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Sharp Fronts for the Surface Quasi-Geostrophic Equation

Abstract

Piecewise-constant solutions of the surface quasi-geostrophic (SQG) equation support surface

waves. We study two types of such solutions, called the front solutions and the two-front solutions.

For fronts that are described as a graph, the formal contour dynamics equation does not converge.

Using three different methods, we derive a well-formulated meaningful contour dynamics equation

for the SQG fronts. This equation is nonlocal, quasi-linear, and has logarithmic dispersion relation.

When the fronts have small slopes, we derive a cubically nonlinear approximate equation. We

prove local well-posedness of the initial value problem for this approximate equation posed on

the circle. Numerical solutions of the approximate equation provide evidence of the formation

of finite-time singularities. We also prove that for sufficiently small and smooth initial data, the

full SQG front equation posed on the real line has unique global solutions. For the SQG two-front

solutions, the contour dynamics equations form a system with more complicated dispersion relations

and quadratic nonlinearities. We use the contour dynamics equations to determine the linearized

stability of the SQG shear flows that correspond to two flat fronts. We also prove local-in-time

existence and uniqueness for small, smooth solutions.
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CHAPTER 1

Introduction

By introducing you to yourself it enables you to discover for yourself the true

meaning of life and thus enrich every moment of it.

– Venkatesananda Saraswati

1.1. Surface quasi-geostrophic equation

The surface quasi-geostrophic (SQG) equation arises from the quasi-geostrophic (QG) equation

in atmosphere sciences. The QG equation describes stratified mid-to-high latitude synoptic scale

dynamics in oceanic or atmosphere flows. One of the major hypotheses of the flows in this altitude

range is that the long-scale dynamics of the fluids is governed by the near balance between the

Coriolis force and horizontal pressure gradients [Maj03]. The SQG equation is an approximate

equation for the QG equation confined near a surface [Lap17], and can also be derived from the

3D Navier-Stokes equations coupled with temperature via Boussinesq approximation under the

smallness of Rossby and Ekman numbers as well as constant potential vorticity [HPGS95,Ped79,

Sal98]. A simpler explanation is that the SQG equation describes quasi-geostrophic flows with a

potential vorticity sheet [Bie,Lap17], as illustrate in Figure 1.1.

In mathematical literature, the (inviscid) SQG equation is usually written as

θt + u · ∇θ = 0, (1.1a)

u = ∇⊥(−∆)−1/2θ. (1.1b)

Here, θ(x, t) with x = (x, y) is an unknown scalar field, ∇⊥ = (−∂y, ∂x), and the velocity

field u(x, t) is determined nonlocally from θ by ∇⊥(−∆)−1/2, which could be identified with a

perpendicular Riesz transform

u = −R⊥θ.
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Figure 1.1. A quasi-geostrophic potential vorticity sheet with an SQG front on
the sheet.

The Riesz transform also has a potential representation [Ste70,Ste93]

u(x) = R⊥θ(x) =
1

2π
lim
ε→0+

ˆ
R2\Bε(x)

(x− y)⊥

|x− x′|3
θ(x′) dx′.

More generally, the Riesz transform can also be defined in terms of a Neumann-Dirichlet map for

the 3D Laplacian in the derivation of the 2D SQG equation from the 3D QG equation. See also

Section 2.1.

The analytical study of (1.1) traces back to [CMT94a,CMT94b], where strong mathematical

similarities between the SQG equation and the 3D Euler’s equations are shown. This makes the

SQG equation a useful 2D model for singularity formation in the 3D incompressible Euler equations.

Indeed, if we take the skew gradient ∇⊥ of the equation (1.1a), we obtain

(∇⊥θ)t + u · ∇(∇⊥θ) = (∇⊥θ) · ∇u.

In contrast, the vorticity-stream function formulation of the 3D Euler equation reads

ωt + u · ∇ω = ω · ∇u,

where u = (u1, u2, u3) is a 3D velocity field, and ω = curl u is the vector vorticity of the fluid. This

resemblance suggests that the 2D vector field ∇⊥θ in the SQG equation plays a similar role of ω in

the 3D incompressible Euler equations. The SQG equation has global weak solutions in Lp-spaces
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(p > 4/3) [Mar08,Res95], and convex integration shows that low-regularity weak solutions need

not be unique [BSV19]. A class of nontrivial global smooth solutions is constructed in [CCGSar],

but — as for the 3D incompressible Euler equations — the question of whether general smooth

solutions of the SQG equation remain smooth for all time or form singularities in finite time is

open. See Table 1.1 for a summarization of some of the resemblance [BKM84,BSV19,CMT94a,

CMT94b,MB02,Shn97].

3D Euler 2D SQG

ω = ∇× u ∇⊥θ = (−∂yθ, ∂xθ)

∂tω + u · ∇ω = ω · (∇u) ∂t(∇⊥θ) + u · ∇(∇⊥θ) = (∇⊥θ) · (∇u)

∇ · ω = ∇ · u = 0 ∇ · (∇⊥θ) = ∇ · u = 0

u(x) =
´
R3 K3(x′)ω(x− x′) dx′ u(x) =

´
R2 K2(x′)∇⊥θ(x− x′) dx′

vortex lines move with the fluid level sets of θ move with the fluid

‖u(t)‖L2 = ‖u(0)‖L2 ‖u(t)‖L2 = ‖u(0)‖L2

local existence in Hs local existence in Hs

BKM
´ T

0 ‖ω‖L∞ ds
T→T∗−−−−→∞

´ T
0 ‖∇

⊥θ‖L∞ ds
T→T∗−−−−→∞

Nonuniqueness of weak solutions Nonuniqueness of weak solutions

Table 1.1. Comparison between 3D Euler equations and 2D SQG equation. K2

and K3 are the Green’s function of (generalized) Biot-Savart law in two-dimension
and three-dimension, respectively.

It is also remarkable to compare the SQG equation with the 2D incompressible Euler equation

in the vorticity-stream function formulation [MT96]. These two equations both fall into a family

of active scalar equations

θt + u · ∇θ = 0,

u = ∇⊥(−∆)−α/2θ,
(1.2)

where α ∈ (0, 2] is a parameter. If α = 1, (1.2) is the SQG equation, while if α = 2, (1.2) corresponds

to the Euler equation. When α takes other values, (1.2) is referred to as the generalized surface

quasi-geostrophic (GSQG) equation, and they are a natural generalization of the other two cases.

There are other values of α of interest [KRara,KRarb], but we do not mention them here. The
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operator (−∆)−α/2 is the Fourier multiplier operator with symbol |k|−α:

(−∆)−α/2
ˆ
R2

f̂(k, `)eikx+i`y dk d` =

ˆ
R2

(k2 + `2)−α/2f̂(k, `)eikx+i`y dk d`,

and the relation between u and θ is sometimes referred to as the (generalized) Biot-Savart law

u(x) = gα∇⊥G ∗ θ,

where G is the Green’s function for (−∆)α/2 (Riesz potential if 0 < α < 2 [MZ97,Ste93]) or the

two-dimensional Newtonian kernel if α = 2 [MB02]

G(x) =

 −
1

2π log |x| if α = 2,

|x|−(2−α) if 0 < α < 2,
gα =


1 if α = 2,

Γ(1−α
2 )

2απΓ(α2 )
if 0 < α < 2.

(1.3)

The endpoint case (Euler equation, α = 2) is mostly studied, and the scalar θ = ∇⊥ · u is

the scalar vorticity. It has long been established that the 2D Euler equation has global smooth

solutions [H3̈3,Wol33]. Further results on the 2D Euler equation can be found in [MB02,MP94]

and the references therein.

As for the other cases in the family, with 0 < α < 1 or 1 < α < 2, local existence of smooth

solutions of these equations is proved in [CCC+12], but the global existence of smooth solutions

with general initial data is not known for any 0 < α < 2.

1.2. Piecewise constant solutions

We first review a notion of a weak solution of the GSQG equation [Res95].

Definition 1.2.1 (Weak solutions of the GSQG equation). A bounded function θ is a weak solution

of the GSQG equation if for any φ ∈ C∞0 (R2 × (0, T )), we have

ˆ
R2×(0,T )

[θ(x, t)φt(x, t) + θ(x, t)u(x, t) · ∇φ(x, t)] dx dt = 0.

Equation (1.2) has a class of piecewise constant solutions of the form

θ(x, t) =
N∑
k=1

θk1Ωk(t)(x), (1.4)
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where N ≥ 2 is a positive integer, θ1, . . . , θN ∈ R are constants, and Ω1(t), . . . ,ΩN (t) ⊂ R2 are

disjoint domains such that
N⋃
k=1

Ωk(t) = R2,

and their boundaries ∂Ω1(t), ∂Ω2(t), . . . , ∂ΩN (t) are smooth curves, whose components either co-

incide or are a positive distance apart. In (1.4), 1Ωk(t) denotes the indicator function of Ωk(t). The

transport equation (1.2) preserves the form of these weak solutions, at least locally in time, and to

study their evolution, we only need to understand the dynamics of the boundaries ∂Ωk(t) of the

regions Ωk(t).

Depending on the number of regions and the boundedness of each region, we distinguish the

following three different types of solutions (see Figure 1.2). In this dissertation, we will be mainly

concerned with the second and the third types, which we call front and two-front solutions, for the

SQG equation (1.1), but in this chapter, we review also some of the results on GSQG equations

(1.2).

1.2.1. Patches. Equation (1.4) is a patch solution if it satisfies the following assumptions:

(1) N ≥ 2;

(2) θN = 0, but θk ∈ R \ {0} for each 1 ≤ k ≤ N − 1;

(3) for each 1 ≤ k ≤ N−1, the region Ωk(t) is bounded, and its boundary ∂Ωk(t) is a smooth,

simple, closed curve that is diffeomorphic to the circle T;

(4) the region ΩN (t) is unbounded.

Under these assumptions, θ has compact support and contour dynamics equations for the motion

of the patches are straightforward to derive, as was first done in [ZHR79] for the vortex-patch

solutions of the Euler equation. The 2D Euler equation has global weak solutions with vorticity

in L1(R2) ∩ L∞(R2) [MB02, Jud63], and smooth vortex patch boundaries remain smooth and

non-self-intersecting for all times [BC93,Che93,Che98,Ser94]. Some special types of nontrivial

global-in-time smooth vortex patch solutions are constructed in [Bur82,CCGS16b,dlHHMV16,

HM16,HM17,HMV13], mostly using a Crandall–Rabinowitz bifurcation theorem [CR71].

By use of a reparametrization-by-arclength technique, local well-posedness of the contour dy-

namics equations for SQG and GSQG patches is proved in [CCC+12, CCG18, Gan08, GPar].

The question of whether finite-time singularities can form in smooth boundaries of SQG or GSQG

patches remains open, but it is proved in [GS14] that splash singularities cannot form. To be more
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(a) Patch problem with N = 2. (b) Spatially periodic front problem.

(c) Non-periodic front problem. (d) Two-front problem.

Figure 1.2. Different types of problems.

specific, the boundary of an SQG patch cannot self-intersect in finite time as long as the bound-

ary stays smooth. In [CCGS16a, dlHHH16, GS19, HH15, HM17], some particular classes of

nontrivial global solutions for SQG and GSQG patches have been shown to exist. These solutions

have some symmetries and are either rotating in time (time-periodic) or steady (the shape of the

boundary do not change in time). See also [GSPSYar].

The local existence and the formation of finite-time singularities of smooth GSQG patches in

the presence of a rigid boundary is shown in [GPar,KYZ17] for α ∈ (5/3, 2). By contrast, vortex

patches in this setting (with α = 2) have global regularity [KRYZ16].

Numerical solutions for vortex patches show that they form extraordinarily thin, high-curvature

filaments [Dri88,DM90], although their boundaries remain smooth globally in time. On the other

6



hand, numerical solutions for SQG patches suggest that complex, self-similar singularities can form

in the boundary of a single patch [SD14, SD19] and provide evidence that two separated SQG

patches can touch in finite time [CFMR05].

1.2.2. Fronts. Equation (1.4) is a front solution if it satisfies the following assumptions:

(1) N = 2;

(2) θ1, θ2 ∈ R are distinct constants;

(3) both Ω1(t) and Ω2(t) are unbounded and they share a boundary which is a simple, smooth

curve diffeomorphic to R.

When 1 ≤ α ≤ 2, the kernel of the (generalized) Biot-Savart law, which recovers the velocity

field u from the scalar θ, decays too slowly at infinity for the formal front equations to converge.

This differentiates the patch problems and the front problems, since there are no convergence issues

at infinity in the case of patches with compactly supported θ. One goal of this dissertation is to

present several methods deriving meaningful contour dynamics equations for the SQG fronts used

in [HS18] and [HSZara].

The front problem for vorticity discontinuities in the Euler equation is studied in [Ray96], where

it is shown that vorticity discontinuity is linearly stable, and that the surfaces waves propagate

along discontinuity, but decay exponentially into the interior. It is also shown that the location of

discontinuity can be described by the Burgers-Hilbert equation using asymptotic analysis [BH10,

HMVSZ]. Local existence and uniqueness for spatially periodic SQG fronts is proved for C∞

solutions in [Rod05] using a Nash–Moser iteration, and analytic solutions in [FR11] using a

Cauchy–Kowalevski theorem. Spatially periodic almost SQG sharp fronts are studied in [CFR04,

FLR12,FR12,FR15]. Smooth C∞ solutions for spatially periodic GSQG fronts with 1 < α < 2

also exist locally in time [CFMR05].

In the non-periodic setting, smooth solutions to the GSQG front equations on R with 0 <

α < 1 are shown to exist globally in time for small initial data in [CGSI19]. When 1 ≤ α ≤ 2,

a regularization procedure is needed in the derivation of the front equations to account for the

divergence of the naive contour dynamics equations at infinity [HS18], and smooth solutions also

exist globally when 1 < α < 2 [HSZarb]. In this dissertation, we will also prove local and global

well-posedness of an initial-value problem for the full SQG front equation for small, smooth initial

data [HSZarc]. See also a review article [Shu20].
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In this dissertation, without loss of generality and for simplicity, we write θ+ = θ1 and θ− = θ2,

normalize the jump θ+ − θ− to 2π, and consider only fronts that are a graph, located at

y = ϕ(x, t),

where ϕ(·, t) : R→ R is a smooth, bounded function. To be more specific, the transported scalar θ

has following profile

θ(x, y, t) =


2π if y > ϕ(x, t),

0 if y < ϕ(x, t).

(1.5)

1.2.3. Two-fronts. Equation (1.4) is a two-front solution if it satisfies the following assump-

tions:

(1) N = 3;

(2) θ1, θ2, θ3 ∈ R with θ1 6= θ2 and θ2 6= θ3;

(3) there is a diffeomorphism Ψt : R2 → R2, satisfying Ψt (Ω1(t)) = R × (1,∞), Ψt (Ω2(t)) =

R× (−1, 1), and Ψt (Ω3(t)) = R× (−∞,−1).

This case is mainly studied in [HSZard], and in this dissertation, we present the derivation of

the SQG two-front system and prove well-posedness results for the resulting system. For notational

simplification, we write Ω+(t) = Ω1(t), Ω0(t) = Ω2(t), Ω−(t) = Ω3(t), with the same subscript

changes applying to θ+, θ0, θ−. We also define the jumps in θ across the fronts, scaled by a

convenient factor gα given in (1.3), by

Θ+ = gα(θ+ − θ0), Θ− = gα(θ0 − θ−). (1.6)

Numerical solutions of the contour dynamics equations for spatially-periodic two-front solutions

of the Euler equation and a study of the approximation of vortex sheets by a thin vortex layer are

given in [BS90]. The two-front problem for the GSQG (0 < α ≤ 2) is studied in [HSZard].

In this dissertation, we only consider two-front solutions whose fronts are graphs located at

y = h+ + ϕ(x, t), y = h− + ψ(x, t),

8



where ϕ,ψ : R × R+ → R denote the perturbations from the flat fronts y = h+, h = h−, and

h+ > h−. To be more precise, the transported scalar θ admits following profile

θ(x, y, t) =


θ+ if y ∈ (h+ + ϕ(x, t),∞) ,

θ0 if y ∈ (h− + ψ(x, t), h+ + ϕ(x, t)) ,

θ− if y ∈ (−∞, h− + ψ(x, t)) .

(1.7)

1.3. Chapter summaries

The results in this dissertation are presented into five chapters, containing essentially selected

results of papers [HS18, HSZ18, HSZara, HSZarc, HSZard]. This dissertation is organized as

follows. In Chapter 2, we collect some fundamental facts and results that we will use throughout the

whole dissertation. In Chapter 3, we present three methods to derive the contour dynamics equation

for the SQG front equation — the regularization method proposed in [HS18], the decomposition

method, and the modified Green’s function method presented in [HSZara], and two methods to

derive the contour dynamics system for the two-front SQG problem [HSZard]. In Chapter 4,

we study an approximate equations for the SQG fronts. We present a weak local well-posedness

result for a dispersionless version of the approximate equation posed on circle T, in which solutions

may lose Sobolev derivatives over time [HS18]. This analysis is of independent interest as it is an

adaption of proofs for Gevrey-class solutions to the Sobolev solutions. We also prove a stronger

short-time well-posedness result for the approximate SGQ equation posed on T using Weyl para-

differential calculus [HSZ18], and present some numerical simulations for the approximate SQG

front. In Chapter 5, we prove that the full SQG front equation admits global-in-time solutions

for small and smooth initial data [HSZarc]. We finish the main part the of this dissertation by

Chapter 6, where we first present the derivation of two-front SQG contour dynamics systems —

the regularization method and the decomposition method, and then prove local well-posedness of

the initial value problem for the system with small and smooth data [HSZard]. In appendices,

we present an alternative formulation for the SQG front equation in Appendix A and prove some

algebraic inequalities in Appendix B.
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CHAPTER 2

Preliminaries

The beginner ... should not be discouraged if ... he finds that he does not have

the prerequisites for reading the prerequisites.

– Paul Halmos

The goal of this chapter is devoted to summarize a number of theories and facts, as well as

fix some notations that we will need to use throughout the dissertation. In Section 2.1, we state

definitions and some properties of the Riesz transform, which relates L∞ space and the BMO space.

In Section 2.2, Fourier transform, Fourier multipliers, Sobolev spaces, and Weyl para-products are

defined. We also prove some basic commutator estimates. In Section 2.3, we state some lemmas

regarding a frequency cut-off Fourier multipliers and a multilinear estimate, which are widely used

in Chapter 5. Finally, in Section 2.4, we review the definitions and some basic properties for the

modified Bessel’s functions.

2.1. Riesz transform, BMO space, and Dirichlet-Neumann maps

2.1.1. Riesz transform and BMO space. In this subsection, we recall some definitions and

properties of the Riesz transform and the space of bounded mean oscillations (BMO). For more

details, see [Duo01,FS72,Ste70,Ste93].

When 1 < p < ∞, the Riesz transform R : Lp(Rn) → Lp(Rn;Rn) is the bounded singular

integral operator defined pointwise a.e. for f ∈ Lp(Rn) by [Duo01]

Rf(x) = Cnp.v.

ˆ
Rn

x− x′

|x− x′|n+1
f(x′) dx′

= Cn lim
ε→0+

ˆ
Rn\Bε(x)

x− x′

|x− x′|n+1
f(x′) dx′,

Cn =
1

π(n+1)/2
Γ

(
n+ 1

2

)
,

(2.1)

where Bε(x) is the ball of radius ε centered at x. One can also write R = −∇(−∆)−1/2.

10



For f ∈ L∞(Rn), the principal value integral on the right-hand side of (2.1) does not define

Rf , unless it happens to converges absolutely at infinity. However, the Riesz transform can be

extended to a bounded linear map R : L∞(Rn)→ BMO(Rn;Rn), where BMO denotes the Banach

space of functions of bounded mean oscillation.

The BMO-norm of f : Rn → R is defined by

‖f‖BMO = sup
B⊂Rn

 
B

∣∣∣∣f −  
B
f

∣∣∣∣ ,  
B
f =

1

|B|

ˆ
B
f,

where B ranges over all balls and
ffl
B f denotes the average of f over B. The BMO-norm of a

constant is equal to zero, and functions that differ by a constant are regarded as equivalent in

BMO. The space BMO consists of equivalence classes of locally integrable functions with finite

BMO-norms.

The Riesz transform of f ∈ L∞(Rn) can be defined by [Duo01]

Rf(x) = R[f1B](x) + Cn

ˆ
Rn\B

[
x− x′

|x− x′|n+1
− x0 − x′

|x0 − x′|n+1

]
f(x′) dx′, (2.2)

where x0 ∈ Rn is a fixed point, B is a ball that contains x and x0, 1B is the characteristic function

of B, and R[f1B] is defined as in (2.1). The integral on the right-hand side of (2.2) converges

absolutely since the integrand is O(|x′|−(n+1)) as |x′| → ∞. Different choices of x0 and B lead

to functions that differ by a constant, so they are equivalent in BMO, and it can be shown that

Rf ∈ BMO for f ∈ L∞. In particular, R1 = 0 in BMO. If the support E of f ∈ L∞(Rn) is a

proper subset of Rn and x0 /∈ E, then we can also define

Rf(x) = Cnp.v.

ˆ
E

[
x− x′

|x− x′|n+1
− x0 − x′

|x0 − x′|n+1

]
f(x′) dx′, (2.3)

since this expression agrees with (2.2) up to a constant.

2.2. Fourier transform, Sobolev space, and Weyl para-differential calculus

In this section, we first fix some notations for Fourier transforms, Fourier series, Sobolev spaces,

and Weyl para-differential calculus, and then state several lemmas for the Fourier multiplier oper-

ators

L = log |∂x|, D = −i∂x, |D|s = |∂x|s (2.4)

11



with symbols λL(ξ), ξ, and |ξ|s, respectively, where

λL(ξ) =


log |ξ| if ξ ∈ Z∗,

0 if ξ = 0,

where Z∗ = Z \ {0} is the set of nonzero integers.

For f : T→ C, we denote the Fourier series of f by Ff ≡ f̂ : T→ C

f(x) =
∑
ξ∈Z

f̂(ξ)eiξx, f̂(ξ) =
1

2π

ˆ
T
f(x)e−iξx dx.

We denote the Hilbert space of zero-mean, periodic functions with square-integrable weak deriva-

tives of the order s ∈ R by

Ḣs(T) =
{
f : T→ R|f̂(0) = 0, ‖f‖Ḣs(R) <∞

}
,

‖f‖Ḣs(R) =

∑
ξ∈Z∗

|ξ|2s|f̂(ξ)|2
1/2

.

(2.5)

Respectively, for f : R→ C, by an abuse of notation concerning Fourier transforms and Fourier

series, we denote the Fourier transform of f by f̂ : R→ C, where f̂ = Ff is given by

f(x) =

ˆ
R
f̂(ξ)eiξx dξ, f̂(ξ) =

1

2π

ˆ
R
f(x)e−iξx dx.

For s ∈ R, we denote by Hs(R) the space of Schwartz distributions f with ‖f‖Hs(R) <∞, where

‖f‖Hs(R) =

[ˆ
R

(
1 + |ξ|2

)s |f̂(ξ)|2 dξ

]1/2

.

In this dissertation, we sometimes omit the space T or R when it is clear in the context. For

p ∈ [1,∞], we denote by Lp the Lebesgue space of measurable functions satisfying ‖f‖Lp < ∞

where

‖f‖Lp =


(ˆ
|f(x)|p dx

) 1
p

if 1 ≤ p <∞,

sup
x
|f(x)| if p =∞.

In addition, if σ ∈ N, we denote by W σ,p the Sobolev space function measurable function satisfying

‖f‖Wσ,p <∞ where

‖f‖Wσ,p =
σ∑
k=0

‖∂kxf‖Lp .
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Throughout this dissertation, we use A . B to mean there is a constant C such that A ≤ CB,

and A & B to mean there is a constant C such that A ≥ CB. We use A ≈ B to mean that A . B

and B . A. The notation O(f) denotes a term satisfying

‖O(f)‖Hs . ‖f‖Hs

whenever there exists s ∈ R such that f ∈ Hs. We also use O(f) to denote a term satisfying

|O(f)| . |f | pointwise.

Let χ : R → R be a smooth function supported in the interval {ξ ∈ R | |ξ| ≤ 1/10} and equal

to 1 on {ξ ∈ R | |ξ| ≤ 3/40}. If f is a Schwartz distribution on R and a : R× R → C is a symbol,

then we define the Weyl para-product Taf by

F [Taf ] (ξ) =

ˆ
R
χ

(
|ξ − η|
|ξ + η|

)
ã
(
ξ − η, ξ + η

2

)
f̂(η) dη, (2.6)

where ã(ξ, η) denotes the partial Fourier transform of a(x, η) with respect to x. For r1, r2 ∈ N0, we

define a normed symbol space by

M(r1,r2) = {a : R× R→ C : ‖a‖M(r1,r2)
<∞},

‖a‖M(r1,r2)
= sup

(x,η)∈R2


r1∑
α=0

r2∑
β=0

|η|β
∣∣∂βη ∂αx a(x, η)

∣∣ .

If a ∈M(0,0) and f ∈ Lp, with 1 ≤ p ≤ ∞, then Taf ∈ Lp and

‖Taf‖Lp . ‖a‖M(0,0)
‖f‖Lp .

In particular, if a ∈M(0,0) is real-valued, then Ta is a self-adjoint, bounded linear operator on L2.

Weyl para-products admit the following decomposition

fg = Tfg + Tfg +R(f, g). (2.7)

This decomposition is well-defined if, for example, f ∈W σ,∞ and g ∈ Hs with s+ σ > 0, and then

‖R(f, g)‖Hs+σ . ‖f‖Wσ,∞‖g‖Hs . (2.8)

13



We can also define Weyl para-products on periodic functions, and above statements still hold.

Further discussion of the Weyl calculus and para-products can be found in [BCD11,Che98,H0̈7,

Tay00].

Next, we prove some commutator estimates.

Lemma 2.2.1. Suppose that f ∈ Hs(R), a ∈M(1,0), and b, xb ∈M(0,0). Then

‖[L, Ta]f‖Hs . ‖a‖M(1,0)
‖f‖Hs−1 , (2.9)

‖[x, Tb]f‖Hs . (‖b‖M(0,0)
+ ‖xb‖M(0,0)

)‖f‖Hs , (2.10)

‖[x, L]f‖Ḣs . ‖f‖Ḣs−1 if s ≥ 1. (2.11)

Proof. 1. We shall prove that

LTav = TaLv + TDaD
−1v +O(TD2aD

−2v).

Indeed, by the definition of Weyl para-product, we have for ξ 6= 0 that

F [LTav] (ξ) = log |ξ|
ˆ
R
χ

(
|ξ − η|
|ξ + η|

)
ã

(
ξ − η, ξ + η

2

)
v̂(η) dη

=

ˆ
R

log |ξ − η + η|χ
(
|ξ − η|
|ξ + η|

)
ã

(
ξ − η, ξ + η

2

)
v̂(η) dη.

(2.12)

If (ξ, η) belongs to the support of χ(|ξ − η|/|ξ + η|), then∣∣∣∣ξ − ηη
∣∣∣∣ ≤ 2

9
. (2.13)

To prove this claim, we use the fact that

|ξ − η| ≤ 1

10
|ξ + η| (2.14)

on the support of χ(|ξ − η|/|ξ + η|) and consider two cases.

• If |ξ + η| ≤ |η|, then |ξ − η| ≤ |η|/10, so∣∣∣∣ξ − ηη
∣∣∣∣ ≤ 1

10
<

2

9
.

• If |ξ + η| > |η|, then ξη > 0, so |ξ − η| = ||ξ| − |η||, and can we rewrite (2.14) as

||ξ| − |η|| ≤ 1

10
(|ξ|+ |η|),
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which implies that
9

11
|ξ| ≤ |η| ≤ 11

9
|ξ|,

and (2.13) follows in this case also.

Using the Taylor expansion

log |ξ − η + η| = log |η|+ log

∣∣∣∣1 +
ξ − η
η

∣∣∣∣
= log |η|+ ξ − η

η
+O

(
|ξ − η|2

η2

)
in (2.12), we get that

F [LTav] (ξ) =

ˆ
R

[
log |η|+ ξ − η

η
+O

(
|ξ − η|2

η2

)]
χ

(
|ξ − η|
|ξ + η|

)
ã

(
ξ − η, ξ + η

2

)
v̂(η) dη

= F
[
TaLv + TDaD

−1v +O(TD2aD
−2v)

]
(ξ),

and (2.9) follows directly from the assumption on a.

2. To prove (2.10), we compute that

F [x, Tb]f

= − i∂ξ
ˆ
R
χ

(
|ξ − η|
|ξ + η|

)
b̃
(
ξ − η, ξ + η

2

)
f̂(η) dη +

ˆ
R
χ

(
|ξ − η|
|ξ + η|

)
b̃
(
ξ − η, ξ + η

2

)
i∂ηf̂(η) dη

= − i
ˆ
R
χ

(
|ξ − η|
|ξ + η|

)
∂ξ

[
b̃
(
ξ − η, ξ + η

2

)]
f̂(η) + ∂ξ

[
χ

(
|ξ − η|
|ξ + η|

)][
b̃
(
ξ − η, ξ + η

2

)]
f̂(η) dη

+

ˆ
R
χ

(
|ξ − η|
|ξ + η|

)
b̃
(
ξ − η, ξ + η

2

)
i∂ηf̂(η) dη.

We rewrite the first integral above as

ˆ
R
∂ξ

[
χ

(
|ξ − η|
|ξ + η|

)
b̃
(
ξ − η, ξ + η

2

)]
f̂(η) dη

=

ˆ
R

(∂ξ1 + ∂ξ2)
[
χ

(
|ξ1 − η|
|ξ2 + η|

)
b̃
(
ξ1 − η,

ξ2 + η

2

)]
f̂(η) dη

∣∣∣
ξ1=ξ2=ξ

=

ˆ
R

(2∂ξ1 + ∂η)
[
χ

(
|ξ1 − η|
|ξ2 + η|

)
b̃
(
ξ1 − η,

ξ2 + η

2

)]
f̂(η) dη

∣∣∣
ξ1=ξ2=ξ

=

ˆ
R

2∂ξ1

[
χ

(
|ξ1 − η|
|ξ2 + η|

)
b̃
(
ξ1 − η,

ξ2 + η

2

)]∣∣∣
ξ1=ξ2=ξ

f̂(η) +
[
χ

(
|ξ − η|
|ξ + η|

)
b̃
(
ξ − η, ξ + η

2

)]
∂ηf̂(η) dη.
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Therefore

F [x, Tb]f = −i
ˆ
R

2∂ξ1

[
χ

(
|ξ1 − η|
|ξ2 + η|

)
b̃
(
ξ1 − η,

ξ2 + η

2

)]∣∣∣
ξ1=ξ2=ξ

f̂(η) dη

= −2i

ˆ
R

sgn(ξ − η)

|ξ + η|
χ′
(
|ξ1 − η|
|ξ2 + η|

)
b̃
(
ξ1 − η,

ξ2 + η

2

)
f̂(η)

+ χ

(
|ξ − η|
|ξ + η|

)
∂ξ1 b̃

(
ξ1 − η,

ξ2 + η

2

)∣∣∣
ξ1=ξ2=ξ

f̂(η) dη,

and (2.10) follows.

3. Taking Fourier transforms, we get that

F
(

[x, L]f
)

= −i∂ξ[log |ξ|f̂(ξ)]− log |ξ|(−i∂ξ f̂(ξ)) = − i
ξ
f̂(ξ),

and (2.11) follows. �

Finally, we give an expansion of |D| acting on para-products (cf. [Li19]).

Lemma 2.2.2. If a(x, ξ) ∈M(3,0), f ∈ Hs(R) and s ∈ R, then

|D|sTaf = Ta|D|sf + sTDa|D|s−2Df +
s(s− 1)

2
T|D|2a|D|s−2f +O(T|D|3a|D|s−3f),

where Da means that the differential operator D acts on the function x 7→ a(x, ξ) for fixed ξ, and

similarly for |D|2a and |D|3a.

Proof. By the definition of Weyl para-product

F(|D|sTaf)(ξ) = |ξ|s
ˆ
R
χ

(
|ξ − η|
|ξ + η|

)
ã
(
ξ − η, ξ + η

2

)
f̂(η) dη

=

ˆ
R
|ξ − η + η|sχ

(
|ξ − η|
|ξ + η|

)
ã
(
ξ − η, ξ + η

2

)
f̂(η) dη,

where ã denotes the partial Fourier transform of f in the first variable. On the support of

χ (|ξ − η|/|ξ + η|) we have that ∣∣∣∣ξ − ηη
∣∣∣∣ ≤ 2

9
,

and, using the Taylor expansion

|ξ − η + η|s = |η|s
∣∣∣∣1 +

ξ − η
η

∣∣∣∣s = |η|s
(

1 + s
ξ − η
η

+
s(s− 1)

2

(ξ − η)2

η2
+O

(
|ξ − η|3

η3

))
16



in the expression for F
[
|D|sTaf

]
, we get

F
[
|D|sTaf

]
(ξ)

=

ˆ
R
|η|s

(
1 + s

ξ − η
η

+
s(s− 1)

2

(ξ − η)2

η2
+O

(
|ξ − η|3

η3

))
χ

(
|ξ − η|
|ξ + η|

)
ã
(
ξ − η, ξ + η

2

)
f̂(η) dη

= F
[
Ta|D|sf + sTDa|D|s−2Df +

s(s− 1)

2
T|D|2a|D|s−2f +O(T|D|3a|D|s−3f)

]
(ξ),

which proves the lemma. �

We remark that a similar result holds also for functions defined on T and have zero mean.

Moreover, in the periodic case, we have following lemma, whose proofs we omit (see [HSZ18] for

details).

Lemma 2.2.3. If u, v ∈ L2, then

L(uv) = TvLu+ TDvD
−1u− 1

2
TD2vD

−2u+
1

3
TD3vD

−3u+O(TD4vD
−4u)

+ TuLv + TDuD
−1v − 1

2
TD2uD

−2v +
1

3
TD3uD

−3v +O(TD4uD
−4v) + LR(u, v),

where the remainder terms satisfy

‖O(TD4vD
−4u)‖Ḣs ≤ C‖TD4vD

−4u‖Ḣs , ‖O(TD4uD
−4v)‖Ḣs ≤ C‖TD4uD

−4v‖Ḣs .

Moreover, if u, Lu ∈W σ,∞ for an integer σ ≥ 0, and v ∈ Ḣs with s+ σ > 0, then

‖LR(u, v)‖Ḣs+σ ≤ C(‖u‖Wσ,∞ + ‖Lu‖Wσ,∞)‖v‖Ḣs ,

for some constant C > 0.

Setting u = v in Lemma 2.2.3, we have the following corollary for Lu2, which is of independent

interest.

Corollary 2.2.4. If u ∈ L∞ ∩ Ḣs with Lu ∈ L∞ and s ≥ 0, then there exists a constant C > 0

such that

‖Lu2 − 2uLu‖Ḣs ≤ C(‖u‖L∞ + ‖Lu‖L∞)‖u‖Ḣs .

Proof. By Lemma 2.2.3, we have that

L(u2) = 2TuLu+ 2TDuD
−1u+O(TD2uD

−2u)

17



and

2uLu = 2TuLu+ 2TLuu+ 2R(Lu, u).

Taking the difference of above two equations yields

‖Lu2 − 2uLu‖Ḣs = ‖2TDuD−1u+O(TD2uD
−2u)− 2TLuu− 2R(Lu, u)‖Ḣs

≤ C(‖u‖L∞ + ‖Lu‖L∞)‖u‖Ḣs .

�

The following lemma gives an expansion of L(uvw) and an estimates of the remainder terms.

Lemma 2.2.5. If u, v, w ∈W 3,∞ ∩ Ḣs, with s ≥ 0, then

L(uvw) =
∑
u,v,w

TvTwLu+ (TDvTw + TvTDw)D−1u− 1

2
[TD2vTw + TD2wTv + 2TDvTDw]D−2u

+ remainder,

where the summation is cyclic over u, v, w, and the remainder terms satisfy

‖remainder‖Ḣs+2 ≤ C (‖u‖W 3,∞ + ‖v‖W 3,∞ + ‖w‖W 3,∞)2 (‖u‖Ḣs + ‖v‖Ḣs + ‖w‖Ḣs),

for some constant C > 0.

Proof. By Lemma 2.2.3, we have

L[u(vw)] =TvwLu+ TD(vw)D
−1u− 1

2
TD2(vw)D

−2u+O(TD3(vw)D
−3u)

+ TuL(vw) + TDuD
−1(vw)− 1

2
TD2uD

−2(vw) +O(TD3uD
−3(vw))

+ LR(u, vw),

(2.15)

with

‖LR(u, vw)‖Ḣs+2 ≤ C(‖u‖W 2,∞ + ‖Lu‖W 2,∞)‖vw‖Ḣs ,

where ‖Lu‖W 2,∞ ≤ C‖u‖W 3,∞ and ‖vw‖Ḣs ≤ C
(
‖v‖L∞‖w‖Ḣs + ‖w‖L∞‖v‖Ḣs

)
.

Using the fact that

‖Tvw − TvTw‖Ḣs→Ḣs+σ ≤ C(‖v‖Wσ,∞‖w‖L∞ + ‖v‖L∞‖w‖Wσ,∞),
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and denoting the remainder terms by Ri, we can expand each term in the above equation to get

TvwLu = TvTwLu+R1,

TD(vw)D
−1u = (TDvTw + TvTDw)D−1u+R2,

TD2(vw)D
−2u = [TD2vTw + TD2wTv + 2TDvTDw]D−2u+R3,

D−1(vw) = D−1(Tvw + Twv +R(v, w))

= TvD
−1w − TDvD−2w +O(TD2vD

−3w)

+ TwD
−1v − TDwD−2v +O(TD2wD

−3v) +R4,

D−2(vw) = D−2(Tvw + Twv +R(v, w))

= TvD
−2w − 2TDvD

−3w +O(TD2vD
−4w)

+ TwD
−2v − 2TDwD

−3v +O(TD2wD
−4v) +R5,

(2.16)

with

‖Ri‖Ḣs+2 ≤ C‖v‖W 3,∞‖w‖W 3,∞‖u‖Ḣs , for i = 1, 2, 3,

‖R4‖Ḣs+2 ≤ C‖v‖W 1,∞‖w‖Ḣs + ‖w‖W 1,∞‖v‖Ḣs ,

‖R5‖Ḣs+2 ≤ ‖v‖L∞‖w‖Ḣs + ‖w‖L∞‖v‖Ḣs .

Then the lemma is proved by substituting (2.16) into (2.15). �

2.3. Fourier multipliers

Let ς : R→ [0, 1] be a smooth function supported in [−8/5, 8/5] and equal to 1 in [−5/4, 5/4].

For any k ∈ Z, we define

ςk(ξ) = ς(ξ/2k)− ς(ξ/2k−1), ς≤k(ξ) = ς(ξ/2k), ς≥k(ξ) = 1− ς(ξ/2k−1),

ς̃k(ξ) = ςk−1(ξ) + ςk(ξ) + ςk+1(ξ),
(2.17)

and denote by Pk, P≤k, P≥k, and P̃k the Fourier multiplier operators with symbols ςk, ς≤k, ς≥k, and

ς̃k, respectively. Notice that ςk(ξ) = ς0(ξ/2k), ς̃k(ξ) = ς̃0(ξ/2k).

It is easy to check that

‖ςk‖L2 ≈ 2k/2, ‖ς ′k‖L2 ≈ 2−k/2. (2.18)
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We will need the following interpolation lemma, whose proof can be found in [IP16].

Lemma 2.3.1. For any k ∈ Z and f ∈ L2(R), we have

‖P̂kf‖2L∞ . ‖Pkf‖2L1 . 2−k‖f̂‖L2
ξ

[
2k‖∂ξ f̂‖L2

ξ
+ ‖f̂‖L2

ξ

]
.

We will also use an estimate for multilinear Fourier multipliers proved in [IP15]. Before stating

the estimate, we introduce some notation.

Define the class of symbols

S∞ := {κ : Rd → C, κ continuous and ‖κ‖S∞ := ‖F−1(κ)‖L1 <∞}. (2.19)

Given κ ∈ S∞, we define a multilinear operator Mκ acting on Schwartz functions f1, . . . , fm ∈

S(R) by

Mκ(f1, . . . , fm)(x) =

ˆ
Rm

eix(ξ1+···+ξm)κ(ξ1, . . . , ξm)f̂1(ξ1) · · · f̂m(ξm) dξ1 · · · dξm.

Lemma 2.3.2. (i) If κ1, κ2 ∈ S∞, then κ1κ2 ∈ S∞.

(ii) Suppose that 1 ≤ p1, . . . , pm ≤ ∞, 1 ≤ p ≤ ∞, satisfy

1

p1
+

1

p2
+ · · ·+ 1

pm
=

1

p
.

If κ ∈ S∞, then

‖Mκ‖Lp1×···×Lpm→Lp . ‖κ‖S∞ .

(iii) Assume p, q, r ∈ [1,∞] satisfy 1/p + 1/q + 1/r = 1, and m ∈ S∞η1,η2L
∞
ξ . Then, for any

f ∈ Lp(R), g ∈ Lq(R), and h ∈ Lr(R),∥∥∥∥ˆ
R2

m(η1, η2, ξ)f̂(η1)ĝ(η2)ĥ(ξ − η1 − η2) dη1 dη2

∥∥∥∥
L∞ξ

. ‖m‖S∞η1,η2L∞ξ ‖f‖Lp‖g‖Lq‖h‖Lr .

Remark 2.3.3. For a symbol m(η1, η2) in C∞c , by interpolation, we can estimate its S∞ norm as

‖m‖S∞ . ‖m‖1/4L1 ‖∂2
η2m‖

1/2
L1 ‖∂2

η1∂
2
η2m‖

1/4
L1 ,

‖m‖S∞ . ‖m‖1/4L1 ‖∂2
η1m‖

1/2
L1 ‖∂2

η1∂
2
η2m‖

1/4
L1 .

(2.20)
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2.4. Modified Bessel function of the second kind

In this section, we summarize some definitions and properties of modified Bessel functions,

which can be found in [OLBC10, Wat95]. The modified Bessel function Iν of the first kind is

defined for ν ∈ R by

Iν(x) =

∞∑
m=0

1

m!Γ(m+ ν + 1)

(
x

2

)2m+ν

.

The modified Bessel function Kν of the second kind is defined for ν /∈ Z by

Kν(x) =
π

2

I−ν(x)− Iν(x)

sin νπ
,

and Kn(x) = limν→nKν(x) for n ∈ Z. When ν > −1/2 and x > 0, we can also write Kν as

Kν(x) =
Γ(ν + 1

2)(2x)ν
√
π

ˆ ∞
0

cos y

(y2 + x2)ν+1/2
dy. (2.21)

In (2.21), and throughout this dissertation, Γ(z) denotes the Gamma function.

The following lemma collects the properties of modified Bessel functions of the second kind that

we need. Properties (i)–(iv) can be found in [OLBC10].

Lemma 2.4.1. The modified Bessel functions of the second kind have following properties:

(i) For each ν ≥ 0, Kν(x) is a real-valued, analytic, strictly decreasing function on (0,∞).

(ii) For each fixed x, ν > 0, Kν(x) = K−ν(x).

(iii) If ν > 0, then

Kν(x) ∼ 1

2
Γ(ν)

(x
2

)−ν
, K0(x) ∼ − log(x) as x→ 0+.

(iv) If ν ≥ 0, then

Kν(x) ∼
√

π

2x
e−x as x→∞.

(v) Let m ≥ 0 be an integer, and define fm : R× (1
2 ,∞)→ R by

fm(x, ν) = |x|ν+mKν(|x|).

Then fm(·, ν) attains its maximum, and if the maximum is attained at some x0 ∈ R, then

|x0| ≤
√
m2 + (2ν − 1)m, 0 ≤ fm(x0, ν) ≤

(
m2 + (2ν − 1)m

)m/2
Γ(ν)

2ν+1
. (2.22)
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Proof of (v). It follows from (ii) that we only need to consider x ≥ 0. We use the identities

(see [OLBC10])

K ′ν(x) = −Kν−1(x) +Kν+1(x)

2
,

xKν+1(x)− xKν−1(x) = 2νKν(x),

to obtain

∂

∂x
fm(x, ν) = (ν +m)xν+m−1Kν(x)− 1

2
xν+m (Kν−1(x) +Kν+1(x))

= xν+m−1 (mKν(x)− xKν−1(x)) .

When m = 0 and ν > 1/2, we have ∂xf0(x, ν) ≤ 0. Thus f0 is decreasing in x, and its maximum

is attained at x0 = 0 with

f0(0, ν) =
Γ(ν)

2ν+1
.

When m > 0, it is clear that fm is smooth in x ∈ (0,∞) with

fm(0, ν) = lim
x→∞

fm(x, ν) = 0,

so the maximum is attained at its critical points. Therefore, x0 must satisfy

m

x0
=
Kν−1(x0)

Kν(x0)
.

For ν > 1
2 and x > 0, we have that [Seg11]

Kν−1(x)

Kν(x)
>

x√
x2 + (ν − 1/2)2 + ν − 1/2

,

which leads to the estimate of |x0| in (2.22). Then, using

fm(x0, ν) = |x0|ν+mKν(x0) = |x0|mf0(x0, ν) ≤ |x0|mf0(0, ν) = |x0|m
Γ(ν)

2ν+1
,

we obtain the upper bound for fm. �
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CHAPTER 3

Contour dynamics equations

The world is complex, dynamic, multidimensional; the paper is static, flat. How

are we to represent the rich visual world of experience and measurement on mere

flatland?

– Edward Tufte

In this Chapter, we derive contour dynamics equations for the front solutions (1.5) and two-front

solutions (1.7) for the SQG equations (1.1).

One main result of this chapter is that, with the choice of boundary condition

u(x, t) = (2 log |y|, 0) + o(1) as |y| → ∞, (3.1)

the evolutionary equation describing the location of an SQG front is

ϕt(x, t)− 2 log |∂x|ϕx(x, t)

+

ˆ
R

[ϕx(x, t)− ϕx(x+ ζ, t)]

{
1

|ζ|
− 1√

ζ2 + [ϕ(x, t)− ϕ(x+ ζ, t)]2

}
dζ = 0,

(3.2)

where log |∂x| is the Fourier multiplier operator defined in (2.4). This equation can be derived

using three methods, a regularization method proposed in [HS18], a decomposition method, and

a modified Green’s function method [HSZara]. As is noted in [HSZara], the last two methods

are essentially equivalent. This equation also possesses conservative form (3.12) and Hamiltonian

structure (3.13)–(3.14). For spatially periodic SQG fronts, the contour dynamics equation is (3.43).

The second main result is regarding SQG two-front solutions (1.7). We show that, if Θ+ = Θ−,

then the far-field velocity of in the two-front problem are bounded. However, in general, the far-

field velocity is unbounded (as in the one-front case). In this case, we need to use the similar ideas

as in the one-front case to derive well-formulated contour dynamics equations. We show that the
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contour dynamics equations for ϕ and ψ are

ϕt(x, t)− (Θ+ −Θ−)(γ + log h)ϕx(x, t)− 2Θ+ log |∂x|ϕx(x, t) + 2Θ−K0(2h|∂x|)ψx(x, t)

+ Θ+

ˆ
R

[
ϕx(x+ ζ, t)− ϕx(x, t)

]{ 1√
ζ2 + (ϕ(x+ ζ, t)− ϕ(x, t))2

− 1

|ζ|

}
dζ

+ Θ−

ˆ
R

[
ψx(x+ ζ, t)− ϕx(x, t)

]{ 1√
ζ2 + (−2h+ ψ(x+ ζ, t)− ϕ(x, t))2

− 1√
ζ2 + (2h)2

}
dζ = 0,

ψt(x, t) + (Θ+ −Θ−)(γ + log h)ψx(x, t)− 2Θ− log |∂x|ψx(x, t) + 2Θ+K0(2h|∂x|)ϕx(x, t)

+ Θ−

ˆ
R

[
ψx(x+ ζ, t)− ψx(x, t)

]{ 1√
ζ2 + (ψ(x+ ζ, t)− ψ(x, t))2

− 1

|ζ|

}
dζ

+ Θ+

ˆ
R

[
ϕx(x+ ζ, t)− ψx(x, t)

]{ 1√
ζ2 + (2h+ ϕ(x+ ζ, t)− ψ(x, t))2

− 1√
ζ2 + (2h)2

}
dζ = 0,

(3.3)

where Θ± is defined in (1.6) with gα = g1 = 1/(2π), and

h =
h+ − h−

2
.

This system also possesses Hamiltonian structure (3.53)–(3.54). Moreover, we also derive symmetric

(with Θ+ = Θ−) and anti-symmetric (with Θ+ = Θ−) scalar reductions of these equations (see

(3.56) and (3.57)).

The structure of this chapter is as follows. In Section 3.1 we use the three methods we mentioned

above to derive (3.2), and in Section 3.2, we give two derivations using the regularization method

[HSZard] and a sketch of the decomposition method.

3.1. Contour dynamics for SQG front solutions

3.1.1. Method of regularization. We begin by recalling the derivation of the contour dy-

namics equations for bounded patches (see e.g., [CCG18,Gan08]).

3.1.1.1. Contour dynamics for patches. Suppose that ∂Ω(t) is a smooth, simple, closed curve

with bounded interior Ω(t) ⊂ R2 and

θ(x, t) =


2π x ∈ Ω(t),

0 x ∈ Ωc(t).

(3.4)
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The Green’s function for the operator (−∆)1/2 on R2 is given by the Reisz potential [Ste70]

1

2π|x|
.

Then, using (1.1b) and Green’s theorem, one finds that the velocity field corresponding to (3.4)

is

u(x, t) =

ˆ
∂Ω(t)

n⊥(x′, t)

|x− x′|
ds(x′), (3.5)

where n = (m,n) is the inward unit normal to Ω(t), n⊥ = (−n,m), and s(x′) is arc-length on

∂Ω(t).

We suppose that ∂Ω(t) is given by the parametric equation x = X(ζ, t), where X(·, t) : T→ R2

(see Figure 1.2(a)). Since θ satisfies the transport equation (1.1a), the curve ∂Ω(t) moves with

normal velocity Xt · n = u · n. Notice that the tangential component of (3.5) is unbounded on

∂Ω(t) (in fact, u ∈ BMO), but the normal component is well-defined, and the motion of the curve

is determined solely by its normal velocity. The equation for X is therefore

Xt(ζ, t) = c(ζ, t)Xζ(ζ, t) +

ˆ
T

1

|X(ζ, t)−X(ζ ′, t)|
[
Xζ(ζ, t)−Xζ′(ζ

′, t)
]

dζ ′, (3.6)

where c(·, t) : T→ R is an arbitrary smooth function that corresponds to a time-dependent reparametriza-

tion of the curve. The inclusion of the term proportional to the tangent vector Xζ in the integral

ensures that the integral converges.

We note that there is a difficulty in extending the contour dynamics equation for a patch to

an infinite front y = ϕ(x, t) where ϕ(·, t) : R → R (see Figure 1.2(c)). In that case, X(x, t) =

(x, ϕ(x, t)), and we get formally from (3.6) that c = 0 and

ϕt(x, t) =

ˆ
R

1√
(x− x′)2 + (ϕ(x, t)− ϕ(x′, t))2

[ϕx(x, t)− ϕx′(x′, t)] dx′. (3.7)

This equation does not make sense, since the integrand is not integrable at infinity and ϕx(x, t)

does not decay as x′ →∞.

Roughly speaking, we have to regularize a short-distance “ultraviolet” singularity, caused by the

infinite tangential velocity on the front, and simultaneously, a long-distance “infrared” singularity,

caused by the slow decay of the Green’s function.
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To regularize the long-distance singularity, we introduce a long-range cutoff parameter λ, make

a Galilean transformation into a reference frame moving with a suitable velocity v(λ), where v(λ)→

∞ as λ→∞, and take the limit λ→∞.

3.1.1.2. Cutoff Regularization. After a change of variables x′ = x + ζ in (3.7), we introduce a

large cutoff parameter λ > 0 to get the truncated equation

ϕt(x, t) =

ˆ λ

−λ

1√
ζ2 + (ϕ(x, t)− ϕ(x+ ζ, t))2

[ϕx(x, t)− ϕx(x+ ζ, t)] dζ. (3.8)

With the assumption that ϕ(·, t) : R→ R is a smooth bounded function with bounded first deriva-

tive, it is easy to see that the integral in (3.8) converges.

It is convenient to write (3.8) in the conservative form

ϕt(x, t) = ∂x

ˆ λ

−λ

ˆ ϕ(x,t)−ϕ(x+ζ,t)

0

1√
ζ2 + s2

ds dζ

= ∂x

ˆ λ

−λ
sinh−1

(
ϕ(x, t)− ϕ(x+ ζ, t)√

ζ2 + s2

)
dζ.

To take the limit λ→∞, we write this equation as

ϕt(x, t) + ∂x

ˆ λ

−λ

ϕ(x, t)− ϕ(x+ ζ, t)

|ζ|
− sinh−1

(
ϕ(x, t)− ϕ(x+ ζ, t)

|ζ|

)
dζ

− ∂x
ˆ λ

−λ

ϕ(x, t)− ϕ(x+ ζ, t)

|ζ|
dζ = 0.

(3.9)

First, we consider the nonlinear term in (3.9). We observe that

sinh−1

(
y

|x|

)
∼ y

|x|
+O

(
1

|x|3

)
as |x| → ∞ with y fixed, (3.10)

so when ϕ(·, t) is bounded, we have

ϕ(x, t)− ϕ(x+ ζ, t)

|ζ|
− sinh−1

(
ϕ(x, t)− ϕ(x+ ζ, t)

|ζ|

)
= O

(
1

|ζ|3

)
as |ζ| → ∞. (3.11)

It follows that

lim
λ→∞

ˆ λ

−λ

ϕ(x, t)− ϕ(x+ ζ, t)

|ζ|
− sinh−1

(
ϕ(x, t)− ϕ(x+ ζ, t)

|ζ|

)
dζ

=

ˆ
R

ϕ(x, t)− ϕ(x+ ζ, t)

|ζ|
− sinh−1

(
ϕ(x, t)− ϕ(x+ ζ, t)

|ζ|

)
dζ,

since the integral converges on R.
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Next, we consider the linear term

Lλϕ(x, t) = −
ˆ λ

−λ

ϕ(x, t)− ϕ(x+ ζ, t)

|ζ|
dζ.

Notice that the Green’s function 1/|x| is nonintegrable at both 0 and ∞. We write

Lλϕ(x, t) = v(λ)ϕx(x, t) +

ˆ
1<|ζ|<λ

ϕ(x+ ζ, t)

|ζ|
dζ −

ˆ
|ζ|<1

ϕ(x, t)− ϕ(x+ ζ, t)

|ζ|
dζ

− ϕx(x, t)

(ˆ
|ζ|>1

cos ζ

|ζ|
dζ −

ˆ
|ζ|<1

1− cos ζ

|ζ|
dζ

)
,

where

v(λ) = −2

ˆ λ

1

1

|ζ|
dζ + 2

(ˆ ∞
1

cos ζ

ζ
dζ −

ˆ 1

0

1− cos ζ

ζ
dζ

)
= −2 log λ− 2γ,

where γ is the Euler-Mascheroni constant.

Making a Galilean transformation x 7→ x− v(λ)t, and taking the limit of the resulting equation

as λ→∞, we obtain

Lϕ(x, t) =

ˆ
|ζ|>1

ϕ(x+ ζ, t)

|ζ|
dζ

−
ˆ
|ζ|<1

ϕ(x, t)− ϕ(x+ ζ, t)

|ζ|
dζ − ϕ(x, t)

(ˆ
|ζ|>1

cos ζ

ζ
dζ −

ˆ
|ζ|<1

1− cos ζ

ζ
dζ

)
.

Using Fourier transform, we have that the symbol for L is

ˆ
|ζ|>1

eikζ

|ζ|
dζ −

ˆ
|ζ|<1

1− eikζ

|ζ|
dζ −

(ˆ
|ζ|>1

cos ζ

ζ
dζ −

ˆ
|ζ|<1

1− cos ζ

ζ
dζ

)

= 2

(ˆ ∞
1

cos(kζ)

ζ
dζ −

ˆ 1

0

1− cos(kζ)

ζ
dζ

)
− 2

(ˆ ∞
1

cos ζ

ζ
dζ −

ˆ 1

0

1− cos ζ

ζ
dζ

)
= − 2 log |k|,

which concludes that L = −2 log |∂x|.

Thus, the regularized equation for SQG fronts is

ϕt(x, t) + ∂x

ˆ
R

{
ϕ(x, t)− ϕ(x+ ζ, t)

|ζ|
− sinh−1

[
ϕ(x, t)− ϕ(x+ ζ, t)

|ζ|

]}
dζ = 2 log |∂x|ϕx(x, t),

(3.12)

and the non-conservative form of the equation is (3.2).
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We remark that this equation also have Hamiltonian form

ϕt + ∂x

[
δH

δϕ

]
= 0, (3.13)

where ∂x is the Hamiltonian operator and the Hamiltonian is

H[ϕ] =
1

2

¨
R×R

ˆ ϕ(x,t)−ϕ(x′,t)

0

s

|x− x′|
− sinh−1

(
s

|x− x′|

)
dsdx dx′ −

ˆ
R
ϕ(x, t) log |∂x|ϕ(x, t) dx.

(3.14)

The corresponding conserved momentum which generates spatial translations, is

1

2

ˆ
R
ϕ2 dx.

3.1.2. Method of decomposition. We first not that for an SQG shear flow with θ = θ(y),

the Riesz transform R with respect to y reduces to the Hilbert transform H, which is a Fourier

multiplier operator with symbol −i sgn ξ, and the corresponding velocity field is u = (u(y), 0) where

u = H[θ]. In particular, if θ(y) is a step function with a jump of 2π

θ(x) = θ(y) =


2π if y > 0,

0 if y < 0,

(3.15)

then we have the Hilbert-transform pair [Duo01]

H[θ](y) = 2 log |y|,

which gives the planar front solution

θ =


2π if y > 0,

0 if y < 0,

u = (2 log |y|, 0). (3.16)

3.1.2.1. The quasi-geostrophic equation and Dirichlet-Neumann maps. An equivalent way to

describe the reconstruction of the SQG velocity field from the buoyancy is to return to the original

derivation of the 2D SQG equation from the 3D QG equation.

In this subsection, to distinguish between the 2D and 3D variables, we use the notation

x = (x, y, z), xH = (x, y), ∆ = ∂2
x + ∂2

y + ∂2
z ,
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∆H = ∂2
x + ∂2

y , ∇⊥H = (−∂y, ∂x), R⊥H = (−Ry,Rx).

The horizontal Riesz transform −R⊥H = ∇⊥H(−∆H)−1/2 in the SQG equation (1.1b) then arises as

the orthogonal gradient of a Neumann-Dirichlet map (−∆H)−1/2 for the 3D Laplacian in the QG

equation. The particular choice for the Riesz transform is determined by the far-field boundary

conditions for the QG equation.

As has already been mentioned in Chapter 1, the QG equation provides an approximate de-

scription of nearly horizontal geostrophic flows in a vertically stratified fluid [Maj03,Ped79]. In

suitably non-dimensionalized variables, the streamfunction Ψ(x, t) of the flow satisfies ∆Ψ = PV,

where PV is the potential vorticity in the fluid. The horizontal velocity of the fluid is UH = ∇⊥HΨ.

The streamfunction is proportional to the fluid pressure, and Ψz has the interpretation of a tem-

perature perturbation or buoyancy, rather than a vertical velocity component.

The SQG equation describes quasi-geostrophic flows in a half-space R2×R+ with zero potential

vorticity in z > 0 and a temperature jump, or surface buoyancy, θ(xH , t) at z = 0, which is

transported by the velocity field uH = UH |z=0 on the boundary [Lap17,Ped79]:

∆Ψ = 0 in z > 0, − ∂zΨ|z=0 = θ,

θt + uH · ∇Hθ = 0, uH = ∇⊥H Ψ|z=0 .

We omit an explicit indication of the time-variable. Then uH = ∇H Ψ|z=0 and Ψ|z=0 is related

to θ by a solution of the Neumann problem

∆Ψ = 0 in z > 0, − ∂zΨ|z=0 = θ, (3.17)

meaning that θ 7→ Ψ|z=0 is a Neumann-Dirichlet map for the 3D Laplacian in the upper half space.

From the point of view of potential theory, this problem is the same as finding the electrostatic

potential Ψ of a semi-infinite charged plate located at {(x, y, 0) ∈ R3 : y > ϕ(x)} with a constant

surface charge density of 4π.

The solution of (3.17) is unique up to a harmonic function Ψ′(x) in z > 0 with zero normal

derivative on z = 0, which can be fixed by imposing suitable boundary conditions at infinity. For

example, the addition of a linear harmonic function Ψ′ = Ax + By to Ψ does not change θ and

adds a uniform velocity field uH = (−B,A) to uH . On the other hand, if θ = C is constant,

then the solution Ψ′ = Cz+D (corresponding to a uniform temperature in the QG equation) gives
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Ψ|z=0 = D, so the addition of a constant to θ has no effect (only adds the vector field ∇Hψ = (0, 0))

on the corresponding velocity field uH .

In particular, let us consider the QG solution that corresponds to the planar front solution

in (3.16) with (3.15). Differentiating (3.17) with respect to z, we see that Φ = Ψz satisfies the

Dirichlet problem

∆Φ = 0 in z > 0, −Φ
∣∣∣
z=0

= θ. (3.18)

We look for solutions of (3.15)–(3.18) that are independent of x. Then Φyy + Φzz = 0, whose

general solution for the Fourier transform of Φ(y, z) with respect to y,

Φ̂(ξ, z) =
1

2π

ˆ
R

Φ(y, z)e−iξy dy,

is given by Φ̂(ξ, z) = A(ξ)e−|ξ|z +B(ξ)e|ξ|z.

We further require that Φ̂(ξ, z) → 0 as z → ∞ for ξ 6= 0, in which case B = 0 and Φ̂(ξ, z) =

θ̂(ξ)e−|ξ|z. Inverting this Fourier transform, we get that

Φ(y, z) = π + 2 arctan

(
y

z

)
,

and taking an antiderivative of Φ with respect to z, we get the streamfunction

Ψ(y, z) = −2y + y log
(
y2 + z2

)
+ 2z arctan

(y
z

)
+ πz.

This function provides the appropriate far-field behavior as y2 + z2 →∞ of QG-front solutions in

defining the Neumann-Dirichlet map from (3.17).

The boundary value of Ψ on z = 0 is

Ψ|z=0(y) = lim
z→0+

Ψ(y, z) = −2y + 2y log |y|,

with the velocity field uH = (2 log |y|, 0), as in the planar front solution (3.16).

3.1.2.2. Derivation of the contour dynamics equation. We now derive contour dynamics equa-

tions for the front solutions (1.5) by decomposing the solution into a planar shear flow and a

perturbation whose velocity field approaches zero as |y| → ∞. We temporarily restore dimensional
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variables, and consider fronts of the form

θ(x, t) =


2πΘ if y > ϕ(x, t),

0 if y < ϕ(x, t),

u(x, t) = (2Θ log (|y|/a) , 0) + o(1) as |y| → ∞. (3.19)

Here Θ 6= 0, with the dimensions of velocity, is proportional to the jump in θ across the front, and

changes in the parameter a > 0, with the dimensions of length, correspond to the addition of a

constant x-velocity to the flow, which leads to equivalent front dynamics by means of an appropriate

Galilean transformation.

We denote the front y = ϕ(x, t) by Γ(t) = ∂Ω(t), and consider its motion on a time interval

0 ≤ t ≤ T for some T > 0. We assume that:

(i) ϕ(·, t) ∈ C1,α(R) for some α > 0 and ϕ(x, t) is bounded on R× [0, T ];

(ii) ϕx(x, t) = O(|x|−β) as |x| → ∞ for some β > 0.
(3.20)

In that case, all of the integrals in the following converge.

We choose h > 0 such that −h < inf{ϕ(x, t) : (x, t) ∈ R× [0, T ]}, and let

θ̃(x) =


2πΘ if y > −h,

0 if y < −h,
, ũ(x) =

(
2Θ log

(
|y + h|
a

)
, 0

)
, (3.21)

be the dimensionalized planar front solution (3.16) translated to y = −h.

We decompose the front solution (1.5) as

θ(x, t) = θ̃(x) + θ∗(x, t),

where θ̃ is defined in (3.21), and

θ∗(x, t) =


−2πΘ if −h < y < ϕ(x, t),

0 otherwise.

(3.22)

We denote the support of θ∗(·, t) by Ω∗(t). The corresponding decomposition of the velocity field

is

u(x, t) = ũ(x) + u∗(x, t), (3.23)
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where ũ is defined in (3.21) and u∗ = −R⊥θ∗ is given by

u∗(x, t) = p. v.Θ

ˆ
Ω∗(t)

(x− x′)⊥

|x− x′|3
dx′, (x, y)⊥ = (−y, x). (3.24)

Writing x′ = (x′, y′), we see that the integrand is O
(
|x′|−2

)
as |x′| → ∞ and compactly supported

in y′, so this principal value integral converges absolutely at infinity. It follows that

u∗(x) = lim
λ→∞

u∗λ(x), u∗λ(x) = p. v.Θ

ˆ
Ω∗λ(x,t)

(x− x′)⊥

|x− x′|3
dx′, (3.25)

where (see Figure 3.1)

Ω∗λ(x, t) =
{
x′ ∈ R2 : |x− x′| < λ, −h < y′ < ϕ(x′, t)

}
. (3.26)

Figure 3.1. An illustration of the cut-off region Ω∗λ in (3.26) with a point x on the
front. The boundary ∂Ω∗λ consists of the lines L∗±λ : x′ = x ± λ with −h ≤ y′ ≤
ϕ(x± λ), M∗λ : y′ = −h with |x− x′| ≤ λ, and the cut-off front Γ∗λ : y′ = ϕ(x′) with
|x−x′| ≤ λ. The function θ∗ in (3.22) is equal to −2πΘ in the strip −h < y < ϕ(x, t)
and equal to 0 in y < −h or y > ϕ(x, t).

Let x = (x, ϕ(x)) be a point on the front and denote by

n(x, t) =
1√

1 + ϕ2
x(x, t)

(−ϕx(x, t), 1) (3.27)

the unit upward normal to Γ(t) at x. The motion of the front is determined by the normal velocity

u · n, which is continuous and well-defined on the front. The tangential component of u diverges

to infinity, but this does not affect the motion of the front.
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We take the inner product of u∗λ in (3.25) with n, write

(x− x′)⊥

|x− x′|3
= ∇⊥x′

1

|x− x′|
,

and apply Green’s theorem, to get that

u∗λ(x, t) · n(x, t) = −Θ

ˆ
∂Ω∗λ(x,t)

t(x′, t) · n(x, t)

|x− x′|
ds(x′), (3.28)

where t is the negatively oriented unit tangent vector on ∂Ω∗λ and ds(x′) is an element of arclength.

Since t(x, t) · n(x, t) = 0, the assumed Hölder continuity of ϕx ensures that this integral converges

at x′ = x, so there is no contribution from the principal value at x′ = (x, ϕ(x, t)).

As illustrated in Figure 3.1, we decompose the boundary as ∂Ω∗λ = Γ∗λ ∪M∗λ ∪ L∗λ ∪ L∗−λ. On

L∗−λ, we have t(x′, t) = (0, 1), x′ = −λ, and ds(x′) = dy′, so

ˆ
L∗−λ

t(x′, t)

|x− x′|
ds(x′) = (0, 1)I∗λ(x, t),

where

I∗λ(x, t) =

ˆ ϕ(−λ)

−h

1√
(x+ λ)2 + (ϕ(x, t)− y′)2

dy′

= − log
(
ϕ(x, t)− ϕ(−λ, t) +

√
(x+ λ)2 + (ϕ(x, t)− ϕ(−λ, t))2

)
+ log

(
ϕ(x, t) + h+

√
(x+ λ)2 + (ϕ(x, t) + h)2

)
→ 0 as λ→∞,

since ϕ is bounded. Similarly, the limit of the integral over L∗λ as λ→∞ also vanishes, so the only

contributions to u∗ comes from Γ∗λ and M∗λ .

The tangent vector on Γ∗λ is

t(x′, t) =
1√

1 + ϕ2
x′(x

′, t)

(
1, ϕx′(x

′, t)
)
, (3.29)

and the tangent vector on M∗λ is (−1, 0). Using (3.27) and (3.29) in (3.28), and taking the limit

λ→∞, we get that

u∗(x, t) · n(x, t) = − lim
λ→∞

Θ

ˆ
Γ∗λ∪M

∗
λ

t(x′, t) · n(x, t)

|x− x′|
ds(x′) =

Θ√
1 + ϕ2

x(x, t)
I∗(x, t),
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I∗(x, t) =

ˆ
R

{
ϕx(x, t)− ϕx′(x′, t)√

(x− x′)2 + (ϕ(x, t)− ϕ(x′, t))2
− ϕx(x, t)√

(x− x′)2 + (ϕ(x, t) + h)2

}
dx′.

Including the contribution from the background flow ũ, and using the condition that the front

y = ϕ(x, t) moves with the upward normal velocity u · n = (ũ + u∗) · n, we obtain that

ϕt(x, t) = ΘI(x, t), I(x, t) =
1

Θ

(√
1 + ϕ2

x

)
ũ(x, t) · n(x, t) + I∗(x, t).

From (3.21) and (3.27), we have

1

Θ

(√
1 + ϕ2

x

)
ũ(x, t) · n(x, t) = −2

(
log
|ϕ(x, t) + h|

a

)
ϕx(x, t).

We then decompose I as

I(x, t) = I1(x, t) + I2(x, t) + I3(x, t),

I1(x, t) =

ˆ
R

{
ϕx(x, t)− ϕx(x′, t)√

(x− x′)2 + (ϕ(x, t)− ϕ(x′, t))2
− ϕx(x, t)− ϕx(x′, t)

|x− x′|

}
dx′,

I2(x, t) =

ˆ
R

{
ϕx(x, t)− ϕx(x′, t)

|x− x′|
− ϕx(x, t)√

(x′)2 + a2

}
dx′,

I3(x, t) = ϕx(x, t)

{ˆ
R

1√
(x′)2 + a2

− 1√
(x− x′)2 + (ϕ(x, t) + h)2

dx′ − 2 log
|ϕ(x, t) + h|

a

}
.

(3.30)

All of these integrals converge in view of the assumed Hölder continuity and decay of ϕx.

Direct evaluation of the integral for I3 yields

I3(x, t) = ϕx(x, t)

{[
log

(
x′ +

√
(x′)2 + a2

a

)
− log

(
x′ − x+

√
(x′ − x)2 + (ϕ(x, t) + h)2

|ϕ(x, t) + h|

)]∞
x′=−∞

−2 log
|ϕ(x, t) + h|

a

}

= 0.

Thus, the equation for the front is

ϕt(x, t) = ΘI1(x, t) + ΘI2(x, t), (3.31)

where I1 is the nonlinear term and I2 is the linear term in the equation.

34



To express I2 as a Fourier multiplier operator, we note that I2 = 0 if ϕ = 1, and if ϕ(x) = eiξx

with ξ 6= 0, then

I2(x) = iξeiξx
ˆ
R

[
1− eiξ(x′−x)

|x− x′|
− 1√

(x′)2 + a2

]
dx′

= iξeiξx
ˆ
R

[
1− eiξ(x′−x)

|x− x′|
− 1√

(x− x′)2 + a2

]
dx′

= 2iξeiξx
ˆ ∞

0

[
1− cos aξs

s
− 1√

s2 + 1

]
ds.

Using the identity

ˆ ∞
0

[
1√
s2 + 1

− 1√
s2 + c2

]
ds = log |c|, (3.32)

with c = 1/a|ξ|, the change of variable s′ = a|ξ|s, and a cosine integral, we get that

I2(x) = 2iξeiξx

(
log a|ξ|+

ˆ ∞
0

[
1− cos s′

s′
− 1√

(s′)2 + 1

]
ds′

)

= 2iξeiξx (log a|ξ|+ γ − log 2) .

It follows that

I2 = 2 log (a|∂x|)ϕx + 2(γ − log 2)ϕx,

where log(a|∂x|) is the Fourier multiplier operator with symbol log(a|ξ|). Thus, using the expres-

sions for I1, I2 in (3.31), we get the front equation

ϕt(x, t) + 2Θ (log 2− γ)ϕx(x, t)− 2Θ log (a|∂x|)ϕx(x, t)

+ Θ

ˆ
R

[ϕx(x, t)− ϕx′(x′, t)]
{

1

|x− x′|
− 1√

(x− x′)2 + [ϕ(x, t)− ϕ(x′, t)]2

}
dx′ = 0,

After nondimensionalizing length and time scales so that Θ = 1, a = 1, we get the front equation

ϕt(x, t) + 2 (log 2− γ)ϕx(x, t)

+

ˆ
R

[ϕx(x, t)− ϕx′(x′, t)]
{

1

|x− x′|
− 1√

(x− x′)2 + [ϕ(x, t)− ϕ(x′, t)]2

}
dx′ = 2 log |∂x|ϕx(x, t),

which agrees with (3.2) after a Galilean transformation x 7→ x− 2(log 2− γ)t.
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One can verify that the velocity perturbation (3.24) satisfies u∗(x, t) = o(1) as |y| → ∞. In

fact,

2 log
|y + h|
a

= 2 log
|y|
a

+ o(1) as |y| → ∞,

then the velocity field u(x, t) given by (3.23) and (3.21) has the asymptotic behavior stated in

(3.19).

The appearance of a logarithm in the far-field boundary condition (3.1) breaks the scale-

invariance of the SQG equation under x 7→ λx, t 7→ λt for λ > 0. Instead, one sees from (3.19) that

the appropriate scale-invariance is given by x 7→ λx, t 7→ λt, a 7→ λa, which leads to the invariance

of (3.2) under a combined scaling-Galilean transformation [HS18]

x 7→ λ[x+ (2 log |λ|)t], y 7→ λy, t 7→ λt.

Similar issues are well-known in potential theory for unbounded charge distributions. For

example, there is no length scale in the problem for the electrostatic potential of an infinite charged

wire, which is given by the logarithmic Newtonian potential. The potential diverges at infinity, so

one cannot normalize a zero point for the potential by requiring that the potential approaches zero

at infinity (as one usually does for compact charge distributions). Instead, one picks an arbitrary

radial distance a > 0 from the wire and requires that the potential vanish at a distance r = a, or

r = 1 in spatial variables non-dimensionalized by a (see e.g., Sec. III.5 in [Kel67]). The problem

is then invariant under spatial rescaling and an appropriate shift in the zero-point of the potential.

3.1.3. Method of modified Green’s function. In this subsection, we give the third deriva-

tion of (3.2) based on the definition of the BMO-valued Riesz transform on L∞ in (2.3). As before,

we assume that ϕ satisfies (3.20).

From (1.1) and (2.3), with n = 2 and C2 = 1/(2π), a representative velocity field of the front

solution (1.5) is given by

u(x, t) = −p. v.

ˆ
Ω(t)

[
(x− x′)⊥

|x− x′|3
− (x0 − x′)⊥

|x0 − x′|3

]
dx′ − ū(t), (3.33)

where Ω(t) =
{

(x, y) ∈ R2 | y > ϕ(x, t)
}

and x0 /∈ Ω̄(t). For definiteness, we choose x0 = (0,−h)

where h > 0 and −h < inf {ϕ(x, t) | (x, t) ∈ R× [0, T ]}. The spatially uniform velocity ū(t) =

(ū(t), v̄(t)) in (3.33) will be chosen so that u(x, t) satisfies the far-field condition (3.1). However,
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any such representative leads to equivalent dynamics for the fronts, since any uniform velocity

(ū(t), v̄(t)) can be removed by a translation (x, y) 7→ (x− a(t), y − b(t)) where (a, b)t = (ū, v̄).

Since the integral in (3.33) converges absolutely at infinity, we have

u(x, t) = lim
λ→∞

uλ(x, t)− ū(t), uλ(x, t) = −p. v.

ˆ
Ωλ(x,t)

[
(x− x′)⊥

|x− x′|3
− (x0 − x′)⊥

|x0 − x′|3

]
dx′,

where (See Figure 3.2)

Ωλ(x, t) =
{
x′ ∈ R2 : |x′ − x| < λ, ϕ(x′, t) < y′ < λ

}
. (3.34)

Figure 3.2. An illustration of the cut-off region Ωλ in (3.34) with a point x on the
front. The boundary ∂Ωλ consists of the lines L±λ : x′ = x±λ with ϕ(x±λ) ≤ y′ ≤ λ,
Mλ : y′ = λ with |x−x′| ≤ λ, and the cut-off front Γλ : y′ = ϕ(x′) with |x−x′| ≤ λ.

First, we consider the case when x /∈ Γ(t). We write

(x− x′)⊥

|x− x′|3
− (x0 − x′)⊥

|x0 − x′|3
= ∇⊥x′

[
1

|x− x′|
− 1

|x0 − x′|

]
,

and apply Green’s theorem to get that

uλ(x, t) = −
ˆ
∂Ωλ(x,t)

[
1

|x− x′|
− 1

|x0 − x′|

]
t(x′, t) ds(x′), (3.35)

where t(x′, t) is the positively oriented unit tangent vector on ∂Ωλ(x, t) and ds(x′) is an element

of arclength. There is no contribution from the principal value, since the corresponding integral of

t(x′)/|x− x′| over ∂Bε(x) is zero.
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As illustrated in Figure 3.2, we decompose the boundary as ∂Ωλ(x, t) = Γλ(x, t) ∪ Cλ(x, t),

where Cλ(x, t) consist of the lines L±λ(x, t) and Mλ(x, t), and Γλ(x, t) is the cut-off front with

tangent vector (3.29). The integrand in (3.35) is O(λ−2) on Cλ, so taking the limit of (3.35) as

λ→∞, we get for x /∈ Γ that

u(x, t) = −
ˆ

Γ(t)

[
1

|x− x′|
− 1

|x0 − x′|

]
t(x′, t) ds(x′)− ū(t). (3.36)

Writing out (3.36) in components, we find that

u(x, y, t) = −
ˆ
R

{
1√

(x− x′)2 + (y − ϕ(x′, t))2
− 1√

(x′)2 + (h+ ϕ(x′, t))2

}
dx′ − ū(t), (3.37)

v(x, y, t) = −
ˆ
R

{
1√

(x− x′)2 + (y − ϕ(x′, t))2
− 1√

(x′)2 + (h+ ϕ(x′, t))2

}
ϕx′(x

′, t) dx′

− v̄(t).

(3.38)

Since ϕ(·, t) is bounded, we see by making a change of variables x′ 7→ |y|s′ that

ˆ
R

{
1√

(x− x′)2 + (y − ϕ(x′, t))2
− 1√

(x′)2 + y2

}
dx′ = o(1) as |y| → ∞,

so (3.37) implies that

u(x, y, t) = −
ˆ
R

{
1√

(x′)2 + y2
− 1√

(x′)2 + (h+ ϕ(x′, t))2

}
dx′ − ū(t) + o(1) as |y| → ∞.

Using the identity (3.32) with c = |y|, we get that

−
ˆ
R

{
1√

(x′)2 + y2
− 1√

(x′)2 + (h+ ϕ(x′))2

}
dx′

= 2 log |y| −
ˆ
R

{
1√

(x′)2 + 1
− 1√

(x′)2 + (h+ ϕ(x′))2

}
dx′.

It follows that u(x, y, t) = 2 log |y|+ o(1) as |y| → ∞ if

ū(t) = −
ˆ
R

[
1√

(x′)2 + 1
− 1√

(x′)2 + (h+ ϕ(x′, t))2

]
dx′. (3.39)

In view of the decay assumption (3.20) on ϕx, we see directly from (3.38) that

v(x, y, t) =

ˆ
R

ϕx′(x
′, t)√

(x′)2 + (h+ ϕ(x′, t))2
dx′ − v̄(t) + o(1) as |y| → ∞,
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so v(x, y, t) = o(1) as |y| → ∞ if

v̄(t) =

ˆ
R

ϕx′(x
′, t)√

(x′)2 + (h+ ϕ(x′, t))2
dx′. (3.40)

The velocity field (3.36) therefore satisfies (3.1) when ū = (ū, v̄) is given by (3.39)–(3.40).

Next, let x = (x, ϕ(x)) be a point on the front Γ(t), with upward normal n in (3.27). We take

the inner product of uλ in (3.35) with n and take the limit λ→∞ as before, to get that

u(x, t) · n(x, t) = −
ˆ

Γ(t)

[
1

|x− x′|
− 1

|x0 − x′|

]
t(x′, t) · n(x, t) ds(x′)− ū(t) · n(x).

Writing out this integral explicitly and using the expressions for t, n, x, and x0, we find that the

normal velocity on the front is

u(x, t) · n(x, t) =
1√

1 + ϕ2
x(x, t)

[J(x, t) + ϕx(x, t)ū(t)− v̄(t)] ,

J(x, t) =

ˆ
R

[
ϕx(x, t)− ϕx′(x′, t)√

(x− x′)2 + (ϕ(x, t)− ϕ(x′, t))2
− ϕx(x, t)− ϕx′(x′, t)√

(x′)2 + (h+ ϕ(x′, t))2

]
dx′.

(3.41)

The condition that the front y = ϕ(x, t) moves with the normal velocity u · n implies that

ϕt(x, t) = J(x, t) + ϕx(x, t)ū(t)− v̄(t). (3.42)

We decompose the integral for J in (3.41) as

J(x, t) = I1(x, t) + I2(x, t) + J3(x, t) + J4(t),

where I1, I2 are given in (3.30) and

J3(x, t) = ϕx(x, t)

ˆ
R

[
1√

(x′)2 + 1
− 1√

(x′)2 + (h+ ϕ(x′, t))2

]
dx′,

J4(t) =

ˆ
R

ϕx′(x
′, t)√

(x′)2 + (h+ ϕ(x′, t))2
dx′.

From (3.39)–(3.40), we see that J3 = −ϕxū and J4 = v̄, so (3.42) becomes (3.2).

3.1.4. Spatially periodic solutions. Equation (3.2) do not require that ϕ(·, t) is rapidly

decreasing; in particular, they apply to smooth periodic solutions ϕ(·, t) : T→ R where T = R/2πZ

(see Figure 1.2(b)). The symbol of the linear operator L remains the same. Moreover, we can write
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the nonlinear term in (3.12) as

ˆ
T
Kp(ζ, ϕ(x, t)− ϕ(x+ ζ, t)) dζ,

where

Kp(x, y) =
∑
n∈Z

y

|x+ 2nπ|
− sinh−1

(
y

|x+ 2nπ|

)
.

The sum defining Kp converges because of (3.11). The conservative form of the periodic front

equation is then

ϕt(x, t) + ∂x

ˆ
T
Kp(ζ, ϕ(x, t)− ϕ(x+ ζ, t)) dζ + Lϕx(x, t) = 0.

The non-conservative form can be written as

ϕt(x, t) +

ˆ
T

[ϕx(x, t)− ϕx(x+ ζ, t)]

{
Gp(ζ, 0)−Gp (ζ, ϕ(x, t)− ϕ(x+ ζ, t))

}
dζ

+ Lϕx(x, t) = 0,

(3.43)

where

Gp(x, y) =
1√

x2 + y2
+
∑
n∈Z∗

[
1√

(x+ 2πn)2 + y2
− 1

2π|n|

]
.

One can verify that (3.43) is equivalent, up to a Galilean transformation, to the straightforward

contour dynamics equation on a cylinder,

ϕt(x, t)−
ˆ
T

[ϕx(x, t)− ϕx(x+ ζ, t)]Gp (ζ, ϕ(x, t)− ϕ(x+ ζ, t)) dζ = 0.

However, (3.43) explicitly separates the linear dispersive term from the cubic-order nonlinearity.

3.2. Contour dynamics for SQG two-fronts solutions

3.2.1. Method of regularization. Using the SQG equation (1.1) and Green’s theorem, we

find that the velocity field of the two front solution illustrated in Figure 1.2(d) is given formally by

u(x, t) = ∇⊥G ∗ θ(x, t)

= Θ+

ˆ
∂Ω+(t)

n⊥(x′, t)

|x− x′|
ds+(x′) + Θ−

ˆ
∂Ω−(t)

n⊥(x′, t)

|x− x′|
ds−(x′),

(3.44)
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where the jumps Θ± are defined in (1.6), n = (m,n) is the upward unit normal to ∂Ω±(t), n⊥ =

(−n,m), and s±(x′) is arc-length on ∂Ω±(t).

We note that the integrals in (3.44) diverge. To obtain the front equations, we first cut-off

the integration region to a λ-interval about some point x ∈ R and consider the limit λ → ∞. If

Θ+ + Θ− 6= 0, we also make a Galilean transformation x 7→ x − v′(λ)t, where v′(λ) is chosen to

give well-defined limiting front equations and |v′(λ)| → ∞ as λ→∞. We assume that the top and

bottom fronts are smooth, approach y = h+ and y = h− sufficiently rapidly as |s+(x′)| → ∞ and

|s−(x′)| → ∞, respectively, and do not self-intersect or intersect each other.

Let the top and bottom fronts have parametric equations x = X1(ζ, t) and x = X2(ζ, t), where

X1(·, t),X2(·, t) : R→ R2.

Since θ is transported by the velocity field, the fronts move with normal velocity

∂tX1 · n = u · n, ∂tX2 · n = u · n,

so the cut-off equations for X1 and X2 are

∂tX1(ζ, t) = c1(ζ, t)∂ζX1(ζ, t)−Θ+

ˆ ζ+λ

ζ−λ

∂ζ′X1(ζ ′, t)

|X1(ζ ′, t)−X1(ζ, t)|
dζ ′

−Θ−

ˆ ζ+λ

ζ−λ

∂ζ′X2(ζ ′, t)

|X2(ζ ′, t)−X1(ζ, t)|
dζ ′,

∂tX2(ζ, t) = c2(ζ, t)∂ζX2(ζ, t)−Θ+

ˆ ζ+λ

ζ−λ

∂ζ′X1(ζ ′, t)

|X1(ζ ′, t)−X2(ζ, t)|
dζ ′

−Θ−

ˆ ζ+λ

ζ−λ

∂ζ′X2(ζ ′, t)

|X2(ζ ′, t)−X2(ζ, t)|
dζ ′,

where c1(ζ, t) and c2(ζ, t) are arbitrary functions corresponding to time-dependent reparametriza-

tions of the fronts.

If the fronts are given by graphs that are perturbations of y = h+ and y = h−, then the top

front is located at y = h+ + ϕ(x, t) and the bottom front at y = h− + ψ(x, t), and we can solve for

c1 and c2 to get

c1(x, t) = Θ+

ˆ λ

−λ

1√
ζ2 +

(
ϕ(x+ ζ, t)− ϕ(x, t)

)2 dζ
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+ Θ−

ˆ λ

−λ

1√
ζ2 +

(
− 2h+ ψ(x+ ζ, t)− ϕ(x, t)

)2 dζ,

c2(x, t) = Θ+

ˆ λ

−λ

1√
ζ2 +

(
2h+ ϕ(x+ ζ, t)− ψ(x, t)

)2 dζ

+ Θ−

ˆ λ

−λ

1√
ζ2 +

(
ψ(x+ ζ, t)− ψ(x, t)

)2 dζ.

We then obtain a coupled system for ϕ and ψ

ϕt(x, t) + Θ+

ˆ λ

−λ

ϕx(x+ ζ, t)− ϕx(x, t)√
ζ2 +

(
ϕ(x+ ζ, t)− ϕ(x, t)

)2 dζ

+ Θ−

ˆ λ

−λ

ψx(x+ ζ, t)− ϕx(x, t)√
ζ2 +

(
− 2h+ ψ(x+ ζ, t)− ϕ(x, t)

)2 dζ = 0,

ψt(x, t) + Θ+

ˆ λ

−λ

ϕx(x+ ζ, t)− ψx(x, t)√
ζ2 +

(
2h+ ϕ(x+ ζ, t)− ψ(x, t)

)2 dζ

+ Θ−

ˆ λ

−λ

ψx(x+ ζ, t)− ψx(x, t)√
ζ2 +

(
ψ(x+ ζ, t)− ψ(x, t)

)2 dζ = 0.

Writing

G(x) =
1

|x|
,

above system is equivalent to

ϕt(x, t) + Θ+∂x

ˆ λ

−λ
H1

(
ζ, ϕ(x+ ζ, t)− ϕ(x, t)

)
dζ + Θ+∂x

ˆ λ

−λ
G(ζ)

[
ϕ(x+ ζ, t)− ϕ(x, t)

]
dζ

+ Θ−∂x

ˆ λ

−λ
H2

(
ζ,−2h+ ψ(x+ ζ, t)− ϕ(x, t)

)
dζ

+ Θ−∂x

ˆ λ

−λ
G
(√

ζ2 + (2h)2
) [
ψ(x+ ζ, t)− ϕ(x, t)

]
dζ = 0,

ψt(x, t) + Θ−∂x

ˆ λ

−λ
H1

(
ζ, ψ(x+ ζ, t)− ψ(x, t)

)
dζ + Θ−∂x

ˆ λ

−λ
G(ζ)

[
ψ(x+ ζ, t)− ψ(x, t)

]
dζ

+ Θ+∂x

ˆ λ

−λ
H2

(
ζ, 2h+ ϕ(x+ ζ, t)− ψ(x, t)

)
dζ

+ Θ+∂x

ˆ λ

−λ
G
(√

ζ2 + (2h)2
) [
ϕ(x+ ζ, t)− ψ(x, t)

]
dζ = 0

(3.45)
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where

H1(x, y) = −G(x)y +

ˆ y

0
G
(√

x2 + s2
)

ds,

H2(x, y) = −G
(√

x2 + (2h)2
)
y +

ˆ y

0
G
(√

x2 + s2
)

ds.

(3.46)

Therefore, we have for j = 1, 2 and fixed y that

Hj(x, y) = O

(
1

|x|3

)
as |x| → ∞.

It follows that the nonlinear terms in (3.45) converge as λ → ∞, so it suffices to consider linear

terms in (3.45).

We only write out the computation for the first equation; the computation for the second

equation is similar. The linear term

L1,λϕ(x, t) =

ˆ λ

−λ

ϕ(x+ ζ, t)− ϕ(x, t)

|ζ|
dζ

can be written as [HS18]

L1,λϕ(x, t) = v1(λ)ϕ(x, t) + L∗1,λϕ(x, t),

where

v1(λ) = −2

ˆ λ

1

1

|ζ|
dζ (3.47)

and L∗1,λϕ→ L1ϕ as λ→∞, where L1 is the Fourier multiplier with symbol

b1(ξ) =

ˆ
|ζ|>1

eiξζ

|ζ|
dζ −

ˆ
|ζ|<1

1− eiξζ

|ζ|
dζ = −2γ − 2 log |ξ|. (3.48)

As for the second linear term, we have

L2,λ [ϕ,ψ] (x, t) =

ˆ λ

−λ

ψ(x+ ζ, t)− ϕ(x, t)√
ζ2 + (2h)2

dζ

= v2(λ)ϕ(x, t) + v3(λ)ϕ(x, t) + L∗2,λψ(x, t),

where v2(λ) is a divergent part and v3(λ) is a convergent part

v2(λ) = −2

ˆ λ

1

1√
ζ2 + (2h)2

dζ, (3.49)
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v3(λ) = −2

ˆ 1

0

1√
ζ2 + (2h)2

dζ, (3.50)

and L∗2,λψ → L2ψ as λ→∞, where L2 is the Fourier multiplier with symbol

b2(ξ) =

ˆ
R
G
(√

ζ2 + (2h)2
)
eiξζ dζ = 2K0 (2h|ξ|) , (3.51)

where K0 is the modified Bessel function of second kind defined in (2.21).

We denote by v4 the limit

v4 = lim
λ→∞

v3(λ) = 2 log(2h)− 2 log
(

1 +
√

1 + (2h)2
)
,

where v3(λ) is given in (3.50).

The cut-off system (3.45) can then be written as

ϕt(x, t) + [Θ+v1(λ) + Θ−v2(λ) + Θ−v3(λ)]ϕx(x, t) + Θ+L∗1,λϕx(x, t) + Θ−L∗2,λψx(x, t)

+ Θ+∂x

ˆ λ

−λ
H1

(
ζ, ϕ(x+ ζ, t)− ϕ(x, t)

)
dζ + Θ−∂x

ˆ λ

−λ
H2

(
ζ,−2h+ ψ(x+ ζ, t)− ϕ(x, t)

)
dζ = 0,

ψt(x, t) + [Θ−v1(λ) + Θ+v2(λ) + Θ+v3(λ)]ψx(x, t) + Θ−L∗1,λψx(x, t) + Θ+L∗2,λϕx(x, t)

+ Θ−∂x

ˆ λ

−λ
H1

(
ζ, ψ(x+ ζ, t)− ψ(x, t)

)
dζ + Θ+∂x

ˆ λ

−λ
H2

(
ζ, 2h+ ϕ(x+ ζ, t)− ψ(x, t)

)
dζ = 0.

In the limit λ→∞, the possibly problematic terms in these equations are [Θ+v1(λ) + Θ−v2(λ)]ϕx(x, t)

and [Θ−v1(λ) + Θ+v2(λ)]ψx(x, t). The only case when these two terms converge to finite limits

are when Θ+ = −Θ−. Otherwise, we regularize the equations by choosing a suitable Galilean

transformation. Indeed, if we choose

v′(λ) =
Θ+ + Θ−

2
(v1(λ) + v2(λ) + v3(λ)) ,

and make a Galilean transformation x 7→ x− v′(λ)t, then the system becomes

ϕt(x, t) +
Θ+ −Θ−

2
(v1(λ)− v2(λ)− v3(λ))ϕx(x, t) + Θ+L∗1,λϕx(x, t) + Θ−L∗2,λψx(x, t)

+ Θ+∂x

ˆ λ

−λ
H1

(
ζ, ϕ(x+ ζ, t)− ϕ(x, t)

)
dζ + Θ−∂x

ˆ λ

−λ
H2

(
ζ,−2h+ ψ(x+ ζ, t)− ϕ(x, t)

)
dζ = 0,

ψt(x, t)−
Θ+ −Θ−

2
(v1(λ)− v2(λ)− v3(λ))ψx(x, t) + Θ−L∗1,λψx(x, t) + Θ+L∗2,λϕx(x, t)

+ Θ−∂x

ˆ λ

−λ
H1

(
ζ, ψ(x+ ζ, t)− ψ(x, t)

)
dζ + Θ+∂x

ˆ λ

−λ
H2

(
ζ, 2h+ ϕ(x+ ζ, t)− ψ(x, t)

)
dζ = 0.
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The asymptotic behavior of G(ζ) and G
(√

ζ2 + (2h)2
)

as ζ →∞ is given by

G(ζ) ∼ 1

ζ

G
(√

ζ2 + (2h)2
)
∼ 1

ζ
+O

(
h

ζ3

)
.

Therefore, from (3.47) and (3.49), we see that v1(λ)−v2(λ) converges as λ→∞, and we define

v5 = lim
λ→∞

[v1(λ)− v2(λ)] = 2 log 2− 2 log
(

1 +
√

1 + (2h)2
)
.

Putting everything together and letting λ→∞, we get the regularized system in conservative

form

ϕt(x, t) + v′ϕx(x, t) + Θ+L1ϕx(x, t) + Θ−L2ψx(x, t)

+ Θ+∂x

ˆ
R
H1

(
ζ, ϕ(x+ ζ, t)− ϕ(x, t)

)
dζ + Θ−∂x

ˆ
R
H2

(
ζ,−2h+ ψ(x+ ζ, t)− ϕ(x, t)

)
dζ = 0,

ψt(x, t)− v′ψx(x, t) + Θ−L1ψx(x, t) + Θ+L2ϕx(x, t)

+ Θ−∂x

ˆ
R
H1

(
ζ, ψ(x+ ζ, t)− ψ(x, t)

)
dζ + Θ+∂x

ˆ
R
H2

(
ζ, 2h+ ϕ(x+ ζ, t)− ψ(x, t)

)
dζ = 0,

where H1, H2 are given in (3.46), the symbols of L1, L2 are given in (3.48)–(3.51), and

v′ = −(Θ+ −Θ−) log h. (3.52)

One can also take the derivatives inside the integrals and apply an additional Galilean transforma-

tion x 7→ x+ (Θ+ + Θ−)γ to obtain (3.3).

The system (3.3) has the Hamiltonian form

ϕt + J+
δH
δϕ

= 0, ψt + J−
δH
δψ

= 0, J+ =
1

Θ+
∂x, J− =

1

Θ−
∂x, (3.53)

with the Hamiltonian

H(ϕ,ψ) =
1

2

ˆ
R

{
v′Θ+ϕ

2 − v′Θ−ψ2 − 2Θ2
+ log |∂x|ϕ+ 4Θ+Θ−ϕK0(2h|∂x|)ψ − 2Θ2

−ψ log |∂x|ψ
}

dx

+
1

2

ˆ
R2

{
Θ2

+F1(x− x′, ϕ− ϕ′) + 2Θ+Θ−F2(x− x′, 2h+ ϕ− ψ′) + Θ2
−F1(x− x′, ψ − ψ′)

}
dx dx′,

(3.54)
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where ϕ = ϕ(x, t), ϕ′ = ϕ(x′, t), ψ = ψ(x, t), ψ′ = ψ(x′, t), and the functions F1, F2 satisfy

∂yF1(x, y) = H1(x, y), ∂yF2(x, y) = H2(x, y).

3.2.2. Method of decomposition. In this subsection, we sketch the derivation of (3.3) by

the decomposition method as in the one-front case. We decompose the two-front solution (1.7) as

θ(x, t) = θ̃(x) + θ∗(x, t),

where the background field θ̃ is defined as

θ̃(y) =


θ+ if y > h′,

θ0 if − h′ < y < h′,

θ− if y < −h′.

Here, h′ > 0 is fixed such that the locations of the fronts between θ+, θ0, θ− satisfy

−h′ < h− + ψ(x, t) < h+ + ϕ(x, t) < h′.

The perturbed field θ∗ is then

θ∗(x, t) =



0 y > h′,

2πΘ+ h+ + ϕ(x, t) < y < h′,

0 h− + ψ(x, t) < y < h+ + ϕ(x, t),

−2πΘ− −h′ < y < h− + ψ(x, t),

0 y < −h′.

The corresponding decomposition of the velocity field is

u(x, t) = ũ(x) + u∗(x, t),

and it is easy to use Hilbert transform H to calculate the background velocity field

ũ(x) =
(
2Θ+ log |y − h′|+ 2Θ− log |y + h′|, 0

)
, (3.55)

where Θ± is defined in (1.6).
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We denote the support of θ∗(·, t) by Ω∗(t) = Ω∗+(t) ∪ Ω∗−(t) where

Ω∗+(t) =
{
x ∈ R2 : h+ + ϕ(x, t) < y < h′

}
,

Ω∗−(t) =
{
x ∈ R2 : −h′ < y < h− + ψ(x, t)

}
.

Use u∗ = −R⊥θ∗, we have that

u∗(x, t) =
1

2π
p. v.

ˆ
Ω∗(t)

(x− x′)⊥

|x− x′|3
θ∗(x′, t) dx′, (x, y)⊥ = (−y, x).

This integral converges absolutely, so that we can apply a far-field cutoff and use Green’s

theorem followed by taking the limits of cutoff parameter approaches infinity (as in the one-front

case) to obtain u∗. In order to study the evolution of the fronts, we need to calculate the normal

component of u∗ on the fronts.

For a point x = (x, h+ +ϕ(x, t)) on the top front (we denote by n+ the unit upward normal to

the top front), we have that

u∗(x, t) · n+(x, t)

=
Θ+√

1 + ϕ2
x(x, t)

ˆ
R

ϕx(x, t)− ϕx′(x′, t)√
(x− x′)2 + [ϕ(x, t)− ϕ(x′, t)]2

− ϕx(x, t)√
(x− x′)2 + [ϕ(x, t) + h+ − h′]2

dx′

+
Θ−√

1 + ϕ2
x(x, t)

ˆ
R

ϕx(x, t)− ψx′(x′, t)√
(x− x′)2 + [ϕ(x, t)− ψ(x′, t) + h+ − h−]2

− ϕx(x, t)√
(x− x′)2 + [ϕ(x, t) + h+ + h′]2

dx′.

Similarly, for a point x = (x, h− + ψ(x, t)) on the bottom front (we denote by n− the unit

upward normal to the bottom front), we have

u∗(x, t) · n−(x, t)

=
Θ+√

1 + ψ2
x(x, t)

ˆ
R

ψx(x, t)− ϕx′(x′, t)√
(x− x′)2 + [ψ(x, t)− ϕ(x′, t) + h− − h+]2

− ψx(x, t)√
(x− x′)2 + [ψ(x, t) + h− − h′]2

dx′

+
Θ−√

1 + ψ2
x(x, t)

ˆ
R

ψx(x, t)− ψx′(x′, t)√
(x− x′)2 + [ψ(x, t)− ψ(x′, t)]2

− ψx(x, t)√
(x− x′)2 + [ψ(x, t) + h− + h′]2

dx′.
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Including the contribution from the background flow ũ, and using the condition that the fronts

moves with the upward normal velocity, we obtain that

ϕt(x, t) = I+(x, t), I+(x, t) =
(√

1 + ϕ2
x

)
[ũ(x, t) · n+(x, t) + u∗(x, t) · n+(x, t)] ,

ψt(x, t) = I−(x, t), I−(x, t) =
(√

1 + ψ2
x

)
[ũ(x, t) · n−(x, t) + u∗(x, t) · n−(x, t)] .

From (3.55) and definition of n±, we have

(√
1 + ϕ2

x

)
ũ(x, t) · n+(x, t) = −2Θ+ log |ϕ(x, t) + h+ − h′|ϕx(x, t)

− 2Θ− log |ϕ(x, t) + h+ + h′|ϕx(x, t),(√
1 + ψ2

x

)
ũ(x, t) · n−(x, t) = −2Θ+ log |ψ(x, t) + h− − h′|ψx(x, t)

− 2Θ− log |ψ(x, t) + h− + h′|ψx(x, t).

We then decompose I+, I− as

I+(x, t) = I+,1(x, t) + I+,2(x, t) + I+,3(x, t) + I+,4(x, t) + I+,5(x, t),

I−(x, t) = I−,1(x, t) + I−,2(x, t) + I−,3(x, t) + I−,5(x, t) + I−,5(x, t),

where

I+,1(x, t) = Θ+

ˆ
R

{
ϕx(x, t)− ϕx′(x′, t)√

(x− x′)2 + [ϕ(x, t)− ϕ(x′, t)]2
− ϕx(x, t)− ϕx′(x′, t)

|x− x′|

}
dx′,

I+,2(x, t) = Θ+

ˆ
R

{
ϕx(x, t)− ϕx′(x′, t)

|x− x′|
− ϕx(x, t)√

(x′)2 + 1

}
dx′,

I+,3(x, t) = Θ−

ˆ
R

{
ϕx(x, t)− ψx′(x′, t)√

(x− x′)2 + [ϕ(x, t)− ψ(x′, t) + h+ − h−]2

− ϕx(x, t)− ψx′(x′, t)√
(x− x′)2 + (h+ − h−)2

}
dx′,

I+,4(x, t) = −Θ−

ˆ
R

ψx′(x
′, t)√

(x− x′)2 + (h+ − h−)2
dx′,

I+,5(x, t) = Θ+ϕx(x, t)

{ˆ
R

1√
(x′)2 + 1

− 1√
(x− x′)2 + [ϕ(x, t) + h+ − h′]2

dx′

− 2 log |ϕ(x, t) + h+ − h′|
}
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+ Θ−ϕx(x, t)

{ˆ
R

1√
(x− x′)2 + (h+ − h−)2

− 1√
(x− x′)2 + [ϕ(x, t) + h+ + h′]2

dx′

− 2 log |ϕ(x, t) + h+ + h′|
}
,

and similar expressions for I−,j , j = 1, 2, . . . , 5, which we omit.

Similar to the one-front case, using Fourier transform, and using h+ − h− = 2h, we get that

I+,2(x, t) = 2Θ+ log |∂x|ϕx(x, t) + 2Θ+(γ − log 2)ϕx(x, t),

I+,4(x, t) = −2Θ−K0(2h|∂x|)ψx(x, t), I+,5(x, t) = −2Θ− log(2h)ϕx(x, t),

I−,2(x, t) = 2Θ− log |∂x|ψx(x, t) + 2Θ−(γ − log 2)ψx(x, t),

I−,4(x, t) = −2Θ+K0(2h|∂x|)ψx(x, t), I−,5(x, t) = −2Θ+ log(2h)ψx(x, t).

Thus, we obtain the contour dynamics equations for the two-front SQG equation (3.3) up to a

Galilean transformation.

3.2.3. Scalar reductions. In this subsection, we write out two scalar equations that arise as

reductions of the system (3.3) when the jumps are symmetric or anti-symmetric.

3.2.3.1. Symmetric reduction. If Θ+ = Θ−, then v′ = 0 from (3.52), and the system (3.3) is

compatible with solutions of the form ψ(x, t) = −ϕ(x, t), when it reduces to a scalar equation for

ϕ. Writing Θ = Θ+ = Θ−, we find that the equation becomes

ϕt(x, t)− 2Θ (log |∂x|+K0(2h|∂x|))ϕx(x, t)

+ Θ

ˆ
R

[ϕx(x+ ζ, t)− ϕx(x, t)]

{
1√

ζ2 + [ϕ(x+ ζ, t)− ϕ(x, t)]2
− 1

|ζ|

}
dζ

+ Θ

ˆ
R

[ϕx(x+ ζ, t) + ϕx(x, t)]

{
1√

ζ2 + [2h+ ϕ(x+ ζ, t) + ϕ(x, t)]2
− 1√

ζ2 + (2h)2

}
dζ = 0.

(3.56)

For the SQG equations (1.1) in the spatial upper half-plane R × R+ with no-flow boundary

conditions on a rigid boundary y = 0 (see Figure 3.3 and [GPar,KRYZ16,KYZ17]), we find by

the method of images that

u(x, t) =
1

2π

ˆ
R×R+

{
∇⊥x

1

|x− x′|
− ∇⊥x

1

|x− x̄′|

}
θ(x, t) dx′,
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(a) Symmetric GSQG fronts. (b) GSQG front with a rigid flat bottom.

Figure 3.3. Symmetric reduction of SQG system.

where x̄′ = (x′,−y′) if x′ = (x′, y′). In this setting, if a front is located at y = h+ ϕ(x, t) > 0, and

θ(x, y, t) =


2πΘ if y > h+ ϕ(x, t),

0 if 0 < y < h+ ϕ(x, t),

then the regularized contour dynamics equation for a front in the half-plane coincides with (3.56).

3.2.3.2. Anti-symmetric reduction. If Θ+ = −Θ−, then (3.3) is compatible with solutions of

the form

ϕ(x, t) = ϕ(x, t), ψ(x, t) = −ϕ(−x, t),

and it reduces to a scalar equation for ϕ (see Figure 3.4). Writing Θ = Θ+ = −Θ− and making a

Galilean transformation x 7→ x− 2Θ(γ + log h)t, we find that the equation becomes

ϕt(x, t)− 2Θ log |∂x|ϕx(x, t)− 2ΘK0(2h|∂x|)ϕx(−x, t)

+ Θ

ˆ
R

[ϕx(x+ ζ, t)− ϕx(x, t)]

{
1√

ζ2 + [ϕ(x+ ζ, t)− ϕ(x, t)]2
− 1

|ζ|

}
dζ

−Θ

ˆ
R

[ϕx(−x− ζ, t)− ϕx(x, t)]

{
1√

ζ2 + [2h+ ϕ(−x− ζ, t) + ϕ(x, t)]2
− 1√

ζ2 + (2h)2

}
dζ = 0.

(3.57)
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Figure 3.4. Anti-symmetric reduction of SQG system.
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CHAPTER 4

Approximate SQG fronts

Between the approximation of the idea and the precision of reality there was a

small gap of the unimaginable, and it was this hiatus that gave him no rest.

– Milan Kundera

This chapter is devoted to study a simplified version of (3.2) — a cubically nonlinear nonlocal

equation — posed on the circle T

ϕt +
1

2
∂x

{
ϕ2 log |∂x|ϕxx − ϕ log |∂x|(ϕ2)xx +

1

3
log |∂x|(ϕ3)xx

}
= 2 log |∂x|ϕx. (4.1)

We treat this equation as an approximate model equation for the full equation (3.2), under the

assumption ϕx � 1. We also write down other equivalent forms of (4.1), including a conservative

form (4.14) and a Hamiltonian form (4.15)–(4.16)).

We prove two theorems in this chapter. The first theorem concerns with the initial value

problem for a dispersionless version of (4.1)

ϕt +
1

2
∂x

{
ϕ2 log |∂x|ϕxx − ϕ log |∂x|(ϕ2)xx +

1

3
log |∂x|(ϕ3)xx

}
+ Lϕx = 0,

ϕ(x, 0) = ϕ0(x),

(4.2)

where L is an arbitrary self-adjoint operator with symbol b(k). The case L = −2 log |∂x| corresponds

to the approximate SQG front equation (4.1).

To state the first main theorem, we fix some notations. The usual Sobolev space for mean-zero

functions defined on circle T is defined in (2.5). In addition, we use a logarithmically-modified

Hilbert space

Ḣs
log(T) =

{
f : T→ R | f̂(0) = 0, ‖f‖Ḣs

log
<∞

}
,

‖f‖Ḣs
log

=

∑
k∈Z∗

log(1 + |k|) · |k|2s|f̂(k)|2
1/2

.

(4.3)
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If τ : [0, T∗) → [0,∞) is a decreasing function, then we denote by L∞(0, T∗; Ḣ
τ (T)) the space of

functions

ϕ : [0, T∗)→
⋃

t∈[0,T∗)

Ḣτ(t)(T)

such that ϕ(t) ∈ Ḣτ(t)(T), and for every 0 < T < T∗

ϕ ∈ L∞(0, T ; Ḣτ(T )(T)),

with analogous notation for other time-dependent Sobolev spaces.

Theorem 4.0.1. Let the operator L have real-valued symbol b : Z→ R and suppose that τ0 > 5/2.

For every ϕ0 ∈ Ḣτ0(T), there exists T∗ > 0 and a differentiable, decreasing function τ : [0, T∗) →

(5/2, τ0] with τ(0) = τ0, depending on τ0 and ‖ϕ0‖Ḣτ0 (T), such that the initial value problem (4.2)

has a solution with

ϕ ∈ L∞(0, T∗; Ḣ
τ (T)) ∩ L2(0, T∗; Ḣ

τ
log(T)).

Moreover, there exists a numerical constant C > 0 such that

sup
t∈[0,T ]

‖ϕ(t)‖2
Ḣτ(t) + C‖ϕ0‖2Ḣτ0

ˆ T

0
‖ϕ(t)‖2

Ḣ
τ(t)
log

dt ≤ ‖ϕ0‖2Ḣτ0
(4.4)

for every 0 < T < T∗, where the norms are defined in (2.5), (4.3). The solution is unique while

τ(t) > 9/2.

The proof is purely hyperbolic in nature (c.f. [Aus11, Hun06, Ifr12]), but there is a loss of

derivatives at logarithmic rate. Therefore, we adapt proofs for Gevrey-class solutions of nonlinear

evolution equations (see e.g. [FV11,KTVZ11]), in which one uses time-dependent norms to com-

pensate for the loss of regularity. The difference is that, since there is only a logarithmic derivative

loss, we obtain solutions for initial data with finitely many derivatives, rather than C∞ Gevrey-

class initial data. The existence time in the theorem depends on the number of Sobolev derivatives

possessed by the initial data, as well as in its Sobolev norm.

The second main result of this chapter is a local well-posedness theorem for the initial value

problem for the approximate equation for SQG fronts

ϕt +
1

2
∂x

{
ϕ2 log |∂x|ϕxx − ϕ log |∂x|(ϕ2)xx +

1

3
log |∂x|(ϕ3)xx

}
= 2 log |∂x|ϕx,

ϕ(x, 0) = ϕ0(x),

(4.5)
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and the theorem is as follows (Para-products are defined in (2.6)).

Theorem 4.0.2. Let s > 7/2. If ϕ0 ∈ Ḣs(T) satisfies ‖T 2
ϕ0x
‖L2→L2 ≤ C for some 0 < C < 2, then

there exists T > 0 depending only on ‖ϕ0‖Ḣs and C such that the initial value problem (4.5) has

a unique solution with ϕ ∈ C([0, T ]; Ḣs(T)). The solution map U(t) : Ḣs(T) → C([0, T ]; Ḣs(T))

defined as ϕ0(x) 7→ ϕ(x, t), is continuous on Ḣs(T) and Lipschitz continuous on Ḣr(T) for 0 ≤

r < s− 1, meaning that if ϕ, ϕ̃ ∈ C([0, T ]; Ḣs(T)) are solutions, then there exists a constant M > 0

depending on ‖ϕ‖C([0,T ];Ḣs), ‖ϕ̃‖C([0,T ];Ḣs) such that

‖ϕ(·, t)− ϕ̃(·, t)‖Hr ≤M‖ϕ(·, 0)− ϕ̃(·, 0)‖Hr for all t ∈ [0, T ]. (4.6)

The idea of the proof is to define a weighted Ḣs-energy (4.40), which uses the linear term to

control the loss of derivatives from the nonlinearity.

An outline of this chapter is as follows. The derivation of equation (4.1) is in Section 4.1.

In Section 4.2, we prove Theorem 4.0.1 and in Section 4.3, we prove Theorem 4.0.2. Finally, in

Section 4.4, we show some numerical results for the approximate SQG equation, which suggest that

smooth solutions break down in finite time, with the formation of oscillatory singularities in which

the solutions remain continuous but their derivatives blows up.

4.1. Approximate equation

4.1.1. Conservative form. To derive equation (4.1), we first restrict our attention to the

equation (3.2) posed on R (for definiteness) and assume that ϕx � 1. In fact, for the spatially

periodic fronts, (4.1) can be obtained from (3.43) in a similar fashion, but we omit the details here.

It follows from (3.10) that

sinh−1

(
y

|x|

)
=

y

|x|
− 1

6

y3

|x|3
+ |x|O

(
y5

|x|5

)
as

y

|x|
→ 0.

Retaining the lowest order terms in y, we find the approximation

ϕ(x, t)− ϕ(x+ ζ, t)

|ζ|
− sinh−1

(
ϕ(x, t)− ϕ(x+ ζ, t)

|ζ|

)
∼ 1

6

[ϕ(x, t)− ϕ(x+ ζ, t)]3

|ζ|3
.

Thus, the cubic approximation of the conservative equation (3.2) is

ϕt(x, t) +
1

6
∂x

ˆ
R

[
ϕ(x, t)− ϕ(x+ ζ, t)

|ζ|

]3

dζ = 2 log |∂x|ϕx(x, t). (4.7)
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Equation (4.7) is equivalent to (4.1), as we show by writing it in spectral form.

4.1.2. Spectral equation. We first write the nonlinear term in (4.7) as

∂x

ˆ
R

[
ϕ(x, t)− ϕ(x+ ζ, t)

|ζ|

]3

dζ =

ˆ
R3

T (k2, k3, k4)ϕ̂(k2)ϕ̂(k3)ϕ̂(k4)ei(k2+k3+k4)x dk2 dk3 dk4,

(4.8)

where

T (k2, k3, k4) = <
ˆ
R

(1− eik2ζ)(1− eik3ζ)(1− eik4ζ)
|ζ|3

dζ

= <
ˆ
R

1

|ζ|3

{(
1− eik2ζ

)
+
(

1− eik3ζ
)

+
(

1− eik4ζ
)

+
(

1− ei(k2+k3+k4)ζ
)

−
(

1− ei(k2+k3)ζ
)
−
(

1− ei(k2+k4)ζ
)
−
(

1− ei(k3+k4)ζ
)}

dζ.

(4.9)

We now write T in (4.9) as

T (k2, k3, k4) = ã(k2) + ã(k3) + ã(k4) + ã(k2 + k3 + k4)− ã(k2 + k3)− ã(k2 + k4)− ã(k3 + k4),

For |ζ| < 1, we use the cancellation

k2
2 + k2

3 + k2
4 + (k2 + k3 + k4)2 − (k2 + k3)2 − (k2 + k4)2 − (k3 + k4)2 = 0

and write ã as

ã(k) = 2

ˆ 1

0

1− 1
2k

2ζ2 − cos(kζ)

ζ3
dζ + 2

ˆ ∞
1

1− cos(kζ)

ζ3
dζ

= 2k2

(ˆ |k|
0

1− 1
2ζ

2 − cos ζ

ζ3
dζ +

ˆ ∞
|k|

1− cos ζ

ζ3
dζ

)
.

Writing

ˆ |k|
0

1− 1
2ζ

2 − cos ζ

ζ3
dζ +

ˆ ∞
|k|

1− cos ζ

ζ3
dζ =

1

2
C − 1

2

ˆ |k|
1

dζ

ζ

where

C = 2

ˆ 1

0

1− 1
2ζ

2 − cos ζ

ζ3
dζ + 2

ˆ ∞
1

1− cos ζ

ζ3
dζ,

is a constant, we get that ã(k) = Ck2 − k2 log |k|.
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In order to give a symmetric expression for T , it is convenient to introduce another variable k1

and define S : R4 → R by

S(k1, k2, k3, k4) = ã(k1) + ã(k2) + ã(k3) + ã(k4)− 1

2

{
ã(k1 + k2) + ã(k1 + k3)

+ ã(k1 + k4) + ã(k2 + k3) + ã(k2 + k4) + ã(k3 + k4)

}
.

Then

T (k2, k3, k4) = S(k1, k2, k3, k4) on k1 + k2 + k3 + k4 = 0. (4.10)

Notice that the term Ck2 cancels out of the expression in (4.11) for S(k1, k2, k3, k4) on k1 +

k2 + k3 + k4 = 0, so that we can rewrite S as

S(k1, k2, k3, k4) = a(k1) + a(k2) + a(k3) + a(k4)− 1

2

{
a(k1 + k2) + a(k1 + k3)

+ a(k1 + k4) + a(k2 + k3) + a(k2 + k4) + a(k3 + k4)

}
,

(4.11)

where

a = −k2 log |k|. (4.12)

Substituting in (4.12) into (4.11), we obtain

S(k1, k2, k3, k4)

= − k2
1 log |k1| − k2

2 log |k2| − k2
3 log |k3| − k2

4 log |k4|

+
1

2

{
(k1 + k2)2 log |k1 + k2|+ (k1 + k3)2 log |k1 + k3|+ (k1 + k4)2 log |k1 + k4|

+ (k2 + k3)2 log |k2 + k3|+ (k2 + k4)2 log |k2 + k4|+ (k3 + k4)2 log |k3 + k4|
}
.

(4.13)

Using (4.8) and (4.10) in (4.7), we see that the spectral form of (4.7) is

ϕ̂t(k1, t) +
1

6
ik1

ˆ
R3

δ(k1 + k2 + k3 + k4)S(k1, k2, k3, k4)ϕ̂∗(k2, t)ϕ̂
∗(k3, t)ϕ̂

∗(k4, t) dk2 dk3 dk4

− 2ik1 log |k1|ϕ̂(k1, t) = 0,

(4.14)
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where δ denotes the delta-distribution, ϕ̂∗(k) = ϕ̂(−k) denotes the complex conjugate of ϕ̂(k).

Thus, using the convolution theorem and (4.13), we find that the approximate equation (4.7) has

the real form (4.1).

4.1.3. Hamiltonian structure. We remark that the approximate equation (4.1) has the

Hamiltonian form

ϕt + ∂x

[
δH

δϕ

]
= 0,

where, suppressing the time variable, we can write the Hamiltonian in equivalent forms as

H(ϕ) =

ˆ
R

[
ϕ log |∂x|ϕ+

1

8
ϕ2∂2

x log |∂x|ϕ2 − 1

6
ϕ∂2

x log |∂x|ϕ3

]
dx. (4.15)

The spectral form of the Hamiltonian is

H(ϕ̂) = − 1

6 · 8

ˆ
R4

δ(k1 + k2 + k3 + k4)S(k1, k2, k3, k4)ϕ̂(k1)ϕ̂(k2)ϕ̂(k3)ϕ̂(k4) dk1 dk2 dk3 dk4

−
ˆ
R

log |k|ϕ̂∗(k)ϕ̂(k) dk.

(4.16)

This Hamiltonian structure explains the symmetry of S in (4.11).

4.2. Weak local well-posedness

In this section, we prove Theorem 4.0.1. We will use the following consequence of Young’s

inequality

∑
k1,k2,k3,k4∈Z∗
k1+k2+k3+k4=0

∣∣∣f̂1(k1)f̂2(k2)f̂3(k3)f̂4(k4)
∣∣∣ ≤ ‖f̂1‖`2‖f̂2‖`1‖f̂3‖`1‖f̂4‖`2 , (4.17)

and the Sobolev inequality

‖f̂‖`1 ≤ Z(s)‖f‖Ḣs for s >
1

2
, (4.18)

where Z is given in terms of the Riemann-zeta function by

Z(s) =

∑
k∈Z∗

1

|k|2s

1/2

=
√

2ζ(2s).
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Let ρ : Z4
∗ → Z4

∗ be a map that permutes its entries and orders their absolute values. We denote

the values of ρ by (m1,m2,m3,m4) = ρ(k1, k2, k3, k4), where

(m1,m2,m3,m4) = (kσ1, kσ2, kσ3, kσ4) for some σ ∈ S4, (4.19)

|m1| ≥ |m2| ≥ |m3| ≥ |m4|. (4.20)

Here, S4 denotes the symmetric group on {1, 2, 3, 4}.

The proof depends crucially on the symmetry of the interaction coefficients that follows from the

Hamiltonian structure of the equation. Consider the spectral form of the initial value problem (4.2)

for a spatially-periodic function ϕ(x, t), with Fourier coefficients ϕ̂(k, t), given by

ϕ̂t(k1, t) +
1

6
ik1

∑
k2,k3,k4∈Z∗

k2+k3+k4=−k1

S(k1, k2, k3, k4)ϕ̂∗(k2, t)ϕ̂
∗(k3, t)ϕ̂

∗(k4, t)− 2ik1b(k1)ϕ̂(k1, t) = 0,

ϕ̂(k1, 0) = ϕ̂0(k1).

(4.21)

When convenient, we omit the time variable and write ϕ̂(k) = ϕ̂(k, t) = ϕ̂∗(−k), ϕj = ϕ(kj). In

(4.21), we assume that S : Z4
∗ → R satisfies

S(k1, k2, k3, k4) = S(−k1,−k2,−k3,−k4), (4.22)

S(k1, k2, k3, k4) = S(kσ1, kσ2, kσ3, kσ4) for every σ ∈ S4. (4.23)

It is easy to verity that S satisfies (4.22)–(4.23).

Moreover, we show in [HS18] that, if there exist µ, ν ≥ 0 and a constant CS > 0 such that

|S(k1, k2, k3, k4)| ≤ CS |m3|µ|m4|ν for all k1, k2, k3, k4 ∈ Z∗, (4.24)

where the kσj and mj are defined as in (4.19)–(4.20), which states that the growth of S is bounded

by the smaller wavenumbers on which it depends, then the initial value problem is locally well-posed

in Sobolev space. However, in the case of (4.11), the assumption (4.24) does not hold. Instead, S

satisfies (see Corollary B.0.4)

|S(k1, k2, k3, k4)| ≤ C2|m3||m4| [log(1 + |m1|) log(1 + |m2|)]1/2 ,

which explains the logarithmic loss of derivative we explained at the beginning of the chapter.
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Proof of Theorem 4.0.1. First, we derive the a priori estimate (4.4). Let τ : [0, T ]→ (5/2,∞) be a

differentiable function, and let ϕ be a smooth solution of (4.5). We define energies E,F : [0, T ]→

[0,∞) by

E(t) = ‖ϕ(t)‖2
Ḣτ(t) =

∑
k∈Z∗

|k|2τ(t)|ϕ̂(k, t)|2,

F (t) = ‖ϕ(t)‖2
Ḣ
τ(t)
log

=
∑
k∈Z∗

log(1 + |k|) · |k|2τ(t)|ϕ̂(k, t)|2.

We write the equation (4.2) in the spectral form (4.21) with kernel (4.13). Using the equation

(4.21) with (4.23), Lemma B.0.1, and Corollary B.0.4 to estimate the time-derivative of E, we get

that

dE

dt
= 2τ̇

∑
k∈Z∗

log |k| · |k|2τ |ϕ̂(k)|2 +
∑
k∈Z∗

|k|2τ d

dt
|ϕ̂(k)|2

≤ 2τ̇F +
1

12

∑
k1,k2,k3,k4∈Z∗
k1+k2+k3+k4=0

∣∣(k1|k1|2τ + k2|k2|2τ + k3|k3|2τ + k4|k4|2τ
)
S(k1, k2, k3, k4)ϕ̂1ϕ̂2ϕ̂3ϕ̂4

∣∣
≤ 2τ̇F +

4!

12
C0(τ)C2

∑
k1,k2,k3,k4∈Z∗
k1+k2+k3+k4=0

[log(1 + |k1|) log(1 + |k2|)]1/2 |k1|τ |k2|τ |k3|2|k4| · |ϕ̂1ϕ̂2ϕ̂3ϕ̂4|

≤ 2τ̇F + 2C0(τ)C2F ·

 ∑
k3∈Z∗

|k3|2|ϕ̂(k3)|

 · ∑
k4∈Z∗

|k4||ϕ̂(k4)|,

where a dot denotes a time derivative. Then, as long as τ > 5/2, the Sobolev inequality (4.18)

implies that

dE

dt
≤ 2 [τ̇ + C3(τ)E]F, C3(s) = C0(s)C2Z(s− 1)Z(s− 2). (4.25)

The function C3 : (5/2,∞) → (0,∞) is a smooth function such that C3(s) → ∞ as s → 5/2 and

s→∞. Thus, there is a numerical constant C4 > 0 such that

C3(s) ≥ C4 for 5/2 < s <∞.

For example, if C0, C2 are given by (B.4), (B.8), then we find numerically that one can take

C4 = 1000.
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Fix a constant M > 1 and let τ be the solution of the initial value problem

τ̇ +ME0C3(τ) = 0, τ(0) = τ0 (4.26)

on a maximal time-interval [0, T∗) such that τ(t) > 5/2, where E0 = E(0). Then it follows from

(4.25)–(4.26) that E is decreasing on [0, T∗) and

dE

dt
+ (M − 1)C3E0F ≤ 0.

Grönwall’s inequality gives

E(t) + E0(M − 1)

ˆ t

0
C3(τ(s))F (s) ds ≤ E0,

so (4.4) follows for 0 ≤ T < T∗ with C = (M − 1)C4.

To estimate ϕt, we write (4.21) in spatial form as

ϕt + ∂xQ(ϕ,ϕ, ϕ) + Lϕx = 0, (4.27)

where the trilinear form Q is defined in terms of Fourier coefficients by

Q̂(ϕ̂, ψ̂, ξ̂)(k1) =
1

6

∑
k1,k2,k3,k4∈Z∗
k1+k2+k3+k4=0

S(k1, k2, k3, k4)ϕ̂∗(k2)ψ̂∗(k3)ξ̂∗(k4), (4.28)

and S is given by (4.13).

The symmetry of S (4.23) implies that

q(η, ϕ, ψ, χ) =

ˆ
T
ηQ(ϕ,ψ, χ) dx

is a symmetric form. Moreover, using Corollary B.0.4, we get that for arbitrarily small 0 < ε� 1

|q(η, ϕ, ψ, χ)|

≤ C
∑

k1,k2,k3,k4∈Z∗
k1+k2+k3+k4=0

|S(k1, k2, k3, k4)η̂(k1)ϕ̂(k2)ψ̂(k3)χ̂(k4)|

≤ C
∑

k1,k2,k3,k4∈Z∗
k1+k2+k3+k4=0

(
|k1|−s+2ε| log(1 + |m1|)|

)
|k1|s−2ε|m3||m4||η̂(k1)ϕ̂(k2)ψ̂(k3)χ̂(k4)|

(4.29)
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On k1 + k2 + k3 + k4 = 0, we have

|k1|s−2ε ≤ C
(
|k2|s−2ε + |k3|s−2ε + |k4|s−2ε

)
.

From (4.19), we get that

(
|k1|−s+2ε| log(1 + |m1|)|

)
|k1|s−2ε|m3||m4|

≤ C|k1|−s+2ε [log(1 + |k2|) + log(1 + |k3|) + log(1 + |k4|)]

·
[
|k2|s−2ε|k3||k4|+ |k3|s−2ε|k2||k4|+ |k4|s−2ε|k2||k3|

]
+ C|k1|−s+2ε log(1 + |k1|)

[
|k2|s−2ε|k3||k4|+ |k3|s−2ε|k2||k4|+ |k4|s−2ε|k2||k3|

]
≤ C|k1|−s+ε

[
|k2|s|k3|1+2ε|k4|1+2ε + |k3|s|k2|1+2ε|k4|1+2ε + |k4|s|k2|1+2ε|k3|1+2ε

]
.

Using this inequality in (4.29), followed by (4.17)–(4.18) with the assumption that

s >
1

2
, (4.30)

and that the arbitrary choice of 0 < ε� 1 (independent of s), we get

|q(η, ϕ, ψ, χ)| ≤ C‖η‖Ḣ−s+ε‖ϕ‖Ḣs‖ψ‖Ḣs‖χ‖Ḣs .

It follows by duality that (4.28) defines a bounded trilinear map

Q : Ḣs(T)× Ḣs(T)× Ḣs(T)→ Ḣs−ε(T) (4.31)

when s satisfies (4.30). Hence, (4.4) and (4.27) implies that if 0 < T < T∗, then

sup
0≤t≤T

‖ϕt(t)‖Ḣτ(T )−1−ε ≤ C, (4.32)

for some constant C depending on τ0, T, and E0.

The construction of the solution by the use of Galerkin approximations follows by standard

arguments. We construct Galerkin approximations
{
ϕN : N ∈ N

}
by projecting the equations onto

Fourier modes with |k| ≤ N . These approximations satisfy the same estimates as the a priori

estimates derived above, so from (4.4) and (4.32) we can extract a subsequence that converges

weakly to a limit ϕ in L∞(0, T ; Ḣτ(T )(T))∩W 1,∞(0, T ; Ḣτ(T )−1(T)). By the Aubin-Lions lemma (see

e.g., [Ama00]), a further subsequence converges strongly in C([0, T ]; Ḣτ(T )−ε(T)) for sufficiently
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small ε > 0, and by the continuity of the nonlinear term in (4.31), the limit is a solution of the

equation. Then the a priori bounds (4.4) restores the regularity of the solutions.

Finally, if ϕ, ϕ̃ are solutions to (4.5) with initial data ϕ(0) = ϕ0, ϕ̃(0) = ϕ̃0, respectively, then

write u = ϕ − ϕ̃ and let τ be the solution of (4.26) with E0 = max{‖ϕ0‖2Hτ0 , ‖ϕ̃0‖2Hτ0}, and we

define

U(t) = ‖ϕ(t)− ϕ̃(t)‖Hτ(t)−2 , V (t) = ‖ϕ(t)− ϕ̃(t)‖
H
τ(t)−2
log

,

where we assume that τ(t)− 2 > 5/2.

We first write down the equation for u

ut +
1

6
∂x [Q(ϕ,ϕ, ϕ)−Q(ϕ̃, ϕ̃, ϕ̃)] + L[u] = 0.

By bounds (4.4) for both ϕ and ϕ̃, we have that

dU

dt
− 2τ̇V = −1

6

[
q(|∂x|2τux, ϕ, ϕ, ϕ)− q(|∂x|2τux, ϕ̃, ϕ̃, ϕ̃)

]
= −1

6

[
q(|∂x|2τux, u, ϕ, ϕ) + q(|∂x|2τux, u, ϕ, ϕ̃) + q(|∂x|2τux, u, ϕ̃, ϕ̃)

]
Then a similar argument to the derivation of the energy estimate (4.25) whose details we omit,

gives that

dU

dt
≤ [2τ̇ + E0C(τ)]V + C(τ)

(
‖ϕ‖Hτ

log
+ ‖ϕ̃‖Hτ

log

)
U,

where C(τ) > 0 is a continuous function of τ . If 0 < T < T∗, then (4.26) implies that τ(t) is

bounded independently of M on a time-interval 0 ≤ t ≤ T/M . We choose M large enough that

MC3(τ) ≥ C(τ) on this interval. Then

dU

dt
≤ C(τ)

(
‖ϕ‖Hτ

log
+ ‖ϕ̃‖Hτ

log

)
U

for 0 ≤ t ≤ T/M , and Grönwall’s inequality implies that the solution is unique. �

4.3. Local well-posedness

4.3.1. Para-linearization of the equation. In this subsection, we para-linearize the ap-

proximate SQG front equation (4.1) and for simplicity write log |∂x| = L. We put (4.1) into a form

that allows us to make weighted energy estimates. This form makes explicit the cancellation of
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second-order derivatives in the flux and extracts a nonlinear term L(T 2
ϕxϕ) from the flux that is

responsible for the logarithmic loss of derivatives in the dispersionless equation.

In the following, we use P(·) to denote a nondecreasing polynomial, which might change from

line to line.

Lemma 4.3.1. Suppose that ϕ(·, t) ∈ Ḣs(T) with s > 7/2. Then (4.1) can be written as

ϕt + ∂x

{
1

2
TB(ϕ)ϕ+ [Tϕx , Tϕ]ϕx

}
+R = L[(2− T 2

ϕx)ϕ]x, (4.33)

where

B(ϕ) = ϕ2
x − 3ϕϕxx − 2ϕxxLϕ− 4ϕxLϕx, (4.34)

and the remainder term R satisfies the estimate

‖R‖Ḣs ≤ P
(
‖ϕ‖Ḣs

)
(4.35)

for a nondecreasing polynomial P.

Proof. The nonlinear flux term in (4.1) is given by

ϕ2Lϕxx − ϕL(ϕ2)xx +
1

3
L(ϕ3)xx = ϕ2Lϕxx − 2ϕL(ϕϕxx + ϕ2

x) + L(ϕ2ϕxx + 2ϕϕ2
x).

We will use the lemmas in Chapter 2 to expand this term.

1. Term L(ϕϕxx + ϕ2
x).

By Lemma 2.2.3, we have that

L(ϕϕxx) = TϕLϕxx + TDϕD
−1ϕxx −

1

2
TD2ϕD

−2ϕxx + TϕxxLϕ+R1,

L(ϕ2
x) = 2TϕxLϕx + 2TDϕxD

−1ϕx +R2,

with

‖R1‖Ḣs+1 ≤ C‖ϕ‖W 3,∞‖ϕ‖Ḣs , ‖R2‖Ḣs+1 ≤ C‖ϕ‖W 3,∞‖ϕ‖Ḣs .
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2. Term L(ϕ2ϕxx).

By Lemma 2.2.5, we have that

L(ϕ2ϕxx) = TϕTϕLϕxx + 2TϕTϕxxLϕ+ 2TDϕTϕD
−1ϕxx −

1

2
[2TD2ϕTϕ + 2TDϕTDϕ]D−2ϕxx +R3,

= TϕTϕLϕxx + 2TϕTϕxxLϕ+ 2TDϕTϕD
−1ϕxx − [TD2ϕTϕ + TDϕTDϕ]D−2ϕxx +R3,

with

‖R3‖Ḣs+1 ≤ C‖ϕ‖2W 3,∞‖ϕ‖Ḣs .

3. Term L(ϕϕ2
x).

By Lemma 2.2.5, we have that

L(ϕϕ2
x) = 2TϕTϕxLϕx + TϕxTϕxLϕ+ 2(TDϕTϕx + TϕTDϕx)D−1ϕx +R4,

with

‖R4‖Ḣs+1 ≤ C‖ϕ‖2W 3,∞‖ϕ‖Ḣs .

4. Term ϕ2Lϕxx.

By the decomposition (2.7), we can express ϕ2Lϕxx as

ϕ2Lϕxx = TϕTϕLϕxx + 2TϕTLϕxxϕ+R5,

with

‖R5‖Ḣs+1 ≤ C‖Lϕ‖2W 3,∞‖ϕ‖Ḣs .

Collecting all the above expressions, we obtain that

ϕ2Lϕxx − 2ϕL(ϕϕxx + ϕ2
x) + L(ϕ2ϕxx + 2ϕϕ2

x)

= TϕTϕLϕxx + 2TϕTLϕxxϕ− 2ϕ

[
TϕLϕxx + TDϕD

−1ϕxx −
1

2
TD2ϕD

−2ϕxx

+ TϕxxLϕ+ 2TϕxLϕx + 2TDϕxD
−1ϕx

]
+ TϕTϕLϕxx + 2TϕTϕxxLϕ

+ 2TDϕTϕD
−1ϕxx −

[
TD2ϕTϕ + TDϕTDϕ

]
D−2ϕxx + 4TϕTϕxLϕx

+ 2TϕxTϕxLϕ+ 4(TDϕTϕx + TϕTDϕx)D−1ϕx + R
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= TϕTϕLϕxx + 2TϕTLϕxxϕ− 2Tϕ

[
TϕLϕxx + TDϕD

−1ϕxx −
1

2
TD2ϕD

−2ϕxx

+ TϕxxLϕ+ 2TϕxLϕx + 2TDϕxD
−1ϕx

]
− 2TAϕ+ TϕTϕLϕxx + 2TϕTϕxxLϕ

+ 2TDϕTϕD
−1ϕxx − [TD2ϕTϕ + TDϕTDϕ]D−2ϕxx + 4TϕTϕxLϕx

+ 2TϕxTϕxLϕ+ 4(TDϕTϕx + TϕTDϕx)D−1ϕx + R− 2R(A,ϕ),

where R(·, ·) is a term as in (2.8) and

R = −2ϕ(R1 +R2) +R3 + 2R4 +R5,

A = TϕLϕxx + TDϕD
−1ϕxx −

1

2
TD2ϕD

−2ϕxx + TϕxxLϕ+ 2TϕxLϕx + 2TDϕxD
−1ϕx.

Simplifying the above equation, we find that the higher order terms involving Lϕxx and Lϕx vanish,

and

ϕ2Lϕxx − ϕL(ϕ2)xx +
1

3
L(ϕ3)xx

= 2TϕTLϕxxϕ− 2Tϕ

[
1

2
TD2ϕϕ+ TϕxxLϕ+ 2Tϕxxϕ

]
− 2TAϕ+ 2TϕTϕxxLϕ

− [TϕxxTϕ + TϕxTϕx ]ϕ+ 2TϕxTϕxLϕ+ 4(TϕxTϕx + TϕTϕxx)ϕ

+ R− 2R(A,ϕ) + 2[TDϕ, Tϕ]D−1ϕxx

= 2TϕxTϕxLϕ+ 2TϕTLϕxxϕ+ TϕTϕxxϕ− 2TAϕ− TϕxxTϕϕ+ 3TϕxTϕxϕ

+ R− 2R(A,ϕ) + 2[TDϕ, Tϕ]D−1ϕxx

= 2T 2
ϕxLϕ+ TBϕ+ 2[TDϕ, Tϕ]D−1ϕxx + R̃,

where B is given by (4.34), and

R̃ = R− 2R(A,ϕ) + (B̃ − TB)ϕ,

B̃ = 2TϕTLϕxx + TϕTϕxx − 2TA − TϕxxTϕ + 3TϕxTϕx .

By a Kato-Ponce type commutator estimate (see e.g., [Li19]), we have

‖[TDϕ, Tϕ]D−1ϕxx‖Ḣs+1 ≤ C‖ϕ‖2W 2,∞‖ϕ‖Ḣs+1 .
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In addition, using the estimates of the remainders Ri, Sobolev embedding, and the estimate

‖(B̃ − TB)ϕ‖Ḣs+1 ≤ C(‖ϕ‖2W 3,∞)‖ϕ‖Ḣs ,

we get that

‖R̃‖Ḣs+1 ≤ C‖ϕ‖3Ḣs .

It follows that (4.1) can be written as

ϕt +
1

2
∂x

{
2T 2

ϕxLϕ+ TBϕ+ 2[Tϕx , Tϕ]ϕx + R̃
}

= 2Lϕx.

or

ϕt + ∂x

{
1

2
TBϕ+ [Tϕx , Tϕ]ϕx

}
+R6 = [(2− T 2

ϕx)Lϕ]x, (4.36)

where ‖R6‖Ḣs ≤ P(‖ϕ‖Ḣs) for s > 7/2.

Using Lemma 2.2.3 to expand the term L(2− T 2
ϕx)ϕ, we have the commutator estimate

‖[(2− T 2
ϕx), L]ϕ‖Hs+1 ≤ P(‖ϕ‖Ḣs).

Hence, we can rewrite (4.36) as (4.33), with L[(2− T 2
ϕx)ϕ]x as the highest order term,

∂x

{
1

2
TBϕ+ [Tϕx , Tϕ]ϕx

}
as the first order term, and R as the zeroth order term, which satisfies (4.35) and does not lose

derivatives. �

4.3.2. Energy estimate. In this subsection, we prove an a priori estimate for the initial

value problem (4.5), which is stated in Proposition 4.3.3 below.

We first recall the following definition for fractional powers of operators. If T : H → H is a

self-adjoint linear operator on a Hilbert space H and f ∈ C∞c (R) is a function, then f(T ) may be

defined by the Helffer-Sjöstrand formula [Dav95,Hel13] as

f(T ) = − 1

π
lim
ε→0+

ˆ
|=z|>ε

∂z̄ f̃(z)(z − T )−1 dα dβ,

f̃(z) =

(
f(α) + iβf ′(α) +

1

2
(iβ)2f ′′(α)

)
χ0(β),

(4.37)

66



where z = α + iβ, ∂z̄ = 1
2(∂α + i∂β), and the cutoff-function χ0 ∈ C∞c (R) is equal to 1 in a

neighborhood of 0. The function f̃ is an “almost analytic” extension of f since

∂z̄ f̃(z) = O(|=z|2) as =z → 0 with <z fixed. (4.38)

Furthermore, if U ⊂ R is an open set that contains the spectrum σ(T ) ⊂ R of T and g ∈ C∞(U),

then, by the resolution of identity form of the spectral theorem [RS72], we see that g(T ) = f(T ),

where f = gχ1 and χ1 ∈ C∞c (U) with χ1 = 1 on σ(T ).

In particular, if ‖T 2
ϕx‖L2→L2 < 2, then (2− T 2

ϕx) is a positive, self-adjoint operator on L2, and

(2− T 2
ϕx)s is well-defined for s ∈ R by (4.37) as f(2− T 2

ϕx), where

f(α) = |α|sχ1(α) (4.39)

for χ1 ∈ C∞c (0, 2) such that χ1 = 1 on σ(2 − T 2
ϕx). We can therefore define a weighted s-order

energy by

E(s)(t) =

ˆ
T
|D|sϕ(x, t) ·

(
2− T 2

ϕx(x,t)

)2s+1
|D|sϕ(x, t) dx. (4.40)

In order to prove Proposition 4.3.3, we need the following lemma.

Lemma 4.3.2. Suppose that s > 7/2. If ϕ is a smooth solution of (4.33) and ϕ̃ ∈ L2, then

∂t(2− T 2
ϕx)sϕ̃ = (2− T 2

ϕx)sϕ̃t − s(2− T 2
ϕx)s−1(TϕxTϕxt + TϕxtTϕx)ϕ̃+R(ϕ̃),

where the remainder term satisfies

‖R(ϕ̃)‖Ḣ1 ≤ P
(
‖ϕ‖Ḣs

)
‖ϕ̃‖L2 (4.41)

for a nondecreasing polynomial P.

Proof. For z = α+ iβ ∈ C \ R, we have

[
∂t(z − 2 + T 2

ϕx)−1
]

(z − 2 + T 2
ϕx) + (z − 2 + T 2

ϕx)−1(TϕxTϕxt + Tϕxt + Tϕx)

= ∂t
[
(z − 2 + T 2

ϕx)−1(z − 2 + T 2
ϕx)
]

= ∂t Id = 0.
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It follows that

∂t(z − 2 + T 2
ϕx)−1 = −(z − 2 + T 2

ϕx)−1(TϕxTϕxt + TϕxtTϕx)(z − 2 + T 2
ϕx)−1

= −(z − 2 + T 2
ϕx)−2(TϕxTϕxt + Tϕxt + Tϕx)

+ (z − 2 + T 2
ϕx)−1

[
(z − 2 + T 2

ϕx)−1, TϕxTϕxt + Tϕxt + Tϕx
]

= ∂z(z − 2 + T 2
ϕx)−1(TϕxTϕxt + Tϕxt + Tϕx)

+ (z − 2 + T 2
ϕx)−1

[
(z − 2 + T 2

ϕx)−1, TϕxTϕxt + Tϕxt + Tϕx
]
.

Using (4.37), where f is defined by (4.39), and the previous equation, we get that

∂t(2− T 2
ϕx)sϕ̃ = ∂tf(2− T 2

ϕx)ϕ̃

= (2− T 2
ϕx)sϕ̃t −

1

π

[
lim
ε→0+

ˆ
|=z|>ε

∂z̄ f̃(z)∂t(z − 2 + T 2
ϕx)−1 dα dβ

]
ϕ̃

= (2− T 2
ϕx)sϕ̃t + T1ϕ̃+R,

where

T1ϕ̃ = − 1

π

[
lim
ε→0+

ˆ
|=z|>ε

∂z̄ f̃(z)∂z(z − 2 + T 2
ϕx)−1 dα dβ

]
(TϕxTϕxt + TϕxtTϕx)ϕ̃,

R = − 1

π

[
lim
ε→0+

ˆ
|=z|>ε

∂z̄ f̃(z)(z − 2 + T 2
ϕx)−1

[
(z − 2 + T 2

ϕx)−1, TϕxTϕxt + Tϕxt + Tϕx
]

dα dβ

]
ϕ̃.

Since 2− T 2
ϕx is self-adjoint, we have ∂z̄(z − 2 + T 2

ϕx)−1 = 0 for z ∈ C \ R, so

∂z(z − 2 + T 2
ϕx)−1 = ∂α(z − 2 + T 2

ϕx)−1.

We can then integrate by parts with respect to α in T1ϕ̃ to get

T1ϕ̃ =
1

π

[
lim
ε→0+

ˆ
|=z|>ε

∂z̄ f̃ ′(z)(z − 2 + T 2
ϕx)−1 dα dβ

]
(TϕxTϕxt + TϕxtTϕx)ϕ̃

= −s(2− T 2
ϕx)s−1(TϕxTϕxt + TϕxtTϕx)ϕ̃.

Finally, using a Kato-Ponce type estimate for commutators and (4.33) to estimate ϕxt, we have∥∥∥∥(z − 2 + T 2
ϕx)−1

[
(z − 2 + T 2

ϕx)−1, TϕxTϕxt + TϕxtTϕx
]∥∥∥∥
L2→Ḣ1

≤ P
(
‖ϕ‖Ḣs

)
|=z|−2.
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It follows that

‖R‖Ḣ1 ≤ P
(
‖ϕ‖Ḣs

)
‖ϕ̃‖L2

[
lim
ε→0+

ˆ
|=z|>ε

|∂z̄ f̃(z)||=z|−2 dα dβ

]
,

where the integral converges by (4.38). �

We now prove the following a priori estimate.

Proposition 4.3.3. Suppose that s > 7/2 and ϕ is a smooth solution of (4.5) with ϕ0 ∈ Ḣs. If

‖T 2
ϕ0x
‖L2→L2 ≤ C for some constant 0 < C < 2, then there exists a time T > 0 and a constant

M > 0, depending on ϕ0, such that

sup
t∈[0,T ]

E(s)(t) ≤M,

where E(s)(t) is defined in (4.40).

Proof. We apply the operator |D|s to equation (4.33) to get

|D|sϕt + |D|s∂x
(

1

2
TBϕ+ [Tϕx , Tϕ]ϕx

)
+ |D|sR7 = ∂xL|D|s

[
(2− T 2

ϕx)ϕ
]
, (4.42)

where R7 satisfies (4.35). Using Lemma 2.2.2 twice, we find that

|D|s
[
(2− T 2

ϕx)ϕ
]

= 2|D|sϕ− |D|s(T 2
ϕxϕ)

= 2|D|sϕ− T 2
ϕx |D|

sϕ+ sTϕxTϕxx |D|s−2ϕx + sTϕxxTϕx |D|s−2ϕx +R8,

where ‖∂xR8‖L2 ≤ C‖ϕ‖2W 3,∞‖ϕ‖Ḣs .

Thus, we write can the right-hand side of (4.42) as

∂xL|D|s
[
(2− T 2

ϕx)ϕ
]

= ∂xL
[
(2− T 2

ϕx)|D|sϕ+ sTϕxTϕxx |D|s−2ϕx + sTϕxxTϕx |D|s−2ϕx
]

+R0

= L
{

(2− T 2
ϕx)|D|sϕx − TϕxTϕxx |D|sϕ− TϕxxTϕx |D|sϕ

− sTϕxTϕxx |D|sϕ− sTϕxxTϕx |D|sϕ
}

+R10

= L
{

(2− T 2
ϕx)|D|sϕx − (s+ 1)(TϕxTϕxx + TϕxxTϕx)|D|sϕ

}
+R10.
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Applying (2− T 2
ϕx)s to (4.42), and commuting (2− T 2

ϕx)s with L up to a remainder term, as in the

proof of Lemma 2.2.3, we obtain that

(2− T 2
ϕx)s|D|sϕt + (2− T 2

ϕx)s|D|s∂x
(

1

2
TBϕ+ [Tϕx , Tϕ]ϕx

)
= L

{
(2− T 2

ϕx)s+1|D|sϕx − (s+ 1)(2− Tϕx)s(TϕxTϕxx + TϕxxTϕx)|D|sϕ
}

+R11

= ∂xL
{

(2− T 2
ϕx)s+1|D|sϕ

}
+R12,

(4.43)

where ‖R12‖L2 ≤ P(‖ϕ‖Ḣs).

By Lemma 4.3.2, with ϕ̃ = |D|sϕ, the time derivative of E(s)(t) in (4.40) is

d

dt
E(s)(t) = −

ˆ
T
(2s+ 1)|D|sϕ · (2− T 2

ϕx)2s(TϕxTϕxt + TϕxtTϕx)|D|sϕdx

+ 2

ˆ
T
|D|sϕ · (2− T 2

ϕx)2s+1|D|sϕt dx+

ˆ
T
R13 (|D|sϕ) |D|sϕdx,

(4.44)

where R13 satisfies (4.41).

(1) Equation (4.33) implies that ‖ϕxt‖L∞ ≤ P(‖ϕ‖Ḣs), so the first term on the right-hand side of

(4.44) can be estimated by∣∣∣∣ˆ
T
(2s+ 1)|D|sϕ · (2− T 2

ϕx)2s(TϕxTϕxt + TϕxtTϕx)|D|sϕdx

∣∣∣∣
≤ C‖ϕ‖3W 1,∞‖ϕxt‖L∞‖ϕ‖2Ḣs ≤ P(‖ϕ‖Ḣs).

In addition, from Lemma 4.3.2, the third term on the right-hand side of (4.44) can be estimated

by ˆ
T
R13 (|D|sϕ) |D|sϕdx ≤ P

(
‖ϕ‖Ḣs

)
.

(2) To estimate the second term on the right-hand side (4.44), we multiply (4.43) by (2−T 2
ϕx)s+1|D|sϕ,

integrate the result with respect to x, and use the self-adjointness of (2− T 2
ϕx)s+1, which gives

ˆ
T
|D|sϕ · (2− T 2

ϕx)2s+1|D|sϕt dx = I + II + III,

where

I = −
ˆ
T
|D|sϕ · (2− T 2

ϕx)2s+1|D|s∂x
(

1

2
TBϕ+ [Tϕx , Tϕ]ϕx

)
dx,

II =

ˆ
T
(2− T 2

ϕx)s+1|D|sϕ · ∂xL(2− T 2
ϕx)s+1|D|sϕdx,

70



III =

ˆ
T
(2− T 2

ϕx)s+1|D|sϕ · R12 dx.

We have II = 0, since ∂xL is skew-symmetric, and

III ≤ P(‖ϕ‖Ḣs),

since ‖R12‖L2 ≤ P(‖ϕ‖Ḣs) and (2− T 2
ϕx)s+1 is bounded on L2.

Term I estimate. We write I = −Ia + Ib, where

Ia =

ˆ
T
|D|sϕ · (2− T 2

ϕx)2s+1∂x

(
1

2
TB|D|sϕ+ [Tϕx , Tϕ]|D|sϕx

)
dx,

Ib =

ˆ
T
|D|sϕ · (2− T 2

ϕx)2s+1∂x

(
1

2
[TB, |D|s]ϕ+ [[Tϕx , Tϕ], |D|s]ϕx

)
dx.

By a commutator estimate, the second integral satisfies |Ib| ≤ P(‖ϕ‖Ḣs).

To estimate the first integral, we write it as

Ia = Ia1 −
1

2
Ia2 − Ia3 ,

where

Ia1 =

ˆ
T
|D|sϕ · [(2− T 2

ϕx)2s+1, ∂x]

(
1

2
TB|D|sϕ+ [Tϕx , Tϕ]|D|sϕx

)
dx,

Ia2 =

ˆ
T
|D|sϕx · (2− T 2

ϕx)2s+1 (TB|D|sϕ) dx,

Ia3 =

ˆ
T
|D|sϕx · (2− T 2

ϕx)2s+1 ([Tϕx , Tϕ]|D|sϕx) dx.

Term Ia1 estimate. A Kato-Ponce commutator estimate gives

|Ia1 | ≤ P
(
‖ϕ‖Ḣs

)
.
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Term Ia2 estimate. We have

Ia2 =

ˆ
T

(TB|D|sϕ) · (2− T 2
ϕx)2s+1|D|sϕx dx

=

ˆ
T

(TB|D|sϕ) ·
{
∂x
(
(2− T 2

ϕx)2s+1|D|sϕ
)
−
[
∂x, (2− T 2

ϕx)2s+1
]
|D|sϕ

}
dx

= −
ˆ
T
∂x (TB|D|sϕ) · (2− T 2

ϕx)2s+1|D|sϕdx−
ˆ
T

(TB|D|sϕ) ·
[
∂x, (2− T 2

ϕx)2s+1
]
|D|sϕdx

= −
ˆ
T

(TB|D|sϕx + [∂x, TB] |D|sϕ) · (2− T 2
ϕx)2s+1|D|sϕdx

−
ˆ
T
TB (|D|sϕ) ·

[
∂x, (2− T 2

ϕx)2s+1
]
|D|sϕdx.

(4.45)

Using the commutator estimates

∥∥[∂x, (2− T 2
ϕx)2s+1

]
|D|sϕ

∥∥
L2 ≤ P(‖ϕ‖Ḣs), ‖[∂x, TB] |D|sϕ‖L2 ≤ P(‖ϕ‖Ḣs),

and the fact that TB is self-adjoint, we can rewrite (4.45) as

Ia2 = −Ia2 −
ˆ
T
|D|sϕ · ∂x

[
(2− T 2

ϕx)2s+1, TB
]
|D|sϕdx+R14,

with |R14| ≤ P(‖ϕ‖Hs). Using the commutator estimate

∥∥∂x [(2− T 2
ϕx)2s+1, TB

]
|D|sϕdx

∥∥
L2 ≤ P(‖ϕ‖Ḣs),

we conclude that |Ia2 | ≤ P(‖ϕ‖Ḣs).

Term Ia3 estimate. Using the self-adjointness of Tϕx and Tϕ, we obtain that

Ia3 =

ˆ
T
(2− T 2

ϕx)2s+1|D|sϕx · [Tϕx , Tϕ]|D|sϕx dx

= −
ˆ
T
[Tϕx , Tϕ](2− T 2

ϕx)2s+1|D|sϕx · |D|sϕx dx.

Since ∥∥[[Tϕx , Tϕ], (2− T 2
ϕx)2s+1

]
|D|sϕx

∥∥
L2 ≤ P(‖ϕ‖Ḣs),

we have that |Ia3 | ≤ P(‖ϕ‖Ḣs).

Collecting the above estimates, we obtain that

d

dt
E(s) ≤ P

(
‖ϕ‖Ḣs

)
.
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Finally, since ‖2 − T 2
ϕ0x
‖L2→L2 ≥ 2 − C and ‖ϕx(t)‖L∞ is continuous in time, there exists T > 0

and m > 0, depending only on the initial data, such that

‖2− T 2
ϕx‖L2→L2 ≥ m for t ≤ T .

We therefore obtain that

m2s+1‖|D|sϕ‖2L2 ≤ E(s) ≤ 22s+1‖|D|sϕ‖2L2 ,

which implies that
d

dt
E(s) ≤ P(E(s)).

The result then follows by Grönwall’s inequality. �

4.3.3. Local well-posedness. In this subsection, we finish the proof of Theorem 4.0.2. We

first construct solutions of (4.5) by a Galerkin method. For N ∈ N, let

JN : L2(T)→ L2(T), JNf(x) =
∑
|ξ|≤N

f̂(ξ)eiξx (4.46)

denote the projection onto the first N Fourier modes. We define an approximate solution ϕN (x, t)

as the solution of the ODEs obtained by projection of (4.3.1),

ϕNt + ∂xJN

{
1

2
TB(ϕN )ϕ

N + [TϕNx , TϕN ]ϕNx

}
+ JNR(ϕN ) = JNL[(2− T 2

ϕNx
)ϕN ]x, (4.47)

with initial data ϕN (x, 0) = JNϕ0(x).

Repeating the previous estimates, we obtain that

d

dt
E(s)(ϕN ) ≤ P

(
E(s)(ϕN )

)
.

Thus, since E(s)(JNϕ0) . ‖ϕ0‖2Ḣs , there exists T > 0 independent of N such that the solution of

(4.47) exists for t ∈ [0, T ] and

‖ϕN (t)‖Ḣs ≤ P(‖ϕ0‖Ḣs),

where P is an nondecreasing polynomial independent of N . The sequence of approximate solutions

{ϕN} is therefore bounded in L∞(0, T ; Ḣs), so a subsequence converges weak-∗ to a limit ϕ ∈

L∞(0, T ; Ḣs).
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Moreover, from (4.47), we see that {ϕNt } is bounded in L∞(0, T ; Ḣs−1−δ) for δ > 0. The Aubin-

Lions lemma implies that a further subsequence converges strongly to ϕ in C([0, T ]; Ḣr) for any

r < s. Taking the limit of (4.47) as N →∞, we find that ϕ is a solution of (4.3.1).

Since ϕ ∈ L∞(0, T ; Ḣs) ∩ C([0, T ]; Ḣr), we see that ϕ ∈ Cw([0, T ]; Ḣs) is weakly continuous

in Ḣs. In addition, the Arzelà-Ascoli theorem implies that E(s)(ϕ) is continuous in time, since

E(s)(ϕN ) is continuous for each N ∈ N, and

d

dt
E(s)(ϕN )

is bounded uniformly in N . It follows that ‖ϕ‖Ḣs is continuous, so, by weak continuity and norm

continuity, ϕ ∈ C([0, T ]; Ḣs) is strongly continuous in Ḣs.

To prove the Lipschitz continuity (4.6) and uniqueness, we suppose that ϕ, ϕ̃ ∈ C([0, T ]; Ḣs)

are solutions of (4.5) with s > 7/2. Subtracting the evolution equations for ϕ and ϕ̃, we find that

u = ϕ− ϕ̃ satisfies

∂tu+ ∂x

{
1

2
TB(ϕ)u+ [Tϕx , Tϕ]ux

}
+ ∂x

{
1

2
[TB(ϕ) − TB(ϕ̃)]ϕ̃+

[
[Tϕx , Tϕ]− [Tϕ̃x , Tϕ̃]

]
ϕ̃x

}
= L[(2− T 2

ϕx)u]x − (LT 2
ϕx − LT

2
ϕ̃x)ϕ̃x +R(ϕ)−R(ϕ̃).

(4.48)

For r ≥ 0, we define a weighted Ḣr-norm by

E(r)
ϕ (u(t)) =

ˆ
T
|D|ru(x, t) ·

(
2− T 2

ϕx(x,t)

)2r+1
|D|ru(x, t) dx.

Applying ∂rx to (4.48), with 0 ≤ r < s− 1, and carrying out energy estimates as before, we get

d

dt
E(r)
ϕ (u) ≤ P(‖ϕ‖Hs , ‖ϕ̃‖Hs)

[
E(r)
ϕ (u) + ‖L∂r+1

x ϕ̃‖L∞‖u‖2Hr

]
,

where we have used the estimates

‖∂rx(LT 2
ϕx − LT

2
ϕ̃x)ϕ̃x‖L2 .


‖ux‖L∞(‖ϕx‖L∞ + ‖ϕ̃x‖L∞)‖L∂r+1

x ϕ̃‖L2 , when 3
2 < r < s− 1,

‖ux‖L2(‖ϕx‖L∞ + ‖ϕ̃x‖L∞)‖L∂r+1
x ϕ̃‖L∞ , when 1 ≤ r ≤ 3

2 ,

‖u‖Ḣr(‖ϕx‖L∞ + ‖ϕ̃x‖L∞)‖L∂2
xϕ̃‖L∞ , when 0 ≤ r < 1,

. ‖u‖Hr (‖ϕx‖L∞ + ‖ϕ̃x‖L∞) ‖ϕ̃‖Hs ,

‖∂rx[R(ϕ)−R(ϕ̃)]‖L2 . P(‖ϕ‖Hs , ‖ϕ̃‖Hs)‖u‖Ḣr .
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It follows that

E(0)
ϕ (u(t)) + E(r)

ϕ (u(t)) .
[
E(0)
ϕ (u(0)) + E(r)

ϕ (u(0))
] ˆ t

0
P(‖ϕ‖Hs , ‖ϕ̃‖Hs) dt,

and, since E
(0)
ϕ (u) + E

(r)
ϕ (u) is equivalent to ‖u‖2Hr , the solution map is Lipschitz continuous on

Ḣr. In particular, the solution is unique.

Finally, we prove that the solution map is continuous on Ḣs by a Bona-Smith argument [BS75].

First, suppose that ϕ ∈ C([0, T ]; Ḣs), ϕ̃ ∈ C([0, T ]; Ḣs+1+δ) are solutions, where 0 < δ � 1, and

let u = ϕ− ϕ̃. In a similar way to before, we find that E
(s)
ϕ (u) satisfies

d

dt
E(s)
ϕ (u) ≤ P(‖ϕ‖Ḣs , ‖ϕ̃‖Ḣs)E

(s)
ϕ (u)

+ ‖2− T 2
ϕx‖

2s+1
L∞

[
‖∂sx(LT 2

ϕx − LT
2
ϕ̃x)ϕ̃x‖L2 + ‖∂sx[R7(ϕ)−R7(ϕ̃)]‖L2

]
‖u‖Ḣs .

Using the estimates

‖∂sx(LT 2
ϕx − LT

2
ϕ̃x)ϕ̃x‖L2 . ‖Lϕ̃‖Ḣs+1‖u‖Ḣ2(‖ϕ‖Ḣs + ‖ϕ̃‖Ḣs),

‖∂sx[R(ϕ)−R(ϕ̃)]‖L2 . P(‖ϕ‖Ḣs , ‖ϕ̃‖Ḣs)‖u‖Ḣs ,

we get that

E(s)
ϕ (u(t)) . P(‖ϕ‖L∞t Ḣs , ‖ϕ̃‖L∞t Ḣs)

[
E(s)
ϕ (u(0)) + ‖u‖L∞t Ḣs‖u‖L∞t Ḣ2‖Lϕ̃‖L∞t Ḣs+1

]
. (4.49)

The higher-order derivative term ‖Lϕ̃‖L∞t Ḣs+1 , which obstructs Lipschitz continuity on Ḣs, is

compensated by the lower-order derivative factor ‖u‖L∞t Ḣ2 , and we treat it by approximating Ḣs-

solutions by smooth solutions.

Given f ∈ L2 and N ∈ N, let fN = JNf where the projection JN is defined in (4.46). If f ∈ Ḣs,

with s ≥ 2, then fN → f in Ḣs as N →∞, and

‖fN − f‖Ḣ2 .
1

N s−2
‖f‖Ḣs , ‖fN‖Ḣs+1+δ . N1+δ‖f‖Ḣs . (4.50)

Consider initial data ϕn0 , ϕ0 ∈ Ḣs such that ϕn0 → ϕ0 in Ḣs as n → ∞, and let ϕn, ϕ ∈

C([0, T ]; Ḣs) denote the corresponding solutions. We approximate the initial data by ϕn0,N , ϕ0,N

and let ϕnN , ϕN denote the corresponding solutions. Then

‖ϕn − ϕ‖Ḣs ≤ ‖ϕn − ϕnN‖Ḣs + ‖ϕnN − ϕN‖Ḣs + ‖ϕN − ϕ‖Ḣs . (4.51)
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Using (4.49) and the fact that ‖Lf‖L2 . ‖f‖Ḣδ , we get that

‖ϕ− ϕN‖2Ḣs . P(‖ϕ‖L∞t Ḣs , ‖ϕN‖L∞t Ḣs)

·
[
‖ϕ0 − ϕ0,N‖2Ḣs + ‖ϕ− ϕN‖L∞t Ḣs‖ϕ− ϕN‖L∞t Ḣ2‖ϕN‖L∞t Ḣs+1+δ

]
,

with a similar estimate for ‖ϕn − ϕnN‖2Ḣs . The Lipschitz continuity (4.6), with r = 2, and the

approximation estimates (4.50) give

‖ϕ− ϕN‖L∞t Ḣ2‖ϕN‖L∞t Ḣs+1+δ . ‖ϕ0 − ϕ0,N‖Ḣ2‖ϕ0,N‖Ḣs+1+δ .
1

N s−3−δ ‖ϕ0‖2Ḣs .

Hence, since s > 7/2, we have for each n ∈ N that

‖ϕ− ϕN‖L∞t Ḣs + ‖ϕn − ϕnN‖L∞t Ḣs → 0 as N →∞. (4.52)

In addition, using (4.49), we get that

‖ϕnN − ϕN‖2Ḣs . P(‖ϕnN‖L∞t Ḣs , ‖ϕN‖L∞t Ḣs)

·
[
‖ϕn0,N − ϕ0,N‖2Ḣs + ‖ϕnN − ϕN‖L∞t Ḣs‖ϕnN − ϕN‖L∞t Ḣ2‖ϕN‖L∞t Ḣs+1+δ

]
.

Since ϕn0,N → ϕ0,N as n→∞, equation (4.6) then implies that for each N ∈ N, we have

‖ϕnN − ϕN‖L∞t Ḣs → 0 as n→∞. (4.53)

It follows from (4.51)–(4.53) that ‖ϕn − ϕ‖L∞t Ḣs → 0 as n → ∞, which proves that the solution

map U is continuous on Ḣs.

4.4. Numerical solutions

In this section, we show two numerical solutions of the initial value problem for the approximate

SQG front equation in (4.5) that indicate the formation of singularities in finite time.

The first solution is for the initial data

ϕ0(x) = cos(x+ π) +
1

2
cos[2(x+ π + 2π2)]. (4.54)

A surface plot of the solution, computed using a pseudo-spectral method with spectral viscosity, is

shown in Figure 4.1. Numerical results suggest that an oscillatory singularity forms at t ≈ 0.06 near

x ≈ 2.15, before there is an appreciable change in the global shape of the solution. The solution
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appears to be smooth before the singularity forms, and the numerical singularity formation time

does not appear to change under further refinement. Moreover the structure of the solution remains

similar as one increases the number of Fourier modes, although the number of oscillations and the

x-location of their left endpoint increases.

One might conjecture that the formation of singularities in the approximate SQG front equation

is associated with the breaking and filamentation of the front, rather than a loss of smoothness,

but since we are using a graphical description of the front, we are unable to distinguish between

the two. The numerical solutions suggest that it may be possible to continue smooth solutions

of (4.5) by some type of weak solution after singularities form. These weak solutions appear to

remain continuous, which could be associated with the extreme thinness of any filaments that form,

as seems to occur in the case of the filamentation of vorticity fronts [BH,BH10].

In Figure 4.4–4.6, we show a solution of (4.5) with the initial data

ϕ0(x) = sech2

[
5(x− π)

2

]
. (4.55)

for 0 ≤ t ≤ 0.05. The singularity formation time is t ≈ 0.02. As in the previous case, a singularity

forms before there is an appreciable change in the global shape of the solution, but in this case

singularities form at two different locations, the first near the peak of the pulse and then, a little

later, a second near the front of the pulse.
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Figure 4.1. A surface plot of the solution of (4.5) with initial data (4.54) for
0 ≤ t ≤ 0.12. The solution is computed by a pseudo-spectral method with 214

Fourier modes. A small oscillatory singularity forms at t ≈ 0.06 near x ≈ 2.15.

Figure 4.2. Graphs of the solution of (4.5) with initial data (4.54). The solution
is shown at t = 0 (blue), t = 0.01875 (cyan), t = 0.0375 (magenta), t = 0.05625
(green), t = 0.075 (red). The solution is computed by a pseudo-spectral method
with 215 Fourier modes.
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Figure 4.3. Detail of singularity formation in the solution of (4.5) with initial
data (4.54) shown in Figure 4.2. The solution is shown at t = 0 (blue), t = 0.01875
(cyan), t = 0.0375 (magenta), t = 0.05625 (green), t = 0.075 (red).

Figure 4.4. A surface plot of the solution of (4.5) with initial data (4.55) for
0 ≤ t ≤ 0.05. The solution is computed by a pseudo-spectral method with 215

Fourier modes.
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Figure 4.5. Graphs of the solution of (4.5) with initial data (4.55) for t = 0 (blue)
and t = 0.05 (red). The solution is computed by a pseudo-spectral method with 215

Fourier modes.

Figure 4.6. Detail of the singularity formation near the front of the pulse in the
solution of (4.5) with initial data (4.55) shown in Figure 4.2. The solution is shown
at t = 0 (blue), t = 0.0125 (cyan), t = 0.025 (magenta), t = 0.0375 (green), t = 0.05
(red).
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CHAPTER 5

Global solutions to the SQG fronts

Nothing cannot exist forever.

– Stephen Hawking

This chapter concerns with the initial value problem for the full SQG front equation (3.2)

ϕt(x, t)− 2 log |∂x|ϕx(x, t)

+

ˆ
R

[ϕx(x, t)− ϕx(x+ ζ, t)]

{
1

|ζ|
− 1√

ζ2 + [ϕ(x, t)− ϕ(x+ ζ, t)]2

}
dζ = 0,

ϕ(x, 0) = ϕ0(x),

(5.1)

where ϕ : R × R+ → R is defined for x ∈ R, t ∈ R+, and log |∂x| = L is the Fourier multiplier

operator with symbol log |ξ|.

The main result of this chapter is the asymptotical stability of the planar steady SQG front

ϕ ≡ 0, and is stated in the theorem below.

Theorem 5.0.1. Let

s = 1200, r = 7, p0 = 10−4. (5.2)

There exists a constant 0 < ε� 1, such that if ϕ0 ∈ Hs(R) satisfies

‖ϕ0‖Hs + ‖x∂xϕ0‖Hr ≤ ε0

for some 0 < ε0 ≤ ε, then there exists a unique global solution ϕ ∈ C([0,∞);Hs(R)) of (5.1).

Moreover, this solution satisfies

‖ϕ(t)‖Hs + ‖Sϕ(t)‖Hr . ε0(t+ 1)p0 ,

where S is a vector field defined as

S = (x+ 2t)∂x + t∂t. (5.3)
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We remark that the operator S generates a scaling-Galilean transformation, and it follows from

Lemma 5.5.1 that S commutes with the linearized equation.

The general strategy for proving the global existence of small solutions of dispersive equations

is to prove an energy estimate together with a dispersive decay estimate. Energy estimates for

(5.1) in the usual Hs-Sobolev spaces lead to a logarithmic loss of derivatives (see Lemma B.0.3).

However, as shown in Section 4.3 for spatially periodic solutions of the cubic approximation, we

can obtain good energy estimates in suitably weighted Hs-spaces by para-linearizing the equation

and using the linear dispersive term to control the logarithmic loss of derivatives from the nonlinear

term.

The proof of the dispersive estimates is more delicate. The linear part of the equation provides

t−1/2 decay for the L∞-norm of the solution, but this is not sufficient to close the global energy

estimates for the full equation, since the O(t−1) contribution from the cubically nonlinear term is

not integrable in time. We therefore need to analyze the nonlinear dispersive behavior in more

detail. We do this by the method of space-time resonances introduced by Germain, Masmoudi

and Shatah [Ger10,GMS09,GMS12], together with estimates for weighted L∞ξ -norms — the so-

called Z-norms — developed by Ionescu and his collaborators [CGSI19,DIP17,DIPP17, IP13,

IP15,IP16,IP18].

Our Z-norm estimates involve a detailed frequency-space analysis. The most difficult part is

the estimate of the cubically nonlinear terms. In most regions of frequency space, these terms

are nonresonant, and we can use integration-by-parts in either the spatial or temporal frequency

variables to estimate the corresponding oscillatory integrals. In regions of space-time resonances,

we use the method of modified scattering to account for the nonlinear, long-time asymptotics of

the solutions [IP14,Oza91].

Our main reference is [CGSI19]. In that paper, the authors prove global well-posedness of the

initial-value problem for the GSQG (1.2) front equation with 0 < α < 1. The linearized equation

ϕt = ∂x|∂x|1−αϕ, with dispersion relation Λ(ξ) = ξ|ξ|1−α, has a scaling invariance and commutes

with the vector field x∂x+(2−α)t∂t, which provides a key ingredient in the dispersive estimates. The

SQG equation considered here corresponds to the limiting case α = 1, and its linearized dispersion

relation is Λ(ξ) = 2ξ log |ξ|. The linearized equation ϕt = 2 log |∂x|ϕx is not scale-invariant, but

it has a combined scaling-Galilean invariance and commutes with the scaling-Galilean vector field

S = (x+ 2t)∂x + t∂t defined in (5.3).
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This chapter is organized as follows. In Section 5.1, we expand and para-linearize the nonlinear

terms in the evolution equation. In Section 5.2, we derive the weighted energy estimates and state a

local existence and uniqueness result in Theorem 5.2.3. In Section 5.3, we show that Theorem 5.0.1

is a consequence of a bootstrap argument (Proposition 5.3.1) . Finally, in Sections 5.4–5.6 we

carry out the three key steps in the closing the bootstrap argument: linear dispersive estimates;

scaling-Galilean estimates; and nonlinear dispersive estimates.

5.1. Reformulation of the equation

5.1.1. Expansion of the equation. In this subsection, we expand the nonlinearity in the

SQG front equation (3.2) for fronts with small slopes |ϕx| � 1. As we will show, (3.2) can be

rewritten as

ϕt(x, t)−
∞∑
n=1

cn
2n+ 1

∂x

ˆ
R2n+1

Tn(ηn)ϕ̂(η1, t)ϕ̂(η2, t) · · · ϕ̂(η2n+1, t)e
i(η1+η2+···+η2n+1)x dηn

= 2 log |∂x|ϕx(x, t),

(5.4)

where ηn = (η1, η2, . . . , η2n+1), and

Tn(ηn) =

ˆ
R

∏2n+1
j=1 (1− eiηjζ)
|ζ|2n+1

dζ, cn =

√
π

Γ
(

1
2 − n

)
Γ(n+ 1)

. (5.5)

We remark that cn = O(n−1/2) as n→∞.

In fact, if we expand the nonlinearity in (3.2) around ϕx(x, t) = 0, we find that

ˆ
R

[
ϕx(x, t)− ϕx(x+ ζ, t)

|ζ|
− ϕx(x, t)− ϕx(x+ ζ, t)√

ζ2 + (ϕ(x, t)− ϕ(x+ ζ, t))2

]
dζ

= −
∞∑
n=1

cn

ˆ
R

[ϕx(x, t)− ϕx(x+ ζ, t)] · [ϕ(x, t)− ϕ(x+ ζ, t)]2n

|ζ|2n+1
dζ

= −
∞∑
n=1

cn
2n+ 1

∂x

ˆ
R

[
ϕ(x, t)− ϕ(x+ ζ, t)

|ζ|

]2n+1

dζ.

(5.6)

Writing

fn(x) =

ˆ
R

[
ϕ(x)− ϕ(x+ ζ)

|ζ|

]2n+1

dζ, ϕ(x) =

ˆ ∞
−∞

ϕ̂(η)eiηx dη,

we have

fn(x) =

ˆ
R2n+1

Tn(ηn)ϕ̂(η1)ϕ̂(η2) · · · ϕ̂(η2n+1)ei(η1+η2+···+η2n+1)x dηn, (5.7)
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which gives (5.4).

Isolating the lowest degree nonlinear term in (5.4), which is cubic, we can also write (3.2) as

ϕt(x, t) +
1

6
∂x

ˆ
R3

T1(η1, η2, η3)ϕ̂(η1, t)ϕ̂(η2, t)ϕ̂(η3, t)e
i(η1+η2+η3)x dη1 dη2 dη3

+N≥5(ϕ)(x, t) = 2 log |∂x|ϕx(x, t),

(5.8)

where N≥5(ϕ) denotes the nonlinear terms of quintic degree or higher

N≥5(ϕ)(x, t) = −
∞∑
n=2

cn
2n+ 1

∂x

ˆ
R2n+1

Tn(ηn)ϕ̂(η1, t)ϕ̂(η2, t) · · · ϕ̂(η2n+1, t)e
i(η1+η2+···+η2n+1)x dηn.

(5.9)

Equation (5.8) will be used in Section 5.6 in order to carry out nonlinear dispersive estimates,

where the main difficulty is controlling the slowest decay in time caused by the lowest degree, cubic

nonlinearity.

In Appendix A, we evaluate the integrals in (5.5) and show that we can write (5.4) in the

alternative form

ϕt + ∂x

{ ∞∑
n=1

2n+1∑
`=1

(−1)`+1dn,`ϕ
2n−`+1∂2n

x log |∂x|ϕ`
}

= 2 log |∂x|ϕx, (5.10)

where the constants dn,` are given in (A.4). We will not use (5.10) in this dissertation since it

makes sense classically only for C∞-solutions and does not make explicit the fact that, owing to a

cancelation of derivatives, the nonlinear flux in (5.10) involves at most logarithmic derivatives of

ϕ.

5.1.2. Para-linearization of the equation. In this subsection, we para-linearize the SQG

front equation (5.4) and put it in a form that allows us to make weighted energy estimates. This

form extracts a nonlinear term L(TBlog[ϕ]ϕ) from the flux that is responsible for the logarithmic

loss of derivatives in the dispersionless equation.

We use Weyl para-differential calculus to decompose the nonlinearity in (3.2). In the following,

we use C(n, s) to denote a positive constant depending only on n and s, which may change from

line to line.
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Proposition 5.1.1. Suppose that ϕ(·, t) ∈ Hs(R) with s > 4 and ‖ϕx‖W 2,∞ + ‖Lϕx‖W 2,∞ is

sufficiently small. Then (3.2) can be written as

ϕt + ∂xTB0[ϕ]ϕ+R = L
[
(2− TBlog[ϕ])ϕ

]
x
, (5.11)

where the symbols B0[ϕ] and Blog[ϕ] are defined by

Blog[ϕ](·, ξ) =
∞∑
n=1

Blog
n [ϕ](·, ξ), B0[ϕ](·, ξ) =

∞∑
n=1

B0
n[ϕ](·, ξ),

Blog
n [ϕ](·, ξ) = −F−1

ζ

[
2cn

ˆ
R2n

δ

(
ζ −

2n∑
j=1

ηj

) 2n∏
j=1

(
iηjϕ̂(ηj)χ

((2n+ 1)ηj
ξ

))
dη̂n

]
,

B0
n[ϕ](·, ξ) = F−1

ζ

[
2cn

ˆ
R2n

δ

(
ζ −

2n∑
j=1

ηj

) 2n∏
j=1

(
iηjϕ̂(ηj)χ

((2n+ 1)ηj
ξ

))

·
ˆ

[0,1]2n
log

∣∣∣∣ 2n∑
j=1

ηjsj

∣∣∣∣ dŝn dη̂n

]
.

(5.12)

Here, cn is given by (5.5), δ is the delta-distribution, χ is the cutoff function in (2.6), η̂n =

(η1, η2, . . . , η2n), and ŝn = (s1, . . . , s2n). The operators TBlog[ϕ] and TB0[ϕ] are self-adjoint and their

symbols satisfy the estimates

‖Blog[ϕ]‖M(1,1)
.
∞∑
n=1

C(n, s)|cn|‖ϕx‖2nW 2,∞ ,

‖B0[ϕ]‖M(1,1)
.
∞∑
n=1

C(n, s)|cn|
(
‖Lϕx‖2nW 2,∞ + ‖ϕx‖2nW 2,∞

)
,

(5.13)

while the remainder term R satisfies

‖R‖Hs . ‖ϕ‖Hs

{ ∞∑
n=1

C(n, s)|cn|
(
‖ϕx‖2nW 2,∞ + ‖Lϕx‖2nW 2,∞

)}
, (5.14)

where the constants C(n, s) have at most exponential growth in n.

Proof. We define

fn(x) =

ˆ
R2n+1

Tn(ηn)ϕ̂(η1)ϕ̂(η2) · · · ϕ̂(η2n+1)ei(η1+η2+···+η2n+1)x dηn.
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In view of (5.4) and the commutator estimate (2.9), we only need to prove that

−
∞∑
n=1

cn
2n+ 1

∂xfn(x) = ∂xTB0[ϕ]ϕ+ ∂x[(TBlog[ϕ])Lϕ] +R,

where R satisfies (5.14), and to do this it suffices to prove for each n that

cn
2n+ 1

∂xfn(x) = −∂xTB0
n[ϕ]ϕ− ∂x[(T

Blog
n [ϕ]

)Lϕ] +Rn,

‖Rn‖Hs . C(n, s)|cn|
(
‖ϕx‖2nW 2,∞ + ‖Lϕx‖2nW 2,∞

)
‖ϕ‖Hs .

By symmetry, we can assume that |η2n+1| is the largest frequency in the expression of fn. Then

cn
2n+ 1

∂xfn(x) = cn∂x

ˆ

|η2n+1|≥|ηj |
for all j=1,...,2n

Tn(ηn)ϕ̂(η1)ϕ̂(η2) · · · ϕ̂(η2n+1)ei(η1+η2+···+η2n+1)x dηn

= cn∂x

ˆ
R

ˆ

|ηj |≤|η2n+1|
for all j=1,...,2n

Tn(ηn)ϕ̂(η1)ϕ̂(η2) · · · ϕ̂(η2n)ei
∑2n
j=1 ηjx dη̂nϕ̂(η2n+1)eixη2n+1 dη2n+1

= cn∂x

ˆ
R

ˆ

|ηj |≤|η2n+1|
for all j=1,...,2n

Tn(ηn)
2n∏
j=1

[
χ

(
(2n+ 1)ηj
η2n+1

)
+ 1− χ

(
(2n+ 1)ηj
η2n+1

)]
ϕ̂(ηj)

· ei(η1+η2+···+η2n)x dη̂nϕ̂(η2n+1)eixη2n+1 dη2n+1.

(5.15)

Next, we expand the product in the above integral, and consider two cases depending on whether

a term in the expansion contains only factors of χ or contains at least one factor 1 − χ. In the

first case, the frequency η2n+1 is much larger than all of the other frequencies, and we can extract

a logarithmic derivative acting on the highest frequency; in the second case at least one other

frequency is comparable to η2n+1, and we get a remainder term by distributing derivatives on

comparable frequencies.

Case I. When we take only factors of χ in the expansion of the product, we get the integral

cn∂x

ˆ
R

ˆ

|ηj |≤|η2n+1|
for all j=1,...,2n

Tn(ηn)
2n∏
j=1

χ

(
(2n+ 1)ηj
η2n+1

)
ϕ̂(ηj)e

i
∑2n
j=1 ηjx dη̂nϕ̂(η2n+1)eixη2n+1 dη2n+1.

(5.16)
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From (5.5), we can write Tn as an integral with respect to sn = (s1, s2, . . . , s2n+1),

Tn(ηn) = −
ˆ
R

sgn ζ

ˆ
[0,1]2n+1

2n+1∏
j=1

iηje
iηjsjζ dsn dζ

= 2(−1)n
( 2n+1∏

j=1

ηj

)ˆ
[0,1]2n+1

1∑2n+1
j=1 ηjsj

dsn

= 2

( 2n∏
j=1

(iηj)

)ˆ
[0,1]2n

log

∣∣∣∣1 +
2n∑
j=1

ηj
η2n+1

sj

∣∣∣∣− log

∣∣∣∣ 2n∑
j=1

ηj
η2n+1

sj

∣∣∣∣dŝn

= 2 log |η2n+1| ·
2n∏
j=1

(iηj)− 2

( 2n∏
j=1

(iηj)

)ˆ
[0,1]2n

log

∣∣∣∣ 2n∑
j=1

ηjsj

∣∣∣∣ dŝn

+

( 2n∏
j=1

(iηj)

) ˆ
[0,1]2n

log

∣∣∣∣1 +
2n∑
j=1

ηj
η2n+1

sj

∣∣∣∣dŝn.

Substitution of this expression into (5.16) gives the following three terms

cn∂x

ˆ
R

ˆ

|ηj |≤|η2n+1|
for all j=1,...,2n

Tlog
n (ηn)

2n∏
j=1

χ

(
(2n+ 1)ηj
η2n+1

)
ϕ̂(ηj)e

i
∑2n
j=1 ηjx dη̂nϕ̂(η2n+1)eixη2n+1 dη2n+1,

(5.17)

cn∂x

ˆ
R

ˆ

|ηj |≤|η2n+1|
for all j=1,...,2n

T0
n(ηn)

2n∏
j=1

χ

(
(2n+ 1)ηj
η2n+1

)
ϕ̂(ηj)e

i
∑2n
j=1 ηjx dη̂nϕ̂(η2n+1)eixη2n+1 dη2n+1,

(5.18)

cn∂x

ˆ
R

ˆ

|ηj |≤|η2n+1|
for all j=1,...,2n

T≤−1
n (ηn)(ηn)

2n∏
j=1

χ

(
(2n+ 1)ηj
η2n+1

)
ϕ̂(ηj)e

i
∑2n
j=1 ηjx dη̂nϕ̂(η2n+1)eixη2n+1 dη2n+1,

(5.19)

where

Tlog
n (ηn) = 2 log |η2n+1| ·

2n∏
j=1

(iηj),

T0
n(ηn) = −2

( 2n∏
j=1

(iηj)

)ˆ
[0,1]2n

log

∣∣∣∣ 2n∑
j=1

ηjsj

∣∣∣∣ dŝn,

T≤−1
n (ηn) = 2

( 2n∏
j=1

(iηj)

)ˆ
[0,1]2n

log

∣∣∣∣1 +

2n∑
j=1

ηj
η2n+1

sj

∣∣∣∣ dŝn.
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We claim that the terms (5.17) and (5.18) can be rewritten as

−∂xTBlog
n [ϕ]

Lϕ+R1 and − ∂xTB0
n[ϕ]ϕ+R2, (5.20)

where R1 and R2 satisfy the estimate (5.14). Indeed,

F [∂xTBlog
n [ϕ]

Lϕ](ξ) = −2cniξ

ˆ
R
χ

(
|ξ − η|
|ξ + η|

)
log |η|

ˆ
R2n

δ

(
ξ − η −

2n∑
j=1

ηj

)

·
2n∏
j=1

(
iηjϕ̂(ηj)χ

(2(2n+ 1)ηj
ξ + η

))
dη̂nϕ̂(η) dη,

while the Fourier transform of (5.17) is

2cniξ

ˆ
R

ˆ

|ηj |≤|η2n+1|
for all j=1,...,2n

δ

ξ − 2n+1∑
j=1

ηj

 log |η2n+1|

·
2n∏
j=1

χ

(
(2n+ 1)ηj
η2n+1

)
(iηj)ϕ̂(ηj) dη̂nϕ̂(η2n+1) dη2n+1.

The difference of the above two integrals is

2cniξ

ˆ
R2n+1

δ

ξ − 2n+1∑
j=1

ηj

 log |η2n+1| ·
[
In

2n∏
j=1

χ

(
(2n+ 1)ηj
η2n+1

)
(iηj)ϕ̂(ηj)

− χ
(
|ξ − η2n+1|
|ξ + η2n+1|

) 2n∏
j=1

(
iηjϕ̂(ηj)χ

(2(2n+ 1)ηj
ξ + η2n+1

))]
dη̂nϕ̂(η2n+1) dη2n+1,

(5.21)

where In is the function which is equal to 1 on {|ηj | ≤ |η2n+1|, for all j = 1, . . . , 2n} and equal to

zero otherwise.

When ηn satisfies

|ηj | ≤
1

40

1

2n+ 1
|η2n+1| for j = 1, 2, . . . , 2n, (5.22)

we have In = 1 and χ
(

(2n+1)ηj
η2n+1

)
= 1. In addition, since ξ =

∑2n+1
j=1 ηj , we have

|ξ − η2n+1|
|ξ + η2n+1|

=

∣∣∣∣∣ 2n∑
j=1

ηj

∣∣∣∣∣∣∣∣∣∣ 2n∑
j=1

ηj + 2η2n+1

∣∣∣∣∣
≤

1
40 |η2n+1|

(2− 1
40)|η2n+1|

=
1

79
<

3

40
,
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2(2n+ 1)|ηj |
|ξ + η2n+1|

≤
1
20 |η2n+1|

(2− 1
40)|η2n+1|

=
2

79
<

3

40
,

so

χ

(
|ξ − η2n+1|
|ξ + η2n+1|

)
= 1, χ

(2(2n+ 1)ηj
ξ + η2n+1

)
= 1.

Therefore the integrand of (5.21) is supported outside the set (5.22), and there exists j1 ∈

{1, . . . , 2n}, such that |ηj1 | > 1
40

1
2n+1 |η2n+1|. Since |η2n+1| is the largest frequency, we see that |ηj1 |

and |η2n+1| are comparable in the error term. Therefore, the Hs-norm of (5.21) is bounded by

‖ϕ‖HsC(n, s)|cn|
(
‖ϕx‖2nW 2,∞ + ‖Lϕx‖2nW 2,∞

)
.

It follows that (5.17) can be written as in (5.20). A similar calculation applies to (5.18).

The symbols Blog
n [ϕ] and B0

n[ϕ] are real, so that T
Blog
n [ϕ]

and TB0
n[ϕ] are self-adjoint. Again,

without loss of generality, we assume |η2n| = max1≤j≤2n |ηj | and observe that

ˆ
[0,1]2n

log

∣∣∣∣ 2n∑
j=1

ηjsj

∣∣∣∣dŝn

= log |η2n|+
ˆ

[0,1]2n−1

{( 2n−1∑
j=1

ηj
η2n

sj

)
log

∣∣∣∣1 +
1∑2n−1

j=1
ηj
η2n
sj

∣∣∣∣+ log

∣∣∣∣1 +
1∑2n−1

j=1
ηj
η2n
sj

∣∣∣∣− 1

}
dsn−1

= log |η2n|+O(1).

Thus, using Young’s inequality, we obtain from (5.12) the estimate (5.13), where the constants

C(n, s) have at most exponential growth in n.

To estimate the third term (5.19), we observe that on the support of the functions χ
(

(2n+1)ηj
η2n+1

)
,

we have
|ηj |
|η2n+1|

≤ 1

10(2n+ 1)
.

Since sj ∈ [0, 1], a Taylor expansion gives

∣∣T≤−1
n (ηn)

∣∣ .
[∏2n

j=1 |ηj |
] [∑2n

j=1 |ηj |
]

|η2n+1|
.

Therefore the Hs-norm of (5.19) is bounded by C(n, s)|cn|‖ϕ‖Hs‖ϕx‖2nW 2,∞ , where C(n, s) has at

most exponential growth in n.
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Case II. When there is at least one factor of the form 1 − χ in the expansion of the product

in the integral (5.15), we get a term like

cn∂x

ˆ
R

ˆ

|ηj |≤|η2n+1|
for all j=1,...,2n

Tn(ηn)
∏̀
k=1

[
1− χ

(
(2n+ 1)ηjk
η2n+1

)] 2n∏
k=`+1

χ

(
(2n+ 1)ηjk
η2n+1

)

·
( 2n∏
j=1

ϕ̂(ηj)

)
ei(η1+η2+···+η2n)x dη̂nϕ̂(η2n+1)eixη2n+1 dη2n+1,

(5.23)

where 1 ≤ ` ≤ 2n is an integer, and {jk : k = 1, . . . , 2n} is a permutation of {1, . . . , 2n}.

Notice that 1− χ
(

(2n+1)ηj1
η2n+1

)
is compactly supported on

|ηj1 |
|η2n+1|

≥ 3

40(2n+ 1)
.

By assumption, η2n+1 has the largest absolute value, so

3

40(2n+ 1)
|η2n+1| ≤ |ηj1 | ≤ |η2n+1|,

meaning that the frequencies |ηj1 | and |η2n+1| are comparable.

Without loss of generality, we assume that |ηj1 | ≤ |ηj2 | ≤ · · · ≤ |ηj2n | ≤ |η2n+1|, define ηj2n+1 =

η2n+1, and split the integral of Tn (5.5) into three parts.

Tn(ηn) = Tlow
n (ηn) +

2n∑
k=1

Tmed,(k)
n (ηn) + Thigh

n (ηn),

Tlow
n (ηn) =

ˆ
|η2n+1ζ|<2

∏2n+1
j=1

(
1− eiηjζ

)
ζ2n+1

sgn ζ dζ, (5.24)

Tmed,(k)
n (ηn) =

ˆ
2∣∣∣∣ηjk+1

∣∣∣∣≤|ζ|≤
2

|ηjk |

∏2n+1
j=1

(
1− eiηjζ

)
ζ2n+1

sgn ζ dζ, (5.25)

Thigh
n (ηn) =

ˆ
|ηj1ζ|>2

∏2n+1
j=1

(
1− eiηjζ

)
ζ2n+1

sgn ζ dζ. (5.26)

To estimate (5.24), we notice that

|Tlow
n (ηn)| ≤

2n+1∏
k=1

|ηk| ·
ˆ
|η2n+1ζ|<2

( 2n+1∏
k=1

|1− eiηjk ζ |
|ηjkζ|

)
dζ ≤ C(n, s)

( 2n∏
k=1

|ηjk |
)
.
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For each 1 ≤ k ≤ 2n, we consider two cases. If k 6= 2n, we estimate (5.25) as

|Tmed,(k)
n (ηn)| ≤

k∏
`=1

|ηj` | ·
ˆ

2∣∣∣∣ηjk+1

∣∣∣∣≤|ζ|≤
2

|ηjk |

( k∏
`=1

|1− eiηj`ζ |
|ηj`ζ|

)
·
∏2n+1
`=k+1 |1− e

iηj`ζ |
|ζ|2n+1−k dζ

≤ 22n+1−k
k∏
`=1

|ηj` | ·
ˆ

2∣∣∣∣ηjk+1

∣∣∣∣≤|ζ|≤
2

|ηjk |
|ζ|−2n−1+k dζ

≤ 2

2n− k

(
|ηjk |

2n−k + |ηjk+1
|2n−k

) k∏
`=1

|ηj` |

≤ 2

( 2n∏
k=1

|ηjk |
)
.

If k = 2n, we have

|Tmed,(k)
n (ηn)| ≤ 2

2n∏
`=1

|ηj` | ·
ˆ

2

|ηj2n+1 |
≤|ζ|≤ 2

|ηj2n |

1

|ζ|
dζ

= 4
2n∏
`=1

|ηj` | · log

∣∣∣∣ηj2n+1

ηj2n

∣∣∣∣ ≤ C(n, s)

2n∏
`=1

|ηj` |,

where the last line follows from the fact that |ηj2n| and |ηj2n+1 | are comparable.

As for (5.26), we have

|Thigh
n (ηn)| ≤ |ηj1 |

ˆ
|ηj1ζ|>2

( 2n+1∏
k=2

|1− eiηjk ζ |
|ζ|

)
· |1− e

iηj1ζ |
|ηj1ζ|

dζ

≤ 22n|ηj1 |
ˆ
|ηj1ζ|>2

dζ

|ζ|2n

≤ 4

2n− 1

( 2n∏
k=1

|ηjk |
)
.

Collecting these estimates yields

Tn(ηn) ≤ C(n, s)

( 2n∏
k=1

|ηjk |
)
.

Using this inequality, we can bound the Hs-norm of (5.23) by

‖ϕ‖Hs

( ∞∑
n=1

C(n, s)|cn|‖ϕx‖2nW 2,∞

)
,

and the proposition follows. �
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5.2. Energy estimates and local well-posedness

In this section, we prove an a priori estimate for the initial value problem (5.1), which is stated

in Proposition 5.2.1. The content of this section is an analogy of the argument in Section 4.3 for

the local well-posedness of the Cauchy problem for the approximate equation (4.1), but here we

improve the estimates and include a blow-up criterion.

If ‖TBlog[ϕ]‖L2→L2 < 2, then (2 − TBlog[ϕ]) is a positive, self-adjoint operator on L2. We can

therefore define homogeneous and non-homogeneous weighted energies that are equivalent to the

Hs-energies by

E(s)(t) =

ˆ
R
|D|sϕ(x, t) ·

(
2− TBlog[ϕ]

)2s+1
|D|sϕ(x, t) dx, Ẽ(s)(t) =

s∑
j=0

E(j)(t). (5.27)

For simplicity, we consider only integer norms with s ∈ N.

In the following, we use F to denote an increasing, continuous, real-valued function, which

might change from line to line.

Proposition 5.2.1. Let s ≥ 5 be an integer and ϕ a smooth solution of (5.1) with ϕ0 ∈ Hs(R).

There exists a constant C̃ > 0, depending only on s, such that if ϕ0 satisfies

∥∥TBlog[ϕ0]‖L2→L2 ≤ C,
∞∑
n=1

C̃n|cn|
(
‖∂xϕ0‖2nW 2,∞ + ‖L∂xϕ0‖2nW 2,∞

)
<∞

for some constant 0 < C < 2, then there exists a time T > 0 such that

∥∥TBlog[ϕ(t)]‖L2→L2 < 2,

∞∑
n=1

C̃n|cn|
(
‖ϕx(t)‖2nW 2,∞ + ‖Lϕx(t)‖2nW 2,∞

)
<∞

for all t ∈ [0, T ], and

Ẽ(s)(t) ≤ Ẽ(s)(0)

+

ˆ t

0

(
‖ϕx(τ)‖W 2,∞ + ‖Lϕx(τ)‖W 2,∞

)2
F (‖ϕx(τ)‖W 2,∞ + ‖Lϕx(τ)‖W 2,∞) Ẽ(s)(τ) dτ,

(5.28)

where Ẽ(s) is defined in (5.27), and F (·) is an increasing, continuous, real-valued function such

that

F (‖ϕx‖W 2,∞ + ‖Lϕx‖W 2,∞) ≈
∞∑
n=0

C̃n|cn|
(
‖ϕx‖2nW 2,∞ + ‖Lϕx‖2nW 2,∞

)
. (5.29)

Before proving this proposition, we first state a lemma.
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Lemma 5.2.2. Suppose that s ≥ 5 is an integer. If ϕ is a smooth solution of (5.11) and ψ ∈ C1
t L

2
x,

then

∂t(2− TBlog[ϕ])
sψ = (2− TBlog[ϕ])

sψt − s(2− TBlog[ϕ])
s−1T∂tBlog[ϕ]ψ +R2(ψ),

where the remainder term satisfies

‖R2(ψ)‖H1 . ‖ψ‖L2

( ∞∑
n=1

C(n, s)|cn|
(
‖ϕx‖2nW 2,∞ + ‖Lϕx‖2nW 2,∞

))
for constants C(n, s) with at most exponential growth in n.

Proof. Since s is an integer, we can calculate the time derivative as

∂t(2− TBlog[ϕ])
sψ = T∂tBlog[ϕ](2− TBlog[ϕ])

s−1ψ + (2− TBlog[ϕ])T∂tBlog[ϕ](2− TBlog[ϕ])
s−2ψ

+ · · ·+ (2− TBlog[ϕ])
s−1T∂tBlog[ϕ]ψ + (2− TBlog[ϕ])

sψt.

Using (5.13), we have the commutator estimate

∥∥∥[T∂tBlog[ϕ], (2− TBlog[ϕ])]f
∥∥∥
H1
. ‖f‖L2

( ∞∑
n=1

C(n, s)|cn|
(
‖ϕx‖2nW 2,∞ + ‖Lϕx‖2nW 2,∞

))
.

By taking f = (2−TBlog[ϕ])
s−2ψ, (2−TBlog[ϕ])

s−3ψ, . . . , (2−TBlog[ϕ])ψ and applying the commutator

estimate repeatedly, we obtain the conclusion. �

Proof of Proposition 5.2.1. By continuity in time, there exists T > 0 such that

∞∑
n=1

C̃n|cn|
(
‖ϕx(t)‖2nW 2,∞ + ‖Lϕx(t)‖2nW 2,∞

)
<∞ for all 0 ≤ t ≤ T .

We apply the operator |D|s to equation (5.11) to get

|D|sϕt + ∂x|D|sTB0[ϕ]ϕ+ |D|sR = ∂xL|D|s
[
(2− TBlog[ϕ])ϕ

]
. (5.30)

Using Lemma 2.2.2, we find that

|D|s
[
(2− TBlog[ϕ])ϕ

]
= 2|D|sϕ− |D|s(TBlog[ϕ]ϕ)

= 2|D|sϕ− TBlog[ϕ]|D|sϕ+ sT∂xBlog[ϕ]|D|s−2ϕx +R2,

where

‖∂xR2‖L2 .

( ∞∑
n=1

C(n, s)|cn|‖ϕx‖2nW 2,∞

)
‖ϕ‖Hs−1 .
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Thus, we can write the right-hand side of (5.30) as

∂xL|D|s
[
(2− TBlog[ϕ])ϕ

]
= ∂xL

[
(2− TBlog[ϕ])|D|sϕ+ sT∂xBlog[ϕ]|D|s−2ϕx

]
+R3

= L
{

(2− TBlog[ϕ])|D|sϕx − T∂xBlog[ϕ]|D|sϕ− sT∂xBlog[ϕ]|D|sϕ
}

+R3

= L
{

(2− TBlog[ϕ])|D|sϕx − (s+ 1)T∂xBlog[ϕ]|D|sϕ
}

+R3,

where

‖R3‖L2 .

( ∞∑
n=1

C(n, s)|cn|
(
‖ϕx‖2nW 2,∞ + ‖Lϕx‖2nW 2,∞

))
‖ϕ‖Hs .

Applying (2−TBlog[ϕ])
s to (5.30), and commuting (2−TBlog[ϕ])

s with L up to remainder terms,

we obtain that

(2− TBlog[ϕ])
s|D|sϕt + (2− TBlog[ϕ])

s∂x|D|sTB0[ϕ]ϕ

= L
{

(2− TBlog[ϕ])
s+1|D|sϕx − (s+ 1)(2− TBlog[ϕ])

sT∂xBlog[ϕ]|D|sϕ
}

+R4

= ∂xL
{

(2− TBlog[ϕ])
s+1|D|sϕ

}
+R5,

(5.31)

where ‖R5‖L2 .

(∑∞
n=1C(n, s)|cn|

(
‖ϕx‖2nW 2,∞ + ‖Lϕx‖2nW 2,∞

))
‖ϕ‖Hs .

By Lemma 5.2.2, with ψ = |D|sϕ, the time derivative of E(s)(t) in (5.27) is

d

dt
E(s)(t) = −

ˆ
R

(2s+ 1)|D|sϕ · (2− TBlog[ϕ])
2sT∂tBlog[ϕ]|D|sϕdx

+ 2

ˆ
R
|D|sϕ · (2− TBlog[ϕ])

2s+1|D|sϕt dx+

ˆ
R
R2 (|D|sϕ) |D|sϕdx.

(5.32)

We will estimate each of the terms on the right-hand side of (5.32), where the second term requires

the most work.

Equation (5.11) implies that

‖ϕxt‖L∞ .
∞∑
n=1

C(n, s)|cn|
(
‖ϕx‖2nW 2,∞ + ‖Lϕx‖2nW 2,∞

)
,

so the first term on the right-hand side of (5.32) can be estimated by∣∣∣∣ˆ
R

(2s+ 1)|D|sϕ · (2− TBlog[ϕ])
2sT∂tBlog[ϕ]|D|sϕdx

∣∣∣∣
.

( ∞∑
n=1

C(n, s)|cn|
(
‖ϕx‖2nW 2,∞ + ‖Lϕx‖2nW 2,∞

))
‖ϕ‖2Hs .
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Using Lemma 5.2.2, we can estimate the third term on the right-hand side of (5.32) by

ˆ
R
R2 (|D|sϕ) |D|sϕdx .

( ∞∑
n=1

C(n, s)|cn|
(
‖ϕx‖2nW 2,∞ + ‖Lϕx‖2nW 2,∞

))
‖ϕ‖Hs‖ϕ‖Hs−1 .

To estimate the second term on the right-hand side (5.32), we multiply (5.31) by (2−TBlog[ϕ])
s+1|D|sϕ,

integrate the result with respect to x, and use the self-adjointness of (2− TBlog[ϕ])
s+1, which gives

ˆ
R
|D|sϕ · (2− TBlog[ϕ])

2s+1|D|sϕt dx = I + II + III,

where

I = −
ˆ
R
|D|sϕ · (2− TBlog[ϕ])

2s+1|D|s∂xTB0[ϕ]ϕdx,

II =

ˆ
R

(2− TBlog[ϕ])
s+1|D|sϕ · ∂xL(2− TBlog[ϕ])

s+1|D|sϕdx,

III =

ˆ
R

(2− TBlog[ϕ])
s+1|D|sϕ · R5 dx.

We have II = 0, since ∂xL is skew-symmetric, and

III .

( ∞∑
n=1

C(n, s)|cn|
(
‖ϕx‖2nW 2,∞ + ‖Lϕx‖2nW 2,∞

))
‖ϕ‖2Hs ,

since ‖R5‖L2 .

(∑∞
n=1C(n, s)|cn|

(
‖ϕx‖2nW 2,∞+‖Lϕx‖2nW 2,∞

))
‖ϕ‖Hs and (2−TBlog[ϕ])

s+1 is bounded

on L2.

Term I estimate. We write I = −Ia + Ib, where

Ia =

ˆ
R
|D|sϕ · (2− TBlog[ϕ])

2s+1∂xTB0[ϕ]|D|sϕdx,

Ib =

ˆ
R
|D|sϕ · (2− TBlog[ϕ])

2s+1∂x[TB0[ϕ], |D|s]ϕdx.

By a commutator estimate and (5.13), the second integral satisfies

|Ib| .
( ∞∑
n=1

C(n, s)|cn|
(
‖ϕx‖2nW 2,∞ + ‖Lϕx‖2nW 2,∞

))
‖ϕ‖2Hs .

To estimate the first integral, we write it as

Ia = Ia1 − Ia2 ,
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where

Ia1 =

ˆ
R
|D|sϕ · [(2− TBlog[ϕ])

2s+1, ∂x]
(
TB0[ϕ]|D|sϕ

)
dx,

Ia2 =

ˆ
R
|D|sϕx · (2− TBlog[ϕ])

2s+1
(
TB0[ϕ]|D|sϕ

)
dx.

Term Ia1 estimate. A Kato-Ponce commutator estimate and (5.13) gives

|Ia1 | .
( ∞∑
n=1

C(n, s)|cn|
(
‖ϕx‖2nW 2,∞ + ‖Lϕx‖2nW 2,∞

))
‖ϕ‖2Hs .

Term Ia2 estimate. We have

Ia2 =

ˆ
R

(
TB0[ϕ]|D|sϕ

)
· (2− TBlog[ϕ])

2s+1|D|sϕx dx

=

ˆ
R

(
TB0[ϕ]|D|sϕ

)
·
{
∂x

(
(2− TBlog[ϕ])

2s+1|D|sϕ
)
−
[
∂x, (2− TBlog[ϕ])

2s+1
]
|D|sϕ

}
dx

= −
ˆ
R
∂x
(
TB0[ϕ]|D|sϕ

)
· (2− TBlog[ϕ])

2s+1|D|sϕdx

−
ˆ
R

(
TB0[ϕ]|D|sϕ

)
·
[
∂x, (2− TBlog[ϕ])

2s+1
]
|D|sϕdx

= −
ˆ
R

(
TB0[ϕ]|D|sϕx +

[
∂x, TB0[ϕ]

]
|D|sϕ

)
· (2− TBlog[ϕ])

2s+1|D|sϕdx

−
ˆ
R

(
TB0[ϕ]|D|sϕ

)
·
[
∂x, (2− TBlog[ϕ])

2s+1
]
|D|sϕdx.

(5.33)

Using commutator estimates and (5.13), we get that

∥∥[∂x, TB0[ϕ]

]
|D|sϕ

∥∥
L2 .

( ∞∑
n=1

C(n, s)|cn|
(
‖ϕx‖2W 2,∞ + ‖Lϕx‖2W 2,∞

))
‖ϕ‖Hs ,

∥∥∥[∂x, (2− TBlog[ϕ])
2s+1

]
|D|sϕ

∥∥∥
L2
.

( ∞∑
n=1

C(n, s)|cn|
(
‖ϕx‖2nW 2,∞ + ‖Lϕx‖2nW 2,∞

))
‖ϕ‖Hs ,

∥∥∥∂x [(2− TBlog[ϕ])
2s+1, TB0[ϕ]

]
|D|sϕ

∥∥∥
L2
.

( ∞∑
n=1

C(n, s)|cn|
(
‖ϕx‖2nW 2,∞ + ‖Lϕx‖2nW 2,∞

))
‖ϕ‖2Hs .

Since TB0[ϕ] is self-adjoint, we can rewrite (5.33) as

Ia2 = −Ia2 +R6,

with

|R6| .
( ∞∑
n=1

C(n, s)|cn|
(
‖ϕx‖2nW 2,∞ + ‖Lϕx‖2nW 2,∞

))
‖ϕ‖2Hs ,
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and we conclude that

|Ia2 | .
( ∞∑
n=1

C(n, s)|cn|
(
‖ϕx‖2nW 2,∞ + ‖Lϕx‖2nW 2,∞

))
‖ϕ‖2Hs .

This completes the estimate of the terms on the right hand side of (5.32). Collecting the above

estimates and using the interpolation inequalities for E(0) and E(s), we obtain that

Ẽ(s)(t) ≤ Ẽ(s)(0)

ˆ t

0

(
‖ϕx(τ)‖W 2,∞ + ‖Lϕx(τ)‖W 2,∞

)2
· F (‖ϕx(τ)‖W 2,∞ + ‖Lϕx(τ)‖W 2,∞) ‖ϕ(τ)‖2Hs dτ,

(5.34)

with

F (‖ϕx‖W 2,∞ + ‖Lϕx‖W 2,∞) ≈
∞∑
n=0

C(n, s)|cn|
(
‖ϕx‖2nW 2,∞ + ‖Lϕx‖2nW 2,∞

)
.

We observe that there exists a constant C̃(s) > 0 such that C(n, s) . C̃(s)n. The series in (5.29)

then converges whenever ‖ϕx‖W 2,∞ + ‖Lϕx‖W 2,∞ is sufficiently small, and we can choose F to be

an increasing, continuous, real-valued function that satisfies (5.29).

Finally, since ‖2−TBlog[ϕ0]‖L2→L2 ≥ 2−C, and ‖Blog[ϕ](·, t)‖M(0,0)
and F (‖ϕx‖W 2,∞ + ‖Lϕx‖W 2,∞)

are continuous in time, there exist T > 0 and m > 0, depending only on the initial data, such that

‖2− TBlog[ϕ(t)]‖L2→L2 ≥ m for 0 ≤ t ≤ T .

We therefore obtain that

m2s+1‖ϕ‖2Hs ≤ Ẽ(s) ≤ 22s+1‖ϕ‖2Hs ,

so (5.34) implies (5.28). �

Proposition 5.2.1 leads to the following local existence, uniqueness and breakdown result.

Theorem 5.2.3. Let s ≥ 5 be an integer. Suppose that ϕ0 ∈ Hs(R) satisfies

‖TBlog[ϕ0]‖L2→L2 ≤ C,
∞∑
n=1

C̃n|cn|
(
‖∂xϕ0‖2nW 2,∞ + ‖L∂xϕ0‖2nW 2,∞

)
<∞

for some constant 0 < C < 2, where C̃ is the same constant as the one in Proposition 5.2.1 and the

symbol Blog[ϕ0] is defined in (5.12). Then there exists a maximal time of existence 0 < Tmax ≤ ∞

depending only on ‖ϕ0‖Hs, C, and C̃ such that the initial value problem (5.1) has a unique solution
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with ϕ ∈ C([0, Tmax);Hs(R)). If Tmax <∞, then either

lim
t↑Tmax

∞∑
n=1

C̃n|cn|
(
‖ϕx(t)‖2nW 2,∞ + ‖Lϕx(t)‖2nW 2,∞

)
=∞ or lim

t↑Tmax

∥∥TBlog[ϕ(·,t)]
∥∥
L2→L2 = 2. (5.35)

Proof. By Sobolev embedding, we have ‖ϕ‖W 3,∞ . ‖ϕ‖Hs and ‖Lϕ‖W 3,∞ . ‖ϕ‖Hs , so we obtain

from (5.28) that
d

dt
E(j)(t) . F

(
[Ẽ(s)(t)]1/2

)
[Ẽ(j)(t)]2.

Thus, there exists a time T > 0 such that E(s)(t) is bounded when t ∈ [0, T ]. Therefore, by classical

C0-semigroup theory for local existence [Paz83], there is a unique solution ϕ ∈ C([0, T ];Hs(R)).

By applying Grönwall’s inequality to (5.28), we get that

Ẽ(s)(t) ≤ Ẽ(s)(0) exp

[ˆ t

0
(‖ϕx(τ)‖W 2,∞ + ‖Lϕx(τ)‖W 2,∞)2F (‖ϕx(τ)‖W 2,∞ + ‖Lϕx(τ)‖W 2,∞) dτ

]
,

(5.36)

where F is given by (5.29). It follows from the local existence result that the solution can be

continued so long as ‖2− TBlog[ϕ(t)]‖L2→L2 remains bounded away from zero, and

∞∑
n=1

C̃n|cn|
(
‖ϕx(t)‖2nW 2,∞ + ‖Lϕx(t)‖2nW 2,∞

)
remains bounded, so the breakdown criterion (5.35) follows. �

The front equation is invariant under (x, t) 7→ (−x,−t), so the same result holds backward in

time. One could use a Bona-Smith argument, as in Section 4.3, to prove that the solution depends

continuously on the initial data, but we will not carry out the details here.

5.3. Global solution for small initial data

Beginning with this section, we address the proof of Theorem 5.0.1. From now on, the param-

eters s, r, and p0 are fixed as in (5.2). We also introduce the notation

h(x, t) = e−2t∂x log |∂x|ϕ(x, t), ĥ(ξ, t) = e−2itξ log |ξ|ϕ̂(ξ, t) (5.37)

for the function h obtained by removing the action of the linearized evolution group on ϕ. When

convenient, we write h(·, t) = h(t), ϕ(·, t) = ϕ(t).
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Given local existence, we only need to prove the global a priori bound. In order to do this, we

introduce the Z-norm of a function f ∈ L2(R), defined by

‖f‖Z =
∥∥∥(|ξ|+ |ξ|r+3)f̂(ξ)

∥∥∥
L∞ξ

, (5.38)

and prove the global bound by use of the following bootstrap argument.

Proposition 5.3.1 (Bootstrap). Let T > 1 and suppose that ϕ ∈ C([0, T ];Hs) is a solution of

(5.1), where the initial data satisfies

‖ϕ0‖Hs + ‖x∂xϕ0‖Hr ≤ ε0

for some 0 < ε0 � 1. If there exists ε0 � ε1 . ε
1/3
0 such that the solution satisfies

(t+ 1)−p0 (‖ϕ(t)‖Hs + ‖Sϕ(t)‖Hr) + ‖ϕ‖Z ≤ ε1

for every t ∈ [0, T ], then the solution satisfies an improved bound

(t+ 1)−p0 (‖ϕ(t)‖Hs + ‖Sϕ(t)‖Hr) + ‖ϕ‖Z . ε0.

Theorem 5.0.1 then follows from combining this bootstrap proposition with the local existence

and blow-up result in Theorem 5.2.3. We call the assumptions in Proposition 5.3.1 the bootstrap

assumptions. To prove Proposition 5.3.1, we need the following lemmas, some of whose proofs are

deferred to the next sections.

Lemma 5.3.2 (Sharp pointwise decay). Under the bootstrap assumptions,

‖ϕx(t)‖W r,∞ + ‖Lϕx(t)‖W r,∞ . ε1(t+ 1)−1/2.

Lemma 5.3.3 (Scaling-Galilean estimate). Under the bootstrap assumptions,

(t+ 1)−p0‖Sϕ(t)‖Hr . ε0.

Lemma 5.3.4. Under the bootstrap assumptions,

(t+ 1)−p0(‖ϕ(t)‖Hs + ‖x∂xϕ(t)‖Hr) . ε0.
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Proof. Recall the energy estimate (5.36)

Ẽ(s)(t) . Ẽ(s)(0)e
´ t
0 F (‖ϕx(τ)‖W2,∞+‖Lϕx(τ)‖W2,∞ )(‖ϕx(τ)‖W2,∞+‖Lϕx(τ)‖W2,∞ )2 dτ .

From Lemma 5.3.2, we have

F (‖ϕx(τ)‖W 2,∞ + ‖Lϕx(τ)‖W 2,∞) . 1,

‖ϕx(τ)‖W 2,∞ + ‖Lϕx(τ)‖W 2,∞ . (t+ 1)−1/2ε1,

which implies that

Ẽ(s)(t) . ε2
0(t+ 1)Cε

2
1

for some constant C, so once ε2
1 � p0, we have

(t+ 1)−p0‖ϕ‖Hs . ε0.

Next, we observe that we can use ‖Sϕ‖Hr to control ‖x∂xh‖Hr . It follows from (5.37), the

definition of S, and (5.4) that

Fx[x∂xh](ξ) = −∂ξ
(
ξĥ(ξ)

)
= −ĥ(ξ)− ξ∂ξĥ(ξ),

ξ∂ξĥ(ξ, t) = ξe−2itξ log |ξ| (−2it(log |ξ|+ 1)ϕ̂(ξ, t) + ∂ξϕ̂(ξ, t))

= e−2itξ log |ξ|
[
ξ∂ξϕ̂(ξ, t)− (2itξ − 1)ϕ̂(ξ, t)− tϕ̂t(ξ, t)− tN̂ (ξ, t)− ϕ̂(ξ, t)

]
= e−2itξ log |ξ|

[
−Ŝϕ(ξ, t)− ϕ̂(ξ, t)− tN̂ (ξ, t)

]
,

(5.39)

where N denotes the nonlinear term in (5.4), which satisfies the estimate

‖|∂x|jN‖L2 .
∞∑
n=1

(‖ϕx‖2nW 2,∞ + ‖Lϕx‖2nW 2,∞)‖ϕ‖Hj+2 for all j = 0, . . . , r. (5.40)

By the bootstrap assumptions, Lemma 5.3.2, and Lemma 5.3.3 we then find that

(t+ 1)−p0‖x∂xh(t)‖Hr . ε0,

and the same estimate holds for ϕ in view of (5.37). �

Lemma 5.3.5 (Nonlinear dispersive estimate). Under the bootstrap assumptions, the solution of

(5.1) satisfies

‖ϕ(t)‖Z . ε0.
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Proposition 5.3.1 then follows by combining Lemmas 5.3.2–5.3.5.

5.4. Linear dispersive estimate

In this section, we prove a dispersive estimate for the linearized evolution operator e2t∂x log |∂x|

defined in (5.37) and use it to prove Lemma 5.3.2. We recall that Pk and P̃k are the frequency-

localization operators with symbols ςk and ς̃k, respectively (see (2.17)).

Lemma 5.4.1. For t > 0 and f ∈ L2, we have the linear dispersive estimates

‖e2t∂x log |∂x|Pkf‖L∞ . (t+ 1)−1/22k/2‖P̂kf‖L∞ξ + (t+ 1)−3/42−k/4
[
‖Pk(x∂xf)‖L2 + ‖P̃kf‖L2

]
.

(5.41)

Proof. Using the inverse Fourier transform, we can write the solution as

e2t∂x log |∂x|Pkf =

ˆ
R
eixξ+2i(ξ log |ξ|)tςk(ξ)f̂(ξ) dξ.

Since

∂ξe
ixξ+2i(ξ log |ξ|)t = [ix+ 2it(log |ξ|+ 1)]eixξ+2i(ξ log |ξ|)t, (5.42)

we can integrate by parts to get

‖e2t∂x log |∂x|Pkf‖L∞ =

∥∥∥∥ˆ
R
eixξ+2i(ξ log |ξ|)tf̂(ξ)ςk(ξ) dξ

∥∥∥∥
L∞

=

∥∥∥∥ˆ
R

1

[ix+ 2it(log |ξ|+ 1)]
∂ξe

ixξ+2i(ξ log |ξ|)tf̂(ξ)ςk(ξ) dξ

∥∥∥∥
L∞

=

∥∥∥∥ˆ
R
eixξ+2i(ξ log |ξ|)t∂ξ

(
1

[ix+ 2it(log |ξ|+ 1)]
f̂(ξ)ςk(ξ)

)
dξ

∥∥∥∥
L∞

=

∥∥∥∥ˆ
R
eixξ+2i(ξ log |ξ|)t

( −2it

ξ[ix+ 2it(log |ξ|+ 1)]2
f̂(ξ)ςk(ξ)

+
1

[ix+ 2it(log |ξ|+ 1)]
ςk(ξ)∂ξ f̂(ξ) +

1

[ix+ 2it(log |ξ|+ 1)]
f̂(ξ)ς ′k(ξ)

)
dξ

∥∥∥∥
L∞
.

1. If |ix+ 2it(log |ξ|+ 1)| & (t+ 1), we use (2.18) and get

‖e2t∂x log |∂x|Pkf‖L∞ .
1

(t+ 1)

ˆ
R

∣∣∣ξ−1f̂(ξ)ςk(ξ) + ςk(ξ)∂ξ f̂(ξ) + f̂(ξ)ς ′k(ξ)
∣∣∣ dξ

.
1

(t+ 1)

[
2−k‖P̂kf‖L2

ξ
+ 2−k/2‖PkF−1(ξ∂ξ f̂)‖L2 + 2−k/2‖P̃kf‖L2

]
.
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Then (5.41) follows when (t+ 1)−1 . 2k. Otherwise, when t+ 1 . 2−k, we have

‖e2t∂x log |∂x|Pkf‖L∞ . 2k‖P̂kf‖L∞ξ . (t+ 1)−1/22k/2‖P̂kf‖L∞ξ .

2. Next we prove estimates for the case when |ix+ 2it(log |ξ|+ 1)| � (t+ 1). Let

ξ±0 = ±e−1−x/2t

be the solutions of x+ 2t(log |ξ|+ 1) = 0. Since ςk is supported in an annulus with radius around

2k, we only need to consider the case when |ξ±0 | ≈ 2k and ςk is supported on the neighborhood of

the stationary phase point ξ±0 . We decompose the integral and estimate it as∣∣∣∣ˆ
R
eixξ+2i(ξ log |ξ|)tf̂(ξ)ςk(ξ) dξ

∣∣∣∣ . ∑
l≤k+N

[
|J+
l |+ |J

−
l |
]
,

with

J±l =

ˆ
R
eixξ+2i(ξ log |ξ|)tf̂(ξ)ςk(ξ)1±(ξ)ςl(ξ − ξ±0 ) dξ,

where 1± is the indicator function supported on R± and N is large enough that the support of ςk

is covered by the set
⋃
l≤k+N{ξ | ςl(ξ − ξ

±
0 ) = 1}.

When 2l ≤ 2k/2(t+ 1)−1/2, we have

∑
2l≤2k/2(t+1)−1/2

|J±l | .
∑

2l≤2k/2(t+1)−1/2

2l‖P̂kf‖L∞ ≤ 2k/2(t+ 1)−1/2‖P̂kf‖L∞ .

When 2k/2(t+ 1)−1/2 ≤ 2l ≤ 2k+N , since |ξ − ξ0| ≈ 2l and |ξ0| ≈ 2k, we get the estimate

x+ 2t(log |ξ|+ 1) = 2t log

∣∣∣∣ ξξ0

∣∣∣∣ ≈ 2t log

∣∣∣∣1± 2l

2k

∣∣∣∣.
Using (5.42) and integration by parts, we have

|J±l | .
2k−l

(t+ 1)

ˆ
R

(
|∂ξ f̂(ξ)|+ 2−l|f̂(ξ)|

)
ςl(ξ − ξ±0 ) dξ

.
2k−l

(t+ 1)
‖f̂‖L∞ +

2k−
l
2

(t+ 1)
‖∂ξ f̂‖L2.

Then we take the sum of Jl over 2l ≥ 2k/2(t+ 1)−1/2 to get the estimates (5.41). �
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Proof of Lemma 5.3.2. Take the function f in Lemma 5.4.1 to be ∂jxh, j = 1, 2, . . . , r + 1. Since

e2t∂x log |∂x| and Pk commute, and

x∂j+1
x h = ∂jx(x∂xh)− j∂jxh,

we have that

‖Pk∂jxϕ‖L∞ . (t+1)−1/2‖F(Pk|∂x|
1
2

+jϕ)‖L∞ξ +(t+1)−3/4[2
3
4
k‖|∂x|j−1Pk(x∂xh)‖L2+‖P̃k(|∂x|j−

1
4ϕ)‖L2 ].

It follows from (5.39) that

‖|∂x|j−1Pk(x∂xh)‖L2 . ‖|∂x|j−1Pkϕ‖L2 + ‖|∂x|j−1PkSϕ‖L2 + t‖Pk|∂x|j−1N‖L2 .

We first observe that k ∈ Z− automatically leads to (t+ 1)−1/4+p02
3
4
k . 1, and then we have

‖Pk∂jxϕ‖L∞ . (t+ 1)−1/22k/2‖ςk(ξ)|ξ|jϕ̂(ξ)‖L∞ξ

+ (t+ 1)−1/2−p0 [‖|∂x|j−1P̃kϕ‖L2 + ‖|∂x|j−1PkSϕ‖L2 + t‖|∂x|j−1PkN‖L2 ].
(5.43)

For k ∈ Z+ and (t+ 1)−1/4+p02
3
4
k . 1, we have

‖Pk∂jxϕ‖L∞ . (t+ 1)−1/22−3k/2‖ςk(ξ)|ξ|j+2ϕ̂(ξ)‖L∞ξ

+ (t+ 1)−1/2−p0 [‖|∂x|j−1P̃kϕ‖L2 + ‖|∂x|j−1PkSϕ‖L2 + t‖|∂x|j−1PkN‖L2 ].
(5.44)

Finally, for k ∈ Z+ and (t+ 1)−1/4+p02
3
4
k & 1, that is 2−k . (t+ 1)−

1
3

+ 4
3
p0 , we have

‖Pk∂jxϕ‖L∞ . ‖|ξ|jςk(ξ)ϕ̂(ξ)‖L1
ξ
. ‖|ξ|j−sςk(ξ)‖L2‖P̃kϕ‖Hs

. 2(j−s− 1
2

)k‖P̃kϕ‖Hs . (t+ 1)−1−p0‖P̃kϕ‖Hs .
(5.45)

Summing over k ∈ Z, using (5.40), the bootstrap assumptions, and (5.43)–(5.45) in the correspond-

ing ranges of k, and we obtain that

‖ϕx(t)‖W r+1,∞ . ε1(t+ 1)−1/2.

Similarly, to estimate ‖Lϕx‖W r+1,∞ , we take the function f in Lemma 5.4.1 to be L∂jxh for

j = 1, 2, . . . , r + 1, and obtain

‖Pk∂jxLϕ‖L∞ . (t+ 1)−1/2‖F(Pk|∂x|
1
2

+jLϕ)‖L∞ξ
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+ (t+ 1)−3/4[2−k/4‖Pk(x∂j+1
x Lh)‖L2 + ‖P̃k(|∂x|j−

1
4Lϕ)‖L2 ].

Using

x∂j+1
x Lh = L(x∂j+1

x h)− [L, x]∂j+1
x h = L[∂jx(x∂xh)− j∂jxh]− [L, x]∂j+1

x h,

and (5.39), we get that

‖Pk∂jxLϕ‖L∞ . (t+ 1)−1/2‖ςk(ξ)|ξ|
1
2

+j log |ξ|ϕ̂(ξ)‖L∞ξ + (t+ 1)−3/42
3
4
k
[
‖|∂x|j−1LP̃kϕ‖L2

+‖|∂x|j−1LPkSϕ‖L2 + ‖|∂x|j−1Pkϕ‖L2 + t‖|∂x|j−1LPkN‖L2

]
.

If j = 1, 2, . . . , r + 1, then

|ξ|
1
2

+j log |ξ| . |ξ|+ |ξ|r+3,

so for k ∈ Z− and (t+ 1)−1/4+p02
3
4
k|k| . 1, we have

‖Pk∂jxLϕ‖L∞ . (t+ 1)−1/2(2k/2|k|)‖ςk(ξ)|ξ|jϕ̂(ξ)‖L∞ξ + (t+ 1)−1/2−p0 [‖|∂x|j−1P̃kϕ‖L2

+‖|∂x|j−1PkSϕ‖L2 + ‖|∂x|j−1Pkϕ‖L2 + t‖|∂x|j−1PkN‖L2 ].
(5.46)

For k ∈ Z+ and (t+ 1)−1/4+p02
3
4
k|k| . 1, we have

‖Pk∂jxLϕ‖L∞ . (t+ 1)−1/2(2−3k/2|k|)‖ςk(ξ)|ξ|j+2ϕ̂(ξ)‖L∞ξ + (t+ 1)−1/2−p0 [‖|∂x|j−1P̃kϕ‖L2

+‖|∂x|j−1PkSϕ‖L2 + ‖|∂x|j−1Pkϕ‖L2 + t‖|∂x|j−1PkN‖L2 ].
(5.47)

Finally, for k ∈ Z+ and (t+ 1)−1/4+p02
3
4
k|k| & 1, we have

‖Pk∂jxLϕ‖L∞ . (|k|+ 1)‖|ξ|jςk(ξ)ϕ̂(ξ)‖L1
ξ
. ‖|ξ|j−sςk(ξ)‖L2‖P̃kϕ‖Hs

. 2(j−s− 1
2

)k‖P̃kϕ‖Hs . (t+ 1)−1‖P̃kϕ‖Hs .
(5.48)

Summing over k ∈ Z, using (5.40), the bootstrap assumptions, and (5.46)–(5.48) in the correspond-

ing range of k, and we obtain that

‖Lϕx(t)‖W r+1,∞ . ε1(t+ 1)−1/2,

which concludes the proof of the lemma. �

5.5. Scaling-Galilean estimate

In this section, we prove the scaling-Galilean estimate in Lemma 5.3.3.
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First, we summarize some commutator identities for the scaling-Galilean operator S defined in

(5.3) and L = log |∂x|. The straightforward proofs follow by use of the Fourier transform and are

omitted.

Lemma 5.5.1. Let ϕ(x, t) be a Schwartz distribution on R2 such that Lϕ(x, t) is a Schwartz

distribution. Then

[S, ∂x]ϕ = −∂xϕ, [S, L]ϕ = −ϕ, [S, L∂x]ϕ = −ϕx − L∂xϕ,

[S, ∂t]ϕ = −2∂xϕ− ∂tϕ, [S, ∂t − 2L∂x]ϕ = −∂tϕ+ 2L∂xϕ.

Next, we prove a weighted energy estimate for Sϕ.

Proof of Lemma 5.3.3. Applying S to equation (5.11) and using Lemma 5.5.1, we get

(Sϕ)t − 2L∂x(Sϕ) + ∂xTB0[ϕ]Sϕ+ L[TBlog[ϕ]Sϕ]x + SR = commutators,

where the commutators are

∂x[S, TB0[ϕ]]ϕ, [S, ∂x]TB0[ϕ]ϕ, [S, L∂x]
(
TBlog[ϕ]ϕ

)
, L∂x

(
[S, TBlog[ϕ]]ϕ

)
.

By the commutator estimate Lemma 2.2.1 and (5.13), we obtain for k ≤ r that

‖∂x[S, TB0[ϕ]]ϕ‖Hk . F (‖Lϕx‖W 2,∞ + ‖ϕx‖W 2,∞)(‖Lϕx‖W 2,∞ + ‖ϕx‖W 2,∞)‖ϕx‖W r,∞‖Sϕ‖Hr

. F (‖Lϕ‖W 2,∞ + ‖ϕ‖W 2,∞)(‖Lϕ‖W r,∞ + ‖ϕ‖W r,∞)2‖Sϕ‖Hr ,

‖[S, ∂x]TB0[ϕ]ϕ‖Hk = ‖TB0[ϕ]ϕ‖Hk+1

. F (‖Lϕx‖W 2,∞ + ‖ϕx‖W 2,∞)(‖Lϕx‖W 2,∞ + ‖ϕx‖W 2,∞)2‖ϕ‖Hk+1 ,∥∥[S, L∂x]
(
TBlog[ϕ]ϕ

)∥∥
Hk =

∥∥(TBlog[ϕ]ϕ
)
x

+ L∂x
(
TBlog[ϕ]ϕ

)∥∥
Hk

. F (‖Lϕx‖W 2,∞ + ‖ϕx‖W 2,∞)(‖Lϕx‖W 2,∞ + ‖ϕx‖W 2,∞)2

· (‖ϕ‖Hk+1 + ‖Lϕ‖Hk+1),∥∥∥∥L∂x([S, TBlog[ϕ]]ϕ
)∥∥∥∥

Hk

. F (‖Lϕx‖W 2,∞ + ‖ϕx‖W 2,∞)(‖Lϕx‖W 2,∞ + ‖ϕx‖W 2,∞)2‖Sϕ‖Hr .

Thus, the evolution equation for Sϕ can be written as

(Sϕ)t + ∂xTB0[ϕ]Sϕ+RS = L
[
(2− TBlog[ϕ])Sϕ

]
,
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where the remainder RS satisfies

‖RS‖Hr . (‖ϕ‖W r+1,∞ + ‖Lϕ‖W r+1,∞)2 (‖Sϕ‖Hr + ‖ϕ‖Hs) .

As in (5.27), we define a weighted energy for Sϕ by

E
(j)
S (t) =

ˆ
R
|D|jSϕ(x, t) ·

(
2− TBlog[ϕ]

)2j+1
|D|jSϕ(x, t) dx, j = 0, 1, · · · , r,

Ẽ
(r)
S (t) =

r∑
j=0

E
(j)
S (t),

and repeat similar estimates to the ones in the proof of Proposition 5.2.1 to get

d

dt
E

(j)
S (t) . (‖ϕx‖W r,∞ + ‖Lϕx‖W r,∞)2F (‖Sϕ‖Hr + ‖ϕ‖Hs) ‖Sϕ‖Hr .

Using Lemma 5.3.2 and the equivalence of Ẽ
(r)
S and ‖Sϕ‖2Hr when ‖2− TBlog[ϕ]‖L2→L2 is bounded

away from zero, we find by integrating in t that

Ẽ
(r)
S (t) . ε2

0(t+ 1)2p0 ,

which proves the lemma. �

5.6. Nonlinear dispersive estimate

In this section, we prove the estimate in Lemma 5.3.5 for the Z-norm ‖ϕ‖Z defined in (5.38).

When |ξ| < (t+ 1)−p0 , Lemma 2.3.1 and the bootstrap assumptions give

|(|ξ|+ |ξ|r+3)ϕ̂(ξ, t)|2 . (|ξ|+ |ξ|r+3)2|ξ|−1‖ϕ̂‖L2
ξ
(|ξ|‖∂ξϕ̂‖L2

ξ
+ ‖ϕ̂‖L2

ξ
)

. (|ξ|+ |ξ|r+3)‖ϕ‖L2(‖Sϕ‖L2 + ‖ϕ‖L2)

. ε2
0.

Let p1 = 10−6. When |ξ| ≥ (t + 1)p1 , Lemma 2.3.1 and the bootstrap assumptions, with the

parameter values (5.2), give

|(|ξ|+ |ξ|r+3)ϕ̂(ξ, t)|2 . (|ξ|+ |ξ|r+3)2

|ξ|s+1
‖ϕ‖Hs(‖Sϕ‖L2 + ‖ϕ‖L2)

. |ξ|2r+5−sε2
0(t+ 1)2p0

. ε2
0.
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Thus, we only need to consider the frequency range

(t+ 1)−p0 ≤ |ξ| ≤ (t+ 1)p1 . (5.49)

In the following, we fix ξ in this range, and denote by d(ξ, t) a smooth cut-off function compactly

supported on a small neighborhood of {(ξ, t) : (t+ 1)−p0 < |ξ| < (t+ 1)p1}.

Taking the Fourier transform of (5.8), we obtain that

ϕ̂t(ξ) +
1

6
iξ

¨
R2

T1(η1, η2, ξ − η1 − η2)ϕ̂(ξ − η1 − η2)ϕ̂(η1)ϕ̂(η2) dη1 dη2 + N̂≥5(ϕ)(ξ) = 2iξ log |ξ|ϕ̂(ξ),

(5.50)

where N≥5(ϕ) is given by (5.9). From (A.3),

T1(η1, η2, η3) = −η2
1 log |η1| − η2

2 log |η2| − η2
3 log |η3| − (η1 + η2 + η3)2 log |η1 + η2 + η3|

+
{

(η1 + η2)2 log |η1 + η2|+ (η1 + η3)2 log |η1 + η3|+ (η2 + η3)2 log |η2 + η3|
}
.

with

∂η1 [T1(η1, η2, ξ − η1 − η2)] = −2
{
η1 log |η1| − (η1 + η2) log |η1 + η2|

+ (ξ − η1) log |ξ − η1| − (ξ − η1 − η2) log |ξ − η1 − η2|
}
,

∂η2 [T1(η1, η2, ξ − η1 − η2)] = −2
{
η2 log |η2| − (η1 + η2) log |η1 + η2|

+ (ξ − η2) log |ξ − η2| − (ξ − η1 − η2) log |ξ − η1 − η2|
}
.

(5.51)

5.6.1. Modified scattering. Nonlinearity leads to a cumulative frequency shift in the long-

time behavior of the Fourier components of the solution due to space-time resonances of the form

ξ + ξ− ξ = ξ. To account for this effect, we use the method of modified scattering and introduce a

phase correction

Θ(ξ, t) = −2tξ log |ξ|+ ξ

ˆ t

0
[β1(t)T1(ξ, ξ,−ξ) + β2(t)T1(ξ,−ξ, ξ) + β3(t)T1(−ξ, ξ, ξ)]|ϕ̂(ξ, τ)|2 dτ,

where β1(t), β2(t), and β3(t) are real-valued functions of t to be determined later. We then let

v̂(ξ, t) = eiΘ(ξ,t)ϕ̂(ξ, t).

107



Using (5.50), we find that

v̂t(ξ, t) = eiΘ(ξ,t)[ϕ̂t(ξ, t) + iΘt(ξ, t)ϕ̂(ξ, t)]

= U1(ξ, t) + U2(ξ, t)− eiΘ(ξ,t)N̂≥5(ϕ)(ξ, t),
(5.52)

where

U1(ξ, t) = eiΘ(ξ,t)

{
− 1

6
iξ

¨
R2

T1(η1, η2, ξ − η1 − η2)ϕ̂(ξ − η1 − η2, t)ϕ̂(η1, t)ϕ̂(η2, t) dη1 dη2

+ iξ [β1(t)T1(ξ, ξ,−ξ) + β2(t)T1(ξ,−ξ, ξ) + β3(t)T1(−ξ, ξ, ξ)] |ϕ̂(ξ, t)|2ϕ̂(ξ, t)

}
,

U2(ξ, t) = v̂(ξ, t)

{
iξ

ˆ t

0

[
β′1(t)T1(ξ, ξ,−ξ) + β′2(t)T1(ξ,−ξ, ξ) + β′3(t)T1(−ξ, ξ, ξ)

]
|ϕ̂(ξ, τ)|2 dτ

}
.

The coefficient of v̂ in the term U2 is purely imaginary, so it leads to a phase shift in v̂ that does

not affect its norm, and we get from (5.52) that

‖ϕ‖Z = ‖(|ξ|+ |ξ|r+3)ϕ̂(ξ, t)‖L∞ξ = ‖(|ξ|+ |ξ|r+3)v̂(ξ, t)‖L∞ξ

.
ˆ t

0
‖(|ξ|+ |ξ|r+3)U1(ξ, τ)‖L∞ξ + ‖(|ξ|+ |ξ|r+3)N̂≥5(ϕ)(ξ, τ)‖L∞ξ dτ.

We will estimate the cubic terms involving U1 in Sections 5.6.2–5.6.5 and the higher-degree terms

involving N̂≥5(ϕ) in Section 5.6.6. We do not need to consider the terms in U1 that involve the βj

until we come to an analysis of the space-time resonances in Section 5.6.5.

To begin with, we recall that h = e−2t∂x log |∂x|ϕ is defined in (5.37). From (5.50), we find that

ĥ satisfies

ĥt(ξ, t) +
1

6
iξ

¨
R2

T1(η1, η2, ξ − η1 − η2)eitΦ(ξ,η1,η2)ĥ(ξ − η1 − η2, t)ĥ(η1, t)ĥ(η2, t) dη1 dη2

+ e−2itξ log |ξ|N̂≥5(ϕ)(ξ, t) = 0,

(5.53)

where

Φ(ξ, η1, η2) = 2(ξ − η1 − η2) log |ξ − η1 − η2|+ 2η1 log |η1|+ 2η2 log |η2| − 2ξ log |ξ|. (5.54)
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Suppressing the dependence on the time variable t, we can write the integral in U1 involving ϕ in

terms of h as

¨
R2

T1(η1, η2, ξ − η1 − η2)ϕ̂(ξ − η1 − η2)ϕ̂(η1)ϕ̂(η2) dη1 dη2

=

¨
R2

T1(η1, η2, ξ − η1 − η2)eitΦ(ξ,η1,η2)ĥ(ξ − η1 − η2)ĥ(η1)ĥ(η2) dη1 dη2.

Carrying out a dyadic decomposition, with hj = Pjh and ϕj = Pjϕ where Pj is the Fourier

multiplier with symbol ςj defined in (2.17), we rewrite this integral in each dyadic block as

¨
R2

T1(η1, η2, ξ − η1 − η2)eitΦ(ξ,η1,η2)ĥj1(η1)ĥj2(η2)ĥj3(ξ − η1 − η2) dη1 dη2. (5.55)

In the following subsections, we estimate this integral in various regions of frequency-space.

In Section 5.6.2, we estimate the integral for high frequencies (large j1, j2, and j3). In Sec-

tion 5.6.3, we estimate the integral for nonresonant frequencies, using oscillatory integral estimates

with respect to the frequency variables together with multilinear estimates to get sufficient time

decay.

In Section 5.6.4, we consider frequencies that are close to the resonant frequencies. In that

case, the bounds for the multilinear symbols are worse, so we cannot obtain sufficient time decay

by the method used for the nonresonant frequencies. We resolve this issue by an additional dyadic

decomposition centered at each resonant point and a refinement of the symbol estimates.

Finally, in Section 5.6.5, we consider frequencies that are at the space resonance or space-

time resonances. For the space resonance, we estimate the integral in a region about the space

resonance point that shrinks in time, using an oscillatory integral estimate with respect to time

and the equation to eliminate the time-derivative of the solution. For the space-time resonances, we

take advantage of the modified scattering phase correction and estimate the integral on shrinking

regions about the space-time resonance points.

5.6.2. High frequencies. When max{j1, j2, j3} & 10−3 log2 |t + 1| > 0, we can estimate the

nonlinear terms (5.55) by using Lemma 2.3.2, with the L∞-norm placed on the lowest derivative

term. There are, in total, r+ 6 = 13 derivatives shared by three factors of ϕ. Thus, we can ensure

that the term with least derivatives has at most four derivatives, with or without a logarithmic

derivative.
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To be more specific, using Hölder’s inequality, Sobolev embedding, and the bootstrap assump-

tions, we obtain the estimate∥∥∥∥ξ(|ξ|+ |ξ|r+3)d(ξ, t)

¨
R2

T1(η1, η2, ξ − η1 − η2)eitΦ(ξ,η1,η2)ĥj1(η1)ĥj2(η2)ĥj3(ξ − η1 − η2) dη1 dη2

∥∥∥∥
L∞ξ

. (t+ 1)(r+7−s)10−3‖ϕmin‖L2(‖ϕmed‖L∞ + ‖L∂xϕmed‖W r,∞)‖ϕmax‖Hs

. (t+ 1)(r+7−s)10−3‖ϕj1‖Hs‖ϕj2‖Hs‖ϕj3‖Hs ,

where max, med, min represent the maximum, median, and the minimum of j1, j2, j3, and d is the

cut-off function for the frequency range (5.49). From (5.2), we have (r+ 7− s)10−3 < −1.1, so the

right-hand-side is summable over j1, j2, j3, and the sum is integrable for t ∈ (0,∞).

5.6.3. Nonresonant frequencies. We now only need to consider when max{j1, j2, j3} <

10−3 log2(t + 1). The regions |j1 − j3| > 1 or |j2 − j3| > 1 correspond to nonresonant frequencies.

Without loss of generality, we assume |j1 − j3| > 1.

Notice that by (5.54), we have

∂η1Φ = 2 log |η1| − 2 log |ξ − η1 − η2|. (5.56)

Since |η1| and |ξ−η1−η2| are in different dyadic blocks, we have
∣∣|η1|−|ξ−η1−η2|

∣∣ & max{|η1|, |ξ−

η1 − η2|}. Therefore, |∂η1Φ| & 1.

After integrating by part, we have

¨
R2

T1(η1, η2, ξ − η1 − η2)eitΦ(ξ,η1,η2)ĥj1(η1)ĥj2(η2)ĥj3(ξ − η1 − η2) dη1 dη2

=

¨
R2

T1(η1, η2, ξ − η1 − η2)

it∂η1Φ(ξ, η1, η2)
∂η1e

itΦ(ξ,η1,η2)ĥj1(η1)ĥj2(η2)ĥj3(ξ − η1 − η2) dη1 dη2

= −W1 −W2 −W3,

where

W1(ξ, t) =

¨
R2

∂η1

[
T1(η1, η2, ξ − η1 − η2)

it∂η1Φ(ξ, η1, η2)

]
eitΦ(ξ,η1,η2)ĥj1(η1)ĥj2(η2)ĥj3(ξ − η1 − η2) dη1 dη2,

W2(ξ, t) =

¨
R2

[
T1(η1, η2, ξ − η1 − η2)

it∂η1Φ(ξ, η1, η2)

]
eitΦ(ξ,η1,η2)ĥj1(η1)ĥj2(η2)∂η1 ĥj3(ξ − η1 − η2) dη1 dη2,

W3(ξ, t) =

¨
R2

[
T1(η1, η2, ξ − η1 − η2)

it∂η1Φ(ξ, η1, η2)

]
eitΦ(ξ,η1,η2)∂η1 ĥj1(η1)ĥj2(η2)ĥj3(ξ − η1 − η2) dη1 dη2.
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Estimate of W1. Since

‖W1‖L∞ξ . ‖F
−1(W1)‖L1 , (5.57)

it suffices to estimate the L1
x norm of

˚
R3

eiξx∂η1

[
T1(η1, η2, ξ − η1 − η2)

it∂η1Φ(ξ, η1, η2)

]
eitΦ(ξ,η1,η2)ĥj1(η1)ĥj2(η2)ĥj3(ξ − η1 − η2) dη1 dη2 dξ.

Notice that by (5.56)

∂η1
T1(η1, η2, ξ − η1 − η2)

∂η1Φ(ξ, η1, η2)
= κ1(η1, η2, ξ − η1 − η2)− κ2(η1, η2, ξ − η1 − η2)

2
,

where

κ1(η1, η2, η3) =
∂η1T1(η1, η2, η3)− ∂η3T1(η1, η2, η3)

log |η1| − log |η3|
,

κ2(η1, η2, η3) = T1(η1, η2, η3)

1
η1

+ 1
η3

(log |η1| − log |η3|)2
.

Making a change of variable η3 = ξ − η1 − η2, we need to estimate the trilinear form

1

it

˚
R3

eiξx [κ1(η1, η2, η3) + κ2(η1, η2, η3)] ϕ̂j1(η1)ϕ̂j2(η2)ϕ̂j3(η3) dη1 dη2 dη3,

with symbol

[κ1(η1, η2, η3) + κ2(η1, η2, η3)] ςj1(η1)ςj2(η2)ςj3(η3).

According to Lemma 2.3.2, this trilinear operator is bounded on L2 × L2 × L∞ → L1 by

‖[κ1(η1, η2, η3) + κ2(η1, η2, η3)] ςj1(η1)ςj2(η2)ςj3(η3)‖S∞

.
(
‖∂η1T1(η1, η2, η3)ς̃j1(η1)ς̃j2(η2)ς̃j3(η3)‖S∞

+ ‖∂η3T1(η1, η2, η3)ς̃j1(η1)ς̃j2(η2)ς̃j3(η3)‖S∞
)
·
∥∥∥∥ ςj1(η1)ςj2(η2)ςj3(η3)

log |η1| − log |η3|

∥∥∥∥
S∞

+

(∥∥∥∥T1(η1, η2, η3)

η1
ς̃j1(η1)ς̃j2(η2)ς̃j3(η3)

∥∥∥∥
S∞

+

∥∥∥∥T1(η1, η2, η3)

η3
ς̃j1(η1)ς̃j2(η2)ς̃j3(η3)

∥∥∥∥
S∞

)
·
∥∥∥∥ ςj1(η1)ςj2(η2)ςj3(η3)

(log |η1| − log |η3|)2

∥∥∥∥
S∞

.

(5.58)

Lemma 5.6.1. Suppose that |j1 − j3| > 1. Then for any m ∈ Z+,∥∥∥∥ 1

(log |η1| − log |η3|)m
ςj1(η1)ςj2(η2)ςj3(η3)

∥∥∥∥
S∞
. 1.
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Proof. By the definition of the S∞-norm (2.19) and the definition of ςk (2.17), we have that∥∥∥∥ ςj1(η1)ςj2(η2)ςj3(η3)

(log |η1| − log |η3|)m

∥∥∥∥
S∞

=

∥∥∥∥˚
R3

ςj1(η1)ςj2(η2)ςj3(η3)

(log |η1| − log |η3|)m
ei(y1η1+y2η2+y3η3) dη1 dη2 dη3

∥∥∥∥
L1

=

˚
R3

∣∣∣∣˚
R3

ς0(2−j1η1)ς0(2−j2η2)ς0(2−j3η3)

(log |η1| − log |η3|)m
ei(y1η1+y2η2+y3η3) dη1 dη2 dη3

∣∣∣∣ dy1 dy2 dy3

. 1,

where the last inequality comes from oscillatory integral estimates, using the fact that |j1− j3| > 1

and the support of ς0 is (−8
5 ,−

5
8) ∪ (5

8 ,
8
5). �

For the estimates of other symbols in (5.58), we have the following lemma.

Lemma 5.6.2. For any j1, j2, j3 ∈ Z, we have

‖∂η1T1(η1, η2, η3)ς̃j1(η1)ς̃j2(η2)ς̃j3(η3)‖S∞ . 2max{j2,j3}, (5.59)

‖T1(η1, η2, η3)ς̃j1(η1)ς̃j2(η2)ς̃j3(η3)‖S∞ . 2max{j1,j2,j3}+min{j1,j2,j3}, (5.60)

and ∥∥∥∥T1(η1, η2, η3)

η1
ς̃j1(η1)ς̃j2(η2)ς̃j3(η3)

∥∥∥∥
S∞
. 2max{j2,j3}. (5.61)

Furthermore, since T1 is symmetric, we also have

‖∂η3T1(η1, η2, η3)ς̃j1(η1)ς̃j2(η2)ς̃j3(η3)‖S∞ . 2max{j1,j2},∥∥∥∥T1(η1, η2, η3)

η3
ς̃j1(η1)ς̃j2(η2)ς̃j3(η3)

∥∥∥∥
S∞
. 2max{j1,j2}.

Proof. 1. We prove (5.59) first. Using inverse Fourier transform in (η1, η2, η3), we obtain

F−1[∂η1T1(η1, η2, η3)ς̃j1(η1)ς̃j2(η2)ς̃j3(η3)]

=

˚
R3

ei(y1η1+y2η2+y3η3)∂η1

[ˆ
R

∏3
j=1(1− eiηjζ)
|ζ|3

dζ

]
ς̃j1(η1)ς̃j2(η2)ς̃j3(η3) dη1 dη2 dη3

=

˚
R3

[ˆ
R

−iζeiη1(ζ+y1)(eiy2η2 − eiη2(ζ+y2))(eiy3η3 − eiη3(ζ+y3))

|ζ|3
dζ

]
ς̃j1(η1)ς̃j2(η2)ς̃j3(η3) dη1 dη2 dη3

=

ˆ
R

−iζ
|ζ|3
·
[
F−1[ς̃j1 ](y1 + ζ)

]
·
[
F−1[ς̃j2 ](y2)−F−1[ς̃j2 ](ζ + y2)

] [
F−1[ς̃j3 ](y3)−F−1[ς̃j3 ](ζ + y3)

]
dζ.
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Notice that

∣∣F−1[ς̃j1 ](y1 + ζ)
∣∣ = 2j1

∣∣F−1[ς̃0](2j1(y1 + ζ))
∣∣ ,∣∣F−1[ς̃j2 ](y2)−F−1[ς̃j2 ](ζ + y2)

∣∣ = 2j2
∣∣F−1[ς̃0](2j2y2)−F−1[ς̃0](2j2(ζ + y2))

∣∣ ,∣∣F−1[ς̃j3 ](y3)−F−1[ς̃j3 ](ζ + y3)
∣∣ = 2j3

∣∣F−1[ς̃0](2j3y3)−F−1[ς̃0](2j3(ζ + y3))
∣∣ ,

and that

ˆ
R

∣∣F−1[ς̃0](2j1(y1 + ζ))
∣∣ dy1 . 2−j1 ,

ˆ
R

∣∣F−1[ς̃j2 ](2j2y2)−F−1[ς̃j2 ](2j2(ζ + y2))
∣∣ dy2 . min{2−j2 , |ζ|},

ˆ
R

∣∣F−1[ς̃j3 ](2j3y3)−F−1[ς̃j3 ](2j3(ζ + y3))
∣∣ dy3 . min{2−j3 , |ζ|}.

Therefore, we have

∥∥F−1[∂η1T1(η1, η2, η3)ς̃j1(η1)ς̃j2(η2)ς̃j3(η3)]
∥∥
L1

.
ˆ
R

1

|ζ|2
2j2+j3 min{2−j2 , |ζ|}min{2−j3 , |ζ|}dζ

= 2j2+j3

(ˆ
|ζ|>max{2−j2 ,2−j3}

1

|ζ|2
2−j2−j3 dζ +

ˆ
min{2−j2 ,2−j3}<|ζ|<max{2−j2 ,2−j3}

1

|ζ|
min{2−j2 , 2−j3} dζ

+

ˆ
|ζ|<min{2−j2 ,2−j3}

1 dζ

)
. 2max{j2,j3}.

2. Next, we prove (5.60) and (5.61). The estimate of (5.60) is similarly to (5.59). We first use

inverse Fourier transform and write

F−1 [T1(η1, η2, η3)ς̃j1(η1)ς̃j2(η2)ς̃j3(η3)]

=

˚
R3

ei(y1η1+y2η2+y3η3)

[ˆ
R

∏3
j=1(1− eiηjζ)
|ζ|3

dζ

]
ς̃j1(η1)ς̃j2(η2)ς̃j3(η3) dη1 dη2 dη3

=

˚
R3

[ˆ
R

(eiy1η1 − eiη1(ζ+y1))(eiy2η2 − eiη2(ζ+y2))(eiy3η3 − eiη3(ζ+y3))

|ζ|3
dζ

]
ς̃j1(η1)ς̃j2(η2)ς̃j3(η3) dη1 dη2 dη3

=

ˆ
R

1

|ζ|3
[
F−1[ς̃j1 ](y1)−F−1[ς̃j1 ](ζ + y1)

]
·
[
F−1[ς̃j2 ](y2)−F−1[ς̃j2 ](ζ + y2)

]
·
[
F−1[ς̃j3 ](y3)−F−1[ς̃j3 ](ζ + y3)

]
dζ.
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Taking the L1-norm, we obtain

∥∥F−1[T1(η1, η2, η3)ς̃j1(η1)ς̃j2(η2)ς̃j3(η3)]
∥∥
L1

.
ˆ
R

2j1+j2+j3 1

|ζ|3
min{2−j1 , |ζ|}min{2−j2 , |ζ|}min{2−j3 , |ζ|}dζ

.
ˆ
|ζ|>max{2−j1 ,2−j2 ,2−j3}

1

|ζ|3
dζ +

ˆ
|ζ|<min{2−j1 ,2−j2 ,2−j3}

2j1+j2+j3 dζ

+

ˆ
min{2−j1 ,2−j2 ,2−j3}<|ζ|<med{2−j1 ,2−j2 ,2−j3}

2med{j1,j2,j3}+min{j1,j2,j3} 1

|ζ|
dζ

+

ˆ
med{2−j1 ,2−j2 ,2−j3}<|ζ|<max{2−j1 ,2−j2 ,2−j3}

2min{j1,j2,j3} 1

|ζ|2
dζ

. 22 min{j1,j2,j3} + 2max{j1,j2,j3}+med{j1,j2,j3} + 2max{j1,j2,j3}+min{j1,j2,j3} + 2min{j1,j2,j3}+med{j1,j2,j3}

. 2max{j1,j2,j3}+min{j1,j2,j3},

which proves (5.60).

As for (5.61), we define

˜̃ςk(η) :=

k+3∑
j=k−3

ςj(η).

Then it follows from the support of ςk and the fact that ςk forms a partition of unity that

T1(η1, η2, η3)

η1
ς̃j1(η1)ς̃j2(η2)ς̃j3(η3) = [T1(η1, η2, η3)ς̃j1(η1)ς̃j2(η2)ς̃j3(η3)] ·

[
1

η1

˜̃ςj1(η1)˜̃ςj2(η2)˜̃ςj3(η3)

]
.

By Lemma 2.3.2, we have∥∥∥∥T1(η1, η2, η3)

η1
ς̃j1(η1)ς̃j2(η2)ς̃j3(η3)

∥∥∥∥
S∞

. ‖T1(η1, η2, η3)ς̃j1(η1)ς̃j2(η2)ς̃j3(η3)‖S∞
∥∥∥∥ ˜̃ςj1(η1)˜̃ςj2(η2)˜̃ςj3(η3)

η1

∥∥∥∥
S∞
.

(5.62)

In view of (5.60), we only need to estimate the second term. To this end, we have∥∥∥∥ 1

η1

˜̃ςj1(η1)˜̃ςj2(η2)˜̃ςj3(η3)

∥∥∥∥
S∞

=

∥∥∥∥ˆ
R
η−1

1
˜̃ςj1(η1)eiη1y1 dη1F−1[˜̃ςj2 ](y2)F−1[˜̃ςj3 ](y3)

∥∥∥∥
L1

. 2−j1 .

Therefore, by (5.62) and considering all the possible relations between j1, j2, and j3, we obtain

(5.61). �
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Applying the above lemmas to (5.58) and (5.57), we obtain

‖W1‖L∞ξ . (t+ 1)−1
[
‖∂xϕmax{j1,j2}‖L∞‖ϕj3‖L2‖ϕmin{j1,j2}‖L2

+ ‖∂xϕmax{j2,j3}‖L∞‖ϕj1‖L2‖ϕmin{j2,j3}‖L2

]
.

Since the two terms are symmetric in j1 and j3, it suffices to estimate one of them, as the other

one is similar. We use Lemma 5.4.1 and get

‖∂xϕmax{j1,j2}‖L∞ . (t+ 1)−1/2‖|ξ|1.5ĥmax{j1,j2}‖L∞ξ

+ (t+ 1)−3/4
[
‖|∂x|0.75Pmax{j1,j2}(x∂xh)‖L2 + ‖|∂x|0.75hmax{j1,j2}‖L2

]
.

Therefore,

‖W1‖L∞ξ

. (t+ 1)−1.5
(
1max{j1,j2}≤020.5 max{j1,j2}‖|ξ|ĥmax{j1,j2}‖L∞ξ

+ 1max{j1,j2}>02(−1.5−r) max{j1,j2}‖|ξ|r+3ĥmax{j1,j2}‖L∞ξ
)
· ‖ϕj3‖L2‖ϕmin{j1,j2}‖L2

+ (t+ 1)−1.75
(
‖|∂x|0.75Pmax{j1,j2}(x∂xh)‖L2 + ‖|∂x|0.75hmax{j1,j2}‖L2

)
‖ϕj3‖L2‖ϕmin{j1,j2}‖L2

+ (t+ 1)−1.5
(
1max{j2,j3}≤020.5 max{j2,j3}‖|ξ|ĥmax{j2,j3}‖L∞ξ

+ 1max{j2,j3}>02(−1.5−r) max{j2,j3}‖|ξ|r+3ĥmax{j2,j3}‖L∞ξ
)
· ‖ϕj1‖L2‖ϕmin{j2,j3}‖L2

+ (t+ 1)−1.75
(
‖|∂x|0.75Pmax{j2,j3}(x∂xh)‖L2 + ‖|∂x|0.75hmax{j2,j3}‖L2

)
‖ϕj1‖L2‖ϕmin{j2,j3}‖L2

. (t+ 1)−1.5
(
1max{j1,j2}≤020.5 max{j1,j2} + 1max{j1,j2}>02(−1.5−r) max{j1,j2}

)
· ‖hmax{j1,j2}‖Z‖ϕj3‖L2‖ϕmin{j1,j2}‖L2

+ (t+ 1)−1.75
(
‖|∂x|0.75Pmax{j1,j2}(x∂xh)‖L2 + ‖|∂x|0.75hmax{j1,j2}‖L2

)
· ‖ϕj3‖L2‖ϕmin{j1,j2}‖L2

+ (t+ 1)−1.5
(
1max{j2,j3}≤020.5 max{j2,j3} + 1max{j2,j3}>02(−1.5−r) max{j2,j3}

)
· ‖hmax{j2,j3}‖Z‖ϕj1‖L2‖ϕmin{j2,j3}‖L2

+ (t+ 1)−1.75
(
‖|∂x|0.75Pmax{j2,j3}(x∂xh)‖L2 + ‖|∂x|0.75hmax{j2,j3}‖L2

)
· ‖ϕj1‖L2‖ϕmin{j2,j3}‖L2 .
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Estimate of W2 and W3. We rewrite W2 as

¨
R2

[
T1(η1, η2, ξ − η1 − η2)

it∂η1Φ(ξ, η1, η2)(ξ − η1 − η2)

]
eitΦ(ξ,η1,η2)

· ĥj1(η1)ĥj2(η2)
[
(ξ − η1 − η2)∂η1 ĥj3(ξ − η1 − η2)

]
dη1 dη2.

In view of the multilinear estimate Lemma 2.3.2, we need to estimate the S∞-norm of the symbol

T1(η1, η2, η3)

(log |η1| − log |η3|)η3
ςj1(η1)ςj2(η2)ς̃j3(η3).

Similar to the estimates of W1, using Lemma 5.6.1 and Lemma 5.6.2, we obtain

‖W2‖L∞ξ . (t+ 1)−1‖∂xϕmax{j1,j2}‖L∞‖ξ∂ξĥj3‖L2
ξ
‖ϕmin{j1,j2}‖L2 .

Using Lemma 5.4.1, we have

‖W2‖L∞ξ . (t+ 1)−1.5
(
1max{j1,j2}≤020.5 max{j1,j2} + 1max{j1,j2}>02(−1.5−r) max{j1,j2}

)
· ‖hmax{j1,j2}‖Z‖ξ∂ξĥj3‖L2

ξ
‖ϕmin{j1,j2}‖L2

+ (t+ 1)−1.75
(
‖|∂x|0.75Pmax{j1,j2}(x∂xh)‖L2 + ‖|∂x|0.75hmax{j1,j2}‖L2

)
· ‖ξ∂ξĥj3‖L2

ξ
‖ϕmin{j1,j2}‖L2 .

Similarly, we have

‖W3‖L∞ξ . (t+ 1)−1.5
(
1max{j2,j3}≤020.5 max{j2,j3} + 1max{j2,j3}>02(−1.5−r) max{j2,j3}

)
· ‖hmax{j2,j3}‖Z‖ξ∂ξĥj1‖L2

ξ
‖ϕmin{j2,j3}‖L2

+ (t+ 1)−1.75
(
‖|∂x|0.75Pmax{j2,j3}(x∂xh)‖L2 + ‖|∂x|0.75hmax{j2,j3}‖L2

)
· ‖ξ∂ξĥj1‖L2

ξ
‖ϕmin{j2,j3}‖L2 .

In conclusion, for nonresonant frequencies,∥∥∥∥ξ(|ξ|+ |ξ|r+3)d(ξ, t)

¨
R2

T1(η1, η2, ξ − η1 − η2)eitΦ(ξ,η1,η2)ĥj1(η1)ĥj2(η2)ĥj3(ξ − η1 − η2) dη1 dη2

∥∥∥∥
L∞ξ

. (t+ 1)(r+4)p1
(
‖W1‖L∞ξ + ‖W2‖L∞ξ + ‖W3‖L∞ξ

)
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. (t+ 1)−1.5+(r+4)p1
(
‖ϕj1‖L2‖ϕmin{j2,j3}‖L2 + ‖ξ∂ξĥj1‖L2

ξ
‖ϕmin{j2,j3}‖L2

)
·
(
1max{j2,j3}≤020.5 max{j2,j3} + 1max{j2,j3}>02(−1.5−r) max{j2,j3}

)
‖hmax{j2,j3}‖Z

+ (t+ 1)−1.5+(r+4)p1
(
‖ϕj3‖L2‖ϕmin{j1,j2}‖L2 + ‖ξ∂ξĥj3‖L2

ξ
‖ϕmin{j1,j2}‖L2

)
·
(
1max{j1,j2}≤020.5 max{j1,j2} + 1max{j1,j2}>02(−1.5−r) max{j1,j2}

)
‖hmax{j1,j2}‖Z

+ (t+ 1)−1.75+(r+4)p1

·
[(
‖|∂x|0.75Pmax{j1,j2}(x∂xh)‖L2 + ‖|∂x|0.75hmax{j1,j2}‖L2

)
‖ϕj3‖L2‖ϕmin{j1,j2}‖L2

+
(
‖|∂x|0.75Pmax{j2,j3}(x∂xh)‖L2 + ‖|∂x|0.75hmax{j2,j3}‖L2

)
‖ϕj1‖L2‖ϕmin{j2,j3}‖L2

+
(
‖|∂x|0.75Pmax{j1,j2}(x∂xh)‖L2 + ‖|∂x|0.75hmax{j1,j2}‖L2

)
‖ξ∂ξĥj3‖L2

ξ
‖ϕmin{j1,j2}‖L2

+
(
‖|∂x|0.75Pmax{j2,j3}(x∂xh)‖L2 + ‖|∂x|0.75hmax{j2,j3}‖L2

)
‖ξ∂ξĥj1‖L2

ξ
‖ϕmin{j2,j3}‖L2

]
.

By the bootstrap assumptions and Lemma 5.3.4, the right-hand-side is summable for j1, j2, j3 and

the sum is integrable for t ∈ (0,∞).

5.6.4. Close to the resonance. When

max{j1, j2, j3} < 10−3 log2(t+ 1), |j3 − j2| ≤ 1, |j3 − j1| ≤ 1, (5.63)

we need to consider the following two cases:

(i) Frequencies η1, η2 and ξ − η1 − η2 have the same sign.

By the definition of cut-off function ψ, we have

5

8
2j1 ≤ |η1| ≤

8

5
2j1 ,

5

8
2j2 ≤ |η2| ≤

8

5
2j2 ,

5

8
2j3 ≤ |ξ − η1 − η2| ≤

8

5
2j3 ,

and thus,
5

8
(2j1 + 2j2 + 2j3) ≤ |ξ| ≤ 8

5
(2j1 + 2j2 + 2j3).

This corresponds to the region near the space resonance η1 = η2 = ξ − η1 − η2 = ξ/3.

(ii) Frequencies η1, η2 and ξ − η1 − η2 do not have the same sign.

This corresponds to the region near the space-time resonances (η1, η2) = (ξ, ξ), (ξ,−ξ), or

(−ξ, ξ) separately. Since the symbol T′1(η1, η2, η3) is symmetric in η1, η2, and η3, it suffices

to (5.55) in the region near (ξ, ξ).
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To estimate (5.55) in the region (5.63), we decompose the region further. Denoting (ξ1, ξ2, ξ3) =

(ξ, ξ,−ξ) or ( ξ3 ,
ξ
3 ,

ξ
3), we decompose (5.63) using the new cut-off functions ψk1 and ψk2 . Using the

fact that ∑
(k1,k2)∈Z2

ψk1(η1 − ξ1)ψk2(η2 − ξ2) = 1,

we write the integral (5.55) as

¨
R2

T1(η1, η2, ξ − η1 − η2)eitΦ(ξ,η1,η2)ĥj1(η1)ĥj2(η2)ĥj3(ξ − η1 − η2)

·
[max{j1,j3}+1∑

k1=−∞
ψk1(η1 − ξ1)

]
·
[max{j2,j3}+1∑

k2=−∞
ψk2(η2 − ξ2)

]
dη1 dη2,

where [max{j1,j3}+1∑
k1=−∞

ψk1(η1 − ξ1)

]
·
[max{j2,j3}+1∑

k2=−∞
ψk2(η2 − ξ2)

]
= 1

on the support of ĥj1(η1)ĥj2(η2)ĥj3(ξ − η1 − η2). Thus, we need to consider

¨
R2

T1(η1, η2, ξ − η1 − η2)eitΦ(ξ,η1,η2)ĥj1(η1)ĥj2(η2)ĥj3(ξ − η1 − η2)

· ψk1(η1 − ξ1)ψk2(η2 − ξ2) dη1 dη2.

(5.64)

In this subsection, we restrict our attention to

k1 ≥ log2[%(t)] or k2 ≥ log2[%(t)],

where

%(t) = (t+ 1)−0.49. (5.65)

The case of k1 < log2[%(t)] and k2 < log2[%(t)], related to the resonant frequencies, will be discussed

in Section 5.6.5.

Since these expressions are symmetric in η1 and η2, we assume without loss of generality that

j1 ≥ k1 ≥ k2 ≥ log2[%(t)]. The other case can be discussed in the similar way.

Using integrating by parts, we can write (5.64) as

¨
R2

T1(η1, η2, ξ − η1 − η2)

2it(log |η1| − log |ξ − η1 − η2|)
∂η1e

itΦ(ξ,η1,η2)ĥj1(η1)ĥj2(η2)ĥj3(ξ − η1 − η2)

· ψk1(η1 − ξ1)ψk2(η2 − ξ2) dη1 dη2
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=
i

2t
(V1 + V2 + V3 + V4),

where

V1(ξ, t) =

¨
R2

∂η1

[
T1(η1, η2, ξ − η1 − η2)

log |η1| − log |ξ − η1 − η2|

]
eitΦ(ξ,η1,η2)ĥj1(η1)ĥj2(η2)ĥj3(ξ − η1 − η2)

· ψk1(η1 − ξ1)ψk2(η2 − ξ2) dη1 dη2,

V2(ξ, t) =

¨
R2

[
T1(η1, η2, ξ − η1 − η2)

log |η1| − log |ξ − η1 − η2|

]
eitΦ(ξ,η1,η2)∂η1 ĥj1(η1)ĥj2(η2)ĥj3(ξ − η1 − η2)

· ψk1(η1 − ξ1)ψk2(η2 − ξ2) dη1 dη2,

V3(ξ, t) =

¨
R2

[
T1(η1, η2, ξ − η1 − η2)

log |η1| − log |ξ − η1 − η2|

]
eitΦ(ξ,η1,η2)ĥj1(η1)ĥj2(η2)∂η1 ĥj3(ξ − η1 − η2)

· ψk1(η1 − ξ1)ψk2(η2 − ξ2) dη1 dη2,

V4(ξ, t) =

¨
R2

[
T1(η1, η2, ξ − η1 − η2)

log |η1| − log |ξ − η1 − η2|

]
eitΦ(ξ,η1,η2)ĥj1(η1)ĥj2(η2)ĥj3(ξ − η1 − η2)

· ∂η1ψk1(η1 − ξ1)ψk2(η2 − ξ2) dη1 dη2.

Estimate of V1. We first denote the symbol for V1 as

m(η1, η2, ξ)

=
−2

log |η1| − log |ξ − η1 − η2|
·
[
η1 log |η1| − (η1 + η2) log |η1 + η2|

+ (ξ − η1) log |ξ − η1| − (ξ − η1 − η2) log |ξ − η1 − η2|
]

− η−1
1 + (ξ − η1 − η2)−1

(log |η1| − log |ξ − η1 − η2|)2
·
[
− η2

1 log |η1| − η2
2 log |η2| − η2

3 log |η3|

− (η1 + η2 + η3)2 log |η1 + η2 + η3|+ (η1 + η2)2 log |η1 + η2|

+ (η1 + η3)2 log |η1 + η3|+ (η2 + η3)2 log |η2 + η3|
]
.

Denote υi = ηi − ξi, i = 1, 2, and it suffices to estimate∥∥∥∥¨
R2

m(υ1 + ξ1, υ2 + ξ2, ξ)e
itΦ(ξ,υ1+ξ1,υ2+ξ2)ĥj1(υ1 + ξ1)ĥj2(υ2 + ξ2)ĥj3(ξ3 − υ1 − υ2)

· ψk1(υ1)ψk2(υ2) dυ1 dυ2

∥∥∥∥
L∞ξ

.
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Using Lemma 2.3.2, we have

‖V1‖L∞ξ . ‖χ
k1,k2
j1,j3

(υ1, υ2, ξ)m(υ1 + ξ1, υ2 + ξ2, ξ)‖S∞υ1,υ2L∞ξ

· ‖ϕ̂j1(υ1 + ξ1)ψk1(υ1)‖L2
υ1
L∞ξ
‖ϕ̂j2(υ2 + ξ2)ψk2(υ2)‖L2

υ2
L∞ξ
‖ϕj3‖L∞ ,

where

χk1,k2j1,j3
(υ1, υ2, ξ) = ψ̃k1(υ1)ψ̃k2(υ2)ψ̃j1(υ1 + ξ1)ψ̃j2(υ2 + ξ2)ψ̃j3(ξ3 − υ1 − υ2)χ(ξ).

(i) If (ξ1, ξ2, ξ3) = (ξ/3, ξ/3, ξ/3), since S∞-norm is rotational and scaling invariant, setting w1 = υ1,

w2 = −2υ1 − υ2, and using (2.20), we have

‖χk1,k2j1,j3
(υ1, υ2, ξ)m(υ1 + ξ1, υ2 + ξ2, ξ)‖S∞υ1,υ2L∞ξ

= ‖χk1,k2j1,j3
(w1,−2w1 − w2, ξ)m(w1 + ξ1,−2w1 − w2 + ξ2, ξ)‖S∞w1,w2

L∞ξ

. ‖χk1,k2j1,j3
(w1,−2w1 − w2, ξ)m(w1 + ξ1,−2w1 − w2 + ξ2, ξ)‖1/4L1

w1w2
L∞ξ

· ‖∂2
w1

[χk1,k2j1,j3
(w1,−2w1 − w2, ξ)m(w1 + ξ1,−2w1 − w2 + ξ2, ξ)]‖1/2L1

w1w2
L∞ξ

· ‖∂2
w1
∂2
w2

[χk1,k2j1,j3
(w1,−2w1 − w2, ξ)m(w1 + ξ1,−2w1 − w2 + ξ2, ξ)]‖1/4L1

w1w2
L∞ξ

. (1 + |j1|)(2j1+k12j1)1/4(2−j1+k12j1)1/2(2−j1−k12j1)1/4

= (1 + |j1|) · 2(j1+k1)/2,

where we have used the estimate∣∣∣∣∣ χk1,k2j1,j3

log |w1 + ξ
3 | − log | ξ3 + w1 + w2|

∣∣∣∣∣ . 2j1−k1 ,∣∣∣∣∣χk1,k2j1,j3
∂2
w1

1

log |w1 + ξ
3 | − log | ξ3 + w1 + w2|

∣∣∣∣∣ . 23(j1−k1)22(−2j1+k1) = 2−j1−k1 ,∣∣∣∣∣χk1,k2j1,j3
∂2
w1
∂2
w2

1

log |w1 + ξ
3 | − log | ξ3 + w1 + w2|

∣∣∣∣∣ . 25(j1−k1)2−2j122(−2j1+k1) = 2−j1−3k1 .
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Therefore, using (2.18), (5.41), and (5.63), we obtain

‖V1‖L∞ξ . (1 + |j1|)2(j1+k1)/2−j3(t+ 1)−1‖ϕ̂j1(υ1 + ξ1)ψk1(υ1)‖L2
υ1
L∞ξ

· ‖ϕ̂j2(υ2 + ξ2)ψk2(υ2)‖L2
υ2
L∞ξ
‖∂xϕj3‖L∞

. (1 + |j1|)2−0.5j1+k1+0.5k2‖ψk1ϕ̂j1‖L∞ξ ‖ψk2ϕ̂j2‖L∞ξ
{

(t+ 1)−1.5‖|ξ|3/2ĥk1,k2j3
‖L∞ξ

+ (t+ 1)−1.75
[
‖|∂x|3/4P k1,k2j3

(x∂xh)‖L2 + ‖|∂x|3/4hk1,k2j3
‖L2

]}
.

(5.66)

(ii) If (ξ1, ξ2, ξ3) = (ξ, ξ,−ξ), we use (2.20) to obtain

‖χk1,k2j1,j3
(υ1, υ2, ξ)m(υ1 + ξ1, υ2 + ξ2, ξ)‖S∞υ1,υ2L∞ξ

. ‖χk1,k2j1,j3
(υ1, υ2, ξ)m(υ1 + ξ1, υ2 + ξ2, ξ)‖1/4L1

υ1υ2

‖∂2
υ1 [χk1,k2j1,j3

(υ1, υ2, ξ)m(υ1 + ξ1, υ2 + ξ2, ξ)]‖1/2L1
υ1υ2

· ‖∂2
υ1∂

2
υ2 [χk1,k2j1,j3

(υ1, υ2, ξ)m(υ1 + ξ1, υ2 + ξ2, ξ)]‖1/4L1
υ1υ2

. (1 + |j1|)(2j1+k12j1)1/4(2−j1+k12j1)1/2(2−j1−2k2+k12j1)1/4

= (1 + |j1|) · 2
1
2
j1+k1− 1

2
k2 ,

where we have used the estimates∣∣∣∣∣ χk1,k2j1,j3

log |υ1 + ξ| − log | − ξ − υ1 − υ2|

∣∣∣∣∣ . 2j1−k2 ,∣∣∣∣χk1,k2j1,j3
∂2
υ1

1

log |υ1 + ξ| − log | − ξ − υ1 − υ2|

∣∣∣∣ . 23(j1−k2)22(−2j1+k2) = 2−j1−k2 ,∣∣∣∣χk1,k2j1,j3
∂2
υ1∂

2
υ2

1

log |υ1 + ξ| − log | − ξ − υ1 − υ2|

∣∣∣∣ . 25(j1−k2)2−2j122(−2j1+k2) = 2−j1−3k2 .

Therefore, using (2.18), (5.41), and (5.63)

‖V1‖L∞ξ . (1 + |j1|)20.5j1−j3+k1−0.5k2(t+ 1)−1‖ϕ̂j1(υ1 + ξ1)ψk1(υ1)‖L2
υ1
L∞ξ

· ‖ϕ̂j2(υ2 + ξ2)ψk2(υ2)‖L2
υ2
L∞ξ
‖∂xϕj3‖L∞

. (1 + |j1|)2−0.5j1+1.5k1‖ψk1ϕ̂j1‖L∞ξ ‖ψk2ϕ̂j2‖L∞ξ
{

(t+ 1)−1.5‖|ξ|3/2ĥj3‖L∞ξ

+ (t+ 1)−1.75
[
‖|∂x|3/4Pj3(x∂xh)‖L2 + ‖|∂x|3/4hj3‖L2

]}
.

(5.67)

Estimates of V2–V4. The estimates for V2–V4 are similar to V1. We omit the details here.

The resulting estimates are as follows.
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(i) If (ξ1, ξ2, ξ3) = ( ξ3 ,
ξ
3 ,

ξ
3), the symbol can be estimated as∥∥∥∥T′1(ξ1 + υ1, ξ2 + υ2, ξ3 − υ1 − υ2)

log |ξ1 + υ1| − log |ξ3 − υ1 − υ2|

∥∥∥∥
S∞υ1υ2L

∞
ξ

. 21.5j1+0.5k1 .

(ii) If (ξ1, ξ2, ξ3) = (ξ, ξ,−ξ), the symbol can be estimated as∥∥∥∥χk1,k2j1,j3
(υ1, υ2, ξ)

T′1(ξ1 + υ1, ξ2 + υ2, ξ3 − υ1 − υ2)

log |ξ1 + υ1| − log |ξ3 − υ1 − υ2|

∥∥∥∥
S∞υ1υ2L

∞
ξ

. (2j1+k122j1)1/4(2−j1+k122j1)1/2(2−j1−2k2+k122j1)1/4

= (1 + |j1|) · 21.5j1+k1−0.5k2 .

In either case, we have the following estimates

‖V2‖L∞ξ . (1 + |j1|)2−0.5j1+k1‖η1∂η1ϕ̂j1(η1)‖L2
η1
‖ψk2ϕ̂j2‖L∞ξ

·
{

(t+ 1)−1.5‖|ξ|3/2ĥj3‖L∞ξ + (t+ 1)−1.75
[
‖|∂x|3/4Pj3(x∂xh)‖L2 + ‖|∂x|3/4hj3‖L2

]}
,

(5.68)

‖V3‖L∞ξ . (1 + |j1|)2−0.5j1+k1‖η3∂η3ϕ̂j3(η3)‖L2
η3
‖ψk2ϕ̂j2‖L∞ξ

·
{

(t+ 1)−1.5‖|ξ|3/2ĥj1‖L∞ξ + (t+ 1)−1.75
[
‖|∂x|3/4Pj1(x∂xh)‖L2 + ‖|∂x|3/4hj1‖L2

]}
,

(5.69)

‖V4‖L∞ξ . (1 + |j1|)20.5j1+0.5k1‖ψk1ϕ̂j1‖L∞ξ ‖ψk2ϕ̂j2‖L∞ξ

·
{

(t+ 1)−1.5‖|ξ|3/2ĥj3‖L∞ξ + (t+ 1)−1.75
[
‖|∂x|3/4Pj3(x∂xh)‖L2 + ‖|∂x|3/4hj3‖L2

]}
.

(5.70)

Now we take the summation over log2[%(t)] ≤ k1, k2 ≤ max{j1, j3} + 1, and combine the

estimates (5.66)–(5.70) to get∥∥∥∥∥ξ(|ξ|+ |ξ|r+3)d(ξ, t)

¨
R2

T′1(η1, η2, ξ − η1 − η2)eiAtΦ(ξ,η1,η2)ĥj1(η1)ĥj2(η2)ĥj3(ξ − η1 − η2)

·
[max{j1,j3}+1∑
k1=log2[%(t)]

ψk1(η1 − ξ1)

]
·
[max{j2,j3}+1∑
k2=log2[%(t)]

ψk2(η2 − ξ2)

]
dη1 dη2

∥∥∥∥∥
L∞ξ
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. (1 + |j1|) [max{j1, j3} − log2[%(t)]]2 (t+ 1)(r+3)p1 ·
[
‖|ξ|ψk1ϕ̂j1‖L∞ξ ‖|ξ|ψk2ϕ̂j2‖L∞ξ

+ ‖η1∂η1ϕ̂j1(η1)‖L2
η1
‖|ξ|ψk2ϕ̂j2‖L∞ξ + ‖|ξ|ψk1ϕ̂j1‖L∞ξ ‖η2∂η2ϕ̂j2(η2)‖L2

η2

]
·
{

(t+ 1)−1.5‖|ξ|3/2ĥj3‖L∞ξ + (t+ 1)−1.75
[
‖|∂x|3/4Pj3(x∂xh)‖L2 + ‖|∂x|3/4hj3‖L2

]}
.

The right-hand-side is summable with respect to j1, j2, j3 under |j3 − j2| ≤ 1 and |j3 − j1| ≤ 1,

since we can write

‖|ξ|3/2ĥj‖L∞ξ . (1j≤02j/2 + 1j>02(−r−3/2)j)‖hj‖Z ,

and the resulting sum is integrable for t ∈ (0,∞).

5.6.5. Resonant frequencies. In this subsection, we estimate (5.64) in the region

|j1 − j3| ≤ 1, |j2 − j3| ≤ 1, k1 < log2[%(t)], k2 < log2[%(t)],

and then sum over k1, k2 < log2(%(t)).

After taking the sum, the cut-off function of the integrand is

b(ξ, η1, η2, t) := ς

(
|η1| − |ξ − η1 − η2|

%(t)

)
· ς
(
|η2| − |ξ − η1 − η2|

%(t)

)
.

The support of this cut-off function is{
(η1, η2) |

∣∣|η1| − |ξ − η1 − η2|
∣∣ < 8

5
%(t),

∣∣|η2| − |ξ − η1 − η2|
∣∣ < 8

5
%(t)

}
,

which can be rewritten as the union of four disjoint sets A1 ∪A2 ∪A3 ∪A4, where

A1 :=

{
(η1, η2)

∣∣∣∣ ∣∣∣∣2(η1 −
ξ

3

)
+

(
η2 −

ξ

3

)∣∣∣∣ < 8

5
%(t),

∣∣∣∣(η1 −
ξ

3

)
+ 2

(
η2 −

ξ

3

)∣∣∣∣ < 8

5
%(t)

}
,

A2 :=

{
(η1, η2)

∣∣∣∣ ∣∣η2 − ξ
∣∣ < 8

5
%(t),

∣∣η1 − ξ
∣∣ < 8

5
%(t)

}
,

A3 :=

{
(η1, η2)

∣∣∣∣ ∣∣2(η1 − ξ) + (η2 − (−ξ))
∣∣ < 8

5
%(t),

∣∣η1 − ξ
∣∣ < 8

5
%(t)

}
,

A4 :=

{
(η1, η2)

∣∣∣∣ ∣∣η2 − ξ
∣∣ < 8

5
%(t),

∣∣(η1 + ξ) + 2(η2 − ξ)
∣∣ < 8

5
%(t)

}
.

We notice that A1, A2, A3, A4 are parallelogram centered at (ξ/3, ξ/3), (ξ, ξ), (ξ,−ξ), and (−ξ, ξ),

respectively. A1 corresponds to the space resonance, while A2, A3 and A4 correspond to the space-

time resonances.

123



5.6.5.1. Space resonances. When (η1, η2) ∈ A1, we can expand T1/Φ around (ξ, ξ/3, ξ/3) as

T1(η1, η2, ξ − η1 − η2)

Φ(ξ, η1, η2)
=

(
1

2
− 2 log 2

3 log 3

)
ξ +O

( ∣∣∣∣η1 −
ξ

3

∣∣∣∣2 +

∣∣∣∣η2 −
ξ

3

∣∣∣∣2). (5.71)

After writing

eiτΦ(ξ,η1,η2) =
1

iΦ(ξ, η1, η2)

[
∂τe

iτΦ(ξ,η1,η2)
]
,

and integrating by parts with respect to τ , we get that

ˆ t

1
iξ

¨
R2

T1(η1, η2, ξ − η1 − η2)eiτΦ(ξ,η1,η2)

· ĥj1(η1, τ)ĥj2(η2, τ)ĥj3(ξ − η1 − η2, τ)b(ξ, η1, η2, τ) dη1 dη2 dτ

=

ˆ t

1
ξ

¨
R2

T1(η1, η2, ξ − η1 − η2)

Φ(ξ, η1, η2)
∂τ

[
eiτΦ(ξ,η1,η2)

]
· ĥj1(η1, τ)ĥj2(η2, τ)ĥj3(ξ − η1 − η2, τ)b(ξ, η1, η2, τ) dη1 dη2 dτ

=J1 −
ˆ t

1
J2(τ) + J3(τ) dτ,

where

J1 =

¨
R2

ξ
T1(η1, η2, ξ − η1 − η2)

Φ(ξ, η1, η2)
eiτΦ(ξ,η1,η2)

· ĥj1(η1, τ)ĥj2(η2, τ)ĥj3(ξ − η1 − η2, τ)b(ξ, η1, η2, τ) dη1 dη2

∣∣∣τ=t

τ=1
,

J2(τ) = ξ

¨
R2

T1(η1, η2, ξ − η1 − η2)

Φ(ξ, η1, η2)
eiτΦ(ξ,η1,η2)

· ∂τ
[
ĥj1(η1, τ)ĥj2(η2, τ)ĥj3(ξ − η1 − η2, τ)

]
b(ξ, η1, η2, τ) dη1 dη2,

J3(τ) = ξ

¨
R2

∂τb(ξ, η1, η2, τ)
T1(η1, η2, ξ − η1 − η2)

Φ(ξ, η1, η2)
eiτΦ(ξ,η1,η2)

· ĥj1(η1, τ)ĥj2(η2, τ)ĥj3(ξ − η1 − η2, τ) dη1 dη2.

For J1, for any τ ≥ 1, we have from (5.71) that∣∣∣∣(|ξ|+ |ξ|r+3)

¨
R2

b(ξ, η1, η2, t)ξ
T1(η1, η2, ξ − η1 − η2)

Φ(ξ, η1, η2)

· ĥj1(η1, τ)ĥj2(η2, τ)ĥj3(ξ − η1 − η2, τ)eiτΦ(ξ,η1,η2) dη1 dη2

∣∣∣∣
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.

∣∣∣∣(|ξ|+ |ξ|r+3)

¨
R2

b(ξ, η1, η2, t)ξ
2ĥj1(η1, τ)ĥj2(η2, τ)ĥj3(ξ − η1 − η2, τ)eiτΦ(ξ,η1,η2) dη1 dη2

∣∣∣∣
+ (|ξ|+ |ξ|r+3)

¨
R2

b(ξ, η1, η2, t)[%(τ)]2
∣∣∣ĥj1(η1, τ)ĥj2(η2, τ)ĥj3(ξ − η1 − η2, τ)

∣∣∣ dη1 dη2

. (τ + 1)2p0+(r+2)p1‖|ξ|ĥj1‖L∞ξ ‖|ξ|ĥj2‖L∞ξ ‖|ξ|ĥj3‖L∞ξ
(
[%(τ)]2 + [%(τ)]4

)
.

Notice that in A1, the number of summations of j1, j2, and j3 is or order log(t+ 1), and therefore,

the right-hand-side is bounded for τ ≥ 1 after the summation in j1, j2, and j3.

After taking the time derivative, the term J2 can be written as a sum of three terms.

ξ

¨
R2

T1(η1, η2, ξ − η1 − η2)

Φ(ξ, η1, η2)
eiτΦ(ξ,η1,η2)

·
[
∂τ ĥj1(η1, τ)ĥj2(η2, τ)ĥj3(ξ − η1 − η2, τ)

]
b(ξ, η1, η2, τ) dη1 dη2,

ξ

¨
R2

T1(η1, η2, ξ − η1 − η2)

Φ(ξ, η1, η2)
eiτΦ(ξ,η1,η2)

·
[
ĥj1(η1, τ)∂τ ĥj2(η2, τ)ĥj3(τ, ξ − η1 − η2)

]
b(ξ, η1, η2, τ) dη1 dη2,

and

ξ

¨
R2

T1(η1, η2, ξ − η1 − η2)

Φ(ξ, η1, η2)
eiτΦ(ξ,η1,η2)

·
[
ĥj1(η1, τ)ĥj2(η2, τ)∂τ ĥj3(ξ − η1 − η2, τ)

]
b(ξ, η1, η2, τ) dη1 dη2.

Notice that by (5.53),and the bootstrap assumptions and Lemma 5.3.2, we have

‖∂tĥ‖L∞ξ

.

∥∥∥∥ξ¨
R2

T1(η1, η2, ξ − η1 − η2)eitΦ(ξ,η1,η2)ĥ(ξ − η1 − η2)ĥ(η1)ĥ(η2) dη1 dη2

∥∥∥∥
L∞ξ

+
∥∥∥N̂≥5(ϕ)

∥∥∥
L∞ξ

.

∥∥∥∥∂x{ϕ2 log |∂x|ϕxx − ϕ log |∂x|(ϕ2)xx +
1

3
log |∂x|(ϕ3)xx

}∥∥∥∥
L1

+ ‖N≥5(ϕ)‖L1

. ‖ϕ‖2Hs ·
∞∑
j=0

(
‖ϕx‖2j+1

W 2,∞ + ‖Lϕx‖2j+1
W 2,∞

)
. ε3

1(t+ 1)2p0− 1
2 .

Therefore, we obtain

∣∣(|ξ|+ |ξ|r+3)J2(τ)
∣∣ .∑ ‖h`1‖Z‖∂τ ĥ`2‖L∞ξ ‖h`3‖Z [%(τ)]2 . ε3

1(τ + 1)p0−
1
2 [%(t)]2

∑
‖h`1‖Z‖h`3‖Z
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where we sum over all permutations (`1, `2, `3) of (j1, j2, j3) in the space resonance region A1.

Again, we notice that the number of summations is of order log(τ + 1), and the resulting sum is

integrable for τ ∈ (1,∞).

As for the term J3, by the definition of the cut-off function, we have

∣∣∂τ [ς≤log2(%(τ))(|η1| − |ξ − η1 − η2|) · ς≤log2(%(τ))(|η2| − |ξ − η1 − η2|)
]∣∣ . %′1(t)(%(t))−1 .

1

t+ 1
.

The area of its support is of the order of [%(t)]2. Then, using (5.71), we get that

∣∣(|ξ|+ |ξ|r+3)J3(τ)
∣∣ . (τ + 1)2p0+(r+2)p1−1[%(τ)]2

∑
‖ξĥ`1‖L∞ξ ‖ξĥ`2‖L∞ξ ‖ξĥ`3‖L∞ξ ,

where the summation is taken over permutations (`1, `2, `3) of (j1, j2, j3), so the sum converges and

is integrable for τ ∈ (1,∞).

5.6.5.2. Space-time resonances. We now use modified scattering to consider the term

1

6

¨
A2

⋃
A3

⋃
A4

iξb(ξ, η1, η2, t)T1(η1, η2, ξ − η1 − η2)ϕ̂j1(η1)ϕ̂j2(η2)ϕ̂j3(ξ − η1 − η2) dη1 dη2

− iξ [β1(t)T1(ξ, ξ,−ξ) + β2(t)T1(ξ,−ξ, ξ) + β3(t)T1(−ξ, ξ, ξ)] |ϕ̂(τ, ξ)|2ϕ̂(τ, ξ).

For A2, we take

β1(t) =
1

6

¨
A2

b(ξ, η1, η2, t) dη1 dη2.

Therefore, using a Taylor expansion and (5.51), we obtain∣∣∣∣(|ξ|+ |ξ|r+3)
1

6
iξ

¨
A2

b(ξ, η1, η2, t)[
T1(η1, η2, ξ − η1 − η2)ϕ̂j1(η1)ϕ̂j2(η2)ϕ̂j3(ξ − η1 − η2)−T1(ξ, ξ,−ξ)|ϕ̂(τ, ξ)|2ϕ̂(τ, ξ)

]
dη1 dη2

∣∣∣∣
. (|ξ|+ |ξ|r+3)(iξ)

¨
A2

∣∣∣∣∣∂η1 [T1(η1, η2, ξ − η1 − η2)ϕ̂j1(η1)ϕ̂j2(η2)ϕ̂j3(ξ − η1 − η2)]

∣∣∣∣
η1=η′1

(ξ − η1)

∣∣∣∣∣
+

∣∣∣∣∣∂η2 [T1(η1, η2, ξ − η1 − η2)ϕ̂j1(η1)ϕ̂j2(η2)ϕ̂j3(ξ − η1 − η2)]

∣∣∣∣
η2=η′2

(ξ − η2)

∣∣∣∣∣ dη1 dη2

. (t+ 1)(r+2)p1‖ξϕ̂j1‖L∞ξ ‖ξϕ̂j2‖L∞ξ ‖ξϕ̂j3‖L∞ξ [%(t)]3 +
∑
‖ξϕ̂`1‖L∞ξ ‖ξϕ̂`2‖L∞ξ ‖Sϕ`3‖Hr [%(t)]5/2,

where η′1 (or η′2) in the first inequality is some number between ξ and η1 (or η2), and the summation

in the second inequality is over permutations (`1, `2, `3) of (j1, j2, j3). The estimates for A3 and A4

follow by a similar argument.
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Taking a summation over j1, j2, j3 and using the estimates in the above subsections together

with the time-decay of %(t) in (5.65), we conclude that

ˆ ∞
0
‖(|ξ|+ |ξ|r+3)U1‖L∞ξ dt . ε0.

5.6.6. Higher-degree terms. In this subsection, we prove that∥∥∥(|ξ|+ |ξ|r+3)N̂≥5(ϕ)
∥∥∥
L∞ξ

is integrable in time. We begin by proving an estimate for the symbol Tn. We have

F−1
[
Tn(η1, η2, . . . , η2n+1)ςj1(η1)ςj2(η2) · · · ςj2n+1(η2n+1)

]
=

˚
R2n+1

ei(y1η1+y2η2+···+y2n+1η2n+1)

[ˆ
R

∏2n+1
j=1 (1− eiηjζ)
|ζ|2n+1

dζ

]
ςj1(η1)ςj2(η2) · · · ςj2n+1(η2n+1) dηn

=

˚
R2n+1

[ˆ
R

(eiy1η1 − eiη1(ζ+y1)) · · · (eiy2n+1η2n+1 − eiη2n+1(ζ+y2n+1))

|ζ|2n+1
dζ

]
ςj1(η1) · · · ςj2n+1(η2n+1) dηn

=

ˆ
R

1

|ζ|2n+1

[
F−1[ςj1 ](y1)−F−1[ςj1 ](ζ + y1)

]
· · ·
[
F−1[ςj2n+1 ](y2n+1)−F−1[ςj2n+1 ](ζ + y2n+1)

]
dζ,

and it follows that

∥∥F−1
[
Tn(η1, η2, . . . , η2n+1)ςj1(η1)ςj2(η2) · · · ςj2n+1(η2n+1)

]∥∥
L1

.
ˆ
R

2j1+···+j2n+1
1

|ζ|2n+1
min{2−j1 , |ζ|}min{2−j2 , |ζ|} · · ·min{2−j2n+1 , |ζ|}dζ.

Let `1, `2, . . . , `2n+1 be a permutation of j1, j2, . . . , j2n+1 satisfying 2−`1 ≤ 2−`2 ≤ · · · ≤ 2−`2n+1 .

Then

∥∥F−1
[
Tn(η1, η2, . . . , η2n+1)ςj1(η1)ςj2(η2) · · · ςj2n+1(η2n+1)

]∥∥
L1

.
ˆ
|ζ|>2−`2n+1

1

|ζ|2n+1
dζ +

ˆ
2−`2n<|ζ|<2−`2n+1

2`1

|ζ|2n
dζ

+ · · ·+
ˆ

2−`1<|ζ|<2−`2

2`1+···+`2n

|ζ|
dζ +

ˆ
|ζ|<2−`1

2`1+···+`2n+1 dζ

. 2`2+···+`2n+1 .
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Therefore, by Lemma 2.3.2, we have

∥∥∥(|ξ|+ |ξ|r+3)N̂≥5(ϕ)
∥∥∥
L∞ξ

. (t+ 1)(r+3)p1‖N≥5(ϕ)‖L1 . ‖ϕ‖2H1

∞∑
n=2

(
‖ϕx‖2n−1

L∞ + ‖Lϕx‖2n−1
L∞

)
.

Using the dispersive estimate Lemma 5.3.2, we see that the right-hand-side is integrable in t, which

leads to ˆ ∞
0

∥∥∥(|ξ|+ |ξ|r+3)N̂≥5(ϕ)
∥∥∥
L∞ξ

dt . ε0.

This completes the proof of Theorem 5.0.1.
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CHAPTER 6

Two-front SQG solutions

Twice and thrice over, as they say, good is it to repeat and review what is good.

– Plato

In Chapter 3, we derive contour dynamics equations (3.3) describing the evolution of two SQG

fronts located at

y = h+ + ϕ(x, t) and y = h− + ψ(x, t).

In this chapter, we mainly focus on the initial value problem for (3.3)

ϕt(x, t)− (Θ+ −Θ−)(γ + log h)ϕx(x, t)− 2Θ+ log |∂x|ϕx(x, t) + 2Θ−K0(2h|∂x|)ψx(x, t)

+ Θ+

ˆ
R

[
ϕx(x+ ζ, t)− ϕx(x, t)

]{ 1√
ζ2 + (ϕ(x+ ζ, t)− ϕ(x, t))2

− 1

|ζ|

}
dζ

+ Θ−

ˆ
R

[
ψx(x+ ζ, t)− ϕx(x, t)

]{ 1√
ζ2 + (−2h+ ψ(x+ ζ, t)− ϕ(x, t))2

− 1√
ζ2 + (2h)2

}
dζ = 0,

ψt(x, t) + (Θ+ −Θ−)(γ + log h)ψx(x, t)− 2Θ− log |∂x|ψx(x, t) + 2Θ+K0(2h|∂x|)ϕx(x, t)

+ Θ−

ˆ
R

[
ψx(x+ ζ, t)− ψx(x, t)

]{ 1√
ζ2 + (ψ(x+ ζ, t)− ψ(x, t))2

− 1

|ζ|

}
dζ

+ Θ+

ˆ
R

[
ϕx(x+ ζ, t)− ψx(x, t)

]{ 1√
ζ2 + (2h+ ϕ(x+ ζ, t)− ψ(x, t))2

− 1√
ζ2 + (2h)2

}
dζ = 0,

ϕ(x, 0) = ϕ0(x), ψ(x, t) = ψ(x).

(6.1)

A main theorem we prove is the local well-posedness of (6.1) with small and smooth initial

data.

Theorem 6.0.1. Let s ≥ 4 be an integer, and suppose that ϕ0, ψ0 ∈ Hs(R) satisfy: (i)

‖TBlog[ϕ0]‖L2→L2 ≤ C, ‖TBlog[ψ0]‖L2→L2 ≤ C

for some constant 0 < C < 2, where the symbol Blog[f ] is defined in (5.12); (ii)

∞∑
n=1

C̃n|cn|
(
‖ϕ0‖2nW 3,∞ + ‖Lϕ0‖2nW 3,∞

)
<∞,

∞∑
n=1

C̃n|cn|
(
‖ψ0‖2nW 3,∞ + ‖Lψ0‖2nW 3,∞

)
<∞,
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where L = log |∂x| is the Fourier multiplier with symbol log |ξ|, cn is given by (5.5), and C̃ > 1 is the

constant depending only on s and h in Proposition 6.2.2. Then there exists T > 0, depending only

on ‖ϕ0‖Hs, ‖ψ0‖Hs, C, and C̃, such that the initial value problem for (6.1) with ϕ(x, 0) = ϕ(x),

ψ(x, 0) = ψ0(x) has a unique solution with ϕ,ψ ∈ C([0, T );Hs(R)).

Remark 6.0.2. The smallness conditions in this theorem arise from the fact that the nonlinear

terms in the front equations lose derivatives, and we use a multilinear expansion of the nonlinearity

to extract the terms responsible for the loss of derivatives. This expansion can only be done

when the solutions are sufficiently small and requires Condition (ii). We then use the linear terms

to control these nonlinear terms in a weighted energy space, but our weight may degenerate if

Condition (i) fails.

Condition (ii) also implies that the initial data satisfies the non-intersection condition

2h− ψ0(x, t) + ϕ0(x, t) > 0 for all x ∈ R,

since it guarantees that |ψ0(x)− ϕ0(x)| < 2h for all x ∈ R.

The strategy to prove this theorem is similar to the proof of Theorem 5.2.3, where we need

to para-linearize the system and use a weighted energy to prevent loss of derivatives, but with

complication in dealing with the interactive terms between ϕ and ψ, as well as the Bessel K

function.

We analyze the linear stability of unperturbed flat two front solutions to the system (3.3) in

Section 6.1. And in Section 6.2, we prove Theorem 6.0.1.

6.1. Linear stability

We have mentioned in Section 3.2 that the SQG equation (1.1) admits shear flow solution

θ̄(y) =


θ+ if y > h+,

θ0 if h− < y < h+,

θ− y < h−,

whose corresponding velocity field is

U(y) = 2Θ+ log |y − h+|+ 2Θ− log |y − h−|. (6.2)
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Recall that Θ± are normalized constants defined in (1.6).

This shear-flow solution is the SQG analog of the piecewise linear shear flow that is often

considered for the Euler equation (see Figure 6.1). We observe that the tangential velocity of the

shear flow on the fronts diverges to infinity and that U(y) → 0 as |y| → ∞ if Θ+ + Θ− = 0;

otherwise |U(y)| → ∞ as |y| → ∞.

(a) Symmetric SQG shear flow. (b) Anti-symmetric SQG shear flow.

Figure 6.1. SQG shear flows. The symmetric flows have scaled jumps Θ+ = Θ− =
1, and the anti-symmetric flows have Θ+ = −Θ− = 1.

There do not appear to be many studies of the stability of SQG shear flows u = (U(y), 0).

However, as noted in [FS05] for SQG shear flows, the classical necessary conditions for the linearized

instability of Euler shear flows — the Rayleigh and Fjørtoft criteria — carry over directly to

sufficiently smooth flows: If there are linear modes with exponential growth in time, then |∂y|U =

(−∂2
y)1/2U must change sign, and for any constant U∗, the function (U−U∗) · |∂y|U must be strictly

positive for some values of y. Conversely, Friedlander and Shvydkoy [FS05] prove that the SQG

shear flow with U(y) = sin y is linearly unstable.

To study the stability of the two-front SQG shear flows (6.2) by contour dynamics, we linearize

the system (3.3) about ϕ = ψ = 0 to get

ϕt − (Θ+ −Θ−)(γ + log h)ϕx − 2Θ+ log |∂x|ϕx + 2Θ−K0(2h|∂x|)ψx = 0,

ψt + (Θ+ −Θ−)(γ + log h)ψx − 2Θ− log |∂x|ψx + 2Θ+K0(2h|∂x|)ϕx = 0,
(6.3)

where γ is the Euler-Mascheroni constant and K0 is the modified Bessel’s function of second kind

defined in (2.21).
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Taking the Fourier transform of (6.3) with respect to x, we get the systemϕ̂
ψ̂


t

=

iξ [(Θ+ −Θ−)(γ + log h) + 2Θ+ log |ξ|] −2Θ−iξK0(2h|ξ|)

−2Θ+iξK0(2h|ξ|) iξ [(Θ− −Θ+)(γ + log h) + 2Θ− log |ξ|]

ϕ̂
ψ̂

 ,
(6.4)

The characteristic polynomial (in µ) of the coefficient matrix in (6.4) is

µ2 − 2iξ log |ξ|(Θ+ + Θ−)µ+ 4Θ+Θ−ξ
2K2

0 (2h|ξ|)

− ξ2 [(Θ+ −Θ−)(γ + log h) + 2Θ+ log |ξ|] [(Θ− −Θ+)(γ + log h) + 2Θ− log |ξ|] ,

with roots

µ±(ξ) =
1

2

{
2iξ log |ξ| (Θ+ + Θ−)±

√
4(ξ)

}
, (6.5)

where the discriminant 4 is given by

4(ξ) = −4(Θ+ −Θ−)2 (γ + log h+ log |ξ|)2 ξ2 − 4Θ+Θ−ξ
2K2

0 (2h|ξ|).

If Θ+Θ− > 0, then 4(ξ) ≤ 0 for all ξ ∈ R, so the roots of the characteristic polynomial are

imaginary and the SQG shear flow is linearly stable. In particular, the symmetric SQG shear flows

shown in Figure 6.1(a) are linearly stable.

On the other hand, if 4(ξ) > 0 for some ξ ∈ R, then there is a mode with positive growth

rate, and the shear flow is linearly unstable. For the anti-symmetric SQG shear flow shown in

Figure 6.1(b), we find that

4(ξ) = 16ξ2K2
0 (2h|ξ|)− 16ξ2 [log(h|ξ|) + γ]2 , (6.6)

where γ is the Euler-Mascheroni constant. A numerical plot of the corresponding growth rates and

wave speeds is shown in Figure 6.2 (c.f. [Val17] for the Euler equation). The instability results

from an interaction between negative and positive energy waves on the fronts that leads to an

exponential growth in time when the horizontal wavelengths of the waves are sufficiently large in

comparison with the distance between the fronts.
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Figure 6.2. Left: Growth rate =µ for anti-symmetric SQG flow in Figure 6.1 with
Θ+ = 1, Θ− = −1, and h = 1, calculated from (6.5) and (6.6). Right: Real
(dashed) and imaginary (solid) wave speeds c = µ/ξ. The flow is unstable for
0 < h|ξ| . 0.71129, with the maximum growth rate occurring at h|ξ| ≈ 0.51756.

6.2. Local well-posedness

In this section, we prove the local well-posedness of (6.1) posed on R. Theorem 6.0.1 follows

from a priori estimates and classical C0-semigroup theory for local existence (see, e.g. [Paz83]).

Therefore, we only derive the a priori estimates (Proposition 6.2.2).

6.2.1. Expansion and para-linearization of the system. The final goal of the subsection

is to para-linearize the equations in (3.3) and extract a term that accounts for the loss of derivatives.

To start with, we carry out a multilinear expansion of the nonlinearities in (3.3) assuming small

amplitude and small slope, i.e., |ϕ|, |ψ| � h and |ϕx|, |ψx| � 1. We will use the expanded system

in the local existence proof, and the smallness condition (ii) in Theorem 6.0.1 is sufficient to justify

the expansion.

The first nonlinear terms in each equation of (3.3) are the same as the nonlinear term in (3.2),

then (5.6) and (5.7) apply. As for the second nonlinear terms, we take Fourier transforms and use

(2.21) to get

ˆ
R

(
ψ(x+ ζ, t)

)m
(ζ2 + (2h)2)n+ 1

2

dζ =


Γ

( √
πΓ(n)

Γ
(
n+ 1

2

))(2h)−2n if m = 0,

2
√
π

Γ
(
n+ 1

2

)
(4h)n

|∂x|nKn(2h|∂x|)
(
ψ(x, t)

)m
if m ≥ 1.
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Then, using the Taylor expansion

(1 + x)−1/2 = 1 +
∞∑
n=1

cnx
n,

where cn is defined in (5.5),we get

ˆ
R

[
ψx(x+ ζ, t)− ϕx(x, t)

]{ 1

(ζ2 + (−2h+ ψ(x+ ζ, t)− ϕ(x, t))2)
1
2

− 1

(ζ2 + (2h)2)
1
2

}
dζ

=
∞∑
n=1

cn

ˆ
R

ψx(x+ ζ, t)− ϕx(x, t)

(ζ2 + (2h)2)n+ 1
2

[
− 4h

(
ψ(x+ ζ, t)− ϕ(x, t)

)
+
(
ψ(x+ ζ, t)− ϕ(x, t)

)2]n
dζ

=
∞∑
n=1

n∑
`=0

dn,`∂x

ˆ
R

(
ψ(x+ ζ, t)− ϕ(x, t)

)2n−`+1

(ζ2 + (2h)2)n+ 1
2

dζ

=

∞∑
n=1

n∑
`=0

2n−`+1∑
m=0

dn,`,m∂x

{(
ϕ(x, t)

)2n−`+1−m
ˆ
R

(
ψ(x+ ζ, t)

)m
(ζ2 + (2h)2)n+ 1

2

dζ

}

=

∞∑
n=1

n∑
`=0

dn,`,0,1∂x

{(
ϕ(x, t)

)2n−`+1
}

+

∞∑
n=1

n∑
`=0

2n−`+1∑
m=1

dn,`,m,1∂x

{(
ϕ(x, t)

)2n−`+1−m|∂x|nKn(2h|∂x|)
(
ψ(x, t)

)m}
,

where

dn,` =

√
π(−4h)`

(2n− `+ 1)Γ(`+ 1)Γ(n+ 1− `)Γ
(

1
2 − n

) ,
dn,`,m =

(−1)2n+1−m√πΓ(2n+ 2− `)(4h)`

(2n− `+ 1)Γ(`+ 1)Γ(n+ 1− `)Γ
(

1
2 − n

)
Γ(m+ 1)Γ(2n+ 2−m− `)

,

dn,`,m,1 =


dn,`,0 ·

2
√
πΓ(n)

Γ
(
n+ 1

2

)
(4h)n+ 1

2

if m = 0,

dn,`,m ·
2
√
π

Γ
(
n+ 1

2

)
(4h)n

if m ≥ 1.

The computation for the second nonlinear term in the second equation of the systems (3.3) is

similar. We only need to replace ϕ by ψ, multiply dn,` and dn,`,m by (−1)`, and replace dn,`,m,1 by

dn,`,m,2 where

dn,`,m,2 = (−1)`dn,`,m,1.

To para-linearize (3.3), Proposition 5.1.1 applies to the first nonlinear term in each equation.

As for the second nonlinear terms, we need the following proposition.

134



Proposition 6.2.1. Suppose that ϕ(·, t), ψ(·, t) ∈ Hs(R) with s ≥ 4 and ‖ϕ‖W 3,∞ + ‖ψ‖W 3,∞ is

sufficiently small. Then we can write

∞∑
n=1

n∑
`=0

2n−`+1∑
m=1

dn,`,m,1∂x

{(
ϕ(x, t)

)2n−`+1−m|∂x|nKn(2h|∂x|)
(
ψ(x, t)

)m}
= T

B
(1)
1 [ϕ,ψ]

ϕx +R2,

where

B
(1)
1 [ϕ,ψ] =

∞∑
n=1

n∑
`=0

2n−`∑
m=1

dn,`,m,1(2n− `+ 1−m)B
(1)
1,n,`,m[ϕ,ψ],

B
(1)
1,n,`,m[ϕ,ψ] = ϕ2n−`−m|∂x|nKn(2h|∂x|)ψm.

(6.7)

The symbol B
(1)
1 [ϕ,ψ] and remainder R2 satisfy symbol estimates

‖B(1)
1 [ϕ,ψ]‖M(1,1)

.
∞∑
n=1

n∑
`=0

2n−`∑
m=1

C(n, s)h`−2n‖ϕ‖2n−`−m
W 1,∞ ‖ψ‖mW 1,∞ ,

‖R2‖Hs . ‖ϕ‖Hs

∞∑
n=1

n∑
`=0

2n−`∑
m=1

C(n, s)h`−2n‖ψ‖mW 1,∞‖ϕ‖2n−`−mW 1,∞

+ ‖ψ‖Hs

∞∑
n=1

n∑
`=0

2n−`∑
m=1

C(n, s)h`−2n−1‖ψ‖m−1
W 1,∞‖ϕ‖2n−`+1−m

W 1,∞

+ ‖ψ‖Hs

∞∑
n=1

n∑
`=0

C(n, s)h`−2n− 3
2 ‖ψ‖2n−`

W 1,∞ .

(6.8)

A similar result holds with ϕ and ψ exchanged.

Proof. We suppress the dependence of variables of ϕ and ψ for simplicity. By the product rule and

the decomposition (2.7), we see that for m < 2n− `+ 1,

∂x

{
ϕ2n−`+1−m|∂x|nKn(2h|∂x|)ψm

}
=
[
(2n− `+ 1−m)ϕ2n−`−m|∂x|nKn(2h|∂x|)ψm

]
ϕx(x, t) + ϕ2n−`+1−m∂x|∂x|nKn(2h|∂x|)ψm

= (2n− `+ 1−m)T
B

(1)
1,n,`,m[ϕ,ψ]

ϕx +R2,n,`,m,

where B
(1)
1,n,`,m[ϕ,ψ] is defined as in (6.7), and, by Lemma 2.4.1,

‖R2,n,`,m‖Hs ≤ C(n, s)Γ(n)h−n‖ϕ‖Hs‖ψ‖mW 1,∞‖ϕ‖2n−`−mW 1,∞

+ C(n, s)Γ(n)h−n−1‖ψ‖Hs‖ψ‖m−1
W 1,∞‖ϕ‖2n−`+1−m

W 1,∞ .
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When m = 2n− `+ 1, again, by Lemma 2.4.1, we have

R2,n,`,2n−`+1 = ∂x|∂x|nKn(2h|∂x|)ψ2n−`+1,

‖R2,n,`,2n−`+1‖Hs ≤ C(n, s)Γ(n)h−n−1‖ψ‖Hs‖ψ‖2n−`
W 1,∞ .

The estimates (6.8) for B
(1)
1 [ϕ,ψ] and

R2 =
∞∑
n=1

n∑
`=0

2n−`+1∑
m=1

R2,n,`,m,

then follow from the above estimates and Stirling’s formula applied to the Γ-function coefficients.

�

By Proposition 5.1.1 and Proposition 6.2.1, we can write (3.3) in the following para-linearized

form

ϕt − (Θ+ −Θ−)(γ + log h)ϕx + T
B

(1)
ϕ
ϕx +R1 + 2Θ−K0(2h|∂x|)ψx = Θ+L

[
(2− TBlog[ϕ])ϕ

]
x
,

ψt + (Θ+ −Θ−)(γ + log h)ψx + T
B

(1)
ψ

ψx +R2 + 2Θ+K0(2h|∂x|)ϕx = Θ−L
[
(2− TBlog[ψ])ψ

]
x
,
(6.9)

where

B(1)
ϕ = Θ−

∞∑
n=1

n∑
`=0

(2n− `+ 1)dn,`,0,1ϕ
2n−` + Θ−B

(1)
1 [ϕ,ψ] + Θ+B

0[ϕ],

B
(1)
ψ = Θ+

∞∑
n=1

n∑
`=0

(2n− `+ 1)dn,`,0,1ψ
2n−` + Θ+B

(1)
1 [ψ,ϕ] + Θ−B

0[ψ],

and R1 and R2 are bounded by

‖Ri‖Hs . (‖ϕ‖Hs + ‖ψ‖Hs)F (‖ϕ‖W 3,∞ + ‖Lϕ‖W 3,∞ + ‖ψ‖W 3,∞ + ‖Lψ‖W 3,∞), i = 1, 2, (6.10)

where F is a positive polynomial.

6.2.2. Energy estimates. We define homogeneous and non-homogeneous weighted energies

that are equivalent to the Hs-energies by

E(j)(t) =

ˆ
R
|Θ+||D|jϕ(x, t) ·

(
2− TBlog[ϕ]

)2j+1
|D|jϕ(x, t)

+ |Θ−||D|jψ(x, t) ·
(

2− TBlog[ψ]

)2j+1
|D|jψ(x, t) dx,
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Ẽ(s)(t) = ‖ϕ‖2L2(R) + ‖ψ‖2L2(R) +
s∑
j=1

E(j)(t).

For simplicity, we consider only integer norms with s ∈ N.

We now are ready to prove the following a priori estimates.

Proposition 6.2.2. Let s > 4 be an integer and ϕ, ψ a smooth solution of (6.9) with ϕ0, ψ0 ∈

Hs(R). There exists a constant C̃ > 0, depending only on s, such that if ϕ0, ψ0 satisfies

∥∥TBlog[ϕ0]‖L2→L2 ≤ C,
∞∑
n=1

C̃n|cn|
(
‖ϕ0‖2nW 3,∞ + ‖Lϕ0‖2nW 3,∞

)
<∞,

∥∥TBlog[ψ0]‖L2→L2 ≤ C,
∞∑
n=1

C̃n|cn|
(
‖ψ0‖2nW 3,∞ + ‖Lψ0‖2nW 3,∞

)
<∞,

for some constant 0 < C < 2, then there exists a time T > 0 such that

∥∥TBlog[ϕ(t)]‖L2→L2 < 2,

∞∑
n=1

C̃n|cn|
(
‖ϕ(t)‖2nW 3,∞ + ‖Lϕ(t)‖2nW 3,∞

)
<∞,

∥∥TBlog[ψ(t)]‖L2→L2 < 2,
∞∑
n=1

C̃n|cn|
(
‖ψ(t)‖2nW 3,∞ + ‖Lψ(t)‖2nW 3,∞

)
<∞,

for all t ∈ [0, T ], and

d

dt
Ẽ(s)(t) ≤ F (‖ϕ‖W 3,∞ + ‖Lϕ‖W 3,∞ + ‖ψ‖W 3,∞ + ‖Lψ‖W 3,∞) Ẽ(s)(t), (6.11)

where F (·) is an increasing, continuous, real-valued function.

Proof. Observe that ‖ϕ‖2L2(R) + ‖ψ‖2L2(R) is conserved by the system. So we only need to estimate

the higher-order energy. By direct calculation, for f = ϕ or ψ,

∂t(2− TBlog[f ])
sf = (2− TBlog[f ])

sft − s(2− TBlog[f ])
s−1T∂tBlog[f ]ψ +R(f), (6.12)

where the remainder term R is bounded by (6.10).

By continuity in time, there exists T > 0 such that

∞∑
n=1

C̃n|cn|
(
‖ϕ(t)‖2nW 3,∞ + ‖Lϕ(t)‖2nW 3,∞ + ‖ψ(t)‖2nW 3,∞ + ‖Lψ(t)‖2nW 3,∞

)
<∞ for all 0 ≤ t ≤ T .
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We apply the operator |D|s to the first equation of (6.9) to get

|D|sϕt − (Θ+ −Θ−)(γ + log h)|D|sϕx + |D|sT
B

(1)
ϕ
ϕx

+ |D|sR1 + 2Θ−|D|sK0(2h|∂x|)ψx(x, t) = |D|s∂xL
[
(2− TBlog[ϕ])ϕ

]
.

(6.13)

Using Lemma 2.2.2, we find that

|D|s
[
(2− TBlog[ϕ])ϕ

]
= 2|D|sϕ− |D|s(TBlog[ϕ]ϕ)

= 2|D|sϕ− TBlog[ϕ]|D|sϕ+ sT∂xBlog[ϕ]|D|s−2ϕx +R3,

where

‖∂xR3‖L2 .

( ∞∑
n=1

C(n, s)|cn|‖ϕ‖2nW 3,∞

)
‖ϕ‖Hs−1 .

Thus, we can write the right-hand side of (6.13) as

∂xL|D|s
[
(2− TBlog[ϕ])ϕ

]
= ∂xL

[
(2− TBlog[ϕ])|D|sϕ+ sT∂xBlog[ϕ]|D|s−2ϕx

]
+R4

= L
{

(2− TBlog[ϕ])|D|sϕx − T∂xBlog[ϕ]|D|sϕ− sT∂xBlog[ϕ]|D|sϕ
}

+R4

= L
{

(2− TBlog[ϕ])|D|sϕx − (s+ 1)T∂xBlog[ϕ]|D|sϕ
}

+R4,

where

‖R4‖L2 .

( ∞∑
n=1

C(n, s)|cn|
(
‖ϕ‖2nW 3,∞ + ‖Lϕ‖2nW 3,∞

))
‖ϕ‖Hs .

Applying (2−TBlog[ϕ])
s to (6.13), and commuting (2−TBlog[ϕ])

s with L up to remainder terms,

we obtain that

(2− TBlog[ϕ])
s|D|sϕt − (Θ+ −Θ−)(γ + log h)(2− TBlog[ϕ])

s|D|sϕx

+ (2− TBlog[ϕ])
s∂x|D|sTB(1)

ϕ
ϕ+ 2Θ−(2− TBlog[ϕ])

s|D|sK0(2h|∂x|)ψx(x, t)

= L
{

(2− TBlog[ϕ])
s+1|D|sϕx − (s+ 1)(2− TBlog[ϕ])

sT∂xBlog[ϕ]|D|sϕ
}

+R5

= ∂xL
{

(2− TBlog[ϕ])
s+1|D|sϕ

}
+R5,

(6.14)

where ‖R5‖L2 is bounded by the right-hand-side of (6.10).
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By (6.12), the time derivative of E(s)(t) is

d

dt
E(s)(t) = −

ˆ
R

(2s+ 1)|D|sϕ · (2− TBlog[ϕ])
2sT∂tBlog[ϕ]|D|sϕdx

+ 2

ˆ
R
|D|sϕ · (2− TBlog[ϕ])

2s+1|D|sϕt dx+

ˆ
R
R (|D|sϕ) |D|sϕdx.

(6.15)

We will estimate each of the terms on the right-hand side of (6.15).

Equation (6.9) implies that

‖ϕxt‖L∞ .
∞∑
n=1

C(n, s)|cn|
(
‖ϕ‖2nW 3,∞ + ‖Lϕ‖2nW 3,∞ + ‖ψ‖2nW 3,∞ + ‖Lψ‖2nW 3,∞

)
,

so the first term on the right-hand side of (6.15) can be estimated by∣∣∣∣ˆ
R

(2s+ 1)|D|sϕ · (2− TBlog[ϕ])
2sT∂tBlog[ϕ]|D|sϕdx

∣∣∣∣
.

( ∞∑
n=1

C(n, s)|cn|
(
‖ϕ‖2nW 3,∞ + ‖Lϕ‖2nW 3,∞ + ‖ψ‖2nW 3,∞ + ‖Lψ‖2nW 3,∞

))
‖ϕ‖2Hs .

We can estimate the third term on the right-hand side of (6.15) by

ˆ
R
R (|D|sϕ) |D|sϕdx .

( ∞∑
n=1

C(n, s)|cn|
(
‖ϕ‖2nW 3,∞ + ‖Lϕ‖2nW 3,∞ + ‖ψ‖2nW 3,∞ + ‖Lψ‖2nW 3,∞

))
‖ϕ‖Hs‖ϕ‖Hs−1 .

To estimate the second term on the right-hand side (6.15), we multiply (6.14) by (2−TBlog[ϕ])
s+1|D|sϕ,

integrate the result with respect to x, and use the self-adjointness of (2− TBlog[ϕ])
s+1, which gives

ˆ
R
|D|sϕ · (2− TBlog[ϕ])

2s+1|D|sϕt dx = I + II + III + IV,

where

I = −
ˆ
R
|D|sϕ · (2− TBlog[ϕ])

2s+1|D|s∂xTB(1)
ϕ
ϕdx,

II =

ˆ
R

(2− TBlog[ϕ])
s+1|D|sϕ · ∂xL(2− TBlog[ϕ])

s+1|D|sϕdx,

III =

ˆ
R

(2− TBlog[ϕ])
s+1|D|sϕ · (R1 + 2Θ−K0(2h|∂x|)ψx) dx,

IV = −
ˆ
R
|D|sϕ · (Θ+ −Θ−)(γ + log h)(2− TBlog[ϕ])

2s+1|D|sϕx.
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We have II = 0, since ∂xL is skew-symmetric, and

|III| .
( ∞∑
n=0

C(n, s)|cn|
(
‖ϕ‖2nW 3,∞ + ‖Lϕ‖2nW 3,∞ + ‖ψ‖2nW 3,∞ + ‖Lψ‖2nW 3,∞

))
(‖ϕ‖2Hs + ‖ψ‖2Hs).

Because (2− TBlog[ϕ]) is self-adjoint,

IV = −(Θ+ −Θ−)(γ + log h)

ˆ
R

(2− TBlog[ϕ])
2s+1|D|sϕ · |D|sϕx dx

= (Θ+ −Θ−)(γ + log h)

ˆ
R
∂x(2− TBlog[ϕ])

2s+1|D|sϕ · |D|sϕdx

= −IV + (Θ+ −Θ−)(γ + log h)

ˆ
R

[∂x, (2− TBlog[ϕ])
2s+1]|D|sϕ · |D|sϕdx.

By a commutator estimate,∣∣∣∣ˆ
R

[∂x, (2− TBlog[ϕ])
2s+1]|D|sϕ · |D|sϕdx

∣∣∣∣ . ‖ϕ‖2HsF (‖ϕ‖W 3,∞ + ‖Lϕ‖W 3,∞).

Therefore

|IV| . ‖ϕ‖2HsF (‖ϕ‖W 3,∞ + ‖Lϕ‖W 3,∞).

Term I estimate. We write I = −Ia + Ib, where

Ia =

ˆ
R
|D|sϕ · (2− TBlog[ϕ])

2s+1∂xTB(1)
ϕ
|D|sϕdx,

Ib =

ˆ
R
|D|sϕ · (2− TBlog[ϕ])

2s+1∂x[T
B

(1)
ϕ
, |D|s]ϕdx.

By a commutator estimate and (5.13), the second integral satisfies

|Ib| .
( ∞∑
n=1

C(n, s)|cn|
(
‖ϕ‖2nW 3,∞ + ‖Lϕ‖2nW 3,∞ + ‖ψ‖2nW 3,∞ + ‖Lψ‖2nW 3,∞

))
‖ϕ‖2Hs .

To estimate the first integral, we write it as

Ia = Ia1 − Ia2 ,

where

Ia1 =

ˆ
R
|D|sϕ · [(2− TBlog[ϕ])

2s+1, ∂x]
(
T
B

(1)
ϕ
|D|sϕ

)
dx,

Ia2 =

ˆ
R
|D|sϕx · (2− TBlog[ϕ])

2s+1
(
T
B

(1)
ϕ
|D|sϕ

)
dx.
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Term Ia1 estimate. A Kato-Ponce commutator estimate and (5.13) gives

|Ia1 | .
( ∞∑
n=1

C(n, s)|cn|
(
‖ϕ‖2nW 3,∞ + ‖Lϕ‖2nW 3,∞ + ‖ψ‖2nW 3,∞ + ‖Lψ‖2nW 3,∞

))
‖ϕ‖2Hs .

Term Ia2 estimate. We have

Ia2 =

ˆ
R

(
TB0[ϕ]|D|sϕ

)
· (2− TBlog[ϕ])

2s+1|D|sϕx dx

=

ˆ
R

(
TB0[ϕ]|D|sϕ

)
·
{
∂x

(
(2− TBlog[ϕ])

2s+1|D|sϕ
)
−
[
∂x, (2− TBlog[ϕ])

2s+1
]
|D|sϕ

}
dx

= −
ˆ
R
∂x
(
TB0[ϕ]|D|sϕ

)
· (2− TBlog[ϕ])

2s+1|D|sϕdx

−
ˆ
R

(
TB0[ϕ]|D|sϕ

)
·
[
∂x, (2− TBlog[ϕ])

2s+1
]
|D|sϕdx

= −
ˆ
R

(
TB0[ϕ]|D|sϕx +

[
∂x, TB0[ϕ]

]
|D|sϕ

)
· (2− TBlog[ϕ])

2s+1|D|sϕdx

−
ˆ
R

(
TB0[ϕ]|D|sϕ

)
·
[
∂x, (2− TBlog[ϕ])

2s+1
]
|D|sϕdx.

(6.16)

Using commutator estimates and (5.13), we get that

∥∥[∂x, TB0[ϕ]

]
|D|sϕ

∥∥
L2 .

( ∞∑
n=1

C(n, s)|cn|
(
‖ϕ‖2W 3,∞ + ‖Lϕ‖2W 3,∞

))
‖ϕ‖Hs ,

∥∥∥[∂x, (2− TBlog[ϕ])
2s+1

]
|D|sϕ

∥∥∥
L2
.

( ∞∑
n=1

C(n, s)|cn|
(
‖ϕ‖2nW 3,∞ + ‖Lϕ‖2nW 3,∞

))
‖ϕ‖Hs ,

∥∥∥∂x [(2− TBlog[ϕ])
2s+1, TB0[ϕ]

]
|D|sϕ

∥∥∥
L2
.

( ∞∑
n=1

C(n, s)|cn|
(
‖ϕ‖2nW 3,∞ + ‖Lϕ‖2nW 3,∞

))
‖ϕ‖2Hs .

Since TB0[ϕ] is self-adjoint, we can rewrite (6.16) as

Ia2 = −Ia2 +R6,

with

|R6| .
( ∞∑
n=1

C(n, s)|cn|
(
‖ϕ‖2nW 3,∞ + ‖Lϕ‖2nW 3,∞ + ‖ψ‖2nW 3,∞ + ‖Lψ‖2nW 3,∞

))
‖ϕ‖2Hs ,

and we conclude that

|Ia2 | .
( ∞∑
n=1

C(n, s)|cn|
(
‖ϕ‖2nW 3,∞ + ‖Lϕ‖2nW 3,∞ + ‖ψ‖2nW 3,∞ + ‖Lψ‖2nW 3,∞

))
‖ϕ‖2Hs .
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By a similar procedure, we can obtain the estimate for ψ. This completes the estimate of the

terms on the right hand side of (6.15). Collecting the above estimates and using the interpolation

inequalities, we obtain that

Ẽ(s)(t) ≤ Ẽ(s)(0) +

ˆ t

0
F (‖ϕ‖W 3,∞ + ‖Lϕ‖W 3,∞ + ‖ψ‖W 3,∞ + ‖Lψ‖W 3,∞) ‖ϕ‖2Hs dt′, (6.17)

where F is a positive, increasing, continuous, real-valued function.

We observe that there exists a constant C̃(s) > 0 such that C(n, s) . C̃(s)n. The series in F

then converges whenever ‖ϕ‖W 3,∞ + ‖Lϕ‖W 3,∞ + ‖ψ‖2nW 3,∞ + ‖Lψ‖2nW 3,∞ is sufficiently small, and

we can choose F to be an increasing, continuous, real-valued function.

Finally, since ‖2−TBlog[ϕ0]‖L2→L2 ≥ 2−C, and ‖Blog[ϕ](·, t)‖M(0,0)
and F (‖ϕ‖W 3,∞ + ‖Lϕ‖W 3,∞)

are continuous in time, there exist T > 0 and m > 0, depending only on the initial data, such that

‖2− TBlog[ϕ(t)]‖L2→L2 ≥ m for 0 ≤ t ≤ T .

We therefore obtain that

m2s+1(‖ϕ‖2Hs + ‖ϕ‖2Hs) ≤ Ẽ(s) ≤ 22s+1(‖ϕ‖2Hs + ‖ϕ‖2Hs),

so (6.17) implies (6.11). �
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APPENDIX A

Alternative formulation of the SQG front equation

Face front, true believers!

– Stan Lee “Marvel Masterworks: Fantastic Four Vol. 4”

We first prove an algebraic identity that will be used in deriving (5.10).

Lemma A.0.1. Let N ≥ 2 be an integer. Then for any integer 1 ≤ p ≤ N − 1 and any ηj ∈ R,

j = 1, 2, . . . , N

N∑
`=1

∑
1≤m1<m2<···<m`≤N

(−1)`(ηm1 + ηm2 + · · ·+ ηm`)
p = 0. (A.1)

Proof. A general term in the expansion of left-hand-side of (A.1) is proportional to

ηα1
1 ηα2

2 · · · η
αN
N , (A.2)

where α1, α2, . . . , αN are nonnegative integers such that α1 +α2 + · · ·+αN = p. It suffices to show

that the coefficients of the monomials (A.2) are zero. Let 1 ≤ M ≤ N − 1 denote the number

of nonzero terms in the list (α1, α2, . . . , αN ). Using the multinomial theorem, we see that the

coefficient of (A.2) is p

α1, . . . , αN

 · N−M∑
j=0

(−1)M+j

N −M
j

 =

 p

α1, . . . , αN

 · (−1)M (1− 1)N−M = 0.

�

To compute Tn(ηn) in (5.5), we first expand the product

<
2n+1∏
j=1

(1− eiηjζ) = 1 +
2n+1∑
`=1

∑
1≤m1<m2<···<m`≤2n+1

(−1)` cos
(
(ηm1 + ηm2 + · · ·+ ηm`)ζ

)
=

2n+1∑
`=1

∑
1≤m1<m2<···<m`≤2n+1

(−1)`+1
[
1− cos

(
(ηm1 + ηm2 + · · ·+ ηm`)ζ

)]
.
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We replace the integral over R in (5.5) by an integral over R \ (−ε, ε), where ε � 1, and

decompose the expression for Tn into a sum of terms of the form

ˆ
ε<|ζ|<∞

1− cos(ηζ)

|ζ|2n+1
dζ =

ˆ
ε<|ζ|≤1/|η|

1 +
∑n

j=1
(−1)j(ηζ)2j

(2j)! − cos(ηζ)

|ζ|2n+1
dζ +

ˆ
|ζ|>1/|η|

1− cos(ηζ)

|ζ|2n+1
dζ

−
n∑
j=1

(−1)jη2j

(2j)!

ˆ
ε<|ζ|≤1/|η|

1

|ζ|2n−2j+1
dζ

= Cn,1η
2n −

n∑
j=1

(−1)jη2j

(2j)!

ˆ
ε<|ζ|≤1/|η|

1

|ζ|2n−2j+1
dζ + o(1),

where

Cn,1 =

ˆ
|θ|≤1

1 +
∑n

j=1
(−1)j(θ)2j

(2j)! − cos(θ)

|θ|2n+1
dθ +

ˆ
|θ|>1

1− cos(θ)

|θ|2n+1
dθ

is some constant that depends only on n.

We have

n∑
j=1

(−1)jη2j

(2j)!

ˆ
ε<|ζ|≤1/|η|

1

|ζ|2n−2j+1
dζ = Cεn,2η

2n +
n−1∑
j=1

Cj,εn,3η
2j + Cn,4η

2n log |η|,

where

Cεn,2 =
n−1∑
j=1

(−1)j+1

(n− j)(2j)!
+ 2

(−1)n+1 log ε

(2n)!
, Cj,εn,3 =

(−1)jε2j−2n

(n− j)(2j)!
, Cn,4 = 2

(−1)n+1

(2n)!
.

Thus, we conclude that

ˆ
ε<|ζ|≤1/|η|

1− cos(ηζ)

|ζ|2n+1
dζ =

(
Cn,1 − Cεn,2

)
η2n −

n−1∑
j=1

Cj,εn,3η
2j − Cn,4η2n log |η|.

We use these results in the expression for Tn and take the limit as ε → 0+. The singularity at

ε = 0 does not enter into the final result because of the cancelation in Lemma A.0.1, and we find

that

Tn(ηn) = 2
(−1)n+1

(2n)!

2n+1∑
`=1

∑
1≤m1<m2<···<m`≤2n+1

(−1)`(ηm1 + · · ·+ ηm`)
2n log |ηm1 + ηm2 + · · ·+ ηm` | .

(A.3)

It follows that

fn = 2
(−1)n

(2n)!

2n+1∑
`=1

2n+ 1

`

 (−1)`ϕ2n−`+1∂2n log |∂|
(
ϕl
)
.
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Therefore, we conclude that

ˆ
R

[
ϕx(x, t)− ϕx(x+ ζ, t)

|ζ|
− ϕx(x, t)− ϕx(x+ ζ, t)√

ζ2 + (ϕ(x, t)− ϕ(x+ ζ, t))2

]
dζ

= −
∞∑
n=1

2cn(−1)n

Γ(2n+ 2)
∂x

{ 2n+1∑
`=1

2n+ 1

`

 (−1)`ϕ2n−`+1(x, t)∂2n
x log |∂x|

(
ϕl(x, t)

)}

=

∞∑
n=1

2n+1∑
`=1

(−1)`+1dn,`∂x

{
ϕ2n−`+1(x, t)∂2n

x log |∂x|
(
ϕl(x, t)

)}
,

where

dn,` =
2
√
π∣∣Γ (1

2 − n
) ∣∣Γ(`+ 1)Γ(2n+ 2− `)Γ(n+ 1)

> 0. (A.4)

Using this expansion in (3.2), we get (5.10).
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APPENDIX B

Some algebraic inequalities

They usually develop in unequal proportion, in one love, in the other ambition

and avarice. But now we, you and I, at our present ages, can to some extent do

something ourselves one way or another to keep the things inside us in order.

– Vincent van Gogh

In this appendix, we prove the inequalities used in the local well-posedness proofs. We use

{k1, k2, k3, k4} to denote a quadruple of real numbers such that

k1 + k2 + k3 + k4 = 0,

and, as in (4.19)–(4.20), we denote by (m1,m2,m3,m4) a permutation of (k1, k2, k3, k4) such that

|m1| ≥ |m2| ≥ |m3| ≥ |m4|.

If, as we assume, the kj are not identically zero, then m1,m2 6= 0, and we define

x = −m2

m1
, y = −m3

m1
, 1− x− y = −m4

m1
. (B.1)

Since m1+m2+m3+m4 = 0, the ordering of the |mj | implies that 0 ≤ y ≤ x ≤ 1 and |1−x−y| ≤ y,

so (x, y) ∈ R, where the feasible region

R =
{

(x, y) ∈ R2 | 0 ≤ y ≤ x ≤ 1 and 1 ≤ x+ 2y ≤ 2
}

(B.2)

is shown in Figure B.1. We note that m3 = 0 corresponds to the point (x, y) = (1, 0), and m4 = 0

corresponds to the line x+ y = 1. The ratio m4/m1 changes sign across this line: if x+ y > 1, then

m1, m4 have the same sign and the opposite sign to m2, m3; while if x+ y < 1, then m2, m3, m4

have the same sign and the opposite sign to m1.

We begin with the following inequality for a symmetric function of fractional powers.
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R

x = 1

y = 1

O

(
1
3 ,

1
3

)
1
3

(
1
2 ,

2
3

)

η = 2

y = 1
1+η

y = 1

O

Figure B.1. Left: The feasible region R for (x, y)-variables in (B.2). Right: The
feasible region for (η, y)-variables in (B.3).

Lemma B.0.1. If kj ,mj ∈ R with j = 1, 2, 3, 4 are defined as above, then for every s > 0 there

exists a constant C0(s), depending only on s, such that

∣∣k1|k1|2s + k2|k2|2s + k3|k3|2s + k4|k4|2s
∣∣ ≤ C0(s)|m1|s|m2|s|m3|.

Proof. Both sides of the inequality are zero if m3 = 0, when m1 = −m2 and m4 = 0, so we may

assume that m3 6= 0. Using (B.1), and the fact that the kj are a permutation of the mj , we get

that
k1|k1|2s + k2|k2|2s + k3|k3|2s + k4|k4|2s

|m1|s|m2|sm3
= f(x, y),

where the continuous function f : R \ {(1, 0)} → R is given by

f(x, y) =
1− x2s+1 − y2s+1 + (x+ y − 1)|x+ y − 1|2s

xsy
.

The only place where f could fail to be bounded is near (1, 0). Writing

x = 1− ηy, with 0 ≤ η ≤ 2, (B.3)

and Taylor expanding f as y → 0+, we get that

f(1− ηy, y) = (2s+ 1)η +O(y + y2s)

uniformly in 0 ≤ η ≤ 2. It follows that

lim
y→0+

sup
0≤η≤2

|f(1− ηy, y)| = 2 · (2s+ 1),
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which proves the lemma. �

Numerical computations show that the supremum of |f | on R \ {(1, 0)} is attained at (x, y) =

(1/3, 1/3) if s ≥ s0, where s0 ≈ 0.6365 is the positive value of s at which 3s+1 − 31−s = 2(2s+ 1).

In that case, we may take

C0(s) = 3s+1 − 31−s. (B.4)

Next, we estimate the SQG kernel defined in (4.13). From (4.11), these kernels have the form

S(k1, k2, k3, k4) = |m1|2
[
g

(
−m2

m1
,−m3

m1

)
+ h

(
−m2

m1
,−m3

m1

)]
, (B.5)

g(x, y) = a(y) + a(x+ y − 1)− a(1− x),

h(x, y) = a(1) + a(x)− a(1− y)− a(x+ y).
(B.6)

First, we estimate h.

Lemma B.0.2. Let a be given by (4.12), and let h be given by (B.6). There exists C > 0 such that

|h(x, y)| ≤ C|x+ y − 1|y for all (x, y) ∈ R.

Proof. Using coordinates (B.3), we have

h(1− ηy, y) = a(1) + a(1− ηy)− a(1− y)− a(1 + (1− η)y)

= −
ˆ 1

1−y

ˆ (1−η)y

0
a′′(t+ s) ds dt.

(B.7)

If 0 ≤ y ≤ 2/3 and (x, y) ∈ R, then 1/3 ≤ t + s ≤ 5/3 in (B.7). Since |a′′(x)| ≤ M is bounded on

this interval, we get that

|h(1− ηy, y)| ≤M |1− η|y2.

If 2/3 ≤ y ≤ 1 and (x, y) ∈ R, then 0 ≤ η ≤ 1/2, and it follows that

|h(1− ηy, y)| ≤
ˆ 1

0

ˆ 1

0
|a′′(t+ s)| ds dt

≤ 9

2

(ˆ 1

0

ˆ 1

0
|a′′(t+ s)|dsdt

)
|1− η|y2.

Since the integral converges and (1− η)y = x+ y − 1, we obtain the result. �
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We now estimate the SQG kernel.

Lemma B.0.3. Let S be given by (4.13). If kj ,mj ∈ R \ {0} with j = 1, 2, 3, 4 are defined as

above, then there exists a numerical constant C2 such that

|S(k1, k2, k3, k4)| ≤ C2|m3||m4| log

(
1 +

∣∣∣∣m2

m3

∣∣∣∣) .
Proof. The kernel S is given by (B.5)–(B.6) with a(x) = −x2 log |x|. We have

|g(1− ηy, y)| =
∣∣y2 log y + (1− η)2y2 log |(1− η)y| − η2y2 log ηy

∣∣
=
∣∣2(1− η)y2 log y +

[
(1− η)2 log |1− η| − η2 log η

]
y2
∣∣

≤ C|1− η|y2 [1 + log(1/y)] .

Since x ≥ 1/3 and x/y ≥ 1, it follows that

|g(x, y)| ≤ C|x+ y − 1|y log

(
1 +

x

y

)
.

Using this inequality and Lemma B.0.2, we get that

|g(x, y) + h(x, y)| ≤ C|x+ y − 1|y log

(
1 +

x

y

)
,

and the use of this inequality in (B.5) proves the lemma. �

Numerical computations show that in Lemma B.0.3 we can take, for example,

C2 = 5. (B.8)

The worst case for the growth of S is when two wavenumbers are in the same “shell” with much

larger and almost equal absolute values than the other two wavenumbers, which happens near the

point (x, y) = (1, 0) in R. For example, suppose that

k1 = k + a, k2 = −(k + b), k3 = −a, k4 = b,

and consider the limit k →∞ with a, b > 0 fixed. Then one finds that

S(k1, k2, k3, k4) = −2ab log |k|+O(1) = 2m3m4 log

∣∣∣∣m2

m3

∣∣∣∣+O(1).

Thus, the logarithmic factor in Lemma B.0.3 cannot be improved upon.
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We end this appendix with a corollary of Lemma B.0.3 for the SQG kernel as a function of

integer wavenumbers. This Lemma uses the fact that the |kj | are bounded away from zero, so it

does not apply in the spatial case with kj ∈ R \ {0}.

Corollary B.0.4. Let S be given by (4.13). If kj ,mj ∈ Z∗ with j = 1, 2, 3, 4 are defined as above,

then there exists a constant C2 such that

|S(k1, k2, k3, k4)| ≤ C2|m3||m4| [log(1 + |m1|) log(1 + |m2|)]1/2 .

Proof. The result follows immediately from Lemma B.0.3, since |m2| ≤ |m1| and |m3| ≥ 1. �
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[CGSI19] D. Córdoba, J. Gómez-Serrano, and A. D. Ionescu, Global solutions for the generalized SQG patch

equation, Arch. Ration. Mech. Anal. 233 (2019), no. 3, 1211–1251.
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[H0̈7] L. Hörmander, The analysis of linear partial differential operators. III, Classics in Mathematics,

Springer, Berlin, 2007, Pseudo-differential operators, Reprint of the 1994 edition.

[Hel13] B. Helffer, Spectral theory and its applications, Cambridge Studies in Advanced Mathematics, vol. 139,

Cambridge University Press, Cambridge, 2013.

[HH15] Z. Hassainia and T. Hmidi, On the V-states for the generalized quasi-geostrophic equations, Comm.

Math. Phys. 337 (2015), no. 1, 321–377.

[HM16] T. Hmidi and J. Mateu, Degenerate bifurcation of the rotating patches, Adv. Math. 302 (2016), 799–850.

153



[HM17] , Existence of corotating and counter-rotating vortex pairs for active scalar equations, Comm.

Math. Phys. 350 (2017), no. 2, 699–747.

[HMV13] T. Hmidi, J. Mateu, and J. Verdera, Boundary regularity of rotating vortex patches, Arch. Ration.

Mech. Anal. 209 (2013), no. 1, 171–208.

[HMVSZ] J. K. Hunter, R. C. Moreno-Vasquez, J. Shu, and Q. Zhang, On the approximation of vorticity fronts

by the Burgers-Hilbert equation, preprint.

[HPGS95] I. M. Held, R. T. Pierrehumbert, S. T. Garner, and K. L. Swanson, Surface quasi-geostrophic dynamics,

J. Fluid Mech. 282 (1995), 1–20.

[HS18] J. K. Hunter and J. Shu, Regularized and approximate equations for sharp fronts in the surface quasi-

geostrophic equation and its generalizations, Nonlinearity 31 (2018), no. 6, 2480–2517.

[HSZ18] J. K. Hunter, J. Shu, and Q. Zhang, Local well-posedness of an approximate equation for SQG fronts,

J. Math. Fluid Mech. 20 (2018), no. 4, 1967–1984.

[HSZara] , Contour dynamics for surface quasi-geostrophic fronts, Nonlinearity (to appear).

[HSZarb] , Global solutions for a family of GSQG front equations, preprint, arXiv:2005.09154.

[HSZarc] , Global solutions of a surface quasi-geostrophic front equation, preprint, arXiv:1808.07631.

[HSZard] , Two-front solutions of the SQG equations and its generalizations, Commun. Math. Sci. (to

appear).

[Hun06] J. K. Hunter, Short-time existence for scale-invariant Hamiltonian waves, J. Hyperbolic Differ. Equ. 3

(2006), no. 2, 247–267.

[Ifr12] M. Ifrim, Normal form transformations for quasilinear wave equations, 2012, p. 85, Thesis (Ph.D.)–

University of California, Davis.

[IP13] A. D. Ionescu and B. Pausader, The Euler-Poisson system in 2D: global stability of the constant

equilibrium solution, Int. Math. Res. Not. IMRN (2013), no. 4, 761–826.

[IP14] A. D. Ionescu and F. Pusateri, Nonlinear fractional Schrödinger equations in one dimension, J. Funct.

Anal. 266 (2014), no. 1, 139–176.

[IP15] , Global solutions for the gravity water waves system in 2d, Invent. Math. 199 (2015), no. 3,

653–804.

[IP16] , Global analysis of a model for capillary water waves in two dimensions, Comm. Pure Appl.

Math. 69 (2016), no. 11, 2015–2071.

[IP18] , Global regularity for 2D water waves with surface tension, Mem. Amer. Math. Soc. 256 (2018),

no. 1227, v+124.
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