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Abstract

In this dissertation, we study the phenomenon of wall-crossing structures in cluster algebras

of Fomin and Zelevinsky, with examples including cluster scattering diagrams of Gross, Hacking,

Keel, and Kontsevich (GHKK) and stability scattering diagrams of Bridgeland. We show that in

general, every consistent scattering diagram admits a canonical underlying cone complex structure.

We describe mutations of the stability scattering diagram of a quiver with non-degenerate potential.

Then we use this description to prove that the stability scattering diagram admits the so-called

cluster complex structure. As a consequence, we verify if a quiver admits a reddening sequence, a

conjecture of Kontsevich and Soibelman that the associated cluster scattering diagram is equivalent

to the stability scattering diagram of the same quiver with a non-degenerate potential. We also give

another proof of the Caldero–Chapoton formula of cluster monomials using scattering diagrams.

Skew-symmetrizable cluster algebras need extra care. We define a Langlands dual version of

the cluster scattering diagram of GHKK and show that it admits a cluster complex structure

that is Langlands dual to GHKK’s version. We use it to describe the cluster monomials of skew-

symmetrizable cluster algebras in terms of theta functions. Then we study the Hall algebra scat-

tering diagram associated to the Geiss–Leclerc–Schröer algebra of an acyclic skew-symmetrizable

matrix with a skew-symmetrizer. We show that it admits the same cluster complex structure as

the aforementioned Langlands dual cluster scattering diagram. In the end, we extend the theory

of scattering diagrams to Chekhov and Shapiro’s generalized cluster algebras.
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CHAPTER 1

Introduction

The notion of wall-crossing structures has emerged from the work of Kontsevich and Soibel-

man [KS06], and Gross and Siebert [GS11] (under the name consistent scattering diagrams), on

the Strominger-Yau-Zaslow approach to mirror symmetry, and in parallel, from the work of Kont-

sevich and Soibelman [KS08] on Donaldson-Thomas invariants of 3-Calabi-Yau categories. Since

their first appearances, there are various applications of wall-crossing structures. Among them,

a remarkable one is the construction of cluster scattering diagrams by Gross, Hacking, Keel, and

Kontsevich (GHKK for short) [GHKK18], used to settle several long-standing conjectures about

cluster algebras. On the other hand, another wall-crossing structure, the motivic Hall algebra scat-

tering diagram is constructed by Bridgeland [Bri17] for any quiver with relation, encoding the

wall-crossing-formula type information of the category of quiver representations. The theme of this

dissertation centers around the relationship between these two types of wall-crossing structures.

Our work is motivated by the theory of cluster algebras, and in fact, part of our goal is to study

the properties of cluster algebras using the technique of scattering diagrams. Cluster algebras,

introduced by Fomin and Zelevinsky in [FZ02], are a class of commutative algebras generated in

some Laurent polynomial ring by a distinguished set of Laurent polynomials (the cluster variables)

grouped in overlapping subsets (the clusters) recursively obtained by operations called mutations.

Gross, Hacking, Keel, and Kontsevich have proved important properties of cluster algebras regard-

ing their bases in [GHKK18] where a class of wall-crossing structures named cluster scattering

diagram plays a crucial role. In general, a scattering diagram is a (possibly infinite) cone complex in

a vector space where its codimension one cones (walls) are decorated with certain transformations

(elements in some group) referred as wall-crossings. The cluster scattering diagram associated with

a cluster algebra has maximal cells (the cluster chambers) corresponding to clusters. The walls of

the cluster chambers are decorated with wall-crossings in the automorphism group of some formal

poisson torus to describe mutations. A nicely behaved basis of a cluster algebra (the canonical
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basis) is constructed in [GHKK18] by counting in the associated cluster scattering diagram cer-

tain piecewise linear curves (the broken lines) which bend when crossing walls. The canonical basis

contains monomials of cluster variables that belongs to the same cluster.

A large class of cluster algebras of interest is those associated to quivers. To cluster algebras of

this type, there is a seemingly different approach that utilizes a categorification modeled on quiver

representations. For more details in this approach (called the additive categorification), we refer

the reader to the nice survey [Kel08]. In view of the additive categorification, clusters correspond

to t-structures of the relevant triangulated category, and mutations are essentially tiltings of t-

structures. In this framework, cluster monomials, part of the canonical basis, can be recovered by

applying Caldero-Chapoton type formulas to certain quiver representations; see [CC06] for finite

type quivers, generalizations in [CK08, CK06, Pal08], [DWZ10, Pla11] for arbitrary 2-acyclic

quivers and [Nag13] for a point of view closest to this paper.

It is interesting to ask for the meanings of cluster scattering diagrams, wall-crossings and

broken lines in the additive categorification. An important first step towards an answer is taken

by Bridgeland, who constructs in [Bri17] a Hall algebra scattering diagram DHall
Q,I (Definition 6.2.1)

for each quiver with relations (Q, I) by considering stability conditions on the abelian category

of representations of (Q, I). If the ideal of relations arises from a potential W , we can apply an

integration map to DHall
Q,I to get a stability scattering diagram DStab

Q,W valued in a much simpler group.

He shows that for an acyclic quiver (thus with only zero potential), the stability scattering diagram is

identical to the corresponding cluster scattering diagram DCl
Q . In this case, the Caldero-Chapoton

formulas for cluster monomials thus have interpretations in both the cluster and the stability

scattering diagram. However, even for acyclic quivers, the representation-theoretic meaning of the

canonical basis (apart from cluster monomials) is still unclear.

One goal of this dissertation is to further investigate the relationship between these two related,

but a priori not necessarily equivalent, scattering diagrams DCl
Q and DStab

Q,W , setting foundations

towards a better understanding of the categorical meanings of the combinatorial objects extracted

from cluster scattering diagrams, seeking a categorification of broken lines.

We also work to extend the cluster-versus-stability comparison to the skew-symmetrizable case.

To a skew-symmetrizable integral matrix B (with a skew-symmetrizer D), there is an associated

cluster algebra A(B). It is worth mentioning that GHKK’s construction of cluster scattering

diagrams do cover the skew-symmetrizable case. In this dissertation, we propose a scattering
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diagram DCl
B,D that is Langlands dual to GHKK’s cluster scattering diagram. We prove that our

scattering diagrams have nice properties so that it can be used to describe the cluster monomials

of A(B).

On the other hand, it seems harder to find an additive categorification for skew-symmetrizable

cluster algebras than the skew-symmetric case. Besides other approaches such as [Dem11,Rup15]

and many others, Geiss, Leclerc and Schröer [GLS17] have introduced a finite-dimensional algebra

H(B,D) associated to the pair (B,D) of an acyclic skew-symmetrizable matrix B with its left

skew-symmetrizer D, and use certain H(B,D)-modules to describe the cluster monomials of A(B)

when B is of Dynkin type [GLS18]. In a similar vein to the skew-symmetric case, we study the

relationship between DHall
H(B,D) and DCl

B,D. The main result we have along these lines is that these

two scattering diagrams share the same cluster complex structure.

In the end, we extend GHKK’s theory of cluster scattering diagrams to generalized cluster

algebras of Chekhov and Shapiro [CS14]. The generalization is accomplished by modifying the

wall-crossings on initial walls to allow more complicated reciprocal monic polynomials. We show

that these generalized cluster scattering diagrams also admit a cluster complex structure. We hope

that this framework is useful for solving the positivity conjecture of generalized cluster algebras

and for understanding other properties. As an application, in a future work joint with Labardini

Fragoso [LFM], we study the generalized cluster algebras associated to a class of orbifolds using

this scattering diagram.

The rest of the introduction contains a more detailed account of our results and summarizes

the content in each chapter. Some parts of Chapter 2, Chapter 4 and Chapter 6 overlap with the

preprint [Mou19].

1.1. Wall-crossing structures and scattering diagrams

Despite its vast appearances in the literature in the study of mirror symmetry and Donaldson-

Thomas invariants, e.g., [KS06, GPS10, GS11], the notion of wall-crossing structures was for-

malized by Kontsevich and Soibelman in [KS14]. This dissertation only concerns wall-crossing

structures in vector spaces, which bear another name, consistent scattering diagrams.

We fix a lattice N of finite rank r with a chosen basis e = (e1, e2, . . . , er). Set

M = HomZ(N,Z), MR =M ⊗Z R.
3



Define N+
e = N+ ⊂ N to be the sub semigroup non-negatively generated by e without 0. A

scattering diagram is valued in an N+-graded Lie algebra

g =
⊕
n∈N+

gn.

More precisely, we consider the pro-nilpotent Lie algebra

ĝ =
∏
n∈N+

gn

as the completion of g with respect to the grading. Taking formal exponentials, we obtain a

pro-unipotent algebraic group:

exp : ĝ→ Ĝ.

The multiplication in the group Ĝ is defined formally through the Baker-Campbell-Hausdorff for-

mula.

Definition 1.1.1. A scattering diagram valued in g or a g-SD for short is a function

Φ: MR → Ĝ

such that for any m ∈MR, we require that Φ(m) lies in the subgroup

exp

 ∏
m(n)=0

gn

 ⊂ Ĝ.
In general, there are too many scattering diagrams with the above definition. The examples

from mirror symmetry and Donaldson-Thomas theory and the application in cluster algebras all

fall into a much restrictive class: consistent scattering diagrams.

To define a consistent scattering diagram, we first consider a Lie algebra g with finite support,

i.e., the set

S = S(g) := {n ∈ N+ | gn 6= 0}

is finite. Each normal vector n ∈ S defines an orthogonal hyperplane n⊥ ⊂ MR, thus together

cutting MR into a cone complex SS . If Φ: MR → Ĝ is a g-SD, we see by definition that it is

constructible with respect to the stratification of MR induced by S, i.e., the function Φ is constant

in the relative interior of any cone in SS . In particular, if d is a wall (a codimensional one cone) in
4



SS , we have a well-defined

Φ(d) ∈ Ĝ

by evaluating Φ at any interior point in d.

Definition 1.1.2. For a Lie algebra g with finite support, a g-scattering diagram Φ: MR → Ĝ is

consistent if for any sufficiently general path γ : [0, 1] → MR with respect to SS , the path-ordered

product

pγ :=

k∏
i=1

Φ(di)
± ∈ Ĝ

of the sequence of walls (di)
k
i=1 crossed in order by γ only depends on γ(0) and γ(1).

In order to extend the above definition to a Lie algebra g with infinite support, we consider for

each d ∈ N , the quotient Lie algebra

g<d := g/
⊕
|n|≥d

gn

and the induced group projection

πd : Ĝ→ G<d = exp(g<d).

Definition 1.1.3. For an N+-graded Lie algebra g, we say a g-SD Φ: MR → Ĝ consistent if for

any d ∈ N, the function

Φ<d = πd ◦ Φ: MR → G<d

is a consistent g<d-SD.

The subset of consistent g-SDs is much smaller than the set of all g-SDs. In fact, due to

Theorem 2.2.5 of Kontsevich-Soibelman [KS14], consistent g-SDs are in bijection with the elements

in the group Ĝ.

1.2. The canonical cone complex of a consistent scattering diagram

Our first observation is that the cone complex SS of hyperplane arrangements is too refined to

well-capture the underlying cone complex structure of a consistent scattering diagram. We show

in Section 2.3 that for a Lie algebra g with finite support, any consistent g-SD admits a canonical

underlying cone complex, coarsening SS , where the cones are exactly the connected components

of the level sets of the function Φ: MR → Ĝ.
5



Theorem 1.2.1 (Theorem 2.3.1). Let Φ be a consistent g-SD. Then we have

(1) for any h ∈ G, the preimage Φ−1(h) is relatively open in a subspace in MR,

(2) each connected component of Φ−1(h) is the relative interior of a rational polyhedral cone,

and

(3) all such cones together form a complete finite cone complex of MR, which we refer to as

the canonical cone complex of Φ.

In many applications, the canonical cone complex is of interest. Thus we would like to record

this information when we speak of a consistent scattering diagram. For example, in many cases,

we use the name consistent scattering diagram to represent a pair

D = (S,Φ: MR → Ĝ)

where Φ is the defining function as before, and S is the canonical cone complex determined by Φ.

For a consistent SD valued in g with infinite support, one does not always expect a finite cone

complex. However, by considering the truncations Φ<d for d ∈ N, we get a filtration of finite cone

complexes

· · · ⊂ S<d ⊂ Sd+1 ⊂ · · ·

whose projective limit is a profinite cone complex in MR. For further details, see Section 2.3.2.

1.3. Cluster scattering diagrams versus stability scattering diagrams

Now we consider a class of consistent SDs with important applications in cluster algebras.

Equip the lattice N ∼= Zr with a Z-valued skew-symmetric bilinear form

ω : N ×N → Z.

Let I = {1, . . . , r} be an indexing set. A seed s is a basis of N indexed by I. We define an

N+-graded Lie algebra g = gs by setting

gn = Q · xn, {xn1 , xn2} = ω(n1, n2)x
n1+n2 .

In [GHKK18], Gross, Hacking, Keel, and Kontsevich defined a consistent g-SD

DCl
s =

(
SCl

s ,Φ
Cl
s

)
6



by specifying the element ΦCl
s (0) (see Section 4.2). This scattering diagram admits many nice

properties and is thus used to settle important conjectures about cluster algebras in [GHKK18].

The seed s determines a quiver Q = Q(s) such that the vertices are identified with the indexing

set I, and the negative of the adjacency matrix of Q is the pairing matrix of s. A seed with potential

(s,W ) is a seed s with a potential W ∈ ĈQ. Let

P(Q,W ) := ĈQ/J(W )

be the (complete) Jacobian algebra of (Q,W ). Associated to modP(Q,W ), the abelian category

of finite-dimensional P(Q,W )-modules, there is a motivic Hall algebra

H(Q,W ) =
⊕
n∈N⊕

H(Q,W )n

which is N⊕ = N+∪{0}-graded and associative over Q. In [Bri17], Bridgeland defined a consistent

scattering diagram

DHall
s,W =

(
SHall

s,W ,ΦHall
s,W : MR → H(Q,W )

)
such that for any m ∈MR, the value Φ(m) is the characteristic stack function of the subcategory of

m-semistable P(Q,W )-modules. With a properly defined integration map, the scattering diagram

DHall
s,W descends to the so-called stability scattering diagram

DStab
s,W =

(
SStab

s,W ,ΦStab
s,W

)
valued in the much simpler Lie algebra gs, the same Lie algebra as used by the cluster scattering

diagram.

It is natural to ask the relationship between DCl
s and DStab

s,W as by definitions, they have the

same wall-crossings at a generic point on any coordinate hyperplane s⊥i ⊂MR. It is also not hard

to see that both profinite cone complexes SCl
s and SStab

s,W have a maximal simplicial cone, i.e., the

cluster chamber

C+s := {m ∈MR | m(si) ≥ 0, ∀i ∈ I},

whose facets have same the evaluations for ΦCl
s and ΦStab

s,W . In [Bri17], it is shown that if the

quiver Q(s) is acyclic, thus with only possible zero potential, then the two scattering diagrams are

identical.

7



To further investigate their relationship, we first show that these two scattering diagrams share

the same mutation behavior. Let k ∈ I be an index. There are two operations µ±k that mutate s

into another seed µ±k (s), giving the usual mutation of a quiver

Q
(
µ±k (s)

)
= µk(Q).

When the potential W is non-degenerate, Derksen, Weyman, and Zelevinsky [DWZ08] have lifted

the mutations µ±k to seeds with potentials, thus obtaining µ±k (s,W ).

Theorem 1.3.1 (Theorem 6.4.2). The mutation DStab
µ+k (s,W )

is governed by the piecewise linear

transformation

T+
k : MR →MR, T+

k (m) =


m, if m(sk) ≤ 0

m+m(sk)p
∗(sk), if m(sk) > 0.

In particular, the profinite cone complexes are related by

SStab
µ+k (s,W )

= T+
k

(
SStab

s,W

)
.

The above theorem is the version in stability scattering diagrams of [GHKK18, theorem 1.24].

The following corollaries are immediate consequences of Theorem 1.3.1; see Section 6.4 for further

details.

Corollary 1.3.2. Let (s,W ) be a non-degenerate seed with potential.

(1) The two cone decompositions SStab
s,W and SCl

s contain a simplicial cone complex ∆+
s (the

cluster complex) as a common sub-poset whose dual graph is isomorphic to the cluster

exchange graph of Q(s) where the positive chamber C+s corresponds to the initial cluster.

(2) Moreover, the functions ΦStab
s,W and ΦCl

s have the same values on the walls in ∆+
s .

(3) If the quiver Q(s) possesses a reddening sequence, then we have the equality of scattering

diagrams

DStab
s,W = DCl

s .

The condition of a quiver Q having a reddening sequence (see [Mul16] for a definition) is

purely combinatorial, and many classes of quivers have been proven to have reddening sequences,

including all acyclic quivers. Thus the part (3) of Corollary 1.3.2 is a generalization of the result
8



of Bridgeland on acyclic quivers. We note that Qin also has a proof of (3) of Corollary 1.3.2 using

opposite scattering diagrams [Qin19].

1.4. Scattering diagrams for skew-symmetrizable cluster algebras

We extend our cluster-versus-stability agenda to the skew-symmetrizable case. More generally,

one can define a cluster algebra A(B) associated to a skew-symmetrizable integral matrix B which

means there exists a diagonal positive integral matrix D such that

DB +BTDT = 0.

In our setting, we fix the lattice N with a chosen basis s and define a rational skew-symmetric form

ω : N ×N → Q, ω(si, sj) = d−1j bij .

Set the scaled seed s̃ = (s̃i)i∈I = (disi)i∈I . Thus we have

ω(si, s̃j) = bij .

In [GHKK18], there is a skew-symmetrizable cluster scattering diagram DCl
s defined for the

data (N,ω, s, D) generalizing the cluster scattering diagram mentioned in the last section where ω

is integral and D is the identity matrix. In this dissertation, we propose a Langlands dual version

of GHKK’s cluster scattering diagram in Section 4.2, Chapter 4. We point out that this only makes

a difference for non-trivial D, thus mainly in the skew-symmetrizable case.

Since in what follows, we will not use GHKK’s version of the skew-symmetrizable cluster SD.

Nevertheless, we will use the same notation DCl
s . It is worth mentioning the difference. For our

scattering diagram DCl
s , at a generic point m on a coordinate hyperplane s⊥i , the wall-crossing is

given by

Φ(m) = exp(−Li2(−xdisi)/di),

whereas the GHKK’s version has wall-crossing exp(−di Li2(−xsi)). For further details and ex-

amples, see Section 4.2.2. The following theorem is Langlands dual to the GHKK’s version

in [GHKK18]. The proof also closely follow the scheme in loc. cit.
9



Theorem 1.4.1 (Section 4.4). The profinite cone complex SCl
s contains a simplicial cone sub-

complex ∆+
s dual to the cluster exchange graph of the matrix B. Each maximal cone of ∆+

s is

generated by the g-vectors of the corresponding cluster of A(B).

We note that the GHKK’s version of SCl
s has the same property corresponding to B∨ = −BT ,

the Langlands dual matrix of B.

The skew-symmetrizable version of the stability scattering diagram is yet to explore. The main

reason is that as the matrix B does not naively determine a quiver, no quiver representations

are available. The same difficulty exists for the additive categorification of skew-symmetrizable

cluster algebras so that people have turned to new categories and objects, such as representations

of species.

Suppose that the matrix B is acyclic and let D be its left symmetrizer. To the pair (B,D),

Geiss, Leclerc and Schröer [GLS17] have defined a finite-dimensional algebra H(B,D) whose rep-

resentations are potential candidates that decategorify into the cluster monomials of A(B). Similar

to the skew-symmetric case, there is an associated Hall algebra SD DHall
B,D. We study this scattering

diagram in Chapter 7. The main result regarding DHall
B,D is the following theorem. The proof relies

on a description of c-vectors in terms of dimension vectors of modules of H(B,D) by Geiss–Leclerc–

Schröer [GLS19] and a stability–τ -tilting correspondence by Brüstle–Smith–Treffinger [BST19].

Theorem 1.4.2 (Theorem 7.5.8). The profinite cone complex SHall
B,D contains the same simplicial

cone subcomplex ∆+
s , as in the case of SCl

s .

1.5. Scattering diagrams for Chekhov–Shapiro algebras

In Chapter 8, we extend the construction of cluster scattering diagrams to the case of Chekhov–

Shapiro algebras [CS14]. These algebras generalize the ordinary cluster algebras of Fomin and

Zelevinsky, thus also called generalized cluster algebras. Leaving the definitions and further details

to later chapters (see Chapter 3 and Chapter 8), we explain below the main change from the cluster

scattering diagram in order to obtain the generalized version.

We start again with the pair (B,D) and the corresponding data (N,ω, s, D). Recall that for

the cluster scattering diagram DCl
s , the wall-crossing at (a generic point of) the hyperplane s⊥i is

given by

ΦCl
s (s⊥i ) = exp(−Li2(−xdisi)/di) ∈ Ĝ.

10



The group Ĝ can be embedded into the automorphism group of the algebra

Q[M ]⊗Q[[N⊕]]

such that ΦCl
s (s⊥i ) acts by

ΦCl
s (s⊥i )(z

m) = zm(1 + xdisi)m(si).

We define generalized wall-crossings by setting

ΦCS
s (s⊥i )(z

m) = zmρi(x
si)m(si)

where ρi is a degree di monic polynomial with the reciprocity ρi(x) = xdiρi(1/x). Here the poly-

nomial ρi is of our choice, which is also part of the data defining a CS algebra Section 3.3.

With the polynomials (ρi)i∈I chosen, the CS scattering diagram

DCS
s = (SCS

s ,ΦCS
s )

is uniquely determined by requiring the hyperplanes (s⊥i )i∈I to be the only incoming walls. It turns

out that like the cluster scattering diagram, the CS scattering diagram DCS
s behaves in the same

way under mutations. As a consequence, we have

Theorem 1.5.1 (Theorem 8.2.2). The profinite cone complex SCS
s contains the cluster complex

∆+
s (also ∆−s ) determined by the matrix B, the same one contained in SCl

s . Moreover, the generalized

cluster variables can be obtained from path-ordered products of DCS
s in the same way as the ordinary

cluster variables are computed.

11



CHAPTER 2

Wall-Crossing structures and scattering diagrams

This chapter is an introduction to wall-crossing structures of Kontsevich and Soibelman [KS14],

with an aim towards the applications in cluster algebras. In particular, we will define consistent

scattering diagrams (in Section 2.2), the main object of study in this dissertation, as an example of

wall-crossing structures.

The first two sections are devoted to the basic definitions and facts about wall-crossing struc-

tures and scattering diagrams. The last Section 2.3 contains our main results Theorem 2.3.1 and

Theorem 2.3.10: every consistent scattering diagram admits a canonical underlying (profinite) cone

complex structure.

2.1. Wall-crossing structures

In this section, we review the basics of Kontsevich-Soibelman’s wall-crossing structures [KS14].

In the literature, the term scattering diagram often refers to some special class of wall-crossing

structures, for example the cluster scattering diagrams in [GHKK18] and the stability scattering

diagrams in [Bri17].

For experts, here we only touch on wall-crossing structures defined on a vector space.

2.1.1. Graded Lie algebras. Let N ∼= Zr be a lattice of rank r, i.e. a free abelian group

of rank r ∈ N. Fix a basis s = {s1, . . . , sr} of N . We define N+ = N+
s to be the semi-subgroup

(without 0) of N non-negatively generated by s. The monoid N⊕s is N+
s ∪ {0}. We will denote an

N+-graded Lie algebra by g. That is,

g =
⊕
d∈N+

gd

as a free module over a commutative algebra over Q (usually a vector space over a field k of

characteristic zero) with a Lie bracket such that [gn1 , gn2 ] ⊂ gn1+n2 for any n1, n2 ∈ N+. For a

subset S ⊂ N+, we will denote by gS the direct sum of the homogeneous spaces supported on S,
12



i.e.

gS :=
⊕
d∈S

gd.

Every ideal I of the semigroup N+ gives an ideal gI of the Lie algebra g and a quotient Lie

algebra

g<I := g/gI .

Note that the Lie algebra g<I is still N+-graded and is supported on the set N+ \ I. If we have an

inclusion of ideals I ⊂ J of N+, then there is an induced N+-graded Lie algebra homomorphism

ρI,J : g
<I → g<J .

When the Lie algebra g is nilpotent, there is a corresponding unipotent algebraic group G that

is in bijection with g as sets. The product in the group G is given by the Baker-Campbell-Hausdorff

formula. The bijection is denoted by exp : g→ G. If the Lie algebra g has finite support, i.e. when

Supp(g) := {d ∈ N+| gd 6= 0}

is a finite set, then it is nilpotent. We say an ideal I of N+ is cofinite if N+ \ I is a finite set

and denote the set of all cofinite ideals by Cofin(N+). In this case, the quotient Lie algebra

g<I has finite support and thus is nilpotent, giving the corresponding unipotent group G<I . The

inclusion of cofinite ideals I ⊂ J induces a quotient map between groups, which we also denote by

ρI,J : G
<I → G<J . In fact, we can define an order J ≤ I for I ⊂ J . Then the set of cofinite ideals

Cofin(N+) becomes a directed set and the associations I 7→ g<I and I 7→ G<I become inverse

systems indexed by Cofin(N+). Taking the projective limits, we obtain a pro-nilpotent Lie algebra

and a corresponding pro-unipotent algebraic group:

(2.1.1) ĝ := lim
←−
I

g<I ∼=
∏
n∈N+

gn and Ĝ := lim
←−
I

G<I .

The group Ĝ is again in bijection with the Lie algebra ĝ as sets.

We put

M := Hom(N,Z) ∼= Zn and MR :=M ⊗ R ∼= Rn.

For any m ∈MR, there is a partition of N+ :

N+ = Pm,+ t Pm,0 t Pm,+

13



where

(2.1.2) Pm,± := {n ∈ N+| m(n) ≷ 0} and Pm,0 : = {n ∈ N+| m(n) = 0}.

This partition of N+ induces a decomposition of g :

(2.1.3) g = gm,+ ⊕ gm,0 ⊕ gm,−

where gm,• := gPm,• is a graded Lie subalgebra for • ∈ {0,+,−}. We denote the corresponding

pro-unipotent subgroups by Ĝm,•. In the following lemma, the element m ∈MR is fixed, thus being

omitted in the subscript.

Lemma 2.1.1. Fix some m ∈MR. Then the decomposition (2.1.3) induces a unique factorization

of any element g ∈ Ĝ into g = g+ · g0 · g− where g• ∈ Ĝ• for • ∈ {0,+,−}. In other words, the

map Φ: Ĝ+ × Ĝ0 × Ĝ− → Ĝ defined by

Φ(g+, g0, g−) = g+ · g0 · g−

is a set bijection.

Proof. We first prove this for any I ∈ Cofin(N+). Take a filtration of cofinite ideals

I = Ik ⊂ Ik−1 ⊂ · · · ⊂ I0 = N+

such that Ii \ Ii+1 = {ni} contains only one element. We have the following commutative diagram

G
<Ii+1
+ ×G<Ii+1

0 ×G<Ii+1
− G<Ii+1

G<Ii+ ×G<Ii0 ×G<Ii− G<Ii

Φi+1

fi hi

Φi

where fi and hi are given by natural quotient maps induced by the inclusion Ii+1 ⊂ Ii. Note that

the maps fi and gi are both fibrations of exp(gni)-torsors and the map Φi+1 is exp(gni)-equivariant.

Here gni denotes the quotient Lie algebra g<Ii+1/g<Ii . Therefore, the map Φi being bijective would

imply that Φi+1 is bijective. Since Φ0 is bijective, the map

ΦI := Φk : G
<I
+ ×G<I0 ×G<I− → G<I

is bijective by induction.
14



Now we have similar commutative diagrams for any inclusion I ⊂ J

G<I+ ×G<I0 ×G<I− G<I

G<J+ ×G<J0 ×G<J− G<J .

ΦI

fI,J
ρI,J

ΦJ

Then the bijections extend to a bijection between projective limits. �

The factorization in the above lemma defines projection maps (of sets)

(2.1.4) πm,• : Ĝ→ Ĝm,•

by sending g to gm,•. We will simply write πm for πm,0.

2.1.2. Cone complex. By a cone in the vector space MR, we mean a subset closed under

scaling by R>0. A cone is convex if it is convex as a subset of MR. A polyhedral cone is a closed

convex subset of MR of the form

σ =

{
k∑
i=1

λivi | λi ∈ R≥0, vi ∈MR

}
.

It is called a rational polyhedral cone if vi is in M for each i. A face of a cone σ is a subset of the

form

σ ∩ n⊥ = {m ∈ σ | m(n) = 0}

where n ∈ NR satisfies m(n) ≥ 0 for all m ∈ σ. A face of a cone is again a cone.

Definition 2.1.2. A cone complex S in MR is a collection of rational polyhedral cones in MR such

that

(1) for any σ ∈ S, if τ ⊂ σ is a face of σ, then τ ∈ S;

(2) for any σ1, σ2 ∈ S, σ1 ∩ σ2 is a face of σ1 and σ2.

Note that we do not require the cones in a cone complex to be strictly convex. For example,

a closed half-space is allowed. We also do not require the collection to be finite, for which we call

a finite cone complex. If the union of all cones |S| equals MR, we say that the cone complex S is

complete. The complement of the union of all proper faces of σ in σ is called the relative interior

of σ and is denoted by σ◦. It is relatively open, i.e., open in the subspace in MR spanned σ. The

set of cones σ◦ for all σ ∈ S is denoted by S◦.
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A cone complex S is a poset with the partial order σ1 ≺ σ2 if and only if σ1 is a face of σ2. It

can also be viewed as a category where the only morphisms are of the form σ1 ≺ σ2. We define a

set of cones associated to σ

(2.1.5) Star(σ) := {τ◦ ∈ S◦ | σ ≺ τ}

and

|Star(σ)| :=
⋃

τ◦∈Star(σ)
τ◦.

Example 2.1.3 (Hyperplane arrangements). Let S be a finite subset of N . Consider a partition

P of S into three disjoint subsets

S = P+ t P0 t P−.

We define a closed cone associated to P

σP := {m ∈MR| m(P+) > 0, m(P0) = 0 and m(P−) < 0}.

One easily checks the (non-empty) cones σP for all such partitions of S form a complete cone

complex SS in MR. We have σP1 ≺ σP2 if and only if

P1 ≺ P2, i.e. P1,+ ⊂ P2,+, P2,0 ⊂ P1,0, and P1,− ⊂ P2,−.

2.1.3. A key lemma. Assume that S = Supp(g) is finite. Let σ ∈ SS and set

σ⊥ = {d ∈ N | m(d) = 0 ∀m ∈ σ}.

We put gσ : = gσ⊥∩S . Let σ1 and σ2 be two cones in SS such that σ1 ≺ σ2, we define a map

πσ1,σ2 : exp(gσ1) → exp(gσ2) as follows. Suppose σ1 and σ2 are given by two partitions P1 ≺ P2.

Let m be in σ◦2 and it gives (independent of the choice of m) a partition

P1,0 = (P1,0)m,+ t P2,0 t (P1,0)m,−

as in (2.1.2). Note that gσi = gPi,0 . Then we define the map πσ1,σ2 : exp(gσ1) → exp(gσ2) by the

projection

π : gP1,0 → gP2,0
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exactly as in Lemma 2.1.1. For example, if σ1 be the smallest cone in SS with respect to the order

≺, then πσ1,σ2 = πm for any m ∈ σ◦2.

The following fundamental lemma will be useful later.

Lemma 2.1.4. Let g be an N+-graded Lie algebra with finite support S. The assignment σ 7→

exp(gσ), (σ1 ≺ σ2) 7→ πσ1,σ2 defines a functor from SS to Grp the category of groups.

Proof. The only thing we need to check is if σ0 ≺ σ1 ≺ σ2, then

πσ1,σ2 ◦ πσ0,σ1 = πσ0,σ2 : gσ0 → gσ2

Without loss of generality, we can assume that σ0 is the origin. In fact, one can always restrict g

to N ∩ σ⊥0 and correspondingly, take the quotient of M by the span of σ0. That is, we have

(N ∩ σ⊥0 )∨ ∼=M/(〈σ0〉 ∩M).

Now gσ0 = g and for mi ∈ σ◦i , πσ0,σi = πmi for i = 1, 2 (see (2.1.4)). Suppose σi comes from a

partition Pi as before. We know πσ0,σ1(g) for g ∈ G = exp(g) is the middle term in the factorization

(Lemma 2.1.1)

g = πm1,+(g) · πm1(g) · πm1,−(g).

By factorizing g1 = πm1(g) further with respect to m2, we get πσ1,σ2 ◦ πσ0,σ1(g) = πm2(g1):

g1 = πm2,+(g1) · πm2(g1) · πm2,−(g1).

Using previous notations, we have

P1,0 = (P1,0)m2,+ t P2,0 t (P1,0)m2,−

and

P2,+ = P1,+ t (P1,0)m2,+, P2,− = P1,− t (P1,0)m2,−.

This implies

πm1,+(g) · πm2,+(g1) ∈ exp(gP2,+) = Gm2,+

and

πm2,−(g1) · πm1,−(g) ∈ exp(gP2,−) = Gm2,−.
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Therefore we obtain a factorization

g = (πm1,+(g) · πm2,+(g1)) · πσ1,σ2 ◦ πσ0,σ1(g) · (πm2,−(g1) · πm1,−(g)).

Such a factorization is unique by Lemma 2.1.1. We conclude that the middle term πσ1,σ2 ◦πσ0,σ1(g)

equals πm2(g) = πσ0,σ2(g). �

2.1.4. Definition of wall-crossing structures. In this section, we define wall-crossing struc-

tures following [KS14]. Our scheme is to treat the finite support case first and then the infinite

support case.

We first assume that S = Supp(g) is finite. Define the following set (the étalé space)

Gét := {(m, g′) | m ∈MR, g
′ ∈ Gm,0}

with a collection of subsets

WU,g := {(m, g′) | m ∈ U, g′ = πm(g)}

where g runs through G, and U runs through all open sets of MR.

Lemma 2.1.5. The subsets WU,g give a base of topology on Gét. The projection Gét →MR defined

by (m, g′) 7→ m is a local homeomorphism.

Proof. First of all, the subsets WU,g cover Gét. Consider the cone complex SS defined in

Example 2.1.3. Let WU,g and WV,h be two subsets of Gét. By Lemma 2.1.4, if πm(g) = πm(h) for

some m ∈ U ∩V , then πm′(g) = πm′(h) for any m′ in the interior of |Star(σ)| where σ is the unique

cone in SS such that m ∈ σ◦. It follows that the set

R = {m ∈MR | πm(g) = πm(h)}

is open in MR. So the intersection WU,g∩WV,h =WR,g is a set of the same form. Thus the collection

WU,g form a base of topology.

To prove the second statement, let (m, g′) ∈ Gét. Then we have πm(g′) = g′. Take an arbitrary

open neighborhood U ⊂ MR of m. It is clear that the map WU,g′ → U , (u, πu(g
′)) 7→ u is a

homeomorphism. �
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Definition 2.1.6. Let g be a N+-graded Lie algebra with finite support. The sheaf of wall-crossing

structures WCSg is defined to be the sheaf of sections of the local homeomorphism Gét → MR in

Lemma 2.1.5, i.e Gét →MR is the étalé space of this sheaf.

For any g ∈ G, there is a section

sg : MR → Gét, m 7→ (m,πm(g)).

The image of sg is Wg,MR and sg is clearly a global section of the sheaf WCSg. By the construction

of the étalé space Gét, the stalk (WCSg)m is canonically identified with Gm,0. The germ of the

section sg at m is just given by πm(g) ∈ Gm,0.

The above construction defines a map s : G → Γ(WCSg,MR) sending g to the global section

sg. The following lemma follows from corollary 2.1.3 and lemma 2.1.7 in [KS14].

Lemma 2.1.7. The map s : G → Γ(WCSg,MR), g 7→ sg is a bijection. Thus the set of global

sections of WCSg is in bijection with the group G.

Now we remove the finiteness restriction on the support Supp(g). There is a directed inverse

system of sheaves WCSg<I indexed by the directed set Cofin(N+)

(2.1.6) Cofin(N+)→ Sh(MR), I 7→ WCSg<I

induced by natural quotient maps of Lie algebras.

Definition 2.1.8. In general, the sheaf of wall-crossing structures of the Lie algebra g is defined

to be the projective limit of the above mentioned inverse system (2.1.6) in the category of sheaves

of sets on MR:

WCSg := lim
←−
I

WCSg<I ∈ Sh(MR).

It is standard that the space of sections of the projective limit of sheaves is in bijection with the

projective limit of spaces of sections. So we have the identification of the space of global sections

with the pro-unipotent group Ĝ:

(2.1.7) Γ(WCSg,MR) = lim
←−
I

Γ(WCSg<I ,MR) = lim
←−
I

G<I = Ĝ.

The second equality follows from Lemma 2.1.7.
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Given a global section g ∈ Ĝ, we define the following map:

(2.1.8) Φg : MR → Ĝ,m 7→ πm(g) ∈ Ĝm,0 ⊂ Ĝ

which records the germs of the global section g at every stalk.

Definition 2.1.9 (g-WCS cf. [KS14]). A global section of the sheaf WCSg is called a g-wall-

crossing structure (g-WCS in short). Thus the equality (2.1.7) shows that Γ(WCSg,MR), the set

of all g-WCS’, is in bijection with the pro-unipotent group Ĝ.

2.2. Consistent scattering diagrams

The sheaf of wall-crossings WCSg can be defined on more general spaces than vector spaces

[KS14]. A consistent scattering diagram that we are about to define in this section is an equivalent

notion of a wall-crossing structure on a vector space defined in the last section. We hope our

use of terminology will not cause any confusion to the reader: the central subject to study in

this dissertation is consistent scattering diagrams, which are equivalent to wall-crossing structures

defined in Section 2.1.

2.2.1. Consistent scattering diagrams for g with finite support. In this section we give

the definition of a consistent g-scattering diagram (consistent g-SD in short). The relation between

a consistent g-SD and a g-WCS will be explained in Proposition 2.2.6.

We first assume the set S = Supp(g) to be finite.

Definition 2.2.1 (g-SD). A g-scattering diagram (g-SD in short) D with S = Supp(g) is a pair

(SS ,ΦD) consisting of the cone complex SS (see Example 2.1.3) and a function ΦD : SS → G such

that for any σ ∈ SS , ΦD(σ) is in the subgroup exp(gσ) ⊂ G. If codim σ = 1 (resp. > 1), we call

ΦD(σ) the wall-crossing (resp. face-crossing) of D at σ.

For each cone σ = σP in SS of codimension at least one, there is a maximal cell σ+ relative to

σ. It is the relative interior of the cone σP ′ given by the partition P ′ such that

P ′+ = P+ t P0, P
′
0 = ∅, and P ′− = P−.

Similarly there is the negative maximal cell σ−. For example, if σ is a wall (i.e. codim σ = 1), then

σ+ and σ− are the two maximal cells on the two sides of σ.
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Definition 2.2.2. An SS-path is a smooth curve γ : [0, 1]→MR such that

(1) the end points γ(0) and γ(1) are in maximal cells, i.e. not in some cones of codimension

at least one.

(2) if for some t ∈ [0, 1], γ(t) ∈ σ◦ for some cone σ of codimension at least one in SS , then there

exists a neighborhood (t− ε, t+ ε) of t such that γ((t− ε, t)) ⊂ σ− and γ((t, t+ ε)) ⊂ σ+.

We call t a negative crossing and denote it by t− if ε > 0 and a positive crossing t+ if

ε < 0 respectively.

Let D be a g-SD and γ be an SS-path γ with finitely many crossings

0 < tε11 < tε22 < · · · < tεkk < 1

with εi ∈ {−,+}. Record the cones at these crossings by σi and the corresponding wall-crossings

or face-crossings by

gi =


ΦD(σi) if εi = +

ΦD(σi)
−1 if εi = −

.

Definition 2.2.3. The path-ordered product for an SS-path γ in D is defined as

pγ(D) := gk · · · · · g2 · g1 ∈ G.

Now we are ready to define consistent g-scattering diagrams for g with finite support. The

consistency here means the path-ordered product is path-independent.

Definition 2.2.4 (Consistent g-SD). A g-SD D is said to be a consistent g-SD if the path-ordered

product pγ(D) for any SS-path γ depends only on the end points γ(0) and γ(1). That is, if two

SS-paths γ1 and γ2 have the same end points, then pγ1(D) = pγ2(D).

There is a maximal cell C+ (resp. C−) in SS that is the intersection of all positive (resp.

negative) open half-spaces in the hyperplane arrangement in Example 2.1.3. Given D a consistent

g-SD, we define

p+,−(D) := pγ(D)

for any SS-path γ with γ(0) ∈ C+ and γ(1) ∈ C−. It does not depend on γ since D is consistent.

This defines a map p+,− from g-SD (the set of all consistent g-SD’s) to G = exp(g) by sending D to

p+,−(D). The following theorem asserts that p+,− is a bijection. The original form of the theorem
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is due to Kontsevich and Soibelman. Since our setting is slightly different from theirs (as we allow

higher codimensional face-crossings), we give a complete proof for the reader’s convenience.

Theorem 2.2.5 (Kontsevich–Soibelman [KS14]). The map p+,− : g-SD → G, D 7→ p+,−(D)

is a bijection of sets.

Proof. Let g ∈ G. We construct a g-SD Dg as follows. Recall the function defined in (2.1.8)

Φg : MR → G, m 7→ πm(g).

Consider a g-SD Dg = (SS ,ΦDg) with ΦDg(σ) = Φg(m) for any σ ∈ SS and m ∈ σ◦. We show that

it is consistent. In fact, a wall-crossing, or more generally face-crossing has the following description.

Let m+ ∈ σ+ and m− ∈ σ−. By the definitions of σ± and the uniqueness in Lemma 2.1.1, we have

πm+,+(g) = πm,+(g) · πm(g), πm+(g) = 1, and πm+,−(g) = πm,−(g);

πm−,+(g) = πm,+(g), πm−(g) = 1, and πm−,−(g) = πm(g) · πm,−(g).

This gives

Φg(m) = π−1
m−,+(g) · πm+,+(g) and Φg(m)−1 = π−1

m+,+
(g) · πm−,+(g).

By induction on the number of crossings, we have

(2.2.1) pγ = π−1γ(1),+(g) · πγ(0),+(g)

for any SS-path γ, which only depends on the end points, proving the consistency. Note that by

construction p+,−(Dg) = Φg(0) = g. This shows the map p+,− is surjective.

We show next the map p+,− is also injective. Let D ∈ g-SD, i.e. a consistent g-SD. Let

σ ∈ SS and we choose mσ ∈ σ◦ and λ ∈ C+. Consider the path γ : (−∞,+∞) → MR given by

γ(t) = mσ − λt. Whenever γ meets some cone τ◦ ∈ S◦S , it always goes from τ+ to τ−. Thus after

rescaling, we get an SS-path γ going from C+ to C− with positive crossings at σ1, · · · , σk in order

where σ = σl for some l. The path-ordered product is then

p+,−(D) = ΦD(σk) · · ·ΦD(σl) · · ·ΦD(σ1)
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If i < l, then mi := mσ + ti · m+ ∈ σ◦i for some ti > 0. If n ∈ Pmi,0, i.e. 〈mi, n〉 = 0, then

〈mσ + ti ·m+, n〉 = 0 which implies 〈mσ, n〉 < 0, i.e. n ∈ Pmσ ,−. Thus we have Pmi,0 ⊂ Pmσ ,− and

ΦD(σi) ∈ Gmσ ,−. Similarly if j > l, we have Pmj ,0 ⊂ Pmσ ,+ and ΦD(σj) ∈ Gmσ ,+. Thus we have,

p+,−(D) = (ΦD(σk) · · ·ΦD(σl+1)) · ΦD(σ) · (ΦD(σl−1) · · ·ΦD(σ1))

as a factorization with respect to m in Lemma 2.1.1. This in particular shows

ΦD(σ) = πmσ(p+,−(D))

and therefore, the consistent g-SD is entirely determined by p+,−(D) ∈ G, i.e., the map p+,− is

injective. �

We clarify in the next proposition the relation between the notion of a g-WCS and that of a

consistent g-SD when Supp(g) is finite. It is an immediate consequence of the proof Theorem 2.2.5.

Proposition 2.2.6. Let g ∈ G and Dg = (SS ,ΦDg) be p−1+,−(g) ∈ g-SD, i.e. a consistent g-SD

such that p+,−(D) = g. By Lemma 2.1.7, there is also a g-WCS sg and it is determined by the

function Φg : MR → G in (2.1.8). Then for any σ ∈ SS, we have

ΦDg(σ) = Φg(m)

for any m ∈ σ◦.

According to the above proposition, we will simply denote the g-SD p−1+,−(g) by

Dg = (SS ,Φg)

for g ∈ G. The function Φg then has domain MR rather than SS . However by Φg(σ), we always

mean ΦDg(σ) without any ambiguity or equivalently one can interpret Φg(σ) as Φg(m) for some

m ∈ σ◦.

2.2.2. Face-crossings are determined by wall-crossings. Now we explain that a consis-

tent g-SD D is completely determined by its wall-crossings (among more general face-crossings).

In fact, most of the existing approaches to scattering diagrams, for example [Bri17, GHKK18],

only encode wall-crossings into the definition of consistency.
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Let D be a consistent g-SD. Let σ be some cone in SS with codim(σ) > 1. There is an SS-path

γ going directly from σ+ to σ− by crossing σ◦. Thus pγ(D) = ΦD(σ). However, we can always find

an SS-path γ′ from σ+ to σ− with only wall-crossings. Thus the face-crossing ΦD(σ) is equal to a

product of wall-crossings because of consistency.

Deonte the subset of all cones of codimension one in SS by WS . The following is yet another

equivalent definition to Definition 2.2.4, which is more commonly adopted in the literature.

Definition 2.2.7. Let g be an N+-graded Lie algebra with finite support S. A consistent g-SD D

is the datum of a function ΦD : WS → G such that

(1) Φ(σ) ∈ exp(gσ) ⊂ G for any σ ∈WS , and

(2) any path-ordered product for an SS-path with only wall-crossings only depends on end

points.

2.2.3. Consistent scattering diagrams for g with infinite support. Now we remove the

finiteness restriction of S = Supp(g) to define consistent g-SD’s in general. For I ∈ Cofin(N+), the

quotient Lie algebra g<I is supported on S<I = S \ I. Recall that we have a group homomorphism

ρ<I : Ĝ→ G<I .

Definition 2.2.8. A g-SD D is a function ΦD : MR → Ĝ such that for each I ∈ Cofin(N+), the

induced function

Φ<ID = ρ<I ◦ ΦD : MR → G<I

comes from a g<I -SD D<I = (SS<I ,ΦD<I ), i.e.

Φ<ID (m) = ΦD<I (σ)

for any σ ∈ SS<I and any m ∈ σ◦. It is said to be consistent if every D<I is consistent.

The following proposition is what we expect for the infinite support case extending Theo-

rem 2.2.5.

Proposition 2.2.9. The set g-SD of all consistent g-SDs is in bijection with Ĝ by sending D to

ΦD(0) ∈ Ĝ.
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Proof. Suppose D is a consistent g-SD and let g = ΦD(0). Then by definition, we have

Φ<ID (0) = ρ<I(g) for any I ∈ Cofin(N+). Since D<I is consistent, for any m ∈MR,

ρ<I(ΦD(m)) = ΦD<I (m) = πm(ρ
<I(g)) = ρ<I(πm(g))

for any I. This shows ΦD(m) = πm(g) for any m ∈MR. Thus D is determined by ΦD(0).

Conversely, for any g ∈ Ĝ, we define a function Φg : MR → Ĝ, m 7→ πm(g). Note that

Φ0(g) = g by definition. For each I ∈ Cofin(N+), the map ρ<I ◦ Φg = Φg<I defines a consistent

g<I -SD according to the proof of Theorem 2.2.5, thus defining a consistent g-SD in the projective

limit. The bijection then follows. �

2.3. The canonical cone complex

Let g be an N+-graded Lie algebra with finite support S. It often happens (for example, in

the application in cluster algebras as in Section 7.4) that the cone complex SS induced by the

arrangement of hyperplanes is too refined to capture particular features of a scattering diagram

Dg = (SS ,Φg) in the sense that, for example, a path-connected component of Φ−1g (h) for some

h ∈ G may be a union of multiple cones in S◦S . The following theorem is our main result in this

chapter, which gives a canonical description of the underlying cone complex.

Fix g ∈ G. Consider the corresponding consistent g-SD D = Dg with the map

Φ = Φg : MR,m 7→ πm(g).

Theorem 2.3.1. The level sets of the map Φ: MR → G satisfy the following properties.

(1) For any h ∈ G, the level set Φ−1(h) is contained in a rational subspace of MR and relatively

open.

(2) Each connected component of Φ−1(h) is the relative interior of a rational polyhedral cone.

(3) These cones form a finite complete cone complex Sg of MR.

Remark 2.3.2. In the literature, for example in [KS14,Bri17,GHKK18], the codimension one

skeleton of Sg is corresponding to the minimal or essential support and codimension one cones are

usually referred to as walls.

2.3.1. The proof of Theorem 2.3.1. We need some preparations before proving Theo-

rem 2.3.1. Note that we assume S = Supp(g) to be finite.
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Definition 2.3.3. Let g ∈ G. We define Supp(g) to be the minimal subset of Supp(g) such that

gSupp(g) is a Lie subalgebra of g that contains log(g). We say n ∈ Supp(g) is extreme if it is not a

positive linear combination of other elements in Supp(g). Denote the subset of all extreme elements

by E(g).

Recall that we know from Proposition 2.2.6 that the function Φ is constant on any σ◦ ∈ S◦S .

Lemma 2.3.4. For any h ∈ G, the preimage Φ−1(h), as a union of cones in S◦S, is relatively open

in the subspace Supp(h)⊥ ⊂MR.

Proof. First of all the set Φ−1(h) is a union of cones in S◦S as Φ is constant on any σ◦. We

have Φ−1(h) ⊂ Supp(h)⊥ since log(h) is supported on Supp(h). We just need to show that for any

σ◦ contained in Φ−1(h),

|Star(σ)| ∩ Supp(h)⊥ ⊂ Φ−1(h).

Let m ∈ σ◦ and m′ ∈ |Star(σ)| ∩ Supp(h)⊥. By Lemma 2.1.4, we have

Φ(m′) = πm′(g) = πm,m′(πm(g)) = πm,m′(h).

The map πm,m′ depends on the partition

Sm,0 = (Sm,0)m′,+ t Sm′,0 t (Sm,0)m′,−.

Note that by assumption we have Supp(h) ⊂ Sm′,0 ⊂ Sm,0. Therefore Φ(m′) = πm,m′(h) = h which

implies any such m′ is contained in Φ−1(h). This finishes the proof. �

Lemma 2.3.5. Let σ ∈ SS. Suppose that e ∈ E(Φ(σ)) is extreme. Then for any cone ρ in

SS that is contained in e⊥ and contains σ as a face, we have the component log(Φ(ρ))e 6= 0, i.e.

e ∈ Supp(Φ(ρ)).

Proof. Let h = Φ(σ). By Lemma 2.1.4, we have Φ(ρ) = πσ,ρ(h) and

h = πm,+(h) · Φ(ρ) · πm,−(h)

where m ∈ ρ◦. Note that e ∈ Sρ,0 ⊂ Sσ,0 and πm,±(h) are supported outside of Sρ,0. Since

e is extreme, it is an immediate consequence of the Baker–Campbell–Hausdorff formula that

log(Φ(ρ))e 6= 0. �
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Proof of Theorem 2.3.1. Part (1) follows from Lemma 2.3.4. Let V be a connected com-

ponent of Φ−1(h). We know that the closure V is a union of cones in SS . The convexity of V

can be proved locally. In fact, it suffices to prove that for any σ ∈ SS in the boundary V \ V ,

there exists some e ∈ N such that any connected component τ of |Star(σ)| ∩ V is contained in one

of the two open halves of Supp(h)⊥ separated by the hyperplane e⊥ which passes through σ. We

prove this by finding some e such that for any ρ ⊂ Supp(h)⊥ ∩ e⊥ that contains σ, Φ(ρ) 6= h, which

implies τ cannot cross the hyperplane e⊥. In fact, since σ ∩V = ∅, Φ(σ) 6= Φ(τ) = h. We just take

some extreme element e in (Sσ,0 \ Sτ,0) ∩ E(Φ(σ)). It is clear that e⊥ ∩ Supp(h)⊥ is a hyperplane

in Supp(h)⊥ and we have e ∈ Supp(Φ(ρ)) by Lemma 2.3.5. Therefore we have Φ(ρ) 6= h since

e /∈ Supp(h). This proves part (2).

Let δ be a face of V . It is a union of cones in SS . The map Φ is constant on the relative interior

of δ; otherwise, V would be split into two components. Suppose that Φ remains constant on some

face σ′ of σ. By Lemma 2.3.4, it remains constant on |Star(σ′)| ∩ 〈σ〉R. This means Φ also extends

constantly from V to some face of V that contains σ′. However, it contradicts the assumption that

V is a connected component of Φ−1(h). Thus, we conclude that the interior of any face of V is also

a connected component of some level set of Φ. This proves part (3) that the set of all cones of the

form V form a complete finite cone complex in MR. �

2.3.2. Support-infinite case. Now we discuss the general case when the Lie algebra g may

have infinite support. Fix g ∈ Ĝ and consider the corresponding consistent g-SD D = Dg with the

function

Φ = Φg : MR → Ĝ,m 7→ πm(g).

For each I ∈ Cofin(N+), the function

ΦI = Φg<I : MR → G<I ,m 7→ πm(g
<I)

admits a canonical complete finite cone complex SI := Sg<I by Theorem 2.3.1.

Lemma 2.3.6. For two cofinite ideals I ⊂ J ⊂ N+, the cone complex SI is a refinement of SJ ,

i.e. any cone σ ∈ S◦J is a disjoint union of cones in S◦I .

Proof. Recall that we have

ΦJ = ρI,J ◦ ΦI : MR → G<J
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where ρI,J denotes the projection from G<I to G<J . Suppose σ is a cone in SJ , we know that ΦJ

is constant on σ◦ and that

ΦJ(σ
◦) 6= ΦJ(m)

for any m ∈ ∂σ since σ◦ is characterized as a connected component of a level set. Since the map

ρI,J is surjective, we have that for any m′ ∈ σ◦ and any m ∈ ∂σ,

ΦI(m
′) 6= ΦI(m).

Thus for any τ◦ ∈ S◦I , either we have τ◦ ⊂ σ◦ or τ◦ ∩ σ◦ = ∅. It then follows that the cone σ◦ is a

disjoint union of cones in S◦I since S◦I is a decomposition of MR. �

In the situation of Lemma 2.3.6, we define a map

RI,J : SI → SJ

as follows. In fact, to any σ ∈ SI , there is a unique association of a cone in SJ whose relative

interior contains σ◦. Thus this association defines a map RI,J from SI to SJ . We state in the

following proposition that this map respects the poset structures on the two cone complexes.

Proposition 2.3.7. The map RI,J respects the structures of cone complexes on SI and SJ . In

other words, we have

(1) the map RI,J is a morphism between posets and

(2) for two cones σ and τ in SI , we have

RI,J(σ ∩ τ) = RI,J(σ) ∩RI,J(τ) ∈ SJ .

Moreover, we have for any I ⊂ J ⊂ K,

RI,K = RJ,K ◦RI,J

Now we take the projective limit poset (also called the inverse limit)

lim←−
I∈Cofin(N+)

SI =

{
(σI)I ∈

∏
I

SI

∣∣∣∣∣ σJ = RI,J(σI) for all I ⊂ J in Cofin(N+)

}
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of the inverse system (SI)I indexed by Cofin(N+). The partial order is described as (σI)I ≺ (τI)I

if and only if we have σI ≺ τI in SI for every I ∈ Cofin(N+). In this case, we say that (σI)I is a

face of (τI)I .

To every tuple (σI)I in the projective limit, one can associate a unique non-empty closed convex

cone ⋂
I

σI ⊂MR

by taking the intersection of the cones.

Definition 2.3.8. We define two collections of cones

Sg :=

{⋂
I

σI

∣∣∣∣∣ (σ)I ∈ lim←−
I

SI

}
and S◦g :=

{⋂
I

σ◦I

∣∣∣∣∣ (σ)I ∈ lim←−
I

SI

}
,

both of which inherit the poset structure from lim←−I SI .

Lemma 2.3.9. For any σ ∈ Sg of the form
⋂
I σI , denote by σ◦ the cone

⋂
I σ
◦
I . Then we have

(1) σ◦ = σ \ | {τ ∈ Sg | τ ≺ σ and τ 6= σ} | where | · | takes the union of all cones in a set, and

(2) σ is the closure of σ◦ (in the Euclidean topology) in MR, i.e. σ = σ◦.

Proof. First, we note that this is, of course, true for polyhedral cones: the relative interior of

a cone is the complement of the union of all proper faces. However, here the cone σ may no longer

be polyhedral.

Let m ∈ σ but not belong to σ◦. For every I, there is a unique cone τI ∈ SI such that τI ≺ σI
and m ∈ τ◦I . Then we have m ∈ τ◦ := ∩Iτ◦I ∈ Sg. Since m is not in σ◦, the cone τ := ∩IτI is a

proper face of σ. As the complement σ \ σ◦ is covered by the union of all proper faces, the result

follows.

The part (2) follows from the fact that for every I, the rational polyhedral cone σI is the closure

of σ◦I . �

We will call the poset of cones Sg a profinite complete cone complex. The following theorem

justifies this terminology.

Theorem 2.3.10. Let g ∈ Ĝ. Consider the posets of cones Sg and S◦g.

(1) There is a natural map of posets RI : Sg → SI such that for σ = ∩IσI , we have RI(σ) = σI .

The poset Sg with the maps (RI)I is the projective limit of the inverse system ((SI)I , RI,J).
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(2) Any face of a cone σ ∈ Sg is again in Sg.

(3) The intersection σ ∩ τ of two cones in Sg is a common face of them.

(4) The cones in S◦g are pairwise disjoint. Together they form a decomposition of MR.

Proof. Part (1) summarizes our previous discussion. We point out that the poset Sg is

isomorphic to lim←−I SI by construction.

Part (2) is tautological by our definition of a face of a cone in Sg. Note that here the notion

of a face can be very different from the finite case. It can happen, for example, in two dimensions,

that σ is a strictly convex closed cone of dimension two and σ◦ = σ \ {0}. Thus by Lemma 2.3.9,

the only face of σ is the origin, and the two boundary rays do not count as faces.

For part (3), note that we have

σ ∩ τ =
⋂
I

(σI ∩ τI).

In SI , the intersection σI ∩ τI is common face and again in SI . The tuples (σI ∩ τI)I constitute

an element in the projective limit since we have by Proposition 2.3.7,

RI,J(σI ∩ τI) = σJ ∩ τJ

for I ⊂ J . Thus by definition σ ∩ τ is a common face of both σ and τ .

Suppose we have two cones
⋂
I σ
◦
I and

⋂
I τ
◦
I in S◦g. Then we have either for some I, σ◦I ∩τ◦I = ∅

or for every I, σ◦I = τ◦I . Thus the two cones are either disjoint or the same. Let m be any point in

MR. For every I, there is a unique cone σm,I ∈ SI such that m ∈ σ◦m,I since SI is complete. The

tuple (σm,I)I is an element in Sg and m is of course contained in
⋂
I σ
◦
m,I . This proves part (4).

�

Each cone in the cone decomposition S◦g has the following characterization using the function

Φg : MR → Ĝ.

Proposition 2.3.11. For any h ∈ Ĝ, each path-connected component of the level set Φ−1g (h) is a

convex cone in MR. These cones together form the cone decomposition S◦g of MR.

Proof. Let C be a path-connected component of Φ−1g (h) and m ∈ C. We define

(2.3.1) σ◦m :=
⋂

I∈Cofin(N+)

σ◦m,I .
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It is a convex cone and in particular path-connected. The map Φg : MR → Ĝ is obviously constant

on σ◦m so we have σ◦m ⊂ C. On the other hand, for every cofinite ideal I, the function ΦI is constant

on C so the path-connected set C is contained in the path-connected component σ◦m,I . Thus we

have C = σ◦m. Therefore all such path-connected components form the collection S◦g. �

Now we update our definition of a consistent g-scattering diagram.

Definition 2.3.12 (Consistent g-SD updated). Let g be an N+-graded Lie algebra and g be an

element in the corresponding pro-unipotent group Ĝ. The consistent g-SD corresponding to the

group element g ∈ Ĝ now refers to the data

Dg = (Sg,Φg)

consisting of the canonical profinite cone complex Sg and the function Φg : MR → Ĝ (2.1.8) which

is constant along each cone in the cone decomposition S◦g.

Remark 2.3.13. We emphasize that the data of the profinite cone complex Sg (as well as S◦g)

can be completely determined by the function Φg by combining Proposition 2.3.11, Theorem 2.3.10

and Lemma 2.3.9.

The following proposition will be useful later.

Proposition 2.3.14. Let g ∈ Ĝ. Suppose that σ ∈ Sg is a rational polyhedral cone and it appears

in the cone complex SI for some I. Then all the faces of σ are elements of Sg.

Proof. By Theorem 2.3.1, we have that SI is a cone complex, so the faces of σ are also cones

in SI . Since the cone σ is in Sg, it belongs to SJ for any J ⊂ I and so do its faces. Therefore all

its faces are also elements in the projective limit Sg. �

2.3.3. Induced scattering diagram. We set up some conventions that will be useful later.

Let f : g1 → g2 be a homomorphism of N+-graded Lie algebras. It induces a group homomorphism

F : Ĝ1 → Ĝ2 and consequently a map

F : g1-SD → g2-SD, Dg 7→ DF (g)

for g ∈ Ĝ1. Clearly, we have for the wall-crossing functions that

ΦF (g) = F ◦ Φg.
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There is also an induced map from the profinite cone complex Sg to SF (g), which can be considered

as a refinement.

2.3.4. Consistency revisited. In this section, we explain how to extend the notion of con-

sistency in terms of path-ordered products to the canonical (profinite) cone complex Sg. As the

cone complex Sg may be infinite and a path can thus cross infinitely many walls, it needs extra

care to define a path-ordered product.

First we assume S = Supp(g) to be finite. Fix g ∈ G. Then Theorem 2.3.1 applies. In

particular, the cone complex Sg is a coarsening of SS (i.e., SS is a refinement of Sg). For each τ

in Sg of codimension at least one, there is a relatively positive maximal cell τ+ in Sg incident to

τ as described in Section 2.2.1. Similarly, there is a relatively negative maximal cell τ−. We then

define Sg-paths and path-ordered products for Sg in the exact same way as for SS in Section 2.2.1.

Then the following proposition follows directly from the consistency of the scattering diagram Dg

(in terms of SS in Definition 2.2.4); see the proof of Theorem 2.2.5.

Proposition 2.3.15. Let γ be an Sg-path. Then we have

pγ(Dg) = πγ(1),+(g)
−1 · πγ(0),+(g).

In particular, it only depends on the endpoints γ(0) and γ(1).

Now suppose that the support Supp(g) may be infinite. Fix g ∈ Ĝ. We extend the notion

of a path-ordered product for the profinite cone complex Sg. We continue to use the notation

DI = Dg<I and SI = Sg<I .

Definition 2.3.16. A smooth curve γ : [0, 1] → MR is said to be an Sg-path if it is an SI -path

(Definition 2.2.2) for any cofinite ideal I ⊂ N+.

Lemma 2.3.17. Let Dg = (Sg,Φg) be the consistent g-SD corresponding to g ∈ Ĝ and γ be an

Sg-path. Then for any I ⊂ J , we have

ρI,J(pγ(DI)) = pγ(DJ).
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Proof. By definition, the Sg-path γ is also a Dg<I -path for any I ∈ Cofin(N+). By Proposi-

tion 2.3.15, it amounts to show that

ρI,J

(
πγ(1),+

(
g<I
)−1 · πγ(0),+ (g<I)) = πγ(1),+

(
g<J

)−1 · πγ(0),+ (g<J) ,
which follows from the fact that the projection πm,+ commutes with ρI,J . �

The above lemma allows us to propose the following definition of the path-ordered product for

an Sg-path γ in general.

Definition 2.3.18. The path-ordered product pγ(Dg) of γ is defined to be the projective limit in

Ĝ of the path-ordered products pγ(Dg<I ) for I ∈ Cofin(N+), i.e.

pγ(Dg) := lim
←−
I

pγ(Dg<I ).

The consistency of pγ(Dg) follows directly from the definition. The following is the support-

infinite version of Proposition 2.3.15.

Proposition 2.3.19. For any Dg-path γ, we have

pγ(Dg) = πγ(1),+(g)
−1 · πγ(0),+(g).

In particular, it only depends on the endpoints γ(0) and γ(1).

Notice that in the case where an Sg-path γ crosses finitely many walls (or higher codimensional

faces) in Sg, the path-ordered product pγ(Dg) can still be computed by a finite product of wall-

crossings in the order of crossings. For two points m1 and m2 in MR, there might not be a Sg-path.

Nevertheless, the formula in Proposition 2.3.19 still makes sense.
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CHAPTER 3

Cluster algebras

In this chapter, we introduce cluster algebras of Fomin and Zelevinsky [FZ02]. We choose an

approach (in the framework of [GHK13]) to define cluster algebras that suits best the machinery

of scattering diagrams developed in [GHKK18].

There is one slight change in our approach worth explanation. The cluster algebra we will

define is with respect to some fixed data Γ (Section 3.1.3) with an initial seed s. There is a

construction of fixed data with an initial seed (Γ, s)∨ that is Langlands dual to the former one

(see [GHKK18, Appendix A]). The cluster algebra we define for (Γ, s) is isomorphic to GHKK’s

construction for (Γ, s)∨. Thus without going to the Langlands dual data, we can define two cluster

algebras: ours is the cluster algebra A(B) while GHKK’s is A(B∨). The precise meaning of these

notions will be clear in the following sections.

3.1. Preliminaries

3.1.1. Oriented Cartan data. Let C = (cij) ∈ Mn(Z) be a generalized symmetrizable Car-

tan matrix with a left symmetrizer D. That is, the matrix C satisfies

(1) cii = 2 for all i ∈ I = {1, 2, . . . , n};

(2) cij ≤ 0 for all i 6= j;

(3) there exists a diagonal matrix D = diag(d1, d2, . . . , dn) ∈ Mn(Z>0) such that DC is

symmetric.

An orientation of C is a set Ω ⊂ I × I such that |Ω ∩ {(i, j), (j, i)}| ≤ 1 and

|Ω ∩ {(i, j), (j, i)}| = 1⇐⇒ cij < 0.

An orientation Ω is said to be acyclic if for each sequence i1, i2, . . . , ik with (ij , ij+1) ∈ Ω for

j = 1, 2, . . . , k we have i1 6= ik+1.

We call the triple (C,D,Ω) oriented Cartan data, which is easily seen equivalent to a pair (B,D)

where B = (bij) ∈Mn(Z) satisfies
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(1) bij = cij < 0 and bji = −cij > 0 if (i, j) ∈ Ω.

(2) bij = 0 if |Ω ∩ {(i, j), (j, i)}| = 0,

and D is a left skew-symmetrizer of B, i.e. DB + (DB)T = 0. Such a matrix B is called skew-

symmetrizable.

3.1.2. Presymplectic lattice. Let N be a lattice of finite rank n, i.e. N ∼= Zn. A pair (N,ω)

of a lattice N and a Q-valued skew-symmetric bilinear form

ω : N ×N → Q

on N is called a Q-presymplectic lattice (symplectic if the form is non-degenerate).

A Q-presymplectic lattice can constructed from oriented Cartan data (C,D,Ω) as follows. Let

(B,D) correspond to (C,D,Ω). Let N = Zn where n is the rank of B with the standard basis

{ei | i = 1, . . . , n}. Note that

B̃ = (b̃ij) : = BD−1 ∈Mn(Q)

is skew-symmetric. We define the form ω by putting

ω(ei, ej) = b̃ij .

3.1.3. Fixed data. We follow closely [GHK13, Section 2] and [GHKK18, Appendix A] on

fixed data. Fixed data Γ consists of

– a Q-presymplectic lattice (N,ω);

– an unfrozen sublattice Nuf ⊂ N , a saturated sublattice of N ;

– an index set I = {1, 2, . . . , r} with r = rankN and a subset Iuf ⊂ I with |Iuf| = rankNuf;

– positive integers di for i ∈ I;

– a sublattice N◦ ⊂ N of finite index such that

ω(Nuf, N
◦) ⊂ Z, and ω(N,Nuf ∩N◦) ⊂ Z;

– M = Hom(N,Z) and M◦ = Hom(N◦,Z);

A seed s for fixed data Γ (or a Γ-seed) is a subset of N indexed by I

s = (si)i∈I
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such that {si | i ∈ I} is a Z-basis of N , {si | i ∈ Iuf} a basis of Nuf, and {disi | i ∈ I} a basis of

N◦. We will call a pair (Γ, s) of fixed data Γ and a Γ-seed s seed data. The seed s is often referred

to as the initial seed.

For a seed s, we put

s̃ = (s̃i)i∈I , s̃i = disi.

The dual of s is denoted by

s∗ = (s∗i )i∈I

where {s∗i | i ∈ I} is the dual basis of M . The dual of s̃ is given by s̃∗ = (s̃∗i )i∈I and we have

s̃∗i = s∗i /di.

These elements form a basis of the lattice M◦.

We define a skew-symmetric matrix B̃(s) = (b̃ij) ∈Mr(Q) by setting

b̃ij = ω(si, sj)

and the matrix B(s) = (bij) ∈Mr(Z) by setting

bij = ω(si, s̃j) = dj b̃ij .

The matrix B(s) is skew-symmetrized by D = diag(di|i ∈ I), i.e. we have

DB +BTDT = 0.

We define a map for later use. We put

p∗ : N →M◦, n 7→ ω(−, n).

This is legitimate since for any n ∈ N , ω(−, n) is Z-valued on N◦. Note that one can restrict the

map p∗ to the sublattice N◦ and the image is then in M , as a sublattice of M◦. For example, we

have

(3.1.1) p∗(sk) = −
∑
i∈I

bkis̃
∗
i , p∗(s̃k) =

∑
i∈I

biks
∗
i .
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3.1.4. Mutations of seeds. Suppose we are given fixed data Γ and a seed e of Γ. We define

operations called mutations that iteratively generate seeds for the fixed data Γ.

Recall that we have an integer-valued matrix B = B(e) = (bij). For an unfrozen index k ∈ Iuf

and a sign ε ∈ {+,−}, we define the mutation µεk(e) = (e′,εi )i∈I , a subset of N indexed by I, by

setting

e′,εi : =


ei + [−εbik]+ek for i 6= k

−ei for i = k

.

It is straightforward to check that the collection µεk(e) satisfies the requirements of a seed for

Γ. This allows us to apply mutations to the new seed indefinitely. For a sequence k = (k1, . . . , kl)

of unfrozen indices and a sequence ε = (ε1, . . . , εl) of signs, we define an associated seed

µ
ε
k(e) := µεlkl · · ·µ

ε1
k1
(e).

In the following, we provide some concrete computations in terms of matrices of mutations. We

denote the change-of-basis matrix of the mutation µεk by Eεk(e), i.e. we have

µεk(e) = Eεk(e) · e

where e is considered as a column vector with entries being ei. Note that one can read off Eεk(e)

from the matrix B. Therefore we also denote it by Eεk(B) in some cases.

As a matrix, Eεk(B) is as follows:

Eεk(B) =



1 [−εb1k]+
. . . ...

1 [−εbk−1,k]+

−1

[−εbk+1,k]+ 1
... . . .

[−εbnk]+ 1


.

Lemma 3.1.1. We have for ε ∈ {+,−} that

Eεk(e) · Eεk(e) = I and E−εk (µεk(e)) · Eεk(e) = I, i.e. µ−εk ◦ µ
ε
k(e) = e.
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Proof. Direct computations through the above matrix presentation of Eεk. �

Now let e′,ε = (e′,εi )i∈I be µεk(e) where ε = + or −. We omit the sign ε when there is no

ambiguity. Scale e′ by the diagonal matrix D and we get ẽ′ = D · e′. Immediately we have

ẽ′ = D · e′ = DEε
k(e) · e = DEεk(e)D−1ẽ.

We denote the transformation matrix by

F εk (e)T := DEε
k(e)D−1.

As a matrix, F εk (B) is as follows:

F εk (B) =



1

. . .

[εbk1]+ . . . −1 . . . [εbkn]+
. . .

1


.

A straightforward calculation shows the following lemma, known as the tropical duality [NZ12]

(see also [Kel08]).

Lemma 3.1.2. Let B∨ = −BT . Then we have

Eεk(B) = F εk (B
∨)T , F εk (B) = Eεk(B

∨)T .

Lemma 3.1.3. The set ẽ′ forms a basis of N◦. This verifies in part that e′ is indeed a seed for Γ.

Proof. This is because the transformation matrix from ẽ to ẽ′ is given by F εk (B)T and is equal

to Eεk(B∨) by the tropical duality. It is invertible in Mn(Z). �

Lemma 3.1.4. Let µεk(B) = (b′ij) ∈ Mn(Z) be the matrix such that b′ij = ω
(
e′,εi , ẽ

′,ε
j

)
. Then we

have

µ+k (B) = µ−k (B) = (b′ij) ∈Mn(Z)

and

b′ij =


−bij , if i = k or j = k;

bij +
|bik|bkj+bik|bkj |

2 , otherwise.
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Thus we denote them simply by µk(B). This is Fomin-Zelevinsky’s mutation of a skew-symmetrizable

matrix B (see [FZ02]).

Proof. The computation is straightforward. We only present the case where i 6= k and j 6= k.

By definition, we have

b′ij = ω(ei + [−εbik]+ek, ẽj + [εbkj ]+ẽk)

= bij + [εbkj ]+bik + [−εbik]+bkj

= bij +
|bik|bkj + bik|bkj |

2
.

�

Remark 3.1.5. The main difference of our setting with [GHK13] and [GHKK18] is that we

consider two types of mutations µ+k and µ−k instead of choosing one of them. It turns out these two

mutations both have interpretations in the context of additive categorification of cluster algebras.

3.1.5. Mutations of dual seeds. Denote by e∗ the dual basis of e in M and by ẽ∗ the dual

basis of ẽ in M◦. We denote by µεk(e∗) the dual of µεk(e) and accordingly for ẽ∗. The mutation

matrices are computed as follows.

Lemma 3.1.6. we have that

µεk(e∗) =
(
Eεk(e)−1

)T · e∗ = F εk (B
∨) · e∗

and

µεk(ẽ∗) = F εk (e)−1 · ẽ∗ = F εk (B) · ẽ∗.

As before, we could define mutations of dual seeds µεk(e∗) (and µεk(ẽ∗)) associated to sequences

of unfrozen indices and signs.

3.2. Cluster algebras of Fomin and Zelevinsky

In this section, we define cluster algebras of Fomin and Zelevinsky [FZ02]. Our definition will

not be as general as in the original paper [FZ02]. We fix the fixed data Γ. A cluster algebra

A = A([s]), as a subalgebra of Z[M ] (caution: not Z[M◦]) will be defined for the mutation class [s]

of a seed s (the collection of seeds obtained by arbitrary iterative mutations to s). We start with

some preparations.
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3.2.1. The infinite graph T. We consider an oriented graph T defined as follows. First,

let T0 be a connected unoriented 2n-regular tree. Replace each edge in T0 with two edges with

opposite orientations. For each vertex v ∈ T0, label the 2n outgoing edges from v by (i, ε) where

i ∈ I and ε ∈ {+,−} such that if v and w are two vertices connected by an edge in T0, then the two

oriented edges between them are labeled by (i, ε) and (i,−ε). We call this infinite oriented graph

T. A local picture when n = 2 is depicted in Figure 3.1.

•

• • •

•

(1,+)

(1,−)

(1,+)

(2,+)

(1,−)

(2,−)

(2,+)

(2,−)

Figure 3.1. n = 2

Consider (Γ, s) the fixed data Γ with an initial seed s. Suppose Iuf = {1, . . . , n} ⊂ I. Pick a

vertex v in T and label it by the seed s to it. To each labeled edge, we associated corresponding

mutations µεi . In this way, we can associate a seed to each vertex in T such that any two adjacent

seeds are related by mutations. A local picture of this association is depicted in Figure 3.2.

µ−1 s

µ+1 s s µ−2 s

µ+2 s

µ+1

µ−1

µ+1

µ+2

µ−1

µ−2

µ+2

µ−2

Figure 3.2. n = 2

We denote by Ts the graph T with the labeling of seeds.
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3.2.2. Birational transformations. Fix some field k of characteristic 0. We associate a torus

Te = TN = Spec k[M ]

to each seed e and a I-tuple of coordinate functions

(Ai)i∈I =
(
zfi
)
i∈I

where f = (fi)i∈I is the dual seed of e.

Suppose we have two adjacent vertices in the tree T with labeling seeds e and µεke

e µεkeµεk

µ−ε
k

.

We define a birational map

µεk : Te 99K Tµεke

via pull-back of functions

(µεk)
∗zm = zm

(
1 + zp

∗(εẽk)
)−m(ek)

.

where p∗(εẽk) is explicitly computed as (see Equation (3.1.1))

p∗(εẽk) = {−, εẽk} =
∑
i∈I
{ei, εẽk}fi =

∑
i∈I

εbikfi ∈M.

Lemma 3.2.1. Let e be a seed and f be the dual seed. The pull-backs of coordinates (A′,εi )i∈I of

Aµεke are computed as follows. In particular, they do not depend on the choice of ε.

(µεk)
∗A′,εi =


Ai if i 6= k,

A−1k

( ∏
i:bik>0

Abiki +
∏

j:bjk<0

A
−bjk
j

)
if i = k.

Proof. The coordinates of Aµεke are given by

A′,εi = zf
′,ε
i =


zfi if i ∈ I,

z
−fk+

∑
i∈I

[−εbik]+fi
if i = k.
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Then it is easy to see that (µεk)
∗A′,εi = Ai if i ∈ I. For the k-th coordinate, we have

A′,εk = zf
′,ε
k

(
1 + zp

∗(εẽk)
)−f ′,εk (ek)

= z
−fk+

∑
i
[−εbik]+fi

(
1 + z

∑
i
{ei,εẽk}fi

)
= z−fk

(
z

∑
i
[−εbik]+fi

+ z

∑
i
[−εbik]+fi+

∑
i
εbikfi

)
= z−fk

(
z
∑

bik>0 bikfi + z
∑

bjk<0(−bjk)fj
)

= A−1k

 ∏
i: bik>0

Abiki +
∏

j: bjk<0

A
−bjk
j

 .

(3.2.1)

�

The above lemma shows that the pull-backs of coordinates are regular functions in k[M ], i.e.

Laurent polynomials. Note that for i ∈ I \ Iuf, the variable Ai never gets changed under mutations.

They are thus called frozen variables.

For any two vertices w,w′ of the tree Ts, there is essentially a unique path connecting them

(without any 2 cycles, since µεk and µ−εk are inverse to each other). We denote the seed associated

to the vertex w by sw. Then we obtain a birational map

µw,w′ : Tsw 99K Tsw′

between associated tori by composing the birational maps µεk in order along the path.

Theorem 3.2.2 (Laurent phenomenon, [FZ02]). For any two seeds related by a sequence of

mutations, the pull-back of coordinates are Laurent polynomials with integer coefficients. More

precisely, for vertices w,w′ on T, denote the coordinates of Tsw′ by A′i (Ai for Tsw) for i ∈ I and

we have

µ∗w,w′(A′i) ∈ Z [Aj | j ∈ I \ Iuf]
[
A±k | k ∈ Iuf

]
.

3.2.3. Definitions. Now we are prepared to define cluster algebras and some other important

related notions.

Definition 3.2.3 (Cluster algebras). For fixed data Γ and an initial seed s, we have constructed

the infinite graph Ts with initial vertex v. We define the cluster algebra A(s) to be the subalgebra

of Z[M ] generated by the set

{
µ∗v,w(A

′
i)
∣∣∣ A′i = zs

∗
w,i ∈ Z[M ], i ∈ I, w ∈ Ts

}
.
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We also have some important notions.

(1) The Laurent polynomial µ∗v,w(A′i) is called a cluster variable.

(2) For each w ∈ Ts, the tuple
(
µ∗v,w(A

′
i)
)
i∈I is called a cluster.

(3) A monomial of cluster variables in one cluster is called a cluster monomial.

(4) For a skew-symmetrizable matrix B with a left skew-symmetrizer D (with a choice of

unfrozen part), we can construct a corresponding fixed data with an initial seed as in Sec-

tion 3.1.3. We call the cluster algebra of this data A(B), which in particular is independent

of D.

(5) If we have Nuf = N , then the corresponding cluster algebra is said to have no frozen

variables or no coefficients.

If we take the seed sw associated to a vertex w to be the initial seed, we can define the corre-

sponding cluster algebra A(sw). The birational transformation between the tori Ts and Tsw induces

an isomorphism

µ∗v,w : A(s)→ A(sw)

between two cluster algebras. Thus one can view that the cluster algebra is defined for the mutation

class [s].

3.2.4. Cluster algebra with principal coefficients. In this section, we explain a particular

case where the associated cluster algebra is said to have principal coefficients.

For fixed data Γ with Nuf = N with an initial seed s, we define another fixed data Γprin as

follows.

– Ñ := N ⊕M◦ with the skew-symmetric form

ω̃((n1,m1), (n2,m2)) = ω(n1, n2) +m2(n1)−m1(n2);

– Ñuf := N ⊕ 0;

– Ñ◦ := N◦ ⊕M ;

– The index set is I := {1, . . . , r, r + 1, . . . , 2r} with di unchanged and di+r = di.

– The initial seed is

s̄ := ((s1, 0), . . . , (sr, 0), (0, s̃
∗
1), . . . , (0, s̃

∗
r)).
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The cluster algebra associated to (Γprin, s̄) is denoted by Aprin(s) and is said to have principal

coefficients. Note that M̃ = Hom(Ñ ,Z) is canonically identified with M ⊕N◦. Thus Aprin(s) is a

subalgebra of Z[M ⊕N◦].

3.2.5. GHKK’s Langlands dual construction. In this section, we explain the difference in

our definition of a cluster algebra with GHKK’s construction [GHK13, GHKK18]. Suppose we

have fixed data Γ and let e be a Γ-seed. Denote by g = (gi)i∈I the dual of ẽ∗. To e, We associate

a torus

Te : = TN◦ = Spec k[M◦]

with coordinates Ai = zgi . For a seed e and its mutation µεke, we have a birational map between

tori

µεk : Te 99K Tµεke, (µεk)
∗(zm) = zm

(
1 + zp

∗(εek)
)−m(ẽk)

for m ∈M◦.

The cluster exchange relation is computed as follows. Let e be an initial seed and we start with

the cluster

(A1, A2, . . . , Ar) = (zg1 , zg2 , . . . , zgr)

associated to the seed e. Let k be an unfrozen index. We put

µεk(g) = (g′,εi )i∈I , A′,εi = zg
′,ε
i ∈ Z[M◦].

Then we have

(µεk)
∗(A′,εk ) = zg

′,ε
k

(
1 + zp

∗(εek)
)
= z

−gk+
∑
i∈I

[εbki]+gi
(
1 + z

∑
i
{ẽi,εek}gi

)
= z−gk

(
z

∑
i∈I

[εbki]+gi
+ z

∑
i∈I

[εbki]+gi+
∑
i
−εbkigi

)
= z−gk

(
z
∑

bki>0 bkigi + z
∑

bkj<0(−bkj)gj
)

= A−1k

 ∏
i : bki>0

Abkii +
∏

j : bkj<0

A
−bkj
j

 .

The other cluster variables remain unchanged. One observes that the right-hand side does not

depend on the sign ε.

One can perform mutations indefinitely and consequently obtain the set of cluster variables as

in Section 3.2. For the fixed data Γ with an initial seed s, GHKK’s cluster algebra AGHKK(s) is
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defined in a similar way as our A(s) to be the subalgebra of Z[M◦] (caution: instead of Z[M ])

generated by elements {
µ∗v,w(z

gw,i) | w ∈ Tv, i ∈ I
}

where (gw,i)i∈I is the dual of the scaled seed s̃w associated to the vertex w.

The above exchange formula Section 3.2.5 should be compared to the previous one Equa-

tion (3.2.1). The difference is that the one in Equation (3.2.1) uses the k-th column of the matrix

B instead of the k-th row of B used here. Thus the exchange relation now is the same as the pre-

viously defined one of the Langlands dual matrix B∨ = −BT . Therefore we have (with identified

clusters and cluster variables)

AGHKK(B∨) ∼= A(B).

Of course, in skew-symmetric cases, this makes no difference.

3.3. Generalized cluster algebras of Chekhov and Shapiro

In this section, we explain how to define Chekhov-Shapiro’s generalized cluster algebras [CS14]

in the framework we have developed so far. These algebras will be referred to as Chekhov-Shapiro

cluster algebras, CS algebras for short.

Again we are given fixed data Γ with an initial seed s.

3.3.1. Integrality assumption. The first assumption we need is that the matrix

B̃ := BD−1

is integer valued, i.e. B̃ ∈Mr(Z). Recall that in Section 3.1.3, B̃ is the pairing matrix of the basis

e. So our assumption is that ω(ei, ej) = b̃ij = bij/dj is an integer for all i, j. This integrality is not

required in general for ordinary cluster algebras.

3.3.2. Extra data on exchange polynomials. A CS cluster algebras depends on some

additional data. Choose a polynomial θi(u, v) for each i ∈ I such that

(1) θi(u, v) ∈ k[u, v] for some field k of characteristic zero;

(2) deg θi = di;

(3) θi is reciprocal, i.e. θi(u, v) = θi(v, u), and the coefficient of the term udi is 1.
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3.3.3. Definition. Let e be a seed and f be its dual. Let

ρk(v) = θk(1, v).

Similar to previous constructions of cluster algebras, we associate a torus Te = Spec k[M ] to a seed

e with coordinates Ai = zfi for i ∈ I.

For k ∈ Iuf and ε ∈ {+,−}, we define a birational transformation between two tori

µεk : Te 99K Tµεke, (µεk)
∗(zm) = zm · ρk

(
zp

∗(εek)
)−m(ek)

.

Note that the monomial zp∗(εek) is actually in k[M ] since

p∗(εek) = ω(−, εek)

lies in M by our integrality assumption on the matrix B̃.

We put

f εk;>0 :=
∑
i∈I

[
εb̃ik

]
+
fi, f εk;<0 :=

∑
i∈I

[
−εb̃ik

]
+
fi.

A straightforward computation gives the following CS cluster exchange relation [CS14]:

A′,εk := zf
′,ε
k ρk

(
zp

∗(εek)
)−f ′,εk (ek)

= z
−fk+

∑
i∈I

[−εbik]+fi
ρk

(
z

∑
i
{ei,εek}fi

)
= z−fk · zdkf

ε
k;<0 · ρk

(
z

∑
i
εb̃ikfi

)
= z−fk · zdkf

ε
k;<0 · ρk

(
zf

ε
k;>0−f

ε
k;<0

)
= z−fk · θk

(
zf

ε
k;>0 , zf

ε
k;<0

)
,

that is, we have

A′,εk = A−1k · θk

(∏
i∈I

A
[εb̃ik]+
i ,

∏
i∈I

A
[−εb̃ik]+
i

)
.(3.3.1)

Since the polynomial θk(u, v) is symmetric on u and v, the polynomial A′,εk does not depend on the

choice of sign ε.

Example 3.3.1. Suppose that dk = 2 and θk(u, v) = u2 + uv + v2, thus we have

ρk(v) = 1 + v + v2.
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The new generalized cluster variable under mutation at k ∈ I is

zf
′,ε
k

(
1 + zp

∗(εek) + z2p
∗(εek)

)
= z−fk

(
z2f

ε
k;>0 + zf

ε
k;>0+f

ε
k;<0 + z2f

ε
k;<0

)
.

We construct the graph Ts with the labeling of seeds as before (see Section 3.2). Each vertex of

Ts is associated with a torus. Between two tori associated to adjacent vertices, there is a birational

transformation described above generalizing the one of ordinary cluster algebras. In this way, we

obtain the set of cluster variables as before.

The Laurent phenomenon of ordinary cluster algebras has been extended to CS algebras in

[CS14].

Theorem 3.3.2 (Laurent phenomenon, [CS14, Theorem 2.5]). For any two seeds related by a

sequence of mutations, the pull-back of coordinates under CS generalized birational transformations

are Laurent polynomials with integer coefficients. In other words, for vertices w,w′ of the tree T,

denote the coordinates of Tsw′ by A′i (Ai for Tsw) for i ∈ I and we have

µ∗w,w′(A′i) ∈ k[A±1 , A
±
2 , . . . , A

±
n ].

We define Chekhov-Shapiro algebra CS(s) in the same way as ordinary cluster algebras, that is

CS(s) is defined to be the subalgebra in k[M ] generated by the set of Laurent polynomials

{
µ∗v,w(Aw,i) | w ∈ T, i ∈ I

}
where v is the initial vertex and Aw,i := zfw,i is the i-th coordinate function on the torus Tsw .

Example 3.3.3. We give an example of CS algebra of type B2 here. Take

B̃ =

0 −1

1 0

 , D =

1 0

0 2

 .
Let

ρ1(v) = 1 + v, ρ2(v) = 1 + v + v2.

The initial seed is given by (e1, e2). Denote the initial cluster variables by

A1 = ze
∗
1 , A2 = ze

∗
2 .
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The mutation at k = 2 gives

µ2(A1, A2) =
(
A1, A

−1
2 (1 +A1 +A2

1)
)
.

Same as the ordinary cluster algebra of type B2, in total, there are 6 clusters and 6 generalized

cluster variables.
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CHAPTER 4

Cluster scattering diagrams

In this chapter, we introduce the cluster scattering diagrams, an essential technical tool used

in [GHKK18] to prove the positivity conjecture of cluster algebras.

A cluster scattering diagram will be defined for any fixed data Γ with an initial seed s. They

are characterized by the so-called initial data or equivalently the set of incoming walls, explained

in Section 4.1. The definition of a cluster scattering diagram is in Section 4.2.

4.1. Initial data and incoming walls

Let Γ be a fixed data with no frozen indices (i.e. Nuf = N) and s be a Γ-seed. We pick up our

notions from Chapter 2 for scattering diagrams.

Definition 4.1.1. An N+-graded Lie algebra g is skew-symmetric if we have

ω(d1, d2) = 0 =⇒ [gd1 , gd2 ] = 0

for any d1, d2 ∈ N+.

This feature ensures that the so-called initial data is able to determine a consistent g-scattering

diagram (see [KS14, section 3]). We briefly review this important point of view. Recall that the set

of consistent g-SDs is in bijection with the group Ĝ. We introduce a way to parametrize elements

in Ĝ as described in [KS14, section 3] and also in [GHKK18, section 1.2].

Define a map

p∗ : N →MR, n 7→ ω(−, n) ∈MR.

Note that we do not require the map p∗ to be injective. We define the set of primitive elements in

N+ as

Prim(N+) :=
{
n ∈ N+ | n/k 6∈ N+ for any k ∈ N>1

}
.

Let n ∈ Prim(N+). Consider the decomposition of g with respect to p∗(n) as in Lemma 2.1.1

(4.1.1) g = gp∗(n),+ ⊕ gp∗(n),0 ⊕ gp∗(n),−,
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which induces a factorization of the corresponding pro-nilpotent group

Ĝ = Ĝp∗(n),+ · Ĝp∗(n),0 · Ĝp∗(n),−.

The Lie subalgebra gp∗(n),0 further decomposes into

gp∗(n),0 = g∥n ⊕ g
∦
p∗(n),0

where

g∥n := gN·n =
⊕
k∈N

gkn, g
∦
p∗(n),0

:=
⊕

p∗(n)(d)=0, d ̸∈N·n

gd.

Note that the Lie subalgebra g
∥
n is central in gp∗(n),0 and g

∦
p∗(n),0 is an ideal of gp∗(n),0. The quotient

map

gp∗(n),0 → gp∗(n),0/g
∦
p∗(n),0

∼= g∥n

induces a group homomorphism projection

rn : Ĝp∗(n),0 → Ĝ∥n = exp(ĝ∥n).

Given an element g ∈ Ĝ, for each primitive n ∈ N+, we define

ψn(g) := rn ◦Πp∗(n),0(g) = rn(gp∗(n),0) ∈ Ĝ∥n.

This defines a map (of sets)

(4.1.2) ψ : Ĝ→
∏

n∈Prim(N+)

Ĝ∥n, ψ(g) = (ψn(g))n∈Prim(N+).

Proposition 4.1.2 (Proposition 3.3.2 in [KS14]). In the case that the Lie algebra g is skew-

symmetric in the sense of Definition 4.1.1, the map ψ is a bijection of sets.

This proposition provides another way (other than the bijection Ĝ ←→
∏
d∈N+ gd) to express

an element g in Ĝ by its components in each Ĝ∥n under ψ. This expression of g is called the initial

data of the corresponding consistent g-SD Dg.

Definition 4.1.3 (Initial data). The initial data of the scattering diagram Dg is the image under

the map ψ of g, i.e., the tuple (ψn(g))n∈Prim(N+).
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The fact that a consistent g-SD is determined by its initial data is sometimes known as “a

consistent scattering diagram is determined by its incoming walls”, e.g. see [GHKK18].

4.2. Cluster scattering diagrams

4.2.1. Cluster SDs. Continue on with the data (Γ, s). Consider the N -graded Poisson algebra

(often called the torus Lie algebra) defined as follows:

T := Q[N ] =
⊕
d∈N

Q · xd and
[
xd1 , xd2

]
= ω(d1, d2)x

d1+d2 , d1, d2 ∈ N.

We consider a Lie subalgebra

g = gs := TN+
s
⊂ T.

It is N+
s -graded and skew-symmetric in the sense of Definition 4.1.1.

The dilogarithm series Li2(x) ∈ Q[[x]] is defined by

(4.2.1) Li2(x) :=
∞∑
k=1

xk

k2
.

We define the following element gs in Ĝ by its initial data, i.e. the image under the bijective map

ψ in (4.1.2). We define the initial data

(4.2.2) ψ(gs) = (gn)n∈Prim(N+) ∈
∏

n∈Prim(N+)

Ĝ∥n

by putting

gsi = exp
(
−Li2(−xdisi)/di

)
= exp

(
1

di

∞∑
k=1

(−1)k−1xks̃i
k2

)
∈ Ĝ∥si

and gn = id for any other primitive n. We will use the notation

E(n) := exp(−Li2(−xn)/d)

where d is the positive integer such that n/d is primitive. For example, we have gsi = E(s̃i) for

i ∈ I.

Definition 4.2.1 (Cluster scattering diagram). The cluster scattering diagram DCl
s is defined to

be the unique consistent g-SD corresponding to the group element gs ∈ Ĝ. The defining function

is written as

ΦCl
s : MR → Ĝ.
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The canonical cone complex is denoted by SCl
s .

Remark 4.2.2. For fixed data Γ, any seed for Γ will define a cluster scattering diagram. Note

that the Lie algebra g depends on the choice of the seed as the semigroup N+
s depends on s.

What we define in Definition 4.2.1 is different from (in fact, Langlands dual to) GHKK’s version

of a cluster scattering diagram in the skew-symmetrizable case. The difference will be explained in

Section 4.2.2.

Example 4.2.3. Let N = Z2 with the standard basis e = (e1, e2). Let the form ω be given by

the skew-symmetric matrix B̃ =
[
0 −1
1 0

]
in the standard basis. Let ẽ = (be1, ce2) where b and c are

two positive integers. We have B =
[
0 −c
b 0

]
. For some special values of b and c, the corresponding

cluster scattering diagrams are computed as follows in Figure 4.1 and Figure 4.2.

E(e1)

E(e1)

E(e2)E(e2)

E(e1 + e2)

p∗(e1)

p∗(e2)

Figure 4.1. b = 1, c = 1

Remark 4.2.4. These diagrams live in MR and are depicted in the basis (e∗1, e
∗
2).

4.2.2. GHKK’s version. We describe GHKK’s cluster scattering diagram for fixed data Γ

with s. Consider the initial data (gn)n∈prim(N+) such that for any si ∈ s, we put

gsi = E(si)di , i ∈ I

and gn = id otherwise.

The unique consistent scattering diagram corresponding to this initial data is what Gross,

Hacking, Keel, and Kontsevich call the cluster scattering diagram in [GHKK18]. One may also
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E(e1)

E(e1)

E(2e2)E(2e2)

E(2e1 + 2e2)

E(e1 + 2e2)

Figure 4.2. b = 1, c = 2

notice that when considering initial data, they used p∗(−n) instead of p∗(n). This difference,

however, is superficial. The convention we stick to is the one from [FZ07]: the cluster scattering

diagram DCl
s should corresponds to the cluster algebra A(B(s)). In particular, this requires that the

cluster complex ∆+
s (Section 4.4) coincides with the cone complex of g-vectors defined in [FZ07].

Let B = B(s). It turns out GHKK’s version corresponds to the cluster algebra A(B∨) of the

Langlands dual matrix B∨ = −BT while ours (Definition 4.2.1) corresponds to A(B).

We present some examples of GHKK’s cluster scattering diagrams in rank two; see Figure 4.3,

4.4 and 4.5. Some of them are also computed in [GHKK18, Section 1].

Example 4.2.5. Let ω be given by the skew-symmetric matrix B̃ =
[
0 −1
1 0

]
in the standard basis

e = (e1, e2). Let ẽ = (be1, ce2) where b and c are two positive integers. We have B =
[
0 −c
b 0

]
.

For some special values of b and c, the corresponding cluster scattering diagrams are computed as

follows.

Remark 4.2.6. The three diagrams live in MR and are depicted in the basis (ẽ∗1, ẽ
∗
2) dual to ẽ.

See also [GHKK18, Figure 1.2.] for the case b = 1 and c = 3 where the wall-crossing E(n)k is

represented by (1 + zp
∗(n))k and corresponds to an action that sends zm to

zm
(
1 + zp

∗(n)
)km(n)

for n ∈ N and m ∈M◦. Note that m(n) is not always an integer for m ∈M◦ and the coefficient k is

crucial for making zm
(
1 + zp

∗(n)
)km(n) a polynomial. For example, the wall-crossing E(e1 +2e2) is
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E(e1)

E(e1)

E(e2)E(e2)

E(e1 + e2)

Figure 4.3. b = 1, c = 1

E(e1)

E(e1)

E(e2)2E(e2)2

E(e1 + 2e2)E(e1 + e2)
2

Figure 4.4. b = 1, c = 2

represented by the function (1 +A−21 A3
2) where Ai = zẽ

∗
i . We will come back to this interpretation

in more details in Section 4.5.

4.3. Mutation invariance

The structure of the scattering diagram DCl
s (in particular, the underlying cone complex SC

s )

can be studied by comparing it with the one associated to the mutated seed. In this section, we

describe the relation between DCl
s and DCl

µεks in this section following [GHKK18].

The element sk ∈ s defines a hyperplane

s⊥k := {m ∈MR | m(sk) = 0},
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E(e1)

E(e1)

E(e2)3E(e2)3

E(e1 + 3e2)

E(2e1 + 3e2)

E(e1 + e2)
3 E(e1 + 2e2)

3

Figure 4.5. b = 1, c = 3

which separates the space MR into two open half spaces

Hk,+s := {m ∈MR | m(sk) > 0}, Hk,−s := {m ∈MR | m(sk) < 0}.

Theorem 4.3.1 (GHKK [GHKK18, Theorem 1.24]). Consider the cluster scattering diagram

DCl
s and its mutation DCl

µεks with k ∈ I and ε ∈ {+,−}.

(1) At a generic m ∈ s⊥k , the wall-crossing is given by

ΦCl
s (m) = E(s̃k).

(2) For any m ∈ Hk,−εs , we have

ΦCl
µεks(m) = ΦCl

s (m).

Remark 4.3.2. In fact, the two functions ΦCl
s and ΦCl

µεks take values in different groups. We define

gs∩µεks := gs ∩ gµεks.

This Lie algebra has a well-defined completion by gradings. The last equality in the above theorem

in fact takes value in the group exp
(
ĝs∩µεks

)
.
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Proof. We closely follow the proof of Theorem 1.24 in [GHKK18], so we only explain a few

necessary modifications as our version of cluster scattering diagram is slight different form GHKK’s.

First of all, the slab in Definition 1.27 in [GHKK18] is now the pair

dk =
(
s⊥k ,E(s̃k)

)
.

The group element E(s̃k) has a different action on the monomial zm described in Lemma 4.5.5.

However, Theorem 1.28 in [GHKK18] still holds with the new slab dk. Our theorem follows from a

formal check of consistency as in Step II of the proof of Theorem 1.24. In our case, the consistency

is due to the identity, for any m ∈M (instead of M◦)

zm
(
1 + zp

∗(s̃k)
)−m(sk)

= zm−m(sk)p
∗(s̃k)

(
1 + zp

∗(−s̃k)
)−m(sk)

.

�

Theorem 4.3.1 relates the cluster scattering diagram associated to a seed s to the ones associated

to the neighboring seeds µεks for any k ∈ I. We will see in the following that this observation leads

to the so-called cluster complex structure of DCl
s .

4.4. Cluster complex structure

In this section we explain the cluster complex structure of DCl
s , obtained by using the mutation

invariance Theorem 4.3.1 in the last section. In this section, the fixed data Γ will remain unchanged.

Any scattering diagram in consideration will be a cluster scattering diagram, so we will omit the

superscript, simply denoting one by Ds.

4.4.1. Mutation of cluster scattering diagram. We put

u = (ui)i∈I = µ+k s, v = (vi)i∈I = µ−k s.

The dual seeds are denoted by

u∗ = (u∗i )i∈I , v∗ = (v∗i )i∈I .

There is a linear map that transforms the basis v∗ to u∗

Tk : M →M, Tk(v
∗
i ) = u∗i .
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It is a shear transformation, explicitly given by

Tk(m) = m+m(sk)p
∗(s̃k).

Recall the formulas of mutations of dual seeds in Section 3.1.5. Explicitly, we have

Tk(v
∗
k) = v∗k + v∗k(sk)

∑
i∈I

(biks
∗
i ) = u∗k

and

Tk(v
∗
i ) = s∗i = u∗i , i 6= k.

The map Tk induces a dual linear map on N

T ∗k : N → N, T ∗k (ui) = vi.

Since we have B̃(u) = B̃(v), the map T ∗k preserves the form ω. Therefore the map T ∗k actually

induces an isomorphism between the seed data (Γ, v) and (Γ,u). Thus the associated cluster

scattering diagrams should also be isomorphic, i.e.

Du ∼= Tk(Dv).

The precise meaning of this isomorphism is as follows. The linear map T ∗k induces an isomorphism

between graded Lie algebras

T ∗k : gu → gv,

which can be extended to completions. We denote the corresponding isomorphism between pro-

nilpotent groups also by T ∗k . Then we have for any m ∈MR,

(4.4.1) Φv(m) = T ∗k ◦ Φu ◦ Tk(m) ∈ Ĝv.

In view of the associated canonical cone complexes of Dv and Du, we have

Su = Tk(Sv),

that is, the cones in Su are obtained by applying the linear isomorphism Tk (extended to MR) to

the cones in Sv.
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The above discussion gives a way to describe Dv = Dµ+k s in terms of Ds. We define the following

piecewise linear map on MR

T+
k : MR →MR,

T+
k (m) :=


Tk(m) = m+m(sk)p

∗(s̃k) if m ∈ Hk,+s ,

m if m ∈ Hk,−s .

Theorem 4.4.1 (Mutation of cluster scattering diagram). The cluster scattering diagram DCl
µ+k (s)

has the following description in terms of DCl
s .

(1) At a generic m ∈ s⊥k , the wall-crossing is given by

Φµ+k s(m) = E(−s̃k).

(2) On Hk,+s ∪Hk,−s ⊂MR, we have

Φs(m) =
(
T+
k

)∗ ◦ Φµ+k (s) ◦ T
+
k (m),

where (T+
k )∗ denotes the induced group homomorphism on its domain of linearity.

(3) The piecewise linear map T+
k induces an isomorphism from the canonical profinite cone

complex Ss to Sµ+k s.

Proof. For part (1), we use Theorem 4.3.1. In fact, we have in the seed u = µ+k s,

ũk = −s̃k.

The second part (2) needs more explanation. Note that the map T+
k : MR → MR is piecewise

linear and is linear on the two open halves Hk,±s respectively. On Hk,−s , the map T+
k is identity.

Thus on this domain, the equality in (2) follows from Theorem 4.3.1, i.e. we have for any m ∈ Hk,−s ,

Φs(m) = Φµ+k s(m).

Restricted on Hk,+s , we have T+
k = Tk. Then according to Theorem 4.3.1 and Equation (4.4.1), we

have for m ∈ Hk,+s ,

Φs(m) = Φµ−k s(m) = T ∗k ◦ Φµ+k s ◦ Tk(m).

Combining the results on two domains of linearity proves part (2).
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For (3), we consider the cone decompositions S◦s and S◦
µ+k s. First of all, because of (1) of

Theorem 4.3.1, a cone σ◦ ∈ S◦s is either contained in s⊥k or in one of the halve spaces. The same is

true for the other cone decomposition S◦
µ+k s. Thus according to the characterization of a cone as a

path-connected component of a level set (Proposition 2.3.11), we conclude that the map T+
k maps

the cones in S◦s that avoid the hyperplane s⊥k bijectively to the ones avoiding s⊥k in S◦
µ+k s. Note that

the cones contained in the hyperplane s⊥k are determined by the cones in Hk,±s . More precisely, at

a finite level l, we have that S≤ls is a finite cone complex so the cones in s⊥k are just faces of cones

in the open halves. Taking the projective limit, we get cones in Ss. Thus we conclude that

Ss ∩ s⊥k = Sµ+k s ∩ s
⊥
k .

Therefore we have

Sµ+k s = T+
k (Ss),

proving part (3). �

Remark 4.4.2. There is a version of the above theorem of the other mutation µ−k . One can repeat

the discussion with µ−k replacing µ+k and the piecewise linear map T+
k replaced by another map T−k

defined as

T−k (m) :=


m, if m ∈ Hk,+s

m−m(sk)p
∗(s̃k) if m ∈ Hk,−s

We leave the details to the reader as an exercise.

4.4.2. Cluster complex structure. In this section, we explain the so-called cluster complex

structure of a cluster scattering diagram Ds.

Lemma 4.4.3. The cones

C+s := {m ∈MR | m(si) ≥ 0, i ∈ I}

and

C−s := {m ∈MR | m(si) ≤ 0, i ∈ I}

and all their faces are elements in the canonical profinite cone complex Ss.

Proof. We observe that for g≤1s , the canonical cone complex is induced by the hyperplane

arrangement of all coordinate hyperplanes. Thus both C±s and their faces are in S≤1s . For l >
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1, these cones cannot be further subdivided in S≤ls . Therefore these cones are elements in the

projective limit. �

Remark 4.4.4. In fact, not only we know that the cones described in Lemma 4.4.3 are in Ss, it

is also clear that the wall-crossing on a facet contained in s⊥i is

E(s̃i) = exp(−Li2(−xs̃i)/di).

However, it is usually hard to determine the face-crossing at higher codimensional cones.

To a pair (k, ε) of a sequence of indices k = (k1, k2, . . . , kl) and a sequence of signs ε =

(ε1, ε2, . . . , εl) of the same length, we can associate a seed

µ
ε
k(s) := µεlkl · · ·µ

ε2
k2
µε1k1(s)

obtained by applying iterative mutations to the initial seed s. There is a cluster scattering diagram

of the seed µ
ε
k(s) and we denote it by D(k,ε). It also has the two maximal cones described in

Lemma 4.4.3, i.e the positive and negative chambers

C+k,ε, C
−
k,ε ⊂MR.

We define the following piecewise linear map

T
ε
k := T εlkl ◦ · · · ◦ T

ε2
k2
◦ T εk1 : MR →MR.

More precisely, we point out that the definition of the map T εiki is with respect to the seed

µ
εi−1

ki−1
· · ·µε2k2µ

ε1
k1
(s).

Proposition 4.4.5. Let σ be a face of C+k,ε or C−k,ε (including themselves). Then the cone

(T
ε
k )
−1(σ)

belongs to the profinite cone complex Ss. It does not depend on the sequence of signs ε.
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Proof. We prove this by induction on the length of the sequence k. When l = 0, this follows

from Lemma 4.4.3. Now let

k′ = (k2, . . . , kl), ε′ = (ε2, . . . εl).

Then by induction, we have that the cone

(T εk′)
−1(σ)

belongs to Sµ
ε1
k1

(s). Then by part (3) of Theorem 4.4.1, we have that

(T εk )
−1(σ) = (T ε1k1 )

−1(T εk′)
−1(σ)

is in Ss. The independency is also proved similarly by induction. �

We put

G+
k := (T εk )

−1(C+k,ε), G−k := (T εk )
−1(C−k,ε)

for a sequence of vertices k. They are simplicial cones of dimension n in MR. If

k′ = (k, kl+1),

then it is easy to see that the cones Gεk and Gεk′ share a common facet of codimension one. We call

the maximal cone G+
k the cluster chamber corresponding to k.

Definition 4.4.6. We define the positive cluster complex ∆+
s to be the cone complex consisting of

the cluster chambers G+
k of all sequences k and all their faces. The negative cluster complex ∆−s is

defined similarly by considering the cones G−k .

According to Proposition 4.4.5, both of the positive and negative cluster complexes are cone

subcomplexes of Ss.

The following proposition concerns the wall-crossings on walls of ∆+
s and ∆−s . Let k be a

sequence of indices. Then the simplicial cone G+
k is generated by vectors

gk = (gk,i)i∈I ∈M I .

The indexing by I is natural from iterative mutations. These vectors are called the g-vectors of the

cluster associated to k. These are the images under the map (T εk )
−1 of the dual seed of µεk(s). Let
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the D-scaled dual basis of gk in N be

ck = (ck,i)i∈I ∈ (N◦)I ,

i.e. ck,i = dig
∗
k,i for i ∈ I. These vectors are called the c-vectors of the cluster associated to k.

Proposition 4.4.7. Let σ be the facet dual to the c-vector ck,i of the cone G+
k . Then we have

Φs(σ) = E(|ci|).

Proof. Note that the normal vector ci must be in N+ or −N+ as the walls in a scattering

diagram can only have normal vectors in N+ or −N+. The vector ci corresponds to the i-th basis

element ei in the seed µεk(s). In the scattering diagram Dk,ε, the wall-crossing function at e⊥i is

given by E(diei). Then by Theorem 4.4.1, under the map (T εk )
−1, the wall-crossing function at σ

can only be of the form E(|ci|). �

Remark 4.4.8. Combining Proposition 4.4.5 and Proposition 4.4.7, we have the so-called cluster

complex structure of Ds. That is, we have a simplicial cone complex (also called a simplicial fan in

toric geometry) ∆+
s (also the negative version ∆−s ) defined in Definition 4.4.6 with wall-crossings

on facets described in Proposition 4.4.7.

4.4.3. Combinatorics of g-vectors. In this section, we show an iterative way to compute

the g-vectors of cluster chambers. This algorithm may be well-known to experts but it is not easy

to find a reference.

For two sequences p = (p1, . . . , pn) and q = (q1, . . . , qm) of indices or signs, we define their

concatenation as

p t q := (p1, . . . , pn, q1, . . . , qm).

Proposition 4.4.9. Let k′ be a sequence of indices of length l− 1 and k = k′ t (kl). Then we have

that ck is a D-scaled seed of fixed data Γ, and gk is the dual seed of ck/D. They can be computed

iteratively as (recall the mutations of seeds and dual seeds in Section 3.1.4)

gk = µεlkl(gk′), ck = µεlkl(ck′)
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for

εl =


+, if ck′,kl ∈ N+

s

−, if ck′,kl ∈ −N+
s .

For a sequence ∅ of length 0, we use the convention that

g∅ = s∗, c∅ = s̃.

Proof. We prove this lemma by induction. First of all, for the initial seed s and its neighbors,

by Theorem 4.3.1, we have for any i ∈ I,

g(i) = µ+i (s∗), c(i) = µ+i (s̃).

Now suppose that the lemma is true for all sequences with length no greater than l− 1. We choose

a sequence of signs

ε = (ε1, ε2, . . . , εl)

recursively by the rule indicated by the lemma. By definition and induction, we have

gk =
(
T
ε
k
)−1 (

µεlkl(gk′)
)
, gk′ =

(
T
ε′

k′
)−1

(gk′)

where k = k′ t kl and ε = ε′ t εl.

We want to show that

gk = µεlkl(gk′).

The dual statement for c-vectors follows.

Then we pull back both gk′ and µεlkl(gk′) back to the scattering diagram after one step of

mutation. More precisely, let us consider the seed and its dual after one step of mutation at k1:

s(k1) := µ+k1(s), g(k1) = µ+k1(s
∗).

We pull back gk′ and µεlkl(gk′) (and their duals) to Ds(k1) , i.e. we define (collections of vectors)

Σ1 :=
(
T
ε\ε1
k\k1

)−1
(µεlkl(gk′))

and

Σ2 :=
(
T
ε′\ε1
k′\k1

)−1
(gk′)
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where k \ k1 is the sequence such that k = (k1) t k \ k1; k′ \ k1 similarly defined.

By induction, we have

Σ1 = µδkl(Σ2)

where the sign δ is the sign of ck′\k1,kl with respect to c(k1). There are two cases to deal with.

(1) The cone of Σ1 and the cone of Σ2 are separated by s⊥k1 . This means the vector ck′\k1,kl is

in the direction of sk1 . Suppose we have

ck′\k1,kl/dkl = −sk1 .

This means Cone(Σ2) and G+
(k1)

are in the same half space where (T ε1k1 )
−1 = (T+

k1
)−1 acts

by identity. On the other hand Σ1 and G+
∅ = C+ are in the other half. In this case δ = +

(and thus εl = −) and we have

(T ε1k1 )
−1(Σ1) = (T+

k1
)−1

(
µ+kl(Σ2)

)
= µ−kl(Σ2) = µ−kl

(
(T+
k1
)−1Σ2

)
.

By definition, we have

gk = (T ε1k1 )
−1(Σ1), gk′ = (T ε1k1 )

−1(Σ2)

and hence the desired

gk = µ−kl(gk′).

The case where ck′\k1,kl/dkl = sk1 (δ = −) can be proved similarly.

(2) Both the cones generated by Σ1 and by Σ2 are on the same side of s⊥k1 . Then the piecewise

linear map (T ε1k1 )
−1 transforms Σ1 and Σ2 by the same linear map (either an identity or

a shear transformation) and will keep them on the same side of s⊥k1 . Recall that (T ε1k1 )

restricted on its linear domain is an automorphism of (N,ω). Thus we have

µδkl((T
ε1
k1
)−1(Σ2)) = (T ε1k1 )

−1(µδkl(Σ2))

and hence

(T ε1k1 )
−1(Σ1) = µδkl((T

ε1
k1
)−1(Σ2))

i.e. the desired

gk = µδkl(gk′).
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Note that in this case, the sign of ck′\k1,kl with respect to c(k1) coincide with the sign of

ck′,kl with respect to s.

�

4.5. Cluster variables via scattering diagram

4.5.1. Wall-crossings as poisson automorphisms. In this section, we explain how to ob-

tain a cluster variable from the cluster scattering diagram.

We now consider the following commutative algebra

T̂ = T̂s := Q[M◦]⊗Q[[N⊕s ]]

whose monomials are denoted by

zmxn = zm ⊗ xn.

Equip this algebra with the poisson bracket determined by

{xn1 , xn2} = ω(n1, n2)x
n1+n2 , {zm1 , zm2} = 0, {xn, zm} = m(n)zm ⊗ xn.

Lemma 4.5.1. The algebra T̂ with the bracket { , } as defined above is a poisson algebra.

Proof. We check for monomials xn1 , xn2 and zm the Jacobian identity. The details of other

requirements are left to the reader. We have

{xn1 , {xn2 , zm}} = m(n2)(ω(n1, n2) +m(n1))z
mxn1+n2

and then

{xn1 , {xn2 , zm}} − {xn2 , {xn1 , zm}} = m(n1 + n2)ω(n1, n2)z
mxn1+m2 = {{xn2 , xn1}, zm}.

�

Lemma 4.5.2. There is an injective Lie algebra homomorphism

f : ĝ→ Der(T̂ ), xn 7→ {xn,−}.

Proof. This follows from the more general consideration that ĝ is a Lie subalgebra of T̂ . �
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Proposition 4.5.3. The Lie algebra homomorphism f induces an injective group homomorphism

Ad : Ĝ→ Aut(T̂ )

by exponentiating.

Proof. This proposition follows directly from the above Lemma 4.5.2 and completions. We

briefly explain how to compute the automorphism by exponentiating. For example, for exp(a) ∈ Ĝ,

the action is given by for any t ∈ T̂ ,

Ad exp(a)(t) := exp({a,−})(t) =
∞∑
k=0

1

k!
({a,−})k(t).

The inverse of Ad exp(a) is simply given by Ad exp(−a). �

Recall that the 2-form ω defines a group homomorphism

p∗ : N →M◦, p∗(n) = ω(−, n).

We consider the injective group homomorphism

p̃∗ : N →M◦ ⊕N, p̃∗(n) = (p∗(n), n).

Next we consider the (complete) algebra

T̂ = T̂s :=
⊕
m∈M◦

Q[[p∗(N⊕s )]] · zm ⊂
∏

(m,n)∈M◦⊕N

Q · zmxn.

The completion is only viable because the map p̃∗ is injective. There is an algebra isomorphism,

induced by p̃∗,

P : T̂ → T̂, P (zm) = zm, P (xn) = zp
∗(n)xn.

Thus from the view of Proposition 4.5.3, the group Ĝ also acts on T̂ as it acts on T̂ , which we

denote by for exp(a) ∈ Ĝ,

AdT̂ exp(a) : T̂ −→ T̂.

For example, let zm ∈ T̂ and exp(a) ∈ Ĝ. Then we have

Ad exp(a)(zm) = zmha,m
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for some formal series ha,m ∈ Q[[N⊕]] while the action on T̂ is given by

AdT̂ exp(a)(zm) = zmP (ha,m).

The following straightforward lemma is useful in later applications.

Lemma 4.5.4. For any exp(a) ∈ Ĝ and any b ∈ T̂ , we have

P (Ad exp(a)(b)) = AdT̂ exp(a)(P (b)) ∈ T̂.

Lemma 4.5.5. For some n0 ∈ N+, let

a =

∞∑
k=1

akx
kn0 ∈ ĝ.

Then we have

Ad exp(a)(zm) = zmha,m = zm · exp
(
m(n0)

∞∑
k=1

kakx
kn0

)
∈ T̂ .

Proof. Since the actions {akxkn0 ,−} for different k commute, we compute each of them sep-

arately. We have

Ad exp(akxkn0)(zm) =
∑
i≥0

1

i!

{
akx

kn0 ,−
}i

(zm)

=
∑
i≥0

zm · 1
i!

(
m(n0)kakx

kn0

)i
= zm · exp

(
m(n0)kakx

kn0

)
.

The result then follows. �

Example 4.5.6. If ha,m = (1 + xn0)m(n0), then we have by Lemma 4.5.5,

exp(a) = exp
( ∞∑
k=1

(−1)k−1

k2
xkn0

)
= exp(−Li2(−xn0)) = E(n0).

Note that

P (ha,m) =
(
1 + zω(−,n0)xn0

)m(n0)
.
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4.5.2. Cluster monomial by path-ordered product. Fix the data (Γ, s). For a sequence

k of indices, there is a corresponding cluster consisting of cluster variables

(Ak,1, Ak,2, . . . , Ak,n).

There is also a maximal cone G+
k in Ds, with generators (what we call g-vectors)

gk = (gk,1, gk,2, . . . , gk,n).

Pick a generic point θ in G+
k and another generic point in the positive chamber C+. The two points

define a path-ordered product (for a path γ going from θ to C+) that we denoted by

pCl
γ := pγ(D

Cl
s ) ∈ Ĝ.

Note that we can always choose an actual path going from C+ to G+
k that only crosses finitely

many walls of cluster chambers with the reverse order of the sequence k. So the element pθ,+ can

be expressed as a finite product of wall-crossings of the form

E
(
|ck(i),ki |

)± ∈ Ĝ, |ck(i),ki | ∈ N
+ ∩N◦

where k(i) is the subsequence

(k1, k2, . . . , ki).

We are ready to state the main result Theorem 4.5.7 of this section. This theorem is natural

from the point of view of [GHKK18] in terms of theta functions and broken lines. The difference

here is that the cluster scattering diagram we use is Langlands dual to GHKK’s version and that

we do not use the notion of broken lines (thus not the result in [CPS10]) in our proof.

Recall the notations in Section 4.5.1.

Theorem 4.5.7. For any i ∈ I, we have the following identities for cluster variables with

principal coefficients

APrin
k,i = AdT̂ p

Cl
γ (zgk,i) ∈ Z[M ⊕N◦] ⊂ T̂,

and for cluster variables without coefficients

Ak,i = AdT̂ p
Cl
γ (zgk,i) |xn=1∈ Z[M ].
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Proof. We prove this theorem by induction on the length of k. Assume it is true for sequences

of length no longer than l − 1. Suppose k = k′ t (kl) and kl = i ∈ i. Then the chambers Gk and

Gk′ share a common facet d with the normal vector

ck′,i = −ck,i.

Choose a point θ′ ∈ Gk′ and let γ′ be a path from θ′ to C+. We define for n in N+ or −N+,

sgn(n) =


+, if n ∈ N+;

−, if n ∈ −N+.

Let δ = sgn(ck′,i). Since the type of crossing (Definition 2.2.2) going from θ to θ′ is the opposite of

δ, then we have

pCl
γ = pCl

γ′ · Φ(d)
−δ = pCl

γ′ · E
(
|ck′,i|

)−δ
.

By Proposition 4.4.9, we have gk = µδi (gk′) and thus (from Section 3.1.4)

gk,i = −gk′,i +
∑
j∈I

[−δbji]+gk′,j ,

where bji := ω(ck′,j/dj , ck′,i) for i, j ∈ I. By Lemma 4.5.5, the action is computed as

AdT̂ E(|ck′,i|)−δ(zgk,i) = zgk,i
(
1 + xδck′,izp

∗(δck′,i)
)−δ(gk,i(δck′,i/di))

= z−gk′,i
∏
j∈I

z[−δbji]+gk′,j

1 + xδck′,i
∏
j∈I

zδbjigk′,j


= z−gk′,i

∏
j∈I

z[−δbji]+gk′,i + xδck′,i
∏
i∈I

z[δbji]+gk′,i

 ∈ Z[M ⊕N◦] ⊂ T̂.
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The above equation is exactly the cluster exchange relation for cluster variables with principal

coefficients. By induction, we have

AdT̂ p
Cl
γ (zgk,i) = AdT̂ p

Cl
γ′

(
E(|ck′,i|)δ(zgk,i)

)
= AdT̂ p

Cl
γ′
(
z−gk′,i

)
·AdT̂ p

Cl
γ′

∏
j∈I

z[−δbji]+gk′,i + xδck′,i
∏
j∈I

z[δbji]+gk′,i


=
(
APrin

k′,i
)−1 ·

∏
j∈I

(
APrin

k′,j
)[−δbji]+

+ xδck′,i
∏
j∈I

(
APrin

k′,j
)[δbji]+

= APrin
k,i ∈ T̂.

Note that the vector ck,i for any sequence k and i ∈ I is in N◦. By the Laurent phenomenon

Theorem 3.2.2, we have that APrin
k,i lies in Z[M ⊕ N◦]. The result on cluster variables without

coefficients follows. �

In [GHKK18, Section 3], GHKK defined the so-called theta functions for cluster scattering

diagrams. These are elements of the form

ϑQ,m ∈ Q[[p∗(N⊕)]] · zm ∈ T̂

that depends on an endpoint Q (s.t. ΦD(Q) = id) and m ∈ M . In fact, we have for m ∈ ∆+
s and

Q ∈ (C+s )◦,

ϑQ,m = AdT̂ p
Cl
γ (zm)

where θ is in the interior of a cluster chamber that contains m.

Remark 4.5.8. We note that Proposition 4.4.9 provides a simple algorithm to compute the g-

vectors. In our context, the g-vectors are the generators of the rays of cluster chambers. There

is also a definition through the cluster variables themselves. Then Proposition 4.4.9 implies our

notion of g-vectors coincide with the usual notion of g-vectors in cluster algebras (for example,

see [Kel08]). In view of Theorem 4.5.7, the monomial zgk,i should be viewed as a leading term of

Ak,i.
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CHAPTER 5

Categorification of skew-symmetric cluster algebras

In this chapter, we give a brief review of the so-called additive categorification of cluster algebras.

The review is far from being comprehensive. For example, we do not even mention the remarkable

cluster categories initiated in [BMR+06]. Our goal is to introduce necessary ingredients that are

the most relevant to stability scattering diagrams. We focus on conveying the idea that certain

quiver representations decategorify into cluster monomials; see Section 5.3. As the title suggests,

we only deal with the skew-symmetric case, that is, the matrix B is skew-symmetric.

5.1. Quivers with potentials and mutations

5.1.1. Quivers with potentials. The key player is quivers.

Definition 5.1.1. A quiver Q is a quadruple (Q0, Q1, s, t) composed of

(1) A finite set Q0 of vertices;

(2) A finite set Q1 of edges;

(3) A map s : Q1 → Q0 that specifies the source of an edge;

(4) A map t : Q1 → Q0 that specifies the target of an edge.

Fix a field K. For a quiver Q, we have its vertex span R = KQ0 and arrow span A = KQ1 as

K-valued functions on Q0 and Q1.

The vector space R is a commutative K-algebra under the pointwise multiplication of functions.

The arrow span A is an R-bimodule where the action on the left is by acting on the target of an

edge.

Definition 5.1.2. The path algebra of Q (also denoted by KQ) is defined as the (graded) tensor

algebra

R〈A〉 =
∞⊕
d=0

Ad
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where Ad denote the R-bimodule

Ad = A⊗R · · · ⊗R A︸ ︷︷ ︸
d

.

Definition 5.1.3. The complete path algebra of Q (also denoted by K̂Q) is defined as the complete

graded tensor algebra

R〈〈A〉〉 =
∞∏
d=0

Ad.

A potential is an element in R〈〈A〉〉 such that each component is a linear combination of cyclic

paths. Thus potentials live in a closed subspace R〈〈A〉〉cyc ⊂ R〈〈A〉〉.

For every potential W , its (complete) Jacobian ideal J(W ) is defined to be the closure of the

two-sided ideal generated by cyclic derivatives; see [DWZ08] for the definition.

A pair (Q,W ) of a quiver Q and a potential W ∈ K̂Q is called a quiver with potential, QP in

short.

Definition 5.1.4. The (complete) Jacobian algebra of a QP (Q,W ) is defined as the quotient

P(Q,W ) := K̂Q/J(W ).

5.1.2. Mutations of quivers. We first review the mutations of quivers. These are purely

combinatorial constructions.

Let Q be 2-acyclic, that is, there is no oriented path of length 2 in Q. For a vertex k ∈ Q0, we

define the quiver µ̃k(Q) obtained from Q by the following two steps:

Step I For each pair of incoming arrow a : i → k and outgoing arrow b : k → j at k, create one

arrow [ba] : i→ j.

Step II Replace each incoming arrow a : i→ k with a new outgoing arrow α⋆ : k → i; replace each

outgoing arrow b : k → j with a new incoming arrow b⋆ : j → k.

Now we perform the last step to get a 2-acyclic quiver µk(Q) from µ̃k(Q).

Step III Delete a maximal collection of disjoint 2-cycles in µ̃k(Q).

It is easy to see the mutation µk is an involution, i.e. µ2k(Q) ∼= Q.

5.1.3. Mutations of QPs of Derksen–Weyman–Zelevinsky. We explain in this section

the mutations of QPs of Derksen–Weyman–Zelevinsky [DWZ08]. This is a fundamental notion in

(various) additive categorifications (e.g. [DWZ10] and [Ami09]) of cluster algebras.
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Definition 5.1.5 (Right-equivalence, c.f. [DWZ08, definition 4.2]). Let (Q,W ) and (Q′,W ′) be

two QPs with the same vertex set Q0. We say that they are right-equivalent if there is an iso-

morphism ϕ : K̂Q → K̂Q′ preserving Q0 and taking W to a potential ϕ(W ) cyclic equivalent to

W ′.

Note that the isomorphism ϕ also induces an isomorphism between complete Jacobian algebras

P(Q,W ) ∼= P(Q′,W ′).

A potential is called reduced if it contains no cycle of length less than or equal to 2; it is called

trivial if the corresponding Jacobian algebra is trivial. For two QPs (Q1,W1) and (Q2,W2) with

the identified set of vertices, their direct sum is the QP

(Q1,W1)⊕ (Q2,W2) := (Q1 ⊕Q2,W1 +W2)

where Q1 ⊕Q2 is the quiver on the same set of vertices but taking disjoint union of arrows of Q1

and Q2.

Theorem 5.1.6 ( [DWZ08, theorem 4.6]). Every QP (Q,W ) is right-equivalent to the direct

sum of a trivial QP and a reduced QP

(Qtriv,Wtriv)⊕ (Qred,Wred)

where each direct summand is determined up to right-equivalence by the right equivalent class of

(Q,W ). The Jacobian algebra of (Q,W ) is then isomorphic to the Jacobian algebra of the reduced

part (Qred,Wred) via the embedding of (Qred,Wred) in (Qtriv,Wtriv)⊕ (Qred,Wred).

Note that the quivers Qtriv and Qred (up to isomorphisms fixing the set of vertices) are canoni-

cally constructed from (Q,W ); see [DWZ08, 4.4] whereas it is less trivial to compute the potential

Wred.

Now let Q be a 2-acyclic quiver and W be a potential such that no term in its expansion starts

at k (if not, replace W with a cyclic equivalent one). We construct a potential for the quiver µ̃k(Q)

as follows. For each pair of incoming a and outgoing b at vertex k, replace any occurrences of ba

in W with [ba]. We thus get a potential W in K̂µ̃k(Q). Define

µ̃k(W ) :=W +
∑

a,b∈Q1 : t(a)=s(b)=k

[ba]a⋆b⋆,
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where the sum is taken over all pairs of incoming α and outgoing β at k. We thus have obtained a

QP (µ̃k(Q), µ̃k(W )).

Definition 5.1.7 (Mutation of QP). The mutation µk(Q,W ) of a 2-cyclic QP (Q,W ) is defined

to be the reduced part of (µ̃k(Q), µ̃k(W )) given by Theorem 5.1.6:

µk(Q,W ) := (µ̃k(Q)red, µ̃k(W )red).

Definition 5.1.8 (k-mutable QPs). We say that a 2-acyclic QP (Q,W ) is mutable at vertex k

(or k-mutable) if the quiver µ̃k(Q)red is equal to µk(Q). Therefore we have the justified notation

(µk(Q), µk(W )) of µk(Q,W ) for k-mutable QPs.

The following proposition is an immediate corollary of theorem 4.5 in [DWZ08].

Proposition 5.1.9. The mutation µk is an involution on the set of right-equivalent classes of

k-mutable QPs, i.e. µk(Q,W ) is also k-mutable and µ2k(Q,W ) is right-equivalent to (Q,W ).

5.1.4. Mutations of seeds with potentials. In this section, we lift mutations of QPs to SPs.

Suppose we have fixed data Γ with an initial seed s. We assume that Iuf = I and N◦ = N . As in

Section 3.1.3, the adjacency matrix B(s) = (bij) is given by bij = ω(si, sj), which is skew-symmetric.

Definition 5.1.10 (The quiver of a seed). The matrix B(s) determines a 2-acyclic quiver Q(s)

such that Q0 = I and there are [bij ]+ arrows from i to j for each i, j ∈ I.

Example 5.1.11. Let B =
[
0 −1
1 0

]
. The quiver is then given by 1←− 2.

Lemma 3.1.4 shows B(µ+k (s)) = B(µ−k (s)), i.e. two types of mutations of a seed give the same

quiver:

(5.1.1) µk(Q(s)) ∼= Q(µ+k (s)) ∼= Q(µ−k (s)).

A pair (s,W ) consisting of a seed s and a potential of Q(s) is called a seed with potential, SP in

short. Two SPs (s,W ) and (s′,W ′) are said to be right-equivalent if s = s′ and (Q(s),W ) is right-

equivalent to (Q(s′),W ′) respecting the identification on vertices. An SP is said to be k-mutable if

the associated QP is k-mutable (Definition 5.1.8).
74



Definition 5.1.12 (Mutation of SP). For a k-mutable seed with potential (s,W ), we define the

following two mutations at vertex k:

µ+k (s,W ) := (µ+k (s), µk(W )), µ−k (s,W ) := (µ−k (s), µk(W )).

Proposition 5.1.13. The mutations of SPs µ+k and µ−k are inverse to each other on the set of

right equivalent classes of k-mutable SPs.

Proof. The statement follows directly from Equation (5.1.1) and Proposition 5.1.9. �

5.2. Ginzburg’s differential graded algebras

For any QP (Q,W ), there is an associated (complete) Ginzburg differential graded algebra

Γ = Γ(Q,W ) (see [Gin06]) whose derived category DΓ (see [Kel94] for the definition of the

derived category of an dg algebra) plays an essential role in the additive categorification of cluster

algebras.

The (complete) Ginzburg dga Γ = Γ(Q,W ) is non-positively graded with a differential d of

degree 1. We refer to [Nag13, Section 1.1] for the precise definition. We have H0(Γ) ∼= P =

P(Q,W ). An right-equivalence between (Q,W ) and (Q′, S′) induces an dg algebra isomorphism

between the corresponding Ginzburg dg algebras [KY11].

Let DΓ be the derived category of Γ, whose objects are left dg Γ-modules. It is triangulated

with the apparent shift functor. The Ginzburg dg algebra ΓΓ itself, as a left dg Γ-module, is an

object in DΓ. We have a decomposition of Γ

Γ =
⊕
i∈I

Γei

into dg Γ-modules Γi := Γei . There is an embedding from ModP (the category of left P-modules)

into DΓ

ι : ModP → DΓ,

whose image is the heart of the natural t-structure. Taking H0, we get a functor

H0 : DΓ→ ModP

such that H0 ◦ ι = id.
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The perfect derived category perΓ is the smallest full subcategory of DΓ containing the object

Γ that is stable under shifts, forming cones, and taking direct summands.

The finite-dimensional derived category DfdΓ is the full subcategory of DΓ consisting of objects

with finite total cohomology. We have two functors,

ι : modP ⊂ DfdΓ, H0 : DfdΓ→ modP

where modP denotes the category of finite-dimensional modules of P.

5.2.1. Keller-Yang’s derived equivalences. Let (Q,W ) be a k-mutable quiver with poten-

tial. We set (Q̃, W̃ ) = µ̃k(Q,W ), and (Q′,W ′) = µk(Q,W ) = (Q̃, W̃ )red. We also set Γ̃ = Γ(Q̃, W̃ ),

and Γ′ = Γ(Q′,W ′).

We consider a dg Γ-module T =
⊕
i∈I

Ti where Ti := Γi for i 6= k and

Tk := cone

Γk →
⊕

α∈Q1 : t(α)=k

Γs(α)

 .

Then we have the exact triangle

(5.2.1) Γk →
⊕

α∈Q1 : t(α)=k

Γs(α) → Tk → Γk[1].

It is shown in [KY11] that T has a left dg Γ̃op-module structure realized by a dg algebra

homomorphism from Γ̃op to HomΓ(T, T ) ( [KY11, Proposition 3.5]). Thus we can regard T as a dg

Γ - Γ̃-bimodule. We consider two functors F̃+
k : DΓ→ DΓ̃ defined by RHom(T,−) and respectively

G̃−k : DΓ̃→ DΓ defined by T
L
⊗

Γ̃
−.

Theorem 5.2.1 (c.f. [KY11]).

(1) The two functors F̃+
k and G̃−k are quasi-inverse triangle equivalences.

(2) We have that

G̃+k (Γ̃i) =


Γi if i 6= k,

Tk if i = k.

(3) The functor F̃+
k restricts to triangle equivalences from perΓ to per Γ̃ and from DfdΓ to

DfdΓ̃.
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(4) The equivalences F̃+
k extend (by the isomorphism between Γ′ and Γ̃ induced by right equiv-

alence) further to triangle equivalences

F+
k : DΓ→ DΓ′, F+

k : perΓ→ perΓ′, F+
k : DfdΓ→ DfdΓ

′.

We denote the quasi-inverse functor by F−k .

Remark 5.2.2. Since µk is an involution on QPs up to right equivalence, we have Γ ∼= µk(Γ
′) and

thus the functor F−k above is from DΓ′ to Dµk(Γ′). Therefore one can think that there are two

triangle equivalences F±k from DΓ to DΓ′.

Consider the Grothendieck groups K0(DfdΓ) and K0(perΓ). The group K0(DfdΓ) has a basis

given by the classes of simple modules (Si)i∈I and the group K0(perΓ) has a basis by the classes

of (Γi)i∈I . Here I is the indexing set identified with the set of vertices of Q. The two groups and

their bases are naturally dual to each other.

Following our notations on fixed data Section 3.1.3, let N = K0(DfdΓ) ∼= Zr (suppose the rank

of the quiver Q is r) and thus M = K0(perΓ). The form ω on N is determined by the quiver

Q in the basis of simples. The initial seed s is given by simples ([Si])i∈I . The seed mutations in

Section 3.1.4 are categorified as follows. Let s′ = (s′i)i∈I = µεk(s) for ε ∈ {+,−}. Denote the simples

in modP ′ = modP(µk(Q,W )) by S′i for i ∈ I. We have from Theorem 5.2.1

s′i =
[
(Fεk)−1(S′i)

]
∈ K0 (DfdΓ) = N

and (
s′i
)∗

=
[
(Fεk)−1(Γ′i)

]
∈ K0 (perΓ) =M.

Moreover, assuming that (Q,W ) is non-degenerate (Definition 6.4.3), if there is a sequence of

vertices k and signs ε, we have the triangle equivalence

Fεk : DΓ→ D(µkΓ)

by composing the equivalences Fεiki in order. Then we have

µ
ε
k(s) =

([
(Fεk )

−1Sk,i
])
i∈I ∈ N

I
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and

µ
ε
k(s
∗) =

([
(Fεk )

−1Γk,i
])
i∈I ∈M

I

where Sk,i denotes the simples of modP(µk(Q,W )) and Γk,i := Γ(µk(Q,W ))i.

5.3. Caldero–Chapoton formula

Here we explain Nagao’s description of the Caldero–Chapoton formula for cluster monomials

[Nag13]. Recall that for a sequence of indices k, we have the cluster

(Ak,1, Ak,2, . . . , Ak,r)

of cluster variables in Z[M ]. The goal is to find modules over P to express these cluster variables.

For any k, there is an associated sequence of signs ε(k) uniquely determined by k as in Propo-

sition 4.4.9. Following [Nag13], we define the following P-module

Rk,i := H1

((
Fε(k)k

)−1
(Γk,i)

)
, i ∈ I.

Here the cohomology is taken with respect to the t-structure with the heart modP. It is proved

in [Nag13, Lemma 5.1] that for any sequence k and any i ∈ I, the module Rk,i is finite-dimensional.

Moreover, we define the class

[Γk,i] :=

[(
Fε(k)k

)−1
(Γk,i)

]
considered in M = K0(perΓ). According to the iterative description in the last section and Propo-

sition 4.4.9, we have that in M ,

[Γk,i] = gk,i.

Theorem 5.3.1 (Caldero–Chapoton formula). The i-th cluster variable of the k-th cluster is

computed by

Ak,i = z[Γk,i] ·

 ∑
n∈N⊕

χ(Gr(Rk,i, n))z
p∗(n)


where Gr(Rk,i, n) is the quiver Grassmannian parametrizing quotients of dimension vector n of the

module Rk,i and χ(·) takes the Euler characteristic of analytic topology.

The Caldero–Chapoton formula has been proved for various generality by different people; see

the introduction chapter for the relevant references. We also note that the characterizations of the
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module Rk,i are different in different approaches. In the next chapter，Section 6.8, we will give

a proof of the above theorem by interpreting a cluster monomial as a θ-function (Theorem 4.5.7)

and using stability scattering diagrams following Nagao’s approach in [Nag13]. The advantage of

our proof is that it does not explicitly rely on the so-called multiplication formula. An application

of this strategy of proof is in [LFM] to prove a Caldero–Chapoton type formula for generalized

cluster algebras.
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CHAPTER 6

Stability scattering diagrams of quivers with potentials

This chapter is devoted to scattering diagrams of quivers with potentials. In [Bri17], Bridge-

land defined the motivic Hall algebra scattering diagram associated to a quiver with (polynomial)

potential. By using an integration map of Joyce [Joy07], this scattering diagram descends to the

so-called stability scattering diagram, valued in the same Lie algebra as of the cluster scattering di-

agram. We study in detail the structures of stability scattering diagrams of quivers with potentials

and their mutations.

6.1. Motivic Hall algebras

In this section, we introduce motivic Hall algebras of quivers with relations, following Bridgeland

[Bri17].

6.1.1. Moduli space of modules. LetQ be a quiver, and I ∈ CQ be an ideal. Let A = CQ/I.

There is a C-stack M = M(Q, I) parametrizing finite-dimensional A-modules. Over a C-scheme S,

the groupoid M(S) consists of objects

(E , ρ : CQ/I → End(E))

where E is a finite rank locally free sheaf on S and ρ is a C-algebra homomorphism. For a morphism

f : S′ → S, we choose a pullback f−1E for every E on S, and f−1ρ is defined such that f−1ρ(a) =

ρ(f−1a) for any a ∈ CQ/I.

The stack M has the following decomposition

M =
∐

d∈NQ0

Md.

where Md (parametrizing A-modules of dimension d) is algebraic, of finite type and with affine

diagonal. In fact, we have that the stack Md is equivalent to the quotient stack [Rep(Q, I)d/GLd].

Here Rep(Q, I)d is the closed subscheme of Rep(Q)d cut out by the ideal induced by the relations

I. In particular, when d = 0, the moduli stack M0 is isomorphic to Spec(C).
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6.1.2. The motivic Hall algebra. We refer to [Bri17, section 5] and [Nag13, section 7]

for details of the following definitions. Let K(St/M) be the relative Grothendieck group of stacks

(algebraic of finite type over C with affine stabilizers) over M = M(Q, I). It is naturally a module

over K(St/C), the Grothendieck ring of stacks over C. Furthermore, one can define a convolution

type product ∗ ( [Joy07, theorem 4.1]) on K(St/M) so that it becomes an associative K(St/C)-

algebra graded by N|Q0|; see also [Bri17, 5.4]. We describe this convolution product briefly.

There is an algebraic stack M(2) of isomorphism classes of short exact sequences in modA, the

category of finite-dimensional left A-modules. There are natural forgetful maps from M(2), sending

a short exact sequence to its constituents, summarized in the following diagram. All the maps are

of finite type and note that π2 (sending a short exact sequence to its middle term) is presentable

and proper.
M(2) M

M×M

π2

(π3,π1)

Then the convolution product is then defined as

[X
f−→M] ∗ [Y g−→M] = (π2)∗(π3, π1)

∗[X × Y (f,g)−→M×M]

where the pushforward and pullback are well-defined in the current situation. Note that π1 sends

a short exact sequence to the kernel.

The algebra (K(St/M), ∗) is the motivic Hall algebra of (Q, I) and will be denoted by H(Q, I).

6.1.3. A regular subalgebra. In this section, we consider a subalgebra of H(Q, I).

Consider the subalgebra

Kreg(St/C) := K(Var/C)[L−1, [Pn]−1 : n ∈ N] ⊂ K(St/C)

where L = [A1] ∈ K(Var/C). We define Hreg(Q, I) to be the submodule of H(Q, I) generated

over Kreg(St/C) by classes of maps [X
f−→ M] with X a variety. By the following theorem, the

submodule Hreg(Q, I) is a subalgebra of H(Q, I).

Theorem 6.1.1 ( [Bri12, Theorem 5.1]). The submodule Hreg(Q, I) is closed under the convo-

lution product:

Hreg(Q, I) ∗Hreg(Q, I) ⊂ Hreg(Q, I).
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The quotient

Hsc(Q, I) = Hreg(Q, I)/(L− 1)Hreg(Q, I)

is a commutative K(Var/C)-algebra.

It follows that one can define a Poisson bracket on Hreg(Q, I) by the formula

{f, g} = (L− 1)−1(f ∗ g − g ∗ f).

6.2. Hall algebra scattering diagrams

We define the Hall algebra scattering diagrams associated to quivers with relations following

[Bri17].

6.2.1. Definition. Let (Q, I) be a quiver with relations. Let g = H(Q, I)>0 with the commu-

tator bracket. Let N = Zn where n = |Q0|. The set of dimension vectors is identified with Nn ⊂ Zn

and N+ = Nn \ {0}. We have that g is N+-graded. Consider the complete motivic Hall algebra

Ĥ(Q, I) =
∏
d∈Nn

K(St/Md).

The formal group Ĝ is identified with a multiplicative subgroup of Ĥ by taking exponentials of

elements in ĝ,

exp : ĝ→ 1 + Ĥ(Q, I)>0 ⊂ Ĥ(Q, I), x 7→
∞∑
i=0

xi

n!
.

The characteristic function of the whole moduli stack 1M = [M
id−→M] belongs to 1 + Ĥ(Q, I)>0.

Definition 6.2.1. The Hall algebra scattering diagram DHall
Q,I of (Q, I) is defined to be the consistent

g-SD corresponding to the group element 1M.

6.2.2. Wall-crossings. We denote the wall-crossing function by

Φ = ΦHall
Q,I : MR → exp(ĝ).

We would like to describe for any m ∈ MR, the wall-crossing Φ(m). It turns out this is related to

stability conditions on modCQ/I.

Let θ be a King’s stability condition on modCQ/I. Precisely, the stability condition θ is an

element in MR, viewed as a linear function on dimension vectors.
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Definition 6.2.2 (King [Kin94]). A CQ/I module M is said to be θ-semistable (resp. θ-stable)

if

(1) θ(dimM) = 0;

(2) for any proper non-zero submodule M ′ ⊂M , θ(dimM) ≤ 0 (resp. θ(dimM) < 0).

All θ-semistable CQ/I-modules form a full subcategory of modCQ/I, parametrized by an open

substack

Mθ -ss =
∐
d∈N⊕

Mθ -ss
d

of M (see [Kin94]). The inclusion defines in the motivic Hall algebra the characteristic stack

function of θ-semistable modules

1Mθ -ss :=

 ∐
d∈N⊕

Mθ -ss
d ↪→M

 ∈ 1 +H(Q, I)>0.

Theorem 6.2.3 (Bridgeland [Bri17]). The wall-crossing function Φ: MR → 1 + Ĥ(Q, I)>0 of

the Hall algebra scattering diagram DHall
Q,I satisfies

Φ(θ) = 1Mθ -ss

for any θ ∈MR.

Remark 6.2.4. The statement in [Bri17] is slightly different from Theorem 6.2.3 as it only con-

siders wall-crossings for generic points on walls, whereas we describe them for all points in MR.

However, the proof in [Bri17] still works here without any change.

6.2.3. Path-ordered product. Let C+ be the cone in MR consisting of points θ ∈ MR such

that θ(n) > 0 for any n ∈ N+. It is clear that Φ(θ) = 1 for any θ ∈ C+, there is no non-zero

semistable θ-modules.

Now let θ+ be any point in C+ and m ∈ MR. Consider the path-ordered product pγ

(
DHall
Q,I

)
in the sense of Proposition 2.3.19 where γ is a path from θ+ to m. It has a moduli-theoretic

interpretation.

Proposition 6.2.5 (Bridgeland [Bri17]). Define a torsion class

T (m) := {E ∈ modCQ/I : any quotient object E � F satisfies m(dimF ) > 0}.
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Then we have

pγ

(
DHall
Q,I

)
= 1T (θ) := [M(T (m)) ↪→M]

where M(T (m)) is the moduli substack that parametrizes objects in the torsion class T (m).

6.3. Cases for quivers with potentials and the integration map

In this section, we deal with the case where the ideal I of relations is given by the Jacobian ideal

J(W ) of some potential W ∈ ĈQ. This case is relevant to cluster algebras and Donaldson-Thomas

theory, and thus has been intensively studied (e.g., in [DWZ08, JS11]). We point out that the

potential W may be formal in which case some additional care is needed; see Section 6.3.1. At the

end of this section, we define the stability scattering diagram of a quiver with potential.

6.3.1. Modules of complete Jacobian algebras. In the context of this paper, we are work-

ing with the topological algebra P(Q,W ) (see [DWZ08]) whose representation theory is slightly

different from path algebras with relations. We construct moduli stacks of P(Q,W )-modules in

this section based on the construction in the last section.

The following lemma shows any finite-dimensional P(Q,W )-module is nilpotent.

Lemma 6.3.1. [DWZ08] For any dimension vector d, there exists some positive integer Nd, such

that every d-dimensional ĈQ-module M is annihilated by mNd, i.e.

mNdM = 0.

Let ∂W be the finite set of all cyclic derivatives of W . Take truncations ∂W (Nd) by mNd . The

set ∂W (Nd) ⊂ CQ and mNd together generate a 2-sided ideal I(Nd) of CQ. The following lemma

is straightfoward.

Lemma 6.3.2. We have an equivalence between the category of d-dimensional representations of

(Q, I(Nd)) and the category of d-dimensional P(Q,W )-modules, i.e.

moddCQ/I(Nd) ∼= modd P(Q,W ).

We define M(Q,W )d the moduli stack of modd P(Q,W ) to be M(Q, I(Nd))d. Note that by

this definition, the stack M(Q,W )d depends on the choice of Nd. However, the set of C-points of

M(Q,W )d is in bijection with the set of isomorphism classes of objects in modd P(Q,W ). Thus

this does not make any difference in view of motivic Hall algebra.
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We define the motivic Hall algebra as before (with the convolution product)

H(Q,W ) :=
⊕
d∈Nn

K(St/M(Q,W )d).

6.3.2. Hall algebra scattering diagrams for quivers with potentials. We consider fixed

data Γ with N◦ = N . Let s be a seed for Γ and W be a potential for Q = Q(s).

The set of dimension vectors is identified with N⊕ = N⊕s ⊂ N . The Hall algebra H(s,W ) :=

H(Q,W ) is thus graded by N⊕. We take

g = gHall
s,W := H(s,W )>0

an N+-graded Lie algebra with commutator bracket.

As in Section 6.2, we have the characteristic function

1M(s,W ) = 1M(Q,W ) :=
[
M(Q,W )

id−→M(Q,W )
]

representing the whole module category modP(Q,W ).

Definition 6.3.3. The Hall algebra scattering diagram DHall
s,W is defined to be the unique consistent

g-SD corresponding to the group element

1M(s,W ) ∈ Ĝ = 1 + Ĥ(Q,W )>0.

6.3.3. The integration map. We now review the integration map that we will apply to define

stability scattering diagrams.

Recall that we have the subalgebra

Hreg(s,W ) ⊂ H(s,W ).

We define

greg
s,W :=

Hreg(s,W )>0

L− 1
.

It follows from the properties of Hreg(s,W ) that greg
s,W is an N+-graded Lie subalgebra of gHall

s,W . To

summarize, we have the following theorem.

Theorem 6.3.4 ( [JS11], [Bri17], [Nag13, theorem 7.4]). We have the following properties

regarding greg
s,W and Hreg(s,W ).
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(1) The submodule greg
s,W is an N+

s -graded Lie subalgebra of gHall
s,W .

(2) The submodule Hreg(s,W ) is a subalgebra of H(s,W ). It is a Poisson algebra with the

bracket

{a, b} = a ∗ b− b ∗ a
L− 1

.

(3) There is an N⊕s -graded Poisson homomorphism (the integration map)

I : Hreg(s,W )→ Q[N⊕s ], I ([X →Md]) = e(X)xd

where e(X) is the Euler characteristic of Xan.

By the above theorem, we have that greg
s,W is isomorphic to (Hreg(s,W )>0, { , }) as Lie algebras

by identifying x/(L − 1) with x ∈ Hreg(s,W )>0. Therefore the integration map I induces a Lie

algebra homomorphism

(6.3.1) I : greg
s,W → gs = Q[N+

s ], [X →Md]/(L− 1) 7→ e(X)xd.

6.3.4. Absence of poles. The following absence of poles theorem is due to Joyce; see also

section 3.2 and definition 7.15 in [JS11].

Theorem 6.3.5 ( [Joy07, theorem 8.7]). Let (s,W ) be a seed with potential. For any m ∈MR,

we write the characteristic function of θ-semistable modules 1Mθ -ss = 1 + σ for σ ∈ ĝHall
s,W . Then we

have that

log (1Mθ -ss) := σ − 1

2
σ ∗ σ + · · ·+ (−1)n−1

n
σ ∗ · · · ∗ σ + · · ·

belongs to the Lie subalgebra ĝreg
s,W ⊂ ĝHall

s,W .

In the last section, DHall
s,W is defined as a gHall

s,W -SD. The above theorem, in particular, shows that

DHall
s,W is also a greg

s,W -SD.

6.3.5. Stability scattering diagrams. Recall Equation (6.3.1) that we have an N+
s -graded

Lie algebra homomorphism

I : greg
s,W → gs.

By abuse of notation, we will denote the maps of corresponding pro-unipotent groups still by

I : exp(ĝreg
s,W )→ exp(ĝs)
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Recall the notation we set up in Section 2.3.3.

Definition 6.3.6 (Stability scattering diagrams). Let (s,W ) be a seed with potential. We define

the stability scattering diagram of (s,W ) to be the consistent gs-SD

DStab
s,W := I

(
DHall

s,W

)
,

i.e. the consistent gs-SD corresponding to I
(
1M(s,W )

)
∈ exp(ĝs).

Remark 6.3.7. The stability scattering diagram DStab
s,W is defined by Bridgeland in [Bri17, section

11] for a polynomial potential W . However, the definition can be easily extended to any formal

potential, as previously discussed in this section, especially in Section 6.3.1.

Example 6.3.8. Choosing a generic point m in [Si]
⊥ ⊂ MR for some vertex i ∈ {1, . . . , n} of the

quiver, the subcategory of m-semistable P(Q,W )-modules is generated by the simple module Si.

Then we have

(6.3.2) 1Mm -ss =

∐
k≥0

BGLk →
∐
k≥0

Mksi


where the map is an isomorphism. Note that we have that

[BGL→Mk] = [GLk]−1 · [pt→Mk]

and that in K(Var/C),

[GLk] = Lk(k−1)/2(L− 1)k
k−1∏
i=1

[Pi].

We also have that in the motivic Hall algebra

[pt→Md1 ] ∗ [pt→Md2 ] = L−d1d2 [pt→Md1+d2 ]

and thus

L−d
2
1/2[pt→Md1 ] ∗ L−d

2
2/2[pt→Md2 ] = L−(d1+d2)

2/2[pt→Md1+d2 ].

Let x = L−1/2[pt→M1] and we can rewrite (6.3.2) as

1Mm -ss =

∞∑
k=0

Lk2/2xk

[GLk]
=

∞∑
k=0

Lk/2xk

(L− 1)k
∏k−1
i=1 [Pi]

.
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By q-binomial theorem, we have the following identity

∞∑
k=0

Lk/2xk

(L− 1)k
∏k−1
i=1 [Pi]

=
∞∏
k=0

1

(1 + Lk+1/2x)
.

Taking logarithm, we have

log (1Mm -ss) =

∞∑
k=1

(−1)k−1L−k(k−1)/2[pt→Mk]

k(Lk − 1)
,

which belongs to ĝreg
s,W guaranteed by Joyce’s absence of poles Theorem 6.3.5. Applying the inte-

gration map, we conclude that

I(log(1Mm -ss)) = −Li2(−xsi).

6.4. Mutations of stability scattering diagrams

In this section, we state the main result Theorem 6.4.1 of this chapter: the mutation invariance

of stability scattering diagrams.

Recall that we have fixed data Γ such that N◦ = N . Let s be a Γ-seed and W be a potential for

Q(s). Suppose that (s,W ) is k-mutable for some k ∈ I. Consider the stability scattering diagrams

DStab
s,W and DStab

µεk(s,W ) for ε ∈ {+,−}. Denote their wall-crossing functions by

ΦStab
s,W : MR → exp(ĝs), ΦStab

µεk(s,W ) : MR → exp
(
ĝµk(s)

)
respectively.

Theorem 6.4.1 (Stability mutation invariance). We have the following results regarding DStab
s,W

and DStab
µεk(s,W ).

(1) At a generic point m ∈ s⊥k , the wall-crossing is given by

ΦStab
s,W (m) = E(sk).

(2) For any m ∈ Hk,−εs , we have

ΦStab
s,W (m) = ΦStab

µεk(s,W )(m).

The part (1) follows directly from the computation in Example 6.3.8. The proof of part (2) is

postponed to Section 6.7.
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Recall the mutation invariance Theorem 4.3.1 of cluster scattering diagrams. One sees that

the cluster SD DCl
s behaves in the same pattern as the stability one. Thus we have the following

theorem. Recall the relevant notations in Section 4.4.1.

Theorem 6.4.2 (Mutation of stability scattering diagram). The cluster scattering diagram

DStab
µ−k (s) has the following description in terms of DStab

s,W .

(1) At a generic m ∈ s⊥k , the wall-crossing is given by

ΦStab
µ+k (s,W )

(m) = E(−sk).

(2) On Hk,+s ∪Hk,−s ⊂MR, we have

ΦStab
s,W (m) =

(
T+
k

)∗ ◦ ΦStab
µ+k (s,W )

◦ T+
k (m),

where (T+
k )∗ denotes the induced group homomorphism on its domain of linearity.

(3) The piecewise linear map T+
k induces an isomorphism between the canonical profinite cone

complexes SStab
s,W and SStab

µ+k (s,W )
.

Proof. We refer to the proof of Theorem 4.4.1 for comparison. Part (1), the same as part (1)

of Theorem 6.4.1, follows directly from Example 6.3.8. Note that here we are in the skew-symmetric

case with N◦ = N . Thus we have sk = s̃k.

Part (2) follows from part (2) of Theorem 6.4.1 and an isomorphism between the stability

SDs DStab
µ+k (s,W )

and DStab
µ+k (s,W )

. See a discussion of this type of isomorphism in the cluster case in

Section 4.4.1.

The proof of part (3) is the same as the proof of part (3) of Theorem 4.4.1. �

Notice that in the above theorems, the potential W is required to be k-mutable. In order to

mutate an SP (s,W ) indefinitely, we need to require it to be non-degenerate.

Definition 6.4.3. Let k = {k1, . . . , kl} be a sequence of indices. We say a QP (Q,W ) to be

k-mutable if for any 1 ≤ l′ ≤ l, the QP µkl′−1
. . . µk1(Q,W ) is kl′-mutable. We say (Q,W ) to

be non-degenerate if it is k-mutable for any sequence k. An SP is said to be k-mutable or non-

degenerate if the associated QP is.

For a non-degenerate SP (s,W ), it turns out the stability SD DStab
s,W possesses the same cluster

complex structure as of the cluster SD DCl
s .
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Theorem 6.4.4. Let (s,W ) be a non-degenerate SP.

(1) The positive and negative cluster complexes ∆±s (see Definition 4.4.6) are both cone sub-

complexes of the profinite cone complex SStab
s,W .

(2) Let k be a sequence of indices and i ∈ I. The wall-crossing at the facet dual to ck,i of the

maximal cone G+
k is given by E(|ck,i|).

Definition 6.4.5. We say a seed s has a reddening sequence if the negative chamber C−s belongs

to the positive cluster complex ∆+
s . In fact, this means there is a sequence k of indices such that

G+
k = C−s . The sequence k is the reddening sequence.

Corollary 6.4.6. If a seed s has a reddening sequence, then for any non-degenerate potential W

of Q(s), we have

DCl
s = DStab

s,W .

Proof. Let γ be a path going from the positive chamber to the negative chamber by crossing

the chamber walls in the order of k. By (2) of Theorem 6.4.4, we have

pγ

(
DCl

s

)
= pγ

(
DStab

s,W

)
.

However, we know from Theorem 2.2.5 that this element uniquely determines a consistent scattering

diagram. The result follows. �

6.5. Generalized reflection functors

In this section, we introduce the generalized reflection functors Definition 6.5.3 between module

categories

F+
k , F

−
k : modP(Q,W )→ modP(µk(Q,W )).

They are necessary ingredients in the proof of Theorem 6.4.1. These functors are inspired by

operations called mutations of decorated representations in [DWZ08] and generalize the original

reflection functors of [BGP73].

Recall that there is an intermediate QP µ̃k(Q,W ) (Definition 5.1.7) in the construction of

µk(Q,W ). There is an equivalence between module categories of the algebras P(µ̃k(Q,W )) and

P(µk(Q,W )) induced by the isomorphism of algebras in Theorem 5.1.6. The functors F±k will be
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defined to be the following functors

F̃±k : modP(Q,W )→ modP(µ̃k(Q,W ))

post-composed by this equivalence. The functors F̃±k are constructed as follows.

6.5.1. The construction of F̃+
K . LetM be a P(Q,W )-module regarded as a finite-dimensional

nilpotent representation of Q annihilated by cyclic derivatives

∂W = {∂aW | a ∈ Q1}.

See [DWZ08, Definition 10.1] for the relevant definitions.

We denote by Mi the vector space eiM for a vertex i ∈ Q0 (where ei ∈ J is the idempotent

corresponding to the vertex i), and by aM the action of an arrow a ∈ Q1 on M (or the restriction

linear map on Ms(a) with the target Mt(a)).

There is a diagram of vector spaces:

Mk

Min Mout

cokerβ

βα

q

γ

ϕ

where

Min :=
⊕

a∈Q1 : t(a)=k

Ms(a), Mout :=
⊕

β∈Q1, s(β)=k

Mt(β)

and (the components of) the linear maps of the upper triangle are given by

α := (aM )a : t(a)=k, β := (bM )b : s(b)=k, γ := (∂baW )(a,b) : t(a)=s(b)=k .

Here ∂baW is obtained by taking the cyclic derivative with respect to the composition ba. One can

check that

α ◦ γ = 0, γ ◦ β = 0;

see [DWZ08, Lemma 10.6]. This implies the map γ factors through q, i.e. we have

γ = φ ◦ q
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for a unique map

φ : cokerβ →Min.

Note that there are natural embeddings ιb : Mt(b) →Mout and projections πa : Min →Ms(a).

We first define M ′ = F̃+
k (M) as a representation of Q′ = µ̃k(Q) as follows.

(1) We put M ′k := cokerβ and M ′i :=Mi for i 6= k.

(2) For each b⋆ : j → k, let b⋆M ′ be the composition (mind the sign −q)

−q ◦ ιb : Mj
ιb−→Mout

−q−−→ cokerβ;

For each a⋆ : k → i, let a⋆M ′ be the composition

πa ◦ φ : cokerβ ϕ−→Min
πa−→Mi.

(3) For each [ba] : i→ j, we put

[ba]M ′ := bM ◦ aM .

(4) For any arrow c not incident to k, let

cM ′ := cM .

Proposition 6.5.1. The above construction does define a representation M ′ of µ̃k(Q,W ), i.e. M ′

is a P(µ̃k(Q,W ))-module. Moreover, this naturally induces an additive functor

F̃+
k : modP(Q,W )→ modP(µ̃k(Q,W ))

such that F̃+
k (M) =M ′.

Proof. By construction, M ′ is a finite-dimensional representation of Q′ = µ̃kQ. Furthermore,

it is nilpotent (which follows from the fact that M is nilpotent over CQ), thus a module over the

complete path algebra ĈQ′.

Now we need to show that M ′ is annihilated by ∂γW ′ for any arrow γ of Q′. This is essentially

checked in [DWZ08, proposition 10.7] although the mutation of decorated representations define

there is different from ours (in particular on the vector space M ′k). We prove this fact in the

following.
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If γ ∈ Q′1 comes from γ ∈ Q1 that is not incident to k, then we have that

(∂γW
′)M ′ : M ′s(γ) →M ′t(γ)

is equal to (∂γW )M ′ = 0.

If γ is of the form [ba] for a : i→ k and b : k → j, then we have

∂[ba]W
′ = ∂baW + a⋆b⋆.

Note that a⋆M ′b⋆M ′ is precisely given by

(−∂baW )M = (−∂baW )M ′ : M ′j →M ′i .

Thus we have (∂[ba]W
′)M ′ = 0.

If γ = a⋆ for some a : i→ k in Q1, then we have

(∂a⋆W
′)M ′ =

∑
b : s(b)=k

b⋆M ′ [ba]M ′ =

 ∑
b : s(b)=k

b⋆M ′bM

 aM : M ′i →M ′k

in which the map ∑
b : s(b)=k

b⋆M ′bM : Mk →M ′k = cokerβ

goes through the exact sequence

Mk
β−→

⊕
b : s(b)=k

Ms(b)
q−→ cokerβ → 0,

that is ∑
b : s(b)=k

b⋆M ′bM = (−q) ◦ β = 0

Therefore we have (∂a⋆W
′)M ′ = 0.

If γ = b⋆ for some b : k → j in Q1, then we have

(∂b⋆W
′)M ′ =

∑
a : t(a)=k

[ba]M ′a⋆M ′ = bM

 ∑
a : t(a)=k

aMa
⋆
M ′

 : M ′k →M ′j .

Note that we have

∑
a : t(a)=k

aMa
⋆
M ′ =

∑
a : t(a)=k

aM

 ∑
c : s(c)=k

∂caW


M

=

 ∑
c : s(c)=k

∂cW


M

= 0.
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Thus (∂b⋆W
′)M ′ = 0.

To define the action of F̃+
k on the space of morphisms, let f : U → V be a morphism between

P(Q,W )-modules, and we construct a morphism F̃+
k f : F̃

+
k U → F̃+

k V by giving maps between

vector spaces associated to the vertices of Q′. We keep the maps fi : Mi → Vi unchanged if i 6= k

and let

(F̃+
k f)k : (F̃

+
k U)k → (F̃+

k V )k

be the map naturally induced between cokernels. Then by construction, these maps between

vector spaces intertwine with the actions of arrows in Q′ and thus form a morphism F̃+
k (f) of

representations.

Other requirements of an additive functor are easy to check. �

6.5.2. The construction of F̃−k . To define M◦ = F̃−k (M) ∈ modP(Q′,W ′), we use the

following diagram of vector spaces.

Mk

Min Mout

ker α

βα

ψ

γ

r

As mentioned earlier, we have

α ◦ γ = 0.

Thus the map γ factors through kerα, i.e. we have

γ = r ◦ ψ

for a unique map

ψ : Mout → kerα.

Define a representation M◦ of Q′ as follows.

(1) We put M◦k := kerα and M◦i :=Mi for i 6= k.

(2) For each a⋆ : k → i, let a⋆M◦ be the composition

πa ◦ r : kerα r−→Min
πa−→Mi;
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For each b⋆ : j → k, let b⋆M◦ be the composition

(−ψ) ◦ ιb : Mj
ιb−→Mout

−ψ−−→ kerα.

(3) For each [ba] : i→ j, we put

[ba]M◦ := bM ◦ aM .

(4) For any arrow c not incident to k, let

cM◦ := cM .

Proposition 6.5.2. The above construction gives a representation M◦ of µ̃k(Q,W ), i.e. M◦ is a

P(µ̃k(Q,W ))-module. Moreover, this naturally induces an additive functor

F̃−k : modP(Q,W )→ modP(µ̃k(Q,W ))

such that F̃−k (M) =M◦.

Proof. The proof is analogous to the proof of Proposition 6.5.1. We leave the details to the

reader. Similarly, this defines a functor since the map between kernels is naturally induced. �

6.5.3. Generalized reflection functors and their properties. Now we have two functors

F̃±k : modP(Q,W )→ modP(µ̃k(Q,W )).

To extend the target of these functors to modP(µk(Q,W )), one uses the following equivalence

R : modP(µ̃k(Q,W ))→ modP(µk(Q,W ))

induced by algebra isomorphism described in Theorem 5.1.6.

Definition 6.5.3 (Generalized reflection functors). For a k-mutable QP (Q,W ), we define two

functors between module categories:

F±k := R ◦ F̃±k : modP(Q,W )→ modP(µk(Q,W )).

These are what we call the generalized reflection functors or mutations of representations.
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In what follows, we work with SPs instead of QPs. Note that two mutations µ±k of SPs give

the same QP:

µk(Q(s),W ) ∼= (Q(µ±k s), µkW ).

For an SP (s,W ), denote the module category modP(Q(s),W ) by modP(s,W ). As the notation

of the generalized reflection functors suggests, we consider functors (with the equivalent target

category)

(6.5.1) F+
k : modP(s,W )→ modP(µ+k (s,W ))

and respectively

F−k : modP(s,W )→ modP(µ−k (s,W )).

The advantage of working with SPs instead of QPs, which we shall explain below, is that how

dimension vectors of particular modules get transformed under reflection functors is already encoded

in the mutation of seeds.

For any SP (s,W ), we have the natural identification of the Grothendieck group with the lattice

N ,

K0(modP(s,W )) ∼= N

via [Si] = si (as the only simple modules are Si’s because every finite dimensional P-module is

nilpotent). When V is a P(s,W )-module, we denote its class in N by

[V ]s =
n∑
i=1

dimK Vi · si.

This notation is sensitive to the seed s.

Let (s′,W ′) = µ+k (s,W ) and (s′′,W ′′) = µ−k (s,W ). Then K0(modP(s′,W ′)) is also identified

with N via [S′i]s′ = s′i; similarly for (s′′,W ′′).

Straightforward calculations show that

(6.5.2) [Si]s =


[F+
k Si]s′ = [F−k Si]s′′ for i 6= k,

−[S′k]s′ = −[S′′k ]s′′ for i = k.
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This observation can be generalized (see (5) of Theorem 6.5.4). There are actually subcategories

whose objects’ dimension vectors (their classes in the Grothendieck group) in N are invariant under

mutations.

Denote modP(s,W ) and modP(s′,W ′) by A, A′ respectively. We define the following full

subcategories of A (and of A′ accordingly)

Ak,− = ⊥Sk := {M ∈ A | Hom(M,Sk) = 0},

Ak,+ = S⊥k := {M ∈ A | Hom(Sk,M) = 0}

and denote by 〈Sk〉 the full subcategory of A consisting of direct sums of Sk.

Note that µ−k (s′,W ′) is right-equivalent to (s,W ). So the functor F−k can be regarded as from

A′ to A.

Theorem 6.5.4. The generalized reflection functors F+
k : A → A′ and F−k : A′ → A have the

following properties.

(1) F+
k is right exact and F−k is left exact. They form an adjoint pair, i.e. there is a natural

isomorphism

HomA
(
M,F−k N

) ∼= HomA′
(
F+
k M,N

)
for any M ∈ A and N ∈ A′.

(2) F+
k Sk = 0 and F−k S′k = 0.

(3) F+
k (Ak,+) ⊂ A′k,− and F−k (A′k,−) ⊂ Ak,+.

(4) The restrictions F+
k : Ak,+ → A

′
k,− and F−k : A′

k,− → Ak,+ are quasi-inverse equivalences.

Moreover, these functors preserve short exact sequences.

(5) For any V in Ak,+, we have [V ]s = [F+
k V ]s′ where

[
F+
k V

]
s′ := dimK

(
F+
k V

)
i
s′i ∈ N.

It follows that for any W in A′k,−, then [W ]s′ = [F−k W ]s ∈ N .

Proof. For the first part in (1), it suffices to prove F̃+
k is right exact and F̃−k is left exact.

Suppose we have an exact sequence

U → V →W → 0.
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in A. This implies we have an exact sequence of complexes of vector spaces concentrated in degree

1 and 0 (the third and second row of the following diagram) which induces an exact sequence on

the H0’s (the first row)

(F̃+
k U)k (F̃+

k V )k (F̃+
k W )k 0

Uout Vout Wout 0

Uk Vk Wk 0.

βU βV βW

This shows that F̃+
k is right exact, and so is F+

k . The left exactness of F−k is proven similarly.

For the adjointness, let V be in A and W be in A′. We need to show that there is a natural

isomorphism

HomA(V, F−k W ) ∼= HomA′(F+
k V,W ).

The space HomA(V, F−k W ) is given by the space of linear maps

(fi : Vi → (F−k W )i)
n
i=1

intertwining with the action of P(s,W ). However, since the map

rk : (F
−
k W )k →Win

is injective, fk is uniquely determined by

f :=
⊕

a∈Q1 : s(a)=k

ft(a) : Vout →Win

to make the following diagram commute

Vk Vout

(F−k W )k Win.

βV

fk f

rk

Such an fk exists if and only if the following composition of maps

Vk Vout Win Wk
βV f αW

98



is zero. Therefore HomA(V, F−k W ) is the space of maps

(fi : Vi → (F−k W )i)i ̸=k

intertwining with the action of P(s,W ) such that αW ◦ f ◦ βV is zero. Similarly HomA′(F+
k V,W )

is the space of maps

(gi : (F
+
k V )i →Wi)i ̸=k

intertwining with the action of P(µ+k (s,W )) such that αW ◦ g ◦ βV is zero.

Note that Vi is canonically identified with (F+
k V )i for i 6= k and so is for Wi and (F−k W )i for

i 6= k. It is proved in [DWZ08, corollary 6.6] that the subalgebras are isomorphic

⊕
i,j ̸=k

eiP(s,W )ej ∼=
⊕
i,j ̸=k

eiP(µ+k (s,W ))ej

and by the construction of F+
k on representations, the actions of these subalgebras on

⊕
i ̸=k Vi and⊕

i ̸=k(F
+
k V )i are also identified via the isomorphism. The same is true for W and F−k W . It then

follows that HomA′(F+
k V,W ) is naturally identified with HomA(V, F−k W ) via these isomorphisms,

proving the adjointness of F+
k and F−k .

The properties (2) and (3) follow directly from the constructions of F±k .

By the adjointness and (3), to prove the first part of (4), we only need to show that the natural

homomorphisms

η : V → F−k F
+
k V and ε : F+

k F
−
k W →W

are isomorphisms for any V ∈ Ak,+ and W ∈ A′k,−. The restriction of η on Vi for i 6= k is always

an isomorphism to (F−k F
+
k V )i by the constructions of F±k . For V ∈ Ak,+, by definition we have

that Hom(Sk, V ) = 0 and this is equivalent to βV : Vk → Vout being injective. Then we have the

following short exact sequence of vector spaces

(6.5.3) 0→ Vk → Vout → (F+
k V )k → 0.

Thus the natural map

η|Vk : Vk → (F−k F
+
k V )k = ker(Vout → (F+

k V )k)

is an isomorphism, implying that η is too. The proof for ε is similar.
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To prove that the exactness is preserved, we use the same diagram in the proof of (1). Suppose

that now we have a short exact sequence of objects in Ak,+

0→ U → V →W → 0.

Note that the exact sequence of complexes induces a long exact sequence involving the H1’s,

· · · kerβW (F+
k U)k (F+

k V )k (F+
k W )k 0.

However, kerβW vanishes by our assumption that W ∈ Ak,+. The exactness follows. The proof for

the functor F−k is similar.

(5) is a direct computation as in (6.5.2). The short exact sequence (6.5.3) leads to the identity

of dimensions

dimK(F+
k V )k = −dimK Vk +

∑
a : s(a)=k

dimK Vt(a) = −dimK Vk +
∑
i ̸=k

[bki]+ dimK Vi.

Recall from Section 3.1.4 that the seed s′ is given by

s′i =


−sk for i = k

si + [−bik]+sk for i 6= k.

Then we have

[F+
k V ]s′ =

−dimK Vk +
∑
i ̸=k

[bki]+ dimK Vi

 (−sk) +
∑
i ̸=k

dimK Vi · (si + [−bik]+sk) = [V ]s ∈ N.

�

Remark 6.5.5. The subcategory Ak,− is closed under taking quotients while the subcategory Ak,+
is closed under taking subobjects.

6.6. Semistable representations under reflection

As in the last section, we denote by A the category modP(s,W ). The Grothendieck group

K0(A) is identified with the lattice N in a natural way such that [Si] = si. For m ∈ MR and

V ∈ modP(s,W ), we denote the natural pairing m([V ]) simply by m(V ).

Definition 6.6.1. Given m ∈MR, a module V ∈ A is m-semistable (resp.-stable) if
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(1) m(V ) = 0 and

(2) m(W ) ≥ 0 (resp. > 0) for any non-zero proper submodule W ⊂ V .

Lemma 6.6.2. Let m ∈MR such that m(sk) > 0 and V be a module in the subcategory Ak,− ⊂ A.

Then V is m-semistable if and only if

(1) m(V ) = 0 and

(2) for any W ∈ Ak,− and W ⊂ V , m(W ) ≥ 0.

Proof. The only if part follows from the definition. We prove the if part. Let V be a P-module

in Ak,−. Then every submodule W of V has a unique maximal submodule W ′ without any quotient

isomorphic to Sk, i.e., W ′ ∈ Ak,−. Since m(sk) > 0, we have m(W ′) ≤ m(W ). Therefore to check

the semistability of V , it suffices to examine all the subobjects in Ak,−. �

We also have the following analogous lemma for Ak,+. The proof is similar.

Lemma 6.6.3. Let m ∈MR such that m(sk) < 0 and V be a module in the subcategory Ak,+ ⊂ A.

Then V is m-semistable if and only if

(1) m(V ) = 0 and

(2) for any W ∈ Ak,+ a quotient of V , m(W ) ≤ 0.

By Remark 6.5.5, one can rephrase above two lemmas in terms of short exact sequences in Ak,+
and Ak,− as follows.

Lemma 6.6.4. Let m ∈MR such that m(sk) < 0 (resp. > 0). Let V be a module in the subcategory

Ak,+ ⊂ A (resp. Ak,−). Then V is m-semistable if and only if

(1) m(V ) = 0 and

(2) for any short exact sequence 0→ V ′ → V → V ′′ → 0 in Ak,+ (reps. Ak,−), m(V ′) ≥ 0.

Recall that we put (s′′,W ′′) = µ−k (s,W ) and denote P(s′′,W ′′) by A′′. The following is a key

proposition that relates semistable modules in A to the ones in A′ and A′′.

Proposition 6.6.5. Let V be in A not isomorphic to Sk and m ∈MR such that m(sk) < 0 (resp.

> 0). Then we have V is m-semistable if and only if F+
k (V ) in A′ (resp. F−k (V ) in A′′) is

m-semistable.
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Proof. First note that we only need to prove the case m(sk) < 0 and the other case follows

from (4) of Theorem 6.5.4.

Now let V be any m-semistable object in A for some m such that m(sk) > 0. Immediately,

the module V belongs in Ak,+ since V has no submodule isomorphic to Sk. By Lemma 6.6.4, V is

m-semistable if and only if m(V ′) > 0 for any submodule V ′ ⊂ V such that the quotient V /V ′ also

belongs in Ak,+. Apply the reflection functor F+
k : Ak,+ → A

′
k,− to the short exact sequence

0→ V ′ → V → V /V ′ → 0.

Note that F+
k sends short exact sequences in Ak,+ to A′k,− and does not change their dimension

vectors in N by Theorem 6.5.4. Therefore V is m-semistable if and only if for every short exact

sequence 0→W ′ → F+
k (V )→W ′′ → 0 in A′k,−, we have m(W ′) ≥ 0, which is equivalent to F+

k (V )

being m-semistable in A′ again by Lemma 6.6.4.

�

Let A(m) be the full subcategory of all m-semistable modules in A. It is standard that A(m) is

an abelian subcategory of A. Summarizing the results in this section and by (4) of Theorem 6.5.4,

we have

Proposition 6.6.6. For any m ∈MR such that m(sk) < 0 (resp. > 0), the functor

F+
k (resp. F−k ) : A(m)→ A′(m)(resp. A′′(m))

is an equivalence between abelian categories.

6.7. Proof of mutation invariance

In this section, we prove Theorem 6.4.1, the mutation invariance for stability scattering dia-

grams. We start by describing the mutations of Hall algebra scattering diagrams.

6.7.1. Mutation of Hall algebra scattering diagram. Let (s,W ) be a k-mutable SP for

some vertex k and (s′,W ′) = µ+k (s,W ). Now we study the relation between DHall
s,W and DHall

s′,W ′ .

We denote the motivic Hall algebra H(s,W ) by H(A). There is an open substack Mk,+
s,W ⊂Ms,W

that parametrizes the modules in Ak,+. Since the subcategory Ak,+ is closed under extension,

the relative Grothendieck group K
(

St/Mk,+
s,W

)
admits a convolution product by using the same

construction of the product in H(A), making it a motivic Hall algebra. The inclusion Mk,+
s,W ⊂Ms,W
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induces an inclusion of motivic Hall algebras

H(Ak,+) := K
(

St/Mk,+
s,W

)
↪→ H(A).

Similarly, there is an motivic Hall subalgebra H(A′k,−) ↪→ H(A′) for the subcategory

A′k,− ⊂ A′ = modP(µ+k (s,W )).

Proposition 6.7.1. The equivalence F+
k : Ak,+ → A′k,− induces a geometric bijection between

moduli stacks

f+k : Mk,+
s,W →Mk,−

s′,W ′ ,

which further induces an isomorphism of motivic Hall algebras

(f+k )∗ : Ĥ (Ak,+) −→ Ĥ(A′k,−),

such that

(f+k )∗

(
1Mm -ss

s,W

)
= 1Mm -ss

s′,W ′

for any m ∈ Hk,−s .

We give a proof of this proposition in Appendix B.

Theorem 6.7.2. For any m ∈ Hk,−s , we have that the wall-crossing ΦHall
s,W (m) lies in the subal-

gebra Ĥ(Ak,+) while ΦHall
s′,W ′(m) lies in Ĥ

(
A′k,−

)
, and

(
f+k
)
∗

(
ΦHall

s,W (m)
)
= ΦHall

s′,W ′(m)

Proof. For any m ∈ Hk,−s , the wall-crossings are

ΦHall
s,W (m) = 1Mm -ss

s,W
, ΦHall

s′,W ′(m) = 1Mm -ss
s′,W ′ .

Then the result follows directly from Proposition 6.7.1. �

6.7.2. Proof of Theorem 6.4.1. Now we prove Theorem 6.4.1.

Proof. We focus on part (2). First let ε = +. We know that for any m ∈ Hk,−s ,

log
(
ΦStab

s,W (m)
)
= I

(
log
(
ΦHall

s,W (m)
))

= I
(

log
(
1Mm -ss

s,W

))
.
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Since
(
f+k
)
∗ is an algebra isomorphism, and by Proposition 6.7.1 and the absence of pole theorem

(Theorem 6.3.5), we have

(
f+k
)
∗

(
log
(
1Mm -ss

s,W

))
= log

(
1Mm -ss

s′,W ′

)
∈ Ĥreg

(
A′k,−

)
>0

/(L− 1).

Note that the isomorphism
(
f+k
)
∗ is induced by a geometric bijection, so it commutes with the

integration maps, i.e., we have the following diagram

Ĥreg(Ak,+)>0/(L− 1) Ĥreg(A′k,−)>0/(L− 1)

ĝs∩s′

I

(f+k )∗

I

Therefore we have

log
(
ΦStab

s,W (m)
)
= I

(
log
(
1Mm -ss

s,W

))
= I

((
f+k
)
∗

(
log
(
1Mm -ss

s,W

)))
= I

(
log
(
1Mm -ss

s′,W ′

))
= log

(
ΦStab

s′,W ′(m)
)
.

For ε = −, notice that we have

µ+k
(
µ−k (s,W )

) ∼= (s,W ).

Then the SPs µ−k (s,W ) and (s,W ) play the role of (s,W ) and (s′,W ′) respectively in the case where

ε = +. This completes the proof. �

6.8. Caldero–Chapoton formula via stability scattering diagrams

In this section, we give a proof of the Caldero–Chapoton formula using stability scattering

diagrams. The proof is in the spirit of Nagao’s proof in [Nag13]. However, we think it is worthwhile

to work out the details in the framework of scattering diagrams.

Proof of Theorem 5.3.1. Recall that from Section 4.5, there is an expression of a cluster

variable as

APrin
k,i = AdT̂ p

Cl
γ (zgk,i) ∈ T̂
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where γ is a path going from a generic point θ ∈ G+
k to the positive chamber. By Theorem 6.4.4,

we have

pStab
γ := pγ(D

Stab
s,W ) = pCl

γ ∈ Ĝ.

Thus we have

APrin
k,i = AdT̂ p

Stab
γ (zgk,i).

In order to compute the action of pStab
γ on the algebra T̂, we first compute the action of pStab

γ on

T̂ = Q[M ]⊗Q[[N⊕]].

There are several auxiliary algebras we will use. First we define a non-commutative algebra

structure on

B̂ := Q[M ]⊗ Ĥ = Q[M ]⊗ Ĥ(s,W )

such that for any a ∈ Ĥn

a · zm = Lm(a)zm · a = Lm(a)zm ⊗ a.

Then we extend the poisson algebra structure on Ĥreg to

B̂reg := Q[M ]⊗ Ĥreg

by setting

{a, zm} = Lm(n) − 1

L− 1
zm ⊗ a.

So the poisson action {a,−} for some a ∈ Ĥreg is equal to the action of a/(L − 1) under the

commutator bracket, i.e. for b ∈ B̂reg

(6.8.1) {a, b} = [a/(L− 1), b].

Taking exponentials, we have for any b ∈ B̂reg the following lemma.

Lemma 6.8.1. For any δ ∈ greg = (Ĥreg)>0/(L− 1), we have

exp(δ) · b · exp(δ)−1 = exp[δ,−](b) = exp{(L− 1)δ,−}(b) ∈ B̂reg.

Proof. The first equality is by definition of the action exp[δ,−] and the second follows from

Equation (6.8.1). �
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Lemma 6.8.2. There is a poisson morphism extended from the integration map I (Theorem 6.3.4)

Ī : Q[M ]⊗ Ĥreg → Q[M ]⊗Q[[N⊕]], Ī(zm · a) = zm · I(a).

Proof. One checks directly that Ī respects the poisson structures on B̂reg and T̂ since the

integration map I is a poisson morphism. �

We recall that there is also a Lie algebra homomorphism I : ĝreg → ĝs (Theorem 6.3.4).

The action of pStab
γ on zm in the algebra T̂ (Section 4.5) is defined to be

Ad pStab
γ (zm) = exp

{
log
(
pStab
γ

)
,−
}
T̂
(zm).

We also have from Proposition 6.2.5 and Section 6.3 that

pHall
γ = 1−1T (θ), I

(
log
(
pHall
γ

))
= log

(
pStab
γ

)
.

Combine all the ingredients, we have

Ad pStab
γ (zm) = exp

{
log
(
pStab
γ

)
,−
}
T̂
(zm)

= exp
{
I
(

log
(
pHall
γ

))
,−
}
T̂
(zm)

= exp
{
I
(
(L− 1) log

(
pHall
γ

))
,−
}
T̂
(zm)

= Ī

(
exp

{
(L− 1) log

(
pHall
γ

)
,−
}
B̂reg

(zm)

)
= Ī

(
exp

[
log
(
pHall
γ

)
,−
]
B̂
(zm)

)
= Ī

(
1−1T (θ) · z

m · 1T (θ)
)

= Ī

1−1T (θ) ·

 ∑
n∈N⊕

L−m(n)1T (θ,n)

 · zm
 ∈ T̂ .

It is shown in [Nag13] that for m = gk,i, there is an identity in Ĥreg

(6.8.2)

 ∑
n∈N⊕

L−m(n)1T (θ,n)

 = 1T (θ) ·
∑
n∈N⊕

[Gr(Rk,i, n)→Mn] .
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Thus we have

Ad pStab
γ (zgk,i) = Ī

 ∑
n∈N⊕

[Gr(Rk,i, n)→Mn]

 · zgk,i


= z[Γk,i] ·

 ∑
n∈N⊕

χ(Gr(Rk,i, n))x
n

 ∈ T̂ .
Finally, we apply the isomorphism from T̂ to T̂ sending xn to zp

∗(n)xn (see Section 4.5 and

Lemma 4.5.4). Thus we conclude,

APrin
k,i = z[Γk,i] ·

 ∑
n∈N⊕

χ(Gr(Rk,i, n))z
p∗(n)xn

 .

Evaluating xn at 1, the result on cluster variables without coefficients follows. �

Remark 6.8.3. In [Bri17], Bridgeland considered the so-called theta functions for m ∈ C+ ∩M

ϑm : MR −→ T̂ , θ 7→ Ad pStab
γ′ (zm),

where γ′ is a path from m to the point θ, and gave a moduli-theoretic description [Bri17, Theorem

1.4]. Our proof explains the link between Bridgeland’s description and Nagao’s proof of the Caldero–

Chapoton formula. We also note that Man-Wai Cheung in the thesis [Che16, Section 7.3] gave a

proof of the Caldero–Chapoton formula for Dynkin quivers using stability scattering diagrams.

6.9. Initial data of stability scattering diagrams

In this section, we explain how to interpret the initial data (Definition 4.1.3) of stability scat-

tering diagrams in terms of representation-theoretic invariants.

For an SP (s,W ), the wall-crossing of DStab
s,W at any m ∈MR is

Φ(m) = exp

 ∑
d∈m⊥

J(m, d)xd


where J(m, d) is the Joyce invariant (see [Bri17]), which counts strictly m-semistable modules of

dimension d in a sophisticated way.
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The initial data of DStab
s,W is given by(

exp
(∑
k∈N

J(p∗(d), kd)xkd

))
d∈Prim(N+)

.

We thus say that an SP (s,W ) is cluster-initial if for any k ∈ N and d ∈ Prim(N+) \ s, the Joyce

invariant vanishes, i.e.

J(p∗(d), kd) = 0.

The following proposition is straightforward by definition.

Proposition 6.9.1. The SP (s,W ) is cluster-initial if and only if

DStab
s,W = DCl

s .

In general, it is difficult to give a criterion when these Joyce invariants vanish. One sufficient

condition (which may be too strict) is that there is no non-trivial p∗(d)-semistable modules at all.

More interesting cases are that there are only strictly p∗(d)-semistable modules of dimension d, but

we believe this is not enough to be a sufficient condition.

Bridgeland in [Bri17] defines genteel QPs aiming at the equality between two scattering dia-

grams in this case. However, according to a recent erratum (see the arXiv preprint of [Bri17]), it

is unclear whether genteelness is a sufficient condition.

108



CHAPTER 7

Scattering diagrams of Geiss-Leclerc-Schröer algebras

In this chapter, we study the Hall algebra scattering diagram of the algebra H(B,D) associated

to a skew-symmetrizable matrix B with its skew-symmetrizer D. These algebra are defined by

Geiss, Leclerc, and Schröer in [GLS17]. One of their motivations is to use the module category of

H(B,D) to study the corresponding cluster algebra A(B). This chapter’s main result is that the

Hall algebra scattering diagram of H(B,D) has the same cluster complex structure as the cluster

scattering diagram DCl
B,D from Section 4.2.

7.1. The algebra H(B,D) and its representations

7.1.1. Definitions. Suppose we are given oriented symmetrizable Cartan data (C,D,Ω). As

we have pointed out in Section 3.1.1, this is equivalent to a pair (B,D) of a integral skew-

symmetrizable matrix B and its left skew-symmetrizer D. Let gij = |gcd(bij , bji)| > 0 for bij 6= 0.

Let Q(B) := (Q0, Q1, s, t) be the quiver with the set of vertices Q0 := {1, 2, . . . , n} and with the set

of arrows Q1 described as follows:

(1) If bji > 0, then there are gij arrows α(1)
ij , . . . , α

(gij)
ij from j to i.

(2) There is a loop εi at each vertex i ∈ Q0.

Define

fij := |bij |/gij , kij := gcd(di, dj).

We have

gij = gji, kij = kji, di = kijfji.

Definition 7.1.1. Fix a field K. The algebra HK(B,D) is defined to be the path algebra KQ

modulo the two-sided ideal I generated by the following elements

(1) εdii for all i ∈ Q0 and

(2) for all i, j such that bij > 0 and for k ∈ {1, 2, . . . , gij},

ε
fji
i α

(k)
ij − α

(k)
ij ε

fij
j .
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7.1.2. Representations. Let H = HK(B,D). Denote by repH the category of finite dimen-

sional left H-modules. Define

Hi := eiHei ∼= K[εi]/(ε
di
i )

where ei is the idempotent corresponding to the vertex i ∈ Q0. For any M ∈ repH, the subspace

Mi := eiM inherits an Hi-module structure.

Definition 7.1.2. A module M ∈ repH is called locally free if Mi is a free Hi-module for every

i ∈ Q0. We denote by repl.f.H the full subcategory of all locally free modules in repH.

The Grothendieck group K0(repH) is identified with ZI where the simple modules give the

standard basis e = (e1, e2, . . . , en). It is easy to show that the subcategory repl.f.H is an exact

category. The Grothendieck group K0(repl.f.H) is embedded in K0(repH) by simply taking the

class in repH of a locally free module. It has a basis

ẽ = (ẽ1, ẽ2, . . . , ẽn) = D · e

given by Hi as left H-modules.

An H-module can also be represented in the following way. We define an Hi -Hj-bimodule

iHj := Hi ⊗K K〈α(k)
ij , 1 ≤ k ≤ gij〉 ⊗K Hj/I

where I is the sub-bimodule generated by elements for 1 ≤ k ≤ gij

ε
fji
i α

(k)
ij − α

(k)
ij ε

fij
j .

An H-module M is then determined by (Mi,Mij) with

Mi = eiM

an Hi-module and for i, j, an Hi-morphism

Mij : iHj ⊗j Mj →Mi, h⊗m 7→ hm.
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7.2. Reflection functors

Let k ∈ I. Recall that we have the Fomin–Zelevinsky mutation on the level of matrices

(Lemma 3.1.4)

µk(B,D) := (µk(B), D).

If (B,D) is acyclic and k is a sink or a source (as a vertex of the quiver Q◦(B,D), defined as the

quiver Q(B,D) with loops removed), then the mutation µk(B,D) is again acyclic.

There are reflection functors [GLS17] from repH to repµk(H) = repH(µk(B,D)) generalizing

that of Bernstein–Gelfand–Ponomarev [BGP73] for acyclic quivers. In fact, we have two reflection

functors for ε ∈ {+,−} and k ∈ I either a sink or a source,

F εk : repH → repµk(H).

We briefly explain the construction of F εk below but refer the reader to [GLS17] for further details.

Construction of F εk . Let M be an H-module.

For ε = +, consider the following exact sequence

0 kerMk,in
⊕

j∈Ω(k,−)
kHj ⊗Hj Mj Mk

Mk,in

where

Mk,in = (Mkj)j∈Ω(k,−)

and

Mkj : kHj ⊗Hj Mj →Mk

is the map determined by the H-module structure of M , i.e. for h ∈ kHj and m ∈Mj , we have

Mkj(h,m) = h ·m.

Note, for example, that if k is a source, then Ω(k,−) = ∅ and thus kerMk,in = 0. We then define

(F+
k M)i =


Mi if i 6= k,

kerMk,in if i = k

and define

(F+
k M)ik : i(µkH)k ⊗Hk

kerMk,in →Mi
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by viewing i(µkH)k as HomHi(kHi,Hi) (as an Hi-Hk-bimodule) and tensoring it with

kerMk,in → kHi ⊗Hi Mi.

One can check that F+
k also acts on the space of morphisms naturally. It indeed defines an

additive functor.

For ε = −, the construction of F+
k is similar. Roughly, one considers outgoing data rather than

incomings and takes cokernel instead of kernel [GLS17].

Since µ2k(B,D) = (B,D), we use the same notation F εk : repµk(H)→ repH for functors in the

opposite direction.

Define H ′i : = eiµk(H)ei ∈ repl.f. µk(H). Denote by Si = Hi/(εi) ∼= K[εi]/(εi), the simples in

repH and by S′i the simples in repµk(H).

Proposition 7.2.1. We have that for any i 6= k,

dimF εk (S
′
i) = dimSi + [εbik]+ dimSk = ei + [εbik]+ek ∈ K0(repH)

and F εk (H ′i) ∈ repl.f.H with

dimF εk (H
′
i) = dimHi + [−εbki]+ dimHk = ẽi + [−εbki]+ẽk ∈ K0(repl.f.H).

Proof. Let’s first check for the first equation when k is a sink for µkH and ε = +. In this

case we consider i ∈ I such that bik > 0. By construction, we have

(F+
k S
′
i)k = k(µkH)i ⊗Hi Hi/(εi) ∼= k(µkH)i/k(µkH)i(εi).

Since k(µkH)i = HomK(iHk,K) is a free right Hi-module of rank [bik]+. (A way to think about

this is to count dimK iHk = dibik = −bkidk.) Then we have as a K-module

k(µkH)i/k(µkH)i(εi) ∼= H
[bik]+
i /(εi) ∼= K [bik]+ .

For the second equation, we have that

(F+
k Hi)k = k(µkH)i ⊗Hi Hi

∼= H
[−bki]+
k .

as a left Hk-module. Thus the module F+
k Hi is locally free and the second identity follows.

The remaining cases are checked in similar ways. �
112



Recall that we have defined mutations of seeds in Chapter 3. In the above proposition, the

lattice K0(repH) plays the role of N , and the classes of simples Si form a seed s and the locally

free modules Hi form s̃. Thus Proposition 7.2.1 gives a way to realize the seeds

µεks, µεk s̃

as the classes modules obtained under reflection functors in cases where k is a sink or source.

7.3. The Hall algebra scattering diagram

We fix the ground field K to be C. Recall that we have defined the motivic Hall algebra H(Q, I)

for any quiver with relations (Q, I) in Chapter 6. Let (B,D) be from acyclic oriented Cartan data

(C,D,Ω). The algebra H(B,D), as constructed in Section 7.1, in particular, comes from a quiver

with relations (Q(B), I). Thus its category of finite-dimensional representations admits a motivic

Hall algebra H(B,D) := H(Q(B), I).

Recall that in Section 3.1.3 from the data (B,D), we can construct fixed data Γ with an initial

seed s. Then the algebra H(B,D) is naturally graded by N⊕s . Let g be the N+
s -graded Lie algebra

H(B,D)>0 with the commutator bracket.

Definition 7.3.1. We define the Hall algebra scattering diagram DHall
B,D to be the unique consistent

g-SD determined by the element

1M(B,D) ∈ 1 + Ĥ(B,D)>0.

Remark 7.3.2. Unlike the case of quivers with potentials, an integration map from (a subalgebra

of) the Hall algebra to a simpler algebra is not guaranteed. The lack of integration map makes it

much more difficult to study the corresponding cluster algebra from the point of view of scattering

diagrams. We leave this question for future studies.

7.4. An example of type B2

In this section, we illustrate an example of DB,D of type B2, i.e., the Cartan matrix of B is of

B2 type.
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Let B =

0 −2

1 0

 and D =

1 0

0 2

. The quiver Q(B) is

1 2
α

ϵ

and the only relation is ε2 = 0.

The corresponding Hall algebra scattering diagram DHall
B,D is depicted below, in the basis con-

sisting of e∗1 and e∗2. The Figure 7.1 shows the underlying canonical cone complex for DHall
B,D: it is a

rank two complete simplicial cone complex with 6 maximal cones.

1

1

22

2
1

2
2
1

Figure 7.1

The rays in the fourth quadrant are orthogonal to normal vectors e1 + 2e2 and e1 + e2 respec-

tively. The wall-crossing at each ray is a characteristic stack function of a category of semistable

representations. Each ray in the above diagram is labeled by the unique (up to isomorphism) simple

object in the corresponding subcategory. For example, the representation M =
2
2
1

is given by

M1 = C, M2 = C2, α = [ 0 1 ], ε = [ 0 0
1 0 ].

One should compare this scattering diagram with the cluster scattering diagram DCl
B,D in Exam-

ple 4.2.3 for b = 1 and c = 2; see Figure 4.2. In fact, they have the same cluster complex structure,

that is, their underlying canonical cone complexes both contain the positive and negative cluster

complexes ∆+
B and ∆−B. This turns out to be true for any acyclic skew-symmetrizable matrix B,

and we prove this fact in the next section.
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7.5. Cluster chamber structure

This section presents the main result of this chapter. We show that the Hall algebra scattering

diagram DHall
B,D possesses the same cluster chamber structure as the cluster scattering diagram DCl

B,D.

7.5.1. τ-tilting cone complex. To any finite-dimensional algebra A, there is an associated

(possibly infinite) simplicial cone complex S(sτ -tiltA) in MR. A ray in this cone complex is gener-

ated by the so-called g-vector of an indecomposable τ -rigid pair and a maximal cone corresponds

to a support τ -tilting pair. We explain these notions and the construction of this cone complex in

this section, starting with τ -rigid modules.

Definition 7.5.1. Let A be a finite-dimensional K-algebra. A finite-dimensional left A-module is

said to be τ -rigid if we have

HomA(M, τM) = 0.

Here the functor τ : modA→ modA is the Auslander-Reiten translation.

We refer the reader to the book [ARS97] for the details of AR translation.

Definition 7.5.2. Let A be a finite-dimensional K-algebra.

(1) A τ -rigid pair (M,P ) is a τ -rigid module M and a projective A-module such that

HomA(P,M) = 0.

(2) A τ -rigid pair is said to be support τ -tilting if |M |+ |P | = |A| where | · | counts the number

of non-isomorphic indecomposable direct summands of an A-module. Denote by sτ -tiltA

the set of isomorphism classes of basic support τ -tilting pairs of A.

(3) A τ -rigid pair is said to be almost complete support τ -tilting if |M |+ |P | = |A| − 1.

Example 7.5.3. By Auslander-Reiten duality, any τ -rigid module T is rigid, i.e.

Ext1(T, T ) = 0.

For the path algebra of a Dynkin quiver, the reverse is also true, i.e., every rigid module is also

τ -rigid.

For a τ -rigid pair (M, 0), we will simply represent it by the τ -rigid module M . We will denote

(0, P ) by P [1] for simplicity. It is also clear that both AA and AA[1] are support τ -tilting.
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Theorem 7.5.4 (Adachi-Iyama-Reiten [AIR14]). Let (U,P ) be an almost complete support

τ -tilting pair. Then it has precisely two completions, i.e., there exist precisely two indecomposable

τ -rigid pair, either of the form (X, 0) or (0, X) such that

(U ⊕X,P ) or (U,P ⊕X)

is support τ -tilting.

The above theorem provides a way to mutate a basic support τ -tilting pair (T, P ). For example,

suppose that T ∼= U ⊕X (resp. P ∼= V ⊕X) where X is indecomposable. Then the pair

(U,P ) (resp. (T, V ))

is almost complete support τ -tilting. Then one can complete (U,P ) (resp. (T, V )) by the other

indecomposable τ -rigid pair guaranteed by Theorem 7.5.4. This is defined to be the mutation of

(T, P ) at (X, 0) (resp. (0, X)).

Let K0(projA) be the Grothendieck group of the category of finitely generated projective mod-

ules over A. It is a lattice with a basis consisting of the classes of the indecomposable projective

modules

P1, P2, . . . , Pn.

The group K0(projA) is naturally dual to the lattice N = K0(modA) (with basis ei = [Si]) such

that [Pi] = e∗i . Thus in our convention, we let M = K0(projA).

For a module T ∈ modA, let

Q1 → Q0 → T → 0

be a minimal projective presentation of T . We define the g-vector of T to be

gT := [Q1]− [Q0] ∈M.

The g-vector of P [1] is defined to be −gP = [P ]. Note that our convention is opposite to [AIR14]

(the difference is superficial). For each τ -rigid pair (T, P ), we associate a g-vector

g(T,P ) := gT − gP ∈M.
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Theorem 7.5.5 (Adachi-Iyama-Reiten [AIR14]). Let A be a finite-dimensional algebra over

K of rank n.

(1) The g-vectors of indecomposable direct summands of a basic support τ -tilting pair form a

basis of M .

(2) The map

(T, P ) 7→ g(T,P )

defines an injection from the set of isoclasses of τ -rigid pairs to M .

(3) For a basic support τ -tilting pair (T, P ), let C(T,P ) be the rational polyhedral cone generated

in MR by the g-vectors of its indecomposable direct summands. Then the set of cones

{
C(T,P ) | (T, P ) ∈ sτ -tiltA

}
and its faces form a simplicial cone complex in MR. Its dual graph is n-regular. We call

this cone complex S(sτ -tiltA).

Proof. The first two statements are proven in [AIR14]. The last statement is a straightfor-

ward consequence of the first two combined with Theorem 7.5.4. �

Note that the cone complex S(sτ -tiltA) may neither be finite nor complete.

7.5.2. A correspondence between stability and τ-tilting. The following theorem is es-

sentially due to Brustle-Smith-Treffinger [BST19]. Let A be a finite-dimensional K-algebra as in

the last section. Suppose that A comes from a quiver with relations (Q, I). Here we fix K = C.

Theorem 7.5.6 ( [BST19]). The cone complex S(sτ -tiltA) in MR is a cone subcomplex of the

profinite cone complex SHall
A := SHall

Q,I of the Hall algebra scattering diagram DHall
Q,I .

Example 7.5.7. We demonstrate the above correspondence by the following example. Let us

consider the finite-dimensional algebra H(B,D) defined by a quiver with relations in Section 7.4.

The following Figure 7.2 shows the cone complex S(sτ -tiltH), depicted in the basis (e∗1, e
∗
2). It

is complete with 6 maximal cones. Each ray is labeled by an indecomposable τ -rigid pair, whose

g-vector is indicated by the black dot. The cone complex is the same as the one in Figure 7.1.

Each maximal cone corresponds to a support τ -tilting pair. For example, the first quadrant

corresponds to P1[1]⊕ P2[1] while the second quadrant corresponds to the pair (S1, P2[1]).
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1 2

1
[1]

2
1 2

1

1[1]1

2
2
1

2
2

Figure 7.2

For example, we have a minimal projective presentation

P1 → P2 →
2
2
1
→ 0.

Thus the g-vector for the τ -rigid module 2
2
1

is e∗1 − e∗2.

7.5.3. The cluster complex structure of H(B,D). Let (B,D) be an acyclic skewsym-

metrizable matrix with a left symmetrizer. In this section, we apply the construction of the τ -tilting

complex and the correspondence of the last section to the finite-dimensional algebra H = H(B,D).

Let us be more precise on the current setting we are at. Given fixed data Γ with an initial

seed s as in Section 3.1.3. We assume that the matrix B = B(s) is acyclic. The algebra H defined

in Section 7.1 is associated to (B,D). We have the Hall algebra scattering diagram DHall
B,D as in

Definition 7.3.1 with its canonical cone complex denoted by SHall
B,D.

On the other hand, the data (Γ, s) determines the cluster scattering diagram DCl
s (Defini-

tion 4.2.1). In some occasions, we have denoted this scattering diagram by DCl
B,D if there is no

ambiguity. From Section 4.4, we know that the canonical cone complex SCl
s has a subcomplex ∆+

s .

The following theorem is the main result of this chapter.

Theorem 7.5.8. The cluster complex ∆+
s is also a cone subcomplex of SHall

B,D.

Proof. We identify the complex ∆+
s with S(sτ -tiltH). Since we have S(sτ -tiltH) is a sub-

complex of SHall
B,D by Theorem 7.5.6, the theorem follows.
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By theorem 1.1 of [GLS19], the dual graph T (H) of the complex S(sτ -tiltH) is isomorphic

to the exchange graph of the cluster algebra A(B), which again is isomorphic to the dual graph of

∆+
s (see Section 4.4). We show that via this identification, the cone of a support τ -tilting pair is

the same as the cone of the corresponding cluster.

Let (T, P ) be a support τ -tilting pair of H and V be a indecomposable direct summand of T .

We know from Lemma 6.2 of [GLS19] that V is locally free and thus proj.dim(V ) ≤ 1 by Theorem

1.2 of [GLS17]. Then V admits a minimal projective resolution

0→ Q1 → Q0 → V → 0

and the g-vector of V is computed as

gV = [Q1]− [Q0] ∈M.

For any locally free H-module W , we have

0→ Hom(V,W )→ Hom(Q0,W )→ Hom(Q1,W )→ Ext1(V,W )→ 0.

Thus we have

dim Hom(V,W )− dim Ext1(V,W ) = −([Q1]− [Q0])([W ]).

The left hand side can be computed by a bilinear form defined on N as 〈[V ], [W ]〉C,D,Ω by Prop.

4.1 of [GLS17]. Thus we have

gV = 〈[V ],−〉C,D,Ω ∈M.

We know that V corresponds to a cluster variable AV via the isomorphism between the aforemen-

tioned two exchange graphs. There is a localization functor Loc that sends V to Loc(V ) a module

over a hereditary algebra H̃ (over the field C((ε)) for some central element ε in H; see [GLS19]).

It is also well-known that the vector

〈[V ],−〉C,D,Ω = 〈[Loc(V )],−〉C,D,Ω

computes the g-vector for AV (e.g. see [Rup15]). We then conclude that the cones in S(sτ -tiltH)

and SCl
s are equal under the identification induced by the the isomorphism between the dual graphs.

�
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We point out that this theorem motivates that the category modH(B,D) might play an im-

portant role in categorifying the cluster algebra A(B).

Recall the notations in Section 3.2. Suppose we have fixed data Γ with an initial seed s such

that B = B(s) is acyclic. For a locally free H-module T , we define Grl.f.(n, T ) to be the projective

variety of locally free quotients of T with dimension vector n. The following conjecture is due to

Geiss-Leclerc-Schröer, which can be considered as a locally free version of Theorem 5.3.1.

Conjecture 7.5.9. Let (T, P ) be a τ -rigid pair with g-vector g(T,P ). Then we have

CCl.f.(T, P ) := zg
(T,P ) ·

∑
n∈N⊕∩N◦

χ (Grl.f.(n, T )) z
p∗(n) = A

(
g(T,P )

)
where the right hand side is the unique cluster monomial corresponding to the g-vector g(T,P ).

For a skew-symmetrizable matrix B of Dynkin type, Conjecture 7.5.9 has been proven by

Geiss-Leclerc-Schröer in [GLS18]. To the best of the author’s knowledge, the general case remains

open.
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CHAPTER 8

Cluster scattering diagrams of Chekhov-Shapiro algebras

In this chapter, we develop the theory of cluster scattering diagrams for Chekhov-Shapiro

algebras [CS14] (see Section 3.3 for definition), generalizing the framework of [GHKK18].

8.1. Generalized cluster scattering diagrams

Suppose we are given fixed data Γ with an initial seed s. The Lie algebra gs is the same as the

one in Section 4.2. To define a consistent scattering diagram, we need to specify initial data as in

(4.1.2). Recall that in Section 3.3, we need some extra data to define a CS algebra. For each i ∈ I,

we need a reciprocal monic polynomial

ρi(v) =

di∑
k=0

ckv
k.

Define the initial data

(gn)n∈Prim(N+) ∈
∏

n∈Prim(N+)

exp g∥n

such that for each i ∈ I, the action of gsi on the monomial zm (see Section 4.5) is given by

Ad gsi(zm) = zm · ρi(xsi)m(si) ∈ T̂ : = Q[[N⊕]][M ].

and for any other n ∈ Prim(N+), gn = id ∈ Ĝ.

This particular initial data defines a consistent g-SD

DCS
s = (SCS

s ,ΦCS
s : MR → Ĝ)

Note that here we omit the choice of (ρi)i∈I from the script. In the following sections of this chapter,

we will show that this is the right scattering diagram for the corresponding CS algebra.

Example 8.1.1. We present a rank two example. We set

ρ1(v) = 1 + v, ρ2(v) = 1 + v + v2.
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1 + x1

1 + x1

1 + x2 + x221 + x2 + x22

1 + x1x2 + x21x
2
2

1 + x1x
2
2

Figure 8.1

The initial seed is given by

s = (e1, e2),

and s̃ = (ẽ1, ẽ2) = (e1, 2e2). We also set ω(e1, e2) = 1. This is the same fixed data as in Exam-

ple 4.2.3 when b = 1 and c = 2.

Let x1 = xe1 and x2 = xe2 . The generalized cluster scattering diagram for this data is depicted

below in Figure 8.1, in the basis (e∗1, e
∗
2). One sees the canonical cone complex SCS

s , which is equal

to SCl
s . Each ray (also a wall in two dimensions) is labelled by a polynomial that represents the

wall-crossing.

Remark 8.1.2. The above scattering diagram has a representation-theoretic interpretation. See

the future work of the author joint with Labardini Fragoso [LFM].

8.2. Mutation invariance and cluster complex structure

In this section, we study the relationship between the mutation DCS
µεks and DCS

s . Notice that the

polynomials (ρi)i∈I remain unchanged after mutations. The main result is the following theorem.

Theorem 8.2.1 (Mutation invariance). Fix the choice of polynomials ρ = (ρi)i∈I .

(1) For ε ∈ {+,−} and any m ∈ H−εk , we have

ΦCS
µεks(m) = ΦCS

s (m).
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(2) At a generic m ∈ s⊥k , the wall-crossing of the scattering diagram DCS
µεks at m is given by the

polynomial

ρk(x
−sk).

Proof. As in the proof of Theorem 4.3.1, the proof goes exactly the same as the one of

mutation invariance in [GHKK18]. The slab now is the pair

dk = (s⊥k , ρk(x
sk)).

The identity that leads to consistency is

zmρ
(
zp

∗(sk)
)−m(sk)

= zm−m(sk)p
∗(s̃k)ρ

(
zp

∗(−sk)
)−m(sk)

.

which follows from the reciprocity of the polynomial ρk. �

Just as in Section 4.4, the above theorem will lead to a cluster complex structure of DCS
s .

Additionally, we see immediately from the mutation invariance that the cluster complex we obtain

for DCS
s is still the cone complex ∆+

s as in Section 4.4. We summarize the results regarding the

cluster complex structure of DCS
s in the following theorem.

Theorem 8.2.2. Consider the scattering diagram DCS
s .

(1) The profinite cone complex SCS
s contains ∆+

s as a cone subcomplex.

(2) Each maximal cone is generated by the g-vectors (gk,i)i∈I .

(3) Let d be a facet of a maximal cone in ∆+
s with normal vector cs,i/di, then the wall-crossing

is given by the action

AdΦ(d)(zm) = zm · ρi
(
x|cs,i/di|

)m(|cs,i/di|)
∈ T̂ .

Moreover, Theorem 4.5.7 extends to CS algebras by using the scattering diagram DCS
s . As in

Section 4.5, we define a complete algebra

T̂ :=
⊕
m∈M

Q[[p̃∗(N⊕)]] · zm

with an action of Ĝ by automorphisms. We denote the CS cluster variables with principal coeffi-

cients (resp. without coefficients) by APrin
k,i (resp. Ak,i) for a sequence k of indices and i ∈ I.
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Theorem 8.2.3. We have

APrin
k,i = AdT̂ p

CS
γ (zgk,i) ∈ Z[M ⊕N ], Ak,i = AdT̂ p

CS
γ (zgk,i) |xn=1∈ Z[M ]

where pCS
γ denotes the path-ordered product in DCS

s and γ is any path from a point in the interior

of the cluster chamber G+
k to the positive chamber.

Proof. The strategy of the proof is the same as the proof of Theorem 4.5.7. Note that the

g-vectors only depend on the data (Γ, s), so the algorithm in Proposition 4.4.9 still applies. We

prove by induction on the length of k. Recall the notations in the proof of Theorem 4.5.7, and

suppose that i = kl. Let δ = sgn(ck′,i) ∈ {+,−}. Then we have

gk,i = −gk′,i +
∑
j∈I

[
−δb̃ji

]
+
digk′,j ,

where b̃ji = ω(ck′,j/dj , ck′,i/di).

The recursive equation in the current situation is then

AdT̂Φ(d) (z
gk,i) = zgk,iρi

(
zp

∗(δck′,i/di)xδck′,i/di
)

= z−gk′,i+
∑

j∈I [−δb̃ji]+digk′,jρi

(
zp

∗(δck′,i/di)xδck′,i/di
)

= z−gk′,iθi

∏
j∈I

(zgk′,j )[−δb̃ji]+ , xδck′,i/di
∏
j∈I

(zgk′,j )[δb̃ji]+


This is exactly the exchange relation of generalized cluster variables in principal coefficients.

Note here the vector ck,i/di is in N but not in N◦ in general. The result follows by induction as in

the proof of Theorem 4.5.7.

�
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APPENDIX A

Generalized reflection functors from Keller-Yang’s derived

equivalence

In this appendix, we explain a way to obtain the generalized reflection functors defined in

Section 6.5 from Keller–Yang’s derived equivalence [KY11]. It is suggested to the author by

Bernhard Keller. Recall the notations in Section 5.2.

Let (Q,W ) be a k-mutable quiver with potential. Let (Q̃, W̃ ) = µ̃k(Q,W ) and (Q′,W ′) =

µk(Q,W ).

Proposition A.0.1. We have natural isomorphisms

F+
k
∼= H0 ◦ F+

k ◦ ι : modP(Q,W )→ modP(Q′,W ′),

F−k
∼= H0 ◦ F−k ◦ ι : modP(Q′,W ′)→ modP(Q,W ).

We need some preparations before proving this proposition. Let P = P(Q,W ), P̃ = P(Q̃, W̃ )

and P ′ = P(Q′,W ′).

For a fixed k ∈ I, define the following P-module

U =
⊕
i∈I

Ui

where Ui := Pi = Pei for i 6= k and Qk := coker
(
Pk →

⊕
α : t(α)=k

Ps(α)

)
, i.e. the module making

the following sequence

(A.0.1) Pk →
⊕

α : t(α)=k

Ps(α) → Uk → 0

exact. A component of the above map Pk → Ps(α) is by left multiplication by α.

Lemma A.0.2. There exists a unique algebra homomorphism

Φ: P̃op −→ EndP(U)
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such that

(1) for an idempotent ei, Φ(ei) is the projection to direct summand Ui;

(2) for α : i→ k in Q1, Φ(α⋆) is the natural linear map from Pi to Uk in the sequence (A.0.1);

(3) for β : k → j in Q1, Φ(β⋆) is the natural map from Uk to Pj as indicated by the following

diagram
Pk

⊕
α : t(α)=k

Ps(α) Uk 0

Pj

where a component Ps(α) → Pj is given by multiplying ∂βαW and we have that the com-

position

Pk −→
⊕

α : t(α)=k

Ps(α) −→ Pj

vanishes;

(4) for [βα] ∈ Q̃1, Φ([βα]) is the map from Pj to Pi by right multiplying βα;

(5) for any other γ : i → j ∈ Q̃1 not incident to k, Φ(γ) is the map from Pj to Pi by right

multiplying γ.

Moreover, there is a commutative diagram of algebra homomorphisms

(A.0.2)
Γ̃op HomΓ(T, T )

P̃op HomP(U,U)

H0
H0

Φ

where the top horizontal map is the dg algebra homomorphism in Section 5.2 (see [KY11, Section

3.4]).

Proof. In fact, the map Φ is completely determined by the dg algebra homomorphism from

Γ̃op to HomΓ(T, T ), which is described in details in [KY11, Section 3.4]. �

Due to Lemma A.0.2, there is a P - P̃op-bimodule structure on U . Thus we can consider the

following functor

Hom(U,−) : modP → mod P̃.

Lemma A.0.3. The functor Hom(U,−) is naturally isomorphic to the generalized reflection functor

F̃+
k .
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Proof. As a vector space, we have that

Hom(U,M) =
⊕
i∈I

Hom(Ui,M).

The left P̃-structure is described by Lemma A.0.2. For i 6= k, the space Hom(Ui,M) is identified

with Mi. When i = k, we have the following exact sequence from (A.0.1)

0→ Hom(Uk,M)→
⊕

α : t(α)=k

Ms(α) →Mk.

In view of quiver representations, the above identifications induce an isomorphism between Hom(U,M)

and F̃+
k (M) as left P̃-modules, which is functorial on M . �

Recall that (Q′,W ′) = µk(Q,W ) is the reduced part of (Q̃, W̃ ). Thus the Jacobian algebra P ′

is isomorphic to P̃ induced by the inclusion Q′ ⊂ Q̃. Then we can view U as a P -P ′-bimodule and

define the following functor

U ⊗P ′ − : modP ′ → modP.

Recall from Section 6.5 that we have defined the generalized reflection functor F−k : modP ′ →

modP.

Lemma A.0.4. The functor U ⊗P ′ − is naturally isomorphic to F+
k : modP ′ → modP.

Proof. We regard P ′ as a right module over itself. We define as a right P ′-module

R :=
⊕
i∈I

Ri =

⊕
i ̸=k

eiP ′
⊕ coker

ekP ′ → ⊕
β : s(β)=k

et(β)P ′
 .

There is an algebra homomorphism from P̃ ′ := µ̃k(Q
′,W ′) to HomP ′(R,R) so that R becomes a

P̃ ′ -P ′-bimodule. It is straightforward from the definition of R that not hard to check that the

functor R ⊗P ′ − is naturally isomorphic to F̃−k : modP ′ → mod P̃ ′. However, note that P̃ ′ is

isomorphic to P, and we have an isomorphism between bimodules

PUP ′ ∼= P ⊗P̃ ′ RP ′ .

The lemma follows. �
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Proof of Proposition A.0.1. We compute the functor

H0 ◦ RHom(T,−) ◦ ι : modP → mod P̃.

Let M ∈ modP. We have

H0 ◦ RHom(T,M) = HomDΓ(T,M) ∼=
⊕
i∈I

HomDΓ(Ti,M).

For i 6= k, we have HomDΓ(Γi,M) ∼= HomP(Pi,M). For i = k, the exact triangle (5.2.1) implies

the following exact sequence (with HomDΓ(Γk[1],M) = 0)

(A.0.3) · · · → HomDΓ(Γk[1],M)→ HomDΓ(Tk,M)→

→
⊕

α∈Q1 : t(α)=k

HomDΓ(Γs(α))→ HomDΓ(Γk,M)→ · · · .

Thus we have

HomDΓ(Tk,M) ∼= ker

 ⊕
α : t(α)=k

HomDΓ(Γs(α),M)→ HomDΓ(Γk,M)


∼= ker

 ⊕
α : t(α)=k

HomP(Ps(α),M)→ HomP(Pk,M)


∼= HomP

coker

Pk → ⊕
α : t(α)=k

Ps(α)

 ,M


∼= HomP(Uk,M).

(A.0.4)

Therefore we have the following functorial isomorphism for any M ∈ modP (also viewed as a

dg Γ-module concentrated in degree 0),

H0RHom(T,M) ∼= HomP(U,M).

The LHS inherits a left action of P̃ = H0Γ̃ from the right dg Γ̃-module structure on T . It coincides

with the action of P̃ on the RHS through the right P̃ -module structure on U by the commutative

diagram (A.0.2). Combining with Lemma A.0.3, we hence conclude that

H0 ◦ F̃+
k ◦ ι ∼= F̃+

k ,
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which implies H0 ◦ F+
k ◦ ι ∼= F+

k . The natural isomorphism between H0 ◦ F̃−k ◦ ι and F̃−k can be

proven similarly (using Lemma A.0.4) �

We remark that the properties of the generalized reflection functors in Theorem 6.5.4 follow

easily from Proposition A.0.1. We also note that the functor Hom(U,−) is also considered in [Fei19].
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APPENDIX B

The proof of Proposition 6.7.1

We first introduce the moduli stack Mk,+
s,W ⊂M = Ms,W that parametrizes P(s,W )-modules in

the subcategory Ak,+s,W .

Fix a dimension vector d. Over a C-scheme S, the groupoid Md(S) consists of

(
Vi, ρα : Vs(α) → Vt(α)

)
i∈Q0(s,W ), α∈Q1(s,W )

where each Vi is a locally free sheaf on S of rank di and ρα’s are morphisms satisfying relations in

the ideal I(Nd).

For a vertex k ∈ Q0(s), consider the morphism

βk :=
⊕
s(α)=k

ρα : Vk → Vout :=
⊕
s(α)=k

Vt(α).

To define the substack Mk,+
s,W , we consider the subgroupoid

(
Mk,+

s,w
)
d
(S) ⊂Md(S) consists of those

such that βk is injective and cokerβk is also locally free. Note that this condition is stable under

pull-back. Thus in particular βk is injective at every stalk.

We define

Mk,+
s,W :=

∐
d∈N⊕

s

(
Mk,+

s,W

)
d
.

Recall that we have an affine scheme (Reps,w)d of representations of dimension vector d of the

quiver Q(s) satisfying relations in I(Nd). There is an open subscheme
(
Repk,+s,w

)
d

of representations

with βk being injective. It is Gd-invariant.

Lemma B.0.1. The moduli stack
(
Mk,+

s,W

)
d

is equivalent to the quotient stack

[(
Repk,+s,w

)
d
/Gd

]
,

which is algebraic, of finite type and with affine diagonal.
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Proof. Over a C-scheme S, the groupoid [(Repk,+s,w )d/Gd](S) consists of objects that are G-

equivariant morphisms from principal Gd-bundles over S to (Repk,+s,w )d. Let

f : P →
(

Repk,+s,w

)
d

be such an object. Then we have locally free sheaves (P ×Gd
Cdi)i∈Q0 over S and morphisms

ρα : P ×Gd
Cds(α) → P ×Gd

Cdt(α)

such that

ρ(p, v) = f(p)α(v).

This data determines an object in (Mk,+
s,W )d(S) and in fact defines a functor from [(Repk,+s,w )d/Gd](S)

to (Mk,+
s,W )d(S).

Now we construct a functor from (Mk,+
s,W )d(S) to [(Repk,+s,w )d/Gd](S). For an object

(Vi, ρα : Vs(α) → Vt(α))i∈Q0(s,W ), α∈Q1(s,W )

in (Mk,+
s,W )d(S), consider the frame bundle P of the structure group Gd of this data over S. The

pull-backs of (Vi)i∈Q0 from S to P can be trivialized over P. Hence the pull-backs of (ρα)α∈Q1

together define a Gd-equivariant morphism from P to (Repk,+s,w )d. In this way, we have defined a

functor from (Mk,+
s,W )d(S) to (Repk,+s,w )d(S).

These two functors respect pull-backs and are in fact quasi-inverse equivalent to each other.

Therefore the two stacks are equivalent. �

We define the stack

Mk,−
s,W =

∐
d∈N⊕

s

(Mk,−
s,W )d

in a similar way. Here we require that the objects in Mk,−
s,W (S) satisfy that the morphism

⊕
α : s(α)

ρα : Vk →
⊕

α : s(α)=k

Vt(α)

is surjective between locally free sheaves.

Let (s′,w′) = µ+k (s,w). We define a morphism

f = f+k : Mk,+
s,W →Mk,−

s′,W ′
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as follows. For an object (Vi, ρα) in Mk,+
s,W (S), the map f(S) sends this object to a representation

(V ′i, ρ′γ) of Q(s′) where V ′i = Vi for i 6= k and Vk = cokerβk, and ρ′γ are defined as in Section 6.5.

Proof of Proposition 6.7.1. The C-points of Mk,+
s,W are exactly representations of (Q, I(Nd))

(for various dimension d) inAk,+ while the C-points of Mk,−
s′,W ′ correspond to representations inA′k,−.

By the equivalence between Ak,+ and A′k,− (Theorem 6.5.4), the morphism f : Mk,+
s,W →Mk,−

s′,W ′ in-

duces an equivalence between groupoids

f(C) : Mk,+
s,W (C)→Mk,−

s′,W ′(C),

proving that f is a geometric bijection.

A geometric bijection between stacks induces an isomorphism between relative Grothendieck

groups; see [Bri12]. Thus we have an induced isomorphism

f∗ : K
(

St/Mk,+
s,W

)
→ K

(
St/Mk,−

s′,W

)
ofK(St/C)-modules. It is not hard to check that f∗ respects the convolution product, thus becoming

an algebra homomorphism between Hall algebras.

Finally, note that we have the commutative diagram

Mm -ss
s,W Mm -ss

s′,W ′

Mk,+
s,W Mk,−

s′,W ′

where the horizontal maps are geometric bijections induced by the functor F+
k . The vertical maps

are inclusions. Then we have

f∗

(
1Mm -ss

s,W

)
= 1Mm -ss

s,W
.

�
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