
Complexity Zoology

By

ROBERT JOSEPH SANDERS, JR.

DISSERTATION

Submitted in partial satisfaction of the requirements for the degree of

DOCTOR OF PHILOSOPHY

in

MATHEMATICS

in the

OFFICE OF GRADUATE STUDIES

of the

UNIVERSITY OF CALIFORNIA

DAVIS

Approved:

Greg Kuperberg, Chair

Eric Babson

Bruno Nachtergaele

Committee in Charge

2019

-i-

Contents

Abstract iii

Acknowledgments iv

Chapter 1. Introduction 1

Chapter 2. Complexity Classes and Operators 3

2.1. Models of Computation 3

2.2. Operators and Relativization 10

2.3. Complexity Class Operators 12

Chapter 3. The Complexity Zoology Program 21

3.1. Input Files and Syntax 21

3.2. Operator Propagation and Inference 24

3.3. To-do List Inference Algorithm 25

3.4. The Logic of Complexity Zoology 26

3.5. Extremal Unknowns 29

3.6. Output 31

Chapter 4. Complexity Theory Results 34

4.1. Simplified Version 34

4.2. Overview of the Complexity Zoology Data Set 49

4.3. Conclusion and Possible Future Work 73

Bibliography 79

-ii-

Complexity Zoology

Abstract

Complexity Zoology is a program that deduces complexity class inclusions and oracle separations from

an initial data set. It is designed to aid the process of compiling information about complexity classes and the

relationships between them. This thesis is a description of Complexity Zoology and how it works, along with

a survey of complexity theory conducted with the assistance of the Complexity Zoology software. We begin

with an overview of commonly used computational models and of the theory of complexity class operators.

Then, the algorithm underlying Complexity Zoology is explained. Finally, we survey the landscape of

complexity theory through the lens of Complexity Zoology’s data set. We include both a detailed survey

involving a smaller number of classes and a bird’s-eye view involving the full set of classes in Zoology’s

input file.

-iii-

Acknowledgments

Thanks are owed to several for making both Complexity Zoology and this thesis possible. Much of this

project’s data set is based on email correspondence between Greg Kuperberg, Scott Aaronson, and Lance

Fortnow. Other contributors to these conversations include Lijie Chen, Avishay Tal, Justin Thaler, Prashant

Vasudevan, John Watrous, and Jiapeng Zhang.

I also thank Greg Kuperberg for his extensive help with many aspects of the project: adding to the data

set, clarifying key concepts and arguments, facilitating conversations with experts in complexity theory, and

writing the original version of Complexity Zoology that served as the outline for this new version. Finally,

I thank my thesis committee—Eric Babson, Greg Kuperberg, and Bruno Nachtergaele—for their time and

attention.

-iv-

CHAPTER 1

Introduction

This document is a description of a computer program called Complexity Zoology. The program is an

expert system: it is equipped with a database of information about which complexity classes are subsets of

other complexity classes along with an inference engine that the program uses to deduce new conclusions

from the existing information. Complexity Zoology then outputs a diagram of the relationships between the

complexity classes in the input file.

Complexity Zoology takes its name from the Complexity Zoo, an online wiki of information about

complexity classes written and maintained by Scott Aaronson [Aar19]. This version of Complexity Zool-

ogy was written from scratch; however, some of the design choices—particularly the input syntax and the

functionality of the output diagram—are based on an earlier version by Greg Kuperberg.

The purpose and motivation of Complexity Zoology is to be a partially automated survey of complexity

theory. The scope of a field as well-developed as complexity theory is so large that it can be difficult

to quickly determine the status of a proposition of the form “the complexity class C1 is contained in the

complexity class C2.” Complexity Zoology aims to help with this problem, at least for the most fundamental

complexity classes. More specifically, the project aims to:

• summarize a large portion of the known complexity class inclusions and oracle separations;

• identify redundant results (i.e., the results that follow logically from other known results);

• answer questions about complexity class relations automatically when the answer is a corollary of

established results.

Complexity Zoology has proved itself useful in identifying when a result is a corollary of other results

and in falsifying conjectures, but the demonstrated strength of the program has been the identification of

stimulating open problems. Among the questions that the project has raised are these:

(1) We know that NP ⊆ IP ⊆ MIP, and these classes are believed to be distinct. Is there an oracle

relative to which MIP 6⊆ IP? Does IP= NP relative to the random oracle?

-1-

(2) Is there an oracle relative to which NISZK 6⊆ coNIQSZK?

(3) Is there an oracle relative to which SZK 6⊆ S2P?

(4) Is there an oracle relative to which BQP 6⊆ IP?

To make Complexity Zoology an effective tool, it has been necessary to limit its scope in a few ways.

First, the system’s expertise does not lie in reasoning about complexity theory as such. It knows nothing

of the standard techniques used to prove results in complexity theory, such as diagonalization. It does not

even understand what complexity classes are: common classes such as P, NP, and BPP are understood

only in terms of their relationships to other complexity classes. Instead, the strength of Complexity Zoology

consists of understanding results and open problems in the field. For example, if it is known that C1 ⊆ C2 is

proven and C1 ⊆ C3 is an open question, then Complexity Zoology can conclude that C2 ⊆ C3 is unproven –

either it has been disproven, or it is itself open. In essence, the system can be thought of as a diligent student

conducting a broad overview of the field, drawing connections between results and attempting to fill in all

possible gaps without examining the details.

Second, the project has been deliberately limited to a core collection of important complexity classes.

The program has the capacity to identify critical gaps in its knowledge, and by choosing a conservative list

of classes we increase the chance that the questions Complexity Zoology asks are of theoretical interest.

The system’s input syntax makes it easy to add and remove classes as needed, so adjustments can be made

as necessary.

-2-

CHAPTER 2

Complexity Classes and Operators

This chapter summarizes the foundational concepts that underlie classical and quantum complexity

theory. The general reference used for these ideas is the text Computational Complexity by Arora and

Barak [AB09]. Throughout this thesis, we also use a survey of Watrous as a secondary reference for quantum

computation [Wat09].

2.1. Models of Computation

2.1.1. Complexity Classes and Decision Problems. A computational problem is a question about a

particular object of input, such as “Is the input x a prime number?” or “What is the greatest common divisor

of the integers x and y?” It is assumed that the input to the question, as well as the answer, can be encoded

as a finite string of zeros and ones—i.e., as an element of Σ∗. (We denote by Σ the set {0,1} and by S∗ the

set of all finite strings whose characters consist of elements of the set S.) Thus, a computational problem

can be modeled as a function f : Σ∗→ Σ∗.

In general, a complexity class is a set of computational problems f : Σ∗→ Σ∗, usually interpreted as the

set of all problems that are tractable within a specified computational model. For this project, we are inter-

ested in decision problems, which are computational problems whose answer is either yes or no (encoded

as 1 and 0, respectively). Within the functional framework, decision problems are formalized as functions

d : Σ∗ → Σ. Such functions can be identified with the set {x ∈ Σ∗ : d(x) = 1}. For this reason, we will

identify decision problems with languages, or subsets L of Σ∗. We will also conflate a language with its

corresponding decision function when it is convenient to do so.

2.1.2. Notation and Conventions. At this point, it will be useful to identify some conventions. The set

N of natural numbers is assumed to contain zero. We use big-O notation to describe the size of functions:

for a pair of functions f : N→N and g : N→N, we write f = O(g) (or sometimes f (n) = O(g(n))) if there

exists a real constant C such that f (n)≤Cg(n) for every n ∈N. We also write f (n) = O(n∗) to indicate that

-3-

there exists k ∈ N such that f (n) = O(nk). Exponents are used to write strings having the same character

repeated multiple times, so that 04 = 0000, for example.

2.1.3. Classical Computation. The most commonly used model of computation in classical complex-

ity theory is the Turing machine. A (deterministic) Turing machine with k ≥ 2 tapes, abbreviated TM, is a

triple M = (Γ,Q,δ) containing the following data:

(i) A set Γ of symbols, called the alphabet, which must include the blank symbol �, the start symbol .,

and the numerals 0 and 1;

(ii) A set Q of states of M, one of which is the starting state qstart, and another of which is the halting

state qhalt;

(iii) A transition function δ : Q×Γk→ Q×Γk−1×{L,S,R}k satisfying

δ (qhalt,s1, . . . ,sk) = (qhalt,s2, . . . ,sk,S, . . . ,S)

for every si ∈ Γ.

A configuration for a Turing machine M = (Γ,Q,δ) with k tapes is a tuple c = (q, i1, . . . , ik, t), where

q ∈ Q, i1, . . . , ik are natural numbers, and t : {1, . . . ,k}×N→ Γ is a tape function such that t(j, `) = � for

all sufficiently large `.

An initial configuration is a configuration c = (qstart,0, . . . ,0, t) satisfying the following conditions:

(i) t(j,0) = . for j ∈ {1, . . . ,k};

(ii) t(j, `) =� for j > 1 and ` ∈ N;

(iii) There exists a natural number N ≥ 1 such that t(1, `) 6=� for all ` < N and t(1, `) =� for all `≥ N.

The string t(1,1) . . . t(1,N−1) is the input. If N = 1, the input is considered to be the empty string ε .

A halted configuration is a configuration with q = qhalt. If there exists a natural number N such that

t(k, `) 6=� for `≤ N and t(k, `) =� for ` > N, then the string t(k,0) . . . t(k,N) is the output; otherwise, ε is

the output.

Let c = (q, i1, . . . , ik, t) and c′ = (q′, i′1, . . . , i
′
k, t
′) be configurations for M = (Γ,Q,δ). The configuration

c′ succeeds c (c→ c′) if

δ (q, t(1, i1), . . . , t(k, ik)) = (q′, t ′(2, i2), . . . , t ′(k, ik),X1, . . . ,Xk),

-4-

where t(j, `) = t ′(j, `) if j = 1 or ` 6∈ {i2, . . . , ik}, and

i′j = max{0, i j−1} if X j = L,

i′j = i j if X j = S,

i′j = i j +1 if X j = R.

A computation for a machine M is a sequence c0→ c1→ . . .→ cn, where c0 is an initial configuration and

cn is a halted configuration. The input of c0 and the output of cn are the input and output of the computation,

respectively. The machine M computes the function f : Σ∗→ Σ if the computation for M with input x has

output f (x). We also write M(x) to indicate the output of M with input x. If M(x) = 1, the machine accepts

the input; if M(x) = 0, the machine rejects the input.

The computation time TM(x) of the machine M with input x is the length of the computation of M with

input x. For a function f :N→N, M runs in f (n)-time if there exists a constant C such that TM(x)≤C · f (|x|)

for every x ∈ Σ∗. M runs in polynomial time if it runs in f (n)-time for some f (n) = O(n∗). The function

class of all f : Σ∗→ Σ∗ that are polynomial-time computable is given by FP.

There are several variations of the Turing machine concept. In a non-deterministic Turing machine,

there are two transition functions, and a computation is a tree of configurations rather than a sequence. A

probabilistic Turing machine also has two transition functions, but at each stage of the computation the

machine tosses a coin to decide which transition function it uses. These variations are often useful, but it is

usually enough to use a standard, deterministic Turing machine along with an additional string y∈ Σ∗ placed

alongside the input. y can then represent either a sequence of random bits/coin tosses or a particular branch

of a non-deterministic computation.

All Turing machines are assumed to have an alphabet consisting entirely of Σ = {0,1}. Any additional

symbols are assumed to be encoded in some way. For example, if the input is a tuple, such as 〈x,y〉 for

x,y ∈ Σ∗, then we could encode the symbol 0 as 00, 1 as 01, and the separating comma as 10. We will

also occasionally want to consider a natural number as being the input or output of a computational process.

We therefore fix a bijection e : N→ Σ∗ allowing us to identify natural numbers with the strings in Σ∗. For

definiteness, we can take e(n) to be the result of removing the initial 1 from the binary representation of

n+1.

-5-

Another classical model of computation is the Boolean circuit. A Boolean circuit is an acyclic graph

with one or more sources (vertices with no incoming edges) and exactly one sink (a vertex with no outgoing

edges). Each vertex that is not a source is labeled with ∧, ∨, or ¬ and represent the gates of the circuit.

Vertices labeled with ¬ must have a fanin—i.e., number of incoming edges—of 1. Each source is labeled

with a unique element of {1, . . . ,n}, where n is the number of sources.

For a Boolean circuit C, a value function v : V → Σ is a function on the set V of vertices of C satisfying

the following properties:

• If the vertex x is labeled with ∧, then v(x) = 1 if and only if v(y) = 1 for every predecessor y of x.

• If the vertex x is labeled with ∨, then v(x) = 1 if and only if v(y) = 1 for some predecessor y of x.

• If the vertex x is labeled with ¬, then v(x) = 1 if and only if v(y) = 0, where y is the unique

predecessor of x.

For each assignment of 0 or 1 to a source vertex, there is a unique value function that matches the assignment.

(Since C is finite and acyclic, if this were not the case there would be a minimal vertex for which a unique

value of v is not determined, but such a vertex is either a source or determined by its predecessors by

minimality.)

Thus, given a Boolean circuit C, we can define a function C̄ : Σn→ Σ according to the following proce-

dure for x ∈ Σn, let v : V → Σ be the value function that assigns the kth bit of x to the source with the label

k; then, set C̄(x) = v(y), where y is the sink of C. In this way, the circuit C can be thought of as computing

the function C̄.

Unlike Turing machines, Boolean circuits require the input to be of fixed length. A natural solution to

this problem is to consider a family {Cn : n≥ 1} of circuits, which is then considered to compute the function

C̄ : Σ∗→ Σ defined by C̄(x) = C̄n(x) for all x∈ Σ∗, where n is the length of x. However, this model is actually

more powerful than a Turing machine, because it can compute any unary language (languages consisting

entirely of strings of 1s). When the size of Cn is limited to a polynomial of n, the resulting complexity class

is the uncountable class P/poly rather than the usual polynomial-time computable class P. Intuitively, since

there is a separate circuit for each possible input length n, it is possible to encode an amount of advice into

each circuit that is a polynomial of n in length.

2.1.4. Quantum Computation. It remains to define a computational model for quantum computation.

Rather than using classical bits, which must exist in a state of 0 or 1, quantum computation uses quantum

-6-

bits, or qubits. A qubit is a normalized element a|0〉+ b|1〉 of C2, where a,b ∈ C and |0〉 and |1〉 are

orthonormal with respect to the usual inner product on C2 (so that |a|2+ |b|2 = 1). There are several possible

models by which the qubits can be employed for computation; for definiteness, the quantum circuit will be

our standard choice. Just as the 0-1 values are changed as they move through a classical circuit, the qubits

of a quantum circuit are transformed unitarily as they pass through the vertices of a circuit.

DEFINITION 2.1.1. A quantum circuit is a finite acyclic graph satisfying the following properties:

• There are n sources, each of which is labeled with an element of the set {1, . . . ,n}.

• Each source has a fanout of 1, and each sink has a fanin of 1.

• If a vertex is neither a sink nor a source, then its fanin must equal its fanout, which can be at most

3.

• Each vertex x that is neither a sink nor a source is labeled with a 2kx-dimensional unitary transfor-

mation, where kx is the fanin of x. The vertex is also labeled with a bijective function fx : Ex
i → Ex

o ,

where Ex
i is the set of incoming edges for x and Ex

o is the set of outgoing edges for x.

Note that, from each source, there is a canonical path to follow:

• From the source, follow the only edge forward.

• When arriving at the vertex x from the edge e, follow the edge fx(e) forward.

• The path ends when a sink is reached.

Each such path terminates at a different sink, and every sink is the terminal vertex of some such path. Thus,

there is a natural bijection between sources and sinks, and we can assign the corresponding element of

{1, . . . ,n} to each of the sinks.

As with classical circuits, the input to a quantum circuit is a string of bits—in this case, a direct product

of qubits of the form | j〉, j = 0,1 (we denote | j1〉⊗ . . .⊗ | jn〉 = | j1〉 . . . | jn〉 = | j1 . . . jn〉. The qubits then

travel along the circuit according to the canonical paths, being transformed by the unitary maps at each

vertex. Once each qubit reaches its sink, the initial bit string will have been transformed into a new state

∑α j1 j2... jn | j1 j2 . . . jn〉. For a circuit C and initial state ϕ , we denote the final state by C̄(|ϕ〉).

To be explicit, this is the procedure by which the initial state |ϕ〉 is transformed into C̄(|ϕ〉):

-7-

(1) If necessary, add vertices so that all canonical paths have the same length and each vertex occurs

at the same length along any canonical path passing through it. We do this by introducing new ver-

tices with fanin 1 and labeling new non-terminal vertices with the identity transformation. Denote

the new length of each canonical path by N.

(2) For 1≤ k ≤ N, define a unitary transformation Uk:

(a) Reorder the set {1, . . . ,n} so that canonical paths passing through the same kth vertex are

assigned adjacent numbers. Denote the resulting permutation of qubits by W .

(b) Number the transformations labeling each kth vertex so that they appear in the same order

indicated by the permutation W : V1,V2, . . . ,Vrk .

(c) Set Uk =W ∗(V1⊗V2⊗ . . .⊗Vrk)W .

(3) Set C̄(|ϕ〉) =UN . . .U2U1|ϕ〉.

Finally, we obtain the result of the computation from C̄(|ϕ〉) by measuring it. If C̄(|ϕ〉) = Σxαx|x〉, where

the sum is over all elements of Σn, then the result of the measurements is |x〉 with probability |αx|2.

To make meaningful discussion of quantum complexity theory possible, it is necessary to restrict the

permitted operations to a finite set of universal operations. This means that any unitary matrix (of dimension

≥ 3) can be approximated to arbitrary precision by the finite collection of operators, in the same way that

∧, ∨, and ¬ gates suffice for the purposes of classical computation. Moreover, this approximation can be

accomplished efficiently:

THEOREM 2.1.1 (Solovay-Kitaev, [Kit97]). There exists a finite set F of unitary operators, each having

dimension ≤ 3, such that F is an efficient universal gate set, in the following sense:

Let d ≥ 3 be an integer, and let ε > 0. There exists a positive integer ` ≤ 100(d log1/ε)3 such that

for every d× d unitary matrix U = (U jk), there exist unitary matrices U1, . . . ,U` such that for each j,k ∈

{1, . . . ,d},

|U jk− (U` . . .U1) jk|< ε,

where each U j corresponds to applying an operation from F to at most 3 of d qubits.

One possible choice of universal operators is the Hadamard gate H = 1√
2

(
1 1
1 −1

)
, the Toffoli gate I6⊕(

0 1
1 0

)
(where I6 denotes the 6×6 identity matrix), and the phase shift gate

(
1 0
0 i

)
.

-8-

DEFINITION 2.1.2. Let {Cn : n ≥ 1} be a family of quantum circuits such that Cn has mn ≥ n sources.

{Cn : n≥ 1} computes f : Σ∗→ Σ with probability p if for every x ∈ Σ∗, when C̄n(|x0mn−n〉) is measured, the

first bit is equal to f (x) with probability ≥ p.

As in the classical case, to define the class of problems that are quantum computable in polynomial time,

it is not only necessary to restrict the size of Cn to a polynomial of n, but also to require that it is possible to

classically compute a description of Cn from an input of n in polynomial time. Without this restriction, we

would admit as computable many languages that are not generally thought of as computable. This restriction

of circuits also works in the classical case, reducing the resulting complexity class from P/poly to P.

Many complexity classes of interest are derived from more traditional complexity classes by replacing

the classical method of computation with the quantum one. Doing so to the class P results in the class BQP,

doing so to the class MA results in the class QMA, and so on. Using this observation as a basis allows us

to imagine a non-rigorous “pseudo-operator” C 7→ Q ·C that transforms a classical complexity class C into

its quantum counterpart Q ·C. Since operators must be able to act on complexity classes independently of

the underlying means of computation, we cannot make Q into a rigorously defined operator. Nevertheless,

it is intuitively useful to think of Q as an operator and note one property in particular: C⊆ Q ·C for every C.

In other words, any computations that are possible classically must also be possible in the quantum world.

This is not immediately obvious from our models of computation, because, for example, classical circuits

allow for non-reversible operations (e.g. one cannot determine from the value of an ∧-vertex the value

of its predecessors) while quantum operations are unitary and therefore reversible by necessity. However,

any classical operations have reversible quantum versions, generally implemented by means of additional

“scratch qubits” that are assumed to be zero at the outset. For instance to implement the ∧-operator, we

apply the unitary mapping

|xy〉|z〉 7→ |xy〉|z+2 xy〉,

where +2 indicates addition modulo 2. As long as the scratch qubit |z〉 is initialized to 0, the bit |z+2 xy〉

will be equal to the classical ∧-operator on x and y. The need for extra scratch bits is the reason we allow

trailing zeros in the input to a quantum circuit.

2.1.5. Universal Turing Machines. Turing machines should likewise be encoded as elements of Σ∗.

We fix a surjective mapping α 7→Mα from Σ∗ to the set of Turing machines. For convenience, this mapping

-9-

should have the property that for every Turing machine M there exist infinitely many α such that M = Mα .

The encoding is chosen so that the following theorem is true:

THEOREM 2.1.2. There exists a Turing machine U such that U(x,α) = Mα(x) for all x,α ∈ Σ∗ with

the property that if T (x,α) is the computation time for Mα(x), then the computation time for U(x,α) is

CT (x,α) logT (x,α), where C depends only on the number of tapes and states of Mα .

Functions are generally restricted to those that are time-constructible, meaning that the function T :N→

N can be computed by a Turing machine in time O(T (n)) and T (n)≥ n for all n ∈ N.

2.2. Operators and Relativization

Each class in Complexity Zoology’s data set can be relativized. Informally, relativization is the process

of taking a particular computational problem f : Σ∗→ Σ∗ as a black box that can be given any input, and the

answer is instantaneously given. The black box is called the oracle and the process of giving an input to the

black box is referred to as querying the oracle. For a complexity class C, we denote by C f the complexity

class with the same computational model as C, but for which queries to an oracle f are allowed. At a

minimum, this means that if f : Σ∗→ Σ is a decision function, then the associated language L lies in C f .

Moreover, we expect that C ⊆ C f , since the oracle can simply be ignored during any computation. For a

pair of complexity classes C1,C2, we also set CC2
1 =

⋃
f∈C2

C f
1 .

Each of the computational models we consider is powerful enough to encode finite changes to an oracle.

For this reason, if f and g are oracles that differ only on a finite subset of Σ∗, then C f = Cg. This fact is

crucial to the concept of a random oracle.

LEMMA 2.2.1 ([For18]). Let r : Σ∗→ Σ be chosen uniformly at random, so that Pr[r(x) = 1] = 1/2 for

each x ∈ Σ∗. If F is any set of functions Σ∗→ Σ that is closed under finite differences between functions,

then Pr[r ∈F] = 0 or 1.

PROOF. The Kolmogorov zero-one law states that if S = {X j : j ∈ N} is a countable set of independent

random variables and E is an event that is independent of each finite subset of S, then Pr[E] = 0 or 1. For our

purposes, X j = r(j) and E is the event r ∈F . This event is independent of finitely many choices of values

r(j), because the closure property of F implies that changing finitely many r(j) does not affect whether

r ∈F . Thus, the zero-one law proves the lemma. �

-10-

By the previous remark, the set

F = { f : f is a function Σ
∗→ Σ such that C f

1 ⊆ C f
1}

for a pair of complexity classes C1 and C2 is closed under finite differences. We therefore have the following

result:

THEOREM 2.2.1. If r : Σ∗→ Σ is chosen uniformly at random, then Cr
1 ⊆ Cr

2 with probability 0 or 1.

As a consequence of this theorem, we can consider whether Cr
1⊆Cr

2 with respect to “the” random oracle

r.

Contrary to what the notation would suggest, C 7→ C f is not a map on the set of complexity classes. For

example, there is an oracle f such that P f 6= NP f , but if C 7→ C f were a function on the set of complexity

classes, this would imply P 6= NP, which is an open problem. Instead, the action C 7→ C f transforms

the computational model itself. In the case of complexity classes involving Turing machines, the Turing

machines are replaced with oracle Turing machines capable of querying an oracle.

Unfortunately, there is no uniform way to define C f from C that works for every complexity class in the

data set. Thus, we formally consider a complexity class to be a family of sets C= {C f : f is a function Σ∗→

Σ∗}. We often identify C with Ct , where t is the trivial oracle defined by t(x) = 0 for all x ∈ Σ∗, and the

definition of C f will depend on the computational model for the class in question. For classes defined in

terms of Turing machines, we use oracle Turing machines, which have a special oracle tape which can be

used to query the oracle and receive a response. In circuit models of computation, special gates are used to

query the oracle.

Oracle relativization has been useful in assessing the viability of several common proof techniques for

answering complexity theoretic questions. For example, the celebrated theorem of Baker, Gill, and Solovay

states that there exist oracles f and g such that P f = NP f and Pg 6= NPg [BGS75]. (For definitions of the

classes P and NP, see Subsection 4.1.1.) Therefore, if a proof technique relativizes—that is, if the proof is

independent of any oracles that are applied to the complexity classes involved—it cannot be used to settle

the P vs. NP question. This obstacle is known as the relativization barrier.

-11-

Later, Aaronson and Wigderson introduced a refinement known as the algebrization barrier [AW09].

More recently, Aydinlioğlu and Bach reformulated the idea of an algebrizing proof into one that relativizes

with respect to a class of oracles they refer to as affine. In this thesis, we refer to these oracles as algebraic.

2.3. Complexity Class Operators

This section, and the theory of complexity class operators generally, is based on a paper by Zachos and

Pagourtzis [ZP03].

A complexity class operator op is an inclusion-preserving automorphism on the set of all complexity

classes, written as op ·C for a complexity class C. Thus, if C⊆D, then op ·C⊆ op ·D. Complexity Zoology’s

knowledge of operators consists of inequalities of the form op1 ≤ op2 and quadratic relations of the form

op1 · op2 = op3 · op4.

DEFINITION 2.3.1. For complexity class operators op1, op2, op3, and op4, we denote by op1 ≤ op2 the

proposition that (op1 ·C)
f ⊆ (op2 ·C)

f for each class C and oracle f , and we denote by op1 · op2 = op3 · op4

the proposition that (op1 · op2 ·C)
f = (op3 · op4 ·C)

f for each class C and oracle f .

2.3.1. Definitions. The definitions of the following complexity class operators preserve relativization.

In other words, if an operator op is defined by the property that

op ·C= {L ⊆ Σ
∗ : ϕ(L ,C)}

for any complexity class C, then the relativized version of op ·C is

(op ·C) f = {L ⊆ Σ
∗ : ϕ(L ,C f)}.

The simplest operators are id , the identity operator; co, which swaps “yes” and “no” answers to each

decision problem; and cocap, which takes the intersection of a class with its complement.

DEFINITION 2.3.2. For each complexity class C, we set

id ·C := {L ⊆ Σ
∗ : L ∈ C}= C,

co ·C := {L ⊆ Σ
∗ : Σ

∗ \L ∈ C},

cocap ·C := {L ⊆ Σ
∗ : L ∈ C&L ∈ co ·C}= C∩ (co ·C).

-12-

A class is symmetric if C= co ·C with respect to every oracle.

For example, the class P is symmetric, while NP is not, because there is an oracle f relative to which

NP f 6= coNP f (although, of course, this is an open problem in the absence of an oracle).

The poly operator adds a polynomial-length advice string to each input.

DEFINITION 2.3.3. For a complexity class C, we define

poly ·C= {L ⊆ Σ
∗ : (∃L ′ ∈ C, |p(n)|= O(n∗))(∀x ∈ Σ

∗)[x ∈L ⇐⇒ 〈x, p(|x|)〉 ∈L ′]}.

We allow advice functions to map to the null string ε of length zero. In the case of tuples, 〈x,ε〉 should

be understood to be x, so that, as we will see, poly ·C always contains C. For most classes with polynomial

advice, we write poly ·C = C/poly; we have, for instance, P/poly, NP/poly, and BQP/poly. We also use

the suffixes /mpoly and /qpoly, meaning Merlinized polynomial advice and quantum polynomial advice,

respectively, but neither of these can be rigorously defined as an operator. Merlinized polynomial advice is

used to exempt a probabilistic complexity class from satisfying a normally required probability gap when

the advice string is unhelpful. Quantum polynomial advice consists of a string of qubits rather than classical

bits, and the qubits can be in any state. See Subsection 4.1.1 for an example of a class with quantum

polynomial advice and Subsection 4.2.12 for an explanation of Merlinized polynomial advice.

The operators⊕, N , and P are all defined in terms of certificates, strings whose lengths are polynomials

of the length of the original input. For a quantifier Q, we can define an operator opQ by

opQ ·C := {L ⊆ Σ
∗ : (∃L ′ ∈ C, p(n) = O(n∗))(∀x ∈ Σ

∗)[x ∈L ⇐⇒ (Qy ∈ Σ
p(|x|))[〈x,y〉 ∈L ′]]}.

The aforementioned operators are then equal to opQ for different choices of Q.

DEFINITION 2.3.4. The operators ⊕, N , and P are defined as follows for a complexity class C:

• ⊕ ·C := opQ ·C, where (Qy ∈ S) means “for an odd number of y ∈ S.”

• N ·C := opQ ·C, where (Qy ∈ S) means (∃y ∈ S).

• P ·C := opQ ·C, where (Qy ∈ S) means “for at least 1/2 of all y ∈ S.”

⊕ is read as “parity.”

The bounded probabilistic operator BP is defined similarly.

-13-

DEFINITION 2.3.5. For each complexity class C,

BP ·C := {L ⊆ Σ
∗ :(∃L ′, p(n) = O(n∗))(∀x ∈ Σ

∗)[[x ∈L =⇒ (∃>2/3 y ∈ Σ
p(|x|))[〈x,y〉 ∈L ′]]

& [x /∈L =⇒ (∃>2/3 y ∈ Σ
p(|x|))[〈x,y〉 /∈L ′]]]},

where (∃>2/3 y ∈ Σp(|x|)) is understood to mean “for more than 2/3 of all y ∈ Σp(|x|).”

All of these operators are named in such a way that they suggest the definitions of common complexity

classes; for example, NP= N ·P, PP= P ·P, BPP= BP ·P, and ⊕P=⊕·P.

Also, we have exppad , which adds an exponential length of zeros to input, generally for the purpose of

buying additional computational time.

DEFINITION 2.3.6. Write f = O(2poly) if f (n) = O(2p(n)) for some p(n) = O(n∗). Then, for a com-

plexity class C,

exppad ·C := {L ⊆ Σ
∗ : (∃L ′ ∈ C, f = O(2poly))[x ∈L ⇐⇒ x0 f (|x|) ∈L ′]}.

NEXP, for example, is not defined to be N ·EXP, but rather exppad ·NP.

Finally, note that for any fixed complexity class C, the map C′ 7→ CC′ defines an operator. In Complexity

Zoology, C 7→ PC, where P is the class of polynomial-time computable languages, is a declared operator.

2.3.2. Properties of Complexity Classes. Proving the properties of complexity operators often re-

quires that the underlying complexity classes themselves have certain regularity properties. First, every

complexity class of interest should be nontrivial in the sense that it contains a nonempty language not equal

to Σ∗. We also expect that if L ∈ C, then any languages that are reducible to L in polynomial time are also

in C.

DEFINITION 2.3.7. A complexity class C is closed under polynomial-time reductions if for every

L ∈ C and every function f ∈ FP,

f−1[L] = {x ∈ Σ
∗ : f (x) ∈L } ∈ C.

-14-

Every class in this project is relativizingly nontrivial and polynomial-time self-reducible, so that for

each oracle g, if f ∈ FPg and L ∈ Cg then f−1[L] ∈ Cg. As a result, P lies at the bottom of Complexity

Zoology’s inclusion hierarchy.

PROPOSITION 2.3.1. If C is a nontrivial complexity class that is closed under polynomial-time reduc-

tions, then P⊆ C.

PROOF. Fix a nontrivial language L ∈ C, so that L 6= /0 and L ∈ Σ∗. Then there exists x1 ∈L and

x0 /∈L .

Now suppose L ′ ∈ P. Then define f : Σ∗→ Σ∗ to be

f (x) =


x1 if x ∈L ′,

x0 if x /∈L ′.

We have f ∈ FP, since it can be determined whether or not x∈L ′ in polynomial time, and then writing x1 or

x0 can be accomplished in constant time. Therefore L ′ = f−1[L]∈ C by polynomial-time self-reducibility,

so we can conclude that P⊆ C. �

Additionally, complexity classes should be closed under joins, projections, and polynomial majorities.

The join of a pair of languages L ,L ′ ⊆ Σ∗ is

L ⊕L ′ = {x ∈ Σ
∗ : (x = 0y & y ∈L)or (x = 1y & y ∈L ′)}.

The 0-projection of a language L is

{x ∈ Σ
∗ : 0x ∈L },

and the 1-projection is defined similarly. Given a complexity class C, a language L is a polynomial majority

of C if there exist L ′ ∈ C, p(n) = O(n∗) such that for each x ∈ Σ∗, x ∈L if and only if 〈x,m〉 ∈L ′ for a

majority of m ∈ {0, . . . , p(|x|)}.

2.3.3. Relations and Inclusions.

PROPOSITION 2.3.2. The id , co, and cocap operators satisfy the following properties:

(1) cocap ≤ co and cocap ≤ id ;

(2) co is involutive, so that co · co = id ;

-15-

(3) co · cocap = cocap · co = cocap.

PROOF. (1) and (2) are immediate from the definitions of the operators. For (3), we have

cocap · co ·C= (co ·C)∩ (co · co ·C)

= (co ·C)∩C

= cocap ·C,

and

L ∈ co · cocap ·C⇐⇒ Σ
∗ \L ∈ cocap ·C

⇐⇒ Σ
∗ \L ∈ C& Σ

∗ \L ∈ co ·C

⇐⇒L ∈ co ·C&L ∈ co · co ·C

⇐⇒L ∈ co ·C&L ∈ C

⇐⇒L ∈ cocap ·C.

�

For many operators, it is the case that C ⊆ op ·C for every C, because the definitions of these classes

include an additional certificate or advice string that can be ignored.

PROPOSITION 2.3.3. id ⊆ op, where op = poly ,⊕,BP ,P ,N or exppad .

PROOF. Fix L ∈ C. Then L ∈ op ·C for each possible choice of op:

• If op = poly , take L ′ = L and p(n) = ε for all n ∈ N in the definition of poly ·C.

• If op =⊕,BP ,P , or N , take L ′ = L and p(n) = 0 for all n ∈ N in the definition of op ·C.

• If op = exppad , take L ′ = L and f (n) = ε for all n ∈ N in the definition of exppad ·C.

�

Since the condition L ∈ BP ·C is a strengthening of the condition that L ∈ P ·C, the following is

immediate.

PROPOSITION 2.3.4. BP ≤ P .

-16-

We next consider some commutativity properties.

PROPOSITION 2.3.5. co · op = op · co, where op = BP ,P , or poly .

PROOF. For each of the possible choices of op, the definition of op ·C has the following form:

op ·C := {L ⊆ Σ
∗ : (∃L ′ ∈ C)ψ(L ,L ′)},

where ψ(L ,L ′) is a proposition having the property that

ψ(L ,Σ∗ \L ′)⇐⇒ ψ(Σ∗ \L ,L ′).

Thus,

co · op ·C= {L ⊆ Σ
∗ : (∃L ′ ∈ C)ψ(Σ∗ \L ,L ′)}

= {L ⊆ Σ
∗ : (∃L ′ ∈ C)ψ(L ,Σ∗ \L ′)}

= {L ⊆ Σ
∗ : (∃L ′ ∈ co ·C)ψ(L ,L ′)}

= op · co ·C

for each possible choice of op. �

A similar argument, based on the structure of the definitions of the relevant operators, can be used to

show that poly commutes with ⊕, N , and P .

PROPOSITION 2.3.6. If complexity classes are assumed to be closed under polynomial-time reductions,

then poly · op = op · poly , where op =⊕,N , or P .

PROOF. We say that L ∈ poly · op ·C if there exist L ′ ∈ C, p(n) = O(n∗), and |q(n)|= O(n∗) such that

for every x ∈ Σ∗,

x ∈L ⇐⇒ (Qy ∈ Σ
p(|〈x,q(|x|)〉|))[〈〈x,q(|x|)〉 ,y〉 ∈L ′],

where Q is the quantifier in the definition of the operator that is being considered. Similarly, we say that

L ∈ op · poly ·C if there exist L ′ ∈ C, p(n) = O(n∗), and |q(n)|= O(n∗) such that for every x ∈ Σ∗,

x ∈L ⇐⇒ (Qy ∈ Σ
p(|x|))[〈〈x,y〉 ,q(| 〈x,y〉 |)〉 ∈L ′].

-17-

The condition L ∈ poly ·op ·C is equivalent to the condition that there are L ′ ∈C, p̄∈O(n∗), and q∈ |O(n∗)|

such that for all x ∈ Σ∗,

x ∈L ⇐⇒ (Qy ∈ Σ
p̄(|x|))[〈〈x,q(|x|)〉 ,y〉 ∈L ′].

For instance, if L ∈ poly · op ·C, then we can set p̄(n) = p(N), where N = | 〈x,q(|x|)〉 | for |x|= n. Likewise,

in the conditions for L ∈ op · poly ·C we can replace q with a q̄ so that

x ∈L ⇐⇒ (Qy ∈ Σ
p(|x|))[〈〈x,y〉 , q̄(|x|)〉 ∈L ′].

The rewritten conditions for L ∈ poly · op ·C and L ∈ op · poly ·C are then equivalent to each other because

a mapping between 〈〈x,z〉 ,y〉 and 〈〈x,y〉 ,z〉 is polynomial-time computable. �

PROPOSITION 2.3.7. If complexity classes are assumed to be closed under polynomial-time reductions,

then co ·⊕=⊕· co.

Finally, we consider the properties of the operator C 7→ PC.

PROPOSITION 2.3.8. For any complexity class C,

(1) C⊆ PC;

(2) co ·C⊆ PC;

(3) co ·PC = Pco·C = PC.

PROOF. If L ∈ C and f is the decision function for L , then L ∈ P f ⊆ PC. Hence C⊆ PC. Moreover,

P f is a symmetric class for every f , and so

L ∈ co ·PC⇐⇒ Σ
∗ \L ∈ PC

⇐⇒ (∃ f ∈ C)[Σ∗ \L ∈ P f]

⇐⇒ (∃ f ∈ C)[L ∈ P f]

⇐⇒L ∈ PC,

-18-

and

L ∈ Pco·C⇐⇒ (∃ f ∈ C)[L ∈ P1− f]

⇐⇒ (∃ f ∈ C)[L ∈ P f]

⇐⇒L ∈ PC,

because P f = P1− f for every oracle f . Thus, (1) and (3) are true. (2) then follows immediately, because

C⊆ PC =⇒ co ·C⊆ co ·PC =⇒ co ·C⊆ PC. �

PROPOSITION 2.3.9. For any non-trivial class C that is closed under joins and polynomial-time reduc-

tions, poly ·PC = Ppoly ·C. If C is also closed under polynomial majorities, then BP ·PC = PBP ·C.

PROOF OF FIRST EQUATION. First, we show that it is unconditionally the case that Ppoly ·C ⊆ poly ·PC.

Suppose that L ∈ Ppoly ·C. Then there is a polynomial-time algorithm with f -oracle that computes L , where

f is a decision function for a language L ′ ∈ poly ·C. By the definition of the poly operator, there exists a

language L ′′ ∈ C and an advice function |p(n)|= O(n∗) such that x ∈L ′ if and only if 〈x, p(|x|)〉 ∈L ′′.

Let g indicate the decision function for L ′′. Also, let q(n) = O(n∗) denote the time bound for the P f

algorithm for L , so that the question of whether x ∈L is decided in at most q(|x|) computational steps.

Define P : N→ Σ∗ so that, for each n ∈ N, P(n) is the concatenation p(0)p(1) . . . p(q(n)).

The following algorithm in poly ·Pg decides whether x ∈L :

(1) The advice function is P. Note that |P(n)| = O(n∗), because for sufficiently large n |P(n)| is at

most q(n)|p(q(n))|.

(2) Follow the P f algorithm for L exactly, except when there is an oracle call.

(3) When an oracle call to f occurs with the string y ∈ Σ∗, replace it with an oracle call to f ′ with the

string 〈y, p(|y|)〉. This oracle call is possible because P(|x|) contains the advice strings for all y that

are short enough for the P f algorithm to be able to query the oracle.

Thus, we have L ∈ poly ·Pg ⊆ poly ·PC, and we can conclude that Ppoly ·C ⊆ poly ·PC in all cases.

For the inclusion poly ·PC ⊆ Ppoly ·C, suppose that L ∈ poly ·PC. This means that there exists a P f

algorithm that decides L when provided with some advice function |p(n)|= O(n∗), where f is the decision

function of some L ′ ∈ C. Define g : Σ∗→ Σ according to the following rules:

-19-

• If x = 0〈y,z〉, then g(x) is equal to the zth bit of p(|y|).

• If x = 1y, then g(x) = A(y).

The language L ′′ determined by g is the join of two languages. One, which we will call L ′′
1 , is the set of

all 〈y,z〉 such that the zth bit of p(|y|) is 1; the second language is L ′.

We claim that L ′′ lies in poly ·C. To prove this, it is enough to show that L ′′
1 ∈ P/poly. Then P/poly⊆

poly ·C (we know that P ⊆ C because C is assumed to be nontrivial and closed under polynomial-time

reductions), and L ′ ∈ C⊆ poly ·C, so L ′′ ∈ poly ·C by the hypothesis that C, and therefore poly ·C, is closed

under joins.

To see that L ′′
1 ∈ P/poly, let |P(n)|= O(n∗) be the function defined by the concatenation

P(n) = p(0)p(1) . . . p(n).

Then, given 〈y,z〉, P can be used as an advice function to check whether the zth bit of p(|y|) is 1.

Hence L ′′ ∈ poly ·C. To show that L ∈ Ppoly ·C, we show that L ∈ Pg. The following is a Pg algorithm

for deciding whether x ∈L :

(1) First, extract the advice string p(|x|) from the g-oracle. Make the oracle queries 0〈x, j〉, j≤ |p(|x|)|

until the entirety of p(|x|) has been recorded.

(2) Carry out the rest of the computation according to the poly ·P f algorithm. Replace oracle queries

to f about the string y with oracle queries to g about the string y.

Therefore L ∈ Ppoly ·C, concluding the proof that Ppoly ·C = poly ·PC. �

-20-

CHAPTER 3

The Complexity Zoology Program

In this chapter, we describe the algorithm that Complexity Zoology follows. Here is a high-level de-

scription of the procedure:

(1) Read input: The program parses the plain-text input files (one for classes and one for operators).

(2) Process equalities: The input file contains statements of the form C1= C2, where C1 and C2 are

names for complexity classes. Statements of this form are understood to indicate that the two

classes are equal with respect to every oracle. Complexity Zoology uses the transitivity of equality

to learn which classes are equal and then chooses an official name for each class according to

preferences specified in the input file.

(3) Expand operators: Zoology understands each operator as a partial function on the set of unique

classes in the data set. Using the rules specified in the input file for operators, the program expands

each partial function to be as large as possible.

(4) Deduce: The system applies its list of inference rules to deduce inclusions, oracle separations, and

open problems.

(5) Postprocess: The program prepares the expanded knowledge database for output. In particular,

Complexity Zoology computes the relations that must be shown on the final diagram.

(6) Output: Zoology produces an HTML file with clickable diagrams showing complexity class rela-

tionships in each modal world.

3.1. Input Files and Syntax

Complexity Zoology reads its initial data from two plain text files: one consisting of complexity classes

and their inclusions and oracle separations (classes.txt), and another consisting of complexity class op-

erators and their relations (operators.txt). Both classes and operators must be declared in their respective

files before they can be used. If an undeclared class or operator is used in some inclusion, separation, or

relation, Complexity Zoology will halt and print an error. A declaration consists of a line of text having the

-21-

following form:

NAME : description : keyword1, keyword2, keyword3

Here, NAME is the name by which the class or operator is referenced both internally and in the output. Any

alphanumeric characters, as well as hyphens, can be used for names. The description is a short phrase

used to indicate the nature of the class or operator to a human reader; the program itself does not use the

description. Like names, descriptions should consist of alphanumeric characters and hyphens, although

whitespace is also allowed. Finally, keywords can optionally be included in a declaration. Keywords follow

the same naming rules as class and operator names, and multiple keywords must be separated by commas,

which can be surrounded by any amount of whitespace. If there are no keywords, the second colon must be

omitted.

Keywords are used to provide additional information about the class or operator being declared. Most

often, a keyword is shorthand for commonly arising relations. For example, the class keyword symmetric

is equivalent to including the line C = co.C, where C is the name of the declared class. The following

keywords are defined for complexity classes:

• hidden – The class is suppressed in the final output, but it is still included for the purposes of

calculation and deduction.

• ignore – The class is not included in calculation or output; any relations involving the class are

effectively commented out.

• preferred – If this class is equal to another, this class should be the preferred name.

• preferred[#] – Here, the symbol # should be replaced with a positive integer and indicates

the preference rank of the declared class. When Complexity Zoology chooses a name for equal

complexity classes, it favors those with the smaller preference rank. The preferred keyword is

equivalent to preferred[1].

• symmetric – The class is symmetric in the sense of being equivalent to its complement: for a

complexity class C, this means that C= co ·C relative to every oracle.

For operators, there is currently only one keyword:

• idempotent – Applying the operator to a class a second time has the same effect as applying it

once. This keyword is equivalent to the relation op.op = op.

-22-

Aside from class and operator declarations, the input files also include relations describing what is

(initially) known about the classes and operators. For complexity classes, relations are either statements of

equality, statements of inclusion, or statements of oracle separation. Suppose that C1 and C2 are classes

declared with the names C1 and C2, respectively. Then we have these valid relations:

• C1 = C2↔ CA
1 = CA

2 for every oracle A.

• C1 < C2↔ CA
1 ⊆ CA

2 for every oracle A.

• C1 r< C2↔ CA
1 ⊆ CA

2 with probability 1 for a random oracle A.

• C1 a< C2↔ CA
1 ⊆ CA

2 for every algebraic oracle A.

• C1 t< C2↔ C1 ⊆ C2 relative to the trivial oracle.

• C1 x< C2↔ CA
1 ⊆ CA

2 for some algebraic oracle A.

• C1 o< C2↔ CA
1 ⊆ CA

2 for some oracle A.

• C1 osep C2↔ CA
1 6⊆ CA

2 for some oracle A.

• C1 rsep C2↔ CA
1 6⊆ CA

2 with probability 1 for a random oracle A.

• C1 xsep C2↔ CA
1 6⊆ CA

2 for some algebraic oracle A.

• C1 tsep C2↔ C1 6⊆ C2 relative to the trivial oracle.

• C1 asep C2↔ CA
1 6⊆ CA

2 for every algebraic oracle A.

• C1 sep C2↔ CA
1 6⊆ CA

2 for every oracle A.

For operators op1, op2, op3 and op4 with declared names op1, op1,op1, and op1, respectively, we have these

relations:

• op1.op2 = op3.op4↔ op1 · op2 = op3 · op4. Omitting one of the operators on either side of the

equation is allowed; e.g., op1.op2 = op3, which is interpreted as op1 · op2 = op3. Complexity

Zoology implements this by replacing the missing operator with the identity operator id .

• op1 z= op2↔ op1 and op2 commute. This is equivalent to including the line op1.op2 = op2.op1.

• op1 p= op2 ↔ op2 absorbs op1 on the left and right. This is equivalent to including the lines

op1.op2 = op2 and op2.op1 = op2.

• op1 < op2↔ op1 ≤ op2; i.e., op1 ·C⊆ op2 ·C for every complexity class C.

-23-

For all relations, with the exception of the quadratic operator relations of the form op1.op2 = op3.op4, it

is possible to include multiple classes or operators separated by commas:

C1,C2 = C3,C4,C5

This example is equivalent to including six lines: C1 = C3, C1 = C4, C1 = C5, C2 = C3, C2 = C4, and

C2 = C5.

Lastly, there are two ways to include text that Complexity Zoology will ignore: comments and citations.

Comments consist of the character # followed by all text up to the end of the current line. Citations consist

of text surrounded by square brackets. In the current version of the input files, citations are used both to

refer to this documentation’s bibliography and to annotate common arguments.

3.2. Operator Propagation and Inference

Operators in Complexity Zoology are implemented as partial functions on the set of all distinct com-

plexity classes. Processing of operators occurs after the processing of equality statements, so we can assume

that we have a quotient map q : N → C , where N is the set of all names for complexity classes, C is the

set of all distinct complexity classes, and q(x) = q(y) if and only if x and y are names for the same class. The

system’s understanding of a complexity class operator op is a partial function op : C ⇀ C ; i.e., a function

whose domain is a subset of C that takes values in C . The function that defines op is necessarily a partial

one, because for a given complexity class C, the class op ·C might not be declared in Complexity Zoology’s

data set.

Initially, we assume that the following is true of our operator partial functions:

(1) id (x) = x for all x ∈ C .

(2) If a class x has a name of the form op.y, where y ∈N and op is the name of an operator, then we

set op(q(y)) = x.

Then, the partial functions are expanded according to the quadratic relations specified in the input file. More

specifically, suppose that one such relation is

op1 · op2 = op3 · op4.

Then, the operator partial functions can be expanded according to the following rules:

-24-

(1) If op1(op2(x)) and y = op4(x) are defined, then define op3(y) := op1(op2(x)).

(2) If op3(op4(x)) and y = op2(x) are defined, then define op1(y) := op3(op4(x)).

These rules are applied iteratively until the partial functions can be expanded no further. This process uses

the same task list-based system that is used in the primary inference engine (see Section 3.3).

While the partial functions are expanding, it is possible that Complexity Zoology learns that op(x) = y

and op(x) = z, where y and z are different names for complexity classes. If this occurs, then Complexity

Zoology stops and produces an error, because it is expected that all equalities between complexity classes

are learned through explicit statements in the data file and the transitivity of the equality relation.

3.3. To-do List Inference Algorithm

Both the primary inference engine and the propagation of operator partial functions follow the same

basic procedure. We begin with some database D0, which can be taken to be a set of propositions that are

regarded as true. We also assume that there is a set R of inference rules, which are tuples of the form

ϕ1,ϕ2, . . . ,ϕn ` ψ

for a positive integer n (although for our purposes n≤ 2). The inference algorithm that Complexity Zoology

employs is as follows:

(1) Populate a list L with the propositions in D0, and set D = /0.

(2) While L is nonempty, carry out the steps (3) through (6).

(3) Remove the top proposition ϕ from L.

(4) If ϕ ∈ D, return to step (3).

(5) Add ϕ to the set D.

(6) For each inference rule ϕ1,ϕ2, . . . ,ϕn ` ψ and all ϕ ′1,ϕ
′
2, . . . ,ϕ

′
n−1 ∈ D, check whether some per-

mutation of ϕ,ϕ ′1, . . . ,ϕ
′
n−1 matches ϕ1,ϕ2, . . . ,ϕn. If it does, append ψ to L.

The resulting database D has D0 as a subset and is closed under inference rules. Moreover, this algorithm

eventually terminates, because when a proposition has been removed from L once, it cannot again result in

any additional proposition being appended to L. Thus, the algorithm deduces all logical consequences of the

initial database D0, and it does so faster than the naive approach of repeatedly applying all inference rules

to all the propositions in D until D grows no further.

-25-

3.4. The Logic of Complexity Zoology

Propositions in Complexity Zoology are inclusions of the form C1⊆C2, where C1 and C2 are complexity

classes. Each such inclusion is true or false in a particular world in the sense of modal logic: for a world W ,

we write C1 ⊆W C2 to indicate that the inclusion is true in W . Each world W has a transitive dual W ∗ with

respect to which the following inference rules are true:

C1 ⊆W C2 &C2 ⊆W ∗ C3 =⇒ C1 ⊆W C3,

C1 ⊆W ∗ C2 &C2 ⊆W C3 =⇒ C1 ⊆W C3.

Additionally, there is a partial ordering → on the set of worlds such that if W1 →W2, then the following

inference rule is true:

C1 ⊆W1 C2 =⇒ C1 ⊆W2 C2.

In the current version of Complexity Zoology, there are six worlds:

E←→ every oracle,

A←→ every algebraic oracle,

X ←→ some algebraic oracle,

R←→ the random oracle,

T ←→ the trivial oracle,

O←→ some oracle.

For example, we write C1 ⊆X C2 if C f
1 ⊆ C f

2 for some algebraic oracle f . The worlds E, A, R, and T are all

transitive worlds in the sense that they are their own transitive duals: E∗ = E, A∗ = A, R∗ = R, and T ∗ = T .

On the other hand X∗ = A and O∗ = E.

The remaining inference rules pertain to complexity class operators. For each operator op and world W ,

C1 ⊆W C2 =⇒ op ·C1 ⊆W op ·C2

-26-

is an inference rule. There is also a special pair of inference rules involving the co and cocap operators: for

a complexity class C, cocap ·C is the meet of C and co ·C. For each world W , we have

C1 ⊆W C2 &C1 ⊆W ∗ C2⇐⇒ C1 ⊆W cocap ·C2,

C1 ⊆W ∗ C2 &C1 ⊆W C2⇐⇒ C1 ⊆W cocap ·C2.

This logical framework – the propositions that specify inclusions, the worlds, and the inference rules

– represents the basic knowledge and reasoning of which Complexity Zoology is capable. However, since

the purpose of Complexity Zoology is to partially automate the process of surveying complexity theory, it

requires a formal system that can describe not merely whether a statement is true or false, but whether it is

regarded as proven, disproven, or open. To create such a logic, we introduce a four-valued system consisting

of these values: proven, disproven, not proven, and not disproven. The term “open” will then be applied

to propositions that are both not proven and not disproven. The advantage to this approach is that the rules

of inference are more straightforward to describe than one in which the only logical values are proven,

disproven, and open.

Each of the statements that we have described so far, along with the inference rules, can be formally

expressed in the language of set theory. We assume that there is a set P of inclusion statements and negations

thereof that are regarded as proven. We assume that P is closed under the logical system of Complexity

Zoology. In other words, if CZ is the set of formalized inference rules that Complexity Zoology uses, and if

CZ∪P ` ϕ (ϕ is a logical consequence of CZ∪P), where ϕ is a formalized inclusion of complexity classes,

then ϕ ∈ P. Thus, we regard CZ as a system that is simple enough so that any of its implications from proven

facts should also be regarded as proven.

A formal inclusion ϕ is regarded as proven if it lies in P, disproven if its negation ¬ϕ lies in P, and

open if it is neither proven nor disproven. Also, a statement is also sometimes called provable if it is not

-27-

disproven and disprovable if it is not proven. We use the following notation:

P(ϕ)←→ ϕ is proven,

D(ϕ)←→ ϕ is disproven,

p(ϕ)←→ ϕ is provable,

d(ϕ)←→ ϕ is disprovable,

O(ϕ)←→ ϕ is open.

Complexity Zoology’s data set is a partial description of the set P in the form of a list of statements that are

proven, disproven, or open. Complexity Zoology then attempts to deduce as much as it can about which

inclusions are proven, disproven, or open. Complexity Zoology has no understanding of complexity theory

as such; its strength is in organizing the state of knowledge in the field – that is, Complexity Zoology is an

expert at surveying complexity theory, not in complexity theory itself.

Internally, Complexity Zoology represents propositions as a quadruple

(status,world,C1,C2),

where the status is either proven, disproven, provable, or disprovable; the quadruple is interpreted as “the

inclusion C1 ⊆ C2 has the specified status in the specified world.” Then, from the base inference rules of the

system CZ, we generate the full set of inference rules as follows:

(1) For any formalized inclusion ϕ , P(ϕ) =⇒ p(ϕ) and D(ϕ) =⇒ d(ϕ).

(2) If ϕ1 & · · ·& ϕn =⇒ ψ is an inference rule (n = 1 or 2 in Complexity Zoology), then

P(ϕ1)& · · ·& P(ϕn) =⇒ P(ψ).

(3) The partial involutions (P 7→D 7→ P) and (P 7→ d 7→ P,D 7→ p 7→D) are implication-reversing. For

example, if P(ϕ) =⇒ P(ψ), then D(ψ) =⇒ D(ϕ), and if

P(ϕ1)& · · ·& P(ϕn) =⇒ P(ψ),

-28-

then

P(ϕ1)& · · ·& P(ϕn−1)& d(ψ) =⇒ d(ϕn).

To see one possible rule, if CA
1 ⊆ CA

2 for every oracle A and CA
1 6⊆ CA

3 for some oracle A, then CA
2 6⊆ CA

3 for

some oracle A. In our notation,

P(C1 ⊆E C2)& D(C1 ⊆E C3) =⇒ D(C2 ⊆E C3).

3.5. Extremal Unknowns

Identifying key missing information is an important part of the survey process. Complexity Zoology

has the capacity to identify a subset of unknown inclusions that are sufficient to decide all other unknowns.

To be precise, recall that an inclusion C1 ⊆W C2 can exist in one of three possible states: proven, disproven,

or open. However, since Complexity Zoology’s data set is incomplete, it is possible that the system cannot

infer which of the three possibilities applies to a given inclusion. When this occurs, we say that the inclusion

is unknown, not to be confused with the inclusion being open. In short, to say that an inclusion is open is to

say that it does not have a known proof or disproof, while to say that an inclusion is unknown means that

Complexity Zoology itself does not know the status. We denote an unknown inclusion by C1
?
⊆W C2.

Ideally, we would like to complete the data set so that there are no unknown inclusions. However, this

is a process that potentially involves a great deal of redundancy, since listing a formerly unknown inclusion

as proven (for example) may decide several other unknown inclusions. Therefore, it is helpful to identify a

subset of unknown inclusions that are sufficient to decide all others. We refer to these as extremal unknowns.

A most likely extremal unknown is, roughly, an unknown inclusion that, if it were listed as proven,

would not result in any other inclusions being listed as proven. Complexity Zoology considers extremal

unknowns separately for each of the worlds, and for simplicity inference rules involving multiple worlds

or involving operators are not considered. Thus, the only inference rules that are relevant to determining

whether Complexity Zoology considers an unknown inclusion to be a most likely extremal are

p(C1 ⊆W C2)& p(C2 ⊆W ∗ C3) =⇒ p(C1 ⊆W C3),

p(C1 ⊆W C2)& p(C2 ⊆W ∗ C3) =⇒ p(C1 ⊆W C3),

-29-

where W is the world under consideration and W ∗ is the transitive dual. In testing whether an unknown

inclusion C1
?
⊆W C2 is a most likely extremal, Complexity Zoology tests whether there exists a third class

C3 that is distinct from C1 and C2 in W satisfying one of the following two conditions:

C1
?
⊆W C3 & p(C2 ⊆W ∗ C3),

C3
?
⊆W C2 & p(C3 ⊆W ∗ C1).

If such a C3 exists, then the system concludes that the unknown is not most likely extremal.

Similarly, a least likely extremal unknown is intended to be an unknown inclusion that, if listed as

disproven, would not result in any other unknown inclusions being decided as disproven. In this case, the

relevant inference rules are

d(C1 ⊆W C2)& p(C3 ⊆W ∗ C2) =⇒ p(C1 ⊆W C3),

d(C1 ⊆W C2)& p(C1 ⊆W ∗ C3) =⇒ p(C3 ⊆W C2).

Complexity Zoology checks whether a given unknown inclusion C1
?
⊆W C2 is a least likely extremal by

checking whether there exists a class C3 that is distinct from C1 and C2 in W and satisfies at least one of the

following:

C1
?
⊆W C3 & p(C3 ⊆W ∗ C2),

C3
?
⊆W C2 & p(C1 ⊆W ∗ C3).

Complexity Zoology lists extremal unknowns of both types for each world. It also specifies whether each

extremal is provable, disprovable, or completely unknown (neither provable nor disprovable).

PROPOSITION 3.5.1. Deciding the extremal unknowns is sufficient to decide all the unknowns for a

world.

The unknowns that Complexity Zoology has identified as extremal have resulted in several interesting

questions. (Examples are given in the introduction.) They have also been extremely useful in filling in large

portions of the data very quickly. In particular, a disproof for a most likely inclusion or a proof for a least

likely inclusion tend to settle many other unknowns.

-30-

3.6. Output

The output of Complexity Zoology is an HTML file that displays the logical consequences of the infor-

mation in the input file. The ouput shows a diagram for each world W that indicates the distinct classes in

W and the relationships between them. The current version of the Complexity Zoology output file can be

found at https://www.math.ucdavis.edu/~rjs/zoology.html.

Each of the six worlds that Complexity Zoology understands can be viewed in the output file. For

each world W , there is a diagram for the transitive dual W ∗ indicating the inclusions that are true in W ∗.

A black arrow from C1 to C2 indicates that C1 ⊆W ∗ C2 and co ·C1 ⊆W ∗ C2, a blue arrow indicates that

C1 ⊆W ∗ C2, a red arrow indicates that co ·C1 ⊆W ∗ C2, and a green arrow indicates that cocap ·C1 ⊆W ∗ C2.

Complexity Zoology draws the fewest arrows necessary to describe the structure of W ∗. Specifically, the

system describes whether an arrow should be drawn from C1 to C2 according to the following rules:

(1) Let C1 ≤1 C2 denote the relation “C1 ⊆W ∗ C2 or co ·C1 ⊆W ∗ C2.” Let C1 ≤2 C2 denote the relation

cocap ·C1 ⊆W ∗ C2. Denote the Hasse relation of ≤ j by ≤′j so that, for example, C1 ≤′1 C2 indicates

that C1 ≤ C2 and there is no C3 distinct from C1 and C2 such that C1 ≤1 C3 ≤ C2.

(2) An arrow is drawn from C1 to C2 if and only if C1 ≤′1 C2 or C1 ≤′2 C2.

(3) Suppose that, by (2), an arrow is to be drawn from C1 to C2. If C1 ⊆W ∗ C2 and co ·C1 ⊆W ∗ C2,

color the arrow black. If C1 ⊆W ∗ C2 but not co ·C1 ⊆W ∗ C2, color the arrow blue. If co ·C1 ⊆W ∗ C2

but not C1 ⊆W ∗ C2, color the arrow red. If the arrow is not to be colored black, blue, or red, then

color the arrow green.

So far, the diagrams for W and its transitive dual W ∗ are identical. They are distinguished by the fact

that they are active diagrams: by clicking on the node in the diagram corresponding to the class C1, all nodes

in the diagram are colored. Assuming the node for a first class C1 has been clicked, the node for a second

class is colored in as follows:

• The color of the left side of the node indicates the status of C1 ⊆W C2.

• The color of the right side of the node indicates the status of co ·C1 ⊆W C2.

• The color of the middle of the node indicates the status of cocap ·C1⊆W C2. (If the status of C1⊆C2

or co ·C1 ⊆ C2 implies the status of cocap ·C1 ⊆ C2, then there is no middle color, and only the left

and right halves of the node are colored.)

-31-

Green indicates that the inclusion has been proven, red indicates that the inclusion has been disproven,

yellow indicates that the inclusion is open, and gray indicates that the status of the inclusion is unknown to

Complexity Zoology. Different shades of gray are used to indicate the type of unknown: green-tinted for

provable, red-tinted for disprovable, and untinted for completely unknown.

Finally, a table below the diagram lists alternate names for each complexity class in W ∗. In other

words, for each class C1 that appears in the diagram, the table lists classes C1 for which C1 ⊆W ∗ C2 and

C2 ⊆W ∗ C1. Complexity Zoology uses its internal hierarchy of preferred names to determine which name

for a complexity class should appear in the diagram, choosing arbitrarily between the possibilities having

equal preference.

-32-

FIGURE 3.1. A sample diagram in the “all oracles” world in which NP is selected. The
blue node is selected, a green node indicates that the selected class lies inside the node’s
class, and a red node indicates that the selected class does not lie inside the node’s class.
The color on the left side of a node corresponds to the class written in the bubble, while the
color on the right corresponds to the complement of the written class. Blue arrows denote
containment, while black arrows denote symmetric containment.

-33-

CHAPTER 4

Complexity Theory Results

What follows is a survey of complexity theory that has been aided by the Complexity Zoology software.

It is similar in structure to Scott Aaronson’s Complexity Zoo, although with a much smaller collection of

complexity classes. The role of the software in producing this software has been threefold: it has identified

unanswered questions most useful to creating a complete picture of the field, it has highlighted redundant

information that is the logical consequence of other data, and it has provided a high-level view of the current

state of knowledge.

Where possible, redundant data has been removed from the survey, although it is occasionally left in

when it represents a particularly notable or foundational result. Results are explained in varying levels of

detail with the intent of both providing a roadmap of complexity theory and illustrating some key arguments

and frequently used techniques. It is hoped that this overview demonstrates the usefulness of a computer-

assisted approach to compiling knowledge about the relationships between complexity classes.

4.1. Simplified Version

We begin by considering a simplified version of our survey. In this version, there are just 17 complexity

classes, and we will mostly examine their relationships in the world of all oracles.

4.1.1. Complexity Classes. The classes in this mini-survey are listed here in alphabetical order, with

definitions for each.

• ALL: The class of all languages. Naturally, ALL f = {L : L ⊆ Σ∗} for every oracle f .

• AM: The class of languages computable by the Arthur-Merlin protocol. Merlin is a prover who

wants to convince the verifier, Arthur, that an input x lies in the language L . Merlin knows at the

outset whether x ∈L and can make any argument, but he is also biased: he wishes to convince

-34-

Arthur that x ∈L regardless of whether this is actually true. Arthur, meanwhile, is a polynomial-

time classical computer. Arthur may use randomness in his calculations, but the results of his coin

tosses are known to Merlin in advance.

A language L is said to be in AM if, when x ∈L , Merlin can convince Arthur of this fact

with probability ≥ 2/3, while if x 6∈ L , then Merlin cannot convince Arthur that x ∈ L with a

probability of more than 1/3. Formally, L ∈ AM f if and only if there exists a polynomial-time

Turing machine M with f -oracle and functions p(n),q(n) = O(n∗) such that for every x ∈ Σ∗,

x ∈L =⇒ Pr
y∈Σp(|x|)

[(∃z ∈ Σ
q(|x|))[M(x,y,z) = 1]]≥ 2/3,

x 6∈L =⇒ Pr
y∈Σp(|x|)

[(∃z ∈ Σ
q(|x|))[M(x,y,z) = 1]]≤ 1/3.

• BPP: The class of languages computable in polynomial time, with randomness. We can model

BPP with a special probabilistic Turing machine capable of making coin tosses as part of its com-

putation. Alternatively, we can make coin tosses in advance and supply the result to a deterministic

Turing machine as an ancillary string along with the input. Formally, L ∈ BPP f if and only if

there exists a polynomial-time Turing machine M with f -oracle and a function p(n) = O(n∗) such

that for every x ∈ Σ∗,

Pr
y∈Σp(|x|)

[M(x,y) = L (x)]≥ 2/3.

• BQP: The class of languages computable in polynomial time by a quantum computer. Formally,

this means that languages in BQP are computable by a polynomially sized family of quantum

circuits. As discussed in Subsection 2.1.4, this family must be uniform.

• BQP/qpoly: BQP with quantum polynomial advice. This class consists of languages that can

be computed by a polynomial-time quantum computer with polynomial-length quantum advice.

Quantum advice is a string of qubits that depends only on the length of the input; the qubits are

allowed to be in a state of superposition.

• EXP: The class of languages computable in exponential-time. Formally, L ∈ EXP f if there exists

an oracle Turing machine M with f -oracle that computes L in T (n)-time with T (n) = O(2p(n)),

where p(n) = O(n∗).

-35-

• MA: The class of languages computable using the Merlin-Arthur protocol. This is identical to the

Arthur-Merlin protocol, except Arthur’s coin tosses are unknown to Merlin. Formally, L ∈MA f if

there exists a polynomial-time Turing machine M with f -oracle and functions p(n),q(n) = O(n∗)

such that for every x ∈ Σ∗,

x ∈L =⇒ (∃z ∈ Σ
q(|x|))

[
Pr

y∈Σp(|x|)
[M(x,y,z) = 1]≥ 2/3

]
,

x 6∈L =⇒ (∀z ∈ Σ
q(|x|))

[
Pr

y∈Σp(|x|)
[M(x,y,z) = 1]≤ 1/3

]
.

• NP: The class of languages that can be computed by a non-deterministic algorithm in polynomial-

time. We replace the usual notion of a Turing machine with that of a non-deterministic Turing

machine with two transition functions. Thus, instead of the computational process consisting of a

sequence of configurations, it consists of a tree of configurations. Then L ∈ NP precisely when

if x ∈ L , there is a path in the tree that accepts the input, while if x 6∈ L , all paths reject. NP

can also be defined using deterministic Turing machines with certificates: formally, L ∈ NP f if

and only if there exist a polynomial-time oracle Turing machine M with f -oracle and a function

p(n) = O(n∗) such that for every x ∈ Σ∗,

x ∈L ⇐⇒ (∃y ∈ Σ
p(|x|))[M(x,y) = 1].

• P: The class of languages that can be computed by a polynomial-time Turing machine (or an oracle

Turing machine with f -oracle in the case of P f). A polynomial-time Turing machine is one that,

on an input of length n, terminates within T (n) steps, where T (n) = O(n∗).

• P#P: P with #P-oracle. This class consists of languages computable in polynomial time with an

oracle f that lies in the function class #P. For a pair (M, p) consisting of a polynomial-time Turing

machine M and a function p(n) = O(n∗), set

Y(M,p) = {y ∈ Σ
p(|x|) : M(x,y) = 1}.

Then, g : Σ∗→ Σ∗ lies in #P f if and only if there exists a pair (M, p) such that g(x) = |Y(M,p)| for

every x ∈ Σ∗. Now define (P#P) f =
⋃

g∈#P f Pg.

-36-

• PH: The polynomial hierarchy. For an oracle f , define Σ0P
f = P f . Then, for each j ∈ N, set

Σ j+1P
f = NPΣ jP

f
. Finally, define PH =

⋃
∞
j=0 Σ jP

f . We also define Π jP
f and ∆ jP

f by Σ0P
f =

∆0P
f = P f and Π jP

f = coNPΣ j−1P
f
, ∆ jP

f = PΣ j−1P
f

for j ≥ 1.

• PP: Like BPP, a class of polynomial-time computable languages, with randomness. The defining

condition of PP is weaker than that of BPP, requiring only that if an input x lies in the language, a

probabilistic Turing machine obtains the correct answer with a probability of at least 1/2. Formally,

L ∈ PP f if and only if there exists a polynomial-time Turing machine M with f -oracle and a

function p(n) = O(n∗) such that for every x ∈ Σ∗,

x ∈L ⇐⇒ Pr
y∈Σp(|x|)

[M(x,y) = 1]≥ 1/2.

• P/poly: P with polynomial advice. An advice string is a fixed string yn that accompanies an

input of length n. Being polynomial advice means that the function n 7→ |yn| is O(n∗). Formally,

L ∈ (P/poly) f if and only if there exist a polynomial-time oracle Turing machine M with f -oracle

and a function g : N 7→ Σ∗, where |g(n)|= O(n∗), such that for every x ∈ Σ∗,

x ∈L ⇐⇒M(x,g(|x|)) = 1.

Equivalently, P/poly is the class of languages that can be computed by a non-uniform family of

polynomial-size classical circuits (see Subsection 2.1.3).

• PSPACE: The class of languages that are polynomial-space computable. For a function T :N→N,

L ∈ SPACE(T (n)) f if and only if there exist an oracle Turing machine M with f -oracle that

computes L and a constant C such that, when x ∈ Σ∗ is given as an input to the machine, there are

at most CT (|x|) cells of each tape that are ever written onto during the computation. Then, define

PSPACE f =
⋃

∞
k=0SPACE(n

k) f . We adopt the convention that the space limitation of PSPACE f

applies to the oracle tape as well, so that oracle calls are limited to a polynomial of the length of

the input.

• QAM: The class of languages using the quantum Arthur-Merlin protocol. The definition is similar

to AM f , except M is a polynomial-time quantum computer with f -oracle rather than a classical

computer, and Merlin is an all-powerful quantum-computer capable of computing any system of

-37-

qubits. Arthur sends Merlin a random string of classical bits, Merlin responds with a polynomial-

length quantum message, and then Arthur uses the random bits along with Merlin’s message to

decide whether to accept or reject the input.

• QMA: The class of languages using the quantum Merlin-Arthur protocol. The definition is the

same as MA f , except M is a polynomial-time quantum computer with f -oracle rather than a clas-

sical computer, and Merlin is an all-powerful quantum-computer. Arthur and Merlin exchange

messages in the form of systems of qubits rather than classical bit strings.

• SZK: Traditionally defined as the class of languages that can be computed using a statistical zero-

knowledge proof protocol, SZK can be defined in a simpler way using a special case of this proto-

col. We call the special case the rhetorical question protocol. This is similar to the Arthur-Merlin

protocol, except that Arthur’s message to Merlin consists of a question for which Arthur has pri-

vately computed a correct answer. Arthur accepts the input if and only if Merlin’s response matches

Arthur’s correct answer. Formally, L ∈ SZK f if and only if there exist a polynomial-time oracle

Turing machine M with f -oracle and a function p(n) = O(n∗) such that for all x ∈ Σ∗,

x ∈L =⇒ (∃P ∈M)

[
Pr

y∈Σp(|x|)
[P(x,M(x,y,0)) = M(x,y,1)]≥ 2/3

]
,

x 6∈L =⇒ (∀P ∈M)

[
Pr

y∈Σp(|x|)
[P(x,M(x,y,0)) = M(x,y,1)]≤ 1/3

]
,

where

M = {P : Σ
∗→ Σ

∗ : (∃q(n) = O(n∗))[P(x) ∈ Σ
q(|x|)]}.

See Subsection 4.2.79 for a discussion of the relationship between this definition of SZK and a

more conventional definition.

4.1.2. Inclusions. To establish the overall structure of the relationships between these 17 complexity

classes, we first establish which inclusions are relativizing – i.e., which inclusions hold for every oracle.

To that end, we identify the symmetric classes, by which we mean the classes C such that C = co ·C with

respect to every oracle. This will allow us to easily strengthen many of the inclusions described here.

For example, knowing that P is symmetric and that P ⊆ NP for every oracle allows us to conclude that

P⊆ cocap ·NP= NP∩ coNP with respect to every oracle.

-38-

It is immediate that P is symmetric, because a polynomial-time computer can simply swap its output α

with 1−α . The computer can still perform this operation if it is quantum, exponential-time, polynomial-

space, or has access to a #P-oracle, so BQP, EXP, PSPACE, and P#P are likewise symmetric. A computer

receiving advice strings does not affect this capacity, so P/poly and BQP/poly are symmetric as well. As

was shown in Section 2.3, the operators BP and P commute with co. Since BPP= BP ·P and PP= P ·P, it

follows that BPP and PP are symmetric. Of course, ALL is clearly symmetric.

PH is symmetric, because PH=
⋃

∞
k=0 ΣkP=

⋃
∞
k=0 ΠkP. More explicitly:

LEMMA 4.1.1. For every k ∈ N, ∆kP⊆ ΣkP, ∆kP⊆ΠkP, ΣkP⊆ ∆k+1P, and ΠkP⊆ ∆k+1P.

PROOF. In the case that k = 0, ∆kP ⊆ ΣkP because both classes are equal to P. If k > 0, then ∆kP ⊆

PΣk−1P⊆NPΣk−1P = ΣkP. Since ∆kP is a symmetric class (being P with an oracle), it follows that ∆kP⊆ΠkP

for every k.

For the second pair of inclusions, ∆kP ⊆ PΣkP = ∆k+1P, and then ΠkP ⊆ ∆k+1P likewise follows from

the symmetry of ∆k+1P. �

SZK is a symmetric class:

THEOREM 4.1.1 (Okamoto, [Oka00]). SZK= co ·SZK with respect to any oracle.

Next we discuss which complexity classes are subsets of each other relative to every oracle. We consider

a minimal generating set of inclusions, which in this context means that all the inclusions will be Hasse

relative to the 17 classes we are considering. In other words, we do not need to prove P⊆MA because this

follows from P⊆ NP and NP⊆MA.

P ⊆ BPP and P ⊆ NP are true because both BPP and NP are polynomial-time classes, but with addi-

tional powers that can be ignored: to simulate P with BPP, make no coin tosses; to simulate P with NP,

discard the certificate. Alternatively both inclusions can be said to follow from the properties in Section 2.3,

since BPP= BP ·P and NP= N ·P. Similarly, BQP⊆ BQP/qpoly.

As was mentioned during the discussion on the pseudo-operator Q in Section 2.3, a quantum computer

can perform the same operations as a classical computer (possibly with the aid of ancillary qubits). This

applies to probabilistic classic computers as well as deterministic ones, because a coin flip can be simulated

by measuring the qubit 1√
2
(|0〉+ |1〉). Hence BPP ⊆ BQP. By the same principle, P/poly ⊆ BQP/qpoly,

MA⊆ QMA, and AM⊆ QAM.

-39-

The inclusion BPP ⊆ MA is straightforward: in the definition of MA, the verifier is a probabilistic

polynomial-time Turing machine that must reach the correct answer with a probability of at least 2/3. Thus,

a protocol in which Arthur ignores Merlin and performs his own computations is an an MA-protocol that

computes a problem in BPP. The same argument also shows that BQP ⊆ QMA. Similarly, BPP ⊆ SZK.

While our definition of SZK requires that Arthur bases his conclusion on the response given by Merlin,

Arthur can effectively “ignore” Merlin by either telling Merlin the correct answer (if Arthur wants to accept

the input) or generating a random string as the correct answer and sending a blank message to Merlin (if

Arthur wants to reject the input).

BPP can be derandomized, allowing it to be placed inside P/poly.

THEOREM 4.1.2 (Adleman, [Adl78]). BPP⊆ P/poly relative to every oracle.

PROOF. Let L ∈ BPP. The class BPP is subject to an error-reducing procedure: by running sev-

eral copies of a BPP-machine in parallel and taking the “majority vote” of the machines, we can obtain

the correct answer with a higher probability. Using this technique, we can suppose that there exists a

polynomial-time Turing machine M and a function p(n) = O(n∗) such that for every x ∈ Σ∗,

Pr
y∈p(|x|)

[M(x,y) 6= L (x)]≤ 1/2|x|+1.

Equivalently, for every x ∈ Σ∗ there are at most 2p(|x|)−|x|−1 strings y ∈ Σp(|x|) such that M(x,y) 6= L (x). For

x ∈ Σ∗, set

Bx = {y ∈ Σ
p(|x|) : M(x,y) 6= L (x)},

and for n ∈ N, set

Bn =
⋃

x∈Σn

Bx.

Bn is the set of “bad advice” for an input of length n. Now

|Bn| ≤ Σ|x|=n|Bx| ≤ Σ|x|=n2p(n)−n−1 = 2n2p(n)−n−1 = 2p(n)−1 < 2p(n) = |Σp(n)|,

so the set Σp(n) \Bn is nonempty for every n. Thus, there exists a function f : N→ Σ∗ such that f (n) ∈

Σp(n) \Bn for every n. We therefore have that for each x ∈ Σ∗,

M(x, f (|x|)) = L (x),

-40-

so L ∈ P/poly as desired. �

The fact NP⊆MA follows from the observation that replacing the definition of MA with a deterministic

Turing machine is precisely the definition of NP.

We now consider the relationship between AM and MA. To do this, we introduce related (and seemingly

different) classes AM[k] for integers k ≥ 2. This represents the Arthur-Merlin protocol with k rounds.

DEFINITION 4.1.1. A k-round Arthur-Merlin protocol is an interaction (V,P)k between a probabilistic

Turing machine V , representing Arthur, and a function P : Σ∗ → Σ∗, representing Merlin. Given an input

x ∈ Σ∗, Arthur computes a message m1 and sends it, along with the random bits y1 used in the computation,

as a string α1 = 〈m1,y1〉 to Merlin. Merlin responds with a string α2 that is limited in length by a polynomial

in |x|. Arthur sends a new message α3 = 〈m3,y3〉, Merlin responds with α4, and so on, until the sequence

(α1, . . . ,αk) has been generated. Then Arthur deterministically computes V (α1, . . . ,αk) to decide whether

to accept the input. We denote the result by out(V,P)k
(x).

A language L lies in AM[k] if and only if there exists a polynomial-time Turing machine V such that

for every x ∈ Σ∗,

x ∈L =⇒ (∃P ∈M)Pr[out(V,P)k
(x) = 1]≥ 2/3,

x 6∈L =⇒ (∀P ∈M)Pr[out(V,P)k
(x) = 1]≤ 1/3,

where

M = {P : Σ
∗→ Σ

∗ : (∃q(n) = O(n∗))[P(x) ∈ Σ
q(|x|)]}.

With this definition, we obtain AM= AM[2]. Moreover, Arthur can imitate the Merlin-Arthur protocol

within a 3-round Arthur-Merlin protocol: after sending his message to Merlin and receiving a response,

Arthur makes his final computation with a fresh set of random bits. These bits are sent to Merlin, but since

Merlin cannot send a second response, these random bits are effectively private. Hence MA⊆ AM[3].

As it turns out, however, adding extra rounds to an Arthur-Merlin protocol does not change the compu-

tational power of AM:

THEOREM 4.1.3 (Babai, [Bab85]). AM[k+1]⊆AM[k] with respect to any oracle for all integers k≥ 2.

-41-

AM[2] ⊆ AM[3] ⊆ AM[4] ⊆ . . ., since Arthur can choose to ignore the later rounds of his interaction

with Merlin. Hence AM= AM[k] for every k.

As an immediate corollary of MA ⊆ AM[3] and the above theorem, we deduce MA ⊆ AM. These

arguments are not affected if Arthur is quantum rather than classical, so we also have QMA ⊆ QAM.

Okamoto [Oka00] showed that SZK could be characterized by a constant-round protocol with a public-

coin Arthur; it follows that SZK⊆ AM.

To see that AM⊆ PH, we need an alternate characterization of PH:

LEMMA 4.1.2. For every language L ⊆ Σ∗, L ∈ ΣkP if and only if there exists a polynomial-time

Turing machine M and p1(n), . . . , pk(n) = O(n∗) such that for all x ∈ Σ∗,

x ∈L ⇐⇒ (Q1y1 ∈ p1(|x|)) . . .(Qkyk ∈ pk(|x|))[M(x,y1, . . . ,yk) = 1],

where Q j is ∃ when j is odd and ∀ when j is even.

PROOF. Denote this alternative version of ΣkP by Σ̄kP, and denote Π̄nP = co · Σ̄kP. If k = 0, then

Σ0P= Σ̄0P= P. Thus, we can suppose for induction that Σk+1P= Σ̄k+1P. We have

Σ̄k+1P= N · Π̄kP= N ·ΠkP⊆ N ·PΠkP = N ·PΣkP = NPΣkP = Σk+1P,

so it suffices to show that Σk+1P⊆ Σ̄k+1P.

Suppose L ∈ Σk+1P. Then there exists a polynomial-time Turing machine M with f -oracle, where

f ∈ ΣkP, and a function p(n) = O(n∗) such that

(4.1) x ∈L ⇐⇒ (∃y ∈ Σ
p(|x|))[M(x,y) = 1]

for every x ∈ Σ∗. On an input 〈x,y〉, the machine makes q(|x|) oracle calls, where q(n) = O(n∗). Let M′ be

the polynomial-time Turing machine such that M′(x,y,a1, . . . ,aq(|x|)) computes M(x,y) when a1, . . . ,aq(|x|)

are given as oracle replies. Then (4.1) can be written as

(4.2) x ∈L ⇐⇒ (∃y ∈ Σ
p(|x|),a1, . . . ,aq(|x|) ∈ Σ

q(|x|))[M′(x,y,a1, . . . ,aq(|x|))& a1, . . . ,aq(|x|) are correct].

”Correct” means that, if M queries the oracle with z, the oracle responds with f (z). It is enough to show

that “a1, . . . ,aq(|x|) are correct” is a Σ̄k+1P predicate, because then the entire right side of (4.1.2) is a Σ̄k+1P

-42-

predicate. To see that this is the case, note that given x, y, and a1, . . . ,aq(|x|), we can complete the queries

z1, . . . ,zq(|x|) given to the oracle in polynomial time (let M′ run, and then record the oracle queries as they

occur). Then “a1, . . . ,aq(|x|) are correct” is equivalent to

q(|x|)∧
j=1

[A(z j) = a j],

which is a conjunction of O(|x|∗)-many Σ̄k+1P predicates (specifically, (z j)= 1 is a Σ̄k predicate, and f (z j)=

0 is a Π̄k predicate) and therefore a Σ̄k+1P predicate itself. Hence L ∈ Σ̄k+1P as desired. �

We also need the following result:

THEOREM 4.1.4 (Sipser-Gàcs-Lautemann). If L ∈ BP ·C for a complexity class C, there exist L ′ ∈ C

and functions p(n),q(n) = O(n∗) such that

x ∈L ⇐⇒ (∃u1, . . . ,up(|x|) ∈ Σ
q(|x|))(∀r ∈ Σ

q(|x|))

[
p(|x|)∨
j=1

〈
x,r+2 u j

〉
∈L ′

]
,

where +2 denotes entrywise addition modulo 2.

PROOF. Let L ∈ BP ·C. By the same error-reduction procedure used in the proof of BPP ⊆ P/poly,

there exists a language L ′ ∈ C and a function p(n) = O(n∗) such that for every x ∈ Σ∗,

x ∈L =⇒ Pr
y∈Σp(|x|)

[〈x,y〉 ∈L ′]≥ 1−2−|x|,(4.3)

x 6∈L =⇒ Pr
y∈Σp(|x|)

[〈x,y〉 ∈L ′]≤ 2−|x|.(4.4)

For each x ∈ Σ∗, set

Ax = {y ∈ Σ
p(|x|) : 〈x,y〉 ∈L ′}.

Then (4.3) and (4.4) can be rewritten as

x ∈L =⇒ |Ax| ≥ 2p(|x|)(1−2−|x|),(4.5)

x 6∈L =⇒ |Ax| ≤ 2p(|x|)−|x|.(4.6)

-43-

Now for m ∈ N, S⊆ Σm, and u ∈ Σm, set

S+2 u = {y+2 u : y ∈ S}.

Note that for any n ∈ N, if S ⊆ Σp(n) satisfies |S| ≤ 2p(n)−n, then for any u1, . . . ,uk ∈ Σp(n) with k < 2n, we

have ∣∣∣∣∣ k⋃
j=1

(S+2 u j)

∣∣∣∣∣≤ k

∑
j=1
|S+2 u j|= k|S| ≤ k2p(n)−n < 2p(n),

so that
⋃k

j=1(S+2 u j) 6= Σp(|x|). In particular, if we set q(n) = dp(n)/n)e+1 for every n ∈ N (we will need

the fact that p(n)< nq(n) shortly), then it follows from (4.6) that

(4.7) x 6∈L =⇒ (∀u1, . . . ,uq(|x|) ∈ Σ
p(|x|))

[
q(|x|)⋃
j=1

(Ax +2 u j) 6= Σ
p(|x|)

]
.

On the other hand, suppose that S⊆ Σp(|x|) satisfies |S| ≥ 2p(n)(1−2−n). Let u1, . . . ,uq(n) ∈ Σp(n) be chosen

uniformly randomly. Then r +2 u j is also randomly chosen for any particular r, and we can compute as

follows:

Pr

[
q(n)⋃
j=1

(S+2 u j) 6= Σ
p(n)

]
= Pr

[
(∃r ∈ Σ

p(n))

[
r 6∈

q(n)⋃
j=1

(S+2 u j)

]]

= Pr

[
(∃r ∈ Σ

p(n))

[
q(n)∨
j=1

r 6∈ S+2 u j

]]

= Pr

[
(∃r ∈ Σ

p(n))

[
q(n)∨
j=1

r+2 u j 6∈ S

]]

= Pr

[
q(n)∨
j=1

u j 6∈ S

]
=

q(n)

∏
j=1

Pr[u j 6∈ S]≤
q(n)

∏
j=1

2−n = 2−nq(n) < 2−p(n) < 1.

Hence Pr[
⋃q(n)

j=1(S+2 u j) = Σp(n)]> 0, and so it follows from (4.5) that

(4.8) x ∈L =⇒ (∃u1, . . . ,uq(|x|) ∈ Σ
p(|x|))

[
q(|x|)⋃
j=1

(Ax +u j) = Σ
p(|x|)

]
.

(4.7) and (4.8) together are equivalent to the desired result. �

COROLLARY 4.1.1. AM⊆Π2P with respect to every oracle.

-44-

PROOF. The definition of AM gives AM = BP ·NP and hence co ·AM = BP · coNP. Thus, by the

previous theorem, for L ∈ co ·AM there exist L ′ ∈ coNP and p(n),q(n) = O(n∗) such that

x ∈L ⇐⇒ (∃u1, . . . ,up(|x|) ∈ Σ
q(|x|))(∀r ∈ Σ

q(|x|))

[
p(|x|)∨
j=1

〈
x,r+2 u j

〉
∈L ′

]

for every x ∈ Σ∗. It follows that L ∈ Σ2P by the quantifier definition of Σ2P. Therefore, co ·AM⊆ Σ2P. �

We next have QMA⊆ PP [Vya03] with respect to every oracle. In fact, QMA⊆ A0PP, where A0PP⊆

PP is a class defined as follows: for L ⊆ Σ∗, we say L ∈ A0PP if and only if there exist functions

f ,g : Σ∗→ Σ∗, where g is polynomial-time computable and

f (x) = |{y ∈ Σ
p(|x|) : M(x,y) = 1}|− |{y ∈ Σ

p(|x|) : M(x,y) = 0}|

for a polynomial-time Turing machine M and p(n) = O(n∗), such that for every x ∈ Σ∗,

x ∈L =⇒ f (x)> g(x),

x 6∈L =⇒ f (x)< g(x)/2.

We now consider the class P#P. #P can be considered to be the function class analogue of PP in the same

way that FP, the class of polynomial-time computable functions, is the function class analogue of P. In

general, including a P-oracle in a computational process is equivalent to including an FP-oracle, because

with a P-oracle one can determine the output f (x) of a function f ∈ FP by successively computing each bit

of f (x). Similarly, a PP-oracle can be used to determine each bit of the output of a function in #P, thereby

simulating a #P-oracle. Hence P#P = PPP. It follows that PP⊆ P#P (this only requires the straightforward

direction PPP ⊆ P#P).

P#P also contains the polynomial hierarchy:

THEOREM 4.1.5 (Toda, [Tod91]). PH⊆ P#P relative to every oracle.

Another inclusion that makes use of an intermediate class is QAM⊆ PSPACE.

THEOREM 4.1.6 ([MW05]). QAM⊆ BP ·PP relative to every oracle.

Now BP ·PP⊆ PSPACE.

-45-

LEMMA 4.1.3. PP⊆ PSPACE.

PROOF. Since PSPACE is not limited in computational time, given a polynomial-time Turing machine

M and a function p(n) = O(n∗), a PSPACE-machine can simulate a PP-machine by keeping a tally of how

many y ∈ Σp(|x|) satisfy M(x,y) = 1 for the input x. �

This derandomization also applies to the probabilistic version of PSPACE.

LEMMA 4.1.4. BP ·PSPACE⊆ PSPACE.

It now follows that

QAM⊆ BP ·PP⊆ BP ·PSPACE⊆ PSPACE.

With one additional lemma, we can also prove that P#P ⊆ PSPACE.

LEMMA 4.1.5. If L ∈ PSPACE, then PSPACEL ⊆ PSPACE.

PROOF. By our convention, oracle calls are limited in length to a polynomial of the imput. Hence

any calls to the oracle in a PSPACEL -machine can be replaced with a direct computation of L (x) by a

PSPACE-machine. �

Now

P#P ⊆ PPP ⊆ PSPACEPSPACE ⊆ PSPACE.

For our final PSPACE inclusion, observe that a PSPACE-machine is limited to 2p(n) possible configurations

for an input of length n, where p(n) = O(n∗). Thus, any computation that halts must do so within 2p(n)

steps. Therefore PSPACE⊆ EXP.

The results of this subsection are summarized in Figure 4.5.

4.1.3. Oracle Separations and Collapses. Now we present some of the inclusions that fail for some

oracle, as well as some inclusions that do not relativize. As far as relativizing inclusions are concerned, the

picture presented in Figure 4.5 is complete for the 17 complexity classes shown. We cannot, for instance,

show that P/poly is contained in BQP or that EXP is contained in P for every oracle. These particular

examples hold for every oracle: in the former case because BQP is countable while P/poly is not, and in

the latter case because of the time-hierarchy theorem.

-46-

FIGURE 4.1. Inclusions that hold with respect to every oracle for 17 complexity classes.
Blue indicates that the lower class is included in the upper class. Black indicates that the
lower class and its complement are included in the upper class.

For functions f ,g :N→N, we write f (n)= o(g(n)) if f (n)/g(n)→ 0 as n→∞. Denote by DTIME(T (n))

the class of languages that are computable in T (n)-time.

-47-

THEOREM 4.1.7 (Time-hierarchy theorem). If f ,g : N→ N satisfy f (n) log f (n) = o(g(n)), then

DTIME(f (n))(DTIME(g(n))

with respect to every oracle.

PROOF. The technique used to prove this theorem is diagonalization, inspired by the set theoretic

method of the same name. Since g(n) grows much faster than f (n) log f (n), we have that DTIME(f (n))⊆

DTIME(g(n)). It remains to show that DTIME(g(n)) 6⊆ DTIME(f (n)).

Let U indicate the universal Turing machine of Theorem 2.1.2. We carry out the following procedure: on

input x, compute Mx(x) on a suitable universal TM for g(|x|) steps, where Mx is the Turing machine encoded

by x. If the computation finishes, output 1−Mx(x). Otherwise, output 0. Let D be the Turing machine that

follows this algorithm. By the choice of universal Turing machine and the fact that f (n) log f (n) = o(g(n)),

we have D ∈ DTIME(g(n)).

Next, assume the language determined by D lies in DTIME(f (n)). Then, there exists a Turing M that

decides the same language in O(f (n))-time. Then M has some encoding, and in fact can be assumed to

have infinitely many encodings, so we fix some encoding y that is long enough so that f (|y|) log f (|y|)

is much less than g(|y|). Then the universal Turing machine can simulate My on input y within g(|y|)

steps, and so D(y) = 1−My(y) = 1−M(y), contradicting the assumption that D(y) = M(y). Therefore,

DTIME(g(n)) 6⊆ DTIME(f (n)). �

The time-hierarchy theorem proves that there is no oracle collapse from EXP to P. There is, however, an

oracle collapse from PSPACE to P; i.e., there is an oracle relative to which P= PSPACE. The usual method

to make use of a PSPACE-complete problem—a language L in PSPACE such that every other question

in PSPACE can be reduced to the question of whether y ∈L , where y can be computed from the input in

polynomial time. Then an oracle for L does not give PSPACE any additional computational power, while

boosting P up to PSPACE. However, in Section 4.2.4 we will show that there is an even larger class that

collapses to P.

Such a collapse also shows that there is an oracle relative to which P = NP. There is also an oracle

relative to which P 6= NP, which establishes that no relativizing proof can settle the P versus NP question.

A password oracle is a type of oracle f constructed so that C f
1 6⊆ C f

2 . Typically, f is a function Σ∗×Σ∗→ Σ∗

-48-

chosen so that PWf = {x ∈ Σ : P} lies in C f
1 but not in C f

2 , where P is a proposition depending on the values

of f (x,y) for y ∈ Σ∗ (the passwords of x). The oracle f can be adversarially constructed or, in many cases,

selected according to a random process.

THEOREM 4.1.8. Let f : Σ2∗ → Σ∪{�} be a function selected randomly according to the following

rules:

• For every x ∈ Σn, there exists a unique y ∈ Σn such that f (x,y) 6= �. This y is selected using the

uniform distribution on Σn.

• For every x ∈ Σn, if y is the unique element of Σn such that f (x,y) 6= �, then Pr[f (x,y) = 1] =

Pr[f (x,y) = 0] = 1/2.

Then (cocap ·NP) f 6⊆ (P/poly) f with probability 1.

PROOF. For each x ∈ Σ∗, define PWf (x) = f (x,y), where y is the unique element of Σ|x| such that

f (x,y) 6=�. Then PWf ∈ (cocap ·NP) f , because for a given x ∈ Σ∗ the unique y can be used as the certificate

to check that PWf (x) = 1 or PWf (x) = 0.

Fix an enumeration {Mk} of Turing machines. For Mk and input of length n, we allow computation

times up to Cknrk and advice strings up to length Dknsk , where the coefficients and exponents are unbounded

and increasing as functions of k. Then, since for any x ∈ Σn there are 2n possible values of y, while advice

and computation time are polynomials of n, we have

Pr[(∀n)(∃ advice a)(∀|x|= n)[Mk(x,a) = PWf (x)]] = 0.

�

The above proof actually establishes the stronger claim that (cocap ·UP) f 6⊆ (P/poly) f , where UP de-

notes unambiguous polynomial time (see Subsection 4.2.80).

4.2. Overview of the Complexity Zoology Data Set

This section enumerates the complexity classes, inclusions, and oracle separations of Complexity Zool-

ogy’s data set. The data is listed in the same order as in the data itself: alphabetically by complexity class,

with relations listed under the class that appears on the left side of the relation. As a result, many classes

-49-

World: P D O up ud u
All oracles 3680 9354 460 20 417 111
All algebraic oracles 3022 3332 326 0 3918 114
Some algebraic oracle 3022 2185 0 326 0 5179
Random oracle 2435 5405 1058 508 156 140
Trivial oracle 2566 2021 4725 0 0 0
Some oracle 11344 2542 0 156 0 0

TABLE 4.1. The current status of the Complexity Zoology data set. This table shows the
number of inclusions of each type that exist for each world. P indicates proven, D indicates
disproven, O indicates open, up indicates unknown but provable, ud indicates unknown but
disprovable, and uu indicates unknown with no further data. The terms unknown, provable,
and disprovable are explained in Sections 3.4 and 3.5.

are discussed before the subsection in which they are defined. Some trivial inclusions are omitted. State-

ments of equality appear under the less preferred name for the class. Large parts of this data set, especially

those inclusions that are considered to be open, are based on email and in-person communication with Scott

Aaronson and Lance Fortnow.

Complexity Zoology studies the relationships between complexity classes in six different modal worlds:

all oracles, all algebraic oracles, some algebraic oracle, the random oracle, the trivial oracle, and some oracle.

The data set would be considered complete when each possible inclusion is settled as true, false, or open in

each of these six worlds. The current status of the data set is shown in Table 4.1. Note that the trivial world

is complete (i.e., there are no unknown inclusions).

4.2.1. ⊕P. ⊕P is the class of languages L such that for an NP-machine M x ∈L if and only if the

computational tree of M(x) has an odd number of accepting paths. In operator terms, it is equal to ⊕·P.

⊕P ⊆MP with respect to every oracle [GKR+95]. ⊕P 6⊆ PP/poly with respect to the random oracle,

while it is open whether this is the case with respect to the trivial oracle.

4.2.2. A0PP. A function f : Σ∗→ Z lies in GapP if and only if there exists a polynomial-time Turing

machine M and a function p(n) = O(n∗) such that for every x ∈ Σ∗,

f (x) = |{y ∈ Σ
p(|x|) : M(x,y) = 1}|− |{y ∈ Σ

p(|x|) : M(x,y) = 0}|.

-50-

Now L ∈ A0PP if and only if there exists a function f ∈ GapP and a function g : Σ∗→ N in FP such that

x ∈L =⇒ f (x)> g(x),

x 6∈L =⇒ f (x)< g(x)/2.

Note that a language in L ∈ PP can be characterized by the sign of some GapP function. Since GapP is

closed under subtraction, it follows that A0PP⊆ PP for all oracles.

Kuperberg has also shown [Kup09] that A0PP is equal to the class SBQP of languages L such that

there exists a BQP-machine M and a function p(n) = O(n∗) such that for all x ∈ Σ∗,

x ∈L =⇒ Pr[M(x) = 1]≥ 2−p(|x|),

x 6∈L =⇒ Pr[M(x) = 1]≤ 2−p(|x|)−1.

4.2.3. AH. The arithmetical hierarchy is analogous to the polynomial hierarchy, except that R and RE

are the fundamental complexity classes rather than P and NP. Thus, where PH is a hierarchy of complexity,

AH is one of computability. For every n ∈ N, define ∆n, Σn, and Πn by recursion as follows: ∆0 = Σ0 =

Π0 = R, and for every n ∈ N,

∆n+1 = RΣn ,

Σn+1 = REΣn ,

Πn+1 = co ·REΣn .

Then set AH=
⋃

n∈N Σn.

Since R ⊆ RE and R is a symmetric class it is immediate that ∆n ⊆ Σn and ∆n ⊆ Πn for all n ∈ N.

Moreover, for n≥ 1 we have

Σn = REΣn−1 ⊆ RREΣn−1
= RΣn = ∆n+1,

and for n = 0 we have

Σ0 = R⊆ RR = RΣ0 = ∆1,

so we also have Σn ⊆ ∆n+1 and Πn ⊆ ∆n+1 for all n∈N. It follows that AH=
⋃

n∈N ∆n =
⋃

n∈N Πn. Also, just

as there is an alternating quantifier definition for the polynomial hierarchy, there is one for the arithmetical

-51-

hierarchy. For example, L ∈ Σ2 if and only there exists a computable relation R such that

x ∈L ⇐⇒ (∃y)(∀z)R(x,y,z)

for each x ∈ Σ∗.

AH is closed under exponential padding: AH= exppad ·AH.

4.2.4. AHplo. AHplo denotes AH with a polynomially-limited oracle access. The definitions of AHplo

and AH in the unrelativized case are identical, but AH f and AH f
plo have different definitions for an arbitrary

oracle f .

For n ∈ N and an oracle f : Σ∗→ Σ∗, we define f |n : Σ∗→ Σ∗ according to the rule

f |n(x) =


f (x) if |x|< n,

0 otherwise.

then we say that L lies in RE f
plo if and only if there exists an oracle Turing machine M and a function

p(n) = O(n∗) such that

x ∈L =⇒M accepts x with f |p(|x|)-oracle.

Now we can define AH f
plo as we defined AH: use RE f

plo and R f
plo = cocap ·RE f

plo in the place of RE and R in

the unrelativized definition of AH.

AHplo is not contained in NEXP/poly and RE with respect to the random oracle.

Limiting AH to polynomial-length oracle queries has the effect of creating an oracle collapse from AH

all the way to P. In fact, we can prove something even stronger: there exists an oracle relative to which

P = AH[poly], where AH[poly] is a class containing AH. AH[poly] is the class of languages L such that

there exists a computable relation R and a function p(n) = O(n∗) such that for every x ∈ Σ∗,

x ∈L ⇐⇒(Q1y1 ∈ Σ
∗) . . .(Qp(|x|)yp(|x|) ∈ Σ

∗)R(x,y1, . . . ,yp(|x|)) or

(Q̄1y1 ∈ Σ
∗) . . .(Q̄p(|x|)yp(|x|) ∈ Σ

∗)R(x,y1, . . . ,yp(|x|)),

where Qk is ∀ when k is even and ∃ when k is odd, and Q̄k is ∃ when k is even and ∀ when k is odd.

-52-

The relativizing inclusion AH⊆AH[poly] is immediate from the alternating quantifier definition of AH.

Using the same quantifier definition as above, set

AHSAT={〈α,x,1m〉 : (Q1y1 ∈ Σ
∗) . . .(Qmym ∈ Σ

∗)[Mα(x,y1, . . . ,ym) = 1]) or

(Q̄1y1 ∈ Σ
∗) . . .(Q̄mym) ∈ Σ

∗)[Mα(x,y1, . . . ,ym) = 1])},

where Mα denotes the Turing machine that α encodes.

PROPOSITION 4.2.1. AHSAT is AH[poly]-complete.

PROOF. To see that AHSAT ∈ AH[poly], we can simply take p to be the identity function and R to be the

relation

R(〈α,x,1m〉 ,y1, . . . ,yr)⇐⇒ r ≥ m & Mα(x,y1, . . . ,ym) = 1.

Then R and p witness that AHSAT ∈ AH[poly] per the definition.

Now suppose that L ∈ AH[poly], and let the relation R and the function p(n) = O(n∗) witness that

L ∈ AH[poly]. Then, if α is a code for the Turing machine that computes R, we have

x ∈L ⇐⇒
〈

α,x,1p(|x|)
〉
∈ AHSAT.

Since p is assumed to be time-constructible, the function x 7→
〈
α,x,1p(|x|)〉 is polynomial-time computable,

and so L is polynomial-time reducible to AHSAT. Therefore, AHSAT is a complete problem for AH[poly].

�

Since P ⊆ AH[poly] relative to any oracle, in particular PAHSAT ⊆ AH[poly]AHSATplo . Moreover, adding an

oracle for a problem in AH[poly] does not increase the computational power of AH[poly]plo, because oracle

calls can be replaced with references to the alternating-quantifier relation corresponding to the oracle. So

AH[poly]AHSATplo ⊆ AH[poly]⊆ PAHSAT. Hence:

THEOREM 4.2.1 (Kuperberg). PAHSAT = AH[poly]AHSATplo .

4.2.5. ALL. ALL is the “complexity” class of all languages.

While it is not an interesting complexity class in and of itself, ALL is a useful point of reference in

the hierarchy of complexity class inclusions. For instance, it can be helpful to know which classes are

-53-

immediately below ALL in out hierarchy of inclusions, and it is often a nontrivial theorem that a particular

class is or is not ALL.

4.2.6. AM. AM is the class of language that can be computed using the Arthur-Merlin protocol. The

protocol consists of these steps:

(1) Arthur queries Merlin in an attempt to determine whether x ∈ L . Arthur is a polynomial-time

Turing machine with access to a polynomial-length, uniformly random string y of bits. This string

is sent to Merlin.

(2) Merlin sends a purported proof z (with |z| a polynomial of the length of the input) that x ∈ L .

Merlin is an oracle with access to Arthur’s coin tosses, so Merlin can send any z based on the

situation.

(3) Arthur decides whether to accept the input x based on 〈x,y,z〉.

The language L is considered to lie in AM if the Arthur-Merlin protocol is likely decide the question of

whether x ∈L correctly. Formally, we can set AM= BP ·NP.

Immediately, AM is contained in QAM, IP, and RG(2) for every oracle. It is also the case that AM⊆Π2P

for every oracle [Bab85]. On the other hand, there is an oracle relative to which AM 6⊆ PP [Ver92], and

AM⊆ NP with respect to the random oracle [BM88].

4.2.7. AP. An alternating Turing machine is a non-deterministic Turing machine in which each state

is assigned either the symbol ∧ or the symbol ∨. Each configuration in a computational tree involving an

alternating Turing machine can likewise be assigned ∧ or ∨ based on the current state of the machine.

To determine whether an alternating Turing machine M accepts an input x, assign an element of Σ to

each node in the computational tree according to the following procedure:

(1) If a configuration c is a halting configuration, set v(c) = 0 if the output is 0 and v(c) = 1 if the

output is 1.

(2) If c is an ∧-configuration, assign v(c) = 1 if v(c′) = 1 for each descendant c′ of c in the computa-

tional tree. Otherwise, set v(c) = 0.

(3) If c is an ∨-configuration, assign v(c) = 1 if v(c′) = 1 for some descendant c′ of c in the computa-

tional tree.

Then, we say that M accepts the input x if and only if v(sstart) = 1.

-54-

L ∈ AP if there exists a polynomial-time alternating Turing machine M such that

x ∈L ⇐⇒M accepts x.

for every x ∈ Σ∗.

AP= PSPACE for every oracle [CKS81].

4.2.8. AWPP. AWPP is the class of “almost wide” PP problems. For a polynomial-time Turing ma-

chine M and a function p(n) = O(n∗), define

dM,p(x) = |{y ∈ Σ
p(|x|) : M(x,y) = 0}|− |{y ∈ Σ

p(|x|) : M(x,y) = 1}|

for each x ∈ Σ∗. L ∈ AWPP if there exists a polynomial-time Turing machine M, a function f : Σ∗→ N,

and functions p(n),q(n) = O(n∗) such that

x ∈L =⇒ (1−2−q(|x|)) f (x)≤ dM,p(x)≤ f (x),

x 6∈L =⇒ 0≤ dM,p(x)≤ 2−q(|x|) f (x).

AWPP⊆ A0PP for all oracles [Vya03].

4.2.9. BPP. This is the class of languages computable in polynomial time using randomness, where

the computer is correct with a probability of at least 2/3. In other words, BPP= BP ·P.

It is contained in BQP, MA, NISZK, and SZK with respect to every oracle. BPP⊆ Σ2 for every oracle

[Lau83], but there is an oracle relative to which BPP 6⊆ ∆2P. In the random oracle world, P=BPP [BG81].

BPP 6⊆ ∆2P is open in the unrelativized world.

4.2.10. BPPpath. BPPpath is the original name for PostBPP, or BPP with postselection. It was origi-

nally defined as the class of all languages L such that there exists a non-deterministic polynomial-time Tur-

ing machine M and a threshold ε > 0 such that for every x∈ Σ∗, the number of paths for which M(x) =L (x)

is at least (1/2+ε) ·T (x), where T (x) is the total number of computational paths of M with input x [HHT97].

4.2.11. BQP. Informally, BQP is the set of languages that can be computed efficiently using a quantum

computer. A quantum computer can be modeled by a uniform family of quantum circuits or a quantum

Turing machines whose configurations can be quantum states.

-55-

BQP ⊆ BQP/mpoly is immediate. BQP is also contained in AWPP for every oracle [FR98], as well

as NIQSZK, QCMA, and QSZK. There exist oracles relative to which BQP is not contained in ⊕P, PH,

MA [Wat00], NP/poly, PostBPP [Aar10] [Che16], and SZK [CCD+03]. Recently, PH was added to this

list of oracle separations [RT18].

In the random oracle world, the following inclusions are open:

BQP⊆ BPP, IP,MIP,P,PH,⊕P,NP/poly.

It is also open whether BQP is contained in PH and NP/poly in the unrelativized world and whether there

exists an oracle such that BQP 6⊆MIP.

4.2.12. BQP/mpoly. BQP/mpoly is BQP with “Merlinized” polynomial advice.

DEFINITION 4.2.1. L ∈BQP/mpoly if there exists a BQP-machine M and a polynomial-length advice

function f : N→ Σ∗ such that

x ∈L ⇐⇒ Pr[M(x, f (n)) = L (x)]≥ 2/3.

The advice is “Merlinized” in the sense that the probability threshold of ≥ 2/3 need only be observed

when the advice is good, just as Arthur does not need to satisfy the probability gap when Merlin gives a

poor argument in the Arthur-Merlin protocol.

BQP/mpoly is also the class of languages that can be computed using some family of polynomial-sized

quantum circuits.

BQP/mpoly ⊆ BQP/qpoly,QMA/qpoly for every oracle.

4.2.13. BQP/qpoly. BQP/qpoly is BQP with a polynomial amount of quantum advice. This means

that, rather than a classical advice string, a BQP-machine is given an advice string that exists in a state of

superposition. That is, the advice string takes the form ∑s αs|s〉, where the sum is over polynomial-length

strings in Σ.

It is immediate that BQP/qpoly⊆QCMA/qpoly relative to every oracle. In fact, Aaronson and Drucker

have shown that BQP/qpoly ⊆ QCMA/mpoly [AD10]. The relationship between classical and quantum

advice in the case of BQP is uncertain: it is unknown whether BQP/qpoly is any larger than BQP/mpoly

[AK07].

-56-

4.2.14. BQPSPACE. This is the class of languages computable by a quantum Turing machine using

a polynomial amount of space. A quantum Turing machine is a Turing machine that includes a quantum

tape on which qubits can be recorded, as well as a finite register for performing measurements. As with

other non-deterministic versions of PSPACE (see Subsections 4.2.37 and 4.2.47), BQPSPACE is equal to

PSPACE for every oracle [Wat03].

4.2.15. CH. The counting hierarchy is the class that results from an infinite stack of PP-oracles. If

C0P = P and Ck+1P = PPCkP for each k ∈ N, then CH =
⋃

k CkP. The classes PCkP are clearly inside CH,

and so CH= PCH for every oracle. Moreover, because PP⊆ PSPACE, and because giving PSPACE access

to an oracle that is already inside PSPACE does not increase the power of the class, we also have the

relativizing inclusion CH⊆ PSPACE.

It is unknown whether CH ⊆ P#P (since P#P = PPP, this would imply that the counting hierarchy col-

lapses) relative to a random oracle, and indeed whether there is any oracle relative to which the counting

hierarchy does not collapse.

4.2.16. cocap ·RE. The class cocap ·RE= RE∩ coRE is equal to R, the class of recursive decision prob-

lems. RE is the class of languages that a computer can enumerate the elements of. If a computer can

enumerate the elements of a language as well as its complement, then the computer can decide whether x

lies in the language by enumerating the language and its complement until it is revealed where x lies.

4.2.17. cocap ·RP. The intersection of RP and coRP is equal to ZPP for every oracle.

4.2.18. ∆2P. The class ∆2P is a level of the polynomial hierarchy, defined to be PNP. It is therefore

contained in Σ2P = NPNP. Less obviously, ∆2P lies in S2P relative to every oracle [RS98]. While it is

unknown whether ∆2P ⊆ PP in the unrelativized world, there exists an algebraic oracle relative to which

∆2P⊆ PP [AW09]. ∆2P is outside PostBPP relative to the random oracle.

4.2.19. ∆3P. This class is PΣ2P, another level of the polynomial hierarchy. It is unknown whether

∆3P⊆ PostBPP relative to the trivial oracle.

4.2.20. EXP. This is the class of languages that can be decided in exponential time. It can be succinctly

defined as exppad ·P. By the time hierarchy theorem, EXP 6⊆ P relative to every oracle, but there is an oracle

-57-

relative to which EXP = ZPP [Hel84], as well as an oracle relative to which EXP = cocap ·UP. In the

unrelativized world, it is unknown whether either of these equalities is true.

4.2.21. EXPNP. This class is
⋃

f∈NPEXP
f , or EXP relative to an NP-oracle. (It can also be defined

to be EXPSAT, or any other NP-complete problem.) Since EXP = exppad ·P, it follows that EXPNP =

exppad ·∆2P. There exist oracles relative to which this class is equal to BPP [BT00] and SPP. The time

hierarchy theorem relativizes, so EXPNP 6⊆ ∆2P for every oracle. Additionally, EXPNP 6⊆ NEXP in the

random oracle world.

In the unrelativized world, the inclusions EXPNP ⊆ NEXP/poly,BPP,SPP are open.

4.2.22. EXPplo. As with AHplo, EXPplo is equal to EXP in the unrelativized world, while relative to an

oracle, the oracle calls are limited in length to a polynomial of |x| for the input x.

4.2.23. IP. An interactive proof protocol is an interaction between a probabilistic polynomial-time ver-

ifier and a deterministic prover with infinite computational power. The prover can compute any function,

but unlike the Arthur-Merlin protocol, the prover does not know the random bits that the verifier uses in his

computations. The verifier attempts to determine whether the input x lies in a given language L within a

number of rounds that is a polynomial of |x|. The language lies in IP if and only if the protocol is complete,

meaning that if x ∈L then the verifier can be convinced of this fact with a probability of at least 2/3, and

sound, meaning that if x 6∈L then the verifier can be convinced that x ∈L with a probability of at most

1/3.

While the prover has the power to determine even uncomputable functions, to determine the optimal

strategy for the prover, given an input x, only a PSPACE-machine is necessary. Using a polynomial-space

computation, the prover can simulate as many interactions with the prover as needed. Therefore, IP ⊆

PSPACE relative to every oracle.

IP is also contained in its generalizations QIP and MIP. There is an oracle relative to which cocap · IP 6⊆

PH [AGH90]. Open problems in the random oracle world include whether cocap · IP is contained in PP/poly,

QMA/qpoly, CH, or QMA(2).

4.2.24. IPP. This class is the unbounded version of IP. More precisely, the completeness and soundness

conditions are weakened so that when x∈L , the prover can convince the verifier to accept with a probability

-58-

of at least 1/2, while if x 6∈L , then in all circumstances the verifier accepts with a probability of at most

1/2. IPP= PSPACE with respect to every oracle [CCG+94].

4.2.25. MA. The Merlin-Arthur protocol is similar to the Arthur-Merlin protocol, except that Merlin

sends Arthur a message without knowing Arthur’s randomized bits, and Arthur decides whether to accept

that the input x lies in the language L using a polynomial-time randomized algorithm. As with many other

interaction protocols, L ∈MA if and only if x ∈L implies that Arthur can be persuaded that x ∈L with

probability ≥ 2/3, while x 6∈L implies that Arthur can be persuaded that x ∈L with probability ≤ 2/3.

MA ⊆ QCMA,SBP relative to every oracle. It is also the case that MA ⊆ S2P relative to every oracle

[RS98]. In the unrelativized world, the inclusion cocap ·MA⊆ (NP∩ coNP)/poly is open.

4.2.26. MAEXP. The class MAEXP is the class of languages computable using the Merlin-Arthur pro-

tocol, where Arthur has exponential computational power. In operator terms, MAEXP = exppad ·MA. MA

is strictly contained in MAEXP relative to every oracle.

There exist oracles relative to which MAEXP is contained in ⊕P, ∆2P, and P/poly, while in the un-

relativized world, cocap ·MAEXP 6⊆ P/poly [BFT98]. In fact, cocap ·MAEXP 6⊆ P/poly relative to ev-

ery algebraic oracle [AW09]. Relative to the trivial oracle, it is open whether MAEXP is contained in

(NP∩ coNP)/poly, BQP, ∆2P, SPP, cocap ·NISZK, or cocap ·SBP.

4.2.27. MIP. An interactive proof protocol can involve multiple provers. In the class MIP, there are

two provers and one verifier. As in IP, the verifier is a polynomial-time probabilistic Turing machine and

the provers have infinite computing power; however, the provers are not allowed to communicate with each

other.

MIP is contained in NEXPplo and its quantum counterpart QMIPne relative to every oracle. Open

questions include whether MIP ⊆ co ·MAEXP for every oracle, whether MIP ⊆ co ·NEXP for the random

oracle, and whether cocap ·MIP⊆ EXP for all oracles and for the random oracle.

4.2.28. MP. For x ∈ Σ∗, denote by x(k) ∈ Σ the bit in x at position k (indexing from zero). Then, we

say L ∈ MP if and only if there exists f ∈ #P and a polynomial-time computable g : Σ∗ → N such that

L (x) = f (x)(g(x)) for every x ∈ Σ∗. MP stands for “middle bit,” because it can be assumed that | f (x)| is

always odd and that g(x) = 1
2(| f (x)|−1) [GKR+95].

-59-

MP is contained in P#P relative to every oracle, since P#P can use a #P-oracle to determine the middle

bit of a function in #P.

4.2.29. NEXP. This class is the non-deterministic counterpart to EXP; it can be defined to be exppad ·

NP. Like NP, it is distinct from its complement with respect to an oracle constructed via the password

argument. Additionally, cocap ·NEXP 6⊆ NP with respect to every oracle by a diagonalization argument.

There exists an oracle relative to which NEXP⊆⊕P [Aar06]. In the unrelativized world, the inclusions

NEXP⊆ SPP and NEXP⊆ co ·MAEXP are open.

4.2.30. NEXPplo. This class is identical to NEXP, except that oracle calls are limited in length to a

polynomial of |x| for input x. It is contained in MIP [AW09] and QMIPle [IV12] with respect to all algebraic

oracles. The question of whether NEXPplo ⊆MP relative to every oracle is open.

4.2.31. NEXP/poly. Naturally, NEXP/poly is defined to be poly ·NEXP. The question of whether

NEXP/poly ⊆ P/poly in the unrelativized world is open.

4.2.32. NIQSZK. This class is the non-interactive version of QSZK, just as NISZK is the non-interactive

version of SZK. Accordingly, it lies in QSZK for every oracle. The inclusions

cocap ·NIQSZK⊆ CH,PP/poly,QMA/qpoly

are open with respect to the trivial oracle.

4.2.33. NISZK. There is a modified version of the statistical zero-knowledge protocol in which interac-

tion between the prover and the verifier is disallowed. More precisely, a language lies in NISZK if and only

if the language can be computed using a statistical zero-knowledge protocol, with the additional constraints

that the prover and verifier share a single randomly generated string as the source of their randomness, and

the only communication allowed between the two parties is a single message from the prover to the verifier.

There exist oracles relative to which cocap ·NISZK 6⊆ PP [BCH+17] and cocap ·NISZK 6⊆ BQP/qpoly.

Unlike SZK, there is an oracle which NISZK is distinct from its complement [LZ17]. It is open whether

NISZK⊆ NIQSZK in either the world of all oracles or in the unrelativized world. The inclusions

cocap ·NISZK⊆ BQP/qpoly,PP,QMA(2),QRG(1),(NP∩ coNP)/poly

-60-

are likewise open in the unrelativized world.

4.2.34. NP. The class of languages that can be computed in non-deterministic polynomial time can,

naturally, be defined to be N ·P. It is immediate that NP ⊆ MA for every oracle, since NP is precisely

the result of the Merlin-Arthur protocol with a deterministic Arthur. Put another way, NP is the class of

languages L such that if x ∈L , then there is a proof of this fact that a computer can check in time p(|x|)

for some p(n) = O(n∗).

As it is one of the most thoroughly studied complexity classes, there are many known oracle separations

involving NP. With respect to the random oracle, NP 6⊆ UP [Bei89] and NP 6⊆ BQP [BBBV97]. There

exist oracles relative to which NP∩ coNP 6⊆ BQP [BBBV97], NP 6⊆ BQP/qpoly [Aar04], NP 6⊆ co · IP,

NP∩ coNP 6⊆ AWPP, NP 6⊆ co ·A0PP, and there exist algebraic oracles relative to which NP 6⊆ BQP and

NP 6⊆ co ·MA [AW09].

In addition to the famous NP ⊆ P and NP ⊆ coNP in the unrelativized world, open questions include

whether NP∩ coNP ⊆ P relative to the random oracle, whether NP ⊆ co ·A0PP or NP∩ coNP ⊆ AWPP

relative to the trivial oracle, and whether NP⊆ co ·AM relative to every algebraic oracle.

4.2.35. (NP∩ coNP)/poly. As the class’s name would suggest, (NP∩ coNP)/poly = poly · cocap ·NP.

Complexity Zoology is able to determine the place of this class in the inclusion hierarchy automatically

through the properties of complexity class operators. In the random oracle world, the inclusion (NP∩

coNP)/poly ⊆ P/poly is open.

4.2.36. NP/poly. Not only is NP/poly= poly ·NP, but by the same derandomization argument used to

show BPP⊆ P/poly, we also have NP/poly = poly ·AM.

Since NP ⊆ MA, it follows that NP/poly ⊆ QMA/mpoly for every oracle. Likewise, NP/poly ⊆

QCMA/qpoly for every oracle. On the other hand, there is an oracle relative to which NP/poly 6⊆ (NP∩

coNP)/poly [FFKL03].

4.2.37. NPSPACE. This class is the non-deterministic version of PSPACE: NPSPACE= N ·PSPACE.

However, NPSPACE is no larger than PSPACE:

THEOREM 4.2.2 (Savitch, [Sav70]). NPSPACE= PSPACE for every oracle.

-61-

PROOF SKETCH. Given a directed graph with a set V of n vertices and a pair of vertices v,w, write

STCON(v,w,k) if there exists a path of length ≤ k connecting v to w. To check whether STCON(v,w,k),

recursively check whether each vertex x lies halfway along a connecting path:

STCON(v,w,k)⇐⇒
∨
x∈V

(STCON(v,x,bk/2c)& STCON(x,w,dk/2e)) (k ≥ 2).

The resulting algorithm uses an O((logn)2) amount of space.

Thus, given an O(f (n))-space non-deterministic algorithm for a language L , we check the 2O(f (n))-

vertex computational tree for a path from the starting configuration to the accepting configuration, resulting

in a deterministic O((f (n))2)-space algorithm. �

4.2.38. P. The class of languages that are computable in polynomial time is the smallest class in Com-

plexity Zoology’s data set. There are smaller classes studied in complexity theory—such as L, the class

of languages that are computable using a logarithmic amount of space—P is chosen as the bottom of the

inclusion hierarchy so that, for instance, polynomial-length oracle calls are allowed.

Since P is the smallest class in Complexity Zoology’s data set, it has relatively few relations in the input

file: we have P ⊆ UP and P ⊆ ZPP relative to all oracles, both of which are immediate from the classes

involved.

4.2.39. P/poly. The class P/poly = poly ·P is also equal to poly ·P is also equal to poly ·BPP via

the usual derandomization argument. P/poly ⊆ BQP/mpoly for every oracle, since the latter class is a

generalization of P/poly; and P/poly 6⊆ AH for every oracle, because P/poly is uncountable while AH is

countable.

4.2.40. PPP. We have PPP =
⋃

f∈PPP
f . As was discussed in Section 4.1, PPP = P#P for every oracle,

because we can simulate a #P-oracle using multiple PP-oracle calls. We also have PPP ⊆ PPPP ⊆ PPC1P ⊆

CH.

4.2.41. P#P. We have P#P =
⋃

f∈#PP
f . The inclusion P#P⊆MP is open for both the random and trivial

oracles.

4.2.42. PH. The polynomial hierarchy is the class that results from an infinite hierarchy of NP-oracles.

We set Σ0P= P and Σk+1P= NPΣkP for k ∈ N, as well as ΠkP= co ·ΣkP and ∆0P= P, ∆k+1P= PΣkP. PH

-62-

is contained in MP [GKR+95] and PP/poly with respect to every oracle, as well as SPP with respect to the

random oracle [For99]. On the other hand, PH 6⊆ ∆3P with respect to the random oracle, and the question

of whether PH⊆ ∆3P unrelativized is open.

4.2.43. PostBPP. The definition of this class is similar to that of BPP, except we allow for postselec-

tion. Let (M, p) be a polynomial-time Turing machine and O(n∗)-function, respectively, such that

Pr
y∈Σp(|x|)

[M(x,y) = 1]> 0

for every x ∈ Σ∗. Then L ∈ PostBPP if and only if there exists a polynomial-time Turing machine M′ such

that for all x ∈ Σ∗,

Pr
y∈Σp(|x|)

[M′(x,y) = L (x)|M(x,y) = 1]≥ 2/3.

The condition M(x,y) = 1 effectively allows us to consider BPP-algorithms in which there is an option for

the program to quit before concluding x ∈L or x 6∈L . The algorithm is considered successful if it has a

high probability of reaching the correct answer when it does not quit.

PostBPP is contained in ∆2P with respect to the random oracle and ∆3P and PP with respect to all

oracles. The question of whether PostBPP⊆ Σ2P in the unrelativized world is open.

4.2.44. PostBQP. This class is the quantum analogue of PostBPP. For a BQP-machine M and input

x, denote the value of the kth qubit of the output by M(x)k, L ∈ PostBQP if and only if there exists a

BQP-machine M such that for every x ∈ Σ∗, Pr[M(x)1 = 1]> 0 and

Pr[M(x)0 = L (x)|M(x)1 = 1]≥ 2/3.

It has been shown that PostBQP= PP for every oracle [Aar05].

4.2.45. PP. Define PP to be P ·P. Like BPP, PP is based on a probabilistic model of computation,

except that the machine is only required to obtain the correct answer with a probability of at least 1/2.

PP⊆MP with respect to every oracle. Also, PP⊆⊕P with respect to the random oracle [Raz87].

4.2.46. PP/poly. This class is simply PP with polynomial advice: in operator terms, PP/poly = poly ·

P ·P.

-63-

4.2.47. PPSPACE. This is a probabilistic version of PSPACE: PPSPACE = P · PSPACE. Ladner

[Lad89] showed that PPSPACE = PSPACE, and this result holds with respect to every oracle. (In fact,

Ladner proved that the functional counterparts of these classes, #PSPACE and FPSPACE, are equal.)

4.2.48. PSPACE. A PSPACE-machine is a Turing machine in which the number of cells on each tape

is limited to some O(n∗) function. PSPACE is also equal to public-coin RG [Pap85], so PSPACE ⊆ RG

with respect to every oracle.

PSPACE is contained in IP with respect to any algebraic oracle [AW09] and RG(2) in the unrelativized

world [FK97]. PSPACE 6⊆ PH with respect to the random oracle [Cai86].

As with many important complexity classes, it is an open question whether PSPACE is any larger than

P with respect to the trivial oracle. In the world of all oracles, the inclusion PSPACE⊆ CH is also open.

4.2.49. PSPACE/poly. This is PSPACE with polynomial advice: PSPACE/poly = poly ·PSPACE.

4.2.50. QAM. The quantum Arthur-Merlin protocol is the same as the classical Arthur-Merlin protocol,

except Arthur is a BQP-machine instead of a classical polynomial-time Turing machine, and Merlin provides

a quantum certificate.

QAM is contained is contained in CH, PP/poly, QIP, QIP(2), QMA/mpoly, and QRG(2) with respect

to every oracle. In the random oracle world, QAM and QMA are equal. In the unrelativized world, the

inclusion cocap ·QAM⊆ P#P is open.

4.2.51. QCMA. The quantum-classical Merlin-Arthur protocol is the same as the protocol used in

QMA, except that Merlin’s proof must be a classical bit string. It is immediate that QCMA ⊆ QMA and

QCMA ⊆ QCMA/qpoly with respect to every oracle. The inclusion QCMA ⊆ co ·A0PP is open in the

random oracle world.

4.2.52. QCMA/qpoly. The class QCMA/qpoly is QCMA with a quantum advice string, similar to

BQP/qpoly. It is contained in QMA/mpoly for every oracle [AD14].

4.2.53. QIP. In the quantum interactive proof protocol, the verifier is a polynomial-time quantum com-

puter, and the prover is a quantum computer with unlimited computational power, represented formally by

a family of quantum circuits with no additional restrictions. The verifier and prover exchange quantum

messages for a number of rounds that is a polynomial of the length of the input.

-64-

For every oracle, we have the immediate inclusions

QIP⊆ QRG,QMIPle,QMIPne,

as well as QIP⊆ PSPACE [JJUW10].

4.2.54. QIP(2). This class is the special case of QIP in which two messages are exchanged. Of course,

QIP(2)⊆ QIP(3) for every oracle.

4.2.55. QIP(3). The three-message version of QIP is equivalent to the version that allows a polynomial

number of rounds. That is, QIP(3) = QIP for every oracle [MW05].

4.2.56. QMA. The quantum Merlin-Arthur protocol is the same as the classical Merlin-Arthur protocol,

but Arthur is a polynomial-time quantum computer, and the proof that Merlin sends to Arthur is quantum.

SMA is contained in QAM, QMA(2), QMA/mpoly, QRG(1), and SBQP with respect to every oracle.

It is open whether there exists an oracle relative to which QMA has a computational advantage over QCMA.

In the unrelativized world, the inclusions QMA⊆ QCMA and cocap ·QMA⊆ QCMA/qpoly are open.

4.2.57. QMA(2). In this variant of QMA, Merlin sends Arthur two unentangled quantum messages

rather than one. QMA(2) is contained in EXPplo and QMIPne for all oracles. It is open whether there exists

an oracle making QMA and QMA(2) distinct or making QMA(2) and QCMA distinct. In the unrelativized

world, the inclusions QMA(2)⊆P, cocap ·QMA(2)⊆PSPACE/poly, and cocap ·QMA(2)⊆RG(3) are open.

4.2.58. QMA/mpoly. This class is QMA with polynomial-length advice, which is “Merlinized” in the

sense of BQP/mpoly. It is contained in PP/poly and QMA/qpoly with respect to every oracle.

4.2.59. QMA/qpoly. This class is QMA with polynomial-length quantum advice. It is contained in

PSPACE/poly with respect to every oracle.

Since QMA ⊆ QCMA is open in the world of all oracles, so is QMA/qpoly ⊆ QCMA/qpoly. In

the random oracle world, QMA/qpoly ⊆ NP/poly and cocap ·QMA/qpoly ⊆ P/poly are open, and cocap ·

QMA/qpoly ⊆ PP/poly is open in the unrelativized world.

-65-

4.2.60. QMIPle. QMIP and its related classes are defined similarly to MIP, except that there may be

a number of provers bounded by a polynomial of the length of the input, the verifier is a polynomial-time

quantum computer, and the provers are quantum computers with infinite computational power. Because the

provers are quantum, they may share entangled qubits before the protocol begins. The le in QMIPle stands

for “limited entanglement;” here, the provers are required to share at most a polynomially limited number

of entangled qubits.

QMIPle ⊆NEXPplo with respect to every oracle. The inclusions QMIPle ⊆ IP is open in the world of all

oracles, as are QMIPle ⊆NP and QMIPle ⊆ co ·NEXP in the random oracle world and cocap ·QMIPle ⊆ EXP

in the trivial oracle world.

4.2.61. QMIPne. This is defined in the same manner as QMIPle, except the provers are not allowed to

share any entangled qubits. QMIPne ⊆NEXPplo with respect to every oracle. The inclusions QMIPne ⊆NP

and QMIPne ⊆ IP are open in the random and all oracle worlds, respectively.

4.2.62. QRG. This class is the quantum version of RG, in which the verifier is a polynomial-time quan-

tum Turing machine and the prover and disprover are quantum computers with infinite computational power.

Unlike QMIP, there are no variants of this class based on entangled qubits, because the prover and disprover

are working against each other and so there is no benefit in sharing entangled qubits.

This class equals EXPplo with respect to every oracle [GW07].

4.2.63. QRG(1). QRG(1) is QRG with the additional limitation that the prover and disprover can only

send one message to the verifier. The verifier sends no messages. The class is, of course, contained in

the two-round version QRG(2) with respect to every oracle. In the unrelativized world, it is open whether

QRG(1) is contained in CH or PP/poly.

4.2.64. QRG(2). This class is QRG with two rounds: first, the verifier sends separate messages to the

prover and disprover, and then the prover and disprover each send one response. The class is immediately

contained in QRG with respect to every oracle, and it is also contained in PSPACE with respect to every

oracle.

4.2.65. QSZK. This is the quantum counterpart to SZK. The verifier is a polynomial-time quantum

computer, and the prover is an all-powerful quantum computer. As in the classical case, we require that the

-66-

verifier’s view of his interaction be statistically indistinguishable from one that the verifier could generate

himself. The view, in this case, is a transcript of the quantum states the verifier sends and receives.

QSZK⊆QIP(2) and QSZK⊆ PSPACE for all oracles. QSZK⊆ P and QSZK⊆ cocap ·NIQSZK in the

random oracle world and all oracle world, respectively.

4.2.66. R. The class R is the foundational class of computability theory. It is the class of all languages

L such that L (x) = M(x) for all x ∈ Σ∗ and some Turing machine M. Since R is not limited except by the

requirement that languages be computable, it absorbs most of the operators used in Complexity Zoology: ⊕,

BP , P , N , (C 7→ PC). Diagonalization arguments show that it is larger than most of the time-limited models

of computation.

R 6⊆MAEXP,EXPNP,NEXP/poly

with respect to every oracle.

4.2.67. RE. RE is the set of all recursively enumerable languages. A language is recursively enumer-

able if it is the range of a computable function f : N→ Σ∗. Equivalently, RE is the set of all languages L

such that for every x ∈L ,

x ∈L =⇒M(x) = 1.

The famously non-computable halting problem is in RE, and therefore RE and R are distinct. Since R =

cocap ·RE, it follows that RE is not a symmetric class [Tur37].

4.2.68. RG. A refereed game involves an interaction between three parties: a prover, a disprover, and

a verifier. The verifier is a probabilistic polynomial-time Turing machine, while the prover and disprover

have infinite computational power, although they are unable to see the verifier’s coin tosses and are similarly

isolated from each other. The verifier exchanges messages with the prover and disprover in parallel for a

number of rounds that is a polynomial of the length of the input. When the interaction ends, the verifier

decides to accept or reject the input. A language lies in RG if and only if there is a refereed game in which

optimal play convinces the verifier of the correct answer with a probability of at least 2/3.

RG= EXPplo for all oracles.

4.2.69. RG(1). This is the version of RG that is restricted to one round of interaction, in which the

prover and disprover each send a message to the verifier. The verifier does not send any messages to the

-67-

prover and the disprover. The class is contained in QRG(1), and RG(2) for every oracle, and it is equal to

S2P for every oracle [FIKU08].

4.2.70. RG(2). This is the version of RG that is restricted to two rounds of interaction: first, the verifier

sends separate messages to the prover and the disprover; then the prover and disprover send a response to

the verifier. It is contained in PSPACE, QRG(2), and RG(3) for every oracle.

4.2.71. RG(3). This is the version of RG that is restricted to three rounds of interaction. In round one,

the prover and disprover separately send a message to the verifier. In round two, the verifier sends one reply

to the prover and one reply to the disprover. Finally, the prover and disprover each respond with another

message to the verifier. It is open whether RG(3) is contained in PSPACE/poly or P with respect to the

trivial oracle.

4.2.72. RP. RP is another probabilistic model of computation. L ∈ RP if and only if there exists a

polynomial-time Turing machine M and a function p(n) = O(n∗) such that for every x ∈ Σ∗,

x ∈L =⇒ Pr
y∈Σp(|x|)

[M(x,y) = 1]≥ 2/3,

x 6∈L =⇒ Pr
y∈Σp(|x|)

[M(x,y) = 1] = 0.

RP⊆ NP is immediate. We can also inflate the probability of M(x,y) = 1 when x ∈L by running multiple

RP-machines in parallel. Therefore, RP⊆ BPP as well.

RP ⊆ NP is immediate. We can also inflate the probability of M(x,y) = 1 when x ∈ L by running

multiple RP-machines in parallel. Therefore, RP⊆ BPP for every oracle as well.

There is an oracle relative to which RP 6⊆ coNP and an algebraic oracle relative to which RP 6⊆ P. In

the unrelativized world, the inclusions RP⊆ coNP and RP⊆ P are both open.

4.2.73. S2P. S2P is the second level of the symmetric hierarchy. The definition is similar to that of

Σ2P, except that the ”no” condition is altered to make the class symmetric. L ∈ S2P if and only if there

exists a polynomial-time Turing Machine M and functions p(n),q(n) = O(n∗) such that for every x ∈ Σ∗,

x ∈L =⇒ (∃y ∈ Σ
p(|x|))(∀z ∈ Σ

q(|x|))[M(x,y) = 1],

x 6∈L =⇒ (∃y ∈ Σ
p(|x|))(∀z ∈ Σ

q(|x|))[M(x,y) = 0].

-68-

In addition to being contained in EXP, QRG, and Σ2P for every oracle, S2P is contained in ∆2P with respect

to the random oracle.

4.2.74. SBP. L ∈ SBP if and only if there exist functions f ∈ #P, g ∈ FP from Σ∗ to N such that for

every x ∈ Σ∗,

x ∈L =⇒ f (x)> g(x)

x 6∈L =⇒ f (x)> g(x)/2.

SBP⊆ AM,PostBPP,SBQP for every oracle. There exist oracles relative to which SBP 6⊆ Σ2P [BGM03],

cocap ·SBP 6⊆ QMA [AKKT19], and cocap ·SBP 6⊆ S2P. In the unrelativized world, the inclusions SBP ⊆

Σ2P and cocap ·SBP⊆ QMA(2),QRG(1) are open.

4.2.75. SBQP. L ∈ SBQP if and only if there exists a polynomial-time quantum computer M and a

function p(n) = O(n∗) such that for every x ∈ Σ∗,

x ∈L =⇒ Pr[M(x) = 1]≥ 2−p(|x|),

x 6∈L =⇒ Pr[M(x) = 1]≤ 2−p(|x|)−1.

SBQP= A0PP for every oracle [Kup09].

4.2.76. Σ2EXP. By definition, Σ2EXP= EXPNP.

4.2.77. Σ2P. The second level of the polynomial hierarchy is Σ2P = NPNP. Thus, Σ2P = N ·PNP =

N ·∆2P. Via the alternating quantifier definition of Σ2P, we also have Σ2P = N · co ·NP. The inclusions

Σ2P⊆∆3P,RG(3) with respect to every oracle are immediate. Σ2P is asymmetric with respect to the random

oracle [RST15].

4.2.78. SPP. SPP stands for stoic-PP, and it is one of three variants of PP named after ancient schools

of philosophy. In epicurean-PP, the condition leading to a PP-machine rejecting the input is strengthened so

that the number of rejecting computational paths is only slightly greater than the number of accepting paths.

Meanwhile, cynical-PP= co·epicurean-PP. Stoic-PP combines the traits of epicurean-PP and cynical-PP:

acceptance requires that exactly half of all paths accept, and rejection requires that slightly fewer than half

-69-

of all paths accept [For02]. Thus, L ∈ SPP if and only if there exists a polynomial-time Turing machine

M and a function p(n) = O(n∗) such that for every x ∈ Σ∗,

x ∈L =⇒ |{y ∈ Σ
p(|x|) : M(x,y) = 1}|= |{y ∈ Σ

p(|x|) : M(x,y) = 0}|,

x 6∈L =⇒ |{y ∈ Σ
p(|x|) : M(x,y) = 0}|− |{y ∈ Σ

p(|x|) : M(x,y) = 1}|= 2.

It follows that SPP ⊆ ⊕P,AWPP for every oracle. SPP 6⊆ PH with respect to the random oracle. The

inclusions SPP⊆ PH and SPP⊆ QRG(1) are open with respect to the trivial oracle.

4.2.79. SZK. In a statistical zero-knowledge proof protocol, a probabilistic polynomial-time verifier

exchanges a polynomial number of messages with an all-powerful prover, who attempts to convince the

verifier that the input x lies in a given language L . However, the verifier’s view of his interaction with

the prover—consisting of his random bits, the messages he sends, and the messages he receives—must be

statistically indistinguishable from one that he could generate himself. In other words, the prover tries to

convince the verifier that x ∈L while leaving the verifier (statistically) unable to convince anyone else that

x ∈L .

To rigorously define SZK in the standard way, it is necessary to formalize the concept of an interaction

between the verifier and prover. Let f ,g : Σ∗→ Σ∗. For x ∈ Σ∗, define the sequence (f ,g)(x) = {a j}∞
j=0 by

recursion:

a0 = x,

a j+1 =


f (a0, . . . ,a j) if j is even,

g(a0, . . . ,a j) if j is odd.

Set (f ,g)k(x) = 〈a0, . . . ,ak〉 for every positive integer k, and set

out f (f ,g)k(x) = f (x,a1, . . . ,ak),

outg(f ,g)k(x) = g(x,a1, . . . ,ak).

-70-

We also need the concept of the view that the verifier has of its interaction with the prover. For y ∈ Σ∗, let

fy : Σ∗→ Σ∗ denote the function fy(a) = f (a,y). Then set

View f (f ,g)k(x,y) = 〈(fy,g)k(x),y〉 ,

Viewg(f ,g)k(x,y) = 〈(f ,gy)k(x),y〉 .

Let P denote a function from Σ∗ to the set of probability distributions on Σ∗, so that P(x) can be regarded as

being randomly chosen. P represents the prover’s strategy, which may include coin tosses. P is statistically

zero-knowledge if for every polynomial-time Turing machine V ∗ and functions p∗(n),q∗(n) = O(n∗) there

exists a polynomial-time Turing machine S and a function r(n) = O(n∗) such that for every x ∈ Σ∗,

1
2 ∑

α∈Σ∗

∣∣Pr[ViewV ∗(P,V ∗)q∗(|x|)(x,y) = α]−Pr[S(x,z) = α]
∣∣< ε(|x|),

where y ∈ Σp∗(|x|),z ∈ Σr∗(|x|) are randomly chosen and ε : N→ R is a negligible function, meaning that for

any k ∈ N, ε(n) < 1/nk when n is sufficiently large. (Note that the sum above is finite, because possible

values of α are bounded in length by a polynomial in |x|.) This definition is intended to capture the idea that

the verifier’s view of the interaction between himself and the prover should be statistically indistinguishable

from one that the verifier could have generated himself. Let ZK denote the set of all P that are statistically

zero-knowledge.

We can now define a statistical zero-knowledge proof protocol (V, p,q) for a language L ⊆ Σ∗. V is a

polynomial-time Turing machine and p(n),q(n) = O(n∗). For every x ∈ Σ∗,

x ∈L =⇒ (∃P ∈ ZK)[Pr[outV (P,Vy)q(|x|)(x) = 1]≥ 2/3],

x 6∈L =⇒ (∀P ∈ ZK)[Pr[outV (P,Vy)q(|x|)(x) = 1]≤ 1/3]

where y ∈ Σp(|x|) is randomly chosen. Then define SZK to be the complexity class such that L ∈ SZK if and

only if there exists a statistical zero-knowledge protocol (V, p,q) for L . SZK f for an oracle f is defined in

the same way, except the computational model underlying the protocol is a Turing machine with f -oracle.

This definition is quite different from (and considerably more complex than) the definition of SZK we

gave in Section 4.1, which was based on a rhetorical question protocol. Denote this more simply defined

SZK by AMrhet .

-71-

THEOREM 4.2.3 (Kuperberg). SZK= AMrhet with respect to every oracle.

PROOF. The rhetorical question protocol is a special case of the statistical zero-knowledge proof proto-

col: since Arthur knows the correct answer to his question, he can produce a transcript of his interaction with

Merlin without Merlin’s assistance. Hence AMrhet ⊆ SZK. (Here we implicitly assume an honest verifier.

A dishonest Arthur could attempt to violate statistical zero-knowledge by breaking the rules of the protocol.

However, Okamoto has shown that it suffices to assume an honest verifier in the definition of SZK [Oka00].)

For the inclusion SZK ⊆ AMrhet , we use the SZK-complete promise problem of Vadhan [SV03]. A

promise problem is a special kind of decision problem in which not every string x ∈ Σ∗ necessarily cor-

responds to an answer. A promise problem can be written as (Y,N), where Y and N are disjoint subsets

of Σ∗ representing answers of yes and no, respectively. The relevant promise problem SD (Statistical

Difference) consists of pairs of circuits 〈C1,C2〉 with the same output length. If the output length is n, let

X1,X2 be the probability distributions on Σn that result from computing C1(u),C2(u), respectively, where u

is an input chosen uniformly at random. The answer to the problem is yes when X1 and X2 have a statistical

distance of at least 2/3, and the answer to the problem is no when X1 and X2 have a statistical distance of at

most 1/3.

SD can be computed using a rhetorical question protocol as follows. Arthur chooses X1 or X2 at random

and uses the chosen random variable to create a sequence of strings in Σn. He presents the sequence to

Merlin and asks which of the two distributions produced the sequence. If the answer to the input is yes with

respect to SD, then Merlin can distinguish between X1 and X2 with high probability, while if the answer is

no then X1 and X2 are too close for Merlin to reliably distinguish between X1 and X2.

It follows from the SZK-completeness of SD and the closure of AMrhet under polynomial-time reductions

that SZK⊆ AMrhet . �

SZK is contained in AM and QSZK for every oracle. On the other hand, there is an oracle relative to

which SZK 6⊆ BQP [Aar02]. It is open whether there is an oracle relative to which SZK⊆ S2P.

4.2.80. UP. Unambiguous polynomial time is a special case of non-deterministic polynomial time.

L ∈ UP if and only if there is a polynomial-time Turing machine M and a function p(n) = O(n∗) such

-72-

that for all x ∈ Σ∗,

x ∈L =⇒ (∃!y ∈ Σ
p(|x|))[M(x,y) = 1],

x 6∈L =⇒ (∀y ∈ Σ
p(|x|))[M(x,y) = 0].

Hence UP⊆ SPP and UP⊆ NP with respect to every oracle.

There exist oracles relative to which cocap ·UP is not contained in BQP/qpoly, P/poly, and QSZK.

With respect to the random oracle, UP is not contained in co ·QMIPle, co ·QMIPne, and co ·QMA/qpoly.

In the unrelativized world, the following are open: P = UP, UP ⊆ co ·QIP(2), UP ⊆ co ·QMA(2), UP ⊆

co ·QMA/qpoly, cocap ·UP⊆ BQP/qpoly, and cocap ·UP⊆ QSZK.

4.2.81. ZPP. A pair (M, f) denotes an expected polynomial-time Turing machine if M is a Turing

machine and f : N→ Σ∗ such that

E(x) = 2− f (|x|)
∑

y∈Σ f (|x|)

TM(x,y)

satisfies max|x|=n E(x) = O(n∗), where TM(x,y) indicates the computation time of the Turing machine M

with input 〈x,y〉. L ∈ ZPP if and only if there exists an expected polynomial-time Turing machine (M, f)

such that for every x ∈ Σ∗,

(∀y ∈ Σ
f (|x|))[M(x,y) = L (x)].

There is an oracle relative to which ZPP 6⊆ ⊕P [BBF98], but it is open whether this is true in the unrela-

tivized world.

4.3. Conclusion and Possible Future Work

By now we have seen the power and limitations of Complexity Zoology. Along the way, also outlined

the landscape of complexity theory. We discussed class operators and the role they play in the Zoology

program. We explained the software’s logic and how it can infer whether an inclusion is proven, disproven,

or open. We explored a simplified version of the system’s data set with a reduced number of complexity

classes to consider. Finally, we surveyed all the classes currently in the project while highlighting some of

the key definitions and results.

-73-

Just as an inquisitive student can inspire new lines of thought with an insightful question, Complexity

Zoology has brought attention to some challenging but not widely studied open problems. Completing the

system’s data set by identifying which inclusions should be regarded as truly open and which inclusions

can be marked as proven or disproven will comprise a large amount of the potential future work on the

project. Another possibility for further expanding Complexity Zoology is considering a different collection

of complexity classes or of different oracle worlds. Several results in complexity theory are conditioned on

a possible outcome of an open problem: for example: “If P = NP, then...” Such results could be studied

with Complexity Zoology’s help by including an “if P= NP” or similar world.

We have been careful to emphasize that Complexity Zoology does not understand complexity theory

as such. Even so, the software could be a helpful tool in a true formalization of complexity theory based

on computer-assisted of computer-verified proofs. In particular, Zoology’s ability to weed out redundant

inclusions or separations could be an invaluable time-saver.

-74-

FIGURE 4.2. Inclusions that hold with respect to every oracle. Blue arrows denote contain-
ment, black arrows denote symmetric containment, red arrows indicate that the complement
of the first class is contained in the second, and green arrows indicate that the intersection
of the first class with its complement is contained in the second class.

-75-

FIGURE 4.3. Inclusions that hold with respect to all algebraic oracles.

-76-

FIGURE 4.4. Inclusions that hold with respect to the random oracle.

-77-

FIGURE 4.5. Inclusions that hold with respect to the trivial oracle (the unrelativized world).

-78-

Bibliography

[AA09] S. Aaronson and A. Ambainis, The need for structure in quantum speedups, arXiv preprint arXiv:0911.0996 (2009).

[Aar02] S. Aaronson, Quantum lower bound for the collision problem, Proceedings of the thiry-fourth annual ACM symposium

on Theory of computing, ACM, 2002, pp. 635–642.

[Aar04] , Limitations of quantum advice and one-way communication, Computational Complexity, 2004. Proceedings.

19th IEEE Annual Conference on, IEEE, 2004, pp. 320–332.

[Aar05] , Quantum computing, postselection, and probabilistic polynomial-time, Proceedings of the Royal Society of

London A: Mathematical, Physical and Engineering Sciences, vol. 461, The Royal Society, 2005, pp. 3473–3482.

[Aar06] , Oracles are subtle but not malicious, 21st Annual IEEE Conference on Computational Complexity (CCC’06),

IEEE, 2006, pp. 15–pp.

[Aar10] , BQP and the polynomial hierarchy, Proceedings of the forty-second ACM symposium on Theory of comput-

ing, ACM, 2010, pp. 141–150.

[Aar19] , Complexity Zoo, https://complexityzoo.uwaterloo.ca/Complexity_Zoo, 2019.

[AB09] S. Arora and B. Barak, Computational complexity: A modern approach, 1st ed., Cambridge University Press, New

York, NY, USA, 2009.

[AB18] B. Aydinlioğlu and E. Bach, Affine relativization: Unifying the algebrization and relativization barriers, ACM Trans.

Comput. Theory 10 (2018), no. 1, 1:1–1:67.

[AD10] S. Aaronson and A. Drucker, A full characterization of quantum advice, 2010, 1004.0377.

[AD14] S. Aaronson and A. Drucker, A full characterization of quantum advice, SIAM Journal on Computing 43 (2014), no. 3,

1131–1183.

[Adl78] L. Adleman, Two theorems on random polynomial time, 19th Annual Symposium on Foundations of Computer Science

(sfcs 1978), IEEE, 1978, pp. 75–83.

[AGH90] W. Aiello, S. Goldwasser, and J. Hastad, On the power of interaction, Combinatorica 10 (1990), no. 1, 3–25.

[AK07] S. Aaronson and G. Kuperberg, Quantum versus classical proofs and advice, Twenty-Second Annual IEEE Conference

on Computational Complexity (CCC’07), IEEE, 2007, pp. 115–128.

[AKKT19] S. Aaronson, R. Kothari, W. Kretschmer, and J. Thaler, Quantum lower bounds for approximate counting via laurent

polynomials, arXiv preprint arXiv:1904.08914 (2019).

[AW09] S. Aaronson and A. Wigderson, Algebrization: A new barrier in complexity theory, ACM Transactions on Computation

Theory (TOCT) 1 (2009), no. 1, 2.

-79-

https://complexityzoo.uwaterloo.ca/Complexity_Zoo

[Bab85] L. Babai, Trading group theory for randomness, Proceedings of the seventeenth annual ACM symposium on Theory

of computing, ACM, 1985, pp. 421–429.

[BBBV97] C. H. Bennett, E. Bernstein, G. Brassard, and U. Vazirani, Strengths and weaknesses of quantum computing, SIAM

journal on Computing 26 (1997), no. 5, 1510–1523.

[BBF98] R. Beigel, H. Buhrman, and L. Fortnow, NP might not be as easy as detecting unique solutions, Proceedings of the

Thirtieth Annual ACM Symposium on Theory of Computing (New York, NY, USA), STOC ’98, ACM, 1998, pp. 203–

208.

[BCH+17] A. Bouland, L. Chen, D. Holden, J. Thaler, and P. N. Vasudevan, On the power of statistical zero knowledge, 2017

IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS), IEEE, 2017, pp. 708–719.

[Bei89] R. Beigel, On the relativized power of additional accepting paths, [1989] Proceedings. Structure in Complexity Theory

Fourth Annual Conference, IEEE, 1989, pp. 216–224.

[Bei94] , Perceptrons, PP, and the polynomial hierarchy, Computational complexity 4 (1994), no. 4, 339–349.

[BFL91] L. Babai, L. Fortnow, and C. Lund, Non-deterministic exponential time has two-prover interactive protocols, Compu-

tational complexity 1 (1991), no. 1, 3–40.

[BFT98] H. Buhrman, L. Fortnow, and T. Thierauf, Nonrelativizing separations, Proceedings. Thirteenth Annual IEEE Confer-

ence on Computational Complexity (Formerly: Structure in Complexity Theory Conference)(Cat. No. 98CB36247),

IEEE, 1998, pp. 8–12.

[BG81] C. H. Bennett and J. Gill, Relative to a random oracle A, PA 6= NPA 6= co−NPA with probability 1, SIAM Journal on

Computing 10 (1981), no. 1, 96–113.

[BGM03] E. Böhler, C. Glaßer, and D. Meister, Error-bounded probabilistic computations between ma and am, International

Symposium on Mathematical Foundations of Computer Science, Springer, 2003, pp. 249–258.

[BGS75] T. Baker, J. Gill, and R. Solovay, Relativizations of the P =?NP question, SIAM Journal on computing 4 (1975), no. 4,

431–442.

[BM88] L. Babai and S. Moran, Arthur-Merlin games: a randomized proof system, and a hierarchy of complexity classes,

Journal of Computer and System Sciences 36 (1988), no. 2, 254–276.

[BT00] H. Buhrman and L. Torenvliet, Randomness is hard, SIAM Journal on Computing 30 (2000), no. 5, 1485–1501.

[Cai86] J. Y. Cai, With probability one, a random oracle separates PSPACE from the polynomial-time hierarchy, Proceedings

of the Eighteenth Annual ACM Symposium on Theory of Computing (New York, NY, USA), STOC ’86, ACM, 1986,

pp. 21–29.

[CCD+03] A. M. Childs, R. Cleve, E. Deotto, E. Farhi, S. Gutmann, and D. A. Spielman, Exponential algorithmic speedup by a

quantum walk, Proceedings of the thirty-fifth annual ACM symposium on Theory of computing, ACM, 2003, pp. 59–

68.

[CCG+94] R. Chang, B. Chor, O. Goldreich, J. Hartmanis, J. Håstad, D. Ranjan, and P. Rohatgi, The random oracle hypothesis is

false, Journal of Computer and System Sciences 49 (1994), no. 1, 24–39.

-80-

[Che16] L. Chen, A note on oracle separations for bqp, 2016, 1605.00619.

[CKS81] A. K. Chandra, D. C. Kozen, and L. J. Stockmeyer, Alternation, J. Assoc. Comput. Mach. 28 (1981), no. 1, 114–133.

[FFK94] S. A. Fenner, L. J. Fortnow, and S. A. Kurtz, Gap-definable counting classes, Journal of Computer and System Sciences

48 (1994), no. 1, 116–148.

[FFKL03] S. Fenner, L. Fortnow, S. A. Kurtz, and L. Li, An oracle builder’s toolkit, Information and Computation 182 (2003),

no. 2, 95–136.

[FIKU08] L. Fortnow, R. Impagliazzo, V. Kabanets, and C. Umans, On the complexity of succinct zero-sum games, Computational

Complexity 17 (2008), no. 3, 353–376.

[FK97] U. Feige and J. Kilian, Making games short, STOC, vol. 97, 1997, pp. 506–516.

[For99] L. Fortnow, Relativized worlds with an infinite hierarchy, Information Processing Letters 69 (1999), no. 6, 309–313.

[For02] , Complexity class of the week: SPP, part I, Computational Complexity, https://blog.

computationalcomplexity.org/2002/10/, Oct 2002.

[For18] , The zero-one law for random oracles, Computational Complexity, https://https://blog.

computationalcomplexity.org/2018/08/the-zero-one-law-for-random-oracles.html, Aug 2018.

[FR98] L. Fortnow and J. Rogers, Complexity limitations on quantum computation, Computational Complexity, 1998. Pro-

ceedings. Thirteenth Annual IEEE Conference on, IEEE, 1998, pp. 202–209.

[GKR+95] F. Green, J. Kobler, K. W. Regan, T. Schwentick, and J. Torán, The power of the middle bit of a #P function, Journal of

Computer and System Sciences 50 (1995), no. 3, 456–467.

[GW07] G. Gutoski and J. Watrous, Toward a general theory of quantum games, Proceedings of the thirty-ninth annual ACM

symposium on Theory of computing, ACM, 2007, pp. 565–574.

[Hel84] H. Heller, Relativized polynomial hierarchies extending two levels, Mathematical systems theory 17 (1984), no. 1,

71–84.

[HHT97] Y. Han, L. A. Hemaspaandra, and T. Thierauf, Threshold computation and cryptographic security, SIAM Journal on

Computing 26 (1997), no. 1, 59–78.

[IV12] T. Ito and T. Vidick, A multi-prover interactive proof for NEXP sound against entangled provers, 2012 IEEE 53rd

Annual Symposium on Foundations of Computer Science, IEEE, 2012, pp. 243–252.

[JJUW10] R. Jain, Z. Ji, S. Upadhyay, and J. Watrous, QIP = PSPACE, Communications of the ACM 53 (2010), no. 12, 102–109.

[Kit97] A. Y. Kitaev, Quantum computations: algorithms and error correction, Uspekhi Matematicheskikh Nauk 52 (1997),

no. 6, 53–112.

[Kup09] G. Kuperberg, How hard is it to approximate the Jones polynomial?, arXiv preprint arXiv:0908.0512 (2009).

[Lad89] R. E. Ladner, Polynomial space counting problems, SIAM Journal on Computing 18 (1989), no. 6, 1087–1097.

[Lau83] C. Lautemann, BPP and the polynomial hierarchy, Information Processing Letters 17 (1983), no. 4, 215–217.

[LZ17] S. Lovett and J. Zhang, On the impossibility of entropy reversal, and its application to zero-knowledge proofs, Theory

of Cryptography Conference, Springer, 2017, pp. 31–55.

-81-

https://blog.computationalcomplexity.org/2002/10/
https://blog.computationalcomplexity.org/2002/10/
https://https://blog.computationalcomplexity.org/2018/08/the-zero-one-law-for-random-oracles.html
https://https://blog.computationalcomplexity.org/2018/08/the-zero-one-law-for-random-oracles.html

[MW05] C. Marriott and J. Watrous, Quantum arthur-merlin games, Computational Complexity 14 (2005), no. 2, 122–152.

[Oka00] T. Okamoto, On relationships between statistical zero-knowledge proofs, Journal of Computer and System Sciences 60

(2000), no. 1, 47–108.

[Pap85] C. H. Papadimitriou, Games against nature, Journal of Computer and System Sciences 31 (1985), no. 2, 288–301.

[Raz87] A. A. Razborov, Lower bounds on the dimension of schemes of bounded depth in a complete basis containing the

logical addition function, Mat. Zametki 41 (1987), no. 4, 598–607, 623.

[RS98] A. Russell and R. Sundaram, Symmetric alternation captures BPP, Computational Complexity 7 (1998), no. 2, 152–

162.

[RST15] B. Rossman, R. A. Servedio, and L.-Y. Tan, An average-case depth hierarchy theorem for boolean circuits, Foundations

of Computer Science (FOCS), 2015 IEEE 56th Annual Symposium on, IEEE, 2015, pp. 1030–1048.

[RT18] R. Raz and A. Tal, Oracle separation of BQP and PH, Electronic Colloquium on Computational Complexity, Report

No. 107 (2018).

[Sav70] W. J. Savitch, Relationships between nondeterministic and deterministic tape complexities, Journal of computer and

system sciences 4 (1970), no. 2, 177–192.

[Sha92] A. Shamir, IP = PSPACE, Journal of the ACM (JACM) 39 (1992), no. 4, 869–877.

[SV03] A. Sahai and S. Vadhan, A complete problem for statistical zero knowledge, Journal of the ACM (JACM) 50 (2003),

no. 2, 196–249.

[Tod91] S. Toda, PP is as hard as the polynomial-time hierarchy, SIAM Journal on Computing 20 (1991), no. 5, 865–877.

[Tur37] A. M. Turing, On computable numbers, with an application to the entscheidungsproblem, Proceedings of the London

mathematical society 2 (1937), no. 1, 230–265.

[Ver92] N. Vereschchagin, On the power of PP, 1992 Seventh Annual Structure in Complexity Theory Conference, IEEE, 1992,

pp. 138–143.

[Vya03] M. Vyalyi, QMA = PP implies that PP contains PH, ECCCTR: Electronic Colloquium on Computational Complexity,

technical reports, Citeseer, 2003.

[Wat00] J. Watrous, Succinct quantum proofs for properties of finite groups, Foundations of Computer Science, 2000. Proceed-

ings. 41st Annual Symposium on, IEEE, 2000, pp. 537–546.

[Wat03] , On the complexity of simulating space-bounded quantum computations, Computational Complexity 12 (2003),

no. 1-2, 48–84.

[Wat09] , Quantum computational complexity, Encyclopedia of complexity and systems science (2009), 7174–7201.

[ZP03] S. Zachos and A. Pagourtzis, Combinatory complexity: Operators on complexity classes, Proc. Panhellenic Logic

Symposium, 2003.

-82-

	Abstract
	Acknowledgments
	Chapter 1. Introduction
	Chapter 2. Complexity Classes and Operators
	2.1. Models of Computation
	2.2. Operators and Relativization
	2.3. Complexity Class Operators

	Chapter 3. The Complexity Zoology Program
	3.1. Input Files and Syntax
	3.2. Operator Propagation and Inference
	3.3. To-do List Inference Algorithm
	3.4. The Logic of Complexity Zoology
	3.5. Extremal Unknowns
	3.6. Output

	Chapter 4. Complexity Theory Results
	4.1. Simplified Version
	4.2. Overview of the Complexity Zoology Data Set
	4.3. Conclusion and Possible Future Work

	Bibliography

