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Abstract

The theory of the geometry and topology of surfaces has been well-established during the last

century from various perspectives. In recent developments of discrete differential geometry, math-

ematicians started to think rigorously about the discrete counterparts of concepts in the smooth

setting, including triangulations, metrics, curvatures. We study the geometry of discrete surfaces

via discrete metrics, discrete curvatures, and discrete conformal maps, not only as approximations

to the smooth counterparts, but as geometric objects in their own right. They provide fast algo-

rithms in computer graphics, and also a parallel theory, such as discrete uniformization theorems.

This thesis is concerned with these types of problems. We study the geometry and topology

of “shape” spaces of different geometric objects, including high genus surfaces in R3 and geodesic

triangulations on surfaces with constant curvature. In Chapter 2, we study the global comparison

problem for two surfaces with the same high genus, constructing a metric on the shape space and

producing a correspondence between two given shapes. This leads to an algorithm to compute the

distance between a pair of shapes via energy minimization. In Chapter 3, we consider the topology

of the space of geodesic triangulations on a surface with a fixed combinatorial type in a fixed

isotopy class, which can be regarded as a discrete version of the group of surface diffeomorphisms.

We show that these spaces, after appropriate normalization, are contractible when the surface is a

convex polygon. Furthermore, we provide an algorithm to generate geodesic triangulations when

the surface is a star-shaped polygon.
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CHAPTER 1

Introduction

This dissertation consists of two chapters dealing with topics in the field of low dimensional

geometry and topology. These two chapters are independent from each other, but consider problems

about the geometry and topology of the space of “shapes” on surfaces, both in the smooth setting

and in the discrete setting. Moreover, these topics lay the foundations for further applications in

shape analysis and graph drawing.

In this chapter, we provide the overview of this dissertation, and explain the motivations and

main results for each chapter.

1.1. Overview

In Chapter 2, we explore the mathematical foundation of the shape comparison problem for high

genus surfaces. This is a continuation of the work by Hass and Koehl [HK17]. We define the shape

space of a high genus surface and construct a metric on the shape space of a high genus surface by

minimizing an energy among all the quasiconformal homeomorphisms in a fixed homotopy class of

maps between a given pair of shapes. We show that the minimizer of the energy is realized by a

quasiconformal homeomorphism, producing an “optimal” correspondence between two shapes. We

also discuss several energies related to the Dirichlet energy of maps between surfaces. Finally, we

propose an algorithm to compute the distance between two arbitrary shapes of high genus surfaces.

In Chapter 3, we study the topology of the space of geodesic triangulations of a surface. We give

a new proof of the contractibility of the space of geodesic triangulations of a convex polygon with

a fixed combinatorial type, using the idea of Tutte’s theorem, significantly simplifying the proof

by Bloch, Connelly, and Henderson [BCH84]. Then we prove that each component of the space

of geodesic triangulations of a flat torus with a fixed combinatorial type is homotopy equivalent to

a torus. We also give a constructive method to produce a geodesic triangulation of a star-shaped

polygon under a mild assumption about the triangulation, and a characterization for geodesic

triangulations which can not be realized as a configuration of the equilibrium state of any spring

system.
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1.2. Comparing shapes of high genus surfaces

How to measure the difference between two shapes is a fundamental problem in computer

graphics, computer vision, and medical imaging. In Chapter 2, we investigate the shape comparison

problem between two shapes of a surface of genus at least one by considering the following questions:

(1) What is the precise meaning of a “shape” of a surface?

(2) How similar are two given shapes of a surface? Or how to compare two shapes?

(3) How to construct the best global alignment of two shapes, namely an “optimal” corre-

spondence between two shapes?

These problems have been studied extensively in the fields of surface registration, shape match-

ing, shape morphing, and texture mapping. Effective algorithms have been developed if the

topology of the surface is relatively simple, such as with the 2-dimensional disk or 2-dimensional

sphere [GGS03, GWC+04, HK17]. Hass and Koehl [HK17] introduced a metric structure for

smooth genus-zero surfaces by considering the symmetric distortion energy of conformal diffeo-

morphisms between two genus-zero surfaces. They showed that the infimum was achieved by a

conformal diffeomorphism, and proposed an algorithm to compute the distance between two tri-

angulated surfaces and applied it to describe shapes of proteins and generate evolutionary trees of

species [HK14,KH13,KH15].

However, there are few results about the computation of optimal maps between high-genus

surfaces [LBG+08, LW14, WZ14, ZLL+12]. On the other hand, detecting the change of the

shapes of high genus surfaces is crucial to understanding various applications. For example, the

vestibular system in the inner ear is modelled by a genus-three surface, and the morphometry of the

vestibular system has been an active research field in the analysis of Adolescent Idiopathic Scoliosis

Disease [WWS+15]. In the study of deformity of the vertebrae, the vertebrae bone is modeled by

a genus-one surface [LGL15].

Comparing shapes of high genus surfaces is much more challenging than the case of the 2-

sphere. Any two metrics on the 2-sphere are conformal to each other, but for high-genus surfaces,

conformal maps are insufficient to measure the difference between two shapes. Algorithmically,

the main difficulty is how to deal with the topology of the surfaces. One possible approach is to

construct local injective maps from disk-like patches to some canonical domain and glue them to

form a global map. This method requires a consistent way to cover the whole surface with patches.
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An alternative method is to cut the surface using a system of disjoint loops to a disk-like surface,

but boundary conditions on the loops are not natural.

The key to measuring the difference between two surfaces is finding a metric structure on the

shape space of a surface. More precisely, for a metric d defined on the shape space, given shapes

S1, S2, and S3, we require the following properties:

(1) d(S1, S2) ≥ 0;

(2) d(S1, S2) = 0 if and only if S1 and S2 represent the same element in the shape space;

(3) d(S1, S2) = d(S2, S1);

(4) d(S1, S2) + d(S2, S3) ≥ d(S1, S3).

These properties of metric structures imply that we can distinguish two different shapes if the two

shapes are not isometric, independent of the order and stable under small perturbations or noise.

The main result of Chapter 2 includes the following. We will define the shape space S(S) of

a high genus surface as the space of equivalence classes of Riemannian metrics on a fixed smooth

surface, up to isometries isotopic to the identity on the surface. We show that the shape space

has a close connection with the Teichmüller space of the surface S. Then we construct a metric

on the shape space by introducing an energy for quasiconformal homeomorphisms of the surface,

which measures the similarity of two shapes. We show that the infimum of this energy in a fixed

homotopy class is achieved by a quasiconformal homeomorphism, which produces the “optimal”

correspondence between two shapes and realizes the distance between two shapes.

1.3. The space of geodesic triangulations on surfaces

A triangulation of a fixed combinatorial type of T on a surface with a Riemannian metric (S, g)

is a geodesic triangulation if each edge in T is embedded as a geodesic arc in S. We study the

space of geodesic triangulations with a fixed combinatorial type on certain surfaces, including a

polygonal region in the Euclidean plane and a flat torus. We study the following two problems.

(1) The embeddability problem: Given a surface (S, g) with a triangulation T , can we construct

a geodesic triangulation with the combinatorial type of T? In particular, if S is a 2-disk

with a triangulation T and we specify the positions of the boundary vertices of T in the

plane so that they form a polygon, can we find positions of the interior vertices in the

plane to construct a geodesic triangulation of S with the combinatorial type of T?

3



(2) The contractibility problem: If the space of geodesic triangulations on (S, g) with a fixed

combinatorial type of T is not empty, what is the topology of this space? In particular, is

it a contractible space?

These two problems have been studied in [BS78,BCH84,Cai44b,Ho73], partly because they are

closely related to the problem of determining the existence and uniqueness of differentiable struc-

tures on a triangulated manifolds [CHHS83]. They are also used to produce effective algorithms

to solve graph morphing problems in [DVPV03,FG99,SG01,SG03].

In Chapter 3, we solve the contractibility problem for convex polygons, the embeddability prob-

lem for star-shaped polygons, and the contractibility problem for flat tori using the idea of Tutte’s

Theorem [Tut63]. We give a new proof of the contractibility of the space of geodesic triangula-

tions of a fixed combinatorial type of T for the case of a convex polygon Ω in R2. We construct

a homotopy equivalence from this space to an affine subspace in the Euclidean space, significantly

simplifying the previous argument in [BCH84]. We then give a new constructive method to pro-

duce geodesic triangulations with a fixed combinatorial type for a star-shaped polygon under a mild

assumption on the triangulation. This problem has been studied by Hong and Nagamochi [HN08]

and Xu et al. [XCGL11].

These results can be regarded as discrete versions of classical results by Smale [Sma59] and

Earle and Eells [EE+69] about surface diffeomorphisms. The group of diffeomorphisms of the

2-disk fixing the boundary, denoted by D0(D2), is contractible.
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CHAPTER 2

Comparing Shapes of High Genus Surfaces

In this chapter, we study the shape comparison problem for two shapes of high genus surfaces.

The goal is to construct a new metric structure on the shape space of a high genus surface. In Section

1, we provide background about the geometry and topology of surfaces and maps between surfaces.

In Section 2, we define the space of shapes S(S) and establish its connection with Teichmüller

space. In Section 4, we introduce an energy E(f) for a quasiconformal homeomorphism f on a

surface and prove that this energy provides a metric d on the shape space S(S), and an “optimal”

correspondence between two shapes. In Section 5, we discuss other energies for maps to define

metrics on the Teichmüller space and on a conformal class of metrics. In Section 6, we propose an

algorithm to compute the distance between two shapes.

2.1. Background

The fundamental object we are going to study is a surface S, namely a 2-dimensional smooth

manifold, possibly with boundary. In practice, most surfaces are immersed in the space R3. We

will restrict ourselves to surface of finite type, namely surfaces obtained from compact, connected,

orientable surfaces of genus g by removing b disjoint open disks and p points, denoted by Sg,b,p.

Here we summarize related backgrounds about the basic geometry and topology of surfaces.

2.1.1. The topology and geometry of surfaces. The fundamental result in the topology

of smooth surfaces is the following classification theorem.

Theorem 2.1.1. Every compact, connected, orientable surface without boundary is diffeomor-

phic to Sg for some genus g.

The topology of a surface S is determined by the Euler characteristic χ(S) by the following

relation with the genus

χ(Sg) = 2− 2g.
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Figure 2.1. Surface of finite types [Min13]

The general formula for surfaces of finite type is given by

χ(Sg,b,p) = 2− 2g − b− p.

In applications, surfaces are represented by triangular meshes, namely a set of flat triangles glued

together along edges. A triangular mesh correspond to a triangulation T = (V,E, F ) of a simplicial

complex homeomorphic to Sg, where V , E, and F are the sets of vertices, edges, and faces in T .

In this case we have the following two relations

V − E + F = χ(Sg), and 2E = 3F.

The fundamental group π1(Sg) of Sg is given by

π1(Sg) =< a1, b1...ag, bg|[a1, b1]...[ag, bg] = 1 > .

Its abelianization gives the homology group of Sg with integer coefficients

H0(Sg) = Z, H1(Sg) = Z2g, and H2(Sg) = Z.

A surface with finite type Sg,b,p, is homotopically equivalent to a wedge product of 2g+ b+p copies

of S1, so π1(Sg,b,p) is a free group of order 2g + b+ p.

if a surface S is immersed in R3, the standard Euclidean metric in R3 induces a Riemannian

metric g on the tangent space TpS, which defines the concepts of length of arcs, angle between two

vectors in the tangent space, area, geodesic and various intrinsic curvatures.

6



Although there are infinitely many Riemannian metrics on a surface S, the following far-reaching

result, the Gauss-Bonnet Theorem, establishes the connection between the topology and the geom-

etry of S.

Theorem 2.1.2. Let K be the Gaussian curvature of a Riemannian metric on a surface Sg,b

and κig be the geodesic curvatures of boundary components Bi, then we have:

b∑
i=1

∫
Bi

κg +

∫∫
S
K = 2πχ(Sg,b).

Besides Riemannian metrics, we will consider various geometric structures on surfaces. A

geometric structure on a surface S is a maximal atlas of coordinate charts {Ui, φi} where Ui is

a open subset in S and φi is a diffeomoprhism from Ui to its image in R2. Different geometric

structures require different restrictions on the transition maps φij = φj ◦ φ−1
i of two overlapping

charts. Here we consider three different types of geometric structures on a surface, including

complex structure, conformal structure and hyperbolic structure.

A complex structure requires the transition map to be biholomorphic if we identify R2 with

C. A surface is a one-dimensional complex manifold referred as a Riemann surface. Similarly, a

conformal structure requires the transition map to be a conformal map, which means the metric

is stretched uniformly in all directions in the tangent space of every point in S. It turns out that

holomorphic functions and conformal maps are equivalent in the case of surfaces, thus we can use

complex structures and conformal structures interchangeably.

A Riemannian metric on a surface gives rise to a complex structure by the existence of the

isothermal coordinates, in which the metric is in the form of

ds2 = ρ2(dx2 + dy2).

All the transition maps are scalar multiplications, hence we have a conformal or complex structure

on a surface naturally induced by a Riemannian metric.

A hyperbolic structure on a surface requires the transition map to be the restriction of isometries

in the hyperbolic plane, which can be identified with the group of linear fractional transformations

isomorphic to PSL2(R). It also corresponds to a complete Riemannian metric on the surface

S with constant curvature −1. Since all the linear fractional transformations are conformal, it

automatically produces a conformal structure on a surface. Similarly we can define flat structures
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and elliptic structures on a surface when the transition maps are isometries of the Euclidean plane

or the round 2-sphere.

By the Gauss-Bonnet theorem, the Euler characteristic χ(S) has to be negative for a surface with

hyperbolic structures. This necessary condition turns out to be sufficient by the Uniformization

Theorem by Poincare, Klein, and Koebe.

Theorem 2.1.3. Every Riemannian metric on a surface S is conformally equivalent to a com-

plete Riemannian metric with constant curvature +1, 0, or -1, the sign depending on the sign of its

Euler characteristic χ(S). Furthermore, the metric is unique if the Euler characteristic is negative.

This theorem establishes the relation among all the geometric structures we mention above. It

can be interpreted as the existence of a canonical metric with constant curvatures in each conformal

class of metrics. In terms of complex structures of Riemann surfaces, it asserts that every simply

connected Riemann surface is biholomorphically equivalent to one the the three Riemann surfaces:

Riemann sphere Ĉ, the plane C and the disk D. They are universal coverings for all the other

Riemann surfaces. Therefore, the hyperbolic structures can be constructed by the quotient of the

hyperbolic plane by a discrete subgroups of PSL2(Z).

The formula for the Euler characteristic shows that most of the surfaces of finite type have

hyperbolic structures since χ(Sg,b,p) = 2 − 2g − b − p is positive only for small values of g, b

and p. However, the uniformization theorem does not provide a concrete method to construct a

specific hyperbolic metric on a given surface. We can construct families of hyperbolic structures

alternatively using the pants decomposition of surfaces with negative Euler characteristic. Every

surface S with negative Euler characteristic can be decomposed into −χ(S) pairs of pants, namely

2-spheres with three boundary components or punctures. For each pair of pants, we can put

a hyperbolic metric on it by gluing two identical right angle hyperbolic hexagons(possible with

degeneracy) in the hyperbolic plane. Then we glue pairs of pants along the geodesic boundaries

with the same lengths. The result will be a hyperbolic surfaces with finite area −2πχ(S). This

process can be regarded as the geometrization for surfaces with negative Euler characteristics.

2.1.2. Maps between surfaces. To compare two geometric structures on a surface, one of

the fundamental method is to construct maps between two geometric structures and measure the

minimal “distortion” of these maps. Here we focus on three types of well-known maps between

surfaces, including conformal maps, harmonic maps, and quasiconformal maps.

8



2.1.2.1. Conformal maps and Harmonic maps. A map between two surfaces f : (S1, g1) →

(S2, g2) is conformal if there exists a positive function λ on S1 such that

f∗(g2) = λ2g1.

The fundamental result is the Uniformization Theorem mentioned above.

The general theory of harmonic maps between two n dimensional manifolds was developed by

Eells and Sampson [ES64]. We restrict our attention to the case of surfaces. The Dirichlet energy

of a map between two surfaces f : (S1, g1)→ (S2, g2) is defined by

ED(f) =

∫
S1

||df ||2dA

where df is the differential of f , considered as a section to the bundle T ∗S1 ⊗ TS2 with a metric

induced from m1 and m2. It can be regarded as the measurement of total stretching of the map

f . A map is harmonic if it is a critical point of the Dirichlet energy among maps in its homotopy

class.

One of the earliest results about harmonic maps in the plane is the Rado-Kneser-Choquet

theorem [Dur04].

Theorem 2.1.4. Suppose φ : D→ R2 is a harmonic map sending the boundary ∂D homeomor-

phically into the boundary ∂Σ of some convex region Σ ⊂ R2. Then φ is one to one.

When it comes to general surfaces, a fundamental question is the existence and uniqueness of

harmonic maps in a given homotopy class of maps between two surfaces. Here we summarize the

result proved by Jost [JS82], Schoen and Yau [SY78], Coron and Helein [CH89], and Markovic

and Mateljevic [MM99].

Theorem 2.1.5. Given two Riemannian metrics on a surface F and a diffeomorphism f , there

exists a diffeomorphism which is a critical point of the Dirichlet energy in the homotopy class of f .

If the genus of F satisfies g > 1, then this diffeomorphism is unique.

2.1.2.2. Quasiconformal maps and the Teichmüller maps. Quasiconformal maps are a gener-

alization of conformal maps between surfaces, arising naturally when we compare two conformal

structures on a surface. Let f : D → C be an orientation preserving diffeomorphism from a region

9



1 + |µ|
1− |µ|

K = 1+|µ|
1−|µ|

Figure 2.2. Quasiconformal maps

D in C. We can consider the Beltrami coefficient

µf (z) =
fz̄
fz
,

where fz̄ and fz are the derivative of f with respect to the complex variable z and its conjugate

z̄. If f is conformal, then Cauchy-Riemann equations imply fz̄ = 0, so µf = 0. The Jacobian of

f is given by J(f) = |fz|2 − |fz̄|2 which is positive by assumption. Hence |µf | varies from 0 to 1,

measuring the deviation of f from a conformal map. An alternative quantity K varying from 1 to

∞, called the dilatation, is defined by

Kf (z) =
1 + |µf |
1− |µf |

.

Geometrically, at each point z in D, df maps circles in TpD to ellipses in Tf(p)C = C. The dilatation

Kf (z) is the ratio of the major axis to the minor axis of the ellipse. Then we call the map f a

K-quasiconformal map if there exists a K > 0 such that

sup
z∈D

Kf (z) = sup
z∈D

1 + |µf (z)|
1− |µf (z)|

≤ K.

The composition of a K1-quasiconformal map with a K2-quasiconformal is a K1K2-quasiconformal

map. Quasiconformal maps can be generalized further to non-differentiable maps using several

mutually equivalent geometric and measure-theoretic definitions [IT12].

Every quasiconformal map f : D → C gives rise to a Beltrami coefficient µf (z) defined on D.

A remarkable theorem proved by Ahlfors and Bers (see, e.g. [FM11]) states the converse is also

true, and can be regarded as a generalization of the Riemann mapping theorem.

Theorem 2.1.6. If µ ∈ L∞(C) and ||µ||∞ < 1, there exists a unique quasiconformal homeo-

morphism f : Ĉ→ Ĉ fixing 0, 1, and ∞, satisfying µ = µf almost everywhere.

10



Since the composition of quasiconformal maps with conformal maps is again quasiconformal

with the same maximal dilatation, we can define quasiconformal maps f : S1 → S2 between

Riemann surfaces using local charts. Then the Beltrami coefficient is a (−1, 1)-form µdz̄/dz instead

of a function, but |µ| is well-defined on the surface. We can define the corresponding dilatation of

a map f

Kf = sup
p∈F

1 + |µf (p)|
1− |µf (p)|

.

This quantity measures the difference between two conformal structures, or equivalently, two hy-

perbolic structures for higher genus surfaces. We have the following extremal problem in a given

homotopy class: find a map f0 achieving this infimum of the dilatation in a homotopy class:

Kf0 = inf{Kf |f in a given homotopy class}.

This map is called an extremal quasiconformal map in the given homotopy class between two

Riemann surfaces . For surfaces Sg with genus g > 1, the extremal quasiconformal map in certain

special coordinates is locally an affine map except for some singularities, called the Teichmüller map.

The fundamental theorem about a Teichmüller map is Teichmüller’s theorem (see e.g. [FM11]).

Theorem 2.1.7. Given two conformal structures on a surface Sg with genus g > 1, there exists

a unique Teichmüller map in every homotopy class of diffeomorphisms of Sg.

2.1.3. Teichmüller space and its structures. To compare geometric structures of certain

type on a surface, it is natural to study the space of all such geometric structures. The natural

space to consider is the moduli space, namely the set of all the geometric structures quotient by the

corresponding equivalence. For instance, if we consider the space of all conformal structures, com-

plex structures or hyperbolic structures on a surface, the notions of equivalence should correspond

to conformal diffeomorphims, biholomorphisms, and isometries respectively. It turns out that the

Teichmüller space, instead of the moduli space, is easier to study.

We define the Teichmüller space for a surface Sg with genus g as following

T (S) = {hyperbolic metrics ḡ on surface Sg denoted by (S, ḡ)}/D0,

where D0 is the group of diffeomorphisms of Sg isotopic to identity. Equivalently, we can use

conformal or complex structures.
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Another formulation for the Teichmüller space involves marked surfaces (F, f, ḡ) with hyperbolic

metrics ḡ and a diffeomorphism f : S → F as a marking. Given a surface S, we consider the

following equivalent class of marked surfaces

T (S) = {(F, f, ḡ)}/ ∼,

where two marked surfaces (F1, f1, ḡ1) and (F2, f2, ḡ2) are equivalent if there exists an isometry

h : F1 → F2 isotopy to f2 ◦ f−1
1 . Similarly, we can refer to conformal and complex structures.

There exist several equivalent interpretations for Teichmüller space using Riemann surfaces with

marked generators for fundamental groups, the set of equivalence classes of Beltrami coefficients,

the set of equivalence classes of quasiconformal maps in the universal covering, etc. We will mostly

use the two definitions above and define the space of shapes in the next section in a similar fashion.

The Teichmüller space of the 2-sphere consists of just one point. The Teichmüller space T (T 2)

of flat tori up to conformal equivalence plays a fundamental role as the analogue to its higher genus

counterparts.

Theorem 2.1.8. The space T (T 2) is parametrized by the upper half plane H, and mapping class

group of T 2 acts on H as isometries in PSL(2,Z).

We have a similar identification between the Teichmüller space of surfaces with higher genus

and a contractible space in the Euclidean space. However, the parametrization is more complicated

than the case of tori. There are two common parametrizations: the Fenchel-Nielsen coordinates

and the Fricke coordinates.

The Fenchel-Niesen coordinates stem from the pants decomposition of surfaces. Given a hy-

perbolic metric on surface Sg, we can cut it into 2g− 2 hyperbolic pairs of pants by 3g− 3 disjoint

simple closed geodesics. Each hyperbolic pair of pants is determined uniquely by the lengths of the

three boundary geodesics. Given two pairs of pants along two boundaries with the same length,

we can glue them together to generate families of distinct hyperbolic metrics by performing twists

along the boundary curves. Hence each simple closed geodesic corresponds to a length parameter

and a twist parameter, leading to the following parametrization

FN : T (Sg)→ R3g−3
>0 × R3g−3, [ḡ]→ (l1, l2, ..., l3g−3, θ1, θ2, ..., θ3g−3).
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Theorem 2.1.9. The map FN : T (Sg) → R3g−3
>0 × R3g−3 is well-defined and bijective. Hence

T (Sg) is contractible.

In the contrast, the Fricke coordinates arise from the Fushsian models of Riemann surfaces

H/Γ, where Γ is a discrete subgroup of PSL(2,R) represented by linear fractional transformations.

We can make Γ canonical after the normalization below such that it is represented by a set of g

pairs of generators for π1(S), each of which correspond to two linear fractional transformation

αi(z) =
aiz + bi
ciz + di

aidi − bici = 1 ai, bi, ci, di ∈ R ci > 0 i = 1, 2, ..., g − 1;

βi(z) =
a′iz + b′i
c′iz + d′i

a′id
′
i − b′ic′i = 1 a′i, b

′
i, c
′
i, d
′
i ∈ R c′i > 0 i = 1, 2, ..., g − 1.

Note the last generator αg and βg is determined uniquely by the previous generators and the

following normalization
g∏
i=1

[αi, βi] = id

where [α1, βi] = αi ◦ βiα−1
i β−1

i . Then we can define a new parametrization

FR : T (Sg)→ R6g−6 [(Sg, f)]→ (a1, c1, d1, ..., ag−1, cg−1, dg−1)

Theorem 2.1.10. The map FN : T (Sg)→ R6g−6 is well-defined and injection.

These two coordinates introduce real analytic structures on T (Sg). A metric structure can be

defined with the extremal quasiconformal map

d([F1, f1], [F2, f2]) = inf
f∼f2◦f−1

1

1

2
logK(f) [Fi, fi] ∈ T (Sg) i = 1, 2.

By the Teichmüller existence theorem and uniqueness theorem, the metric above is defined for any

pair of points in T (Sg), and the infimum is achieved by the Teichmüller map. This metric is a

complete Finsler metric called Teichmüller metric, and its geometric properties have been studied

extensively.

There exist other metrics on the Teichmüller space such as Weil-Peterson metric, which is a

incomplete Riemannian metric, and Thurston’s asymmetric metric, another Finsler metric which

is defined with Lipschitz constant instead of dilatation. A natural complex structure is introduced

by Bers embedding, then Teichmüller metric is identified with the Kobayashi metric with respect

13



to this complex manifold. See more about properties of different metrics on Teichmuller space

in [IT12] In the following discussion, we will mainly deal with the Teichmüller metric.

2.2. The Space of Shapes

We need to define rigorously the space of “shapes” before constructing metrics on it. Various

notions of shape spaces of curves and surfaces in R2 or R3 have been formulated from different

perspectives with applications in computational geometry and computer graphics. An overview of

various notions about shapes is given by Bauer, Bruveris and Minchor [BBM14].

In this paper, we will introduce the space of shapes on surfaces from an intrinsic point of view.

The idea stems from the work by Ebin [Ebi67], Fischer and Tromba [FT84, Tro12], Earle and

Eells [EE+69]. We will summarize their work, define the shape space of surfaces and complete the

picture of its connection with the Teichmüller space.

2.2.1. Space of Riemannian metrics and its quotients. From the intrinsic viewpoint,

the natural space to consider is the space of all possible smooth metric tensors on a given surface

S, denoted by M. Let TS and T ∗S be the tangent and cotangent bundle, then a metric tensor is

a section of S2T ∗S, the bundle of all symmetric (0,2)-type tensors. Since a metric tenor is positive

definite, all metric tensors on F form a convex subset of the infinite-dimensional vector space of

sections of symmetric 2-tensors, denoted by Γ(S2T ∗S).

The tangent space at any element ofM, being a subset of a vector space, is naturally isomorphic

to Γ(S2T ∗S). In the tangent space at g in M, there is a natural inner product induced by g on

arbitrary tensor fields, defined as

(h, k)g =

∫
S
trg(hk)dvolg

where h and k are in Γ(S2T ∗S) identified with the tangent space at g and dvolg is the volume form.

In local coordinates, they are represented by

trg(hk) = gijglmhilkjm and dvolg =
√
det(g)dx1dx2.

Clarke [Cla10] explored the basic properties of this metric, showing that this metric, originally

defined as a weak Riemannian metric, is indeed a metric. Furthermore, it coincides with the

Weil-Petersson metric when restricted to the Teichmüller space.
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It is hard to compute the natural L2 metric defined above on the spaceM. Besides,M contains

redundant information: two metric tensors h and k may describe the isometric surface with different

parametrizations. Therefore we would like to simplify the definition of the space of shapes for a

given surface S, as the quotient of M by certain groups acting on M.

There are three topological groups acting naturally on the space of metrics: the space P of

all smooth functions on surface S, D the orientation-preserving diffeomorphism group of S and its

normal subgroup D0, the group of diffeomorphisms isotopic to the identity. The group D acts on

M as isometries by pull-back

D ×M→M (f, g)→ f∗g.

The action of D0 is its restriction. The action of P onM is the multiplication of positive functions

with metric tensors

P ×M→M (u, g)→ eug.

When we consider the two group actions above, an immediate question is whether we have a

bundle structure. The natural topology for M, D and P is the smooth Frechet topology, which

means that two metrics are close if all the coefficients and their derivatives are close under the

supremum norm in every chart. The implicit function theorem and its consequences are not true

in general for this topology. Hence in Ebin [Ebi67] and Fischer [FM77, FT84], M, D, and P

are modelled in the corresponding Sobolev spaces. These spaces contain maps which have square

integrable partial derivatives up to sufficiently large order s > 1 in every local charts, denoted by

Ms, Ds+1, and Ps respectively.

The space Ms forms an open convex subset in the Hilbert space Γs(S2T ∗S), hence a Hilbert

manifold. The space Ps corresponds to the Sobolev space Hs(S,R). Then the multiplication and

inverse are continuous, hence Ps is an abelian Hilbert Lie group. Ebin [Ebi67] proves that Ds+1

is also a Hilbert Lie group. Then we can apply the following theorem in [FT84] for the action of

a Hilbert Lie group on an infinite-dimensional manifold, which will induce a smooth structure on

the shape space, the space of pointwise conformal classes and the Teichmüller space.

Theorem 2.2.1. Let a smooth Hilbert Lie group G act on a smooth Hilbert manifold N . If the

action is smooth, proper, and free, then:

• For all x ∈ N , the orbit of x by G, denoted by Gx, is a closed smooth submanifold in N ;

• The quotient space N/G is a smooth manifold;
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• The quotient map π : N → N/G is a smooth submersion. It has the structure of a smooth

principle fibre bundle.

Fischer and Tromba [FT84] considered the action of Ps onMs, where two metrics were in the

same orbit if they differed by a factor u ∈ Ps, namely they were pointwise conformal to each other.

The quotient manifold of this group action onMs is the space of pointwise conformal structures on

S, denoted by Cs. By Theorem 3.1 above, they clarified the differential structure for Cs in [FT84].

Theorem 2.2.2. The group action P : Ps × Ms → Ms is smooth, free, and proper. The

quotient space Cs =Ms/Ps by the quotient map π :Ms →Ms/Ps = Cs, is a contractible smooth

Hilbert manifold, and (Ms, Cs, π) has the structure of a trivial principle fiber bundle with structure

group Ps. The orbit Psg for any g is a closed smooth submanifold diffeomorphic to Ps.

For surfaces with genus larger than one, there is a unique hyperbolic metric in each confor-

mal class of metrics. Let M−1 and Ms
−1 be the space of all smooth hyperbolic metrics and the

corresponding Hilbert manifold, then Fischer and Tromba [FT84] proved that Ms
−1 and Cs were

diffeomorphic, so we can use them interchangeably.

We can take further quotient of Cs by group action of Ds+1
0 . This quotient gives a trivial fibre

bundle description of the Teichmüller space T s in [EE+69,FT84].

Theorem 2.2.3. Assume a surface S is of genus g > 1. The group action Ds+1
0 × Cs → Cs

by pullback is smooth, free, and proper. The quotient space is the Teichmüller space T s, and the

quotient map π : Cs → Cs/Ds+1
0 = T s gives a trivial principle fibre bundle structure to (Cs, T s, π) .

The two groups can be combined to form a semidirect product Ds+1
0 n Ps, which is called the

conformorphism group in Fischer [FM77] denoted by Es0 . It acts on Ms by

Es0 ×Ms →Ms ((f, u), g)→ eu · f∗g;

(f1, u1) · (f2, u2) = (f2 ◦ f1, e
u2+(u1◦f2)).

The quotient of the group action on Ms gives the Teichmüller space T s. This follows since

Ps is a normal subgroup of Es0 hence the two-step quotient (Ms/Ps)/Ds0 is isomorphic structure

to Ms/Es0 [FM77]. In summary, we have the following diagram with two trivial fibre bundle

structures
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Ms

Cs T s
Ps

Es0

Ds+1
0

.

Given these two trivial bundle structures, we can formally write Ms = Ps × Ds+1
0 × T s. It

means that for any given metric g ∈Ms, there exist elements in u ∈ Ps, f ∈ Ds and [τ ] ∈ T s such

that g = euf∗(σ([τ ])) ∈ Ms. Here we don’t have a canonical choice for a section σ : T s →Ms
−1,

although a global section exists since the bundle is trivial.

2.2.2. The space of shapes and its quotient. Motivated by the definition of the Te-

ichmüller space, we define the space of shapes as follows.

Definition 2.2.4. Let S be a closed orientable connected surface. The space of shapes of S,

or the shape space, denoted by S(S), is the space of equivalence classes of metrics on the surface S,

where two metrics g1 and g2 are equivalent if there exists an isometry f : (S, g1)→ (S, g2) isotopic

to the identity.

This space is the quotient of M by the action of D0 as pullbacks. Alternatively, we can

regard the elements in the shape space as equivalence classes of marked surfaces, denoted by

(Fi, φi, gi), where Fi is a surface with metric gi diffeomorphic to S via a marking φi : Fi → S. Two

marked Riemannian surfaces (F1, φ1, g1) and (F2, φ2, g2) are equivalent if there exists an isometry

f : (F1, g1)→ (F2, g2) so that f ◦ φ1 is isotopic to φ2.

We show that Ss, the Hilbert manifold arising as the quotient manifold of the action by Ds+1
0

onMs, has a principal bundle structure, which defines the differential structure on the shape space

Ss.

Theorem 2.2.5. The action by Ds+1
0 on the spaceMs is smooth, free, and proper if the surface

F has genus g > 1. Hence the quotient space Ss = Ms/Ds+1
0 is a smooth Hilbert manifold, and

the quotient map π :Ms →Ms/Ds+1
0 = Ss is smooth. (Ms,Ss, π) has the structure of a principle

fibre bundle with structure group Ds+1
0 .

Proof. The smoothness of the action of Ds+1 on Ms was proved in detail by Ebin [Ebi67].

The properness of the action of Ds+1 was given by Palais and Fischer (see, e.g. [Tro12]) using a

straightforward computation, so the same holds for the action of its normal subgroup Ds+1
0 . Hence
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we only need to prove that the action is free. We need to show that if f∗g = g and Ds+1
0 , then f

has to be the identity.

We prove it with harmonic maps. By Coron and Helein [CH89], any smooth harmonic diffeo-

morphism between two compact Riemannian surfaces is a minimizer of the Dirichlet energy in its

homotopy class, and it is unique if the genus is larger than 1. Hence for any metric g0 on a surface

S, if we have an isometry f : (S, g0)→ (S, g0) isotopic to the identity, it has to be the identity by

the uniqueness of harmonic maps, since the identity is a harmonic map. �

In the previous discussions, we consider all the spaces to be in the category of Hilbert manifolds

Ms, Ss, Cs, and T s for sufficient large s > 0, to guarantee the continuity of metric tensors and

their derivatives. By choosing the category of the Inverse Limit Hilbert structure, or ILH-structure,

defined by Omori [Omo70], the results above also hold for ILH-Lie groups P, D0, and spaces M,

M−1, S, T (see, e.g. [FT84]), so we will use this category in the rest of this paper. Notice that if

the genus g of S is larger than one, the corresponding spaces M and D0 are contractible in this

category, so the shape space S(S) is a contractible space, and the bundle structure (M,S, π) is

trivial.

Our next goal is to understand the connection between the space of shapes S and the Teichmüller

space T . There is a natural projection from S to T . By the Uniformization Theorem, there exists

a unique hyperbolic metric ḡ in the conformal class of g. The identity map id : (S, g) → (S, ḡ) is

conformal, so we can define the following projection

j : S → T [g]→ [ḡ].

Lemma 2.2.6. The projection map j : S → T is well-defined and smooth.

Proof. Given g1 and g2 representing one equivalent class in S and their conformally equivalent

hyperbolic metrics ḡ1 and ḡ2, we have an isometry f : (S, g1) → (S, g2) isotopic to the identity.

It induces a conformal map from (S, ḡ1) to (S, ḡ2) by f̄ = id ◦ f ◦ id−1, since id−1, f and id are

conformal. Then f̄ has to be an isometry since conformal diffeomorphisms between hyperbolic

surfaces are isometries. Hence ḡ1 and ḡ2 represent the same element in the Teichmüller space.

This projection can be constructed explicitly using the bundle structure of S. Since the bundle

structure ofM over S is trivial, there exists a smooth global section σ : S →M. We can compose
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this section with the two smooth projections from M → M−1 and M−1 → T to construct the

projection j. �

Unfortunately we can’t take the quotient of S by the group action of P directly to construct a

well-defined group action. This is due to the fact that a function u ∈ P has a fixed value at a fixed

point while every element in S can be represented using different metrics, which achieve possibly

different values at a fixed point. It can also be seen by the fact that D0 is not a normal subgroup

of E0, hence E0/(D0, 1) is not isomorphic to P as groups.

In summary, we have the following four spaces M, S, C, and T in a commutative diagram

M S

C T

D0

P E0 j

D0

.

The group action D ×M → M is more subtle since certain metric tensors have non-trivial

symmetries. For example, hyperbolic surfaces with genus g may have isometry groups with order

up to 84(g − 1)(see, e.g. [FM11]).

The diagram above holds for surfaces S with g > 1. For the torus, its diffeomorphism group

D0 could contain non-trivial isometries, so the action of D0 on M may not be free. By Earle and

Eells [EE+69], D0 is not contractible and has the same homotopy type as the torus, so the shape

space S is not contractible. It does not fit in the picture for higher genus cases. Nevertheless, we

define a metric structure on the shape space of a surface S, including the torus in the next section.

2.3. Metrics on the Space of Shapes on Surfaces

In this section, we define a distance function between two shapes in the shape space S of a closed

orientable surface S of genus g ≥ 1. We first discuss how to compare shapes using diffeomorphisms,

then define a metric based on two energies defined for quasiconformal homeomorphisms on S.

2.3.1. Measurement of distortion. To compare two shapes, we find an “optimal” diffeo-

morphism between two shapes on a surface and measure its deviation from an isometry. In general,

we can measure the distortion of f : (S, g1)→ (S, g2) by the singular values of its differential, where

the differential at a point p is

dfp : (TpS, g1)→ (Tf(p)S, g2).
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After choosing appropriate orthonormal basis in each metric, it can be expressed as a matrix

dfp = T =

λ1(p) 0

0 λ2(p)

 .
where λ1(p) and λ2(p) are the singular values of dfp as a linear transformation. The area distortion

of f at p is measured by the Jacobian Jf (p) = λ1(p)λ2(p). The ratio of the two singular values at

p ∈ S corresponds to the eccentricity of the ellipse in the tangent space at f(p) shown in Figure 1.

To measure the angle distortion of f , we define the dilatation of f at p to be Kf (p) = λ1(p)/λ2(p),

assuming λ1(p) ≥ λ2(p).

Notice that we can extend these definitions from diffeomorphisms on S to quasiconformal home-

omorphisms on S. For a quasiconformal homeomorphism f from a region Ω ⊂ C into C, fz and

fz̄ are locally square-integrable, and f is differentiable almost everywhere. The Jacobian Jf is

well-defined almost everywhere and locally integrable, and the essential supremum of Kf over the

surface is bounded. Then we can show that both λ1 and λ2 are locally square-integrable, satisfying

the following relations

λ1(p) =
√
Jf (p)Kf (p) and λ2(p) =

√
Jf (p)

Kf (p)
∀p ∈ Ω.

Since the Jacobian and dilatation of f are local quantities, we can construct charts on a surface

to show that λ1 and λ2 are well-defined and locally square-integrable for quasiconformal homeo-

morphisms on the surface S.

Based on the two singular values λ1 and λ2, we can define energies of f measuring the angle

distortion and the area distortion of f respectively.

Definition 2.3.1. The area distortion energy of a quasiconformal homeomorphism f : (S, g1)→

(S, g2) is

E1(f) =

√∫
S

(1−
√
λ1(p)λ2(p))2dAg1 .

The angle distortion energy of f is

E2(f) =
1

2
|| log

λ1(p)

λ2(p)
||∞.

where λ1(p) and λ2(p) are singular values of f at p ∈ S, and || · ||∞ is the essential supremum norm

on the functions on S.
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Note that if f is a pointwise area-preserving, then E1(f) = 0. If f is conformal, E2(f) = 0.

Both of them are zero if and only if f is an isometry.

2.3.2. Metric Structure for Genus Zero Surfaces. Hass and Koehl [HK17] introduced

a metric structure for smooth genus-zero surfaces from the intrinsic point of view. By the Uni-

formization Theorem in Section 2, any two metrics g1 and g2 on S2 are conformally equivalent.

There exists a conformal diffeomorphism f : (S2, g1)→ (S2, g2) with a positive function λf , called

the conformal factor, such that

f∗(g2) = λfg1 or g2(f∗(v1), f∗(v2))f(p) = λf (p)g1(v1, v2)p

where v1, v2 ∈ TpS2 for all p ∈ S2. In looking for an energy minimizing map, we can restrict to

the group of conformal diffeormophisms of the round 2-sphere, which coincides with the group of

Mobius transformations isomorphic to PSL(2,C). If we choose an appropriate orthonormal basis

in the tangent space for each metric, the differential of a conformal diffeomorphism has a simple

expression [HK17]

dfp =

λf 0

0 λf

 .
For conformal maps we have E2 = 0 and E1 simplifies to

E1(f) =

√∫
S2

(1− λf )2dAg1 .

This idea leads to the definition of a metric on the space of shapes of S2 as

d((S2, g1), (S2, g2)) = inf{E1(f)|f : (S2, g1)→ (S2, g2) a conformal diffeomorphism}.

In [HK17], Hass and Koehl showed this function d : S × S → R gave a metric, and the

infimum was achieved by a conformal diffeomorphism. In their framework, the given two surfaces

are mapped to the round 2-sphere by conformal maps c1 and c2. They found an optimal conformal

diffeomorphism c−1
2 ◦ m ◦ c1 between the two surfaces by minimizing the symmetric distortion

energy among the group of Mobius transformations. They proposed an algorithm to compute

the distance between two triangulated surfaces and applied it to describe shapes of proteins and

generate evolutionary trees of species [HK14,KH13,KH15].
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Figure 2.3. A framework to compare genus-zero surfaces from [HK17]

2.3.3. Metric Structure for High Genus Surfaces. There is a fundamental difference

between the shape space of genus-zero surfaces S2 and that of higher genus surfaces S. Any two

shapes on the 2-sphere are conformal, while two shapes on a high genus surface are not necessarily

conformally equivalent. We define a distance between two shapes by minimizing the sum of the

energies E1 and E2 over the quasiconformal homeomorphisms of S isotopic to the identity. Setting

E(f) = E1(f) + E2(f), we define a distance function as follows.

Definition 2.3.2. Let S be a closed connected orientable surface of genus g ≥ 1 and S(S) be

the shape space of S. Then we define a function d : S(S)×S(S)→ R between two shapes in S(S)

represented by (S, g1) and (S, g2) to be

d((S, g1), (S, g2)) = inf
f∈Q0

(E(f)) = inf
f∈Q0

(√∫
S

(1−
√
λ1λ2)2dAg1 +

1

2
|| log

λ1

λ2
||∞)

where Q0 is the space of quasiconformal homeomorphisms from (S, g1) to (S, g2) isotopic to the

identity.

Equivalently, we can use marked surfaces to define this metric on the shape space S(S). Let

(F1, φ1, g1) and (F2, φ2, g2) represent two different shapes of S, then

d((F1, φ1, g1), (F2, φ2, g2)) = inf
f∈Q

(E(f))

where Q is the set of quasiconformal homeomorphisms from (F1, g1) to (F2, g2) isotopic to φ2 ◦φ−1
1 .
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Theorem 2.3.3. Let S be a closed orientable connected surface of genus g ≥ 1. The function d

induces a metric on the space of shapes S(S).

Proof. To show the function d is a metric, we need to check that for any three metrics (S, g1),

(S, g2), and (S, g3), we have

(1) d((S, g1), (S, g2)) ≥ 0;

(2) d((S, g1), (S, g2)) = 0 if and only if g1 and g2 are isometric by a diffeomorphism isotopic

to the identity;

(3) d((S, g1), (S, g2)) = d((S, g2), (S, g1));

(4) d((S, g1), (S, g3)) ≤ d((S, g1), (S, g2)) + d((S, g3), (S, g2)).

The first two properties are immediate from the definition. If d((S, g1), (S, g2)) = 0, then

there exists an isometry isotopic to the identity, which means that g1 and g2 represent the same

equivalence class in S(S).

The symmetry property follows from E1(f) = E1(f−1) and E2(f) = E2(f−1). By a similar

computation in [HK17], we have

E1(f−1) =

√∫
S

(1−
√

1

λ1λ2
)2dAg2 =

√∫
S

(1−
√

1

λ1λ2
)2λ1λ2dAg1

=

√∫
S

(1−
√
λ1λ2)2dAg1 = E1(f).

The singular values of f−1 are 1/λ1 and 1/λ2, so the symmetry of E2 is immediate.

To show the triangle inequality, set f : (S, g1)→ (S, g2) and g : (S, g2)→ (S, g3), and we show

that

E1(g ◦ f) ≤ E1(g) + E1(f).

Let the singular values of f , g, and g ◦ f be λ1 and λ2, µ1 and µ2, σ1 and σ2 respectively. Then by

a similar computation in [HK17], we have

(E1(g) + E1(f))2 =

∫
S

(1−
√
λ1λ2)2dAg1 +

∫
S

(1−√µ1µ2)2dAg2

+ 2

√∫
S

(1−
√
λ1λ2)2dAg1

∫
S

(1−√µ1µ2)2dAg2 .

23



Notice that dAg2 = λ1λ2dAg1 , then by the Cauchy-Schwarz inequality, we have√∫
S

(1−
√
λ1λ2)2dAg1

∫
S

(1−√µ1µ2)2dAg2 =

√∫
S

(1−
√
λ1λ2)2dAg1

∫
S

(1−√µ1µ2)2λ1λ2dAg1

≥
∫
S

(1−
√
λ1λ2)(1−√µ1µ2)

√
λ1λ2dAg1 .

Hence

(E1(g) + E1(f))2 ≥
∫
S

(1−
√
λ1λ2)2 + (1−√µ1µ2)2λ1λ2

+ 2(1−
√
λ1λ2)(1−√µ1µ2)

√
λ1λ2dAg1

=

∫
S

((1−
√
λ1λ2) +

√
λ1λ2(1−√µ1µ2))2dAg1

=

∫
S

(1−
√
λ1λ2µ1µ2)2dAg1 .

Since σ1σ2 = Jg◦f = JfJg = λ1λ2µ1µ2, it follows that

(E1(g) + E1(f))2 ≥ (E1(g ◦ f))2.

To prove the second part of the inequality, namely E2(g ◦ f) ≤ E2(g) + E2(f), we assume that

λ1 ≥ λ2, µ1 ≥ µ2, and σ1 ≥ σ2 for simplicity. Notice that the larger singular value is the 2-norm

for the differential dfp, and the smaller singular value is the reciprocal of the 2-norm of the inverse

of dfp. The larger singular value of the composition g ◦ f is bounded by

σ1(p) = ||d(g ◦ f)p||2 = ||dgf(p) ◦ dfp||2 ≤ ||dfp||2||dgf(p)||2 = λ1(p)µ1(p).

Similarly for the inverse, we have

1

σ2(p)
= ||d(f ◦ g)−1

p ||2 = ||df−1
p ◦ dg−1

f(p)||2 ≤ ||df
−1
p ||2||dg−1

f(p)||2 =
1

λ2(p)µ2(p)
.

Hence we have

0 < λ2µ2 ≤ σ2 ≤ σ1 ≤ λ1µ1.
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Therefore

E2(f) + E2(g) =
1

2
|| log

λ1

λ2
||∞ +

1

2
|| log

µ1

µ2
||∞ ≥

1

2
|| log

λ1

λ2
+ log

µ1

µ2
||∞

=
1

2
|| log

λ1µ1

λ2µ2
||∞ ≥

1

2
|| log

σ1

σ2
||∞ = E2(g ◦ f).

Therefore we show that

E(f) + E(g) ≥ E(g ◦ f).

To pass to the infimum, we choose fn : (S, g1)→ (S, g2) and gn : (S, g2)→ (S, g3) in Q0 such that

lim
n→∞

E(fn) = d((S, g1), (S, g2)) and lim
n→∞

E(gn) = d((S, g2), (S, g3)).

Then we have

E(fn) + E(gn) ≥ E(gn ◦ fn) ≥ d((S, g1), (S, g3)).

Taking the limit as n→∞ we have

d((S, g1), (S, g2)) + d((S, g2), (S, g3)) ≥ d((S, g1), (S, g3)).

The last thing to check is that the metric d is well-defined on the shape space. Assume g1 and

g̃1 represent the same shape, and g2 and g̃2 represent another shape. Then we have an isometry

i1 : (S, g1) → (S, g̃1) isotopic to the identity and another isometry i2 : (S, g2) → (S, g̃2) isotopic to

the identity. Given f : (S, g1)→ (S, g2), consider the map f̃ : (S, g̃1)→ (S, g̃2) defined as

f̃ = i2 ◦ f ◦ i−1
1 .

Since i1 and i2 are isometries, they will not change the singular values, so the singular values of f̃

are given by λ̃1(p) = λ1(i−1
1 (p)) and λ̃2(p) = λ2(i−1

1 (p)). An isometry also preserves the area, so

dAg̃1 = dAg1 . Hence we have

E1(f̃) =

√∫
S

(1−
√
λ̃1(p)λ̃2(p))2dAg̃1 =

√∫
S

(1−
√
λ1(i−1

1 (p))λ2(i−1
1 (p)))2dAg1 = E1(f).

and

E2(f̃) =
1

2
|| log

λ̃1

λ̃2

||∞ =
1

2
|| log

λ1

λ2
||∞ = E2(f).

Hence we have

E(f̃) = E(f).
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Since i1 and i2 are isotopic to the identity, f ∈ Q0 if and only if f̃ ∈ Q0. Taking the infimum over

f ∈ Q0, we conclude that

d((S, g1), (S, g2)) = d((S, g̃1), (S, g̃2)).

Hence d is a well-defined metric on S. �

Notice that if we restrict the metric to T , then d will be the Teichmüller metric.

Our next goal is to show that the distance between two shapes is realized by a homeomorphism

of the surface S. In general, a sequence of homeomorphisms fn of a surface may converge to a

singular map, such as a constant map. We show that singular maps will not occur for the limit of

an energy-minimizing sequence.

Given two compact hyperbolic surfaces (S, ḡ1) and (S, ḡ2), all the K-quasiconformal homeo-

morphisms between them are D-quasi-isometries, with the constant of distortion D depending only

on K(see, e.g. [FM07]). Hence these K-quasiconformal homeomorphisms are equicontinuous. The

following lemma shows that this result also holds for K-quasiconformal homeomorphisms between

two flat tori. In the proof of this lemma, we use the extremal length of curve families in the annulus

(see e.g. [FM07]).

Lemma 2.3.4. Let fn : (T2, g1) → (T2, g2) be a family of K-quasiconformal homeomorphisms

between two flat tori with unit area. Then the maps fn are equicontinuous.

Proof. Let J be the injective radius of (T2, g1), and dgi(x, y) denote the distance between x

and y in the metric gi, where i = 1, 2. Then for any 0 < r < J , if dg1(x, y) < r, then there exists

an embedded annulus A in (T2, g1) centered at the midpoint of x and y, whose inner radius is r/2

and outer radius is J/2. Moreover, it separates T2 into two components, one of which is a flat disk

with radius r/2 containing x and y.

Lift A isometrically to a flat annulus Ã in the universal covering R2, and lift x and y to x̃ and ỹ

contained in the disk bounded by the inner boundary of Ã. We consider the extremal length λ(Γ)

of the family of curves Γ in Ã that separate the two boundary circles of Ã, with the curves not

leaving Ã. Then we have (see e.g. [FM07])

λ(Γ) =
2π

log(J/r)
.
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We also lift fn to K-quasiconformal homeomorhisms f̃n : R2 → R2. Then by the property of

K-quasiconformal homeomorphisms, f̃n(A) are annulus, and if Γn1 = f̃n(Γ), then the curves in Γn1

are contained in f̃n(A) with their extremal length bounded by

λ(Γn1 ) ≤ Kλ(Γ).

By the definition of the extremal length λ(Γ), notice that the area of f̃n(A) is less than one in the

Euclidean metric on R2, so

λ(Γn1 ) ≥ L2 ≥ 4d2(f̃n(x̃), f̃n(ỹ)) = 4d2
g2(fn(x), fn(y)) ∀n,

where L is the length of the inner boundary curve of f̃n(A). The second inequality holds because

f̃n is a homeomorphism so that f̃n(x̃) and f̃n(ỹ) are in the disk bounded by the inner boundary

curve of f̃n(A), and the last equality holds because there exists an isometric project from R2 to

(T2, g2). Combining above relations, we have

dg2(fn(x), fn(y)) ≤
√

πK

2 log J
r

∀n.

Notice that dg2(f(x), f(y)) → 0 if r → 0. Hence for any ε > 0, there exists r > 0 such that if

dg1(x, y) < r, then dg2(f(x), f(y)) < ε. Notice that r doesn’t depend on n, hence the maps fn are

equicontinuous.

�

Theorem 2.3.5. Assume S has genus g ≥ 1. Given two metrics (S, g1), (S, g2) represent-

ing two shapes in S(S), and an energy-minimizing sequence fn ∈ Q0(S) such that E(fn) →

d((S, g1), (S, g2)) as n → ∞, there is a subsequence of fn converging to a quasiconformal homeo-

morphism f such that E(f) = d((S, g1), (S, g2)).

Proof. Since E(fn) → d((S, g1), (S, g2)), we assume that E(fn) < K for some K > 0. Then

the maps fn are K-quasiconformal homeomorphisms on a compact surface S. Then the maps fn

are equicontinuous and bounded with respect to the corresponding metrics ḡ1 and ḡ2 of constant

curvature, and if S is the torus, we normalize ḡ1 and ḡ2 to be metrics with unit area. By Arzela-

Ascoli, there exists a subsequence converging uniformly to a continuous map f . To show f is

a homeomorphism, notice that the inverses of the maps fn are also D-quasi-isometries where D

does not depend on n. Then the equicontinuity of inverses of fn implies that if f−1
n (x) = a and
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f−1
n (y) = b, then

dḡ1(a, b) = dḡ1(f−1
n (x), f−1

n (y)) ≤ C(K)dḡ2(x, y) = C(K)dḡ2(fn(a), fn(b))

where dḡi(x, y) denotes the distance between x and y in the metric ḡi for i = 1, 2. Taking the

limit n → ∞, we conclude that f is injective. Then f is a continuous injection from a compact

2-manifold to a connected 2-manifold, so it is a homeomorphism by the properness of f and the

theorem of invariance of domain. (see e.g. [Lee10]).

Replace fn by a convergent subsequence and we have fn → f uniformly where f is a homeo-

morphism. For the limit map f , notice that its energy is given by

E(f) =

√∫
S

(1−
√
Jf )2dAg1 +

1

2
logKf .

where Jf is the Jacobian of f and Kf is the maximal dilatation of f . The lower semicontinuity

property of the maximal dilatations for quasiconformal maps [BGMR13] gives

Kf ≤ lim inf
n→∞

Kfn .

Next we will to show that taking a further subsequence of fn, we have∫
F

(1−
√
Jf )2dAg1 = lim

n→∞

∫
F

(1−
√
Jfn)2dAg1 .

Notice that this term has the following decomposition:∫
F

(1−
√
Jfn)2dAg1 =

∫
F
dAg1 +

∫
F
JfndAg1 − 2

∫
F

√
JfndAg1

= Area((F, g1)) +Area((F, g2))− 2

∫
F

√
JfndAg1 .

where Area((F, g)) is the area of the surface F with metric g. Similarly we have∫
F

(1−
√
Jf )2dAg1 = Area((F, g1)) +Area((F, g2))− 2

∫
F

√
JfdAg1 .

Consider
√
Jfn as functions in the function space on (F, g1) with L2 norm. The Area of (F, g2)

gives a uniform bound on their norms:

lim
n→∞

∫
F

(
√
Jfn)2dAg1 = Area((F, g2)) =

∫
F

(
√
Jf )2dAg1 .
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The unit closed ball in the function space on (F, g1) with L2 norm is weakly sequentially compact,

so we have a subsequence of fn, denoted again by fn, such that
√
Jfn converges weakly to

√
Jf .

Since (F, g1) is compact, constant functions are in the function space on (F, g1) with L2 norm,

hence

lim
n→∞

∫
F

√
Jfn · 1dAg1 =

∫
F

√
Jf · 1dAg1 .

Thus, we have

E(f) ≤ lim inf
n→∞

E(fn) = d((F, g1), (F, g2)).

Since f is a quasiconformal homeomorphsim, E(f) ≥ d((F, g1), (F, g2)), hence

E(f) = d((F, g1), (F, g2)).

�

We now consider the uniqueness of the energy minimizing map in each homotopy class. In the

special case where both surfaces (S, g1) and (S, g2) are flat tori with unit area, the minimizers are

given by affine maps, because affine maps coincide with Teichmüller maps on flat tori with unit

area, and the Jacobians of affine maps are constant. This forces the Jacobians to be the constant

mapJ ≡ 1 on S. If we fix one point p on S, then there is a unique affine map fixing p realizing

the infimum of the energy. It is not clear whether the minimizer is unique between two general

surfaces.

2.4. Energies for maps between shapes

The area distortion energy E1 is a generalization from the symmetric distortion energy for the

2-sphere in [HK17]. It induces a metric when restricted to a conformal class of metrics. The

energy E2 is the Teichmüller metric. Ideally, we want to find a variational framework to compute

the optimal diffeomorphism, namely a convex energy for maps between surfaces with a unique

minimizer in a given homotopy class of maps. Unfortunately, we don’t know whether the energy

E is convex, and whether its minimizer is unique in each homotopy class. So we try to construct

new metrics on the shape space by considering more energies of maps between surfaces to define

metrics on conformal classes of metrics and the Teichmüller space.

The Dirichlet energy is a candidate for a metric, because the critical point of the Dirichlet energy

in each homotopy class of diffeomorphisms on Sg exists and is achieved by a unique diffeomorphism
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when g > 1. We will use the Dirichlet energy to define new energies of maps between surfaces, and

compute various energies of maps between flat tori.

2.4.1. Energies for metrics on the Teichmüller space. There exist other metrics on the

Teichmüller space, including the Teichmüller metric, the Weil-Petersson metric, and Thurston’s

asymmetric metrics. However, they are not easy to compute in practice. Several energies related to

Dirichlet energy can be regarded as a measurement of the conformal distortion of a map f between

two surfaces (S, g1) and (S, g2). For example, the energy Ec(f) for a map f : (S, g1)→ (S, g2) was

defined in [AL15,PP93] to be

Ec(f) = ED(f)−A

where and A is the area of the target surface. A similar energy EC(f) is defined to be

EC = log
ED(f)

A
.

Notice that if f is a conformal map, ED(f) = A so Ec(f) = EC(f) = 0.

We can represent these two energies using singular values λ1 and λ2 of the differential df of the

map f : (S, g1)→ (S, g2) as

Ec(f) = ED −A =
1

2

∫
F
λ2

1 + λ2
2dAg1 −

∫
F
λ1λ2dAg1 =

1

2

∫
S

(λ1 − λ2)2dAg1 ;

EC(f) = log

∫
S λ

2
1 + λ2

2dAg1
2
∫
S λ1λ2dAg1

.

These two energies both characterize the deviation of f from a conformal map. However, they

don’t induce metrics. We show this with the following counterexamples using three flat tori with

unit area.

f3

1
λ

λ
f1

unit square

f2

λ

1
λ

Figure 2.4. Three flat tori represented by fundamental domains
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Lemma 2.4.1. The energies EC and Ec do not define a metric on the Teichmüller space of flat

tori with unit area.

Proof. We show that for each of these two energies, the triangle inequality does not hold. The

Dirichlet energy of an affine map between two flat tori is given by

ED(f) =
1

2

∫
S
λ2

1 + λ2
2dA =

1

2
(λ2

1 + λ2
2)A =

λ2
1 + λ2

2

2λ1λ2
λ1λ2A =

1

2
(K +

1

K
)Ā

where λ1 and λ2 are the two singular values corresponding to the affine map, A and Ā = λ1λ2A

are the areas of the domain and the target surfaces, and K is the dilatation of the affine map. A

similar computation can be found in [LGY15].

For any λ ≥ 1, we have three flat tori defined in Figure 3 and three affine maps f1 : (T2, g1)→

(T2, g2), f2 : (T2, g2) → (T2, g3) and f3 : (T2, g1) → (T2, g3). The singular values for both f1 and

f2 are λ and 1/λ, and the singular values for f3 are λ2 and 1/λ2. We have

2Ec(f1) + 2Ec(f2) = 2(λ− 1

λ
)2 − 2 ≤ (λ2 − 1

λ2
)2 − 1 = 2Ec(f3).

This means the triangle inequality can’t hold locally in the Teichmüller space for Ec. Similarly for

EC we have

EC(f3) = log
1

2
(λ4 +

1

λ4
) ≥ 2 log

1

2
(λ2 +

1

λ2
) = EC(f1) + EC(f2)

with equality holding if and only if λ = 1. �

Inspired by the discussion above, we can modify EC to construct a metric on the Teichmüller

space of flat tori.

Lemma 2.4.2. For any two flat metrics on a torus (T2, g1) and (T2, g2) representing two ele-

ments in the Teichmüller space of flat tori with unit area, define

d((T, g1), (T, g2)) = inf
f∈D0

√
logED(f)

where D0 is the diffeomorphism of T2 isotopic to the identity. Then d is a metric on the Teichmüller

space of flat tori with unit area.

Proof. By the property of the Dirichlet energy, ED(f) ≥ 1 so d(g1, g2) ≥ 0 and the equality

holds if and only if two flat metrics g1 and g2 are conformal to each other, hence d(g1, g2) = 0

implies that g1 and g2 represent the same shape. The minimizer of ED is given by an affine map,
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so we have the explicit formula

d(g1, g2) = inf
f∈D0

√
logED(f) =

√
log

1

2
(K +

1

K
)

where K is the dilatation of the affine map. Notice that the inverse of the affine map has the same

dilatation, so d(g1, g2) = d(g2, g1).

For the triangle inequality, if we have three flat metrics g1, g2 and g3 with the affine maps

f1 : (T2, g1) → (T2, g2), f2 : (T2, g2) → (T2, g3) and f3 : (T2, g1) → (T2, g3), we know that

Kf3 ≤ Kf2Kf1 . Hence we only need to check the following inequality for x = Kf1 ≥ 1 and

y = Kf2 ≥ 1.

d(g1, g3) =

√
log

1

2
(Kf3 +

1

Kf3

) ≤

√
log

1

2
(Kf2Kf1 +

1

Kf2Kf1

) =

√
log

1

2
(xy +

1

xy
)

≤
√

log
1

2
(x+

1

x
) +

√
log

1

2
(y +

1

y
) =

√
log

1

2
(Kf2 +

1

Kf2

) +

√
log

1

2
(Kf1 +

1

Kf1

)

= d(g1, g2) + d(g2, g3).

We need to show that the inequality below holds for x ≥ 1 and y ≥ 1.√
log

1

2
(xy +

1

xy
) ≤

√
log

1

2
(x+

1

x
) +

√
log

1

2
(y +

1

y
).

By taking square on both sides we can show that the inequality is equivalent to

log2
2(xy + 1

xy )

(x+ 1
x)(y + 1

y )
≤ 4 log

x+ 1
x

2
log

y + 1
y

2
.

Applying the inequality x/(x+ 1) ≤ log(1 + x) ≤ x if x ≥ 0, we deduce that

log
2(xy + 1

xy )

(x+ 1
x)(y + 1

y )
≤

(x− 1
x)(y − 1

y )

(x+ 1
x)(y + 1

y )
;

x+ 1
x − 2

x+ 1
x

≤ log
x+ 1

x

2
;

y + 1
y − 2

y + 1
y

≤ log
y + 1

y

2
.

This means that we need to check the inequality

(x− 1
x)2(y − 1

y )2

(x+ 1
x)2(y + 1

y )2
≤ 4

x+ 1
x − 2

x+ 1
x

y + 1
y − 2

y + 1
y

.

32



By cancellation and expansion of this inequality, we can see that it holds for x ≥ 1 and y ≥ 1.

Using a similar argument as Theorem 4.3 , we can show that d is well-defined and satisfies the

triangle inequality, hence d is a metric.

�

The Teichmüller metric on the Teichmüller space of flat tori with unit area is 1/2 logK, which

coincides with the hyperbolic metric on the upper half plane model. Comparing to the Teichmüller

metric, the metric defined above is more sensitive to small deformations of metrics, meaning that

when K is close to one, √
log

1

2
(K +

1

K
)− 1

2
logK > 0.

On the other hand, if K is large, the distance is asymptotically the same as the square root of

the Teichmüller metric up to a constant multiple. The metric defined above can be regarded as a

composition of the Teichmüller metric with certain function. It is not clear whether we can combine

the energy E1 with this metric to define a metric on the shape space of the torus

E((T, g1), (T, g2)) = inf
f∈Q0

√
log

ED(f)

A
+

√∫
T

(1−
√
λ1λ2)2dAg1 .

2.4.2. Energies for metrics on a conformal class. Hass and Koehl [HK17] proposed a

variation for the symmetric distortion energy for a surface S. For any p ≥ 1 and a conformal map

f : (S, g1)→ (S, g2), assume the conformal factor of this map is λ = eu where u is a function on S,

and define the Lp energy between the two metrics to be

Esdp((S, g1), (S, g2)) = Ep(f) + Ep(f
−1) = p

√∫
S
|u|pdAg1 + p

√∫
S
|u|pdAg2 .

Lemma 2.4.3. For any 1 < p <∞, the Lp energy between two metrics does not define a metric

on a conformal class of metrics on the torus.

Proof. We can consider the three affine maps f1 : (T2, g1)→ (T2, g2), f2 : (T2, g2)→ (T2, g3),

and f3 : (T2, g1) → (T2, g3), with g2 = λg1 and g3 = λg2 where λ > 0 is a constant. Then

A2 = λ2A1, A3 = λ4A1, and we have

Esdp(g1, g2) + Esdp(g2, g3) = | log λ| p
√
A1 + | log λ| p

√
A2 + | log λ| p

√
A2 + | log λ| p

√
A3

= p
√
A1(1 + λ

2
p )2| log λ|;
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Esqp(g1, g3) = | log λ2| p
√
A1 + | log λ2| p

√
A3 = p

√
A1(2 + 2λ

4
p )| log λ|

≥ Esdp(g1, g2) + Esdp(g2, g3).

So we don’t have the triangle inequality. �

2.5. Algorithms to Compute Maps and the Distance

In this section, we first summarize related works about various computational methods for maps

between surfaces, including conformal maps, harmonic maps and Teichmüller maps. We assume

that we have a closed connected orientable surface S, a genus-zero surface S2 or high-genus surface

Sg with genus g ≥ 1. One comprehensive survey about surface parametrization using these maps

can be found in Floater and Hormann [FH05]. Then, we propose an algorithm to compute the

distance between two shapes of high genus surfaces.

2.5.1. Discretization and Computation of Maps. One of the natural ideas to compute

these maps reduces to solving partial differential equations using finite elements methods. This

method usually gives fast and robust algorithms, while the geometric properties of the maps are

not preserved in an intuitive fashion. The recent development of discrete differential geometry

provides structure-preserving methods to compute these maps. It asks not only the algorithms but

a parallel discrete theory, such as discrete metric, discrete curvature, and discrete uniformization

theorem. The key questions to ask in this field includes the following

(1) What should be the definition for the discrete version of smooth maps, such as discrete

conformal maps? Does this discretization of smooth maps converge to the smooth

map in weak or strong sense when we subdivide the meshes?

(2) What is the algorithm to compute the map? Does this algorithm converge? In partic-

ular, can we transform this problem to a convex optimization problem?

Here we summarize the ideas of the previous works on the discretization of conformal maps,

harmonic maps and Teichmüller maps and their computational methods.

2.5.1.1. Conformal maps. Conformal maps have been applied to various problems such as con-

structing maps from brain to the round 2-sphere. Here we only mention part of the literature

related to high genus surfaces.

Gu and Yau [GY02,GY03] proposed a computional method for the conformal structures on

general Riemann surfaces with non-trivial topologies. Zeng et al. [ZLY+07] computed spherical
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parametrizations for high genus surfaces by introducing branch points. Thurston [Thu79] pointed

out that conformal maps could be approximated numerically by circle packings. This idea was

implemented by Hurdal and Stephenson [HS09]. See Stephenson [Ste05] for a detailed treatment

with circle packings. It also led to the definition of a discrete conformal structure and discrete

Ricci flow for triangulated surfaces proposed by Chow and Luo [CL+03]. Similarly, Luo [Luo04]

proposed another discrete conformal structure and discrete Yamabe flow, which was transformed

to a variational framework for computation by Bobenko, Pinkall, and Springborn [BPS15] and

Springborn, Schroeder, and Pinkall [SSP08]. These two notions of discrete conformal equivalence

provide not only fast algorithms but also analogous theorems in the discrete setting, including a

discrete uniformization theorem by Thurston [Thu79] and Gu et al. [GLS+18]. The convergence

of discrete conformal mappings to smooth mappings under subdivisions was proved by Rodin and

Sullivan [RS+87] and Gu, Luo and Wu [GLW19]. Glickenstein and Thomas [GT17] showed that

the two notions fall into a unified framework, providing a family of discretizations for conformal

mappings. The algorithms of the discrete flows can be formulated into a convex optimization

problem.

2.5.1.2. Harmonic map. Discrete versions of harmonic maps and Dirichlet energy have been

studied in the theory of finite elements as a numerical solution to second-order elliptic PDEs.

Pinkall and Polthier [PP93] proposed a discrete energy for triangular meshes to compute the

harmonic map as an approximation to the minimal surface with a prescribed boundary in R3. For

a smooth genus zero surface, harmonic maps coincide with conformal maps, providing a variational

method implemented by Gu et al. [GWC+04] with applications to brian mappings. For high-genus

surfaces, Li et al. [LBG+08] computed harmonic maps by directly minimizing Dirichlet energy.

They need to first compute the hyperbolic metric for the target surface. Then the gradient flow

of the Dirichlet energy from the domain surface to the target surface with a hyperbolic metric

converges due to the convexity of the energy.

Another natural approach to discretize harmonic maps is through convex combination map-

pings. This idea emerges from Tutte’s theorem [Tut63] for planar graphs, which states that we

can embed a 3-vertex-connected planar graph in the plane with a prescribed convex boundary by

solving a sparse linear system, producing a piecewise linear map as an approximation to the har-

monic map. This result was further developed for triangulations of the disk by Floater [Flo03a],

and can be regarded as a discrete version of the Rado-Kneser-Choquet theorem. Dym, Slutsky, and
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Lipman [DSL19] showed that the piecewise linear maps generated by Tutte’s theorem converge to

the smooth harmonic map under subdivisions of the triangulations. Aigerman and Lipman [AL15]

generalized Tutte’s embedding to orbifolds.

There is currently no well-developed theory for discrete harmonic maps between general trian-

gulated surfaces with non-trivial topologies.

2.5.1.3. Quasiconformal map and Teichmüller map. Quasiconformal maps and Teichmüller

maps provide a method to compare two surfaces by measuring the deviation from conformality.

Various methods have been proposed to compute quasiconformal maps and the Teichmüller map.

Lui et al. [LGY15,LLYG12] studied numerical methods for computing quasiconformal maps and

the Teichmüller maps extensively with applications in medical image and surface matching. Zeng

et al. [ZLL+12] computed quasiconformal maps with prescribed Beltrami coefficients µ by mod-

ifying the original metric such that the quasiconformal map corresponds to a conformal map in

the new metric, then computing conformal maps using Ricci flow or Yamabe flow. Lam, Gu and

Lui [LGL15] computed the Teichmüller map with constraints to analyze the shape of vertebrae

bones. Weber, Myles, and Zorin [WMZ12] implemented a non-convex energy to compute Teich-

muler maps. Wong and Zhao [WZ14] proposed a method to compute quasiconformal maps using

discrete Beltrami flow. Most of the current algorithms deal with triangulated disks or 2-spheres.

There is no well-developed notion for discrete quasiconformal maps between general surfaces.

2.5.2. An Algorithm to Compute the Distance. In this section, we propose an algorithm

to compute the distance on the shape space of a high genus surface. The framework of this algorithm

stems from the work in [LBG+08,LW14,WZ14].

In practice, a surface is described by a triangular mesh T = (V,E, F ) with the set of vertices

V , the set of edges E, and the set of faces F . Each vertex has coordinates in R3 for its position,

and the length of an edge connecting two vertices is computed in R3 by their coordinates. Then a

discrete metric is determined by the set of edge lengths, namely a function l from E to R+ so that

triangle inequalities hold for all triangles in F .

To compare two shapes, we are given three lists for each mesh T1 and T2, a list of vertices vi,

a list of edges eij = [vi, vj ] and a list of faces fijk = [vi, vj , vk] with orientation given by the order

of the three vertices. We have all coordinates of vertices in T1 and T2 in R3 and the two sets of
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edge lengths l1 and l2 of all the edges in T1 and T2. The combinatorial information and the discrete

metrics for two shapes are contained in (T1, l1) and (T2, l2).

A map f between (T1, l1) and (T2, l2) is determined by the images in (T2, l2) of the vertices in

T1. Each map f restricted to a face of T1 sends three vertices of the domain triangle with edge

lengths L1, L2, and L3 to three points on the target, and the corresponding distances l1, l2, and

l3 between each pair of vertices are computed using the discrete metric on the target, forming a

triangle with potential cone singularities. Here we approximate the singular values in the smooth

setting by the two singular values λ1(fijk) and λ2(fijk) of the linear map from each triangle fijk

in T1 to the Euclidean triangle with edge lengths l1, l2, and l3, ignoring the potential singularities.

Then the discrete energy of f between (T1, l1) and (T2, l2) is given by

E(f) =

√√√√∑
fijk

(1−
√
λ1(fijk)λ2(fijk))2A(fijk) +

1

2
max
fijk

∣∣∣∣ log
λ1(fijk)

λ2(fijk)

∣∣∣∣
where the integral is replaced by a sum over all the faces weighted with their areas A(fijk), the

supremum is replaced by the maximum over all the faces.

To compute the two singular values λ1(fijk) and λ2(fijk) for each face, set L1, L2, L3 to be the

lengths of the domain triangle with opposite angles α, β, γ, and l1, l2, l3 to be the corresponding

lengths of the target triangle. Set λ1 and λ2 to be the two singular values and assume λ1 ≥ λ2.

Then set D = λ2
1 + λ2

2, R = λ1
λ2

and P = λ1λ2. We have

D =
1

2A
(cotα|l1|2 + cotβ|l2|2 + cot γ|l3|2)

and

P = λ1λ2 =

√
c(c− l1)(c− l2)(c− l3)

C(C − L1)(C − L2)(C − L3)

where A is the area of the domain triangle, C is its semi-perimeter, and c is the semi-perimeter of

the image triangle. The formula for D can be found in [PP93], and P is the ratio of the areas of

two triangles where we can apply Heron’s formula. Then we have the relation

(R+
1

R
)P = D.

We can solve R by

R =

D
P +

√
(DP )2 − 4

2
.
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A similar computation of the singular values using coordinates of the vertices in R3 can be found

in [LBG+08].

2.5.2.1. Overview of the Algorithm. We describe an algorithm to compute the distance between

two shapes (T1, l1) and (T2, l2) as follows.

(1) Check that T1 and T2 represent closed orientable connected surfaces with the same genus,

and normalize both areas to be one.

(2) Fix a vertex v0 in T1 and find a system of disjoint loops based on v0 using the greedy

algorithm proposed by Erickson and Whittlesey [EW05] and a local refinement algorithm

of the triangulation in [LBG+08] to construct new triangulations T ′1 with a new discrete

metric l′1. Similarly compute a system of disjoint loops for T2 with a new triangulation T ′2

and a new discrete metric l′2.

(3) Slice the two triangulations T ′1 and T ′2 along the corresponding systems of loops computed

in Step 2 into two “4g-gon” G1 and G2 by the procedure in Gu and Yau [GY08].

(4) Compute the initial map using Tutte’s theorem as follows. First construct maps from Gi

to a regular 4g-gon G by Tutte’s embedding using the degree of the vertex as weights for

the linear system, and imposing the following boundary conditions:

(a) Map the 4g vertices from the base point to the 4g vertices of the regular 4g-gon in

order.

(b) Distribute the boundary vertices between any two vertices from the base point evenly

to the boundary of 4g-gon.

Then compose these maps G1 → G and G→ G2 to generate the initial map. This initial

map is described by the barycentric coordinates (ai, bi, ci) of the image of each vertex vi

in T ′1 contained in some face of T ′2.

(5) Compute the uniformization metric from the original metric (T ′2, l
′
2) using discrete Ricci

flow [JKLG08] or the variational method corresponding to discrete Yamabe flow [SSP08].

(6) Compute the harmonic map from (T ′1, l
′
1) to T ′2 with the uniformization metric from the

previous step using local charts construction in [LBG+08]. It produces a new face and

new barycentric coordinates for each vertex in T ′1.

(7) Minimize the distance energy E using the map in Step 6 as an initial guess and the local

charts in the previous step.
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The output of the algorithm contains a number E and a correspondence between two surfaces,

described by barycentric coordinates of the image of each vertex of T ′1 in a triangular face of T ′2.

This algorithm computes a local minimum of the discrete energy. Unfortunately we can’t show that

this energy is convex so we can not guarantee the local minimum we find is the global minimum.

The implementation of this algorithm is not complete, and we will focus on it in the further studies.
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CHAPTER 3

The Spaces of Geodesic Triangulations on Surfaces

In this chapter, we study the topology of the space of geodesic triangulations on a surface.

In Section 1, we provide the background for the basic property of surface diffeomorphisms and

the history of the contractibility and embeddability problems for polygons. In Section 2, we recall

various method to construct geodesic triangulations on different surfaces, especially Tutte’s theorem

and its generalizations. In Section 3, we give a new proof of the contractibility of GT (Ω, T ) if Ω is

a convex polygon using Tutte’s method. In Section 4, we give an explicit construction of a geodesic

triangulation in GT (Ω, T ) if Ω is a strictly star-shaped polygon, assuming the triangulation does

not contain any dividing edge. In Section 5, we give a characterization of a special class of geodesic

triangulations corresponding to the minimizers of weighted length energies.

3.1. Background

We will first review basic facts about diffeomorphism groups of surfaces with different topolo-

gies. Then we briefly summarize the history of these two problems, especially the Bloch-Connelly-

Henderson Theorem.

3.1.1. Surface Diffeomorphism. We consider the diffeomorphism group D(S), consisting

of all orientation-preserving self-diffeomorphisms of a smooth surface, and its subspace D0(S), the

diffeomorphisms isotopic to identity. For the 2-disk we require the diffeomorphisms to fix the

boundary ∂D2 pointwise. Then we summarize the following well-known results [Sma59,EE+69].

Theorem 3.1.1. The diffeomorphism group for the disk D(D2) = D0(D2) and it is contractible.

The diffeomorphism group for the sphere D(S2) = D0(S2) and the inclusion from orientation pre-

serving rotation SO(3)→ D(S2) is a homotopy equivalence. It admits a product structure D0(S2) =

PSL(2,C)×D0(S2; 0, 1,∞), where D0(S2; 0, 1,∞) is a contractible subgroup of diffeomorphisms fix-

ing 0, 1,∞. The diffeomorhism group of tori also admits a similar product D0(T2) = D0(T2;x)×T2

where D0(T2;x) is a contractible subgroup of diffeomorphisms fixing x ∈ T2. Finally, D0(Sg) is

contractible for all hyperbolic surfaces g ≥ 2.
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Smale proved the sphere case. Earle and Eells proved the other cases using a fiber bundle

description for Teichmuller space. The fact that D0(Sg) is contractible can also be deduced from

the fiber bundle description of Teichmuller space with shape space. The product structures for

the sphere and tori give immediately the topology of their respective diffeomorphism groups. Our

goal is to show that exactly the same results hold for the space of geodesic triangulations as finite

dimensional manifolds.

3.1.2. Prior work. The embeddability problem and the contractibility problem have been

studied in [BS78,BCH84,Cai44b,Ho73], partly because they are closely related to the problem

of determining the existence and uniqueness of differentiable structures on a triangulated manifolds

[CHHS83]. They are also used to produce effective algorithms to solve graph morphing problems

in [DVPV03,FG99,SG01,SG03].

In the general setting, we can consider a finite n-dimensional simplicial complex T , whose

polyhedron |T | is homeomorphic to the n-dimensional disk Dn. A geodesic triangulation of Dn

with the combinatorial type of T is determined by the positions of vertices of T in Rn. The space

of all such geodesic triangulations is denoted by GT (Dn, T ).

We can also interpret this space in terms of homeomorphisms. First assume there exists an

initial geodesic triangulation of Dn. Then all the other geodesic triangulations are the images of

the initial triangulation under simplexwise linear homeomorphisms fixing the boundary vertices of

T , determined by the images of the interior vertices of T in Rn. The space of all such simplexwise

linear homeomorphisms is denoted by L(Dn, T ). Ho showed in [Ho73] that it was homeomorphic

to GT (Dn, T ).

When we restrict to the 2-dimensional case, Cairns [Cai44a,Cai44b] initiated an investigation

of the topology of the space of geodesic triangulations of a geometric triangle in the Euclidean plane

and the round 2-sphere.

Theorem 3.1.2. If Ω is a geometric triangle with a triangulation T in the plane, then GT (Ω, T )

is path-connected.

Ho [Ho73] proved that this space was simply-connected.

Theorem 3.1.3. If Ω is a geometric triangle with a triangulation T in the plane, then GT (Ω, T )

is simply-connected.

41



A dividing edge in a triangulation T is an interior edge connecting two boundary vertices.

Using an induction argument, Bing and Starbird [BS78] considered the general case of star-shaped

polygons.

Theorem 3.1.4. If Ω is a star-shaped polygon with a triangulation T in the plane, and T does

not contain any dividing edge, then GT (Ω, T ) is non-empty and path-connected.

By the following pictures, Bing and Starbird [BS78] showed that GT (Ω, T ) was not necessarily

path-connected if we didn’t assume star-shaped boundary.

Figure 3.1. Counterexamples from [BS78]

Bloch, Connelly, and Henderson [BCH84] proved the contractibility of the space of simplexwise

linear homeomorphisms of a convex 2-disk. In a very recent paper, Cerf [Cer19] improved the

original argument in [BCH84] to give a new proof of the Bloch-Connelly-Henderson theorem.

Theorem 3.1.5. If Ω is a convex polygon with a triangulation T in the plane, and T does

not contain any dividing edge, then GT (Ω, T ) is homeomorphic to R2k, where k is the number of

interior vertices of T .

We will give a new short proof of this theorem using the idea of Tutte’s theorem [Tut63].
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3.2. Construction of geodesic triangulations on surfaces

In this section we summarize well-established results about the constructions of geodesic trian-

gulations for different surfaces. The basic result stems from Tutte’s idea of embedding a 3-vertex-

connected graph on a convex polygon and its generalizations. This construction is effective to solve

problems in practice including surface parametrizations and planar graph morphing.

3.2.1. Tutte’s embedding for the disk. Given a triangulation T = (V,E, F ) of the 2-disk

with the sets of vertices V , edges E and faces F , the 1-skeleton of T is a planar graph. There

is no canonical method to embed this graph in the plane. Tutte [Tut63] provided an efficient

method to construct a straight-line embedding of a 3-vertex-connected planar graph by specifiying

the coordinates of vertices of one face as a convex polygon and solving for the coordinates of other

vertices with a linear system of equations. Using a discrete maximal principle, Floater [Flo03a]

proved the same result for triangulations of the 2-disk. Gortler, Gotsman, and Thurston [GGT06]

reproved Tutte’s theorem with discrete one forms and generalized this results to the case of multiple-

connected polygonal regions with appropriate assumptions on the boundaries. Since we are dealing

with triangulations, we use the formulation given by Floater [Flo03a].

Figure 3.2. Tutte’s embedding

Theorem 3.2.1. Assume T = (V,E, F ) is a triangulation of a convex polygon Ω, and φ is a

simplexwise linear homeomorphism from T to R2. If φ maps every interior vertex in T into the

convex hull of the images of its neighbors, and maps the cyclically ordered boundary vertices of T

to the cyclically ordered boundary vertices of Ω, then φ is one to one.

As Floater pointed out, this theorem gave a discrete version of the Rado-Kneser-Choquet the-

orem about harmonic maps from the disk to a convex polygon. Moreover, it gives a constructive
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method to produce geodesic triangulations of a convex polygon with the combinatorial type of T

as follows.

First assign a positive weight cij to a directed edge (i, j) ∈ Ē, where Ē is the set of directed

edges of T . We normalize the weights by

wij =
cij∑

j∈N(vi)
cij

where the set N(vi) consists of all the vertices that are neighbors of vi, so that Σj∈N(vi)wij = 1 for

all i = 1, 2, ..., NI . Notice that we don’t impose symmetry condition wij = wji. We are given the

coordinates {(bxi , b
y
i )}
|V |
i=NI+1 for all the boundary vertices such that they form a convex polygon Ω

in R2. Then we can solve the following linear system

∑
j∈N(vi)

wijxj = xi i = 1, 2, ...NI ;

∑
j∈N(vi)

wijyj = yi i = 1, 2, ...NI ;

xi = bxi i = NI + 1, NI + 2, ...NI +NB = |V |;

yi = byi i = NI + 1, NI + 2, ...NI +NB = |V |

where NI = |VI | is the size of the set of interior vertices VI , and NB = |VB| is the size of the set

of boundary vertices VB. The solution to this linear system produces the coordinates of all the

interior vertices in R2. We put the vertices in the positions given by their coordinates, and connect

the vertices based on the combinatorics of the triangulation T . Tutte’s theorem claims that the

result is a geodesic triangulation of Ω with the combinatorial type of T .

The linear system above implies that the x-coordinate(or y-coordinate) of one interior vertex

is a convex combination of the x-coordinates(or y-coordinates) of its neighbors. Notice that the

coefficient matrix of this system is not necessarily symmetric but it is diagonally dominant, so the

solution exists uniquely.

Tutte’s theorem solves the embeddability problem for a triangulation of a convex polygon. We

can vary the coefficients wij to construct families of geodesic triangulations of a convex polygon.

We will see that this idea will lead to a simple proof of the contractibility of the space of geodesic

triangulations.
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Bing and Starbird also shows that we can embed an geodesic triangulation of T when the

boundary is a star-shaped polygon, as long as there is no dividing edge. However, we can not choose

weights arbitrarily to generate families of geodesic triangulations. The embeddability problem

of star-shaped polygon has been also studied by Hong and Nagamochi [HN08] and Xu et al.

[XCGL11] using iterative methods.

3.2.2. Circle packing for the 2-sphere. Given a triangulation of 2-sphere, we can regard it

as the tangency graph of a circle packing on 2-sphere. Then the Koebe-Andreev-Thurston theorem

ensures the existence and uniqueness of this geodesic triangulation.

Theorem 3.2.2. Given any triangulation T of the 2-sphere, the circle packing whose tangency

graph is isomorphic to T is unique up to Mobius transformations.

Based on the circle packing, we can construct a geodesic triangulation of the 2-sphere by

connecting the centers of two tangent circles using geodesic arc. Notice that the Mobius group does

not map geodesic triangulations to geodesic triangulations.

3.2.3. Tutte’s embedding for flat tori. In the case of a flat torus (T2, g) with a triangulation

T , the situation is similar to the disk case, because we can lift a geodesic triangulation of (T2, g) to

the universal covering R2. Using the method in Gu and Yau [GY03] and Gortler, Gotsman, and

Thurston [GGT06], we can compute the harmonic one form to produce geodesic triangulations

on T2 with a fixed combinatorial type of T .

Specifically, we first assign a positive weight cij to each directed edge in T and normalize the

weights as in the case of the 2-disk to produce positive weights wij satisfying Σj∈N(vi)wij = 1 for

all i = 1, 2, ..., NI . Instead of computing the coordinates for vertices in T directly, we compute the

harmonic one forms ∆z : Ē → R by solving the following system of equations

∆zij = −∆zji for all directed edges (i, j) ∈ Ē;∑
vj∈N(vi)

wij∆zij = 0 for all vertices vi ∈ V ;

∆zij + ∆zjk + ∆zki = 0 for all faces fijk ∈ F .

(3.2.1)

Gortler, Gotsman, and Thurston [GGT06] showed that this linear system had exactly two

independent solutions, denoted by ∆x and ∆y. Then we can assign a vertex v0 in V to the origin
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in R2 and compute the coordinates for other vertices v by summing the entries of the discrete one

forms along a path p consisting a sequence of directed edges in T from v0 to v

(x0, y0) = (0, 0) and (xi, yi) = (
∑

(i,j)∈p

∆xij ,
∑

(i,j)∈p

∆yij) for other vertices.(3.2.2)

Since the discrete form is closed, the coordinates for (xi, yi) are independent of the choice of

the paths.

Theorem 3.2.3. Given a triangulation T of (T2, g) whose 1-skeleton is a 3-vertex-connected

graph, the two linearly independent solutions of the system above produce embeddings of any sub-

triangulations T ′ of T with the topology of a disk.

Figure 3.3. Tutte’s embedding for flat tori from [GGT06]

Gortler, Gotsman, and Thurston pointed out that this statement of local injectivity produced

a globally injective map from the universal cover of the torus to the Euclidean plane. We can

generate families of equivariant geodesic triangulations in R2 projecting to geodesic triangulations

on (T2, g) by varying the weights wij in the linear system. If we choose a different pair of harmonic

one forms ∆x′ and ∆y′, then the resulting geodesic triangulation in R2 is the image of the original

geodesic triangulation under an affine transformation. This method was extended by Aigerman

and Lipman [AL15] to Euclidean orbifolds with spherical topology.

3.2.4. Energy minimization on hyperbolic surfaces. For a hyperbolic surface, Colin de

Verdier [dV91] proved a similar result as the disk case using the discrete Dirichlet energy of a given

triangulation and showed that the minimizer exists uniquely and it is a geodesic triangulation in

the hyperbolic surface. The energy of an embedding of one-skeleton of a triangulation T , denoted
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by ψ : T 1 → Sg is given by

E(ψ) =
1

2

∑
(i,j)∈E

cij

∣∣∣∣∣∣dψij
dt

∣∣∣∣∣∣2dt,
where ψij as a map from [0, 1] to Sg is the restriction of ψ on the edge (i, j) ∈ E. This energy

can be regarded as the energy of a system of ideal springs, where , each edge is a spring with

Hook constant cij . The minimizer of this energy corresponds to exactly the equilibrium state of

this system. Each point is in the convex hull of its neighbors. Colin de Verdiere’s result can be

summarized as following.

Theorem 3.2.4. Fix a triangulation T = (V,E, F ) of a surface Sg, the minimizer of E(ψ) in

its isotopy class exists uniquely and the image of ψ is a geodesic triangulation of surface Sg.

Physically this means that we can vary the Hook constants for each ideal spring to generate

families of geodesic triangulation in the same isotopy class. Hass and Scott [HS12] prove similar

results for more general triangulations with new definition of combinatorial area and energy. Using

this energy, they showed that the space of geodesic triangulation of a hyperbolic surface with

one-vertex triangulation is contractible.

3.3. Geodesic Triangulations of the 2-Disk with Convex Boundary

In this section, we define the space of geodesic triangulations for the disk, and give a new proof

of the contractibility of GT (Ω, T ) if Ω is a convex polygon.

Definition 3.3.1. Given a triangulation T = (V,E, F ) of the 2-disk, fix the boundary vertices

{vi}|V |i=NI+1 of T in R2 with coordinates {(bxi , b
y
i )}
|V |
i=NI+1 and connect them based on T such that

they form a convex polygon Ω in R2. The space of geodesic triangulations GT (Ω, T ) is defined as

the set of all the geodesic triangulations of Ω with the combinatorial type of T whose boundary

vertices {vi}|V |i=NI+1 have the corresponding coordinates {(bxi , b
y
i )}
|V |
i=NI+1.

Every geodesic triangulation is uniquely determined by the positions of the interior vertices in

VI , so its topology is the subspace topology induced by Ω|VI | ⊂ R2|VI |. Notice that this space could

be empty if the boundary is complicated. For instance, if the polygon is not star-shaped, then there

doesn’t exist any geodesic embedding of a triangulation with only one interior vertex. Nevertheless,

Tutte’s theorem shows that this space is not empty if the polygonal region Ω is convex.
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Let us consider the topology of the space GT (Ω, T ) where Ω is a fixed convex polygon in R2.

Let EI be the set of interior edges in T and EB be the set of boundary edges in T .

Definition 3.3.2. Given a triangulation T of Ω with coordinates of the boundary vertices

{(bxi , b
y
i )}
|V |
i=NI+1, define W to be the space of positive weights (wij) ∈ R2|EI | on the set of directed

edges of T satisfying the normalization condition
∑

j∈N(vi)
wij = 1 for all vi ∈ VI . The Tutte map

Ψ sends the weights in W to the solution to the linear system in Tutte’s theorem with coefficients

(wij) and {(bxi , b
y
i )}.

The weight space W is a 2|EI |− |VI | dimensional affine manifold in R2EI . The image GT (Ω, T )

is a 2|VI | dimensional manifold. By Euler characteristic χ(Ω) = |V | − |E| + |F | = 1 and the

requirement of simplicial complex 3|F | = 2|EI |+ |EB|, we can deduce that |EI | − 3|VI | = |EB| − 3.

Hence the dimension of the space of weights W is not lower than the dimension of GT (Ω, T ).

Lemma 3.3.3. The Tutte map Ψ is continuous and surjective from the space of weights W to

GT (Ω, T ).

Proof. By Tutte’s theorem, for any (wij) ∈ W , the solution to the linear system generates a

geodesic triangulation of T . The continuity follows from the continuous dependence of the solutions

on the coefficients in the linear system. To show surjectivity, given a geodesic triangulation τ , any

interior vertex vi in τ is in the convex hull of its neighbors. Then we can construct the weights

(wij) for a geodesic triangulation τ using the mean value coordinates defined in [Flo03b] below.

Figure 3.4. The mean value coordinate at v0

The mean value coordinates on the directed edges of a geodesic triangulation are given by

wij =
cij∑

j∈N(vi)
cij

and cij =
tan(αji−1/2) + tan(αji/2)

||vi − vj ||
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where the two angles αji−1 and αji at vi sharing the edge (i, j) ∈ EI in the Figure 3. The mean

value coordinates provide a smooth map from GT (Ω, T ) to W . �

There are various ways to construct the weights from a given geodesic triangulation other

than the mean value coordinates. Floater proposed another construction by taking the average

of barycentric coordinates [FG99]. An alternative method to construct weights from a geodesic

triangulation τ is to take the center of mass of the space of weights (wij) ∈W such that Ψ((wij)) =

τ . This subspace is a convex subspace of W and the center of mass is well-defined. All three methods

agree with the barycentric coordinates of a vertex when the star of this vertex is a triangle. Notice

that we can not use the well-known cotangent weights, which are symmetric, but not necessarily

positive to guarantee the condition for the embedding.

Definition 3.3.4. The map σ : GT (Ω, T ) → W sends a geodesic triangulation τ to weights

(wij) in W determined by the mean value coordinates.

Theorem 3.3.5. If Ω is a convex polygon in R2 with a triangulation T , the space of geodesic

triangulations GT (Ω, T ) is contractible.

Proof. The map σ is continuous. By Tutte’s theorem, Ψ(σ(τ)) = τ for any τ ∈ GT (D2, T ),

so the map σ is a global section of Ψ from GT (Ω, T ) to W . We need to show σ ◦ Ψ is homotopic

to the identity map on W . From the previous discussion, we know that W is an affine manifold in

R2|EI |, so we can use the isotopy (1− t)σ ◦Ψ + t1 where 1 is the identity map on W . Since W is a

contractible space, GT (Ω, T ) is contractible by this homotopy equivalence. �

Although we mainly consider triangulations in this paper, this argument can be generalized to

the case of the convex geodesic embedding of a 3-vertex-connected graph G, which is defined to be

a geodesic embedding of G in the plane such that all its faces are convex. Then using the same idea

of Tutte’s theorem, we can show the contractiblity of the space of convex geodesic triangulations

of G with the prescribed convex boundary Ω.

We can extend this result to convex polygons in other geometries of constant curvature. More

precisely, if we have a convex polygon in the hyperbolic plane or a convex polygon in the round

2-sphere contained in a hemisphere, we can reduce it to the case of convex polygon in the Euclidean

plane.
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For a hyperbolic convex polygon ΩH , we embed it in the Klein model of the hyperbolic plane

so that all the edges of ΩH are straight arcs in the Euclidean metric, inducing a convex polygon Ω

in the Euclidean plane. Given a triangulation T of ΩH , there is a bijection between the space of

all hyperbolic geodesic triangulations of ΩH represented in the Klein model and GT (Ω, T ), induced

by the identity map on Ω|VI |. Hence the space of hyperbolic geodesic triangulations GT (ΩH , T ) is

also contractible.

Similarly, if ΩS is a spherical convex polygon contained in a hemisphere with a triangulation T ,

we can apply the gnomonic transformation from the center of the 2-sphere to the plane P tangent

to the center of the hemisphere containing ΩS . Then ΩS is mapped to a convex polygon Ω in the

plane P under the gnomonic transformation. This projective transformation keeps the incidence

and maps geodesic arcs in hemisphere to the straight arcs in P . Hence it induces a bijection between

the space of spherical geodesic triangulations of ΩS with combinatorial type of T and GT (Ω, T ) in

P .

Corollary 3.3.1. Assume Ω is a hyperbolic convex polygon, or a spherical convex polygon

contained in a hemisphere, and T is a triangulation of Ω. Then the space of geodesic triangulations

GT (Ω, T ) is contractible.

3.4. Geodesic Triangulations of the 2-Disk with star-shaped Boundary

In this section, we consider a star-shaped subset Ω of R2. An eye of a star-shaped region Ω is

a point p in Ω such that for any other point q in Ω the line segment l(t) = tp+ (1− t)q lies inside

Ω. The set of eyes of Ω is called the kernel of Ω. A set is called strictly star-shaped if the interior

of the kernel is not empty.

In the case of polygons in R2, the kernel is the intersection of a family of closed half-spaces,

each defined by the line passing one boundary edge of Ω. Every closed half space contains a half

disk in Ω centered at one point on its corresponding boundary edge. If the star-shaped polygon is

strict, the intersection of the open half-spaces is not empty. This means that we can pick an eye e

with a neighborhood U of e such that if q ∈ U , then q is also an eye of Ω.

The first question to address is how to construct a geodesic triangulation of a strictly star-

shaped polygon Ω with a combinatorial type of T . As Bing and Starbird [BS78] pointed out, it

was not always possible if there was a dividing edge. Assuming there was no dividing edge in T ,

they proved that such geodesic triangulations existed by induction.
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We give an explicit method to produce a geodesic triangulation for a strictly star-shaped poly-

gon. We can regard all the edges eij in T as ideal springs with Hook constants wij . Fixing the

boundary vertices, the equilibrium state corresponds to the critical point of the weighted length

energy defined as

E =
1

2

∑
eij∈EI

wijL
2
ij

where Lij is the length of the edge connecting vi and vj . This energy can be regarded as a discrete

version of the Dirichlet energy [dV91,HS12], and it has a unique minimizer corresponding to the

equilibrium state. Tutte’s theorem guarantees that the equilibrium state is a geodesic embedding

of T if the boundary is a convex polygon.

Given a triangulation T of a fixed strictly star-shaped polygon Ω, assume that the weighted

length energy E satisfies
∑

eij∈EI
wij = 1. Notice that if the polygon is star-shaped but not convex,

we can’t choose arbitrary weights to generate a geodesic embedding of T . Hence we need to assign

weights carefully to avoid singularities such as intersections of edges and degenerate triangles.

The idea is to distribute more and more weights to the interior edges connecting two interior

vertices. As the weights for interior edges connecting two interior vertices tend to 1, all the interior

vertices will concentrate at a certain point. If we can choose this point to be an eye of the polygon,

we will produce an geodesic embedding of T of Ω.

Fix a polygon Ω with a triangulation T and the coordinates {(bxj , b
y
j )}
|V |
i=NI+1 for its boundary

vertices. Given a set of coordinates in R2 for all the interior vertices {(xi, yi)}NI
i=1, we define a family

of weighted length energies with a parameter 0 < ε < 1 as

E(ε) =
1− ε
2MI

∑
eij∈EI

I

L2
ij +

ε

2MB

∑
eij∈EB

I

L2
ij

where EBI is the set of all the interior edges connecting an interior vertex to a boundary vertex

and EII is the set of all the interior edges connecting two interior vertices. Let MB = |EBI | and

MI = |EII |. The edge lengths Lij are determined by the coordinates of the vertices

L2
ij = (xi − xj)2 + (yi − yj)2.

As ε→ 0, most weights are assigned to interior edges in EII , forcing all the interior vertices of

the minimizer of E(ε) to concentrate to one point.
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Theorem 3.4.1. Let Ω be a polygonal region with a triangulation T of Ω. Let vBj = (xBj , y
B
j ) =

(bxj , b
y
j ) for j = 1, ..., NB be the coordinates of the boundary vertices of Ω and vIi (ε) = (xIi (ε), y

I
i (ε))

for i = 1, ..., NI be the coordinates of the interior vertices of the minimizer of the energy E(ε). Then

for all i = 1, 2, ...., NI ,

lim
ε→0

vIi = lim
ε→0

(xIi (ε), y
I
i (ε)) = (x0, y0) = v0

where

v0 =

NB∑
j=1

λjv
B
j and λj =

deg(vBj )− 2∑
j deg(vBj − 2)

=
deg(vBj )− 2

MB
,

assuming deg(v) is the degree of the vertex v in T .

Proof. The minimizer of E(ε) satisfies the following linear system formed by taking derivatives

with respect to xi and yi for all i = 1, 2, ...., NI

1− ε
MI

∑
i∈N(vIk)

(vIk − vIi ) +
ε

MB

∑
j∈N(vIk)

(vIk − vBj ) = 0 for k = 1, 2, · · ·NI .

Notice that we separate the interior vertices vIi ∈ VI and the boundary vertices vBj ∈ VB in the

summation. This system can be represented as

M(ε)x = bx M(ε)y = by

where the variables are

x = (xI1, x
I
2, ..., x

I
NI
, xB1 , ..., x

B
NB

)T

and

y = (yI1 , y
I
2 , ..., y

I
NI
, yB1 , ..., y

B
NB

)T .

The boundary conditions are

bx = (0, 0, ..., 0, xB1 , ..., x
B
NB

)T

and

by = (0, 0, ..., 0, yB1 , ..., y
B
NB

)T .

The coefficient matrix M(ε) is an (NI +NB)× (NI +NB) matrix, and it can be decomposed as

M(ε) =

S(ε) −εW

0 Id


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where W is an NI ×NB matrix, S(ε) is a square matrix of size NI , and Id is the identity matrix

of size NB. The matrix W is defined as

W (i, j) =


1
MB

if vIi is connected to vBj ;

0 if vIi is not connected to vBj .

The matrix S is defined as

S(i, j)(ε) =


−
∑

i 6=k S(i, k) + ε
∑NB

k=1W (i, k) if i = j;

−1−ε
MI

if vIi is connected to vIj ;

0 if vIi is not connected to vIj .

Notice that for the first NI rows in M(ε), the sums of their respective entries are zero, and all

the off-diagonal terms are non-positive. The matrix W represents the relations of the boundary

vertices with the interior vertices, and the sum of all its entries equals one. The matrix S(ε) is

symmetric, strictly diagonally-dominant, and the sum of all its entries equals ε.

To show the limiting behavior of the solution to the system as ε→ 0, we need the lemma below.

Lemma 3.4.2. Given the notations above, we have

lim
ε→0

εS(ε)−1 = 1

where the matrix 1 is the NI ×NI matrix with all entries equal to 1.

Proof. Notice that S(ε) is symmetric and strictly diagonally dominant, so it is invertible.

Let S = S(0) and M = M(0), then S has an eigenvalue λ = 0 with the normalized eigenvector

v = (1/
√
NI , 1/

√
NI , ..., 1/

√
NI)

T .

First, we show that λ = 0 is a simple eigenvalue for S. If S has another eigenvector u =

(u1, u2, ..., uNI
)T corresponding to λ = 0 not parallel to v, then it is orthogonal to v so

∑
i ui = 0.

Without loss of generality, we assume that u1 > 0 achieves the maximal absolute value among ui.

Then we have

Su = 0 ⇒
NI∑
i=1

S(1, i)ui = 0 ⇒ S(1, 1)u1 = −
NI∑
i=2

S(1, i)ui.
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Notice that S is weakly diagonally dominant, S(1, 1) > 0, and S(1, i) ≤ 0, so we can deduce that

S(1, 1)u1 ≥ −
NI∑
i=2

S(1, i)u1 ⇒ −
NI∑
i=2

S(1, i)(ui − u1) ≥ 0.

By our assumption, ui−u1 ≤ 0 for all i = 1, ..., NI , so the only possibility is ui = u1 for all i, which

contradicts to the fact that u is orthogonal to v. Hence all the other eigenvalues of S are positive

by Gershgorin circle theorem. (See, e.g. [GL13])

Second, we show that the eigenvalue λ(ε) of S(ε) approaching to 0 satisfies

lim
ε→0

λ(ε)

ε
=

1

NI
.

This means that the derivative (dλ/dε)(0) = 1/NI . To compute the derivative, notice that the sum

of all the entries of S(ε) is ε, hence we have

vTS(ε)v =
1

NI
(1, 1, ..., 1)S(ε)


1

1
...

1


=

ε

NI
.

The derivative of a simple eigenvalue of a symmetric matrix is given in [PP+08] by

dλ

dε
(0) =

d(vTS(ε)v)

dε
=
d(ε/NI)

ε
=

1

NI
.

Finally, we are ready to prove the lemma. Since S(ε) is symmetric, we have the diagonalization

with an orthonormal matrix P (ε)

εS−1(ε) = P (ε)


ελ−1

1 (ε)

ελ−1
2 (ε)

. . .

ελ−1
NI

(ε)


P T (ε).

Without loss of generality, we assume the first eigenvalue limε→0 λ1(ε) = 0. Given any 0 < δ < 1,

we can choose small ε > 0 such that the following three inequality holds

λi(ε) > C > 0 for i = 2, 3, ..., Ni;
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||P (ε)


ελ−1

1 (ε)

ελ−1
2 (ε)

. . .

ελ−1
NI

(ε)


P T (ε)− P (ε)


NI

0

. . .

0


P T (ε)||2 < δ;

and the eigenvector v1(ε) of S(ε) corresponding to the eigenvector λ1(ε) satisfies

||v1(ε)− 1√
NI


1

1
...

1


||∞ < δ.

Notice that the columns of P (ε) = (v1, v2, ..., vNI
) form a set of the orthonormal basis formed by

eigenvectors vi, where the first eigenvector v1(ε) approaches v = (1/
√
NI , ..., 1/

√
NI). Then we

have

||εS−1(ε)− 1||2 ≤||P (ε)


ελ−1

1 (ε)

. . .

ελ−1
NI

(ε)

P T (ε)− P (ε)


NI

. . .

0

P T (ε)||2

+||P (ε)


NI

. . .

0

P T (ε)− 1||2 ≤ δ + ||NIv
T
1 (ε)v1(ε)− 1||2.

Notice that

||NIv
T
1 (ε)v1(ε)− 1||2 ≤ 2N2

I δ.

Hence

||εS−1(ε)− 1||2 ≤ (1 + 2N2
I )δ.

�
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The inverse of the matrix M(ε) can be represented as

M−1(ε) =

S−1(ε) εS−1(ε)W

0 I

 .

Then the solution of the linear system M(ε)x = bx is x = M−1(ε)bx, whose first NI entries are

given by 
xI1(ε)

xI2(ε)
...

xINI
(ε)


= εS−1(ε)W


xB1

xB2
...

xBNB


.

As ε→ 0, the solution approaches 1WxB. All the xIi approach the same point

lim
ε→0

xIi = (1, ..., 1)W


xB1

xB2
...

xBNB


=

NB∑
i=1

deg(vBi )− 2

NB
xBi .

A similar result holds for y-coordinates of the interior vertices. Hence we conclude the limit of the

solutions limε→0 v
I
i = v0. �

Notice that the matrix W can be replaced with more general matrices. The original energy

E(ε) distributes ε percentage of weights evenly to all the edges in EBI . We can define new energies

by redistributing the weights

EW (ε) =
1− ε
2MI

∑
eij∈EI

I

L2
ij +

ε

2

∑
eij∈EB

I

wijL
2
ij

with wij > 0 and
∑

(i,j)∈EB
I
wij = 1. The matrix W is defined as

W (i, j) =

 wij if vIi is connected to vBj ;

0 if vIi is not connected to vBj .

The limit of the solution is

v0 =

NB∑
j=1

λjv
B
j where λj =

NI∑
i=1

wij .

56



To construct a geodesic triangulation, pick an eye e of Ω such that e =
∑NB

i=1 λiv
B
i where λi > 0

and
∑NB

i=1 λi = 1, then define

W (i, j) =


wij = λi

deg(vBj )−2
if vIi is connected to vBj ;

0 if vIi is not connected to vBj .

and the corresponding energy EW (ε). The remaining task is to show that the critical point of EW (ε)

is a geodesic embedding of T for small ε.

If Ω is not convex, there exists a reflex vertice, defined as a boundary vertice of Ω where the

turning angle is negative. We use the result by Gortler, Gotsman and Thurston [GGT06] to show

that the minimizer of EW (ε) constructed above is an embedding for some ε > 0.

Theorem 3.4.3. Given a strictly star-shaped polygon Ω with a triangulation T without dividing

edges, if the reflex vertices of Ω are in the convex hull of their respective neighbors, then the solution

to the linear system generates a straight-line embedding of T .

Theorem 3.4.4. Given a strictly star-shaped polygon Ω with a triangulation T without dividing

edges, and an eye e in Ω with coefficients W , there exists an ε > 0 such that the critical point of

the energy EW (ε) generates a geodesic embedding of T .

Proof. Theorem 4.3 implies that we only need to check that the reflex vertices vr are in the

convex hulls of their respective neighbors.

Choose an ε small enough such that the vertices of the critical point of EW (ε) defined above are

eyes of Ω. Assume vr is a reflexive point on the boundary of Ω. Let v be an interior vertex of the

geodesic triangulation in the star of vr, and let v1 and v2 be the two boundary vertices connecting

to vr. Since there is no dividing edge in T , v1 and v2 are the only boundary vertices connecting to

vr. We want to show that vr is in the convex hull of its neighbors.

Assume the opposite, then all the edges connecting to vr lie in a closed half plane, so the inner

product of any pair of three vectors −−→vrv1, −−→vrv2 and −→vrv is non-negative. But the inner angle at vr is

larger than π, then either angle ∠v1vrv or ∠vvrv2 is strictly larger than than π
2 , which means one

inner product is negative. This leads to a contradiction. �

This result solves the embeddability problem for strictly star-shaped polygons Ω with a trian-

gulation T . We can construct a geodesic triangulation of Ω as follows. Pick an eye e of Ω with the
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coefficients W defined above. Then choose ε = 1/2 and solve the linear system corresponding to

the critical point of EW (1/2). If the solution is not an embedding, replace ε by ε/2 and continue.

We conjecture that the space of geodesic triangulations for strictly star-shaped polygon with a

fixed combinatorial type is contractible.

3.5. A Characterization of Geodesic Triangulations From Energies

We use the weighted length energy to generate families of geodesic triangulations for both convex

polygons and strictly star-shaped polygons in the previous sections. One interesting question is

whether we can realize any given geodesic triangulation in GT (Ω, T ) as the critical point of certain

weighted length energy by choosing appropriate weights. Unfortunately, this is not the case, given

the example in Eades, Healy, and Nikolov [EHN18].

Figure 3.5. A geodesic triangulation can not be the minimizer of any energy

We have two equilateral triangles with different sizes determined by the vertices below

v1 =

0

2

 , v2 =

−√3

−1

 , v3 =

√3

−1

 , v4 =

− sin ε

cos ε

 ,

v5 =

−
√

3
2 cos ε+ 1

2 sin ε

−
√

3
2 sin ε− 1

2 cos ε

 , and v6 =


√

3
2 cos ε+ 1

2 sin ε
√

3
2 sin ε− 1

2 cos ε

 ,
and the triangulation given in Figure 4. The weighted length energy is given by

E(ε) = 3((2− cos ε)2 + sin2 ε+ (2 +

√
3

2
sin ε+

1

2
cos ε)2 + (−

√
3

2
cos ε+

1

2
sin ε)2)

= 30− 6 cos ε+ 6
√

3 sin ε.
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Notice that when ε is close to zero, E(ε) is a monotonic increasing function with respect to ε.

Moreover, the length of every interior edge decreases or at least stays with the same length when

ε→ 0+. Then it can’t be a critical point of any energy in the form of E = 1
2

∑
wijL

2
ij .

The triangulation in Figure 4 is not a critical point of any energy, because we can construct a

vector field to move the interior vertices of the triangulation so that no edge is lengthened. We can

show that this condition leads to a necessary and sufficient condition for a geodesic triangulation

to be realized as the minimizer of a weighted length energy. Eades, Healy, and Nikolov [EHN18]

gave another characterization for this class of geodesic triangulations.

Lemma 3.5.1. A geodesic triangulation τ of a polygon Ω can be realized by the critical point

of a weighted length energy if and only if any vector field at the set of interior vertices of τ will

shorten at least one edge and lengthen at least one edge.

Proof. Let (xi, yi) be the coordinate for vertex vi of a given geodesic triangulation in R2. If

there exists a vector field not increasing any edge length, then all the edge lengths will decrease or

at least stay with the same length as we move the vertices of the geodesic triangulation along the

vector field. Then it can’t be a critical point of E for any choice of wij .

Conversely, assume that we are given a geodesic triangulation τ such that any vector field at

interior vertices of τ will increase the length of some edge and decrease the length of another edge.

We want to show that we can find some positive weights wij for every edge in EI such that τ is

the critical point of the weighted length energy

E =
1

2

∑
eij∈EI

wijL
2
ij .

To find these weights, consider the linear system corresponding to the critical point of weighted

length energy, denoted by V w = 0,

∑
j∈N(vi)

vTijwij = 0 i = 1, ..., NI

where we regard wij as the unknowns for the system and vij = −vji = (xi−xj , yi−yj) are determined

by τ . For each interior vertex vi, we have two equations corresponding to the x coordinate and the

y coordinate of vi, so V is a 2NI × |EI | matrix. If wij is the weight of an interior edge connecting
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two interior vertices, then the column cij of V corresponding to wij is

(0, ..., 0, vij , 0, ..., 0, vji, 0, ..., 0)T .

If wij is the weight of an interior edge connecting one interior vertex vi with a boundary vertex vj ,

then the column cij of V corresponding to wij is

(0, ..., 0, vij , 0, ..., 0)T .

To show the existence of a positive solution, consider an arbitrary vector field X defined on the

set of interior vertices of τ . It can be represented as (α1, α2, ..., αNI
)T where αi is a row vector in

R2. Then consider the derivative of the length of an interior edge connecting two interior vertices

under X

dL2
ij

dt

∣∣∣∣
t=0

=
d

dt

∣∣∣∣
t=0

(xi + αxi t− xj − αxj t)2 + (yi + αyi t− yj − α
y
j t)

2 = vij · (αi − αj) = 2X · cij .

Similarly for an interior edge connecting one interior vertex vi with one boundary vertex vj , we

have
dL2

ij

dt

∣∣∣∣
t=0

=
d

dt

∣∣∣∣
t=0

(xi + αxi t− xj)2 + (yi + αyi t− yj)
2 = vij · αi = 2X · cij .

By assumption, we know that X shortens one edge with weight wij and lengthens another with

weight w′ij . Hence the corresponding columns cij and c′ij produce different signs, namely X · cij

and X · c′ij has different signs. This means that all the entries of XTV can’t have the same sign.

Since X is arbitrary, by Farkas’s alternative [RAG05], V w = 0 has a positive solution (wij).

�

From this characterization, we show that all the triangulations can be realized by the critical

points of some weighted length energies if we only have a few interior edges in EII .

Corollary 3.5.1. If a triangulation T of a polygon Ω has at most one interior edges connecting

two interior vertices, namely |EII | < 2, then all the geodesic triangulations in GT (Ω, T ) can be

realized by the critical points of some energies.

Proof. If |EII | = 0, the equations for each vertex are decoupled from equations for other

vertices since the interior vertices are not connected to each other. The energy E can also be
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decomposed to separate terms for each interior vertex. Hence we can directly use mean value

coordinates proposed by Floater to define the weights wij .

If |EII | = 1, given a geodesic triangulation τ ∈ GT (Ω, T ), let e0 be the unique interior edge

with two interior vertices v1 and v2. Assume that we have a vector field X = (α1, α2) at v1 and

v2 with α1, α2 ∈ R2 such that it will not increase the length of any edge. Then it will not increase

the lengths of the edges connecting v1 with boundary vertices. Then α1 increases the lengths of

e0, otherwise α1 determines a closed half space containing all the edges connecting v1 with other

vertices. Then v1 is not a convex combination of its neighbors, which is impossible for a geodesic

triangulation. Similarly α2 increases the length of e0. Hence the length of e0 is increasing under

X, which contradicts to the assumption of X. �
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CHAPTER 4

Further Directions

In this chapter, we summarize the open problems in the further study.

The further direction for the shape comparison problem in Chapter 2.

• The implementation of the algorithm mentioned previously. The high genus surface is

more difficult to work with in general. Due to its non-trivial topology, we open needs to

cut it to a disk for computation. Moreover, since the canonical metrics on most high genus

surfaces have constant curvature −1, we need to construct charts to the hyperbolic disk,

where the metric tensor is approximated by Euclidean metric only in small scales.

• The uniqueness of the minimizer of the energy in a fixed homotopy class of maps between

two surfaces.

The further direction for the space of geodesic triangulations in Chapter 3.

• The topology of the space of geodesic triangulations of star-shaped polygons. Evidence

shows that it is plausible to show that the spaces for star-shaped polygons are also con-

tractible, so that we might be able to generalize the Bloch-Henderson-Connelly theorem.

• Construction of counterexamples other than the example given by Bing and Starbird.

Their example shows that for general polygons, the space could be not path-connected.

Can we show that the fundamental group and higher homotopy groups are also not trivial?

• The topology of the space of geodesic triangulations of other surfaces, including 2-sphere,

tori, and hyperbolic surfaces. The space of geodesic triangulations on the 2-sphere was

studies by Awartani-Henderson [AH87]. The conjecture is that GT (S2, T ) is homotopic to

SO(3). For hyperbolic surfaces S, Hass and Scott [HS12] showed that GT (S, T ) was con-

tractible if T is an 1-vertex triangulation. It is conjectured that GT (S, T ) is contractible.
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CHAPTER 5

Appendix A: Details about Algorithms

We propose an algorithm to compute the distance between surfaces with genus g ≥ 2 and

produce the correspondence.

Input: (S1, T1, l1) and (S2, T2, l2).

• Intrinsic Information: These means we have three lists for each mesh, a list of vertices

vi, a list of (half)-edges eij = [vi, vj ] and a list of faces fijk = [vi, vj , vk] with orientation

encoded. And for each edge eij we have its length restored in a matrix.

• Extrinsic Information: All coordinates of vertices in S1 and S2. We only need to use

extrinsic information in the last step.

The algorithm consists of the following 7 steps.

(1) Setup: check S1 and S2 are closed surfaces with the same genus, then normalized the both

areas to be a constant C, given by the scale of the problem. C may be the average of two

areas or their scale. C should not be too small to avoid numerical issues.

Input: (S1, T1, l1) and (S2, T2, l2)

Output: the constant C for area.

(2) Fix a base vertex v0 and find system of loops with subdivition to determine homotopy

class.

Input: (S1, T1, l1) and (S2, T2, l2), a base vertex in S1

Output: (S1, T
′
1, l
′
1), a new triangulation given by some subdivision, and disjoint loops

α1, α2, ..., α2g, each of which is described by a list of consecutive half-edges:

{[v0, v1], [v1, v2], [v2, v3], ..., [vn, v0]}

We also have similar output for S2, namely (S2, T
′
2, l
′
2) and loops β1, β2, ..., β2g.

(3) Slice the surfaces S1 and S2 along the corresponding systems of loops.

Input: the output from step 2, including system of loops and new mesh T ′
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Output: two “4g-gon” G1 and G2, each with flags of three types of vertices: interior

vertex, boundary vertex and the base point. G1 and G2 are described by meshes.

(4) Compute initial map with Tutte embedding:

Input: the output in step 3

Output: a face in S2 and a barycentric coordinate (ai, bi, ci) for each vertex vi in S1

(a) Construct maps from Gi to a regular 4g-gon G by Tutte embedding, with specific

boundary conditions.

(b) Then compose these maps G1 → G and G → G2 to get the initial map. This initial

map is described by barycentric coordinates of the image of each vertex of S1 in some

face of S2.

(5) Compute the uniformization metric l̄2 for S2 using Ricci flow or Bobenko’s method.

Input: the output in step 2, only the metric part (S2, T
′
2, l
′
2)

Output: the uniformization metric l̄2 of S2.

(6) Compute the harmonic map from S1 to S2 with the uniformization metric using local

charts construction in [LBG+08].

Input: output of step 5, the uniformization metric l̄2; output of step 4, a face and barycen-

tric coordinates for each vertex in S1

Output: new face and new barycentric coordinates for each vertex in S1

(a) for each vertex v in S1, find all vertices in its neighborhood v1, v2, ..., vn where n =

deg(v)

(b) for each vi, find the face of S2 containing the image of vi

(c) embed the face containing image of v in the center of Poincare disk model

(d) iteratively embed faces next to the existing faces in the Poincare model until it con-

tains all the faces containing vi, v2...vn

(e) move the image of v to the center of Poincare disk model by some Mobius transfor-

mation.

(f) for each vi, use barycentric coordinates of vi to compute its distance from the center

in Euclidean metric di
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(g) compute Laplaican, ωij is the cotangent weight from the metric l′1 in S1 in the output

of step 2.

∆f =
∑
j∈Ni

ωij(f(vi)− f(vj)) =
∑
j∈Ni

ωijdj

(h) ∆f is a point in Poincare disk, it gives the new face and new barycentric coordinate

for the vertex v.

(i) iterate above procedure until ∆f is small enough. Then for each vertex v in S1 we

will have a new face and new barycentric coordinates.

(7) Minimize the distance energy E using the result in (5) as an initial guess and local charts.

Step(a)-(e) is exactly the same as in step 6, which is the construction of local

charts. The only difference is the energy. Please note the the constant C in the energy is

from step 1.

E(f) =

√∑
fi

(1−
√
λ1(fi)λ2(fi))2A(fi) +

C

2
max
fi

∣∣∣∣ log
λ1(fi)

λ2(fi)

∣∣∣∣
Input: output of step 6

Output: distance d(S1, S2); new face and new barycentric coordinates for each vertex in

S1 representing the map.

(a) for each vertex v in S1, find all vertices in its neighborhood v1, v2, ..., vn where n =

deg(v)

(b) for each vi, find the face of S2 containing the image of vi

(c) embed the face containing image of v in the center of Poincare disk model

(d) iteratively embed faces next to the existing faces in the Poincare model until it con-

tains all the faces containing vi, v2...vn

(e) move the image of v to the center of Poincare disk model by some Mobius transfor-

mation.

(f) for each face fi in the star of image of v, use barycentric coordinates of vi to compute

its three edge lengths in Euclidean geometry.

(g) for each face fi in the star of image of v, compute two singular values λ1(fi) and

λ2(fi). Then we can compute the energy Eold.

(h) decrease E by moving v around the center of the disk, then we will have a new face

and new barycentric coordinate for v and a smaller energy Enew
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(i) iterate above procedure until |Enew − Eold| is small enough. Then for each vertex

v in S1 we will have a new face and new barycentric coordinates, and the distance

d(S1, S2) = Enew. This will be the output of the algorithm.

Output: a nonegative real number d(S1, S2) which is distance and the corresponding map, de-

scribed by barycentric coordinates of the image of each vertex of S1 in certain triangular face of

S2.
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CHAPTER 6

Appendix B: Examples of Geodesic Triangulations for

Star-Shaped Polygons

The following gives four examples of geodesic triangulation of a star-shaped region. The first

star-shaped region is

v1 =

−1

1

 , v2 =

0

0

 , v3 =

1

1

 , v4 =

 0

−2

 .
The second star-shaped region is

v1 =

−1

1

 , v2 =

 0

−1

 , v3 =

1

1

 , v4 =

 0

−2

 .
The third star-shaped region is

v1 =

−1

1

 , v2 =

 0

−1.8

 , v3 =

1

1

 , v4 =

 0

−2

 .
The last star-shaped region is

v1 =

−2

2

 , v2 =

 1

0.25

 , v3 =

2

2

 , v4 =

2

0

 , v5 =

0

0

 .
The eyes for the four regions are chosen to be

e1 =

 0

−1

 , e2 =

 0

−1.5

 , e3 =

 0

−1.9

 , e4 =

0.9875

0.15

 .
In all the examples, the parameter in the energy is 0.9, 0.5, 0.1 respectively. For the first

example, all the three parameters produce geodesic triangulations. For the rest of three examples,

when the parameter is 0.9, it is not a embedding; when the parameter is 0.5 and 0.1, the result is

an embedding.
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maps, Journal d’Analyse Mathématique 79 (1999), no. 1, 315–334.

[Omo70] H. Omori, On the group of diffeomorphisms on a compact manifold, Proc. Symp. Pure Appl. Math., XV,

Amer. Math. Soc, 1970, pp. 167–183.

[PP93] U. Pinkall and K. Polthier, Computing discrete minimal surfaces and their conjugates, Experimental

mathematics 2 (1993), no. 1, 15–36.

[PP+08] K. B. Petersen, M. S. Pedersen, et al., The matrix cookbook, Technical University of Denmark 7 (2008),

no. 15, 510.

[RAG05] S. Roman, S. Axler, and F. Gehring, Advanced linear algebra, vol. 3, Springer, 2005.

[RS+87] B. Rodin, D. Sullivan, et al., The convergence of circle packings to the riemann mapping, Journal of

Differential Geometry 26 (1987), no. 2, 349–360.

[SG01] V. Surazhsky and C. Gotsman, Controllable morphing of compatible planar triangulations, ACM Trans-

actions on Graphics (TOG) 20 (2001), no. 4, 203–231.

[SG03] , Intrinsic morphing of compatible triangulations, International Journal of Shape Modeling 9

(2003), no. 02, 191–201.

[Sma59] S. Smale, Diffeomorphisms of the 2-sphere, Proceedings of the American Mathematical Society 10 (1959),

no. 4, 621–626.
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