
Solution of Nonlinear Eigenvalue Problems Arising from Constrained Rayleigh
Quotient Optimization and Resonant Modes Computation of Accelerator

Cavity

By

YUNSHEN ZHOU
DISSERTATION

Submitted in partial satisfaction of the requirements for the degree of

DOCTOR OF PHILOSOPHY

in

Applied Mathematics

in the

OFFICE OF GRADUATE STUDIES

of the

UNIVERSITY OF CALIFORNIA

DAVIS

Approved:

Zhaojun Bai, Chair

Robert Guy

Naoki Saito

Committee in charge

2020

–i–

Contents

List of Figures iv

List of Tables v

Abstract vi

Acknowledgments viii

1 Introduction 1
1.1 Motivations and related work . 1

1.1.1 Early work of CRQopt . 2
1.1.2 Brief review of existing nonlinear eigensolvers 3

1.2 Contributions . 4
1.3 Organization and notations . 5

2 Preliminaries 7
2.1 Lanczos process . 7
2.2 Trust-region subproblems . 8

2.2.1 Problem statement . 8
2.2.2 Solving the secular equation . 9

2.3 Padé approximation and realization of rational functions 11

3 Constrained Rayleigh quotient optimization 19
3.1 Problem statement . 19
3.2 Theory . 20

3.2.1 Feasible set and solution existence . 20
3.2.2 Equivalent LGopt . 21
3.2.3 Equivalent QEPmin . 24
3.2.4 pLGopt . 26
3.2.5 pQEPmin . 28
3.2.6 pLGopt and pQEPmin are equivalent . 29
3.2.7 LGopt and QEPmin are equivalent . 38
3.2.8 Summary . 41
3.2.9 Easy and hard cases . 42

3.3 Lanczos algorithm . 45
3.3.1 Solving LGopt . 46
3.3.2 Solving QEPmin . 51

–ii–

3.3.3 Lanczos algorithm for CRQopt . 55
3.3.4 Finite step stopping property . 55
3.3.5 Hard case . 58

3.4 Convergence analysis of the Lanczos algorithm . 59
3.5 Numerical examples – sharpness of error bounds . 67

3.5.1 Construction of difficult CRQopt problems 68
3.5.2 Numerical results . 70

3.6 Summary . 74

4 Application in constrained clustering 76
4.1 Unconstrained clustering . 76
4.2 Constrained clustering . 78
4.3 Numerical results . 80

5 Padé approximate linearization algorithm 85
5.1 Problem statement . 85
5.2 Spectral transformation . 86
5.3 Rational approximation . 86
5.4 Trimmed linearization and LEP . 88
5.5 PAL algorithm . 89
5.6 Implementation issues . 90

5.6.1 Matrix-vector multiplications . 90
5.6.2 Real and complex arithmetic . 92
5.6.3 Rank-revealing factorization . 92

6 Application in resonant modes computation of accelerator cavity 94
6.1 Eigenvalue problems with TE modes only . 94
6.2 Eigenvalue problems with both TE and TM modes 99
6.3 Numerical examples . 102

7 Concluding remarks 114

Appendices 116

A Proof of the equivalence between CRQopt and the eigenvalue optimization prob-
lem 117

B Sofrware package CRQPACK 123

C Software package PALPACK 126

References 129

–iii–

List of Figures

3.1 Equivalence of optimization problems . 42
3.2 Example 3.5.1: history of err1, err2 and err3 for the cases where β = 100 (left) and

β = 1000 (right). 71
3.3 Example 3.5.2: histories for err1 (first row), err2 (second row), err3 (third row) and

their upper bounds for β = 100 (left column) and β = 1000 (right column). 72
3.4 Example 3.5.3: histories of err1, err2, err3 and their upper bounds. “Error bound by

κ” and “Error bound by κ+” means upper bounds in (3.90) and (3.101), respectively. 73
3.5 Example 3.5.4: relative residual of QEP NResQEPmin

k and the bound of the relative

residual δQEPmin
k for the case where β = 100 (left) and β = 1000 (right). 75

4.1 The left, middle and right columns are labels, results of image cut and the heat maps
of the solutions by the Lanczos algorithm for CRQopt, respectively. Images from top
to bottom are Flower, Road, Crab, Camel, Dog, Face1, Face2, Daisy and Daisy2,
respectively. 82

6.1 Square roots of computed eigenvalue (black dots) and the heat map of approximation
errors log10[ê(

√
λ)] with α = θ (left) and αopt (right) in the upper half of the disk

Ω1(θ, r) = Ω(652, 652 − 412) (Example 6.3.1). 104
6.2 Square root of computed eigenvalues and heat map of the errors log10[ê(

√
λ)] for

Padé approximations for αopt for Example 6.3.1. 106
6.3 Square root of computed eigenvalues and heat map of the errors log10[ê(

√
λ)] for

Padé approximations for α = θ (left) and αopt (right) for Example 6.3.2. 107
6.4 Square root of computed eigenvalues and heat map of log10[ê(

√
λ)] for the error of

rational approximations, α = θ (left) and αopt (right) for Example 6.3.3. 109
6.5 Square root of computed eigenvalues and heat map of the errors log10[ê(

√
λ)] for

rational approximations for α = θ (left) and αopt (right) Example 6.3.4 with target
domain Ω1. 110

6.6 Square root of computed eigenvalues and heat map of the errors log10[ê(
√
λ)] for

target domain Ω2 of Example 6.3.4. 111

–iv–

List of Tables

4.1 The number of pixels n, parameters δ and r and size m of linear constraints. 81
4.2 Runtime (in seconds) and number of Lanczos steps 83
4.3 Runtime for Fast-GE-2.0, projected power method and the Lanczos algorithm 84

6.1 Example 6.3.1, Square roots of 32 computed eigenvalues in the upper half of the disk
Ω1(θ, r) = Ω(652, 652 − 412). 105

6.2 Example 6.3.1, Square root of computed eigenvalues in the upper half of the disk Ω2. 106
6.3 Square root of 7 computed eigenvalues and residuals for PAL with α = θ and αopt,

NLEIGS and CORK for Example 6.3.2. 108
6.4 Square root of 7 computed eigenvalues and residuals for PAL with α = θ and αopt,

NLEIGS and CORK for Example 6.3.3. 109
6.5 Square root of 4 computed eigenvalues and residual norm by PAL and CORK in

target domain Ω1 of Example 6.3.4. 111
6.6 Square root of the computed eigenvalues and residual norm by PAL and CORK in

target domain Ω2 of Example 6.3.4. 112

–v–

Solution of Nonlinear Eigenvalue Problems Arising from Constrained Rayleigh Quotient
Optimization and Resonant Modes Computation of Accelerator Cavity

Abstract

This dissertation consists of two parts: constrained Rayleigh quotient optimization problems and

its application in image segmentation, and Padé approximation linearization algorithm to solve

nonlinear eigenvalue problems arising from resonant modes computation of accelerator cavity.

In the first part, we consider the following constrained Rayleigh quotient optimization

problem (CRQopt)

min
x∈Rn

xTAx subject to xTx = 1 andCTx = b,

where A is an n× n real symmetric matrix and C is an n×m real matrix. Usually, m� n. The

problem is also known as the constrained eigenvalue problem in the literature because it becomes

an eigenvalue problem if the linear constraint CTx = b is removed. We start by equivalently

transforming CRQopt into an optimization problem, called LGopt, of minimizing the Lagrangian

multiplier of CRQopt, and then an eigenvalue problem, called QEPmin, of finding the smallest

eigenvalue of a quadratic eigenvalue problem. Although such equivalences has been discussed in

the literature, it appears to be the first time that these equivalences are rigorously justified. Then

we propose to numerically solve LGopt and QEPmin by the Krylov subspace projection method

via the Lanczos process. The basic idea, as the Lanczos method for the symmetric eigenvalue

problem, is to first reduce LGopt and QEPmin by projecting them onto Krylov subspaces to yield

problems of the same types but of much smaller sizes, and then solve the reduced problems by some

direct methods, which is either a secular equation solver (in the case of LGopt) or an eigensolver

(in the case of QEPmin). The resulting algorithm is called the Lanczos algorithm. We perform

convergence analysis for the proposed method and obtain error bounds. The sharpness of the error

bound is demonstrated by artificial examples, although in applications the method often converges

much faster than the bounds suggest. Finally, we apply the Lanczos algorithm to semi-supervised

learning in the context of constrained clustering.

In the second part, we propose a method to solve nonlinear eigenvalue problems with

–vi–

low-rank nonlinear terms. We first apply rational approximants to the nonlinear functions and

transform the nonlinear eigenvalue problem to a rational eigenvalue problem. Then we transform

the rational eigenvalue problem to a linear eigenvalue problem by trimmed linearization. For solving

the linear eigenvalue problem, we provide a method to compute the matrix-vector multiplication

for the shift-invert Arnoldi method, which is suitable for any shift. Moreover, the method of

matrix-vector multiplication is designed to make the arithmetic as real as possible. We show the

effectiveness of our Padé approximate linearization (PAL) method by comparing it with the fully

rational Krylov method for nonlinear eigenvalue problems (NLEIGS) and compact rational Krylov

(CORK) methods to solve nonlinear eigenvalue problems arising from finite element electromagnetic

simulations in accelerator modeling. For these problems, we provide a method to choose the

expansion point of rational approximants to reduce the residual for the eigenpairs by up to three

digits. Numerical examples show that our PAL algorithm runs 48% to 87% faster than NLEIGS

and CORK algorithm with comparable results.

–vii–

Acknowledgments

My advisor, Professor Zhaojun Bai, has mentored me for more than three years during my graduate

studies. His knowledge, intuition, and patience are the biggest supporters of my Ph.D. degree. I

would like to thank Professor Naoki Saito and Professor Robert Guy for being my dissertation

committee, Professor Roland Freund and Professor Javier Arsuaga for attending my qualifying

exam.

In constrained Rayleigh quotient optimization problem, I really appreciate Professor Ren-

Cang Li for his suggestion about the theory and algorithm, Ning Wan for his early work, Yanwen

Luo about the idea of the proof for Lemma 3.2.8, Chengming Jiang for part of implementation for

constrained image segmentation problems, Chao-Ping Lin for the discussion about the implemen-

tation of the software CRQPACK, and Michael Ragone for suggestions of writing.

In nonlinear eigenvalue problems arising from resonant modes computation of accelerator

cavity, Jacob Johnson provided me with his early work, Ding Lu discussed with me about the

ideas behind Example 2.3.3, Roel Van Beeumen provided me with some examples about his CORK

software, Osni Marques provided me with implementation of the PAL algorithm in C, and Colin

Hagemeyer revised my writing. I appreciate their help.

Thank Bohan Zhou, Ji Chen, and Yiqun Shao for being my officemate for three years.

They gave me many career suggestions. Finally, thank my father Jian Zhou and my mother

Xiaobang Chen for supporting my decisions during my graduate studies.

The work in this dissertation was supported in part by NSF grants DMS-1522697 and

DMS-1913364.

–viii–

Chapter 1

Introduction

1.1 Motivations and related work

Nonlinear eigenvalue problems are widely used in many applications. Today there are

many existing methods to solve different kinds of nonlinear eigenvalue problems. However, methods

to solve some nonlinear eigenvalue problems with special structures are still under development.

In this dissertation, we discuss two problems related to nonlinear eigenvalue problems. The first

problem is the constrained Rayleigh quotient optimization problem, which can be transformed into

a structured quadratic eigenvalue problem. The second problem is the nonlinear eigenvalue problem

with low-rank nonlinear terms, which arises from resonant modes computation of accelerator cavity.

The first part of the dissertation studies constrained Rayleigh quotient optimization prob-

lem (CRQopt). It is a constrained optimization problem where the objective is to minimize a

quadratic function and there is one norm constraint and one linear constraint. The optimization

problem is also known as the constrained eigenvalue problem, a term coined in [17] in 1989. How-

ever, it had appeared in the literature much earlier than that [22]. In that sense, it is a classical

problem. However, past studies are fragmented with some claims, although often true, not rig-

orously justified or that needed conditions to hold. In this dissertation, our goal is to provide a

thorough investigation into this classical problem, including rigorous justifications of statements

previously taken for granted in the literature and addressing the theoretical subtleties that were

not paid attention to. We also present a quantitative convergence analysis for the Krylov type

subspace projection method, which we will also call the Lanczos algorithm, for solving large scale

–1–

optimization problems. The optimization problem has found a wide range of applications, such as

ridge regression [11, 19], trust-region subproblem [45, 54], constrained least square problem [16],

spectral image segmentation [14, 58], transductive learning [34], and community detection [46].

The second part of the dissertation is about nonlinear eigenvalue problems with low-rank

nonlinear terms. There are many exising methods to solve general nonlinear eigenvalue problems

[26]. In this disseration, our goal is to develop an efficient algorithm for this specific eigenvalue

problem. The problem has applications in particle in a canyon [27], delay problems [32] with low

rank and cavity design of a linear accelerator [63].

1.1.1 Early work of CRQopt

The first systematic study of CRQopt perhaps belongs to Gander, Golub and von Matt

[17]. Using the full QR and eigen-decompositions, they first reformulated CRQopt as an optimiza-

tion problem of finding the minimal Lagrangian multiplier via solving a secular equation (in a way

that is different from our secular equation solver in Section 2.2.2). Alternatively, they also turned

CRQopt into an optimization problem of finding the smallest real eigenvalue of a quadratic eigen-

value problem (QEP). However, the equivalence between the QEP optimization and the Lagrangian

multiplier problem was not rigorously justified there.

Numerical algorithms proposed in [17] are not suitable for large scale CRQopt because

they requires a full eigen-decomposition as a dense matrix. Later in [21], Golub, Zhang and Zha

considered large and sparse CRQopt but only with the homogeneous constraint. In this special case,

CRQopt is equivalent to computing the smallest eigenvalue of the matrix in the objective function

restricted to the null space of the matrix in the linear constraint. An inner-outer iterative Lanczos

method was proposed to solve the homogeneous CRQopt. In [68], Xu, Li and Schuurmans proposed

a projected power method for solving CRQopt. The projected power method is an iterative method

only involving matrix-vector products, and thus it is suitable for large and sparse CRQopt. However,

its convergence is linear at best and often too slow. In [14], Eriksson, Olsson and Kahl reformulated

CRQopt into an eigenvalue optimization problem (see Appendix B for details). An algorithm based

on the line search was used to find the optimal solution. This algorithm is suitable for CRQopt

with a large and sparse matrix A, but it is too costly because the smallest eigenvalue has to be

computed multiple times during each line search action.

–2–

1.1.2 Brief review of existing nonlinear eigensolvers

Article [26] summarized existing algorithms for solving NEPs. Roughly speaking, existing

algorithms for solving NEPs can be characterized into three main classes: Newton-based techniques,

contour integration method, and methods based on approximation of matrix-valued functions.

In this dissertation, we are particularly interested in methods based on approximation. For

methods based on approximation, matrix-valued functions T (λ) are approximated by polynomials

or rational functions. Then the polynomial or rational eigenvalue problems can be solved by

standard methods (the rational linearization method [61]).

Examples of methods based on approximation include

1. Chebyshev interpolation method [12], In the Chebyshev interpolation method, T (λ) is first

approximated by an interpolating matrix polynomial, and the resulting polynomial eigenvalue

problem is solved via linearization.

2. the Taylor-Arnoldi method [32], In the Taylor-Arnoldi method, the degree of the polynomial

approximation is increased in every iteration and yielding a better approximation of T (λ)

near a given shift.

3. the infinite Arnoldi method [62].

4. the Newton rational Krylov method [64].

5. the fully rational Krylov method [27], The fully rational Krylov method for nonlinear eigen-

value problems (NLEIGS) utilizes a dynamically constructed rational interpolant of the non-

linear functions and a new companion-type linearization for obtaining a generalized eigenvalue

problem with particular structures.

6. The generic class of CORK methods [65]. The compact rational Krylov (CORK) methods

exploit the structure of the linearization pencils by using a generalization of the compact

Arnoldi decomposition to save the memory and the orthogonalization cost.

However, the reliability of these methods heavily depends on the quality of the approxima-

tion of the nonlinear functions. The structure exploiting implementation in the CORK framework

is generally more efficient than methods based on contour integration. However, the computation

–3–

for CORK requires multiple LU factorizations and high degree rational approximations in some

cases.

1.2 Contributions

In the first part of the dissertation, our study begins with the standard approach of

Lagrangian multipliers, as was taken in [17], which leads to an optimization problem of minimizing

the Lagrangian multiplier of CRQopt, called LGopt (Section 3.2.2), and then an optimization

problem of finding the smallest real eigenvalue of a quadratic eigenvalue problem (QEP), called

QEPmin (Section 3.2.3). We summarize our major contributions as follows:

1. Although transforming CRQopt into LGopt and QEPmin is not really new, our formulations

of LGopt and QEPmin set them up onto a natural path for use in Krylov subspace type

projection methods that only requires matrix-vector products. Therefore, the formulations

are suitable for large scale CRQopt. We rigorously proved the equivalences among the three

problems while they were only loosely argued previously as, e.g., in [17]. As far as subtle

technicalities are concerned, we prove that the leftmost eigenvalue in the complex plane is

real, which has a significant implication when it comes to numerical computations.

2. We devise a Lanczos algorithm to solve the induced optimization problems: LGopt and

QEPmin. This algorithm is made possible, as we argued moments ago, by our different

formulations from what is in the literature. Along the way, we also propose an efficient

numerical algorithm for the type of secular equations arising from solving each projected

LGopt.

3. We establish a quantitative convergence analysis for the Lanczos algorithm and obtain error

bounds on approximations generated by the algorithm. These error bounds are in general

sharp in the worst case as demonstrated by artificially designed numerical examples.

4. We apply our algorithm to the large scale CRQopt from the constrained clustering that arises

from the standard spectral algorithm with linear constraints to encode prior knowledge labels.

During our tests, we observed that our algorithm was 2 to 23 times faster than FAST-GE-2.0

[33] for constrained image segmentation, depending on given image data.

–4–

In the first part of the dissertation, our study begins with introducing the Padé approxima-

tion linearization (PAL) algorithm (Chapter 5) and then applying our PAL algorithm to resonant

modes computation of accelerator cavity (Chapter 6). We summarize our major contributions as

follows:

1. We proposed a PAL algorithm to nonlinear eigenvalue problems with low-rank nonlinear

terms. For computing resonant modes of accelerator cavities, our PAL algorithm is faster

than existing NLEIGS and CORK algorithms.

2. We designed an efficient matrix-vector multiplication method to avoid forming the matrix

explicitly. The multiplication method can be used to compute the eigenvalue of the linear

eigenvalue problem near an arbitrary shift.

3. For computing resonant modes of accelerator cavities, we discussed a method to choose the

expansion point of rational approximants, which reduces the residual of the computed eigen-

pairs by two to three digits.

1.3 Organization and notations

The dissertation is organized as follows. In Chapter 2, we review Lanczos method, trust-

region subproblems, Padé approximation and realization of rational functions. In Chapter 3, we

discuss the theory, algorithm and convergence analysis of constrained Rayleigh quotient optimiza-

tion problems. In Chapter 4, we discuss the applications of our algorithm for the optimization

problem in image segmentation problems. In Chapter 5, we show our PAL algorithm to nonlinear

eigenvalue problems and the application in accelerator cavity design is discussed in Chapter 6.

Throughout the dissertation, R, Rn and Rm×n are the set of real numbers, columns vectors

of dimension n, and m×n matrices, respectively. C, Cn and Cm×n are the set of complex numbers,

columns vectors of dimension n, and m× n matrices, respectively. We use MATLAB-like notation

X(i:j,k:l) to denote the submatrix of X, consisting of the intersections of rows i to j and columns k

to l, and when i : j is replaced by :, it means all rows, similarly for columns. For a vector v ∈ C,

v(k) refers the kth entry of v and v(i:j) is the subvector of v consisting of the ith to jth entries

inclusive. The n× n identity matrix is In or simply I if its size is clear from the context, and ej is

–5–

the jth column of an identity matrix whose size is determined by the context. diag(c1, c2, . . . , cn)

is an n× n diagonal matrix with diagonal elements c1, c2, . . . , cn. The imaginary unit is i =
√
−1.

For X ∈ Cm×n, XT, R(X), N (X) denote its transpose (without conjugate), range and

null space, respectively. For a real symmetric matrix H, eig(H) stands for the set of all eigenvalues

of H, and λmin(H) and λmax(H) denote the smallest and largest eigenvalue of H, respectively. ‖·‖p

(1 ≤ p ≤ ∞) is the `p-vector or `p-operator norm, respectively, depending on the argument. As a

special case, ‖ · ‖2 or ‖ · ‖ is either the Euclidean norm of vector or the spectral norm of a matrix.

–6–

Chapter 2

Preliminaries

We review Lanczos method in Section 2.1, trust-region subproblems in Section 2.2, Padé

approximation and expression of rational functions in realization form in Section 2.3.

2.1 Lanczos process

We review the standard symmetric Lanczos process [10, 20, 51, 55]. Given a real symmetric

matrix M ∈ Rn×n and a starting vector r0 ∈ Rn, the Lanczos process partially computes the

decomposition MQ = QT , where T ∈ Rn×n is symmetric and tridiagonal, Q ∈ Rn×n is orthogonal

and the first column of Q is parallel to r0.

Specifically, let Q = [q1, q2, . . . , qn] and denote by αi for 1 ≤ i ≤ n the diagonal entries

of T , and by βi for 2 ≤ i ≤ n the sub-diagonal and super-diagonal entries of T . The Lanczos

process goes as follows: set q1 = r0/‖r0‖, and equate the first column of both sides of the equation

MQ = QT to get

Mq1 = q1α1 + q2β2. (2.1)

Pre-multiply both sides of the equation (2.1) by qT1 to get α1 = qT1Mq1, and then let

q̂2 = Mq1 − q1α1, β2 = ‖q̂2‖.

Now if β2 > 0, we set q2 = q̂2/β2; otherwise the process breaks down. In general for j ≥ 2, equating

the jth column of both sides of the equation MQ = QT leads to

Mqj = qj−1βj + qjαj + qj+1βj+1. (2.2)

–7–

Up to this point, qi for 1 ≤ i ≤ j, αi for 1 ≤ i ≤ j − 1, and βi for 2 ≤ i ≤ j have already been

determined. Pre-multiply both sides of the equation (2.2) by qTj to get αj = qTj Mqj , and then let

q̂j+1 = Mqj − qj−1βj − qjαj , βj+1 = ‖q̂j+1‖.

Now if βj+1 > 0, we set qj+1 = q̂j+1/βj+1; otherwise the process breaks down. The process can be

compactly expressed by1

MQk = QkTk + βk+1qk+1e
T
k (2.3)

assuming the process encounters no breakdown for the first k steps, i.e., no βi = 0 for 2 ≤ i ≤ k,

where

Qk = [q1, q2, . . . , qk], Tk = QT
kMQk =



α1 β2

β2 α2 β3
. . .

. . .
. . .

βk−1 αk−1 βk

βk αk


.

Furthermore, the column space R(Qk) is the same as the kth Krylov subspace

Kk(M, r0) := span(r0,Mr0, · · · ,Mk−1r0).

In the case of a breakdown with βk+1 = 0, MQk = QkTk and R(Qk) is an invariant subspace of

M .

2.2 Trust-region subproblems

2.2.1 Problem statement

In this section we discuss the following trust region subproblems [45, 47]:

min
‖y‖≤γ

yTHy + 2gT0 y, (2.4)

where H ∈ Rn×n, H = HT , g0 ∈ Rn and γ > 0 is the trust region radius. Note that if there exists

a solution y of (2.4) such that ‖y‖ < γ, which means y lies in the interior of the trust region, then

H is positive semidefinite and y is the global minimizer of the function yTHy + 2gT0 y. Therefore,

1We sacrifice slightly mathematical rigor in writing (2.3) in exchange for simplicity and convenience, since qk+1

cannot be determined unless also βk+1 > 0.

–8–

it can be solved as an unconstrained optimization problem. In the rest of our dissertation we only

consider the optimization problem with equality constraint

min
‖y‖=γ

yTHy + 2gT0 y. (2.5)

The solution of (2.5) can be characterized by the following conditions [28, Lemma 2.1]:

Lemma 2.2.1. y is a solution of (2.5) if and only if there exists λ∗ such that (H − λ∗I)y = −g0,

‖y‖ = γ and H − λ∗I is positive semidefinite.

Let θ1 = θ2 = · · · = θd < θd+1 ≤ · · · ≤ θn be the eigenvalues of H, y1, y2, · · · , yn be the

corresponding eigenvectors, ξi = gT0 yi for i = 1, 2, · · · , n and E1 be the linear space spanned by

y1, y2, · · · , yd, then the solution of (2.5) can be characterized as:

1. Hard case [47, Sec.4.3] (or degenerate case [28, Lemma 2.2]): g0 ⊥ E1 and ‖(H−θ1I)†g0‖ ≤ γ,

then λ∗ = θ1 and the general solution of (2.5) is

y = x+
√
γ2 − ‖x‖2z

where x = −(H − θ1I)†g0 and z is any unit vector in E1.

2. Easy case [47, Sec.4.3] (or nondegenerate case [28, Lemma 2.2]): if the hard case (or degenerate

case) does not hold, then λ∗ < θ1 and the unique solution of (2.5) is

y = −(H − λ∗I)−1g0.

2.2.2 Solving the secular equation

For the easy case, λ∗ can be obtained by solving the smallest zero of a secular function.

We are interested in computing the smallest zero λ∗ of the secular function

χ(λ) :=

n∑
i=1

ξ2i
(λ− θi)2

− γ2, (2.6)

where it is assumed

γ > 0, θ1 ≤ θ2 ≤ · · · ≤ θn, and,

either ξ1 6= 0, or ξ1 = 0 but lim
λ→θ−1

χ(λ) > 0.

–9–

Those assumptions guarantee that χ(λ) has a unique zero λ∗ in (−∞, θ1). This is because

lim
λ→−∞

χ(λ) = −γ2 < 0, lim
λ→θ−1

χ(λ) > 0, and χ′(λ) = −2
n∑
i=1

ξ2i
(λ− θi)3

> 0 for λ < θ1.

First, we find an initial lower bound α(0) of λ∗, i.e., α(0) < θ1 such that χ(α(0)) < 0. Note

χ(λ) ≤
n∑
i=1

ξ2i
(λ− θ1)2

− γ2 for λ < θ1.

One such α(0) can be found by solving

n∑
i=1

ξ2i
(α(0) − θ1)2

− γ2 = 0 ⇒ α(0) = θ1 − δ0 with δ0 =
1

γ

√√√√ n∑
i=1

ξ2i .

We conclude that λ∗ ∈ [α(0), β(0)], where β(0) = θ1. Quantities α(k) and β(k) will be determined

during our iterative process to be described such that λ∗ ∈ [α(k), β(k)].

Without loss of generality, we may assume that

if θ1 = · · · = θd < θd+1, then ξ2 = · · · = ξd = 0.

Let

j0 = min{i : ξi 6= 0}. (2.7)

To find the initial guess of the root, we solve

ξ2j0
(λ− θj0)2

+

n∑
i=j0+1

ξ2i
([θj0 − δ0]− θi)2

− γ2︸ ︷︷ ︸
=:−η

= 0

for λ to get

λ(0) =


θj0 − |ξj0 |/

√
η, if η > 0,

θj0 − δ0/2, if η ≤ 0,

where the second case is based on bisection.

For the iterative scheme, suppose we have an approximation λ(k) ≈ λ∗. First, the interval

(α(k), β(k)) will be updated as

α(k+1) ← λ(k) and β(k+1) ← β(k) if χ(λ(k)) < 0

β(k+1) ← λ(k) and α(k+1) ← α(k) if χ(λ(k)) > 0.

–10–

Then we find the next approximation λ(k+1). For that purpose, we seek to approximate χ, in the

neighborhood of λ(k), by

g(λ) := −b+
a

(λ− θj0)2
≈ χ(λ),

such that

g(λ(k)) ≡ −b+
a

(λ(k) − θj0)2
= χ(λ(k)) =

n∑
i=1

ξ2i
(λ(k) − θi)2

− γ2,

g′(λ(k)) ≡ − 2
a

(λ(k) − θj0)3
= χ′(λ(k)) = −2

n∑
i=1

ξ2i
(λ(k) − θi)3

,

yielding

a = −1

2
(λ(k) − θj0)3χ′(λ(k)) = (λ(k) − θj0)3

n∑
i=1

ξ2i
(λ(k) − θi)3

> 0,

b =
a

(λ(k) − θj0)2
− χ(λ(k)) = (λ(k) − θj0)

n∑
i=1

ξ2i
(λ(k) − θi)3

− χ(λ(k)).

Ideally, b > 0 so that g(λ) = 0 has a solution in (−∞, θj0). Assuming b > 0, we find the next

approximation λ(k+1) ≈ λ∗ is given by

λ(k+1) = θ1 −
√
a/b. (2.8)

Now if b ≤ 0 (then λ(k+1) as in (2.8) is undefined) or if λ(k+1) 6∈ (α, β), we let λ(k+1) be

(α(k+1) + β(k+1))/2 according to bisection method.

2.3 Padé approximation and realization of rational functions

One of the most well-known rational approximations to a complex-valued function is Padé

approximation, an extension of Taylor polynomial approximation. According to Baker’s definition

[3, Sec.1.4], if polynomials pn(z) and qm(z) of degrees n and m respectively, the rational function

r[n,m](z) =
pn(z)

qm(z)
= f(z) +O(zm+n+1) with qm(0) = 1

is called an order-(n,m) Padé approximant of f(z) near zero. For example,

r[2,2](z) =
1 + 1

2z + 1
12z

2

1− 1
2z + 1

12z
2

–11–

is an order-(2, 2) Padé approximant of f(z) = ez and

r[2,2](z) =
1 + 4

5z + 5
16z

2

1 + 3
4z + 1

16z
2

is an order-(2, 2) Padé approximant of f(z) =
√
z + 1. For the construction of Padé approximation,

besides the classical book by Baker in 1996 [3, Sec.1.4], more recent study include [23, 5] and

references therein.

Let pm−1(z) be a polynomial of degree no more than m − 1, qm(z) is a polynomial of

degree m with the coefficients of zm be 1 and r[m−1,m](z) be a rational function such that

r[m−1,m](z) =
pm−1(z)

qm(z)
=

g0 + g1z + · · ·+ gm−1z
m−1

h0 + h1z + · · ·+ hm−1zm−1 + zm
.

Then a realization of rational function r[m−1,m](z) is given by

r[m−1,m](z) = −aTm(Imz −Dm)−1bm (2.9)

where

Dm =



0 1 0 · · · 0

0 0 1 · · · 0

...
...

...
. . .

...

0 0 0 · · · 1

−h0 −h1 −h2 · · · −hm−1


∈ Cm×m

and

am = −[g0, g1, · · · , gm−1]T ∈ Cm, bm = [0, 0, · · · , 0, 1]T ∈ Rm.

Note that for the complex case, aTm is transpose without conjugate [1, Sec.4.4.2].

When a partial fraction form of a proper rational function r[m−1,m](z) is available, namely,

r[m−1,m](z) = −
m∑
j=1

bj
cj − djz

, (2.10)

where, without loss of generality, we assume that bj ∈ R, bj ≥ 0 and cj , dj ∈ C for j = 1, 2, · · ·m.

A realization of r[m−1,m](z) is then given by

r[m−1,m](z) = −aTm(Cm −Dmz)
−1am (2.11)

where am = [
√
b1,
√
b2, · · · ,

√
bm]T, Cm = diag(c1, c2, . . . , cm) and Dm = diag(d1, d2, . . . , dm). Note

that am is a real vector and Cm, Dm are complex matrices.

–12–

In general, let r[n,m](z) = pn(z)
qm(z) be a rational function where the degree of the polynomial

on the numerator is no less than the degree of the polynomial on the denominator, i.e., n ≥ m. By

the polynomial long division, rational function r[n,m](z) can be written as the sum of a polynomial

and a proper rational function [61]

r[n,m](z) = sn−m(z) +
pm−1(z)

qm(z)
≡ sn−m(z) + r[m−1,m](z), (2.12)

where sn−m(z) = s0 + s1z + · · · + sn−mz
n−m is a polynomial of degree no more than n −m [61].

Subsequently we can obtain a realization of r[m−1,m](z) as (2.9) or (2.11). .

Here we present three examples, which are going to be used extensively in computing

resonant modes of accelerator cavities to be discussed in Sections 6.1 and 6.2.

Example 2.3.1 (Padé approximation of
√
z + 1). By [4], an order-(m,m) Padé approximation of

√
z + 1 in the partial fraction form is given by

r[m,m](z) = 1 +
m∑
j=1

ηjz

1 + ξjz
= 1 +

m∑
j=1

(
ηj
ξj
− ηj/ξj

1 + ξjz

)
= γm −

m∑
j=1

ηj
ξj

1 + ξjz
, (2.13)

where

ηj =
2

2m+ 1
sin2 jπ

2m+ 1
, ξj = cos2

jπ

2m+ 1
, γm = 2m+ 1

and the last equality of (2.13) use the fact2 that

m∑
j=1

ηj
ξj

=
2

2m+ 1

m∑
j=1

tan2 jπ

2m+ 1
=

2(2m2 +m)

2m+ 1
= 2m.

The poles of rational function r[m](z) are −1/ξj for j = 1, 2, . . . ,m.

In a realization form, r[m](z) can be written as

r[m,m](z) = −aTm(Im − zDm)−1am + γm, (2.14)

where

am =
[
(η1/ξ1)

1/2, . . . , , (ηm/ξm)1/2
]
, Dm = −diag(ξ1, ξ2, . . . , ξm), γm = 2m+ 1. (2.15)

Let em(z) =
√
z + 1 − r[m](z) be the error of approximation. Then it is shown [43] that

for z ∈ R and z > −1,

em(z) = 2
√
z + 1

δ2m+1

1 + δ2m+1
(2.16)

2http://functions.wolfram.com/01.08.23.0007.01/, accessed April 2018.

–13–

http://functions.wolfram.com/01.08.23.0007.01/

where δ = (
√
z + 1 − 1)/(

√
z + 1 + 1). We note that the error formula is also true for complex z

since the proof did not use the assumption about z ∈ R and works for complex z with Re(z) > −1

[43, 42]. The error em(z) for real z ∈ (−1,+∞) has the following properties:

1. em(0) = 0.

2. em(z) is increasing in (−1,+∞), which can be verified by taking the derivative of em(z).

3. em(z) < 0 for z ∈ (−1, 0) and em(z) > 0 for z ∈ (0,+∞). This is due to the fact that

−1 < δ2m+1 < 0 for z ∈ (−1, 0), 0 < δ2m+1 < 1 for z > 0 and
√
z + 1, 1 + δ2m+1 > 0 for all

z > −1.

4. From the previous properties 2, 3, we have |em(z)| is decreasing for z ∈ (−1, 0) and increasing

for z ∈ (0,+∞).

5. For any real z > −1, lim
m→∞

em(z) = 0 since for any z > −1, −1 < δ < 1 and lim
m→∞

δ2m+1 = 0.

Example 2.3.2 (Padé-type approximations of 1√
z+1

). We first show that the function

u[m,m](z) =
1

2m+ 1
+

2

2m+ 1

m∑
j=1

1

1 + z
(

sin2 jπ
2m+1

) (2.17)

is an order-(m,m) Padé approximation of 1√
z+1

, i.e.,

1√
z + 1

− u[m,m](z) = O(z2m+1). (2.18)

Let us start with Taylor’s expansion of 1√
z+1

:

1√
z + 1

= 1 +

2m∑
j=1

(−1)j2−j
(2j − 1)!!

j!
zj +O(z2m+1), (2.19)

where (2j− 1)!! = 1 · 3 · 5 · · · (2j− 1). On the other hand, the Taylor expansion of u[m,m](z) is given

–14–

by given by

u[m,m](z) = 1 +
2

2m+ 1

2m∑
j=1

(−1)j

(
m∑
i=1

sin2 iπ

2m+ 1

)j
zj +O(z2m+1) (2.20)

= 1 +
1

2m+ 1

2m∑
j=1

(−1)j

(
2m+1∑
i=1

sin2j iπ

2m+ 1

)
zj +O(z2m+1) (2.21)

= 1 +
1

2(2m+ 1)

2m∑
j=1

(−1)j

2(2m+1)∑
i=1

sin2j iπ

2m+ 1

 zj +O(z2m+1) (2.22)

= 1 +
1

2(2m+ 1)

2m∑
j=1

(−1)j

2(2m+1)∑
i=1

cos2j(
2iπ

2(2m+ 1)
+
π

2
)

 zj +O(z2m+1) (2.23)

= 1 +

2m∑
j=1

(−1)j2−j
(2j − 1)!!

j!
zj +O(z2m+1) (2.24)

where the equality (2.21) used the fact that sin(π− x) = sin(x) and sin(π) = 0, the equality (2.22)

used the fact that sin2(π + x) = sin2(x) and the equality (2.24) used the fact3 that

2(2m+1)∑
i=1

cos2j
(

2iπ

2(2m+ 1)
+
π

2

)
= 2(2m+ 1)2−j

(2j − 1)!!

j!
, j = 1, 2, · · · , 2m.

Consequently, the order of approximation (2.18) can be devised immediately from (2.19) and (2.24).

In fact, we can show that

u[m,m](z) = 1/r[m,m](z) for any z ∈ C, Re(z) > −1, (2.25)

where r[m,m](z) is defined in (2.13). Note that the degrees of the polynomials on the numerators

and denominators of u[m,m](z) and r[m,m](z), are both m and the constants on the denominators

are nonzero. Without loss of generality, let r[m,m](z) = pm(z)/qm(z) and u[m,m](z) = sm(z)/tm(z),

where pm(z), qm(z), sm(z) and tm(z) are polynomials of degrees m, then

√
z + 1 =

pm(z)

qm(z)
+O(z2m+1) (2.26)

and

1√
z + 1

=
sm(z)

tm(z)
+O(z2m+1). (2.27)

3 From the following idenity available at http://functions.wolfram.com/ElementaryFunctions/Cos/23/01/

0009/:
∑n
k=1 cos2q(2kπp

n
+ α) = n2−q(2q−1)!!

q!
; p, q ∈ N+, 2pq < n

–15–

http://functions.wolfram.com/ElementaryFunctions/Cos/23/01/0009/
http://functions.wolfram.com/ElementaryFunctions/Cos/23/01/0009/

Since the poles of pm(z)
qm(z) and sm(z)

tm(z) satisfy Re(z) < −1, pm(z)
qm(z) and sm(z)

tm(z) have no singularities at

z = 0. Therefore, multiplying equations (2.26) and (2.27), we can get

1 =
pm(z)

qm(z)
· sm(z)

tm(z)
+O(z2m+1). (2.28)

Furthermore, qm(z) and tm(z) are nonzero for any z ∈ C with Re(z) > −1. Therefore, multiplying

(2.28) by qm(z)tm(z) we can get

qm(z)tm(z) = pm(z)sm(z) +O(z2m+1). (2.29)

Note that the degrees for polynomials qm(z)tm(z) and pm(z)sm(z) are at most 2m, so in order to

make (2.29) satisfied, it is only possible that

qm(z)tm(z) = pm(z)sm(z),

which proves the identity (2.25).

By the identity (2.25), the error function is given by

1√
z + 1

− u[m](z) =
1√
z + 1

− 1

r[m](z)
=
r[m](z)−

√
z + 1

r[m](z)
√
z + 1

= − em(z)√
z + 1(

√
z + 1− em(z))

= − 2√
z + 1

δ2m+1

1− δ2m+1
, (2.30)

where δ = (
√
z + 1− 1)/(

√
z + 1 + 1).

Example 2.3.3 (Padé-type approximations of z+β√
z+1

). For a rational approximation of g(z) = z+β√
z+1

,

multiply u[m](z) defined in Example 2.3.2 by z + β, we can get an order-(m + 1,m) rational

approximation of g(z). It is given by

h[m+1,m](z) = (z + β)u[m](z)

=
2

2m+ 1

m∑
j=1

z + β

1 + z sin2 jπ
2m+1

+
z + β

2m+ 1

=
2

2m+ 1

m∑
j=1

β − csc2 jπ
2m+1

1 + z sin2 jπ
2m+1

+
2

2m+ 1

m∑
j=1

csc2
jπ

2m+ 1
+

β

2m+ 1
+

z

2m+ 1

=
m∑
j=1

2
2m+1(β − csc2 jπ

2m+1)

1 + z sin2 jπ
2m+1

+
3β + 4m(m+ 1)

3(2m+ 1)
+

z

2m+ 1
(∗)

≡ −
m∑
j=1

τj
1 + ζjz

+ κm + νmz

–16–

where

τj =
2

2m+ 1
csc2

jπ

2m+ 1
− 2β

2m+ 1
, ζj = sin2 jπ

2m+ 1
, j = 1, . . . ,m,

κm =
3β + 4m(m+ 1)

3(2m+ 1)
, νm =

1

2m+ 1

and the equality in (∗) is based on the fact4

m∑
j=1

csc2
jπ

2m+ 1
=

2

3
m(m+ 1).

By (2.18), we have

g(z)− h[m+1,m](z) = (z + β)(
1√
z + 1

− u[m,m](z)) = O(z2m+1).

A realization form of h[m+1,m](z) can be written as follows

h[m+1,m](z) = −bTm(Im − zCm)−1bm + κm + νmz (2.31)

where

bm = [τ
1/2
1 , . . . , τ1/2m], Cm = −diag(ζ1, . . . , ζm), κm =

3β + 4m(m+ 1)

3(2m+ 1)
, νm =

1

2m+ 1
.

(2.32)

The poles of the approximant h[m+1,m](z) are −1/ζj for j = 1, . . . ,m.

By multiplying (2.30) by z + β, the error function is then given by

dm(z, β) =
z + β√
z + 1

− h[m+1,m](z) = −2
z + β√
z + 1

δ2m+1

1− δ2m+1
(2.33)

for any z ∈ C, Re(z) > −1.

Example 2.3.4 (Padé approximations of e−τλ). The nonlinear function in the delay eigenvalue

problems [32] is of the form e−τλ. Explicit form of Padé approximation of e−τλ of order-(m,m) is

[3, Sec.1.2]

g[m,m](λ) =
γ0 + · · ·+ γm−1(−τλ)m−1 + γm(−τλ)m

ξ0 + · · ·+ ξm−1(−τλ)m−1 + ξm(−τλ)m
(2.34)

where

γj =
(2m− j)!m!

(2m)!j!(m− j)!
, ξj =

(−1)j(2m− j)!m!

(2m)!j!(m− j)!
4 Available at http://functions.wolfram.com/ElementaryFunctions/Csc/23/01/0003/

–17–

http://functions.wolfram.com/ElementaryFunctions/Csc/23/01/0003/

for j = 1, . . . ,m. A realization of rational function g[m](λ) as

g[m,m](λ) = −aTm[(−τIm)λ−Dm]−1bm + dm (2.35)

where

Dm =



0 1 0 · · · 0

0 0 1 · · · 0

...
...

...
. . .

...

0 0 0 · · · 1

−h0 −h1 −h2 · · · −hm−1


∈ Cm×m

am = −[g0, g1, · · · , gm−1]T ∈ Cm, bm = [0, 0, · · · , 0, 1]T ∈ Rm

and

gj = (γj − (−1)mξj)/ξm, hj = ξj/ξm, dm = γm/ξm = (−1)m.

–18–

Chapter 3

Constrained Rayleigh quotient

optimization

In Section 3.1, we discuss the constrained Rayleigh quotient optimization. In Section 3.2,

we discuss the existence of the solution, provide a way to transform the optimization problem to

a Lagrange multiplier problem then to a quadratic eigenvalue problem (QEP) and show a rigorous

proof of the equivalency between these problems. An algorithm for solving the optimization problem

is shown in 3.3 and the convergence result is provided in 3.4. Numerical examples are shown in

Section 3.5. We summarize our work about the optimization problem in Section 3.6.

3.1 Problem statement

We are concerned with the following linear constrained Rayleigh quotient (CRQ) opti-

mization:

CRQopt:


min vTAv,

s.t. vTv = 1,

CTv = b,

(3.1a)

(3.1b)

(3.1c)

where A ∈ Rn×n is symmetric, i.e., A = AT, C ∈ Rn×m has full column rank, and b ∈ Rm.

Necessarily m < n but often m � n. We are particularly interested in the case where A is large

and sparse and b 6= 0.

–19–

3.2 Theory

3.2.1 Feasible set and solution existence

In CRQopt (3.1), we assumed rank(C) = m. Let

n0 = (CT)†b, (3.2)

i.e., n0 is the unique minimal norm solution of CTv = b, where C† is the Moore-Penrose inverse of

C. Because of the assumption rank(C) = m, we have [7, 10, 60]

C† = (CTC)−1CT, (CT)† = (C†)T = C(CTC)−1.

The most important orthogonal projection throughout this dissertation is

P = I − CC† (3.3)

which orthogonally projects any vector onto N (CT), the null space of CT [60]. Any v ∈ Rn that

satisfies CTv = b can be orthogonally decomposed as

v = (I − P)v + Pv = n0 + Pv ∈ n0 +N (CT). (3.4)

Evidently ‖v‖2 = ‖n0‖2 + ‖Pv‖2, which, together with the unit length constraint (3.1b), lead to

the following immediate conclusions about the solvability of CRQopt (3.1):

• If ‖n0‖ > 1, then there is no unit vector v satisfying CTv = b. This is because for any v

satisfying CTv = b has norm no smaller than ‖n0‖. Thus CRQopt (3.1) has no minimizer.

• If ‖n0‖ = 1, then v = n0 is the only unit vector that satisfies CTv = b. Thus CRQopt (3.1)

has a unique minimizer v = n0.

• If ‖n0‖ < 1, then there are infinitely many feasible vectors v that satisfy CTv = b.

Therefore only the case ‖n0‖ < 1 needs further investigation. Consequently, throughout the rest of

the dissertation, we will assume ‖n0‖ < 1.

–20–

3.2.2 Equivalent LGopt

Using the orthogonal decomposition (3.4), we have

vTAv = vTPAPv + 2vTPAn0 + nT0An0, (3.5a)

vTv = ‖n0‖2 + ‖Pv‖2. (3.5b)

Since nT0An0 and ‖n0‖ are constants, CRQopt (3.1) is equivalent to the following constrained

quadratic minimization problem

CQopt:


min vTPAPv + 2vTb0,

s.t. ‖Pv‖ = γ,

v ∈ n0 +N (CT),

(3.6a)

(3.6b)

(3.6c)

where

b0 = PAn0 ∈ N (CT), γ :=
√

1− ‖n0‖2 > 0. (3.7)

Necessarily, 0 < γ < 1. However, in the rest of our development, unless we refer back to

CRQopt (3.1), γ < 1 can be removed, i.e., γ can be any positive number.

Theorem 3.2.1. v∗ is a minimizer of CRQopt (3.1) if and only if v∗ is a minimizer of CQopt (3.6).

One way to solve CQopt (3.6) is the method of the Lagrangian multipliers. It seeks the

stationary points of the Lagrangian function

L (v, λ) = vTPAPv + 2vTb0 − λ(vTPv − γ2). (3.8)

Differentiating L with respect to v and λ, we get

(PA− λI)Pv = −b0, (3.9a)

‖Pv‖ = γ. (3.9b)

Let u = Pv ∈ N (CT). Then u = Pu and v = n0 + u. The Lagrangian equations in (3.9) are

equivalent to the following equations:

(PAP − λI)u = −b0, (3.10a)

‖u‖ = γ, (3.10b)

u ∈ N (CT). (3.10c)

–21–

In fact, any solution (λ, v) of (3.9) gives rise to a solution (λ, u) with u = Pv of (3.10), and

conversely any solution (λ, u) of (3.10) leads to a solution (λ, v) with v = n0 + u of (3.9).

The system of equations (3.10) has more than one solution pairs (λ, u). We seek a pair

(λ, u) among them that minimizes the objective function of (3.6) for v ∈ Rn. Note that

f(v) : = vTPAPv + 2vTb0

= vTPAPv + 2vTPAn0

u = Pv
= uTAu+ 2uTAn0

u = Pu
= uTPAPu+ 2uTPAn0

= uTPAPu+ 2uTb0

= f(u), (3.11)

i.e., f(v) = f(u) for v ∈ Rn and u = Pv. Therefore minimizing f(v) over v ∈ Rn is equivalent

to minimizing f(u) over u ∈ N (CT). The following lemma compares the value of f at different

solution pairs (λ, u) of the system (3.10). The proof of the lemma is inspired by Gander [16] on

solving a least squares problem with a quadratic constraint,

Lemma 3.2.1. For two solution pairs (λi, ui) for i = 1, 2 of the Lagrangian system of equations

(3.10), λ1 < λ2 if and only if f(u1) < f(u2).

Proof. The proof relies on the following three facts:

1. For any solution pair (λ, u) of (3.10), we have

λu = PAPu+ b0 ⇒ λ =
1

uTu
uT(PAPu+ b0) =

1

γ2
uT(PAPu+ b0). (3.12)

2. Given (λi, ui) for i = 1, 2, satisfying (3.10), we have

f(u1) = uT1 PAPu1 + 2uT1 b0

(3.10a)
= −bT0 u1 + λ1u

T
1 u1 + 2uT1 b0

(3.10b)
= uT1 b0 + λ1γ

2

(3.10a)
= −uT2 (PAP − λ2I)u1 + λ1γ

2.

Similarly, we have f(u2) = −uT1 (PAP − λ1I)u2 + λ2γ
2. Therefore

f(u1)− f(u2) = (λ1 − λ2)(γ2 − uT1 u2). (3.13)

–22–

3. For ui of norm γ, by the Cauchy-Schwartz inequality, uT1 u2 ≤ ‖u1‖ ‖u2‖ = γ2, and uT1 u2 =

‖u1‖ ‖u2‖ = γ2 if and only if u1 = u2. Hence if u1 6= u2, then γ2 − uT1 u2 > 0.

Now we are ready to prove the claim of the lemma. If λ1 < λ2, then u1 6= u2 otherwise (3.12)

would imply λ1 = λ2, and thus f(u1) < f(u2) by (3.13). On the other hand, if f(u1) < f(u2), then

γ2 − uT1 u2 > 0 because γ2 − uT1 u2 ≥ 0 always and it cannot be 0 by (3.13), and thus λ1 − λ2 < 0

again by (3.13).

As a consequence of Lemma 3.2.1, we find that solving CQopt (3.6) is equivalent to solving

the smallest Lagrangian multiplier λ of (3.8), i.e., those λ that satisfy (3.10). Specifically, solving

CQopt (3.6) is equivalent to solving the following Lagrangian minimization problem:

LGopt:



min λ

s.t. (PAP − λI)u = −b0,

‖u‖ = γ,

u ∈ N (CT).

(3.14a)

(3.14b)

(3.14c)

(3.14d)

Theorem 3.2.2. If v∗ is a minimizer of CQopt (3.6), then (λ∗, u∗) with

u∗ = Pv∗, λ∗ =
1

γ2
uT∗ (PAPu∗ + b0)

is a minimizer of LGopt (3.14). Conversely if (λ∗, u∗) is a minimizer of LGopt (3.14), then

v∗ = n0 + u∗ is a minimizer of CQopt (3.6).

The case b0 = PAn0 = 0, which includes but is not equivalent to the homogeneous

CRQopt (3.1) (i.e., b = 0) [22, 21], can be dealt with as follows. Suppose b0 = 0 and let θ1 be the

smallest eigenvalue of PAP . Keep in mind that PAP always has an eigenvalue 0 with multiplicity

m associated with the subspace N (CT)⊥ = R(C), the column space of C. There are the following

two subcases:

• Subcase θ1 6= 0: Then1 θ1 < 0. Let z1 be a corresponding eigenvector of PAP . Then

z1 = PAPz1/θ1 ∈ N (CT). So (θ1, z1) is a minimizer of LGopt (3.14) and therefore z1 is a

minimizer of CQopt (3.6), which in turn implies that v∗ = n0 + γz1/‖z1‖ is a minimizer of

CRQopt (3.1).

1This cannot happen if A is positive semidefinite.

–23–

• Subcase θ1 = 0: If there exists a corresponding eigenvector z1 ∈ N (CT), i.e., Pz1 6= 0, then

(θ1, P z1) is a minimizer of LGopt (3.14) and therefore Pz1 is a minimizer of CQopt (3.6),

which in turn implies that v∗ = n0 + γPz1/‖Pz1‖ is a minimizer of CRQopt (3.1). Other-

wise there exists no corresponding eigenvector z1 such that Pz1 6= 0. Let θ2 be the second

smallest eigenvalue of PAP , which is nonzero, and z2 a corresponding eigenvector. Then

z2 = PAPz2/θ2 ∈ N (CT), and (θ2, z2) is a minimizer of LGopt (3.14) and therefore z2 is a

minimizer of CQopt (3.6), which in turn implies that v∗ = n0 + γz2/‖z2‖ is a minimizer of

CRQopt (3.1).

In view of such a quick resolution for the case b0 = 0, in the rest of this dissertation, we will assume

b0 = PAn0 6= 0. (3.15)

3.2.3 Equivalent QEPmin

Let (λ, u) be a feasible pair of LGopt (3.14) and λ 6∈ eig(PAP). We can write u =

−(PAP − λI)−1b0, and then

γ2 = uTu = bT0 (PAP − λI)−2b0 = bT0 z, (3.16)

where z = (PAP − λI)−2b0, or equivalently, (PAP − λI)2z = b0. Therefore bT0 z/γ
2 = 1 by (3.16),

and thus the pair (λ, z) satisfies the quadratic eigenvalue problem (QEP):

(PAP − λI)2z = b0 = b0 · 1 = b0
(
bT0 z/γ

2
)

=
1

γ2
b0b

T
0 z. (3.17)

We claim that any z satisfying (3.17) is in N (CT). To see this, we expand (PAP − λI)2z and

extract λ2z from (PAP − λI)2z = b0 to get

z =
1

λ2
[
−(PAP)2z + 2λ · PAPz + b0

]
∈ N (CT),

where we have used the assumption λ 6∈ eig(PAP) to conclude λ 6= 0, and b0 = PAn0 ∈ N (CT).

Therefore we have shown that under the assumption that LGopt (3.14) has no feasible pair (λ, u)

with λ ∈ eig(PAP), any feasible pair (λ, u) of LGopt (3.14) satisfies QEP (3.17) with z ∈ N (CT).

Next, we prove that any pair (λ, z) satisfying

0 6= z ∈ N (CT), λ 6∈ eig(PAP) and QEP (3.17), (3.18)

–24–

leads to a feasible pair of the Lagrange equations (3.14). First we note that bT0 z 6= 0; otherwise

we would have (PAP − λI)2z = 0 by (3.17), implying z = 0 since λ 6∈ eig(PAP), a contradiction.

Let (λ, z) be a scalar-vector pair that satisfying (3.18). Define u := −(PAP − λI)−1b0. Then

(PAP − λI)u = −b0, i.e., (3.14b) holds, and also

λu = PAPu+ b0 ⇒ u =
1

λ
(PAPu+ b0) ∈ N (CT),

i.e., (3.14d) holds. Without loss of generality, we may scale z such that bT0 z = γ2. It follows from

(3.17) that

(PAP − λI)2z = b0 ⇒ z = (PAP − λI)−2b0,

implying

1 =
1

γ2
bT0 z =

1

γ2
bT0 (PAP − λI)−2b0 =

1

γ2
uTu ⇒ ‖u‖ = γ,

i.e., (3.14c) holds. Lemma 3.2.2 summarizes what we have just proved.

Lemma 3.2.2. Suppose the constraints of LGopt (3.14) has no feasible pair (λ, u) with λ ∈

eig(PAP), and suppose that QEP (3.17) has no solution pair (λ, z) with 0 6= z ∈ N (CT) and

λ ∈ eig(PAP). Then any pair (λ, u) satisfying the constraints of LGopt (3.14) gives rise to a pair

(λ, z) with z = (PAP − λI)−2b0 that satisfies QEP (3.17). Conversely, any pair (λ, z) with z 6= 0

satisfying QEP (3.17) leads to a pair (λ, u) with u := −(PAP−λI)−1b0 that satisfies the constraints

of LGopt (3.14).

As a corollary of Lemma 3.2.2, we conclude that LGopt (3.14) is equivalent to

QEPmin:


min λ

s.t. (PAP − λI)2z = γ−2b0b
T
0 z,

λ ∈ R, 0 6= z ∈ N (CT),

(3.19a)

(3.19b)

(3.19c)

under the assumptions of Lemma 3.2.2. Soon we show that LGopt (3.14) and QEPmin (3.19) are

still equivalent even without the assumptions.

We name the minimization problem (3.19) QEPmin because the constraint (3.19b) is a

quadratic eigenvalue problem (QEP). Although this QEP generally may have complex eigenvalues

λ, the “min” in (3.19a) implicitly restricts the consideration only to the real eigenvalues λ of QEP

(3.19b) in the context of QEPmin (3.19). In this sense, there is no need to specify λ ∈ R in

–25–

(3.19c), but we are doing it anyway to emphasize the implication. This comment applies to two

other minimization problems pQEPmin (3.28) and rQEPmin (3.62) later that involve a QEP as a

constraint as well.

In the rest of this section, we prove the equivalence between LGopt (3.14) and QEPmin

(3.19) without the assumptions of Lemma 3.2.2. The key idea is is to remove the null space

conditions u, z ∈ N (CT) by projecting equations (3.14b), (3.14c) in LGopt and (3.19b) in QEPmin

onto an appropriate subspace.

3.2.4 pLGopt

Let S = [S1, S2] ∈ Rn×n be an orthogonal matrix with

R(S1) = N (CT), R(S2) = N (CT)⊥. (3.20)

Since rank(C) = m, we know S1 ∈ Rn×(n−m) and S2 ∈ Rn×m. It can be verified that the projection

matrix P = I − CC† in (3.3) can be written as

P = S1S
T
1 = I − S2ST

2 , (3.21)

and we have

PS1 = S1, PS2 = 0. (3.22)

Set

g0 = ST
1 b0, H = ST

1 PAPS1 = ST
1 AS1 ∈ R(n−m)×(n−m), (3.23)

we have

STPAPS =

ST
1 PAPS1 ST

1 PAPS2

ST
2 PAPS1 ST

2 PAPS2

 =


n−m m

n−m H 0

m 0 0

, (3.24a)

STb0 =

ST
1 b0

ST
2 b0

 =

n−m g0

m 0

. (3.24b)

Immediately from the decomposition (3.24a), we conclude the following lemma:

–26–

Lemma 3.2.3. The eigenvalues of PAP consist of those of H and 0 with multiplicities m, i.e.,

eig(PAP) = eig(H) ∪ {0, 0, . . . , 0}. If 0 6= λ ∈ eig(PAP), then λ ∈ eig(H) and its associated

eigenvector must be in N (CT). The matrix PAP has more than m eigenvalues 0 if and only if H

is singular. For each eigenvalue 0 of PAP coming from eig(H), there is an eigenvector z of PAP

such that Pz 6= 0 (in fact, Pz is an eigenvector for that particular eigenvalue 0 as well).

To explicitly eliminate the constraint u ∈ N (CT) in LGopt (3.14), we project LGopt

(3.14) onto R(S1) and introduce the following projected minimization problem

pLGopt:


min λ

s.t. (H − λI)y = −g0,

‖y‖ = γ.

(3.25a)

(3.25b)

(3.25c)

The next theorem establishes the equivalence between LGopt (3.14) and pLGopt (3.25).

Theorem 3.2.3. The pair (λ∗, y∗) is a minimizer of pLGopt (3.25) if and only if (λ∗, u∗) with

u∗ = S1y∗ is a minimizer of LGopt (3.14).

Proof. We begin by showing the equivalence between the constraints of LGopt (3.14) and those of

pLGopt (3.25). Note that any 0 6= u ∈ N (CT) can be expressed by u = S1y for some 0 6= y ∈ Rn−m

and vice versa. Making use of (3.24), we have

ST[(PAP − λI)u+ b0] = ST(PAP − λI)SSTu+ STb0

=

H − λI 0

0 −λI


y

0

+

g0
0

 , (3.26)

and

uTu = yTST
1 S1y = yTy. (3.27)

Now if (λ, u) satisfies the constraints of LGopt (3.14), then ST[(PAP − λI)u + b0] = 0 because

of (3.14b), u = S1y for some y because of (3.14d), and ‖y‖ = γ because of (3.14c) and (3.27). It

follows from (3.26) that (H − λI)y+ g0 = 0. Thus (λ, y) satisfies the constraints of pLGopt (3.25).

On the other hand, suppose (λ, y) satisfies the constraints of pLGopt (3.25). Let u =

S1y ∈ N (CT). Both (3.26) and (3.27) remain valid. Then ST[(PAP −λI)u+ b0] = 0 which implies

–27–

(PAP −λI)u+b0 = 0 because ST is an orthogonal matrix. Also ‖u‖ = γ by (3.27). This completes

the proof of that (λ, u) satisfies the constraints of LGopt (3.14).

Therefore, LGopt (3.14) and pLGopt (3.25) have the same optimal value λ∗. More than

that, if (λ∗, u∗) is a minimizer of LGopt (3.14), then there exists y∗ such that u∗ = S1y∗ and that

(λ∗, y∗) is a minimizer of pLGopt (3.25), and vice versa.

We note that for a modest-sized CRQopt (3.1), say n up to 2000, we may as well perform

the reduction to form pLGopt (3.25) explicitly. Due to its modest size, pLGopt (3.25) can be solved

as a dense matrix computational problem. The detail is buried later in the proof of Lemma 3.2.4.

3.2.5 pQEPmin

For the same purpose as we projected the Lagrange equations, we introduce the following

projected minimization problem as the counterpart of QEPmin (3.19):

pQEPmin:


min λ

s.t. (H − λI)2w = γ−2g0g
T
0 w,

λ ∈ R, w 6= 0.

(3.28a)

(3.28b)

(3.28c)

The equation in (3.28b) has an appearance of a QEP. As stated, the optimal value of pQEPmin

(3.28) is the smallest real eigenvalue of QEP (3.28b). The next theorem establishes the equivalence

between QEPmin (3.19) and pQEPmin (3.28).

Theorem 3.2.4. The pair (λ∗, w∗) is a minimizer of pQEPmin (3.28) if and only if (λ∗, z∗) with

z∗ = S1w∗ is a minimizer of QEPmin (3.19).

Proof. Similarly, we begin by showing the equivalence between the constraints of QEPmin (3.19)

and those of pQEPmin (3.28). Keeping (3.24) in mind, we have for any z = S1w

ST
[
(PAP − λI)2z − γ−2 b0bT0 z

]
= ST(PAP − λI)SST(PAP − λI)SSTz − γ−2 STb0b

T
0 SS

Tz

=

(H − λI)2 0

0 λ2I


w

0

−
γ−2 g0gT0 0

0 0


w

0

 . (3.29)

–28–

Now if (λ, z) satisfies the constraints of QEPmin (3.19), then 0 6= z ∈ N (CT) and thus z = S1w

for some 0 6= w ∈ Rn−m. Therefore, by (3.29), (λ,w) satisfies (3.28b).

On the other hand, suppose (λ,w) satisfies (3.28b) and (3.28c). Let z = S1w ∈ N (CT).

Then z 6= 0 and by (3.29), ST[(PAP − λI)2z − γ−2b0bT0 z] = 0. Since ST is orthogonal, we get

(3.19b). This proves that (λ, z) satisfies the constraints of QEPmin (3.19).

Therefore, QEPmin (3.19) and pQEPmin (3.28) have the same optimal value λ∗. More

than that, if (λ∗, z∗) is a minimizer of QEPmin (3.19), then there exists w∗ 6= 0 such that z∗ = S1w∗

and that (λ∗, w∗) is a minimizer of pQEPmin (3.28), and vice versa.

3.2.6 pLGopt and pQEPmin are equivalent

Although, in leading to pLGopt (3.25) and pQEPmin (3.28), the matrix H and the vector

g0 are derived from reducing A, C, and b in the original CRQopt (3.1), the developments in this

section does not require that. Given this, in the rest of this section, we consider general pLGopt

(3.25) and pQEPmin (3.28) with2

H ∈ R`×`, HT = H, 0 6= g0 ∈ R`, and γ > 0.

To set up the stage for the rest of this subsection, we let H = YΘY T be the eigen-decomposition

of H:

H = YΘY T with Θ = diag(θ1, θ2, . . . , θ`), Y = [y1, y2, . . . , y`], Y
TY = I`. (3.30)

Without loss of generality, we arrange θi in the ascending order, i.e.,

θ1 = θ2 = · · · = θd < θd+1 ≤ · · · ≤ θ`,

so λmin(H) = θ1. Define the secular function

χ(λ) := gT0 (H − λI)−2g0 − γ2 = (Y Tg0)
T(Θ− λI)−2(Y Tg0)− γ2 =

l∑
i=1

ξ2i
(λ− θi)2

− γ2, (3.31)

where ξi = gT0 yi for i = 1, 2, · · · , n, and let

j0 = min{i : ξi 6= 0}. (3.32)

2Unlike before, there is no need to assume γ < 1. In addition, the size of square matrix H and vector g0 can be
arbitrary, not necessarily equal to n−m.

–29–

Lemma 3.2.4. Let (λ∗, y∗) be a minimizer of pLGopt (3.25). The following statements hold.

(a) λ∗ ≤ λmin(H).

(b) λ∗ = λmin(H) if and only if

g0⊥ U and ‖(H − λmin(H)I)†g0‖2 ≤ γ,

where U is the eigenspace of H associated with its eigenvalue λmin(H).

(c) If g0 is not perpendicular to U , then λ∗ < λmin(H) and λ∗ is the smallest root of the secular

function χ(λ), and y∗ = −(H − λ∗I)−1g0.

Proof. The secular function χ(λ) in (3.31) is continuous on (−∞, θ1) and lim
λ→−∞

χ(λ) = −γ2 < 0.

Since

χ′(λ) = −2
∑̀
i=1

ξ2i
(λ− θi)3

> 0 for λ < θ1,

χ(λ) is strictly increasing in (−∞, θ1). We have the following situations to deal with:

(1) If g0 is not perpendicular to U , then
∑d

i=1 ξ
2
i > 0, i.e., j0 ≤ d, then lim

λ→θ−1
χ(λ) = +∞ > 0.

There exists a unique λ∗ ∈ (−∞, θ1) such that χ(λ∗) = 0. Let y∗ = −(H − λ∗I)−1g0. We have

(H − λ∗I)y∗ = −g0, yT∗ y∗ = gT0 (H − λ∗I)−2g0 = χ(λ∗) + γ2 = γ2.

Therefore, (λ∗, y∗) satisfies the constraints of pLGopt (3.25).

(2) Suppose that g0⊥U , then
∑d

i=1 ξ
2
i = 0, i.e., j0 > d. Let

w = −(H − θ1I)†g0 = −
∑̀
i=d+1

ξi
θi − θ1

yi.

Then (H − θ1I)w = −g0 and lim
λ→θ−1

χ(λ) = wTw − γ2. There are three subcases to consider.

(i) If ‖w‖ > γ, then there exists a unique λ∗ ∈ (−∞, θ1) such that χ(λ∗) = 0. Moreover

(λ∗, y∗) with y∗ = −(H − λ∗I)−1g0 satisfies the constraints of pLGopt (3.25).

(ii) If ‖w‖ = γ, then (λ∗, y∗) with λ∗ = θ1 and y∗ = w satisfies the constraints of pLGopt

(3.25).

(iii) If ‖w‖ < γ, then (λ∗, y∗) with λ∗ = θ1 and y∗ = w+
√
γ2 − ‖w‖2 y1 satisfies the constraints

of pLGopt (3.25).

–30–

So far we have proved that (λ∗, y∗) satisfies the constraints of pLGopt (3.25) for all situations. Now

we prove λ∗ is the smallest Lagrange multiplier of pLGopt (3.25). Suppose there exists λ̂ < λ∗ such

that (λ̂, ŷ) satisfies the constraints of pLGopt (3.25), then λ̂ < λ∗ ≤ θ1, so λ̂ /∈ eig(H). Therefore,

in order to make (λ̂, ŷ) satisfies (3.25b), we have ŷ = −(H − λ̂I)−1g0. Note that lim
λ→λ−∗

χ(λ) ≤ 0 for

all cases and χ(λ) is strictly increasing in (−∞, λ∗), so χ(λ̂) = ŷTŷ−γ2 < 0, which is contradictory

to (3.25c) that ‖ŷ‖ = γ. Therefore, λ∗ is the smallest Lagrangian multiplier, and thus (λ∗, y∗) is a

minimizer of pLGopt (3.25).

For all situations, the smallest Lagrangian multiplier λ∗ of pLGopt (3.25) satisfies λ∗ ≤

λmin(H), as expected. Also λ∗ = θ1 can only happen in the subcase (ii) or (iii).

Buried in the proof above is a viable numerical algorithm to solve pLGopt (3.25), provided

λ∗ in the case (a) and the subcase (i) of the case (b) can be efficiently solved. In both cases, it is

the unique root of secular equation χ(λ) = 0 in (−∞, θ1) in which χ(λ) monotonically increasing.

A default method is Newton’s method which applies the tangent line approximation, since both

χ(λ) and its derivative χ′(λ) is rather straightforward to evaluate. However, this secular equation

χ(λ) = 0 has a special rational form. Previous ideas in solving secular equations of similar types

[8, 17, 36, 70] can be adopted to devise a much fast method than Newton’s method. Details are

presented in Section 2.2.2.

Lemma 3.2.5. If (λ, y) satisfies the constraints of pLGopt (3.25), then there exists a vector w ∈ R`

such that (λ,w) satisfies the constraints of pQEPmin (3.28). Specifically,

w =


(H − λI)−1y, if λ /∈ eig(H),

the corresponding eigenvector of H, if λ ∈ eig(H).

In particular, the optimal value of pQEPmin (3.28) is less than or equal to the optimal value of

pLGopt (3.25).

Proof. There are two cases to consider.

• Case λ ∈ eig(H): Let w be an eigenvector of H corresponding to eigenvalue λ, i.e., Hw = λw.

By (3.25b), g0 = −(H − λI)y, and thus

γ−2g0g
T
0 w = −γ−2g0yT(H − λI)w = 0.

–31–

Evidently, (H − λI)2w = 0. Hence (λ,w) satisfies (3.28b).

• Case λ 6∈ eig(H): Let w = (H − λI)−1y. Using (3.25b), we have

(H − λI)2w = (H − λI)y = −g0,

γ−2g0g
T
0 w = γ−2g0g

T
0 (H − λI)−1y = −γ−2g0yTy = −g0.

Again (λ,w) satisfies (3.28b).

This proves that (λ,w) satisfies the constraints of pQEPmin (3.28). As a corollary, the optimal

value of pQEPmin (3.28) is less than or equal to the optimal value of pLGopt (3.25).

The next lemma claims a stronger conclusion than the last statement in the previous

lemma.

Lemma 3.2.6. The optimal value of pLGopt (3.25) is equal to the optimal value of pQEPmin

(3.28).

Proof. Let (λ∗, y∗) be a minimizer of pLGopt (3.25), and let λ̂ be the optimal value of pQEPmin

(3.28). By Lemma 3.2.5, we have λ̂ ≤ λ∗. It suffices to show that λ̂ < λ∗ cannot happen. Assume,

to the contrary, that λ̂ < λ∗. By Lemma 3.2.4, we have λ̂ < λmin(H). In particular, λ̂ /∈ eig(H).

Let (λ̂, ŵ) be a minimizer of pQEPmin (3.28). By (3.28b), we have

1

γ2
(ŵTg0)

2 = ŵT 1

γ2
g0g

T
0 ŵ = ŵT(H − λ̂I)2ŵ > 0,

implying gT0 ŵ 6= 0. Let ŷ = −(γ2/gT0 ŵ) (H − λ̂I)ŵ, and observe that

(H − λ̂I)ŷ = − γ2

gT0 ŵ
· (H − λ̂I)2ŵ = − γ2

gT0 ŵ
· γ−2g0gT0 ŵ = −g0, (3.33a)

ŷTŷ =

(
γ2

gT0 ŵ

)2

ŵT(H − λ̂I)2ŵ =

(
γ2

gT0 ŵ

)2
ŵTg0g

T
0 ŵ

γ2
= γ2, (3.33b)

i.e., (λ̂, ŷ) satisfies the constraints of pLGopt (3.25). This implies λ∗ ≤ λ̂, contradicting the as-

sumption λ̂ < λ∗. Therefore, λ̂ = λ∗, as expected.

We are ready to establish the equivalence between pLGopt (3.25) and pQEPmin (3.28).

Theorem 3.2.5 (pLGopt (3.25) and pQEPmin (3.28) are equivalent).

–32–

(1) Let (λ∗, y∗) be a minimizer of pLGopt (3.25). Then either λ∗ < λmin(H) or λ∗ = λmin(H),

and there exists w∗ such that (λ∗, w∗) is a minimizer of pQEPmin (3.28). Specifically,

w∗ =


(H − λ∗I)−1y∗, if λ∗ < λmin(H),

the corresponding eigenvector of H, if λ∗ = λmin(H).

(2) Conversely, if (λ∗, w∗) is a minimizer of pQEPmin (3.28), then there exists y∗ such that

(λ∗, y∗) is a minimizer of pLGopt (3.25). Specifically,

y∗ =


−(γ2/gT0 w∗) (H − λ∗I)w∗, if gT0 w∗ 6= 0,

x∗ +
√
γ2 − ‖x∗‖2 (w∗/‖w∗‖), if gT0 w∗ = 0,

where x∗ = −(H − λ∗I)†g0 in the case gT0 w∗ = 0, and it is guaranteed that ‖x∗‖ ≤ γ.

Proof. Item (1) is a consequence of Lemmas 3.2.5 and 3.2.6.

Consider item (2). Suppose (λ∗, w∗) is a minimizer of pQEPmin (3.28). By Lemma 3.2.6,

it suffices to show that there exists y∗ such that (λ∗, y∗) satisfies the constraints of pLGopt (3.25).

• Case gT0 w∗ 6= 0: The equations in (3.33) hold with substitutions

λ̂→ λ∗, ŷ → y∗ = −(γ2/gT0 w∗) (H − λ∗I)w∗.

So (λ∗, y∗) satisfies the constraints of pLGopt (3.25).

• Case gT0 w∗ = 0: By (3.28b), we find that (H − λ∗I)2w∗ = 0, implying (H − λ∗I)w∗ = 0 since

H − λ∗I is real symmetric. Hence λ∗ ∈ eig(H) and w∗ is an associated eigenvector. Let x∗

be the minimum norm solution of (H − λ∗I)x∗ = −g0. Note that we already know λ∗ is the

optimal value of pLGopt (3.25), which means there exists y such that (λ∗, y) satisfies (3.25b)

and ‖y‖ = γ. On the other hand, x is minimal norm solution of (3.25b), so ‖x‖ ≤ ‖y‖ = γ.

Then it can be verified that (λ∗, y∗) with y∗ = x∗ +
√
γ2 − ‖x∗‖2 (w∗/‖w∗‖) satisfies the

constraints of pLGopt (3.25).

This proves that (λ∗, y∗) satisfies the constraints of pLGopt (3.25). In addition, by Lemma 3.2.6,

λ∗ is the optimal value of pLGopt (3.25), which proves the result.

The following theorem is about the uniqueness of the solution for pLGopt (3.25).

–33–

Theorem 3.2.6 (Uniqueness of the minimizer for pLGopt (3.25)). Let (λ∗, w∗) be a mini-

mizer of pQEPmin (3.28).

(1) If gT0 w∗ 6= 0 for all possible minimizers for pQEPmin (3.28), then λ∗ < λmin(H) and the

minimizer of pLGopt (3.25) is unique.

(2) If there exists a minimizer for pQEPmin (3.28) such that gT0 w∗ = 0, then λ∗ = λmin(H) and

the minimizer of pLGopt (3.25) is unique if and only if ‖x∗‖ = γ, where x∗ = −(H−λ∗I)†g0.

Proof. (1) First we prove λ∗ < λmin(H). Suppose it is not true, i.e., λ∗ = λmin(H), let w∗ be an

eigenvector of H corresponding with eigenvalue λmin(H), then by Theorem 3.2.5, (λ∗, w∗) is

a minimizer of pQEPmin (3.28). Since QEP (3.28b) leads to γ−2g0g
T
0 w∗ = (H −λ∗I)2w∗ = 0

and w∗ 6= 0, we have gT0 w∗ = 0, which is contradictory to our assumption that gT0 w∗ 6= 0 for

all possible minimizers (λ∗, w∗) of pQEPmin (3.28). Therefore, λ∗ < λmin(H).

In this case (λ∗, x∗ = −(H − λ∗I)−1g0) is the unique minimizer of pLGopt (3.25) since the

H − λ∗I is nonsingular and x∗ is the unique solution of (3.25b).

(2) Making use of (3.28b), we have

(H − λ∗I)2w∗ = γ−2g0g
T
0 w∗ = 0 ⇒ (H − λ∗I)w∗ = 0

because H − λ∗I is real symmetric. Therefore λ∗ ∈ eig(H), which yields λ∗ = λmin(H). Note

that x∗ is unique and w∗ can be chosen arbitrarily in the eigenspance of H corresponding

with eigenvalue λmin(H), so w∗ is not unique. Therefore, y∗ = x∗ +
√
γ2 − ‖x∗‖2 (w∗/‖w∗‖)

is unique if and only if ‖x∗‖ = γ.

Remark 3.2.1. In [17], the authors investigate the relationship between the problems

pLG: (H − λI)y = −g0, ‖y‖ = γ, (3.34)

pQEP: (H − λI)2w = γ−2g0g
T
0 w, λ ∈ R, w 6= 0. (3.35)

They differ from pLGopt and pQEPmin, respectively, just without taking the min over λ. The

following results were obtained there:

–34–

1. If (λ, y) is a solution of pLG (3.34), then there exists w such that (λ,w) is a solution of pQEP

(3.35).

2. Suppose that (λ,w) is a solution of pQEP (3.35).

• If λ /∈ eig(H), then there exists y such that (λ, y) is a solution of pLG (3.34).

• If λ ∈ eig(H), then there exists y such that (λ, y) is a solution of pLG (3.34) if and only

if ‖(H − λI)†g0‖ ≤ γ.

Consequently, these results provide no guarantee that for any solution (λ,w) of pQEP (3.35), there

exists a corresponding solution (λ, y) of pLG (3.34). Nonetheless, the authors stated without any

proof that for the solution (λ∗, w∗) of pQEP (3.35) with λ∗ being the smallest eigenvalue of pQEP

(3.35), there does exist a solution (λ∗, y∗) of pLGopt (3.25), a conclusion that doesn’t look like a

straightforward one to us. Because of that, in Theorem 3.2.5 we rigorously proved that for any

minimizer (λ∗, w∗) of pQEPmin (3.28), there exists y∗ such that (λ∗, y∗) is a minimizer of pLGopt

(3.25). 2

Next we will establish an important result in Theorem 3.2.7 below that says the leftmost

eigenvalue of QEP (3.28b) is real. We begin by establishing a close relationship in Lemma 3.2.7

between the zeros of the secular function χ(λ) in (3.31) and the eigenvalues of QEP (3.28b), and then

using the relation to expose an eigenvalue distribution property of QEP (3.28b) in Lemmas 3.2.8

and 3.2.9, in preparing for proving our main result in Theorem 3.2.7.

Lemma 3.2.7. Suppose λ /∈ eig(H), λ (possibly complex) is an eigenvalue of QEP (3.28b) if and

only if χ(λ) = 0, where χ(λ) is defined in (3.31).

Proof. Let χ(λ) = 0 and λ /∈ eig(H). Define z = (H − λI)−2g0. Then we have (H − λI)2z = g0

and

gT0 z =
∑̀
i=1

ξ2i
(θi − λ)2

= γ2 and thus (H − λI)2z = g = γ−2ggT0 z,

i.e., (λ, z) is an eigenpair of QEP (3.28b).

On the other hand, suppose λ is an eigenvalue of QEP (3.28b) and λ /∈ eig(H). Pre-

multiply (3.28b) by gT0 (H − λI)−2 to get

gT0 z = γ−2gT0 (H − λI)−2g0g
T
0 z. (3.36)

–35–

We claim that gT0 z 6= 0. Otherwise, (H − λI)2z = 0 by (3.28b), which implies (H − λI)z = 0, i.e.,

λ ∈ eig(H), a contradiction. So gT0 z 6= 0 and thus it follows from (3.36) that

γ−2gT0 (H − λI)−2g0 = 1,

i.e., λ is a zero of χ(λ), as was to be shown.

Lemma 3.2.8. QEP (3.28b) has no eigenvalue λ = α+iβ with α < θj0 and β 6= 0, where α, β ∈ R,

i is the imaginary unit, and j0 is defined in (3.32).

Proof. Suppose, to the contrary, that QEP (3.28b) has an eigenvalue λ = α+ iβ with α < θj0 and

β 6= 0. Evidently λ = α + iβ /∈ eig(H) because all eigenvalues of H are real. By Lemma 3.2.7,

α+ iβ must be a zero of the secular function χ(λ) in (3.31), i.e.,

0 = χ(α+ iβ) =
∑̀
i=1

ξ2i
(α− θi + iβ)2

− γ2

=
∑̀
i=1

ξ2i
(α− θi)2 − β2 + 2i(α− θi)β

− γ2

=
∑̀
i=1

ξ2i [(α− θi)2 − β2 − 2i(α− θi)β]

[(α− θi)2 − β2]2 + 4β2(α− θi)2
− γ2.

In particular, the imaginary part of χ(α+ iβ) is zero, i.e.,

∑̀
i=1

−2(α− θi)βξ2i
[(α− θi)2 − β2]2 + 4β2(α− θi)2

= β

∑̀
i=j0

−2(α− θi)ξ2i
[(α− θi)2 − β2]2 + 4β2(α− θi)2

 = 0. (3.37)

Since α < θi for all i ≥ j0, ξ2j0 > 0 and ξ2i ≥ 0 for all i > j0, we know

∑̀
i=j0

−2(α− θi)ξ2i
[(α− θi)2 − β2]2 + 4β2(α− θi)2

> 0.

Therefore, by (3.37), we conclude β = 0, a contradiction.

Lemma 3.2.9. QEP (3.28b) has an eigenvalue λ̃ < θj0 (necessarily λ̃ ∈ R), where j0 is defined in

(3.32).

Proof. There are two possible cases:

–36–

• Case θj0 = θ1: Without loss of generality, let ξ1 6= 0. Since χ(λ) is continuous and strictly

increasing in (−∞, θ1), and

lim
λ→−∞

χ(λ) = −γ2 < 0, lim
λ→θ−1

χ(λ) ≥ lim
λ→θ−1

ξ21
(λ− θ1)2

− γ2 = +∞ > 0,

there exists a zero λ̃ ∈ (−∞, θ1) of χ(λ). Evidently λ̃ /∈ eig(H), and then by Lemma 3.2.7, λ̃

must be an eigenvalue of QEP (3.28b).

• Case θj0 > θ1: Let λ̃ = θ1 and z = y1. We have (H − λ̃I)2z = (H − λ̃I)2y1 = 0. Furthermore,

gT0 z = gT0 y1 = ξ1 = 0. Therefore (λ̃, z) satisfies (3.28b), impliying λ̃ is an eigenvalue of QEP

(3.28b) and λ̃ = θ1 < θj0 .

The proof is completed.

With the three lemmas above, now we are ready to prove our main result on the leftmost

eigenvalue of QEP (3.28b).

Theorem 3.2.7. The leftmost eigenvalue, by which we mean the one with the smallest real part,

of QEP (3.28b) is real. As a consequence, the optimal value of pQEPmin (3.28) λ∗ is the leftmost

eigenvalue of QEP (3.28b).

Proof. Let λ∗ = α∗ + iβ∗ be the leftmost eigenvalue. By Lemma 3.2.9, QEP (3.28b) has a real

eigenvalue λ̃ with λ̃ < θj0 . Hence α∗ ≤ λ̃ < θj0 , which together with Lemma 3.2.8 tell us that

β∗ = 0 and thus λ∗ ∈ R.

Remark 3.2.2. In [59], the authors stated without proof that the rightmost eigenvalue of the QEP

((W + λI)2 − δ−2hhT)x = 0 (3.38)

is real and positive, where W is a real symmetric matrix, h is a vector, and δ > 0 is a scalar. It

was pointed out in [35] that the rightmost eigenvalue of (3.38) may not always be positive and

the authors proved in [35, Theorem 4.1] that the largest real eigenvalue of (3.38) is the rightmost

eigenvalue. The authors applied a maximin principle for nonlinear eigenproblems for the proof. In

Theorem 3.2.7 we have proved the leftmost eigenvalue λ∗ of (3.28b) is real, i.e., there is no complex

eigenvalue of QEP (3.28b) with real part equal to λ∗ and nonzero complex part. This result cannot

be obtained by the approach used in [35]. 2

–37–

3.2.7 LGopt and QEPmin are equivalent

Theorem 3.2.5 says that pLGopt (3.25) and pQEPmin (3.28) are equivalent. Previously

in Lemma 3.2.2, we showed that LGopt (3.14) and QEPmin (3.19) are also equivalent under the

assumptions stated there. Our goal in this subsection is to have the assumptions of Lemma 3.2.2

removed.

For convenience, we restate LGopt (3.14) and QEPmin (3.19) as follows:

LGopt:



min λ

s.t. (PAP − λI)u = −b0,

‖u‖ = γ,

u ∈ N (CT);

(3.14a)

(3.14b)

(3.14c)

(3.14d)

QEPmin:


min λ

s.t. (PAP − λI)2z = γ−2b0b
T
0 z,

λ ∈ R, 0 6= z ∈ N (CT).

(3.19a)

(3.19b)

(3.19c)

Recall S1 and S2 as defined in (3.20) and H and g as defined in (3.23). Before stating our

main result in this subsection, we need two lemmas. The first one is about an eigen-relationship

between PAP and H and the second one is on the relationships among PAP − λI, H − λI,

(PAP − λI)† and (H − λI)†.

Lemma 3.2.10. (λ, s) is an eigenpair of H if and only if (λ, S1s) is an eigenpair of PAP with

S1s ∈ N (CT).

Proof. This is a consequence of the decomposition (3.24a).

Lemma 3.2.11. For any λ ∈ R, (PAP −λI)S1 = S1(H−λI) and (PAP −λI)†S1 = S1(H−λI)†.

Proof. Let H = YΘY T be the eigen-decomposition of H, where Y ∈ R(n−m)×(n−m) is orthogonal

and Θ is a diagonal matrix. Then the eigen-decomposition of PAP is given by

PAP = [S1 S2]

Y 0

0 I


Θ 0

0 0


Y T 0

0 I

 [S1 S2]
T. (3.39)

–38–

Therefore (PAP − λI)S1 = S1Y (Θ− λI)Y T = S1(H − λI). On the other hand, for λ 6= 0,

(PAP − λI)† = [S1 S2]

Y 0

0 I


(Θ− λI)† 0

0 − 1
λI


Y T 0

0 I

 [S1 S2]
T,

and for λ = 0,

(PAP)† = [S1 S2]

Y 0

0 I


Θ† 0

0 0


Y T 0

0 I

 [S1 S2]
T.

Hence (PAP − λI)†S1 = S1Y (Θ− λI)†Y T = S1(H − λI)†, as was to be shown.

Now we are ready to state the main result of the subsection.

Theorem 3.2.8 (LGopt (3.14) and QEPmin (3.19) are equivalent).

(1) Let (λ∗, u∗) be a minimizer of LGopt (3.14). Then there exists z∗ such that (λ∗, z∗) is a

minimizer of QEPmin (3.19). Specifically,

z∗ =



(PAP − λ∗I)†u∗, if λ∗ /∈ eig(PAP) or λ∗ ∈ eig(PAP) but there is no

corresponding eigenvector entirely in N (CT),

s, if λ∗ ∈ eig(PAP) and there is a corresponding eigen-

vector s ∈ N (CT).

(2) Let (λ∗, z∗) be a minimizer of QEPmin (3.19). Then there exists u∗ ∈ Rn such that (λ∗, u∗) is

a minimizer of LGopt (3.14). Specifically,

u∗ =


−(γ2/bT0 z∗)(PAP − λ∗I)z∗, if bT0 z∗ 6= 0,

x∗ +
√
γ2 − ‖x∗‖2 (z∗/‖z∗‖), if bT0 z∗ = 0,

where x∗ = −(PAP − λ∗I)†b0 in the case bT0 z∗ = 0 and it is guaranteed that ‖x∗‖ ≤ γ.

Proof. We prove item (1) first. By Theorem 3.2.3, (λ∗, y∗) with y∗ = ST
1 u∗ is a minimizer of pLGopt

(3.25). We have two cases to consider.

(a) If λ∗ /∈ eig(PAP) or λ∗ ∈ eig(PAP) but there is no corresponding eigenvector s ∈ N (CT),

then λ /∈ eig(H) by Lemma 3.2.10. Using Theorem 3.2.5, we conclude that (λ∗, w∗) with

w∗ = (H − λ∗I)−1y∗ = (H − λ∗I)†y∗

–39–

is a minimizer of pQEPmin (3.28). Now use Theorem 3.2.4 to conclude that (λ∗, z∗) with

z∗ = S1(H − λ∗I)†y∗ is a minimizer of QEPmin (3.19). By Lemma 3.2.11,

z∗ = S1(H − λ∗I)†w∗ = (PAP − λ∗I)†S1w∗ = (PAP − λ∗I)†u∗.

(b) Suppose that λ∗ ∈ eig(PAP) and there is a corresponding eigenvector s ∈ N (CT). Then

s = S1r for some 0 6= r ∈ Rn−m. By Lemma 3.2.10, r is an eigenvector of H corresponding to

the eigenvalue λ∗. Use Theorem 3.2.5 to conclude that (λ∗, w∗) with w∗ = r is a minimizer

of pQEPmin (3.28), which in turn, by Theorem 3.2.4, yields that (λ∗, z∗) with z∗ = s = S1r

is a minimizer of QEPmin (3.19).

Next we consider item (2). By Theorem 3.2.4, (λ∗, w∗) with w∗ = ST
1 z∗ is a minimizer of pQEPmin

(3.28). Since b0, z∗ ∈ N (CT), we have z∗ = S1w∗ and bT0 z∗ = gT0 S
T
1 S1w∗ = gT0 w∗.

• Case bT0 z∗ 6= 0: We have gT0 w∗ 6= 0. By Theorem 3.2.5, (λ∗, y∗) with y∗ = −(γ2/gT0 w∗) (H −

λ∗I)w∗ solves pLGopt (3.25). By Theorem 3.2.3, (λ∗, u∗) with u∗ = −(γ2/gT0 w∗)S1(H −

λ∗I)w∗ solves LGopt (3.14). Furthermore, by Lemma 3.2.11, (PAP − λ∗I)z∗ = (PAP −

λ∗I)S1w∗ = S1(H−λ∗I)w∗. Therefore u∗ = −(γ2/gT0 w∗)S1(H−λ∗I)w∗ = −(γ2/bT0 z) (PAP−

λ∗I)z∗.

• Case bT0 z∗ = 0: We have gT0 w∗ = 0 and z∗ is an eigenvector of PAP corresponding to its

eigenvalue λ∗. By Lemma 3.2.10, y∗ = ST
1 z∗ is an eigenvector of H corresponding to its

eigenvalue λ∗. Let s = −(H − λ∗I)†g, according to Theorem 3.2.5, ‖s‖ ≤ γ and (λ∗, w∗)

with w∗ = s +
√
γ2 − ‖s‖2 (y∗/‖y∗‖) solves pLGopt (3.25). By Theorem 3.2.4, (λ∗, u∗) with

u∗ = S1w∗ is a minimizer of LGopt (3.14). Now set

x∗ = S1s = −S1(H − λ∗I)†g = −(PAP − λ∗I)†b0,

and thus

u∗ = S1w∗ = S1s+
√
γ2 − ‖S1s‖2

S1y∗
‖S1y∗‖

= x∗ +
√
γ2 − ‖x∗‖2

z∗
‖z∗‖

,

as expected.

This completes the proof.

–40–

We note that proving the equivalence between LGopt (3.14) and QEPmin (3.19) is of

theoretical interest. The proof in [17] is incomplete since in Remark 3.2.1 we mentioned that they

did not prove that pLGopt (3.25) and pQEPmin (3.28) are equivalent. Here we provided a complete

proof in Theorem 3.2.8.

Returning to the original CRQopt (3.1), we observe that if (λ∗, u∗) solves LGopt (3.14),

then n0 + u∗ solves CRQopt (3.1). Therefore immediately we obtain the following theorem.

Theorem 3.2.9. Suppose (λ∗, z∗) is a minimizer of QEPmin (3.19). Then a minimizer v∗ of

CRQopt (3.1) is given by

v∗ =


n0 − (γ2/bT0 z∗) (PAP − λ∗I)z∗, if bT0 z∗ 6= 0,

n0 + x∗ +
√
γ2 − ‖x∗‖2 (z∗/‖z∗‖), if bT0 z∗ = 0,

where x∗ = −(PAP − λ∗I)†b0 in the case of bT0 z∗ = 0 and it is guaranteed that ‖x∗‖ ≤ γ.

What the next theorem says is that solving QEPmin (3.19) is equivalent to calculating the

leftmost eigenvalue of QEP (3.19b) among those having eigenvectors3 in N (CT). This result paves

the way for the use of a Krylov subspace method to calculate the minimizer of QEPmin (3.19) in

Section 3.3 ahead.

Theorem 3.2.10. If (λ∗, z∗) is a minimizer of QEPmin (3.19), then λ∗ is the leftmost eigenvalue

of QEP (3.19b) among those having eigenvectors in N (CT).

Proof. Following the argument in the proof of Theorem 3.2.4, we find that the set of eigenvalues

of QEP (3.19b) that have eigenvectors in ∈ N (CT) and the set of eigenvalues of QEP (3.28b) are

the same. The conclusion is an immediate consequence of Theorems 3.2.4 and 3.2.7.

3.2.8 Summary

Starting with CRQopt (3.1), we have introduced five equivalent optimization problems.

Figure 3.1 summarizes the relationships of these problems. The edge “←→” in Figure 3.1 connect-

ing two optimization problems indicates that we have an equivalent relationship in the previous

subsections. We note that CRQopt (3.1) and CQopt (3.6) share the same minimizers v∗, while corre-

spondingly the minimizer for LGopt (3.14) is u∗ = Pv∗. Slightly more efforts are needed to describe

3This does not exclude the possibility that they may have eigenvectors not in N (CT).

–41–

CRQopt (3.1)
Theorem 3.2.1

-� CQopt (3.6)

Theorem 3.2.2

�
�
���
�
�	

LGopt (3.14)

pLGopt (3.25)

-� Theorem 3.2.8

-� Theorem 3.2.5

QEPmin (3.19)

pQEPmin (3.28)
?

6

Theorem 3.2.3

?

6

Theorem 3.2.4

Figure 3.1: Equivalence of optimization problems

corresponding minimizers for other equivalent optimization problems as shown in Figure 3.1. The

optimal values for the objective functions of LGopt (3.14), pLGopt (3.25), QEPmin (3.19), and

pQEPmin (3.28) are all the same. The proof of Theorem 3.2.8 relies on Theorems 3.2.3, 3.2.4, and

3.2.5.

3.2.9 Easy and hard cases

Motivated by the treatments of the trust-region subproblem [45, 70], QEPmin (3.19) can

be classified into two categories: the easy case and the hard case, defined as follows.

Definition 3.2.1. QEPmin (3.19) is in the hard case if it has a minimizer (λ∗, z∗) with bT0 z∗ = 0.

Otherwise, QEPmin (3.19) is in the easy case. Furthermore, any one of the equivalent optimization

problems as shown in Figure 3.1 is said to be in the hard or easy case if the corresponding QEPmin

is.

This notion of hardness and easiness exists has its historical reason in dealing with the

trust-region subproblem. The hard case is not really hard as its name suggests when it comes to

numerical computation. It is just a degenerate and rare case that needs special attention. The

easy case is a generic one. Consider the hard case, let V be the maximal eigenspace of PAP

corresponding to eigenvalue λ∗, then b0⊥V by Theorem 3.2.11. This creates difficulties to our

later Lanczos method to solve QEPmin (3.19) in that the Krylov subspace Kk(PAP, b0) ⊂ V⊥ for

any k. So in theory there is no vector in Kk(PAP, b0) can approximate any eigenvector z ∈ V well.

In Theorems 3.2.11 and 3.2.12 below, we present a number of characterizations about the

hard case.

Lemma 3.2.12. QEPmin (3.19) is in the hard case if and only if pQEPmin (3.28) has a minimizer

(λ∗, w∗) satisfying gT0 w∗ = 0.

–42–

Proof. To see this, we let (λ∗, z∗) be a minimizer QEPmin (3.19) satisfying bT0 z∗ = 0. By Theo-

rem 3.2.4, we know that z∗ and w∗ are related by z∗ = S1w∗. Since also b0 = S1g0, b
T
0 z∗ = gT0 w∗.

Theorem 3.2.11. Suppose that QEPmin (3.19) is in the hard case, and let (λ∗, z∗) be a minimizer

such that bT0 z∗ = 0. Then we have the following statements:

(1) λ∗ = λmin(H), the smallest eigenvalue of H;

(2) g0⊥U , where U is the eigenspace of H associated with its eigenvalue λmin(H);

(3) b0⊥V, where V is the eigenspace of PAP associated with its eigenvalue λmin(H) ∈ eig(PAP).

Proof. By Lemma 3.2.12, pQEPmin (3.28) has a minimizer (λ∗, w∗) satisfying gT0 w∗ = 0. Theo-

rem 3.2.6 immediately leads to item (1). Item (2) is a corollary of Lemma 3.2.4.

For item (3), it follows from Lemma 3.2.3 that if λmin(H) 6= 0, then V = S1U . Since

b0 = S1g0 and g0⊥U by item (2), we conclude that b0⊥S1U . If, however, λmin(H) = 0, then

V = S1U +R(S2). Since again g0⊥U by item (2) and also b0⊥R(S2), we still have b0⊥V.

Theorem 3.2.12. QEPmin (3.19) is in the hard case if and only if

g0⊥U and ‖[H − λmin(H)I]†g0‖2 ≤ γ, (3.40)

where U is as defined in Theorem 3.2.11.

Proof. If QEPmin (3.19) is in the hard case, then its optimal value (which is also the one of LGopt

(3.14)) λ∗ = λmin(H). This can only happen when (3.40) holds. On the other hand, if (3.40) holds,

then λ∗ = λmin(H) by Lemma 3.2.4. By Theorem 3.2.5, pQEPmin (3.28) has a minimizer (λ∗, w∗),

where Hw∗ = λ∗w∗. Thus gT0 w∗ = 0 because g0⊥U and w∗ ∈ U . Hence QEPmin (3.19) is in the

hard case by Lemma 3.2.12.

When QEPmin (3.19) is in the easy case, the situation is much simpler to characterize.

Theorem 3.2.13. CRQopt (3.1) has a unique minimizer when QEPmin (3.19) is in the easy case.

Proof. Suppose that QEPmin (3.19) is in the easy case. By Definition 3.2.1, all minimizers (λ∗, w∗)

of pQEPmin (3.28) satisfy gT0 w∗ 6= 0. Theorem 3.2.6 guarantees that pLGopt (3.25) has a unique

minimizer. Consequently, the minimizer of LGopt (3.14) is unique by Theorem 3.2.3 and so is the

minimizer of CRQopt (3.1).

–43–

We use the remaining part of this subsection to explain how CRQopt (3.1) and the well-

known trust-region subproblem (TRS) are related.

We have already proved in Theorem 3.2.1 that CRQopt (3.1) is equivalent to CQopt (3.6).

Set u = Pv. Solving CQopt (3.6) is equivalent to solving


min uTPAPu+ 2uTb0,

s.t. ‖u‖ = γ,

u ∈ N (CT).

(3.41a)

(3.41b)

(3.41c)

Let H and g0 be defined in (3.23) and S1 be defined in (3.20). Then u is a minimizer of optimiza-

tion problem (3.41) if and only if y = ST
1 u is a minimizer of the following equality constrained

optimization problem min yTHy + 2yTg0,

s.t. ‖y‖ = γ.

(3.42a)

(3.42b)

The Lagrange equations for (3.42) is exactly the same as pLGopt (3.25). The problem (3.42) is

similar to TRS min yTHy + 2yTg0,

s.t. ‖y‖ ≤ γ,

(3.43a)

(3.43b)

except that its constraint is an equality instead of an inequality. When H is not positive definite,

solution of (3.42) and TRS (3.43) are exactly the same. But when H is positive definite, we need

to check whether ‖H−1g0‖ < γ. If so, H−1g0, instead of the minimizer of (3.42), is the minimizer

of TRS (3.43). If, however, ‖H−1g0‖ ≥ γ, then the minimizer of TRS (3.43) is the same as that of

(3.42).

Lemma 2.1 in [28] shows that y is the (3.43) of (3.42) if and only if there exists λ̂ ∈ R such

that (λ̂, y) satisfies the constraints of pLGopt (3.25) and H− λ̂I is positive semi-definite. According

to Lemma 3.2.4, the optimal value of pLGopt (3.25) satisfies λ∗ ≤ λmin(H), which indicates that

H − λ∗I is positive semi-definite. Therefore, solving the equality constrained problem (3.42) is

equivalent to solving pLGopt (3.25).

As we have mentioned, the terms “easy” and “hard” were adopted from the treatments

of the trust-region subproblem [45, 70], where the term “easy” means the associated case is easy

–44–

to explain, not implying the case is easy to solve, however. A more detailed connection with TRS

(3.43) is as follows.

1. In the easy case of QEPmin (3.19), bT0 z∗ 6= 0 for all mimimizers (λ∗, z∗). By Theorem 3.2.4,

z∗ = S1w∗ for some w∗ ∈ Rn−m and thus gT0 w∗ = bT0 S1w∗ = bT0 z∗ 6= 0. By Theorem 3.2.6,

λ∗ < λmin(H), and thus (λ∗, y∗) with y∗ = (H − λ∗I)−1g0 is the unique minimizer of pLGopt

(3.25). Hence y∗ is the unique minimizer of (3.42), which is related to the easy case of TRS

(3.43).

2. In the hard case of QEPmin (3.19), there exists a minimizer (λ∗, z∗) such that bT0 z∗ = 0.

Again by Theorem 3.2.4, z∗ = S1w∗ for some w∗ ∈ Rn−m and gT0 w∗ = 0. By Theorem 3.2.5,

a minimizer of pLGopt (3.25) is given by

(λ∗, y∗) with y∗ = x∗ +
√
γ2 − ‖x∗‖2

w∗
‖w∗‖

,

where x∗ = −(H − λ∗I)†g0 and it is guaranteed that ‖x∗‖ ≤ γ. Therefore, in general a

minimizer of (3.42) can be expressed by y∗ = x∗ +
√
γ2 − ‖x∗‖2 (w∗/‖w∗‖), which is related

to hard case of TRS (3.43).

It is known that the generalized Lanczos method does not work for TRS (3.43) in the hard case [70,

Theorem 4.6]. A restarting strategy was proposed to overcome the difficulty, but it was commented

that the strategy computationally is very expensive for large scale problems [25, Theorem 5.8].

In the next section, we present that the Lanczos algorithms for CRQopt (3.1), which

resemble the generalized Lanczos method for TRS and are suitable for handling the easy case.

However, with some additional effort, the hard case can be detected. In the rest of this dissertation,

we mostly focus only on the easy case.

3.3 Lanczos algorithm

As was shown in Section 3.2, solving CRQopt (3.1) is equivalent to solving LGopt (3.14)

or QEPmin (3.19). In this section we present algorithms to solve CRQopt (3.1) by solving LGopt

(3.14) and QEPmin (3.19). We first review the Lanczos procedure in section 2.1, then we apply

the procedure to reduce LGopt (3.14) and QEPmin (3.19), and finally solve the reduced LGopt

–45–

and QEPmin to yield approximations to the minimizer of the original CRQopt (3.1). Besides, we

prove the finite step stopping property of the proposed algorithms and comment on how to detect

the hard case.

3.3.1 Solving LGopt

In this subsection, we first use (2.3) obtained by the Lanczos process with M = PAP

to reduce LGopt (3.14), and then solve the reduced LGopt via an approach based on a secular

equation solver.

For the dimensional reduction of LGopt (3.14), we restate the Lagrange equations (3.14b)

and (3.14b) here

(PAP − λI)u = −b0, ‖u‖ = γ, Pu = u, (3.44)

where we include the constraint Pu = u since we are only interested in those vectors u ∈ N (CT).

Apply the Lanczos process with M = PAP and the starting vector r0 = b0 to get (2.3)

with M = PAP . It then follows that for any scalar λ

QT
k (PAP − λI)Qk = Tk − λI and QT

k b0 = ‖b0‖e1.

Consequently, we arrive at the reduced LGopt (3.14)

rLGopt:


min λ

s.t. (Tk − λI)x = −‖b0‖e1,

‖x‖ = γ.

(3.45a)

(3.45b)

(3.45c)

A couple of comments are for the efficiency of the Lanczos process with M = PAP . In

the process, we have to calculate matrix-vector products Mx = P (A(Pqj)) efficiently. For that

purpose, it suffices for us to be able to calculate the product Pc efficiently for any given c ∈ Rn.

In fact

Pc = qj − CC†c = qj − Cy,

where y = C†c is the minimum-norm solution of the least squares problem

y = arg min
z∈Rm

‖Cz − c‖2, (3.46)

–46–

which can be computed by using the QR decomposition of C ∈ Rn×m or an iterative method such

as LSQR [15, 48, 57]. Another cost-saving observation due to [21] is that for the matrix-vector

product Mqj = P (A(Pqj)), the first application of P in Pqj can be skipped due to the fact that if

the initial vector b0 ∈ N (CT), then Pqj = qj for all 1 ≤ j ≤ k + 1.

We end this subsection by pointing out rLGopt (3.45) cannot fall into the hard case. The

same phenomenon happens to the tridiagonal TRS generated by the generalized Lanczos method

[25, Theorem 5.3] as well. Let the eigen-decomposition of Tk be

Tk = YΘY T, Y TY = Ik, Θ = diag(ϑ1, ϑ2, . . . , ϑk), (3.47)

where we suppress the dependency of Y , Θ, and ϑj on k for notational convenience. Further, we

arrange ϑj in nondecreasing order, i.e., ϑ1 ≤ ϑ2 ≤ · · · ≤ ϑk and Y = [y1, y2, · · · , yk]. Let µ(k) be

the optimal value of rLGopt (3.45).

Theorem 3.3.1. Suppose that βj 6= 0 for j = 2, 3, . . . , k in the Lanczos process. Then µ(k) < ϑ1 ≡

λmin(Tk), and rLGopt cannot fall into the hard case.

Proof. It is well-known that the first components of all eigenvectors yi of irreducible Tk are nonzero

[51, p.140]. In particular, eT1 y1 6= 0. Lemma 3.2.4 immediately leads to µ(k) < ϑ1.

Since µ(k) < λmin(Tk) by Theorem 3.2.11(1), we conclude that rLGopt cannot fall into the

hard case.

Now we explain how to solve rLGopt (3.45). Suppose that βj 6= 0 for j = 2, 3, . . . , k, and

let the eigen-decomposition of Tk be given by (3.47).

Theorem 3.3.2. The optimal value µ(k) of rLGopt (3.45) is the smallest root of the secular function

χ̂(λ) = ‖b0‖2eT1 (Tk − λI)−2e1 − γ2 =
k∑
i=1

ζ2i
(λ− ϑi)2

− γ2, (3.48)

where ζi = ‖b0‖eT1 yi for i = 1, 2, · · · , k. Furthermore,

(µ(k), x(k)) = (µ(k), −‖b0‖(Tk − µ(k)I)−1e1) (3.49)

is a minimizer of rLGopt (3.45).

Proof. rLGopt (3.45) takes the same form as pLGopt (3.25). By Theorem 3.3.1, µ(k) < λmin(Tk).

The conclusions of the lemma are now consequences of Lemma 3.2.4.

–47–

Theorem 3.3.2 naturally leads to a method for solving rLGopt (3.45) through calculating

the smallest root of the secular function χ̂(λ). Algorithm 3.45 outlines the method, based on an

efficient secular equation solver in Section 2.2.2.

Algorithm 1 Solving rLGopt (3.45)

Input: Tk ∈ Rk×k, ‖b0‖, γ > 0, and tolerance ε;

Output: (µ(k), x(k)), approximate minimizer of rLGopt (3.45);

1: Compute the eigenvalues θ1 ≤ θ2 ≤ · · · ≤ θk of Tk and the corresponding eigenvectors y1, · · · , yk;

2: ξi ← ‖b0‖eT1 yi for i = 1, 2, · · · , k;

3: δ0 ← 1
γ

√∑k
i=1 ξ

2
i , α(0) ← θ1 − δ0, β(0) ← θ1 and η ← γ2 −

∑k
i=2

ξ2i
([θ1−δ0]−θi)2 ;

4: if η > 0 then λ(0) ← θ1 − |ξ1|/
√
η else λ(0) ← θ1 − δ0/2;

5: for j = 0, 1, 2, . . . do

6: χ←
∑k

i=1
ξ2i

(λ(j)−θi)2
− γ2;

7: if χ > 0 then α(j+1) ← α(j), β(j+1) ← λ(j) else α(j+1) ← λ(j), β(j+1) ← β(j);

8: a← (λ(j) − θ1)3
∑n

i=1
ξ2i

(λ(j)−θi)3
, b← (λ(j) − θ1)

∑n
i=1

ξ2i
(λ(j)−θi)3

− χ;

9: if b > 0 then

10: λ1 ← θ1 −
√
a/b;

11: if λ1 ∈ (α(j+1), β(j+1)) then λ(j+1) ← λ1 else λ(j+1) ← (α(j+1) + β(j+1))/2;

12: else

13: λ(j+1) ← (α(j+1) + β(j+1))/2;

14: end if

15: if |λ(j+1) − λ(j)| < ε then stop;

16: end for

17: return (µ(k), x(k)) = (λ(j+1),−(Tk − µ(k)I)−1‖b0‖e1) as a solution of rLGopt (3.45).

Although Theorem 3.3.2 assures us that the hard case cannot happen for rLGopt (3.45),

cases where |eT1 y1| is very tiny are possible. Such a nearly hard case has to be treated with care, a

subject of further future study.

Remark 3.3.1. Let us discuss the relationship between solving rLGopt (3.45) and solving TRS

by a generalized Lanczos (GLTRS) method proposed in [25]. GLTRS projects a similar problem

to (3.41a) and (3.41b) by a Krylov subspace to yield a small-size problem. Ignoring (3.41c) for

–48–

the moment, we run the Lanczos process with M = PAP and the starting vector be r0 = b0 to

generate the orthonormal basis matrix Qk and the tridiagonal matrix Tk. Since b0 ∈ N (CT), it

can be verified that R(Qk) ⊂ N (CT), which means that (3.41c) is automatically taken care of.

Project (3.41a) and (3.41b) onto the column space of Qk and we arrive at the following equality

constrained optimization problem:

min xTTkx+ 2xT‖g0‖e1,

s.t. ‖x‖ = γ.

(3.50a)

(3.50b)

Problem (3.50) is similar to the tridiagonal TRS generated by GLTRS except that the constraint

here is equality instead of inequality. Solving (3.50) by the method of the Lagrangian multipliers

leads to exactly rLGopt (3.45). 2

After computing (µ(k), x(k)), the minimizer of rLGopt (3.45), we deduce an approximate

minimizer of LGopt (3.14):

(µ(k), u(k)) = (µ(k), Qkx
(k)) (3.51)

It can be verified that

‖u(k)‖ = ‖x(k)‖ = γ, u(k) ∈ R(Qk) ⊂ N (CT). (3.52)

That is the pair in (3.51) satisfies the constraints (3.14c) and (3.14d).

The accuracy of this approximate minimizer (µ(k), u(k)) can be measured by the residual

vector

rLGopt
k = (PAP − µ(k)I)u(k) + b0. (3.53)

For simplicity, we may assume that (µ(k), x(k)) satisfies the constraint of rLGopt (3.45) exactly, in

particular (Tk − µ(k)I)x(k) = −‖b0‖e1, since it is reasonable to assume that the error in (µ(k), u(k))

as an approximate minimizer of LGopt (3.14) is much larger than the error in (µ(k), x(k)) as the

computed minimizer of rLGopt (3.45). Subsequently, we have the following expression for the

residual vector rLGopt
k , similar to the one on the generalized Lanczos method for TRS [25].

Proposition 3.3.1. Suppose that the approximate minimizer (µ(k), x(k)) of rLGopt (3.45) satisfies

the constraints of rLGopt (3.45) exactly. We have

rLGopt
k = βk+1qk+1e

T
k x

(k). (3.54)

–49–

Proof. We have by (2.3)

rLGopt
k = (PAP − µ(k)I)Qkx

(k) + b0

= [Qk(Tk − µ(k)I) + βk+1qk+1e
T
k]x(k) + b0

= −Qk‖b0‖e1 + βk+1qk+1e
T
k x

(k) + b0

= βk+1qk+1e
T
k x

(k),

as was to be shown.

In deciding if rLGopt
k is sufficiently small, a sensible way is to check some kind of normalized

residual. In view of (3.53), a reasonable one is

NResLGopt
k :=

‖rLGopt
k ‖

(‖A‖+ |µ(k)|)‖x(k)‖+ ‖b0‖
=

|βk+1| |eTk x(k)|
(‖A‖+ |µ(k)|)‖x(k)‖+ ‖b0‖

=: δLGopt
k . (3.55)

The Lanczos process is stopped if δLGopt
k ≤ ε, a prescribed tolerance. In summary, the Lanczos

algorithm for solving LGopt (3.14) is given in Algorithm 2.

Algorithm 2 Solving LGopt (3.14)

Input: A ∈ Rn×n, C ∈ Rn×m, b0 ∈ Rn, γ > 0, and tolerance ε;

Output: (µ(k), u(k)), approximate minimizer of LGopt (3.14);

1: β1 ← ‖b0‖;

2: if β1 = 0 then stop;

3: q1 ← r0/β1, q0 ← 0;

4: for k = 1, 2, . . . do

5: q̂ ← Aqk, q̂ ← P q̂, q̂ ← q̂ − βkqk−1;

6: αk ← qTk q̂, q̂ ← q̂ − αkqk, βk+1 ← ‖q̂‖;

7: compute the minimizer (µ(k), x(k)) of rLGopt (3.45) by Algorithm 1;

8: if δLGopt
k ≤ ε then stop;

9: qk+1 ← q̂/βk+1;

10: end for

11: Qk = [q1, q2, · · · , qk];

12: return (µ(k), u(k)) with u(k) = Qkx
(k) as an approximate minimizer of LGopt (3.14).

–50–

3.3.2 Solving QEPmin

In this section, we propose our Lanczos algorithm for the numerical solution of QEP-

min (3.19). It follows the same idea as the previous subsection. First, we reduce QEPmin (3.19)

to a smaller problem by projection, and then solve the reduced QEPmin by an eigensolver. One

immediate advantage of doing so is the availability of mature eigensolvers for use to solve the un-

derlying QEP. Independently, QEPmin (3.19) is of interest of its own, e.g., it plays a role in solving

the total least square problems [35, 59].

The Lanczos process is natural as a method to solve QEP (3.19b) for its leftmost eigenvalue

and the corresponding eigenvector. For convenience, we restate QEP (3.19b) here:

(PAP − λI)2z = γ−2b0b
T
0 z, Pz = z. (3.56)

Note that we have added the constraint Pz = z since we are only interested in those eigenvectors

z ∈ N (CT).

Now we discuss how to perform the dimensional reduction of the QEP (3.56) via the

projection onto the Krylov subspace generated by the Lanczos process described in Section 2.1.

Let Qk be the orthogonal matrix and Tk be the tridiagonal matrix generated by k steps of the

Lanczos process with the matrix M = PAP and the starting vector b0. We will again have (2.3),

i.e.,

PAPQk = QkTk + βk+1qk+1e
T
k and QT

k b0b
T
0Qk = ‖b0‖2e1eT1 . (3.57)

By a straightforward calculation, we have

(PAP − λI)2Qk = (PAP − λI)
[
Qk(Tk − λI) + βk+1qk+1e

T
k

]
=
[
Qk(Tk − λI) + βk+1qk+1e

T
k

]
(Tk − λI) + (PAP − λI)βk+1qk+1e

T
k

= Qk(Tk − λI)2 + βk+1qk+1e
T
k (Tk − λI) + βk+1(PAP − λI)qk+1e

T
k (3.58)

and

QT
k (PAP − λI)2Qk = (Tk − λI)2 + 0 + βk+1Q

T
k (PAP − λI)qk+1e

T
k

= (Tk − λI)2 + βk+1

[
Qk(Tk − λI) + βk+1qk+1e

T
k

]T
qk+1e

T
k

= (Tk − λI)2 + β2k+1eke
T
k . (3.59)

–51–

By (3.57) and (3.59), naturally one would like to take the reduced QEP (3.56) to be

[
(Tk − λI)2 + β2k+1eke

T
k

]
w = γ−2‖b0‖2e1eT1 w. (3.60)

Unfortunately, this reduced QEP may not have any real eigenvalue, not to mention that the leftmost

eigenvalue is guaranteed to be real, as demonstrated by Example 3.3.1 below. To overcome it, we

propose to drop the term β2k+1eke
T
k in (3.59) and use the following reduced QEP

(Tk − λI)2w = γ−2‖b0‖2e1eT1 w. (3.61)

Since it has the same form as the QEP in pQEPmin (3.28b), the leftmost eigenvalue of the reduced

QEP (3.61) is guaranteed to be real by Theorem 3.2.7.

It can be seen that the corresponding reduced QEPmin (3.19) to QEP (3.61) is given by

rQEPmin:


min λ

s.t. (Tk − λI)2w = γ−2‖b0‖2e1eT1 w,

λ ∈ R, w 6= 0.

(3.62a)

(3.62b)

(3.62c)

We note that the Lanczos process of PAP on b0 is the same as, upon a linear transformation by ST
1 ,

that of H on g0 in pQEPmin (3.28). Therefore, rQEPmin (3.62) can be viewed as a reduced-form

of pQEPmin (3.28).

Example 3.3.1. Let A = diag(1, 2, 3, 4, 5), C = [0.65, 1, 0.68, 1.13,−0.23]T and b = [1]. The

eigenvalues of QEP (3.19b) and (3.19c) in QEPmin, computed by MATLAB, are

0.8333, 1.6493, 2.0000, 2.9916± 0.2369i, 3.8786, 4.8236, 5.1196.

We see the leftmost eigenvalue 0.8333∈ R. Apply the Lanczos process with k = 2 leads to a 2× 2

QEP (3.60) whose eigenvalues are computed to be

1.8124± 0.4172i, 3.3714± 0.2547i,

both are genuine complex numbers! In contrast, the eigenvalues of QEP (3.61) are

1.1429, 2.2661, 2.8915, 4.0672,

all of which are real.

–52–

To solve rQEPmin (3.61), we first linearize it into a linear eigenvalue problem (LEP).

The reader is referred to [18, Chapter 1] for many different ways to linearize a general polynomial

eigenvalue problem. Our rQEPmin (3.61) takes a rather particular form, and we use similar ideas

but slightly different linearization. Specifically, we let y = (Tk − λI)w and s =

y
w

. Then QEP

(3.62b) can be converted to the following LEP:Tk −γ−2‖b0‖2e1eT1

−I Tk

 s = λs. (3.63)

At this point, one can use a standard eigensolver to find the leftmost real eigenvalue µ(k) of LEP

(3.63) and its corresponding eigenvector s(k) =

y(k)
w(k)

. Subsequently, an approximate optimizer

of rQEPmin (3.62) is given by (µ(k), w(k)).

The minimizer (µ(k), w(k)) of rQEPmin (3.62) yields an approximate minimizer of QEP-

min (3.19) as

(µ(k), z(k)) = (µ(k), Qkw
(k)). (3.64)

The accuracy of this pair (µ(k), z(k)) as an approximate minimizer can be measured by the norm of

the following the residual vector

rQEPmin
k =

(
PAP − µ(k)I

)2
z(k) − γ−2b0bT0 z(k). (3.65)

The following proposition shows that this residual vector can be efficiently obtained during com-

putation.

Proposition 3.3.2. Suppose that (µ(k), w(k)) is an exact minimizer of rQEPmin (3.62) and y(k) =

(Tk − µ(k)I)w(k). Then

rQEPmin
k = βk+1qk+1e

T
k y

(k) + βk+1(PAP − µ(k)I)qk+1e
T
kw

(k). (3.66)

–53–

Proof. Keeping (3.58) in mind, we find that

rQEPmin
k =

(
PAP − µ(k)I

)2
Qkw

(k) − γ−2b0bT0Qkw(k)

(3.58)
= Qk(Tk − µ(k)I)2w(k) + βk+1qk+1e

T
k (Tk − µ(k)I)w(k)

+ βk+1(PAP − µ(k)I)qk+1e
T
kw

(k) −Qk
‖b0‖2

γ2
e1e

T
1 w

(k)

(3.62b)
= βk+1qk+1e

T
k (Tk − µ(k)I)w(k) + βk+1(PAP − µ(k)I)qk+1e

T
kw

(k)

= βk+1qk+1e
T
k y

(k) + βk+1(PAP − µ(k)I)qk+1e
T
kw

(k),

as expected.

We note that if the (k + 1)st step are carried out in the Lanczos process (2.3), then the

term (PAP − µ(k)I)qk+1 in (3.66) can be expressed as a linear combination of qk, qk+1, and qk+2.

We propose to use the following normalized residual norm as a stopping criterion for the Lanczos

process:

NResQEPmin
k :=

‖rQEPmin
k ‖

[(‖A‖+ |µ(k)|)2 + γ−2‖b0‖2
]
‖w(k)‖2

(3.67a)

≤
|βk+1|

[
|eTk y(k)|+ (‖A‖+ |µ(k)|) |eTkw(k)|

]
[(‖A‖+ |µ(k)|)2 + γ−2‖b0‖2

]
‖w(k)‖2

=: δQEPmin
k . (3.67b)

The Lanczos algorithm for solving QEPmin (3.19) is summarized in Algorithm 3.

It remains to explain why (µ(k), u(k)) at Line 14 of Algorithm 3 is an approximated min-

imizer of LGopt (3.14). Let (µ(k),

y(k)
w(k)

) be the leftmost eigenpair of LEP (3.63). By Theo-

rem 3.3.2, µ(k) /∈ eig(Tk), and so (Tk − µ(k)I)2w(k) 6= 0 and eT1 w
(k) 6= 0. Through a straightforward

application of Theorem 3.2.5 to rLGopt (3.45) and rQEPmin (3.62), we find that (µ(k), x(k)) is the

minimizer of rLGopt (3.45) where

x(k) = − γ2

‖b0‖eT1 w(k)
(Tk − µ(k)I)w(k) = − γ2

‖b0‖eT1 w(k)
y(k). (3.68)

Therefore, as a by-product, an approximate minimizer of LGopt (3.14) is given by

(µ(k), u(k)) =

(
µ(k), − γ2

‖b0‖eT1 w(k)
Qky

(k)

)
. (3.69)

–54–

Algorithm 3 Solving QEPmin (3.19)

Input: A ∈ Rn×n, C ∈ Rn×m, b0 ∈ Rn, γ > 0, and tolerance ε;

Output: (µ(k), z(k)), approximate minimizer of QEPmin (3.19)

1: β1 ← ‖b0‖;

2: if β1 = 0 then stop;

3: q1 ← r0/β1, q0 ← 0;

4: for k = 1, 2, . . . do

5: q̂ ← Aqk, q̂ ← P q̂, q̂ ← q̂ − βkqk−1;

6: αk ← qTk q̂, q̂ ← q̂ − αkqk, βk+1 ← ‖q̂‖;

7: compute the leftmost eigenpair (µ(k), s) of LEP (3.63);

8: y(k) ← s(1:k), w
(k) ← s(k+1:2k);

9: if δQEPmin
k ≤ ε then stop;

10: qk+1 ← q̂/βk+1;

11: end for

12: Qk = [q1, q2, · · · , qk];

13: z(k) = Qkw
(k) and u(k) = − γ2

‖b0‖eT1 w(k)Qky
(k);

14: return (µ(k), z(k)) as an approximated minimizer of QEPmin (3.19) and, as a by-product,

(µ(k), u(k)) as an approximated minimizer of LGopt (3.14).

3.3.3 Lanczos algorithm for CRQopt

Having obtained approximate minimizers of LGopt (3.14) and QEPmin (3.19), by Theo-

rem 3.2.2 we can recover an approximate minimizer of CRQopt (3.1) as

v(k) = n0 + u(k). (3.70)

where u(k) is given by (3.51) if via solving LGopt (3.14) or by (3.69) if via solving QEPmin (3.19).

The overall algorithm called the Lanczos Method, is outlined in Algorithm 4.

3.3.4 Finite step stopping property

As in many Lanczos type methods for numerical linear algebra problems [10, 20, 51, 55],

Algorithm 4 also enjoys a finite-step-stopping property in the exact arithmetic, i.e., it will deliver

–55–

Algorithm 4 Solving CRQopt (3.1)

Input: A ∈ Rn×n, C ∈ Rn×m with full column rank, b ∈ Rm, tolerance ε;

Output: approximate minimizer v of CRQopt (3.1);

1: n0 ← (CT)†b (by, e.g., the QR decomposition of C);

2: if ‖n0‖ > 1 then output no solution;

3: if ‖n0‖ = 1 then v ← n0 and output v;

4: if ‖n0‖ < 1 then

5: γ ←
√

1− ‖n0‖2, q ← An0, b0 ← (I − CC†)q;

6: compute an approximate solution of LGopt (3.14) (µ(k), u(k)) by Algorithm 2 or 3

7: return v(k) = n0 + u(k), approximate minimizer of CRQopt (3.1);

8: end if

an exact solution in at most n steps. It is an excellent theoretic property but of little or no practical

significance for large scale problems. We often expect that the Lanczos process would stop much

sooner before the nth step for otherwise the method would be deemed too expensive to be practical.

We will show the property using LGopt (3.14) as an example, which, for convenience, is

restated here.

LGopt:



min λ

s.t. (PAP − λI)u = −b0,

‖u‖ = γ,

u ∈ N (CT).

(3.14a)

(3.14b)

(3.14c)

(3.14d)

Let (λ∗, u∗) be the minimizer of LGopt (3.14) and kmax be the smallest k such that βk+1 = 0 in the

Lancozs process, namely the Lanczos process breaks down at step k = kmax. We will prove that

µ(kmax) = λ∗ and u(kmax) = u∗.

We have already shown in (3.52) that the second and third constraints of LGopt (3.14)

are satisfied by u(kmax). Besides, since βkmax+1 = 0, rLGopt
kmax

= 0 by Proposition 3.3.1, i.e., the first

constraint of LGopt (3.14) holds. It remains to show that µ(kmax) = λ∗.

Lemma 3.3.1. µ(kmax) is the smallest root of

χ̃(λ) := gT[(H − λI)†]2gT − γ2. (3.71)

–56–

In addition, if LGopt (3.14) is in the easy case, then µ(kmax) = λ∗, where (λ∗, z∗) is the minimizer

of LGopt (3.14).

Proof. Let ϑ1 ≤ ϑ2 ≤ · · · ≤ ϑkmax be the eigenvalues of Tkmax and let y1, y2, · · · , ykmax be the corre-

sponding orthonormal eigenvectors. Expand ‖b0‖e1 =
∑kmax

i=1 ζiyi and define the secular function

χ̂(λ) = ‖b0‖2eT1 (Tkmax − λI)−2e1 − γ2 =

kmax∑
i=1

ζ2i
(λ− ϑi)2

− γ2. (3.72)

By Theorem 3.3.2, µ(kmax) < ϑ1. Apply Lemma 3.2.7 with H = Tkmax and g = ‖b0‖e1 to conclude

that µ(kmax) is a root of the secular function (3.72). Since χ̂(λ) is strictly increasing in (−∞, µ(kmax)),

µ(kmax) is the smallest root of χ̂(λ).

Expand Qkmax to form an the orthogonal matrix Q̂ := [Qkmax , Q⊥] ∈ Rn×n and let

T = Q̂TPAPQ̂. Since the column space of Qkmax is an invariant subspace of PAP , we have

T =

Tkmax

T⊥

 .
Let S = [S1, S2] be defined in (3.20), and let H = ST

1 PAPS1 and g0 = ST
1 b0. For any λ < ϑ1, we

have

χ̂(λ) = ‖b0‖eT1 [(Tkmax − λI)−1]2‖b0‖e1 − γ2

= ‖b0‖eT1 [(T − λI)†]2‖b0‖e1 − γ2

= bT0 Q̂Q̂
T[(PAP − λI)†]2Q̂Q̂Tb0 − γ2

= bT0 [(PAP − λI)†]2b0 − γ2

= bT0 SS
T[(PAP − λI)†]2SSTb0 − γ2

= [gT0 0]

[(H − λI)†]2 0

0 [(−λI)†]2

 [gT0 0]T − γ2

= gT0 [(H − λI)†]2g0 − γ2 =: χ̃(λ).

Therefore, χ̃(λ) = 0 and χ̃(λ) < 0 for λ < µ(kmax), implying µ(kmax) is the smallest root of χ̃(λ).

On the other hand, by the definition of the easy case, bT0 z∗ 6= 0 for all possible minimizers

(λ∗, z∗) of QEPmin (3.19). Theorem 3.2.4 says that z∗ = S1w∗ for some w∗ ∈ Rn−m and thus

gTw∗ = bT0 S1w∗ = bT0 z∗ 6= 0. By Theorem 3.2.6, λ∗ < λmin(H). Therefore, it is related to case (1)

–57–

or subcase (i) in case (2) of the proof in Lemma 3.2.4, for which λ∗ is the smallest root of χ̃(λ),

and thus λ∗ = µ(kmax).

Theorem 3.2.13 guarantees that the minimizer of CRQopt (3.1) is unique if QEPmin (3.19)

is in the easy case. We also have established a finite step stopping property for Algorithm 4 as

detailed in the following theorem, since kmax ≤ n.

Corollary 3.3.1. Suppose QEPmin (3.19) is in the easy case, and let (µ(k), w(k)) be the minimizer

of rQEPmin (3.62). Define u(k) as in (3.51) and kmax is the smallest k such that βk+1 = 0. Then(
µ(kmax), u(kmax)

)
solves LGopt (3.14), and v(kmax) = u(kmax)+n0 is the unique minimizer of CRQopt

(3.1).

3.3.5 Hard case

The hard case is characterized by Theorem 3.2.12 and we translate g0⊥U into b0⊥V,

where V is the eigenspace of PAP associated with its eigenvalue λmin(H). For this reason,

Kk(PAP, b0) will contain no eigen-information of PAP associated with λmin(H). Nonetheless,

rLGopt (3.45) and rQEPmin (3.62) can be still formed and solved to yield approximations to the

original CRQopt (3.1) with suitable stoping criteria satisfied. But the approximations will be ut-

terly wrong if it is indeed in the hard case. Hence in practice it is important to detect when the

hard case occurs.

Denote by (λ∗, z∗) the minimizer of LGopt (3.14). In the easy case, the smallest root of

χ̃(λ) is λ∗ and λ∗ < λmin(H), while in the hard case, λ∗ = λmin(H) and the smallest root of χ̃(λ)

defined in (3.71) is greater than or equal to λmin(H). Since µ(k) converges to µ(kmax), eventually

whether µ(k) < λmin(H) provide a reasonably good test to see if it is the easy case. Therefore, we

propose to detect hard case as follows:

1. Solve rLGopt (3.45) or rQEPmin (3.62).

2. Run the Lanczos process with M = PAP with r0 = Pc, where c ∈ Rn is random to compute

λmin(H) of PAP and its associated eigenvector z̃;

3. Check if the optimal value of rLGopt (3.45) or rQEPmin (3.62) is greater than or equal to

λmin(H) within a prescribed accuracy.

–58–

4. If it is, then QEPmin (3.19) is in the hard case; Compute an approximation x̃ of x∗ =

−(PAP − λ∗I)†b0 as follows:

ỹ = arg min
y∈Rk

∥∥∥∥∥∥∥
 Tk

βk+1e
T
k

 y + ‖b0‖e1

∥∥∥∥∥∥∥ , x̃ = Qkỹ.

Finally an approximate minimizer of LGopt (3.14) is given by x̃+
√
γ2 − ‖x̃‖2 (z̃/‖z̃‖).

A remark is in order for item 2 above. Because of the randomness in c, with probability 1, r0 = Pc

will have a significant component in S1U , where U is as defined in Theorem 3.2.11. Thus λmin(H)

will get computed.

3.4 Convergence analysis of the Lanczos algorithm

In this section, we present a convergence analysis of the Lanczos algorithm (Algorithm 4)

for solving CRQopt (3.1) in the easy case. Let h(v) = vTAv be the objective function of CRQopt

(3.1), v∗ be the unique solution of CRQopt (3.1) and (λ∗, u∗) be the solution of LGopt (3.14). Our

main results are upper bounds on the errors h(v(k))−h(v∗), ‖v(k)− v∗‖ and |µ(k)−λ∗|, where v(k),

defined in (3.70), is the kth approximation by Algorithm 4 and (µ(k), x(k)) is the solution of rLGopt

(3.45). Our technique is analogous to that in [70].

We start by establishing an optimality property of v(k), as an approximation of v∗, that

minimizes h(v) over n0 +Kk(PAP, b0).

Theorem 3.4.1. Let v(k) be defined in (3.70). Then it holds that

h(v(k)) = min
v∈n0+Kk(PAP,b0),‖v‖=1

h(v). (3.73)

Proof. Recall that (µ(k), x(k)) solves rLGopt (3.45). Consider the optimization problem

min `(x) := xTTkx+ 2‖b0‖eT1 x,

s.t. ‖x‖ = γ.

(3.74a)

(3.74b)

By the theory of Lagrangian multipliers, we find the Lagrangian equations for (3.74) are

(Tk − λI)x = −‖b0‖e1, ‖x‖ = γ. (3.75)

–59–

Following the same argument as we did to prove Lemma 3.2.1, we can reach the same

conclusion that `(x) is strictly increasing with respect to λ in the solution pair (λ, x) of (3.75).

Therefore, in order to minimize `(x), we need to find the smallest Lagrangian multiplier satisfying

(3.75). Hence, solving (3.74) is equivalent to solving rLGopt (3.45) for which (µ(k), x(k)) is a

minimizer and thus x(k) solves (3.74), where x(k) is defined in (3.68).

By definition, u(k) = Qkx
(k) and v(k) = u(k) + n0. For any v ∈ n0 + Kk(PAP, b0) with

‖v‖ = 1, let

u = v − n0 ∈ Kk(PAP, b0) ⊂ N (CT). (3.76)

Hence Pu = u, ‖u‖ = γ, and u = Qkũ for some ũ ∈ Rk. We have v = u+ n0 = Pu+ n0 and

h(v) = (Pu+ n0)
TA(Pu+ n0)

= uTPAPu+ 2bT0 u+ nT0An0

= ũTQT
k PAPQkũ+ 2bT0Qkũ+ nT0An0

= ũTTkũ+ 2‖b0‖eT1 ũ+ nT0An0

≥ [x(k)]TTkx
(k) + 2‖b0‖eT1 x(k) + nT0An0 (since x(k) solves (3.74))

= [x(k)]TQT
k PAPQkx

(k) + 2bT0Qkx
(k) + nT0An0

= [u(k)]TPAPu(k) + 2bT0 u
(k) + nT0An0

= (u(k) + n0)
TA(u(k) + n0)

= h(v(k)).

Since v ∈ n0 +Kk(PAP, b0) with ‖v‖ = 1 but otherwise is arbitrary, (3.73) holds.

Recall that H and g0 are defined in (3.23) and S1, S2 in (3.20). Let θmin and θmax be the

smallest and the largest eigenvalue of H, respectively, v∗ be the minimizer of CRQopt (3.1), and

λ∗ be the optimal objective value of LGopt (3.14). Then

(λ∗, u∗) with u∗ = Pv∗ = v∗ − n0

is a minimizer of LGopt (3.14). Set

κ ≡ κ(H − λ∗I) :=
θmax − λ∗
θmin − λ∗

.

–60–

To estimate h(v(k))−h(v∗), ‖v(k)−v∗‖ and |µ(k)−λ∗|, we first establish a lemma that provides a way

to bound h(v(k))−h(v∗), ‖v(k)− v∗‖ and |µ(k)−λ∗| in terms of any nonzero v ∈ n0 +Kk(PAP, b0).

Lemma 3.4.1. For any nonzero v ∈ n0 +Kk(PAP, b0), we have

0 ≤ h(v(k))− h(v∗) ≤ 4‖H − λ∗I‖2 · ‖v − v∗‖22, (3.77a)

‖v(k) − v∗‖ ≤ 2
√
κ ‖v − v∗‖2, (3.77b)

|µ(k) − λ∗| ≤
1

γ2
[
4‖H − λ∗I‖2 · ‖v − v∗‖22 + 2

√
κ ‖b0‖2 · ‖v − v∗‖2

]
. (3.77c)

Proof. For v ∈ n0 +Kk(PAP, b0), let

u = v − n0 ∈ Kk(PAP, b0), ũ = γu/‖u‖, ṽ = n0 + ũ ∈ n0 +Kk(PAP, b0). (3.78)

First, we have |‖u‖ − γ| = |‖u‖ − ‖u∗‖| ≤ ‖u− u∗‖ = ‖v − v∗‖, which leads to∣∣∣∣1− γ

‖u‖

∣∣∣∣ ≤ ‖v − v∗‖‖u‖
. (3.79)

Let r = ṽ − v∗. We have

‖r‖ = ‖v∗ − ṽ‖ ≤ ‖v∗ − v‖+ ‖v − ṽ‖

≤ ‖v∗ − v‖+ ‖u− ũ‖

= ‖v∗ − v‖+

∥∥∥∥u− γu

‖u‖

∥∥∥∥
= ‖v∗ − v‖+ ‖u‖ ×

∣∣∣∣1− γ

‖u‖

∣∣∣∣
≤ 2‖v∗ − v‖, (3.80)

where we have used (3.79) to infer the last inequality.

The first inequality in (3.77a) holds because

h(v(k)) = min
v∈n0+Kk(PAP,b0), ‖v‖=1

h(v) ≥ min
v∈n0+N (CT), ‖v‖=1

h(v) = h(v∗).

Let f(u) = uTAu+ 2uTb0, it can be verified that h(v) = h(u+ n0) = f(u) + nT0An0. Therefore,

ũ− u∗ = ṽ − v∗ = r, h(ṽ)− h(v∗) = f(ũ)− f(u∗). (3.81)

–61–

Set s = ST
1 r. It follows from r ∈ N (CT) that r = S1s and ‖s‖ = ‖r‖. Noting that ṽ satisfies the

constraint of CRQopt (3.1) and that ũ = u∗ + r, we have

0 ≤ h(v(k))− h(v∗) ≤ h(ṽ)− h(v∗) (3.82)

(3.81)
= f(ũ)− f(u∗) = f(u∗ + r)− f(u∗)

= rTPAPr + 2rT(PAPu∗ + b0)

= rTPAPr + 2λ∗r
Tu∗ (3.83)

= rT(PAP − λ∗I)r (3.84)

= sTST
1 (PAP − λ∗I)S1s

= sT(H − λ∗I)s

≤ ‖H − λ∗I‖‖s‖2 = ‖H − λ∗I‖‖r‖2

(3.80)

≤ 4‖H − λ∗I‖‖v∗ − v‖2, (3.85)

yielding the second inequality in (3.77a), where we have used (PAP − λ∗I)u∗ = −b0 to get (3.83)

and

‖r‖2 + 2rTu∗ = ‖u∗ + r‖2 − ‖u∗‖2 = ‖ũ‖2 − ‖u∗‖2 = 0

to obtain 2rTu∗ = −rTr and then (3.84).

Next we prove (3.77b). Define

f̃(u) := f(u)− λ∗uTu = uT(PAP − λ∗I)u+ 2uTb0.

Noticing (PAP − λ∗I)u∗ + b0 = 0 by (3.14b), let u(k) = v(k) − n0, we have

f̃(u(k)) = f̃(u∗) + (u(k) − u∗)T(PAP − λ∗I)(u(k) − u∗).

Therefore

f̃(u(k))− f̃(u∗) ≥ (θmin − λ∗)‖u(k) − u∗‖2 = (θmin − λ∗)‖v(k) − v∗‖2.

On the other hand,

f̃(u(k))− f̃(u∗) = [f(u(k)) + λ∗‖u(k)‖2]− [f(u∗) + λ∗‖u∗‖2] = f(u(k))− f(u∗) = h(v(k))− h(v∗),

yielding

(θmax − λ∗)‖v(k) − v∗‖2 ≤ h(v(k))− h(v∗) ≤ 4‖H − λ∗I‖‖v − v∗‖2, (3.86)

–62–

which leads to (3.77b).

To prove (3.77c), we pre-multiply (PAP − λ∗I)u∗ = −b0 by uT∗ and use uT∗ u∗ = γ2 to get

γ2λ∗ = uT∗ PAPu∗ + uT∗ b0 = vT∗ PAPv∗ + vT∗ b0, (3.87)

since Pv∗ = u∗ and Pb0 = b0. By (3.5a), we have h(v∗) = vT∗ PAPv∗ + 2vT∗ b0 + nT0An0 and thus

γ2λ∗ = h(v∗)− vT∗ b0 − nT0An0.

On the other hand, it follows from rLGopt (3.45) that [x(k)]TTkx
(k) +‖b0‖2[x(k)]Te1 = γ2µ(k). Plug

in

Tk = QT
k PAPQk, u

(k) = Qkx
(k), QT

k b0 = ‖b0‖2e1, v(k) = u(k) + n0

to get

γ2µ(k) = h(u(k))− [u(k)]Tb0 = h(v(k))− [v(k)]Tb0 − nT0An0. (3.88)

It follows from (3.87) and (3.88) that∣∣∣µ(k) − λ∗∣∣∣ =
1

γ2

∣∣∣h(v(k))− h(v∗)− bT0 (v(k) − v∗)
∣∣∣ ≤ 1

γ2

[
|h(v(k))− h(v∗)|+ ‖b0‖2‖v(k) − v∗‖2

]
,

(3.89)

which combined with (3.77a) and (3.77b) yield (3.77c).

The inequalities in (3.77) hold for any v ∈ n0 + Kk(PAP, b0) which, in general can be

expressed as

v = n0 + φk−1(PAP)b0,

where φk−1(·) is a polynomial of degree k−1. By judicially picking certain φk−1, meaningful upper

bounds on h(v(k)) − h(v∗), ‖v(k) − v∗‖ and |µ(k) − λ∗| are readily obtained. These upper bounds

expose the convergence behavior of v(k). The next theorem contains our main results of the section.

Theorem 3.4.2. Suppose CRQopt (3.1) is in the easy case, and let v∗ be its minimizer. Let (λ∗, u∗)

be the minimizer of the corresponding LGopt (3.14), and, for its corresponding pLGopt (3.25), let

θmin and θmax be the smallest and largest eigenvalue of H, respectively, and set

κ = κ(H − λ∗I) :=
θmax − λ∗
θmin − λ∗

.

Then the following statements hold:

–63–

(a) The sequence {h(v(k))} is nonincreasing;

(b) For k ≤ kmax, the smallest k such that βk+1 = 0,

0 ≤ h(v(k))− h(v∗) ≤ 16γ2‖H − λ∗I‖2
[
Γkκ + Γ−kκ

]−2
, (3.90a)

‖v(k) − v∗‖2 ≤ 4γ
√
κ
[
Γkκ + Γ−kκ

]−1
, (3.90b)

|µ(k) − λ∗| ≤ 16‖H − λ∗I‖2
[
Γkκ + Γ−kκ

]−2
+

4

γ
‖b0‖2

√
κ
[
Γkκ + Γ−kκ

]−1
, (3.90c)

where

Γκ :=

√
κ+ 1√
κ− 1

. (3.91)

Proof. Item (a) holds because for any 0 ≤ k ≤ kmax,

h(v(k)) = min
v∈n0+Kk(PAP,b0), ‖v‖=1

h(v) ≥ min
v∈n0+Kk+1(PAP,b0), ‖v‖=1

h(v) = h(v(k+1)).

Before we prove item (b), we note that (λ∗, S
T
1 v∗) solves pLGopt (3.25). In particular, since

pLGopt (3.25) is in the easy case,

ST
1 v∗ = −(H − λ∗I)−1g0. (3.92)

Consider now v ∈ n0 + Kk(PAP, b0). Then ST
1 v ∈ Kk(H, g0) = Kk(H − λ∗I, g0). Therefore by

(3.92)

ST
1 v − ST

1 v∗ = φk−1(H − λ∗I)g + (H − λ∗I)−1g0

= [φk−1(H − λ∗I) (H − λ∗I) + I](H − λ∗I)−1g0

= −ψk(H − λ∗I)ST
1 v∗, (3.93)

where φk−1 is a polynomial of degree k − 1, and ψk(t) = 1 + tφk−1(t), a polynomial of degree k,

that satisfies ψk(0) = 1. Note that ψk(0) = 1 but otherwise ψk is an arbitrary polynomial of degree

k, offering the freedom that we will take advantage of in a moment.

Given that v∗ solves CRQopt (3.1), we have

γ = ‖Pv∗‖ = ‖S1ST
1 v∗‖ = ‖ST

1 v∗‖.

–64–

Thus

min
v∈n0+Kk(PAP,b0)

‖v − v∗‖ = min
v∈n0+Kk(PAP,b0)

‖ST
1 v − ST

1 v∗‖ (use (3.93))

≤ γ min
ψk(0)=1

‖ψk(H − λ∗I)‖

≤ γ min
ψk(0)=1

max
1≤i≤n−m

|ψk(θi − λ∗)| (3.94)

≤ γ min
ψk(0)=1

max
t∈[θmin−λ∗,θmax−λ∗]

|ψk(t)|. (3.95)

The inequality (3.95) holds for any polynomial ψk of degree k such that ψk(0) = 1. For the

purpose of establishing upper bounds, we will pick one that is defined through the kth Chebyshev

polynomial of the first kind:

Tk(t) = cos(k arccos t) for |t| ≤ 1, (3.96a)

=
1

2

[(
t+
√
t2 − 1

)k
+
(
t+

√
t2 − 1

)−k]
for |t| ≥ 1. (3.96b)

Specifically, we take

ψk(t) = Tk

(
2t− (α+ β)

β − α

)/
Tk

(
−(α+ β)

β − α

)
, (3.97)

where α = θmin − λ∗ and β = θmax − λ∗. Evidently, ψk(0) = 1, and for t ∈ [θmin − λ∗, θmax − λ∗] =

[α, β], we have

|2t− (α+ β)| = ||t+ λ∗ − θmin| − |t+ λ∗ − θmax|| ≤ |θmax − θmin| = β − α.

Therefore, [2t− (α+ β)]/(β − α) ∈ [−1, 1], and thus for t ∈ [α, β] [38]

|ψk(t)| ≤
∣∣∣∣Tk

(
−(α+ β)

β − α

)∣∣∣∣−1 =

∣∣∣∣Tk

(
κ+ 1

κ− 1

)∣∣∣∣−1 = 2
[
Γkκ + Γ−kκ

]−1
. (3.98)

Minimize the right-most quantities in (3.77) over v ∈ n0 + Kk(PAP, b0), utilize (3.95) and (3.98)

to get the inequalities in (3.90).

We end this section with remarks regarding the results in Theorem 3.4.2.

Remark 3.4.1. The rate of convergence for our Lanczos algorithm depends on κ. Recall that

κ = θmax−λ∗
θmin−λ∗ . When λ∗ is far away from θmin, we may regard that CRQopt (3.1) is far from hard

case. In this case, κ moves towards 1, and we expect faster convergence of our Lanczos algorithm.

However, when CRQopt (3.1) is near hard case, i.e., θmin ≈ λ∗, κ is large, and Theorem 3.4.2

–65–

suggests slow convergence. These conclusions derived from Theorem 3.4.2 are consistent with the

numerical observations in [28] that “a Lanczos type process seems to be very effective when the

problem is far from the hard case”. We provide an example in example 3.5.2 later to illustrate the

relationship between the rate of convergence and κ. 2

Remark 3.4.2. For most examples, the bounds suggested in (3.90a) and (3.90b) are sharp. How-

ever, there are some cases where the bounds suggested in (3.90a) and (3.90b) are pessimistic. This

occurs for near-hard situations where λ∗ ≈ θmin and sometimes the Lanczos method can still enjoy

fast convergence, even though the bounds in (3.90a) and (3.90b) do not suggest so. One of such

situations is when

κ+ :=
θmax − λ∗
θ2 − λ∗

is small, even though θmin ≈ λ∗ and thus κ is huge, where θ2 is the second smallest eigenvalue of H.

This suggests that the bounds by (3.90a) and (3.90b) have room for improvement. In fact, instead

of (3.97), we may choose

ψk(t) =
t− α
−α

·Tk−1

(
2t− (α+ + β)

β − α+

)/
Tk−1

(
−(α+ + β)

β − α+

)
, (3.99)

where α and β are as before, and α+ = θ2−λ∗. Evidently, again ψk(0) = 1, but now ψk(θ1−λ∗) = 0.

We have

max
1≤i≤n−m

|ψk(θi − λ∗)| = max
2≤i≤n−m

|ψk(θi − λ∗)| ≤ max
t∈[α+,β]

|ψk(t)|

≤ max
t∈[α+,β]

∣∣∣∣ t− α−α
∣∣∣∣ · 2 [Γ(k−1)

κ+ + Γ−(k−1)κ+

]−1
=

2(θmax − θmin)

θmin − λ∗

[
Γ(k−1)
κ+ + Γ−(k−1)κ+

]−1
.

(3.100)

It combined with (3.94) will lead to bounds

h(v(k))− h(v∗) ≤
16γ2‖H − λ∗I‖2(θmax − θmin)

(θmin − λ∗)

[
Γ(k−1)
κ+ + Γ−(k−1)κ+

]−2
, (3.101a)

‖v(k) − v∗‖2 ≤ 4γ
√
κ
θmax − θmin

θmin − λ∗

[
Γ(k−1)
κ+ + Γ−(k−1)κ+

]−1
, (3.101b)

|µ(k) − λ∗| ≤
θmax − θmin

θmin − λ∗

[
16‖H − λ∗I‖2

[
Γ(k−1)
κ+ + Γ−(k−1)κ+

]−2
+

4

γ
‖b0‖2

√
κ
[
Γ(k−1)
κ+ + Γ−(k−1)κ+

]−1]
. (3.101c)

which can be much sharper than the ones by (3.90a) and (3.90b) and they will be sharper if

θmin ≈ λ∗ and there is a reasonably gap between θmin and θ2. We show such an example later in

example 3.5.3. 2

–66–

Remark 3.4.3. In our numerical experiments, we observed that the bound (3.90c) often decays

much slower than |µ(k) − λ∗|. Recall that in obtaining (3.90c), we used∣∣∣bT0 (v(k) − v∗)
∣∣∣ ≤ ‖b0‖ ∥∥∥v(k) − v∗∥∥∥ (3.102)

in (3.89). It turns out that ‖b0‖
∥∥v(k) − v∗∥∥ decays much slower than

∣∣bT0 (v(k) − v∗)
∣∣, as evidenced

by our numerical tests. While at this point we don’t know how to estimate
∣∣bT0 (v(k) − v∗)

∣∣ much

more than accurately than via the inequality (3.102), we offer a plausible explanation as follows.

Let u(k) = v(k) − n0 and u∗ = v∗ − n0. Since uT∗ u∗ = [u(k)]Tu(k) = γ2, we have∣∣∣uT∗ (v(k) − v∗)
∣∣∣ =

∣∣∣uT∗ u(k) − uT∗ u∗∣∣∣ =
1

2

∣∣∣2uT∗ u(k) − uT∗ u∗ − [u(k)]Tu(k)
∣∣∣

=
1

2

∥∥∥u(k) − u∗∥∥∥2
2

=
1

2

∥∥∥v(k) − v∗∥∥∥2
2
.

(3.103)

By (3.90b),
∥∥v(k) − v∗∥∥22 is of order O

([
Γkκ + Γ−kκ

]−2)
, and thus

∣∣uT∗ (v(k) − v∗)
∣∣ is also of order

O
([

Γkκ + Γ−kκ
]−2)

as (3.103) suggests. Let θ1 ≤ θ2 ≤ · · · ≤ θn−m be the eigenvalues of PAP

restricted to the subspace R(P), y1, y2, · · · , yn−m be the corresponding orthonormal eigenvectors

in R(P), u∗ =
∑n−m

i=1 ξiyi, and v(k) − v∗ = u(k) − u∗ =
∑n−m

i=1 εiyi. Then we have∣∣∣uT∗ (v(k) − v∗)
∣∣∣ =

∣∣∣∣∣
n−m∑
i=1

ξiεi

∣∣∣∣∣ .
On the other hand b0 = −(PAP − λ∗I)u∗ = −

∑n−m
i=1 (θi − λ∗)ξiyi and thus∣∣∣bT0 (v(k) − v∗)

∣∣∣ =

∣∣∣∣∣
n∑
i=1

(θi − λ∗)ξiεi

∣∣∣∣∣ .
Note that sequence {θi − λ∗} is positive and increasing for the easy case and sequence {ξiyi}

oscillates for most cases in practice. Therefore, when κ(PAP − λ∗I) = θn−m−λ∗
θ1−λ∗ is modest, i.e.,

the difference between θi − λ∗ for different i is modest, we expect that the difference between∣∣bT0 (v(k) − v∗)
∣∣ =

∣∣∑n−m
i=1 (θi − λ∗)ξiεi

∣∣ and
∣∣uT∗ (v(k) − v∗)

∣∣ =
∣∣∑n−m

i=1 ξiεi
∣∣ is small. Therefore, the

convergence rate of
∣∣bT0 (v(k) − v∗)

∣∣ can be similar to the convergence rate of
∣∣uT∗ (v(k) − v∗)

∣∣, which

is O
([

Γkκ + Γ−kκ
]−2)

. Plausibly, we have explained why the bound (3.90c) decays much slower than

the actual |µ(k) − λ∗|. 2

3.5 Numerical examples – sharpness of error bounds

In this section, we demonstrate the sharpness of our convergence error bounds in Theo-

rem 3.4.2 for the Lanczos algorithm (Algorithm 4) for solving CRQopt (3.1). For that purpose,

–67–

we first test examples that are hard for the Lanczos algorithm. The basic idea is similar to that

in [39]. Also shown are the history of the normalized residual NResQEPmin
k and its upper bound

δQEPmin
k in (3.67b). All numerical examples were carried out in MATLAB.

3.5.1 Construction of difficult CRQopt problems

The convergence analysis of the Lanczos algorithm (Algorithm 4) for solving CRQopt (3.1)

presented in Theorem 3.4.2 indicates that the convergence behavior is determined by the spectral

distribution of the matrix H defined in pLGopt (3.25) and the optimal value λ∗ of LGopt (3.14).

Therefore, we construct matrices A, C and vector b through constructing matrices H and g0 of

pLGopt (3.25).

H and g0. It is not a secret that approximations by the Lanczos procedure converge most slowly

when the eigenvalues of these matrices distribute like the zeros or the extreme nodes of Chebyshev

polynomials of the first kind [38, 37, 39, 70]. In what follows, we describe one set of test matrix-

vector pair (H, g0) using the extreme nodes of Chebyshev polynomials of the first kind.

The `th Chebyshev polynomials of the first kind T`(t) has `+ 1 extreme points in [−1, 1],

defined by

τj` = cosϑj`, with ϑjl =
j

`
π for j = 0, 1, . . . , `. (3.104)

At these extreme points, |T`(τj`)| = 1. Given scalars α and β such that α < β, set

ω =
β − α

2
, τ = −α+ β

β − α
. (3.105)

The so-called the `th translated Chebyshev extreme nodes on [α, β] are given by [38, 37]

τ transj` = ω(τj` − τ) for j = 0, 1, . . . , `. (3.106)

It can be verified that τ trans0` = β and τ trans`` = α.

Given integers n and m with m < n, and the interval [α, β], we take

H = diag
(
τ trans0n−m−1, τ

trans
1n−m−1, . . . , τ

trans
n−m−1n−m−1

)
. (3.107)

Now we construct g0 = [g1, g2, · · · , gn−m]T ∈ Rn−m. Recall that the eigenvector of H corresponding

to the smallest eigenvalue is en−m. In order to make pLGopt (3.25) in the easy case, we need to

–68–

make g0 not perpendicular to that eigenvector en−m, i.e., gn−m 6= 0. As a simple choice, we take

g0 = [1, 1, · · · , 1]T ∈ Rn−m. (3.108)

A, C and b. With H and g0 set, we construct matrices A, C and vector b in the following way:

1. Pick 0 < ζ < 1, and a ∈ Rm with ‖a‖ = 1/ζ;

2. Pick a random C ∈ Rn×m and compute its QR decomposition

C =

[m n−m

S2 S1

]
×


m

m R

n−m 0

 ≡ S2R. (3.109)

3. Let b = ζ2RTa.

4. Take A12 = g0a
T, A22 = ηIm with η = (gT0 H

−1g0)/ζ
2.

5. Set A = S

 H A12

AT
12 A22

ST, where S = [S1, S2].

Note that by the construction, the matrix A is positive semidefinite when H is positive definite.

This is because the Schur complement of H in the matrix

 H A12

AT
12 A22

:

A22 −AT
12H

−1A12 = A22 − agT0 H−1g0aT = A22 − (gT0 H
−1g0)aa

T

= ηI − (gT0 H
−1g0)aa

T = (gT0 H
−1g0)(‖a‖2I − aaT)

is positive semidefinite since H is positive definite and gT0 H
−1g0 > 0.

Verification. Now we verify that CRQopt (3.1) with A, C, b constructed from the process above

will yield pLGopt (3.25) with matrices H and g0 and scalar γ =
√

1− ζ2, as desired.

Recall the definitions in (3.23):

g0 = ST
1 b0, H = ST

1 PAPS1 = ST
1 AS1 ∈ R(n−m)×(n−m). (3.110)

By the construction of A, ST
1 AS1 = H, which is consistent with H defined in (3.110). Further

recall that P is a projection matrix onto N (CT) and the columns of S1 form an orthonormal basis

–69–

of N (CT). So P = S1S
T
1 . In addition, by the QR factorization (3.109), (CT)† = S2R

−T, and so

n0 = (CT)†b = S2R
−Tb. By the definition of matrix A, ST

1 AS2 = A12, we have

ST
1 b0 = ST

1 PAn0 = ST
1 S1S

T
1 AS2R

−Tb = ST
1 AS2R

−Tb = ζ2A12a = ζ2g0a
Ta = g0. (3.111)

which is consistent with g0 defined in (3.110). Finally,

γ =
√

1− ‖n0‖2 =
√

1− ‖S2R−Tb‖2 =
√

1− ‖R−Tb‖2 =
√

1− ‖ζ2a‖2 =
√

1− ζ2.

3.5.2 Numerical results

For testing purpose, we compute a solution v∗ by the direct method in [17] as a reference

(exact) solution; otherwise it is generally unknown. We also compute κ = λmax(H)−λ∗
λmin(H)−λ∗ to examine

our error bounds in Theorem 3.4.2.

The Lanczos algorithm (Algorithm 4) is applied to solve CRQopt (3.1) via QEPmin (3.19)

and via LGopt (3.14). For each computed v(k), the kth iteration, we compute relative errors

err1 =
|(v(k))TAv(k) − vT∗ Av∗|

|vT∗ Av∗|
, err2 = ‖v(k) − v∗‖, and err3 =

|µ(k) − λ∗|
|λ∗|

.

Since ‖v∗‖ = 1, the absolute error err2 is also relative. The stoping criterion for solving QEPmin

(3.19) is either δQEPmin
k < 10−15 or the number of Lanczos steps reaches maxit = 200, where δQEPmin

k

is defined in (3.67). The stopping criterion for solving LGopt (3.14) is either NResLGopt
k < 10−15

or the number of Lanczos steps reaches maxit = 200.

Example 3.5.1. In this example, we test the correctness and convergence behavior of the Lanczos

algorithm to solve CRQopt (3.1). Let n = 1100, m = 100, α = 1, β = 100 or 1000, and construct

H as in (3.107) and g0 as in (3.108). For (A,C, b), let ζ = 0.9 and a be random vector normalized

to have norm 1/ζ and then the rest follows Section 3.5.1 in constructing A, C and b.

The convergence histories for err1, err2 and err3 are plotted in Figure 3.2. It can be seen

that all converge to the machine precision. Also err1, err2 and err3 are the same, respectively,

at every iteration whether CRQopt (3.1) is solved via QEPmin (3.19) or LGopt (3.14), which is

consistent with our theory that solving rLGopt (3.45) is equivalent to solving rQEPmin (3.62).

Example 3.5.2. We illustrate the sharpness of the error bounds (3.90) in Theorem 3.4.2 and the

relationship between the convergence rate of our Lanczos algorithm and κ.

–70–

0 5 10 15 20 25

k

10
-15

10
-10

10
-5

10
0

 =100

err
1
 by LGopt

err
2
 by LGopt

err
3
 by LGopt

err
1
 by QEPmin

err
2
 by QEPmin

err
3
 by QEPmin

0 20 40 60 80 100

k

10
-15

10
-10

10
-5

10
0

 =1000

err
1
 by LGopt

err
2
 by LGopt

err
3
 by LGopt

err
1
 by QEPmin

err
2
 by QEPmin

err
3
 by QEPmin

Figure 3.2: Example 3.5.1: history of err1, err2 and err3 for the cases where β = 100 (left) and

β = 1000 (right).

The same test matrices as in Example 3.5.1, with β = 100 and 1000 are used. We solve

CRQopt (3.1) by solving QEPmin (3.19) and choose the same parameters as in Example 3.5.1. For

α = 1 and β = 100, We calculate

(λ∗, κ) =


(−42.6007, 3.2706), for (α, β) = (1, 100);

(−18.2629, 52.8613), for (α, β) = (1, 1000).

Judging from the corresponding κ, we expect our Lanczos algorithm will converge faster for the

case β = 100 than the case β = 1000. We plot in Figure 3.3 the convergence histories for

err1 and its upper bound 16γ2‖H−λ∗I‖
vT∗ Av∗

[
Γkκ + Γ−kκ

]−2
by (3.90a),

err2 and its upper bound 4γ
√
κ
[
Γkκ + Γ−kκ

]−1
by (3.90b),

err3 and its upper bound 16
|λ∗|‖H − λ∗I‖

[
Γkκ + Γ−kκ

]−2
+ 4

γ|λ∗|
√
κ
[
Γkκ + Γ−kκ

]−1
by (3.90c).

The bounds for err1 and err2 by (3.90a) and (3.90b) for both β = 100 and β = 1000 appear sharp.

However, the bound for err3 by (3.90c) is pessimistic. In the plots, err3 goes to 0 at about a similar

rate of err1, but the bounds by (3.90b) and (3.90c) for err3 progress at the same rate as the bound

by (3.90a) for err2. We unsuccessfully tried to establish a better bound for err3 to reflect what we

just witnessed, but we offered a plausible explanation in Remark 3.4.3.

As expected, err1, err2 and err3 go to 0 faster for the case β = 100 than the case β = 1000.

It is consistent with our convergence results in Theorem 3.4.2 that our Lanczos algorithm for

CRQopt (3.1) converges faster when κ is smaller.

–71–

0 5 10 15

k

10
-15

10
-10

10
-5

10
0

 =100

err
1

Error Bound

0 10 20 30 40 50 60 70

k

10
-15

10
-10

10
-5

10
0

 =1000

err
1

Error Bound

0 5 10 15 20 25 30

k

10
-15

10
-10

10
-5

10
0

 =100

err
2

Error Bound

0 20 40 60 80 100 120

k

10
-15

10
-10

10
-5

10
0

 =1000

err
2

Error Bound

0 5 10 15

k

10
-15

10
-10

10
-5

10
0

 =100

err
3

Error Bound

0 20 40 60 80 100 120

k

10
-15

10
-10

10
-5

10
0

10
5

 =1000

err
3

Error Bound

Figure 3.3: Example 3.5.2: histories for err1 (first row), err2 (second row), err3 (third row) and

their upper bounds for β = 100 (left column) and β = 1000 (right column).

–72–

0 50 100 150 200

k

10
-5

10
0

10
5

10
10

err
1

Error bound by

Error bound by
+

0 50 100 150 200

k

10
-5

10
0

10
5

err
2

Error bound by

Error bound by
+

0 50 100 150 200

k

10
-10

10
-5

10
0

10
5

10
10

err
3

Error bound by

Error bound by
+

Figure 3.4: Example 3.5.3: histories of err1, err2, err3 and their upper bounds. “Error bound by

κ” and “Error bound by κ+” means upper bounds in (3.90) and (3.101), respectively.

Example 3.5.3. We consider an example where the error bounds in Theorem 3.4.2 are pessimistic,

while those by (3.101) can correctly reveal the speed of convergence. This occurs when CRQopt is a

“nearly hard case”, i.e., where the optimal value of the corresponding pLGopt (3.25) λ∗ ≈ λmin(H).

Specifically, we choose n = 1100, m = 100, ζ = 0.9, a a random vector with the norm 1/ζ, and

H = diag(τ trans0n−m−2, τ
trans
1n−m−2, . . . , τ

trans
n−m−2n−m−2, 1)

with (α, β) = (2, 1000) in (3.105) and (3.106), and

g0 =
[
eη, e2η, · · · , e(n−m)η

]T
where η = −5× 10−3. In this case, λmin(H) = 1 and λ∗ = 0.9845, so λmin(H) ≈ λ∗ and thus it is

a nearly hard case. It is computed that

κ =
λmax(H)− λ∗
λmin(H)− λ∗

≈ 6.4466× 104

which is big. We solve the associated CRQopt (3.1) via QEPmin (3.19). In Figure 3.4, we plot the

–73–

convergence history:

err1, its upper bounds 16γ2‖H−λ∗I‖
vT∗ Av∗

[
Γkκ + Γ−kκ

]−2
by (3.90a), and

16γ2‖H−λ∗I‖(θmax−θmin)
(θmin−λ∗)vT∗ Av∗

[
Γ
(k−1)
κ+ + Γ

−(k−1)
κ+

]−2
by (3.101a),

err2, its upper bounds 4γ
√
κ
[
Γkκ + Γ−kκ

]−1
by (3.90b), and

4γ
√
κ θmax−θmin

θmin−λ∗

[
Γ
(k−1)
κ+ + Γ

−(k−1)
κ+

]−1
by (3.101b),

err3, its upper bounds 16
|λ∗|‖H − λ∗I‖

[
Γkκ + Γ−kκ

]−2
+ 4‖b0‖

γ|λ∗|
√
κ
[
Γkκ + Γ−kκ

]−1
by (3.90c), and

θmax−θmin
|λ∗|(θmin−λ∗)

[
16‖H − λ∗I‖

[
Γ
(k−1)
κ+ + Γ

−(k−1)
κ+

]−2
+ 4

γ ‖b0‖
√
κ
[
Γ
(k−1)
κ+ + Γ

−(k−1)
κ+

]−1]
by (3.101c).

It can be observed that The error bounds by Theorem 3.4.2 decay much slower than err1, err2 and

err3 in this “near hard case”. This is an example for which κ is large but κ+ is small:

κ+ :=
θmax − λ∗
θ2 − λ∗

≈ 983.7702,

As commented in Remark 3.4.2, sharper bounds like ones by (3.101) should be used. They are

also included in Figure 3.4. We can see that the bounds (3.101) correctly reflect the speed of

convergence, but they are bigger than the corresponding errors by several orders of magnitudes.

Example 3.5.4. In this example, we test the effectiveness of the residual bound δQEPmin
k in (3.67).

We use the same test problem as in Example 3.5.1 for both β = 100 and β = 1000. We run our

Lanczos algorithm for QEPmin (3.19) and record the residual NResQEPmin
k and its bound δQEPmin

k

defined in (3.67) for every Lanczos step. They are plotted in Figure 3.5. We observe that both

NResQEPmin
k and δQEPmin

k in (3.67) converge to 0 at the same rate, suggesting δQEPmin
k is an very

effective upper bound of the residual NResQEPmin
k .

3.6 Summary

According to our theory, solving CRQopt (3.1) is equivalent to solving LGopt (3.14) and

QEPmin (3.19), and Lanczos algorithm is suitable for solving LGopt (3.14) and QEPmin (3.19).

We give a convergence analysis of the Lanczos algorithm. Numerical examples show the correctness

of the Lanczos algorithm and the sharpness of the bound.

–74–

0 5 10 15 20 25 30

k

10
-15

10
-10

10
-5

10
0

 =100

Residual

Residual Bound

0 20 40 60 80 100 120

k

10
-15

10
-10

10
-5

10
0

 =1000

Residual

Residual Bound

Figure 3.5: Example 3.5.4: relative residual of QEP NResQEPmin
k and the bound of the relative

residual δQEPmin
k for the case where β = 100 (left) and β = 1000 (right).

–75–

Chapter 4

Application in constrained clustering

In this section, we use semi-supervised learning for clustering as an application of CRQopt (3.1).

We first discuss unconstrained clustering in Section 4.1 and then discuss a new model for con-

strained clustering in Section 4.2. We show the experimental settings in Section 4.3 and numerical

experiments are shown in Section 4.3.

4.1 Unconstrained clustering

Clustering is an important technique for data analysis and is widely used in machine learn-

ing [30, Chapter 14.5.3], bioinformatics [53], social science [44] and image analysis [58]. Clustering

uses some similarity metric to group data into different categories. In this section, we discuss the

normalized cut, a spectral clustering method that are popular for image segmentation [58, 66].

Given an undirected graph G = (V, E) whose edge weights are represented by an affinity

matrix W = [wij], we define the cut of a partition on its vertices V into two disjoint sets A and B,

i.e., A ∪ B = V, A ∩ B = ∅ as

cut(A,B) =
∑

i∈A,j∈B
wij . (4.1)

Intuitively one would minimize the cut to achieve an optimal bipartition of the graph G, but it

often results in a partition (A,B) with one of them containing only a few isolated vertices in the

graph while the other containing the rest. Such a bipartition is not balanced and not useful in

practice. To avoid such an unnatural bias that leads to small sets of isolated vertices, the following

–76–

normalized cut [58] is introduced:

Ncut(A,B) =
cut(A,B)

vol(A)
+

cut(A,B)

vol(B)
, (4.2)

where

vol(A) =
∑

i∈A,j∈V
wij and vol(B) =

∑
i∈B,j∈V

wij .

It turns out that minimizing Ncut(A,B) usually yields a more balanced bipartition. Let

c+ =

√
vol(B)

vol(A) · vol(V)
and c− = −

√
vol(A)

vol(B) · vol(V)
,

and x ∈ Rn (n = |V|, the cardinality of V) be the indicator vector for bipartition (A,B), i.e.,

x(i) =


c+, i ∈ A,

c−, i ∈ B,
(4.3)

and D be a diagonal matrix with the row sums of W on the diagonal, i.e., D = diag(W1). Then

it can be verified that

Ncut(A,B) = xT(D −W)x, xTDx = 1, (Dx)T1 = 0,

where 1 is a vector of ones. Therefore in order to minimize Ncut(A,B), we will solve the following

combinatorial optimization problem



min xT(D −W)x,

s.t. x(i) ∈ {c+, c−},

xTDx = 1,

(Dx)T1 = 0.

(4.4a)

(4.4b)

(4.4c)

(4.4d)

However, the problem (4.4) is a discrete optimization problem and known to be NP-complete. A

common practice to make it numerical feasible is to relax x to a real vector and solve instead the

following optimization problem 

min xT(D −W)x,

s.t. xTDx = 1,

(Dx)T1 = 0,

x ∈ Rn.

(4.5a)

(4.5b)

(4.5c)

(4.5d)

–77–

Under the assumption that D is positive definite, by the Courant-Fisher variational principle [20,

Sec 8.1.1], solving (4.5) is equivalent to finding the eigenvector x corresponding to the second

smallest eigenvalue of the generalized symmetric definite eigenproblem

(D −W)x = λDx.

Note that the setting here is different from the one in [58], where the indicator vector

x(i) ∈ {1,−b} and b = vol(A)
vol(B) . Instead of minimizing a quotient of two quadratic functions in [58],

we use the constraint that xTDx = 1. The model (4.4) is similar to the one in [66, section 5.1],

where they use the number of vertices in the sets A and B instead of the volumes. The model (4.4)

is derived in a similar way to the derivation in [66, section 5.1].

4.2 Constrained clustering

When partial grouping information is known in advance, we can use partial grouping

information to set up different models for better clustering. These models are known as constrained

clustering. Existing methods for constrained spectral clustering includes implicitly incorporating

the constraints into Laplacians [9, 33] and imposing the constraints in linear forms [14, 68, 69] or

bilinear forms [67].

We encode the partial grouping information into a linear constraint, which can be either

homogeneous [69] or nonhomogeneous [14, 68]. In [14], the authors set up a model where the

objective function is the quotient of two quadratic functions and used hard coding for the known

associations of pixels to specific classes in terms of linear constraints. In [68], the authors used a

model for which the objective function is quadratic and encoded known labels by linear constraints.

This is an approach that we take to set up the model.

Let I = {i1, · · · , i`} be the index set for which we have the prior information such as

I ⊆ A. According to (4.3), we set x(i) = c+ for i ∈ I. Similarly, let J = {j1, · · · , jk} be the index

set for which we have the prior information that J ⊆ B, and we set x(j) = c− for j ∈ J . This leads

–78–

to the following discrete constrained normalized cut problem



min xT(D −W)x,

s.t. x(i) ∈ {c+, c−} ,

xTDx = 1,

(Dx)T1 = 0,

x(i) = c+ for i ∈ I,

x(i) = c− for i ∈ J .

(4.6a)

(4.6b)

(4.6c)

(4.6d)

(4.6e)

(4.6f)

However, there are two imminent issues associated with the model (4.6):

1. the combinatorial optimization (4.6) is NP-hard;

2. the model is incomplete because to calculate c+ and c− we need to know vol(A) and vol(B),

which are unknown before the clustering.

Common workarounds, which we use, are as follows. For the first issue, we relax the model (4.6)

by allowing x to be a real vector, i.e., x ∈ Rn. For the second issue, we use vol(J)
vol(I) as an estimate

of vol(B)
vol(A) to get

c+ ≈ ĉ+ =

√
vol(J)

vol(I) · vol(V)
, c− ≈ ĉ− = −

√
vol(I)

vol(J) · vol(V)
.

By these relaxation, we reach a computational feasible model:



min xT(D −W)x,

s.t. xTDx = 1,

(Dx)T1 = 0,

x(i) = ĉ+, i ∈ I,

x(i) = ĉ−. i ∈ J ,

(4.7a)

(4.7b)

(4.7c)

(4.7d)

(4.7e)

The last three equations are linear constraints and can be collectively written as a linear system of

equations:

NTx = b.

–79–

Let v = D1/2x, and define

A = D−1/2(D −W)D−1/2 and C = D1/2N.

Then the optimization problem (4.7) is turned into CRQopt (3.1) with matrices A, C and b just

defined.

4.3 Numerical results

Experimental setting. For a grayscale image, we can construct a weighted graph G = (V, E)

by taking each pixel as a node and connecting each pair (i, j) of pixel i and j by an edge with a

weight given by

wij = e
− ‖F (i)−F (j)‖22

δF ×


1 if ‖X(i)−X(j)‖∞ < r,

0 otherwise,

(4.8)

where δF and r are chosen parameters, F is the brightness value and X is the location of a pixel

[58].1 In our experiment, we take

δF = δmax
i,j
‖F (i)− F (j)‖22

for some parameter δ to be specified.

The definition of weight in (4.8) ensures that every pixel is connected with an edge to

at most (2r + 1)2 other pixels. As shown in Table 4.1, in our experiments, r is taken either 5 or

10, and thus the weight matrix W is sparse, which in turn makes the matrix A in CRQopt (3.1)

sparse, too. Note that for the example Crab, the contrast between the upper right of the object and

the background is not significant. Therefore, we choose r to be twice as much as other examples

to ensure the weight matrix correctly reflect the connectivity of the graph. In addition, in our

experiments δ is around 0.1, to be consistent with the statement in [58] that “δF is typically set

to 10 to 20 percent of the total range of the feature distance function”. Besides, size m of linear

constraints is relatively small compared with the number of pixels n, yielding CRQopt (3.1) with

m� n.

1In a 2-D image, pixel i may naturally be represented by (ix, iy) where ix and iy are two integers.

–80–

Table 4.1: The number of pixels n, parameters δ and r and size m of linear constraints.

Image Number of pixels n δ r m

Flower 30,000 0.1 5 24

Road 50,268 0.1 5 46

Crab 143,000 0.1 10 32

Camel 240,057 0.08 5 24

Dog 395,520 0.1 5 33

Face1 562,500 0.1 5 31

Face2 922,560 0.1 5 19

Daisy 1,024,000 0.08 5 29

Daisy2 1,024,000 0.08 5 59

All experiments were conducted on a PC with Intel Core i7-4770K CPU@3.5GHz and 16-

GB RAM. CRQopt (3.1) is solved via solving QEPmin (3.19). In our tests, we choose the maximum

Lanczos steps maxit = 300 and use δQEPmin
k < 8×10−5 as the stopping criterion. Besides, we choose

the minimum Lanczos steps minit = 120 and check the stopping conditions every 5 Lanczos steps

to reduce the cost of checking the stopping conditions.

Quality of the model. We apply the model (4.7) and Lanczos algorithm for CRQopt (3.1) on

different kinds of images and show the results for segmentation and the computed eigenvector in

Figure 4.1. We can see that the image cut results of the model (4.7) indeed agree with our natural

visual separation of the object and the background. Daisy and Daisy2 are the same image but with

two different ways of prior partial labeling. For both ways of prior partial labeling, the computed

image cuts look equally well. Table 4.2 displays the wall-clock runtime and the numbers of Lanczos

steps used for the images.

–81–

Figure 4.1: The left, middle and right columns are labels, results of image cut and the heat maps

of the solutions by the Lanczos algorithm for CRQopt, respectively. Images from top to bottom

are Flower, Road, Crab, Camel, Dog, Face1, Face2, Daisy and Daisy2, respectively.

–82–

Table 4.2: Runtime (in seconds) and number of Lanczos steps

Image Run Time Lanczos steps

Flower 4.61 210

Road 14.92 200

Crab 21.58 135

Camel 31.12 300

Dog 22.33 135

Face1 67.46 215

Face2 35.54 165

Daisy 84.09 235

Daisy2 105.80 245

The purpose of experiments on Daisy and Daisy2 which are the same images but with two

different ways of labeling is to observe how the size m of the linear constraints may affect running

time. Daisy has 29 linear constraints while Daisy2 has 59. As shown in Table 4.2, the Lanczos

algorithm took 84.09 seconds for Daisy and 105.80 seconds for Daisy2, suggesting the larger m is,

the more times the Lanczos algorithm needs, as expected, to solve the associated CQRopt. This is

because matrix-vector product Px does more work as m increases.

In Table 4.3, we show the running time for Fast-GE-2.0 [33], projected power method [68],

and the Lanczos algorithm for a few examples. For comparable segmentation quality, the runtime

of the Lanczos algorithm for CRQopt (3.1) is significantly less than the existing methods, including

Fast-GE-2.0 and the projected power method. For example, with the same prior labeling on the

image Crab, Fast-GE-2.0 and the projected power method take 47.13 seconds and 446.76 seconds,

respectively, while our Lanczos algorithm only takes 21.18 seconds. Again, with the same labeling

on Daisy and Daisy2, Fast-GE-2.0 takes 1572.81 and seconds 1319.58 seconds, respectively, the

projected power method fails to converge in three hours, while the Lanczos algorithm only takes

84.09 seconds and 105.80 seconds, respectively.

–83–

Table 4.3: Runtime for Fast-GE-2.0, projected power method and the Lanczos algorithm

Image Fast-GE-2.0 Projected Power Method Lanczos algorithm

Crab 47.13 s 446.76 s 21.58 s

Daisy 1572.81 s 3+ hours 84.09 s

Daisy2 1319.58 s 3+ hours 105.80 s

–84–

Chapter 5

Padé approximate linearization

algorithm

In Section 5.1, we define a nonlinear eigenvalue problem. We show the spectral transfor-

mation, rational approximation of the nonlinear eigenvalue, trimmed linearization in Sections 5.2,

5.3 and 5.4, respectively. Then we show our Padé approximate linearization (PAL) algorithm in

Section 5.5. Implementation issues are shown in Section 5.6.

5.1 Problem statement

We consider the nonlinear eigenvalue problem (NEP) given by

T (λ)x ≡

K − λM +

q∑
j=1

fj(λ)Wj

x = 0 (5.1)

where K,M,Wj ∈ Rn×n for all j and each fj : C→ C is assumed to be analytic. We are interested

in computing eigenvalues in a disk Ω(θ, γ) = {z ∈ C | |z − θ| ≤ γ} with given center θ and γ in

complex plane. We assume that

1. Matrices K and M are large and sparse and the pencil K − λM can be easily factorized into

an LU decomposition. In practice, it is often that K and M are symmetric, and M is positive

definite, the LDLT-decomposition of the pencil K − λM is available.

–85–

2. The matrices Wj are of rank rj � n, and the rank-revealing factorizations Wj = EjF
T
j are

readily available, where Ej , Fj ∈ Rn×rj .

Applications. Examples for the NEP (5.1) include rational eigenvalue problems (REP) [61]

where fj(λ) are rational functions, particle in a canyon [27] where K = I and fj(λ) = ei
√
m(λ−aj),

the delay eigenvalue problem [32] with low rank where M = −I, q = 1 and f1(λ) = e−τλ and the

gun problem [40] where q = 2 and fj(λ) = i
√
λ− σ2j .

5.2 Spectral transformation

Let

µ = λ− α, (5.2)

where α is a chosen expansion point, then (λ, x) is an eigenpair of the NEP (5.1) if and only if

(µ, x) is an eigenpair of

T̂ (µ)x =

Kα − µM +

q∑
j=1

f̂j(µ)Wj

x = 0, (5.3)

where Kα = K − αM and f̂j(µ) = fj(µ + α). Consequently, finding eigenvalues of T (λ) in the

disk Ω(θ, r) in complex plane is equivalent to finding eigenvalues of T̂ (µ) in the disk Ω(s, r), where

s = θ − α.

By the spectral transformation (5.2), applying rational approximants of fj(λ) at expan-

sion point α is equivalent to applying rational approximants of f̂j(µ) at µ = 0. Let a rational

approximant to the functions f̂j(µ) be r[nj ,mj](µ) and the error of approximation be emj (µ) =

f̂j(µ) − r[nj ,mj](µ), In Sections 6.1 and 6.2, we discuss how to choose α to reduce the error of

rational approximations on Ω(s, r).

5.3 Rational approximation

Applying the approximants r[nj ,mj](µ) to the functions f̂j(µ) in T̂ (µ), it is then turned

into the following rational eigenvalue problem (REP):

R(µ)x ≡

Kα − µM +

q∑
j=1

r[nj ,mj](µ)Wj

x = 0. (5.4)

–86–

In general, a realization form of r[nj ,mj](µ) is

r[nj ,mj](µ) = sj(µ)− aTmj (Cmj − µDmj)
−1bmj , (5.5)

where sj(µ) is a polynomial, and amj , bmj ∈ Cmj , Cmj , Dmj ∈ Cmj×mj . For simplicity, in the rest

of the discussion we only consider the case where sj(µ) is linear with complex coefficients, i.e.,

r[mj+1,mj](µ) = γmj + ωmjµ− aTmj (Cmj − µDmj)
−1bmj , (5.6)

where γmj , ωmj ∈ C. The treatment for linearization of REP (5.5) with higher degree polynomial

of sj(µ) can be found in [61].

By the rational approximation (5.6) and the rank-revealing factorization Wj = EjF
T
j , the

jth rational term in (5.4) can be written as

r[mj+1,mj](µ)Wj = −aTmj (Cmj − µDmj)
−1bmjWj + γmjWj + ωmjµWj

= −aTmj (Cmj − µDmj)
−1bmjEjF

T
j + γmjEjF

T
j + ωmjµEjF

T
j

= −Ej · aTmj (Cmj − µDmj)
−1bmjIrj · FT

j + Ej · γmjIrj · FT
j + µEj · ωmjIrj · FT

j

= −Ej(Irj ⊗ amj)T(Irj ⊗ Cmj − µIrj ⊗Dmj)
−1(Irj ⊗ bmj)FT

j +

Ej(γmjIrj)F
T
j + µEj(ωmjIrj)F

T
j ,

where ⊗ is the Kronecker product.

Define

E =

[
E1 E2 . . . Eq

]
∈ Rn×r,

Ê = E

[
Ir1 ⊗ aTm1

Ir2 ⊗ aTm2
. . . Irq ⊗ aTmq

]
∈ Cn×p,

Ĉ = diag(Ir1 ⊗ Cm1 , Ir2 ⊗ Cm2 , . . . , Irq ⊗ Cmq) ∈ Cp×p,

D̂ = diag(Ir1 ⊗Dm1 , Ir2 ⊗Dm2 , . . . , Irq ⊗Dmq) ∈ Cp×p,

F =

[
F1 F2 . . . Fq

]
∈ Rn×r,

F̂ = F

[
Ir1 ⊗ bTm1

Ir2 ⊗ bTm2
. . . Irq ⊗ bTmq

]
∈ Cn×p,

(5.7)

where r = r1 + r2 + · · ·+ rq and p = r1m1 + r2m2 + · · ·+ rqmq. Then the REP (5.4) can be written

in the compact form

R(µ)x =
(
K̂ − µM̂ − Ê(Ĉ − µD̂)−1F̂T

)
x = 0, (5.8)

–87–

where

K̂α = Kα + EΓFT, M̂ = M − EΩFT,

and

Γ = diag(γm1Ir1 , . . . , γmqIrq) Ω = diag(ωm1Ir1 , . . . , ωmqIrq).

5.4 Trimmed linearization and LEP

Applying the trimmed linearization technique presented in [61], we can convert the REP

(5.8) to the following linear eigenvalue problem (LEP) of dimension NL = n+ p:

L(µ)v ≡ (A− µB)v = 0 (5.9)

where

A =


n p

n K̂α Ê

p F̂T Ĉ

, B =


n p

n M̂

p D̂

 and v =


1

n x

p −(Ĉ − µD̂)−1F̂Tx

. (5.10)

The relationship between the eigenpairs of the REP (5.4) and those of the LEP (5.9) is given in

the following theorem.

Theorem 5.4.1 ([61]).

(a) If µ is an eigenvalue of the REP (5.8) then it is also an eigenvalue of the LEP (5.9).

(b) If (µ, v) is an eigenpair of of the LEP (5.9), µ is not a pole of the REP (5.8), and v(1:n) 6= 0,

then (µ, v(1:n)) is an eigenpair of the REP (5.8).

By Theorem 5.4.1, finding eigenvalues of the REP (5.8) in Ω(s, r) is equivalent to finding

eigenvalues of the LEP (5.9) in Ω(s, r) and these eigenvalues are not poles of rational functions

r[mj+1,mj](µ). Several remarks are in order:

1. In practice, we first find a sufficiently large number of eigenvalues of the LEP (5.9) nearest

to s in module and remove the eigenvalues outside Ω(s, r) or near poles of r[mj+1,mj](µ).

–88–

2. For computing eigenvalues of the LEP (5.9) nearest to s, we apply a shift-invert Arnoldi

method [56, Sec.8.1.3]. Alternative methods for computing eigenvalues of large matrices

nearest to s include polynomial filtering [13] and Jacobi-Davidson method [2, Sec.7.12.3].

3. When K̂, M̂ and C, D are real symmetric matrices and Ê = F̂ , A and B are real symmetric

matrices. Specifically, if Wj are symmetric positive semi-definite, we can compute decompo-

sition Wj = EjF
T
j such that Ej = Fj . In this case Ê = F̂ when amj = bmj . When C, D are

real symmetric matrices, A, B are real and symmetric.

5.5 PAL algorithm

Algorithm 5 gives a description of the Padé Approximate Linearization (PAL) algorithm

for finding eigenpairs of NEPs of the form (5.1) in Ω(θ, r).

Algorithm 5 PAL algorithm

Input: Matrices K, M , Wj for j = 1, 2, · · · , q, the center θ and the radius r of the target region

Ω of NEP (5.1), the number of desired eigenpairs neig, the expansion point α and orders mj

of the Padé approximants r[mj+1,mj](µ) of f̂j(µ) = fj(µ+ α);

Output: The computed eigenvalues, eigenvectors and the relative residual errors;

1: Compute the rank-revealing factorizations Wj = EjF
T
j ;

2: Compute the LU factorization of K − θM ;

3: Compute N eigenvalues nearest to s = θ− α and corresponding eigenvectors (µ, v) of the LEP

(5.9), where N ≥ neig.

4: Remove any values µ which fall near the poles of any r[mj+1,mj](µ) or outside Ω(s, r).

5: Compute the approximate eigenpairs (λ, x) = (µ+ α, v(1:n)) of the NEP (5.1) and the relative

residual errors.

–89–

5.6 Implementation issues

5.6.1 Matrix-vector multiplications

Since we have transformed the problem of finding a few eigenvalues of NEP (5.1) in Ω(θ, r)

to finding a few eigenvalues of LEP (5.9) nearest to s = θ−α in module. We apply the shift-invert

Arnoldi method [56, Sec.8.1.3].

For applying the shift-invert Arnoldi method, it is necessary to provide a method for

computing the matrix-vector product

v = (A− sB)−1Bu. (5.11)

We now describe a way to efficiently compute the vector v by exploiting the matrix structure. First,

by the factorization,

A− sB =

K̂α − sM̂ Ê

F̂T G

 =

In Ê

G


H

G−1


 In
F̂T G

 ,
the inverse of A− sB is given by

(A− sB)−1 =

 In

−G−1F̂T G−1


H−1

G


In −ÊG−1

G−1

 ,
where

G = Ĉ − sD̂ and H = K̂α − sM̂ − ÊG−1F̂T.

Let v = [vT1 vT2]T and u = [uT1 uT2]T, where u1, v1 ∈ Rn and u2, v2 ∈ Rp, then the matrix-vector

product (5.11) can be expressed as follows:

v1 = H−1
(
M̂u1 − ÊG−1(D̂u2)

)
,

v2 = G−1(D̂u2)−G−1(F̂Tv1).

(5.12)

now let us discuss how to efficiently compute the submatrix-vector multiplications in (5.12) by

exploiting the rich structure of the submatrices M̂ , Ê, F̂ , G and H.

• The matrix-vector product M̂x can be computed by exploiting the sparse plus low-rank

structure of M̂ defined in (5.8) as follows:

M̂x = (M − EΩFT)x = Mx−
q∑
j=1

ωmjEj(F
T
j x). (5.13)

–90–

• By exploiting the Kronecker product of Ê defined in (5.7), the matrix-vector multiplication

Êx can be computed by the following expression:

Êx = [E1, E2, · · · , Eq]([Ir1 ⊗ aTm1
, Ir2 ⊗ aTm2

, · · · , Irq ⊗ aTmq]x)

= [E1, E2, · · · , Eq][aTm1
X1, · · · , aTmqXq]

T =

q∑
j=1

Ej(X
T
j amj)

(5.14)

where mj×rj matrix Xj and is a reshaped matrix from 1+
∑j−1

k=1mkrk to
∑j

k=1mkrk entries

of the vector x.

• By the property of the Kronecker product, the matrix-vector multiplication F̂Tx can be

computed as follows:

F̂Tx =



(Ir1 ⊗ bm1)FT
1

(Ir2 ⊗ bm2)FT
2

...

(Irq ⊗ bmq)FT
q


x =



(Ir1 ⊗ bm1)FT
1 x

(Ir2 ⊗ bm2)FT
2 x

...

(Irq ⊗ bmq)FT
q x


=



FT
1 x⊗ bm1

FT
2 x⊗ bm2

...

FT
q x⊗ bmq


. (5.15)

• For computing G−1x = (Ĉ − sD̂)−1x, we can pre-generate the LU decomposition of Ĉ − sD̂

and then reuse the factorization with different vector x. In the case of diagonal matrices Ĉ

and D̂, G−1x = (Ĉ − sD̂)−1x can be computed componentwisely.

• Recall that one of main assumptions is that only the matrix-vector (K−λM)−1x is available

via a factorization of K−λM , such as LDLT factorization. Therefore, we need to reformulate

the matrix H in order to apply this computational kernel for forming H−1x. To do so, first

note that

H = K̂α − sM̂ − ÊG−1F̂T

= K − (α+ s)M +

q∑
j=1

(
γmj + sωmj − aTmj (Cmj − sDmj)

−1bmj

)
EjF

T
j

= K − θM +

q∑
j=1

r[mj+1,mj](s)EjF
T
j

= K − θM +

q∑
j=1

Ej · r[mj+1,mj](s)Irj · F
T
j

= K − θM + [E1, . . . , Eq] · diag
(
r[m1+1,m1](s)Ir1 , . . . , r[mq+1,mq](s)Irq

)
· [F1, . . . , Fq]

T

≡ K − θM + E∆(s)FT

–91–

where ∆(s) = diag
(
r[m1+1,m1](s)Ir1 , . . . , r[mq+1,mq](s)Irq

)
.

Now by applying Sherman-Morrison-Woodbury formula [31]1, we have

H−1x = y − V
(
∆−1(s) + FTV

)−1
FTy, (5.16)

where y = (K−θM)−1x and V = (K−θM)−1E. We note that n×r matrix V = (K−θM)−1E.

and a factorization form, say LU of the r×r matrix ∆−1(s)+FTV can be computed in advance.

There are tradeoffs in computational efficiency whether we should exploit the sparsity of E

for computing V , see numerical examples in Section 6.3.

5.6.2 Real and complex arithmetic

For some applications, the vectors and matrices in the matrix-vector of rational approxi-

mation are all real such as the nonlinear function of the delay eigenvalue problem in Example 2.3.4,

then all the arithmetic in the matrix-vector multiplications (A − sB)−1Bu are mutiplying vectors

by real matrices, where A and B are defined in (5.10).

However, for computing resonant modes of accelerator cavities to be discussed in Section

6, the realization forms of rational approximants are given in (6.3) and (6.11). Comparing with the

realization form of r[m+1,m](µ) defined in (5.6), the vectors amj , bmj ∈ Rmj are real and the matrices

Cmj , Dmj ∈ Cmj are matrices with pure imaginary elements. In this case, K − θM , E, F and

V = (K − θM)−1E in (5.16) are real matrices. Therefore, generating V only involves multiplying

real matrices by real vectors. For the matrix-vector multiplication (A−sB)−1Bu, the most expensive

part is H−1x defined in (5.16). When computing H−1x after V is generated, matrices F and V

are real. But the typically small matrix
(
∆−1(s) + FTV

)−1
is complex. Therefore, the method for

the matrix-vector multiplication (A− sB)−1Bu makes arithmetic as real as possible.

5.6.3 Rank-revealing factorization

When Wj is extremely sparse, we use the following two-step approach for a rank-revealing

factorization. For the simplicity of notation, we use a general matrix A ∈ Rm×n to replace Wj .

• Step 1. Extracting rows and columns with nonzero elements.

1 (A+ UCV T)−1 = A−1 −A−1U(C−1 + V TA−1U)−1V TA−1

–92–

In many applications, most rows and columns of A are all zeros. In the factorization we only

have to consider the rows and columns with nonzero elements. Let I = {i | ∃ j s.t. Aij 6= 0}

be the row index set such that there is at least one nonzero element in that row and J =

{j | ∃ i s.t. Aij 6= 0} be the column index set such that there is at least one nonzero element

in that column, then let

A1 = A(I,J) ∈ Rk×l

be the submatrix of A with rows in index set I and columns in index set J . Then we can

compute the factorization on A1 instead of A to save computing time. Suppose A1 = E1F
T
1

is a rank-revealing factorization of A1, where E1 ∈ Rk×r and F1 ∈ Rl×r, then let E ∈ Rm×r,

F ∈ Rn×r such that E(I,:) = E1 and F(J,:) = F1, A = EFT is an rank-revealing factorization

of A.

• Step 2. Rank-revealing factorization of A1 by SVD.

Let the SVD of A1 be A1 = UDV T, where D = diag(σ1, σ2, · · · , σr) with σ1 ≥ σ2 ≥ · · · ≥

σr > 0, and U ∈ Rk×r, V ∈ Rl×r, then the rank of A1 is r. Let E1 = UD1/2 and F1 = V D1/2,

then A1 = E1F
T
1 is rank-revealing factorization. When A1 is symmetric positive semi-definite,

then we have E1 = F1. Of course, we can use the spectral decomposition to replace the SVD.

If A1 is too expensive for computing the SVD, computational cheaper but less reliable

alternative methods for rank-revealing factorization are rank-revealing QR (RRQR) factorization

[6, 50], [10, Sec.3.6], rank-revealing LU (RRLU) factorization [49], even randomized algorithms

[29].

–93–

Chapter 6

Application in resonant modes

computation of accelerator cavity

We provide examples on the application of the NEP stated in Chapter 5 in resonant modes

computation of accelerator cavity. We show eigenvalue problems with TE modes only in Section

6.1 and eigenvalue problems with TE and TM modes in Section 6.2. Then we show experiments in

Section 6.3.

6.1 Eigenvalue problems with TE modes only

When there are only so-called transverse electric (TE) modes but no transverse magnetic

(TM) modes onto the waveguide boundaries accelerator cavities, the finite element discretization

leads to the following NEP

T (λ)v ≡

K − λM +

q∑
j=1

i
√
λ− σ2j Wj

x = 0 (6.1)

where K,M,Wj ∈ Rn×n are symmetric matrices, i =
√
−1, and the cutoff values σj ∈ R. Fur-

thermore each Wj is symmetric and low rank with the rank-revealing factorization Wj = EjE
T
j ,

Ej ∈ Rn×rj and rj � n. The complex square root
√
· corresponds to the principal branch. We

are interested in finding eigenvalues in the upper half of a disk Ω(θ, r). We now follow the PAL

algorithm developed in Section 5 to solve the NEP (6.1).

–94–

Spectral transformation of the NEP (6.1). Let α ∈ R ∩ Ω(θ, r) be an expansion point for

Padé approximation of functions
√
λ− σ2j and µ = λ− α, it yields the shifted NEP

T̂ (µ)x ≡

Kα − µM +

q∑
j=1

iσ̂
1/2
j

√
µ

σ̂j
+ 1 Wj

x = 0 (6.2)

where Kα = K −αM and σ̂j = α− σ2j . We are supposed to find N eigenvalues of (6.2) in the disk

Ω(s, r), where s = θ − α.

Rational approximation of NEP (6.2). Recall that the realization form of order-(m,m) Padé

approximant of
√
z + 1 is r[m,m](z) defined in (2.14).

Let z = µ
σ̂j

, then an order (mj ,mj) Padé approximation of iσ̂
1/2
j

√
µ
σ̂j

+ 1 is given by

iσ̂
1/2
j r[mj ,mj]

(
µ

σ̂j

)
= −aTmj

(
− i

σ̂
1/2
j

Imj + i
µ

σ̂
3/2
j

Dmj

)−1
amj + iσ̂

1/2
j γmj . (6.3)

where amj , Dmj and γmj = 2mj + 1 are defined in (2.15). Note that Dmj are diagonal matrices.

and i−1 = −i.

By following the derivation in Section 5.3, an REP of the NEP (6.2) in a compact form is

given by

R(λ)x ≡

Kα − µM +

q∑
j=1

iσ̂
1/2
j r[mj ,mj]

(
µ

σ̂j

)
Wj

x (6.4)

=
(
K̂α − µM − Ê(Ĉ − µD̂)−1ÊT

)
x = 0, (6.5)

where K̂α = Kα + EΓET = K − αM + EΓET and

Γ = diag(iσ̂
1/2
1 γm1Ir1 , iσ̂

1/2
2 γm2Ir2 , . . . , iσ̂

1/2
q γmqIrq) ∈ Cr×r,

E =

[
E1 E2 . . . Eq

]
∈ Rn×r,

Ê = E

[
Ir1 ⊗ aTm1

Ir2 ⊗ aTm2
. . . Irq ⊗ aTmq

]
∈ Rn×p,

Ĉ = diag(−iIr1m1/σ̂
1/2
1 , −iIr2m2/σ̂

1/2
2 , . . . , −iIrqmq/σ̂1/2q) ∈ Cp×p,

D̂ = diag(−iIr1 ⊗Dm1 , /σ̂
3/2
1 − iIr2 ⊗Dm2/σ̂

3/2
2 , . . . , −iIrq ⊗Dmq/σ̂

3/2
q) ∈ Cp×p,

and r = r1 + r2 + · · ·+ rq and p = r1m1 + r2m2 + · · ·+ rqmq.

–95–

LEP. So far we have transformed NEP (6.1) to REP (6.5). We can follow the method stated in

Section 5.4 to linearize REP (6.5) and find N eigenvalues of the corresponding LEP (5.9) nearest

to s.

Note that E and Ê are real matrices and Γ, Ĉ and D̂ are pure imaginary matrices.

Therefore, as is shown in Section 5.6.2, all matrices involving matrix-vector multiplication H−1x

(5.16) except the matrix ∆−1(s) + ETV are real. Thus we can keep mostly real arithmetic for

matrix-vector multiplications.

Preprocessing: choice of the expansion point α for the spectral transformation. Recall

that in Section 5.2, we stated that we choose α to make the error of rational approximation in Ω(s, r)

as small as possible, where Ω(s, r) is the target region of NEP (6.2). Here we provide a method

to choose the expansion point α to reduce the error of rational approximations in Ω(s, r) based on

the error formulas of rational approximations of
√
z + 1 stated in Example 2.3.1.

Recall that in (6.4)
√

µ
σ̂j

+ 1 is approximated by r[mj ,mj]

(
µ
σ̂j

)
. Let the error of approxi-

mations be

emj

(
µ

σ̂j

)
=

√
µ

σ̂j
+ 1− r[mj ,mj]

(
µ

σ̂j

)
,

where the explicit formula for emj (z) is defined in (2.16). Different expansion points α cause

different errors of approximations in Ω(s, r). A natural choice of expansion point α is to choose the

center of target region, i.e., α = θ. However, this may cause large error on one side of Ω(s, r). We

show some numerical examples in Section 6.3. Note that the left and the right endpoints of Ω(s, r)

are θ− r−α and θ+ r−α, respectively, we want to find α ∈ (θ− r, θ+ r) to balance e(µ) on both

endpoints of Ω(s, r) by solving equation

e(θ + r − α)− e(θ − r − α) = 0, (6.6)

where

e(µ) =

q∑
j=1

∣∣∣∣emj (µ

σ̂j

)∣∣∣∣ =

q∑
j=1

∣∣∣∣∣emj
(

µ

α− σ2j

)∣∣∣∣∣ (6.7)

is the total error of rational approximation.

We can show the existence and uniqueness of the root of (6.6) and the root of (6.6)

minimizes the maximum error on two sides of Ω(s, r). Before showing that theorem, we first prove

a lemma for the monotonicity of e(θ ± r − α).

–96–

Lemma 6.1.1. Let the target region of NEP (6.1) be Ω(θ, r), then when all real numbers σ2j /∈

Ω(θ, r), e(θ + r − α) is strictly decreasing with respect to α and e(θ − r − α) is strictly increasing

with respect to α for α ∈ (θ − r, θ + r).

Proof. It is sufficient to prove that for any j,

∣∣∣∣emj (θ+r−α
α−σ2

j

)∣∣∣∣ is strictly decreasing with respect to

α and

∣∣∣∣emj (θ−r−α
α−σ2

j

)∣∣∣∣ is strictly increasing with respect to α. There are following two cases.

Case σ2j < θ − r < α < θ + r: In this case

θ + r − α
α− σ2j

= −1 +
θ + r − σ2j
α− σ2j

> −1 +
α− σ2j
α− σ2j

= 0

and is strictly decreasing with respect to α. Since |emj (z)| is strictly increasing with respect to z

for z > 0,

∣∣∣∣emj (θ+r−α
α−σ2

j

)∣∣∣∣ is strictly decreasing with respect to α. On the other hand,

θ − r − α
α− σ2j

= −1 +
θ − r − σ2j
α− σ2j

and

−1 < −1 +
θ − r − σ2j
α− σ2j

< −1 +
α− σ2j
α− σ2j

= 0.

Besides, θ−r−α
α−σ2

j
is strictly decreasing with respect to α. Since |emj (z)| is strictly decreasing with

respect to z for −1 < z < 0,

∣∣∣∣emj (θ−r−α
α−σ2

j

)∣∣∣∣ is strictly increasing with respect to α.

Case θ − r < α < θ + r < σ2j : In this case

θ + r − α
α− σ2j

= −1 +
σ2j − (θ + r)

σ2j − α

and

−1 < −1 +
σ2j − (θ + r)

σ2j − α
< −1 +

σ2j − α
σ2j − α

= 0.

Besides, θ+r−α
α−σ2

j
is strictly increasing with respect to α. Since |emj (z)| is strictly decreasing with

respect to z for −1 < z < 0,

∣∣∣∣emj (θ+r−α
α−σ2

j

)∣∣∣∣ is strictly decreasing with respect to α. On the other

hand,

θ − r − α
α− σ2j

= −1 +
σ2j − (θ − r)
σ2j − α

> −1 +
σ2j − α
σ2j − α

= 0

and is strictly increasing with respect to α. Since |emj (z)| is strictly increasing with respect to z

for z > 0,

∣∣∣∣emj (θ−r−α
α−σ2

j

)∣∣∣∣ is strictly increasing with respect to α.

–97–

Now we show the theorem.

Theorem 6.1.1. Let the target region of NEP (6.1) be Ω(θ, r), and real numbers σ2j /∈ Ω(θ, r) for

all j = 1, 2, · · · , p, then

1. Equation (6.6) has a unique root α0 in the interval (θ − r, θ + r).

2. Let ê(α) = max{e(θ − r − α), e(θ + r − α)}, then

α0 = arg min
α∈(θ−r,θ+r)

ê(α). (6.8)

Proof. Note that

lim
α→(θ+r)−

e(θ + r − α) = 0 and lim
α→(θ+r)−

e(θ − r − α) > 0.

Therefore

lim
α→(θ+r)−

e(θ + r − α)− e(θ − r − α) < 0.

Similarly

lim
α→(θ−r)+

e(θ + r − α)− e(θ − r − α) > 0.

Besides, e(θ + r − α)− e(θ − r − α) is continuous and strictly decreasing for α ∈ (θ − r, θ + r) by

Lemma 6.1.1, so there exists a unique solution of (6.6) for α ∈ (θ − r, θ + r).

Suppose α0 satisfies (6.6), then let ê(α) = max{e(θ − r − α), e(θ + r − α)}, then

ê(α) =


e(θ + r − α), α < α0

e(θ − r − α), α ≥ α0

By the definition above and Lemma 6.1.1, ê(α) is strictly decreasing in (θ − r, α0) and is strictly

increasing in (α0, θ + r). Therefore, α0 is the minimizer of ê(α).

When σ21 < θ − r < θ + r < σ22 and θ − σ21 = σ22 − θ, we have a so-called symmetric case.

In this case, σ21 and σ22 are symmetric with respect to the center θ of Ω(θ, r). α0 = (σ21 + σ22)/2 is

the root of (6.6). Therefore, α0 is an optimal expansion point. In general, by the monotonicity of

e(α, θ + r) − e(α, θ − r) for α ∈ (θ − r, θ + r), we can apply the bisection method to find the root

α0 of (6.6).

–98–

Post-processing: poles of rational functions. So far we transformed solving the NEP (6.1) to

solving the LEP (5.9). Recall that Theorem 5.4.1 indicates that when the eigenvalue µ of LEP (5.9)

is not a pole of REP (6.5), then µ is an eigenvalue of REP (6.5). Therefore, after the eigenvalues

are computed, we need to remove the eigenvalues of LEP (5.9) near poles of r[mj ,mj]

(
µ
σ̂j

)
. The

following theorem shows that if all cutoff frequencies σ2j are not in the target region Ω(θ, r) of NEP

(6.1) and the expansion point α ∈ R ∩ Ω(θ, r), then the poles of r[mj ,mj]

(
µ
σ̂j

)
are not in target

region Ω(s, r) of REP (6.5) for all j = 1, 2, · · · , q. In this case it is not required to remove the

eigenvalues of LEP (5.9) near the poles of r[mj ,mj]

(
µ
σ̂j

)
.

Theorem 6.1.2. Let the target region of NEP (6.1) be Ω(θ, r) and target region of REP (6.5) be

Ω(s, r) with s = θ−α. When real numbers σ2j /∈ Ω(θ, r) for all j = 1, 2, · · · , q and α ∈ R∩Ω(θ, r) =

(θ − r, θ + r), the poles of rational functions r[mj ,mj]

(
µ
σ̂j

)
are not in Ω(s, r) for all j = 1, 2, · · · , q.

Proof. By (2.13), the poles for r[mj](z) are zk = − 1
ξk

, ξk = cos2 kπ
2mj+1 , for k = 1, 2, · · · ,mj . The

poles satisfy zk ∈ R and zk < −1. Then the poles for r[mj]

(
µ
σ̂j

)
are µk = − σ̂j

ξk
= (− 1

ξk
)(α−σ2j), k =

1, 2, · · · ,mj .

If α > σ2j , then µk < σ2j − α for all k = 1, 2, · · · ,mj since − 1
ξk
< −1. Similarly, when

α < σ2j , then µk > σ2j − α for all k = 1, 2, · · · ,mj .

When θ − r > σ2j , which means the target region of NEP (6.1) is to the right of σ2j , then

when we choose α > θ − r > σ2j , the poles satisfy µk < σ2j − α < θ − r − α for all k = 1, 2, · · · ,mj .

Therefore, µk are to the left of Ω(s, r). Similarly, when θ + r < σ2j , then when we choose α <

θ + r < σ2j , the poles satisfy µk > σ2j − α > θ + r − α for all k = 1, 2, · · · ,mj . Therefore, µk are to

the right of Ω(s, r).

Overall, if σ2j /∈ Ω(θ, r) for all j = 1, 2, · · · , q, then when we choose any α ∈ R ∩ Ω(θ, r),

all the poles are not in Ω(s, r).

6.2 Eigenvalue problems with both TE and TM modes

When there are both transverse electric (TE) modes and transverse magnetic (TM) modes

onto the waveguide boundaries accelerator cavities, the finite element discretization leads to the

–99–

following NEP

T (λ)x =

K − λM +

q1∑
j=1

i
√
λ− σ2jWj +

q∑
j=q1+1

i
λ√
λ− ρ2j

Wj

x = 0, (6.9)

where K,M,Wj ∈ Rn×n are constant matrices and σj , ρj ∈ R, Wj have rank-revealing factorizations

Wj = EjE
T
j with Ej ∈ Rn×rj . We are interested in finding N eigenvalues in the upper half of the

disk Ω(θ, r) in complex plane.

Spectral transformation. Let µ = λ − α, where α ∈ R ∩ Ω(θ, r) is a chosen expansion point,

then it yields the shifted NEP

T̂ (µ)x =

Kα − µM +

q1∑
j=1

iσ̂
1/2
j

√
µ

σ̂j
+ 1Wj +

q∑
j=q1+1

iρ̂
1/2
j

µ
ρ̂j

+ α
ρ̂j√

µ
ρ̂j

+ 1
Wj

x = 0 (6.10)

where Kα = K − αM , σ̂j = α − σ2j , and ρ̂j = α − ρ2j . We are supposed to find the eigenvalues in

the upper half of the disk Ω(s, r), where s = θ − α.

Rational approximation of NEP (6.10). For the TE modes term, as treatmented in Sec-

tion 6.1, we apply the Padé approximants of iσ̂
1/2
j

√
µ
σ̂j

+ 1 by iσ̂
1/2
j r[mj ,mj]

(
µ
σ̂j

)
, where iσ̂

1/2
j r[mj]

(
µ
σ̂j

)
is defined in (6.3).

For the TM modes, Example 2.3.3 shows that the formula for a Padé-type approximation

of z+β√
z+1

is h[mj+1,mj](z). Let z = µ
ρ̂j

, β = α
ρ̂j

, multiply (2.32) by iρ̂
1/2
j and note that i−1 = −i, the

rational approximation of iρ̂
1/2
j

µ
ρ̂j

+ α
ρ̂j√

µ
ρ̂j

+1
is

iρ̂
1/2
j h[mj+1,mj]

(
µ

ρ̂j

)
= −bTmj

(
− i

ρ̂
1/2
j

Imj + i
µ

ρ̂
3/2
j

Cmj

)−1
bmj + iρ̂

1/2
j κmj + iνmj

µ

ρ̂
1/2
j

, (6.11)

where bmj , Cmj , κmj and νmj are defined in (2.32).

Applying the rational approximants yields the following REP as an approximation of the

NEP (6.10) in a compact form given by

Rα(µ)x ≡

Kα − µM +

q1∑
j=1

iσ̂
1/2
j r[mj ,mj]

(
µ

σ̂j

)
Wj +

q∑
j=q1+1

iρ̂
1/2
j h[mj+1,mj]

(
µ

ρ̂j

)
Wj

x

=
(
K̂α − µM̂ − Ê(Ĉ − µD̂)−1ÊT

)
x = 0 (6.12)

–100–

where K̂α = Kα + EΓET = K − αM + EΓET, M̂ = M − EΩET and

Γ = diag(iσ̂
1/2
1 γm1Ir1 , . . . , iσ̂

1/2
q1 γmq1 Irq1 , iρ̂

1/2
q1+1κmq1+1Irq1+1 , . . . , iρ̂

1/2
q κmqIrq) ∈ Cr×r,

Ω = diag(Op1×p1 , iνmq1+1/ρ̂
1/2
q1+1Irq1+1 , . . . , iνmq/ρ̂

1/2
q Irq) ∈ Cr×r,

E =

[
E1 E2 . . . Eq

]
∈ Rn×r,

Ê = E

[
Ir1 ⊗ aTm1

. . . Irq1 ⊗ a
T
mq1

Irq1+1 ⊗ bTmq1+1
. . . Irq ⊗ bTmq

]
∈ Rn×p,

Ĉ = diag(−iIr1m1/σ̂
1/2
1 , . . . , −iIrq1mq1/σ̂

1/2
q1 ,−iIrq1+1mq1

/ρ̂
1/2
q1+1, . . . , −iIrqmq/ρ̂

1/2
q) ∈ Cp×p,

D̂ = diag
(
−iIr1 ⊗Dm1/σ̂

3/2
1 , . . . , −iIrq1 ⊗Dmq1

/σ̂3/2q1 ,

−iIrq1+1 ⊗ Cmq1+1/ρ̂
3/2
q1+1, . . . , −iIrq ⊗ Cmq/ρ̂

3/2
q

)
∈ Cp×p,

where r = r1 + r2 + · · ·+ rq, p = r1m1 + r2m2 + · · ·+ rqmq, p1 = r1m1 + r2m2 + · · ·+ rq1mq1 and

Op1×p1 stands for a zero matrix with size p1 × p1.

LEP. Similar to eigenvalue problems with no TM modes onto the waveguide boundaries, E and

Ê are real matrices and Γ, Ω, Ĉ and D̂ are pure imaginary matrices. Therefore, all matrices

involving matrix-vector multiplication for H−1x (5.16) are real matrices ETV +∆−1(s). Therefore,

the arithmetic for matrix-vector multiplication can be as real as possible.

Pre-processing: proper choice of expansion point. In this section we discuss a method for

choosing α based on the error formulas in Examples 2.3.1 and 2.3.3.

Recall that for the NEP (6.9), we approximated
√

µ
σ̂j

+ 1 by r[mj]

(
µ
σ̂j

)
defined in (6.3) for

j = 1, 2, · · · , q and approximated
µ
ρ̂j

+ α
ρ̂j√

µ
ρ̂j

+1
by h[mj+1,mj]

(
µ
ρ̂j

)
defined in (6.11) for j = q1, q1+1, · · · , q.

The errors of approximations are

emj

(
µ

σ̂j

)
=

√
µ

σ̂j
+ 1− r[mj]

(
µ

σ̂j

)
for j = 1, 2, · · · , q and

dmj

(
µ

ρ̂j
, βj

)
=

λ
ρ̂j

+ α
ρ̂j√

µ
ρ̂j

+ 1
− h[mj+1,mj]

(
µ

ρ̂j

)
with βj = α

ρ̂j
= α

α−ρ2j
for j = q1, q1 + 1, · · · , q, where the explicit formula for emj (z) and dmj (z, β)

–101–

are defined in (2.16) and (2.33), respectively. Let the total error of approximation be

e(µ) =

q1∑
j=1

∣∣∣∣emj (µ

σ̂j

)∣∣∣∣+

q∑
j=q1+1

∣∣∣∣dmj (µρ̂j , βj
)∣∣∣∣

=

q1∑
j=1

∣∣∣∣∣emj
(

µ

α− σ2j

)∣∣∣∣∣+

q∑
j=q1+1

∣∣∣∣∣dmj
(

µ

α− ρ2j
,

α

α− ρ2j

)∣∣∣∣∣
(6.13)

Similar to eigenvalue problems with TE modes only, we select α ∈ (θ − r, θ + r) to balance the

errors at the left and right ends of the target region Ω(s, r) by solving the equation

e(θ + r − α) = e(θ − r − α). (6.14)

Again, we apply the bisection method to find the root.

Post-processing: poles of rational functions. We have already discussed the poles of r[mj ,mj]

(
µ
σ̂j

)
for j = 1, 2, · · · , q1 in Section 6.1. In this section we discuss the poles of h[mj+1,mj]

(
µ
ρ̂j

)
for

j = q1 + 1, q1 + 2, · · · , q by showing the following theorem.

Theorem 6.2.1. Let the target region of NEP (6.9) be Ω(θ, r) and target region of REP (6.12) be

Ω(s, r) with s = θ−α. When ρ2j /∈ Ω(θ, r) for j = q1 + 1, · · · , q and α ∈ R∩Ω(θ, r) = (θ− r, θ+ r),

then the poles of rational functions h[mj+1,mj]

(
µ
ρ̂j

)
are not in Ω(s, r) for j = q1 + 1, · · · , q.

Proof. By (2.31), the poles for h[mj+1,mj](z) are zk = − 1
ζk

, where ζk = sin2 kπ
2mj+1 for k =

1, 2, · · · ,mj . The poles satisfy zk ∈ R and zk < −1. Following the method of proof for Theo-

rem 6.1.2 we immediately get the results.

Therefore, by Theorems 6.1.2 and 6.2.1, when σ2j /∈ Ω(θ, r) for all j = 1, 2, · · · , q, ρ2j /∈

Ω(θ, r) for j = q1+1, · · · , q and α ∈ R∩Ω(θ, r) = (θ−r, θ+r), then after computing the eigenvalues

of LEP (5.9) the region Ω(s, r), we do not have to remove any eigenvalues near poles.

6.3 Numerical examples

In this section, we present numerical examples of eigenvalue problems discussed in the

previous two subsections. In our MATLAB implementation of PAL algorithm (Algorithm 5), we

use MATLAB’s function eigs to solve LEP (5.9), and choose default convergence tolerance 10−14

and the maximum number of algorithm iterations 100. For computing the LU factorization of

–102–

K− θM , we apply MATLAB built-in function LU and choose the pivoting thresholds 0.1. For rank

revealing factorization, we apply the SVD method.

We compare the PAL algorithm with NLEIGS (variant S) [27]1 and CORK [65]2. For using

NLEIGS and CORK, the target region is discretized by equally spaced points on the boundary of

the region. For rational interpolations, we choose Leja-Bagby interpolation nodes and poles and set

tolerance and maximum degree for rational interpolation 10−11 and 100, respectively. For rational

Krylov subspace iterations, the tolerance for residual of eigenpairs was set to be 10−10 and the

maximum number of iterations 130.

The accuracy of a computed eigenpair (λ̂, x̂), is measured by the normalized residual norm

Res(λ̂, x̂) =
‖T (λ̂)x̂‖2/‖x̂‖2

‖K‖1 + |λ̂|‖M‖1 +
∑q

j=1

√
|λ̂− σ2j |‖Wj‖1

.

for the eigenvalue problems with TE modes only, and and by the normalized residual norm

Res(λ̂, x̂) =
‖T (λ̂)x̂‖2/‖x̂‖2

‖K‖1 + |λ̂|‖M‖1 +
∑q1

j=1

√
|λ̂− σ2j |‖Wj‖1 +

∑q
j=q1+1

|λ̂|√
|λ̂−ρj2|

‖Wj‖1
.

for the eigenvalue problems with both TM and TE modes.

All numerical experiments where conducted on an Intel(R) Core i7-4770K CPU@3.5GHz

and 16GB RAM.

1http://twr.cs.kuleuven.be/research/software/nleps/nleigs.php, version 0.5 dated April 5, 2016
2https://bitbucket.org/roelvb/cork/src/master/, version 0.3 dated October 14, 2018.

–103–

http://twr.cs.kuleuven.be/research/software/nleps/nleigs.php
https://bitbucket.org/roelvb/cork/src/master/

Example 6.3.1 (Pillbox110658). This is an example of NEP (6.1) with TE modes only:

T (λ) ≡ K − λM + i

√
λ− σ21W1 + i

√
λ− σ22W2 (6.15)

where σ1 = 19.0400, σ2 = 39.7633, rank(W1) = rank(W2) = 1, and n = 110, 658. It is called the

pillbox waveguide problem

We report the numerical results of experiments with two different target domains. The

first target domain is the upper half of the disk Ω1(θ, r) = Ω(652, 652 − 412). To use the PAL

algorithm, we set Padé orders m1 = m2 = 9. The LEP is of size NL = 110, 658 + 9 + 9 = 110, 676.

Since both σ21 and σ22 are outside of Ω1(θ, r), by Theorem 6.1.2, the poles for the rational functions

r[mj ,mj]

(
µ
σ̂j

)
are outside the target region of the corresponding REP (6.5). Therefore, the post-

processing for the removal of the poles is not required. We use two different expansion points α:

α = θ = 652 and αopt ≈ 2393, which is a root of of (6.6). Figure 6.1 shows the heat map of

log10[ê(
√
λ)], where the error function ê(λ) = e(µ+ α) and e(µ) is defined in (6.7).

45 50 55 60 65 70 75 80
0

2

4

6

8

10

12

14

16

18

20

-7

-6.5

-6

-5.5

-5

-4.5

-4

-3.5

-3

λ
1/2

Target Region

45 50 55 60 65 70 75 80
0

2

4

6

8

10

12

14

16

18

20

-7

-6.5

-6

-5.5

-5

-4.5

-4

-3.5

-3

λ
1/2

Target Region

Figure 6.1: Square roots of computed eigenvalue (black dots) and the heat map of approximation

errors log10[ê(
√
λ)] with α = θ (left) and αopt (right) in the upper half of the disk Ω1(θ, r) =

Ω(652, 652 − 412) (Example 6.3.1).

Table 6.1 lists
√
λ of computed 32 eigenvalues λ found in the domain (shown as the black-

dots in Figure 6.1) and the corresponding residual norms. As we can see, with the choice of αopt, the

accuracy of computed eigenvalues near the left end of the region have been improved significantly.

Furthermore, it is more accurate than the one computed by NLEIGS and CORK shown in the

the left two columns of Table 6.1. For the rational interpolations of NLEIGS and CORK, we

choose the singularity set (−∞, σ22) and discretize the singularity set by logarithmically spaced

–104–

points (σ22 − 10−8+16k/10000) where k = 0, 1, · · · , 10000. The minimum number of rational Krylov

iterations is set to be 60 with the shifts: θ + 2r/3, θ + (1 + i)r/3, θ, θ + (−1 + i)r/3, θ − 2r/3.

Table 6.1: Example 6.3.1, Square roots of 32 computed eigenvalues in the upper half of the disk
Ω1(θ, r) = Ω(652, 652 − 412).

Re
√
λ Im

√
λ PAL (α = θ) PAL (αopt) NLEIGS CORK

4.1615e+01 3.7550e-02 4.0852e-09 1.0513e-12 3.8103e-11 7.0927e-12
4.2892e+01 1.1689e-02 1.3047e-10 3.2660e-14 3.7486e-13 1.1287e-16
4.6429e+01 9.3926e-03 1.5196e-13 2.6615e-14 8.8567e-14 7.0823e-17
4.7504e+01 9.3611e-01 1.2677e-13 1.2182e-13 6.5351e-15 3.6431e-17
5.1325e+01 2.0366e-01 5.4929e-14 3.8098e-14 7.7337e-16 2.7156e-17
5.5375e+01 3.6068e-01 4.8441e-14 4.0793e-14 1.6161e-14 7.2195e-17
5.7922e+01 1.8751e-01 3.3376e-14 2.1814e-14 6.0865e-14 5.7634e-17
5.8148e+01 4.2810e-02 1.5193e-14 1.7091e-14 5.6731e-14 1.2251e-16
6.4342e+01 4.3495e-03 2.7361e-15 3.0835e-15 1.4297e-15 2.4312e-17
6.4523e+01 3.3946e-01 4.4038e-15 1.2636e-14 2.2788e-16 2.5063e-17
6.6288e+01 1.7308e+00 2.9796e-14 2.7639e-14 9.2643e-16 2.5230e-17
6.6739e+01 1.7466e-01 1.1911e-14 4.1975e-14 8.5054e-15 3.9432e-17
6.7320e+01 2.3904e+00 4.9679e-14 4.6260e-14 8.0070e-16 3.0474e-17
6.7919e+01 4.2020e-03 9.3912e-15 1.7129e-14 4.8084e-14 4.7479e-17
6.8925e+01 4.6398e-02 1.4943e-14 8.5857e-14 1.7712e-13 1.0331e-16
6.9986e+01 3.9285e-02 1.2085e-14 1.6614e-14 3.0536e-13 1.0163e-16
7.0462e+01 3.2844e-03 1.2354e-14 4.9312e-14 2.6049e-13 1.2303e-16
7.3114e+01 1.2937e-03 1.3389e-14 9.0627e-15 2.4854e-13 8.4140e-17
7.3424e+01 9.6643e-03 1.8603e-14 2.0060e-14 1.6917e-13 7.3958e-17
7.3550e+01 1.7643e-01 3.7404e-14 1.6716e-12 7.8972e-14 6.7703e-17
7.3687e+01 5.7134e-03 8.1700e-15 1.0831e-14 4.8922e-14 5.4237e-17
7.3959e+01 3.7369e-02 1.5287e-14 1.9519e-14 2.3373e-13 5.5441e-17
7.4372e+01 4.4237e-02 2.4134e-14 1.2288e-12 2.3052e-13 5.4135e-17
7.5638e+01 6.0937e-05 1.1535e-14 7.5072e-14 6.7943e-15 3.4297e-17
7.6643e+01 3.1409e-01 6.2145e-14 7.8769e-12 9.8965e-17 3.0434e-17
7.7545e+01 1.0153e+00 1.1422e-13 9.5836e-14 5.7643e-16 4.5591e-17
7.8646e+01 4.6664e-02 2.7112e-14 2.6820e-14 4.2299e-14 5.6667e-17
7.9159e+01 3.4645e-02 2.4065e-14 2.3928e-14 1.9304e-13 2.9494e-17
7.9979e+01 1.8317e-03 1.2536e-14 1.7454e-14 2.8562e-13 3.9308e-17
8.0143e+01 2.4255e-06 1.4596e-14 1.4373e-14 1.2749e-13 3.3963e-17
8.0885e+01 3.0397e-02 3.4548e-14 1.0053e-11 3.2434e-13 9.6994e-17
8.1890e+01 3.1475e-01 8.0231e-14 7.4538e-14 1.7856e-13 1.2929e-16

In terms of wall-clock timing, PAL with αopt took 40.50 seconds with about 11.73 second

on the LDL factorization of K− sM and 28.36 seconds on solving LEP. In contrast, NLEIGS takes

333.69 seconds and CORK 326.57 seconds.

The second target domain is the upper half of the disk Ω2(θ, r) = Ω((σ21 +σ22)/2, 0.99(σ22−

θ)). This is the so-called symmetric case discussed in Section 6.1. In this case, the optimal expansion

–105–

point αopt = θ. Note that since σ21 and σ22 are not in Ω2, by Theorem 6.1.2, the poles for the rational

functions r[mj ,mj]

(
µ
σ̂j

)
are not in the target region of REP (6.5). Therefore, removal of the poles

is not necessary.

We use Padé orders m1 = m2 = 9. Figure 6.2 is the plot of the errors log10[ê(
√
λ)] and

the computed eigenvalues in the region, where ê(λ) = e(µ + α) and e(µ) is defined in (6.7). The

error of rational approximation at λ is of order 10−10.

20 25 30 35
0

1

2

3

4

5

6

7

8

9

10

-7

-6.5

-6

-5.5

-5

-4.5

-4

-3.5

-3

λ
1/2

Target Region

Figure 6.2: Square root of computed eigenvalues and heat map of the errors log10[ê(
√
λ)] for Padé

approximations for αopt for Example 6.3.1.

The PAL algorithm found one eigenvalue in the target domain. The same number of

eigenvalues are also found by NLEIGS and CORK as shown in Table 6.2.

Table 6.2: Example 6.3.1, Square root of computed eigenvalues in the upper half of the disk Ω2.

Re
√
λ Im

√
λ PAL (αopt) NLEIGS CORK

2.4355e+01 3.4978e-02 1.3145e-15 6.8358e-13 2.7126e-13

For rational interpolations of NLEIGS and CORK, we choose the singularity set (−∞, σ21)∪

(σ22,+∞) and discretize it by logarithmically spaced points (σ21−10−8+16k/10000) and (σ22+10−8+16k/10000)

where k = 0, 1, · · · , 10000. We set the minimum number of rational Krylov iterations 40 and use

a single shift θ for rational Krylov steps. We note that when running NLEIGS for this problem,

we replace function ratnewtoncoeffsm in NLEIGS v0.5 by function ratnewtoncoeffsm in CORK

v0.3. Otherwise, it reports “Linearization not converged after 100 iterations”.

In terms of wall-clock timing, PAL with αopt took 21.11 seconds with about 11.62 seconds

on the LDL factorization of K − sM and 9.08 seconds on solving LEP. In contrast, NLEIGS takes

–106–

73.33 seconds and CORK 62.48 seconds.

Example 6.3.2 (TE10142). The NEP of this example is of the same form of Example 6.3.1 with

σ1 = 188.4956, σ2 = 110.2352, rank(W1) = 355, rank(W2) = 200, and n = 10142. This is an

example where the ranks of W1 and W2 are large. The target domain is the upper half of the disk

Ω(θ, r) = Ω(2602, 0.99(2602 − σ21)).

For the PAL algorithm, we choose the order of Padé approximation m1 = 11, m2 = 6.

The LEP is of size 10, 142+355×11+200×6 = 15, 247. We use two expansion points α = θ = 2602

(s = 0) and αopt ≈ 41067, an approximate root of (6.6) (s = θ−αopt ≈ 26533). Since both σ21 and

σ22 are outside of Ω(θ, r), by Theorem 6.1.2, the poles for the rational functions r[mj ,mj]

(
µ
σ̂j

)
are

outside of Ω(s, r) of the corresponding REP (6.5). Therefore, the post-processing for the removal

of the poles is not required. Figure 6.3 is the plot the errors log10[ê(
√
λ)] and computed eigenvalues

in Ω(θ, r), where ê(λ) = e(µ+ α) and e(µ) is defined in (6.7).

200 220 240 260 280 300
0

10

20

30

40

50

60

-7

-6.5

-6

-5.5

-5

-4.5

-4

-3.5

-3

1/2

Target Region

200 220 240 260 280 300
0

10

20

30

40

50

60

-7

-6.5

-6

-5.5

-5

-4.5

-4

-3.5

-3

1/2

Target Region

Figure 6.3: Square root of computed eigenvalues and heat map of the errors log10[ê(
√
λ)] for Padé

approximations for α = θ (left) and αopt (right) for Example 6.3.2.

We show the computed eigenvalues and residuals of PAL, NLEIGS and CORK in Table

6.3. For rational interpolations in NLEIGS and CORK, we choose the singularity set (−∞, σ21)

and discretize it by logarithmically spaced points (σ21 − 10−8+16k/10000) where k = 0, 1, · · · , 10000.

We set the minimum number of rational Krylov iterations 60 and choose five shifts θ + 2r
3 , θ +

(1+1i)r
3 , θ, θ+ (−1+1i)r

3 , θ− 2r
3 in the rational Krylov steps. As we observe that by choosing αopt,

we can significantly improve the accuracy of he leftmost two eigenvalues.

–107–

Table 6.3: Square root of 7 computed eigenvalues and residuals for PAL with α = θ and αopt,
NLEIGS and CORK for Example 6.3.2.

Re
√
λ Im

√
λ PAL (α = θ) PAL (αopt) NLEIGS CORK

1.9260e+02 6.2441e+00 3.3720e-10 3.7457e-15 2.6624e-11 8.6956e-12
1.9283e+02 3.5934e+00 4.1736e-10 2.6772e-15 8.5848e-11 2.5824e-11
2.6582e+02 1.1983e+00 8.4819e-17 2.1234e-13 1.2230e-17 4.4950e-18
2.7990e+02 8.1778e+00 1.3499e-15 4.9687e-12 1.7144e-17 4.4884e-18
2.8664e+02 3.5082e+01 2.0375e-15 5.8645e-11 1.4606e-17 6.9619e-18
3.0288e+02 1.6948e+01 2.3045e-15 1.5286e-11 2.3443e-17 7.6373e-18
3.0787e+02 8.8885e+00 2.4566e-15 8.6016e-11 1.7816e-17 6.0367e-18

In terms of wall-clock timing, PAL with αopt took 21.11 seconds with about 0.16 seconds

on the LDL factorization of K − sM and 1.88 seconds on solving LEP. In contrast, NLEIGS takes

12.38 seconds and CORK 7.34 seconds. The improvement of PAL in timing is less significant since

we observed that due the relatively large rank of W1 and W2, the cost for computing the matrix

V in the matrix-vector H−1x (in fact, it took 1.96 seconds, which is higher than solving the LEP).

Furthermore, we used the full matrix E to generate V . If we use sparse matrix E, the running time

for generating V and eigs are increased to 3.1315 s and 2.3411s, respectively. Therefore using the

full matrix to represent E and V is more efficient than using the sparse matrix.

Example 6.3.3 (TETM5384). This is an NEP of the form (6.9) with the presence of both TE and

TM modes:

T (λ)x ≡

(
K − λM + i

√
λ− σ21W1 + i

λ√
λ− ρ22

W2

)
x = 0

where σ1 = 110.2353, ρ2 = 258.9862, rank(W1) = rank(W2) = 1, and n = 5, 384. We are interested

in finding eigenvalues in the upper half of the disk Ω(θ, r) = Ω(3202, 3202 − 2642).

For the PAL algorithm, the orders of rational approximations m1 = 8 and m2 = 10. The

LEP is of size NL = 5, 384 + 8 + 10 = 5, 402. We choose two expansion points α = θ = 3202 (s = 0)

and αopt ≈ 79884 (s = θ − αopt ≈ 22516) by the root of (6.14). Since both σ21 and ρ22 are not in

Ω(θ, r), by Theorem 6.2.1, the poles for the rational functions r[mj ,mj]

(
µ
σ̂j

)
and h[mj+1,mj]

(
µ
ρ̂j

)
are not in Ω(s, r) of REP (6.12). Therefore, removal of the poles is not required.

Figure 6.4 is the plot of the square root of the computed eigenvalues and log10[ê(
√
λ)] in

Ω(θ, r), where ê(λ) = e(µ+ α) and e(µ) is defined in (6.13).

–108–

280 300 320 340 360
0

5

10

15

20

25

30

35

40

45

50

-7

-6.5

-6

-5.5

-5

-4.5

-4

-3.5

-3

1/2

Target Region

280 300 320 340 360
0

5

10

15

20

25

30

35

40

45

50
1/2

Target Region

-7

-6.5

-6

-5.5

-5

-4.5

-4

-3.5

-3

Figure 6.4: Square root of computed eigenvalues and heat map of log10[ê(
√
λ)] for the error of

rational approximations, α = θ (left) and αopt (right) for Example 6.3.3.

Table 6.4 shows the computed eigenvalues and the residual norms of PAL, NLEIGS and

CORK. PAL took only 0.44 seconds to find these eigenvalues. For rational interpolations of NLEIGS

and CORK, we choose the singularity set (−∞, ρ22) and discretize it by logarithmically spaced points

(ρ22−10−8+16k/10000) where k = 0, 1, · · · , 10000. The minimum number of rational Krylov iterations

is set to be 60 and five shifts are θ+ 2r
3 , θ+ (1+1i)r

3 , θ, θ+ (−1+1i)r
3 , θ− 2r

3 in the rational Krylov

steps. As we observe that the expansion point αopt significantly improves the accuracy of leftmost

eigenvalue.

Table 6.4: Square root of 7 computed eigenvalues and residuals for PAL with α = θ and αopt,
NLEIGS and CORK for Example 6.3.3.

Re
√
λ Im

√
λ PAL (α = θ) PAL (αopt) NLEIGS CORK

2.6475e+02 8.9603e-02 8.0123e-10 5.3338e-14 2.2543e-12 1.3870e-12
3.0670e+02 3.7063e+01 5.7919e-15 4.4156e-14 5.8011e-17 3.5688e-17
3.0732e+02 6.1827e-01 1.0250e-15 7.9785e-16 4.0277e-17 2.7932e-17
3.1084e+02 1.9913e-02 4.3425e-16 5.1676e-16 4.0742e-17 2.8468e-17
3.3413e+02 3.3599e-01 4.7402e-16 1.6233e-15 3.4742e-17 2.7728e-17
3.4297e+02 3.7082e-02 1.1856e-15 8.3504e-15 4.9409e-17 2.9157e-17
3.6534e+02 1.2249e+01 9.0218e-15 1.5386e-13 8.3441e-17 3.1062e-17

We note that the dataset for this example was shared with us by Rich Lee around 2009.3

Back to then, with much effort, he used a Picard-type iteration to find the leftmost eigenvalue.

3Private communication, Spring 2009

–109–

Here is a list of the eigenvalue found by Rich Lee, PAL and NLEIGS:

2.647526611365192× 102 + 8.960277296484288× 10−2i (Rich Lee)

2.647526611422919× 102 + 8.960277540772293× 10−2i (PAL)

2.647526611399669× 102 + 8.960277933397420× 10−2i (NLEIGS)

Example 6.3.4 (TETM170562). This is an NEP of the form (6.9) with the presence of three TE

modes and two TM modes:

T (λ)x ≡

K − λM +
3∑
j=1

i
√
λ− σ2jWj +

5∑
j=4

i
λ√
λ− ρ2j

Wj

x = 0

where σ1 = 19.0400, σ2 = 27.7658, σ3 = ρ5 = 39.7619, ρ4 = 21.8621, rank(W1) = rank(W2) =

rank(W3) = rank(W4) = rank(W5) = 1, and n = 170, 562.

The first target domain is the upper half of the disk Ω1(θ, r) = Ω(452, 0.99(452−σ23)). For

the PAL algorithm, we set the orders of rational approximations m1 = m2 = 5, m3 = 15, m4 = 10

and m5 = 20, and use two expansion points: α = θ = 452 (s = 0) αopt ≈ 1650 (s = θ−αopt ≈ 375)

by solving (6.14). Since σ21, σ22, σ23, ρ24 and ρ25 are not in Ω(θ, r), by Theorem 6.2.1, the poles for

the rational functions r[mj ,mj]

(
µ
σ̂j

)
and h[mj+1,mj]

(
µ
ρ̂j

)
are not in the target region of REP (6.12).

Therefore, removal of the poles is not required.

Figure 6.5 is the plot of the square root of the computed eigenvalues and the log10[ê(
√
λ)],

where ê(λ) = e(µ+ α) and e(µ) is defined in (6.13).

40 42 44 46 48
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

-7

-6.5

-6

-5.5

-5

-4.5

-4

-3.5

-3

1/2

Target Region

40 42 44 46 48
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

-7

-6.5

-6

-5.5

-5

-4.5

-4

-3.5

-3

1/2

Target Region

Figure 6.5: Square root of computed eigenvalues and heat map of the errors log10[ê(
√
λ)] for rational

approximations for α = θ (left) and αopt (right) Example 6.3.4 with target domain Ω1.

–110–

Table 6.5 shows the computed eigenvalues and the residual norms of PAL and CORK.

For rational interpolations in CORK, we choose the singularity set (−∞, σ23) and discretize it by

logarithmically spaced points (σ23−10−8+16k/10000) where k = 0, 1, · · · , 10000. We set the minimum

number of rational Krylov iterations 60 and a single shift θ in the rational Krylov steps. PAL took

a total of 42.03 second to find 4 eigenvalues in Ω1, among it 24.20 seconds for the factorization

of K − λM and 15.93 for solving the LEP. CORK takes a total of 87.29 seconds to find the same

number of eigenvalues in Ω1.

Table 6.5: Square root of 4 computed eigenvalues and residual norm by PAL and CORK in target
domain Ω1 of Example 6.3.4.

Re
√
λ Im

√
λ PAL (α = θ) PAL (αopt) CORK

4.3105e+01 2.9150e-02 3.2443e-15 3.0370e-15 1.2374e-15
4.6024e+01 3.3226e-02 7.2697e-16 2.6691e-15 4.3598e-17
4.7266e+01 8.6521e-01 2.2715e-15 5.3040e-15 1.2301e-13
4.7576e+01 5.2981e-02 1.5438e-15 1.3437e-14 3.5899e-13

The second target domain is the upper half of the disk Ω2(θ, r) = Ω((ρ24 +σ22)/2, 0.99(σ22−

θ)). The PAL algorithm set the orders of rational approximations m1 = m3 = 5, m2 = m4 = 15

and m5 = 10. The expansion point αopt ≈ 522 (s = θ − αopt ≈ 102) is from the solution of (6.14).

Figure 6.6 is the plot of the square root of the computed eigenvalues and the log10[ê(
√
λ)] in Ω2,

where ê(λ) = e(µ+ α) and e(µ) is defined in (6.13).

22 23 24 25 26 27
0

0.5

1

1.5

2

2.5

-7

-6.5

-6

-5.5

-5

-4.5

-4

-3.5

-3

1/2

Target Region

Figure 6.6: Square root of computed eigenvalues and heat map of the errors log10[ê(
√
λ)] for target

domain Ω2 of Example 6.3.4.

Table 6.6 shows the computed eigenvalues and the residual norms of PAL and CORK. For

rational interpolations of CORK, we choose the singularity set (−∞, ρ24)∪ (σ22,+∞) and discretize

–111–

it by logarithmically spaced points (ρ24 − 10−8+16k/10000) and (σ22 + 10−8+16k/10000) where k =

0, 1, · · · , 10000. We set the minimum number of rational Krylov iterations 20 and use a single shift

θ for rational Krylov steps. PAL took a total of 32.33 seconds to find the eigenvalues in Ω2, among

it 23.56 seconds for the factorization of K−λM and 8.93 for solving the LEP. CORK takes a total

of 65.49 seconds to find the number of eigenvalues in Ω2.

Table 6.6: Square root of the computed eigenvalues and residual norm by PAL and CORK in target
domain Ω2 of Example 6.3.4.

Re
√
λ Im

√
λ PAL (αopt) CORK

2.4651e+01 4.5545e-02 1.0877e-15 1.6621e-17

In accelerator design, the waveguides are used to introduce damping into the cavity to

suppress the so-called Higher-Order Modes (HOMs). Those resonant modes are forming the wake-

fields that can disrupt the stability of the beam accelerator and transport. The so-called external

quality factors measure the effectiveness of the damping. Let κ =
√
λ, where λ is an eigenvalue in

the region of interest, the resonant frequency ν and the corresponding external Qe of the cavity are

defined by

ν(κ) =
c

2π
· Re(κ) and Qe(κ) =

1

2
· Re(κ)

Im(κ)
, (6.16)

where c is the speed of the light. The quantity Qe measures the electromagnetic coupling between

the cavity and waveguide. It characterizes the energy loss through the waveguide. With a given

resonant frequency ν0 > 0, the cavity designers would like to seek frequencies ν that are close to

ν0 and Qe > 1.

For the following three eigenvalues computed in the target domains:

√
λ1 = 2.4651× 101 + 4.5545× 10−2i (in Ω2)√
λ2 = 4.3105× 101 + 2.9150× 10−2i (in Ω1)√
λ3 = 4.6024× 101 + 3.3226× 10−2i (in Ω2)

the correpsonding frequencies are

ν(
√
λi) =

c

2π
· Re

√
λi = 1.1762, 2.1960, 2.0567GHz

–112–

and damping qualities are

Qe(
√
λi) =

1

2

Re
√
λi

Im
√
λi

= 270.6255, 739.3598, 692.5900,

respectively. These data are consistent with data reported in Table 1 of [63]. Residual norms

of these computed eigenvalues by PAL algorithm and CORK are of order O(10−14) to O(10−15),

which is of the same orders as reported in Table 1 of [63].

–113–

Chapter 7

Concluding remarks

In this dissertation, we discussed two problems related to nonlinear eigenvalue problems.

The first problem is the constrained Rayleigh quotient optimization problem (CRQopt) and the

second problem is the nonlinear eigenvalue problem with low rank nonlinear terms. We applied

CRQopt for constrained image segmentation problem. For the nonlinear eigenvalue problem with

low rank nonlinear terms, we applied it for resonant modes computation of accelerator cavity.

In the first part of the dissertation, we discussed an algorithm for CRQopt based on the

reduction of Lagrange equations and QEP. Numerical examples and applications on constrained

image segmentation problems showed the correctness and efficiency of our algorithm. For future

work, our goal is to solve rLGopt (3.45) for the nearly hard case and to apply our algorithms on

more machine learning problems such as outlier removal [41], semi-supervised kernel PCA [52], and

transductive learning [34].

In the second part of the dissertation, we discussed an algorithm to solve nonlinear eigen-

value problems with low-rank nonlinear terms and applied our algorithm in resonant modes com-

putation of accelerator cavity. For resonant modes computation of accelerator cavity, we proposed

a method to choose the proper expansion point to reduce the approximation error on the target re-

gion and derived a method for matrix-vector multiplications to make arithmetic as real as possible.

Numerical examples showed the efficiency and accuracy of our algorithm compared with existing

algorithms. Our future work is application of our algorithm on more examples such as particle in

a canyon [27] and delay problem [32] with low rank, and use multi-Padé approximation [24] for

–114–

nonlinear functions.

–115–

Appendices

–116–

Appendix A

Proof of the equivalence between

CRQopt and the eigenvalue

optimization problem

Suppose U ∈ Rn×(n−m) has full column rank and that R(U) = N (CT) and let u ∈ Rn

satisfies CTu =
√
n b. Define

Ĉ = [CT, −
√
nb], N =


n−m 1

n U u

1 0 1

. (A.1)

and

L = NT

A 0

0 0

N, E = NT

− I
n+1 0

0 1− 1
n+1

N, M = NT

In 0

0 0

N.
Note that it is easy to see that R(N) = N (Ĉ).

In this appendix we prove that CRQopt (3.1) is equivalent to the following eigenvalue

optimization problem

max
t∈R

λmin(L+ tE,M), (A.2)

where λmin(L + tE,M) is the smallest eigenvalue of (L + tE)x = λMx. This equivalency was

initiately established by Eriksson, Olsson and Kahl [14]. However, the statements presented here

–117–

are stronger than the related ones in [14]. For examples, we will prove M is positive definite, and

we can use ’max’ in (A.2) instead of ’sup’ in [14].

Let ṽ =
√
nv, v̂ =

ṽ
1

, Â =

A 0

0 0

, B̂ =

In 0

0 0

. Then v is a minimizer of CRQopt

(3.1) if and only if v̂ is a minimizer of

min
v̂TÂv̂

v̂TB̂v̂
, s.t. v̂2(n+1) = 1, v̂Tv̂ = n+ 1, Ĉv̂ = 0. (A.3)

Since R(N) = N (Ĉ), for any v̂ satisfying Ĉv̂ = 0, there exists ŷ ∈ Rn−m+1 such that v̂ = Nŷ,

N is defined in (A.1). By the matrix structure in (A.1), we know that v̂2(n+1) = 1 if and only if

ŷ2(n−m+1) = 1. Therefore, solving (A.3) is equivalent to solving

min
ŷTLŷ

ŷMŷ
, s.t. ŷ2(n−m+1) − 1 = 0, ŷTNTNŷ = n+ 1. (A.4)

To prove (A.4) is equivalent to its dual problem, we use the following result on the duality

of the quadratic constrained optimization problems.

Lemma A.0.1 ([14, Corollary 1]). Let yTA2y+2bT2 y+c2 be a positive semidefinite quadratic form.

If there exists y such that yTA3y+ 2bT3 y+ c3 < 0 and if A3 is positive semidefinite, then the primal

problem

inf
y

yTA1y + 2bT1 y + c1

yTA2y + 2bT2 y + c2
, s.t. yTA3y + 2bT3 y + c3 = 0

and the dual problem

sup
λ

inf
y

yT(A1 + λA3)y + 2(b1 + λb3)
Ty + (c1 + λc3)

yTA2y + 2bT2 y + c2

has no duality gap.

Proof. See [14, Corollary 1].

With the help of Lemma A.0.1, we have the following theorem to show that that there is

no duality gap between the optimization problem (A.4) and its dual problem.

Theorem A.0.1 ([14, Theorem 1]). Let Âi =

Ai bi

bTi ci

 for i = 1, 2, 3. If Â2 and A3 are positive

semidefinite and if there exists ŷ such that ŷTÂ3ŷ < n+ 1 and ŷ2n+1 = 1, then the primal problem

inf
yTA3y+2bT3 y+c3=n+1

yTA1y + 2bT1 y + c1

yTA2y + 2bT2 y + c2
= inf

ŷTÂ3ŷ=n+1,ŷ2n+1=1

ŷTÂ1ŷ

ŷTÂ2ŷ
(A.5)

–118–

and its dual

sup
t

inf
ŷTÂ3ŷ=n+1

ŷTÂ1ŷ − tŷ2n+1 − t
ŷTÂ2ŷ

has no duality gap.

Proof. Let γ∗ be the optimal value of (A.5), then

γ∗ = inf
ŷTÂ3ŷ=n+1,ŷ2n+1=1

ŷTÂ1ŷ

ŷTÂ2ŷ

= sup
t

inf
ŷTÂ3ŷ=n+1,ŷ2n+1=1

ŷTÂ1ŷ + tŷ2n+1 − t
ŷTÂ2ŷ

≥ sup
t

inf
ŷTÂ3ŷ=n+1

ŷTÂ1ŷ + tŷ2n+1 − t
ŷTÂ2ŷ

≥ sup
t,λ

inf
ŷ

ŷTÂ1ŷ + tŷ2n+1 − t+ λ(ŷTÂ3ŷ − (n+ 1))

ŷTÂ2ŷ

= sup
t,λ

inf
ŷ

yTA1y + 2bT1 y + c1 + tŷ2n+1 − t+ λ(yTA3y + 2bT3 y + c3 − (n+ 1))

yTA2y + 2bT2 y + c2

= sup
t,λ

inf
ŷ2n+1=1

yTA1y + 2bT1 y + c1 + λ(yTA3y + 2bT3 y + c3 − (n+ 1))

yTA2y + 2bT2 y + c2
(A.6)

= inf
yTA3y+2bT3 y+c3=n+1

yTA1y + 2bT1 y + c1

yTA2y + 2bT2 y + c2
= γ∗, (A.7)

where (A.6) and (A.7) apply Lemma A.0.1.

Remark A.0.1. One of the conditions in [14, Theorem 1] is “Â3 is positive semidefinite”. However,

the proof of Theorem A.0.1 applies Lemma A.0.1, which requires A3 to be positive semidefinite

and there exists ŷ such that ŷTÂ3ŷ < n + 1 and ŷ2n+1 = 1. Therefore, the condition “Â3 is

positive semidefinite” is not necessary. In addition, in the statement of [14, Theorem 1], one of

the constraints is y2n+1 = 1. However, in (A.5), the size of the matrix Ai and Âi is n × n and

(n + 1) × (n + 1) for i = 1, 2, 3, respectively. Therefore, we consider y ∈ Rn and ŷ ∈ Rn+1.

Therefore, we change the constraint y2n+1 = 1 to ŷ2n+1 = 1.

We now prove that the conditions of Theorem A.0.1 are staisfied for the constrained

Rayleigh quotient optimization problem (A.4).

Lemma A.0.2. Suppose ‖v0‖ < 1, where v0 = (CT)†b. Then there exists ŷ such that ‖ŷ‖2N =

ŷTNTNŷ < n+ 1 and ŷ(n−m+1) = 1.

–119–

Proof. Note that v0 = (CT)†b is the minimum norm solution of CTv = b. Let v̂ = [
√
nvT0 , 1]T. Then

v̂ ∈ N (Ĉ) and thus there exists ŷ such that v̂ = Nŷ for which we have ‖ŷ‖N = ‖v̂‖2 <
√
n+ 1,

and, at the same time, ŷ(n−m+1) = v̂(n+1) = 1.

By Lemma A.0.2 and Theorem A.0.1, the optimization problem (A.4) is equivalent to its

dual problem

sup
t

inf
ŷTNTNŷ=n+1

ŷTLŷ + tŷ2n−m+1 − t
ŷTMŷ

. (A.8)

Since

tŷ2n−m+1 − t = tŷ2n−m+1 − t
ŷTNTNŷ

n+ 1
= ŷTEŷ,

(A.8) is equivalent to

sup
t

inf
ŷTNTNŷ=n+1

ŷT(L+ tE)ŷ

ŷTMŷ
. (A.9)

To transform the dual problem (A.9) to an eigenvalue problem, we first prove that M is

positive definite.

Lemma A.0.3. Let b be as defined in (3.1c) and b 6= 0. N has full column rank, then M is positive

definite.

Proof. It is clear that M is positive semi-definite. We claim that M is nonsingular. Suppose, to

the contrary, that M is singular. Then there exists a nonzero x such that Mx = 0.

We claim that x(n−m+1) 6= 0; otherwise suppose x(n−m+1) = 0 and write x =

x1
0

. It

follows from Mx = 0 that UTUx = 0, implying x1 = 0 because U has full column rank. Thus

x = 0, a contradiction.

Without loss of generality, we may normalize x(n−m+1) to 1, i.e., x =

x1
1

. Note that

M = NTN − en−m+1e
T
n−m+1. Mx = 0 implies NTNx =

0

1

. NTN is invertible. We now express

(NTN)−1(n−m+1,n−m+1) in two different ways. NTNx =

0

1

 yields x = (NTN)−1

0

1

 and thus

1 =

0

1


T

x =

0

1


T

(NTN)−1

0

1

 = (NTN)−1(n−m+1,n−m+1).

–120–

On the other hand,

NTN =

UTU UTu

uTU uTu+ 1

 .
By the assumption that U has full column rank, UTU is invertible. With help of a formula 1 of the

determinant of block matrices, we have

det(NTN) = det(UTU) det[(1 + uTu− uTU(UTU)−1UTu].

According to the relationship between the inverse and the adjoint of a matrix, we find

(NTN)−1(n−m+1,n−m+1) = (−1)n−m+1+n−m+1 det(UTU)

det(NTN)

=
det(UTU)

det(UTU) det[(1 + uTu− uTU(UTU)−1UTu]

=
det(UTU)

det(UTU)[1 + uT(I − PU)u]
,

where PU is the orthogonal projection onto R(U). Therefore, (NTN)−1(n−m+1,n−m+1) = 1 if and

only if uT(I − PU)u = 0 implying that u is in the column space of U . Without loss of generality,

we may assume the first column of U is u. Now subtract the first column of N from its last column

to conclude that en+1 is in the null space of Ĉ, which contradicts that b 6= 0.

By Lemma A.0.3 and Courant-Fisher minimax theorem [20, Theorem 8.1.2], finding

inf
ŷTNTNŷ=n+1

ŷT(L+ tE)ŷ

ŷTMŷ

is equivalent to finding the smallest eigenvalue of K−1(L + tE)K−Tx = λx, where M = KKT is

the Cholesky factorization of M . Therefore, (A.9) is equivalent to

sup
t
λmin(L+ tE,M). (A.10)

Finally, we prove that the maximum value can be obtained, i.e., ’sup’ in (A.10) can be

replaced by ’max’.

Lemma A.0.4. Let f(t) = λmin(L+ tE,M). There exits t0 ∈ R such that f(t0) = supt∈R f(t).

1det

([
A B
C D

])
= det(A) det(D − CA−1B) when A is invertable.

–121–

Proof. We prove the claim by showing that

lim
t→+∞

f(t) = lim
t→−∞

f(t) = −∞.

First, let v1 ∈ R(N) with the last component being zero, and set y1 = NTv1. We have yT1 Ey1 =

−‖v1‖
2
2

n+1 < 0 and yT1My1 > 0 since M is positive definite. Hence

lim
t→+∞

f(t) = lim
t→+∞

inf
ŷ

ŷT(L+ tE)ŷ

ŷTMŷ
≤ lim

t→+∞

yT1 (L+ tE)y1

yT1My1
≤ lim

t→+∞
t
yT1 Ey1

yT1My1
+ λmax(L,M) = −∞.

Recall v0 = (CT)†b and the assumption that ‖v0‖ < 1. Let v2 = [
√
nvT0 , 1]T. Clearly v2 ∈ R(N)

and let y2 = NTv2. We have yT2 Ey2 = −‖v0‖
2
2

n+1 + 1− 1
n+1 > 0 since ‖v0‖ < 1 and yT2My2 > 0 since

M is positive definite. Hence

lim
t→−∞

f(t) = lim
t→−∞

inf
ŷ

ŷT(L+ tE)ŷ

ŷTMŷ
≤ lim

t→−∞

yT2 (L+ tE)y2

yT2My2
≤ lim

t→−∞
t
yT2 Ey2

yT2My2
+ λmax(L,M) = −∞.

Therefore, there exits t1 < 0 such that f(t) < f(0) for t < t1 and there exits t2 > 0 such

that f(t) < f(0) for when t > t2. Therefore

sup
t∈R

f(t) = sup
t∈[t1,t2]

f(t).

Because f(t) = λmin(L + tE,M) is a continuous function [60], there exists t0 ∈ [t1, t2] such that

f(t0) = supt∈R f(t).

In conclusion, we have shown that CRQopt (3.1) is equivalent to the eigenvalue optimiza-

tion problem (A.2).

–122–

Appendix B

Sofrware package CRQPACK

The Lanczos algorithm for solving CRQopt (3.1) described in this paper has been imple-

mented in MATLAB. In the spirit of reproducible research, MATLAB scripts of the implementation

of the Lanczos algorithm and the data that used to generate numerical results presented in this

paper are packed in a software called package called CRQPACK. CRQPACK can be obtained from

https://www.math.ucdavis.edu/~yszhou/CRQPACK.zip.

CRQPACK consists of three folders:

• src: the source code for solving CRQopt (3.1).

It consists of four functions CRQ_Lanczos, QEPmin, LGopt and rLGopt. CRQ_Lanczos is the

driver and calls QEPmin and LGopt. LGopt is dependent on rLGopt.

In addition, we also provide two other drivers for solving CRQopt (3.1), namely CRQ_explicit

for the direct method [17] and CRQ_ppm for the projected power method [68].

• synthetic: the drivers for numerical examples in section 3.5.

correct.m and QEPres.m are for the examples in Sections 3.5.1 and 3.5.4, respectively.

CRQsharp.m is used to generate the plots for Example 3.5.2 on error bounds in (3.90a) and

(3.90b), while CRQnotsharp.m on the error bounds (3.90a) and (3.90b).

• imagecut: the code for constrained image segmentation.

–123–

https://www.math.ucdavis.edu/~yszhou/CRQPACK.zip

It has three subfolders: examples contains the drivers, data contains image data including

prior labeling information, and auxiliary contains program to generate the matrices A, C,

and vector b of CRQopt (3.1).

The syntax of calling the driver CRQ_Lanczos is as follows:

[v,info] = CRQopt(A,C,b,opts)

where

• A: the matrix A in CRQopt (3.1)

• C: the matrix C in CRQopt (3.1)

• b: the vector b in CRQopt (3.1)

• opts: option parameters:

– opts.maxit: maximum number of Lanczos iteraions

– opts.minit: minimum number of Lanczos iteraions

– opts.tol: tolerance of relative residual

– opts.method: method to solve the optimization problem

1: solve CRQopt via LGopt (default)

2: solve CRQopt via QEPmin

– opts.checkstep: the number of Lanczos steps between solving two rLGopt or two

rQEPmin and checking the residuals

– opts.resopt: option for computing the residual (only valid when opts.method=2)

0 : using residual bound (3.67b) to estimate residual (default)

1: using residual (3.67a)

– opts.returnQ: indicator that whether the algorithm returns Qk in structure info

• v: computed solution of CRQopt (3.1)

• info: information for some internal data:

–124–

– info.n0: vector n0

– info.b0: vector b0

– info.gamma2: the square of parameter γ

– info.k: the number of Lanczos steps

– info.T: tridiagonal matrix Tk

– info.mu: computed eigenvalue or Lagrange multipliers in each iteration

– info.res: norms of relative residual of Lagrange equations/QEP in each iteration

– info.Q: the matrix Qk. This field is valid only when opts.returnQ=1

– info.x: a cell, whose elements are the solutions of all rLGopt (3.45) solved. This field

is valid only whenopts.method=1.

– info.s: a cell, whose element are the eigenvectors of all LEP (3.63) corresponding to

the desired eigenvalue. This field is valid only when opts.method=2.

–125–

Appendix C

Software package PALPACK

We implemented PAL algorithm in MATLAB. The package is called PALAPCK and

PALPACK can be obtained from

https://www.math.ucdavis.edu/~yszhou/PALPACK.zip.

Our software consists of three folders:

• src: source code for the solver of NEP (5.1) by PAL algorithm

– pal: solves NEP (5.1);

– rrd: rank revealing decompoisition;

– invmat: matrix-vector multiplication (5.11).

• data: data matrices

• examples: the driver routines of the example of eigenvalue problems arising from computing

resonant modes of accelerator cavities by PAL algorithm

– SLAC-I-Pillbox110658.m: run Example 6.3.1

– SLAC-I-10142.m: run Example 6.3.2

– SLAC-II-5384.m: run Example 6.3.3

– SLAC-II-170562.m: run Example 6.3.4

• src_nleigs: source code for the solver of NEP (5.1) by NLEIGS algorithm

–126–

https://www.math.ucdavis.edu/~yszhou/PALPACK.zip

• examples_nleigs: the driver routines of the example of eigenvalue problems arising from

computing resonant modes of accelerator cavities by NLEIGS algorithm

• src_cork: source code for the solver of NEP (5.1) by CORK algorithm

• examples_cork: the driver routines of the example of eigenvalue problems arising from com-

puting resonant modes of accelerator cavities by CORK algorithm

The syntax and the description of function pal is as follows:

[Lam, V, info] = pal(K, M, W, padefun, neig, shift, opts)

Input

• K: matrix K in NEP

• M: matrix C in NEP

• padefun: A structure representing the Pade approximation of each nonlinear function

– padefun.a: cell array containing vectors amj

– padefun.b: cell array containing vectors bmj

– padefun.C: matrix Ĉ = diag(Ir1 ⊗ Cm1 , Ir2 ⊗ Cm2 , . . . , Irq ⊗ Cmq) ∈ Cp×p

– padefun.D: matrix D̂ = diag(Ir1 ⊗Dm1 , Ir2 ⊗Dm2 , . . . , Irq ⊗Dmq) ∈ Cp×p

– padefun.gamma: vector containing scalars γj

– padefun.omega: vector containing scalars ωj

– padefun.poles: cell array containing poles for each rational function

• neig: number of desired eigenvalues

• shift: the shift s

• opts: specify options

– opts.E, opts.F: cell arrays containing rank revealing decompositions Wj = EjF
T
j

– opts.dodisp: indicator of whether display timing or not

–127–

– opts.rrdmethod: indicator of the method to compute rank revealing decomposition.

options: ’SVD’(default), ’LU’, ’QR’.

– opts.returnEF: indicator of whether return the results for rank-revealing factorization

Wj = EjF
T
j .

Output

• Lam: computed eigenvalues

• V: computed eigenvectors

• info: info structure with

– info.neig: number of converged eigenvalues

– info.rank: rank of Wj

– info.E and info.F: rank revealing factorizationWj = EjF
T
j , valid when opts.returnEF=1

– info.poles: poles of REP

– info.poles_Lam, info.poles_Lam: eigenvalues removed as potential poles, with the

corresponding eigenvectors

–128–

References

[1] A. C. Antoulas. Approximation of Large-scale Dynamical Systems. SIAM, Philadelphia, 2005.

[2] Z. Bai, J. Demmel, J. Dongarra, A. Ruhe, and H. van der Vorst. Templates for the Solution
of Algebraic Eigenvalue Problems: a Practical Guide. SIAM, Philadelphia, 2000.

[3] G. A. Baker and P. R. Graves-Morris. Padé Approximants, 2nd edition. Cambridge University
Press, Cambridge, UK, 1996.

[4] A. Bamberger, B. Engquist, L. Halpern, and P. Joly. Higher order paraxial wave equation
approximations in heterogeneous media. SIAM Journal on Applied Mathematics, 48(1):129–
154, 1988.

[5] B. Beckermann and A. C. Matos. Algebraic properties of robust Padé approximants. Journal
of Approximation Theory, 190:91–115, 2015.

[6] C. H. Bischof and G. Quintana-Ort́ı. Computing rank-revealing QR factorizations of dense
matrices. ACM Transactions on Mathematical Software, 24(2):226–253, 1998.

[7] Å. Björck. Numerical Methods for Least Squares Problems. SIAM, Philadelphia, 1996.

[8] J. R. Bunch, C. P. Nielsen, and D. C. Sorensen. Rank-one modification of the symmetric
eigenproblem. Numerische Mathematik, 31:31–48, 1978.

[9] S. E. Chew and N. D. Cahill. Semi-supervised normalized cuts for image segmentation. In
Proceedings of the IEEE International Conference on Computer Vision, pages 1716–1723, 2015.

[10] J. W. Demmel. Applied Numerical Linear Algebra. SIAM, Philadelphia, 1997.

[11] N. R. Draper. “Ridge analysis” of response surfaces. Technometrics, 5(4):469–479, 1963.

[12] C. Effenberger and D. Kressner. Chebyshev interpolation for nonlinear eigenvalue problems.
BIT Numerical Mathematics, 52(4):933–951, 2012.

[13] M. Embree, J. A. Loe, and R. B. Morgan. Polynomial preconditioned Arnoldi. arXiv preprint
arXiv:1806.08020, 2018.

[14] A. Eriksson, C. Olsson, and F. Kahl. Normalized cuts revisited: A reformulation for seg-
mentation with linear grouping constraints. Journal of Mathematical Imaging and Vision,
39(1):45–61, 2011.

[15] D. Fong and M. Saunders. LSMR: An iterative algorithm for sparse least-squares problems.
SIAM Journal on Scientific Computing, 33(5):2950–2971, 2011.

–129–

[16] W. Gander. Least squares with a quadratic constraint. Numerische Mathematik, 36:291–307,
1981.

[17] W. Gander, G. H. Golub, and U. von Matt. A constrained eigenvalue problem. Linear Algebra
and its Applications, 114-115:815–839, 1989.

[18] I. Gohberg, P. Lancaster, and L. Rodman. Matrix Polynomials. Academic Press, New York,
1982.

[19] G. H. Golub, M. Heath, and G. Wahba. Generalized cross-validation as a method for choosing
a good ridge parameter. Technometrics, 21(2):215–223, 1979.

[20] G. H. Golub and C. F. van Loan. Matrix Computations. Johns Hopkins University Press,
Baltimore, 4th edition, 2013.

[21] G. H. Golub, Z. Zhang, and H. Zha. Large sparse symmetric eigenvalue problems with ho-
mogeneous linear constraints: the Lanczos process with inner-outer iterations. Linear Algebra
and its Applications, 309(1):289–306, 2000.

[22] G. Golubr. Some modified matrix eigenvalue problems. SIAM Review, 15:318–334, 1973.

[23] P. Gonnet, S. Guttel, and L. N. Trefethen. Robust Padé approximation via SVD. SIAM
review, 55(1):101–117, 2013.

[24] P. González-Vera and M. J. Páiz. Multipoint Padé-type approximation: an algebraic approach.
The Rocky Mountain Journal of Mathematics, pages 531–558, 1999.

[25] N. I. M. Gould, S. Lucidi, M. Roma, and P. L. Toint. Solving the trust-region subproblem
using the Lanczos method. SIAM Journal on Optimization, 9(2):504–525, 1999.

[26] S. Güttel and F. Tisseur. The nonlinear eigenvalue problem. Acta Numerica, 26:1–94, 2017.

[27] S. Guttel, R. Van Beeumen, K. Meerbergen, and W. Michiels. NLEIGS: A class of fully rational
Krylov methods for nonlinear eigenvalue problems. SIAM Journal on Scientific Computing,
36(6):A2842–A2864, 2014.

[28] W. W. Hager. Minimizing a quadratic over a sphere. SIAM Journal on Optimization,
12(1):188–208, 2001.

[29] N. Halko, P.-G. Martinsson, and J. A. Tropp. Finding structure with randomness: Probabilistic
algorithms for constructing approximate matrix decompositions. SIAM review, 53(2):217–288,
2011.

[30] T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning. Springer
Series in Statistics. Springer New York Inc., New York, 2001.

[31] N. J. Higham. Accuracy and Stability of Numerical Algorithms. SIAM, Philadelphia, 2002.

[32] E. Jarlebring, K. Meerbergen, and W. Michiels. A Krylov method for the delay eigenvalue
problem. SIAM Journal on Scientific Computing, 32(6):3278–3300, 2010.

[33] C. Jiang, H. Xie, and Z. Bai. Robust and efficient computation of eigenvectors in a generalized
spectral method for constrained clustering. In Artificial Intelligence and Statistics, pages 757–
766, 2017.

–130–

[34] T. Joachims. Transductive learning via spectral graph partitioning. In Proceedings of the
Twentieth International Conference on International Conference on Machine Learning, pages
290–297, 2003.

[35] J. Lampe and H. Voss. On a quadratic eigenproblem occurring in regularized total least
squares. Computational Statistics & Data Analysis, 52(2):1090–1102, 2007.

[36] R.-C. Li. Solving secular equations stably and efficiently. Technical Report UCB//CSD-94-
851, Computer Science Division, Department of EECS, University of California at Berkeley,
1993.

[37] R.-C. Li. Vandermonde matrices with Chebyshev nodes. Linear Algebra and its Applications,
428:1803–1832, 2007.

[38] R.-C. Li. On Meinardus’ examples for the conjugate gradient method. Mathematics of Com-
putation, 77(261):335–352, 2008.

[39] R.-C. Li. Sharpness in rates of convergence for symmetric Lanczos method. Mathematics of
Computation, 79(269):419–435, 2010.

[40] B.-S. Liao, Z. Bai, L.-Q. Lee, and K. Ko. Nonlinear Rayleigh-Ritz iterative method for solving
large scale nonlinear eigenvalue problems. Taiwanese Journal of Mathematics, 14(3A):869–883,
2010.

[41] W. Liu, G. Hua, and J. R. Smith. Unsupervised one-class learning for automatic outlier
removal. In 2014 IEEE Conference on Computer Vision and Pattern Recognition, pages 3826–
3833, 2014.

[42] D. Lu, X. Huang, Z. Bai, and Y. Su. A Padé approximate linearization algorithm for solving
the quadratic eigenvalue problem with low-rank damping. International Journal for Numerical
Methods in Engineering, 103(11):840–858, 2015.

[43] Y. Y. Lu. A Padé approximation method for square roots of symmetric positive definite
matrices. SIAM Journal on Matrix Analysis and Applications, 19(3):833–845, 1998.

[44] N. Mishra, R. Schreiber, I. Stanton, and R. E. Tarjan. Clustering social networks. In Inter-
national Workshop on Algorithms and Models for the Web-Graph, pages 56–67, 2007.

[45] J. Moré and D. Sorensen. Computing a trust region step. SIAM Journal on Scientific and
Statistical Computing, 4(3):553–572, 1983.

[46] M. E. J. Newman. Spectral methods for community detection and graph partitioning. Physical
Review E, 88:042822, 2013.

[47] J Nocedal and S. J. Wright. Numerical Optimization, 2nd edition. Springer series in operations
research and financial engineering. Springer, New York, 2006.

[48] C. C. Paige and M. A. Saunders. LSQR: An algorithm for sparse linear equations and sparse
least squares. ACM Transactions on Mathematical Software, 8(1):43–71, 1982.

[49] C.-T. Pan. On the existence and computation of rank-revealing LU factorizations. Linear
Algebra and its Applications, 316(1-3):199–222, 2000.

–131–

[50] C.-T. Pan and P. T. P. Tang. Bounds on singular values revealed by QR factorizations. BIT.
Numerical Mathematics, 39(4):740–756, 1999.

[51] B. N. Parlett. The Symmetric Eigenvalue Problem. SIAM, Philadelphia, 1998.

[52] D. Paurat, D. Oglic, and T. Gärtner. Supervised PCA for interactive data analysis. In Pro-
ceedings of the Conference on Neural Information Processing Systems (NIPS) 2nd Workshop
on Spectral Learning, 2013.

[53] W. Pentney and M. Meila. Spectral clustering of biological sequence data. In Association for
the Advancement of Artificial Intelligence, pages 845–850, 2005.

[54] F. Rendl and H. Wolkowicz. A semidefinite framework for trust region subproblems with
applications to large scale minimization. Mathematical Programming, Series A, 77(1):273–
299, 1997.

[55] Y. Saad. Numerical Methods for Large Eigenvalue Problems. Manchester University Press,
Manchester, UK, 1992.

[56] Y. Saad. Numerical methods for Large Eigenvalue Problems: Revised Edition. SIAM, Philadel-
phia, 2011.

[57] M. A. Saunders. Solution of sparse rectangular systems using LSQR and CRAIG. BIT Nu-
merical Mathematics, 35(4):588–604, 1995.

[58] J. Shi and J. Malik. Normalized cuts and image segmentation. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 22(8):888–905, 2000.

[59] D. M. Sima, S. Van Huffel, and G. H. Golub. Regularized total least squares based on quadratic
eigenvalue problem solvers. BIT Numerical Mathematics, 44(4):793–812, 2004.

[60] G. W. Stewart and J.-G. Sun. Matrix Perturbation Theory. Academic Press, Boston, 1990.

[61] Y. Su and Z. Bai. Solving rational eigenvalue problems via linearization. SIAM Journal on
Matrix Analysis and Applications, 32(1):201–216, 2011.

[62] R. Van Beeumen, E. Jarlebring, and W. Michiels. A rank-exploiting infinite Arnoldi algorithm
for nonlinear eigenvalue problems. Numerical Linear Algebra with Applications, 23(4):607–628,
2016.

[63] R. Van Beeumen, O. Marques, E. G. Ng, C. Yang, Z. Bai, L. Ge, O. Kononenko, Z. Li, C.-
K. Ng, and L. Xiao. Computing resonant modes of accelerator cavities by solving nonlinear
eigenvalue problems via rational approximation. Journal of Computational Physics, 374:1031–
1043, 2018.

[64] R. Van Beeumen, K. Meerbergen, and W. Michiels. A rational Krylov method based on her-
mite interpolation for nonlinear eigenvalue problems. SIAM Journal on Scientific Computing,
35(1):A327–A350, 2013.

[65] R. Van Beeumen, K. Meerbergen, and W. Michiels. Compact rational Krylov methods for
nonlinear eigenvalue problems. SIAM Journal on Matrix Analysis and Applications, 36(2):820–
838, 2015.

–132–

[66] U. Von Luxburg. A tutorial on spectral clustering. Statistics and computing, 17(4):395–416,
2007.

[67] X. Wang, B. Qian, and I. Davidson. On constrained spectral clustering and its applications.
Data Mining and Knowledge Discovery, 28(1):1–30, 2014.

[68] L. Xu, W. Li, and D. Schuurmans. Fast normalized cut with linear constraints. In 2009 IEEE
Conference on Computer Vision and Pattern Recognition, pages 2866–2873, 2009.

[69] S. X. Yu and J. Shi. Segmentation given partial grouping constraints. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 26(2):173–183, 2004.

[70] L.-H. Zhang, C. Shen, and R.-C. Li. On the generalized Lanczos trust-region method. SIAM
Journal on Optimization, 27(3):2110–2142, 2017.

–133–

	List of Figures
	List of Tables
	Abstract
	Acknowledgments
	Introduction
	Motivations and related work
	Early work of CRQopt
	Brief review of existing nonlinear eigensolvers

	Contributions
	Organization and notations

	Preliminaries
	Lanczos process
	Trust-region subproblems
	Problem statement
	Solving the secular equation

	Padé approximation and realization of rational functions

	Constrained Rayleigh quotient optimization
	Problem statement
	Theory
	Feasible set and solution existence
	Equivalent LGopt
	Equivalent QEPmin
	pLGopt
	pQEPmin
	pLGopt and pQEPmin are equivalent
	LGopt and QEPmin are equivalent
	Summary
	Easy and hard cases

	Lanczos algorithm
	Solving LGopt
	Solving QEPmin
	Lanczos algorithm for CRQopt
	Finite step stopping property
	Hard case

	Convergence analysis of the Lanczos algorithm
	Numerical examples – sharpness of error bounds
	Construction of difficult CRQopt problems
	Numerical results

	Summary

	Application in constrained clustering
	Unconstrained clustering
	Constrained clustering
	Numerical results

	Padé approximate linearization algorithm
	Problem statement
	Spectral transformation
	Rational approximation
	Trimmed linearization and LEP
	PAL algorithm
	Implementation issues
	Matrix-vector multiplications
	Real and complex arithmetic
	Rank-revealing factorization

	Application in resonant modes computation of accelerator cavity
	Eigenvalue problems with TE modes only
	Eigenvalue problems with both TE and TM modes
	Numerical examples

	Concluding remarks
	Appendices
	Proof of the equivalence between CRQopt and the eigenvalue optimization problem
	Sofrware package CRQPACK
	Software package PALPACK
	References

