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Abstract

We study one-dimensional cellular automata (CA) whose rules are chosen at random from

among r-neighbor rules with a large number n of states. In particular, we are interested in CA

evolutions with both temporal and spatial periodicity, the periodic solutions (PS). Our main focus

are the properties of PS of a randomly chosen n-state CA rule, for large n. We prove that, when

r = 2, the limiting probability that a random rule has a PS with given spatial and temporal periods

is nontrivial when the periods are confined to a finite range. As a corollary, the shortest temporal

period of PS with a given spatial period σ is stochastically bounded. By contrast, the longest

temporal period of a PS with a given spatial period σ is of order nσ/2, for any r and σ such that

σ ≤ r. In addition, we also explore PS that exhibit certain robustness, weakly robust periodic

solutions (WRPS). We show that the probability of existence of WRPS within a finite range of

periods is asymptotically 1/n, if r = 2 and the range satisfies a divisibility condition.

We also study the analogous questions for deterministic rules when r = 2. When σ = 2, 3, 4,

or 6, and we restrict the rules to be additive, we show that the longest period can be expressed as

the exponent of the multiplicative group of an appropriate ring. We also construct non-additive

rules with temporal period on the same order as the trivial upper bound nσ. Additionally, we

present a natural extension to the R-algorithm from the fundamental paper [GG12] that finds

robust periodic solution (RPS) and present a proof of the scarcity of bounded growth.

Experimental results, open problems, and possible extensions of our results are also discussed

to each problem that we study.

-v-



Acknowledgments

I would first like to express my sincere gratitude to my advisor, Prof. Janko Gravner, for his

guidance and support during my years at the University of California, Davis. I have benefited

immensely from working with Prof. Gravner. Not only did his insights on mathematics guide me

through my research, but his positive attitude encouraged me through many stressful times while

studying, teaching, working, and even running a marathon.

I also wish to thank my dissertation committee, including Prof. Benjamin Morris and Prof.

Alexander Soshnikov, for reviewing my dissertation, and my qualifying exam committee, including

Prof. Xia Qinglan and Prof. Danial Gusfield, for helping me with my exam.

Many thanks go to other professors and staffs in the Department of Mathematics for providing

sufficient funding and such an enjoyable environment in which to conduct research. In particular,

special thanks go to Tina Denena, Sarah Driver, and Victoria Whistler for their consistent support

of my studies and work.

Additionally, I would like to thank all my fellows and friends for their encouragement through

my program and/or participating in valuable discussions on mathematical problems, particularly

Dou Fang (窦芳), Luo Yanwen (罗焱文), Shu Jingyang (舒荆阳, for pointing out the sequence

(4.17)), Wang Jiawei (王佳伟), and Wang Tianxin (王天欣).

In closing, I would like to express my deep appreciation for my parents – Feng Li (冯莉) and Liu

Zhiyong (刘志勇). The completion of my dissertation and my degree would not have been possible

without your consistent support and nurturing. You earned this degree right along with me!

-vi-



CHAPTER 1

Introduction

1.1. Cellular Automata

In an autonomous dynamical system, a closed trajectory is a temporally periodic solution and

obtaining information about such trajectories is of fundamental importance in understanding the

dynamics [Rei91]. If the evolving variable is a spatial configuration, we may impose additional

requirements on periodic solutions, such as spatial periodicity. What sort of periodic solutions

does a typical dynamical system have? This question is perhaps easiest to pose for temporally and

spatially discrete local dynamics of a cellular automaton (CA). Indeed, if we fix a neighborhood

and a number of states, the number of cellular automata rules is finite, and the notion of a random

rule straightforward. To date, not much seems to be known about properties of random CA.

To introduce our formal set-up, the set of sites is one-dimensional integer lattice Z, and the

set of possible states at each site is Zn = {0, 1, . . . , n − 1}, thus a spatial configuration is a

function ξ : Z → Zn. A CA produces a trajectory, that is, a sequence ξt of configurations,

t ∈ Z+ = {0, 1, 2, . . .}, which is determined by the initial configuration ξ0 and the following local

and deterministic update scheme. Fix a finite neighborhood N ⊂ Z. Then a rule is a function

f : ZNn → Zn that specifies the evolution as follows: ξt+1(x) = f(ξt|x+N ). Throughout, we fix an

r ≥ 2, and consider one-sided rule with the neighborhood N = {−(r − 1),−(r − 2), . . . ,−1, 0},

which results in

(1.1) ξt+1(x) = f(ξt(x− r + 1), . . . , ξt(x)), for all x ∈ Z.

In words, the state at a site at time t + 1 depends in a translation-invariant fashion on the state

at the same site and its left r − 1 neighbors at time t. We often write f(a−r+1, . . . , a0) = b as

a−r+1 · · · a0 7→ b.
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A rule f is additive if it commutes with sitewise addition modulo n, or, equivalently, if there

exist c0, . . . , cr−1 ∈ Zn so that f(a−r+1, . . . , a0) =

r−1∑
j=0

cjaj . When r = 2, we give a rule by listing

its values for all pairs in reverse alphabetical order, from (n− 1, n− 1) to (0, 0).

It is convenient to interpret a trajectory as a space-time configuration, a mapping (t, x) 7→

ξt(x) from Z+ × Z to Zn that is commonly depicted as a two-dimensional grid of painted cells,

in which different states are different colors, as in Figure 1.1. We remark that the one-sided

neighborhoods are particularly suitable for studying periodicity and that any two-sided rule can be

transformed to a one-sided one by a linear transformation of the space-time configuration [GG12].

In Figure 1.1, we have three states, i.e., n = 3, and the rule is 021102022, i.e., 22 7→ 0, 21 7→

2, 20 7→ 1, 12 7→ 1, 11 7→ 0, 10 7→ 2, 02 7→ 0, 01 7→ 2 and 00 7→ 2.

Figure 1.1. A piece of the space-time configuration of a 3-state rule. In the space-
time configuration, 0, 1 and 2 are represented by white, red and black cells, respec-
tively.

1.2. Periodic Solution and Robustness

The space-time configuration in Figure 1.1 exhibits periodicity in both space and time. In the

literature [BL07], such a configuration is called doubly or jointly periodic. Since these are the

only objects we study, we simply refer to such a configuration as a periodic solution (PS). To

be precise, start with a periodic spatial configuration ξ0, such that there is a σ > 0 satisfying

ξ0(x) = ξ0(x + σ), for all x ∈ Z. Run a CA rule f starting with ξ0. If we have ξτ (x) = ξ0(x),

for all x ∈ Z and that σ and τ are both minimal, then we have found a PS of temporal period

τ and spatial period σ. Each of the periodic spatial configurations ξ0, . . . , ξτ−1 is called a PS

configuration. A tile is any rectangle with τ rows and σ columns within the resulting space-time

configuration. We interpret a tile as a configuration on a discrete torus; we will not distinguish
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between spatial and temporal translations of a PS, and therefore between either rotations of a tile.

The tile of a PS is by definition unique and we will identify a PS with its tile. As an example,

in Figure 1.1, we start with the initial configuration ξ0 = 120∞ = . . . 120120120 . . . (we give a

configuration as a bi-infinite sequence when the position of the origin is clear or unimportant).

After 2 updates, we have ξ2(x) = ξ0(x), for all x ∈ Z, thus the PS has temporal period 2 and

spatial period 3. Its tile is

1 2 0

2 1 1
.

PS with expansion properties are of particular interests. For example, Figure 1.2 demonstrates

two pieces of the space-time configurations under rule 102222210. The tile

0 2 2 2 1 1

2 2 1 1 0 2

1 1 0 2 2 2

characterizes a PS under this rule and for such PS, even if the spatial periodic configuration is

replaced by an arbitrary configuration to the right of some site in Z, the periodic configuration will

“repair” itself, that is, it will advance to the right with a minimal velocity v > 0 as time grows,

uniformly over the perturbed environment. We will make more formal definition below.

Such PS are of particular importance, as they are related to stable limit cycles in continuous

dynamical systems. Limit cycles, also known as isolated closed trajectories, are such that neighbor-

ing trajectories either spiral toward or away from them. In the former case, when a perturbation of

a limit cycle converges back, the limit cycle is called stable [Str15]. Thus we consider an analogous

stability property for CA: after a one-sided perturbation of a periodic configuration, the dynamics

make the configuration converge back. In this paper, we keep the terminology from [GG12] and

refer to such stability as robustness. We remark that the minimal velocity v gives the minimal

exponential rate of convergence to the PS in the standard metric, by which the distance between

ξ, η ∈ ZZ
n is m(ξ, η) = 2−n, where n = inf{|x| : ξ(x) 6= η(x)}.

To be more precise, let ξ0 be a PS configuration under rule f and η0 be any initial configuration

that agrees with ξ0 on all x ≤ y, for some y ∈ Z. Such initial configurations, adapting the definition

from [GG12], are called proper. Let ξt and ηt be the configurations obtained by running f starting
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Figure 1.2. Two pieces of the space-time configuration of the 3-state rule
102222210. The underlying PS exhibits weak robustness: the periodicity expands if
it is terminated and continued by an arbitrary configuration, for example a random
configuration (left) or all 0s (right).

with ξ0 and η0, respectively. Let

st(η0) = sup{y : ηt(x) = ξt(x), for all x < y}

be the first location that ηt does not agree with ξt at time t. Then the expansion velocity in the

initial environment η0 is

v(η0) = lim inf
t→∞

st
t
,

which describes the rate at which spacial periodicity expands. If the expansion velocity

v = inf{v(η0) : η0 is proper for ξ0}

is strictly positive, we say that the PS ξt is weakly robust, in comparative to robustness in [GG12].

We will also explore the (non-weak) robustness that was originally investigated in [GG12]

under a moderately generalized setting. Let f be a fixed rule and ξ
(0)
t and ξt be two PS under f ,

with temporal period τ0, τ and spatial periods σ0, σ, respectively. We may write each of the two

configurations by appending infinitely many finite configurations L0 and L, where they have length

σ0 and σ, respectively. Let H be another finite configuration of length h and put the leftmost

site of H at the origin. Form infinitely many L0 and L’s to the left and right of H, respectively,

denoted as η0 = L∞0 HL
∞. Run the CA rule f starting from η0 and call the dynamics ηt. Under

this setting, we call H a handle if every site to the right of the origin, inclusive, are temporally

periodic: there is a τh > 0 such that ηt(x) = ηt+τh(x) for all t ≥ 0 and x = 0, 1, . . . , h−1 and for all

x = h, h+ 1, . . . , we still have ηt(x) = ηt+τ (x) for all t ≥ 0. If ξt, the original PS is weakly robust,
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we say that ξt is a robust periodic solution (RPS) with respect to background PS ξ
(0)
t

and handle H.

We remark here that in the fundamental paper that studies robustness of PS [GG12], rules

are restricted to satisfy the “edge” condition that f(0, a) = a, for all a ∈ Zn. Under this setup,

ξ
(0)
t = . . . 000 . . . consistently serves as a background PS with temporal and spatial period 1. In

addition, we also remark here that it is clear that an RPS ξt itself is weakly robust, while a WRPS

ξt is always robust with respect to itself if H is selected to be the empty configuration.

Besides the PS, the property of bounded growth is also of interest for rules that satisfy f(0, 0) =

0. If the initial configuration ξ0 is restricted to have only finitely many non-zero states, we may

investigate the growth velocity of the (right) boundary of ξt. We define sg(A) as the site of the

rightmost non-zero value in the configuration A. Hence, for a initial configuration ξ0, we define its

growth velocity to be

vg(ξ0) = lim sup
t→∞

sg(ξt)

t
,

and the growth velocity of an edge CA is

vg = sup
ξ0

vg(ξ0).

A CA is said to have bounded growth if there exists an integer K = K(ξ0) such that sg(ξt) < K,

for all t ≥ 0.

CA that exhibit temporally periodic or jointly periodic behavior have been addressed to some

extend in the literature.

First, this thesis is primarily motivated by the fundamental work that investigates RPS [GG12],

in which the authors explore all the 64 one-dimensional binary 3-neighbor, i.e., r = 3, edge CA

rules and their RPS. Besides this work, the robustness of PS is also explored for the Exactly 1 rule

(elementary CA Rule 22 ) in [GG11], together with other types of evolution, e.g., replication and

chaos, that this rule exhibits.

The groundwork that studies (non-robust) PS was laid in [MOW84], which extensively studies

additive CA, but also devotes some attention to non-additive ones. An important observation is

the link between periodicity in CA and state transition diagrams, which we find useful in this

thesis as well. Successors of [MOW84] include [Jen88a,Jen88b,Jen86,Wol02,XSB09,Kim09].
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In [BL07,BK99], the authors take a dynamical systems point of view and explore the density of

temporally and spatially periodic (which they call jointly periodic) configurations.

The paper [CSBK97], for example, investigates the maximal length of temporal periods of

binary CA under null boundary condition, and demonstrates that the maximal length 2σ − 1 can

be obtained by additive rules, for any σ > 0. In [AMD18], the authors address the same question

for non-additive CA, and show that the maximal length can also be obtained, if the rule is allowed

to be non-uniform among sites. Works that investigate additive rules and their temporal periods

also include [GH86], [PTC86], [TSL06], and [MST06].

Long temporal periods generated by CA have been of particular interest because of their ap-

plications to random number generation [Wol86,CSBK97,SRC93,Ste99,MST06,DC10].

1.3. Summary of Main Results

We now present a formal setting to investigate PS from random rules, which, to our knowledge,

have not been explored before.

We first remark that in this thesis, except for Theorem 1.3.3, Theorem 1.4.1 and Chapter 3,

where we give the proofs to these two theorems, we always assume the simplest nontrivial case that

r = 2.

For a fixed n and r, the natural probability space is Ωr,n, containing all the nn
r
r-neighbor

rules, with P that assigns the uniform probability P({f}) = 1/#Ωr,n = 1/nn
r

to every f ∈ Ωr,n.

Let Pτ,σ,n be the random set of PS with temporal period τ and spatial period σ of such a randomly

chosen CA rule. In Chapter 2, the main quantity we are interested in is limP (Pτ,σ,n 6= ∅) as n→∞

for a fixed pair of (τ, σ). In words, our focus is the limiting probability that a random CA rule has

a PS with given temporal and spatial periods. In the following theorem, we prove that this limit is

nontrivial for any τ and σ. Define

(1.2) λτ,σ =
1

τσ

∑
d|gcd(τ,σ)

ϕ(d)d,

where ϕ is the Euler totient function.

Theorem 1.3.1. For any fixed integers τ ≥ 1 and σ ≥ 1, P (Pτ,σ,n 6= ∅) → 1 − exp (−λτ,σ) as

n→∞.
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(a) 012200210 (b) 021102120 (c) 100112122 (d) 101201021

Figure 1.3. Pieces of PS for σ = 4 and 3-state rules, 012200210, 021102120,
100112122 and 101201021, with temporal period τ = 1, 2, 3 and 4, respectively.
(See the discussion before Corollary 2.4.1.) These temporal periods are the smallest
in each case, as verified by Algorithm 2.1.1 in Section 2.1.4. Algorithm 2.1.2 in
Section 2.1.5 shows that σ = 4 is not the minimal spatial period of PS given the
corresponding temporal period τ = 1, 2 and 3 in the first three rules, while for the
last rule σ = 4 is also the minimal spatial period of PS for temporal period τ = 4.

We also prove a more general result concerns the number of PS with a range of periods. Assume

T ,Σ ⊂ N = {1, 2, . . . }, and define PT ,Σ,n = PT ,Σ,n(f) =
⋃

(τ,σ)∈T ×Σ

Pτ,σ,n and

(1.3) λT ,Σ =
∑

(τ,σ)∈T ×Σ

λτ,σ.

Theorem 1.3.2. For a finite T × Σ ⊂ N× N, P (PT ,Σ,n 6= ∅)→ 1− exp (−λT ,Σ) as n→∞.

For an n-state rule f and σ ≥ 1, we let Xσ,n(f) and Yσ,n(f) be, respectively, the largest and

smallest temporal periods of PS, with spatial period σ, of the rule f . When f is selected uniformly

at random, Xσ,n and Yσ,n become random variables. That is

Xσ,n = max{τ : Pτ,σ,n 6= ∅}

and

Yσ,n = min{τ : Pτ,σ,n 6= ∅}.

Figure 1.3 provides four examples of rules f , with Y4,3(f) = 1, 2, 3 and 4. As a consequence of

Theorem 1.3.2, for a given σ > 0, the random variable Yσ,n is stochastically bounded, in the sense

of the following corollary.

Corollary 1.3.1. The random variable Yσ,n converges weakly to a nontrivial distribution as

n→∞.
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In Chapter 3, we consider the general setting of CA rules with r ≥ 2 neighbors and the typical

size of Xσ,n when r and σ are fixed and n is large. Our main result covers the case σ ≤ r. The case

σ > r is much harder, but we expect the same result to hold; see the discussion in Chapter 3.

Theorem 1.3.3. Fix a number of neighbors r and a spatial period σ ≤ r. Then Xσ,n/n
σ/2

converges in distribution, as n→∞, to a nontrivial limit.

Computations with the limiting distribution are a challenge, so we resort to Monte-Carlo sim-

ulations in Section 3.5 to illustrate Theorem 1.3.3.

We also provide empirical evidence that the same result holds when σ > r, although in that

case we do not have a rigorous proof even for r = 2. At least for r = σ = 2, therefore, the shortest

temporal period is stochastically bounded while the longest is on the order of n.

In Chapter 4, instead of their typical size, we explore the extremal values of Xσ,n(f) and

Yσ,n(f). We again assume the simplest nontrivial case, i.e., r = 2. It is clear that minf Yσ,n(f) =

minf Xσ,n(f) = 1, as the minima are attained by the identity n-state rule, i.e., the rule f given by

f(c0, c1) = c1, for all c0, c1 ∈ Zn. We therefore focus on

(1.4) max
f

Yσ,n(f) and max
f

Xσ,n(f),

the largest among the shortest and longest temporal periods of a PS with spatial period σ and n

states. Let T (σ, n) be the number of aperiodic length-σ words from alphabet Zn, that is, words

that cannot be written as repetition of a subword. Then it is clear that, for all n state rules f ,

1 ≤ Yσ,n(f) ≤ Xσ,n(f) ≤ T (σ, n). We also have the following counting result.

Lemma 1.3.1. The number of aperiodic length-σ word from alphabet Zn is

T (σ, n) =
∑
d|σ

ndµ
(σ
d

)
=


nσ − nσ/2 + o(nσ/2), if σ is even

nσ + o(nσ/2), if σ is odd

,

where µ(·) is the Möbius function.

Proof. See [CRS+00]. �
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For σ = 1 and any n, it is easy to find a rule f with Y1,n(f) = X1,n(f) = n = T (1, n); for

example, any rule f satisfying f(a, a) = φ(a), where φ is any permutation on Zn of order n, would

do. For σ = 2, viewing evolution on {0, 1} with periodic boundary, a unique CA with temporal

period

(
n

2

)
goes through all length-2 configuration ab, with a < b ∈ Zn. For instance, when n = 3,

the evolution

0 1

0 2

1 2

defines a rule with 01 7→ 2, 10 7→ 0, 02 7→ 2, 20 7→ 1, 12 7→ 1 and 21 7→ 0. Switching the last two

values of f extends the PS to

0 1

0 2

1 2

1 0

2 0

2 1

,

which has temporal period 6 = 32 − 3 = T (2, 3). It is clear that this construction works for all n

and gives Y2,n(f) = X2,n(f) = n2 − n = T (2, n).

Even for σ ≥ 3, it is not obvious what the extremal values (1.4) are, whether they are equal,

or whether the upper bound T (3, n) can always be attained. One of our main results is that

maxf Yσ,n(f) = Θ(nσ), matching the order of T (σ, n) given by Lemma 1.3.1.

Theorem 1.3.4. Fix an arbitrary σ > 0. For n ≥ N(σ), there exists an n-state CA rule f such

that Xσ,n(f) = Yσ,n(f) ≥ C(σ)nσ, where N(σ) and C(σ) are constants depending only on σ.

To alleviate the difficulties in computing the extremal quantities (1.4), one may try to restrict

the set of rules f . The most natural such restriction are the additive rules, which exploit the

algebraic structure of the states and enable the use of algebraic tools [MOW84,Jen88a,Jen88b].

We denote by An the set of n-state additive rules and let

πσ(n) = max
f∈An

Xσ,n(f).

9



It follows from [MOW84] that πσ(n) ≤ nσ−1 (see Corollary 4.1.1), and therefore by Theorem 1.3.4

the maximal period of additive rules is at least by one power of n smaller than that of non-additive

rules. Furthermore, for πσ(n) and σ ∈ {2, 3, 4, 6}, we are able to give an explicit formula for πσ(n).

Let λσ(n) be the exponents of multiplicative group of Zn when σ = 2, Eisenstein integers modulo

n when σ = 3, and Gaussian integers modulo n when σ = 4. Then πσ is related to λσ as follows.

Theorem 1.3.5. For σ = 2, 3, πσ(n) = λσ(σn), for all n ≥ 2. Moreover, π4(2) = 4 and

π4(n) = λ4(n), for all n ≥ 3. Finally, π6(n) = λ3(6n), for all n ≥ 2.

This theorem, and Lemmas 4.1.1–4.1.4, give the promised explicit expressions for the four

πσ(n). It is tempting to conjecture that a variant of Theorem 1.3.5 holds for all σ, with a suitable

definition of λσ for Kummer ring Zn(ζ), where ζ is the σ’th root of unity. However, this remains

unclear as ζ is quadratic only for σ = 3, 4, 6, and this fact plays a crucial role in our arguments.

See the discussion section in Chapter 4 for more details.

We will also study the existence of WRPS of random rules. Let RT ,Σ be the set of WRPS of a

randomly selected n-state rule f , with temporal period τ and spatial period σ, where (τ, σ) ∈ T ×Σ.

While we study the existence of PS on arbitrary finite range T ×Σ ⊂ N×N in Theorem 1.3.2, we

impose one more restriction on the range to present the result on WRPS.

Theorem 1.3.6. Let T ×Σ ⊂ N×N be fixed and finite. If there exists (τ, σ) ∈ T ×Σ such that

σ | τ , then P(RT ,Σ 6= ∅) = c(T ,Σ)/n + o(1/n), where c(T ,Σ) is a constant depending only on T

and Σ.

We also discuss several technique conjectures so that the divisibility condition in the statement

can be relaxed. See the discussion in Chapter 5.

In the chapter that investigates RPS, we will gently generalize the R-algorithm proposed

in [GG12] to fit into our definition.

We will also prove the following result regarding growth velocity.

Theorem 1.3.7. The probability that an n-state rule with f(0, 0) = 0 has growth velocity 1 is

1− 1/n.
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1.4. Proof Outline and Summary of Chapters

This thesis consists of six chapters, each of which, except for this Chapter 1, corresponds to a

research project.

Chapter 2 is based on the paper Periodic Solutions of One-dimensional Cellular Automata with

Random Rules [GL19c]. In this chapter, we first collect our main tools: tiles of PS; circular shifts;

oriented graphs induced by a rule; and the Chen-Stein method. We then discuss a class of tiles that

plays a central role and prove Theorem 1.3.1 and Theorem 1.3.2 using the Chen-Stein method.

The paper One-dimensional Cellular Automata with Random Rules: Longest Temporal Period

of a Periodic Solution [GL19b] serves as the basis of Chapter 3, where we give the proof of

Theorem 1.3.3. We construct a directed graph, similar to the one in Chapter 2, and its use

in analysis of PS is spelled out in Section 3.2. The proof of Theorem 1.3.3 is finally given in

Section 3.4.

On the way of the proof of Theorem 1.3.3, we prove the following theorem, which may be of

independent interest, in which Cn = Cσ,n is the number of equivalence classes of initial conditions,

modulo translations, that are periodic with (minimal) period σ and are such that the CA evolution

never reduces the spatial period.

Theorem 1.4.1. Assume σ ≤ r. If σ is even, then, as n→∞, n−σCn converges in distribution

to 1 − τ , where τ is the hitting time of 0 of the Brownian bridge η(t) that starts at η(0) = 1/
√
σ

and ends at η(1) = 0. If σ is odd, n−σCn → 1 in probability.

See [AP94, AMP04] for related results on random mappings. To prove Theorem 1.4.1, we

present a sequential construction of the random rule that yields a stochastic difference equation

whose solution converges to the Brownian bridge. Once Theorem 1.4.1 is established, the remainder

of the proof of Theorem 1.3.3 is largely an application of existing results on random mappings and

random permutations, which we adapt to our purposes in Section 3.3.

Chapter 4 is based on the paper Maximal Temporal Period of a Periodic Solution Generated by

a One-dimensional Cellular Automaton [GL19a]. In this chapter, we address additive rules and

prove Theorem 1.3.4. We relegate a result on multiplicative group structure of Eisenstein numbers
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modulo n, which is needed for σ = 3, 6, to the appendix at the end of the thesis. In Section 4.2,

we prove Theorem 1.3.5 through explicit construction.

Weakly robustness is studied in Chapter 5, which is based on the paper Weakly Robust Periodic

Solutions of One-dimensional Cellular Automata with Random Rules [GL20b]. In this chapter, we

introduce the decidability as the key concept that distinguishes a WRPS from a non-weakly robust

one. On the way to the proof of Theorem 1.3.6, we generalize the approaches in [Sbe90] to present

a result of enumerating of certain types of spanning trees. Based on this counting result and the

tools already prove in Chapter 2, we give the proof of Theorem 1.3.6.

In the last Chapter 6, while we do not dig into the RPS generated by random rules, we generalize

the R-algorithm proposed in [GG12] to fit into our definition. Also, a short proof of Theorem 1.3.7

is given. This chapter is based on a project that is in preparation, Robust Periodic Solutions of

One-dimensional Cellular Automata with Random Rules [GL20a].

We conclude each chapter by presenting related computer simulations and propose a few open

problems for future consideration.
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CHAPTER 2

Periodic Solutions of a Random Rule

Throughout this chapter, we assume that r = 2.

The main quantity we analyze is the asymptotic probability, as n → ∞, that the random

rule has a periodic solution with given spatial and temporal periods. To be precise, we will prove

Theorem 1.3.1 and Theorem 1.3.2, which is restated here. Define

(2.1) λτ,σ =
1

τσ

∑
d|gcd(τ,σ)

ϕ(d)d,

where ϕ is the Euler totient function.

Theorem (1.3.1 restated). For any fixed integers τ ≥ 1 and σ ≥ 1, P (Pτ,σ,n 6= ∅) → 1 −

exp (−λτ,σ) as n→∞.

Assume T ,Σ ⊂ N = {1, 2, . . . }, and define PT ,Σ,n = PT ,Σ,n(f) =
⋃

(τ,σ)∈T ×Σ

Pτ,σ,n and

(2.2) λT ,Σ =
∑

(τ,σ)∈T ×Σ

λτ,σ.

Theorem (1.3.2 restated). For a finite T × Σ ⊂ N× N, P (PT ,Σ,n 6= ∅)→ 1− exp (−λT ,Σ) as

n→∞.

Let Yσ,n = min{τ : Pτ,σ,n 6= ∅}, be the shortest temporal period of a PS with spatial period σ

of a randomly chosen rule. Then Corollary 1.3.1 follows immediately.

Corollary (1.3.1 restated). The random variable Yσ,n converges weakly to a nontrivial distri-

bution as n→∞.
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2.1. Preliminaries

2.1.1. Tiles of a PS. We recall that the spatial and temporal periods σ and τ are assumed

to be minimal, so a tile cannot be divided into smaller identical pieces. We now take a closer look

into properties of tiles.

If we choose an element in a tile T to be placed at the position (0, 0), T may be expressed as

a matrix T = (ai,j)i=0,...,τ−1,j=0,...,σ−1. We always interpret the two subscripts modulo τ and σ.

The matrix is determined up to a space-time rotation, but note that two different rotations cannot

produce the same matrix due to the minimality of σ and τ . We say that ai,j is an element in T ,

and write ai,j ∈ T , when we want to refer to the element of the matrix at the position (i, j), and

use the notation rowi and colj to denote the ith row and jth column of a tile T , again after we fix

a0,0. All the properties we now introduce are independent of the chosen rotation (as they must be,

to be meaningful).

Let T1 and T2 be two tiles and ai,j , bk,m be elements in T1 and T2, respectively. We say that T1

and T2 are orthogonal, and denote this property by T1 ⊥ T2, if (ai,j , ai,j+1) 6= (bk,m, bk,m+1) for

i, j, k,m ∈ Z+. It is important to observe that in this case the two assignments ai,jai,j+1 7→ ai+1,j+1

and bk,mbk,m+1 7→ bk+1,m+1 occur independently.

We say that T1 and T2 are disjoint, and denote this property by T1 ∩T2 = ∅, if ai,j 6= bk,m, for

i, j, k,m ∈ Z+. Clearly, every pair of disjoint tiles is orthogonal, but not vice versa.

Let s(T ) = #{ai,j : ai,j ∈ T} be the number of different states in the tile. Furthermore, let

p(T ) = #{(ai,j , ai,j+1) : ai,j , ai,j+1 ∈ T} be the assignment number of T ; this is the number of

values of the rule f specified by T . Clearly, p(T ) ≥ s(T ), so we define ` = `(T ) = p(T ) − s(T ) to

be the lag of T . We record a few immediate properties of a tile in the following Lemma.

Lemma 2.1.1. Let T = (ai,j)i=0,...,τ−1,j=0,...,σ−1 be the tile of a PS with periods τ and σ. Then

T satisfies the following properties:

(1) Uniqueness of assignment: if (ai,j , ai,j+1) = (ak,m, ak,m+1), then ai+1,j+1 = ak+1,m+1.

(2) Aperiodicity of rows: each row of T cannot be divided into smaller identical pieces.

Proof. Part 1 is clear since T is generated by a CA rule. Part 2 follows from part 1 and the

assumption that the spatial period of T is minimal. �
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By contrast, we remark that there may exist periodic columns in a tile of a PS. For example,

note that the first column in Figure 1.3(d) has period 2 rather than 4 = τ .

2.1.2. Circular Shifts. In this section, we introduce circular shifts operation on Zσn (or Zτn),

the set of words of length σ (or τ) from the alphabet Zn. They will be useful in Section 2.2.

Definition 2.1.1. Let Zσn consist of all length-σ words. A circular shift is a map π : Zσn → Zσn,

given by an i ∈ Z+ as follows: π(a0a1 . . . aτ−1) = aiai+1 . . . ai+σ−1, where the subscripts are modulo

σ. The order of a circular shift π is the smallest k such that πk(A) = A for all A ∈ Zσn, and is

denoted by ord(π). Circular shifts on Zτn will also appear in the sequel and are defined in the same

way.

Lemma 2.1.2. The following two statements hold:

(1) Let π be a circular shift on Zσn. Then ord(π)
∣∣ σ;

(2) Let A ∈ Zσn be any aperiodic finite configuration and d
∣∣ σ. Then

# {B ∈ Zσn : A = π(B) for some circular shift π with ord(π) = d} = ϕ(d).

Proof. Note that the σ circular shifts form a cyclic group of order σ. Moreover, ord(π) of

a circular shift is its order in the group, thus (1) follows. To prove (2), observe that the circular

shifts of order d generate a cyclic subgroup and the number of them is ϕ(d). As A is aperiodic, the

cardinality in the claim is the same. �

We say that two words A and B of length σ are equal up to a circular shift if B = π(A)

for some circular shift π. For example, words 0123 and 2301 are not equal, but are equal up to a

circular shift.

2.1.3. Directed Graphs and Random Graphs. A directed graph G, or digraph in

short, is a set of vertices V , along with a set of ordered pairs of vertices A, called arcs. Throughout,

an arc starting from vertex A and ending at B is denoted as A → B, where A and B are called

the endpoints of the arc. A cycle of length k in G is a directed trail containing k vertices in

which the only repeated vertices are the first and last, denoted as A0 → A1 → · · · → An−1. A
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k-partite digraph is a digraph whose vertices can be partitioned into k different sets, such that no

two endpoints of an arc are in the same set.

After fixing a sample space, an arc from vertex A to B may appear with probability p, thus

the underlying digraph can be regarded as a random digraph.

2.1.4. Directed Graph on Configurations. Connections between directed graphs on pe-

riodic configurations and cycles are well-established [MOW84,Wol02,Kim09,XSB09], as they

are useful for analysis of PS with a fixed spatial period.

Definition 2.1.2. Let A = a0 . . . aσ−1 and B = b0 . . . bσ−1 be two words from alphabet Zn. We

say that A down-extends to B, if f(ai, ai+1) = bi+1, for all i ≥ 0, where (as usual) the indices

are modulo σ, and we write A↘ B.

If A ↘ B, then π(A) ↘ π(B), for any circular shift π on Zσn. We can define, for a fixed σ,

the configuration digraph, which has an arc from A to B if A ↘ B. See Figure 2.1 for the

configuration digraph of the 3-state rule 021102022. For instance, there is an arc from 122 to 210

as 12 7→ 1, 22 7→ 0 and 21 7→ 2. The following algorithm and self-evident proposition determine

the PS in Figure 1.1 from the length-2 cycle 120↔ 211 in Figure 2.1.

Algorithm 2.1.1.

input : Configuration digraph Dσ,f of f with spatial period σ

Find all the directed cycles in Dτ,f

for each cycle A0 → A1 → · · · → Aτ−1 → A0 do

form the tile T by placing configurations A0, A1, . . . , Aσ−1 on successive columns.

if both spatial and temporal periods of T are minimal then

print T as a PS

end

end

Proposition 2.1.1. All PS of spatial period σ of f are obtained by Algorithm 2.1.1.
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We remark that check of the periodicity is necessary, as, for instance, the cycle 000 ↔ 222

in Figure 2.1 results in a PS of spatial period 1 instead of 3. In the same vein, the periods of

configurations are non-increasing, and may decrease, along any directed path on the configuration

digraph. For example, in Figure 2.1, the configuration 100↘ 222, thus the period is reduced from

3 to 1 and then remains 1. These period reductions play a crucial role in Chapter 3.

122 210 022 101

100

222000111

221 102 220 011

001

212

021

202

110

010

122 210 022 101

002 120 211

020 201 112

200 012 121

Figure 2.1. Configuration digraph of the 3-state rule 021102022 and spatial period
σ = 3.

2.1.5. Directed Graph on Labels. In this subsection, we fix the temporal period τ , instead

of the spatial period σ, and obtain another digraph induced by the rule. The construction below

is an adaption of label trees from [GG12]. We call such a graph label digraph.

Definition 2.1.3. Let A = a0 . . . aτ−1 and B = b0 . . . bτ−1 be two words from alphabet Zn,

which we call labels of length τ . (While it is best to view them as vertical columns, we write

them horizontally for reasons of space, as in [GG12].) We say that A right-extends to B if

f(ai, bi) = bi+1, for all i ∈ Z+, where (as usual) the indices are modulo τ , and we write A → B.

We form the label digraph associated with a given τ by forming an arc from a label A to a label

B if A right-extends to B.
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A label A = a0 . . . aτ−1 right-extends to B if and only if we preserve the temporal periodicity

from a column A to the column B to its right. This fact is the basis for the Algorithm 2.1.2 below,

which gives all the PS with temporal period τ . The label digraph of same rule as in Figure 2.1 and

temporal period τ = 2 is presented in Figure 2.2. For example, we have the arc from label 12 to

10 as 11 7→ 0, 20 7→ 1. Either of the two 3-cycles in the digraph generates the PS in Figure 1.1.

Algorithm 2.1.2.

input : Label digraph Dτ,f of f with temporal period τ

Find all the directed cycles in Dτ,f

for each cycle A0 → A1 → · · · → Aσ−1 → A0 do

form the tile T by placing labels A0, A1, . . . , Aσ−1 on successive columns.

if both spatial and temporal periods of T are minimal then

print T as a PS

end

end

Proposition 2.1.2. All PS of temporal period τ of f can be obtained by the Algorithm 2.1.2.

Again, the check of periodicity is necessary due to the same reason as Section 2.1.4. However,

note the differences between the two graphs: the out-degrees in Figure 2.2 are between 0 and 3,

and the temporal periods are not necessarily non-decreasing along a directed path. For example,

00→ 02. We also note that lifting the label digraph to one on equivalence classes, although possible,

makes cycles more obscure and is thus less convenient.

2.1.6. Chen-Stein Method for Poisson Approximation. The main tool we use to prove

Poisson convergence is the Chen-Stein method [BHJ92]. We denote by Poisson(λ) a Poisson ran-

dom variable with expectation λ, and by dTV the total variation distance. We need the following set-

ting for our purposes. Let Ii, for i ∈ Γ be indicators of a finite family of events, which is indexed by Γ,
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02 12 21 20

10

01

00 11 22

Figure 2.2. Label digraph of the 3-state rule 021102022 and temporal period τ = 2.

pi = E(Ii), W =
∑
i∈Γ

Ii, λ =
∑
i∈Γ

pi = EW , and Γi = {j ∈ Γ : j 6= i, Ii and Ij are not independent}.

We quote Theorem 4.7 from [Ros11].

Lemma 2.1.3. We have

dTV (W,Poisson (λ)) ≤ min
(
1, λ−1

)∑
i∈Γ

p2
i +

∑
i∈Γ,j∈Γi

(pipj + E (IiIj))

 .
In our applications of the above lemma, all deterministic and random quantities depend on

the number n of states, which we make explicit by the subscripts. In our setting, we prove that

dTV (Wn,Poisson (λn)) = O(1/n) and that λn → λ as n → ∞, for an explicitly given λ, which

implies that Wn converges to Poisson(λ) in distribution. See Theorem 1.3.1 and Theorem 1.3.2.

2.2. Simple Tiles

We call a tile T simple if its lag vanishes: `(T ) = p(T ) − s(T ) = 0. It turns out that in

P (Pτ,σ,n 6= ∅), the probability of existence of PS with simple tiles provides the dominant terms,

thus this class of tiles is of central importance. For example, consider the tiles

T1 =
0 1 2 3

2 3 0 1
, T2 =

0 1 2 1

2 1 0 1
.

Then T1 is simple, as s(T1) = p(T1) = 4, but T2 is not, as s(T2) = 3 and p(T2) = 4. Naturally, we

call a PS simple if its tile is simple.

We denote by P(`)
τ,σ,n as the set of PS whose tile T has lag `. Thus the set of simple PS is P(0)

τ,σ,n.

The following lemma addresses ramifications of repeated states in simple tiles.

Lemma 2.2.1. Assume T = (ai,j)i=0,...,τ−1,j=0,...,σ−1 is a simple tile. Then
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(1) the states on each row of T are distinct;

(2) if two rows of T share a state, then they are circular shifts of each other;

(3) the states on each column of T are distinct; and

(4) if two columns of T share a state, then they are circular shifts of each other.

Proof. Part 1 : When σ = 1, each row contains only one state, making the claim trivial. Now,

assume that σ ≥ 2 and that ai,j = ai,k for some i and j 6= k. We must have ai,j+1 = ai,k+1 in order

to avoid p(T ) > s(T ). Repeating this procedure for the remaining states on rowi shows that this

row is periodic, contradicting part 2 of Lemma 2.1.1.

Part 2 : If ai,j = ak,m, for i 6= k, then the states to their right must agree, i.e., ai,j+1 = ak,m+1, in

order to avoid p(T ) > s(T ). Repeating this observation for the remaining states on rowi and rowk

gives the desired result.

Part 3 : Assume a column contains repeated state, say ai,j = ak,j for some i, j and k. By part

2, rowi is exactly the same as rowk, so that the temporal period of this tile can be reduced, a

contradiction.

Part 4 : Assume that ai,j = ak,m, for j 6= m. Then ai,j+1 = ak,m+1 by parts 1 and 2. So,

ai+1,j+1 = ak+1,m+1 by part 1 in Lemma 2.1.1. So, ai+1,j = ak+1,m, again by parts 1 and 2. Now,

repeating the previous step for ai+1,j = ak+1,m gives the desired result. �

We revisit the remark following Lemma 2.1.1: a tile may have periodic columns, but such a tile

cannot be simple.

Suppose a tile T = (ai,j)i=0,...,τ−1,j=0,...,σ−1 is simple. We will take a closer look with circular

shifts of rows, so we fix a row, say the first row row0. (We could start with any row, but we pick

the first one for concreteness.) Let

i = min{k = 1, 2, . . . , τ − 1 : rowk = π(row0), for some circular shift π : Zσ → Zσ}

be the smallest i such that rowi is a circular shift of row0, and let i = 0 if and only if T does not have

circular shifts of row0 other than this row itself. Then this circular shift satisfies row(j+i) mod τ =

π(rowj), for all j = 0, . . . , τ − 1 and i is determined by the tile T ; we denote this circular shift by

πrT . We denote by πcT the analogous circular shift for columns.
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Lemma 2.2.2. Let T be a simple tile of a PS, and let d1 = ord (πrT ) and d2 = ord (πcT ). Then

d1 and d2 are equal and divide gcd(τ, σ).

Proof. Fix an element as a0,0. By Lemma 2.2.1, parts 1 and 2, a0,0 appears in d1 rows of T .

It also appears in d2 columns by Lemma 2.2.1, parts 3 and 4. As a consequence, d1 = d2. The

divisibility follows from Lemma 2.1.2. �

Lemma 2.2.3. An integer s ≤ n is the number of states in a simple tile T of PS if and only if

there exists d | gcd(τ, σ), such that s = τσ/d.

Proof. Let T = (ai,j)i=0,...,τ−1,j=0,...,σ−1. Assume that s(T ) = s and let d = ord (πrT ). Then

by Lemma 2.2.1, parts 1 and 2, the first τ/d rows of T contain all states that are in T . As a result,

s = τσ/d and d = ord (πrT ) | gcd(τ, σ).

Now assume that d | gcd(τ, σ). Then there exists a circular shift π : Zσ → Zσ, such that

ord (π) = d. To form a simple tile T with s(T ) = τσ/d states, construct a rectangle of τ/d rows

and σ columns using τσ/d different states in the first τ/d rows of T . Let rowτ/d be defined by

π(row0) and the subsequent rows are all automatically defined by the maps that are assigned in

the first τ/d rows, by Lemma 2.1.1, part 1. �

The above lemma gives the possible values of s(T ) for a simple tile T and the next one enu-

merates the number of simple tiles of PS containing s different states.

Lemma 2.2.4. The number of simple tiles of PS with temporal periods τ and spatial period σ

containing s states is ϕ(d)

(
n

s

)
(s− 1)!, where d = τσ/s.

Proof. As in the proof of Lemma 2.2.3, if s(T ) = s = τσ/d, then d = ord(πrT ). Moreover,

there are

(
n

s

)
(s − 1)! ways to form the first τ/d rows of T . Then, to uniquely determine T , we

need to select a circular shift π : Zσ → Zσ with ord (π) = d and define rowτ/d to be π(row0). By

Lemma 2.1.2, there are ϕ(d) ways to do so. �

Consider two different simple tiles T1 and T2 under the rule. As the final task of this section, we

seek a lower bound on the combined number of values of the rule f assigned by T1 and T2, in terms

of the number of states. If s(T1) = s1, then p(T1) ≥ s1, i.e., there are at least s1 values assigned
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by T1. If there are s′2 states in T2 that are not in T1, then there are at least s′2 additional values

to assign. Therefore, a lower bound of the number of values to be assigned in T1 and T2 is s1 + s′2.

The next lemma states that we can increase this lower bound by at least 1 when T1 ∩ T2 6= ∅. This

fact plays an important role in the proofs of Theorem 1.3.1 and Theorem 1.3.2.

Lemma 2.2.5. Let T1 and T2 be two different simple tiles for the same rule. If T1 and T2 have

at least one state in common, then there exist ai,j ∈ T1 and bk,m ∈ T2 such that ai,j = bk,m and

ai,j+1 6= bk,m+1.

Proof. As T1 and T2 have at least one state in common, we may pick ai,j ∈ T1 and bk,m ∈ T2,

such that ai,j = bk,m. If ai,j+1 6= bk,m+1, then we are done. Otherwise, we repeat this procedure

for ai,j+1 and bk,m+1 and see if ai,j+2 = bk,m+2. We repeat this procedure until we find two pairs

such that ai,j+q = bk,m+q and ai,j+q+1 6= bk,m+q+1. If we fail to do so, then rowi in T1 and rowk in

T2 must be equal, up to a circular shift. This implies that T1 and T2 must be the same since they

are tiles for same rule, a contradiction. �

2.3. Proof of Theorem 1.3.1 and Theorem 1.3.2

We will give a separate proof of Theorem 1.3.1 first, for transparency, and then we show how

to adapt the argument to prove the stronger result, Theorem 1.3.2.

Proof of Theorem 1.3.1. We begin with the bounds

P
(
P(0)
τ,σ,n 6= ∅

)
≤ P (Pτ,σ,n 6= ∅) ≤ P

(
P(0)
τ,σ,n 6= ∅

)
+

τσ∑
`=1

P
(
P(`)
τ,σ,n 6= ∅

)
.

For ` ≥ 1,

(2.3) P
(
P(`)
τ,σ,n 6= ∅

)
≤ E

(
#P(`)

τ,σ,n

)
=

τσ∑
s=1

(
n

s

)
g(`)
τ,σ(s)

1

ns+`
= O

(
1

n`

)
,

where g
(`)
τ,σ(s) counts the number of τ × σ tiles that contain s different states and lag is `. Here,

1/ns+` is the probability of such a tile (determined by a PS), as there are s + ` assignments to

make by a random map, and each assignment occurs independently with probability 1/n. As ` ≥ 1,

P (Pτ,σ,n 6= ∅) = P
(
P(0)
τ,σ,n 6= ∅

)
+O(1/n) as n→∞.
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To find P
(
P(0)
τ,σ,n 6= ∅

)
as n → ∞, let 1 = d1 < . . . < du = gcd(σ, τ) be the common divisors

of τ and σ and sj = τσ/dj , for j = 1, . . . , u, be the possible numbers of states in simple tiles.

We index the simple tiles that have sj states in an arbitrary way, so that T
(j)
k be the kth simple

tile that has sj states. Here k = 1, . . . , Nj and Nj = ϕ(dj)

(
n

sj

)
(sj − 1)! is the number of simple

tiles with sj states (by Lemma 2.2.4). Let I
(j)
k be the indicator random variable that T

(j)
k is a tile

determined by a PS. Let Wn =
u∑
j=1

Nj∑
k=1

I
(j)
k and

λn = EWn =
u∑
j=1

Nj∑
k=1

EI(j)
k =

u∑
j=1

ϕ(dj)

(
n

sj

)
(sj − 1)!

1

nsj

n→∞−−−→
u∑
j=1

ϕ(dj)
1

sj

=

u∑
j=1

ϕ(dj)
dj
τσ

=
1

τσ

∑
d|gcd(τ,σ)

ϕ(d)d = λτ,σ.

We next show that dTV (Wn,Poisson(λn)) → 0 as n → ∞, which will conclude the proof. As

orthogonal tiles have independent assignments, Lemma 2.1.3 implies that

(2.4) dTV (Wn,Poisson(λn)) ≤ min(1, λ−1
n )

∑
j,k

(
EI(j)

k

)2
+

∑
j,k,i,m

T
(i)
m 6⊥T

(j)
k

(
EI(j)

k EI(i)
m + EI(j)

k I(i)
m

) .

To bound
∑
j,k

(
EI(j)

k

)2
, fix a j ∈ {1, . . . , u} and note that

(2.5)

Nj∑
k=1

(
EI(j)

k

)2
= ϕ(dj)

(
n

sj

)
(sj − 1)!

(
1

nsj

)2

= O
(

1

nsj

)
.
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It follows that
∑
j,k

(
EI(j)

k

)2
= O

(
1/nlcm(τ,σ)

)
→ 0, as n → ∞. It remains to bound the sum over

j, k, i,m in 2.4. For a fixed i, j ∈ {1, . . . , u},

(2.6)

Nj∑
k=1

Ni∑
m=1

T
(i)
m 6⊥T

(j)
k

(
EI(j)

k EI(i)
m + EI(j)

k I(i)
m

)

≤
Nj∑
k=1

Ni∑
m=1

T
(i)
m ∩T

(j)
k 6=∅

(
EI(j)

k EI(i)
m + EI(j)

k I(i)
m

)

=

Nj∑
k=1

min(si,sj)∑
h=1

Ni∑
m=1

#
(
T

(i)
m ∩T

(j)
k

)
=h

EI(j)
k EI(i)

m +

Nj∑
k=1

min(si,sj)∑
h=1

Ni∑
m=1

#
(
T

(i)
m ∩T

(j)
k

)
=h

EI(j)
k I(i)

m ,

where the inequality holds because two tiles that share an assignment have to share at least one

state. Label the two triple sums on the last line of (2.6) S
(1)
ij and S

(2)
ij . Now, fix also an h ∈

{1, . . . ,min(si, sj)}. We first compute

Nj∑
k=1

Ni∑
m=1

#
(
T

(i)
m ∩T

(j)
k

)
=h

EI(j)
k EI(i)

m = ϕ(dj)

(
n

sj

)
(sj − 1)!ϕ(di)

(
sj
h

)(
n− sj
si − h

)
(si − 1)!

1

nsj
1

nsi

= O
(

1

nh

)
,

and therefore S
(1)
ij = O (1/n). Next, we estimate

Nj∑
k=1

Ni∑
m=1

#
(
T

(i)
m ∩T

(j)
k

)
=h

EI(j)
k I(i)

m ≤ ϕ(dj)

(
n

sj

)
(sj − 1)!ϕ(di)

(
sj
h

)(
n− sj
si − h

)
(si − 1)!

1

nsj
1

nsi−h
1

n

= O
(

1

n

)
,

and therefore S
(2)
ij = O (1/n). The inequality and the three powers of n above are justified as

follows: 1/nsj as there are sj states in in T
(j)
k , thus at least as many assignments; 1/nsi−h as

there are si − h states in T
(i)
m that are not in T

(j)
k , thus at least as many assignments; and 1/n by

Lemma 2.2.5, as T
(i)
m and T

(j)
k have h ≥ 1 states in common and so there is at least one additional
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assignment. It follows that dTV (Wn,Poisson(λn)) is bounded above by a constant times

1

nlcm(τ,σ)
+
∑
i,j

(
S

(1)
ij + S

(2)
ij

)
= O

(
1

n

)
,

which gives the desired result. �

We now give the proof of Theorem 1.3.2, which mainly adds some notational complexity to the

previous proof.

Proof of Theorem 1.3.2. Again, we begin with the bounds

P
(
P(0)
T ,Σ,n 6= ∅

)
≤ P (PT ,Σ,n 6= ∅) ≤ P

(
P(0)
T ,Σ,n 6= ∅

)
+
∑
` 6=0

P
(
P(`)
T ,Σ,n 6= ∅

)
,

where P(`)
T ,Σ,n is the set of PS with periods (τ, σ) ∈ T × Σ whose tile has lag `. Note that the

summation is finite since T and Σ are. For ` ≥ 1, as in (2.3),

P
(
P(`)
T ,Σ,n 6= ∅

)
≤

∑
(τ,σ)∈T ×Σ

P
(
P(`)
τ,σ,n 6= ∅

)
= O

(
1

n`

)
.

As a consequence, P (PT ,Σ,n 6= ∅) = P
(
P(0)
T ,Σ,n 6= ∅

)
+O(1/n) as n→∞.

To find P
(
P(0)
T ,Σ,n 6= ∅

)
as n → ∞, we adopt the notation u, dj , sj , T

(j)
k and I

(j)
k from the

proof of Theorem 1.3.1, for a fixed σ and τ . The dependence of these quantities on σ and τ will be

suppressed from the notation, as the periods are taken from a finite range and thus do not affect

the computation that follows. Now, Wn =
∑
(τ,σ)

u∑
j=1

Nj∑
k=1

I
(j)
k and

Λn =
∑
(τ,σ)

u∑
j=1

Nj∑
k=1

EI(j)
k →

∑
(τ,σ)∈T ×Σ

λτ,σ = λT ,Σ,

as n→∞. It remains to show that dTV (Wn,Poisson(Λn))→ 0 as n→∞. From Lemma 2.1.3,

(2.7)

dTV(Wn,Poisson(Λn))

≤ min(1,Λ−1
n )

∑
(τ,σ)

∑
j,k

(
EI(j)

k

)2
+
∑
(τ,σ)

∑
j,k

∑
(τ ′,σ′)

∑
i,m

T
(i)
m 6⊥T

(j)
k

(
EI(j)

k EI(i)
m + EI(j)

k I(i)
m

) .
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To bound the double sum in (2.7), observe that, for a fixed (τ, σ), the sum over j, k is O
(
1/nlcm(τ,σ)

)
by (2.5). As minτ,σ lcm(τ, σ) ≥ 1, the double sum in (2.7) is O(1/n).

To bound the quadruple sum in (2.7), fix a (τ, σ) for I
(j)
k , a (τ ′, σ′) for I

(i)
m , and i, j ∈ {1, . . . , u}.

Then the sum over the remaining indices is bounded by S
(1)
ij + S

(2)
ij , exactly as in (2.4), except

that now S
(1)
ij and S

(2)
ij also depend on the periods. The arguments that give S

(1)
ij = O(1/n) and

S
(2)
ij = O(1/n) remain equally valid, and again imply dTV (Wn,Poisson(Λn)) = O (1/n). �

The proof of Corollary 1.3.1 is now straightforward.

Proof of Corollary 1.3.1. Note that

P(Yσ,n ≤ y) = P
(
P[1,y],{σ},n 6= ∅

)
→ 1− exp

(
−λ[1,y],{σ}

)
,

as n→∞, where λ[1,y],{σ} =

y∑
τ=1

λτ,σ. �

2.4. Computer Simulations and Discussion

For σ = 1, 2, 3 and 4, the corresponding λτ,σ are

λτ,1 =
1

τ
, λτ,2 =


3
2τ , 2 | τ

1
2τ , 2 - τ

, λτ,3 =


7
3τ , 3 | τ

1
3τ , 3 - τ

, λτ,4 =


11
4τ , τ = 0 mod 4

3
4τ , τ = 2 mod 4

1
4τ , τ = 1, 3 mod 4

.

In Figure 2.3, we present computer simulations to test how close the distribution of Yσ,n is to its

limit for moderately large n for the above four σ’s. To compute Yσ,n(f), for every f in the samples,

we apply Algorithm 2.1.1.

In this chapter, we initiate the study of periodic solutions for one-dimensional CA with random

rules. Our main focus is the limiting probability of existence of a PS, when the rule is uniformly

selected and the number of states approaches infinity, and we show (Corollary 1.3.1) that the

smallest temporal period of PS with a given spatial period σ is stochastically bounded.
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(a) σ = 1, n = 100 (b) σ = 2, n = 100

(c) σ = 3, n = 60 (d) σ = 4, n = 20

Figure 2.3. Lengths of the smallest temporal periods of PS with spatial periods
σ = 1 to σ = 4 and various n. In each case, a histogram from a random sample from
10,000 rules is compared to the theoretical limiting distribution as n→∞, given by
Corollary 1.3.1.

By a similar argument, we can also obtain an analogous result in which we fix the temporal

period instead of the spatial period. Define another random variable

Y ′τ,n = min {σ : Pτ,σ,n 6= ∅} ,

which is the smallest spatial period of a PS given a temporal period τ . For example, for the

four rules in Figure 1.3, we may verify that, by Algorithm 2.1.2, Y ′1,3(012200210 ) = 1 (0 → 0),

Y ′2,3(021102120 ) = 2 (12 → 21 → 12), Y ′3,3(100112122 ) = 3 (102 → 021 → 210 → 102) and
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Y ′4,3(101201021 ) = 4 (0101 → 2012 → 1010 → 0122 → 0101), with one cycle that generates the

minimal PS given parenthetically for each case.

Corollary 2.4.1. The random variable Y ′τ,n converges to a nontrivial distribution as n→∞.

Perhaps the most natural generalization of Theorem 1.3.2 would relax the condition that T

and Σ are finite. The first case to consider surely is when either T = N or Σ = N. For example, it

is clear that P(PN,N,n 6= ∅) = P(PN,{1},n 6= ∅) = 1, as any constant initial configuration eventually

generates a PS with spatial period 1.

Now, consider a general σ ≥ 2. Let ξ0 be a periodic configuration of spatial period σ. Under

any CA rule f , ξ1 maintains the spatial periodicity, hence ξt eventually enters into a PS, whose

spatial period is however a divisor of σ, not necessarily σ itself. For this reason, we cannot reach

an immediate conclusion about limP
(
PN,{σ},n 6= ∅

)
, as n → ∞. We also refer the readers to the

next chapter, in which the reduction of temporal periods is explored in more detail.

For a fixed temporal period τ , the matter is even less clear as a rule may not have a PS with

temporal period that divides τ . For a trivial example with τ odd and n = 2, consider the “toggle”

rule that always changes the current state and thus ξt+1 = 1 − ξt and any initial state results in

temporal period 2. Thus we formulate the following intriguing open problem.

Question 2.4.1. Let τ, σ ∈ N. What are the behaviors of P
(
P{τ},N,n 6= ∅

)
and P

(
PN,{σ},n 6= ∅

)
,

as n→∞ ?

Another natural question addresses the case when σ and τ increase with n.

Question 2.4.2. For positive real numbers a, b, c, d, α, β, γ and δ, what is the asymptotic be-

havior of P (PI1,I2,n 6= ∅), where I1 = [anα, bnβ] and I2 = [cnγ , dnδ] ?

A wider topic for further research is to investigate how different the behavior of the shortest

temporal period changes if we choose a random rule from a subset of the set of all rules. There are,

of course, many possibilities for such a subset, and we selected two natural ones below. In each

case, we denote the resulting random variable with the same letter Yn,σ.
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A rule is left permutative if the map ψb : Zn → Zn given by ψb(a) = f(a, b) is a permutation

for every b ∈ Zn. Permutative rules, such as the famous Rule 30 [Wol86, Jen86], are good

candidates for generation of long temporal periods.

Question 2.4.3. Let L be the set of all (n!)n permutative rules. Choosing one of these rules

uniformly at random from L, what is the asymptotic behavior of Yn,σ?

Our final question concerns the most widely studied special class of CA, the additive rules.

Such a rule is given by f(a, b) = αa+ βb, for some α, β ∈ Zn.

Question 2.4.4. Let A be the set of all n2 additive rules. Again, what is the asymptotic behavior

of Yn,σ if a rule from A is chosen uniformly at random?
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CHAPTER 3

Maximal Temporal Period of Periodic Solutions of a Random Rule

In this chapter, we assume an arbitrary r ≥ 2.

The aim of this chapter is to further understanding of temporal periods of a random CA’s PS

with a fixed period. To this end, the particular random quantity we address in this chapter is the

longest temporal period, to complement the work in Chapter 2 on the shortest one.

In particular, we prove Theorem 1.3.3, which is restated as follows.

Theorem (1.3.3 restated). Fix a number of neighbors r and a spatial period σ ≤ r. Then

Xσ,n/n
σ/2 converges in distribution, as n→∞, to a nontrivial limit.

3.1. The Directed Graph on Equivalence Classes of Configurations

In this section, we introduce a variant of the configuration digraph that we introduced in

Chapter 2. First, we generalize Definition 2.1.2 on down-extension.

Definition 3.1.1. Fix a spatial period σ ≥ 1 and an r-neighbor rule f . Let A = a0 . . . aσ−1

and B = b0 . . . bσ−1 be two configurations. We say that A down-extends to B if the rule maps A

to B in one update, that is,

f(ai−r+1, . . . , ai) = bi, i = 0, . . . , σ − 1,

and we write A↘ B.

For example, if f is the rule with the PS of Figure 1.1, and σ = 3, then 120↘ 211↘ 120, etc.

Definition 3.1.2. Fix a spatial period σ and suppose σ′ is a proper divisor of σ. A configuration

A = a0 . . . aσ−1 is periodic with period σ′ if it can be divided into σ/σ′ > 1 identical words, and

σ′ is the smallest such number. If no such σ′ exists, A is aperiodic.
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In Chapter 2, the relation A↘ B defines a directed graph on all configurations with length σ.

We now define a convenient variant, which we call the digraph on equivalence classes (DEC)

Gσ(f) = (Vσ, Eσ(f)), associated with f and σ. As in Chapter 2, we say that A is equal to B

up to circular shift, or in short A is equivalent to B, if there is a circular shift π : Zσn → Zσn
such that A = π(B). Under this equivalence relation, Zσn is partitioned into equivalence classes,

which inherit periodicy or aperiodicity from their representatives. Note that the cardinality of an

aperiodic equivalence class is σ, while the cardinality of a periodic equivalence class is a proper

divisor of σ. We regard each aperiodic equivalence class as a single vertex, called aperiodic vertex,

of the DEC; thus there are T (σ, n)/σ aperiodic vertices, where T is defined as in Lemma 1.3.1.

Next, we combine periodic classes together to form vertices called periodic vertices, so that,

with one possible exception, each vertex contains σ configurations. This can be achieved for a

large enough n (certainly for n ≥ σ2) as follows. For each proper division σ′ > 1 of σ, divide all

configurations with period σ′ into sets, which all have cardinality σ, except for possibly one set;

fill that last set with the necessary number of period-1 configurations to make its cardinality σ.

Each of these sets represents a different periodic vertex. At the end, we have ι = nσ − T (σ, n) −

σb(nσ − T (σ, n)) /σc < σ leftover period-1 configurations, which we combine into the exceptional

initial periodic vertex, denoted by v0. We let Va and Vp be the sets of aperiodic and non-initial

periodic vertices, so that the vertex set is Vσ = Va ∪ Vp ∪ {v0}.

Having completed the definition of the vertex set of DEC, we now specify its set Eσ(f) of

directed edges. An arc −→uv ∈ Eσ(f) if and only if: 1. u ∈ Va, v ∈ Vσ; and 2. there exist A ∈ u and

B ∈ v such that A↘ B.

An example of DEC with σ = 2 of a 5-state rule is given in Figure 3.1. In this example,

Vp = {{00, 11} , {22, 33}}, v0 = {44} and other vertices are all in Va. We do not completely specify

the rule that generate this DEC, as different CA rules (even a with different range r) may induce

the same DEC.

The set of all DEC’s generated by r-neighbor n-state rules is denoted by Gσ = Gσ,r,n. Choosing

f at random, we obtain a random DEC denoted by Gσ = (Vσ, Eσ) ∈ Gσ. We now give the resulting

distribution of Gσ.

31



{01, 10}

{02, 20}
{03, 30}{04, 40}

{12, 21}
{13, 31}

{14, 41}

{23, 32}

{24, 42}

{34, 43}

{00, 11}

{22, 33}

{44}

Figure 3.1. DEC of a 2-neighbor, 5-state rule.

Lemma 3.1.1. For any u ∈ Va and v ∈ Vσ

P(−→uv ∈ Eσ) =


σ
nσ , if v 6= v0

ι
nσ , if v = v0

.

Moreover, the outgoing edges for different vertices in Va are independent.

Proof. For any configurations A ∈ u and B ∈ v, P(A ↘ B) = 1/nσ. Then P(−→uv ∈ Eσ) =

#vP(A↘ B), giving the desired result, where #v denotes the number of elements in v. �

3.2. The Connection between DEC and PS

In a DEC, we call a vertex to be a cemetery vertex if it is either a periodic vertex or there

is a directed path from it to a periodic vertex (which, we repeat, is a set of configurations with

spatial periods less than σ). Otherwise, a vertex is said to be non-cemetery. For example, in

Figure 3.1, the vertices {00, 11}, {22, 33} and {44} are cemetery as they are periodic; {03, 30},

{04, 40}, {12, 21}, {14, 41} and {13, 31} are also cemetery as there exists a directed path from each

of them to a periodic vertex; other five vertices are non-cemetery. The reason that we declare a

vertex C 3 A of length σ to be cemetery is that when the CA updates to configuration A, the

spatial period is reduced and the dynamics cannot produce a PS of spatial period σ. For example,

in the DEC of Figure 3.1, a PS with σ = 2 cannot contain the configuration 21, as its appearance

leads to 44, which has spatial period 1.
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It is also important to note that different rules can have the same DEC. In particular, a cycle

in a DEC may generate PS with different temporal periods depending on the rule. We illustrate

this by the σ = 2 example in Figure 3.1. First, we locate a directed cycle, say, the one of length 3.

Using a configuration from any vertex on the cycle, say 23, as the initial configuration,run the rule

starting with 23 until 23 appears again. Now, the temporal period can be either 3 or 6, depending

on the rule f . Namely, if the rule assignments result in, say, 23 ↘ 24 ↘ 43 ↘ 23, then τ = 3,

while if they are 23↘ 24↘ 43↘ 32, then τ = 6. In general, if a cycle in DEC has length `, then

the corresponding temporal period of the PS generated by this cycle may have length d`, where d

is any divisor of σ.

For an arbitrary G ∈ Gσ, define M(G) to be the number of directed cycles in G. (For example,

M(G) = 2 for G in Figure 3.1.) Let C(i)(G) be the ith longest direct cycle of G. Then let Li(G),

i = 1, 2, . . . , be the length of C(i)(G), with Li(G) = 0 for i > M(G). Then, for a rule f , define

M(f) = M(Gσ(f)) and Li(f) = Li(Gσ(f)). Furthermore, if a PS of temporal period d` results

from a cycle C of length ` in Gσ(f), we say that C has expanding number d under f , and use

the notation Ef (C) = d. We let Ei(f) = Ef (C(i)(Gσ(f))), again defined to be 0 when C(i)(Gσ(f))

does not exist, i.e., when i > M(f). The following lemma explains how the cycle lengths in DEC

and expending numbers determine the longest temporal period.

Lemma 3.2.1. Let f be a CA rule and Gσ(f) be its DEC of period σ. Then we have

Xσ,n(f) = max {Li(f) · Ei(f) : i = 1, 2, . . .} .

Moreover, if C(k)(Gσ(f)) is the longest cycle that is σ-expanded, then

Xσ,n(f) = max {Lk(f) · σ, Li(f) · Ei(f) : i = 1, 2, . . . , k − 1} .

Proof. The first part is clear from the definition, and the second part follows as σ is the largest

possible expanding number. �

As a consequence of the above lemma, our task is to study the properties of DEC and expanding

numbers when a rule is randomly selected. A random DEC is essentially a random mapping, after

eliminating cemetery vertices, as we will see. We formulate a lemma on expanding numbers next.
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Lemma 3.2.2. Let G ∈ Gσ be a fixed DEC, and σ ≤ r. Select a rule f at random. Then, condi-

tioned on the event {Gσ(f) = G}, the random variables Ei(f), i = 1, . . . ,M(G), are independent.

Also

P
(
Ei(f) = d

∣∣∣∣ Gσ(f) = G

)
=
ϕ(d)

σ
,

for i = 1, . . . ,M(G) and d | σ.

Proof. Let a cycle C(i)(G) be v1 → v2 → · · · → vk → v1. Let Aj ’s be configurations of

length σ such that Aj ∈ vj , j = 1, . . . , k. Then there are circular shifts, πj ’s, j = 1, . . . , k, such

that A1 ↘ π2(A2) ↘ . . . ↘ πk(Ak) ↘ π1(A1), under rule f . Now, Ei(f) = d if and only if

ord(π1) = d, which is independent from other cycles as σ ≤ r and has the desired probability by

Lemma 2.1.2. �

In summary, we may study the probabilistic behavior of Xσ,n by moving from the sample space

Ωr,n to Gσ × Ξ∞σ , where Ξσ = {d ∈ N : d | σ}. (However, note that only M(G) < T (σ, n) first

entries of the second component are used.) The marginal probability distributions on components

are independent from each other. The distribution on Gσ is given in Lemma 3.1.1, while the

distribution on each component of Ξ∞σ is given by Lemma 3.2.2: P ({w}) = ϕ(w)/σ, for w ∈ Ξσ.

If the random variables Ti : Ξσ → Ξσ are defined to be identities, then the distribution of Xσ,n is

given by

max {Li (Gσ) · Ti(w) : i = 1, 2, . . . } =: max {Li · Ti : i = 1, 2, . . . } .

LetKσ = min{i : Ti = σ} be a random variable on Ξ∞σ , representing the smallest index of Ti’s that is

equal to σ. Then P (Kσ = k) = (1− ϕ(σ)/σ)k−1 (ϕ(σ)/σ) for k ≥ 1, i.e., Kσ is Geometric (ϕ(σ)/σ).

Then we may write

Xσ,n = max
{
Li · T ′i , LKσσ, i = 1, 2, . . . ,Kσ − 1

}
,

where T ′i are independent (of each other and of Li and Kσ) random variables with distribution

P (T ′i = d) = P (Ti = d | Ti 6= σ) = ϕ(d) (σ − ϕ(σ)), for d | σ and d 6= σ.

3.3. Random Mappings

In this section, we discuss a result about the cycle structure of random mapping, indicating

that the joint distribution of the longest k cycles converges after a proper scaling.
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We will consider the function space RN = {g : ZN → ZN} containing all functions from ZN

into itself. Clearly #RN = NN . A finite sequence x0, . . . , x`−1 ∈ ZN is a cycle of length ` if

g(x0) = x1, g(x1) = x2, . . . , g(x`−2) = x`−1 and g(x`−1) = x0. We call g a random mapping if

g is randomly and uniformly selected from RN . Let P
(k)
N be the random variable representing the

kth longest cycle length of a random mapping from RN . More extensively studied function space

is SN = {g : ZN → ZN : g is bijective} containing all permutations of ZN . Clearly, #SN = N ! and

a cycle can be defined in the same way. We call g a random permutation if g is randomly and

uniformly selected from SN and we use Q
(k)
N to denote the random variable representing the kth

longest cycle length of a random permutation from SN . The probabilistic properties of P
(k)
N and

Q
(k)
N have been investigated in a number of papers, including [AT92,FO89,ABT03,HJ02].

What is relevant to us is the distribution of
(
P

(1)
N , P

(2)
N , . . . , P

(k)
N

)
as N → ∞, for which we

are not aware of a direct reference. We can, however, use the fact that for a random mapping,

conditioning on the set of elements that belong to cycles generates a random permutation. To

begin, we let MN be the number of elements from ZN that belong to cycles of a random mapping

from RN . The following well-known result provides the distribution of MN , see [AT92] or [Bol01].

Lemma 3.3.1. We have

P (MN = s) =
s

N

s−1∏
j=1

(
1− j

N

)
, s = 1, . . . , N.

The next result is adapted from Corollary 5.11 in [ABT03].

Proposition 3.3.1. As N →∞,

1

N

(
Q

(1)
N , Q

(2)
N , . . .

)
→
(
Q(1), Q(2), . . .

)
, in distribution,

in ∆ = {(x1, x2, . . . ) ⊂ (0, 1)∞ :
∑

i xi = 1}. Here, for each k,
(
Q(1), Q(2), . . . , Q(k)

)
has density

q(k)(x1, . . . , xk) =
1

x1x2 · · ·xk

1 +

∞∑
j=1

(−1)j

j!

∫
Ij(x)

dy1 · · · dyj
y1 . . . yj

 ,

on ∆, where Ij(x) is the set of (y1, . . . , yj) that satisfy

min{y1, . . . , yj} > x−1 and y1 + · · ·+ yj < 1
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and

x =
1− x1 − · · · − xk

xk
.

Lemma 3.3.2. For a fixed N , let

hN (x) =
s√
N

s−1∏
j=1

(
1− j

N

)
,

for x ∈
(

(s− 1) /
√
N, s/

√
N
]

and s = 1, 2, . . . . Then hN (x) ≤ 4 max (x, 1) exp
(
−x2/2

)
for all

x > 0, which is integrable on (0,∞). Also, hN (x)→ x exp
(
−x2/2

)
, as N →∞, for all x ∈ (0,∞).

Proof. Since hN (x) = 0 for x >
√
N , it suffices to show the inequality for x ≤

√
N , i.e., s ≤ N .

Since 1 − j/N < exp (−j/N), it follows that
s−1∏
j=1

(1− j/N) < exp
(
−s2/(2N)

)
exp (s/(2N)) <

2 exp
(
−s2/(2N)

)
, for s ≤ N . So, if x ∈

(
(s− 1)/

√
N, s/

√
N
]
, then

hN (x) ≤ 2
s√
N

exp

(
−x

2

2

)
.

When s = 1, s/
√
N ≤ 2, while for s ≥ 2, s/

√
N ≤ 2(s − 1)/

√
N ≤ 2x, proving the inequality. To

prove convergence, observe that

hN (x) =
d
√
Nxe√
N

d
√
Nxe−1∏
j=1

(
1− j

N

)

=
d
√
Nxe√
N

d
√
Nxe−1∏
j=1

exp

{
− j

N
+O

(
j2

N2

)}

=
d
√
Nxe√
N

exp

−d
√
Nxe

(
d
√
Nxe − 1

)
2N

+O
(

1√
N

)
→ x exp

(
−x2/2

)
,

as N →∞. �

Theorem 3.3.1. For any k = 1, 2, . . . , let P
(k)
N be the kth longest cycle length in a random

mapping from RN . Then

N−1/2
(
P

(1)
N , P

(2)
N , . . . , P

(k)
N

)
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converges to a nontrivial joint distribution, as N →∞.

Proof. Conditioning on the event that a set S ⊂ ZN is exactly the set of elements of ZN

that belong to cycles, the random mapping is a random permutation of S. It follows that for any

bounded continuous function φ : Rk → R,

E

[
φ

(
P

(1)
N√
N
, . . . ,

P
(k)
N√
N

)]
=

N∑
s=1

E

[
φ

(
P

(1)
N√
N
, . . . ,

P
(k)
N√
N

) ∣∣∣∣MN = s

]
P (MN = s)

=
N∑
s=1

E

[
φ

(
Q

(1)
s√
N
, . . . ,

Q
(k)
s√
N

)]
s

N

s−1∏
j=1

(
1− j

N

)

=

N∑
s=1

E

[
φ

(
Q

(1)
s

s

s√
N
, . . . ,

Q
(k)
s

s

s√
N

)]
s

N

s−1∏
j=1

(
1− j

N

)
.

Define h̃N : R→ R

h̃N (x) = E

[
φ

(
Q

(1)
s

s

s√
N
, . . . ,

Q
(k)
s

s

s√
N

)]
s√
N

s−1∏
j=1

(
1− j

N

)
,

for x ∈
(

(s− 1)/
√
N, s/

√
N
]
, s = 1, 2, . . . By Lemma 3.3.2 and Proposition 3.3.1, h̃N is bounded

by an integrable function and, for every fixed x ≥ 0,

lim
N→∞

h̃N (x) = lim
N→∞

E

φ
Q(1)

d
√
Nxe

d
√
Nxe

d
√
Nxe√
N

, . . . ,
Q

(k)

d
√
Nxe

d
√
Nxe

d
√
Nxe√
N

x exp

(
−x

2

2

)

= E
[
φ
(
Q(1)x, . . . , Q(k)x

)]
x exp

(
−x

2

2

)
.

Then,

lim
N→∞

E

[
φ

(
P

(1)
N√
N
, . . . ,

P
(k)
N√
N

)]

= lim
N→∞

∫ ∞
0

h̃N (x)dx

=

∫ ∞
0

E
[
φ
(
Q(1)x, . . . , Q(k)x

)]
x exp

(
−x

2

2

)
dx,

by dominated convergence theorem. �

As a consequence, we obtain the following convergence in distribution.
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Lemma 3.3.3. Let T ′j’s, for j = 1, 2, . . . , be i.i.d. with

P
(
T ′j = d

)
=

ϕ(d)

σ − ϕ(σ)
,

for all divisors d 6= σ of σ, and independent of the random mapping. Let

D
(k)
N = max

{
P

(k)
N · σ, P (j)

N · T
′
j : j = 1, 2, . . . , k − 1

}
.

Then N−1/2D
(k)
N converges to a nontrivial distribution, for any k and σ.

Proof. Note that T ′j ’s do not depend on N . So the vector

N−1/2
(
P

(1)
N T ′1, . . . , P

(k−1)
N T ′k−1, P

(k)
N σ

)
converges in distribution as N →∞. The conclusion follows by continuity. �

In the sequel, we denote by D(k) a generic random variable with the limiting distribution of

N−1/2D
(k)
N .

3.4. Proof of Theorem 1.3.3

3.4.1. The Case σ = 1. In this case, a DEC does not have cemetery vertices thus our problem

simply reduces to a random mapping problem. To be precise,

(3.1)
X1,n

n1/2
=

L1

n1/2
=d

P
(1)
n

n1/2
,

which converges in distribution by Theorem 3.3.1. The first equality in (3.1) holds because a cycle

in a DEC cannot be expanded when σ = 1 and the second equality in (3.1) is true because there

are no cemetery states for σ = 1.

For a general σ, the problem may be handled similarly to the case of σ = 1 only after eliminating

the cemetery vertices. As a consequence, we must determine the behavior of Cn = Cσ,n from

Section 1.4, which we may reinterpret as the random variable representing the number of non-

cemetery vertices in a DEC of spatial period σ. The strategy is as follows: construct the random

DEC via a sequential algorithm that naturally provides a system of stochastic difference equations

for the number of non-cemetery classes with Cn related to a hitting time; then show that the
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solution of the stochastic difference equations, appropriately scaled, converges to a diffusion, giving

the asymptotic behavior of Cn.

Algorithm 3.4.1.

CA ← Vp ∪ {v0} or Vp, if v0 does not exist // Active cemetery vertices

CP ← ∅ // Passive cemetery vertices

CN ← Va // Non-cemetery vertices

E ← ∅ // Set of arcs

k ← 0

if v0 ∈ CA then // If v0 exists

CA ← CA \ {v0}
CP ← CP ∪ {v0} // Make it passive

Let β0 ∼ Binomial (Y0, ι/n
σ)

Pick random v1, . . . , vβ0 in CN // Select non-cemetery vertices that map to v0

for j = 1, . . . , β0 do
E ← E ∪ {−−→vjv0} // Add the arcs to the set of arcs

CA ← CA ∪ {vj} // Make the vertices active cemetery

CN ← CN \ {vj}
end

Y0 ← #CN // Update the number of temporary non-cemetery vertices

Z0 ← #CA // Update the number of active cemetery vertices

k ← 1
end

while #CA > 0 do // When CA = ∅, the non-cemetery vertices are determined

Pick an arbitrary v ∈ CA // Pick an arbitrary active cemetery vertex v

CA ← CA \ {v}
CP ← CP ∪ {v} // Make v passive

Let βk ∼ Binomial (Yk, 1/(Yk + Zk))

Pick random v1, . . . , vβk in CN // Select non-cemetery vertices that map to v

for j = 1, . . . , βk do
E ← E ∪ {−→vjv} // Add the arcs to the set of arcs

CA ← CA ∪ {vj} // Make the vertices active cemetery

CN ← CN \ {vj}
end

Yk ← #CN // Update the number of non-cemetery vertices

Zk ← #CA // Update the number of active cemetery vertices

k ← k + 1

end

for v ∈ CN do // Assign arcs among non-cemetery vertices

Pick a u uniformly from CN
E = E ∪ {−→vu}

end
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3.4.2. Construction of a Random DEC and the Difference Equations. Recall the

notation from Section 3.1 and Lemma 3.1.1. Algorithm 3.4.1 formally describes a way of generating

a random DEC that sequentially adds cemetery vertices until all are gathered. The idea of this

algorithm is to start with the set of cemetery vertices, which are essentially the equivalence classes

of periodic configurations. Then determine the vertices of DEC that map into those and then

iteratively work backwards until the set of all vertices on an oriented path that leads to the periodic

configurations is established.

The algorithm specifies the evolution of the set of cemetery vertices, which are separated into

active and passive ones, initially all active. After the kth step (k = 0, 1, . . . ), we let Yk and Zk

be the number of non-cemetery and active cemetery vertices. In the kth step (k = 0, 1, . . . ), we

pick an active cemetery vertex v, making it passive. We also select βk non-cemetery vertices that

map to v, where βk ∼ Binomial (Yk, 1/(Yk + Zk)). (If k = 0 and v0 exists, the initial pick is v0 and

the probability changes accordingly.) This distribution is justified by Lemma 3.1.1, i.e., all non-

cemetery vertex share the same probability of mapping into a vertex that is not passive cemetery.

We make those βk vertices active cemetery, because each one of them has the ability to “absorb”

non-cemetery vertices (thus is active), while itself maps into a periodic class of a lower period along

a directed path (thus is cemetery). The above procedure determines all cemetery classes in the

while loop. In the final for loop, we assign a unique target uniformly for each non-cemetery vertex.

We observe Yk+1 = Yk−βk and Zk+1 = Zk+βk−1. To prepare for establishing the convergence

to a diffusion, we let ∆Yk = Yk+1 − Yk, and ∆Zk = Zk+1 − Zk, we obtain the stochastic difference

equation for k such that Zk ≥ 0,

(3.2)


∆Yk = −1−∆Zk = −βk

∆Zk = βk − 1 = Yk
Yk+Zk

− 1 + ∆Bk

√
Yk

Yk+Zk

(
1− 1

Yk+Zk

) ,

where βk’s are independent and

βk ∼ Binomial

(
Yk,

1

Yk + Zk

)
,
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for k = 1, 2, . . . , thus

∆Bk =
βk − Yk/(Yk + Zk)√

Yk
Yk+Zk

(
1− 1

Yk+Zk

) .
For the initial condition, we have

Y0 =


−S0 + T (σ,n)

σ , if ι = 0

−S1 + T (σ,n)
σ , if ι 6= 0

,

and

Z0 =


S0 − 1 + bn

σ−T (σ,n)
σ c, if ι = 0

S1 − 1 + bn
σ−T (σ,n)

σ c, if ι 6= 0

,

where S0 ∼ Binomial (T (σ, n)/σ, σ/nσ) and S1 ∼ Binomial (T (σ, n)/σ, ι/nσ). To define the pro-

cesses for all k = 0, 1, . . . , N − 1, we stop Yk and Zk once Zk hits zero.

3.4.3. Convergence to a Diffusion. Let N = #Vσ = nσ/σ+O(nσ/2) be the total number of

vertices. We scale Yk and Zk by dividing by N and
√
N , respectively. We do so as Yk will converge

to the time coordinate and Zk to the space coordinate in the diffusion. To be more precise, consider

the 2-dimensional process ξk,N =
(
ξ

(1)
k,N , ξ

(2)
k,N

)
, for k = 0, . . . , N−1, where ξ

(1)
k,N = Yk/N is the scaled

number of non-cemetery states and ξ
(2)
k,N = Zk/

√
N is the scaled number of active cemetery states.

For a fixed ξk,N , let τ = τ (ξk,N ) = inf{k/N : ξ
(2)
k,N ≤ 0} be the hitting time of zero for the second

coordinate. We are thus interested in this question: when the number of active cemetery vertices

is zero, what is the limiting distribution of proportion of non-cemetery vertices? In other words,

what is limP
(
ξ

(1)
τ ≤ x

)
, for x ∈ (0, 1), as N → ∞? We will prove the following result, which is a

restatement of Theorem 1.4.1.

Theorem 3.4.1. As N → ∞, ξ
(1)
τ → 1 − τ(η) in distribution, where τ(η) = inf{t : η(t) = 0}

and η(t) satisfies

η(t) = p(σ)−
∫ t

0

η(s)

1− s
ds−Bt,

where Bt is the standard Brownian motion and p(σ) = 1/
√
σ if σ is even and p(σ) = 0, otherwise.

In particular, when σ is even, ξ
(1)
τ converges to a nontrivial limiting distribution, while when σ is

odd, ξ
(1)
τ → 1 in probability.
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To avoid excessive notation, we let τ stand for the hitting time of 0 in both discrete and

continuous cases. Our strategy in proving Theorem 3.4.1 is to verify the conditions in [Kus74]

for a solution of a stochastic difference equation to converge to a diffusion. However, trying to

prove this directly for ξk,N runs into uniform continuity and boundedness problems, so we need

an intermediate process ξ̃k,N . For a fixed N , we define the stochastic difference equations of

ξ̃k,N =
(
ξ̃

(1)
k,N , ξ̃

(2)
k,N

)
by giving ∆ξ̃

(i)
k,N = ξ̃

(i)
k+1,N − ξ̃

(i)
k,N , i = 1, 2, as follows

(3.3)


∆ξ̃

(1)
k,N = − 1

N −∆ξ̃
(2)
k,N

1√
N

∆ξ̃
(2)
k,N = − 1

N Ψ̃ + 1√
N

∆b̃ Υ̃

.

The quantities Ψ̃, Υ̃, and ∆b̃ depend on additional parameters δ ≥ 0 and M ≥ 0, which are

necessary to make Ψ̃ and Υ̃ bounded. Define

(3.4) g(x) = max(x, δ) and h(x) = min(max(x,−M),M).

Then

Ψ̃ =
h
(
ξ̃

(2)
k,N

)
g
(
ξ̃

(1)
k,N

)
+ h

(
ξ̃

(2)
k,N

)
/
√
N
,

Υ̃ =

√√√√√Φ̃

1− 1

bNg
(
ξ̃

(1)
k,N

)
c+
√
Nh

(
ξ̃

(2)
k,N

)
,

∆b̃ =
β̃k − Φ̃

Υ̃
,

β̃k ∼ Binomial

bNg (ξ̃(1)
k,N

)
c, 1

bNg
(
ξ̃

(1)
k,N

)
c+
√
Nh

(
ξ̃

(2)
k,N

)
 ,

Φ̃ =
bNg

(
ξ̃

(1)
k,N

)
c

bNg
(
ξ̃

(1)
k,N

)
c+
√
Nh

(
ξ̃

(2)
k,N

) = Eβ̃k.

We view the Ψ̃, Υ̃, and Φ̃ (and their relatives defined later) alternatively as the expressions in

ξ̃k,N or functions from R2 to R, which use ξ̃k,N as values of their independent arguments. When

N > (M/δ)2, the denominators in the above expressions are positive, and thus the process is
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automatically defined for k = 1, . . . , N − 1. When δ = 0 and M =∞, the difference equation (3.3)

is exactly the difference equation for
(
ξ

(1)
k,N , ξ

(2)
k,N

)
, when ξ

(2)
k,N ≥ 0. We assume δ > 0 (but small)

and M <∞ (but large) for the rest of this section. The initial conditions for ξ̃k,N and ξk,N agree:

ξ̃0,N = ξ0,N . We now record some immediate consequences of the above definitions.

Lemma 3.4.1. When N > (2M/δ)2, the following statements hold:

(1) For all k, 0 < Φ̃ < 3.

(2) For all k, 0 < Υ̃ < 2.

(3) For all k, |Ψ̃| ≤ 2M/δ.

(4) For all `, k ≥ 0,

E
∣∣∣∆b̃kΥ̃∣∣∣` ≤ D`,

where D` is a constant depending only on `.

Proof. Parts 1–3 are clear. For part 4, observe that E
(

∆b̃kΥ̃
)`

is the centered moment of a

Binomial(x, p) random variable with xp < 3. Then the desired bound follows from Theorem 2.2

in [Kno08] for even ` and from Cauchy-Schwarz for odd `. �

We have now arrived at the key result on the way to proving Theorems 1.3.3 and 1.4.1. As

usual, the process ξ̃t is the piecewise linear process on [0, 1], with values ξ̃k,N at k/N . Furthermore,

we define η̃t =
(
η̃

(1)
t , η̃

(2)
t

)
to be

(3.5)


η̃

(1)
t = 1− t

η̃
(2)
t = p(σ)−

∫ t

0

h
(
η̃

(2)
s

)
g(1− s)

ds−Bt
,

for t ∈ [0, 1], where p(σ) = 1/
√
σ if σ is even and p(σ) = 0, otherwise.

Lemma 3.4.2. As N →∞, ξ̃t → η̃t in distribution, in C([0, 1],R2).

Proof. We write

E
[
∆ξ̃k,N

∣∣∣∣ Fk] = eN

(
ξ̃k,N

)
∆tNk ,
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where Fk is the σ-algebra generated by ξ̃0,N , . . . , ξ̃k,N , eN

(
ξ̃k,N

)
=

−1 + Ψ̃√
N

−Ψ̃

 and ∆tNk = 1/N .

Moreover,

Cov

[
∆ξ̃k,N

∣∣∣∣ Fk] = sN

(
ξ̃k,N

)
sN

(
ξ̃k,N

)T
∆tNk ,

where sN

(
ξ̃k,N

)
=

 Υ̃√
N

−Υ̃

 and sN

(
ξ̃k,N

)T
is its transpose. Now, define

e
(
ξ̃k,N

)
=

−1

−Ψ

 ,
and

s
(
ξ̃k,N

)
=

 0

−1

 ,
where

Ψ =
h
(
ξ̃

(2)
k,N

)
g
(
ξ̃

(1)
k,N

) .
In the following steps, we suppress the value ξ̃k,N of the independent variables in the functions

e, eN , s, sN .

Step 1 . Denoting the Euclidean norm by | · |, we will verify that

E
N−1∑
k=0

[
|eN − e|2 + |sN − s|2

] 1

N
→ 0,

as N →∞. We write

E
N−1∑
k=0

|eN − e|2
1

N
= E

N−1∑
k=0

Ψ̃2

N2
+ E

N−1∑
k=0

∣∣ Ψ̃−Ψ
∣∣2

N

and

E
N−1∑
k=0

|sN − s|2
1

N
= E

N−1∑
k=0

Υ̃2

N2
+ E

N−1∑
k=0

∣∣ 1− Υ̃
∣∣2

N
.

In the next fours steps, we show that the four expressions inside the expectations are bounded by

deterministic quantities that go to 0.
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Step 2 . For the first term,
N−1∑
k=0

Ψ̃2

N2
≤
(

2M

δ

)2

· 1

N
,

by Lemma 3.4.1 part 3.

Step 3 . For the second term, the bounds g ≥ δ and |h| ≤M imply that, for a large enough N

N−1∑
k=0

∣∣ Ψ̃−Ψ
∣∣2

N
=

N−1∑
k=0

∣∣∣∣ h2
(
ξ̃

(2)
k,N

)
/
√
N(

g
(
ξ̃

(1)
k,N

)
+ h

(
ξ̃

(2)
k,N

)
/
√
N
)
g
(
ξ̃

(1)
k,N

) ∣∣∣∣2 1

N
≤
(

2M2

δ2

)2

· 1

N
.

Step 4 . For the third term, by Lemma 3.4.1, part 2,

N−1∑
k=0

Υ̃2

N2
≤ 4

N
.

Step 5 . For the final term, we have, for large enough N , by Lemma 3.4.1, parts 1 and 2,

N−1∑
k=0

∣∣ 1− Υ̃
∣∣2

N
≤

N−1∑
k=0

|1− Υ̃2|
N

=
N−1∑
k=0

∣∣∣∣∣∣1− Φ̃

1− 1

bNg
(
ξ̃

(1)
k,N

)
c+
√
Nh

(
ξ̃

(2)
k,N

)
∣∣∣∣∣∣ 1

N

≤
N−1∑
k=0

[
|1− Φ̃|+ Φ̃ · 1

δN − 1−M
√
N

]
1

N

≤
N−1∑
k=0

|1− Φ̃|
N

+
3

δN − 1−M
√
N

≤
N−1∑
k=0

√
N
∣∣ h(ξ̃(2)

k,N

) ∣∣
bNg

(
ξ̃

(1)
k,N

)
c+
√
Nh

(
ξ̃

(2)
k,N

) · 1

N
+

3

δN − 1−M
√
N

≤ 2M

δ
· 1√

N
+

3

δN − 1−M
√
N
.

Steps 2–5 establish the claim in Step 1, and thus condition (1) in [Kus74]. To finish the proof,

we also need to verify the conditions A1–A6 in Theorem 9.1 in [Kus74]. The conditions A1 and

A5 hold trivially, and remaining four are handled in the next four steps.

Step 6 . For A2, it suffices to observe that e and s are bounded and continuous and eN and sN are

uniformly bounded on R2 (and none of them depend on the time variable).
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Step 7 . For A3, the initial value ξ̃0,N converges in probability to

 1

p(σ)

.

Step 8 . For A4, we show that

E
N−1∑
k=0

∣∣∣∣ ∆ξ̃k,N −
eN
N

∣∣∣∣4→ 0.

Indeed, the expectation equals

E
N−1∑
k=0

∣∣∣∣
 2Ψ̃
N3/2 − ∆b̃Υ̃

N

∆b̃Υ̃√
N

 ∣∣∣∣4 = E
N−1∑
k=0

[ (
2Ψ̃

N3/2
− ∆b̃Υ̃

N

)4

+

2

(
2Ψ̃

N3/2
− ∆b̃Υ̃

N

)2(
∆b̃Υ̃√
N

)2

+

(
∆b̃Υ̃√
N

)4 ]
and goes to 0 as N →∞, by Lemma 3.4.1, parts 2, 3, and 4.

Step 9 . Finally, for A6, we apply the standard theory, e.g., Theorems 2.5 and 2.9 in [KS98], to

show that equation (3.5) has a unique solution. �

We use the notation ξt and ηt for the processes resulting from taking M = ∞ in (3.4), so

that these processes have the same g but h(x) = x. Recall that ξt and ηt also have δ = 0, i.e.,

g(x) = max(x, 0). We now extend Lemma 3.4.2 to show that ξt → ηt in distribution.

Lemma 3.4.3. As N →∞, ξt → ηt in distribution.

Proof. By continuity of η̃t, for any ε > 0, there exists an M > 0 such that

P
(

max |η̃(2)
t | > M/2

)
< ε.

Let γM : R → [0, 1] be a continuous function that vanishes outside the interval [−M,M ] and is 1

on [−M/2,M/2]. For any bounded continuous function F : C([0, 1],R2)→ R,

lim sup
N→∞

EF
(
ξt
)
≤ lim sup

N→∞
E
[
F
(
ξt
)
· γM (ξ

(2)
t )
]

+ lim sup
N→∞

E
[
F
(
ξt
)
· (1− γM (ξ

(2)
t ))

]
≤ lim sup

N→∞
E
[
F
(
ξ̃t

)
· γM (ξ̃

(2)
t )
]

+ sup |F | · lim sup
N→∞

P(max
∣∣ ξ̃(2)

t

∣∣≥M/2)

≤ E
[
F (η̃t) · γM (η̃

(2)
t )
]

+ sup |F | · ε

≤ E [F (ηt)] + 2 sup |F | · ε,
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and a matching lower bound on lim inf EF
(
ξt
)

is obtained similarly. �

Lemma 3.4.4. Let δ ∈ (0, 1) be fixed and we define the approximate hitting time by T :

C
(
[0, 1],R2

)
→ [0, 1],

T
(
γ(1), γ(2)

)
= γ(1)(min{1− δ, inf{t : γ

(2)
t = 0}}).

Then T is a.s. continuous on a path of ηt. As a consequence, T (ξt) → T (ηt) in distribution, as

N →∞.

Proof. Note that η
(2)
t is a Brownian bridge prior to 1 − δ. Thus the claims follows from

well-known facts about the Brownian bridge and standard arguments. �

We can now complete the proof of Theorem 3.4.1, and thus also Theorem 1.4.1.

Proof of Theorem 3.4.1. Fix a δ > 0. By Lemma 3.4.4, P
(
T (ξt) ≤ x

)
→ P (T (ηt) ≤ x), for

all x ∈ (0, 1− δ), as N →∞. When x ∈ (0, 1− δ), we also have that P (T (ξt) ≤ x) = P
(
T (ξt) ≤ x

)
and P (T (ηt) ≤ x) = P (T (ηt) ≤ x). It follows that P (T (ξt) ≤ x) → P (T (ηt) ≤ x), for all x ∈

(0, 1− δ). As δ > 0 is arbitrary, the claim follows. �

The following proposition proves the distribution of hitting time of Brownian bridge.

Proposition 3.4.1. Fix an a > 0. Let ηa be the stochastic process satisfying

ηa(t) = a−
∫ t

0

ηa(s)

1− s
ds−Bt.

Define the hitting time τa = inf{t : ηa(t) = 0}. Then τa has density

gτa(x) =
a√

2πx3(1− x)
exp

{
−a

2(1− x)

2x

}
, x ∈ (0, 1).

Proof. This is well-known and follows from the fact that ηa(t) has the same distribution as

a(1− t) + (1− t)Bt/(1−t),

which relates τa to a hitting time for the Brownian motion. �
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Corollary 3.4.1. When σ is even, the sequence of random variables ξ
(1)
τ converges in distri-

bution to a random variable with density

g1−τ1/√σ(x) =
1√

2σπx(1− x)3
exp

{
− x

2σ(1− x)

}
, x ∈ (0, 1).

Proof. This follows from Theorem 3.4.1 and Proposition 3.4.1. �

Figure 3.2. Normalized histogram of proportion of non-cemetery vertices in DEC,
together with the theoretical limit density.

In Figure 3.2, we compare the empirical distribution of non-cemetery vertices and its limit

density given by Corollary 3.4.1. In the simulation, we fix σ = r = 2 and n = 100, and randomly

generate 10,000 rules.

3.4.4. Completion of Proof Theorem 1.3.3. We now put together the results from Sec-

tions 3.2, 3.3, 3.4.2, and 3.4.3.
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Proof of Theorem 1.3.3. Recall the geometric random variable Kσ from Section 3.2. For

any ε > 0, pick kε large enough such that P (Kσ > kε) < ε. Then we have

P
(
Xσ,n

nσ/2
≤ x

)
= P

(
n−σ/2 max {Li · Ti, i = 1, 2, . . . } ≤ x

)
≤

kε∑
k=1

P
(
n−σ/2 max {Li · Ti, i = 1, 2, . . . } ≤ x

∣∣ Kσ = k
)
P (Kσ = k) + ε

=

kε∑
k=1

P
(
n−σ/2 max

{
Li · T ′i , Lkσ, i = 1, 2, . . . , k − 1

}
≤ x

)
P (Kσ = k) + ε

=

kε∑
k=1

P

(
D

(k)
Cn√
Cn
·
√
Cn
N
·
√
N

nσ/2
≤ x

)
P (Kσ = k) + ε,

where D
(k)
Cn

is defined in Lemma 3.3.3. Therefore, it suffices to show that

P

(
D

(k)
Cn√
Cn
·
√
Cn
N
≤ x

)

converges as n → ∞, for each fixed k. To this end, we partition the interval (0, 1] into M sub-

intervals, and write

(3.6)

P

(
D

(k)
Cn√
Cn

√
Cn
N
≤ x

)

=
M−1∑
i=0

P

(
D

(k)
Cn√
N
≤ x

∣∣∣∣
√
Cn
N
∈
(
i

M
,
i+ 1

M

])
P

(√
Cn
N
∈
(
i

M
,
i+ 1

M

])
.

Assume that σ is even and let a = 1/
√
σ. By Theorem 1.4.1 and Corollary 3.4.1,

(3.7) P

(√
Cn
N
∈
(
i

M
,
i+ 1

M

])
→
∫ (i+1)/M

i/M
g√1−τa(t) dt,

as n→∞, where g√1−τa is the density of the random variable
√

1− τa. Moreover,

(3.8) P

(
D

(k)
Cn√
N
≤ x

∣∣∣∣
√
Cn
N
∈
(
i

M
,
i+ 1

M

])
≤ P

D(k)
bi2N/M2c√
Ni/M

≤ x

i/M

 .
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It now follows from (3.6)–(3.8), Lemma 3.3.3, and the definition of D(k) after Lemma 3.3.3 that

lim sup
n→∞

P

(
D

(k)
Cn√
N
≤ x

)
≤

M−1∑
i=0

P
(
D(k) ≤ x

i/M

)∫ (i+1)/M

i/M
g√1−τa(t) dt

=
M−1∑
i=0

[
P
(
D(k) ≤ x

i/M

)(
g√1−τa

(
i

M

)
1

M
+O

(
1

M2

))]

→
∫ 1

0
P
(
D(k) ≤ x

y

)
g√1−τa(y) dy

as M →∞ and O(1/M2) is uniform in i as g√1−τa is differentiable on [0, 1]. The same lower bound

for lim infn→∞ P
(
D

(k)
Cn
/
√
N ≤ x

)
is obtained along similar lines. For odd σ, a simpler argument

shows that

lim
n→∞

P

(
D

(k)
Cn√
N
≤ x

)
= P

(
D(k) ≤ x

)
,

and ends the proof. �

3.5. Computer Simulations and Discussion

In a CA, finding PS of a given temporal period reduces to finding cycles of the corresponding

DEC. When a rule is chosen at random, the out-going arcs of different vertices of the DEC are

independent from each other, provided that the spatial period is less than the number of neighbors,

i.e., if σ ≤ r. The problem then reduces to finding the longest of the expanded cycles after the

cemetery vertices have been eliminated.

When σ > r, the independence among arcs in the DEC fails. For example, when r = 2 and

σ = 3, the events {123↘ a1a2a3} and {124↘ b1b2b3} are dependent (as they cannot occur simul-

taneously unless a2 = b2), but they are independent when r = 3. Even though rigorous analysis

seems elusive in this case, simulations strongly suggest that results very much like Theorems 1.3.3

and 1.4.1 hold. For starters, the random variable Cn and the cemetery vertices in a DEC may be

defined in the same manner, and they have the same connection to each other. Figure 3.3 supports

the following conjecture.

Conjecture 3.5.1. Fix arbitrary σ, r ≥ 1, and let n → ∞. If σ is odd, n−σCn → 1 in

probability. If σ is even, then n−σCn converges in distribution to a nontrivial bimodal distribution.
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(a) σ = 3, r = 2 (b) σ = 4, r = 2

Figure 3.3. Empirical proportion of non-cemetery vertices for two examples with
r < σ and n = 50, from 1000 samples.

Turning to the longest periods themselves, we provide the loglog plots for r = 2, and σ = 1, 2, 3, 4

in Figure 3.4. The first two cases are covered by Theorem 1.3.3, while the other two are not.

Nevertheless, the average lengths behave with the same regularity, leading to our next conjecture.

Conjecture 3.5.2. Theorem 1.3.3 holds in the same form for σ > r, i.e., Xσ,n/n
σ/2 converges

in distribution, for any fixed σ ≥ 1 and r ≥ 1.

Returning to the case σ ≤ r, one may ask whether our results can be extended to cover other

than longest periods. Indeed, as we now sketch, it is possible to show that the length of the jth

longest PS of a random rule, again scaled by nσ/2 converges in distribution. To be more precise,

recalling notation from Section 3.2, identify recursively for ` ≥ 1 the cycles with largest possible

expansion numbers as follows: K
(0)
σ = 0 and

K(`)
σ = min

{
k > K(`−1)

σ : Tk = σ
}
.

Then the length of jth longest PS is given by

X(j)
σ,n = max

(j)

{
Li · T ′i , LK(`)

σ
σ : i = 1, 2, . . . ,K(j)

σ − 1, i 6= K(`)
σ , ` = 1, . . . , j

}
,

where max(j) returns the jth largest element of a set. The arguments similar to those in Sections 3.3

and 3.4.4, then show that X
(j)
σ,n/nσ/2 converges in distribution to a nontrivial limit.
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(a) σ = 1, r = 2, 5 ≤ n ≤ 100 (b) σ = 2, r = 2, 5 ≤ n ≤ 100

(c) σ = 3, r = 2, 5 ≤ n ≤ 65 (d) σ = 4, r = 2, 5 ≤ n ≤ 36

Figure 3.4. Loglog plots of average lengths of longest PS with varied σ, from 1000
samples, with corresponding regression lines.

We conclude with four questions on the extensions of our results in different directions, some

of which are analogous to the those posed in 2.

Question 3.5.1. Assume that n is fixed, but σ, r →∞. What is the asymptotic behavior of the

longest temporal period with spatial period σ, depending on the relative sizes of σ and r?

Question 3.5.2. For a fixed τ , define the random variable X ′τ,n to be the longest spatial period

of a PS with for a given temporal period τ , with X ′τ,n = 0 when such a PS does not exist. What is

the asymptotic behavior, as n→∞, of X ′τ,n?
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A rule is left permutative if the map ψb−r+1,...,b−1 : Zn → Zn given by ψb−r+1,...,b−1(a) =

f(b−r+1, . . . , b−1, a) is a permutation for every (b−r+1, . . . , b−1) ∈ Zr−1
n .

Question 3.5.3. Let L be the set of all (n!)n
r−1

left permutative rules. What is the asymptotic

behavior of Xσ,nif a rule from L is chosen uniformly at random?

Our final question is on additive rules [MOW84], given by f(b−r+1, . . . , b0) =
0∑

i=−r+1

βibi, for

some βi ∈ Zn.

Question 3.5.4. Let A be the set of all nr additive rules. What is the asymptotic behavior of

Xσ,n if a rule from A is chosen uniformly at random?
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CHAPTER 4

Maximal Temporal Period of Periodic Solutions

Throughout this chapter, we again assume the simplest nontrivial neighborhood, r = 2.

In previous two chapters, we assume a fixed spatial period σ and discuss the temporal periods for

randomly selected rules. In this chapter, we instead investigate the analogous extremal questions.

As usual, we first restate the theorems to be proved in this chapter.

We denote by An the set of n-state additive rules and let

πσ(n) = max
f∈An

Xσ,n(f).

Let λσ(n) be the exponents of multiplicative group of Zn when σ = 2, Eisenstein integers modulo n

when σ = 3, and Gaussian integers modulo n when σ = 4. Then the result of the longest temporal

periods on additive rules is restated as follows.

Theorem (1.3.5 restated). For σ = 2, 3, πσ(n) = λσ(σn), for all n ≥ 2. Moreover, π4(2) = 4

and π4(n) = λ4(n), for all n ≥ 3. Finally, π6(n) = λ3(6n), for all n ≥ 2.

Our main result on non-additive rules is as follows.

Theorem (1.3.4 restated). Fix an arbitrary σ > 0. For n ≥ N(σ), there exists an n-state CA

rule f such that Xσ,n(f) = Yσ,n(f) ≥ C(σ)nσ, where N(σ) and C(σ) are constants depending only

on σ.

4.1. Longest Temporal Periods of Additive Rules

In this section, we investigate the longest temporal period that an additive rule is able to

generate, for a fixed spatial period σ.

4.1.1. Definitions and Preliminary Results. We write a configuration ξt on the integer

interval [0, σ− 1] with periodic boundary as c
(t)
0 c

(t)
1 . . . c

(t)
σ−1, where c

(t)
j ∈ Zn, for j = 0, 1, . . . , σ− 1,
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or, equivalenty, by the polynomial of degree σ − 1 [MOW84]

L(t)(x) =

σ−1∑
j=0

c
(t)
j x

j .

An additive rule f such that f(c0, c1) = bc0 + ac1, for a, b ∈ Zn is characterized by the polynomial

T (x) = a+ bx, and its evolution as polynomial multiplication:

L(t+1)(x) = T (x)L(t)(x),

in the quotient ring of polynomials Zn[x] modulo the ideal generated by the polynomial xσ − 1, to

implement the periodic boundary condition. In this section, we will use T (x), for some fixed a and

b, to specify an additive CA, in place of the rule f .

As a result, a PS generated by the additive rule T (x) = a + bx with temporal period τ and

spatial period σ satisfies

T τ (x)L(`)(x) = L(`)(x), in Zn[x]/(xσ − 1).

We are interested in the longest temporal period with a fixed spatial period σ. For general CA,

this task requires the examination of the longest cycle in the configuration directed graph (Chap-

ter 3) which encapsulates information from all initial configurations. For linear rules, however, the

following simple proposition from [MOW84] reduces the set of relevant initial configurations to a

singleton.

Proposition 4.1.1. (Lemma 3.4 in [MOW84]) Fix an additive CA and a σ ≥ 1. The temporal

period of any PS with the spatial period σ divides the temporal period resulting from the initial

configuration 1 0σ−1 (1 followed by σ − 1 0s), represented by the constant polynomial 1.

Therefore, we may define the longest temporal period Πσ (a, b;n) of an additive rule T (x) =

a+ bx, as the smallest k, such that

(a+ bx)k+` = (a+ bx)`, in Zn[x]/(xσ − 1),
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for some ` ≥ 0. We will refer to Πσ(a, b;n) as simply the period of T (x). The largest period is

thus

πσ (n) = max
a,b∈Zn

Πσ (a, b;n) .

We use the standard notation Zn[i] (where i =
√
−1) and Zn[ω] (where ω = e2πi/3) for Gaussian

integers modulo n and Eisenstein integers modulo n.

For a finite ring R with unity, we denote by R× its multiplicative group and, define the (mul-

tiplicative) order ord(x) for any x ∈ R to be the smallest integer k so that xk = 1 if x ∈ R×, and

let ord(x) = 1 otherwise. Note that this is the standard definition when x ∈ R×. Recall that

Z×n = {a : gcd(a, n) = 1},

Zn[i]× = {a+ bi : a, b ∈ Zn, gcd(a2 + b2, n) = 1},

Zn[ω]× = {a+ bω : a, b ∈ Zn, gcd(a2 + b2 − ab, n) = 1}.

Then we define

(4.1)

Λ2 (a, b;n) = ord(a+ b) in Zn,

Λ3 (a, b;n) = ord(a+ bω) in Zn[ω],

Λ4 (a, b;n) = ord(a+ bi) in Zn[i].

Furthermore, we let

λσ(n) = max
a,b∈Zn

Λσ(a, b;n),

for σ = 2, 3, and 4, be the exponents of the multiplicative groups Z×n , Zn[ω]×, and Zn[i]×.

In Section 4.1.2, we obtain explicit formulas for λσ(n) for these three σ’s.

In the sequel, we will use p, and p1, p2 . . . to denote prime numbers; for an arbitrary n, we write

its prime decomposition as n = pm1
1 . . . pmkk or as n = 2m23m3 . . . pmp . When p - σ, we use ordσ(p)

to denote the order of p in Zσ. We now list several useful results from [MOW84].

Proposition 4.1.2. (Lemma 4.3 in [MOW84]) If p | σ, then Πσ (a, b; p) | pΠσ/p (a, b; p).

Proposition 4.1.3. (Theorem 4.1 and (B.8) in [MOW84]) If p - σ and σ ≥ 2, then

Πσ (a, b; p) |
(
pordσ(p) − 1

)
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and ordσ(p) ≤ σ − 1. Furthermore, Π1 (a, b; p) | (p− 1).

Proposition 4.1.4. (Theorem 4.4 in [MOW84]) For n = pm1
1 . . . pmkk , we have

Πσ(a, b;n) = lcm
(
Πσ (a, b; pm1

1 ) , . . . ,Πσ

(
a, b; pmkk

))
.

Proposition 4.1.5. (Theorem 4.5 in [MOW84]) Let m ≥ 2 be an integer. Then Πσ (a, b; pm)

either equals pΠσ

(
a, b; pm−1

)
or Πσ

(
a, b; pm−1

)
.

As a consequence of the above results, we obtain the following upper bound.

Corollary 4.1.1. Let σ ≥ 2, then max
f∈An

Xσ,n(f) ≤ nσ−1, for all n ∈ N.

Proof. Let n = pm1
1 . . . pmkk be the prime decomposition of n. For every j = 1, . . . , k write

σ = p
nj
j σj , where nj ≥ 0 and σj is such that pj - σj . Let εj = 1 if σj = 1, and εj = 0 otherwise.

For any a, b ∈ Zn,

Πσ(a, b;n) = lcm
(
Πσ(a, b; pm1

1 ), . . . ,Πσ(a, b; pmkk )
)

(Proposition 4.1.4)

≤
k∏
j=1

p
mj−1
j Πσ(a, b; pj) (Proposition 4.1.5)

≤
k∏
j=1

p
mj+nj+σj−2
j (pj − 1)εj (Propositions 4.1.2 and 4.1.3)

≤
k∏
j=1

p
mj(σ−1)
j = nσ−1,

provided that the inequality

(4.2) mj + nj + σj − 2 ≤ mj

(
p
nj
j σj − 1

)
holds when either σj ≥ 2 or pj = 2, and the inequality

(4.3) mj + nj + σj − 1 ≤ mj

(
p
nj
j σj − 1

)
holds when σj = 1 and pj ≥ 3.
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Note that σj = 1 implies that nj ≥ 1. Next, observe that p
nj
j ≥ 2nj ≥ nj + 1. Assume first

that σj ≥ 2. Then we have mjp
nj
j σj ≥ mj(nj + 1)σj ≥ njσj + 2mj . Moreover, if nj ≥ 1, then

njσj − nj − σj + 1 = (nj − 1)(σj − 1) ≥ 0 and so (4.2) holds. If nj = 0, then (4.2) reduces to

σj − 2 ≤ mj(σj − 2), which again holds. Next we assume that σj = 1 and pj = 2. Then (4.2)

follows from mj + nj − 1 ≤ mjnj . Finally, assume that σj = 1 and pj ≥ 3. Then the inequality

(4.3) follows from nj ≤ 3nj − 2. The equalities (4.2) and (4.3) are thus established and the proof

completed. �

4.1.2. Exponents of the Multiplicative Groups. In this section, we find formulas for

λσ(n), σ = 2, 3, and 4, i.e., the exponents of multiplicative groups Z×n , Zn[ω]×, and Zn[i]×.

Lemma 4.1.1. For σ = 2, 3 and 4,

λσ(n) = lcm
(
λσ(pm1

1 ), . . . , λσ(pmkk )
)
.

Proof. By the Chinese Remainder Theorem, Z×n (respectively, Zn[ω]×, Zn[i]×) is isomorphic

to the direct product of the k groups Z×
p
mj
j

(respectively, Z
p
mj
j

[ω]×, Z
p
mj
j

[i]×), j = 1, . . . , k. �

To find λσ(n), it therefore suffices to find the formulas for λσ(pm) for prime p. For σ = 2, λ2 is

known as the Carmichael function, which is given by the following explicit formula.

Lemma 4.1.2. For m ≥ 1 and p prime,

λ2(pm) =


2m−1, if p = 2 and m ≤ 2

2m−2, if p = 2 and m ≥ 3

pm−1(p− 1), if p > 2

.

Proof. See [Car10]. �

The results for λ3 and λ4 follow from the classification of the two multiplicative groups. For

Zpm [i]×, this task was accomplished in [ADJ+08], while for Zpm [ω]× we relegate the similar argu-

ment to the Appendix.
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Lemma 4.1.3. For m ≥ 1 and p prime,

λ3(pm) =



6, if p = 3 and m = 1

2 · 3m−1, if p = 3 and m ≥ 2

pm−1(p− 1), if p = 1 mod 3

pm−1(p2 − 1), if p = 2 mod 3

.

Proof. The claim follows from Theorem A.0.1 in the Appendix. �

Lemma 4.1.4. For m ≥ 1 and p prime,

λ4(pm) =



2m, if p = 2 and m ≤ 2

2m−1, if p = 2 and m ≥ 3

pm−1(p− 1), if p = 1 mod 4

pm−1(p2 − 1), if p = 3 mod 4

.

Proof. By [ADJ+08], we have

Zp[i]× ∼=


Z2, if p = 2

Zp−1 × Zp−1, if p = 1 mod 4

Zp2−1, if p = 3 mod 4

and

Zpm [i]× ∼=


Zpm−1 × Zpm−2 × Z4, if p = 2 and m ≥ 2

Zpm−1 × Zpm−1 × Zp[i]×, if p 6= 2

.

The claim follows. �

4.1.3. Explicit Formulas for Configurations at Time t. The next lemma makes the

connection between the CA evolution and the integer rings apparent.

Lemma 4.1.5. For σ = 2, in Zn[x]/(x2 − 1),

(4.4) (a+ bx)t =
1

2

[
(a+ b)t + (a− b)t

]
+

1

2

[
(a+ b)t − (a− b)t

]
x.
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For σ = 3, in Zn[x]/(x3 − 1),

(4.5)

(a+ bx)t =
1

3

[
(a+ b)t + (a+ bω)t + (a+ bω2)t

]
+

1

3

[
(a+ b)t + ω2(a+ bω)t + ω(a+ bω2)t

]
x

+
1

3

[
(a+ b)t + ω(a+ bω)t + ω2(a+ bω2)t

]
x2.

For σ = 4, in Zn[x]/(x4 − 1),

(4.6)

(a+ bx)t =
1

4

[
(a+ b)t + (a− b)t + (a+ bi)t + (a− bi)t

]
+

1

4

[
(a+ b)t − (a− b)t + i(a+ bi)t − i(a− bi)t

]
x

+
1

4

[
(a+ b)t + (a− b)t − (a+ bi)t − (a− bi)t

]
x2

+
1

4

[
(a+ b)t − (a− b)t − i(a+ bi)t + i(a− bi)t

]
x3.

For σ = 6, in Zn[x]/(x6 − 1),

(4.7)

(a+ bx)t =
1

6

[
(a+ b)t + (a− b)t + (a+ bω)t + (a+ bω2)t + (a− bω)t + (a− bω2)t

]
+

1

6

[
(a+ b)t − (a− b)t + ω2(a+ bω)t + ω(a+ bω2)t − ω2(a− bω)t − ω(a− bω2)t

]
x

+
1

6

[
(a+ b)t + (a− b)t + ω(a+ bω)t + ω2(a+ bω2)t + ω(a− bω)t + ω2(a− bω2)t

]
x2

+
1

6

[
(a+ b)t − (a− b)t + (a+ bω)t + (a+ bω2)t − (a− bω)t − (a− bω2)t

]
x3

+
1

6

[
(a+ b)t + (a− b)t + ω2(a+ bω)t + ω(a+ bω2)t + ω2(a− bω)t + ω(a− bω2)t

]
x4

+
1

6

[
(a+ b)t − (a− b)t + ω(a+ bω)t + ω2(a+ bω2)t − ω(a− bω)t − ω2(a− bω2)t

]
x5.

To clarify, say, the formula for σ = 6, the expression in each square bracket is evaluated in Z[ω]

first (without the reduction modulo n), then the result, which must be in 6Z, is divided by 6, and

finally is reduced modulo n.

Proof. This follows from diagonalization of circulant matrices; see, for example, [Dav70]. �

4.1.4. The Upper Bounds. In this subsection we prove the upper bounds in Theorem 1.3.5.
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Lemma 4.1.6. For n ≥ 2, πσ(n) ≤ λσ(σn) for σ = 2, 3 and π6(n) ≤ λ3(6n). Moreover, for

n ≥ 3, π4(n) ≤ λ4(n).

Proof. We will show that, in all cases, Πσ(a, b;n) divides the corresponding upper bound for

all a, b ∈ Zn. Assume that p - σ, which automatically holds when p ≥ 5. In this case, we claim that

(4.8) Πσ (a, b; pm) | λσ (pm) ,

which is clearly enough. By Propositions 4.1.5 and 4.1.3, Πσ (a, b; pm) | pm−1(pordσ(p) − 1). As

ord2(p) = 1, ord3(p) = 1 when p mod 3 = 1 and ord3(p) = 2 when p mod 3 = 2, and ord4(p) = 1

when p mod 4 = 1 and ord4(p) = 2 when p mod 4 = 3, Lemmas 4.1.2–4.1.4 imply (4.8).

We now consider each σ separately. Write n = 2m23m3 · · · pmp .

We begin with σ = 2. Note that (4.8) holds for p = 3, and we next consider powers of 2. For

m = 1 and m = 2, it can be directly verified that Π2(a, b; 2m) | 2. For m ≥ 3, by Proposition 4.1.5,

Π2(a, b; 2m) | 2m−2Π2(a, b; 22), and then Π2(a, b; 2m) | 2m−1. Therefore

Π2(a, b; 2m) | λ2(2m+1),

which, together with (4.8) and Proposition 4.1.4, implies that

Π2(a, b;n) | lcm
(
λ2(2m2+1), . . . , λ2(pmp)

)
= λ2(2n),

by Lemma 4.1.1.

We continue with σ = 3. Now, (4.8) holds for p = 2 and we need to consider powers of 3.

A direct verification shows that Π3(a, b; 3) | 6. For m ≥ 2, Π3 (a, b; 3m) | 3m−1Π3 (a, b; 3) and so

Π3 (a, b; 3m) | 2 · 3m. By Lemma 4.1.3,

Π3 (a, b; 3m) | λ3(3m+1)

and again (4.8), Proposition 4.1.4, and Lemma 4.1.1 imply that Π3(a, b; 3m) | λ3(3n).

Next in line is σ = 4. This time, a direct verification (by computer) shows that Π4(a, b; 2),

Π4(a, b; 22), and Π4(a, b; 23) all divide 4. For m ≥ 3, we then have Π4(a, b; 2m) | 2m−3Π4(a, b; 23),

thus Π4(a, b; 2m) | 2m−1. Now, if n = 2m23m3 . . . pmp and m2 ≥ 2 or m2 = 0, the result follows
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similarly as for σ = 2 or σ = 3. If m2 = 1,

Π4 (a, b; 2 · 3m3 . . . pmp) | lcm (4, λ4(3m3), . . . , λ4(pmp)) .

But

lcm (4, λ4(3m3), . . . , λ4(pmp)) = lcm (2, λ4(3m3), . . . , λ4(pmp))

= lcm (λ4(2), λ4(3m3), . . . , λ4(pmp)) = λ4(n),

as long as one of the exponents m3, . . . ,mp is nonzero, i.e., when n ≥ 3. The desired divisibility

therefore holds.

Finally, we deal with σ = 6. This time, a similar argument shows that Π6(a, b; 2m2) | 3 · 2m2

and Π6(a, b; 3m3) | 2 · 3m3 , for all m2,m3 ≥ 1. So, Π6(a, b;n) divides

lcm (3 · 2m2 , 2 · 3m3 , . . . , λ3(pmp)) = lcm (λ3(2 · 2m2), λ3(3 · 3m3), . . . , λ3(pmp)) = λ3(6n).

The desired divisibility is thus established in all cases. �

4.1.5. The Lower Bounds.

Lemma 4.1.7. If n has prime decomposition n = pm1
1 . . . pmkk , then, for any σ,

(4.9) lcm
(
πσ(pm1

1 ), . . . , πσ(pmkk )
)
≤ πσ(n).

Proof. We identify Zn by

Zn ∼= Zpm1
1
× · · · × Zpmkk .

For the CA rule in the jth coordinate, we find aj , bj ∈ Z
p
mj
j

such that Πσ

(
aj , bj ; p

mj
j

)
= πσ

(
p
mj
j

)
.

Then a configuration repeats if and only if all k coordinates simultaneously repeat. �

As a consequence of Lemma 4.1.7, it suffices to consider the cases when n = pm. In each case

below, our strategy is to find an a, b ∈ Zpm for which the dynamics never reduces the spatial period

and such that Πσ (a, b; pm) equals the upper bound given by Lemma 4.1.6.

Lemma 4.1.8. For σ = 2, we have π2 (pm) = λ2 (2pm).
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Proof. We first prove that a− b ∈ Z×pm implies that the spatial period never reduces. Indeed,

such a reduction means that the coefficients of 1 and x in (4.4) agree at some time t ≥ 1, and then

their difference (a− b)t must vanish in Zpm , a contradiction.

We now assume that p ≥ 3. By definition of λ2, we can select a and b such that Λ2 (a,−b; pm) =

λ2 (pm); in particular, a − b ∈ Z×pm . Let k = Π2 (a,−b; pm). Then, for some ` ≥ 0, (a − bx)k+` =

(a−bx)` in Zpm [x]/(x2−1). If we replace x by any number c ∈ Zpm that satisfies c2−1 = 0 mod pm,

we get an equality in Zpm , so we can substitute x = 1 to get (a−b)k+` = (a−b)` mod pm. As a−b

is invertible in Zpm , (a − b)k = 1 mod pm. We conclude that λ2 (pm) ≤ Π2(a,−b; pm) ≤ π2 (pm).

As the spatial period does not reduce, the desired conclusion follows from the equality λ2 (pm) =

λ2 (2pm) and Lemma 4.1.6.

Finally, we assume that p = 2. In this case, we need to prove that π2 (2m) = λ2

(
2m+1

)
. A

direct verification shows that π2(2) = π2(4) = 2, so we may assume that m ≥ 3, in which case

λ2

(
2m+1

)
= 2m−1. Pick a c ∈ Z×

2m+1 whose order equals λ2

(
2m+1

)
. This is an odd number. Let

b = (c − 1)/2 and a = b + 1, so that a + b = c and a − b = 1. Clearly b ≤ 2m − 1, but then

also a ≤ 2m − 1, as otherwise c = 2m+1 − 1, which has order 2. It then follows from (4.4) that

(a + bx)2m−1
= 1 in Z2m [x]/(x2 − 1). Moreover, the coefficient of x in (a + bx)2m−2

cannot vanish

in Z2m , as otherwise c2m−2
= 1 mod 2m+1. It follows that Π2 (a, b; 2m) = 2m−1. �

Lemma 4.1.9. For σ = 3, we have π3 (pm) = λ3 (3pm).

Proof. We first show that, provided a+bω ∈ Zpm [ω]×, spatial period does not reduce. Indeed,

if the spatial period reduces to 1 at time t ≥ 1, then from (4.5)

1

3

B A

A B

(a+ bω)t

(a− bω)t

 =

0

0

 in Zpm [ω],

where A = 1− ω and B = 1− ω2. This implies that (a+ bω)t = 0 in Zpm [ω], a contradiction.

This time, we first assume that p 6= 3 and select a and b such that Λ3 (a, b; pm) = λ3 (pm).

Then, if k = Π3 (a, b; pm), we have (a + bx)k+` = (a + bx)`, in Zpm [x]/(x3 − 1), for some `. As

ω3 = 1, we may replace x with ω to get (a+bω)k = 1 in Zpm [ω]. As a result, λ3(pm) ≤ Π3(a, b; pm).

As the spatial period does not reduce, the desired conclusion follows from λ3(pm) = λ3(3pm) and

Lemma 4.1.6.
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It remains to consider p = 3. By direct verification, π3(3) = 6, and we assume m ≥ 2 from

now on. Select a = b = 1. By Proposition 4.1.5, Π3 (1, 1; 3m) = 2 · 3m′ , for some m′ ∈ [1,m].

Also, (1 + x)2·3m = 1 in Z3m [x]/(x3 − 1), which can be easily verified by (4.5) using (1 + ω)2 = ω,

(1 + ω2)2 = ω2, and the fact, easily verified by induction, that 22·3m = 1 mod 3m+1. So, it suffices

to show that (1 + x)2·3m−1 6= 1 in Z3m [x]/(x3 − 1), and for this we verify that the constant term in

(4.5) does not equal 1, that is,

(1 + 1)2·3m−1
+ (1 + ω)2·3m−1

+ (1 + ω2)2·3m−1 6= 3 in Z3m+1 [ω].

Indeed, in Z3m+1 [ω], (1+ω)2·3m−1
= (1+ω2)2·3m−1

= 1 and, again by induction, 22·3m−1
= 3m+1. �

Lemma 4.1.10. For σ = 4, we have π4(pm) = λ4(pm).

Proof. For any p, select a and b such that Λ4 (a, b; pm) = λ4(pm). Then if k = Π4(a, b; pm),

we have (a + bx)k+` = (a + bx)`, in Zpm [x]/(x4 − 1), for some `. Replacing x with i, we have

(a + bi)k = 1 in Zpm [i]. As a result, λ4(pm) ≤ Π4 (a, b; pm). Thus we only need to verify that the

spatial period does not reduce. If it does, then for some t, by (4.6),

1

2

1 1

i −i

(a+ bi)t

(a− bi)t

 =

0

0

 in Zpm [i],

implying that (a+ bi)t = 0 in Zpm [i], a contradiction with a+ bi ∈ Zpm [i]×. �

Lemma 4.1.11. Assume that σ = 6, n = pm, and that one of these two conditions on a and b

is satisfied: p 6= 3 and a + bω is invertible Zpm [ω]; or p = 3, m ≥ 2, a = 1 and b = 2. Then the

spatial period of (a+ bx)t is 6 for all t ≥ 0.

Proof. If the period reduces to 2, then by (4.7),

1

6


A B A B

B A B A

−B −A B A

A B −A −B




(a+ bω)t

(a+ bω2)t

(a− bω)t

(a− bω2)t


=


0

0

0

0


in Zpm [ω],
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where A = 1 − ω and B = 1 − ω2. Multiply rows, in order, by A, −B, B, A and add. Using

B2 −A2 = 3(2ω + 1), we get that (1 + 2ω)(a+ bω)t = 0 in Zpm [ω]. Multiplying instead by A, −B,

−B, −A gives (1+2ω)(a−bω)t = 0 in Zpm [ω]. If p 6= 3, then 1+2ω ∈ Zpm [ω]× and so (a+bω)t = 0,

a contradiction. Assume now that p = 3. Then we use the fact that Eisenstein norm |1− 2ω| = 7,

and so the norm of the product |(1 + 2ω)(1− 2ω)t| = 3 · 7t, which is not divisible by 3m if m ≥ 2,

and so(1 + 2ω)(1− 2ω)t is nonzero in Z3m [ω].

We next show that the spatial period does not reduce to 3. If it does, then by (4.7),

1

3


1 1 1

1 ω2 ω

1 ω ω2




(a− b)t

(a− bω)t

(a− bω2)t

 =


0

0

0

 in Zpm [ω].

From this, we get that

(4.10) (a− b)t = (a− bω)t = (a− bω2)t = 0 in Zpm [ω].

Assume p 6= 3 first. Then, (4.10) implies that neither a− b nor a− bω is invertible in Zpm [ω], and

thus p must divide a − b and the norm a2 + b2 + ab. Then 3ab = (a2 + b2 + ab) − (a − b)2 is also

divisible by p, and then so is ab. This implies that p | (a2 + b2−ab), and so a+ bω is not invertible,

a contradiction. If p = 3, then (4.10) is not satisfied for a = 1, b = 2, as (a− b)t cannot vanish. �

Lemma 4.1.12. For σ = 6, we have π6 (pm) = λ3 (6pm).

Proof. Assume first that p ≥ 5. Select any a and b such that Λ3 (a, b; pm) = λ3 (pm) =

λ3 (6pm). Then, if k = Π6(a, b; pm), we have (a+ bx)k+` = (a+ bx)`, in Zpm [x]/(x6 − 1), for some

`. Replacing x with ω, we have (a+ bω)k = 1 thus λ3 (pm) ≤ Π6 (a, b; pm).

Next in line is p = 2. The claim is that π6 (2m) = 3 · 2m. We may assume that m ≥ 3, after

a direct verification for m = 1, 2. By Theorem 4.1.5, Π6(1, 1; 2m) = 3 · 2m′ , for some m′ ∈ [1,m].

Therefore, it suffices to show that there are infinitely many ` for which the equality

(1 + x)3·2m−1+` = (1 + x)`, in Z2m [x]/(x6 − 1),
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is not satisfied. A necessary condition for this equality is that the constant terms in (4.7) for both

sides agree, which yields

1

6

[
2`
(

23·2m−1 − 1
)

+ (1 + ω)`
(

(1 + ω)3·2m−1 − 1
)

+ (1 + ω2)`
(

(1 + ω2)3·2m−1 − 1
)

+

(1− ω)`
(

(1− ω)3·2m−1 − 1
)

+ (1− ω2)`
(

(1− ω2)3·2m−1 − 1
)]

= 0 mod 2m.

As 1 + ω = −ω2, 1 + ω2 = −ω, the second and third term vanish. The first term vanishes for large

enough `. Moreover, as (1 − ω)2 = −3ω and (1 − ω2)2 = −3ω2, (1 − ω)3·2m−1
= (1 − ω2)3·2m−1

=

33·2m−2
, for m ≥ 3. We obtain the necessary condition

(4.11) (1− ω)`
[
1 + (1 + ω)`

] (
33·2m−2 − 1

)
= 0 mod 3 · 2m+1.

If ` = 1 mod 12, then (1 − ω)` is a power of 3 times (1 − ω) and (1 + ω)` = −ω2. By a simple

induction argument, 33·2m−2 − 1 = 2m mod 2m+1. Then, if ` = 1 mod 12, (4.11) reduces to

3`
′ · 2m = 0 mod 3 · 2m+1, for some `′ ≥ 1, which is clearly false. This completes the proof for

p = 2.

Finally, we deal with p = 3. We aim to prove π6 (3m) = 2 · 3m, and we will accomplish this by

establishing the claim that Π (1, 2; 3m) = 2 · 3m. We may, again, assume m ≥ 3. Similarly to the

previous case, it suffices to show that

(4.12) (1 + 2x)2·3m−1+` = (1 + 2x)`, in Z3m [x]/(x6 − 1),

fails to hold for infinitely many `, and we will assume that ` is large enough and 18 | `. As before,

we show the constant terms in (4.7) do not match. If they do, this expression needs to vanish

modulo 2 · 3m+1:

(4.13)

(1 + 2)`
[
(1 + 2)2·3m−1 − 1

]
+ (1− 2)`

[
(1− 2)2·3m−1 − 1

]
+ (1 + 2ω)`

[
(1 + 2ω)2·3m−1 − 1

]
+ (1 + 2ω2)`

[
(1 + 2ω2)2·3m−1 − 1

]
+ (1− 2ω)`

[
(1− 2ω)2·3m−1 − 1

]
+ (1− 2ω2)`

[
(1− 2ω2)2·3m−1 − 1

]
.
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As (1 + 2ω)2 = (1 + 2ω2)2 = −3, the first four terms all vanish when ` is large enough. For the

fifth and sixth term, we first observe that

(4.14) (1− 2ω)` = [(1− ω)− ω]` = (−ω)` +
∑̀
j=1

(
`

j

)
(1− ω)j(−ω)`−j = 1 in Z9[ω].

By a similar calculation, (1− 2ω2)` = 1 in Z9[ω]. Next, we have

(4.15)

(1− 2ω)2·3m−1 − 1 = [(1− ω)− ω]2·3
m−1

− 1

= −1 + (−ω)2·3m−1
+ 2 · 3m−1(1− ω)(−ω)2·3m−1−1

+
2 · 3m−1(2 · 3m−1 − 1)

2
(1− ω)2(−ω)2·3m−1−2

+
2 · 3m−1(2 · 3m−1 − 1)(2 · 3m−1 − 2)

2 · 3
(1− ω)3(−ω)2·3m−1−3

+
2·3m−1∑
j=4

(
2 · 3m−1

j

)
(1− ω)j(−ω)2·3m−1−j

= 2 · 3m−1(1− ω)(−ω2)− 3m(2 · 3m−1 − 1)ω2

+ 3m−1(2 · 3m−1 − 1)(2 · 3m−1 − 2)ω(1− ω) in Z3m+1 [ω].

Similarly,

(4.16)
(1− 2ω2)2·3m−1 − 1 = 2 · 3m−1(1− ω2)(−ω)− 3m(2 · 3m−1 − 1)ω

+ 3m−1(2 · 3m−1 − 1)(2 · 3m−1 − 2)ω(ω − 1) in Z3m+1 [ω].

Combining (4.14)–(4.16), we conclude that the expression (4.13) equals 3m mod 3m+1. (We need

m ≥ 3 to ensure 3m+1 | 3m−1 · 3m−1, so that we can ignore products of powers of 3.) Therefore

(4.12) does not hold, which concludes the proof for p = 3.

We also need that the spatial period is not reduced in considered cases, which are all covered

by Lemma 4.1.11. �

Proof of Theorem 1.3.5. The desired claims are established by Lemmas 4.1.6–4.1.10, and

Lemma 4.1.12. �
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4.2. PS with Long Temporal Periods in Non-additive Rules

In this section, we prove Theorem 1.3.4, by two explicit constructions. Our first rule resembles a

car odometer, and is similar to others that have previously appeared in the literature, see [CY09].

We view this as the most natural design, which also gives explicit constants C(σ) and N(σ),

although the second construction based on prime partition is much shorter.

4.2.1. The Odometer Rule. For a fixed integer k ≥ 2, we define the state space

S = Zk × {←, ◦} × {∗, ◦} × {E, ◦},

which has cardinality 23k. We call these four coordinates the number, particle, asterisk, and

end coordinate, respectively. In words, each of the symbols←, ∗, and E can be present at a site in

addition to a number, and ◦ signifies its absence. We use abbreviations such as (5,←, ∗, E) =
←−−
E5∗,

(5,←, ◦, ◦) =
←−
5 , and (5, ◦, ◦, ◦) = 5. To be consistent with the car odometer interpretation, we

construct a right-sided rule. That is

ξt+1(x) = f(ξt(x), ξt(x+ 1)),

or ξt(x)ξt(x+ 1) 7→ ξt+1(x). Clearly, such a rule may be transformed to our standard left-sided one

by a vertical reflection.

The rule is described in the following 14 assignments, in which I, J represent numbers in Zk

and addition is modulo k, i, j represent elements in Zk \ {k − 1}, and � stands for any state in S:

(1) I
←−
i∗ 7→

←−
I ;

(2) I
←−
J 7→

←−
I ;

(3) I
←−−−−−
(k − 1)∗ 7→

←−
I∗;

(4)
←−
I∗� 7→ (I + 1);

(5)
←−
I � 7→ I;

(6) I
←−−−−−
E(k − 1) 7→

←−
I∗;

(7)
←−
Ei� 7→

←−−−−−
E(i+ 1);

(8)
←−−−−−
E(k − 1)� 7→E 0;

(9) EI
←−
J∗ 7→ ←−E0;

(10) EI
←−
J 7→ ←−E0;

(11) IJ 7→ I;

(12) EIJ 7→E I;

(13) IEJ 7→ I;

(14) I
←−
Ej 7→ I.

In all cases not covered above, the rule leaves the current state unchanged: c0c1 7→ c0. We view

the rule on [0, σ − 1] with periodic boundary, that is, within one spatial period of the PS.
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Our construction simulates the dynamics of an odometer on the number coordinate. The three

auxiliary coordinates are needed for the update rule to be a CA. We now give a less formal descrip-

tion. The end position indicator E marks the right end of our interval with periodic boundary.

Hence, there has to be exactly one E and it is designed so that it does not appear or disappear

(see assignments 7–10 and 12–14). The ← is a left-moving particle (assignments 1–10), marking

the site on which the number coordinate may add 1 in the next step. The number marked by an

E adds 1 if its site also contains a particle, i.e., its particle coordinate is an ← (assignments 7 and

8), and updates to 0 when an ← is to its right (assignments 9 and 10). The number coordinates

not marked by an E add 1 if and only if the asterisk coordinate is ∗ (see assignment 4 and 5). The

symbol ∗ plays the role of carry in addition and can appear and disappear: it appears if the E

position has number k − 1, then it moves along with the particle (see assignment 6) if its number

coordinate is k − 1 (see assignment 3), and disappears if there is no carry (see 1) or if it arrives to

the E position (see 9).

Table 4.1. An odometer PS for σ = 3, k = 10.

0 0
←−
E0

0 0
←−
E1 (11, 14, 7)

...

0 0
←−
E9 (11, 14, 7)

0
←−
0∗ E0 (11, 6, 8)

←−
0 1 E0 (1, 4, 12)

0 1
←−
E0 (5, 13, 10)

0 1
←−
E1 (11, 14, 7)

...

0 9
←−
E9 (11, 14, 7)

0
←−
9∗ E0 (11, 6, 8)

←−
0∗ 0 E0 (3, 4, 12)

1 0
←−
E0 (4, 13, 9)

...

9 9
←−
E9 (11, 14, 7)

9
←−
9∗ E0 (11, 6, 8)

←−
9∗ 0 E0 (3, 4, 12)

0 0
←−
E0 (4, 13, 9).
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Any rule with the above fourteen odometer assignments is called an odometer CA and gen-

erates a PS of temporal period at least kσ, called odometer PS. This shows that maxf Xσ,8k(f) ≥

kσ. To give an example, let L = 00 . . .
←−
E0 be the configuration consisting of (σ − 1) 0’s and a

←−
E0.

When σ = 3, k = 10, then the PS is given in Table 4.1, where the relevant assignments are given

in the parentheses. The PS has temporal period 1199 > 103 = kσ. We summarize the result of this

section, which provides the best lower bound we have on maxf Xσ,n(f).

Proposition 4.2.1. There exists a CA rule f so that Xσ,n(f) ≥ bn/8cσ.

The shortcoming of this construction is that it does not ensure that Yσ,n(f) = Θ(nσ), as the

odometer rule, as it stands, has other PS with much shorter temporal periods. For example, in the

CA from Table 4.1, the configuration 123 is fixed due to the assignment 11, and so it generates a

PS with temporal period 1. We provide the remedy in the next subsection.

4.2.2. The Odometer Rule with Automata. To prevent short temporal periods, we need

to extend the state space. The strategy is to introduce a second layer to each state, which encodes

two finite automata that determine whether a configuration is legitimate, i.e., either itself or one of

its updates is included in the above odometer PS. A legitimate configuration will generate the PS

with long temporal period, while an illegitimate one will eventually end up in a spatially constant

configuration.

Definition 4.2.1. Consider the state space Zk × {←, ◦} × {∗, ◦} × {E, ◦} ×A of the odometer

CA, where A is any finite set. A configuration on [0, σ − 1] is legitimate if the following three

conditions are satisfied:

(1) there is exactly one site that contains an ←;

(2) there is exactly one site that contains an E;

(3) if a site contains ∗, then this site contains an ← but does not contain an E.

Lemma 4.2.1. Any odometer rule starting from any legitimate configuration eventually enters

the odometer PS.

Proof. Case 1. An inductive argument shows that any legitimate configuration in the form

of a0 . . .
←−−−−
Eaσ−1 generates the odometer PS.
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Case 2. Suppose that a legitimate configuration does not contain an ∗ and thus is of the form

a0 . . .
←−aj . . .E aσ−1. Then by assignments 2 and 5, the ← moves left until ←−a0 . . .E aσ−1 and then

updates to a0 . . .
←−
E0 because of assignments 5 and 10, reducing to Case 1.

Case 3. A legitimate configuration a0 . . .
←−
a∗j . . .E aσ−1, aj < k − 1, updates to a0 . . .

←−−aj−1(aj +

1) . . .E aσ−1 because of assignments 1 and 4, or to a0 . . .
←−−−−
Eaσ−1, reducing to either Case 2 or Case

1.

Case 4. A legitimate configuration a0 . . .
←−−−−−
(k − 1)∗ . . .E aσ−1 (with the ← at position j) becomes

a0 . . .
←−−
a∗j−10 . . .E aσ−1, which is reduced to Case 3 when aj−1 < k − 1. If aj−1 = k − 1, repeated

updates eventually reduce to Case 3 or Case 1. �

To define the augmented state space, we first introduce the concept of deterministic finite

automata (DFA) or automata in short. An automata is finite-state machine, whose transition of

states is determined by a given string. To be precise, an automata is a 5-tuple (S,Σ, δ, s0, A), where

S is the set of finite state; Σ is the alphabet of the input string; δ : S × Σ → S is the transition

function; s0 ∈ S is the initial state and; A ⊂ S is the set of accept states.

We now define the augmented state space for our two-layer construction of the odometer rule

with automata:

SA = (Zk × {←, ◦} × {∗, ◦} × {E, ◦} × E × A) ∪ {T},

where E = {(0, 0), (1, 0), . . . , (σ − 1, 0), (1, 1), (2, 1), . . . , (σ − 1, 1), T1} comprises states of a finite

automaton, called END-READER; A = {0, 1, . . . , σ, T2} comprises states of another finite automaton,

called ARROW-READER; and T is the special terminator state that erases the configuartion once it

appears. We regard the first four components — those from the odometer rule above — as the first

layer of a state, and the two automata components as the second layer.

We proceed to specify the rule. The first layer updates according to the previous odometer

assignments. In addition, we include the assignment

• (I, ◦, ∗, ◦)s 7→ T and (I, ◦, ∗, E)s 7→ T for all s ∈ SA.

That is, if the first layer of a state contains an ∗ but not an ←, the state updates to T . Such an

update will happen in any configuration that is illegitimate due to having an ∗ but not an ←.

The next assignment spells out the role of T1, T2, and T :
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• For any site x, if either x or x+ 1 is in the state T or at least one of the second layers of

x, x+ 1 contains a T1 or a T2, then x updates its state to T .

A configuration that contains a T1, a T2 or a T is called terminated. Any terminated configuration

will eventually update to the constant configuration consisting of all T ’s, thus reduce the spatial

period to 1.

The transition function δE of the finite automaton END-READER = (E , {E, ◦}, δE , (i, j), T1) reads

the end coordinate and is given in Figure 4.1; its initial state (i, j) can be any state in E . From

time t to time t + 1, an END-READER at position x reads the state on its first layer, updates its

state according to δE , then “moves” to x−1. This left shift of the entire END-READER configuration

is allowed as we are constructing a right-sided rule. According to the odometer assignments, the

E position in a configuration does not appear or disappear and does not move. As a result, the

END-READER counts the number of E’s.

Lemma 4.2.2. Every configuration with 0 or at least 2 sites containing an E will be terminated

for any initial state of the END-READER. Conversely, starting from a configuration whose first layer

is = 00 . . .
←−
E0, no END-READER ever reaches T1 unless it starts there.

Proof. Start with a configuration with 0 or 2 more states that contain an E. Suppose that

it is never terminated by the END-READER. Then there is a time t and a position x such that the

state of the END-READER is (0, 0), as it is clear from Figure 4.1. Within σ time steps from t, the

END-READER transitions to T1. The converse result is also clear from Figure 4.1. �

We also need to terminate illegitimate configurations with 0 or at least 2 arrows. First, a

configuration with 2 or more arrows can be handled by adding the following assignment:

• s1s2 7→ T , for all s1, s2 ∈ SA such that s1, s2 both contain an ←.

Lemma 4.2.3. Assume k > σ. Let L be a configuration that is never terminated by the

END-READER and such that at least two states of L contain an ←. Then L will be eventually

terminated.

Proof. Since L is not terminated by the END-READER, there is exactly one state of L that

contains E. Assume that the two states with ← are not adjacent, as otherwise the configuration
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(0, 0) (1, 0) (2, 0) · · · (σ − 1, 0)

(1, 1) (2, 1) · · · (σ − 1, 1) T1

◦

E

E

◦

◦

E

◦

E

◦

E ◦

◦

E

◦

E

E

◦ E

Figure 4.1. The transition function δE for END-READER.

0 1 2 · · · σ T2
(◦,E)

w

(◦,E)

w

(◦,E)

w

(◦,E) (◦,E)

w

Figure 4.2. The transition function δA of the ARROW-READER. Here w is any symbol
in {←, ◦} × {E, ◦} \ {(◦, E)}.

is terminated immediately. Note that the arrow at the E position stays there for k updates and

other arrows move left at every update. As k > σ, two arrows will eventually be adjacent. �

Due to Lemma 4.2.3, it suffices to enlist a finite automaton whose mission is to terminate

configurations with no ←. This automaton is the ARROW-READER that reads the particle and end

coordinates and is given by (A, {←, ◦} × {E, ◦}, δA, (i, j), T2), where the transition function δA

is described in Figure 4.2 and its initial state is any state in A. From time t to time t + 1,

an ARROW-READER at site x updates its state according to δA and stays at the same position x.

According to the odometer assignments, an ← must appear at the E position within σ updates

if there is at least one ←. Hence, the ARROW-READER terminates a configuration that fails this

condition. The effect of this automaton is summarized in the following lemma.
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Lemma 4.2.4. Every configuration with no ← is eventually terminated for any initial state

of the ARROW-READER. Conversely, starting from a configuration whose first layer is 00 . . .
←−
E0, no

ARROW-READER ever reaches T2 unless it starts there.

The next proposition provides our first proof of Theorem 1.3.4.

Proposition 4.2.2. Let S(σ) = 16σ(σ + 2). For the rule f defined in this subsection, we have

Xσ,n(f) = Yσ,n(f) ≥ bn/S(σ)cσ for n ≥ (σ + 2)S(σ) + 1.

Proof. Observe that #SA = S(σ) · k + 1. For a number of states n, let k = b(n − 1)/S(σ)c.

Encode the odometer rule with automata on S(σ) · k + 1 states, and make any leftover states

immediately transition to T . Let L ∈ SσA be a configuration with its first layer is 00 . . .
←−
E0; on the

second layer, the END-READER’s are at state (0, 0) and the ARROW-READER’s are at state 0. Then the

configuration is not terminated by either END-READER or ARROW-READER, by Lemmas 4.2.2 and 4.2.4.

Then the global configuration restricted on the first layer is the one of odometer CA, which has

temporal period at least kσ. Therefore, Xσ,n(f) ≥ kσ = bn/S(σ)cσ.

Furthermore, note that any illegitimate configuration in SσA, as well as any configuration not

in SσA, will eventually produce the constant configuration of all T s with spatial period 1, by Lem-

mas 4.2.2–4.2.4. Furthermore, any legitimate configuration on the first layer will eventually update

to a configuration whose first layer is in the odometer PS (by Lemma 4.2.1), and will never be ter-

minated by the second layer that is not already in one of the terminator states (by Lemmas 4.2.2

and 4.2.4). Therefore, Yσ,n(f) = Xσ,n(f). �

4.2.3. The Prime Partition Rule. We begin with a simple consequence of the prime number

theorem.

Lemma 4.2.5. For an arbitrary σ > 0, and for large enough n, there are σ primes p0, . . . , pσ−1 ∈

[(n− 1)/(2σ), (n− 1)/σ].

Assume that n is large enough so that Lemma 4.2.5 holds. Find disjoint sets P0, . . . , Pσ−1 ⊂

Zn \{0} such that #Pj = pj , for j = 0, . . . , σ−1. This can be achieved since p0 + · · ·+pσ−1 ≤ n−1.

The state 0 ∈ Zn \ (P0 ∪ · · · ∪ Pσ−1) will play the role of the terminator. Let φj : Pj → Pj be a
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cyclic permutation of the pj states. Keeping the right-sided convention from the Section 4.2.2, we

define the CA rule f as follows:

f(s, s′) =


φj(s) if s ∈ Pj and s′ ∈ P(j+1) mod σ for some j ∈ {0, . . . , σ − 1}

0 otherwise

.

Proposition 4.2.3. For f defined above, we have Xσ,n(f) = Yσ,n(f) and

lim inf
n→∞

n−σYσ,n(f) ≥ (2σ)−σ.

Proof. Call a configuration s0s1 . . . sσ−1 regular if there exists an ` so that sj ∈ P(j+`) mod σ,

j = 0, . . . , σ−1. To show that Xσ,n(f) ≥ (n−1)σ/(2σ)σ, run the rule starting from any regular con-

figuration. Such a configuration appears again for the first time after p0p1 . . . pσ−1 ≥ (n−1)σ/(2σ)σ

updates. To show that Yσ,n(f) = Xσ,n(f), observe that any non-regular initial configuration even-

tually ends up in the constant configuration of all 0s. �

4.3. Discussion

In this paper, we continue our study of the shortest and the longest temporal periods of a PS

for a fixed spatial period σ. While we are able to construct a rule whose longest temporal period

grows as nσ for large n, more precise results remain elusive even for σ = 3. We start our discussion

with this case.

We call an n-state rule that has a PS with spatial period σ and temporal period T (σ, n) as

maximum cycle length (MCL) rule. For σ = 3, our computations demonstrate that an MCL

rule exists for n ≤ 20. More precisely, the number of MCL rules is 1 for n = 2 (out of 24 rules),

12 for n = 3 (out of 39 rules) and 732 for n = 4 (out of 416 rules). These numbers match the first

three terms of the sequence

(4.17) (−1)k72kE2k

(
3

7

)
, k = 0, 1, 2, 3, . . . = 1, 12, 732, 109332, . . . ,

where En are the Euler polynomials. Unfortunately, it is hard to traverse all of the 525 ≈ 2.98×1017

5-state rules to count the number of MCL ones, so we merely state an open question.
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Question 4.3.1. Assume σ = 3. Does there exist an MCL rule for any number of states n ≥ 2?

If so, is the number of MCL rules given by (4.17) for all n, or is the connection just a curious

coincidence for n ≤ 4?

If Xσ,n(f) = T (σ, n), then automatically Yσ,n(f) = Xσ,n(f) = T (σ, n), as the PS goes through

all configurations with number of states n and spatial period σ. However, for σ ≥ 4, an MCL may

not exist, as demonstrated for n = 3 by Table 4.2, and therefore the maxima of Xσ,n and Yσ,n may

differ. This motivates our next question.

Table 4.2. Maximal temporal period for n = 3 and spatial periods σ ≤ 10. We
also give NX , and NY , the numbers of rules that realize the respective maxima.

σ maxf Xσ,3(f) NX maxf Yσ,3(f) NY T (σ, 3)

1 3 1458 3 1458 3
2 6 216 6 216 6
3 24 12 24 12 24
4 40 12 32 72 72
5 120 2 120 2 240
6 111 6 84 42 696
7 1967 12 546 2 2184
8 904 12 896 24 6480
9 9207 12 1809 12 19656
10 10490 6 410 12 58800

Question 4.3.2. What is the asymptotic behavior of maxf Xσ,3(f), as σ grows? Or the asymp-

totic behavior of maxf Xσ,n(f) for an arbitrary fixed n? Making n large first, what is the asymptotic

behavior of

lim inf
n→∞

n−σ max
f

Xσ,n(f)

for large σ? (See Proposition 4.2.1 for an exponentially small lower bound.) The same questions

can be posed for Yσ,n (for which Propositions 4.2.2 and 4.2.3 provide even smaller lower bounds).

To discuss the relation between Xσ,n and Yσ,n for additive rules, let ρσ(n) = maxf∈An Yσ,n(f).

As it is clear from Table 4.3, πσ(n) and ρσ(n) may differ, even for σ = 2 or 3. This suggests our

next question.

Question 4.3.3. Fix a σ ≥ 2. Is there an explicit formula for ρσ(n), in terms of n, at least for

small σ? Can one characterize n for which πσ(n) = ρσ(n)?
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Table 4.3. Maximum of shortest and longest temporal periods of additive rules,
for σ = 2, 3 and n = 2, . . . , 20

n 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

ρ2(n) 2 2 2 4 2 6 2 2 4 10 2 12 6 4 2 16 2 18 4

π2(n) 2 2 2 4 2 6 4 6 4 10 2 12 6 4 8 16 6 18 4

ρ3(n) 3 6 3 24 6 6 3 6 24 120 6 12 6 24 3 288 6 18 24

π3(n) 3 6 6 24 6 6 12 18 24 120 6 12 6 24 24 288 18 18 24

For a prime power pm, we define the function ubσ(pm) to be the upper bound obtained from

Propositions 4.1.2, 4.1.3 and 4.1.5. That is, ub1(p) = p− 1; ubσ(p) = pordσ(p)− 1 if p - σ and σ ≥ 2;

ubσ(p) = pk · ubσ/pk(p) if k ≥ 1 is the largest power ofp dividing σ; and ubσ(pm) = p · πσ(pm−1) if

m ≥ 2. It is common that πσ(pm) = ubσ(pm), most notably for σ = 5.

Question 4.3.4. Is it true that, for all prime powers pm, π5(pm) = ub5(pm)?

We have checked that there are no counterexamples to the “yes” answer on Question 4.3.4

for all pm such that p ≤ 50 and ub5(pm) ≤ 105. As counterexamples should be harder to come

by for larger p (more a and b to choose from) and for larger m (less chance for Π(a, b; pm) to be

equal to Π(a, b; pm−1)), we conjecture that the answer to Question 4.3.4 is indeed affirmative. We

also remark, that, if this conjecture holds, there is an explicit formula for π5(n) for all n, due to

Lemma 4.1.7 and Proposition 4.1.4.

It is not always true that πσ(pm) = ubσ(pm). Table 4.4 contains a list of examples of inequality

we have found for σ ≤ 50. One hint that the table offers is easy to prove and we do so in the next

proposition.

Proposition 4.3.1. Assume that σ = 2k, k ≥ 1. Then πσ(2m) = 2k for all m ≤ k + 1, but

πσ(2k+2) = 2k+1.

Proof. When n = 2, (1 + x)2k = 1 + x2k = 0 in Z2[x]/(xσ − 1). This implies that, for any

m, when a and b are both odd, all states are eventually divisible by 2, and then by additivity
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Table 4.4. Examples with π(pm) < ub(pm). An arrow indicates a range of powers.

σ 2 4 7 8 11 13 14 16

pm 22 22→3 3 22→4 2 2 3 22→5

πσ(pm) 2 4 364 8 341 819 364 16
ubσ(pm) 4 8 728 16 1023 4095 728 32

σ 21 22 26 32 42 44

pm 3 2 2 22→6 3 2
πσ(pm) 1092 682 1638 32 1092 1364
ubσ(pm) 2184 2046 8190 64 2184 4092

(a+ bx)t = 0 for large enough t. Clearly the same is true when a and b are both even. If a is odd

and b is even,

(a+ bx)2k = a2k = 1 in Z2k+1 [x]/(xσ − 1),

and the same conclusion holds if a is even and b is odd. This shows that πσ(2m) ≤ 2k for m ≤ k+1.

As clearly Πσ(0, 1; 2m) = σ = 2k, we get πσ(2m) = 2k.

By the same argument, (a + bx)2k+1
= 1 in Z2k+2 [x]/(xσ − 1), for all a and b. Moreover, it

is easy to check that (1 + 2x)2k = 1 + 2k+1x + 2k+1x2 6= 1 in Z2k+2 [x]/(xσ − 1), proving the last

claim. �

Call a prime p persistent if πσ(p) < ubσ(p) for infinitely many σ. We conclude with a few

questions suggested by Table 4.4.

Question 4.3.5. (1) Is either 2 or 3 persistent? (2) Are there infinitely many primes p such

that is πσ(p) < ubσ(p) for some σ? (3) Is 2 the only prime with πσ(pm) < ubσ(pm) for some

m ≥ 2?
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CHAPTER 5

Weakly Robust Periodic Solutions of a Random Rule

Again, r = 2 throughout this chapter.

While we study the general PS and its existence of a random rule in the previous three chapters,

we will explore the weakly robustness of PS in this chapter.

As usual, we restate the theorem to be proved in this chapter.

Theorem (1.3.6 restated). Let T ×Σ ⊂ N×N be fixed and finite. If there exists (τ, σ) ∈ T ×Σ

such that σ | τ , then P(RT ,Σ 6= ∅) = c(T ,Σ)/n + o(1/n), where c(T ,Σ) is a constant depending

only on T and Σ.

5.1. Decidability and WRPS

Recall the definition of right-extension, label digraph and Algorithm 2.1.2 for obtaining PS

from label digraph. In order for a PS to be weakly robust, we need one more condition on the

directed cycle in the label digraph, which requires that each label decides its unique child. To be

more accurate, let A and B be two labels. Assume that at a site k ∈ Z the temporal evolution of

the states, arranged vertically, is the repeated label A: a0 . . . aτ−1a0 . . . aτ−1 . . . . Suppose that the

states at site k + 1 eventually “converge” to repetition of B: b0 . . . bτ−1b0 . . . bτ−1 . . . , regardless of

the initial state at site k + 1. In this case, we say that A decides B, and then it is clear that A

does not decide C for any other length-τ label C that is not equal to B up to a circular shift. We

now provide a more formal definition.

Definition 5.1.1. Let A = a0 . . . aτ−1 and B = b0 . . . bτ−1 be two length-τ labels. We call that

label A decides B, denoted as A⇒ B, if the following two conditions are satisfied:

(1) label A right-extends to B, i.e., A→ B;

(2) for an arbitrary c0 ∈ Zn, recursively define cj+1 = f(aj mod τ , cj); then there exists a j ≥ 0

such that cj mod τ = bj mod τ .
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The following proposition, analogous to Proposition 2.2 in [GG12], provides an algorithm to

verify whether a PS is weakly robust.

Proposition 5.1.1. A tile is a WRPS if and only if each column decides the column to its

right.

Proof. Assume that a tile T = (ai,j) is a WRPS with columns Aj , j = 0, . . . , σ − 1. Let η be

the initial configuration formed by doubly infinite repetition of a0,0 . . . a0,σ−1. If Aj = a0,j . . . aτ−1,j

does not decide Aj+1 = a0,j+1 . . . aτ−1,j+1, for some j = 0, . . . , τ − 1, then there exists a c0 ∈ Zn

such that in the position to the right of Aj , the states do not converge to a repetition of Aj+1.

Now, construct an initial configuration η′ by replacing one a0,j+1 by c0 in η. Then η′ is proper for

η, but the advance of the spatial period is stopped, thus v(η′) = 0 and T cannot be weakly robust.

Conversely, note that if label Aj decides Aj+1, then for any c0 ∈ Zn to the right of a0,j , the label

converges to Aj+1 within nτ iterations. Thus the expansion velocity must be at least 1/(τn). �

Recall that by Lemma 2.1.1, a tile of a PS does not have periodic rows. The following lemma

concludes that a periodic label cannot be a part of WRPS tile, since otherwise the temporal period

of the WRPS is reduced.

Lemma 5.1.1. If T is a tile of WRPS of period τ , then every column has minimal period τ .

Proof. Assume that A is a label of length τ that is formed by concatenating shorter label

A′ that has length τ ′. It is clear that if A ⇒ B = b0 . . . bτ−1, A also decides the circular shift

bτ ′bτ ′−1 . . . bτ b0 . . . bτ ′−1. This implies that b0 = bτ ′ , b1 = bτ ′+1, etc. That is, B is also periodic

with period τ ′. By induction, every label in T is periodic with period τ ′, thus T is temporally

reducible. �

In a label digraph Dτ,f , we call an arc A → B deciding arc if A ⇒ B and a directed cycle

deciding cycle if all the arcs contained in this cycle are deciding arcs. The following algorithm

finds all WRPS of temporal period τ for rule f .
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Algorithm 5.1.1.

input : Label digraph Dτ,f of f with temporal period τ

Find all deciding cycles in Dτ,f

for each deciding cycle A0 ⇒ A1 ⇒ · · · ⇒ Aσ−1 ⇒ A0 do

form the tile T by placing labels A0, A1, . . . , Aσ−1 on successive columns.

if both spatial and temporal periods of T are minimal then

print T as a WRPS

end

end

5.2. Decidability Probability

We call a label A = a0 . . . aτ−1 simple if ai 6= aj for i 6= j. We next prove the main result

regarding the probability of the decidability of simple labels.

Theorem 5.2.1. Fix a number of states n and a τ ≤ n. Let A = a0 . . . aτ−1 be a simple label

with length τ and B = b0 . . . bτ−1 be any other label (not necessarily simple) of length τ . Then

P (A⇒ B) =
nτ − (n− 1)τ

nτ
· 1

nτ
.

The theorem is proved in four lemmas below. The key idea reduces to calculating the probability

that a random τ -partite graph is a directed pseudo-tree, i.e., a weakly connected directed graph

that has at most one directed cycle. To be precise, we construct label assignment digraph

(LAD) Gτ,n(f,A) of a label A under a rule f in the following manner.

We consider τ -partite digraphs with the ith part denoted by (i, ∗) = {(i, j) : j = 0, . . . , n− 1},

i = 0, . . . , τ−1. The arcs of the digraph Gτ,n(f,A) are determined as follows: for all i = 0, . . . , τ−1

and j = 0, . . . , n− 1, there is an arc (i, j)→ (i+ 1, j′) if f(ai, j) = j′. As usual, we identify i = τ

with i = 0, i = τ + 1 with i = 1, etc. We next state the conditions for Gτ,n(f,A) that characterize

when A→ B and when A⇒ B.
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Definition 5.2.1. Let A = a0 . . . aτ−1 and B = b0 . . . bτ−1 be two labels. Consider the following

conditions on a τ -partite graph G:

(1) G contains the cycle (0, b0)→ (1, b1)→ · · · → (τ − 1, bτ−1)→ (0, b0);

(2) there is a directed path in G from (i, j) to (0, b0) for all i = 0, . . . , τ−1 and j = 0, . . . , n−1.

The set E(A,B) is the set of all τ -partite digraphs G, which satisfy condition (1) and the set D(A,B)

is the set of all such digraphs G that satisfy both conditions (1) and (2).

Lemma 5.2.1. Let A = a0 . . . aτ−1 and B = b0 . . . bτ−1 be any two labels. Then A → B if and

only if Gτ,n(f,A) ∈ E(A,B) and A⇒ B if and only if Gτ,n(f,A) ∈ D(A,B).

We skip the proof as it follows immediately from the definitions, and instead give two examples

for different rules by Figure 5.1. For the reader’s convenience, we denote a node (i[ai], j) instead

of (i, j) as in the definition. The two labels are A = 12 and B = 00 in both cases. Under the rule

that generates the left LAD, A → B, but A 6⇒ B, i.e., Gτ,n(f,A) ∈ E(A,B) \ D(A,B); under the

rule that generates the right LAD, A⇒ B, i.e., Gτ,n(f,A) ∈ D(A,B).

(0[1], 0)

(0[1], 1)

(0[1], 2)

(1[2], 0)

(1[2], 1)

(1[2], 2)

(0[1], 0)

(0[1], 1)

(0[1], 2)

(1[2], 0)

(1[2], 1)

(1[2], 2)

Figure 5.1. Two LADs of label A = 12 under two different rules. We use (i[ai], j)
to represent a node for the reader’s convenience. In the left one, A→ 00 but A 6⇒ 00;
in the right one, A⇒ 00.

Fix a label A = a0 . . . aτ−1. The LAD Gτ,n(f,A) becomes a random graph if the rule f is

selected randomly and we are interested in P (Gτ,n(f,A) ∈ E(A,B)) and P (Gτ,n(f,A) ∈ D(A,B)).

The case that A is simple is easier as we can take advantage of independence of assignments of f .

To be precise, let A be a simple label with length τ and B be an arbitrary label with the same

length. We clearly have that P (Gτ,n(f,A) ∈ E(A,B)) = 1/nτ , as the assignments on (aj , bj)’s are

independent.

Next, we find P (Gτ,n(f,A) ∈ D(A,B)) for simple label A thus complete the proof of Theo-

rem 5.2.1. We start by the following observation.
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Lemma 5.2.2. If A and A′ are simple labels with the same length, P(A⇒ B) = P(A′ ⇒ B) for

any label B; if B and B′ are labels with the same length, P(A ⇒ B) = P(A ⇒ B′) for any simple

label A.

To find P (Gτ,n(f,A) ∈ D(A,B)), we adapt the counting techniques in [Sbe90] to enumerate

D(A,B). We start by proving the following combinatorial result.

Lemma 5.2.3. Let Ak,` =

(
n− 1

k

)
(`+ 1)k(n− 1− `)n−1−k , and km+1 a non-negative integer.

Then

Sm :=
n−1∑
km=0

Akm,km+1 . . .

 n−1∑
k2=0

Ak2,k3

 n−1∑
k1=0

Ak1,k2(k1 + 1)nn−2


= n(m+1)(n−2) [Pm+1 + km+1(n− 1)m] ,

where Pm = nm − (n− 1)m.

Proof. We use induction on m. Assume m = 1. Observe that

Ak,` = nn−1P
(

Binomial

(
n− 1,

`+ 1

n

)
= k

)
.

Therefore,

n−1∑
k1=0

Ak1,k2(k1 + 1)nn−2 = nn−2 · nn−1 ·
[
1 + (n− 1)

k2 + 1

n

]
= n2(n−2) [P2 + k2(n− 1)] .
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Now, by the induction hypothesis

Sm =

n−1∑
km=0

Akm,km+1Sm−1

= nm(n−2)
n−1∑
km=0

(
n− 1

km

)
(km+1 + 1)km(n− 1− km+1)n−1−km [Pm + km(n− 1)m−1

]
= nm(n−2)

[
nn−1Pm + (n− 1)m(km+1 + 1)nn−2

]
= n(m+1)(n−2) [nPm + km+1(n− 1)m + (n− 1)m]

= n(m+1)(n−2) [Pm+1 + km+1(n− 1)m] ,

which is the desired result. �

Now, we are ready to prove the key combinatorial result.

Lemma 5.2.4. Let A and B be labels with length τ and let A be simple. Then #D(A,B) =

nτ(n−2)(nτ − (n− 1)τ ).

Proof. The argument we give partly follows the proof of Theorem 1 in [Sbe90]. Applying

Lemma 5.2.2, we may assume that B = 0 . . . 0, without loss of generality.

First, choose a kτ−1 ∈ {0, . . . , n− 1}, pick kτ−1 nodes in (τ − 1, ∗) \ {(τ − 1, 0)}, and form kτ−1

arcs from those nodes to the node (0, 0). There are

(
n− 1

kτ−1

)
choices for a fixed kτ−1. Denote this

subset of (τ − 1, ∗) together with (τ − 1, 0) as (τ − 1, ∗)′; thus, (τ − 1, ∗)′ ⊂ (τ − 1, ∗) are the nodes

in (τ − 1, ∗) that are mapped to (0, 0). Assign the images of the nodes in (τ − 1, ∗) \ (τ − 1, ∗)′ to

(0, ∗)\{(0, 0)}, for which there are (n−1)n−1−kτ−1 choices. So, for a fixed kτ−1 to assign the image

of nodes in (τ − 1, ∗), there are (
n− 1

kτ−1

)
(n− 1)n−1−kτ−1

choices.

Second, we need to assign the image of the nodes in (τ − 2, ∗) to (τ − 1, ∗). Choose a kτ−2 ∈

{0, . . . , n − 1}, pick kτ−2 nodes in (τ − 2, ∗) \ (τ − 2, 0), and form kτ−2 arcs from those nodes to

the nodes in (τ − 1, 0)′. There are

(
n− 1

kτ−2

)
choices to choose those nodes for a fixed kτ−2 and

(kτ−1 + 1)kτ−2 choices to assign the images. Denote this subset of (τ − 2, ∗) together with (τ − 2, 0)
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as (τ−2, ∗)′. Now, the images of the nodes in (τ−2, ∗)\(τ−2, ∗)′ should be in (τ−1, ∗)\(τ−1, ∗)′,

for which there are (n − 1 − kτ−1)n−1−kτ−2 choices. Hence, for fixed kτ−1 and kτ−2, to assign the

image of the nodes in (τ − 2, ∗) to (τ − 1, ∗), there are(
n− 1

kτ−2

)
(kτ−1 + 1)kτ−2(n− 1− kτ−1)n−1−kτ−2

choices.

Repeat the above steps for (τ − 3, ∗), . . . , (1, ∗). To complete the construction, we assign

the images of the nodes in (0, ∗) \ {(0, 0)}. We choose a t ∈ {0, . . . , n − 2}, and add t arcs from

(0, ∗) \ {(0, 0)} to (1, ∗) \ (1, ∗)′ consecutively as specified below, making sure to avoid creating a

cycle that does not include (0, 0).

In the evolving digraph, a component is a weakly connected component, obtained by ignoring

the orientation of edges. First note that there are n components in the current digraph; more

precisely, each node of (0, ∗) belongs to a different component (possibly consisting of a single node).

To select the first arc, pick a b ∈ (1, ∗)\ (1, ∗)′ (n−1−k1 choices). There is one component that

contains (0, 0) and one other component containing b. As a result, there are n− 2 components and

among each of them, there is a node in (0, ∗) \ {(0, 0)} with zero out-degree. Among these n − 2

nodes, we select one and connect it to b. Therefore, there are (n − 2)(n − 1 − k1) choices for the

first arc. The addition of this arc decreases the number of components by one.

To assign the second arc, again pick a b ∈ (1, ∗) \ (1, ∗)′ (again n− 1− k1 choices). Now there

are exactly n− 3 components, among which there is a node in (0, ∗) \ {(0, 0)} with zero out-degree.

We again select one and connect it with this b, leading to (n− 3)(n− 1− k1) choices.

In subsequent steps, we add an arc from a to b, where b ∈ (1, ∗) \ (1, ∗)′ is arbitrary, while

a ∈ (0, ∗) \ {(0, 0)} is a unique node with zero out-degree in any component not containing b in the

graph already constructed. The algorithm guarantees that the number of components decreases by

one after each arc is added, i.e., that a cycle not including (0, 0) is never created.

In the above steps we add t arcs, with the number of choices, in order: (n− 2)(n− 1− k1), (n−

3)(n − 1 − k1) . . . , (n − t − 1)(n − 1 − k1). As any order in which they are assigned produces the
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same digraph, there are

(n− 2)(n− 1− k1)(n− 3)(n− 1− k1) · · · (n− t− 1)(n− 1− k1)

t!
=

(
n− 2

t

)
(n− 1− k1)t

choices. Finally, we assign the remaining n− 1− t arcs to (1, ∗)′, for which we have (k1 + 1)n−1−t

choices. Hence, for a fixed k1, to assign the arcs originating from (0, ∗) \ {(0, 0)}, there are

n−2∑
t=0

(
n− 2

t

)
(n− 1− k1)t(k1 + 1)n−1−t = (k1 + 1)nn−2

choices, in total. Lastly, we use Lemma 5.2.3 to get

#D(A,B) =
n−1∑

kτ−1=0

(
n− 1

kτ−1

)
(n− 1)n−1−kτ−1

·

 n−1∑
kτ−2=0

Akτ−2,kτ−1 · · ·

 n−1∑
k2=0

Ak2,k3

 n−1∑
k1=0

Ak1,k2(k1 + 1)nn−2

 · · ·


= n(τ−1)(n−2)
n−1∑

kτ−1=0

(
n− 1

kτ−1

)
(n− 1)n−1−kτ−1 [Pτ−1 + kτ−1(n− 1)τ−2]

= n(τ−1)(n−2)
[
nn−1Pτ−1 + (n− 1)τ−1nn−2

]
= nτ(n−2)Pτ ,

as claimed. �

Now, proof of Theorem 5.2.1 is straightforward.

Proof of Theorem 5.2.1. It is clear that the number of LAD Gτ,n(f,A) is nτn. Then, by

Lemma 5.2.4,

P(A⇒ B) = P(Gτ,n(f,A) ∈ D(A,B)) =
nτ(n−2)[nτ − (n− 1)τ ]

nτn
=
nτ − (n− 1)τ

nτ
· 1

nτ
,

as claimed. �

By Theorem 5.2.1, assuming that A is simple and B is any label of the same length τ , we have

P(A⇒ B
∣∣ A→ B) =

nτ − (n− 1)τ

nτ
=
τ

n
+ o

(
1

n

)
.
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The case when A is not simple is much harder, since the parts of Gτ,n(f,A) are no longer

independent from each other for a random rule f . While it is possible to obtain the deciding

probability for a specific label using a similar method as in Theorem 5.2.1, it is hard to find a

general formula or even to prove this probability is always O(1/n). We are, however, able to obtain

the following weaker result.

Theorem 5.2.2. Let A = a0 . . . aτ−1 and B = b0 . . . bτ−1 be two fixed labels (not necessarily

simple) with length τ . Then

P
(
Gτ,n(f,A) ∈ D(A,B)

∣∣ Gτ,n(f,A) ∈ E(A,B)
)

= o(1).

Equivalently, we have

P
(
A⇒ B

∣∣ A→ B
)

= o(1).

Proof. Again, we assume that B = 0 . . . 0. We remark that, unlike Theorem 5.2.1, label B

here does affect the deciding probability. However, the case of general B does not significantly alter

the proof but it makes it transparent, so we choose this B for readability.

Let a′0, . . . , a
′
`−1 be the different states in A and mi be the repetition numbers of ai’s, for

i = 0, . . . , `− 1. Clearly,

`−1∑
i=0

mi = τ . Let ζ be the cycle (0, 0)→ (1, 0)→ · · · → (τ − 1, 0)→ (0, 0).

It suffices to show that

P(there are no other cycles in Gτ,n(f,A)
∣∣ ζ ∈ Gτ,n(f,A)) = o(1).

To accommodate the conditional probability, our probability space will be a uniform choice of a

digraph from E(A,B) for the remainder of the proof.

Fix an integer K ≥ 1. Call a cycle ζ ′ = (0, j0)→ (1, j1)→ · · · → (0, j0) simple with respect

to ζ if:

(1) ζ ′ contains no parallel arcs, i.e., if (i, j) and (i′, j) are nodes in ζ ′, then ai 6= ai′ ; and

(2) if (i, j) is on ζ and (i′, j′) on ζ ′, then (ai′ , bj′) 6= (ai, bj).

Let Yk be the random number of simple cycles with respect to ζ with length exactly τk and

ZK =

K∑
k=1

Yk be the random variable that counts the number of such cycles with length less than
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or equal to τK. We will show that, for any K, lim
n→∞

P(ZK ≥ 1) = 1− exp

(
−

K∑
k=1

1/k

)
, converging

to 1 as K →∞. As a consequence, the LAD has another simple cycle asymptotically almost surely

(in n), and this will conclude the proof.

We first compute the expectation of Yk:

EYk =
(n− 1)m1k · · · (n− 1)m`k

k
· 1

nτk
→ 1

k
, as n→∞.

Here and in the sequel, we use the falling factorial notation (x)n = x(x−1) · · · (x−n+1). The first

factor counts the number of simple cycles with respect to ζ and the second factor is the probability

that a fixed simple cycle with length τk is formed.

Now, let λK = EZK =

K∑
k=1

EYk. We use the notation Γk to denote the set of all possible simple

cycles with length τk and define Γ =
⋃

1≤k≤K
Γk as set of such cycles with length less than or equal

to τK. The set Γi consists of cycles in Γ that has at least one node in common with the cycle i.

The random variable Ii is the indicator that the cycle i ∈ Γ is formed and pi = EIi.

We use Lemma 2.1.3 to find an upper bound for dTV(ZK ,Poisson(λK)). For the first term∑
i∈Γ

p2
i , we have

∑
i∈Γ

p2
i =

K∑
k=1

(n− 1)m1k · · · (n− 1)m`k
k

1

n2τk
= O

(
1

nτ

)
.

To obtain an upper bound for
∑
i∈Γ

∑
j∈Γi

pipj , we note that if i is the index of a simple cycle of length

τr, then we may count the number of length-τk simple cycles that have no common vertex with

the cycle i, that is

#
(

Γk \ Γi

)
=

(n− 1− r)m1k · · · (n− 1− r)m`k
k

.

It immediately follows that,

#
(

Γk ∩ Γi

)
=

(n− 1)m1k · · · (n− 1)m`k − (n− 1− r)m1k · · · (n− 1− r)m`k
k

= O
(
nτk−1

)
,
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as the highest powers of n in the numerator cancel. Hence, for a fixed r and k, we have

∑
i∈Γr

∑
k∈Γi∩Γk

pipj

=
(n− 1)m1r · · · (n− 1)m`r

r
·#
(

Γk ∩ Γi

)
· 1

nτr
· 1

nτk

= O
(

1

n

)
.

Therefore, the total sum ∑
i∈Γ

∑
j∈Γi

pipj = O
(
K2

n

)
.

For the last term in the upper bound in Lemma 2.1.3, we observe that EIiIj = 0 if two cycles have

shared vertices.

Now, by Lemma 2.1.3,

P (ZK = 0) ≤ e−λK +O
(
K2

n

)
≤ 1

K + 1
+O

(
K2

n

)
.

Sending n→∞ and noting that K is arbitrary conclude the proof. �

5.3. Proof of Theorem 1.3.6

Let T be a tile with τ rows and σ columns. Define the rank of T to be the largest x such that

there exist x columns of T with distinct xτ states. We denote the rank of a tile as rank(T ). For

example, the tiles

T1 =
0 1 2 3

2 3 0 1
, T2 =

0 1 2 1

2 1 0 1
.

have rank(T1) = 2 and rank(T2) = 1.

As in [GL19c], we denote by R(`)
τ,σ,n as the set of tile of WRPS that has lag `. Thus the set of

simple WRPS is R(0)
τ,σ,n. We also use the notation R(0,y)

τ,σ,n ⊂ R(0)
τ,σ,n to denote the set of WRPS whose

tile is simple and has rank y. We use Tτ,σ,n to denote the set of all PS tiles; to be more precise, this

is the set of all τ × σ arrays T with state space Zn that satisfy properties 1 and 2 in Lemma 2.1.1,

so that there exists a CA rule with a PS given by T . We also use T (0)
τ,σ,n and T (0,y)

τ,σ,n to denote the

tiles in Tτ,σ,n that are simple, and that are simple with rank y, respectively.
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Our first step is to study the probability that R(0,x)
τ,σ,n is not empty, where x = σ/ gcd(τ, σ).

Before we advance, we state two lemmas on simple tiles.

Lemma 5.3.1. Let T be a simple tile. Then

(1) rank(T ) ≥ σ/ gcd(σ, τ);

(2) rank(T ) = y if and only if s(T ) = τy. In particular, rank(T ) = σ/ gcd(σ, τ) if and only if

s(T ) = τσ/ gcd(σ, τ) = lcm(σ, τ).

Proof. By Lemma 2.2.1, the states on each column of T are distinct and two columns either

share no common states or are circular shifts of each other. As a result, rank(T ) ≥ s(T )/τ .

Together with Lemma 2.2.3, this proves (1) and implication (=⇒) of (2). The reverse implication

in (2) follows from s(T ) ≥ τ · rank(T ). �

In the sequel, we write d = gcd(τ, σ), k = lcm(σ, τ). By Lemma 5.3.1, k is the number of

distinct states in a simple tile with rank x = σ/d. As before, ϕ is the Euler totient function. We

index the tiles in T (0,x)
τ,σ,n in an arbitrary way. Let

Tm =
{

(Ti, Tj) ⊂ T (0,x)
τ,σ,n × T (0,x)

τ,σ,n : i < j and Ti, Tj have m states in common
}
.

The following lemma gives the cardinality of these sets.

Lemma 5.3.2. The following enumeration results hold:

(1) the set T (0,x)
τ,σ,n has cardinality ϕ(d)

(
n

k

)
(k − 1)!;

(2) if m < k, the set Tm has cardinality

1

2
ϕ(d)

(
n

k

)
(k − 1)!ϕ(d)

(
k

m

)(
n− k
k −m

)
(k − 1)! = O

(
n2k−m

)
;

(3) if m = k, the set Tm has cardinality

1

2
ϕ(d)

(
n

k

)
(k − 1)! (ϕ(d)(k − 1)!− 1) = O

(
nk
)
.

Proof. Part (1) follows directly from Lemma 2.2.4. Then, part (2) follows from (1). Part (3)

also follows from (1), after we note that once we select Ti, we have all k colors fixed and we are not

allowed to select Tj equal to Ti. �
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We will also need the following consequence of Theorem 5.2.1.

Lemma 5.3.3. Let T be a simple tile and rank(T ) = y. Let A0, . . . , Aσ−1 be the labels in T .

Then we have

P
(
Ai ⇒ Ai+1, for i = 0, . . . , σ − 1

∣∣ Ai → Ai+1, for i = 0, . . . , σ − 1
)

=

(
τ

n
+ o

(
1

n

))y
.

Proof. Assume that the y columns with yτ states have indices in I ⊂ {0, . . . , σ − 1} and let

those columns have labels Ai, i ∈ I. As Ai’s do not share any states, the events {Ai → Ai+1}, i ∈ I

are independent, and so are {Ai ⇒ Ai+1}, i ∈ I. We use Lemma 2.2.1 and Theorem 5.2.1 to get

P
(
Ai ⇒ Ai+1, for i = 0, . . . , σ − 1

∣∣ Ai → Ai+1, for i = 0, . . . , σ − 1
)

=
P (Ai ⇒ Ai+1, for i ∈ I)

P (Ai → Ai+1, for i ∈ I)

=

∏
i∈I P (Ai ⇒ Ai+1)∏
i∈I P (Ai → Ai+1)

=

(
nτ − (n− 1)τ

nτ
· 1

nτ

)y/(
1

nτ

)y
=

(
τ

n
+ o

(
1

n

))y
,

as desired. �

Theorem 1.3.6 will now be established through next three propositions, the first one of which

deals with existence of WRPS with zero lag and minimal rank x = σ/d.

Proposition 5.3.1. We have

P
(
R(0,x)
τ,σ,n 6= ∅

)
=
c(τ, σ)

nx
+ o

(
1

nx

)
,

for some constant c(τ, σ).

Proof. We first find an upper bound by Markov inequality.

By Lemma 5.3.2, we have that #T (0,x)
τ,σ,n = ϕ(d)

(
n

k

)
(k−1)!. The probability that a tile in T (0,x)

τ,σ,n

forms a PS is 1/nk and the probability that the desired decidability, thus weak robustness, holds
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is (τ/n+ o(1/n))x by Lemma 5.3.3. As a result, we have

E
(

#R(0,x)
τ,σ,n

)
= ϕ(d)

(
n

k

)
(k − 1)!

1

nk

(
τ

n
+ o

(
1

n

))x
=
c(τ, σ)

nx
+ o

(
1

nx

)
,

as an upper bound.

To find an asymptotically matching lower bound, we use the Bonferroni’s inequality

P

(⋃
i

Ai

)
≥
∑
i

P(Ai)−
∑
i<j

P (Ai ∩Aj) .

Here, Ai is the event that Ti ∈ T (0,x)
τ,σ,n is formed as a simple WRPS, for i = 1, . . . , ϕ(d)

(
n

k

)
(k− 1)!.

Clearly,
∑
i

P(Ai) = E
(

#R(0,x)
τ,σ,n

)
. Then it suffices to show that

∑
i<j

P(Ai ∩Aj) = o (1/nx).

For a pair of tiles (Ti, Tj) ∈ Tm, there are 2k−m different colors in Ti∪Tj . By Lemma 2.2.5, there

is at least one additional restriction on the number of maps. Using this lemma, the enumeration

result Lemma 5.3.2, and Lemma 5.3.3, we have

∑
i<j

P(Ai ∩Aj) =
k∑

m=0

∑
i<j

P (Ai ∩Aj ∩ {(Ti, Tj) ∈ Tm})

=
k∑

m=0

O
(
n2k−m

) 1

n2k−m+1

(
τ

n
+ o

(
1

n

))x
= O

(
1

nx+1

)
.

�

Next, we consider all simple tiles and show that among simple tiles, the WRPS with rank x

provide the dominant probability.

Proposition 5.3.2. We have

P
(
R(0)
τ,σ,n 6= ∅

)
=
c(τ, σ)

nx
+ o

(
1

nx

)
,

for the same constant c(τ, σ) as in Proposition 5.3.1.
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Proof. First, we note the following bounds for P(R(0)
τ,σ,n 6= ∅),

P
(
R(0,x)
τ,σ 6= ∅

)
≤ P

(
R(0)
τ,σ,n 6= ∅

)
≤ P

(
R(0,x)
τ,σ,n 6= ∅

)
+
∑
y

P
(
R(0,y)
τ,σ,n 6= ∅

)
,

where the last sum is over y = σ/d′ for d′ | gcd(τ, σ) and d < gcd(τ, σ). As x < y, we have from

Lemmas 5.3.1–5.3.3,

P
(
R(0,y)
τ,σ,n 6= ∅

)
≤ E

(
#R(0,y)

τ,σ,n

)
= ϕ(dy)

(
n

ky

)
(ky − 1)!

1

nky

(
τ

n
+ o

(
1

n

))y
= o

(
1

nx

)
,

where, ky = τy is the number of states in a tile in R(0,y)
τ,σ,n and dy = σ/y. The conclusion now follows

from Proposition 5.3.1. �

Lemma 5.3.4. If ` > 0, then

P
(
R(`)
τ,σ,n 6= ∅

)
= o

(
1

n

)
.

Proof. For a fixed `, let gτ,σ(s) count the number of tiles with periods τ and σ, and s different

fixed states. By Theorem 5.2.2,

P
(
R(`)
τ,σ,n 6= ∅

)
≤ E

(
#R(`)

τ,σ,n

)
=

τσ∑
s=1

(
n

s

)
gτ,σ,`(s)

1

ns+`
· o(1)

= o

(
1

n`

)
= o

(
1

n

)
.

�

Next, we extend Proposition 5.3.2 to cover non-simple tiles. It is here that we impose the

condition that σ | τ .

Proposition 5.3.3. If σ | τ , then

P (Rτ,σ,n 6= ∅) =
c(τ, σ)

n
+ o

(
1

n

)
.
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Proof. First, note that σ | τ implies that x = σ/ gcd(τ, σ) = 1 and as a result of Proposi-

tion 5.3.2, we have

P
(
R(0)
τ,σ,n 6= ∅

)
=
c(τ, σ)

n
+ o

(
1

n

)
.

The desired result now follows from the bounds

P
(
R(0)
τ,σ,n 6= ∅

)
≤ P (Rτ,σ,n 6= ∅) ≤

τσ∑
`=0

P
(
R(`)
τ,σ,n 6= ∅

)
and Lemma 5.3.4. �

Proof of Theorem 1.3.6. If σ - τ , then x = σ/ gcd(τ, σ) > 1, and by Proposition 5.3.2 and

Lemma 5.3.4,

P (Rτ,σ,n 6= ∅) ≤ P
(
R(0)
τ,σ,n 6= ∅

)
+

τσ∑
`=1

P
(
R(`)
τ,σ,n 6= ∅

)
=
c(τ, σ)

nx
+ o

(
1

n

)
= o

(
1

n

)
.

These bounds, together with Proposition 5.3.3, now give the desired result:

c(T ,Σ)

n
+ o

(
1

n

)
=
∑
σ|τ

P(Rτ,σ,n 6= ∅)

≤ P(RT ,Σ,n 6= ∅)

≤
∑
σ|τ

P(Rτ,σ,n 6= ∅) +
∑
σ-τ

P(Rτ,σ,n 6= ∅) ≤
c(T ,Σ)

n
+ o

(
1

n

)
.

�

5.4. Discussion

In this chapter, inspired by [GG12], we prove that the probability that a randomly chosen

CA has a weakly robust periodic solution with periods in the finite set T × Σ is asymptotically

c(T ,Σ)/n, provided that T ×Σ contains a pair (τ, σ) with σ | τ . A natural first question is whether

the divisibility condition may be removed.
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Question 5.4.1. Let Rτ,σ,n be the set of WRPS with periods τ and σ from a random rule f .

Do we have

P(Rτ,σ,n 6= ∅) =
c(τ, σ)

nx
+ o

(
1

nx

)
,

where x = σ/ gcd(τ, σ)?

A possible strategy to answer Question 5.4.1 affirmatively is through proving the following

two conjectures, the first of which provides a lower bound of the rank of a tile. Recall that

x = σ/ gcd(τ, σ).

Conjecture 5.4.1. Let T be a tile of period τ and σ and ` = p(T ) − s(T ), then rank(T ) ≥

σ/ gcd(τ, σ)− `.

We recall that a tile of a WRPS satsifies the properties stated in Lemmas 2.1.1 and 5.1.1.

The next conjecture presents an asymptotic property similar to the one in Theorem 5.2.2. In its

formulation, we assume validity of Conjecture 5.4.1: for a tile T of a WRPS, we let I = I(T ) ⊂

{0, . . . , σ− 1} be the index set with #I = x− `, such that the labels indexed by I are the leftmost

x− ` labels without a repeated state.

We recall that a tile of a WRPS satisfies the properties stated in Lemmas 2.1.1 and 5.1.1.

The next conjecture presents an asymptotic property similar to the one in Theorem 5.2.2. In its

formulation, we assume validity of Conjecture 5.4.1: for a tile T of a WRPS, we let I = I(T ) ⊂

{0, . . . , σ− 1} be the index set with #I = x− `, such that the labels indexed by I are the leftmost

x− ` labels without a repeated state.

Conjecture 5.4.2. Assume that T is a tile of a WRPS. Then there exists a label Aj with index

j /∈ I so that

P
(
Aj ⇒ Aj+1

∣∣ {Ai ⇒ Ai+1 for all i ∈ I}
)

= o(1).

If there exists a label j that does not share any state with Ai, for any i ∈ I, the conjecture can

be proved in the same way as Theorem 5.2.2. To see how Question 5.4.1 is settled in the case that

both of the conjectures are satisfied, use again the bounds

P
(
R(0)
τ,σ,n 6= ∅

)
≤ P (Rτ,σ,n 6= ∅) ≤ P

(
R(0)
τ,σ,n 6= ∅

)
+
∑
`

E
(

#R(`)
τ,σ,n

)
,
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and then, with gτ,σ(s) as in the proof of Lemma 5.3.4, and using Lemma 5.3.3,

E
(

#R(`)
τ,σ,n

)
=

τσ∑
s=1

(
n

s

)
gτ,σ(s)

1

nm
· O
(

1

nx−`

)
· o(1) = o

(
1

nx

)
.

To provide some modest evidence for the validity of Conjecture 5.4.1, we prove that it holds

when σ = 2 or τ = 2. Conjecture 5.4.2 remains open even in these cases. We begin by the following

lemma.

Lemma 5.4.1. Let T be a tile of a WRPS with σ = 2 and odd τ . Fix an arbitrary row as the

0th row. Let Mt = {maps up to t th row}, St = {states up to t th row} and `t = #Mt −#St, for

t = 0, 1, . . . , τ − 1. Assume the (t+ 1)th row of the tile is ab. Then:

(1) if a ∈ St and b ∈ St, `t+1 − `t = 2;

(2) if exactly one of a and b is in St, then `t+1 − `t = 1; and

(3) if a /∈ St and b /∈ St, `t+1 − `t = 0.

Proof. Write `t+1− `t = (#Mt+1−#Mt)− (#St+1−#St). Observe that a 6= b, as otherwise

the spatial period of the tile is reducible. In addition, (a, b) /∈ Mt, as otherwise T is temporally

reducible, and (b, a) /∈ Mt, as otherwise τ is even. Hence, #Mt+1 −#Mt = 2, which implies the

claim. �

Proof of Conjecture 5.4.1 when σ = 2. If τ is even, we need to show that rank(T ) ≥ 1−`.

This is trivial if ` ≥ 1, and follows from Lemma 2.2.1 when ` = 0.

If τ is odd, we must show that rank(T ) ≥ 2 − `. We may assume ` = 1 as otherwise this

is immediate (as above). Then there exists exactly one t ∈ {0, . . . , τ − 1} at which Case 2 of

Lemma 5.4.1 happens, and otherwise Case 3 happens. If a ∈ St, then column with b has no

repeated state, and vice versa. �

Proof of Conjecture 5.4.1 when τ = 2. We will prove this for any tile that satisfies the

properties stated in Lemmas 2.1.1 and 5.1.1. We assume that no two different labels of T are

rotations of each other; otherwise the argument is similar.

We use induction on the lag. If `(T ) = 0, T is simple and Lemma 2.2.1 applies. Suppose now

the statement is true for any tile T with `(T ) = ` ≥ 0. Now, consider a tile T with `(T ) = ` + 1.
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As `(T ) ≥ 1, there is at least one repeated state, say a. Consider two appearance of a and its

neighbors:

bac and b′ac′.

As τ = 2 and T has no rotated columns, b 6= b′ and c 6= c′. Now replace the a in bac by an

arbitrary state not represented in T , say z, and denote the new tile by T ′. Note that T ′ also

satisfies the properties in Lemmas 2.1.1 and 2.2.1. Moreover, p(T ′) = p(T ) and s(T ′) = s(T ) + 1

imply that `(T ′) = `. By inductive hypothesis, rank(T ′) ≥ σ/ gcd(σ, τ)− `. Among rank(T ′) labels

of T ′ without a repeated state, at most one has the state z. Excluding this label, if necessary, we

conclude that rank(T ) ≥ σ/ gcd(σ, τ)− (`+ 1). �

Besides the above two special cases, we are also able to prove Conjecture 5.4.1 for a special

class of tiles, which may give a hint about the general case. Within T , fix an arbitrary row as the

0th row and find the smallest τ̃ such that rowτ̃ is a cyclic permutation of row0. It is likely that

such τ̃ does not exist, in which case define τ̃ = τ . We call T semi-simple if p(T ) = τ̃σ; i.e., within

the first τ̃ rows in T , there are no repeated states. We omit the proof of our last lemma, as it is

very similar to the argument above.

Lemma 5.4.2. A semi-simple tile T has rank at least σ/ gcd(τ, σ)− `.
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CHAPTER 6

Robust Periodic Solutions

In this chapter, we continue the study of RPS from the pioneering paper [GG12]. We first

present a natural extension of the R-algorithm. We will also give a proof to the property of bounded

growth restated as follows.

Theorem (1.3.7 restated). The probability that an n-state edge rule with f(0, 0) = 0 has growth

velocity 1 is 1− 1/n.

Again, r is assumed to be 2 in this chapter.

6.1. Algorithms for Finding RPS

In this section, we investigate the algorithm for finding RPS of a given temporal period. The

fundamental principle of finding RPS is the idea of R-algorithm proposed in [GG12]. To be specific,

we take advantage of the label digraph that is the analogy of label tree in [GG12] in the multi-state

situation. We find cycles in a label digraph to locate PS, while finding deciding cycles defined in

Chapter 5 to search for WRPS. Connecting a cycle with a deciding cycle finds an RPS. We state

two different algorithms based on this shared principle.

First, we propose an algorithm for finding RPS from a single label digraph. Next we propose

the algorithm that finds RPS starting from a fixed background and a given temporal period τh

of the handle. The latter is the direct analogy of the R-algorithm in [GG12]. Throughout this

chapter, we use Dτ,f to denote the label digraph of rule f with temporal period τ . We use C

(respectively Cd) to represent a cycle (respectively deciding cycle) in Dτ,f .

6.1.1. Algorithm 1. The most straightforward algorithm for finding RPS is simply a combi-

nation of Algorithm 2.1.2 and Algorithm 5.1.1 from a single label digraph Dτ,f . An RPS is obtained

once a directed path is found from a cycle to a deciding cycle in Dτ,f . We present the pseudo-code

in the following algorithm.
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Algorithm 6.1.1.

input : τ, f

Generate Dτ,f

for cycles C in Dτ,f do

for deciding cycles Cd in Dτ,f do

if there is a path H : v 7→ · · · 7→ u such that v ∈ C and u ∈ Cd then

print C,H and Cd

end

end

end

In the above algorithm, the printed C, H and Cd play the role of the background PS, the

handle and the RPS, respectively. We remark here that we do not assume H to be minimal. That

is, either the background or the RPS may consist part of the handle.

We present an example to illustrate Algorithm 6.1.1. Fix τ = 3 and a 3-state rule f , 220001011.

The partial digraph Dτ,f that contains the cycles of interests is depicted as following in Figure 6.1.

There is a non-deciding cycle (the outer larger triangle) and a deciding cycle (the inner smaller

triangle), which are connected by the label 001 or its rotations. The non-deciding cycle, label

001 and the deciding cycle in the graph serve as the background PS, the handle and the RPS,

respectively. Piece of the RPS (011)∞, together with its background (102)∞ and handle 0, is

presented in Figure 6.2.
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Figure 6.1. Part of the label digraph of 3-state rule 220001011 with temporal
period τ = 3. Arrows represent the arcs of usual right-extension relation between
labels and double-arrows are used to denote deciding arcs.

6.1.2. Algorithm 2. The following algorithm is the direct analogy of the R-algorithm pro-

posed in [GG12]. To generalize, we start with an arbitrary PS of a rule. We characterize this PS

ξ
(0)
t by its tile T = [T0, T1, . . . , Tσ0−1]τ0×σ0 and also input a τh such that τ0 | τh. In this algorithm,

we find all RPS of a given rule f with respect to ξ
(0)
t such that the handle has temporal period τh.

In this algorithm, we use the notation DFS(Dτ,f , A, [C0, . . . , Cm−1]) to represent a black-box

function that takes a label digraph, a label and a sequence of (deciding) cycles as the inputs.

Starting with the label A, the function initiates a depth first search to find paths leading to deciding

cycles in the input sequence.

100



Figure 6.2. A piece of the RPS, together with its background and handle, of the
3-state rule 220001011. This RPS (011)∞, as well as its background (102)∞ and
handle 0, is located by Algorithm 6.1.1 and the above label digraph Figure 6.1.

We remark here that the two algorithms stated here both depend on the label digraph with a

fixed τ of a CA rule f . While the Algorithm 6.1.1 finds the RPS, backgrounds and handles together,

in the following Algorithm 6.1.2, we fix a background first and find RPS as well as handles that

are with respect to the background.

Algorithm 6.1.2.

input : f , T , τh

Generate Dτh,f

Find deciding cycles C
(0)
d , . . . , C

(m−1)
d in Dτh,f

return : DFS(Dτh,f , T0, [C
(0)
d , . . . , C

(m−1)
d ])

An example is also given as an application of Algorithm 6.1.2. We present the RPS along with

its background and handle of the 3-state rule 002121011. The background has temporal period 2

and we input τh = 4. The RPS found here has τ = 4, while the minimal temporal period of the

label of the handle 1010 is 2. We display piece of the global evolution to illustrate the expansion of

the RPS (21001112)∞, together with its background (20)∞ and handle 0, while label digraph that

generate this picture is not shown due to space limitation. The following proposition is evident.

101



Figure 6.3. A piece of the RPS (21001112)∞, together with its background (20)∞

and handle 0, of the 3-state rule 002121011. This RPS, as well as its background
and handle, is found by Algorithm 6.1.2. The label digraph of this rule is omitted
here.

Proposition 6.1.1. Let T be the tile of a PS of rule f of temporal period τ0. Let τh be a multiple

of τ0. All possible RPS of temporal period τ , such that τ | τh, with respect to T are obtained by

Algorithm 6.1.2.

6.2. Proof of Theorem 1.3.7

In [GG12], among all of the 64 one-sided 3-neighbor binary edge CA, 21 are proved to have

bounded growth. In our system, we can show that the bounded growth property is rare, in the

sense that with high probability, a rule has growth velocity 1.

Proof of Theorem 1.3.7. Fix an n and let g : Zn → Zn be defined as g(a) = b if f(a, 0) = b.

It is clear there are nn−1 such functions if we note that g(0) ≡ 0.

Also note that a rule has growth velocity < 1 if and only if

(6.1) for any a ∈ Zn, gk(a) = 0 for some k > 0,

where the k here may depend on a. Note that there is a 1-1 correspondence between g’s satisfy-

ing (6.1) and labeled trees with vertices Zn. For example, the following labeled tree corresponds

to g such that g(1) = 0, g(2) = 1, g(3) = 0, g(4) = 3 and g(5) = 1. There are nn−2 such trees by

Cayley’s formula and thus the result follows.

�
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1
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Figure 6.4. The labeled tree corresponding to g(1) = 0, g(2) = 1, g(3) = 0, g(4) =
3 and g(5) = 1.

We also remark here that we may generalize the definition of growth velocity from the point of

view of robustness of an arbitrary PS.

Let f be a CA rule and ξ0 be a PS configuration under f . Also choose any initial configuration

η0 such that there is a y ∈ Z and that η0(x) = ξ0(x) for all x > y. We call such initial configuration

η0(x) right proper for ξ0. Run f starting from ξ0 and η0 to obtain ξt and ηt, respectively. Let

set (η0) = inf{y : ηt(x) = ξt(x), for all x > y}

be the rightmost site that ηt does not agree with ξt at time t. Then the erosion velocity in the

initial environment η0 is

ve(η0) = lim sup
t→∞

set
t
,

and the erosion velocity of the PS ξt is

ve = sup{ve(η0) : η0 is right proper for ξ0}.

Clearly, for CA rules f that satisfy f(0, 0) = 0, the constant configuration ξt = . . . 000 . . . is a

PS of temporal and spatial period 1. As a result, the growth velocity of such a rule defined in the

above context can be naturally regarded as the erosion velocity of this constant configuration ξt.

Furthermore, recall the expansion velocity defined in Chapter 1, whose positivity characterizes

the weak robustness. Then the erosion velocity of a PS and its expansion velocity have a dual

relationship that we now discuss.
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Let the mirror of f be the CA rule, denoted by fm, such that fm has the same neighborhood

[−1, 0], state space Zn and fm(a, b) = c if f(b, a) = c, for all a, b ∈ Zn. Let the reflection of a

spatial configuration of ξt, denoted by ξrt , be the function ξt : Z → Zn such that ξrt (x) = ξt(−x).

We then have the following relation between erosion velocity and expansion velocity.

Proposition 6.2.1. Let ξt be a PS of a CA rule f and v be the expansion velocity of ξt under

f . Let ve be the erosion velocity of ξrt under the mirror rule fm. Then we have v + ve = 1.

Proof. We observe that if ξt(x) updates to ξt+1(x) under f , then, under fm, ξrt (x) updates to

(ξrt+1)(x− 1), i.e., the right shift of the reflection of ξt+1.

Now, let η0 be any initial configuration that is proper for ξt. Then ηr0 is right proper for ξrt .

Update ξ0 and η0 to obtain ξt and ηt. Also, run fm from ξr0 and ηr0 to obtain ξ′t and η′t, respectively.

Let st(η0) = sup{y : ηt(x) = ξt(x), for all x < y} and set (η
r
0) = inf{y : η′t(x) = ξ′t(x), for all x > y}.

From the above observation, we have set (η
r
0) = −st(η0) + t.

As a result, v(η0) = lim inft→∞ st(η0)/t and ve(ηr0) = lim supt→∞ s
e
t (η

r
0)/t satisfy v(η0) +

ve(ηr0) = 1. The desired identity follows from the definition of expansion and erosion velocity

of a PS. �

6.3. Discussion

In [GG12], the authors investigate the existence of RPS with respect to the 0 PS, among all

64 3-neighbor binary edge rules. By analogy to both [GG12] and Chapter 5, we may also study

the probability that a random n-state rule has an RPS with constant 0 as the background PS. Let

Ωedge
n be the space of n-state edge rules and RT ,Σ,n(f, T ) be the RPS of rule f with respect to the

PS characterized by tile T . Then we may ask the following natural question.

Question 6.3.1. Let T ×Σ ⊂ N×N. What is the behavior of P (RT ,Σ,n(f, 0) 6= ∅), as n→∞,

where f is a random edge rule selected from Ωedge
n ?

While a general answer is not presented for an arbitrary T × Σ, we are able to give a short

illustration of the asymptotic behavior of P (R1,N,n(f, 0) 6= ∅) as follows.

Proposition 6.3.1. It holds that P (R1,N,n(f, 0) 6= ∅) = 1/n+ o(1/n), as n→∞.
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Proof. Let f ∈ Ωedge
n and D1,f be the label digraph of f with temporal period 1. For any

label a ∈ Zn, we have that 0→ a under rule f . As a result, any deciding cycle formed in D1,f give

rise to an RPS with respect to the 0 PS with empty handle.

We may gently modify the proof of Theorem 5.2.1 to show that in the shrunk probability space,

it also holds that P(a ⇒ b) = 1/n2, for any label a ∈ Zn \ {0} and b ∈ Zn. That is, in D1,f , a

deciding arc is formed from any non-zero state to the other with probability 1/n2. It thus suffices

to compute the probability that this digraph has a deciding cycle under this setting.

To this end, we again apply the Chein-Stein method for Poisson approximation. Let Yk be the

random variable of the number of k-cycles in D1,f and ZK =

K∑
k=1

Yk. It is clear that

λK = EZK =
K∑
k=1

(
n− 1

k

)
(k − 1)!

1

n2k
=

1

n
+ o

(
1

n

)
.

A routine application of Chein-Stein method as follows gives the bound of the total variation

between ZK and a Poisson random variable with mean λK . Notice that the probability that this

Poisson random variable is 0 is exp (−1/n+ o(1/n)) = 1− 1/n+ o(1/n) and this will conclude the

proof.

To be specific, let Γ be the cycles of length less than or equal to k, indexed in an arbitrary way.

Let Γk be the set of cycles with length k and Γi be the set of cycles that has at least one node in

common with the cycle i. Let Ii = 1 if the ith cycle is formed; otherwise, let Ii = 0. Also, denote

pi = EIi. First, we have that

∑
i∈Γ

p2
i =

K∑
k=1

(
n− 1

k

)
(k − 1)!

(
1

n2k

)2

=
1

n3
+ o

(
1

n3

)
.

Now, for a fixed k and `,

∑
i∈Γk

∑
j∈Γk∩Γi

pipj =

(
n− 1

k

)
(k − 1)!

[(
n− 1

`

)
(`− 1)!−

(
n− 1− k

`

)
(`− 1)!

]
1

n2k

1

n2`

=
1

nk+`+1
.
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As a result, ∑
i∈Γ

∑
j∈Γi

pipj = O
(
K2

n3

)
.

It is also clear that EIjIi = 0, if the ith cycle and the jth share nodes. As a consequence, the

desired bound follows from Lemma 2.1.3 �

We may also explore the above question under the moderately generalized definition given in

Chapter 5. Fix a matrix T with τ rows and σ columns such that T is able to serve as the tile of a

PS with temporal and spatial periods τ and σ, respectively. Let ΩT
n be the set of the n-state rules

f such that T ∈ Pτ,σ,n(f). We may raise the generalized question as follows.

Question 6.3.2. Let T be a τ × σ PS tile. What is the behavior of P (RT ,Σ,n(f, T ) 6= ∅), as

n→∞, where f is a random rule selected from ΩT
n?
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APPENDIX A

Multiplicative Group of Eisenstein Integers Modulo n

In this appendix, we determine the structure of the multiplicative group of Eisenstein integers

modulo n, that is, the group Zn[ω]× = {a + bω ∈ Zn[ω] : a2 + b2 − ab ∈ Z×n }, where ω = e2πi/3.

While our arguments are similar to those in the paper [ADJ+08] on Gaussian integers modulo n,

we are aware of no reference that directly implies Theorem A.0.1, so we provide a sketch of the

proof.

Lemma A.0.1. (1) Let p ≥ 3 be a prime number and a be an integer not divisible by p.

Then x2 = a mod p either has no solutions or exactly two solutions.

(2) Let p ≥ 5 be a prime number. The number −3 is a quadratic residue modulo p if and only

if p = 1 mod 6.

Proof. See [ADJ+08] for the proof of (1). For (2), see [LeV96], Exercise 9 on page 109. �

Lemma A.0.2. Let p be a prime.

(1) If p = 3, then Zp[ω]× ∼= Z6.

(2) If p = 1 mod 6, then Zp[ω]× ∼= Zp−1 × Zp−1.

(3) If p = 5 mod 6, then Zp[ω]× ∼= Zp2−1.

Proof. To prove (1), observe that the group Z3[ω]× is abelian, and #Z3[ω]× = 6, so Z3[ω]× ∼=

Z6.

To prove (2), first note that then the equation x2−x+1 = 0 mod p is equivalent to (2x−1)2 =

−3 mod p. By Lemma A.0.1, the equation y2 = −3 mod p, where y = 2x − 1 has two solutions

y = ±q. We next find the cardinality of Zp[ω]×. Assume that a+bω /∈ Zp[ω]×, so that a2+b2−ab = 0

mod p. If a 6= 0 mod p, then (a−1b)2 − (a−1b) = −1 mod p and so 2a−1b − 1 = ±q mod p. So,

b = 2−1a(±q+ 1). In particular, for a fixed non-zero a, there are two possible values for b such that

a+ bω /∈ Zp[ω]×, proving that #Zp[ω]× = (p− 1)2.
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As Z×p ∼= Zp−1, it suffices to show that there is an isomorphism

ψ : Zp[ω]× → Z×p × Z×p .

It is routine to check that ψ, defined by ψ(a + bω) = (a − 2−1b(q + 1), a − 2−1b(−q + 1)), is an

injective homomorphism, hence it is an isomorphism by equality of cardinalities.

To prove (3), note that Zp[ω] has p2 elements, so it suffices to show that Zp[ω] is a field,

as the multiplicative group of any field is cyclic. Assume again that a + bω /∈ Zp[ω]×, so that

a2 + b2 − ab = 0 mod p. If a 6= 0 mod p, then (a−1b)2 − (a−1b) = −1 mod p. By Lemma A.0.1,

the equation x2 − x + 1 = 0 mod p, or equivalently (2x − 1)2 = −3 mod p, has no solution, as

p = 5 mod 6. We conclude that a = 0 mod p, and similarly b = 0 mod p, so Zp[ω] is a field. �

Lemma A.0.3. For a prime p ≥ 3 and m ≥ 2,

Zpm [ω]× ∼= Zpm−1 × Zpm−1 × Zp[ω]×.

Proof. The proof is analogous to that for Theorem 7 in [ADJ+08]. �

Lemma A.0.4. For m ≥ 1, Z2m [ω]× is classified as follows: Z2[ω]× ∼= Z3, Z22 [ω]× ∼= Z3 ×Z2 ×

Z2, and, for m ≥ 3, Z2m [ω]× ∼= Z3 × Z2m−1 × Z2m−2 × Z2.

Proof. The multiplicative group Z2[ω]× is abelian with 3 elements, so Z2[ω]× ∼= Z3. Assume

that m ≥ 2. Write H = Z2m [ω]×. The elements of the group H are of the form (1 + 2k1) + 2k2ω,

2k1 + (1 + 2k2)ω and (1 + 2k1) + (1 + 2k2)ω for 0 ≤ k1, k2 ≤ 2m−1 − 1, so the number of them is

2m−12m−13 = 3× 22m−2. Furthermore (see proof of Theorem 7 in [ADJ+08]), each element in H

has order at most 3 ·2m−1, and by verifying that (1+3ω)3·2m−2 6= 1 in Z2m [ω] and (1+3ω)2m−1 6= 1

in Z2m [ω], we see that there exists an element with order exactly 3 · 2m−1. As a consequence,

H ∼= Z3 × Z2m−1 ×
r∏
j=1

Z2ej , where ej ≥ 1 and
r∑
j=1

ej = m − 1. When m = 2, the result follows

immediately, so we assume m ≥ 3 from now on.

We claim that r = 2. Since each factor, except Z3, is cyclic of order at least two, each contains

exactly one subgroup of order two. So, H has 2r+1 solutions to the equation (a+bω)2 = 1 mod 2m,
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which is equivalent to 
a2 − b2 = 1 mod 2m

2ab− b2 = 0 mod 2m
.

This system has no solution unless a is odd and b is even, so we write a = 2k1 + 1 and b = 2k2 and

obtain 
k2

1 + k1 − k2
2 = 0 mod 2m−2

(2k1 + 1− k2)k2 = 0 mod 2m−2

.

From the first equation, k2 is even, so 2k1 + 1− k2 has an inverse and then k2 = 0 mod 2m−2, so

k2 = 0 or 2m−2. Now k1(k1 + 1) = 0 mod 2m−2. If k1 is odd, then k1 + 1 = 0 mod 2m−2 implies

a = 2m−1 − 1 or a = 2m − 1; if k1 is even, then k1 = 0 mod 2m−2 implies a = 0 or a = 2m−1 + 1.

So, the original system has eight solutions, 2r+1 = 8 and r = 2.

We now have H ∼= Z3 × Z2m−1 × Z2e1 × Z2e2 , where e1 + e2 = m − 1 and e1 ≥ e2. Now, the

result follows for m = 3 and 4, so we assume m ≥ 5. Then, we claim that e2 = 1 and e1 = m− 2.

Assume, to the contrary, that e2 ≥ 2. Then each factor, except Z3, has exactly one subgroup of

order four, giving 43 = 64 elements of order at most four in the direct product. However, we will

show that H has at most 32 solutions to the equation x4 = 1, which will establish our claim and

end the proof. To this end, suppose (a+ bω)4 = 1 for some a+ bω ∈ Z2m [ω]. Then
a4 − 6a2b2 + 4ab3 = 1 mod 2m

b(4a3 − 6a2b2 + b3) = 0 mod 2m
.

This system has no solutions unless b is even and a is odd, so write a = 2k1 + 1 and b = 2k2,

0 ≤ k1, k2 ≤ 2m−1 − 1. Then the system becomes
k1(k1 + 1)(2k2

1 + 2k1 + 1)− 3(2k1 + 1)2k2
2 + 4(2k2 + 1)k2 = 0 mod 2m−3

k2

[
(2k1 + 1)3 − 6(2k1 + 1)2k2

2 + 2k3
2

]
= 0 mod 2m−3

.
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The factor in square brackets and 2k2
1 + 2k1 + 1 are odd, reducing the system to

k1(k1 + 1) = 0 mod 2m−3

k2 = 0 mod 2m−3

,

which has at most 32 solutions. �

We conclude by summarizing Lemmas A.0.2–A.0.4.

Theorem A.0.1. We have

Zp[ω]× ∼=


Z6, if p = 3

Zp−1 × Zp−1, if p = 1 mod 3

Zp2−1 if p = 2 mod 3

and

Zpm [ω]× ∼=


Zpm−1 × Zpm−2 × Z6, if p = 2 and m ≥ 2

Zpm−1 × Zpm−1 × Zp[ω]×, if p 6= 2

.
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