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An Improved Gauge Dual Descent Algorithm for Noisy Phase Retrieval

Abstract

Phase retrieval is a common problem in signal processing, with applications in astronomy,

x-ray imaging, electron microscopy, and coherent diffraction imaging (CDI). Many models and

algorithms exist for phase retrieval, yet few are designed to handle noise without imposing additional

assumptions like signal sparsity. One recent algorithm for noisy phase retrieval which requires no

underlying assumptions is the Gauge Dual Descent (GDD) algorithm, which iteratively denoises

the desired signal.

The GDD algorithm involves a sequence of eigenvalue problems which can be computation-

ally expensive for large-scale signal recovery, requiring many matrix-vector products. Additionally,

signal denoising progress tends to stall in the GDD algorithm prior to satisfying optimality-based

termination conditions. To address these challenges, this dissertation provides the following con-

tributions. First, we establish empirical termination conditions for the GDD algorithm based on

primal and dual variable relative errors which suggest signal denoising progress has stalled. Next,

we develop an adaptive strategy for handling the sequence of eigenvalue problems in the GDD

algorithm. These contributions lead to the Improved Gauge Dual Descent (IGDD) algorithm. Nu-

merical examples demonstrate that the IGDD algorithm requires 50 − 80% fewer matrix-vector

products than the GDD algorithm for a variety of problems with low-oversampling.
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CHAPTER 1

Introduction

Phase retrieval is the problem of recovering a signal from magnitude-only observations with

little or no knowledge of the signal phase. Let x be a desired signal (or true signal) in Rn or

Cn which has been observed with sensing (or sampling) vectors ai ∈ Cn, resulting in squared

measurements |〈ai,x〉|2 = bi ∈ R for i = 1, . . . ,m. Also assume the true observation vector b =

[b1, . . . ,bm]T ∈ Rm has been contaminated by possibly nontrivial noise η = [η1, . . . , ηm]T ∈ Rm,

giving the observation vector b = b + η ∈ Rm. Then we define the phase retrieval problem as

(1.0.1)
find x

s.t. |〈ai, x〉|2 = bi = bi + ηi 1 ≤ i ≤ m,

where x is an approximation of the desired signal x. Note that if b is not identically zero then the

solution x will not be unique since we may change the sign or phase of x to generate additional

solutions. If ηi = 0 for all i, then (1.0.1) is the noiseless phase retrieval problem (from [24] and [14]

among many others). In this dissertation however, we are primarily concerned with nontrivial noise

and will refer to (1.0.1) with ||η||2 > 0 as noisy phase retrieval. Additionally, we are concerned

with noise η which has a Gaussian distribution, as discussed in [12] and [27].

Each sensing vector ai ∈ Cn is typically the conjugate of the ith row of the n−dimensional

discrete Fourier transformation (DFT) matrix F [9, Chapter 11]. This gives the constraint |Fx|2 = b

(where the square operator is applied element-wise). Often the number of observations m = nL is

oversampled by a factor of L to promote uniqueness of a signal solution and convergence of a given

algorithm.

The domain of the constraint in (1.0.1) is a high-dimensional torus, and thus phase retrieval

is inherently nonconvex. When deciding how to handle a particular phase retrieval problem, this

nonconvexity presents a unique challenge in terms of choosing an appropriate algorithm.
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Figure 1.1. Depiction of coherent diffractive imaging. Coherent waves (left) are
projected at an image (center) which causes a diffraction pattern that is measured
by a detector (right). Image from [34].

Phase retrieval has a broad range of applications across the sciences, many of which fall into

the general category of coherent diffraction imaging (CDI) [42]. This section provides a brief

overview of CDI and closes with a description of the phase retrieval experimental models used in

this dissertation (as well as [12], [14], and [27]). More specific applications of phase retrieval can be

found in astronomy [25], diffraction and array imaging [10] [17], microscopy [43], optics [67], and

x-ray crystallography [35], [44] (for a recent benchmark set of crystallography problems, see [23]).

For a comprehensive introduction to optical phase retrieval and an overview of recent theory and

methods, see the survey [60].

CDI is a method for reconstructing 2- or 3-dimensional nano-structures (e.g., nanotubes, nanocrys-

tals, proteins). In this process, highly coherent waves (e.g., x-rays, electrons, photons) are projected

at a given object. The resulting diffraction creates a pattern of intensities which are measured with a

detector, resulting in magnitude-only measurements. Figure 1.1 below depicts the CDI observation

process.

Because CDI does not involve optical lenses, there is no optical aberration (blurring or distort-

ing). Instead, the resolution depends on the limits of diffraction and dose. Many efficient methods

2



exist for handling low-noise phase retrieval (see Chapter 2 for an overview of some common meth-

ods). However, due to the nonconvexity of the constraints in (1.0.1), many low-noise methods

lead to algorithms which are likely to diverge or converge to a suboptimal local minimum if there

is modest noise or an insufficient number of observations. Thus accurate CDI typically requires

minimal noise and multiple observations to recover a high-resolution solution.

When developing an experimental model, there are many methods for increasing the number

of observations of a signal. Some options include rotating the position of the object, using a spatial

light modulator to defocus the observations, and inserting phase plates, or masks, in line with the

waves (see the survey [21] for a discussion of these methods). Our experimental models use the

same masking method described in [12, Section 2], [14, Sections 4.2, 4.3], and [27, Section 5.1] (see

Section 2.4 for an overview of these papers). This masking method involves placing a phase plate

with a known structure oriented normal to the projected waves. The phase plate can be placed on

either side of the object; in our experiments, the plate lies between the object and the detector.

The mask is then shifted and multiple observations are collected.

Mathematically, the application of a phase plate to the phase problem (1.0.1) is equivalent

to replacing the sensing operator |Fx|2 with |FCjx|2, where the matrices Cj ∈ Cn×n for j =

1, . . . , L are diagonal with standard Gaussian distribution entries Cj(i, i) ∼ N (0, 1), representing

the diffraction patterns of the shifted phase plate. This gives the observation constraint

(1.0.2)

∣∣∣∣∣∣∣∣∣
FC1x

...

FCLx

∣∣∣∣∣∣∣∣∣

2

= b.

In certain cases only a limited number of observations can be collected. For instance, in x-ray

imaging, overexposure of the incident waves to the object (living tissue) can be dangerous. Thus

the number of observations L may be relatively small compare to the signal size n, again making

signal recovery difficult for nonconvex methods.
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In this dissertation, our experimental phase retrieval models are generated using the method

established in [14] and extended in [27]. We begin with a true signal x which is either a vector-

ized image or a randomly generated vector with coordinates having complex standard Gaussian

distribution xi ∼ N (0, 1). Next, we generate j = 1, . . . , L diagonal mask matrices Cj ∈ Cn×n

with diagonal entries Cj(i, i) ∼ N (0, 1). We then compute the product (1.0.2) to obtain the true

observation vector b. For noiseless phase retrieval, we set the observation vector to b = b. If

the phase retrieval problem requires a nonzero noise term η, we add η to the true observation to

obtain the observation vector b = b + η. Figure 1.2 below depicts the primary test image used

in this dissertation. Here, an original image of size 128 × 128 is used to generate a noisy phase

retrieval problem, and we see a few particular iterates returned by the Gauge Dual Descent (GDD)

algorithm, the primary algorithm considered in this dissertation (Algorithm 3 in Section 4.2). For

a complete explanation of our method for creating noisy phase retrieval problems, see Section 5.2.

Figure 1.2. Results from the Gauge Dual Descent algorithm (Algorithm 3 in Sec-
tion 4.2) applied to a noisy phase retrieval problem (1.0.1) with oversampling rate
L = m/n = 8 and noise ratio εrel = ||η||2/||b||2 = 0.30.

We now summarize the contributions and layout of this dissertation. As we will see in Chapter 2,

a wide range of mathematical models and solution methods have been developed for phase retrieval.

Yet few models exist for noisy phase retrieval without imposing additional restrictions such as signal

sparsity. One recent noisy phase retrieval model which requires no underlying assumptions is the

gauge dual of the PhaseLift model (PLGD), which we define in Section 3.2.

The PLGD model was first introduced and analyzed in [27], and is based on the PhaseLift

model [12] in which a desired signal of n elements (e.g., pixels) is lifted into the space of n × n

positive semidefinite matrices, creating a convex, large-scale recovery problem (see Section 2.4

for details). The PLGD model maintains the convergence guarantees of the convex PhaseLift
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model, yet also allows for the development of efficient first-order (i.e., gradient-based) methods.

To optimize the PLGD model we use the first-order method and the resulting algorithm proposed

by [27], which we restate in Section 4.2 as the Gauge Dual Descent (GDD) algorithm. For noiseless

phase retrieval, the authors of [27] demonstrate that the GDD algorithm is far more efficient than

a previous algorithm for optimizing the PhaseLift model and returns signals with greater accuracy

than the wflow algorithm [14] (see Section 2.4 for wflow details).

Yet in the case of noisy phase retrieval, PLGD models with Guassian noise (which we define in

Section 5.2) face two significant challenges. Computationally, each evaluation of the PLGD objec-

tive function involves a large-scale eigenvalue problem which may require significant computational

costs for large signals. Additionally, since PLGD models with Gaussian noise typically do not have

a unique solution (see Section 5.3), first-order algorithms such as the GDD algorithm typically fail

to converge.

This dissertation offers two main contributions for PLGD models with Gaussian noise. First, we

address the convergence challenges of the GDD algorithm and establish new termination conditions

which indicate that signal recovery progress has stagnated. Second, we develop a new strategy

for handling the sequence of eigenvalue problems in the GDD algorithm. Applying these two

modifications to the GDD algorithm decreases the computational costs of the GDD algorithm by

50− 80% for problems with minimal oversampling.

This dissertation is organized in the following manner. Chapter 2 provides a survey of phase

retrieval methods. Chapter 3 presents the gauge duality theory necessary for developing, analyz-

ing, and optimizing the PLGD model. Chapter 4 then presents the Gauge Dual Descent (GDD)

algorithm, a first-order algorithm for the PLGD model, and examines the effectiveness of the GDD

algorithm for noiseless phase retrieval.

Chapter 5 demonstrates that the GDD algorithm typically fails to converge for PLGD models

with Gaussian noise. We then identify the cause of this behavior and establish new termination

conditions for the GDD algorithm. Note that Appendix A demonstrates that the GDD algorithm is

generally more accurate for PLGD models with Gaussian noise than the wflow algorithm of Section

2.4.
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Chapter 6 develops a new, efficient strategy for solving the sequence of eigenvalue problems

in the GDD algorithm which we define as the evolving matrix eigenvalue problem (EMEP). We

first show that the EMEP is the computational bottleneck of the GDD algorithm. We see that

the spectrum of these eigenvalue problems evolves in a predictable way, with the algebraically

largest eigenvalues clustering for later EMEP iterates. This clustering causes later EMEP iterates

to have more difficult eigenvalue problems. Next, we review the implicitly restarted Arnoldi method

(IRAM), a common large-scale eigenvalue method and develop an efficient, adaptive strategy (Al-

gorithm 8 in Section 6.4) for choosing IRAM parameters to handle the EMEP. We close Chapter

6 by demonstrating that Algorithm 8 effectively tracks the clustering of the algebraically largest

eigenvalues from earlier to later EMEP iterates, thus selecting more desirable parameters for the

IRAM.

Chapter 7 presents the Improved Gauge Dual Descent (IGDD) algorithm which applies the new

termination conditions of Chapter 5 and new eigenvalue strategy (Algorithm 8) of Chapter 6 to the

GDD algorithm. Chapter 7 then provides performance results for the IGDD algorithm. We see that

the IGDD algorithm reduces computational costs for a variety of noisy phase retrieval problems.

Chapter 8 concludes this dissertation with a summary of our contributions and suggestions for

future work.

This dissertation uses the following notation. Additional notation and definitions specific to

gauge duality are stated in Section 3.2.

The (i, j) entry of a matrix A is denoted [A]i,j or A(i, j), and the i-th component of a vector

a is denoted ai or [a]i. Vector norms are the standard p-norms. Matrix norms for A ∈ Cm×n are

Schatten p-norms, which apply the p-norm to the vector of singular values, i.e.,

(1.0.3) ||A||p =

min{m,n}∑
i=1

σpi (A)

1/p

.

The special case of p = 2 gives the Frobenius norm

(1.0.4) ||A||F =

min{m,n}∑
i=1

σ2
i (A)

1/2

.
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Gauge duality is a duality based on multiplicative relations, and thus Schatten norms are essential

to gauge duality and developing the PLGD model. In contrast, the EMEP requires measurements

with the vector-induced 2-norm. Thus we define the generic matrix norm (without a numeric label)

as

(1.0.5) ||A|| = σmax(A) = sup
||v||2=1

||Av||2.

The standard basis vector is denoted ei, where [ei]i = 1 and all other components are zero. Given

a vector d in Rn or Cn with components d1, d2, . . . , dn, the diagonal operator is denoted Diag(d)

and defined as

(1.0.6) Diag(d)i,j = Diag(d1, d2, . . . , dn)i,j =


di if i = j

0 else.

Additionally, if A is a matrix in Rn×n or Cn×n then the diagonal operator is defined as

(1.0.7) diag(A) =


A(1, 1)

A(2, 2)
...

A(n, n)


.

Given S, a subset of a finite-dimensional Euclidean space X , the indicator function of S is

defined as

(1.0.8) δS(x) =


0 x ∈ S

+∞ x /∈ S.

It is easily seen that if S is convex, then δS will be convex. The indicator function is useful for

tasks like embedding a domain constraint of an optimization model into the objective function and

is used frequently in Chapter 3 for proving gauge duality results.

If C is a convex subset of a finite-dimensional Euclidean space, then the normal cone of C at

y0 ∈ C is defined as

(1.0.9) NC(y0) = {g ∈ X | 〈g, y − y0〉 ≤ 0 ∀y ∈ C} .
7



By convention, if y0 is not in C, then NC(y0) is the empty set.

Given a subspace S of Rn or Cn, the orthogonal complement of S is defined as

(1.0.10) S⊥ = {v | 〈v, w〉 = 0 for all w ∈ S}.

Given a symmetric (or Hermitian) matrix A in Rn×n (or Cn×n), its eigenvalues are ordered

(1.0.11) λ1(A) ≥ λ2(A) ≥ . . . ≥ λn(A),

where λ1(A) or simply λ1 is the algebraically largest eigenvalue of A, and λn(A) or λn is the smallest

eigenvalue. The spectrum of A is the set of all of its eigenvalues, Λ = {λ1, λ2, . . . , λn}. If S is a

subspace of Rn (or Cn) then (θ, u) is a Ritz pair for A with respect to S if

(1.0.12) 〈w, (Au− θu)〉 = 0 ∀w ∈ S.

Likewise, θ is a Ritz value and u the corresponding Ritz vector for A with respect to S.

For a pair of matrices A,B ∈ Cn×n, their inner product is induced by the trace

(1.0.13) 〈A,B〉 := tr(A∗B) =
n∑
i=1

σi(A
∗B).

Given C, a convex subset of a finite-dimensional Euclidean space X , we define projection of x ∈ X

onto C as ΠC(x).

Given a linear operator A : X → Y over finite-dimensional Euclidean spaces X and Y, its

adjoint A∗ : Y → X is defined as the operator which satisfies

(1.0.14) 〈Ax, y〉 = 〈x,A∗y〉 for all x ∈ X , y ∈ Y.

Since X and Y are finite and A is linear, A is also continuous. Thus the Riesz representation

theorem guarantees that there will exist a unique linear operator A∗ [50, Section 6.2]. In this

dissertation, we will be concerned specifically with linear operators A : Hn → Rm, where Hn is the

set of n × n Hermitian matrices. It is easily shown that all such linear operators A will have the

8



form

(1.0.15) A(X) =


〈A1, X〉

...

〈Am, X〉

 ,
where each Ai is some matrix in Hn. In this case, the adjoint of A is given by

(1.0.16) 〈A(X), y〉 =

m∑
i=1

〈Ai, X〉yi =

m∑
i=1

〈yiAi, X〉 = 〈X,
m∑
i=1

yiAi〉 = 〈X,A∗y〉,

where X ∈ Hn and y ∈ Rm. Thus we have A∗y =
∑m

i=1 yiAi.

Note that the PLGD objective function (defined in Section 3.2) is convex and generally non-

differentiable, and thus we consider the subdifferential. Given a convex function f : U → R defined

on an open, convex subset U of a finite-dimensional Euclidean space X , the subdifferential of f at

y0 is defined as

(1.0.17) ∂f(y0) = {g ∈ X | f(y) ≥ f(y0) + 〈g, y − y0〉 ∀y ∈ U} ,

and each element of ∂f(y0) is a subgradient of f .

The Gaussian distribution (or normal distribution) N (µ, σ2) is the distribution defined by the

probability density function

(1.0.18) f
(
x | µ, σ2

)
=

1√
2πσ2

e−
(x−µ)2

2σ2 ,

where µ is the mean and σ2 the variance of the distribution. A real vector has Gaussian distribution

ν ∼ N (µ, σ2) if all its elements have Gaussian distribution. Unless otherwise specified, the Gaussian

distribution refers specifically to the standard Gaussian distribution, where µ = 0 and σ2 = 1. The

complex standard Gaussian distribution is defined by the probability density function

(1.0.19) f(z) =
1

π
e−|z|

2
.
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CHAPTER 2

Noisy Phase Retrieval

2.1. Introduction

Given the variety of phase retrieval applications and the difficulty of solving the phase retrieval

problem (1.0.1), a wide range of phase retrieval methods have been developed for both noisy

and noiseless phase retrieval. In this chapter we review several of these methods, with particular

attention toward methods for noisy phase retrieval. These methods are split into three classes:

alternating projection methods (Section 2.2), structured optimization methods (Section 2.3) which

rely on additional assumptions like sparsity of the desired signal x, and unstructured optimization

methods (Section 2.4) which only require an observation vector b = b + η and noise ratio εrel =

||η||2/||b||2. These three classes were chosen to mirror the historical development of these methods

(as the alternating projection methods preceded the others by a few decades) and emphasize the

uniqueness of the three unstructured optimization methods discussed in Section 2.4. Note that the

unstructured methods includes the Gauge Dual Descent (GDD) algorithm, a first-order algorithm

which is discussed in Chapter 4 and central to this dissertation. Thus Section 2.4 offers greater

detail for theoretical guarantees and numerical performance behavior.

For a recent survey of noiseless phase retrieval methods, see [36]. Also note Appendix A provides

an additional comparison of models and algorithms for noisy phase retrieval. In Appendix A we

show that the PLGD model first discussed in Section 2.4 is particularly well suited for developing

a first-order optimization method, i.e., the GDD algorithm. Additionally, we demonstrate that

the GDD algorithm is generally more accurate and robust to noise and low oversampling than the

wflow algorithm also discussed in Section 2.4.

2.2. Alternating Projection Methods

We begin by discussing alternating projection methods for phase retrieval. These methods

were established in the 1970s and 1980s as the first strategy for solving (1.0.1) and rely on prior

10



information about the signal, such as support constraints or positivity. Originally referred to as

error reduction algorithms, the algorithms of this section were later identified as part of a larger

class of nonconvex alternating projection methods [40]. These methods rely on projecting an

iterate between the object domain (or time domain) in which we seek the desired signal x, and the

frequency domain in which we have the observation b.

We begin with two common alternating projection algorithms: the Gershberg-Saxton (GS)

algorithm [29] and the hybrid input-output (HIO) algorithm [24], a variant of the GS algorithm

which is still commonly used in practice. We then discuss recent alternating projection algorithms

for noisy phase retrieval (oversampling smoothness (OSS) [52], error reduction (ER-) HIO and

noise robust (NR-) HIO [41]). Note that these these alternating projection algorithms are usually

not effective for noisy phase retrieval and typically require additional prior information.

2.2.1. Gershberg-Saxton Algorithm

Developed in 1972, the GS algorithm was the first alternating projection algorithm for phase

retrieval and serves as an algorithmic foundation which later alternating projection algorithms

would modify to improve the likelihood of convergence. Given the phase retrieval problem (1.0.1)

with no oversampling (i.e., L = 1) and knowledge of the signal magnitude c ∈ Rn+ (i.e., ci = |xi|2

for all i), we may attempt to solve (1.0.1) with Algorithm 1.

Algorithm 1 Gershberg-Saxton (GS) algorithm

Input: Observation vector b ∈ Rn+, signal measurement vector c ∈ Rn+, DFT matrix F ∈ Cn×n.

Output: Approximate solution signal x ∈ Cn.

1: Initialize: Choose a random signal x0 ∈ Cn, compute DFT y0 = Fx0, set r0 = |y0|2 − b, k = 0.

2: while ||rk||2 > tol do

3: Compute DFT of xk and residual: yk+1 = Fxk, rk+1 = |yk+1|2 − b.

4: Impose observation magnitude constraints: [yk+1]i =
[yk+1]i
|[yk+1]i|

√
bi for all i = 1, . . . , n.

5: Compute inverse DFT of yk+1: xk+1 = F−1yk+1.

6: Impose signal magnitude constraints: [xk+1]i =
[xk+1]i
|[xk+1]i|

√
ci for all i = 1, . . . , n.

7: k = k + 1.

8: end while

9: Return: x = xk.

11



During an iteration of the GS algorithm, knowledge of the signal and observation magnitudes, as

well as any additional information, is applied when the iterate reaches that respective domain (steps

6 and 4, respectively). While the GS algorithm is notable as the first phase retrieval algorithm,

this algorithm is also very likely to converge to a local rather than global minimum [36].

2.2.2. Hybrid Input-Output Algorithm

In [24], Fienup interpreted the GS algorithm as a nonlinear feedback control system (Figure

2.1), where the System component corresponds to the map P̃freq = F−1PfreqF (combining steps

3-5 of the GS algorithm, where Pfreq is projection onto the frequency constraints in step 4). Since

the GS algorithm interprets phase retrieval as an error-reduction problem, the system output

P̃freq(xk) is viewed as the current candidate for the desired signal x, and the signal magnitude

constraints (GS algorithm, step 6) are imposed to arrive at a new input xk+1 which is considered

the current approximation to the solution signal. By viewing phase retrieval as a nonlinear feedback

problem, the input xk is no longer treated as a signal approximation, and instead serves as feedback

information for the system. Thus xk need not satisfy the signal magnitude constraints.

System SensorController
reference solutionoutput

P̃freq(xk)

input

xk

Figure 2.1. Phase retrieval as a nonlinear feedback control system

Fienup observed that a small change in the input will result in an output that is approximately

a constant α times the change in the input, that is

(2.2.1) P̃freq(x+ ∆x)− P̃freq(x) ≈ α∆x.

To force a change of ∆x in the output P̃freq(x), the input would logically be changed by β∆x, where

β = 1/α from (2.2.1). This observation led Fienup to identify three new potential strategies for

selecting an update (the Controller in Figure 2.1). The most successful of these strategies involves

12



replacing step 6 in the GS algorithm with the index-wise update

(2.2.2) [xk+1]i =


[P̃freq(xk)]i i /∈ V

[xk]i − β[P̃freq(xk)]i i ∈ V,

where V is the set of indices in which the update violates the object domain constraints. If we replace

step 6 of the GS algorithm with (2.2.2), then we have the HIO algorithm. This simple corrective

step (2.2.2) which HIO applies to the object domain makes the HIO algorithm much more likely

than the GS algorithm to recover a signal from a low-noise observation [36]. Nevertheless, the HIO

algorithm still has a tendency to converge to local minima and is not robust to noise. In practice,

the user will often select a large number of random initial iterates to initialize the HIO algorithm

and select the best resulting signal.

2.2.3. HIO-Type Methods

Recent developments in alternating projection algorithms for phase retrieval have focused on

handling noisy observations. In [52], the authors modify the GS algorithm by taking the HIO

update (2.2.2) and performing a Gaussian smoothing step in the frequency domain on the indices

(pixels) violating the support constraint. Their oversampling smoothness (OSS) algorithm takes

the update xk+1 from step 6 of the HIO algorithm and applies the additional update

(2.2.3) [xk+1]i =


[xk+1]i i /∈ V[
F−1 [F (xk+1) . ∗w(j, α)]

]
i

i ∈ V,

where j = 1, . . . , N is the Fourier index, .∗ is pointwise multiplication, and w(j, α) is a normalized

Gaussian function

w(j, α) = e−
1
2( jα)

2

.

As α→∞, the original HIO algorithm is recovered. The authors select α heuristically, with early

α = O(N) and later α = O(1/N), causing the OSS algorithm to behave similarly to the HIO

algorithm during early iterations while damping high frequency violations in later iterations. Their

experiments [52, Section 3] apply Poisson noise with noise levels ranging from 0.05 to 0.25 (and

measured in the 1-norm, but approximately equivalent to our definition εrel = ||η||2/||b||2). Their
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results suggest that the accuracy and consistency of the OSS algorithm is superior to HIO and two

HIO variants: ER-HIO and NR-HIO of [41].

While HIO-type methods are computationally efficient and still commonly used in practice

[36], they also require special parameter tuning (e.g., β in HIO and α, β in OSS) and prior

information about the desired signal. Additionally, none of these methods are wholly robust to

noise or guaranteed to converge, and require large batches of random initializations in practice

to generate an adequate solution. To overcome these deficiencies, recent phase retrieval methods

have largely avoided the alternating projection framework, instead casting (1.0.1) as a structured

optimization problem.

2.3. Structured Optimization Methods

Next we discuss structured optimization methods for noisy phase retrieval. In the past decade,

a wide range of methods have been crafted to take advantage of the structure of particular phase

retrieval problems. The survey in this section highlights typical methods and summarizes a few

theoretical guarantees for exact recovery or error bounds. The methods in this section are grouped

in terms of the structural property each method seeks to exploit. The compressive phase retrieval

methods assume sparsity in the desired signal x, and include [61], the GrEedy Sparse PhAse

Retrieval (GESPAR) method [59], and a thresholded wflow algorithm [11]. The robust phase

retrieval methods assume sparsity in either the observation b [38] or the noise η [37]. The supervised

phase retrieval methods require an approximate solution signal x̂ for initialization, and include [30]

and [2].

2.3.1. Compressive Phase Retrieval Methods

We begin by summarizing a few recent compressive phase retrieval methods and theoretical

results. The authors of [22] consider the theoretical recovery guarantees for compressive phase

retrieval. They prove signal uniqueness and stable recovery (a stronger property than invertibility)

for a variety of sparsity assumptions. For instance, if the signal x is k-sparse and observation b is

noiseless, then O(k log(n/k)) observations are necessary for signal uniqueness. If x is k-sparse and

b is noisy, then O(k log(n/k) log(k)) observations are necessary to guarantee stable recovery (which

gives O(n log(n)) observations if x dense).
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Many methods have been considered for handling compressive phase retrieval. In [61], the

authors consider sparse signals with noisy observations and proceed by lifting the signal and sensing

vectors (for details on lifting and the PhaseLift model, see Section 2.4). They construct a rank

minimization problem similar to the PhaseLift rank minimization model (see Section 2.4), but with

an additional mixed 1, 2-norm constraint

n∑
i=1

 n∑
j=1

X2
i,j

1/2

≤ ζ

which promotes row-sparsity of the lifted solution matrix X. The resulting algorithm also includes a

thresholding step on the spectrum of X to enforce low-rankness in the solution. The authors provide

comparative numerical results indicating the addition of this constraint/thresholding strategy in

their optimization method decreases reconstruction error as the noise ratio increases. However, the

overall model is nonconvex, the iterations are expensive (each requiring the inversion of a lifted

matrix), and no theory is provided to guarantee convergence or signal recovery quality.

The GESPAR method of [59] assumes x is k-sparse and b is noisy, and constructs an algorithm

which maintains an active set S of indices which converges to the appropriate k-sized set of active

indices in the solution signal. This local search method does not require matrix lifting, making it

efficient for large-scale phase retrieval. Numerical results [59, Section 5] indicate that as sparsity

increases, GESPAR has a higher recovery probability than a PhaseLift algorithm and a sparse

variant of the HIO algorithm.

A thresholded version of the wflow algorithm (see Section 2.4) is considered in [11]. Here, the

authors assume that x is sparse and b is noisy, and add the penalty τ ||x||1 to the wflow objective

function. The resulting wflow-type model

(2.3.1) min
x

1
2m

m∑
i=1

(
|a∗ix|2 − bi

)2
+ τ ||x||1,

is a phase retrieval analog to the basis pursuit denoising model [18]. The authors show that for the

proper choice of τ , their thresholded wflow algorithm has the minimax optimal rate of convergence,

O(k log(n)/m).
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Another recent method for compressive phase retrieval considers unstructured noise η in the

observation, and interprets the recovery of a k-sparse signal x as a covariance maximization prob-

lem between the observations bi and the sensing values |a∗ix|2 over the appropriate k-dimensional

subspace [70]. The authors show that only O(k) measurements are required for their algorithm to

converge within ε error in a runtime of O(nk log(1/ε)) iterations.

2.3.2. Robust Phase Retrieval Methods

Next we consider robust phase retrieval methods, where we find sparsity in the observation b

rather than the signal x. The authors of [37] assume the noise η is sparse. Whereas the mini-

mization of the 2-norm is optimal for fitting against Gaussian noise, the 1-norm is more robust for

distributions with heavier tails. Thus the authors minimize the objective function
m∑
i=1

∣∣|a∗ix|2 − bi∣∣
using an alternating direction method of multipliers (ADMM) algorithm. Their numerical results

demonstrate that their algorithm achieves better accuracy than the wflow algorithm when recov-

ering from an observation with Gaussian noise and 10% outliers.

In contrast, the authors of [38] consider phase retrieval when the observation vector b is itself

sparse and noisy. They develop an HIO-type algorithm with noise suppression in the frequency

domain and phase/amplitude filtering in the object domain. Numerical results show this algorithm

achieves better accuracy under the given sparsity assumptions than the wflow algorithm and a

filtered version of the GS algorithm.

2.3.3. Supervised Phase Retrieval Methods

The final set of structured optimization methods we consider are the supervised phase retrieval

methods. Rather than assuming sparsity of the signal or observations, the authors of [30] and [2]

assume the existence of an approximation x̂ to the desired signal x. In this supervised phase

retrieval paradigm, the authors define the PhaseMax model

(2.3.2)
max
x

Re〈x̂, x〉

s.t. |〈ai, x〉|2 ≤ bi, i = 1, . . . ,m,

where Re(·) maps a complex number to its real component. The PhaseMax model (2.3.2) has the

benefits of being convex without requiring signal lifting. The dual to this problem is the widely-

studied basis pursuit problem which has several efficient solution techniques [18], [15]. The authors
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of [30] prove that the probability of exact recovery is dependent on the angle between x and x̂.

Their numerical results demonstrate that this probability quickly approaches 1 as oversampling

increases.

2.4. Unstructured Optimization Methods

The final class of methods we examine are unstructured optimization methods. Unlike the

methods discussed in Section 2.3, these methods place no assumptions on the signal x, the sensing

vectors ai, or the observation b = b + η other than knowledge of the noise ratio εrel = ||η||2/||b||2.

This section begins with an explanation of matrix lifting for the signal and sensing vectors.

Next we discuss the PhaseLift model [12] and the wflow algorithm [14]. Theoretical and numerical

results are included to highlight the effectiveness and robustness of these models and methods (for

complete theoretical results, see [14], [65] for wflow and [13], [16] for PhaseLift). This discussion

of PhaseLift and wflow leads us to the PhaseLift gauge dual model [27], another unstructured

optimization model which is the subject of Chapters 3 and 4.

2.4.1. PhaseLift

The PhaseLift model was first introduced in [12], with additional theoretical results established

in [16]. This model is based on the concept of matrix lifting. First we define the linear operator

A which allows us to lift the nonlinear phase retrieval observation constraint from (1.0.1) into a

higher-dimensional linear constraint. If we lift the n-dimensional signal x and sensing vectors ai

into rank-one Hermitian matrices X = xx∗, Ai = aia
∗
i ∈ Hn, then the sensing operator A is defined

coordinate-wise to satisfy [A(X)]i = 〈Ai, X〉 = tr(aia
∗
ixx

∗) = |〈ai, x〉|2. Thus A : Hn → Rm and

its adjoint A∗ : Rm → Hn are defined as

(2.4.1) A(xx∗) :=


〈a1a

∗
1, xx

∗〉
...

〈ama∗m, xx∗〉

 and A∗y :=
m∑
i=1

yiaia
∗
i .
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In particular, if the experimental model is the one discussed in Chapter 1 then we have

(2.4.2)

A(xx∗) =

∣∣∣∣∣∣∣∣∣
FC1x

...

FCLx

∣∣∣∣∣∣∣∣∣

2

= diag



FC1

...

FCL

 (xx∗)


FC1

...

FCL


∗ ,

A∗y =
L∑
j=1

[FCj ]
∗Diag(yj)FCj .

The lifted rank-one matrix X = xx∗ ∈ Hn and sensing operator A are then used to lift the

nonlinear phase retrieval constraints |〈ai, x〉|2 = bi for i = 1, . . . ,m into the linear constraint

A(X) = b. Thus (1.0.1) is equivalent to the left-most problem in the sequence of problems

(2.4.3)
find x

s.t. A(xx∗) = b
⇐⇒

find X

s.t. A(X) = b

X � 0

rank(X) = 1

⇐⇒

min
X∈Hn

rank(X)

s.t. A(X) = b

X � 0.

If a rank-one solution X = xx∗ exists then this matrix satisfies the lifted model in the middle of

(2.4.3), and the left implication holds. Likewise, the rank minimization model at right in (2.4.3)

will have a rank-one solution, and the right implication holds.

The resulting rank minimization problem at right of (2.4.3) is NP hard, as it includes the

cardinality minimization problem as a special case (see [45] or [49]). Thus the next step is to relax

the discrete, nonconvex objective function rank(X). To generalize the right-most model in (2.4.3)

for noisy phase retrieval, a norm bound is also applied to the sensing constraint. This gives the

semidefinite program which defines the PhaseLift model [12], [16]

(2.4.4)

min
X∈Hn

||X||1 =
n∑
i=1

σi(X)

(PhaseLift) s.t. ||A(X)− b||2 ≤ ε

X � 0.

Here the objective function ||X||1 refers to the Schatten p-norm (which is expressed as
∑n

i=1 σi(X),

tr(X), or 〈I,X〉 in various literature). While we can evaluate the function ||X||1 by computing
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the trace of X, evaluating the subdifferential of this function requires a (partial) SVD. Also note

that the term ε = ||η||2 measures the total noise, whereas εrel = ||η||2/||b||2 discussed in Chapter 1

measures the noise ratio (or relative noise). We choose the Schatten p-norm to highlight the fact

that (2.4.4) is the semidefinite analog to the celebrated basis pursuit denoising problem [18], [15],

(2.4.5)
min
x
||x||1

s.t. ||Ax− b||2 ≤ ε,

where minimizing ||x||1 serves as a convex relaxation to minimizing the discrete, nonconvex function

||x||0 = nnz(x).

The next two theorems quantify the relaxation of the PhaseLift model (2.4.4) from the phase

retrieval model (1.0.1), establishing exact and approximate recovery guarantees for the PhaseLift

model [13], [16]. Theorem 2.4.1 applies to the noiseless case (where ε = 0 in the PhaseLift model),

establishing a probability of equivalence between (1.0.1) and (2.4.4).

Theorem 2.4.1. Consider an arbitrary signal x in Rn or Cn and assume the sensing vectors ai

are independent, uniformly distributed on the unit sphere of Rn or Cn. Suppose that the number of

measurements obeys m ≥ c0n, where c0 is a sufficiently large constant. Then in both the real and

complex cases, the solution to (2.4.4) is exact with high probability in the sense that the noiseless

PhaseLift problem (i.e., (2.4.4) with ε = 0) has a unique solution obeying

X = xx∗.

This holds with probability at least 1−O(e−γm), where γ is a positive absolute constant.

Proof. See [13, Section 2]. �

The assumptions of Theorem 2.4.1 are met by the experimental models used in [12], [16], [27],

and this dissertation (see Chapter 1, where the masks Ci ∈ Cn×n from (1.0.2) have diagonal entries

chosen with Gaussian distribution). Thus, if L is the oversampling rate (i.e., m = nL) then Theorem

2.4.1 shows that only L = O(1) masks are required to guarantee exact signal recover (up to global

phase) with high probability.
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Theorem 2.4.2 applies to the noisy phase retrieval case (ε > 0), where there is no guarantee

that the PhaseLift (2.4.4) solution matrix X is low rank. Thus the solution signal x is set to an

appropriate rescaling of the eigenvector v1 corresponding to the algebraically largest eigenvalue

λ1 = λ1(X), giving

(2.4.6) x =
√
λ1v1.

Theorem 2.4.2. Consider an arbitrary signal x in Rn or Cn and assume the sensing vectors

ai are independent, uniformly distributed on the unit sphere of Rn or Cn. Also suppose that the

number of measurements obeys m ≥ C0n log n, where C0 is a sufficiently large constant. Then the

PhaseLift (2.4.4) solution X obeys

(2.4.7) ||X − xx∗||F ≤ C0ε,

for some positive constant C0. Additionally, we have

(2.4.8) ||x− eiθx||2 ≤ C0 min(||x||2, ε/||x||2),

where x is defined as in (2.4.6) and θ ∈ [0, 2π]. Both of these estimates hold with probability at

least 1−O(e−γ
m
n ), where γ is a positive absolute constant.

Proof. See [16, Section 6]. �

The strength of the PhaseLift model lies in its convexity and generality (no signal or observa-

tion assumptions are necessary). However, in practice the objective function ||X||1 is difficult to

optimize, as evaluation of the subdifferential ∂||X||1 requires a (partial) SVD of X.

2.4.2. Wflow

Like the PhaseLift model, the recent Wirtinger flow (wflow) model [14] also seeks to solve the

phase retrieval problem (1.0.1) without any assumptions on the structure or sparsity of the signal

or observation. However, unlike the PhaseLift model, the wflow model does not involve matrix

lifting and instead frames (1.0.1) as the least-squares problem

(2.4.9) min
x

1
2m

m∑
i=1

(
|a∗ix|2 − bi

)2
= 1

2m ||A(xx∗)− b||22.
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While the wflow model (2.4.9) is nonconvex, the authors of [14] develop an efficient gradient

descent-like algorithm (the wflow algorithm) which has a provable guarantee for exact recovery when

initialized appropriately. Initialization of the wflow algorithm involves a rescaling of the eigenvector

v1 corresponding to the algebraically largest eigenvalue of the matrix A∗b, which is itself the sum

of the outer products of the measurement vectors, scaled with the observation magnitudes

(2.4.10) A∗b :=

m∑
i=1

biaia
∗
i .

The authors motivate this choice of initialization by noting that if the sensing vectors ai are

i.i.d. with standard Gaussian distribution, and ||x||2 = 1, then the expected value of the outer

product sum A∗b will be

(2.4.11) E
[

1

m
A∗b

]
= I + 2xx∗.

Thus for large m, (2.4.10) has a high probability of returning a vector v1 closely aligned with the

solution x. Intuitively, this initialization can also be seen as maximizing 〈A(vv∗), b〉 = 〈vv∗,A∗b〉 =

〈v, [A∗b]v〉. Hence selecting the eigenvector v1 corresponding to the algebraically largest eigenvalue

of A∗b should promote A(v1v
∗
1) being collinear with b.

With this initialization, the authors recommend a gradient descent-like method with a preset

stepsize strategy. Let f(x) = 1
2m ||A(xx∗)− b||22, and the residual r = 1

m [A(xx∗)− b]. The mapping

f : x → 1
2m ||A(xx∗) − b||22 from Cn to R is not holomorphic, and thus not complex-differentiable.

As a result, the authors appeal to Wirtinger derivatives [14, Section 6] for the descent direction

∇f(x) =
1

m
[A∗(A(xx∗)− b)]x

=
1

m
[A∗r]x

=
1

m

 L∑
j=1

C∗jF
∗Diag(rj)FCj

x.
(2.4.12)

The stepsize is then chosen using the heuristics [14, Section 2]

(2.4.13) µk = min{1− e−k/k0 , µmax} k0 = 330, µmax = 0.4.
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This descent direction and stepsize choice lead to the wflow algorithm.

Algorithm 2 wflow algorithm

Input: Sensing operator A (2.4.1) with sensing vectors ai for i = 1, 2, . . . ,m, observation vector

b ∈ Rm+ .

Output: Approximate solution signal x.

1: Initialize: Compute the algebraically largest eigenpair (λ1, v1) of A∗b, set x0 = αv1 where

α2 = n
∑m

i=1 bi/
∑m

i=1 ||ai||22, set r0 = 1
m [A(x0x

∗
0)− b] and k = 0.

2: while ||rk||2 > tol do

3: Compute Wirtinger derivative: ∇f(xk) from (2.4.12).

4: Compute stepsize: µk+1 from (2.4.13) and set αk =
µk+1

||x0||22
.

5: Compute signal update: xk+1 = xk − αk∇f(xk).

6: Compute residual: rk+1 = 1
m

[
A(xk+1x

∗
k+1)− b

]
.

7: k = k + 1.

8: end while

9: Return: x = xk.

In [14, Section 2.3], it is observed that the wflow algorithm can be interpreted as a stochastic

gradient scheme, where ∇f(x) is an unbiased estimate of an ideal gradient ∇F (x), with

(2.4.14) F (x) = x∗ (I − xx∗)x− 3

4

(
||x||22 − 1

)2
.

Interestingly, we observe that the wflow algorithm can also be interpreted as an alternating projec-

tion HIO-type algorithm, where computation of the Wirtinger derivative (2.4.12) corresponds to

steps 3-5 of the GS algorithm and the signal update xk+1 = xk − αk∇f(xk) corresponds to step 6

of the GS algorithm. More precisely, in the last line of (2.4.12) we see xk is first mapped to the

frequency domain (Algorithm 1, step 3). This vector is then damped coordinate-wise by the corre-

sponding residual values Diag(rj) for j = 1, . . . , L (Algorithm 1, step 4). Finally, the observation is

mapped back to the object domain (Algorithm 1, step 5) and damped by αk to generate the signal

update xk+1 = xk−αk∇f(xk) (similar to the HIO update (2.2.2) which replaces Algorithm 1, step

6).
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Yet unlike other alternating projection algorithms, the wflow algorithm does not require addi-

tional frequency domain information or heuristics. The wflow algorithm replaces the frequency

domain damping in Algorithm 1, step 4 with a damping which uses the observation residual

r = A(xx∗)− b as an exact, real-time measurement of the frequency domain violations of x. In this

view, Diag(rj) in (2.4.12) provides a heuristic-free frequency domain damping. Consequentially, the

wflow algorithm merges the computational simplicity of an alternating projection method (Section

2.2) with the broad utility of an unstructured optimization method. Theorem 2.4.3 provides an

exact recovery probability for Algorithm 2 applied to noiseless phase retrieval problems.

Theorem 2.4.3. Consider an arbitrary signal x in Cn and assume the sensing vectors ai are

independent, uniformly distributed on the unit sphere of Cn. Suppose that the number of mea-

surements obeys m ≥ c0n log(n), where c0 is a sufficiently large constant. Then the wflow initial

estimate x0 normalized to have squared Euclidean norm equal to (
∑m

i=1 bi)/m has

(2.4.15) dist(x0,x) := min
θ∈[0,2π]

||x0 − eiθx||2 ≤
1

8
||x||2

with probability at least 1 − 10e−γn − 8/n2, where γ is a positive absolute constant. Additionally,

assume the stepsize is a bounded constant µk = µ ≤ c1/n for some fixed numerical constant c1.

Then there is an event of probability at least 1− 13e−γn−me−1.5m− 8/n2, such that on this event,

starting from any initial solution x0 obeying (2.4.15), we have

(2.4.16) dist(xk,x) ≤ 1

8
||x||2

(
1− µ

4

)k/2
.

Proof. See [14, Section 7]. �

Computationally, the wflow algorithm is very efficient at recovering the signal of an oversampled

noiseless observation. Numerical experiments in [14, Section 4] demonstrate the effectiveness of

the wflow algorithm for 1-D random signals, 2-D natural images, and 3-D molecular structures.

More generally, it was proved in [65] that if the observation vectors ai are independent, uni-

formly distributed on the unit sphere of Cn and there are m ≥ c0n log3(n) measurements, then with

probability at least 1− c0/m the function f(x) = 1
2m ||A(xx∗)− b||22 has the following properties:

• f has no spurious local minima,
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• all global minima are equal to x up to some phase constant: x = eiθx, and

• f has negative directional curvature at all saddle points.

Thus when solving (2.4.9), algorithms such as the wflow algorithm do not require specialized ini-

tialization, and are likewise guaranteed to find a global minimum given sufficient oversampling.

However, the wflow algorithm can diverge when significant noise exists or the oversampling rate

is too low (see Appendix A). In contrast, the Gauge Dual Descent (GDD) algorithm of Chapter 4

is guaranteed to converge and thus well suited for unstructured noisy phase retrieval problems.
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CHAPTER 3

Gauge Duality Theory

3.1. Introduction

This chapter presents the gauge duality theory necessary for optimizing the PhaseLift gauge

dual (PLGD) model. Section 3.2 introduces the PhaseLift primal (PLP) and PLGD pair of models

along with relevant definitions and a brief history of gauge duality theory. In Section 3.3 we prove

the gauge duality theorem (Theorem 3.3.1) for a more general primal-gauge dual model pair and

establish weak duality, strong duality, and optimality conditions for this pair. Section 3.4 then

returns to the PLP-PLGD pair, establishing key properties for optimizing the PLGD model and

recovering a signal x from a given dual variable y.

All of the gauge properties and gauge duality results in this chapter were previously established

in [51], [26], [28], and [27]. Gauge functions were first analyzed in [51]. Gauge duality was then

introduced in [26], where the author focused on quadratic programming applications. In [28], the

authors developed a broad set of antipolar calculus results for the analysis of gauge duality. These

results were then used in [27] to develop the Gauge Dual Descent (GDD) algorithm (Algorithm 3

in Section 4.2), a first-order algorithm for the PLP-PLGD pair.

Our contribution is to provide a self-contained, comprehensive treatment of gauge duality theory

for the PLP-PLGD pair. Prior to this treatment, the results in this chapter were spread throughout

the original texts ( [51], [28], and [27]), occasionally with differing notation or style. In contrast,

Section 3.2 provides a single notation and style which is used in Sections 3.3 and 3.4 to develop

gauge duality theory for the PLP-PLGD pair. The results of this chapter provide the theoretical

foundation for developing the GDD algorithm for optimizing the PLGD model in Chapter 4.

25



3.2. Primal-Gauge Dual Models and Background

We begin this section by stating the PhaseLift primal (PLP) and PhaseLift gauge dual (PLGD)

pair of models and reviewing key definitions. We then compare gauge duality with Lagrange duality

and provide a brief history of gauge duality theory.

3.2.1. Models and Definitions

The PhaseLift primal semidefinite program (restated from (2.4.4) in Section 2.4) and its gauge

dual are

(3.2.1)

min
X

||X||1 =
n∑
i=1

σi(X) min
y

λ1(A∗y)

(PLP) s.t. ||A(X)− b||2 ≤ ε (PLGD) s.t. 〈b, y〉 − ε||y||2 ≥ 1,

X � 0

where the linear operator A and its adjoint A∗ are defined in (2.4.1) and λ1(A∗y) is a function

of y ∈ Rm which returns the algebraically largest eigenvalue of A∗y. Note that in Section 3.4 we

discuss how an approximate signal x may be recovered from PLGD solution y.

This section places the PLP-PLGD pair (3.2.1) in the context of gauge duality theory. We

begin by discussing definitions and basic properties which are relevant to gauge duality theory. We

then take a moment to highlight some parallels between gauge duality and Lagrange duality before

closing with a summary of major developments in gauge duality theory. Along the way, we present

three additional, more general primal-gauge dual models which have the PLP-PLGD pair (3.2.1)

as a special case. Two of these models are then used in Section 3.3 to develop the theory which

establishes the gauge duality of the PLP-PLGD pair.

The PLP-PLGD pair (3.2.1) is an example of a more general primal-gauge dual pair which we

define as the nonlinearly-constrained pair

(3.2.2)
min
x∈X

κ(x) min
z∈X

κ◦(z)

(P-nonlin) s.t. x ∈ C (GD-nonlin) s.t. z ∈ C′.

Here, C and C′ are subsets of X , a finite-dimensional Euclidean space. The set C′ is the antipolar

of C, defined as

(3.2.3) C′ = {z | 〈x, z〉 ≥ 1 ∀x ∈ C}.
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This is in contrast to the polar of C, which is defined as

(3.2.4) C◦ = {z | 〈x, z〉 ≤ 1 ∀x ∈ C} .

Although we refer to the primal-gauge dual pair (3.2.2) as nonlinear, we are primarily concerned

with closed, convex sets C which do not contain the origin (e.g., the PLP (3.2.1) constraint set

when ε < ||b||2). Note that gauge dual models with linear constraints which do not include the

origin are a subset of the models described by (3.2.2).

The functions κ, κ◦ : X → R ∪ {+∞} in (3.2.2) are gauge functions, meaning they are convex,

nonnegative, positively homogeneous (κ(αx) = ακ(x) for all α > 0), and vanish at the origin.

Gauge functions generalize the notion of norms, allowing for flexibility in modeling the phase

retrieval problem. In the PLP model for instance, the Schatten 1-norm κ(X) := ||X||1 and vector

2-norm ρ(y) := ||y||2 are both gauges.

Given a gauge function κ, the polar of this function is the function κ◦ that most tightly satisfies

the inequality

(3.2.5) 〈x, z〉 ≤ κ(x)κ◦(z) ∀x ∈ dom κ, ∀z ∈ dom κ◦.

Equivalently, the polar may be defined as [51, Section 15]

(3.2.6) κ◦(z) = inf {µ > 0 | 〈x, z〉 ≤ µκ(x) ∀x} .

Note that the polar is a generalization of the dual norm, which is defined as

(3.2.7) ||z||∗ = sup
x
{〈x, z〉 | ||x|| ≤ 1}.

The preimage of a linear operator A : X → Y over the set S ⊆ Y is defined as

(3.2.8) A−1S = {x ∈ X | Ax ∈ S}.
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The closure of a set S ⊆ X is denoted cl(S). The affine hull of S is the set of all affine combinations

of elements of S, or

(3.2.9) aff(S) =

{
k∑
i=1

αixi

∣∣∣∣∣ k > 0, xi ∈ S, αi ∈ R,
k∑
i=1

αi = 1

}
.

The relative interior of S, denoted ri(S), is the interior within the affine hull of S, i.e.,

(3.2.10) ri(S) = {x ∈ S | ∃ ε > 0, Bε(x) ∩ aff(S) ⊆ S},

where Bε(x) is a ball of radius ε centered at x. The support function σC of a nonempty convex set

C is defined as

(3.2.11) σC(z) = sup
x∈C
〈x, z〉.

And the Minkowski function γC is defined as

(3.2.12) γC(x) = inf {λ ≥ 0 | x ∈ λC} .

If there is no λ such that λx ∈ C, then γC(x) = +∞. Note that any gauge κ is a Minkowski function

γC for C = {x | κ(x) ≤ 1} [51, Section 15]. Given a function f : X → R∪ {+∞}, the epigraph of f

is defined as

(3.2.13) epi(f) = {(x, τ) | f(x) ≤ τ} .

Note that f is convex if and only if epi(f) is convex [51, Section 7]. Thus the function f is said to

be closed if epi(f) is closed. Additionally, f is closed if and only if it is lower-semicontinuous (that

is, lim infx→x0 f(x) ≥ f(x0) for all x0 in dom(f)) [51, Section 7]. Also, f is proper if the domain

of f , dom(f) = {x | f(x) < +∞} is nonempty.

If κ is a closed gauge, then its polar may also be expressed as [51, Section 15]

(3.2.14) κ◦(z) = sup
x
{〈x, z〉 | κ(x) ≤ 1} ,

again highlighting the fact that the polar function is a generalization of the dual norm (3.2.7).

Additionally, if κ is also positive everywhere except at the origin then its polar may also be defined
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as [51, Section 15]

(3.2.15) κ◦(z) = sup
x

{
〈x, z〉
κ(x)

}
.

3.2.2. Development of Gauge Duality and Relation to Lagrange Duality

Given the gauge duality notation discussed above, we take a moment to contrast gauge duality

with the much more common Lagrange duality. Whereas gauge duality involves multiplicative

duality transformations, Lagrange duality is additive in nature. The reader may see [8, Chapter 5]

for a comprehensive introduction to Lagrange duality, and [51, Section 28] or [6, Chapter 2] for a

treatment of Lagrange duality theory.

Given P-nonlin, the primal model in (3.2.2), we see that its gauge dual GD-nonlin can be

stated simply using the polar function κ◦ and the antipolar set C′. Similarly, the Lagrange dual of

P-nonlin can be described using the appropriate function and set transformations. Given a function

f : X → R ∪ {±∞}, the convex conjugate f∗ is defined as the function that most tightly satisfies

the inequality

(3.2.16) 〈x, z〉 ≤ f(x) + f∗(z) ∀x ∈ dom f, ∀z ∈ dom f∗.

Equivalently, the convex conjugate may be defined as [51, Section 12]

(3.2.17) f∗(z) = sup
x
{〈x, z〉 − f(x)} .

We see that (3.2.16) and (3.2.17) are the additive analogs of the polar function definitions (3.2.5)

and (3.2.15), respectively. Additionally, for a set S ⊆ X , the dual cone is defined as

(3.2.18) S∗ = {z | 〈x, z〉 ≤ 0 ∀x ∈ S}.

Given the convex conjugate κ∗ and the dual cone C∗, the Lagrange dual D-nonlin and gauge dual

GD-nonlin both have the simple forms

(3.2.19)
max
z

−κ∗(z) min
z∈X

κ◦(z)

(D-nonlin) s.t. z ∈ C∗ (GD-nonlin) s.t. z ∈ C′.
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Note that Lagrange duality applies for any function f : X → R ∪ {±∞} and set S ⊆ X . Thus

Lagrange duality has been studied thoroughly and applied extensively (e.g., see [8, Chapter 5]). In

contrast, gauge duality places specific restrictions on the objective function and constraint set. As

a result, the development of gauge duality theory has a brief, sporadic history.

In 1970, Rockafellar thoroughly analyzed gauge functions and their polars [51, Part III]. The

concept of gauge duality was then introduced by Freund in 1987 [26]. This seminal work focused

primarily on the linearly-constrained primal and gauge dual pair

(3.2.20)
min
x∈X

κ(x) min
y∈Y

κ◦(A∗y)

(P-lin) s.t. Ax = b (GD-lin) s.t. 〈b, y〉 = 1.

Here A : X → Y is a linear operator over finite-dimensional Euclidean spaces. As with Lagrange

duality, if the primal constraint is replaced with Ax ≥ b then the gauge dual also includes the

constraint y ≥ 0. Freund develops strong duality and optimality conditions for the linear pair

(3.2.20) based on polarity relationships for sets and gauge functions. His work also establishes

these conditions for the nonlinear pair (3.2.2). In this case, his work requires X and Y to be ray-

like (meaning that for all x, y ∈ X we have x+ αy ∈ X for all α ≥ 0). The addition of the ray-like

property to X (along with closed, convex, and containing the origin) guarantees X ′′ = X .

Gauge duality theory was revisited in [28], where the authors consider the inequality-constrained

primal and gauge dual pair

(3.2.21)
min
x∈X

κ(x) min
y∈Y

κ◦(A∗y)

(P-ineq) s.t. ρ(Ax− b) ≤ ε (GD-ineq) s.t. 〈b, y〉 − ερ◦(y) ≥ 1.

As we will see in Section 3.4, the PLP-PLGD pair (3.2.1) pair is recovered from P-GD-ineq (3.2.21)

when we set κ(X) = ||X||1 + δ(·)�0(X) and ρ(y) = ||y||2. The authors of [28] develop an antipolar

calculus to determine the antipolar for sets like {y | ρ(Ax − b) ≤ ε} and use this calculus rather

than polarity relations to derive the pair P-GD-ineq (3.2.21) and establish conditions such as those

for strong duality. Additionally, this antipolar calculus allows the authors to drop the requirement

that the sets X and Y are ray-like.
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In contrast to the antipolar calculus framework, the authors of [1] develop gauge duality through

a perturbation framework. This even broader setting frames gauge duality as a product of Fenchel-

Rockafellar duality, allowing the consideration of gauge duality for general nonnegative convex

functions.

3.3. The Gauge Duality Theorem and Optimality Conditions

In this section we develop gauge duality theory for the inequality-constrained primal and gauge

dual (P-GD-ineq) pair (3.2.21). Section 3.3.1 establishes a set of supporting propositions which are

used in Section 3.3.2 to prove the Gauge Duality Theorem (Theorem 3.3.1). We follow a two-track

proof strategy depicted in Figure 3.1, showing that the gauge duality of P-GD-ineq (3.2.21) is a

consequence of the duality of both the nonlinear (3.2.2) and linear (3.2.20) pairs.

P-GD-nonlin (3.2.2) ⇒ (3.2.21)

Prop 3.3.1

Prop 3.3.2

Thm 3.3.1, (i)

P-GD-lin (3.2.20) ⇒ (3.2.21)

Prop 3.3.3

Prop 3.3.4 Prop 3.3.5 Prop 3.3.6

Thm 3.3.1, (ii)

Figure 3.1. Dependency chart for proofs (i) and (ii) of Theorem 3.3.1 which es-
tablish the gauge duality of P-GD-ineq (3.2.21).

Finally, Section 3.3.3 establishes weak duality, strong duality, and optimality conditions for P-

GD-ineq (3.2.21). In Section 3.4 we will return to the PhaseLift model (3.2.1), where the optimality

conditions in this section provide a method for recovery of a primal signal x from a dual variable y.

The results in this section are based on [51], [26], and especially [28], and rely on the analysis

of polarity relations rather than perturbation analysis as discussed in [1]. In particular, the two-

track proof strategy depicted in Figure 3.1 was first developed in [28] as part of a larger treatment

of antipolar calculus and the authors referred to [51] for more elementary results. This section

provides a self-contained development of gauge duality for P-GD-ineq (3.2.21).
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3.3.1. Supporting Propositions

Before presenting the Gauge Duality Theorem (Theorem 3.3.1 of Section 3.3.2), we present a

set of supporting propositions. The first two propositions below are used in Theorem 3.3.1, (i)

to show P-GD-ineq (3.2.21) is an instance of the nonlinear pair (3.2.2). Since P-GD-ineq (3.2.21)

allows for the constraint set C to be any closed, convex set not containing the origin, we must

simply establish the antipolar of the constraint set C = {x |ρ(Ax− b) ≤ ε}. We begin by showing

how linear and polar transformations on C commute under certain assumptions.

Proposition 3.3.1. Let X and Y be finite-dimensional Euclidean spaces, C ⊆ X a closed,

convex set which does not contain the origin, A : X → Y a linear operator, and A∗ : Y → X its

adjoint. Then

(3.3.1) (AC)′ = (A∗)−1 C′.

Additionally, assume C is polyhedral or ri(C) ∩ range(A) 6= ∅, and A−1C is not empty. Then

(A−1C)′ is nonempty and the following set equality holds

(3.3.2)
(
A−1C

)′
= A∗C′.

Proof. The first result is proved in [28, Proposition 3.3] and the second in [28, Proposition

3.4, 3.5]. �

The previous propositions allows us to construct the antipolar of the constraint set C =

{x | ρ(Ax− b) ≤ ε} in Proposition 3.3.2.

Proposition 3.3.2. Let X and Y be finite-dimensional Euclidean spaces, A : X → Y a linear

operator, and A∗ : Y → X its adjoint. Let C = {x | ρ(Ax− b) ≤ ε} with 0 < ε < ρ(b). Also assume

ri(C) ∩ range(A) and A−1C are not empty. Then

(3.3.3) C′ = {A∗y | 〈b, y〉 − ερ◦(y) ≥ 1} .

Proof. Since the arguments of ρ lie in Y, we first consider the antipolar of D = AC ⊆ Y to

establish the constraint 〈b, y〉 − ερ◦(y) ≥ 1. Note that y ∈ D′ is equivalent to 〈Ax, y〉 ≥ 1 for all
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Ax ∈ AC. This is again equivalent to

(3.3.4) 〈b−Ax, y〉 ≤ 〈b, y〉 − 1 ∀x such that ρ(Ax− b) ≤ ε.

Next apply definition (3.2.14) for the antipolar ρ◦ and take the supremum over u = b−Ax
ε , giving

(3.3.5)

ερ◦(y) = ε sup
u

{
〈u, y〉 | ρ(u) ≤ 1, u = b−Ax

ε

}
= sup

x

{
〈b−Ax, y〉 | ρ

(
b−Ax
ε

)
≤ 1
}

= sup
x
{〈b−Ax, y〉 | ρ(b−Ax) ≤ ε} ,

where the last equality uses the postive homogeneity of the gauge ρ. Using equation (3.3.5),

we see that equation (3.3.4) is equivalent to the desired constraint ερ◦(y) ≤ 〈b, y〉 − 1. Thus

D′ = {y | 〈b, y〉 − ερ◦(y) ≥ 1}.

Finally, note that C and C′ both lie in X , while D = AC and D′ lie in Y. Then by Proposition

3.3.1, the antipolar C′ has the form

(3.3.6)
C′ =

(
A−1D

)′
= A∗D′

= {A∗y | 〈b, y〉 − ερ◦(y) ≥ 1} .

�

The next four propositions allow us to derive the pair P-GD-ineq (3.2.21) from the linearly-

constrained pair (3.2.20) by transforming the P-ineq model into a linearly-constrained gauge model

of the form P-lin (see the dependency map in Figure 3.1 for reference). This process uses an

indicator function to embed the constraint set C = {x | ρ(Ax − b) ≤ ε} into the primal objective

function, resulting in a P-lin model (3.2.20). Finally, we determine the gauge dual of the resulting

model using polar relations and properties established in Section 3.2.

The first two propositions show that we may discuss the polar of a sum of gauges in terms of

sets induced by Minkowski functions. This allows us to determine the polar of a sum of gauges in

Proposition 3.3.5.
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Proposition 3.3.3. Let C ⊆ X be a closed, convex set containing the origin and κ = γC the

Minkowski function induced by C. Then κ is a gauge, C = {x | κ(x) ≤ 1}, and C is the unique

closed, convex set containing the origin such that κ = γC.

Proof. To verify that κ is a gauge, first note that positive homogeneity and κ(0) = 0 are

direct results of κ being a Minkowski function. To show convexity, let x, y ∈ X and 0 ≤ α ≤ 1.

Then x ∈ κ(x)C means αx ∈ ακ(x)C, and likewise (1− α)y ∈ (1− α)κ(y)C. Thus αx+ (1− α)y ∈

(ακ(x) + (1 − α)κ(y))C. Then by the infimum of the Minkowski function, κ(αx + (1 − α)y) ≤

ακ(x) + (1− α)κ(y) and κ is convex.

Additionally, κ(x) ≤ 1 is equivalent to x ∈ C, and thus C = {x | κ(x) ≤ 1}.

Finally, assume there is some closed, convex set D ⊆ X such that κ = γD. Then κ(x) = γC(x) =

γD(x) ≤ 1 is equivalent to x being in both C and D, since both sets are closed and convex. Likewise,

κ(x) > 1 indicates x is in neither set. Thus C = D.

�

Proposition 3.3.4. Let κ1 and κ2 be gauges. Let κ(x1, x2) = κ1(x1)+κ2(x2), C1 = {z1 | κ◦(z1) ≤

1}, C2 = {z2 | κ◦(z2) ≤ 1}, and C = {(z1, z2) | κ◦(z1, z2) ≤ 1}. Then κ and κ◦ are gauges, κ◦ = γC,

and C = C1 × C2.

Proof. Since κ is the sum of gauges, it is also convex, nonnegative, positively homogeneous,

and zero at the origin, and thus a gauge. Then κ◦ is also a gauge and by Proposition 3.3.3, C is

the unique set such that κ = γC . If (z1, z2) ∈ C, then 〈x1, z1〉 + 〈x2, z2〉 ≤ κ(x1, x2)κ◦(z1, z2) ≤

κ1(x1)+κ2(x2) for all x1 ∈ dom κ1 and x2 ∈ dom κ2. In particular, if x2 = 0 then 〈x1, z1〉 ≤ κ1(x1)

for all x1 ∈ dom κ1, indicating z1 ∈ C1. Similarly z2 ∈ C2 and thus C1 × C2 ⊆ C. For the reverse

inclusion, (z1, z2) ∈ C1 × C2 means 〈x1, z1〉 ≤ κ1(x1) for all x1 ∈ dom κ1 and 〈x2, z2〉 ≤ κ2(x2) for

all x2 ∈ dom κ2. Adding these inequalities, we have 〈x1, z1〉 + 〈x2, z2〉 ≤ κ1(x1) + κ2(x2) for all

x1 ∈ dom κ1 and x2 ∈ dom κ2, and thus C = C1 × C2. �

Given the two propositions above, we now show that the polar of a sum of gauges is the max

of the set of polars.
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Proposition 3.3.5. Let κ1 and κ2 be gauges. Then the sum κ(x1, x2) := κ1(x1) + κ2(x2) is a

guage and has the polar

(3.3.7) κ◦(z1, z2) = max {κ◦(z1), κ◦2(z2)} .

Proof. Proposition 3.3.4 shows κ and its polar κ◦ are gauges. Setting C1 = {z1 | κ◦(z1) ≤ 1},

C2 = {z2 | κ◦(z2) ≤ 1}, and C = {(z1, z2) | κ◦(z1, z2) ≤ 1}, we may express the gauge polars as

Minkowski functions κ◦1 = γC1 , κ◦2 = γC2 , and κ◦ = γC . Since C1, C2, and C are closed, convex sets

containing the origin, Proposition 3.3.3 tells us these are the unique sets defining κ◦1, κ◦2, and κ◦.

Additionally, Proposition 3.3.4 implies C = C1 × C2 and κ◦(z1, z2) = γC(z1, z2) = γC1×C2(z1, z2).

Then we have

(3.3.8)

κ◦(z1, z2) = γC1×C2(z1, z2)

= inf {λ ≥ 0 | z1 ∈ λC1, z2 ∈ λC2}

= max { inf{λ ≥ 0 | z1 ∈ λC1}, inf{λ ≥ 0 | z2 ∈ λC2}}

= max {γC1(z1), γC1(z2)}

= max {κ◦1(z1), κ◦2(z2)} .

�

The following proposition establishes two equalities which allow us to compute the polar of

an objective function which includes an indicator function. This strategy allows us to embed the

inequality constraint ρ(Ax − b) ≤ ε in the model P-ineq (3.2.21) into the objective function of

(3.2.20) in the proof of Theorem 3.3.1, (ii).

Proposition 3.3.6. Let ρ be a gauge. Then for all y ∈ X and τ ≥ 0 the following equalities

hold.

(i) (δepi ρ)
◦ (y, τ) = δ(epi ρ)◦(y, τ),

(ii) δ(epi ρ)◦(y, τ) = δepi(ρ◦)(y,−τ).
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Proof. To show (i) holds, consider the expansion of the expressions

(δepi ρ)
◦ (y, τ) = inf {µ > 0 | 〈(x, σ), (y, τ)〉 ≤ µδepi ρ(x, σ) ∀(x, σ)} ,

δ(epi ρ)◦(y, τ) =


0 if 〈(x, σ), (y, τ)〉 ≤ 1 ∀(x, σ) ∈ epiρ

+∞ else.

Note that the value of δ(epi ρ)◦(y, τ) is either 0 or +∞. If δ(epi ρ)◦(y, τ) = 0, then 〈(x, σ), (y, τ)〉 ≤ 1

for all (x, σ) ∈ epiρ. Since ρ is a gauge, (x, σ) ∈ epiρ is equivalent to ρ(αx) ≤ ασ for all α > 0.

Then (αx, ασ) ∈ epiρ for all α > 0. Dividing the inequality by α and letting α approach infinity,

we have

〈(x, σ), (y, τ)〉 ≤ lim
α→+∞

1

α
= 0 for all (x, α) ∈ epiρ.

Thus (δepi ρ)
◦ (y, τ) = 0. On the other hand, if δ(epi ρ)◦(y, τ) = +∞ then there is some (x, σ) ∈ epiρ

with 〈(x, σ), (y, τ)〉 > 1. Then δepi ρ(x, σ) = 0 and there is no µ > 0 such that 〈(x, σ), (y, τ)〉 ≤

µδepi ρ(x, σ). Thus (δepi ρ)
◦ (y, τ) = +∞.

To show (ii) holds, we have the following set of equivalences

(y, τ) ∈ (epiρ)◦ ⇐⇒ 〈(x, σ), (y, τ)〉 ≤ 1 ∀(x, σ) ∈ epi(ρ)

⇐⇒ 〈(x, σ), (y, τ)〉 ≤ 0 ∀x and ρ(x) ≤ σ

⇐⇒ 〈x, y〉 ≤ −τρ(x) ∀x

⇐⇒ ρ◦(y) = inf {µ > 0 | 〈x, y〉 ≤ µρ(x) ∀x} ≤ −τ

⇐⇒ (y,−τ) ∈ epi(ρ◦).

Here, the second equivalence was established in the proof of (i) and the third comes from setting σ

as the minimal value σ = ρ(x). Thus δ(epi ρ)◦(y, τ) = δepi(ρ◦)(y,−τ). �

3.3.2. Gauge Duality Theorem

Given the supporting propositions established in Section 3.3.1, we are now prepared to prove

the following theorem.

Theorem 3.3.1. Let P-ineq and GD-ineq be the inequality-constrained pair of models from

(3.2.21). Also let C = {x | ρ(Ax − b) ≤ ε} with 0 < ε < ρ(b) and assume ri(C) ∩ range(A) and
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A−1C are not empty. Then the model GD-ineq is the gauge dual of the primal P-ineq based on the

gauge duality of

(i) the nonlinear gauge dual pair (3.2.2), and

(ii) the linear gauge dual pair (3.2.20).

Proof. Item (i) is a direct result of Proposition 3.3.2, which gives the antipolar set C′ =

{A∗y | 〈b, y〉 − ερ◦(y) ≥ 1}. As a result, the argument of the GD-nonlin objective κ◦ is A∗y and

GD-ineq is equivalent to GD-nonlin.

To prove item (ii), we must first express P-ineq as a linear gauge model of the form P-lin. Define

the function φ(x, r, σ) = κ(x) + δepi ρ(r, σ). Since the epigraph of a gauge is closed under positive

scaling, the indicator function δepi ρ is a gauge. By Proposition 3.3.4, φ is a gauge, and thus P-ineq

is equivalent to the linear gauge model

(3.3.9)

min
x,r,σ

φ(x, r, σ)

s.t. r = b−Ax

σ = ε.

To combine these linear constraints, define the following extended matrix and vectors

(3.3.10) A =

A I 0

0 0 1

 , x =


x

r

σ

 , b =

b
ε

 ,

and define the spaces X = X × Y × {R ∪+∞} and Y = Y × {R ∪+∞}.

Then (3.3.9) has the linear form equivalent to P-lin

(3.3.11) min
x∈X

φ(x) s.t. Ax = b.

This model has the following gauge dual per (3.2.20)

(3.3.12) min
y∈Y

φ◦(A
∗
y) s.t. 〈b, y〉 = 1,

where A
∗
y = (A∗y, y, τ) and 〈b, y〉 = 〈b, y〉+ στ .
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Taking the polar of φ, we have

(3.3.13)

φ◦(A∗y, y, τ) = max{κ◦(A∗y), (δepi ρ)
◦ (y, τ)}

= max{κ◦(A∗y), δ(epi ρ)◦(y, τ)}

= κ◦(A∗y) + δ(epi ρ)◦(y, τ)

= κ◦(A∗y) + δepi(ρ◦)(y,−τ).

The first equality is a result of Proposition 3.3.5. The second and last equalities are results of

Proposition 3.3.6, (i) and (ii), respectively. And the third equality is a consequence of the indicator

function mapping to {0,+∞}.

The indicator function δepi(ρ◦)(y,−τ) corresponds to the constraint ρ◦(y) ≤ −τ . This constraint

and the equality constraint 〈b, y〉+ στ = 1 may be combined as

〈b, y〉 − σρ◦(y) ≥ 〈b, y〉+ στ = 1.

Thus we eliminate τ and recover GD-ineq. �

3.3.3. Weak Duality, Strong Duality, and Optimality Conditions

With the gauge duality of the pair of models P-GD-ineq (3.2.21) established in Section 3.3.2, we

now proceed to establish weak duality, strong duality, and optimality conditions for this pair. These

properties will play a central role in developing the GDD algorithm for optimizing the PLGD model

(3.2.1), allowing us to develop termination conditions as well as a recovery method for the primal

signal x from a dual iterate y. The weak duality property of P-GD-ineq (3.2.21) is a straightforward

consequence of the definition of the polar of a function and inequality constraints in this model.

Proposition 3.3.7. (weak duality) Assume the primal model P-ineq (3.2.21) is feasible and

0 ≤ ε < ρ(b). Then for all primal and gauge dual feasible pairs (x, y) ∈ X × Y we have

(3.3.14) κ(x)κ◦(A∗y) ≥ 1.
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Proof. Since x and y are feasible for P-GD-ineq (3.2.21), we have

(3.3.15)

1 ≤ 〈b, y〉 − ερ◦(y)

≤ 〈b, y〉 − ρ(b−Ax)ρ◦(y)

≤ 〈b, y〉 − 〈b−Ax, y〉

= 〈x,A∗y〉

≤ κ(x)κ◦(A∗y).

Here, the first and second inequalities are due to GD-ineq and P-ineq feasibility, respectively. The

third and fourth inequalities are a consequence of polar functions. �

In order to show strong duality holds for the pair P-GD-ineq (3.2.21), we add the assumption

that ρ◦ is continuous and use the strong duality properties of the Lagrange primal and dual pair

(see [51, Section 28])

(3.3.16)
min
x∈X

κ(x) max
y∈Y

〈b, y〉 − ερ◦(y)

(P-ineq) s.t. ρ(Ax− b) ≤ ε (LD-ineq) s.t. κ◦(A∗y) ≤ 1.

This proof strategy identifies a sequence of Lagrange dual feasible vectors which may be rescaled to

create to a gauge dual feasible sequence. To guarantee the limit of this sequence exists, we require

that ρ◦ is continuous.

Proposition 3.3.8. (strong duality) Assume the primal model P-ineq (3.2.21) is feasible, ρ◦

is continuous, and 0 ≤ ε < ρ(b). Then P-ineq admits an optimal variable x? and

(3.3.17) κ(x?)νGD = 1

where νGD is the optimal GD-ineq value

(3.3.18) νGD := inf
〈b,y〉−ερ◦(y)≥1

κ◦(A∗y).

Additionally, if P-ineq is strictly feasible then P-ineq and GD-ineq admit an optimal pair

(x?, y?) ∈ X × Y and

(3.3.19) κ(x?)κ
◦(A∗y?) = 1,
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where y? is a rescaling of the optimal LD-ineq variable ŷ such that

(3.3.20) y? =
ŷ

〈b, ŷ〉 − ερ◦(ŷ)
.

Proof. Since P-ineq is feasible, Lagrange duality implies that LD-ineq is bounded above.

Additionally, since LD-ineq is strictly feasible for y = 0 (i.e., κ◦(0) = 0 < 1 and 0 is in the relative

interior of the Lagrange dual feasible set), [51, Theorem 28.2] indicates that P-ineq admits an

optimal variable x̂ and LD-ineq has finite optimal objective value

νLD := sup
κ◦(A∗y)≤1

〈b, y〉 − ερ◦(y) < +∞.

Furthermore, [51, Theorem 28.4] tells us this pair has zero Lagrange duality gap.

Since x̂ is optimal for P-ineq, x? = x̂ is our desired primal solution. By strong Lagrange duality

νLD = κ(x?), and by weak gauge duality (Proposition 3.3.7) this value is strictly greater than

zero. Let {yi} be a LD-ineq feasible sequence such that 〈b, yi〉 − ερ◦(yi) → νLD > 0. Since ρ◦ is

continuous, there exists a subsequence {yij} such that 〈b, yij 〉 − ερ◦(yij ) is bounded above zero for

all j. Rescaling this sequence such that

yj =
yij

〈b, yij 〉 − ερ◦(yij )
,

we have 〈b,yj〉− ερ◦(yj) = 1 for all j, and thus {yj} is a GD-ineq feasible sequence. Then we have

νGD ≤ lim
j→∞

κ◦(A∗yj)

= lim
j→∞

1
〈b,yij 〉−ερ◦(yij )κ

◦(A∗yij )

= 1
κ(x?) · lim

j→∞
κ◦(A∗yij ) ≤ 1

κ(x?) ,

where the last inequality is due to {yij} being LD-ineq feasible (i.e., κ◦(A∗yij ) ≤ 1 for all j). And

by weak gauge duality (Proposition 3.3.7) we have νGD ≥ 1
κ(x?) , giving (3.3.17).

If P-ineq is strictly feasible, then by [51, Theorem 28.2] LD-ineq will admit a finite optimal

solution ŷ. This variable may be rescaled to obtain the optimal GD-ineq variable (3.3.20) and the

same subsequence argument gives (3.3.19).

�
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We close this section by establishing the optimality conditions of the pair P-GD-ineq (3.2.21)

which are primarily a consequence of the strong and weak duality results above.

Proposition 3.3.9. (optimality conditions) If the primal model P-ineq (3.2.21) is feasible, ρ◦

is continuous, and 0 ≤ ε < ρ(b), then the pair (x, y) ∈ X × Y is primal-dual optimal if and only if

the following conditions hold:

ρ(Ax− b) = ε primal feasibility(3.3.21a)

〈b, y〉 − ερ◦(y) = 1 dual feasibility(3.3.21b)

〈b−Ax, y〉 = ρ(b−Ax)ρ◦(y) complementarity(3.3.21c)

〈x,A∗y〉 = κ(x)κ◦(A∗y) = 1 strong duality(3.3.21d)

1

ρ◦(y)
y ∈ ∂ρ(·)(b−Ax) primal subdifferential(3.3.21e)

1

ε
(b−Ax) ∈ ∂ρ◦(·)(y) dual subdifferential(3.3.21f)

Proof. If these conditions hold, then (x, y) are primal-dual feasible and have zero duality gap

(i.e., κ(x)κ◦(A∗y) = 1). Thus by strong duality (Proposition 3.3.8) (x, y) are an optimal pair.

Likewise, if (x, y) are an optimal pair, then strong duality implies κ(x)κ◦(A∗y) = 1. Thus the

set of inequalities in the weak duality proof (3.3.15) are tight and the first four conditions hold.

The last two conditions are a consequence of the first four conditions and polar relations. To

show the primal subdifferential condition, note that for all z we have 〈z, y〉 ≤ ρ(z)ρ◦(y). The primal

feasibility and complementarity conditions give 〈b−Ax, y〉 = ερ◦(y). Then for all z we have

〈z − (b−Ax), y〉 ≤ ρ(z)ρ◦(y)− ερ◦(y).

Replacing ε = ρ(b−Ax) and dividing by ρ◦(y), we have for all z

ρ(z) ≥ ρ(b−Ax) + 〈z − (b−Ax), y/ρ◦(y)〉,

and thus 1
ρ◦(y)y ∈ ∂ρ(·)(b−Ax).
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For the dual subdifferential condition, we have 〈b−Ax, z〉 ≤ ρ(b−Ax)ρ◦(z) = ερ◦(z) for all z.

Subtracting 〈b−Ax, y〉 = ερ◦(y) gives 〈b−Ax, z − y〉 ≤ ερ◦(z)− ερ◦(y) for all z, or

ρ◦(z) ≥ ρ◦(y) + 〈(b−Ax)/ε, z − y〉,

and thus 1
ε (b−Ax) ∈ ∂ρ◦(·)(y).

�

3.4. Theory Applied to the PLGD Model

This section establishes optimality conditions and a primal signal recovery strategy for the

PLGD model (3.2.1), two essential tools for developing the Gauge Dual Descent (GDD) algorithm

presented in Chapter 4. We see first that the duality of the PLP-PLGD pair (3.2.1) is a direct result

of the duality previously established for the pair P-GD-ineq (3.2.21). Thus Proposition 3.3.9 applies

to the PLGD model, allowing us to develop termination conditions and a primal signal recovery

method for any given PLGD optimization method. We also present a more general optimality

condition which applies to the GDD algorithm.

We begin by establishing the duality of the PLP-PLGD pair (3.2.1) based on the duality

established in Theorem 3.3.1. In the PLP model, the linear operator A is defined as a map from the

space of Hermitian matrices Hn to Rm (see (2.4.1) for details). We may pass the PLP constraint

X � 0 into the objective by setting κ(X) := ||X||1 + δ(·)�0(X). The polar of κ has the form

κ◦(Z) = inf {µ > 0 | 〈X,Z〉 ≤ µ||X||1 ∀X � 0} ,

which can be simplified by considering two cases. If λ1(Z) is positive then κ◦(Z) operates as the

dual norm of the Schatten 1-norm restricted the positive eigenspace of Z. Otherwise, if Z � 0 then

κ◦(Z) is zero, giving

(3.4.1) κ◦(Z) =


λ1(Z) if Z � 0

0 else.
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We may also set ρ(y) := ||y||2, which has the polar (or dual norm) ρ◦(y) = ||y||∗ = ||y||2. Thus

PLP has the form of P-ineq (3.2.21)

min
X∈Hn

κ(X) = ||X||1 + δ(·)�0(X)

s.t. ρ(A(X)− b) = ||A(X)− b||2 ≤ ε.

Then by Theorem 3.3.1, the GD-ineq model has the objective κ◦(A∗y) and constraint 〈b, y〉 −

ε||y||2 ≥ 1. We may further simplify κ◦ by noting that κ(X) is strictly positive and finite for all

feasible X ∈ Hn. Then by weak duality (Proposition 3.3.7) κ◦(A∗y) is likewise strictly positive

and finite for all feasible y. Thus κ◦(A∗y) = λ1(A∗y) and we recover the PLGD model from the

GD-ineq model.

Next we see that the PLP-PLGD (3.2.1) optimality conditions and primal recovery property

are a direct result of the propositions in Section 3.3 applied to primal-gauge dual space X × Y =

Hn × Rm. These two corollaries rely on the von Neumann trace inequality, which states that for

all n× n complex matrices A and B,

(3.4.2) 〈A,B〉 ≤
n∑
i=1

σi(A)σi(B),

and equality holds if and only if A and B are simultaneously diagonalizable [33].

Corollary 3.4.1. (PLP-PLGD optimality conditions) If PLP in (3.2.1) is feasible and 0 ≤

ε < ||b||2, then (X, y) ∈ Hn×Rm is primal-dual optimal if and only if the following conditions hold

(a) X � 0 and ||A(X)− b||2 = ε,

(b) 〈b, y〉 − ε||y||2 = 1,

(c) 〈b−A(X), y〉 = ||A(X)− b||2 · ||y||2,

(d) 〈X,A∗y〉 = ||X||1 · λ1(A∗y) = 1,

(e) λi(X) · (λ1(A∗y)− λi(A∗y)) = 0 for all i = 1, . . . , n;

(f) X and A∗y are simultaneously diagonalizable.

Proof. Since ρ◦(·) = || · ||2 is continuous, we may invoke Proposition 3.3.9. The first four

conditions are identical to those discussed in Proposition 3.3.9 for the more general P-GD-ineq pair

(3.2.21). Thus these conditions holding is equivalent to (X, y) being primal-dual optimal.
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Then we must simply show the first four conditions imply the last two. Applying the von

Neumann trace inequality to the matrices X and A∗y, we have

(3.4.3) 1 = 〈X,A∗y〉 ≤
n∑
i=1

σi(X)σi(A∗y) ≤ ||X||1 · λ1(A∗y) = 1.

Replacing the two inequalities in (3.4.3) with equalities, we see that the matrices X and A∗y are

simultaneously diagonalizable (by the von Neumann trace inequality), and for all i, if λi(X) > 0

then we must have λi(A∗y) = λ1(A∗y). �

In addition to Corollary 3.4.1, we now establish a more general first-order optimality condition

for convex optimization which applies to the PLGD model (3.2.1). Recall that convex optimization

is the minimization of any convex function f over a convex set C, and a first-order method is any

iteration y+ = ΠC(y − αg), where g is some descent direction in ∂f(y) and α > 0 is a steplength

chosen with some linesearch policy. In Chapter 4 we will develop a first-order method for optimizing

(3.2.1), but for now consider any first-order PLGD method for f(y) = λ1(A∗y) and C = {y ∈

Rm | 〈b, y〉 − ε||y||2 ≥ 1}.

The following result can be viewed as a fixed-point optimality condition, where y? is optimal

if y? = ΠC(y? − αg) for some g ∈ ∂f(y?) and all α > 0. To prove this result, we frame (3.2.1)

as an unconstrained convex optimization problem by defining F (y) := f(y) + δC(y), where δC(y)

is the indicator function (1.0.8) of C. Then optimizing (3.2.1) is equivalent to minimizing the

unconstrained function F over Rm.

Proposition 3.4.2. Let f be a proper convex function over a finite-dimensional Euclidean space

Y and C ⊆ Y a convex set. Also assume ri(dom(f)) ∩ ri(C) is not empty. Then y? is optimal for

the minimization problem

(3.4.4) min
y
F (y) := f(y) + δC(y)

if y? = ΠC(y? − αg) for some nonzero g ∈ ∂f(y?) and all α > 0.
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Proof. We begin by demonstrating the first-order optimality condition for unconstrained

proper convex functions. A variable y? is optimal for (3.4.4) if and only if

(3.4.5) F (y?) = F (y?) + 0T (y − y?) ≤ F (y) ∀y ∈ Y.

Then zero is in the subdifferential of F at y?, i.e.,

(3.4.6) y? is optimal if and only if 0 ∈ ∂F (y?).

Thus it suffices to show 0 ∈ ∂F (y?). Note that −g is not a descent direction for f , since

f(y?) = f(ΠC(y?−αg)) for all α > 0. Then −g is in the normal cone (1.0.9) of C at y?. Additionally,

the normal cone NC(y?) is equivalent to the subdifferential of the indicator function ∂δC(y?), since

(3.4.7)

∂δC(y?) = {g | δC(y) ≥ δC(y?) + 〈g, y − y?〉 ∀y}

= {g | 0 ≥ 〈g, y − y?〉 ∀y ∈ C}

= NC(y?).

Finally, since f and C are convex and ri(dom(f))∩ ri(C) 6= ∅, we have the set equality ∂F (y?) =

∂f(y?) + ∂δC(y?) [51, Theorem 23.8]. Then g ∈ ∂f(y?) and −g ∈ ∂δC(y?) imply that 0 ∈ ∂F (y?),

and thus y? is optimal for (3.4.4).

�

Thus y? = ΠC(y? − αg) is another optimality condition for the PLGD model (3.2.1). Next we

apply Corollary 3.4.1 to establish a primal recovery strategy for (3.2.1).

Corollary 3.4.3. (PLP-PLGD primal recovery) Assume the optimality conditions of Corollary

3.4.1 hold. Let y? ∈ Rm be an arbitrary optimal solution for the PLP-PLGD pair (3.2.1), U ∈

Cn×r the eigenvectors corresponding to the algebraically largest eigenvalue λ1 of A∗y?, and r the

multiplicity of λ1. Then X? ∈ Cn×n is a solution to (3.2.1) if and only if there exists an r × r

matrix S � 0 such that

(a) X? = USU∗,

(b) b−A(X?) ∈ ε∂|| · ||2(y?).

45



Proof. If X? is a solution to (3.2.1), then (e) of Corollary 3.4.1 implies that rank of X? is no

larger than the multiplicity r of λ1(A∗y?), and (f) implies that X? has the form X? = USU∗ for an

r × r matrix S � 0. Also, the dual subdifferential condition of Proposition 3.3.9 implies that (b)

holds.

Conversely, if (a) and (b) hold then it can be shown that the optimality conditions (a)-(d) of

Corollary 3.4.1 also hold. The optimality of y? gives 〈b, y?〉 − ε||y?||2 = 1. Conditions (a) and (c)

may be derived from definitions of the dual norm ρ◦(·) = || · ||2, which we temporarily denote as

|| · ||∗ for clarity. The subdifferential of the dual norm (3.2.7) is the set of maximizers which attain

the dual norm value, that is ∂|| · ||∗(y) = {x | ||y||∗ = 〈x, y〉}. Then we have

(3.4.8) 〈b−A(X?), y?〉 = ε||y?||∗.

Like the polar (3.2.5), the dual norm || · ||∗ may also be defined as the function which most tightly

satisfies the Cauchy-Schwarz inequality |〈x, y〉| ≤ ||x|| · ||y||∗. This definition gives

(3.4.9) 〈b−A(X?), y?〉 = ||b−A(X?)|| · ||y?||∗.

Equations (3.4.8) and (3.4.9) prove the optimality conditions (a) and (c).

Finally, we establish optimality condition (d) with the equality

1 = 〈X?,A∗y?〉 =
n∑
i=1

σi(X?)σi(A∗y?) = ||X?||1 · λ1(A∗y?).

In this expression, the first equality is a result of optimality conditions (a)-(c), which cause the

first four lines of (3.3.15) to hold with equality. The second equality is a consequence of the von

Neumann trace inequality (3.4.2) holding tightly. The columns of U ∈ Cn×r span the eigenspace

of the algebraically largest eigenvalue λ1 of A∗y?. Since the diagonalization of X? = USU∗ only

requires a unitary transformation of U , this transformation will not affect the eigenspace of A∗y?.

Thus X? and A∗y? are simultaneously diagonalizable. Finally, the third equality is a result of X?

having rank at most r and λ1 having multiplicity r.

Thus optimality conditions (a)-(d) hold, and X? is a solution to (3.2.1).

�
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Corollary 3.4.3 allows us to recover a signal x by using the dual variable y to denoise the noisy

observation b = b + η. Assuming y 6= 0, the 2-norm used in the PLP-PLGD pair (3.2.1) gives

∂|| · ||(y) = ∇|| · ||2(y) = y/||y||2. If the lifted true signal X? = xx∗ is in the set of optimal matrices,

then A(X?) = b and Corollary 3.4.3 indicates that the corresponding dual optimal variable y? will

have the relation

(3.4.10) η = (b + η)− b = b−A(X?) = ε∇|| · ||2(y?) = ε
y?
||y?||2

.

Thus the noise term η is proportional to one of the optimal dual variables.

Unfortunately, in the case of noisy phase retrieval there is no guarantee that the lifted true

signal X = xx∗ will be an optimal matrix for the PLP-PLGD pair (3.2.1). Instead, the gauge

dual variable y can be viewed as a parameter which learns the noise term η with some degree of

inaccuracy. As we will see in Section 5.3, the tendency of y to learn the noise term persists even

when the rank of an optimal PLP-PLGD matrix X? is greater than one and a given first-order

method is unable to converge to y?.

Given the optimality and primal recovery properties established above, we now proceed to

develop the Gauge Dual Descent (GDD) algorithm, a first-order algorithm for optimizing the PLGD

model (3.2.1) and recovering a primal signal x from the PLGD solution y.

47



CHAPTER 4

The Gauge Dual Descent Algorithm for the PLGD Model

4.1. Introduction

In this chapter we present the Gauge Dual Descent (GDD) algorithm, a projected gradient

descent algorithm for optimizing the PLGD model (3.2.1). Section 4.2 develops the computational

steps necessary for the GDD algorithm. We then present the GDD algorithm and discuss specific

implementation details. Section 4.3 demonstrates the effectiveness of the GDD algorithm for noise-

less phase retrieval problems. We close with a summary of the challenges to the GDD algorithm

which are addressed in the remainder of this dissertation.

The GDD algorithm presented in this chapter was first established in [27]. As we will see in

Section 5.3, the challenges posed by noisy phase retrieval are intrinsic to the PLGD model (3.2.1)

itself, and independent of the choice of gradient-based descent method. Thus, due to the effec-

tiveness of the GDD algorithm for noiseless phase retrieval and the existence of a comprehensive,

specialized software package by the authors of [27], we use the GDD algorithm to examine the

behavior of gradient-based descent methods for optimizing (3.2.1). All implementation details in

this chapter are identical to the original software package unless otherwise noted.

4.2. The Gauge Dual Descent Algorithm

We begin this section by examining the features of the PLGD model (3.2.1) which are essen-

tial for developing a projected gradient descent algorithm. Recall that projected gradient descent

algorithms have a basic iterate update y+ = ΠC(y − αg), where −g is a descent direction based

on first-order information, α is a steplength determined by some policy, and ΠC is projection onto

the feasible region C. Since we are primarily concerned with large-scale phase retrieval problems,

the descent direction must be constructed using only first-order information, i.e., the gradient or

a subgradient of the objective function. Additionally, each objective function evalution λ1(A∗y)
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requires the solution of a costly eigenvalue problem, so its computation should be kept to a mini-

mum. Finally, the PLGD model (3.2.1) is a convex problem, having both convex objective function

λ1(A∗y) and convex constraint domain C = {y ∈ Rm | 〈b, y〉− ε||y||2 ≥ 1}. Therefore, the projected

gradient descent algorithm should take advantage of this convexity and determine the steplength α

using a linesearch with minimal backtracking (or evaluations of λ1(A∗y)) and guaranteed conver-

gence. Thus our method of choice for optimizing the PLGD model (3.2.1) is a projected gradient

descent method with adaptive steplength based on the local differentiability of λ1(A∗y). Note that

one could also use a quasi-Newton or spectral bundle method to optimize the PLGD model.

Construction of the GDD algorithm requires the following sequence of computational steps.

First, a descent direction is chosen from the gradient or subdifferential (1.0.17) of the objective

function. Next, an initial steplength is computed and used to initialize a linesearch (backtracking)

method for determining the dual update y+. The linesearch and update both require a method for

projecting onto the feasible region C. A primal recovery step is used to recover the primal signal

update x+ from the dual update y+. Finally, a primal refinement step and a dual refinement step

are performed, which were shown by the authors of [27] to accelerate convergence of the GDD

algorithm.

To determine the descent vector, we consider the subdifferential of the function λ1(A∗y)

(4.2.1) ∂λ1(A∗y) = {A(V1TV
∗

1 ) | T � 0, tr(T ) = 1},

where V1 ∈ Cn×r1 are the eigenvectors corresponding to the algebraically largest eigenvalue λ1 of

A∗y and r1 is the multiplicity of λ1 [48, Section 6.7]. Note that evaluation of the objective func-

tion λ1(A∗y) likewise returns the (sub)gradient of this function as a product of the eigenvector(s)

corresponding to λ1. If the eigenvalue λ1 has separation from the second eigenvalue λ2, then the

function λ1(A∗y) is differentiable at y and we have the descent vector

(4.2.2) g = ∇λ1(A∗y) = A(v1v
∗
1).
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However, if the multiplicity of λ1 is greater than one, then λ1(A∗y) is nondifferentiable and we may

select any g ∈ ∂λ1(A∗y). In practice, we consider the function λ1(A∗y) differentiable if

(4.2.3)
λ1 − λ2

λ1
≥ toldiff,

for some tolerance toldiff.

Next, the descent vector g is used to identify an initial steplength and perform a linesearch. If

λ1(A∗y) is differentiable, then we take an initial step with Barzilai-Borwein steplength [4]

(4.2.4) α =
〈dy, dy〉
〈dy, dg〉

,

where dy = yk − yk−1 and dg = ∇λ1(A∗yk) − ∇λ1(A∗yk−1). We then perform a linesearch with

Wolfe conditions (see [47, Section 3.1]) on the problem

(4.2.5) min
α

λ1(A∗y(α)), y(α) = ΠC(y − αg).

This method converges R-linearly for strongly convex functions and is found to outperform standard

gradient descent significantly on differentiable functions [69]. However, the linesearch has the added

cost of additional objective evaluations λ1(A∗y) if the initial value for α does not satisfy the Wolfe

conditions.

If instead (4.2.3) fails and λ1(A∗y) is nondifferentiable, then the we revert to a decreasing

steplength sequence {αk}. For convex models like the PLGD model, it is know that any sequence

of steplengths satisfying the conditions

(4.2.6) lim
k→∞

αk = 0 and

∞∑
k=0

αk =∞

will generate a sequence yk converging to an optimal solution (see, e.g., [7, Proposition 1.2.3 and

Section 3.3.1]). A typical choice for this steplength sequence is αk = O(1/k).
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The linesearch subproblem (4.2.5) and the resulting update ŷ = y−αg require projection onto

the feasible region C = 〈b, y〉 − ε||y||2 ≥ 1. If ε = 0, this projection has the closed form expression

(4.2.7) ΠC(ŷ) =


ŷ + 1−〈b,ŷ〉

||b||22
b if 〈b, ŷ〉 < 1

ŷ else.

If ε > 0, then the projection is the solution to the problem

(4.2.8) min
y∈Rm

1
2 ||y − ŷ||

2
2 subject to 〈b, y〉 − ε||y||2 ≥ 1.

The KKT conditions of this problem can be simplified into a one-dimensional degree-4 polynomial

whose largest real root is used to express ΠC(ŷ) again as a linear combination of ŷ and b (details

omitted, see [8, Chapter 5]).

Given the updated dual variable y, we must recover a primal variable (signal) x to test for

primal feasibility (||A(xx∗) − b||2 ≤ ε). Corollary 3.4.3 indicates that the general primal recovery

problem is

(4.2.9) min
S�0
||A(V1SV

∗
1 )− bε||22, bε := b− ε y

||y||2 ,

where V1 ∈ Cr1×n are the eigenvectors corresponding to λ1, r1 is the multiplicity of λ1, S ∈ Cr1×r1 is

positive semidefinite, and bε is the noisy observation b with a removal of the current approximation

εy/||y||2 to the noise term η as shown in (3.4.10). If λ1(A∗y) is differentiable, then λ1 is unique

and (4.2.9) simplifies to the closed-form expression

(4.2.10) x̂ = [〈A(v1v
∗
1), bε〉]+/||A(v1v

∗
1)||22.

The previous steps constitute a basic projected gradient descent method for optimizing the

PLGD model. We now discuss a pair of refinement steps which exploit the PLP-PLGD optimality

conditions (Corollaries 3.4.1, 3.4.3) to accelerate the convergence of this algorithm. A primal

refinement step aims to recover a better approximate signal x than the primal recovery solution

(4.2.10). If the phase retrieval model has no noise, then a dual refinement step further accelerates

the convergence rate of the descent method.
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The primal refinement step makes further use of the fact that εy/||y||2 approximates the noise

term η, as indicated by Corollary 3.4.3. Setting bε = b− εy/||y||2, we then solve the unconstrained

nonconvex problem

(4.2.11) min
x∈Cn

h(x) := 1
4 ||A(xx∗)− bε||22,

which is initialized with the primal recovery solution x̂ from (4.2.10). The problem (4.2.11) can

be interpreted as a partially denoised version of the wflow least-squares problem (2.4.9), where the

observation b has been replaced by the partially denoised observation bε.

For noiseless phase retrieval problems, an additional dual refinement method promotes conver-

gence of the dual iterate y. In essence, this step uses optimality conditions and the refined signal

x from (4.2.11) to identify the corresponding dual variable y. If the optimal matrix X? = xx∗ is

rank-one, then Corollary 3.4.3 (a) indicates that the algebraically largest eigenpair (λ?1, v
?
1) of A∗y?

will be unique. Thus v?1 will be a rescaling of the optimal signal x, and Corollary 3.4.1 (d) (strong

duality) gives this rescaling

||X?||1 = ||x||22 = 1/λ?1 =⇒ x = v?1/
√
λ?1.

As a result, the dual refinement step attempts to find the update y ∈ C which satisfies [A∗y]x = λ1x

by solving the constrained linear-least-squares problem

(4.2.12) min
y∈Rm

1
2 ||[A

∗y]x− λ1x||22 subject to 〈b, y〉 − ε||y||2 ≥ 1,

where λ1 = λ1(A∗y) is the most recent PLGD objective evaluation and x is the solution to (4.2.11).

If the refined iterate ŷ improves the dual objective, i.e., λ1(A∗ŷ) < λ1(A∗y), then ŷ replaces y.

This spacer iterate, as described in [7, Proposition 1.2.5], is guaranteed not to interfere with the

convergence behavior of the underlying method.

The above sequence of steps and methods leads to the Gauge Dual Descent (GDD) algorithm

for optimizing the PLGD model (3.2.1):
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Algorithm 3 Gauge Dual Descent (GDD) algorithm

Input: Sensing operator A and adjoint A∗, observation vector b, initial dual variable y0,

estimate of total noise level ε, convergence tolerances.

Output: Approximate solution signal x.

Initialization: Set k = 0.

1: while not converged do

2: Compute algebraically largest eigenvalues and corresponding eigenvectors: (λ1, v1) and

(λ2, v2) from A∗yk.

3: Compute (sub)gradient: g = A(v1v
∗
1) based on (4.2.1).

4: Determine differentiability of λ1(A∗yk) based on (4.2.3).

5: if λ1(A∗yk) is differentiable then

6: Linesearch: Perform linesearch (4.2.5) with initial step α (4.2.4) to obtain yk+1.

7: else

8: Projected subgradient step: Set yk+1 = ΠC(yk − αg) with α from (4.2.6).

9: end if

10: Primal recovery: Compute x̂ based on (4.2.10).

11: Primal refinement: Find xk+1 as the solution to (4.2.11) initialized with x̂ and yk+1.

12: if ε = 0 then

13: Dual refinement: Find ŷ based on (4.2.12).

14: if λ1(A∗ŷ) < λ1, set yk+1 = ŷ

15: end if

16: Update: k = k + 1.

17: end while

18: Return: x = xk.

We close this section by describing the implementation details of the GDD algorithm. This al-

gorithm was originally established in [27] and implemented in the accompanying software package
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low-rank-opt1 (with the identical clone2). All tests, experiments, and new methods in this dis-

sertation are available for reproduction in a branched package3. This branch includes a few minor

changes to the original algorithm which are noncritical to the behavior of the GDD algorithm (see

the package repository for details).

In the case of noisy phase retrieval, the input ε is a measure of the total noise

ε = ||η||2 = ||b− b||2

of the model (1.0.1). Convergence of the GDD algorithm (step 1) is based on strong duality

(Corollary 3.4.1, d) along with primal and dual feasiblility. Since dual feasibility is maintained

throughout the GDD algorithm, only primal feasibility and strong duality must be measured.

Thus the GDD algorithm terminates when both of the following conditions are met:

(4.2.13) ||A(xx∗)− b||2 ≤ ε+ tolfeas(1 + ||b||2),

(4.2.14) ||xx∗||1 · λ1 (A∗y) ≤ 1 + tolgap.

The convergence tolerances are set to tolfeas = tolgap = 2 × 10−4 for noisy phase retrieval, and

tolfeas = tolgap = 1× 10−5 for noiseless.

If the dual variable y is not provided, then it is initialized as y = ΠC(b). On the 0-th iteration

of the GDD algorithm, steps 5-9 are skipped. This strategy has the result of avoiding an additional

eigenvalue computation (step 6) during initialization. Additionally, the GDD algorithm has the

default setting of skipping dual refinement in the presence of noise (as dual refinement inhibits

convergence for noisy phase retrieval models, see Section 5.3).

The (sub)gradient computation (Algorithm 3, line 3) as described in (4.2.1) is always set to

g = A(v1v
∗
1) for the eigenvector v1 regardless of the multiplicity of λ1. Since noisy phase retrieval

problems often deal with nondifferentiable objectives (see Section 5.3), the GDD algorithm includes

a test for differentiability (4.2.3) with the default tolerance toldiff = 10−5. If this condition fails

during some iteration k, the GDD algorithm performs a projected subgradient step (step 8) with

1https://www.cs.ubc.ca/~mpf/pubs/low-rank-spectral-optimization-via-gauge-duality/
2https://github.com/Will-Wright/low-rank-opt-orig
3https://github.com/Will-Wright/low-rank-opt-rapid-eig
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a specific steplength αk. Testing indicates that projecting the Barzilai-Borwein steplength (4.2.4)

onto an interval with monotonically decreasing bounds maintains progress of the GDD algorithm

across test cases. Thus the steplength is set to

(4.2.15) αk = min

{
uk,max

{
lk,
〈dy, dy〉
〈dy, dg〉

}}
,

where uk = 200/k and lk = 1/k.

Computationally, most of the steps in the GDD algorithm are very simple. The three key

exceptions are the eigenvalue computation (steps 2, 6, and 14), the primal refinement (step 11),

and the dual refinement (step 13). In the original implementation, the eigenvalue computation

is performed using the MATLAB function eigs (see Section 6.3 for details about this method),

where only the first two algebraically largest eigenvalues λ1, λ2 are requested. The primal refine-

ment (step 11) is computed using minFunc, a quasi-Newton solver for unstrained optimization,

with the descent direction determined using the limited-memory (l-)BFGS method for Hessian ap-

proximation [56]. Dual refinement (step 13) is computed with minConf, another quasi-Newton

solver which is optimized for problems like (4.2.12) with expensive objective functions and simple

constraints [57], [58].

In each of these three subroutines, the primary computational cost comes from A-products

(2.4.2), where each A(xx∗) product requires L DFTs and each [A∗y]x product requires 2L DFTs.

Thus we measure computational costs in terms of number of DFTs, following the convention of [14]

and [27].

Theoretically, the steplength strategy in the GDD algorithm is guaranteed to converge for all

feasible problems (i.e., find an optimal pair (X?, y?) which satisfies the (PLGD) optimality condi-

tions of Corollary 3.4.1) [69], [7, Proposition 1.2.3 and Section 3.3.1]. Yet the rate of convergence

differs greatly for noiseless and noisy phase retrieval problems. The GDD algorithm is particularly

efficient for noiseless problems, as we discuss briefly in Section 4.3. However, noisy problems pose

a unique set of challenges which are intrinsic to the PLGD model (3.2.1) which are addressed in

the remainder of this dissertation.

55



4.3. Noiseless Phase Retrieval

This section examines the behavior of the GDD algorithm (Algorithm 3) for noiseless phase

retrieval problems. The efficiency of the GDD algorithm for noiseless problems is well-established

in [27, Sections 5.1.1, 5.1.3]. The purpose of this section is to establish the role of the primal

(4.2.11) and dual refinement (4.2.12) steps for noiseless phase retrieval so we may examine the

utility of these steps for noisy phase retrieval in Chapter 5.

We begin by discussing the general behavior of each refinement step and the relationship be-

tween the two. For noiseless problems (ε = 0), the primal refinement step (4.2.11) is initialized

with bε = b and is therefore independent of the dual variable y other than the fact that (4.2.11)

is initialized with x̂ from (4.2.10). In this case, (4.2.11) is equivalent to the wflow least-squares

problem (2.4.9) discussed in Section 2.4. As proved in [65] and restated at the end of Section 2.4,

if this problem has a sufficient oversampling L, then the objective function of (4.2.11) will have

no spurious local minima, only one global minima (up to a phase constant), and negative direc-

tional curvature at all saddle points. As a result, for noiseless problems the primal refinement step

effectively solves the phase retrieval problem on the first iteration of the GDD algorithm (i.e., x

typically has a relative error ||xx∗−xx∗||F /||x||22 on the order of 10−7 or smaller). Thus the primal

refinement step serves as an effective standalone method for promoting the quick convergence of

the primal signal x.

In contrast to primal refinement, the dual refinement problem (4.2.12) is directly dependent on

the accuracy of the primal signal x. If the dual refinement is initialized with an inaccurate signal,

then the returned dual variable ŷ may be inferior to the initial update y+. Yet ŷ may also satisfy

the condition for replacing the previous variable (step 14), preventing the GDD algorithm from

converging.

Table 4.1 compares the behavior of these refinement steps for a random noiseless phase retrieval

problem.
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Primal & dual ref. Primal ref. only Dual ref. only No ref.

Iterations 1 62 1,000 1,000

DFTs 21,800 349,420 273,817,590 14,686,690

Relative error 7.469×10−9 8.097×10−9 1.166×102 1.176×102

Table 4.1. The GDD algorithm (Algorithm 3) with and without primal (4.2.11)
and dual refinement (4.2.12). This experiment involves a random gaussian signal of
size n = 128 with L = 10 observations and no noise. Both termination conditions
(4.2.13) and (4.2.14) are required. Signal relative error is measured as ||xx∗ −
x0x

∗
0||F /||x||22.

Table 4.1 demonstrates that primal refinement is necessary for the GDD algorithm to converge,

and dual refinement is essential to the efficiency of the GDD algorithm. With only primal refine-

ment, the GDD algorithm exhibits a convergence rate typical of a steepest descent method. In this

case, primal feasibility (4.2.13) is achieved in the first few iterates. Yet the duality gap conditon

(4.2.14) is not satisfied until the dual variable y is sufficiently close to y?. With only the dual

refinement, the GDD algorithm fails to converge as the dual problem (4.2.12) is initialized with an

inaccurate signal x. When the GDD algorithm is run without either refinement step, it again fails

to converge.

However, when both the primal and dual refinement subroutines are used, the GDD algorithm

rarely takes more than a few iterations. Since steps 5-9 are skipped during the 0-th iterate, the

GDD algorithm serves as an improvement to the wflow algorithm. Both algorithms set the initial

signal as the eigenvector corresponding to the algebraically largest eigenvalue of A∗b (where the

GDD algorithm first rescales b by projecting it onto C). Yet the GDD algorithm uses more effective

search directions generated by the l-BFGS method rather than the Wirtinger derivative. Next, the

dual refinement problem (4.2.12) is initialized with a sufficient pair of terms (λ1, x) to recover a

nearly optimal dual iterate y. Thus the primal feasibility (4.2.13) and duality gap (4.2.14) conditions

are typically met within a few iterations.

The GDD algorithm with primal and dual refinement is very effective for noiseless phase re-

trieval, acting as a robust, efficent competitor to the wflow algorithm with the added benefit of

greater signal accuracy [27, Section 5.1.1, 5.1.3]. Note that the optimality of y is unnecessary
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if we simply want to minimize the noiseless problem ||A(xx∗) − b||2. To this end, the GDD al-

gorithm as implemented includes a setting specifically for noiseless problems, where the strong

duality condition (4.2.14) is dropped and only primal feasibility (4.2.13) is required. This primal

feasibility version of the GDD algorithm typically converges in 0-1 iterations with about the same

computational cost as the wflow algorithm.

Unlike noiseless phase retrieval, noisy phase retrieval poses a few key challenges for the GDD

algorithm. This dissertation addresses the convergence and computational challenges noisy phase

retrieval poses for the GDD algorithm with the following contributions.

Chapter 5 addresses the convergence challenges the GDD algorithm (Algorithm 3) experiences

for noisy phase retrieval problems. We begin by demonstrating that the GDD algorithm stagnates

prior to convergence for noisy problems and determining the cause of this stagnation. We then

establish new termination conditions which indicate stagnation, so we may treat the GDD algorithm

as a black-box and focus our attention on handling the evolving matrix eigenvalue problem (EMEP)

as defined in Chapter 6.

In Chapter 6 we define the EMEP in the GDD algorithm and develop a new strategy for

handling this problem. We see that the algebraically largest eigenvalues of the EMEP cluster

for later iterates, resulting in more difficult eigenvalue problems. To develop a new strategy for

handling the EMEP, Section 6.3 reviews the implicitly restarted Arnoldi method (IRAM), a common

method for large-scale eigenvalue problems. Next, Section 6.4 develops the IRAM with adaptive

parameter selection, a new strategy for choosing the IRAM parameters to handle the EMEP. We

close Chapter 6 by examining how this new strategy relates to the clustering of eigenvalues in the

EMEP.

Finally, Chapter 7 provides performance results for the IRAM with adaptive parameter selec-

tion, demonstrating the efficiency of this method compared to the default IRAM parameter choice

for the GDD algorithm. Chapter 8 concludes this dissertation with a summary of our work and

suggestions for future work.
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CHAPTER 5

Algorithm Stagnation for Noisy Phase Retrieval

5.1. Introduction

In Chapter 4 we developed the GDD algorithm (Algorithm 3) to optimize the PLGD model

(3.2.1) and saw that the GDD algorithm is efficient and accurate for noiseless phase retrieval. We

now examine the tendency of the GDD algorithm to fail to converge for noisy phase retrieval and

establish new termination conditions for the GDD algorithm.

Section 5.2 describes our method of constructing experimental noisy PLGD models and es-

tablishes potential residuals for measuring the progress of the GDD algorithm. Section 5.3 then

examines the tendency of the GDD algorithm not to converge for noisy phase retrieval problems.

We see that signals observed with nontrivial noise tend to have optimal PLGD matrices X? with

rank greater than one, preventing first-order algorithms like the GDD algorithm from converging.

To handle this issue, Section 5.4 establishes new termination conditions based on heuristic evidence

which indicates that the GDD algorithm has stopped making signal recovery progress. These new

termination conditions allow us to treat the GDD algorithm as a black-box solver in Chapter 6,

where we focus on the challenging sequence of eigenvalue problems in the GDD algorithm.

5.2. Experimental Models and Residuals

This section describes two methods for creating experimental noisy phase retrieval problems and

presents a set of potential residuals to measure the progress of the GDD algorithm (Algorithm 3).

The phase retrieval problem with Gaussian noise imitates the typical phase retrieval scenario and is

used throughout this dissertation as the default method for creating noisy phase retrieval problems.

The phase retrieval problem with synthetic noise is constructed around the PLGD primal recovery

conditions (Corollary 3.4.3) and is used exclusively in Section 5.3 to examine the convergence

behavior of the GDD algorithm. The set of potential residuals is a combination of those discussed

in Chapter 4 and new residuals based on the variables available in the GDD algorithm.
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We begin by describing experimental noisy phase retrieval problems which have Gaussian noise.

Recall that the noisy phase retrieval problem (1.0.1) involves an observation b = b + η, where the

true observation b is contaminated by some nontrivial noise η. To mimic the typical experimental

noisy phase retrieval scenario, we begin with an unknown signal x. A sensing operator A (2.4.2)

is then chosen with diagonal mask matrices Cj whose diagonal elements have complex standard

Gaussian distribution (1.0.19) (see Chapter 1 for an explanation of masks). The sensing operator is

then used to create the true observation b = A(xx∗), and a noise term η is chosen with real standard

Gaussian distribution (1.0.18). Finally, the noisy observation is set as b = b + η. Altogether, given

a signal x, a sensing operator A (2.4.2), and noise ratio εrel, we create the phase retrieval problem

with Gaussian noise experimentally with the steps

(5.2.1)

1) b = A(xx∗),

2) η ∼ N (0, 1),

3) b = b + η,

where η is rescaled in the third step to satisfy the noise ratio εrel = ||η||2/||b||2. Thus we define the

phase retrieval problem with Gaussian noise as

(5.2.2)
find x

s.t. ||A(xx∗)− b||2 ≤ ε,

where b = b + η is constructed experimentally using the steps (5.2.1). Likewise, the PLGD model

with Gaussian noise refers to the the PLGD model (3.2.1)

(5.2.3)
min
y

λ1(A∗y)

(PLGD) s.t. 〈b, y〉 − ε||y||2 ≥ 1,

where again b = b + η is constructed experimentally using the steps (5.2.1).

To demonstrate how the differentiability of the dual objective λ1(A∗y) impacts the behavior of

the GDD algorithm, Section 5.3 also considers experimental noisy phase retrieval problems which we

say have synthetic noise. The purpose of this synthetic noise is to create a PLGD model where the

dual objective λ1(A∗y) is differentiable at y?. To achieve this goal, the phase retrieval problem with

synthetic noise is constructed to satisfy the PLGD primal recovery conditions of Corollary 3.4.3.
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First we choose a random variable with standard Gaussian distribution (1.0.18) to be the optimal

dual variable y? and use this vector to construct the rest of the noisy phase retrieval problem. The

true signal x is set as the eigenvector corresponding to the algebraically largest eigenvalue of A∗y?

per Corollary 3.4.3 (a). This signal is then used to create a true observation b which is noised with

a rescaling of y? per Corollary 3.4.3 (b) and (3.4.10). Altogether, given a noise ratio εrel we have

the following steps for constructing the phase retrieval problem with synthetic noise

(5.2.4)

1) y? ∼ N (0, 1),

2) x is the eigenvector corresponding to

the algebraically largest eigenvalue of A∗y?,

3) b = A(xx∗),

4) b = b + ε y?
||y?||2 ,

where ε = εrel||b||2. Steps one and two in (5.2.4) guarantee the PLP-PLGD optimality conditions

(Corollary 3.4.1) will hold for a known pair (X? = xx∗, y?) with rank-one optimal matrix X?.

Additionally, step four in (5.2.4) satisfies the primal recovery equation (3.4.10), guaranteeing the

primal refinement strategy (4.2.11) used in the GDD algorithm will recovery the true signal x when

initialized with y?. We define the phase retrieval problem with synthetic noise as

(5.2.5)
find x

s.t. ||A(xx∗)− b||2 ≤ ε,

where b = b + ε y?
||y?||2 is constructed experimentally using the steps (5.2.4). Likewise, the PLGD

model with synthetic noise refers to the the PLGD model (3.2.1)

(5.2.6)
min
y

λ1(A∗y)

(PLGD) s.t. 〈b, y〉 − ε||y||2 ≥ 1,

where again b = b + ε y?
||y?||2 is constructed experimentally using the steps (5.2.4).

Next we establish an exhaustive list of residuals which are available for measuring the progress

of the GDD algorithm. Here the PLGD dual matrix is defined A := A∗(y) and previous iterates

are denoted with a hat (e.g., ŷ = yk−1). Note that this set of residuals does not contain a residual
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for dual feasibility because the GDD algorithm maintains dual feasibility (each gradient descent

step projects the dual iterate y onto the feasible set).

signal relative error ||xx∗ − xx∗||F /||xx∗||F(5.2.7a)

dual relative error ||y − y?||2/||y?||2(5.2.7b)

primal true relative error ||A(xx∗)− b||2/||b||2(5.2.7c)

primal relative error ρ := ||A(xx∗)− b||2/||b||2(5.2.7d)

primal difference |ρ− ρ̂|/|ρ|(5.2.7e)

duality gap γ := ||xx∗||1 · λ1 − 1(5.2.7f)

duality gap difference |γ − γ̂|/|γ|(5.2.7g)

dual objective difference |λ1 − λ̂1|/|λ1|(5.2.7h)

dual variable difference ||y − ŷ||2/||y||2(5.2.7i)

dual matrix difference ||A− Â||F /||A||F(5.2.7j)

The residuals in (5.2.7) can be separated into three groups. The first group contains ideal error

measurements, including the signal relative error (5.2.7a), dual relative error (5.2.7b), and primal

true relative error (5.2.7c). The next group of residuals are those used as termination conditions for

the GDD algorithm in Chapter 4: the primal relative error (5.2.7d) and the duality gap (5.2.7f), used

in conditions (4.2.13) and (4.2.14), respectively. The final group of residuals are the five difference

residuals (5.2.7e, g-j). We present these difference residuals as a new set of measurements for

determining when the GDD algorithm is no longer making signal recovery progress and termination

should be declared. As we will see in Section 5.4, the primal difference (5.2.7e) and dual variable

difference (5.2.7i) are the two difference residuals best suited for determining stagnation of the

GDD algorithm, and thus used to establish new termination conditions in that section.
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5.3. Algorithm Stagnation

In this section we demonstrate the tendency of the GDD algorithm (Algorithm 3) not to con-

verge when solving PLGD models with Gaussian noise (5.2.3). We see that PLGD models with

Gaussian noise (5.2.3) typically have an optimal matrix X? with rank greater than one. In this

circumstance, Corollary 3.4.1 (e) indicates that the algebraically largest eigenvalue of the optimal

dual matrix A∗y? will also be greater than one. As a result, the dual objective λ1(A∗y) will be

nondifferentiable in a neighborhood of y? and first-order algorithms like the GDD algorithm may

not converge. Additionally, since X? 6= xx∗, the primal refinement strategy (4.2.11) used in the

GDD algorithm is not guaranteed to recover the true signal x.

In order to describe the behavior of the GDD algorithm for noisy phase retrieval problems, we

use the following terminology to make the distinction between the GDD algorithm converging to

an optimal solution and converging to a nonoptimal variable. Recall that the GDD algorithm has

converged at a given iterate if the conditions (4.2.13) and (4.2.14) are satisfied. We say that the

GDD algorithm failed to converge if conditions (4.2.13) or (4.2.14) are not satisfied for any iterate

within a maximum number of iterations (in this chapter we choose 1,000 iterations). In contrast

with converging, we say the GDD algorithm has stagnated at a given iterate if the progress from

the previous iterate is trivial and the GDD algorithm has not yet converged. Specifically, the GDD

algorithm has stagnated at a given iterate if a chosen subset of difference residuals (5.2.7e, g-j) are

below a required set of tolerances.

The authors of [27] use PLGD models with synthetic noise (5.2.6) to demonstrate that the GDD

algorithm is able to converge and accurately recover the true signal x when the optimal matrix in

the PLGD model is rank-one (i.e., X? = xx∗). Table 5.1 depicts the results of the GDD algorithm

applied to the PLGD model with synthetic noise (5.2.6), corroborating the results in [27, Section

5.1.2].
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L = 5 L = 10 L = 15

Iters xErr Iters xErr Iters xErr

εrel = 0.05 154 8.581× 10−3 112 8.442× 10−3 355 1.618× 10−3

εrel = 0.15 207 2.772× 10−3 255 3.500× 10−4 82 1.196× 10−2

εrel = 0.30 186 1.636× 10−3 104 2.047× 10−3 111 4.606× 10−3

Table 5.1. Number of iterations and signal relative error (5.2.7a) (xErr) for the
GDD algorithm (Algorithm 3) applied to the PLGD model with synthetic noise
(5.2.6). Signal size is n = 128, with various noise ratios εrel and oversampling
values L. The convergence conditions (4.2.13) and (4.2.14) are set to tolerances
tolfeas = tolgap = 2 × 10−4. Note that each signal relative error in Table 5.1 was
1-3 orders of magnitude smaller than the relative error of the signal returned by the
wflow algorithm (Algorithm 2) for the same problem.

Table 5.1 demonstrates that the GDD algorithm tends to converge within a few hundred itera-

tions when solving PLGD models with synthetic noise (5.2.6). However, the convergence behavior

depicted in Table 5.1 does not occur when the GDD algorithm solves PLGD models with Gaussian

noise (5.2.3). In Table 5.2, the experiments from Table 5.1 are replaced with phase retrieval prob-

lems with Gaussian noise (5.2.2). Note that the iteration count is replaced by the final duality gap

value, since the GDD algorithm failed to converge after 1,000 iterations for all cases.

L = 5 L = 10 L = 15

duGap xErr duGap xErr duGap xErr

εrel = 0.05 323.03 9.072× 10−2 101.56 4.053× 10−2 93.08 3.112× 10−2

εrel = 0.15 448.68 4.200× 10−1 364.07 1.249× 10−1 374.10 9.443× 10−2

εrel = 0.30 492.56 1.096e× 100 665.73 2.973× 10−1 747.68 1.958× 10−1

Table 5.2. Final duality gap (5.2.7f) (duGap) and signal relative error (5.2.7a)
(xErr) for the GDD algorithm (Algorithm 3) applied to PLGD models with Gaussian
noise (5.2.3). The GDD algorithm failed to converge after 1,000 iterations for all
problems. Signal size is n = 128, with various noise ratios εrel and oversampling
values L. The convergence conditions (4.2.13) and (4.2.14) are set to tolerances
tolfeas = tolgap = 2× 10−4.
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As we see in Table 5.2, the duality gap value (5.2.7f) remains several orders of magnitude above

the duality gap convergence tolerance (4.2.14). As a result, the GDD algorithm fails to converge

for PLGD models with Gaussian noise (5.2.3).

The next experiment demonstrates that the GDD algorithm applied to PLGD models with

Gaussian noise (5.2.3) tends to achieve primal feasibility (4.2.13) during the early iterations and

then stagnates within a few hundred iterations. Since the model (5.2.3) is constructed without

knowledge of an optimal PLP-PLGD pair (X?, y?), we use the interior-point solver SDPT3 [66] to

obtain the pair (X?, y?) within square-root machine-precision. In order to use this interior-point

solver, the models in Figure 5.1 are very small.

Figure 5.1. Primal relative error (5.2.7d), dual relative error (5.2.7b), and duality
gap (5.2.7f) for 10,000 iterates of the GDD algorithm (Algorithm 3) applied to a
natural noise model with n = 16, L = 6 observations, and noise ratio 0.30. The
horizontal axis is log-plotted to highlight early progress along with later stagnation.
The pair (X?, y?) are computed with SDPT3.

Figure 5.1 demonstrates that the GDD algorithm stagnates when attempting to solve a PLGD

model with Gaussian noise (5.2.3). In this problem, primal feasibility (4.2.13) is acheived at iterate

6, and further progress is made over the following early iterations, as indicated by the primal

relative error (5.2.7d) plot. However, the strong duality condition (4.2.14) is never satisfied, and

the final duality gap at iterate 10,000 is 97.63. Likewise, the dual variable yk does not approach

the optimal dual variable y?, as indicated by the dual relative error (5.2.7b) plot. In this particular

PLGD model, X? is rank three, causing the dual objective λ1(A∗y) to be nondifferentiable near

y? per Corollary 3.4.1 (e). Thus the GDD algorithm identifies the dual objective λ1(A∗y) as

nondifferentiable at iterate 84 reverts to the monotone stepsize sequence (4.2.15).
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The next experiment establishes that PLGD models with Gaussian noise (5.2.3) almost always

have an optimal matrix X? with rank greater than one, and this rank problem causes the stagnation

of the GDD algorithm. Table 5.3 compares PLGD models with synthetic (5.2.6) and Gaussian noise

(5.2.3), depicting the rank of the optimal matrix X? and the behavior of the GDD algorithm.

Synthetic noise Gaussian noise

L = 4 L = 6 L = 8 L = 4 L = 6 L = 8

rank(X?) 1 1 1 3.41 3.28 3.27

εrel = 0.05 GDD itns. 125.09 144.20 182.26 1,000 1,000 1,000

duGap 1.17−4 1.18−4 1.18−4 9.60 3.88 3.86

rank(X?) 1 1 1 2.99 3.00 3.04

εrel = 0.15 GDD itns. 62.48 85.32 95.58 1,000 1,000 1,000

duGap 1.20−4 1.35−4 1.33−4 15.9 14.0 15.8

rank(X?) 1 1 1 2.64 2.70 2.89

εrel = 0.30 GDD itns. 40.34 50.88 64.28 1,000 1,000 1,000

duGap 1.17−4 1.23−4 1.27−4 21.2 26.7 31.5

Table 5.3. The GDD algorithm (Algorithm 3) results and optimal matrix rank
for PLGD models with synthetic (5.2.6) and Gaussian noise (5.2.3). This table
depicts the mean rank of X?, number of the GDD algorithm iterations, and final
duality gap (5.2.7f) (duGap) for 100 random phase retrieval models with signal size
n = 16, noise ratio εrel, and oversampling L. In all synthetic noise models (5.2.6),
the solution X? was rank-one and the GDD algorithm converged. In all Gaussian
noise models (5.2.3), the algorithm reached the maximum of 1,000 iterations without
attaining the termination condition (4.2.14). Note that pairs (X?, y?) are computed
with SDPT3 and numbers n−k are shorthand for n× 10−k.

Table 5.3 demonstrates that PLGD models with Gaussian noise (5.2.3) typically have optimal

matrices with rank greater than one, causing the GDD algorithm to stagnate. The GDD algorithm

cannot attain an optimal primal matrix X? with rank greater than one because the primal recov-

ery (4.2.10) and refinement (4.2.11) steps used in this algorithm only return a rank-one matrix

X = xx∗. Additionally, Corollary 3.4.1, (e) indicates that rank(X?) is a lower bound on the mul-

tiplicity of the algebraically largest eigenvalue of A∗y?. Thus the objective function λ1(A∗y) will
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be nondifferentiable in some neighborhood around y? and the GDD algorithm will stagnate prior

to approaching y?. As a result, the GDD algorithm cannot attain a pair (X, y) that are sufficiently

close to the optimal pair (X?, y?) and fails to satisfy the duality gap condition (4.2.14).

In contrast to the Gaussian models (5.2.3), we see that PLGD models with synthetic noise

(5.2.6) consistenly have rank-one optimal matrices X?, allowing the GDD algorithm to converge.

Each synthetic noise model (5.2.6) in Table 5.3 had an optimal dual matrix A∗y? with a unique

algebraically largest eigenvalue, making the dual objective function λ1(A∗y) differentiable at y?

and allowing the GDD algorithm to approach the optimal dual variable y?. Once the pair (X, y)

are sufficiently close to the optimal pair, the duality gap condition (4.2.14) is met and convergence

is declared. At this point, the primal recovery equation (3.4.10) successfully denoises the noisy

observation b = b + εy?/||y?||2 because the synthetic noise steps (5.2.4) guarantee an exact relation

η = εy?/||y?||2 between the noise term η and optimal dual variable y?. Thus the GDD algorithm is

able to return a matrix X which accurately approximates the optimal matrix X? = xx∗.

Table 5.3 also helps to explain why dual refinement (Algorithm 3, step 13) is not beneficial for

PLGD models with Gaussian noise (5.2.3). As we saw in Table 4.1, an inaccurate signal x can

cause the dual refinement problem (4.2.12) to return an unreliable update ŷ. Figure 5.2 depicts the

progress made by the GDD algorithm with and without dual refinement for three PLGD models

with Gaussian noise (5.2.3).

Figure 5.2. A comparison of the GDD algorithm (Algorithm 3) with and without
dual refinement (4.2.12) for PLGD models with Gaussian noise (5.2.3) with various
noise levels, with random Gaussian signal of size n = 128 and L = 10 observations.
The solid blue line indicates dual refinement, and the dashed red line indicates no
dual refinement.
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Figure 5.2 demonstrates that the dual refinement step (4.2.12) inhibits the progress otherwise

made by the GDD algorithm. This step is initialized with a signal x which corresponds to the

rank-one matrix iterate X = xx∗. Since the optimal matrix X? tends to have rank greater than

one, the dual refinement problem (4.2.12) will not be properly initialized and may return a poor

update ŷ. Thus the dual refinement step in the GDD algorithm is not beneficial for signal recovery

in phase retrieval problems with Gaussian noise (5.2.2).

5.4. New Termination Conditions

In Section 5.3, we saw that the GDD algorithm (Algorithm 3) tends to stagnate when solving

phase retrieval problems with Gaussian noise (5.2.2), failing to satisfy the duality gap termination

condition (4.2.14) original established in [27]. This section establishes new termination conditions

for the GDD algorithm for PLGD models with Gaussian noise (5.2.3) and demonstrates the effec-

tiveness of these conditions for identifying stagnation of the GDD algorithm. (For a comparison of

the unused residuals from (5.2.7), see Appendix B.)

We begin by presenting the new termination conditions for the GDD algorithm for PLGD

models with Gaussian noise (5.2.3). To identify stagnation of the GDD algorithm and declare

termination, the primal difference (5.2.7e) is set to

(5.4.1)
|ρ− ρ̂|
ρ

≤ tolprimal = 10−5, ρ = ||A(xx∗)− b||2

and the dual variable difference (5.2.7i) is set to

(5.4.2)
||y − ŷ||2
||y||2

≤ toldual = 10−4,

where a hat indicates the previous iterate (e.g., ŷ = yk−1). Termination is declared when (5.4.1)

and (5.4.2) are satisfied or after a maximum of 300 iterations are performed. After termination,

the signal returned corresponds to the signal among the previous 20 with the smallest duality gap

(5.2.7f) value.

To demonstrate the effectiveness of these termination conditions, we consider a set of six PLGD

models with Gaussian noise (5.2.3) solved with the GDD algorithm. The signal relative error

(5.2.7a) serves as a control measurement to identify when the GDD algorithm has stagnated and

should terminate. Figure 5.3 depicts the signal relative error (5.2.7a) for each of these models.
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Figure 5.3. Signal relative errors (5.2.7a) for six PLGD models with Gaussian
noise (5.2.3) solved with the GDD algorithm (Algorithm 3). The image in Figure
1.2 was resized to 64×64 pixels, made grayscale, and six models were generated with
oversampling rates of L = 5, 10 and noise ratios εrel = 0.05, 0.15, 0.30. These models
were then solved using the GDD algorithm set to terminate after 1,000 iterations.
The red circle (where present) indicates when the dual objective was determined
nondifferentiable.

Figure 5.3 depicts the early progress and quick stagnation of the GDD algorithm for these

PLGD models with Gaussian noise (5.2.3). For each model, virtually no measurable progress was

made after iteration 500. Yet the point at which each model stagnates appears to differ, and in one

case (L = 10 and εrel = 0.05) the signal quality appears to vary greatly for neighboring iterates.

Thus we examine the behavior in Figure 5.3 to identify the desired interval of iterates in which the

GDD algorithm should terminate for each model.

The results in Figure 5.3 suggest that models with a larger oversampling rate and those with

a larger noise ratio make progress faster and stagnate earlier. One indicator that the point of

stagnation differs for these models is the point at which the GDD algorithm identifies the objective
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function λ1(A∗y) as nondifferentiable (i.e., the condition (4.2.3) fails). The models in Figure 5.3

with the least noise never identified a nondifferentiable objective, whereas the noisiest models

identified nondifferentiable objectives very early (at iterate 122 for L = 5 and 137 for L = 10).

Another indicator that the models of Figure 3 stagnate at different rates is the point at which the

primal objective is found to be feasible, as described in Table 5.4.

L = 5 L = 10

εrel = 0.05 33 3

εrel = 0.15 N/A 3

εrel = 0.30 22 3

Table 5.4. Iterate at which the GDD algorithm (Algorithm 3) became primal
feasible for models from Figure 5.3.

Table 5.4 shows that all three models with oversampling L = 10 found feasible signals after just

3 iterations, yet the models with L = 5 were a bit slower, and in particular the model with L = 5

and εrel = 0.15 never identified a feasible signal.

Based on these observations, Table 5.5 proposes iterate intervals in which the GDD algorithm

appears to have stagnated for each model in Figure 5.3, providing a guideline for assessing the new

termination conditions (5.4.1) and (5.4.2).

L = 5 L = 10

εrel = 0.05 200-400 50-200

εrel = 0.15 200-400 50-100

εrel = 0.30 100-200 50-100

Table 5.5. Intervals of iterates at which the GDD algorithm (Algorithm 3) appears
to stagnate for models from Figure 5.3.

In order to demonstrate that the primal difference (5.2.7e) and dual variable difference (5.2.7i)

are accurate indicators of the stagnation of the GDD algorithm, Figure 5.4 depicts the behavior of

these residuals for the models in Figure 5.3. Note that the vertical axis indicates specific tolerances
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and the horizontal axis indicates the first iterate at which the GDD algorithm would satisfy this

tolerance.

Figure 5.4. Plots of tolerance values against the iterate at which the GDD algo-
rithm (Algorithm 3) first satisfies this tolerance for the models discussed in Figure
5.3. Tolerances depicted are difference values for the primal objective (5.2.7e) and
dual variable (5.2.7i). Red circles are placed at tolerances 10−n. The blue rectangles
indicate the proposed intervals of termination from Table 5.5.

For each of the models in Figure 5.4, the termination conditions (5.4.1) and (5.4.2) are satisfied

within or close to each respective interval of stagnation from Table 5.5. For the models with

oversampling L = 5, the GDD algorithm satisfies the tolerances tolprimal = 10−5 from (5.4.1) and
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toldual = 10−4 from (5.4.2) within or slightly prior to each respective desired interval. Likewise, the

GDD algorithm achieve these desired tolerances for the models with L = 10 within or slightly after

each desired interval. As an additional precaution, the maximum iteration count of 300 iterates

will prevent running the GDD algorithm after it has stagnated.

Note that there is also theoretical justification for selecting the dual variable difference (5.2.7i)

as a termination condition. Proposition 3.4.2 showed that the variable y is optimal for the PLGD

model (3.2.1) if y = ΠC(y − αg) for some g ∈ ∂f(y) and all α > 0. This property corresponds to

the termination condition

||ΠC(y − αg)− y||2 ≤ tol.

If we make this condition relative by setting tol = 10−4||ΠC(y − αg)||2, then we recover the new

dual variable difference condition (5.4.2).

One additional concern for termination conditions is the nonmonotonic nature of the GDD

algorithm. In Figure 5.3, the model with L = 10 and εrel = 0.05 demonstrates that the GDD

algorithm may produce neighboring signal iterates with varying accuracy. Since this algorithm is

nonmonotonic and relies on a subroutine to recover the current approximate signal, the accuracy of

the sequence of recovered signals can vary dramatically. Thus we need a reliable indicator to select

a sufficiently accurate signal among the previous iterates. Figure 5.5 depicts the signal relative

error (5.2.7a) and duality gap (5.2.7f) for the L = 10, εrel = 0.05 model. Note that the new

termination conditions tolprimal = 10−5 and toldual = 10−4 would select the 148th iterate as the

candidate solution.
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Figure 5.5. Signal relative error (5.2.7a) and duality gap (5.2.7f) for the model
from Figure 5.3 with oversampling L = 10 and noise ratio εrel = 0.05. Red circles
indicate signals with relative error at least 0.05% above the mean of their ten neigh-
bors, and the black asterisk indicates both the final iterate based on new termination
conditions and the optimal iterate based on minimum duality gap.

Figure 5.5 demonstrates that the duality gap (5.2.7f) violation closely matches the signal relative

error (5.2.7a). Among the previous iterates, those with the least accurate signal (indicated by the

red circle) are accurately identified as having a duality gap value greater than the minimum (black

asterisk). Thus once the GDD algorithm terminates, we select the signal among the last 20 with

the lowest duality gap value.

Given the new termination conditions (5.4.1), (5.4.2), the maximum iteration count of 300, and

the signal selection method discussed above, the Figure 5.6 depicts the iterate at which the GDD

algorithm would terminate for each PLGD model with Gaussian noise from Figure 5.3.
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Figure 5.6. Iterate at which the GDD algorithm (Algorithm 3) terminates for the
models from Figure 5.3 based on new termination conditions.

For each model in Figure 5.6, the GDD algorithm successfully terminates within or nearby the

interval of stagnation established in Table 5.5. Given the new termination conditions (5.4.1) and

(5.4.2), we may now treat the GDD algorithm as a black-box algorithm for noisy phase retrieval

and examine the sequence of eigenvalue problems generated by the GDD algorithm.
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CHAPTER 6

Evolving Matrix Eigenvalue Computation

6.1. Introduction

In this chapter we examine the evolving matrix eigenvalue problem (EMEP) in the GDD algo-

rithm (Algorithm 3) and develop a new strategy for solving this problem.

Section 6.2 defines the EMEP and examines its computational costs and evolving spectrum

across matrix iterates Ak. In particular, we observe that the algebraically largest eigenvalues tend

to cluster as the algorithm proceeds, leading to more difficult eigenvalue problems for later matrix

iterates. To handle these eigenvalue problems, Section 6.3 reviews the implicitly restarted Arnoldi

method (IRAM), a modern Krylov subspace method established in [62] and examined thoroughly

in [3, Chapter 5]. The convergence behavior of the IRAM is based on the spectrum of the given

eigenvalue problem as well as the IRAM parameters chosen by the user. To understand and exploit

the convergence behavior of the IRAM, Section 6.3 reviews the subroutines of the IRAM and

summarizes relevant convergence results.

Next, Section 6.4 presents the IRAM with adaptive parameter selection, a new strategy for

solving the EMEP by adaptively changing the number of requested eigenvalues r in the IRAM

(Algorithm 7). Section 6.5 closely examines the EMEP for two PLGD models with Gaussian noise

(5.2.3) to demonstrate an observed correlation between the clustering of the algebraically largest

eigenvalues in the EMEP and an increase in the empirically optimal value r̄ in the IRAM, which

we define as the parameter rmin ≤ r̄ ≤ rmax corresponding to the fewest matrix-vector products

required for the IRAM to converge for a given EMEP iterate. We see that the IRAM with adaptive

parameter selection properly tracks the empirically optimal value r̄ for these models. Performance

results for the IRAM with adaptive parameter selection are presented in Chapter 7. Also note

that all EMEP (6.2.2) experiments in this chapter are performed with the GDD algorithm using
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the new termination conditions (5.4.1) and (5.4.2) established in Chapter 5 and are available for

reproduction.1

6.2. The Evolving Matrix Eigenvalue Problem

In this section we examine the sequence of eigenvalue problems in the GDD algorithm (Algo-

rithm 3), which we define as the evolving matrix eigenvalue problem (EMEP). We will see that the

EMEP is the most computationally expensive subroutine in the GDD algorithm. We also observe

that the EMEP matrix iterates have a spectrum which evolves in a predictable way from early to

later iterates.

6.2.1. EMEP Definition

We begin by formally defining the EMEP. Generally speaking, we are concerned with a sequence

of eigenvalue problems in which each matrix is dependent on the results of the previous problem.

For each iterate k in this sequence of problems, we have some Hermitian matrix iterate Ak ∈ Hn

and seek its j algebraically largest eigenvalues Λ
(k)
j and the corresponding eigenvectors V

(k)
j . The

topic of eigenvalue problems with evolving matrices was recently studied in [54]. Some examples of

this problem include subspace tracking in signal processing (see, e.g., [19], [64], [68], [20]), matrix

completion (e.g., [46]), and the Kohn-Sham equation in density functional theory (e.g., [55]).

To define the EMEP, first note that each eigenvalue problem in the GDD algorithm (steps 2, 6,

and 14) requires the two algebraically largest eigenvalues of the matrix iterate Ak = A∗yk, where

A∗ is defined as (2.4.2). In the GDD algorithm, the matrix A0 is initialized as A0 = A∗b, where

b is the observation vector in the PLGD model (3.2.1). For each iterate k > 0, the update matrix

Ak = A∗yk is computed with yk = ΠC(yk−1 − αk−1gk−1), where the gradient gk−1 = A(v1v
∗
1) is a

function of the eigenvector v1 corresponding to the algebraically largest eigenvalue of Ak, and the

steplength αk−1 is determined using a linesearch on the minimization problem

(6.2.1) min
α

λ1 (A∗(ΠC(yk−1 − αgk−1))) .

1https://github.com/Will-Wright/low-rank-opt-rapid-eig
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Thus we define the sequence of eigenvalue problems generated by the GDD algorithm as the evolving

matrix eigenvalue problem (EMEP)

(6.2.2)
for k = 0, 1, . . . ,K

find
(
λ

(k)
1 , v

(k)
1

)
and

(
λ

(k)
2 , v

(k)
2

)
of Ak,

where λ
(k)
1 and λ

(k)
2 are the two algebraically largest eigenvalues of the matrix iterate Ak = A∗yk,

and yk is the previous dual variable generated by the GDD algorithm (from step 2, 6, or 14). Note

that yk is dependent on v
(k−1)
1 and yk−1, and thus each eigenvalue problem in the GDD algorithm

is dependent on the previous matrix iterate Ak−1. Also note that the steplength αk−1 returned

by the linesearch problem (6.2.1) influences the rate at which the sequence of matrices A0, A1, . . .

evolves, since

||Ak −Ak−1|| = ||A∗(ΠC(yk−1 − αk−1gk−1))−A∗yk−1||

= ||A∗(ΠC(yk−1 − αk−1gk−1)− yk−1)||

≤ ||A∗|| · ||ΠC(yk−1 − αk−1gk−1)− yk−1||2

≤ ||A∗|| · ||yk−1 − αk−1gk−1 − yk−1||2 = ||A∗|| · |αk−1| · ||gk−1||2,

(6.2.3)

where we have the induced norm of A∗

||A∗|| = sup
||w||2=1

||A∗w||.

6.2.2. Computational Costs

Next, we examine the overall computational costs of the EMEP (6.2.2). As discussed in Section

4.2, the main computational costs in the GDD algorithm (Algorithm 3) are the EMEP (step 2, 6,

and 14), the primal refinement (step 11), and the dual refinement (step 13). Since we are focused

on PLGD models with Gaussian noise (5.2.3), the dual refinement step of the GDD algorithm

is skipped (see the end of Section 5.3 for an explanation). In both the EMEP (6.2.2) and the

primal refinement step, the primary computational cost comes from A-products (2.4.2), where each

A(xx∗) product requires L DFTs and each [A∗y]x product requires 2L DFTs. Thus we measure

computational costs in terms of the number of DFTs, following the convention of [14] and [27]. Also

note that the computation of the eigenpair (λ1, v1) in the EMEP (6.2.2) must be very accurate in
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order to determine an accurate descent step g = A(v1v
∗
1) in the GDD algorithm. Table 6.1 depicts

the number of DFTs in the GDD algorithm for a variety of noisy problems.

EMEP Primal refinement All other steps

n L εrel eigs calls Minutes DFTs Minutes DFTs Minutes DFTs

4,096 5 0.05 228 13.13 (0.94) 51,935 (0.97) 0.73 (0.05) 1,516 (0.03) 0.04 17

4,096 5 0.15 120 6.63 (0.94) 31,085 (0.97) 0.45 (0.06) 1,076 (0.03) 0.01 10

4,096 5 0.30 52 3.56 (0.89) 16,410 (0.95) 0.45 (0.11) 854 (0.05) 0.01 4

4,096 10 0.05 190 12.06 (0.96) 72,587 (0.98) 0.45 (0.04) 1,819 (0.02) 0.03 29

4,096 10 0.15 106 8.60 (0.96) 51,450 (0.98) 0.30 (0.03) 1,194 (0.02) 0.02 17

4,096 10 0.30 111 17.95 (0.98) 107,936 (0.99) 0.36 (0.02) 1,420 (0.01) 0.01 18

16,384 5 0.05 199 46.09 (0.95) 69,745 (0.98) 2.13 (0.04) 1,468 (0.02) 0.06 16

16,384 5 0.15 91 27.71 (0.95) 41,880 (0.98) 1.34 (0.05) 853 (0.02) 0.03 8

16,384 5 0.30 61 30.95 (0.94) 45,834 (0.98) 2.04 (0.06) 1,026 (0.02) 0.02 5

16,384 10 0.05 160 56.73 (0.97) 92,391 (0.98) 1.64 (0.03) 1,560 (0.02) 0.07 25

16,384 10 0.15 103 36.30 (0.97) 60,189 (0.98) 1.21 (0.03) 1,167 (0.02) 0.05 17

16,384 10 0.30 47 18.48 (0.96) 30,498 (0.98) 0.65 (0.03) 617 (0.02) 0.02 8

Table 6.1. The GDD algorithm (Algorithm 3) runtime and number of DFTs (with
percentage of the total in parentheses) for the EMEP (6.2.2), primal refinement
(solving (4.2.11) in step 11) and all other operations. Here n is signal size (i.e.,
number of pixels squared in the image from Figure 1.2), L is number of observations,
and εrel is the noise ratio.

The results in Table 6.1 demonstrate the essential computational challenges of the GDD algo-

rithm. First, the EMEP is the dominant computational cost in the algorithm, and its proportion

to other costs (in both runtime and number of DFTs) increases as the size of the model increases.

Additionally, the primal refinement step requires a small but nontrivial amount of computation.

All other operations accounted for 0.00% of the overall runtime.

We will now profile the cost of the EMEP (6.2.2). Figure 6.1 depicts the number of matrix-

vector products [A∗yk]x in the EMEP (6.2.2) for each of the six smaller models from Table 6.1.
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Figure 6.1. Number of matrix-vector products for each iteration in the EMEP
(6.2.2) for the six smaller models from Table 6.1 .

Figure 6.1 demonstrates that the number of matrix-vector products required for each EMEP

(6.2.2) iterate varies greatly from earlier to later iterates. In each model, the later iterates account

for the majority of the computational cost of the EMEP (6.2.2). Additionally, some iterates require

far more matrix-vector products than others (e.g., the iterates around k = 75 in the bottom-right

plot). To help explain this change in computational costs, we now proceed to examine how the

spectrum of the EMEP evolves.

6.2.3. Evolving Spectrum Distribution

We close this section by examining the evolving spectrum distribution of the EMEP (6.2.2).

We find that the algebraically largest eigenvalues begin to cluster for later EMEP iterates, likely

causing those eigenvalue problems to be more difficult. First, we examine the full spectrum of a

few EMEP matrix iterates in Figure 6.2.
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Figure 6.2. Spectrum of specific EMEP (6.2.2) matrix iterates Ak for the model
from Table 6.1 with signal size n = 4, 096, oversampling L = 5, and noise ratio
εrel = 0.15.

As we see in Figure 6.2, the spectrum of the matrix iterates Ak in the EMEP (6.2.2) shifts

from completely positive for A1 to mostly negative for later iterates. This shift in spectrum is a

consequence of optimizing the PLGD model with Gaussian noise (5.2.3). The first matrix iterate

A1 = A∗b will always be positive-semidefinite because the components of the observation b =

[b1; b2; . . . ; bL] are all nonnegative and thus for all x we have

x∗[A∗b]x =
L∑
j=1

[FCjx]∗Diag(bj)FCjx ≥ 0.

Since the GDD algorithm minimizes the objective function λ1(A∗yk), the algebraically largest

eigenvalue λ
(k)
1 of A∗yk can be expected to decrease for later iterates k.

As we will see in Section 6.3, the convergence rate of eigenvalue methods often depends on

the distance between the desired eigenvalue λj and the next algebraically largest eigenvalue λj+1.
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Figure 6.3 depicts the 20 algebraically largest eigenvalues of the EMEP (6.2.2) iterates from Figure

6.2.

Figure 6.3. Twenty algebraically largest eigenvalues of specific EMEP (6.2.2) ma-
trix iterates Ak for the model from Table 6.1 with signal size n = 4, 096, oversampling
L = 5, and noise ratio εrel = 0.15.

Figure 6.3 demonstrates that the algebraically largest eigenvalues of the matrix iterates Ak

cluster together as the EMEP (6.2.2) progresses. In general, this clustering in the EMEP (6.2.2)

spectrum is expected. Section 5.3 demonstrated that PLGD models with Gaussian noise (5.2.3)

typically have optimal primal matricesX? with rank greater than one (see Table 5.3). And Corollary

3.4.1 (e) indicates that rank(X?) is a lower bound on the multiplicity r of the algebraically largest

eigenvalue of the optimal dual matrix A∗y?. Thus for later EMEP (6.2.2) iterates k, we can expect

some r algebraically largest eigenvalues λ
(k)
1 , λ

(k)
2 , . . . , λ

(k)
r to have a decreasing relative difference

λ
(k)
i − λ

(k)
i+1

λ
(k)
i

for i = 1, 2, . . . , r − 1.
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The clustering of the algebraically largest eigenvalues as depicted in Figure 6.3 is known to

slow the convergence rate of modern Krylov subspace methods. Yet the choice of the parameters

in these Krylov subspace methods can also affect their convergence rate significantly. A thorough

understanding of one such method (the implicitly restarted Arnoldi method) and its subroutines

will help us to develop a new, adaptive strategy for choosing parameters for the EMEP (6.2.2) in

Section 6.4.

6.3. The Implicitly Restarted Arnoldi Method

In this section we review the implicitly restarted Arnoldi method (IRAM), a common large-

scale eigenvalue method. First proposed by Sorensen [62], [63], the IRAM is a combination of

two essential algorithms. The m-step Arnoldi iteration is used to build a matrix Qm of m basis

vectors which approximates the desired eigenspace. The p-step shifted QR iteration restarts the

matrix Qm with a specific strategy to damp unwanted eigenvalues, resulting in a smaller matrix

Qj of j < m basis vectors. Since the m-step Arnoldi iteration is an extension of the power method,

we first discuss the Power method before developing the IRAM. Altogether, the algorithms in this

section are presented in the order depicted in Figure 6.4.

Power method (Algorithm 4)

m-step Arnoldi (Algorithm 5) p-step shifted QR (Algorithm 6)

IRAM (Algorithm 7)

Figure 6.4. Dependency chart for the IRAM.

This section follows the treatment found in [31, Chapters 8, 10], with occasional minor changes

in notation.

6.3.1. The Power Method

The first method we consider is the power method, a method for determining the largest magni-

tude eigenvalue λ1 and corresponding eigenvector v1 of a Hermitian matrix A. The power method
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is based on the property that if λ1 is strictly larger in magnitude than the next largest magni-

tude eigenvalue and the initial vector q(0) has a nonzero component in the direction of v1 (i.e.,

v∗1q
(0) 6= 0), then the sequence

q(0),
Aq(0)

||Aq(0)||2
,

A2q(0)

||A2q(0)||2
,

A3q(0)

||A3q(0)||2
, . . .

will have v1 as its limit.

Formally, Algorithm 4 presents the power method as seen in [31, Section 8.2.1].

Algorithm 4 Power method

Input: Hermitian matrix A, initial approximate eigenvector q(0), relative tolerance tolrel > 0.

Output: Approximate largest magnitude eigenvalue λ and the corresponding eigenvector v.

1: Initialize: q(0) = q(0)/||q(0)||2, ρ(0) = [q(0)]∗Aq(0), r(0) = Au(0) − ρ(0)q(0), i = 1.

2: while not converged: ||r(i)||2/(||Aq(i)||2 + |ρ(i)|) > tolrel do

3: z(i) = Aq(i−1)

4: q(i) = z(i)/||z(i)||2

5: ρ(i) = [q(i)]∗z(i)

6: r(i) = Aq(i) − ρ(i)q(i), i = i+ 1

7: end while

8: Return: (λ, v) = (ρ(i−1), q(i−1)).

The simplicity of power method allows for insightful convergence results like the Theorem 6.3.1,

in which we assume the matrix A is real for clarity.

Theorem 6.3.1. Suppose A ∈ Rn×n is symmetric with an eigenvalue decomposition

V ∗AV = Diag(λ1, λ2, . . . , λn),

where V = [ v1 | v2 | · · · | vn ] is orthogonal and |λ1| > |λ2| ≥ · · · ≥ |λn|. Let the vectors q(i) be

generated by Algorithm 4 and define θi ∈ [0, π/2] as

cos(θi) =
∣∣∣vT1 q(i)

∣∣∣ .
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If cos(θ0) 6= 0, then for i = 0, 1, . . . we have

(6.3.1) |sin(θi)| ≤ tan(θ0)

∣∣∣∣λ2

λ1

∣∣∣∣i ,

(6.3.2)
∣∣∣λ(i) − λ1

∣∣∣ ≤ max
2≤j≤n

|λ1 − λi| tan(θ0)2

∣∣∣∣λ2

λ1

∣∣∣∣2i .
Proof. See [31, Theorem 8.2.1]. �

Theorem 6.3.1 establishes that the convergence rate of the power method (Algorithm 4) is

dependent on the distance between |λ1| and |λ2|. If this distance ε = |λ1| − |λ2| is very small

relative to |λ1|, then we have ∣∣∣∣λ2

λ1

∣∣∣∣ =
|λ1| − ε
|λ1|

= 1− ε

|λ1|
≈ 1,

and | sin(θi)| in (6.3.1) may decreases very slowly.

6.3.2. The m-Step Arnoldi Iteration

The next method we consider is the m-step Arnoldi iteration which extends the power method

(Algorithm 4) to achieve a superior convergence rate. An iteration of the power method generates a

new approximate eigenvector (q(i) from steps 3 and 4) by normalizing the matrix-vector product of

the previous vector. In essence, the power method searches for the largest magnitude eigenvalue λ1

and corresponding eigenvector v1 of a matrix A in the one-dimensional subspace V = span{Aq1}.

The m-step Arnoldi iteration extends the power method by searching for the Ritz pair (1.0.12)

(θ1, u1) for A with respect to the m-dimensional Krylov subspace

(6.3.3) Km(A, q1) = span{q1, Aq1, A
2q1, . . . , A

m−1q1}.

Algorithm 5 (as described in [31, Algorithm 10.5.1]) builds a unitary basis Qm of Km(A, q1) which

may be used to find the Ritz pair (θ1, u1).
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Algorithm 5 m-step Arnoldi iteration

Input: Matrix A ∈ Cn×n, number of Arnoldi steps m, initial approximate eigenvector q1.

Output: Hessenberg matrix Hm, basis Qm, residual rm.

1: Initialize: q1 = q1/||q1||2, z = Aq1, α1 = q∗1z, r1 = z − α1q1, Q1 = [q1], H1 = [α1].

2: for i = 1, . . . ,m− 1 do

3: βi = ||ri||2, qi+1 = ri/βi.

4: Qi+1 = [Qi | qi+1], Ĥi =

 Hi

βie
T
i

.

5: z = Aqi+1.

6: h = Q∗i+1z, ri+1 = z −Qi+1h.

7: Hi+1 = [Ĥi | h].

8: end for

9: Return: Hm, Qm, rm.

In order to obtain a Ritz pair (θ, u) for A with respect to Km(A, q1), the m-step Arnoldi iteration

generates an m-step Arnoldi decomposition

(6.3.4) AQm = QmHm + rme
∗
m,

where Hm is an upper Hessenberg matrix. If (θ, w) is an eigenpair for Hm and u = Qmw then

(6.3.4) implies

(6.3.5) (AQm −QmHm)w = (A− θI)u = (e∗mw)rm.

Additionally, steps 5 and 6 of Algorithm 5 indicate that rm is orthogonal to Km(A, q1), and thus

(θ, u) is a Ritz pair for A with respect to Km(A, q1).

The use of Km(A, q1) in Algorithm 5 allows for superior convergence to Algorithm 4. Note that

the largest magnitude Ritz pair (θ1, u1) for A with respect to Km(A, q1) generated by Algorithm 5 is

guaranteed to be at least comparable to the m-th iterate of Algorithm 4 since Am−1q1 ∈ Km(A, q1).

To compare the convergence rates of Algorithms 4 and 5 more precisely, assume the matrix A

in real and symmetric. Then the matrix Hm returned by Algorithm 5 is tridiagonal and this

algorithm is equivalent to the m-step Lanczos iteration [31, Algorithm 10.1.1]. In this case, we
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have the Theorem 6.3.2. Note that this theorem involves Chebyshev polynomials [53, Section 4.4],

a sequence of polynomials defined recursively as

(6.3.6) ck(x) = 2xck−1(x)− ck−2(x)

for k ≥ 2, with c0 = 1 and c2 = x .

Theorem 6.3.2. Let A ∈ Rn×n be symmetric with an eigenvalue decomposition

V ∗AV = Diag(λ1, λ2, . . . , λn),

where V = [ v1 | v2 | · · · | vn ] is orthogonal and λ1 ≥ λ2 ≥ · · · ≥ λn. Suppose the m-step Arnoldi

iteration (Algorithm 5) is performed and Hk is the tridiagonal matrix returned by this algorithm.

If θ1 is the algebraically largest eigenvalue of Hm, then

(6.3.7) λ1 ≥ θ1 ≥ λ1 − (λ1 − λn)

(
tan(φ1)

cm−1(1 + 2ρ1)

)2

,

where cos(φ1) = |qT1 v1|,

(6.3.8) ρ1 =
λ1 − λ2

λ2 − λn
,

and cm−1(x) is the Chebyshev polynomial of degree m− 1.

Proof. See [31, Theorem 10.1.2]. �

The convergence rate established in Theorem 6.3.2 may also be applied to Algorithm 4, giving

the Corollary 6.3.3.

Corollary 6.3.3. Let A ∈ Rn×n be symmetric and positive semidefinite with an eigenvalue

decomposition

V ∗AV = Diag(λ1, λ2, . . . , λn),

where V = [ v1 | v2 | · · · | vn ] is orthogonal and λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0. Suppose m steps of the

power method (Algorithm 4) are performed and γ1 = ρ(m) is the returned Ritz value. Then

(6.3.9) λ1 ≥ γ1 ≥ λ1 − (λ1 − λn) tan2(φ1)

(
λ2

λ1

)2(m−1)

,
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where cos(φ1) = |qT1 v1|.

Proof. See [31, Theorem 10.1.2] and replace the Chebyshev polynomial in this proof with

p(x) = xk−1. �

The lower bounds in Theorem 6.3.2 and Corollary 6.3.3 may be used to compare the expected

convergence rates for Algorithms 4 and 5. The following comparison is based on [31, Section 10.1.6].

Assume A ∈ Rn×n is symmetric and also positive semidefinite for clarity. Assume Algorithms 4

and 5 have been run for m steps with the same initial vector q1. Let γ1 = ρ(m) be the Ritz value for

A generated by step 5 of Algorithm 4. And let θ1 be the Ritz value for A with respect to Km(A, q1)

generated by the algebraically largest eigenvalue of Hm from Algorithm 5. Then we may compare

the lower bounds (6.3.9) for γ1 and (6.3.7) for θ1 by comparing the values

(6.3.10) Pm−1 =

(
λ2

λ1

)2(m−1)

,

(6.3.11) Lm−1 =
1[

cm−1

(
2λ1λ2 − 1

)]2 ≥
1

[cm−1 (1 + 2ρ1)]2
.

Table 6.2 compares Pm−1 and Lm−1 for a few values of m and λ1/λ2.

m = 10 m = 20

λ1/λ2 Pm−1 Lm−1 Pm−1 Lm−1

1.10 1.8× 10−1 5.5× 10−5 2.7× 10−2 2.1× 10−10

1.01 8.4× 10−1 1.0× 10−1 6.9× 10−1 2.0× 10−3

Table 6.2. Lower bound terms (6.3.10) and (6.3.11) for Ritz values generated by
Algorithms 4 and 5

Table 6.2 demonstrates that the use of the Krylov subspace Km(A, q1) in Algorithm 5 allows

for superior convergence to Algorithm 4. Yet this superior convergence rate is slowed somewhat

when the desired eigenvalue λ1 is close to λ2. For eigenvalue problems where the value λ1/λ2

is very small (like later iterates of the EMEP (6.2.2), as demonstrated in Figure 6.3), we may

seek to increase the number of steps m in Algorithm 5. Yet increasing m can be computationally
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prohibitive if the eigenvalue problem is very large, requiring significant memory to store Qm and

significant computation to compute the eigenvalue decomposition of Hm.

6.3.3. The p-Step Shifted QR Iteration

To take advantage of the convergence rate of Algorithm 5 for larger eigenvalue problems, the

Arnoldi decomposition (6.3.4) may be restarted with the p-step shifted QR iteration developed

by [62] and discussed in [31, Sections 10.5.2-3]. To develop this algorithm, assume we are seeking

the j algebraically largest eigenvalues of a Hermitian matrix A ∈ Cn×n and we require that the

m-step Arnoldi decomposition (6.3.4) AQm = QmHm + rme
∗
m has a fixed size m > j. First we

run Algorithm 5 with the initial vector q1 to obtain AQm = QmHm + rme
∗
m. Next, recall that

the matrix Hm may be used to identify the desired Ritz pairs {(θi, ui)}ji=1 for A with respect to

Km(A, q1), as described in (6.3.5). Yet Hm also contains Ritz values θj+1, . . . , θm which correspond

to unwanted eigenvalues of A. To damp these unwanted Ritz values, we may select an appropriate

degree p = m− j filter polynomial p(λ). The p-step shifted QR iteration uses the filter polynomial

(6.3.12) p(λ) = c · (λ− µ1)(λ− µ2) · · · (λ− µp),

where c is a constant and the shift values µ1 = θj+1, . . . , µp = θm are the p unwanted Ritz values

of A with respect to Km(A, q1). Algorithm 6 (as described in [31, Section 10.5.3]) uses the filter

polynomial (6.3.12) implicitly by applying p shifted QR steps to Hm.
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Algorithm 6 p-step shifted QR iteration (implicit polynomial filtering)

Input: Hessenberg matrix Hm ∈ Cm×m and shift values µ1, . . . , µp.

Output: Processed Hessenberg matrix H+
m ∈ Cm×m and change of basis V ∈ Cm×m, with

H+
m = V ∗HmV .

1: Set H(0) = Hm.

2: for i = 1, . . . , p do

3: QR factorization: H(i−1) − µiI = ViRi.

4: Update: H(i) = RiVi + µiI.

5: end for

6: Set H+
m = H(p), V = V1V2 · · ·Vp.

7: Return: H+
m, V .

Proposition 6.3.1 establishes that Algorithm 6 implicitly applies the filter polynomial p(λ) from

(6.3.12) to the initial vector q1 used to create the m-step Arnoldi decomposition (6.3.4).

Proposition 6.3.1. Let A ∈ Cn×n be Hermitian and AQm = QmHm + rme
∗
m be the m-step

Arnoldi decomposition (6.3.4) returned by Algorithm 5 with initial vector q1. And let µ1, . . . , µp be

the p smallest algebraic eigenvalues of Hm. Run Algorithm 6 with Hm and µ1, . . . , µp as inputs,

and return H+
m, V = V1 · · ·Vp, and R = Rp · · ·R1.

Then the restarted matrix Q+ = QmV will have the first column

q+ = QmV (:, 1) = p(A)q1,

where p(λ) is the filter polynomial (6.3.12) with constant c = 1/R(1, 1).

Proof. See [31, Section 10.5.3]. �

After performing Algorithm 6, we have the transformed m-step Arnoldi decomposition (6.3.4)

(6.3.13) AQ+ = Q+H+ + rme
∗
mV,

where V = V1 · · ·Vp from Algorithm 6 and Q+ = QmV . As a consequence of the QR steps used

in Algorithm 6, we can also show that the first j = m − p columns of (6.3.13) form a new j-step
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Arnoldi decomposition. Note that V1, . . . , Vp are all upper Hessenberg due to the QR factorization

in step 3 of Algorithm 6. Then V has a lower band p and V (m, 1 : m−p−1) = V (m, 1 : j−1) = 0,

giving

(6.3.14) rme
∗
mV (:, 1 : j) = V (m, j)rme

∗
j .

Also, H+ is upper Hessenberg and thus H+(j + 1 : m, 1 : j) = H+(j + 1, j)e1e
∗
j , giving

Q+H+(:, 1 : j) = Q+(:, 1 : j)H+(1 : j, 1 : j) +Q+(:, j + 1 : m)H+(j + 1 : m, 1 : j)

= Q+(:, 1 : j)H+(1 : j, 1 : j) +H+(j + 1, j)Q+(:, j + 1)e∗j .
(6.3.15)

Therefore, if we set Qj = Q+(:, 1 : j) = QmV (:, 1 : j), Hj = H+(1 : j, 1 : j), and rj =

V (m, j)rm + H+(j + 1, j)Q+(:, j + 1), then equations (6.3.13-6.3.15) give the new j-step Arnoldi

decomposition

AQj = AQ+(:, 1 : j)

= Q+(:, 1 : j)H+(1 : j, 1 : j) + [V (m, j)rm +H+(j + 1, j)Q+(:, j + 1)] e∗j

= QjHj + rje
∗
j ,

(6.3.16)

and we may resume Algorithm 5 at step j + 1.

6.3.4. The Implicitly Restarted Arnoldi Method

Combining Algorithms 5 and 6 as described above, we have Algorithm 7 as presented in [31,

Section 10.5.3].

90



Algorithm 7 Implicitly restarted Arnoldi method (IRAM)

Input: Matrix A ∈ Cn×n, initial approximate eigenvector q1, number of requested algebraically

largest eigenvalues j, maximum Arnoldi decomposition (6.3.4) size m.

Output: Approximate algebraically largest eigenpairs (Λj , Vj).

1: Initialize with Algorithm 5: Perform the m-step Arnoldi iteration with initial vector q1 to obtain

AQm = QmHm + rme
∗
m.

2: while not converged do

3: Compute the eigenvalues θ1, . . . , θm of Hm and identify the p = m − j (unwanted) shift

values µ1 = θj+1, . . . , µp = θm.

4: Algorithm 6: Perform the p-step shifted QR iteration to obtain the Hessenberg matrix H+

and change of basis V .

5: Restart the Arnoldi factorization: Set Qj = QmV (:, 1 : j), Hj = H+(1 : j, 1 : j), and

rj = V (m, j)rm +H+(j + 1, j)Q+(:, j + 1) per (6.3.16).

6: Algorithm 5: Beginning with AQj = QjHj + rje
∗
j , perform steps j+ 1, . . . ,m of the Arnoldi

iteration to obtain AQm = QmHm + rme
∗
m.

7: end while

8: Compute the j algebraically largest eigenvalues Λj = {λ1, . . . , λj} and corresponding eigenvec-

tors u1, . . . , uj of Hm. Set Vj = [ Qmu1 | · · · | Qmvj ].

9: Return: (Λj , Vj).

The IRAM is the eigenvalue method we use in Section 6.4 to handle the EMEP (6.2.2). The

choice of parameters m (the Arnoldi decomposition size) and j (number of requested eigenvalues)

can greatly impact the efficiency of IRAM (see Section 6.4). For many large-scale eigenvalue

problems, the IRAM is a very effective and convenient method. Due to the implicit polynomial

filtering in step 4 of IRAM, this method is particularly effective when the j algebraically largest

eigenvalues have modest separation from λj+1. And since the IRAM only has two parameter

choices, there is little optimization required by the user.

However, when λj ≈ λj+1 and the Arnoldi decomposition size m is not sufficiently large, the

IRAM may require many iterations to achieve the desired tolerance. As we will see in Section 6.4,
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the appropriate choice of m and j in this circumstance may make the IRAM far more competitive.

Yet choosing m and j without prior knowledge of the eigenvalue distribution is inherently heuristic.

Additionally, if the inputted matrix A is very large, then it may be prohibitive to store the Qm ∈

Cn×m in active memory. In particular, if the image or signal x being recovered in the PLGD

problem has n pixels, then Qm will require m−times as much storage space. Thus we proceed

in the next section by considering an alternative Krylov subspace method which does not require

parameter tuning, nor a large subspace to be held in memory.

Note that the IRAM is implemented in the numerical software package ARPACK (the ARnoldi

PACKage) in FORTRAN 77 [39]. Many numerical computing environments include large-scale

eigenvalue methods which having bindings to ARPACK, including eigs in MATLAB, eigs and

eigsh in the Python package SciPy, eigs in R, and eigs in the Julia package Arpack.jl.

6.4. A New Strategy for the EMEP

In this section we develop a new strategy which uses the IRAM (Algorithm 7) to handle the

EMEP (6.2.2) while adaptively changing one of the IRAM parameters based on the results from

the previous EMEP iterates. As discussed in Section 6.3, the IRAM has only two key parameters:

the number of requested eigenvalues r and the Arnoldi decomposition (6.3.4) size m. By fixing m

at an appropriate size and employing an adaptive strategy for choosing r, we may greatly reduce

the number of matrix-vector products required for the EMEP. To compare various choices of r, we

define the empirically optimal parameter r̄ as follows.

Definition 6.4.1. The empirically optimal parameter r̄ is the integer rmin ≤ r̄ ≤ rmax cor-

responding to the fewest matrix-vector products required for the IRAM to converge for a given

EMEP iterate and fixed parameter m.

We begin by examining the change in computational costs (as measured by matrix-vector

products) with respect to various EMEP (6.2.2) iterates k and IRAM parameters r in Figure

6.5. In the original implementation of the GDD algorithm (Algorithm 3), all EMEP iterates

were handled using the IRAM with r = 2 requested eigenvalues and Arnoldi decomposition size

m = min{max{2r, 20}, n}, where n is the size of the desired signal x. This choice of m is equivalent

to the default parameter setting in the IRAM solver eigs for MATLAB and evaluates to m = 20
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for n ≥ 20. Yet the plots in Figure 6.5 demonstrate that choosing a fixed parameter r = 2 can

result in far more matrix-vector products than if we chose the empirically optimal values.

Figure 6.5. Performance results for an EMEP from a PLGD model with Gaussian
noise (5.2.3) with noise ratio εrel = 0.15, oversampling rate L = 5, and original signal
from Figure 1.2 resized to 64 × 64 pixels. Top: Number of matrix-vector products
(capped at 1,500 for better viewing) for various EMEP iterates and number of
requested eigenvalues r. Arnoldi decomposition size is set to m = 40 and black dots
indicate the empirically optimal values r̄. Bottom: Plot of IRAM results for the
EMEP with empirically optimal values r̄ from top plot and fixed parameters r = 2
and m = 20.
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We now examine Figure 6.5 to develop an adaptive strategy for choosing the number of requested

eigenvalues r for the sequence of EMEP iterates. The top plot in Figure 6.5 shows that the

empirically optimal value r̄ typically changes only slightly between EMEP iterates. However, the

empirically optimal r̄ can increase quickly for later EMEP iterates (as we see around iterate 150 in

the top plot in Figure 6.5). Based on these observations, we may develop a strategy for choosing a

sequence of parameters r0, r1, . . . , rmaxit as follows. In order to measure change in the number of

matrix-vector products for each iterate, we require that each pair of parameters rk−1 and rk differ

by at least one. To select a new parameter r, we compare the two most recent choices for r and

the resulting number of matrix-vector products. If these two choices for r decreased the number

of matrix-vector products, we continue to shift the value of r in this direction by one unit; and

otherwise we shift r in the opposite direction. We also allow r to increase or decrease r more rapidly

by comparing the four most recent choices for r and the resulting number of matrix-vector products

using linear interpolation. If these recent choices suggest the same shift as the first comparison,

then we shift r in this direction by two units rather than one.

Formally, this adaptive strategy for choosing the number of requested eigenvalues rk has the

following algorithmic structure. To initialize the algorithm, we select a fixed Arnoldi decomposition

size m and minimum and maximum values for r (with default values m = 40, rmin = 2, and

rmax = min{30,m−5}). For each EMEP iterate k, we update rk = rk−1+δ, where δ ∈ {−2,−1, 1, 2}

is a shift based on the number of requested eigenvalues rk−1, rk−2, . . . , and number of matrix-vector

products tk−1, tk−2, . . . , for the previous EMEP iterates.

For the first iterate k = 0, we set r0 = rmin. For future iterates, if rk−1 = rmin or rk−1 = rmax,

we increase or decrease rk by 1, respectively. Thus, for k = 1 we have r1 = rmin + 1.

If k < 4 and rk−1 is not rmin or rmax, then we determine a 2-step shift value δ2 ∈ {−1, 1} based

on rk−1, rk−2, tk−1, and tk−2. If rk−1 > rk−2 and tk−1 < tk−2 then the number of matrix-vector

products in the EMEP (6.2.2) decreased as the number of requested eigenvalues was increased,

suggesting we should increase rk−1 by δ2 = 1. By the same reasoning for the other three inequality

cases, we define the 2-step shift value as

(6.4.1) δ2 = sign(rk−1 − rk−2) · sign(tk−2 − tk−1),

94



where sign(0) is defined as 1. We then set rk = rk−1 + δ2.

If k ≥ 4 and rk−1 is not rmin or rmax, then we compute the 2-step shift value δ2 from (6.4.1) as

well as a 4-step shift value based on the past four requested eigenvalue numbers and matrix-vector

products. To compute the 4-step shift value, we solve the linear interpolation problem

(6.4.2) min
α,β
||t− αe− βr||2,

where t = [tk−4, tk−3, tk−2, tk−1]T is the vector of matrix-vector product values, e = [1, 1, 1, 1]T , and

r = [rk−4, rk−3, rk−2, rk−1]T is the vector of the number of requested eigenvalues. If the solution to

(6.4.2) has β > 0 then the past four eigenvalue problems suggest that t increases with r, and thus

we should decrease rk−1. This reasoning gives the 4-step shift value

(6.4.3) δ4 = −sign(β),

where β is determined by (6.4.2). If δ2 = δ4, then the 2-step (6.4.1) and 4-step (6.4.3) equations

both suggest we should shift in the direction of δ2, and we select the shift δ = 2δ2. If δ2 6= δ4

then we rely on the 2-step equation (6.4.1) and select the shift value δ = δ2. We then set rk =

min{max{rk−1 + δ, rmin}, rmax} to satisfy the condition rmin ≤ rk ≤ rmax.

Given the value for rk determined above, we compute the two algebraically largest eigenpairs

(λ1, v1) and (λ2, v2) of the matrix Ak using the IRAM (Algorithm 7) with the number of requested

eigenvalues rk. We also collect the number of matrix-vector products tk used by the IRAM, and

return the data: (λ1, v1), (λ2, v2), tk, rk. Altogether, these steps lead to the IRAM with adaptive

parameter selection for the EMEP (6.2.2).
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Algorithm 8 The IRAM with adaptive parameter selection for the EMEP (6.2.2)

Input: Matrix iterate Ak from the EMEP (6.2.2), previous number of matrix-vector products

T = {t0, t1, . . . , tk−1} required by the IRAM, previous number of requested eigenvalues R =

{r0, r1, . . . rk−1}, rmin (default rmin = 2), rmax (default rmax = min{30,m − 5}), and Arnoldi

decomposition (6.3.4) size m (default m = 40).

Output: Eigenpairs (λ1, v1) and (λ2, v2), number of matrix-vector products tk, number of

requested eigenvalues rk.

1: if k = 0 then

2: rk = rmin

3: else if rk−1 = rmin then

4: rk = rk−1 + 1

5: else if rk−1 = rmax then

6: rk = rk−1 − 1

7: else if k < 4 then

8: Compute 2-step shift value δ2 from (6.4.1)

9: rk = rk−1 + δ2

10: else

11: Compute 2-step shift value δ2 from (6.4.1) and 4-step shift value δ4 from (6.4.3)

12: if δ2 = δ4 then

13: Set δ = 2δ2

14: else

15: Set δ = δ2

16: end if

17: rk = min{max{rk−1 + δ, rmin}, rmax}

18: end if

19: Algorithm 7: Perform IRAM with matrix Ak, number of requested algebraically largest eigen-

values rk, and maximum Arnoldi decomposition size m. Return eigenpairs (λ1, v1), (λ2, v2) and

number of matrix-vector products tk.

20: Return: (λ1, v1), (λ2, v2), tk, rk.
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Note that the only parameters in Algorithm 8 are rmin, rmax, and the Arnoldi decomposition

(6.3.4) size m, which determines the size of the basis Qm ∈ Cn×m in the Arnoldi decomposition

AQm = QmHm + rme
∗
m. The choice of m is a trade-off between computational efficiency and data

storage constraints. We seek the smallest value m possible, since Qm must be stored in random-

access memory and each column of Qm is the size of the desired signal x in the phase retrieval

problem (1.0.1). However, as we will see in Section 6.5, m must be sufficiently large for the shifted

QR iteration (Algorithm 6) in the IRAM to handle the EMEP (6.2.2) efficiently. For now we will

let m = 40 to demonstrate the behavior of Algorithm 8.

We close this section by showing that Algorithm 8 selects a sequence r0, r1, . . . rmaxit which

varies significantly and generally tracks the empirically optimal value r̄ for each EMEP (6.2.2)

iterate.

Figure 6.6. Plot comparing Algorithm 8 with the empirically optimal value r̄. The
EMEP (6.2.2) is from Figure 6.5 and Arnoldi decomposition (6.3.4) size is m = 40.

Figure 6.6 shows that the parameter values rk chosen by Algorithm 8 effectively track the

empirically optimal value r̄. For the majority of iterates, the value rk is within two units from the

empirically optimal r̄. As we will see in Section 6.5, these changes in rk are related to the evolving

spectrum of the EMEP (6.2.2).
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6.5. Spectrum Distribution and IRAM Behavior

In this section we examine an observed correlation between the clustering of the algebraically

largest eigenvalues in the EMEP (6.2.2) and the convergence behavior of the IRAM (Algorithm

7) for various parameters. As we saw in Section 5.3, PLGD models with Gaussian noise (5.2.3)

typically have optimal EMEP matrices A∗y? for which the algebraically largest eigenvalue has

multiplicity greater than one. Thus we may expect the algebraically largest eigenvalues in the

EMEP to cluster for later iterates.

In Section 6.5.1 we examine two PLGD models and show that as the eigenvalues in the EMEP

begin to cluster, the empirically optimal value r̄ increases such that λr̄+1 is not clustered with

λ1, λ2, . . . , λr̄. We also see that the value rk chosen by Algorithm 8 properly tracks the empirically

optimal value r̄k for these two PLGD models. Next, Section 6.5.2 uses these two PLGD models to

demonstrate that the Arnoldi decomposition (6.3.4) size m = 40 is sufficiently large for the IRAM

to perform efficiently, and thus m = 40 is an appropriate default parameter for Algorithm 8.

To illustrate these observations, we focus on the EMEP of two particular PLGD models with

Gaussian noise (5.2.3) for which the sequence of parameters r0, r1, . . . rmaxit chosen by Algorithm

8 varies greatly.

Figure 6.7. Number of requested eigenvalues r chosen by Algorithm 8 for the
EMEP (6.2.2) from two PLGD models with Gaussian noise (5.2.3), with noise ratio
εrel = 0.15, 0.30, oversampling rate L = 5, and original signal from Figure 1.2 resized
to 64× 64 pixels.

For both PLGD models in Figure 6.7, changes in the EMEP caused Algorithm 8 to increase

the number of requested eigenvalues rk significantly from early to later iterates k. Yet the value
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of rk increased at a quicker rate for the experiment in Figure 6.7 with L = 5 and εrel = 0.30. As

we will see in Section 6.5.1, this quick increase from r55 = 3 to r70 = 13 coincides with a sudden

clustering of the algebraically largest eigenvalues in the EMEP.

6.5.1. Eigenvalue Clustering and IRAM Parameter Choice

We now show that the PLGD models in Figure 6.7 exhibit a correlation between the spectrum

distribution of the EMEP (6.2.2) and the convergence behavior of the IRAM (Algorithm 7). For

these two models, as the algebraically largest eigenvalues λ1, λ2, . . . , λm−1, λm of the EMEP begin

to cluster, the IRAM converges much faster if the number of requested eigenvalues r < m is large

enough such that λr+1 is not clustered with λ1, λ2, . . . , λr. Thus, as Algorithm 8 explicitly tracks

the empirically optimal sequence of parameters r̄k, this algorithm implicitly tracks the clustering of

the algebraically largest eigenvalues in the EMEP. To demonstrate these observations, we consider

various EMEP iterates k and number of requested eigenvalues r, and plot the numbers of matrix-

vector products for the IRAM as well as the eigenvalue difference λr+1 − λr. Figures 6.8 and 6.9

depict about half of the EMEP iterates from the two PLGD models in Figure 6.7, so we may focus

on the regions where rk in Algorithm 8 varies greatest.
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Figure 6.8. Behavior of Algorithm 8 for the experiment from Figure 6.7 with
L = 5, εrel = 0.15. Top: Number of matrix-vector products (capped at 2,000 for
better viewing) for each EMEP (6.2.2) iterate k and number of requested eigenvalues
r. Bottom: eigenvalue differences λr − λr+1 for each EMEP (6.2.2) iterate k and
number of requested eigenvalues r. Black dots in both plots indicate the value rk
chosen by Algorithm 8.
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Figure 6.9. Behavior of Algorithm 8 for the experiment from Figure 6.7 with
L = 5, εrel = 0.30. Top: Number of matrix-vector products (capped at 2,000 for
better viewing) for each EMEP (6.2.2) iterate k and number of requested eigenvalues
r. Bottom: eigenvalue differences λr − λr+1 for each EMEP (6.2.2) iterate k and
number of requested eigenvalues r. Black dots in both plots indicate the value rk
chosen by Algorithm 8.
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In Figures 6.8 and 6.9 we see that the clustering of the algebraically largest eigenvalues cor-

responds to an increase in the empirically optimal value r̄k for later EMEP (6.2.2) iterates k. In

Figure 6.8, the eigenvalues λ1, λ2, . . . , λ10 cluster around iterates 125 ≤ k ≤ 175; and likewise the

empirically optimal value r̄125 ≈ 10 increases to r̄175 ≈ 18. Figure 6.9 depicts a similar shift,

where the eigenvalues λ1, λ2, . . . , λ10 cluster around iterates 50 ≤ k ≤ 70, and the empirically op-

timal value increases to r̄70 ≈ 15. In the case of Figure 6.9, the most tightly clustered eigenvalues

λ1, λ2, . . . , λ8 also correspond to parameter values r = 2, 3, . . . , 7 for which the IRAM required the

greatest number of matrix-vector products to converge.

This observed correlation between eigenvalue clustering and a change in the convergence rate

of the IRAM may be related to the subroutines used in the IRAM. As discussed in Section 6.3,

the IRAM is based on the following two algorithms. Given a Hermitian matrix A ∈ Cn×n, the

m-step Arnoldi iteration (Algorithm 5) generates a set of Ritz pairs (θ1, u1), (θ2, u2), . . . , (θm, um)

for A with respect to Km(A, q1). Next, the p-step shifted QR iteration (Algorithm 6) restarts the

Arnoldi decomposition (6.3.4) by attempting to damp the unwanted part of the spectrum using

the Ritz values {θr+1, θr+2, . . . , θm} (where m = r + p). Assume we have an EMEP matrix iterate

Ak with some number s of clustered algebraically largest eigenvalues, λ1 ≈ λ2 ≈ · · · ≈ λs; and

assume we select the number of requested eigenvalues r < s. When the IRAM builds an Arnoldi

decomposition (6.3.4), the s largest Ritz values of Ak with respect to Km(Ak, q1) may include

values θr+1, θr+2, . . . , θs which are close approximations to the desired eigenvalues. Thus when the

shift values µ1 = θr+1, µ2 = θr+2, . . . , µs−r = θs, . . . , µp = θm are passed to the p-step shifted QR

iteration, the implicit polynomial filter (6.3.12) will include values µ1, µ2, . . . , µs−r which damp the

desired part of the spectrum. Thus, if r < s we may expect the IRAM to converge more slowly.

However, if we select the number of requested eigenvalues r > s, then the shift values used in the

p-step shifted QR iteration will always include parts of the spectrum which we want to damp and

we may expect the IRAM to converge more quickly.

Figures 6.8 and 6.9 also demonstrate that Algorithm 8 properly tracks the empirically optimal

value r̄k as this value changes. In particular, Figure 6.9 indicates that r̄k increased quickly from

iterates k = 50 to k = 70. Likewise, Algorithm 8 increased rk by two units for several iterates

55 ≤ k ≤ 70 (see Figure 6.7). These two-unit increases were the result of Algorithm 8 properly
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identifying a quick increase in the number of matrix-vector products tk for smaller values rk. Recall

that Algorithm 8 determines the update rk using two-point and four-point linear interpolations

(equations (6.4.1) and (6.4.2), respectively) of the previous parameters rk−1, rk2 , rk−3, rk−4 and

tk−1, tk2 , tk−3, tk−4. For the PLGD model in Figure 6.9, both of these interpolations agreed (i.e.,

δ2 = 1 in (6.4.1) was equal to δ4 = 1 in (6.4.3)) for several iterates 55 ≤ k ≤ 70. Thus Algorithm 8

quickly increased rk, avoiding excessive matrix-vector multiplications.

6.5.2. Selecting the Arnoldi Decomposition Size

Next we show that the default parameter setting m = 40 in Algorithm 8 is sufficiently large to

minimize the number of matrix-vector products in the EMEP in the models from Figure 6.7. To

demonstrate that m = 40 is appropriate, we will examine a more difficult eigenvalue problem (i.e.,

later iterate) from each of these models. Figure 6.10 depicts the number of matrix-vector products

for various IRAM parameters r and m for an iterate from each model.

Figure 6.10. Number of matrix-vector products (capped at 3,000 for better view-
ing) for individual EMEP (6.2.2) iterates with varying number of requested eigen-
values r and Arnoldi decomposition (6.3.4) size m. Left: EMEP iterate 180 from
Figure 6.8. Right: EMEP iterate 85 from Figure 6.9.

Figure 6.10 suggests that we should not select IRAM parameters below r = 9 and m = 40 for

the EMEP iterate in the left plot, nor should we select parameters below r = 12 and m = 40 for

the EMEP iterate in the right plot. Yet there is no significant benefit to selecting larger parameter
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values. Since the EMEP iterates in Figure 6.10 represent later, more difficult eigenvalue problems,

this figure suggests that m = 40 is sufficiently large for all iterates. Thus we select a fixed Arnoldi

decomposition (6.3.4) size m = 40 for Algorithm 8.
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CHAPTER 7

The Improved Gauge Dual Descent Algorithm

and Performance Results

7.1. Introduction

In this chapter we present the Improved Gauge Dual Descent (IGDD) algorithm and examine

the performance of the IGDD algorithm. Section 7.2 states the IGDD algorithm, which applies

the new termination conditions of Chapter 5 and the IRAM with adaptive parameter selection of

Chapter 6 to the GDD algorithm (Algorithm 3). Next, Section 7.3 examines the performance of

the IGDD algorithm. We demonstrate that the IGDD algorithm is more efficient than the GDD

algorithm for a variety of PLGD models with Gaussian noise (5.2.3). We observe that the IGDD

algorithm often reduces the number of matrix-vector products in the EMEP (6.2.2) by at least 50%

as compared with the GDD algorithm. Further experiments show that this reduction in the number

of matrix-vector products is comparable to the reduction observed by solving the EMEP (6.2.2) with

the empirically optimal (6.4.1) number of requested eigenvalues for each EMEP iterate. Finally, we

demonstrate that the Arnoldi decomposition (6.3.4) size m = 40 for the IGDD algorithm strikes a

proper balance between increasing computational efficiency and minimizing data storage. Note that

all experiments in this chapter involve noisy phase retrieval problems and thus we also use the new

termination conditions for the GDD algorithm (otherwise the GDD algorithm would not terminate,

as discussed in Section 5.3). All experiments in this chapter are available for reproduction.1

7.2. The Improved Gauge Dual Descent Algorithm

In this section we briefly summarize the contributions of Chapters 5 and 6 which lead to the

Improved Gauge Dual Descent (IGDD) algorithm.

1https://github.com/Will-Wright/low-rank-opt-rapid-eig
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Section 5.3 demonstrated that the GDD algorithm fails to converge for PLGD models with

Gaussian noise (5.2.3). Section 5.4 then established new termination conditions: the primal differ-

ence condition (5.4.1) and the dual variable difference condition (5.4.2). Section 5.4 also demon-

strated that these new termination conditions accurately identify stagnation of signal recovery

progress in the GDD algorithm. For convenience, we restate these two new termination conditions:

the primal difference condition

(7.2.1)
|ρ− ρ̂|
ρ

≤ tolprimal = 10−5

where ρ = ||A(xx∗)− b||2, and the dual variable difference condition

(7.2.2)
||y − ŷ||2
||y||2

≤ toldual = 10−4,

where a hat indicates the previous iterate (e.g., ŷ = yk−1).

Section 6.4 showed that the computational costs of the GDD algorithm are related to the fixed

choice of parameters used in the IRAM (Algorithm 7), the eigenvalue method used by the GDD

algorithm. The GDD algorithm uses the IRAM with a fixed the number of requested eigenvalues r =

2 and Arnoldi decomposition (6.3.4) size m = 20. Section 6.4 examined the empirical performance

of the IRAM for a range of parameters r to develop the IRAM with adaptive parameter selection

(Algorithm 8). Algorithm 8 increases m to the default value 40 and adaptively changes r in order

to decrease the number of matrix-vector products required by the IRAM.

Applying these the new termination conditions and Algorithm 8 to the GDD algorithm, we see

the following steps change in the GDD algorithm (Algorithm 3). The input now includes additional

parameters (rmin, rmax, m, tolprimal, and toldual), and the initialization includes the sets T = {∅}

and R = {∅} to track the parameters tk and rk for Algorithm 8. Step 1 of Algorithm 3 is modified

to include the new termination conditions (7.2.1) and (7.2.2). Step 2 of Algorithm 3 is modified to

perform the eigenvalue computation by passing the necessary parameters to Algorithm 8. Finally,

step 16 updates the termination parameter ρ = ||A(xx∗)− b||2 and the sets T and R. Altogether,

these changes result in the Improved Gauge Dual Descent (IGDD) algorithm for optimizing the

PLGD model (5.2.3).

106



Algorithm 9 Improved Gauge Dual Descent (IGDD) algorithm

Input: Sensing operator A and adjoint A∗, observation vector b, initial dual variable y0,

estimate of total noise level ε, minimum and maximum number of requested eigenvalues, rmin

and rmax, Arnoldi decomposition size m, and convergence tolerances (7.2.1) and (7.2.2).

Output: Approximate solution signal x.

Initialization: Set T = {∅}, R = {∅}, k = 0.

1: while conditions (7.2.1) and (7.2.2) are not satisfied do

2: Compute algebraically largest eigenvalues and corresponding eigenvectors: Perform Algo-

rithm 8 with inputs Ak = A∗yk, T , R, rmin, rmax, and m to obtain (λ1, v1), (λ2, v2), tk, rk.

3: Compute (sub)gradient: g = A(v1v
∗
1) based on (4.2.1).

4: Determine differentiability of λ1(A∗yk) based on (4.2.3).

5: if λ1(A∗yk) is differentiable then

6: Linesearch: Perform linesearch (4.2.5) with initial step α (4.2.4) to obtain yk+1.

7: else

8: Projected subgradient step: Set yk+1 = ΠC(yk − αg) with α from (4.2.6).

9: end if

10: Primal recovery: Compute x̂ based on (4.2.10).

11: Primal refinement: Find xk+1 as the solution to (4.2.11) initialized with x̂ and yk+1.

12: if ε = 0 then

13: Dual refinement: Find ŷ based on (4.2.12).

14: if λ1(A∗ŷ) < λ1, set yk+1 = ŷ.

15: end if

16: Update: Set ρk+1 = ||A(xx∗)− b||2. Append tk to T and rk to R. Set k = k + 1.

17: end while

18: Return: x = xk.

For our implementation of the IGDD algorithm, we use the default values rmin = 2, rmax =

min{30,m− 5}, and m = 40 (as discussed in Section 6.4).

107



7.3. Performance Results

We now examine the performance behavior of the IGDD algorithm (Algorithm 9) for a variety

of noisy phase retrieval problems. Section 7.3.1 demonstrates that the IGDD algorithm requires

50 − 80% fewer matrix-vector multiplications than the GDD algorithm for a variety of problems.

Furthermore, Section 7.3.2 shows that the performance of the IGDD algorithm is comparable to

solving the EMEP (6.2.2) with the empirically optimal (6.4.1) value r̄k for each iterate k. We see

that the number of requested eigenvalues rk chosen by the IGDD algorithm effectively tracks the

empirically optimal number of requested eigenvalues r̄k, causing the IGDD algorithm to minimize

the number of matrix-vector products for a fixed Arnoldi decomposition size m. Finally, Section

7.3.3 demonstrates that the default Arnoldi decomposition size m = 40 for the IGDD algorithm

strikes a reasonable balance between improving computational performance and minimizing mem-

ory usage.

7.3.1. Random Gaussian Signals and Large-Scale Images

We begin by demonstrating that the IGDD algorithm requires 50 − 80% fewer matrix-vector

multiplications than the GDD algorithm for random signals and large-scale image phase retrieval

problems. Figure 7.1 depicts a set of experiments with randomly generated Gaussian signals.

Figure 7.1. Performance results for PLGD models with Gaussian noise (5.2.3),
where signals are complex with standard Gaussian distribution (1.0.19). Results in-
dicate the GDD algorithm (solid line) and IGDD algorithm (dashed line). Each re-
sult is the mean of 10 experiments. Left: Varying signal size n, with fixed noise ratio
εrel = 0.15 and oversampling scaled logarithmically with n (i.e., L = 10, 12, 12, 14)
as indicated in Theorem 2.4.2. Middle: Varying oversampling rate L, with fixed
signal size n = 128 and noise ratio εrel = 0.15. Right: Varying noise ratio εrel, with
fixed signal size n = 128 and oversampling rate L = 10.
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In Figure 7.1 we see that the IGDD algorithm requires fewer matrix-vector products than the

GDD algorithm for a wide range of phase retrieval problems varying in size, oversampling rate, and

noise ratio. The left and middle plots in Figure 7.1 suggest that the IGDD algorithm requires about

60% fewer matrix-vector products regardless of signal size n or oversampling rate L. Additionally,

the right plot in Figure 7.1 suggests the IGDD algorithm may reduce matrix-vector products by

80% or more for problems with greater noise. This difference in performance may be related to

the evolving spectrum of the EMEP (6.2.2) for noisier phase retrieval problems. As we saw in

Section 6.5.1, problems with a higher noise ratio (e.g., Figure 6.9) may see greater clustering of

the algebraically largest eigenvalues during early iterations. Recall that the IRAM (Algorithm 7)

tends to perform poorly when the number of requested eigenvalues r is such that λr is clustered

with its algebraically neighboring eigenvalues (i.e., · · · ≈ λr+2 ≈ λr+1 ≈ λr ≈ λr−1 ≈ λr−2 ≈ · · · ).

Since the GDD algorithm calls the IRAM (Algorithm 7) with a fixed r = 2 requested eigenvalues,

the GDD algorithm may require far more matrix-vector products than the IGDD for noisier phase

retrieval problems.

We also find that the IGDD algorithm is more efficient than the GDD algorithm for image-

based phase retrieval problems. Table 7.1 shows the performance results for two larger images from

Figure 7.2.

GDD IGDD IGDD

Image n L m = 40 m = 80

Figure 7.2, left 57, 600
10 562,255 297,767 47% 252,316 55%

15 647,753 301,752 53% 253,209 61%

Figure 7.2, right 120, 000
10 852,633 364,164 57% 287,309 66%

15 563,085 291,630 48% 256,084 55%

Table 7.1. Performance results for PLGD models with Gaussian noise (5.2.3),
where signals are the images in Figure 7.2. Results indicate total number of matrix-
vector products and percent decrease from the GDD algorithm. Parameter m is the
Arnoldi decomposition size (6.3.4) for the IRAM (Algorithm 7).
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Figure 7.2. Images used for experiments in Table 7.1. Top left: original image of
my daughter and me, image size 240×240 = 57, 600 pixels. Bottom left: result image
after solving EMEP. Top right: original image of UC Davis roundabout, image size
200 × 600 = 120, 000 pixels. Bottom right: result image after solving EMEP. All
experiments have noise ratio εrel = 0.15 and oversampling L = 15.

Table 7.1 demonstrates that the benefits of the IGDD algorithm also apply to large-scale phase

retrieval problems. Additionally, a larger Arnoldi decomposition size m further reduces the number

of matrix-vector products. Thus, when solving large-scale problems it may be advisable to consider

increasing this parameter beyond the default setting of m = 40 in the IGDD algorithm if memory

constraints permit this increase.

7.3.2. IGDD vs Empirically Optimal Parameter Selection

Next, we demonstrate that the performance improvements of the IGDD algorithm are compa-

rable to the improvements of solving the EMEP (6.2.2) with the empirically optimal (6.4.1) value

r̄k for each EMEP iterate k. Table 7.2 indicates the number of matrix-vector products for six

PLGD models with Gaussian noise (5.2.3) using the GDD algorithm (r = 2), the IGDD algorithm

(r chosen with Algorithm 8), and the empirically optimal sequence of values r̄k.
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GDD IGDD Empirically optimal r̄

L εrel EMEP its m = 40 m = 40

5 0.05 300 406,308 198,070 51% 179,807 56%

5 0.15 300 1,099,045 258,385 76% 242,003 78%

5 0.30 92 444,697 69,510 84% 58,780 87%

10 0.05 153 80,453 68,709 15% 61,948 23%

10 0.15 108 88,317 57,231 35% 51,311 42%

10 0.30 54 72,486 25,809 64% 23,217 68%

Table 7.2. Performance results for PLGD models with Gaussian noise (5.2.3) with
original signal from Figure 1.2 resized to 64×64 pixels. Results indicate total number
of matrix-vector products and percent decrease from the GDD algorithm. Parameter
m is the Arnoldi decomposition size (6.3.4).

For each of the experiments in Table 7.2, we see that the IGDD algorithm offers nearly the

same performance improvement as that of solving the EMEP with the empirically optimal values

r̄k. Notably, experiments in Table 7.2 with a low oversampling rate (L = 5) shows that the IGDD

algorithm is particularly effective at decreasing the number of matrix-vector products when there is

a large relative difference between the number of matrix-vector products for the GDD algorithm and

the empirically optimal choice of values r̄k. To further explore this performance behavior, Figure

7.3 depicts the two PLGD models from Table 7.2 with the largest and smallest relative difference

in matrix-vector products (those with L = 5, εrel = 0.15, and L = 10, εrel = 0.05, respectively).
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Figure 7.3. Number of requested eigenvalues r in the IRAM (Algorithm 7) for two
PLGD models from Table 7.2.

In both PLGD models depicted in Figure 7.3, the number of requested eigenvalues r selected

by the IGDD algorithm is usually within 1-3 units from the empirically optimal value r̄. The

bottom plot in Figure 7.3 suggests that the IGDD algorithm required relatively more matrix-vector

products than the empirically optimal value r̄ because the subroutine Algorithm 8 used in the

IGDD algorithm always changes the value of r by one or two units, thus shifting away from the

optimal value r̄ = 2 for many EMEP iterates. As we saw in Section 6.4 (e.g., Figure 6.9) the

empirically optimal value r̄ may shift rapidly for some PLGD models, and thus Algorithm 8 always

changes r by one or two units to continue gathering performance information about the EMEP.
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7.3.3. Selection of Arnoldi Decomposition Parameter

Finally, we demonstrate that the default Arnoldi decomposition (6.3.4) size m = 40 for the

IGDD algorithm significantly improves computational performance while limiting memory usage.

Table 7.3 depicts the total number of matrix-vector products required to solve the EMEP (6.2.2)

for each PLGD model from Table 7.2 with the IGDD algorithm with various parameter values m.

n = 4,096 GDD IGDD

L εrel EMEP its m = 20 m = 40 m = 60 m = 80 m = 100

5 0.05 300 406,308 358,195 198,070 189,401 192,042 201,270

5 0.15 300 1,099,045 806,412 258,385 224,048 214,118 215,392

5 0.30 92 444,697 175,669 69,510 56,193 55,146 54,987

10 0.05 153 80,453 77,768 68,709 64,300 68,602 73,754

10 0.15 108 88,317 65,833 57,231 53,261 54,388 55,308

10 0.30 54 72,486 28,799 25,809 24,699 25,113 25,491

Table 7.3. Total number of matrix-vector products for various PLGD models with
Gaussian noise (5.2.3) with original signal from Figure 1.2 resized to 64× 64 pixels.
Parameter r is the number of requested eigenvalues in the IRAM (Algorithm 7) and
m is the Arnoldi decomposition (6.3.4) size.

Table 7.3 demonstrates that the IGDD algorithm reduces the number of matrix-vector products

from those of the GDD algorithm for all experiments considered. Yet this cost reduction varies

significantly depending on the choice of Arnoldi decomposition (6.3.4) size m. We seek a default

setting for the parameter m which is sufficiently large to yield the benefits of the IGDD algorithm,

yet sufficiently small as not to impact memory constraints. To select an appropriate default value

for m, we examine the two experiments from Table 7.3 with εrel = 0.15, 0.30 and L = 5 which

have the greatest original number of matrix-vector products, along with the greatest total decrease

in cost when using the IGDD algorithm with a sufficiently large parameter m. Figure 7.4 singles

out these two experiments, depicting the number of matrix-vector products for each EMEP (6.2.2)

iteration.
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Figure 7.4. Number of matrix-vector products for each EMEP (6.2.2) iteration
from two experiments in Figure 7.4 with various Arnoldi decomposition size m =
20, 40, 80.

Figure 7.4 demonstrates that the Arnoldi decomposition size of m = 20 is not sufficiently large

to allow the IGDD algorithm to decrease the number of matrix-vector products. The dramatic

matrix-vector product spikes for m = 20 in Figure 7.4 resemble those first seen in Figure 6.1 when

using the GDD algorithm. Yet when the Arnoldi decomposition size is increased to m = 40, these

cost spikes effectively disappear. The change in number of matrix-vector products between m = 40

and m = 80 is minimal for each EMEP iterate. Thus the default parameter of m = 40 for the

IGDD algorithm strikes the proper balance between efficiency and memory constraints.
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CHAPTER 8

Conclusion

In this dissertation we examined noisy phase retrieval, focusing on the PLGD model (3.2.1)

which we chose to optimize with the Gauge Dual Descent (GDD) algorithm (Algorithm 3 from

Chapter 4). Our work provides two main contributions which lead to the development of the

Improved Gauge Dual Descent (IGDD) algorithm (Algorithm 9).

The first main contribution was to establish new termination conditions (5.4.1) and (5.4.2)

for the GDD algorithm. Chapter 5 showed that PLGD models with Gaussian noise (5.2.3) cause

the GDD algorithm to stagnate prior to satisfying the original termination conditions (4.2.13) and

(4.2.14). We saw that this stagnation was likely the result of the optimal PLGD matrix A∗y?

having an algebraically largest eigenvalue with multiplicity greater than one. Thus the objective

function λ1(A∗y) will be nondifferentiable in the neighborhood of y? and we may expect first-order

methods like the GDD algorithm to stagnate in this neighborhood. As a result, we established new

termination conditions (5.4.1) and (5.4.2) based on empirical evidence of algorithmic stagnation.

The second main contribution was to develop a new strategy for handling the EMEP (6.2.2)

in the GDD algorithm. In Chapter 6 we defined the EMEP in the GDD algorithm and examined

the evolving spectrum of the EMEP. We observed that the algebraically largest eigenvalues of

the EMEP tend to cluster for later iterates, making these eigenvalue problems more difficult for

methods like the IRAM (Algorithm 7). We also showed that the EMEP is the computational

bottleneck of the GDD algorithm, requiring about 95% of the matrix-vector products in the GDD

algorithm. Section 6.3 then reviewed the IRAM and its component algorithms, providing insight

for how we may better select the IRAM parameters. In Section 6.4 we developed Algorithm 8, a

new strategy for solving the EMEP by selecting the number of requested eigenvalues in the IRAM

based on empirical observations of IRAM behavior. Section 6.5 showed that changes in the number

of requested eigenvalues, as chosen by Algorithm 8, correspond to clustering of the algebraically

largest eigenvalues in the EMEP.
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In Chapter 7 we presented the IGDD algorithm which incorporates the new termination con-

ditions of Chapter 5 and the new strategy for the EMEP from Chapter 6. Performance results

demonstrated that the IGDD algorithm is more efficient than the GDD algorithm for a variety of

noisy phase retrieval problems. In particular, the IGDD algorithm typically reduced the number

of matrix-vector products by 50-80% for problems with a low oversampling rate.

In addition to these main contributions, Chapter 3 presented a self-contained, comprehensive

treatment of gauge duality theory for establishing and analyzing the PLP-PLGD pair. Also, Ap-

pendix A examined some of the benefits of choosing the PLGD model (3.2.1) for noisy phase

retrieval. We saw that the PLGD model is well-suited for developing a first-order method, and that

the GDD algorithm typically solves noisy phase retrieval problems with greater accuracy than the

wflow algorithm (Algorithm 2).

Several theoretical and computational questions still remain for future work. In terms of theory,

it would be beneficial to determine the expected rank of the optimal PLGD matrix A∗y? for a

given noisy phase retrieval problem. As shown in Chapter 5, PLGD models with Gaussian noise

typically have optimal matrices A∗y? with rank ρ greater than one (see Table 5.3). Thus, as the

GDD algorithm progresses we may expect the ρ algebraically largest eigenvalues of A∗y to cluster.

Algorithm 8 changes the number of requested eigenvalues r in the IRAM (Algorithm 7) as the

spectrum of A∗y evolves. As we saw in Section 6.5, changes in the choice of r appear to correlate

with clustering of the algebraically largest eigenvalues of A∗y. In this sense, the value r selected by

Algorithm 8 may be a proxy for determining the rank ρ of A∗y?. Knowledge of the expected value

for ρ may provide both theoretical justification for Algorithm 8 and a means to improve Algorithm

8.

Many computational questions also remain for future work. In terms of solving the EMEP

(6.2.2), we did not examine parallel methods for solving this sequence of problems.1 We also

did not discuss optimizing the method for handling the primal recovery problem (4.2.11) in the

GDD algorithm. Recall that the primal recovery problem requires 2-5% of the total DFTs in a

1 Note that we did consider the inverse free preconditioned Krylov subspace method (EIGIFP) [32], which was
comparable to or slightly slower than IRAM. EIGIFP is implemented in MATLAB and this code had some numerical
issues for larger PLGD models.
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given PLGD model (see Table 6.1). The current method used is minFunc [56], which is a quasi-

Newton method based only on gradient information. However, a recent paper [65] indicates that

the objective function in (4.2.11) has no spurious local minima and negative directional curvature

at all saddle points. Thus the Hessian of this function may also be used to solve (4.2.11). Finally,

we did not discuss alternative methods to the GDD algorithm for optimizing the PLGD model

itself.2

2 Note that we did consider minConf [57], a descent method for problems like the PLGD model with an expensive
objective function and cheap projection operator. This method appeared comparable to the GDD algorithm and in
some cases faster.
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APPENDIX A

A Comparison of PhaseLift-type Models

and Phase Retrieval Algorithms

In this appendix we compare several PhaseLift-type models and phase retrieval algorithms

to demonstrate the advantages of using the Gauge Dual Descent (GDD) algorithm (Algorithm

3) to solve large-scale, unstructured noisy phase retrieval problems (1.0.1). First, we examine

several PhaseLift-type models, which are either duals or modifications of the PhaseLift model

(2.4.4) discussed in Section 2.4. Among these PhaseLift-type models, we explain why the PLGD

model is the best suited for developing a first-order optimization method. Next, we demonstrate

experimentally that the GDD algorithm is generally more accurate and robust than the wflow

algorithm (Algorithm 2) for noisy phase retrieval with minimal oversampling.

In Section 4.2 we reviewed the steps necessary to develop a generic first-order method. In

summary, any first-order method for minimizing an objective function f(x) over some convex set

C will require several evaluations of f(x) and its gradient ∇f(x) or subdifferential (1.0.17) ∂f(x),

and several projections onto C. Also note that the method used in this section for creating noisy

phase retrieval problems is presented in Section 5.2.

We begin by examining several PhaseLift-type models and discussing the computational costs

involved in a typical first-order method for each model. As discussed in equation (2.4.3), any

PhaseLift-type model will have as a variable a lifted matrix X of size n × n, where n is the

dimension of the desired signal x. Since we are focused on large-scale phase retrieval problems,

we seek to avoid repeated partial singular value decompositions (SVDs) of n × n matrices. For

instance, the PhaseLift model (2.4.4) has the objective function f(X) = ||X||1 and constraints

||A(X) − b||2 ≤ ε and X � 0. The evaluation of f and its subdifferential require a partial SVD,

and projection onto X � 0 requries an additional partial SVD. Thus the PhaseLift model (2.4.4)

is not well suited for first-order methods.
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In contrast with the PhaseLift model (2.4.4), the PLGD model restated from (3.2.1) as

(A.0.1)
min
y

λ1(A∗y)

(PLGD) s.t. 〈b, y〉 − ε||y||2 ≥ 1

has an objective function f(y) = λ1(A∗y) whose evaluation and gradient require a standard eigen-

value problem, and projection onto C = {y | 〈b, y〉 − ε||y||2 ≥ 1} is an O(n) operation (see Section

4.2 for details). Likewise, recovery of the desired approximate signal x from the variable y involves

a wflow-like problem which is very efficient for large-scale problems (see Section 4.2). Thus the

PLGD model (A.0.1) is well suited for developing first-order methods.

Another PhaseLift-type model is the PhaseLift Lagrange dual

(A.0.2)
max
y

〈b, y〉 − ε||y||2

(PLD) s.t. I � A∗y

(see [8, Chapter 5] for derivation). The PLD model (A.0.2) has a simple objective function to

evaluate. Yet the PLD constraint is a complicated linear matrix inequality and projection onto

the feasible set {y | I � A∗y} is a separate eigenvalue optimization problem similar to PLGD

model (A.0.1). Thus the PLGD model is better suited for first-order methods than the PLD model

(A.0.2).

Another method for dualizing the PhaseLift model (2.4.4) is considered in [16] where the authors

demonstrate the efficacy of the PhaseLift model by applying a Lagrange multiplier to the constraint

||A(X)− b||2 ≤ ε in (2.4.4), giving the model

(A.0.3)
min 1

2 ||A(X)− b||22 + τ ||X||1

s.t. X � 0.

To optimize (A.0.3), the authors use the Templates for First-Order Conic Solvers (TFOCS) package

[5], which dualizes a given model, applies a smoothing, and then solves the smooth dual with a

first-order method. For the appropriate value τ(ε), the model (A.0.3) is equivalent to the PhaseLift

model (2.4.4) [51, Section 28]. Thus (2.4.4) is solved by maximizing τ(ε) with a bisection method

which requires solving a sequence of models (A.0.3) using TFOCS.
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This PhaseLift bisection method successfully demonstrates that the accuracy of the PhaseLift

optimal signal improves with oversampling and deceases gradually as the error ε increases [16,

Section 7]. However, the resulting algorithm is computationally expensive, as the function ||X||1

in the objective requires a partial SVD and the constraint ||A(xx∗) − b||2 ≤ ε must be embedded

into the objective. Additionally, this algorithm tends to fail without sufficient oversampling and is

unable to achieve a high level of accuracy for noiseless models [27, Section 5, Table 1].

Another potential PhaseLift-type model we may consider optimizing is the PhaseLift-l1 model

(A.0.4)
(PLP-l1) min ||A(X)− b||1

s.t. X � 0

discussed in [13]. This paper showed that the number of observations required in Theorem 2.4.2

to guaranteed the solution signal error bounds (2.4.7), (2.4.8) are reduced to O(n) if we instead

consider the PhaseLift-l1 model (A.0.4). Therefore we will investigate whether (A.0.4) or its duals

could be used to develop a computationally efficient large-scale first-order method.

A first-order method for the PhaseLift-l1 model (A.0.4) will require projection onto the positive

semidefinite constraint X � 0, again requiring a partial SVD which is prohibitive for large-scale

problems. We may also consider the gauge dual and Lagrange dual

(A.0.5)

min
y
||y||∞ max

y
〈b, y〉

(PLGD-l1) s.t. −A∗y � 0 (PLD-l1) s.t. −A∗y � 0

〈b, y〉 ≥ 1 ||y||∞ ≤ 1

to the PhaseLift-l1 model (A.0.4). For a derivation of PLD-l1, see [8, Chapter 5]. For a derivation

of PLGD-l1, we have the following proof.

Proof. To determine the gauge dual of PLP-l1, first note that the objective function f(X) =

||A(X) − b||1 is not a gauge function, as f is not positively homogeneous. Using the substitution

z = b−A(X) and extending the linear operator A, we may restate PLP-l1 as

(A.0.6)
min
X,z

κ(X, z) := ||z||1 + δ�0(X)

s.t. A(X, z) := A(X) + z = b,
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which is now in the form of the primal-gauge dual pair (3.2.21). The gauge functions κ1(z) = ||z||1

and κ2(X) = δ�0(X) have polars κ◦1(w) = ||w||∞ and κ◦2(V ) = δ�0(−V ). Thus, by Proposition

3.3.5, κ has the polar

(A.0.7) κ◦(V,w) = max{||w||∞, δ�0(−V )} = ||w||∞ + δ�0(−V ).

Additionally, the adjoint of A is A∗y = (A∗y, y), giving

(A.0.8) κ◦(A∗y) = ||y||∞ + δ�0(−A∗y).

Passing δ�0(−A∗y) into the constraint set, we see that PLGD-l1 is the gauge dual of PLP-l1.

�

Like the PhaseLift Lagrange dual (A.0.2), both of these models (A.0.5) have a linear matrix

inequality in the constraint. As a result, projection onto this constraint {y | −A∗y � 0} will again

require a separate eigenvalue optimization problem similar to PLGD model (A.0.1), making both

models (A.0.5) computationally prohibitive to optimize. Thus, among the PhaseLift-type models

discussed above, the PLGD model (A.0.1) is the best suited for developing a first-order method.

Next, we demonstrate that the GDD algorithm (Algorithm 3 of Section 4.2) is typically more

accurate and robust than the wflow algorithm (Algorithm 2) for noisy phase retrieval problems

(1.0.1) with minimal oversampling.

To compare these two algorithms, we generate a set of noisy phase retrieval problems using

the method described in Section 5.2 (the phase retrieval problem with Gaussian noise (5.2.3)).

Successful signal recovery occurs when the approximate observation A(xx∗) as defined in (2.4.2)

closely matches the true observation b = A(xx∗) rather than the noisy observation b. Thus we use

the primal true relative error

(A.0.9)
||A(xx∗)− b||2

||b||2
≤ τεrel

to measure the accuracy of these algorithms. A signal is considered successfully recovered if it

satisfies the inequality (A.0.9), where τ = 1 indicates accuracy within the expected error, and

τ < 1 indicates a higher level of accuracy.
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The ability of the GDD algorithm to denoise the noisy observation b = b+η is a consequence of

the property that the PLGD variable yk approximates the noise term η with increasing accuracy as

the GDD algorithm converges (see Section 3.4 for details regarding the primal refinement method).

Thus we also measure the angle between η and the final dual variable y returned by the GDD

algorithm

(A.0.10) cos∠(η, y) =
η∗y

||η||2 ||y||2
.

Table A.1 displays the results of the GDD algorithm and wflow algorithm.

GDD wflow

% success % success

L εrel cos∠(η, y100) xErr τ = 1.0 τ = 0.8 xErr τ = 1.0 τ = 0.8

4 0.050 1.12−1 1.50−1 0.86 0.00 3.92−1 0.01 0.01

4 0.150 3.57−1 6.21−1 0.07 0.00 5.58−1 0.00 0.00

4 0.300 5.65−1 1.170 0.30 0.00 1.000 0.04 0.00

6 0.050 1.89−1 6.92−2 1.00 0.96 1.25−1 0.64 0.64

6 0.150 4.27−1 2.58−1 1.00 0.93 2.40−1 0.49 0.49

6 0.300 6.12−1 6.72−1 1.00 0.20 4.21−1 0.64 0.32

8 0.050 4.00−1 4.61−2 1.00 1.00 4.53−2 1.00 1.00

8 0.150 5.32−1 1.55−1 1.00 1.00 1.42−1 0.98 0.98

8 0.300 6.68−1 4.01−1 1.00 1.00 2.97−1 0.98 0.94

Table A.1. Rate of successful signal recovery and mean residual values for sets of
100 noisy phase retrieval problems with random Gaussian signals of size n = 128
with oversampling rate L and relative error εrel. The term xErr is signal relative error
||xx∗ − xx∗||F /||xx∗||F . Recovery is determined successful if the inequality (A.0.9)
is satisfied for a given τ . The GDD algorithm (Algorithm 3) is set to terminate at
100 iterations. Numbers n−k are shorthand for n× 10−k.

As we see in Table A.1, the GDD algorithm generally has a greater likelihood of successful

recovery than the wflow algorithm when observations have a lower rate of oversampling, regardless

of the noise level. Additionally, if models have greater noise and greater oversampling, this increases
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the accuracy of the PLGD variable y approximating the noise term η. Figure A.1 depicts the

ability of the GDD algorithm to recover a much larger signal with moderate noise and minimal

oversampling.

Figure A.1. Results from the GDD algorithm (Algorithm 3) applied to a test
image separated into its three RGB channels. Left: signal relative error ||xx∗ −
xx∗||F /||xx∗||F . Right: primal relative error ||A(xx∗) − b||2/||b||2 with red line
indicating primal feasibility. Red circles denote the iterate signals pictured above.
Original signal is 128 × 128 pixels, with an oversampling of L = 8 and noise ratio
εrel = 0.30. Measurements use the mean of the three color channel values.

Figure A.1 demonstrates the tendency of the GDD algorithm to make significant progress during

early iterates. When the same set of models in Figure A.1 were solved with the wflow algorithm, the

red channel converged to an infeasible solution (with primal residual 0.300068), the green channel

converged to a feasible solution (with primal residual 0.288473), and the blue channel diverged.

Table A.1 and Figure A.1 highlight the effectiveness of the GDD algorithm for noisy phase

retrieval problems. The GDD algorithm is typically is more robust than the wflow algorithm and

tends to recover signals successfully when there is minimal oversampling. Thus, among the phase

retrieval models and methods considered in Chapter 2 and this appendix, the PLGD model (A.0.1)

is the best suited for large-scale, unstructured noisy phase retrieval problems.
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APPENDIX B

Further Justification of New Termination Conditions in

Section 5.4

Section 5.4 demonstrated that the primal difference (5.2.7e) and dual variable difference (5.2.7i)

effectively identify the point at which the GDD algorithm (Algorithm 3) stagnates for PLGD models

with Gaussian noise (5.2.3). This appendix demonstrates that all of the remaining residuals from

(5.2.7) are either unreliable or effectively a duplicate of another computationally cheaper residual.

One residual that may be eliminated is the primal relative error (5.2.7d). The original termi-

nation conditions for the GDD algorithm include the feasibility requirement (4.2.13)

||A(xx∗)− b||2 ≤ ε+ tolfeas(1 + ||b||2),

which is equivalent to the primal relative error (5.2.7d) using the relation εrel = ε/||b||2

(B.0.1)
||A(xx∗)− b||2

||b||2
≤ εrel + tolfeas

(
1 + ||b||2
||b||2

)
.

As indicated in Table 5.4, the GDD algorithm typically requires only a few iterations before a

primal feasible signal x is found. Yet in certain cases the GDD algorithm may never identify a

feasible signal. Figure B.1 demonstrates plots the primal relative error (5.2.7d) for the particular

model from Figure 5.3 which never attained primal feasibility.
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Figure B.1. Primal relative error (5.2.7d) (blue) and noise ratio threshold (red) for
noise ratio εrel = 0.15 and oversampling rate L = 5. Iterate 1,000 remains infeasible
with a primal relative error of 0.1541.

The experiment in Figure B.1 demonstrates a model where both the exact tolerance εrel = 0.15

and the relaxed tolerance εrel + tolfeas

(
1+||b||2
||b||2

)
= 0.1502 as suggested in (4.2.13) are unattainable

by the GDD algorithm. Nevertheless, the GDD algorithm makes significant progress in recovering

an approximate signal. Notably, the wflow algorithm applied to the same model recovers a signal

with a primal relative error (5.2.7d) of 0.3165. Thus we ignore the primal feasibility condition

(4.2.13).

We may also disregard the duality gap (5.2.7f) as a termination condition. The experiments in

Table 5.3 demonstrate that the duality gap tends to stagnate at different values for differing noise

level and oversampling rate. Table B.1 indicates the final duality gap value for each experiment

from Figure 5.3, further demonstrating this residual is not a reliable indicator of stagnation.

L = 5 L = 10

εrel = 0.05 8.24 8.10

εrel = 0.15 39.23 29.41

εrel = 0.30 38.93 59.73

Table B.1. Final values of duality gap (5.2.7f) after 1,000 iterations of the GDD
algorithm (Algorithm 3) with indicated noise ratios and oversampling rates.

The duality gap (5.2.7f) is not reliable because this measurement is dependent on the accuracy

of both the dual objective value λ1 and the approximate signal norm ||xx∗||1 as compared to
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their respective optimal values. As established in Section 5.3, the GDD algorithm cannot achieve

optimality for most noisy phase retrieval models. Thus the complementarity condition ||xx∗||1 ·

λ1 = 1 (Corollary 3.4.1, d) cannot be achieved. As a result, the duality gap (5.2.7f) stagnates

unpredictably for varying oversampling rates and noise levels and is not used as a termination

condition for the GDD algorithm.

Next we demonstrate that the duality gap difference (5.2.7g) is a redundant measurement.

Denote the primal objective value as p = ||xx∗||1 and its update with a hat. As the GDD algorithm

stagnates, p̂/p approaches 1. Additionally, note that typical optimal signals have fairly large norms

(i.e., ||xx∗||F = O(103) or larger). If we assume p̂/p ≈ 1 and λ1 − 1/p ≈ λ1 for later iterates then

we have

|γ − γ̂|
γ

=
|(pλ1 − 1)− (p̂λ̂1 − 1)|

pλ1 − 1

=

∣∣∣λ1 − p̂
p λ̂1

∣∣∣
λ1 − 1

p

≈ |λ1 − λ̂1|
λ1

.

(B.0.2)

Thus the duality gap difference (5.2.7g) behaves similarly to the dual objective difference

(5.2.7h) and may be disregarded.

Finally, the dual matrix difference (5.2.7j) is also a redundant measurement which may be

disregarded. Note that the norm difference of dual matrices is bounded above by the dual variable

difference (5.2.7i), since

||A− Â|| = ||A∗(y − ŷ)|| ≤ ||A∗|| ||y − ŷ||2,

where we have the induced norm of A∗

||A∗|| = sup
||w||2=1

||A∗w||.

And computationally, the dual variable difference (5.2.7i) is computed with a vector norm, where

as the dual matrix difference (5.2.7j) requires an additional eigenvalue computation (in this case
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the largest magnitude eigenvalue). Thus the dual matrix difference (5.2.7j) can be ignored due to

its excessive computational cost and close relationship to the dual variable difference (5.2.7i).

Finally, we may also eliminate the dual objective difference (5.2.7h) as a candidate residual for

termination. Figure B.2 depicts the behavior of this residual for the models in Figure 5.3. As with

Figure 5.4, the vertical axis indicates specific tolerances and the horizontal axis indicates the first

iterate at which the GDD algorithm would satisfy this tolerance.

Figure B.2. Plots of dual objective difference values (5.2.7h) against the iterate
at which the GDD algorithm (Algorithm 3) first satisfies this tolerance for the
models discussed in Figure 5.3. Red circles are placed at tolerances 10−n. The blue
rectangles indicate the proposed intervals of termination from Table 5.5.

Figure B.2 demonstrates that the dual objective difference (5.2.7h) behaves erratically, de-

creasing too slowly for low-noise models and too quickly for high-noise models. To simplify our

discussion, label the dual objective tolerance as tolDO. If we set tolDO = 10−5, then the GDD

algorithm will terminate far too late for the top-left model in Figure B.2. However, if we set

tolDO = 10−4 then the GDD algorithm may terminate far too early for the middle-left and bottom-

left models. Likewise, the models at right in Figure B.2 do not have a consistent tolerance value

tolDO which reliably selects for termination within the desired intervals. Thus the tolerance tolDO

is not a reliable indicator of stagnation of the GDD algorithm.
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