
The Extended Generalized Haar-Walsh Transform and Applications

By

Yiqun Shao
DISSERTATION

Submitted in partial satisfaction of the requirements for the degree of

DOCTOR OF PHILOSOPHY

in

APPLIED MATHEMATICS

in the

OFFICE OF GRADUATE STUDIES

of the

UNIVERSITY OF CALIFORNIA

DAVIS

Approved:

Naoki Saito (Chair)

James Bremer

James Sharpnack

Committee in Charge

2020

i

Contents

Abstract iv

Acknowledgments v

Chapter 1. Introduction 1

Chapter 2. Background 3

2.1. Haar-Walsh Wavelets Packets 3

2.2. Basics of Graph Theory and Notation 9

2.3. Recursive Partitioning of Graphs 12

Chapter 3. The Generalized Haar-Walsh Transform (GHWT) 16

3.1. Overcomplete Dictionaries of Bases 16

3.2. The Previous Best-Basis Algorithm in the GHWT 22

Chapter 4. The extended Generalized Haar-Walsh Transform (eGHWT) 24

4.1. Fast Adaptive Time-Frequency Tilings 24

4.2. Numerical Analysis 29

4.3. Relabeling Region Indices 30

4.4. The New Best-Basis (eGHWT) Algorithm 32

4.5. The eGHWT illustrated by a graph signal on P6 35

4.6. Generalization to 2D Signals 38

Chapter 5. Efficient Graph Signal Approximation using the eGHWT 39

5.1. Efficient Approximation of Graph Signals 39

5.2. Viewing an Image (or a General Matrix Signal) as a Tensor Product of Graphs 41

5.3. Constructing a Graph from an Image for Efficient Approximation 45

ii

Chapter 6. Low rank approximation of matrices 49

6.1. NMF Initialization via eGHWT 49

6.2. Bounded Matrix Completion 59

Chapter 7. Summary 70

Bibliography 72

iii

The extended Generalized Haar-Walsh Transform and applications

Abstract

Extending computational harmonic analysis tools from the classical setting of regular lattices to

the more general setting of graphs and networks is very important and much research has been done

recently. The previous Generalized Haar-Walsh Transform (GHWT) is a multiscale transform for

signals on graphs, which is a generalization of the classical Haar and Walsh-Hadamard Transforms.

We propose the extended Generalized Haar-Walsh Transform (eGHWT). The eGHWT and its

associated best-basis selection algorithm for graph signals will significantly improve the performance

of the previous GHWT with the similar computational cost, O(N logN), where N is the number of

nodes of an input graph. While the previous GHWT/best-basis algorithm seeks the most suitable

orthonormal basis for a given task among more than (1.5)N possible orthonormal bases in RN , the

eGHWT/best-basis algorithm can find a better one by searching through more than 0.618(1.84)N

possible orthonormal bases in RN . This dissertation describes the details of the eGHWT/basis-

basis algorithm and demonstrates its superiority using several examples including genuine graph

signals as well as conventional digital images viewed as graph signals. Futhermore, we display how

eGHWT can be extended to 2D signals by viewing them as tensors of graphs and the associated

applications to efficient image approximation and nonnegative matrix factorizations.

iv

Acknowledgments

First and foremost, I’d like to thank my advisor, Professor Naoki Saito. He has given me a

lot of guidance and advice in my research. He has invested a lot of time and energy in me, while

always being patient and helpful. I am happy and grateful to have him as my adviser. He has also

provided me with financial support and travel funding. I really appreciate all the things he has

done for me.

In addition, I’d like to thank my parents. They’ve been there supporting and encouraging me

for so many years. Without them, I couldn’t have finished my PHD degree. I also need to thank

my grandfather, who has taught me a lot of math knowledge and inspired me when I was young.

I want to thank all the members of my dissertation committee, Professors Naoki Saito, James

Bremer and James Sharpnack, for taking the time to read my dissertation and give their helpful

feedback.

I’d like to thank my collegues in our group, Jeff Irion, Alex Berrian, David Weber, and Haotian

Li for discussing with me on research and giving me helpful advice. In particular, the MTSG toolbox

(https://github.com/JeffLIrion/MTSG_Toolbox) developed by Jeff Irion was very helpful in

designing my own toolbox.

Thanks to my officemates, Ji Chen, Bohan Zhou, Yunshen Zhou, and Jiaxiang Li. They have

helped me a lot in discussing problems, TA work, and course work.

I also need to thank my girlfriend Yuqing Su, for allowing me to stay at her home while I

finished writing my dissertation. I appreciate all the encouragement she gave me, especially during

the difficult time of COVID-19.

v

CHAPTER 1

Introduction

In recent years, research on graphs and networks is experiencing rapid growth due to a conflu-

ence of several trends in science and technology: the advent of new sensors, measurement technolo-

gies, and social network infrastructure has provided huge opportunities to visualize complicated

interconnected network structures, record data of interest at various locations in such networks,

analyze such data, and make inferences and diagnostics. We can easily observe such network-based

problems in truly diverse fields: biology and medicine (e.g., connectomes); computer science (e.g.,

social networks); electrical engineering (e.g., sensor networks); hydrology and geology (e.g., rami-

fied river networks); and civil engineering (e.g., road networks), to name just a few. Consequently,

there is an explosion of interest and demand to analyze data sampled on such graphs and net-

works, which are often called “network data analysis” or “graph signal processing”; see e.g., recent

books [8,16,48,52] and survey articles [53,60], to see the evidence of this trend. This trend has

forced the signal processing and applied mathematics communities to extend classical techniques

on regular domains to the setting of graphs. Much efforts have been done to develop wavelet

transforms for signals on graphs (or the so-called graph signals) [7, 10, 11, 25, 34, 41, 51, 56, 64].

Comprehensive reviews of transforms for signals on graphs have also been written [53,60].

The Generalized Haar-Walsh Transform (GHWT) [30, 31, 33], developed by Irion and Saito,

has achieved superior results over other transforms in terms of both approximation and denois-

ing of signals on graphs (or graph signals for short). It is a generalization of the classical Haar

and Walsh-Hadamard Transforms. In this dissertation, we propose and develop the extended Gen-

eralized Haar-Walsh Transform (eGHWT). The eGHWT and its associated best-basis selection

algorithm for graph signals will significantly improve the performance of the previous GHWT with

the similar computational cost, O(N logN) where N is the number of nodes of an input graph.

While the previous GHWT/best-basis algorithm seeks the most suitable orthonormal basis (ONB)

for a given task among more than (1.5)N possible orthonormal bases in RN , the eGHWT/best-basis

1

algorithm can find a better one by searching through more than 0.618·(1.84)N possible orthonormal

bases in RN . It can be extended to 2D signals in a more subtle way than GHWT. In this disserta-

tion, we describe the details of the eGHWT/basis-basis algorithm and demonstrate its superiority.

Moreover, we showcase the versatility of eGHWT by applying it to genuine graph signals, classical

digital images, and matrix data.

The organization of this dissertation is as follows. In Chapter 2, we review background concepts,

including Haar-Walsh wavelet packets (§2.1), graph signal processing (§2.2) and recursive graph

partitioning (§2.3), which is a common strategy used by researches to develop graph transforms. In

Chapter 3, the GHWT/best-basis algorithm is reviewed. In Chapter 4, we provide an overview of

the eGHWT. We start by reviewing the algorithm developed by [65] (§4.1). Then we illustrate how

that algorithm can be modified to construct the eGHWT (§4.2, §4.3, §4.4). An example illustrating

the difference between the GHWT and the eGHWT on a six-node path graph signal is given (§4.5).

We finish the chapter by expaining how the eGHWT can be extended to 2D signals (§4.6). In

Chapter 5, we demonstrate the superiority of the eGHWT over the GHWT (including the graph

Haar and Walsh bases) using real datasets. In Chapter 6, we discuss how the eGHWT can be used

to make the nonnegative matrix factorization (NMF) algorithm more efficient by finding a better

initial estimate to start its iterative algorithms. In addition, we give a brief description of another

project [17] on matrix completion, with the same assumption with NMF that many real matrices

datasets are low rank. We conclude with a summary of the eGHWT and its applications.

The software toolbox including the eGHWT, written entirely in the Julia programming language

[3], is available from https://gitlab.com/BoundaryValueProblems/MTSG.jl.

A preliminary version of the part of the material in this dissertation was presented at the SPIE

Conference on Wavelets and Sparsity XVIII, Aug. 2019, San Diego, CA [58].

2

CHAPTER 2

Background

2.1. Haar-Walsh Wavelets Packets

The Fourier transform is everywhere in physics and mathematics. Function can be mapped

from time domain to the frequency domain through the Fourier transform and mapped backwards

from frequency domain to time domain through the inverse Fourier transform.

For a function f(t) ∈ L1(R), the Fourier transform F : f → f̂ is defined as [62]

[Ff](ω) := f̂(ω) :=

∫ ∞
−∞

f(t)e−iωtdt

If f̂(ω) also belongs to L1(R), then the inverse Fourier transform F−1 : f̂ → f is defined as [62]

[F−1f̂](t) :=
1

2π

∫ ∞
−∞

f̂(ω)eiωtdω = f(t)

Since compactly supported smooth functions are integrable and dense in L2(R), the Plancherel

theorem allows us to extend the definition of the Fourier transform to f ∈ L2(R) by continuity

arguments [49]. The more regular f(t), the faster the decay of the amplitude |f̂(ω)|, when ω

increases.

Although Fourier transform works well for analyzing global and smooth functions, it does not

work well for localized functions. Indeed, the support of eiωt covers the whole real line, so f̂(ω)

depends on the values f(t) for all times t ∈ R. This global “mix” of information makes it difficult

to analyze or represent any local property of f(t) from f̂(ω). Among many mathematical tools to

address this shortcoming, the wavelet transform has proven to be very useful. Wavelets are well

localized and few coefficients are needed to represent local transient structures. As opposed to a

Fourier basis, a wavelet basis can often generate a sparse representation of piecewise regular signals,

which may include transients and singularities [49].

3

A wavelet, or a mother wavelet, is a function ψ ∈ L2(R) satisfying

‖ψ‖2 = 1,∫ ∞
−∞

ψ(t)dt = ψ̂(0) = 0.

Coming in pair is a scaling function φ, or a father wavelet, which satisfies ‖φ‖2 = 1 [49].

A family of functions can then be generated by translating and dilating the mother wavelet and

father wavelet. The translation operator is defined as

Tuf(t) := f(t− u)

and dilation operator is defined as

Dsf(t) :=
1√
s
f

(
t

s

)
.

To reduce redundancy, we choose scales s = 2j and locations u = 2jk, with j, k ∈ Z. We then

define [49]

(2.1) φj,k(t) := T2jkD2jφ(t) =
1√
2j
φ

(
t− 2jk

2j

)

(2.2) ψj,k(t) := T2jkD2jψ(t) =
1√
2j
ψ

(
t− 2jk

2j

)
The continuous wavelet transform of a function f ∈ L2(R) at scale 2j and time 2jk is [49]

(2.3) Wf(j, k) := 〈f, ψj,k〉 =

∫ ∞
−∞

f(t)
1√
2j
ψ(
t− 2jk

2j
)dt.

Suppose ∃B ≥ A > 0 such that

A‖f‖22 ≤
∑
j,k

|〈f, ψj,k〉|2 ≤ B‖f‖22, ∀f ∈ L2(R)

then f can be reconstructed in the L2 sense as

(2.4) f(t) =

∞∑
k=−∞

〈f, φjmax,k〉φ̃jmax,k(t) +

∞∑
k=−∞

jmax∑
j=−∞

〈f, ψj,k〉ψ̃j,k(t).

4

where ψ̃j,k(t) are the dual wavelets, φ̃j,k(t) are the dual scaling function and jmax denotes the

coarsest level. They satisfy the biorthogonality relations

〈ψj,k, ψ̃j′,k′〉 = δ(j − j′)δ(k − k′) ∀j, j′, k, k′ ∈ Z

〈φj,k, φ̃j,k′〉 = δ(k − k′) ∀j, k, k′ ∈ Z

〈φ̃j,k, φj,k′〉 = 0 ∀j, k, k′ ∈ Z

〈ψj,k, φ̃j,k′〉 = 0 ∀j, k, k′ ∈ Z

where δ is the Kronecker delta. From now on, we restrict to the case of orthogonal wavelets, i.e.,

φj,k = φ̃j,k, ψj,k = ψ̃j,k. In this case, φj,k and ψj,k can be written as a linear combination of ψj−1,k

at a finer scale.

(2.5) φj,k(t) =
∑
n

h(n− 2k)︸ ︷︷ ︸
=〈φj,k,φj−1,n〉

φj−1,n(t)

(2.6) ψj,k(t) =
∑
n

g(n− 2k)︸ ︷︷ ︸
=〈ψj,k,φj−1,n〉

φj−1,n(t)

Here h and g are called low-pass and high-pass filters, respectively [49]. With the aid of filters,

we can perform the Fast Wavelet Transform without constructing all the wavelets and computing

coeffcients through inner products explicitly. In other words, the signal can be reconstructed by

plugging (2.5) and (2.6) into (2.7) and replacing dual functions,

(2.7) f(t) =
∞∑

k=−∞
cjmax(k)φjmax,k(t) +

∞∑
k=−∞

jmax∑
j=−∞

dj(k)ψj,k(t).

where

(2.8) cj(k) := 〈f, φj,k〉 =
∑
n

h(n− 2k)cj−1(n)

(2.9) dj(k) := 〈f, ψj,k〉 =
∑
n

g(n− 2k)cj−1(n).

5

The coefficients cj and dj can be computed through the recursion relations (2.8) and (2.9).

Now we have defined the wavelet transform for continuous functions, we then discuss the more

efficient implementation on discrete signals. Let us consider the dyadic discrete signal f ∈ RN ,

where N = 2m (m ∈ Z). Then scaling coefficients on the finest level are just the input signal itself,

i.e., c0(k) := f [k], ∀ k ∈ {1, . . . , N}. Note that the recursive relations (2.8) and (2.9) still hold in

discrete case [49]. Then they can be used to generate the cj and dj at the coarser levels iteratively.

Since there are only a finite number of scales j and locations k, the reconstruction formula (2.7) is

generalized to the discrete case as

(2.10) f [n] =
2m−jmax−1∑

k=0

cjmax(k)︸ ︷︷ ︸
:= 〈f,φjmax,k〉

φjmax,k(n) +

jmax∑
j=1

2m−j−1∑
k=0

dj(k)︸ ︷︷ ︸
:= 〈f,ψj,k〉

ψj,k(n),

where cj and dj computed through (2.8) and (2.9). Making use of filters and their recursive

relations, the time cost of the discrete wavelet transform is only O(N) operations, which is faster

than Fast Fourier Transform with O(N logN).

However, there is one drawback of wavelets. For signals with high-frequency semi-global support

components, the representation is poor. It is because that the filters are only applied to scaling

vectors. To address this shortcoming, Coifman, Meyer and Wickerhauser developed wavelet packets

[12]. In addition to the scaling vectors, low-pass and high-pass filters are also applied to the high-

frequency wavelets. Using the notation in [55], we set w0
j,k(t) := φj,k(t) and w1

j,k(t) := ψj,k(t).

Then the wavelet packet functions are generated by

(2.11) w2l
j,k(t) :=

∑
n

h(n− 2k)wlj−1,n(t)

(2.12) w2l+1
j,k (t) :=

∑
n

g(n− 2k)wlj−1,n(t)

and wavelet packet coefficients via

(2.13) d2l
j (k) := 〈f , wlj,k〉 =

∑
n

h(n− 2k)dlj−1(n)

6

(2.14) d2l+1
j (k)(t) := 〈f , wlj,k〉 =

∑
n

g(n− 2k)dlj−1(n)

Note that the scaling and wavelet coefficients are a subset of the wavelet packet coefficients with

cj(k) = d0
j (k) and dj(k) = d1

j (k). The same goes for the corresponding vectors.

Similarly, let us still consider f ∈ RN (N = 2m, m ∈ Z). We perform the wavelet packet

transform using refinement relations (2.13) and (2.14) in the same manner as (2.8) and (2.9). The

output of the wavelet packet transform is an N × (m+ 1) matrix of expansion coefficient, meaning

N coefficients on each level of (m + 1) levels. The time cost of wavelet packet transform is then

O(N logN) now, since m = log2N .

This dissertation mainly studies the generalized Haar-Walsh transform on the graph. Here we

give an example of the classical Haar-Walsh wavelet packets. The Haar wavelet is

ψ(t) =


1 if 0 ≤ t < 1/2

−1 if − 1/2 ≤ t < 0

0 otherwise

.

The scaling function is

φ(t) =


1 if − 1/2 ≤ t < 1/2

0 otherwise

The Haar wavelet has compact support of length 1 and has 1 vanishing moment, which means that

it is orthogonal to constant functions.

In the case of N = 8, Figure 2.1 [29] displays the Haar-Walsh wavelet packet functions and

Figure 2.2 [29] displays the wavelet packet coefficients. As we can see, these functions are piecewise-

constant. Specifically, the funtions on the bottom level are known as the Walsh functions, with

values only from {− 1√
N
, 1√

N
}. These Walsh functions correspond to the rescaled columns of the

N × N Hadamard matrix HN [20]. HN assumes only the values {−1, 1} and satisfies HNH
T
N =

HT
NHN = NIN .

7

Figure 2.1. The Haar-Walsh wavelet packets for a discrete signal with 8 nodes.
Scaling functions (l = 0) are in black, wavelet functions (l = 1) are in red, and
wavelet packet functions (l ≥ 2) are in blue. The functions on the bottom level are
called Walsh functions [29].

In Figure 2.1, the functions in red together with w0
3,0 form the basis vectors of the Haar wavelet

transform.

Obviously, the number of basis vectors (N(log2N + 1)) inside a wavelet packet is redundant

to represent f ∈ RN . The best-basis algorithm will be used to select the “best” basis over these

vectors according to the signals and tasks at hand. We will go through best-basis algorithm in

detail in the next chapter.

8

Figure 2.2. Wavelet packet coefficients for a discrete signal with 8 nodes. Scaling
coefficients (l = 0) are in black, wavelet coefficients (l = 1) are in red, and wavelet
packet coefficients (l ≥ 2) are in blue [29].

2.2. Basics of Graph Theory and Notation

In this section, we cover some fundamental graph theory and introduce the graph notations

that will be used throughout this dissertation.

A graph is a pair G = (V,E), where V = V (G) = {v1, v2, . . . , vN} is the vertex (or node) set

of G, and E = E(G) = {e1, e2, . . . , eM} is the edge set, where each edge connects two nodes vi, vj

for some 1 ≤ i 6= j ≤ N . We only deal with finite N and M in this dissertation. For simplicity, we

often write i instead of vi.

An edge connecting a node i and itself is called a loop. If there exists more than one edge

connecting some i, j, then they are called multiple edges. A graph having loops or multiple edges

is called a multiple graph (or multigraph); a graph with neither of these is called a simple graph.

A directed graph is a graph in which edges have orientations while undirected graph is a graph in

which edges do not have orientations. If each edge e ∈ E has a weight (normally nonnegative),

then G is called a weighted graph. A path from i to j in a graph G is a subgraph of G consisting

of a sequence of distinct nodes starting with i and ending with j such that consecutive nodes are

adjacent. A path starting from i that returns to i (but is not a loop) is called a cycle. For any two

distinct nodes in V , if there is a path connecting them, then such a graph is said to be connected.

In this dissertation, we mainly consider undirected weighted simple connected graphs. Our method

can be easily adapted to other undirected graph, but we do not consider directed graphs here.

9

Sometimes, each node is associated with spatial coordinates in Rd. For example, if we want to

analyze a network of sensors and build a graph whose nodes represent the sensors under consider-

ation, then these nodes have spatial coordinates in R2 or R3 indicating their current locations. In

that case, we write x[i] ∈ Rd for the location of node i. Denote the functions supported on graph

as f = (f [1], . . . , f [N])T ∈ RN . It is a data vector (often called a graph signal) where f [i] ∈ R is

the value measured at the node i of the graph.

We now discuss several matrices associated with undirected simple graphs. The information

in both V and E is captured by the edge weight matrix W (G) ∈ RN×N , where Wij ≥ 0 is the

edge weight between nodes i and j. In an unweighted graph, this is restricted to be either 0 or

1, depending on whether nodes i and j are adjacent, and we may refer to W (G) as an adjacency

matrix. In a weighted graph, Wij indicates the affinity between i and j. In either case, since G is

undirected, W (G) is a symmetric matrix. We then define the degree matrix

D(G) := diag(d1, . . . , dN), where di :=
∑
j

Wij .

With this in place, we are now able to define the (unnormalized) Laplacian matrix, random-walk

normalized Laplacian matrix, and symmetric normalized Laplacian matrix respectively, as

L(G) := D(G)−W (G),

Lrw(G) := D(G)−1L(G),

Lsym(G) := D(G)−1/2L(G)D(G)−1/2.

See [68] for the details of the relationship between these three matrices and their spectral properties.

We use 0 = λ0 < λ1 ≤ . . . ≤ λN−1 to denote the sorted Laplacian eigenvalues and φ0,φ1, . . . ,φN−1

to denote their corresponding eigenvectors, where the specific Laplacian matrix to which they refer

will be clear from either context or subscripts.

Laplacian eigenvectors can then be used for graph partitioning. Spectral clustering [68] per-

forms k-means on the first few eigenvectors to partition the graph. This approach is justified from

the fact that it is an approximate minimizer of the graph-cut criterion called Ratio Cut [23] (or

the Normalized Cut [59]) when L (or Lrw, respectively) is used. Suppose G is partitioned into A

10

and Ac, then Ratio Cut and Normalized Cut are defined by

cut(A,Ac) :=
∑

i∈A,j∈Ac
Wij

vol(A) :=
∑
i∈A

di

Ratio Cut(A,Ac) :=
cut(A,Ac)

|A|
+

cut(A,Ac)

|Ac|

Normalized Cut(A,Ac) :=
cut(A,Ac)

vol(A)
+

cut(A,Ac)

vol(Ac)

To reduce the computational complexity (as we did for the GHWT construction), we only use

the Fiedler vector [18], i.e., the eigenvector φ1 corresponding to the smallest nonzero eigenvalue λ1,

to bipartition a given graph (or subgraph) in this dissertation. For a connected graph G, Fiedler

showed that Fiedler vector partitions the vertices into two sets by letting

V1 = {i |φ1[i] ≥ 0},

V2 = V \ V1,

such that the subgraphs induced on V1 and V2 by G are both connected graphs [18].

11

2.3. Recursive Partitioning of Graphs

The foundation upon which the GHWT (and the eGHWT) is constructed is a binary partition

tree (also known as a hierarchical bipartition tree) of an input graph G(V,E): a set of tree-structured

subgraphs of G constructed by recursively bipartitioning G. This bipartitioning operation ideally

splits each subgraph into two smaller subgraphs that are roughly equal in size while keeping tightly-

connected nodes grouped together. As mentioned in the last section, we typically use the Fiedler

vectors of the Lrw matrices of subgraphs for this bipartitioning. More specifically, let Gjk denote the

kth subgraph on level j of the binary partition tree of G. Note G0
0 = G and level j = 0 represents

the root node of this tree. Then the two children of Gjk in the tree, Gj+1
k′ and Gj+1

k′+1, are obtained

through partitioning Gjk using the Fiedler vector of Lrw(Gjk). The graph partitioning is recursively

performed until each subgraph corresponding to the leaf contains only one node.

In general, other spectral clustering methods with different number of eigenvectors or different

Laplacian matrices are applicable as well. We impose five conditions on the binary partition tree

(1) The root of the tree is the entire graph, i.e., G0
0 = G.

(2) The leaves of the tree are single-node graphs, i.e., |V (Gjmax

k)| = 1. Here jmax is the height

of the tree.

(3) All regions on the same level are disjoint, i.e., V (Gjk) ∪ V (Gjk′) = ∅ if k 6= k′.

(4) Each subgraph with more than one node is partitioned into exactly two subgraphs.

(5) (Optional) In practice, the size of the two children, |V (Gj+1
k′)| and |V (Gj+1

k′+1)| should not

be too far apart to reduce inefficiency.

Even other graph cut methods can be used to form the binary partition tree, as long as those

conditions are satisfied. The flexibility of our methods is advantageous.

We demonstrate two examples illustrating the partition tree here. The first one is a simple

6-node path graph. It has five edges with equal weights connecting adjacent nodes. Figure 2.3 is

the partition tree formed on the graph. In the first iteration, it is bipartitioned into two subgraphs

with 3 nodes each. Then each of those 3 nodes graphs is biparitioned into an 1-node graph and a

2-nodes graph. In the end, the subgraphs are all 1-node graph.

12

1 2 3 4 5 6

1 2 3 4 5 6

1 2 3 4 5 6

1 2 3 4 5 6

Figure 2.3. An example of a hierarchical tree for a path-graph with N = 6 nodes,
where the edge weights are equal. The root is the whole graph. The Fiedler vector
of Lrw is used to do the bipartition.

The second example is the the vehicular traffic volume data on the Toronto road network 1,

which contains the most recent 8 peak-hour vehicle volume counts collected at intersections where

there are traffic signals. The data was typically collected between the hours of 7:30 am and 6:00 pm,

over the period of 03/22/2004–02/28/2018. We generated the road network of Toronto using the

street names and intersection coordinates included in the dataset. The graph has N = 2275 nodes

and M = 3381 edges. Figure 2.4 displays this vehicular volume data where the size of the marker

is proportional to the vehicular volume. Figure 2.5 gives us a visualization of the first 3 levels of

the partition tree on Toronto road data. The Fiedler vector of Lrw is used to do the bipartition

here. Note that how partition tree is computed is not affected by the signal values on the nodes,

i.e., the vehicular volume here.

1https://www.toronto.ca/city-government/data-research-maps/open-data/open-data-catalogue/

transportation/#7c8e7c62-7630-8b0f-43ed-a2dfe24aadc9

13

-79.6 -79.5 -79.4 -79.3 -79.2

43.60

43.65

43.70

43.75

43.80

43.85

10000

20000

30000

40000

50000

Figure 2.4. Vehicular traffic volume data on the Toronto road network

14

(a) Level j = 0

(b) Level j = 1

(c) Level j = 2

Figure 2.5. A demonstration of partition tree. On the same level, different colors
correspond to different regions.

15

CHAPTER 3

The Generalized Haar-Walsh Transform (GHWT)

In this chapter, we will review the Generalized Haar-Walsh Transform (GHWT) [30, 31, 33].

It is a multiscale transform for graph signals and a true generalization of the classical Haar and

Walsh-Hadamard transforms: if an input graph is a simple path graph whose number of nodes is

dyadic, then the GHWT reduces to the classical counterpart exactly.

3.1. Overcomplete Dictionaries of Bases

After the binary partition tree of the input graph with depth jmax is generated, an overcomplete

dictionary of basis vectors is composed. Each basis vector is denoted as ψjk,l, where j ∈ [0, jmax]

denotes the level, k ∈ [0,Kj) denotes the region and l denotes the tag. Kj is the number of

sub-graphs on level j. The tag l assumes a distinct integer value within the range [0, 2jmax−j).

The tag l, when expressed in binary, specifies the sequence of average and difference operations

by which ψjk,l was generated. For example, l = 6 written in binary is 110, which means that the

basis vector/expansion coefficient was produced by two differencing operations (two 1s) followed by

an averaging operation (one 0). Generally speaking, larger l values indicate more oscillation, with

exceptions when imbalances occur in the recursive partitioning. We refer to basis vectors with tag

l = 0 as scaling vectors, those with tag l = 1 as Haar vectors, and those with tag l ≥ 2 as Walsh

vectors.

The GHWT begins by defining an orthonormal basis on level jmax and obtaining the cor-

responding expansion coefficients. The canonical basis is used here since each single region are

1-node graph: ψjmax

k,0 := 1
V (Gjmax

k)
, where k ∈ [0, N) and |V (Gjmax

k)| = 1. The expansion coeffcients

djmax

k,0 are then simply the reordered input signal f . From here the algorithm proceeds recursively,

the basis vectors and expansion coefficients on level j − 1 are computed from those on level j. The

GHWT proceeds as in Algorithms 1 and 2.

16

Algorithm 1: Generating the GHWT Dictionary of basis vectors [30,31,33]

Input: A binary partition tree {Gjk} of the graph G, 0 ≤ j ≤ jmax and 0 ≤ k < Kj .

N j
k := |V (Gjk)|. K

j denotes the number of subgraphs on level j.

Output: An overcomplete dictionary of basis vectors {ψjk,l}
for k = 0, . . . , N − 1 do // Basis vectors on level jmax are unit vectors

ψjmax

k,0 ← 1
V (Gjmax

k)
∈ RN

end

for j = jmax, . . . , 1 do // Compose basis vectors on level j − 1 from level j
for k = 0, . . . ,Kj−1 − 1 do

ψj−1
k,0 ← 1

V (Gj−1
k)

/
√
N j−1
k // Compute the scaling vector

// Basis vectors supported on V (Gj−1
k) are computed from those on

V (Gjk′) and V (Gjk′+1). Gjk′ and Gjk′+1 are the two subgraphs of Gj−1
k

if N j−1
k > 1 then

ψj−1
k,1 ←

Nj

k′+1

√
Nj

k′ψ
j

k′,0−N
j

k′

√
Nj

k′+1
ψj
k′+1,0√

Nj

k′ (N
j

k′+1
)2+Nj

k′+1
(Nj

k′)
2

// Compute the Haar vector

end

if N j−1
k > 2 then

for l = 1, . . . , 2jmax−j − 1 do // Compute the Walsh-like vectors

if both subregions k′ and k′ + 1 have a basis vector with tag l then

ψj−1
k,2l ← (ψjk′,l +ψjk′+1,l)/

√
2;

ψj−1
k,2l+1 ← (ψjk′,l −ψ

j
k′+1,l)/

√
2;

else if (without loss of generality) only subregion k′ has a basis vector with
tag l then

ψj−1
k,2l ← ψjk′,l

else if Neither subregion has a basis vector with tag l then
Do nothing

end

end

end

end

17

Algorithm 2: Generating the GHWT Dictionary coeffcients [30,31,33]

Input: A binary partition tree {Gjk} of the graph G, 0 ≤ j ≤ jmax and 0 ≤ k < Kj .

N j
k := |V (Gjk)|. Input signal f supported on G

Output: The set of expanding coefficients {djk,l} of signal f on the GHWT dictionary

{ψjk,l}
for k = 0, . . . , N − 1 do // Basis vectors on level jmax are unit vectors

djmax

k,0 ← 〈1V (Gjmax
k)

,f〉
end

for j = jmax, . . . , 1 do // Compute coefficients on level j − 1 from level j
for k = 0, . . . ,Kj−1 − 1 do

dj−1
k,0 ← 〈1V (Gj−1

k)
/
√
N j−1
k ,f〉 // Compute the scaling coefficient

// Coefficients of basis vectors supported on V (Gj−1
k) are computed

from those on V (Gjk′) and V (Gjk′+1). Gjk′ and Gjk′+1 are the two

subgraphs of Gj−1
k

if N j−1
k > 1 then

dj−1
k,1 ←

Nj

k′+1

√
Nj

k′d
j

k′,0−N
j

k′

√
Nj

k′+1
dj
k′+1,0√

Nj

k′ (N
j

k′+1
)2+Nj

k′+1
(Nj

k′)
2

// Compute the Haar coefficient

end

if N j−1
k > 2 then

for l = 1, . . . , 2jmax−j − 1 do // Compute the Walsh-like coefficients

if both subregions k′ and k′ + 1 have a basis vector with tag l then

dj−1
k,2l ← (djk′,l + djk′+1,l)/

√
2;

dj−1
k,2l+1 ← (djk′,l − d

j
k′+1,l)/

√
2;

else if (without loss of generality) only subregion k′ has a basis vector with
tag l then

dj−1
k,2l ← djk′,l

else if Neither subregion has a basis vector with tag l then
Do nothing

end

end

end

end

18

Algorithms 1 and 2 can be performed simultaneously. In practice, when analyzing the input

signal f , we only need Algorithm 2 to compute the coefficients without computing the basis vectors

explicitly.

For the dictionary of basis vectors, several observations are in order.

• First, the basis vectors on each level are localized. In other words, ψjk,l is supported on

V (Gjk). If V (Gjk) ∩ V (Gj
′

k′) = ∅, then the basis vectors {ψjk,l}l and {ψj
′

k′,l′}l′ are mutually

orthogonal.

• Second, the basis vectors corresponding to Gjk span the same linear subspace as the union

of those corresponding to Gj+1
k′ and Gj+1

k′+1, where Gj+1
k′ and Gj+1

k′+1 are the two subgraphs

of Gjk.

• Third, the depth of the dictionary is the same as the binary partition tree, which is

approximately O(logN) if the tree is nearly balanced. There are N vectors on each level,

so the total number of basis vectors is approximately O(N logN).

In addition, we can arrange these basis vectors by region, which we call the coarse-to-fine (c2f)

dictionary. It is the same as the result obtained from Algorithm 1. Or we can arrange them by

tag, which we call the fine-to-coarse (f2c) dictionary [30, 31, 33]. The c2f dictionary corresponds

to a collection of basis vectors by recursively partitioning the “time” domain information of the

input graph signal while the f2c dictionary corresponds to those by recursively partitioning the

“frequency” (or “sequency”) domain information of the input graph signal. Each dictionary contains

more than (1.5)N choosable ONBs; see, e.g., Thiele and Villemoes [65] for the details on this

number. Note, however, that exceptions can occur when the recursive partitioning generates a

highly imbalanced tree. Figure 3.1 shows the examples of these dictionaries for a simple path

graph consisting of six nodes. Figure 3.2 shows examples of the vectors from the GHWT dictionary

computed on the Toronto traffic dataset.

19

ψ0
0,0 ψ0

0,1 ψ0
0,2 ψ0

0,3 ψ0
0,4 ψ0

0,5

ψ1
0,0 ψ1

0,1 ψ1
0,2 ψ1

1,0 ψ1
1,1 ψ1

1,2

ψ2
0,0 ψ2

0,1 ψ2
1,0 ψ2

2,0 ψ2
2,1 ψ2

3,0

ψ3
0,0 ψ3

1,0 ψ3
2,0 ψ3

3,0 ψ3
4,0 ψ3

5,0

(a) The c2f GHWT dictionary

ψ3
0,0 ψ3

1,0 ψ3
2,0 ψ3

3,0 ψ3
4,0 ψ3

5,0

ψ2
0,0 ψ2

1,0 ψ2
2,0 ψ2

3,0 ψ2
0,1 ψ2

2,1

ψ1
0,0 ψ1

1,0 ψ1
0,1 ψ1

1,1 ψ1
0,2 ψ1

1,2

ψ0
0,0 ψ0

0,1 ψ0
0,2 ψ0

0,3 ψ0
0,4 ψ0

0,5

(b) The f2c GHWT dictionary

Figure 3.1. The c2f and f2c GHWT dictionaries on the simple path P6. Stem
plots with black, red, blue colors correspond to the scaling, Haar, and Walsh vectors,
respectively.

20

(a) Scaling vector ψ1
0,0

(b) Haar vector ψ2
0,1

(c) Walsh vector ψ5
1,34

Figure 3.2. Examples of vectors from GHWT dictionary computed on Toronto
traffic dataset

21

3.2. The Previous Best-Basis Algorithm in the GHWT

To select the basis from a dictionary of wavelet packets that is “best” for approximation/compression,

a best-basis algorithm is required. The previous best-basis algorithm for the GHWT is a straight-

forward generalization of the Coifman-Wickerhauser algorithm [13], which was developed for non-

graph signals of dyadic length. The algorithm requires a real-valued cost function J , and aims to

find the basis whose coefficients minimize J . The algorithm initiates the best basis as the whole

set of vectors at the bottom level of the dictionary. Then it proceeds upwards, comparing the cost

of the expansion coefficients corresponding to two children subgraphs to the cost of those of their

parent subgraph. The best basis is updated if the cost of the parent subgraph is smaller than that

of its children subgraphs. The algorithm continues until it reaches the top (i.e., the root) of the

binary partition tree (i.e., the dictionary). Algorithm 3 describes the details of this procedure.

Algorithm 3: The best-basis algorithm of Coifman-Wickerhauser [13] tailored for the
GHWT [30,31,33]

Input: An overcomplete dictionary of basis vectors {ψjk,l} from Algorithm 1, 0 ≤ j ≤ jmax

and 0 ≤ k < Kj where Kj denotes the number of subgraphs on level j; an additive
cost function J (d) =

∑N
i=1 g(di); an input graph signal f ∈ RN .

Output: The best basis B(G); the minimal cost A(G).
for k = 0, . . . , N − 1 do // Initialize the best basis on level jmax

B(Gjmax

k)← {ψjmax

k,0 };
A(Gjmax

k) = g(〈ψjmax

k,0 ,f〉)
end

for j = jmax − 1, . . . , 0 do // Update the best basis upwards

for k = 0, . . . ,Kj do

B(Gjk)← {ψ
j
k,l};

A(Gjk)←
∑

l g(〈ψjk,l,f〉);
if Gjk is split into two subgraphs Gj+1

k′ and Gj+1
k′+1 then

if A(Gjk) ≥ A(Gj+1
k′) +A(Gj+1

k′+1) then

B(Gjk)← B(Gj+1
k′) ∪B(Gj+1

k′+1);

A(Gjk)← A(Gj+1
k′) +A(Gj+1

k′+1)

end

end

end

end

B(G)← B(G0
0);

A(G)← A(G0
0);

22

The c2f and f2c dictionaries are searched separately to obtain two sets of the best bases, among

which the one with smaller cost is chosen as the final best basis of the GHWT dictionaries. We

note here that the graph Haar basis is selectable only in the f2c dictionary while the graph Walsh

basis is selectable in either dictionary.

In the GHWT case, the algorithm works as long as J is nonnegative and additive 1 of the form

J (d) :=
∑

i g(di) with g : R→ R≥0, where d is the expansion coefficients of an input graph signal

on each region. For example, if one wants to promote sparsity in graph signal representation or

approximation, J (d) function can be chosen as: either the p-th power of `p-(quasi)norm
∑

i |di|p

for 0 < p < 2 or the `0-pseudonorm |{di | di 6= 0}|. Note that the smaller the value of p is, the more

emphasis in sparsity is placed. Here the 2-norm is not used, since for each orthonormal basis, the

2-norm is the same as that of input signal. The Shannon entropy of the expansion coefficients can

be used as well. Of course, the choice of cost functional depends on the task at hand. For example,

the 1-norm is often used to promote sparsity.

1The additivity property can be dropped in principle by following the work of Saito and Coifman on the local
regression basis [57]

23

CHAPTER 4

The extended Generalized Haar-Walsh Transform (eGHWT)

In this chapter, we describe the extended GHWT, i.e., our new best-basis algorithm on the

GHWT dictionaries, which simultaneously considers the “time” domain split and “frequency” (or

“sequency”) domain split of an input graph signal. This transform will allow us to deploy the

modified best-basis algorithm that can select the best ONB for one’s task (e.g., efficient approx-

imation, denoising, etc.) among a much larger set (> 0.618 · (1.84)N) of ONBs than the c2f and

f2c GHWT dictionaries would provide (> (1.5)N). The previous best-basis algorithm only searches

through the c2f dictionary and f2c dictionary separately, but this new method makes use of those

two dictionaries simultaneously.

Thiele and Villemoes [65] proposed an algorithm to find the best basis among the ONBs of

RN consisting of discretized rescaled Walsh functions for an input 1D (non-graph) signal of length

N , where N must be a dyadic integer. Their algorithm operates in the time-frequency plane by

constructing a tiling of minimal cost among all possible tilings with dyadic rectangles of area one.

Here we adapt their method to our graph setting that does not have to be dyadic. In addition, its

generalization for 2D signals developed by Lindberg and Villemoes [47] can be generalized to the

2D eGHWT, as we will discuss more in Section 4.6 and Section 5.2.

4.1. Fast Adaptive Time-Frequency Tilings

In this section, a brief description of Thiele-Villemoes algorithm [65] is given. Let W0(t) = 1

for 0 ≤ t < 1 and zero elsewhere, and define W1,W2,. . . recursively by

W2l(t) = Wl(2t) + (−1)lWl(2t− 1),

W2l+1(t) = Wl(2t)− (−1)lWl(2t− 1).
(4.1)

24

Then {Wl}∞l=0 is the Walsh system in sequency order. It is an orthonormal basis for L2(0, 1) and

each basis function is piecewise equal to either 1 or −1 on [0, 1). The scaling and Haar vectors are

included in this Walsh system.

Viewing S := [0, 1) × [0,∞) as a time-frequency plane, the dyadic rectangle corresponding to

the rescaled Walsh function

wp(t) := 2j/2Wl(2
jt− k)

is defined as

(4.2) p := [2−jk, 2−j(k + 1))× [2jl, 2j(l + 1)).

Then, we have the following theorems:

Theorem 4.1.1. The functions wp and wq are orthogonal if and only if the tiles p and q are

disjoint.

Theorem 4.1.2. Let T = I × ω be a dyadic rectangle of area |T | = |I||ω| ≥ 1, and assume that

B and B′ are two collections of tiles, both defining disjoint coverings of T . Then {wp | p ∈ B} and

{wp | p ∈ B′} are orthonormal bases of the same subspace of L2(0, 1).

According to the paper [65], the discrete signal space RN (N = 2n) can be identified with the

subset Sn := [0, 1) × [0, N) of S in the time-frequency plane. Given the overcomplete dictionary

of Haar-Walsh functions on RN , the best-basis algorithm now is equivalent to finding a set of basis

vectors with minimal cost and their tiles form a disjoint tiling of Sn. That tiling is called the

minimizing tiling.

Lemma 4.1.3. Let T ⊂ S be a rectangle of area greater or equal to two, with left half L, right

half R, lower half D, and upper half U . Assume each tile p ⊂ T has the cost c(p). Define

mT := min{
∑
p∈B

c(p) | B is a disjoint covering of T}

and similarly mL,mR,mD,mU . Then

mT = min{mL +mR,mD +mU}.
25

This lemma tells us that the minimizing tiling of T can be split either in the time-direction into

two minimizing tilings of L and R respectively, or in the frequency-direction into those of D and

U respectively. It enables dynamic programming algorithm (Algorithm 4) to find the minimizing

tiling of Sn.

Algorithm 4: Fast Time-Frequency Tilings [65]

Input: All tiles contained in Sn. A cost function c(p) defined on each tile p.
Output: The minimizing tiling B(Sn)
Compute the cost c(p) of all tiles contained in Sn. And initialize B(p) = p for every p. for
m = 1, . . . , n do

for all dyadic rectangles P ⊂ Sn of area 2m do
Check the left half PL, right half PR, upper half PU and lower half PD of P , if
c(PL) + c(PR) ≥ c(PU) + c(PD) then
B(P)← B(PU) ∪B(PD)
c(P)← c(PU) + c(PD)

else
B(P)← B(PL) ∪B(PR)
c(P)← c(PL) + c(PR)

end

end

end
Finally B(Sn) is a minimizing tiling of Sn with the minimal cost c(Sn).

A simple example is the easiest way to understand this algorithm. Consider the signal f =
(3, 1, 2, 2, 3, 1, 1, 3) ∈ R8. The time-frequency plane is S3 = [0, 1) × [0, 8), and the frequency axis
is scaled so that S3 is a square in the Figure 4.1 for visualization purpose. Here we use the cost
function J (d) =

∑
i |di|, which means the cost of a tile p is c(p) = |〈f ,wp〉|. The collection of all

32 tiles and the corresponding coefficients are placed on four copies of S3 in the top row of squares
of Figure 4.1. They are all of size 1. More specifically, the basis vectors corresponding to the tiles
are (from left to right in the top row of the figure)

• Eight unit vectors.

•
1
√
2
×

(1,−1, 0, 0, 0, 0, 0, 0) (0, 0, 1,−1, 0, 0, 0, 0) (0, 0, 0, 0, 1,−1, 0, 0) (0, 0, 0, 0, 0, 0, 1,−1)

(1, 1, 0, 0, 0, 0, 0, 0) (0, 0, 1, 1, 0, 0, 0, 0) (0, 0, 0, 0, 1, 1, 0, 0) (0, 0, 0, 0, 0, 0, 1, 1)

•

1

2
×

(1,−1,−1, 1, 0, 0, 0, 0) (0, 0, 0, 0, 1,−1,−1, 1)

(1,−1, 1,−1, 0, 0, 0, 0) (0, 0, 0, 0, 1,−1, 1,−1)

(1, 1,−1,−1, 0, 0, 0, 0) (0, 0, 0, 0, 1, 1,−1,−1)

(1, 1, 1, 1, 0, 0, 0, 0) (0, 0, 0, 0, 1, 1, 1, 1)

26

•

1

2
√
2
×

(1, −1, −1, 1, −1, 1, 1, −1)

(1, −1, −1, 1, 1, −1, −1, 1)

(1, −1, 1, −1, −1, 1, −1, 1)

(1, −1, 1, −1, 1, −1, 1, −1)

(1, 1, −1, −1, −1, −1, 1, 1)

(1, 1, −1, −1, 1, 1, −1, −1)

(1, 1, 1, 1, −1, −1, −1, −1)

(1, 1, 1, 1, 1, 1, 1, 1)

In the first iteration (m = 1) in Figure 4.11, the minimizing tilings for all the dyadic rectangles

of size 2 are computed from those with size 1. For example, for the left most dyadic rectangle with

cost 4 at m = 1. It can be composed by the two tiles of (1, 0, 0, 0, 0, 0, 0, 0) and (0, 1, 0, 0, 0, 0, 0, 0),

or 1√
2
(1,−1, 0, 0, 0, 0, 0, 0) and 1√

2
(1, 1, 0, 0, 0, 0, 0, 0). The cost are |3| + |1| or |

√
2| + |2

√
2|, the

minimal of which is 4. The minimizing tiling for that dyadic rectangle is (1, 0, 0, 0, 0, 0, 0, 0) and

(0, 1, 0, 0, 0, 0, 0, 0) with cost 4. In the second iteration, the algorithm finds the minimizing tilings

for all dyadic rectangles with size 4. In the third iteration, the algorithm finds the minimizing tiling

for the whole S3.

Note that the Coifman-Wickerhauser best-basis algorithm considers only the split of best basis

in the time direction. The Thiele-Villemoes best-basis algorithm considers the split in both the

time and frequency direction in the special case of Walsh functions.

1Reprinted from Applied and Computational Harmonic Analysis, Christoph M. Thiele and Lars F. Villemoes, A fast
algorithm for adapted time–frequency tilings, Page 96, Copyright (2020), with permission from Elsevier.

27

Figure 4.1. Graphical representation of Algorithm 4 for the simple signal in R8 The
cost function is chosen to be the sum of absolute values of the expansion coefficients.
The top row contains all tiles and coefficients. The bottom row represents the best
basis. (This figure is from [65].)

28

4.2. Numerical Analysis

We point out an error in the time cost analysis of Algorithm 4 in the original paper [65], which

does not affect the final result. There are (n −m + 1)2n−m dyadic subrectangles of Sn with area

2m, instead of (n−m+ 1)2n−1 in the paper. So the mth iteration involves (n−m+ 1)2n−m times

two additions and one comparison. This gives a total of

3
n∑

m=1

(n−m+ 1)2n−m = 3(n+ 1)2n.

Therefore the search for the best basis takes around 3(log2N + 1)N operations. Adding the

O(N log2N) operations to compute all the expansion coefficients on the whole dictionary, the

whole process of representing f with the best basis takes O(N logN) operations.

According to [65], the number of ONBs searched for RN is between 0.618(1.84)N and 0.618(1.85)N .

The sketch of the proof is as follows. Denote the number of searchable ONBs for RN (N = 2n)

in their algorithm as an. Then an is equal to the number of tilings of a dyadic rectangle T of

area 2n with dyadic tiles of area 1. Each tiling can be split vertically or horizontally, and the

subtilings have an−1 possibilities. Therefore, there are totally 2a2
n−1 possibilities for tilings of T ,

except for the doubly counted tilings which can be split vertically and horizontally. The doubly

counted tilings can be split into four subtilings, each with an−2 possibilities. Therefore there are

a4
n−2 doubly counted tilings, so we have

an = 2a2
n−1 − a4

n−2 (n ≥ 2).

With a0 = 1, a1 = 2, it can be verified by induction that 0.618(1.84)2n ≤ an ≤ 0.618(1.85)2n .

29

4.3. Relabeling Region Indices

When the input signal is dyadic and the partition tree is a balanced complete binary tree,

the GHWT dictionary is the same as regular Haar-Walsh wavelet packet dictionary, on which

the Thiele-Villemoes algorithm [65] can be applied in a straightforward manner. To adapt the

algorithm to a graph signal with an arbitrary size or an unbalanced incomplete binary partition

tree, we need to modify the GHWT dictionary first.

Specifically, the region index k of Gjk and ψjk,l needs to be relabeled. Previously, on level j, the

region index k takes all the integer values in [0,Kj) where Kj is the total number of subgraphs (or

regions) on level j. After relabeling, k takes an integer values in [0, 2j) according to its location in

the binary tree. The whole procedure is described by Algorithm 5. Then the region indices of the

basis vectors {ψjk,l} supported on the subgraph Gjk are also relabeled accordingly.

Algorithm 5: Relabeling the GHWT Dictionary

Input: A binary partition tree denoted by {Gjk}, 0 ≤ k < Kj , 0 ≤ j < jmax, Kj denotes
the number of subgraphs on level j

Output: The same binary partition tree {Gjk} with region index k relabeled
// On level 0, there is only one region G0

0, so no relabeling is required.

for j = 1, . . . , jmax do

if Gj−1
k is split into Gjk′ and Gjk′+1 then

The two subgraphs are relabeled as Gj2k and Gj2k+1

else if Gj−1
k is kept as Gjk′ then // the subgraph contains only one node.

The subgraph is relabeled as Gj2k
end

Figure 4.2b shows the result of Algorithm 5 applied to the c2f GHWT dictionary shown in

Figure 4.2a on a simple path graph with N = 6. Before the relabeling, the dictionary forms an

unbalanced binary tree. After the relabeling, the dictionary is a subset of a perfect binary tree.

30

ψ0
0,0 ψ0

0,1 ψ0
0,2 ψ0

0,3 ψ0
0,4 ψ0

0,5

ψ1
0,0 ψ1

0,1 ψ1
0,2 ψ1

1,0 ψ1
1,1 ψ1

1,2

ψ2
0,0 ψ2

0,1 ψ2
1,0 ψ2

2,0 ψ2
2,1 ψ2

3,0

ψ3
0,0 ψ3

1,0 ψ3
2,0 ψ3

3,0 ψ3
4,0 ψ3

5,0

(a) The c2f GHWT dictionary

ψ0
0,0 ψ0

0,1 ψ0
0,2 ψ0

0,3 ψ0
0,4 ψ0

0,5 ψ0
0,6 ψ0

0,7

ψ1
0,0 ψ1

0,1 ψ1
0,2 ψ1

0,3 ψ1
1,0 ψ1

1,1 ψ1
1,2 ψ1

1,3

ψ2
0,0 ψ2

0,1 ψ2
1,0 ψ2

1,1 ψ2
2,0 ψ2

2,1 ψ2
3,0 ψ2

3,1

ψ3
0,0 ψ3

1,0 ψ3
2,0 ψ3

3,0 ψ3
4,0 ψ3

5,0 ψ3
6,0 ψ3

7,0

(b) The relabeled c2f GHWT dictionary

Figure 4.2. (a) The c2f GHWT dictionary on the simple path P6. Stem plots
with black, red, blue colors correspond to the scaling, Haar, and Walsh vectors,
respectively. (b) The relabeled c2f GHWT dictionary by Algorithm 5 applied to the
c2f GHWT dictionary shown in (a). The gray stem plots indicate the “fictitious”
(or “non-existent”) nodes newly generated by Algorithm 5.

31

4.4. The New Best-Basis (eGHWT) Algorithm

We can now apply Algorithm 6 to search for the best basis in the new GHWT dictionary. This

whole procedure is called the eGHWT.

Algorithm 6: The New Best-Basis (eGHWT) Algorithm

Input: The dictionary of basis vectors {ψjk,l} from Algorithm 5; an additive cost function

J (c) =
∑N

i=1 g(c[i]); an input graph signal f ∈ RN .
Output: The best basis B.
Initialize the associative array1 A0 as the expansion coefficients2 of the dictionary

evaluated through g(·), i.e., A0[j, k, l] = g(〈ψjk,l,f〉);
Initialize another associative array I0 by I0[j, k, l] = 1 if (j, k, l) ∈ A0;

for m = 0, . . . , jmax − 1 do // Compute Am+1 and Im+1

Initialize Am+1 and Im+1 as empty associative arrays;

for (j, k, l) ∈ Am with j < jmax and l ≡ 0 (mod 2) do
if (Am[j, k, l] +Am[j, k, l + 1]) ≤ (Am[j + 1, 2k, l/2] +Am[j + 1, 2k + 1, l/2]) then

Im+1[j, k, l/2]← 0;

Am+1[j, k, l/2]← (Am[j, k, l] +Am[j, k, l + 1]);

else
Im+1[j, k, l/2]← 1;

Am+1[j, k, l/2]← (Am[j + 1, 2k, l/2] +Am[j + 1, 2k + 1, l/2]);

end

// Any of Am[j, k, l + 1], Am[j + 1, 2k, l/2], Am[j + 1, 2k + 1, l/2] will be

replaced by 0 in the above steps if it does not exist.

end

end

I ← Ijmax ;

for m = jmax − 1, . . . , 0 do // Recover the best basis from {Im}
Initialize Itemp as an empty associative array;

for (j, k, l) ∈ I do
if I[j, k, l] = 0 then

Itemp[j, k, l]← Im[j, k, 2l] if (j, k, 2l) ∈ Im;

Itemp[j, k, l]← Im[j, k, 2l + 1] if (j, k, 2l + 1) ∈ Im;

else
Itemp[j + 1, 2k, l]← Im[j + 1, 2k, l] if (j + 1, 2k, l) ∈ Im;

Itemp[j + 1, 2k + 1, l]← Im[j + 1, 2k + 1, l] if (j + 1, 2k + 1, l) ∈ Im;

end

end

I ← Itemp;

end

B ← {}; // Initialize B as an empty set

Add ψjk,l into B if (j, k, l) ∈ I. // B is the best basis

32

Several remarks on this algorithm are in order:

• Am[j, k, l] is the minimal cost of ONBs in a linear subspace. Generally, Am[j, k, l] is

computed from the minimal of Am−1[j, k, 2l] + Am−1[j, k, 2l + 1] and Am−1[j + 1, 2k, l] +

Am−1[j + 1, 2k+ 1, l]. The linear subspace of Am[j, k, l] is the direct sum of the two linear

subspaces corresponding to Am−1[j, k, 2l] and Am−1[j, k, 2l + 1], which is the same as the

direct sum of those corresponding to Am−1[j+ 1, 2k, l] and Am−1[j+ 1, 2k+ 1, l]. In other

words, when we compute Am from Am−1, we are concatenating linear subspaces. This

process is similar to finding the best tilings for dyadic rectangles from those with half the

size in Thiele-Vellemoes algorithm [65] as described in Section 4.1.

• The linear subspace of each entry in A0 is one dimensional since it is spanned by a single

basis vector. In other words, A0[j, k, l] corresponds to the linear subspace spanned by ψjk,l.

• Ajmax has only one entry Ajmax [0, 0, 0], which corresponds to the whole RN . Its value is

the minimal cost of all the ONBs, i.e., the cost of the best basis.

• If the signal is of dyadic length, then (Am−1[j, k, 2l], Am−1[j, k, 2l + 1]) corresponds to

splitting the subspace of Am[j, k, l] in the “frequency” domain in the “time-frequency

plane” while (Am−1[j+ 1, 2k, l], Am−1[j+ 1, 2k+ 1, l]) does the split in the “time” domain.

• If the signal is of dyadic length, the eGHWT can select among a much larger set (>

0.618 · (1.84)N) of ONBs than what each of the c2f and f2c GHWT dictionaries would

provide (> (1.5)N) [65]. The numbers are similar even for non-dyadic cases as long as the

partition trees are essentially balanced. The essence of this algorithm is that at each step

of the recursive evaluation of the costs of subspaces, it compares the cost of the parent

subspace with not only its two children subspaces partitioned in the “frequency” domain

(the f2c GHWT does this), but also its two children subspaces partitioned in the “time”

domain (the c2f GHWT does this).

• When implementing the algorithm, associate arrays1 are used to store the costs {Am}

and indices {Im}. Since many ψjk,l may be fictitious, which we do not need to store or

1An associative array is an abstract data type composed of a collection of (key, value) pairs such that each possible
key appears at most once in the collection.
2((j, k, l), g(〈ψjk,l,f〉)) is a pair of (key, value) of the associative array A0. Here we use (j, k, l) ∈ A0 to denote that

(j, k, l) is a valid key of A0. Therefore, (j, k, l) ∈ A0 if and only if ψjk,l exists. Since we relabeled ψjk,l, there is no

corresponding ψjk,l for some triple (j, k, l). In that case, (j, k, l) /∈ A0.

33

compute, using regular matrices to store them will be wasteful. On the other hand, due to

the various range of j, k, l, using associative arrays give us more flexibility and efficiency

than using sparse matrices.

34

4.5. The eGHWT illustrated by a graph signal on P6

Let f = [2,−2, 1, 3,−1,−2]T ∈ R6 be an example graph signal on the simple 6-node path P6

to analyze. The `1-norm is chosen as the cost function. Figure 4.3 shows that the c2f-GHWT best

basis is actually the Walsh basis, and its representation is
√

6
6 ψ

0
0,0 +

√
6

6 ψ
0
0,1 + 2

√
3

3 ψ0
0,2 + 4

√
3

3 ψ0
0,3 +

4ψ0
0,4 + 0ψ0

0,5 with cost ≈ 8.28 and the f2c-GHWT best basis representation is
√

3
3 ψ

1
0,0 + 0ψ1

1,0 +
√

6
3 ψ

1
0,1 +

√
6ψ1

1,1 +4ψ0
0,4 +0ψ0

0,5 with cost ≈ 7.84 while Figure 4.4 demonstrates that the best basis

representation chosen by the eGHWT is 0ψ2
0,0 + 1ψ2

1,0 + 0ψ1
1,0 +

√
6ψ1

1,1 + 4ψ0
0,4 + 0ψ0

0,5 with cost

≈ 7.45, which is the smallest among these three best-basis representations. The indices used here

are before relabeling for the illustration purpose.

To furthur illustrate the difference between the eGHWT and c2f/f2c GHWTs using this ex-

ample, let us consider the vectors ψ1
1,0 and ψ0

0,4 in the eGHWT best basis. From Figure 4.4a, we

can see that ψ1
1,0 is supported on the child graph that was generated by bipartitioning the input

graph where ψ0
0,4 is supported. Therefore, they cannot be selected in the c2f-GHWT best basis

simultaneously. A similar argument applies to ψ2
1,0 and ψ1

1,0 in the eGHWT best basis: they cannot

be selected in the f2c-GHWT best basis simultaneously.

35

ψ0
0,0 ψ0

0,1 ψ0
0,2 ψ0

0,3 ψ0
0,4 ψ0

0,5

ψ1
0,0 ψ1

0,1 ψ1
0,2 ψ1

1,0 ψ1
1,1 ψ1

1,2

ψ2
0,0 ψ2

0,1 ψ2
1,0 ψ2

2,0 ψ2
2,1 ψ2

3,0

ψ3
0,0 ψ3

1,0 ψ3
2,0 ψ3

3,0 ψ3
4,0 ψ3

5,0

(a) coarse-to-fine dictionary

ψ3
0,0 ψ3

1,0 ψ3
2,0 ψ3

3,0 ψ3
4,0 ψ3

5,0

ψ2
0,0 ψ2

1,0 ψ2
2,0 ψ2

3,0 ψ2
0,1 ψ2

2,1

ψ1
0,0 ψ1

1,0 ψ1
0,1 ψ1

1,1 ψ1
0,2 ψ1

1,2

ψ0
0,0 ψ0

0,1 ψ0
0,2 ψ0

0,3 ψ0
0,4 ψ0

0,5

(b) fine-to-coarse dictionary

Figure 4.3. The c2f (a) and f2c (b) GHWT dictionaries for P6. The basis vectors
are grouped by region in (a) and by tag in (b). The best basis vectors obtained
by the GHWT best-basis algorithm (Algorithm 3) in each dictionary for the input
signal f = [2,−2, 1, 3,−1,−2]T are indicated by red.

36

ψ0
0,0 ψ0

0,1 ψ0
0,2 ψ0

0,3 ψ0
0,4 ψ0

0,5

ψ1
0,0 ψ1

0,1 ψ1
0,2 ψ1

1,0 ψ1
1,1 ψ1

1,2

ψ2
0,0 ψ2

0,1 ψ2
1,0 ψ2

2,0 ψ2
2,1 ψ2

3,0

ψ3
0,0 ψ3

1,0 ψ3
2,0 ψ3

3,0 ψ3
4,0 ψ3

5,0

(a) coarse-to-fine

ψ3
0,0 ψ3

1,0 ψ3
2,0 ψ3

3,0 ψ3
4,0 ψ3

5,0

ψ2
0,0 ψ2

1,0 ψ2
2,0 ψ2

3,0 ψ2
0,1 ψ2

2,1

ψ1
0,0 ψ1

1,0 ψ1
0,1 ψ1

1,1 ψ1
0,2 ψ1

1,2

ψ0
0,0 ψ0

0,1 ψ0
0,2 ψ0

0,3 ψ0
0,4 ψ0

0,5

(b) fine-to-coarse

Figure 4.4. The best basis vectors for the signal f = [2,−2, 1, 3,−1,−2]T, selected
by the eGHWT (Algorithm 6) are indicated by red in the c2f GHWT dictionary (a)
and the f2c GHWT dictionary (b). Note the orthogonality of these vectors.

37

4.6. Generalization to 2D Signals

The Thiele-Villemoes algorithm [65], has been extended to 2D signals by Linderberg and Ville-

moes [47]. As we described in Section 4.1, the best tiling chooses a bipartition with a smaller cost

from that of the time domain and that of the frequency domain. For 2D signals, the time-frequency

domain has four axes instead of two. It has time and frequency axes on the x−(or column-) and

y−(or row-) component. The best tiling comes from the split in the time or frequency directions in

either the x− or y−component. This gives us four options instead of two for each split. Similarly

to the 1D signal case, dynamic programming is used to find the minimizing tiling for a given 2-D

signal.

For a 2D signal, we can compose the affinity matrices on the row and column directions sepa-

rately, thus define graphs that the rows and columns are supported on. In this way, the 2D signal

can be viewed as a tensor product of two graphs. Then eGHWT can be extended to 2D signal from

1D in a similar way as how [47] extends [65]. Examples will be given in Section 5.2.

38

CHAPTER 5

Efficient Graph Signal Approximation using the eGHWT

In this section, we will demonstrate the usefulness and efficiency of the eGHWT in graph signal

approximation using several real datasets.

5.1. Efficient Approximation of Graph Signals

Here we analyze the vehicular traffic volume data on the Toronto road network mentioned in

Chapter 2. In addition to the eGHWT best basis, the graph Haar basis, the graph Walsh basis,

the c2f GHWT best basis and the f2c GHWT best basis are used to compare the performance.

Figure 5.1b shows the performance comparison. The y-axis denotes the relative approximation

error ‖f −Pnf‖2/‖f‖2, where Pnf denotes the approximation of f with the basis vectors having

the n largest coefficients in magnitude. The x-axis denotes n/N , i.e., the fraction of coefficients

retained. We can see that the error of the eGHWT decays fastest.

In Figure 5.2, we display the residual plots when 25% coefficients are used. We can clearly see

that the eGHWT plot is much closer to 0 than the rest of the methods.

To emphasize the argument of the superiority of the eGHWT over the other bases, we try the

same experiment on the pedestrian data on the same Toronto road network (Figure 5.3a). In Figure

5.3b, we can see that the eGHWT still has the fastest decaying curve. One observation is that the

Walsh basis performs the worst due to the localized feature of the data.

39

-79.6 -79.5 -79.4 -79.3 -79.2

43.60

43.65

43.70

43.75

43.80

43.85

10000

20000

30000

40000

50000

(a)

0.00 0.05 0.10 0.15 0.20 0.25

10-1.00

10-0.75

10-0.50

10-0.25

100.00

Fraction of Coefficients Retained

R
el

at
iv

e
A

pp
ro

xi
m

at
io

n
E

rr
or

Haar
Walsh
GHWT_c2f
GHWT_f2c
eGHWT

(b)

Figure 5.1. (a): Traffic volume data in the city of Toronto; (b): Relative `2 ap-
proximation error of the data shown in (a)

-79.6 -79.5 -79.4 -79.3 -79.2

43.60

43.65

43.70

43.75

43.80

43.85

0

0.025

0.050

0.075

0.100

0.125

0.150

(a) Haar

-79.6 -79.5 -79.4 -79.3 -79.2

43.60

43.65

43.70

43.75

43.80

43.85

0

0.025

0.050

0.075

0.100

0.125

0.150

(b) c2f GHWT = Walsh

-79.6 -79.5 -79.4 -79.3 -79.2

43.60

43.65

43.70

43.75

43.80

43.85

0

0.025

0.050

0.075

0.100

0.125

0.150

(c) f2c GHWT

-79.6 -79.5 -79.4 -79.3 -79.2

43.60

43.65

43.70

43.75

43.80

43.85

0

0.025

0.050

0.075

0.100

0.125

0.150

(d) eGHWT

Figure 5.2. Pointwise relative `2-error using 25% of the best-basis coefficients

40

(a) (b)

Figure 5.3. (a): Pedestrian volume data in the city of Toronto; (b): Relative `2

approximation error of the data shown in (a)

5.2. Viewing an Image (or a General Matrix Signal) as a Tensor Product of Graphs

To analyze and process a single signal supported on a graph, we can now use the eGHWT to

produce a suitable ONB. Then for a collection of signals in a matrix form (including regular digital

images), we can also compose the affinity matrix of the rows and that of the columns separately,

thus define graphs that the rows and columns are supported on as was done previously [10, 32].

Those affinity matrices can be either computed from the similarity of rows or columns directly or

can be composed from information outside the original matrix signal. For example, Kalofolias et

al. [36] used row and column graphs to analyze recommender systems.

After the affinity graphs on rows and columns are obtained, we can use the eGHWT to produce

ONBs on rows and columns separately. Then the matrix signal can be analyzed or compressed

by the tensor product of those two ONBs. In addition, as mentioned in Section 4.6, we have also

extended the eGHWT to the tensor product of row and column affinity graphs and search for

best 2D ONB on the matrix signal directly. Note that we can also specify or compute the binary

partition trees in a non-adaptive manner (e.g., recursively splitting at the middle of each region),

typically for signals supported on a regular lattice.

5.2.1. Approximation of the Barbara Image. In this section, we use the famous Barbara

image. The size of the image is 512×512. The partition trees on the rows and columns are specified

41

explicitly: every bipartition is forced at the middle of each region. Therefore, those two trees are

perfect binary trees with depth equal to log2(512) + 1 = 10.

Figure 5.4 displays the approximation performance of the Haar, c2f GHWT, f2c GHWT, and

eGHWT bases. We can see that with the same fraction (1/32 = 3.125%) of the coefficients retained,

the eGHWT has much higher performance with less blocky artifacts than that of Haar and c2f/2c

GHWTs. Figure 5.5 shows the zoomed-up face and left leg of those approximations. Especially for

the leg region that has some specific texture, i.e., stripe patterns, the eGHWT outperformed the

rest of the methods. The performance is measured by PSNR (peak signal-to-noise ratio). Given

an m× n monochrome image I and its approximation K, the PSNR is defined as

PSNR = 10 log10

(maxij Iij)
2

MSE

MSE =
1

mn

m∑
i=1

n∑
j=1

(Iij −Kij)
2

5.2.2. The Haar Transform for Images with Non-Dyadic Size. For non-dyadic images,

there is no straightforward way to obtain the partition trees in a non-adaptive manner as we did for

the Barbara image in the previous section. This is a problem faced by the classical Haar transform

as well, which requires an input image to be dyadic. Non-dyadic images are often modified by

zero padding, even extension, or other methods before the Haar transform is applied. We propose

to apply the Haar transform on a non-dyadic image without modifying the input image using the

eGHWT.

To obtain the binary partition trees, we need to cut an input image F horizontally or vertically

into two parts recursively. Apart from using the affinity matrices, we propose the penalized total

variation cost to cut the input image. Denote the two sub-parts as F1 and F2. We search for the

optimal cut such that

Penalized Total Variation Cost :=
‖F1‖TV

|F1|p
+
‖F2‖TV

|F2|p
(p > 0)

is minimized, where ‖Fk‖TV :=
∑

i,j(|Fk[i + 1, j] − Fk[i, j]| + |Fk[i, j + 1] − Fk[i, j]|), and |Fk|

indicates the number of pixels in Fk, k = 1, 2. The denominator is used to make sure that the size

of F1 and that of F2 are close so that the tree becomes nearly balanced. Recursively applying the

42

(a) Haar, PSNR = 24.8dB (b) c2f GHWT, PSNR = 23.9dB

(c) f2c GHWT, PSNR = 25.6dB (d) eGHWT, PSNR = 28.1dB

Figure 5.4. Comparison of various bases: using only 3.125% of coefficients

horizontal cut on the rows of F and the vertical cut on the columns of F will give us two binary

partition trees. We can then select the 2D Haar basis from the eGHWT dictionary or search for

the best basis with minimal cost (note that this cost function for the best-basis search is different

from the penalized total variation cost above).

Here we chose an image patch of size 100×100 around the face part from the original 512×512

Barbara image so that it is non-dyadic.

We chose p = 3 here.. To determine the value of p, we need to balance between the total

variation and structure of the partition tree. Larger p means less total variation value after split

but less balanced partition tree. The value of p can be fine-tuned based on the evaluation of the final

task, for example, the area under the curve of the relative approximation error in the compression

task [33].

43

(a) face (b) leg

Figure 5.5. Comparison of various bases: using only 3.125% of coefficients. Meth-
ods used from left to right and top to bottom: Haar; c2 GHWT; f2c GHWT;
eGHWT.

Figure 5.6 shows that the decay speed of the eGHWT basis vector coefficients (regardless of

the fixed Haar basis or the optimized best basis) is faster than the classical Haar transform (using

non-adaptive cuts after even reflection to make the input image dyadic); however, we must say that

the performance gain of the new Haar transform proposed here over the classical one is minimal;

the eGHWT best basis performance is far better than both versions of the Haar transform.

44

0.00 0.05 0.10 0.15 0.20 0.25

10-1.5

10-1.0

10-0.5

100.0

Fraction of Coefficients Retained
R

el
at

iv
e

A
pp

ro
xi

m
at

io
n

E
rr

or

eGHWT Haar basis
eGHWT best basis
Classical Haar transform

Figure 5.6. Comparison of the classical Haar transform and the eGHWT bases on
the face part (of size 100× 100) of the Barbara image

5.3. Constructing a Graph from an Image for Efficient Approximation

We can view a digital image of size M ×N as a signal on a graph consisting of MN nodes by

viewing each pixel as a node. Note that the underlying graph is not a regular 2D lattice of size

M ×N . Rather it is a graph reflecting the relationship or affinity between pixels. In other words,

wij , the weight of the edge between ith and jth pixels in that graph should reflect the affinity

between local region around these two pixels, and this weight may not be 0 even if ith and jth

pixels are remotely located. This idea have been used in image segmentation [59] as well as image

denoising [63].

Here we define the edge weight wij as Szlam at al. [63] did:

wij = e
−‖F [i]−F [j]‖22

σF ·

 e
−‖X[i]−X[j]‖22

σX if ‖X[i]−X[j]‖2 < r

0 otherwise

where X[i] is the spatial location of node (pixel) i, and F [i] is a feature vector based on intensity,

color, or texture information of the local region centered at that node. As one can see from the

above weight, the pixels located within a disk with center X[i] and radius r are considered to be

the neighbors of the ith pixel. The scale parameters, σF and σX must be chosen appropriately.

Once we construct this graph, we can apply the eGHWT in a straightforward manner.

We examine two images here. The first one (Figure 5.7a) is the subsampled version of the camera

man image of size 128 × 128 (we subsampled the original camera man image of size 512 × 512 to

45

reduce computational cost). We did two experiments to demonstrate the importance of the affinity

matrix setup. As to the feature vector F [i] at the ith pixel, we simply used its pixel (intensity) value

here. For the other parameters, we used r = 5, σX = ∞ for both experiments, while σF = 0.007

for the first experiment and σF = 0.07 for the second experiment. The parameters can firstly be

chosen according to the performance of the image cut reviewed by human, then fine-tuned based on

the evaluation of the final task, for example, the area under the curve of the relative approximation

error here [33].

Figure 5.7b shows our results on the subsampled camera man image. Figure 5.7b demonstrates

that the decay rate of the expansion coefficients using the eGHWT dictionary is much faster than

that of the classical Haar transform. Moreover, the basis vectors from the eGHWT best basis display

some meaningful features of the image. Figure 5.8 shows the nine best-basis vectors corresponding

to the largest expansion coefficients in magnitude. We can see that the human part or the camera

part are captured by individual basis vectors. Even more, we can tell that Figure 5.8a has better

segmentation result than Figure 5.8b, which coincides with the better decay rate from Figure 5.7b.

The experiment with σF = 0.007 has better decay rate than the one with σF = 0.07. Therefore,

we can conclude that good segmentation result (or good affinity matrix setup) is very important

for the basis construction.

When we tuned the parameters, we found that simply choosing raw pixel value as F [i] can get

very good results for regular images. Among the parameters, σF is the most important one to get

good segmentation results. One tuning trick is starting from the median of all possible values of

the numerator in the exponential term, i.e., −‖F [i]−F [j]‖22 [63]. Meanwhile, r is relatively flexible

and σX = ∞ is always a good and simple choice. When we use σX = ∞, the weight between two

pixels with distance larger than r is 0 and the affinity matrix becomes sparse.

The second example is a composite texture image. Our method, i.e., applying the eGHWT

on an image viewed as a graph, allows us to generate basis vectors with irregular support that is

adapted to the structure of the input image as shown in the camera man image example above,

which works particularly well on this composite texture image. Figure 5.9a displays the original

composite texture image. To compute the graph weights, we construct the mask image (Figure 5.9b)

from the Gabor features [22] of the original texture image. Specifically, for a group of 2D Gabor

46

(a) (b)

Figure 5.7. (a): The rescaled camera man image of size 128 × 128; (b): Relative
`2 approximation error of (a) using five methods.

(a) (b)

Figure 5.8. The top nine eGHWT best-basis vectors (a): σF = 0.007; (b): σF = 0.07.

filters with various wavelengths and orientations, we perform Gabor transform of the original image

for each Gabor filter. Then the absolute values of the Gabor transform coefficients form a matrix

with the same size as the original image for each Gabor filter. Then Principal Component Analysis

(PCA) [35] is performed on all the coefficient matrices. The first component of PCA is used as

the mask image. The graph weights are computed from the mask image in a similar manner as the

camera man image. Figure 5.10a shows the approximation performance of five different methods.

Figure 5.10b displays the top basis vectors of the eGHWT best basis. We can see that the support

of the basis vectors coincide with the five sections of the composite texture image.

47

(a) (b)

Figure 5.9. (a): A composite textured image of size 128 × 128; (b): Mask image
computed from PCA of Gabor transform coefficients

(a) (b)

Figure 5.10. (a): Relative `2 approximation error of Figure 5.9a using five meth-
ods; (b): Top 9 eGHWT best basis vectors

48

CHAPTER 6

Low rank approximation of matrices

In machine learning, low rank approximations to datasets are often employed to impute missing

data, denoise noisy data, or perform feature extraction [66]. These techniques have applications

in fields such as astronomy [4], computer vision [42], document clustering [61], and recommender

systems [19].

To give a glimpse of the assumption, let us consider the movie rating matrix where the rows

are users and columns are movies. We can reasonably assume that people can be clustered into

k groups depending on their preference. If we further assume that the people in the same group

have similar ratings on movies, then the rating matrix is close to k rank. More rigorous argument

has been given by [67], by considering a generative model. Suppose that each row or column is

associated to a (possibly high dimensional) bounded latent variable, then entries of that m × n

matrix are within a fixed absolute error of a low rank matrix whose rank grows as O(log(m+ n)).

In this chapter, we discuss two methods based on the assumption that real data are low rank.

One is the Nonnegative matrix factorization (NMF) algorithm and its initiation with eGHWT. The

other is the matrix completion algorithm for recommender systems.

For simplicity of notation, we do not use bold font for vectors in this chapter.

6.1. NMF Initialization via eGHWT

6.1.1. Introduction. Nonnegative matrix factorization (NMF) is a useful decomposition for

multivariate nonnegative data. Given data matrix Y ∈ Rm×n≥0 with Yij ≥ 0 and a pre-specified

positive integer k < min(m,n), the goal is to find two nonnegative matrices W ∈ Rm×k≥0 and

H ∈ Rk×n≥0 such that

Y ≈WH.

49

In practice, usually k � min(m,n). One conventional approach to find W and H is by solving the

following optimization problem

(6.1) min
W∈Rm×kH∈Rk×n

‖(Y −WH)‖2F s.t. W ≥ 0, H ≥ 0.

If we view the columns of W as k “basis vectors”, then the j-th column of Y can be represented

with k coefficients from the j-th column of H. To measure the dissimilarity between Y and WH,

one can use other metrics instead of the Frobenius norm. For example, the Kullback-Leiber (KL)

Divergence [42]

min
W∈Rm×kH∈Rk×n

DKL(Y ‖WH) s.t. W ≥ 0, H ≥ 0,

or the Bregman Divergence [61]

min
W∈Rm×kH∈Rk×n

DBregman(Y ‖WH) s.t. W ≥ 0, H ≥ 0.

In this dissertation, we only consider the formulation (6.1).

One classical approach to solve (6.1) is the multiplicative update algorithm [43]. This fixed

point algorithm updates W and H iteratively by

Wia ←Wia
(Y HT)ia

(WHHT)ia
,

Hbj ← Hbj
(W TY)bj

(W TWH)bj
.

It is simple to implement and often yields good results. However, it is relatively slow and lacks

convergence properties [21].

Another popular method is the Alternating Nonnegative Least Squares Using Projected Gradient

Methods (ALSPGRAD) [44]. Let us break down its long name. “Alternating” means that it is an

alternating method which fixes one matrix of W and H and improves the other in each iteration

W (t+1) ← arg min
W≥0

‖Y −WH(t)‖2F ,

H(t+1) ← arg min
H≥0

‖Y −W (t)H‖2F ,

50

where t is the iteration index. The sub-problems reduce to “least square” problems with “nonneg-

ative” constraints. To solve the sub-progblems, “projected gradient method” is used. The details

are summarized in Algorithm 7.

Algorithm 7: Alternating Nonnegative Least Squares Using Projected Gradient Methods
(ALSPGRAD) [44]

Input: Input data matrix Y ∈ Rm×n≥0 , rank k

Output: W ∈ Rm×k≥0 , H ∈ Rk×n≥0

Initialize W (1), H(1)

for t = 1, 2, ... do

// W (t+1) ← arg minW≥0 ‖Y −WH(t)‖2F
W

(t)
0 ←W (t)

for p = 1, 2, ... do // Projected Gradient Descent

W
(t)
p ← [W

(t)
p−1 − α∇W ‖Y −W

(t)
p−1H

(t)‖2F)]≥0

// break if stopping criterion is met

end

W (t+1) ←W
(t)
p

H
(t)
0 ← H(t)

// H(t+1) ← arg minH≥0 ‖Y −W (t+1)H‖2F
for q = 1, 2, ... do // Projected Gradient Descent

H
(t)
q ← [H

(t)
q−1 − α∇H‖Y −W (t+1)H

(t)
q−1‖2F)]≥0

// break if stopping criterion is met

end

H(t+1) ← H
(t)
q

// break if stopping criterion is met

end

In Algorithm 7(and from now on), we define (·)+ : Rm×n → Rm×n≥0 by

[(X)+]ij =


Xij , if Xij ≥ 0

0, else

The step size α can be selected through suitable line search algorithm. The time cost is

#iterations× (O(nmk) + #sub-iterations×O(smk2 + snk2))

51

where #iterations correspond to the index t in Algorithm 7; #sub-iterations correspond to the

indices (p, q); and s is the average number of steps in the line search algorithm to find α. In

practice k � min(m,n). Making use of this property, the algorithm converges quickly, although

only the first order derivative is used. In the original paper [44], the author also tried projected

gradient methods on (6.1) directly, meaning that W and H are updated simultaneously instead of

alternatively, but it is not as fast as ALSPGRAD.

Another popular method is Hierarchical Alternating Least Squares (HALS) algorithm [9]. Mul-

tiple algorithms are introduced in the original paper [9], some of which can even be applied to tensor

factorizations. In this dissertation, we only consider HALS on NMF. Similar to ALSPGRAD, HALS

is an alternating algorithm. In ALGSPGRAD, one of W or H is fixed to improve the other. In

HALS, only one column of W or one row of H is updated when the rest of W and H are fixed in

each iteration. Let W (:, j) denotes the j-th column of W and H(j, :) denotes the j-th row of H.

Define the residue

Y
(t)
j = Y −

∑
p 6=j

W (t)(:, p)H(t)(p, :),

where t is the iteration index, then the columns of W and rows of H are updated by

W (t+1)(:, j)← arg min
w∈Rm×1

≥0

‖Y (t)
j − wH

(t)(j, :)‖2F ,

H(t+1)(j, :)← arg min
h∈R1×n

≥0

‖Y (t)
j −W

(t)(:, j)h‖2F .

Similarly, the sub-problems reduce to least square problems, which have closed form solutions. The

details are summarized in Algorithm 8. Furthermore, the author improved HALS to develop FAST

HALS. They can also be extended to NMF with additional constraints and tensor factorizations.

52

Algorithm 8: Hierarchical Alternating Least Squares (HALS) for NMF [9]

Input: Input data matrix Y ∈ Rm×n≥0 , rank k

Output: W ∈ Rm×k≥0 , H ∈ Rk×n≥0

Initialize W (1), H(1)

Normalize the columns(and rows) of W (and H) to unit `22-norm length

E ← Y −W (1)H(1)

for t = 1, 2, ... do
for j = 1, 2, ..., k do

Y
(t)
j ← E +W (t)(:, j)H(t)(j, :)

H(t+1)(j, :)← [(W (t)(:, j))TY
(t)
j]+

H(t+1)(j, :)← H(t+1)(j, :)/‖H(t+1)(j, :)‖2
W (t+1)(:, j)← [Y

(t)
j (H(t+1)(j, :))T]+

W (t+1)(:, j)←W (t+1)(:, j)/‖W (t+1)(:, j)‖2
E ← Y

(t)
j −W (t)(:, j)H(t)(j, :)

end

// break if stopping criterion is met

end

6.1.2. Using the eGHWT for NMF initialization. Since the algorithms described in

the previous section are all iterative methods, so as most of the available NMF algorithms, the

initialization of the pair (W,H) is important in the design of successful implementation. Most of

the NMF algorithms in the literature use random nonnegative initialization. Since they are likely

to converge to a local minimum, it becomes necessary to run several instances of the algorithm

using different random initializations and then select the best solution. Therefore there is a need

to investigate good initialization strategies [2].

The Nonnegative Double Singular Value Decomposition (NNDSVD) method developed in [5]

is a popular method for NMF initialization. It computes the rank k approximation through SVD

of the input matrix Y . Then it extracts the positive section of those singular vectors as the initial

estimates of W and H. The details are described in Algorithm 9. To illustrate the algorithm,

suppose

Y ≈ Yk =

k∑
i=1

σiuiv
T
i =

k∑
i=1

yizi,

where ui, vi are the left and right singular vectors, σi are the corresponding singular values and

yi =
√
σiui and zi =

√
σiv

T
i . Using the operator (·)+ defined in previous section, the positive part

53

Algorithm 9: Nonnegative Double Singular Value Decomposition (NNDSVD) [5]

Input: Input data matrix Y ∈ Rm×n≥0 , rank k

Output: W ∈ Rm×k≥0 , H ∈ Rk×n≥0

Compute the partial k SVD of Y ≈
∑k

j=1 σjujv
T
j .

W (:, 1)← √σ1u1; H(1, :)← √σ1v
T
1

for j = 2, 3, ..., k do
x← uj ;
y ← vj ;
x+ ← (x)+; x− ← x− x+;
y+ ← (y)+; y− ← y − y+;
if ‖x+‖‖y+‖ > ‖x−‖‖y−‖ then

u← x+/‖x+‖; v ← y+/‖y+‖; δ ← ‖x+‖‖y+‖
else

u← x−/‖x−‖; v ← y−/‖y−‖; δ ← ‖x−‖‖y−‖
end

W (:, j)←
√
σjδu; H(j, :)←

√
σjδv

T

end

of yi+ = (yi)+ and negative part of yi− = yi − yi+. The same goes for zi. Then we have

(6.2) Y ≈
k∑
i=1

(yi+ − yi−)(zi+ − zi−) =
k∑
i=1

yi+zi+ +
k∑
i=1

yi−zi− −
k∑
i=1

yi+zi− −
k∑
i=1

yi−zi+

Algorithm 9 uses the first two summands of (6.2) to approximate W and H, but choose only one

term from yi+zi+ or yi−zi− for each i.

An improved SVD-based initialization is proposed in [1]. They use the first two summands

of (6.2) to approximate W and H as well. However, instead of choosing only one term for each

i in NNDSVD, they used both yi+zi+ and yi−zi− for each i. Therefore approximately only k/2

SVD triplets of Y are required, then all the terms in the first two summands of (6.2) are used to

approximate W and H. The algorithm is named as Nonnegative Singular Value Decomposition

with Low-Rank Correction (NNSVD-LRC).

Here we propose to utilize the eGHWT for initialization of the NMF algorithms. The steps

are as follows: 1) Construct the full row and column eGHWT dictionaries for a given nonnegative

matrix Y ; 2) Use the lasso with nonnegativity constraint [27] on the eGHWT scaling vectors to

select the best k linear combination of rank 1 matrices Y ≈ β1φr,(1)φ
T

c,(1) + . . . + βkφr,(k)φ
T

c,(k),

where φr,(i), φc,(i), i = 1 : k are the row and column eGHWT scaling vectors selected by lasso with

54

nonnegativity constraints; and 3) Initialize W and H by assigning the i-th column of W to be
√
βiφr,(i) and the i-th row of H to be

√
βiφ

T

c,(i).

55

6.1.3. Numerical Results. We compare our method with NNDSVD [5] and NNSVD-LRC [1]

on a group of synthetic data. The synthetic data is generated by Ṽ = W̃ H̃T + σΣ̃, where W̃ , H̃

and Σ̃ are nonnegative matrices with random entries sampled uniformly from [0, 1]. σΣ̃ serves as

the noise matrix and σ controls the strength of the noise.

For each combination of m,n, k, σ, we generate Ṽ 50 times. Each time, we initialize a given

NMF algorithm with eGHWT, NNDSVD, and NNSVD-LRC separately. Then we run the main

algorithm. The performance is measured by the number of iterations to converge on the main

algorithm to the same tolerance. We sum up the number of trials with the eGHWT converging

faster than NNDSVD, then divide it by the total number of trials, i.e., 50, to approximate the

probability that the eGHWT converges faster than NNDSVD. The same metric is used to compare

the eGHWT with NNSVD-LRC and with random initialization separately. Another reasonable

metric would be the final residual norm ‖Y −WH‖F . However, we observe that these values are

very close among different methods, even though they may correspond to different local minimum.

Therefore, we use the iteration number as the metric for performance in these experiments.

Here we use the two main algorithms mentioned in Section 6.1.1. The results with ALSP-

GRAD [44] is listed in Table 6.1 and the results with HALS [9] are listed in Table 6.2. In those

two tables, “eGHWT>NNDSVD” corresponds to the approximate probability that the eGHWT

converges faster than NNDSVD. The same goes for the other rows. Bold numbers mean that they

are larger than 0.5.

ALSPGRAD, HALS and NNDSVD are implemented in the Julia package NMF.jl [45]. NNSVD-

LRC is implemented by ourselves. Note that in the original paper of NNSVD-LRC [1], after the

initial matrices W0 and H0 are computed through the SVD approximation, they run an NMF

algorithm on matrix W0H0 to get a new pair of W and H. Then that new pair is used as the

initial matrices to feed into the main NMF algorithm. To make a fair comparison with other

initialization methods, we only implemented the first half of NNSVD-LRC, i.e., the part using

SVD to approximate W and H.

We can see that the eGHWT is better than NNDSVD and much better than random initiation

in most of the cases, especially with the main algorithm HALS. The eGHWT is comparable with

NNSVD-LRC.

56

(m,n, k, σ) (100, 100, 10, 0) (125, 25, 5, 0) (100, 100, 10, 0.5) (125, 25, 5, 0.5)
eGHWT > NNDSVD 0.72 0.66 0.88 0.8
eGHWT > Random 0.64 0.42 0.70 0.26

eGHWT > NNSVD-LRC 0.46 0.50 0.48 0.54

Table 6.1. ALSPGRAD

(m,n, k, σ) (100, 100, 10, 0) (125, 25, 5, 0) (100, 100, 10, 0.5) (125, 25, 5, 0.5)
eGHWT > NNDSVD 0.58 0.86 0.60 0.74
eGHWT > Random 0.78 0.86 0.78 0.86

eGHWT > NNSVD-LRC 0.56 0.38 0.50 0.48

Table 6.2. HALS

6.1.4. Discussion. The row-(or column-) support of a single scaling vector is the support

of the corresponding subgraph in the partition tree, which indicates a sub-cluster of the rows (or

columns). Using a single scaling vector to approximate Y is equivalent to putting the same value

(which is equal to the Lasso coefficient) on a sub-cluster of rows and columns. Using multiple

scaling vectors through Lasso is equivalent to putting suitable values (which is equal to the Lasso

coefficients) on different sub-clusters followed by summing them up. Our method makes use of

clutering techniques to initialize W and H, in a subtle way.

In practice, we can use those scaling vectors only from the top levels of the eGHWT, instead

of computing the whole eGHWT dictionary to save computational time. Here we use the bi-

clustering method proposed in [14] to form the binary partition trees on columns and rows. One

thing needs to be considered in Lasso [27] is the choice of λ, the penalty paramter on the `1 norm

of the coefficients. To reduce computational cost, we roughly tune λ by selecting the one from

(2−15, 2−14, . . . , 2−6, 2−5) so that the corresponding number of non-zero coefficients is closest to k.

The final results of NMF can be further improved through fine tuning λ or improving the bipartition

results.

We observe that NNSVD-LRC works better than NNDSVD, which concides with the results

from [1]. One major reason is that the smaller the index i is , the more information is contained in

yizi. NNDSVD discards more information in yizi for smaller i than NNSVD-LRC. More theoretical

arguments have not been given in the original paper. Another observation is that the eGHWT

is better than the random initialization when the matrix size is 100 × 100 but worse when the

57

size is 125 × 25 with ALSPGRAD as the main algorithm. To investigate this phenomena, we

tried other settings of m and n. In most of the cases, the comparison results of the eGHWT,

NNDSVD and NNSVD-LRC are consistent with the table above. But the performance of the

random initialization varies with different m and n. The theoretical results of NMF initialization

can be a potential research project in the future.

58

6.2. Bounded Matrix Completion

In this section1, following the same assumption that some real datasets can be approximated

by low rank matrices, we introduce our Bounded Matrix Completion (BMC) [17] algorithm for the

recommender system. The formulation of matrix completion problem is similar to NMF but the

data are partially observed. In the summary, we will discuss how BMC can be combined with the

eGHWT in the future.

6.2.1. Introduction. Matrix factorization and matrix completion [39] are widely used for

recommender systems. Suppose we have a user-item matrix Y ∈ R≥0m×n, which is partially ob-

served on the locations {(i, j)} =: Ω, the goal is to predict missing ratings. Define the operator

PΩ : Rm×n → Rm×n by

[PΩ(Y)]ij =


Yij , if (i, j) ∈ Ω

0, if (i, j) /∈ Ω

.

To rephrase the problem, suppose we are given PΩ(Y), the goal is to find suitable X to approximate

Y . Two methods, which assumes that X is low rank, among many are to solve the following

optimization problems:

(6.3) min
W∈Rm×kH∈Rk×n

1

2
‖PΩ(Y −WH)‖2F +

λ

2
(‖W‖2F + ‖H‖2F)

(6.4) min
X∈Rm×n

1

2
‖PΩ(Y −X)‖2F + λ‖X‖∗.

Equation (6.4) is convex, and equation (6.3) is nonconvex. They are equivalent if k is chosen large

enough. In practice, usually |Ω| � mn and k � min(m,n). In (6.3), W ∈ Rm×k is a thin matrix

and H ∈ Rk×n is a flat matrix. Similarly to NMF, WH is the approximation of Y . In (6.4), X is

the approximation of Y . ‖X‖∗ is the nuclear norm of X, which is defined as the sum of singular

values, and it is a convex envelope of rank function [54]. Specifically, ‖X‖∗ is the largest convex

function such that it is smaller than or equal to rank(X) for all X.

1This section was published in Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelli-
gence, Huang Fang, Zhang Zhen, Yiqun Shao, Cho-Jui Hsieh, Improved Bounded Matrix Completion for Large-Scale
Recommender Systems, Pages 1654-1660, Copyright IJCAI Organization (2017).

59

In many real world problems, the ratings are bounded within a certain region. For example,

the ratings of Netflix and MovieLens [26] datasets are bounded in the range of [0.5, 5], so it is

reasonable to impose bounded constraints to (6.3) and (6.4), leading to the following Bounded

Matrix Completion (BMC) problem:

(6.5) min
W∈Rm×kH∈Rk×n

1

2
‖PΩ(Y −WH)‖2F +

λ

2
(‖W‖2F + ‖H‖2F) s.t. rmin ≤WH ≤ rmax

(6.6) min
X∈Rm×n

1

2
‖PΩ(Y −X)‖2F + λ‖X‖∗ s.t. rmin ≤ X ≤ rmax

R. Kannan and Park [37] proposed an efficient block coordinate descent algorithm (named the

BMA algorithm) for solving the non-convex form (6.5) of the BMC problem. On real datasets with

bounded ratings, it outperforms traditional matrix completion algorithms based on (6.3) and (6.4).

However, the BMA algorithm does not always converge to stationary points (where the gradients

are zero) and can easily stuck in non-stationary points. This unstable convergence behavior leads

to a performance drop in practice.

For example, consider the problem with Y =

 1 0

0 1

, [rmin, rmax] = [0, 1], Ω covering all the

indexes. Starting from the initial estimates W =

 1

−1

, H =
(

0 0
)

, the algorithm will stay

there and W , H cannot change. But this solution is not optimal or even stationary.

We propose a new algorithm to solve the convex form (6.6). Our algorithm is based on the

ADMM (Alternating Direction Method of Multipliers) framework [6] and it is guaranteed to con-

verge to the optimal solution. Moreover, with carefully-designed update rules, our algorithm can

scale to large datasets without encountering O(mn) space complexity. Experimental results on real

world datasets show that our algorithm can reach a better solution and is also much faster than

BMA.

60

6.2.2. The BMC Algorithm. To deploy the ADMM, we split the loss, regularization, and

constraints in (6.6), leading to the following equivalent form:

min
X,Z,D

1

2
‖PΩ(Y −X)‖2F + λ‖Z‖∗(6.7)

s.t. X = Z, Z = D, rmin ≤ D ≤ rmax.

However, X is a dense and full rank matrix during the optimization procedure before convergence,

whose space cost is O(mn). To reduce the space cost, we further decompose X into PΩ(X)+PΩ̄(X),

where Ω̄ is the complement set of Ω. PΩ(X) is a sparse matrix and PΩ̄(X) is a low rank matrix,

which is stored as the product of two low rank matrices. For simplicity, we change the notation by

PΩ(X)→ X and PΩ̄(X)→ E, then we have

min
X,Z,D

1

2
‖PΩ(Y −X)‖2F + λ‖Z‖∗(6.8)

s.t. X + E = Z, PΩ̄(X) = 0, PΩ(E) = 0

Z = D, rmin ≤ D ≤ rmax.

The scaled form of the augumented partial Lagrangian [15] is

L(X,Z,E,D,U1, U2)
PΩ̄(X)=0,PΩ(E)=0,rmin≤D≤rmax

=
1

2
‖PΩ(Y −X)‖2F + λ‖Z‖∗(6.9)

+
ρ1

2
‖X − Z + E + U1‖2F +

ρ2

2
‖Z −D + U2‖2F + const,

where U1, U2 ∈ Rm×n are scaled Lagrangian multipliers and ρ1, ρ2 are penalty parameters. Since

(6.8) is closed, proper and convex, it can be solved by finding a saddle point of (6.9). Under the

61

Gauss-Seidel framework, ADMM finds the saddle point using the following iterative procedure:

X(t+1) = arg min
PΩ̄(X)=0

1

2
‖PΩ(Y −X)‖2F +

ρ1

2
‖X − Z(t) + E(t) + U

(t)
1 ‖

2
F(6.10)

Z(t+1) = arg min
Z

λ‖Z‖∗ +
ρ1

2
‖X(t+1) − Z + E(t) + U

(t)
1 ‖

2
F +

ρ2

2
‖Z −D(t) + U

(t)
2 ‖

2
F(6.11)

E(t+1) = arg min
PΩ(E)=0

ρ1

2
‖X(t+1) − Z(t+1) + E + U

(t)
1 ‖

2
F(6.12)

D(t+1) = arg min
rmin≤D≤rmax

‖Z(t+1) −D + U
(t)
2 ‖

2
F(6.13)

U
(t+1)
1 = U

(t)
1 +X(t+1) − Z(t+1) + E(t+1)(6.14)

U
(t+1)
2 = U

(t)
2 + Z(t+1) −D(t+1).(6.15)

The sub-problems are solved as follows:

• In (6.10), the entries of X are independent terms of a sum, which can be solved in closed

form individually: X
(t+1)
i,j =

1

1 + ρ1
(Yi,j + ρ1Z

(t)
i,j − ρ1E

(t)
i,j − ρ1U

(t)
1i,j) for (i, j) ∈ Ω and

X
(t+1)
i,j = 0 otherwise.

• (6.11) is equivalent to

(6.16) arg min
Z

λ‖Z‖∗ +
ρ

2
‖Z −A‖2F ,

where A = ρ1

ρ1+ρ2
(E(t) + X(t+1) + U

(t)
1) + ρ2

ρ1+ρ2
(D(t) − U (t)

2) and ρ = ρ1 + ρ2. Given the

SVD decomposition of A = UΛV , (6.16) has a closed form solution by soft-thresholding

singular values:

Z(t+1) = Usoftλ/ρ(Λ)V (t),

softλ/ρ(Λ) := diag[(λ1 − λ/ρ)≥0, (λ2 − λ/ρ)≥0, ..., (λn − λ/ρ)≥0].

Here only top singular values greater than the threshold λ/ρ need to be computed, instead

of the full SVD. This can be solved iteratively by power iterations [24] or PROPACK [40].

PROPACK requires specifying the number of singular values to compute the partial SVD.

We can either give a fixed number, or dynamically predict the number of singular values

greater than the threshold in each iteration as in [28,50]. For simplicity, we use fixed rank

k with PROPACK during implementation.

62

• (6.12) has a simple closed form solution: E
(t+1)
i,j = Z

(t+1)
i,j − X(t+1)

i,j − U (t)
1i,j for (i, j) /∈ Ω

and E
(t+1)
i,j = 0 elsewhere.

• For eq (6.13), D(t+1) = Π[rmin,rmax](Z
(t+1) + U

(t)
2), where Π[rmin,rmax] is the projection of

entries into [rmin, rmax].

To summarize, we have Algorithm 10.

Algorithm 10: BMC-ADMM for Bounded Matrix Completion

Input: Observed matrix PΩ(Y). Penalty parameters λ, ρ1, ρ2 > 0. Rank k. Upper and
lower bound rmin, rmax. Maximum iteration number M .

Output: Rating matrix D
Initialize X,D,Z with baseline initialization [38]
Initialize U1, U2 with zeros matrices ∈ Rm×n
for t = 1, 2, ...,M do

// Solve (6.10)

PΩ(X(t+1))← 1

1 + ρ1
PΩ(Y + ρ1(Z(t) − E(t) − U (t)

1))

PΩ̄(X(t+1))← 0
// Solve (6.11)
ρ← ρ1 + ρ2

A← ρ1

ρ1 + ρ2
(E(t) +X(t+1) + U

(t)
1) +

ρ2

ρ1 + ρ2
(D(t) − U (t)

2)

(U, S, V)← Partial SV D(A, k)
D ← diag(diag(S(1 : k, 1 : k)− λ/ρ)≥0)

Z(t+1) ← UDV T

// Solve (6.12)

PΩ̄(E(t+1))← PΩ̄(X(t+1) − Z(t+1) + U
(t)
1)

PΩ(E(t+1))← 0
// Solve (6.13)

D(t+1) ← Z(t+1) + U
(t)
2

D(t+1)(D(t+1) > rmax)← rmax

D(t+1)(D(t+1) < rmin)← rmin

// Update Scaled Lagrangian multipliers through (6.14) and (6.15)

U
(t+1)
1 ← U

(t)
1 +X(t+1) − Z(t+1) + E(t+1)

U
(t+1)
2 ← U

(t)
2 + Z(t+1) −D(t+1)

if stopping criterion is met then
break

end

end

63

• (Time cost) The most time consuming steps are (6.11) and (6.13). For (6.11), we use

PROPACK [40] to get truncated SVD, which is implemented through an iterative method.

For (6.13), the time cost is O(mn) per iteration to impose the bounded constraints

[rmin, rmax] on all entries of D(t+1).

• (Space cost) Here the same trick in [46] is used to save the space cost. Y,X,U1 are

sparse matrices(O(|Ω|)). U2 is a sparse matrix with number of nonzero items equal to

number of D’s entries on the boundary, which means that their values are rmax or rmin.

Z is stored as the product of two low rank matrices in Rm×k, Rk×n respectively, thus

its space cost is O(k(m + n)). E can be expressed by E = PΩ̄(Z). When updating

D with (6.13), the entries violating the constraints need to be stored. Fortunately, the

numerical experiments show that those entries are far less than |Ω|. In summary, the total

space cost is O(k(m+ n) + |Ω|)

64

dataset m n |Ω| range
movielens100k 671 9,066 100,004 [0.5, 5]
movielens10m 71,567 10,677 10,000,054 [0.5, 5]
Flixster subset 14,761 4,903 81,495 [0.5, 5]

Flixster 147,612 48,794 8,196,077 [0.5, 5]
Jester 50,692 150 1,728,847 [-10, 10]

Table 6.3. Dataset Statistics

6.2.3. Numerical Experiments. We use five real datasets and the details are listed in Ta-

ble 6.3. The MovieLens data and Flixster data are different groups of ratings of movies by users. The

Jester data is the ratings of jokes by users of the Jester Joke Recommender System. movielens100k

has 100k ratings and movielens10m has 10m ratings. Flixter_subset is a subset of Flixter ran-

domly selected by ourselves. We compare our our BMC-ADMM algorithm (Algorithm 10) with

two existing matrix completion algorithms:

• BMA [37]: The coordinate descent algorithm solving (6.5)

• CCD++ [69]: The traditional matrix completion algorithm solving (6.3)

For each experiment, we randomly split 80% of the dataset as training data and 20% as testing data.

The regularization parameter λ is chosen from {0, 0.01, 0.1, 1, 10, 100} through cross-validation if

not specified. Note that BMA is slow and requires large memory when data is large, so we only

use part of the large dataset when BMA is included in comparison.

In the first set of experiments, we compare BMC-ADMM with BMA [37] on movielens100k

and a subset of Flixter. In Figure 6.1, we set ρ1 = ρ2 = 1 and k = 10, and try λ = 0.1 and

λ = 10 separately. We observe that BMC-ADMM can achieve lower objective function value than

BMA. The main reason is that BMA can stuck at non-stationary points while our algorithm always

converges to stationary points. In Figure 6.2, we also compare them with different rank k. Results

show that BMC-ADMM can always find a better solution than BMA.

We test the scalability of BMC-ADMM by running it on larger datasets, movielens10m,

Flixster and Jester. We observe that a larger rank k usually leads to a lower RMSE but slower

convergence (Figure 6.3 b,c), and can also leads to over-fitting (Figure 6.3 a).

To show the superiority of BMC-ADMM over the other methods, we list the test RMSE for

the three algorithms on all the five datasets in Table 6.4. To have a fair comparison, we tried

65

(a) movielens100k λ = 0.1 (b) movielens100k λ = 10

(c) Flixster(subset) λ = 0.1 (d) Flixster(subset) λ = 10

Figure 6.1. Convergence behaviour for different values of λ on movielens100k &
Flixster(subset)

different settings of rank k = 5, 10, 30. The other parameters of each algorithm are chosen by cross-

validation individually. As mentioned earlier, BMA is not scalable to large dataset, i.e., the full

Flixter dataset. For the other experiments, BMC-ADMM can often achieve a lower RMSE than

BMA. The last column of Table 6.4 corresponds to the standard matrix completion algorithm [69]

without the bounded constraints. The results show that BMC-ADMM outperforms it in most

cases. It indicates that adding bounded constraints is really useful in practice to achieve better

prediction accuracy.

Other experiemnts show that BMC-ADMM is slower than the standard matrix completion

algorithm [69]. To further study the time cost of our algorithm, we record the run time of each step

during implementation on large datasets. The results are displayed in Table 6.5. It coincides with

66

(a) movielens100k, k = 10 (b) movielens100k, k = 30

(c) Flixster(subset), k = 10 (d) Flixster(subset), k = 30

Figure 6.2. Test RMSE for different values of k (rank) on movielens100k and
Flixster(subset)

(a) Jester (b) Movielens10m (c) Flixster

Figure 6.3. Test RMSE of BMC-ADMM for larger datasets

67

dataset k Global Mean BMC-ADMM BMA Standard MF (CCD++)
movielens100k 5 1.0617 1.0073 1.2545 1.104
movielens100k 10 1.0617 0.9689 0.9858 1.096
movielens100k 30 1.0617 0.9177 0.9970 1.087
movielens10m 5 1.06 0.8399 0.8887 0.8205
movielens10m 10 1.06 0.8122 0.87819 0.8110
movielens10m 30 1.06 0.8080 0.88488 0.8098
Flixster subset 5 1.0555 1.0458 0.9700 1.2177
Flixster subset 10 1.0555 1.0014 0.9664 1.2205
Flixster subset 30 1.0555 0.9287 0.9592 1.2168
Flixster 5 1.0921 0.9198 - - 0.9247
Flixster 10 1.0921 0.8854 - - 0.9187
Flixster 30 1.0921 0.8838 - - 0.9165
Jester 5 5.2747 4.2452 4.4587 4.3268
Jester 10 5.2747 4.6222 4.5772 4.4069
Jester 30 5.2747 4.9631 4.501 4.4262

Table 6.4. Test RMSE Comparison of BMC-ADMM, BMA and CCD++ on five
datasets with k = 5, 10, 30 separately. The column “Global Mean” is using the mean
of all training set to predict all the testing set.

dataset k Eq. (6.10) Eq. (6.11) Eq. (6.13)
movielens10m 5 0.67 1.47 11.47
movielens10m 10 1.04 2.01 14.6

Flixster 5 0.69 1.52 109.42
Flixster 10 1.20 2.18 151.84

Table 6.5. Average runtime(sec) of each step in each iteration

our analysis that the step updating D, more specifically thresholding D by constraints, dominates

the run time, which is the bottleneck of our algorithm. To improve this, one possible way is to use

parallel computing for this step.

6.2.4. Summary. In this section, we considered the bounded matrix completion problem.

We pointed out the convergence problem of the existing algorithm BMA and proposed a novel

algorithm based on the ADMM framework. Experimental results showed that our approach is

faster, more accurate and scalable than BMA.

One possible research in the future is to impose constraints on BMC with the eGHWT vectors

coefficients. We can use other information rather than the recommender system itself, for example,

how users are related can be specified as a graph with information connected through social net-

work. The graph on movies can be formed in a similar way. Then we can construct the eGHWT

68

dictionary on the recommender system. The coefficients of the matrix on certain basis vectors of

the eGHWT can be used to measure smoothness on those two graphs. We can put constraints on

those coefficients as part of the formulation of BMC (or general recommender system algorithms)

to improve the final results. Using graphs to analyze matrix has been conducted by Kalofolias et

al. [36].

69

CHAPTER 7

Summary

In this dissertation, we have introduced the extended Generalized Haar-Walsh Transform (eGHWT).

After briefly reviewing the previous Generalized Haar-Walsh transform (GHWT), we have described

how the GHWT can be improved with the new best-basis algorithm, which is the generalization

of the Thiele-Villemoes algorithm [65] for the graph setting. We call this whole procedure of de-

veloping the extended Haar-Walsh wavelet packet dictionary on a graph and selecting the best

basis from it as the eGHWT. Moreover, we have developed the 2D eGHWT for matrix signals by

viewing them as tensor products of two graphs, which is a generalization of the Lindberg-Villemoes

algorithm [47] for the graph setting.

We then showcased the applications of the eGHWT. When analyzing graph signals, we demon-

strated the improvement over the GHWT on synthetic and real data. For the synthetic 6-node

signal, we showed that the best basis from the eGHWT cannot be selected by the c2f-GHWT or

the f2c-GHWT dictionaries and it had the minimal cost value compared to the c2f-GHWT best

basis and f2c-GHWT best basis. On the Toronto traffic data, the eGHWT had the best approxima-

tion performance among other methods. Then we proceeded to the applications to image analysis.

We constructed the unbalanced Haar-Walsh wavelet packet for non-dyadic images through the

eGHWT, which showed its superiority over the classical one. In addition, by computing one single

graph from image dataset, we could construct basis vectors on image with adaptive support. Last

but not least, we demonstrated how the eGHWT can be used in the initialization of the NMF al-

gorithms. With comparison with random initialization, NNDSVD and NNSVD-LRC, our method

showed the best performance. We also introduced the BMC algorithm.

The eGHWT is constructed upon the binary partition tree (or tensor products of partition trees

in the case of 2D signals). Currently, we use the Fiedler vectors of Laplacian matrices to form the

partition tree. However, as we have mentioned earlier, our method is so flexible that any graph cut

method or general clutering method can be used, as long as the binary tree is formed.

70

Another major contribution of our work is the software package we developed. Based on the

MTSG toolbox written in MATLAB by Jeff Irion, we developed the MTSG.jl package in Julia [3],

which includes the new eGHWT implementation for 1D and 2D signals. We hope that interested

readers will download the software themselves, and conduct their own experiments with it (https:

//gitlab.com/BoundaryValueProblems/MTSG.jl).

There is still much research can be done related to this work. The most important one is

using the eGHWT to analyze term-document matrices, or other matrix signals. More precisely, we

look for meaningful structures through the eGHWT basis vectors in matrix signals. We have done

some related experiments. However, the results highly depend on how the binary partition trees

are computed. Finding suitable clutering techniques to fulfill this task remains to be investigated.

Another one is to develop theoretical results on the NMF initialization with the eGHWT. In

addition, as we mentioned in the BMC section, the eGHWT can be combined with BMC, or

other matrix factorization or matrix completion algorithms, by imposing the constraints on the

coefficients of the eGHWT.

71

Bibliography

[1] S. M. Atif, S. Qazi, and N. Gillis, Improved SVD-based initialization for nonnegative matrix factorization

using low-rank correction, Pattern Recognition Letters, 122 (2019), pp. 53–59.

[2] M. W. Berry, M. Browne, A. N. Langville, V. P. Pauca, and R. J. Plemmons, Algorithms and appli-

cations for approximate nonnegative matrix factorization, Computational Statistics & Data Analysis, 52 (2007),

pp. 155–173.

[3] J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah, Julia: A fresh approach to numerical computing,

59 (2017), pp. 65–98.

[4] M. R. Blanton and S. Roweis, K-corrections and filter transformations in the ultraviolet, optical, and near-

infrared, The Astronomical Journal, 133 (2007), p. 734.

[5] C. Boutsidis and E. Gallopoulos, SVD based initialization: A head start for nonnegative matrix factorization,

Pattern Recognition, 41 (2008), pp. 1350–1362.

[6] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, Distributed optimization and statistical learning

via the alternating direction method of multipliers, Foundations and Trends in Machine Learning, (2011), pp. 1–

122.

[7] J. C. Bremer, R. R. Coifman, M. Maggioni, and A. D. Szlam, Diffusion wavelet packets, Applied and

Computational Harmonic Analysis, 21 (2006), pp. 95–112.

[8] F. Chung and L. Lu, Complex Graphs and Networks, no. 107 in CBMS Regional Conference Series in Mathe-

matics, American Mathematical Society, Providence, RI, 2006.

[9] A. Cichocki and A.-H. Phan, Fast local algorithms for large scale nonnegative matrix and tensor factoriza-

tions, IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 92 (2009),

pp. 708–721.

[10] R. R. Coifman and M. Gavish, Harmonic analysis of digital data bases, in Wavelets and Multiscale Analysis:

Theory and Applications, J. Cohen and A. I. Zayed, eds., Applied and Numerical Harmonic Analysis, Boston,

MA, 2011, Birkhäuser, pp. 161–197.

[11] R. R. Coifman and M. Maggioni, Diffusion wavelets, Applied and Computational Harmonic Analysis, 21

(2006), pp. 53–94.

[12] R. R. Coifman, Y. Meyer, and V. Wickerhauser, Wavelet analysis and signal processing, in In Wavelets

and their Applications, M.B.Ruskai et al., eds., Jones and Bartlett, 1992, pp. 153–178.

72

[13] R. R. Coifman and M. V. Wickerhauser, Entropy-based algorithms for best basis selection, IEEE Transactions

on Information Theory, 38 (1992), pp. 713–718.

[14] I. S. Dhillon, Co-clustering documents and words using bipartite spectral graph partitioning, in Proceedings of

the seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ACM, 2001,

pp. 269–274.

[15] S. S. Du, Y. Liu, B. Chen, and L. Li, Maxios: Large scale nonnegative matrix factorization for collaborative

filtering, in Proceedings of the NIPS 2014 Workshop on Distributed Matrix Computations, 2014.

[16] D. Easley and J. Kleinberg, Networks, Crowds, and Markets: Reasoning and a Highly Connected World,

Cambridge University Press, New York, 2010.

[17] H. Fang, Z. Zhang, Y. Shao, and C.-J. Hsieh, Improved bounded matrix completion for large-scale recom-

mender systems., in IJCAI, 2017, pp. 1654–1660.

[18] M. Fiedler, A property of eigenvectors of nonnegative symmetric matrices and its application to graph theory,

Czechoslovak Mathematical Journal, 25 (1975), pp. 619–633.

[19] R. Gemulla, E. Nijkamp, P. J. Haas, and Y. Sismanis, Large-scale matrix factorization with distributed

stochastic gradient descent, in Proceedings of the 17th ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining, ACM, 2011, pp. 69–77.

[20] S. Georgiou, C. Koukouvinos, and J. Seberry, Hadamard matrices, orthogonal designs and construction

algorithms, in Designs 2002, Springer, 2003, pp. 133–205.

[21] E. F. Gonzalez and Y. Zhang, Accelerating the Lee-Seung algorithm for nonnegative matrix factorization,

tech. rep., 2005.

[22] S. E. Grigorescu, N. Petkov, and P. Kruizinga, Comparison of texture features based on Gabor filters,

IEEE Transactions on Image Processing, 11 (2002), pp. 1160–1167.

[23] L. Hagen and A. B. Kahng, New spectral methods for ratio cut partitioning and clustering, IEEE Transactions

on Computer-aided Design of Integrated Circuits and Systems, 11 (1992), pp. 1074–1085.

[24] N. Halko, P.-G. Martinsson, and J. A. Tropp, Finding structure with randomness: Probabilistic algorithms

for constructing approximate matrix decompositions, SIAM Review, 53 (2011), pp. 217–288.

[25] D. K. Hammond, P. Vandergheynst, and R. Gribonval, Wavelets on graphs via spectral graph theory,

Applied and Computational Harmonic Analysis, 30 (2011), pp. 129–150.

[26] F. M. Harper and J. A. Konstan, The movielens datasets: History and context, Acm Transactions on Inter-

active Intelligent Systems, 5 (2015), pp. 1–19.

[27] T. Hastie, R. Tibshirani, and M. Wainwright, Statistical learning with sparsity: the lasso and generaliza-

tions, CRC press, 2015.

[28] C.-J. Hsieh and P. Olsen, Nuclear norm minimization via active subspace selection, in International Conference

on Machine Learning, 2014, pp. 575–583.

73

[29] J. Irion, Multiscale Transforms for Signals on Graphs: Methods and Applications, Ph.D. dissertation, University

of California, Davis, 2015.

[30] J. Irion and N. Saito, The generalized Haar-Walsh transform, in Proceedings of 2014 IEEE Workshop on

Statistical Signal Processing (SSP), IEEE, 2014, pp. 472–475.

[31] J. Irion and N. Saito, Applied and computational harmonic analysis on graphs and networks, in Wavelets and

Sparsity XVI, Proc. SPIE 9597, M. Papadakis, V. K. Goyal, and D. Van De Ville, eds., 2015. Paper # 95971F.

[32] , Learning sparsity and structure of matrices with multiscale graph basis dictionaries, in Proc. 2016 IEEE

26th International Workshop on Machine Learning for Signal Processing (MLSP), A. Uncini, K. Diamantaras,

F. A. N. Palmieri, and J. Larsen, eds., 2016.

[33] J. Irion and N. Saito, Efficient approximation and denoising of graph signals using the multiscale basis dic-

tionaries, IEEE Transactions on Signal and Information Processing over Networks, 3 (2017), pp. 607–616.

[34] M. Jansen, G. P. Nason, and B. W. Silverman, Multiscale methods for data on graphs and irregular multi-

dimensional situations, Journal of the Royal Statistical Society: Series B (Statistical Methodology), 71 (2009),

pp. 97–125.

[35] I. T. Jolliffe, Principal Component Analysis and Factor Analysis, Springer New York, New York, NY, 1986,

pp. 115–128.

[36] V. Kalofolias, X. Bresson, M. Bronstein, and P. Vandergheynst, Matrix completion on graphs, in

Neural Information Processing Systems workshop “Out of the Box: Robustness in High Dimension”, 2014.

[37] R. Kannan, M. Ishteva, B. Drake, and H. Park, Bounded matrix low rank approximation, in Non-negative

Matrix Factorization Techniques, Springer, 2016, pp. 89–118.

[38] Y. Koren, Factorization meets the neighborhood: a multifaceted collaborative filtering model, in Proceedings of

the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2008, pp. 426–434.

[39] Y. Koren, R. Bell, and C. Volinsky, Matrix factorization techniques for recommender systems, IEEE Com-

puter, 42 (2009), pp. 30–37.

[40] R. M. Larsen, Lanczos bidiagonalization with partial reorthogonalization, DAIMI Report Series, (1998).

[41] A. Lee, B. Nadler, and L. Wasserman, Treelets—an adaptive multi-scale basis for sparse unordered data,

Annals of Applied Statistics, 2 (2008), pp. 435–471.

[42] D. D. Lee and H. S. Seung, Learning the parts of objects by non-negative matrix factorization, Nature, 401

(1999), pp. 788–791.

[43] , Algorithms for non-negative matrix factorization, in Advances in Neural Information Processing Systems,

2001, pp. 556–562.

[44] C.-J. Lin, Projected gradient methods for nonnegative matrix factorization, Neural Computation, 19 (2007),

pp. 2756–2779.

[45] D. Lin, A. Arslan, T. Holy, et al., NMF.jl. https://github.com/JuliaStats/NMF.jl, 2018.

74

[46] Z. Lin, R. Liu, and Z. Su, Linearized alternating direction method with adaptive penalty for low-rank represen-

tation, in Advances in Neural Information Processing Systems, 2011, pp. 612–620.

[47] M. Lindberg and L. F. Villemoes, Image compression with adaptive Haar-Walsh tilings, in Wavelet Appli-

cations in Signal and Image Processing VIII, Proc. SPIE 4119, International Society for Optics and Photonics,

2000, pp. 911–922.

[48] L. Lovász, Large Networks and Graph Limits, vol. 60 of Colloquium Publications, American Mathematical

Society, Providence, RI, 2012.

[49] S. Mallat, A Wavelet Tour of Signal Processing, Academic Press, 3rd ed., 2009.

[50] R. Mazumder, T. Hastie, and R. Tibshirani, Spectral regularization algorithms for learning large incomplete

matrices, Journal of Machine Learning Research, 11 (2010), pp. 2287–2322.

[51] F. Murtagh, The Haar wavelet transform of a dendrogram, Journal of Classification, 24 (2007), pp. 3–32.

[52] M. Newman, Networks, Oxford University Press, 2nd ed., 2018.

[53] A. Ortega, P. Frossard, J. Kovačević, J. M. Moura, and P. Vandergheynst, Graph signal processing:

Overview, challenges, and applications, Proceedings of the IEEE, 106 (2018), pp. 808–828.

[54] B. Recht, M. Fazel, and P. A. Parrilo, Guaranteed minimum-rank solutions of linear matrix equations via

nuclear norm minimization, SIAM review, 52 (2010), pp. 471–501.

[55] D. K. Ruch and P. J. Van Fleet, Wavelet Theory: an Elementary Approach with Applications, John Wiley

& Sons, 2011.

[56] R. M. Rustamov, Average interpolating wavelets on point clouds and graphs, ArXiv Preprint ArXiv:1110.2227,

(2011).

[57] N. Saito and R. R. Coifman, Extraction of geological information from acoustic well-logging waveforms using

time-frequency wavelets, Geophysics, 62 (1997), pp. 1921–1930.

[58] Y. Shao and N. Saito, The extended generalized Haar-Walsh transform and applications, in Wavelets and

Sparsity XVIII, vol. 11138, International Society for Optics and Photonics, 2019, p. 111380C.

[59] J. Shi and J. Malik, Normalized cuts and image segmentation, IEEE Transactions on Pattern Analysis and

Machine Intelligence, 22 (2000), pp. 888–905.

[60] D. I. Shuman, S. K. Narang, P. Frossard, A. Ortega, and P. Vandergheynst, The emerging field of

signal processing on graphs: Extending high-dimensional data analysis to networks and other irregular domains,

IEEE Signal Processing Magazine, 30 (2013), pp. 83–98.

[61] S. Sra and I. S. Dhillon, Generalized nonnegative matrix approximations with Bregman divergences, in Ad-

vances in Neural Information Processing Systems, 2006, pp. 283–290.

[62] E. M. Stein and R. Shakarchi, Fourier Analysis: An Introduction, vol. 1, Princeton University Press, 2011.

[63] A. D. Szlam, M. Maggioni, and R. R. Coifman, Regularization on graphs with function-adapted diffusion

processes, Journal of Machine Learning Research, 9 (2008), pp. 1711–1739.

75

[64] A. D. Szlam, M. Maggioni, R. R. Coifman, and J. C. Bremer, Jr., Diffusion-driven multiscale analysis on

manifolds and graphs: top-down and bottom-up constructions, in Wavelets XI, Proc. SPIE 5914, M. Papadakis,

A. F. Laine, and M. A. Unser, eds., vol. 5914, International Society for Optics and Photonics, 2005, p. 59141D.

[65] C. M. Thiele and L. F. Villemoes, A fast algorithm for adapted time–frequency tilings, Applied and Compu-

tational Harmonic Analysis, 3 (1996), pp. 91–99.

[66] M. Udell, C. Horn, R. Zadeh, S. Boyd, et al., Generalized low rank models, Foundations and Trends R© in

Machine Learning, 9 (2016), pp. 1–118.

[67] M. Udell and A. Townsend, Why are big data matrices approximately low rank?, SIAM Journal on Mathe-

matics of Data Science, 1 (2019), pp. 144–160.

[68] U. Von Luxburg, A tutorial on spectral clustering, Statistics and Computing, 17 (2007), pp. 395–416.

[69] H.-F. Yu, C.-J. Hsieh, S. Si, and I. Dhillon, Scalable coordinate descent approaches to parallel matrix

factorization for recommender systems, in 2012 IEEE 12th International Conference on Data Mining, IEEE,

2012, pp. 765–774.

76

