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“ Oh to be a nematode!
One that came into being in July: glorious!

No one doubts our numbers, easily a Million species
and never to be counted, not ever.

Shine on we beasties!
2018 and forever,
Controllers of the universe! ”

— George Quentin Baker, July 4, 2018
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Neuromechanical Mechanisms of Locomotion in C. elegans

Abstract

Understanding principles of neurolocomotion requires the synthesis of neural activity, sensory

feedback, and biomechanics. The nematode C. elegans is an ideal model organism for studying lo-

comotion in an integrated neuromechanical setting because its nervous system is well characterized

and its forward swimming gait adapts to the surrounding fluid using sensory feedback. However,

it is not understood how the gait emerges from mechanical forces, neuronal coupling, and sensory

feedback mechanisms. Here, a modular neuromechanical model of C. elegans forward locomotion

is developed and analyzed. The model captures the experimentally observed gait adaptation over

a wide range of parameters, provided that the muscle response to input from the nervous system

is faster than the body response to changes in internal and external forces. The model is analyzed

as a system of coupled neuromechanical oscillator modules using the theory of weakly coupled

oscillators to identify the relative roles of body mechanics, neural coupling, and proprioceptive

coupling in coordinating the undulatory gait. The analysis shows that the wavelength of body

undulations is set by the relative strengths of these three coupling forms and the experimentally

observed decrease in wavelength in response to increasing fluid viscosity is the result of an increase

in the relative strength of mechanical coupling, which promotes a short wavelength. Parameters

of the neuromechanical modules were also explored to assess their effects on the existence, period,

amplitude, and phase response properties of the oscillations; this analysis allows the coordination

trend of the full neuromechanical model to be inferred from the properties of the individual neu-

romechanical oscillator modules themselves. The neuromechanical module is also reduced to a form

that is analytically piecewise solvable, which allows for the construction of a 1-D Poincaré map that

captures the limit cycle dynamics. This builds a framework for future analysis of the biophysical

mechanisms underlying the oscillator properties and thus the coordination of the full neuromechan-

ical model. The systematic analysis of the neuromechanical model presented in this dissertation

provides a deeper understanding of how the interactions between the neuromechanical components

of the C. elegans forward locomotion system produce coordination and gait adaptation.

v



Acknowledgments

I would like to thank my advisors, Professors Tim Lewis and Bob Guy, for teaching, training,

and mentoring me for the past 7 years. Tim, thanks for taking me on as naive young student,

supporting me all this time, and molding me into a less-naive scientist. Bob, thanks for always

being skeptical of simulation outputs and challenging me to think critically about research. It’s

been a privilege to work with both of you.

I would like to thank Professors Becca Thomases and Elena Fuchs for their personal support

and dedication to making the department a more welcoming place. Becca, thank you for all the

group meetings, and of course for chairing my qualifying exam and dissertation committees. Elena,

thank you for letting me help out with M-Pact. Your work with that school has truly inspired me

to be a more socially-focused academic.

Thank you to the math department staff, especially Sarah Driver, Tina Denena, and Victoria

Whistler. Thank you also to Professors Sam Walcott and Brian Mulloney for serving on my

qual committee, and thanks Dr. Korana Burke and Professor Craig Benham for giving me the

opportunity to develop math bio curriculum.

A big thank you to my big loving and supportive family: Mom and Dad, Nolan and Spencer,

Grandma Jean and Grandpa Quentin, Nonni, Margo and Thomas, Auntie Rachel and Uncle Rick,

Auntie Lisa, Aaron, Taylor, Emma, Logan, and Jadyn. To all the educators in my family - Grandma

Jean, Grandpa Quentin, Auntie Rachel, Auntie Lisa, and Mom - thanks for inspiring in me a love

for education.

Thank you to all of my friends in the math department and around Davis, especially Christine

Angeles, Sam Fleischer, Sattik Ghosh, Emily Meyer, Ducko Nguyen, Alex Randazzo, and Eric

Wetzel.

Finally, thanks to my wife, Becky, for always being there for me, for challenging me to be a

better scientist, and for being my best friend. One day, I hope to live up to the standard you set.

You make me want to have a wetter brain.

vi



CHAPTER 1

Introduction

The central goal of neuroethology is to understand how an organism’s body and nervous sys-

tem interact with its environment to produce behaviors such as locomotion. Model organisms have

been used to study the complex interactions between the nervous system, body mechanics, and

environmental dynamics in generating and coordinating locomotion [24,33]. Some studies of loco-

motion in model organisms highlight feedforward control of locomotion, where the nervous system

drives motor activity and sensory feedback plays only a modulatory role; these include swimming

behavior in lamprey, crayfish, and leeches [8,36,45,46,47,50]. However, other organisms, such as

cockroaches and stick insects, can only be understood as fully integrated neuromechanical systems

because sensory feedback is essential to generate and coordinate movements [4,17,24,32,42]. This

sensory feedback is necessary for navigating more complex environments and can often lead to

gait adaptation. The nematode C. elegans is an ideal model organism for studying locomotion in

an integrated neuromechanical setting because of its relatively simple and fully-described nervous

system [53], limited stereotypical locomotive behavior [40], dependence on sensory feedback for

forward locomotion [43,51], and undulatory gait that adapts to different fluid environments.

C. elegans locomote forward using alternating dorsal and ventral body bends that propogate

from anterior to posterior. The properties of this undulatory gait adapt to fluid environments of

different viscosities: higher external fluid viscosities result in slower undulations of shorter wave-

lengths [3,15,49]. Previously, it was thought that C. elegans had two distinct gaits, swimming and

crawling. However, recent experiments have shown that the wavelength and frequency of swim-

ming in highly viscous fluids resemble crawling on agar surfaces [3, 15], and instead of a sharp

swim/crawl transition, there is a smooth transition between the two gaits as the fluid viscosity of

the environment is varied [3, 15, 49]. How this adaptation in gait emerges from the interactions

between the external environment, mechanical forces, and internal sensory feedback mechanisms is

not understood.
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There are several hypotheses for how the undulatory gait is generated and coordinated [19];

however, it is generally agreed that proprioception plays a key role [5,38,51]. One hypothesis is that

there is a central pattern-generating (CPG) neural unit in the head that initiates the propagation

of the bending wave — higher fluid viscosities slow the propagation and shorten the wavelength

[28,51]. Another hypothesis is that the ventral nerve cord consists of a network of neural modules

that are capable of either (i) intrinsic neural oscillations [41] or (ii) intrinsic neuromechanical

oscillations (i.e., involving an entire feedback loop from neural to muscular to body mechanics and

back through proprioception) [5,7]. Recent experiments by Fouad et al. [16] support the presence

of multiple neural or neuromechanical oscillators, and gait adaptation has been demonstrated in

computational models consisting of a chain of neuromechanical oscillators [5,9,11]. However, it is

still unclear how the interplay between neural, proprioceptive, and mechanical coupling gives rise

to gait adaptation.

Here, we introduce a neuromechanical model of the C. elegans forward locomotion system. We

use our model to systematically analyze the role of body mechanics, neural coupling, and proprio-

ceptive coupling in gait adaptation. The model captures the experimentally observed gait adapta-

tion over a wide range of parameters, provided that the muscle response to input from the nervous

system is faster than the body response to changes in force. The modular structure of our model

allows the use of the theory of weakly coupled oscillators to further dissect out the mechanisms

underlying gait adaptation. Specifically, we assess the influence of each coupling modality (me-

chanical, neural, and proprioceptive). We find that proprioception leads to a posteriorly-directed

traveling wave with a characteristic wavelength. Neural coupling promotes synchronous activity

(long wavelength), and mechanical coupling promotes a high spatial frequency (short wavelength).

The wavelength of the undulatory waveform is set by the relative strengths of these three coupling

forms. As the external fluid viscosity increases, the mechanical coupling strength increases and the

wavelength decreases, resulting in the observed wavelength trend of gait adaptation.

1.1. A Brief History of C. elegans as a Model Organism

C. elegans has a long history as a model organism in biology. Typically found in soils and

compost heaps around the world, they can now be commonly found on Petri dishes in university
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labs. C. elegans and other nematodes have been studied since the invention of the microscope in

the 17th century, and early studies focused on species classification and culture methods, i.e., how

to systematically raise nematodes in a reproducible way in the laboratory [40]. This early work was

important in devising the methods that would lead to C. elegans’ widespread use later: specifically,

how to grow healthy populations on agar plates and breed them sexually and asexually.

In the 1960s, molecular biologist Sydney Brenner was searching for an animal candidate to

start a new research program in developmental biology and neurobiology and found C. elegans.

The appeal of C. elegans was its fast growth, ease of culture, transparent and small body for

microscopic observations, and relatively invariant cell composition [40]. Rapid genetic and devel-

opmental research began in this research group, and many mutants were isolated and classified.

Some mutants exhibited phenotypes with defective behavior; many of these had alterations in the

nervous systems [53]. How these changes to the nervous system resulted in behavior defects posed

a fascinating scientific problem.

Inspired by work on neuronal cell invariance and nervous system connectivity in the larger

parasitic nematode, Ascaris, by R. Goldschmidt in the early 20th century [20], a similar project was

undertaken to understand and characterize the neurophysiology of C. elegans [52]. This resulted in

the first mapping of an entire nervous system at the cellular level in any animal [53], an achievement

that to this day is still unrivaled. Over a period of 15 years (1970-1986), John White, Eileen

Southgate, Nichol Thompson, and Sydney Brenner reconstructed the structure and connectivity of

the hermaphrodite C. elegans nervous system by piecing together a massive puzzle of thousands of

cross-sectional micrographs [53]. Using laser ablation of neurons, they systematically determined

the role of most cells in development or behavior. Through building this canonical structure of the

C. elegans nervous system, these scientific pioneers paved the way for understanding the mechanisms

by which this nervous system produces behavior.

Today, C. elegans is used as a model organism in almost every area of biology, including

genomics, cell biology, neuroscience, and aging. Hundreds of laboratories around the world raise

and study C. elegans, and many specimens are in direct lineage from Brenner’s lab. These labs form

a tight scientific community that shares tools, methods, and common databases (Wormbase.org

[22], WormAtlas.org [1]). The biannual C. elegans Internation Conference regularly draws over a

3



thousand scientists presenting novel C. elegans research. Yet despite all this scientific progress and

achievement, the full neuromechanical mechanisms underlying coordination are not understood.

1.2. C. elegans Neurophysiology

The C. elegans hermaphrodite has 302 individual neurons, which are arranged into 118 classes

based on morphology and connectivity [53]. This nervous system structure is invariant between an-

imals, and many mutants are classified by neural changes that manifest as behavioral defects. Most

of the neurons are located in the head of the nematode: sensory neurons such as chemoreceptors

and touch-sensitive neurons; motor neurons involved in controlling head turns; and interneurons

that connect neurons to other neurons, e.g. to enable communication between sensory and motor

neurons [53]. The rest of the neurons are distributed along the ventral nerve cord, which runs down

the ventral side from the head to the tail [53].

C. elegans has 75 motor neurons that are distributed along the ventral nerve cord; these are

grouped functionally into six modules for locomotion [23]. The motor neurons in each module

synapse onto the ventral and dorsal muscles along the body wall, which are responsible for the

bending of that body region. Each module contains motor neurons of the classes VB, VA, VD, which

synapse onto ventral muscles, and AS, DB, DA, and DD, which synapse onto dorsal muscles [53].

These motorneurons are involved in either forward locomotion (VB, DB), backward locomotion

(AS, VA, DA), or both (VD, DD), and are connected to interneurons in the head that decide

which locomotive circuit is activate [53]. The interneurons AVB and AVA activate the forward

and backward locomotion circuits respectively [53]. In this dissertation, we focus on the forward

locomotion circuit, so we only consider neurons of the classes AVB, VB, VD, DB, and DD. Another

key fact is the different numbers of neurons in each class: 7 DB neurons, 11 VB neurons, 6 DD

neurons, and 13 VD neurons [53]. Thus, the basic neural module for forward locomotion consists of

1 DB, 1 DD, 2 VB, and 2 VD neurons, and there are six such repeated modules in the body [23,58].

While much is known about the nervous system structure and connectivity, probing the elec-

trophysiology of the neurons in C. elegans is difficult in part due to the small size and pressurized

nature of the nematode body, so many neural properties, such as synaptic strengths and membrane

potential timetraces, are unknown [10,19,58]. Electrophysiological recordings of related nematode
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Ascaris motor neurons have shown electrotonic potentials instead of all-or-nothing action poten-

tials [48]. That is, the neurons switch between steady “on” and “off” signals, instead of the brief

output spikes typically associated with neural signaling. Similar recordings of head motor neurons

involved in head-turns in C. elegans have shown that those motor neurons also exhibit electro-

tonic potentials [34], so it is generally thought that the motor neurons in the ventral nerve cord,

particularly those involved in forward locomotion, act as similar bistable, non-spiking elements [5].

The neural connectivity alone does not reveal every aspect of the C. elegans forward locomotion

circuit. Proprioception, or sensory feedback regarding the mechanical state of the body, is thought

to be necessary for the generation and coordination of the locomotive gait [5,51,58]. Proprioceptive

interneurons have been found in the head circuit [43], and proprioceptive processes are hypothesized

to exist somewhere in the B-class motorneurons, either in neural processes that extend posteriorly

that don’t have any discernible role [53] or elsewhere [51]. Wen et al. [51] showed that the

B-class motorneurons respond to stretching and bending in local and anterior segments. While

proprioception is necessary for the generation of the locomotive rhythm, it is not clear what its

exact role in coordination is in comparison with other coordination mechanisms such as neural

coupling and body mechanics.

An outstanding question in C. elegans neurolocomotion is whether the rhythmic bending in

forward locomotion is driven by a central-pattern-generating (CPG) neural unit in the head and/or

by coupled neural or neuromechanical oscillator modules. While the neural circuitry contains motifs

that could theoretically function as CPGs according to computational models [41], no CPGs have

been found experimentally for the forward locomotion circuit [10, 58]. In the backward circuit,

Gao et al. [18] showed that the A-class motor neurons can function as intrinsic neural oscillators

that can drive backward locomotion. There is recent experimental evidence that the forward motor

circuit functions as a system of coupled neural or neuromechanical oscillators: Fouad et al. [16]

showed that C. elegans is capable of decoupled “two-frequency undulations”. By suppressing neural

activity in the neck region during forward locomotion, the head and body can undulate seemingly

independent of one another at different frequencies (the head slower and the body faster). This

evidence supports the presence of multiple neural or neuromechanical oscillators in the forward

circuit, though not as conclusively as in the backward circuit [18].
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1.3. C. elegans Biomechanics

C. elegans normally live in the gaps between damp soil particles or decomposing biomass, in

films of water that are held to surfaces via surface tension [53]. They locomote via undulation,

alternating between dorsal and ventral body bends that propogate in a wave-like fashion from

anterior to posterior in forward locomotion and reverse in backward locomotion. The head is

capable of making turns so that the nematode can navigate its environment [53]. The forward gait

can be represented in 2-D, since the body only bends in the ventral-dorsal plane [5,12].

The body of C. elegans is about 1 mm long and cylindrical with an average radius of 40 µm,

tapering off towards the head and the tail. The body is covered by a tough elastic cuticle, lined

with interior muscles, and is hydrostatically pressurized like a water-filled hose. However, measuring

the body’s mechanical properties, such as its stiffness and viscosity, is difficult. These mechanical

properties have been measured and estimated across several orders of magnitude and how active

muscle contractions affect them is not clear [2,15,49]. Active biomaterials are notoriously difficult

to model mechanically, as it is difficult to piece apart the natural properties of the body material

from the active biological components.

The kinematics of its forward undulatory gaits are typically characterized by the undulation

frequency, wavelength, and amplitude. The undulation amplitude is highest in the head of the worm

and decreases along the body towards the tail [3]. In water, the swimming wavelength and frequency

is long and fast (roughly 1.5 bodylengths and 1.8 Hz) [15]. On agar, the crawling wavelength and

frequency is short and slow (0.65 bodylengths and 0.3 Hz) [15]. Previously, it was thought that

these were two distinct gaits (swimming and crawling). However, recent experiments have shown

that the wavelength and frequency of swimming in highly viscous fluids resemble crawling on agar

surfaces [3,15], and instead of a sharp swim/crawl transition, there is a smooth transition between

the two gaits as the viscosity of the fluid environment is varied [3, 15, 49]. Increasing the fluid

viscosity shortens the undulation wavelength and slows the undulation frequency.

1.4. Previous Models of C. elegans Forward Locomotion

Understanding locomotion involves the integration of neural dynamics, sensory feedback, and

body mechanics. Mathematical models have been particularly useful in putting these separate
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pieces together to develop an integrated neuromechanical understanding [24, 33]. In particular,

modeling of C. elegans forward locomotion has played a major role in developing the theories

of rhythm generation and coordination in C. elegans. Several models [5, 28, 38] predicted the

necessity of proprioceptive feedback in generating the bending wave and in adapting the gait,

which experiments later verified [51].

There are several hypotheses for how the undulatory gait is generated and coordinated, and

mathematical models have been crucial to understanding how the experimental data supports

each hypothesis [19]. One hypothesis is that there is a central pattern-generating (CPG) neural

unit in the head that initiates the propagation of the bending wave — higher fluid viscosities

slow the propagation and shorten the wavelength [28,51]. Another hypothesis is that the ventral

nerve cord consists of a network of neural modules that are capable of either (i) intrinsic neural

oscillations [41] or (ii) intrinsic neuromechanical oscillations (i.e., involving an entire feedback loop

from the neurons to the muscles to the body mechanics and back through proprioception) [5, 7].

In all of these hypotheses, proprioception is necessary to generate and/or coordinate the bending

wave.

The earliest model of C. elegans forward locomotion was developed by Ernst Niebur and Paul

Erdos in the early 90s [12, 38, 39], shortly after the publication of the connectome by White et

al. [53] in 1986. They modeled the nematode crawling on agar, carefully deriving the mechanical

forces between the body and the agar grooves it carves out as it moves, and they modeled the

motor neurons as bistable elements (i.e., with electrotonic potentials) driven by a neural CPG in

the head. Through quantitative comparisons between their mathematical model and experimental

measurements, they deduced that proprioception is necessary to generate and propogate the bend-

ing wave. However, their work was limited to forward crawling on agar and relied heavily on a

neural head-CPG.

Later work by Netta Cohen and colleagues continued to explore the role of proprioception

in generating and coordinating the undulatory gait [3, 5, 6, 7, 9, 11]. They used a more modular

version of Niebur and Erdos’ neural circuit, and modeled the body mechanics against realistic

environmental forces in both fluids and agar substrates. The model functions as a chain of coupled
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neuromechanical oscillator modules, where proprioception is an essential component of the rhythm-

generating mechanism. Cohen sought to characterize the swim/crawl gait transition using this

neuromechanical model, and concurrent experimental work showed that the gait adapted to fluids

of intermediate viscosites in a continuous fashion, i.e., the environment modulates a single gait [3].

Their neuromechanical model showed that the proprioceptive mechanism, which was responsible

for generating the bending oscillations of each module, could also account for the modulation of

this gait [5]. However, how the trend of gait adaptation emerges from the components of the model

is not understood. Specifically, the role of proprioception in coordination, in comparison to neural

coupling and body mechanics, was not investigated in these models.

Other groups (Karbowski et al. [28], Izquierdo, Olivares, and Beer [26, 41], and Kunert et

al. [31]) have focused mostly on the neural dynamics without the biomechanical aspect, seeking to

understand the mechanisms of rhythm generation rather than explain gait adaptation. Karbowski

et al. [28] proposed that proprioception must be necessary to generate the neuromechanical oscil-

lations throughout the body and also proposed two rhythm-generating mechanisms. In the first, a

neural CPG in the head drives the oscillations, and proprioceptive feedback acts to propogate the

oscillations and slown down the emerging rythm, as in the Erdos and Niebur model [12]. In the

second, proprioceptive feedback in the head generates a neuromechanical head CPG, which is cou-

pled to neuromechanical oscillators down the body in a similar way as in the Boyle et al. model [5].

Olivares et al. [41] further explored this range of possible rhythm-generation mechanisms by us-

ing an evolutionary algorithm to find parameter regimes in which the model motor circuit could

oscillate, and interpreting these outcomes as rhythm-generation mechanisms. Izquierdo et al. [26]

then used the biomechanical model of Boyle et al. [5] to determine whether the theoretical rhythm-

generating mechanisms in the neural circuit yielded appropriate locomotion on agar. Kunert et

al. [31] examined the entire neural connectome, modeling the whole system with simple neural dy-

namics, and used “proprioceptive-like sensory inputs” to their neural model to show how the entire

nervous system is arranged to encode dynamical structures that correspond to locomotion states.

These computational models have been used to support several rhythm-generation hypotheses, so

whether C. elegans forward locomotion is driven by a head-CPG, coupled neural oscillators, or

coupled neuromechanical oscillators remains unclear.
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1.5. Remaining Questions

From an experimental point of view, many of the key players in forward locomotion and gait

adaptation have been identified. The motor neurons involved are known and the mechanism of pro-

prioceptive feedback, while not physiologically identified, has been well-established as a necessary

ingredient for forward locomotion. However, how all these pieces integrate together to generate the

undulatory rhythm and adapt the gait to the environment requires computational and mechanistic

modeling.

The state-of-the-art neuromechanical model for C. elegans remains that of Boyle et al. [5] and

later refinements [9,11]. These models are able to capture gait adaptation, however, the complexity

of the models limits their ability to systematically assess the relative roles of body mechanics and

proprioception in coordination. Here, we present a simpler mechanical model in tandem with a

similar neural model in order to investigate the roles of proprioception, neural coupling, and body

mechanics in coordinating locomotion and find a mechanism for gait adaptation.

In Chapter 2, we present a neuromechanical model of the C. elegans forward locomotion system

that is complicated enough to capture the complex behavior of gait adaptation, but simple enough

to analyze the mechanisms behind the behavior. Our model captures the experimentally observed

gait adaptation over a wide range of parameters, provided that the muscle response to input from

the nervous system is faster than the body response to changes in force, suggesting an ordering on

the relatively unknown system timescales.

Furthermore, the modular structure of our model allows us to leverage the theory of weakly

coupled oscillators to dissect out the mechanisms behind gait adaptation. The theory of weakly

coupled oscillators is a mathematical tool that has been useful in understanding motor rhythm

coordination in other model organisms [29, 30, 44, 45, 55, 56]. In Chapter 3, we introduce the

technique to the C. elegans modeling community in order to identify the influence of each coupling

modality (mechanical, neural, and proprioceptive) in the forward locomotion system.

In Chapter 4, we also explore how parameters of the neuromechanical modules affect the exis-

tence, period, and amplitude of their oscillations as well as their phase response properties. Through

this analysis, we are also able to infer the coordination trend of the full neuromechanical model

from the properties of the individual neuromechanical oscillator modules themselves. In Chapter
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5, we show that with a few additional simplifying assumptions, we can also reduce the oscillator

model to a form that is analytically piecewise solvable. This reduction allows us to construct a 1-D

Poincaré map that captures the limit cycle dynamics, which we use as a framework for future anal-

ysis of the biophysical mechanisms underlying the oscillator properties and thus the coordination

of the full neuromechanical model. In Chapter 6, we show that our model is able to capture gait

adaptation independent of the number of oscillator modules we consider, given that the parameters

are adjusted carefully. The systematic analysis of our neuromechanical model presented in this dis-

sertation provides a deeper understanding of how the many different neuromechanical components

interact to produce coordinated locomotion.
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CHAPTER 2

Neuromechanical Model of Forward Locomotion in C. elegans

The neuromechanical model developed here describes the motor circuit, body-wall muscles,

and the resulting body shapes of C. elegans. The body description is derived from a continuous

centerline-approximation of an active viscoelastic beam, whereas the muscles and neural subcircuits

are discrete in nature. The model for the motor circuit uses the repeated motif of Haspel and

O’Donovan [23]: 6 modules of roughly 12 motor neurons and 12 muscle cells, of these 12 repeated

motor neurons roughly 6 (the dorsal/ventral B and D-class neurons) are responsible for forward

locomotion. The model also includes proprioception: the B-class motor neurons respond to bending

in the local and anterior regions of the body [51,58].

A schematic of this model is shown in Figure 2.1, which highlights the modular structure of

the neural circuit, body-wall muscles, and the corresponding body region. Within each module,

the motor subcircuit drives the body-wall muscles, which in turn apply contractile forces to bend

the corresponding body region. The body mechanics then feed back into the neural circuit through

proprioceptive feedback, which translates body-wall length changes into neural signals. This struc-

ture allows each module to function, in isolation, as a neuromechanical oscillator, and it suggests

that the full body functions as a system of coupled neuromechanical oscillators.

2.1. Model Development

2.1.1. Body Mechanics. The nematode body is modeled as an active viscoelastic beam for

small amplitude displacements submerged in fluid. C. elegans usually operates in a regime where

inertia plays a minor role (i.e., low Re), thus the equation of motion is a balance of internal

elastic forces, internal viscous forces, and a fluid drag force described by a local drag coefficient

CN [15,49,54]:

CN ẏ = −kb∂xx
(
κ+

µb
kb
κ̇+M(x, t)

)
,(2.1)
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Figure 2.1. The highlighted schematic here depicts the repeating neuromechanical
module: a 4-motorneuron functional unit consisting of DB, VB, DD, and VD-class
neurons, the post-synaptic muscles, and corresponding body wall region. The dor-
sal B-class (ventral B-class) neurons are excitatory and synapse onto the ipsilateral
muscles and contralateral D-class neurons. The dorsal D-class (ventral D-class)
neurons are inhibitory and synapse onto the dorsal (ventral) muscles. The B-class
motorneurons also receive proprioceptive feedback from the local body segment (in-
hibitory) and anterior segments (excitatory). The interneuron AVB is connected to
VB and DB via gap-junctions, and the VB (DB) neurons are also coupled via gap-
junctions with their nearest neighbors of the same class. The body wall is modeled
as a viscoelastic material connected to a contractile muscle.

where x is the length-wise body coordinate, t is time, y(x, t) is the displacement in the ventral-

dorsal plane, κ(x, t) is the curvature, and M(x, t) is the active moment that comes from internal

muscle activity. The parameter kb is the bending modulus, µb is the effective internal viscosity, and

the normal drag coefficient CN is proportional to the external fluid viscosity µf (CN = αµf , see

Appendix A.2). The values for these parameters are given in Table 2.1, and a discussion of how

they were selected is provided in Chapter 2.3.

12



We consider small amplitude undulations, so that the curvature κ(x, t) is approximately the

second spatial derivative of the displacements y(x, t):

(2.2) κ(x, t) ≈ ∂xxy(x, t).

Taking two partial derivatives in x of equation 2.1 and applying force-free, moment-free boundary

conditions, the curvature κ(x, t) of the body satisfies

αµf κ̇ = −kb∂xxxx
(
κ+

µb
kb
κ̇+M(x, t)

)
,(2.3)

κ(x, t) +
µb
kb
κ̇(x, t) +M(x, t) = 0, for x = 0, x = L,(2.4)

∂x

(
κ+

µb
kb
κ̇+M(x, t)

)
= 0, for x = 0, x = L,(2.5)

where x = 0 is the head and x = L is the tail (L is the body length). Note that in equations 2.3-2.5,

a positive curvature κ(x, t) represents a bend towards the dorsal side. The active moment M(x, t)

comes from internal muscle activity, which will be defined below.

2.1.2. Muscles. The body is driven by six modules of roughly 6 ventral and 6 dorsal muscle

cells, that apply contractile forces to either the dorsal or ventral side [23,58]. These muscle modules

split the body into six distinct regions of length ` = L/6. Each ventral/dorsal muscle group applies

a contractile force as a function of its activity level A(t). The ventral and dorsal (k = V,D) muscle

activities Ak,j in the jth module are given by

(2.6) τmȦk,j = −Ak,j + IM (k, j),

where τm is the timescale of muscle activation and IM (k, j) is the input from the jth neural module

(described below). The tension σ(A(t)) generated by the muscle is only contractile (σ ≥ 0) and

saturates at some peak force cm:

σ(A(t)) =
cm
2

(tanh(cs(A(t)− a0)) + 1),(2.7)

where cs, a0 define the scale and shift of the nonlinear threshold. In the jth module, the dorsal

and ventral muscles apply contractile forces to opposite sides of the body, which induces a moment
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mj(t) on the centerline from xj−1 = (j − 1)` to xj = j`:

(2.8) mj(t) = σ(AV,j(t))− σ(AD,j(t)).

The active moment M(x, t) as a function of the body coordinate x is then given by

M(x, t) = mj(t) for x ∈ [xj−1, xj).(2.9)

2.1.3. Neural Module. The repeated neural module includes six motor neurons responsible

for forward locomotion: DB (dorsal B-class), VB (ventral B-class), DD (dorsal D-class), and VD

(ventral D-class) [5, 23, 58], as shown in Figure 2.1. The neural modules are similar in structure

to Boyle et al. [5]. Each neural module is driven by constant input from the head interneuron

AVB [23,53,58]. The D-class neurons are assumed to invert excitation from the B-class neurons

into inhibition of the contralateral muscles. The B-class neurons are modeled as bistable, non-

spiking elements, in line with recordings of similar motor neurons involved in head-turns [34]. The

activities of the ventral and dorsal (k = V,D) B-class neurons in the jth neural module are given

by

τnV̇k,j = F (Vk,j) + P (k, j) + Igj(k, j),(2.10)

where

F (Vk) = Vk − aV 3
k + I.(2.11)

Here, τn is the timescale of neural activity, and I is the offset from the constant “on” input from

AVB, and a > 0 is a parameter that controls the range of hysteresis. For simplicity, we generally use

a = 1. P (k, j) is proprioceptive feedback into the neuron, and Igj(k, j) is gap-junctional (electrical)

coupling between neurons, both of which will be described below.

The D-class neurons are excited by the ipsilateral B-class neurons and inhibit the contralateral

body-wall muscles. This effect is captured by direct inhibition of the muscles by the B-class neurons.

We model the B-class neurons as exciting the ipsilateral muscles and inhibiting the contralateral
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muscles. The input from the jth neural module to the ventral/dorsal muscles is given by

(2.12) IM (k, j) =


VV,j − VD,j , if k = V

VD,j − VV,j , if k = D.

2.1.4. Proprioceptive Feedback. To close the neuromechanical loop, the body segment

curvatures feed back into the circuit via proprioceptive processes in the VB and DB neurons.

There are two types of proprioception in this model: local (from the body region covered by the

muscles of the module) and nonlocal (from neighboring anterior body regions).

Local proprioceptive feedback acts to reset the neural modules, i.e., switch between dorsal bend

commands and ventral bend commands. Thus, local proprioception is modeled as an excitatory

current to the ventral B-class neurons in response to positive average curvature over the local module

of length ` = L/6, and an inhibitory current in response to negative average local curvature. The

input to the dorsal B-class neurons is the same but with the polarities reversed. This feedback acts

to relax the contracted muscles and contract the relaxed muscles.

Nonlocal proprioception promotes a wave of activity that propogates from anterior to posterior.

The anatomical structures underlying proprioception are unknown [58], however, the evidence in

Wen et al. [51] suggests that proprioceptive information affects the B-class motorneurons and is

propagated posteriorly. In our model, positive nonlocal anterior segment curvature yields a weak

inhibitory current to the ventral B-class neurons and a weak excitatory current to the dorsal B-class

neurons. Negative nonlocal anterior segment curvature yields similar currents with the polarities

reversed to each side. This is similar to the assumptions of Boyle et al. [5], but diverges in the

directionality and sign of nonlocal proprioception.

The proprioceptive feedback to the ventral and dorsal B-class neurons in the jth neural module

(j = 1, . . . , 6) of length ` = L/6 is modeled by

P (V, j) = +cp
1

`

∫ j`

(j−1)`
κ(x, t)dx− εp

1

`

∫ (j−1)`

(j−2)`
κ(x, t)dx,(2.13)

P (D, j) = −cp
1

`

∫ j`

(j−1)`
κ(x, t)dx+ εp

1

`

∫ (j−1)`

(j−2)`
κ(x, t)dx,(2.14)
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where cp is the strength of local proprioception, εp is the strength of nonlocal anterior propriocep-

tion, and κ(x, t) = 0 for x /∈ [0, L] for notational simplicity.

2.1.5. Gap-Junctional Coupling. The B-class neurons are also connected via gap-junction

synapses to neighboring B neurons of the same type (ventral/dorsal) [23,53,58]. The gap-junctions

are modeled as symmetric ohmic resistors with constant conductance, so that the gap-junctional

coupling to the ventral and dorsal (k = V,D) B-class neurons in the jth neural module are described

by

Igj(k, j) = εg(Vk,j−1 − Vk,j) + εg(Vk,j+1 − Vk,j),(2.15)

where εg is the strength of gap-junction coupling and Vk,0 = Vk,7 = 0 for notational simplicity.

2.2. Model Discretization for Numerical Simulation

To simulate the model described in Chapter 2.1, the body is discretized into six modules in

correspondence with the six neuromuscular modules, so that there are six discrete body segment

curvatures. The 4th-order difference operator D4 is used to approximate the 4th spatial derivative

with zero-force, zero-torque boundary conditions:

(2.16)
1

`4
D4 =

1

`4



7 −4 1

−4 6 −4 1

1 −4 6 −4 1

1 −4 6 −4 1

1 −4 6 −4

1 −4 7


.

Discretizing equations 2.3-2.5 and using 2.8-2.9 yields a linear differential equation for the vector

of body segment curvatures κ:

(2.17)
(
αµfI6 +

µb
`4
D4

)
κ̇ = −kb

`4
D4(κ+ σ(AV )− σ(AD)),

where I6 is the 6× 6 identity matrix.
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In this discretization, the neural and muscle activity dynamics of all the modules are given by

τmȦV = −AV + VV −VD,(2.18)

τmȦD = −AD + VD −VV ,(2.19)

τnV̇V = F (VV ) + cpκ− εpWpκ+ εgWgVV ,(2.20)

τnV̇D = F (VD)− cpκ+ εpWpκ+ εgWgVV ,(2.21)

where each vector entry (e.g., AV,j) is the corresponding activity of the jth module. In equations

2.20 and 2.21, Wp is the nonlocal proprioceptive connectivity matrix (equation 2.22), which comes

from discretizing equation 2.13, and Wg is the gap-junction connectivity matrix (equation 2.23),

which comes from discretizing equation 2.15:

(2.22) Wp =


0

1 0

. . .
. . .

1 0


, (2.23) Wg =


−1 1

1 −2 1

. . .
. . .

. . .

1 −1


.

A numerical solution to the system of differential equations 2.17-2.21 is generated using the ode23

method in MATLAB.

2.3. Parameter Discussion

Some parameters in the model are well-constrained by experimental data, while others are not.

Quantities that are directly measurable include the body length L = 1 mm, average body radius

R = 40 µm, cuticle width rc = 0.5 µm, and wavelength λ/L and frequency f in fluids of various

viscosities µf . The timescales in the system are less certain. The range 50-200 ms is used for the

muscle activation timescale τm, which is the range of measurements of peak muscle force generation

time in Milligar et al. (1997) [35]. As with previous models [5,11,26], the neural activity is chosen

to be the fastest process in the model, but while Boyle et al. [5] considered the B-neurons as

instantaneous switches, here the neural activity timescale is set at τn = 10 ms.

The internal viscosity µb and Young’s modulus E have been estimated across several orders of

magnitude [2,15,49], so caution is exercised in using one set of parameters from one source over
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Table 2.1. Range of parameters explored and sources. See Chapter 2.3 for more
details and Appendix A.2 for derivations.

Parameter Name Range of values References
L Body length 1 mm [53]
R Average body radius 40 µm [9]

rcuticle Cuticle width 0.5 µm [9]
E Young’s modulus 3.77 kPa - 1.3× 104 kPa [2,15,49]
Ic Second moment of area of cuticle 2.0× 10−7(mm)4 [9]
kb Bending modulus 7.53× 10−10 − 2.6× 10−6 N·(mm)2 [2,15,49]
µb Body viscosity 2× 10−11 − 1.3× 10−7 N(mm)2s [2,15,49]
µf Fluid viscosity 1− 2.8× 104 mPa·s [15]
CN Normal drag coefficient 3.4µf [9,15]
τb Mechanical timescale τb = µb/kb 1 ms - 5 s [2,15,49]
τm Muscle activation timescale 50-200 ms [35]

another. Of more importance in the model is the mechanical timescale

(2.24) τb =
µb
kb
,

which is the timescale of relaxation in an inviscid fluid. In equation 2.24, kb is the bending modulus,

which is derived from the Young’s modulus E and the geometry of the cuticle in Appendix A.2

following previous modeling procedures [10,49]. Given the range of mechanical parameters reported

in the literature, the mechanical timescale could be as small as τb = 1 ms or as large as τb = 5 s.

The role of this timescale is explored in Chapter 2.4.2.

The electrophysiological details of the internal neural circuit are largely unknown, thus all

the feedback and coupling strengths cp, cm, εp, εg, the parameters of the nonlinear functions F (V )

and σ(A) are not well constrained. The feedback strengths cm = 10, cp = 1 and parameters

of the nonlinear functions F (V ) (a = 1, I = 0) and σ(A) (cs = 1, a0 = 2) were chosen so that

the neuromechanical oscillator robustly gives the correct frequency (∼ 1.76Hz) in a low-viscosity

environment (see Chapter 4 for a more thorough exploration of these parameters). The values for

the coupling parameters εp and εg, on the other hand, are explored in the next section.

2.4. Model Results

C. elegans locomote forward using alternating dorsal and ventral body bends that propogate

in the form of a traveling wave from anterior to posterior. The spatial wavelength of this traveling
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Figure 2.2. The model captures the quantitative trend of gait modulation seen
in experiments such as [15]. Here, τb = 0.5 s, τm = 0.1 s, and µb = 1.3 × 10−7

N(mm)2s. In water (µf = 1 mPa s) the wavelength is roughly 1.5 bodylengths, and
increasing the fluid viscosity µf smoothly reduces the wavelength down to roughly
0.75 bodylengths in the most viscous case (µf = 28 Pa s).

wave changes in response to changes in the fluid viscosity [3,15,49]. In this section, we show that

our model captures this gait adaptation for a wide range of mechanical and neural parameters,

provided that the muscle response to input from the nervous system is faster than the body response

to changes in internal and external forces.

2.4.1. Model Captures Gait Adaptation. We fit the model to match the wavelength and

frequency in water, and then ran simulations in different fluid environments. Our model captures

the quantitative effect of external fluid viscosity on the body wavelength seen in experiments and

previous models. Figure 2.2 shows an example of the wavelength trend of the model for fixed

body parameters τb = 500 ms, τm = 50ms (the wavelengths were computed from the model output

as described in Appendix A.1). Figure 2.2 also shows that the model wavelengths are in close

quantitative agreement with the experimentally-measured wavelengths of Fang-Yen et al. [15]. In

water (µf = 1 mPa·s) the wavelength is roughly 1.5 bodylengths, and increasing the fluid viscosity

µf smoothly reduces the wavelength down to roughly 0.75 bodylengths in the most viscous case

(µf = 2.8 × 104 mPa·s). This wavelength trend is similar to what has been observed in other

experiments [3, 49], and in Chapter 2.4.2, we show that our model captures this trend robustly

over a wide range of parameters.
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Figure 2.3. Sample model curvature kymographs (curvature vs. time) for various
parameter regimes. For some parameter regimes, the gait adaptation trend generally
held and there was a traveling wave at all µf values; (a) gives an example of this
behavior for τb = 0.51 s, µb = 1.3 × 10−7 N(mm2) s, and µf = 28 Pa s. For
other parameter regimes, high enough external fluid viscosity µf resulted in a loss
of the traveling waveform; (b) gives an example of this behavior for τb = 0.51 s,
µb = 1.5× 10−9 N(mm2) s, and µf = 28 Pa s.

The undulation frequency also changes in response to changes in the fluid viscosity [3,15,49].

In Fang-Yen et al. [15], the frequency decreases from 1.7 Hz to 0.30 Hz as fluid viscosity increases

from 1 mPa s to 2.8× 104 mPa s. Our model also exhibits a decrease in frequency as fluid viscosity

µf increases, but not of the same magnitude (1.7 Hz - 1.6 Hz). Discussion of this discrepancy is

given in Chapter 7.

2.4.2. Parameter Study Highlights Importance of Timescale Ordering in Capturing

Gait Adaptation. We performed a parameter study to show that the model robustly captures

gait adaptation. For some parameter regimes, the body deformations were traveling waves for

all fluid viscosities µf , but this was not the case for other parameter regimes. Figure 2.3 shows

kymographs of the body curvature that demonstrate two typical cases exhibited by the model.

The model parameters were systematically varied to characterize the model behavior. For a

given body timescale τb and body viscosity µb, the muscle activity timescale τm was selected in

the range 50-250 ms to match the undulation frequency (1.7 Hz) in water (µf = 1 mPa s). Next,
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the proprioceptive coupling strength εp was selected to match the wavelength (1.5 bodylengths) in

water, and the gap-junctional coupling strength was fixed at εg = 0.0134 (we examine the effects of

varying the gap-junctional strength in the next subsection). The model was then run in different

fluid viscosity µf environments and the emergent coordination trend is reported in Figure 2.4. The

model behavior was classified as either: (1) not a traveling wave for all fluid environments, (2)

incorrect wavelength trend, (3) qualitatively correct wavelength trend, or (4) incorrect frequency

in water.

There is no traveling wave (red triangles) if, for any viscosity µf , the difference between the

minimum and maximum pair-wise phase difference is greater than or equal to 0.5, because this

indicates that there is no consistent directionality to the phase differences in the body. A range

of observed wavelength trends in various parameter regimes (the boxed markers in Figure 2.4)

are illustrated in Figure 2.5. Figure 2.5(a) and (b) show examples of the qualitatively correct

wavelength trend (blue circles), while (c) shows the the incorrect trend, which was only obtained

at a single parameter combination. The wavelength trend is incorrect because the wavelengths

increased dramatically as the fluid viscosity increased, as opposed to generally decreasing.

A few key observations can be made from Figure 2.4. First, if the mechanical timescale τb is

too large, then the frequency in water cannot be obtained (see the black squares in Figure 2.4).

Second, if the mechanical timescale τb is too small, then there will not be a traveling wave for

all fluid viscosities µf . This suggests that while the body stiffness kb and body viscosity µb have

been estimated across several orders of magnitude in various experiments and models, the effective

mechanical body timescale τb = µb/kb lies within the relatively narrow range 0.07− 1 s.

In order to match the frequency, the muscle timescale τm must be inversely related to τb.

When the body timescale τb is increased, the muscle timescale τm must decrease to compensate.

The frequency in water cannot be obtained for τb too large since it would require decreasing the

muscle activity timescale τm below physiological limits. Similarly, when the body timescale τb is

decreased, the muscle timescale τm must be increased to compensate for the frequency. For τb too

small, there is not a traveling wave for all fluid viscosities µf ; this occurs soon after τb < τm. This

suggests that the relative ordering of the timescales τb, τm, τn is key to the coordination. Generally,

the mechanical timescale τb must be the largest, the muscle activity timescale τm intermediate,
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Figure 2.4. Classification of the model behavior for different mechanical parame-
ters µb and τb. For each parameter combination (µb, τb), the muscle timescale τm was
fit to match the undulation frequency in water (τm contours shown in black dashes).
Boxed markers indicate parameter combinations which have the wavelength trend
illustrated in Figure 2.5.

(a) (b)

(c)

Figure 2.5. Model wavelength vs. external fluid viscosity µf for various parameter
regimes (the boxed markers in Figure 2.4). (a) and (b) show examples of the quali-
tatively correct wavelength trend, while (c) shows an incorrect trend. (a) has τb =
0.51 s , µb = 1.4 × 10−8 N(mm2)s, (b) has τb = 0.12 s , µb = 1.5 × 10−9 N(mm2)s,
and (c) has τb = 0.01 s , µb = 1.3× 10−7 N(mm2)s.
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and the neural timescale τn the shortest. The mechanism by which this timescale ordering affects

coordination is explained in Chapter 3.3.

Remarkably, whenever there is a traveling wave in this systematic parameter search, it almost

always has the qualitatively correct wavelength trend. This wavelength trend is consistent with

gait adaptation across several orders of magnitude of the mechanical parameters.

2.4.3. Role of Neural Coupling. In the parameter study of the previous subsection, we

fixed the gap-junctional coupling strength εg and then chose the proprioceptive coupling strength

εp in order to match the wavelength in water (1.54 bodylengths). Here, we vary the the gap-

junctional coupling strength εg to examine the role of neural coupling more thoroughly. We fix the

parameters τb = 0.5 s, τm = 0.1 s, and µb = 1.3× 10−7 N(mm)2s, vary the gap-junctional coupling

strength εg, and solve for the proprioceptive coupling strength εp to match the wavelength in water

(1.5 bodylengths). The resulting proprioceptive coupling strengths εp fit for each gap-junctional

coupling strength εg are shown in Figure 2.6(a). Larger proprioceptive coupling strengths εp are

needed in order to match the wavelength in water for larger gap-junctional coupling strengths εg,

and for small gap-junctional coupling strengths (εg < 0.1), the relationship is approximately linear

(εp ≈ 2.7εg).

Figure 2.6(b) shows the resulting wavelength trend of the model for different gap-junctional

coupling strengths εg (with the resulting proprioceptive coupling strengths εp). The wavelength

trends are generally flatter for larger gap-junctional coupling strengths εg. At larger gap-junctional

coupling strenths εg, the steep transition from long wavelengths (1.5 bodylengths) to shorter wave-

lengths occurs at higher fluid viscosities µf . The experimentally-observed wavelength trend of

Fang-Yen et al. [15] (shown in X’s and black-dotted lines in Figure 2.6(b)) is more closely matched

by εg ∈ [0.02, 0.05]. In the previous subsection’s parameter study, we used εg = 0.0134, which is

near this range of gap-junctional coupling strengths.
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(a)

(b)

Figure 2.6. (a) The proprioceptive coupling strengths εp that were found for each
εg in order to match the wavelength in water. Note that for small gap-junctional
coupling strengths (εg < 0.1), the relationship is approximately linear (εp ≈ 2.7εg).
(b) For each εg, the resulting wavelengths of the model vs. external fluid viscosity
µf .
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CHAPTER 3

Phase Model: Insight Into Mechanisms Underlying Gait

Adaptation

The neuromechanical model is able to robustly capture the quantitative trend of gait adapta-

tion across a wide range of parameters. In this chapter, the modular structure of the model will

be exploited to uncover the fundamental mechanisms underlying gait adaptation. The isolated,

uncoupled neuromechanical modules are intrinsic neuromechanical oscillators. These modules form

a network of coupled oscillators with three forms of coupling: mechanical (through the body and

external fluid), proprioceptive, and gap-junctional. Furthermore, this coupling is relatively weak,

and thus the theory of weakly coupled oscillators can be applied to identify the coordinating effects

of each coupling modality. We demonstrate that the competition between mechanical coupling and

neural coupling provides an explicit mechanism for gait adaptation.

3.1. Isolated Neuromechanical Modules are Intrinsic Oscillators

A single, isolated neuromechanical module is defined as a neural subcircuit, the corresponding

muscles and body section, and local proprioceptive feedback (without coupling through the body

or neural circuitry). The dynamics for this isolated module is governed by

κ̇ = − 1

τb
(κ+ σ(AV )− σ(AD)),(3.1)

ȦV =
1

τm
(−AV + VV − VD),(3.2)

ȦD =
1

τm
(−AD + VD − VV ),(3.3)

V̇V =
1

τn
(F (VV ) + cpκ),(3.4)

V̇D =
1

τn
(F (VD)− cpκ).(3.5)
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Note that this is the model described in Chapter 2, omitting the intermodular coupling. The

isolated modules exhibit robust oscillations over a wide range of parameters, and a single period of

the module is shown for each state-variable in Figure 3.1(a). Thus, the neuromechanical modules

are intrinsic oscillators, wherein each B-class neuron promotes either a dorsal or ventral bend and

the local proprioceptive feedback acts to switch the bistable B neurons from one state to the other.

The basic cycle of the oscillator is as follows: when activated, the ventral B-class neuron (VV )

excites the ventral muscles which build up activity (AV ) to induce a ventral bend (negative κ);

when the curvature κ is sufficiently large, the local proprioceptive feedback deactivates the ventral

B-class neuron and activates the dorsal B-class neuron, and the cycle continues towards a dorsal

bend.

The system of six identical, uncoupled neuromechanical oscillators is described by

(3.6) Ẋj = S(Xj), j = 1, . . . , 6

where

(3.7) Xj = [κj , AV,j , AD,j , VV,j , VD,j ]
T ,

and S(X) is given by equations 3.1-3.5. The oscillations correspond to a T -periodic limit cycle

XLC(t) in (κ,AV , AD, VV , VD)-state-space. This limit cycle can be parametrized by phase

(3.8) θj =
(
ωt+ θ0j

)
mod 1

with the initial phase θ0j ∈ [0, 1). As θj increases at a constant rate ω = 1/T , XLC(θj) traces out

the limit cycle through state-space and the state of each oscillator on the limit cycle is given by

(3.9) Xj(t) = XLC(θj),

where the only distinguishing feature between the oscillators is their unique phase θj . Figure 3.1(a)

shows the components of XLC(θ).
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(a) (b) (c)

Figure 3.1. The period and amplitude of the oscillations in κ,AV , AD, VD, VV
are all relatively similar for (a) the single, isolated neuromechanical module, (b)
the single module in the full neuromechanical model at low viscosity (µf = 1mPa
s), and (c) the single module in the full neuromechanical model at high viscosity
(µf = 2.8× 104 mPa s). Ventral neural/muscle activities are given in green dashed
lines, dorsal neural/muscle activities are given in red solid lines.

3.2. Network of Coupled Oscillators

Rearranging equations 2.17-2.23, the neuromechanical model can be written as a network of

coupled oscillators:

(3.10) Ẋj = S(Xj) + Cj(X1, . . . ,X6), j = 1, . . . , 6

where Cj(X1, . . . ,X6) describes the coupling dynamics from all the modules to the jth module

through gap-junctions, nonlocal proprioception, and body mechanics:

(3.11) Cj(X1, . . . ,X6) =



εm
∑6

k=1(D
−1
4 )jk κ̇k,

0,

0,

1
τn

∑6
k=1 εp(Wp)jk κk + εg(Wg)jk VV,k,

1
τn

∑6
k=1−εp(Wp)jk κk + εg(Wg)jk VD,k


.

The parameter εm = αµf `
4/µb is the effective mechanical coupling strength.

The intrinsic oscillations of the isolated module (equations 3.1-3.5) in Figure 3.1(a) are almost

indistinguishable in both frequency and amplitude to the oscillations in Figure 3.1(b,c) of a module

within the fully-coupled network (equations 2.17-2.21) at both low and high external fluid visocisty
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µf . Furthermore, Figure 3.1(b,c) show that the change in oscillator period between the low and

high viscosity cases is ∆T/T < 0.003, so the change in frequency as external fluid viscosity µf

is varied is small. This suggests that the coupling dynamics are “weak” relative to the intrinsic

oscillatory dynamics.

Because the coupling is weak, the theory of weakly coupled oscillators can be applied (see Ap-

pendix C or [44] for details). The coupling only alters the phase of the oscillators on their respective

limit cycles and the effect on amplitude is negligible, therefore the phase completely describes the

state of a neuromechanical module. Equation 3.10 can be reduced to the so-called phase equations,

a set of differential equations describing the evolution of the phases of each oscillator:

(3.12) θ̇j = ωj +

6∑
k=1

εm(D−14 )jkHm(θk − θj) + εg(Wg)jkHg(θk − θj) + εp(Wp)jkHp(θk − θj),

where θj is the phase of the jth oscillator, ω is the intrinsic frequency, and H(φ) are the interaction

functions that describe the change in frequency (resulting from either mechanical, proprioceptive,

or gap-junction coupling) as a function of the phase difference φ = θk − θj of a given pair of

oscillators:

Hm(φ) = − 1

T

∫ T

0
Zκ(t)κ̇LC(t− φ)dt,

(3.13)

Hp(φ) =
1

τn

1

T

∫ T

0
ZVV (t)κLC(t− φ)− ZVD(t)κLC(t− φ)dt,

(3.14)

Hg(φ) =
1

τn

1

T

∫ T

0
ZVV (t)

(
VV

LC(t− φ)−VV
LC(t)

)
+ ZVD(t)

(
VD

LC(t− φ)−VD
LC(t)

)
dt.

(3.15)

Here, Zκ(t), ZVV (t), ZVD(t) are the T−periodic phase response functions to perturbations in the

corresponding state variable.

The coupling modalities define the structure of the interaction functions, through the state

variables that are coupled, as well as the coupling topology (the connectivity matrices D−14 , Wg,

and Wp in equation 3.12). Note that there is a separate H-function for each of the three coupling
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modalities and these three coupling modalities add linearly to produce the full interaction of the

modules. Therefore, the relative contributions of the various coupling types can be analyzed in-

dependently through varying the different coupling strengths: fluid viscosity µf (through εm) for

mechanical, εp for proprioceptive, and εg for gap-junctional.

3.3. Two-Oscillator Analysis Explains the Coordination Mechanism

Analyzing a pair of two coupled oscillators gives considerable insight into the coordination that

each coupling modality produces separately and the mechanisms of coordination. With only two

oscillators, the phase model reduces to

θ̇1 = ω + εm

2∑
j=1

(D−14 )1jHm(θj − θ1) + εgHg(θ2 − θ1),(3.16)

θ̇2 = ω + εm

2∑
j=1

(D−14 )2jHm(θj − θ2) + εpHp(θ1 − θ2) + εgHg(θ1 − θ2).(3.17)

In the two oscillator case, the matrix D−14 is symmetric, so (D−14 )12 = (D−14 )21 = d12. By defining

(3.18) φ = θ2 − θ1,

and subtracting equation 3.16 from equation 3.17, the dynamics of the two oscillator system can

be described by a single differential equation for the phase difference between the two oscillators:

φ̇ = εmd12Gm(φ) + εpGp(φ) + εgGg(φ) = G(φ),(3.19)

where Gm(φ) = Hm(−φ) −Hm(φ), Gp(φ) = Hp(−φ), and Gg(φ) = Hg(−φ) −Hg(φ) are the pair-

wise interaction functions, or G-functions of the pair. The stable phase-locked state of the system

φ∗ is given by G(φ∗) = 0, G′(φ∗) < 0.

3.3.1. Each Coupling Modality Promotes a Different Coordination Outcome. Figure

3.2 shows the G-functions and corresponding phase-locked states of the different coupling modal-

ities. For mechanical coupling alone, i.e., εp = εg = 0, the stable phase-locked state is anti-phase

(φ∗ = 0.5), since G(0.5) = 0 and G′(0.5) < 0 (Figure 3.2(a)). Similarly, for proprioceptive coupling
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(a) (b) (c)

Figure 3.2. Each coupling modality promotes a different coordination outcome
in a pair of coupled neuromechanical oscillators based on the stable zero of
the corresponding G-function: (a) mechanical coupling promotes antiphase since
Gm(0.5) = 0 and G′m(0.5) < 0; (b) proprioceptive coupling promotes a phase-wave
since Gp(.75) = 0 and G′p(.75) < 0; and (c) gap-junctional coupling promotes syn-
chrony since Gg(1) = 0 and G′g(1) < 0.

alone, the stable state is an intermediate phase-difference (φ∗ ≈ 0.75, Figure 3.2(b)), so the first

oscillator leads the second (front-to-back). For gap-junctional coupling alone, the stable state is

synchrony (φ∗ = 0, Figure 3.2(c)).

The coordination outcome with all three coupling mechanisms present corresponds to the zero

of the G-function (equation 3.19), which is a weighted sum of the three individual G-functions.

Thus, coordination can be examined in the context of this weighted sum as the three coupling

strengths are varied: external fluid viscosity µf for mechanical coupling, proprioceptive coupling

strength εp, and gap-junction coupling strength εg.

3.3.2. Neural Coupling Sets the Low-Viscosity Wavelength. The stable phase differ-

ence φ∗ of the pair of the neuromechanical oscillators can be used to define a wavelength in the full

body (for details see Appendix A.1):

(3.20)
λ

L
=

1

6(1− φ∗)
.

In the low external fluid viscosity case (µf = 1 mPa·s), setting εp = 0.05, εg = 0.01 as in

Chapter 2.4.2 provides a good approximation of the experimentally observed wavelength for the

mechanical parameters kb = 2.6×10−7 N (mm)2, µb = 1.3×10−7 N (mm)2 s. For these parameters,
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(a) (b)

Figure 3.3. In the low-viscosity limit, the stable phase-locked states of the pair
of neuromechanical oscillators is set by the competition between proprioceptive and
gap-junctional coupling. (a) The linear combination of the G-functions given by
equation 3.19 for εp = 0.05, µf = 1 mPa·s, and various εg. Note that as the gap-
junctional coupling strength εg increases, the stable phase-locked phase difference φ∗

moves from roughly φ∗ = 0.75 towards φ∗ = 1. (b) The stable phase-locked states of
the pair can be tuned by varying the two forms of neural coupling: proprioceptive
and gap-junctional. When proprioceptive coupling dominates, the stable phase-
locked state is a phase difference of roughly φ∗ = 0.75, and when gap-junctional
coupling dominates, the stable phase-locked state is synchrony φ∗ = 1. The re-
sulting wavelength in the body, if the pair-wise phase difference was constant in
the six-oscillator model, can be tuned by varying the two forms of neural coupling:
proprioceptive and gap-junctional. When proprioceptive coupling dominates, the
wavelength is roughly 0.75 bodylengths, and when gap-junctional coupling domi-
nated, the wavelength is infinite, since each oscillator pair is in perfect synchrony
and thus the body is a standing wave.

the relative sizes of the G-functions in equation 3.19 are

εmd12 max |Gm(φ)| = 3.532× 10−5,(3.21)

εp max |Gp(φ)| = 2.016,(3.22)

εg max |Gg(φ)| = 1.259.(3.23)

Thus, at low viscosity, mechanical coupling is almost negligible compared to neural coupling, so

the coordination is determined by proprioceptive and gap-junctional coupling.
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How the wavelength is set in this low-viscosity case can be examined by varying the neural

coupling strengths. Figure 3.3(a) shows that as the gap-junctional coupling strength εg is increased

relative to the proprioceptive coupling strength, the phase-locked states move from close to the

zeros of Gp(φ) towards the zeros of Gg(φ). Figure 3.3(b) shows that when proprioceptive coupling

dominates, the stable phase-locked state corresponds to a phase difference of roughly φ∗ ≈ 0.75 and

corresponds to a wavelength of 0.75 bodylengths according to equation 3.20. When gap-junctional

coupling dominates, the stable phase-locked state is close to synchrony φ∗ ≈ 1, which corresponds

to an infinite wavelength in the full body if this phase difference was constant. In this gap-junction-

dominated case, each pair is in perfect synchrony and the body exhibits a standing wave.

To assess the predictive power of the two-oscillator phase model, a simulation of the neurome-

chanical model with only two modules was performed alongside the phase model. Figure 3.3(b)

shows that the two-oscillator phase model is quantitatively accurate when compared to the phase

differences and wavelengths derived from this two-module simulation. Thus, neural coupling sets

the low-viscosity wavelength in the two-module neuromechanical model as well.

3.3.3. Competition Between Mechanical and Neural Coupling Provides a Mecha-

nism for Gait Adaptation. To examine the effect of mechanical coupling in the two-oscillator

phase model, the neural coupling parameters are fixed to εp = 0.05 and εg = 0.0134 so that the

wavelength in the low-viscosity case is roughly 1.5 bodylengths. The strength of mechanical cou-

pling is increased in equation 3.19 by increasing the external fluid viscosity µf . Figure 3.4(a) shows

that as the strength of mechanical coupling is increased, the phase-locked states move from close to

the zeros set by εpGp(φ)+εgGg(φ) towards the zeros of Gm(φ). Figure 3.4(b) shows how the stable

phase-locked state changes as a function of the mechanical coupling strength µf . When neural

coupling dominates, the stable phase-locked state is a phase difference of roughly φ∗ ≈ 0.89, and

when mechanical coupling dominates, the stable phase-locked state is antiphase φ∗ = 0.5. Similarly,

Figure 3.4(b) shows that when neural coupling dominates the resulting wavelength (according to

equation 3.20) is roughly 1.5 bodylengths, and when mechanical coupling dominates the wavelength

is roughly 0.45 bodylengths.

This analysis shows that gait adaptation is a result of competition between mechanical and

neural coupling. The decrease in wavelength as external viscosity µf increases is explained by the
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(a) (b)

Figure 3.4. Gait adaptation is a result of the competition between mechanical
and neural coupling in the pair of neuromechanical oscillators. (a) The linear com-
bination of the G-functions given by equation 3.19 for εp = 0.05, εg = 0.0134, and
various µf . Note that as µf increases, the strength of mechanical coupling increases
and the stable phase-locked phase difference φ∗ moves from roughly φ∗ = 0.8 to-
wards φ∗ = 0.5. (b) When neural coupling dominates, the stable phase-locked state
is a phase difference of roughly φ∗ = 0.88, and when mechanical coupling domi-
nates, the stable phase-locked state is antiphase, i.e., φ∗ = 0.5 phase difference.
The resulting wavelength in the body, if the pair-wise phase difference was constant
in the six-oscillator model, is set by the competition between the mechanical and
neural coupling. When neural coupling dominates, the wavelength is roughly 1.5
bodylengths, and when mechanical coupling dominates, the wavelength is roughly
0.45 bodylengths.

increased strength in mechanical coupling and its associated coordination outcome, antiphase. The

two-oscillator phase model is quantitatively accurate when compared to phase differences derived

from the neuromechanical model with two modules, as shown in Figure 3.4(b). Thus, this suggests

that the mechanism underlying the behavior in the two-module neuromechanical model is the same

as the mechanism of the phase model outlined here. However, note that the phase difference at

the highest fluid viscosity (µf = 2.8 × 104 mPa s) is different between the two-oscillator phase

model and the full two-module neuromechanical model. This indicates the limit of weak coupling,

as the phase reduction is not able to capture the transition to synchrony seen in the two-module

neuromechanical model. However, weak coupling holds in the two-oscillator case for the rest of the
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(a) (b)

(c) (d)

Figure 3.5. (a) Mechanical G-function Gm(φ) for the pair of neuromechanical
oscillators when τb is sufficiently larger than τm (τb = 0.5 s, τm = 0.15 s). Note
the stable phase-locked state is antiphase since Gm(0.5) = 0 and G′m(0.5) < 0. (b)
Mechanical G-function Gm(φ) for the pair when τb is sufficiently smaller than τm
(τb = 0.05 s, τm = 0.15 s). Note the stable phase-locked state is synchrony since
Gm(1) = 0 and G′m(1) < 0, while antiphase is unstable since G′m(0.5) > 0. (c)
Mechanical G-function Gm(φ) for the pair when τb ≈ τm (τb = 0.14 s, τm = 0.15 s).
(d) Bifurcation diagram for the phase-locked states φ∗ of the mechanical G-function
vs. τb, for τm = .15 s.

viscosities µf considered. Furthermore, this transition to synchrony is not seen in the six-module

neuromechanical model.

3.3.4. Phase Reduction Gives Insight into Timescale Ordering. The phase reduction

also explains why generally τb must be larger than τm in order to obtain the correct coordination

trend (as described in Chapter 2.4.2). The results in the previous subsection indicate that it is

important for mechanical coupling to promote antiphase in order to get the correct wavelength

trend as external viscosity µf is increased. Figure 3.5(a) shows that, when τb is sufficiently larger
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than τm, the stable zero of Gm is 0.5, i.e., the stable phase-locked state is antiphase. However,

when τb is sufficiently smaller than τm, the stable zero of Gm is 0, i.e., the G-function is flipped and

mechanical coupling promotes synchrony. In this case, the wavelength trend as external viscosity µf

is increased is incorrect, since increasing the mechanical coupling strength would pull the oscillators

towards synchrony, lengthening the wavelength instead of shortening it.

The shift in the stabilities of the phase-locked states from antiphase to synchrony is somewhat

complicated, as Figure 3.5(c) shows that τb ≈ τm can yield tristable phase-locked states. A series

of paired saddle-node bifurcations and paired super- and sub-critical pitchfork bifurcations (Figure

3.5D), marks the transition from stable antiphase to tristability to stable synchrony as τb moves

below τm. The change in the stability of the antiphase state promoted by mechanical coupling is

the cause of the rapid change in coordination in Figure 2.4 as τb becomes sufficiently smaller than

τm.

3.4. Mechanism for Gait Adaptation Holds in Six-Oscillator Case

We simulate the six-oscillator phase model in order to (i) assess the predictive power of the

phase model by a quantitative comparison to the full six-module neuromechanical model and (ii)

determine whether the mechanism of gait adaptation analyzed in the two-module case extends to

the full six-module case.

Figure 3.6(a) shows the wavelengths for the six-oscillator phase model (line, circles) and neu-

romechanical model (crosses) as a function of external fluid viscosity µf for εp = 0.05 and εg = 0.017

(these coupling strengths were chosen so that the water-wavelength is approximately 1.5). The

wavelengths were computed by equation A.7 in Appendix A.1. The phase model and the neu-

romechanical model agree quantitatively even at high µf , where the mechanical coupling strength

is several orders of magnitude stronger. Figure 3.6(b) shows the stable phase differences between

neighboring modules in the six-oscillator phase model (lines, circles) and neuromechanical model

(crosses) as a function of external fluid viscosity µf . Again, the phase model and the neurome-

chanical model are in quantitative agreement. Furthermore, Figure 3.6(b) shows that increasing

fluid viscosity affects the phase-locked states in the six-oscillator case in a similar way as in the

two-oscillator case. When neural coupling dominates at low viscosity, the stable phase differences
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(a) (b)

Figure 3.6. (a) The wavelengths generated by the six-oscillator phase model (blue
line with circles) and neuromechanical model (red crosses) as a function of external
fluid viscosity µf for εp = 0.05 and εg = 0.017. The wavelength is set by the
competition between the mechanical and neural coupling. (b) The phase differences
between neighboring oscillator modules in the six-oscillator phase model (lines with
circles) and neuromechanical model (crosses) as a function of external fluid viscosity
µf for εp = 0.05 and εg = 0.017. Similar to the two-oscillator case, the stable phase
differences here are set by the competition between mechanical and neural coupling.
When neural coupling dominates, the stable phase differences are spread out around
0.9, and when mechanical coupling dominates, the stable phase differences move
towards antiphase, i.e., closer to 0.5 phase difference, but with strong boundary
effects.

are spread out near 0.9, and as fluid viscosity increases, the mechanical coupling strength increases

and the stable phase differences decrease towards antiphase.

The large variation between the phase differences across pairs of modules is due to the non-

uniformity of coupling matrices D−14 , Wg, and Wp. The modules in the middle receive stronger

mechanical coupling than the modules at the boundaries. The boundary modules receive less

gap-junctional coupling because they have one fewer neighboring module, and the first module

gets zero nonlocal proprioceptive feedback because it has no anterior neighboring module. Figure

3.7 shows the corresponding stable pair-wise phase differences at zero external fluid viscosity as a

function of the gap-junctional coupling strength εg, with proprioceptive coupling strength εp fit to

match wavelength in low-viscosity (1.5 bodylengths) as in Chapter 2.4.3. Even with no mechanical

coupling, the phase differences between neighboring modules are still spread out. This indicates

that some the spreading we see in the phase differences in Figure 3.6 is due to the non-uniformity

of the neural coupling matrices Wg and Wp.
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Figure 3.7. Stable pair-wise phase differences of the 6-oscillator neuromechanical
model at zero external fluid viscosity (µf = 0) as a function of gap-junctional cou-
pling strength εg (proprioceptive coupling strength εp fit to match wavelength in
low-viscosity (1.5 bodylengths) as in Chapter 2.4.3).

The general trend of each phase difference between neighboring modules (decreasing from near-

synchrony towards antiphase) underlies the wavelength trend of gait adaptation in Figure 3.6(a)

in both the six-oscillator phase model and the neuromechanical model. Thus, the results for the

two-oscillator case in Chapter 3.3 extend to the six-oscillator case: the decrease in wavelength

in response to increasing fluid viscosity is the result of the corresponding increase in the relative

strength of mechanical coupling, which decreases the phase differences between neighboring modules

and yields shorter wavelengths.
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CHAPTER 4

Neuromechanical Oscillator Model

Here, we explore the properties of the neuromechanical oscillator module and provide justifi-

cation for our choice of neuromuscular parameters in Chapters 2 and 3. We explore the effects of

the neuromechanical parameters of the single module, namely the AVB input current I, the peak

muscle force cm, the proprioceptive feedback strength cp, the body mechanics timescale τb, and the

muscle activity timescale τm. We show how these parameters affect the period, amplitude, and

existence of oscillations in the single module, and we also investigate how they shape the phase

response properties.

We perform a bifurcation analysis of the single-oscillator module to find other parameter regimes

with oscillations besides the one investigated in Chapters 2 and 3, and investigate the phase re-

sponse properties of the module in those regimes. We find that there are two major regimes: (I)

the “tristable regime” where stable oscillations coexist with two stable states, and (II) the “bistable

regime” where stable oscillations coexist with only one stable state. By investigating the phase re-

sponse properties of the neuromechanical oscillator in these other parameter regimes, we determine

that any differences do not significantly alter the coordination or the results of Chapters 2 and 3.

However, we show that the ordering of the timescales τm and τb can yield changes in the phase

response curves that underly the shift in coordination seen in Chapter 3.3.4.

4.1. Bifurcation Analysis of the Neuromechanical Oscillator Model

As in Chapter 3, a single, isolated neuromechanical module is defined as a neural subcircuit, the

corresponding muscles and body section, and local proprioceptive feedback (without coupling to

the other body regions or neural subcircuits). The dynamics for this isolated module are governed
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by

κ̇ = − 1

τb
(κ+ σ(AV )− σ(AD)),(4.1)

ȦV =
1

τm
(−AV + VV − VD),(4.2)

ȦD =
1

τm
(−AD + VD − VV ),(4.3)

V̇V =
1

τn
(F (VV ) + cpκ),(4.4)

V̇D =
1

τn
(F (VD)− cpκ).(4.5)

The neuromuscular parameters in Chapters 2 and 3 were chosen so that the neuromechanical

oscillator units would be in an oscillatory regime and give the approximate frequency (1.76 Hz)

observed in a low-viscosity environment. We performed a bifurcation analysis using XPPAUT [13]

of the oscillator module (equations 4.1-4.5) to investigate the roles of several unknown parameters

in the oscillator, namely the AVB input current I, the peak muscle force cm, the proprioceptive

feedback strength cp, the muscle activity timescale τm, and the body mechanics timescale τb. In

particular, we look for different parameter regimes with oscillations, and how the parameters affect

the period and amplitude.

4.1.1. The influence of the AVB input current I. In our model, I = 0 is taken to be

the default “on” mode. At this value of I, there are three stable equilibria: a stable “off” rest

state, a stable “on” rest state, and a stable limit cycle. In the stable “off” rest state, both VV

and VD are at a low-voltage “off” state, and there is no input from the muscles to the body, so

the neuromechanical module is at rest. In the stable “on” rest state, both VV and VD are at a

high-voltage “on” state, and there are equal contractions from the ventral and dorsal muscles to the

body, so the neuromechanical module does not bend one way or the other. The stable limit cycle

corresponds to the neuromechanical oscillations described in Chapter 3, and the module can reach

this state by starting with asymmetric initial conditions (e.g., VV (0) = 1, VD(0) = −1, AV (0) =

AD(0) = κ(0) = 0). In other models [5,11], oscillations are induced by including assymetries in the

neural subcircuit, such as an assymetry in the AVB current to the dorsal and ventral B-neurons

and a VD-to-VB inhibitory connection that indirectly allows the DB neuron to inhibit the VB
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neuron. This extra connection is not included in the original connectivity diagrams of White et

al. [53]; however, it appears in some recent reviews of the motor circuit [10,19,25] but not other

reviews [58].

The AVB interneuron has been proposed as necessary to forward locomotion [5]. In our model,

when the AVB input current I is “on” and providing steady neural input, the neuromechanical

module is capable of oscillations. If I is larger in magnitude than a critical value, then the system

does not oscillate, as shown in the bifurcation diagram in Figure 4.1 for cm = 10, cp = 1, τn =

0.01s, τm = 0.1s, and τb = 0.5s. For I sufficiently negative, the only stable state is the “off” rest

state, and for I sufficiently positive, the only stable state is the “on” rest state. For intermediate

values of I, there is bistability between these two states, the boundaries of which are marked by

subcritical Hopf bifurcations (HB) in Figure 4.1, which are soon followed by saddle-node bifurcations

(SN). Within this region, there are also intermediate values of I for which there is tristability

between the two rest states and neuromechanical oscillations, the boundaries of which are marked

by saddle-node of limit-cycles (SNLC) bifurcations in Figure 4.1.

Figure 4.1. Bifurcation diagram for VV vs. I for the single oscillator module. Ven-
tral B-class neural activity VV is shown on the y-axis. If I is too large in magnitude,
the stable oscillations disappear through saddle-node of limit cycles (SNLC) bifur-
cations. The stable states lose stability through subcritical Hopf bifurcations (HB),
and then disappear soon after in saddle node bifurcations (SN). Other parameters
fixed at cm = 10, cp = 1, τf = 0.5s, τm = 0.1s, τn = 0.01s, a = 1.
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4.1.2. The influence of the feedback strengths cm and cp: increasing robustness of

oscillations. The peak muscle force cm and proprioceptive feedback cp, both act to increase the

range of I-values for which there are stable oscillations. If their values are too low, oscillations

will cease to exist, no matter the value of I, as shown in the bifurcation diagram in Figure 4.2(a)

for cm = 1, cp = 1. If cm, cp are sufficiently high, oscillations can exist even after one rest state

disappears, as shown in the bifurcation diagram in Figure 4.2(b) for cm = 10, cp = 10. This case is

of particular biological importance because it could give the system a way to start oscillations from

rest. If the system is at a rest state, I can be slowly changed until that rest state becomes unstable

in the subcritical Hopf bifurcation, at which point the system will move towards either the stable

limit cycle or the other stable state. This cannot happen in the case shown in Figure 4.1, since the

subcritical Hopf bifurcations occur when there are no stable limit cycles.

The effects on the robustness of the limit cycles of each of these feedback strengths separately can

be seen in the stability diagrams in Figure 4.3. Figure 4.3(a) shows that at a small proprioceptive

feedback strength (cp = 1), increasing the peak muscle force cm increases the I-range for which

there are stable oscillations with two stable states (the tristable regime), and for sufficiently high

cm the module is capable of stable oscillations with only one rest state (the bistable regime) as in

Figure 4.2(b)). The two white-dotted lines correspond to the bifurcation diagrams in Figures 4.1

and 4.2(a). Figure 4.3(b) shows at a small peak muscle force cm = 1, increasing the proprioceptive

feedback strength cp has a very similar effect. The white-dotted line corresponds to the bifurcation

diagram in 4.2(a). Figure 4.3(c) shows that at a higher proprioceptive feedback strength cp = 10,

increasing the peak muscle force cm increases the I-range for which there are stable oscillations

even further, and the module is capable of oscillations that are bistable with only one rest state

for an even smaller cm threshold than in Figure 4.3(a). The white-dotted line corresponds to the

bifurcation diagram in Figure 4.2(b). Similarly, Figure 4.3(d) shows that at a higher peak muscle

force cm = 10, the effect of increasing the proprioceptive feedback strength cp is more dramatic. The

two white-dotted lines correspond to the bifurcation diagrams in Figures 4.2(a) and (b). Increasing

either feedback cm or cp increases the I-range for which there are stable oscillations, and can give

the module the potential for bistable oscillations with one stable state.
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(a)

(b)

Figure 4.2. Bifurcation diagrams for VV vs. I for the single oscillator module in
(a) an example non-oscillatory regime, and (b) an example regime with potential
for bistable and tristable oscillations. Ventral B-class neural activity VV is shown
on the y-axis. (a) Feedback strengths too low (cm = 1, cp = 1). Tuning I cannot
lead to stable neuromechanical oscillations. (b) Feedback strengths sufficiently high
(cm = 10, cp = 10). There are stable oscillations beyond the bistable stable-state
regime, i.e., bistability between a limit cycle and a single stable state.

The effects of cm and cp can be summarized by Figure 4.4(a), which shows the SNLC and

subcritical Hopf bifurcations curves in cm,cp-space. As cm and cp vary, the system moves through

the three parameter regimes corresponding to the bifurcation diagrams in Figures 4.1 and 4.2: no

possible oscillations as in Figure 4.2(a); potential for tristable oscillations as in Figure 4.1, i.e., stable
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(a) (b)

(c) (d)

Figure 4.3. Stability diagrams for the single oscillator module, tracking the sub-
critical Hopf and SNLC bifurcations in Figure 4.1 through (a) I, cm,-space with
cp = 1, (b) I, cp-space with cm = 1, (c) I, cm,-space with cp = 10, (b) I, cp-space
with cm = 10 . White dotted lines correspond to previous bifurcation diagrams in I.
Increasing either feedback cm or cp increases the I-range for which there are stable
oscillations, and can give the module the potential for bistable oscillations with one
stable state.

oscillations and two stable states; and potential for either tristable or bistable oscillations (with

only one stable state) as in Figure 4.2(b). Interestingly enough, these bifurcation curves are given

by cm · cp = constant. Figure 4.4(b) shows that the SNLC and subcritical Hopf bifurcations curves

are linear in cm,1/cp-space. In Chapter 5, we explore an idealized version of the neuromechanical

oscillator, which has cm · cp = c as a nondimensional feedback strength. In this model, cm and cp

act together through their combined effects on the robustness of oscillations.
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(a) (b)

Figure 4.4. Stability diagrams for (a) cm and cp, and (b) cm and 1/cp, both
with I = 0, τf = 0.5s, τm = 0.1s, τn = 0.01s, a = 1. The black line marks the
curve of SNLC bifurcations and the black dashed line marks the curve of subcritical
Hopf bifurcations. The red region at low cm, cp values corresponds to the parameter
regime with no potential for stable neuromechanical oscillations (as in Figure 4.2(a)).
The blue region at intermediate cm, cp values corresponds to the parameter regime
with the potential for tristable oscillations (as in Figure 4.1). The cyan region at
high cm, cp values corresponds to the parameter regime with the potential for either
tristable or bistable oscillations (as in Figure 4.2(b)).

4.1.3. The influence of the feedback strengths cm and cp: effects on oscillation

period and amplitude. While the two feedback strengths have similar effects on the robustness

of oscillations, they differ in their effects on the period and (max curvature) amplitudes of the

oscillator. Figure 4.5(a) shows that increasing either the peak muscle force cm or the proprioceptive

feedback strength cp will decrease the oscillator period. That is, smaller muscle activities will result

in larger muscle forces, and smaller body bends will result in larger feedback to the neural circuit, so

the neuromechanical oscillations will progress faster. Figure 4.5(b) shows that increasing the peak

muscle force cm increases the max curvature amplitudes by effectively imposing larger body bends,

but increasing the proprioceptive feedback strength cp decreases the max curvature amplitudes by

effectively lowering the proprioceptive feedback threshold.

Therefore, by changing these two feedback strengths separately, the period and amplitude of

the neuromechanical oscillator module can be changed independently of one another while still

maintaining robust oscillations. This property of the model will be useful for modeling the body as
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(a)

(b)

Figure 4.5. (a) Increasing either the peak muscle force cm and proprioceptive
feedback strength cp decreases the period (in seconds) of the oscillator module. (b)
Increasing the peak muscle force cm increases the max curvature amplitude of the
oscillator module, but increasing the proprioceptive feedback strength cp decreases
the max curvature amplitude. In both contour plots, the other parameters are fixed
at τf = 0.5s, τm = 0.1s, τn = 0.01s, and I = 0.
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a chain of heterogeneous oscillators. For instance, we could model the body as a chain of oscillators

with increasing cp posteriorly to account for the decreasing undulation amplitude along the body

towards the tail.

4.1.4. The influence of the timescales τb and τm. We also investigate how the mechanical

timescale τb and muscle activity timescale τm affect the oscillatory properties of the neuromechanical

model. τm is constrained by biophysical estimates to be within 50-250 ms [35], but τb = µb/kb has

been estimated across several orders of magnitude, as explained in Chapter 2.3.

We explore how the two timescales affect the period and amplitude of the oscillations. Increasing

either the body mechanics timescale τb or the muscle activity timescale τm increases the oscillator

period, as shown in the contour plot in Figure 4.6(a). In Chapter 2.4.2, we use a parameter search

algorithm to choose a muscle activity timescale τm for every body mechanical timescale τm in order

to obtain approximately the correct period (≈ 0.5s) in water. This algorithm is equivalent to

selecting a point (τm, τb) on the 0.5 contour in Figure 4.6(a).

Figure 4.6(b) shows that increasing the body mechanics timescale τb decreases the max curviture

amplitude of the oscillator, however the relationship between the muscle activity timescale τm and

the max amplitude is more complex. Increasing τm in some ranges of τm will increase the max

curvature amplitude, while for other ranges of τm it will decrease the max curvature amplitude.

These ranges of increasing and decreasing effects are not consistent across values of τb, as illustrated

by the structure of the contours in Figure 4.6(b). While we do not look at the curvature amplitudes

of the neuromechanical model in Chapters 2 and 3, the complicated relationship between the

timescales and the max curvature amplitude shown here suggests another way to compare the

model with experimental data to narrow down the range of the unknown timescales.

We also explore how τb and τm affect the robustness of oscillations in the neuromechanical

module. Figure 4.7(a) shows the stability diagram created by following the SNLC bifurcations in

Figure 4.1 through I, τb-parameter space, for τm = 0.1 s and τn = 0.01 s. The neuromechanical

module has oscillations for a wide range of I-values when the mechanical timescale τb ∈ [0.01s, 1s]

(log10 τb ∈ [−2, 0] in Figure 4.7(a)), suggesting that it oscillates robustly regardless of our choice of

mechanical timescale. The module doesn’t cease to oscillate for large or small τb, but the oscillations
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(a)

(b)

Figure 4.6. (a) Increasing either the body mechanics timescale τb or the muscle
activity timescale τm are increases the oscillator period (timescales and period in sec-
onds). (b) Increasing the body mechanics timescale τb decreases the max curviture
amplitude of the oscillator, however the relationship between the muscle activity
timescale τm and the max amplitude is more complex. In both contour plots, the
other parameters are fixed at cm = 10, cp = 1, τn = 0.01s, and I = 0.
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occur over a narrower I range as τb increases above 1 s or decreases below 0.01 s. This lower value

(0.01 s) coincides with the value of the neural timescale τn.

Figure 4.7(b) shows a similar stability diagram created by following the SNLC bifurcations

in Figure 4.1 through I, τm-parameter space, for τb = 0.5 s and τn = 0.01 s. The module

has oscillations for a wide range of I-values when the muscle activity timescale τm ∈ [0.01s, 1s]

(log10 τm ∈ [−2, 0] in Figure 4.7(b)), suggesting that it oscillates robustly regardless of our choice

of muscle activity timescale. Again, the module doesn’t cease to oscillate for large or small τm, but

the oscillations occur over a narrower I range as τm increases above 1 s or decreases below 0.01 s.

Figure 4.7(c) shows the stability diagram created by following the SNLC bifurcations in Figure

4.1 through cm, τb-parameter space, with I ≈ 0.19. As we show in the previous subsections,

increasing cm increases the robustness of oscillations in the module, and here it also increases the

range of τb for which there are oscillations. The stability diagram for cp, τb is almost identical, so

it is omitted here. Figure 4.7(d) shows a similar stability diagram created by following the SNLC

bifurcations in Figure 4.1 through cm, τm-parameter space, with I fixed. As we show in the previous

subsections, increasing cm increases the robustness of oscillations in the module, and here it also

increases the range of τm for which there are oscillations. The stability diagram for cp, τm is almost

identical, so it is omitted here.

4.2. Phase Response Properties of the Neuromechanical Oscillator Model

Here, we will explore how neuromechanical module parameters affect the phase response prop-

erties of the neuromechanical oscillator model by looking at the phase response curves (PRCs).

In order to determine whether the results of Chapters 2 and 3 were reliant on our choice of neu-

romechanical module parameters, we first compare the PRCs and G-functions in the two major

regimes from the previous section: (I) the tristable regime where stable oscillations coexist with two

stable states, (II) the bistable regime where stable oscillations coexist with only one stable state.

The tristable regime (I) uses the neuromechanical parameters in Chapters 2 and 3. We conclude

that despite slight differences in the PRCs, the similarities between the G-functions implies similar

coordination, and thus the results of Chapters 2 and 3 would be similar in the bistable regime (II).

We also look at how the neuromechanical oscillator parameters cm, cp, τb, and τm affect the phase
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(a) (b)

(c) (d)

Figure 4.7. Stability diagrams for the neuromechanical module, tracking the
SNLC bifurcations in Figure 4.1 through (a) I, τb,-space, (b) I, τm,-space, (c) cm, τb-
space, and (d) cm, τm-space. Black lines mark the curves of SNLC bifurcations. Blue
regions correspond to parameter regimes with the possibility of oscillations, and red
regions correspond to parameter regimes with no possibility of oscillations.

response properties of the neuromechanical oscillators and thus the coordination of the model. In

particular, we look at how the phase response properties explain the shift in coordination due to

the ordering of the timescales τm, τb seen in Chapter 3.3.4.

4.2.1. Comparing the tristable and bistable regimes: PRCs and G-functions. The

phase response curves for both the tristable regime (I) and the bistable regime (II) are shown in

Figure 4.8. In the tristable regime, we consider τb = 0.5s, τm = 0.1s, τn = 0.01s, cm = 10, cp = 1,

and I = 0; these are the same parameters used in Chapters 2 and 3 and corresponds to a vertical

slice at I = 0 in the bifurcation diagram in Figure 4.1. In the bistable regime, we consider τb = 0.5s,

τm = 0.1s, τn = 0.01s, cm = 10, cp = 10, and I = 0.5 (i.e., cp and I are both increased); these

parameters correspond to a vertical slice at I = 0.5 in the bifurcation diagram in Figure 4.2(b).
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(a) (b)

Figure 4.8. PRCs for the neuromechanical oscillator module for parameter regimes
with (a) tristability between stable oscillations and two stable rest states, and (b)
bistability between stable oscillations and one rest state. The PRCs for the muscle
and neural activities are given in dashed green lines for the ventral and solid red
lines for the dorsal.

The two sets of PRCs have slight amplitude differences and a major timing difference in the

neural PRCs. The curvature PRC has a larger amplitude in the bistable regime, which indicates

that the bistable regime is more sensitive to mechanical perturbations. The muscle activity PRCs

have slightly lower amplitudes in the bistable regime. The neural activity PRCs have much lower

amplitudes in the bistable regime. The timing of the neural PRCs is also very different between the

two regimes: in the tristable regime, the ventral and dorsal PRCs are always equal and opposite

and perfectly synchronized; in the bistable regime, the ventral and dorsal PRCs are more sensitive

to perturbation timings that yield negative phase responses than those timings that yield posi-

tive phase responses. Moreover, the ventral and dorsal neurons are not symmetric in their phase

responses— the first peak of the dorsal PRC is timed before the first peak of the ventral PRC, and

the second peak of the dorsal PRC is timed after the second peak of the ventral PRC.

These differences in the phase response curves translate to only minor differences of the G-

functions in the pair of neuromechanical oscillators. Figure 4.9 shows the G-functions for the pair of

neuromechanical oscillators in both the tristable and bistable regimes. The promoted phase-locked

states of the mechanical and gap-junctional coupling modalities are unchanged between regimes,

however, so the coordination is relatively similar. Only the proprioceptive G-functions promote
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(a) (b)

(c)

Figure 4.9. G-functions for the neuromechanical oscillator module for tristable and
bistable parameter regimes: (a) mechanical, (b) proprioceptive, (c) gap-junctional.
Stable phase-locked states are given by filled black circles.

different phase-locked states, as shown in Figure 4.9(b), but the promoted phase-locked state is

still intermediate between synchrony and antiphase. This difference would likely only change the

coupling parameters εp and εg needed to obtain the approximate wavelength in water in the model

as in Chapter 3.

We also examined how the sign of the AVB input I in the bistable parameter regime effects the

phase response properties of the module. Figure 4.10 shows that for two different modules, each

in the bistable parameter regime (with cm = 10 and cp = 10) but with equal but opposite-signed

AVB input current, the PRCs are the same except for the timing and sensitivities of the neural

PRCs. Figure 4.10(a) shows that when the AVB input is negative (I = −0.5), the ventral and

dorsal PRCs are more sensitive to perturbation timings that yield positive phase responses than

those timings that yield negative phase responses. Also, the timing of the first peak of the ventral
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(a) (b)

Figure 4.10. PRCs for the neuromechanical oscillator module for bistable param-
eter regimes with cm = 10, cp = 10, and (a) negative AVB input I = −0.5, or (b)
positive AVB input I = 0.5. The PRCs for the muscle and neural activities are
given in dashed green lines for the ventral and solid red lines for the dorsal.

PRC is before the first peak of the dorsal PRC, and the second peak of the ventral PRC is timed

after the second peak of the dorsal PRC. On the other hand, Figure 4.10(b) shows that when the

AVB input is positive (I = 0.5), the timings and sensitivies flip. The ventral and dorsal PRCs are

more sensitive to perturbation timings that yield negative phase responses than those timings that

yield positive phase responses. The first peak of the dorsal PRC is timed before the first peak of

the ventral PRC, and the second peak of the dorsal PRC is timed after the second peak of the

ventral PRC. These differences indicate that the AVB input I, which biases the neurons towards

one state or the other (active or inactive), has a large effect on both the timing and sensitivity of

the neural PRCs. However, as shown in the G-functions in Figure 4.9, these differences are not

likely to yield any major coordination changes in the full model.

4.2.2. The influence of feedback strengths cm and cp on phase response properties.

We also investigated how the peak muscle force cm and proprioceptive feedback strength cp affect

the phase response properties of the neuromechanical oscillator. Starting with parameters in the

tristable regime (cm = 10, cp = 1, I = 0), we increased either the peak muscle force cm (up to

cm = 20) or the proprioceptive feedback strength cp (up to cp = 10).
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(a) (b)

Figure 4.11. PRCs for the neuromechanical oscillator module for (a) the tristable
regimes (with cm = 10) and (b) increased peak muscle force cm = 20. The PRCs
for the muscle and neural activities are given in dashed green lines for the ventral
and solid red lines for the dorsal.

Figure 4.11 shows that increasing cm by a factor of 2 lowers the amplitude of both the curvature

PRC and the neural PRCs by a factor of about 2, while the muscle activity PRCs are relatively

unchanged. Thus increasing cm makes the neuromechanical module less sensitive to perturbations

overall. Increasing the peak muscle force cm yields a larger bending moment and thus the module

reaches its threshold curvature faster, so perturbations have less of an effect.

Figure 4.12 shows that increasing cp by a factor of 10 slightly increases the amplitude of the

curvature PRC and slightly lowers the amplitude of the neural PRCs and muscle activity PRCs.

Thus increasing cp makes the neuromechanical module less sensitive to neural perturbations but

more sensitive to mechanical perturbations. Increasing the proprioceptive feedback strength cp

results in a lowering of the effective threshold curvature, i.e., the neurons switch on/off at smaller

curvatures, and thus perturbations to the module’s curvature can significantly speed up or delay

the oscillator. However, because the neurons and muscles are more tightly coupled to the curvature

through the stronger proprioceptive feedback, neural and muscle activity perturbations have less

of an effect on the oscillator’s phase.

These differences in phase response do not significantly alter the coordination in the pair of

oscillators. Figure 4.13 shows the G-functions for the pair of neuromechanical oscillators in the
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(a) (b)

Figure 4.12. PRCs for the neuromechanical oscillator module for (a) the tristable
regimes (with cp = 1) and (b) increased proprioceptive feedback strength cp = 10.
The PRCs for the muscle and neural activities are given in dashed green lines for
the ventral and solid red lines for the dorsal.

tristable regime, with increased cm, and with increased cp. The promoted phase-locked states of

the mechanical and gap-junctional coupling modalities are unchanged between regimes, however, so

the coordination is relatively similar. Only the proprioceptive G-functions promote different phase-

locked states, as shown in Figure 4.13(b), but the promoted phase-locked state is still intermediate

between synchrony and antiphase. This difference would likely only change the coupling parameters

εp and εg needed to obtain the approximate wavelength in water in the model as in Chapter 3.

4.2.3. Phase response properties underlying timescale ordering. In Chapter 3.3.4, we

showed that changing the order of the timescales τb and τm changes the coordination by altering the

stability of the phase-locked states in the pair of neuromechanical modules. Here, we show that the

shape of the phase response curves, which plays a key role in setting the zeros of the G-functions

in Figure 3.5(a-c), have only slight changes between the two main cases τb less than and greater

than τm.

Figure 4.14 shows the PRCs for (a) τb = 0.5s > τm = 0.15s, and (b) τb = 0.05s < τm = 0.15s.

The curvature PRCs Zκ are different in timing, with the zero crossings slightly before phase 0.5

and 0 in the τb > τm case, but slightly after phase 0 and 0.5 in the τb < τm case. The curvature

PRCs are also lower in amplitude by a factor of 2 in the τb < τm case. The muscle activity PRCs
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(a) (b)

(c)

Figure 4.13. G-functions for the neuromechanical oscillator module for the
tristable parameter regime, with increased cm, and with increased cp: (a) mechani-
cal, (b) proprioceptive, (c) gap-junctional. Stable phase-locked states are given by
filled black circles.

are relatively similar in amplitude between the two cases, but in the τb > τm case they have slight

negative responses to certain timings, while in the τb < τm case they only ever have positive phase

responses. The neural activity PRCs are also relatively similar in amplitude between the two

cases, but in the τb > τm case they are flatter away from the peaks, i.e. they are less sensitive to

perturbations outside of the peak-timing windows.

To see how the two cases differ in coordination, Figure 4.15 shows the curvature PRC Zκ, the

coupling current dκ/dt, and the mechanical G-function Gm for the two cases: (a) τb = 0.5s >

τm = 0.15s, (c) τb = 0.05s < τm = 0.15s. The mechanical G-function, which is the odd-part of

the convolution of the curvature PRC Zκ and the mechanical coupling current dκ/dt, has flipped

stabilities of the synchronous and antiphase-locked states when τb > τm compared to when τb < τm.
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(a) (b)

Figure 4.14. PRCs for the neuromechanical oscillator module for parameter
regimes with (a) τb > τm, and (b) τb < τm. The PRCs for the muscle and neu-
ral activities are given in dashed green lines for the ventral and solid red lines for
the dorsal.

The coupling current dκ/dt is relatively similar betweeen these two cases, though maybe more

sinusoidal in the τb < τm case, but with similar timing. The curvature PRC Zκ are different in

timing, with the zero crossings slightly before phase 0.5 and 0 in the τb > τm case, but slightly

after phase 0 and 0.5 in the τb < τm case. However, how these slight differences cause the shift in

stability of the phase-locked states in the mechanical G-function remains unclear.
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(a) (b)

Figure 4.15. Curvature PRC Zκ, coupling current dκ/dt, and the mechanical H
and G functions (Hm(φ), Hm(−φ), and Gm(φ)) for the neuromechanical oscillator
module for parameter regimes with (a) τb > τm and (b) τb < τm.
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CHAPTER 5

Reduction of the Neuromechanical Oscillator to a 1-D Map

Captures Limit Cycle Dynamics

Here, we reduce our neuromechanical oscillator model to a 2-dimensional hybrid system, and

then reduce it further to a 1-D Poincaré map that captures the limit cycle dynamics. This map

makes it easier to assess when limit cycles exist and what sets the period and amplitude of the

neuromechanical oscillations. The 1-D map also provides a framework for future work: analysis of

the mechanisms underlying the neuromechanical oscillator, its phase response properties, and the

coordination of the full neuromechanical model.

5.1. Reduction of the Neuromechanical Oscillator

To reduce the neuromechanical oscillator module (equations 4.1-4.5) down to a 2-dimensional

hybrid system with instantaneous switching input, we first linearize the muscle force, then nondi-

mensionalize the system, and finally use a singular limit to reduce the neural activity to discrete

states. The reduced model can be solved piecewise and used to understand the neuromechanical

oscillation mechanism.

5.1.1. Analogous Linear Model for Muscle Force. We use the same dynamics for the

muscle activity as in the neuromechanical oscillator model (equations 4.1-4.3). The ventral (dorsal)

muscle activity AV (AD) induces a contractile force σ(A) (equation 2.7) in the ventral (dorsal) body

wall of the neuromechanical module, which changes the body curvature. During oscillations in the

neuromechanical oscillator model, the sigmoid-like function σ(A) is usually not saturated at the

peak muscle force, so here we assume that σ(A) is linear, i.e., σ(A) = A. (Note that this means that

in this reduced model, negative muscle activity can effectively produce expansive forces rather than

contractile forces). The linear contractile forces applied by the muscles induce a bending moment
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in the neuromechanical module, changing its body curvature κ according to

(5.1)
dκ

dt
= − 1

τb

(
κ+

cm
2

(AV −AD)
)
.

Since the rate of change of curvature depends only on the difference between the muscle activities

M = AD −AV , this allows us to reduce the neuromechanical module to

dκ

dt
= − 1

τb

(
κ− cm

2
M
)
,(5.2)

dM

dt
=

1

τm
(2(VD − VV )−M),(5.3)

dVV
dt

=
1

τn
(F (VV ) + cpκ),(5.4)

dVD
dt

=
1

τn
(F (VD)− cpκ).(5.5)

5.1.2. Nondimensionalization. Nondimensionalizing time t̃ = τmt and curvature K = cpκ,

we denote Ẋ = dX/dt̃ (for X = M,K, VV , VD) so that

τK̇ = −K +
c

2
M,(5.6)

Ṁ = 2(VD − VV )−M,(5.7)

V̇V =
τm
τn

(F (VV ) +K),(5.8)

˙VD =
τm
τn

(F (VD)−K),(5.9)

where τ = τb/τm is the the nondimensional timescale and c = cmcp is the nondimensional feedback

strength. Note that M , VV , and VD are already arbitrary and effectively nondimensional. If we

differentiate equation 5.6 with respect to t̃, we obtain

τK̈ = −K̇ +
c

2
Ṁ(5.10)

= −K̇ +
c

2
(2(VD − VV )−M)

= −K̇ +
c

2

(
2(VD − VV )− 2

c
(τK̇ +K)

)
.
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Thus the neuromechanical oscillator module can be reduced to:

τK̈ + (1 + τ)K̇ +K = c(VD − VV )(5.11)

V̇V =
τm
τn

(F (VV ) +K),(5.12)

˙VD =
τm
τn

(F (VD)−K).(5.13)

5.1.3. Singular Limit Reduces Neural Activity to Discrete States. In Chapters 2-4,

we assumed that the neural activity timescale was the fastest process in the system. We used the

value τn = 0.01 s, while τm was typically between 0.05 and 0.25 s. Here, we take the singular

limit τn/τm → 0, so that the neural activities VV and VD are always at quasi-steady state, i.e.,

K = f(VV ) = VV −aV 3
V +I, and −K = f(VD) = VD−aV 3

D+I. Figure 5.1(a) shows the quasi-steady

voltage states of equations 5.12-5.13. In the singular limit, the neural activity rapidly relaxes to one

of two stable branches of the slow manifold. The neural activity flows along the stable branch until

it reaches the end of the branch at ±1/
√

3a, which corresponds to the “knees” of f(V ) (equation

2.11). At the end of this stable branch, the neural activity will jump to the other stable branch of

the slow manifold.

Note that the two stable branches of the slow manifold represent an “active” state with V > 0

and an “inactive” state with V < 0, and along each branch the value of V doesn’t change much.

To reduce the model further, we replace these stable branch values with either an active (S = 1)

or inactive (S = 0) state. That is, we augment the effects of the neurons with a unit step function

so that

(5.14) τK̈ + (1 + τ)K̇ +K = c(SD − SV ),

where the states of the ventral/dorsal B-class neurons are given by

(5.15) SV = u(VV ), SD = u(VD),
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(a) (b)

Figure 5.1. (a) The steady voltage states of the continuous differential equations
5.12-5.13 for the B-class neurons. (b) The discrete states after putting the steady
voltage states through the unit step function u(x) (equation 5.16) and reexpressing
the input thresholds.

and u(x) is the unit step function

(5.16) u(x) =


1, if x > 0,

0, if x ≤ 0.

The neural activity jumps between stable branches of the slow manifold and switches on or

off (S = 1 or S = 0) depending on the input (I ± K) and their current state. Figure 5.1(b)

shows the quasi-steady states S = u(V ). The input thresholds at which the neural activity jumps

between stable branches are denoted by (1± εh)/2, so that the location of the thresholds depends

linearly on the parameter εh. That is, εh is the size of the range of inputs for which the neurons

exhibit hysteresis. Because the curvature K of the module changes over time while the AVB

input I is constant, these input thresholds are essentially proprioceptive curvature thresholds for

each neuron. In nondimensional form, the proprioceptive curvature thresholds KV
off = −I − εh/2,

KV
on = −I + εh/2, KD

off = I + εh/2, KD
on = I − εh/2. If the curvature K of the module reaches one

of these thresholds, then the corresponding neuron (ventral/dorsal) will jump to the corresponding

steady-state (on/off), e.g., at KV
off , the ventral neuron will jump to SV = 0, the “off” state, if it

is on or remain off if it is already off. Without loss of generality, we assume that 0 < I < εh/2 so

that

(5.17) KD
off > KV

on > 0 > KD
on > KV

off .

Other values of I, εh will result in different orderings of the curvature thresholds, some of which

will result in similar neuromechanical oscillations and others which cannot.
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This reduces the neuromechanical oscillator to the 2-dimensional hybrid system

τK̈ + (1 + τ)K̇ +K = c(SD − SV )(5.18)

SV (t̃) =



0, K(t̃) ≤ KV
off

0, KV
off < K(t̃) < KV

on and limt→t̃− SV (t) = 0

1, KV
off < K(t̃) < KV

on and limt→t̃− SV (t) = 1

1, KV
on ≤ K(t̃)

,(5.19)

SD(t̃) =



1, K(t̃) ≤ KD
on

1, KD
on < K(t̃) < KD

off and limt→t̃− SD(t) = 1

0, KD
on < K(t̃) < KD

off and limt→t̃− SD(t) = 0

0, KD
off ≤ K(t̃)

.(5.20)

5.1.4. Phase Plane Dynamics. Figure 5.2(a,b,c) shows example phase planes of the system

(equations 5.18-5.20) with parameters c = 5, τ = 5, I = 0.75, εh = 5.5 for (a) SD − SV = 0, (b)

SD − SV = 1, and (c) SD − SV = −1. In all three cases, there is a globally stable equilibrium at

K = c(SD − SV ), M = 0 (see Appendix C.1). These equilibria correspond to: (a) a zero curvature

module; (b) a positive curvature module (bent towards the dorsal side); and (c) a negative curvature

module (bent towards the ventral side).

For some initial conditions and parameter regimes, the system settles at one of these equi-

librium points. For other initial conditions and parameter regimes, trajectories cross a curvature

threshold (e.g. KV
on) before reaching an equilibrium point, which then changes the phase plane

dynamics including the target equilibrium point. An example of this is shown in Figure 5.2(d),

where initial condition (A) reaches the curvature threshold at KD
off but initial condition (B) flows

to the equilibrium point instead. For certain initial conditions and parameters, the system can get

caught in a loop of chasing these switching equilibria, and thus undergo oscillations.
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(a) (b)

(c) (d)

Figure 5.2. Phase planes for equation 5.18 with parameters c = 5, τ = 5, I =
0.75, εh = 5.5 and fixed SD, SV . (a) For SD − SV = 0, there is a stable equilibrium
at K = 0, M = 0. (b) For SD − SV = 1, there is a stable equilibrium at K = c,
M = 0. (c) For SD − SV = −1, there is a stable equilibrium at K = −c, M = 0.
(d) Sample trajectories in the SD − SV = 0 phase plane. Some initial conditions
(A) flow to the curvature threshold at KD

off , which changes the equilibrium point

and phase plane dynamics. Other initial conditions (B) do not reach the curvature
threshold and instead flow to the equilibrium point at K = M = 0.

5.2. 1-D Map Captures Limit Cycle Dynamics

5.2.1. 1-D Map Construction. We define a return map α2 = F (α0) that takes an initial

condition along the Poincaré section K = KV
off ,M = α0 < 0, SD = 1, SV = 0 until it returns to

the Poincaré section at M = α2 < 0, as defined by the flow of equations 5.18-5.20. To do this,
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(a) (b)

(c) (d)

Figure 5.3. (a) Map 1 flows the solution forward from initial condition (K =
KV
off ,M = α0) to the first curvature threshold at (KV

on, α1/2). (b) Map 2 flows the

solution forward from initial condition (KV
on, α1/2) to the next curvature threshold

at (KD
off , α1). (c) Map 3 flows the solution forward from initial condition (KD

off , α1)

to the next curvature threshold at (KD
on, α3/2). (d) Map 4 flows the solution forward

from initial condition (KD
on, α3/2) to the final curvature threshold at (KV

off , α2).

we solve the system (equations 5.18-5.20) piecewise, where each solution piece/branch is for fixed

neural states, and appropriately piece the solutions together when the neural states switch on/off.

The return map consists of intermediate maps along each solution branch that are given by implicit

expressions in Appendix C.2.

Figure 5.3 illustrate this process by following a specific trajectory of the system. Starting with

a specific initial condition along the Poincaré section K = KV
off ,M = α0 < 0, SD = 1, SV = 0,

we use the system solution (equation C.3) with equilibrium c(SD − SV ) = c to flow the solution

forward in time until the system reaches the curvature threshold at (KV
on, α1/2), as in Figure 5.3(a).

This constructs a map from α0 < 0 to α1/2, i.e.,

(5.21) α1/2 = F1(α0),
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which is given by an implicit expression in Appendix C.2.1.

When the system crosses the curvature threshold KV
on, the ventral B neuron turns on, i.e.,

SV = 1, thus the equilibrium shifts to c(SD−SV ) = 0. Figure 5.3(b) shows the trajectory continuing

from K = KV
on,M = α1/2, SD = 1, SV = 1 until the next curvature threshold at (KD

off , α1). This

constructs a map from α1/2 to α1, i.e.,

(5.22) α1 = F2(α1/2),

which is given by an implicit expression in Appendix C.2.2.

When the system crosses the curvature thresholdKD
off , the ventral D neuron turns off, i.e., SD =

0, thus the equilibrium shifts to c(SD − SV ) = −c. Figure 5.3(c) shows the trajectory continuing

from K = KD
off ,M = α1, VD = 0, VV = 1 until the next curvature threshold at (KD

on, α3/2). When

the system crosses the curvature threshold KD
on, the ventral D neuron turns on, i.e., SD = 1, thus

the equilibrium shifts to c(SD − SV ) = 0. Figure 5.3(d) shows the trajectory continuing from

K = KD
on,M = α3/2, VD = 1, VV = 1 until the return to the Poincaré section at (KV

off , α2).

By symmetry, the rest of the map can be constructed by

α3/2 = −F1(−α1),(5.23)

α2 = −F2(−α3/2),(5.24)

which are given by implicit expressions in Appendix C.2.3-4.

Piecing the solutions along each branch together generates a Poincaré map from initial condition

K = KV
off ,M = α0, VD = 1, VV = 0 to the next intersection with this curvature thresholdK = KV

off

from the right, i.e., to K = KV
off ,M = α2 < 0, VD = 1, VV = 0. Essentially, we map M = α0 to

M = α2 after a full neuromechanical loop. This 1-D map is given by

(5.25) α2 = F (α0) = −F2(F1(−F2(F1(α0)))).

If the system converges to a stable equilibrium along one of the solution branches for some initial

conditions (as in Figure 5.2(d)), then the map is not defined. Fixed points of the full 1-D map,
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Figure 5.4. The limit cycle in the M,K-phase plane. The 1-D Map takes initial
condition K = KV

off ,M = α0, VD = 1, VV = 0 and maps it to the next intersection

with the curvature threshold K = KV
off after a full loop, i.e., to K = KV

off ,M =
α2, VD = 1, VV = 0.

α∗ = F (α∗), correspond to limit cycles. Figure 5.4 shows a qualitative representation of the full

limit cycle in the M,K-phase plane.

5.2.2. Limit Cycle Properties from the 1-D Map. The 1-D Map gives us a quick way to

assess when limit cycles exist and how parameters effect their periods and amplitudes. The fixed

points of the map, α∗ = F (α∗), correspond to limit cycles in the reduced neuromechanical oscillator

model (equations 5.18-5.20), and they are stable iff |F ′(α∗)| < 1. Figure 5.5(a) shows α2 = F (α0)

for a range of α0 and with parameters I = 0.01, εh = 2, c = 10, τ = 5. There is only one fixed point

α∗, and it is stable since |F ′(α∗)| < 1. This single stable fixed point corresponds to a single stable

limit cycle, which indicates that the reduced oscillator model is fundamentally different than the

full neuromechanical oscillator model of Chapter 4, which also has an unstable limit cycle. Figure

5.5(a) also shows that the map is remarkably flat, which indicates that if one exists, a limit cycle

will be stable and the system will converge very quickly to it. Figure 5.5(b) shows that not only is

the full map α2 = F (α0) very flat, but the intermediate maps are flat as well, indicating that each

branch of the map is strongly contractive.

After finding the fixed point α∗ of the 1-D map, we can compute the period and amplitude

of the limit cycle from the piecewise general solution (see Appendix C.4 for details). Figure 5.6

shows the emergent period and amplitude of the limit cycle as a function of the nondimensional

parameters, the feedback strength c and timescale τ , with εh = 2 and I = 0.01 or I = 0.001. Empty

values correspond to parameter regimes with no fixed point α∗ in the 1-D map, i.e., with no limit
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(a) (b)

Figure 5.5. (a) The Poincaré map α2 = F (α0) yields a single stable fixed point
α∗, which the system converges to for α0 < 2. (b) The intermediate maps. Other
parameters here are I = 0.01, εh = 2, c = 10, τ = 5.

cycle in the system. Figure 5.6 shows a quadratic-like relationship between log(τ) and c for the

existence of limit cycles. Decreasing I shifts the limit-cycle-existence-boundary to lower c values

because c > KD
off = I + εh/2 is necessary for a solution (see Appendix C.3 for details). The limit-

cycle-existence boundary is remarkably similar to the stability diagrams in Figure 4.7(a-b) for the

full neuromechanical oscillator model in Chapter 4. Recall that we also showed in Chapter 4 that

the boundary that marked the existence of oscillations in these stability diagrams was constant with

the product cmcp, which is the nondimensional feedback strength here. Thus, this 1-D map seems

to capture the mechanistic underpinnings of the existence of oscillations in the full neuromechanical

oscillator model.

Figure 5.6(a,b) show that increasing the nondimensional feedback strength c decreases the

period of the oscillation, which is similar to the effects of the feedback strengths cm and cp on

the period of the full neuromechanical oscillator in Chapter 4. Figure 5.6(a,b) also show that

increasing τ increases the period, which is similar to the effects of both the timescales τb and τm on

the full neuromechanical oscillator period (see Figure 4.6(a)). Figure 5.6(c,d) show that increasing

the nondimensional feedback strength c increases the amplitude, which is similar to the effect of

the feedback strength cm in Chapter 4. Figure 5.6(c,d) shows that the relationship between τ

and the curvature amplitude is more complex. For τ > 1 (log10 τ > 0), increasing τ decreases

the amplitude, and for τ < 1, decreasing τ decreases the amplitude. This is similar to how the
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(a) (b)

(c) (d)

Figure 5.6. (a,b) Log10 of the period vs. the nondimensional feedback strength c
and the nondimensional timescale τ for (a) I = 0.01 and (b) I = 0.001. Increasing
c decreases the period of the oscillation, and increasing τ increases the period.
(c,d) The amplitude (in K) vs. the nondimensional feedback strength c and the
nondimensional timescale τ for (c) I = 0.01 and (d) I = 0.001. . Increasing c
increases the amplitude, but the relationship between τ and the amplitude is more
complex. For τ > 1 (log10 τ > 0), increasing τ decreases the amplitude, and for
τ < 1, decreasing τ decreases the amplitude.

muscle activity timescale τm affected the curvature amplitude in the full neuromechanical model

(see Figure 4.6(b)).

In summary, this simple 1-D Poincaré map captures the full limit cycle dynamics of the reduced

oscillator model, which captures most of the dynamics of the full neuromechanical oscillator model.

This 1-D map provides a framework for further analysis of the mechanisms of oscillation in the

neuromechanical oscillator. We could trace out explicit parameter dependence of the bifurcations,

period, and amplitude of the reduced oscillator model. The existence of oscillations, which in
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both the neuromechanical oscillator model and the reduced oscillator model depends nonlinearly

on the timescales τb and τm and the feedback strengths cm and cp, is determined by the existence

of solutions to the nonlinear maps F1(α), F2(α). Thus, a deeper analysis of the dependence of

these maps on c = cmcp and τ = τb/τm would give insight into the biophysical mechanisms behind

the existence of oscillations in the neuromechanical oscillator model. Another future direction

is to perturb this reduced system in any direction and solve piecewise along the limit cycle to

compute the phase response curve analytically. An analytic PRC could give deeper insight into

how the biophysical mechanisms of the oscillator shape the PRC and thus the coordination of the

neuromechanical model.
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CHAPTER 6

Chains of Different Numbers of Modules

In Chapter 3, we examine the stable phase differences between neighboring modules in a two-

oscillator model and a six-oscillator model. In both cases, we show that the general trend of

each pairwise phase difference— decreasing from near-synchrony towards antiphase as external

fluid viscosity µf increases— underlies the wavelength trend of gait adaptation. However, in the

six-oscillator model (Ch. 3.4), the pair-wise phase differences are not uniform across the body. In

particular, at low and zero fluid viscosity the phase differences of the six-oscillator model are spread

out between roughly 0.85 and 0.95, while for the same parameters the two-oscillator model has a

phase difference of roughly 0.9. Here, we examine chains of different numbers of oscillators in order

to give insight into how these results depend on the number of oscillators.

We simulated the phase model and neuromechanical model with N oscillator modules, where

N = 2 − 6, 10, 12, 20, and 25. Figure 6.1 shows the stable pair-wise phase differences as external

fluid viscosity µf is varied for N = 2−6, and Figure 6.2 shows the same for N = 10, 12, 20, and 25.

At low fluid viscosity, where the phase differences are primarily determined by the neural coupling,

the pair-wise phase differences are spread out between roughly 0.8 and 0.95. As fluid viscosity

increases, these pair-wise phase differences generally decrease, though at non-uniform rates. That

is, the dependence of each pair-wise phase difference on the fluid viscosity depends on the position

of that pair of oscillators in the body.

The ordering of the varying pair-wise phase differences is also determined by the position in the

chain: at low viscosity, the pair at the head (φ1) is at the lowest phase difference (near 0.8), the

pair at the tail (φN ) are at the highest phase differences (near 0.95), and the rest are ordered by

position at intermediate phase differences between these two. This pattern holds independent of N .

However, at high fluid viscosity, where mechanical coupling is stronger, the ordering of pair-wise

phase differences is rearranged, and there is not a consistent pattern between chains.
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(a) (b)

(c) (d)

(e)

Figure 6.1. Stable pair-wise phase differences of the phase model (lines, circles)
and neuromechanical model (crosses) as a function of external fluid viscosity µf in
the N -oscillator chain with fixed module length `. N = 2− 6 for cases (a)-(e).

Figure 6.3 shows the wavelengths computed from the above N -module phase differences (see

Appendix A.1 for details). In the N -oscillator cases considered here, the wavelength trends are

decreasing, though they don’t always capture the quantitative trend observed experimentally as

71



(a) (b)

(c) (d)

Figure 6.2. Stable pair-wise phase differences of the phase model (lines, circles)
and neuromechanical model (crosses) as a function of external fluid viscosity µf
in the N -oscillator chain with fixed module length `. N = 10, 12, 20, 25 for cases
(a)-(d).

in Figure 2.2. For each of these simulations, we used the same neural coupling parameters that

were used in Chapter 2.4.1 to generate the data for Figure 2.2, εg = 0.017 and εp = 0.05. The

wavelength trend is steepest for small N , and flattest for large N , which suggests that as N

increases, the mechanical coupling strength is weakening relative to the neural coupling strength.

In Chapter 2.4.3, we show how changing the neural coupling strengths εg and εp affects the

wavelength trend in the six-oscillator neuromechanical model. Here, we investigate how changing

the neural coupling strengths affects the wavelength trend for a chain with a different number of

oscillators. Figure 6.4 shows the wavelengths of the 20-oscillator phase model with different gap-

junctional coupling strengths, εg. For each εg, the proprioceptive coupling strength εp was fit to

match the wavelength in water (1.5 bodylengths). For εg = 0.001 (and εp = 0.0035), the wavelength
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Figure 6.3. Wavelength (λ/L) as a function of external fluid viscosity µf for the
N -oscillator chain. Wavelength computed from the phase model (lines, circles) and
the neuromechanical model (crosses).

trend closely resembles the data of Fang-Yen et al. 2010 [15]. This indicates that, independent of

the number of oscillators N , the model can quantitatively capture the wavelength trend by altering

the neural coupling strengths to account for the changing mechanical coupling strength with N .

For the N -oscillator cases considered here, we can generally find gait adaptation; however

the model requires different neural parameters for different numbers of oscillators in order to get

similar wavelength trends over this range of external fluid viscosities. Thus, the main conclusions

of Chapters 2 and 3 do not depend on the number of oscillators considered; by changing model

parameters, the model can capture and explain gait adaptation independent of the number of

oscillators.
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Figure 6.4. Wavelength (λ/L) as a function of external fluid viscosity µf for the 20-
oscillator chain for various gap-junctional coupling strengths εg. Proprioceptive cou-
pling strengths εp were chosen to match the wavelength in water (1.5 bodylengths).
Data from Fang-Yen et al. 2010 [15] in black X’s.
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CHAPTER 7

Discussion and Conclusions

The analysis of the neuromechanical model presented here identifies a mechanism for gait adap-

tation to increasing fluid viscosity in C. elegans forward locomotion. In Chapter 2, we model the

C. elegans forward locomotion system as a chain of neuromechanical oscillators coupled by body

mechanics, proprioceptive coupling, and gap-junctional coupling. Using the theory of weakly cou-

pled oscillators, we exploit the modular structure of the forward locomotion system to analyze the

relative contributions of the various coupling modalities. In Chapter 3, we show that propriocep-

tive coupling between modules leads to a posteriorly-directed traveling wave with a characteristic

wavelength. Gap-junction coupling between neural modules promotes synchronous activity (long

wavelength), and mechanical coupling promotes a high spatial frequency (short wavelength). The

wavelength of C. elegans’ undulatory waveform is set by the relative strengths of these three cou-

pling forms. As the external fluid viscosity increases, the mechanical coupling strength increases

and the wavelength decreases, as observed experimentally.

By tuning only a few coupling parameters, the model can robustly capture the gait adaptation

seen in experiments [3, 15, 49] over a wide range of mechanical parameters. The robustness of

the model is of particular importance because the experimental measurements of mechanical body

parameters vary widely. Our model suggests relationships between the parameters that need to

hold in order to get the appropriate coordination and wavelength trend. In particular, the effective

mechanical body timescale τb = µb/kb (the ratio of body viscosity to stiffness) plays a key role. In

Chapter 2, we show that our model yields the correct coordination trend across the entire range

of reported mechanical parameters provided that τb is in the range 0.07− 1 s. Furthermore, our

model suggests that generally the muscle activity timescale τm must be shorter than the effective

body mechanics timescale τb. In other words, the system must generate contractile forces faster

than the body responds. Otherwise, the model suggests that there will not be a traveling wave of

neuromechanical activity, and therefore no effective locomotion for high external fluid viscosities.
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The coordination trend of the full neuromechanical model can be inferred from the properties of

the individual neuromechanical oscillator modules. In Chapter 4, we show how model parameters

affect the period, amplitude, existence of oscillations, and phase response properties of the single

neuromechanical module. We show that the oscillations are robust over a wide range of parameters

and the bifurcation structure remains largely the same as well. Different parameters give different

phase response properties, however these differences translate into generally the same G-functions

and thus the same coordination. On the other hand, changing the ordering of the timescales τm

and τn changes the G-functions and thus the coordination in the two-oscillator model. The muscle

activity timescale τm must generally be lower than the effective body mechanics timescale τb in order

to get the appropriate coordination in the G-functions, as observed in Chapters 2 and 3. This major

coordination change is the result of subtle changes in the phase response and limit cycle properties

of the neuromechanical oscillator module, so understanding the underlying biophysical processes

would provide additional insight into the mechanisms of coordination.

In Chapter 5, we present a simplified version of the neuromechanical oscillator model that is

more amenable to analysis, and we build a framework to more deeply understand the parametric

dependence of the neuromechanical oscillator module. By appropriate assumptions about the

neuromechanical oscillator module, including linear contractile forces and instantaneuos switches

between neural states, we reduce the oscillator module to a form that is analytically piecewise-

solvable. This allows us to construct a 1-D Poincaré map that captures the limit cycle dynamics.

This 1-D map shows how the feedback strengths and system timescales shape the existence of

oscillations and influence the period and amplitude of the limit cycle. The map also provides a

framework for further analysis of the mechanisms of oscillation and phase response properties of

the neuromechanical oscillator.

In our model, the wavelength trend of gait adaptation can be explained by the general trend

of the pair-wise phase differences between oscillator modules; however, the numbers of oscillators

in the model is a key parameter that affects the wavelength trend. In Chapter 6, we show that

the model requires different neural parameters for different numbers of oscillators in order to get

similar wavelength trends over the considered range of external fluid viscosities. Thus, the model’s

ability to capture gait adaptation does not depend on the number of oscillators considered.
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Our model is similar in structure to previous modeling work by Boyle et al. [5]. In particular,

the neural module is very similar to Boyle et al. [5]. On the other hand, the description of the

muscle dynamics and body mechanics are more complex in the Boyle et al. model [5]. Boyle et

al. [5] also captures gait adaptation, and the large number of parameters and variables of the model

allows it to more closely match the wavelengths, amplitudes, and undulation frequencies observed

experimentally. However, the complexity of the model also limits the ability to systematically assess

the relative roles of body mechanics and proprioception in coordination. A key difference between

our model and Boyle et al. [5] is the number of neural modules: Boyle et al. [5] considers a chain of

12 modules in line with the number of VB neurons (11), whereas our model considers a chain of 6

modules in line with the number of DB neurons (7). However, both assumptions are reasonable as

it is unclear what the correct “number of modules” is in the motor circuit. Furthermore, we have

also shown in Chapter 6 that the main conclusions of our model do not depend on the choice of

the number of oscillators.

Another difference between our model and Boyle et al. [5] is in the sign, directionality, and

extent of nonlocal proprioception. The directionality of proprioception in Boyle et al. [5] is con-

sistent with the directionality of undifferentiated processes extending posteriorly from the B-class

neurons, which are postulated to be responsible for proprioception [58]. We take the directionality

of proprioception to be consistent with the functional directionality suggested by the experiments

of Wen et al. [51]. Note that symmetry arguments can be made that reversing both the sign and

direction of the nonlocal proprioception will not change the behavior of the models, as Denham

et al. [11] points out. The extent of proprioception in Boyle et al. [5] is over half a bodylength,

and Denham et al. [11] showed that the larger the proprioceptive range, the longer the undulatory

wavelength their model. We considered only nearest-neighbor proproception, which is sufficient

to achieve the long-wavelength undulations in water because of our inclusion of gap-junctional

coupling that promotes synchrony between the modules and thus long wavelengths.

C. elegans gait adaptation is marked by a shortening of the wavelength and a decrease in

undulation frequency with increasing fluid viscosity [3, 15, 49]. Boyle et al. [5] captures both

wavelength and frequency adaptation as a function of external fluid viscosity. Our model captures

the quantitative trend in wavelength and the qualitative trend in frequency. However, the model
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frequency range is only 1.7−1.6 Hz as fluid visosity is increased as opposed to the range 1.7−0.3 Hz

given in Fang-Yen et al. [15]. Many differences between Boyle et al. [5] and our model may account

for this discrepancy in frequency adaptation; these differences include nonlinear and heterogeneous

mechanical body parameters and a more sophisticated muscle model.

Our model assumes that the undulatory gait emerges from a chain of neuromechanical oscil-

lators coupled by both body mechanics and neural connectivity. However, there are several other

hypotheses for how the undulatory gait is generated and coordinated [19]: (1) a separate head

circuit contains a CPG that drives the propogated bending wave along the body, and (2) a network

of coupled CPGs generates and coordinates the bending wave in a feed-forward manner. Modeling

work by Olivares et al. [41] shows that the anatomical structure of the neural circuitry of C. elegans

can be tuned to produce CPG-driven locomotion. However, there is no experimental evidence to

date for such spontaneous isolated neural activity [10,58]. Furthermore, recent experiments by [16]

showed that C. elegans is capable of decoupled “two-frequency undulations”. By suppressing neural

activity in the neck region, the head and body can undulate seemingly independent of one another

at different frequencies (the head slower and the body faster). This evidence supports the presence

of multiple neural or neuromechanical oscillators.

In the present study, the theory of weakly coupled oscillators is used to identify the roles of

the various coupling modalities in generating coordination for forward locomotion in C. elegans.

The phase models derived by the theory of weakly coupled oscillators capture the influence of

one oscillating module on another through the interaction functions H(φ), which are convolution-

like integrals of the coupling input and the corresponding phase response function Z(t) of the

individual modules. Therefore, our findings could be validated by experimentally measuring the

phase-response curves of the neuromechanical circuit [37]. This could be achieved using a combina-

tion of optogenetic techniques and mechanical stimuli to perturb the system [16,27,51]. Note also

that the structure of the phase equations could be exploited to further dissect out the biophysical

mechanisms that underlie coordination of the undulatory motion of C. elegans. Because the shapes

of the PRCs and the coupling signals combine to determine the interaction functions, a systematic

analysis of how cellular and synaptic dynamics [57], muscle properties, and body mechanics shape
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the PRCs and coupling signals would provide further insight into the integrated neuromechanical

mechanisms underlying the generation and coordination of locomotion.
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APPENDIX A

Neuromechanical Model Details

A.1. Defining Wavelength

A.1.1. Constant Wavespeed. For a wavelength of undulation in the neuromechanical model

traveling front-to-back at constant speed, the phase is defined as

(A.1) θ(x, t) =

(
t

T
− x

λ

)
mod 1

The phase corresponding to module k (k = 1, . . . , 6) centered at body position x = `(k − 1/2) is

(A.2) θk =

(
t

T
− `

λ

(
k − 1

2

))
mod 1,

where T is the oscillator period. Thus, the constant phase difference φ∗ is

(A.3) φ∗ = (θk+1 − θk) mod 1 =

(
− `
λ

)
mod 1 = 1− `

λ
.

and the constant wavelength is

(A.4) λ =
`

1− φ∗
.

For the neuromechanical model, ` = L/6, so the wavelength (normalized by bodylength) is

(A.5)
λ

L
=

1

6(1− φ∗)
.

A.1.2. Nonconstant Wavespeed. The non-uniform phase differences φk = θk+1 − θk (k =

1, . . . , 5) between modules are used to define an effective wavelength of undulation when the

wavespeed is nonconstant. The distance between the center of the first and center of the sixth

module is 5/6L, and the phase difference between them is
∑5

k=1(1 − φk). This gives an effective
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wavelength (normalized by 5/6 bodylengths)

(A.6)
λ

(5/6)L
=

1∑5
k=1 (1− φk)

,

so the wavelength (normalized by bodylength) is

(A.7)
λ

L
=

1

6
∑5

k=1 (1− φk)/5
.

Note that this is equivalent to the constant phase difference wavelength (equation A.5) using the

average phase difference between the modules as the constant phase difference φ∗, i.e., with

(A.8) 1− φ∗ =

∑5
k=1 1− φk

5
.

For the neuromechanical model results, first the phase differences φk between the modules were

computed, then the wavelength was computed according to equation A.7 above.

A.1.3. N-Module Wavelength. With N modules of fixed length ` = L/6, the non-uniform

phase differences φk = θk+1 − θk (k = 1, . . . , 5) between modules are used to define an effective

wavelength of undulation. The distance between the center of the first and center of the sixth

module is (N−1)`, and the phase difference between them is
∑N−1

k=1 (1−φk). This gives an effective

wavelength (normalized by (N − 1)` bodylengths)

(A.9)
λ

(N − 1)`
=

1∑N−1
k=1 (1− φk)

,

so the wavelength λ is

(A.10) λ =
(N − 1)`∑N−1
k=1 (1− φk)

,

which normalized by bodylength L = 6` is

(A.11)
λ

L
=

1

6
∑N−1

k=1 (1− φk)/(N − 1)
.

A.2. Derivation of Mechanical Parameters

First, the bending modulus kb = EIc of the cuticle of the worm was determined, where E is

the Young’s modulus and Ic is the second moment of area of the cuticle. The nematode body can
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be thought of as a pressurized, fluid-filled tube or modeled as an annular cylinder as in Cohen and

Ranner [9], so the only elasticity in the body is that of the cuticle. To approximate the second

moment of area of the cuticle, Ic, note that the cuticle width rcuticle = 0.5 µm is much smaller than

the average worm radius R = 40 µm. Following Cohen and Ranner [9],

(A.12) Ic = 2πR3rcuticle = 2.0× 10−7mm4.

The Young’s modulus E has been estimated to be as small as E = 3.77 ± 0.62 kPa [49] or as

large as E = 13 MPa [15]. Backholm et al. [2] gives a range of 110± 30 kPa ≤ E ≤ 1.3± 0.3 MPa.

Using these estimates, we explore the range of bending moduli kb = EIc = 7.53×10−10−2.6×10−6

N(mm)2.

The cuticle viscosity has been estimated as 5× 10−16 Nm2s [15]. The internal tissue viscosity

has been estimated to be constant and negative (energy-generating) as cd = −177.1 ± 15.2 Pa

s so that µb = cdI = −1.7 × 10−11 N(mm)2s [49] by a model fit, however this includes the

active muscle components. Backholm et al. [2] estimated the range cd ∈
[
1× 102, 1× 104

]
Pa

s, so that the effective viscosity is cdI ∈
[
2× 10−11, 2× 10−9

]
N(mm)2s. These experiments used

different techniques and models for viscosity, so likely have different effects lumped into the viscosity

parameter. In order to explore the range of effective body mechanics timescales τf = µb/kb =

0.001−5 s, we use the range of body viscosities µb = 5×10−10−1.3×10−7 N(mm)2s in our model.

Following previous modeling procedures [9, 15], the normal drag coefficient CN of a slender

body with length L = 1 mm and (average) radius R = 40 µm in a solution with viscosity µf is

(A.13) CN =
4πµf

ln(L/R) + 0.5
= αµf ≈ 3.4µf .
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APPENDIX B

Theory of Weakly Coupled Oscillators

Here, we describe how the theory of weakly coupled oscillators [44] can reduce the 30-dimensional

neuromechanical model down to a 6-dimensional phase model. Recall that the neuromechanical

model can be written as a network of coupled oscillator modules:

(B.1)
dXj

dt
= S(Xj(t)) + Cj(X1(t), . . . ,X6(t)), j = 1, . . . , 6

where S(Xj(t)) describes the intrinsic uncoupled oscillator dynamics (equations 3.1-3.5) and

Cj(X1(t), . . . ,X6(t)) describes the coupling input from all the modules to the jth module through

gap-junctions, nonlocal proprioception, and body mechanics (equation 3.11).

B.1. Phase and Inverse Phase Map

When uncoupled, each neuromechanical module oscillates with a stable period T . The neurome-

chanical oscillation corresponds to a stable T -periodic limit cycle XLC(t) in (κ,AV , AD, VV , VD)-

state-space. This limit cycle can be parametrized by phase

(B.2) θ =
(
ωt+ θ0

)
mod 1

with the initial phase θ0 ∈ [0, 1). As θ increases at a constant rate ω = 1/T , XLC(θ) traces out the

limit cycle through state-space and the state of the oscillator on the limit cycle is given by

(B.3) X(t) = XLC(θ).

Each point on the limit cycle X = XLC(θ) corresponds to a unique phase θ, so there is an inverse

map

θ = (XLC)−1(X) = Φ(X).(B.4)
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The time-evolution of phase is then given by the time-derivative of equation B.4, which is equal to

ω by the definition of phase (equation B.2):

dθ

dt
= ∇XΦ(XLC(t)) · dXLC

dt
= ω,(B.5)

where ∇XΦ is the gradient of Φ(X) evaluated at the point on the limit cycle X:

∇XΦ(X) =

[
(
dΦ

dκ
,

dΦ

dAV
,

dΦ

dAD
,

dΦ

dVV
,

dΦ

dVD
)|X
]T
.(B.6)

Since the gradient of the phase map can describe how the phase Φ shifts in response to perturba-

tions in any direction, it is also called the phase response curve/function (PRC) Z(t). The phase re-

sponse functions for perturbations to each system state variable, Zκ(t), ZAV
(t), ZAD

(t), ZVV (t), ZVD(t),

are the vector-wise components of the gradient of the phase map ∇XΦ. Thus we use the gradient

along the limit cycle ∇XΦ(XLC) and the periodic phase response function Z(t) interchangeably.

B.1.1. Asymptotic Phase. For points X on the limit cycle there is a unique phase θ, and

vice-versa. The solution Y(t) to the module equations, with initial condition Y0 off but close to

the limit cycle (denoted Y(t); Y0)), will asymptotically approach the limit cycle and converge to a

solution X(t; X0) for some unique initial condition X0 on the limit cycle. We define the asymptotic

phase of a point Y0 off the limit cycle to be the phase θ = Φ(X0), i.e., Φ(Y0) = Φ(X0) if and only

if

(B.7) ‖X(t; X0)−Y(t; Y0)‖ → 0 as t→∞.

B.2. Weakly Coupled Oscillators

Combining the differential equations for the fully coupled neuromechanical model (equation

B.1) and the phase of a single module (equation B.5), the phase of the jth oscillator module in the

fully coupled neuromechanical model is governed by

dθj
dt

= ∇XΦ(Xj(t)) ·
dXj

dt
(B.8)

= ∇XΦ(Xj(t)) ·
[
S(Xj(t)) + Cj(X1(t), . . . ,X6(t))

]
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When the coupling input Cj(X1(t), . . . ,X6(t)) is weak, the module’s intrinsic dynamics S(Xj)(t))

dominate the dynamics of the fully-coupled system, and the modules remain on their intrinsic limit

cycle, i.e., Xj(t) ≈ XLC(t+ θj(t)). That is, we assume that the coupling only affects the phase of

the oscillators but not the amplitude of the limit cycles. With this assumption, the phase equations

are

dθj
dt

= ∇XΦ(XLC(t+ θj(t))) ·
[
S(XLC(t+ θj(t))) + Cj(X1(t+ θ1(t)), . . . ,X6(t+ θ6(t)))

]
(B.9)

= ωj +∇XΦ(XLC(t+ θj(t))) · Cj(X1(t+ θ1(t)), . . . ,X6(t+ θ6(t))).

Under the weak coupling assumption, the modules respond linearly to the coupling inputs, so the

small phase shifts in response to coupling inputs at different timings sum linearly. We can assume

that the phase shifts due to coupling dynamics are neglible over a single period and that they only

add up over many periods, that is the changes in phase θj occur on a much slower timescale than

the period T . Thus the explicit time dependence in equation B.9 can be removed by averaging the

rate of change of θj over a single period T and holding θ1, . . . , θ6 constant inside the integral:

dθj
dt

= ωj +
1

T

∫ T

0
Z(t̃+ θj)) · Cj(XLC(t̃+ θ1), . . . ,X

LC(t̃+ θ6))dt̃.(B.10)

This averaging process assumes that the phases θj are constant with respect to the fast-time t̃, but

they vary in the slow-time t (for the rigorous averaging theory see [14,21]). Shifting the integrand

by θj ,

dθj
dt

= ωj +
1

T

∫ T

0
Z(t̃) · Cj(XLC(t̃+ θ1 − θj), . . . ,XLC(t̃+ θ6 − θj))dt̃.(B.11)
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Applying the description of the coupling inputs (equation 3.11), taking the dot product inside the

integral, and separating terms,

dθj
dt

= ωj +
6∑

k=1

εm(D−14 )jk
1

T

∫ T

0
Zκ(t̃)(−κ̇LC(t̃+ θk − θj))dt̃(B.12)

+

6∑
k=1

εp
τn

(Wp)jk
1

T

∫ T

0
ZVV (t̃)κLC(t̃+ θk − θj)dt̃

+
6∑

k=1

εp
τn

(Wp)jk
1

T

∫ T

0
ZVD(t̃)(−κLC(t̃+ θk − θj))dt̃

+
6∑

k=1

εg
τn

(Wg)jk
1

T

∫ T

0
ZVV (t̃)(V LC

V (t̃+ θk − θj)− V LC
V (t̃))dt̃

+

6∑
k=1

εg
τn

(Wg)jk
1

T

∫ T

0
ZVD(t̃)(V LC

D (t̃+ θk − θj)− V LC
D (t̃))dt̃.

This is equivalent to the phase model

(B.13) θ̇j = ωj +

6∑
k=1

εm(D−14 )jkHm(θk − θj) + εg(Wg)jkHg(θk − θj) + εp(Wp)jkHp(θk − θj),

with interaction functions H(φ) :

Hm(φ) = − 1

T

∫ T

0
Zκ(t)κ̇LC(t− φ)dt,

(B.14)

Hp(φ) =
1

τn

1

T

∫ T

0
ZVV (t)κLC(t− φ)− ZVD(t)κLC(t− φ)dt,

(B.15)

Hg(φ) =
1

τn

1

T

∫ T

0
ZVV (t)

(
VV

LC(t− φ)−VV
LC(t)

)
+ ZVD(t)

(
VD

LC(t− φ)−VD
LC(t)

)
dt.

(B.16)

B.3. Computing the Phase Response Curves

Here, we show how to compute the periodic phase response curve (PRC) function Z(t), i.e.,

the gradient of the phase map along the limit cycle ∇XΦ(XLC(t)). Consider two solutions to the

isolated neuromechanical oscillator module equations, X(t) = XLC(t + θ) that starts at X0 =
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XLC(θ) and Y(t) = XLC(t+ θ) + p(t) that starts at Y(0) = XLC(θ) + p(0), where p(0) is a small

perturbation. Linearizing around the stable limit cycle, the perturbation p(t) satisfies

(B.17)
dp

dt
= DF (XLC(t+ θ))p,

where DF (XLC(t)) is the Jacobian of S(X), the isolated oscillator dynamics, evaluated along the

limit cycle XLC(t). The phase difference between the two solutions X(t),Y(t) is

(B.18) ∆θ = Φ(XLC(t+ θ) + p(t))− Φ(XLC(t+ θ)) = ∇XΦ(XLC(t+ θ)) · p(t) +O(|p2|)

Because the oscillator modules are isolated, the phase difference between the two solutions, ∆θ, is

constant, so by differentiating equation B.18 with respect to time,

0 =
d

dt

[
∇XΦ(XLC(t+ θ)) · p(t)

]
(B.19)

=
d

dt

[
∇XΦ(XLC(t+ θ))

]
· p(t) +∇XΦ(XLC(t+ θ)) · dp

dt

=
d

dt

[
∇XΦ(XLC(t+ θ))

]
· p(t) +∇XΦ(XLC(t+ θ)) · (DF (XLC(t+ θ))p(t))

=

[
d

dt

(
∇XΦ(XLC(t+ θ))

)
+DF (XLC(t+ θ))T∇XΦ(XLC(t+ θ))

]
· p(t)

Since the perturbation p(t) is arbitrary,

(B.20)
d

dt

(
∇XΦ(XLC(t+ θ))

)
+DF (XLC(t+ θ))T∇XΦ(XLC(t+ θ)) = 0,

i.e., ∇XΦ(XLC(t)) solves the “adjoint equation”

(B.21)
dZ

dt
= −DF (XLC(t))Z.

The definition of the phase map provides a normalization condition:

(B.22)
dθ

dt
= ∇XΦ(XLC(t)) · dXLC

dt
= Z(t) · S(XLC(t)) = ω.

The adjoint system (equation B.21) has an unstable T -periodic limit cycle because it has the

opposite stability of the original system, an asymptotically stable T -periodic limit cycle. Thus the
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T-periodic solution to equation B.21, i.e., the PRC Z(t), can be found by integrating backwards in

time from an arbitrary initial condition. We then normalize the PRC using equation B.22.

B.4. Computing the Interaction Functions Quickly Using the Fourier Transform

We can compute the interaction functions quickly using the Fourier transform to turn the

convolution-like integral into a product of vector functions. Given periodic functions Z(t) (a PRC

component) and I(t) (a coupling input), the interaction function H(φ) is

H(φ) =
1

T

∫ T

0
Z(t)I(t+ φ)dt.(B.23)

If we let Z̃(−t) = Z(t), then

H(φ) =
1

T

∫ T

0
Z̃(−t)I(φ− (−t)))dt.(B.24)

With the change of variables τ = −t, dτ = −dt and

H(φ) = − 1

T

∫ T

0
Z̃(τ)I(φ− τ)dτ,(B.25)

which is now a convolution integral. Applying the Fourier transform turns the convolution into a

product:

H(φ) = − 1

T
F−1{F{Z̃}(ξ) · F{I}(ξ)}(φ).(B.26)

Note that

F{Z̃}(ξ) =

∫ ∞
−∞

Z̃(t)e−iξtdt(B.27)

=

∫ ∞
−∞

Z(−t)e−i(−ξ)(−t)dt

= −
∫ ∞
−∞

Z(τ)e−i(−ξ)τdt

= −F{Z}(−ξ),
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so

H(φ) = − 1

T
F−1{−F{Z}(−ξ) · F{I}(ξ)}(φ).(B.28)

This can be computed quickly and efficiently using the Fast Fourier Transform (fft) and the Inverse

Fast Fourier Transform (ifft) on vectorized samples of the periodic functions Z(t), I(t) by the

command (-1/T)*ifft(-fft(flip(Z)).*fft(I)) in MATLAB.
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APPENDIX C

Deriving the 1-D Poincaré Map

C.1. Steady-State Analysis

When SV and SD are fixed and SD−SV = 0, i.e., when the two neurons are both on or both off,

we can assess the steady state behavior of the reduced neuromechanical module (equation 5.18).

By assuming K(t) = a exp(λt), the 2nd order ODE becomes

(C.1)
(
τλ2 + (1 + τ)λ+ 1

)
a exp(λt) = 0

and thus

λ =
1

2τ

(
−1− τ ±

√
(1 + τ)2 − 4τ

)
(C.2)

=
1

2τ

(
−1− τ ±

√
1− 2τ + τ2

)
=

1

2τ
(−1− τ ± (1− τ))

= −1,−1/τ.

Hence, without any dynamics in SD, SV , the steady state at K = 0, M = 0 is globally asymptoti-

cally stable for any τ . If the system starts with SD − SV = 0 and input to the B-class neurons in

between the on/off thresholds, i.e., the initial K is in

(
−1− ε

2
− I, 1 + ε

2
− I
)

, then neither neuron

will switch on/off and so K → 0,M → 0 according to the above solution.

When SV and SD are fixed and either SD−SV = 1 or SD−SV = −1, the solutions are similar.

Generically, the solution to equation 5.11 for fixed SV , SD is given by

(C.3) K(t) = Ae−t +Be−t/τ + c(SD − SV ),

and the equilibrium K = c(SD − SV ), M = 0 is always globally asymptotically stable.
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C.2. Map Derivation

Here, we piece together the solutions to the reduced oscillator model (equations 5.18-5.20)

through each proprioceptive threshold to generate a Poincaré map from initial condition K =

KV
off ,M = α0, SD = 1, SV = 0 to the next intersection with this proprioceptive threshold K = KV

off

from the right, i.e., to K = KV
off ,M = α2 < 0, SD = 1, SV = 0. Essentially, we map M = α0 to

M = α2 after a full neuromechanical loop. This 1-D map is given by

(C.4) α2 = F (α0) = −F2(F1(−F2(F1(α0)))),

and is generated by intermediate maps along each solution branch

α1/2 = F1(α0),(C.5)

α1 = F2(α1/2),(C.6)

α3/2 = −F1(−α1),(C.7)

α2 = −F2(−α3/2),(C.8)

which we define in the following subsections. Note that depending on parameters, these maps may

not be defined, which indicates that the system instead converges to a stable equilibrium along one

of the solution branches, breaking the neuromechanical loop. Conditions for the existence of these

maps and details on how to numerically solve for the roots of these maps are given in the next

section.

C.2.1. Map 1 - (KV
off , α0) to (KV

on, α1/2). Map 1 flows the solution forward in time from

the first proprioceptive threshold at KV
off to the second threshold at KV

on to map M = α0 to

M = α1/2. Using the general solution (equation C.3) with the initial condition K = KV
off , M = α0,

SD = 1, SV = 0, and equilibrium c(SD − SV ) = c, we obtain the coefficients

B =
KV
off + α0 − c

1− 1/τ
,(C.9)

A = KV
off − c−B.(C.10)
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Next, we solve for the proprioceptive-threshold crossing time, i.e., the time t1/2 such that

(C.11) K(t1/2) = KV
on, M(t1/2) = α1/2.

With the general solution (equation C.3) and coefficients (equations C.9-C.10), we sum together

K(t1/2) and M(t1/2) to obtain an equation for the crossing time t1/2:

c+Ae−t1/2 +Be−t1/2/τ = KV
on

+) −Ae−t1/2 − B

τ
e−t1/2/τ = α1/2

c+B(1− 1/τ)e−t1/2/τ = KV
on + α1/2(

KV
off − c+ α0

)
e−t1/2/τ = KV

on − c+ α1/2

t1/2 = −τ ln

(
KV
on − c+ α1/2

KV
off − c+ α0

)
.(C.12)

Finally, we use equation C.12 to derive an implicit equation for α1/2:

c

τ
+
A

τ
e−t1/2 +

B

τ
e−t1/2/τ =

KV
on

τ

+) −Ae−t1/2 − B

τ
e−t1/2/τ = α1/2

c

τ
+A(1/τ − 1)e−t1/2 =

KV
on

τ
+ α1/2

c+A(−τ)(1− 1/τ)

[
KV
on − c+ α1/2

KV
off − c+ α0

]τ
= KV

on + α1/2τ

c−
[
(KV

off − c)(1− 1/τ)− (KV
off − c+ α0)

]
τ

[
KV
on − c+ α1/2

KV
off − c+ α0

]τ
= KV

on + α1/2τ

(
KV
off − c+ α0τ

)[KV
on − c+ α1/2

KV
off − c+ α0

]τ
= KV

on − c+ α1/2τ[
KV
on − c+ α1/2

KV
off − c+ α0

]τ
=
KV
on − c+ α1/2τ

KV
off − c+ α0τ

(C.13)
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Finding the root α1/2 of equation C.13 for a given α0 defines the map from α0 to α1/2, i.e.,

α1/2 = F1(α0). Note that depending on parameters, equation C.13 may not have a root α1/2, which

indicates that the system instead converges to the stable equilibrium K = c,M = 0.

C.2.2. Map 2 - (KV
on, α1/2) to (KD

off , α1). Map 2 flows the solution forward in time from

the second proprioceptive threshold at KV
on to the third threshold at KD

off to map M = α1/2 to

M = α1. Using the general solution (equation C.3) with the initial condition K = KV
on, M = α1/2,

SD = 1, SV = 1, and equilibrium c(SD − SV ) = 0, we obtain the coefficients

B =
KV
on + α1/2

1− 1/τ
,(C.14)

A = KV
on −B.(C.15)

Next, we solve for the proprioceptive-threshold crossing time, i.e., the time t1 such that

(C.16) K(t1) = KD
off , M(t1) = α1.

With the general solution (equation C.3) and coefficients (equations C.14-C.15), we sum together

K(t1) and M(t1) to obtain an equation for the crossing time t1:

Ae−t1 +Be−t1/τ = KD
off

+) −Ae−t1 − B

τ
e−t1/τ = α1

B(1− 1/τ)e−t1/τ = KD
off + α1(

KV
on + α1/2

)
e−t1/τ = KD

off + α1

t1 = −τ ln

(
KD
off + α1

KV
on + α1/2

)
.(C.17)
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Finally, we use equation C.17 to derive an implicit equation for α1:

A

τ
e−t1 +

B

τ
e−t1/τ =

KD
off

τ

+) −Ae−t1 − B

τ
e−t1/τ = α1

A(1/τ − 1)e−t1 =
KD
off

τ
+ α1

A(−τ)(1− 1/τ)

[
KD
off + α1

KV
on + α1/2

]τ
= KD

off + α1τ

−
[
(KV

on)(1− 1/τ)− (KV
on + α1/2)

]
τ

[
KD
off + α1

KV
on + α1/2

]τ
= KD

off + α1τ

(
KV
on + α1/2τ

)[ KD
off + α1

KV
on + α1/2

]τ
= KD

off + α1τ[
KD
off + α1

KV
on + α1/2

]τ
=

KD
off + α1τ

KV
on + α1/2τ

(C.18)

Finding the root α1 of equation C.18 for a given α1/2 defines the map from α1/2 to α1, i.e.,

α1 = F2(α1/2). Note that depending on parameters, equation C.18 may not have a root α1, which

indicates that the system instead converges to the stable equilibrium K = 0,M = 0.

C.2.3. Map 3 - (KD
off , α1) to (KD

on, α3/2). Map 3 flows the solution forward in time from

the third proprioceptive threshold at KD
off to the fourth threshold at KD

on to map M = α1 to

M = α3/2. Using the general solution (equation C.3) with the initial condition K = KD
off , M = α1,

SD = 0, SV = 1, and equilibrium c(SD − SV ) = −c, we obtain the coefficients

B =
KD
off + α1 + c

1− 1/τ
,(C.19)

A = KD
off + c−B.(C.20)

Next, we solve for the proprioceptive-threshold crossing time, i.e., the time t3/2 such that

(C.21) K(t3/2) = KD
on, K̇(t3/2) = α3/2.
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With the general solution (equation C.3) and coefficients (equations C.19-C.20), we sum together

K(t3/2) and M(t3/2) to obtain an equation for the crossing time t3/2:

−c+Ae−t3/2 +Be−t3/2/τ = KD
on

+) −Ae−t3/2 − B

τ
e−t3/2/τ = α3/2

−c+B(1− 1/τ)e−t3/2/τ = KD
on + α3/2(

KD
off + c+ α1

)
e−t3/2/τ = KD

on + c+ α3/2

t3/2 = −τ ln

(
KD
on + c+ α3/2

KD
off + c+ α1

)
.(C.22)

Finally, we use equation C.22 to derive an implicit equation for α3/2:

−c
τ

+
A

τ
e−t3/2 +

B

τ
e−t3/2/τ =

KD
on

τ

+) −Ae−t3/2 − B

τ
e−t3/2/τ = α3/2

−c
τ

+A(1/τ − 1)e−t3/2 =
KD
on

τ
+ α3/2

c+A(−τ)(1− 1/τ)

[
KD
on + c+ α3/2

KD
off + c+ α1

]τ
= KD

on + α3/2τ

c−
[
(KD

off + c)(1− 1/τ)− (KD
off + c+ α1)

]
τ

[
KD
on + c+ α3/2

KD
off + c+ α1

]τ
= KD

on + α3/2τ

(
KD
off + c+ α1τ

)[KD
on + c+ α3/2

KD
off + c+ α1

]τ
= KD

on + c+ α3/2τ[
KD
on + c+ α3/2

KD
off + c+ α1

]τ
=
KD
on + c+ α3/2τ

KD
off + c+ α1τ

(C.23)

Finding the root α3/2 of equation C.23 for a given α1 defines the map from α1 to α3/2, i.e.,

α3/2 = F3(α1). However, because KD
on = −KV

on and KD
off = −KV

off , this is equivalent to

(C.24)

[
−(KV

on − c) + α3/2

−(KV
off − c) + α1

]τ
=
−(KV

on − c) + α3/2τ

−(KV
off − c) + α1τ
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Hence this map is equivalent to α3/2 = −F1(−α1).

C.2.4. Map 4 - (KD
on, α3/2) to (KV

off , α2), and Full Map. Map 3 flows the solution forward

in time from the fourth proprioceptive threshold at KD
on to the first threshold at KV

off to map

M = α3/2 to M = α2. Using the general solution (equation C.3) with the initial condition K = KD
on,

M = α3/2, SD = 1, SV = 1, and equilibrium c(SD − SV ) = 0, we obtain the coefficients

B =
KD
on + α3/2

1− 1/τ
,(C.25)

A = KD
on −B.(C.26)

Next, we solve for the proprioceptive-threshold crossing time, i.e., the time t2 such that

(C.27) K(t2) = KV
off , M(t2) = α2.

With the general solution (equation C.3) and coefficients (equations C.25-C.26), we sum together

K(t2) and M(t2) to obtain an equation for the crossing time t2:

(C.28) t2 = −τ ln

[
KV
off + α2

KD
on + α3/2

]
.

By going through a similar process as in the previous subsection, one can show that the map from

α3/2 to α2 is given by α2 = −F2(−α3/2). Then since

α1/2 = F1(α0),(C.29)

α1 = F2(α1/2),(C.30)

α3/2 = −F1(−α1),(C.31)

α2 = −F2(−α3/2),(C.32)

the full map is

(C.33) α2 = F (α0) = −F2(F1(−F2(F1(α0)))).
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C.3. Numerically Finding the Roots of the Map Branches

For Map 1, numerically finding the root of F1(α) (equation C.13) using Newton-like methods is

aided by computing bounds on α1/2. In the limit cycle trajectory, the system crosses the threshold

KV
off from the right and the threshold KV

on from the left, so α0 < 0 and α1/2 > 0. By combining

equations C.12 and C.13, we also have that

(C.34) t1/2 = −τ ln

(
KV
on − c+ α1/2

KV
off − c+ α0

)
= − ln

(
KV
on − c+ α1/2τ

KV
off − c+ α0τ

)
.

In order for the crossing time t1/2 to be real, we must have that argument to ln is always positive.

Since KV
off , α0 < 0 and c, τ > 0, the denominators KV

off − c + α0 and KV
off − c + α0τ are always

negative. So in order to obtain a real t1/2 from equation C.34, we must have

(C.35) KV
on − c+ α1/2 < 0

and

(C.36) KV
on − c+ α1/2τ < 0.

These inequalities yield the following bounds on α1/2:

0 < α1/2 < c−KV
on(C.37)

0 < α1/2 <
c−KV

on

τ
.(C.38)

These bounds imply that we must have c > KV
on to have a real crossing time t1/2. In finding the

root of the map α1/2 = F (α0) (equation C.13), we choose whichever bound on α1/2 as our initial

root-finding interval is tighter depending on whether τ > 1 or τ < 1. Note that these bounds also

guarantee that t1/2 > 0.

In summary, in order to guarantee a first crossing time t1/2, we must have c > KV
on. Then, if

τ < 1, we will find the root α1/2 of the above map α1/2 = F (α0) in the interval

(C.39) α1/2 ∈ (0, c−KV
on).
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If τ > 1, we will find the root α1/2 in the interval

(C.40) α1/2 ∈ (0,
c−KV

on

τ
).

For Map 2, numerically finding the root of F2(α) (equation C.18) using Newton-like methods

is aided by computing bounds on α1. In the limit cycle trajectory, the system crosses the threshold

KV
on from the left and the threshold KD

off from the left, so α1/2 > 0 and α1 > 0. Since KV
on and

KD
off are also both positive, equation C.17 will always yield a real, finite crossing time t1.

By combining equations C.17 and C.18, we also have that

(C.41) t1 = −τ ln

(
KD
off + α1

KV
on + α1/2

)
= − ln

(
KD
off + α1τ

KV
on + α1/2τ

)
.

We also know that 0 < α1/2 < c−KV
on from equation C.37, so in order for t1 to be positive and

real, we must have that

0 < KD
off + α1 < KV

on + α1/2 < c,(C.42)

0 < KD
off + α1τ < KV

on + α1/2τ < KV
on + (c−KV

on)τ.(C.43)

Thus we have two bounds on α1 for our root-finding method:

0 < α1 < c−KD
off ,(C.44)

0 < α1 <
KV
on(1− τ) + cτ −KD

off

τ
.(C.45)

From the limit cycle trajectory, we expect α1 to be close to α1/2, so we can also use this as our

initial guess, or whichever interval is tighter. In order for t1 or α1 to exist, we also have bounds on

the nondimensional feedback strength c:

c > KD
off ,(C.46)

c >
KD
off +KV

on(τ − 1)

τ
.(C.47)
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For Map 3, since α3/2 = −F1(α1), we should follow the same rules as in Map 1 for numerically

finding the root. For Map 3, since α2 = −F2(−α3/2), we should follow the same rules as in Map 2

for numerically finding the root.

C.4. Limit Cycle from Map

After finding the fixed point α∗ of the 1-D map (equation C.33), we can piece together an

analytic expression for the limit cycle. First, we compute the period T of the limit cycle by

summing the proprioceptive-threshold crossing times:

(C.48) T = t1/2 + t1 + t3/2 + t2 = 2t1/2 + 2t1.

That is, we use α0 = α2 = α∗ to compute α1/2, α1, and α3/2 using equations C.13, C.18, and C.23,

and then we compute the crossing times t1/2, t1, t3/2, and t2 by equations C.12, C.17, C.22, and

C.28. Then we can define the limit cycle by piecing together the solutions along each branch of the

map:

(C.49) K(t) =



A1e
−t +B1e

−t/τ + c, t (mod T ) ∈ [0, t1/2],

A2e
−t +B2e

−t/τ , t (mod T ) ∈ [t1/2, t1/2 + t1],

A3e
−t +B3e

−t/τ − c, t (mod T ) ∈ [t1/2 + t1, t1/2 + t1 + t3/2],

A4e
−t +B4e

−t/τ , t (mod T ) ∈ [t1/2 + t1 + t3/2, T ],

where the coefficients B1, A1 are given by equations C.9,C.10, the coefficients B2, A2 are given

by equations C.14,C.15, the coefficients B3, A3 are given by equations C.19,C.20, and the coeffi-

cients B4, A4 are given by equations C.25,C.26. The curvature amplitude of the limit cycle can be

computed as the max K(t) in equation C.49.
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