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Mathematics

Stable Properties of Gapped Ground State Phases in Quantum Spin Chains

Abstract

This dissertation presents three peer-reviewed journal articles on the topic of stable properties of
gapped ground state phases of quantum spin systems, primarily in one dimension. Mathematical
preliminaries for these papers are found in Chapter 1. A detailed summary of results, including
main results, co-author information and funding acknowledgments, are found in Chapter 2. The

Appendix comments on the hypotheses of the main result of Chapter 5.
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0 Introduction

Heuristically, two quantum systems are in the same phase if there is a smooth path between the
interactions of the systems which preserves characterizing properties of the material [9]. If no such
interpolation exists, then the systems are separated by a phase transition. The problem of detecting
quantum phase transitions has a rich and modern mathematical theory. It is a fundamental problem
in the theory of quantum computing, where quantum information is stored in the ground state space
of a many-body interaction.

This dissertation investigates phase transitions in quantum spin systems (QSS), which are widely
applicable many-body models for quantum matter and quantum information.

A QSS associates to each site of a lattice a finite-dimensional Hilbert space representing the spin
of a confined particle. The basic objects of quantum mechanics, observables and states, are built
for a QSS from the lattice structure. Interactions between sites are spatially localized with respect
to the lattice and generate a uniformly hyperfinite C*-algebra of observables. Interactions define
Hamiltonian operators, the observables of energy, and their corresponding Heisenberg dynamics
by extensive summation over subregions of the lattice. States are the normalized, positive linear
functionals of this algebra. Ground states, characterized by a positivity condition with respect to
the infinitesimal generator of the Heisenberg dynamics, define expectation values for the system at
its lowest energy configuration.

A ground state of a QSS is naturally associated with its Gelfand-Naimark-Segal (GNS) represen-
tation which contains information about the phase. In this representation, the Heisenberg dynamics

of the system are implemented by a one-parameter group of unitary operators. The self-adjoint



generator of this group is called the bulk Hamiltonian, since its properties determine bulk properties
of the QSS. If there is a ground state spectral gap separating the ground and excited state energies of
the bulk Hamiltonian and the interaction between spins is sufficiently short-range, then correlations
in the ground state will decay exponentially with distance in the lattice [13, 23]. Rigorous results
about invariants of ground states have evidenced the physical theory that symmetry constraints may
produce nontrivial phases, even when in the absence of the symmetry there is only the trivial phase
[1, 26, 27]. Accordingly, phases with symmetry constraints are called symmetry protected topological
(SPT) phases. SPT phases and symmetric invariants in the GNS representation have been studied
extensively in the cases of finitely correlated states, i.e. matrix product states [25, 28, 29|, and split
states [15] of the 1D spin chain.

In the first chapter of this dissertation, the technical preliminaries for rigorous discussion of these
topics are established. The following chapters are a collection of peer-reviewed journal articles which
investigate stable properties of gapped ground state phases of quantum spin chains. The results of
these papers are summarized in Chapter 2. The first two papers in this collection, Chapters 3 and 4,
prove results about stable properties of gapped ground state phases in one dimension — hence the
title of this dissertation. It is important to note that the main result of the third paper, Theorem
1.3 of Chapter 5, applies to arbitrary integer lattice dimension, though it has applications to the

theory of SPT phases in one dimension.

On the topic of acknowledgments: I am indebted to many people for their help throughout
the course of my graduate studies. I would like to thank my advisor, Bruno Nachtergaele, for his
mentorship. My research in quantum spin systems and mathematical physics at UC Davis would not
have been possible without his guidance. I would also like to thank: Eric Babson, Sven Bachmann,
Matthew Cha, Martin Gebert, Jerome Kaminker, Greg Kuperberg, Yoshiko Ogata, Jake Reschke,
Robert Sims, Alexander Soshnikov, Giinter Stolz and Amanda Young, for their expertise during our
mathematical conversations and collaborations. I thank my friends in the UC Davis Department
of Mathematics for creating a productive and exciting environment for research. And I thank my

parents, Tae Gi and Aileen, and my brother Elbert, for their support through the years.



1 Mathematical Preliminaries

1.1 Lattice

In this chapter, we will define a quantum spin system with respect to the integer lattice Z” equipped
with the distance function ||(z1,...,2p) — (y1,...,yp)|| = maxi<i<p |z; — y;|. In all but one of the
subsequent chapters, we investigate mathematical properties of gapped ground states when D =1,
with the exception of Chapter 5. Many condensed matter models, such as the Affleck-Kennedy-Lieb-
Tasaki spin S = 3/2 system defined on the regular hexagonal lattice, are defined on lattices which
are not integer sublattices. Mathematically, many results in the theory of quantum spin systems do
not depend materially on the periodicity of the lattice, and most can be developed more generally
on graphs. To this point, we remark that many results of this chapter, such as the Lieb-Robinson
bound in Theorem 1.5.1, will hold for countable graphs I' for which there exist constants cr,dr > 0

such that:

sup |B,(x)| < crndr, sup |Bp(x) \ Bp—1(x)| < ern® T, (1.1)
zel zel

For a general treatment of quantum spin systems on graphs which satisfy condition (1.1), see [24] or

21].



1.2 Spin

We associate to each site z of the lattice Z” the finite-dimensional Hilbert space §, = Clz. §,
has a natural interpretation as the state space of a particle with spin S, € %N , in which case d, is
determined as the dimension 2S5, + 1 of the corresponding irreducible representation of SU(2). The

linear operators B($);) on £, form the algebra of observables at the site x.

1.3 Algebra of Observables

Henceforth we consider the case of homogeneous spin S. By the previous section, this determines
the dimension of the on-site algebra of observables as d? = (25 + 1)2. For a given dimension D of

the integer lattice, we index a collection:

{QlX : X is a finite subset of ZD} (1.2)

of matrix algebras Ax = B ( Raex Y)m) describing the observables for the quantum system of finite
collections of spins. We require that if Y C X, then 20y is a unital subalgebra of 2x under the

identification:

Ly, X :Q[y — mx (1 3)
A r—)]lglx\y ® A.

This unital mapping turns the collection in (1.2) into a net of algebras ordered by inclusion. We

define the algebra of observables for the infinite lattice:

—
1= U e (1.4)

xczPb
Xis finite

2 is a C*-algebra with the norm defined by the operator norm on the dense subalgebra | x ;0 Ux,
X is finite
and 2 is unique up to *-isomorphism independently of lattice dimension (cf. Section IV of [10]).

For any ¥ C ZP, not necessarily finite, denote by s, the closed subalgebra with dense subset

U zcx 2z. Further discussion of algebraic and topological properties of 2 can be found in
Z is finite



Chapter 2.6 of [5]. In particular, 2( is a simple C*-algebra.

Elements of 2( are known as observables. If Z is a finite subset such that X N Z = (), then for all

AeAx and B € Az:

[A,B] = AB — BA=0. (1.5)

The following well-used definition makes precise the idea of locality in .

Definition 1.3.1. Let A € A be an observable. A is a local observable if there exists a finite subset

X C ZP such that A € Ax. Denote by:

Ajoc = U 2x (16)

xXczP
X is finite

the algebra of local observables.

An observable B € 2\ o is not local, but it is quasi-local in the sense that there exists a

sequence B, € . such that:

|B— B =o. (L.7)

lim
n—oo

A fundamental question which we answer in summary in Section 1.5 of this chapter is whether
the convergence in (1.7) can be quantified in terms of the physical parameters of the system when

B = B(t) is evolved by dynamics, e.g. as in equation (1.15).

1.4 Local Dynamics

Hamiltonian operators, the observables of energy in quantum theory, are defined for quantum spin
systems by extensive summation of interactions between sites. The following definitions specify these

objects. Let Pr(X) denote the set of finite subsets of a set X.

Definition 1.4.1. An interaction on ZP is a function ® : Pf(ZD) — Uioe such that for all



X € Py(ZP),

(X) = (X)) € Ax. (1.8)

Let B(ZP) denote the real vector space of interactions on Z”. On physical grounds, we may
require interactions to change with respect to a parameter s € R. For example, adiabatic theorems
for quantum spin systems use interaction parameters to introduce changes over long time scales
[4]. Mathematically this dependence is represented as a curve ®; of interactions. In the following,
we will investigate curves of interactions which are smooth in an appropriate sense. To define this
rigorously, we first summarize the theory of F-functions, which define extended norms on B(ZP”)
and provide a precise definition of differentiation of interactions. These definitions are well-known
and not novel to this dissertation, and we refer to Chapter 6.2 of [6] for a comprehensive discussion

of classes of interactions and the Appendix of [24] for a detailed exposition of F-functions.

Definition 1.4.2. A monotone decreasing function F : [0,00) — [0,00) is an F-function if

lim, oo F(r) =0 and F satisfies the following two properties:

(1) >pezp F(llz]]) < oo,

(ii) There exists a constant Cr > 0 such that for all x,y € ZP,

> Flllz = 2IDE(l= = yl) < CrF(|lz = yl)-

2€7ZP

F-functions quantify the decay of an interaction in terms of the lattice distance.

Definition 1.4.3. The F-norm of an interaction ® from F' is:

12(X)]
I@llp= sup >
swez? y ooy FlT =yl (1.9)

z,yeX

The quantity in (1.9) defines an extended norm on the space of interactions and induces a

complete normed metric subspace in a natural way.

Lemma 1.4.1. Denote by Br(ZP”) the set of interactions ® such that ||®||r < oco. Then Bp(ZP)

with the norm || - || is a real Banach space.



Proof. The fact that Br(Z") is a normed vector space over R with || - || is clear. So suppose (®;,)
is a Cauchy sequence of this space. This implies that for all X € Py(ZP), the sequence (®,(X)) is

uniformly Cauchy and hence convergent to some ®(X) € 2x. Define ® € B(ZP) by

(X) = lim &, (X).

n—oo

Suppose z,y € ZP and denote S, = {Z € Pf(ZD) txT,y € Z}. Let J be any finite subset of S, .

Then:
2 M = Jim 3 m < sup [ < 00
zeJ zeJ
which shows
|®||lF = sup sup Z M < 0

rebn sep(5ey) 2 I — )

and ® € Bp(ZP). Similar computations show that ®, — ® with respect to || - || . O

Evidently if F, G are both F-functions such that sup,.(F/G)(r) < oo, then Br(ZP) C Ba(ZP).
In particular, the finite-range interactions are in the intersection of all Br(Z”), showing that they

are non-empty subspaces.

Definition 1.4.4. An interaction ® is finite-range if there exists R > 0 such that diam(X) > R

implies ®(X) = 0.

The F-norm can be modified to also describe decay of curves of interactions. Let ®(s) be a curve

of interactions in Bp(Z") parametrized by s € I, where I is a subinterval of R. Then we define:

[2(2)|]
|®s]lFr = sup SUP —
) z,y€ZP Zepzf(:zD) ser F(llz = yll) (1.10)

T YeEZ

Definition 1.4.5. Suppose (®,)ses is a curve of interactions in Bp(ZP). Say ®, is a differentiable

interaction if the following two conditions hold:

(i) VX € Pp(ZP), the map s — ®4(X) is continuously differentiable in Ax with respect

to the operator norm. Denote this derivative as ®(X).



(i) [|0Ds]

F1 < 0o, where we define:
00,(X) = \X\CI);(X). (1.11)

Lastly, we define the dynamics from an interaction in terms of their generator. Let &g be a

differentiable interaction. Define the local Hamiltonian of ®5 over X € P¢(ZP) by the extensive sum:

Hx(®) = Y 0u(2). (1.12)

ZCcX

Define Ux(s) € Ax as the unique unitary solution to the equation:

@ Ux(s) = ~ifx(@)Ux(s), Ux(0) =1x. (1.13)

For each X € Py(ZP), the associated dynamics 8% : I — Aut(x) of ®, are defined by conjugation:

BX(A) = Ux(s)*AUx(s). (1.14)

For example, if @ is a constant curve over R, i.e. &5 = &, = ® forall s,t € R, then Ux(t) = e itHx(®)

is the group of unitaries defined by the generator —iHx (®). In this case, we reserve the notation:
T;I),X(A) — eitHx(‘I))Aef’itHx(CD) (115)

and refer to these dynamics as the Heisenberg dynamics from &.

1.5 Lieb-Robinson Bounds and Dynamics

A C*-dynamical system (A, a) is particularly amenable to study when o : R — Aut(A) is approzi-
mately inner, that is, the pointwise limit of strongly continuous groups of inner *-automorphisms of
A. The tool which will allow us to identify approximately inner Heisenberg dynamics for a QSS
is the Lieb-Robinson bound. First demonstrated by Lieb and Robinson in 1972 [14], these bounds

have a critical role in the analysis of the quasi-locality of the dynamics.



Theorem 1.5.1 proves a commutator bound in the case when the evolution is from the Heisenberg
dynamics due to an interaction which decays by at least a power-law F-function. The method of

proof of this theorem uses the following integral inequality.

Lemma 1.5.1 (Lemma 2.3 of [24]). Let $ be a Hilbert space and I C R a finite or infinite interval,
and A, B : I — B($) strongly continuous mappings with A(t) = A(t)* for allt € I. Then for each

to € I and Vo € B($), the initial value problem:

SV(t) = iAW, V(W) + B, V(o) =V (1.16)

has a unique strong solution, and:

max{t,to}

VOl < [Voll +/ ds || B(s)]]. (1.17)

min{t,to}

Proof. Let W(t) be the unique strong solution to:

%W(t) — —iA()W (L), W(ty) = 1. (1.18)

W (t) is unitary for all ¢. Then V (¢) = W (¢t)(Vo + ftto ds W (s)*B(s)W (s))W (t)* is the unique strong

solution to (1.16), and the bound follows from taking norms. O

Theorem 1.5.1. Suppose ® is an interaction such that ||®||F < oo, where F(r) < W (e>0).
Then there exist constants C,v > 0 such that for all A and local observables A, B with disjoint

supports Sa,Sp:

17 (A), Bl < CIANBI(™ =1) Y > Flla—bl). (1.19)

a€ESp beESE

The constants may be taken as:
C=— v=2CF|®|r (1.20)

Proof. We first perform a preliminary computation to which we will apply Lemma 1.5.1. This



will establish the first step of an iterative procedure which will produce the desired bound. In the
following, we omit dependence on A. Let U,V be local observables of 2 with support Sy, Sy .
Denote Ky = Y {®(X) : X NSy # 0}. Then:

&{Tt((]), V] = lHTt(H((I)))7Tt(U)]> V]
= i[Tt([H((b)v U])7 V} (1-21>

= iln(Kv), [ (U), V]| = i[n(U), [r(Kv), V]]-

where the last line follows by Jacobi’s identity. Lemma 1.5.1 implies, when ||U|| # 0:

(). VII _ 0,V XVl
o < 2, 2, e ”/ B am
||‘1’(X)H7£0

In the case when U = A and V = B, [A, B] =0, and so:

[[m(A), B]| X)), Bl
B e (X ”/ H<I> o (1.23)

X: XmS #0
(|2 (X)[|#0

Applying the bound derived in (1.22) to the integrands of the righthand side of (1.23) yields:

(A, B 0 (), B
- =% 2 ”‘”1”/“( o]

X1:X1NS4#0
lo(X1)]0 (1.24)
n i <<I><Xz>>,BH> |
+ 2[|P (X / dr 2 .
o)) | dr X.XZ 1205
2: X2NX1 #D
l|®(X2)[]#0

Denote by dp : Pr(A) — {0,1} the function such that dg(X) = 1 if and only if Sp N X # (). The

Nth application of (1.22) yields:

I7(A), Bl| _ —
Tl gganJrRN (1.25)

10



for coeflicients defined:

n—1 ] Tn_1 T
ez 2y e [Cen [ Gl

X1:X1NS4#0 X XnNXp_1£0 =1
l2(X1)[I#0 |2(X7)[#0

N+1

It] TN41 T ,
D SIS SN 10 APy (e

X1:X1NSA#£D  Xna1: Xy NXy#£0 =1 12(Xn-+1)l]

[@(X1)[#0 (XN +1)[I70
(1.26)
The series ) a,, can be seen to be convergent since:
n
DI DD DD DD D N | (L]
a€Sa beESE a1,...an€A X1CA Xn-1CA  X,CA i=1
a,x1€X1 Tn—1,2n€Xn—1 Tn,bEXn (1.27)
2 2l ®llrCrt)"
<o > 5 BRI ps - al)
FaESAbESB ’
from which we derive the bound:
al 2
il 2|2l rCrlt] _ —
D an < o IANIBII (e = 1) Y > Fllla— bl (1.28)
n=1 acS beSp

The theorem follows from showing that the remainder Ry tends to 0. But this is evident from the

same series manipulations as in (1.27):

211F|||S 20p||®|| p|t)N+1
RN§< |1F][] A\)( Fl®||Flt]) IBI. (1.29)

Cr (N +1)!

O

We also record, for completeness, the existence of a family of maps Ex : 1 — 20x which satisfy
the defining features of a conditional expectation. These maps will be useful in approximating
quasi-local observables, particularly time-evolutions of local observables by the Heisenberg dynamics

of a rapidly decaying interaction.

11



Theorem 1.5.2 (Proposition 2.2 of [22]). There ewists a collection {Ex : A € Pr(ZP)} of completely

positive maps Ep : A — Ap such that:

(1) VAeAy: Ex(d)=4A

(2) VC,De |J Az AcU: (1.30)
Z:ZNA=0

EA(CAD) = CE(A)D.

Furthermore, if A € 2 is such that for all B € J ;. znp—g ™Az,

I[A, BI|l < el All||B]] (1.31)

then ||Ex(A) — A|| < €||A||. Lastly, the maps are ordered by inclusion precisely in the sense that if
Ao C A then:

EAOEAO(A) :EAO OEA(A) :EAO(A), (132)

The proof of this theorem is detailed in Section 3 of [22], and we only record the definition of E,.

Let pac be the product state on 2Axc whose tensor factors are normalized trace. Then:

Ep =idp ® ppc. (1.33)
One application of a Lieb-Robinson bound is proving the existence of the Heisenberg dynamics
in the infinite-volume limit.

Theorem 1.5.3. Suppose |®||p < oo for F(r) < W. There exists a group of automorphisms

7% R — Aut(A) such that for all A € A:

2 (A) = Jim M (A). (1.34)

For each A € A, the map t — 72 (A) is norm continuous.

Proof. First we show the existence of the limit in (1.34). Let A, = [-n,n]” and denote thb,An =7/

12



The claim is that for fixed ¢t € R and A € o, the sequence (Tt”(A)) converges as n — 00. Suppose

n > m are natural numbers such that S4 C A,,. By Lemma 1.5.1,

[¢]
177" (A) = 7" (A S/O dr ||[Ha, (®) — Hy,, (@), 7" (A)]]- (1.35)
The difference of Hamiltonians in the above bound can be separated into two summands:

T ={X CAy: X ¢ Ap, XNSy=0}

To={X CAy: X ¢ Ap, XS4 #0}

(1.36)
Hp, (@) = Hp, (@)= ) @(X)+ ) 2(Y).
Xel Y€y
The contributions to (1.35) from Z; can be bounded by the Lieb-Robinson bound:
2n
0> O 7" All< Y Y. @), Al
XeT, k=d(Sa,Am) X€L
d(X,54)=Fk
24l
< > TF(evlr‘ -1 > el Y] > Flla—yl)
k=d(Sa,Am) d()?(,gfi:k acSp yeX (1.37)
2n
2- 3D”AH v|r 1
< Z T(e I 1)||(I)HF|SA|W
k=d(Sa,Am)
2-3P01A1, 1
< ———— (" =D)||®||p|SaAl
< S M DIl g
while the contributions from Zy can be controlled by the decay of the interaction:
I o), @< > > > le),nA)]
Y€y 2EA\Am a€Sy  X:iz,a€X (1.38)
1
<2-3P|A|l|®#|Sa|l——.
<237 Al elSa g1

So denote the limit of this Cauchy sequence by: 7.2 (A) = lim,,_,o 77*(A). The limit in (1.34) follows

13



by fact that for any m € N, if A D A, then, by replacing 7/*(A) with TF’A(A) in (1.35):

I (A) = 7 (A < I A) = 7 A+ 117 (A4) = 7 ()] (1.39)
<2 37| Al @] p|Saled(Sa, Am) .

The group law 7;* o 7¥ = 7, _ follows from the fact that 7% is the pointwise limit of one-parameter

groups, and that the convergence is uniform over compact intervals of time. And by similar

computations as above, there exists C' > 0 independent of A such that:

max{t,to}
I (4) = Ty (A)]] < / o) dr |[HA(®), 7 (A)]]| < CJt — to] | A] (1.40)
min{tg,
The continuity follows from taking the limit as A — Z. O

We end this section with a description of the infinitesimal generators of the Heisenberg dynamics.

Definition 1.5.1. Let X be a Banach space. A Co-group T : R — B(X) is a group representation

of R such that for all x € X, t — T(t)x is a continuous map.

Definition 1.5.2. Let X be a Banach space and T : R — B(X) be a Cy-group. The infinitesimal

generator A of T is defined as the linear operator:

Dom(A) = {x €eX: lirgl T(t)z:—:z: exists.}
" (1.41)

Vo € Dom(A), Az =lim M
t}0 t

The infinitesimal generator of a Cy-group is a closed operator. In fact, the condition in (1.42) of

the theorem below characterizes generators of Cy-semigroups, although we will not use this fact.

Theorem 1.5.4 (see Theorem 2.13 of [12]). Suppose A is the generator of a Cy-group T. Denote
by p(A) the resolvent set of A. Then A is closed, densely defined, and there exist constants M > 1

and w € R such that A > w implies A € p(A) and

(A =w)*(A = A)7"| < M, Vn € N. (1.42)

We will only consider generators arising from unitary groups or groups which are quasi-local

14



dynamics of the form (1.15) or (1.34). When the context is clear, we will use the term generator. The
generators 6% and 6% of 7% and 7®A, respectively, will be particularly important in the discussion
of ground states.

In Theorem 1.5.3, it was proven that, assuming sufficient decay of the interaction, the map
t + 72(A) is continuous with respect to the norm topology. Hence 7® : R — Aut(2) defines a
Co-group, and the generator of 7 is a closed operator.

Because of the locality of the interaction ®, 6®* and §® have concrete formulas in terms of
the lattice structure and the local Hamiltonians { Hx(®) : A € Pf(Z”)}. The former is given by a

simple computation and the latter is the content of Proposition 1.5.1.

Example 1.5.1 (Generators of local dynamics). For any X € P(Z”), the map t TS’X is

continuous with respect to the operator norm. Hence the generator is a bounded operator with

Dom(§%%) = 21, and the generator can be computed as a derivative:

§*X(A) = %eitHX@)Ae—itHX@) = i[Hx (D), A]. (1.43)
t=0

Proposition 1.5.1. Suppose ||| r < oo for F(r) < ﬁ, Then Ao is a core of Dom(8?), and

1+
for A € Ao

XeP;(ZP): (1.44)

XNSA#£D

®,[—n,n]P

Proof. By (1.40), for fixed A, the sequence of functions t +— 7, converges uniformly on

compact intervals to t —+ 7,2 (A). By Example 1.5.1 and an interchange of limits:

N —
limM = lim §*"(A) = lim i[H[_p o (D), Al (1.45)

t10 t n—00 n—+00

The bounds in (1.37) and (1.38) of Theorem 1.5.3 imply that the sequence (6®™(A)) converges.

Hence A € Dom(§) and the formula in (1.44) is valid. O

15



It follows from Proposition 1.5.1 that for all A, B € Dom(5%),

5% (A*) = 6%(A)* and 6°(AB) = 6% (A)B + As®(B). (1.46)

That is to say, 6® is an example of a x-derivation.

1.6 Quantum Spin System

Let ® € Bp(ZP) for any F-function. In Section 1.5 we recorded the existence of an automorphism

7% : R — Aut() such that for all A € Aje:

7(A) = lim 7" (A)

where the limit is taken over the net of finite volumes A ordered by inclusion.

Definition 1.6.1. A quantum spin system is a C*-dynamical system of the form (A, 7%).

1.7 States

States act on observables to produce the expected values for the system. In a quantum spin system,
states are exactly the set of positive unital linear functionals of 1. A state ¢ of 2 induces an

important cyclic representation in the following way. The closed left ideal:

N, ={AecU: p(A*A) =0} (1.47)

defines the zero-length vectors of the pre-Hilbert space (2, (-,-),) for inner product defined by
(A, B), = p(A*B). The representation m, : A — B(2/N,) defined on the dense subset /N, by
mo(A)(B 4+ N,) = (AB) + N, is called the Gelfand-Naimark-Segal (GNS) representation. The

vector 0, = 1 + N, is a cyclic vector for this representation, and furthermore,

P(A) = (Qp, m, (A) Q). (1.48)

16



The purpose of this section is to develop properties of certain classes of states which will be the
central objects of study in later chapters. We record the definitions of two important classes of
states: ground states and split states. Their GNS representations of the quasi-local algebra will have
critical roles in the description of ground state and SPT phases. We also discuss the quasi-adiabatic

evolution of ground states.

Definition 1.7.1. A state w of A is a ground state of the quantum spin system (A, 7%) if for all
A € Dom(8?),

—iw(A*6%(A)) >0 (1.49)

Let & (®) denote the set of ground states of an interaction ®. Proposition 1.7.1 shows that given

a QSS (A, 7?), at least one ground state wg of the dynamics always exists.

Proposition 1.7.1 (cf. Theorem 4.2.5 of [30]). Suppose ||®|r < oo for F(r) < W. Then

Eo(P) is not the empty set.

Proof. Let m: 24 — B($) be a faithful x-representation on a Hilbert space, guaranteed to exist by

the Gelfand-Naimark theorem. Denote H,, = H| (®), and define:

—n,n]P

K, = n(H,) — inf spec(H,) > 0. (1.50)

Let ¢, : B($)) — C be a vector state from the kernel of K,,. There exists a *-weak limit ¢ of some
subsequence @y, of these states, by the x-weak compactness of the states of B(f)), and so we may

define:

w:A—-C
(1.51)

W(A) = pom(A).

Let 6® = § and 6% [—nnl” = d,, denote the infinite and finite-volume generators, respectively, of the

Heisenberg dynamics. By Proposition 1.5.1 and (1.45), we have that for any A € joe, A € Dom(J)
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and:

6(4) = lim 6,(A). (1.52)

And so:

|w(AG(A)) = wny (A%, (A)] < (@ = winy )(A"(A))] + 2[| ANl (0 = 6n) (A)]

= (¢ = pn ) ((A76(A))] + 2[| Al[[[(6 = 8n) (A)[| = O as n — oo

(1.53)
This justifies the coupled limit in the first line of the following computation:
—iw(A6(A)) = Hm o, (m(A"[Hy,, A]))
—00
(1.54)

> lirr;ninf om (T(A HpA)) — o (m(A*A)m(Hy)) | > 0.

The statement follows by fact that .. is dense in 2 and the fact that § is a closed derivation. [

Evidently & (®) is a *-weak compact, convex subset of the states of 2. Furthermore, by Theorem
5.3.37 of [6], E(P) is a face of the states of A, and the extreme points of & (P) are pure states. It is
straightforward to show that the ground state condition implies w(6®(A)) = 0 for any A € Dom(d®)

®

and w € &(P), and so wo 7" = w. The following well-known fact records how the Heisenberg

dynamics induce a covariant representation of R in the GNS representation of the ground state w.

Lemma 1.7.1. Let (), O, 7)) denote the GNS representation of w, as constructed above. There

exists a Co-group U : R — Unitaries($),,) such that:

T, oTE = Ady, o m,,. (1.55)

Let —iH,, denote the skew-adjoint generator of U. Then H, > 0 and H,$, = 0.

Proof. For ease of notation, we omit the dependence on w of the representation and let A denote an

arbitrary element of . For fixed ¢ € R, define Uy first by its adjoint on the dense subspace m(21)$2
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Urn(A)Q = n(rF(A)Q. (1.56)

U/ is bounded on this dense subspace since:

U (A)Q? = w(n(A*A)) = w(A*A) = |x(A)Q% (1.57)

Equation (1.57) implies that the extension of U} to $) is unitary and that U;Q2 = Q. The group law

and strong continuity of ¢ ++ U; follow from the same properties of the map ¢ — 7,2, since:

U Ufn(A)Q = (1375 (A))Q = U ym(A)Q
(1.58)
(U m(A) = Usm(A)Q < (172, (A) = All = 0 as s — ¢.
Hence by Stone’s theorem, there exists a self adjoint operator H such that —iH generates U and
m(A)Q C Dom(H). As it is clear that HQ2 = 0, we lastly prove that H is non-negative. Equation
(1.56) and continuity of 7 imply d(m(A)) = m(da(A)), where Jg is the generator of 7% and d the

generator of Ady,. And so:

(m(A)Q, Hr(A)Q) = (Q, m(A*)[H, m(A)]Q) = w(A*s(A)) > 0. (1.59)

O

The operator H,, is called the GNS Hamiltonian or bulk Hamiltonian. It is the Hamiltonian
operator of the bulk system, and its properties are closely related to those of the ground state.
For example, it is known that the existence of a ground state gap in the spectrum of H, and
dimker(H,) = 1 imply exponential decay of correlations in the ground state for a broad class of

quantum spin systems |23, 13]. The precise gap condition required is recorded below.

Definition 1.7.2. A ground state w of (A, %) is gapped if there exists v > 0 such that:

. o
pepid (O Hut) 2 (1.60)

lbll=1, ¢ Lker(Hy)
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A closely related but inequivalent condition is a lower bound on the spectral gaps of the local

Hamiltonians Ha (®) which is uniform in the volume A.

Definition 1.7.3. An interaction ® : Pr(ZP) — Ui is uniformly locally gapped if (1) there

exist constants v, R > 0 and a consistent partitioning:

spec(HA(®)) = specq(Hp(P)) Uspec, (HA(P)) (1.61)

such that for all connected volumes A € Py(ZP), if diam(A) > R, then:

min {)\ — A€ spec (Hp(P)),p € speCO(HA(@))} > (1.62)

and (2) lim,_,7p diam(spec(Hp(®))) = 0.

This definition of a uniform local gap of ® includes the condition that the lower energies of
Hp(®) shrink in diameter as A tends to the lattice volume. Mathematically, much of the analysis
of finite-volume gapped ground states can be done with only condition (1). However, condition
(2) is important for the analysis of infinite-volume ground states, such as in Lemma 3.14 of [19]
which shows that gapped ground states of a certain class of frustration-free spin chains can be stably
perturbed. And since condition (2) arises as a natural consequence of the perturbation theory of
frustration free systems, we include it in Definition 1.7.3.

It is a remarkable principle for quantum spin systems that smooth, gapped curves of ground states
of rapidly decaying interactions can be written in terms of quasi-local, time-dependent dynamics.
This principle is often referred to as quasi-adiabatic evolution, and the dynamics are the spectral flow.
In finite-volume, the quasi-adiabatic evolution provides an explicit flow of spectral projectors over
smoothly evolving, isolated regions. A complete construction of the spectral flow and proof of the
quasi-adiabatic principle can be found in Section VI of [24] and [3], where the following proposition

is made applicable in a many-body setting for different rates of decay of interaction.
Proposition 1.7.2 (Proposition 2.4 of [3]). Suppose:

(1) for 0 < s <1, H(s) is a smooth family of self-adjoint Hamiltonians with bounded

deriative H'(s) such that ||H'(s)|| is uniformly bounded for s € [0,1];
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(2) that the spectrum spec(s) of H(s) can be decomposed into disjoint sets spec; (s),specs(s)

such that:
Oinilinfﬂ)\ — p] = X € specy(s), 1 € specy(s)} > 0; (1.63)

(3) there are compact intervals 1(s) with end points depending smoothly on s and such

that spec;(s) C I(s) C (R \ specy(s)), so that

Ogglmfﬂa —bl:a € I(s),b € specy(s)} > 0; (1.64)

(4) wy € LY(R) is a real-valued function such that [ dtw~(t) =1 and supp(@,) C [—,7].

Then the spectral projector P(s) supported on spec(s) is given by:

P(s)=U(s)P(0)U(s)* (1.65)
for unitaries solving:
.d
~iU(s) = Ds)U(s), U(0) =1
D(s) :/ dt wv(t)/ du ei“H(S)H’(s)e_i“H(s).
—00 0

In the setting of QSS, the unitaries Uy (s) that appear in (1.65) when H (s) is a local Hamiltonian
over A define the finite-volume spectral flow o = Ady, (s)-
Next, we discuss an equivalence relation on factor states which is weaker than unitary equivalence

of their GNS representations.

Definition 1.7.4. Let m,m be *-representations of a unital C*-algebra A, and denote by B1 and
By the generated von Neumann algebras from w1 (A) and m2(A), respectively. m and 7o are quasi-
equivalent representations if By, By are factors and there exists a x-isomorphism T : By — By such
that m1(x) = my o 7(x), for all x € By. Say that two factor states w,p of A are quasi-equivalent

states if their GNS representations are quasi-equivalent.
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We will express the quasi-equivalence relation between states by ~. The notion of quasi-
equivalence can be broadened to non-degenerate x-representations; however, since we consider only
representations of 2l which arise from factor states, such as pure ground states, we may freely use
an asymptotic condition for quasi-equivalence (Corollary 2.6.11 in [5]): w ~ ¢ if and only if for all

e > 0, there exists X. € P¢(ZP) such that Y € P¢(ZP) and B € 2y with Y N X, = 0 imply:

w(B) = ¢(B)| < [|Blle. (1.67)

In Section 3, we study the consequences of the asymptotic relation in (1.67) in the context of
symmetry protected topological phases when D = 1. A closely related feature of certain pure ground

states is the split property.

Definition 1.7.5 (Definition 2.1 of [27]). A pure state ¢ of a 1D QSS has the split property if
Tor(R0,00))" 15 a type I factor, where m,p, is the GNS representation of the restriction pr of ¢ to

the right half-infinite chain algebra 2Ajg o).

The split property is naturally connected to the notion of quasi-equivalence. In [16], it is shown
that a state w of 2 with bounded entanglement entropy is quasi-equivalent to a product state ¥ ® ¢,
where 9 is a state of 2(_, o) and ¢ is a state of (g o). The following result characterizes the split

property for pure states in terms of quasi-equivalence.

Proposition 1.7.3 (cf. Proposition 2.2 of [17]). Consider 2 as the quasi-local algebra of the integer

lattice Z, i.e. D = 1. Let ¢ be a pure state of . The following conditions are equivalent:

(i) ¢ is quasi-equivalent to the state which is the tensor product of restrictions, ply, @p|ay

(ii) ¢ has the split property.

where Ay, = A_o 0] and Ar = A9 o0)-
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2 Summary of Results

In this chapter, we summarize the results of the following three papers, which are presented in

chronological order of publication.

The first paper, “Stability of gapped ground state phases of spins and fermions in one dimension,"

was published in the Journal of Mathematical Physics, Vol. 59 (2018). The paper is based on
joint work with co-author Bruno Nachtergaele, at the Department of Mathematics and Center for
Quantum Mathematics and Physics, University of California, Davis. The authors were supported
by National Science Foundation Grants DMS-1207995 (A.M.), DMS-1515850 (A.M. and B.N.) and
DMS-1813149 (B.N.).

The second paper, “Automorphic equivalence preserves the split property," was published in the
Journal of Functional Analysis, Vol. 277 (2019). The author was supported by the National Science
Foundation Grant DMS-1813149. The work was partially completed during the 2018 Thematic
Semester, Mathematical challenges in many-body physics and quantum information, at the Centre de
recherches mathématiques, where the author was supported by a Simons-CRM research grant due to

Bruno Nachtergaele.

The third paper, “Automorphic equivalence within gapped phases in the bulk," was published
in the Journal of Functional Analysis, Vol. 278 (2020). The paper is based on joint work with

co-author Yoshiko Ogata at the Graduate School of Mathematical Sciences, University of Tokyo. The
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authors were supported by the National Science Foundation Grant DMS-1813149 (A.M.), and JSPS
KAKENHI Grant Numbers 16K05171 and 19K03534 and JST CREST Grant Number JPMJCR19T2
(Y.0.).

2.1 Stability of gapped ground state phases of spins and fermions

in one dimension

Rigorously, perturbative lower bounds for the uniform local ground state spectral gap of quantum
spin system interactions have been proven for frustration free systems, which are defined by the
requirement that a ground state of a local Hamiltonian minimizes each of its interaction terms.
Pioneering work in [7, 8, 18] used periodic boundary conditions and Local Topological Quantum Order
(LTQO), a “local indistinguishability" condition on the ground state space, to prove gap stability
for perturbations of the form &3 = ® + sV, s € [0, 1], of non-negative, frustration free interactions ®
with LTQO. The technical accomplishment of |7, 8, 18, 19] is proving a relative form bound of the
perturbed Hamiltonians of local systems using constants which are independent of system size. This
is accomplished by a locally block-diagonal decomposition of a unitarily equivalent system in terms
of the conditional expectation map from Theorem 1.5.2 and the spectral flow automorphism defined
in Proposition 1.7.2.

In lattices with open boundary conditions, boundary perturbations may violate LTQO and
prevent the validity of critical estimates in [7, 8, 18]. The main result of this paper, Theorem 3.11,
guarantees that phases of uniformly locally gapped, topologically ordered ground states of frustration
free spin chain interactions are stable under small but extensive perturbations which may involve

the boundary.

Theorem 3.11: Suppose 1 : Pr(Z) — Ujoc has LTQO with Q(n) < n™" for v > 4 and
there exist K > 0,s € (0,1] such that he satisfies hg(r) > K. Then there exists

£(y0) > 0 such that 0 < e < g(9) and diamA > max {2D, R} imply

Y(Ha(e)) > v — (m+2Mp)e >0
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The constant £(yp) can be taken as

e(v0) = min {1,v/(m +2Mp)}.

An exact description of the mathematical assumptions for the theorem is in Section II.B. The
constants m and Mp are parameters of the system, and in particular Mp depends on the strength of
the interaction at the boundaries of the intervals. To illustrate this result, we present a well-known
example of an interaction which satisfies the conditions of Theorem 3.11: the Affleck-Kennedy-Lieb-
Tasaki (AKLT) spin S = 1 chain, which can be constructed as follows. By the Clebsch-Gordan
decomposition, the state space for nearest neighbor pairs of spins x,x + 1 can be written as a
direct sum of irreducible representations of SU(2). When S = 1, this multiplicity-free direct sum

decomposition is:

R Da(v(,)o)cﬂ b Da(c%:)c—i—l b D;?H—la (2.1)

2)

where the dimension of D;j) is 25 + 1. Let PaE,erl

,ax+1
AKLT interaction is defined:

denote the projection onto D(2i+1. Then the

Z,

(2)
@AKLT(X) _ { Px,z+1

0 else

if X ={z,x+ 1} for some x € Z
. (2.2)

Evidently the interaction terms are non-negative. Results from the theory of finitely correlated states

(I)AKLT)

in [11] imply that for sufficiently large interval A = [—n,n], the kernel of Hj( is exactly the

span of state vectors of the form:

A MQ(C) — ®~6m

TzEA

WA (B) = > tr(Bvan i .va_n) |o_p o)

(op:meA)e{—1,0,1}2"H1

(2.3)

where [¢), ¢t € {—1,0, 1} denotes an element of the orthonormal eigenvector basis of the Z spin-matrix,
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and:

0 1 -1 0 0 0
vy =—(2/3)"/? ., v = (1/3)1? . =(2/3)1? : (24)
0 0 0 1 1 0

AKLT of the interaction is

The dimension of the kernel is 4, and the infinite-volume ground state w
gapped and unique. Furthermore, the finite-volume ground states are uniformly locally gapped. The
fact that the ground state space of the AKLT interaction satisfies the LTQO condition described

in Section II.C can be derived from the following estimate: for all & < n and nonzero A € 2_y y),

B,C e MQ((C):

[(Ua(B), ATA(C)) — w T (A)tr(B*C)|
ANl Bl azy ()| Cll a0y

= 0((1/3)" ). (2.5)

Hence, by Theorem 3.11, small perturbations of ®*KIT remain uniformly locally gapped. The lower

(I)AKLT))

spectrum specy(H ( is the 0-eigenvalue group of total multiplicity 4.

We now move away from this example and discuss the results of the paper in generality.
Proposition 3.12 shows that higher gaps in the spectrum of frustration free spin chain interactions
with topologically ordered ground states are also stable under perturbation. Lemma 3.13 shows that
if the perturbative interaction remains far from the boundary of the system, then the diameter of

the lower energies of the spectrum, relative to the uniform gap, tends to 0 as the system size grows.

Generally, the conditions of the theorem allow for perturbations which include interaction terms
localized at the boundaries of the interval. See equation (3.20) in Section III for the precise form
of boundary perturbations we consider. The presence of these boundary perturbations raise the
question of whether the spectral subspaces corresponding to the 0-eigenvalue group of the local
Hamiltonians are still justifiably ground state spaces. In Section III.D, we prove that the perturbed
finite-volume states which are supported over the ground state energies of the system still converge
in x-weak limit to an infinite-volume ground state of the perturbed Heisenberg dynamics, regardless

of the presence of edge perturbations — the ground state condition is verified in Lemma 3.14.

Lastly, in Section IV.B, we extend our results on spin chains to even, spinless fermion interactions
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using the Jordan-Wigner x-automorphisms {5 : A a finite interval} defined by:

O ATAR — Ay

B (2.6)
Iala(z)) = exp< - mz Sij >S;.
j<x
In Proposition 4.3, it is proven that if ¥ is an even interaction of the CAR algebra satisfying the
assumptions of the unperturbed interaction in Section II.B, modified appropriately and in the obvious
ways for fermion interactions, then there exists an interaction ® of the spin S = 1/2 algebra of

observables such that:

HA(®) = I (HA(P)). (2.7)

Since ¥p is an inner automorphism, Theorem 3.11 applies to even fermion interactions via the

transformation in (2.7). This is the content of Theorem 4.4.

2.2 Automorphic equivalence preserves the split property

It has been remarked in the previous chapter that ground state structures of phase equivalent gapped
quantum spin systems can be written in terms of a smooth path of automorphisms which uniformly
satisfy a Lieb-Robinson bound. An important proposition about properties of the thermodynamic

limit of the spectral flow, from [3], states:

Proposition 2.2.1 (Proposition 5.4 of [3]). The spectral flow as for the infinite system has the

following properties:

(i) (as)sefo) s a strongly continuous cocycle of automorphisms of the C*-algebra of
quasi-local observables, and it is the thermodynamic limit of the finite-volume cocycles
generated by an interaction V. The interaction Vg satisfies a finite F-norm for Fy,

which is superpolynomially decaying.

(ii.) as satisfies the Lieb-Robinson bound

llas(A), Bl < 2]/ Al B]| min [Lg(s) S Ryl —yH)], (2.8)

IESA,yESB
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forany AeAs,, BeAg,, and 0 < s <1 with g given by

Creg®) { AIVICr I 1 if d(S4, SB) > 0, (2.9)
Fyd = .
! 2¥ICry I otherwise.

(iii.) If B is a local symmetry of @y, i.e. an automorphism such that B(Ps(X)) = P4(X)

for all X € Pf(ZD), then 8 is also a symmetry of as, i.e. aso S = ag, for all s € [0,1].

Proposition 5.4 of [3] also discusses the effect of the translation symmetry on the spectral flow.
We illustrate (iii) of the previous proposition with the AKLT chain defined in the previous section.
It is a computation to show that:

()

1 B
Px,erl - 51 T (Sx ’ SI+1)2 (210)

where S, - §x+1 = Z?Zl S%Siﬂ. We denote by =; : 2y — g,y the unique antilinear x*-
automorphism which maps S2 to —S2. By continuous extension, there exists an on-site symmetry =

determined by:
VA € Ape : Z(A) = lim <®Ex> (A). (2.11)

Evidently, for all A, Z(Hx(®AKET)) = Hp(®AKET). Furthermore, if ® is another interaction such
that Z(®(X)) = ®(X), for all X € ®(X), then by (iii) of Proposition 2.2.1 and Theorem 3.11 of [19],
for sufficiently small s, if wg denotes the unique ground state of the Heisenberg dynamics generated

by ®AKLT 4 5o,

ws0E =wpo (as0Z) = ws. (2.12)

Thus the AKLT ground state is a stable point in a phase of ground states protected by the =
symmetry in one dimension. Without the additional symmetry constraint imposed by =, the ground
state of the AKLT chain is in the same phase as the non-interacting state. In [2], it is shown that
there exists a smooth, uniformly locally gapped path between the AKLT interaction and a Product

Vacua with Boundary model, which has a unique product state as a ground state. However, in
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[27], it was proven that the AKLT interaction cannot be smoothly deformed through a path of
finite-range, uniformly locally gapped, Z-invariant interactions to the trivial interaction. This was
done by defining a Zs-index og for finite-range, uniformly locally gapped interactions ® which are
E-invariant.

The main result of this paper is to extend the Zs-index of [27] to spin chain interactions which
may have an unbounded range of interaction. The mathematical obstruction to this extension was in

verifying that the split property in Definition 1.7.5 holds for the ground states of these interactions.

Theorem 2.3: Suppose 7 : [0,1] — Aut(yz) are quasi-local dynamics with a generating
interaction ®(-,t) such that || @[/ g < co. If wp is a split factor state and § > 3, then

wr = wp o 73 i also a split factor state, for all ¢ € [0, 1].

Note that in the statement of this theorem, we use a definition of a split state, due to Matsui,
applying to factor states which may not necessarily be pure states. In the case that the state is pure,
by Proposition 1.7.3, this definition and Definition 1.7.5 coincide. In Section 3, we use this result to
modify the arguments of [27] and rigorously extend the Zs-index to phase-equivalent interactions

which decay by a stretched exponential law.

2.3 Automorphic equivalence of gapped ground state phases in the

bulk

In the previous section, we discussed properties of the strongly continuous cocycle « : [0, 1] — Aut(2).
It is the thermodynamic limit of finite-volume cocycles generated by a family Wy of fast-decaying
interactions. Conditions from [24] on the ground state gap and decay of a curve @, of interactions

guarantee the relation:

S(s) = 5(0) o g (2.13)

where S(s) is the set of x-weak limits of finite-volume ground states of ®,. These gap and decay
conditions are met, in particular, when the ®; are uniformly locally gapped and finite-range

interactions with a range which is uniformly bounded above in s.
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The main result of this paper, Theorem 1.3, provides sufficient conditions which replaces the
local gap condition with a lower bound on the bulk gaps of the associated GNS Hamiltonians. In
particular, we assume that the ®(s) have unique ground states s which vary smoothly with s. The

hypotheses can be found in Assumption 1.2.

Theorem 1.3: Under the Assumption 1.2, we have:

Ps =Pooas, S€E [07 1] (214)

for a5 given in (1.21).

The referenced line (1.21) defines the spectral flow automorphism ;s as it is given in [3|. It is
important to note that, unlike the main results of the previous two papers, Theorem 1.3 applies in
arbitrary lattice dimension. Theorems 1.5 and 1.6 apply the statement of automorphic equivalence to
the analysis of SPT phases by showing that the Zs-indices of [27] and [26], respectively, are constant
within the relevant, equivalent SPT phases.

Condition (vii) of Assumption 1.2 requires that s — ¢s(A) is differentiable with respect to s,
for any A which is localized so that the tails of A decay by a stretched exponential {(r) = e"”ﬁ,

for some 0 < 8 < 1. The precise formulation of this decay is in Definition 1.1, which defines an

extended norm:

A = Ennp (Al
¢(N)

[Alle = [ All + sup (2.15)

and an associated *-algebra Dy = {A € A : ||A||¢ < oo} of subexponentially localized observables.
The decay law is chosen so that as_l(Qlloc) C D¢ — this is proven in Lemma 2.1. In fact, Condition
(vii) is satisfied by generic paths of ground states of uniformly locally gapped, rapidly decaying QSS

interactions. This is proven in the Appendix of this dissertation.
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We investigate the persistence of spectral gaps of one-dimensional frustration free
quantum lattice systems under weak perturbations and with open boundary condi-
tions. Assuming that the interactions of the system satisfy a form of local topological
quantum order, we prove explicit lower bounds on the ground state spectral gap and
higher gaps for spin and fermion chains. By adapting previous methods using the
spectral flow, we analyze the bulk and edge dependence of lower bounds on spectral
gaps. Published by AIP Publishing. https://doi.org/10.1063/1.5036751

Dedicated to the memory of Ludwig Faddeev

l. INTRODUCTION

An important result in the study of gapped ground state phases of quantum lattice systems (with
or without topological order) is the stability of the spectral gap(s) under uniformly small extensive
perturbations. The stability property implies that the gapped phases are full-dimensional regions in
the space of Hamiltonians free of phase transitions.! In recent years, such results were obtained
in increasing generality.>>>7%19-18 Qur goal here is to extend the existing results applicable in
one dimension to Hamiltonians with the so-called “open” boundary conditions, meaning that we
consider systems defined on intervals [a, b] C Z and not on a cycle Z/(nZ). Specifically, this implies
that the neighborhoods of the boundary points a and b may be treated differently than the bulk. There
are physical and mathematical situations where one is naturally led to considering open boundary
conditions. For example, in the series of recent studies by Ogata,'>~' clarifying the crucial role
of boundary states in the classification of quantum spin chains with matrix product ground states
required the study of systems with open boundary conditions. Another situation of interest to us is
the application of results for quantum spin chains to fermion models in one dimension by making
use of the Jordan-Wigner transformation, which in the finite system setup only works well with open
boundary conditions. In this way, we obtain explicit bounds on the spectral gaps in the spectrum of
perturbed spin and even fermion chains with one or more frustration free ground states that satisfy a
local topological order condition. This complements previous results that prove stability of gapped
fermion systems by other approaches.*>12

Il. SETTING AND MAIN RESULT

A. Notations

Denote by (Z,| - |) the metric graph of integers. Let Py(X) denote the finite subsets
of XcZ. We will use A to refer exclusively to nonempty, finite intervals of the form

DE_mail: asmoon@math.ucdavis.edu
E-mail: bxn@math.ucdavis.edu

0022-2488/2018/59(9)/091415/25/$30.00 59, 091415-1 Published by AIP Publishing.
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[a,b]={neN:a<n<b}. Let ba(x, n) = {m € A: Ix — ml < n} denote the restriction of a met-
ric ball to the interval. For each x € A, denote by r, and R, the following distances to the
boundary:

re=min{x —a,b —x}, R,=max{x—a,b—x}. 2.1)

Although r, and R, depend on the interval [a, b], we omit this dependence from the notation since
we will always fix a finite volume [a, b] throughout our arguments.

In the following, we will consider both spin systems and fermion systems on the one-dimensional
lattice. Without difficulty, we could also treat systems that include both types of degrees of freedom,
but for simplicity of the notations, we will not consider such systems in this paper. It is also possible
to consider inhomogeneous systems for which the number of spin or fermion states depends on the
site. In order to present the main ideas without overly burdensome notation, we will only consider
homogeneous systems in the note.

The algebra of observables of the finite system in A, of either spins or fermions, will be denoted
by 2. If we want to specify that we are specifically considering spins or fermions, we will use the
notation 20} or Ql{\ respectively. These algebras, and the associated Hilbert space they are represented
on, are defined as follows:

For spin systems, we have

AL =My(C)°IN, hy =(CHEN,

where d is the dimension of the Hilbert space of a single spin, i.e., d =25 + 1.

For fermions, Q(C\ denotes the C*-algebra generated by {a(x), a*(x): x € A}, the annihilation and
creation operators defining a representation of the Canonical Anticommutation Relations (CAR) on
the antisymmetric Fock space §x = T(£2(A)). The dimension of F, is 2" and Q[{\ is s-isomorphic to
the matrix algebra M,a (C).

Given an exhaustive net of CAR or spin algebras {245 : A € P¢(Z)}, the inductive limit 2(7, the
d* UHF algebra, is obtained by norm completion,

Ay = U Ap.
AeP(Z)

This algebra is often referred to as the quasi-local algebra, and 2fjo. = | %A is referred as the local
algebra.

Define by Nx = X,exa”(x)a(x) the number operator for X € Ps(Z), and define the parity
automorphism by

PA(A) =exp(imNp)A exp(inNy). 2.2)

Say that A € QlfA is even if pa(A) = A and odd if pp(A) = —A. The observable A is even if and only
if it commutes with the local symmetry operator exp(inN ), which is if and only if A is the sum
of even monomials in the generating set {a(x), a*(x): x € A}. Unlike the odd observables, the even

observables form a *-subalgebra of 2¢, , which we denote by A%.

B. Assumptions

Let I be a subinterval of Z, not necessarily finite. An interaction on I is a function @ : Pr(I) — joc
such that ®(X) = ®(X)" € ™Ay for all X € Pr(I). The corresponding local Hamiltonian of the finite
systemon A C Iis Hp = 3 xca®(X). Say that ® is non-negative if ®(X) > 0 for all X € Pr(I). Say
that @ is an even interaction of the CAR algebra if ®(X) € Ql}

The interactions in our perturbative setup will satisfy the following assumptions. First, let
1 : Pr(Z) — Ajoc be a non-negative interaction with distinguished local Hamiltonians H,. We will
refer to i as the unperturbed interaction. We assume that 7 has the following properties:

i. Finite range: There exists R > 0 such that diam(X) > R implies n(X) = 0.
ii. Uniformly bounded: There exists M > 0 such that for all X € P¢(Z), |[n(X)|| < M.
ili. Frustration free: For all intervals A € Pr(Z), ker(H ) 2 {0}.
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iv.  Uniformly locally gapped: There exists yo > O such that for all intervals [a, b] € P¢(Z), with
b—a >R,y is lower bound a for non-zero eigenvalues of Hg p.
v. Local topological quantum order (LTQO) of the ground state projectors.

The concept of LTQO was introduced in Ref. 2. We will need to adapt the definition to take into
account parity and boundary conditions, which we do in Sec. II C.

Next, we consider the perturbations. To allow edge effects, we will consider perturbations given
in terms of a family of interactions on intervals. For each A, let oA : P(A) — 2Ajoc be an interaction
on the interval, and denote by [®] the collection of these perturbative interactions,

(@] = {(I)A:AePf(Z)}A (2.3)

The perturbed Hamiltonians have the form
Hy(e)= )" n(X) +s0*(X), £€[0,1], @4

XcA

and while the Hamiltonians depend on the interval A, lower bounds on gaps in the spectrum will be
uniform in the volume.

Our main assumption on the interactions ®* in [®] is that ®*(X) decays rapidly with the diameter
of X. To make this precise, we use F-functions and provide explicit bounds in terms of the /-norm.
The definition and properties of F-functions and F-norm can be found in the Appendix. In our
argument, we will use functions of the form

F(x)=e "Fb),
(2.5)
FP(x)=——,

*) (1 + cx)«
where « > 2 and L, ¢ > 0. The function A: [0, c0) — [0, c0) is a monotone increasing, subadditive
weight function. At times, it will be necessary to precompose F' with a transformation 7 : [0, ) = R,
and so we will take as convention Fot(x) = F(0) for 7(x) < 0. We will denote by ||-||r the extended
norm (A1) induced by F.

Using F-function terminology, we assume for the perturbations:

i. Fast decay: There exists an F-function F(r) = e ha(r )m, for L, ¢ > 0 and k > 2, such that
sup l®A |7 < oo.
ii. Metric ball support: For all A, ®*(X) # 0 implies X = bp(z, n) for some z € A and n e N.

The assumption that ®* is supported on metric balls is not restrictive since a finite-volume Hamil-
tonian of any fast-decaying interaction can be rewritten as the finite-volume Hamiltonian of a balled
interaction with comparable decay (c.f. the Appendix of Ref. 18).

C. Local topological quantum order
Consider the unperturbed interaction 77 and its local Hamiltonians. Denote by Py the orthogonal

projection onto ker(H ), and define the state

1
A)= ———1tr(PpA), A€A,.
wA(A) wPr) r(PAA) A
Definition. The unperturbed interaction 1 satisfies local topological quantum order if there exists
amonotone function Q: [0, c0) — [0, 00), decreasing to 0, such that for all x € A and n, k € N satisfying
0 <k <ryand k < n < R,, the following bound holds:

VA € Aps i) : 1Pop ey (A = WAA)Ppy eyl < QUzx(m) — K)IIA]l, (2.6)
where 7z, : N — N is the cutoff function defined in terms of distance to the boundary of A (2.1),
_m ifm<r,
Z(m) = {rx else. @7
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If n:Pr(Z)— 91{00 is an even interaction and (2.6) holds for the restricted class of observables
A€y (1 then we will say that i has Z,-LTQO.

For example, the AKLT interaction with either periodic or open boundary conditions has LTQO
with Q(r) = (1/3)". The interaction defined in (5.1) has Z,-LTQO with Q(r) = O for r greater than a
cutoff D > 0 defined by the interaction parameters, and Q(x) = 2 otherwise (Proposition 5.4).

D. The main result

For any finite interval A, we consider the local Hamiltonian H (&) given in (2.4). There exist
continuous functions Ay, .., Ay : [0, 1] = R such that for all £ € [0, 1], {21(&), ..., An(€)} are the
eigenvalues of HA(g). We partition sp(HA(g)) into two disjoint regions, an upper and a lower part
of the spectrum, and call the minimum distance between these two sets the spectral gap above the
ground state or the spectral gap,

spo.a (&) = {4i(&) : 2:(0) =0}, spra(e)= {/lj(s) :4;(0)> 0}, (2.8)

Y(HA(£)) =min{d — u: A €sp, 5(8), uesp(e)}. 2.9

For a class of sufficiently small perturbations, the main result of this paper establishes a lower
bound for the size of the spectral gap which does not depend on A, under the assumptions that 1 has
LTQO, the interactions in [®], from (2.3), decay sufficiently fast and, in the case of fermions, that
the interactions are even. The spectrum may have other gaps which can be defined similarly in terms
of eigenvalue splitting, and we also prove an estimate showing how these gaps persist under weak
perturbations. To state these results, we define several constants that characterize the effect of the
perturbation and the presence of edge effects.

The effect of perturbations near the boundary of A is, in general, different and stronger than far
away from the boundary. As a consequence, our stability result for open chains features a distance
parameter D > 0, in terms of which we distinguish sites near and far away from the boundary. In
Sec. III, we write each ®* as the sum of an interaction ®”(A), with a local Hamiltonian (I)f\) supported
atthe D-boundary, and a bulk interaction ®™(A). Define the following two finite constants quantifying
the strength of the bulk and edge perturbations, respectively:

Miy = sup{ IO (A) || : diam(A) > max{zD,R}},
A
Mp = sup{lI(DﬁII :diam(A) > max{ZD,R}}.
A

Then, for constant,

. Z 20CCIn| +2)[Q(In|2— 1)1/2 +F0(|n|2_3)]

[n]>3

o Y05+ 2m(150) +8) )t + i,

2
nez

where Fo(x) = F”(x/18 — R — 3/2), we are able to prove the following theorem.

Theorem 3.11 (Ground state gap stability for spin chains). Suppose n : Pr(Z) — ;.. has LTQO

loc

with Q(n) < n™”, for v > 4, and there exist K > 0, s € (0, 1] such that he satisfies ho(r) > Kr®. Then
there exists £(yo) > 0 such that 0 < € < &(y¢) and diam(A) > max{2D, R} imply

v(Hx(£)) = Y0 — (m + 2Mp)e > 0.

The constant £(yg) can be taken as

. Yo
e(yo) =min{ 1, — >\
(o) ! { ’m+2MD}

As aconsequence, if we assume that 77 : Pr(Z) — 2. has Z»-LTQO, and Q and O : Pr(A) — A}

loc
have the same decay assumptions as in Theorem 3.11, we are also able to prove:
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Theorem 4.4. There exist £'(yo) > 0 and constant m, such that 0 < & < €’(y¢) and diam(A) >

max{2D, R} implies
Y(HA()) 2 yo — mpe > 0.
The constants mp, and &'(yo) can be explicitly determined by the constants m, M p, and &(yy).

The proofs of Theorems 3.11 and 4.4 rely on a relative form bound argument. We remark
that the proof will depend strongly on the fact that the size of the boundary of A can be bounded
independently of the size of A itself. This is special about one-dimensional systems. The stability of
the gap in higher dimensions requires a careful analysis of the locality of perturbations'! and more
complicated assumptions.

Additionally, due to the relative form bound, the hypotheses for a stable ground state spectral
gap also imply general stability of the spectrum. Precisely, we prove the following statement about
the persistence of higher spectral gaps. In the statement, J1, J,, J3 refer to Egs. (3.12) and (3.15).

Proposition 3.12. Let T, y > 0, and denote res(Hp) = C \ sp(Hp). Suppose n, [®] satisfy the
hypotheses of Theorem 3.11. There exists (y, T) > 0 such that for sufficiently large A and 0 < € <
e(y, T),if v, uesp(Hp) with (v, p) cres(Hp) N [0, T] and p— v > vy, then the gap between v and
w is stable. Precisely, if we denote

y(v, u, &) =min{A(e) € sp(H(g)) : 1(0) > u} — max{A(e) € sp(Ha(g)): 21(0) < v},

then
y(v,p, &) 2 (1 = pe)y —2(q +pT + Mp)e >0
for0<e<e(y, T)and p, q defined as

3
p= %JI(HUHF +Mun), q=[C(3+4)+L1InllF + Mno).

lll. STABILITY OF SPECTRAL GAP IN SPIN CHAINS
A. Perturbations at the boundary

Here, we make the distinction between a perturbation near the boundary and in the bulk. In this
section, unless otherwise noted, we fix an interval A = [a, b] and let ® denote the interaction ®*,
with a local Hamiltonian ®p = Y x c AP(X).

Let DeN define a uniform distance parameter, and denote by Intp(A) the relative interior
[a + D, b — D]. The piece of the perturbation associated with x € A is O, = Zg; | @(ba(x,n)), and the
whole perturbation is split by the relative interior, ®p = (I)l/z + (DK“, where

W= 0, = Y @
xeA\Intp(A) xelntp(A)
are the edge and bulk perturbations, respectively. Let DP(A), DA : Pr(A)— Qlf\ denote the
corresponding local interactions.

If x € Intp(A), then n > r, implies ||O(ba(x,n)|| < ||P||F (D), and so even though the bulk
perturbative interaction contains terms which extend to the boundary, their contribution to the total
perturbation is relatively small as a function of D.

Since the Hamiltonian H 5 + £®, is close in the operator norm to the bulk-perturbed Hamiltonian,
it will suffice to prove ground state spectral gap stability for H A+8(I>k“. To do this, we will use a unitary
decomposition method depending on spectral flow. First proved in Ref. 8, our present formulation of
the following theorem using F-functions comes from Ref. 18.

B. Spectral flow decomposition

Let ¥: Pr(I) — 2} . be an arbitrary interaction, A C /, and suppose y € (0, yo). Let 5 > 0 be
such that 0 < & < g, implies y(Ha(g)) > y, where Ha(e) = Hp + €'¥A. We may take €, to be
maximal. Because y(H (€)) is bounded below by y and £¥, is uniformly bounded on [0, 5], we
may construct the spectral flow (also known as quasi-adiabatic evolution) « : [0, ex] — Qlf\, whose
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quasi-local properties are extensively discussed in Refs. 1 and 6. Briefly summarizing, there exists a
norm-continuous family U(g) of unitaries such that, if P(¢) denotes the orthogonal projection onto
the kernel of H (&),
a:(A)=U(e)"AU(e) and P(e) = U(e)P(0)U(e)". 3.1)
The unitaries are the solution to —i% U(e)=D(e)U(g) with U(0) =1, where the generator D(¢) is
given by
00 !
D(g)= / wy () / SINENY ) omHNE) g gt (3.2)
—00 O

for a weight function weumma € L' with compactly supported Fourier transform (see Lemma 2.3 in
Ref. 1). Since the quasi-local properties of its generator are made clear by the expression (3.2), the
spectral flow automorphism transforms the perturbed Hamiltonian H s (¢) into a unitarily equivalent
finite-volume Hamiltonian of a well-behaved, local interaction. Identifying this local interaction is
the content of the unitary decomposition theorem:

Theorem 3.1. Suppose ¥ : Pr(I) — 2} _ satisfies a finite F-norm for F and hy(r) > Kr' for some

loc

K>0andt e (0,1]. Then forall 0 < € < gy,
i. there exists an interaction ®'(g): Pr(A) — A} such that ao(Hp(g)) = Hp + ®l(e), and
ii. ®!(g)is supported on the metric balls of A, that is,
D)= Bi(e),
XEA
where (D‘,l((s) = Zf*:l @' (ba(x,n), €) and each ®'(bp(x,n), &) € QliA(xyn). Furthermore, for all
x €A, [P(0), DL(£)]=0.

There exists a constant C > 0, depending on the uniform bound M, range R, uniform gap yq, and
decay parameters K and t, such that

1" @)l < Ce(inliey + 1¥lr,),
where F, is an F-function depending on IC,t,y such that F ,(r) decays faster than any polynomial
inr.
Proof. This reformulated statement of the original decomposition theorem found in Ref. 8 is
proved in Theorem 6.3.4 in Ref. 18, and so we record here only the precise form of F,. Define
(e/k)* if r<e*
u(r) = { (3.3)
r/(logr) else r > e“.
Define Ky = min{K, 2/7}, and denote by vy the Lieb-Robinson velocity for the Heisenberg dynamics
generated by the interaction . Denote pu(r) = y(IZC—X) and
Golr) = & RO pb(y)
Then the F-function in the statement of the theorem is given by
Gy(0) if r <18R+27
Fen)= { Gy(r/18 —=R—-3/2) elser>18R+27.

3.4)
O

For the remainder of this section, let U(g), @, and ®'(&) be from an application of Theorem 3.1
when Y is the bulk perturbative interaction ®'M(A) with a local Hamiltonian EI)K“.

Lemma 3.2. The local operator ®'(g) can be rewritten as

Dl(g) = D2 (s) + D3 (£) + WA (D! (£)) + R(s) (3.5)
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for terms defined by
D)= Y 0l
xelnty(A)
2(2) = (1 - PY(D(e) - wa(® (N1 — P),
D) = P(D1(£) — wA (@ () 1P,
R(e)=DL(e) + DL, () + D}(e) + D}, ().
Proof. This follows from a direct calculation using the fact that [d)}C (e),P]1=0. O

The reason for separating the boundary terms R (&) from the rest of the transformed perturbation
is for notational convenience since the following argument will use the fact that [r,/2] > O for
x € Inty(A).

C. Relative form boundedness of perturbations

The argument for relative form boundedness of the transformed perturbation ®'(g) will depend
on the following two elementary lemmas.

Lemma 3.3. Suppose x € A. Forany 1 <m < ry,

IP@L(e) = a@LENPI < [0 @)@ = m) + 27, m).

Proof. Denote A — wa(A) = Ag and bp (x, n) = by(n), for brevity. For 0 < m < ry, by linearity of
WA,

R, m R,
P((I))lc(s)) P=" PO\ (by(k), 80P = ) PO (bu(k),e)P+ Y PO (by(k), £)oP.
R k=1

k=m+1

We bound the two summands separately. The right summand is bounded by Proposition A.1,

Ry
D IP®! (bi(k), )Pl < 210" (@)llr, Fy(m).

k=m+1

The left summand is bounded by local topological quantum order and the F-norm,

DUIPO b, 2Pl < Y Ol = BIIP (bi(h), &)

m
k=1 k=1
<Q(re = m)||®' @)lIr, -

Combining these bounds proves the lemma. O

The next lemma uses the cutoff function z, defined in Sec. II C, Eq. (2.7).

Lemma 3.4. Suppose x € Inty(A). If 1 <m < ryand m < n <Ry, then

H ; (0! ®u, s))OPM,)

| <10 @llr, |52 00 - m)2 + 4F ()|

Proof. Suppose A € Qlix(k). The C*-identity and LTQO imply

2
|||APb,<n>|| - ||AP||| < \nAPbx(,,)uz - ||AP||2\ < APz () — m).

In the case A= 3" | @ (b, (k), €)o, the above bound and Proposition A.1 imply
AP, ll < 411D (£)llF, Qzc(n) — m)'/? + | AP|
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By Theorem 3.1, ®L(¢) commutes with P. So, using Lemma 3.3, we get

Ry
IAPI < IPOLEPI+2 Y 19! (belh), &)l

k=m+1

<110 @)le, |20 = m) +4F, (m)|.

Proposition 3.6 uses a finite resolution of identity {E;} defined at each site x € Into(A) by

1 - Py ifn=1

x_ Ppn-1) = Ppyny if 1<n<ry
Py iy — P ifn=rc+1
P elsen=ry+2.

Lemma 3.5. The family {E;} has the properties
ret2 m .
: ) 1—Py ifl<m<r,
I.ZE2=ﬂand E":{ e f _ :
— — 1-P ifm=ry+1,
2. Pb*(k)E}: =0 for k <ry.

Proof. We only comment that the second property follows from the frustration free assumption

on 7. m]

Proposition 3.6. Let x € Inty(A) and 0 < & < gp. There exist local operators @2(11, ), for
3 < n < ry, and operator O} (&) such that

D)o =) Of(n,)+ O (o).

n=3
Furthermore, Pbx(,,)@g(n, e)=0, and %(n, &) and O,(g) decay rapidly,

105, )l < 2010 @), [9(%) +F¢($)],

re—1\2 =3
5@l <2010 @, [ =)+ Fo (252
Proof. Fix x € (a, b) and & € [0, £5]. Abbreviate Q=1 — P and ®} = ' (b(k), £)o. i.e.,
Ry
D}(e)= ) OB;0.
k=1

Define a “cutoff” parameter n, = L%J and split @i(s)o into two sums,

ny R,
D)= ) 0DO+ Y 0D,0. (3.6)
k=1 k=n+1

The tail u, = Zf;n " Q(D}CQ can be bounded above in operator norm by using LTQO, so we turn our
attention to the other summand. Denote by QO () the complement projection 1 — Pj (). Using the
resolution {E, } at x, we rewrite QCD]£Q forall 1 <k <n,as

re+l n— n
000 =0, @0t + Y, [EOL( Y )+ (D En)OlE]. 3.7)
n=2k+1 m=1 m=1
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Define the following terms to organize the summands in (3.7):
Va (k) = Er 1@ Qb r) + QP st 05(n, k) = Ex® Q1) + Qb /@4 Ens
75(2k) = Ob. 2P} Ob,20)
so that

I
0D} 0 = vi(k) +T3(2k) + Z a5 (n. k).
n=2k+1
For convenience, extend 75(m) to previously undefined m by declaring Tg(m) =0. The derivation of
the @ (g, n), @}, () operators will result from an interchange of order for the summation of terms in
(3.3) over n and k. The following definition for G)E(n, &) accounts for the parity of r,,

L5t
Y3<n<ry: %(n,s) [ Z H;;(Yl,k)] +T/’)§(n),
k=1

5)

O(r &)= Y 05 k) + T5(r).
k=1
Then
Ry I
0D (£)00 = ) 0D;0= ) Of(n,8) + O} (z),
k=1 n=3
where OF(g) = 1, + ZZ; | v (k). Next, the frustration free property of H implies that ker(H}, () C
ker(Hp, (x-1y), and so
V3 <n <1y Py n®@p(n, ) = Op(n, &)Pp () = 0. (3.3)

Furthermore, we have the following bounds on operator norm, for all x € Int,(A) and 3 < n < ry, by
Lemma 3.4 and Proposition A.1,
L3 155t
103 <Y, QY El+11 ). OUE + Tl

k=1 k=1

n-3 ]’ (3.9)

n—1\1
szoucbl(s)u@[Q(T) +F¢( :

1

max {[|0F(ry, &)1, 105 ()1} <2010 (&)l [9(”2_ 1)7 +F«0(rxz_3)]'

[m]

Now, we define several quantities which will appear in the derivation of the form bound. Note
that the weight function e™¢™ of F, » is bounded above by 1 on its domain. So any expression in F,
is bounded above by the corresponding sum using the shifted base F-function

Fo(r)=F"(r/18 =R - 3/2) (3.10)
from (2.5) and (3.4). Define

1
n—1\2 n—-3
k(n,£)=20Ce(nll + 10" WP [ 5=+ Fo( 57| 3.11)
k(n, £) does not depend on either A or the lower bound y on the instantaneous gap, and the inequalities

from (3.9) are rewritten as

105, &)l < k(n,8), 1Ol < k(ry, &).
Last, we see by the assumed decay of Q that the following sums are finite:
Ji=2" 20CInl[Q((nl = 1)/2)!? + Fo((In] - 3)/2)],
nez

2= )" 20C1((nl = 1)/2)2 + Fo((Inl - 3)/2)].
nez

(3.12)
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The following argument for concluding form boundedness is essentially due to Ref. 8, modified to
work with the boundary terms introduced by Proposition 3.6. We divide a large part of the Hamiltonian
with respect to a convenient partition of Inty(A). For n € N, define the relation x ~, y if and only if
x —y€(2n + 1)Z. Index each of the parts Afl of Inty(A)/~, by a representative i € I(n) C Intp(A).
Note that the cardinality of /(n) is roughly bounded above by 3n. The corresponding parts of the

Hamiltonian are defined by
Hi= " Hyu, =) One).
X€EA X€EA]
By definition of the ©j(n, &) operators, ®%()=,; .. In order to compare H’ to @, we use a

resolution of identity from Ref. 8, whose properties we record here.

Lemma 3.7. For a configuration o : Ai, — {0, 1}, define the projection Sf,((r) = er/\; 0 Op.)+

= 0)Pp (). Then .
1. Z Si)=1,
o:AL—1{0,1}

2. SH(0)SH (") = 64 o SE(0),
3.forallxe A, [© (n £),8: ()] =0.

Proof. These properties follow immediately from the fact that Pb),(,,)@;;(n, g)=0and thatx ~,y
implies by(n) N by(n) = 0. ]

Proposition 3.8. Suppose diam(A) > max{4, R}. There exist constants 6, B > 0, dependent on
|OM(A) || such that 0 < & < ey implies, for all v € $,
0, @*(e)0)] < bellvll® + Be(v, Hav). (3.13)

Precisely, we may choose

3
5 =D(lInllr + 9™ (A)lIF) and B = %Jl(llnllF + 1D (A)lIF).

Proof. Denote dp = diam(A). For any x € Inta(A), if n > r,, say that @g(n, &) =0. Suppose
u € H. Then by Proposition 3.6,

dp
K, @@l < [, Y D @+ > K &)l

n=3 iel(n) xelnty(A)

The second term 3, ,cyni,(a) (7, €) is bounded above by the constants in (3.12), so we focus on the
first summand. Since [®/, S!(0)] =0,

WSy @'u>|<2|<u > 0 s

n=3 iel(n) iel(n)

sZAZ D 2 IS8k o)liu. S0

n=3 i€l(n) g:A,—1{0,1} xeA},

<Z Z K(n &) Z Z yolu, St (o)) (3.14)
}

n=3 i€l(n) xeAl  o:AL—-{0,1
o’A—l

=Z Z K(}; £) Z(M Y0Ob, ()1t}

n=3 iel(n) xeA}
/\
3nk(n, &
<)) IO ),
P Yo
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Hence
dp
@ < . 2 dnkm &,
Ku (8)u>|<[xemzmk(r s>]||u||+[; - ]<uHAu>

< Llnlle + 1O A)lIF) | ull> + %JI(HUHF + (| D™ (A)llF)e(u, Hau).
O
Corollary 3.9. There exists a constant «, dependent on ||®"™ (A)||F, such that 0 < & < ex and
diam(A) > max{4, R} imply
VueHa: Ku, (@) + @ (&) + R(e)u)l < aellull® + Belu, Hau).
Precisely, we may take a = C(||nl|F + (|DM(A) | 2[5 + 4] + 6.

Proof. Suppose x € Inty(A). Set m = | % | in an application of Lemma 3.3 to show
IP(@()0Pll < 10" (&) llF, [Qr/2) + 2F 4 (Lre/2])].
But by the decay of Q and Fy, we have that the following sum is finite:
J3=" Q121/2) + 2Fo(LIzl/2)). (3.15)
€L
And, summing over x € Intz(A),
I3 @l < > IP@LENPI < 10 @)llF, I3
xelnta(A)
Next, it is straightforward to apply Proposition A.1 to R(¢) to get an upper bound on the norm,
IR@)Il < 419" @), -

[m]

Until now, all estimates have been expressed using a local bound [|®™(A)||r on the strength of
the bulk perturbation for fixed A. In order to obtain volume independent lower bounds on the spectral
gap, we use the following uniform quantity:

Mg = sup{[|0™ (A)]|F : diam(A) > max (2D, R}}.
A

Proposition 3.10. There exist e > 0 and constant m > 0 such that 0 < & < e and
diam(A) > {4, R} imply
y(HA + st}{“) >vyo —me>0.

The constants ey and m can be taken as the following expressions:
m= (3014202 + CU3 +8) )l + Mun),
Eint = min{l, Zn—o}
Proof. Lety € (0, yp). For fixed A with diam(A) > max{4, R}, there exists £ > 0 such that for
all0 <& <ep, y(Hp+ sCD}{“) > vy. By continuity of the eigenvalue functions, we may assume that g5
is maximal, i.e., either €5 = 1 or there exists ¢ > 0 such that for all u € (e, ex +¢), y(HA +y¢)§{“) <.

Since the gap does not close on [0, €4 ], we use the spectral flow decomposition (3.5) to transform
Hp + a(DR“ by unitaries and a shift in the spectrum,

@ (Hp + D) — wA (D (2)) = Hp + DX(e) + D (&) + R(e).

But by Corollary 3.9, if £ < g4, then ®(g) = D*(g) + D3(¢) + R(g) is H-bounded. Now, by the
relation P(g) = U(e)P(0)U(e)* in (3.1), the span of the eigenvectors to the O-group of Hx + ®(g) is
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exactly ker(H ). So, if A is in the O-group, which we will denote by sp(0, &), then there exists a unit
norm u € ker(H o) such that

[A] = [{u, (Hp + ©(e))u)| < ae. (3.16)
Next, define £; > 0 as the solution to i(g) =y, where h is defined as
he)=(1 - Be)yo — oe —4Ce(|Inllr + M) — ae.
Set &, = min{e;, 1}. Combining (3.16) and Corollary 3.9, we see that if 0 < £ < min{e,, €4 }, then
Y(H(e) = min
veker(Ha)L:||v]|=1

> h(e)
>7.

W, [Hp + D*(e) + R(g)]v) — max sp(0, &)

By maximality, either 5 =1 or y(Hp + sAfDR“) =7. Hence &, < & necessarily and y(H + 8(13}{“) >
h(g) >y for all £ < &,. But now, y was arbitrarily smaller than . Set

emt =sup{ey, 1y €(0,%0)}.
Evidently e, does not depend on A, and if 0 < & < g[yy, then
v(Hp + a(DK“) > h(e)=yy —me >0,

where the constant
m=(3J1 +2J2 + C(J3 + 8)) (Il + Mrnp)

comes from rewriting the lower bound A(¢) as a linear equation of €. O

Denote by M the following finite uniform bound on the strength of the edge perturbations:
Mp = Sup{ll(l)gll :diam(A) > max{ZD,R}}.
A

We remark that My, and m are defined in terms of F-function decay, while M, is defined in terms
of the operator norm.

Theorem 3.11 (Ground state gap stability for spin chains). Suppose 17 : Pr(Z) — 2} . has LTQO
with Q(n) < n™, for v > 4, and there exist K > 0, s € (0, 1] such that he satisfies ho(r) > Kr®. Then
there exists £(yo) > 0 such that 0 < & < g(yp) and diam(A) > max{2D, R} imply

Y(HA(&)) = Yo — (m + 2Mp)e > 0.

The constant g(yq) can be taken as

. Yo
8(70)—m1n{1,—m+2MD}. (3.17)

Int

Proof. Considering 8(1)2 as a perturbation of H + @/

be contained in the compact neighborhood,

, the spectrum of H + 8(1)2 + s(DR“ must

Op(e)= {r eR:d(r,sp(H + s@i{")) < ||8(D£||}.

That is,
Y(HA()) 2 y(Hp + DY) = 2]|e @) || > yo — (m + 2Mp)e.

O
Since the stability theorem guarantees a A-independent neighborhood of O where a relative form

bound of the perturbation will hold, we can also conclude the stability of spectral gaps which are
located higher in the spectrum.
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Proposition 3.12. Let T, y > 0, and denote res(Hp) =C \ sp(Hp). Suppose n, [®] satisfy the
hypotheses of Theorem 3.11. There exists £(y, T) > 0 such that for sufficiently large A and 0 < & <
ey, T), if v, pe sp(Hp) with (v, ) C res(Hp) N [0,T] and p — v > vy, then the gap between v and
w is stable. Precisely, if we denote

y(v, u, €) = min{A(g) € sp(Ha(€)) : 1(0) > u} — max{A(g) € sp(Ha(e)): 1(0) < v},

then
y(v,p, &) 2 (1 = pe)y — 2(q + pT + Mp)e >0

for p, q defined by

3
r= %JI(HUHF +Mm),  g=InllF + Mm)[CU3 +4) + 12]. (3.18)

Proof. Let ®(e) be defined as in Proposition 3.10, for 0 < & < &ry. By Proposition 3.9, for all
uE€NA,
(e, D(e)uy| < peu, Hauy + gellull.

Letz= % and denote R;(e") =({ —Hx — O(e")7!, with R; =R(0). Let U denote the polar unitary
such that R, = UIR;|. Since R, is self-adjoint, IR,|U* = UIR,/, and so for unit norm u,

sup [(w, [R|"2U ()R u)| < [[IR;]'*D(&)IR. ||

[lwll=1
(3.19)

< sup [gellR] 201 + pao, HalR:Iv)].
lloll=1

That is, for sufficiently small &,
IIR:1"2U" ()R- 211 < gelIR:|l + pe(l + 2RI <1,
and by the expansion
R.(e)™' =Ulz = HI'*(1 = IR:|'U" ®(e) R:| )|z — HI'V2,
we derive the lower bound
d(z,sp(Ha + ©(&))) = (1 — pe)y — 2(q +pT)e.
Hence for sufficiently small &, independently of sufficiently large A,

y(v, 1, €)= (1 —pe)y — 2(q + pT + Mp)e > 0.

D. The thermodynamic limit

So far, we have studied finite spin chains and shown that, under a set of general assumptions, the
group of eigenvalues continuously connected to the ground state energy of a finite frustration-free
Hamiltonian remains separated by a gap from the rest of the spectrum, uniformly in the length of the
chain and as long as the perturbations are not too large. We now want to show that the states associated
with this group of eigenvalues all converge to a ground state of the model in the thermodynamic limit.
The lower bound for the gap of finite chains is then also a lower bound for the gap above those ground
states of the infinite chain.

For concreteness, we consider Hamiltonians of the form (2.4), where 7 satisfies the assumption set
outin Sec. I B, and [®] = {®* |A € P¢(Z)} is a family of perturbations given in terms of interactions
®, ® € By and a few parameters that define the boundary conditions. Specifically, consider intervals
A C Z of the form [-a, b], a, b > 0, and for any D > 0, let Intp(A) = [-a + D, b — D]. Let d denote
the triple of parameters (D1, D>, s), D1, Dy > 0, s € [0, 1], and consider

H2(5)=Zn(X)+e Z OX) + 5 Z ) |. (3.20)

XcA XCAp, X(A\Ap,)
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This form of the Hamiltonian covers a broad range of perturbations and boundary conditions. The

()
dynamics generated by H a(e) is the one-parameter group of automorphism 7, (6)

As explained in Subsection 2 of the Appendix, if we take, for example, A, = [-a,, b,],
sp € [0, 1] arbitrary, and D, ,, D3, such that min(a,,, b,) — max(Dy,,, Dy,) — oo, then there is
a strongly continuous group of automorphisms 7,5, # € R on 2{7 such that

lim ||z, Hi© (A) - 75(A)]| =0, for all A € AL, (3.21)
n—oo

If we take € € [0, €(yy)), with e(yo) as in Theorem 3.11, we have a uniform gap separating the
lower portion of the spectrum of H (e) denoted by spg 4, (€) in (2.8), and the rest of the spectrum.
The following results provide an estlmate of diam(spy 5, (¢)). For simplicity, let A, = [-n, n] for the
remainder of the section.

Lemma 3.13. In the assumptions of above, choose s, = 0 and put D; , = D,. Then, there exists
a function G : [0, co) — [0, c0) which decreases to 0 as n tends to infinity and, for large enough n,
diam(spO’A” (8)) <eG(D,).

Precisely, we may take

g(r)=8 Z F(k/2) + C(Mun + InllF)[Q(k/2) + Fo(Lk/2))],

k=Lr/2]

where F is an F-function depending on ||n||r and M.

Proof. Suppose n is sufficiently large so that % D, /2] > R, the range of the interaction 77. By the
spectral flow decomposition in (3.5),

diam(spy 5, (£)) < 2[|P®' (£)oP||
=2l Y (PO (e)P:x e A
<2(A+B)
for A, B defined by complementary regions of the interval A, = [-n, n],
A= {IPOLE)PI | Vx e Ay:—n+Dy/2] <x <n—1Dy/2]},
B= Z{IIP(D}C(s)OPll |[VxeA,:—n<x<-n+|Dy/2] orn—|Dy/2] <x< n}
By applying LTQO and F-norm bounds,

IAIl < 4C (Mt + lInllF)e Z [Q(k/2) + Fo(Lk/2])],
k=1Dn/2]
where F is the shifted base F/-function from (3.10). For the norm bound on B, let Ay, denote the
partial trace difference operators from the Proof of Theorem 3.1 (c.f. Theorem 6.3.4 in Ref. 18),
defined with respect to an enlargement of X C A,,. Suppose —n < x < —n+ |D,/2|or n —|D,/2]<
x < n. Denote d,(n) =d(x, Intp,(A,)). By the locality assumption on @ and the fact that d,(n)/2 >
R, if k < |d(n)/2], then, in the notation of the Proof of Theorem 3.1,

D' (b(k), £) = Mp, (e — id) © Fop (),

and so
Ld(n)/2] R,
IPOLENPI<I Y PO, 0PlI+ . IIPO!(b(k), £)Pll
k=1 k=1d,(n)/2]+1

<dll(as —id) o Fy,  (h)ll + 2C(Mine + lI7llF)eFo(Ldx(n)/2]).
Using the quasi-locality of the generator iD(¢) of the spectral flow unitaries,

& Ry
(@ —id) o Fuy o(h) = /O iaﬁ"([D(s)ZAbﬁk)(fwy{,f(hx))])ds
k=1
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and there exists an F-function F, independent of A, such that
20l —id) o Fuy  (ho)ll < 8F(Lde(n)/2]).

Hence

Bl < Z eF(k/2) + 2C(Mun + InllF)eFo(k/2).
k=1D, /2]

Let G(r) =8 32|, o) F(k/2) + C(Mun + InllF)[Q(k/2) + Fo(Lk/2])]. Then
diam(spy 5, (&) < £G(Dy).

[m]

Let P,(&) denote the spectral projection of H/‘z”(e) associated with the isolated portion of the
spectrum spy 4 (¢) and define the set of states of Q[j\”, S, (€), with support in the range of P,(e),

S,(e) ={w | w is a state on Qlf\n with w(P,(g))=1}.
We now consider the thermodynamic limits of these states,

S(e) = {w state on 23, | (ny) increasing and wy € S, (&) s.t. lilgn wr(A)=w(A),YA € QllZOC}.

Lemma 3.14. Let cy(e)=diam(sp 5, (€)). Then
(1) forall we S,(g) and A € A » we have

Re w(A"[HY! (€),A) > —c,(2)l|AI%, and [Im w(A*[HY (€), A])| < cu(e)IAII.
(i) If sy, = 0 and Dy, is such that limy[n — Dy,] = lim,Dy,, = oo, then, for all w € S(g) and
Ae Qllz"c, we have
lim w(A'[HY (¢), A]) > 0.
n—oo n

Proof. The proof of (i) is elementary and the proof of (ii) follows by noting that the addi-
tional assumptions imply that the sequence [H/‘z” (e), A] converges in norm and that lim ¢, (g) = 0 by
Lemma 3.13. o

In other words, the conditions of part (ii) of the lemma imply that the states in S, (€) converge to
ground states of the infinite system. In Subsection 2 of the Appendix, it is explained that the spectral

flow automorphisms, like the time evolution of the system, converge to the same limit regardless of

the choice of boundary condition d,,. Since we have the relation P, (0) = alg\"’o” (P,(g)), we also have

Su(e) = S8u(0) 0 apr ¥,
and as an easy consequence of the convergence (see Ref. 1, Lemma 5.6), we then also have
S(e)=8(0) o a,.

Since the same «, relates limiting states regardless of the boundary conditions, for example,
with a constant sequence d, = 4, for any n, these limiting states must be the same and, hence, also
ground states of the infinite systems defined by the dynamics 7,. The same conclusion then holds for
the lower bound on the spectral gap above these ground states (see Ref. 10 for the details).

IV. STABILITY OF SPECTRAL GAP IN FERMION CHAINS

A. Quasi-local maps

Suppose 2, is a local algebra of observables which is #-isomorphic to 20} . Let ¢ : 20y — A}
denote a possible x-isomorphism. Given a local Hamiltonian H s in 2, ¢ unitarily transforms H  into
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aHamiltonian H} = ¢(H,) of the spin algebra. Using an exhaustive family of conditional expectations
{0x, : Xi € Xiv1}, H} can again be realized as the sum of local operators through a telescoping sum,
N-1
VBeRAn: ¢(B)=0x,(¢(B)) + Z Ox,., ((B)) — Ox,((B)).
j=1
The Proof of Theorem 3.1 uses this method of decomposition in the setting where ¢ is a quasi-local
x-automorphism, and the 0, are normalized partial trace over increasing metric balls X; = by (j). The
quasi-locality property, defined below, guarantees that the transformed local interaction will have
decay comparable to that of the original interaction.
In this section, we prove the stability of the spectral gap for even Hamiltonians in the CAR
algebra of fermions satisfying Z,-LTQO. To do this, we will use the Jordan-Wigner isomorphism to
transform even fermion interactions into spin interactions in a way that respects the parity symmetry.

Definition. Let A € Py(Z) be a nonempty interval. A linear map a : A} — 21} is quasi-local if
there exist constants C > 0, p € N and a decay function g: [0, co) — [0, o) such thatif X, ¥ C A are
disjoint subsets, then for all A € Ql;K and Be Qli, the following bounds hold:

lle(@)ll < CIXIPIIAIN IIa(A), Bl < ClIANBIIX P g(d(X, Y)). 4.1

Example. The local Heisenberg dynamics *: U CR — Aut(2(}) generated by an interaction
Y with a finite F/-norm is a collection of quasi-local maps parametrized by ¢. Let F be an F-
function such that |||z < oo, and denote by vy the Lieb-Robinson velocity. There exists a constant
Cy > 0 such that for X, Y € Ps(A) disjoint sets and A € A3, B €}, the following Lieb-Robinson
bound holds:

iz (A), B < Co(e™ ™ = DIAINBI D" F(lx = y).
xeX,yeY

But by properties of the F-function,

Z F(lx —y]) < |X| sup Z F(lx—y)):xeZ} <.
xeX,yeY YEZL
|lx—y|=d(X,Y)

So take C; = Cy (el = 1), p, = 1, and

gim=supi > Fll—y):ixeZy.
A
|[x=y|=n
In particular, the spectral flow automorphism o : [0, £7] — Aut(R(}) is quasi-local.!
Last, we specify the normalized partial trace maps. Let

X(m)={zeA:IxeX, |z—x|<n}
denote an enlargement of X € P¢(A). Denote the normalized partial trace of the state space over
A\X(n) by

gX('l) = HAXM)

-
dim $Ha\x(n)
For convention, we will take the trace over $)y as the identity map. Then define, for all A € 2},

Ax0)(A) = O0x0)(A), Axu)(A) =Oxu)(A) — Oxu-1)(A).

B. Transformation of even fermion interactions

Recall, we denote by 2} C QE’;\ the even operators of the CAR algebra over A. We say that
B € Aut(R1,) is even if it preserves the parity. Even interactions are defined similarly. We also denote
*= %(o-l + io?). The following definition is the well-known Jordan-Wigner transformation, which

gives a C*-isomorphism of CAR and spin algebras.
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Definition. Consider the case Q[ix} =M>(C). Let 94 : Ql{\ — A} denote the Jordan-Wigner map
defined by

a(x) — exp ( —ir Z S;Sj’)S;, a*(x) - exp (i;r Z S;S/T)S:.
Jj<x Jj<x

The Jordan-Wigner transformation extends the notion of parity to the spin 1/2 algebra. We say that
A€ is even if 9, (A) € A}

Proposition 4.1. Let X C A be any subinterval.
L. If AUy, then 95(A) € Ay

2.If a: A5 - A} is an even quasi — local map, then Ax,) o « is also even.

Proof. Suppose A is a monomial ca® (x))- - - a® (xan). By the CAR, we may assume x; < Xj4.
A direct computation shows that the first part of the lemma holds for the even monomials which
generate 2},

2n x—=1
oA =c[ [ S5 exp(xin Y 57S;) e
k=2 J=Xk—1

Next, we show that the partial trace is an even map. For any x € A, define the following four unitary

operators:

@ _. 2 3 3

0 1 .
u)(():]]’ ui)zo'x, Uy =10y, Uy =0.

Now,letZc Aand B® Ce}, ® ‘Zlf\\z. Denote by I\ the set of finite sequences ¢: A\Z — {0, 1,

2,3}. Define
u(t)= l_[ ui"').
z€Z

Using elementary properties of trace and locality in the spin algebra,

1
Bo W) = o Z u(t)*[B ® Clu(c) € 25, 4.2)
telpz

1
dim($Ha\z)

The relation in (4.2) uniquely defines the partial trace; hence,

1
020)= Tz D, WO 1 Iu(o).

Lelpz

The second part of the lemma follows from this formula.

In the following, we will assume the interactions are supported on intervals:

Definition. An interaction @ is supported on intervals if ®(X) # 0 only if X = [a, b] for some
a,be’.

Any interaction can be “regrouped” into one with interval support, and while the methods to
do this are neither new nor canonical, we record here a simple way without changing the local
Hamiltonians, at the expense of rate of decay.

Proposition 4.2. Suppose I C Z is an interval and ¥ : Py(I) — o is an interaction. Then there
exists an interaction @ : Pg(I) — 2joc, supported on intervals, such that for all finite intervals A C I,
the local Hamiltonians are equal,

Dy = Z DX) = P,.
XCA
If Y is an unperturbed interaction with uniform bound M, range R, and local gap v, then so is @,
with uniform bound 28M and the same range and local gap.
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Furthermore, if ||¥||F < oo, where F is the F-function in (A2), and h(r) > Kr® for some K > 0
and s € (0, 1], then ||®||g < ||| for the F-function defined by

_Co
(1 +cr)x’

o0
Cp=L Z ne™ 2
n=1

G(r)=e 3"

Proof. 1f I C Z, then we may extend ¥ to Z by W(Z) =0 for Z ¢ I, and by construction, ® defined
in terms of the extension will restrict to an interaction on /. So we may assume / = Z. We will define
@ by induction on the diameter n of intervals [k, k + n]. When n =0, 1, define

O({x}) =F({x}) and O({x,x + 1}) =P({x, x + 1}).
For larger n, define
O([k,k +n])= Z{‘{’(X) :X C [k, k + n], diam(X) = n}.

By construction, @5 = ¥5. Now, suppose ® is an unperturbed interaction with constants M, R, y.
Since Dp, (1) = Wpp(x,n) for all x and n, @ and ¥ have the same local gap. Similarly, it is clear that ®
and ¥ have the same range R, and if diam([a, b]) < R,

I®((a, bDIl < 2*M.

Now, suppose @ is some interaction, not necessarily finite range, with ||®||r. For fixed k € Z and
n > 0, by Proposition A.1,

lD([k, k +nDIl < Z IPCON < Nl F ().

XeP,(Z)
k.k+neX
So for x,y € Z,
DNk k+anl= Y Y 0k k+nDl
k. n|x-y| k
x,y€lkk+n] x.y€lkk+n]
DYDY N {0
n>|x-y| k
x,y€lk,k+n]
<II¥llr (n+1—x—yhe " ——
nzlley‘ (1 + cn)«
< ||‘P||F(Zne_%h("))e_%h(lx"y”—L .
P (1 +clx —yl)*
That is,
(1D
|®llg = sup Gl—D < |I'WllF.
xyeZ | xépzy T T
x,yeX

[m]

Proposition 4.3. Suppose ¥ : Pr(I) — QL{OC is an even interaction supported on intervals. Then

there exists an even interaction ® : Py(I) — 20} . such that for any A C 1,

IA(Pa)=Dn.

If ¥ satisfies a finite F-norm for some F of the form (A2), then so does ®. If ¥ is an unperturbed
interaction, then so is © for the same constants.
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Proof. For 'Ao C A, let iagn 'dcnote the inclusion Qlf\o — Ql{\ IfAe 917\0, then by expanding in
an even generating set of monomials, we see

Lhg.A © Tpg(A) =104 0 tpga(A).

So there exists an injective *-morphism ¢ : (J 2} — 2} . which extends every @, from which we
define ®(X) =¥ (Y (X)). By Proposition 4.1, this is a well-defined interaction which is also supported
on intervals. Evidently ® is an even interaction; i.e., 9~ (®(X)) is even for any X.

¥ is isometric, and for the F-function F,

IFCFEO |
¥l =sup > == 1l
Y xépmy LTV
x,yeX
Now suppose W is an unperturbed interaction. Then evidently @ is uniformly bounded. @ is frustration
free and uniformly locally gapped since, for any A, there exists a unitary Qa : 2 — §a such that for
A€ QLC\,
9(A) = 9A(A) = QR AQA.

Since ¢ is an isometry which preserves support for even observables, and Q4 is unitary, ® has the
same uniform bound, range, and local gap as V. O

Theorem 4.4 (Ground state gap stability for fermion chains). There exist ), >0 and constant
my, such that 0 < & < e}, and diam(A) > max{2D, R} imply

Y(Ha(&)) 2 yo — mpe > 0.

The constants my, and &5, can be explicitly determined by the expressions in (3.17).

Proof. By Proposition 4.2, we assume that 77 and ®* = ® are supported on intervals. Proposition
4.3 implies the existence of spin interactions 75 and ® with the same uniform bound, range, local
gap yo, and decay.

Lety € (0, yo) and D € N be a chosen distance from the boundary, uniform in the volume, and
consider fixed A with sufficiently large diameter. By Theorem 3.1, the spectral flow decomposes the
local Hamiltonian H (&) of 175 + @5,

al(Hp +£Dy)=Hp+ ) ®l(e) = Hp + D (&) + D(2) + R(&) + wp (D' (2)).
xX€EA
Since ¥, is implemented by some unitary, 7% has Z,-LTQO for the same decay function Q.
So to apply the norm boundedness argument in Sec. III, it suffices to argue that ®!(ba(x, n), £) is
even.
But the Proof of Theorem 3.1 in Ref. 18 guarantees the existence of even interactions \¥; : Pr(A) —

A%, i=1,2, 3, and quasi-local maps ICE‘E) 125 — A} such that

O (ba(x, 1), &) = Ay ey © K1) + D 88, (o) © K5 (W2 (bax, )
k=1

+ Dpy ey © K (W3(bA G, K))).
The Kl.(g) are defined in terms of the spectral flow automorphism and are also even maps.

Hence, by Lemma 4.1, ®'(bp(x, n), €) must also be even since the even observables form a
subalgebra. O

V. EXAMPLE OF EVEN HAMILTONIAN SATISFYING STABILITY HYPOTHESES

Here we describe an example of an interaction of the CAR algebra which satisfies the stability
hypotheses of Theorem 3.11. Let X'={f;:i € B} and Y ={g; : j € B} be two collections of vectors in
£2(Z) such that
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(i) XU Yis an orthonormal basis for £2(Z);
(ii) there exist R > 0 and collections {x; : i € B}, {y; :j € B} such that for all i, j,

supp(fi) C b(x;, R),  supp(g;) € b(y;, R),
i#j implies b(x;, R) N b(x;, R) =0 =b(y;, R) N b(y;, R).

Furthermore, denote Xy = {f;:supp(f;}) C W} and YVw ={g;:supp(g;) C W}. We will also
assume the following:
(iii) There exists a diameter N such that for all intervals A, diam(A) > N implies X, #0 and

YA#0.

Definition. Let n: Py(Z) — Ql{oc be the finite-range interaction defined by
nbGi, R) =1 -a*(fa(f), nbG;,R)=a"(g)alg)). (5.1

Lemma 5.1. Suppose A is an interval such that diam(A) > No. Then Ha is non-negative,
uniformly gapped, and frustration free.

Proof. Let (f,,,....fn,) and (g, - . ., &m,) be the collections of vectors whose support is con-
tained in A. If necessary, complete the list to an orthonormal basis of 2(A) with (hy, ..., hy),
p =IAl-np —mp. Evidently H  is uniformly gapped and non-negative. So we prove that

ker(Hy) = span(yx : X C [1, p]).
where we define
OA=Suy N Suns Ex = /\{hik tikeXcllpll, ¥x=¢a Alx.

By calculation, ¢y € ker(H ) for any X c [1, p]. But each term of the interaction H 4 is a projection,
the complement projection of some a*(f,)a(f ;). So Hxy = 0 implies ¢ € ran(a*(f;)a(f;)) for each
i=ny,..., np. O

Next, we show that the number of auxiliary orthonormal basis vectors /; needed to complete X
and Y, to a basis of £2(A) is uniformly bounded in A, and that each h; has support contained toward
the edge of A.

Lemma 5.2. Suppose diam(A) > Ny. Let Z(A) = {h(lA), - ,hflA)}, n = n(A), be a basis for the
complement of span(Xa U Yp) in £2(A). Then
i. foreachie[1,n], supp(h™) c A\ Intsg(A);
ii. |Z(A)|<6R

Proof. Let (&) denote the orthonormal basis from A'U ). Suppose supp(f) C Int3g(A). Then
x; ¢ A implies supp(f;) N supp(f) = 0, that is, {f;, f) = 0 (respectively, y; and (g;, /) = 0). Hence

F=DEuPé= Y, (EDE

E€XAUVA

Hence f € span(Xy U V). Now, a basis of the orthogonal complement of £2(Intzg(A)) in €%(A) is
necessarily supported on A \Intzg(A), proving (1). Additionally, the dimension of 2(A\Int3g(A)) is
an upper bound for IZ(A)l, which proves (2). O

This lemma has an immediate corollary:

Corollary 5.3. Let A(W) denote the C*-subalgebra of Q(fz generated by the operators a*(f), a(f)
such that f e Wc €2(W). Then for all intervals A with diameter larger than 6R,

Alntzrr) C AXA U VA).
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To conclude this section, we prove that the interaction defined in (5.1) satisfies Z,-LTQO. Denote
D = max{Ny, 3R}. Recall that if n > D then Hj, (., is non-negative and frustration free with kernel
indexed by Z(bx(x, n)).

Define the step-function Q: [0, c0) — [0, c0) by

0 ifx>D
2 otherwise.

Qx) = {

Proposition 5.4. Suppose diam(A) > 2D, and let x € A, and (n,k) € N? be such that 0 < k <
ry, k < n < Ry. Let P, denote the projection onto Hy, (x ). Then for all A € Ql;,\(x,k)’

(I1Pn(A — wA(A)P,]| < Q(z:(n) = K)|IA]l.
Proof. We handle the two cases of n when diam(ba (x, n)) > N or diam(bx (x, n)) < No. Suppose
the former. Now, there are two subcases for k: either b (x, k) ¢ Intp(ba(x, n)) or bp(x, k) is contained

in that interior.
Suppose ba (x, k) C Intp(ba(x, n)). Then z,(n) — k > D, necessarily. Denote

Xopon = X =iy - fiu)s ZOaGem) = Zm) = {h1,... Iy}

Let g =fi A fiy Ny A---h
X c Z(n). A calculation shows

IPu(A = wA(A)P,II S6R sup [y, Au) — wa(A)] +2°F sup Gy, Aup).
XcZ(n) X#Y

ny DE @ generic unit norm basis vector of the kernel, indexed by

But by the theory of quasi-free states and Corollary 5.3,

sup [y, Ayy) — wa(A)] = sup [y, Agy)| = 0.
XCZ(n) XY

Now suppose b (x, k) is not contained in the D-interior of b (x, n). This implies zy(n) —k < D. And
by the trivial commutator bound,

1Pa(A — wa (APl < 21|All = Q(zc(n) = DIA]l.

Last, suppose diam(ba (x, n)) < Ng. Thenn — k < n < Ny < D. Hence z,(n) — k < D as well, and the
trivial bound agrees with Q. Conclude that H 5 satisfies LTQO for Q. O
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APPENDIX: DETAILS ABOUT 7/~FUNCTIONS AND SPECTRAL FLOW
1. F-functions and decay of interactions

In addition to LTQO, a critical assumption for our spectral gap stability argument is rapid decay
of the perturbations in [®]. We choose to describe this decay through F-functions, which have several
useful properties, one of which define an extended norm on the real vector space of interactions.

Definition. A function F: [0, o0) — (0, o) is an F-function for (Z, | - |) if

L IFll = Xrez F(x) <oo;
ii. there exists Cr > 0 such that for all x,y € Z,

D Flx = 2DF (12 = ¥1) < CrF(lx = y)).
Z€Z
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Furthermore, if @ is an interaction, then the F-norm of @ (with respect to F) is defined as

oz
0l =sup] 37 AP o, e (A1)
zépazy T WY
x,yeZ

Example. Suppose h: [0, co) — [0, oo) is a monotone increasing, subadditive function and
k > 2. The following function F' defines an F-function,

L
Firy=e " —=__ L ¢>0. A2

The F-function in (A2) and following properties will be used extensively in the proof of spectral gap
stability.

Proposition A.1. Suppose @ is an interaction with finite F-norm for some F. Then

N
1. for any collectionZ) cZ, C - - - C Zy, Z |D(Z)|| < |P||pF(diam(Z;));
k=1
2. if i is a uniformly bounded, finite range interaction, then ||n||r < co
and ||n + ®@||F < co.

Proof. Let diam(Z)) = n, and choose x, y € Z| such that Ix — yl = n. Then

N

IP(Zoll < Z 1PCOI < |D|F ().
k=1 XePp(Z)
x,yeX

Now, denote the range of 7 by R and uniform bound by M. Suppose x,y € Z. If Z € P¢(Z) contains x,
v, and ®(Z) # 0, then Z C b(x, R) N b(y, R). Hence

D% ol <2M.
XePy(Z)
x,yeX

Then || + ®||F < oo by the triangle inequality. ]

2. Thermodynamic limit of the spectral flow

There are standard results giving conditions on an interaction ® under which the finite-volume
dynamics defined by

T MNA) = U(s, 1) AU(s, 1), A € Ap,
with
Hx(5)= ) ®(X,5)

XcA
and

%U(s, N =iHA)U(s, 1), U(t,t)=1,s,tel CR,

converges to a strongly continuous co-cycle of automorphism, ‘rg’t, of the algebra of quasi-local
observables 2(, which is defined as the norm completion of the (strictly) local observables given by

A= | ) 2
AePr(T)
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One sufficient condition is that ®(-, 7) is a continuous curve taking values in the space Br, where
F defines an F-norm, [|-||F on interactions as in Subsection 1 of the Appendix. For any compact
interval I, we can define the space Br(I) as the set of all such continuous curves, and for ® € Bg(1),
the function

D DX, A3
DlIF() = S e y>>X;n DX, )II(r) (A3)
xveX

is continuous and bounded. Strong convergence of the automorphisms here means that

lim 72 A) = w2(A)[ =0, for all A € A},

The limit is taken over any sequence of A, € P(I') increasing to I' and the limiting dynamics is
independent of the choice of sequence.
One can also show that the dynamics depends continuously on the interaction @ in the following
sense:’
|| I

It A) - i@l < —— —IIFlXle 2min(@LLCO, (@ - ). (A4)

which holds for all A€ Ax and s, t € I, and where, for ® € Br(I), and s, t € I, the quantity , ;(®) is
defined by

max(z,s)
1(®)=Cp / Il (r) dr. (AS)
min(z,s)

It is often important to include in the definition of the finite-volume Hamiltonian H, terms
that correspond to a particular boundary condition. Such terms affect the ground states and equi-
librium states of the system, including in the thermodynamic limit but, in general, do not affect the
infinite-volume dynamics. In order to express this freedom in the interactions defining the finite-
volume dynamics that lead to the same thermodynamic limit, we use another, weaker, notion of
convergence of interactions interaction @ introduced in Ref. 9, where it is called local convergence in
F-norm.

Definition. Let (I',d, Ar) be a quantum lattice system, F be an F-function for (I', d), and I c R
be an interval. We say that a sequence of interactions {®, },>1 converges locally in F-norm to ® such
that

(i) ®,eBp()foralln>1,
(ii)) ®eBr(),and
(iii) for any A € Py(I') and each [a, b] C I, one has

b
r}g{}q/ l(®n = @) Ta llF(1)dt=0. (A6)

In this appendix, we want to apply this notion to the spectral flow generated by perturbations of
the form (2.4) and its thermodynamlc limit.

The spectral flow a/e 9 for the curve of Hamiltonians H ﬂ(e) € €10, €p), defined in (3.20), also
depends on a parameter y > 0. This parameter is assumed to be alower bound for the gap of interest in
the spectrum of H' 6(5) in the stability argument, but this assumption is not needed for the construction

of ae” A0 The automorphisms a’e\ 9 are generated by the self-adjoint operators D? % (€), defined by

Dﬁ(e):/cﬁ"( Z DX) + 5 Z oX) |, (AT)

XCAp, XC(A\Ap,)

where the map IC?"9 1 Ap — A, is given by

KM(4) = / " RO Wy (1. (A8
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Note that IC‘G\'a is defined as a linear map, but it depends itself on H /‘2(5) and therefore D/"\(e) depends
non-linearly on the perturbation. In Ref. 9 [Sec. V D], a detailed study of transformations of the form
IC?’” is performed. The following proposition follows directly from applying the more general results
in that work to the situation here.

Proposition A.2 (Ref. 9). There exists an F-function F of the form (A2) and interactions
PA9 € B1([0, €o]) such that
D(e)= Z PAI(X €).
XcA
Furthermore, there exists an interaction'V € Bp([0, €o]) such that for any sequences A, = [a,, b,] C Z,
On = (Dyy, D2y, sn), the interactions YAuOn haye uniformly bounded F-norm and converge locally
in F-norm to V.

As aconsequence, we can apply the following theorem from Ref. 9 to the sequences of interactions
YA |

Theorem A.3 (Ref. 9, Theorem 3.8). Let (®,,),>1 be a sequence of time-dependent interactions
on I with ®, converging locally in the F-norm to ® with respect to F. Suppose that for every
[a,b] C 1,

b
SUP/ 1OnllF(2) di < 0. (A9)
nxlJa
Then for any X € Py(I),
Tim [17%(4) — 7541 =0 (A10)

for all A€ Ay and each s, t € 1. Moreover, the convergence is uniform for s, t in compact intervals.

Now, consider a sequence A, =[a,,b,] CZ, 0, = (D1,n, Da.n, Sn). As the result of applying
Proposition A.2 and Theorem A.3, we obtain the strong convergence of the finite-volume spectral
flow automorphism generated by ¥+ to one and the same spectral flow for the infinite chain: for
ee0,1],

lim a?9(A) = ac(A), forall AeA. (A11)
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reversal symmetry. It is also known that extensive but sufficiently small and fast-decaying
perturbations of the AKLT interaction on the chain will not move the system out of the
phase (e.g. see [8]). In particular, an SPT phase may contain interactions which are not
finite range.

The objective of this note is to investigate when the Zs-index is a stable invariant
of an SPT phase in one dimension. We prove that under certain hypotheses, including
superpolynomial but still subexponential decay of interactions and uniqueness of the
gapped ground state, that if an SPT phase contains an interaction with a well-defined
Zo-index, then all interactions in the phase have a well-defined index, and that the index
is an invariant of the phase (see Section 3 for the hypotheses). For this, we follow the proof
of Ogata for the finite-range case closely, making the necessary and material modifications
to handle an unbounded range of interaction. This stability provides further evidence that
the Zs-index detects a true phase transition between interactions in distinct symmetry
protected topological phases.

A significant mathematical obstruction to assuming weaker decay conditions is in
proving that certain gapped ground states of interactions satisfy the split property. So
far, general results on sufficient conditions for the split property to hold critically use
characteristics of finite-range or exponentially decaying one-dimensional interactions,
such as boundedness of the entanglement entropy or the validity of Haag duality for the
spin chain interactions [6,7]. We comment on the relationship between split property for
translation invariant ground states and Haag duality in Section 2.

Our main result is that quasi-local deformations of split states preserve the split
property. Our proofs make use of Lieb-Robinson bounds on the speed of propagation of
time-evolved observables which do not depend on the sizes of support. To the best of
our knowledge, the results of this note are the first which generally guarantee the split
property for ground states of interactions which do not necessarily decay exponentially.

1.1. Notations and assumptions

We consider the one-dimensional lattice (Z,] - |). Let Pr(X) denote the finite subsets
of ¥ C Z. The onsite Hilbert space at z € Z is $, = C? where d > 2 is taken to
be independent of x for simplicity. Let ;,; = My(C) denote the onsite algebra of
observables. Local algebras of observables for X € P¢(Z) are defined by tensor product:

Ay = Q) Aoy (1.1)
rzeX

We reserve A as notation for a finite interval of the form [a,b] N Z. Let 2, denote the
maximal algebra obtained by inclusion of local algebras, and 2z its closure with respect
to the operator norm:

Woe = |J Ax, Az =i (1.2)
XGPf(Z)
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Similarly, let 2l and 2z denote the C*-algebras obtained from the local algebras of the
left and right complementary half-infinite chains, respectively:

-1
A= |  Ax  (resp. Ap). (1.3)
XEPf((—O0,0])

We model the interactions between sites of the lattice with interaction functions
parametrized by a dependence ¢ € [0, 1]:

O(-,t): Pp(Z) — g (1.4)
X o B(X, 1) = B(X, )" € Ay. (1.5)

For regularity, we assume for each X € P¢(Z) that the dependence t — ®(X,t) is con-
tinuously differentiable. The dynamics 72 : [0,1] — Aut(2(4) of the model are generated
by the family of Hamiltonians:

Ha(@,1) = 3 0(2.8), (1.6)

ZCA

are continuous in ¢ and satisfy 7' = id. For a thorough investigation of proper-
ties of ®(-,¢) and the limit of the family (7%), the curve 7 : [0,1] — Aut(Az) of
s-automorphisms, we refer to Section 3 of [11]. In this case, we say 7 are the quasi-
local dynamics generated by ®(-,t).

In this note, we study antilinear symmetries of the spin chain. Precisely, if 6 : 20z — 2z
is an antilinear *-automorphism, we say that 7 is f-invariant if the generating interactions

are fixed by 6:
VX € Py(Z) : H(Q(X, t)) = (X, 1). (1.7)

Physical considerations require decay of the interaction. To account for the ¢t-dependence,
we quantify the decay using F-functions and F-norms. Precisely, denote:

1
(1+2)
where h : [0,00) — [0,00) is a non-negative, non-decreasing, subadditive function. We

2€ZL Fﬁ(‘x -
z|)Fa(|z —y|) < CpFa(|lz — y|). We refer to Cs as the convolution constant of Fg.

observe that there exists a constant Cs such that for any x,y € Z: )
The function Fj depends on h, but we will suppress the h-dependence in notation, and

when the choice of § > 0 is immaterial, we will suppress the 3-dependence as F' = Fj.
Then ||-||,, 4 is defined for the family ®(-,¢) as:

o8
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P(Z,t
Il = sup > sup <|<>u>
7 €L zep,(z) €O Fa(lz —yl)

T, YyeZ

(1.9)

We note that if |||, 5 < oo, then the interaction decays uniformly as a function of the
diameter:

(X, O)[| < [|®], 5 Fa(diam(X)). (1.10)
We will denote:

12(Z))l 0,1y = sup [[®(Z,0)]]- (1.11)
te(0,1]

Lastly, we state the split property from [6,7] which will be best suited for our analysis.

Definition 1.1. A state w of 2y satisfies the split property if there exist states wy, and
wp of the left and right algebras 2}, A g, respectively, such that w is quasi-equivalent to
wr, @ WR-

For brevity, we will refer to states which satisfy Definition 1.1 as split states. The
formulation of the split property in Definition 1.1 agrees with that of e.g. [5,13] when w
is pure and wy, and wg are the restrictions of w to the left and right algebras, respectively.
There are higher-dimensional generalizations of the split property, such as the distal or
approximate split property of [9]; however, we do not comment on whether these are
stable.

We will express the quasi-equivalence relation between states by ~. We consider only
factor states, so we recall an asymptotic condition for quasi-equivalence of factor states
w and ¢ of the quasi-local algebra Az (cf. Corollary 2.6.11 in [3]): w ~ ¢ if and only if
for all e > 0, there exists X, € Pf(Z) such that Y € P;(Z) and B € 2y with Y NX,. =0
imply:

lw(B) = ¢(B)| < ||B]e. (1.12)
2. Split states
2.1. Support-independent Lieb-Robinson bounds
In the following, we prove special cases of Lieb-Robinson bounds for the integer lattice
and certain configurations of supports. These bounds will be useful in proving Theo-
rem 2.3.

Let n,m € Ny such that m < n. For ease of notation, we define the following family
of sets:

29
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An(m,n) = [-n,—m] U [m, n] (2.1)
Lemma 2.1. Suppose || ®|[;, 5 < oo for § > 2. There exists a constant £(3) > 0 such that
for all choices n,m,c,p € N with ¢ < m < n, if [-n —p,n+p] C A, the following
inequality holds for all A € An(m,n) and B € A\ An(m —¢,n+p):
117 (A), B|| < w(8) [|A] |B]| (e — 1) Fs—2(min {p, c}) (2.2)
where k(B) and v can be taken as:
16 _
K(8) = o (8/2 1)
B
v=2 H‘I)Hh,g Cs.
In particular, k(B) does not depend on n,m,c,p or the function h(x).

Proof. Denote Cr(a,b) = A\ An(a,b). By iterative arguments (cf. [10]), it can be shown
that the commutator in (2.2) is bounded above by the series:

Ay, B)| < 2B S 2

sup ||[7(4), B]| < 2||BIl Y x

R T
=1

Ak (2.4)

where the right-hand side is convergent for a; defined:

w= ) oo Y s @)y 1920y (25)

Z1€Sp(An(m,n)) Z2€54(Z1)  Zr€SA(Zk-1)

1 ifwny
Sy (W) = {0 L 70 (2.6)

Here, S\(W)={Z CA: ZNW #0,ZNW¢ # 0} denotes the boundary sets of W. Let
Cp denote the convolution constant of Fg. For any &:

aws ) 2 2 >

x€An(m,n) 21,.,2k—1€N  Z1ESA(An(n,m)) Z2€Sx(Z71)
y€Cr(m—c,n+p) z,21€2Z1 21,22€ 25

> 12(Z1)ljo,17 -+ 12(Z) 0,15
Zx€SA(Z1-1)
2k—1,YE€EZk (2'7)

— k—1
< > > > 12 (Z1)lljo.1) (C5 2 1215 ) Fa(lz1 = y])
z€An(m,n) z1€EA Z1ESp(An(m,n))
yeCr(m—c,n+p) r,21€21
. 1
k k—1\ _—h(min{p,c})
< (1®]lh,5 C5™ e DY > A+lz—y)?

z€An(m,n) yeCr(m—c,n+p)
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Since:

1
D DU e e

m<z<n yeCr(m—c,n+p)

3 1 1
<2 - -
menen (1 +d(z,Cr(m —c,n+p))PB/2 wm%%p’c} (1+7)B/2 (2.8)
1 2
< 4( S —)
- B/2
romintpey L H7)

the symmetry in the sum of the last inequality of (2.7) implies:

2
. 1
ap < 8 H‘I’HZ 5 Cgflefh(mm{p,c}) Z -
, ' (1+1r)B8/2
rzmin{p,c}
; 1
<8 H‘I’Hﬁ,g 05*1(5/2 — 1) 2~ hmin{p.ch) (2.9)

(1 4 min {p, c})f—2

<8|®|} 5 Ch(B/2 — 1)~ *Fs_s(min {p, c}).

Hence the inequality (2.2) holds with the choices:

w(8) = é—iwm —1)? o
v=2 Hq)Hh,ﬁ Cs. O

We also record for completeness the following useful bound.

Corollary 2.2. Suppose [|®||;,, 5 < oo for B >2. If X, Y C A with max X < minY’, then
forall AeAx, B ey,

[17(4), BI|| < w(B) IAI 1Bl (! = 1) Fs—2 (d(X, ). (2.11)

Proof. The conclusion follows from observing that the origin has no distinguished role
in the proof of Lemma 2.1. O

We remark that taking the A — Z limit in Lemma 2.1 and Corollary 2.2 shows
that the infinite volume dynamics 7 also satisfies the corresponding support-independent
Lieb-Robinson bound.

2.2. Automorphic equivalence and the split property

We say states w and ¢ of 2z are automorphically equivalent if there exist quasi-local
dynamics 7 : [0,1] — Aut(2z) such that:
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w=porTy. (2.12)

In this section we prove that the split property is stable under automorphic equivalence.
To proceed, we remark that if w is a split factor state, w ~ wy ® wg, then for any
B € Aut(Rz), the following states are also factor: wy, ® wg, wy ® wg o B and w o S.
Next, let ®L(-,t) : Ps((—00,0]) — Uzc(— o000 Az denote the restriction of ®(-,t) to
the left half-infinite chain. Define ®*(-,¢) the same way using the complementary right
half-infinite chain. ®L(-,t) generates quasi-local dynamics ¥ : [0,1] — Aut(2L) (resp.
7). Likewise, the interaction ®(-,t) : P(Z) — Ajo defined by:

BU(X, 1) = ®(X,t) if X C (—00,0] or X C[1,00) (2.13)
0 else
generates quasi-local dynamics 7V : [0, 1] — Aut(2z). Then in the notation:
(wr, o TE) @ (wp o ) = (W ® wgr) o 7. (2.14)

In the following theorem, we consider interactions which decay by at least a power
law, setting h in (1.8) to be the zero function.

Theorem 2.3. Suppose 7 : [0,1] — Aut(Az) are quasi-local dynamics with a generating
interaction ®(-,t) such that [|®||, 5 < co. If wy is a split factor state and 3 > 3, then
wr = wg o T 18 also a split factor state, for allt € [0,1].

Proof. Denote by wy,; = wy, o 7 (resp. wgr) and wy = w. Suppose € > 0 and n,r € N
such that r > n. Recalling the sets An(a,b) in (2.1), let E,, ;- : Rz — A an(n,2(n+r)) denote
the conditional expectation with respect to the product trace state. Since w is split and
factor, there exists N, (¢) € N such that n > N, (¢) implies:

|w o B (1:(A)) = wr @wr 0 Epr(1:(A))] < €[Enr(r:(A))] < e|A]l.- (2.15)

The following bounds will be derived independently of r, and so we will be able to let r
tend to infinity. Evidently for A € ;..

lwi(A) —wrt @ wr,t(A)]
< (= wr ®wr) o 7(A)] + |wr ® wr(m(A) — (A))]
(2.16)
< (|w 0 Eny ((A)) — w1, ® wr 0 Epp (1(A))] +2 7o (A) Emmm))n)
T l(d) — (4]

Lemma 2.1 implies that if supp(4) C An(2n,2n + r):
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I7e(A) = Enr(re(A))]| < 26(8) [|All ("] = 1) Fp_s(n). (2.17)
To conclude the proof, it is left to show that for fixed ¢ € R, the quantity ||7:(A4) — 77 (A)||

decays as a function of n, uniformly in the norm of A. This will follow from a Gronwall-
type inequality. Let A be any interval containing [—2(n + r),2(n + r)]. Define:

falt) = MA) — 7N (A) (2.18)

where 74 and 7Y are the corresponding finite-volume dynamics. Since fa(t) satisfies
the ODE and initial value problem:

@ Fa(0) = iHA@ 1), Fa (0] ilHA 1) — Ha(@°, ), 7A(4)]

(2.19)
fa(0)=0
the following bound is valid:
[¢]
Ifa@N < (174 O)] +/d8 [[HA(®, 5) — HA(@", 5), 72 (A)]|
0
1t (2.20)
~[as| ¥ @)
0 ZCA:
zn(Z56,0)10
ZN[1,00)#£0
We can further divide the admissible Z in the sum of the last line of (2.20) into:
Cr={ZcCcA:ZN(—0,0] #0,ZN[1,00) #0,Z C [-n,n]} (2.21)

Cri={ZCcA:ZN(-0,00#0,ZN[1l,00) #0,Z ¢ [-n,n]}.

The contribution of the Cj; terms to the upper bound in (2.20) are majorized using
decay of the interaction. Let § > 0 such that 5 > 2 + 4. Then:

Y [2(Z,5), 7N A)

ZeCrr

< ¥ 2 (Tle@slae)
]

z€(—o0,—n
y€[1,00)

. 2||A||(Z{|<I><Z7s>||:x,ye2})

z€[n,00)
y€(—00,0]

< 4f|All1®llos D > Falz +)

r=n y=0
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oo
1
<44 ||¢>||MZFB o202+ 1) Y e
y=1

< {—8
= GB=2=6/2p0

And an application of Lemma 2.1 majorizes the contribution from Cj. Note we have the
simple bound HZZGCI (Z,s)|| <3 |®]|g, 57 And so:

1Al ||<I>||0,g] Fo s sa(n). (2.22)

3 [@(2.5),7M4)]

ZeCr

< 13(B) 1@llg 5 1A (" = D)nFs_2(n). (2.23)

The conclusion follows from the fact that the upper bounds in (2.22) and (2.23) are
independent of the sufficiently large, finite interval A and r. O

Lastly, we remark on when the left and right states in Theorem 2.3 can be taken to
be restrictions.

Corollary 2.4. Suppose wy is a factor state such that wy ~ wola, @wola,, and T satisfies
the hypotheses of Theorem 2.3. Then wy = wg 0 Ty ~ wi|a, @ we|ay, for allt € [0,1].

Proof. It suffices to show that wi|a, ~ wola, o 7 (vesp. for the right algebra). This
will follow by methods used in the proof of Theorem 2.3, and so we will be brief. By
a familiar asymptotic condition of being a factor state (cf. Theorem 2.6.10 of [3]), the
assumptions that wg is factor and 7 is a quasi-local map imply wy|y, is also a factor
state. Then Gronwall-type inequalities on fa(t) = (7 — 77*)(A), A € AL N Wpoe, show

that wy|o, and woler, o 7 are quasi-equivalent. 0O
2.83. Comment on Haag duality and translation invariant states

Now, we consider the split property for translation invariant pure states. A result of
Matsui [6] shows that uniform decay of correlations in a translation invariant pure state
o of ™Az which satisfies Haag duality, implies ¢ is split.

It is also proven in [6] that if ® is a translation invariant, finite-range interaction
whose local Hamiltonians have a unique ground state and uniform spectral gap, ¢ is a
translation invariant, pure ground state of ®, and the GNS Hamiltonian H, > 0 has a
nondegenerate eigenvalue at 0, then ¢ satisfies Haag duality. The conclusion is then ¢ is
necessarily split.

In the following, we remark a sufficient condition on the decay of an interaction to
guarantee uniform decay of correlations, i.e. in terms of bounds which do not depend on
the support size of the observables. We leave open the question of sufficient conditions
for Haag duality to hold for a general translation invariant state.
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Corollary 2.5 (Uniform correlation decay). Suppose w is a gapped ground state of ®, with
[ @[, 5 < oo, and the GNS Hamiltonian H, > 0 has a nondegenerate ground state, i.e.:

(1) sp(Hy,) \ {0} C [y,00) and (i) ker(H,) =CQ (2.24)
There exists a constant p(F) > 0 such that for all X,Y finite with max X < minY’,
|W(AB) = w(A)w(B)| < u(F) Al ||B] e (2.25)

We may take:

W(F) = (1+ w(B) W+ )

m myh(d(X,Y)) (2.26)

v
2v+ v

Proof. The proof is essentially the same as the one given in [10] changed only to use
the Lieb-Robinson bound from Corollary 2.2, and so we will be brief. We suppress in
notation the dependence on the representation. We may assume (2, BQ2) = 0. For free
parameters «, s, taking b sufficiently small, the method of proof in [10] gives:

. L oo
ol AralB)] = 8 Ara(BID)] < 4] 1] (e 4 o erommaxan et
(2.27)

Setting oo = «v/2s and s such that:

s(v+/2) = h(d(X,Y)) (2.28)
and taking the limit b — 0 yields the bound. O

Proposition 2.6. Let ® be a translation invariant interaction on a quantum spin chain
such that ||<I>||hﬁ < 00. Suppose w is a pure, translation invariant, gapped ground state
of ®, and that the normalized GNS Hamiltonian H,, has a nondegenerate eigenvalue at
0.

If w satisfies Haag duality, then w is quasi-equivalent to wly, ® wla,-

Proof. This follows immediately from Corollary 3.2 of [6] and the uniform decay of
correlations guaranteed by Corollary 2.5. O
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3. Application to SPT phases

We recall the heuristic notion of a topological phase as an equivalence class of uni-
formly gapped interactions, where two such interactions ®q, ®; are related if and only
if there exists a sufficiently smooth interpolating family of interactions ®(s), 0 < s < 1,
such that ®(0) = &y and ®(1) = P4, and P(s) is gapped above the ground state, uni-
formly in s. It is known that in this case, the infinite-volume ground states of ® and
¥ obtained through weak—x limits of finite-volume ground states are automorphically
equivalent (cf. Theorem 5.5 of [2]). The equivalence relation for a symmetry protected
topological phase has the additional requirement that the ®(s) are fixed by the given
symmetry. The hypothesis of a uniform gap is essential, and we formulate this condition
as the following working definition: Say that ® has a uniform gap if there exist v > 0
and minimum interval length R, > 0 such that if A is a finite interval, diam(A) > R,
implies:

sp(HA(®)) = sp_(Ha(®)) Usp, (Ha(D)) (3.1)

with:

min {\ — p: A € spy (HA(P)), pn € sp_(HA (D))} = v (3.2)

and diam(sp_(Hx(®))) — 0 as diam(A) — oco. Let I'(Z) denote the uniformly gapped
interactions on Z.

In the following, we also work with a familiar formulation of equivalence in a gapped
SPT phase [2]. While we note that more general symmetries may be handled in this
framework, we restrict our discussion to the antilinear x-automorphism = of time reversal
since it is one of three symmetries which protect the Haldane phase in odd-spin quantum
spin chains [4,13-17]. We do not claim that these are necessary conditions for being in
the same topological phase.

Our application is showing that the Zs-index is a well-defined invariant for a
=Z-protected topological phase which contains at least one interaction with a well-defined
Zs index (e.g. a finite-range interaction), provided the decay Fj is sufficiently strong.

Assumption on decay: Suppose 3 > 0. Let Fj be determined by h(x) = Ra® for any
R >0 and b € (0,1], so that (1.8) becomes:

1

Fy(z) = e f* arar

(3.3)

We may assume, without loss of generality, that 8 > 6. We will suppress the dependence
of the F-norm on the variables:

I rer g = Il - (3-4)
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Definition 3.1 (Equivalence in an SPT phase). Define:

B(F) = {(IJ eT(Z): (i) ||®||p < oo, (i) ® has a unique ground state,
(3.5)
(iti) VX € P(Z), Z(B(X)) = <I>(X)}.

Define an equivalence relation ~ on B(F) in the following way: ®¢ ~ ®; if there exists
an interpolating path s — ®(,s) € B(F') such that:

() for each X € P§(Z), s+ ®(X,s) is continuously differentiable

@ s ¥y (ALY
z,y€Z Xep;(Z) s€1[0,1] F(|LL’ - y‘)
X (3.6)
z,yeX

vi) the v > 0 and R, in the uniform gap condition (3.2) for ®(-, s
¥

can be taken independent of s.

Assumption (iii) of Definition 3.1 implies we (E(A*)) = we (A), where wg is the unique
ground state of some representative ®. Condition (iv) of Definition 3.1 specifies the
smoothness of the local Hamiltonians, and (v) is an assumption on the uniform spatial
decay of the interactions. Precisely, (v) is sufficient decay to guarantee that the generated
spectral flow will be a quasi-local map.

3.1. Extension of the Zg index

We first describe the Zs-index defined by Ogata and defer to [13] for the details. Sup-
pose ¥ € B(F) is finite-range with pure gapped ground state . Since the entanglement
entropy of ¢ is bounded, it follows by [7] that ¢ ~ @lo, ® @|ay; and if (7R, g, Ar)
is the associated cyclic representation of ¢|y,,, then mr(2Ag)"” is a Type I factor. Hence
we may assume there is an isomorphism ¢ : ()" — B(8) for some Hilbert space
K. Since g, is E-invariant, = defines a unique antilinear *-automorphism E of B(R)
satisfying:

VA e Ap: Zourr(A)) = L<7TR o E(A)), and 22 = id. (3.7)

By Wigner’s theorem for antilinear s-automorphisms, there exists an antiunitary Jr,
on &, unique up to phase, such that Z(T) = Jr TJry. Evidently J2_ € {-1,1}, and
Theorems 2.2 and 2.6 of [13] show that the quantity JSFR does not depend on £ and is an
invariant of the a relation restricted to finite-range interactions. The Zs-index is thus
defined by Ogata as ¢ = J,%R. The extension is straightforward to define.
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Definition 3.2 (c¢f. Definition 3.3 of [13]). For ® € B(F) with pure ground state w such
that w ~ wly, ® wla,,, define:

69 = Ji € {~1,1} (3.8)

where Jg is an antiunitary implementing the extension = of time reversal to the von
Neumann algebra generated by the associated cyclic representation of wlg(,.

Lemma 3.3. Suppose there exists ®g € B(F) such that the unique ground state wy of Py
is quasi-equivalent to woly, ®wolay, . Then 6g is well-defined for all ® € B(F) such that
o ~ (I)O-

Proof. Let ®(-,s), 0 < s <1, be an interpolating path in B(F') between &g = &(-,0) and
&y = ®(-,1). By Theorem 2.2 of [13], it suffices to show that the GNS representation of
the right chain restriction of w, the pure ground state of ®, generates a Type I factor. But
Theorem 6.14 of [11], and the assumptions in (3.5) and (3.6) imply that the interaction
U(s) which generates the spectral flow o € Aut(2z) of the family ®(-,s) satisfies the
hypotheses of Theorem 2.3; we may take h(z) = O(z%/log*(z%)). O

Proposition 3.4. If & € B(F) and ® ~ ®¢, then 53, = 6.

Proof. The proof direction is essentially due to Ogata in [13], and so we prove in detail

only the necessary modifications to handle unbounded range of interaction. It is sufficient

L
s

to show that the composition a; o [(a£)™! @ (aff)~!] is an inner automorphism, for all
s € [0,1]. Here we take the spectral flow maps to be generated by an interpolating curve
®(-,s) as in Lemma 3.3.

Let v denote the uniform gap of the ®(s). We show that there exists a continuous

family V(s) = V(s)* € 2z such that in the uniform topology:

lim Dy, ) (s) = DL, 1y (s) = V(s)- (3.9)

n—oo

Di_p, n)(s) denotes the Hastings generator defined in (4.2) of the Appendix. This implies
the composition ay o [(aL) ™t @ (af)~1] is inner. To do this, define g, € C([0,1],%z) by:

S S

9n(8) = Di_p.n(s) — Dtﬂn’n] (s). (3.10)

We will prove that the sequence g,,(s) is uniformly Cauchy. Fix Ny € N, and let m,n € N
be such that 4Ny < m < n. Then:

oo

i) =an(e) = | [ Ww)w”—w)(x > ¥(x.5))

—No,No]

— 0o
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- 7 W (5 @)

X C[~No,No]

+ R(n,m, No, s) (3.11)

where R(n,m, Ny, s) is defined to be the remainder difference between g, (s) — gm(s)
and the bracketed quantity in (3.11). Using Lemmas 3.5 and 3.6 and the simple bound
[ Hi— Ny, no) (' (-5 9)) || < 3No [|9]] -

1gn(s) = gm () < 2(3NoQ1(No) + Q2(No)) 9’| (3.12)
which tends to 0 uniformly in s as Ny — co. O

We conclude this section with the necessary technical lemmas used in the proof of
Proposition 3.4, which prove bounds analogous to those in the proof of Lemma 5.1 of
[13] but remain valid for interactions which are not finite-range but decay by (3.6). We
freely use the function I, defined in Lemma 3.7 of the Appendix.

Lemma 3.5. Let v > 0 and W., be the weight function in (4.2). Let W : P¢(Z) — Ao be
an interaction such that |¥| p < co with generated time-independent dynamics T : R —
Aut(Az). Let ™ denote the finite-volume time-independent dynamics generated by U in
the interval [—n,n].

If NK € N and N < K, then for all A € A _n n) andn > m > 2K:

[ w6 - )| < ok - ) 4l (3.13)

o0

for the decaying function:

() = AL (Ra /20) + (7*/6)* (10 AT 2w)W”°°) 19l e %
(3.14)

Proof. Let T > 0 be a positive parameter. We can find a bound for the integral:

T T [t]

/ dt W, (t)(rp — 7")(A)]| < / dt (W (1)| / dr | (H i) (0) — Hi oy (2), 7 (A
T T 0
(3.15)

by further dividing the difference of the local Hamiltonians as:

Hin)(9) = H g (9) = 3 W(X)+ D W)+ 3 W(Z) (314

XeL YeR zeC
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for index sets defined:

L={XC[-n0:XN[-n,—m—-1#0} R={Y C[0,n]: YN[m+1,n]#0}
(3.17)

C={ZcC|[-nn]:ZNA(m,n) #0, ZN(—00,0] #0, ZN(0,00) # 0}. (3.18)

First we bound the contribution from L. For a,b € Z such that —n < a < —m — 1 and
a < b <0, denote:

\Il(a;b):Z{XEE:minX:a, max X = b}. (3.19)

Then:

< [aw far XY @@ G20

0 —n<a<-m—1 a<bL0

Using Lemma 2.2,

> > W (asb), 7 (A

—n<al-m—1 a<bL0

< ¥ ( S, A+ S ||[\P<a;b>,r:”<A>n|) (3.21)

—n<a<-m-—1 a<b<a/2 a/2<b<0

< (/6)* |T]| - Al (n(ﬁ)(e”'” ) Fya(K - N) + 2Fg4<K>).

T t m .
Denote I, = [Ty dt [Wo ()] fi dr 3 cocimot Sacpeo I1¥(a;0), 77 (A)]]]. Substi-
tuting (3.21) into (3.20) yields:

Zu < (220 191 1] (20,0t Fa-a() + "N 0y - )
(3.22)

By symmetry, if Z is the corresponding integral using the interaction on R, then (3.22)
holds with Zg in place of Zy,. Next we bound the contribution from C. But since these
sets in C have diameter of at least 2K,

> v(2)

zeC

< 3(n*/6)* | W]l p Fp-4(2K). (3.23)
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Hence we have the inequality:

o0

[t Wi -
< A A I, (T) + [10(x2/6)2 [W, (t)¢] 2] 112 | All Fya(E) (3.24)

B WA oo

K
n [2<w2/6>2 19, [A] T Fs_s (K — N).

Setting T = 2E=N" vields (3.13). O

It can be shown that lim,_, [ dt W, (t)7/*(A) = [dt W, (t)7(A), although we do
not use this fact here.

Lemma 3.6. Let v, W,,, and ¥ be the same as in Lemma 3.5. Suppose K € N and K < n.
Then:

[awoe - X w@)|cmwl, @)
o ZC[—n,n]
Z¢[-K,K]

U,n

where 7", 79" are generated by ¥ and WV, respectively, and Qs is the decaying function:

0u() =60 X 1 (5 m/0') + X Q)

meN meN
m>x m>x

Qy) = <w2/6>4(12“<5 )

14
X e—g(y/‘l)b.

1211 W + 10 {0 e 21 17 (e )

(3.26)
Proof. First, let J,m € N be natural numbers such that J < m < n. Denote:
Lo =|| [awoer-wn( Y wz)
oo ZC[—m,m]
Zg[—J,J]
Furthermore, denote:
B={X C[-n,n]: X N[-n,0] #0,X N(0,n] # 0} (3.27)
D={ZcC[-m,m]: ZNAun(J+1,m) # 0}. (3.28)
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Then for T' > 0, as in Lemma 3.5,

{Z \I:(X),T:( > \IJ(Z))H .

XeB

T
T < 6(m = D) [ W L(T) + [ at [W,0)] [ ar
=T 0

As before, we separate the sum ), ., U(Z) into left, right and centrally localized terms
of the interaction:

DU2) =) X))+ ) YY)+ > U2 (3.30)

ZeD Xel YeR zecC
L={XeD:XC[-m{0]}, R={YeD:Y C(0,m]} (3.31)

C={ZeD:ZNn[-m,00#£0, ZN(0,m] # 0}. (3.32)

We first control the contribution to the integral from £. We start this by gathering the in-
teractions of £ by intervals into W (a;b) = > {¥(X) : X € £, min X =a, max X = b}:

E U(W) = E Ur(asd) + E Up(a;b) = Uk + 02,
wecL —m<a<-—-J-—1 —m<a<-J-1
a<b<a/2 a/2<b<0

(3.33)

Let I, = [—|a/4|,|a/4|]. Then:

< ¥ (|| T mwewn. ¥ v

), Y wn)]

XeB —m<a<-J-1 a<b<a/2 XeB:XCl,
X e, ¥ wwl|).
a<b<a/2 XeB:X¢l,
(3.34)
By applying Lieb-Robinson bounds, the following inequality is valid:
DR ZCTND SRR 5]
a<b<a/2 XeB:XCI,
< 3 KB IVIE Fallb - aDlal(e" — 1)Fs_s(la/a]) (3.35)
a<b<a/2
2
m 2 v|r| |a’|
< — v —1)———5F5-5(|J/4

and the right-hand side is summable in |a|. And by both decay of the interaction and
application of Lieb-Robinson bounds,
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[ Some(@h), Y mm]

a<b<a/2 XeB:X¢1,

<[ X weewn. ¥ vaa)

a<b<a/2 —n<c<a/4
0<d<n (3.36)
H X mwean. Y ws@a)l
a<b<a/2 a/4<c<0

la/4|<d<n
< 20 11 (e (o0

where ¥p(c; d) is defined as ¥, (a;b) only with respect to the index set B. Hence:

< 6k(8)(m2/6)* | T|[3. €M F5_5 (T /4). (3.37)

s, Y v

XeB

And again by decay of the interaction:

< 2|7 (w2 < 2(n?/6)" 1¥ |- Fp-a(J/2).

> (X)

XeB

), Y we)]

XeB

(3.38)

By symmetry on the chain about 0, this majorizes the contribution from R as well. And
decay of the interaction also yields a bound on the contribution from C in the same
manner as in (3.38):

v (o)

XeB zeC

< 3(x/6)* | || Fa—a(J). (3.39)

Hence if we set T = Z(J/4)®, the integral expression

j—/Tdt Wy(t)|jd7" {JQW(X)’Tf(ZZE;)\P(Z))}"

of the right-hand side of the inequality (3.29) is bounded:

126(B) (72 /6)* _R b
7 < 2RO/ g2 e B0
v (3.40)

+10(x2/6)* max { W15, 1913 } W5 Ol Fa-1(J/2).
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The right-hand side of the inequality (3.40) is bounded above by Q(J), as defined in
(3.26). Then (3.29) continues as:

Lo, < 60m = )00, 1, (5 /) + Q) (3.41)

Now we prove the inequality (3.25). There exists a maximal My € N such that n > My K,
and so:

Tnx =Taxx + Dag ok + -+ Iy, (Mo—1)K + Lo Mok

Mo My
§6||‘I’||FKZIW<§(]'K/4)EJ) +ZQ(jK). (3.42)
j=1

Jj=1

Set H, (2) = 6|92 Spens I, (3/0) ) + Epen Q). ©
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Appendix A. Generator of the spectral flow

In this appendix we briefly recall notations and properties of the spectral flow. For
a more detailed analysis of quasi-locality and symmetries of the spectral flow, see e.g.
Sections 6 and 7 of [11] and Proposition 5.4 of [2]. In finite volume A, the spectral flow is
implemented for gapped, continuously differentiable families of Hamiltonians H(s) by
unitiaries solving:
d

—-Un(s) = iDA(s)Un(s), Ua(0) = 1 (4.1)

for the Hastings generator:

Dy(s) = 7 dt W (t)r* (d%HA(s)) (4.2)

— 00

Here v > 0 refers to the uniform gap of the Hx(s), and W,, € L' N L™ is chosen as the
odd function, positive on (0, 00) from Equation (2.12) of [2]. Explicit estimates on the
integral I (t) = [ dr W, (r) > 0 are known:
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Lemma 3.7 (Lemma 2.6 of [2]). For t > 36058,

I, (1) < [130629%]¢ exp < _ %ﬁ) (4.3)
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theory for quantum many-body systems. The adiabatic theorems from these works state
that for a smooth path of gapped Hamiltonians, there is an automorphic equivalence
between ground state spaces along the path. Furthermore, these automorphisms are
quasi-local.

This framework has proven to be broadly applicable to many situations. In [7], the
long standing problem of explaining the quantization of the Hall conductance was finally
solved with this method. The Kubo formula was derived in [2] using the method.

Another use of the adiabatic theorem is the analysis of symmetry protected topological
(SPT) phase, in [13] and [14]. In [13] and [14], indices for SPT phases which extend the
indices by Pollmann et al. [15], [16] were introduced. The adiabatic theorem was used to
show the stability of these indices. See [10] for the extension of [13] to interactions with
unbounded interaction range with fast decay.

All of the adiabatic theorems developed so far require a uniform spectral gap for local
Hamiltonians. Therefore, even if what we are interested in is the bulk, the use of known
adiabatic theorems requires conditions on the gap in finite boxes. This is conceptually
unsatisfactory because bulk-classification of gapped Hamiltonians can be coarser than
the classification in finite volume [12]. For this reason, many works have been carried on
torus. In this paper, we develop a new adiabatic theorem for unique gapped ground states
which does not require the gap for local Hamiltonians. We instead require a gap in the
bulk and a smoothness of expectation values of sub-exponentially localized observables in
the unique gapped ground state ¢s(A). This requirement is weaker than the requirement
of the gap of the local Hamiltonians, since a uniform spectral gap for finite dimensional
ground states implies a gap in the bulk for unique gapped ground states, as well as the
smoothness. (See Remark 4.15.) Under such conditions, we show that there is a smooth
path of quasi-local automorphisms «y, such that ws = wg o a,. This a5 is the same as
the one given in the literatures [1], [11].

Although the result is analogous to those of finite systems, there is a crucial difference
for the proof. For the finite system Ay, there is a Hamiltonian Hg(A) in the C*-algebra
Ap. By considering a differential equation satisfied by the spectral projection Ps(A) of
the Hamiltonian Hg(A) corresponding to the lowest eigenvalue, we may explicitly define
in this case the automorphisms connecting the ground state spaces. In contrast, for
infinite systems, we do not have a Hamiltonian Hy in the C*-algebra of quantum spin
systems. Of course we can consider the bulk Hamiltonian H,, but Hg depends on the
GNS representation, and the meaning of %H s is ambiguous. Therefore, we have to find
an alternative way to prove our adiabatic theorem.

In particular, for finite systems, the parallel transport condition Py (A)Py(A)Ps(A) = 0
plays a crucial role. In infinite systems, this condition is replaced by Proposition 2.2.

Let us now give a more precise description of our result. We start by summarizing the
standard setup of quantum spin systems [4,5]. Let v € N and d € N. Throughout this
article, we fix these numbers. We denote the algebra of d x d matrices by M.

We denote the set of all finite subsets in Z” by Sz.. For each X € &z, diam(X)
denotes the diameter of X. For X, Y C Z”, we denote by d(X,Y") the distance between
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them. The number of elements in a finite set A C Z” is denoted by |A]. For each n € N,
we denote [—n,n]” N Z" by A,,. The complement of A C Z" in Z" is denoted by A€.

For each z € Z", let Ay, be an isomorphic copy of My, and for any finite subset
A C 7Y, let Ay = ®.enA(z), which is the local algebra of observables in A. For finite
A, the algebra A, can be regarded as the set of all bounded operators acting on the
Hilbert space ®,cAC?. We use this identification freely. If A; C Ao, the algebra Ax,
is naturally embedded in Ay, by tensoring its elements with the identity. The algebra
A, representing the quantum spin system on Z" is given as the inductive limit of the
algebras Aj with A € &zv. Note that Ap for A € &7+ can be regarded naturally as a
subalgebra of A. We denote the set of local observables by Ajo. = AeS Ap.

A uniformly bounded interaction on A is a map ¥ : &z» — Ajoe such that

U(X)=V(X)" €Ay, XE€G6z, (1.1)
and
sup ||P(X)] < oc. (1.2)
Xe6zv

It is of finite range with interaction length less than or equal to R € N if U(X) = 0 for
any X € Gz, whose diameter is larger than R. We denote by ¥, for each n € N the
interaction given by

U, (X):=

{\IJ(X), if X CA,,
(1.3)

0, otherwise.

For a uniformly bounded and finite range interaction ¥ and A € &z. define the local
Hamiltonian

(Hu)y = Y U(X), (1.4)

XCA

and denote the dynamics
T A(A) = e gemHHA e R, A€ A (1.5)

By the uniform boundedness and finite rangeness of W, for each A € A, the following
limit exists:

lim 78\ (A) =:7% (A), teR, (1.6)
A=Zv

and defines the dynamics 7y on A. Note that 7y, = Ty a,,. We denote by g the generator
of TV .-
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For a uniformly bounded and finite range interaction ¥, a state ¢ on A is called a
Tg-ground state if the inequality —i p(A*dy(A)) > 0 holds for any element A in the
domain D(dy) of dg. Let ¢ be a 7Ty-ground state, with the GNS triple (H,, 7y, Q).
Then there exists a unique positive operator H, g on H, such that e®tHe.v 7 (A)Q, =
7o (T4 (A))Qy, forall A € Aand t € R. We call this H, w the bulk Hamiltonian associated
with ¢. Note that Q, is an eigenvector of H,, ¢ with eigenvalue 0. See [5] for the general
theory.

Let En : A — Ajp, be the conditional expectation with respect to the trace state.
Let us consider the following subset of A. (See [3] and [9] for analogous definitions.)

Definition 1.1. Let f : (0,00) — (0,00) be a continuous decreasing function with
limy— oo f(¢) = 0. For each A € A, let

(1.7)

41, = g+ sup (=22,
NeN

f(N)
We denote by Dy the set of all A € A such that [|A4]; < occ.

Properties of Dy are collected in Appendix B. The set Dy is a *-algebra which is a
Banach space with respect to the norm |||, (see Lemma B.1).

Assumption 1.2. Let ®(- ;) : Szv — Ajoc be a family of uniformly bounded, finite range
interactions parameterized by s € [0, 1]. We assume the following:

(i) For each X € Gzv, the map [0,1] 5 s — ®(X;s) € Ax is continuous and piecewise
C'. We denote by ®(X;s) the corresponding derivatives. The interaction obtained
by differentiation is denoted by ®(s), for each s € [0,1].
(if) There is a number R € N such that X € &z, and diam(X) > R imply ®(X;s) =0,
for all s € [0,1].
(iii) Interactions are bounded as follows

aup sup (18 (Xs)] 4 |X] [ (X 8)]) < oo (1)
s€[0,1] X€G&zv

(iv) Setting

b(e) := sup sup 2(Zis) = ®(Zis0) ®(Z; s50)

ZeGzv 5,50€[0,1],0<|s—sp|<e

(1.9)

S — So

for each € > 0, we have lim._, b(¢) = 0.

(v) For each s € [0, 1], there exists a unique 74 (5)-ground state o,.

(vi) There exists a v > 0 such that o(H,_ o(s)) \ {0} C [27,00) for all s € [0, 1], where
o(H,, o(s)) is the spectrum of H,_ o).
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ot

(vii) There exists 0 < 8 < 1 satisfying the following: Set ((¢) := e=t”. Then for each
A € D¢, ps(A) is differentiable with respect to s, and there is a constant C¢ such
that:

6s(A)] < Cc [l Al (1.10)
for any A € De.

The main theorem of this paper is that under the Assumption 1.2, there is a strongly
continuous path of automorphisms [0,1] 3 s — «a, such that ¢, = @g o as, s € [0,1].

In fact, this a; is the same one as in [1] and [11], which is given through some
differential equation. Let us recall it.

We use the function wy introduced in [11]. Set

ay
= > 111
n nln(n)? " (1.11)

and choose a; so that > o | a, = 3. Let w;(t) € L'(R) be the function on R defined by
c, t=0,

wi(t) == = (sin(ant)
Cg(iant >, t#0

with normalization factor ¢ > 0 such that

(1.12)

/dtwl(t) — 1. (1.13)

As shown in [1] and [11], wq is indeed an even nonnegative L!-function and

t _ ot
wi(t) < ln(t)2e nO? - f>e, (1.14)
o0 €T 2 n
(’1< 2) e m@? g >ed
Wi (z) == /dtwl(t) < In(z) (1.15)
z , x<el

for constants 7 = 2a1 € (2,1) and ¢1 = (27/14)ce*. We set wy(t) := ywi(7t), where
v > 0 is from Assumption 1.2, and W, (z) := Wi(yz), for © € Ry. The function wy is
an even nonnegative L'-function with

/dtwv(t) =1 (1.16)

We also have
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W, (z) = /dltoJA,(lt)7 z € Ry, (1.17)

Furthermore, the Fourier transform of w, is supported in the interval [—v,~]. (See [11].)
For each A € &z, let Uy be the solution of the differential equation

"L UN(s) = DA(S)UA(s),  Ua(0)=T. (118)

Here, Dp(s) is defined by

Dy(s) := / dt w(t) /duﬁﬁ(s)ﬂj\ (di; (Hq>(s))A) . seo,1]. (1.19)
—oo 0
We set
as A (A) :=Up(s)"AUp(s), Aec A, se]0,1]. (1.20)

By the results of [1] and [11], conditions (i), (ii) and (iii) of Assumption 1.2 imply that
the thermodynamic limit

as(A) = lil%y asa(4), Ae A, sel0,1], (1.21)

A—

exists and defines a strongly continuous path of automorphisms [0, 1] 3 s — a,. We also
have the limit of the inverse

“HA) = i “a), A 1]. 1.22
oy (A) AH%Vas,A( ) €A s€e0,1] ( )

See [11]. Our main theorem is as follows.
Theorem 1.3. Under the Assumption 1.2, we have

s =wooas, s€l0,1], (1.23)
for as given in (1.21).

Remark 1.4. In fact the conditions (v), (vi), (vii) in Assumption 1.2 can be relaxed as
follows. Suppose that there is a path of pure states [0,1] 3 s — ¢, such that

(v) for each s € [0,1], s is a To(s)-ground state.

(vi) There exists a v > 0 such that o(H,, a@)) \ {0} C [27,00) for all s € [0,1],
where 0(H,_ o(s)) is the spectrum of H,_ g(s). The eigenvalue 0 of H,_ ¢(s) is non-
degenerate.
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(vii) The condition (vii) of Assumption 1.2 holds for the path.
Then we have (1.23) for a; given in (1.21).

Our motivation to develop this bulk version of automorphic equivalence was the index
theorems for SPT-phases [13] and [14]. In [13] and [14], the path of interactions was
required to have a uniform spectral gap for corresponding local Hamiltonians. It is a bit
unpleasant that we have to ask for the existence of the gap for local Hamiltonians while
what we really would like to investigate is the bulk. From our Theorem 1.3, combined
with Theorem 2.6, and the proof of Proposition 3.5 of [13], we obtain the following
version of the index theorem for the time reversal symmetry.

Theorem 1.5. Let (- ;5) : Szv — Ajoe be a path of time-reversal interactions satisfying
Assumption 1.2. Then Zo-index defined in Definition 3.3 of [15] is constant along the
path.

From our Theorem 1.3, combined with Theorem 2.9 of [14], and the proof of Propo-
sition 3.5 of [13], we obtain the following version of the index theorem for the reflection
symmetry.

Theorem 1.6. Let ®(- ;) : Szv — Ajoe be a path of reflection invariant interactions
satisfying Assumption 1.2. Then Zo-index defined in Definition 3.3 of [14] is constant
along the path.

The rest of the paper is devoted to the proof of Theorem 1.3.

2. Proof of the Theorem 1.3

Throughout this Section, we will always assume Assumption 1.2. For s € [0,1] and
A e A, we set

I,(A) = / dt wr (8)Th () (A). (2.1)

The integral can be understood as a Bochner integral of (A, ||||).
We need the following Lemma for the proof.

Lemma 2.1. Fiz 0 < 8 = 5 < 1 < B3 < Bo < B1 < 1 and set f(t) =t~ exp(—t),
folt) 1= exp(—t9), fi(t) i= exp(—t%), fo(t) = 20+ exp(—t%), g(t) := exp(—t%),
C(t) := exp(—t). (Here B is the one in (vii) of Assumption 1.2.) Then we have the
following.
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. For any s € ]0,1], we have
a;l(Aloc) CDyCDy, CDy CDy, CDy CDg.

. We have Tq)( )(Df) C Dy, and there is a non-negative non-decreasing function on
R0, by, 1, (t) such that

[ dteoste) -yt < (2:2)

sup [[rbioy (A < bneDl4l,. Ay, 0
s€[0,1] fi

3. We have D¢ C D(da(s)) N D(04(5)) for any s € [0, 1].

4. There is a constant C}Q?g >0 such that

(1
e [dacs (A sup s 60 (s) (A)ll, < CRL AL, (2.4)
(1)
sup H6 s H , sup sup H(5 5 (A H <C A 2.5
A RO )< o A R (s (4) 2. 1Al (2.5)

sup
5,50€[0,1],0<|s—s0|<e

’

5%;(50),@(50) (A)‘

<

sup sup 5M dn(s0) (A)H
NEN s,50€[0,1],0<|s—s0|<e a7 ¢
1
< be)CYL, 114, (26)

for all A € Dy,. (Here the meaning of the inequality is that each term on the left hand
side is bounded by the right hand side. We use this notation throughout this article.)
In particular, dg(s)(Dys,) C D¢, for any s € [0,1]. (Recall b(e) in Assumption 1.2

(iv)-)
. For any A € Dy, and (s',v',s",s") € [0,1] x R x [0,1] x [0,1], we have qu(’;/,,) o

aé,,,(A) € Dy, € D¢ C D)) N D(Ggery) and Sp(ary © Tg ) 0 agh(A), gy ©
Tq)(s,,) oa_h(A) € De. For any compact intervals [a,b], [c,d] of R and A € Dy, the
maps:

[a,b] x [0,1] x [0,1] x [¢,d] x [0,1] x [0,1] > (u,s,s,u',s", ")

> T (s) © Oa(st) © T(I)(;,,) oa,i(A) €A, (2.7)
and

[a,b] x [0,1] x [0,1] x [¢,d] x [0,1] x [0,1] > (u,s,s,u’,s", ")

= Ta(s) © (s © T(D(S,,) oa h(A) e A (2.8)

83



10.

A. Moon, Y. Ogata / Journal of Functional Analysis 278 (2020) 108422

are uniformly continuous with respect to ||-||, and maps

[0, 1]x [e,d] < [0, 1] x[0, 1] 5 (', ', 5", 5”") 1= Oap(wr) 0T () 000 (A) € D¢

[0, 1]x[e, d]x[0,1]x[0,1] 3 (5, ', 8", 5") = 0431y 0Tg (ny00tah (A) € D¢

are uniformly continuous with respect to |||

For any A € Dy, a;'(A) is differentiable with respect to ||| and
g t
£as—l(A) = /dtwv(t)/duT(g(S) © 04 (s) <T(;(Z) (as—l(A)))

0

The right hand side can be understood as a Bochner integral of (A, |-||)-

For any A € Dy, the integral

t
/dtwv(t)/dmfﬁ(s) © 0 (s) (74:(3(14))
0

t
/ dt w, (1) / du it o (dae)) © i (A)
0

are well-defined as a Bochner integral with respect to (A, ||-]|).
For any A € Dy and s € [0,1], we have I,(A) € Dy, .

(2.11)

(2.12)

(2.13)

For each A € A, R x [0,1] 5 (u, s) = 73,)(A) € A is continuous with respect to the

norm |||
For any A € Dy, the integrals

t

¢
/dtw.y(t)/du&p(s) OT&;(S>(A), /du&p(s) org(s>(A),
0 0

are well-defined as Bochner integrals with respect to (D¢, ||'|[¢)-

(2.14)

The proof of Lemma 2.1 is given in Section 4. Throughout Section 2 and Section 3
(but not in Section 4), we fix 0 < 85 < 84 < B3 < B2 < f1 < 1 and set f, fo, f1, f2,9,¢,
given in Lemma 2.1, and apply Lemma 2.1.

In Section 3, we prove the following:

Proposition 2.2. For any A € Dy, we have

65 (I(A) =0, se0,1].

84

(2.15)
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Note that by 8. of Lemma 2.1, I,(A) belongs to Dy, C D¢, and that 4, (I5(A))
in Proposition 2.2 is well-defined by (vii) of Assumption 1.2. This corresponds to the
parallel transport condition Ps(A)P,(A)P,(A) = 0 in finite systems. Note that from its
definition, I;(A) does not have “off-diagonal parts,” which holds for finite systems as
well by the equation

VA € Ay, [/dt Wy ()75 (5,4 (A), Ps(A) | = 0.

We now prove Theorem 1.3 using this proposition. In order to prove the Theorem, it
suffices to show

% (gps o as_l(X)) =0, (2.16)

for any X € Ajoc. Note that from Assumption 1.2 (vii), and 1. of Lemma 2.1, the function
[0,1]>s— ps0 a;ol (X) is differentiable for any X € Ay, and s € [0, 1]. Furthermore,
from 6. of Lemma 2.1, [0,1] 3 s — «; 1(X) € A is differentiable with respect to the
norm for any X € Ajpe C Dy. Therefore, for any X € Ajoe, [0,1] 2 5 = @50 a5 1(X) is
differentiable, the left hand side of (2.16) makes sense, and we have

d . _ d _
ds (@soagl(X)) :Wsoasl(X)+‘psO Easl(X% X € Aoc- (2.17)

For the proof of (2.16), we use the following Lemma.

Lemma 2.3. For any A € Dy,

t

A—I,(A)=— / it (1) / dudas) 0 T ) (A). (2.18)
0

The integrand of the right hand side is continuous with respect to |||, and the integral
can be understood as the Bochner integral of (D, ||-[|)-

Proof. The latter part is 5., 10. of Lemma 2.1. To show (2.18), recall the Duhamel
formula

t

A—Tp)(4) = /du (—0a(s)) © Ta(s) (A), A€ Dy. (2.19)
0

Here we used the fact that 75, ) (D) C Dy, C D¢ C D (6a(s)), which follows from
2.,1.,3. of Lemma 2.1.
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We multiply (2.19) by w,(t) and integrate over t € R. Then recalling (1.16), we obtain

A—1I,(A) = /dt wv(t)Af/dt wy ()75 (A)

¢ (2.20)
:/dt wv(t)/du (—ba(s)) o7y (4), A€Dy. O

0

In order to show (2.16), we need to know ¢ on Dy. From Proposition 2.2 and
Lemma 2.3, for any A € Dy, we have

() (4) = (60 (4) = () (1(A)) = — [ d / dug (do0 0 i () . (221

0

Here we used the Bochner integrability of the right hand side of (2.18) with respect to
[[[l¢ and the continuity of ¢ (1.10) with respect to |||
As p; is the T¢(4)-ground state, we have

s 0dg(s)(B) =0, BeDy, sel0,1] (2.22)

(Recall that Dy, C D¢ C D(dg(s)), from 1., 8. of Lemma 2.1.) Differentiating this by s,
we obtain

Bs 000 (5)(B) + s 0 6¢(S)(B) =0, BeDy, sel01]. (2.23)
More precisely, note that
5<I>(s) (Dfl) - 5<I>(s) (sz) C DCa s € [07 1]7 (224)

by Lemma 2.1, 1., 4. Therefore, for B € Dy,, we have dg(4)(B) € D¢, s € [0,1], and for
any s, so € [0,1] with s # s, we have

’* (%0 0 8(s9) (B) + s © 5@(3[,)(B)>‘

_ ‘Qpa © 5<I>(s) (B) — Pso © 6‘1)(50)(3)

- (w'so 0 0g(50)(B) + 050 © 5¢<50)(B)> ‘

s$— 50
35(s5)(B) — 0o (sy) (B)
- SOS( () 9_9(o> _6¢><SU>(B)) (2.25)
& S50
s 00a(s.)(B) — g, 00 so B
+‘<,0 o ‘I>(k(1)( 2_;’0000 o )( )_(wvsood@(so)(B))‘

+ ’(gos — ¥s0) <5<i>(so)(B)) ’ ’
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As dg(s9)(B) € Dy, the second and the third terms of the last line converge to 0 as
s — 8g. The first term of the last line can be bounded as

da(s)(B) — 0 (s) (B) 09()(B) — 0 (s0) (B)
oo (Bt g, ) )| < L=l g (B)
< b(ls = so )OS 1Bl =0, s so,
(2.26)

and goes to 0 as s — sg. Here, in the last line, we used 4. of Lemma 2.1 and recalled
Dy, C Dy,, from 1. of Lemma 2.1, and (iv) of Assumption 1.2. Hence we obtain (2.23).

From this and (2.21), for A € Dy, recalling Tg(s)(A) € Dy, by 2. of Lemma 2.1, we
have

t

(60 () = [[dto,(0) [ dug. o4, (7). (2.27)

0

For any X € Ajoe, recall that a;1(X) € a;! (Ae) C Dy C D¢ by 1. of Lemma 2.1.
From (2.17), (2.27) and 6. of Lemma 2.1, we have

d 1 . —1 d —1
4 (g0 (X)) = 61007 (X) + 010 ey (X)

t

= /dtww(t)/dwpsozi(b(s) <ng(s) oogl(X))

0
+ / dtw, (t) 0/ dups (rg(s) 0 b (g{; (a;I(X)))) ~0 (2.28)

Here we used the fact that w, is an even function, and that ¢; is 7g(s)-invariant because
it is the 7g(s)-ground state.
Hence we have proven the Theorem 1.3.

3. Proof of Proposition 2.2
Throughout this Section, we keep Assumption 1.2. We also continue to use the same
0<B=205<ps<pf3<PBa<pBr<1andset f,fo, f1, [2,9,(, as given in Lemma 2.1.
Let (Hs,7s,€2s) be the GNS triple of o,. Let Hy := H,_ (s) be the associated bulk

Hamiltonian. The key property of I; we use is the following.

Lemma 3.1. For any A € A, we have
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Proof. As the Fourier transform &. of w, has support in [—v,7], (v) and (vi) of As-
sumption 1.2 and (1.16) implies:

1

Gy (Hy) = oz

) (. (3.2)

From the definition of I, substituting (3.2), we have

7o (I, (A)Q, = / dt o, (1)7 (i) (4)) O

_ / dt w, (£)eHemy (A)Q = Vamdn (H)my(A) = ou(A)2. O .
From this, we immediately obtain the following decoupling.
Lemma 3.2. For any A, B € A and s € [0,1], we have
60 (B*1,(A)) = 9o(B)p4(A). (3.4)

Lemma 3.3. For each s € [0,1] and A € Dy, the integrand of

t

V,(A) = / dt w, (1) / duthb o (5%)) 0 78 (A), (3.5)
0

is continuous and the integral can be understood as a Bochner integral in Banach space
(A, ||]l)- For any A € Dy, [0,1] 3 s — I;(A) € A is differentiable with respect to ||| and

——1s(A) = Vi(A). (3.6)

Proof. Let A € Dy. That the integrand of (3.5) is continuous and the integral can be
understood as a Bochner integral in Banach space (A, ||-||), follow from 5. and 7., of
Lemma 2.1, respectively.

Next, recall the Duhamel formula

t
To(s) (A) = To (s (A) = /du Tae) © (02(s5) = 0a(s0)) © Ta(s)(A); A €Dy (3.7)
0

Here we used the fact that To(so) (Dy) c D C D (5¢(5)), which follows from 2., 1., 3.,
of Lemma 2.1. By 4. of Lemma 2.1, the integrand on the right hand side is continuous

and the integral can be understood as a Bochner integral in Banach space (A, ||-||).
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We multiply (3.7) by w(t) and integrate over ¢t € R. Then we obtain

15(A) = L5, (A) :/dl‘ wa(£) 7 (s) (A) —/dt W3 (£) 75 (a0 (A)
¢ (3.8)
= /dt ww(t) /du Té?su) o (5@(3) - 5@(30)) o Tg(SO)(A), A€ Df.

0

By 5. of Lemma 2.1, all the integrands are continuous and the integral can be understood
as a Bochner integral in Banach space (A, ||-||). For any A € Dy,

I,(A I, (A
Bttt _y, )
S — 8o
—u 54)(3) — 64)(5 ) u —u u
< /dtwv(t) / du T;(S) o <—5 — 0 ) qu)(sO)(A) — 7'(;)(50) o <6<i>(50)> o T(D(so)(A)
[0,]
t—u t—u u
| (s = 7o) © (o) © o ()]
< /dt wy(t) / du 5 5
t—u P(s) — 9®(s0) A u
0.4 TTew © (73 I (6‘I>(So)>) °T<I><sf,)(A)H

(3.9)

Here and after, f[o 4 du always indicates Lebesgue integral (i.e. without sign) over the
measurable set [0,¢]. From 9. of Lemma 2.1, for each ¢, u, we have

lim
s5—So

‘(T;z;g - T;;;D)) o (5(1)(50)) o Tg(s(l)(A)H =0, AeDy,. (3.10)

By 4. of Lemma 2.1, for each ¢, u, we have

dp(s) — O

: t—u (s) 2(s0) . u

A |7ee (78 — (%(so))) ° %(w(A)H

< limsupb(|s — so|)C C’ o)A =0, AeDy. (3.11)
5—5S0 f2

Here we used Té( SO)(A) € Dy, C Dy, which follows from Lemma 2.1, 1., 2. Furthermore,
from 2., 4. of Lemma 2.1, for A € Dy,

H( é(;) qmé)) (5<i>(so>) © Tg(s»)(A)H < 20 1)

< 2C};?C (1 + Sup ?E%;) ’

SO) A) f2

, A1)
@], <200l (14 500 T
(3.12)
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Note that from 0 < 3 < B2 < 1, we have supy ;;Ex; < oo. Similarly, from 2., 4. of
Lemma 2.1,
. (sd)(s 6@(3 )
t—u
Ta(s) © ( s — s - <1><sU> © Ta(s
1(N)
< 00Ol (1 sup BT (3.13)

Combining this (2.2) in 2. of Lemma 2.1, from Lebesgue’s convergence theorem, we
obtain

1,(A) - I,,(4)

S — 80

lim

s—S0

—V.

So

(A)H:O, AeDy. O (3.14)

Lemma 3.4. For any A, B € Dy and s € [0,1], A, B*, B*I;(A) belong to D¢ and we have

6. (B*I,(A)) + / dt w, (t / duaps B Lod, OT:I;(S)(A))
0

= Gu(B")ps(4) + pu(B*)¢u(A). (3.15)

Proof. For any A,B € Dy C D, and sg € [0,1], B*I,,(A) belongs to Dy, C D¢ (the
inclusion 1. of Lemma 2.1) because of 8., of Lemma 2.1 and Lemma B.1. Therefore,
by (vii) of Assumption 1.2, [0,1] 3 s — ¢, (B*I;,(A)) € C is differentiable. For any
s, 80 € [0,1] with s # sg, we have

s — so (508 (B*IS(A)) — Pso (B*I?()(A))) — Pso (B V?()(A)) - Sbs() (B*IS(] (A)) (316)
= Ps (B* (%ﬁ;ow - VSU (A)>) - 90;[) (B I?()(A))
1

S — S0

J’_

(@5 - 9080) (B ISU (A)) (905 - @S(J) (B VS(J(A))

The right hand side goes to 0 as s — sg, because of Lemma 3.3 and the differentiability
of [0,1] 3 s — ¢, (B*I,,(A)) € C. On the other hand, the first part of the left hand side
of (3.16) is

1 * * 1 * *
5 — 50 (ps (B*I(A)) — ¢s, (B"5,(A))) = s — 50 (ps (BY) s (A) — s, (BY) 95, (4))
(3.17)
because of Lemma 3.2 and converges to
@0 (B*)pso (A) + @50 (B) @50 (A), (3.18)
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as s — so. Hence we obtain (3.15). O
For each s € [0, 1], we introduce the left ideal L4 of A by
Ls:={AecA|ps(A*A) =0}. (3.19)

Lemma 3.5. For any A € Dy and s € [0,1], I;(A) — o (A)L belongs to L N LENDy,.
Proof. Let A € Dy. Let (Hs, 7s, Q) be the GNS triple of p,. That I5(A) —ps(A)I € Dy,
is Lemma 2.1 8. To show I (A) — ¢s(A)I € L, N LY, recall Lemma 3.1. From the latter
Lemma, we obtain

s (Is(A) = ¢s(A)) Qs = ms (I;(A") — ¢s(A7)) 25 = 0, (3.20)

which means I5(A) — ¢ (A)l € L, N LY, because I(A)* = I,(A*). O

Lemma 3.6. For any A € L, N Dy,, there is a positive sequence uy a € Apry, N € N
with ||[un,a|| <1 such that

A1 — uN’A)Hg — 0, (3.21)
and
lim ¢g(un,a) =0, (3.22)
N—oo
and
dist (un,a, Ls) == 1é1£f |z —unall =0, N — occ. (3.23)

Proof. Choose 34 < 8/ < (B2 and set h(t) := ¢’ . Then we have

Jim m =0, Jim A(N)A(N) = 0. (3.24)

Let A€ L, NDy,. Set
un a4 = (14 h(N)En(A*A) " h(N)Ey(A*A). (3.25)
Clearly, [|un 4|l <1, and 0 <wupy 4 < 1. Then we have
HUN,A ~ (14 R(N)(A*A)" h(N)(A*A)H

- H(1 +h(N)Ey(A*A)) " A(N)Ex (A" A) — (1+ h(N)(A*4)) " h(N)(A*A)H
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- H(1 FR(N)EN(A*A) ™ — (1 + h(N)(A*A))_lH (3.26)
= ||+ AVIEN (A7 4) T (R(N) (A7 A~ Ex (47 4))) (1+ R(N)(4"4)) 7|

h(N)fL(N) [A*Ally, = 0, N — oo,

from (3.24). As (1+ h(N)(A*A)) " h(N)(A*A) € L,, we obtain (3.22), (3.23). We also
have

AL = un,a) 1 < (1= un,a)(A"A = Ex(ATA))(1 = un,a)|
11— un,A)(Ex(A"A) (1 —un,a)
<[ A*Ally, f1(N) + [|(1 + h(N)En (A" A)) ' En(A*A)(1 + W(N)Ey (A*A) 7!

= (|47 Ay, (V) 5.27)
+ﬁ (1 + A(N)En (A" A) " R(N)Ex (A7 A)(1 + h(N)E (A A4) 7|
<Al fi(N) + e = €2,

h(N)

For M > N, we have

|A(L —un,a) — Epr (A1 —up,a))ll _ [(A—Ep (A) (1 —una)ll
g(M) g(M)
< 1Al Ns{t;[])\, <J;((J\4]\/[))> =:1ely =0, N — cc.

(3.28)

For M < N, we have

[AQ —una) —En (A —una))ll o 2[AC0 —una)ll g(N) _ 2[|AQ — un,a)|
g(M) - g(N) g(M) ~ g(N)

25N
<———=0, N — o, 3.29
g(N) (3:29)

from (3.24) and 0 < B4 < B2 < 1. Hence we obtain,
AL = un,a)ll, =0, (3.30)
proving the Lemma. O
Now we can prove Proposition 2.2.
Proof of Proposition 2.2. Fix A € Dy, and s € [0,1]. By Lemma 3.5, I,(A) — ps(A)I €

LN L:NDy,. Applying Lemma 3.6 to (I;(A) — ¢s(A))* € LN LEN Dy, we obtain a
sequence uy € Ap,, N € N such that |Juy| <1
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H(l - UN)* (Is(A) - (ps(A)]I)H = H(IS(A) - @s(A)]I)* (1- UN)Hq =0, (331)

g9

dist(un, Ls) — 0, (3.32)

as N — 0. Applying Lemma 3.4 to uy € Dy and A € Dy, we have

¢s (uy (I;(A) = ps(A)T))

t

_ / dt w(t) / dup, (ujng;; 085 © Tg(s>(,4)) + s (Wh)gs(A).  (3.33)
0

By (3.32), we have limy 00 ©s (uN @(s) 0 8g5(s) © T(P(s)(A)) = 0. On the other hand, from
2., and 4., of Lemma 2.1, since ||uy|| < 1, we have, as in (3.12), the bound

* —u u f N
)sos (uNTi(s) 0 8y © Tiy() (A ))‘ < OV bg g, (|ul) (1 +sup f:END [All; < 00. (3.34)

From 2. of Lemma 2.1,
/ dt w,(t / dubs. s, (|ul) < (3.35)
[0,¢]

Therefore, by Lebesgue’s convergence theorem, we have

N—o00

¢
lim [ dt wy(t /dugﬁs UNTE s“) Sér(s) org(s)(A)> =0. (3.36)
0

We also have impy_, o0 ps(uly)@s(A) = 0, from (3.32). Therefore, the right hand side of
(3.33) goes to 0 as N — oo. The left hand side of (3.33) goes to ¢ ((Is(A4) — ps(A)I)) as
N — o0, because of the continuity (1.10) of ¢4 and (3.31). Clearly, ¢s(I) = 0. Therefore,
we obtain ¢, (I,(A)) =0. O

4. Technical lemmas

In this Section, we prove various lemmas used in this paper. We assume (i), (ii), (iii)
of Assumption 1.2 throughout this section. For ¢ € R, [¢] indicates the largest integer
less than or equal to ¢.

4-1. Properties of T ()

First we recall several facts from [1] and [11]. Define positive functions F(r) and Fy(r)
on Rsq by F(r) := (1+r)~W*FD Fi(r) ;= (14+7)~#*De 7. For a path of interactions
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satisfying Assumption 1.2, there exist positive constants Cf, v satisfying the following
Lieb-Robinson bound: For any X,Y € Gz., A € Ax, B € Ay, A € Gz., s € [0,1] and
t € R, we have

|70, B] H[T&s),A(ALB]Hgqe”‘“ze;gm(d(x,y))||A|\||BH. (4.1)

We fix the constant v and call it the Lieb-Robinson velocity. From this and Corollary
4.4. of [11] (Proposition A.1) we obtain the following.

Lemma 4.1. There is a positive constant C; > 0 such that

HT&S),A(A) —En (Té)(s),A(A))‘ ; ‘Té(s)(A) —En (Té)(s)(A)> H

< Cy || ellt=(N—=M) IA]l, (4.2)

for any M,N € N with M < N, A€ Ap,, and A € Sz».
We also have the following (see Corollary 3.6 (3.80) of [11]).
Lemma 4.2. There is a constant Cy > 0 such that
sup |7y, (B) = oty (B)| < Ca Lt ulel =20
s€[0,1]
n>M, uweR, BeAy,. (4.3)

It is standard to derive the following from Lemma 4.2 (cf. [4]).

Lemma 4.3. For any A € A,

sup 7oty (A) = 7y ()] = 0, (4.4)

s€[0,1

uniformly in compact u € R. In particular, for each A € A, R x [0,1] > (u,s) —
T;(Z)(A) € A is continuous with respect to the norm ||-||.

Lemma 4.4. Suppose f1, fo : (0,00) — (0,00) are continuous decreasing functions with
limy oo fi(t) =0, fori=1,2. Suppose that we have

. |A[%H67(N*[%]) A
T )70 o

and
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(5]
lim —~-22 — . 4.6
Then
sup HTG:(Z),AH (A4) — 7‘(;(1;)(14)“ -0, AeDy, (4.7)
s€(0,1] f2

uniformly in compact w € R. In particular, for each A € Dy, R x [0,1] > (u,s) —
T;(I;)(A) € Dy, is continuous with respect to the norm ||-||, .

Proof. Let A € Dy,. From Lemma 4.3, we have

sup 7ty a, (4) = Ty (A)]| = 0. (4.8)
s€[0,1]

Applying Lemma 4.2, for N < [3], we have

i, (4 =it~ B (7 0, () =y ()|
= HT‘;&%M (E[%] (A)) Ta(s) (]E["] (A)>

En (ot (Bt () =730t (Biz )| (19)
+4|Ez (4) - 4|
< 204 | Agy | lule™= =D )+ ap, ([5]) 141,

On the other hand, from Lemma 4.1 N > [%],

HT<5<u-> an (B (A)) —Ex (T&Z).,m (E[ (A

1 @) < cullAnApg - -13D,
oty (B (4)) = B (raty (B ()| < CallAliA g et (3D,

(4.10)

Therefore, for N > [%}, we have

HT;(Z),A,L (A) - T&(Z)(A) - En (Tq:(i),An (A4) - TQ(Z)(A)> H

= HT&ZLM (B () = oty (Epy (4)

En (7ot n, (Biz1 @) — 73ty (B )| (4.11)
+4 H]E[%] (4) - AH

< 20| A Ay et

e == g (5] ) yay,

w\z

Hence we obtain
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sup HT(;(Z%A" (A) — 7'(;(7“;)(14)

s€[0,1] f2
Ao | e=(=18D N
20, ulel" | 4] s R G T
< max f2( 5]\]]) fQ([E])
2C1HA|| sup ‘M%]leﬂ“li@,ih“ + sup —4f1 ([%]) HAHfl
N> (3] F2(N) N>[3] h(N)
+ s “u o (A)— 7 (A 4.12
2 [t ) -ty ) 1

and sup,eo,1) HT‘I:(Z)J\'L (A) = 755 (A) Hf converges to 0 as n — oo, uniformly in compact
2
u. O

Lemma 4.5. Let f,f1 : (0,00) — (0,00) be continuous decreasing functions with
limy_, oo f(t) = 0. Suppose that

2[t|
dtw (t) ol 00,
4vlt|>1
FN=15))
e <7f1(zv[>2} ) o (413)
3]
[Anle” =
vl Ay T

Then 7'&8) (Df) C Dy, and there is a non-negative non-decreasing function on Rxg,
by, f, (t) such that

[ o, 011 br (1) < oc. (4.14)
sup sup |74, o ()] s sup ||rhey () <bra(ehiAl, AeDy,  (d15)
neN se[0,1] i sefo,1] f1

Proof. Let A € Dy. We have to estimate

HT;S(S)(A) —En (753(5)(14)) H
fi(N) 7

From Lemma 4.1 for A € Dy, N,k € N with £ < N, we obtain

N eN. (4.16)

HTé(s)(A) —En (71%(5)(-4)) H

< |[rho) (Ew() = Ew (o) (Bx(AD) | +2114 - Ex(a)] (4.17)
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< 2| Al £(k) + Ca || All| AglettI=N=H),

For N € N with 4v |t| < N, we use this bound with k := N — [J] to estimate (4.16).
Then we have

N N
[ho ) = 2 (rho ) | < 21141, (f - H>) + Cy|A][Aevf=(¥]
N o,

<2|Al; (f(Nf {5})) + Cy||All|Anle™ = T2,

On the other hand, for N € N with 4v |¢| > N, we simply have

HT‘%(S)(A) —Ex (T&s)(A)) H <2|A]. (4.19)

Hence we obtain

Hré(s)(A) f
(f(N[éVD)) Ayle= 5 +3
2 sup |~ 2 | 4+ Cysup | |
< |1t max ]3‘;%( AN) 'Nen\ A Al
2
Fr () =t
= byp (8) Al (4.20)

for A€ Dy and t € R, s € [0, 1]. Here Iy,>1 is the characteristic function for {t € R |
4v|t] > 1}. From the assumptions and (1.16), by, s, (¢) satisfies the required condition.
The inequality for T%n( S)(A) can be proven in the same way. 0O

Lemma 4.6. Let f,f1 : (0,00) — (0,00) be continuous decreasing functions with
limg oo f(t) = lims—y oo f1(t) = 0. Suppose that
W~ -[3D
su < 00,
Nenw AV
Anle
N 2
sup ————— < 00, 4.21
nen  fi(IN) (21
N
w (3
sup —————% < 00.
nen  fi(N)

(Recall (1.17).) For s € [0,1] and A € A, we set

I,(A) = / dt w, (£)7h ) (A). (4.22)
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The integral can be understood as a Bochner integral of (A,|-||). Then for any A € Dy
and s € [0,1], we have I;(A) € Dy, .

Proof. That the integral can be understood as a Bochner integral of (A, ||-||) is from the

continuity of R 5 ¢ — 7'&5)(14) € A, Lemma 4.3 and w-, € L'(R).
From (4.2), we obtain

b (Bx(A)) = Env (7o) (Ex(4))) | < Ci 4] =4 L), (4.23)

for any A € Dy, s € [0,1], t € R, N,k € N, with k < N.
For any A € Dy, s € [0,1], N € N, we have

[1:(A) — En (Zs(A))]

< [ (B ) = B (1 (Bvorgy ()| + 2[4 - Exop )]
= dteor (0) [Ty (B (3](4)) = En (7his) Ex—p3)(4) |

<]

N

" / it (1) 7o By~ () = Env (7o By (AD) | + 2014l FN = {3})

1> 2]
< [ asooane Al [ oA+ 2040, 000~ [ 5])

5] 2]
= =

2v 2v

_ 3 N N
<Cy[Ayle™ 5 A +4 (A W, (@) +2 Al (N - H )

(4.24)

For the first and the fourth inequality, we used (1.16). We used (4.23), with k = N — 5],
for the third inequality.
Hence we obtain

[11s(A) = En (Is(A)l

sup

NeN fi(N)
I3 w, (1) .
[Anle” = AT FIN=[5])
Al sup 2N 2 up — 20 o)A
SR 10 B T Yo R A T 10 I
(4.25)

for any A € Dy and s € [0, 1]. Hence we obtain I;(Dy) C Dy,, for any s € [0,1]. O
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4.2. Estimates on o

In the following, we prove estimates on quasi-locality of the automorphisms a, and
a a. To do this, we first recall a theorem from [1] on Lieb-Robinson bounds.
Define h(z) = &~ for 2 > 1. Define the weight function as:

In?(z)

h(z) = h(e?) if 0 <z < e?
| A(z) otherwise

The Lieb-Robinson bound for the automorphisms ay is given as follows: there exists
a constant Cy > 0, 1 > 0, @ > 0 satisfying the following: setting h(z) := mh(az), we
have

c
las(B), ALl s, (B), Al < 2| Al B X |eHC¥D (4.26)

for any A € Ax, B € Ay with X,Y € &z, and s € [0, 1]. See Theorem 4.5 of [1] and
Corollary 6.14 of [11]. (Note that in [1], Assumption 4.3 about a spectral gap is assumed
but for the proof of (4.26), this assumption is not used.) From Corollary 3.6 (3.80) of
[11], there is a constant C3 > 0 such that

sup [|azh, (4) = a7 (A)]| < G [l e M2 4],
s€[0,1]
n>M, MeN, and Ac A,,,. (4.27)

From (4.26), we obtain the following.
Lemma 4.7. For any M, N € N with M < N, we have
lo ' (A) = En(a; (A < Co |[Anr| A e "N A€ Ay, (4.28)

Proof. If A € Ap,, and B € Ay, then B = lim,,_, B, in norm for a sequence of local
observables B;, € Axg, N Ajoe and:

- . & h(N—
1B, o5 (AN = lllas(B), AJl| < limsup <2||AHIIB = Ball + fIIA\\\AM\I\BnHe o M’)

C -
= 2 {Anel Al Blle PN,
(4.29)

And so by Corollary 4.4. of [11] (Proposition A.1) we conclude (4.28). O

From this Lemma we immediately obtain the following:
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Lemma 4.8. Suppose f : (0,00) — (0,00) is a continuous decreasing function with
lim;—, oo f(t) = 0. Suppose that for all M € N, we have

e ) (4.30)
W r M)~ '

then a; ' (Aie) C Dy.
Proof. Let M € N and A € Ay,,. From (4.28), we have

—h(R)

sup (“a? H(A) EMm(a;l(A))H)

ReN f(M +R)

e
< Co|Ay| ———
n?i‘é( SN IEYD

) JA|l < co. (4.31)

Hence we obtain a;(A) € Dy. O

Lemma 4.9. Let fi,fo : (0,00) — (0,00) be continuous decreasing functions with
lim; oo fi(t) =0, i = 1,2. Suppose that

sup (“N‘[”D) <,

NeN J2(N)
6_,}([%]) ’AN,[%] (4.32)
NeN f2(N) =

Then we have a;'(Dy,) C Dy, a;ll\(Dfl) C Dy, for any s € [0,1], and A € &zv.
Furthermore we have the following inequalities:

e oz (A, - s ‘ a;;(A)HfQ
N s
<l [ 1+ s 2h (V- [5]) +f C(N) v}y
for any A € Dy, .
Proof. This follows from the following inequality: for each N € N and A € Dy,
o5 (A4) — Ex (a5 (4))]|
< ot (A-En_py(@) —Ew (5t (4-Ex_iyy(a))
t ot (Bnopsy @)~ Ex (07" (By_i1y(0)) (4.34)

N (N
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Lemma 4.10. Suppose f : (0,00) — (0,00) is a continuous decreasing function with
limy— o0 f(¢) = 0. Suppose that for all M € N, we have

effL(kal)
lim su ——— | =0. 4.35
n—oo NZI:L f(N) ( )
Then we have
sup [|agh, (4) = (A)]| 50, A€ A (4.36)
s€[0,1] ’ f

In particular, for each A € Ajpe, R 3 s = a7 1(A) € Dy is continuous with respect to
the norm ||-|| ;.

Proof. Let A € Ay,,. From (4.27), for n > N > M, we have

N e R o ROl B e
sup = 3|AM| —F7~— .
sel0,1) f(N) ’ f(n)
(4.37)
On the other hand, for M <n < N, from (4.28)
ok, (4) — a5 (4) ~ Ex (a7h, (4) - a5 ()|
sup
s€(0,1] f(N)
— sup ||0‘;1(A) —Ey (agl(A))H (4.38)
s€[0,1] JF(N)
e*iL(N*M) e*iL(N*M)
< A Al ————— < A All's —_— .
< Cy [An] A V) < Ca|Anml || H:ruz% FIV)
Furthermore, for n > M > N, we have
[ash, (4) = o' (4) — B (a5}, (4) = as (1)
sup
s€[0,1] f(N) (4.39)
effz(nfM)
< 2C5|Apm| W IA]l -
Hence we obtain
sup [|azh, (4) = a7 (4)|
s€[0,1] f
N oA e—fz(n—]\/[) oA effz(NfM)
< 1 4+ max < 2C- _, su _— |, 4.40
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efiz(nfM)

Lemma 4.11. Let f, fo, f1 : (0,00) — (0,00) be continuous decreasing functions with
limy oo f(t) = limy—s oo fo(t) = limyyo0 f1(t) = 0. Suppose that for all M € N, we have

e—h(N—M)
lim su — | =0. 4.41
A 0 (4.41)

Suppose that

W~ -[5D
su < 00,
New  J(V) 2
e~h(5 D) ‘A '
sup N| < o0.
Nen FN) IPNCIE
Suppose that
Jo(IV)
=0. 4.43
N —o0 fl(N) ( )
Then we have a; ! (Dy,) C Dy and
sup [lazd (4) - a;l(A)H —0, AeDy, (4.44)
s€[0,1] f

In particular, for each A € Dy,, [0,1] > s — a;'(A) € Dy is continuous with respect to
the norm ||-[| ;.

Proof. As

sup fO(N)
NeN fi(N)

< o0, (4.45)

we have Dy, C Dy,. By Lemma 4.9 with (f1, f2) replaced by (f1, f), we get a; ! (Dy,) C
Dy. Hence we have o ! (Dy,) C Dy. For any A € Dy,

limsup sup
n—oo s€[0,1]

ash, () =o' (4)|

S, An

a;}\n (A—Ep(A) —a;' (A-Ep(A) + a;}\n (En(A))

= limsup sup
n—oo  se(0,1]

a7t Ea(A))],

<limsup sup [ag} (]EM(A))fagl(]EM(A))Hf (4.46)

n—oo  se(0,1]
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)

(271 (% = [5]) + Coe P3D [Ay_
f(N)

+1

+2[|A - Enm(A)lly, s

(271 (N = [5]) + CoeMUED Ay
F(N)

>+1 — 0,

=2[|A-=En(A)ly, | sup
’ NeN
M — oo.

For the inequality, we used Lemma 4.9. For the last line we used Lemma 4.10. As we
have lima/— o0 [[4 — Ear(A)[|;, = 0 by Lemma B.3 with (f, f1) replaced by (fo, f1), we
have proven the claim. O

4.8. Properties of dg(s), 5¢><s>

Lemma 4.12. Let fa: (0,00) — (0,00) be a continuous decreasing function such that

i k fa(k — 1) < oo. (4.47)
k=2

Let f3: (0,00) — (0,00) be continuous decreasing function with lim;_, f3(t) = 0 such
that

D DS T

Jim ) =0. (4.48)

Then Dy, C D(da(s)) N D(34(s)), and there is a constant CJ(‘st > 0 such that

S [Pa (D, sup sup o) (A, < Chs Al (4.49)

. sup sup Haq,N() A)H <D, Ay, (4.50)

sup H‘scb(s) (A)
f3 NeNse[o,1]

s€(0,1]
for all A € Dy,, and € > 0. If we assume Assumption 1.2 (iv) in addition, then we may

also take C’J(,l)f > 0 so that
2,J3

sup
$,50€[0,1],0<|s—s¢|<e

)

f3

dat—atn) gy (A)

s—sQ

sup sup Oy ()—dy(s0) 4 (4)
NEeN s,50€[0,1],0<|s—s0|<e ~ S’SON = (s0) f3
1
<b(e)C 1A, - (4.51)
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Proof. We prove (4.49). The proof of (4.50) and (4.51) are same. Note that there exists
a constant C5 > 0 such that

H(HQ(S))ANJrRH < C5 ‘AN+R|7 S € [0, 1]7 N € N. (4.52)

Therefore, we have

’|5<P(S)(AN)H = || [(HQ(S))ANJerAN} || < 205 |AN+R| HANH ) AN € AAN? s € [07 1]

(4.53)
From this, for any A € Dy, and N, M € N with M > N, we have
M
[[60s) (En(A) =Enr(A))]| = || D da(s) (Ex(A) — Ex_1(A)) ’
k=N+1
M
<2Cs Z |Ak+rl |Ek(A) — Er—1(A)]|
E=N+1
M
<4Cs Al S [Akerl falk—1). (4.54)
k=N+1

Hence {dg(s) (En(A))}~ with A € Dy, is a Cauchy sequence in A, hence there exists a
limit impy 00 da(s) (En(A)). On the other hand, Ex(A) converges to A in |-||. By the
closedness of dg(s), A € Dy, belongs to the domain D(dg(s)) of dg(s), and

(5@(3) (A) = lim (5@(5) (EN(A)) . (4.55)

N—oco

Hence we get Dy, C D(da(s)). From (4.54), we have

160(5) (A)]| = lim ||6a(s) (En(A))]| = Jim [|60(s) (En(A) —E1(A) + E1(A))]|

N—oo

<ACs [|Alls, > IMkrrl falk — 1) +2Cs |As gl 1A
k=2

< <4052 [Aktr| fa(k —1) +2C5 A1+R> IAlly, ,

k=2
(4.56)

for any A € Dy,.
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Next note that

160 (4) = Ex (Sao)(A) || = Him |3 (Ear(4) = Ex (3ae) (Ear(4)))
= Jim 00(s) (Ear(A) —En—r(A) + Ex_r(A)) — Ex (Jo(s) (Err(A) — En_r(A)
+ En-r(4))|l (4.57)
= Jim ||dgs) (Enr(A) = Ex—r(A)) = En (da(s) (Ex(A) — Ex—r(4))]|
<8Cs[IAll;, D |Mkir|f2(k - 1),

k=N—-R+1

for any A € Dy,. Here, in the third line we used the fact that dgs) (En—r(A)) € Apy-
In the fourth line, we used (4.54). Therefore, we obtain

Yo N—rg1 [ Akrr] f2(k = 1)
J3(NV)

[[6as) (A ;, < (805 sup
+4C; Z [Akyr| fa(k —1) +2C5 AH—R) Al - (4.58)
=2

The right hand side is finite from the assumptions. Hence we have shown (4.49). 0O

Lemma 4.13. Let f,f3 : (0,00) — (0,00) be continuous decreasing functions with
limy— 00 f(¢) = limy— 00 f3(t) = 0 such that

i K A/Fk —1) < oo, (4.59)
k=1

lim k=N k” é(kf ) o, (4.60)
N (f3(N))

Then we have Dy C D (5@,(5)), d¢(s) (Py) C Dyyand

tin_ sup H (3o = da9) (W) =0, AeDy. (4.61)

N—o05¢00,1

f3

In particular, for each A € Dy, [0,1] 5 s — d4(4)(A) € Dy, is continuous with respect to
the norm ||| ;,. The same statement, with d4 replaced by dg(s) also holds.

Proof. We prove the claim for 64)(5). The proof for dg(s) is the same. Set fo(t) := 1/ f(t)

and f4(t) := (f3(t))2. As we have supy % < 00, sSUpy ﬁg%g < oo we have Dy C Dy,

and Dy, C Dy,. From Lemma 4.12 with (f2, f3) replaced by (f2 = v/f, fa = f%), we have
Df - Df2 - D(%(s)), and 5@(5)(Df) C 6@(3)(Df2) - Df4 C Df3. From Lemma 4.12,
with (fe, f3) replaced by (f2, f4) for N > R, we have
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H (5<i>(s),N - 5<i>(s)> (A)H < H (5ci>(s),1v - ‘5ci>(s)) (A- ]ENfR(A))H
+[ (s = 00 Ex-r(a)

= H <5<i>(s),1v - 5<1’>(s)> (A— ENfR(A))H < 20}1}4 [A—En-r(A)l;,

" |A—-Enx_r(A)|
= 20f2f4 + sup |A—Eyx_gr(A) —En (A—-Enx_gr(A4))]
MeN f2(M)
[A—En_r(A)
. wp  JA-Ew )]
<20 o Fa N—R<MeN f2(M) ’
fof + max
sup |[A-Enx_r(4)]
N—r>MeN  J2(N — R)
FIN = R)[IA];
f(M)
All s
<20, i 14 £
+ max f(N _ R)
sup Al
N—-R>MeN fZ(N R)

—ocf), (v sw (LE)) 1,

N—R<L

=201, (FV ~ B)+ VI~ B) 1Al

Here 0;1}4 is a constant independent of N, s. Therefore, we have

lim sup H (5@3)’]\, - %(s)) (A)H =0, AcDy.

N—005¢00,1]

Furthermore, for A € Dy, we have
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M)
<20WM fa( A
) <208 A A,

32

;zg%; <H5<i>(s),N(A)Hf4 + H%(s)(A)
<2f5(N - R)CY), Al

for M > N — R,
(rv =R+ VIN-R) (4.64)

f3(M)
4chy), (FV - Ry + VFN = R))
- f3(N = R)
for M < N — R.

(1)
4Cf2f4

IN

For M > N — R, we used Lemma 4.12, with (f2, f3) replaced by (f2, f4). For M < N—R,
we used (4.62). As

acM (f(N —R)+JF(N = R))

. _ (1) T fafa _
i 2£,(N — RICY), 4], = Jim T 4l =,
(4.65)
we get
, (5<i>(s>,N - 5<i>(s)> (A) —Em ((5<i>(s),1v - 5«@(5)) (A)>
lim sup =0, Ae€Dy.
N—oo preN f3(M)
(4.66)

From this and (4.62), we have shown the claim of the Lemma. O

4.4. Proof of Lemma 2.1

Below, we use the following facts repeatedly: for any 0 < 8 < 3 < 1, 0 < ¢, ¢,
0<a,a,seR,leN,r=0,1, and k € Z, we have

thehOms) gkenh((3]) pkeh(-[8])
e s s =0 (o0
e t’
lim =0, 4.68
t—oo o—(%) ( )
ke pkemel8)T ke (15D
B L (4.68)
Z m¥e=cm=)" < oo, (4.70)
m=1
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’ ’
o0 kg—c(m—r)? o0 —&(N—l—r)P
. Z —_nN_ym-e _c _8 . e 2
lim S=m=NCl 5 < E mPe5(m=" lim ——— =0. (4.71)
N—oo e~ ¢'N A N—oo e—¢'N
m=

We also note that for 0 < 8 < 1,0 < ¢,c/, and | € N, \t|le*m“)/e*(°/t)ﬁ is integrable
with respect to ¢ > 0. From this and (1.14), for any 0 < 8 < 1,0 < ¢, and | € N, we
have

/dmﬂﬂW&mw<m. (4.72)

We also have for any 0 < f <1 and ¢ >0
< 00, (4.73)

from (1.15).

Lemma 4.14. Fiz 0 < 85 < 1 < 1 and set f(t) := %_tﬂl), and ((t) := exp(—t7). Then

for any A € Dy, and (s',u,s",s"") € [0,1] xR x [0,1] x [0, 1], we have 7'(;(1:_/,,) oa_n(A) €
Dy, C D¢ C D(5q)(s/))ﬁD(5¢>(S,)) and 5¢(S/)OT(I:(Z,,)OaS_”1,(A),6¢(s,)orq?(7:,,)oas_,,l,(A) € D..
For any A € Dy and any compact intervals [a,b], [c,d] of R, the maps

(0, % [0,1]  [0,1] X ey dl) % [0,1] x [0,1] 3 (5, o/, ", )
> Tg(s) © Oa(sr) © T;(Zl,,) ocayh(A) €A (4.74)

and

[a,] % [0,1] x [0,1] x [e,d] x [0,1] x [0,1] > (u, s, 5,0, 5", ")
= Tas) © Oi(sr) © r;(f,,) ooy, (A) € A (4.75)

are uniformly continuous with respect to |||, and the maps
[0,1] x [e,d]  [0,1] x [0,1] 3 (5,0, 5", 8"") 1= daar) © Tg () © s (A) € D¢ (4.76)
and

[0,1] % [e,d) x [0,1] x [0,1] 3 (5,0, 8", 5") = By © Tl

(0 agi(A) € D (4.77)

)

are uniformly continuous with respect to ||-||.. For any A € Dy, the integral

t
/dtwv(t) /dUTg(S) o 5&:(5) (T&%(A)) , (4.78)
0
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and
¢
/dt wy(t) /du T(;?S o (64)(8)) ° Tg(s)(A)s (4.79)
0

are well-defined as Bochner integrals of (A, ||||). Furthermore, for any A € Dy, ag*(A)

and as(A) are differentiable with respect to ||-|| and
J t
-1 _ u . —u -1
o) = [t 0) [ durgy o 8u, (ragt (a5 (4) (4:80)
0

The right hand side can be understood as a Bochner integral of (A, |-||) and there is a
constant Cy y > 0 such that

Remark 4.15. As mentioned in the introduction, a; is the same automorphism given in

-
Eas (A)

I

d
%aS(A)H < CoslAl;, AeDy. (4.81)

[1] and [11]. In particular, if a C'-path of interactions satisfy Condition B in [13] except
for the time reversal condition (iii) 6, for each s € [0,1], the unique ground state ¢,
is given by ¢s = @o o o, with the a,. Lemma 4.14 implies for any A € Dy, ¢,(A) =
¢o © a5(A) is differentiable and the derivative is bounded by Cy y || Al ;, corresponding
to Assumption 1.2 (vii). It is well known that the local gap implies the existence of the
gap in the bulk in the sense of Assumption 1.2 (vi), [12].

Proof. We prove the continuity for (4.75) and (4.77). The proof for (4.74) and (4.76) are
the same. We also prove only (4.78). The proof for (4.79) is the same. We prove (4.81)
only for ;1. The proof for o, is analogous.
Choose real numbers (4, 83, B2 so that 0 < 5 < 84 < 3 < B2 < f1 < 1 and fix. Define
Jolt) = exp(—t91), fi(t) i= exp(—t52), fo(t) = 20+ exp(—t5), g(t) = exp(~t74).
Note that fi,f, fo : (0,00) — (0,00) are continuous decreasing functions with
limyy oo f1(t) = limy oo f(¢) = limy_y00 fo(t) = 0. From (4.67), we have

e—fz(N—M)
e~ (5]

Furthermore, from (4.69) and 0 < B2 < 81 < 1, we have

sup

sup 4f1(N) < 0. (4.84)
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We also have

M 1

Therefore, from Lemma 4.11 with (f, fo, f1) replaced by (f1, f, fo), we have o *(Dy) C

D f1 and

sup [lazh (4)—a;(4)

s€(0,1]

—0, AeDy. (4.86)

f1

Therefore, for each A € Dy, [0,1] 3 s — a; ' (A) € Dy, is continuous with respect to the
norm ||-|[ ;.

Note that f,f; : (0,00) — (0,00) are continuous decreasing functions with
limy 00 f1(t) = limy o0 f(¢) = 0. From (4.69), and 0 < B2 < 81 < 1, we have

v -1[5])
o (P ) <= (480

From this and (4.83), Lemma 4.9 with (f1, f2) replaced by (f, f1) implies the existence
of a constant Cy r r, > 0 such that

sup las (A, < CspplAll;, A€ Dy (4.88)

The functions fi, fa : (0,00) — (0,00) are continuous decreasing functions with
lim; oo fi(t) =0, i = 1,2. From (4.69), we have

. |A[%H67(N7[%])
A}gnoo — AN =0. (4.89)

From (4.69) and 0 < 83 < 82 < 1, we have

- h(5]) _
A@&faﬁT*Q (4.90)

Therefore, from Lemma 4.4, we have

0, AeDy, (4.91)

2

sup HT‘;(LSL)J\n (A) — 7‘(;(1;)(14)
s€[0,1]

uniformly in compact u € R. Therefore, for each A € Dy,, Rx[0,1] 5 (u, s) = 74 (A) €
Dy, is continuous with respect to the norm ||-[| ,,.

Note that f2,{ : (0,00) — (0,00) are continuous decreasing functions with
limy o0 f(t) = limy—y00 ¢(¢) = 0. From (4.70) and (4.71), and 0 < f5 < B3 < 1, we

have
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> k' falk) < oo, (4.92)
k=1
lim Sien-n KV (k) _

N—o0 <(N)2

0. (4.93)

Therefore applying Lemma 4.13 with (f, f3) replaced by (f2, (), we have 5(1)( s) (Dy,) C D¢
and

lim su H PP A” —0, AeDy, 4.94
NA’OOSE[OI,)I] (¢N<s> <I>(s))( )c f ( )

Therefore, for each A € Dy,, [0,1] 3 s = d4(,)(A) € D¢ is continuous with respect to
the norm ||-[[..

Note that fo : (0,00) — (0, 00) is a continuous decreasing function with lim;_, - f2(t) =
0. From (4.72), we have

4

dt ww(t)m < Q. (495)
(4v(t))>1
We also have
AV - [F])

SRR S .

_15]

[An|e™ 2
]31;% TR < 00, (4.97)

from (4.69) with 0 < 83 < B2 < 1 and (4.67). Therefore, from Lemma 4.5, with (f, f1)
replaced by (f1, f2) we have 7—%( s) (Ds,) C Dy, and there is a non-negative non-decreasing
function on Ry, by ¢, £, (t) such that

[t @ 1t-bug st < o (1.98)

and

,sup sup HT;N(S) (A)Hfz <t Al . AeDy. (4.99)

sup HTé(S_) (A)
] ’ f2 NeNse0,1]

s€(0,1
Note that f2,( : (0,00) — (0,00) are continuous decreasing functions such that

limy oo f2(t) = limyoo ((t) = 0. By (4.70) and (4.71) with 0 < 85 < B3 < 1, we
have
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i kY fa(k — 1) < oo, (4.100)

sy Sy K12 (8)
v ()

Therefore, from Lemma 4.12 with (f2, f3) replaced by (f2,(), we have Dy, C D(dp(s)) N
D(%(S)) N D(0@s)-a(s0) (s )), and there exists a constant C;lfz ¢>0 such that
s—sQ 50

=0. (4.101)

sup [|0ace) (A, sup sup [|0a, ) (Al <O, AL, (4102)

€[0,1] NeN se(0,1]

(1)
sup Hé 5 (A ‘ sup sup H6 A H <C A 4.103
s€[0,1] o) ( )C NeN sef0,1] ) mrc Al ( )

for all A € Dy, and € > 0.
We claim that for any compact intervals [a,b], [c,d] of R and A € Dy,

[a,b] x [0,1] x [0,1] x [¢,d] x [0,1] x [0,1] > (u,s,s,u’, ", ")

P Tg(s) © 0(sr) © Tap(s ,,) oa y(A) e A (4.104)
is continuous with respect to ||-||. We also claim that

0,1] % [evd] x [0,1] % [0,1] 3 (s, 0/, 8", 5") = By © Ty © b (A) € D¢ (4.105)

is continuous with respect to [|-|[.

To see this, let A € Dy and fix any e > 0. Note that from the continuity of [0,1] >
= agh(A) € Dy, in [[[l, there exists a finite sequence so =0 < s1 <--- < sy, =1
such that

///

"

Has,,, A)—a Y (A), <eforall s €[si_1,si41),andi=1,...,N. — 1.  (4.106)

Hf1

For a;'(A) € Dy,, i =0,..., N, from the continuity of (', s”) — T;(Z:,) oa;(A) € Dy,
in ||Hf2 we get 5o =0<5 <--- <3y =landu=c<u <--- <up, = dsuch that

H( < T;(g’;_)) o a;(A) , <o (4.107)
for all s € [3;_1,3;41),and j = 1,..., N, — 1,
for all v’ € [ug_1,upy1),and k=1,..., M, — 1,
andi=1,...,N. — 1. (4.108)
From the continuity of [0,1] 3 s — 54)(3 OTq)( "o (A) € D¢ for T<I>( byoas, 1(A4) € Dy,

in [|-[|, there exists a finite sequence §p = 0 < § < <dg =1 such that
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H (64)(5’) - 5<I>(§z)> 07—(;(1‘;’]“) © as_’1 (A)HC <&

for all 8’ € [§_1,§111),and [ =1,... N, — 1, (4.109)
andj=1,...,N.—land k=1,..., M. — 1,
andi=1,...,N. — 1.

Finally, from the continuity of R x [0,1] 5 (u,s) = 74, (64,(31) O Ty(sh © ogl(A)> €A
; i

in the norm |||, (Lemma 4.3) we have finite sequences §o =0 < §; < -+ < 3§y =1and

g = a < 1 <-~-<12M5 = b such that

H(rg(s) —Tg’”g )06 b(s0) 075(1;?) oa;l(A)H <&,
for all s € [, 1,8, 11],and y =1,..., N — 1,
and u € [Qy—1,Upt1],and x = 1,..., M. —1,

andl=1,...,N.—1,
andj=1,...,N.—lLand k=1,..., M. — 1,
andi=1,..., N, — 1.

(4.110)

Now for any (u,s,s’,u’,s"”,s") € [a,b] x [0,1] x [0,1] X [¢,d] x [0,1] x [0,1], there is
(z,y,1,k, j,i) such that

U € [lg—1,Opt1), S € [8y—1,8y41], 8" € [81-1, 8141), ' € [up—1, up11],

s’ e [gj—1»§j+1]a s e [Si_l, Si+1]- (4111)
For any such (z,y,l,k, j, i), we have
H*Tg&y) 0 8 (s,) © Ty © s (A) + T 5) © 01y © Ty © A (A) H

< | (7 = 7)) © B o a0 4 H
+H7—<g(s)0< (5@(51 +(5 )OT<I> o H

. (4.112)
+ i oG © (—7atsy + s ) (Y
+ Hﬂg(s) o (5@@/) o Tq) ) ( ( ) /// H
<2+ C’élj)c2 CE+C§ ol s1[1p b1, £, 5. ([u])e.
We also have
Hf%(gl) 0 Tty © 5, (A) + B a1y O Tafin © a;,l,(A)HC
< [[(“Bas + 00 o atssy 0 0 1(.4)”C (4.113)
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_ L _ o _ 1
+ H%(y) ° (‘%(éj) + T@(iu)) ° aslvl(A)HC + H%(y) 0 Tg(em © (—as (A) + g (4)) H
1 1
<e+ C’;;Q’CE + C’é’}%c 51[1pd] b1, f1. 1. ([u])e.
ue|c,
As b1 1, 1, is an R-valued nondecreasing function, sup,¢(. 4 01,117, (u]) is finite. Hence

we have proven the continuity of (4.75) and (4.77).
Furthermore, for any A € Dy, we have

s [ [l s (o)

[0,7]

1
< s [t [ act) bnn(u)Cors Al G419)
’ 0.4

1
< €41, Co, 1Al [ dtan®bu s, s (e)]e] < o

In the last line we used the fact that by y, ¢, is nondecreasing and (4.98). Therefore, the
right hand side of (4.80) is a well-defined Bochner integral of (A, |-||) for any A € D;. By

the same argument, (4.78) is a well-defined Bochner integral of (A, ||-||) for any A € Dy.
By the definition of s A, , we have

s An

t
ok =i [Da,eharh W] =i [t (0) [ du[rie n, (i n,) b, (0)]
0
t

= /dtww(t) / dutg () A, © b, (s) (qu{;)’/\" (a;ll\n (A))) , AeDy.

0

(4.115)

Hence we obtain

s t
Qo () e () = [ do [t @) [duriyn, o8, (rt a, (00, (0)).
£l 0

A€ Dy (4.116)

For each (u,v), for any A € Dy, we have

HT‘g(”)’A" o 6@’(1}) o T;(Z)’An o a;}\n(A) - Tg(ﬂ) o 5<i>(v) o T(;('L;) o au_l(A)H
< HTg(v),An ©04,,(0) © Ta(v) An <a;}\n (4) = 0451(14)> H

[, 23,00 © (Tat a, — o) o5 @)
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+ HT&v )An © <5<i>n<v> g w) ) (Tcp )H (4.117)
+ H(ﬂp(v) A~ To(w) ) ( b(v) © T (v) )H
an, I(A)Hf +Cf fQ,C H( o)A, ~ To v)) a,t(4)

o QPR )(w ‘@)

+ H (Tq)(v) An — To(w) ) ( b(v) OTq>(v oy A)) H .

<C7f2 blflyfz |u‘ ‘

f2

From (4.86), (4.91), (4.94) and Lemma 4.3, the last part converges to 0 as n — oo.
Furthermore, we have

sup HTg(U%A" ° 5‘i’n(v) © T‘;&),An © a;}\n(A) - 7—g(v) © 5@(1}) ° Tq:(T:;) o a;l(A)H

neN
<208, bug g (u))Cs g, Al (4.118)
with
1
/ds/dt s (1) / du2Cl), by gy g, (ul)Cs g5, 1A] < . (4.119)
0 [0,t]

Therefore, applying Lebesgue’s convergence theorem for (4.116), we obtain

a;l(A) - /olv/dtcmY /dUTq>(U © 8¢ (v) ( (P(v) (a_l(A))>, A€ Dy.
(4.120)
From this, for A € Dy, we get

t

a;l(‘?_;:)l(m /dfwv( )/dUT<I> (s0) 5(1)(30) (T¢<SO)( g()l(A))>

< fannte) [ anl = / v (7i0y © a0y (ot (037 (4)) (4.121)

[0,7]

77—‘%(50) o5¢>(50) (T ))
(s

By the continuity of (s,u) — Tg(s) b(s)

) € A with respect to ||| for
A € Dy, we have
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lim
s—s0 S — S

/dv Tq> (v) Oé@(v <T<I>(v) ( 71(A))>

So
~Tite0) © Oaon) (Tt (05,1(4))) ) =0, (4.122)
for each u. On the other hand, we have

S

1 u —u — u —u —
s — 8o /dv (Tq)(”) ° 6‘?(“) (T<I>(U) (a” 1(‘4))) ~ To(s0) © 6<i>(sn) (T<I>(s()) (asol (A))))
S0
<20, gy (1u)Cs,p.p, 1Al

with (4.119). From Lebesgue’s convergence theorem, we obtain

t

_les ' (A) —ag )t (A) g

lim (| = /dtwv /dUT<1>(sU) <I>(s(;) (7'@(50) (asol(A))> =0,
0

s—s0 s — 8o

for A € Dy. (4.124)

Hence for 4 € Dy, [0,1] 5 s — a; ' (A) is differentiable with respect to ||-||, and we have

t
d - u —u —
750 La) = / dtw., (1) / dutg (5 © S (s) © Ta(s (a5 1(4)). (4.125)

0

From this formula, we obtain

d _
ot < | [ / D) b n(u)Ca s | 14l = Cos Al ©

(4.126)
Now we prove Lemma 2.1.

Proof of Lemma 2.1.

1. The inclusions Dy C Dy, C Dy, C Dy, C Dy C D¢ follow by the monotone choice
of the 8;, i =1,...,5. From (4.67), we can see that f satisfies the condition required in
Lemma 4.8. Therefore, from Lemma 4.8, we have a ! (Aje) C Dy for all s € [0, 1].

2. This is from Lemma 4.5. From (4.72), (4.69) (f, f1) satisfies the conditions required
in Lemma 4.5.
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3. Fix 0 < B < B5 and set (o(t) := e=t" for t > 0. We apply Lemma 4.12, replacing
(f2, f3) in it by (¢, o). To see that (¢, p) satisfy the required conditions in Lemma 4.12,
we recall (4.70) and (4.71). Hence from Lemma 4.12, we obtain D¢ C D(da(5)) N D (84 (s))-

4. This also follows by Lemma 4.12 with (f2, f3) replaced by (f2,(). The required
conditions in Lemma 4.12 can be checked by (4.70) and (4.71).

5., 6., and 7. are proven in Lemma 4.14.

8. This follows from Lemma 4.6 for (f, f1). The conditions for (f, f1) can be checked
from (4.69) and (4.73).

9. This is Lemma 4.3.

10. For any A € Dy, from 5. above, (u, s) — da(s) © T}i;(s)(A) € D¢ is continuous with
respect to HHC Furthermore, from 4., 2., above, as in (3.12), we have

u (1) u (1) fl (N) u
H(S(P(s) ° TCD(S)(A)HQ* < CanC ‘ Tq’(s)(A)Hf2 < C’anC (1 + ;121:] f2(N) ‘ T‘D(s)(A) f
&) Si(N)
< 1+s All,.
< Cpicbrn(ul) ( sup ey ) 141l
(4.127)

From 2. above, the inequality (2.2) holds and (2.14) is well-defined as the Bochner integral
with respect to (D¢, [|[[¢). O
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Appendix A. Conditional expectation E n
We now briefly describe a family of conditional expectations {Ey : A — Ap, | N €

N} are used extensively in this paper. Let N € N be fixed and let A denote any finite
set containing A . Define:

EY =iday ® pavay (A1)

where px is the product state whose factors are normalized trace:
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1
PX = ix] ® trg. (A.2)

zeX

Each E4 is bounded and linear, and as A C ¥ implies EX|4, = E4, there exists a
unique bounded map and conditional expectation Ex : A — A, such that for all A
containing A y:

Enla, = E} (A.3)

Furthermore, by the definition (A.1) of the finite-volume maps, Ey(A*) = En(A)* for
alAe Aandif M e Nand M > N,

EyEy =EnEy =Ey. (A.4)

The family {E y } provides local approximations of quasi-local observables. For complete-
ness, we record this as the following proposition and refer to [11] for the proof.

Proposition A.1. Let € > 0. Suppose A € A is such that for all B € |J xes,, Ax:

XNAN=0
1A, B|| < e[| BI|. (A.5)
Then ||A —En(A)| < 2e.
Proof. See Corollary 4.4 of [11]. O
Appendix B. Properties of D¢
The map |[|-|; : Dy — Rxo is a norm on Dy. Note that [|A*[|, = [|A;, and

IEn(A)]l; < [|All;- Furthermore, if supyen % < 00, then Dy C D,.

Lemma B.1. Let f : (0,00) — (0,00) be a continuous decreasing function with
limy_,o f(t) = 0. The set Dy is a *-algebra which is a Banach space with respect to
the norm ||-[| ;.

Proof. That Dy is #-closed is trivial from [|A*[|; = [|A]| ;. To see that Dy is closed under
multiplication, let A, B € Dy. For each N € N, we have

|AB —Ex(AB)| < |(A—Ex (4))- B|| + | ~Ex (A - Ex (4)) - B)|
+|Ex (4) - (B—Ey (B))] B.1)
< (20141, 1B + AN 1BI,) #(N) < 31|All I1B], F(N).

Hence we obtain AB € Dy, and Dy is closed under the multiplication.
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To prove that Dy is complete with respect to ||| ;, let {An}n be a Cauchy sequence
in Dy with respect to ||-[|;. As {4y}, is Cauchy with respect to [|-|| as well, there is an
A € A such that lim,,_, o ||[A — A, || = 0. This A belongs to Dy because

|A—En(A)] ( . IIAM*EN(AM)H)
sup ———————— = su lim ——————————— ) <sup||[Aup], < 0. B.2
T B (L O LS 09 < suplldulls (B.2)
Furthermore, we have
sup HA B Am 7EN(A7 Am)H = sup lim (HAn - Am *}EN(An - Am)”)
N f(N) N n—oo f(N)

<limsup [|A, — Apl[ ;- (B.3)
n—oo

Therefore, A,,, converges to A € Dy in ||| ;-norm. O

Lemma B.2. Let f : (0,00) — (0,00) be a continuous decreasing function with
limy_,o0 f(t) =0 with M € N. For any A € Dy and B € Ay,, and M € N we have

B4l < (1 max{ 20} ) 11l (B.4)

Proof. This follows from the following inequality:

[BA—En(BA)]
- { 2(BIAllL, - N <M,
T IB(A-Ex(A)], N>M. (B.5)

<{ 2(|BII|All, N <M,
~ LIBIIAl, f(N) N> M.

Lemma B.3. Let f, f1 : (0,00) — (0,00) be continuous decreasing functions. Suppose that
and

lim F(N) =
N—o0 fl(N)

(B.6)
Then we have
A}ii)nocHAfIEM(A)Hfl =0, AeDy;. (B.7)

Proof. Let A € Dy. By the definition of A, we have limp;,oo |A — Ep(A)|| = 0. We
note that for N € N,
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[A—-En (A)]
|[A—Epy(A) —Exn (A—-En(A)] _ AN) M=
J1(N) |A—=TEn(A)
fi(N) 7 M=,
|A—-Ex (A f(N)
) Amy MEN
lA—En(A)| f(M) M>N (B.8)

f(M)  fu(N)

f(N)
J1(N)
f(M)
i (M)’

f(L))
<Al s (FE5) 00 o

» M <N,
Al

M >N

Hence we obtain (B.7). O
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6 Appendix

Assumption 1.2 of [20] specifies assumptions to prove a quasi-adiabatic theorem for unique gapped
ground states. In this appendix, we will show that Condition (vii) of Assumption 1.2 is satisfied
by generic paths of ground states of uniformly locally gapped, rapidly decaying QSS interactions.

Let W, : Pf(ZP) — o be the interaction which generates a; (see Theorem 5.5 of [3]) and which

satisfies |||, < 0o, for the superpolynomially decaying Fiy given in [3]. Let 85 = 6%¢, where §l°¢
is the derivation with domain i, defined by §°¢(A) = limp_,zv i[Hx(¥s), A]. Note that 6°° is

closeable since:

sup Y (X)) < ¥R, Fu(0) < oo

zeX
Lemma 6.0.1. There exists C' > 0 such that for all A € D¢,
o) <Al (62
ds ° - ¢ ’

Proof. This will follow from the computation below, which will be justified by an interchange of
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limits and the derivative formula of Theorem 3.9 of [24] for local observables:

d

4 o) = 4 im oy (Ex(A))

ds N—oo

d
= lim —as(Eyx(A
= lim as(05(En(A)))

N—oo

= a;(d5(4))

in which case then, by Equation (6.17) below, there will exists C' > 0 such that:

lees (05 (AN < J[6s (A < CllAlle- (6.4)

First we justify the interchange of limits in the second equality of (6.3). For fixed s € [0,1), define

the continuous function:

fonil-s,1—s5] =2

Lagin(Bn(A)) — as(En(A))  if h #0 (6.5)

fn h) =
" { as(0s(En(A))) else

The case s = 1 is similar using a one-sided left limit. We show that (f,,) is uniformly Cauchy. For
any B € 2. and h #£ 0,
1

1 (@pin(B) — as(B))] = | /maX{Hh}d 4 (B /W{SM}d lon (5B (6.6)
— (o — Qg = — T —Qy < — T ||y (O .
h " ‘h‘ min{s,s+h} dr ’h" min{s,s+h}

Denote A, = [-n,n]P, E, = Ey, and H, = Hy, (¥,). Denote B = E,(A) — E,,(A) for n > m, and
Bj = EJ(A) - Ej_l(A). Then:

l6-(B) < > 116:(By) (6.7)

j=m+1
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For a single summand:

16.(B)ll = Jim |[Hy, Byl
N>2j

oo
[ Haj, Bl + 11D Hajr — Hajon1, Bjl|
k=1

< AW py Fo(0)[|Alle[A2;1¢(7 — 1)+

IN

+ ) I AW(X58) 0 X C Mgk, X N (Mg \ Agjn—1) # 0, X N A; # 0}, Bjll.
P

(6.8)
The sets in the kth summand of:
DD AW(X;8) 0 X C Agjin, X N (Agjign \ Agjx1) # 0, X N A; # 0}, Byl (6.9)
have diameter at least j + k, and so:
(0.8) < Z > > %y Fulllz = yl) 1B
L2€(Agj1r\Aojtr—1) YEA,
< Z > 10| 7y | Aj [ Fw (d(, A7) Bj]|
k=1 xE(A2j+k\A2j+k71)
> _ (6.10)
H\IIHF\I/’A]'HAQJ'Jrk‘F‘I’(J + k)| Bj]|
k=
<7 ZkDF )77 1Bl
< Coj*P¢(i = DAl
for a constant C'y > 0 independent of n and m. Hence:
5.8 < (X Al FO)Anloi - 1+ GG -0 )lle (@)

j=m+1

and by decay of ¢, the function m — Ej S 1 §2P¢(j — 1) decays to 0 as m — oo, uniformly in r.
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This also shows that at h = 0:

1£0(0) = F(O) < sup [15,(B)] = 0 as m — oc. (6.12)

s€[0,1)

Conclude that (f,,) is uniformly convergent on [—s,1 — s|, and that:

lim lim f,(s) = lim lim f,(s) (6.13)

n—00 h—0 h—0n—o0

In particular, d%as (A) exists and is equal to as(ds(A)). Next, we show there exists C' > 0 such that

||%ozs(A)|| < CJ|All¢. Setting m =1, so that B = E,(A) — E1(A), equation (6.11) yields:

16 (En(A))]| < <Z4||\I/||F@F\I’(O)|A2j|<(j — 1)+ Cuj*P¢( — 1)) 1Al + 1I6-(EL (AN (6.14)
j=2

The norm ||, (E1(A))]| is bounded independently of n by:

16 (Ex (AN < I[Hy, Ex(A)][| + ) I[H; — Hj—1,E1(A)]|

=2

<AL+ S 0y |5 Fa (G — DA (6.15)
=2

< (2||H1u S 1 A Fa (G - 1>) 1Al

Jj=2

So let:

C= <Z4II‘1’||FWFQ(0)IA2JIC(j — 1)+ Cuj*P¢( ~ 1)) +2 sup [Ha, (L) + D 19 1451 Fw (i - 1)

j=2 s€[0,1] =2
(6.16)
Since C' is independent of n, passing to the limit yields:
16-(A)|| < Cl|All¢- (6.17)
O
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