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Nonconvex Matrix Completion: From Geometric Analysis to Algorithmic Analysis

Abstract

Techniques of matrix completion aim to impute a large portion of missing entries in a data

matrix through a small portion of observed ones, with broad machine learning applications including

collaborative filtering, system identification, global positioning, etc. This dissertation aims to

analyze the nonconvex matrix problem from geometric and algorithmic perspectives.

The first part of the dissertation, i.e., Chapter 2 and 3, focuses on analyzing the nonconvex

matrix completion problem from the geometric perspective. Geometric analysis has been conducted

on various low-rank recovery problems including phase retrieval, matrix factorization and matrix

completion in recent few years. Taking matrix completion as an example, with assumptions on the

underlying matrix and the sampling rate, all the local minima of the nonconvex objective function

were shown to be global minima, i.e., nonconvex optimization can recover the underlying matrix

exactly. In Chapter 2, we propose a model-free framework for nonconvex matrix completion: We

characterize how well local-minimum based low-rank factorization approximates the underlying

matrix without any assumption on it. As an implication, a corollary of our main theorem improves

the state-of-the-art sampling rate required for nonconvex matrix completion to rule out spurious

local minima.

In practice, additional structures are usually employed in order to improve the accuracy of

matrix completion. Examples include subspace constraints formed by side information in collabo-

rative filtering, and skew symmetry in pairwise ranking. Chapter 3 performs a unified geometric

analysis of nonconvex matrix completion with linearly parameterized factorization, which covers

the aforementioned examples as special cases. Uniform upper bounds for estimation errors are

established for all local minima, provided assumptions on the sampling rate and the underlying

matrix are satisfied.

The second part of the dissertation (Chapter 4) focuses on algorithmic analysis of nonconvex

matrix completion. Row-wise projection/regularization has become a widely adapted assumption

due to its convenience for analysis, though it was observed to be unnecessary in numerical simula-

tions. Recently the gap between theory and practice has been overcome for positive semidefinite
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matrix completion via so called leave-one-out analysis. In Chapter 4, we extend the leave-one-out

analysis to the rectangular case, and more significantly, improve the required sampling rate for

convergence guarantee.
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CHAPTER 1

Introduction

Matrix completion techniques aim to predict missing entries in a data matrix from observed

ones. Applications include collaborative filtering [RS05, CR09], in which unobserved user-item

ratings are predicted with the available ones; Global positioning in sensor networks [SY07,Sin08,

OMK10,JM13], in which some of the distances between sensors are unknown due to limitations

such as power restrictions of the sensors; And system identification [LV10,LHV13], etc.

In most high-dimensional problems, low-complexity structures have to be imposed in order

to perform non-trivial learning. In matrix completion algorithms, the low-complexity structure

is the low-rankness of the ground truth. By imposing nuclear norm regularization in order to

recover low-rank structures [RFP10], convex optimization methods have been widely used in the

literature of matrix completion. By solving a nuclear norm minimization problem, [CR09] showed

that exact recovery is possible for matrix completion. [CT10] gave a lower bound of number of

entries required for exactly recovering the underlying matrix by any method. By improving the

required sampling complexity from quadratic dependence on the rank of underlying matrix to

linear dependence, [CT10] matched the aforementioned information theoretic lower bound on the

dependence of rank. By adapting technologies including a recursive process designed in [GLF+10]

(referred as “golfing scheme” in [Gro11]) to the matrix completion problem, [Rec11] presented a

much simplified proof comparing to prior works. Almost at the same time, by using golfing scheme,

[Gro11] showed that exact recovery of Hermitian matrix can be achieved for any given matrix

basis. Instead of incoherence conditions introduced in [CR09], [NW12] considered the matrix

completion problem based on the measure of spikiness and low-rankness of matrices. [MHT10]

considered a reformulated nuclear norm minimization problem in Lagrange form. Nuclear norm

penalized estimator was also studied in [KLT11], and elastic penalty was considered in [SZ12].

Nuclear norm regularization has also been studied for robust principle component analysis, e.g.,

[CLMW11,HKZ11], etc.
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Though convex optimization methods could have near-optimal theoretical guarantees for ma-

trix completion with assumptions on incoherence conditions, they are in general unscalable to large

data matrices whose dimensions are as high as hundreds of thousands. In contrast, nonconvex

optimization methods have been proposed and analyzed in the literature due to computational

convenience. Nonconvex optimization methods [RS05] based on low-rank factorization can reduce

memory and computation costs and avoid iterative singular value decompositions, thereby much

more scalable to large datasets than convex optimization. In [KMO10a,KMO10b], a nonconvex

optimization has been proposed, in which the constraint is the Cartesian product of two Grassmann

manifolds. With assumptions on the sampling complexity in comparison with the rank, incoher-

ence and condition number of the matrix to complete, a method of alternating gradient descent

with initialization is proven to converge to the global minimum and recover the low rank matrix

accurately. Singular value projections (SVP) was employed in [JMD10] to recover the underlying

low-rank matrix. Alternating minimization via the low-rank factorization M ≈ XY > was ana-

lyzed in [JNS13] provided independent samples are used to update X and Y in each step of the

iteration. Their theoretical results were later improved and extended in [Har14,HW14,ZWL15].

Matrix completion algorithms with brand new samples in each iteration may be impractical

given the observed entries are usually highly limited. Instead, gradient descent for a row-wise

regularized nonconvex optimization was shown in [SL16] to converge to the global minimum and

thereby recover the low-rank matrix, provided there hold assumptions on the sampling complexity

and the low-rank matrix. In [CW15, ZL16, YPCC16], instead of introducing row-wise penalty

within the nonconvex objective function, row-wise projection was employed for each iteration of

gradient descent. With spectral initialization, projected gradient descent was guaranteed to con-

verge to the global minimum geometrically. The row-wise regularization or projection has become a

standard assumption for nonconvex matrix completion ever since, given they can explicitly control

the `2,∞ norms of X and Y , i.e., maxi ‖Xi,·‖2 and maxi ‖Yi,·‖2, which is crucial in the theoretical

analysis. Here Xi,· denotes the i-th row of X. However, it has been observed that row-wise reg-

ularization is numerically inactive in general, see, for example, [Sun15]. The gap between theory
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and practice was first overcame in [MWCC18], in which the matrix to complete is assumed to be

positive semidefinite1.

In summary, aforementioned theoretical analysis [SL16,CW15,ZL16,YPCC16,MWCC18]

follow a two-step argument: First, with spectral initialization, the initial value can be shown to be

located within a region close to the global minimum; Second, by analyzing the local geometry near

global minimum, iterative methods such as gradient descent can be shown to converge geometrically.

Besides algorithmic analysis for nonconvex matrix completion, [GLM16, GJZ17] have been

dedicated to the geometric analysis: Instead of consider local geometry near the global minimum,

they analyzed the global geometry of the nonconvex objective function. With assumptions on

the underlying low-rank matrix and sampling rate, [GLM16,GJZ17] showed that the regularized

nonconvex objective function has no spurious local minima. That is, any local minimum is the

global minimum, and thereby nonconvex methods recover the underlying low-rank matrix. Given

the fact that under mild assumption, gradient descent can avoid strict saddle points almost surely

[LSJR16, LPP+17, PP17, JGN+17], the no-spurious-local-minima result ensures that gradient

descent with random initialization can converge to the global minimum.

It is also noteworthy that besides matrix completion, algorithmic and geometric nonconvex

analyses have also been conducted for other low-rank recovery problems, such as phase retrieval

[CLS15,SQW18,CLM16,CCFM19], matrix sensing [ZL15,TBS+15,LMZ18], blind deconvo-

lution [LLSW19], etc.

1.1. Global geometry of nonconvex matrix completion, a model-free framework

To put it in the mathematical terms, the (positive semidefinite) matrix completion problem can

be stated as follows: Let M be a n×n positive semidefinite matrix, and we would like to estimate

the whole matrix from a small proportion of observed entries. To be specific, let Ω ⊂ [n] × [n]

be the index set that supports all observed entries, where [n] := {1, 2, . . . , n}. The observation

is represented by PΩ(M), where the operator PΩ(·) preserves the entries on Ω while changes the

entries on Ωc into zeros.

1Throughout this dissertation, in order to avoid confusion, positive semidefinite matrix is always assumed to be
symmetric (or Hermitian in complex setup).
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Note that any rank-r positive semidefinite matrix can be parameterized through the factor-

ization XX>, where X has r columns. With this parameterization, the regularized least squares

fitting proposed and further analyzed in [GLM16,GJZ17] is

fpsd(X) :=
1

2p
‖PΩ(XX> −M)‖2F + λGα(X),(1.1)

where

(1.2) Gα(X) :=
n∑
i=1

[(‖Xi,·‖2 − α)+]4.

Here X is an n-by-r matrix, Xi,· denotes i-th row of X, and λ and α are two tuning parameters..

The sampling rate p is usually unknown but is almost identical to its empirical version |Ω|/n2.

Given (1.2) has been used in [GLM16, GJZ17], the reason why we introduced a fourth order

penalty (1.2) here mainly consists of two parts: First, the fourth order penalty is twice continuously

differentiable, which makes it possible for us to analyze the second order optimality condition of

the objective function. Second, comparing to prior work [GLM16,GJZ17], technically speaking,

the fourth term plays a crucial rule in our analysis, which we will see later in Chapter 2.

This optimization is obviously nonconvex, so standard optimization methods, such as gradient

descents, may be attracted to local minima. A series of works in the literature, such as [GLM16,

GJZ17], aimed to understand the nonconvex geometry of (1.1). In particular, people are interested

in figuring out the conditions on the ground-truth low rank matrix M as well as the sampling rate

of Ω, under which any local minimum X̂ of (1.1) leads to an accurate estimate of M through

M̂ = X̂X̂>. For example, [GLM16, GJZ17] showed that any local minimum X̂ of (1.1) yields

M = X̂X̂>, as long as M is exactly rank-r, the condition number of M is well-bounded, the

incoherence parameter of the eigenspace of M is well-bounded, and the sampling rate is greater

than a function of aforementioned quantities. However, in real applications, the aforementioned

assumptions may not be satisfied. For example, it is not realistic to estimate the exact rank of

underlying M ; the condition number and incoherence parameter can be extremely large due to

small perturbations to M and rank mismatching caused by inaccurate estimation of rank, etc.
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In order to address the aforementioned problems, our paper [CL19], which reduced to first three

sections of Chapter 2, studied the theoretical properties of X̂X̂> with no assumptions on M . Due

to the fact that we do not assume M is exactly rank-r, there are actually two questions of interest:

how close X̂X̂> is from M , and how close X̂X̂> is from Mr, the best rank-r approximation

of M by spectral truncation. In comparison to [GLM16, GJZ17], our main contributions to be

introduced in the next chapter include the following:

• Without assumptions imposed on M regarding its rank, eigenvalues and eigenvectors, our

main result Theorem 2.1.2 are able to characterize how well any local-minimum based

rank-r factorization X̂X̂> approximates M or Mr. The sampling rate is only required

to satisfy p > C log n/n for some absolute constant C. Therefore, for matrix completion

applications, our framework provides more suitable guidelines than [GLM16,GJZ17]. In

fact, the condition number and incoherence parameter of the matrix to complete may not

satisfy the strong assumptions in [GLM16,GJZ17].

• When M is assumed to be exactly low-rank as in [GLM16, GJZ17], Corollary 2.1.3

improves the state-of-the-art no-spurious-local-minima results in [GLM16, GJZ17] for

exact nonconvex matrix completion in terms of sampling rates. To be specific, assuming

both condition numbers and incoherence parameters are both on the order of O(1), our

result improves the result in [GJZ17] from Õ(r4/n) to Õ(r2/n). Here Õ(·) indicates that

we ignore the logarithms.

• Theorem 2.1.2 also implies the conditions under which the nonconvex optimization (1.1)

yields good low-rank approximation of M in the cases of large condition numbers, high

incoherence parameters, or rank-mismatching.

On the other hand, [CL19] benefits from [GLM16, GJZ17] in various aspects. In order to

characterize the properties of any local minimum X̂, we follow the idea in [GJZ17] to combine

the first and second order conditions of local minima linearly to construct an auxiliary function,

denoted as K(X) in this dissertation. If M is exactly rank-r and its eigenvalues and eigenvectors

are well-bounded, [GJZ17] showed that K(X) 6 0 for all X as long as the sampling rate is large

enough. This argument can be employed to prove that there are no spurious local minima.
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However, K(X) 6 0 can be shown to hold for all X only if strong assumptions are imposed on

M . Therefore, we instead focus on analyzing the inequality K(X̂) > 0 directly in the model-free

manner, noting that X̂ denotes a local minimum. Among a few novel technical ideas, the success of

such model-free analysis relies crucially on the deterministic inequality (Lemma 2.3.5) that controls

the difference between the function K(X) and its population version E[K(X)] for any fixed X.

Though most of the nonconvex matrix completion literature focus on the uniform sampling

model, the model-free framework introduced in [CL19] enables us to derive an uniform approxi-

mation result: For any fixed sampling pattern Ω, Theorem 2.4.1 characterizes how well any local-

minimum based rank-r factorization approximates the ground-truth. As an interesting byproduct,

in Section 2.4, we find that minimizing (1.1) can still recover the ground-truth M very well when

the uniformness of Ω is slightly violated. Furthermore, as a natural extention of model-free frame-

work in [CL19], in Section 2.5, a model-free local minima analysis is conducted on nonconvex

rectangular matrix completion with the following objective function,

frect(X,Y ) :=
1

2p
‖PΩ(XY > −M)‖2F +

1

8
‖X>X − Y >Y ‖2F + λ(Gα(X) +Gα(Y )),(1.3)

where X ∈ Rn1×r,Y ∈ Rn2×r.

In summary, the theoretical analysis within [CL19] follows the framework of local minimum

analysis for nonconvex optimization in the literature. For example, [BH89] has described the

nonconvex landscape of the quadratic loss for PCA. [LW15] studied the local minima of regu-

larized M-estimators. [SQW18] studied the global geometry of the phase retrieval problem. The

conditions for no spurious local minima have been investigated in [BNS16] and [GLM16] for non-

convex matrix sensing and completion, respectively. The global geometry of nonconvex objective

functions with underlying symmetric structures, including low-rank symmetric matrix factorization

and sensing, has been studied in [LWL+16]. Global geometry of rectangular matrix factorization

and sensing has been studied in [ZLTW17], where the issues of under-parameterization and over-

parameterization have been investigated. Similar analysis has been extended to general low-rank op-

timization problems in [LZT17]. Matrix factorization has been further studied in [JGN+17] with

a novel geometric characterization of saddle points, and this idea was later extended in [GJZ17],

where a unified geometric analysis framework is proposed to study the landscapes of nonconvex
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matrix sensing, matrix completion and robust PCA. More recently, [LLZ+20] analyzed the global

geometry of low-rank (rectangular) matrix recovery without regularization.

1.1.1. Applications in memory-efficient kernel PCA. Kernel PCA [SSM98] is a widely

used nonlinear dimension reduction technique in machine learning for the purpose of redundancy

removal and preprocessing before prediction, classification or clustering. The method is imple-

mented by finding a low-rank approximation of the kernel-based Gram matrix determined by the

data sample. To be concrete, let z1, . . . ,zn be a data sample of size n and dimension d, and let

M be the n×n positive semidefinite kernel matrix determined by a predetermined kernel function

K(x,y) in that Mi,j = K(zi, zj). Non-centered kernel PCA with r principal components amounts

to finding the best rank-r approximation of M .

However, when the sample size is large, the storage of the kernel matrix itself becomes chal-

lenging. Consider the example when the dimension d is in thousands while the sample size n is in

millions. The memory cost for the data matrix is d×n and thus in billions, while the memory cost

for the kernel matrix M is in trillions! On the other hand, if not storing M , the implementation

of standard iterative algorithms of SVD will involve one pass of computing all entries of M in each

iteration, usually with formidable computational cost O(n2d). Therefore, a natural question arises:

How to find low-rank approximations of M memory-efficiently?

The following two are among the most well-known memory-efficient kernel PCA methods in the

literature. One is Nyström method [WS01], which amounts to generating random partial columns

of the kernel matrix, then finding a low-rank approximation based on generated columns. In order to

generate random partial columns, uniform sampling without replacement was employed in [WS01],

and different sampling strategies were proposed later, e.g., [DM05]. The method is convenient in

implementation and efficient in both memory and computation, but relatively unstable in terms of

approximation errors as will be shown in Section 2.2.

Another popular approach is stochastic approximation, e.g., Kernel Hebbian Algorithm (KHA)

[KFS05], which is memory-efficient and approaches the exact principal component solution as the

number of iterations goes to infinity with appropriately chosen learning rate [KFS05]. However,

based on our experience, the method usually requires careful tuning of learning rates even for very

slow convergence.
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It is also worth mentioning that the randomized one-pass algorithm discussed in, e.g., [HMT11],

where the theoretical properties of a random-projection based low-rank approximation method were

fully analyzed. However, although the one-pass algorithm does not require the storage of the whole

matrix M , in kernel PCA one still needs to compute every entry of M , which typically requires

O(n2d) computational complexity for kernel matrix.

As a result, we aim at finding a memory-efficient method as an alternative to the aforemen-

tioned approaches. In particular, we are interested in a method with desirable empirical properties:

memory-efficient, no requirement on one or multiple passes to compute the complete kernel matrix,

no requirement to tune the parameters carefully, and yielding stable results. To this end, we pro-

pose the following method based on entries sampling and nonconvex optimization: In the first step,

Ω is generated to follow an Erdős-Rényi random graph with parameter p later specified in Model

2.1.1, and then a partial kernel matrix PΩ(M) is generated in that Mi,j = K(zi, zj) for (i, j) ∈ Ω.

In the second step, the nonconvex optimization is implemented through gradient descent. Any local

minimum of (1.1), X̂, is a solution of approximate kernel PCA in that M ≈ X̂X̂>.

To store the index set Ω and the sampled entries of M on Ω, the memory cost in the first

step is O(|Ω|), which is comparable to the memory cost O(nr + |Ω|) in the second step. As to the

computational complexity, besides the generation of Ω, the computational cost in the first step is

typically O(|Ω|d), e.g., when the radial kernels or polynomial kernels are employed. This could be

dominating the per-iteration computational complexity O(|Ω|r) in the second step when the target

rank r is much smaller than the original dimension d.

Partial entries sampling plus nonconvex optimization has been proposed in the literature for

scalable robust PCA and matrix completion [YPCC16]. However, to the best of our knowledge,

[CL19] is the first to apply such an idea to memory-efficient kernel PCA. Moreover, the underlying

signal matrix is assumed to be exactly low-rank in [YPCC16] while we make no assumptions on

the positive semidefinite kernel matrix M . Entry-sampling has been proposed in [AMS02,AM07]

for scalable low-rank approximation. In particular, it is used to speed up kernel PCA in [AMS02],

but spectral methods are subsequently employed after entries sampling as opposed to nonconvex

optimization. It is also noteworthy that matrix completion techniques have been applied to certain

kernel matrices when it is costly to generate each single entry [Gra02,PC10], wherein the proposed

8



methods are not memory-efficient. In contrast, our method is memory-efficient in order to serve a

different purpose.

1.2. Global geometry of nonconvex parameterized linear models

In practice, additional structures beyond low-rankness have been employed to improve efficiency

and to reduce sample complexity for matrix completion. In collaborative filtering, for instance, side

information about items and individuals has been used in the literature as subspace constraints for

the matrix to complete [XJZ13, YZJ+13, Che15, EYW18, JD13, SCH+16]. Another example

is pairwise ranking, where skew-symmetric structures are imposed in the implementation of matrix

completion [JLYY11], see, also, [GL11,Cha15].

Interestingly, in [CLM20], which builds the main body of Chapter 3 in this dissertation, we

observe that both examples, i.e., low-rank matrices with subspace constraints and skew-symmetric

low-rank matrices, can be represented in the form M = X(ξ)Y (ξ)>, where both factors X and Y

are linear and homogeneous in parameters ξ ∈ Rd. The details underlying the foregoing observations

are as follows.

• Suppose M ∈ Rn1×n2 is known to be constrained in some pre-specified column and row

spaces, with dimensions s1 and s2, respectively. Let Ũ(and Ṽ ) be a n1 × s1(and n2 ×

s2) matrix whose columns form an orthogonal basis for the given column(or row) space

constraint for M . Given the rank of M , we know there must exist some (not necessarily

unique) ΞA ∈ Rs1×r and ΞB ∈ Rs2×r, such that

M =
(
ŨΞA

)(
Ṽ ΞB

)>
.

Denote by θ = vec(ΘA,ΘB) a (s1 + s2)r-dimensional vector that contains all entries in

ΘA and ΘB (e.g., in the lexicographic order), and define the two linear mappings:

(1.4) X(θ) = ŨΘA ∈ Rn1×r and Y (θ) = ṼΘB ∈ Rn2×r.

Then the above parameterized factorization becomes M = X(ξ)Y (ξ)> with

ξ = vec(ΞA,ΞB).

9



• If M is a n×n rank-r skew-symmetric matrix (which implies that r is even), by the Youla

decomposition [You61], it can be represented (not necessarily uniquely) as

M = ΞAΞ>B −ΞBΞ>A,

where ΞA,ΞB ∈ Rn×
r
2 . Again, denote by θ = vec(ΘA,ΘB) a (nr)-dimensional vector

that contains all entries in ΘA and ΘB, and define the linear and homogeneous mappings

(1.5) X(θ) = [ΘA,−ΘB] ∈ Rn×r and Y (θ) = [ΘB,ΘA] ∈ Rn×r.

We also have the factorization M = X(ξ)Y (ξ)> with ξ = vec(ΞA,ΞB).

We are interested in recovering M = X(ξ)Y (ξ)> through the noisy observation PΩ(M +N)

via a nonconvex optimization similar to (1.3):

(1.6) min
θ∈Rd

‖PΩ(X(θ)Y (θ)> −M −N)‖2F + pen(θ),

where pen(θ) is a penalty function that will be specified in (3.2). This optimization problem is

nonconvex in θ. So it is natural to ask whether we can study the nonconvex geometry for (1.6)

as [GLM16,GJZ17,CL19] did for the vanilla matrix completion problem (1.3).

As an initial step for this general question, in [CLM20], two key assumptions have been made on

the parameterization (X(θ),Y (θ)) and the ground truth M . The first assumption is that X(θ)

and Y (θ) are linear and homogeneous in θ as we required previously. The second assumption,

referred to as correlated parametric factorization, is not easy to explain in non-mathematical terms,

and its formal definition will be introduced in Section 3.1.2. This rather sophisticated assumption

holds for various examples of parameterized low-rank factorization including low-rank matrices

with subspace constraints (1.4) and low-rank skew-symmetric matrices (1.5). The verifications of

the correlated parametric factorization assumption in these two examples will be given in Sections

3.3.1 and 3.4.1, respectively.

Under these assumptions, we will show in Section 3.1.3 that we can indeed analyze the non-

convex geometry for (1.6) in a comparable way to [GLM16, GJZ17, CL19] did for (1.3). To

be specific, uniformly for all low-rank recovery M̂ := X(ξ̂)Y (ξ̂)> with any local minimum ξ̂ of

the nonconvex optimization (1.6), unified upper bounds are established for the estimation error
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‖M̂ −M‖2F , as long as the sampling rate satisfies conditions that depends on rank, condition

number, and eigenspace incoherence parameter of M . Moreover, as corollaries, our main result

implies local-minimum based estimation error bounds for the problems of subspace-constrained and

skew-symmetric matrix completion.

1.3. Nonconvex Rectangular Matrix Completion via Gradient Descent without `2,∞

Regularization

As aforementioned, the `2,∞-norm regularization or projection has become a standard as-

sumption for nonconvex matrix completion. Consider [ZL16] as an example. By assuming that

rank(M) = r is known and that Ω satisfies i.i.d. Bernoulli model with parameter p, i.e., Model

2.5.1, the nonconvex optimization

min
X∈Rn1×r,Y ∈Rn2×r

f(X,Y ) :=
1

2p

∥∥∥PΩ

(
XY > −M

)∥∥∥2

F
+

1

8

∥∥∥X>X − Y >Y ∥∥∥2

F
(1.7)

was proposed there to recover M through X̂Ŷ >. In order to show that (1.7) is able to recover

M exactly, a projected gradient descent algorithm was proposed in [ZL16] where the projection

depending on unknown parameters is intended to control the `2,∞ norms of the updates of X

and Y . It was shown that with spectral initialization, projected gradient decent is guaranteed

to converge to the global minimum and recover M exactly, provided the sampling rate satisfies

p > Cµr2κ2 max(µ, log(n1∨n2))/(n1∧n2) [ZL16]. Here µ is the incoherence parameter introduced

in [CR09], κ is the condition number of the rank-r matrix M , i.e., the ratio between the largest

and smallest nonzero singular values of M , and C is an absolute constant. On the other hand, it

has also been pointed out in [ZL16] that the vanilla gradient descent without `2,∞-norm projection

is observed to recover M exactly in simulations.

Similar `2,∞-norm regularizations have also been used in other related works, see, e.g., [CW15,

YPCC16,WZG17], and a crucial question is how to control the `2,∞-norms of the updates of X

and Y without explicit regularization that involves extra tuning parameters. This issue has been

initiatively addressed in [MWCC18], in which the matrix to complete is assumed to be positive
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semidefinite, and the nonconvex optimization (1.7) is thereby reduced to

(1.8) min
X∈Rn×r

1

2p

∥∥∥PΩ

(
XX> −M

)∥∥∥2

F
.

[MWCC18] is focused on analyzing the convergence of vanilla gradient descent for (1.8). In

particular, the leave-one-out technique well known in the regression analysis [EKBB+13] is em-

ployed in order to control the `2,∞-norms of the updates of X in each step of iteration without

explicit regularization or projection. [MWCC18] shows that vanilla gradient descent is guaranteed

to recover M , provided the sampling rate satisfies p > C poly(κ)µ3r3 log3 n/n, which is somehow

inferior to that in [ZL16]. This naturally raises several questions: Can we improve the required

sampling rate from O(poly(µ, κ, log n)r3/n) to O(poly(µ, κ, log n)r2/n) for vanilla gradient descent

without `2,∞-norm regularization? Or is explicit `2,∞-norm regularization/projection avoidable for

achieving the O(poly(µ, κ, log n)r2/n) sampling rate? Also, can we extend the nonconvex analysis

in [MWCC18] to the rectangular case discussed in [ZL16]? Our work [CLL19] was intended to

answer these questions. The materials included in [CLL19] reduce to Chapter 4 in this dissertation.

As mentioned before, [CLL19] aimed to establish the assumptions on the sampling complexity

and the low-rank matrix M , under which M can be recovered by the nonconvex optimization (1.7)

via vanilla gradient descent. Roughly speaking, our main result states that as long as

p > CSµ
2r2κ14 log(n1 ∨ n2)/(n1 ∧ n2)

with absolute constant CS , vanilla gradient descent for (1.7) with spectral initialization is guaran-

teed to recover M accurately. Compared to [MWCC18], we have made several technical contri-

butions including the following:

• By assuming the incoherence parameter µ = O(1) and the condition number κ = O(1),

regardless of the logarithms, the sampling rate Õ(r3/n) in [MWCC18] is improved to

Õ(r2/(n1 ∧ n2)), which is consistent with the result in [ZL16] where `2,∞-norm projected

gradient descent is employed;

• The leave-one-out analysis for positive semidefinite matrix completion in [MWCC18] is

extended to the rectangular case in [CLL19];

12



• In the case µ = O(1), κ = O(1) and r = O(1), the sampling rate O(log3 n/n) in

[MWCC18] is improved to O(log(n1 ∨ n2)/(n1 ∧ n2)) in our work, which is consistent

with the result in [ZL16] where `2,∞-norm projected gradient descent is used.

To achieve these theoretical improvements and extensions, we need to make a series of mod-

ifications for the proof framework in [MWCC18]. The following technical novelties are worth

highlighting, and the details are deferred to Chapter 4:

• In order to reduce the sampling rate Õ(r3/n) in [MWCC18] to Õ(r2/n) (assuming µ =

O(1), κ = O(1)), a series of technical novelties are required. First, in the analysis of the

spectral initialization for the gradient descent sequences and those for the leave-one-out

sequences, ‖1
pPΩ(M) −M‖ is bounded in [MWCC18] basically based on Lemma 39

therein. Instead, we give tighter bounds by applying [Che15, Lemma 2] (Lemma 4.2.3 in

this dissertation), and the difference is a factor of
√
r. Second, two pillar lemmas, Lemma

37 in [MWCC18] (restated as Lemma 4.3.1 in this dissertation) and a result in [Mat93]

(restated as Lemma 4.3.3 in this dissertation), are repeatedly used in the leave-one-out

analysis of [MWCC18]. We find that applying a concentration result introduced in

[BJ14] and [LLR16] (restated as Lemma 2.3.6 in this dissertation) to verify the conditions

in these lemmas could lead to sharper error bounds for the leave-one-out sequences. Third,

also in the leave-one-out analysis, we need to modify the application of matrix Bernstein

inequality in [MWCC18] in order to achieve sharper error bounds.

• In order to improve the orders of logarithms, we must improve the Hessian analysis in

[MWCC18], i.e., Lemma 7 therein, and it turns out that Lemma 4.4 from [CL19] (Lemma

2.3.5 in this dissertation) and Lemma 9 from [ZL16] (Lemma C.1.1 in this dissertation)

are effective to achieve this goal. These two lemmas are also effective in simplifying the

proof in the Hessian analysis.

Leave-one-out analysis has been employed in [EKBB+13] to establish the asymptotic sampling

distribution for robust estimators in high/moderate dimensional regression. This technique has

also been utilized in [AFWZ17] to control `∞ estimation errors for eigenvectors in stochastic

spectral problems, with applications in exact spectral clustering in community detection without

cleaning or regularization. As aforementioned, in [MWCC18], the authors have employed the
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leave-one-out technique to control `2,∞ estimation errors for the updates of low-rank factors in

each step of gradient descent that solves (1.8). Besides matrix completion, they also show that

similar techniques can be utilized to show the convergence of vanilla gradient descent in other low-

rank recovery problems such as phase retrieval and blind deconvolution. Leave-one-out analysis

has also been successfully employed in the study of Singular Value Projection (SVP) for matrix

completion [DC20] and gradient descent with random initialization for phase retrieval [CCFM19].

Implicit regularization for gradient descent has also been studied in matrix sensing with over-

parameterization. When the sampling matrices commute, it has been shown in [GWB+17] that

gradient descent algorithm with near-origin starting point is guaranteed to recover the underlying

low-rank matrix even under over-parameterized factorization. The result was later extended to the

case in which the sensing operators satisfy certain RIP properties [LMZ18]. More recently, the

balancing regularizer ‖X>X − Y >Y ‖2F has been shown to be unnecessary for rectangular matrix

sensing [MLC19].

1.4. Notations

Throughout this dissertation, bold uppercase/lowercase characters denote matrices/vectors,

respectively. For a given matrix A, its (i, j)-th entry, i-th row, and j-th column are denoted as

Ai,j , Ai,·, and A·,j , respectively. Its spectral, Frobenius, and `2,∞ norms are denoted as ‖A‖, ‖A‖F

and ‖A‖2,∞ := maxi ‖Ai,·‖22, respectively. Denote by colspan(A)/colspan(A) the column/row

space of A. Deonte by PA the Euclidean projector onto colspan(A). Denote A � 0 if A is a

symmetric or Hermitian positive semidefinite matrix. For any two matrices A and B of the same

dimensions, their matrix inner product is denoted as 〈A,B〉 = trace(A>B) =
∑

i

∑
j Ai,jBi,j , and

their Hadamard/entrywise product is denoted as A ◦B with entries [A ◦B]i,j = Ai,jBi,j . For any

two matrices A and B, vec(A,B) denotes a vector consisting of all entries in A and B in some

fixed order. Denote by Jn1×n2 (or J when the dimensions are clear in the context) the n1 × n2

matrix with all entries equal to one. Denote by O(r) the set of r × r orthogonal matrices. Let

nmin := min{n1, n2} and nmax := max{n1, n2}. Finally, denote by C1, C2, . . . and Cv, Cc, . . . fixed

positive absolute constants. Furthermore, for notation convenience, in discussions we also use C to

denote positive absolute constants which may vary line by line.
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CHAPTER 2

Global Geometry of Nonconvex Matrix Completion, a Model-Free

Framework

2.1. Model-free local minima analysis of nonconvex PSD matrix completion

Let M be an n × n positive semidefinite (PSD) matrix and let r � n be a fixed integer.

It is well known that a rank-r approximation of M can be obtained by truncating the spectral

decomposition of M . To be specific, let M =
∑n

i=1 σiuiu
>
i be the spectral decomposition with

σ1 > . . . > σn > 0. Then, the best rank-r approximation of M is Mr =
∑r

i=1 σiuiu
>
i . If we

denote Ur = [
√
σ1u1, . . . ,

√
σrur], then the best rank-r approximation of M can be written as

M ≈ UrU
>
r . By the well-known Eckart-Young-Mirsky Theorem [GVL12], Ur is actually the

global minimum (up to rotation) to the following nonconvex optimization:

min
X∈Rn×r

‖XX> −M‖2F .

This factorization for low-rank approximation has been well-known in the literature, see, e.g.,

[BM03].

In this chapter, we are interested in the problem that how to find a rank-r approximation of

M in the case that only partial entries are observed. Let Ω ⊂ [n]× [n] be a symmetric index set,

and we assume that M is only observed on the entries in Ω. For convenience of discussion, this

subsampling is represented as PΩ(M) in that PΩ(M)i,j = Mi,j if (i, j) ∈ Ω and PΩ(M)i,j = 0 if

(i, j) /∈ Ω. We are interested in the following question,

How to find a rank-r approximation of M in a scalable manner only through PΩ(M)?

We propose to find such a low-rank approximation through the following nonconvex opti-

mization, which has been exactly proposed in [GLM16, GJZ17] for matrix completion. Denote

X = [x1, . . . ,xn]> ∈ Rn×r. A rank-r approximation of M can be found through minimizing (1.1).

Following the framework of nonconvex optimization without initialization in [GLM16, GJZ17],
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our local-minimum based approximation for M is M ≈ X̂X̂> where X̂ is any local minimum of

(1.1).

Let’s briefly discuss the memory and computational complexity to solve (1.1) via gradient

descent. If Ω is symmetric and does not contain the diagonal entries as later specified in Model

2.1.1, the updating rule of gradient decent

(2.1) X(t+1) = X(t) − η(t)∇f(X(t))

is equivalent to

x
(t+1)
i := x

(t)
i − η

(t)

2

p

∑
j:(i,j)∈Ω

(
〈x(t)

i ,x
(t)
j 〉 −Mi,j

)
x

(t)
j +

4λ

‖x(t)
i ‖2

(
‖x(t)

i ‖2 − α
)3

1{‖x(t)
i ‖2>α}

x
(t)
i

 ,
where the memory cost is dominated by storing X(t), X(t+1), and M on Ω, which is generally

O(nr + |Ω|). It is also obvious that the computational cost in each iteration is O(|Ω|r).

In this section, the following sampling scheme is employed:

Model 2.1.1 (Off-diagonal symmetric independent Ber(p) model). Assume the index set Ω con-

sists only of off-diagonal entries that are sampled symmetrically and independently with probability

p, i.e.,

(1) (i, i) /∈ Ω for all i = 1, . . . , n;

(2) For all i < j, sample (i, j) ∈ Ω independently with probability p;

(3) For all i > j, (i, j) ∈ Ω if and only if (j, i) ∈ Ω.

Here we assume all diagonal entries are not in Ω for the generality of the formulation, although

they are likely to be obtained in practice. For instance, all diagonal entries of the radial kernel

matrix are ones. For any index set Ω ⊂ [n] × [n], define the associated 0-1 matrix Ω ∈ {0, 1}n×n

such that Ωi,j = 1 if and only if (i, j) ∈ Ω. Then we can write PΩ(X) = X ◦Ω where ◦ denotes

the Hadamard product.

Assume that the underlying positive semidefinite matrix M has the spectral decomposition

(2.2) M =
r∑
i=1

σiuiu
>
i +

n∑
i=r+1

σiuiu
>
i := Mr +Mr+,
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where σ1 > σ2 > · · · > σn > 0 are the spectrum, ui ∈ Rn are unit and mutually perpendicular

eigenvectors. The matrix Mr :=
∑r

i=1 σiuiu
>
i is the best rank-r approximation of M and Mr+ :=∑n

i=r+1 σiuiu
>
i denotes the residual part. In the case of multiple eigenvalues, the order in the

eigenvalue decomposition (2.2) may not be unique. In this case, we consider the problem for any

fixed order in (2.2) with the fixed Mr.

Theorem 2.1.2. Let M ∈ Rn×n be a positive semidefinite matrix with the spectral decomposi-

tion (2.2). Let Ω be sampled according to the off-diagonal symmetric Ber(p) model with p > Cv
logn
n

for some absolute constant Cv. Then in an event E1 with probability P[E1] > 1− 2n−3, as long as

the tuning parameters α and λ satisfy 100
√
‖Mr‖`∞ 6 α 6 200

√
‖Mr‖`∞ and 100‖Ω−pJ‖p 6 λ 6

200‖Ω−pJ‖p , any local minimum X̂ ∈ Rn×r of (1.1) satisfies

∥∥∥X̂X̂> −Mr

∥∥∥2

F
6C1

r∑
i=1

{[
C2

(√
n

p
+

log n

p

)
‖Mr‖`∞ + C2σ2r+1−i − σi

]
+

}2

+ C1

nr‖Mr+‖2`∞
p

(2.3)

and

∥∥∥X̂X̂> −M∥∥∥2

F
6C1

r∑
i=1

{[
C2

(√
n

p
+

log n

p

)
‖Mr‖`∞ + C2σ2r+1−i − σi

]
+

}2

+ C1

nr‖Mr+‖2`∞
p

+ ‖Mr+‖2F

(2.4)

with C1, C2 absolute constants defined in the proof.

Model-free low-rank approximation from partial entries has been studied for spectral estimators

in the literature. For example, under the settings of Theorem 2.1.2, the spectral low-rank approxi-

mation (denoted as Mapprox) discussed in [KMO10b, Theorem 1.1] is guaranteed to satisfy

‖Mapprox −Mr‖2F 6 C

{
nr‖Mr‖2`∞

p
+
r‖PΩ(Mr+)‖2

p2

}
,

with high probability. However, this cannot imply exact recovery even when M is of low rank and

the sampling rate p satisfies the conditions specified in [GJZ17]. Similarly, the SVD-based USVT

estimator introduced in [Cha15] does not imply exact recovery. In contrast, as will be discussed in
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the next subsection, Theorem 2.1.2 implies that any local minimum of (1.1) yields exact recovery

of M with high probability under milder conditions than those in [GJZ17].

2.1.1. Implications in exact matrix completion. Assume in this subsection that the pos-

itive semidefinite matrix M is exactly rank-r, i.e.,

(2.5) M = Mr =

r∑
i=1

σiuiu
>
i = UrU

>
r

where Ur = [
√
σ1u1, . . . ,

√
σrur]. Furthermore, we assume its condition number κr = σ1

σr
and

eigen-space incoherence parameter [CR09] µr = n
r maxi

∑r
j=1 u

2
i,j are well-bounded. This is a

standard setup in the literature of nonconvex matrix completion, e.g., [KMO10a, SL16, CW15,

ZL16,GLM16,YPCC16,GJZ17].

Notice that [GLM16] introduces a slightly different version of incoherence

(2.6) µ̃r :=

√
n‖Ur‖2,∞
‖Ur‖F

=

√
n‖Mr‖`∞
trace(Mr)

as a measure of spikiness. Note that this is different from the spikiness defined in [NW12]. By

the fact that ‖Mr‖`∞ = ‖Ur‖22,∞ = maxi
∑r

j=1 σju
2
i,j , the following relationship between µ and µ̃

is straightforward

(2.7)
µ̃2
r

κr
6
µ̃2
r trace(Mr)

rσ1
=
n‖Mr‖`∞

rσ1
6 µr 6

n‖Mr‖`∞
rσr

=
µ̃2
r trace(Mr)

rσr
6 κrµ̃

2
r .

Using ‖M‖`∞ 6 r
nσ1µr, Theorem 2.1.2 implies the following exact low-rank recovery results:

Corollary 2.1.3. Under the assumptions of Theorem 2.1.2, if we further assume rank(M) = r

(i.e., M = Mr) and

p > 4C2 max

{
µrrκr log n

n
,
µ2
rr

2κ2
r

n

}
or

p > 4C2 max

{
µ̃2
rrκr log n

n
,
µ̃4
rr

2κ2
r

n

}
,

then in the event E1 with probability P[E1] > 1− 2n−3, any local minimum X̂ ∈ Rn×r of objective

function f(X) defined in (1.1) satisfies X̂X̂> = M .
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Notice that our results are better than the state-of-the-art results for no spurious local min-

imum in [GJZ17], where the required sampling rate is p > C
nµ

3
rr

4κ4
r log n (which also implies

p > C
n µ̃

6
rr

4κ7
r log n by (2.7)).

2.1.2. Examples. Besides improving the state-of-the-art no-spurious-local-minima results in

nonconvex matrix completion, Theorem 2.1.2 is also capable of explaining some nontrivial phenom-

ena in low-rank matrix completion in the presence of large condition numbers, high incoherence

parameter, or mismatching between the selected and true ranks.

2.1.2.1. Nonconvex matrix completion with large condition numbers and high eigen-space inco-

herence parameters. Assume here M is exactly rank-r and its spectral decomposition is denoted as

in (2.5). However, we assume that µr and κr can be extremely large, while the condition number and

incoherence parameter for Mr−1 =
∑r−1

i=1 σiuiu
>
i , i.e., κr−1 = σ1

σr−1
and µr−1 = n

r−1 maxi
∑r−1

j=1 u
2
i,j ,

are well-bounded. We are interested in figuring out when the local minimum based rank-r factor-

ization X̂X̂> approximates the original M well.

By ‖Mr‖`∞ = maxi
∑r

j=1 σju
2
i,j , we have

‖Mr‖`∞ 6
r − 1

n
σ1µr−1 + σr‖ur‖2∞.

Then by Theorem 2.1.2, if

p > C max


[
µr−1κr−1(r − 1) + n σr

σr−1
‖ur‖2∞

]
log n

n
,

[
µr−1κr−1(r − 1) + n σr

σr−1
‖ur‖2∞

]2

n


with some absolute constant C, in an event E with probability P[E] > 1 − 2n−3, for any local

minimum X̂ ∈ Rn×r of (1.1), ‖X̂X̂> −M‖2F 6
1

100σ
2
r−1 holds. In other words, the relative

approximation error satisfies ‖X̂X̂
>−M‖F
‖M‖F 6 1

10
√
r−1

.

Notice that ‖ur‖2∞ 6 r
nµr and σr

σr−1
= κr−1

κr
, so the above sampling rate requirement is satisfied

as long as µr
κr
6 Cµr−1 and

p > C max

{
µr−1κr−1r log n

n
,
µ2
r−1κ

2
r−1r

2

n

}
.
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2.1.2.2. Rank mismatching. In this subsection, M is assumed to be exactly rank-R, i.e.,

M = MR =

R∑
i=1

σiuiu
>
i = URU

>
R

where UR = [
√
σ1u1 . . .

√
σRuR]. However, we consider the case that the selected rank r is

not the same as the true rank R, i.e., rank mismatching. As with Section 2.1.1, we assume the

condition number κR = σ1
σR

and eigen-space incoherence parameter µR = n
R maxi

∑R
j=1 σju

2
i,j are

well-bounded. As with (2.7), there holds ‖M‖`∞ 6 R
nσ1µR.

Case 1: R < r. Theorem 2.1.2 implies that if

p > C max

{
µRκRR log n

n
,
µ2
Rκ

2
RR

2

n

}
for some absolute constant C, then in an event E with probability P[E] > 1 − 2n−3, any local

minimum X̂ ∈ Rn×r of (1.1) yields ‖X̂X̂>−M‖2F 6
1

100(r−R)σ2
R. This further yields the relative

approximation error bound ‖X̂X̂
>−M‖F
‖M‖F 6 1

10

√
r−R
R .

Case 2: R > r. Recall that ‖Mr‖`∞ 6 r
nσ1µr. Moreover,

‖Mr+‖`∞ = max
i

R∑
j=r+1

σju
2
i,j 6 σr+1

max
i

R∑
j=1

u2
i,j

 =
µRR

n
σr+1.

Theorem 2.1.2 implies that if

p > C max

{
µrrκr log n

n
,
µ2
rr

2κ2
r

n
,
µ2
RR

3

n

}
for some absolute constant C, then with high probability, any local minimum X̂ ∈ Rn×r of (1.1)

yields

‖X̂X̂> −Mr‖2F 6 C(σ2
r+1 + . . .+ σ2

2r),

which implies that the relative error is well-controlled as long as σ2
r+1 + . . . + σ2

R accounts for a

small proportion in σ2
1 + . . .+ σ2

R.

If we assume that 2C2σr+1 < σr where C2 is specified in Theorem 2.1.2, under the same

sampling rate requirement as above, Theorem 2.1.2 implies a much sharper result:

‖X̂X̂> −Mr‖2F 6
1

100
σ2
r+1,

20



which yields the following (perhaps surprising) relative approximation error bound

‖X̂X̂> −Mr‖F
‖Mr‖F

6
1

10

√
σ2
r+1

σ2
1 + . . .+ σ2

r

6
1

10
√
r
.

2.2. Simulations and applications in memory-efficient kernel PCA

In the following simulations, we solve the following nonconvex optimization which is slightly

different from (1.1):

min
X∈Rn×r

f(X) :=
1

2
‖PΩ(XX> −M)‖2F + λGα(X).

The initialization X(0) is constructed randomly with i.i.d. normal entries with mean 0 and variance

1. The step size η(t) for the gradient descent (2.1) is determined by Armijo’s rule [Arm66].

The gradient descent algorithm is implemented with sparse matrix storage in Section 2.2.2 for

the purpose of memory-efficient KPCA, while with full matrix storage in Section 2.2.1 to test

the performance of general low-rank approximations from missing data. In each experiment, the

iterations will be terminated when ‖∇f(X(t))‖F 6 10−3 or ‖η(t)∇f(X(t))‖F 6 10−10 or the number

of iterations surpasses 103. All methods are implemented in MATLAB. The experiments are running

on a virtual computer with Linux KVM, with 12 cores of 2.00GHz Intel Xeon E5 processor and 16

GB memory.

2.2.1. Numerical simulations. In this section, we conduct numerical tests on a nonconvex

optimization under different settings of spectrum for the 500 × 500 positive semidefinite matrix

M , whose eigenvectors are the same as the left singular vectors of a random 500 × 500 matrix

with i.i.d. standard normal entries. The generation of eigenvalues for M will be further specified

in each test. For each generated M , the nonconvex optimization is implemented for 50 times

with independent Ω’s generated under the off-diagonal symmetric independent Ber(p) model. To

implement the gradient descent algorithm (2.1), set α = 100‖M‖`∞ and λ = 100‖Ω − pJ‖ (the

performances of our method are empirically not sensitive to the choices of the tuning parameters).

In each single numerical experiment, we also conduct spectral method proposed in [AMS02] to

obtain an approximate low-rank approximation of M for the purpose of comparison.
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2.2.1.1. Full rank case. Here M is assumed to have full rank, i.e., rank(M) = 500. To be

specific, let σ1 = · · · = σ4 = 10, σ6 = · · · = σ500 = 1, and σ5 = 10, 9, 8, . . . , 2, 1. The selected

rank used in the nonconvex optimization is set as r = 5, and the sampling rate is set as p =

0.2. With different values of σ5, the results of our implementations of the gradient descent are

plotted in Figure 2.1. One can observe that the relative errors for our nonconvex method are well-

bounded for different σ5’s, and much smaller than those for spectral low-rank approximation. The

results indicate that our approach is able to approximate the “true” best rank-r approximation Mr

accurately in the presence of heavy spectral tail and possibly large condition number σ1/σ5, even

with only 20% observed entries.
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Figure 2.1. Relative errors for full rank case.

2.2.1.2. Low-rank matrix with large condition numbers. Here M is assumed to be of exactly

low rank with different condition numbers. Let σ1 = · · · = σ4 = 10, σ5 = 10
κ , and σ6 = · · · = σ500 =

0. Here the condition number takes on values κ = 10, 20, 30, 40, 50, 100, 200,∞, which implies

rank(M) = 5 if κ < ∞ while rank(M) = 4 if κ = ∞. The selected rank is always assumed to be

r = 5, while the sampling rate is always p = 0.2.

The performance of our nonconvex approach with various choices of κ is demonstrated in Figure

2.2. One can observe that our nononvex optimization approach yields exact recovery of M when

κ = 10, while yields accurate low-rank approximation for M with relative errors almost always

smaller than 0.3 when κ > 20. This fact is consistent with the example we discussed in Section
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Figure 2.2. Relative error
‖Mapprox−M‖F

‖M‖F for low-rank matrix with extreme condi-

tion numbers.

2.1.2.1, where we have shown that under certain incoherence conditions, the relative approximation

error can be well-bounded even when κr =∞.

2.2.1.3. Rank mismatching. In this section, we consider rank mismatching, i.e., the rank of M

is low but different from the selected rank r. In particular, we consider two settings for simulation:

First, we fixM with rank(M) = 10, while the nonconvex optimization is implemented with selected

rank r = 5, 7, 9, 10, 11, 13, 15; Second, the matrix M is randomly generated with rank from 1 to

15, while the selected rank is always r = 5. The sampling rate is fixed as p = 0.2. We perform

the simulation on two sets of spectrums: For the first one, all the nonzero eigenvalues are 10;

And the second one has decreasing eigenvalues: σ1 = 20, σ2 = 18, · · · , σ10 = 2 for the case of

fixed rank(M), σ1 = 30, · · · , σrank(M) = 32 − 2 × rank(M) for the case of fixed selected rank r.

Numerical results for the case of fixed rank(M) are demonstrated in Figure 2.3 (constant nonzero

eigenvalues) and Figure 2.5 (decreasing nonzero eigenvalues), while the case of fixed selected rank

in Figure 2.4 (constant nonzero eigenvalues) and Figure 2.6 (decreasing nonzero eigenvalues). One

can observe from these figures that if the selected rank r is less than the actual rank rank(M), for

the approximation of M , our nonconvex approach performs almost as well as the complete-data

based best low-rank approximation Mr. Another interesting phenomenon is that our nonconvex

method outperforms simple spectral methods in the approximation of either M or Mr significantly

if the selected rank is greater than or equal to the true rank.
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Figure 2.3. Relative errors for rank mismatching for a fixed M with rank(M) = 10.
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Figure 2.4. Relative errors for rank mismatching, fixed selected rank.

2.2.2. Empirical performance of memory-efficient kernel PCA. In order to study the

empirical performance of our memory-efficient kernel PCA approach, we apply it to the synthetic

data set in [Wan12]. The data set is an i.i.d. sample with sample size n = 10, 000 and dimension

d = 3, and the data points are partitioned into two classes independently with equal probabilities.

Points in the first class are first generated uniformly at random on the three-dimensional sphere

{x : ‖x‖2 = 0.3}, while points in the second class are first generated uniformly at random on

the three-dimensional sphere {x : ‖x‖2 = 1}. Every point is then perturbed independently by
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Figure 2.5. Relative errors for rank mismatching for a fixed M with rank(M) = 10.
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Figure 2.6. Relative errors for rank mismatching, fixed selected rank.

N (0, 1
100I3) noise. We aim to implement memory-efficient uncentered kernel PCA with r = 2 on

this dataset with the radial kernel exp(−‖x− y‖22) in order to cluster the data points.

To implement the Nyström method [WS01], 50 columns (and corresponding rows) are selected

uniformly at random without replacement, then a rank-2 approximation of the kernel matrix M

can be efficiently constructed with a smaller scale factorization. The effective sampling rate for

Nyström method is pNys = 2×50n−502

n2 ≈ 0.01. In contrast, in addition to recording the selected

entry values, our nonconvex optimization method also requires to record the row and column

indices for each selected entry. By using sparse matrix storage schemes like compressed sparse row
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(CSR) format [Saa03], it needs 2n2pNCVX + n + 1 entries to store the sparse matrix. Therefore,

if pNCVX > 3
n , the nonconvex approach requires at most 2.5 times as much memory as Nyström

method for the same sampling complexity. Therefore, we choose the sampling rate pNCVX =
pNys

2.5

in the implementation of the nonconvex optimization such that the memory consumption is less

costly than the Nyström method.

Fixing such a synthetic data set, we apply both the Nyström method and our approach (with

α = 100‖M‖`∞ = 100 and λ = 500
√
npNCVX) for 100 times. Denote by M the ground truth

of the kernel matrix, by M2 the ground truth of the best rank-2 approximation of M , and by

Mapprox the memory efficient rank-2 approximation obtained by Nyström method or our nonconvex

optimization. The left and right panels of Figure 2.7 compare the two methods in approximating

M2 and M respectively based on the distributions of relative errors throughout the 100 Monte

Carlo simulations. One can see that our approach is comparable with the Nyström method in terms

of median performance, but much more stable.

Both Nyström method and our nonconvex optimization give approximation in the form of

M ≈ X̂X̂>, so clustering analysis can be directly implemented based on X̂. We implement

k-means on the rows of X̂ with 20 repetitions, and Figure 2.8 compares the two methods in

the distribution of clustering accuracies. It clearly shows that our nonconvex optimization yields

accurate clustering throughout the 100 tests while the Nyström method results in poor clustering

occasionally.

Moreover, during the iterations of the nonconvex method, the regularization term never activate

throughout the 100 simulations. Therefore, empirically speaking, the performances of our numerical

tests will remain the same if we simply set λ = 0.

2.3. Proof of Theorem 2.1.2

In this section, we give a proof for Theorem 2.1.2. In Section 2.3.1, we will present some useful

supporting lemmas; in Section 2.3.2, we present a proof for our main result Theorem 2.1.2; we leave

proof of lemmas used in former subsections to the appendix. Our proof ideas benefit from those

in [GJZ17] as well as [ZLTW17], [JGN+17].
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Figure 2.7. Relative errors for Nyström method with sampling rate pNys ≈ 0.01
and nonconvex method with sampling rate pNCVX =

pNys
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Figure 2.8. Clustering accuracy for Nyström method with sampling rate pNys ≈
0.01 and nonconvex method with sampling rate pNCVX =

pNys

2.5 .

2.3.1. Supporting lemmas. In this section, we give some useful supporting lemmas. The

following lemma is well known in the literature, see, e.g., [Vu18] and [BVH16].

Lemma 2.3.1. There is a constant Cv > 0 such that the following holds. If Ω is sampled

according to the off-diagonal symmetric Ber(p) model with p > Cv
logn
n , then in an event Ev with

probability P[Ev] > 1− n−3,

‖Ω− pJ‖ 6 Cv
√
np.
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The following eigen-space incoherence parameter has been proposed in [CR09].

Definition 2.3.2 ( [CR09]). For any subspace U of Rn of dimension r, denote PU : Rn → Rn

as the orthogonal projection onto U . Define

(2.8) µ(U) :=
n

r
max
16i6n

‖PUei‖22,

where e1, . . . , en represents the standard orthogonal basis of Rn.

As with Theorem 4.1 in [CR09], for the off-diagonal symmetric Ber(p) model, we also have:

Lemma 2.3.3. Let Ω be sampled according to the off-diagonal symmetric Ber(p) model. Define

T := {M ∈ Rn×n | (I − PU )M(I − PU ) = 0, M symmetric},

where U is a fixed subspace of Rn. Let PT be the Euclidean projection on to T : For any symmetric

matrix M ∈ Rn×n,

PT (M) = PUM +MPU − PUMPU .

Then there is an absolute constant CCa, if p > CCa
µ(U) dim(U) logn

n with µ(U) defined in (2.8), in an

event ECa with probability P[ECa] > 1− n−3, we have

p−1‖PT PΩPT − pPT ‖ 6 10−5.

In [Gro11] and [GN10], similar results are given for symmetric uniform sampling with/without

replacement. The proof of Lemma 2.3.3 is very similar to that in [Rec11].

The first and second order optimally conditions of f(X) satisfy the following properties:

Lemma 2.3.4 ( [GLM16, Proposition 4.1]). The first order optimality condition of objective

function (1.1) is

∇f(X) = 2PΩ(XX> −M)X + λ∇Gα(X) = 0,
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and the second order optimality condition requires that for any H ∈ Rn×r, we have

vec(H)>∇2f(X) vec(H)

=‖PΩ(HX> +XH>)‖2F + 2〈PΩ(XX> −M),PΩ(HH>)〉+ λ vec(H)>∇2Gα(X) vec(H)

>0.

In the sequel, we are going to present our key lemma which will be used multiple times through-

out this section. For any matrix M1,M2 ∈ Rn1×n2 , any set Ω0 ∈ [n1]× [n2] and any real number

t ∈ R, we introduce following notation for simplicity of notations:

(2.9) DΩ0,t(M1,M2) := 〈PΩ0(M1),PΩ0(M2)〉 − t〈M1,M2〉.

More specifically, sometimes we use D(M1,M2) as a shortcut of DΩ,p(M1,M2). Our key lemma

is given as follows:

Lemma 2.3.5. Let Ω0 be any index set in [n1]×[n2], and Ω0 ∈ Rn1×n2 be defined correspondingly

as in Section 2.1. For any A ∈ Rn1×r1 ,B ∈ Rn1×r2 ,C ∈ Rn2×r1 ,D ∈ Rn2×r2, and any t ∈ R, there

holds

|DΩ0,t(AC
>,BD>)| 6‖Ω0 − tJ‖

√√√√ n1∑
k=1

‖Ak,·‖22‖Bk,·‖22

√√√√ n2∑
k=1

‖Ck,·‖22‖Dk,·‖22(2.10)

We will use this result for Ω0 = Ω, t = p for multiple times later. Note that here we do not

make any assumptions on Ω0 and this is a deterministic result. The proof of this lemma is deferred

to Section A.1.0.1. This result extends the following lemma given in [BJ14] and [LLR16]:

Lemma 2.3.6 ( [BJ14, LLR16]). Suppose matrix M ∈ Rn1×n2 can be decomposed as M =

BD>, let Ω0 ⊂ [n1]× [n2] be any index set. Then for any t ∈ R, we have

‖PΩ0(M)− tM‖ 6 ‖Ω0 − tJ‖‖B‖2,∞‖D‖2,∞.

Lemma 2.3.5 is applied in our proof of Lemma 2.3.9 in replace of Theorem D.1 in [GLM16]

to derive tighter control of perturbation terms, i.e., K2(X),K3(X) and K4(X) defined in (2.14).

Their result is given here for the purpose of comparison.
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Lemma 2.3.7 ( [GLM16, Theorem D.1]). With high probability over the choice of Ω, for any

two rank-r matrices W ,Z ∈ Rn×n, we have

|〈PΩ(W ),PΩ(Z)〉 − p〈W ,Z〉|

=O
(
‖W ‖`∞‖Z‖`∞nr log n+

√
pnr‖W ‖`∞‖Z‖`∞‖W ‖F ‖Z‖F log n

)
.

(2.11)

In [SL16], [CW15] and [ZL16], upper bounds are given to ‖PΩ(HH>)‖2F for any H. To be

more precise, they assume Ω is sampled according to the i.i.d. Bernoulli model with probability p.

If p > C logn
n for some sufficient large absolute constant C, there holds

(2.12) ‖PΩ(HH>)‖2F − p‖H‖4F 6 C
√
np

n∑
i=1

‖Hi,·‖42

with high probability. In contrast, by combining Lemma 2.3.1 and Lemma 2.3.5, there holds

(2.13) |‖PΩ(HH>)‖2F − p‖HH>‖2F | 6 C
√
np

n∑
i=1

‖Hi,·‖42

with high probability. This is tighter than (2.12) in that ‖HH>‖F 6 ‖H‖2F . Moreover, com-

paring to (2.12), our result (2.13) directly measures the difference between ‖PΩ(HH>)‖2F and its

expectation p‖HH>‖2F , which makes the model-free analysis possible.

2.3.2. A proof of Theorem 2.1.2. This section aims to prove Theorem 2.1.2. The proof is

basically divided into two parts: In Section 2.3.2.1, we discuss the landscape of objective function

f(X) and then define the auxiliary function K(X). We show that the span of local minima of

f(X) can be controlled by the superlevel set of K(X): {X ∈ Rn×r | K(X) > 0}. In Section

2.3.2.2, we give a uniform upper bound of K(X) in order to control the above superlevel set.

2.3.2.1. Landscape of objective function f and auxiliary function K. Denote Ur as Ur :=

[
√
σ1u1 . . .

√
σrur]. For a given X ∈ Rn×r, suppose that X>Ur has SVD X>Ur = ADB>,

and let RX,Ur := BA> ∈ O(r) and U := UrRX,Ur , where O(r) denotes the set of r× r orthogonal

matrices {R ∈ Rr×r | R>R = RR> = I}. Then X>U = ADA> is a positive semidefinite matrix.

Then also holds UrU
>
r = UU>.
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Denote ∆ := X − U , and define the following auxiliary function introduced in [JGN+17]

and [GJZ17]:

K(X) := vec(∆)>∇2f(X) vec(∆)− 4〈∇f(X),∆〉.

The first and second order optimality conditions for any local minimum X̂ imply that K(X̂) > 0.

In other words, we have

{All local minima of f(X)} ⊂ {X ∈ Rn×r | K(X) > 0}.

Figure 2.9 illustrates the relationship between local minima of f and the superlevel set of K(X).

K(X)

−f(X)
Ur

span of
local minima

of f(X)

span of {X ∈ Rn×r | K(X) > 0}

Figure 2.9. Landscape of −f(X),K(X) and Ur.

To study the properties of the local minima of f(X), we can consider the superlevel set of K(X):

{X ∈ Rn×r | K(X) > 0} instead. In order to get a clear representation of K(X), one can plug in

the formulas of gradient and Hessian in Lemma 2.3.4. By repacking terms in [GJZ17, Lemma 7],

and given 〈U∆>,Mr+〉 = 0, due to the definition of U and Mr+, K(X) can be decomposed as

follows:

Lemma 2.3.8 ( [GJZ17, Lemma 7]). Uniformly for all X ∈ Rn×r, as well as corresponding U

and ∆ defined above, we have
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K(X) =
(
‖∆∆>‖2F − 3‖XX> −UU>‖2F

)
︸ ︷︷ ︸

K1(X)

+
1

p
DΩ,p(∆∆>,∆∆>)− 3

p
DΩ,p(XX

> −UU>,XX> −UU>)︸ ︷︷ ︸
K2(X)

+ λ
(

vec(∆)>∇2Gα(X) vec(∆)− 4〈∇Gα(X),∆〉
)

︸ ︷︷ ︸
K3(X)

+
6

p
DΩ,p(∆∆>,Mr+) +

8

p
DΩ,p(U∆>,Mr+) + 6〈∆∆>,Mr+〉︸ ︷︷ ︸

K4(X)

,

(2.14)

where DΩ,p(·, ·) is defined in (2.9).

Notice that in Theorem 2.1.2, we are only concerned about the difference between XX> and

Mr (or M), which remains the same by replacing X with X̃ = XR, for any R ∈ O(r). On the

other hand, by the definition of RX,Ur , we have RXR,Ur = RX,UrR for any R ∈ O(r), which

implies Ũ = UR and ∆̃ = ∆R. Now we have

X̃X̃> = XX>, ŨŨ> = UU>, ∆̃∆̃> = ∆∆>, Ũ∆̃> = U∆>,

which means Ki(X̃) = Ki(X) for i = 1, 2, 4. As for K3, by [GJZ17, Lemma 18], we have

vec(∆)>∇2Gα(X) vec(∆)− 4〈∇Gα(X),∆〉

=4

n∑
i=1

[(‖Xi,·‖2 − α)+]3
‖Xi,·‖22‖∆i,·‖22 − 〈Xi,·,∆i,·〉2

‖Xi,·‖32
+ 12

n∑
i=1

[(‖Xi,·‖2 − α)+]2
〈Xi,·,∆i,·〉2

‖Xi,·‖22

− 16

n∑
i=1

[(‖Xi,·‖2 − α)+]3
〈Xi,·,∆i,·〉
‖Xi,·‖2

.

Since R ∈ O(r), we have ‖X̃i,·‖2 = ‖Xi,·‖2, ‖∆̃i,·‖2 = ‖∆i,·‖2 and 〈X̃i,·, ∆̃i,·〉 = 〈Xi,·,∆i,·〉, so we

have K3(X̃) = K3(X). Putting things together, we have K(X̃) = K(X).

Therefore, if we want to show that any X with K(X) > 0 satisfies (2.3) and (2.4) with high

probability, without loss of generality, we can assume that X satisfies the property that X>Ur is

a positive semidefinite matrix, i.e., U = Ur.
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2.3.2.2. Proof of Theorem 2.1.2. In order to prove our main result, we first give a uniform upper

bound of K(X). Then for any local minimum X̂, K(X̂) > 0, the property enables us to solve for

the range of possible X̂.

Lemma 2.3.9. Assume that tuning parameters α, λ satisfy 100
√
‖Mr‖`∞ 6 α 6 200

√
‖Mr‖`∞,

100‖Ω−pJ‖p 6 λ 6 200‖Ω−pJ‖p , and p > Cv
logn
n with absolute constant Cv defined in Lemma 2.3.1.

Then, in an event E1 with probability P[E1] > 1 − 2n−3, uniformly for all X ∈ Rn×r and corre-

sponding ∆ defined as before, we have

4∑
i=2

Ki(X) 610−3
[
‖∆>∆‖2F + ‖U∆>‖2F

]
+ ψ,(2.15)

where

ψ :=C3

r∑
i=1

{[
C2

(√
n

p
+

log n

p

)
‖Mr‖`∞ + C2σ2r+1−i − σi

]
+

}2

+ C3

nr‖Mr+‖2`∞
p

(2.16)

and C2, C3 are absolute constants defined within the proof.

Note in our proof of Theorem 2.1.2, we only use probabilistic tools in the above lemma to control

perturbation terms, i.e., K2(X),K3(X),K4(X). The rest part of the proof is purely deterministic.

Recall by the way we define ∆,

‖XX> −UU>‖2F =‖U∆> + ∆U> + ∆∆>‖2F

=‖∆∆>‖2F + 2‖∆U>‖2F + 2〈∆U>,U∆>〉+ 4〈∆∆>,U∆>〉.
(2.17)

Now denote a := ‖∆>∆‖F = ‖∆∆>‖F , b := ‖∆>U‖F . Putting Lemma 2.3.8 and Lemma

2.3.9 together, and using (2.17), we have

K(X) 61.001‖∆∆>‖2F − 3‖XX> −UU>‖2F + 10−3‖U∆>‖2F + ψ

=1.001a2 − 3
[
‖∆∆>‖2F + 2‖∆U>‖2F + 2〈∆U>,U∆>〉+ 4〈∆∆>,U∆>〉

]
+ 10−3‖U∆>‖2F + ψ,

(2.18)
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By the definition of matrix inner product, we have

‖U∆>‖2F =〈U∆>,U∆>〉 = trace(∆U>U∆>) = trace(U>U∆>∆)

=〈U>U ,∆>∆〉,
(2.19)

and

(2.20) 〈∆∆>,U∆>〉 = trace(∆∆>U∆>) = trace(∆>∆∆>U) = 〈∆>∆,∆>U〉.

Here we use the fact that trace(AB) = trace(BA) for any matrix A and B with suitable size.

Moreover, since we choose U such that U>X is positive semidefinite, U>∆ = ∆>U and U>(∆ +

U) � 0. Therefore, we also have

〈∆U>,U∆>〉 = trace(U∆>U∆>) = trace(∆U>∆U>) = trace(U>∆U>∆)

=〈∆>U ,U>∆〉 = 〈∆>U ,∆>U〉 = ‖∆>U‖2F
(2.21)

and

(2.22) 〈∆>∆,U>U + ∆>U〉 = 〈∆>∆, (U + ∆)>U〉 > 0.

Here (2.22) also uses the fact that inner product of two positive semidefinite matrices is non-

negative.

By putting (2.18), (2.19), (2.20), (2.21) together,

K(X) 61.001a2 − 3‖∆∆>‖2F − 6‖∆U>‖2F − 6〈∆U>,U∆>〉 − 12〈∆∆>,U∆>〉

+ 10−3‖U∆>‖2F + ψ

=− 1.999a2 − 6〈U>U ,∆>∆〉 − 6‖∆>U‖2F − 12〈∆>∆,∆>U〉

+ 10−3〈U>U ,∆>∆〉+ ψ

=− 1.999a2 − 〈∆>∆, 5.999U>U + 12∆>U〉 − 6b2 + ψ.

(2.23)

Therefore, combining with (2.22),

K(X) 6− 1.999a2 − 6.001〈∆>∆,∆>U〉 − 6b2 + ψ

6− 1.999a2 + 6.001ab− 6b2 + ψ
(2.24)
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holds for all X ∈ Rn×r. For the last line, we apply Cauchy-Schwarz inequality for matrices, i.e.,

|〈∆>∆,∆>U〉| 6 ‖∆>∆‖F ‖∆>U‖F = ab.

Note that for any local minimum X̂, we have K(X̂) > 0. Replacing X with X̂ in (2.24), there

holds

−1.999a2 + 6.001ab− 6b2 + ψ > 0,

which further implies

(2.25) 0 6 a 6 2
√
ψ, 0 6 b 6

√
ψ.

From (2.23), we have

K(X̂) 6 −1.999a2 − 〈∆>∆, 5.999U>U + 12∆>U〉 − 6b2 + ψ.

Recall from (2.19), ‖U∆>‖2F = 〈U>U ,∆>∆〉, and K(X̂) > 0. Therefore, combining with (2.25),

5.999‖U∆>‖2F 6− 1.999a2 − 〈∆>∆, 12∆>U〉 − 6b2 + ψ

6− 1.999a2 + 12‖∆>∆‖F ‖∆>U‖F − 6b2 + ψ

6− 1.999a2 + 12ab− 6b2 + ψ

625ψ.

(2.26)

From (2.18),

K(X̂) 6 1.001‖∆∆>‖2F − 3‖X̂X̂> −UU>‖2F + 10−3‖U∆>‖2F + ψ.

Using the fact that K(X̂) > 0 again, we have

3‖X̂X̂> −UU>‖2F 6 1.001‖∆∆>‖2F + 10−3‖U∆>‖2F + ψ

Combining with (2.25), (2.26), we futher have

3‖X̂X̂> −UU>‖2F 61.001a2 + 0.005ψ + ψ 6 6ψ.(2.27)
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Therefore, (2.3) is directly implied by (2.27) via choosing C1 = 2C3. Notice that

‖X̂X̂>−M‖2F = ‖X̂X̂>−UU>‖2F − 2〈X̂X̂>,Mr+〉+ ‖Mr+‖2F 6 ‖X̂X̂>−UU>‖2F + ‖Mr+‖2F

where the inequality holds since X̂X̂> � 0 and Mr+ � 0. Therefore, (2.4) is implied by (2.3).

2.4. Other sampling models, a uniform approximation theorem

Most of the matrix completion literature concentrates on the uniform sampling model as defined

in Model 2.1.1, and limited literature talks about other models. [BJ14] considered sampling from

a d-regular graph satisfies certain assumption, and [LLR16] considered weighted low-rank matrix

completion, just to name a few.

In the existing nonconvex matrix completion literature, theoretical analysis of uniform sampling

model relies heavily on the uniform randomness, and many useful tools will fail if the uniform

randomness is violated. For example, [CG18] considered a semi-random sampling model: After

the uniform sampling, additional entries are allowed to reveal. Intuitively speaking, since we are

given more information than before, we would expect a better approximation. However, it is

still open what is the best way to use those extra information. In [CG18], exact recovery is not

guaranteed even if we are given more information than what is needed under uniform model.

Given the fact that deterministic inequality Lemma 2.3.5 does not make any assumption on

the sampling model, it becomes possible to extend the model-free framework to other sampling

models introduced in [BJ14,LLR16,CG18]. Actually, given Lemma 2.3.5, we are able to derive

a uniform approximation control of any fixed sampling pattern:

Theorem 2.4.1 (Uniform approximation). Let M ∈ Rn×n be a positive semidefinite matrix with

the spectral decomposition (2.2). Let Ω be any fixed sampling pattern. For any fixed t ∈ (0,∞), let

φ(t) :=
‖Ω− tJ‖

t
.

Then as long as the tuning parameters α and λ satisfy 100
√
‖Mr‖`∞ 6 α 6 200

√
‖Mr‖`∞ and

100φ(t) 6 λ 6 200φ(t), any local minimum X̂ ∈ Rn×r of

1

2t
‖PΩ(XX> −M)‖2F + λGα(X)
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satisfies

∥∥∥X̂X̂> −Mr

∥∥∥2

F
6C1

r∑
i=1

{
[C2φ(t)‖Mr‖`∞ + C2σ2r+1−i − σi]+

}2

+ C1φ
2(t)r‖Mr+‖2`∞ + 2φ(t)‖Mr‖`∞

r∑
i=1

σi.

and ∥∥∥X̂X̂> −M∥∥∥2

F
6C1

r∑
i=1

{
[C2φ(t)‖Mr‖`∞ + C2σ2r+1−i − σi]+

}2

+ C1φ
2(t)r‖Mr+‖2`∞ + 2φ(t)‖Mr‖`∞

r∑
i=1

σi + ‖Mr+‖2F .

Where constants C1, C2 are defined in Theorem 2.1.2.

When Ω follows the uniform sampling as in Model 2.1.1, by taking t = p and using Lemma

2.3.1 on φ(p), with high probability, the approximation upper bounds in Theorem 2.4.1 match the

bounds in Theorem 2.1.2, except an extra 2φ(p)‖Mr‖`∞
∑r

i=1 σi term.

Moreover, when rank(M) = r, for any fixed Ω, when Ω 6= [n] × [n], i.e., there are missing

entries, the extra term 2φ(t)‖Mr‖`∞
∑r

i=1 σi prohibits the nonconvex approach to achieve exact

recovery. This is actually not a big surprise due to the fact that universal exact recovery does not

exist even for rank-two (incoherent) matrices given n2/4 observed entries [BJ14, Claim 5.2].

From Theorem 2.4.1, one can observe that φ(t) plays a special role in the approximation error

upper bound. This matches the simulations in universal recovery literature, for example, [BJ14].

As an interesting byproduct of Theorem 2.4.1, we are able to analyze the following semi-random

model:

Model 2.4.2. Indices of revealed entries are first sampled uniformly with probability p, as

described in Model 2.1.1. The revealed index set is denoted as Ωunif. After that, an adversary is

allowed to see the ground truth matrix and Ωunif. The adversary is allowed to reveal extra indices

or even cover/drop revealed entries in Ωunif. The set of affected indices is denoted as Ωadv. And

the final set of revealed indices is denoted as Ω. For notation simplicity, we define three matrices
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Ωunif, Ωadv, Ω as following. For any i, j,

[Ωunif]i,j =

 1 if (i, j) ∈ Ωunif

0 otherwise,

[Ωadv]i,j =


1 if (i, j) /∈ Ωunif and (i, j) ∈ Ωadv

−1 if (i, j) ∈ Ωunif and (i, j) ∈ Ωadv

0 otherwise,

[Ω]i,j =

 1 if (i, j) ∈ Ω

0 otherwise.

Therefore, we have Ω = Ωunif + Ωadv.

More discussion about the semi-random model can be found in [CG18] and references therein.

Given the above defined semi-random model, we are able to conclude the following result.

Corollary 2.4.3. Let M ∈ Rn×n be a rank-r positive semidefinite matrix. Let Ω be sampled

according to the semi-random model defined in Model 2.4.2. For any ε ∈ (0, 1), if

p > max

{
4C2

2C
2
v

µ2r2κ2

n
,
16C2

v

ε2

µ2r2κ2

n
,Cv

log n

n

}
and |Ωadv| 6 np. Then as long as the tuning parameters α and λ satisfy 100

√
‖Mr‖`∞ 6 α 6

200
√
‖Mr‖`∞ and 100‖Ω−pJ‖p 6 λ 6 200‖Ω−pJ‖p , in an event Esemi with probability P[Esemi] >

1− n−3, any local minimum X̂ ∈ Rn×r of (1.1) satisfies

‖X̂X̂> −M‖2F 6 ε‖M‖2F .

The above result still holds if |Ωadv| = O(np). Therefore, the above corollary reveals the fact

that in the semi-random model, if the adversary does not change the uniform revealed index set too

much, i.e., |Ωadv| = O(np), we can still recover M quite well using the original objective function

(1.1). Comparing to [CG18, Theorem 1.2], we have a lower sampling complexity requirement (in

terms of µ, r and κ) and do not need an extra pre-processing. On the other hand side, our corollary

can only handle the situation when |Ωadv| is small, while [CG18, Theorem 1.2] can cover a wider

range of semi-random models.
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Proof of Corollary 2.4.3. The above corollary is a simple implication of our uniform ap-

proximation theorem Theorem 2.4.1. By taking t = p, we can see that

φ(p) =
‖Ω− pJ‖

p
=
‖Ωunif + Ωadv − pJ‖

p
6
‖Ωunif − pJ‖

p
+
‖Ωadv‖
p

From Lemma 2.3.1 we see ‖Ωunif−pJ‖
p 6 Cv

√
n
p , and by the fact that ‖Ωadv‖

p 6 ‖Ωadv‖F
p =

√
|Ωadv|
p 6√

n
p , we can see φ(p) 6 2Cv

√
n
p . Plugging it back to Theorem 2.4.1 finishes the proof. �

2.5. Rectangular case

In Section 2.1, a model-free framework of local minima analysis is proposed for PSD matrix

completion with following objective function:

fpsd(X) :=
1

2p
‖PΩ(XX> −M)‖2F + λGα(X).

On the other hand side, the global geometry of nonconvex rectangular matrix completion is analysed

in [GJZ17] with following objective function:

frect(X,Y ) :=
1

2p
‖PΩ(XY > −M)‖2F +

1

8
‖X>X − Y >Y ‖2F + λ(Gα(X) +Gα(Y )).

Therefore, one natural question arise: Can we extend the model-free framework to the rectangular

case? The answer is yes.

First of all, suppose the index set Ω satisfies following model:

Model 2.5.1. For rectangular matrix completion, the index set Ω is assumed to follow the

independent Ber(p) model, i.e., each entry is sampled independently with probability p.

Moreover, suppose that matrix M ∈ Rn1×n2 has following singular value decomposition:

(2.28) M =

r∑
i=1

σiuiv
>
i +

n1∧n2∑
i=r+1

σiuiv
>
i := Mr +Mr+,

where σ1 > σ2 > · · · > σn > 0 are the spectrum. ui ∈ Rn1 are unit and mutually perpendicular

singular vectors, and so are vi ∈ Rn2 . Similar to what we have in Section 2.1, the matrix Mr :=∑r
i=1 σiuiu

>
i is the best rank-r approximation of M and Mr+ :=

∑n
i=r+1 σiuiu

>
i denotes the
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residual part. Similar to what we did in the PSD case, let

Ur := [
√
σ1u1, . . . ,

√
σrur] , Vr := [

√
σ1v1, . . . ,

√
σrvr]

and

Wr :=

 Ur
Vr

 .
Then we have the following result:

Theorem 2.5.2. Let M ∈ Rn1×n2 be an n1-by-n2 matrix with the spectral decomposition (2.28).

Let Ω be sampled according to the Ber(p) model with p > Cv
log(n1∨n2)
n1∧n2

for some absolute constant Cv.

Then in an event E2 with probability P[E2] > 1 − 2(n1 + n2)−3, as long as the tuning parameters

α and λ satisfy 100‖Wr‖2,∞ 6 α 6 200‖Wr‖2,∞ and 100‖Ω−pJ‖p 6 λ 6 200‖Ω−pJ‖p , any local

minimum (X̂, Ŷ ) ∈ Rn1×r × Rn2×r of (1.3) satisfies

∥∥∥X̂Ŷ > −Mr

∥∥∥2

F
6C1

r∑
i=1

{[
C2

(√
n1 ∨ n2

p
+

log(n1 ∨ n2)

p

)
‖Wr‖22,∞ + C2σ2r+1−i − σi

]
+

}2

+ C1

(n1 ∨ n2)r‖Mr+‖2`∞
p

and∥∥∥X̂Ŷ > −M∥∥∥2

F
6C1

r∑
i=1

{[
C2

(√
n1 ∨ n2

p
+

log(n1 ∨ n2)

p

)
‖Wr‖22,∞ + C2σ2r+1−i − σi

]
+

}2

+ C1

(n1 ∨ n2)r‖Mr+‖2`∞
p

+ ‖Mr+‖2F

with C1, C2 absolute constants defined in Theorem 2.1.2.

The proof of Theorem 2.5.2 is basically a mimic of proof of Theorem 2.1.2. Therefore, we leave

the sketch of the proof to the appendix.

By following the proof techniques introduced in Section 2.4, we are also able to achieve a uniform

approximation result under rectangular setup analogs to Theorem 2.4.1.

By letting eigen-space incoherence parameter for rectangular matrix as

µr = max

n1

r
max
i

r∑
j=1

u2
i,j ,

n2

r
max
i

r∑
j=1

v2
i,j

 ,
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we can also derive an exact recovery result from Theorem 2.5.2.

Corollary 2.5.3. Under the assumptions of Theorem 2.5.2, if we further assume rank(M) = r

(i.e., M = Mr) and

p > 4C2 max

{
µrrκr log(n1 ∨ n2)

n1 ∧ n2
,
µ2
rr

2κ2
r

n1 ∧ n2

}
then in the event E2 with probability P[E2] > 1 − 2(n1 + n2)−3, any local minimum (X̂, Ŷ ) ∈

Rn1×r × Rn2×r of objective function frect(X,Y ) defined in (1.3) satisfies X̂Ŷ > = M .

This result improves the sampling complexity required for no spurious local minimum analysis

[GJZ17], which is p > Cµ4
rr

6κ6
r log(n1 ∨ n2)/(n1 ∧ n2).
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CHAPTER 3

Global Geometry of Nonconvex Parameterized Linear Models

Similar to the discussions in Chapter 1 and Chapter 2, the vanilla noisy matrix completion

problem can be stated as follows: Let M be an n1 × n2 matrix, and we would like to estimate the

whole matrix from a small proportion of noisy observed entries. To be specific, let Ω ⊂ [n1]× [n2]

be the index set that supports all observed entries. The observation is represented by PΩ(M +N),

where N is a matrix that represents noise or perturbation. Given selected rank r, the following

regularized least squares fitting is proposed and further analyzed in [GJZ17]

frect(X,Y ) :=
1

2p
‖PΩ(XY > −M −N)‖2F +

1

8
‖X>X − Y >Y ‖2F + λ(Gα(X) +Gα(Y )),(3.1)

where X ∈ Rn1×r,Y ∈ Rn2×r.

In Section 2.5, the global geometry is analyzed in the noiseless case where N = 0. If we further

assume M is a rank-r well-conditioned matrix, its eigenspace incoherence parameter [CR09] is

well-bounded, and the sampling rate satisfies p & (r2 log(n1 ∨ n2))/(n1 ∧ n2), any local minimum

of (3.1) gives X̂Ŷ > = M , i.e., there is no spurious local minimum.

In this Chapter, we are devoted to study the nonconvex geometry for (1.6) as [GLM16,GJZ17,

CL19] did for the vanilla matrix completion problem (3.1).

3.1. Main Results

3.1.1. Method. We first give the specific form of (1.6). Plugging the parametric form X =

X(θ) and Y = Y (θ) into the nonconvex optimization (3.1), we have the following optimization:

f̃(θ) :=frect(X(θ),Y (θ))

=
1

2p
‖PΩ(X(θ)Y (θ)> −M −N)‖2F +

1

8
‖X(θ)>X(θ)− Y (θ)>Y (θ)‖2F

+ λ(Gα(X(θ)) +Gα(Y (θ))).

(3.2)

42



Prior to investigating the theoretical properties of (3.2), let us first specialize it to the completion

of subspace-constrained and skew-symmetric low-rank matrices, where the parameterization takes

the forms (1.4) and (1.5), respectively.

• In the case of matrix completion with subspace constraints, denote θ = vec(ΘA,ΘB), and

the linear mappings X(θ) and Y (θ) are defined as in (1.4). Without loss of generality,

assume that both Ũ and Ṽ consist of orthonormal basis, i.e., Ũ>Ũ = Is1 and Ṽ >Ṽ = Is2 .

Then the parameterization (1.4) implies the following

X(θ)Y (θ)> = ŨΘAΘ>BṼ
>,

X(θ)>X(θ) = Θ>AŨ
>ŨΘA = Θ>AΘA,

Y (θ)>Y (θ) = Θ>BṼ
>ṼΘB = Θ>BΘB.

Substituting them into (3.2), we have the objective function:

fsubspace(ΘA,ΘB) :=
1

2p
‖PΩ(ŨΘAΘ>BṼ

> −M −N)‖2F +
1

8
‖Θ>AΘA −Θ>BΘB‖2F

+ λ(Gα(ŨΘA) +Gα(ṼΘB)).

(3.3)

• In the case of skew-symmetric matrix completion, again, denote θ = vec(ΘA,ΘB), and

the linear mappings X(θ) and Y (θ) are defined as in (1.5). Straightforward calculation

gives 

X(θ)Y (θ)> = ΘAΘ>B −ΘBΘ>A,

X(θ)>X(θ) =

 Θ>AΘA −Θ>AΘB

−Θ>BΘA Θ>BΘB

 ,

Y (θ)>Y (θ) =

Θ>BΘB Θ>BΘA

Θ>AΘB Θ>AΘA

 .
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Substituting them into (3.2), we have the objective function

fskew(ΘA,ΘB) :=
1

2p
‖PΩ(ΘAΘ>B −ΘBΘ>A −M −N)‖2F +

1

4
‖Θ>AΘA −Θ>BΘB‖2F

+
1

4
‖Θ>AΘB + Θ>BΘA‖2F + 2λGα([ΘB,ΘA]).

(3.4)

Here we use the fact Gα([ΘB,ΘA]) = Gα([ΘA,−ΘB]).

For any local minimum of (3.2), namely, ξ̂, we are interested in analyzing the estimation error

‖M −X(ξ̂)Y (ξ̂)>‖2F . To this end, given f̃(θ) is smooth, it is natural to study the stationarity and

optimality conditions, i.e., ∇2f̃(θ) � 0d×d and ∇f̃(θ) = 0. How to employ these two conditions in

order to control any local minimum is the key to deriving our main result presented later in this

section.

3.1.2. Assumptions. In order to study the estimation error ‖M −X(ξ̂)Y (ξ̂)>‖2F where ξ̂ is

any local minimum of the nonconvex program (3.2), we start with some assumptions on the matrix

M , the parametrization (X(θ),Y (θ)), and the support of the observed entries Ω.

In this chapter, we assume M is of rank r, and it has reduced singular value decomposition as

M =
r∑
i=1

σiuiv
>
i

where σ1 > σ2 > · · · > σr > 0. The condition number is denoted as κ = κr := σ1/σr. Moreover,

the incoherence parameter [CR09] µ = µr for M is denoted as

µ = max {µ(colspan([u1, . . . ,ur])), µ(colspan([v1, . . . ,vr]))} ,

where µ(·) is defined in (2.8).

Next, we assume both X(θ) and Y (θ) to be linear mappings.

Assumption 3.1.1 (Homogeneity and linearity). Both X(θ) ∈ Rn1×r and Y (θ) ∈ Rn2×r are

homogeneous linear functions in θ, i.e., X(tθ1) = tX(θ1), Y (tθ1) = tY (θ1), X(θ1 + θ2) =

X(θ1) +X(θ2) and Y (θ1 + θ2) = Y (θ1) + Y (θ2) for all θ1,θ2 ∈ Rd and t ∈ R.

As mentioned in the previous section, the next assumption, referred to as the Correlated Para-

metric Factorization, is the key assumption in analyzing the theoretical properties of the local
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minima of (3.2). It will be verified for low-rank factorization with subspace constraints (1.4) in

Section 3.3.1, and for skew-symmetric low-rank factorization (1.5) in Section 3.4.1, respectively.

Assumption 3.1.2 (Correlated Parametric Factorization of M). The rank-r matrix M and the

parameterization (X(θ),Y (θ)) are said to satisfy the correlated parameterized factorization, if for

any θ ∈ Rd, there exits ξ ∈ Rd (not necessarily unique), such that

(3.5)


M = X(ξ)Y (ξ)>,

X(ξ)>X(ξ) = Y (ξ)>Y (ξ),

X(θ)>X(ξ) + Y (θ)>Y (ξ) � 0.

Recall that the support of the observed entries is Ω ⊂ [n1] × [n2]. For generality, we consider

here two scenarios where the entries are observed independently with certain probability p. For

rectangular matrix completion, the index set Ω is assumed to follow the independent Ber(p) model

(Model 2.5.1). For square matrix completion (n1 = n2 := n), the index set Ω is assumed to follow

the off-diagonal symmetric independent Ber(p) model (Model 2.1.1)

3.1.3. Theoretical results. Our main theorem is the following.

Theorem 3.1.3. Let M ∈ Rn1×n2 be a rank-r matrix. The parameters µ and κ are defined in

Section 3.1.2. Suppose that M , X(θ) and Y (θ) satisfy Assumptions 3.1.1 and 3.1.2, and that Ω,

the support of observed entries, satisfies either Model 2.1.1 or 2.5.1. Moreover, let the sampling

rate p and the tuning parameters α and λ in (3.1) satisfy the following inequalities:

(3.6)



p > C4 max
{

1
n1∧n2

µr log(n1 ∨ n2), n1∨n2
(n1∧n2)2µ

2r2κ2
}
,

C5

√
n1∨n2
p 6 λ 6 10C5

√
n1∨n2
p ,

C5

√
µrσ1

n1∧n2
6 α 6 10C5

√
µrσ1

n1∧n2
.
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Then, in an event E3 with probability P[E3] > 1 − 2(n1 + n2)−3, any local minimum ξ̂ of (3.2)

satisfies

‖M − M̂‖2F 6
C6r

p2
ϕ2,

where

(3.7) ϕ := max
θ1,θ2∈Rd

‖PX(θ1)PΩ(N)PY (θ2)‖.

Here C4, C5, C6 are fixed absolute constants.

In particular, if there is no noise, i.e., N = 0, then with high probability any local minimum ξ̂

leads to M̂ = M . In other words, there is no spurious local minimum.

As a simple application, existing results of the landscape analysis for nonconvex positive semi-

definite (PSD) matrix completion can be viewed as corollaries of Theorem 3.1.3. In fact, consider

the example of low-rank PSD matrix completion, we have n1 = n2 = n, and the ground truth can

be decomposed as M = Ξ0Ξ
>
0 for some Ξ0 ∈ Rn×r. For any Θ ∈ Rn×r, denote θ := vec(Θ), and

define the linear mappings X(θ) = Y (θ) = Θ. This parameterization implies M = X(ξ0)Y (ξ0)>

for ξ0 := vec(Ξ0). Assumption 3.1.1 is obviously satisfied. Assumption 3.1.2 can be straightly ver-

ified by taking the SVD of Θ>Ξ0 = USV > and letting Ξ = Ξ0V U
>; see, e.g., [CW15, Lemma

1].

The factorization now becomes X(θ)Y (θ)> = ΘΘ>, so the nonconvex parametric matrix

completion (3.2) thereby takes the following form:

fpsd(Θ) :=
1

2p

∥∥∥PΩ(ΘΘ> −M −N)
∥∥∥2

F
+ 2λGα(Θ),

which is the nonconvex program that has been used in [GLM16,GJZ17,CL19] for PSD matrix

completion. Since Assumptions 3.1.1 and 3.1.2 are verified, as a corollary of Theorem 3.1.3, there

are no spurious local minima for the above objective function as long as the tuning parameters are

suitably chosen, and the sampling rate satisfies p > C4
n max

{
µr log n, µ2r2κ2

}
, which is exactly the

same as the no-spurious result introduced in Chapter 2. Furthermore, consider the special noisy case

in which the entries of noise matrixN are i.i.d. Gaussian random variables with mean 0 and variance

σ2. Then ‖PΩ(N)‖2 = O((np+ log2 n)σ2) (see, e.g., [CW15, Lemma 11]). Theorem 3.1.3 implies
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that estimation error bound ‖M − Θ̂Θ̂>‖2F = O((nrp + r log2 n
p2 )σ2), which matches the state-of-the-

art results in the literature of noisy matrix completion; see, e.g., [KMO10b,CW15,MWCC18].

In the next two subsections, we explain how to apply Theorem 3.1.3 to studying the theoret-

ical properties of nonconvex optimizations for subspace-constrained and skew-symmetric matrix

completions; that is, (3.3) and (3.4).

3.1.4. Nonconvex subspace constrained matrix completion. In the case of matrix com-

pletion with subspace constraints, clearly, the linear mappings X(θ) and Y (θ) defined in (1.4) sat-

isfy Assumption 3.1.1. The verification of Assumption 3.1.2 is summarized as the following lemma,

the proof of which is given later in Section 3.3.1.

Lemma 3.1.4. Let M ∈ Rn1×n2 be a rank-r matrix whose column space and row space are

constrained in colspan(Ũ) and colspan(Ṽ ). Then the parameterization X(θ) and Y (θ) defined in

(1.4) as well as M ∈ Rn1×n2 satisfy Assumption 3.1.2.

With the assumptions verified, Theorem 3.1.3 implies the following corollary for nonconvex

matrix completion with subspace constraints, i.e., (3.3).

Corollary 3.1.5. Let M ∈ Rn1×n2 be a rank-r matrix. The parameters µ and κ are defined

in Section 3.1.2. Assume that the columns of Ũ ∈ Rn1×s1 constitute an orthonormal basis of the

column space constraint for M , while the columns of Ṽ ∈ Rn2×s2 constitute an orthonormal basis

of the row space constraint. The support of observation, Ω, is assumed to follow from Model 2.5.1,

and that the entries of the noise matrix N are i.i.d. centered sub-exponential random variables

satisfying the Bernstein condition [Wai19, (2.15)] with parameter b and variance ν2.

If the sampling rate p and the tuning parameters α, λ satisfy (3.6). Then, uniformly in an

event Esubspace with probability P[Esubspace] > 1 − 3(n1 + n2)−3, any local minimum (Ξ̂A, Ξ̂B) of

fsubspace(ΘA,ΘB) in (3.3) satisfies:

‖ŨΞ̂AΞ̂>BṼ
> −M‖2F

6
C7r

p2

(
ν2p(s1 + s2) log(n1 + n2) + b2

µ
Ũ
µ
Ṽ
s1s2

n1n2
log2(n1 + n2)

)
.

(3.8)

Here µŨ = n1
s1
‖Ũ‖22,∞, µṼ = n2

s2
‖Ṽ ‖22,∞, and C7 is some fixed positive absolute constant.
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To the best of our knowledge, existing theoretical works on matrix completion with subspace

constraints are majorly focused on the noiseless case [YZJ+13,XJZ13,Che15,JD13,EYW18],

while statistical convergence rates under the noisy case have not been studied in detail in the

literature. Consider again the case that N consists of i.i.d. N (0, σ2) entries. This gives b = σ

and variance ν2 = σ2. For simplicity of discussion, also assume s1 = s2 = s, n1 = n2 = n,

µ = O(1), µ
Ũ

= O(1), µ
Ṽ

= O(1) and κ = O(1). Then Corollary 3.1.5 implies that as long as

p & 1
n max

{
r log n, r2

}
, there holds ‖ŨΞ̂AΞ̂>BṼ

> −M‖2F . σ2sr(log n)/p. We have explained in

the previous subsection that the error rates for matrix completion without subspace constraints

are O(σ2nr/p). Therefore, Corollary 3.1.5 indicates that the estimation error can be significantly

reduced if the dimensions of the subspace constraints are much lower than the ambient dimensions.

In the noiseless case, we should admit that the sampling rates requirement

p &
1

n
max

{
r log n, r2

}
is possibly suboptimal, since it is worse than the state-of-the-art sampling rates requirement if

convex optimization is employed; see, e.g., [Che15]. This gap is not technically easy to fill, and

narrowing it seems beyond the scope of the current paper since Corollary 3.1.5 serves as an example

to showcase the usefulness of our main result Theorem 3.1.3. We are interested in narrowing this

gap in some future work.

3.1.5. Nonconvex Skew-symmetric Matrix Completion. In the case of rank-r skew-

symmetric matrix completion, linear mappings X(θ) and Y (θ) defined in (1.5) evidently satisfies

the linearity and homogeneity. Assumption 3.1.2 is verified through the following result with the

proof deferred to Section 3.4.1.

Lemma 3.1.6. Let M be a rank-r skew-symmetric matrix. Then, the parameterization X(θ),

Y (θ) defined in (1.5) as well as M satisfy Assumption 3.1.2.

Given Assumption 3.1.2 is justified for the parametric form (1.5), our main result Theorem

3.1.3 implies the following estimation upper bound result for nonconvex skew-symmetric matrix

completion (3.4).
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Theorem 3.1.7. Let M ∈ Rn×n be a rank-r skew-symmetric matrix. The parameters µ and

κ are defined in Section 3.1.2. The support of the observed entries Ω is assumed to follow Model

2.1.1. Assume that the noise matrix N is a skew-symmetric matrix, whose upper triangular part

of N consists of i.i.d. centered sub-exponential random variables satisfying the Bernstein condition

with parameter b and variance ν2. Suppose that the sampling rate p and the tuning parameters α

and λ satisfy (3.6). Then, uniformly in an event Eskew with probability P[Eskew] > 1 − 3n−3, any

local minimum (Ξ̂A, Ξ̂B) of fskew(ΘA,ΘB) defined in (3.4) satisfies

‖Ξ̂AΞ̂>B − Ξ̂BΞ̂>A −M‖2F 6
C8r

p2

(
ν2pn log n+ b2 log2 n

)
.

Where C8 is a fixed positive absolute constant.

As with the discussion in Section 3.1.4, if the upper triangular part of noise matrix N consists

of i.i.d. Gaussian random variables with mean 0 and variance σ2, and the sampling rate satisfis p &

1
n max

{
r log n, r2

}
, then the estimation error satisfies ‖Ξ̂AΞ̂>B−Ξ̂BΞ̂>A−M‖2F = O(σ2nr(log n)/p),

which is comparable to the aforementioned state-of-the-art result O(σ2nr/p) up to a logarithmic

factor.

3.2. Experiments

In this section, we conduct numerical experiments to test the performance of the proposed

nonconvex optimization for parametric matrix completion (3.2). As leading examples, we consider

both (3.3) for matrix completion with subspace constraints and (3.4) for skew-symmetric matrix

completion.

Notice that in order to implement (3.2), we need the knowledge of p, and to choose α and λ

properly. In all simulations, we replaced p in (3.2) with the estimated value p̂ := |Ω|
n1n2

, and set the

parameters as λ = 100
√

(n1 + n2)p̂ and α = 100. We solved the nonconvex optimization by gradient

descent, and initialized at θ0 with i.i.d. standard normal entries. At each step of the gradient

descent, the step size was selected through line search. To be specific, at each update of ~θ, the step

size was set to be max{2−k, 10−10} for k := min{t | t = 0, 1, 2, 3, · · · , f̃(θ − 2−t∇f̃(θ)) 6 f̃(θ)}.

The gradient descent iteration was terminated either after 500 iterations or as soon as the update

on θ satisfied ‖∇f̃(θ))‖22 6 10−10.
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In the following subsections, more implementation details of (3.3) and (3.4) are explained,

respectively.

3.2.1. Nonconvex matrix completion with subspace constraints. In all implementa-

tions of (3.3), we set n1 = n2 = 500 and r = 2. We generated u1, . . . ,u40 ∈ R500 as 40 left

singular vectors of a 500 × 500 random matrix with i.i.d. standard normal entries, and generated

v1, . . . ,v40 ∈ R500 similarly from another random matrix with the same distribution. The ground

truth was fixed at M = u1v
>
1 + u2v

>
2 (so ‖M‖2F = 2). The dimensions of subspace constraints

were fixed at s1 = s2 = s = 10, 20, 30, 40, and we let Ũ = [u1, . . . ,us] and Ṽ = [v1, . . . ,vs].

In the noisy case, N consisted of i.i.d. Gaussian entries with mean 0 and variance σ2 = 1
5002 , and

so E‖N‖2F = 1. The sampling rate was chosen as p = 1× 0.005, 2× 0.005, . . . , 20× 0.005. For each

fixed pair of (p, s), gradient descent was implemented to solve (3.3) with the input PΩ(M +N),

and the reported relative error was averaged over 10 independent generations of the support of

observations Ω and the noise N . Figure 3.1 indicates a positive dependency between the the

dimension of constraints s and the average estimation error as expected in light of the theoretical

result (3.8).

In the noiseless case, an experiment is considered a success if and only if ‖M̂ −M‖F /‖M‖F 6

10−3. The sampling rate is chosen as p = 1× 10−4, 2× 10−4, . . . , 20× 10−4. Figure 3.2 illustrates

a positive dependency between the dimension s and required sample size for consistent successes.

As noted before, this dependency has not been explained in our theoretical results, although this

phenomenon should be expected in light of the theoretical results for convex approaches [YZJ+13,

XJZ13, Che15] as well as alternating minimization [JD13]. We plan to study this dependency

for nonconvex landscape analysis in the future.

3.2.2. Nonconvex skew-symmetric matrix completion. If the ground-truth low rank

matrix M is known to be skew-symmetric, we have two nonconvex optimization programs to use

in order to recover M from PΩ(M): nonconvex skew-symmetric matrix completion (3.4) and the

original rectangular matrix completion (3.1). In fact, it has been shown in [GL11, Theorem 3]

that if the initial input is skew-symmetric, some rectangular matrix completion algorithms, such

as singular value projection (SVP) [JMD10], will also lead to a skew-symmetric result. This thus
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Figure 3.1. Logarithm of relative estimation error log10(‖M̂ −M‖2F /‖M‖2F ) of
nonconvex subspace constrained matrix completion. Here we set the dimension of
ground truth M ∈ Rn1×n2 as n1 = n2 = 500, rank of M as r = 2, dimension of the
column/row subspace constraint as s1 = s2 = s and noise level as σ2 = 1

n1n2
= 1

5002 .
Each dot in the plot represents one trail of the numerical experiment, and the curves
represent the mean of 10 independent trials for given s.

raises a natural question: Is there any advantage to use (3.4) over the vanilla approach (3.1)? We

make this comparison here empirically by simulations. For the ease of comparison, we focus on the

noiseless case.

For all simulations, the matrix size was fixed at n = 500 while the rank was fixed at r = 4, 10, 20.

For each r, we generated r orthonormal vectors u1, . . . ,ur/2,v1, . . . ,vr/2 ∈ R500 from left singular

vectors of a 500 × 500 random matrix with i.i.d. standard normal entries. The ground truth was

then constructed as

M = u1v
>
1 − v1u

>
1 + . . .+ ur/2v

>
r/2 − vr/2u

>
r/2.

The sampling rate was fixed at p = 1× 10−2, 2× 10−2, . . . , 20× 10−2. For each fixed pair (r, p), we

generated 10 independent copies of Ω ∈ [500]× [500] from Model 2.1.1. For each simulated data set,

we implement both (3.4) and (3.1) with gradient descents. Figure 3.3 plots the relative estimation

errors as well as the corresponding medians in logarithmic scale by implementing (3.4) and (3.1),
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500, rank of M as r = 2, dimension of the column/row subspace constraint as
s1 = s2 = s.

respectively. The comparison indicates that (3.4) and (3.1) are essentially equally successful when

the rank of the skew-symmetric matrix is 4 or 10, but (3.4) seems slightly more successful than

(3.1) in terms of the empirically required sample sizes in the settings we considered.

3.3. Analysis of nonconvex subspace constrained matrix completion

This section mainly consists of two parts: First we give a proof of Lemma 3.1.4. Then we give

a proof of Corollary 3.1.5.

3.3.1. Proof of Lemma 3.1.4.

Proof. The homogeneous linearity (i.e., Assumption 3.1.1) of (X(θ),Y (θ)) is directly from

the definition (1.4).

In order to show the parameterization satisfies Assumption 3.1.2, we want to show that for any

θ = vec([Θ>A,Θ
>
B]>) ∈ Rr(s1+s2), there exits a ξ ∈ Rr(s1+s2) that satisfies (3.5).

In order to do so, let S := Ũ>MṼ . Then S ∈ Rs1×s2 . Recall that Ũ consists of an orthonormal

basis of the column space constraint, and Ṽ consists of an orthonormal basis of the column row
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constraint of M . Therefore, P
Ũ

= ŨŨ>, P
Ṽ

= Ṽ Ṽ > and M can be represented as M = ŨSṼ >.

Since M is of rank r, by the orthogonality of Ũ and Ṽ , rank(S) = r. Let the reduced SVD of S

be

(3.9) S = SLΛS>R ,

where SL ∈ Rs1×r, SR ∈ Rs2×r, S>LSL = Is1 ,S
>
RSR = Is2 and Λ = diag(σ1, . . . , σr) is a r × r

diagonal matrix with σ1 > σ2 > . . . > σr. Moreover, by letting U? := ŨSL ∈ Rn1×r,V ? := Ṽ SR ∈

Rn2×r, we can verify that M = U?ΛV ?> is a reduced SVD of M .

Define

Ξ?
A := SLΛ1/2 ∈ Rs1×r, Ξ?

B := SRΛ1/2 ∈ Rs2×r.
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For any ΘA ∈ Rs1×r and ,ΘB ∈ Rs2×r, by considering the SVD of (Θ>AΞ?
A + Θ>BΞ?

B), we know

there exits an r × r orthogonal matrix T ∈ O(r) [CW15, Lemma 1], such that

(Θ>AΞ?
A + Θ>BΞ?

B)T � 0.

Let ξ = vec([(Ξ?
AT )>, (Ξ?

BT )>]>), then

X(ξ) = ŨΞ?
AT ∈ Rn1×r and Y (ξ) = Ṽ Ξ?

BT ∈ Rn2×r.

Keeping in mind that both Ũ and Ṽ are orthonormal basis matrices, the conditions in (3.5) can

be verified one by one:

X(ξ)Y (ξ)> = ŨΞ?
AT (Ṽ Ξ?

BT )> = ŨΞ?
AΞ?

B
>Ṽ > = ŨSLΛS>R Ṽ

> = M .

The last equality is by (3.9).

X(ξ)>X(ξ) = (ŨΞ?
AT )>ŨΞ?

AT = T>Ξ?
A
>Ξ?

AT = T>Λ1/2S>LSLΛ1/2T = T>ΛT

= T>Ξ?
B
>Ξ?

BT = (Ṽ Ξ?
BT )>Ṽ Ξ?

BT = Y (ξ)>Y (ξ).

Here we use the fact S>LSL = S>RSR = Ir. Moreover,

X(θ)>X(ξ) + Y (θ)>Y (ξ)

=(ŨΘA)>ŨΞ?
AT + (ṼΘB)>Ṽ Ξ?

BT

=(Θ>AΞ?
A + Θ>BΞ?

B)T

�0.

Therefore, the parameterization (X(θ),Y (θ)) satisfies Assumption 3.1.2. �

3.3.2. Proof of Corollary 3.1.5. Since the assumptions of Theorem 3.1.3 are satisfied, there-

fore, in the event E3 defined in Theorem 3.1.3,

‖M − M̂‖2F 6
C6r

p2
ϕ2.
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Therefore, it suffices to show that

(3.10) ϕ2 6
C7

C6

(
p(s1 + s2) log(n1 + n2)ν2 + b2

µ
Ũ
µ
Ṽ
s1s2

n1n2
log2(n1 + n2)

)
.

By (B.6) and (1.4), we have for any θ ∈ Rd,

colspan(X(θ)) ⊂ colspan(Ũ), colspan(Y (θ)) ⊂ colspan(Ṽ ).

Therefore, for any θ1,θ2 ∈ Rd,

‖PX(θ1)PΩ(N)PY (θ2)‖ = ‖PX(θ1)PŨPΩ(N)P
Ṽ
PY (θ2)‖ 6 ‖PŨPΩ(N)P

Ṽ
‖.

So we have

ϕ 6 ‖P
Ũ
PΩ(N)P

Ṽ
‖.

Therefore, (3.10) can be proved by the following lemma.

Lemma 3.3.1. Assume that the support of observation Ω follows from Model 2.5.1. We assume

that the entries of the noise matrix N are i.i.d. centered sub-exponential random variables satisfying

the Bernstein condition with parameter b and variance ν2. Ũ and Ṽ are defined in Chapter 1. Then

in an event Esubspace N with probability P[Esubspace N] > 1− (n1 + n2)−3, we have

‖P
Ũ
PΩ(N)P

Ṽ
‖ 6 Cw

(√
p(s1 + s2) log(n1 + n2)ν + b

√
µ
Ũ
µ
Ṽ
s1s2

n1n2
log(n1 + n2)

)
.

for some absolute constant Cw defined in the proof.

The proof of Lemma 3.3.1 is mainly following the discussion in [Wai19, Example 6.18] as well

as [Wai19, Example 6.14] and is deferred to appendix.

Letting Esubspace = E3 ∩ Esubspace N, and C7 = 2C6C
2
w finishes the proof.

3.4. Analysis of nonconvex skew-symmetric matrix completion

In this section, we first give a proof of Lemma 3.1.6. Then we give a proof of Theorem 3.1.7.

3.4.1. Proof of Lemma 3.1.6.

55



Proof. The homogeneous linearity of (X(θ),Y (θ)) follows directly from the definition (1.5).

Therefore, the only thing remains to be verified is that for any θ = vec([Θ>A,Θ
>
B]>) ∈ Rnr, there

exits an ξ ∈ Rnr that satisfies (3.5).

Recall that M is a rank-r skew-symmetric matrix, where r is even. Then its Youla decompo-

sition [You61] can be written as

M := λ1φ1ψ
>
1 − λ1ψ1φ

>
1 + λ2φ2ψ

>
2 − λ2ψ2φ

>
2 + . . .+ λr/2φr/2ψ

>
r/2 − λr/2ψr/2φ

>
r/2,

where λ1 > λ2 > . . . > λr/2 > 0 and φ1, . . . ,φr/2,ψ1, . . . ,ψr/2 are unit vectors in Rn. Moreover,

φi’s and ψi’s are pairwise perpendicular to each other, i.e., for any i, j ∈ [r/2], φ>i ψj = 0, φ>i φj = 0

if i 6= j, and ψ>i ψj = 0 if i 6= j.

Let

Ξ?
A = [

√
λ1φ1, . . . ,

√
λr/2φr/2] ∈ Rn×

r
2 and Ξ?

B = [
√
λ1ψ1, . . . ,

√
λr/2ψr/2] ∈ Rn×

r
2 .

It is straightforward to verify that

M = Ξ?
AΞ?

B
> −Ξ?

BΞ?
A
>.

Recall the fact that for any i, j ∈ [r/2], φ>i ψj = 0; φ>i φj = 0 if i 6= j and φ>i φj = 1 if i = j;

ψ>i ψj = 0 if i 6= j and ψ>i ψj = 1 if i = j. Therefore,

(3.11) Ξ?
A
>Ξ?

B = 0 and Ξ?
A
>Ξ?

A = Ξ?
B
>Ξ?

B = diag(λ1, . . . , λr/2).

For any θ = vec([Θ>A,Θ
>
B]>) with ΘA,ΘB ∈ Rn×

r
2 , consider the singular value decomposition

of the complex matrix (ΘA +
√
−1ΘB)H(Ξ?

A +
√
−1Ξ?

B) (AH is conjugate transpose of complex

matrix A), (ΘA +
√
−1ΘB)H(Ξ?

A +
√
−1Ξ?

B) = ADBH , where A,B ∈ C
r
2
× r

2 are complex unitary

matrices and D ∈ R
r
2
× r

2 is a real diagonal matrix. Therefore, BAH is also a complex unitary

matrix, decompose it as BAH = R1 +
√
−1R2 with R1,R2 ∈ R

r
2
× r

2 . Therefore,

(ΘA +
√
−1ΘB)H(Ξ?

A +
√
−1Ξ?

B)(R1 +
√
−1R2) = ADBHBAH = ADAH � 0,
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that is, it is a Hermitian positive semidefinite matrix. Let

ΞA = Ξ?
AR1 −Ξ?

BR2 and ΞB = Ξ?
AR2 + Ξ?

BR1.

Then there holds (Ξ?
A +
√
−1Ξ?

B)(R1 +
√
−1R2) = ΞA +

√
−1ΞB, and

(ΘA +
√
−1ΘB)H(ΞA +

√
−1ΞB) � 0,

which is equivalent to the following r-by-r real matrix is positive semidefinite:Θ>AΞA + Θ>BΞB Θ>BΞA −Θ>AΞB

Θ>AΞB −Θ>BΞA Θ>AΞA + Θ>BΞB

 � 0.

Also, since R1 +
√
−1R2 is unitary, we have

R :=

R1 −R2

R2 R1

 ∈ O(r).

Let ξ = vec([Ξ>A,Ξ
>
B]>). Then we have

X(ξ) = [ΞA,−ΞB]

= [Ξ?
AR1 −Ξ?

BR2,−Ξ?
AR2 −Ξ?

BR1]

= [Ξ?
A,−Ξ?

B]

R1 −R2

R2 R1


= [Ξ?

A,−Ξ?
B]R,

and similarly

Y (ξ) = [ΞB,ΞA]

= [Ξ?
AR2 + Ξ?

BR1,Ξ
?
AR1 −Ξ?

BR2]

= [Ξ?
B,Ξ

?
A]

R1 −R2

R2 R1


= [Ξ?

B,Ξ
?
A]R.
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It is then straightforward to verify that

X(ξ)Y (ξ)> = [ΞA,−ΞB] [ΞB,ΞA]> = [Ξ?
A,−Ξ?

B] [Ξ?
B,Ξ

?
A]> = M .

In order to further verify X(ξ)>X(ξ) = Y (ξ)>Y (ξ), it suffices to prove

[Ξ?
A,−Ξ?

B]> [Ξ?
A,−Ξ?

B] = [Ξ?
B,Ξ

?
A]> [Ξ?

B,Ξ
?
A] ,

which is guaranteed by Ξ?
A
>Ξ?

B = 0 and Ξ?
A
>Ξ?

A = Ξ?
B
>Ξ?

B as was shown in (3.11).

Finally, straightforward calculation gives

X(θ)>X(ξ) + Y (θ)>Y (ξ) = [ΘA,−ΘB]> [ΞA,−ΞB] + [ΘB,ΘA]> [ΞB,ΞA]

=

Θ>AΞA + Θ>BΞB Θ>BΞA −Θ>AΞB

Θ>AΞB −Θ>BΞA Θ>AΞA + Θ>BΞB

 � 0.

�

3.4.2. Proof of Theorem 3.1.7. Following the lines in Section 3.3.2, it suffices to show that

ϕ2 6
C8

C6

(
pn log nν2 + b2 log2 n

)
.

Recall the fact that ϕ 6 ‖PΩ(N)‖, then the proof can be done by employing the following Lemma.

Lemma 3.4.1. Let the support of the observed entries Ω satisfy Model 2.1.1. We assume that

the noise matrix N is a skew-symmetric matrix, and upper triangular part of N consists of i.i.d.

centered sub-exponential random variables satisfying the Bernstein condition with parameter b and

variance ν2. Then in an event Eskew N with probability P[Eskew N] > 1− n−3, we have

‖PΩ(N)‖ 6 Cw′
(√

pn log nν + b log n
)
.

for some absolute constant Cw′.

The proof is almost exactly the same with proof of Lemma 3.3.1. Therefore, we omit the proof

here. We can finish the proof of Theorem 3.1.7 by letting Eskew = E3 ∩Eskew N and C8 = 2C6C
2
w′ .
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CHAPTER 4

Nonconvex Rectangular Matrix Completion via Gradient Descent

without `2,∞ Regularization

4.1. Algorithm and Main Results

In this Chapter, the following nonconvex optimization is considered.

min
X∈Rn1×r,Y ∈Rn2×r

f(X,Y ) :=
1

2p

∥∥∥PΩ

(
XY > −M

)∥∥∥2

F
+

1

8

∥∥∥X>X − Y >Y ∥∥∥2

F
(4.1)

Our setup for the above nonconvex optimization (4.1) is the same as that in former chapters:

the matrixM is of rank-r; the sampling scheme Ω satisfies the i.i.d. Bernoulli model with parameter

p, i.e., Model 2.5.1. In Section 4.1.1, we give the formula of the gradient descent. And in Section

4.1.2, we present the main result.

4.1.1. Gradient descent and spectral initialization. We consider the initialization through

a simple singular value decomposition: Let

(4.2) M0 :=
1

p
PΩ(M) ≈ X̃0Σ0(Ỹ 0)>

be the top-r partial singular value decomposition ofM0. In other words, the columns of X̃0 ∈ Rn1×r

consist of the leading r left singular vectors of M0; the diagonal entries of the diagonal matrix

Σ0 ∈ Rr×r consist of the corresponding leading r singular values; and the columns of Ỹ 0 ∈ Rn2×r

consist of the corresponding leading r right singular vectors. Let

(4.3) X0 = X̃0(Σ0)1/2, Y 0 = Ỹ 0(Σ0)1/2.

We choose (X0,Y 0) as the initialization for the gradient descent.
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The nonconvex optimization (4.1) yields the following formula for gradients:

∇Xf(X,Y ) =
1

p
PΩ

(
XY > −M

)
Y +

1

2
X
(
X>X − Y >Y

)
,

∇Y f(X,Y ) =
1

p

[
PΩ

(
XY > −M

)]>
X +

1

2
Y
(
Y >Y −X>X

)
.

Then the gradient descent algorithm solving (4.1) with some fixed step size η can be explicitly

stated as follows:

Xt+1 =Xt − η

p
PΩ

(
Xt
(
Y t
)> −M)

Y t − η

2
Xt
((
Xt
)>
Xt −

(
Y t
)>
Y t
)
,

Y t+1 =Y t − η

p

[
PΩ

(
Xt
(
Y t
)> −M)]>

Xt − η

2
Y t
((
Y t
)>
Y t −

(
Xt
)>
Xt
)
.

(4.4)

For any m, we obtain an estimate of M after m iterations as M̂m = Xm(Y m)>. We aim to study

how close the estimate M̂m is from the ground truth M under certain assumptions of the sampling

complexity.

4.1.2. Main results. In this section, we specify the conditions for M and Ω to guarantee the

convergence of the vanilla gradient descent (4.4) with the spectral initialization (4.3). To begin with,

we list some necessary assumptions and notations as follows: First, rank(M) = r is assumed to be

known and thereby used in the nonconvex optimization (4.1). The singular value decomposition of

M is M = ŨΣṼ > = UV > where

U = Ũ(Σ)1/2 ∈ Rn1×r, and V = Ṽ (Σ)1/2 ∈ Rn2×r.

Second, denote by µ the subspace incoherence parameter of the rank-r matrix M as in [CR09],

i.e.,

µ := max(µ(colspan(U)), µ(colspan(V )))

just like in former chapters. Recall for any r-dimensional subspace U of Rn, its incoherence pa-

rameter is defined as µ(U) := n
r max

16i6n
‖PUei‖22 with e1, . . . , en being the standard orthogonal basis.

Third, denote the condition number of M as κ = σ1(M)/σr(M), where σ1(M) and σr(M) are
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the first and the r-th singular value of M . Finally, assume that there is some absolute constant

C10 > 1 such that 1/C10 6 n1/n2 6 C10. With these assumptions and notations, our main result

is stated as follows:

Theorem 4.1.1. Let Ω be sampled according to the i.i.d. Bernoulli model with the parameter

p. If p > CS
µ2r2κ14 log(n1∨n2)

n1∧n2
for some absolute constant CS, then, as long as the gradient descent

step size η in (4.4) satisfies η 6 σr(M)
200σ2

1(M)
, in an event E with probability P[E] > 1− (n1 + n2)−3,

the gradient descent iteration (4.4) starting from the spectral initialization (4.3) converges linearly

for at least the first (n1 + n2)3 steps:

min
R∈O(r)

∥∥∥∥∥∥
 Xt

Y t

R−
 U
V

∥∥∥∥∥∥
F

6 ρt
√
σr(M),

0 6 t 6 (n1 +n2)3. Here O(r) denotes the set of r×r orthogonal matrices, and ρ := 1−0.05ησr(M)

satisfies 0 < ρ < 1. If additionally assume η > σr(M)
1000σ2

1(M)
, the above inequality implies

min
R∈O(r)

∥∥∥∥∥∥
 XT

Y T

R−
 U
V

∥∥∥∥∥∥
F

6 e−(n1+n2)3/CR
√
σr(M)

for T := (n1 + n2)3 and an absolute constant CR > 0.

4.2. The Leave-one-out Sequences and the Roadmap of the Proof

The proof framework of Theorem 4.1.1 relies crucially on extending the leave-one-out sequences

in [MWCC18] from positive definite matrix completion to rectangular matrix completion (4.1).

Roughly speaking, the proof consists of three major parts: some local properties for the Hessian

of the nonconvex objective function f(X,Y ) defined in (4.1), error bounds for the initialization

(X0,Y 0) and those of the leave-one-out sequences (X0,(l),Y 0,(l)), error bounds for the gradient

sequence (Xt,Y t) and the leave-one-out sequences (Xt,(l),Y t,(l)). We first give the definition of

the leave-one-out sequences rigorously.

4.2.1. Leave-one-out sequences. Let’s start with the following notations:

• Denote by Ω−i,· := {(k, l) ∈ Ω : k 6= i} the subset of Ω where entries in the i-th row are

removed;
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• Denote by Ω·,−j := {(k, l) ∈ Ω : l 6= j} the subset of Ω where entries in the j-th column

are removed;

• Denote by Ωi,· := {(i, k) ∈ Ω} the subset of Ω where only entries in the i-th row are kept;

• Denote by Ω·,j := {(k, j) ∈ Ω} the subset of Ω where only entries in the j-th column are

kept;

• The definitions of the projectors PΩ−i,· , PΩ·,−j , PΩi,· and PΩ·,j are similar to that of PΩ;

• Denote by Pi,·(·)/P·,j(·) : Rn1×n2 → Rn1×n2 the orthogonal projector that transforms a

matrix by keeping its i-th row/j-th column and setting all other entries into zeros:

(Pi,·(M))k,l =


Mk,l if k = i

0 otherwise,

, (P·,j(M))k,l =


Mk,l if l = j

0 otherwise.

These notations facilitate the leave-one-out analysis in rectangular matrix completion, in which

each row/column is associated with a separate “leave-one-out” sequence. The initialization for

the “leave-one-out” sequences are defined similarly to the initialization (X0,Y 0) for the gradient

descent flow. To be concrete, for the i-th row, define

M0,(i) :=
1

p
PΩ−i,·(M) + Pi,·(M),

i.e., the i-th row of 1
pPΩ(M) is replaced with the complete i-th row of M . Similarly, for the j-th

column, define

M0,(n1+j) :=
1

p
PΩ·,−j (M) + P·,j(M),

i.e., the j-th column of 1
pPΩ(M) is replaced with the complete j-th column of M . In short, we

write

M0,(l) :=


(

1
pPΩ−l,· + Pl,·

)
(M) 1 6 l 6 n1(

1
pPΩ·,−(l−n1)

+ P·,l−n1

)
(M) n1 + 1 6 l 6 n1 + n2.

(4.5)

For 1 6 l 6 n1+n2, as with the spectral initialization for gradient descent, let X̃0,(l)Σ0,(l)
(
Ỹ 0,(l)

)>
be top-r partial singular value decomposition of M0,(l). Further, as with the definition of (X0,Y 0)
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in (4.3), we define the initialization for the l-th leave-one-out sequence as

X0,(l) = X̃0,(l)
(
Σ0,(l)

)1/2
, Y 0,(l) = Ỹ 0,(l)

(
Σ0,(l)

)1/2
.(4.6)

It is clear that if 1 6 l 6 n1, (X0,(l),Y 0,(l)) is the initialization for the leave-one-out sequence

associated with the l-th row, while if n1 + 1 6 l 6 n1 + n2, (X0,(l),Y 0,(l)) is associated with the

(l − n1)-th column.

Starting with (X0,(l),Y 0,(l)), we define the l-th leave-one-out sequence by considering the cor-

responding modification of the nonconvex optimization (4.1). For 1 6 l 6 n1, the nonconvex

optimization (4.1) is modified as

min
X∈Rn1×r

Y ∈Rn2×r

f(X,Y ) :=
1

2p

∥∥∥(PΩ−l,· + pPl,·
) (
XY > −M

)∥∥∥2

F
+

1

8

∥∥∥X>X − Y >Y ∥∥∥2

F
.

The leave-one-out sequence associated with the l-th row is defined as the corresponding gradient

descent sequence with the same step size η:

Xt+1,(l) =Xt,(l) − η

p
PΩ−l,·

(
Xt,(l)(Y t,(l))> −M

)
Y t,(l) − ηPl,·

(
Xt,(l)(Y t,(l))> −M

)
Y t,(l)

− η

2
Xt,(l)

(
(Xt,(l))>Xt,(l) − (Y t,(l))>Y t,(l)

)(4.7)

and

Y t+1,(l) =Y t,(l) − η

p

[
PΩ−l,·

(
Xt,(l)(Y t,(l))> −M

)]>
Xt,(l)

− η
[
Pl,·
(
Xt,(l)(Y t,(l))> −M

)]>
Xt,(l)

− η

2
Y t,(l)

(
(Y t,(l))>Y t,(l) − (Xt,(l))>Xt,(l)

)(4.8)

Similarly, for n1 + 1 6 l 6 n1 + n2, consider the nonconvex optimization

min
X∈Rn1×r

Y ∈Rn2×r

f(X,Y ) :=
1

2p

∥∥∥(PΩ·,−(l−n1)
+ pP·,l−n1

)(
XY > −M

)∥∥∥2

F
+

1

8

∥∥∥X>X − Y >Y ∥∥∥2

F
.
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Subsequently, the leave-one-out sequence associated with the (l − n1)-th column is defined as the

sequence:

Xt+1,(l) =Xt,(l) − η

p
PΩ·,−(l−n1)

(
Xt,(l)(Y t,(l))> −M

)
Y t,(l)

− ηP·,l−n1

(
Xt,(l)(Y t,(l))> −M

)
Y t,(l)

− η

2
Xt,(l)

(
(Xt,(l))>Xt,(l) − (Y t,(l))>Y t,(l)

)(4.9)

and

Y t+1,(l) =Y t,(l) − η

p

[
PΩ·,−(l−n1)

(
Xt,(l)(Y t,(l))> −M

)]>
Xt,(l)

− η
[
P·,l−n1

(
Xt,(l)(Y t,(l))> −M

)]>
Xt,(l)

− η

2
Y t,(l)

(
(Y t,(l))>Y t,(l) − (Xt,(l))>Xt,(l)

)
.

(4.10)

These n1 +n2 leave-one-out sequences will be employed to prove the convergence of vanilla gradient

descent (4.4) as with [MWCC18] as will be detailed in next few sections.

4.2.2. Local properties of the Hessian. As with [MWCC18, Lemma 7], we characterize

some local properties of the Hessian of the objective function f(X,Y ):

Lemma 4.2.1. If the sampling rate satisfies

p > CS1
µrκ log(n1 ∨ n2)

n1 ∧ n2

for some absolute constant CS1, then on an event EH with probability P[EH ] > 1− 3(n1 + n2)−11,

we have

vec

 DX

DY

>∇2f(X,Y ) vec

 DX

DY

 >1

5
σr(M)

∥∥∥∥∥∥
 DX

DY

∥∥∥∥∥∥
2

F

(4.11)

and

(4.12) ‖∇2f(X,Y )‖ 6 5σ1(M),
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uniformly for all X ∈ Rn1×r,Y ∈ Rn2×r satisfying

(4.13)

∥∥∥∥∥∥
 X −U
Y − V

∥∥∥∥∥∥
2,∞

6
1

500κ
√
n1 + n2

√
σ1(M)

and all DX ∈ Rn1×r, DY ∈ Rn2×r such that

 DX

DY

 is in the set


 X1

Y1

 R̂−
 X2

Y2

 :

∥∥∥∥∥∥
 X2 −U

Y2 − V

∥∥∥∥∥∥ 6
√
σ1(M)

500κ
, R̂ := argmin

R∈O(r)

∥∥∥∥∥∥
 X1

Y1

R−
 X2

Y2

∥∥∥∥∥∥
F

 .

(4.14)

The proof is similar to [MWCC18, Lemma 7], but as mentioned in Chapter 1, we apply Lemma

4.4 from [CL19] and Lemma 9 from [ZL16] to improve the order of logarithms. The details are

relegated to Section C.1.

4.2.3. Analysis of the initializations for the Leave-one-out sequences. As with Lemma

13 in [MWCC18], we now specify how close the spectral initialization (X0,Y 0) in (4.3) and its

leave-one-out counterparts (X0,(l),Y 0,(l)) in (4.6) are from the ground truth (U ,V ) (recall that

M = UV >). To begin with, we list some convenient notations for several orthogonal matrices that

relate (X0,Y 0), (X0,(l),Y 0,(l)) and (U ,V ):

R0 := argmin
R∈O(r)

∥∥∥∥∥∥
 X0

Y 0

R−
 U
V

∥∥∥∥∥∥
F

,

R0,(l) := argmin
R∈O(r)

∥∥∥∥∥∥
 X0,(l)

Y 0,(l)

R−
 U
V

∥∥∥∥∥∥
F

and

(4.15) T 0,(l) := argmin
R∈O(r)

∥∥∥∥∥∥
 X0

Y 0

R0 −

 X0,(l)

Y 0,(l)

R
∥∥∥∥∥∥
F

.

Lemma 4.2.2. If

p > CS2
µ2r2κ6 log(n1 ∨ n2)

n1 ∧ n2
,

65



then on an event Einit ⊂ EH (defined in Lemma 4.2.1) with probability P[Einit] > 1− (n1 +n2)−10,

there hold the following inequalities∥∥∥∥∥∥
 X0

Y 0

R0 −

 U
V

∥∥∥∥∥∥ 6CI
√
µrκ6 log(n1 ∨ n2)

(n1 ∧ n2)p

√
σ1(M),(4.16)

∥∥∥∥∥∥∥
 X0,(l)

Y 0,(l)

R0,(l) −

 U
V


l,·

∥∥∥∥∥∥∥
2

6100CI

√
µ2r2κ7 log(n1 ∨ n2)

(n1 ∧ n2)2p

√
σ1(M),(4.17)

∥∥∥∥∥∥
 X0

Y 0

R0 −

 X0,(l)

Y 0,(l)

T 0,(l)

∥∥∥∥∥∥
F

6CI

√
µ2r2κ10 log(n1 ∨ n2)

(n1 ∧ n2)2p

√
σ1(M).(4.18)

For l = 1, 2, · · · , n1 + n2. Here CI and CS2 are two fixed absolute constants.

The detailed proof of Lemma 4.2.2 is deferred to Appendix C.2, while we here highlight some key

ideas in the proof. First, in order to transform the problem of rectangular matrix completion into

symmetric matrix completion, the trick of “symmetric dilation” introduced in [Pau02,AFWZ17]

is employed. Moreover, a major technical novelty in our proof is to replace [MWCC18, Lemma

39] with [Che15, Lemma 2] to obtain sharper error bounds as shown in (4.16), (4.17) and (4.18).

We restate that lemma here:

Lemma 4.2.3 (Modification of [Che15, Lemma 2]). Let A be any fixed n1× n2 matrix, and let

the index set Ω ∈ [n1]× [n2] satisfy the i.i.d. Bernoulli model with parameter p. Denote

A :=

 0 A

A> 0

 ,
Ω := {(i, j) |1 6 i, j 6 n1 + n2, (i, j − n1) ∈ Ω or (j, i− n1) ∈ Ω}.

There is an absolute constant C14 and an event ECh with probability P[ECh] > 1 − (n1 + n2)−11,

such that for all 1 6 l 6 n1 + n2, there holds∥∥∥∥1

p
PΩ−l

(A) + Pl(A)−A
∥∥∥∥ 6∥∥∥∥1

p
PΩ(A)−A

∥∥∥∥
6C14

(
log(n1 ∨ n2)

p
‖A‖`∞ +

√
log(n1 ∨ n2)

p
‖A‖2,∞

)
.

(4.19)
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Here

PΩ−l
(A) :=

∑
(i,j)∈Ω,i 6=l,j 6=l

Ai,jeie
>
j ,

Pl(A) :=
∑

(i,j)∈[n1+n2]×[n1+n2],i=l or j=l

Ai,jeie
>
j ,

and e1, . . . en1+n2 are the standard basis of Rn1+n2.

The second inequality in (4.19) is directly implied by [Che15]. In fact, [Che15] yields the

bound for
∥∥∥1
pPΩ(A)−A

∥∥∥. On the other hand, the equalities

∥∥∥∥1

p
PΩ(A)−A

∥∥∥∥ =

∥∥∥∥∥∥
 0 1

pPΩ(A)−A(
1
pPΩ(A)−A

)>
0

∥∥∥∥∥∥
=

∥∥∥∥1

p
PΩ(A)−A

∥∥∥∥
as well as ‖A‖`∞ = ‖A‖`∞ and ‖A‖2,∞ = max{‖A‖2,∞, ‖A>‖2,∞} translate the bound in [Che15]

to our result. As to the first inequality in (4.19), it holds due simply to the fact that 1
pPΩ−l

(A) +

Pl(A)−A is essentially a submatrix of 1
pPΩ(A)−A (the l-th column and l-th row are changed to

zeros.)

4.2.4. Analysis for the leave-one-out sequences. In this section we are about to introduce

the lemma that guarantees the convergence of the gradient descent for the nonconvex optimization

(4.1) with the leave-one-out technique. To be concrete, we are going to control certain distances

between the gradient descent sequence (Xt,Y t) in (4.4), the leave-one-out sequences (Xt,(l),Y t,(l))

in (4.7), (4.8), (4.9) and (4.10), and the low-rank factors (U ,V ). Again, we denote some orthogonal
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matrices that relate (Xt,Y t), (Xt,(l),Y t,(l)) and (U ,V ) for 1 6 l 6 n1 + n2:

Rt := argmin
R∈O(r)

∥∥∥∥∥∥
 Xt

Y t

R−
 U
V

∥∥∥∥∥∥
F

,

Rt,(l) := argmin
R∈O(r)

∥∥∥∥∥∥
 Xt,(l)

Y t,(l)

R−
 U
V

∥∥∥∥∥∥
F

,

T t,(l) := argmin
R∈O(r)

∥∥∥∥∥∥
 Xt

Y t

Rt −

 Xt,(l)

Y t,(l)

R
∥∥∥∥∥∥
F

.

(4.20)

Lemma 4.2.4. Suppose that the the step size satisfies

η 6
σr(M)

200σ2
1(M)

,

and that the sampling rate satisfies

p > CS3
µ2r2κ14 log(n1 ∨ n2)

n1 ∧ n2

for some absolute constant CS3.

For any fixed t > 0, if on an event Etgd ⊂ EH (defined in Lemma 4.2.1) there hold∥∥∥∥∥∥
 Xt

Y t

Rt −

 U
V

∥∥∥∥∥∥ 6CIρt
√
µrκ6 log(n1 ∨ n2)

(n1 ∧ n2)p

√
σ1(M),(4.21)

∥∥∥∥∥∥∥
 Xt,(l)

Y t,(l)

Rt,(l) −

 U
V


l,·

∥∥∥∥∥∥∥
2

6100CIρ
t

√
µ2r2κ10 log(n1 ∨ n2)

(n1 ∧ n2)2p

√
σ1(M),(4.22)

∥∥∥∥∥∥
 Xt

Y t

Rt −

 Xt,(l)

Y t,(l)

T t,(l)
∥∥∥∥∥∥
F

6CIρ
t

√
µ2r2κ10 log(n1 ∨ n2)

(n1 ∧ n2)2p

√
σ1(M),(4.23)

∥∥∥∥∥∥
 Xt

Y t

Rt −

 U
V

∥∥∥∥∥∥
2,∞

6110CIρ
t

√
µ2r2κ12 log(n1 ∨ n2)

(n1 ∧ n2)2p

√
σ1(M),(4.24)
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for all 1 6 l 6 n1 + n2, where CI is the absolute constant defined in Lemma 4.2.2 and ρ :=

1 − 0.05ησr(M), then on an event Et+1
gd ⊂ Etgd satisfying P[Etgd\E

t+1
gd ] 6 (n1 + n2)−10, the above

inequalities (4.21), (4.22), (4.23) and (4.24) also hold for t+ 1.

If we translate the inequalities (70) in [MWCC18] in terms of
√
σ1(M), a straightforward

comparison shows that our bounds are O(
√
r) tighter. Our key technical novelty for this improve-

ment has been summarized in Chapter 1 and is thereby omitted here. The detailed proof is deferred

to Section 4.3.

4.2.5. Proof of the main theorem. We are now ready to give a proof for the main theorem

based upon the above lemmas:

Proof of Theorem 4.1.1. We choose CS = CS2 + CS3 + 2C2
I where CS2, CS3 and CI are

defined in Lemma 4.2.2 and 4.2.4. Then the requirements on the sampling rate p in both Lemma

4.2.2 and 4.2.4 are satisfied. By Lemma 4.2.2, the inequalities (4.16), (4.17) and (4.18) hold on the

event Einit defined there, which implies that the inequalities (4.21), (4.22) and (4.23) hold for t = 0

on Einit. Moreover, (4.24) can be straightforwardly implied by (4.21), (4.22) and (4.23) (the proof

is deferred to Section 4.3.5), and thereby also holds for t = 0. Let E0
gd = Einit. By applying Lemma

4.2.4 iteratively for t = 1, 2, . . . , (n1+n2)3, we know on an event E := E
(n1+n2)3

gd ⊂ · · · ⊂ E0
gd = Einit

there holds ∥∥∥∥∥∥
 Xt

Y t

Rt −

 U
V

∥∥∥∥∥∥ 6CIρt
√
µrκ6 log(n1 ∨ n2)

(n1 ∧ n2)p

√
σ1(M)

for all t satisfying 0 6 t 6 (n1 + n2)3 and ρ = 1− 0.05ησr(M). This further implies that∥∥∥∥∥∥
 Xt

Y t

Rt −

 U
V

∥∥∥∥∥∥
F

6
√

2r

∥∥∥∥∥∥
 Xt

Y t

Rt −

 U
V

∥∥∥∥∥∥
6
√

2rCIρ
t

√
µrκ6 log(n1 ∨ n2)

(n1 ∧ n2)p

√
σ1(M)

6ρt
√
σr(M),

(4.25)
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where the last inequality is due to our assumption

p > 2C2
I

µr2κ7 log(n1 ∨ n2)

n1 ∧ n2
.

Lemma 4.2.4 also implies that

P[E
(n1+n2)3

gd ] >1−
(
1 + (n1 + n2)3

)
(n1 + n2)−10 > 1− (n1 + n2)−3,

which gives the proof of the first part of Theorem 4.1.1. If we assume additionally that η >

σr(M)
1000σ2

1(M)
, which directly gives 0 < ρ 6 1− 5× 10−5. This implies that

ρ(n1+n2)3
6 exp(log(1− 5× 10−5)(n1 + n2)3) 6 exp(−(n1 + n2)3/CR).

for some absolute constant CR. �

4.3. Proof of Lemma 4.2.4

In this section, we give the proof of Lemma 4.2.4. Within the proof, we will mainly follow the

proof structure introduced in [MWCC18], and useful lemmas from [MWCC18] such as Lemma

4.3.1 and Lemma 4.3.3 are intensively used. Moreover, we use Lemma 2.3.6 throughout this section

to simplify the proof, and we also conduct a more meticulous application of the matrix Bernstein

inequality. These efforts result an O(
√
r) tighter on our error bounds.

4.3.1. Key Lemmas. In this subsection, we list some useful lemmas which will be used to

prove Lemma 4.2.4.

First, we need a lemma from [MWCC18]:

Lemma 4.3.1 ( [MWCC18, Lemma 37]). Suppose X0,X1,X2 ∈ Rn×r are matrices such that

(4.26) ‖X1 −X0‖‖X0‖ 6
σ2
r (X0)

2
, ‖X1 −X2‖‖X0‖ 6

σ2
r (X0)

4
.

Denote

R1 := argmin
R∈O(r)

‖X1R−X0‖F ,

R2 := argmin
R∈O(r)

‖X2R−X0‖F .
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Then the following two inequalities hold true:

‖X1R1 −X2R2‖ 65
σ2

1(X0)

σ2
r (X0)

‖X1 −X2‖,

‖X1R1 −X2R2‖F 65
σ2

1(X0)

σ2
r (X0)

‖X1 −X2‖F .

In order to proceed, we also need a control of ‖Ω− pJ‖, right here, in order to incorporate the

assumption that 1/C10 6 n1/n2 6 C10, we have a slightly modified version of Lemma A.4.6:

Lemma 4.3.2. There is a constant C13 > 0 such that if p > C13
log(n1∨n2)
n1∧n2

, then on an event ES

with probability P[ES ] > 1− (n1 + n2)−11, we have

‖Ω− pJ‖ 6 C13

√
(n1 ∧ n2)p.

Here we use the assumption that 1/C10 < n1/n2 < C10 and C13 is dependent on C10.

Finally, we need a lemma to control the norm of sgn(C +E)− sgn(C) by the norm of E:

Lemma 4.3.3 ( [Mat93, MWCC18]). Let C ∈ Rr×r be a nonsingular matrix. Then for any

matrix E ∈ Rr×r with ‖E‖ 6 σr(C) and any unitarily invariant norm � · �, one have

� sgn(C +E)− sgn(C)� 6 2

σr−1(C) + σr(C)
�E�.

4.3.2. Proof of (4.21). For the spectral norm, first consider the auxiliary iterates defined as

following:

X̃t+1 :=XtRt − η

p
PΩ

(
Xt
(
Y t
)> −UV >)V

− η

2
U(Rt)>

((
Xt
)>
Xt −

(
Y t
)>
Y t
)
Rt,

Ỹ t+1 :=Y tRt − η

p

[
PΩ

(
Xt
(
Y t
)> −UV >)]>U

− η

2
V (Rt)>

((
Y t
)>
Y t −

(
Xt
)>
Xt
)
Rt.

(4.27)

Denote

ẼX̃t+1 :=XtRt − η
(
Xt
(
Y t
)> −UV >)V − η

2
U(Rt)>

((
Xt
)>
Xt −

(
Y t
)>
Y t
)
Rt
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and

ẼỸ t+1 :=Y tRt − η
(
Xt
(
Y t
)> −UV >)>U − η

2
V (Rt)>

((
Y t
)>
Y t −

(
Xt
)>
Xt
)
Rt.

Then by triangle inequality, we have the following decomposition:∥∥∥∥∥∥
 Xt+1

Y t+1

Rt+1 −

 U
V

∥∥∥∥∥∥ 6
∥∥∥∥∥∥
 X̃t+1

Ỹ t+1

−
 U
V

∥∥∥∥∥∥+

∥∥∥∥∥∥
 Xt+1

Y t+1

Rt+1 −

 X̃t+1

Ỹ t+1

∥∥∥∥∥∥
6

∥∥∥∥∥∥
 ẼX̃t+1

ẼỸ t+1

−
 X̃t+1

Ỹ t+1

∥∥∥∥∥∥︸ ︷︷ ︸
α1

+

∥∥∥∥∥∥
 ẼX̃t+1

ẼỸ t+1

−
 U
V

∥∥∥∥∥∥︸ ︷︷ ︸
α2

+

∥∥∥∥∥∥
 Xt+1

Y t+1

Rt+1 −

 X̃t+1

Ỹ t+1

∥∥∥∥∥∥︸ ︷︷ ︸
α3

.

(4.28)

4.3.2.1. Analysis of α1. First for α1, since ẼX̃t+1

ẼỸ t+1

−
 X̃t+1

Ỹ t+1


=η

 1
pPΩ

(
Xt(Y t)> −UV >

)
V

1
p

[
PΩ

(
Xt(Y t)> −UV >

)]>
U

− η
 (

Xt(Y t)> −UV >
)
V(

Xt(Y t)> −UV >
)>
U

 ,

and using the facts

∥∥∥∥∥∥
 A

B

∥∥∥∥∥∥ 6 ‖A‖+ ‖B‖ and ‖U‖ = ‖V ‖, we have

α1 =η

∥∥∥∥∥∥∥

(

1
pPΩ

(
Xt(Y t)> −UV >

)
−
(
Xt(Y t)> −UV >

))
V(

1
pPΩ

(
Xt(Y t)> −UV >

)
−
(
Xt(Y t)> −UV >

))>
U


∥∥∥∥∥∥∥

62η‖U‖
∥∥∥∥1

p
PΩ

(
Xt(Y t)> −UV >

)
−
(
Xt(Y t)> −UV >

)∥∥∥∥
62η‖U‖

∥∥∥∥1

p
PΩ(∆t

XV
>)−∆t

XV
>
∥∥∥∥+ 2η‖U‖

∥∥∥∥1

p
PΩ

(
U(∆t

Y )>
)
−U(∆t

Y )>
∥∥∥∥

+ 2η‖U‖
∥∥∥∥1

p
PΩ

(
∆t
X(∆t

Y )>
)
−∆t

X(∆t
Y )>

∥∥∥∥ .
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Here we denote ∆t
X := XtRt − U ,∆t

Y := Y tRt − V , and ∆t :=

 ∆t
X

∆t
Y

. The last inequality

uses the fact that

Xt(Y t)> −UV > =XtRt(Rt)>(Y t)> −UV >

=(∆t
X +U)(∆t

Y + V )> −UV >

=∆t
XV

> +U(∆t
Y )> + ∆t

X(∆t
Y )>.

(4.29)

Using Lemma 2.3.6, we can show that

α1 6
2η

p
‖U‖‖Ω− pJ‖(‖∆t

X‖2,∞‖V ‖2,∞ + ‖U‖2,∞‖∆t
Y ‖2,∞ + ‖∆t

X‖2,∞‖∆t
Y ‖2,∞).

From (4.24), if

p > 1102C2
I

µrκ11 log(n1 ∨ n2)

n1 ∧ n2
,

then

‖∆t‖2,∞ 6
√

µrκ

n1 ∧ n2

√
σ1(M).

Here we also use the fact that ρ < 1. Recall that ‖U‖2,∞, ‖V ‖2,∞ 6
√

µrκ
n1∧n2

√
σ1(M), and by

(4.24),

α1 6
2η

p

√
σ1(M)‖Ω− pJ‖ × 3

(
110CIρ

t

√
µ2r2κ12 log(n1 ∨ n2)

(n1 ∧ n2)2p

√
σ1(M)×

√
µrκ

n1 ∧ n2

√
σ1(M)

)
.

Moreover, using Lemma 4.3.2, if in addition

p > (C13 + 16× 6602)
µ2r2κ9 log(n1 ∨ n2)

n1 ∧ n2
,
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then on the event Etgd ⊂ EH ⊂ ES , we have

α1 6
2η

p

√
σ1(M)

√
(n1 ∧ n2)p

× 3

(
110CIρ

t

√
µ2r2κ12 log(n1 ∨ n2)

(n1 ∧ n2)2p

√
σ1(M)×

√
µrκ

n1 ∧ n2

√
σ1(M)

)

=660ηCIρ
t

√
µ3r3κ13 log(n1 ∨ n2)

(n1 ∧ n2)2p2

√
σ1(M)

3

60.25ησr(M)CIρ
t

√
µrκ6 log(n1 ∨ n2)

(n1 ∧ n2)p

√
σ1(M).

(4.30)

4.3.2.2. Analysis of α2. Since ∆t
X = XtRt −U and ∆t

Y = Y tRt − V , we have

(Rt)>
[(
Xt
)>
Xt −

(
Y t
)>
Y t
]
Rt

=
(
∆t
X +U

)> (
∆t
X +U

)
−
(
∆t
Y + V

)> (
∆t
Y + V

)
=
(
∆t
X

)>
∆t
X +

(
∆t
X

)>
U +U>∆t

X +U>U

−
[(

∆t
Y

)>
∆t
Y +

(
∆t
Y

)>
V + V >

(
∆t
Y

)
+ V >V

]
=
(
∆t
X

)>
∆t
X +

(
∆t
X

)>
U +U>∆t

X −
(
∆t
Y

)>
∆t
Y −

(
∆t
Y

)>
V − V >∆t

Y .

(4.31)
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Therefore, for α2,  ẼX̃t+1

ẼỸ t+1

−
 U
V


=

 XtRt − η
(
Xt(Y t)> −UV >

)
V

Y tRt − η
(
Xt(Y t)> −UV >

)>
U



+

 −η
2U(Rt)>

((
Xt
)>
Xt −

(
Y t
)>
Y t
)
Rt −U

−η
2V (Rt)>

((
Y t
)>
Y t −

(
Xt
)>
Xt
)
Rt − V



=

 ∆t
X − η∆t

XV
>V − ηU(∆t

Y )>V − η
2U(∆t

X)>U

∆t
Y − ηV (∆t

X)>U − η∆t
Y U

>U − η
2V (∆t

Y )>V


+

 −η
2UU

>∆t
X + η

2U(∆t
Y )>V + η

2UV
>∆t

Y + ηE1

−η
2V V

>∆t
Y + η

2V (∆t
X)>U + η

2V U
>∆t

X + ηE2


=

 ∆t
X − η∆t

XV
>V − ηUU>∆t

X + η
2UU

>∆t
X

∆t
Y − η∆t

Y U
>U − ηV V >∆t

Y + η
2V V

>∆t
Y


+

 η
2UV

>∆t
Y −

η
2U(∆t

Y )>V − η
2U(∆t

X)>U + ηE1

η
2V U

>∆t
X −

η
2V (∆t

X)>U − η
2V (∆t

Y )>V + ηE2

 .

(4.32)

Here

E1 :=−∆t
X(∆t

Y )>V − 1

2
U(∆t

X)>∆t
X +

1

2
U(∆t

Y )>∆t
Y ,(4.33)

E2 :=−∆t
Y (∆t

X)>U − 1

2
V (∆t

Y )>∆t
Y +

1

2
V (∆t

X)>∆t
X(4.34)

denote terms with at least two ∆t
X ’s and ∆t

Y ’s. By the way we define Rt in (4.20), XtRt

Y tRt

>  U
V
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is positive semidefinite. Therefore, XtRt −U

Y tRt − V

>  U
V

 = (∆t
X)>U + (∆t

Y )>V

is symmetric. Plugging this fact back to (4.32) we have ẼX̃t+1

ẼỸ t+1

−
 U
V


=

 ∆t
X − η∆t

XV
>V − ηUU>∆t

X + ηE1

∆t
Y − η∆t

Y U
>U − ηV V >∆t

Y + ηE2


=

1

2

 ∆t
X

∆t
Y

 (I − 2ηU>U) +
1

2

I − 2η

 UU> 0

0 V V >

 ∆t
X

∆t
Y

+ ηE,

where E :=

 E1

E2

. Here the last equality uses the fact that U>U = V >V . Recall that we define

U by ŨΣ1/2 and V by Ṽ Σ1/2, UU> and V V > share the same eigenvalues. And ‖UU>‖ =

‖V V >‖ = σ1(M). Therefore, we have

α2 =

∥∥∥∥∥∥
 ẼX̃t+1

ẼỸ t+1

−
 U
V

∥∥∥∥∥∥
6

1

2
‖I − 2ηU>U‖‖∆t‖+

1

2
‖∆t‖

∥∥∥∥∥∥I − 2η

 UU> 0

0 V V >

∥∥∥∥∥∥+ η‖E‖

6(1− ησr(M))‖∆t‖+ η‖E‖.

The last inequality uses the fact that η 6 σr(M)
200σ2

1(M)
. By the definition of E,

‖E‖ 6 4‖∆t‖2‖U‖

holds. From (4.21) and since

p > 1600C2
I

µrκ8 log(n1 ∨ n2)

n1 ∧ n2
,
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on the event Etgd,

‖E‖ 64× CIρt
√
µrκ6 log(n1 ∨ n2)

(n1 ∧ n2)p
σ1(M)‖∆t‖ 6 0.1σr(M)‖∆t‖

holds. Therefore, we have

(4.35) α2 6 (1− 0.9ησr(M))‖∆t‖.

4.3.2.3. Analysis of α3. Now we can start to control α3. Rewrite α3 as

α3 =

∥∥∥∥∥∥
 Xt+1

Y t+1

Rt+1 −

 X̃t+1

Ỹ t+1

∥∥∥∥∥∥
=

∥∥∥∥∥∥
 Xt+1

Y t+1

Rt(Rt)>Rt+1 −

 X̃t+1

Ỹ t+1

∥∥∥∥∥∥ .
We want to apply Lemma 4.3.1 with

(4.36) X0 =

 U
V

 , X1 =

 Xt+1

Y t+1

Rt, and X2 =

 X̃t+1

Ỹ t+1

 .
By the way we define U and V , we have σ1(X0) =

√
2σ1(M), σ2(X0) =

√
2σ2(M), · · · , σr(X0) =√

2σr(M), and σ1(X0)/σr(X0) =
√
κ. In order to proceed, we first assume we can apply Lemma

4.3.1 here:

Claim 4.3.4. Under the setup of Lemma 4.2.4, on the event Etgd ⊂ EH ⊂ ES, the requirement

of Lemma 4.3.1 to apply here is satisfied with X0, X1 and X2 defined as in (4.36). Moreover, by

applying Lemma 4.3.1, we have

α3 =

∥∥∥∥∥∥
 X̃t+1

Ỹ t+1

−
 Xt+1

Y t+1

Rt+1

∥∥∥∥∥∥ 6 0.5ησr(M)‖∆t‖.(4.37)
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Now by putting the estimations of α1, α2, α3, (4.30), (4.35), (4.37) together,∥∥∥∥∥∥
 Xt+1

Y t+1

Rt+1 −

 U
V

∥∥∥∥∥∥
6α1 + α2 + α3

6(1− 0.9ησr(M))‖∆t‖+ 0.25ησr(M)CIρ
t

√
µrκ6 log(n1 ∨ n2)

(n1 ∧ n2)p

√
σ1(M)

+ 0.5ησr(M)‖∆t‖

6CIρ
t+1

√
µrκ6 log(n1 ∨ n2)

(n1 ∧ n2)p

√
σ1(M)

(4.38)

holds on the event Etgd ⊂ EH ⊂ ES , where the last inequality uses (4.21) and ρ = 1− 0.05ησr(M).

Proof of Claim 4.3.4. By the definition of Rt+1 in (4.20), we can verify that

R1 = (Rt)>Rt+1.

Recall R1 is defined in Lemma 4.3.1. Now we want to show that R2 = I. In other words, we want

to show  U
V

>  X̃t+1

Ỹ t+1

 � 0.

First, from (4.27), U
V

>  X̃t+1

Ỹ t+1


=U>XtRt − η

p
U>PΩ

(
Xt(Y t)> −UV >

)
V − η

2
U>U(Rt)>

(
(Xt)>Xt − (Y t)>Y t

)
Rt

+ V >Y tRt − η

p
V >

[
PΩ

(
Xt(Y t)> −UV >

)]>
U − η

2
V >V (Rt)>

(
(Y t)>Y t − (Xt)>Xt

)
Rt

=U>XtRt + V >Y tRt − η

p
U>PΩ

(
Xt(Y t)> −UV >

)
V − η

p
V >

[
PΩ

(
Xt(Y t)> −UV >

)]>
U ,
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where the last equation holds since U>U = V >V . By the definition of Rt, U>XtRt+V >Y tRt is

positive semidefinite, therefore symmetric. Therefore,

 U
V

>  X̃t+1

Ỹ t+1

 is symmetric. Moreover,

we have ∥∥∥∥∥∥∥
 U
V

>  X̃t+1

Ỹ t+1

−
 U
V

>  U
V


∥∥∥∥∥∥∥ 6

∥∥∥∥∥∥
 U
V

∥∥∥∥∥∥
∥∥∥∥∥∥
 X̃t+1

Ỹ t+1

−
 U
V

∥∥∥∥∥∥
62
√
σ1(M)(α1 + α2),

where the last inequality holds by triangle inequality and the definition of α1 and α2 in (4.28).

From (4.30) and (4.35),

α1 + α2 6(1− 0.9ησr(M))‖∆t‖+ 0.25ησr(M)CIρ
t

√
µrκ6 log(n1 ∨ n2)

(n1 ∧ n2)p

√
σ1(M)

holds on the event Etgd. Therefore, from (4.21), and the fact that

p > 16C2
I

µrκ8 log(n1 ∨ n2)

n1 ∧ n2

and

η 6
σr(M)

200σ2
1(M)

,

we have ∥∥∥∥∥∥∥
 U
V

>  X̃t+1

Ỹ t+1

−
 U
V

>  U
V


∥∥∥∥∥∥∥

6

∥∥∥∥∥∥
 U
V

∥∥∥∥∥∥
∥∥∥∥∥∥
 X̃t+1

Ỹ t+1

−
 U
V

∥∥∥∥∥∥
62
√
σ1(M)(1− 0.65ησr(M))CIρ

t ×

√
µrκ6 log(n1 ∨ n2)

(n1 ∧ n2)p

√
σ1(M)

60.5σr(M) 6 0.5σ2
r (X0)
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on the event Etgd. By the fact that

 U
V

>  U
V

 = U>U + V >V = 2U>U , we have

λr


 U
V

>  U
V


 = 2σr(M).

By the construction of

 U
V

>  X̃t+1

Ỹ t+1

, it is an r×r symmetric matrix. By the Weyl’s inequality,

for all i = 1, · · · , r, any two symmetric matrices A,B ∈ Rr×r satisfies

|λi(A)− λi(B)| 6 ‖A−B‖.

Therefore, we have

λr


 U
V

>  X̃t+1

Ỹ t+1


 > 1.5σr(M),

and

 U
V

>  X̃t+1

Ỹ t+1

 � 0. Therefore, we have

I = R2 = argmin
R∈O(r)

∥∥∥∥∥∥
 X̃t+1

Ỹ t+1

R−
 U
V

∥∥∥∥∥∥
F

.

Now we want to verify condition (4.26) of Lemma 4.3.1 is valid here. Since we have already shown∥∥∥∥∥∥
 U
V

∥∥∥∥∥∥
∥∥∥∥∥∥
 X̃t+1

Ỹ t+1

−
 U
V

∥∥∥∥∥∥ 6 0.5σ2
r (X0),

the first inequality is verified. Moreover, by the definition of Xt+1 and Y t+1,

Xt+1Rt =XtRt − η

p
PΩ(Xt(Y t)> −UV >)Y tRt

− η

2
(XtRt)(Rt)>((Xt)>Xt − (Y t)>Y t)Rt,
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Y t+1Rt =Y tRt − η

p

[
PΩ(Xt(Y t)> −UV >)

]>
XtRt

− η

2
(Y tRt)(Rt)>((Y t)>Y t − (Xt)>Xt)Rt.

Hence,

∥∥∥∥∥∥
 X̃t+1

Ỹ t+1

−
 Xt+1

Y t+1

Rt

∥∥∥∥∥∥
=η

∥∥∥∥∥∥
 1

pPΩ

(
Xt(Y t)> −UV >

)
∆t
Y

1
p

[
PΩ

(
Xt(Y t)> −UV >

)]>
∆t
X

+

 1
2∆t

X(Rt)>
(
(Xt)>Xt − (Y t)>Y t

)
Rt

1
2∆t

Y (Rt)>
(
(Y t)>Y t − (Xt)>Xt

)
Rt

∥∥∥∥∥∥
6η

∥∥∥∥∥∥
 0

1
p

[
PΩ

(
Xt(Y t)> −UV >

)]> 1
pPΩ

(
Xt(Y t)> −UV >

)
0

 ∆t
X

∆t
Y

∥∥∥∥∥∥
+
η

2
(‖∆t

X‖+ ‖∆t
Y ‖)

∥∥∥(Rt)>
(

(Xt)>Xt − (Y t)>Y t
)
Rt
∥∥∥

6η

(∥∥∥∥1

p
PΩ

(
Xt(Y t)> −UV >

)∥∥∥∥ +
∥∥∥(Rt)>

(
(Xt)>Xt − (Y t)>Y t

)
Rt
∥∥∥) ‖∆t‖.

(4.39)

In order to bound
∥∥∥1
pPΩ

(
Xt(Y t)> −UV >

)∥∥∥. Recalling (4.29) and combining with Lemma 2.3.6

we have ∥∥∥∥1

p
PΩ

(
Xt(Y t)> −UV >

)∥∥∥∥
6

∥∥∥∥1

p
PΩ(∆t

XV
>)−∆t

XV
>
∥∥∥∥+ ‖∆t

XV
>‖+

∥∥∥∥1

p
PΩ

(
U(∆t

Y )>
)
−U(∆t

Y )>
∥∥∥∥

+
∥∥∥U(∆t

Y )>
∥∥∥+

∥∥∥∥1

p
PΩ

(
∆t
X(∆t

Y )>
)
−∆t

X(∆t
Y )>

∥∥∥∥+
∥∥∥∆t

X(∆t
Y )>

∥∥∥
6
‖Ω− pJ‖

p
(‖∆t

X‖2,∞‖V ‖2,∞ + ‖∆t
Y ‖2,∞‖U‖2,∞ + ‖∆t

X‖2,∞‖∆t
Y ‖2,∞)

+ ‖∆t
X‖‖V ‖+ ‖∆t

Y ‖‖U‖+ ‖∆t
X‖‖∆t

Y ‖.

(4.40)

And in addition , from (4.31),∥∥∥(Rt)>
(

(Xt)>Xt − (Y t)>Y t
)
Rt
∥∥∥

=
∥∥∥U>∆t

X + (∆t
X)>U + (∆t

X)>∆t
X − V >∆t

Y − (∆t
Y )>V − (∆t

Y )>∆t
Y

∥∥∥
62‖U‖‖∆t

X‖+ 2‖V ‖‖∆t
Y ‖+ ‖∆t

X‖2 + ‖∆t
Y ‖2.

(4.41)
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Combining the estimations (4.40) and (4.41) together and plugging back into (4.39) we have∥∥∥∥∥∥
 X̃t+1

Ỹ t+1

−
 Xt+1

Y t+1

Rt

∥∥∥∥∥∥
6η
‖Ω− pJ‖

p
(‖∆t

X‖2,∞‖V ‖2,∞ + ‖∆t
Y ‖2,∞‖U‖2,∞ + ‖∆t

X‖2,∞‖∆t
Y ‖2,∞)‖∆t‖

+ η
(
‖∆t

X‖‖V ‖+ ‖∆t
Y ‖‖U‖+ ‖∆t

X‖‖∆t
Y ‖
)
‖∆t‖

+ η
(
2‖U‖‖∆t

X‖+ 2‖V ‖‖∆t
Y ‖+ ‖∆t

X‖2 + ‖∆t
Y ‖2

)
‖∆t‖.

(4.42)

From (4.21), (4.24) and

p > 1102C2
I

µrκ11 log(n1 ∨ n2)

n1 ∧ n2
,

we have

‖∆t‖ 6 CIρt
√
µrκ6 log(n1 ∨ n2)

(n1 ∧ n2)p

√
σ1(M) 6

√
σ1(M)

and

‖∆t‖2,∞ 6110CIρ
t

√
µ2r2κ12 log(n1 ∨ n2)

(n1 ∧ n2)2p

√
σ1(M) 6

√
µrκ

n1 ∧ n2

√
σ1(M).

Therefore, by applying Lemma 4.3.2 and given

p > (6600CI + 32400C2
I )
µ1.5r1.5κ10 log(n1 ∨ n2)

n1 ∧ n2
,

we have
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‖Ω− pJ‖
p

(‖∆t
X‖2,∞‖V ‖2,∞ + ‖∆t

Y ‖2,∞‖U‖2,∞ + ‖∆t
X‖2,∞‖∆t

Y ‖2,∞)

+ ‖∆t
X‖‖V ‖+ ‖∆t

Y ‖‖U‖+ ‖∆t
X‖‖∆t

Y ‖+ 2‖U‖‖∆t
X‖+ 2‖V ‖‖∆t

Y ‖+ ‖∆t
X‖2 + ‖∆t

Y ‖2

63

√
n1 ∧ n2

p

√
µrκ

n1 ∧ n2
110CIρ

t ×

√
µ2r2κ12 log(n1 ∨ n2)

(n1 ∧ n2)2p
σ1(M)

+ 9CIρ
t

√
µrκ6 log(n1 ∨ n2)

(n1 ∧ n2)p
σ1(M)

6330CIρ
t

√
µ3r3κ13 log(n1 ∨ n2)

(n1 ∧ n2)2p2
σ1(M) + 9CIρ

t

√
µrκ6 log(n1 ∨ n2)

(n1 ∧ n2)p
σ1(M)

6
1

10κ
σr(M) 6

1

2
σ1(M).

Therefore, by plugging back to (4.42),

(4.43)

∥∥∥∥∥∥
 X̃t+1

Ỹ t+1

−
 Xt+1

Y t+1

Rt

∥∥∥∥∥∥ 6 1

10κ
ησr(M)‖∆t‖,

and ∥∥∥∥∥∥
 X̃t+1

Ỹ t+1

−
 Xt+1

Y t+1

Rt

∥∥∥∥∥∥
∥∥∥∥∥∥
 U
V

∥∥∥∥∥∥ 6η1

2
σ1(M)2

√
σ1(M)‖∆t‖

6η
√
σ1(M)

3
CIρ

t

√
µrκ6 log(n1 ∨ n2)

(n1 ∧ n2)p

√
σ1(M)

6
1

4
σr(M) 6

1

4
σ2
r (X0)

holds on the event Etgd. Here the second inequality holds due to (4.21), and the third inequality

follows p > C2
I
µrκ6 log(n1∨n2)

n1∧n2
, and η 6 σr(M)

200σ2
1(M)

.
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Therefore, all the requirements in (4.26) of Lemma 4.3.1 is valid, and Lemma 4.3.1 can be

applied with X0, X1 and X2 defined as in (4.36). By applying Lemma 4.3.1,

α3 =

∥∥∥∥∥∥
 X̃t+1

Ỹ t+1

−
 Xt+1

Y t+1

Rt+1

∥∥∥∥∥∥
65κ

∥∥∥∥∥∥
 X̃t+1

Ỹ t+1

−
 Xt+1

Y t+1

Rt

∥∥∥∥∥∥ .
Along with (4.43), there holds α3 6 0.5ησr(M)‖∆t‖. �

4.3.3. Proof of (4.22). For the induction hypodissertation (4.22), without loss of generality,

we assume 1 6 l 6 n1. From (4.7), we have the following decomposition: Xt+1,(l)

Y t+1,(l)

Rt+1,(l) −

 U
V


l,·

=(X
t+1,(l)
l,· )>Rt+1,(l) −U>l,·

=(X
t,(l)
l,· )>Rt+1,(l) −U>l,· − η

(
(X

t,(l)
l,· )>(Y t,(l))> −U>l,·V >

)
Y t,(l)Rt+1,(l)

− η

2
(X

t,(l)
l,· )>

(
(Xt,(l))>Xt,(l) − (Y t,(l))>Y t,(l)

)
Rt+1,(l)

=a1 + a2 − a3,

where

a1 :=(X
t,(l)
l,· )>Rt,(l) −U>l,· − η

(
(X

t,(l)
l,· )>(Y t,(l))> −U>l,·V >

)
Y t,(l)Rt,(l),

a2 :=
[
(X

t,(l)
l,· )>Rt,(l) − η

(
(X

t,(l)
l,· )>(Y t,(l))> −U>l,·V >

)
Y t,(l)Rt,(l)

] [
(Rt,(l))−1Rt+1,(l) − I

]
and

a3 :=
η

2
(X

t,(l)
l,· )>

(
(Xt,(l))>Xt,(l) − (Y t,(l))>Y t,(l)

)
Rt+1,(l).
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First for a1, denote ∆
t,(l)
X := Xt,(l)Rt,(l)−U ,∆t,(l)

Y := Y t,(l)Rt,(l)−V , then by a decomposition

similar to (4.29),

‖a1‖2

=
∥∥∥(∆

t,(l)
X )>l,· − η

[
(∆

t,(l)
X )>l,·(∆

t,(l)
Y )> + (∆

t,(l)
X )>l,·V

> +U>l,·(∆
t,(l)
Y )>

]
(∆

t,(l)
Y + V )

∥∥∥
2

=
∥∥∥(∆

t,(l)
X )>l,· − η(∆

t,(l)
X )>l,·V

>V − η
[
(∆

t,(l)
X )>l,·(∆

t,(l)
Y )> +U>l,·(∆

t,(l)
Y )>

]
Y t,(l)Rt,(l) − η(∆

t,(l)
X )>l,·V

>∆
t,(l)
Y

∥∥∥
2

6‖I − ηV >V ‖‖(∆t,(l)
X )l,·‖2 + η(‖(∆t,(l)

X )l,·‖2 + ‖Ul,·‖2)‖∆t,(l)
Y ‖‖Y t,(l)‖+ η‖(∆t,(l)

X )l,·‖2‖V ‖‖∆t,(l)
Y ‖.

From (4.21),∥∥∥∥∥∥
 Xt

Y t

Rt −

 U
V

∥∥∥∥∥∥
∥∥∥∥∥∥
 U
V

∥∥∥∥∥∥ 62CIρ
t

√
µrκ6 log(n1 ∨ n2)

(n1 ∧ n2)p
σ1(M)

6
σr(M)

2

holds since

p > 16C2
I

µrκ8 log(n1 ∨ n2)

n1 ∧ n2
.

Also from (4.23),∥∥∥∥∥∥
 Xt,(l)

Y t,(l)

T t,(l) −
 Xt

Y t

Rt

∥∥∥∥∥∥
∥∥∥∥∥∥
 U
V

∥∥∥∥∥∥ 6
∥∥∥∥∥∥
 Xt,(l)

Y t,(l)

T t,(l) −
 Xt

Y t

Rt

∥∥∥∥∥∥
F

∥∥∥∥∥∥
 U
V

∥∥∥∥∥∥
62CIρ

t

√
µ2r2κ10 log(n1 ∨ n2)

(n1 ∧ n2)2p
σ1(M)

6
σr(M)

4
,

where the last inequality holds since

p > 64C2
I

µ2r2κ12 log(n1 ∨ n2)

n1 ∧ n2
.

Applying Lemma 4.3.1 with

X0 :=

 U
V

 , X1 :=

 Xt

Y t

Rt,
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X2 :=

 Xt,(l)

Y t,(l)

T t,(l),
since we define U by ŨΣ1/2 and V by Ṽ Σ1/2, we have σ1(X0) =

√
2σ1(M), σ2(X0) =

√
2σ2(M),

· · · , σr(X0) =
√

2σr(M), and σ1(X0)/σr(X0) =
√
κ. We have∥∥∥∥∥∥

 Xt,(l)

Y t,(l)

Rt,(l) −

 Xt

Y t

Rt

∥∥∥∥∥∥
F

65κ

∥∥∥∥∥∥
 Xt,(l)

Y t,(l)

T t,(l) −
 Xt

Y t

Rt

∥∥∥∥∥∥
F

.

Therefore, by triangle inequality we have

‖∆t,(l)
Y ‖

6

∥∥∥∥∥∥
 Xt,(l)

Y t,(l)

Rt,(l) −

 U
V

∥∥∥∥∥∥
6

∥∥∥∥∥∥
 Xt,(l)

Y t,(l)

Rt,(l) −

 Xt

Y t

Rt

∥∥∥∥∥∥
F

+

∥∥∥∥∥∥
 Xt

Y t

Rt −

 U
V

∥∥∥∥∥∥
65κ

∥∥∥∥∥∥
 Xt,(l)

Y t,(l)

T t,(l) −
 Xt

Y t

Rt

∥∥∥∥∥∥
F

+

∥∥∥∥∥∥
 Xt

Y t

Rt −

 U
V

∥∥∥∥∥∥
65κCIρ

t

√
µ2r2κ10 log(n1 ∨ n2)

(n1 ∧ n2)2p

√
σ1(M) + CIρ

t

√
µrκ6 log(n1 ∨ n2)

(n1 ∧ n2)p

√
σ1(M)

62CIρ
t

√
µrκ6 log(n1 ∨ n2)

(n1 ∧ n2)p

√
σ1(M).

(4.44)

For the last inequality, we use the fact that

25µrκ6

n1 ∧ n2
6 p 6 1.
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Equipped with (4.44), and combining with the fact that ‖Y t,(l)‖ 6 ‖V ‖+ ‖∆t,(l)
Y ‖, we have

‖a1‖2

6(1− ησr(M))‖(∆t,(l)
X )l,·‖2

+ η‖(∆t,(l)
X )l,·‖22CIρ

t

√
µrκ6 log(n1 ∨ n2)

(n1 ∧ n2)p

√
σ1(M)

×

(
2
√
σ1(M) + 2CIρ

t

√
µrκ6 log(n1 ∨ n2)

(n1 ∧ n2)p

√
σ1(M)

)

+ η

√
µrκ

n1 ∧ n2

√
σ1(M)2CIρ

t

√
µrκ6 log(n1 ∨ n2)

(n1 ∧ n2)p

√
σ1(M)

×

(√
σ1(M) + 2CIρ

t

√
µrκ6 log(n1 ∨ n2)

(n1 ∧ n2)p

√
σ1(M)

)
.

Given

p > 4C2
I

µrκ6 log(n1 ∨ n2)

n1 ∧ n2
,

we have

2CIρ
t

√
µrκ6 log(n1 ∨ n2)

(n1 ∧ n2)p

√
σ1(M) 6

√
σ1(M).

Therefore,

‖a1‖2

6(1− ησr(M))‖(∆t,(l)
X )l,·‖2 + η‖(∆t,(l)

X )l,·‖26CIρ
t

√
µrκ6 log(n1 ∨ n2)

(n1 ∧ n2)p
σ1(M)

+ η

√
µrκ

n1 ∧ n2

√
σ1(M)4CIρ

t ×

√
µrκ6 log(n1 ∨ n2)

(n1 ∧ n2)p
σ1(M).

Given

p > 576C2
I

µrκ8 log(n1 ∨ n2)

n1 ∧ n2
,
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on the event Etgd,

‖a1‖2

6(1− ησr(M))‖(∆t,(l)
X )l,·‖2 + 0.25ησr(M)‖(∆t,(l)

X )l,·‖2

+ ησr(M)4CIρ
t

√
µ2r2κ9 log(n1 ∨ n2)

(n1 ∧ n2)2p

√
σ1(M)

=(1− 0.75ησr(M))‖(∆t,(l)
X )l,·‖2 + 4CIησr(M)ρt

√
µ2r2κ9 log(n1 ∨ n2)

(n1 ∧ n2)2p

√
σ1(M)

(4.45)

At the same time from (4.22) we have

‖a1‖2 6(1− 0.75ησr(M))× 100CIρ
t

√
µ2r2κ10 log(n1 ∨ n2)

(n1 ∧ n2)2p

√
σ1(M)

+ 4ησr(M)CIρ
t

√
µ2r2κ9 log(n1 ∨ n2)

(n1 ∧ n2)2p

√
σ1(M)

6

√
µrκ

n1 ∧ n2

√
σ1(M)

since

p > 104C2
I

µrκ9 log(n1 ∨ n2)

n1 ∧ n2

and

η 6
σr(M)

200σ2
r (M)

.

For a2, note

‖a2‖2

=
∥∥∥[(Xt,(l)

l,· )>Rt,(l) − η
(

(X
t,(l)
l,· )>(Y t,(l))> −U>l,·V >

)
Y t,(l)Rt,(l)

] [
(Rt,(l))−1Rt+1,(l) − I

]∥∥∥
6‖a1 +Ul,·‖2‖(Rt,(l))−1Rt+1,(l) − I‖

62

√
µrκ

n1 ∧ n2

√
σ1(M)‖(Rt,(l))−1Rt+1,(l) − I‖.

(4.46)

Here we want to use Lemma 4.3.3 to control ‖(Rt,(l))−1Rt+1,(l) − I‖. In order to proceed, we first

assume the following claim is valid:
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Claim 4.3.5. Under the setup of Lemma 4.2.4, assume 1 6 l 6 n1. Lemma 4.3.3 can be applied

and on the event Etgd,

‖(Rt,(l))−1Rt+1,(l) − I‖ 676C2
I

σ2
1(M)

σr(M)
ηρt

√
µ2r2κ12 log2(n1 ∨ n2)

(n1 ∧ n2)2p2
(4.47)

holds.

The proof of this claim mainly relies on Lemma 4.3.3, and the verification of conditions required

by Lemma 4.3.3 is very similar to the way we handle α1, α2, α3 defined in (4.28). For the purpose

of self-containedness, we include the proof of the claim in Appendix C.3.

Plugging (4.47) back to (4.46) we have

‖a2‖2

62

√
µrκ

n1 ∧ n2

√
σ1(M)× 76C2

I

σ2
1(M)

σr(M)
ηρt

√
µ2r2κ12 log2(n1 ∨ n2)

(n1 ∧ n2)2p2

6152C2
I ηρ

tσ
2
1(M)

σr(M)

√
µ3r3κ13 log2(n1 ∨ n2)

(n1 ∧ n2)3p2

√
σ1(M)

625CIησr(M)ρt

√
µ2r2κ10 log(n1 ∨ n2)

(n1 ∧ n2)2p

√
σ1(M),

(4.48)

where the last inequality uses the fact that

p > 37C2
I

µrκ7 log(n1 ∨ n2)

n1 ∧ n2
.

Finally, for a3, note the fact that Rt+1,(l) and Rt,(l) are all orthogonal matrices. And replacing

X and Y with Xt,(l) and Y t,(l) in (4.31),

‖a3‖2

=
η

2

∥∥∥(X
t,(l)
l,· )>

(
(Xt,(l))>Xt,(l) − (Y t,(l))>Y t,(l)

)
Rt+1,(l)

∥∥∥
2

=
η

2

∥∥∥(X
t,(l)
l,· )>

(
(Xt,(l))>Xt,(l) − (Y t,(l))>Y t,(l)

)
Rt,(l)

∥∥∥
2

6
η

2
‖Xt,(l)

l,· ‖2
∥∥∥(Rt,(l))>

(
(Xt,(l))>Xt,(l) − (Y t,(l))>Y t,(l)

)
Rt,(l)

∥∥∥
6
η

2
‖Xt,(l)

l,· ‖2
(

2‖∆t,(l)
X ‖‖U‖+ ‖∆t,(l)

X ‖
2 + 2‖∆t,(l)

Y ‖‖V ‖+ ‖∆t,(l)
Y ‖

2
)
.

(4.49)
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From (4.22), we have

‖Xt,(l)
l,· ‖2 6‖Ul,·‖2 + ‖(Xt,(l)

l,· )>Rt,(l) −U>l,·‖2

6

√
µrκ

n1 ∧ n2

√
σ1(M) + 100CIρ

t

√
µ2r2κ10 log(n1 ∨ n2)

(n1 ∧ n2)2p

√
σ1(M)
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√
µrκ

n1 ∧ n2

√
σ1(M).

(4.50)

The last line holds since

p > 104C2
I

µrκ9 log(n1 ∨ n2)

n1 ∧ n2
.

From (4.44) and given

p > 4C2
I

µrκ6 log(n1 ∨ n2)

n1 ∧ n2
,

we have ‖∆t,(l)‖ 6
√
σ1(M). Combining with (4.44), (4.49) and (4.50), we have
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t
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(4.51)

Putting the estimations on a1, a2 and a3 together, i.e., (4.45), (4.48) and (4.51), we have∥∥∥∥∥∥∥
 Xt+1,(l)

Y t+1,(l)

Rt+1,(l) −

 U
V


l,·

∥∥∥∥∥∥∥
2
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with ρ = 1−0.05ησr(M) on the event Et+1
gd , the last inequality uses (4.22). Notice this is the proof

for the case of l satisfying 1 6 l 6 n1, the proof for l satisfying n1 + 1 6 l 6 n1 + n2 is almost the

same.

4.3.4. Proof of (4.23). For (4.23), by the choice of T t+1,(l) in (4.20), we have∥∥∥∥∥∥
 Xt+1

Y t+1

Rt+1 −

 Xt+1,(l)

Y t+1,(l)

T t+1,(l)

∥∥∥∥∥∥
2

F

6

∥∥∥∥∥∥
 Xt+1

Y t+1

Rt −

 Xt+1,(l)

Y t+1,(l)

T t,(l)
∥∥∥∥∥∥

2

F

.

Without loss of generality, we first consider the case that l satisfying 1 6 l 6 n1. First, by plugging

in the definition of

 Xt+1

Y t+1

 and

 Xt+1,(l)

Y t+1,(l)

, we have

 Xt+1

Y t+1

Rt −

 Xt+1,(l)

Y t+1,(l)

T t,(l) =A1 + η

 A2

A3

 ,(4.52)

where

A1 :=

 Xt

Y t

− η∇f(Xt,Y t)

Rt −

 Xt,(l)

Y t,(l)

− η∇f(Xt,(l),Y t,(l))

T t,(l)
A2 :=Pl,·

(
Xt,(l)(Y t,(l))> −UV >

)
Y t,(l)T t,(l) − 1

p
PΩl,·

(
Xt,(l)(Y t,(l))> −UV >

)
Y t,(l)T t,(l)

and

A3 :=
[
Pl,·
(
Xt,(l)(Y t,(l))> −UV >

)]>
Xt,(l)T t,(l)

−
[

1

p
PΩl,·

(
Xt,(l)(Y t,(l))> −UV >

)]>
Xt,(l)T t,(l).
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For A1, we have

‖A1‖2F

=

∥∥∥∥∥∥
 Xt,(l)

Y t,(l)

T t,(l) −
 Xt

Y t

Rt

 − η (∇f(Xt,(l)T t,(l),Y t,(l)T t,(l))−∇f(XtRt,Y tRt)
)∥∥∥∥∥∥

2

F

=

∥∥∥∥∥∥
(
I − η

∫ 1

0
∇2f(∗)dτ

)
vec

 Xt,(l)T t,(l) −XtRt

Y t,(l)T t,(l) − Y tRt

∥∥∥∥∥∥
2

2

6

∥∥∥∥∥∥
 Xt,(l)T t,(l) −XtRt

Y t,(l)T t,(l) − Y tRt
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2

F

+ η2
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 Xt,(l)T t,(l) −XtRt

Y t,(l)T t,(l) − Y tRt
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06τ61

∥∥∇2f(∗)
∥∥2
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 Xt,(l)T t,(l) −XtRt

Y t,(l)T t,(l) − Y tRt

>∇2f(∗) vec

 Xt,(l)T t,(l) −XtRt

Y t,(l)T t,(l) − Y tRt

 ,

(4.53)

where the first equality uses the fact that ∇f(X,Y ) = ∇f(XR,Y R) for any R ∈ O(r), and here

∇2f(∗) := ∇2f(τ(Xt,(l)T t,(l) −XtRt) +XtRt, τ(Y t,(l)T t,(l) − Y tRt) + Y tRt).

From (4.23) and (4.24), if

p > 2.42× 1010C10C
2
I

µ2r2κ14 log(n1 ∨ n2)

n1 ∧ n2
,

we have ∥∥∥∥∥∥
 Xt,(l)

Y t,(l)

T t,(l) −
 Xt

Y t

Rt

∥∥∥∥∥∥
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6
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1000κ
√
n1 + n2

√
σ1(M)

and ∥∥∥∥∥∥
 Xt

Y t

Rt −

 U
V
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2,∞

6
1

1000κ
√
n1 + n2

√
σ1(M).

Therefore,

‖τ(Xt,(l)T t,(l) −XtRt) +XtRt −U‖2,∞ 6
1

500κ
√
n1 + n2

√
σ1(M),
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‖τ(Y t,(l)T t,(l) − Y tRt) + Y tRt − V ‖2,∞ 6
1

500κ
√
n1 + n2

√
σ1(M)

for any τ satisfying 0 6 τ 6 1. And we also have∥∥∥∥∥∥
 Xt

Y t

Rt −

 U
V

∥∥∥∥∥∥ 6 1

500κ

√
σ1(M).

Therefore, Lemma 4.2.1 can be applied here. Noting Etgd ⊂ EH and

p > CS1
µrκ log(n1 ∨ n2)

n1 ∧ n2
,

we have (4.11) and (4.12) satisfied. Plugging (4.11) and (4.12) back to the estimation (4.53), we

have

‖A1‖2F 6(1− 2

5
ησr(M) + 25η2σ2

1(M))

∥∥∥∥∥∥
 Xt,(l)

Y t,(l)

T t,(l) −
 Xt

Y t

Rt
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2

F

6(1− 0.2ησr(M))
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 Xt,(l)
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T t,(l) −
 Xt
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Rt
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2

F

,

where the last inequality holds since

η 6
σr(M)

200σ2
1(M)

.

Therefore,

‖A1‖F 6(1− 0.1ησr(M))
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 Xt,(l)

Y t,(l)

T t,(l) −
 Xt

Y t

Rt

∥∥∥∥∥∥
F

(4.54)

holds on the event Etgd.

For the second term

 A2

A3

 in (4.52), by the definition of Pl,· and PΩl,· , we can see that entries

of

Pl,·
(
Xt,(l)(Y t,(l))> −UV >

)
− 1

p
PΩl,·

(
Xt,(l)(Y t,(l))> −UV >

)
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are all zero except on the l-th row. Using this fact, we have

A2 =−



0
...

0∑
j(

1
pδl,j − 1)

(
Xt,(l)(Y t,(l))> −UV >

)
l,j

(Y
t,(l)
j,· )>

0
...

0


T t,(l)

and

A3 =−



(1
pδl,1 − 1)

(
Xt,(l)(Y t,(l))> −UV >

)
l,1

(X
t,(l)
l,· )>

...

(1
pδl,j − 1)

(
Xt,(l)(Y t,(l))> −UV >

)
l,j

(X
t,(l)
l,· )>

...

(1
pδl,n2 − 1)

(
Xt,(l)(Y t,(l))> −UV >

)
l,n2

(X
t,(l)
l,· )>


T t,(l).
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Therefore, by triangle inequality,∥∥∥∥∥∥
 A2

A3

∥∥∥∥∥∥
F

6‖A2‖F + ‖A3‖F

6

∥∥∥∥∥∥∥∥∥∥
∑
j

(
1

p
δl,j − 1)

(
Xt,(l)(Y t,(l))> −UV >

)
l,j
Y
t,(l)
j,·︸ ︷︷ ︸

b1

∥∥∥∥∥∥∥∥∥∥
2

+

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥



(1
pδl,1 − 1)

(
Xt,(l)(Y t,(l))> −UV >

)
l,1

...

(1
pδl,j − 1)

(
Xt,(l)(Y t,(l))> −UV >

)
l,j

...

(1
pδl,n2 − 1)

(
Xt,(l)(Y t,(l))> −UV >

)
l,n2


︸ ︷︷ ︸

b2

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥
2

‖Xt,(l)
l,· ‖2,

(4.55)

where the last inequality uses the fact that T t,(l) ∈ O(r).

For b1, we can write b1 in the following form:

b1 =
∑
j

(
1

p
δl,j − 1)

(
Xt,(l)(Y t,(l))> −UV >

)
l,j
Y
t,(l)
j,·

:=
∑
j

s1,j .

By the way we define Xt,(l) and Y t,(l) in (4.7), (4.8), (4.9) and (4.10), we can see that Xt,(l)

and Y t,(l) are independent of δl,1, · · · , δl,n2 . Therefore, conditioned on Xt,(l) and Y t,(l), s1,j ’s are

independent and Eδl,·s1,j = 0. Moreover, since

Xt,(l)(Y t,(l))> −UV >

=Xt,(l)T t,(l)(T t,(l))>Y t,(l) −UV >

=(Xt,(l)T t,(l) −U)V > +U(Y t,(l)T t,(l) − V )> + (Xt,(l)T t,(l) −U)(Y t,(l)T t,(l) − V )>.

(4.56)
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Therefore, for all j,

‖s1,j‖2

6
1

p

∥∥∥Xt,(l)(Y t,(l))> −UV >
∥∥∥
`∞
‖Y t,(l)‖2,∞

6
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p

(
‖Xt,(l)T t,(l) −U‖2,∞‖V ‖2,∞ + ‖Y t,(l)T t,(l) − V ‖2,∞‖U‖2,∞

)
‖Y t,(l)‖2,∞

+
1

p
‖Xt,(l)T t,(l) −U‖2,∞‖Y t,(l)T t,(l) − V ‖2,∞‖Y t,(l)‖2,∞

:=L
(l)
1 (Xt,(l),Y t,(l))

holds. By matrix Bernstein inequality [Tro15, Theorem 6.1.1], we have

P

‖b1‖2 > 100

√Eδl,·
∑
j

‖s1,j‖22 log(n1 ∨ n2) + L
(l)
1 (Xt,(l),Y t,(l)) log(n1 ∨ n2)

 |Xt,(l),Y t,(l)


6(n1 + n2)−15.

Therefore, we have

P

‖b1‖2 > 100

√Eδl,·
∑
j

‖s1,j‖22 log(n1 ∨ n2) + L
(l)
1 (Xt,(l),Y t,(l)) log(n1 ∨ n2)


=E

[
E
[
1‖b1‖2>100

(√
Eδl,·

∑
j ‖s1,j‖22 log(n1∨n2)+L

(l)
1 (Xt,(l),Y t,(l)) log(n1∨n2)

) |Xt,(l),Y t,(l)

]]
6(n1 + n2)−15.

In other words, on an event E
t,(l),1
B with probability P[E

t,(l),1
B ] > 1− (n1 + n2)−15,

‖b1‖2 6100

√Eδl,·
∑
j

‖s1,j‖22 log(n1 ∨ n2) + L
(l)
1 (Xt,(l),Y t,(l)) log(n1 ∨ n2)

(4.57)

holds.

On the event Etgd, if

p > 1112C2
I

µrκ11 log(n1 ∨ n2)

n1 ∧ n2
,
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from (C.52), we have∥∥∥∥∥∥
 Xt,(l)

Y t,(l)

T t,(l) −
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V

∥∥∥∥∥∥
2,∞

6
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µrκ
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(4.58)

Therefore, from (C.52),
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6
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p
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√
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6666CIρ
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3
.

(4.59)

Moreover, for Eδl,·
∑

j ‖s1,j‖22, we have

Eδl,·
∑
j

‖s1,j‖22

=Eδl,·
∑
j

(
1

p
δl,j − 1)2

(
Xt,(l)(Y t,(l))> −UV >

)2

l,j
‖Y t,(l)

j,· ‖
2
2

6
1

p
‖Y t,(l)‖22,∞

∥∥∥∥(Xt,(l)(Y t,(l))> −UV >
)
l,·

∥∥∥∥2

2

.

(4.60)
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From (4.21) and (4.23),∥∥∥∥∥∥
 Xt,(l)

Y t,(l)

T t,(l) −
 U
V

∥∥∥∥∥∥
6

∥∥∥∥∥∥
 Xt

Y t

Rt −

 Xt,(l)

Y t,(l)

T t,(l)
∥∥∥∥∥∥
F

+

∥∥∥∥∥∥
 Xt

Y t

Rt −
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V

∥∥∥∥∥∥
6CIρ

t
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t

√
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√
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√
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(4.61)

where the last inequality holds since

µr

n1 ∧ n2
6 p 6 1.

By triangle inequality, and recall the decomposition (4.56),∥∥∥∥(Xt,(l)(Y t,(l))> −UV >
)
l,·

∥∥∥∥
2

6
∥∥∥U>l,·(Y t,(l)T t,(l) − V )>

∥∥∥
2

+
∥∥∥(Xt,(l)T t,(l) −U)>l,·V

>
∥∥∥

2

+
∥∥∥(Xt,(l)T t,(l) −U)>l,·(Y

t,(l)T t,(l) − V )>
∥∥∥

2
,

6‖U‖2,∞‖Y t,(l)T t,(l) − V ‖+ ‖Xt,(l)T t,(l) −U‖2,∞‖V ‖

+ ‖Xt,(l)T t,(l) −U‖2,∞‖Y t,(l)T t,(l) − V ‖.
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Combining with (C.52) and (4.61) we have∥∥∥∥(Xt,(l)(Y t,(l))> −UV >
)
l,·

∥∥∥∥
2

62

√
µrκ

n1 ∧ n2

√
σ1(M)CIρ
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+ 111CIρ
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+ 111CIρ
t

√
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(4.62)

where the last inequality use the fact that

p > 1112C2
I

µrκ10 log(n1 ∨ n2)

n1 ∧ n2

and ρ < 1.

Putting (4.58), (4.60) and (4.62) together we have

Eδl,·
∑
j

‖s1,j‖22 62302C2
I ρ

2tµ
3r3κ13 log(n1 ∨ n2)

(n1 ∧ n2)3p2
σ3

1(M).(4.63)
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So by (4.57), (4.59) and (4.63), on the event E
t,(l),1
B

⋂
Etgd, we have

‖b1‖2

6100ρt
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√
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+ 666CI
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3

=100CIρ
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√
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(4.64)

where the last inequality holds since

p > 3.3856× 1012µrκ
5 log(n1 ∨ n2)

n1 ∧ n2
.

For b2 defined in (4.55), we can use almost the same argument. We can write b2 as

b2 =
∑
j

ej(
1

p
δl,j − 1)

(
Xt,(l)(Y t,(l))> −UV >

)
l,j

:=
∑
j

s2,j .

By the definition of Xt,(l) and Y t,(l), we can see that Xt,(l) and Y t,(l) are independent of δl,1, · · · ,

δl,n2 . Therefore, conditioned on Xt,(l) and Y t,(l), s2,j ’s are independent and Eδl,·s2,j = 0. Note for

all j,

‖s2,j‖2

6
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p

∥∥∥Xt,(l)(Y t,(l))> −UV >
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6
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(l)
2 (Xt,(l),Y t,(l)).

(4.65)
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By matrix Bernstein inequality [Tro15, Theorem 6.1.1], we have

P

‖b2‖2 > 100

√Eδl,·
∑
j

‖s2,j‖22 log(n1 ∨ n2) + L
(l)
2 (Xt,(l),Y t,(l)) log(n1 ∨ n2)

 |Xt,(l),Y t,(l)


6(n1 + n2)−15.

Using the same argument in b1, we have that on an event E
t,(l),2
B with probability P[E

t,(l),2
B ] >

1− (n1 + n2)−15,
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holds. Note on the event E
t,(l),2
B

⋂
Etgd, the estimation of ‖s2,j‖ and Eδl,·

∑
j ‖s2,j‖22 are in the same

fashion with the one we did on s1,j : On the event Etgd, from (C.52), (4.58) and (4.65),
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At the same time,

Eδl,·
∑
j

‖s2,j‖22 =Eδl,·
∑
j

(
1

p
δl,j − 1)2

(
Xt,(l)(Y t,(l))> −UV >

)2

l,j

6
1

p

∥∥∥∥(Xt,(l)(Y t,(l))> −UV >
)
l,·

∥∥∥∥2

2

61152C2
I ρ

2tµ
2r2κ12 log(n1 ∨ n2)

(n1 ∧ n2)2p2
σ2

1(M),
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where the last inequality follows from (4.62). Therefore, on the event Etgd
⋂
E
t,(l),2
B ,

‖A3‖F

=‖b2‖2‖Xt,(l)
l,· ‖2

6100

115CIρ
t

√
µ2r2κ12 log2(n1 ∨ n2)

(n1 ∧ n2)2p2
σ1(M) + 333CIρ

t

√
µ3r3κ13 log(n1 ∨ n2)

(n1 ∧ n2)3p3
σ1(M) log(n1 ∨ n2)


× 2

√
µrκ

n1 ∧ n2

√
σ1(M)

=100CIρ
t

√
µ2r2κ10 log(n1 ∨ n2)

(n1 ∧ n2)2p

√
σ1(M)σr(M)κ

×

230

√
µrκ3 log(n1 ∨ n2)

(n1 ∧ n2)p
+ 666

√
µ2r2κ4 log2(n1 ∨ n2)

(n1 ∧ n2)2p2


60.025σr(M)CIρ

t

√
µ2r2κ10 log(n1 ∨ n2)

(n1 ∧ n2)2p

√
σ1(M),

(4.67)

where the second inequality uses (4.58) and the last inequality holds since

p > 3.3856× 1012µrκ
5 log(n1 ∨ n2)

n1 ∧ n2
.

So in summary by (4.55), (4.64) and (4.67), on the event E
t,(l),1
B

⋂
E
t,(l),2
B

⋂
Etgd we have∥∥∥∥∥∥

 A2

A3

∥∥∥∥∥∥
F

60.05σr(M)CIρ
t

√
µ2r2κ10 log(n1 ∨ n2)

(n1 ∧ n2)2p

√
σ1(M).(4.68)
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Combining the estimations (4.54) and (4.68) for A1, A2 and A3 together, and using (4.52), we can

see that on the event E
t,(l),1
B

⋂
E
t,(l),2
B

⋂
Etgd,∥∥∥∥∥∥

 Xt+1

Y t+1

Rt −

 Xt+1,(l)

Y t+1,(l)

T t,(l)
∥∥∥∥∥∥
F

6‖A1‖F + η

∥∥∥∥∥∥
 A2

A3

∥∥∥∥∥∥
F

6(1− 0.1ησr(M))

∥∥∥∥∥∥
 Xt

Y t

Rt −

 Xt,(l)

Y t,(l)

T t,(l)
∥∥∥∥∥∥
F

+ 0.05ησr(M)CIρ
t

√
µ2r2κ10 log(n1 ∨ n2)

(n1 ∧ n2)2p

√
σ1(M)

6CIρ
t+1

√
µ2r2κ10 log(n1 ∨ n2)

(n1 ∧ n2)2p

√
σ1(M)

holds for ρ = 1− 0.05ησr(M) and fixed l satisfying 1 6 l 6 n1, and the last inequality uses (4.23).

The proof is all the same for l satisfying n1 + 1 6 l 6 n1 + n2. Let

Et+1
gd = Etgd

⋂(
n1+n2⋂
l=1

E
t,(l),1
B

)⋂(
n1+n2⋂
l=1

E
t,(l),2
B

)
,

so Et+1
gd ⊂ E

t
gd, and from union bound, we have P[Etgd\E

t+1
gd ] 6 (n1 + n2)−10.

4.3.5. Proof of (4.24). Finally, we want to show that (4.24) can be directly implied by (4.21),

(4.22) and (4.23). First, for any l satisfies 1 6 l 6 n1 + n2,∥∥∥∥∥∥∥
 Xt

Y t

Rt −

 U
V


l,·

∥∥∥∥∥∥∥
2

6

∥∥∥∥∥∥∥
 Xt

Y t

Rt −

 Xt,(l)

Y t,(l)

Rt,(l)


l,·

∥∥∥∥∥∥∥
2

+

∥∥∥∥∥∥∥
 Xt,(l)

Y t,(l)

Rt,(l) −

 U
V


l,·

∥∥∥∥∥∥∥
2

6

∥∥∥∥∥∥
 Xt

Y t

Rt −

 Xt,(l)

Y t,(l)

Rt,(l)

∥∥∥∥∥∥
F

+

∥∥∥∥∥∥∥
 Xt,(l)

Y t,(l)

Rt,(l) −

 U
V


l,·

∥∥∥∥∥∥∥
2

.

(4.69)
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The second term of the last line is already controlled by (4.22), so our main goal is to control the

first term. In order to do so, we want to apply Lemma 4.3.1 with

X0 :=

 U
V

 , X1 :=

 Xt

Y t

Rt, X2 :=

 Xt,(l)

Y t,(l)

T t,(l).
Note by the definition of U and V , we have σ1(X0) =

√
2σ1(M), σ2(X0) =

√
2σ2(M), · · · ,

σr(X0) =
√

2σr(M), and σ1(X0)/σr(X0) =
√
κ. In order to apply the lemma, note from (4.21)

we have ∥∥∥∥∥∥
 Xt

Y t

Rt −

 U
V

∥∥∥∥∥∥
∥∥∥∥∥∥
 U
V

∥∥∥∥∥∥ 62CIρ
t

√
µrκ6 log(n1 ∨ n2)

(n1 ∧ n2)p
σ1(M).

And as long as

p > 16C2
I

µrκ8 log(n1 ∨ n2)

n1 ∧ n2
,

we have ∥∥∥∥∥∥
 Xt

Y t

Rt −

 U
V

∥∥∥∥∥∥
∥∥∥∥∥∥
 U
V

∥∥∥∥∥∥ 6 1

2
σr(M) 6

1

2
σ2
r (X0).

And also we have ∥∥∥∥∥∥
 Xt

Y t

Rt −

 Xt,(l)

Y t,(l)

T t,(l)
∥∥∥∥∥∥
∥∥∥∥∥∥
 U
V

∥∥∥∥∥∥
6

∥∥∥∥∥∥
 Xt

Y t

Rt −

 Xt,(l)

Y t,(l)

T t,(l)
∥∥∥∥∥∥
F

∥∥∥∥∥∥
 U
V

∥∥∥∥∥∥
62CIρ

t

√
µ2r2κ10 log(n1 ∨ n2)

(n1 ∧ n2)2p
σ1(M)

6
1

4
σr(M)

6
1

4
σ2
r (X0).

Here second inequality we use (4.23) and third inequality holds because we have

p > 64C2
I

µ2r2κ12 log(n1 ∨ n2)

n1 ∧ n2
.
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Now by applying Lemma 4.3.1 we have∥∥∥∥∥∥
 Xt

Y t

Rt −

 Xt,(l)

Y t,(l)

Rt,(l)

∥∥∥∥∥∥
F

65κ

∥∥∥∥∥∥
 Xt

Y t

Rt −

 Xt,(l)

Y t,(l)

T t,(l)
∥∥∥∥∥∥
F

610CIρ
tκ

√
µ2r2κ10 log(n1 ∨ n2)

(n1 ∧ n2)2p

√
σ1(M).

(4.70)

Plugging (4.22) and (4.70) into (4.69) we have (4.24).

Finally letting

CS3 =3.3856× 1012 + 6600CI + 32400C2
I + C13 + 3332C2

13

+ 2.42× 1010C10C
2
I + CS1

finishes the whole proof of Lemma 4.2.4.
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CHAPTER 5

Conclusion

This dissertation focuses on analyzing the nonconvex matrix completion problem, both from

geometric perspective and algorithmic perspective. In Chapter 2, based upon the geometric analy-

sis framework introduced in [JGN+17,GJZ17], we propose a model-free framework to analyze the

nonconvex matrix completion problem. By introducing novel technologies including a powerful de-

terministic lemma (Lemma 2.3.5), we are able to characterize how close any local minimum is away

from global minimum without assumptions on the underlying matrix. In Chapter 3, we introduce

a unified framework analyzing nonconvex matrix completion problem with linear parameterized

structures. Finally in Chapter 4, based upon prior work [MWCC18], we show that `2,∞-norm

regularization is not necessary for nonconvex rectangular matrix completion.

There is still much room for us to explore. For example, is that possible to extend our model-free

framework to other problems? In Chapter 3, in order to analyze parameterized matrix completion

problem, we made strong assumptions on the underlying matrix to estimate. It is not yet clear if

we could establish a model-free framework there, which should be investigated in the near future.

In Chapter 3, we consider matrices which can be linearly parameterized. One natural question to

consider is whether we could also analyze matrices with other special structures. Finally in Chapter

4, although we could show that the `2,∞-norm regularization is not necessary for rectangular matrix

completion, the extra balancing penalization ‖X>X − Y >Y ‖2F is still required for theoretical

analysis. It would be an interesting problem to see if we could remove it as in the case of matrix

sensing [MLC19].
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APPENDIX A

Supporting Proofs of Chapter 2

A.1. Proofs of supporting lemmas in Section 2.3

We present in this section the proofs of lemmas stated in Section 2.3.

A.1.0.1. A proof of Lemma 2.3.5.

Proof. First of all, by using the definition of matrix inner product and Hadamard product,

we have

|〈PΩ0(AC>),PΩ0(BD>)〉 − t〈AC>,BD>〉| =|〈Ω0 − tJ , (AC> ◦BD>)〉|

6‖Ω0 − tJ‖‖(AC> ◦BD>)‖∗,
(A.1)

The inequality holds by matrix Hölder’s inequality. So the only thing left over is to give a bound

of ‖(AC> ◦ BD>)‖∗. Notice one can decompose the matrix into sum of rank one matrices as

following

AC> ◦BD> =

(
r1∑
k=1

A·,kC
>
·,k

)
◦

(
r2∑
k=1

B·,kD
>
·,k

)
=

r1∑
l=1

r2∑
m=1

(A·,l ◦B·,m)(C·,l ◦D·,m)>.

Recall M·,j = (M1,j ,M2,j , . . . ,Mn,j)
> denotes the j-th column of any matrix M ∈ Rn×m.

Therefore, one can upper bound the nuclear norm via

‖(AC> ◦BD>)‖∗ 6
r1∑
l=1

r2∑
m=1

‖(A·,l ◦B·,m)(C·,l ◦D·,m)>‖∗

=

r1∑
l=1

r2∑
m=1

‖A·,l ◦B·,m‖2‖C·,l ◦D·,m‖2

=

r1∑
l=1

r2∑
m=1

√√√√ n1∑
k=1

A2
k,lB

2
k,m

√√√√ n2∑
k=1

C2
k,lD

2
k,m,
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where the first line is by the triangle inequality and we can replace nuclear norm by vector `2

norms in second line since the summands are all rank one matrices. By applying the Cauchy-

Schwarz inequality for twice, we can obtain

‖(AC> ◦BD>)‖∗ 6

√√√√ r1∑
l=1

r2∑
m=1

n1∑
k=1

A2
k,lB

2
k,m

√√√√ r1∑
l=1

r2∑
m=1

n2∑
k=1

C2
k,lD

2
k,m

=

√√√√ n1∑
k=1

‖Ak,·‖22‖Bk,·‖22

√√√√ n2∑
k=1

‖Ck,·‖22‖Dk,·‖22.

(A.2)

Combining (A.1) and (A.2) together, we have

|〈PΩ0(AC>),PΩ0(BD>)〉 − t〈AC>,BD>〉|

6‖Ω0 − tJ‖

√√√√ n1∑
k=1

‖Ak,·‖22‖Bk,·‖22

√√√√ n2∑
k=1

‖Ck,·‖22‖Dk,·‖22.

�

A.1.0.2. A proof of Lemma 2.3.9.

Proof. The proof of Lemma 2.3.9 can be divided into the controls of K2(X), K3(X) and

K4(X) separately. In order to combine the controls of K2(X), K3(X) and K4(X) together, von

Neumann’s trace inequality is employed.

For K2(X), we have

Lemma A.1.1. In an event ECa1 with probability P[ECa1] > 1−n−3, uniformly for all X ∈ Rn×r

and corresponding ∆ defined as before, we have

K2(X) 6
‖Ω− pJ‖

p

[
19

n∑
i=1

‖∆i,·‖42 + 18‖Mr‖`∞‖∆‖2F + 9‖Mr‖`∞
r∑

i=s+1

σi

]
+ 3× 10−4‖U∆>‖2F ,

where s is defined by

(A.3) s := max

{
s 6 r, σs > CCa

‖Mr‖`∞ log n

p

}
with CCa an absolute constant defined in Lemma 2.3.3. Set s = 0 if σ1 < CCa

‖Mr‖`∞ logn
p .
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For K3(X), we use a modified version of [GJZ17, Lemma 11]:

Lemma A.1.2 ( [GJZ17, Lemma 11]). If α > 100
√
‖Mr‖`∞, then uniformly for all X ∈ Rn×r

and corresponding ∆ defined as before, we have

K3(X) 6 200λα2‖∆‖2F − 0.3λ
n∑
i=1

‖∆i,·‖42.

The main modification we have made is that we keep the extra negative term.

For K4(X), we have

Lemma A.1.3. Uniformly for all X ∈ Rn×r and corresponding ∆ defined as before, we have

K4(X) 65× 10−4‖∆∆>‖2F + 2× 10−4‖U∆>‖2F + 105 r‖PΩ(Mr+)− pMr+‖2

p2

+ 6〈∆∆>,Mr+〉.

We can apply Lemma 2.3.1 together with Lemma 2.3.6 to bound ‖PΩ(Mr+) − pMr+‖ and

‖Ω− pJ‖ (similar result can also be found in [KMO10a]): As long as p > Cv
logn
n , we have

(A.4) ‖PΩ(Mr+)− pMr+‖ 6 Cv
√
np‖Mr+‖`∞

and

(A.5) ‖Ω− pJ‖ 6 Cv
√
np

hold in an event Ev1 with probability P[Ev1] > 1− n−3.

By putting Lemma A.1.1, Lemma A.1.2 and Lemma A.1.3 together, we have

4∑
i=2

Ki(X)

6
‖Ω− pJ‖

p

[
19

n∑
i=1

‖∆i,·‖42 + 18‖Mr‖`∞‖∆‖2F + 9‖Mr‖`∞
r∑

i=s+1

σi

]
+ 3× 10−4‖U∆>‖2F

+ 200λα2‖∆‖2F − 0.3λ

n∑
i=1

‖∆i,·‖42 + 5× 10−4‖∆∆>‖2F

+ 2× 10−4‖U∆>‖2F + 105 r‖PΩ(Mr+)− pMr+‖2

p2
+ 6〈∆∆>,Mr+〉.
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Replacing α, λ by the assumption 100
√
‖Mr‖`∞ 6 α 6 200

√
‖Mr‖`∞ as well as 100‖Ω−pJ‖p 6 λ 6

200‖Ω−pJ‖p , we further have

4∑
i=2

Ki(X)

6
‖Ω− pJ‖

p

[
19

n∑
i=1

‖∆i,·‖42 + 18‖Mr‖`∞‖∆‖2F + 9‖Mr‖`∞
r∑

i=s+1

σi

]
+ 3× 10−4‖U∆>‖2F

+ 1.6× 109‖Mr‖`∞
‖Ω− pJ‖

p
‖∆‖2F − 30

‖Ω− pJ‖
p

n∑
i=1

‖∆i,·‖42 + 5× 10−4‖∆∆>‖2F

+ 2× 10−4‖U∆>‖2F + 105 r‖PΩ(Mr+)− pMr+‖2

p2
+ 6〈∆∆>,Mr+〉.

Combining with (A.4) and (A.5), and applying union bound,

4∑
i=2

Ki(X)

6(19− 30)
‖Ω− pJ‖

p

n∑
i=1

‖∆i,·‖42 + (18 + 1.6× 109)‖Mr‖`∞
‖Ω− pJ‖

p
‖∆‖2F

+ 9‖Mr‖`∞
‖Ω− pJ‖

p

r∑
i=s+1

σi + (3 + 2)× 10−4‖U∆>‖2F

+ 5× 10−4‖∆∆>‖2F + 105 r‖PΩ(Mr+)− pMr+‖2

p2
+ 6〈∆∆>,Mr+〉

65× 10−4
[
‖∆>∆‖2F + ‖U∆>‖2F

]
+ 105C2

v

nr

p
‖Mr+‖2`∞

+ 2× 109Cv

√
n

p
‖Mr‖`∞‖∆‖2F + 9Cv

√
n

p
‖Mr‖`∞

r∑
i=s+1

σi + 6〈∆∆>,Mr+〉,

(A.6)

holds in an event E1 := ECa1 ∩ Ev1 with probability P[E] > 1− 2n−3.

For ‖∆>∆‖2F , we have

(A.7) ‖∆>∆‖2F = 〈∆>∆,∆>∆〉 =

r∑
i=1

σ4
i (∆),

where σi(∆) denotes i-th largest singular value of ∆.

In order to proceed, we need the following von Neumann’s trace inequality:
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Lemma A.1.4 ( [Bha13, Problem III.6.14]). Let A,B ∈ Rn×n be two symmetric matrices,

λ1(A) > λ2(A) > · · · > λn(A) and λ1(B) > λ2(B) > · · · > λn(B) are eigenvalues of A and B.

Then the following holds:

n∑
i=1

λi(A)λn+1−i(B) 6 〈A,B〉 6
n∑
i=1

λi(A)λi(B).

This result can also be derived from Schur-Horn theorem (see, e.g., [MOA11, Theorem 9.B.1,

Theorem 9.B.2]) together with Abel’s summation formula.

From Lemma A.1.4, we have

‖U∆>‖2F = trace(∆U>U∆>) = 〈U>U ,∆>∆〉

>
r∑
i=1

λr+1−i(U
>U)λi(∆

>∆) =
r∑
i=1

σ2
i (∆)σ2

r+1−i(U),
(A.8)

and

〈∆∆>,Mr+〉 6
n∑
i=1

λi(∆∆>)λi(Mr+) =
r∑
i=1

σ2
i (∆)σi(Mr+).(A.9)

Here we use the fact that λi(U
>U) = σ2

i (U), λi(∆
>∆) = σ2

i (∆), λi(Mr+) = σi(Mr+) and

λi(∆∆>) =

 σ2
i (∆) i = 1, · · · , r

0 i = r + 1, · · · , n.

Putting (A.7), (A.8) and (A.9) together we have

− 5× 10−4
[
‖∆>∆‖2F + ‖U∆>‖2F

]
+ 2× 109Cv

√
n

p
‖Mr‖`∞‖∆‖2F + 6〈∆∆>,Mr+〉

6− 5× 10−4

[
r∑
i=1

σ4
i (∆) +

r∑
i=1

σ2
i (∆)σ2

r+1−i(U)

]
+ 2× 109Cv

√
n

p
‖Mr‖`∞

r∑
i=1

σ2
i (∆)

+ 6

r∑
i=1

σ2
i (∆)σi(Mr+)

65× 10−4
r∑
i=1

{
−σ4

i (∆) +

[
4× 1012Cv

√
n

p
‖Mr‖`∞ − σ2

r+1−i(U) + 1.2× 104σi(Mr+)

]
σ2
i (∆)

}
.

For the last line, the summands are a series of quadratic functions of σ2
i (∆). Noticing the fact that

for a quadratic function q(x) = −x2 + bx, given the constraint x > 0, the maximum is taken at

111



x̂ = 1
2 [b]+, and the maximum value is 1

4{[b]+}
2. Therefore, we have

− 5× 10−4
[
‖∆>∆‖2F + ‖U∆>‖2F

]
+ 2× 109Cv

√
n

p
‖Mr‖`∞‖∆‖2F + 6〈∆∆>,Mr+〉

6
5

4
× 10−4

r∑
i=1

{[
4× 1012Cv

√
n

p
‖Mr‖`∞ − σ2

r+1−i(U) + 1.2× 104σi(Mr+)

]
+

}2

=1.25× 10−4
r∑
j=1

{[
4× 1012Cv

√
n

p
‖Mr‖`∞ − σ2

j (U) + 1.2× 104σr+1−j(Mr+)

]
+

}2

=1.25× 10−4
r∑
j=1

{[
4× 1012Cv

√
n

p
‖Mr‖`∞ + 1.2× 104σ2r+1−j − σj

]
+

}2

.

(A.10)

In the second last line, we let j = r + 1− i. In the last line, we use the fact that

σr+1−j(Mr+) = σr+r+1−j(M) = σ2r+1−j

and

σ2
j (U) = σj(UU

>) = σj(Mr) = σj(M) = σj .

Finally putting (A.6) and (A.10) together we have

4∑
i=2

Ki(X)

610× 10−4
[
‖∆>∆‖2F + ‖U∆>‖2F

]
+ 105C2

v

nr

p
‖Mr+‖2`∞

− 5× 10−4
[
‖∆>∆‖2F + ‖U∆>‖2F

]
+ 2× 109Cv

√
n

p
‖Mr‖`∞‖∆‖2F

+ 9Cv

√
n

p
‖Mr‖`∞

r∑
i=s+1

σi + 6〈∆∆>,Mr+〉

610−3
[
‖∆>∆‖2F + ‖U∆>‖2F

]
+ 105C2

v

nr

p
‖Mr+‖2`∞

+ 1.25× 10−4
r∑
i=1

{[
4× 1012Cv

√
n

p
‖Mr‖`∞ + 1.2× 104σ2r+1−i − σi

]
+

}2

+ 9Cv

√
n

p
‖Mr‖`∞

r∑
i=s+1

σi.

(A.11)

112



Recall by the definition of s in (A.3), for any i > s, we have σi < CCa
‖Mr‖`∞ logn

p . Therefore, we

have for any i > s,

2CCa

(√
n

p
+

log n

p

)
‖Mr‖`∞ − σi

=2CCa

(√
n

p
+

log n

p

)
‖Mr‖`∞ − 2σi + σi

>2CCa

(√
n

p
+

log n

p

)
‖Mr‖`∞ − 2CCa

‖Mr‖`∞ log n

p
+ σi

>2CCa

√
n

p
‖Mr‖`∞ + σi

>0.

Therefore, for all i > s, {[
2CCa

(√
n

p
+

log n

p

)
‖Mr‖`∞ − σi

]
+

}2

>

[
2CCa

√
n

p
‖Mr‖`∞ + σi

]2

>4CCa

√
n

p
‖Mr‖`∞σi.

Combining with (A.11), we have

4∑
i=2

Ki(X) 610−3
[
‖∆>∆‖2F + ‖U∆>‖2F

]
+ 105C2

v

nr

p
‖Mr+‖2`∞

+ 1.25× 10−4
r∑
i=1

{[
4× 1012Cv

√
n

p
‖Mr‖`∞ + 1.2× 104σ2r+1−i − σi

]
+

}2

+
9Cv

4CCa

r∑
i=1

{[
2CCa

(√
n

p
+

log n

p

)
‖Mr‖`∞ − σi

]
+

}2

.

By letting

(A.12) C2 = max{4× 1012Cv, 1.2× 104, 2CCa}
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and

(A.13) C3 = max{105C2
v , 1.25× 10−4 +

9Cv
4CCa

}

we are able to finish the proof.

�

A.1.0.3. A proof of Lemma A.1.1.

Proof. Recall that we define ∆ as ∆ := X −U , DΩ,p(XX
> −UU>,XX> −UU>) can be

decomposed as following

DΩ,p(XX
> −UU>,XX> −UU>)

=DΩ,p(U∆> + ∆U> + ∆∆>,U∆> + ∆U> + ∆∆>)

=DΩ,p(U∆> + ∆U>,U∆> + ∆U>)︸ ︷︷ ︸
1

+DΩ,p(∆∆>,∆∆>)︸ ︷︷ ︸
2

+ 4DΩ,p(U∆>,∆∆>)︸ ︷︷ ︸
3

.

(A.14)

Here we use the fact that Ω is symmetric. Our strategy here is using Lemma 2.3.3 to give a tight

bound to as many as possible terms, for those terms that Lemma 2.3.3 cannot handle, we use

Lemma 2.3.5 to give a bound. To be more precise, for 2 and 3 , as Lemma 2.3.3 cannot apply

here, we use Lemma 2.3.5 to give a bound. For 1 , we need to split it into two parts, the good

part we can use Lemma 2.3.3 to control, and the rest part we use Lemma 2.3.5 to give a bound.

First for 2 and 3 , by applying Lemma 2.3.5,

(A.15) | 2 | = |DΩ,p(∆∆>,∆∆>)| 6 ‖Ω− pJ‖
n∑
i=1

‖∆i,·‖42

and

| 3 | = 4|DΩ,p(U∆>,∆∆>)| 64‖Ω− pJ‖

√√√√ n∑
i=1

‖Ui,·‖22‖∆i,·‖22

√√√√ n∑
i=1

‖∆i,·‖42

62‖Ω− pJ‖‖Mr‖`∞‖∆‖2F + 2‖Ω− pJ‖
n∑
i=1

‖∆i,·‖42,

(A.16)

where for the second inequality we use the fact that 2xy 6 x2 + y2.
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Finally for 1 , if U is good enough such that the incoherence µ(U) is well-bounded, then we

can apply Lemma 2.3.3 directly and get a tight bound. If µ(U) is not good enough, we want to

split U into two parts and hope first few columns have good incoherence. To be more precise, recall

that we assume U = Ur = [
√
σ1u1 . . .

√
σrur], similar to (2.7), for the incoherence of the first k

columns, we have

µ (colspan([
√
σ1u1 . . .

√
σkuk]))

=
n

k
max
i

k∑
j=1

u2
i,j 6

n

kσk
max
i

k∑
j=1

σju
2
i,j 6

n

kσk
max
i

r∑
j=1

σju
2
i,j 6

n‖Mr‖`∞
kσk

,
(A.17)

where µ(·) is defined in (2.8).

For fixed s defined as in (A.3), denote first s columns of U as U1, and remaining part as U2.

Decompose U as U = [U1 U2], and ∆ can also be decomposed as ∆ = [∆1 ∆2] correspondingly.

Note by our assumption that U = Ur, we have (U1)>U2 = 0. So we can further decompose the

first term of (A.14) as

1 =DΩ,p(U∆> + ∆U>,U∆> + ∆U>)

=DΩ,p

(
[U1 U2][∆1 ∆2]> + [∆1 ∆2][U1 U2]>, [U1 U2][∆1 ∆2]>

+[∆1 ∆2][U1 U2]>
)

=DΩ,p

(
U1(∆1)> + ∆1(U1)>,U1(∆1)> + ∆1(U1)>

)
︸ ︷︷ ︸

A1

+ 4DΩ,p

(
U1(∆1)>,U2(∆2)>

)
︸ ︷︷ ︸

A2

+ 2DΩ,p

(
U2(∆2)>,U2(∆2)>

)
︸ ︷︷ ︸

A3

+ 2DΩ,p

(
U2(∆2)>,∆2(U2)>

)
︸ ︷︷ ︸

A4

+ 4DΩ,p

(
U1(∆1)>,∆2(U2)>

)
︸ ︷︷ ︸

A5

.

(A.18)

Now we can apply tight approximation Lemma 2.3.3 to the first term of (A.18). By the way we

choose s, combining with (A.17),

p > CCa
‖Mr‖`∞ log n

σs
> CCa

‖Mr‖`∞ log n

σs
·
µ
(
colspan(U1)

)
sσs

n‖Mr‖`∞
= CCa

µ
(
colspan(U1)

)
s log n

n
.
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Therefore, Lemma 2.3.3 ensures that

|A1| =
∣∣∣DΩ,p

(
U1(∆1)> + ∆1(U1)>,U1(∆1)> + ∆1(U1)>

)∣∣∣
610−5p‖U1(∆1)> + ∆1(U1)>‖2F

62× 10−5p(‖U1(∆1)>‖2F + ‖∆1(U1)>‖2F )

610−4p‖U∆>‖2F

(A.19)

hold in an event ECa1 with probability P[ECa1] > 1 − n−3, where the second inequality uses the

fact that (x+ y)2 6 2x2 + 2y2, and last inequality uses the fact that (U1)>U2 = 0.

For the rest terms in (A.18), by applying Lemma 2.3.5 we have

|A2| =4|DΩ,p(U
1(∆1)>,U2(∆2)>)|

64‖Ω− pJ‖

√√√√ n∑
i=1

‖U1
i,·‖22‖U2

i,·‖22

√√√√ n∑
i=1

‖∆1
i,·‖22‖∆2

i,·‖22

62‖Ω− pJ‖

[
‖Mr‖`∞‖U2‖2F +

n∑
i=1

‖∆i,·‖42

](A.20)

for the second term in (A.18), where the second inequality use the fact that ‖U1
i,·‖22 6 ‖Ui,·‖22 6

‖Mr‖`∞ , ‖∆1
i,·‖22 6 ‖∆i,·‖22, ‖∆2

i,·‖22 6 ‖∆i,·‖22 and 2xy 6 x2 + y2. For the third term, applying

Lemma 2.3.5 again we have

|A3| =2|DΩ,p(U
2(∆2)>,U2(∆2)>)|

62‖Ω− pJ‖

√√√√ n∑
i=1

‖U2
i,·‖42

√√√√ n∑
i=1

‖∆2
i,·‖42

6‖Ω− pJ‖

[
‖Mr‖`∞‖U2‖2F +

n∑
i=1

‖∆i,·‖42

]
,

(A.21)
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where for the second inequality we also use the properties used in bounding second term. For the

fourth and last term in (A.18), applying Lemma 2.3.5 and properties listed above, we have

|A4| =2|DΩ,p(U
2(∆2)>,∆2(U2)>)|

62‖Ω− pJ‖
n∑
i=1

‖U2
i,·‖22‖∆2

i,·‖22

62‖Ω− pJ‖‖Mr‖`∞‖∆‖2F

(A.22)

and

|A5| =4|DΩ,p(U
1(∆1)>,∆2(U2)>)|

64‖Ω− pJ‖

√√√√ n∑
i=1

‖U1
i,·‖22‖∆2

i,·‖22

√√√√ n∑
i=1

‖U2
i,·‖22‖∆1

i,·‖22

62‖Ω− pJ‖‖Mr‖`∞‖∆1‖2F + 2‖Ω− pJ‖‖Mr‖`∞‖∆2‖2F

=2‖Ω− pJ‖‖Mr‖`∞‖∆‖2F .

(A.23)

Now putting estimations of terms in (A.18) listed above together, i.e., (A.19), (A.20), (A.21),

(A.22) and (A.23), we have

| 1 | =|DΩ,p(U∆> + ∆U>,U∆> + ∆U>)|

6|A1|+ |A2|+ |A3|+ |A4|+ |A5|

610−4p‖U∆>‖2F + 2‖Ω− pJ‖

[
‖Mr‖`∞‖U2‖2F +

n∑
i=1

‖∆i,·‖42

]

+ ‖Ω− pJ‖

[
‖Mr‖`∞‖U2‖2F +

n∑
i=1

‖∆i,·‖42

]
+ 2‖Ω− pJ‖‖Mr‖`∞‖∆‖2F

+ 2‖Ω− pJ‖‖Mr‖`∞‖∆‖2F

6‖Ω− pJ‖

[
3‖Mr‖`∞‖U2‖2F + 3

n∑
i=1

‖∆i‖42 + 4‖Mr‖`∞‖∆‖2F

]
+ 10−4p‖U∆>‖2F .

(A.24)
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Plugging estimations (A.15), (A.16) and (A.24) back to (A.14), we have

|DΩ,p(XX
> −UU>,XX> −UU>)|

6| 1 |+ | 2 |+ | 3 |

6‖Ω− pJ‖

[
3‖Mr‖`∞‖U2‖2F + 3

n∑
i=1

‖∆i‖42 + 4‖Mr‖`∞‖∆‖2F

]
+ 10−4p‖U∆>‖2F

+ ‖Ω− pJ‖
n∑
i=1

‖∆i,·‖42 + 2‖Ω− pJ‖‖Mr‖`∞‖∆‖2F + 2‖Ω− pJ‖
n∑
i=1

‖∆i,·‖42

=‖Ω− pJ‖

[
3‖Mr‖`∞‖U2‖2F + 6

n∑
i=1

‖∆i‖42 + 6‖Mr‖`∞‖∆‖2F

]
+ 10−4p‖U∆>‖2F .

Therefore, combining with (A.15), we have

K2(X) 6
1

p
|DΩ,p(∆∆>,∆∆>)|+ 3

p
|DΩ,p(XX

> −UU>,XX> −UU>)|

6
‖Ω− pJ‖

p

n∑
i=1

‖∆i,·‖42 + 3
‖Ω− pJ‖

p

[
3‖Mr‖`∞‖U2‖2F + 6

n∑
i=1

‖∆i‖42 + 6‖Mr‖`∞‖∆‖2F

]

+ 3× 10−4‖U∆>‖2F

6
‖Ω− pJ‖

p

[
19

n∑
i=1

‖∆i‖42 + 18‖Mr‖`∞‖∆‖2F + 9‖Mr‖`∞
r∑

i=s+1

σi

]
+ 3× 10−4‖U∆>‖2F .

The last line uses the fact that ‖U2‖2F =
∑r

i=s+1 σi.

�

A.1.0.4. Proof of Lemma A.1.2. Here we present a proof of Lemma A.1.2. This proof is exactly

the proof in [GJZ17] except keeping the extra negative term. We include the proof in [GJZ17]

here for completeness.

Proof. By [GJZ17, Lemma 18], we have

vec(∆)>∇2Gα(X) vec(∆)− 4〈∇Gα(X),∆〉

=4
n∑
i=1

[(‖Xi,·‖2 − α)+]3
‖Xi,·‖22‖∆i,·‖22 − 〈Xi,·,∆i,·〉2

‖Xi,·‖32

+ 12
n∑
i=1

[(‖Xi,·‖2 − α)+]2
〈Xi,·,∆i,·〉2

‖Xi,·‖22
− 16

n∑
i=1

[(‖Xi,·‖2 − α)+]3
〈Xi,·,∆i,·〉
‖Xi,·‖2

.

(A.25)
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First of all, since we choose α > 100
√
‖Mr‖`∞ = 100‖U‖2,∞, then for all Xi,· satisfying

‖Xi,·‖2 > α, we have

(A.26) 〈Xi,·,∆i,·〉 = 〈Xi,·,Xi,·−Ui,·〉 > ‖Xi,·‖22−‖Xi,·‖2‖Ui,·‖2 > (1−0.01)‖Xi,·‖22 > 0.99‖Xi,·‖22,

which gives an lower bound of the inner product between Xi,· and ∆i,·. At the same time, we can

also upper bound ‖∆i,·‖2 by ‖Xi,·‖2:

(A.27) ‖∆i,·‖2 6 ‖Xi,·‖2 + ‖Ui,·‖2 6 1.01‖Xi,·‖2.

Plugging the above two estimations (A.26), (A.27) together with the fact that |〈Xi,·,∆i,·〉|2 6

‖Xi,·‖22‖∆i,·‖22 into (A.25), we have

vec(∆)>∇2Gα(X) vec(∆)− 4〈∇Gα(X),∆〉

6− 15.68

n∑
i=1

[(‖Xi,·‖2 − α)+]3‖Xi,·‖2 + 12

n∑
i=1

[(‖Xi,·‖2 − α)+]2‖∆i,·‖22.
(A.28)

Moreover, for all Xi,· satisfies ‖Xi,·‖2 > 5α, we can also upper bound ‖∆i,·‖2 by ‖Xi,·‖2:

(A.29) ‖∆i,·‖2 6 ‖Xi,·‖2 + ‖Ui,·‖2 6 1.002‖Xi,·‖2,

and also lower bound ‖Xi,·‖2 − α by ‖∆i,·‖2:

(A.30) ‖Xi,·‖2 − α >
(

1− 1

5

)
‖Xi,·‖2 >

400

501
‖∆i,·‖2.
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Plugging (A.29) and (A.30) back to (A.28), we have

vec(∆)>∇2Gα(X) vec(∆)− 4〈∇Gα(X),∆〉

612
∑

i,‖Xi,·‖2<5α

[(‖Xi,·‖2 − α)+]2‖∆i,·‖22

+

[
12− 15.68× 400

501
× 1

1.002

] ∑
i,‖Xi,·‖2>5α

[(‖Xi,·‖2 − α)+]2‖∆i,·‖22

6192α2‖∆‖2F − 0.3
∑

i,‖Xi,·‖2>5α

‖∆i,·‖42

6200α2‖∆‖2F − 0.3

n∑
i=1

‖∆i,·‖42,

where the last inequality uses the fact that ‖∆i,·‖2 6 ‖Xi,·‖2 + ‖Ui,·‖2 and α > 100
√
‖Mr‖`∞ . �

A.1.0.5. A proof of Lemma A.1.3.

Proof. First, by matrix Hölder’s inequality,

6|〈∆∆>,PΩ(Mr+)− pMr+〉| 66

√
p‖∆∆>‖∗√

r

√
r‖PΩ(Mr+)− pMr+‖√

p
.

Since ∆∆> is at most rank-r, ‖∆∆>‖∗ 6
√
r‖∆∆>‖F . Therefore,

6|〈∆∆>,PΩ(Mr+)− pMr+〉| 66
√
p‖∆∆>‖F

√
r‖PΩ(Mr+)− pMr+‖√

p

65× 10−4p‖∆∆>‖2F + 1.8× 104 r‖PΩ(Mr+)− pMr+‖2

p
.

For the last inequality, we also use the fact that 2xy 6 wx2 + y2

w for all w > 0. Use the same

argument we also have

8|〈U∆>,PΩ(Mr+)− pMr+〉| 6 2× 10−4p‖U∆>‖2F + 8× 104 r‖PΩ(Mr+)− pMr+‖2

p
,
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Therefore, by the way we define K4(X) in (2.14), we have

K4(X) 6
1

p
|6〈∆∆>,PΩ(Mr+)〉 − 6p〈∆∆>,Mr+〉|+

1

p
|8〈U∆>,PΩ(Mr+)〉 − 8p〈U∆>,Mr+〉|

+ 6〈∆∆>,Mr+〉

65× 10−4‖∆∆>‖2F + 2× 10−4‖U∆>‖2F + 105 r‖PΩ(Mr+)− pMr+‖2

p2

+ 6〈∆∆>,Mr+〉.

�

A.2. Proof of Corollary 2.1.3

Proof. The inequality (2.7) gives ‖M‖`∞ 6
µrrσ1

n . Therefore, in the case rank(M) = r, the

approximation error bound (2.4) becomes

∥∥∥X̂X̂> −M∥∥∥2

F
6 C1

r∑
i=1

{[
C2

(√
n

p
+

log n

p

)
µrr

n
σ1 − σi

]
+

}2

.

Therefore, if

p > 4C2 max

{
µrrκr log n

n
,
µ2
rr

2κ2
r

n

}
,

we have

C2

(√
n

p
+

log n

p

)
µrr

n
σ1 6 σi, i = 1, · · · , r.

In other words, X̂X̂> = M .

Similarly, by definition (2.6), in the case rank(M) = r, we have

‖M‖`∞ =
µ̃2
r trace(M)

n
6
µ̃2
rrσ1

n
.

Therefore, the approximation error bound (2.4) becomes

∥∥∥X̂X̂> −M∥∥∥2

F
6 C1

r∑
i=1

{[
C2

(√
n

p
+

log n

p

)
µ̃2
rr

n
σ1 − σi

]
+

}2

.

Therefore, if

p > 4C2 max

{
µ̃2
rrκr log n

n
,
µ̃4
rr

2κ2
r

n

}
,
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we have X̂X̂> = M . �

A.3. Proof sketch of Theorem 2.4.1

Recall that the control of K3 and K4 in Lemma A.1.2 and Lemma A.1.3 will not be affected

except replacing p by t. For K2, Lemma 2.3.3 is not able to used anymore, therefore, by directly

applying Lemma 2.3.5 to all the terms in (A.14), we have

K2(X) 6 φ(t)

[
‖Mr‖`∞‖U‖2F + 5

n∑
i=1

‖∆i‖42 + 4‖Mr‖`∞‖∆‖2F

]
.

Therefore, we have

4∑
i=2

Ki(X) 65× 10−4
[
‖∆>∆‖2F + ‖U∆>‖2F

]
+ 105φ2(t)r‖Mr+‖2`∞ + φ(t)‖Mr‖`∞

r∑
i=1

σi

+ (4 + 1.6× 109)φ(t)‖Mr‖`∞‖∆‖2F + 6〈∆∆>,Mr+〉.

Similar to what we did in Section A.1.0.2, we have

4∑
i=2

Ki(X)

610−3
[
‖∆>∆‖2F + ‖U∆>‖2F

]
+ 105φ2(t)r‖Mr+‖2`∞ + φ(t)‖Mr‖`∞

r∑
i=1

σi

+ 5× 10−4
r∑
i=1

{
−σ4

i (∆) +
[
4× 1012φ(t)‖Mr‖`∞ − σ2

r+1−i(U) + 1.2× 104σi(Mr+)
]
σ2
i (∆)

}
610−3

[
‖∆>∆‖2F + ‖U∆>‖2F

]
+ 105φ2(t)r‖Mr+‖2`∞ + φ(t)‖Mr‖`∞

r∑
i=1

σi

+ 1.25× 10−4
r∑
i=1

{[
4× 1012φ(t)‖Mr‖`∞ + 1.2× 104σ2r+1−i − σi

]
+

}2

610−3
[
‖∆>∆‖2F + ‖U∆>‖2F

]
+ C3φ

2(t)r‖Mr+‖2`∞ + φ(t)‖Mr‖`∞
r∑
i=1

σi

+ C3

r∑
i=1

{
[C2φ(t)‖Mr‖`∞ + C2σ2r+1−i − σi]+

}2
.

The last inequality uses the definition of C2, C3 in (A.12) and (A.13) as well as the fact that the

constant Cv > 1. Replace ψ in (2.16) finishes the proof.
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A.4. Proof sketch of Theorem 2.5.2

For any X ∈ Rn1×r,Y ∈ Rn2×r, let

Z :=

 X
Y

 .
Suppose Z>Wr has SVD Z>Wr = ADB>. Let W := WrBA

>,U := UrBA
>,V := VrBA

>.

Then Z>W = ADA> is a positive semidefinite matrix. It also holds that WrW
>
r = WW>.

Similar to what we did in the PSD case, let

∆Z =

 ∆X

∆Y

 := Z −W ,

then we can consider the following auxiliary function:

K(X,Y ) := vec(∆Z)>∇2f(X,Y ) vec(∆Z)− 4〈∇f(X,Y ),∆Z〉.

From an elegant lemma developed in [GJZ17], we are able to upper bound the above defined

auxiliary function K. More precisely, we have

Lemma A.4.1 ( [GJZ17, Lemma 16]). For any X ∈ Rn1×r,Y ∈ Rn2×r, let W ,U ,V , and

∆Z ,∆X ,∆Y be defined as above. Then the auxiliary function K(X,Y ) can be upper bounded as

following:

K(X,Y ) 6K1(X,Y ) +K2(X,Y ) +K3(X,Y ) +K4(X,Y ),
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where

K1(X,Y ) :=
1

4

(∥∥∥∆Z∆>Z

∥∥∥2

F
− 3

∥∥∥ZZ> −WW>
∥∥∥2

F

)
,

K2(X,Y ) :=

(
1

p

∥∥∥PΩ

(
∆X∆>Y

)∥∥∥2

F
− ‖∆X∆>Y ‖2F

)
−
(

3

p

∥∥∥PΩ

(
XY > −UV >

)∥∥∥2

F
− 3‖XY > −UV >‖2F

)
,

K3(X,Y ) :=λ
[
vec(∆X)>∇2Gα(X) vec(∆X)− 4 〈∇Gα(X),∆X〉

]
+ λ

[
vec(∆Y )>∇2Gα(Y ) vec(∆Y )− 4 〈∇Gα(Y ),∆Y 〉

]
,

K4(X,Y ) :=
6

p

〈
∆X∆>Y ,PΩ(Mr+)

〉
+

4

p

〈
U∆>Y + ∆XV

>,PΩ(Mr+)
〉
.

Similar to the arguments we had in PSD case, without loss of generality, we can assume that

W = Wr. Given the strong similarities between K1(X,Y ), . . . ,K4(X,Y ) and their counterparts,

upper bounds in PSD case, we can derive corresponding upper bounds as following:

First, to get an upper bound of K2(X,Y ), we need the following lemma.

Lemma A.4.2 ( [CR09, Theorem 4.1]). Let Ω be sampled according to Ber(p) model as defined

in Model 2.5.1. Define

T := {M ∈ Rn1×n2 | (I − PU )M(I − PV) = 0},

where U ,V are fixed subspaces of Rn1 and Rn2. Let PT be the Euclidean projection on to T : For

any matrix M ∈ Rn1×n2,

PT (M) = PUM +MPV − PUMPV .

Then there is an absolute constant CCa, if p > CCa
[µ(U)∨µ(V)][dim(U)∨dim(V)] log(n1∨n2)

n1∧n2
with µ(U), µ(V)

defined in (2.8), in an event ECa with probability P[ECa] > 1− (n1 + n2)−11, we have

p−1‖PT PΩPT − pPT ‖ 6 10−5.

Equipped with Lemma A.4.2, and following the proof in controlling K2(X), we get the following

lemma corresponding to Lemma A.1.1 in PSD case.
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Lemma A.4.3. In an event ECa2 with probability P[ECa2] > 1− (n1 + n2)−3, uniformly for all

X ∈ Rn1×r,Y ∈ Rn2×r and corresponding ∆X ,∆Y defined as before, we have

K2(X,Y ) 6
‖Ω− pJ‖

p

[
9.5

(
n1∑
i=1

‖(∆X)i,·‖42 +

n2∑
i=1

‖(∆Y )i,·‖42

)
+ 18‖Wr‖22,∞‖∆Z‖2F

]

+ 9
‖Ω− pJ‖

p
‖Wr‖22,∞

r∑
i=s+1

σi + 3× 10−4‖W∆>Z‖2F ,

where s is defined by

s := max

{
s 6 r, σs > CCa

‖Mr‖`∞ log(n1 ∨ n2)

p

}
with CCa an absolute constant defined in Lemma 2.3.3. Set s = 0 if σ1 < CCa

‖Mr‖`∞ log(n1∨n2)
p .

For K3(X,Y ), we simply apply Lemma A.1.2 twice and have the following lemma.

Lemma A.4.4. If α > 100‖Wr‖2,∞, then uniformly for all X ∈ Rn1×r,Y ∈ Rn2×r and corre-

sponding ∆X ,∆Y defined as before, we have

K3(X,Y ) 6 200λα2(‖∆X‖2F + ‖∆Y ‖2F )− 0.3λ

(
n1∑
i=1

‖(∆X)i,·‖42 +

n2∑
i=1

‖(∆Y )i,·‖42

)
.

Finally, by replacing ∆ with ∆Z , we have the following control of K4(X,Y ).

Lemma A.4.5. Uniformly for all X ∈ Rn1×r,Y ∈ Rn2×r and corresponding ∆X ,∆Y defined

as before, we have

K4(X,Y ) 65× 10−4‖∆Z∆>Z‖2F + 2× 10−4‖W∆>Z‖2F + 105 r‖PΩ(Mr+)− pMr+‖2

p2

+ 6〈∆X∆>Y ,Mr+〉.

Notice the fact that

〈∆X∆>Y ,Mr+〉 =
1

2
〈∆Z∆>Z ,M r+〉

where

M r+ :=

 0 Mr+

M>
r+ 0

 .
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Moreover, M r+ has following eigenvalue decomposition

M r+ =
1√
2

 Ur+ Ur+

Vr+ −Vr+

diag(σr+1, . . . , σn1∧n2 ,−σr+1, . . . ,−σn1∧n2)
1√
2

 Ur+ Ur+

Vr+ −Vr+

>

where

Ur+ := [ur+1, . . . ,un1∧n2 ], Vr+ := [vr+1, . . . ,vn1∧n2 ].

Therefore, by von Neumann’s trace inequality Lemma A.1.4,

〈∆X∆>Y ,Mr+〉 =
1

2
〈∆Z∆>Z ,M r+〉 6

1

2

r∑
i=1

σ2
i (∆Z)σr+i.

Here we use the fact that ∆Z∆>Z is a matrix with rank at most r. Therefore, with the following

rectangular version of spectral lemma, we are able to copy all the proofs in the PSD case, which

finishes the proof.

Lemma A.4.6 ( [Vu18, BVH16]). There is a constant Cv > 0 such that the following holds.

If Ω is sampled according to the Ber(p) model with p > Cv
log(n1∨n2)
n1∧n2

, then in an event Ev with

probability P[Ev] > 1− (n1 + n2)−3,

‖Ω− pJ‖ 6 Cv
√

(n1 ∨ n2)p.

A.4.1. Proof of Lemma A.4.1.

Proof. Lemma A.4.1 is essentially [GJZ17, Lemma 16]. Here we give a sketch of the proof

for the purpose of self-containedness.

First, denote fclean(X,Y ) as

fclean(X,Y ) =
1

2p
‖PΩ(XY > −Mr)‖2F +

1

8
‖X>X − Y >Y ‖2F

+ λ(Gα(X) +Gα(Y )).

Comparing with (3.2), We can see

f(X,Y ) = fclean(X,Y )− 1

p
〈PΩ(XY > −Mr),PΩ(Mr+)〉+

1

2p
‖PΩ(Mr+)‖2F .
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Therefore,

〈∇f(X,Y ), [∆>X ,∆
>
Y ]>〉 =〈∇fclean(X,Y ), [∆>X ,∆

>
Y ]>〉 − 1

p
〈PΩ(∆XY

> +X∆>Y ),PΩ(Mr+)〉

and

vec([∆>X ,∆
>
Y ]>)>∇2f(X,Y ) vec([∆>X ,∆

>
Y ]>)

= vec([∆>X ,∆
>
Y ]>)>∇2fclean(X,Y ) vec([∆>X ,∆

>
Y ]>)− 2

p
〈PΩ(∆X∆>Y ),PΩ(Mr+)〉.

Therefore, we only need to concern about fclean(X,Y ) now, which has already been discussed

in [GJZ17]. Interested readers can refer to [GJZ17] for the detail.

By [GJZ17, Lemma 16], we have

vec([∆>X ,∆
>
Y ]>)>∇2fclean(X,Y ) vec([∆>X ,∆

>
Y ]>)− 4〈∇fclean(X,Y ), [∆>X ,∆

>
Y ]>〉

6
1

4

{∥∥∥∆Z∆>Z

∥∥∥2

F
− 3

∥∥∥ZZ> −WW>
∥∥∥2

F

}
+

(
1

p

∥∥∥PΩ

(
∆X∆>Y

)∥∥∥2

F
− ‖∆X∆>Y ‖2F

)
−
(

3

p

∥∥∥PΩ

(
XY > −UV >

)∥∥∥2

F
− 3‖XY > −UV >‖2F

)
+ λ

[
vec(∆X)>∇2Gα(X) vec(∆X)− 4 〈∇Gα(X),∆X〉

]
+ λ

[
vec(∆Y )>∇2Gα(Y ) vec(∆Y )− 4 〈∇Gα(Y ),∆Y 〉

]
.
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Therefore,

vec([∆>X ,∆
>
Y ]>)>∇2f(X,Y ) vec([∆>X ,∆

>
Y ]>)− 4〈∇f(X,Y ), [∆>X ,∆

>
Y ]>〉

= vec([∆>X ,∆
>
Y ]>)>∇2fclean(X,Y ) vec([∆>X ,∆

>
Y ]>)− 2

p
〈PΩ(∆X∆>Y ),PΩ(Mr+)〉

− 4〈∇fclean(X,Y ), [∆>X ,∆
>
Y ]>〉+

4

p
〈PΩ(∆XY

> +X∆>Y ),PΩ(Mr+)〉

6
4

p
〈PΩ(∆XV

> +U∆>Y ),PΩ(Mr+)〉+
6

p
〈PΩ(∆X∆>Y ),PΩ(Mr+)〉

+
1

4

{∥∥∥∆Z∆>Z

∥∥∥2

F
− 3

∥∥∥ZZ> −WW>
∥∥∥2

F

}
+

(
1

p

∥∥∥PΩ

(
∆X∆>Y

)∥∥∥2

F
− ‖∆X∆>Y ‖2F

)
−
(

3

p

∥∥∥PΩ

(
XY > −UV >

)∥∥∥2

F
− 3‖XY > −UV >‖2F

)
+ λ

[
vec(∆X)>∇2Gα(X) vec(∆X)− 4 〈∇Gα(X),∆X〉

]
+ λ

[
vec(∆Y )>∇2Gα(Y ) vec(∆Y )− 4 〈∇Gα(Y ),∆Y 〉

]
.

Combining with Lemma B.1.1 finishes the proof. �
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APPENDIX B

Supporting Proofs of Chapter 3

B.1. Proof of Theorem 3.1.3

B.1.1. Auxiliary function. In order to study the properties of local minima of f̃(θ) as

defined in (3.2), similar to what we did in Chapter 2, the first step in our proof of Theorem 3.1.3

is to derive the auxiliary function associated to f̃(θ). Again, given the smoothness of f̃(θ), any

of its local minima ξ̂ satisfies ∇f̃(ξ̂) = 0 and ∇2f̃(ξ̂) � 0. For any θ ∈ Rd, suppose ξ ∈ Rd be a

vector satisfying (3.1.2) (Recall that there may be multiple vectors satisfying (3.1.2)). Choose δθ

as δθ = θ − ξ. Therefore, we are now able to define the auxiliary function associated with f̃ as

(B.1) Kf̃ (θ) := δ>θ ∇2f̃(θ)δθ − 4δ>θ ∇f̃(θ).

For any local minimum ξ̂ of f̃ , there also holds Kf̃ (ξ̂) > 0.

Furthermore, due to the homogeneity and linearity of the parameterization (X(θ),Y (θ)), there

is a strong connection between Kf̃ (θ) and the corresponding K of frect defined in Chapter 2.

Lemma B.1.1. For any θ ∈ Rd and its corresponding δθ, there holds

Kf̃ (θ) = vec([X(δθ)>,Y (δθ)>]>)>∇2frect(X(θ),Y (θ)) vec([X(δθ)>,Y (δθ)>]>)

− 4〈∇frect(X(θ),Y (θ)), [X(δθ)>,Y (δθ)>]>〉.
(B.2)

Proof. Assumption 3.1.1 implies that both X(θ) and Y (θ) are homogeneous linear functions,

so

(B.3) f̃(θ + δθ) = frect(X(θ + δθ),Y (θ + δθ)) = frect(X(θ) +X(δθ),Y (θ) + Y (δθ)).
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Due to the linear homogeneity of X(θ) and Y (θ) once more, also by considering the Taylor ex-

pansions of both sides in (B.3) at θ, we get

(B.4) δ>θ ∇f̃(θ) = vec([X(δθ)>,Y (δθ)>]>)>∇frect(X(θ),Y (θ))

and

(B.5) δ>θ ∇2f̃(θ)δθ = vec([X(δθ)>,Y (δθ)>]>)>∇2frect(X(θ),Y (θ)) vec([X(δθ)>,Y (δθ)>]>)

The equality (B.2) is obtained through combining (B.4) and (B.5). �

For notation simplicity, we introduce the following abbreviations:

(B.6)



X = X(θ) ∈ Rn1×r

U = X(ξ) ∈ Rn1×r

∆X = X(δθ) = X −U ∈ Rn1×r

Y = Y (θ) ∈ Rn2×r

V = Y (ξ) ∈ Rn2×r

∆Y = Y (δθ) = Y − V ∈ Rn2×r.

In the remaining part of the proof, X,U ,∆X ,Y ,V ,∆Y will refer to the matrices defined in (B.6)

if not specified. Then (in)equalities in (3.5) are thus abbreviated into

(B.7) M = UV >, U>U = V >V , and X>U + Y >V � 0.

By applying Lemma B.1.1, analogs to Lemma A.4.1, we are able to upper bound Kf̃ (θ) as

following.

Lemma B.1.2. For any θ ∈ Rd, with δθ = θ − ξ where ξ satisfies the conditions in (3.5), and

X,U ,∆X ,Y ,V ,∆Y defined as in (B.6), denote

Z =

X
Y

 , W =

U
V

 , and ∆Z =

∆X

∆Y

 = Z −W .
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Then the auxiliary function Kf̃ (θ) defined in (B.1) can be upper bounded as following:

Kf̃ (θ) 6K1(θ) +K2(θ) +K3(θ) +K4(θ),(B.8)

where

K1(θ) :=
1

4

(∥∥∥∆Z∆>Z

∥∥∥2

F
− 3

∥∥∥ZZ> −WW>
∥∥∥2

F

)
,

K2(θ) :=

(
1

p

∥∥∥PΩ

(
∆X∆>Y

)∥∥∥2

F
− ‖∆X∆>Y ‖2F

)
−
(

3

p

∥∥∥PΩ

(
XY > −UV >

)∥∥∥2

F
− 3‖XY > −UV >‖2F

)
,

K3(θ) :=λ
[
vec(∆X)>∇2Gα(X) vec(∆X)− 4 〈∇Gα(X),∆X〉

]
+ λ

[
vec(∆Y )>∇2Gα(Y ) vec(∆Y )− 4 〈∇Gα(Y ),∆Y 〉

]
,

K4(θ) :=
6

p

〈
∆X∆>Y ,PΩ(N)

〉
+

4

p

〈
U∆>Y + ∆XV

>,PΩ(N)
〉
.

(B.9)

Comparing to Lemma A.4.1, the only difference is replacing Mr+ by N . Therefore, the proof

is omitted here.

B.1.2. Controlling the auxiliary function. This section is meant to control K2(θ) and

K3(θ), which will further give a bound of right hand side of (B.8).

Before proceed, we here first collect some useful properties of U = X(ξ) and V = Y (ξ). The

proof is left to Section B.2.1.

Proposition B.1.3. For any θ, the matrices U = X(ξ) and V = Y (ξ) defined in (B.6) satisfy

the following basic properties:

• colspan(U) = colspan([u1, . . . ,ur]) and colspan(V ) = colspan([v1, . . . ,vr]);

• The largest singular values of both U and V are
√
σ1;

• The r-th singular values of both U and V are
√
σr.

• ‖U‖22,∞ 6
µr
n1
σ1 and ‖V ‖22,∞ 6

µr
n2
σ1.

B.1.2.1. Control of K2(θ). In this section, we give a control of K2(θ). Comparing to upper

bounding K2(X,Y ) as in Section 2.5, here we assume the sampling rate p is sufficiently large,

therefore, Lemma A.4.2 can be applied directly here.
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By the way we define ∆X ,∆Y in (B.6),

XY > −UV > =(U + ∆X)(V + ∆Y )> −UV >

=∆XV
> +U∆>Y + ∆X∆>Y .

Therefore, ∣∣∣∣1p ∥∥∥PΩ

(
XY > −UV >

)∥∥∥2

F
− ‖XY > −UV >‖2F

∣∣∣∣
=

∣∣∣∣1p ∥∥∥PΩ

(
∆XV

> +U∆>Y + ∆X∆>Y

)∥∥∥2

F
−
∥∥∥∆XV

> +U∆>Y + ∆X∆>Y

∥∥∥2

F

∣∣∣∣
6

∣∣∣∣1p ∥∥∥PΩ

(
∆XV

> +U∆>Y

)∥∥∥2

F
−
∥∥∥∆XV

> +U∆>Y

∥∥∥2

F

∣∣∣∣︸ ︷︷ ︸
1

+

∣∣∣∣1p ∥∥∥PΩ

(
∆X∆>Y

)∥∥∥2

F
− ‖∆X∆>Y ‖2F

∣∣∣∣︸ ︷︷ ︸
2

+

∣∣∣∣2p 〈PΩ

(
∆XV

>
)
,PΩ

(
∆X∆>Y

)〉
− 2

〈
∆XV

>,∆X∆>Y

〉∣∣∣∣︸ ︷︷ ︸
3

+

∣∣∣∣2p 〈PΩ

(
U∆>Y

)
,PΩ

(
∆X∆>Y

)〉
− 2

〈
U∆>Y ,∆X∆>Y

〉∣∣∣∣︸ ︷︷ ︸
4

.

By Proposition B.1.3, the matrix ∆XV
> + U∆>Y belongs to the subspace T defined in Lemma

A.4.2. Therefore, by Lemma A.4.2, in an event ECa3 with probability P[ECa3] > 1− (n1 + n2)−3,

there holds

1 6 0.0001
∥∥∥∆XV

> +U∆>Y

∥∥∥2

F
6 0.0002

(∥∥∥∆XV
>
∥∥∥2

F
+
∥∥∥U∆>Y

∥∥∥2

F

)
.

By Lemma 2.3.5, we have

2 6
‖Ω− pJ‖

2p

(
n1∑
k=1

‖(∆X)k,·‖42 +

n2∑
k=1

‖(∆Y )k,·‖42

)
,
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3 6
‖Ω− pJ‖

p

(
n1∑
k=1

‖(∆X)k,·‖42 +

n2∑
k=1

‖Vk,·‖22‖(∆Y )k,·‖22

)
,

and

4 6
‖Ω− pJ‖

p

(
n2∑
k=1

‖(∆Y )k,·‖42 +

n1∑
k=1

‖Uk,·‖22‖(∆X)k,·‖22

)
.

By Proposition B.1.3, ‖U‖22,∞ 6
µr
n1
σ1 and ‖V ‖22,∞ 6

µr
n2
σ1. Then

3 6
‖Ω− pJ‖

p

(
n1∑
k=1

‖(∆X)k,·‖42 +
µr

n2
σ1‖∆Y ‖2F

)
,

and

4 6
‖Ω− pJ‖

p

(
n2∑
k=1

‖(∆Y )k,·‖42 +
µr

n1
σ1‖∆X‖2F

)
.

Combining the above inequalities together, we have

K2 6

∣∣∣∣1p ∥∥∥PΩ

(
∆X∆>Y

)∥∥∥2

F
− ‖∆X∆>Y ‖2F

∣∣∣∣
+

∣∣∣∣3p ∥∥∥PΩ

(
XY > −UV >

)∥∥∥2

F
− 3‖XY > −UV >‖2F

∣∣∣∣
6 2 + 3

(
1 + 2 + 3 + 4

)
60.0006

(∥∥∥∆XV
>
∥∥∥2

F
+
∥∥∥U∆>Y

∥∥∥2

F

)

+
‖Ω− pJ‖

p

(
5

n1∑
k=1

‖(∆X)k,·‖42 + 5

n2∑
k=1

‖(∆Y )k,·‖42

)

+
‖Ω− pJ‖

p

(
3
µr

n1
σ1‖∆X‖2F + 3

µr

n2
σ1‖∆Y ‖2F

)
.

B.1.2.2. Control of K3(θ). For K3(θ), when α > 100
√

µrσ1

n1∧n2
> 100‖W ‖2,∞, by applying

Lemma A.1.2 twice, we have

K3(θ) 6 200λα2(‖∆X‖2F + ‖∆Y ‖2F )− 0.3λ

(
n1∑
k=1

‖(∆X)k,·‖42 +

n2∑
k=1

‖(∆Y )k,·‖42

)
.
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B.1.2.3. Putting K2(θ) and K3(θ) together. Combining the above upper bounds of K2(θ) and

K3(θ) together, there holds

K2 +K3 60.0006

(∥∥∥∆XV
>
∥∥∥2

F
+
∥∥∥U∆>Y

∥∥∥2

F

)
+

(
3µrσ1‖Ω− pJ‖
p(n1 ∧ n2)

+ 200λα2

)(
‖∆X‖2F + ‖∆Y ‖2F

)
+

(
5‖Ω− pJ‖

p
− 0.3λ

)( n1∑
k=1

‖(∆X)k,·‖42 +

n2∑
k=1

‖(∆Y )k,·‖42

)
.

By Lemma A.4.6, when p > Cv
log(n1∨n2)
n1∧n2

, in an event Ev3 with probability P[Ev3] > 1− (n1 +

n2)−3, ‖Ω− pJ‖ 6 Cv
√

(n1 ∨ n2)p. Therefore, combining with assumptions on p, α and λ in (3.6),

3µrσ1‖Ω− pJ‖
(n1 ∧ n2)p

+ 200λα2

6
3µrσ1Cv

√
(n1 ∨ n2)p

(n1 ∧ n2)p
+ 200× 103C3

5

√
n1 ∨ n2

p

µrσ1

n1 ∧ n2

6
3µrσ1Cv

√
(n1 ∨ n2)

(n1 ∧ n2)
√
C4

n1∨n2
(n1∧n2)2µ2r2κ2

+ 200× 103C3
5

√
n1 ∨ n2

C4
n1∨n2

(n1∧n2)2µ2r2κ2

µrσ1

n1 ∧ n2

=

(
3Cv√
C4

+
2× 105C3

5√
C4

)
σr.

And we also have

5‖Ω− pJ‖
p

− 0.3λ 6
5
√
n1 ∨ n2√
p

− 0.3C5

√
n1 ∨ n2

p
= (5− 0.3C5)

√
n1 ∨ n2

p

Therefore, by choosing C5 = 20, C4 = (3Cv + 1.6× 109)2/0.00042, we have

K2 +K3 60.0006

(∥∥∥∆XV
>
∥∥∥2

F
+
∥∥∥U∆>Y

∥∥∥2

F

)
+ 0.0004σr

(
‖∆X‖2F + ‖∆Y ‖2F

)
+ (5− 6)

√
n1 ∨ n2

p

(
n1∑
k=1

‖(∆X)k,·‖42 +

n2∑
k=1

‖(∆Y )k,·‖42

)

60.0006

(∥∥∥∆XV
>
∥∥∥2

F
+
∥∥∥U∆>Y

∥∥∥2

F

)
+ 0.0004σr

(
‖∆X‖2F + ‖∆Y ‖2F

)
.

By Proposition B.1.3, there holds∥∥∥U∆>Y

∥∥∥2

F
> σ2

r (U) ‖∆Y ‖2F = σr ‖∆Y ‖2F
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and ∥∥∥V∆>X

∥∥∥2

F
> σ2

r (V ) ‖∆X‖2F = σr ‖∆X‖2F .

Therefore

K2 +K3 60.001

(∥∥∥∆XV
>
∥∥∥2

F
+
∥∥∥U∆>Y

∥∥∥2

F

)
.(B.10)

B.1.2.4. Upper bounding right hand side of (B.8). First of all, we rewrite K1(θ) in terms of W

and ∆Z . Recall

Z =

X
Y

 , W =

U
V

 , and ∆Z =

∆X

∆Y

 = Z −W .

Therefore, we have∥∥∥ZZ> −WW>
∥∥∥2

F

=
∥∥∥∆ZW

> +W∆>Z + ∆Z∆>Z

∥∥∥2

F

=‖∆Z∆>Z‖2F + 2‖∆ZW
>‖2F + 2〈∆ZW

>,W∆>Z〉+ 4〈∆ZW
>,∆Z∆>Z〉

=‖∆>Z∆Z‖2F + 2〈∆>Z∆Z ,W
>W 〉+ 2〈∆>ZW ,W>∆Z〉+ 4〈∆>Z∆Z ,∆

>
ZW 〉.

(B.11)

Here we use the fact that 〈A,B〉 = trace(A>B) and trace is invariant under cyclic permutations.

By recalling the definition of K1(θ) in (B.9), (B.11) implies that

K1(θ) =− 1

2
‖∆>Z∆Z‖2F −

3

2
〈∆>Z∆Z ,W

>W 〉

− 3

2
〈∆>ZW ,W>∆Z〉 − 3〈∆>Z∆Z ,∆

>
ZW 〉.

(B.12)

Condition (B.7) implies

(B.13) Z>W = X>U + Y >V � 0.

This further implies that W>∆Z = W>Z − Z>Z is symmetric (this is a crucial step for the

analysis in [JGN+17] and [GJZ17]). This implies that

(B.14) 〈∆>ZW ,W>∆Z〉 = ‖∆>ZW ‖2F .
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Combining (B.14) with (B.12) we have

K1(θ) = −0.5‖∆>Z∆Z‖2F − 1.5〈∆>Z∆Z ,W
>W 〉 − 1.5‖∆>ZW ‖2F − 3〈∆>Z∆Z ,∆

>
ZW 〉.

Therefore, based on (B.10), we are able to upper bound the right hand side of (B.8) as following:

K1(θ) +K2(θ) +K3(θ) +K4(θ)

6− 0.5‖∆>Z∆Z‖2F − 1.5〈∆>Z∆Z ,W
>W 〉 − 1.5‖∆>ZW ‖2F − 3〈∆>Z∆Z ,∆

>
ZW 〉

+ 0.001

(∥∥∥∆XV
>
∥∥∥2

F
+
∥∥∥U∆>Y

∥∥∥2

F

)
+ |K4(θ)|.

Furthermore, there holds

(B.15) 〈∆>Z∆Z ,W
>W 〉 = trace(∆>Z∆ZW

>W ) = ‖W∆>Z‖2F >
∥∥∥∆XV

>
∥∥∥2

F
+
∥∥∥U∆>Y

∥∥∥2

F
.

Based on (B.15), we further have

K1(θ) +K2(θ) +K3(θ) +K4(θ)

6− 0.5‖∆>Z∆Z‖2F − 1.499〈∆>Z∆Z ,W
>W 〉 − 1.5‖∆>ZW ‖2F

− 3〈∆>Z∆Z ,∆
>
ZW 〉+ |K4(θ)|.

(B.16)

The fact Z>W � 0 from (B.13) further implies that

〈∆>Z∆Z ,W
>W 〉+ 〈∆>Z∆Z ,∆

>
ZW 〉 = 〈∆>Z∆Z ,Z

>W 〉 > 0,

in which we use the fact that the inner product of two PSD matrices is nonnegative. Then

K1(θ) +K2(θ) +K3(θ) +K4(θ)

6− 0.5‖∆>Z∆Z‖2F − 1.499
(
〈∆>Z∆Z ,W

>W 〉+ 〈∆>Z∆Z ,∆
>
ZW 〉

)
− 1.5‖∆>ZW ‖2F − 1.501〈∆>Z∆Z ,∆

>
ZW 〉+ |K4(θ)|

6− 0.5‖∆>Z∆Z‖2F − 1.5‖∆>ZW ‖2F − 1.501〈∆>Z∆Z ,∆
>
ZW 〉+ |K4(θ)|

6− 0.5‖∆>Z∆Z‖2F − 1.5‖∆>ZW ‖2F + 1.501‖∆>Z∆Z‖F ‖∆>ZW ‖F + |K4(θ)|.

(B.17)
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B.1.3. Completing the proof of Theorem 3.1.3. Recall that if ξ̂ is a local minimum of f̃ ,

there holds Kf̃ (ξ̂) > 0. By Lemma A.4.1, there holds

(B.18) K1(θ) +K2(θ) +K3(θ) +K4(θ) > 0.

Then (B.17) implies

0.5‖∆>Z∆Z‖2F + 1.5‖∆>ZW ‖2F − 1.501‖∆>Z∆Z‖F ‖∆>ZW ‖F 6 |K4(θ)|,

which gives

(B.19) ‖∆Z∆>Z‖F = ‖∆>Z∆Z‖F 6 3
√
|K4(θ)|, ‖∆>ZW ‖F 6 2

√
|K4(θ)|.

By (B.16) as well as (B.18), we have

1.499〈∆>Z∆Z ,W
>W 〉

6− 0.5‖∆>Z∆Z‖2F − 1.5‖∆>ZW ‖2F − 3〈∆>Z∆Z ,∆
>
ZW 〉+ |K4(θ)|

63‖∆>Z∆Z‖F ‖∆>ZW ‖F + |K4(θ)|

619|K4(θ)|.

Combining with (B.15) we have

(B.20)
∥∥∥∆XV

>
∥∥∥2

F
+
∥∥∥U∆>Y

∥∥∥2

F
6 13|K4(θ)|.

By (B.10) and (B.20), K2(θ) +K3(θ) +K4(θ) 6 2|K4(θ)|. By (B.18) and the definition of K1(θ)

in (B.9),

3

4
‖ZZ> −WW>‖2F 6

1

4
‖∆Z∆>Z‖2F +K2(θ) +K3(θ) +K4(θ) 6

17

4
|K4(θ)|.

The last inequality also use (B.19). Therefore, we are able to upper bound ‖ZZ> −WW>‖2F
in terms of |K4(θ)|. The only thing left over is to upper bound |K4(θ)|. Recall the fact that

∆Z =

∆X

∆Y

, then ‖∆X∆>Y ‖F 6 ‖∆Z∆>Z‖F . Therefore, by (B.19) and (B.20), and the definition
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of K4(θ) in (B.9), we have

|K4(θ)|

6
6

p
‖∆X∆>Y ‖F ‖P∆X

PΩ(N)P∆Y
‖F +

4

p
‖U∆>Y ‖F ‖PUPΩ(N)P∆Y

‖F

+
4

p
‖∆XV

>‖F ‖P∆X
PΩ(N)PV ‖F

6
100
√
|K4(θ)|
p

max{‖P∆X
PΩ(N)P∆Y

‖F , ‖PUPΩ(N)P∆Y
‖F , ‖P∆X

PΩ(N)PV ‖F }.

(B.21)

Due to the fact that U ,∆X ∈ Rn1×r and V ,∆Y ∈ Rn2×r, we can see that P∆X
PΩ(N)P∆Y

,

PUPΩ(N)P∆Y
and P∆X

PΩ(N)PV are matrices with rank at most r. Therefore,

max{‖P∆X
PΩ(N)P∆Y

‖F , ‖PUPΩ(N)P∆Y
‖F , ‖P∆X

PΩ(N)PV ‖F }

6
√
rmax{‖P∆X

PΩ(N)P∆Y
‖, ‖PUPΩ(N)P∆Y

‖, ‖P∆X
PΩ(N)PV ‖}

=
√
rϕ.

Where the last line follows from (B.6) and (3.7). Therefore, (B.21) gives

|K4(θ)| 6
100
√
|K4(θ)|r
p

ϕ.

Solve it we have

|K4(θ)| 6 104r

p2
ϕ2.

This implies

‖M − M̂‖2F = ‖XY > −UV >‖2F 6 ‖ZZ> −WW>‖2F 6
17

3
|K4(θ)| 6 6× 104r

p2
ϕ2.

Letting E3 = ECa3 ∩ Ev3 and C6 = 6× 104 finishes the proof.

B.2. Supporting proofs of Section B.1

B.2.1. Proof of Proposition B.1.3.

Proof. First, since M has SVD M =
∑r

i=1 σiuiv
>
i , we have

colspan([u1, . . . ,ur]) = colspan(M) and colspan([v1, . . . ,vr]) = rowspan(M)
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as well as

dim(colspan(M)) = dim(rowspan(M)) = r.

From (3.5), we also have

colspan(M) ⊂ colspan(U) and rowspan(M) ⊂ colspan(V ).

By the way we defineU and V , we have dim(colspan(U)) 6 r and dim(colspan(V )) 6 r. Therefore,

colspan(U) = colspan([u1, . . . ,ur]) and colspan(V ) = colspan([v1, . . . ,vr]).

From second equation in (3.5), U>U = V >V , therefore,

σi(U) =
√
λi(U>U) =

√
λi(V >V ) = σi(V ), i = 1, 2, . . . , r.

Moreover, suppose U>U = V >V = BD2B> be a fixed eigenvalue decomposition of U>U , with

B ∈ O(r) and D ∈ Rr×r diagonal matrix. Then the reduced SVD of U and V can be written as

U = AUDB
>, V = AVDB

>

with AU ∈ Rn1×r,AV ∈ Rn2×r satisfying A>UAU = I and A>VAV = I. Therefore, M =

UV > = AUD
2A>V . It is a reduced SVD of M by the way we define AU , AV and D. Therefore,

σ1(U) = σ1(V ) =
√
σ1, σr(U) = σr(V ) =

√
σr and

‖U‖22,∞ = ‖AUDB>‖22,∞ = ‖AUD‖22,∞ 6 ‖AU‖22,∞‖D‖2`∞ = σ1‖AU‖22,∞.

Moreover, there is RU ,RV ∈ O(r) such that AU = [u1, . . . ,ur]RU ,AV = [v1, . . . ,vr]RV .

Therefore,

‖U‖22,∞ 6 σ1‖AU‖22,∞ = σ1‖[u1, . . . ,ur]RU‖22,∞ = σ1‖[u1, . . . ,ur]‖22,∞ 6
µr

n1
σ1.

Similarly, we also have ‖V ‖22,∞ 6
µr
n2
σ1.

�
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B.3. Proof of Lemma 3.3.1

Proof. Recall Ũ and Ṽ are orthonormal basis matrices, P
Ũ

= ŨŨ>, P
Ṽ

= Ṽ Ṽ >. Therefore,

‖P
Ũ
PΩ(N)P

Ṽ
‖ = ‖ŨŨ>PΩ(N)Ṽ Ṽ >‖ = ‖Ũ>PΩ(N)Ṽ ‖.

The last equality uses the fact that Ũ and Ṽ are orthonormal basis matrices, therefore

‖ŨA‖ = ‖A‖, ‖BṼ >‖ = ‖B‖

for any A, B with suitable size.

Due to the fact that Ω follows from Model 2.5.1, entries of PΩ(N) can be written as [PΩ(N)]i,j =

δi,jNi,j , where δi,j ’s are i.i.d. Bernoulli random variables such that

δi,j =

 1 with probability p

0 with probability 1− p.

And Ni,j ’s are i.i.d. centered sub-exponential random variables. Moreover, δi,j ’s and Ni,j ’s are

mutually independent. Therefore,

‖P
Ũ
PΩ(N)P

Ṽ
‖ =‖Ũ>PΩ(N)Ṽ ‖

=

∥∥∥∥∥∥Ũ>
∑

i,j

δi,jNi,jeie
>
j

 Ṽ
∥∥∥∥∥∥

=

∥∥∥∥∥∥
∑
i,j

δi,jNi,jŨi,·Ṽ
>
j,·

∥∥∥∥∥∥ .
Now let

Qi,j := δi,jNi,j

 0 Ũi,·Ṽ
>
j,·

Ṽj,·Ũ
>
i,· 0

 .
Therefore,

‖P
Ũ
PΩ(N)P

Ṽ
‖ = ‖Ũ>PΩ(N)Ṽ ‖ =

∥∥∥∥∥∥
∑
i,j

Qi,j

∥∥∥∥∥∥
and E[Qi,j ] = 0. By following the symmetrization argument in [Wai19, Example 6.14], without

loss of generality, we can assume that Ni,j ’s are symmetric random variable, i.e., Ni,j
d
= −Ni,j .
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Now we want to verify the Bernstein’s condition [Wai19, Definition 6.10] for Qi,j ’s. For k > 3,

E
[
Qk
i,j

]
= E

δki,jNk
i,j

 0 Ũi,·Ṽ
>
j,·

Ṽj,·Ũ
>
i,· 0

k
 = pE[Nk

i,j ]

 0 Ũi,·Ṽ
>
j,·

Ṽj,·Ũ
>
i,· 0

k .
Due to the symmetry of Ni,j , E[Nk

i,j ] = 0 when k > 3 is odd, therefore, E[Qk
i,j ] = 0. For k > 2

even, we have 0 Ũi,·Ṽ
>
j,·

Ṽj,·Ũ
>
i,· 0

k =

 (Ũi,·Ṽ
>
j,· Ṽj,·Ũ

>
i,·)

k/2 0

0 (Ṽj,·Ũ
>
i,·Ũi,·Ṽ

>
j,· )

k/2



=‖Ũi,·‖k2‖Ṽj,·‖k2

 1

‖Ũi,·‖22
Ũi,·Ũ

>
i,· 0

0 1

‖Ṽj,·‖22
Ṽj,·Ṽ

>
j,·

 ,
which is a positive semidefinite matrix. And due to the fact that Ni,j ’s satisfy the Bernstein

condition, for k > 2,

E[Nk
i,j ] 6

1

2
k!ν2bk−2.

Therefore, for k > 3 even,

E
[
Qk
i,j

]
� 1

2
k!ν2bk−2p‖Ũi,·‖k2‖Ṽj,·‖k2

 1

‖Ũi,·‖22
Ũi,·Ũ

>
i,· 0

0 1

‖Ṽj,·‖22
Ṽj,·Ṽ

>
j,·

 .
And we also have

V [Qi,j ] =E
[
Q2
i,j

]
=pE[N2

i,j ]

 0 Ũi,·Ṽ
>
j,·

Ṽj,·Ũ
>
i,· 0

2

=pν2‖Ũi,·‖22‖Ṽj,·‖22

 1

‖Ũi,·‖22
Ũi,·Ũ

>
i,· 0

0 1

‖Ṽj,·‖22
Ṽj,·Ṽ

>
j,·

 .
Therefore, for k > 3,

E
[
Qk
i,j

]
� 1

2
k!bk−2‖Ũi,·‖k−2

2 ‖Ṽj,·‖k−2
2 V [Qi,j ] .
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Therefore, Qi,j satisfies Bernstein condition with parameter b‖Ũi,·‖2‖Ṽj,·‖2 6 b
√

µ
Ũ
µ
Ṽ
s1s2

n1n2
. Fur-

thermore,

1

n1n2

∥∥∥∥∥∥
∑

(i,j)∈[n1]×[n2]

V [Qi,j ]

∥∥∥∥∥∥ =
1

n1n2
pν2

∥∥∥∥∥∥
∑

(i,j)∈[n1]×[n2]

 ‖Ṽj,·‖22Ũi,·Ũ>i,· 0

0 ‖Ũi,·‖22Ṽj,·Ṽ >j,·

∥∥∥∥∥∥
=

1

n1n2
pν2

∥∥∥∥∥∥
 ‖Ṽ ‖2F Ũ>Ũ 0

0 ‖Ũ‖2F Ṽ >Ṽ

∥∥∥∥∥∥
6

1

n1n2
pν2(s1 + s2).

Where the last equality uses the fact that Ũ>Ũ = I, Ṽ >Ṽ = I. Then by [Wai19, Theorem 6.17],

for all t > 0,

P

 1

n1n2

∥∥∥∥∥∥
∑
i,j

Qi,j

∥∥∥∥∥∥ > t
 6 2(n1 + n2) exp

− n1n2t
2

2
(

1
n1n2

pν2(s1 + s2) + b
√

µ
Ũ
µ
Ṽ
s1s2

n1n2
t
)
 .

Therefore, by choosing t as

t = Cw
1

n1n2

(√
pν2(s1 + s2) log(n1 + n2) + b

√
µ
Ũ
µ
Ṽ
s1s2

n1n2
log(n1 + n2)

)
with absolute constant Cw sufficiently large, say Cw = 10, then

P

∥∥∥∥∥∥
∑
i,j

Qi,j

∥∥∥∥∥∥ > Cw
(√

pν2(s1 + s2) log(n1 + n2) + b

√
µ
Ũ
µ
Ṽ
s1s2

n1n2
log(n1 + n2)

)
6(n1 + n2)−3.

Using the fact that

‖P
Ũ
PΩ(N)P

Ṽ
‖ =

∥∥∥∥∥∥
∑
i,j

Qi,j

∥∥∥∥∥∥
finishes the proof. �
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APPENDIX C

Supporting Proofs of Chapter 4

C.1. Proof of Lemma 4.2.1

For the proof, we mainly follow the technical framework introduced by [MWCC18] and extend

their result to the rectangular case. Within the proof, we employ Lemma 4.4 from [CL19] as well

as Lemma 9 from [ZL16] (Lemma C.1.1 here) to simplify the proof, and get a weaker assumption

(4.13) (here) comparing to equation (63a) in [MWCC18, Lemma 7] by a factor of log(n1 ∨ n2).

Proof. For the Hessian, we can compute as [GLM16,GJZ17,ZLTW17] did and have

vec

 DX

DY

>∇2f(X,Y ) vec

 DX

DY


=

2

p
〈PΩ(XY > −UV >),PΩ(DXD

>
Y )〉+

1

p

∥∥∥PΩ(DXY
> +XD>Y )

∥∥∥2

F

+
1

2
〈X>X − Y >Y ,D>XDX −D>YDY 〉+

1

4

∥∥∥D>XX +X>DX − Y >DY −D>Y Y
∥∥∥2

F
.

First we consider the population level, i.e.,

E

vec

 DX

DY

>∇2f(X,Y ) vec

 DX

DY


 .
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Denoting ∆X := X −U ,∆Y := Y − V , and using similar decomposition as in (4.29) and (4.31),

we have

E

vec

 DX

DY

>∇2f(X,Y ) vec

 DX

DY




=2〈∆XV
> +U∆>Y + ∆X∆>Y ,DXD

>
Y 〉+

∥∥∥DXV
> +DX∆>Y +UD>Y + ∆XD

>
Y

∥∥∥2

F

+
1

2
〈U>∆X + ∆>XU + ∆>X∆X −∆>Y V − V >∆Y −∆>Y ∆Y ,D

>
XDX −D>YDY 〉

+
1

4

∥∥∥D>XU +D>X∆X +U>DX + ∆>XDX − V >DY −∆>YDY −D>Y V −D>Y ∆Y

∥∥∥2

F

=
∥∥∥DXV

> +UD>Y

∥∥∥2

F
+

1

4

∥∥∥D>XU +U>DX − V >DY −D>Y V
∥∥∥2

F
+ E1.

(C.1)

Here we use the fact that U>U = V >V , and E1 contains terms with ∆X ’s and ∆Y ’s, i.e.,

E1

=2〈∆XV
> +U∆>Y + ∆X∆>Y ,DXD

>
Y 〉+

∥∥∥DX∆>Y + ∆XD
>
Y

∥∥∥2

F

+ 2〈∆XD
>
Y +DX∆>Y ,DXV

> +UD>Y 〉

+
1

2
〈U>∆X + ∆>XU + ∆>X∆X −∆>Y V − V >∆Y −∆>Y ∆Y ,D

>
XDX −D>YDY 〉

+
1

2
〈D>X∆X + ∆>XDX −∆>YDY −D>Y ∆Y ,D

>
XU +U>DX − V >DY −D>Y V 〉

+
1

4

∥∥∥D>X∆X + ∆>XDX −∆>YDY −D>Y ∆Y

∥∥∥2

F
.
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Multiplying terms through we have

E

vec

 DX

DY

>∇2f(X,Y ) vec

 DX

DY




=
∥∥∥DXV

>
∥∥∥2

F
+
∥∥∥UD>Y ∥∥∥2

F
+

1

2

∥∥∥D>XU∥∥∥2

F

+
1

2

∥∥∥V >DY

∥∥∥2

F
− 〈D>XU ,D>Y V 〉+

1

2
〈D>XU ,U>DX〉

+
1

2
〈D>Y V ,V >DY 〉+ 〈D>XU ,V >DY 〉+ E1

=
∥∥∥DXV

>
∥∥∥2

F
+
∥∥∥UD>Y ∥∥∥2

F
+

1

2

∥∥∥D>XU −D>Y V ∥∥∥2

F

+
1

2
〈U>DX + V >DY ,D

>
XU +D>Y V 〉+ E1.

Now for the fourth term, we split U as U −X2 +X2, V as V − Y2 + Y2, and plug it back. Then

we have

E

vec

 DX

DY

>∇2f(X,Y ) vec

 DX

DY




=
∥∥∥DXV

>
∥∥∥2

F
+
∥∥∥UD>Y ∥∥∥2

F
+

1

2

∥∥∥D>XU −D>Y V ∥∥∥2

F

+
1

2
〈X>2 DX + Y >2 DY ,D

>
XX2 +D>Y Y2〉+ E1 + E2,

where E2 contains terms with U −X2’s and V − Y2’s, i.e.,

E2

=
1

2
〈(U −X2)>DX + (V − Y2)>DY ,D

>
XX2 +D>Y Y2〉

+
1

2
〈X>2 DX + Y >2 DY ,D

>
X(U −X2) +D>Y (V − Y2)〉

+
1

2
〈(U −X2)>DX + (V − Y2)>DY ,D

>
X(U −X2) +D>Y (V − Y2)〉.
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By the way we define R̂ in (4.14),

 X2

Y2

>  DX

DY

 is symmetric. Using this fact we have

E

vec

 DX

DY

>∇2f(X,Y ) vec

 DX

DY




=
∥∥∥DXV

>
∥∥∥2

F
+
∥∥∥UD>Y ∥∥∥2

F
+

1

2

∥∥∥D>XU −D>Y V ∥∥∥2

F
+

1

2

∥∥∥X>2 DX + Y >2 DY

∥∥∥2

F
+ E1 + E2.

(C.2)

For E1 + E2, by the way we define them, we have the following bound:

|E1 + E2|

69[(‖U −X2‖+ ‖V − Y2‖)(‖X2‖+ ‖Y2‖) + (‖U −X2‖+ ‖V − Y2‖)2

+ (‖∆X‖+ ‖∆Y ‖)(‖U‖+ ‖V ‖) + (‖∆X‖+ ‖∆Y ‖)2]× (‖DX‖2F + ‖DY ‖2F ).

From the assumption, ∥∥∥∥∥∥
 X2 −U

Y2 − V

∥∥∥∥∥∥ 6 1

500κ

√
σ1(M),

∥∥∥∥∥∥
 X −U
Y − V

∥∥∥∥∥∥
2,∞

6
1

500κ
√
n1 + n2

√
σ1(M),

and ∥∥∥∥∥∥
 X −U
Y − V

∥∥∥∥∥∥ 6
∥∥∥∥∥∥
 X −U
Y − V

∥∥∥∥∥∥
F

6
√
n1 + n2

∥∥∥∥∥∥
 X −U
Y − V

∥∥∥∥∥∥
2,∞

6
1

500κ

√
σ1(M),

therefore we have

(C.3) |E1 + E2| 6
1

5
σr(M)

∥∥∥∥∥∥
 DX

DY

∥∥∥∥∥∥
2

F

.
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Now we start to consider the difference between population level and empirical level, comparing

with (C.1):

vec

 DX

DY

>∇2f(X,Y ) vec

 DX

DY



− E

vec

 DX

DY

>∇2f(X,Y ) vec

 DX

DY




= 1 + 2 + 3 + 4 ,

where D(·, ·) denotes the difference between population level and empirical level, i.e.,

D(AC>,BD>) :=
1

p
〈PΩ(AC>),PΩ(BD>)〉 − 〈AC>,BD>〉.(C.4)

And

1 :=2D(∆XV
>,DXD

>
Y ) + 2D(U∆>Y ,DXD

>
Y ) + 2D(∆X∆>Y ,DXD

>
Y )

+ 2D(DX∆>Y ,UD
>
Y ) + +2D(DXV

>,∆XD
>
Y )2D(DX∆>Y ,∆XD

>
Y ),

2 :=D(DXV
>,DXV

>) +D(UD>Y ,UD
>
Y ) + 2D(DXV

>,UD>Y ),

3 := D(DX∆>Y ,DX∆>Y ) +D(∆XD
>
Y ,∆XD

>
Y ),

4 := 2D(DXV
>,DX∆>Y ) + 2D(UD>Y ,∆XD

>
Y ).

Now for terms with different circled numbers, we deal with them with different bounds. First, for

1 , we apply Lemma 2.3.5. Therefore,

| 1 |

6
2‖Ω− pJ‖

p
‖∆X‖2,∞‖V ‖2,∞‖DX‖F ‖DY ‖F +

2‖Ω− pJ‖
p

‖∆Y ‖2,∞‖U‖2,∞‖DX‖F ‖DY ‖F

+
2‖Ω− pJ‖

p
‖∆X‖2,∞‖∆Y ‖2,∞‖DX‖F ‖DY ‖F +

2‖Ω− pJ‖
p

‖∆X‖2,∞‖V ‖2,∞‖DX‖F ‖DY ‖F

+
2‖Ω− pJ‖

p
‖∆Y ‖2,∞‖U‖2,∞‖DX‖F ‖DY ‖F +

2‖Ω− pJ‖
p

‖∆X‖2,∞‖∆Y ‖2,∞‖DX‖F ‖DY ‖F .
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Using Lemma 4.3.2 and using the fact that∥∥∥∥∥∥
 X −U
Y − V

∥∥∥∥∥∥
2,∞

6
1

500κ
√
n1 + n2

√
σ1(M),

if

p > C13
µr log(n1 ∨ n2)

n1 ∧ n2
,

we have

(C.5) | 1 | 6 12C13

√
µrκ

p

1

κ
√
n1 + n2

σ1(M)(‖DX‖2F + ‖DY ‖2F ).

For 2 , we apply Lemma A.4.2. Therefore,

| 2 | =|D(DXV
>,DXV

>) +D(UD>Y ,UD
>
Y ) + 2D(DXV

>,UD>Y )|

=|D(DXV
> +UD>Y ,DXV

> +UD>Y )|

60.1‖DXV
> +UD>Y ‖2F

(C.6)

given

p > CCa
µr log(n1 ∨ n2)

n1 ∧ n2
.

For 3 , we need the following lemma:

Lemma C.1.1 ( [ZL16, Lemma 9]). If p > C12
log(n1∨n2)
n1∧n2

for some absolute constant C12, then on

an event EZ with probability P[EZ ] > 1− (n1 + n2)−11, uniformly for all matrices A ∈ Rn1×r,B ∈

Rn2×r,

p−1
∥∥∥PΩ(AB>)

∥∥∥2

F
62(n1 ∨ n2) min

{
‖A‖2F ‖B‖22,∞, ‖A‖22,∞‖B‖2F

}
holds.
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In order to apply Lemma C.1.1 in our case, note

‖AB>‖2F =
∑
i,j

〈Ai,·,Bj,·〉2

6
∑
i,j

‖Ai,·‖22‖Bj,·‖22

6(n1 ∨ n2) min
{
‖A‖2F ‖B‖22,∞, ‖A‖22,∞‖B‖2F

}
.

Therefore, by triangle inequality,

|D(AB>,AB>)| 63(n1 ∨ n2) min
{
‖A‖2F ‖B‖22,∞, ‖A‖22,∞‖B‖2F

}
.

So we have

| 3 | 63(n1 ∨ n2)‖DX‖2F ‖∆Y ‖22,∞ + 3(n1 ∨ n2)‖DY ‖2F ‖∆X‖22,∞.

Using the fact that ∥∥∥∥∥∥
 X −U
Y − V

∥∥∥∥∥∥
2,∞

6
1

500κ
√
n1 + n2

√
σ1(M),

we further have

| 3 | 63(n1 ∨ n2)
1

250000κ2(n1 + n2)
× σ1(M)(‖DX‖2F + ‖DY ‖2F ).(C.7)

Finally, for 4 , by triangle inequality,

|D(DXV
>,DX∆>Y )|

=|p−1〈PΩ(DXV
>),PΩ(DX∆>Y )〉 − 〈DXV

>,DX∆>Y 〉|

6
√
p−1‖PΩ(DXV >)‖2F

√
p−1‖PΩ(DX∆>Y )‖2F + |〈DXV

>,DX∆>Y 〉|.

Now by applying Lemma C.1.1 and Lemma A.4.2 we have

|D(DXV
>,DX∆>Y )|

6
√

2(n1 ∨ n2)‖DX‖2F ‖∆Y ‖22,∞
√

(1 + 0.1)‖DXV >‖2F + ‖V ‖‖∆Y ‖‖DX‖2F

6
√

3(n1 ∨ n2)‖∆Y ‖2,∞‖V ‖‖DX‖2F + ‖V ‖‖∆Y ‖‖DX‖2F .
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Similarly, we also have

|D(UD>Y ,∆XD
>
Y )| 6

√
3(n1 ∨ n2)‖∆X‖2,∞‖U‖‖DY ‖2F + ‖U‖‖∆X‖‖DY ‖2F .

Using the fact that ∥∥∥∥∥∥
 X −U
Y − V

∥∥∥∥∥∥ 6 1

500κ

√
σ1(M).

Therefore,

| 4 |

62
√

3(n1 ∨ n2)‖∆Y ‖2,∞‖V ‖‖DX‖2F + 2‖V ‖‖∆Y ‖‖DX‖2F

+ 2
√

3(n1 ∨ n2)‖∆X‖2,∞‖U‖‖DY ‖2F + 2‖U‖‖∆X‖‖DY ‖2F

62
√

3(n1 ∨ n2)
1

500κ
√
n1 + n2

× σ1(M)(‖DX‖2F + ‖DY ‖2F )

+
2

500κ
σ1(M)(‖DX‖2F + ‖DY ‖2F ).

(C.8)

Putting the estimation for 1 , 2 , 3 and 4 together, i.e., (C.5), (C.6), (C.7), (C.8), if

p > (CCa + C12 + C13)
µr log(n1 ∨ n2)

n1 ∧ n2
,

then

∣∣∣∣∣∣∣vec

 DX

DY

>∇2f(X,Y ) vec

 DX

DY

− E

vec

 DX

DY

>∇2f(X,Y ) vec

 DX

DY



∣∣∣∣∣∣∣

612C13

√
µrκ

p

1

κ
√
n1 + n2

σ1(M)(‖DX‖2F + ‖DY ‖2F ) + 0.1‖DXV
> +UD>Y ‖2F

+ 3(n1 ∨ n2)
1

250000κ2(n1 + n2)
σ1(M)(‖DX‖2F + ‖DY ‖2F )

+ 2
√

3(n1 ∨ n2)
1

500κ
√
n1 + n2

σ1(M)(‖DX‖2F + ‖DY ‖2F ) +
2

500κ
σ1(M)(‖DX‖2F + ‖DY ‖2F )

holds on an event EH = ES
⋂
ECa

⋂
EZ with probability P[EH ] = P[ES

⋂
ECa

⋂
EZ ] > 1− 3(n1 +

n2)−11. If in addition

p > 14400C2
13

µrκ

n1 ∧ n2
,
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then

∣∣∣∣∣∣∣vec

 DX

DY

>∇2f(X,Y ) vec

 DX

DY

− E

vec

 DX

DY

>∇2f(X,Y ) vec

 DX

DY



∣∣∣∣∣∣∣

6
1

5
σr(M)(‖DX‖2F + ‖DY ‖2F ) +

1

5
(‖DXV

>‖2F + ‖UD>Y ‖2F ).

(C.9)

Now by putting (C.2), (C.3), (C.9) together, we have

vec

 DX

DY

>∇2f(X,Y ) vec

 DX

DY


>
∥∥∥DXV

>
∥∥∥2

F
+
∥∥∥UD>Y ∥∥∥2

F
− 1

5
σr(M)(‖DX‖2F + ‖DY ‖2F )

− 1

5
σr(M)(‖DX‖2F + ‖DY ‖2F )− 1

5
(‖DXV

>‖2F + ‖UD>Y ‖2F )

>
1

5
σr(M)(‖DX‖2F + ‖DY ‖2F ),

where the last inequality we use the fact that ‖DXV
>‖2F > σ2

r (V )‖DX‖2F = σr(M)‖DX‖2F and

also ‖UD>Y ‖2F > σr(M)‖DY ‖2F . For the upper bound, we also have

vec

 DX

DY

>∇2f(X,Y ) vec

 DX

DY


6
∥∥∥DXV

>
∥∥∥2

F
+
∥∥∥UD>Y ∥∥∥2

F
+

1

2

∥∥∥D>XU −D>Y V ∥∥∥2

F
+

1

2

∥∥∥X>2 DX + Y >2 DY

∥∥∥2

F

+
1

5
σr(M)(‖DX‖2F + ‖DY ‖2F ) +

1

5
σr(M)(‖DX‖2F + ‖DY ‖2F ) +

1

5
(‖DXV

>‖2F + ‖UD>Y ‖2F )

6
6

5
σ1(M)(‖DX‖2F + ‖DY ‖2F ) + ‖D>XU‖2F + ‖D>Y V ‖2F + ‖X>2 DX‖2F + ‖Y >2 DY ‖2F

+
2

5
σr(M)(‖DX‖2F + ‖DY ‖2F )

6
13

5
σ1(M)(‖DX‖2F + ‖DY ‖2F ) + ‖X2‖2‖DX‖2F + ‖Y2‖2‖DY ‖2F

65σ1(M)(‖DX‖2F + ‖DY ‖2F ),
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where the last inequality we use the fact that∥∥∥∥∥∥
 X2 −U

Y2 − V

∥∥∥∥∥∥ 6 1

500κ

√
σ1(M).

Choosing CS1 = CCa + C12 + C13 + 14400C2
13 finishes the proof. �

C.2. Proof of Lemma 4.2.2

In this section we first summarize some useful lemmas from [MWCC18]. We then follow the

technical framework in [MWCC18] but replace [MWCC18, Lemma 39] with [Che15, Lemma 2]

(Lemma 4.2.3 here) to get a better initialization guarantee.

C.2.1. Useful lemmas. Here we summarize some useful lemmas in [AFWZ17] as well as

[MWCC18]. We relax the PSD assmptions on M1 in Lemma C.2.2, Lemma C.2.3 and Lemma

C.2.4 to symmetric assumptions by following the proof framework introduced in [MWCC18].

In fact, lemmas listed in this section can be derived from Davis-Kahan SinΘ theorem [DK70].

We summarize lemmas here since they are intensively used throughout the proof. Moreover,

for the simplicity of the expression, we made some additional assumptions on the eignevalues

of M1 within the following lemmas (i.e., λr(M1) > 0, λr(M1) > λr+1(M1), λr+1(M1) = 0 and

λ1(M1) = −λn(M1)), the results still hold (with a more complicated expression) without those

extra assumptions. Recall that here λ1(A) > λ2(A) > · · · > λn(A) stands for eigenvalues of

symmetric matrix A ∈ Rn×n.

First, we need a specified version of [AFWZ17, Lemma 3]:

Lemma C.2.1 ( [AFWZ17, Lemma 3]). Let M1,M2 ∈ Rn×n be two symmetric matrices with

top-r eigenvalue decomposition Ũ1Λ1Ũ
>
1 and Ũ2Λ2Ũ

>
2 correspondingly. Then if λr(M1) > 0,

λr(M1) > λr+1(M1) and

‖M1 −M2‖ 6
1

4
min(λr(M1), λr(M1)− λr+1(M1)),

we have

‖Ũ>1 Ũ2 − sgn(Ũ>1 Ũ2)‖ 64
‖M1 −M2‖2

min{λr(M1), λr(M1)− λr+1(M1)}2

152



and

‖(Ũ>1 Ũ2)−1‖ 6 2.

And we also need some useful lemmas from [MWCC18]:

Lemma C.2.2 ( [MWCC18, Lemma 45]). Let M1,M2 ∈ Rn×n be symmetric matrices with

top-r eigenvalue decomposition Ũ1Λ1Ũ
>
1 and Ũ2Λ2Ũ

>
2 correspondingly. Assume λr(M1) > 0,

λr+1(M1) = 0 and ‖M1 −M2‖ 6 1
4λr(M1). Denote

Q̃ := argmin
R∈O(r)

‖Ũ2R− Ũ1‖F .

Then

‖Ũ2Q̃− Ũ1‖ 6
3

λr(M1)
‖M1 −M2‖.

Lemma C.2.3 ( [MWCC18, Lemma 46]). Let M1,M2,M3 ∈ Rn×n be symmetric matrices

with top-r eigenvalue decomposition Ũ1Λ1Ũ
>
1 , Ũ2Λ2Ũ

>
2 and Ũ3Λ3Ũ

>
3 correspondingly. Assume

λ1(M1) = −λn(M1), λr(M1) > 0, λr+1(M1) = 0 and ‖M1 −M2‖ 6 1
4λr(M1), ‖M1 −M3‖ 6

1
4λr(M1). Denote

Q̃ := argmin
R∈O(r)

‖Ũ2R− Ũ3‖F .

Then

‖Λ1/2
2 Q̃− Q̃Λ

1/2
3 ‖ 6 15

λ1(M1)

λ
3/2
r (M1)

‖M2 −M3‖

and

‖Λ1/2
2 Q̃− Q̃Λ

1/2
3 ‖F 6 15

λ1(M1)

λ
3/2
r (M1)

‖(M2 −M3)Ũ2‖F .

Lemma C.2.4 ( [MWCC18, Lemma 47]). Let M1,M2 ∈ Rn×n be symmetric matrices with top-

r eigenvalue decomposition Ũ1Λ1Ũ
>
1 and Ũ2Λ2Ũ

>
2 correspondingly. Assume λ1(M1) = −λn(M1),

λr(M1) > 0, λr+1(M1) = 0 and

‖M1 −M2‖ 6
1

40

λ
5/2
r (M1)

λ
3/2
1 (M1)

.
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Denote X1 = Ũ1Λ
1/2
1 and X2 = Ũ2Λ

1/2
2 and define

Q̃ := argmin
R∈O(r)

‖Ũ2R− Ũ1‖F

and

H := argmin
R∈O(r)

‖X2R−X1‖F .

Then

‖Q̃−H‖ 6 15
λ

3/2
1 (M1)

λ
5/2
r (M1)

‖M1 −M2‖

holds.

C.2.2. Proof. In this subsection, we will follow the technical framework in [MWCC18]:

First we give an upper bound of ‖1
pPΩ(M) −M‖, and then prove Lemma 4.2.2 by applying the

lemmas introduced in Section C.2.1. As claimed before, here we replace [MWCC18, Lemma 39]

with [Che15, Lemma 2] to give an upper bound of ‖1
pPΩ(M) −M‖ and obtain a tighter error

bound of the initializations.

Define the symmetric matrix

(C.10) M :=

 0 M

M> 0

 .
The SVD M = ŨΣṼ > implies the following eigenvalue decomposition of M :

M =
1√
2

 Ũ Ũ

Ṽ −Ṽ

 Σ 0

0 −Σ

 1√
2

 Ũ Ũ

Ṽ −Ṽ

> .
From the eigenvalue decomposition, we can see λ1(M) = σ1(M), · · · , λr(M) = σr(M), λr+1(M) =

0, · · · , λn1+n2−r(M) = 0, λn1+n2−r+1(M) = −σr(M), · · · , λn1+n2(M) = −σ1(M). At the same

time, we define

1

p
PΩ(M) =

 0 1
pPΩ(M)

1
pPΩ(M)> 0
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with

Ω := {(i, j) |1 6 i, j 6 n1 + n2, (i, j − n1) ∈ Ω or (j, i− n1) ∈ Ω}.

Applying Lemma 4.2.3 on M here, then∥∥∥∥1

p
PΩ(M)−M

∥∥∥∥
6C14

(
log(n1 + n2)

p
‖M‖`∞ +

√
log(n1 + n2)

p
‖M‖2,∞

)

6C14

(
log(n1 + n2)

p
‖U‖2,∞‖V ‖2,∞ +

√
log(n1 + n2)

p
(‖U‖‖V ‖2,∞ ∨ ‖V ‖‖U‖2,∞)

)

62C14

(
µrκ log(n1 ∨ n2)

(n1 ∧ n2)p
+

√
µrκ log(n1 ∨ n2)

(n1 ∧ n2)p

)
σ1(M)

64C14

√
µrκ log(n1 ∨ n2)

(n1 ∧ n2)p
σ1(M)

(C.11)

holds on an event ECh1 with probability P[ECh1] > 1 − (n1 + n2)−11. The last inequality holds

given

p >
µrκ log(n1 ∨ n2)

n1 ∧ n2
.

In addition if

p > 25600C2
14

µrκ6 log(n1 ∨ n2)

n1 ∧ n2
,

we have

(C.12)

∥∥∥∥1

p
PΩ(M)−M

∥∥∥∥ 6 1

40
√
κ

3σr(M) 6
1

4
σr(M)

holds on an event ECh1.

For the simplicity of notations, we denote M
0

as

(C.13) M
0

:=

 0 M0

(M0)> 0

 ,
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and denote M
0,(l)

as

(C.14) M
0,(l)

:=

 0 M0,(l)

(M0,(l))> 0

 .
M0 and M0,(l) are defined in (4.2) and (4.5), correspondingly.

Again by Lemma 4.2.3, we can see on an event ECh1, for all 1 6 l 6 n1 + n2,

∥∥∥M0,(l) −M
∥∥∥ 6 4C14

√
µrκ log(n1 ∨ n2)

(n1 ∧ n2)p
σ1(M).

If

p > 25600C2
14

µrκ6 log(n1 ∨ n2)

n1 ∧ n2
,

we also have

(C.15)
∥∥∥M0,(l) −M

∥∥∥ 6 1

40
√
κ

3σr(M) 6
1

4
σr(M).

Now assume M0 has SVD ADB>, then by construction, M
0

have following eigendecomposi-

tion:

M
0

=
1√
2

 A A

B −B

 D 0

0 −D

 1√
2

 A A

B −B

> .
So if X̃0Σ0(Ỹ 0)> is the top-r singular value decomposition of M0, we can also have

1√
2

 X̃0

Ỹ 0

Σ0 1√
2

 X̃0

Ỹ 0

>

to be the top-r eigenvalue decomposition of M
0
. So by Weyl’s inequality and (C.12), we have

(C.16)
3

4
σr(M) 6 σr(Σ

0) 6 σ1(Σ0) 6 2σ1(M).

Similarly, the same arguments also applies for M
0,(l)

. From Weyl’s inequality and (C.15), we have

(C.17)
3

4
σr(M) 6 σr(Σ

0,(l)) 6 σ1(Σ0,(l)) 6 2σ1(M).
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Now let X0 := X̃0(Σ0)1/2,Y 0 := Ỹ 0(Σ0)1/2, X0,(l) := X̃0,(l)(Σ0,(l))1/2, and

Y 0,(l) := Ỹ 0,(l)(Σ0,(l))1/2,

where M0,(l) has top-r singular value decomposition X̃0,(l)Σ0,(l)(Ỹ 0,(l))>. Let

W̃ :=
1√
2

 Ũ
Ṽ

 , W :=
1√
2

 U
V

 ,

Z̃0 :=
1√
2

 X̃0

Ỹ 0

 , Z0 :=
1√
2

 X0

Y 0

 ,
and also we can denote

(C.18) Z̃0,(l) :=
1√
2

 X̃0,(l)

Ỹ 0,(l)

 , Z0,(l) :=
1√
2

 X0,(l)

Y 0,(l)

 .
Moreover, define

Q0 := argmin
R∈O(r)

∥∥∥Z̃0R− W̃
∥∥∥
F
,

Q0,(l) := argmin
R∈O(r)

∥∥∥Z̃0,(l)R− W̃
∥∥∥
F
.

C.2.2.1. Proof for (4.16). For spectral norm, by triangle inequality, we have∥∥Z0R0 −W
∥∥

=
∥∥∥Z̃0(Σ0)1/2(R0 −Q0) + Z̃0

(
(Σ0)1/2Q0 −Q0Σ1/2

)
+
(
Z̃0Q0 − W̃

)
Σ1/2

∥∥∥
6‖(Σ0)1/2‖

∥∥R0 −Q0
∥∥+ ‖(Σ0)1/2Q0 −Q0Σ1/2‖+ ‖Σ1/2‖

∥∥∥Z̃0Q0 − W̃
∥∥∥ .

(C.19)

Now applying Lemma C.2.4 with M1 = M ,M2 = M
0
, we have

(C.20) ‖R0 −Q0‖ 6 15

√
κ

3

σr(M)
‖M −M0‖;

applying Lemma C.2.3 with M1 = M2 = M ,M3 = M
0
, we have

(C.21) ‖(Σ0)1/2Q0 −Q0Σ1/2‖ 6 15
κ√

σr(M)
‖M −M0‖;
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finally, applying Lemma C.2.2 with M1 = M ,M2 = M
0
, we have

(C.22)
∥∥∥Z̃0Q0 − W̃

∥∥∥ 6 3

σr(M)
‖M −M0‖.

Plugging the estimations (C.20), (C.21) and (C.22) back to (C.19), and using (C.16) and (C.17),∥∥∥∥∥∥
 X0

Y 0

R0 −

 U
V

∥∥∥∥∥∥
=
√

2
∥∥Z0R0 −W

∥∥
630

(√
σ1(M)κ3

σr(M)
+

κ√
σr(M)

+

√
σ1(M)

σr(M)

)
‖M −M0‖

6360C14

√
µrκ6 log(n1 ∨ n2)

(n1 ∧ n2)p

√
σ1(M)

(C.23)

holds. For the last inequality we use the estimation (C.11).

C.2.2.2. Proof for (4.17). Now we start to consider the bound of∥∥∥∥∥∥∥
 X0,(l)

Y 0,(l)

R0,(l) −

 U
V


l,·

∥∥∥∥∥∥∥
2

.

By triangle inequality,∥∥∥∥(Z0,(l)R0,(l) −W
)
l,·

∥∥∥∥
2

=

∥∥∥∥(Z0,(l)R0,(l) −Z0,(l)Q0,(l) +Z0,(l)Q0,(l) −W
)
l,·

∥∥∥∥
2

6

∥∥∥∥(Z0,(l)Q0,(l) −W
)
l,·

∥∥∥∥
2

+
∥∥∥(Z

0,(l)
l,· )>(R0,(l) −Q0,(l))

∥∥∥
2
.

(C.24)

First we give a bound of the first term. Note

W = W̃Σ1/2 = W̃ΣW̃>W̃Σ−1/2 = MW̃Σ−1/2,
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where the last equality holds since

MW̃

=
1√
2

 Ũ Ũ

Ṽ −Ṽ

 Σ 0

0 −Σ

 1√
2

 Ũ Ũ

Ṽ −Ṽ

> 1√
2

 Ũ
Ṽ



=
1√
2

 Ũ
Ṽ

Σ
1√
2

 Ũ
Ṽ

> 1√
2

 Ũ
Ṽ

+
1√
2

 Ũ

−Ṽ

 (−Σ)
1√
2

 Ũ

−Ṽ

> 1√
2

 Ũ
Ṽ


=W̃ΣW̃>W̃ ,

the last equality uses the fact that Ũ>Ũ = I = Ṽ >Ṽ . Similarly, we also have

Z0,(l) = Z̃0,(l)(Σ0,(l))1/2 = M
0,(l)
Z̃0,(l)(Σ0,(l))−1/2.

By the way we define M
0,(l)

and M in (C.14) and (C.10), M
0,(l)
l,· = M l,·. By triangle inequality

we have ∥∥∥∥(Z0,(l)Q0,(l) −W
)
l,·

∥∥∥∥
2

=

∥∥∥∥(M0,(l)
Z̃0,(l)(Σ0,(l))−1/2Q0,(l) −MW̃Σ−1/2

)
l,·
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2

=
∥∥∥(M l,·)

>
(
Z̃0,(l)(Σ0,(l))−1/2Q0,(l) − W̃Σ−1/2

)∥∥∥
2

=
∥∥∥(M l,·)

>
(
Z̃0,(l)

[
(Σ0,(l))−1/2Q0,(l) −Q0,(l)Σ−1/2

]
+
[
Z̃0,(l)Q0,(l) − W̃

]
Σ−1/2

)∥∥∥
2

6‖M l,·‖2

(
‖(Σ0,(l))−1/2Q0,(l) −Q0,(l)Σ−1/2‖+ ‖Z̃0,(l)Q0,(l) − W̃ ‖ 1√

σr(M)

)
.

(C.25)

By Lemma C.2.2 with M1 = M ,M2 = M
0,(l)

, we have

(C.26) ‖Z̃0,(l)Q0,(l) − W̃ ‖ 6 3

σr(M)
‖M −M0,(l)‖.
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By Lemma C.2.3 with M1 = M3 = M ,M2 = M
0,(l)

, we have

‖(Σ0,(l))−1/2Q0,(l) −Q0,(l)Σ−1/2‖

=
∥∥∥(Σ0,(l))−1/2

(
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)
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∥∥∥
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6
20

σr(M)

κ√
σr(M)

‖M −M0,(l)‖.

(C.27)

The last inequality uses the fact that σr(Σ
0,(l)) > 3

4σr(M).

Putting estimations (C.26) and (C.27) together and plugging back to (C.25) we have∥∥∥∥(Z0,(l)Q0,(l) −W
)
l,·

∥∥∥∥
2

6‖M l,·‖2
23κ√
σr(M)
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3

√
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(n1 ∧ n2)p
σ1(M)

692C14

√
µ2r2κ7 log(n1 ∨ n2)

(n1 ∧ n2)2p

√
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(C.28)

In order to control the second term in (C.24), note from (C.28),

‖Z0,(l)
l,· ‖2

6‖Wl,·‖2 +

∥∥∥∥(Z0,(l)Q0,(l) −W
)
l,·

∥∥∥∥
2

6‖W ‖2,∞ +
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)
l,·
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2

6

(√
µrκ

n1 ∧ n2
+ 92C14

√
µ2r2κ7 log(n1 ∨ n2)

(n1 ∧ n2)2p

)√
σ1(M).
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Then by Lemma C.2.4 with M1 = M ,M2 = M
0,(l)

, we have∥∥∥(Z
0,(l)
l,· )>(R0,(l) −Q0,(l))

∥∥∥
2

6‖Z0,(l)
l,· ‖2‖R

0,(l) −Q0,(l)‖

6‖Z0,(l)
l,· ‖215

√
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3
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√
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√
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(√
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+ 92C14

√
µ2r2κ7 log(n1 ∨ n2)

(n1 ∧ n2)2p

)√
σ1(M).

So as long as we have

p > 922C2
14

µrκ6 log(n1 ∨ n2)

n1 ∧ n2
,

then

∥∥∥(Z
0,(l)
l,· )>(R0,(l) −Q0,(l))

∥∥∥
2
6120C14

√
µ2r2κ7 log(n1 ∨ n2)

(n1 ∧ n2)2p

√
σ1(M).(C.29)

Putting estimation (C.28) and (C.29) together we have∥∥∥∥∥∥∥
 X0,(l)

Y 0,(l)

R0,(l) −

 U
V


l,·

∥∥∥∥∥∥∥
2

=
√

2

∥∥∥∥(Z0,(l)R0,(l) −W
)
l,·

∥∥∥∥
2

6212
√

2C14

√
µ2r2κ7 log(n1 ∨ n2)

(n1 ∧ n2)2p

√
σ1(M).

(C.30)

C.2.2.3. Proof for (4.18). Finally, we want to give a bound for∥∥∥∥∥∥
 X0

Y 0

R0 −

 X0,(l)

Y 0,(l)

T 0,(l)

∥∥∥∥∥∥
F

.

Without loss of generality, assume that l satisfies 1 6 l 6 n1. First denote

B := argmin
R∈O(r)

‖Z̃0,(l)R− Z̃0‖F .
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From the choice of T 0,(l) in (4.15), we have

(C.31)
∥∥∥Z0R0 −Z0,(l)T 0,(l)

∥∥∥
F
6 ‖Z0,(l)B −Z0‖F .

By triangle inequality,
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=
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∥∥∥
F

=
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[
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]
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∥∥∥
F

6
∥∥∥Z̃0,(l)

[
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]∥∥∥
F

+
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F

+
∥∥∥Z̃0,(l)B − Z̃0

∥∥∥
F
‖(Σ0)1/2‖.

(C.32)

By Lemma C.2.3 with M1 = M ,M2 = M
0,(l)

,M3 = M
0
, we have

∥∥∥(Σ0,(l))1/2B −B(Σ0)1/2
∥∥∥
F
615

κ√
σr(M)

∥∥∥(M0 −M0,(l)
)
Z̃0,(l)
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F
.(C.33)

Moreover, by Davis-Kahan SinΘ theorem [DK70], we have∥∥∥Z̃0,(l)B − Z̃0
∥∥∥
F
6
√

2
∥∥∥(I − Z̃0(Z̃0)>
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∥∥∥
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F
.

(C.34)

So putting the estimations (C.32), (C.33) and (C.34) together we have
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F
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(C.35)
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By the way we define M
0

and M
0,(l)

in (C.13) and (C.14),

(
M

0 −M0,(l)
)
Z̃0,(l) =



0
...

0∑
j

(
1
pδl,j − 1

)
M l,n1+j(Z̃

0,(l)
n1+j,·)

>

0
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0(
1
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)
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0,(l)
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0,(l)
l,· )>
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1
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)
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0,(l)
l,· )>



.

Recall that here we assume 1 6 l 6 n1. Therefore by triangle inequality,∥∥∥(M0 −M0,(l)
)
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(C.36)
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Note by (C.18) and the fact that M0,(l) has top-r singular value decomposition

X̃0,(l)Σ0,(l)(Ỹ 0,(l))>,

Z̃
0,(l)
n1+j,· is independent of δl,j ’s. For a1,
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∑
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Conditioned on Z̃
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n1+j,·, s1,j ’s are independent, and Eδl,·s1,j = 0. We also have
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For
∥∥∥∑j Eδl,·s1,js

>
1,j

∥∥∥ we have the same bound. Then by matrix Bernstein inequality [Tro15,

Theorem 6.1.1],

P
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Therefore,

P
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6(n1 + n2)−15.

In other words, on an event E
0,(l),1
B with probability P[E

0,(l),1
B ] > 1− (n1 + n2)−15, we have
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(C.37)

For a2, we can decompose it as

a2 =
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1
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)
Mn1+1,l
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1
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1
pδl,n2 − 1

)
Mn1+n2,l


=
∑
j

(
1

p
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Then we have Es2,j = 0,
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and

‖E
∑
j
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>
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∑
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Therefore by matrix Bernstein inequality [Tro15, Theorem 6.1.1] again, on an event E0,2
B with

probability P[E0,2
B ] > 1− (n1 + n2)−15, we have
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So putting (C.36), (C.37) and (C.38) together we have∥∥∥(M0 −M0,(l)
)
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F
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(C.39)

on an event E0
B =

(⋂n1+n2
l=1 E

0,(l),1
B

)⋂
E0,2
B . Moreover, by applying union bound we have P[E0

B] >

1− (n1 + n2)−11.

Now we need to bound ‖Z̃0,(l)‖2,∞. We have the following claim:

Claim C.2.5. Under the setup of Lemma 4.2.2, on an event EClaim with probability P[EClaim] >

1− 3(n1 + n2)−11, the following inequality
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(C.40)

holds with the absolute constant C15 defined in Lemma C.2.6.
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If the claim is true, from (C.31), (C.35), (C.39) and (C.40) and if
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,
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(C.41)

holds for any l satisfying 1 6 l 6 n1. For the case n1 + 1 6 l 6 n1 + n2, we can use the same

argument.

Note on an event

Einit = ECh1

⋂
EClaim

⋂
EH

⋂
E0
B

= ES
⋂
ECa

⋂
EZ
⋂
ECh1

⋂
ECh2

⋂
EA
⋂
E0
B,

(C.23), (C.30) and (C.41) hold. Choosing CI to be

CI = 64000
√

2 + 212
√

2C14 + 72000
√

2C15

and CS2 to be

CS2 = 256 + 25600C2
14 + C15,

using union bound P[Einit] > 1− 7(n1 + n2)−11 > 1− (n1 + n2)−10, which finishes the proof.

Proof of Claim C.2.5. Follow the way people did in [MWCC18], let M
0,(l),zero

be the

matrix derived by zeroing out the l-th row and column of M
0,(l)

, and Z̃0,(l),zero ∈ R(n1+n2)×r
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containing the leading r eigenvectors of M
0,(l),zero

. Notice

∥∥∥Z̃0,(l),zero sgn
(

(Z̃0,(l),zero)>W̃
)
− Z̃0,(l),zero(Z̃0,(l),zero)>W̃

∥∥∥
2,∞

=

∥∥∥∥Z̃0,(l),zero(Z̃0,(l),zero)>W̃
(

(Z̃0,(l),zero)>W̃
)−1
·
(

sgn
(

(Z̃0,(l),zero)>W̃
)
− (Z̃0,(l),zero)>W̃

)∥∥∥∥
2,∞

6
∥∥∥Z̃0,(l),zero(Z̃0,(l),zero)>W̃

∥∥∥
2,∞

∥∥∥∥((Z̃0,(l),zero)>W̃
)−1∥∥∥∥∥∥∥sgn

(
(Z̃0,(l),zero)>W̃

)
− (Z̃0,(l),zero)>W̃

∥∥∥ .

(C.42)

By triangle inequality,∥∥∥M0,(l),zero −M
∥∥∥

6
∥∥∥M0,(l),zero −M (l),zero

∥∥∥+

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥



0 M1,l 0
...

M l,1 · · · M l,l · · · M l,n1+n2

...

0 Mn1+n2,l 0



∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥
,

(C.43)

where here we define M
(l),zero

as M zeroing out the l-th row and column of M . The first part we

can again apply Lemma 4.2.3 on M
(l),zero

to see

∥∥∥M0,(l),zero −M (l),zero
∥∥∥ 6 4C14

√
µrκ log(n1 ∨ n2)

(n1 ∧ n2)p
σ1(M)

holds on an event ECh2 with probability P[ECh2] > 1− (n1 + n2)−11. Therefore since

p > 1024C2
14

µrκ3 log(n1 ∨ n2)

n1 ∧ n2
,

we have

(C.44)
∥∥∥M0,(l),zero −M (l),zero

∥∥∥ 6 1

8
σr(M).

Moreover, for the second part of the right hand side of (C.43), we have
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∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥



0 M1,l 0
...

M l,1 · · · M l,l · · · M l,n1+n2

...

0 Mn1+n2,l 0



∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

6

∥∥∥∥∥∥∥∥∥

 M l,1 · · · M l,l · · · M l,n1+n2


∥∥∥∥∥∥∥∥∥+

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥



M1,l

...

M l−1,l

0

M l+1,l

...

Mn1+n2,l



∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥
6‖M l,·‖2 + ‖M ·,l‖2

62 max{‖U‖‖V ‖2,∞, ‖V ‖‖U‖2,∞}

62

√
µrκ

n1 ∧ n2
σ1(M).

(C.45)

As long as

256
µrκ3

n1 ∧ n2
6 p 6 1,

plugging back to (C.45) we have∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥



0 M1,l 0
...

M l,1 · · · M l,l · · · M l,n1+n2

...

0 Mn1+n2,l 0



∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥
6

1

8
σr(M).(C.46)
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Combining the estimation (C.44) and (C.46) together we have

(C.47)
∥∥∥M0,(l),zero −M

∥∥∥ 6 1

4
σr(M).

Applying Lemma C.2.1 here, we have∥∥∥∥((Z̃0,(l),zero)>W̃
)−1

∥∥∥∥ 6 2

and ∥∥∥sgn
(

(Z̃0,(l),zero)>W̃
)
− (Z̃0,(l),zero)>W̃

∥∥∥ 6 1

4
.

Therefore from (C.42) we have

∥∥∥Z̃0,(l),zero sgn
(

(Z̃0,(l),zero)>W̃
)
− Z̃0,(l),zero(Z̃0,(l),zero)>W̃

∥∥∥
2,∞
6

1

2

∥∥∥Z̃0,(l),zero(Z̃0,(l),zero)>W̃
∥∥∥

2,∞

and

‖Z̃0,(l),zero‖2,∞

=
∥∥∥Z̃0,(l),zero sgn

(
(Z̃0,(l),zero)>W̃

)∥∥∥
2,∞

6
∥∥∥Z̃0,(l),zero(Z̃0,(l),zero)>W̃

∥∥∥
2,∞

+
∥∥∥Z̃0,(l),zero sgn

(
(Z̃0,(l),zero)>W̃

)
− Z̃0,(l),zero(Z̃0,(l),zero)>W̃

∥∥∥
2,∞

62
∥∥∥Z̃0,(l),zero(Z̃0,(l),zero)>W̃

∥∥∥
2,∞

.

In order to give a control of ∥∥∥Z̃0,(l),zero(Z̃0,(l),zero)>W̃
∥∥∥

2,∞
,

we need Lemma 4 and Lemma 14 in [AFWZ17]. For the purpose of simplicity we combine those

two lemmas together and only include those useful bounds in our case:

Lemma C.2.6 ( [AFWZ17, Lemma 4 and Lemma 14 rewrited]). Under our setup, there is some

absolute constant C15, if p > C15
µ2r2κ6 log(n1∨n2)

(n1∧n2) , then on an event EA with probability P[EA] >
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1− (n1 + n2)−11,

max
l
‖Z̃0,(l),zero(Z̃0,(l),zero)>W̃ − W̃ ‖2,∞ 64κ‖Z̃0(Z̃0)>W̃ ‖2,∞ + ‖W̃ ‖2,∞

and

‖Z̃0‖2,∞ 6 C15

(
κ‖W̃ ‖2,∞ +

√
n1 ∧ n2

p

‖M‖`∞‖M‖2,∞
σ2
r (M)

)
holds.

By the lemma we have

‖Z̃0,(l),zero‖2,∞ 62
∥∥∥Z̃0,(l),zero(Z̃0,(l),zero)>W̃

∥∥∥
2,∞

64‖W̃ ‖2,∞ + 8κ‖Z̃0(Z̃0)>W̃ ‖2,∞

64‖W̃ ‖2,∞ + 8κ‖Z̃0‖2,∞‖(Z̃0)>W̃ ‖

64‖W̃ ‖2,∞ + 8κ‖Z̃0‖2,∞

6

(
4 + 8C15κ

2 + 8
√

2C15

√
µ2r2κ6

(n1 ∧ n2)p

)
‖W̃ ‖2,∞.

The fourth inequality uses the fact that ‖(Z̃0)>W̃ ‖ 6 1 since Z̃0 and W̃ both have orthonormal

columns, and the last inequality uses the fact that

‖M‖2,∞ 6max(‖U‖‖V ‖2,∞, ‖V ‖‖U‖2,∞)

6
√
σ1(M)

√
2‖W ‖2,∞

6
√

2σ1(M)‖W̃ ‖2,∞.

So as long as

p > 128
µ2r2κ2

n1 ∧ n2
,

we have

(C.48) ‖Z̃0,(l),zero‖2,∞ 6 (4 + 9C15κ
2)‖W̃ ‖2,∞.
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Recall that in (C.47) and (C.15), we have already shown∥∥∥M0,(l),zero −M
∥∥∥ 6 1

4
σr(M)

and ∥∥∥M0,(l) −M
∥∥∥ 6 1

4
σr(M)

hold on the events ECh2 and ECh1, respectively. Therefore, by the Davis-Kahan SinΘ theorem

[DK70], we have ∥∥∥Z̃0,(l) sgn
(

(Z̃0,(l))>Z̃0,(l),zero
)
− Z̃0,(l),zero

∥∥∥
F

6
2
√

2

σr(M)

∥∥∥(M0,(l),zero −M0,(l)
)
Z̃0,(l),zero

∥∥∥
F
.

For i 6= l, we have (
M

0,(l) −M0,(l),zero
)>
i,·
Z̃0,(l),zero

=
(
M

0,(l) −M0,(l),zero
)
i,l

(Z̃
0,(l),zero
l,· )>

=0.

The last equation holds since by construction we have Z̃
0,(l),zero
l,· = 0. In order to see this, note

the fact that by definition, entries on l-th row of M
0,(l),zero

are identical zeros, so if there is an

eigenvector v with vl 6= 0, the corresponding eigenvalue must be zero. Since Z̃0,(l),zero is the

collection of top-r eigenvectors. By Weyl’s inequality and
∥∥∥M0,(l),zero −M

∥∥∥ 6 1
4σr(M) we have

the corresponding eigenvalues are all positive. Therefore we have Z̃
0,(l),zero
l,· = 0.
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So we have ∥∥∥(M0,(l),zero −M0,(l)
)
Z̃0,(l),zero

∥∥∥
F

=

∥∥∥∥(M0,(l),zero −M0,(l)
)>
l,·
Z̃0,(l),zero

∥∥∥∥
2

=
∥∥∥M>

l,·Z̃
0,(l),zero

∥∥∥
2

6‖M‖2,∞

6σ1(M) max{‖Ũ‖2,∞, ‖Ṽ ‖2,∞}

6
√

2σ1(M)‖W̃ ‖2,∞.

Therefore, ∥∥∥Z̃0,(l) sgn
(

(Z̃0,(l))>Z̃0,(l),zero
)
− Z̃0,(l),zero

∥∥∥
F

6
4

σr(M)
σ1(M)‖W̃ ‖2,∞

=4κ‖W̃ ‖2,∞.

(C.49)

Putting (C.48) and (C.49) together we have∥∥∥Z̃0,(l)
∥∥∥

2,∞

=‖Z̃0,(l) sgn
(

(Z̃0,(l))>Z̃0,(l),zero
)
‖2,∞

6‖Z̃0,(l),zero‖2,∞

+
∥∥∥Z̃0,(l) sgn

(
(Z̃0,(l))>Z̃0,(l),zero

)
− Z̃0,(l),zero

∥∥∥
F

6(4 + 4κ+ 9C15κ
2)‖W̃ ‖2,∞,

holds on an event EClaim = ECh1
⋂
ECh2

⋂
EA, using union bound we have P[EClaim] > 1−3(n1 +

n2)−11, which proves the claim. �
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C.3. Proof of Claim 4.3.5

Proof. Similar to what we did in the control of spectral norm, define the auxiliary iteration

as

X̃t+1,(l) :=Xt,(l)Rt,(l) − η

p
PΩ−l,·

(
Xt,(l)

(
Y t,(l)

)>
−UV >

)
V − ηPl,·

(
Xt,(l)

(
Y t,(l)

)>
−UV >

)
V

− η

2
U(Rt,(l))>

((
Xt,(l)

)>
Xt,(l) −

(
Y t,(l)

)>
Y t,(l)

)
Rt,(l),

Ỹ t+1,(l) :=Y t,(l)Rt,(l) − η

p

[
PΩ−l,·

(
Xt,(l)

(
Y t,(l)

)>
−UV >

)]>
U − η

[
Pl,·

(
Xt,(l)

(
Y t,(l)

)>
−UV >

)]>
U

− η

2
V (Rt,(l))>

((
Y t,(l)

)>
Y t,(l) −

(
Xt,(l)

)>
Xt,(l)

)
Rt,(l).

Here we want apply Lemma 4.3.3 with

C =

 X̃t+1,(l)

Ỹ t+1,(l)

>  U
V

 ,

E =

 Xt+1,(l)Rt,(l) − X̃t+1,(l)

Y t+1,(l)Rt,(l) − Ỹ t+1,(l)

>  U
V

 .
By definition of Rt+1,(l) we have

(Rt,(l))−1Rt+1,(l)

= argmin
R

∥∥∥∥∥∥
 Xt+1,(l)Rt,(l)

Y t+1,(l)Rt,(l)

R−
 U
V

∥∥∥∥∥∥
F

= sgn(C +E).

If C is a positive definite matrix, then sgn(C) = I, and we have

‖(Rt,(l))−1Rt+1,(l) − I‖

=‖ sgn(C +E)− sgn(C)‖

6
1

σr(P )

∥∥∥∥∥∥∥
 U
V

>  Xt+1,(l)Rt,(l) − X̃t+1,(l)

Y t+1,(l)Rt,(l) − Ỹ t+1,(l)


∥∥∥∥∥∥∥ .
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The remaining part are devoted to verifying the required conditions of Lemma 4.3.3, C is a

positive definite matrix and upper bounding∥∥∥∥∥∥∥
 U
V

>  Xt+1,(l)Rt,(l) − X̃t+1,(l)

Y t+1,(l)Rt,(l) − Ỹ t+1,(l)


∥∥∥∥∥∥∥ .

Let P :=

 U
V

>  X̃t+1,(l)

Ỹ t+1,(l)

, we have

P =U>Xt,(l)Rt,(l) − η

p
U>PΩ−l,·

(
Xt,(l)

(
Y t,(l)

)>
−UV >

)
V

− ηU>Pl,·
(
Xt,(l)

(
Y t,(l)

)>
−UV >

)
V

− η

2
U>U(Rt,(l))>

((
Xt,(l)

)>
Xt,(l) −

(
Y t,(l)

)>
Y t,(l)

)
Rt,(l)

+ V >Y t,(l)Rt,(l) − η

p
V >

[
PΩ−l,·

(
Xt,(l)

(
Y t,(l)

)>
−UV >

)]>
U

− ηV >
[
Pl,·
(
Xt,(l)

(
Y t,(l)

)>
−UV >

)]>
U

− η

2
V >V (Rt,(l))>

((
Y t,(l)

)>
Y t,(l) −

(
Xt,(l)

)>
Xt,(l)

)
Rt,(l)

=U>Xt,(l)Rt,(l) − η

p
U>PΩ−l,·

(
Xt,(l)

(
Y t,(l)

)>
−UV >

)
V

− ηU>Pl,·
(
Xt,(l)

(
Y t,(l)

)>
−UV >

)
V

+ V >Y t,(l)Rt,(l) − η

p
V >

[
PΩ−l,·

(
Xt,(l)

(
Y t,(l)

)>
−UV >

)]>
U

− ηV >
[
Pl,·
(
Xt,(l)

(
Y t,(l)

)>
−UV >

)]>
U ,

here the last equality use the fact that U>U = V >V . By the choice of Rt,(l), we also have

U>Xt,(l)Rt,(l) + V >Y t,(l)Rt,(l) is symmetric, therefore P is symmetric.
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Denote

ẼX̃t+1,(l)

:=Xt,(l)Rt,(l) − η
(
Xt,(l)

(
Y t,(l)

)>
−UV >

)
V

− η

2
U(Rt,(l))>

((
Xt,(l)

)>
Xt,(l) −

(
Y t,(l)

)>
Y t,(l)

)
Rt,(l),

and

ẼỸ t+1,(l)

:=Y t,(l)Rt,(l) − η
(
Xt,(l)

(
Y t,(l)

)>
−UV >

)>
U

− η

2
V (Rt,(l))>

((
Y t,(l)

)>
Y t,(l) −

(
Xt,(l)

)>
Xt,(l)

)
Rt,(l).

In order to see all the eigenvalues of P are positive, first by triangle inequality,∥∥∥∥∥∥
 X̃t+1,(l) −U

Ỹ t+1,(l) − V

∥∥∥∥∥∥
6

∥∥∥∥∥∥
 ẼX̃t+1,(l)

ẼỸ t+1,(l)

−
 X̃t+1,(l)

Ỹ t+1,(l)

∥∥∥∥∥∥+

∥∥∥∥∥∥
 ẼX̃t+1,(l)

ẼỸ t+1,(l)

−
 U
V

∥∥∥∥∥∥ .
(C.50)

For the first term of the right hand side of (C.50), note

∥∥∥∥∥∥
 ẼX̃t+1,(l)

ẼỸ t+1,(l)

−
 X̃t+1,(l)

Ỹ t+1,(l)

∥∥∥∥∥∥
=η

∥∥∥∥∥∥∥
 −P−l,·

(
Xt,(l)

(
Y t,(l)

)> −UV >)V + 1
pPΩ−l,·

(
Xt,(l)

(
Y t,(l)

)> −UV >)V
−
[
P−l,·

(
Xt,(l)

(
Y t,(l)

)> −UV >)]>U + 1
p

[
PΩ−l,·

(
Xt,(l)

(
Y t,(l)

)> −UV >)]>U

∥∥∥∥∥∥∥

62η‖U‖
∥∥∥∥1

p
PΩ−l,·

(
Xt,(l)

(
Y t,(l)

)>
−UV >

)
− P−l,·

(
Xt,(l)

(
Y t,(l)

)>
−UV >

)∥∥∥∥
62η‖U‖

∥∥∥∥1

p
PΩ

(
Xt,(l)

(
Y t,(l)

)>
−UV >

)
−
(
Xt,(l)

(
Y t,(l)

)>
−UV >

)∥∥∥∥ .

(C.51)
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The last line uses the fact that

1

p
PΩ−l,·

(
Xt,(l)

(
Y t,(l)

)>
−UV >

)
− P−l,·

(
Xt,(l)

(
Y t,(l)

)>
−UV >

)
is a matrix with l-th row all zero and∥∥∥∥∥∥

 A
0

∥∥∥∥∥∥ 6
∥∥∥∥∥∥
 A

b>

∥∥∥∥∥∥
for any matrix A and vector b with suitable shape. Using Lemma 2.3.6, we have∥∥∥∥1

p
PΩ

(
Xt,(l)

(
Y t,(l)

)>
−UV >

)
−
(
Xt,(l)

(
Y t,(l)

)>
−UV >

)∥∥∥∥
6

∥∥∥∥1

p
PΩ

((
Xt,(l)T t,(l) −U

)
V >
)
−
(
Xt,(l)T t,(l) −U

)
V >
∥∥∥∥

+

∥∥∥∥1

p
PΩ

(
U
(
Y t,(l)T t,(l) − V

)>)
−U

(
Y t,(l)T t,(l) − V

)>∥∥∥∥
+

∥∥∥∥1

p
PΩ

((
Xt,(l)T t,(l) −U

)(
Y t,(l)T t,(l) − V

)>)
−
(
Xt,(l)T t,(l) −U

)(
Y t,(l)T t,(l) − V

)>∥∥∥∥
6
‖Ω− pJ‖

p

(∥∥∥Xt,(l)T t,(l) −U
∥∥∥

2,∞
‖V ‖2,∞ + ‖U‖2,∞

∥∥∥Y t,(l)T t,(l) − V
∥∥∥

2,∞

)
+
‖Ω− pJ‖

p

∥∥∥Xt,(l)T t,(l) −U
∥∥∥

2,∞

∥∥∥Y t,(l)T t,(l) − V
∥∥∥

2,∞
.

Here we use the fact that

Xt,(l)
(
Y t,(l)

)>
=
(
Xt,(l)T t,(l)

)(
Y t,(l)T t,(l)

)>
.

On the event Etgd, from (4.23) and (4.24), we have∥∥∥∥∥∥
 Xt,(l)

Y t,(l)

T t,(l) −
 U
V

∥∥∥∥∥∥
2,∞

6

∥∥∥∥∥∥
 Xt

Y t

Rt −

 Xt,(l)

Y t,(l)

T t,(l)
∥∥∥∥∥∥
F

+

∥∥∥∥∥∥
 Xt

Y t

Rt −

 U
V

∥∥∥∥∥∥
2,∞

6111CIρ
t

√
µ2r2κ12 log(n1 ∨ n2)

(n1 ∧ n2)2p

√
σ1(M).

(C.52)

177



From Lemma 4.3.2 and (C.52),∥∥∥∥1

p
PΩ

(
Xt,(l)

(
Y t,(l)

)>
−UV >

)
−
(
Xt,(l)

(
Y t,(l)

)>
−UV >

)∥∥∥∥
6

√
n1 ∧ n2

p
× 111CIρ

t

√
µ2r2κ12 log(n1 ∨ n2)

(n1 ∧ n2)2p

√
σ1(M)

×

(
2

√
µrκ

n1 ∧ n2

√
σ1(M) + 111CIρ

t

√
µ2r2κ12 log(n1 ∨ n2)

(n1 ∧ n2)2p

√
σ1(M)

)
.

(C.53)

For the second term of the right hand side of (C.50), we deal with it very similar to the way we

deal with α2 defined in (4.28): Note ẼX̃t+1,(l)

ẼỸ t+1,(l)

−
 U
V


=

 Xt,(l)Rt,(l) − η
(
Xt,(l)(Y t,(l))> −UV >

)
V

Y t,(l)Rt,(l) − η
(
Xt,(l)(Y t,(l))> −UV >

)>
U



−

 η
2U(Rt,(l))>

((
Xt,(l)

)>
Xt,(l) −

(
Y t,(l)

)>
Y t,(l)

)
Rt,(l)

η
2V (Rt,(l))>

((
Y t,(l)

)>
Y t,(l) −

(
Xt,(l)

)>
Xt,(l)

)
Rt,(l)

−
 U
V



=

 ∆
t,(l)
X − η∆t,(l)

X V >V − ηU(∆
t,(l)
Y )>V

∆
t,(l)
Y − ηV (∆

t,(l)
X )>U − η∆t,(l)

Y U>U


+

 −η
2U(∆

t,(l)
X )>U − η

2UU
>∆

t,(l)
X + η

2U(∆
t,(l)
Y )>V

−η
2V (∆

t,(l)
Y )>V − η

2V V
>∆

t,(l)
Y + η

2V (∆
t,(l)
X )>U

+

 η
2UV

>∆
t,(l)
Y + ηE1

η
2V U

>∆
t,(l)
X + ηE2

 ,
where E1,E2 denote those terms with at least two ∆

t,(l)
X ’s and ∆

t,(l)
Y ’s (the expression of E1 and E2

one can refer to (4.33) and (4.34), replacing ∆t
X and ∆t

Y by ∆
t,(l)
X and ∆

t,(l)
Y ). Again by the way

we define Rt,(l),  ∆
t,(l)
X

∆
t,(l)
Y

>  U
V

 = (∆
t,(l)
X )>U + (∆

t,(l)
Y )>V
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is symmetric. Plugging back we have ẼX̃t+1,(l)

ẼỸ t+1,(l)

−
 U
V


=

 ∆
t,(l)
X − η∆t,(l)

X V >V − ηUU>∆
t,(l)
X + ηE1

∆
t,(l)
Y − η∆t,(l)

Y U>U − ηV V >∆
t,(l)
Y + ηE2


=

1

2

 ∆
t,(l)
X

∆
t,(l)
Y

 (I − 2ηU>U) +
1

2

I − 2η

 UU> 0

0 V V >

 ∆
t,(l)
X

∆
t,(l)
Y

+ ηE,

where the last line we use the fact that U>U = V >V , and E :=

 E1

E2

. Since UU> and V V >

sharing the same eigenvalues, we have∥∥∥∥∥∥
 ẼX̃t+1,(l)

ẼỸ t+1,(l)

−
 U
V

∥∥∥∥∥∥
6

1

2
‖I − 2ηU>U‖‖∆t,(l)‖+

1

2
‖∆t,(l)‖

∥∥∥∥∥∥I − 2η

 UU> 0

0 V V >

∥∥∥∥∥∥+ η‖E‖

6(1− ησr(M))‖∆t,(l)‖+ η‖E‖.

By the definition of E, we have

‖E‖ 6 4‖∆t,(l)‖2‖U‖.

From (4.44), ∥∥∥∥∥∥
 ẼX̃t+1,(l)

ẼỸ t+1,(l)

−
 U
V

∥∥∥∥∥∥
6(1− ησr(M))× 2CIρ

t

√
µrκ6 log(n1 ∨ n2)

(n1 ∧ n2)p

√
σ1(M)

+ 4η

(
2CIρ

t

√
µrκ6 log(n1 ∨ n2)

(n1 ∧ n2)p

√
σ1(M)

)2√
σ1(M)

(C.54)
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holds. Combining (C.50), (C.51), (C.53) and (C.54) together, we have∥∥∥∥∥∥
 X̃t+1,(l) −U

Ỹ t+1,(l) − V

∥∥∥∥∥∥
62η

√
σ1(M)

√
n1 ∧ n2

p
× 111CIρ

t

√
µ2r2κ12 log(n1 ∨ n2)

(n1 ∧ n2)2p

√
σ1(M)

×

(
2

√
µrκ

n1 ∧ n2

√
σ1(M) + 111CIρ

t

√
µ2r2κ12 log(n1 ∨ n2)

(n1 ∧ n2)2p

√
σ1(M)

)

+ (1− ησr(M))× 2CIρ
t

√
µrκ6 log(n1 ∨ n2)

(n1 ∧ n2)p

√
σ1(M)

+ 4η

(
2CIρ

t

√
µrκ6 log(n1 ∨ n2)

(n1 ∧ n2)p

√
σ1(M)

)2

×
√
σ1(M)

6ησr(M)CIρ
t

√
µrκ6 log(n1 ∨ n2)

(n1 ∧ n2)p

√
σ1(M) + (1− ησr(M))× 2CIρ

t

√
µrκ6 log(n1 ∨ n2)

(n1 ∧ n2)p

√
σ1(M)

+ ησr(M)CIρ
t

√
µrκ6 log(n1 ∨ n2)

(n1 ∧ n2)p

√
σ1(M)

=2CIρ
t

√
µrκ6 log(n1 ∨ n2)

(n1 ∧ n2)p

√
σ1(M)

6
1

4κ

√
σ1(M),

where the second inequality holds since

p > (6662 + 1112C2
I )
µ2r2κ11 log(n1 ∨ n2)

n1 ∧ n2

and the last line holds since

p > 64C2
I

µrκ8 log(n1 ∨ n2)

n1 ∧ n2
.
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Therefore, ∥∥∥∥∥∥∥
 U
V

>  U
V

−
 U
V

>  X̃t+1,(l)

Ỹ t+1,(l)


∥∥∥∥∥∥∥

6

∥∥∥∥∥∥
 U
V

∥∥∥∥∥∥
∥∥∥∥∥∥
 X̃t+1,(l) −U

Ỹ t+1,(l) − V

∥∥∥∥∥∥ 6 0.5σr(M).

(C.55)

By Weyl’s inequality, we see eigenvalues of P are all nonnegative. Combining with the fact that P is

symmetric, we can see P is positive definite. And also from Weyl’s inequality, σr(P ) > 1.5σr(M).

Moreover, by the definition of Xt,(l) and Y t,(l), as well as the assumption that 1 6 l 6 n1,

Xt+1,(l)Rt,(l)

=Xt,(l)Rt,(l) − η

p
PΩ−l,·

(
Xt,(l)(Y t,(l))> −UV >

)
Y t,(l)Rt,(l)

− ηPl,·
(
Xt,(l)(Y t,(l))> −UV >

)
Y t,(l)Rt,(l)

− η

2
Xt,(l)Rt,(l)(Rt,(l))>

(
(Xt,(l))>Xt,(l) − (Y t,(l))>Y t,(l)

)
Rt,(l),

Y t+1,(l)Rt,(l)

=Y t,(l)Rt,(l) − η

p

[
PΩ−l,·

(
Xt,(l)(Y t,(l))> −UV >

)]>
Xt,(l)Rt,(l)

− η
[
Pl,·
(
Xt,(l)(Y t,(l))> −UV >

)]>
Xt,(l)Rt,(l)

− η

2
Y t,(l)Rt,(l)(Rt,(l))>

(
(Y t,(l))>Y t,(l) − (Xt,(l))>Xt,(l)

)
Rt,(l).

Therefore,  Xt+1,(l)Rt,(l) − X̃t+1,(l)

Y t+1,(l)Rt,(l) − Ỹ t+1,(l)


=

 0 ηA

ηA> 0

 ∆
t,(l)
X

∆
t,(l)
Y



+

 −η
2∆

t,(l)
X (Rt,(l))>

((
Xt,(l)

)>
Xt,(l) −

(
Y t,(l)

)>
Y t,(l)

)
Rt,(l)

−η
2∆

t,(l)
Y (Rt,(l))>

((
Y t,(l)

)>
Y t,(l) −

(
Xt,(l)

)>
Xt,(l)

)
Rt,(l)


(C.56)
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with

A :=− 1

p
PΩ−l,·

(
Xt,(l)

(
Y t,(l)

)>
−UV >

)
− Pl,·

(
Xt,(l)

(
Y t,(l)

)>
−UV >

)
.

First in order to give a bound of ‖A‖, we can first decompose A as

A =−1

p
PΩ

(
Xt,(l)

(
Y t,(l)

)>
−UV >

)
︸ ︷︷ ︸

A1

+
1

p
PΩl,·

(
Xt,(l)

(
Y t,(l)

)>
−UV >

)
− Pl,·

(
Xt,(l)

(
Y t,(l)

)>
−UV >

)
︸ ︷︷ ︸

A2

.

(C.57)

From Lemma 2.3.6 and Lemma 4.3.2,

‖A1‖ 6
∥∥∥∥1

p
PΩ

(
Xt,(l)

(
Y t,(l)

)>
−UV >

)
−
(
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(
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)∥∥∥∥
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p
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)
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p
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+ ‖Xt,(l)Rt,(l) −U‖‖V ‖+ ‖U‖‖Y t,(l)Rt,(l) − V ‖+ ‖Xt,(l)Rt,(l) −U‖‖Y t,(l)Rt,(l) − V ‖

holds on the event Etgd ⊂ ES .
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From (C.52) and (4.44),

‖A1‖
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× 222CIρ
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√
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+ 4CIρ
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(C.58)

where the second inequality holds since

p > 1112C2
I

µrκ11 log(n1 ∨ n2)

n1 ∧ n2

and the last inequality holds since

p > 3332C2
13

µ2r2κ7

n1 ∧ n2
.

Note by the definition of A2, we have ‖A2‖ = ‖(A2)l,·‖2, and note (A2)l,· here is exactly b2 we

define in (4.55), therefore we directly use the result (4.66) and (4.67):

‖A2‖

=‖b2‖2

6100ρt

115CI

√
µ2r2κ12 log2(n1 ∨ n2)
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+ 333CI
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(C.59)
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holds on the event Et+1
gd , where the last inequality holds since

p > 5.29× 108µrκ
6 log(n1 ∨ n2)

n1 ∧ n2
.

By putting (C.58), (C.59) and (C.57) together we have
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(C.61)

where the third inequality uses (4.44) and

p > 4C2
I

µrκ6 log(n1 ∨ n2)

n1 ∧ n2
.
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Now from (C.56), (C.60), (C.61) and also (4.44) we can see that∥∥∥∥∥∥
 Xt+1,(l)Rt,(l) − X̃t+1,(l)
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(C.62)

Therefore, ∥∥∥∥∥∥∥
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Therefore, we have

‖(Rt,(l))−1Rt+1,(l) − I‖

=‖ sgn(C +E)− sgn(C)‖

6
1
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where the second inequality uses the fact that σr(P ) > 1.5σr(M) and the third one uses (C.62).
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