

The covariance is easy to analyze in the following two cases. If the degree of gcd(xα, xβ)

is at most D, then wα and wβ depend on two sets of monomials being in G which share

at most one monomial. In this case wα and wβ are independent so Cov [wα, wβ] = 0. The

second case is that xα|xβ and α 6= β. If wα = 1, then G contains a monomial that strictly

divides xβ. In this case wα and wβ are mutually exclusive, so Cov [wα, wβ] < 0. The cases

with Cov [wα, wβ] ≤ 0 are illustrated geometrically, for n = 3, in Figure 4.2.

Thus we focus on the remaining case, when deg gcd(xα, xβ) > D and neither of xα and

xβ divides the other. In other words ∆α and ∆β have intersection of size > 1 and neither is

contained in the other.
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Let a = deg(xα) −D, b = deg(xα) −D, which are the edge lengths of the simplices ∆α

and ∆β respectively. Let c = deg(gcd(xα, xβ))−D, which is the edge length of the simplex

∆α∩∆β. Note that 0 < c < a due to assumptions made on α and β. The number of common

divisors of xα and xβ of degree D is given by mn(c). Let δα,i and δβ,i denote the relative

interiors of the ith facets of ∆α and ∆β, respectively. The type of intersection of ∆α and ∆β

is characterized by signs of the entries of α − β, which is described by a 3-coloring C of [n]

with color classes Cα, Cβ, Cγ for positive, negative, and zero, respectively.

Since wα is a binary random variable, Cov [wα, wβ] = P [wαwβ]−P [wα]P [wβ], and hence

it is bounded by P [wαwβ]. Therefore we will focus on bounding this quantity. Let wα,i be

the indicator variable for the event that G contains a monomial xu11 · · · xunn with ui = αi and

uj < αj for each j 6= i. Then

P [wαwβ] ≤ P

[
n∏
i=1

wα,iwβ,i

]
.

For i ∈ Cα, the facet δα,i does not intersect ∆β. See Figure 4.3a. For each i ∈ Cα, we have

P [wα,i] = 1− qmn−1(a−n+1) ≤ mn−1(a− n+ 1)p ≤ an−2p ≤ An−2p ≤ p1/(n−1).

Similarly for i ∈ Cβ, P [wβ,i] ≤ p1/(n−1).

For each pair i ∈ Cβ and j ∈ Cα, facets δα,i and δβ,j intersect transversely. Let H be

the bipartite graph on Cβ ∪ Cα formed by having {i, j} as an edge if and only if there is a

monomial in G in δα,i ∩ δβ,j. Let ei,j be the event that {i, j} is an edge of H. Let V denote

the subset of Cβ ∪ Cα not covered by H. If wαwβ is true, then for each i ∈ V ∩ Cβ, there

must be a monomial in G in δα,i \
⋃
j∈Cα δβ,j, and let vi be this event. Similarly for each

j ∈ V ∩Cα, there must be a monomial in G in δβ,j \
⋃
i∈Cβ δα,i, and let vj be this event. See

Figure 4.3 for the geometric intuition behind these definitions.

Note that all events ei,j and vi are independent since they involve disjoint sets of variables.

Therefore

P

∏
i∈Cα

wα,i
∏
i∈Cβ

wβ,i

 ≤∑
H

∏
{i,j}∈E(H)

P [ei,j]
∏
i∈V

P [vi] .
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For any (i, j) ∈ Cβ × Cα,

#(δα,i ∩ δβ,j) ≤ mn−2(c) ≤ cn−3 ≤ p−
n−3
n−1 .

Therefore

P [ei,j] = 1− q#(δα,i∩δβ,j) ≤ p#(δα,i ∩ δβ,j) ≤ p
2

n−1 .

We also know that for i ∈ Cβ, P [vi] ≤ P [wα,i] ≤ p1/(n−1), and similarly for i ∈ Cα. So then

∑
H

∏
{i,j}∈E(H)

P [ei,j]
∏
i∈V

P [vi] ≤
∑
H

p
2#E(H)+#V

n−1 .

The number of graphs H is 2#Cβ ·#Cα ≤ 2n
2

and for any graph H, 2#E(H) + #V ≥ #Cβ +

#Cα since every element of Cβ ∪ Cα must be covered by H or in V . Then

P

∏
i∈Cα

wα,i
∏
i∈Cβ

wβ,i

 ≤ 2n
2

p
#Cβ+#Cα

n−1 .

Finally for each i ∈ Cγ, facets δα,i and δβ,i have full dimensional intersection. Again G

may contain distinct monomials in δα,i and δβ,i, or just one in their intersection. However,

δα,i does not intersect any other facets of ∆β so there are only two cases.

P [wα,iwβ,i] ≤ (1− qmn−1(a−n+1))2 + 1− qmn−1(c−n+1) ≤ p2/(n−1) + p1/(n−1) ≤ 2p1/(n−1).

Combining these results, we have

P [wαwβ] ≤ 2n
2

p
#Cβ+#Cα

n−1

∏
i∈Cα

p
1

n−1

∏
j∈Cβ

p
1

n−1

∏
i∈Cγ

2p
1

n−1 ≤ 2n
2+#Cγp

2n−#Cγ
n−1 .

To sum up over all pairs α, β with potentially positive variance, we must count the

number of pairs of each coloring C. To do so, first fix C and α and count the number of

β such that the intersection of ∆α and ∆β have type C. Note that the signs of the entries

of α − β are prescribed, and that the entries of α − β are bounded by p−
1

n−1 because the

degrees of xα and xβ are each within p−
1

n−1 of the degree of their gcd. A rough bound then

on the number of values of β is (p−
1

n−1 )n−#Cγ . The number of values of α for each choice
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of a is mn(D + a − na) ≤ Dn−1, so summing over all possible values of a, the number of α

values is bounded by p−
1

n−1Dn−1. Therefore

∑
(α,β) of type C

Cov [wα, wβ] ≤ #{(α, β) of type C}2n2+#Cγp
2n−#Cγ
n−1

≤ p−
1

n−1Dn−1(p−
1

n−1 )n−#Cγ2n
2+#Cγp

2n−#Cγ
n−1 ≤ 2n

2+nDn−1p ≤ 2n
2+n

c′n
E [W ] .

Then summing over all colorings C, of which there are less than 3n, shows that Var [W ] ≤

c′′n E [W ] for c′′n > 0 depending only on n. Therefore

lim
D→∞

Var [W ]

E [W ]2
≤ lim

D→∞

c′′n
E [W ]

= 0.

�

Proof of Theorem 4.2.2. If p = o (D−n+1), Proposition 4.2.4 implies pdim(S/M) =

0. If p = ω (D−n+1), Lemma 4.2.9 proves that E [W ]→∞ as D →∞. Since Lemma 4.2.10

shows that P [W > 0] → 1, we conclude that there is a witness set asymptotically almost

surely. This is equivalent to pdim(S/M) = n. �

4.3. Cohen-Macaulayness

Corollary 4.3.1. Let S = k[x1, . . . , xn], M ∼ M(n,D, p), and p = p(D). If p =

ω (D−n+1) and p = o (1), then asymptotically almost surely S/M is not Cohen-Macaulay.

Proof. For a monomial ideal M ⊆ S, the Krull dimension of S/M is zero if and only

if for each i = 1, . . . , n, M contains a minimal generator of the form xji for j = 1, . . . , n.

For M ∼ M(n,D, p), this can only occur if every monomial in the set {xD1 , xD2 , . . . , xDn }

is chosen as a minimal generator, an event that has probability pn. Thus for fixed n and

p = o (1), P [dimM = 0] = pn → 0 as D → ∞. If also p = ω (D−n+1), then by Theorem

4.2.2, P [pdim(S/M) = n]→ 1. Together, these imply that P [S/M is Cohen-Macaulay]→ 0

as D →∞. �
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Remark 4.3.2. A different investigation of “average” homological behavior was that of

Ein, Erman and Lazarsfeld [EEL15], who studied the ranks of syzygy modules of smooth

projective varieties. Their conjecture—that these ranks are asymptotically normal as the

positivity of the embedding line bundle grows—is supported by their proof of asymptotic

normality for the case of random Betti tables. Their random model is based on the elegant

Boij-Söderberg theory established by Eisenbud and Schreyer [ES09]; for a fixed number

of rows, they sample by choosing Boij-Söderberg coefficients independently and uniformly

from [0, 1], then show that with high probability the Betti table entries become normally

distributed as the number of rows goes to infinity. Further support to this conjecture is the

paper of Erman and Yang [EY17], which uses the probabilistic method to exhibit concrete

examples of families of embeddings that demonstrate this asymptotic normality.

In [EY17], Erman and Yang consider random squarefree monomial ideals in n variables,

defined as the Stanley-Reisner ideals of random flag complexes on n vertices, and study their

asymptotic behavior as n → ∞. Though the model is different, they find a similar result:

for many choices of their model parameter, Cohen-Macaulayness essentially never occurs.

Another corollary to Theorem 4.2.2 is about Betti numbers. By the results of Brun

and Römer [BR04], which extended those of Charalambous [Cha91] (see also [BS18]), a

monomial ideal with projective dimension d will satisfy βi(S/M) ≥
(
d
i

)
for all 1 ≤ i ≤ d.

In the special case d = n, Alesandroni gives a combinatorial proof of the implied inequality∑n
i=0 βi(S/M) ≥ 2n [Ale17b]. These inequalities are of interest because they relate to the

long-standing Buchsbaum-Eisenbud-Horrocks conjecture [BE77, Har79], that βi(N) ≥
(
c
i

)
for N an S-module of codimension c. In 2017, Walker [Wal17] settled the BEH conjecture

outside of the characteristic 2 case. Here we show that a probabilistic result, which holds

regardless of characteristic, follows easily from Theorem 4.2.2.

Corollary 4.3.3. Let M ∼ M(n,D, p) and p = p(D). If p = ω (D−n+1), then asymp-

totically almost surely βi(S/M) ≥
(
n
i

)
for all 1 ≤ i ≤ n.

Proof. Follows immediately from [BR04, Theorem 1.1] and Theorem 4.2.2. �
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x3 = α3

x2 = α2

x1 = α1

(a) The simplex ∆α, associated with a pos-
sible witness lcm xα = xα1

1 xα2
2 · · ·xαnn , has

facet-defining inequalities xi ≤ αi for i =
1, . . . , n.

×××
××
×

(b) For xα to be a witness lcm, at least one
monomial on the interior of each facet (cir-
cled) must be chosen, and none of the interior
monomials (crossed out) can be chosen.

(c) A situation where xα is a witness lcm
with four different witness sets.

(d) Not a witness set, since there is not a
monomial on the interior of each facet of ∆α.

Figure 4.1. Geometric interpretation of witnesses to large projective dimen-
sion (see Definition 4.2.1).

83



(a) If gcd(xα, xβ) has degree < D, then the
intersection of ∆α and ∆β is the empty set,
so Cov [wα, wβ] = 0.

(b) If gcd(xα, xβ) has degree = D, then ∆α∩
∆β contains a single point, which lies on a
lower-dimensional face of at least one of the
simplices, so Cov [wα, wβ] = 0.

(c) If xα|xβ, then ∆α ⊆ ∆β. In this case,
Cov [wα, wβ] < 0.

Figure 4.2. Situations where pairs of witness lcm’s have negative or zero
covariance.

84



δβ,1
δβ,2

δβ,3

δα,1

δα,2

δα,3

1

3

2

(a) An intersection of ∆α (light gray/dot-
ted) and ∆β (dark gray/solid). The facets
of the intersection are labeled 1, 2, 3, and
the color class of [3] associated with this in-
tersection is (−,+,+). This encodes that
Cα = {2, 3}, Cβ = {1} and Cγ = ∅. Since
1 ∈ Cβ, the facet δβ,1 does not intersect ∆α.
Similarly, since Cα = {2, 3}, the facets δα,2
and δα,3 do not intersect ∆β.

δβ,1
δβ,2

δβ,3

δα,1

δα,2

δα,3

1

3

2

(b) A set of five generators (above, in black),
for which wαwβ = 1. Since one generator
belongs to the intersection of facets 1 and 3,
the associated bipartite graph H (below) has
edge {1, 3}. Here V = {2}, indicating that G
must contain a generator in δβ,2\(δα,1∪δα,3).

1

2

3

Figure 4.3. An illustration of intersection types, color classes, the graph H,
and the set V .
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CHAPTER 5

Genericity and Scarf complexes in the graded model

5.1. A threshold for genericity

Recall (Definition 1.3.35) that an ideal with minimal generating set G is strongly generic

if for every distinct pair of monomials xα and xβ in G, either αi = 0 or αi 6= βi for all

i = 1, . . . , n. If a monomial ideal is generated in degree D only, it is generic (Definition 1.3.40)

if and only if it is strongly generic.

Theorem 5.1.1. Let S = k[x1, . . . , xn], M ∼ M(n,D, p), and p = p(D). As D → ∞,

p = D−n+3/2 is a threshold for M being (strongly) generic. In other words, if If p(D) =

o
(
D−n+3/2

)
then M is (strongly) generic a.a.s., and if p(D) = ω

(
D−n+3/2

)
then M is

(strongly) generic a.a.s.

Proof. Let V be the indicator variable that M is strongly generic. For each variable xi

and each exponent c, let vi,c denote the indicator variable for the event that there is at most

one monomial in G with xi exponent equal to c, and let Vi =
∏D

c=1 vi,c. Then

V =
n∏
i=1

Vi.

Given a set Γ of monomials of degree D in S with #Γ = m, the probability that G

contains at most one monomial in Γ is

P [#(Γ ∩G) ≤ 1] = qm +mpqm−1 ≥ 1−mp+mp(1− (m− 1)p) ≥ 1−m2p2.

On the other hand

P [#(Γ ∩G) ≤ 1] ≤ P [#(Γ ∩G) 6= 2] = 1−
(
m

2

)
p2qm−2.
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Assuming that p = o (m−1) then for p sufficiently small, qm−2 ≥ 1/2 so

(5.1.2) P [#(Γ ∩G) ≤ 1] ≤ 1− (m− 1)2

4
p2.

The above gives bounds on P [vi,c] by taking Γ to be the set of monomials of degree D with

xi degree equal to c. Then #Γ = mn−1(D − c) ≤ Dn−2, hence

P [vi,c] ≥ 1−D2n−4p2.

By the union-bound,

P [V ] ≥ 1−
n∑
i=1

D∑
c=1

(1− P [vi,c]) ≥ 1− np2D2n−3.

Therefore, for p = o
(
D−n+3/2

)
, P [V ] goes to 1.

For a lower bound on P [Vi], let Ui be the random variable that counts the number of

values of c for which vi,c is false. Assuming that p = o (D−n+2) and p sufficiently small, and

using the upper bound on P [vi,c] established in Equation (5.1.2), we get

E [Ui] =
D∑
c=1

(1− P [vi,c]) ≥
p2

4

D∑
c=1

(mn−1(D − c)− 1)2.

The function f(D) =
∑D

c=1(mn−1(D − c) − 1)2 is a polynomial in D with lead term t =

D2n−3/(n− 2)!2(2n− 3). Thus for D sufficiently large, f(D) ≥ t/2 so

E [Ui] ≥
p2D2n−3

8(n− 2)!2(2n− 3)
.

Therefore, for p = ω
(
D−n+3/2

)
, p = o (D−n+2),

lim
D→∞

E [Ui] =∞.

Since the indicator variables vi,1, . . . , vi,D are independent, Var [Ui] ≤ E [Ui]. By the second

moment method,

0 = lim
D→∞

P [Ui = 0] = lim
D→∞

P [Vi] ≥ lim
D→∞

P [V ] .
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Finally, note that for D fixed, P [V ] is monotonically decreasing in p. Therefore P [V ]

goes to 0 as D goes to infinity for all p = ω
(
D−n+3/2

)
. �

5.2. Almost a threshold for being Scarf

The threshold for genericity (Theorem 5.1.1) implies that for p = o
(
D−n+3/2

)
, M ∼

M(n,D, p) is asymptotically almost always Scarf. The main result of this section is that

D →∞, M is almost never Scarf when p = ω
(
D−n+2−1/n

)
. This leaves a gap where we do

not know the asymptotic behavior.

Theorem 5.2.1. Let S = k[x1, . . . , xn], M ∼ M(n,D, p), and p = p(D). If p =

ω
(
D−n+2−1/n

)
then M is not Scarf asymptotically almost surely.

The proof of Theorem 5.2.1 is long, so first we will give a logical outline. Recall that

every face of the Scarf complex of S/M corresponds to a subset of G whose lcm is unique

over all subsets. Suppose that L ⊆ G is a witness set to pdim(S/M) = n. By Theorem

4.1.1, the free module S(−αL) appears in the minimal free resolution of S/M in homological

degree n. Suppose further that there exists g ∈ G\L, such that g divides lcm(L). Then

lcm(L) = lcm(L ∪ {g}), so by definition S(−αL) does not appear in the Scarf complex.

Thus, the minimal free resolution strictly contains the Scarf complex, and M is not Scarf.

When this occurs, we call L ∪ {g} a non-Scarf witness set . To prove Theorem 5.2.1, then,

we prove that for p = ω
(
D−n+2−1/n

)
, there is at least one non-Scarf witness set a.a.s.

For each xα ∈ S, define yα as the indicator random variable:

yα =


1 xα is the lcm of a non-Scarf witness set

0 otherwise.

For each integer a ≥ 1, define the random variable Ya that counts the monomials of degree

D + a that are lcm’s of non-Scarf witness sets. Let Y be the sum of these variables over a

certain range of a:

Ya =
∑

|α|=D+a
αi≥a ∀i

yα, Y =
A∑
a=2

Ya
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where A = b(p/2)−
1

n−1 c − n.

For yα to be true, there must be a monomial in G in the relative interior of each facet of

the simplex ∆α and one of the facets must have at least two monomials in G. Additionally

G must have no monomials in the interior of ∆α. For xα ∈ S with |α| = D + a, and αi ≥ a

for i = 1, . . . , n,

(5.2.2)

P [Ya] = mn(D+a−na)
((

1− qmn−1(a−n+1)
)n − (mn−1(a− n+ 1)pqmn−1(a−n+1)−1

)n)
qmn(a−n).

This follows from the same argument as the formula 4.2.5, subtracting the case that exactly

one monomial lies on each facet. The relevant bound is

Lemma 5.2.3. Let α be an exponent vector with a = |α| −D ≤ p−
1

n−1 and αi ≥ a for all

i. Then,

(5.2.4)
1

4
pn+1mn−1(a− n+ 1)n+1 ≤ P [yα] ≤ 1

2
pn+1mn−1(a− n+ 1)n+1.

Proof. The union-bound implies that

1− qmn−1(a−n+1) ≤ pmn−1(a− n+ 1).

The upper bound on P [yα] follows from applying this inequality to the expression in Equa-

tion (4.2.5).

For the lower-bound, note that P [yα] is bounded below by the probability that exactly

two monomials are chosen to be in G from the relative interior of one of the facets of ∆α

and exactly one is chosen from each other facet, and no other monomials are chosen in ∆α.

The probability of this event is given by(
mn(a− n)

2

)
mn(a− n)n−1pn+1qmn(a)−n−1
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since there are mn(a− n) choices for the monomial chosen in each facet. Also by the union-

bound we have

qmn(a)−n−1 ≥ 1− (mn(a)− n− 1)p ≥ 1− (a+ n)n−1

(n− 1)!
p ≥ 1

2
.

�

We can then find a threshold for p where non-Scarf witness sets are expected to appear

frequently.

Lemma 5.2.5. If p = ω
(
D−n+2−1/n

)
then lim

D→∞
E [Y ] =∞.

Proof. We follow the same argument as in the proof of Lemma 4.2.9. If limD→∞ p > 0,

then E [Yn] ≥ mn(D − 2)pn+1q which goes to infinity in D. Instead assume that p =

ω
(
D−n+2−1/n

)
, p = o (1) and take n − 1 ≤ a ≤ p−

1
n−1 . As in the proof of Lemma 4.2.9, for

D sufficiently large

mn(D + a− na) ≥ Dn−1

2n−1(n− 1)!
.

Therefore

E [Ya] ≥ cnD
n−1pn+1a(n+1)(n−2)

where cn > 0 is constants that depends only on n. Summing up over a gives the bound

E [Y ] ≥ c′nD
n−1p

n
n−1

and Dn−1p
n
n−1 goes to infinity as D →∞. �

Lemma 5.2.6. If p = ω
(
D−n+2−1/n

)
then

lim
D→∞

Var [Y ]

E [Y ]2
= 0.

Proof. The proof follows the same structure as that of Lemma 4.2.10. We bound Var [Y ]

by

Var [Y ] ≤ E [V ] +
∑
(α,β)

Cov [yα, yβ] .
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For the pair of exponent vectors (α, β), yα and yβ are independent or mutually exclusive

in the same set of cases as for wα and wβ, in which case Cov [yα, yβ] is non-positive. The

remaining case is when the simplices ∆α and ∆β intersect and neither is contained in the

other. Let C = (Cα, Cβ, Cγ) be the coloring corresponding to this pair.

Define indicators ei, vi,j and graph H as in the proof of Lemma 4.2.10. It was shown

that P [wαwβ] is bounded above by

B = 2n
2+#Cγp

2n−#Cγ
n−1 .

For yαyβ to be true, it must be that wαwβ is true, plus an extra monomial appears in some

facet of ∆α and the same for ∆β. We will enumerate the cases of how this can occur, and

modify the bound B in each case to give a bound on P [yαyβ]. Recall that for a set Γ of

size m, we have that the probability of at least 2 monomials in G being chosen from Γ is

bounded

P [#(Γ ∩G) ≥ 2] ≤ m2p2.

There are two cases where a single monomial in G is the extra one for both yα and yβ:

• For some i ∈ Cγ, there are at least two monomials in δα,i ∩ δβ,i. The probability

that this occurs is bounded by mn−1(A)2p2 ≤ p
2

n−1 and this replaces a factor in the

original bound B of p
1

n−1 , so the probability of yαyβ being true and this occurring

for some fixed choice of i is bounded by Bp
1

n−1 .

• For some edge (i, j) of H, there are at least two monomials in δα,i ∩ δβ,j. The

probability that this occurs is bounded by mn−2(A)2p2 ≤ p
4

n−1 and this replaces a

factor in B of p
2

n−1 .

In the rest of the cases the extra monomial for vα is distinct from the extra one for vβ. For

vαvβ to be true, two of these cases must be paired. We describe the situation for vα, but the

vβ case is symmetric.
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• For some i ∈ Cβ, the vertex in the graph H has degree at least 2. In this case

2#E(H) + #V ≥ #Cα + #Cβ + 1, one greater than the bound in the original

computation of B. Thus we pick up an extra factor of p
1

n−1 over B.

• For i ∈ Cα or i ∈ Cβ ∩V or i ∈ Cw with no monomial in δα,i∩ δβ,i, there are at least

two monomials in δα,i \
⋃
j δβ,j. We replace a factor of p

1
n−1 in B by p

2
n−1 .

• For i ∈ Cβ \ V or i ∈ Cw with a monomial in δα,i ∩ δβ,i, there is a monomial in

δα,i \
⋃
j δβ,j. Thus in the bound we pick up an extra factor of p

1
n−1 over B.

The probability of the first case being true is bounded by is Bp
1

n−1 , while in all others it

is bounded by Bp
2

n−1 , and the former bound dominates. The total number of cases among

all the situations above is some finite N (depending only on n) so we can conclude that

P [yαyβ] ≤ NBp
1

n−1 .

The remainder of the proof is identical to that of Lemma 4.2.10, and so we arrive at

Var [Y ] ≤ N2n
2+nDn−1p

n
n−1 ≤ N2n

2+n

c′n
E [Y ] ,

and therefore

lim
D→∞

Var [Y ]

E [Y ]2
≤ lim

D→∞

c′′n
E [Y ]

= 0.

�

Proof of Theorem 5.2.1. If p = ω
(
D−n+2−1/n

)
, Lemma 5.2.5 proves that E [Y ]→∞

as D → ∞. By the second moment method, Lemma 5.2.6 implies that P [Y > 0] → 1. We

conclude that there is a non-Scarf witness set a.a.s., in which case M is not Scarf. �

Notice that Theorem 5.2.1 does not provide a threshold result for being Scarf. Never-

theless, taken together with Theorem 5.1.1 it indicates that being Scarf is almost equivalent

to being generic in our probabilistic model. Monomial ideals that are not generic but Scarf

live in the small range D−n+3/2 � p� D−n+2−1/n. This narrow “twilight zone” can be seen

in Figure 5.1 as the transition region where black, grey, and white are all present.
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Figure 5.1. Generic versus Scarf monomial ideals in computer simulations
of the graded model.

As an application of the probabilistic method, by choosing parameters in the twilight

zone, we can generate countless examples of ideals with the unusual property of being Scarf

but not generic. An example found while creating Figure 5.1 is I = 〈x4
1x3x

5
5, x1x

2
2x

2
3x

4
6x8,

x3
2x

2
5x

3
6x7x8, x3

1x
2
5x

2
7x

3
8, x2x3x

3
4x6x8x

3
9, x1x

4
3x4x

2
6x8x10, x1x3x

2
4x5x6x

3
8x10, x2x3x

3
6x

4
8x10, x4x

5
5x7x

3
10,

x1x
4
5x

5
10〉 ⊆ k[x1, . . . x10], which has the following total Betti numbers:

i 0 1 2 3 4 5 6 7 8

βi 1 10 45 114 168 147 75 20 2,

and is indeed Scarf. Creating—or even verifying—such examples by hand would be a rather

difficult task!
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CHAPTER 6

Distributions of Hilbert functions

The Hilbert function, and the Hilbert polynomial that it determines, are important tools

in the classification of ideals via the Hilbert scheme [Eis95]. Of course, monomial ideals

are key to this enterprise: given an arbitrary homogeneous ideal I and a monomial order

on k[x1, . . . , xn], the monomial ideal generated by the leading terms of the polynomials in I

has the same Hilbert function as I. Therefore the study of all Hilbert functions reduces to

the study of Hilbert functions of monomial ideals. Moreover, the Hilbert function hI(·) of

a monomial ideal I ⊆ S has a useful combinatorial meaning: the value of h(S/I, d) is the

number of standard monomials of degree d; i.e. the number of monomials of degree d that

are not contained in I.

Since the Erdős-Rényi-type model specifies a distribution on monomial ideals, it pro-

vides a formal probabilistic procedure to generate random Hilbert functions. Many natural

question arise, such as:

• What is the probability of observing a particular Hilbert function?

• What is the most/least likely Hilbert function for a given set of parameters?

• If we fix a Hilbert function, are all monomial ideals with that Hilbert function equally

likely to appear?

• How does the expected Hilbert function change as the parameter p changes?

Recall from Theorem 2.1.4 that the Erdős-Rényi distribution of monomial ideals is intimately

related to Hilbert functions, via Equation (2.1.5):

P [I = I] = pβ1(S/I)(1− p)
∑D
d=1 h(S/I,d).

It follows that two monomial ideals with the same Hilbert function and the same number

of minimal generators have the same probability of occurring in the model. If we could

94



enumerate all the monomial ideals (in n variables, with generators of degree less than or

equal to D) that share a given Hilbert function, we could use Equation (2.1.5) to calculate

the probability of obtaining said Hilbert function in the model. This strategy leads to a

closed formula for the induced distribution of Hilbert functions under the ER-type model

(Theorem 6.1.5).

6.1. The De Loera polytope

Lemma 6.1.1. Fix a (partial) Hilbert function h = (h0, h1, . . . , hD). Let NMon(n,D,h)

equal the number of monomial ideals I satisfying:

(1) I ⊆ k[x1, . . . , xn],

(2) h(S/I, d) = hd for all 0 ≤ d ≤ D, and

(3) β1,d(S/I) = 0 for all d > D.

Let DL(n,D,h) denote the convex polytope defined by:

∑
|α|=d

xα =

(
n+ d− 1

d

)
− hd, 1 ≤ d ≤ D,(6.1.2)

xα ≤ xγ, ∀α ≤ γ with |α|+ 1 = |γ|,(6.1.3)

0 ≤xα ≤ 1 ∀a(6.1.4)

where a, γ range over all exponent vectors of monomials in S with positive total degree no

more than D. (Thus, there are
(
n+D
D

)
−1 variables.) Then NMon(n,D,h) equals the number

of 0− 1 vertices of the convex polytope DL(n,D,h).

Proof. Given a vertex v ∈ V (DL(n,D,h)), define Iv according to the 0−1 coordinates

of v: if xα = 1, then xα ∈ Iv, and if xα = 0, then xα 6∈ Iv. The inequalities in Equation (6.1.3)

ensure that if xα is in Iv, then any multiple of xα is also in I, and thus that Iv is an ideal.

The equalities in Equation (6.1.2) ensure that the values of the Hilbert function at each

degree d are correct. On the other hand, any monomial ideal I with Hilbert function h

can be encoded as a 0 − 1 solution of DL(n,D,h), by assigning ones to the xα variables
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whenever xα ∈ I, and zeros otherwise, noting that the linear constraints are automatically

satisfied. �

The De Loera polytope is named for my advisor, in the tradition of Buchberger vis-à-vis

Gröbner bases.

Theorem 6.1.5. Let h = (h0, h1, . . . , hD) be a partial Hilbert function, and letQ(n,D,h)

be the polytope from Lemma 6.1.1. Then the probability of h in the ER-type model (in

other words the probability that I ∼ I(n,D, p) satisfies h(S/I, d) = hd for all 0 ≤ d ≤ D) is

given by:

(6.1.6) P [h(S/I) = h] = (1− p)
∑D
d=1 hd

∑
v∈V (Q(n,D,h))

pβ1(v),

where β1(v) is shorthand for β1(S/Iv), and Iv is the monomial ideal associated to v via the

bijection in the proof of Lemma 6.1.1.

Proof. The random monomial ideal I has Hilbert function h if and only if I is one of

the ideals in bijection with the vertices of Q(n,D,h). Since these are disjoint events,

(6.1.7) P [h(S/I) = h] =
∑

v∈V (Q(n,D,h))

P [I = Iv] .

For each choice of v, P [I = Iv] is given by Theorem 2.1.4 and is completely determined by∑D
d=1 hd and by β1(v). The factor (1−p)

∑D
d=1 hd is common to each term since all these ideals

have the same Hilbert function. The first Betti number may be different for different choices

of v. �

An extension of Lemma 6.1.1 defines a polytope that counts monomial ideals with both

a prescribed Hilbert function and prescribed first graded Betti numbers.

Lemma 6.1.8. Denote by NMon(n,D,h, β1) the number of monomial ideals I satisfying:

(1) I ⊆ k[x1, . . . , xn],

(2) h(S/I, d) = hd for all 0 ≤ d ≤ D, and
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(3) β1,d(S/I) = β1,d for all 1 ≤ d ≤ D, and

(4) β1,d(S/I) = 0 for all d > D.

Let Q(n,D,h, β1) denote the convex polytope defined by:

∑
|α|=d

xα =

(
n+ d− 1

d

)
− hd, 1 ≤ d ≤ D,(6.1.9)

∑
|α|=d

yα = βd, 1 ≤ d ≤ D,(6.1.10)

xα ≤ xγ, ∀α ≤ γ with |α|+ 1 = |γ|,(6.1.11)

xα −
∑

|γ|+1=|α|

xα ≤ yα ≤ xα, ∀α,(6.1.12)

yα + yγ ≤ 1, ∀α ≤ γ(6.1.13)

0 ≤ xα, yα ≤ 1 ∀α(6.1.14)

where α, γ range over all exponent vectors of monomials in S with positive total degree no

more than D. (Thus, there are 2
(
n+D
D

)
− 2 variables.) Then the number of 0− 1 vertices of

the convex polytope Q(n,D,h, β1) is equal to NMon(n,D,h, β1).

Proof. This proof is very similar to the proof of Lemma 6.1.1, except that in addition

to the xα variables that indicate whether each monomial is in the ideal, we add a set of yα

variables that indicate the monomials that are minimal generators of the ideal.

Given a vertex v ∈ V (Q(n,D,h, β1)), the ideal Iv is, as in the proof of Lemma 6.1.1,

defined by the 0− 1 coordinates of the xα variables: if xα = 1, then xα ∈ Iv, and if xα = 0,

then xα 6∈ Iv. Equations (6.1.9) and (6.1.11) again ensure that Iv is in fact an ideal, and has

the correct Hilbert function.

The yα variables of vertex v “mark” the minimal generators of Iv in that yα = 1 in v

if and only if xα is a minimal generator of Iv. This is due to the additional constraints

in Equations (6.1.12) and (6.1.13). If xα is a minimal generator of Iv, then xα ∈ Iv but

no monomial dividing xα is in Iv. Because of Equation (6.1.11), it is enough to check the
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monomials that have total degree exactly one less than xα. If none of these is in Iv, but xα

is, then

xα −
∑

|γ|+1=|α|

xγ = xα = 1,

so Equation (6.1.12) forces yα = 1. If xα 6∈ Iv, then xα −
∑
|γ|+1=|α| xγ = xα = 0 so the same

inequalities force yα = 0. The only other situation is that xα ∈ Iv but is not minimal, in

which case at least one of the immediate divisors is also in Iv. In this case xα−
∑
|γ|+1=|α| xγ

is zero or negative, while xα = 1, so Equation (6.1.12) is redundant with Equation (6.1.14).

However, in this case at least one monomial xγ dividing xα is a minimal generator, so

Equation (6.1.13) enforces that only one of yγ, yα can equal one. Since the actually minimal

one must equal one, as we’ve already shown, the non-minimal one cannot. This establishes

that yα = 1 in v if and only xα is a minimal generator of Iv.

Finally, Equation (6.1.10) enforces the correct number of minimal generators of each

degree.

�

Remark 6.1.15. Onn and Sturmfels introduced other polytopes useful in the study of ini-

tial (monomial) ideals of a zero-dimensional ideal for n generic points in affine d-dimensional

space: the staircase polytope and the simpler corner cut polyhedron [OS99].

6.2. Enumerating monomial ideals with specified Hilbert functions

Let S = k[x, y, z], and consider monomial ideals of S generated in degrees up to 4. For

each non-negative integer vector h = (1, h1, h2, h3, h4) that could be the start of a Hilbert

function of a graded ideal, by Macaulay’s criterion, let NMon(3, 4,h) denote the number of

monomial ideals of S that satisfy h(S/I, d) = hd for 1 ≤ d ≤ 4, and that are generated in

degree no more than 4. Table 6.1 gives the value of NMon(3, 4,h) for every allowable partial

Hilbert function h.
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Table 6.1. All Hilbert functions of ideals of k[x, y, z], generated in degree up
to four, along with the number of distinct monomial ideals with that Hilbert
function.

h NMon(3, 4,h) h NMon h NMon

1, 0, 0, 0, 0 1 1, 1, 0, 0, 0 3 1, 1, 1, 0, 0 3

1, 1, 1, 1, 0 3 1, 1, 1, 1, 1 3 1, 2, 0, 0, 0 3

1, 2, 1, 0, 0 9 1, 2, 1, 1, 0 6 1, 2, 1, 1, 1 6

1, 2, 2, 0, 0 9 1, 2, 2, 1, 0 18 1, 2, 2, 1, 1 12

1, 2, 2, 2, 0 9 1, 2, 2, 2, 1 18 1, 2, 2, 2, 2 9

1, 2, 3, 0, 0 3 1, 2, 3, 1, 0 12 1, 2, 3, 1, 1 6

1, 2, 3, 2, 0 18 1, 2, 3, 2, 1 27 1, 2, 3, 2, 2 9

1, 2, 3, 3, 0 12 1, 2, 3, 3, 1 36 1, 2, 3, 3, 2 36

1, 2, 3, 3, 3 12 1, 2, 3, 4, 0 3 1, 2, 3, 4, 1 15

1, 2, 3, 4, 2 30 1, 2, 3, 4, 3 30 1, 2, 3, 4, 4 15

1, 2, 3, 4, 5 3 1, 3, 0, 0, 0 1 1, 3, 1, 0, 0 6

1, 3, 1, 1, 0 3 1, 3, 1, 1, 1 3 1, 3, 2, 0, 0 15

1, 3, 2, 1, 0 21 1, 3, 2, 1, 1 15 1, 3, 2, 2, 0 9

1, 3, 2, 2, 1 18 1, 3, 2, 2, 2 9 1, 3, 3, 0, 0 20

1, 3, 3, 1, 0 55 1, 3, 3, 1, 1 30 1, 3, 3, 2, 0 54

1, 3, 3, 2, 1 87 1, 3, 3, 2, 2 36 1, 3, 3, 3, 0 22

1, 3, 3, 3, 1 66 1, 3, 3, 3, 2 66 1, 3, 3, 3, 3 22

1, 3, 3, 4, 0 3 1, 3, 3, 4, 1 15 1, 3, 3, 4, 2 30

1, 3, 3, 4, 3 30 1, 3, 3, 4, 4 15 1, 3, 3, 4, 5 3

1, 3, 4, 0, 0 15 1, 3, 4, 1, 0 69 1, 3, 4, 1, 1 30

1, 3, 4, 2, 0 126 1, 3, 4, 2, 1 156 1, 3, 4, 2, 2 54

1, 3, 4, 3, 0 114 1, 3, 4, 3, 1 279 1, 3, 4, 3, 2 231

1, 3, 4, 3, 3 66 1, 3, 4, 4, 0 51 1, 3, 4, 4, 1 207

Continued on next page
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Table 6.1 – Continued from previous page

h NMon(3, 4,h) h NMon h NMon

1, 3, 4, 4, 2 324 1, 3, 4, 4, 3 240 1, 3, 4, 4, 4 81

1, 3, 4, 4, 5 9 1, 3, 4, 5, 0 9 1, 3, 4, 5, 1 54

1, 3, 4, 5, 2 135 1, 3, 4, 5, 3 180 1, 3, 4, 5, 4 135

1, 3, 4, 5, 5 54 1, 3, 4, 5, 6 9 1, 3, 5, 0, 0 6

1, 3, 5, 1, 0 42 1, 3, 5, 1, 1 15 1, 3, 5, 2, 0 126

1, 3, 5, 2, 1 123 1, 3, 5, 2, 2 36 1, 3, 5, 3, 0 210

1, 3, 5, 3, 1 396 1, 3, 5, 3, 2 267 1, 3, 5, 3, 3 66

1, 3, 5, 4, 0 210 1, 3, 5, 4, 1 654 1, 3, 5, 4, 2 786

1, 3, 5, 4, 3 450 1, 3, 5, 4, 4 117 1, 3, 5, 4, 5 9

1, 3, 5, 5, 0 126 1, 3, 5, 5, 1 591 1, 3, 5, 5, 2 1131

1, 3, 5, 5, 3 1125 1, 3, 5, 5, 4 609 1, 3, 5, 5, 5 168

1, 3, 5, 5, 6 18 1, 3, 5, 6, 0 42 1, 3, 5, 6, 1 279

1, 3, 5, 6, 2 792 1, 3, 5, 6, 3 1245 1, 3, 5, 6, 4 1170

1, 3, 5, 6, 5 657 1, 3, 5, 6, 6 204 1, 3, 5, 6, 7 27

1, 3, 5, 7, 0 6 1, 3, 5, 7, 1 54 1, 3, 5, 7, 2 216

1, 3, 5, 7, 3 504 1, 3, 5, 7, 4 756 1, 3, 5, 7, 5 756

1, 3, 5, 7, 6 504 1, 3, 5, 7, 7 216 1, 3, 5, 7, 8 54

1, 3, 5, 7, 9 6 1, 3, 6, 0, 0 1 1, 3, 6, 1, 0 10

1, 3, 6, 1, 1 3 1, 3, 6, 2, 0 45 1, 3, 6, 2, 1 36

1, 3, 6, 2, 2 9 1, 3, 6, 3, 0 120 1, 3, 6, 3, 1 183

1, 3, 6, 3, 2 102 1, 3, 6, 3, 3 22 1, 3, 6, 4, 0 210

1, 3, 6, 4, 1 525 1, 3, 6, 4, 2 510 1, 3, 6, 4, 3 241

1, 3, 6, 4, 4 51 1, 3, 6, 4, 5 3 1, 3, 6, 5, 0 252

1, 3, 6, 5, 1 945 1, 3, 6, 5, 2 1440 1, 3, 6, 5, 3 1149

1, 3, 6, 5, 4 507 1, 3, 6, 5, 5 114 1, 3, 6, 5, 6 9

Continued on next page
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Table 6.1 – Continued from previous page

h NMon(3, 4,h) h NMon h NMon

1, 3, 6, 6, 0 210 1, 3, 6, 6, 1 1113 1, 3, 6, 6, 2 2490

1, 3, 6, 6, 3 3056 1, 3, 6, 6, 4 2235 1, 3, 6, 6, 5 984

1, 3, 6, 6, 6 245 1, 3, 6, 6, 7 27 1, 3, 6, 7, 0 120

1, 3, 6, 7, 1 861 1, 3, 6, 7, 2 2694 1, 3, 6, 7, 3 4809

1, 3, 6, 7, 4 5376 1, 3, 6, 7, 5 3885 1, 3, 6, 7, 6 1806

1, 3, 6, 7, 7 519 1, 3, 6, 7, 8 84 1, 3, 6, 7, 9 6

1, 3, 6, 8, 0 45 1, 3, 6, 8, 1 423 1, 3, 6, 8, 2 1782

1, 3, 6, 8, 3 4428 1, 3, 6, 8, 4 7182 1, 3, 6, 8, 5 7938

1, 3, 6, 8, 6 6048 1, 3, 6, 8, 7 3132 1, 3, 6, 8, 8 1053

1, 3, 6, 8, 9 207 1, 3, 6, 8, 10 18 1, 3, 6, 9, 0 10

1, 3, 6, 9, 1 120 1, 3, 6, 9, 2 660 1, 3, 6, 9, 3 2200

1, 3, 6, 9, 4 4950 1, 3, 6, 9, 5 7920 1, 3, 6, 9, 6 9240

1, 3, 6, 9, 7 7920 1, 3, 6, 9, 8 4950 1, 3, 6, 9, 9 2200

1, 3, 6, 9, 10 660 1, 3, 6, 9, 11 120 1, 3, 6, 9, 12 10

1, 3, 6, 10, 0 1 1, 3, 6, 10, 1 15 1, 3, 6, 10, 2 105

1, 3, 6, 10, 3 455 1, 3, 6, 10, 4 1365 1, 3, 6, 10, 5 3003

1, 3, 6, 10, 6 5005 1, 3, 6, 10, 7 6435 1, 3, 6, 10, 8 6435

1, 3, 6, 10, 9 5005 1, 3, 6, 10, 10 3003 1, 3, 6, 10, 11 1365

1, 3, 6, 10, 12 455 1, 3, 6, 10, 13 105 1, 3, 6, 10, 14 15

1, 3, 6, 10, 15 1

Generating Table 6.1 took approximately 37 seconds. See Appendix A.2 for details.

6.3. Explicit Hilbert functions probabilities

In addition to merely counting the monomial ideals with each Hilbert function, we can

generate and save the lists of ideals. It took approximately 166 seconds to generate the list of
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ideal graded Betti numbers

〈z3, y z2, x z2, y2z, x2z, y3, x y2, x2y, x3〉

0 1 2 3
total: 1 9 12 4

0: 1 . . .
1: . . . .
2: . 9 12 3
3: . . . 1

〈z3, y z2, x z2, y2z, x y z, y3, x y2, x2y, x3〉

〈z3, y z2, x z2, y2z, x y z, x2z, y3, x y2, x3〉

〈z3, y z2, x z2, x y z, x2z, y3, x y2, x2y, x3〉

〈z3, y z2, x z2, y2z, x y z, x2z, y3, x2y, x3〉

〈z3, y z2, y2z, x y z, x2z, y3, x y2, x2y, x3〉

〈z3, x z2, y2z, x y z, x2z, y3, x y2, x2y, x3〉

0 1 2 3
total: 1 9 13 5

0: 1 . . .
1: . . . .
2: . 9 12 4
3: . . 1 1

〈z3, y z2, x z2, y2z, x y z, x2z, x y2, x2y, x3, y4〉

〈y z2, x z2, y2z, x y z, x2z, y3, x y2, x2y, x3, z4〉

〈z3, y z2, x z2, y2z, x y z, x2z, y3, x y2, x2y, x4〉

0 1 2 3
total: 1 10 15 6

0: 1 . . .
1: . . . .
2: . 9 13 5
3: . 1 2 1

Table 6.2. All monomial ideals of k[x, y, z] with Hilbert function h =
(1, 3, 6, 1, 0), along with their graded Betti tables.

ideals for every Hilbert function from Table 6.1. For example, there are 10 monomial ideals

of k[x, y, z], generated in degree at most 4, with the Hilbert function h = (1, 3, 6, 1, 0, 0, . . .).

Table 6.2 displays each of these ideals along with its Betti table. This example illustrates

how monomial ideals with the same Hilbert function may have different graded (and total)

Betti numbers.

102



The first seven ideals in Table 6.2 have nine minimal generators, so by Theorem 2.1.4

each has probability p9(1− p)10 of appearing in the ER-type model I(3, 4, p). The last three

ideals in Table 6.2 have ten minimal generators, so each of these appears with probability

p10(1− p)10. We conclude that for I ∼ I(3, 4, p),

(6.3.1) P [h(S/I, d) = (1, 3, 6, 1, 0, . . .)] = (1− p)10(3p10 + 7p9).

By repeating this computation for all integer sequences allowable by Macaulay’s theorem,

we can explicitly render the probability of every Hilbert function in for any choice of n and

D. For instance Table 6.3 displays the probability, as a polynomial in p, of every Hilbert

function that can be generated in I(2, 5, p). In addition, the polynomial is evaluated for

three choices of the parameter p: 0.5, 0.25, and 0.125. Table 6.3 took less than 2 seconds to

produce.

Table 6.3. Probability of each partial Hilbert function of k[x, y], for mono-
mial ideals generated in degree 5 or less.

h P [h(S/I) = h] p = 0.5 p = 0.25 p = 0.125

1,0,0,0,0,0 p2 .25 .0625 .01562

1,1,0,0,0,0 2p2(1− p) .25 .09375 .02734

1,1,1,0,0,0 2p2(1− p)2 .125 .07031 .02393

1,1,1,1,0,0 2p2(1− p)3 .0625 .05273 .02094

1,1,1,1,1,0 2p2(1− p)4 .03125 .03955 .01832

1,1,1,1,1,1 2p(1− p)5 .03125 .1187 .1282

1,2,0,0,0,0 p3(1− p)2 .03125 .008789 .001495

1,2,1,0,0,0 p2(1− p)3 (2 p+ 1) .0625 .03955 .01308

1,2,1,1,0,0 2p3(1− p)4 .01562 .009888 .00229

1,2,1,1,1,0 2p3(1− p)5 .007812 .007416 .002004

1,2,1,1,1,1 2p2(1− p)6 .007812 .02225 .01402

1,2,2,0,0,0 3p3(1− p)4 .02344 .01483 .003435

Continued on next page
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Table 6.3 – Continued from previous page

h P [h(S/I) = h] p = 0.5 p = 0.25 p = 0.125

1,2,2,1,0,0 2p2(1− p)5 (2 p+ 1) .03125 .04449 .02004

1,2,2,1,1,0 4p3(1− p)6 .007812 .01112 .003506

1,2,2,1,1,1 4p2(1− p)7 .007812 .03337 .02454

1,2,2,2,0,0 3p3(1− p)6 .005859 .008343 .00263

1,2,2,2,1,0 2p2(1− p)7 (2 p+ 1) .007812 .02503 .01534

1,2,2,2,1,1 4p2(1− p)8 .003906 .02503 .02148

1,2,2,2,2,0 3p3(1− p)8 .001465 .004693 .002013

1,2,2,2,2,1 6p2(1− p)9 .00293 .02816 .02819

1,2,2,2,2,2 3p(1− p)10 .001465 .04224 .09865

1,2,3,0,0,0 p4(1− p)5 .001953 .000927 .0001252

1,2,3,1,0,0 2p3(1− p)6 (p+ 1) .005859 .006952 .001972

1,2,3,1,1,0 2p4(1− p)7 .0009766 .001043 .0001917

1,2,3,1,1,1 2p3(1− p)8 .0009766 .003129 .001342

1,2,3,2,0,0 3p3(1− p)7 (p+ 1) .004395 .007821 .002589

1,2,3,2,1,0 p2(1− p)8 (2 p+ 1)2 .003906 .01408 .008389

1,2,3,2,1,1 2p2(1− p)9 (2 p+ 1) .001953 .01408 .01174

1,2,3,2,2,0 3p4(1− p)9 .0003662 .0008799 .0002202

1,2,3,2,2,1 6p3(1− p)10 .0007324 .005279 .003083

1,2,3,2,2,2 3p2(1− p)11 .0003662 .007919 .01079

1,2,3,3,0,0 4p4(1− p)8 .0009766 .001564 .0003356

1,2,3,3,1,0 6p3(1− p)9 (p+ 1) .002197 .008799 .003964

1,2,3,3,1,1 6p3(1− p)10 .0007324 .005279 .003083

1,2,3,3,2,0 6p3(1− p)10 (p+ 1) .001099 .006599 .003468

1,2,3,3,2,1 6p2(1− p)11 (2 p+ 1) .001465 .02376 .02698

1,2,3,3,2,2 6p2(1− p)12 .0003662 .01188 .01888

Continued on next page
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Table 6.3 – Continued from previous page

h P [h(S/I) = h] p = 0.5 p = 0.25 p = 0.125

1,2,3,3,3,0 4p4(1− p)11 .0001221 .0006599 .0002248

1,2,3,3,3,1 12p3(1− p)12 .0003662 .005939 .004721

1,2,3,3,3,2 12p2(1− p)13 .0003662 .01782 .03305

1,2,3,3,3,3 4p(1− p)14 .0001221 .01782 .07711

1,2,3,4,0,0 p5(1− p)9 .00006104 .00007332 .000009175

1,2,3,4,1,0 p4(1− p)10 (2 p+ 3) .0002441 .0007699 .0002087

1,2,3,4,1,1 2p4(1− p)11 .00006104 .00033 .0001124

1,2,3,4,2,0 p3(1− p)11 (3 p2 + 6 p+ 1) .0002899 .001774 .0008079

1,2,3,4,2,1 6p3(1− p)12 (p+ 1) .0002747 .003712 .002655

1,2,3,4,2,2 3p3(1− p)13 .00004578 .001114 .001033

1,2,3,4,3,0 2p4(1− p)12 (2 p+ 3) .0001221 .0008662 .0003196

1,2,3,4,3,1 12p3(1− p)13 (p+ 1) .0002747 .005568 .004647

1,2,3,4,3,2 6p2(1− p)14 (2 p+ 1) .0001831 .01002 .01807

1,2,3,4,3,3 4p2(1− p)15 .00003052 .003341 .008433

1,2,3,4,4,0 5p5(1− p)13 .00001907 .000116 .00002689

1,2,3,4,4,1 20p4(1− p)14 .00007629 .001392 .000753

1,2,3,4,4,2 30p3(1− p)15 .0001144 .006264 .007906

1,2,3,4,4,3 20p2(1− p)16 .00007629 .01253 .0369

1,2,3,4,4,4 5p(1− p)17 .00001907 .009396 .06457

1,2,3,4,5,0 p6(1− p)14 9.537e-7 .00000435 5.883e-7

1,2,3,4,5,1 6p5(1− p)15 .000005722 .0000783 .00002471

1,2,3,4,5,2 15p4(1− p)16 .00001431 .0005873 .0004324

1,2,3,4,5,3 20p3(1− p)17 .00001907 .002349 .004035

1,2,3,4,5,4 15p2(1− p)18 .00001431 .005285 .02119

1,2,3,4,5,5 6p(1− p)19 .000005722 .006342 .05932

Continued on next page
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Table 6.3 – Continued from previous page

h P [h(S/I) = h] p = 0.5 p = 0.25 p = 0.125

1,2,3,4,5,6 (1− p)20 9.537e-7 .003171 .06921

6.4. Betti tables with the same Hilbert function

In Table 6.2, we saw that monomial ideals with a common Hilbert function may have dif-

ferent numbers of minimal generators, and different higher Betti numbers. In that example,

there was only one set of graded Betti numbers (i.e., only one Betti table) observed for each

set of total Betti numbers. In general, there may be several Betti tables that correspond to

the same Hilbert function and the same total Betti numbers. For example,

(6.4.1) P [h(S/I) = (1, 3, 5, 5, 4, . . .)] = (1− p)17
(
270 p5 + 300 p4 + 39 p3

)
,

because there are 609 monomial ideals of k[x, y, z] with a Hilbert function that begins

(1, 3, 5, 4, 4, . . .): 270 with first Betti number 5, 300 with first Betti number 4, and 39 with

first Betti number 3. However, there are sixteen different sets of graded Betti numbers.

These are displayed, in the form of Betti tables, in Table 6.4.

Table 6.4. All Betti tables of ideals of k[x, y, z], generated in degree up
to four, that have Hilbert function beginning h = (1, 3, 5, 5, 4). The second
column displays the number of distinct monomial ideals with that Betti table.

Betti table # mon. ideals Betti table # mon. ideals

0 1 2 3
total: 1 3 3 1

0: 1 . . .
1: . 1 . .
2: . 2 1 .
3: . . 2 1

27

0 1 2 3
total: 1 3 3 1

0: 1 . . .
1: . 1 . .
2: . 2 1 .
3: . . 1 .
4: . . 1 1

12

Continued on next page
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Betti table # mon. ideals Betti table # mon. ideals

0 1 2 3
total: 1 4 4 1

0: 1 . . .
1: . 1 . .
2: . 2 2 .
3: . 1 2 1

174

0 1 2 3
total: 1 4 4 1

0: 1 . . .
1: . 1 . .
2: . 2 2 .
3: . 1 1 .
4: . . 1 1

78

0 1 2 3
total: 1 4 4 1

0: 1 . . .
1: . 1 . .
2: . 2 2 .
3: . 1 . .
4: . . 2 .
5: . . . 1

6

0 1 2 3
total: 1 4 4 1

0: 1 . . .
1: . 1 . .
2: . 2 2 .
3: . 1 1 .
4: . . . .
5: . . 1 1

12

0 1 2 3
total: 1 4 5 2

0: 1 . . .
1: . 1 . .
2: . 2 2 .
3: . 1 . .
4: . . 3 2

15

0 1 2 3
total: 1 4 5 2

0: 1 . . .
1: . 1 . .
2: . 2 2 .
3: . 1 . .
4: . . 1 .
5: . . 2 2

9

0 1 2 3
total: 1 4 5 2

0: 1 . . .
1: . 1 . .
2: . 2 2 .
3: . 1 . .
4: . . 2 1
5: . . 1 1

6

0 1 2 3
total: 1 5 6 2

0: 1 . . .
1: . 1 . .
2: . 2 3 1
3: . 2 3 1

150

Continued on next page
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Betti table # mon. ideals Betti table # mon. ideals

0 1 2 3
total: 1 5 6 2

0: 1 . . .
1: . 1 . .
2: . 2 3 1
3: . 2 2 .
4: . . 1 1

54

0 1 2 3
total: 1 5 6 2

0: 1 . . .
1: . 1 . .
2: . 2 3 1
3: . 2 2 .
4: . . . .
5: . . 1 1

24

0 1 2 3
total: 1 5 6 2

0: 1 . . .
1: . 1 . .
2: . 2 3 1
3: . 2 2 .
4: . . . .
5: . . . .
6: . . 1 1

6

0 1 2 3
total: 1 5 7 3

0: 1 . . .
1: . 1 . .
2: . 2 3 1
3: . 2 1 .
4: . . 3 2

12

0 1 2 3
total: 1 5 7 3

0: 1 . . .
1: . 1 . .
2: . 2 3 1
3: . 2 1 .
4: . . 2 1
5: . . 1 1

12

0 1 2 3
total: 1 5 7 3

0: 1 . . .
1: . 1 . .
2: . 2 3 1
3: . 2 1 .
4: . . 2 1
5: . . . .
6: . . 1 1

12

Examination of Table 6.4 reveals an interesting trend: for each possible set of total

Betti numbers, the Betti tables with lower regularity are much more frequent than the ones

with higher regularity. Among the ideals with Betti numbers (1, 4, 4, 1), there are 174 with

regularity 3, 93 with regularity 4, and only 15 with regularity 5. Among the ideals with Betti

numbers (1, 5, 6, 2), there are 150 with regularity 3, 54 with regularity 4, 24 with regularity 5,

and only 6 with regularity 6. Since each monomial ideal with the same Hilbert function and
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first Betti number is equally likely to appear in the random case, this means that ideals with

low regularity are much more likely to appear for these cases. This trend was seen in other

computations, and helps to explain, at least experimentally, why the typical complexity of

polynomial computations is often much better than worst-case complexity.
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CHAPTER 7

Supervised machine learning in commutative algebra

Please refer to Section 1.5.1 for the basics of the machine learning methodology used in

this chapter. Let us also take a moment to introduce how the accuracy of machine learning

experiments will be reported in Section 7.3, with a figure called a confusion matrix . For

multi-class classification problems, both index sets of the matrix list the labels for all classes.

The value of the (i, j) entry of the matrix contains the number of test examples whose true

label was i and whose predicted label was j. Thus, a perfectly accurate classifier would have

nonzero entries only on the diagonal. For example, returning to the image classification

of benign/malignant tumors used as the main example of Section 1.5.1, suppose we test a

neural network trained on this task with 100 images whose true classifications are known to

the supervisor, but withheld from the network. The confusion matrix in Figure 7.1 indicates

that 70 benign tumors were correctly identified as benign, 7 benign tumors were incorrectly

classified as malignant, 3 malignant tumors were incorrectly classified as benign, and 20

malignant tumors were correctly identified.

70

3

7

20

benign

benign

malig.

malig.

actual

p
re

d
ic

te
d

Figure 7.1. An example of a confusion matrix that would describe the accu-
racy of image classification on 100 test images. In this (made-up) example, 70
benign tumors were correctly identified as benign, 7 benign tumors were incor-
rectly classified as malignant, 3 malignant tumors were incorrectly classified
as benign, and 20 malignant tumors were correctly identified.
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A confusion matrix supplies much more information than reporting the accuracy as a

single value (in this example, 90% of examples correctly classified). For binary classification,

this breakdown lets us calculate the false positive rate versus the false negative rate, which

sometimes are of vastly different importance depending on the application. (E.g., giving

unnecessary biopsies is preferable to missing deadly cancers.) For multi-class classification,

the values of the confusion matrix show us exactly where the neural network was “confused”

between different classes, hence the name. In addition, the confusion matrix encodes the

frequency of the true classes encountered in the test set. For instance, in the previous

example, the network saw disproportionately more benign examples than malignant ones in

the test set. Throughout Chapter 7, we test neural networks with a randomly selected 10%

of the training data (which is reserved and not seen by the network prior to testing). Thus,

the frequency of classes in the test data is a reasonable approximation of their frequency

in the data used to train. To supplement this, Figures 7.2c, 7.3c and 7.4c also display the

actual histogram of class frequencies throughout the training data.

The squares in Figure 7.1 are also shaded according to the entries of the matrix, with

darker shades corresponding to higher values. For the much larger confusion matrices of

Section 7.3, the numerical values are omitted in some cases for readability, and a key to the

shading scale provided instead. This makes it easier to visualize the overall performance of

the classifiers.

7.1. Monomial ideal features and training data

Any supervised learning problem needs training data representative of the inputs on

which the learned classifier will later operate. The monomial ideals used as training data

in this chapter are those that the author found interesting: the Erdős-Rényi-type random

monomial ideals defined in Section 2.1 and studied in Chapters 3 and 6 and [DPS+19], the

graded model of random monomial ideals defined in Section 2.2 and studied in Chapters 4

and 5 and [DHKS19], squarefree monomial ideals (see Section 1.2.2) defined as edge ideals

of graphs and hypergraphs, etc. Many of the concrete examples the author works with are
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in no more than 5 or 10 variables, generated in degrees around the same order of magnitude,

with a few to a few dozen generators. These examples are large enough to be interesting, yet

small enough for a home laptop running Macaulay2 to comfortably compute with in large

quantities (for instance, when generating data for graphics like Figures 3.3 and 5.1).

There is no reason to expect the trained classification networks to perform well on mono-

mial ideals with extremely many generators, generated in extremely high degrees, for in-

stance. However, we can expect the same methodology to produce a good classifier for

different classes of ideals, as long as representative training data is used.

Table 7.1 describes in detail the families of ideals considered in this chapter, along with

the number of random samples from each family, and some descriptive statistics (explained

in the table’s caption). For further explanation of the families, and code to generate more

random examples, see Appendix A.2.

Table 7.1. Training data used for Sections 7.2 and 7.3. Each row describes a
random family of ideals incorporated into the overall data set of 30,000 exam-
ples of monomial ideals. The first column (vars) is the number of variables of
the polynomial ring to which the family of ideals belongs. The second column
(degs) gives the range of total degrees of minimal generators. A single value
means that the ideals are generated in a single degree. The column labeled
gens gives the number of minimal generators, often a range for each family,
with the average number across the family in parentheses. The SF column has
entry “Y” if the monomial ideals are squarefree, and an “N” otherwise. Finally,
the row has a brief description of the family, and the last column (#) indicates
the number of ideals from that family. For more details about these families,
and for Macaulay2 code to generate more examples, see Appendix A.2.

vars degs gens (avg) SF description #

5 1–20 1–12 (5) N ER-type random monomial ideals I ∼ I(5, 20, 0.0001). 100

5 2–20 15–55 (34) N ER-type, I ∼ I(5, 20, 0.001). 500

10 1–5 2–27 (14) N ER-type, I ∼ I(10, 5, 0.005). 500

10 2–10 1–22 (9) N ER-type, I ∼ I(10, 10, 0.00005). 500

10 4–10 7–28 (18) N ER-type, I ∼ I(10, 10, 0.0001). 64

15 2–5 2–17 (8) N ER-type, I ∼ I(15, 5, 0.0005). 500

20 1–5 1–12 (5) N ER-type, I ∼ I(20, 5, 0.0001). 500

Continued on next page
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Table 7.1 – Continued from previous page

vars degs gens (avg) SF description #

5 5 1–14 (6) N Graded model random monomial 1000

ideals M ∼M(5, 5, 0.05).

5 5 3–25 (13) N Graded model, M ∼M(5, 5, 0.1). 1000

5 10 2–20 (10) N Graded model, M ∼M(5, 10, 0.01). 1000

5 15 1–12 (4) N Graded model, M ∼M(5, 15, 0.001). 1000

5 15 8–39 (19) N Graded model, M ∼M(5, 15, 0.005). 462

10 5 1–20 (10) N Graded model, M ∼M(10, 5, 0.005). 461

10 5 7–31 (20) N Graded model, M ∼M(10, 5, 0.01). 283

10 10 2–20 (10) N Graded model, M ∼M(10, 10, 0.0001). 165

10 2 2–44 (23) Y Edge ideals of random graphs on 10 vertices. 880

10 2 9 Y Edge ideals of spanning trees on 10 vertices. 1000

10 4 45 N I2 for I from the previous dataset. 1000

10 3 2–91 (43) Y Edge ideals of 3-uniform hypergraphs on 10 vertices. 1000

10 3 8 Y Edge ideals of spanning 3-hypergraphs on 10 vertices. 1000

10 6 36 N I2 for I from the previous dataset 1000

10 4 2–91 (31) Y Edge ideals of 4-uniform hypergraphs on 10 vertices. 1000

10 5 2–50 (26) Y Edge ideals of 5-uniform hypergraphs on 10 vertices. 500

15 2 14 Y Edge ideals of spanning trees on 15 vertices. 1000

15 3 10–30 (20) Y Edge ideals of 3-uniform hypergraphs on 15 vertices. 202

15 3 13 Y Edge ideals of spanning 3-hypergraphs on 15 vertices. 1000

15 5–10 10–20 (14) Y Edge ideals of hypergraphs on 15 vertices 198

with edges of various sizes.

20 2 19 Y Edge ideals of spanning trees on 20 vertices. 482

16 2 5–15 (10) Y Edge ideals generated by knight 1100

moves on a 4x4 chessboard.

20 2 5–15 (10) Y Edge ideals generated by knight 1100

moves on a 4x5 chessboard.

Continued on next page
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vars degs gens (avg) SF description #

5 2–40 4 N Edge ideals of spanning trees on 5 vertices, with 1000

random exponents (uniform on {1, . . . , 20}).

5 2–42 3–7 (5) N Three steps of random Markov process on each 3000

ideal in the previous dataset.

5 10–50 5–10 N Edge ideals of random graphs on 5 vertices, with 120

random exponents (uniform on {5, . . . , 25}).

10 2–10 9 N Edge ideals of spanning trees on 10 vertices, with 531

random exponents (uniform on {1, . . . , 5}).

10 2–13 8–12 (11) N Three steps of random Markov process on each 1591

ideal in the previous dataset.

5 1–10 1–29 (11) N Markov process starting with (x1, . . . , x5), 1000

with maximum degree 10.

10 1–5 3–24 (10) N Markov process starting with (x1, . . . , x10), 1000

with maximum degree 5.

10 1–10 7–52 (26) N Markov process starting with (x1, . . . , x10), 182

with maximum degree 10.

5 3–10 5–16 (8) N Zero-dimensional ideals in 5 variables. 579

10 6–10 10–22 (13) N Zero-dimensional ideals in 10 variables. 375

15 7–10 15–20 (17) N Zero-dimensional ideals in 15 variables. 125

A neural network, as described in Section 1.5.1, takes a vector of fixed size as its input.

The “natural” way to describe a monomial ideal is with a list of (exponent vectors of)

its minimal generators, but such lists have varying lengths. Even for a fixed number of

variables, n, and a fixed maximum degree, D, the length of this list changes with the number

of generators. Additionally, we would like to learn patterns among monomial ideals as n

and D vary! For this reason, every monomial ideal is first converted from its “natural”

representation as a list of generators to a fixed number of descriptive features .
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Many of the features chosen for monomial ideals were inspired by features of SAT prob-

lems used in [NDSLB04,XHHLB08]. For example, those papers considered a constraint

graph on the clauses, with two clauses connected if the same variable appears in both, and

additionally a graph on the variables, with two variables connected if they appear in the a

clause together. A slight modification of these definitions works for monomial ideals:

Definition 7.1.1 (Constraint graphs of an ideal). Given a monomial ideal I ⊂ S with

minimal generating set G, define the following.

(1) The variable graph of I has a node for each variable xi generating S, and an edge

between xi and xj if xixj divides at least one g ∈ G.

(2) The generator graph of I has a node for each minimal generator g ∈ G, and an edge

between gi and gj if gcd(gi, gj) > 1.

Of course, the constraint graphs vary in size, too, so following [NDSLB04] we report

exactly four values for each constraint graph: the mean, variance, minimum and maximum

values of its vertex degrees.

A total of 23 features, listed in Table 7.2, were chosen, so that every monomial ideal is

represented as a vector x ∈ R23 in the neural network input.

7.2. Algorithm selection for Hilbert series computations

We set out to train a neural network to choose the best pivot rule for each instance of the

Hilbert series problem. We considered the nine pivot rules described in Table 7.3, which are

a superset of those discussed in [BS92,Big97]. Throughout the table, the term “non-trivial

generators” refers to those generators of I that are not pure powers of variables.

For each ideal in the training data sets, we computed the number of base cases for each

pivot rule. To account for the effect of randomization, for each rule except BS the number

of base cases is averaged over five runs.
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index description of feature

0 # Variables

1 # Minimal generators

2—5 Support statistics: mean, variance, minimum, and maximum sizes

of support sets of minimal generators.

6—9 Degree statistics: mean, variance, minimum. and maximum

total degrees of minimal generators.

10—13 Divisibility statistics: mean, variance, minimum, and maximum

number of minimal generators divisible by each variable.

14 # Pure power generators.

15—18 Variable graph statistics: mean, variance, minimum, and maximum

degrees of vertices in variable graph (Definition 7.1.1).

19—22 Generator graph statistics: mean, variance, minimum, and maximum

degrees of vertices in generator graph (Definition 7.1.1).

Table 7.2. Features of monomial ideals used for training data in Sections 7.2
and 7.3.

The number of base cases is not the only measure of algorithm performance. For example

empirical timing is another good measure. We chose base cases to ensure “comparing apples

to apples,” since pivot rule M2 is compiled into Macaulay2’s C++ engine, with timing

advantages over any pivot rules implemented in higher-level Macaulay2 language. We thank

Mike Stillman for raising this issue. A portion of Bigatti’s paper on pivot rules considers the

timing advantages of specialized monomial ideal data structures and rules for sorting and

interreducing lists of generators [Big97]. This means that minimizing the number of base

cases is not necessarily equivalent to minimizing timing.

We discovered that for pivot rule selection, classifying feature vectors requires more

nuance than simply labeling each feature vector with the “best” rule for than ideal. The

reason is that the “best” rule is not always unique, and even when it is, other rules may
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abbrev. pivot rule description

BS This is the strategy used in the original Bayer-Stillman paper [BS92],

and depends on a different interpretation of Equation 1.4.13. The

non-trivial generator least in reverse lexicographic order is taken as P ,

and the ideal is written I + 〈P〉, i.e. I is the ideal obtained by

excluding P as a generator. Then Eq. 1.4.14 is interpreted as

H(S/(I + 〈P〉), t) = H(S/I, t)− tdegPH(S/ 〈I : P〉 , t).

PV P is the “popular variable,” i.e., the xi that appears in the most

non-trivial generators of I.

M2 P is the popular variable, raised to the smallest nonzero power with which

it appears in a non-trivial generator. This is the pivot rule

currently implemented in Macaulay2.

PP1 One of the non-trivial generators divisible by the popular variable is

chosen at random, and P is the popular variable raised to the power with

which it appears in this generator.

PP2 Two of the non-trivial generators divisible by the popular variable

are chosen at random, and P is the popular variable raised to the power

with which it appears in their GCD.

PP3 Same as PP2, but choosing three of these generators.

GC2 Two of the non-trivial generators divisible by the popular variable are

chosen at random, and their GCD, which may have multi-variable

support, is used at P .

GC3 Same as GC2, but with three of these generators chosen at random.

GC4 Same as GC2, but with four of these generators chosen at random.

Table 7.3. The nine pivot rules considered in the algorithm selection problem
for recursive Hilbert series computation. Note that “non-trivial generators”
refers to those generators of I that are not pure powers of variables.
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BS PV M2 PP1 PP2 PP3 GC2 GC3 GC4

1167 321 147 117 113 125 135 131 136

398 55 37 33 40 41 33 37 32

881 162 105 93 97 102 111 100 96

1808 234 136 149 125 134 154 130 134

1893 586 247 203 200 205 251 239 238

14 6 6 6 6 6 6 6 6

16 12 12 12 12 12 12 12 12

Table 7.4. Number of base cases for each pivot rule, for five ER-type model
random monomial ideals I ∼ I(5, 20, 0.0001) (top), and two edge ideals of
random graphs on ten vertices (bottom). Choices considered optimal are
bold and in black, while choices considered good are black only.

be close to optimal. To illustrate this, Table 7.4 displays the scores for all pivot rules for

five monomial ideals in data set A0, and two from data set B0. For the first ideal, PP2 is

the winning rule with 113 base cases. But if this ideal were in our test set, and the neural

network chose rule PP1, with 117 base cases, that is significantly different than choosing

BS, which takes 1167 base cases. Thus we must examine not only how often a wrong choice

is made, but how wrong it is.

For square-free monomial ideals, which constitute 13 of the 41 random families considered,

pivot rules PV, M2, PP1, PP2, and PP3 are always equally good. Sometimes, as with edge

ideals of graphs, the GCD of at least two random monomials containing the popular variable

will also always equal the popular variable itself, and these rules will also be equivalent. This

means that for many of the 30,000 ideals considered for this project, several or even most of

the pivot rules are optimal.

This problem was modeled using the classification setup described in Section 1.5.1, with

some modifications to account for the many ties and close seconds just described. To assign

labels to the training data, ties were broken by overall performance of the pivot rule (see

Table 7.5). In other words, if M2 and PP2 were both optimal for a particular input, we
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assigned the label PP2 since that strategy had better performance than M2 on average.

In this way our labels were biased toward strategies with good average performance (which

seems like a reasonable bias to have.)

After training the neural network with these labels, we evaluate the case-by-case choices

of pivot rules for the test ideals using three different measures of performance:

(1) How often the pivot rule used is optimal; i.e., uses the minimum number of base

cases for all pivot rules considered.

(2) How often the pivot rule used is good; i.e., uses no more than 10% extra base cases,

as a percentage of the minimum over all rules.

(3) On average, what percentage of base cases above the minimum were needed by the

rule chosen.

In Table 7.5, the performance of each fixed pivot rule is evaluated according to these

three measures. For instance, the M2 row tells us that Macaulay2’s hard-coded pivot rule

is optimal for 38% of ideals in the data set, is good for 59% of ideals in the data set, and on

average requires 17% more base cases than an optimal choice.

The neural network’s case-by-case choice (denoted DKSZ for De Loera, Krone, Silver-

stein, and Zhao) is superior to any fixed choice of pivot rule, by all three measures. It

chooses an optimal pivot rule 67% of the time, a good pivot rule 85% of the time, and on

averages uses only 4.6% more bases cases than the minimum possible. These values are for

the “full” DKSZ classifier, which uses all 23 features in Table 7.2. More impressively, we

achieved similar results with a “cheap” DKSZ classifier based on only the five features listed

in Table 7.6.

The ability to predict pivot rules based on the features in Table 7.6 alone echoes a

general observation from the study of random ideals in Chapters 3 to 5: typical properties of

monomial ideals appear to be very predictable from the simple data of ratios among number

of variables, number of minimal generators, and degrees of generators. This trend appears

to generalize from the specific models used in those chapters, to the more diverse families of

ideals considered in the training data for this chapter.
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% optimal % good % above optimal

BS 13 15 212

PV 25 39 283

M2 38 59 17

PP1 49 54 20

PP2 43 63 15

PP3 40 63 16

GC2 45 65 10

GC3 53 77 7.8

GC4 59 78 7.4

DKSZ (full) 67 85 4.6

DKSZ (cheap) 64 83 5.6

Table 7.5. Suitability of each fixed pivot rule for the entire data set, com-
pared to the performance of our case-by-case choices (DKSZ), using both the
full set of features and a cheap set of five features. The DKSZ rules were
trained on a random 90% of the data, and tested on the reserved 10%. For
each pivot rule, the first column displays how often the strategy is optimal.
The second column displays how often the strategy is “good” (no more than
10% from optimal). The third column displays how many extra base cases the
strategy needs, on average, as a percentage of the optimal number.

index description of feature

0 # variables

1 # minimal generators

6–7 mean and variance of degrees of generators

14 # pure power generators.

Table 7.6. The five features of monomial ideals used for the “cheap” pivot
rule classifier.
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Both neural networks (based on the full and cheap feature transforms) most frequently

predicted rule GC4, the pivot rule with the best average performance across all training

data. This was unsurprising. Very surprising, however, was that the second most common

prediction of both was BS, even though this rule has very poor average performance. It

seems that the superiority of DKSZ is largely attributable to its ability to identify instances

where BS has optimal performance, and choose this pivot rule for just those instances. This

is a great illustration of the importance of selecting a computer algebra algorithm for each

instance of a problem rather than for an entire class of problems.

7.3. Fast predictions of algebraic invariants

Now we move to discuss the machine learning prediction of three invariant properties of

monomial ideals.

Certain properties of monomial ideals are known to be difficult to compute. Our primary

example is the codimension, which is NP-hard [BS92]. An alternative to directly computing

such information is to use machine learning to build an efficient prediction algorithm to

guess the dimension of monomial ideals and with a large proportion correct predictions. Our

classifier is a neural network on feature vectors that we train on examples generated from

a random model for monomial ideals of bounded degree in a fixed polynomial ring. Our

approach is similar to the successful machine learning study of SAT problems [XHHLB08];

since SAT and monomial ideal dimension are closely related problems, adapting this strategy

is a natural fit. We begin with a description of the training data.

7.3.1. Dimension. We randomly selected 10% of the data to set aside before training,

then tested the dimension classifier on these unseen examples. The correct dimension was

identified exactly for 82% of the examples (2463 out of 3000). The predicted dimension was

within 1 of the correct dimension for 99% of the examples (2969 out of 3000). Figure 7.2a

shows the confusion matrix for this test set.
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Certain values for dimension were well-represented in our data, while others occurred in

fewer of the training examples. A histogram depicting the values observed in the training

data can be seen in Figure 7.2c.

Based on Figure 7.2c, we considered four larger classes of ideals: {I : dim I = 0}, {I : 1 ≤

dim I ≤ 4}, {I : 5 ≤ dim I ≤ 9}, and {I : dim I ≥ 10}. Our same learning framework now

identifies the right class for 96.6% of a reserved testing set of 3000 ideals. This confusion

matrix is pictured in Figure 7.2b. Because the larger size of the figure allows, every nonzero

entry of the matrix is labeled with the exact number of observations.

Notice that zero-dimensional ideals are identified perfectly, with no false positives or false

negatives in the predictions. Recall that an ideal of k[x1, . . . , xn] is zero-dimensional if and

only if it contains a generator xji , with j > 0, for every 1 ≤ i ≤ n; in other words if it

contains n pure power generators. Since both n and the number of pure power generators

are values in our feature vector, we know that the feature vector theoretically contains the

information necessary to exactly predict zero-dimensionality. That the neural network was

able to recover this predictive power, with no theoretical understanding, is an interesting

proof of concept.

7.3.2. Projective dimension. We performed the same experiments for learning pro-

jective dimension, which took values between 0 and 15 in our training data. The lack of

examples of higher values is due to our focus on ideals in 5 or 10 variables. A histogram

for this invariant is given in Figure 7.3c. As with dimension, we trained neural networks

on two classification tasks, based only on the ideal’s feature vector: identifying the exact

projective dimension, and identifying the approximate value. For exact classification, the

accuracy was 67%, with 98% of the test ideals being no more than 1 away. Figure 7.3a shows

this confusion matrix.

Figure 7.3b is the confusion matrix for identifying ideals as belonging to the sets {I :

pdim(S/I) ≤ 3}, {I : 4 ≤ pdim(S/I) ≤ 5}, {I : 6 ≤ pdim(S/I) ≤ 8} and {I : pdim(S/I) ≥

9}. This accuracy was 88.4%. The neural network actually did worse at predicting this

“approximate projective dimension” than it did at getting within 1 of the correct value

122



KEY:

1+

5+

10+

20+

40+

80+

0
0

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10

10

11

11

12

12

13

13

14

14

15

15

16

16

17

17

18

18

19

19

actual dimension

p
re

d
ic

te
d

d
im

en
si

on

(a) Confusion matrix for predicting the dimension of monomial ideals, treating each value as a
separate class. 99% of predictions were within 1 of correct.

105

1145

60 1116

17

22 532

1

0

0

1-4

1-4

5-9

5-9

10+

10+

actual

p
re

d
ic

te
d

(b) Confusion matrix for predict-
ing dimension, using four classes.
Accuracy was 96.6%.

0 5 10 15 20
0

2,000

4,000

6,000

(c) Distribution of actual values of the dimension in train-
ing data.

Figure 7.2. Learning the dimension of a monomial ideal.

when making exact predictions. Even though fewer classes seems like an “easier” problem
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Figure 7.3. Learning the projective dimension of a monomial ideal.

for a neural network, the finer classification is in fact the better approach to approximating

projective dimension.
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7.3.3. Regularity. For regularity, we observed more than 100 unique values over the

30,000 ideals in the data set. A few small values—integers from 3 to 10, inclusive—make

up the bulk of examples, with over 1,000 instances each. The histogram for the distribution

of regularity, Figure 7.4c, suggests a clustering of low-, medium-, and high-regularity ideals

defined by {I : reg(S/I) ≤ 15}, {I : 16 ≤ reg(S/I) ≤ 35}, and {I : reg(S/I) ≥ 36},

respectively. Note that technically reg(S/ 〈0〉) = −∞, following the convention that the

degree of the zero polynomial is −∞. For computational purposes we took reg(S/ 〈0〉) = 0.

Figure 7.4a illustrates the neural network’s accuracy at predicting the exact regularity of

an ideal from its features. With over 100 classes to choose from, the accuracy is unsurprisingly

much lower than for the other invariants, with 42% of predictions correct. In fact, 42% is quite

impressive given the difficulty of the problem and the large number of classes. The confusion

matrix has a linear trend despite many off-diagonal entries, and 90% of the predictions were

within 5 of correct. The linear trend worsens dramatically around regularity 35, where the

number of training examples per class drops in Figure 7.4c. For classes with many examples,

the accuracy was much better.

Classifying ideals as low-, medium-, and high-regularity was very successful. Ideals were

correctly sorted into these three classes with 97.4% accuracy, and only 9 out of 3,000 test

ideals were incorrectly sorted into a lower-regularity class.
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APPENDIX A

Computational details

Most of the algebra computations for this dissertation were done in Macaulay2 [GS], in-

cluding in particular the EdgeIdeals package [FHV09], Graphs package [BCJ+], LexIdeals

package [Fra], and RandomMonomialIdeals package [PSW17]. The previous sentence was

created with the help of the PackageCitations package [Dal]. For a brief moment, the idea

of creating a package for automatically citing PackageCitations whenever PackageCitations

is used to cite packages was entertained, but the author decided that a self-referential joke

about “the idea of creating a package for automatically citing PackageCitations whenever

PackageCitations is used to cite packages” would suffice.

A.1. Code for discrete optimization techniques in commutative algebra

As described in Section 3.4, integer programming computations used the SCIP Opti-

mization Suite [G+18], including the ZIMPL modeling language [Koc04]. Most of the

optimization problems were systematically generated from within Macaulay2. For example,

the list of Betti tables in Section 6.4 was created by defining a polynomial ring and Hilbert

function in Macaulay2, generating a description of the corresponding De Loera polytope in

ZIMPL format, and running a SCIP command to write all integer lattice points to a file.

From Macaulay2 each line of the file was parsed as a 0-1 vector and the corresponding mono-

mial ideal determined. Finally the Betti table of each ideal was computed and the tally of

their frequencies returned.

To implement this and similar computations featured in the dissertation, which exist at

the interface of commutative algebra and discrete optimization, the author is releasing a

Macaulay2 package called MonomialIntegerPrograms. This software is also available at

https://github.com/lilysilverstein/MonIP.
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In addition to enumerative problems related to Hilbert functions and Betti numbers,

the package provides the fast method of computing dimension from Section 3.4, and related

ILP-based functions for computing degree and minimal primes. Other discrete optimization

algorithms for commutative algebra are in development.

A.2. Code and data for machine learning on monomial ideals

The artificial neural network project described in Chapter 7 was implemented in Tensor-

Flow [Aea15] via the Keras Python API [C+15]. Warm thanks and praise to Zekai Zhao

for his work on this code.

All code and data related to this portion of the dissertation is available at the following

repository:

https://github.com/lilysilverstein/MonLearning/.

This includes:

• MonLearning.py : Keras/TensorFlow code defining the neural network architecture

and implementing training and testing routines.

• TrainingData/ : A directory containing the complete training data, organized into

subdirectories corresponding to the families of monomial ideals listed in Table 7.1.

• HilbertML.m2 : Macaulay2 code implementing flexible pivot rule choices for Hilbert

series computations, counting base cases, etc.

• IdealML.m2 : Miscellaneous Macaulay2 code for generating random monomial ideals

of various kinds, computing invariants, file I/O and organization for training data,

etc.
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