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Abstract

An optimization problem is trying to minimize or maximize a real objective function such that

the input variables satisfies certain constraints. The simplest optimization problem is the linear

program (LP), which has been proved to be in the P class and are usually solved by the simplex

method or interior point methods. However, imposing integral constraints to an optimization

problem can make the problem difficult to solve, and the mixed integer program (MIP) belongs to

the NP-hard class.

Mixed integer optimization problems have a large number of applications in various fields, such

as operations research and machine learning. Although MIP are typically hard to solve, the good

news is that researchers are making substantial progress on solving problems more efficiently using

better computation powers and more robust algorithms. Cutting plane algorithms, which were

first proposed by Gomory and Johnson in the 1960s, are widely used in the state-of-the-art solvers.

In the cutting plane algorithms, a family of real functions (so called cut-generating functions) are

used to provide valid constraints to the optimization problem so that they can be solved faster.

Cut-generating functions are typically piecewise linear functions and satisfy subadditivity. In this

dissertation, we study the subadditivity of piecewise linear functions and use a software to verify

subadditivity more efficiently.

It is important to verify subadditivity of a cut-generating function before applying it to opti-

mization problems. As the structure of the cut-generating function gets complicated, the existing

algorithm can take a very long time to verify subadditivity. We develop a spatial branch and

bound algorithm to prove or disprove subadditivity of a given piecewise linear function. We use

a benchmark work to show that the new algorithm works better for functions with complicated

structures. We also address the reproducibility of the benchmark work, and we provide a open

sourced repository so that other interested researchers can reproduce the experiment.

Dual-feasible functions are in the scope of superadditive duality theory, and they are an im-

portant family of functions which have been used in certain combinatorial optimization problems.

We provide a new characterization of strong dual-feasible functions and we relate them to cut-

generating functions. Inspired by results on cut-generating functions, we discover new results on

dual-feasible functions. Software has been used to study properties of dual-feasible functions, based

on which new dual-feasible functions can be found.
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CHAPTER 1

Introduction

An integer linear program is a classic mathematical model, which tries to optimize a linear

function subject to linear constraints and integral variables. It is a well-known result that integer

linear program belongs to the NP-hard class, so integer linear programs are very hard to solve in

theory. Although integer linear programs are also hard to solve in practice, it is possible that some

large scale optimization problems can be solved in a reasonable time, due to the rapid evolution of

computation power and extensive research on optimization algorithms.

An general integer linear program has the following form:

(1.1)

minimize cTx

subject to Ax ≥ b

x ∈ Zn.

Integer programs have various applications including transportation, economics and machine

learning. Those problems in practice are first formulated by a integer program, then the program

is fed into a state-of-art optimization solver to obtain optimal solutions. Note that there is usually

more than one formulation for a problem, and a stronger formulation will typically make the

solving faster. Optimization solvers are actively studied by academic researchers and developed by

commercial companies, which is aimed at solving general optimization problems fast. Due to the

strong modeling power and accessibility to optimization solvers, integer programs have been widely

used in practice.

Here is one illustrative integer program formulation for a combinatorial optimization problem,

called the bin packing problem.

Example 1.0.1. Suppose there are 10 items A with weight 0.3 each and 20 items B with weight

0.4 each. The goal is to use a minimum number of bins to pack all items such that the weight of

each bin is at most 1.
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The idea of the formulation is to generate all optimal packing patterns such that no more item

can be packed into the bin. It is not hard to list all three packing patterns: 2 item B, or 2 item A

and 1 item B, or 3 item A. We introduce three integer variables to denote how many bins used for

each pattern. In the following formulation, the total number of bins are minimized and at least 10

item A and 20 item B should be packed. The reason to use inequalities is that more items could be

packed because optimal packing patterns are used.

(1.2)

minimize x1 + x2 + x3

subject to 0x1 + 2x2 + 3x3 ≥ 10

2x1 + x2 + 0x3 ≥ 20

x1, x2, x3 ∈ Z+

The strength of an integer program (IP) formulation depends on its linear program (LP) re-

laxation, which is obtained by removing integral constraints from the original formulation. For

instance, the following program is the LP relaxation of the integer problem (1.1).

(1.3)

minimize cTx

subject to Ax ≥ b

x ∈ Rn.

It is well known that linear programs belong to the class P, and they can usually be solved

efficiently by using the simplex method or the interior point method. If the optimal solution x∗

of the LP relaxation satisfies all integral constraints, then the solution is also the optimal solution

of the original IP. Otherwise, x∗ doesn’t satisfies some integral constraints of the IP. The cutting

plane algorithm used in the state-of-the-art solvers is trying to find a linear constraint αTx ≥ β,

which is satisfied by all feasible solutions to the original IP and is violated by the optimal solution

x∗ of the LP relaxation. The type of inequality αTx ≥ β is called valid inequality or cut. Adding

cuts to the LP relaxation will make its feasible region “smaller” (closer to the convex hull of all

feasible solutions of IP), thus making the formulation stronger and the solving process faster.
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A natural question to ask is: how to generate cuts? It would be best to have a method to

generate cuts fast and applicable to general integer programs. Cut-generating functions can map

coefficients in the optimal dictionary of the LP relaxation to coefficients in valid inequalities. The

first generation of cut-generating functions appeared in the so-called master finite group relaxation

which was introduced by Gomory in 1969 [Gom69a]. Later in 1972, Gomory and Johnson [GJ72a,

GJ72b] extended the notion to infinite group relaxation. In the recent years, researchers have

studied cut-generating functions in the infinite group relaxation problems in terms of diversity

and effectiveness. They are trying to discover cut-generating functions with interesting properties

and hope to find effective cuts applicable to the state-of-the-art solvers. Another trending topic

nowadays is the so-called multi-row cutting planes, which are expected to add cuts more efficiently.

For example, the paper [BHKM13] introduced a multi-dimensional cut-generating functions which

can be used to generate “strong” valid inequalities (facets).

Although cut-generating functions do not have to be a “piecewise linear function” (we will give

formal definitions later), almost all those that are used in practice are. The software [KZHW20]

implements the single row Gomory–Johnson cut-generating functions, and it can be used to verify

whether a given piecewise linear function is “strong”. In the verification process, one key component

is to check whether the function is subadditive. As the structure of a piecewise linear function gets

complicated, the previous subadditivity test could take a long time to finish. We develop a new

version of the subadditivity test using the spatial branch and bound technique, and we expect the

new version has better performance as the structure of functions gets more complex. The spatial

branch and bound algorithm may also be the key to the computational approaches to studying

subadditivity in the multi-row cutting plane theory.

To compare the performance of different algorithms in practice, the standard way is to do

a benchmark experiment. In the optimization community, there is extensive research on bench-

marking solvers solving different types of optimization problems, for example [mip18]. In both

natural science and computer science fields, researchers have been evaluating benchmark works in

terms of reproducibility [Bak16,CP16]. Reproducibility is a key component to identify whether a

benchmark work is convincing. There is also a trend in the academic field toward emphasizing re-

producible benchmark works [VK12,RHGM18]. We design a benchmark experiment to compare

different subadditivity test algorithms. The repository of the experiment is open-sourced, and the

entire experiment can be reproduced from instances generation to data analysis.
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The duality theory of integer linear optimization is a multifaceted research topic that connects

to cutting plane theory and the theory of value functions of parametric optimization problems. The

central objects on the dual side of this theory are superadditive functionals. Those superadditive

functionals have different concrete forms, including dual-feasible functions [ACdCR16]. Dual-

feasible functions provide strong dual bounds in a branch-and-bound algorithm and strong valid

inequalities in a cutting-plane procedure. They have been applied to this effect in particular for

combinatorial optimization problems that benefit from a column-generation approach, such as bin-

packing or cutting-stock problems [Lue83,Van00].

Dual-feasible functions (DFFs) have been considered an important technique to combinatorial

optimization problems alone, which possibly limits their applicability. In fact, they have a deep

connection with cut-generating functions in term of subadditivity. The recent discovery of the

relation between dual-feasible functions and cut-generating functions makes it possible for dual-

feasible functions to be applied to a broader field and foster general integer programming. On the

other hand, we would like to make the powerful results for cut-generating functions — and the

rich toolsets that were used to obtain them — available for spaces of functions that arise from

the study of broader algorithmic frameworks. This includes algorithms for large-scale problems

based on decomposition techniques. The context in which the study of DFFs arose, combinatorial

problems with Dantzig–Wolfe decomposition, is one such setting.

In this dissertation, we focus on single-row cut-generating functions for infinite relaxation prob-

lems and two types of dual-feasible functions, and we study the subadditivity (superadditivity)

condition in the characterizations of those piecewise linear functions.

1.1. Cut-generating functions

Cut-generating functions are closely tied to the setting of tableau cuts in a simplex-based cutting

plane procedure. They play an essential role in generating valid inequalities which cut off the current

fractional basic solution in the LP relaxation. In this way, they explain and generalize the Gomory

fractional cut and Gomory mixed-integer cut, the workhorses of state-of-art integer programming

solvers. The cut-generating functions in the Gomory–Johnson model [GJ72a,GJ72b] are related

to Gomory’s corner relaxation [Gom69b], which is obtained by relaxing the non-negativity of all

basic variables in the tableau. Thus, basic integer variables are allowed to take any value in Z in

the relaxations. (Cut-generating functions for stronger relaxations have been studied too: In the
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model of Yıldız and Cornuéjols [YC16], basic variables are constrained to some set S ⊂ R with

suitable properties. We will come back to this model later.)

We first introduce the Gomory–Johnson cut-generating functions of the infinite relaxation

model; details can be found in [BHK16a, BHK16b]. Consider the single-row Gomory–Johnson

model, which takes the following form:

(1.4) x+
∑
r∈R

r y(r) = b, b /∈ Z, b > 0,

x ∈ Z, y : R→ Z+, and y has finite support.

Let π : R → R be a nonnegative function, and π is called a valid function if
∑

r∈R π(r) y(r) ≥ 1

holds for any feasible solution (x, y) to (1.4). There is a hierarchy of valid functions regarding

their strength. The minimal functions are those that are pointwise non-dominating. As we will see

later, they are the ones that have a characterization involving subadditivity. Among the minimal

functions, a function is said to be extreme if it can not be written as a convex combination of

two other valid functions. Minimal/extreme functions are precisely those that generate all non

redundant, nontrivial, facet-defining valid inequalities in all possible corner relxations. Minimal

functions are characterized by subadditivity and several other properties as follows.

Theorem 1.1.1 ( [GJ72a]). A non-negative function π : R→ R is minimal to (1.4) if and only

if

(i) π(x) = 0 for all x ∈ Z;

(ii) π is subadditive in the sense that π(x) + π(y) ≥ π(x+ y) for all x, y ∈ R;

(iii) π satisfies the symmetry condition in the sense that π(x) + π(b− x) = 1 for all x, y ∈ R.

Note that a minimal function π is periodic modulo 1 (Z-periodic) and the functions values are

bounded between 0 and 1. Therefore, only the restriction π|[0,1] is of interest.

1.2. Subadditivity of piecewise linear functions

We begin to introduce the definitions of piecewise linear functions in the Gomory–Johnson set-

ting using polyhedral complexes; more details can be found in [BHK14, section 2.1] and [HKZ18c,

BHK16a].
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Let 0 = a0 < a1 < · · · < an−1 < an = 1, and denote by B = {a0, a1, . . . , an−1, an} the set of

all possible breakpoints. The 0-dimensional faces are defined to be the singletons, {ai}, ai ∈ B,

and the 1-dimensional faces are the closed intervals, [ai, ai+1], i = 0, . . . , n− 1. Together they

form P = PB, a finite polyhedral complex. We call a function π : [0, 1] → R piecewise linear

over PB if for each face I ∈ PB, there is an affine linear function πI : R → R, πI(x) = cIx + bI

such that π(x) = πI(x) for all x ∈ rel int(I). Under this definition, piecewise linear functions can

be discontinuous. Let I = [ai, ai+1]. The function π can be determined on the open intervals

int(I) = (ai, ai+1) by linear interpolation of the limits π(a+
i ) = limx→ai,x>ai φ(x) = πI(ai) and

π(a−i+1) = limx→ai+1,x<ai+1 π(x) = πI(ai+1). We say the function π is continuous piecewise linear

over PB if it is affine over each of the cells of PB (thus automatically imposing continuity).

Note that we assume that a piecewise linear function has finitely many breakpoints, which is

also convenient to implement the function in the software.

Following the notation in [BHK14,BHK16a,BHK16b,BHKM13,HKZ18a], we introduce

the function ∆π : R×R→ R, ∆π(x, y) = π(x)+π(y)−π(x+y). The function ∆π measures the slack

in the subadditivity condition. Observe that the piecewise linearity of π induces piecewise linearity

of ∆π. In order to express the domains of linearity of ∆π(x, y), and thus domains of additivity

and strict subadditivity, we introduce the two-dimensional polyhedral complex ∆P = ∆PB. The

faces F of the complex are defined as follows. Let I, J ∈ PB and K ∈ PB ∪ (PB + 1), where

PB + 1 is the periodic extension of PB. So each of I, J,K is either a breakpoint of φ (or its

periodic extension to [1, 2]) or a closed interval delimited by two consecutive breakpoints. Then

F = F (I, J,K) = { (x, y) ∈ R× R : x ∈ I, y ∈ J, x+ y ∈ K }. Note that π is actually defined for

all real numbers and for simplicity only the domain [0, 1] is implemented. Assume both x, y are in

the range [0, 1], then the range of x + y is actually [0, 2], which is the reason to include periodic

extension for the K component. The projections p1, p2, p3 : R×R→ R are defined as p1(x, y) = x,

p2(x, y) = y, p3(x, y) = x+ y. Let F ∈ ∆P and let (u, v) ∈ F . We define

∆πF (u, v) = lim
(x,y)→(u,v)

(x,y)∈rel int(F )

∆π(x, y),

which allows us to conveniently express limits to boundary points of F , in particular to vertices of F ,

along paths within rel int(F ). It is clear that ∆πF (u, v) is affine over F , and ∆π(u, v) = ∆πF (u, v)

for all (u, v) ∈ rel int(F ). We will use vert(F ) to denote the set of vertices of the face F .
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Figure 1.1. Diagram of an extreme function and the corresponding painting on
the two-dimensional polyhedral complex ∆P (gray solid lines). The plot can be
regenerated by the command plot 2d diagram(pi,colorful=True), where pi =

gj forward 3 slope(). The extreme function pi is plotted on the top and left
borders. The heavy diagonal green lines x+ y = 4

5 and x+ y = 9
5 correspond to the

symmetry condition. Additive faces in ∆P are painted with three colors. At the
borders, the projections pi(F ) of two-dimensional additive faces are shown as gray
shadows: p1(F ) at the top border, p2(F ) at the left border, p3(F ) at the bottom
and the right borders. Different colors on the function and on the additive faces
represent different “covered components” used in the extremality test.

We now define the additive faces of the two-dimensional polyhedral complex ∆P of π. When

π is continuous, we say that a face F ∈ ∆P is additive if ∆π = 0 over all F . Notice that ∆π

is affine over F , the condition is equivalent to ∆π(u, v) = 0 for any (u, v) ∈ vert(F ). When π is

discontinuous, following [KZHW20], we say that a face F ∈ ∆P is additive if F is contained in a

face F ′ ∈ ∆P such that ∆πF ′(x, y) = 0 for any (x, y) ∈ F . Since ∆π is affine in the relative interiors

of each face of ∆P, the last condition is equivalent to ∆πF ′(u, v) = 0 for any (u, v) ∈ vert(F ).

We include Figure 1.1 1 here as an example of the two dimensional polyhedral complex of an

extreme cut-generating function together with additive faces.

1The plot is generated by our software [KZHW20], which is written in Python, using the framework of SageMath
[S+16], a comprehensive Python-based open source computer algebra system. In this dissertation, a function name
shown in typewriter font refers to the cutgeneratingfunctionology module of our SageMath program.
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After defining the two-dimensional polyhedral complex, we are ready to introduce a classical

algorithm for testing minimality for piecewise linear functions. We do not emphasize the extremality

of cut-generating functions in this dissertation, and we refer interested readers to [HKZ18b]. The

major part of the minimality test is based on the two real variable function ∆π defined in the

two-dimensional polyhedral complex. The subadditivity is equivalent to ∆π ≥ 0, which can be

verified by enumerating vertices (together with limiting cones in the discontinuous case) of all

faces in ∆P. Roughly speaking, there are quadratically many vertices in ∆P in terms of the total

number of breakpoints, thus the classical algorithm has at least quadratic time complexity (without

considering the complexity of the function evaluation). The algorithm is quite straightforward and

easy to implement, and it works well if the total number of breakpoints is not large. However, as

more cut-generating functions with complex structure are being discovered, the classical algorithm

can take a long time to finish. The observation inspires us to pursue a more efficient method for

the subadditivity test, especially for complicated functions.

We develop a spatial branch and bound (sBB) algorithm for studying the subadditivity slack

of piecewise linear functions. The motivation of using the sBB algorithm is that we hope to prove

subadditivity in a region containing a large number of vertices fast by constructing a strong convex

relaxation.

The sBB algorithms [SP99,TSS02] are the extension of traditional Branch-and-Bound (BB)

algorithms to continuous solution space. In the sBB algorithms, the solution space is successively

partitioned into smaller and smaller regions. The problem is solved recursively by closing the

gap of upper and lower bounds to the objective function value. The sBB algorithms are usually

applied to smooth nonlinear programming with bounded feasible region and twice differentiable

objective function. The idea of sBB algorithms has been implemented in several solvers including

BARON [TS05], SCIP [BGG+12], α-BB [AAF98].

In regards to sBB algorithms, the key step is also how to construct a convex relaxation of

the original nonconvex problem. In a global minimization problem, the convex relaxation should

be easy to solve and the solution should provide a lower bound for the objective in the original

problem. At each iteration of the algorithm, consider a convex relaxation of the original problem

restricted to a sub-region and solve the relaxation to get a local lower bound and a global upper

bound. If the current local lower bound is larger than the best global upper bound so far, then

it is impossible for the current region to contain the optimal solution, therefore no branching is

8



needed. Eventually, the solution space is explored exhaustively and the best global upper bound

is the optimal objective function value. Note that the efficiency of the sBB algorithms depends on

the selection rule of the sub-regions and the construction of convex relaxations.

The key idea in an sBB algorithm is to prune some regions which cannot contain any better

solutions based on the current best solution. It is crucial to construct tight convex relaxations which

can produce good and fast bounds therefore prune some regions efficiently. One way to generate a

convex relaxation makes use of linearizing all nonconvex terms and then replacing each nonconvex

definition constraint with the upper concave and lower convex envelopes [SP99]. However, it is not

always easy to find the tightest envelopes, so slacker estimators are usually used instead. Various

common underestimators have been studied in the literature, including convex univariate, concave

univariate terms [SP99] and piecewise convex and concave terms [LP03].

In regards to the subadditivity test setting, we use the affine functions as the upper and lower

estimators. One reason to use affine estimators is that computing such estimators and solving the

respective convex relaxation is relatively efficient. Although it is not clear what is the tightest

affine underestimator of ∆π on some region, we can show that the estimator which has the best

lower bound can be computed by solving an LP. Here is a tradeoff which is analogous to the cutting

plane algorithm in a branch and bound tree. Adding cutting planes generally reduces the size of

the branch and bound tree, but it also adds more computations for cuts generation. Similarly,

construction of strong convex relaxations leads to early pruning, but the construction in each node

can be burdensome. In our sBB tree, the strongest convex relaxation results from solving an LP.

Although solving an individual LP is typically easy, it is not ideal to solve a large number of LPs.

Due to the use of branch and bound technique and LP solvers, it is difficult to analyze the

time complexity of the sBB algorithm for the subadditivity test. Generally speaking, a branch and

bound algorithm does not have a proven time complexity, but there exists analysis of the algorithm

applied to specific problems. For example, certain knapsack problems have a proven exponential

time complexity using a particular type of branch and bound algorithm [Chv80, JS11]. In our

subadditivity study, we observe that the sBB algorithm can outperform the classical subadditivity

test in some hard instances. The sBB algorithm has other potential applications for cut-generating

functions, including generating additive faces and verifying objective limit. It may also be an

efficient technique for studying subadditivity of multi-row cut-generating functions.
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1.3. Reproducibility

Extensive academic research breakthroughs are grounded on reproducible works, which provide

more reliability than non-reproducible ones. Due to the “reproducibility crisis” being discovered

in various fields, the scientific community nowadays is emphasizing more on reproducibility in a

research work [VK12]. In this dissertation, we focus on the reproducibility of a benchmark work

in a resource sharing platform.

Under the term “reproducibility”, there are various aspects in a benchmark work. The authors

in [Fei06] suggested that the main objective of reproducibility is to gain insights and make progress

based on other researchers’ work. They pointed out that one benefit of a reproducibility study is

that, by conducting the same experiment in a slightly different way (for example, in a different

platform or different configuration parameters), it will bring the original experiment into a broader

and more general theory. Even if some discrepancy is discovered, it is also a valuable context

which leads to further necessary research. It was also suggested in [Fei06] that standardized

experimental design is preferred since similar methodology like a lab manual is widely used in

natural science field [GS12]. Repetitions together with statistical analysis are an important aspect

in a benchmark work. Due to randomness, repetitions are necessary in order to generate statistically

valid results, like the confidence interval. It is also crucial to minimize the cost of total experiment

time while maintaining the statistically rigorous results. Sequential stopping rules can be applied to

determine when there is sufficient data to draw a rigorous conclusion and the collection of data can

stop [Sta66, Sin14, CW20]. Another important aspect is whether the benchmark work is made

open-sourced, including instances generation, scripts to run the experiment and statistical analysis.

The paper [VK12] also suggested that the computer science society should encourage researchers

to publish reproducibility study of others’ work, and the journal editors should accept such work

no matter whether the reproducibility study supports the original paper or not. The authors

in [VK12] believed that such encouragement and culture change can foster the reproducibility

study and on the other hand lead researchers towards publishing reproducible papers.

In the optimization field, the well known benchmark MIPLIB library has been actively studied

in the mixed integer programming community. MIPLIB is a library of mixed integer programming

test cases which are tested on multiple optimization solvers, including both open-sourced and

commercial ones. The latest version MIPLIB 2017 [mip18] is the sixth generation of MIPLIB
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library which was firstly created in 1992. The website of MIPLIB 2017 is consistently updated to

indicate improvements including less solving time, first feasible solution, better feasible solution,

provable optimal solution, or provable infeasibility. The source code of the MIPLIB 2017 is also

provided in the website for other researchers to reproduce the benchmark work and perform data

analysis. Another important component of MIPLIB 2017 is the “benchmarking set”, containing

mixed integer problems to which optimization solvers are applied. The benchmarking set has

been carefully selected so that it can best represent today’s mixed integer problems. The shifted

geometric mean has been used as the “standard” performance metric in computational MIPs.

However, the choice of the shift value is not standard, depending on whether the authors want to

emphasize more on easy or hard problems. In terms of the solving time, the shifts of 1s [GEG+17],

10s [KB16], 60s [Ach07] have been used. Use of other performance metrics, like performance

profiles [DM02] or PAR10 [KMS+11], is also not uncommon.

Ideally, measuring performance metric, for example execution times, should be done assuming

that the program is the only one running on the platform. However, if the computation is done

in a time/resource sharing hardware such as a high performance cluster (HPC), it is impossible

to control the resource competition caused by other programs of other users. We can still use the

computational results to see how the competitions of resources, like CPU or memory, can influence

the measurements. In the high performance cluster we use, it is possible to assign a priority to the

jobs we submitted. Since the computations with higher priority will be more competitive for the

resource, it is also possible to test the influence of different priorities to execution times (or wall

clock time).

We design a benchmark experiment in a high performance cluster (HPC) to make comparisons

among different algorithms in the subadditivity study. The experiment also serves as a demo for the

reproducibility framework. The overall computation time would be too long if the experiment was

run on a personal computer, so we use the computation power and parallelism in a HPC to finish

the entire computations in a reasonable amount of time. In our benchmark work, we are aimed

at providing an open-sourced repository which can be used to reproduce the complete experiment

from generating test instances to reporting data analysis results. We use git as a version control

system for the repository and use the git submodule technique to store raw data. Different branches

of the submodule store computational results for different computational tasks, which makes the

structure of the repository clean to view. An Jupyter Notebook is used to perform interactive data
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analysis which can be done on a personal laptop. Our notebook is aimed at maximizing flexibility

of data analysis so that other researchers can use the notebook as a template and do their own

analysis.

We study statistical properties of our experiment results. The normality assumption is checked

on the collected data. Then we fit data into various distribution family using maximum likelihood

estimation. The goodness of fit is verified by the Kolmogorov-Smirnov test, which is a hypothesis

test to determine whether samples are drawn from a given distribution. The goal of the distribution

fitting is to show that there exist better distribution candidates for our experiment results other

than the normal distribution. We investigate two sequential stopping rules based on confidence

interval procedure, and robustness and efficiency are tested by a Monte Carlo simulation. Since the

experiment is on a resource shared platform, the wall clock time might be more variant than the

CPU time. We use a hypothesis test to compare the variation of CPU time and wall clock time,

and we find that in general there is not enough evidence to say they do not have equal variance.

1.4. Dual-feasible functions

Within the framework of superadditive duality theory, the recent monograph [ACdCR16] has

studied characterizations and applications of dual-feasible functions. In the monograph, two simple

and fundamental settings in which superadditive functionals of a single real variable appear, are

defined as follows. Classical dual-feasible functions (cDFFs) are functions φ : D → D such that

(1.5)
∑
i∈I

xi ≤ 1 ⇒
∑
i∈I

φ(xi) ≤ 1

holds for any family {xi}i∈I ⊆ D indexed by a finite index set I, where D = [0, 1]. In [ACdCR16,

Chapters 2 and 3], these functions are studied alongside with general dual-feasible functions (gDFFs),

which satisfy the same property (1.5) for the extended domain D = R. (There is an equivalent def-

inition of these functions in terms of valid inequalities for infinite-dimensional integer programming

models, which we suppress until Section 4.4.2.)

Example 1.4.1. We use the previous example Example 1.0.1 to illustrate how dual-feasible

functions are used to generate fast dual bounds in combinatorial optimization problems.
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The LP relaxation of the original IP formulation is obtained by removing the integral constraints.

The optimal objective of the following LP relaxation is an lower bound of the original IP.

(1.6)

minimize x1 + x2 + x3

subject to 0x1 + 2x2 + 3x3 ≥ 10

2x1 + x2 + 0x3 ≥ 20

x1, x2, x3 ∈ R+

Based on strong duality theory in linear programming, the dual problem of the above (feasible) linear

program is also a linear program, and they have the same optimal objective. Thus, every feasible

solution to the following dual problem can generate a lower bound of the original IP.

(1.7)

maximize 10u1 + 20u2

subject to 0u1 + 2u2 ≤ 1

2u1 + 1u2 ≤ 1

3u1 + 0u2 ≤ 1

u1, u2 ∈ R+

The dual-feasible functions then can be applied to generate feasible solutions to the above dual

problem. In this example, the claim is that (φ(0.3), φ(0.4)) is a feasible solution for any (classical

or general) dual-feasible function φ, and then d10φ(0.3) + 20φ(0.4)e is a lower bound of the original

IP problem. The claim is not hard to prove by using the definition of dual-feasible functions and the

notion of “optimal” packing patterns. In this way, fast dual bounds of an IP problem can be gen-

erated by plugging numbers to dual-feasible functions, without the need of solving any optimization

problems.

For each of the two settings, classical and general, there is a hierarchy of DFFs regarding their

strength, following the same logic as cut-generating functions. The maximal DFFs are those that

are pointwise non-dominated. As we will see later, they are the ones that have a characterization

involving superadditivity. Among the maximal DFFs, a DFF is said to be extreme if it can not be

written as a convex combination of two other maximal DFFs.
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Theorem 1.4.1 (Characterization of maximal cDFFs, [ACdCR16, Theorem 2.1]). A function

φ : [0, 1]→ [0, 1] is a maximal cDFF if and only if the following conditions hold:

(i) φ(0) = 0;

(ii) φ is superadditive in the sense that φ(x) + φ(y) ≤ φ(x+ y);

(iii) φ(x) + φ(1− x) = 1 for all x ∈ [0, 1].

Theorem 1.4.2 (Characterization for maximal gDFFs, [KW19, Theorem 4.3]). A function

φ : R→ R is a restricted maximal gDFF if and only if the following conditions hold:

(i) φ(0) = 0;

(ii) φ is superadditive in the sense that φ(x) + φ(y) ≤ φ(x+ y);

(iii) φ(x) ≥ 0 for all x ∈ R+;

(iv) φ(x) + φ(1− x) = 1 for all x ∈ R or φ(x) = cx for some constant c ∈ [0, 1].

These features of the theory are remarkably similar to the ones in the study of the valid inequal-

ities for the Gomory–Johnson infinite group problem [GJ72a,GJ72b], and the broader context of

cut-generating functions [CCD+13,YC16]. We attempt to determine the precise relation between

DFFs and cut-generating functions, and to transfer recent advances in the study of the latter to

the DFF setting, in the hope that they will prove useful there.

Like the majority of the development in [ACdCR16, Chapter 2], we consider piecewise linear

functions that are allowed to be discontinuous at the breakpoints. Piecewise linear DFFs can be

defined analogously using polyhedral complex and we omit the formal definition here. Figure 1.2

is an example of the ∆P of a maximal cDFF. In contrast to Gomory–Johnson cut-generating

functions, the two dimensional polyhedral complex of cDFFs only contains the lower triangle since

the domain of cDFFs is [0, 1].

Inspired by the implementation of the single-row Gomory–Johnson model, we transfer and ex-

tend recent algorithmic techniques [BHK14,HKZ18c,Zho17,HKZ18a,HKZ18b] to piecewise

linear DFFs. The algorithms are implemented in the current version of the software [KZHW20]

alongside with the Gomory–Johnson cut-generating functions. Similar to [KZ15], we provide an

electronic compendium of the known extreme DFFs from [ACdCR16]. The extremality of the func-

tions from this library is proved in [ACdCR16] by studying analytical properties of extreme DFFs.
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Figure 1.2. Maximal cDFF φBJ,1(x;C) =
bCxc+max(0,

{Cx}−{C}
1−{C} )

bCc for C = 5
2 ,

and its two dimensional polyhedral complex. The plot can be regenerated by
the command plot 2d diagram dff no lable(phi, colorful=True), where phi

= phi bj 1(c=5/2). The function phi is plotted on the top and left borders. The
diagonal blue lines x + y = 1 corresponds to the symmetry condition. Additive
faces are painted colorful. At the borders, the projections pi(F ) of two-dimensional
additive faces are shown as gray shadows: p1(F ) at the top border, p2(F ) at the
left border, p3(F ) at the bottom and the right borders. Different colors on the func-
tion and on the additive faces represent different “covered components” used in the
extremality test.

We complement this by our algorithmic techniques, leading to automatic maximality and extremal-

ity tests for cDFFs. They are based on the methods of polyhedral complexes and functional equa-

tions from [BHK14,HKZ18c] and the inverse semigroup techniques from [HKZ18a,HKZ18b].

On the basis of the automatic maximality and extremality test, we use a computer-based search

technique based on polyhedral computation and filtering to find new extreme DFFs. Our search

reveals that the classic dual-feasible functions are much richer than what is represented by the fam-

ilies of functions described in the literature. We hope that our software facilitates experimentation

and further study.
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In terms of the gDFFs, they turn out to have a very close relation to a model studied by

Jeroslow [Jer79], Blair [Bla78] and Bachem et al. [BJS82], which we refer to by Y=1 and a

certain relaxation of this model, which we denote by Y≤1. Both Y=1 and Y≤1 can be studied in the

Yıldız–Cornuéjols model [YC16] with various sets S. GDFFs generate valid inequalities for the

Yıldız–Cornuéjols model with S = (−∞, 0], and cut-generating functions generate valid inequalities

for the Jeroslow model where S = {0}. These two families of functions are then connected by an

operation known as “tilting” [AEGJ03].

The Gomory–Johnson model is well-studied and the literature provides a large library of func-

tions with interesting structures. For example, there exist extreme functions with arbitrary number

of slopes. Perhaps the most famous result of Gomory and Johnson’s masterpiece [GJ72a,GJ72b]

is the 2-slope theorem, showing that every continuous piecewise linear minimal valid function that

has only two different slope values is an extreme function. Another interesting result is about

approximation theory. Basu et al. [BHM16] proved that the 2-slope extreme Gomory–Johnson

cut-generating functions are dense in the set of continuous minimal functions.

We introduce a conversion from Gomory–Johnson functions to DFFs, which under some con-

ditions generates maximal or extreme cDFFs and gDFFs. This work is also a possible starting

point for constructing new parametric families of DFFs with special properties. We also prove the

analogous two slope theorem and an approximation result for gDFFs. In our proof of the approxi-

mation theorem, unlike the 2-slope fill-in procedure that Basu et al. [BHM16] used, we always use

0 as one slope value in our fill-in procedure, which is necessary since the 2-slope theorem of gDFFs

requires 0 to be one slope value.

Theorem 1.4.3 (reworded Theorem 4.5.1). Let φ be a continuous piecewise linear maximal

gDFF with only 2 slope values and one slope is 0, then φ is extreme.

Theorem 1.4.4 (reworded Theorem 4.6.1). Let φ be a continuous piecewise linear maximal

gDFF, if φ is not a linear function, then for any ε > 0, there exists an extreme gDFF φext such

that ‖φ− φext‖∞ < ε.

In contrast, these analogous theorems do not directly apply to cDFFs. We show that for cDFFs,

there cannot exist a 2-slope theorem. We find a counterexample, a maximal cDFF with 2 slopes

and 3 “connected covered components” (a concept from the algorithmic extremality test) that is
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not extreme. It remains an open question whether maximal cDFFs can also be approximated in

the same way by extreme functions.

1.5. Outline of the dissertation

Chapter 2. Subadditivity Test

This chapter studies the subadditivity slack ∆π of the single-row Gomory-Johnson cut-generating

functions. We introduce three main algorithms for computing the minimum of ∆π. The classical

(naive) method explores every vertex in the two dimensional polyhedral complex of a piecewise

linear function π. The spatial branch and bound algorithm utilizes affine estimators to construct a

convex relaxation in every node of the branch and bound tree. The computation of the minimum

of ∆π can also be formulated as a mixed integer program, then an optimization solver can be

applied to solve the minimization problem. We design an experiment to compare the performance

of different algorithms applied to various computation tasks related to subadditivity.

First, in Section 2.1, we explain how subadditive or nearly subadditive piecewise linear functions

can be used to generate valid inequalities, even if those functions are not valid functions. Near-

subadditivity means that the minimum of ∆π is a negative number but close to 0. The naive

subadditivity test is explained in Section 2.2. The algorithm makes use of affine linearity of ∆π

over every face in the two dimensional polyhedral complex ∆P, then ∆π is fully characterized by

its values at all vertices in all faces of ∆P. In Section 2.3, we introduce several mixed integer

programs to formulate piecewise linear functions. However, those MIP formulations have a large

number of binary variables if the number of breakpoints is large. We explain the spatial branch

and bound (SBB) algorithm and its variations in Section 2.4. Different constructions of the convex

relaxation vary in strength, thus lead to different branch and bound tree size. In the spatial branch

and bound algorithm, a linear program needs to be solved in order to get the strongest convex

relaxation. We also explore different traversing strategies like BFS, DFS and the “best bound”

strategy. The spatial branch and bound algorithm has other applications besides computing the

minimum of ∆π, including verifying an objective limit and generating additive faces. In Section 2.5,

from our benchmark experiment, we include the computational results of comparing the naive

algorithm, the sBB algorithm (its variations), and mixed integer formulations. In terms of the

performance metric, performance profile is widely used to compare different algorithms, but in

the MIP community the shifted geometric mean is a standard metric to use. In our benchmark
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experiment, both performance profile and shifted geometric mean are reported. More details on

the benchmark experiment regarding reproducibility are explained in Chapter 3.

Chapter 3. Benchmarking on High Performance Clusters

Chapter 3 focuses on performing a reproducible benchmark work on high performance clusters.

In this chapter, we do not include technical optimization knowledge, and we mainly focus on

presenting a benchmark experiment which is convenient for other researchers to reproduce. The

reason to use HPC is that the overall computation would be too long if run on a laptop.

In Section 3.1, we first summarize literature on reproducibility, especially in the computer

science field. To make the benchmark work reproducible, clear experiment design, statistically

rigorous data analysis and non-proprietary work are key components. In Section 3.2, we briefly

review some computational experiments which were run in a time/resource sharing hardware, like

high performance clusters. We also propose several criteria for reproducible benchmark works in

a HPC. Based on the criteria we propose, we evaluate the MIPLIB library in the optimization

community regarding the reproducibility in Section 3.3. The MIPLIB library is a well known

optimization benchmark set with several generations, and the latest version MIPLIB 2017 has been

a good example of reproducible benchmark work in the MIP community. We review some basic

statistical knowledge in Section 3.4 and study the sequential analysis in Section 3.5. In Section 3.6,

we explain our open-sourced repository2 for running a benchmark work in HPC. We use git as a

version control system for the repository. The git submodule technique is used to store raw data,

which will make the repository clean to view and easy to rerun the experiment. In terms of data

analysis, we use a Jupyter Notebook to report results like running time and memory. The notebook

also serves as a template to present the data interactively, and it is convenient for other researchers

to do their own analysis. We also study some statistical properties of the data in Section 3.7.

Chapter 4. Dual feasible functions.

First, we briefly review key results for DFFs in Section 4.1. In Section 4.2, we introduce the

implementation of cDFFs in the current version of the software [KZHW20], including automatic

maximality and extremality tests. Based on the automatic maximality and extremality test, we

use a computer-based search technique based on polyhedral computation and filtering to find new

extreme cDFFs.

2Github repository: https://github.com/mkoeppe/jiawei-computations
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Then, in Section 4.3, we turn to the study of gDFFs. Here we transfer techniques used by Yıldız

and Cornuéjols for the study of their previously mentioned model of cut-generating functions, which

generalizes the Gomory–Johnson framework. Inspired by the characterization of minimal Yıldız–

Cornuéjols cut-generating functions and using similar techniques, we give a full characterization of

maximal gDFFs.

In Section 4.4, we investigate the relation between cDFFs and gDFFs and various cut-generating

functions. Motivated by the operation known as “tilting”, we discover a conversion from cut-

generating functions to DFFs. From our conversion, we obtain new parametric families of DFFs

with interesting structures.

In Section 4.5, we show an analogous two-slope theorem for gDFFs, following the same proving

process of the two slope theorem in the Gomory–Johnson model. CDFFs have a bounded domain,

which leads to non-existence of a similar two slope theorem for cDFFs. Finally, in Section 4.6, we

turn to the approximation theory of gDFFs. We prove an approximation theorem, which indicates

that almost all continuous maximal gDFFs can be approximated by extreme (2-slope) gDFFs as

close as we desire.

19



CHAPTER 2

Subadditivity Test

We study methods for testing (near) subadditivity of continuous piecewise linear functions

(Gomory–Johnson cut-generating functions). If the function is assumed to be piecewise linear

and periodic, then verifying subadditivity is a finite test [KZHW20]. Suppose π : R → R is a

continuous piecewise linear and Z-periodic function, we define ∆π(x, y) = π(x) + π(y)− π(x+ y),

which represents the subadditive slack. Suppose π is Z-periodic, then ∆π is Z2-periodic and we only

need to consider ∆π over [0, 1]2. In fact, due to the continuity of π, ∆π is also a continuous piecewise

linear function. One task related to the subadditivity test is computing the minimum of ∆π. It is

clear that π is subadditive if and only if the minimum of ∆π is nonnegative. Therefore, subadditivity

can be verified by minimizing a piecewise linear nonconvex function (∆π) over a convex domain

([0, 1]2). This program has a very simple feasible region however the objective function is not easy

to write out explicitly, especially when π has a large number of affine pieces. Unlike the traditional

smooth nonlinear programming [SP99], the objective function in the piecewise linear setting is not

everywhere twice differentiable.

The classical (naive) algorithm for the subadditivity test presented in [KZHW20] explores

every linear piece of the function ∆π. The naive algorithm has also been used in other subadditivity-

related applications, including generating additive faces. The naive algorithm is straightforward

and works well if the function π has a relatively small number of breakpoints.

In this chapter, we introduce other two types of algorithms which can be used to study subad-

ditivity of piecewise linear functions. One is using a mixed integer formulation and the other is a

customized branch and bound algorithm.

Given an optimization problem, besides heuristic approaches, mixed integer formulation is

usually a good starting point of understanding the problem itself. After the formulation, it is clear

to know the statistic of the problem, for example what is the objective function, what is the size of

problem and how many integer variables are used. Due to the size of the mixed integer formulation

and the NP-hardness of solving it, theoretically the problem is unlikely to be solved in a reasonable
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time. However, it is shown that optimization solvers have become 2,000,000 times faster in the

period 1990-2019 [Mit20, Nem13, Bix12, BB19], and the more speedup can be achieved with

hardware enhancements. So the mixed integer formulation can at least be tried on easily accessible

modern optimization solvers, especially when combining good initial solutions (from heuristics)

and callback functionality. Sometimes even the most powerful solver cannot solve the problem to

optimality in a reasonable time, yet it is still possible to obtain some useful information like the

difficulty of the problem, the quality of solutions from heuristics and the best solution after a given

amount of time. In terms of computational performance, mixed integer formulation can also be

used as a baseline to compare with newly proposed algorithms [BBM04,MGR12].

In the context of piecewise linear functions, mixed integer programs have been widely used to

formulate non-convex functions; for example [Mey76]. For a piecewise linear function, its graph

can be considered as a union of polyhedra, which can be formulated using mixed integer programs.

We refer interested readers to [JL84] for MIP representability, which characterizes sets that can

be modeled as MIP problems. The idea of using MIP to formulate a piecewise linear function

π is to introduce binary variables to represent different affine pieces of π. We focus on the so-

called “disaggregated logarithmic” (DLog) formulation [Vie15] which uses the “binary encoding”

technique, trying to reduce the number of binary variables.

Another promising approach to study subadditivity is a customized branch and bound algo-

rithm. Customized branch and bound algorithms have been widely used in various optimization

problems, for example job scheduling [BBM04,AC91], covering [WHG18], knapsack [MGR12,

KL10], facility location [BK17] and sparse principle component analysis [MWA06,BB19]. The

branch and bound technique used in a “general purpose” optimization solver usually tightens a

relaxation by branching on native variables of the MIP formulation, regardless of actual meaning

of integer variables in the original problem. In a customized branch and bound algorithm, branch-

ing criterion is genetically problem-specific and has a concrete practical meaning in the original

problem [WHG18]. The flexibility of branching decision makes customized branch and bound

algorithms potentially efficient. Another merit of customized branch and bound algorithm is the

ability to use known powerful (problem-specific) technique while exploring the branch and bound

tree. Good heuristics can be used to provide fast and good solution in a tree node [WHG18], which

generally speed up the solving process. Bollapragada et.al [VAB+97] combined a heuristic and

the column generation technique in every node of the branch and bound tree. In sparse principle
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component analysis, Berk et.al [BB19] takes the advantage of algebraic structure while computing

upper bounds, which are not part of the bounds generation in the compared optimization solver.

Traditional branch and bound algorithms are usually applied to solving the mixed integer

linear programs, which have discontinuous solution spaces. In the branching step, subproblems are

generated by restricting some of the integer variables, thus yielding a problem with smaller size. In

the bounding step, a convex relaxation (usually a LP relaxation) of a subproblem is solved and the

optimal objective gives a dual bound for subproblem. After comparing the dual bound with the

current global primal bound, a branching or pruning decision is made. After exhaustively exploring

the solution space in the branch and bound tree, the optimal solution can be found.

We introduce a spatial branch and bound algorithm for studying subadditivity-related features

of a piecewise linear function. In regards to one spatial branch and bound algorithm, the key step

is also how to construct a convex relaxation of the original nonconvex problem. Suppose we are

considering a global minimization problem, and the feasible region is convex. At each iteration of

the algorithm, consider a convex relaxation of the original problem restricted to a (convex) sub-

region and solve the relaxation to get a local lower bound. If the current local lower bound is larger

than the best global upper bound so far, then it is impossible for the current region to contain the

optimal solution, therefore no branching is needed. Otherwise, the current region can be further

divided in the branching step.

Note that the efficiency of the spatial branch and bound algorithms depends on the selection rule

of the sub-regions and the construction of the convex relaxation. In our sBB algorithm, the selection

of sub-regions is based on the breakpoints so that all subregions form a “coarser refinement” of

the two dimensional polyhedral complex ∆π. The way to construct a convex relaxation makes

use of affine functions as the under and lower estimators of the function π. One reason to use

affine estimators is that computing such estimators and solving the respective convex relaxation

is relatively efficient. The spatial branch and bound algorithm relies on early pruning, meaning

the local lower bound is no smaller than the current global upper bound. Therefore, the tight

convex relaxation (local lower bound) and early good feasible solution (global upper bound) play

important roles in the algorithm. In our subadditivity test setting, a good feasible solution is easy

to find. Suppose the given function is actually subadditive and π(0) = 0, then ∆π(0, 0) = 0. So

(0, 0) is an optimal solution and no better solution will be found in the branch and bound search
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tree. In terms of the convex relaxation, we can show that the best local lower bound using affine

estimators can be found by solving an LP.

We implement a spatial branch and bound algorithm with several variations in our soft-

ware [KZHW20]. Those variations use different strategies to select branching nodes and to con-

struct convex relaxations. The spatial branch and bound algorithm can also be applied to other

applications related to subadditivity, including generation of additive faces. After trying the spatial

branch and bound algorithm on some cut-generating functions, we observe that it can outperform

the naive algorithm and the MIP formulation on some functions with complicated structure. The

main reason of the spatial branch and bound algorithm can work well is that subadditivity can be

proven using the convex relaxations in certain large regions where many affine pieces of ∆π are

contained.

2.1. Subadditive Functions

We first briefly review the single-row Gomory–Johnson model, which takes the following form:

(2.1) x+
∑
r∈R

r y(r) = b, b /∈ Z, b > 0

x ∈ Z, y : R→ Z+, and y has finite support.

Let π : R→ R be a nonnegative function. Then by definition π is a valid Gomory–Johnson function

if
∑

r∈R π(r) y(r) ≥ 1 holds for any feasible solution (x, y). Pointwise minimal Z-periodic functions

are characterized by the following conditions: (i) π(0) = 0, (ii) π(x) ≥ 0, (iii) π(x)+π(y) ≥ π(x+y)

(subadditivity), (iv) π(x) + π(b− x) = 1 (symmetry).

Subadditivity is a necessary condition of minimality, thus subadditivity of a given function

π needs to be verified before applying it to generate the valid inequality
∑

r∈R π(r) y(r) ≥ 1.

Even if the generated cut is theoretically valid, the cutting plane algorithm can still have poor

computational performance due to floating-point arithmetic. For example, it has been shown that

Mixed Integer Rounding (MIR) procedure can frequently generate infeasible cuts [Mar09]. There

are also studies on how to “safely” generate valid MIR cuts or their variants by utilizing the bounds

on variables [NS04,BS08,DGL10,DGG10].

We introduce the notion near-subadditivity. Nearly subadditive functions are those functions

satisfying π(x) + π(y) − π(x + y) ≥ −ε for some “small” ε > 0. Here we makes no claims on
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the effectiveness of nearly subadditive functions in computational practice. Instead, we just briefly

discuss a potential application of nearly subadditive functions and we focus on how to verify near-

subadditivity for piecewise linear functions.

One nearly subadditive function can be considered as a perturbed cut generating function, and

the perturbation could mimic the “floating-point arithmetic error”. Then the following theorem

claims that nearly subadditive functions can generate valid inequalities, which also cut off the

“current fractional solution”.

Proposition 2.1.1. Let π : R → R be a Z-periodic function, and satisfying: (i) π(0) = 0, (ii)

π(b) = 1, (iii) π(x) + π(y)− π(x+ y) ≥ −ε, for some ε > 0. Define πε(x) = π(x) + ε for all x ∈ R.

Then the following inequality is valid for any feasible solution (x, y) to equation (1).

∑
r∈R

πε(r) y(r) ≥ 1

Proof. From condition (iii) we know that πε is a subadditive function. For any solution (x, y)

of Equation (2.1), it holds that

1 = π(b)

= πε(b)− ε

= πε(x+
∑
r∈R

r y(r))− ε

≤ πε(x)− ε+
∑
r∈R

πε(r) y(r)

= π(x) +
∑
r∈R

πε(r) y(r)

=
∑
r∈R

πε(r) y(r).

The inequality is implied by the subadditivity of πε, and the last step is derived from π(0) = 0

and π is Z-periodic. �

Note that near-subadditivity implies subadditivity, so it is “easier” to verify the former. As

our experiment results in section 2.5 indicate, verifying near-subadditivity can have much shorter

running time than verifying (strict) subadditivity using certain algorithms. Then it might be more

time-efficient to apply near-subadditivity to generate fast cuts. To put it in a concrete case, let
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π be a piecewise linear function with potentially large number of breakpoints. Suppose verifying

subadditivity of π takes long time but verifying near-subadditivity is relatively efficient, then π can

still be used to generate cuts based on Proposition 2.1.1.

In the remaining of the chapter, we restrict ourselves to Z-periodic continuous functions and

how to efficiently check (near) subadditivity.

2.2. Naive Subadditivity Test

We review the naive method to check the minimality (thus subdditivity) of a given piece-

wise linear function; see the function minimality test and subadditivity test in our soft-

ware [KZHW20]. The function minimality test(π) implements a fully automatic test to check

whether a given piecewise linear function π is minimal. As the most important component in the

function minimality test(π), the function subadditivity test(π) checks subadditivity of π, by

using the affine linearity in faces of ∆P. As we will see later, the time complexity of the minimality

test mainly depends on the number of breakpoints. Using the same notation, we assume that the

set of breakpoints in [0, 1] is B = {0 = a0, a1, . . . , an−1, an = 1}.

To discuss the time complexity of the algorithm, we first explain the time complexity of the

function evaluation π(x) given an input x in our implementation. Since there are n affine pieces

defined on [0, 1], we need to find out the affine piece containing the input x, which can be done by a

binary search. After that, plugging x into the corresponding affine function gives the function value

π(x). Therefore, the time complexity of the function evaluation is Θ(log n). Note that the caching

technique can speedup certain function evaluations, for example, caching all function values at the

breakpoints (which is exactly our implementation). But in general, function evaluation needs to go

through a binary search.

In order to test minimality, we need to first check that the range of the function stays in [0, 1]

and π(0) = 0. Since we assume the function is continuous and piecewise linear with finitely many

breakpoints, only function values at the breakpoints (i.e. π(ai)) need to be checked. In regards

to the symmetry condition, it suffices to show that the function h(x) := π(x) + π(b − x) = 1 for

any real number x. Note that h(x) is also a Z-periodic continuous piecewise linear function, and

it is also symmetric about x = b
2 . Then, the condition h(x) = 1 only needs to be checked on the

set of breakpoints of π, namely B. Therefore, other than subadditivity test, other conditions of

minimality can be verified in Θ(n log n) time.
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In terms of subadditivity, we only consider ∆π over [0, 1]2 (two dimensional polyhedral complex

∆P). Due to the affine linearity of ∆π in every face F in ∆P, it suffices to check ∆π(u, v) ≥ 0

for every (u, v) ∈ vert(F ). As for the diagram of ∆P, we start with a square complex I = J =

[0, 1],K = [0, 2], which is exactly [0, 1]2, and then refine I, J,K based on the set of breakpoints B

and B ∪ (B + 1). Based on the refinement of I, J using breakpoints B, there are Θ(n2) vertices.

Similarly, the refinements of I,K and J,K both give Θ(n2) vertices. Some of the vertices might be

duplicated, and using the symmetry of ∆π can reduce the number of vertices in half. Overall, it is

not hard to see that there are Θ(n2) vertices on which ∆π needs to be evaluated. Thus, the naive

subadditivity test has time complexity Θ(n2 log n).

To summarize, since the subadditivity test is the dominant part, the time complexity of the im-

plementation of minimality test is Θ(n2 log n). In fact, the naive algorithm has been used in other

applications related to the subadditivity slack. The function generate maximal additive faces

generates maximal additive faces, defined as those which are not contained in any higher dimen-

sional additive faces. The maximal additive faces then will be used in extremality test to verify

whether the function is extreme.

2.3. Mixed Integer Program Formulation

In this section, we introduce alternative methods to compute the minimum of ∆π by solving

mixed integer programs.

First we introduce notations of parameters used in mixed integer program formulations. Fol-

lowing notations defined in the previous chapter, we denote B = [a0, a1, . . . , an] as a list containing

all breakpoints. We use “list” instead of “set” because mixed integer formulations rely on the order

of breakpoints. Define the list V = [v0, v1, . . . , vn] to be the function values on B. Specifically,

vi = π(ai) for all i ∈ {0, 1, . . . , n}. From continuity of π we know that the sets B and V uniquely

define the function π, therefore the minimum of ∆π is uniquely determined by B and V . To conve-

niently express mixed integer formulations, we also need to define lists of extended breakpoints and

function values for x+y ∈ [0, 2]. Define B′ = [a0, a1, . . . , an, 1+a1, 1+a2, . . . , 1+an] = [a′0, . . . , a
′
2n]

and V ′ = [π(a0), π(a1), . . . , π(an), π(1 + a1), π(1 + a2), . . . , π(1 + an)] = [v′0, . . . , v
′
2n]. We use B,B′

and V, V ′ as parameters to formulate mixed integer programs.

We review three formulation techniques (namely Convex Combination, Multiple Choice, Dis-

aggregated Logarithmic [Vie15]), which are used to model univariate piecewise linear functions.
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Then we apply them to solve our ∆π minimization problem. The idea of all three formulations is

using the convex combination of B or B′ to express x, y or x + y, and adding binary variables to

ensure that π(x), π(y), π(x+ y) can also be expressed as the convex combination of V or V ′.

2.3.1. Convex Combination Formulation.

minimize vx+ vy − vz(2.2)

subject to x+ y = z(2.3)

n∑
i=0

λxi ai = x,

n∑
i=0

λyi ai = y,

2n∑
j=0

λzja
′
i = z(2.4)

n∑
i=0

λxi vi = vx,

n∑
i=0

λyi vi = vy,

2n∑
j=0

λzjv
′
i = vz(2.5)

n∑
i=0

λxi =

n∑
i=0

λyi =

2n∑
j=0

λzj = 1(2.6)

n∑
i=1

bxi =
n∑
i=1

byi =
2n∑
j=1

bzj = 1(2.7)

λxi−1 + λxi ≥ bxi i = 1, 2, . . . , n(2.8)

λyi−1 + λyi ≥ b
y
i i = 1, 2, . . . , n(2.9)

λzj−1 + λzj ≥ bzj j = 1, 2, . . . , 2n(2.10)

x, y, z, vx, vy, vz ∈ R(2.11)

λxi , λ
y
i , λ

z
j ∈ R+ i = 0, 1, . . . , n j = 0, 1, . . . , 2n(2.12)

bxi , b
y
i , b

z
j ∈ {0, 1} i = 1, 2, . . . , n j = 1, 2, . . . , 2n(2.13)

In the above formulation, we use vx, vy, vz to represent the function values π(x), π(y), π(x+y).

The objective function, as the subadditivity slack, is minimized. Using convex combinations of

breakpoints B,B′ and function values V, V ′ to express x, y, z and vx, vy, vz is written as con-

straints (2.4), (2.5), (2.6). The binary variables bxi , b
y
i , b

z
j are introduced to ensure that the convex

combinations are valid. We explain the reason for variable x, and the variables y, z follow the

same logic. Based on constraint (2.7), exactly one variable bxi0 is 1, representing x ∈ [ai0−1, ai0 ].

If i 6= i0, meaning bxi = 0, then the constraint (2.8) is redundant due to the non-negativity of λx.

If i = i0, then constraints (2.6) and (2.8) force λxi−1 + λxi = 1, which also implies that all other
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λx variables are fixed to 0. Then, x can be expressed as a convex combination of breakpoints

ai0−1 and ai0 given x ∈ [ai0−1, ai0 ]: x = λxi0−1ai0−1 + λxi0ai0 . The function π is an affine function

over [ai0−1, ai0 ], so we can also express vx as a conic combination of vi0−1 and vi0 using the same

coefficients: vx = λxi0−1vi0−1 + λxi0vi0 . Note that the convex combination is not unique if x ∈ B.

This convex combination formulation of minimizing ∆π has approximately 4n continuous vari-

ables, 4n binary variables and 4n constraints, given the function π has n+ 1 breakpoints.

2.3.2. Multiple Choice Formulation.

minimize vx+ vy − vz(2.14)

subject to x+ y = z(2.15)

n∑
i=0

λxi ai = x,
n∑
i=0

λyi ai = y,
2n∑
j=0

λzja
′
i = z(2.16)

n∑
i=0

λxi vi = vx,

n∑
i=0

λyi vi = vy,

2n∑
j=0

λzjv
′
i = vz(2.17)

n∑
i=0

λxi =
n∑
i=0

λyi =
2n∑
j=0

λzj = 1(2.18)

n∑
i=1

bxi =
n∑
i=1

byi =
2n∑
j=1

bzj = 1(2.19)

λxi = γxi,i + γxi,i+1, bxi = γxi−1,i + γxi,i i = 1, . . . , n(2.20)

λyi = γyi,i + γyi,i+1, byi = γyi−1,i + γyi,i i = 1, . . . , n(2.21)

λzj = γzj,j + γzj,j+1, bzj = γzj−1,j + γzj,j j = 1, . . . , 2n(2.22)

γx0,0 = γy0,0 = γz0,0 = γxn,n+1 = γyn,n+1 = γz2n,2n = 0(2.23)

x, y, z, vx, vy, vz ∈ R(2.24)

λxi , λ
y
i , λ

z
j ∈ R+ i = 0, 1, . . . , n j = 0, 1, . . . , 2n(2.25)

γxi,i, γ
x
i,i+1, γ

y
i,i, γ

y
i,i+1, γ

z
j,j , γ

z
j,j+1,∈ R+ i = 0, 1, . . . , n j = 0, 1, . . . , 2n(2.26)

bxi , b
y
i , b

z
j ∈ {0, 1} i = 1, 2, . . . , n j = 1, 2, . . . , 2n(2.27)

The multiple choice formulation is based on the convex combination formulation. The auxiliary

γ variables are introduced to be associated with binary variables b in every affine linear piece.
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After replacing all λ variables with γ variables, there are approximately 8n continuous variables,

4n binary variables and 8n constraints in the multiple choice formulation. It can be proven that

the multiple choice formulation is stronger than the convex combination formulation.

2.3.3. Disaggregated Logarithmic Formulation.

minimize vx+ vy − vz(2.28)

subject to x+ y = z(2.29)

n∑
i=0

λxi ai = x,

n∑
i=0

λyi ai = y,

2n∑
j=0

λzja
′
i = z(2.30)

n∑
i=0

λxi vi = vx,

n∑
i=0

λyi vi = vy,

2n∑
j=0

λzjv
′
i = vz(2.31)

n∑
i=0

λxi =
n∑
i=0

λyi =
2n∑
j=0

λzj = 1(2.32)

λxi = γxi,i + γxi,i+1, λyi = γyi,i + γyi,i+1, i = 0, 1, . . . , n(2.33)

λzj = γzj,j + γzj,j+1, j = 0, 1, . . . , 2n(2.34)

γx0,0 = γy0,0 = γz0,0 = γxn,n+1 = γyn,n+1 = γz2n,2n = 0(2.35)

n∑
i=1

(γxi−1,i + γxi,i)f(i)k = sxk, k = 1, 2, . . . ,m(2.36)

n∑
i=1

(γyi−1,i + γyi,i)f(i)k = syk, k = 1, 2, . . . ,m(2.37)

2n∑
j=1

(γzj−1,j + γzj,j)f(j)k′ = szk′ , k′ = 1, 2, . . . ,m′(2.38)

x, y, z, vx, vy, vz ∈ R(2.39)

λxi , λ
y
i , λ

z
j ∈ R+, i = 0, 1, . . . , n, j = 0, 1, . . . , 2n(2.40)

γxi,i, γ
x
i,i+1, γ

y
i,i, γ

y
i,i+1 ∈ R+, i = 0, 1, . . . , n(2.41)

γzj,j , γ
z
j,j+1,∈ R+, j = 0, 1, . . . , 2n(2.42)

sxk, s
y
k, s

z
k′ ∈ {0, 1}, k = 1, 2, . . . ,m, k′ = 1, 2, . . . ,m′(2.43)
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The disaggregated logarithmic formulation uses the idea of “binary encoding” to reduce the

number of binary variables. Let m = dlog2 ne, m′ = dlog2 2ne = 1+m, f(i) be the binary encoding

of i, and f(i)k be the kth digit of f(i). The λ and γ variables follow the same logic as in the

multiple choice formulation. In terms of the binary variables s, we only study the case in terms of

x. The key constraints (2.36) mean that the convex combination of binary vector (i.e. f(i)) is also

a binary vector (i.e. sx), which implies that exactly one (γxi0−1,i0
+ γxi0,i0) is 1 and all others are 0.

Therefore, λi0−1 = γi0−1,i0 , λi0 = γi0,i0 , λi0−1 + λi0 = 1 and all other λ and γ variables are zero.

After replacing all γ variables, the disaggregated logarithmic formulation has approximately 8n

continuous variables, 3 log2 n binary variables and 3 log2 n constraints. Note that the disaggregated

logarithmic formulation is stronger than the other two formulations. It also has fewer binary

variables, which typically lead to shorter running time using a MIP solver. In regards to our

computation of the ∆π minimum, we only implement the disaggregated logarithmic formulation

and solve it using a commercial solver in order to get the best solving time.

The mixed integer formulation has its own limitations. First, it uses floating point computation,

and the solved optimal objective is an “estimate” of the actual optimal objective within a small

tolerance. It is possible that the reported optimal objective is a negative value which is very close

to zero, then rigorously speaking, the subadditivity cannot be proven and near-subadditivity should

be used instead. To make the result more precise, it is possible to tighten certain tolerances in

the solver. However, tightening tolerances will usually make the solving time longer and it cannot

resolve the precision caveat completely. As we will see later, the mixed integer formulation has

limited applications in other subadditivity related studies. For example, unlike the naive algorithm,

the MIP formulation cannot be used to generate additive faces nor to verify extremality.

Despite the limitations of mixed integer formulations, it still worths to consider them (at least

the strongest one) as the baseline algorithm, which can be solved “out-of-the-box”. As the de-

velopment of modern optimization solvers and the enhancement of hardware are expected in the

future, the MIP formulation in subadditivity study can also be considered as a test instance to

measure speedups. Simply formulating the ∆π minimization problem can help us understand the

size/difficulty of the problem, and filter certain optimization techniques quickly. For instance, the

number of variables and the number of constraints are not exponential, thus techniques like column

generation are unlikely to be applicable. In our computational results, we only compare the disag-

gregated logarithmic formulation with naive algorithm and spatial branch and bound algorithm.
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2.4. Spatial Branch and Bound Method

In this section, we explain in detail the spatial branch and bound algorithm, especially how

to construct convex relaxations. The idea of the spatial branch and bound algorithm is proving

subadditivity fast in certain large regions using convex relaxations. Given a Z-periodic continuous

piecewise linear function π, the algorithm can be used to compute the minimum of ∆π, verifying

whether π is (nearly) subadditive, generating additive vertices and additive faces.

Suppose I, J ⊂ [0, 1] and K ⊂ [0, 2], and follow the definition of the complex ∆P, we define

F = F (I, J,K) = { (x, y) ∈ R× R : x ∈ I, y ∈ J, x+ y ∈ K } and vert(F ) to be the vertices of F .

In our sBB algorithm, I, J,K can be any subintervals and F does not have be a face of ∆P. To prove

a function π is subadditive, if suffices to show that ∆π(x, y) ≥ 0 for all (x, y) ∈ F ([0, 1], [0, 1], [0, 2]).

2.4.1. Lower and Upper Estimators. We first introduce the definitions of lower and upper

estimators which will be used in the spatial branch and bound algorithm.

Definition 2.4.1. Given a function π defined over the interval I = [a, b], we call a function πI

a lower estimator of π if π(x) ≥ πI(x) for all x ∈ I. We call a function πI an upper estimator of

π if π(x) ≤ πI(x) for all x ∈ I.

Given I, J ⊂ [0, 1] and K ⊂ [0, 2], suppose we know that πI , πJ are lower estimators of π over

the interval I, J , and πK is an upper estimator of π over the interval K. It is clear that ∆π(x, y) ≥

πI(x) +πJ(y)−πK(x+ y) for all (x, y) ∈ F (I, J,K). If the minimum of πI(x) +πJ(y)−πK(x+ y)

is already nonnegative, then we can conclude π is subadditive in F (I, J,K). For each (convex)

region F (I, J,K), instead of computing the minimum of ∆π, we consider the relaxation:

minimize πI(x) + πJ(y)− πK(x+ y)

subject to (x, y) ∈ F (I, J,K)

If the estimators are carefully chosen, then the above relaxation is convex. One natural question

to ask is how to choose the estimators. In general they should be “easy” to construct and solving

the above relaxation should also be “fast”. In our spatial branch and bound algorithm, we choose

estimators of π such that the optimal solution of the convex relaxation occurs in vert(F (I, J,K)).
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2.4.2. Constant Estimators. The simplest lower (upper) estimators are the constant lower

(upper) bounds. It is not hard to show the following lemma.

Lemma 2.4.1. Let π : R → R be a continuous piecewise linear Z-periodic function, and I, J ⊂

[0, 1] and K ⊂ [0, 2]. Suppose there exist αI , αJ , βK ∈ R such that π(x) ≥ αI for x ∈ I, π(x) ≥ αJ

for x ∈ J , and π(x) ≤ βK for x ∈ K. Then ∆π(x, y) ≥ αI + αJ − βK for (x, y) ∈ F (I, J,K).

We briefly discuss the time complexity of constructing the constant estimators. Following the

previous notation, we assume the set of breakpoints of π is B = {a0, ..., an}. Given subintervals

I, J,K and the region F (I, J,K), constructing the constant upper and lower estimators is straight-

forward. Due to continuity and piecewise linearity of π, it suffices to loop through the function

value at every breakpoint (and two endpoints) contained in the intervals I, J,K. Assuming func-

tion evaluation takes log n time, then constructing constant estimators together with solving the

corresponding convex relaxation has near-linear time complexity O(n log n). On the other hand, it

is possible that there are quadratically many vertices (of the complex ∆P) contained in F (I, J,K).

Ideally, to prove the minimum of ∆π is nonnegative over a certain region F (I, J,K), using constant

estimators could be faster than computing values of ∆π of every vertex contained in F (I, J,K).

2.4.3. Affine Estimators with Fixed Slope Values. Computing constant estimators is

fast and straightforward, and they can be generalized to affine estimators.

Definition 2.4.2. Given a function π defined over the interval I = [a, b], and a fixed slope value

s, we call an affine function πI (or πI) a slope-s affine lower/upper estimator if it is a lower/upper

estimator of π and has slope value s.

Observe that constant estimators are exactly slope-0 affine estimators. If the slope value s is

fixed, the “best” slope-s affine lower/upper estimator is trivial to construct. It suffices to choose

the largest/smallest intercepts while maintaining valid lower/upper estimators. In regards to the

complexity of constructing slope-s affine estimators, we also need to loop through every breakpoint

(and two endpoints) contained in each interval, which takes O(n log n) as well.

In terms of the strength of the convex relaxation using affine estimators, it is not hard show

that the optimal solution occurs in vert(F (I, J,K)) as Lemma 2.4.2.
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Lemma 2.4.2. Let π : R → R be a continuous piecewise linear Z-periodic function, and I, J ⊂

[0, 1] and K ⊂ [0, 2]. Suppose there exist affine estimators πI , πJ , πK . Then for all (x, y) ∈

F (I, J,K) it holds that

∆π(x, y) ≥ min
(x,y)∈F (I,J,K)

πI(x) + πJ(y)− πK(x+ y)

= min
(x,y)∈vert(F (I,J,K))

πI(x) + πJ(y)− πK(x+ y)

Proof. Note that the affine linearity of πI , πJ , πK implies the affine linearity of πI(x)+πJ(y)−

πK(x+ y) on F (I, J,K). Therefore, the minimum of πI(x) + πJ(y)− πK(x+ y) only depends on

the values at vert(F (I, J,K)). Based on the definition of lower and upper estimators, we conclude

the desired result. �

Heuristically, we choose the fixed slope value to be the slope of the line segment connecting two

endpoints of the interval I or J or K.

2.4.4. Affine Estimators. To construct the strongest convex relaxation, three affine esti-

mators should not be constructed separately. We can compute all three affine estimators simul-

taneously which can produce the best lower bound for ∆π on F (I, J,K), by solving some linear

program.

Given a continuous piecewise linear function π, and the breakpoint set B. Let B′ = B∪ (B+1)

be the extended breakpoint set. Fix I, J ⊂ [0, 1] and K ⊂ [0, 2] and we assume all endpoints of

I, J,K belong to B′. We make this assumption so that the linear program can be written cleanly,

and the assumption is easy to fulfill by the branching criterion that we will explain later.

Suppose πI , πJ , πK are affine estimators defined in Definition 2.4.1, and let πI(x) = sIx + tI ,

πJ(x) = sJx + tJ and πK(x) = sKx + tK . Define the inputs as the breakpoints B ∩ I, B ∩ J and

B′ ∩ K, values at those breakpoints, and vert(F (I, J,K)). The s variables and t variables used

in the linear program represent slope values and intercepts of affine estimators respectively. We

use variable m as the minimum of πI(x) + πJ(y) − πK(x + y) and this can be taken care of by

maximizing m. We write the linear program as follows, and solving it can produce the best lower

bound of ∆π and three corresponding affine estimators.
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maximize m(2.44)

subject to m ≤ sIx+ tI + sJy + tJ − sK(x+ y)− tK ∀(x, y) ∈ vert(F )(2.45)

π(bI) ≥ sIbI + tI ∀ bI ∈ B ∩ I(2.46)

π(bJ) ≥ sJbJ + tJ ∀ bJ ∈ B ∩ J(2.47)

π(bK) ≤ sKbK + tK ∀ bK ∈ B′ ∩K(2.48)

sI , sJ , sK , tI , tJ , tK ,m ∈ R(2.49)

Theorem 2.4.1. Let π : R → R be a continuous piecewise linear Z-periodic function, and

I, J ⊂ [0, 1] and K ⊂ [0, 2]. Then the linear program (2.44-2.49) is always feasible and bounded,

and the optimal objective function value m∗ is a lower bound of ∆π on F (I, J,K). Furthermore,

for any three affine estimators πI , πJ , πK , it holds that

m∗ ≥ min
(x,y)∈F (I,J,K)

πI(x) + πJ(y)− πK(x+ y)

Proof. Since π is a continuous piecewise linear function defined on a bounded interval, then

sI = sJ = sK = 0, tI = minx∈I π(x), tJ = minx∈J π(x), and tK = maxx∈K π(x) is a feasible

solution. On the other hand, m ≤ maxx∈I π(x)+maxx∈J π(x)−minx∈K π(x), therefore the program

is bounded. The optimal objective function value m∗ is a lower bound of ∆π on F (I, J,K) is due

to the fact that sIx + tI , sJx + tJ are lower estimators of π over I, J and sKx + tK is an upper

estimator of π over K. Based on the formulation of the linear program, we know that m∗ is the

best lower bound generated by affine estimators of π. �

The linear program has 7 free variables and the number of constraints depends on how many

breakpoints are contained in I, J,K. Let M = M(I, J,K) be total number of breakpoints contained

in I, J,K. Note that M is linear in n. If n is large, then a large-scale linear program needs to

be solved. Since solving an linear program is needed, it is unclear what the time complexity is.

In the spatial branch and bound algorithm described in the next section, we need to solve a large

number of such LPs if the best lower bounds are computed. In general, solving a large number of

large-scale LPs can be time-consuming. So we tend to use affine estimators with fixed values if M

is large to avoid solving too many LPs.
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We have in total three types of estimators for generating the lower bound of ∆π, the constant

estimators, affine estimators by solving an LP and affine estimators with fixed slope values. Affine

estimators by solving an LP can produce the best lower bound of ∆π but it is also the most

expensive one to construct. Computing constant estimators and computing affine estimators with

fixed slope values have the same time complexity. Note that using affine estimators with fixed slope

values together with constant estimators can produce better bounds than using constant estimators

alone.

2.4.5. Spatial Branch and Bound Tree. We introduce the spatial branch and bound al-

gorithm, which can be used to compute the minimum of ∆π, therefore prove or disprove the

subadditivity of π. The inputs are breakpoints of π: B = [0 = a0, a1, . . . , an = 1] and the corre-

sponding function values: V = [π(a0), π(a1), . . . , π(an)]. The output is the minimum of ∆π. We

use B′, V ′ to denote the extended breakpoints and function values the same way as in Section 2.3.

In the branch and bound tree, every node N = N(I, J,K) is associated with one region F =

F (I, J,K) where I, J ⊂ [0, 1] and K ⊂ [0, 2]. The root node corresponds to the region F (I, J,K)

defined by I = J = [0, 1] and K = [0, 2]. For every node N(I, J,K) we consider the following:

• Estimators: Use affine estimators πI , πJ , πK introduced in previous section.

• Local lower bound: Using affine estimators implies that πI(x) + πJ(y) − πK(x + y) is

affine on F (I, J,K), therefore min(x,y)∈vert(F (I,J,K)) π
I(x) + πJ(y)− πK(x+ y) is the local

lower bound of ∆π on F (I, J,K).

• Global upper bound: min(x,y)∈vert(F (I,J,K)) ∆π(x, y) is one global upper bound of ∆π.

There are at most 6 vertices of F (I, J,K), therefore computing global upper bound in one

node is relatively cheap.

• Pruned by bounds: If the local lower bound is no less than the current global up-

per bound, then no branching is needed since no better solutions can be found within

F (I, J,K).

• Pruned by indivisibility: If there is no breakpoint contained in the interior of I, J,K,

then F (I, J,K) is actually one face of the complex ∆P; see Remark 2.4.1. In this case,

∆π is an affine function on F (I, J,K) and it is uniquely determined by the function values

at vert(F (x, y, z)) and no branching is needed.
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• Branching: If the current node cannot be pruned by bounds or indivisibility, choose a

breakpoint b contained in the interior of I or J or K, and divide the region F (I, J,K) by

the line x = b, or y = b, or x+ y = b. We make sure that the chosen breakpoint b belongs

to B (or B′ if dividing line is x+ y = b). For example, without loss of generality, suppose

b = ai ∈ I = [as, at] where s < i < t. Then the left child and right child of the current

nodes are N([as, ai], J,K) and N([ai, at], J,K).

• Node selection: Three selection strategies: DFS, BFS and Best Bound.

Remark 2.4.1. Based on the branching principle, all endpoints of I, J,K are breakpoints of π

for every node in the tree, thus the region F (I, J,K) of every node is always a union of some faces

in ∆P. If the region is indivisible, then F (I, J,K) is one face of the complex ∆P. Compared to

all faces in ∆P, regions of all leaf nodes can be considered as a “coarser refinement” of the square

[0, 1]2; see example in Figure 2.1.

Note that, in the branching step, each time only one interval of I, J,K will be divided into

two subintervals and other two intervals will pass to children. Therefore the spatial branch and

bound tree is a binary tree. In our implementation, the eligible interval, which contains at least one

breakpoint in the interior, with largest length is selected, and the mid-indexed breakpoint is selected

as the dividing endpoint. Specifically, if I = [as, at] where t− s > 1 is selected as the interval to be

divided, then it will be divided into subintervals [as, ab(s+t)/2c] and [ab(s+t)/2c, at].

Next, we introduce the formal spatial branch and bound algorithm for computing the minimum

of ∆π.

initialization:

set global upper bound U ←∞

set unvisited node list S ← {N([0, 1], [0, 1], [0, 2])}

while S is not empty do

pick one node N(I, J,K) ∈ S based on traversing strategy and remove the node from S.

compute the upper bound uN = min(x,y)∈vert(F (I,J,K)) ∆π(x, y).

if uN < U then

Update U ← uN .

end if

if N(I, J,K) is not divisible then
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Pruned by indivisibility. Continue.

end if

compute the local lower bound lN from affine estimators.

if lN ≥ U then

Pruned by bounds. Continue.

else

Branching: put left and right child nodes Nl, Nr to S.

end if

end while

Return the minimum of ∆π = U .

There are some variants of the algorithm. In the while loop, each time we pick one node from

the unvisited node list. We can choose the depth first search, breadth first search or the best bound

principle. As mentioned in the previous section, we have three choices of affine estimators: constant

estimators, affine estimators with fixed slope values and affine estimators by solving an LP. It is also

possible to use a combination of these estimators. For example, one algorithm in our computational

experiment uses 30 as a threshold for the maximum LP size, meaning if there are more than 30

constraints in the LP, then we don’t solve it and use the constant estimators and affine estimators

with fixed slope values instead. Since the branch and bound technique as well as optimization solver

is used, it is hard to analyze the theoretical complexity of our proposed algorithms. Instead, we

perform a benchmark experiment and report the execution time and memory usage of our proposed

algorithm in Section 2.5.5.

We use an example to illustrate the spatial branch and bound tree. Figure 2.1 shows the

diagrams of leaf nodes in the branch and bound tree of an extreme function. We color the leaf

node: red, if the the leaf node is pruned by bounds; yellow, if the region is indivisible. The diagram

on the left uses constant estimators and the one on the right uses affine estimators by solving LPs.

After carefully examining these two diagrams, we can see that the red regions by affine estimators

are “bigger” than the red regions by constant estimators. Equivalently, the diagram using constant

estimators gives a “finer” refinement. The reason is that affine estimators by solving LPs always

produce the best lower bounds, therefore the corresponding branch and bound tree always has the

smallest size.
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Figure 2.1. The diagrams correspond to a 7 slope extreme function
kzh 7 slope 1() showing the leaf nodes in the branch and bound tree for com-
puting the minimum of ∆π. The yellow regions are pruned by indivisibility and the
red regions are pruned by bounds. The diagram on the left uses constant estimators
and the one on the right uses affine estimators by solving LPs. Both diagrams use
best bound rule as the node selection strategy.

2.4.6. Other applications. Besides computing the minimum of ∆π and verifying whether π

is subadditive, there are other important applications of the sBB algorithm.

The objective cutoff can be considered as a constraint which specifies the worst expected objec-

tive, and this feature has been implemented in most modern solvers. For a given objective cutoff,

the solver will terminate early if it proves that there is no solution with better objective than the

cutoff, without actually solving the problem to optimality. From the objective cutoff perspective,

we can use sBB algorithms to check whether ∆π can reach the preset objective cutoff (for example

0 or −ε). Solutions which produce the objective cutoff or better objectives can also be cached. If

we set the objective cutoff to 0, then we can cache additive vertices and nonsubadditive vertices.

To verify near-subadditivity, we can set the objective cutoff to −ε. Then we are able to verify

near-subadditivity more efficiently since we do not have to solve the ∆π minimization problem to

optimality.

Figure 2.2 shows the diagrams of branch and bound trees for verifying (near) subadditivity.

As we compare the two diagrams using different objective cutoffs, we can see that the diagram

of verifying near-subadditivity has “larger” red regions. The “larger” red regions are those ones

on which near-subadditivity can be proven using estimators but subadditivity cannot. Thus those
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Figure 2.2. The diagrams correspond to a 7 slope extreme function
kzh 7 slope 1() showing the leaf nodes in the branch and bound tree for veri-
fying (near) subadditivity. The yellow regions are pruned by indivisibility and the
red regions are pruned by bounds. The diagram on the left uses 0 as the objective
cutoff (subadditivity) and the one on the right uses −0.01 as the objective cutoff
(near-subadditivity). Both diagrams use constant estimators, and the best bound
rule as the node selection strategy.

“larger” red regions can be pruned early in verifying near-subadditivity, which leads to a smaller

tree size.

In the current extremality test for cut-generating functions, one key step is to compute the

covered components from the additive faces. Our sBB algorithms can also be applied to find

(inclusion) maximal additive faces.

2.5. Computational Results

In this section, we explain our benchmark experiments and the computational results. Our goal

is to compare the performance of different algorithms applied to various subadditivity-related com-

putational tasks. The benchmark experiment was conducted in SageMath on the Peloton cluster1,

where each node has 64GB RAM, 2 sockets, 16 cores, and 32 threads running Intel(R) Xeon(R)

CPU E5-2630 v3 @ 2.40GHz. We compare the time performance using selected algorithms applied

to four computational tasks. The maximum solving time is 1 hour and maximum memory usage is

8GB. The outliers are removed by Tukey’s rule. Given a set of measurements {x1, x2, ..., xn}, let Q1

and Q3 be the first and third quantile. The interquantile, denoted as IQR, is defined as Q3−Q1.

1https://wiki.cse.ucdavis.edu/support/systems/peloton
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The values outside of the range [Q1−1.5 IQR, Q3 + 1.5 IQR] are identified as outliers. The source

code and instructions of how to reproduce the experiment are made open sourced2. This project is

licensed under the terms of the MIT license.

2.5.1. Benchmark set. We first explain how we choose the benchmark set. There are in total

150 continuous piecewise linear functions (test instances). Fifty of them are extreme functions,

including known extreme functions in the literature and their two slope approximations [BHM16].

Every minimal function can be arbitrarily approximated by a two slope minimal (thus extreme)

function in the infinity norm. The approximation functions are generated by the “two slope fill-in”

procedure and the two slope values are the limiting slopes at 0. The idea of the fill-in procedure

is approximating each affine linear piece by many “zigzags”, which are affine linear pieces with the

fixed two slope values. The bound on approximation error can force the number of “zigzags” to be

large, thus those approximation functions can have potentially many breakpoints. Based on the 50

extreme functions, we perturb them by using convex combination with “Gomory Mixed Integer Cut”

to obtain 50 minimal but non-extreme functions. Similarly, we perturb 50 extreme functions using

convex combination with simple non-subadditive functions to obtain 50 non-subadditive functions.

By carefully choosing the coefficient in the convex combination, we make sure that the 50 non-

subadditive functions all satisfy the property that ∆π ≥ −0.01.

We include Figure 2.3 as a histogram of the distribution of the number of breakpoints of all

extreme functions in the benchmark set. Since we do convex perturbations to generate non-extreme

and non-subadditive functions, the histograms of other functions look similar. By our intuition,

the time complexity (in all algorithms) heavily depends on the number of breakpoints. Roughly

speaking, the histogram represents the “difficulty distribution” of the benchmark set. As we see in

the histogram, the most “difficult” test instance has around 10000 breakpoints.

2.5.2. Computational tasks. There are four computational tasks. Note that in different

tasks, we use different subsets of the benchmark set and the algorithm set. We explain the four

computational tasks as follows.

(1) Computation of the minimum of ∆π includes the whole benchmark set. There are three

main algorithms which can be applied to solve the minimization problem: naive algorithm, MIP

algorithm and sBB algorithm.

2Github repository: https://github.com/mkoeppe/jiawei-computations
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Figure 2.3. The histogram of the distribution of the number of breakpoints of all
50 extreme functions. The x-axis is the square root of the number of breakpoints.
The y-axis is the number of extreme functions in each bin.

(2) Generation of additive faces is not applied to non-subadditive functions. The additive faces

are usually used in the extremality test, so it is not of interest to generate additive faces of non-

subadditive functions. We only use the naive algorithm and the sBB algorithm in this task since

the MIP formulation cannot be used here.

(3) Verification of objective cutoff 0 is not applied to non-subadditive functions. The task here

is to verify there is no better objective than 0 in the minimization problem (i.e. subadditivity). We

use all three algorithms. In the MIP formulation, we use 0 as the “cutoff” parameter.

(4) Verification of objective cutoff −0.01 includes the whole benchmark set. The task here is to

verify there is no better objective than −0.01 in the minimization problem (i.e. near-subadditivity).

We carefully choose perturbation functions and coefficients in the convex combination so that every

function in the benchmark set is nearly subadditive (i.e. ∆π ≥ −0.01). We use all three algorithms.

In the MIP formulation, we use −0.01 as the “cutoff” parameter.

2.5.3. Algorithms. Next, we explain the algorithm set. As being first implemented in our

software, the naive algorithm is set to be the baseline algorithm. In regards to the MIP formulation,

we use the Dlog formulation explained in subsection 2.3.3, and we use Cplex as the MIP solver to

solve the mixed-integer program. The default setting is used in Cplex, and the solver parameter

“Upper Cut” is set to be the objective cutoff in two computational tasks. In regards to the sBB

41



0 5 10 15 20 25 30 35
threshold for using LP estimators

10000

12000

14000

16000

18000

20000

22000

24000

nu
m

be
r o

f n
od

es
 in

 th
e 

tre
e

Figure 2.4. The graph shows the number of total nodes in the branch and bound
tree using different types of estimators. The function is a 10 slope extreme function
kzh 10 slope 1() and the task is computing the minimum of ∆π. Best Bound is
used as the node selection strategy.

algorithms, there are 12 variations. We use three traversing strategies: DFS, BFS and Best Bound

(BB), and we use four different ways to construct the local lower bound of ∆π: constant bound,

fast bound, mixed bound and LP bound. The constant bound is obtained from constant estimators.

Fast bound is the better one between the constant bound and the bound from affine estimators

with fixed slope values. The LP bound is obtained by solving an LP in the corresponding sBB tree

node. In terms of the mixed bound, we use 30 as the threshold. Specifically, if the LP size (the

number of constraints) is larger than the threshold, then the fast bound is used. Otherwise, the

LP bound is used. Therefore, the algorithm set consists of in total 14 algorithms.

We use an example to show how different estimator constructions can impact the size of the

branch and bound tree. In Figure 2.4, the leftmost point corresponds to constant bound, and the

second leftmost point (the big drop) corresponds to fast bound, and other points correspond to

different thresholds in the mixed bound. We can consider the rightmost point as using the LP

bound. The convex relaxation becomes stronger from left to right in Figure 2.4. Observe that

using a stronger convex relaxation results in smaller tree size.

Note that the function ∆π is symmetric about y = x. The naive algorithm and sBB algorithms

can utilize the symmetry to speedup the computation. We use the speedup technique in our

experiment to save computational resources.
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2.5.4. Results. We report the time performance in two different ways: shifted geometric mean

and performance profile.

In the MIP community, the shifted geometric mean is mostly used for measuring the solving time

of an optimization problem, such as [LT13,AW13]. Given a set of measurements of solving times

{x1, x2, ..., xn}, the metric n
√∏n

i=1(xi + s)− s is called the shifted geometric mean of {x1, x2, ..., xn}

with shift s. The shifted geometric mean is known to be robust to the interference of very large

outliers (compared to arithmetic mean) and very small outliers (compared to geometric mean)

[Ach07]. Besides solving time, the shifted geometric mean can also be applied to other optimization

metric including the number of nodes explored in the branch and bound tree and the number of

iterations of the simplex algorithm. The choice of the shift s is not standard, in terms of the solving

time, the shifts of 1s [GEG+17], 10s [KB16], 60s [Ach07] have been used. The choice of the shift

depends on what types of instances researchers focus on. Generally speaking, small shifts favor

easy instances and large shifts favor hard instances.

We include the shifted geometric means with shifts 1s, 10s, 60s in Table 2.1. For every column,

we color the winning algorithm. Note that the comparison results are not consistent using different

shifts, so using shifted geometric means can be biased.

We notice that different traversing strategies have almost the same performance, and construc-

tions of convex relaxations are the most important factor. For example in the minimization task,

if the function is subadditive, then the best solution (primal bound) can be found very fast. The

traversing strategy does not matter since no better solution can be found anyway. Among all sBB

algorithms, the ones with fast bounds have the best performance. Generally speaking, in terms

of performance, fast > constant > mixed > LP. It seems that using fast bounds has a balanced

tradeoff between the strength of convex relaxations and the effort to construct them. From the

example in Figure 2.4 we can see that using fast bounds significantly reduces the number of nodes

from using constant bounds, while aggressively solving LPs does not yield a much smaller tree size.

Compared to the naive algorithm, the best sBB algorithm has better performance in computing

the minimum of ∆π and verifying (near-)subadditivity. As expected, the MIP solver has the longest

running time. Although we are using different subsets of the benchmark set in two objective cutoff

computational tasks, we can still see a trend that verifying near-subadditivity is easier than verifying

subadditivity. We can even see a big speedup for the MIP solver with cutoff −0.01 compared to

cutoff 0. In the additive faces generation task, the naive algorithm is the winner.
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Table 2.1. Shifted geometric means (seconds) with shift 1s, 10s, 60s
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Figure 2.5. Performance profiles for computation of ∆π minimum (log scale).
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Figure 2.6. Performance profiles for verifying subadditivity (log scale).
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Figure 2.7. Performance profiles for verifying near-subadditivity (log scale).
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Figure 2.8. Performance profiles for computation of maximal additive faces (log scale).
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Figure 2.9. Running time (seconds) of test cases with fewer than 100 breakpoints
in computing minimum of ∆π.

We include performance profiles [DM02] for computational tasks in Figures 2.5 to 2.8. Due

to the large number of sBB variants, we only plot sBB algorithms with Best Bound as the node

selection strategy. Overall we see consistent results as in shifted geometric means. In computing

the minimum of ∆π and verifying (near-)subadditivity tasks, we observe that the naive algorithm

has most wins but overall the sBB algorithm with fast bounds is the best. In the additive faces

generation task, the naive algorithm has the most wins and is also the overall best algorithm. How-

ever, the speedup of verifying near-subadditivity from verifying subadditivity cannot be observed

by using performance profiles.

2.5.5. Complexity. We briefly discuss about the time and space complexity. We only pick

one sBB algorithm: the one using fast bound and DFS as the node selection strategy and we

compare it with the naive algorithm. By our intuition, the time complexity heavily depends on the

number of breakpoints, so we show how time and space complexity vary based on the number of

breakpoints.

Figure 2.9 and Figure 2.10 shows the running time of computing minimum of ∆π for test

instances with number of breakpoints less than 100 and less than 400 respectively. As we expect,

the running time of the naive algorithm has a clear quadratic increase as the number of breakpoints,
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Figure 2.10. Running time (seconds) of test cases with fewer than 400 breakpoints
in computing minimum of ∆π.

and it also works better than the sBB algorithm if the number of breakpoints is small. As the test

instance becomes more “complicated”, the sBB algorithm is more time efficient although it is

unclear to see the relation between running time and the number of breakpoints.

Figure 2.11 shows the memory usage of computing minimum of ∆π for test instances with

number of breakpoints less than 400. Observe that the naive algorithm has nearly constant space

complexity and the memory usage doesn’t increase as the number of breakpoints increases. On

the other hand, we see an increasing trend of memory usage in the sBB algorithm as the number

of breakpoints increases. The reason is that we cache the entire branch and bound tree in our

implementation, and more “complicated” test instance generally has a larger sized tree. The reason

we cache the entire tree is for visualization and comparison with the two dimensional complex ∆P,

and we also cache the estimators in every node for verification purposes. Depending on the specific

purpose, it is possible to delete finalized nodes to release memory. For example, the DFS algorithm

can be implemented in space O(d), where d is the height of the tree [Kor85].

One difference between computing minimum of ∆π and generating additive faces is a lower

bound on the space complexity. If explicit caching of additive faces is required, then we need at

least the amount of memory to store all additive faces. However for the minimization problem, it
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Figure 2.11. Memory usage (GB) of test cases with fewer than 400 breakpoints
in computing minimum of ∆π.
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Figure 2.12. Memory usage (GB) of test cases with fewer than 2000 breakpoints
in generating additive faces.
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only requires constant space. In our implementation of generating additive faces, both the naive

and the sBB algorithms store all additive faces in a list. Figure 2.12 shows the memory usage of

generating additive faces for test instances with number of breakpoints less than 2000. Observe that

naive computation no longer has constant memory usage. Similar to the minimization problem,

the sBB algorithm requires much more memory than the naive algorithm. To beat the lower bound

and save memory usage, it is also possible to use the “streaming” technique to (implicitly) generate

additive faces on the fly (for example, using yield in Python).

2.6. Future Work

One limitation of the experiment is the benchmark set. The choice of the benchmark set

is intuitive. Since our goal is to verify subadditivity for functions with complex structure, we

“deliberately” complicated functions by using two slope approximations which will make the number

of breakpoints large. One possible future work is to find more test cases which can “best represent

today’s cut-generating functions”.

From the experiment results we see that sBB algorithms are promising at least for verifying

near-subadditivity. We tested variants with different node selection strategies and convex relaxation

constructions. From the algorithm perspective, there are two directions worth exploring. One is

how to choose and divide the interval in the branching step. In our implementation, we just choose

the largest interval and mid-indexed breakpoint. The other one is how to choose the slope values

while constructing fast affine estimators with fixed slope values.

We also see applicability of sBB algorithms in generating additive faces, which can be used

in further extremality test. Although the current sBB implementation cannot beat the naive

algorithm, it is still promising for the extremality test in the future work. Unlike the naive algorithm

which needs to generate all additive faces, an sBB algorithm can be implemented so that it only

generate those “necessary” additive faces used in the extremality test. Adding certain pruning

criteria can help early pruning, therefore speedup the computation.

In terms of the space complexity, depending on the specific usage, the sBB algorithm code can

be further optimized. Deleting finalized nodes and unnecessary caching, choosing memory efficient

node selection strategy, and using a streaming technique such as generators in Python can help

save memory usage and reduce the number of out-of-memory instances.
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Another (not near) future work is applying sBB algorithms in the multi-row cut-generating

functions. One challenge is that the domain of a multi-dimensional affine linear function is not as

trivial as an interval. Thus dividing and projecting regions in higher dimension are more compli-

cated than the one-dimensional case.
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CHAPTER 3

Benchmarking on High Performance Clusters

Researchers are interested in measuring the execution time of certain programs in a specific

platform. Gathering such information can help to optimize the program as well as the platform.

After the optimization, researchers need to perform the same benchmarks to detect speedups. A

general question to ask is how to complete such task “rigorously”? A good scientific researcher

needs to setup a well designed experiment, analyze experiment results in a statistically rigorous

way, and try to convince readers by providing reproducible data.

There are several works on the evaluation of the infrastructure for the High Performance Clus-

ters (HPC) [SBZ+08,FMMS14]. In [SBZ+08], the difference between measuring real applications

and kernel benchmarks is discussed. Since a large-scale scientific computing task usually occupies

more resources and requires longer time to finish, it is essential to analyze performance of real appli-

cations using HPC technology. In [FMMS14], the authors propose a methodology for evaluating

how important elements can influence the execution times, including class of real applications, the

problem size, the programming language, the breakdown of CPU, memory and I/O time.

In general, most researchers are interested in two types of time measurements of a segment

of programs: wall clock time and CPU time. The wall clock time measures how long the user

has to wait in order to get the desired results. However, this measurement inevitably includes

“time-sharing” overhead including I/O, memory sharing with other programs. To measure the

total time the processor actually spends on the specific program, the CPU time is used. On the

other hand, the CPU time doesn’t include “time-sharing” overhead which sometimes is also of our

interest, especially the experiment is on a high time/memory-shared platform like HPC. Reporting

both wall clock time and CPU time can easily show how significant the time-sharing interference

is. Depending on how researchers allocate resources to perform benchmarks, the CPU time can be

much longer than the wall clock time if certain multiprocessing techniques are used.

The benchmark set contains all test instances, on which different algorithms are tested. To make

the comparison fair, the benchmark set should try to best represent today’s problems. Here today’s
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problems refer to real problems which researchers are interested in. Problems are not necessarily

challenging, but they rather serve as a “performance ruler” which as a whole can be used to measure

algorithms. We refer interested readers to several standard benchmark sets in various research

fields, including MIPLIB [mip18] in the optimization community, MNIST [Den12] in computer

vision, and PMLB [OLCO+17] in data mining. These benchmark sets are well maintained and

are continuously being extended to a broader context. For example, the EMNIST [CATVS17] is a

generalization from MNIST to represent handwritten letters instead of digits, and MIPLIB library

has evolved to the sixth generation. It is important that every test instance in the benchmark

set has a unique key/index to refer to. Having a unique key is convenient for the user to retrieve

test instance information as well as focus on special instances such as outliers or misclassifications.

From the perspective of reproducibility, the unique key of each instance serves as a “universal

name” which can be used in the interactive data analysis, and it is easy for researchers to identify

discrepancies while doing a reproducibility study.

Although there is no formal definition of reproducibility of an experiment, various princi-

ples have been recommended [Fei06, PVB+19, HB15]. In terms of reporting computational

results, Jupyter Notebook becomes more favorable in producing reproducible data analysis. In

[KRKP+16], the authors state that the Jupyter Notebook is a “publishing format” for computa-

tional results in today’s research work . The notebook interface is supported by many mathematical

software systems, including Mathematica, Maple and SageMath. It is also convenient to explain the

workflow of a computational work by using comments, figures and equations. The Jupyter Note-

book can be run both locally or in a remote server, which makes it flexible to run data analysis

interactively. Sometimes the same experiment needs to be done again for reproducibility purposes,

or for testing performance with changed parameters and an implementation optimized. It is cru-

cial that the computational results of different configurations are cleanly maintained. A version

control system such as Git has been proved to facilitate both reproducibility and transparency of

an experiment [Ram13,Gan13].

In this chapter, we review literature about reproducibility, statistics and resource sharing in

benchmark studies. We try to apply the important principles to conduct a reproducible experiment

to benchmark a real application, using a Python-based software in a HPC. Our experiment is run in

a HPC because the overall run time would be too long if it is run in a personal computer. However,

after gathering computational results, the data analysis can be done locally using Jupyter Notebook.

53



We explain our experiment which uses git submodule technique to store computational results. For

computational results of each configuration, there is a git commit/branch corresponding to them.

While performing data analysis, one can easily checkout the desired branch/commit without being

worried about “data overwrite issue”. The benchmark work is the computational work in Chapter

2, which compares running time and memory usage of different algorithms. So in this chapter, we

omit mathematical parts and focus on reproducibility.

3.1. Reproducibility

In an article published in Nature [Bak16], it is pointed out that a large portion of published

experiment failed to be reproduced by other researchers even by the authors themselves. The

paper [Bak16] contains a survey, in which the percentage of researchers who tried but failed to

reproduce other researchers’ work is reported. The survey covers several natural scientific fields,

including chemistry, biology, medicine, physics and engineering. A high percentage of unsuccessful

reproduction raises the crisis of confidence. Compared to natural science fields, computer science

has less randomness and the open source code makes it easier to reproduce experiment in computer

science research. The database community is the pioneer which addresses reproducibility, and

repositories containing results and software are portable [FBS12]. In cases where inconsistent

results are obtained from a reproducibility study, unlike natural science field, the “bugs” in the

computer science community make it easier to track down the root cause [Pen11]. Nevertheless,

lack of reproducibility is still an issue in computer science community, for example the paper

[CP16] shows that failure of reproducing the own work is not uncommon. The authors in [CP16]

encountered technical obstacles that mathematical formula is not clearly stated while trying to

implement one paper’s algorithm. In the communication with the original authors, they indicated

the proposed algorithm was still under development and refused to give out source code and data.

The reproducibility is more about qualitative analysis rather than quantitative reproduction,

since it is practically impossible to reproduce the exact measurement results [Pen11,Fei06]. Due

to randomness, reproduction of the exactly same execution time measurement is unlikely to hap-

pen even when the experiment is done in the same platform by the same researchers. Therefore,

repetitions of the same experiment and statistical analysis are needed. Even if the variance among

measurements in repetitions is relatively small, experimenters are expected to explain the full proce-

dure [PVB+19]. The main objective of reproducibility is to gain insights and make progress based
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on other researchers’ work [Fei06, PVB+19, Pen11]. One benefit of conducting reproducibility

study is that, by running the same experiment in a slightly different way (for example, in a different

platform or different configuration parameters), it will bring the original experiment into a broader

and more general theory [Fei06]. Even if some discrepancy is discovered, it is also a valuable

context which leads to further necessary study. The authors in [Fei06] state that standardized

experimental design is preferred, specifically collective instructions regarding how to conduct an

experiment are expected to be provided. In their paper, the standardized experiment design is

described to be analogous to a lab manual, which is widely used in natural science field (for ex-

ample [GS12]). Researchers can then use the experiment design and adjust it based on their own

research goal.

There is some work trying to reproduce other researchers’ experiment, but the criteria for

determining reproducibility are quite intuitive. For example, in [HCA15] the authors test the

reproducibility of their own experiment and some experiment in other papers by comparing the

variance. For every repetition of each experiment, the mean value (t̄i) is recorded. Using all mean

values in all repetitions of the same experiment, the reproducibility is evaluated by observing the

plots of the variance of the normalized execution times (= t̄i/min(t̄i)).

The claim that an experiment is reproducible relies heavily on the control of experimental envi-

ronments and the rigorous statistical analysis of the experiment results. Non-proprietary publishing

work is obviously more convenient for other researchers to perform reproducibility studies. In the

following part of this section, we highlight three important aspects in reproducibility: experiment

design, statistical analysis and non-proprietary work.

3.1.1. Experiment design. Good experimenters are expected to make the experiment well

documented. A well explained documentation of an experiment is very important for other re-

searchers to repeat the experiment and perform reproducibility study. The documentation should

include any prerequisites, configuration parameters and external dependencies.

The authors in paper [CBLA19] empirically studied other researchers’ bad practices in a

microbenchmarking framework, namely Java’s Microbenchmark Harness (JMH). Although these

bad practices are Java-specific, we can still learn how to avoid similar mistakes in other programming

languages, so we summarize several recommendations in the paper [CBLA19] as follows. Most

modern programming languages have shortcuts to speed up the computation, for example skipping
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useless code segments, unfolding loops and caching computed values. Researchers need to be careful

and make sure the codes they write are actually doing what they intend to do step by step. One

systematic error/overhead could be introduced by calling “get_current_time” or similar function

before and after the execution code segment. The overhead can be an issue if the measured program

has very short running time. One mistake about computing this error/overhead is calling the

function “get_current_time” twice consecutively. If such function is called twice consecutively,

some software will recognize the “useless” code block and speedup the second call, which will make

the computed overhead smaller than the actual overhead. Sometimes a benchmarking paper is

trying to convince readers that a new algorithm/platform is better than the old one. However, if

the old algorithm/platform is not optimized, then it is not fair to say the old algorithm is worse.

Another important assumption to make is that both algorithms should have the same functionality.

To make the comparison fair, researchers should make sure that for the same input, all measured

algorithms produce the same or at least equivalent output.

In the experimental design, it is also suggested to introduce randomization to the experiment.

In [HCA15], the authors shuffled the order of the experiment “to respect the principles of ex-

perimental design (randomization, replication, blocking) [Mon17]”. In the MIP community, the

constraint matrix is usually permuted to introduce randomness.

3.1.2. Statistically rigorous report. Due to the variation in measured execution times,

repetitions are necessary in order to generate statistically valid results. It is also crucial to minimize

the cost of total experiment time while maintaining the rigorous and reproducible results.

Two level repetition experiment, which contains an execution/run level and an iteration level,

has been used in literature [KJ13, HB15, BHT17]. One run/execution consists of one or more

iterations, and each iteration gives a number/measurement. There is no standard guideline on how

to choose the number of repetitions in the two levels and how to analyze gathered measurements

[BHT17,GBE07]. Although there is no standard guideline on choosing the number of repetitions,

providing and possibly reasoning about the detailed information on the number of repetitions

are useful for other researchers to evaluate reproducibility of its work. In [KJ13], the authors

introduced a general guideline to determine the number of repetitions needed in each level for the

fixed platform and benchmark in their experiment. The recommended numbers of repetitions play

an important role in terms of reproducibility. The idea in [KJ13] is to run an initial experiment
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and use the collected data to determine the number of repetitions needed based on the variation in

each level. The numbers of repetitions for the given benchmark and platform serve as the cookbook

for other researchers to reproduce results and save excessive experiment time. The paper also gives

recommended iterations for the hardware to reach the “stable state” in their experiment. The

stable state in their experiment generally means that the gathered measurements have relatively

small variance. However, waiting for the hardware to reach the “stable state” can be unrealistic,

if it is already expensive to gather a single measurement, or simply the experiment times out. The

measured execution times in this paper [KJ13] are very small, so it is not time/resource consuming

to run an initial experiment and wait for the stable state. If gathering a single measurement is very

expensive, the authors in [HB15] suggest to use only one iteration in each execution/run. In one

execution, sequential analysis can be used to dynamically decide the number of iterations needed.

The idea of sequential analysis is minimizing the experiment cost while keeping results statistically

reliable. We will elaborate on the sequential analysis in Section 3.5.

The gathered execution times of the same instance have variance due to random errors. In

practice, it is impossible to know the exact distribution of the execution time. So researchers are

usually interested in the estimated value or confidence interval of the mean execution time. Two

important aspects in benchmarking papers are measuring execution times and detecting differences

in performance. These two aspects correspond to confidence interval and hypothesis testing in

statistics. Various methods of computing confidence interval and hypothesis testing have been used

in the benchmarking literature.

In terms of the computation of confidence intervals, researchers usually rely on the central limit

theorem and assume that the sample mean is asymptotically normal if the sample size is large

enough. The standard statistics textbook usually indicates that 30 is large sample size so that the

sample mean follows normal distribution approximately. The paper [GBE07] explained how to

compute the confidence interval of the execution times with different samples size and how to use

Analysis of Variance (ANOVA) to compare more than two alternatives in terms of performance.

Here we introduce an evaluation in [BHT17] showing that using different analysis strategies

may lead to different or even strange conclusions. Suppose for a fixed instance, there are n repeti-

tions in the execution level and m repetitions in the iteration level. Specifically, we begin gathering

execution times by running the instance m times, and we repeat the process n times. Then we get n

groups of measurements {x1
1, x

1
2, ..., x

1
m}, {x2

1, x
2
2, ..., x

2
m}, ..., {xn1 , xn2 , ..., xnm}, where the superscript
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represents repetitions in execution level and subscript represents repetitions in iteration level. The

authors in [BHT17] used three commonly used strategies for picking samples to perform statistical

analysis. One strategy considers all measurements {xij : ∀i, j} as a whole (called “merged”), one

strategy takes the mean of every execution {AV Gj(xij) : ∀i} (called “means”), and another strategy

takes one measurement (max/min/first/random) in every execution, for example {minj(x
i
j) : ∀i}

(called “one sample”). The authors evaluated confidence interval computations in four benchmarks

in terms of the three analysis strategies. The evaluation is based on the probability of the computed

confidence interval containing the true mean value. The true mean value x̄ is defined to be the

average of all measurements, i.e. x̄ =
∑

i,j xi,j/(mn). The probability computation is one Monte

Carlo simulation which follows a bootstrap idea. Each time one confidence interval is computed

using by the stats.t.interval method of the SciPy package, based on one random sampling with

replacement. The probability is computed by counting how many times the computed confidence

interval contains x̄. It is discovered that the confidence interval from the merged method has

high probability to miss the true mean in three benchmarks out of four, and the one sample and

means methods may still give bad confidence interval which is likely to miss the true mean in one

benchmark.

One common mistake in statistical analysis is applying the central limit theorem without check-

ing the normality assumption. One example is illustrated in paper [HCA15]. In their experiment,

the authors first gathered a large number (10000) of run-times of a program, and observe that the

distribution of the 10000 measurements has two distinct peaks. Then the authors wanted to check

how large the sample size can make the sample mean to have a normally distributed behavior.

After random sampling with different sample size and plotting the distribution of the sample, the

authors observed that the distribution of sample means with sample size 30 still has two distinct

peaks, and at least 500 sample size is needed for a normal distribution. Most statistics textbooks

assume that size 30 is large enough for the sample mean to obtain the normal distribution, but

the experiment in [HCA15] shows that researchers need to check normality assumption before

applying the central limit theorem.

The authors in [VK12] claimed that in the computer science field the execution time mea-

surements do not follow the normal distribution. Their reason is that the random error can add

much more on the execution time than reduce, therefore the actual distribution observed is usually

skewed to the right. Another common assumption in the statistical study, like in the central limit
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theorem, is the independent sampling. This assumption is usually not true in measuring execution

times. Experimenters usually run the same instance multiple times consecutively. Due to complex

programming language structure like cache, memory and garbage collector, it is difficult to reason

that the previous run is independent from the following run. Non-parametric testing is consid-

ered robust for unknown type of distributions. Bootstrap [DE96] is an important non-parametric

method widely used without the normality assumption.

There are several works comparing parametric and non-parametric methods in statistical analy-

sis. The paper [BHT17] evaluates the Welch’s t-test, Mann-Whitney U-test, as well as confidence

interval overlapping. The first one requires the normality assumption and is used to determine

whether two normal distributions have the same mean. The second one (also called Wilcoxon test)

is a non-parametric hypothesis testing that is used to determine whether both distributions are

the same. The authors used a Monte Carlo simulation to show that applying parametric and non-

parametric methods can lead to different results and both can produce bad results. The authors

in [RG04] used a Monte Carlo simulation to test various parametric methods and non-parametric

methods regarding hypothesis tests of equal mean or equal variance. They observed that paramet-

ric statistical analysis is in general robust and only in few cases, the non-parametric Wilcoxon test

has significantly better performance than other parametric methods. They claimed that the sample

mean still follows the asymptotic normal distribution, so the standard statistically analysis can still

provide important justification though the normality assumption and independent sampling may

not hold. From the previously mentioned two papers, we can see that statistical methods play an

important role in the data analysis quality, but the quality is also dependent on the actual data.

For some data multiple statistical methods have robust results, whereas certain method needs to

be used for some other data.

To measure the speedup of a new system/algorithm, researchers usually perform statistical

hypothesis testing to detect the difference between new and baseline systems/algorithms. The

ratio between execution times of two systems has also been used to verify speedup. Different

aggregation functions have been used to estimate the ratio. The paper [LJ04] proposes a method

to compute a confidence interval for the ratio by using (arithmetic) sample mean and sample

variance while assuming approximately normal distribution. On the contrary, the authors in another

paper [Mas04] claim that it is not fair to use arithmetic mean for the ratio, and the geometric

mean should be used instead.
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Besides mean and variance, the other two moments skew and kurtosis can also be computed

to check whether the distribution is normal [Mas04]. If the skew is negative (or positive), then it

suggests that the distribution has a long tail to the left (or the right). A positive kurtosis usually

means that the samples cluster around the mean more compared to the normal distribution. A

strongly positive kurtosis could be resulting from correlated samples.

3.1.3. Non-proprietary work. Proprietary source code and data is inconvenient for other

researchers to repeat the experiment and produce reproducibility study, and the source code, in-

cluding the input test cases, the scripts and the data, is encouraged to be made open-sourced

[VK12,RHGM18]. The paper [VK12] also suggests that the computer science community should

encourage researchers to publish reproducibility study of others’ work, and the journal editors

should accept such work no matter whether the reproducibility study supports the original paper

or not. The authors in [VK12] believe that such encouragement and culture change can foster

the reproducibility study and on the other hand lead researchers towards publishing reproducible

papers.

In the artificial intelligence research field, researchers are studying various AI systems and trying

to understand them better. A closed-source AI system simply serves as a “black-box” system and

its algorithm or implementation doesn’t provide any insight, if the licensor of the system keeps

all works proprietary [DSB17]. The authors in [DSB17] also explain the proprietary AI has

disadvantages on safety, trust, ethicality, and fairness. One challenge of the study of AI system is

the fact that it is difficult for other researchers to access the system due to the use of proprietary

data and the difference in computational power [EPS+18]. The use of proprietary data on the

training step makes it challenging to apply the system to users’ own prediction or classification

problems [Voo17]. Fortunately, in the AI community, many published research papers use well-

known databases (e.g. MNIST database) as their training data, which provides transparency at

least in the training step.

In a broader field of machine learning models, the paper [Rud19] suggests that black-box ma-

chine learning models should not be used in high stakes decision making. The authors in [Rud19]

summarizes several issues on using proprietary machine learning platform to solve practical prob-

lems, including criminal recidivism prediction, weather forecasting and medical diagnosis. The

issues include racial bias in recidivism prediction and bad prediction/diagnosis results in certain
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cases. The authors also pointed out that the proprietary machine learning platforms are busi-

ness models which make profits are not responsible for the quality of individual predictions, and

individual bad prediction/diagnosis could lead to dangerous results. On the other hand, the au-

thors worried that companies would not develop such machine learning technology if the platform

is forced to be transparent. In the paper [SBO+07], it is encouraged to share the full code of

the experiment in machine learning research. The authors believed that by keeping the code open-

sourced, it is beneficial for reproducibility, fair comparison with other methodologies, and discovery

of hidden tricks like a number of tuned functions that were not clearly documented in the original

work. They also thought that sharing the code can prevent the unsatisfactory debate about repro-

ducibility between the authors of the original work and other researchers trying to reproduce the

work, which is not uncommon especially in the natural science community.

The situation is trickier in the data mining field, especially when the data contains private

information. If such information is used, it is in general inappropriate to ask the authors to publish

data for reproducibility work. Many research papers in data mining focused on fields with a

large amount of confidential data and discussed how to maintain proprietary rights; see examples

like [DGB07,PBV08]. The paper [PT09] summarizes several ethical issues in data mining and

provided suggestions in customer, legal and business perspectives to foster customers’ trust and

maintain information quality while following legal private policy.

Nowadays, there is a trend of using online platforms (e.g. Github) to share open sourced codes

for benchmarking experiments. Here we explain two examples: github.com/h2oai/db-benchmark

and github.com/JuliaCI/BenchmarkTools.jl. The first repository does benchmark work for

database-operations like groupby and join. The repository has a clear documentation on how

to reproduce the benchmark and the benchmark is routinely rerun by its authors. The second

repository provides the framework of running reproducible benchmarks in Julia, and it can measure

execution times and memory used for certain Julia code blocks. Although these works are not too

complex and there is no publishing literature based on their repositories, they do provide good

examples on open sourced benchmarking codes. We recommend experimenters to utilize an online

platform and provide open source codes of their benchmark work, and it would be best to provide

the detailed documentation on how to reproduce the benchmark results in a file like README.md.
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3.2. Computation on time/resource sharing hardware

There are several works on the evaluation of the infrastructure for a HPC [SBZ+08,FMMS14].

The breakdown of execution time into computation, communication and I/O is studied [SBZ+08].

One pitfall in that experiment is the lack of statistical analysis. Only a single number of execution

time is reported for each experiment. In [FMMS14], the authors propose a methodology for

evaluating how important elements can influence the execution times. Those important elements

(called Essential Elements of Analysis in their paper) include the class of real applications, the

problem size, the programming language, the breakdown of CPU, memory and I/O time. The

authors in [FMMS14] compute the 95% confidence interval based on 30 gathered measurements

for each instance. They reported that the confidence interval is very small, therefore only a single

number is reported for every instance.

Before starting an experiment, it is important for the researchers to identify important factors

which could influence the execution times. The paper [Lil05] discusses the source of errors in a

experiment, and we summarize the authors’ conclusions as follows. The errors in a time-sharing

system among multiple users could result from interrupts to service network interfaces, time-of-

day clocks, user interactions, cache misses, system exceptions, memory page faults and so on.

These errors can be classified into two main categories, systematic errors and random errors. The

systematic errors are usually considered to be “experimental mistakes” and tend to be invariant

across all measurements. So experimenters should try their best to eliminate the systematic errors.

On the other hand, random errors need not to be controlled by the experimenters since these

errors are unbiased, although random errors will still impact the precision of measurements in the

experiment.

In the paper [MF17], the authors propose a method trying to completely eliminate the system-

atic errors, given that the systematic errors are invariant across all measurements. For example,

certain execution time measurement uses functions like “get_current_time” or “initialize_

parameters”, and these functions could potentially result in systematic errors especially for mea-

suring small execution times. The proposed method in [MF17] uses a linear regression model,

trying to fit a linear function T = N ×Te+ ε, where N is a relatively small integer representing the

number of repetitions. The actual execution time Te is of interest, and the (invariant) systematic

error ε should be eliminated. After finding the solution of the least square problem (with outliers
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removed), the estimate value of Te and its confidence interval are obtained. The authors claim that,

compared with the conventional method which takes the mean of a large number of measurements,

the proposed method have better accuracy and lower variance given the same number of total

measurements.

Ideally, measuring execution times of a program should be done in a way that assures that

the program is the only one running on the platform. However, if the computation is done in a

time/resource sharing hardware such as a HPC, it is impossible to control the resource competition

caused by other programs of other users. We can still use the computational results to see how

the competitions of resources, like CPU or memory, can influence the measurements. The authors

in [FN95] examined how the resource consumptions can influence the runtimes in a resource sharing

platform, and they observed that the run time grew as the program requested more nodes for the

computation. In the high performance cluster we use, it is possible to assign priority to the jobs we

submitted. Since the computations with higher priority will be more competitive for the resource,

it is also possible to test the influence of different priorities to execution times.

In the paper [PVB+19], the authors propose a guideline consisting of several core principles

for performance evaluation in the cloud computation. A similar set of rules has also been proposed

for parallel computing systems [HB15]. Those principles can also be applied to the large scientific

computation in HPC, so we summarize them in the following paragraph. Note that some of the

principles have close relation to the reproducibility.

(1) Clear documentation.

Researchers should have a clear goal before the experiment. The setup of the exper-

iment need to be clearly documented. The setup should include hardware and software

information, environmental parameters, configurations, prerequisite and external depen-

dencies. It would be best to show how to reproduce the results step by step, even it is

only for a naive instance.

(2) Meaningful metric.

The measured metrics should be meaningful and simple enough for readers to under-

stand. Usually the community has its own standard metric for performance evaluation.

In certain rare cases, the reason for choosing a different metric needs to be addressed.

(3) Repetition.
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The experiment which gathers measurements (e.g. execution times) is expected to be

run for multiple times by the original experimenters. This principle at least makes sure the

benchmark work is reproducible by the experimenters themselves. The repetitions may

occur in different levels, and the experimenters should decide the number of necessary

repetitions and describe the number clearly in the documentation.

(4) Statistical analysis.

The aggregated value, the confidence interval, p−value, assumptions, and other appli-

cable and important results should be reported. Even if the confidence interval is very

small, it is still valuable to report it and show that the variance of the experiment is small.

In terms of the assumptions, do not use normal assumptions without normality check. If

the community doesn’t have a standard method to compute one aggregated value, it is

suggested that arithmetic mean should be used for summarizing execution times, harmonic

mean for rates and geometric mean for ratios. There are parametric and non-parametric

methods to compute, for example, confidence intervals, it is best to describe the function

used for the confidence interval computation. In cases where there are more than one

available analysis method, some reasoning on why certain methods are chosen is always

recommended.

(5) Trade-off.

The cost for the experiment should also be included to see the trade-offs. It is in

general not ideal to get 10% execution time speedup but consume 10X more resource.

The cost may require different statistical analysis strategy, for example the 99% quantile

of system latency may be more useful compared with the mean value. Again, the method

for computing one aggregated value of the cost should also be stated clearly.

(6) Open Source.

It is understandable that proprietary data is more appropriate in certain cases due to

privacy or profit reasons. Under certain regulations, researchers are encouraged to make

the experiment available to the scientific community, including source code and experiment

data. If an open sourced experiment link/website is provided, it should stay valid and well

maintained for a long enough period of time for other researchers to do reproducibility

studies. An open source license is commonly used to protect contributors and users.
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3.3. Evaluation of reproducibility

Here we evaluate a well known benchmark in the mixed integer programming community: MI-

PLIB 2017 [mip18] based on the six principles in Section 3.2. MIPLIB is a library of mixed integer

programming test cases which are tested on multiple optimization solvers, including both open-

sourced and commercial ones. MIPLIB 2017 is the sixth generation of MIPLIB library which was

firstly created in 1992. The benchmark set consists of three categories of mixed integer program-

ming problems: easy, hard and open problems. Easy problems can typically be solved within one

hour, hard problems takes longer time to solve or with a specialized algorithm, open problems are

not solved to optimality or even can’t prove or disprove feasibility. We evaluate MIPLIB 2017 as

follows.

(1) Clear documentation.

Overall MIPLIB 2017 has a clear documentation. The key component in the documen-

tation is the instance selection methodology. The instances in the MIPLIB library serves

as a standard library to test robustness of various optimization solvers. The method to

select all instances is explained in detail in the MIPLIB 2017 website [mip18]. First about

5000 test cases are collected from the contributors around the world and previous MIPLIB

libraries. The selection methodology is based on constraint and variable features so that

the instances can best represent today’s MIP instances. Every test instance has a unique

instance name. After trivial presolving, the instance statistics including the size and class

of constraints are recorded.

(2) Meaningful metric.

In MIPLIB 2017, for every combination of an instance and an optimization solver, the

performance metric is the solving time, which is standard in the optimization community.

If one instance cannot be solved within the given time limit, the solving time is recorded as

the time limit. The shifted geometric mean is the standard metric in the MIP community

to measure the solver performance. The shifted geometric means are reported in MIPLIB

2017 for all measured solvers.

(3) Repetition.

Based on the documentation of the source code in MIPLIB 2017, the number of repeti-

tions can be specified by the user when reproducing the benchmark experiment. However,
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every solving time reported in the MIPLIB 2017 website is based on one single solve

without repetitions.

One possible pitfall in the MIPLIB library or in general optimization community is

the lack of repetition. Although it is possible to solve certain easy problems multiple

times to get more accurate solving time, the interesting cases researchers care about are

usually hard and open problems. The fact that, these problems either take a very long

time to solve or are currently unsolvable, makes repetitions either extremely inefficient or

completely useless. In the MIP community, the shifted geometric mean is computed for

the entire benchmark set. Therefore, even if some instances’ solving times are outliers, the

performance metric will not shift too much.

(4) Statistical analysis.

Based on the documentation of the source code in MIPLIB 2017, certain aggregation

function is used to compute a single value as the solving time, if there are multiple repeti-

tions. However, due to the author’s limited knowledge of AWK, it is unclear to the author

what aggregation function is used.

(5) Trade-off.

In the optimization community, the solving time is of interest while the memory usage

is usually not as important. In MIPLIB 2017, there is no such tradeoff discussed.

(6) Open Source.

In terms of the source of code and data, the website of MIPLIB 2017 provides down-

load links for all test instances, scripts, solutions and data. The website is trying to be

transparent from instances selection to scripts and data of the experiment, which is both

beneficial and encouraging for researchers to perform reproducibility studies. The website

is also consistently updated to indicate improvements including less solving time, first fea-

sible solution, better feasible solution, provable optimal solution, or provable infeasibility.

Thus, an open problem can be changed to an easy or hard problem due to researchers’ ef-

fort. The success of the MIPLIB library is due to a large number of contributions from both

researchers and optimization solver companies, and such extensive collaboration wouldn’t

be efficient if the work was kept proprietary. In term of the license, there is no open source

license associated with the MIPLIB library.
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3.4. Statistical foundation

In this section, we review technical details of several statistical methods which are commonly

used in analyzing the gathered measurements. Some statistical methods are applied to our bench-

mark experiment data, and we will report computational results in Section 3.7. The statistical

results in this section are not new results, they can usually be found in standard probability or

statistics text book, if reference is not provided.

Suppose that the random variable X represents the execution time of some program. The

population mean (or true mean) of X is the expectation of X denoted by E[X]. We usually use

µ to denote the population mean of X. The sample mean, denoted by x̄, is an estimate of the

population mean E[X]. The sample mean is a point estimation of the population mean, whereas

the confidence interval is an interval estimation of the population mean.

One important theorem in statistical analysis of benchmark works is the central limit theorem,

which can be used to approximate the population mean with unknown or complicated distributions,

given the sample size is large enough. The theorem can also be used to compute the confidence

interval of the population mean. We include the formal theorem here which can be found in any

standard probability textbook.

Theorem 3.4.1 (Central Limit Theorem). Given X1, X2, ..., Xn are i.i.d. random variables with

mean µ and finite variance σ2, then the random variable
√
n (

∑n
i=1Xi
n −µ) converges in distribution

to the normal distribution N(0, σ2).

3.4.1. Check normal distribution. A large number of statistical analysis methods require

normality assumptions. Before applying any rigorous analysis, it is important to verify that the

normality assumption holds, if required [GZ12]. Given a set of measurements, quantile-quantile

plot (Q-Q plot) is a graphical method to quickly observe whether the measurements come from

a normal distribution. The Q-Q plot is a scatter plot containing the points (xi, yi), where xi is

the i% percentile of the Gaussian distribution and yi is the i% percentile of the measurements.

Typically i ranges from 1 to 99. If the scattered points appear in a straight line, then it is likely

that the measurements come from a normal distribution. Otherwise, the normality assumption

may not hold and statistical analysis methods that do not require normality assumptions should be

used. Suppose all measurements are divided into different groups, the mean in each group is called

the batched mean value. For skewed distribution, batched mean values are approximately normal
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distributed theoretically by the central limit theorem. Nevertheless it is necessary for researchers

to check that the batch size is large enough such that batched means are indeed approximately

normal using Q-Q plot [HCA15].

3.4.2. Confidence interval computation. The confidence interval for the population mean

is a range of values which has a given probability of containing the actual value. We explain the

most commonly used method as follows.

If the number of measurement is large, usually at least 30, the sample mean can be well ap-

proximated by a normal distribution. Specifically, suppose we have n measurements {x1, x2, ..., xn},

which are independent and follows some distribution with mean µ, and variance σ2. Based on the

central limit theorem, the sample mean x̄ approximately follows a normal distribution with mean µ

and variance σ2

n . We are aimed at finding an interval [c1, c2], such that the probability of the actual

mean value being included in the interval [c1, c2] is 1 − α. The typical values of α are 0.1, 0.05 or

0.01. The interval [c1, c2] is called the confidence interval for the mean value x̄ with significance

level α and confidence level 1− α.

To calculate the confidence interval [c1, c2], we first need to normalize x̄. Let z = x̄−µ
σ/
√
n

, and

assume z follows the standard Gaussian distribution, which is the special normal distribution with

mean 0 and variance 1. Given the significance level α, we can find one z-score z1−α/2, such that

P (z ∈ [−z1−α/2, z1−α/2]) = 1− α. We can translate the probability to

P
(
µ ∈

[
x̄− z1−α/2

σ√
n
, x̄+ z1−α/2

σ√
n

])
= 1− α.

However, the standard deviation σ is usually unknown, so we use the sample standard deviation

s =
√∑n

i=1(xi−x̄)2

n−1 to approximate σ. Therefore, the confidence interval for the actual mean µ is

[x̄− z1−α/2
s√
n
, x̄+ z1−α/2

s√
n

].

On the other hand, if the number of the measurements is small, for example less than 30, then

the normalized value z follows the t distribution with n − 1 freedoms. The confidence interval

can be computed analogously. Specifically [x̄ − t1−α/2,n−1
s√
n
, x̄ + t1−α/2,n−1

s√
n

] is the confidence

interval of the actual mean with confidence level 1−α, where t1−α/2,n−1 is the critical value of the

t distribution with n− 1 freedoms.

3.4.3. Hypothesis test. In a hypothesis testing, there are two mutually exclusive hypotheses.

One hypothesis is called the null hypothesis, and the other one, which is usually the negation
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of the null hypothesis, is called the alternative hypothesis. Hypothesis testing uses the current

observations to decide whether there is enough evidence to say the null hypothesis is false and

therefore accept the alternative hypothesis, under a given significance level α which is usually 5%.

The intuition of hypothesis testing is that the event with low probability is unlikely to happen. The

lower the probability is, we are more confident that the event will not happen. The key element in

hypothesis testing is the test statistic. The test statistic is a random variable which is calculated

by sample data and it follows a known distribution under null hypothesis. The distribution of the

test statistic is used to calculate the probability of the occurrence of current observations against

the alternative hypothesis. The calculated probability is called the p−value. If the p−value is less

than the significance level, then it is unlikely that our assumption is true so we reject the null

hypothesis. Of course the event with low probability may happen and thus we may make a wrong

decision to reject the null hypothesis, but the probability of mistakingly rejecting null hypothesis

(Type I error) does not exceed the significance level.

Note that the null hypothesis and the alternative hypothesis are not in symmetric positions.

Usually the null hypothesis contains some “equal” relation which makes it easier to compute the

distribution and probability under the null hypothesis. The significance level only controls the

probability of mistakingly rejecting the null hypothesis, and it has no control of mistakingly not

rejecting the null hypothesis (Type II error).

Here we explain two types of hypothesis testing. First type of hypothesis testing is regarding

whether one group of samples is from a given distribution or two groups of samples are from the

same distribution. Second type is to determine whether two groups of samples have equal variance.

The Kolmogorov-Smirnov test (K-S test) is a hypothesis testing, aimed at deciding whether

samples are drawn from a specific distribution (called one sample) or two groups of samples are

drawn from the same distribution (called two samples). The idea of K-S test is based on the

cumulative distribution function (CDF), and the test statistic used in the hypothesis testing is the

maximum distance of two cumulative distribution functions. We only explain the one sample K-S

test since it can be applied to test goodness of fit [MJ51], i.e. determine whether the running

time distribution follows a given distribution. The two sample K-S test is similar, where one actual

distribution is replaced by an empirical cumulative distribution function. Suppose {x1, x2, ..., xn}

is one group of samples and function F (x) is the CDF of the tested distribution. First define the
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empirical cumulative distribution function (ECDF) of the sample to be

Fn(x) =
1

n

n∑
i=1

I[−∞,xi]x.

The test statistic is Dn = max |Fn(x) − F (x)|, which has the property that
√
nDn converges to

Kolmogorov distribution in probability. If Dn is greater than the critical value in the K-S table for a

given the significance level, then the null hypothesis is rejected. Note that in order to apply the K-S

test, the tested distribution must be continuous and fully specified. If the distribution parameters

are unknown and must be estimated from the data, then the original K-S test is conservative to

reject the null hypothesis. There are works for modified K-S tests for distributions with estimated

parameters, and critical values are recomputed [ESP88,WMDC83,Lil67].

Mann–Whitney–Wilcoxon U-test (MWW test) is a non parametric test which is used to deter-

mine whether two groups of samples are drawn from the same distribution. Given that samples

{x1, x2, ..., xn} are drawn from one distribution and samples {y1, y2, ..., ym} are drawn from the

other distribution, and the null hypothesis is that these two distributions are the same. For every

pair of (xi, yj), we compare whether xi is greater or yj is greater. Let Ux be the total number of

pairs where xi is greater and Uy be the total number of pairs where yj is greater. Observe that

Ux + Uy = nm. If the null hypothesis is true, then intuitively we can guess that Ux and Uy are

roughly the same. If one of Ux or Uy is close to 0, then it is likely that the null hypothesis is false.

The critical value of the fixed sample size n,m and the fixed significance level α can be found in the

Mann–Whitney table. If the sample size is large enough, then the statistic U = min(Ux, Uy) can

be approximated by a normal distribution with mean nm
2 and variance nm(n+m+1)

12 under the null

hypothesis. Then the corresponding p-value can be computed based on the approximated normal

distribution.

Levene’s test and Bartlett’s test can be used to test whether two or more groups of samples

have equal variance. We explain the details of these two tests and apply them to test whether CPU

time and wall clock time have equal variance in the Section 3.7.

In Levene’s test, the null hypothesis is that k groups of samples have equal variance and the

alternative hypothesis is that there exist two groups of samples with different variance. Suppose

there are Ni data points in the i−th group, and Yij is the j−th data point in the i−th group. We
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abuse the notation j to index data points in every group, although the sample size may differ. The

test statistic is defined as

W =
N − k
k − 1

∑k
i=1Ni(Z̄i. − Z̄..)2∑k

i=1

∑Ni
j=1(Zij − Z̄i.)2

.

In the above formula, N =
∑k

i=1Ni, Zij = |Yij − Ȳi.| where Ȳi. is the mean of Yij in the i−th

group, Z̄i. is the mean of Zij in the i−th group, and Z̄.. is the mean of all Zij . The statistic W

approximately follows the F distribution with k − 1 and N − k as degrees of freedom. If W is

larger than the critical value with corresponding significance level α, the null hypothesis is rejected.

Modifications of Levene’s test are studied, and median or trimmed mean is used in the definition

of Z variables instead of mean in [BF74].

Bartlett’s test serves the same goal as Levene’s test, but Bartlett’s test only works for distribu-

tions which do not depart from normality much. Using the same notation as in Levene’s test, the

test statistic in Bartlett’s test is defined to be

(N − k) log(
∑k

i=1(Ni − 1)s2
i /(N − k))−

∑k
i=1(Ni − 1) log s2

i

1 + [(
∑k

i=1 1/(Ni − 1))− 1/(N − k)]/(3k − 3)
.

The value s2
i is the sample variance in the i−th group. The statistic T follows the Chi-square

distribution with k− 1 degrees of freedom. If T is larger than the critical value with corresponding

significance level α, the null hypothesis is rejected. Note that Levene’s test works for a broader

distribution family and therefore is more conservative than Bartlett’s test.

3.4.4. Linear regression. Inspired by [MF17], whose authors used a linear regression model

to eliminate the system errors, we introduce the basic knowledge of linear regression model and

how to compute the confidence intervals of the coefficients of parameters.

If the execution time of a single run is too short to measure directly, the cumulative execution

time of multiple runs can be considered. A linear regression model is used in [MF17] to compute

the confidence interval of the single run execution time. Based on their simulation, it is shown that

the linear regression model has better performance than computing the confidence interval directly

from a set of gathered single run execution times.

Given a set of observations (yi, xi) where i = 1, 2, ..., n, suppose we know the pair (y, x) satisfies

some theoretical linear relation y = ax+ b, and the goal is to compute the coefficients a, b based on
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observations. The best estimates of a, b are trying to fit a line to these data points. The objective

is to minimize the error in the L2 norm.

min
a,b

n∑
i=1

|yi − axi − b|2

A closed formula of the optimal slope and intercept value can be found.

a∗ =

∑n
i=1(xi − x̄)(yi − ȳ)∑n

i=1(xi − x̄)2
.

b∗ = ȳ − a∗x̄.

The optimal values a∗, b∗ only give scalar estimates. Due to the randomness in the measure-

ments, we can also find the confidence interval of the slope and intercept. Suppose the error follows a

normal distribution with mean 0 and variance σ2. Define the mean square error MSE =
∑n
i=1(yi−ȳ)2

n−2

which is an unbiased estimate of σ2. It can be shown that a−a∗√
MSE/

∑n
i=1(xi−x̄)2

and b−b∗√
MSE/n

both

follow a student t-distribution with n−2 freedoms. Therefore, given a confidence level 1−α, the con-

fidence interval of the slope value a is [a∗−t1−α/2;n−2×
√

MSE∑n
i=1(xi−x̄)2

, a∗+t1−α/2;n−2×
√

MSE∑n
i=1(xi−x̄)2

],

and the confidence interval of the intercept b is [b∗ − tα/2;n−2 ×
√

MSE
n , b∗ + tα/2;n−2 ×

√
MSE
n ]. If

n is large enough, then t1−α/2;n−2 can be approximated by z1−α/2.

3.4.5. Bootstrap. In terms of execution times, the actual distribution is unknown and dis-

tribution type needs to be specified in a parametric analysis. Bootstrap is a widely used non

parametric method, which doesn’t have a specified distribution with parameters (e.g. normal dis-

tribution). In this subsection, we briefly explain how to use bootstrapping to compute confidence

interval of the mean and hypothesis testing for determining whether two groups of measurements

have the same mean.

Given a set of measurements {x1, x2, ..., xn}. Suppose we are aimed at computing the confidence

interval with 95% confidence level. Each time we randomly draw n measurements with replacement

and compute the mean, denoted by x̄∗i . Usually this process is done N times with N >> n. The

gathered mean values set M = {x̄∗1, x̄∗2, ..., x̄∗N} is considered as an empirical distribution of the

mean. Then [Q0.025, Q0.975] is called the percentile bootstrap confidence interval where Q0.025 and
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Q0.975 are the 2.5% and 97.5% percentile of the set M . The other interval [x̄−Q0.975, x̄−Q0.025] is

called the basic bootstrap confidence interval, where x̄ is the mean of the original n measurements.

Suppose we want to figure out whether one algorithm is faster than the other algorithm when

solving a problem. For each algorithm, we gather the executions times with multiple runs. Let

{x1, x2, ..., xn} be the solving times for one algorithm and {y1, y2, ..., ym} be the solving times for

the other algorithm. We are aimed at using hypothesis testing to determine whether these two

algorithms have the same mean. Let x̄, ȳ and σ2
x, σ

2
y be the sample means and sample variances of

the measurements in the two algorithms. Without loss of generality, we assume x̄ > ȳ. Compute

the statistic

t =
x̄− ȳ√
σx
n +

σy
m

.

We want to compute the p−value under the null hypothesis. First we need to normalize the

values so that they meet the null hypothesis, i.e. have the same mean. Define x′i = xi − x̄+ z̄ and

y′j = yj− ȳ+ z̄, where z̄ is the mean of all xi and yj . Each time we randomly draw n measurements

from {x′1, x′2, ..., x′n} and m measurements from {y′1, y′2, ..., y′m} both with replacement, and repeat

for N times. Compute the statistic

tk =
x′(k) − y

′
(k)√

σx(k)
n +

σy(k)
m

, k = 1, 2, ..., N.

In the above formula, x′(k), x
′
(k) and σ2

x(k), σ
2
y(k) represent the means and variances of the kth

sampling. The empirical distribution of the statistic t is just {t1, t2, ..., tN}. The p-value is computed

as

∑N
k=1 I{tk > t}

N
.

For instance, 5% significance level is given. If the p-value is less than 5%, then we reject the

null hypothesis and determine that there is enough evidence to believe that the actual mean of xi

is larger than the actual mean of yj .
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3.5. Stopping rules

The sequential stopping rules are designed to determine when collected data is sufficient for

research goal and the collection of data can stop. Some data is expensive to collect both in time

cost and financial cost. In the clinical research field, it is ideal to draw a conclusion with minimum

number of samples prepared in order to save cost [HP88]. A more general optimization is using

a so-called loss function, which is usually defined to be L = w × var + c × n. In the loss function

definition, n is the sample size, var represents some type of sample variation (for example the

sample variance), c is a constant defining the cost of draw one sample, and w represents the weight

of variance. Given w and c, the optimization problem is to minimize the loss function, and such

study is under the name of minimum risk point estimation problem. The loss function has been used

in the sequential stopping rules for estimation of the mean [CM+82]. Besides estimation of the

mean, the estimation of coefficient of variation is also studied using a sequential method [CK16].

We do not elaborate on the minimum risk point estimation problem, instead we refer interested

readers to studies with different distribution assumptions: normal distribution [Sta66], exponential

distribution [SW72], Poisson distribution [Var79], and distribution free [CY+81,GM79].

Confidence interval procedure is another important topic besides point estimation. The general

stopping rules are based on the quality of computed confidence interval. Specifically, the collection

of data ends when the confidence interval is small enough. There are two senses of the “smallness”,

absolute precision and relative precision. Suppose the confidence interval of the (positive) mean is

[µ− ε, µ+ ε]. If absolute precision δ is used, then stop collecting if ε < δ. If relative precision δ is

used, then stop collecting if ε < δµ. Generally it requires larger sample size to achieve results with

higher quality. However, certain stopping rules may have early stopping in some instances even

with small precision, for example the first few data are very close to each other by chance. But

early stopping has an issue that it can have overall bad coverage [LK82], meaning the confidence

interval has high probability to miss the true mean. Therefore, it is best to use a so-called pilot

phase to gather a minimum number of data points [Sin14,LK82].

The most common method to compute confidence interval is based on the normality assumption,

and we have explained the detail in Section 3.4. There is also research on confidence interval

procedures with other skewed distributions. We focus on the lognormal distribution, based on

which we will explain one stopping rule for our benchmark experiment in Section 3.7. Different
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methods of confidence interval computation for lognormal distribution can be found in [Ols05]. We

summarize one method here known as Cox’s method. Suppose samples {x1, x2, ..., xn} are drawn

from a lognormal distribution and {y1, y2, ..., yn} are log-transformed data, i.e. yi = log xi. The

goal is to estimate the mean (namely θ) of the lognormal distribution. The interval [ȳ + s2

2 −

z1−α/2

√
s2

n + s4

2(n−1) , ȳ + s2

2 + z1−α/2

√
s2

n + s4

2(n−1) ] is one confidence interval for log θ, where ȳ and

s2 are the sample mean and sample variance of the transformed data yi. The value z1−α/2 is the

two sided critical value of the standard normal distribution, i.e. P (−z1−α/2 ≤ X ≤ z1−α/2) = 1−α

with X standard normal distribution. The confidence interval of the parameter θ can be found by

anti-log transformation. Specifically, the interval

[
exp(ȳ +

s2

2
− z1−α/2

√
s2

n
+

s4

2(n− 1)
), exp(ȳ +

s2

2
+ z1−α/2

√
s2

n
+

s4

2(n− 1)
)
]

(3.1)

is the confidence interval with confidence level α. Note that the point estimation of the mean is

exp(ȳ + s2

2 ) which is not the midpoint of the confidence interval. To compute the half width of

the confidence interval, choose the right (and larger) half interval, i.e. [exp(ȳ + s2

2 ), exp(ȳ + s2

2 +

z1−α/2

√
s2

n + s4

2(n−1))]. By a straightforward calculation, the claim that the confidence interval (3.1)

has relative precision δ is equivalent to the following inequality

z2
1−α/2(

s2

n
+

s4

2(n− 1)
) ≤ log2(1 + δ).(3.2)

The sequential analysis on estimation of the mean of lognormal samples are studied in [Nag80,

Zac66]. The authors proposed stopping rules such that the point estimation θ̂ has predefined

relative precision δ, i.e. P (|θ̂−θ| ≤ θδ) ≥ 1−α where 1−α is the confidence level. The two stopping

rules in these two papers are slightly different. In paper [Nag80], the collection of data terminates

if n ≥ χ2
1−α(1)δ−2s2(1 + 1

2s
2) where s2 is the sample variance of the log-transformed data and

χ2
1−α(1) is the critical value in chi-square distribution with degree 1, i.e. P (X2 ≤ χ2

1−α(1)) = 1−α

with X is standard normal distribution. In paper [Zac66], the author used log(1 + δ) instead of δ.

We prove that the stopping rules proposed in [Nag80,Zac66] are almost equivalent to the stopping

rule based on Cox’s method. To the best of the author’s knowledge, this “near equivalence” is a

new result.

Theorem 3.5.1. Given a sequence of i.i.d. random variables {Yn}, denote Ȳn to be the sample

mean and S2
n to be the sample variance of the first n random variables, i.e. Ȳn =

∑n
i=1 Yi
n and
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S2
n =

∑n
i=1(Yi−Ȳn)2

n−1 . Assume that there exist σ2 > 0 such that the sequence of random variables {S2
n}

converges pointwise to σ2, i.e. limn→∞ S
2
n = σ2. Given α ∈ [0, 1] and δ > 0, define two random

variables G(δ) = min{n : n ≥ χ2
1−α(1)δ−2S2

n(1 + 1
2S

2
n)} and H(δ) = min{n : z2

1−α/2(S
2
n
n + S4

n
2(n−1)) ≤

log2(1 + δ)} with α fixed. Then we have limδ→0
H(δ)
G(δ) = 1.

In Theorem 3.5.1, the pointwise convergence assumption on the sample variance S2
n is stronger

than convergence in probability, which can be derived from the central limit theorem under mild

assumptions. If Yi are i.i.d. random variables with mean µ and variance σ2 and the first four

moments exist, then the sample variance converges to σ2 in probability.

Proof. Note that Theorem 3.5.1 is a straightforward implication of the following Lemma 3.5.1.

We need to show that for any w in the probability space, limδ→0
H(δ)(w)
G(δ)(w) = 1, which is exactly the

claim of Lemma 3.5.1 when yn = Yn(w), minA(δ) = G(δ)(w) and minB(δ) = H(δ)(w). �

Lemma 3.5.1. Given a sequence {yn}, denote ȳn to be the sample mean and s2
n to be the

sample variance of the first n numbers, i.e. ȳn =
∑n
i=1 yi
n and s2

n =
∑n
i=1(yi−ȳn)2

n−1 . Assume there

exist σ2 > 0 such that limn→∞ s
2
n = σ2. Given α ∈ [0, 1] and δ > 0, define A(δ) = {n : n ≥

χ2
1−α(1)δ−2s2

n(1 + 1
2s

2
n)} and B(δ) = {n : z2

1−α/2( s
2
n
n + s4n

2(n−1)) ≤ log2(1 + δ)} with α fixed. Then we

have A(δ), B(δ) are both non empty and limδ→0
minB(δ)
minA(δ) = 1.

To prove Lemma 3.5.1, we first introduce the following Lemma 3.5.2.

Lemma 3.5.2. Given a sequence {yn}, denote ȳn to be the sample mean and s2
n to be the sample

variance of the first n numbers, i.e. ȳn =
∑n
i=1 yi
n and s2

n =
∑n
i=1(yi−ȳn)2

n−1 . Assume there exist a, b > 0

and n0 ∈ N, such that a < s2
n < b for any n > n0. Given α ∈ [0, 1] and δ > 0, let A = {n : n ≥

χ2
1−α(1)δ−2s2

n(1 + 1
2s

2
n), n > n0} and B = {n : z2

1−α/2( s
2
n
n + s4n

2(n−1)) ≤ log2(1 + δ), n > n0}. Then we

have A,B are both non empty and minA ≤ minB ≤ d b2
a2

minA(1− δ
2)−2e+ 1.
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proof of Lemma 3.5.2. We first prove B ⊂ A. For any n ∈ B, we have

z2
1−α/2(

s2
n

n
+

s4
n

2(n− 1)
) ≤ log2(1 + δ)

⇒ z2
1−α/2(

s2
n

n
+

s4
n

2(n− 1)
) ≤ δ2

⇒ z2
1−α/2(

s2
n

n
+
s4
n

2n
) ≤ δ2

⇔ z2
1−α/2s

2
n(1 +

1

2
s2
n)δ−2 ≤ n

⇔ n ≥ χ2
1−α(1)δ−2s2

n(1 +
1

2
s2
n).

The last step is from the definition of the chi-square distribution. Suppose random variable X

follows standard normal distribution then X2 follows the chi-square distribution with degree 1.

Then

P (X2 ≤ χ2
1−α(1)) = 1− α = P (−z1−α/2 ≤ X ≤ z1−α/2) = P (X2 ≤ z2

1−α/2).

Therefore χ2
1−α(1) = z2

1−α/2. Then B ⊂ A implies minA ≤ minB.

Next we prove the other inequality. Suppose n = minA, use the identity log(1 + δ) > δ − δ2

2 ,

then we have

n ≥ χ2
1−α(1)δ−2s2

n(1 +
1

2
s2
n)

⇒ n ≥ χ2
1−α(1)δ−2a(1 +

1

2
a)

⇒ b2

a2
n ≥ χ2

1−α(1)δ−2b(1 +
1

2
b)

⇒ b2

a2
n ≥ χ2

1−α(1)(1− δ

2
)2 log−2(1 + δ)b(1 +

1

2
b)

⇔ log2(1 + δ) ≥ z2
1−α/2(

b
b2

a2
n(1− δ

2)−2
+

b2

2× b2

a2
n(1− δ

2)−2
).

⇒ log2(1 + δ) ≥ z2
1−α/2(

b

d b2
a2
n(1− δ

2)−2e+ 1
+

b2

2× d b2
a2
n(1− δ

2)−2e
).

Let m = d b2
a2
n(1− δ

2)−2e+ 1, then from the previous inequality and s2
m < b we can conclude that

z2
1−α/2(

s2
m

m
+

s4
m

2(m− 1)
) ≤ log2(1 + δ),
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which implies that m ∈ B from the previous proof. Then we know minB ≤ d b2
a2
n(1 − δ

2)−2e + 1,

which concludes the proof. �

proof of Lemma 3.5.1. Since sample variance s2
n is bounded, it is not hard to see that both

A(δ) and B(δ) are non empty and limδ→0 minA(δ) = limδ→0 minB(δ) = +∞. From Lemma 3.5.2

we know that minA(δ) ≤ minB(δ). Therefore, we only need to show the following claim: for any

ε > 0, there exists δε, such that minB(δ)
minA(δ) < 1 + Cε holds for any 0 < δ < δε where C is a constant

independent of ε. Without loss of generality, we assume ε < σ2

2 .

For any fixed ε > 0, since the limit exists for s2
n, there exists nε >

2
ε such that σ2−ε < s2

n < σ2+ε

for any n > nε. Since limδ→0 minA(δ) = limδ→0 minB(δ) = +∞, there exist δε < min(1
2 , ε) such

that minA(δ) > nε and minB(δ) > nε for any 0 < δ < δε. Then we claim that minB(δ)
minA(δ) < 1+(3+ 32

σ2 )ε

holds for any 0 < δ < δε.

From 0 < δ < δε <
1
2 one can easily prove (1 − δ

2)−2 < 1 + 2δ by the Taylor expansion. From

Lemma 3.5.2 and the conditions on nε and δε, we know that

minB(δ)

minA(δ)
≤
d (σ2+ε)2

(σ2−ε)2 minA(δ)(1− δ
2)−2e+ 1

minA(δ)

≤
(σ2+ε)2

(σ2−ε)2 minA(δ)(1− δ
2)−2 + 2

minA(δ)

<
(σ2 + ε)2

(σ2 − ε)2
(1− δ

2
)−2 +

2

nε

<
(σ2 + ε)2

(σ2 − ε)2
(1 + 2δ) + ε

= (1 +
4σ2ε

(σ2 − ε)2
)(1 + 2δ) + ε

< (1 +
4σ2ε

(σ2 − σ2

2 )2
)(1 + 2δ) + ε

= (1 +
16ε

σ2
)(1 + 2δ) + ε

< 1 + 2δ + 2
16ε

σ2
+ ε

< 1 + (3 +
32

σ2
)ε.
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Since σ2 is a constant independent of ε, we can conclude that limδ→0
minB(δ)
minA(δ) = 1. �

To test the robustness and efficiency of a stopping rule in the computer science field, a com-

monly used method is the Monte Carlo simulation; see examples [BHT17, RG04]. We explain

how researchers perform such Monte Carlo simulation as follows. In every independent run of a

simulation, the proposed stopping rule is applied to a sequence of data which is randomly drawn

from a given distribution. Then robustness and efficiency are evaluated by computed confidence

intervals and final sample sizes from all independent runs. The percentage of independent runs

with confidence interval covering the true mean is called (simulation) coverage. The simulation

coverage is compared with the nominal coverage, which is the term referring to confidence level

set in the confidence interval computation, to determine the robustness. Ideally a robust stopping

rule has a coverage close to the nominal coverage. The final sample size can be used to measure

how efficiently the stopping rule works. It is best to achieve a good coverage with smallest final

sample size. In a real world experiment, the distribution is usually unknown and researchers will

pose certain distribution assumptions like normal distribution. If the coverage in the simulation is

far from nominal coverage or the average final sample size is much larger than the theoretical final

sample size, there is a large probability that the distribution assumption does not hold. In such

case, batched means can be used to approximate normal distribution [TSW10].

It is also possible that the stopping rule does not depend on any specific distribution (dis-

tribution free), for example [YH19]. In their paper five different distributions are tested on the

proposed stopping rule, and it worked well for four not too skewed distributions. The exception

is the lognormal distribution. Non parametric methods, such as bootstrap, can also be used in

the confidence interval computation. In the sequential iterated bootstrap method, there are two

levels of Monte Carlo simulation. In the inner level, confidence interval is computed by a standard

bootstrap method, while the outer level consists of independent runs. The major limitation of the

method is that it requires a large resampling size. There are studies trying to optimize the inner

level by combining the bootstrap technique and analytical estimations [DMY92,LY95,LY96].

A recent paper [CW20] investigated stopping rules for multiple algorithms applying to multiple

instances. The goal of the stopping rules is to determine when the collection of data terminates if

we are confident that different algorithms have different performance. This type of stopping rules

is based on ANOVA and hypothesis testing while the previously explained stopping rules are based
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on confidence interval. Although they are closely related, researchers should choose a proper type

depending on the aim of the experiment. If the aim is to accurately measure execution time, we

recommend to use a stopping rule based on confidence intervals. If the aim is to decide whether

different algorithms have the same performance, using ANOVA based stopping rules is preferred.

3.6. Organization of large scale computation

In our benchmark experiment, one goal of the computation is to compare several different

algorithms applied to hundreds of test cases. The details of those algorithms make it hard to

analyze the running time theoretically. For example, in some algorithms, heuristics are used with

branch and bound technique, and optimization solvers are also used to solve linear programs. The

use of heuristics and solvers makes the theoretical worst case time complexity of certain algorithms

extremely bad. However, by running several test cases on a personal laptop, we discovered that those

algorithms could outperform other algorithms which have guaranteed (quadratic) time complexity.

Therefore we need to prepare enough test cases in this benchmark work to test which algorithm is

more robust.

By testing a few hard cases in a laptop, we found that certain combinations of algorithms

and instances didn’t finish in 12 hours. The scale of the computation makes it impossible to

run a single notebook in a single computer because the overall computation time is too long. So

we decide to use the HPC to finish the benchmark work where we can utilize multiple nodes to

execute multiple programs simultaneously. The HPC we use is managed by the slurm manager.

A program will be automatically killed by the slurm manager when reaching the preset time limit

or running out of memory. After gathering all running times, Jupyter notebook can be used to

perform reproducible and reusable data analysis, including confidence interval, performance profile,

and visualization [Per18].

For benchmarking, it is ideal to wait until the machine reaches the “stable state” to begin the

actual measurement [KJ13]. However, sometimes this is practically impossible especially when the

program is executed in a platform with high resource sharing, like the HPC. If a single execution

takes a long time, then reaching to the stable state in a reasonable time is not practical. In our

benchmark work, we don’t wait for the stable state and we begin gathering measurements as soon

as the computational resource is acquired.
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In this section, we explain how we organize the benchmark experiment. We make our source

code and data1 available to all. The benchmark experiment was conducted in SageMath on the

Peloton cluster2, where each node has 64GB RAM, 2 sockets, 16 cores, and 32 threads running

Intel(R) Xeon(R) CPU E5-2630 v3 @ 2.40GHz.

3.6.1. Test cases. We write scripts to generate all test cases, which should be fixed throughout

the computation. For each test case, multiple different algorithms may be tested. We introduce one

unique key for every test case. The unique key of each instance is convenient for users to perform

reproducible data analysis in a Jupyter notebook.

3.6.2. Batching. It is ideal to have only one program measured at each node, since in this

way we can get rid of the caching/memory issue from previous computations. However, if the

actual measurement of a key takes little memory and time, the computation on the node can be

considered as a waste of resource. The worst scenario is that the whole computation seems like

just starting and exiting the software in all available nodes. In particular, starting and exiting the

software in many nodes frequently may cause I/O issues and is harmful for the whole cluster and

other user’s running programs.

In our benchmark work, we use one node to measure execution times and memory usage for a

single test instance and a single algorithm. We set the time limit to 1 hour and maximum memory

usage to 8GB for each node and we gather at most 30 measurements. For some small cases, the

total execution time would be very short but one node is occupied and released very soon. This “no-

batching” strategy does no harm to the precision of the measurement, but it inevitably introduce

a overhead to an overall computation time since in a HPC it needs some competitions to get access

to a node for the computation.

Once we have an initial experiment and get the approximated execution time for every com-

putation, one future step is to use a batching strategy to properly batch several instances to one

node and try to make the most of the (1 hour) time limit. We should be careful about the memory

used by previous computations, and it is necessary to use some kind of garbage collector in the

software to release memory. On the other hand, by reporting the memory usage in every repetition

the experiment itself can help to find memory leak problems in the software, if garbage collector

1Github repository: https://github.com/mkoeppe/jiawei-computations
2https://wiki.cse.ucdavis.edu/support/systems/peloton
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is used correctly. For example, it is reported that solving a mixed integer problem using certain

backends could cause memory leak problem3.

3.6.3. Data management. We store computation results using git submodule technique. In

the top level directory, we have all scripts to start the experiment and gather raw data, and it

also include a Jupyter notebook which explains how we perform data analysis. All raw data is

stored in a submodule included in the top level directory. Different branches of the submodule

correspond to different computational tasks. The submodule, which stores raw data, also include

another submodule which contains all necessary testing code. Every version of the computational

results corresponds to a version of the testing code, and the correspondence can be conveniently

seen in the git commit information. The testing code is continuously under development, so it is

easy to rerun the experiment to test speedup and store the new data in a new commit without

worrying about overwriting the old data.

We provide a detailed documentation about how to rerun the entire experiment in README.md.

Note that several prerequisite software need to be installed, including SageMath and some optimiza-

tion solver. The optimization solver needs to be accessible in SageMath. After all computations

finish in HPC, we create a git commit that adds the result files and push the submodule to the

remote. Then we can analyze data locally using the Jupyter notebook. The notebook serves as

a template which has instructions to query necessary data as well as visualization, like shifted

geometric mean table and performance profile plots. From the template, other users can perform

their customized data analysis.

The following diagram shows the structure the top level repository. Suppose testing code

submodule is the correct testing code version, a pseudo-experiment works as follows. The top

level repo exists in both HPC and the local computer. In HPC, use scripts to start the

experiment. Computations will update the raw data folder and cache the testing code ver-

sion in raw data version. After all computations finish, commit and publish the changes in

computational results submodule. In the local computer, pull the changes in computational

results submodule and use jupyter notebook to perform data analysis. Note that remote

computational results submodule only gets pushed from HPC and pulled to the local com-

puter, whereas scripts4 only gets pushed from the local computer and pulled to HPC. In this way

3https://trac.sagemath.org/ticket/21825
4The notebook will be pulled to HPC as well but it will never be used there.
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we have a clean data management which separates obtaining raw data and performing data anal-

ysis. If more than one version of raw data is needed, one can add more copies of computational

results submodule in the top level repo and checkout the desired branch/commit.

top level repo

scripts

jupyter notebook

computational results submodule

testing code submodule

raw data

raw data version

3.7. Computational results

3.7.1. Normality Assumption. We use Q-Q plot (Quantile-Quantile plot) to show whether

the measurements (CPU times) follow the normal distribution. In our experiment, we gather (at

most) 30 measurements for every instance and every algorithm. Some hard instances may have

fewer than 30 measurements or even no measurement, so we only pick a few small instances and

we plot the quantiles of the gathered 30 measurements with respect to theoretical standard normal

distribution. From Figure 3.1 we can see that some gathered measurements match with the normal

distribution while others show a tail to the right.

We computed skew and kurtosis for all 5616 computations with 30 measurements in our ex-

periment, about 74% cases have a positive skew which indicates a tail to the right, and about 65%

cases have a positive kurtosis which indicates samples are more clustered to the mean compared

to normal distribution. We also plot histograms of skew and kurtosis of the 5616 computations in

Figure 3.2.

3.7.2. Distribution fitting. Normal distribution is hardly the best match for the distribution

of CPU time. So the question is what family of distribution is a best/better fit. Since there are a

large number of distributions available and some may have many parameters so that overfitting can

occur, we only focus on some common distributions. We do not make a rigorous claim about what

CPU time distribution actually is, instead, we show evidences that there are other distributions

which could be a better fit.

We use the scipy.stats package to fit the data to various distributions, and use K-S test

to determine whether to reject the distribution with estimated parameters. For every given dis-

tribution family, there is a standard distribution. From the standard distribution, the function
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Figure 3.1. The Q-Q plots for cpu time measurements in eight randomly chosen
instances in computation of ∆π minimum. These eight instances are keyed extreme_

i for i ∈ {1, 3, 5, 7, 9, 11, 13, 15}.
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Figure 3.2. The left figure shows the skew distribution and the right figure shows
the kurtosis distribution.

scipy.stats.fit uses maximum likelihood estimation to compute the estimated location, scale

and shape parameters. The location parameter specifies the left and right shift of the PDF, and

the scale parameter specifies how to stretch the PDF. The shape parameters are other necessary

distribution parameters to determine the actual PDF. For example, in the normal distribution,

the standard Gaussian distribution is the standard distribution and the mean and variance can

be incorporated in the location and scale parameters respectively, so there is no shape parameter

in the normal distribution. After the fitting process, we use the function scipy.stats.kstest to

perform one sample K-S test for goodness of fit.

We still consider all 5616 computations with 30 measurements. One limitation of our distri-

bution fitting process is the sample size. Due to the current experiment design, where at most 30

measurements are collected, it is hard to claim that we have enough samples to distinguish different

distributions. We rather demonstrate one framework which uses the current data we have. The

same framework can be reused when the benchmark experiment is reproduced and more data are

collected. We use all default settings in scipy.stats.fit, meaning all location, scale and shape

parameters are estimated. Note that the fitting process can take a long time since some maximum

likelihood estimation does not have an analytical solution and slow convergence may occur. In

the K-S test we use 0.95 as the significance level. We include the distribution fitting results for

7 common distributions in Table 3.1. Some distribution families have no shape parameters while

other distribution families have one shape parameter. We observe that the lognormal, t and Cauchy

distributions have better fit than the normal distribution. Note that the t distribution is approxi-

mately equal to the normal distribution if the degree of freedom is large, so it is likely that the extra

shape parameter in the t distribution lead to the better fitting power. It is interesting that the
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Table 3.1. Goodness of fit for various distributions

normal lognormal t Cauchy exponential Chi Chi squared
parameters 2 3 3 2 2 3 3

rejection rate 27.58% 21.03% 12.02% 11.89% 53.01% 55.02% 94.62%

Cauchy distribution also has a good fitting result while it only has location and scale parameters.

However, it is known that no moment exists for the Cauchy distribution. Modifications like the

truncated Cauchy distribution are needed if the mean is of interest, which is out of the scope of

the dissertation.

3.7.3. Stopping rules. In this subsection, we investigate sequential stopping rules which can

be applied to our benchmark experiment. Note that in our current experiment, which can be

reproduced by using the Github repository, we do not use any stopping rules. Instead, we simply

gather at most 30 measurements in every computation within the one hour time limit. Nevertheless

we can use the current experiment results to investigate possible stopping rules. Due to the one

hour limit, we only consider stoping rules for simple cases. In regards to hard instances for which

it is relatively expensive to gather one single measurement, we do not consider any stopping rules

since there are too few measurements gathered within one hour. The goal of our discussion about

stopping rules is to provide one possible improvement of our benchmark experiment. For example if

other researchers want to reproduce or redesign the experiment with more available computational

resource, they can incorporate a stopping rule into the experiment design and utilize computational

resource more efficiently.

We use confidence interval procedure as the stopping rule. Since the running time of different

computations varies a lot, we do not use a uniform absolute precision and use a uniform relative

precision instead. Specifically, we investigate two purely sequential stopping rules which use relative

precision in the confidence interval computation. In contrast to batched sequential stopping rules,

purely sequential stopping rules are in the sense that the stopping criterion is evaluated after

every newly drawn sample. Stopping rules are distinguished further by the confidence interval

computation method. One stopping rule is based on assuming data drawn from normal distribution

and the other assumes data drawn from lognormal distribution. The reason to use these two

parametric methods is that confidence interval computations for normal and lognormal distributions

only require the sample mean and sample variance which can be updated efficiently when one data
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point is added. The fast mean and variance update can be found in [Wel62]:

X̄k+1 =
kX̄k +Xk+1

k + 1

S2
k+1 =

k − 1

k
S2
k +

(Xk+1 − X̄k)
2

k + 1
.

We do not use non-parametric methods like bootstrap for confidence interval computation because

they are relatively expensive and we want to allocate almost all computational resource to actual

computations.

Note that there is one distinction between the confidence interval computation assuming log-

normal distribution and distribution fitting assuming lognormal distribution. In the distribution

fitting, which we described in Section 3.7.2, all three parameters are estimated, meaning the fit-

ted distribution is actually s+ exp(N (µ, σ)). In the confidence interval computation, samples are

assumed to be drawn from exp(N (µ, σ)) with both µ and σ unknown. The author hasn’t found

any literature on confidence interval study of lognormal distribution with shifted location, so the

assumed lognormal distribution in this subsection is exp(N (µ, σ)). It is possible to estimate the

location parameter first, however, the approach is in general not computationally cheap. For ex-

ample, the maximum likelihood estimation does not have an analytical solution. To use a purely

sequential analysis, the stopping criterion needs to be relatively easy to check, so we only study

the two distributions whose confidence interval procedure only requires sample mean and sample

variance which can be efficiently updated.

Our stopping rule works as follows: in the pilot phase, collect 10 samples, after that each time

collect one sample until the relative precision of the computed confidence interval with confidence

level 0.95 is less than 0.01. Note that to evaluate this proposed stopping rule, we do not rerun the

experiment to gather samples, instead we use the bootstrap technique to randomly resample from

the data collected in the experiment.

We use a simulation to test the robustness and efficiency of the two stopping rules. In every

independent run, we calculate a confidence interval when the collection of data is terminated.

Among all independent runs (we use 1000 independent runs), we calculate the percentage of the

computed confidence interval containing the true mean, and we also compute the average final

sample size. Since it is impossible to know the true mean, we estimate the true mean as the

average of all randomly resampled data in all independent runs.
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In our simulation, we also do not consider very easy cases where the approximate run time is

less than 1 second. The reason not to include those cases is that in our benchmark experiment

we do not need high precision for short running times. Using relative precision can also lead to

large final sample size if the true mean is very small. There are 994 cases in the simulation based

on our policy where there are 30 measurements and every measurement is larger than 1 second.

Using the stopping rule based on normal distribution has average coverage 91.07% and average

final sample size 33.69, while using the stopping rule based on lognormal distribution has average

coverage 91.02% and average final sample size 29.52.

From the simulation results, we observe that two stopping rules have almost the same and

robust coverage, which is close to the nominal coverage 95%. In terms of efficiency, the stopping rule

assuming lognormal distribution has smaller average sample size, meaning that the data collection

will terminate early therefore save computational resource. If other researchers want to use some

stopping rule to improve our benchmark, we recommend to use the stopping rule based on lognormal

distribution.

3.7.4. CPU time vs wall clock time. One interesting topic about execution time is the

difference between CPU time and wall clock time. Most research about computational performance

is based on CPU time since it has less overhead introduced. In our experiment, we measure both

CPU time and wall clock time. The difference of the absolute values between these two time

measurements are hard to measure. In the computation on the HPC, it is possible that the actual

wall clock time is shorter than the CPU time due to multiprocessing and resource allocation.

Instead, we compare the variation between these two time measurements.

We consider all 5616 computations with 30 measurements in our experiment. We find that

about 66% cases the variance of wall clock time is greater than that of CPU time. The maximum

range of wall clock time is 105s while the maximum of CPU time is 51s. To make more statistically

rigorous results, we use Levene’s test and Bartlett’s test to determine whether CPU time and wall

clock time have equal variance. We use the implementations of these tests in the Scipy package,

scipy.stats.levene and scipy.stats.bartlett. Out of 5616 cases, null hypothesis is rejected

in 2% cases in Levene’s test and is rejected in 4% cases in Bartlett’s test. The result indicates that

there is not enough evidence to claim that wall clock time has larger variance than CPU time. We

include histograms of p-values in the Levene’s test and Bartlett’s test in Figure 3.3.
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Figure 3.3. The left figure shows the p-values in Levene’s test and the right figure
shows the p-values in Bartlett’s test.

3.8. Future work

Our benchmark experiment as well as the Github repository is only the first generation of

work which is motivated by reproducibility. There are several different approaches to improve the

framework. First, given the results in the current experiment, it is possible to use a batching

technique to batch several computations in the same node. Doing so can help to better use the

acquired computation power and therefore improve the experiment efficiency. Instead of using a

fixed-size sample in the current experiment, sequential stopping rules can improve the efficiency

further. However, one needs to be careful about the time limit on the node, and it may break

the experiment with batching strategy. It is possible that in one node, data collection of one

computation takes too long to finish and there is no time for the remaining computations which are

batched to the same node. Another possible improvement is also related to the computation power.

In a HPC, it is mandatory to specify a time limit. With longer time limit more data will certainly

be collected, therefore more statistical properties can be studied. For example, the distribution

fitting will be more robust, hypothesis testing in general will have large statistical power, and

distribution of long execution times will be available to study. Tradeoffs between computational

cost and statistically rigorous conclusion always need to be addressed.

Our distribution fitting procedure is intuitive in the sense that an existing robust python package

is used and all parameters are estimated. We observed that some parameter estimation is not what

we expect. In the distribution fitting with the lognormal distribution in Section 3.7.2, we expect

that the estimated distribution is supported on a subset of (0,+∞), since the execution time can

never be negative. But we found that in some cases the estimated location parameter is negative,

89



contradicting to our expectation. More careful studies can be done regarding how to best estimate

parameters of interest. In the confidence interval computation with lognormal distribution, the

formula in the literature is based on fixed location parameter 0. An open question can be formulated

as follows. Given samples drawn from the distribution s+exp(N (µ, σ2)) with unknown s, µ, σ, how

to calculate the confidence interval of population mean s+ exp(µ+ σ2/2).
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CHAPTER 4

Dual-Feasible Functions

Dual-feasible functions have been used in several combinatorial optimization problems includ-

ing knapsack type inequalities and proved to generate lower bounds efficiently. DFFs are in the

scope of superadditive duality theory, and superadditive and nondecreasing DFFs can provide valid

inequalities for general integer linear programs. Lueker [Lue83] studied the bin-packing problems

and used certain DFFs to obtain lower bounds for the first time. Vanderbeck [Van00] proposed an

exact algorithm for the cutting stock problems which includes adding valid inequalities generated

by DFFs. Rietz et al. [RACC12] recently introduced a variant of this theory, in which the domain

of DFFs is extended to all real numbers. Rietz et al. [RAdCC14] studied the maximality under

the name of “general dual-feasible functions”. They also summarized recent literature on DFFs in

the monograph [ACdCR16].

4.1. Key results from the DFF literature

We summarize the basic definitions and key results from the monograph [ACdCR16].

Definition 4.1.1. A function φ : [0, 1]→ [0, 1] is called a (valid) classical dual-feasible function

(cDFF), if for any finite list of real numbers xi ∈ [0, 1], i ∈ I, it holds that
∑

i∈I xi ≤ 1 ⇒∑
i∈I φ(xi) ≤ 1. A function φ : R→ R is called a (valid) general dual-feasible function (gDFF), if

for any finite list of real numbers xi ∈ R, i ∈ I, it holds that
∑

i∈I xi ≤ 1⇒
∑

i∈I φ(xi) ≤ 1.

Definition 4.1.2. A cDFF/gDFF is maximal if it is not (pointwise) dominated by a distinct

cDFF/gDFF. A cDFF/gDFF is extreme if it cannot be written as a convex combination of other

two different cDFFs/gDFFs.

In the monograph [ACdCR16], the authors explored maximality of both cDFFs and gDFFs.

Theorem 4.1.1 (Characterization of maximal cDFFs, [ACdCR16, Theorem 2.1]). A function

φ : [0, 1]→ [0, 1] is a maximal cDFF if and only if φ(0) = 0, φ is superadditive and φ is symmetric

in the sense φ(x) + φ(1− x) = 1 for all x ∈ [0, 1].
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Theorem 4.1.2 (Conditions for maximality of gDFFs, [ACdCR16, Theorem 3.1]). Let φ : R→

R be a given function. If φ satisfies the following conditions, then φ is a maximal gDFF: (i)

φ(0) = 0. (ii) φ is symmetric in the sense φ(x)+φ(1−x) = 1 for all x ∈ R. (iii) φ is superadditive.

(iv) There exists an ε > 0 such that φ(x) ≥ 0 for all x ∈ (0, ε).

If φ is a maximal gDFF, then φ satisfies conditions (i), (iii) and (iv).

Remark 4.1.1. The function φ(x) = cx for 0 ≤ c < 1 is a maximal gDFF but it does not satisfy

condition (ii).

Remark 4.1.2. Note that conditions (i), (iii) and (iv) guarantee that any maximal gDFF is

nondecreasing and consequently nonnegative on R+.

Different approaches to construct non-trivial cDFFs from “simple” functions are explained

in [ACdCR16], including convex combination and function composition.

Proposition 4.1.1 ( [ACdCR16, Section 2.3.1]). If φ1 and φ2 are two maximal cDFFs, then

αφ1 + (1− α)φ2 is also a maximal cDFF, for 0 < α < 1.

Proposition 4.1.2 ( [ACdCR16, Proposition 2.3]). If φ1 and φ2 are two maximal cDFFs,

then the composed function φ1(φ2(x)) is also a maximal cDFF.

Maximal gDFFs can also be obtained by extending maximal cDFFs to the domain R. Theo-

rem 4.1.3 uses quasiperiodic extensions and Theorem 4.1.4 uses affine functions when x is not in

[0, 1]. Throughout the chapter, we use {a} to represent the fractional part of a.

Theorem 4.1.3 ( [ACdCR16, Proposition 3.10]). Let φ be a maximal cDFF, then there exists

b0 ≥ 1 such that for all b > b0 the following function φ̂(x) is a maximal gDFF.

φ̂(x) =


b× bxc+ φ({x}) if x ≤ 1

1− φ̂(1− x) if x > 1

.
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Theorem 4.1.4 ( [ACdCR16, Proposition 3.12]). Let φ be a maximal cDFF, then there exists

b ≥ 1 such that the following function φ̂(x) is a maximal gDFF.

φ̂(x) =


bx+ 1− b if x < 0

bx if x > 1

φ(x) if 0 ≤ x ≤ 1

.

Proposition 4.1.3 shows that every maximal gDFF is the sum of a linear function and a bounded

function. Proposition 4.1.4 explains the behavior of nonlinear maximal gDFFs at given points.

Proposition 4.1.3 ( [ACdCR16, Proposition 3.4]). If φ : R → R is a maximal gDFF and

t = sup{φ(x)
x : x > 0}, then we have limx→∞

φ(x)
x = t ≤ −φ(−1), and for any x ∈ R, it holds that:

tx−max{0, t− 1} ≤ φ(x) ≤ tx.

Proposition 4.1.4 ( [ACdCR16, Proposition 3.5]). If φ : R→ R is a maximal gDFF and not

of the kind φ(x) = cx for 0 ≤ c < 1, then φ(1) = 1 and φ(1
2) = 1

2 .

The following proposition utilizes the fact that maximal gDFFs are superadditive and nonde-

creasing, which can be used to generate valid inequalities for general linear integer optimization

problems.

Proposition 4.1.5 ( [ACdCR16, Proposition 5.1]). If φ is a maximal gDFF and L = {x ∈

Zn+ :
∑n

j=1 aijxj ≤ bi, i = 1, 2, . . . ,m}, then for any i,
∑n

j=1 φ(aij)xj ≤ φ(bi) is a valid inequality

for L.

4.2. Automatic tests and search for classical DFFs

In this section, we restrict ourselves to piecewise linear cDFFs. We introduce the automatic

maximality and extremality tests of given piecewise linear functions, and a computer-based search

method which is used to find new extreme functions. Our methods are released as part of the

software [KZHW20] with cutgeneratingfunctionology.dff module.

4.2.1. Piecewise linear functions and polyhedral complexes underlying the algo-

rithmic maximality test of classical DFFs. The definition of piecewise linear functions in the
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cDFF setting is very similar to that of Gomory–Johnson cut-generating functions, and the ma-

jor difference is that cDFFs has bounded domain while cut-generating functions are defined in R.

Therefore, we omit the formal definition and just emphasize on the difference.

Let 0 = a0 < a1 < · · · < an−1 < an = 1. Denote by B = {a0, a1, . . . , an−1, an} the set of all

possible breakpoints. Based on the set of breakpoints, The one-dimensional polyhedral complex P =

PB can be defined. Similar to [BHK14,BHK16a,BHK16b,BHKM13,HKZ18a], we introduce

the function ∇φ : R× R → R, ∇φ(x, y) = φ(x + y)− φ(x)− φ(y). The function ∇φ measures the

slack in the superadditivity condition. Similarly, a two-dimensional polyhedral complex ∆P = ∆PB

can be defined. Every face F of the complex are defined as follows. Let I, J,K ∈ PB, so each of

I, J,K is either a breakpoint of φ or a closed interval delimited by two consecutive breakpoints.

Then F = F (I, J,K) = { (x, y) ∈ R× R : x ∈ I, y ∈ J, x+ y ∈ K }. Note that piecewise linearity

of function φ also implies piecewise linearity of ∇φ.

Unlike Gomory–Johnson cut-generating functions, which may be discontinuous at 0 on both

sides, a maximal cDFF is always continuous at 0 from the right and at 1 from the left.

Lemma 4.2.1. Any piecewise linear maximal cDFF is continuous at 0 from the right and con-

tinuous at 1 from the left.

Proof. Consider φ to be a piecewise linear maximal cDFF, and φ(x) = sx + b on the first

open interval (a0, a1). Note that the maximality of φ implies that φ(0) = 0. Choose x = y = a1
3 ,

and based on superadditivity, we have

φ(x) + φ(y) ≤ φ(x+ y)⇒ sx+ b+ sy + b ≤ s(x+ y) + b⇒ b ≤ 0.

Since b is also the right limit at 0, so b is nonnegative. Therefore, b = 0, which implies φ is

continuous at 0 from the right. By the symmetry condition, φ is continuous at 1 from the left. �

4.2.2. Maximality test. We introduce an efficient method to check the maximality of a

given piecewise linear function. The code maximality test(φ) implements a fully automatic test

whether a given function φ is maximal, by using the information that is described in ∆P.

Based on Theorem 4.1.1, we need to first check that the range of the function stays in [0, 1]

and φ(0) = 0. Since we assume the function is piecewise linear with finitely many breakpoints,

only function values and left and right limits at the breakpoints need to be checked. Similarly, the

symmetry condition only needs to be checked on all breakpoints including the left and right limits
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Figure 4.1. Maximal cDFF φBJ,1(x;C) =
bCxc+max(0,

{Cx}−{C}
1−{C} )

bCc for C = 5
2 .

at each breakpoint. In regards to the superadditivity, it suffices to check ∇φ(u, v) ≥ 0 for any

(u, v) ∈ vert(F ), including the limit values ∇φF (u, v) when φ is discontinuous.

As for the diagrams of ∆P, we start with a triangle complex I = J = K = [0, 1], and then refine

I, J,K based on the set of breakpoints, namely B. In practice, the code plot 2d diagram dff(φ)

will show vertices where superadditivity or symmetry condition is violated (marked red). It also

paints additive faces green, including 1-dimensional and 0-dimensional additive faces, which are

additive edges and vertices not contained in any higher dimensional additive faces.

Figure 4.1 is an example of the ∆P of a maximal cDFF. We also plot the function on the upper

and left borders. There is no vertex where superadditivity or symmetry condition is violated, so

the function is maximal.

4.2.3. Extremality test. Our automatic extremality test, extremality test dff, builds

upon the techniques of the grid-free extremality test for the Gomory–Johnson setting, which is

described in [Zho17, Chapter 4] and [HKZ18c,HKZ18a] and the forthcoming paper [HKZ18b],

and implemented in [KZHW20].
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In this subsection, we provide the technical results that allow us to adapt these techniques to

cDFFs. First, there is a simple necessary condition for piecewise linear extreme cDFFs.

Lemma 4.2.2. Let φ be a piecewise linear extreme cDFF. If φ is strictly increasing, then φ(x) =

x. In other words, there is no strictly increasing piecewise linear extreme cDFF except for φ(x) = x.

Proof. We know φ is continuous at 0 from the right. Suppose φ(x) = sx, x ∈ [0, a1) and

s > 0, since φ is not strictly increasing if s = 0. We claim that s is the smallest slope value of φ.

Suppose otherwise φ(x) = s′x + t, x ∈ [r, r + ε] with s′ < s and ε < a1. In order to satisfy the

superadditivity, we have φ(r+ ε) ≥ φ(ε) + φ(r), which can be reduced to s′ ≥ s. The contradiction

indicates that s is the smallest slope value. We have s ≤ 1 since φ(1) = 1. Similarly if s = 1, then

φ(x) = x.

Next, we can assume 0 < s < 1. Define a function:

φ1(x) =
φ(x)− sx

1− s
.

It is not hard to show φ1(x) = 0 for x ∈ [0, a1), and φ1(1) = 1. The function φ1 is superadditive

because it is obtained by subtracting a linear function from a superadditive function. These two

together guarantee that φ1 stays in the range [0, 1]. The function φ1 satisfies the symmetry condition

due to the following equation:

φ1(x) + φ1(1− x) =
φ(x) + φ(1− x)− sx− s(1− x)

1− s
= 1.

Therefore, φ1 is also a maximal cDFF. Moreover, φ(x) = sx+(1−s)φ1(x) implies φ is not extreme,

since it can be expressed as a convex combination of two different maximal cDFFs: x and φ1. �

Next we give the definition of effective perturbation functions.

Definition 4.2.1. Let φ be a maximal cDFF. Then a function φ̃ : [0, 1] → R is called an

effective perturbation function of φ, if there exists ε > 0, such that φ + εφ̃ and φ − εφ̃ are both

maximal cDFFs.

From the definition above, the zero function is always an effective perturbation function, and

we call it the trivial effective perturbation function. There exists a nontrivial effective perturbation

function of φ if and only if φ is not extreme.
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Effective perturbations of a DFF φ have a close relation to the functions φ in regards to

continuity and additivity.

Lemma 4.2.3. Let φ be a piecewise linear maximal cDFF. If φ is continuous on a proper interval

I ⊆ [0, 1], then for any perturbation function φ̃, we have that φ̃ is Lipschitz continuous on the

interval I. Furthermore, φ̃ is continuous at all points at which φ is continuous.

Proof. We know φ is continuous at 0 from the right. Let φ̃ be an effective perturbation

function. Since φ is piecewise linear, there exists a nonnegative s, such that φ(x) = sx on the first

interval [0, a1). Let I = J = K = [0, a1], and let F = F (I, J,K). Then for any x ∈ I, y ∈ J ,

x+ y ∈ K, ∇φF (x, y) = s(x+ y)− sx− sy = 0. Thus, F is a two-dimensional additive face of ∆P .

From the Interval Lemma, we know that there exists s̃, such that φ̃(x) = s̃x, when x ∈ [0, a1). Since

φ̃ is an effective perturbation function, there exists ε > 0, such that φ+ = φ+ εφ̃ and φ− = φ− εφ̃

are both maximal cDFFs. We know that φ+ and φ− have slope s+ = s+εs̃ ≥ 0 and s− = s−εs̃ ≥ 0

respectively.

Let I ⊆ [0, 1] be a proper interval where φ is continuous. Since φ is piecewise linear, there

exists a positive constant C such that |φ(x) − φ(y)| ≤ C|x − y|, for any x, y ∈ I. We can simply

choose C to be the largest absolute value of the slopes of φ. Assume x ≥ y and x − y < a1,

from the superadditivity of φ+ and φ−, φ+(x) ≥ φ+(y) + φ+(x − y) = φ+(y) + s+(x − y) and

φ−(x) ≥ φ−(y)+φ−(x−y) = φ−(y)+s−(x−y). It follows that −(C+s−)(x−y) ≤ ε(φ̃(x)−φ̃(y)) ≤

(C + s+)(x− y). Therefore, |φ̃(x)− φ̃(y)| ≤ C̃|x− y|, where C̃ = 1
ε max(C + s−, C + s+). Hence,

φ̃ is Lipschitz continuous on the interval I. �

We remark that, in contrast to the Gomory–Johnson setting, Lemma 4.2.3 holds without further

hypotheses, and so the subtle issues regarding two-sided discontinuous functions explored in [KZ18]

do not arise for our cDFFs.

For the following lemma, recall from Section 4.2.1 the notation ∇φ̃F (x, y) to denote the limit

within the face F of the two-dimensional complex.

Lemma 4.2.4. Let φ be a piecewise linear maximal cDFF. For any effective perturbation function

φ̃, we have that φ̃ satisfies additivity where φ satisfies additivity. This also holds true in the limit:

If F ∈ ∆P, (x, y) ∈ F , and ∇φF (x, y) = 0, then ∇φ̃F (x, y) = 0.
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Proof. Since φ̃ is an effective perturbation function, there exists ε > 0, such that φ+ = φ+ εφ̃

and φ− = φ− εφ̃ are both maximal cDFFs. If φ satisfies additivity at (x, y), we have φ(x) +φ(y) =

φ(x+y). Applying superadditivity of φ+ and φ− at (x, y), we get φ̃(x)+φ̃(y) = φ̃(x+y). Likewise, if

the limit ∇φF (x, y) is zero, then the superadditivity of φ+ and φ− implies that the limit ∇φF (x, y)

exists and is zero. �

From the continuity (Lemma 4.2.3) and additivity (Lemma 4.2.4), our algorithm deduces further

properties of every effective perturbation function φ̃. One tool is the famous Gomory–Johnson

Interval Lemma; we include a version of it below.

Lemma 4.2.5 (Interval Lemma). [BHK16a, Lemma 4.1] Let a1 < a2 and b1 < b2. Consider

the intervals A = [a1, a2], B = [b1, b2], and A + B = [a1 + b1, a2 + b2]. Let f : A → R, g : B → R,

and h : A+B → R be bounded functions on A, B and A+B, respectively. If f(a) + g(b) = h(a+ b)

for all a ∈ A and b ∈ B, then f , g, and h are affine functions with identical slopes in the intervals

A, B, and A+B, respectively.

Using this lemma and additional techniques from [Zho17, Chapter 4], [HKZ18a], our algorithm

constructs a list of pairwise disjoint connected covered components C1, . . . , Ck, each of which is a

finite union of open intervals with the following property. If π̃ is any effective perturbation function

and Ci is one of the connected covered components, then the restrictions of π̃ to the intervals of

Ci are affine functions with identical slopes. Like in the Gomory–Johnson case, we can prove the

finiteness of this construction when the breakpoints of φ are rational.

If there is some uncovered interval, i.e., an open interval of [0, 1] \
⋃
iCi, then a nontrivial

“equivariant” perturbation is guaranteed to exist, and hence extremality test dff returns False.

(Our algorithm can actually construct such a perturbation using the method of inverse semigroups

of restricted translations and reflections from [Zho17, Chapter 4], [HKZ18a]; we suppress all

details.)

On the other hand, if the domain [0, 1] is covered by the closures of C1, . . . , Ck, then any effective

perturbation function is guaranteed to be piecewise linear. The existence of a nontrivial effec-

tive perturbation function depends on whether a finite dimensional linear system has a nontrivial

solution.

We start with the continuous case. Suppose φ is a continuous piecewise linear maximal cDFF,

thus any effective perturbation function φ̃ must be continuous. If the domain [0, 1] is covered by the
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closures of C1, . . . , Ck, then φ̃ has the same slope value on each Ci and we denote the slope value

by si. Note that the effective perturbation function φ̃ is uniquely determined by the set of slope

values {s1, . . . , sk}. Specifically, there exists a vector-valued linear function g : [0, 1] → Rk so that

φ̃(x) = g(x) · (s1, . . . , sk). The ith coordinate of g(x) represents the total length of the connected

component Ci contained in the interval [0, x], i.e. g(x) = (|C1 ∩ [0, x]|, . . . , |Ck ∩ [0, x]|).

In the general case where φ may be discontinuous, the effective perturbation function φ̃ may

also be discontinuous. If φ̃ may be discontinuous at x, then there exist jumps h− = φ̃(x)− φ̃(x−)

and h+ = φ̃(x+) − φ̃(x), where h−, h+ represent the left and right discontinuity at x respectively.

Note that h−, h+ could also be 0 representing (left/right) continuity at point x. It is not hard to

see there are only finitely many points where discontinuity may occur, since discontinuity can only

occur at the endpoints of connected components C1, . . . , Ck. The effective perturbation function

φ̃ is uniquely determined by the set of slope values {s1, . . . , sk} and potential jumps {h1, . . . , hm}.

The general form of an effective perturbation function φ̃ can then be expressed using a vector-valued

linear function g : [0, 1]→ Rk+m, slope variables and jump variables so that

(4.1) φ̃(x) = g(x) · (s1, . . . , sk, h1, . . . , hm).

The last m coordinates of g(x) are binaries indicating whether those potential jumps are contained

in the interval [0, x]. Observe that the function g is determined only by the original function φ.

The next step is to find all constraints that φ̃(x) needs to satisfy and solve a linear system of

(s1, . . . , sk, h1, . . . , hm). If there is only the trivial solution, then extremality test dff returns

True. If one nontrivial function φ̃(x) is found, then extremality test dff returns False. We use

the following proposition. Recall from Section 4.2.1 the notation φ̃(a−) to represent the left limit

to a.

Proposition 4.2.1. Let φ be a piecewise linear maximal cDFF. Assume φ(a−1 ) = 0 where a1

is the breakpoint of φ next to 0, and assume φ has no uncovered interval. Let B̂ = B ∪
⋃
i ∂Ci be

the union of breakpoints of φ and endpoints of the intervals of covered components, and P̂ be the

new complex based on B̂. The functions φ̃ : [0, 1] → R defined by (4.1), using the slope variables

and jump variables given by all covered components of φ, are piecewise linear over P̂. Construct a
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linear system of equations for φ̃:

∇φ̃F (x, y) = 0 for all F ∈ ∆P̂ , (x, y) ∈ vert(F )(4.2a)

such that ∇φF (x, y) = 0,

φ̃(1) = φ̃(a−1 ) = 0.(4.2b)

If there is only the trivial solution φ̃(x) = 0, then φ is extreme. If there is some nontrivial solution

φ̃, then there exists ε > 0 such that φ + εφ̃ and φ − εφ̃ are both maximal; thus φ̃ is a nontrivial

effective perturbation and φ is not extreme.

Proof. Note that if φ̃ is an effective perturbation function, then it must satisfy the linear

system (4.2) because of Lemma 4.2.4. By assumption, [0, 1] is covered by the closures of C1, . . . , Ck,

where each Ci is a connected covered component. We know that φ̃ is affine linear on each Ci with

the same slope. Observe that if the linear system has only the trivial solution, then the only

effective perturbation function is the zero function, thus φ is extreme.

Suppose there is a nonzero solution φ̃ to the linear system (4.2); it is by definition a piecewise

linear function on [0, 1] with possible discontinuities at the breakpoints. Let

δ = min{∇φF (x, y) : F ∈ ∆P̂, (x, y) ∈ vert(F ), ∇φF (x, y) > 0 },

σ = max{ |∇φ̃F (x, y)| : F ∈ ∆P̂, (x, y) ∈ vert(F ), ∇φF (x, y) > 0 }.

Note the minimum and maximum are over a finite set. Choose ε = δ
max(σ,1) > 0; then we claim

that φ + εφ̃ and φ − εφ̃ are both superadditive. Let F ∈ ∆P̂ and (x, y) ∈ vert(F ). We compute

∇(φ + εφ̃)F (x, y) = ∇φF (x, y) + ε∇φ̃F (x, y). If ∇φF (x, y) = 0, then by (4.2), also ∇φ̃F (x, y) = 0.

Otherwise ∇φF (x, y) > 0, and then ∇φF (x, y) + ε∇φ̃F (x, y) ≥ δ − εσ ≥ 0. Thus, φ ± εφ̃ are both

superadditive.

Consider φ and φ̃ on the interval [0, a1). The function φ is the zero function on [0, a1) since

φ(0) = φ(0+) = φ(a−1 ) = 0. Note that (0, a1) belongs to some covered component, i.e., (0, a1) ⊂ Ci

for some i. Then φ̃ is also a linear function on (0, a1). Due to φ̃(0) = φ̃(0+) = φ̃(a−1 ) = 0, we know

that φ̃ is also the zero function on [0, a1). Then φ+ εφ̃ and φ− εφ̃ are both nonnegative on [0, a1),

so they are monotone increasing on [0, 1] by superadditivity. Since (φ± εφ̃)(1) = φ(1)± εφ̃(1) = 1

and the functions are monotone increasing, φ± εφ̃ both stay in the range of [0, 1].
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The symmetry condition of φ+εφ̃ and φ−εφ̃ is implied by the symmetry condition of φ. Indeed,

for every face F = F (I, J,K) ∈ ∆P̂ such that K = {1} and every vertex (x, 1 − x) ∈ vert(F ), we

have ∇φF (x, 1 − x) = 0. Then from the linear system (4.2), we also have ∇φ̃F (x, 1 − x) = 0, and

thus ∇(φ± εφ̃)F (x, 1− x) = ∇φF (x, 1− x)± ε∇φ̃F (x, 1− x) = 0.

Therefore, both φ+ εφ̃ and φ− εφ̃ are maximal cDFFs, thus φ is not extreme. �

4.2.4. Computer-based search. In this subsection, we discuss how computer-based search

can help in finding extreme cDFFs. Most known cDFFs in the monograph [ACdCR16] have a

similar structure: continuous cDFFs are 2-slope functions, and discontinuous cDFFs have slope 0

in every affine linear piece.

We transfer a computer-based search technique from [KZ17] for Gomory–Johnson functions

to cDFFs. Our goal is to find piecewise linear extreme cDFFs with rational breakpoints, which

have fixed common denominator q ∈ N. The strategy is to discretize the interval [0, 1] and consider

discrete functions on Bq := 1
qZ ∩ [0, 1], or, equivalently, vectors in Rq+1 whose components are

the function values on the grid Bq. In this space, we define a polytope by inequalities from the

characterization of maximality. Extreme points of the polytope can be found by vertex enumeration

tools. Recent advances in polyhedral computation (Normaliz, version 3.2.0; see [BIS16]) allow us

to reach q = 31 in under a minute of CPU time. Candidates for extreme cDFFs φ are obtained by

interpolating values on 1
qZ ∩ [0, 1] from each extreme point (discrete function). Then we use our

extremality test to filter out the non-extreme functions.

Based on a detailed computational study regarding the performance of vertex enumeration

codes in [KZ17], we consider two libraries, the Parma Polyhedra Library (PPL) and Normaliz.

Both are convenient to use within the software SageMath [S+16].

We now introduce some notation, which will allow us to make precise statements that also

include the discontinuous case.

Definition 4.2.2. We use Bq to denote the set {0, 1
q ,

2
q , . . . ,

q−1
q , 1}. Denote ΦC(q) to be the

set of all maximal continuous piecewise linear cDFFs with breakpoints in Bq, and ΦD(q) to be the

set of all maximal possibly discontinuous piecewise linear cDFFs with breakpoints in Bq.

Theorem 4.2.1. Both ΦC(q) and ΦD(q) are linearly isomorphic to finite dimensional convex

polytopes Φ′C(q) ⊂ Rq+1 and Φ′D(q) ⊂ R3q−1, respectively, if q is fixed.
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Proof. Continuous case. Note that any maximal cDFF φ ∈ ΦC(q) is uniquely determined by

the values at the breakpoints. So we just need to consider discrete functions on Bq that are the

restrictions φ|Bq of φ to Bq. Since φ is maximal, φ|Bq should also satisfy superadditivity and the

symmetry condition.

For each possible breakpoint i
q , we introduce a variable vi to be the value φ( iq ). Considering

inequalities from superadditivity, the symmetry condition and 0 ≤ vi ≤ 1, v0 = 0, we get a polytope

in q + 1 dimensional space, because there are only finitely many inequalities and each variable is

bounded. We denote this polytope by Φ′C(q).

It is not hard to prove the convex combination of two maximal continuous piecewise linear

cDFFs with breakpoints in Bq is also in ΦC(q).

We can get φ back by interpolating φ|Bq . Therefore ΦC(q) is linearly isomorphic to Φ′C(q), a

finite dimensional convex polytope.

Discontinuous case. Consider the linear map from ΦD(q) to R3q−1 given by

φ 7→
(
φ(0), φ(1

q

−
), φ(1

q ), φ(1
q

+
), . . . , φ( q−1

q

−
), φ( q−1

q ), φ( q−1
q

+
), φ(1)

)
,

where φ(a−) and φ(a+) again represent the left and right limits to a respectively. Denote the image

by Φ′D(q). This map is invertible by interpolating linearly between the given limit values of φ near

the breakpoints. Moreover, we know from the maximality test (Section 4.2.2) that it suffices to

test the limits ∇φF (x, y) to the vertices of the complex ∆P within faces F 3 (x, y) of ∆P. Each

vertex (x, y) is contained in at most 12 faces F . Each of the limits can be expressed as a linear

combination of values and limits of φ at the breakpoints, such as φ(x+) + φ(y−) − φ((x + y)−),

φ(x−) + φ(y)− φ((x+ y)−), etc. Therefore, Φ′D(q) is a polytope. �

A function φ that we obtain from the interpolation of the discrete function values of a vertex

of Φ′C(q), or the interpolation of the function values and limits of a vertex of Φ′D(q), is only a

candidate of extreme functions. We need to use the extremality test described in Section 4.2.3

to pick those actual extreme cDFFs. The following theorem provides an easier verification for

extremality: if φ has no uncovered interval, then we can claim we find an extreme cDFF.

Theorem 4.2.2. Let φ be a function from interpolating values of some extreme point of the

polytope Φ′C(q) or Φ′D(q). Then φ is extreme if and only if there is no uncovered interval.
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Proof. Here we only give the proof for continuous case, and the proof for discontinuous case

is similar.

Suppose φ is obtained by in interpolating the discrete function φ|Bq , which is an extreme point

of the polytope Φ′C(q), and φ̃ is an effective perturbation function.

If there is an uncovered interval, by Section 4.2.3, there exists an effective “equivariant” per-

turbation function, and the function is not extreme.

If there is no uncovered interval for φ, then the interval [0, 1] is covered by the closures of

C1, . . . , Ck, where each Ci is a connected covered component. Since every breakpoint of φ is in the

form of i
q , the endpoints of Ci are also in the form of i

q . We know φ and φ̃ are affine linear on

each Ci with the same slope by the Interval Lemma, and continuity of φ implies continuity of φ̃.

Therefore, we know φ̃ is also a continuous function with breakpoints in Bq, which means φ+εφ̃ and

φ+ εφ̃ both have the same property. The maximality of φ+ εφ̃ and φ+ εφ̃ implies their restrictions

to Bq are also in the polytope Φ′C(q), and

φ|Bq =
(φ+ εφ̃)|Bq + (φ− εφ̃)|Bq

2
.

Since φ|Bq is an extreme point of the polytope Φ′C(q), then φ|Bq = (φ + εφ̃)|Bq = (φ − εφ̃)|Bq ,

which implies φ = φ+ εφ̃ = φ− εφ̃. Therefore, φ is extreme. �

Table 4.1 shows the results and the computation time for computing all vertices of Φ′C(q) for

different values of q. We then use Theorem 4.2.2 to filter out those non-extreme functions which

have uncovered intervals. As we can see in the table, the actual extreme cDFFs are much fewer

than the vertices of the polytope Φ′C(q). PPL is faster when q is small and Normaliz performs well

when q is relatively large. We can observe that the time cost increases dramatically as q gets large.

Similar to [KZ17], we can apply the preprocessing program “redund” provided by lrslib (version

5.08), which removes redundant inequalities using Linear Programming. However, in contrast to

the computation in [KZ17], removing redundancy from the system does not improve the efficiency.

Instead, for relatively large q, the time cost after preprocessing is a little more than that of before

preprocessing for both PPL and Normaliz.

For example, for q = 31, among 91761 functions interpolated from extreme points, there are

1208 extreme cDFFs, most of which do not belong to known families.
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Table 4.1. Search for extreme cDFFs and efficiency of vertex enumeration codes
(continuous case)

Polytope ΦC(q) Running times (s)

q dim inequalities vertices extreme DFF PPL Normaliz

original minimized

2 0 4 3 1 1 0.00006 0.002

3 1 5 5 2 1 0.00009 0.006

5 2 9 7 3 2 0.00014 0.007

7 3 15 10 5 3 0.0002 0.007

9 4 23 14 9 3 0.0004 0.008

11 5 33 18 14 7 0.0006 0.010

13 6 45 23 25 8 0.001 0.012

15 7 59 29 66 14 0.003 0.018

17 8 75 35 94 22 0.005 0.025

19 9 93 42 221 32 0.010 0.042

21 10 113 50 677 55 0.036 0.105

23 11 135 58 1360 105 0.110 0.226

25 12 159 67 3898 189 0.526 0.725

27 13 185 77 12279 291 5.1 2.991

29 14 213 87 28877 626 41 9.285

31 15 243 98 91761 1208 595 35.461

4.3. Characterization of maximal general DFFs

Alves et al. [ACdCR16] provided several sufficient conditions and necessary conditions of

maximal gDFFs in Theorem 4.1.2, but they do not match precisely. Inspired by the characteriza-

tion of minimal cut-generating functions in the Yıldız–Cornuéjols model [YC16], we complete the

characterization of maximal gDFFs.

Proposition 4.3.1. A function φ : R → R is a maximal gDFF if and only if the following

conditions hold:

(i) φ(0) = 0.

(ii) φ is superadditive.

(iii) φ(x) ≥ 0 for all x ∈ R+.

(iv) φ(x) = infk{ 1
k (1− φ(1− kx)) : k ∈ Z++} for all x ∈ R.

Proof. Suppose φ is a maximal gDFF, then conditions (i), (ii), (iii) hold by Theorem 4.1.2,

which also implies that φ is monotone increasing. For any x ∈ R and k ∈ Z+, kx + (1 − kx) =
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1 ⇒ kφ(x) + φ(1 − kx) ≤ 1. So φ(x) ≤ 1
k (1 − φ(1 − kx)) for any positive integer k, then φ(x) ≤

infk{ 1
k (1− φ(1− kx)) : k ∈ Z+}.

If there exists x0 such that φ(x0) < infk{ 1
k (1 − φ(1 − kx0)) : k ∈ Z+}, then define a function

φ1 which takes value infk{ 1
k (1 − φ(1 − kx0)) : k ∈ Z+} at x0 and φ(x) if x 6= x0. We claim that

φ1 is a gDFF which dominates φ. Given a function y : R → Z+, with finite support satisfying∑
x∈R x y(x) ≤ 1. We have

∑
x∈R φ1(x) y(x) = φ1(x0) y(x0) +

∑
x6=x0 φ(x) y(x). If y(x0) = 0, then

it is clear that
∑

x∈R φ1(x) y(x) ≤ 1. Let y(x0) ∈ Z+, then φ1(x0) ≤ 1
y(x0)(1 − φ(1 − y(x0)x0)) by

definition of φ1, then φ1(x0) y(x0) + φ(1 − y(x0)x0) ≤ 1. Since φ is superadditive and monotone

increasing, we get
∑

x 6=x0 φ(x) y(x) ≤ φ(
∑

x 6=x0 x y(x)) ≤ φ(1−y(x0)x0). From the two inequalities

we conclude that φ1 is a gDFF and dominates φ, which contradicts the maximality of φ. So the

condition (iv) holds.

Suppose there is a function φ : R → R satisfying all four conditions. Choose x = 1 and k = 1,

we can get φ(1) ≤ 1 from (iv). Together with conditions (i), (ii), (iii), it guarantees that φ is a

gDFF by the definition of gDFFs. Assume that there is a gDFF φ1 dominating φ and there exists

x0 such that φ1(x0) > φ(x0) = infk{ 1
k (1− φ(1− kx0)) : k ∈ Z+}. So there exists some k ∈ Z+ such

that

φ1(x0) >
1

k
(1− φ(1− kx0))

⇔ kφ1(x0) + φ(1− kx0) > 1

⇒ kφ1(x0) + φ1(1− kx0) > 1.

The last step contradicts the fact that φ1 is a gDFF. Therefore, φ is maximal. �

Parallel to the restricted minimal and strongly minimal functions in the Yıldız–Cornuéjols

model [YC16], “restricted maximal” and “strongly maximal” gDFFs are defined by strengthening

the notion of maximality.

Definition 4.3.1. We say that a gDFF φ is implied via scaling by a gDFF φ1, if βφ1 ≥ φ for

some 0 ≤ β ≤ 1. We call a gDFF φ : R → R restricted maximal if φ is not implied via scaling by

a distinct gDFF φ1. We say that a gDFF φ is implied by a gDFF φ1, if φ(x) ≤ βφ1(x) + αx for

some 0 ≤ α, β ≤ 1 and α+ β ≤ 1. We call a gDFF φ : R→ R strongly maximal if φ is not implied

by a distinct gDFF φ1.
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Note that restricted maximal gDFFs are maximal and strongly maximal gDFFs are restricted

maximal. Based on the definition of strong maximality, φ(x) = x is implied by the zero function,

so φ is not strongly maximal, though it is extreme. We include the characterizations of restricted

maximal and strongly maximal gDFFs here, which only involve the standard symmetry condition

instead of the generalized symmetry condition.

Theorem 4.3.1. A function φ : R→ R is a restricted maximal gDFF if and only if the following

conditions hold:

(i) φ(0) = 0.

(ii) φ is superadditive.

(iii) φ(x) ≥ 0 for all x ∈ R+.

(iv) φ(x) + φ(1− x) = 1 for all x ∈ R.

Proof. It is easy to show that φ is valid and restricted maximal if φ satisfies conditions (i−iv).

Suppose φ is a restricted maximal gDFF, then we only need to prove condition (iv), since restricted

maximality implies maximality.

Suppose there exists some x such that φ(x)+φ(1−x) < 1. By the characterization of maximality,

φ(x) = infk{ 1
k (1− φ(1− kx)) : k ∈ Z+}.

Case 1: Suppose there exists some k ∈ N such that φ(x) = 1
k (1−φ(1−kx)). By superadditivity

kφ(x) = 1−φ(1−kx) = 1−φ(1−x−(k−1)x) ≥ 1−φ(1−x)+φ((k−1)x) ≥ 1−φ(1−x)+(k−1)φ(x),

which implies φ(x) + φ(1− x) ≥ 1, in contradiction to the assumption above.

Case 2: Suppose otherwise φ(x) < 1
k (1 − φ(1 − kx)) for any positive integer k. Therefore, for

any ε > 0, there exists a corresponding kε ∈ N, such that

φ(x) <
1

kε
(1− φ(1− kεx)) < φ(x) + ε.

Then φ(kεx) ≤ 1 − φ(1 − kεx) < kεφ(x) + kεε, or equivalently φ(kεx)
kε

< φ(x) + ε. Since φ is

superadditive, φ(x) ≤ φ(kεx)
kε

. Let ε go to 0 in the inequality φ(x) ≤ φ(kεx)
kε

< φ(x) + ε, and we have

limε→0
φ(kεx)
kε

= φ(x). It is easy to see that limε→0 kε = +∞.

Next, we will show that φ(kx) = kφ(x) for any positive integer k. Suppose k̄ is the smallest

integer such that φ(k̄x)

k̄
= φ(x) + δ for some δ > 0. Then for any i ≥ k̄, there exist λi, ri ∈ Z+, such
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that i = λik̄ + ri, 0 ≤ ri < k̄. Then

φ(ix) = φ(λik̄x+ rix) ≥ λiφ(k̄x) + φ(rix)

≥ λik̄φ(x) + λik̄δ + riφ(x) = iφ(x) + (i− ri)δ.

Therefore φ(ix)
i ≥ φ(x) + δ− ri

i δ for any i ≥ k̄. Since ri is bounded, φ(ix)
i ≥ φ(x) + δ

2 for any i ≥ 2k̄,

which contradicts limε→0
φ(kεx)
kε

= φ(x). We have φ(kx) = kφ(x) for any positive integer k. From

Proposition 4.1.4 we know φ(1) = 1, and we have

kφ(x) = φ(kx) ≥ (k − 1)φ(1) + φ(1− k(1− x))

⇔ 1− φ(x) ≤ 1− φ(1− k(1− x))

k

⇒ 1− φ(x) ≤ inf
k

1− φ(1− k(1− x))

k
= φ(1− x).

The above inequality contradicts our original assumption.

In both cases, we have a contradiction if φ(x) + φ(1− x) < 1. Therefore, φ(x) + φ(1− x) = 1,

which completes the proof. �

Theorem 4.3.2. A function φ : R → R is a strongly maximal gDFF if and only if φ is a

restricted maximal gDFF and limε→0+
φ(ε)
ε = 0.

Proof. Suppose φ is strongly maximal, we only need to show limε→0+
φ(ε)
ε = 0 since strong

maximality implies restricted maximality. We first show that lim infε→0+
φ(ε)
ε = 0. It is clear that

lim infε→0+
φ(ε)
ε ≥ 0 since φ is restricted maximal. Assume lim infε→0+

φ(ε)
ε = s > 0, then there

exist δ > 0 and s′ < s (small enough) such that φ(x) ≥ s′x for x ∈ [0, δ]. Define a new function

φ1(x) = φ(x)−s′x
1−s′ , and φ is implied by φ1. Note that φ1 is a restricted maximal gDFF. The strong

maximality of φ implies φ1(x) = φ(x) = x. Therefore, φ(x) = x is not strongly maximal. This

contradiction implies that lim infε→0+
φ(ε)
ε = 0.

Next we show that limε→0+
φ(ε)
ε = 0. Suppose on the contrary there exists some positive s

such that lim supε→0+
φ(ε)
ε = 3s > 0. There exist two positive and decreasing sequences (xn)∞n=1

and (yn)∞n=1 approaching 0, such that φ(xn) > 2sxn and φ(yn) < syn. Fix y1 and choose 0 <

xn < y1 and k ∈ Z++ such that y1 ≥ kxn ≥ y1
2 . Since φ is superadditive and nondecreasing,

φ(y1) ≥ φ(kxn) ≥ kφ(xn) > 2ksxn ≥ sy1, which contradicts the choice of y1. Then we have

lim supε→0+
φ(ε)
ε = lim infε→0+

φ(ε)
ε = 0, and limε→0+

φ(ε)
ε = 0 for a strongly maximal gDFF φ.
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On the other hand, we assume φ is restricted maximal and limε→0+
φ(ε)
ε = 0. Suppose φ is

implied by a gDFF φ1 meaning φ(x) ≤ βφ1(x) + αx and β, α ≥ 0, β + α ≤ 1. Let x = 1, then

1 ≤ βφ1(1) + α ≤ β + α ≤ 1. We know that β = 1− α. Note that βφ1(x) + αx is also a gDFF (a

convex combination of two gDFFs φ1 and x), then φ(x) = (1−α)φ1(x)+αx due to the maximality

of φ. Divide by x from the above equation and take the lim inf as x→ 0+, we can conclude α = 0.

So φ is strongly maximal. �

Remark 4.3.1. Let φ be a maximal gDFF that is not linear. By Proposition 4.1.4 we know that

φ(1) = 1. If φ is implied via scaling by a gDFF φ1, or equivalently βφ1 ≥ φ for some 0 ≤ β ≤ 1,

then βφ1(1) ≥ φ(1) = 1. Since β ≤ 1 and φ1(1) ≤ 1, we have β = 1 and φ is dominated by φ1. The

maximality of φ implies φ = φ1, so φ is restricted maximal. Therefore, we have a simpler version

of the characterization of maximal gDFFs.

Theorem 4.3.3. A function φ : R → R is a maximal gDFF if and only if φ(x) = sx for some

0 ≤ s < 1 or φ is a restricted maximal gDFF, i.e., φ satisfies the following conditions:

(i) φ(0) = 0.

(ii) φ is superadditive.

(iii) φ(x) ≥ 0 for all x ∈ R+.

(iv) φ(x) + φ(1− x) = 1 or φ(x) = sx, 0 ≤ s < 1.

We use Zorn’s lemma to show that maximal, restricted maximal and strongly maximal gDFFs

exist, and they are potentially stronger than just valid gDFFs. The proof is analogous to the proof

of [YC16, Theorem 1, Proposition 6, Theorem 9].

Theorem 4.3.4. (i) Every gDFF is dominated by a maximal gDFF.

(ii) Every gDFF is implied via scaling by a restricted maximal gDFF.

(iii) Every gDFF is implied by a strongly maximal gDFF.

Proof. Part (i). If the gDFF φ is already maximal, then it is dominated by itself. We assume φ

is not maximal. Define a set A = { valid gDFF φ̂ : φ̂(x) ≥ φ(x) for x ∈ R } . We consider (A,≤)

as a partially ordered set, where the partial order φ1 ≤ φ2 is imposed by the pointwise inequality

φ1(x) ≤ φ2(x) for all x ∈ R. Consider a chain C and a function φC(x) = supφ′∈C φ
′(x). We claim

φC is an upper bound of the chain C and it is contained in A.
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First, we prove φC is a well-defined function. For any fixed r0 ∈ R, based on the definition

of gDFF, we know that for any φ′ ∈ C it holds that φ′(r0) + φ(−r0) ≤ φ′(r0) + φ′(−r0) ≤ 0.

Note that φ(−r0) is a fixed constant and it forces that supφ′∈C φ
′(r0) < ∞. So we know that

φC(x) = supφ′∈C φ
′(x) <∞ for any x ∈ R.

Next, we prove φC is a valid gDFF and dominates φ. It is clear that φC ≥ φ, so we only need

to show φC is a valid gDFF. Suppose on the contrary φC is not valid, then there exist (xi)
m
i=1 such

that
∑m

i=1 xi ≤ 1 and
∑m

i=1 φC(xi) = 1 + ε for some ε > 0. Since there are only finite number

of xi, we can choose a function φ′ ∈ C such that φC(xi) < φ′(xi) + ε
m for i = 1, 2, . . . ,m. Then

1 + ε =
∑m

i=1 φC(xi) <
∑m

i=1(φ′(xi) + ε
m) ≤ 1 + ε. The last step is due to the fact that φ′ is a valid

gDFF. From the contradiction we know that φC is a valid gDFF.

We have shown that every chain in the set A has a upper bound in A. By Zorn’s lemma, we

know there is a maximal element in the set A, which is the desired maximal gDFF.

Part (ii). By (i) we only need to show every maximal gDFF φ is implied via scaling by a restricted

maximal gDFF. Based on Theorem 4.3.3, φ is either restricted maximal or a linear function. If φ

is restricted maximal, then it is implied via scaling by itself. If φ is a linear function, then it is

implied via scaling by φ′(x) = x.

Part (iii). Suppose φ is a linear function, and φ(x) = s0x where 0 ≤ s0 ≤ 1. Observe that φ is

implied by any strongly maximal gDFF φ1, since we have s0x ≤ 0× φ1(x) + s0x.

Now we assume that φ is nonlinear. By (ii) we only need to show every restricted maximal

gDFF φ is implied by a strongly maximal gDFF. If φ is already strongly maximal, then it is implied

by itself. Suppose φ is not strongly maximal.

First, we claim that limε→0+
φ(ε)
ε exists. The proof of the claim follows the proof of The-

orem 4.3.2 so we omit it here. Since φ is not strongly maximal, limε→0+
φ(ε)
ε > 0 by Theo-

rem 4.3.2. If limε→0+
φ(ε)
ε = 1, then φ is the linear functions φ(x) = x. We can assume that

1 > limε→0+
φ(ε)
ε = s > 0. Define a new function φ1(x) = φ−sx

1−s and we want to show φ1 is a

strongly maximal gDFF. Note that φ1(0) = 0, φ1 is superadditive, φ1(x) + φ1(1 − x) = 1 and

limε→0+
φ1(ε)
ε = 0. We only need to prove φ1(x) is nonnegative if x is nonnegative and near 0.

Suppose on the contrary there exist r0 > 0 and ε > 0 such that φ(r0) = sr0 − ε. There also

exists a positive and decreasing sequence (xn)∞n=1 approaching 0 and satisfying φ(xn)
xn

> s − ε
2r0

.

Choose xn small enough and k ∈ Z++ such that r0 ≥ kxn ≥ r0 − ε
2s . Since φ is superadditive and
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nondecreasing, we have

sr0 − ε = φ(r0) ≥ φ(kxn) ≥ kφ(xn) > ksxn −
kεxn
2r0

≥ sr0 −
ε

2
− ε

2
= sr0 − ε.

The above contradiction implies that φ(x) ≥ sx for positive x near 0. Therefore φ1 is strongly

maximal and φ is implied by φ1. �

4.4. Relation to cut-generating functions

4.4.1. Relation to Gomory–Johnson functions. In this section, we relate both cDFFs and

gDFFs to the Gomory–Johnson cut-generating functions. In fact, new DFFs, especially extreme

ones, can be discovered by converting Gomory–Johnson functions to DFFs. We first recall the

single-row Gomory–Johnson model, which takes the following form:

(4.3) x+
∑
r∈R

r y(r) = b, b /∈ Z, b > 0,

x ∈ Z, y : R→ Z+, and y has finite support.

Let π : R→ R be a nonnegative function. Then by definition π is a valid Gomory–Johnson function

if
∑

r∈R π(r) y(r) ≥ 1 holds for any feasible solution (x, y).

As maximal cDFFs and gDFFs are superadditive and minimal Gomory–Johnson functions

are subadditive, underlying the conversion is that subtracting subadditive functions from linear

functions gives superadditive functions; but the details are more complicated.

Theorem 4.4.1. Let π be a minimal piecewise linear Gomory–Johnson function corresponding

to a row of the form (4.3) with the right hand side b. Assume π is continuous at 0 from the

right. Then there exists δ > 0, such that for all 0 < λ < δ, the function φλ : R → R, defined

by φλ(x) = bx−λπ(bx)
b−λ , is a maximal gDFF and its restriction φλ|[0,1] is a maximal cDFF. These

functions have the following properties.

(i) π has k different slopes if and only if φλ has k different slopes. If b > 1, then π has k different

slopes if and only if φλ|[0,1] has k different slopes.

(ii) The gDFF φλ is extreme if π is also continuous with only 2 slope values where its positive

slope s satisfies sb > 1 and λ = 1
s . The cDFF φλ|[0,1] is extreme if π and λ satisfy the previous

conditions and b > 3.
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Proof. First, we prove φλ is a maximal gDFF if λ is small enough. As a minimal valid

Gomory–Johnson function, π is Z-periodic, π(0) = 0, π is subadditive and π(x) + π(b− x) = 1 for

all x ∈ R [BHK16a]. Note that φλ is defined on R, since π is Z-periodic and defined on R. It is

not hard to check φλ(0) = 0. Since φλ is obtained by subtracting a subadditive function from a

linear function, it is superadditive.

The symmetry condition of φλ is due to the following equation:

φλ(x) + φλ(1− x) =
bx− λπ(bx)

b− λ
+
b(1− x)− λπ(b(1− x))

b− λ

=
b− λ(π(bx) + π(b(1− x)))

b− λ
= 1.

The last step is from the symmetry condition of π and π(b) = 1. Since π is piecewise linear and

continuous at 0 from the right. Let s be the largest slope of π, then the largest slope of π(bx) is

bs. Choose δ = 1
s , then if λ < δ, the slope of bx is always no smaller than the slope of λπ(bx).

There exists an ε > 0 such that φλ(x) ≥ 0 for all x ∈ (0, ε). Therefore, φλ is a maximal gDFF by

Theorem 4.1.2 and φλ|[0,1] is a maximal cDFF by Theorem 4.1.1.

Part (i). Suppose π has slope s on the interval (ai, ai+1), then by calculation φλ(x) = bx−λπ(bx)
b−λ

has slope s′ = b(1−λs)
b−λ on the interval (aib ,

ai+1

b ). So if π has slope s1, s2 on interval (ai, ai+1) and

(aj , aj+1) respectively, and φλ has slope s′1, s′2 on interval (aib ,
ai+1

b ) and (
aj
b ,

aj+1

b ) respectively, then

s1 = s2 if and only if s′1 = s′2. From the above fact we can conclude π has k different slopes if and

only if φλ has k different slopes.

Since π is Z-periodic, φλ is quasiperiodic with period 1
b . If b > 1, the interval [0, 1] contains

a whole period, which has pieces with all different slope values. So π has k different slopes if and

only if φλ|[0,1] has k different slopes.

Part (ii). If sb > 1 and λ = 1
s , then it is not hard to show φλ is also continuous piecewise linear

with only 2-slope values, and φλ(x) = 0 for x ∈ [0, εb ], i,e., one slope value is 0. From the above

results, we know φλ is a maximal gDFFs.

We use the idea of the extremality test in Section 4.2.3. Since π is extreme from the Gomory–

Johnson 2-Slope Theorem [GJ72a], all intervals are covered and there are 2 covered components.

Suppose (x, y, x+ y) is an additive vertex, which means π(x) + π(y) = π(x+ y). From arithmetic

computation, (xb ,
y
b ,

x+y
b ) is an additive vertex, i.e., φλ(xb ) +φλ(yb ) = φλ(x+y

b ). So the additive faces

for φλ are just a scaling of those for π. In regards to φλ, all intervals are covered and there are only
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2 covered components, and φλ(1) = 1 and φλ(x) = 0 for x ∈ [0, εb ] guarantee that the interval [0, 1]

contains the 2 covered components.

Assume φλ = φ1+φ2
2 , where φ1 and φ2 are maximal gDFFs. By Theorem 4.1.2 and definition,

φ1(x) = φ2(x) = 0 for x ∈ [0, εb ] and φ1(1) = φ2(1) = 1. The functions φ1 and φ2 satisfy the

additivity where φλ satisfies the additivity, otherwise one of φ1 and φ2 violates the superadditivity.

So the additive faces of φλ are still additive faces of φ1 and φ2. By the Interval Lemma [BHK16a]

and values at point ε
b and 1, we can show φ1 and φ2 both have 2 covered components and these

covered components are the same as those of φλ. Thus φ1 and φ2 are both continuous 2-slope func-

tions and one slope value is 0, due to nondecreasing condition. Suppose the 2 covered components

within [0, 1] are C1 and C2, where C1 and C2 are disjoint unions of closed intervals. We assume φ1

and φ2 have slope 0 on C1 and slope s1 and s2 on C2 respectively. The condition φ1(1) = φ2(1) = 1

implies that 0× |C1|+ s1 × |C2| = 1 and 0× |C1|+ s2 × |C2| = 1, where |C1| and |C2| denote the

measure of C1 and C2. So we have s1 = s2. All these properties guarantee that φ1 and φ2 are equal

to each other, therefore φλ is extreme.

We assume b > 3. If all intervals are covered for the restriction φλ|[0,1], then we can use the same

arguments to show φλ|[0,1] is extreme. So we only need to show all intervals are covered by additive

faces in the triangular region: R = {(x, y) : x, y, x + y ∈ [0, 1]}. Maximality of φλ|[0,1], especially

the symmetry condition, implies that if (x, y, x+ y) is an additive vertex, so is (1− x− y, y, 1− x).

The fact implies that the covered components are symmetric about x = 1
2 , i.e., x is covered ⇔

1− x is covered and they are in the same covered components. From the scaling of additive faces

of π, the additive faces of φλ|[0,1] contained in the square [0, 1
b ]

2 cover the interval [0, 1
b ], and the

additive faces of φλ|[0,1] contained in the square [1
b ,

2
b ]× [0, 1

b ] cover the interval [1
b ,

2
b ]. Similarly, we

can use additive faces contained in d b2e = d1
2/

1
b e such whole squares to cover the interval [0, 1

2 ]. The

condition b > 3 guarantees that those d b2e whole squares are contained in the region R. Together

with the symmetry of covered components, we can conclude all intervals are covered, thus φλ|[0,1]

is extreme.

This concludes the proof of the theorem. �

Remark 4.4.1. (1) A construction of k-slope extreme Gomory–Johnson functions has been

found for any arbitrary k ∈ N [BCDSP16]. Therefore, there exist maximal gDFFs and cDFFs

with an arbitrary number of slopes.
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(2) The restriction φλ|[0,1] is not always extreme as a cDFF even if φλ is extreme as a gDFF.

See an example in Remark 4.5.2.

(3) Note that φλ is quasiperiodic since π is Z-periodic. However, not all maximal gDFFs are

quasiperiodic (See Theorem 4.1.4). Therefore, the conversion is not surjective.

4.4.2. Relation to Yıldız and Cornuéjols cut-generating functions. In this subsection,

we focus on gDFFs since they have the extended domain R. We define an infinite dimensional space

Y called “the space of nonbasic variables” as Y = {y : y : R → Z+ and y has finite support}, and

we refer to the zero function as the origin of Y . In this section, we study valid inequalities of certain

subsets of the space Y and connect gDFFs to a particular family of cut-generating functions.

In the paper of Yıldız and Cornuéjols [YC16], the authors considered the following generaliza-

tion of the Gomory–Johnson model:

(4.4) x = f +
∑
r∈R

r y(r),

x ∈ S, y : R→ Z+, and y has finite support,

where S can be any nonempty subset of R. A function π : R → R is called a valid cut-generating

function if the inequality
∑

r∈R π(r) y(r) ≥ 1 holds for all feasible solutions (x, y) to (4.4). In order

to ensure that such cut-generating functions exist, they only consider the case f /∈ S. Otherwise,

if f ∈ S, then (x, y) = (f, 0) is a feasible solution and there is no function π which can make the

inequality
∑

r∈R π(r) y(r) ≥ 1 valid. Note that y ∈ Y for any feasible solution (x, y) to (4.4), and

all valid inequalities in the form of
∑

r∈R π(r) y(r) ≥ 1 to (4.4) are inequalities which separate the

origin of Y .

We consider two different but related models in the form of (4.4). Let f = −1, S = {0}, and the

feasible region Y=1 = {y :
∑

r∈R r y(r) = 1, y : R→ Z+ and y has finite support}. Let f = −1, S =

(−∞, 0], and the feasible region Y≤1 = {y :
∑

r∈R r y(r) ≤ 1, y : R→ Z+ and y has finite support}.

It is immediate to check that the latter model is the relaxation of the former. Therefore Y=1 ( Y≤1

and any valid inequality for Y≤1 is also valid for Y=1.

Jeroslow [Jer79], Blair [Bla78] and Bachem et al. [BJS82] studied minimal valid inequalities

of the set Y=b = {y :
∑

r∈R r y(r) = b, y : R → Z+ and y has finite support}. Note that Y=b is the

set of feasible solutions to (4.4) for S = {0}, f = −b. The notion “minimality” they used is in
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fact the restricted minimality in the Yıldız–Cornuéjols model. In this section, we use the terminol-

ogy introduced by Yıldız and Cornuéjols. Jeroslow [Jer79] showed that finite-valued subadditive

(restricted minimal) functions are sufficient to generate all necessary valid inequalities of Y=b for

bounded mixed integer programs. Kılınç-Karzan and Yang [KKY15] discussed whether finite-

valued functions are sufficient to generate all necessary inequalities for the convex hull description

of disjunctive sets. Interested readers are referred to [KKY15] for more details on the sufficiency

question. Blair [Bla78] extended Jeroslow’s result to rational mixed integer programs. Bachem

et al. [BJS82] characterized restricted minimal cut-generating functions under some continuity

assumptions, and showed that restricted minimal functions satisfy the symmetry condition.

Yıldız–Cornuéjols cut-generating functions provide valid inequalities which separate the origin,

but clearly there exist other types of valid inequalities. If we let f ∈ S, then there does not exist

a valid inequality separating the origin, but we can still consider those which do not separate the

origin.

In terms of the relaxation Y≤1, gDFFs can generate the valid inequalities in the form of∑
r∈R φ(r) y(r) ≤ 1, and such inequalities do not separate the origin. Note that there is no valid

inequality separating the origin since 0 ∈ Y≤1. The gDFFs can also be viewed as valid functions in

the following pure integer linear programming model:

(4.5) 1 ≥
∑
r∈R

r y(r),

y : R→ Z+, and y has finite support.

Notice that φ is a valid gDFF if the inequality
∑

r∈R φ(r) y(r) ≤ 1 holds for all feasible solutions

y to (4.5).

Cut-generating functions provide valid inequalities which separate the origin for Y=1, but such

inequalities are not valid for Y≤1. In terms of inequalities that do not separate the origin, any

inequality in the form of
∑

r∈R φ(r) y(r) ≤ 1 generated by some gDFF φ is valid for Y≤1 and hence

valid for Y=1, since the model of Y≤1 is the relaxation of that of Y=1. Clearly, there also exist valid

inequalities which do not separate the origin for Y=1 but are not valid for Y≤1.

Yıldız and Cornuéjols [YC16] introduced the notions of minimal, restricted minimal and

strongly minimal cut-generating functions. We consider the cut-generating functions to the model
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(4.4) when f = −1, S = {0}, and we restate the definitions of minimality of such cut-generating

functions. A valid cut-generating function π is called minimal if it does not dominate another valid

cut-generating function π′. A cut-generating function π′ implies a cut-generating function π via

scaling if there exists β ≥ 1 such that π ≥ βπ′. A valid cut-generating function π is restricted

minimal if there is no other cut-generating function π′ implying π via scaling. A cut-generating

function π′ implies a cut-generating function π if there exist α, β, and β ≥ 0, α + β ≥ 1 such that

π(x) ≥ βπ′(x) +αx. A valid cut-generating function π is strongly minimal if there is no other cut-

generating function π′ implying π. Yıldız and Cornuéjols also characterized minimal and restricted

minimal functions without additional assumptions. As for the strong minimality and extremality,

they mainly focused on the case where f ∈ conv(S) and conv(S) is full-dimensional. We instead

discuss the strong minimality and extremality when f = −1, S = {0} in Remark 4.4.2.

We show that gDFFs are closely related to cut-generating functions for Y=1. The main idea

is that valid inequalities generated by cut-generating functions for Y=1 can be lifted to valid in-

equalities generated by gDFFs for the relaxation Y≤1. The procedure involves adding a multiple

of the defining equality
∑

r∈R r y(r) = 1 to a valid inequality, which is called “tilting” by Aráoz et

al. [AEGJ03].

We include the characterizations of minimal and restricted minimal cut-generating functions

for Y=1 below. Bachem et al. had the same characterization [BJS82, Theorem] as Theorem 4.4.3

under continuity assumptions at the origin.

Theorem 4.4.2 ( [YC16, Theorem 2]). A function π : R → R is a minimal cut-generating

function for Y=1 if and only if π(0) = 0, π is subadditive, and π(x) = supk{ 1
k (1−π(1−kx)) : k ∈ N}.

Theorem 4.4.3 ( [YC16, Proposition 5]). A function π : R → R is a restricted minimal cut-

generating function for Y=1 if and only if π is minimal and π(1) = 1.

The following theorem describes the conversion between gDFFs and cut-generating functions for

Y=1. Unlike Gomory–Johnson cut-generating functions, Yıldız–Cornuéjols cut-generating functions

can be converted to gDFFs and the other way around.

Theorem 4.4.4. Given a valid/maximal/restricted maximal gDFF φ, then for every 0 < λ < 1,

the following function is a valid/minimal/restricted minimal cut-generating function for Y=1:

πλ(x) =
x− (1− λ)φ(x)

λ
.
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Given a valid/minimal/restricted minimal cut-generating function π for Y=1, which is Lipschitz

continuous at x = 0, then there exists δ > 0 such that for all 0 < λ < δ the following function is a

valid/maximal/restricted maximal gDFF:

φλ(x) =
x− λπ(x)

1− λ
, 0 < λ < 1.

Proof. Part (i). The proof of valid functions.

We want to show that πλ is a a valid cut-generating function for Y=1. Suppose there is a function

y : R→ Z+, y has finite support, and
∑

r∈R r y(r) = 1. We want to show that for λ ∈ (0, 1):

∑
r∈R

πλ(r) y(r) ≥ 1

⇔
∑
r∈R

r − (1− λ)φ(r)

λ
y(r) ≥ 1

⇔
∑
r∈R

(r − (1− λ)φ(r)) y(r) ≥ λ

⇔
∑
r∈R

r y(r)− (1− λ)
∑
r∈R

φ(r) y(r) ≥ λ

⇔
∑
r∈R

φ(r) y(r) ≤ 1.

The last step is derived from
∑

r∈R r y(r) = 1 and φ is a gDFF.

On the other hand, the Lipschitz continuity of π at 0 guarantees that φλ(x) ≥ 0 for x ≥ 0 if λ

is small enough. Then the proof for validity of φλ is analogous to the proof above.

Part (ii). The proof of maximal/minimal functions.

As stated in Theorem 4.4.2, π is minimal if and only if π(0) = 0, π is subadditive and π(x) =

supk{ 1
k (1 − π(1 − kx)) : k ∈ N}, which is called the generalized symmetry condition. If πλ(x) =
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x−(1−λ)φ(x)
λ , then πλ(0) = 0 and πλ is subadditive.

sup
k
{1

k
(1− πλ(1− kx)) : k ∈ Z+}

= sup
k
{1

k
(1− 1− kx− (1− λ)φ(1− kx)

λ
) : k ∈ Z+}

= sup
k
{kx− (1− λ)(1− φ(1− kx))

kλ
: k ∈ Z+}

= sup
k
{x
λ
− 1− λ

λ

1

k
(1− φ(1− kx)) : k ∈ Z+}

=
x

λ
− 1− λ

λ
inf
k
{1

k
(1− φ(1− kx)) : k ∈ Z+}

=
x

λ
− 1− λ

λ
φ(x)

= πλ(x).

Therefore, πλ is minimal.

On the other hand, given a minimal cut-generating function π, let φλ(x) = x−λφ(x)
1−λ , then it is

easy to see the superadditivity and φλ(0) = 0. The generalized symmetry can be proven similarly.

The Lipschitz continuity of π at 0 implies that φλ(x) ≥ 0 for any x ≥ 0 if λ is chosen properly.

Part (iii). The proof of restricted maximal/minimal functions.

As stated in Theorem 4.4.3, π is restricted minimal if and only if π(0) = 0, π is subadditive

and π(x) = supk{ 1
k (1− π(1− kx)) : k ∈ Z+}, and π(1) = 1. Given a restricted maximal gDFF φ,

we have φ(1) = 1, which implies πλ(1) = 1.

On the other hand, a restricted minimal π satisfying π(1) = 1, then φλ(1) = 1. Based on the

maximality of φλ, we know φλ is restricted maximal. �

Remark 4.4.2. We discuss the distinctions between these two families of functions.

(i) It is not hard to prove that extreme gDFFs are always maximal. However, unlike cut-

generating functions for Y=1, extreme gDFFs are not always restricted maximal. For instance,

φ(x) = 0 is an extreme gDFF but not restricted maximal.

(ii) By applying the proof of [YC16, Proposition 28], we can show that no strongly minimal

cut-generating function for Y=1 exists. However, there exist strongly maximal gDFFs by The-

orem 4.3.4. Moreover, we can use the same conversion formula in Theorem 4.4.4 to convert

a restricted minimal cut-generating function to a strongly maximal gDFF (see Theorem 4.4.5
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below). In fact, it suffices to choose a proper λ such that limε→0+
φλ(ε)
ε = 0 by the characteri-

zation of strongly maximal gDFFs (Theorem 4.3.2).

(iii) There is no extreme piecewise linear cut-generating function π for Y=1 which is Lipschitz

continuous at x = 0, except for π(x) = x. If π is such an extreme function, then for any

λ small enough, we claim that φλ is an extreme gDFF. Suppose φλ = 1
2φ

1 + 1
2φ

2 and let

π1
λ, π

2
λ be the corresponding cut-generating functions of φ1, φ2 by Theorem 4.4.4. Note that

π = 1
2(π1

λ + π2
λ), which implies π = π1

λ = π2
λ and φλ = φ1

λ = φ2
λ. Thus φλ is extreme. By

Lemma 4.5.2 and the extremality of φλ, we know φλ(x) = x or there exists ε > 0, such that

φλ(x) = 0 for x ∈ [0, ε). If φλ(x) = x, then π(x) = x. Otherwise, limx→0+
φλ(x)
x = 0 for any

small enough λ. The equation

0 = lim
x→0+

φλ(x)

x
= lim

x→0+

x− λπ(x)

(1− λ)x
=

1− λ limx→0+
π(x)
x

1− λ

implies limx→0+
π(x)
x = 1

λ for any small enough λ, which is not possible. Therefore, π cannot

be extreme except for π(x) = x.

Theorem 4.4.5. Given a non-linear restricted minimal cut-generating function π for Y=1, which

is Lipschitz continuous at 0, then there exists λ > 0 such that the following function is a strongly

maximal gDFF:

φλ(x) =
x− λπ(x)

1− λ
.

Proof. From the subadditivity, π(1) = 1 and Lipschitz continuity of π,

1 ≤ lim inf
ε→0+

π(ε)

ε
< +∞

Since π is non-linear, then s = lim infε→0+
π(ε)
ε > 1. Let λ = 1

s , then it is immediate to

check lim infε→0+
φλ(ε)
ε = 0. From the second part in the proof of Theorem 4.3.2, we know

lim infε→0+
φλ(ε)
ε = 0 suffices in order to prove φλ is strongly maximal. �

4.5. Two-slope theorem for general DFFs

In this section, we prove a 2-slope theorem for extreme gDFFs, in the spirit of the 2-slope

theorem of Gomory and Johnson [GJ72a, GJ72b]. First, we introduce the lemma showing that

extreme gDFFs have certain structures. Similar to Lemma 4.2.1 and Lemma 4.2.2, by studying the

superadditivity of maximal gDFFs, it is not hard to prove the following lemma.
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Lemma 4.5.1. Piecewise linear maximal gDFFs are continuous at 0 from the right.

Lemma 4.5.2. Let φ be a piecewise linear extreme gDFF.

(i) If φ is strictly increasing, then φ(x) = x.

(ii) If φ is not strictly increasing, then there exists ε > 0, such that φ(x) = 0 for x ∈ [0, ε).

Proof. Similar to the proof of Lemma 4.2.2, we can assume φ(x) = sx, x ∈ [0, a1). If s = 1,

then φ(x) = x. If s = 0, then φ is not strictly increasing therefore (ii) holds.

Next, we assume 0 < s < 1. Define a function:

φ1(x) =
φ(x)− sx

1− s
.

Clearly φ1(x) = 0 for x ∈ [0, a1). The function φ1 is superadditive because it is obtained by

subtracting a linear function from a superadditive function. We have that

φ1(x) =
φ(x)− sx

1− s

=
1

1− s
[inf
k
{1

k
(1− φ(1− kx)) : k ∈ Z+} − sx]

=
1

1− s
[inf
k
{1

k
(1− [(1− s)φ1(1− kx) + s(1− kx)]) : k ∈ Z+} − sx]

=
1

1− s
[inf
k
{1

k
[(1− s) + skx− (1− s)φ1(1− kx)] : k ∈ Z+} − sx]

=
1

1− s
inf
k
{1

k
[(1− s)− (1− s)φ1(1− kx)] : k ∈ Z+}

= inf
k
{1

k
(1− φ1(1− kx)) : k ∈ Z+}.

The above equation shows that φ1 satisfies the generalized symmetry condition in Proposi-

tion 4.3.1. Therefore, φ1 is also a maximal gDFF. The condition φ(x) = sx+(1−s)φ1(x) implies φ

is not extreme, since it can be expressed as a convex combination of two different maximal gDFFs:

x and φ1. �

From Lemma 4.5.2, we know 0 must be one slope value of a piecewise linear extreme gDFF φ,

except for φ(x) = x. Next, we introduce the 2-slope theorem for extreme gDFFs. The proof of the

following two-slope theorem follows closely that of the Gomory–Johnson’s two-slope theorem.
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Theorem 4.5.1 (Two-Slope Theorem for gDFFs). Let φ be a continuous piecewise linear

strongly maximal gDFF with only 2 slope values, then φ is extreme.

Proof. Since φ is strongly maximal with 2 slope values, we know one slope value must be

0 by Theorem 4.3.2. Suppose φ = 1
2(φ1 + φ2), where φ1, φ2 are two maximal gDFFs. From

Proposition 4.1.4, we know φ(1) = 1, which implies φ1(1) = φ2(1) = 1. Let s be the other slope

value of φ. Due to superadditivity of φ, s is the limiting slope of φ at 0− and 0 is the limiting slope

of φ at 0+. More precisely, there exist ε, δ > 0 such that φ(x) = sx for x ∈ [−ε, 0] and φ(x) = 0 for

x ∈ [0, δ]. We want to show φ1, φ2 have slope 0 where φ has slope 0, and φ1, φ2 have slope s where

φ has slope s.

Case 1: Suppose [a, b] is a closed interval where φ has slope value 0. Choose δ′ = min(δ, b−a2 ) >

0. Let I = [0, δ′], J = [a, b− δ′], K = [a, b], then I, J,K are three non-empty and proper intervals.

Clearly φ(x)+φ(y) = φ(x+y) for x ∈ I, y ∈ J . Since φ1, φ2 are also superadditive, they satisfy the

equality where φ satisfy the equality. In other words, φi(x) + φi(y) = φi(x + y) for x ∈ I, y ∈ J ,

i = 1, 2. By the Interval Lemma, φ1 is affine over [a, b] and [0, δ′] with the same slope value l1.

Similarly, φ2 is affine over [a, b] and [0, δ′] with the same slope value l2. It is clear that l1 = l2 = 0

since φ1, φ2 are increasing and 0 = 1
2(l1 + l2).

Case 2: Suppose [c, d] is a closed interval where φ has slope value s. Choose ε′ = min(ε, d−c2 ).

Let I = [−ε′, 0], J = [c+ ε′, d], K = [c, d], it is clear that φ(x) + φ(y) = φ(x+ y) for x ∈ I, y ∈ J .

Similarly we can prove that φi is affine over [c, d] and [−ε′, 0] with the same slope value si (i = 1, 2).

Consider the interval [0 = a0, a1, . . . , an = 1], where φ has slope 0 over [ak, ak+1] with k even

and slope s over [ak, ak+1] with k odd. Then φi have slope 0 over [ak, ak+1] with k even and slope

si over [ak, ak+1] with k odd. Let L0 and Ls be the total length of intervals where φ has slope 0 and

s, respectively. Then s · Ls + 0 · L0 = 1. It is possible that φi has jumps at breakpoints ak, but it

can only jump up since φi is increasing. Suppose hi ≥ 0 are the total jumps of φi at discontinuous

points. From φi(1) = 1 we can obtain the following equation:

si · Ls + 0 · L0 + hi = 1 (i = 1, 2).

Note that s = 1
2(s1 + s2) and s · Ls + 0 · L0 = 1. So s1 = s2 = s and h1 = h2 = 0 which implies

φ1, φ2 are continuous and φ1 = φ2 = φ. Thus, φ is extreme. �
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Figure 4.2. Graphs of φBJ,1 [ACdCR16, Example 3.1] for C = 3/2 (left) and
C = 7/3 (right).

Remark 4.5.1. Alves et al. [ACdCR16] showed the following functions by Burdet and Johnson

with one parameter C ≥ 1 are maximal gDFFs, where {a} represents the fractional part of a:

φBJ,1(x;C) =
bCxc+ max(0, {Cx}−{C}1−{C} )

bCc
.

We can prove that they are extreme. If C ∈ N, then φBJ,1(x) = x. If C /∈ N, φBJ,1 is a continuous

2-slope maximal gDFF with one slope value 0, therefore it is extreme by Theorem 4.5.1. Figure 4.2

shows two examples of φBJ,1 and they are constructed by the Python function phi bj 1 gdff.

Remark 4.5.2. However, the analogous result does not hold for cDFFs. In other words, the

restriction φ|[0,1] is not always extreme as a cDFF even if φ is extreme as a gDFF. In fact,

φBJ,1(x;C)|[0,1] is not extreme as a cDFF for 1 < C < 2, though it is a continuous 2-slope maximal

cDFF with one slope value 0. We found an interesting counterexample by computer-based search;

it is shown in Figure 4.3 and Figure 4.4.

4.6. Restricted maximal general DFFs are almost extreme

In the previous section, we have shown that any continuous 2-slope strongly maximal gDFF is

extreme. In this section, we prove that extreme gDFFs are dense in the set of continuous restricted

maximal gDFFs. Equivalently, for any given continuous restricted maximal gDFF φ, there exists an
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Figure 4.3. Continuous 2-slope maximal non-extreme cDFF
w 2slope 3covered nonextreme with 3 connected covered components. We
use 3 different colors to color additive faces to represent 3 different covered
components. The colors on the function are consistent with the colors of additive
faces. We plot the function on the left and upper border. The shadows represent
covered components from the projections of additive faces in 3 directions.

extreme gDFF φext which approximates φ as close as desired (with the infinity norm). The idea of

the proof is inspired by the approximation theorem of Gomory–Johnson functions [BHM16]. We
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Figure 4.4. Continuous 2-slope maximal non-extreme cDFF
w 2slope 3covered nonextreme (in black), an effective perturbation function

π̃ (magenta), and functions φ± = φ± εφ̃ (blue and red).

first introduce the main theorem in this section. The approximation1 is implemented for piecewise

linear functions with finitely many pieces.

Theorem 4.6.1 (Approximation Theorem). Let φ be a continuous restricted maximal gDFF,

then for any ε > 0, there exists an extreme gDFF φext such that ‖φ− φext‖∞ < ε.

Remark 4.6.1. The result cannot be extended to maximal gDFF. Note that φ(x) = sx is max-

imal but not extreme for 0 < s < 1. Any non-trivial extreme gDFF φ′ satisfies φ′(1) = 1, and

φ′(1) − φ(1) = 1 − s > 0 and 1 − s is a fixed positive constant. Therefore, φ(x) = sx cannot be

arbitrarily approximated by an extreme gDFF.

We briefly explain the structure of the proof. First, we approximate a continuous restricted

maximal gDFF φ by a piecewise linear maximal gDFF φpwl. Next, we perturb φpwl such that the

new maximal gDFF φloose satisfies ∇φloose(x, y) > γ > 0 for “most” (x, y) ∈ R2. After applying

the 2-slope fill-in procedure to φloose, we get a superadditive 2-slope function φfill-in, which is not

symmetric anymore. Finally, we symmetrize φfill-in to get the desired φext.

4.6.1. Approximate φ using piecewise linear functions φpwl. By studying the superad-

ditivity of maximal gDFFs near the origin, it is not hard to prove Lemma 4.6.1. By choosing a

large enough q ∈ N and interpolating the function over 1
qZ we can obtain Lemma 4.6.2.

Lemma 4.6.1. Any continuous restricted maximal gDFF φ is uniformly continuous.

1See the constructor two slope approximation gdff linear.
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Proof. Since φ is continuous at 0 and nondecreasing, for any ε > 0, there exists δ > 0 such

that −δ < t ≤ 0 implies −ε < φ(t) ≤ 0. For any x, y with −δ < x − y < 0, by superadditivity we

have 0 ≥ φ(x)− φ(y) ≥ φ(x− y) > −ε. So φ is uniformly continuous. �

Lemma 4.6.2. Let φ be a continuous restricted maximal gDFF, then for any ε > 0, there exists

a piecewise linear continuous restricted maximal gDFF φpwl, such that ‖φ− φpwl‖∞ < ε
3 .

Proof. By Lemma 4.6.1, φ is uniformly continuous. For any ε > 0, there exists δ > 0 such

that |x − y| < δ implies |φ(x) − φ(y)| < ε
3 . Choose q ∈ N large enough such that 1

q < δ, then

0 ≤ φ(n+1
q ) − φ(nq ) < ε

3 for any integer n. We claim that the interpolation of φ| 1
q
Z is the desired

φpwl.

We first prove ‖φ− φpwl‖∞ < ε
3 . For any x ∈ R, suppose n

q ≤ x <
n+1
q for some integer n. Due

to the choice of q and δ,

φ(x)− φpwl(x) ≤ φ(
n+ 1

q
)− φpwl(

n

q
) = φ(

n+ 1

q
)− φ(

n

q
) <

ε

3

Similarly we can prove φ(x)− φpwl(x) > − ε
3 . So ‖φ− φpwl‖∞ < ε

3 .

Since φ| 1
q
Z is superadditive and satisfies the symmetry condition, then φpwl is also superadditive

and satisfies the symmetry condition due to piecewise linearity of φpwl. Therefore, φpwl is the desired

function. �

4.6.2. Perturbation function φs,δ. Next, we introduce a parametric family of restricted

maximal gDFFs φs,δ which will be used to perturb φpwl. Define

φs,δ(x) =



sx− sδ if x < −δ

2sx if −δ ≤ x < 0

0 if 0 ≤ x < δ

1
1−2δx−

δ
1−2δ if δ ≤ x < 1− δ

1 1− δ ≤ x < 1

2sx− 2s+ 1 1 ≤ x < 1 + δ

sx− s+ 1 + sδ x ≥ 1 + δ

.
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2δs+ 1

Figure 4.5. The graph of φs,δ for s = 2 and δ = 1
5

The function φs,δ is a continuous piecewise linear function, which has breakpoints: −δ, 0, δ, 1−

δ, 1, 1 + δ and slope values: s, 2s, 0, 1
1−sδ , 0, 2s, s in each affine piece. Figure 4.5 is the graph of one

φs,δ function constructed by the Python function phi s delta.

Let Eδ = {(x, y) ∈ R2 : −δ < x < δ or − δ < y < δ or 1− δ < x+ y < 1 + δ}.

Lemma 4.6.3. The function φs,δ is a continuous restricted maximal gDFF and ∇φs,δ(x, y) ≥ δ

for (x, y) /∈ Eδ, if s > 1 and 0 < δ < min{ s−1
2s ,

1
3}.

Verifying the above properties of φs,δ is a routine computation by analyzing the superadditivity

slack at every vertex in the two-dimensional polyhedral complex (cf. Section 4.2.1) of φs,δ. We ex-

plain why it suffices to check the superadditive slack at finitely many vertices in the two-dimensional

polyhedral complex.

First, we generalize the definition of the two-dimensional polyhedral complex to piecewise

linear functions with unbounded domain. Let φ : R → R be a piecewise linear function with

finitely many pieces with breakpoints x1 < x2 < · · · < xn. To express the domains of linear-

ity of ∇φ(x, y), and thus domains of additivity and strict superadditivity, we introduce the two-

dimensional polyhedral complex ∆P, similar to the definition in Section 4.2.1 for cDFFs. The

faces F of the complex are defined as follows. Let I, J,K ∈ P, so each of I, J,K is either a

breakpoint of φ or a closed interval delimited by two consecutive breakpoints including ±∞. Then

F = F (I, J,K) = { (x, y) ∈ R× R : x ∈ I, y ∈ J, x+ y ∈ K }. Let F ∈ ∆P and observe that the

piecewise linearity of φ induces piecewise linearity of ∇φ.
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Lemma 4.6.4. Let φ : R→ R be a continuous piecewise linear function with finitely many pieces

with breakpoints x1 < x2 < · · · < 0 < · · · < xn and φ has the same slope s on (−∞, x1] and [xn,∞).

Consider a one-dimensional unbounded face F where one of I, J,K is a finite breakpoint and the

other two are unbounded closed intervals, (−∞, x1] or [xn,∞). Then ∇φ(x, y) is a constant along

the face F .

Proof. We only provide the proof for one case, the proofs for other cases are similar.

Suppose I = {xi}, J = K = [xn,∞). The vertex of F is (x, y) = (xi, xn) if xi ≥ 0 and

(x, y) = (xi, xn − xi) if xi < 0. If xi ≥ 0, we claim that ∇φ(x, y) = ∇φ(xi, xn) for (x, y) ∈ F . We

have

∇φ(x, y) = φ(xi + y)− φ(xi)− φ(y) = φ(xi + xn)− φ(xi)− φ(xn) = ∇φ(xi, xn).

The second step in the above equation is due to φ is affine on [xn,∞) and xi + xn, y ≥ xn.

If xi < 0, we claim that ∇φ(x, y) = ∇φ(xi, xn − xi) for (x, y) ∈ F . We can deduce that

∇φ(x, y) = φ(xi + y)− φ(xi)− φ(y)

= (φ(xn) + s(xi + y − xn))− φ(xi)− (φ(xn − xi) + s(xi + y − xn))

= φ(xn)− φ(xi)− φ(xn − xi) = ∇φ(xi, xn − xi).

The second step in the above equation is due to φ has slope s on [xn,∞) and xn−xi, xi+y ≥ xn.

Case 2: Suppose K = {xi}, I = [xn,∞) and J = (−∞, x1]. The vertex of F is (x, y) =

(xn, xi − xn) if xi ≤ x1 + xn and (x, y) = (xi − x1, x1) if xi > x1 + xn.

If xi ≤ x1 + xn, we claim that ∇φ(x, y) = ∇φ(xn, xi − xn) for (x, y) ∈ F . Similarly we have

∇φ(x, y) = φ(xi)− φ(x)− φ(xi − x)

= φ(xi)− (φ(xn) + s(x− xn))− (φ(xi − xn)− s(x− xn))

= φ(xi)− φ(xn)− φ(xi − xn) = ∇φ(xn, xi − xn).

The second step in the above equation is due to φ has the same slope s on (−∞, x1] and [xn,∞)

and x ≥ xn, y = xi − x ≤ xi − xn ≤ x1.
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If xi > x1 + xn, we claim that ∇φ(x, y) = ∇φ(xi − x1, x1) for (x, y) ∈ F , by the following

equation:

∇φ(x, y) = φ(xi)− φ(xi − y)− φ(y)

= φ(xi)− (φ(xi − x1) + s(x1 − y))− (φ(x1)− s(x1 − y))

= φ(xi)− φ(xi − x1)− φ(x1) = ∇φ(xi − x1, x1).

The second step in the above equation is due to φ has the same slope s on (−∞, x1] and [xn,∞)

and y ≥ x1, x = xi − y ≥ xi − x1 ≥ xn.

Therefore, ∇φ(x, y) is a constant for (x, y) in any fixed one-dimensional unbounded face. �

By using the piecewise linearity of ∇φ, we can prove the following lemma. Thus, it suffices to

check the superadditivity slack at finitely many vertices in the two-dimensional polyhedral complex

to prove the desired properties of φs,δ, i.e. ∇φs,δ(x, y) ≥ δ for (x, y) /∈ Eδ, if s > 1 and 0 < δ <

min{ s−1
2s ,

1
3}.

Lemma 4.6.5. Define the two-dimensional polyhedral complex ∆P of the function φs,δ. If

∇φs,δ(x, y) ≥ δ for any zero-dimensional face (x, y) /∈ Eδ, then ∇φs,δ(x, y) ≥ δ for (x, y) /∈ Eδ.

Proof. Observe that R2 −Eδ is the union of finite two-dimensional faces. So we only need to

show ∇φs,δ(x, y) ≥ δ for (x, y) /∈ Eδ and (x, y) in some two-dimensional face F .

If F is bounded, then ∇φs,δ(x, y) ≥ δ since the inequality holds for vertices of F and ∇φ is

affine over F .

Suppose that F is unbounded and is enclosed by some bounded and some unbounded one-

dimensional faces. For those bounded one-dimensional faces, ∇φs,δ(x, y) ≥ δ holds since the in-

equality holds for vertices. For any unbounded one-dimensional face F ′, by Lemma 4.6.4, the ∇φ

is constant and equals to the value at the vertex of F ′. We have showed that ∇φs,δ(x, y) ≥ δ holds

for any (x, y) in the enclosing one-dimensional faces, then the inequality holds for (x, y) ∈ F due

to the piecewise linearity of ∇φ. �

Remark 4.6.2. In the software [KZHW20], we define a parametric family of functions φs,δ

with two variables s and δ. From the definition of φs,δ, it is clear that φs,δ satisfies the symmetry

condition. Although φs,δ is defined in the unbounded domain R, ∇φ only depends on the values

at the vertices of ∆P which is a bounded and finite set, based on the above lemma. In order to
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show the superadditivity and ∇φs,δ(x, y) ≥ δ for (x, y) /∈ Eδ, only ∇φs,δ at all vertices of ∆P needs

to be checked. The Python function phi s delta is superadditive almost strict verifies the

claim for given numerical values of s and δ that satisfy the hypotheses of Lemma 4.6.3. Using

the method of parametric metaprogramming introduced in [KZ16], the documentation tests of the

Python function phi s delta check claim verify the claim for the full parametric family, providing

an automatic proof of Lemma 4.6.3.

4.6.3. Approximate φpwl using φloose.

Lemma 4.6.6. Let φpwl be a piecewise linear continuous restricted maximal gDFF, then for any

ε > 0, there exists a piecewise linear continuous restricted maximal gDFF φloose satisfying: (i)

‖φloose − φpwl‖∞ < ε
3 ; (ii) there exist δ, γ > 0 such that ∇φloose(x, y) ≥ γ for (x, y) not in Eδ.

Proof. By Proposition 4.1.3, let t = limx→∞
φpwl(x)

x , then tx − t + 1 ≤ φpwl(x) ≤ tx. We

can assume t > 1, otherwise φpwl is the identity function and the result is trivial. Choose s = t

and δ small enough such that 0 < δ < min{ s−1
2s ,

1
3 ,

1
q}, where q is the denominator of breakpoints

of φpwl in previous lemma. We know that the limiting slope of maximal gDFF φt,δ is also t and

tx− t+ 1 ≤ φt,δ(x) ≤ tx, which implies ‖φt,δ − φpwl‖∞ ≤ t− 1.

Define φloose = (1 − ε
3(t−1))φpwl + ε

3(t−1) φt,δ. It is immediate to check φloose is restricted

maximal, and ‖φloose − φpwl‖∞ < ε
3 is due to ‖φt,δ − φpwl‖∞ ≤ t − 1. Based on the property of

φt,δ, ∇φloose(x, y) = (1− ε
3(t−1))∇φpwl(x, y) + ε

3(t−1)∇φt,δ(x, y) ≥ ε
3(t−1)∇φt,δ(x, y) ≥ γ = εδ

3(t−1) for

(x, y) not in Eδ. �

4.6.4. Approximate φloose using extreme function φext.

Lemma 4.6.7. Given a piecewise linear continuous restricted maximal gDFF φloose satisfying

properties in previous lemma, there exists an extreme gDFF φext such that ‖φloose − φext‖∞ < ε
3 .

Proof. Let s+ ≥ 0 be the largest slope of φloose and φloose(x) = s+x for x ∈ [−δ, 0] where

δ is chosen from previous lemma. Choose q′ ∈ N+ such that 1
q′ s

+ < min{ ε3 ,
γ
3 = εδ

9(t−1)} and the

breakpoints of φloose and 1
2 are contained in U = 1

q′Z. Note that we can always choose a rational

δ to ensure that the last step is feasible. Define a function g : R → R and a 2-slope function

φfill-in : [0, 1]→ [0, 1]:

g(x) =


0 if x ≥ 0

s+x if x < 0

,
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φfill-in(x) = max
u∈U
{φloose(u) + g(x− u)}.

We claim that φfill-in is a continuous 2-slope superadditive function and φfill-in ≤ φloose, φfill-in|U =

φ|U . The proof is similar to that of [GJ72a, Theorem 3.3]. |φfill-in(x) − φloose(x)| ≤ 1
q s

+ < ε
3

implies that ‖φloose−φfill-in‖ < 1
q′ s

+ < ε
3 . However, φfill-in does not necessarily satisfy the symmetry

condition. If we symmetrize it and define the following function:

φext(x) =


φfill-in(x) if x ≤ 1

2

1− φfill-in(1− x) if x > 1
2

.

We claim that φext is the desired function. It is immediate to check φext(0) = 0, φext is a

2-slope continuous function and it automatically satisfies the symmetry condition. Since we use

slope 0 and s+ to do the fill-in procedure, the limiting slope of φext at 0+ is 0. Notice that

‖φloose − φext‖ = ‖φloose − φfill-in‖ < 1
q′ s

+ < ε
3 because they both satisfy the symmetry condition.

So we only need to prove φext is superadditive.

Case 1: If (x, y) is not in Eδ, ∇φext(x, y) ≥ ∇φloose(x, y) − εδ
9(t−1) −

εδ
9(t−1) −

εδ
9(t−1) ≥

εδ
3(t−1) −

εδ
3(t−1) = 0.

Case 2: If 0 ≤ x ≤ δ, there are also three sub cases.

(i) If y, x+ y ≤ 1
2 , then ∇φext(x, y) = ∇φfill-in(x, y) ≥ 0.

(ii) If y ≤ 1
2 and x + y > 1

2 , then ∇φext(x, y) = 1 − φfill-in(1 − x − y) − φfill-in(x) − φfill-in(y) ≥

1− φloose(1− x− y)− φloose(x)− φloose(y) ≥ 0. Here we use the fact that φloose ≥ φfill-in and φloose

is a maximal gDFF.

(iii) If y, x+ y > 1
2 , then ∇φext(x, y) = (1−φfill-in(1−x− y))−φfill-in(x)− (1−φfill-in(1− y)) =

φfill-in(1− y)− φfill-in(1− x− y)− φfill-in(x) ≥ 0 due to superadditivity of φfill-in.

Case 3: If 0 > x ≥ −δ, based on the choice of δ and s+, we know φext(x) = s+x for 0 > x ≥ −δ.

For any y ∈ R, φext(x+ y)− φext(y) ≥ s+x = φext(x) since φext is a 2-slope function and s+ is the

larger slope.

Similarly we can prove ∇φext(x, y) ≥ 0 if −δ ≤ y ≤ δ.

Case 4: If 1 − δ ≤ x + y ≤ 1 + δ, let β = 1 − x − y and −δ ≤ β ≤ δ, so by case 2

and 3, φext(β) + φext(x) ≤ φext(β + x). Then we have φext(x + y) = φext(1 − β) = 1 − φext(β) =

1−φext(β)+φext(x)−φext(x) ≥ 1−φext(β+x)+φext(x) = 1−φext(1−y)+φext(x) = φext(y)+φext(x).
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We have shown that φext is superadditive, then it is a continuous 2-slope strongly maximal

gDFF. By the Two-Slope Theorem (Theorem 4.5.1), φext is extreme. �

Combine the previous lemmas, and we have ‖φ− φext‖∞ ≤ ‖φ− φpwl‖∞ + ‖φpwl − φloose‖∞ +

‖φloose − φext‖∞ < 3 × ε
3 = ε. We can conclude the Approximation Theorem. Observe that we

always use 0 as one slope value in the fill-in procedure. It is due to the fact (Lemma 4.5.2) that

almost all extreme gDFFs have 0 as the limiting slope at 0+.

4.7. Conclusion

In this chapter, we have studied two types of dual-feasible functions: classical DFFs and gen-

eral DFFs. Our results are mainly inspired by the characterizations of DFFs and Gomory–Johnson

cut-generating functions. Specifically, there is a natural mutual transformation relation between

subadditivity and superadditivity. The cut-generating functions have been studied extensively

for general integer optimization problems, whereas DFFs are relatively restricted to certain com-

binatorial optimization problems. We apply the research on cut-generating functions and prove

analogous results for DFFs, and we also write a software for DFFs following the framework of

Gomory–Johnson cut-generating functions. Our research connects both fields. We not only foster

the DFF community by applying results of cut-generating function, but also provide a tunnel of

knowledge in the sense that a new result in one field can be potentially transferred to the other

field.

There are several future research directions regarding DFFs. First, we only study analytical

properties of DFFs and have not applied them in any computational experiment. One future work is

to test how a richer family of DFFs can improve computational performance of solving combinatorial

optimization problems. Ideally, the efficiently computed bound generated by DFFs can be improved

given more available DFFs. On the other hand, for certain combinatorial optimization problems and

DFFs with known good computational performance, one can study if the cutting plane algorithm

can be improved by a good cut selection strategy. Another research direction is regarding the multi-

dimensional generalization. Multi-row cut-generating functions was first proposed in late 1960s

[Gom65] and have received renewed attention since late 2000s [Esp08, Poi12, Zam09]. As the

generalization of single-row cut-generating functions, multi-row cut-generating functions are used

to generate cuts from multiple rows of the simplex tableau simultaneously. Multi-dimensional DFFs

have been used in vector packing [AdCCR14], orthogonal packing [FS04], and tree decomposition
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problems [ACdCR16]. It is worth investigating the relation between multi-dimensional DFFs and

cut-generating functions.
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[DM02] E. D. Dolan and J. J. Moré, Benchmarking optimization software with performance profiles, Mathemat-

ical Programming 91 (2002), no. 2, 201–213.

[DMY92] T. J. DiCiccio, M. A. Martin, and G. A. Young, Analytical approximations for iterated bootstrap confi-

dence intervals, Statistics and Computing 2 (1992), no. 3, 161–171.

[DSB17] D. Doran, S. Schulz, and T. R. Besold, What does explainable AI really mean? a new conceptualization

of perspectives, arXiv preprint arXiv:1710.00794 (2017).

[EPS+18] Z. Epstein, B. H. Payne, J. H. Shen, A. Dubey, B. Felbo, M. Groh, N. Obradovich, M. Cebrián, and

I. Rahwan, Closing the AI knowledge gap, arXiv preprint arXiv:1803.07233 (2018).

[ESP88] R. L. Edgeman, R. C. Scott, and R. J. Pavur, A modified Kolmogorov-Smirnov test for the inverse

Gaussian density with unknown parameters, Communications in Statistics-Simulation and Computation

17 (1988), no. 4, 1203–1212.

[Esp08] D. G. Espinoza, Computing with multi-row gomory cuts, Proceedings of the 13th international conference

on Integer programming and combinatorial optimization (Berlin, Heidelberg), IPCO’08, Springer-Verlag,

2008, pp. 214–224.

134



[FBS12] J. Freire, P. Bonnet, and D. Shasha, Computational reproducibility: state-of-the-art, challenges, and

database research opportunities, Proceedings of the 2012 ACM SIGMOD international conference on

management of data, 2012, pp. 593–596.

[Fei06] D. G. Feitelson, Experimental computer science: The need for a cultural change, Internet version:

http://www. cs. huji. ac. il/˜ feit/papers/exp05. pdf (2006).

[FMMS14] M. Ferro, A. R. Mury, L. F. Manfroi, and B. Schlze, High performance computing evaluation a method-

ology based on scientific application requirements, arXiv preprint arXiv:1412.1297 (2014).

[FN95] D. G. Feitelson and B. Nitzberg, Job characteristics of a production parallel scientific workload on the

NASA Ames iPSC/860, workshop on job scheduling strategies for parallel processing, Springer, 1995,

pp. 337–360.

[FS04] S. P. Fekete and J. Schepers, A general framework for bounds for higher-dimensional orthogonal packing

problems, Mathematical Methods of Operations Research 60 (2004), no. 2, 311–329.

[Gan13] C. Gandrud, Reproducible research with R and R studio, CRC Press, 2013.

[GBE07] A. Georges, D. Buytaert, and L. Eeckhout, Statistically rigorous java performance evaluation, ACM

SIGPLAN Notices, vol. 42, ACM, 2007, pp. 57–76.

[GEG+17] A. Gleixner, L. Eifler, T. Gally, G. Gamrath, P. Gemander, R. L. Gottwald, G. Hendel, C. Hojny,

T. Koch, M. Miltenberger, et al., The SCIP optimization suite 5.0, (2017).

[GJ72a] R. E. Gomory and E. L. Johnson, Some continuous functions related to corner polyhedra, I, Mathematical

Programming 3 (1972), 23–85.

[GJ72b] , Some continuous functions related to corner polyhedra, II, Mathematical Programming 3 (1972),

359–389.

[GM79] M. Ghosh and N. Mukhopadhyay, Sequential point estimation of the mean when the distribution is

unspecified, Communications in Statistics-Theory and Methods 8 (1979), no. 7, 637–652.

[Gom65] R. E. Gomory, On the relation between integer and noninteger solutions to linear programs, Proc. Nat.

Acad. Sci. U.S.A. 53 (1965), 260–265.

[Gom69a] , Some polyhedra related to combinatorial problems, Linear Algebra and Appl. 2 (1969), 451–558.

[Gom69b] , Some polyhedra related to combinatorial problems, Linear Algebra and its Applications 2 (1969),

451–558.

[GS12] M. R. Green and J. Sambrook, Molecular cloning, A Laboratory Manual 4th (2012).

[GZ12] A. Ghasemi and S. Zahediasl, Normality tests for statistical analysis: a guide for non-statisticians,

International journal of endocrinology and metabolism 10 (2012), no. 2, 486.

[HB15] T. Hoefler and R. Belli, Scientific benchmarking of parallel computing systems: twelve ways to tell

the masses when reporting performance results, Proceedings of the international conference for high

performance computing, networking, storage and analysis, ACM, 2015, p. 73.

[HCA15] S. Hunold and A. Carpen-Amarie, MPI benchmarking revisited: Experimental design and reproducibility,

arXiv preprint arXiv:1505.07734 (2015).

135
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[YC16] S. Yıldız and G. Cornuéjols, Cut-generating functions for integer variables, Mathematics of Operations

Research 41 (2016), no. 4, 1381–1403, http://dx.doi.org/10.1287/moor.2016.0781.

[YH19] A. Yousef and H. Hamdy, Three-stage estimation of the mean and variance of the normal distribution

with application to an inverse coefficient of variation with computer simulation, Mathematics 7 (2019),

no. 9, 831.

[Zac66] S. Zacks, Sequential estimation of the mean of a log-normal distribution having a prescribed proportional

closeness, The Annals of Mathematical Statistics (1966), 1688–1696.

[Zam09] G. Zambelli, On degenerate multi-row Gomory cuts, Operations Research Letters 37 (2009), no. 1, 21–22.

[Zho17] Y. Zhou, Infinite-dimensional relaxations of mixed-integer optimization problems, Ph.D. thesis, Univer-

sity of California, Davis, Graduate Group in Applied Mathematics, May 2017.

140


