
Eco-Evolutionary Dynamics of Predators and Prey

By

SAMUEL R. FLEISCHER
DISSERTATION

Submitted in partial satisfaction of the requirements for the degree of

DOCTOR OF PHILOSOPHY

in

APPLIED MATHEMATICS

in the

OFFICE OF GRADUATE STUDIES

of the

UNIVERSITY OF CALIFORNIA

DAVIS

Approved:

Marissa Baskett

Tim Lewis

Sebastian Schreiber

Committee in Charge

2020

i



To my wife Kelly, my sunflower, who gives me
unyielding love and support, and who inspires
me to reach for the stars.

To my parents, Paula and Neil, who provide me
with an unbreakable foundation of unconditional
love, self-confidence, and compassion for all
people.

To my sisters, Anna and Emily, who enjoy life
to the fullest, and who inspire me to be a better
person.

ii



Acknowledgments
Thank you to my advisor, Sebastian Schreiber. You have pushed me to become a more precise

thinker and writer, and a better mathematician. Your patience and guidance, especially during the
last year, has been incredible. Thank you for our years of illuminating conversation and research.

Thank you to my dissertation committee, Sebastian Schreiber, Marissa Baskett, and Tim Lewis.
You have provided me timely feedback on each of my chapters and continue to help me achieve
my academic and career goals. You have all been true mentors to me, and guided me to make
thoughtful career decisions.

Thank you to my faculty collaborators, Sebastian Schreiber, Dan Bolnick, Jing Li, and Casey
terHorst. You each have been so patient with me as I learn to write like a scientist and mathe-
matician. I am so proud of the work we did together, and so lucky to have learned from each of
you.

Thank you to my past and present comrades in the Schreiber lab, William Cuello, Michael
Culshaw-Maurer, Kelsey Lyberger, Nicholas Roberts, Dale Clement, Swati Patel, Jacob Moore,
and Matthew Osmond. You all made lab meetings fun and I enjoyed the opportunities we had to
collaborate. You are all brilliant and I am lucky to have worked with you.

Thank you to my comrades engaged in labor and social justice organizing within the Mathemat-
ics department and across campus. You inspire me by consistently putting others before yourselves,
and by spending valuable time and effort fighting alongside those of us who are most oppressed
and discriminated against.

Thank you to my friends and fellow graduate students in the math department, Katy Jarvis,
Carter Johnson, Emily Meyer, Esha Datta, Lily Silverstein, Alvin Moon, Dmitry Shemetov, Ryan
Chris Moreno-Vasquez, Jorge Arroyo, and many others. In different ways, you’ve all helped me get
through graduate school. From getting through the core courses, to studying for the preliminary
exam, to quizzing each other for our respective qualifying exams, to the political battles we’ve
fought against the powers that be within the Math department, you’ve all been by my side.

Thank you to my trusted staff and faculty confidants in MSB, Sarah Driver, Tina Denena,
Matthew Silver, Korana Burke, Becca Thomases, and Mariel Vazquez. You have all supported me
and my fellow graduate students when we needed it the most. Knowing that you all care enough
about our well-being to take action means the world to me.

Thank you to my friends in the UC Davis teaching community, Sergio Sanchez, Alice Mar-
tinic, Chris Miller, Derek Rury, Sarah Silverman, Tori White, Kem Saichai, Cara Theisen, Monica
Esqueda, and many others. Together we pushed ourselves to become better collaborators and com-
municators to improve undergraduate education on campus. You taught me to seek out and value
criticism, to listen and create space for others, and to trust my peers and my students. Work-
ing with you all was the highlight of my graduate school experience, and I will never forget the
professional and life lessons I learned from each and every one of you.

Thank you to my friends, coworkers, and supervisors, at NASA Jet Propulsion Laboratory,
Jonathan Castello, Diane Conner, Jairus Hihn, Mike DiNicola, Zac McLaughlin, and many others.
Each of you have helped me grow as a professional and guided me as I find my niche at JPL. I
am so excited to continue my work there as a full time employee and contribute to an amazing
environment where we help each other learn.

Thank you to all my students, past and present. You inspire me to become a better communi-
cator and an empathetic leader. Your drive to learn mathematics and your interest in its satisfying
simplicity and frustrating complexity keeps me sane and consistently reminds me of why I choose
to study this beautiful subject.

iii



Thank you to all my teachers, Cyndi Lingua from Valencia Valley, Paul Kass from Placerita,
Kerry Strothe and Steve Whelan from Valencia, Leigh Dillon and Akil Davis at SUNY Purchase,
Katherine Stevenson and Jing Li at CSU Northridge, and many others. Each of you have made a
lasting impact in the way I learn and the way I teach. You inspire me to be a better communicator
and to stay focused.

Thank you to my friends from so many other contexts, Jack Geier, Lindsay Clark, Austin Gould,
Jamison Gilmore, Maxx Tepper, Sattik Ghosh, Ema Miille, Neil Yazma, Paris Gravely, Robbie
Linden, Jose Torres, Angelica Ruiz, Joshua White, Ian Lee, Matt DeSanctis, Sophia Zukoski,
Delano Montgomery, and so many others. I hold you all near and dear as I navigate through my
life. I learn so much from how you care for the ones you love and how you stay true to yourself. I
am truly lucky to have such friends as you.

Thank you to my mother, Paula, my father, Neil, my sisters, Anna and Emily, my grandparents,
Ruben, Cathy, Mort, and Doris, my aunts and uncles, Allie, Drew, Kari, David, and Marla, my
cousins, Molly, Sophie, Lily, Joey, and Beckett, and my in-laws, Terri, Wade, and Taylor. When
I am with you, I am surrounded with love. I am so lucky to have family who are invested in my
success. You assure me that when all else goes wrong, my family has my back.

Lastly, thank you to my wife, Kelly. Thank you for keeping me focused. Thank you for being
my cheerleader. Thank you for believing in me. Thank you for supporting me. Thank you for
loving my family and friends and for welcoming me into your family and groups of friends. Thank
you for being proud of me. Thank you for caring about our place in the world. Thank you for
challenging me and for your patience. Thank you for those days when we just need to chill, and
thank you for those days when we need to have an adventure. Nothing in this world means anything
to me if I can’t share it with you. I am so proud to call myself your husband, and I love you more
than words can express.

iv



Abstract

In this dissertation I formulate and analyze multispecies eco-evolutionary differential equation

models to understand the effects of evolution on ecological processes, and vice versa. In each

chapter, I fuse different Lotka-Volterra models of ecological dynamics with population genetic

models of one or more evolving traits.

The first chapter is a study on the effects of different types of prey evolution on coevolutionary

predator-prey dynamics. Here, the predator maximizes its fitness if its trait matches the prey in

some way. For example, predators with larger or smaller mouths are better suited to consume larger

or smaller prey, respectively. Prey fitness depends on its trait in two ways. First, evolution of its

trait away from the predator’s trait reduces the predation rate, increasing prey fitness. Second,

evolution away from some optimal trait reduces either its intrinsic growth rate or carrying capacity,

decreasing prey fitness. Predator-prey dynamics are affected by the tradeoff between defense against

predation and these two other components of prey fitness in different ways. In particular, evolution

of the prey’s intrinsic growth rate is more likely to result in coexistence than evolution of its carrying

capacity is. Predator-prey oscillations are also qualitatively different under these different tradeoffs.

The second chapter is a study on the coevolution of predator morphology and immunity when

its prey are infected with parasites that use the predator as a secondary host. Here, predator

morphological evolution shifts the consumption rate of each of the two prey. This evolution also

results in greater exposure to the multitrophic parasites residing in the prey. Predator immunity

evolves in response to this increased exposure. The analytical results provide support for a Stutz

et al. [2014] hypothesis: negative correlations between parasite intake and parasite infection across

stickleback populations are caused by dual evolution of morphology and immunity. Furthermore,

these correlations only exist if evolutionary tradeoffs are weak, which suggests that selection pressure

on stickleback morphology and immunity is weak.

The third chapter is a study on the effect of predator evolution on coexistence of its competing

prey. In the absence of the predator, Lotka-Volterra competitors either exhibit asymptotically sta-

ble equilibrium coexistence, dominance (in which one prey always excludes the other), or bistability

(in which neither prey can invade an environment already established by the other). While a non-

evolving Lotka-Volterra predator can facilitate permanence between a dominant and inferior prey,
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it cannot facilitate permanence for bistable prey; any coexistence between a non-evolving predator

and bistable prey is initial condition dependent. I derive conditions for permanence between a

predator with an evolving quantitative trait and its two prey. I find conditions which guarantee

permanence even when the prey are bistable. I also describe various forms of permanence observed

in the model, including eco-evolutionary cycles when evolution is sufficiently slow, and stable equi-

librium coexistence to an otherwise unstable equilibrium when evolution is sufficiently fast. This is

the second study to show that evolution can mediate permanence between bistable prey, and the

first to show that predator evolution can do so.
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Introduction

The perception that ecological and evolutionary shifts occur on vastly different timescales, and

thus that theoreticians can effectively model ecological processes without considering evolution, first

began to conflict with empirical studies in the 1960s (e.g. the evolution of house mice [Berry, 1964]

or fruit flies [Bush, 1969]). By the 1980s, many more studies provided examples of evolution and

ecological shifts occuring on commensurate timescales, and by the 1990s, rapid evolution had been

accepted as common [see Carroll et al., 2007, for a review]. In the words of Hendry and Kinnison

[1999], “the fundamental conclusion that must be drawn is that evolution as hitherto considered

‘rapid’ may often be the norm and not the exception.”

Evolution and ecological shifts are not simply contemporary; they can drive each other. There

is genetic and phenotypic variation in natural populations, and phenotype often correlates to re-

productive fitness in a given environment [Darwin, 1859, Grant and Grant, 2002, Reznick and

Ghalambor, 2001]. Thus, when an environment shifts, individuals relatively more fit in the new

environment produce relatively more offspring, which drives evolution [Hendry, 2017]. Conversely,

phenotypic change in a population can greatly affect its population dynamics [e.g. Gomulkiewicz

and Holt, 1995]. Because shifts in population density can directly affect community structure, this

gives rise to an “eco-evo feedback” in which evolutionary trajectories determined in part by their

ecological context changes the context itself [see Schoener, 2011, for a review].

Empirical studies have driven the work of theoreticians, who help to formalize conceptual frame-

works and delineate possibilities that arise from certain assumptions [Hendry, 2017]. Many theo-

reticians have incorporated evolution into predator-prey models in an attempt to explain predator-

prey dynamics seen in laboratory microcosm or natural experiments. Some incorporated prey

evolution [e.g. Abrams and Matsuda, 1997a, Yoshida et al., 2003, 2007], and others incorporated

predator-prey coevolution [e.g. Bengfort et al., 2017, Cortez and Weitz, 2014, Mougi, 2012, Mougi

and Iwasa, 2010, 2011, Saloniemi, 1993, Tien and Ellner, 2012, Tirok et al., 2011, van Velzen and
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Gaedke, 2017]. Eco-evo feedbacks also play a fundamental role in competitive communities [e.g.

Vasseur et al., 2011] or in communities of more than just two species [e.g. Klauschies et al., 2016,

Schreiber et al., 2011]. Each chapter in this dissertation adresses gaps in the literature regarding

the nature of eco-evo feedbacks in a variety of ecological and evolutionary contexts.

In the first chapter, I formulated and analyzed two coevolutionary predator-prey models. Preda-

tors and prey often serve as important selective agents on each other [Brodie III., 1992, Endler,

1991, Walsh and Reznick, 2008, Lill, 2001, Motychak et al., 1999, West et al., 1991, Strauss et al.,

2006]. Predator evolution in response to prey should increase consumptions rates, while prey evolu-

tion of increased escape ability or avoidance in response to predation should decrease consumption

rates [Strauss et al., 2006]. Examples of traits which often affect consumption rates are the mouth

or jaw size in predators [e.g. Stutz et al., 2014], and visual cues or chemical defenses in prey [e.g.

Brodie III., 1992, Clark et al., 2005]. However, evolution comes at some cost; prey evolution of

increased defense can reduce its fecundity or resource use or increase intraspecific competition

[DeLong, 2017]. I therefore asked how these various types of tradeoffs affect predator-prey coevo-

lutionary dynamics. In both models, each population contains a trait which affects the predator

attack rate on the prey, but the prey trait is ecologically pleiotropic. In the first model, the prey

trait also affects its intrinsic growth rate, and in the second model, the prey trait also affects its

carrying capacity in the absense of predation. In particular, I was interested in the conditions under

which coexistence among species is more likely, but also the dynamic nature of this coexistence -

how are predator-prey eco-evolutionary cycles different under these distinct prey tradeoffs?

In the second chapter, I formulated and analyzed an apparent-competition model [Holt, 1977]

based on the acquatic threespine stickleback system. Stickleback consume benthic or limnetic prey,

which are intermediate hosts for distinct species of parasites (Eustrongylides nematodes in benthic

oligocheates and Schistocephalus solidus cestodes in limnetic copepods) [Snowberg et al., 2015].

Stutz et al. [2014] found that within a particular lake, individual stickleback who consume more

benthic or limnetic prey are proportionally more infected with the benthic or limnetic parasites

residing in those prey, respectively. They also found that across a variety of lakes, stickleback

populations which consume more benthic or limnetic prey are proportionally less infected with

the benthic or limnetic parasites residing in those prey, respectively. They hypothesized that this
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negative correlation is caused by the dual evolution of predator morphology (as in chapter 1) and

immunity against these multitrophic parasites. To test this hypothesis, I addressed three main

questions. First, under what conditions is there a reciprocal feedback between morphological and

immunological evolution? Morphology (and hence parasite exposure risk) will evolve in response to

prey availability, but changes in parasite exposure will drive evolution of immunity, which can reduce

the harmful effects of parasites, potentially enabling niche expansion onto a formerly hazardous

prey. When can these feedbacks arise? And, if they do not, when does the evolution of morphology

determine the evolution of immunity, and vice versa? Second, how are morphological and immune

traits correlated? Even if traits are genetically independent, correlated selection pressure may

result in correlated evolutionary outcomes. Third, how does the joint evolution of morphology and

immunity obscure the relationship between parasite exposure risk and infection rates? As Stutz

et al. [2014] hypothesized, evolution of predator immunity may negate or even reverse an expected

positive correlation between intake of, and infection by, parasites.

In the third chapter, I formulated and analyzed an eco-evolutionary model in which a predator

consumes two competing prey. As in the previous chapters, the predator has a trait which alters its

morphology and thus its attack rates on the two prey. I was interested in how an evolving predator

can facilitate coexistence between competitors. In the absence of a predator, Lotka-Volterra prey

have three qualitatively different outcomes. Either (i) they can coexist in an asymptotically stable

equilibrium, (ii) one can dominate the other, or (iii) neither can invade an environment in which the

other has established. Because I was interested in predator-mediated coexistence, I only considered

cases (ii) and (iii). A non-evolving predator can mediate some form of coexistence in both cases. If

one prey is dominant, a Lotka-Volterra non-evolving predator can mediate permanence among the

competitors, but if the prey are bistable, this is not possible. Non-evolving predators of bistable

prey can mediate locally stable coexistence, but it is always bistable with a state in which the

predator and one of the prey are excluded [Hutson and Vickers, 1983]. I explored how predator

evolution can facilitate permanence [see e.g. Schreiber, 2006] among bistable prey. I also described

the nature of permanence dynamics when evolution is very slow or occurs on a commensurate

timescale with ecological shifts.
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CHAPTER 1

Pick your trade-offs wisely: predator-prey eco-evo dynamics are

qualitatively different under different trade-offs

Published on November 7, 2018 in the Journal of Theoretical Biology

Joint work with:

Casey P. terHorst

Department of Biological Sciences, California State University Northridge, Northridge, 91330,

California

Jing Li

Department of Mathematics, California State University Northridge, Northridge, 91330,

California

1.1. Abstract

In recent decades, myriad studies have explored the population dynamics of coevolving pop-

ulations of predator and prey. A variety of choices are made in these models: exponential or

logistic prey growth in the absence of a predator, various forms of predator functional response,

and uni- or bi-directional trait axes. In addition, some form of trade-offs are assumed in order to

prevent run-away evolution of the prey and predator traits. While there is a considerable amount

of theory regarding various forms of prey growth rates and predator functional responses, only a

few studies have explored how different types of trade-offs affect predator-prey dynamics. Here, we

compared two ditrophic coevolution models incorporating different trade-offs via dual effects of the

prey trait on attack rate and either prey carrying capacity or intrinsic growth rate. We employed

a standard dynamical systems approach to analyze the equilibrium conditions of each model and

find conditions for non-equilibrium oscillatory coexistence. The exact effect of various parameters

on the outcome of predator-prey interactions depends on whether the trade-offs affect the intrinsic
4



growth rate or carrying capacity. In particular, coexistence is more likely when prey growth rate is

affected by the evolving trait. In addition, in parameter regimes where cycles occur in both models,

oscillations typically have larger periods and amplitudes when prey growth rate is affected by the

evolving trait.

1.2. Introduction

Interactions between predators and their prey are among the most frequently studied ecolog-

ical interactions in nature. Classic ecological theory led to hundreds of experiments that have

documented the relative importance of these interactions [Englund et al., 1999, Gurevitch et al.,

2000a] and their cascading effects on other trophic levels [Schmitz et al., 2000, Shurin et al., 2002].

Classic theory predicts various outcomes in terms of coexistence of predator and prey, but a com-

mon prediction is that predator and prey coexist in oscillations [Lotka, 1925, Volterra and Brelot,

1931, Beddington et al., 1975, Berryman, 1992]. In these cases, predator abundances increase with

increasing prey density until a threshold level where predators overexploit prey, resulting in a de-

crease in prey abundance, followed by a decrease in predator abundance, which ultimately allows

the prey population to recover. Theoretically, predator population cycles should lag behind prey

population cycles by a quarter of a cycle phase [Case and Roughgarden, 2000]. These dynamics are

well supported in some systems (Lynx-hare [Krebs et al., 2001], rotifer-algae [Yoshida et al., 2003]),

but in other systems, stable coexistence between predator and prey have proved unlikely [Huffaker,

1958, Fujii, 1999], or predator-prey cycles do not match those predicted by theory [Hiltunen et al.,

2014, Yoshida et al., 2003, 2007].

One reason that dynamics in natural systems may not match theoretical predictions is the

context-dependency of species interactions. The strength of interactions between species may

depend on the environment in which those interactions occur [Bertness and Callaway, 1994]. More-

over, we could broadly define environmental context to include the genetic environment of the

predator and prey populations. Intraspecific trait variation plays an important role in the strength

of interactions between predator and prey [Litchman and Klausmeier, 2008, Gross et al., 2009,

Bolnick et al., 2011]. For example, different individuals of three-spined sticklebacks differ in mor-

phology, depending on whether they come from benthic or limnetic habitats, which affects what
5



they eat, or by whom they are eaten [Reimchen, 1980, Reimchen and Nosil, 2001]. In addition to

such spatial variation in traits, temporal trait variability over evolutionary time may also affect

predator-prey interactions.

Recent evidence suggests that evolution can occur on contemporary time scales that affect

ecological interactions, particularly when selection pressure is very strong, or when generation

times are very short [Thompson, 1999, Hairston Jr. et al., 2005, Schoener, 2011]. DeLong et al.

[2016] recently quantified that rates of change of phenotypes are on average 1
4 of the concurrent

rates of change of population sizes. In many cases, predators serve as important selective agents

on prey populations [Endler, 1991, Brodie III., 1992, Walsh and Reznick, 2008] and, conversely,

prey can serve as important selective agents on predator populations [West et al., 1991, Motychak

et al., 1999, Lill, 2001]. When predators evolve in response to prey, attack rates or consumption of

prey should increase, thus increasing the strength of ecological interactions between predator and

prey (Strauss et al. 2006). Conversely, prey that evolve increased escape ability or avoidance of

predators should decrease the strength of the ecological interaction [Strauss et al., 2006].

Evolution can have important consequences for predator-prey cycles [Hiltunen et al., 2014].

Previous models have shown that incorporating prey evolution can shift predator-prey population

dynamics between equilibrium, stable cycles, and chaotic coexistence [Saloniemi, 1993, Abrams

and Matsuda, 1997b]. Yoshida et al. [2007] modeled prey that evolve on ecological time scales and

found that prey evolution largely masked the predator-prey cycles that occured in the absence of

predation. These results were supported by experiments in laboratory microcosms, in which algal

evolution in response to rotifer predation eliminated the oscillating cycles that occured when algal

population lacked sufficient genetic variation to evolve [Yoshida et al., 2003, 2007]. Becks et al.

[2010] extended this work and found that in the presence of sufficient genetic variation, populations

underwent ecological predator-prey oscillations, as defended prey were favored when predators

were abundant and undefended prey were favored when predators were rare; without initial genetic

variation, populations quickly converged on a steady state equilibrium.

Because both predator and prey species may be important selective agents on each other,

coevolution between predator and prey might be important for determining the stability of the

system. Early models found that an evolutionary arms race leads to Red Queen dynamics, in which
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both predator and prey evolve in response to fluctuating selection that maintains their ecological

interaction over time [Van Valen, 1973, Brodie III and Brodie Jr., 1999]. However, coevolution

need not lead to a stable ecological equilibrium [Saloniemi, 1993, Abrams and Matsuda, 1997b,

Mougi and Iwasa, 2011, Tirok et al., 2011, Mougi, 2012, Tien and Ellner, 2012, Cortez and Weitz,

2014, Klauschies et al., 2016, Bengfort et al., 2017, van Velzen and Gaedke, 2017]. Small adaptive

trait changes in predator or prey can result in changes in attack rates that lead to antiphase

oscillations [Bengfort et al., 2017]. Similarly, Mougi [2012] suggested that antiphase cycles or

cryptic cycles could occur in systems in which both predator and prey evolve, but not when only

a single species evolves. Mougi’s results seemingly contradict those of Yoshida et al. [2007], who

find cryptic cycles in models with on prey evolution. However, their modeling approaches vary in

a critical way: Yoshida et al. [2007] assume a unidirectional axis in the prey trait, while Mougi

assumes bidirectional axes in both predator and prey. Predator and prey often have dramatically

different generation times, which could lead to differences in rates of evolution in each species.

Even if generation times are similar, selection on prey may be stronger because a single interaction

between predator and prey individuals has a huge effect on prey fitness, but often less effect on

predator fitness (life vs. lunch; [Brodie III and Brodie Jr., 1999]). Furthermore, traits in one species

may be more heritable than traits in another, resulting in different rates of evolution even under

equivalent selection pressure.

Coevolutionary models can result in unrealistic runaway evolution, unless models incorporate

some form of trade-off. For example, some models assume an increase in predator or prey traits on

a uni-directional axis linearly also decreases the growth rate of that species. (e.g. Tien and Ellner

[2012]. Other models assume that increases in predator traits along a uni-directional axis result in

reductions in conversion efficiency (Mougi and Iwasa [2011], Tirok et al. [2011], Klauschies et al.

[2016], van Velzen and Gaedke [2017] or death rate [Tien and Ellner, 2012, Mougi, 2012, Cortez and

Weitz, 2014, van Velzen and Gaedke, 2017]. Few studies have explored how the natures of different

trade-offs affect ecological dynamics [Tien and Ellner, 2012].

Because of the variety of results which have arisen out of recent eco-evolutionary models of

coevolving predator and prey, it is crucial that we gain a deeper understanding of how modeling

choices surrounding trade-offs affect the outcomes of population dynamics. Here we analyze and
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compare two simple models of predator and prey which contain different trade-offs for the prey

population. We assume bi-directional trait axes for both predator and prey traits (e.g. body size),

where attack rates of predator on prey are maximized if trait matching occurs. Run-away evolution

of the prey is prevented by the tethering of the prey trait to an optimal value via some form of

trade-off, while runaway evolution of the predator is prevented via the trait matching requirement

for attack rate. For this reason, we do not include additional trade-offs in the predator. Our goal in

this study is to understand how predator-prey eco-evolutionary dynamics differ under two different

trade-offs in prey.

1.3. Model Formulation

Consider predator and prey species with densities P = P (t) and N = N(t) at time t, re-

spectively. Assume the predator and prey populations have mean quantitative traits p = p(t)

and n = n(t), respectively, and that these traits can be measured in the same unit, or can be

transformed into the same unit. Also assume these traits are normally distributed through the

populations with constant phenotypic variances σ2 and β2, respectively [Schreiber et al., 2011]. In

other words, their trait distributions are given by

qp(p, p) =
1√
2πσ2

exp

[
−(p− p)2

2σ2

]
, qn(n, n) =

1√
2πβ2

exp

[
−(n− n)2

2β2

]
,

where phenotypic variances σ2 and β2 have additive genetic (subscript G) and environmental (sub-

script E) components (i.e., σ2 = σ2
G + σ2

E and β2 = β2
G + β2

E).

Assume predator individuals with trait value p attack prey individuals with trait value n with

attack rate a = a(p, n). Also assume predators have a linear functional response and convert

consumed prey in to offspring with efficiency e and have a constant death rate d. Then the fitness

of predators with trait value p and consuming prey individuals with trait value n is

W (N,n, p) = ea(p, n)N − d,

and the per-capita mean fitness of the predator population is
8



W (N,n, p) =

∫
R2

W (N,n, p)qp(p, p)qn(n, n)dpdn.(1.1)

Assume prey with trait value n experience density-dependent logistic-type growth with growth

rate r = r(n) and carrying capacity K = K(n) in the absence of predation. Since the prey trait n

affects the predator-prey interaction a in addition to ecological variables in the absence of predation,

we consider the prey trait to be ecologically pleiotropic. Thus the fitness of prey with trait value n

interacting only with predators with trait value p is

Y (N,P, n, p) = r(n)

(
1− N

K(n)

)
− a(p, n)P,

and the per-capita mean fitness of the prey population is

Y (N,P, n, p) =

∫
R2

Y (N,P, n, p)qn(n, n)qp(p, p)dndp.(1.2)

Thus, the ecological dynamics are given by

dP

dt
= PW (N,n, p),

dN

dt
= NY (N,P, n, p).(1.3)

Assuming each evolutionary variable stays normally distributed with unchanging variance, then

the change of each evolutionary variable is proportional to the partial derivative of their mean fitness

function with respect to that variable. In other words, evolution is always in the direction which

immediately increases the mean fitness of the population [Lande, 1976]. Specifically, the constant

of proportionality is the genetic component of the phenotypic variances. This gives rise to the

evolutionary components of this model:

dp

dt
= σ2

G

∂W

∂p
,

dn

dt
= β2

G

∂Y

∂n
.

If there is no evolution, i.e., all of the ecological parameters are constant (σG = βG = 0), the

dynamics of the resulting purely-ecological system (1.4) are well known.
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(1.4) dP

dt
= P [eaN − d],

dN

dt
= N

[
r

(
1− N

K

)
− aP

]
As a review, the three equilibria of this simplified model are extinction (P ∗, N∗) = (0, 0), (un-

stable), exclusion (P ∗, N∗) = (0,K) (locally asymptotically stable if d > Kea), and coexistence

(P ∗, N∗) =
(
r
a

(
1− N∗

K

)
, d
ea

)
, (biologically feasible and locally asymptotically stable if d < Kea).

Since the exclusion and coexistence stability conditions are equal and opposite, there is no non-

equilibrium dynamic. In other words, either the predator becomes extinct and the prey population

asymptotically approaches its carrying capacity, or the predator and prey asymptotically approach

a stable coexistence state.

However, ecological interactions are often dependent on which genetic variants are involved in

the interactions. Evolutionary changes in traits may shift the strength of ecological interactions,

which may in turn cause feedback by shifting the evolutionary variables via selection by ecological

interactions. This eco-evolutionary feedback loop can affect both ecological and evolutionary out-

comes. Since the purely-ecological model (1.4) is completely asymptotically stable, incorporating

evolution here can only serve to destabilize the ecological equilibria.

Model 0 – No Stabilizing Selection. First we define the attack rate of a predator individual

with phenotype p on a prey individual with phenotype n as a Gaussian function of their difference.

For this study, we assume prey have a bidirectional axis of vulnerability to predation, which means

they can reduce the successful predation rate by having a phenotype either greater or less than

the matching predator phenotype. Examples of foraging traits on bidirectional axes are relative

body sizes of predator and prey, and number and size of gill rakers in predatory freshwater fish (i.e.

threespine stickleback) compared to body size of insect larvae or zooplanktonic prey [Saloniemi,

1993]. Similar to Schreiber et al. [2011], the attack rate is maximized when p− n is equal to some

optimal difference θa and decreases hyperexponentially as |p− n| diverges from θa:

a(p, n) = α exp

[
−((p− n)− θa)

2

2τ2a

]
,
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where α is the maximal attack rate and τa determines how steeply the attack rate declines with

distance from the optimal trait difference θa. In effect, τa determines how phenotypically specialized

the predator must be to consume the prey [Schreiber et al., 2011]. In other words, for large τa

only large deviations from the optimal trait difference will result in large reductions in the attack

rate, while for small τa even small deviations from the optimal trait difference have large fitness

consequences. Under these assumptions, the average attack rate of the predator species on the prey

species is

a(p, n) =

∫
R2

a(p, n)qp(p, p)qn(n, n)dpdn =
ατa√
A

exp

[
−((p− n)− θa)

2

2A

]
,

where A := τ2a + σ2 + β2. If all other ecological parameters (r, K, d, and e) are constant, this

model may result in asymptotically stable ecological equilibrium, but runaway evolution, i.e., an

evolutionary arms race where the population densities are constant but trait values are unbounded

in time (Appendix A.4). This is not realistic because all characters have some constraints on

their evolution [Saloniemi, 1993]. Below we introduce two expanded models which tether the prey

character n to an optimal value via decreases of vital ecological functions.

Model 1 – Stabilizing Selection via Prey Intrinsic Growth Rate. It may be the case

that there is an optimal prey body size which maximizes prey intrinsic growth rate [Werner et al.,

1984]. If trait matching must occur for the prey species and their resource, then it is appropriate

to model prey growth rate r as a Gaussian function of its trait value n, given by

r(n) = ρ exp

[
−(n− θr)

2

2τ2r

]
,

where ρ is the maximal growth rate of the prey species and τr determines how steeply the growth

rate declines with distance from the optimal trait value θr. In effect, τr determines how far the

prey trait value can deviate from the optimal trait value while still maintaining an adequate growth

rate. In other words, for large τr only large deviations from the optimal trait value θr can result

in large reductions in prey growth rate, while for small τr even small deviations from θr can result

in large reductions in prey growth rate. Under these assumptions, the average growth rate of the

prey species is
11



r(n) =

∫
R
r(n)qn(n, n)dn =

ρτr√
B

exp

[
−(n− θr)

2

2B

]
where B := τ2r + β2. For this first model, we assume the prey trait does not affect its resource use,

i.e., the prey population carrying capacity K is constant. Thus the ecological and evolutionary

dynamics of Model 1 are:

dP

dt
= P [ea(p, n)N − d],(1.5a)

dN

dt
= N

[
r(n)

(
1− N

K

)
− a(p, n)P

]
,(1.5b)

dp

dt
= σ2

G

[
eN(θa − (p− n))

A
a(p, n)

]
,(1.5c)

dn

dt
= β2

G

[
r(n)

(
1− N

K

)
θr − n

B
+

P (θa − (p− n))

A
a(p, n)

]
.(1.5d)

Model 2 – Stabilizing Selection via Prey Carrying Capacity. It may be the case that

suboptimal investment in prey body size can result in reduced ability to process resources, which

causes an uptake in prey foraging effort and an increase in intraspecific competition. A reduction in

the carrying capacity K is synonymous with an increase in intraspecific competition. Thus, for the

second model, we assume the prey trait does not affect its intrinsic growth rate, i.e., r is constant.

Rather, the prey population carrying capacity K is a Gaussian function of its trait value n.

K(n) = κ exp

[
−(n− θK)2

2τ2K

]
where κ is the maximal carrying capacity of the prey species and τK determines how steeply the

carrying capacity declines with distance from the optimal trait value θK . In effect, 1/K(n) gives

the strength of competition of a prey individual with trait value n, and K(n) gives the carrying

capacity of a population consisting entirely of individuals with trait value n. Thus the ecological

and evolutionary dynamics of Model 2 are:

12



dP

dt
= P [ea(p, n)N − d],(1.6a)

dN

dt
= N

[
r

(
1− N

K(n)

)
− a(p, n)P

]
,(1.6b)

dp

dt
= σ2

G

[
eN(θa − (p− n))

A
a(p, n)

]
,(1.6c)

dn

dt
= β2

G

[
−rN(n− θK)

K(n)C
+

P (θa − (p− n))

A
a(p, n)

]
,(1.6d)

where the harmonic mean of prey carrying capacity is given by

K(n) =

(∫
R

1

K(n)
qK(n, n)dn

)−1

=
κ
√
C

τK
exp

[
−(n− θK)2

2C

]
,

and C := τ2K − β2 (note that our use of the harmonic mean here is a result of the calculation

of mean prey fitness (equations 1.2, 1.3)). This formulation requires τK > β. If τK approaches

β from above, then K decreases to 0, which causes immediate extinction of the prey and thus

extinction of the predator. If τK ≤ β, a significant portion of the prey population has extremely

low resource use ability (low carrying capacity), which also causes immediate extinction of the prey

and thus extinction of the predator. This is mathematically intuitive since the harmonic mean is

highly sensitive to small numbers. All parameters and their descriptions are listed in Table 1.1.

See Appendix A.1 for model derivation details.

1.4. Results

Equilibria and Stability Analysis. In addition to using standard numerical techniques to

simulate the model (figures 1.1 and 1.2), we analyze both models by employing a standard dynamical

systems approach, which includes solving for equilibrium points and determining conditions for

local linear stability. Both models have three types of equilibria (N∗, P ∗, n∗, p∗): extinction (of

both species), exclusion (of the predator species), and coexistence. The extinction equilibria are

given by

(1.7) (N∗, P ∗, n∗, p∗) = (0, 0, ∗, ∗),
13



Parameter Description
r,K Prey intrinsic growth rate and carrying capacity
d, e Predator death rate and efficiency
σ2 Predator trait distribution variance; σ2 = σ2

G + σ2
E

β2 Prey trait distribution variance; β2 = β2
G + β2

E
α, τa, θa Maximum value, width, and location of optimal trait difference of the

Gaussian attack rate function a(p, n)
ρ, τr, θr Maximum value, width, and location of optimal trait of the Gaussian

intrinsic growth rate function r(n)
κ, τK , θK Maximum value, width, and location of optimal trait of the Gaussian

carrying capacity function K(n)
A τ2a + σ2 + β2

B τ2r + β2

C τ2K − β2

Table 1.1. All model parameters and their biological meaning.

and are unstable for all biologically relevant parameters (∗ represents an arbitrary quantity). The

exclusion equilibria are given by

(1.8) (N∗, P ∗, n∗, p∗) = (K∗, 0, θexcl, θexcl + θa),

where

θexcl =


∗, for Model 1,

θK , for Model 2,
and K∗ =


K, for Model 1,

κ
√
C

τK
, for Model 2,

and are stable if

(1.9) d >
K∗eατa√

A
.

The coexistence equilibrium is given by

(1.10) (N∗, P ∗, n∗, p∗) =

(
d
√
A

eατa
,
r∗
√
A

ατa

(
1− N∗

K∗

)
, θcoex, θcoex + θa

)
,

where
14



θcoex =


θr, for Model 1,

θK , for Model 2,
and r∗ =


ρτr√
B
, for Model 1,

r, for Model 2,

and is stable if

(1.11) σ2
G

β2
G

>
rstab
d

(
1− d

√
A

Kstabeατa

)
,

where

rstab =


ρτr√
B

(
1− A

B

)
, for Model 1,

r, for Model 2,
and Kstab =


K, for Model 1,

κ
√
C

τK(1+A
C )

, for Model 2,
.

See Appendices A.2 and A.3 for details of equilibria stability analysis.

In both models, the prey face a trade off between evolution of anti-predator traits and opti-

mization of growth rate or carrying capacity. The size of this trade off |n− θcoex| is irrelevant

when determining stability of the coexistence equilibrium (1.11). This is because Models 1 and

2 do not reduce to Model 0 when θcoex = θa; rather, Model 1 and Model 2 reduce to Model 0

when growth rate and carrying capacity are constant, respectively. This happens when τr → ∞

and τK → ∞ because τr and τK describe the variation of prey growth rate and carrying capacity

caused by variation in prey genotype. As τr → ∞ or τK → ∞, growth rate or carrying capacity

approaches a constant value for the population because there are few individuals with extreme

genotypes. Therefore coexistence stability is independent of the relative values of θa and θcoex and

dependent on the variance terms τr and τK .

Note that if both populations are extinct, their trait values can be arbitrary because the popu-

lations are in ecological equilibrium for any values of p∗ and n∗. Since θexcl is arbitrary for Model

1, there are an infinite number of exclusion equilibria for Model 1. Thus, when (1.9) holds, the

evolutionary dynamics will approach an equilibrium based on initial conditions. The prey trait at

carrying capacity is arbitrary since selection on traits which affect intrinsic growth rate is weak

when the prey population is near its carrying capacity. On the other hand, Model 2 has a unique
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Figure 1.1. Timeseries. The left panels (a,c,e) depict predator and prey population densities.
The right panels (b,d,f) depict predator and prey mean trait values. Panels (a,b) show stable
coexistence equilibrium dynamics in Model 1. Panels (c,d) show cyclic coexistence dynamics in
Model 1. Panels (e,f) show cyclic coexistence dynamics in Model 2. Parameter values: e = 0.5,
α = 0.05, σ = β = 0.25, θa = 0.1, θr = θK = 0. Panels (a,b) parameter values: d = 0.1, τa = 0.05,
τr = 0.55, σG = 0.18, βG = 0.17, ρ = 0.2, K = 100. Panels (c,d,e,f) parameter values: d = 0.05,
τa = 0.1, τr = τK = 1.0, σG = 0.106, βG = 0.1, ρ = r = 0.5, κ = K = 225.

exclusion equilibrium since selection on traits which affect prey population carrying capacity is

strong when the population is near its carrying capacity. This is intuitive since increasing prey

carrying capacity always increases average prey fitness. The predator population will be excluded

if its death rate is sufficiently high. Also, higher prey carrying capacity, predator efficiency, and
16



Figure 1.2. Cycle Phaseplanes for Model 1 (a,b) and Model 2 (c,d). The left panels
(a,c) depict phaseplanes of predator and prey population densities. The right panels (b,d) depict
phaseplanes of predator and prey mean trait values. Panels (a,b) are the phaseplanes of the cyclic
dynamics of Model 1 shown in Figures 1.1(c,d). Panels (c,d) are the phaseplanes of the cyclic
dynamics of Model 2 shown in Figures 1.1(e,f).

predator maximum attack rate can destabilize the exclusion equilibrium in favor of the internal

coexistence equilibrium, which is unique for each model. When (1.11) holds, the prey character n

reaches its optimal value for the trait undergoing stabilizing selection, and the predator character

p reaches the optimal difference to maximize attack rate.

In (1.11), σG/βG is the ratio of predator and prey speeds of evolution given equivalent selection

pressure. This means the coexistence equilibrium (1.10) is stable if predator evolution can be fast

enough in comparison to prey evolution. More precisely, stable equilibrium coexistence is more

likely if the predator’s trait is more heritable than the prey’s trait. If this happens, the predator

trait value “catches up” to the prey trait value, which increases the attack rate, hence decreasing
17



prey density, and decreasing |dn/dt|. The trait dynamics stabilize, resulting in decaying ecological

oscillations.

Figure 1.3. Bifurcation diagrams for model 1 (Panel a) and model 2 (Panel b), with
predator death rate (d) vs. predator specialization (τa). In (a), the coexistence stability
boundary crosses the τa axis, while in (b), the coexistence stability boundary approaches the τa
axis as τa → ∞. There is a much larger region in parameter space that results in cyclic behavior in
Model 2 than in Model 1. Parameter values: σ = β = 0.25, e = α = 0.1, τr = τK = 1, σG/βG = 0.4,
ρ = r = 0.5, K = κ = 225. Figure 1.6(c) shows cycle maxima, minima, and periods for the
parameter values indicated by the blue dotted line (d = 0.75, 0 ≤ τa ≤ 1.1).

In Model 1, if τ2a > τ2r − σ2, then rstab < 0. This always results in stable coexistence provided

that (1.10) is biologically feasible. The biological feasibility condition for coexistence is the opposite

condition as the exclusion stability condition (1.9). That is, provided d < Keατa√
A

, then stable

coexistence is inevitable if the variance of the attack rate curve τa is high enough. Biologically,

this means that if the attack rate does not require high predator specificity, then stable equilibrium

coexistence is more likely.

In Model 2, however, the coexistence stability condition boundary can be arranged so that only

d is on the left hand side:

d =
rκeατa

√
C

σ2
G

β2
G
κeατa

√
C + r

√
AτK

(
1 + A

C

)
and we find that d decreases to 0 as τa grows without bound to ∞ (since all terms are positive, the

numerator is O(τa) and the denominator is O
(
τ3a
)
). This means that for any value of τa, there is

always a value of d such that (1.9) is not satisfied (Figure 1.3). This is a key difference between the

models: in Model 1, high values of τa never result in cyclic coexistence, whereas in Model 2, high
18



values of τa may result in cycles for sufficiently low d. For fixed d in Model 2, however, the stable

coexistence condition (1.11) will hold for sufficiently high τa. The notation O(τa) and O
(
τ3a
)

here

mean that as τa grows indefinitely, the expression grows proportionally to τa or τ3a , respectively.

The notation O(1) means an expression approaches a constant value in a given limit.

Figure 1.4. Bifurcation diagrams for model 1 (Panel a) and model 2 (Panel b), with
predator death rate (d) vs. prey trade-off strength (τr or τK). Parameter values: e = 0.1,
α = 0.05, τa = 1, σG/βG = 0.2, ρ = r = 0.3, K = κ = 225, σ = β = 0.25.

Note that B = O
(
τ2r
)

as τr increases, and thus ρτr√
B

= O(1). This means rstab (for Model 1)

is eventually an increasing function of τr. Since the right hand side of the coexistence stability

condition (1.11) is an increasing function of rstab, then increasing τr can destabilize the coexistence

equilibrium. Similarly, note that C = O
(
τ2K
)

as τK increases, and thus κ
√
C

τK
= O(1). This means

Kstab is eventually an increasing function of τK . Since the right hand side of (1.11) is an increasing

function of Kstab, then increasing τK can also destabilize the coexistence equilibrium. Biologically,

these results mean that if prey are not required to be particularly close to the optimal trait value

in order to have adequate growth rate or carrying capacity, then cyclic coexistence is more likely.

More precisely, the coexistence stability condition boundaries are

d =



ρτRKeατa
(
τ2r − τ2a − σ2

)
σ2
G

β2
G
Keατa(τ2r + β2)3/2 + ρτr(τ2r − τ2a − σ2)

√
τ2a + σ2 + β2

for Model 1,(1.12a)

rκeατa
(
τ2K − β2

)3/2
σ2
G

β2
G
κeατa

(
τ2K − β2

)3/2
+ rτK

(
τ2K + τ2a + σ2

)√
τ2a + σ2 + β2

for Model 2.(1.12b)
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In Model 1, d → rKeατa
σ2
G

β2
G

Keατa+ρ
√
A

as τr → ∞, and in Model 2 d → rκeατa
σ2
G

β2
G

κeατa+r
√
A

as τK → ∞. These

limiting values of d are less than the predator exclusion boundary, so as τr or τK → ∞, there

is an intermediate range of d values which results in stable coexistence, while low d values will

result in cyclic coexistence and high d values result in predator exclusion (Figure 1.4). The models

differ, however, as τr or τK decrease. First, Model 2 predicts both predator and prey go extinct

for τK < β, while coexistence is possible for arbitrarily small τr in Model 1. In addition, while the

denominator of (1.12b) is positive for τK > β in Model 2, the denominator of (1.12a) is negative

for sufficiently small τr in Model 1.

Figure 1.5. Bifurcation diagrams for model 1 (Panel a) and model 2 (Panel b), with
prey trait distribution variance (β) vs. prey trade-off strength (τr or τK). Parameter
values: e = 0.1, α = 0.05, d = 0.5, τa = 1, σ = 1, σG/βG = 0.1, ρ = r = 0.3, K = κ = 225

Figure 1.5 shows similar distinctions between the models. The predator exclusion stability

condition (1.9) is independent of τr, and thus the boundary between the “Predator Exclusion” and

“Equlibrium Coexistence” regions is flat for Model 1. However, (1.9) is dependent on τK which

accounts for the different shape for Model 2. We also see a larger region of coexistence in Model 1

than in Model 2.

Qualitative Differences in the Models’ Cycles. Figures 1.1(a,b) display a stable coexis-

tence dynamic from Model 1. In this simulation, the initial prey and predator mean trait values, n0

and p0, respectively, are far enough apart that the predator is not a threat. Their initial difference

is p0−n0 = 1, which is large in comparison to the variance of the attack rate curve τa = 0.05. This

means that only a very small percentage of predators are initially well suited to attack the prey,
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resulting in very strong selective pressure on the predators. In contrast, the prey population is not

initially threatened by the predator, resulting in very weak selective pressure on the prey. Once

the predator mean trait value is close enough to the optimal difference θa, the predator becomes a

viable threat to the prey, increasing predator density and decreasing prey density. The predator

and prey then undergo dampening oscillations to coexistence equilibrium as their mean trait values

stabilize. Model 2 simulations resulting in stable equilibrium coexistence show similar dynamics.

In contrast to the purely ecological system (1.4), both models’ exclusion and coexistence stabil-

ity conditions are not equal or opposite, which implies there is at least one type of non-equilibrium

dynamic. Figures 1.1(c,d) depict long-term stable oscillatory behavior in Model 1, and figures

1.1(e,f) depict long-term stable oscillatory behavior in Model 2. In order to achieve a good com-

parison between Models 1 and 2, we matched the parameters as closely as possible. In particular,

we set the constant carrying capacity K from Model 1 equal to the maximum carrying capacity κ

from Model 2, the constant intrinsic growth rate r from Model 2 equal to the maximum intrinsic

growth rate ρ from Model 1, and the growth rate variance τr from Model 1 equal to the carrying

capacity variance τK from Model 2.

The oscillations seen in Figures 1.1(c,d,e,f) are similar in many ways, and we can intuitively

understand them by considering the inverse effects that the evolution of the prey mean trait value

sometimes has on its own fitness. In particular, consider the periods of time in which the prey

mean trait value is undergoing selection away from the optimal value (θr for Model 1; θK for Model

2). Since the predator is a threat, the prey evolves away from the predator, decreasing attack rate

a, and hence increasing its fitness. However, as the prey evolves away from its optimal value, the

trade off |n− θcoex| increases, reducing the average growth rate r (Model 1) or carrying capacity

K (Model 2), and thus reducing prey fitness. These two inverse effects nullify each other whenever

the prey mean trait value reaches a minimum or maximum. At these extrema, both populations

are suppressed to low levels (due to either low growth rate in Model 1 or low carrying capacity in

Model 2), and thus the selection pressure toward the optimal trait value outweighs the selection

pressure of predation. The prey trait value then reverses direction and evolves toward its optimal

value. During this time, prey mean fitness increases for two reasons: a negative effect on attack
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Figure 1.6. Models 1 and 2 Bifurcation Diagrams (Panels a,b) and oscillation periods
(Panel c). Parameter values match Figure 1.3 for predator death rate d = 0.75. Also, θa = 0.1,
θr = θK = 0, σG = 0.04, and βG = 0.1. As τa increases the population moves from predator
exclusion, to coexistence equilibrium, to cyclic coexistence, and back to coexistence equilibrium.
There is a small region of τa where Model 1 exhibits oscillatory coexistence and Model 2 exhibits
coexistence equilibrium (τa between 0.18 and 0.2, approximately) and a larger region of τa where
Model 2 exhibits oscillatory coexistence and Model 1 exhibits coexistence equilibrium (τa between
0.71 and 0.93, approximately). In (c), oscillation periods of 0 indicate non-oscillatory behavior.

rate and a positive effect on the prey trait undergoing selection. Immediately after passing through

the optimal value, however, the inverse effects take hold and the cycle begins again.

Predator and prey density cycles can be in phase in the larger evolutionary time scale, and out

of phase in the smaller ecological time scale (Figure 1.2). Note the density phase trajectory of Model

1 is generally positively sloped, which means prey and predator densities reach their minima and

maxima at around the same time (Figures 1.2(a,c)). However, when prey and predator densities

are near their relative maxima, their cycles are temporarily out of phase, as indicated in Figure

1.2(a) by the negative slope of the top part of the density phase trajectory. In other words, as

the genetic environment changes to favor a high-density equilibrium, predator and prey densities
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diverge from the low-density equilibrium together, but on the ecological time scale predator and

prey densities undergo out-of-phase, dampening oscillations toward this high-density equilibrium.

There are qualitative differences between the cycles in these two models, however, which may

be attributed to the decrease in |dn/dt| (1.5d) as growth rate decreases, as opposed to the increase in

|dn/dt| (1.6d) as carrying capacity decreases. This results in more rapid prey evolution when the prey

mean trait is at an extrema in Model 2, and less rapid prey evolution when the prey mean trait is at

an extrema in Model 1. In addition, prey growth rate in Model 2 is never as low as the mean prey

growth rate in Model 1. Higher prey growth rate causes an increased predator equilibrium density,

which increases selective pressure on the prey, causing bouts of more rapid prey evolution. On the

other hand, the predators in Model 2 cannot adequately respond to this rapid evolution, resulting

in a lag time where predator density is exponentially decreasing and the rate of predator evolution

is diminished. In the simulations shown in Figures 1.1(c,d,e,f), the increase in the Model 2 period

due to the lag time is outweighed by its decrease due to the increase in |dn/dt| as carrying capacity

decreases, and thus we see longer oscillatory periods in Model 1 (T ≈ 4000 in Figures 1.1(c,d) and

1.2(a,b)) than in Model 2 (T ≈ 3300 in Figures 1.1(e,f) and 1.2(c,d)). In Figure 1.6 we see that the

oscillation periods in Model 1 are greater than that in Model 2 for intermediate values of τa. This is

intuitive since generalist predators are more able to respond to bouts of rapid prey evolution than

specialist predators, thus removing the period of the exponentially decaying predator population.

However, at larger values of τa, the oscillation periods in Model 2 are greater than that of Model 1.

This may seem counterintuitive, but an increased ability to respond decreases the overall selective

pressure on predators, ultimately resulting in slower evolution and greater oscillatory periods.

Finally, we proved the existence of Hopf bifurcations [Hale and Koçak, 1991] as parameters

are shifted from satisfying the coexistence equilibrium stability condition of either model to not

satisfying them. Hopf bifurcations occur when a shifting parameter causes a stable equilibrium to

become unstable, while also creating cyclic behavior around the equilibrium. The existence of Hopf

Bifurcations in both models suggests the existence of asymptotically stable limit cycles, which we

conjecture are globally stable given positive density initial conditions. In this study we have shown

the models exhibit stable cyclic behavior using simulations, but we stop short of rigorously proving

the asymptotic stability of the attractors.
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1.5. Summary and Discussion

We formulated two coevolutionary predator-prey models which differ only in the form of an

evolutionary trade-off. For both models, we found all equilibria and their local stability conditions.

We showed the existence of Hopf bifurcations in both models, which suggests the existence of stable

limit cycles (and which we conjecture are globally stable provided positive density initial conditions).

While predator-prey cycles are possible without evolution if the predator has a saturating functional

response, our models show that coevolution can cause ecological cycles even under the assumption

of a linear functional response. This is important because the predator-prey model with logistic

growth and linear functional response is well-known to not produce stable cycles.

In the first model, prey evolution to avoid predation is halted by a trade-off due to reductions

in growth rate. This is a very common form of trade-off incorporated into models and is a reason-

able choice in many systems [Abrams and Matsuda, 1997a, Mougi and Iwasa, 2011, Mougi, 2012,

Klauschies et al., 2016, van Velzen and Gaedke, 2017]. In the second model, prey evolution is

halted by a trade-off due to reductions in carrying capacity. This is a less common choice but can

be reasonable if shifting a continuous trait (i.e. body size) affects how prey are able to consume

resources, altering their effective carrying capacity.

Previous models of coevolution in exploiter-victim systems have incorporated evolutionary

trade-offs in various ways. Iwasa et al. [1991] modeled mate preference as a fitness cost, and

in later analyses, Mougi and Iwasa [2010, 2011] found that the coexistence equilibrium is stable

if the evolutionary adaptation of the prey is faster than that of the predator. These studies as-

sumed unidirectional trait axes and trade-offs in prey and predator basal per-capita growth rates.

Later, Mougi [2012] analyzed a coevolutionary model with bidirectional traits with trade-offs in

prey growth rate and predator death rate. In contrast to their earlier studies, they found that the

coexistence equilibrium is stable if the predator can adapt faster than the prey. These conflicting

results may have been a result of choosing unidirectional or bidirectional trait axes, but they also

may have been a result of choosing different forms of evolutionary trade-offs.

While many modeling choices can be jusitified by various biological examples, relatively few

studies have explored how these choices affect results. Tien and Ellner [2012] compared two models
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with unidirectional trait axes and density independent and density dependent trade-offs. Inter-

estingly, they found that stable coexistence is more likely if both predator and prey have fast

adaptation in the density independent trade-off model, while stable coexistence is more likely if

predator has faster adaptation than the prey in the density dependent trade-off model. In our

study, both models resulted in stable coexistence if the ratio of predator to prey speeds of adap-

tation is sufficiently high. These conflicting results highlight the need for theoreticians to consider

how the forms of trade-offs can affect model analyses. It is surprising this has not been a larger

area of research given that trade-offs are so widely accepted as a necessary component of eco-evo

models.

While this study follows the work of Mougi and Iwasa [2010, 2011], Mougi [2012], Tien and

Ellner [2012], who used a quantitative genetics framework to model trait evolution, others have

utilized adaptive dynamics frameworks [Nuismer et al., 2005] and/or individual-based frameworks

[Calcagno et al., 2010, DeLong and Gibert, 2016]. Quantitative genetics eco-evo models typically

assume that traits stay normally distributed with constant variance and that selection pressure

is proportional to that variance [Lande, 1976, Abrams and Matsuda, 1997b]. This is a reasonable

assumption according to studies by Gaylord [1953], Van Valen [1969], who have noted that variance

of morphological traits in a lineage often remains roughly constant [Lande, 1976]. Others have

assumed variance is constant but there is some other evolutionary force which decreases selective

pressure as the mean trait approaches one or more boundary values [Saloniemi, 1993, Tien and

Ellner, 2012, Cortez and Weitz, 2014, Bengfort et al., 2017, van Velzen and Gaedke, 2017, Klauschies

et al., 2016]. Nuismer et al. [2005] used an adaptive dynamics framework to model the evolution of

trait variance for normally distributed traits, and Tirok et al. [2011] used a quantitative genetics

framework to derive differential equations to model the evolution of trait mean and variance for

normally distributed traits.

Any of the above evolutionary modeling choices also greatly affect analytical results. When

using the framework of Tirok et al. [2011] to incorporate the dynamics of the trait variance σ2
G and

β2
G, we obtain results different from the main text, as seen in the comparison between Figures 1.1

and 1.7. The shorter periods seen in the oscillating solutions is a result of increased and evolving

trait variances. We also see coexistence is threatened if prey variance can increase without bound
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in Model 1. This is because reductions in growth rates are of little consequence to prey when their

population is at its carrying capacity. Calcagno et al. [2010] utilized an individual-based framework

to model the full distribution of traits and found that rapid predator evolution resulted in prey

and/or predator speciation and fewer interactions between predator and prey. They also found that

the predator went extinct if its adaptation speed was too slow, suggesting that predators are more

successful if the ratio of speeds of adaptation of predators and prey is at some optimal level. We

expect that comparing models with different evolutionary trade-offs and full trait distributions will

yield similar results to Calcagno et al. [2010]. and future work will entail modeling the evolution

of the full trait distribution of both predator and prey.

Our study shows that analytical outcomes are affected greatly by the choice of trade-off in prey

species; the specific traits under consideration matter. We investigated the qualitative differences

between cycles produced by the two models using simulations. Since the prey rate of evolution |dn/dt|

generally decreases as prey growth rate decreases but increases as carrying capacity decreases, there

are bouts of more rapid prey evolution in Model 2 that are not present in Model 1 (Figures 1.1(d,f))

These bouts of rapid evolution present an evolutionary challenge to the predators, who are suddenly

unequipped to deal with the changing genetic landscape. This results in periods of time in which the

predator population decays exponentially and would go extinct if evolution were to cease (Figure

1.1(e)). At these low densities, the predator population is able to quickly respond evolutionarily,

making them a threat to the prey, enabling them to recover ecologically. Since generalist predators

(higher τa) are more able to respond to rapid prey evolution than specialist predators, they spend

less time at extremely low densities. This decrease in selective pressure results in cycles of longer

periods (Figure 1.6(c)).

Our models produce cycles with generally in-phase ecological dynamics over the longer evolu-

tionary time scale, and out-of-phase fluctuations on an ecological time scale immediately following

bouts of more rapid evolution. These ecological fluctuations are not offset by a quarter cycle, as

predicted by classical ecological models, but rather resemble dynamics seen in Khibnik and Kon-

drashov [1997], Mougi [2012] and supported by studies incorporating rapid prey evolution [Yoshida

et al., 2003, Cortez and Ellner, 2010].
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Figure 1.7. Timeseries. Parameters are identical to those from 1.1, but results were obtained
by running the model with evolving variance according to the framework of Tirok et al. [2011].

This study expands our theoretical understanding of predator-prey eco-evolutionary dynamics.

In particular, we explored the effects of two types of trait linkage on ecological dynamics and

concluded that one must be mindful of the type of stabilizing selection included in theoretical

models. In reality, many groups of traits which affect ecological interactions are correlated with

varying strengths, and predator and prey species interact in the context of a larger food web.

Future studies can potentially expand on this model by considering more complex trait linkage
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in the context of multiple prey species, multiple predator species, intraguild predation, or more

general multitrophic food webs.
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2.1. Abstract

When predators consume prey, they risk becoming infected with their prey’s parasites, which

can then establish the predator as a secondary host. For example, stickleback in northern tem-

perate lakes consume benthic or limnetic prey, which are intermediate hosts for distinct species of

parasites (e.g. Eustrongylides nematodes in benthic oligocheates and Schistocephalus solidus cope-

pods in limnetic copepods). These worms then establish the stickleback as a secondary host and

can cause behavioral changes linked to increased predation by birds. In this study, we use a quan-

titative genetics framework to consider the simultaneous eco-evolutionary dynamics of predator

ecomorphology and predator immunity when alternative prey may confer different parasite expo-

sures. When evolutionary tradeoffs are sufficiently weak, predator ecomorphology and immunity

are correlated among populations, potentially generating a negative correlation between parasite

intake and infection.
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2.2. Introduction

Many predators acquire parasites by consuming infected prey [Rogawa et al., 2018, Iritani

and Sato, 2018], and community ecologists are increasingly interested in the impact of parasites on

communities [Sukhdeo, 2012, Wood and Johnson, 2015, Anderson and Sukhdeo, 2011]. For example,

parasites have been shown to alter both food web dynamics and structure [Lafferty et al., 2006,

van Velzen and Gaedke, 2017, Cortez and Weitz, 2014]. Conversely, a host’s position within the

food web may affect parasite infection rates. After a parasite passes through this ‘encounter filter,’

it must then pass through a ‘compatibility filter’ by establishing an infection despite the host’s

immune response. Therefore, to understand the role of parasitism within an ecological community

we must consider both the host diet (encounters) and host immunity (compatibility).

Trait evolution modifies predator-prey interactions in ways that can change their population

dynamics, coexistence, and food web structure. For instance, Yoshida et al. [2003] found that prey

evolution can affect the period and phase difference in predator-prey cycles, and Becks et al. [2010]

found that the amount of heritable variation in a prey defense trait can shift dynamics between

equilibrium and oscillatory states. These changes in predator diet or foraging rates will entail

consequent changes in exposure rates to trophically-transmitted parasites.

Parasite exposure risk can differ between ecologically divergent consumer individuals or pop-

ulations. A well-known example is the threespine stickleback (Gasterosteus aculeatus), a small

fish found in north temperate coastal habitats. Stickleback populations in different lakes typically

specialize on eating the local abundant prey and evolve functional morphology to suit this niche

[Lavin and McPhail, 1985, 1986]. In lakes with multiple abundant prey, the population as a whole

is a generalist but individual stickleback differ in trophic morphology (e.g. jaw shape, gill rake

length) and use correspondingly different subsets of the available resources [Snowberg et al., 2015].

Because of the complex lifecycle of the trophically-transmitted cestodes and nematodes that infect

stickleback, only individuals who consume particular prey are at risk of infection by those para-

sites. The cestode Schistocephalus solidus uses cyclopoid copepods as a first host, which are eaten

by stickleback in open water (limnetic habitat). In contrast, the nematode Eustronglyides sp. uses

benthic-dwelling oligocheate worms as their primary host. As a result, stickleback morphology and

diet should be correlated with parasite intake rates: individuals consuming more limnetic copepods
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should have higher S. solidus infection rates. This expectation has been confirmed within each of

many populations showing correlations between individuals’ ecomorphology and infection status

[Stutz et al., 2014]. These associations between ecomorphology, diet, and infection risk have also

been found in coastal California sea otters [Johnson et al., 2009, Estes et al., 2003, Tinker et al.,

2008], cichlids [Hayward et al., 2017], and barbs [Sibbing et al., 1998].

One might expect this correlation between stickleback ecomorphology and infection risk to hold

not only within populations, but also among populations. However, Stutz et al. [2014] found that

nematode prevalence was lowest in populations where we would a priori expect it to be highest

(where fish consume more benthic prey). Stutz et al. [2014] suggested that correlated evolution of

diet and immunity might be the cause of this negative correlation. And, since these cestodes and

nematodes come from different prey and are phylogenetically distant parasites, it seems possible

that immunity to infection might need to be specialized to one or the other. Motivated by this

unexpected negative correlation, we seek to address three questions.

First, under what conditions is there a reciprocal feedback between niche and immune evolution?

If these conditions do not hold, when does the evolution of the predator’s trophic niche determine

the evolution of its immune system, or vice versa? Environmental conditions may dictate the

relative availability of alternative prey, which in turn generates selection on the predator’s foraging

morphology. The subsequent eco-evolutionary feedbacks involve coupled changes in species abun-

dances and predator traits. Changes in both prey availability and predator efficiency will alter

the predator’s diet and thus change its exposure to parasites, which will likely drive evolution of

the predator’s immune system to resist whichever parasites represent the greatest risk. On the

other hand, the evolution of a predator’s immune trait can reduce the harmful effects of parasites,

enabling niche expansion or a niche shift onto a formerly hazardous prey. Trophic traits may then

subsequently evolve to optimize attack efficiency on this new diet. When do these effects create a

feedback loop and cause multivariate-trait evolutionary cycles?

Second, how are trophic and immune trait values correlated? Even if traits are genetically

independent, their selection pressures may not be. The predator’s immune trait may affect the
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selection pressure on morphology, and vice versa. The joint evolution of traits may lead to corre-

lations between diet and immunity either because habitat differences favor bivariate outcomes or

because populations are at different phases of some cyclical dynamic.

Third, when does the joint evolution of niche and immune traits, along with predator-prey

dynamics, obscure the relationship between parasite exposure risk and actual infection rates? As

hypothesized by Stutz et al. [2014], evolution of predator immune traits may negate or even reverse

an expected positive correlation between intake of, and infection by, a particular parasite. Thus,

populations frequently exposed to particular parasites may have lower infection rates than popula-

tions that are rarely exposed (and hence susceptible) to the few parasites they do encounter.

2.3. Models

Let P = P (t) be the density of a predator population and Ni = Ni(t) be the densities of prey

populations i for i = 1, 2. Each prey species experiences logistic growth in the absence of the

predator, with intrinsic growth rates ri and carrying capacities Ki. The predator species has a

per-capita death rate d, attacks prey species i with attack rate ai, and converts food into offspring

with efficiency bi.

A percentage ci of prey i individuals are infected with parasite i that decreases predator fe-

cundity by miSi, where mi is the maximal negative effect of parasite i and Si ≤ 1 is a measure of

predator susceptibility to parasite i. Low Si corresponds to a strong immunity to parasite i. Then

the ecological dynamics are given by

dP
dt = P

[
(b1 − c1m1S1) a1N1 + (b2 − c2m2S2) a2N2 − d

]
,

dNi

dt = Ni

[
ri

(
1− Ni

Ki

)
− aiP

]
, i = 1, 2

The attack rate of the predator on prey i is determined by a quantitative trait x. Attack rate

of prey species i is maximal when x = θi, where θi is the optimum trait to consume prey i, and

decreases in a Gaussian manner as |x− θi| increases (as in Schreiber et al. [2011]). Specifically, the

attack rate ai(x) on prey i equals

ai(x) = αi exp

[
−(x− θi)

2

2ζ2i

]
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Figure 2.1. (a) Schematic of the model. The predator is exposed to limnetic
and benthic parasites via intake of limnetic and benthic prey. The proportion of
prey infected by parasites stays constant. The predator average morphology x and
average immune response y evolves in response to selection pressures caused by
prey availability and parasite infection. (b) Intake of prey i (ai(x)Ni) describes
total intake of both infected and uninfected prey. Exposure to parasite i (aiNici)
describes total intake of parasites (a constant proportion ci of prey i are infected
with parasites). Infection by parasite i (aiNiciSi(y)) describes the total number
of ingested parasites which successfully infect the predator (a proportion Si(y) of
ingested parasites infect the predator).

where αi is the maximal successful attack rate on prey i, and ζi is the width of the attack rate

function. The smaller ζi, the more phenotypically specialized a predator must be to use prey i.

Thus, predator populations with greater ζi values experience less pressure to evolve morphological

specialization.

The susceptibility of the predator to infection by parasite i is determined by a quantitative

trait y. Susceptibility is minimized when y = ϕi, where ϕi is the optimum trait to resist parasite

i, and increases in a Gaussian manner as |y − ϕi| increases. Specifically, the susceptibility Si(y) to

parasite i equals

Si(y) = βi − (βi − γi) exp

[
−(y − ϕi)

2

2τ2i

]

where βi ≤ 1 and γi < βi are the maximum and minimum susceptibility to parasite i, respectively,

and τi is the width of the immunity function. The smaller τi, the more immunologically specialized
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a predator must be to significantly reduce susceptibility to infection by parasite i. Thus, predator

populations with greater τi values experience less pressure to evolve immunological specialization.

We have in mind a model of constitutively expressed innate immunity rather than adaptive immu-

nity that is induced and grows following initial exposure.

The per-capita growth rate W (fitness) of a predator with ecomorphology x and immunity y is

given by

W (x, y, P,N1, N2) = (b1 − c1m1S1(y)) a1(x)N1 + (b2 − c2m2S2(y)) a2(x)N2 − d

and the per-capita growth rate Yi of prey interacting with predators with ecomorphology x is given

by

Yi(x, P,N1, N2) = ri

(
1− Ni

Ki

)
− ai(x)P, i = 1, 2.

We assume the predator traits x and y are genetically independent and normally distributed over the

population with means x and y, respectively. Let px(x, x) and py(y, y) denote these distributions:

px(x, x) =
1√
2πσ2

x

exp

[
−(x− x)2

2σ2
x

]
, py(y, y) =

1√
2πσ2

y

exp

[
−(y − y)2

2σ2
y

]
,

where σ2
x and σ2

y are the total phenotypic variances of traits x and y, respectively. Let σ2
x =

σ2
x,G + σ2

x,E , where σ2
x,G is the phenotypic variation of trait x due to genotype and σ2

x,E is the

phenotypic variation of trait x due to environmental conditions. Similarly, let σ2
y = σ2

y,G + σ2
y,E .

Here, we omit genetic-by-environmental interactions for mathematical simplicity, though these

are common for both trophic and immunological traits. Note that the environmental variance

component is not adaptive plasticity (e.g. not directionally dictated by prey availability or parasite

exposure experience).

Integrating across the predator distribution of phenotypes, the average per-capita growth rate

of the predator population W equals

W (x, y, P,N1, N2) =

∫∫
W (x, y, P,N1, N2)px(x, x)py(y, y)dxdy

=
(
b1 − c1m1S1(y)

)
a1(x)N1 +

(
b2 − c2m2S2(y)

)
a2(x)N2 − d,

34



where ai and Si are the averaged attack rate and susceptibility:

ai(x) =

∫
ai(x)px(x, x)dx =

αiζi√
σ2
x + ζ2i

exp

[
− (x− θi)

2

2
(
σ2
x + ζ2i

)] , i = 1, 2,

Si(y) =

∫
Si(y)py(y, y)dy = βi − (βi − γi)

τi√
σ2
y + τ2i

exp

[
− (y − ϕi)

2

2
(
σ2
y + τ2i

)] , i = 1, 2.

The average per-capita growth rate Y i of the prey i population is given by

Y i(x, P,N1, N2) =

∫
Yi(x, P,N1, N2)px(x, x)dx = ri

(
1− Ni

Ki

)
− ai(x)Ni, i = 1, 2.

These functions describe the ecological dynamics:

dP
dt = PW (x, y, P,N1, N2),

dNi

dt = NiY i(x, P,N1, N2), i = 1, 2.

(3.1a)

See Appendix B.1 for additional details regarding the model formulation.

Provided the predator trait distributions px and py stay normal with constant variance over

time, Lande [1976] showed that the rates of change of the average traits are proportional to the

derivative of the average fitness W with respect to that trait. The constants of proportionality are

the portions of phenotypic variance due to genetic variation. We assume the morphological and

immunological traits are genetically independent, and thus the evolutionary dynamics of x and y

are given by:

dx
dt = σ2

x,G

∂W

∂x

dy
dt = σ2

y,G

∂W

∂y

(3.1b)

where

∂W

∂x
=
(
b1 −m1c1S1(y)

)
a1(x)N1

θ1 − x

σ2
x + ζ21

+
(
b2 −m2c2S2(y)

)
a2(x)N2

θ2 − x

σ2
x + ζ22

,

∂W

∂y
= m1c1a1(x)N1

(
β1 − S1(y)

) ϕ1 − y

σ2
y + τ21

+m2c2a2(x)N2

(
β2 − S2(y)

) ϕ2 − y

σ2
y + τ22

.
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2.4. Methods

We use four numerical and analytical approaches to explore the three questions posed in the

introduction: (i) numerical simulations of population and evolutionary dynamics, (ii) analytical

results obtained in the limit of slow evolution (low heritability) and timescale differences between

the evolution of the two traits, (iii) Latin hypercube sampling across parameter space to analyze the

effect of model parameters on simulation outcomes, and (iv) numerical approximations of Lyapnuov

exponents to determine conditions for stable or chaotic dynamical behavior.

Numerical Simulations. We used standard numerical integration techniques (Runge-Kutta 4(5)

with adaptive step size using Python’s scipy.integrate.odeint [Jones et al., 2001–]) to simulate

the models (3.1a,3.1b) and (2.2). Parameters are given in Appendix B.2.

Lyapunov exponents describe how nearby trajectories behave in relation to a reference trajectory

[Sprott, 2003]. Given an initial condition, a positive (negative) Lypunov exponent means that

nearby trajectories on average move away from (towards) the reference trajectory, indicating chaos

(stability) (Appendix B.3). We calculated Lyapunov exponents for full-model simulations over a

two-dimensional subset of parameter space (σy,G vs. τ) to determine how the evolution of the

immune trait y affects the eco-evolutionary dynamics.

Analytic Reductions for Slow Evolution Dynamics. When the trait dynamics evolve at a suf-

ficiently slower time scale than ecological dynamics, we can reduce the five-dimensional system

to a two-dimensional system. This occurs, for example, if ecomorphological and immunity traits

are only marginally heritable (small σ2
x,G/σ

2
x and σ2

y,G/σ
2
y). Then x and y are effectively constant

with respect to the changing population densities P and Ni, i = 1, 2. In which case, the popu-

lation dynamics of the fast ecological system converges to a unique globally stable attractor with

a time-averaged ecological state (P ∗(x̄, ȳ), N∗
1 (x̄, ȳ), N

∗
2 (x̄, ȳ)) equal to the coexistence equilibrium

P ∗(x̄, ȳ) > 0, N∗
1 (x̄, ȳ) > 0, N∗

2 (x̄, ȳ) > 0 (Appendix B.4). Thus, on the evolutionary timescale, the
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trait dynamics are

dx
dt = σ2

x,G

[(
b1 −m1c1S1(y)

)
a1(x)N

∗
1 (x, y)

θ1 − x

σ2
x + ζ21

+
(
b2 −m2c2S2(y)

)
a2(x)N

∗
2 (x, y)

θ2 − x

σ2
x + ζ22

]
,

dy
dt = σ2

y,G

[
m1c1a1(x)N

∗
1 (x, y)

(
β1 − S1(y)

) ϕ1 − y

σ2
y + τ21

+ m2c2a2(x)N
∗
2 (x, y)

(
β2 − S2(y)

) ϕ2 − y

σ2
y + τ22

]
.

(2.2)

For the reduced system (2.2), we calculate nullclines, stable and unstable equilibria, and separatrices

across a range of foraging trade-offs.

Beyond the separation of timescale between ecological and evolutionary dynamics, the niche

and immune traits can themselves evolve on different timescales. As the two traits are genetically

independent, one trait may evolve on a slower timescale than the other if the two traits differ

significantly in their genotypic variance or their selection pressure. These differences can arise in

three ways, as discussed in the Results section.

Latin Hypercube Sampling. Using the equilibria of the slow-evolution model (2.2), we calculated

the relative intake rates of the two prey types ai(x)Ni/
∑2

k=1 ak(x)Nk, (i = 1, 2), the relative ex-

posure rates to the two parasite types ai(x)Nici/
∑2

k=1 ak(x)Nkck, (i = 1, 2), as well as the relative

parasite infection rates (Figure 2.1b) of the two parasite types ai(x)NiciSi(y)/
∑2

k=1 ak(x)NkckSk(y),

(i = 1, 2) over a two-dimensional range of foraging tradeoffs (ζi) and immune tradeoffs (τi). For

each tradeoff pair, we ran 4,000 simulations using Latin hypercube sampling, varying lake size

(e.g. K1/K2), maximal attack rates (α1, α2), parasite frequency in prey (c1, c2), parasitic effects

on stickleback (m1, m2), prey growth rates (r1, r2), and initial stickleback ecomorphology and

immunity (x0, y0). For each set of parameter values, we ran the two-timescale model (2.2) until

x and y reached an evolutionary equilibrium and calculated the relative intake, exposure, and in-

fection rates. We then plotted the results to gain insight about the joint evolution of niche and

immune traits and how their evolution affects the relationship between diet, parasite exposure, and

infection.
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2.5. Results

We first present results of the slow-evolution models to address how the evolution of niche affects

the evolution of immunity and vice versa. We then present the Latin hypercube sampling results to

address how the two traits are correlated across populations, as well as how that correlation affects

the relationship between diet and infection across populations. We conclude with a “within popu-

lations” perspective by using the full single-timescale five-dimensional model to examine temporal

correlations in traits and diet and infection rates for systems with cyclic or chaotic dynamics.

Three-timescale dynamics. For a given immune state y, the average predator fitness W is

unimodal with respect to the foraging trait x if

|θ1 − θ2| < 2
√
σ2
x + ζ2,(2.3)

where ζ := ζ1 = ζ2 [Schreiber et al., 2011, Schreiber and Patel, 2015]. Namely, if foraging tradeoffs

are weak relative to the phenotypic variation in foraging, then there is a single fitness maximum

with respect to x. When the contributions of the two prey populations to predator fitness are equal

(i.e. (b1−c1m1S1(y))a1N1 = (b2−c2m2S2(y))a2N2), condition (2.3) is necessary and sufficient, but

when prey contributions to predator fitness are unequal, predator fitness may be unimodal with

respect to x even if (2.3) does not hold.

Similarly, for a given foraging trait x, W is unimodal with respect to the immune trait y if the

immune tradeoff is weak relative to the phenotypic variance in immunity, i.e.

|ϕ1 − ϕ2| < 2
√

σ2
y + τ2,(2.4)

where τ := τ1 = τ2 (Appendix B.5). This condition is necessary and sufficient only when the differ-

ence between the effects of parasites infecting predators maximimally and minimally susceptible to

those parasites is symmetric (i.e. m1c1(β1 − γ1)a1(x)N1 = m2c2(β2 − γ2)a2(x)N2). Again, if these

differences are unequal, W may still be unimodal with respect to y even if (2.4) does not hold.

There are three ways in which the predator traits may evolve at different timescales. First, all

else being equal, the trait with a higher genotypic variance evolves more quickly than the other

(Figure 2.2a,b,d,e,g,h,j,k). Second, if the parasite is rare or has a weak effect on the predator,
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Figure 2.2. Nullclines, stable and unstable equilibria, separatrices, and evolution-
ary dynamics of (2.2). The cyan and pink curves denote the x- and y-nullclines,
respectively. Filled-in and hollow circles indicate stable and unstable evolutionary
equilibria, respectively. Blue lines are sample trajectories, and dashed lines indicate
separatrices between stable equilibria (as well as the stable manifolds of the saddles).
In (a), (d), (g), and (j), σx,G = 0.005 and σy,G = 0.25. In (b), (e), (h), and (k),
σx,G = 0.25 and σy,G = 0.005. In (c), (f), (i), and (l), mi = ci = 0.1 for i = 1, 2.
In (a)-(f) immune tradeoffs are strong (τi = 0.01), and in (g)-(l) immune tradeoffs
are weak (τi = 1). In the (a)-(c) and (g)-(i) foraging tradeoffs are strong (ζi = 0.01)
and in (d)-(f) and (j)-(l) foraging tradeoffs are weak (ζi = 1).

then selection pressure on the immune trait y is weak and therefore evolves much slower than the

foraging trait x (Figure 2.2c,f,i,l). Third, weak tradeoffs in either trait result in weak selection

pressure on that trait. In particular, large ζi corresponds to slower x evolution (Figure 2.2d-f,j-l),

and large τi corresponds to slower y evolution (Figure 2.2a-c,g-i).
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Figure 2.2 shows the evolutionary dynamics of (2.2) for a variety of scenarios. It also highlights

three major asymmetries of the foraging and immune traits in the context of three-timescale dy-

namics: (i) the relationship between trait tradeoff and equilibrium location, (ii) the relationship

between initial and final evolutionary state, and (iii) the directionality of trait evolution.

Predators evolve generalist foraging strategies if the foraging tradeoff is weak, regardless of the

immune tradeoff (Figure 2.2d-f,j-l). In contrast, predators evolve generalist immune strategies if

the immune tradeoff is weak, but only when the predator already has a generalist foraging strategy

(Figure 2.2i-l). The immune tradeoff needs to be very weak (in relation to the foraging tradeoff)

in order to have the same effect as the foraging tradeoff.

The final foraging state is generally determined by the initial foraging state, regardless of the

strengths of trait tradeoffs. In contrast, the final immune state depends on both initial foraging

and immune states, the strength of the trait tradeoffs, and ecological parameters such as parasite

prevalence and lethality. Graphically, the x-nullclines in Figure (2.2) remain relatively vertical

regardless of the strength of the foraging and immune tradeoffs, in contrast to the y-nullclines,

which are are never only horizontal. Consider for example a specialist predator (in both foraging

and immune state) in an environment in which foraging and immune tradeoffs are strong (Figure

2.2a-c). The stabilizing selection at this evolutionary state is strong enough to withstand weakening

immune tradeoffs, but not weakening foraging tradeoffs. In fact, if the foraging tradeoff becomes

sufficiently weak, the predator will evolve a generalist foraging strategy, and an immune strategy

dependent on the environment and the relative heritabilities of the two traits.

As a result of the extreme nature of the x-nullclines, the foraging trait always evolves unidi-

rectionally. On the other hand, because the y-nullclines are not strictly horizontal, the immune

state may reverse its evolution when immune heritability is high relative to foraging heritability

(Figure 2.2a,g,j). In these scenarios, the immune state evolves quickly toward a stable branch

of the y-nullcline, and then both traits evolve along the y-nullcline toward a stable evolutionary

equilibrium.

Two-timescale dynamics. We used Latin hypercube sampling over a subset of parameter

space to understand how the locations of the stable equilibria change as parameters vary (Figure
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Figure 2.3. Locations of stable equilibria for a Latin Hypercube sample of pa-
rameter space. In (a) and (b) immune tradeoffs are strong (τi = 0.01), and in (c)
and (d) immune tradeoffs are weak (τi = 1). In (a) and (c), foraging tradeoffs are
strong (ζi = 0.01) and in (b) and (d) foraging tradeoffs are weak (ζi = 1). The color
of each dot represents the density of the predator population at the evolutionary
equilibrium.

2.3). When both tradeoffs are strong (Figure 2.3a), equilibria congregate near evolutionary special-

ist states, while when both tradeoffs are weak (Figure 2.3d), the predator is more likely to evolve a

generalist foraging and immune strategy. If foraging tradeoffs are weak and immune tradeoffs are

strong (Figure 2.3b), predators will typically evolve a generalist foraging strategy and a specialist

immune strategy. In contrast, if immune tradeoffs are weak and foraging tradeoffs are strong (Fig-

ure 2.3c), then predators may evolve a generalist or specialist foraging strategy, and the immune
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Figure 2.4. Prey intake, parasite exposure, and parasite infection over the same
subset of parameter space given in Figure 2.3. The dots are colored as in Figure
2.3. The blue lines are splines of the data, included in order to better identify
patterns between prey intake, parasite exposure, and parasite infection. In (a) and
(b) immune tradeoffs are strong (τi = 0.01), and in (c) and (d) immune tradeoffs
are weak (τi = 1). In (a) and (c), foraging tradeoffs are strong (ζi = 0.01) and in
(b) and (d) foraging tradeoffs are weak (ζi = 1).

strategy will evolve to correspond with the foraging state. We see the same asymmetry as in Figure

2.2: generalist immune traits only evolve for generalist foragers, but generalist foraging traits may

evolve regardless of immune state.

We also used the same Latin hypercube sample to understand what causes various correlations

between prey intake, parasite exposure, parasite infection across predator populations (Figure 2.4).

When immune tradeoffs are strong (Figure 2.4a,b), the relationship between prey intake and par-

asite infection does not stray far from the one-to-one line. In these scenarios, the proportion of
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a predator population’s diet consisting of some prey is roughly equal to the proportion of that

predator’s parasite load consisting of the parasites from that prey. In addition, the majority of the

variation in parasite infection is caused by the relationship between prey intake and parasite ex-

posure, and not between exposure and infection. This means that any potential nonlinear pattern

between diet and infection is not caused by immune evolution if immune tradeoffs are strong.

When immune tradeoffs are weak (Figure 2.4c,d), the relationship between prey intake and

parasite infection differs greatly from the one-to-one line. In these scenarios, the proportion of a

predator population’s diet consisting of some prey may not predict the proportion of that predator

population’s parasite load consisting of the parasites from that prey. In contrast to when immune

tradeoffs are strong, the majority of the variation in parasite infection is caused by the relationship

between parasite exposure and parasite infection, indicating that any potential nonlinear pattern

between diet and infection is caused by immune evolution if immune tradeoffs are weak.

Non-equilibrium eco-evolutionary dynamics. When heritability is high, eco-evolutionary

feedbacks lead to greater dynamical complexity, including cyclical and chaotic dynamics. Schreiber

et al. [2011] showed niche evolution can induce cycles and chaos in the absense of immune evolution,

and we found something similar for immune evolution. Regardless of immune heritability, eco-

evolutionary cycles only occur for sufficiently weak immune tradeoffs (Figure 2.5a). When immune

heritability is low (Figure 2.5b), chaos occurs for very weak immune tradeoffs, while for higher

immune heritability (Figure 2.5c,d), chaos occurs for intermediate and possible also very weak

immune tradeoffs.

A typical chaotic eco-evolutionary trajectory is displayed in Figure 2.6. These dynamics show

a positive temporal correlation between foraging and immune traits (Figure 2.6c,d). When the

predator foraging trait favors one prey type over the other, its intake almost entirely consists of

that prey. The immune trait has higher heritability than that the foraging trait, which is why the

immune trait evolves more extreme values than the foraging trait. Once the predator over-consumes

a particular prey type and the other recovers, the foraging trait faces directional selection toward

the recovering, although there is a lag in the actual intake of that prey. Although it is highly

heritable, the immune trait does not favor the parasite of the recovering prey until the foraging

trait is near its extreme value.
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Figure 2.5. When immune tradeoffs are sufficiently weak, immune evolution can
induce cyclic or chaotic eco-evolutionary dynamics. For weak immune tradeoffs, low
heritability is destabilizing, but for intermediate immune tradeoffs, high heritability
is destabilizing. (a) The blue regions denote stability (negative Lyapunov exponent)
and the red regions denote chaos (positive Lyapunov exponent). (b) Local extrema
of the niche trait x along 0.05 ≤ τ1 = τ2 ≤ 0.45, h2y = 0.1. (c) Local extrema of the
niche trait x along 0.05 ≤ τ1 = τ2 ≤ 0.45, h2y = 0.5. (d) Local extrema of the niche
trait x along 0.05 ≤ τ1 = τ2 ≤ 0.45, h2y = 0.9.

There is also a nonlinear correlation between diet and infection (Figure 2.6b). Because this

correlation occurs within a single oscillating population, the intake-exposure relationship is one-to-

one. Thus, any nonlinear correlation between diet and infection is entirely caused by the evolving

immune trait y.
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Figure 2.6. A chaotic eco-evolutionary trajectory. Parameters are equal to that of
Figure 2.5 with τ1 = τ2 = 0.3 and h2y = 0.9 (bold x in Figure 2.5a). (a) predator and
prey densities through time. (b) Predator relative prey intake vs. relative parasite
infection. (c) predator foraging and immune traits through time. (d) predator
foraging trait vs. immune trait.

2.6. Discussion

In this study we addressed three questions: (a) how the evolution of a predator’s trophic niche

affects evolution of immunity to trophically transmitted parasites, and vice-versa, (b) how these

traits are correlated across populations and within a single population undergoing eco-evolutionary

oscillations, and (c) how the dual evolution of niche and immunity can affect the correlation between

intake of and infection by parasites among populations and within a single population undergoing

eco-evolutionary oscillations.
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For (a), we found that even when the predator’s immune state evolves faster than it’s niche

(due to high immune heritability and low ecomorphology heritability), immune evolution does not

determine niche. On the other hand, niche evolution often determines the predator’s immune state,

regardless of the relative speeds of evolution. Indeed, a fast-evolving immune state may reverse

its evolution in response to a shifting niche, but the niche does not respond in kind to a shifting

immunity.

The asymmetry between niche and immunity extends beyond the question of which trait de-

termines the other. When niche tradeoffs are weak and immune tradeoffs are strong, the predator

maintains a generalist foraging ecomorphology even though its immunity is specialized against one

parasite or the other. This is true even if the parasites are abundant and detrimental to the preda-

tor’s fitness. On the other hand, when niche tradeoffs are strong and immune tradeoffs are weak,

the predator evolves a specialist foraging ecomorphology along with a specialist immunity against

the parasites it encounters. In short, there is little fitness benefit in maintaining an immunity to a

parasite rarely encountered, but there is significant benefit to maintaining a morphology suitable to

consume multiple prey even when they contain parasites that confer significant fitness drawbacks.

When eco-evolutionary dynamics occur on commensurate timescales, our numerical results

suggest that oscillations do not occur when immunological tradeoffs are sufficiently strong. Theory

predicts evolutionary destabilization occurs more commonly when there is a tradeoffs between

capturing different prey phenotypes [Abrams and Matsuda, 1997a,b, Abrams, 2000], but we find

that there is a limit to this effect; if tradeoffs are too strong, all evolutionary oscillations are

suppressed.

For (b) and (c), our Latin hypercube sampling results showed no correlation between trophic

and immune traits when immune tradeoffs are strong. With these strong tradeoffs, predators

always evolve a specialized immunity regardless of their ecomorphology. In contrast, when immune

tradeoffs are weak, predators evolve an immunity to suit their niche. Here, the strength of foraging

tradeoffs determine the correlation; if foraging tradeoffs are strong, then predators evolve to only

a few morphological states, whereas if foraging tradeoffs are weak, then predators may evolve

anywhere along the ecomorphology spectrum.
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Because predators only evolve immunity to suit their niche if immune tradeoffs are weak, nega-

tive correlations between parasite intake and infection are only possible with weak immune tradeoffs.

The negative correlation between intake and infection is more pronounced when there is more mor-

phological diversity across populations, and thus is most likely to be observed if foraging tradeoffs

are also weak. These results, when compared to the empirical data of Stutz et al. [2014], suggest

that evolutionary trade-offs in stickleback niche (benthic or limnetic prey) and immune traits (ben-

thic or limnetic parasite) are likely to be weak. This aligns with other studies which have shown

that many stickleback populations have evolved a generalist morphology when both limnetic and

benthic prey are present [Schluter and McPhail, 1992, Lavin and McPhail, 1985, Matthews et al.,

2010, Snowberg et al., 2015].

We also found a nonlinear correlation between intake and infection within a single popula-

tion oscillating in time. Because of the assumption that parasite abundance stays constant, this

correlation is caused entirely by the evolution of immunity. Our simulations did not produce a

negative correlation between intake and infection within a single oscillating population. However,

the nonlinear correlation suggests that the negative correlation between diet and infection across

populations observed by Stutz et al. [2014] may have resulted from oscillating populations in similar

habitats rather than equilibriated populations in different habitats. However, because ecological

variation among lakes is correlated with lake size (larger lakes containing more limnetic-feeding

populations), this is unlikely to be the case.

It is well known that stickleback face biomechanical trade-offs that limit their ability to capture

both benthic and limnetic prey [Robinson, 2000]. In contrast, it is not known whether stickleback

immunity face comparable immunological trade-offs. That is, does immunity to benthic-derived

parasites (e.g., nematodes) also confer protection to limnetic-derived parasites (e.g., Schistocephalus

cestodes), or inhibit immunity to cestodes? In general, evidence suggests that different parasites are

detected by different host MHC IIb alleles [Stutz and Bolnick, 2017], suggesting a possible trade-off.

For certain kinds of parasites this trade-off is well documented, such as the mutual inhibition of Th1

and Th2 adaptive immune responses that, respectively, target bacterial and helminth infections. We

chose to model stickleback immunity on a single bidirectional axis, with different optimal values for

immunity against limnetic and benthic parasites. This choice comes with the implicit assumption
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that there is a limited amount of energy allocated toward immunity, but the vertebrate immune

system is complex and highly multivariate. An alternative modeling framework we considered is one

unidirectional axis describing immunity for limnetic parasites, and a separate unidirectional axis for

immunity to benthic parasites. Unlike our modeling framework, trade-offs would not be between

immunity to either limnetic or benthic parasites, but rather between immunity to a parasite species

and some other unrelated metabolic rate (i.e. death rate or conversion efficiency).

We did not choose this framework for two reasons. First, this choice would push the evolutionary

dimensionality of our model from two to three, and the total dimensionality from five to six, thus

increasing the complexity of analysis and decreasing mathematical tractability. Also, we expect that

negative correlations between intake and infection are more likely to be seen in this more complex

modeling framework. This is because there is no trade-off between immune traits, and thus slight

evolutionary adjustments in immunity to one parasite can be made without affecting immunity to

the other. Thus, in this framework, even when the trade-off between immunity and a metabolic

rate is strong, populations can optimize immunity along both axes, allowing for a kind of immunity

generalism. When populations are able to more finely tune their immunity, negative correlations

between intake and infection are more likely. We were able to produce negative correlations between

intake and infection in a far more conservative framework, less likely to produce this correlation,

which is strong evidence in favor of the hypothesis of Stutz et al. [2014] and suggests that the cause

of the negative correlation between intake and infection is indeed the evolution of immune traits in

conjunction with trophic niche traits.

This study was motivated in part by the specific relationship between stickleback and their

infected prey. However, trophically transmitted parasites are very common in nature [Combes,

2001]. This study helps shed light on how food web dynamics are affected by the presence of diet-

derived parasites, and is a contribution to the growing body of theory regarding eco-evo dynamics

in a multispecies context [Abrams, 2006, Vasseur and Fox, 2011, Cortez and Patel, 2017, Cortez

and Weitz, 2014, Patel and Bürger, 2019, Fleischer et al., 2018, Patel and Schreiber, 2015, 2018,

Schreiber and Patel, 2015, Schreiber et al., 2011, Saloniemi, 1993, Klauschies et al., 2016, Tien

and Ellner, 2012, Abrams and Matsuda, 1997a, Cortez et al., 2020]. In particular, predator traits

evolve in response to the presence and danger of parasites in prey, which results in a shift in
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predator exposure and susceptibility to parasites. These eco-evo feedbacks can cause chaos or

other oscillatory behavior, or cause alternative stable ecological and evolutionary states.

Conversely, we need improve our understanding of how food web dynamics play a role in the

dynamics of trophically transmitted parasites, and future theoretical studies should incorporate the

dynamics of parasites along with the dynamics of the community in which they reside. Prosnier et al.

[2020] used an epidemiological framework to examine the effect of prey infection on predator diet.

They also examined the effect of predator diet evolution on coexistence using an adaptive dynamics

evolutionary framework and showed that this type of evolution generally promotes coexistence

among a predator and an infected and uninfected prey. Like in this study, reductions in prey density

correspond to lower consumption rates by the predator, which ultimately favors prey persistence.

Prosnier et al. [2020] modeled parasite transmission as horizontal between prey. This is not

the case for stickleback prey, which become infected by parasites through consumption [Barber and

Scharsack, 2009]. We therefore chose not to include explicit parasite dynamics or the epidemiological

dynamics of the prey, and instead assumed that the proportion of prey which are infected stays

constant. Common predators of stickleback are piscivorous birds which freely move between many

lakes or ponds. Parasites lay eggs in the gut of a bird and these eggs are deposited into lakes when

these birds defecate above water. This suggests that a significant proportion of the parasite load

in prey results from regional recruitment rather than local population reproduction. That is, birds

which consume infected stickleback from one lake or pond often defecate into another, which keeps

the parasite load in each lake or pond relatively constant.

Although it may be that immunity and ecomorphology are genetically linked in some way,

we chose to model the two traits as genetically independent. This choice improves mathematical

tractability, as well as provides an example of a system in which the evolution of two traits drive

each other, not because of genetic linkage, but rather based solely on interdependent selection

pressures. Future studies should explore how correlated selection pressures can enhance, or reverse,

the effects of genetic linkage of two traits.

Finally, experiments are needed to validate our model, including measurements of relevant

parameters and tests of our assumptions. We know that stickleback individuals vary in their

propensity to consume benthic versus limnetic resources [Snowberg et al., 2015, Matthews et al.,
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2010, Robinson, 2000, Bolnick and Lau, 2008, Bolnick et al., 2014]. However, the precise nature

and strength of the biomechanical (and perhaps cognitive) trade-offs remain poorly understood

[Robinson, 2000, Schmid et al., 2019]. Likewise, we know that stickleback genotypes differ in their

resistance to various parasites [Stutz and Bolnick, 2017, Weber et al., 2017a, Nagar and MacColl,

2016, MacColl, 2009, MacColl and Chapman, 2010, Kalbe and Kurtz, 2005, Eizaguirre et al., 2012,

Weber et al., 2017b, among many others]. But, we know little about trade-offs (or synergy) between

resistance to different parasites. For that matter, parasites can manipulate host immunity in ways

that benefits or harms co-infecting parasites (e.g., Ezenwa et al. [2010]). We therefore need to

bring together biomechanical studies of foraging trade-offs, with mechanistic immunological studies

of resistance trade-offs. In addition, we lack sufficient information about the relative virulence of

different parasites acquired through alternative prey, and future theoretical studies should include

the effects and evolution of all three host strategies: avoidance, resistance, and tolerance.
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CHAPTER 3

Predator evolution mediates permanence among competing prey

Joint work with:

Sebastian Schreiber

Department of Evolution and Ecology, University of California Davis, Davis, 95616, California

3.1. Abstract

Competition among prey can be qualitatively changed in the presence of predators. In some

cases, the presence of one or more predators reduces diversity. In other cases, predators can

mediate coexistence among prey which would not ordinarily coexist. Among the mechanisms that

promote coexistence among competing prey are ontogenetic diet shifts within predators, dispersal

of an inferior prey, and prey evolution in the absence of a predator. Here we study the effect of a

generalist predator with an evolutionary trade-off between attack rates on two competing prey. We

employ a quantitative genetics framework to analyze a Lotka-Volterra model of the three species

along with an evolving predator trait. Predator evolution can promote permanence (a robust form

of coexistence, in which all population densities eventually remain positive and bounded within

a compact set) between prey that would not ordinarily coexist, even in the presence of a non-

evolving predator. When the prey are bistable, predator-mediated permanence is more likely when

evolutionary tradeoffs are weak.

3.2. Introduction

Nearly two decades ago, Chase et al. [2002] synthesized results from a large body of theoretical

and empirical research regarding the complicated interaction between predation and competition

among prey. They found that the effect of predation on interspecific competition depends on

the relative competitive abilities of the prey, the relative effects of predation on each prey, and

the productivity of the environment [Chase et al., 2002]. On short timescales, predators reduce
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prey population densities, which reduces the total effect of competition [Sih et al., 1985]. Over

longer timescales, however, the proportional reduction in population size caused by competition

may increase or decrease in the presence of predation [Gurevitch et al., 2000b]. This complication

is due, in part, to prey coexistence depending on the ratio of inter- to intraspecific effects, and that

the effect of predation on this ratio is system specific [Chase et al., 2002].

There are a number of mechanisms in which a predator mediates coexistence among its com-

peting prey. The presence of predators can cause prey to seek species-specific refuges where the

frequency of interspecific interactions, and thus competition, is reduced, enabling coexistence [Holt

and Lawton, 1994]. Predators can promote coexistence between a superior and inferior competitor

if the superior competitor is more affected by predation [Abrams, 1993]. Predator switching be-

havior can allow predators to act as limiting factors for more than one prey, promoting coexistence

[Roughgarden and Feldman, 1975]. Ontogenetic diet shifts in predators allow coexistence between

a superior and inferior prey [Wollrab et al., 2013] and between a resource and an intraguild preda-

tor [Hin et al., 2011]. Dispersal of an inferior competitor causes sustained spacial heterogeneity,

promoting coexistnce [Amarasekare, 2008]. Other mechansisms have been hypothesized and tested,

including the coexistence of Daphnia due to the presence of and particular feeding patterns of a

predatory fish [Gliwicz and Wrzosek, 2008]. But Chase et al. [2002] noted a major gap in theory

regarding the effect of evolution on the predation-competition interaction, which is surprising given

this gap was originally identified a quarter-century earlier by Holt [1977] in his study of apparent

competition.

The idea that ecology and evolution affect each other on commensurate timescales (also known

as eco-evolutionary feedbacks) has since become mainstream [Schoener, 2011]. Many theoretical

studies show how evolution of one or more species can affect the structure of its community, and

conversely how community structure affects their evolution [Abrams, 2006, Geritz et al., 2007,

Schreiber et al., 2011, Vasseur and Fox, 2011, Vasseur et al., 2011, Schreiber and Patel, 2015,

Patel and Schreiber, 2015, Klauschies et al., 2016, Cortez and Patel, 2017, Patel and Schreiber,

2018, Fleischer et al., 2018, Patel and Bürger, 2019]. For example, Geritz et al. [2007] showed that

evolution of predator handling time can cause evolutionary branching and coexistence between

the two distinct predators and their shared prey. In a Lotka-Volterra competition model, Vasseur
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et al. [2011] showed that a competitor with an evolving trait expressed as a tradeoff between inter-

and intraspecific competition can mediate coexistence. Klauschies et al. [2016] studied a four-prey

four-predator eco-evolutionary module with a prey trait tradeoff between intrinsic growth rate and

a predator trait tradeoff between selectivity and half-saturation constant and found that rapid

evolution promoted species coexistence, while systems with low trait heritability (and thus slower

evolution) did not show increased species coexistence.

Another ecological role evolution might play is in mediating the existence of competing prey

species. In a Lotka-Volterra model of two competing species, there are three qualitatively different

outcomes: globally stable coexistence, globally stable dominance of a single competitor, and bista-

bility where both single-species equilibria are stable. Hutson and Vickers [1983] fully characterized

permanence of a Lotka-Volterra system with a single predator and two competing prey and found

it can be permanent only if the prey coexist in the absence of the predator or one prey dominates

the other, but permanence is impossible for bistable prey. Later, Schreiber [1997] showed how

these conclusions extend to non-Lotka-Volterra models, such as the Schoener competition model

[Schoener, 1976] and those with type II functional responses [Ayala et al., 1973].

Theoreticians have searched for ways in which one or more predators mediate permanence

among bistable prey. For example, Kirlinger [1986] found two specialist predators can mediate

permanence between two bistable prey. Other studies have found mechanisms for maintaining co-

existence between competitors in various contexts, including stepwise predator switching between

a superior dynamic prey and inferior static prey [van Baalen et al., 2001], dispersal and spatial

heterogeneity in a rock-paper-scizzors metacommunity [Schreiber and Killingback, 2013], and envi-

ronmental temporal heterogeneity affecting interacting structured populations [Roth and Schreiber,

2013].

It may be possible, however, for a single evolving predator to mediate permanence among

bistable prey. If there is a tradeoff in consumption rates between the two prey populations, then

a specialist predator which suppresses population growth of a particular prey may create the con-

ditions under which its competitor can invade. Thus, in this study we consider the evolution of

the attack rates of a predator with two prey. There are numerous empirical examples of evolution-

ary tradeoffs between attack rates on alternative prey within generalist predators, also known as
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individual specialization [Bolnick et al., 2003]. A well-studied example of heterogeneous predator

populations in which diet is correlated with some physical trait is the threespine stickleback. These

fish are generalists in northern temperate lakes with multiple abundant prey, but individuals’ mor-

phology is correlated with their diet [Snowberg et al., 2015]. This gives rise to potential rapid

evolution of the diet-correlated trait in response to selection pressure caused by shifting prey pop-

ulation densities. It is possible, therefore, that predator evolution is a mechanism for maintaining

prey diversity.

To test this hypothesis, we analyze a Lotka-Volterra three-species module in which a single

predator population consumes two competing prey which cannot coexist in the absence of pre-

dation (either due to competitive exclusion or the priority effect). First, we find global stability

conditions in the absence of evolution, extending the work of Takeuchi and Adachi [1983], whose

study assumed equal assimilation efficiencies. Then, we consider an evolving quantitative trait in

the predator, derive permanence conditions, and compare the regions of trait space which allow for

prey coexistence. In the language of Chase et al. [2002], the measure we use to determine the effect

of predator evolution on competiting prey is the “ease of coexistence,” which is simply the range of

parameter values producing coexistence of competitors. We conclude with an analysis of the effect

of trait heritability on the type of coexistence that arises from the eco-evolutionary feedback.

3.3. Models and Definitions

3.3.1. The Ecological Dynamics. Let Ni(t) (i = 1, 2) and P (t) be the prey and predator

densities at time t, respectively. Let ri denote the intrinsic growth rates of the prey, c12 and

c21 the competition rates between the competing prey species, ai the predator attack rates on

the two prey, ei the predator conversion efficiencies of the two prey, and d the predator death

rate. Non-dimensionalizing the prey carrying capacities in the absence of other species to ri, the

Lotka-Volterra model of a predator and two competing prey is

(3.1)

dN1

dt
= N1(r1 −N1 − c12N2 − a1P ),

dN2

dt
= N2(r2 −N2 − c21N1 − a2P ),

dP

dt
= P (a1e1N1 + a2e2N2 − d).
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There are three qualitatively different outcomes of the N1-N2 subsystem of Model (3.1): (i)

if c12 < r1
r2

and c21 < r2
r1

, then the prey converge to a globally stable equilibrium for all positive

initial conditions, (ii) if c12 < r1
r2

and c21 > r2
r1

, then prey 1 is the superior prey and prey 2 is lost

(dynamics converge to (r1, 0) for all positive initial conditions), and (iii) if c12 > r1
r2

and c21 > r2
r1

,

then both (r1, 0) and (0, r2) are locally stable, and their basins of attraction are separated by the

one-dimensional stable manifold of the unstable coexistence equilibrium.

We are interested in when the prey cannot coexist in the absence of the predator, and thus

we focus on cases (ii) and (iii). Extending results from Takeuchi and Adachi [1983], we determine

conditions for global stability of the various equilibria of Model (3.1), as well as conditions for the

existence of a Hopf Bifurcation.

3.3.2. The Eco-Evolutionary Dynamics. To study the role of evolution in predator-mediated

coexistence, we extend Model (3.1) to include an evolving trait that determines its attack rates ai

on the two prey species. We assume the predator trait x is normally distributed with mean x̄ and

variance σ2 across the predator population (x ∼ N (x̄, σ2)), and is determined by an infinite amount

of independent loci with additive effects. We also assume the trait stays normally distributed with

variance σ2 throughout time [Lande, 1976].

Trait x affects the predator attack rate ai on prey i such that ai is maximized at optimal trait

value θi and decreases in a Gaussian manner as |x− θi| increases:

ai(x) = αi + βi exp

[
−(x− θi)

2

2τ2i

]
,

where αi and αi + βi are the bounding values of ai and τi is a measure of the strength of the evo-

lutionary tradeoff between attack rates. Under these assumptions, the eco-evolutionary dynamics

are

(3.2)

dN1

dt
= N1(r1 −N1 − c12N2 − ā1(x̄)P ),

dN2

dt
= N2(r2 −N2 − c21N1 − ā2(x̄)P ),

dP

dt
= PfP (N1, N2, P, x̄),

dx̄

dt
= σ2

G

d

dx̄
fP (N1, N2, P, x̄),
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where

āi(x̄) :=

∫ ∞

−∞
ai(x) ·

1√
2πσ2

exp

[
−(x− x̄)2

2σ2

]
dx = αi +

βiτi√
σ2 + τ2i

exp

[
− (x̄− θi)

2

2
(
σ2 + τ2i

)]

is the average predator attack rate on prey i,

fP (N1, N2, P, x̄) := ā1(x̄)e1N1 + ā2(x̄)e2N2 − d

is the average predator per-capita growth rate, and σ2
G is the portion of the phenotypic variation

due to the genotypic variation in the predator population. The population densities (N1, N2, P ) ∈

R3
≥0 = [0,∞)3, and the trait x̄ ∈ K := [θ1, θ2]. Thus the state space for Model (3.2) is S := R3

≥0×K.

The extinction set S0 := {z = (N1, N2, P, x̄) ∈ S | N1N2P = 0} is the set which has at least one

species extinct (density equal to zero). The heritability h2 ∈ [0, 1] of trait x is the ratio σ2
G/σ

2.

3.3.3. Coexistence: attractors, permanence, and global stability. The word coexis-

tence is used often to describe species that are able to persist for extended periods of time. This

can have many meanings and has been refined in a variety of ways [see, e.g., Schreiber, 2006, for

a review]. The simplest form of coexistence is a locally asymptotically stable eqiulibrium of posi-

tive densities. This coexistence is robust to small perturbations, but not necessarily large ones, as

there may be other equilibria with one or more species extinct (zero density) that are also locally

asymptotically stable. More generally, there are interior attractors, which include stable equilibria

as well as stable limit cycles or chaos bounded away from zero. Again, this form of coexistence is

not necessarily robust to large perturbations as there may be other asymptotically stable attractors

in which one or more species is extinct. To persist after vigorous shakeups, not only gentle stirrings

[Jansen and Sigmund, 1998], one requires a global interior attractor, which is an attractor in which

all trajectories with positive initial condition eventually approach. The term permanence describes

a case in which there is a compact global interior attractor. Hutson and Schmitt [1992] introduced

robust permanence [see also Schreiber, 2000], which requires permanence for any sufficiently small

and smooth model purturbation. Even stronger is global stability of an interior equilibrium, which

guarantees asymptotic approach to one equilibrium of positive densities for all initial conditions

with positive densities. To state these terms precisely, we need a few definitions.
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Let z.t denote the solution to Model (3.1) or (3.2) for initial condition z ∈ S. For any set

Z ∈ S and I ∈ R, let Z.I := {z.t | t ∈ I, z ∈ Z}. Models (3.1) or (3.2) are dissipative if there exists

a compact set Q ∈ S such that for all z ∈ S, z.t ∈ Q for all t sufficiently large. The ω-limit set

of a set Z ⊂ S is ω(Z) :=
∩

t≥0 Z.[t,∞), and the α-limit set is α(Z) := Z.(−∞, t]. A set Z ⊂ S

is invariant if Z.R = Z. A set A ⊂ S is an attractor if there is a neighborhood U of A such that

ω(U) = A. The global attractor is ω(Q).

Models (3.1) or (3.2) are permanent if (i) they are dissipative, (ii) there exists a compact attrac-

tor A such that A∩S0 = ∅, and (iii) ω(x) ⊂ A for all x ∈ S \S0. Equivalently, they are permanent

if there is some ϵ > 0 such that for any positive initial condition, lim inft→∞N1(t)N2(t)P (t) > ϵ and

lim supt→∞N1(t)N2(t)P (t) < 1
ϵ . All population densities must eventually be uniformly bounded

away from 0 and uniformly bounded above as long as each population has a positive initial density.

If the models are permanent for sufficiently small and smooth perturbations, then they are robustly

permanent [see Patel and Schreiber, 2018, for a precise definition]. To derive robust permanence

conditions for Model (3.2), we use results from a previous study [Patel and Schreiber, 2018], which

allow us to simply consider the invasion rates of missing species at the equilibria on the boundary.

Even stronger than robust permanence is global stability. An equilibrium z∗ is globally stable

if ω(z) = {z∗} for all z ∈ S \ S0. We derive conditions for global stability of Model (3.1), but do

not make any claims about global stability in Model (3.2).

3.4. Results

We first refine the results of Hutson and Vickers [1983], who found conditions for permanence

of Model (3.1), by deriving conditions for global stability of the coexistence equilibrium (extending

the results of Takeuchi and Adachi [1983], who assumed e1 = e2). We then discuss the dynamics

when Model (3.1) is not permanent, including global stability of boundary equilibria, existence of

Hopf bifurcations, and various types of bistabilities. We then present our main result: conditions

for permanence of Model (3.2). We conclude with a presentation of four qualitatively different

forms of permanence, including cases in which evolution stabilizes unstable communities and cases

in which evolution destabilizes stable communities.
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3.4.1. Permanence and Global Stability of Model (3.1). Generically, there are seven

equilibria of Model (3.1). Each equilibrium exists if the coordinates are non-negative, but we are

often interested in the cases where the variable coordinates are strictly positive, which inspires the

“+” and “0” notation we use for the equilibria. The first three always exist: the origin E0
00 =

(0, 0, 0) and the two single-prey equilbria E0
+0 = (r1, 0, 0) and E0

0+ = (0, r2, 0). Given c12c21 ̸= 1,

we can define the predator-exclusion equilibrium E0
++ =

(
r1−c12r1
1−c12c21

, r2−c21r1
1−c12c21

, 0
)

, which exists if

(r1−c12r2)(r2−c21r1) ≥ 0. There are two predator-prey equilibria, E+
+0 =

(
d

a1e1
, 0, 1

a1

(
r1 − d

a1e1

))
and E+

0+ =
(
0, d

a2e2
, 1
a2

(
r2 − d

a2e2

))
, which exist if d ≤ a1e1r1 and d ≤ a2e2r2, respectively. Finally,

there is one coexistence equilibrium E+
++ = (N∗

1 , N
∗
2 , P

∗), where

(©)

N∗
i =

Ñi

Θ
, i = 1, 2, P ∗ =

P̃

Θ
,

Ñ1 = d(a1 − c12a2)− a2e2(a1r2 − a2r1),

Ñ2 = d(a2 − c21a1)− a1e1(a2r1 − a1r2),

P̃ = a1e1(r1 − c12r2) + a2e2(r2 − c21r1)− d(1− c12c21), and

Θ = a21e1 − a1a2(c12e1 + c21e2) + a22e2.

The conditions for positivity and local asymptotic stability for each equilibrium are summarized

in Table 3.1, as discussed in Hutson and Vickers [1983]. Hutson and Vickers [1983] also derived

necessary and sufficient conditions for permanence of Model (3.1). These conditions characterize

robust permanence within the class of Lotka-Volterra models.

Theorem 3.1 (Hutson and Vickers, 1983, Theorems 3.4 and 3.5). Suppose that E+
++ =

(N∗
1 , N

∗
2 , P

∗) of Model (3.1) satisfies N∗
1 > 0, N∗

2 > 0, and P ∗ > 0. Model (3.1) is robustly

permanent if and only if

(i) c12 <
r1
r2

or c21 <
r2
r1

, and

(ii) Θ > 0.

Condition (i) in Theorem 3.1 implies that bistable prey cannot be made permanent with the

addition of a Lotka-Volterra predator. Specifically, if c12 > r1
r2

and c21 > r2
r1

and an interior

equilibrium exists, then Hutson and Vickers [1983] show that one of E0
+0 and E0

0+ must be locally
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Equilibrium Positivity conditions Local stability conditions (given positivity)

E+
++

N∗
1 > 0, N∗

2 > 0, P ∗ > 0

(see ©)



Z1 := (1− c12c21)N
∗
1N

∗
2

+
(
a21e1N

∗
1 + a22e2N

∗
2

)
P ∗ > 0

Z2 := (N∗
1 +N∗

2 )Z1 −N∗
1N

∗
2P

∗Θ > 0

Z3 := N∗
1N

∗
2P

∗Θ > 0

Z1Z2 − Z3 > 0

E+
+0 d < a1e1r1 Ñ2 < 0

E+
0+ d < a2e2r2 Ñ1 < 0

E0
++ (r1 − c12r2)(r2 − c21r1) > 0 c12c21 < 1 and P̃ < 0

E0
+0 always

{
d > a1e1r1

c21 >
r2
r1

E0
0+ always

{
d > a2e2r2

c12 >
r1
r2

E0
00 always never

Table 3.1. Existence and local stability conditions for all equilibria of Model (3.1).

asymptotically stable, preventing permanence. If condition (i) holds (and thus the prey are not

bistable; one dominates the other or they coexist in the absence of predation), then condition (ii)

can be interpreted as a restriction on the type of predator which ensures permanence. For example,

if prey 1 dominates prey 2 (c12 < r1
r2

and c21 > r2
r1

), then (3.1) is permanent if the attack rate on

prey 1 is sufficiently large and the attack rate on prey 2 is sufficiently small (see, e.g., Figs. 3.4b-d).

The following theorem provides a sufficient condition for permanence to correspond to a globally

stable equilibrium. Moreover, it provides sufficient conditions for boundary equilibria (i.e. where

at least one species is missing) to be globally stable.

Theorem 3.2. Suppose c12e1 + c21e2 < 2
√
e1e2.

(a) If E+
++ exists and is positive, it is globally stable.

(b) If E+
++ is not positive, then one of E0

0+, E0
+0, E0

++, E+
0+, or E+

+0 is globally stable.

The condition c12e1+c21e2 < 2
√
e1e2 in Theorem 3.2 requires that the competition among prey

is weak relative to their nutritional value for predators.

Model (3.1) may be permanent but not globally stable, in which case there is some globally

stable interior non-equilibrium attractor. If Model (3.1) is not permanent, however, then either the

coexistence equilibrium E+
++ does not exist, or condition (i) or (ii) from Theorem 3.1 does not hold.
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The following theorem fully characterizes the dynamics for the cases in which Prey 1 dominates

Prey 2.

Theorem 3.3. Assume Model (3.1) is not robustly permanent, and c12 <
r1
r2

and c21 >
r2
r1

(Prey

1 dominates Prey 2). Then one of the following holds:

(a) E+
++ is not positive and one of E0

+0, E+
+0, or E+

0+ is globally stable, or

(b) E+
++ is positive, and E+

0+ and E+
+0 are both asymptotically stable or E+

0+ and E0
+0 are both

asymptotically stable.

When the prey are bistable (c12 > r1
r2

and c21 > r2
r1

) a full characterization of the dynamics of

Model (3.1) is more difficult and remains a future challenge. Both types of bistabilities described

in Theorem 3.3 are also possible if the prey are bistable, as well as bistability of E0
+0 and E0

0+ if the

predator is unable to sustain itself on either prey. Furthermore, while permanence is impossible in

this case (Theorem 3.1), a weaker form of coexistence, existence of an internal attractor, can hold

if the predator is specialized on one prey. This attractor must be bistable with some boundary

equilibrium (E0
+0 or E0

0+). In a bistable prey community in which prey 1 is present, if a predator

specialized on prey 1 invades, it suppresses the prey 1 population such that prey 2 can invade. If

the predator attack rate on prey 2 is sufficiently small and the attack rate on prey 1 is intermediate,

then all three species may coexist. However, the same predator cannot invade the same community

while prey 2 is present. In addition, if all three species are present, sufficiently large ecological

perturbations may result in all but one prey species being excluded.

Figures 3.1b-d illustrate the possible dynamics when prey 1 dominates prey 2 in the absence of

the predator (c12 < r1
r2

and c21 >
r2
r1

). In Figure 3.1b, the global stability condition holds (Theorem

3.2), and thus exactly one equilibrium is globally stable for each combination of a1 and a2 values.

In Figures 3.1c,d, the global stability condition does not hold. Permanence is possible in this case;

regions with only vertical stripes indicate scenarios in which no boundary equilibrium is locally

stable, and thus all attractors are in the interior, and white regions indicate scenarios in which no

equilibrium is stable, including the interior equilibrium E+
++, and thus all attractors are oscillatory

and in the interior. If (3.1) is not permanent, multiple equilibria may be simulateously locally

stable (E+
0+ and either E+

+0 or E0
+0).

60



Figure 3.1. Existence and local stability of equilibria on the a1-a2 plane. The legend in-
dicates which patches correspond to which equilibirum. Regions containing multiple patches
indicate bistability between equilibria. White regions indicate no equilibria exist and are
locally stable and thus there is some stable oscillatory solution. In (a), the prey are bistable
(c12 > r1

r2
and c21 > r2

r1
). In (b), (c), and (d), prey 1 dominates prey 2 (c12 < r1

r2
and

c21 > r2
r1

). Parameters: r1 = r2 = 1, d = 0.5. In (a), c12 = c21 = 1.2, e1 = e2 = 0.5. In
(b), c12 = 0.2, c21 = 1.05, e1 = 0.4, and e2 = 0.9. In (c), c12 = 0.9, c21 = 1.1, e1 = 0.4, and
e2 = 0.9. In (d), c12 = 0.9, c21 = 1.4, e1 = 0.4, and e2 = 0.9.

3.4.2. Evolving Predator-Mediated Permanence. In Model (3.2), the predator attack

rates ai are maximized at some optimal values θi and monotonically decrease with distance from

that value. The minimum and maximum values of āi, i = 1, 2, which govern the endpoints of the

trait curve in Figure 3.2a, are as follows:
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Figure 3.2. Evolutionary tradeoff between either attack rates ai. (a) If x = θi, ai is
maximized and aj is minimized. The curve connecting these two points are negatively
sloped, but the concavity determines the strength of the tradeoff. Concave curves indicate a
weak tradeoff, as intermediate values of x result in relatively large attack rates ai, whereas
convex curves indicate a strong tradeoff, as intermediate values of x result in relatively low
attack rates ai. The curves are convex if τi and σ2 are sufficiently large and concave if τi and
σ2 are sufficiently small. These parameters, along with |θ2 − θ1|, determine the strength of
the attack rate tradeoff. Parameters: in (b,c), α1 = α2 = 0, β1 = β2 = 1, θ1 = 0, and θ2 = 1.
In (b), σ2 = 0.25 and τi ∈ [0.1, 2.1], τ1 = τ2. In (c), τ1 = τ2 = 0.25 and

√
σ2 ∈ [0.1, 2.1].

amax
1 := ā1(θ1) = α1 +

β1τ1√
σ2 + τ21

, amin
1 := ā2(θ1) = α2 +

β2τ2√
σ2 + τ22

exp

[
− (θ2 − θ1)

2

2
(
σ2 + τ22

)],
amax
2 := ā2(θ2) = α2 +

β2τ2√
σ2 + τ22

, amin
2 := ā1(θ2) = α1 +

β1τ1√
σ2 + τ21

exp

[
− (θ2 − θ1)

2

2
(
σ2 + τ21

)].
We see that amin

j and amax
i increase linearly with αi and βi, and increase nonlinearly with τi. amax

i

decreases with σ2, but amin
j may be mon-monotonic in σ2. In particular, amin

j increases with σ2 if

and only if σ2 + τ2j < (θ2 − θ1)
2. Shifting αi or βi does not change the convexity of the trait curve,

but the curve is convex if τi or σ2 are sufficiently large and concave if τi or σ2 are sufficiently small

(Figs. 3.2b,c).

Theorem 3.4 gives permanence conditions for Model (3.2) (Appendix C.4). As we are interested

in when predators mediate permanence among prey who would not otherwise coexist, we limit the

theorem to the cases in which the prey are bistable or one prey dominates the other (without loss

of generality, prey 1 dominates prey 2). In either of these cases, permanence is only possible if (i)

the predator can sustain itself of prey 1 and (ii) prey 2 has a positive per-capita growth rate at the

prey 1-predator equilibrium.
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Theorem 3.4 (Permanence of Model (3.2)). Assume

(i) (prey 1 supports predator) amax
1 e1r1 > d, and

(ii) (prey 2 can invade prey 1-predator subsystem) d(amin
2 −c21a

max
1 ) > amax

1 e1(a
min
2 r1−amax

1 r2).

Bistable prey: If c12 > r1
r2

and c21 >
r2
r1

, then Model (3.2) is robustly permanent if and only if

(iii) (prey 2 supports predator) amax
2 e2r2 > d,

(iv) (prey 1 can invade prey 2-predator subsystem) d(amin
1 −c12a

max
2 ) > amax

2 e2
(
amin
1 r2 − amax

2 r1
)
,

and

(v) (predator can invade bistable prey equilibria) ā1(x
∗)e1

r1−c12r2
1−c12c21

+ ā2(x
∗)e2

r2−c21r1
1−c12c21

> d for

all x∗ ∈ W ,

where W :=
{
x ∈ [θ1, θ2] | ∂fP

∂x̄

∣∣
(N1,N2,P,x̄)=E0

++(x)
= 0
}

is the set of equilibria for the trait dynamics

of Model (3.2) when the prey coexist in the absence of the predator.

Prey 1 dominates prey 2: If c12 < r1
r2

and c21 > r2
r1

, then Model (3.2) is robustly permanent if

and only if

∼(iii) (prey 2 does not support predator) amax
2 e2r2 < d, or

(iv) (prey 1 can invade prey 2-predator subsystem) d(amin
1 −c12a

max
2 ) > amax

2 e2
(
amin
1 r2 − amax

2 r1
)
.

Assumptions (i) and (ii) in Theorem 3.4 ensure the predator can invade the superior prey and

the inferior prey can invade in the presence of the predator, respectively. Assumptions (iii) and (iv)

ensure the predator can invade the inferior prey and the superior prey can invade in the presence

of the predator, respectively. Assumption (v) ensures the predator is always able to invade if the

prey are at a coexistence state. If the prey are bistable, all five assumptions must hold (Fig. 3.3a).

If prey 1 dominates prey 2, either the predator must not be able to invade the inferior prey or the

superior prey can invade in the presence of the predator (Fig. 3.3b,c).

Assumptions (i)-(iv) can be viewed as specifying the location of the endpoints of the trait curves

(amin
1 , amax

2 ) and (amax
1 , amin

2 ) that ensure permanence of Model (3.2). When the prey are bistable,

condition (v), which guarantees the predator can invade the E0
++ equilibria, must also be met

(Fig. 3.4a). Notably, Model (3.2) can be permanent even when the prey are bistable. As proved

in Theorem 3.1, this is impossible in Model (3.1), where amin
i = amax

i , i = 1, 2. If amax
i are large

and amin
i are small relative to amax

i , then permanence in Model (3.2) is guaranteed by Theorem
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Figure 3.3. Diagrams depicting conditions which must be met in order to guarantee
permanence. Roman numerals refer to the conditions in Theorem 3.4. In panel (a), the
prey are bistable in the absence of the predator (c12 > r1

r2
and c21 > r2

r1
). For the system

to be permanent, the predator must always be able to invade, and each prey must be able
to invade when the predator is present, even though they cannot invade when the predator
is not present. In panels (b,c), prey 1 dominates prey 2 in the absence of the predator
(c12 < r1

r2
and c21 > r2

r1
). In panel (b), the predator is unable to invade when only prey 2 is

present, and prey 2 can invade the prey 1-predator equilibrium. In panel (c), prey 1 is able
to invade when the predator persists on prey 2.

3.4. This can be seen in Figure 3.4a, where there is no overlap between the hatched regions, but

permanence is still possible if a trait curve stradles the bistable region. The same is true when prey

1 dominates prey 2 and global stability is not guaranteed (Figs. 3.4c,d). This case is similar to the

bistable prey case when a1 and a2 are large - as long as conditions (i)-(iv) are met, permanence is

guaranteed.

3.4.3. Fast-Slow Dynamics in the Limit of Slow Evolution. To better understand how

eco-evolutionary feedbacks mediate permanence, we examine the natural case in which the evolu-

tionary dynamics occur at a much slower time scale than the eclogical dynamics. This separation

of time scales occurs when the portion of phenotypic variation attributable to genotypic variation

σ2
G is small. In the limit as σ2

G → 0, there is a timescale separation between the “fast” ecological
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Figure 3.4. High specialized attack rates amax
i and strong tradeoffs (amin

j ≪ amax
i for

i ̸= j) ensure eco-evolutionary permanence. In order for prey 1 to invade the prey 2-
predator subsystem, (amin

1 , amax
2 ) needs to lie in the right hatched regions. In order for prey

2 to inavde the prey 1-predator subsystem, (amax
1 , amin

2 ) needs to lie in the left hatched
regions. Gray regions indicate regoins of a1-a2 parameter space in which Model (3.1) is
permanent. Solid trait curves meet all requirements for permanence ((i)-(v) in Theorem
3.4). Dashed and dotted trait curves do not; dashed trait curves fail at least one of (i)-(iv),
and the dotted curve fails assumption (v). Notice the endpoints of the dotted curve meet
all endpoint requirements, but there is some x̄ equilibrium at which the predator cannot
invade the N1-N2 equilibrium, and thus Model (3.2) is not permanent. Parameters: same
as in Figure 3.1. In panel (a), the prey are bistable in the absence of predation. In panel
(b-d), prey 1 dominates prey 2 in the absence of predation. Evolutionary parameters αi, βi,
τi, σ2, and θi are chosen in a variety of ways to obtain the various sample trait curves.

65



dynamics,

(3.3)

dN1

dt
= N1(r1 −N1 − c12N2 − ā1(x̄)P ),

dN2

dt
= N2(r2 −N2 − c21N1 − ā2(x̄)P ),

dP

dt
= PfP (N1, N2, P, x̄),

dx̄

dt
= 0,

which is Model (3.1) with constant trait x̄, and the “slow” evolutionary dynamics dx̄
dt . To formulate

the slow dynamics, we consider three cases: (i) Model (3.3) has a globally stable equilibrium E+
++,

E+
+0, E+

0+, E0
+0, or E0

0+, (ii) Model (3.3) exhibits oscillatory permanence, and (iii) Model (3.3) is

bistable.

For case (i), let G ⊂ [θ1, θ2] be such that for each x̄ ∈ G, an equilibrium E(x̄) of Model (3.3) is

globally stable (e.g., Fig. 3.1b). Then the “slow” evolutionary dynamics for x̄ ∈ G are given by

dx̄

dt
= σ2

G

∂fP
∂x̄

∣∣
(N1,N2,P,x̄)=E(x̄)

.(3.4)

For case (ii), Hofbauer and Sigmund [1998, Theorem 5.2.3] showed that for Model (3.1), if there

is a solution (N1(t), N2(t), P (t)) whose ω-limit set lies in (0,∞)3, then

lim
T→∞

1

T

∫ T

0
(N1(t), N2(t), P (t))dt = E+

++.

In other words, the time-averaged densities of the ecological dynamics are equal to the coexistene

equilibrium E+
++ densities. Thus, if x̄ is such that (3.3) is permanent, then for any initial condition

(N1(0), N2(0), P (0), x̄) ∈ S \ S0 we have,

lim
T→∞

1

T

∫ T

0

∂fP
∂x̄

∣∣
(N1,N2,P,x̄)=(N1(t),N2(t),P (t),x̄(t))

dt =
∂fP
∂x̄

∣∣
(N1,N2,P,x̄)=E+

++(x̄)
,(∗)

where E+
++(x̄) denotes the interior equilibrium of Model (3.3) given x̄. Let H ⊂ [θ1, θ2] such

that for all x̄ ∈ H, there exists a global interior oscillatory attractor for Model (3.3). The “slow”

evolutionary dynamics for x̄ ∈ H are given by

dx̄

dt
= σ2

G

∂fP
∂x̄

∣∣
(N1,N2,P,x̄)=E+

++(x̄)
.(3.5)
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For case (iii), given an x̄, there are multiple attractors for Model (3.3). Let I ⊂ [θ1, θ2] such

that for all x̄ ∈ I, Model (3.3) contains two or more ecological attractors. If x̄ ∈ I, then either (3.4)

or (3.5) applies. If the initial condition lies in the basin of attraction for one of the equilibria, then

(3.4) applies. Otherwise, the attractor is in the interior, implying (∗), and therefore (3.5) applies.

The slow dynamics dx̄
dt may be discontinuous at any x̄ on the boundary between the regions

described in cases (i)-(iii). For example, consider a trait curve which passes over three distinct

regions: at extreme trait values, global stability at E+
+0(x̄) or E+

0+(x̄) equilibria, and at intermediate

trait values, bistability between these two equilibria (Figs. 3.5 and 3.6c,d). For x̄ sufficiently close to

θ1 or θ2, E+
+0 or E+

0+ is globally stable, and thus case (i) applies. For intermediate x̄, these equilibria

are bistable and thus case (iii) applies. Asymptotic approach toward E+
+0 causes x̄ to asymptotically

approach θ1, respectively. This pushes (ā1, ā2) into a parameter region in which E+
0+ is globally

stable. Eventually, prey 2 recovers and replaces prey 1. This triggers a reversal in the direction of

evolution and asymptotic evolution of x̄ toward θ2, pushing (ā1, ā2) back into a parameter region in

which E+
+0 is globally stable. Prey 1 eventually recovers and replaces prey 2, and the cycle begins

again. One might suspect that the trait cycle extrema occur at the discontinuities of dx̄
dt , but this

is not the case (see Discussion). Next we describe three instances of complex dynamics that arise

from timescale separation and these discontinuities (Fig. 3.6).

x̄

N1

N1 +N2

θ1
0

θ2

1

Figure 3.5. Eco-evolutionary fast-slow cycles in the limit as σ2
G → 0. The trait

curve in this example passes over three regions, represented by diagonal lines below
the graph, matching with Figures 3.1a and 3.6c,d: at the extremes, global stability
of E+

+0 or E+
0+, and for intermediate values, bistability of E+

+0 and E+
0+. Yellow and

purple triangles also align with those from Figures 3.6c,d. The red curve represents
an eco-evolutionary limit cycle.
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If evolutionary parameters αi, βi, τi, σ2, and θi are such that the trait curve passes only through

ecological parameter regions with a single attractor, then ecological dynamics asymptotically ap-

proach whatever attractor is globally stable given x̄(t). In Figures 3.6a,b, for example, the predator

has an initial trait x̄ which in the absence of evolution, excludes prey 1 (E+
0+ is globally stable).

The predator slowly evolves its trait to better suit prey 2, which pushes (ā1, ā2) into a parameter

region in which all three species can coexist.

If the trait curve is such that Model (3.1) is bistable for some subset of [θ1, θ2], then fast-slow

osillations can arise (Figs. 3.6c-f). The simplest example is shown in Figures 3.6c,d. Here, when

the predator evolves to favor prey 1, its attack rate on prey 2 is low enough to allow prey 2 to

recover and eventually replace prey 1. At this point, E+
0+ is globally stable. Once prey eventually

replaces prey 1, the predator then evolves to favor prey 2. Its attack rate on prey 1 is then low

enough to allow prey 1 to recover and eventually replace prey 2. At this point, E+
+0 is globally

stable. So long as σ2
G > 0, Theorem 3.4 guarantees permanence even though there is no point at

which the ecological subsystem is permanent in the absence of evolution.

A more complex example is shown in Figures 3.6e,f. Here, the trait curve covers five distinct

regions described in the analysis of (3.1) (Section 3.4.1). In order of decreasing x̄, they are (i)

global stability of E+
+0, (ii) bistability of E+

+0 and E+
0+, (iii) global stability of E+

0+, (iv) global

stability of E+
++, and (v) global stability of some interior oscillatory attractor. Unlike in Figures

3.6c,d, where the prey are bistable in the absence of predation, here prey 1 dominates prey 2 in the

absence of predation and in the absence of evolution, permanence is guaranteed if the attack rate

on the inferior prey is sufficiently low and the attack rate on the superior prey is sufficiently large.

When the predator evolves to favor prey 1, all three species coexist in high-frequency ecological

oscillations. The predator then evolves out of this region (blue triangle), leading to the exclusion

of prey 1. The E+
0+ equilibrium remains stable until the predator completes its specialization on

prey 2 (yellow triangle), allowing prey 1 to recover and nearly replace prey 2. Once this happens,

the evolution of that x̄ reverses direction as the predator experiences directional selection to favor

prey 1. Once the predator trait evolves out of the bistable region (purple triangle), prey 2 begins

to recover and nearly replace prey 1, but this does not happen before the predator specializes on
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Figure 3.6. Eco-evolutionary fast-slow oscillations when evolution occurs at a slow
time scale. In panels (a,c,e), triangles indicate the location of a discontinuity in the
“slow” dynamics. The triangles and dotted vertical lines in panels (b,d,f) indicate
the times at which these thresholds are passed. Upward-facing triangles indicate
dx̄
dt > 0 and downward-facing triangles indicate dx̄

dt < 0. In panel (a), a trait curve
over a region of global stability for the ecological dynamics (Fig. 3.1b). The green
circle and red square indicate the initial and final values for x̄ in the simulation
shown in panel (b). In panel (c), a trait curve over a region of bistability for the
ecological dynamics (Fig. 3.1a). At the times indicated by the dotted lines in panel
(d), the missing prey can begin to recover. Once it eventually does it replaces the
other, forcing a reversal in the direction of selection on the predator trait x̄. In panel
(e), a trait curve over a regions of bistability and (Continued on next page.)
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Figure 3.6. (Previous page.) permanence for the ecological dynamics (Fig. 3.1d).
Parameters: θ1 = 0, θ2 = 1. In (a,b), same as Figure 3.1b, σ2 = 0.0625, σ2

G =
0.003125, α1 = 1.6, α2 = 1.1, β1 = 3, β2 = 2.5, τ1 = τ2 = 0.9. In (c,d), same as
Figure 3.1a, σ2 = 0.12, σ2

G = 0.004, α1 = α2 = 1.1, β1 = β2 = 3, τ1 = τ2 = 0.9. In
(e,f), same as in Figure 3.1d, σ2 = 0.07, σ2

G = 0.003, α1 = 1.45, α2 = 0.1, β1 = 2.4,
β2 = 3, τ1 = τ2 = 0.3.

Figure 3.7. Faster evolution can stabilize ecologically unstable equilibria. In panel
(a), a trait curve over a region of bistability for the ecological dynamics (Fig. 3.1a).
The green circle and red square indicate the initial and final values for x̄ in the
simulation shown in panel (b). Parameters as in Figures 3.6c,d but with σ2

G = 0.12.

prey 1 (orange triangle), allowing for the oscillatory coexistence of all three species, and the cycle

begins again.

3.4.4. Rapid Evolution Stabilizes an Otherwise Unstable Coexistence Equilibrium.

If evolution and ecology change on commensurate timescales, then cyclic permanence may be

stabilized. Figure 3.7 shows dynamics of Model (3.2) in an environment equivalent to that of

Figures 3.6c,d, but with genetic variation significantly greater. For these parameters, whether

σ2
G is small or large, Theorem 3.4 implies the system is permanent due to the eco-evolutionary

feedbacks. However, when evolution occurs at a faster time scale, stabilizing selection forces the

ecological dynamics to asymptotically approach the otherwise unstable coexistence equilibrium.

This type of permanence is fundamentally different than what is seen in Figure 3.6; when evolution

occurs quickly, ecological dynamics do not necessarily match with what one might expect from

Model (3.1). In particular, if σ2
G is sufficiently large there may be some asymptotically stable

equilibrium E+
++(x̄) of Model (3.2) which is asymptotically unstable in Model (3.1).

70



3.5. Discussion

We found conditions for global stability (Appendix A), as well as conditions for a Hopf bi-

furcation (Appendix B), in a general Lotka-Volterra model with a predator and two competing

prey (Model 3.1). These results extend those of Takeuchi and Adachi [1983], who assumed equal

predator conversion efficiencies (e1 = e2). We also fully characterized the dynamics if (3.1) is not

permanent and Prey 1 dominates Prey 2 in the absense of the predator (Theorem 3.3, Appendix

C). When the prey are bistable in the absence of the predator, any form of coexistence co-occurs

with a stable boundary equilibruim [Hutson and Vickers, 1983]. This eliminates the possibility for

predator-mediated permanence between bistable prey. However, if the predator has an evolving

trait which determines attack rates on the two prey, and if there is a tradeoff between these two

attack rates, then permanence is possible (Theorem 3.4, Appendix D).

Eco-evolutionary mediated permanence in Model (3.2) can take on many qualitatively different

forms. If the predator trait curve overlaps with a region of the ā1-ā2 space in which the coexistence

equilibrium is globally stable, then the predator may evolve into this region and the ecological

dynamics may asymptotically approach the coexistence equilibrium (Figs. 3.6a,b). However, trait

curve overlap with a globally stable coexistence equilibrium region does not guarantee asymptotic

evolution into that space. For example, whereas both trait curves in Figures 3.6a and 3.6e overlap

with the region with globally stable coexistence (region with vertical lines), only in Figure 3.6a does

evolution lead to an eco-evolutionary stable equilibrium in that region. Figure 3.6e, on the other

hand, shows a scenario in which there is directional selection at any ecologically-stable coexistence

equilibrium. Thus, even if there is a predator trait which allows for globally stable coexistence in the

absense of evolution, evolution may select for oscillatory coexistence. Conversely, provided evolution

occurs sufficiently quickly, a globally asymptotically stable eco-evolutionary equilibrium can arise

even when the prey are bistable and the ecological subsystem (3.1) never admits permanence

(Fig. 3.7). This effect is similar to one found by Patel et al. [2018], who generalized the eco-

evolutionary competition model first analyzed by Vasseur et al. [2011], These studies found that

rapid or slow evolution can destabilize the eco-evolutionary dynamics, depending on the details of

the evolutionary tradeoffs.
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In our model, if the predator trait has very low heritability and evolves much slower than

ecological processes (i.e. a timescale separation between the N1-N2-P and x subsystems), then

permanence may take on the form of an eco-evolutionary limit cycle. When this occurs, the

amplitude of the oscillation increases as σ2
G → 0. This type of parameter-dependent amplitude shift

has been seen in many other settings, including food chain systems, predation on an age-structured

prey, and competitive coexistence [Rinaldi and Muratori, 1992], although to our knowledge this

study is the first to show this effect in scenarios with type 1 (linear) functional responses. Consider

the case described for Figures 3.5 and 3.6c,d. In this limit, the system spends more time appraoching

E+
+0 or (E+

0+), which means prey 2 (or prey 1) spends more time with a negative invasion rate,

reducing its density by orders of magnitude. This means it takes more time for prey 2 (or prey

1) to recover once its invasion rate becomes positive as x̄ passes the criticial value. While a

mathematically rigorous analysis required to derive the location of the “take-off” point [see, e.g.,

Hek, 2009] is beyond the scope of this study, there is a natural conjecture. Let T0 be the earliest

time at which N1 ≤ ϵ for some 0 < ϵ ≪ 1. Denote T ∗ as the earliest time with T ∗ > T0 such that
1
N1

dN1
dt = 0. For all t ∈ (T0, T

∗), 1
N1

dN1
dt < 0. Denote Tf as the earliest time with Tf > T ∗ > T0 such

that
∫ Tf

T ∗
1
N1

dN1
dt dt = −

∫ T ∗

T0

1
N1

dN1
dt dt. We conjecture that the length of time in which (N1, N2, P, x̄)

spends within an ϵ distance from the N1 = 0 hyperplane is approximately Tf − T0, which increases

as σG → 0. We leave verifying this conjecture as a challenge for a future study.

Evolution need not be slow in order to produce cyclic dynamics. Although what follows is

a departure from true evolution, consider the case in which σ2 is held constant while σ2
G → ∞

[Cortez and Ellner, 2010]. Then there is a timescale separation between the “evolution” and ecology

of Model (3.2), but the ecology is the slow system. For a given ecological state, the predator

optimizes its trait such that its fitness is locally maximized. This type of dynamic resembles

optimal foraging and prey switching that involves a behavioral trait rather than a genetic one.

Fo such behavioral traits, van Baalen et al. [2001] showed optimal foraging mediates permanence

between two competing prey. Future theoretical studies could follow the groundwork laid out by

Patel et al. [2018] and consider the limit as σ2
G → ∞ in Model (3.2) to confirm their results in a

Lotka-Volterra context.
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Chase et al. [2002] challenged theoreticians and experimentalists to uncover how evolution can

mediate permanence between bistable prey. Our study provides one such mechanism with an evolv-

ing predator. Vasseur et al. [2011] considered evolution of a competitor without predators. There,

the evolving trait exhibited a tradeoff between inter- and intraspecific competition. Interestingly,

increased heritability has different effects between their model and ours. In both studies, there is an

eco-evolutionary Hopf bifurcation, but the direction is reversed. In our study, increased heritability

can lead to asymptotic equilibrium stability, and cycles occur if heritability is sufficiently low. In

their study, if eco-evolutionary cycles are possible at all, it is only if heritability is sufficiently large.

The question remains: are there other ways for evolution to mediate permanence between bistable

competitors? Recent theoretical studies have shown that evolution of different traits affects eco-

logical dynamics in asymmetrical ways [Fleischer et al., 2018, 2020]. For example, if a predator has

an evolving trait expressed as a tradeoff between the conversion efficiencies of the two prey, rather

than the attack rates, is predator-mediated permanence possible in the case of bistable prey?

Theoreticians should also expand the community contexts in which eco-evo feedbacks mediate

coexistence. For example, Lafferty et al. [2006] found that parasites are ubiquitous in food-webs.

Thus future studies might consider the effect of multitrophic parasites on permanence between

bistable prey [Fleischer et al., 2020]. Parasites which require predation to complete their lifecycle

may benefit from increased predation on their intermediate host. This can increase parasite preva-

lence, which can depress the predator population and allow for the other prey population to recover.

Predation on the newly recovered prey can then increase, boosting the predator population. But

this increase also comes with an increase in the transmission of the parasites in this recovered prey,

and the cycle begins again. Evolution of predator or prey resistance or immunity to parasitism,

evolution of parasite transmissibility, and evolution of parasite-induced behavior changes in a host

may also complicate dynamics and mediate permanence.

Finally, there is a need to understand the role of environmental stochasticity on eco-evolutionary

dynamics. One consequence of the deterministic model is the need for condition (v) in Theorem

3.4. If that condition does not hold, then there is a stable manifold of the N1-N2 equilibrium that

passes through the interior. This prevents permanence because not all positive initial conditions

lead to dynamics in the interior. We suspect that some form of stochasticity essentially solves this
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problem, as any dynamics on this stable manifold are almost surely guaranteed to be pushed off,

allowing for almost-sure permanence for any positive initial condition. Indeed, this has been shown

for a stochastic ordinary differential equation model of two prey with a switching predator [Hening

et al., 2020]. Future studies may show that in a stochastic version of Model (3.2), Theorem 3.4

may still hold even without the condition that predators must be able to invade at the otherwise

unstable N1-N2 equilibrium.
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APPENDIX A

Chaper 1 (Pick Your Tradeoffs Wisely) Appendices

A.1. Model Derivation

A.1.1. Identities. Recall the following:

∫
R

1√
2πσ2

exp

[
−(x− x)2

2σ2

]
dx = 1,

and for X > 0,

∫
R
exp
[
−
(
Xx2 + Y x+ Z

)]
dx =

√
π

X
exp

[
Y 2

4X
− Z

]
.

A.1.2. Average Attack Rate. For predators with trait value p and prey with trait value n,

the attack rate a(p, n) is given by

a(p, n) = α exp

[
−((p− n)− θ)2

2τ2a

]
.

Since the distributions of predator and prey traits, qp and qn, respectively, are given by

qp(p, p) =
1√
2πσ2

exp

[
−(p− p)2

2σ2

]
and qn(n, n) =

1√
2πβ2

exp

[
−(n− n)2

2β2

]
,

then the average attack rate a(p, n) is given by

a(p, n) =

∫
R2

a(p, n)qp(p, p)qn(n, n)dpdn

=
α

2πσβ

∫
R2

exp

[
−((p− n)− θ)2

2τ2a
− (p− p)2

2σ2
− (n− n)2

2β2

]
dpdn

=
α

2πσβ

∫
R
exp

[
−(n− n)2

2β2

] ∫
R
exp
[
−
(
Xp2 + Y p+ Z

)]
dpdn,
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where X =
σ2 + τ2a
2σ2τ2a

, Y = −σ2(n+ θ) + τ2ap

τ2aσ
2

, and Z =
σ2(n+ θ)2 + τ2ap

2

2σ2τ2a
. Then

√
πX exp

[
Y 2

4X
− Z

]
=

στa
√
2π√

σ2 + τ2a
exp

[
−((p− n)− θ)2

2(σ2 + τ2a )

]
.

Thus,

a(p, n) =
ατa

β
√

2π(σ2 + τ2a )

∫
R
exp

[
−((p− n)− θ)2

2(σ2 + τ2a )
− (n− n)2

2β2

]
dn

=
ατa

β
√

2π(σ2 + τ2a )

∫
R
exp
[
−
(
Xn2 + Y n+ Z

)]
dn,

where X =
τ2a + σ2 + β2

2β2(σ2 + τ2a )
, Y = −

(p− θ)β2 +
(
σ2 + τ2a

)
n

β2(σ2 + τ2a )
, and Z =

(p− θ)2β2 + n2
(
σ2 + τ2a

)
2β2(σ2 + τ2a )

.

Then

√
πX exp

[
Y 2

4X
− Z

]
=

β
√
2π(σ2 + τ2a )√

β2 + σ2 + τ2a
exp

[
− ((p− n)− θ)2

2(β2 + σ2 + τ2a )

]
.

Thus,

a(p, n) =
ατa√

τ2a + σ2 + β2
exp

[
− ((p− n)− θ)2

2(τ2a + σ2 + β2)

]
.

A.1.3. Average Growth Rate. The growth rate of prey individuals with trait value n is

given by

r(n) = ρ exp

[
−(n− θr)

2

2τ2r

]
.

Given the same normal distribution of prey traits as above, then the average growth rate r(n) is

given by

r(n) =

∫
R
r(n)qn(n, n)dn

=
ρ

β
√
2π

∫
R
exp
[
−
(
Xn2 + Y n+ Z

)]
dn,

where X =
β2 + θ2r
2β2θ2r

, Y = − θrβ2+nθ2r
β2θ2r

, and Z = θ2rβ
2+n2θ2r
2β2θ2r

. Then
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√
π

X
exp

[
Y 2

4X
− Z

]
=

βθr
√
2π√

β2 + θ2r
exp

[
− (n− θr)

2

2(β2 + θ2r)

]
.

Thus,

r(n) =
ρθr√
β2 + θ2r

exp

[
− (n− θr)

2

2(β2 + θ2r)

]
.

A.1.4. Average Predator Fitness. Let W (N,n, p) = ea(p, n)N − d, where e and d are

constant and a(p, n) is as above. Then the average predator fitness W (N,n, p) is given by

W (N,n, p) =

∫
R2

W (N,n, p)qp(p, p)qn(n, n)dpdn,

where qp and qn are given above. Then

W (N,n, p) = eN

∫
R2

a(p, n)qp(p, p)qn(n, n)dpdn− d

∫
R2

qp(p, p), qn(n, n)dpdn

= ea(p, n)N − d

A.1.5. Average Prey Fitness – Model 1. Let Y (N,P, n, p) = r(n)

(
1− N

K

)
− a(p, n)P ,

where r(n) and a(p, n) are given above. Then the average prey fitness Y (N,P, n, p) is given by

Y (N,P, n, p) =

∫
R2

Y (N,P, n, p)qp(p, p)qn(n, n)dpdn,

where qp and qn are given above. Then

Y (N,P, n, p) =

(
1− N

K

)∫
R2

r(n)qp(p, p)qn(n, n)dpdn− P

∫
R2

a(p, n)qp(p, p)qn(n, n)dpdn

= r(n)

(
1− N

K

)
− a(p, n)P.

A.1.6. Average Prey Fitness – Model 2. The resource use parameter for prey individuals

with trait value n is given by
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K(n) = κ exp

[
−(n− θK)2

2τ2K

]
.

Let the fitness of prey with trait value n interacting with predators with trait value p be

Y (N,P, n, p) = r

(
1− N

K(n)

)
− a(p, n)P.

Then the average prey fitness Y (N,P, n, p) is given by

Y (N,P, n, p) =

∫
R2

Y (N,P, n, p)qp(p, p)qn(n, n)dpdn,

where the predator and prey trait distributions qp and qn are given above. Then

Y (N,P, n, p) = r

∫
R2

qp(p, p)qn(n, n)dpdn

− rN

∫
R2

1

K(n)
qp(p, p)qn(n, n)dpdn

− P

∫
R2

a(p, n)qp(p, p)qn(n, n)dpdn

= r − rN

∫
R2

1

K(n)
qn(n, n)dn− a(p, n)P.

However,

∫
R2

1

K(n)
qn(n, n)dn =

1

κ
√
2πβ2

∫
R
exp

[
(n− θK)2

2τ2K
− (n− n)2

2β2

]
dn

=
1

κ
√
2πβ2

∫
R
exp
[
−
(
Xn2 + Y n+ Z

)]
dn,

where X =
τ2K − β2

2τ2Kβ2
, Y =

β2θK − τ2Kn

τ2Kβ2
, and Z =

τ2Kn2 − β2θ2K
2τ2Kβ2

. Then

√
π

X
exp

[
Y 2

4X
− Z

]
=

τKβ
√
2π√

τ2K − β2
exp

[
(n− θK)2

2
(
τ2K − β2

)].
Thus,
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∫
R2

1

K(n)
qn(n, n)dn =

τK

κ
√
τ2K − β2

exp

[
(n− θK)2

2
(
τ2K − β2

)].
Thus,

Y (N,P, n, p) = r

(
1− N

K(n)

)
− a(p, n)P,

where

K(n) =
κ
√
τ2K − β2

τK
exp

[
− (n− θK)2

2
(
τ2K − β2

)].
Note that K(n) is the harmonic mean of prey carrying capacity over the population:

K(n) =

(∫
R

1

K(n)
qK(n, n)dn

)−1

.

A.2. Model 1 Analysis

A.2.1. Equilibria. Model 1 is

f1 =
dP

dt
= P [ea(p, n)N − d]

f2 =
dN

dt
= N

[
r(n)

(
1− N

K

)
− a(p, n)P

]
f3 =

dp

dt
= σ2

G

eN(θa − (p− n))

A
a(p, n)

f4 =
dn

dt
= β2

G

[
r(n)

(
1− N

K

)
θr − n

B
+

P (θa − (p− n))

A
a(p, n)

]
where

A = τ2a + σ2 + β2, B = β2 + τ2r ,

a(p, n) =
ατa√
A

exp

[
−((p− n)− θa)

2

2A

]
, and r(n) =

ρτr√
B

exp

[
−(n− θr)

2

2B

]
.

Set f1 = f2 = f3 = f4 = 0 to find equilibria:
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f1 = 0 =⇒ P = 0 or N =
d

ea(p, n)

f2 = 0 =⇒ N = 0 or P =
r(n)

a(p, n)

(
1− N

K

)
f3 = 0 =⇒ N = 0 or p− n = 0

f4 = 0 =⇒ P = 0 or r(n)

(
1− N

K

)
θr − n

B
=

P ((p− n)− θa)

A
a(p, n)

If P = N = 0, then equilibrium is satisfied and p and n are arbitrary. This gives the extinction

equilibria. Suppose P = 0 but N ̸= 0. Then f2 = 0 =⇒ N = K and f3 = 0 =⇒ p − n = θa.

This gives the exclusion equilibria. Suppose P ̸= 0 and N ̸= 0. Then f3 = 0 =⇒ p − n =

θa =⇒ a(p, n) = ατa√
A

. Since p − n = θa, then f4 = 0 =⇒ n = θr or N = K. But if N = K,

then f2 = 0 =⇒ P = 0, which is a contradiction. Thus n = θr, which implies p = θr + θa and

P = ρτr
√
A

ατa
√
B

(
1−

√
A

Keατa

)
. By exhaustion, this gives the only other equilibrium: the coexistence

equlibrium point.

A.2.2. Stability Conditions. To solve for local stability conditions, we find the eigenvalues

of the community matrix J evaluated at each equilibrium point. Let the extinction, exclusion, and

coexistence equilibria be denoed as

Eext = (0, 0, µ∗, ν∗),

Eexcl = (0,K, ν∗ + θa, ν
∗),

Ecoex =

(
ρτr

√
A

ατa
√
B

(
1− N∗

K

)
,
d
√
A

eατa
, θr + θa, θr

)
.

The Jacobia evaluated at the extinction equilibria are

J |Eext =



−d 0 0 0

0 ρτr√
B
exp
[
− (ν∗−θr)2

2B

]
0 0

0
σ2
Ge(θa−(µ∗−ν∗))a(µ∗,ν∗)

A 0 0

β2
G(θa−(µ∗−ν∗))a(µ∗,ν∗)

A −β2
Gr(ν∗)
K · θr−ν∗

B 0
β2
Gr(ν∗)
B

(
(θr−ν∗)2

B − 1
)


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This is an upper-triangular matrix, and thus the eigenvalues are the entries on the main diagonal:

−d, ρτr√
B
exp
[
− (ν∗−θr)

2

2B

]
, 0, and β2

Gr(ν∗)
B

(
(θr−ν∗)2

B − 1
)

. Since one of the eigenvalues is positive,

namely ρτr√
B
exp
[
− (ν∗−θr)

2

2B

]
, then Eext is locally unstable. The Jacobian evaluated at the exclusion

equilibria are

J |Eexcl =



Keατa√
A

− d 0 0 0

−Kατa√
A

− ρτr√
B
exp
[
− (µ∗−θr)

2

2B

]
0 0

0 0 −σ2
GKeατa

A3/2

σ2
GKeατa

A3/2

0 −β2
Gρτr

K
√
B
exp
[
− (ν∗−θr)

2

2B

]
· θr−µ∗

B 0 0


The eigenvalues are Keατa√

A
− d, − ρτr√

B
exp
[
− (µ∗−θr)

2

2B

]
, −σ2

GKeατa

A3/2
, and 0 (by swapping the third and

fourth rows ad columns, we obtain an upper-triangular matrix). Since all of these are non-positive

if d > Keατa√
A

, the exclusion equilibria are not unstable, but since one of the eigenvalues is 0 and the

manifold of equilibria is unbounded, we cannot say the equilibria are stable. However, all of our

simulations suggest stability if d > Keατa√
A

. The Jacobian evaluated at the coexistence equilibrium

point is

J |Ecoex =


0 eρτr√

B

(
1− N∗

K

)
0 0

−d
e −ρτrN∗

K
√
B

0 0

0 0 −σ2
Gd
A

σ2
Gd
A

0 0 −β2
Gρτr

A
√
B

(
1− N∗

K

) β2
Gρτr

A
√
B

(
1− N∗

K

)(
1
A − 1

B

)


This is a block-diagonal matrix, and so the eigenvalues of J |Ecoex are simply the eigenvalues of each

block,

J1 =

 0 eρτr√
B

(
1− N∗

K

)
−d

e −ρτrN∗

K
√
B

 and J2 =

 −σ2
Gd
A

σ2
Gd
A

−β2
Gρτr

A
√
B

(
1− N∗

K

) β2
Gρτr

A
√
B

(
1− N∗

K

)(
1
A − 1

B

)


The eigenvalues of J1 are

λ1,2 =
1

2

−ρτrN
∗

K
√
B

±

√(
ρτrN∗

K
√
B

)2

− 4ρτrd√
B

(
1− N∗

K

).
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Biological feasibility requires N∗ < K, and so
√(

ρτrN∗

K
√
B

)2
− 4ρτrd√

B

(
1− N∗

K

)
<
∣∣∣ρτrN∗

K
√
B

∣∣∣. Thus,

Re(λ1,2) < 0. For ease, define

F :=
dσ2

G

A
and G :=

β2
Gρτr√
B

(
1− N∗

K

)
.

Then the eigenvalues of J2 are

λ3,4 =
1

2

[
−
(
F +G

(
1

B
− 1

A

))
±
√
∆

]
,

where

∆ =

(
F +G

(
1

B
− 1

A

))2

− 4FG

A
.

Again, since N∗ < K, then G > 0. If ∆ > 0, then
√
∆ <

∣∣F +G
(
1
B − 1

A

)∣∣. Then

Re(λ3,4) < 0 ⇐⇒ F +G

(
1

B
− 1

A

)
> 0

⇐⇒
σ2
G

β2
G

>
ρτr

d
√
B

(
1− d

√
A

Keατa

)(
1− A

B

)

If ∆ ≤ 0, then 2Re(λ3,4) = −
(
F +G

(
1
B − 1

A

))
, and thus Re(λ3,4) < 0 if and only if the same exact

condition holds.

Note the existence of a Hopf bifurcation when F +G
(
1
B − 1

A

)
= 0, which is equivalent to

σ2
G

β2
G

=
ρτr

d
√
B

(
1− d

√
A

Keατa

)(
1− A

B

)
.

Hopf Bifurcations offur when eigenvalues are complex (which is always true since ∆ < 0 ⇐⇒
4dσ2

Gβ2
Gρτr

A2
√
B

(
1− N∗

K

)
> 0 and biological feasability requires N∗ < K) and when the real part of the

eigenvalues cross the imaginary axis as a parameter is shifted. As the real part of the eigenval-

ues becomes positive, the equilibrium becomes unstable, resulting in cyclic behavior around the

equilibrium.
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A.3. Model 2 Analysis

A.3.1. Equilibria. Model 2 is given by

f1 =
dP

dt
= P [ea(p, n)N − d]

f2 =
dN

dt
= N

[
r

(
1− N

K(n)

)
− a(p, n)P

]
f3 =

dp

dt
= σ2

G

eN(θ − (p− n))

A
a(p, n)

f4 =
dn

dt
= β2

G

[
−rN(n− θK)

K(n)C
+

P (θ − (p− n))

A
a(p, n)

]
where

A = τ2a + σ2 + β2, C = τ2K − β2,

a(p, n) =
ατa√
A

exp

[
−((p− n)− θ)2

2A

]
, and K(n) =

κ
√
C

τK
exp

[
−(n− θK)2

2C

]
.

Set f1 = f2 = f3 = f4 = 0 to find equilibria:

f1 = 0 =⇒ P = 0 or N =
d

ea(p, n)

f2 = 0 =⇒ N = 0 or P =
r

a(p, n)

(
1− N

K(n)

)
f3 = 0 =⇒ N = 0 or p− n = 0

f4 = 0 =⇒ P = 0 or rN(n− θK)

K(n)C
=

P (θ − (p− n))

A
a(p, n)

If P = N = 0, then equilibrium is satisfied and p and n are arbitrary. This gives the extinction

equilibria. Suppose P = 0 but N ̸= 0. Then f2 = 0 =⇒ N = K(n) and f3 = 0 =⇒ p − n = θ.

f4 = 0 =⇒ n = θK =⇒ p = θK + θ =⇒ N = K(θK) = κ
√
C

τK
. This gives the exclusion

equilibria. Suppose P ̸= 0 and N ̸= 0. Then f3 = 0 =⇒ p − n = θ =⇒ a(p, n) = ατa√
A

. Then

f1 = 0 =⇒ N = d
√
A

eατa
. Since p − n = θ, then f4 = 0 =⇒ n = θK =⇒ p = θK + θ. Then

f2 = 0 =⇒ P = r
√
A

ατa

(
1− N

K(θK)

)
. By exhaustion, this gives the only other equilibrium: the

coexistence equlibrium point.
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A.3.2. Stability Conditions. To solve for local stability conditions, we find the eigenvalues

of the community matrix J evaluated at each equilibrium point. Let the extinction, exclusion, and

coexistence equilibria be denoed as

Eext = (0, 0, µ∗, ν∗),

Eexcl = (0,K, θK + θ, θK),

Ecoex =

(
r
√
A

ατa

(
1− N∗τK

κ
√
C

)
,
d
√
A

eατa
, θK + θ, θK

)
.

Then

J |Eext =



−d 0 0 0

0 r 0 0

0
σ2
Ge(θ−(µ∗−ν∗))a(µ∗,ν∗)

A 0 0

β2
G(θ−(µ∗−ν∗))a(µ∗,ν∗)

A
β2
Gr(θK−ν∗)

K(ν∗)C
0 0


This is an upper-triangular matrix, and thus the eigenvalues are the entries on the main diagonal:

−d, r, and 0. Since one of the eigenvalues is positive, namely r, then Eext is locally unstable.

J |Eexcl =



eατaκ
√
C

τK
√
A

− d 0 0 0

−ατaκ
√
C

τK
√
A

−r 0 0

0 0 −σ2
Geατaκ

√
C

τKA3/2

σ2
Geατaκ

√
C

τKA3/2

0 0 0 −β2
Gr
C


This is a block-diagonal matrix, and so the eigenvalues of J |Eexcl are simply the eigenvalues of each

block. Each block is triangular, so the eigenvalues are the entries on the diagonals: eατaκ
√
C

τK
√
A

− d,

−r, −σ2
Geατaκ

√
C

τKA3/2
, and −β2

Gr
C . All of these are non-positive, indicating local asymptotic stability, if

d > eατaκ
√
C

τK
√
A

.
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J |Ecoex =



0 er

(
1− N∗

K(θK)

)
0 0

−d
e − rN∗

K(θK)
0 0

0 0 −σ2
Gd
A

σ2
Gd
A

0 0 −β2
Gr
A

(
1− N∗

K(θK)

)
β2
Gr
A

(
1− N∗

K(θK)

(
1 + A

C

))


This is a block-diagonal matrix, and so the eigenvalues of J |Ecoex are simply the eigenvalues of each

block,

J1 =

 0 er

(
1− N∗

K(θK)

)
−d

e − rN∗

K(θK)

 and J2 =

 −σ2
Gd
A

σ2
Gd
A

−β2
Gr
A

(
1− N∗

K(θK)

)
β2
Gr
A

(
1− N∗

K(θK)

(
1 + A

C

))


The eigenvalues of J1 are

λ1,2 =
1

2

− rN∗

K(θK)
±

√(
rN∗

K(θK)

)2

− 4rd

(
1− N∗

K(θK)

)
Biological feasibility requires N∗ < K(θK), and so

√(
rN∗

K(θK)

)2
− 4rd

(
1− N∗

K(θK)

)
<
∣∣∣ rN∗

K(θK)

∣∣∣. Thus,

Re(λ1,2) < 0. Note the trace and determinant of J2 are

tr(J2) = −
σ2
Gd

A
+

β2
Gr

A

(
1− N∗

K(θK)

(
1 +

A

C

))
det(J2) = −

σ2
Gβ

2
Gdr

A2

(
1− N∗

K(θK)

(
1 +

A

C

))
+

σ2
Gβ

2
Gdr

A2

(
1− N∗

K(θK)

)
=

σ2
Gβ

2
Gdr

A2

(
1− N∗

K(θK)
− 1 +

N∗

K(θK)

(
1 +

A

C

))
=

σ2
Gβ

2
GdrN

∗

ACK(θK)

Note det(J2) > 0 since N∗ < K(θK), A > 0, and C > 0. Then the eigenvalues of J2 are

λ3,4 =
1

2

[
−tr(J2)±

√
∆
]
, where ∆ = (tr(J2))2 − 4det(J2).
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λ3,4 have negative real part if and only if tr(J2) > 0. This gives us our coexistence local stability

condition

σ2
G

β2
G

>
r

d

(
1− N∗

K(θK)

(
1− A

C

))
.

Note the existence of a Hopf bifurcation when (tr(J2))2 − 4det(J2) < 0 and when tr(J2) = 0. Hopf

bifurcations occur when the eigenvalues are complex and when the real part of the eigenvalues cross

the imaginary axis as a parameter is shifted. As the real part of the eigenvalues becomes positive,

the equilibrium becomes unstable, resulting in cyclic behavior around the equiilbirum.

A.4. Model without Stabilizing Selection and Ecological Pleiotropy

Suppose prey growth rate r and prey carrying capacity K are constant, i.e., there is no ecological

pleiotropy in the prey. The prey mean trait p and predator mean trait n only affect the average

attack rate a, which is given by

a(p, n) =
ατa√
A

exp

[
−((p− n)− θa)

2

2A

]
,

where A := τ2a + σ2 + β2. The four-dimensional eco-evolutionary system is given by

dP

dt
= P [ea(p, n)N − d],

dN

dt
= N

[
r

(
1− N

K

)
− a(p, n)P

]
,

dp

dt
= σ2

G

∂
(
1
P

dP
dt

)
∂p

= σ2
G

eN(θa − (p− n))

A
a(p, n),

dn

dt
= σ2

G

∂
(
1
N

dN
dt

)
∂n

= β2
G

P (θa − (p− n))

A
a(p, n).

We can define x := p − n since all functions of p and n are only functions of their difference. We

can redefine average attack rate a in terms of x:

a(x) =
ατa√
A

exp

[
−(x− θa)

2

2A

]
,

and, since differentiation is linear, we recover a three-dimensional eco-evolutionary system:
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f1 :=
dP

dt
= P [ea(x)N − d],

f2 :=
dN

dt
= N

[
r

(
1− N

K

)
− a(x)P

]
,

f3 :=
dx

dt
=

dp

dt
− dn

dt
=
(
σ2
GeN − β2

GP
)[θa − x

A

]
a(x)

A.4.1. Equilibria. There are four types of equilibria of the model: predator and prey extinc-

tion, predator exclusion, coexistence, and arms-race coexistence. Set f1 = f2 = f3 = 0 to find

equilibria:

f1 = 0 =⇒ P = 0 or N =
d

ea(x)

f2 = 0 =⇒ N = 0 or P =
r

a(x)

(
1− N

K

)
f3 = 0 =⇒ P =

σ2
G

β2
G
eN or x = θa

Clearly P = N = 0 satisfies equilbrium, so (P ∗, N∗, x∗) = (0, 0, x) are the “extinction” equilibria

for arbitrary x values. Denote Eext as the set of extinction equilibria. If N ̸= 0 and P = 0, then

f2 = 0 implies N = K. Then f3 = 0 =⇒ x = θa. This means p∗ = n∗ + θa at these “predator

exclusion” equilibria. Denote the set of predator exclusion equilibria as Eexcl. If P ̸= 0 and N ̸= 0,

then f1 = 0 implies N = d
ea(x) , and so f2 = 0 implies P = r

a(x)

(
1− d

Kea(x)

)
. If P =

σ2
G

β2
G
eN , then

we can solve this for x:

r

a(x)

(
1− d

Kea(x)

)
=

σ2
G

β2
G

· e · d

ea(x)
=⇒ x = θa ±

√√√√√2A ln

Keατa

(
1− σ2

Gd

β2
Gr

)
d
√
A


For ease, define ξ :=

σ2
Gd

β2
Gr

and define Z as the interior of the square root:

Z := 2A ln

(
Keατa(1− ξ)

d
√
A

)
and define x+ and x− as the two respective solutions:

x+ = θa +
√
Z and x− = θa −

√
Z
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Note that these solutions only exist if Z > 0, which requires

Keατa(1− ξ)

d
√
A

> 1,

which is equivalent to

σ2
G

β2
G

<
r

d

(
1− d

√
A

Keατa

)

This gives a unique coexistence equilibrium if the above condition does not hold:

(P ∗, N∗, x∗) =

(
r

a(θa)

(
1− d

Kea(θa)

)
,

d

ea(θa)
, θa

)
and two additional coexistence equilibria, called the arms race equilibria, if the above condition

does hold:

(P ∗, N∗, x∗) =

(
r

a(x∗)

(
1− d

Kea(x∗)

)
,

d

ea(x∗)
, x∗
)

where x∗ = x+ or x−. Denote the three coexistence equilibria as Ecoex, E+, and E−, respecively.

Note that

a(x+) = a(x−) =
d

Ke(1− ξ)

and so the two additional coexistence equilibria are given by

(P ∗, N∗, x∗) =

(
rKe

d
ξ(1− ξ),K(1− ξ), x∗

)
where x∗ = x+ or x−.

A.4.2. Local Stability Analysis. To solve for local stability conditions, we find the eigen-

values of the Jacobian matrix evaluated at the equilibria. The Jacobian is given by
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J =


ea(x)N − d Pea(x) Pea′(x)N

−a(x)N r − 2rN
K − a(x)P −Na′(x)P

−β2
G

(
θa−x
A

)
a(x) σ2

Ge
(
θa−x
A

)
a(x)

σ2
GeN−β2

GP
A [(θa − x)a′(x)− a(x)]


where

a′(x) =
d

dx
a(x) =

θa − x

A
· a(x).

At the extinction equilibria,

Jext =


−d 0 0

0 r 0

β2
G

(
θa−x
A

)
a(x) σ2

Ge
(
θa−x
A

)
a(x) 0


which has eigenvalues −d, r, and 0. Since r > 0, these equilibria are unstable. At the predator

exclusion equilibria,

Jexcl =


ea(θa)K − d 0 0

−a(θa)K −r 0

0 0 −σ2
GeK
A a(θa)


which has eigenvalues Keατa√

A
− d, −r, and −σ2

GeK
A a(θa). These are all negative if d > Keατa√

A
. At the

coexistence equilibrium (where x∗ = θa),

Jcoex =


0 re

(
1− d

√
A

Keατa

)
0

−d
e − rd

√
A

Keατa
0

0 0 − 1
A

(
σ2
Gd− β2

Gr
(
1− d

√
A

Keατa

))


which has eigenvalues

λ1,2 =
1

2

(
tr ±

√
tr2 − 4det

)
, λ3 = − 1

A

(
σ2
Gd− β2

Gr

(
1− d

√
A

Keατa

))

where
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tr = − rd
√
A

Keατa

det = rd

(
1− d

√
A

Keατa

)

Since tr < 0 and det > 0 (due to biological feasibility), then Re[λ1,2] < 0, and so all three eigenvalues

have negative real part if

σ2
G

β2
G

>
r

d

(
1− d

√
A

Keατa

)
.

Finally, at the arms race equilibria (where x∗ = x+ or x−),

J±
arms =


0 reξ ∓ rKe

A ξ(1− ξ)
√
Z

−d
e −r(1− ξ) ± rK

A ξ(1− ξ)
√
Z

± β2
Gd

KAe(1−ξ)

√
Z ∓ σ2

Gd

KA(1−ξ)

√
Z 0

.

The characteristic polynomial for 3x3 matrices M = (mij) is given by

P (λ) = λ3 − tr(M)λ2 +Q(M)λ− det(M)

where tr(M) is the trace of M , det(M) is the determinant of M , and Q(M) := (m11m22 −m21m12)+

(m11m33 −m31m13) + (m22m33 −m32m23). For the matrix Jarms, these coefficients are given by

−tr(Jarms) = r(1− ξ)

Q(Jarms) = rdξ

(
1 +

Z

A2

(
β2
G + σ2

G

))
−det(Jarms) =

β2
Gdr

2ξ(1− ξ)Z

A2

The Routh-Hurwitz criteria for 3rd degree polynomials P (λ) = λ3+a2λ
2+a1λ+a0, which guarantees

all three roots lie on the left side of the complex plane, are a0 > 0, a2 > 0, and a1a2 > a0. Since

1− ξ > 0 is guaranteed by biological feasibility of the existence of E+ and E−, then −tr(Jarms) > 0

and −det(Jarms) > 0. The third condition is
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Figure A.1. Bifurcation Diagram in terms of the ratio of speeds of preda-
tor to prey speeds of evolution, σ2

G

β2
G

. This diagram shows which equilibria
exist and are stable, under the assumption that the coexistence equilibrium ex-
ists: d < Keατa√

A
In this region, the predator exclusion equilibrium is unstable. If

d > Keατa√
A

, the coexistence and arms race equilibria do not exist, and the predator
exclusion equilibrium is stable.

rdξ

(
1 +

Z

A2

(
β2
G + σ2

G

))
· r(1− ξ) >

β2
Gdr

2ξ(1− ξ)Z

A2

which is equivalent to

σ2
G

β2
G

<
r

d

(
1− d

√
A

Keατa
exp

[
− A

2σ2
G

])

Since the arms race equilibria only exist if

σ2
G

β2
G

<
r

d

(
1− d

√
A

Keατa

)
,

and it is always true that

r

d

(
1− d

√
A

Keατa

)
<

r

d

(
1− d

√
A

Keατa
exp

[
− A

2σ2
G

])
,

provided d < Keατa√
A

, then the two arms race equilibria are always asymptotically stable if they

exist. Figure A.1 is a diagram describing regions of existence and stability for each equilibrium.

Figure A.2 shows all possible dynamics of this system for positive density initial conditions.
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Figure A.2. All Four Possible Dynamics. Panels (a,b) parameter values: σ =
β = 0.25, σG = 0.25, βG = 0.2, d = e = α = θa = 0.1, τa = 0.5, r = 0.25, K = 225.
Panels (a,b) differ only in initial condition. Panel (c) parameter values: same as
panels (a,b) except βG = 0.1. Panel (d) parameter values: same as panel (c) except
d = 0.3 and e = α = 0.025. All initial density conditions are P0 = N0 = 1. Panels
(a,c,d) initial mean trait difference x0 = 0. Panel (b) initial mean trait difference
x0 = 0.2.
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APPENDIX B

Chaper 2 (Sick of Eating) Appendices

B.1. Derivation of average prey and predator fitness

Recall the probability distributions px(x, x) and py(y, y):

px(x, x) =
1√
2πσ2

x

exp

[
−(x− x)2

2σ2
x

]
and py(y, y) =

1√
2πσ2

y

exp

[
−(y − y)2

2σ2
y

]
(B.1)

Given W (x, y) =

2∑
i=1

[
(bi − cimiSi(y)) ai(x)Ni

]
− d, then through the linearity of sums and inte-

grals, we have

W (x, y) =

∫
R×R

W (x, y)px(x, x)py(y, y)dxdy =
2∑

i=1

[
(bi − cimiSi(y))ai(x)Ni

]
− d(B.2)

where

ai(x) =

∫
R
ai(x)px(x, x)dx and Si(y) =

∫
R
Si(y)py(y, y)dy(B.3)

are the average attack rate of the predator on prey i and the susceptibility rate of the predator to

infection by the parasite in prey i, respectively. Similary, given Yi(x) = ri

(
1− Ni

Ki

)
− ai(x)P for

i = 1, 2, we have

Y i(x) =

∫
R
Yi(x)px(x, x)dx = ri

(
1− Ni

Ki

)
− ai(x)P.(B.4)

Finally, since

ai(x) = αi exp

[
−(x− θi)

2

2ζ2i

]
and Si(y) = βi − (βi − γi) exp

[
−(y − ϕi)

2

2τ2i

]
,(B.5)
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we have

ai(x) =

∫
R
αi exp

[
−(x− θi)

2

2ζ2i

]
1√
2πσ2

x

exp

[
−(x− x)2

2σ2
x

]
dx(B.6)

=
αi√
2πσ2

x

∫
R
exp

[
−(x− θi)

2

2ζ2i
− (x− x)2

2σ2
x

]
dx(B.7)

=
αi√
2πσ2

x

∫
R
exp

[
− 1

2ζ2i σ
2
x

(
(σ2

x + ζ2i )x
2 − (2θiσ

2
x + 2xζ2i )x+ (θ2i σ

2
x + x2ζ2i )

)]
dx(B.8)

=
αi√
2πσ2

x

√
π√
A

exp

[
B2

4A
− C

]
(B.9)

where A =
σ2
x + ζ2i
2ζ2i σ

2
x

, B =
2θiσ

2
x + 2xζ2i
2ζ2i σ

2
x

, and C =
θ2i σ

2
x + x2ζ2i
2ζ2i σ

2
x

. So,

B2

4A
− C = − (x− θi)

2

2
(
σ2
x + ζ2i

)(B.10)

and thus

ai(x) =
αiζi√
σ2
x + ζ2i

exp

[
− (x− θi)

2

2
(
σ2
x + ζ2i

)] .(B.11)

Also,

Si (y) =

∫
R

(
βi − (βi − γi) exp

[
−y − ϕi

2τ2i

])
1√
2πσ2

y

exp

[
−(y − y)2

2σ2
y

]
dy(B.12)

= βi

∫
R

1√
2πσ2

y

exp

[
−(y − y)2

2σ2
y

]
dy − βi − γi√

2πσ2
y

∫
R
exp

[
−(y − ϕi)

2

2τ2i
− (y − y)2

2σ2
y

]
dy(B.13)

Through an identical calculation as for ai(x), we have

Si (y) = βi −
(βi − γi)τi√

σ2
y + τ2i

exp

[
− (y − ϕi)

2

2
(
σ2
y + τ2i

)] .(B.14)
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Parameter Baseline Value
K1, K2 100
α1, α2 0.7
β1, β2 0.95
γ1, γ2 0.05
σx, σy 0.25
σx,G, σy,G 0.1
τ1, τ2 0.1
ζ1, ζ2 0.1
θ1, ϕ1 0
θ2, ϕ2 1
b1, b2 1
c1, c2 0.9
m1, m2 0.9
r1, r2 1
d 0.4

Table B.1. Baseline parameter values.

Figure(s) Parameter Value
Figure 2.2a-c,g-i ζ1, ζ2 0.01
Figure 2.2d-f,j-l ζ1, ζ2 1
Figure 2.2a-f τ1, τ2 0.01
Figure 2.2g-l τ1, τ2 1
Figure 2.2a,d,g,j σx,G 0.005
Figure 2.2a,d,g,j σy,G 0.25
Figure 2.2b,e,h,k σx,G 0.25
Figure 2.2b,e,h,k σy,G 0.005
Figure 2.2c,f,i,l c1, c2, m1, m2 0.1

Table B.2. Figure 2.2 parameters. All parameters not given here are given in Table B.1.

B.2. Model parameters

B.3. Numerical approximation of Lyapunov exponents

Consider a system of ordinary differential equations

ẋ = f(x)(B.15)

and an initial condition x0 on or near an attractor of (B.15). Let xs(t) be the solution of (B.15)

with xs(0) = x0. Let g(f,x0, t) denote a stable numerical algorithm that approximates the solution
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Figure(s) Parameter Value
Figures 2.3a-d and 2.4a-d K1, K2 [10, 1000]
Figures 2.3a-d and 2.4a-d α1, α2 [0.5, 0.9]
Figures 2.3a-d and 2.4a-d β1, β2 [0.9, 1]
Figures 2.3a-d and 2.4a-d γ1, γ2 [0, 0.1]
Figures 2.3a-d and 2.4a-d σx,G, σy,G 0.25
Figures 2.3a-d and 2.4a-d b1, b2 [0.8, 1.2]
Figures 2.3a-d and 2.4a-d c1, c2, m1, m2 [0.5, 1]
Figures 2.3a-d and 2.4a-d r1, r2 [0.5, 1.5]
Figures 2.3a-d and 2.4a-d d [0.25, 0.55]
Figures 2.3a,b and 2.4a,b τ1, τ2 0.01
Figures 2.3c,d and 2.4c,d τ1, τ2 1
Figures 2.3a,c and 2.4a,c ζ1, ζ2 0.01
Figures 2.3b,d and 2.4b,d ζ1, ζ2 1

Table B.3. Figures 2.3 and 2.4 parameters. All parameters not given here are
given in Table B.1.

to (B.15) (i.e. Python’s scipy.integrate.odeint()). That is,

g(f,x0, t) ≈ xs(t).(B.16)

Let ϵ be a small positive number and choose a vector y0 ̸= x0. For i = 0, 1, . . . , n, define

di := ||yi − xi|| and y∗
i := xi +

ϵ

di
(yi − xi) ,

where yi is defined for i = 1, . . . , n as

yi := g(f,∆t,y∗
i−1).(B.17)

See Figure B.1 for a graphical depiction of this process.

Finally, define

Li := ln

(
di
ϵ

)
.(B.18)

If Li > 0 (< 0), then nearby solutions at that point move away from (towards) the reference

solution xs, indicating chaotic (stable) dynamics. Then the Lyapunov exponenet L for the reference
96



x0

x1 x2

x3

x4

y0

y∗
0

ϵ
d0

y1

y∗
1

ϵ
d1

y2

y∗
2

ϵ
d2

y3

y∗
3

d3

ϵ

y4

y∗
4

d4
ϵ

Figure B.1. Cartoon of the numerical approximation of the Lyapunov exponent
for the solution xs of some system ẋ = f(x) with initial condition x(0) = x0. The
initial ϵ-perturbation of x0 is y∗

0. Each yi is rescaled to a distance of ϵ from xi.

trajectory xs is defined as

L :=
1

n

n∑
i=1

Li.(B.19)

If L < 0, we say ẋ = f(x) is stable around xs (and that xs is a stable trajectory). If L > 0, we say

ẋ = f(x) is chaotic around xs [Sprott, 2003].

Parameters for Figure 2.4 are in Table B.3.

B.4. Determining global stability of the ecological subsystem for constant traits x

and y

This appendix addresses the global stability of ecological equilibria of Equation (3.1). In par-

ticular, for constant predator mean traits x and y, we have

(B.20)

Ṅ1 = N1

(
r1

(
1− N1

K1

)
− a1P

)
Ṅ2 = N2

(
r2

(
1− N2

K2

)
− a2P

)
Ṗ = P (a1e1N1 + a2e2N2 − d)

where ai is shorthand for ai(x) and ei is shorthand for bi −miciSi(y).
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Note that ei may be negative. We will first discuss global stability of (B.20) in the case that

ei > 0 for i = 1, 2. We will then discuss the case that e1 < 0 and e2 > 0 (which is symmetrical to

the case that e1 > 0 and e2 < 0). We will conclude with the case that both ei < 0 for i = 1, 2.

Case 1: Two positive conversion efficiencies. First, we nondimensionalize (B.20):

(B.21)

ẋ1 = x1 (r1 − x1 − a1y)

ẋ2 = x2 (r2 − x2 − a2y)

ẏ = y (a1e1x1 + a2e2x2 − d)

In this case, there are seven ecologically relevant equilibria of (B.21):

(E+++) =
1

|Θ|
(x̃1, x̃2, ỹ) , where

x̃1 = a1d+ a2e2 (a2r1 − a1r2)

x̃2 = a2d+ a1e1 (a1r2 − a2r1)

ỹ = a1e1r1 + a2e2r2 − d

|Θ| = a21e1 + a22e2

(E+0+) =

(
d

a1e1
, 0,

1

a1

(
r1 −

d

a1e1

))
(E0++) =

(
0,

d

a2e2
,
1

a2

(
r2 −

d

a2e2

))
(E++0) = (r1, r2, 0)

(E+00) = (r1, 0, 0)

(E0+0) = (0, r2, 0)

(E000) = (0, 0, 0)

The zero-species equilibrium (E000) and the one-species equilibria (E+00) and (E0+0) are unstable.

The two-species equilibria (E+0+), (E0++), and (E++0) are globally stable if x̃2 < 0, x̃1 < 0, and

ỹ < 0, respectively. It is impossible for any two of x̃1, x̃2, and ỹ to be negative simultaneously. If
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(E+++) is positive, then (E+++) is globally stable. Thus in order to determine which equilibrium

is globally stable, it suffices to check the signs of x̃1, x̃2, and ỹ.

Case 2: One negative and one positive conversion efficiency. In order to keep all

parameters positive, we write a new system:

(B.22)

ẋ1 = x1 (r1 − x1 − a1y)

ẋ2 = x2 (r2 − x2 − a2y)

ẏ = y (−a1e1x1 + a2e2x2 − d)

In this case, there are six ecologically relevant equilibria of (B.22):

(E+++) =
1

|Θ|
(x̃1, x̃2, ỹ) , where

x̃1 = a1d− a2e2 (a1r2 − a2r1)

x̃2 = a2d+ a1e1 (a2r1 − a1r2)

ỹ = −a1e1r1 + a2e2r2 − d

|Θ| = −a21e1 + a22e2

(E0++) =

(
0,

d

a2e2
,
1

a2

(
r2 −

d

a2e2

))
(E++0) = (r1, r2, 0)

(E+00) = (r1, 0, 0)

(E0+0) = (0, r2, 0)

(E000) = (0, 0, 0)

As in the previous case, the zero-species and one-species equilibria are unstable. The two-species

equilibria (E0++) and (E++0) are globally stable if x̃1 < 0 and ỹ < 0, respectively. At this time we

cannot make a statement about the global stability of (E+++). However, if (E0++) and (E++0) are

unstable, then the trajectory (i) approaches (E+++) asymptotically, (ii) approaches a stable limit

cycle, or (iii) is chaotic. In any case, because all solutions of (B.22) are bounded, the time-average of
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the solution approaches (E+++). This is the only requirement for Equation (2.2) to be an accurate

approximation of Equation (3.1b) in the limit of slow evolution.

Case 3: Two negative conversion efficiencies. In order to keep all parameters positive,

we write a new system:

(B.23)

ẋ1 = x1 (r1 − x1 − a1y)

ẋ2 = x2 (r2 − x2 − a2y)

ẏ = y (−a1e1x1 − a2e2x2 − d)

In this case, predator fitness is always negative, and so there are only four ecologically relevant

equilibria of (B.23):

(E++0) = (r1, r2, 0)

(E+00) = (r1, 0, 0)

(E0+0) = (0, r2, 0)

(E000) = (0, 0, 0)

As in the previous cases, the zero-species and one-species equilibria are unstable. The two species

equilibrium (E++0) is globally stable.

B.5. Unimodality condition for W with respect to y

In this appendix, we assume the widths of the two susceptibility curves are equal: τ := τ1 = τ2.

The predator fitness is thus

W =
(
b1 −m1c1S1(y)

)
a1(x)N1 +

(
b2 −m2c2S2(y)

)
a2(x)N2 − d.(B.24)

where

Si(y) = βi −
(βi − γi)τ√

σ2
y + τ2

exp

[
− (y − ϕi)

2

2
(
σ2
y + τ2

)] , i = 1, 2.
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Thus, y fitness gradient is

∂W

∂y
= −m1c1S

′
1(y)a1(x)N1 −m2c2S

′
2(y)a2(x)N2(B.25)

= m1c1

(
(β1 − γ1)τ(ϕ1 − y)

(σ2
y + τ2)

3
2

exp

[
− (y − ϕ1)

2

2
(
σ2
y + τ2

)]) a1(x)N1

+m2c2

(
(β2 − γ2)τ(ϕ2 − y)

(σ2
y + τ2)

3
2

exp

[
− (y − ϕ2)

2

2
(
σ2
y + τ2

)]) a2(x)N2(B.26)

For simplicity, we introduce a composite parameter A := σ2
y + τ2 and Zi :=

mici(βi − γi)τai(x)Ni

A
3
2

and so

∂W

∂y
= Z1(ϕ1 − y) exp

[
−(y − ϕ1)

2

2A

]
+ Z2(ϕ2 − y) exp

[
−(y − ϕ2)

2

2A

]
(B.27)

We also rescale so that ϕ1 = 0, ϕ2 = ϕ, and y = ỹϕ. Thus,

∂W

∂y
= −Z1ϕỹ exp

[
− ỹ2ϕ2

2A

]
+ Z2ϕ(1− ỹ) exp

[
−ϕ2(ỹ − 1)2

2A

]
(B.28)

To find critical points, we set dW
dy = 0:

Z1ỹ exp

[
− ỹ2ϕ2

2A

]
= Z2(1− ỹ) exp

[
−ϕ2(ỹ − 1)2

2A

]
(B.29)

Let Ψ :=
Z2

Z1
=

m2c2(β2 − γ2)a2(x)N2

m1c1(β1 − γ1)a1(x)N1
, the ratio of the differences between maximally and mini-

mally effective individual parasites. With this notation, we have

exp

[
−
ϕ2
(
ỹ − 1

2

)
A

]
= Ψ

(
1

ỹ
− 1

)
(B.30)

This is the same form as Equation (A2) from Appendix A in Patel and Schreiber [2015]. The

remainder of this appendix is a restatement of their analytical results applied to this model.

Thus, if Ψ = 1, then ỹ = 1
2 is always a critical point. If ϕ2 < 4A, this point is stable and if

ϕ2 > 4A, this point is unstable. Graphical analysis shows that two additional stable equilibria exist

if ϕ2 > 4A (one less than 1
2 and one more than 1

2), and so the fitness function is bimodal when

ϕ2 > 4A, and this corresponds to a pitchfork bifurcation.
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If Ψ ̸= 1, then the symmetry of the bifurcation breaks. If Ψ < 1, then parasite 1 has a greater

effect on predator fitness than the parasite 2, and so we predict the critical points to be closer to

ỹ = 0 so the predator is less susceptible to limnetic parasitism. If Ψ > 1, we likewise expect the

critical points to be closer to ỹ = 1. We can check this by solving for dỹ
dΨ :

dỹ
dΨ =

1

ỹ
− 1

Ψ

ỹ2
− ϕ2

A
exp

[
−
ϕ2
(
ỹ − 1

2

)
A

] .(B.31)

For all relevant values of ỹ (ỹ ∈ (0, 1)), the numerator is positive. The denominator is positive for

stable critical points and thus dỹ
dΨ > 0 for stable critical points in (0, 1). Thus, the stable phenotype

values of ỹ increase as Ψ increases.
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APPENDIX C

Chaper 3 (Predator Evolution-Mediated Permanence) Appendices

C.1. Global Stability of Model (3.1)

There are seven equilibria of Model (3.1):

The coexistence equilibrium: E+
++ = (N∗

1 , N
∗
2 , P

∗), where

N∗
i =

Ñi

Θ
, i = 1, 2, P ∗ =

P̃

Θ
,

Ñ1 = d(a1 − c12a2)− a2e2(a1r2 − a2r1),

Ñ2 = d(a2 − c21a1)− a1e1(a2r1 − a1r2),

P̃ = a1e1(r1 − c12r2) + a2e2(r2 − c21r1)− d(1− c12c21),

Θ = a21e1 − a1a2(c12e1 + c21e2) + a22e2,

The two prey-exclusion equilibria: E+
+0 =

(
d

a1e1
, 0, 1

a1

(
r1 − d

a1e1

))
and

E+
0+ =

(
0, d

a2e2
, 1
a2

(
r2 − d

a2e2

))
,

The predator-exclusion equilibrium: E0
++ =

(
r1−c12r2
1−c12c21

, r2−c21r1
1−c12c21

, 0
)

,

The two single-prey equilibria: E0
+0 = (r1, 0, 0) and E0

0+ = (0, r2, 0), and

The extinction equilibrium: E0
00 = (0, 0, 0).

E+
+0 exists if d < a1e1r1, E+

0+ exists if d < a2e2r2, and E0
++ exists if (r1−c12r2)(r2−c21r1) > 0. E+

+0

is asymptotically stable if Ñ2 < 0, E+
0+ is asymptotically stable if Ñ1 < 0, E0

++ is asymptotically

stable if c12c21 < 1 and P̃ < 0, E0
+0 is asymptotically stable if E+

+0 does not exist and c21 > r2
r1

,

and E0
0+ is asymptotically stable if E+

0+ does not exist and c12 > r1
r2

. Hutson and Vickers [1983,

Theorem 3.2] provide conditions for asymptotic stability of E+
++.
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Let X̃ n denote the space of positive-semidefinite n × n matrices. Let X n
d denote the space of

diagonal positive-definite n× n matrices. Define S̃W as follows:

S̃W :=
{
A ∈ Rn×n | ∃W ∈ X n

d such that WA+ATW ∈ X̃ n
}
.(C.1)

Consider the generalized Volterra system:

d

dt
xi(t) = xi(t)

bi − n∑
j=1

aijxj(t)

, i = 1, 2, . . . , n.(C.2)

Let x∗ = (x∗1, . . . , x
∗
n) be a non-negative equilibrium of (C.2). Define N := {1, . . . , n} and I, J ⊂ N

defined as

I := {i ∈ N | x∗i = 0} , and J := N \ I.

Then define Rn
I as

Rn
I := {x ∈ Rn | xi ≥ 0∀i ∈ I and xj > 0∀j ∈ J} .

Lemma C.1. Let A be the following matrix:

A :=


1 c12 a1

c21 1 a2

−a1e1 −a2e2 0

.

Then A ∈ S̃W if and only if c12e1 + c21e2 ≤ 2
√
e1e2.

Proof of Lemma C.1. Suppose c12e1 + c21e2 ≤ 2
√
e1e2. Let w = (e1, e2, 1) and define W :=

diag(wi). Then

WA+ATW =


2e1 c12e1 + c21e2 0

c12e1 + c21e2 2e2 0

0 0 0

.

The principal minors are 2e1, 4e1e2 − (c12e1 + c21e2)
2, and 0, each of which is non-negative, and

thus WA+AT is positive-semidefinite, or A ∈ S̃W .

Conversely, suppose A ∈ S̃W . Thus there exists W = diag(wi) with wi > 0 such that WA+ATW
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is positive semidefinite. Then all the principal minors of WA+ATW are non-negative.

WA+ATW =


2w1 c12w1 + c21w2 a1w1 − a1e1w3

c12w1 + c21w2 2w2 a2w2 − a2e2w3

a1w1 − a1e1w3 a2w2 − a2e2w3 0

(C.3)

All diagonal terms must be non-negative (which is true because wi > 0 for all i), and the principal

minors must be non-negative, which means∣∣∣∣∣∣ 2w2 a2w2 − a2e2w3

a2w2 − a2e2w3 0

∣∣∣∣∣∣ = −(a2w2 − a2e2w3)
2 ≥ =⇒ w2 = e2w3,(C.4)

∣∣∣∣∣∣ 2w1 a1w1 − a1e1w3

a1w1 − a1e1w3 0

∣∣∣∣∣∣ = −(a1w1 − a1e1w3)
2 ≥ =⇒ w1 = e1w3,(C.5)

(C.6)

and ∣∣∣∣∣∣ 2w1 c12w1 + c21w2

c12w1 + c21w2 2w2

∣∣∣∣∣∣ = 4w1w2 − (c12w1 + c21w2)
2 ≥ 0(C.7)

Since w2 = e2w3 and w1 = e1w3, the third condition is c12w1 + c21w2 ≤ 2
√
e1e2, which completes

the proof. □

Theorem C.2 (Theorem 3, Takeuchi and Adachi [1983]). Suppose that there exists a non-

negative equilibrium x∗ of (C.2). Then x∗ is globally stable if

(i) A := (aij) ∈ S̃W ,

(ii) bi −
∑n

j=1 aijx
∗
j ≤ 0 for all i ∈ I, and

(iii) the function

−(x− x∗)T
(
WA+ATW

)
(x− x∗ + 2) + 2

∑
i∈I

wixi

bi −
n∑

j=1

aijx
∗
j


does not vanish identically along any solution of (C.2) except for x = x∗ in Rn

I .
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Proof of Theorem 3.2. (i) We will use Theorem C.2. Lemma C.1 satisfies (i) in Theorem

C.2. (ii) in Theorem C.2 holds because I = ∅ for E+
++. Finally, the expression in (iii) in

Theorem C.2 reduces to

−(x− E+
++)

T


2e1 c12e1 + c21e2 0

c12e1 + c21e2 2e2 0

0 0 0

(x− E+
++

)
.(C.8)

This clearly vanishes identically along x = E+
++ and does not vanish identically along any other

solution in R>0
3 since c12e1+c21e2 < 2

√
e1e2 ensures the matrix is positive-semidefinite. Thus

by Theorem C.2, E+
++ is globally stable.

(ii) The condition c12e1 + c21e2 < 2
√
e1e2 ensures that

a21e2 − a1a2(c12e1 + c21e2) + a22e2 > a21e1 − 2
√
e1e2a1a2 + a22e2

= (a1
√
e1 − a2

√
e2)

2

≥ 0

Thus if E+
++ is not non-negative, the either Ñ1 ≤ 0 or Ñ2 ≤ 0 or P̃ ≤ 0. Also, at least one of

c12 <
r1
r2

and c21 <
r2
r1

must be true, because if c12 ≥ r1
r2

and c21 ≥ r2
r1

, then we have c12c21 ≥ 1

and

0 ≤ (c12e1 − c21e2)
2

= c212e
2
1 − 2c12c21e1e2 + c221e

2
2

≤ c212e
2
1 − 2e1e2 + c221e

2
2

=⇒ 4e1e2 ≤ c212e
2
1 + 2e1e2 + c221e

2
2

≤ c212e
2
1 + 2c12c21e1e2 + c221e

2
2

= (c12e1 + c21e2)
2

=⇒ 2
√
e1e2 ≤ c12e1 + c21e2,
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which is a contradiction. Next, if c12 ̸= r1
r2

and c21 ̸= r2
r1

, then none of Ñ1 = 0, Ñ2 = 0, and

P̃ = 0 intersect. This is because the non-zero a1 coordinates of the points of intersection of

Ñ1 = 0 and Ñ2 = 0 are

a1 =
d(c12e1(c21r1 + r2) + c21e2(c21r1 − r2)− 2e1r1)± d(c21r1 − r2)

√
(c12e1 + c21e2)

2 − 4e1e2

2e1
(
r1r2

(
c12e1 + c21e2 − 2

√
e1e2

)
− (r1

√
e1 − r2

√
e2)2

)
which are only real-valued if c12e1 + c21e2 ≥ 2

√
e1e2. These are the same non-zero a1 coordi-

nates of the points of intersection of P̃ = 0 and Ñ2 = 0. The analysis is symmetrical to finding

the points of intersection of P̃ = 0 and Ñ1 = 0. Finally, if c12 = r1
r2

then P̃ = 0 is a subset

of Ñ1 = 0 and is equivalent to a2 = d(1−c12c21)
e2(r2−c21r1)

= d
e2r2

. Ñ1 = 0 is equivalent to a2 = d
e2r2

and a1 = c12a2. Likewise, if c21 = r2
r1

then P̃ = 0 is a subset of Ñ2 = 0. Because Ñ1 = 0 and

Ñ2 = 0 do not intersect, then at least one of Ñ1 > 0 and Ñ2 > 0 is true. If Ñ1 < 0, then E+
0+

or E0
0+ is globally stable if P̃ > 0 or P̃ < 0, respectively (Theorem C.2, Fig. C.1). Similarly,

if Ñ2 < 0, then E+
+0 or E0

+0 is globally stable if P̃ > 0 or P̃ < 0, respectively. Finally, it is

possible for P̃ < 0 when Ñ1 > 0 and Ñ2 > 0, in which case E0
++ is globally stable.

Figure C.1. a1-a2 bifurcation diagrams under the condition c12e1+c21e2 < 2
√
e1e2.

In (a), (b), and (c), we have c12 > r1
r2

, c12 = r1
r2

, and c12 < r1
r2

, respectively. Pa-
rameters: r1 = r2 = 1, c21 = 0.9, e1 = e2 = d = 0.5. c12 = 1.05, 1, and 0.9, in
(a), (b), and (c), respectively. If c21 > r2

r1
or c21 = r2

r1
, then c12 < r1

r2
and plots

are symmetric to (a) and (b), respectively. White regions indicate the coexistence
equilibrium exists in the positive orthant and is globally stable.

□

C.2. Hopf Bifurcation

Theorem C.3 (Hopf Bifurcation). Suppose c12e1 + c21e2 > 2
√
e1e2 and c12c21 > 1.
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(a) In regions where (E+
++) exists in the positive orthant and Θ > 0, there exists at least one Hopf

Bifurcation parametric value a∗2 (or a∗1) for any a1 (or a2) fixed if

d

da2
Z3

∣∣∣
a2=a∗2

̸= 0 (or d

da1
Z3

∣∣∣
a1=a∗1

̸= 0).(C.9)

(b) In regions where (E+
++) exists in the positive orthant and Θ < 0, there exist no periodic solution

of the Hopf type.

Proof. Let c12e1 + c21e2 > 2
√
e1e2 and c12c21 > 1.

(a) The curves N∗
i = 0 (i = 1, 2) and P ∗ = 0 are simultaneously satisfied at exactly two points

(a11, a
1
2) and (a21, a

2
2) in the positive a1-a2 plane. The intersections of these curves produce 14

distinct regions in the positive a1-a2 plane, three of which are regions in which (E+
++) exists.

The regions are R1, R2, and R3, as shown in the figure below.

For all (a1, a2) ∈ R̊1, we have Z0 > 0 and Z2 > 0. ∂R1 consists of the curves P ∗ = 0 (the

line), N∗
2 = 0 (the hyperbola), and the a2-axis. On P ∗ = 0 |∂R1 , we have Z2 = 0 and Z1 < 0

(and thus Z3 < 0). On N∗
2 = 0 |∂R1 , we have Z2 = 0 and Z1 > 0 (and thus Z3 > 0). Since

Z3 as a function of a1 and a2 is continuous over R1, then by the Intermediate Value Theorem,

∀a1 ∈
{
a1 | (a1, a2) ∈ R̊1

}
, ∃a∗2 > 0 such that (a1, a2∗) ∈ R̊1 and such that Z3 |(a1,a2)=0. Denote

the minimum a∗2 as a∗2. At this point, we have Zi |(a1,a∗2)> 0 for i = 0, 1, 2.

For a2 less than a∗2, Zi |(a1,a2)> 0 for i = 0, 1, 2, 3. By the Routh-Hurwitz criteria, this

implies all eigenvalues of the linearized system are negative. At a2 = a∗2, Z3 = 0, which implies

Z2 = Z0Z1. Thus the eigenvalues of the linearized system are −Z0 and ±
√
−Z1. Finally, by

assumption, we have d
da2

Z3

∣∣∣
a2=a∗2

̸= 0. Thus there is a Hopf Bifurcation at (a1, a
∗
2). A similar

proof can be given for R3.
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(b) In R2, we have Θ < 0 and (N∗
1 , N

∗
2 , P

∗) > 0. Thus Z0 > 0 and Z2 < 0. If the linearized matrix

has a congugate pair of purely imaginary eigenvalues ±ξi, then the other eigenvalue is real and

has the opposite sign of the constant term of the characteristic polynomial, which is Z2 < 0,

and thus the other eigenvalue is positive, which proves there is no Hopf Bifurcation in R2.

□

C.3. Dynamics when Model 3.1 is not permanent

Proof of Theorem 3.3. Assume Model (3.1) is not robustly permanent, c12 < r1
r2

, and c21 >

r2
r1

(Prey 1 dominates Prey 2).

Since Model (3.1) is not robustly permanent, either E+
++ is not positive or condition (ii) from

Theorem 3.1 does not hold (Θ ≤ 0). Condition (i) from Theorem 3.1 holds by assumption.

If E+
++ is not positive, then all ω-limit points lie on the boundary of [0,∞)3 [Hofbauer and

Sigmund, 1998, Theorem 5.2.1]. Since c12 < r1
r2

and c21 > r2
r1

, then E0
++ is not feasible and E0

0+

is unstable. Since E0
00 is always unstable, only E0

+0, E+
+0, and E+

0+ may be asymptotically stable.

This results in the following possible cases:

Case 1 (d > a1e1r1): E0
+0 is asymptotically stable and E+

+0 is not feasible.

Case 1.1 (d > a2e2r2): E+
0+ is not feasible.

Case 1.2 (d < a2e2r2): E+
0+ is feasible.

Case 1.2.1 (Ñ1 < 0): E+
0+ is asymptotically stable.

Case 1.2.2 (Ñ1 < 0): E+
0+ is unstable.

Case 2 (d < a1e1r1): E0
+0 is unstable and E+

+0 is feasible.

Case 2.1 (d > a2e2r2): E+
0+ is not feasible.

Case 2.1.1 (Ñ2 < 0): E+
+0 is asymptotically stable.

Case 2.1.2 (Ñ2 > 0): E+
+0 is unstable, and thus there are no ω-limit points on

the boundary, which is a contradiction.

Case 2.2 (d < a2e2r2): E+
0+ is feasible.

2.2.1 (Ñ1 < 0, Ñ2 < 0): E+
+0 and E+

0+ are asymptotically stable.

2.2.2 (Ñ1 < 0, Ñ2 > 0): E+
+0 is unstable and E+

0+ is asymptotically stable.

2.2.3 (Ñ1 > 0, Ñ2 < 0): E+
+0 is asymptotically stable and E+

0+ is unstable.
109



2.2.4 (Ñ1 > 0, Ñ2 > 0): E+
+0 and E+

0+ are unstable, and thus there are no ω-limit

points on the boundary, which is a contradiction.

In cases 1.1 and 1.2.2, E0
+0 is the only locally stable equilibrium on the boundary and any stable

manifold of the other equilibria on the boundary lie in the boundary. Thus in these cases E0
+0 is

globally stable. In case 1.2.1, E0
+0 and E+

0+ are stable. In cases 2.1.1 and 2.2.3, E+
+0 is the only

locally stable equilibrium on the boundary and any stable manifold of the other equilibria on the

boundary lie in the boundary. Thus in these cases E+
+0 is globally stable. In case 2.2.2, E+

0+ is the

only locally stable equilibrium on the boundary and any stable manifold of the other equilibria on

the boundary are on the boundary. Thus in this case E+
0+ is globally stable. In case 2.2.1, E+

+0 and

E+
0+ are stable. In Cases 2.1.2 and 2.2.4, Model (3.1) is permanent, which is a contradiction.

Next, assume E+
++ is positive but condition (ii) from Theorem 3.1 does not hold (Θ ≤ 0). Since

E+
++ is positive, then Θ ≠ 0, and so Θ < 0. Thus Ñ1 < 0, Ñ2 < 0, and P̃ < 0. On the a1-a2 plane,

the hyperbolas defined by Ñ1 = 0 and Ñ2 = 0 intersect at the origin. If c12e1 + c21e2 < 2
√
e1e1,

there are no other intersections, and existence of E+
++ implies its global stability (Theorem 3.2).

But this implies Θ > 0, which is a contradiction. Thus c12e1 + c21e2 ≥ 2
√
e1e2, and there are at

most two additional points of intersection of the hyperbolas Ñ1 = 0 and Ñ2 = 0. The line defined

by P̃ = 0 in the a1-a2 plane also passes through these points. If c12e1+ c21e2 > 2
√
e1e2, then these

points also fall on Θ = 0, which consists of two lines through the origin, each with a positive slope.

Denote the intersection points x⃗1 = (a11, a21) and x⃗2 = (a12, a22), with a11 < a12. x⃗1 and x⃗2 are

each either in the first quadrant QI or the third quadrant QIII of the a1-a2 plane.

Case 3 (x⃗1, x⃗2 ∈ QIII): In this case, the curves Ñ1 = 0, Ñ2 = 0, P̃ = 0, and Θ = 0 split

the first quadrant into eight distinct regions. In none of the eight regions is E+
++ positive

and Θ < 0 (Fig. C.2a).

Case 4 (x⃗1 ∈ QIII, x⃗2 ∈ QI): In this case, x⃗2 is such that d < ai2eiri, i = 1, 2 or d >

ai2eiri, i = 1, 2. The curves Ñ1 = 0, Ñ2 = 0, P̃ = 0, and Θ = 0 split the first quadrant

into eleven distinct regions (Fig. C.2b,c).

Case 4.1 ( e1(r1−c12r2)
r2(c21r1−r2)

> r2
r1

): In this case, d < ai2eiri, i = 1, 2 and in none of the eleven

regions is E+
++ positive and Θ < 0 (Fig. C.2b).
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Case 4.2 ( e1(r1−c12r2)
r2(c21r1−r2)

< r2
r1

): In this case, d > ai2eiri, i = 1, 2. There is one region in

which E+
++ is positive and Θ < 0. This region is such that d < a2e2r2 (Fig. C.2c).

Case 5 (x⃗1, x⃗2 ∈ QI): In this case, the curves Ñ1 = 0, Ñ2 = 0, P̃ = 0, and Θ = 0 split the

first quadrant into fourteen distinct regions (Fig. C.2d-f).

Case 5.1 (a21 < a22 <
d

e2r2
): In none of the fourteen regions is E+

++ positive and Θ < 0

(Fig. C.2d).

Case 5.2 (a21 < d
e2r2

< a22): There is one region in which E+
++ is positive and Θ < 0.

This region is such that d < a2e2r2 (Fig. C.2e).

Case 5.3 ( d
e2r2

< a21 < a22): There is one region in which E+
++ is positive and Θ < 0.

This region is such that d < a2e2r2 (Fig. C.2f).

Every region in which E+
++ exists and Θ < 0 is such that d < a2e2r2. Thus E+

0+ is asymptotically

stable. If d < a1e1r1, then E+
+0 is asymptotically stable. If d > a1e1r1, then E0

+0 is asymptotically

stable. In either case, E+
++ positive and Θ < 0 implies Model (3.1) has two stable boundary

equilibria. □

C.4. Permanence

Consider a general system

(C.10)

dxi
dt

= xifi(x, y), i = 1, . . . , n,

dyj
dt

= gj(x, y), j = 1, . . . ,m,

with state space S := [0,∞)n×K, and where x = (x1, . . . , xn) ∈ [0,∞)n is the vector of population

densities. The extinction set S0 := {(x, y) ∈ S |
∏n

i=1 xi = 0} is the set which has at least one species

extinct (zero density). Let z.t denote the solution to this model for initial condition z = (x, y) ∈ S,

and let Z.T := {z.t | z ∈ Z, t ∈ T}. Assume xifi and gj are locally Lipschitz funtions and that there

is an invariant compact set Q ⊂ S such that Q.[0,∞) ⊂ Q and z.t ∈ Q for t sufficiently large for

all z ∈ S. Define the ω-limit set of a set Z as ω(Z) :=
∩

t≥0 Z.[t,∞), and the α-limit set of a set Z

as α(Z) :=
∩

t≤0 Z.(−∞, t]. The global attractor of this system Λ is defined as Λ := ω(Q).
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Figure C.2. Bifurcation diagrams of Model (3.1) in cases 3, 4, and 5 in the proof
of Theorem 3.3. (a) Case 3. r1 = 1.5, r2 = 0.5, c12 = 1.2, c21 = 0.8, e1 = 0.5,
e2 = 1.2, d = 0.5. In (b-f), r1 = r2 = 1 and d = 0.5. In (b,d), e1 = 0.9 and e2 = 0.4.
In (c,e,f), e1 = 0.4 and e2 = 0.9. (b) Case 4.1. c12 = 0.96 and c21 = 1.05. (c) Case
4.1 c12 = 0.8 and c21 = 1.2. (d) Case 5.1. c12 = 0.925 and c21 = 1.05. (e) Case 5.2.
c12 = 0.97 and c21 = 1.05. (f) Case 5.3. c12 = 0.85 and c21 = 1.05.
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Definition 1 (Morse Decomposition). A collection of sets M = {M1, . . . ,Mℓ} is a Morse

decomposition for a compact invariant set Γ if M1, . . . ,Mℓ are pairwise disjoint, isolated invariant

compact sets, called Morse sets, such that for every z ∈ Γ \
∪ℓ

k=1Mk there are integers i < j such

that ω(z) ⊂ Mi and α(z) ⊂ Mj.

Theorem C.4 (Patel and Schreiber [2018], Theorem 2). Let M = {M1, . . . ,Mℓ} be a Morse

decomposition for S0 ∩ Γ, where Γ is the global attractor for (C.10). If, for each Mk ∈ M, there

exists pk1, . . . , pkn > 0 such that for every z ∈ Mk, there is a Tz such that

n∑
i=1

pki

∫ Tz

0
fi(z.t)dt > 0,

then (C.10) is robustly permanent.

Recall Model (3.2) from the main text and its state space S := [0,∞)3 × [θ1, θ2].

Theorem C.5. Model (3.2) is dissipative.

Proof. If Nj = 0 and P = 0, then dNi
dt = Ni(ri−Ni), which is the well-known one-dimensional

Logistic equation and is a dissipative system.

If Nj ̸= 0 or P ̸= 0, then dNi
dt < 0 for all Ni ≥ ri. Thus there is some T > 0 such that Ni(t) < 2ri

for all t > T . Let y :=
∑2

i=1 eiNi + P. Then

ẏ =

2∑
i=1

eiNi(ri −Ni)− (e1c12 + e2c21)N1N2 − dP

≤
2∑

i=1

ei(2ri)(ri −Ni)− dP

= 2
2∑

i=1

eir
2
i − 2

2∑
i=1

eiriNi − dP.

Let α := 2
∑2

i=1 e1r
2
i and β := min {2r1, 2r2, d}. Thus,

ẏ ≤ α− βy,
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and thus (3.2) is dissipative. All flow eventually enters the compact set

Q :=

{
(N1, N2, P, x̄) | y ≤ 2α

β

}
⊂ S.

□

Since (3.2) is dissipative, there exists a compact global attractor Λ ⊂ S of (3.2). The next three

theorems provide conditions for permanence of model (3.2) for each of three cases. Theorems C.6

and C.7 cover when (r1, 0) is globally stable in the N1-N2 subsystem and Theorem C.8 covers when

(r1, 0) and (0, r2) are bistable in the N1-N2 subsystem. In Theorem C.6, the predator must be able

to subsist on either of the prey without the other, and in Theorem C.7, the predator must only

subsist on the superior competitor. In Theorem C.8, the predator must have a positive per-capita

growth rate when the prey are at any of the three nonzero equilibria of the N1-N2 subsystem.

Theorem C.6. Assume the following:

(i) c12 <
r1
r2

and c21 >
r2
r1

,

(ii) ā1(θ1)e1r1 > d,

(iii) d(ā2(θ1)− c21ā1(θ1)) > ā1(θ1)e1(ā2(θ1)r1 − ā1(θ1)r2),

(iv) ā2(θ2)e2r2 > d, and

(v) d(ā1(θ2)− c12ā2(θ2)) > ā2(θ2)e2(ā1(θ2)r2 − ā2(θ2)r1).

Then Model (3.2) is robustly permanent.

Proof. Denote M1 =
(
E+

+0

)
× {θ1}, M2 =

(
E+

0+

)
× {θ2}, M3 =

(
E0

+0

)
× {θ1}, M4 =

(
E0

0+

)
×

{θ2}, and M5 = (E0
00) × [θ1, θ2]. Schreiber and Patel [2015, Proposition 1] proved that M1 and

M2 are globally stable within the N1-P -x̄ and N2-P -x̄ subsystems, respectively. Similarly, in the

N1-x̄ subsystem, if N1(0) > 0, then since dN1
dt = N1(r1 −N1), then N1 → r1 asymptotically. Since

N2 = 0, then dx̄
dt = σ2

Gā
′
1(x̄)e1N1 = −σ2

Ge1
β1τ1(x̄−θ1)

(σ2+τ21 )
3/2 exp

[
− (x̄−θ1)2

2A1

]
N1. The only equilibrium is

x̄ = θ1, and dx̄
dt < 0 for all x̄ > θ1. So limt→∞ x̄(t) = θ1 and thus M3 is globally stable within the

N1-x̄ subsystem. Similarly, M4 is globally stable within the N2-x̄ subsystem.

Next we show M = {M1,M2,M3,M4,M5} is a Morse decomposition for Λ ∩ S0. Let z ∈

(Λ ∩ S0) \
∪5

i=1Mi, where z = (N1, N2, P, x̄). Then either

(a) N2 = P = 0, N1 > 0,
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(b) N2 = 0, N1 > 0, P > 0,

(c) N1 = P = 0, N2 > 0,

(d) N1 = 0, N2 > 0, P > 0, or

(e) P = 0, N1 > 0, N2 > 0.

If (a) holds, then α(z) ⊂ M5 and ω(z) = M3. If (b) holds, then ω(z) = M1, and by Mischaikow

et al. [1995, Proposition 1.5], either α(z) ⊂ M5, α(z) = M3, or α(z) = M1. Since M1 is globally

stable within the N1-P -x̄ subsystem, then α(z) = ω(z) = M1 implies z ∈ M1, which contradicts our

assumptions that z ∈
∪5

i=1Mi. Thus α(z) ⊂ M5 or α(z) = M3. Cases (c) and (d) follow similarly.

If (e) holds, then (i) implies ω(z) = M3 and either α(z) = M3 or α(z) = M4 or α(z) ⊂ M5.

Again, if α(z) = ω(z) = M3, then by Mischaikow et al. [1995, Proposition 1.5], z = M3, which is a

contradiction. Thus α(z) = M4 or α(z) ⊂ M5. Thus M forms a Morse decomposition for Λ ∩ S0.

To apply Theorem 2 in Patel and Schreiber [2018], then for each Mk ∈ M we must find

(n1, n2, p) ∈ R3
+ such that n1

(
1
N1

dN1
dt

)
+ n2

(
1
N2

dN1
dt

)
+ p
(

1
N1

dP
dt

)
> 0 for all (N1, N2, P ) ∈ Mk.

For M5, choose (n1, n2, p) =
(

d
r1
, d
r2
, 1
)

. For M4, choose (n1, n2, p) = (1, 1, 1). For M3, choose

ϵ sufficiently small and (n1, n2, p) = (1, ϵ, 1). For M2 and M1, choose (1, 1, 1). Thus (3.2) is

permanent. □

Theorem C.7. Assume the following:

(i) c12 <
r1
r2

and c21 >
r2
r1

,

(ii) ā1(θ1)e1r1 > d,

(iii) d(ā2(θ1)− c21ā1(θ1)) > ā1(θ1)e1(ā2(θ1)r1 − ā1(θ1)r2), and

(iv) ā2(θ2)e2r2 < d.

Then Model (3.2) is robustly permanent.

Proof. Denote Mi, i = 1, 3, 4, 5 as in the proof of Theorem C.6. If N1(0) = 0 and N2(0)P (0) >

0, then limt→∞(N1(t), N2(t), P (t), x̄(t)) = M4 [Schreiber and Patel, 2015, Proposition 1]. We show

M = {M1,M3,M4,M5} is a Morse decomposition for Λ ∩ S0. Let z ∈ (Λ ∩ S0) \
(
M1 ∪

∪5
i=3Mi

)
,

where z = (N1, N2, P, x̄). The conclusions for (a), (b), (c), and (e) are identical to the proof of

Theorem C.6. If (d) holds, then α(z) ⊂ M5 and ω(z) = M4. Thus M forms a Morse decomposition

for Λ∩S0. For the application of Theorem 2 in Patel and Schreiber [2018], the choice of (n1, n2, p)

115



for M1, M3, and M5 from the proof of Theorem C.6 also work in this case. For M4, choose ϵ

sufficiently small and (n1, n2, p) = (1, 1, ϵ). Thus (3.2) is permanent. □

Theorem C.8. Let W :=

{
x̄ ∈ [θ1, θ2] | d

dx̄

(
1
P

dP
dt

)∣∣
(N1,N2,P,x̄)=

(
r1−c12r2
1−c12c21

,
r2−c21r1
1−c12c21

,0,x̄
)} and as-

sume the following:

(i) c12 >
r1
r2

and c21 >
r1
r2

,

(ii) ā1(x
∗)e1

r1−c12r2
1−c12c21

+ ā2(x
∗)e2

r2−c21r1
1−c12c21

> d for all x∗ ∈ W ,

(iii) ā1(θ1)e1r1 > d,

(iv) d(ā2(θ1)− c21ā1(θ1)) > ā1(θ1)e1(ā2(θ1)r1 − ā1(θ1)r2),

(v) ā2(θ2)e2r2 > d, and

(vi) d(ā1(θ2)− c12ā2(θ2)) > ā2(θ2)e2(ā1(θ2)r2 − ā2(θ2)r1).

Then Model (3.2) is robustly permanent.

Proof. Denote Mi, i = 1, 2, 3, 4 as in the proof of Theorem C.6. Denote M5 =
(
E0

++

)
×[y1, y2],

where y1 = miny∈W y and y2 = maxy∈W y and M6 =
(
E0

00

)
× [θ1, θ2]. The N1-N2 subsys-

tem is bistable, with (E+0) = (r1, 0) and (E0+) = (0, r2) both locally stable and (E++) =(
r1−c12r2
1−c12c21

, r2−c21r1
1−c12c21

)
a saddle. The two-dimensional stable manifold for (E++) is a surface sepa-

rating the basins of attraction for (E+0) and (E0+). If (N1, N2) → (E+0) asymptotically, then

x̄ → θ1 asymptotically (proof of Theorem C.6), and thus in the N1-N2-x̄ subsystem, (r1, 0, θ1) is

asymptotically stable. Similarly, if (N1, N2) → (E0+) is asymptotically in the N1-N2 subsystem,

then (0, r2, θ2) is asymptotically stable in the N1-N2-x̄ subsystem. If (N1, N2) → (E++), then by

Mischaikow et al. [1995, Proposition 1.5], limt→∞ x̄(t) ∈ W .

Next we show M = {M1,M2,M3,M4,M5,M6} is a Morse decomposition for Λ ∩ S0. Let

z ∈ (Λ ∩ S0) \
∪6

i=1Mi, where z = (N1, N2, P, x̄). The conclusions for (a), (b), (c), and (d) from

the proof of Theorem C.6 hold for this case. If (e) holds, then either:

(I) z is in the two-dimensional stable manifold of (E++),

(II) z is in the basin of attraction for (E+0), or

(III) z is in the basin of attraction for (E0+).

In case (I), α(z) = M6 and ω(z) = M5. In case (II), α(z) ∈ M5 ∪M6 and ω(z) = M3. In case (III),

α(z) ∈ M5 ∪M6 and ω(z) = M4. Thus M forms a Morse decomposition for Λ ∩ S0.
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For the application of Theorem 2 in Patel and Schreiber [2018], the choice of (n1, n2, p) for M1,

M2, M3, and M4 from the above proof also work in this case. For M5, choose (n1, n2, p) = (1, 1, 1)

and for M6, choose (n1, n2, p) =
(

d
r1
, d
r2
, 1
)

. Thus (3.2) is permanent. □
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