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Abstract

Design and Verification of Modular Components in Thermodynamic Binding

Networks

Designing engineered molecular systems typically requires specialized knowledge of the

particular substrate; however, one can also reason about such systems in a substrate-

independent fashion, by examining the underlying energetics that govern any chemical

substrate: the formation of molecular bonds and the number of complexes formed. The

thermodynamic binding networks (TBN) model was developed to study such systems,

and in particular, to determine fault-tolerance in molecular systems such as DNA strand

displacement cascades. This dissertation details an extended form of the model in which

complexes can merge together or split apart at an energetic benefit/cost. This exten-

sion allows one to also reason about reachability of configurations with respect to energy

barriers. Several theoretical constructions are presented here which demonstrate that

such energy barriers can be programmably large, implement catalytic and autocatalytic

behavior, and be part of larger, modular systems in which complex behavior can be real-

ized. Indeed, reasoning about the energy barrier between configurations in such systems

is proved here to be PSPACE-hard, even to a c-factor approximation. This dissertation

also contains details of integer and constraint programming formulations that can solve

certain questions related to a system’s energetics. Also made formal here is the con-

nection between TBNs and the well-studied combinatorial concept of Hilbert bases, and

examples are given which illustrate how one can use a Hilbert basis to verify particular

aspects of TBN designs. Finally, the details of an experiment attempting to implement

one of the programmable TBN constructions are given, along with empirical results and

interpretations.

vi
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Chapter 1

Introduction

Recent experimental breakthroughs in DNA nanotechnology [19] have enabled the con-

struction of intricate molecular machinery whose complexity rivals that of other biological

macromolecules, even executing general-purpose algorithms [59]. A major challenge in

creating synthetic DNA molecules that undergo desired chemical reactions is the occur-

rence of erroneous “leak” reactions [45], driven by the fact that the products of the leak

reactions are more energetically favorable. A promising design principle to mitigate such

errors is to build “thermodynamic robustness” into the system, ensuring that leak reac-

tions incur an energetic cost [55, 57] by logically forcing one of two unfavorable events:

either many molecular bonds must break—an “enthalpic” cost—or many separate molecu-

lar complexes (called polymers in this document) must simultaneously come together—an

“entropic” cost.

The model of thermodynamic binding networks (TBNs) [25] was defined as a combina-

torial abstraction of such molecules, deliberately simplifying substrate-dependent details

of DNA in order to isolate the foundational energetic contributions of forming bonds

and separating polymers. A TBN consists of monomers containing specific binding sites,

where binding site a can bind only to its complement a∗. A key aspect of the TBN model

is the lack of geometry: a monomer is an unordered collection of binding sites such as

{a, a, b∗, c}. A configuration of a TBN describes which monomers are grouped into poly-

mers ; bonds can only form within a polymer. One can formalize the “correctness” of a

TBN by requiring that its desired configuration(s) be stable: the configuration maximizes

2



the number of bonds formed, a.k.a., it is saturated, and, among all saturated configura-

tions, it maximizes the number of separate polymers.1 See Fig. 1.1 for an example. Stable

configurations are meant to capture the minimum free energy structures of the TBN. Un-

fortunately, answering basic questions such as “Is a particular TBN configuration stable?”

turn out to be NP-hard [11].

a* b*

a b

a b

a* b*

a b

a b

a* b*

a b

a b

a* b*

a b

a b

a* b*

a b

a b

a* b*

a b

a b

a* b*

a b

a b

saturated stablenot saturated
Figure 1.1: Example of a simple thermodynamic binding network (TBN). There are four monomers:
m1 = {a∗, b∗},m2 = {a, b},m3 = {a},m4 = {b}, with seven configurations shown: four of these configu-
rations are saturated because they have the maximum of 2 bonds. Of these, three have 2 polymers and
one has 3 polymers, making the latter the only stable configuration. Despite the suggestive lines between
binding sites, the model of this paper ignores individual bonds, defining a configuration solely by how
it partitions the set of monomers into polymers, assuming that a maximum number of bonds will form
within each polymer. (Thus other configurations exist besides those shown, which would merge polymers
shown without allowing new bonds to form.)

Abstract mathematical models of molecular systems, such as chemical reaction net-

works, have long been useful in natural science to study the properties of natural molecules.

For a chemical system designed to perform computation, we can prescribe a chemical pro-

gram with abstract chemical reactions such as

A+ C → B + C (1.1)

A→ B. (1.2)

In particular, a program may require Eq. 1.1 and forbid Eq. 1.2. But what remains hidden

at this level of abstraction is a well-known chemical constraint: if Eq. 1.1 is possible, then

Eq. 1.2 must also be, no matter the exact substances. Knowing this, we might try to slow

Eq. 1.2 by ensuring B has high free energy. But then B + C must also have high free

energy, so Eq. 1.1 slows in tandem. The only option to slow Eq. 1.2 but not Eq. 1.1 is to

1This definition captures the limiting case (often approximated in practice in DNA nanotechnology)
corresponding to increasing the strength of bonds, while diluting (increasing volume), such that the ratio
of binding to unbinding rate goes to infinity.
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use a kinetic barrier : designing A so that, although it is possible for A to reconfigure into

B, the system must traverse a higher energy (less favorable) intermediate in the absence

of C.

It seems difficult to engineer kinetic energy barriers and catalysis in a way that is

independent of the particular chemical substrate. For example, the development of novel

protein enzymes requires the precise positioning of hydrophobic or electrostatic interac-

tions, or otherwise chemically active sites, which are often hard to engineer from first

principles. Catalysts based on DNA strand displacement reactions arguably promise the

highest degree of programmability [62, 60].

Yet, kinetic barriers here usually crucially depend on a specific toehold-sequestering

mechanism. Importantly, such DNA-based catalysis suffers from a relatively large rate

of the uncatalyzed reaction, and prior work lacks a method to arbitrarily increase the

uncatalyzed energy barrier.

We augment the TBN model with a notion of kinetic paths (changes in configuration)

due to merging of different complexes and splitting them up (and in Section 2.3 making,

breaking, or exchanging bonds). This gives rise to a notion of paths of configurations,

with different energies. Define the height of a path starting at γ as the maximum energy

difference E(δ) − E(γ) over all configurations δ on the path. Then the kinetic energy

barrier separating configuration δ from configuration γ is the height of the minimum-

height path from γ to δ.

Moving beyond a single catalytic reaction, we consider larger catalytic networks. In-

tuitively, this requires generalizing the construction in a number of ways. First, a single

catalyst may catalyze two different reactions:

C +H
C + V (1.3)

C + P 
C +Q (1.4)

This can be achieved in the original grid gate construction simply by using two grid gates

with orthogonal binding sites and merging their respective catalysts. Second, a single
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substrate may be converted to two different products via different catalysts:

C +H
C + V (1.5)

D +H
D +W (1.6)

This requires extending the original grid gate construction to have multiple endpoint

states besides “H” and “V ”, with catalysts for each. Our construction (called golfergate

on account of its relation to a combinatorial puzzle known as the “social golfer” problem)

achieves exponentially more endpoint states—Θ(n) states with n2 binding site types and

barrier Θ(n) to unwanted reactions. A drawback is that it is not possible to use multiple

catalysts (for the same grid) simultaneously.

The constructions discussed up to now realize “bipartite” catalytic networks in the

sense that every species is either a catalyst in every reaction it participates in or a catalyst

in no reaction.2 In general catalytic networks, a species may appear as both a catalyst

and a substrate, such as C below:

C +H
C + V (1.7)

C +D
E +D (1.8)

Such networks are prevalent in protein-protein networks where a single protein can be a

target of phosphorylation, as well as the kinase phosphorylating other proteins (with the

two actions often allosterically linked).

It was previously demonstrated that the thermodynamic driving force of maximizing

the number of separate complexes as captured in the TBN model is sufficient to realize

complex computation at equilibrium, including arbitrary logic circuits [25, 17]. We be-

lieve the same driving force is also sufficient for inducing complex kinetic behavior by

programming the entire energy landscape. Catalysis is a complex kinetic behavior (the

equilibrium is unchanged by catalysts) and thus illustrates a difficult test case for this

hypothesis.

2For example, metabolic networks are bipartite since the enzymes are proteins while the substrates
are small molecules.
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Given the generality of the TBN model, our results could suggest design strategies

for preventing undesired kinetic behavior in a variety of molecular systems, including

autocatalysts (which are a special case of non-bipartite catalytic networks), and nucleation

barriers.

In Chapter 2 we introduce the TBN model and its associated formalism. We define

the notion of paths and reachability, and give a sufficient condition for large kinetic bar-

riers. We show that there is a finite threshold past which the trade-off between enthalpic

bond energy and entropic complex formation does not change the behavior of any TBN,

eliminating the need to consider such systems in an idealized state of dilution (i.e. in the

limit of infinite bond energy).

In Chapter 3 we begin by showing two constructions for catalytic systems: the transla-

tor cascade and the grid gate. Both constructions yield families of TBNs parametrized by

a complexity parameter n such that the uncatalyzed energy barrier scales linearly with

n. The catalyzed energy barrier is always 1. We show that the grid gate system can

be modified to create an autocatalytic TBN, with an arbitrarily large energy barrier to

undesired triggering, that exponentially amplifies its input signal (Section 3.2.3). We also

show how to create a barrier-programmable system with more than two stable states that

allows selective catalysis (at some reduction of the barrier and under the constraint that

only one catalyst can be present simultaneously).

In Chapter 4, we show that in TBNs, deciding reachability subject to a given barrier

is PSPACE-complete, even to a c-factor approximation. We do this through a chain

of simulations in which TBNs can simulate a restricted subclass of chemical reaction

networks (CRNs), and then that subclass can simulate a much larger subclass of CRNs.

We then present a CRN from the larger subclass in which a reachability oracle could be

used to solve QSat in polynomial time. By virtue of the simulations, this extends to show

that a reachability oracle for TBNs could be used to solve QSat in polynomial time, and

therefore that deciding reachability in TBNs is PSPACE-complete.

In Chapter 5, we now embrace the NP-hardness of the natural questions that arise

out of the model, and present an efficient formulation that uses integer programming and
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constraint programming solvers in tandem to compute a complete set of stable states for

any input TBN. We provide open-source software in Python which uses the formulation

to solve for the stable states of TBNs. We also show that the problem of characterizing all

saturated states of a TBN can be cast as a problem of finding a polymer basis, and that

solving for this polymer basis is equivalent to finding a Hilbert basis of a particular convex

cone which we describe. While solving for the polymer basis of complex systems can be

time-consuming (and our software can do this also), we expect that the connection will

provide a suitable bridge for further theoretical advances as Hilbert bases are well-studied

in mathematical research; here we provide a way for theoretical advances in combinatorics

to inform our design principles in the molecular computing community.

Lastly, Chapter 6 describes the partial results of a chemical experiment that was

designed to implement the grid gate in solution. As TBNs do not consider geometry as

part of the model, it was necessary to design a geometry that was sound according to our

chosen substrate (DNA), but also adhered to the kinetic behavior intended. Furthermore,

the TBN model assumes orthogonality of its domains, and this cannot be perfectly realized

in DNA, so the choice of DNA sequence required significant computational effort and we

describe the algorithm and process used. Lastly, we show data collected and provide some

interpretations as well as advice for future directions with similar experiments. Most

notably, we advise not to choose to begin an experiment in March of 2020, for the author

was ejected from the lab at U.T. Austin where he had been performing the experiment

due to public safety measures implemented in an attempt to reduce the potential spread

of COVID-19.

7



Chapter 2

Thermodynamic Binding Networks

Model

This chapter was published as Sections 2.1-3.8 and 5.1-5.2 in [10].

2.1 Model

Our work here build upon the model of thermodynamic binding networks (TBN) [25, 12].

Intuitively, we model a chemical system as a collection of molecules, each of which has a

collection of binding sites, which can bind if they are complementary. Although the TBN

model is more general, DNA domains can be thought of as the prototypical example of

binding sites. No geometry is enforced, which allows the model to handle topologically

complex structures, such as pseudoknots.

2.1.1 TBN

(See Fig. 2.1.) Formally, a TBN is a multiset of monomer types. A monomer type is a

multiset of site types. A site type is a formal symbol, such as a, and has a complementary

type, denoted a∗. We call an instance of a monomer type a monomer and an instance of

a site type a site .

2.1.2 Configuration

(See Fig. 2.1.) We may describe the configuration of a TBN at any moment in terms

of which monomers are grouped into polymers. This way a polymer is a multiset of

8



Figure 2.1: Two configurations γ1 and γ2 of the TBN T = {{a, a}, {a∗, b}, {a∗, b}}. Note that T has 3
monomers but 2 monomer types and 6 sites but 3 site types. A dashed box indicates monomers that are
part of the same polymer. A single configuration (bottom) can correspond to multiple ways of binding
complementary sites (top), which are not distinguished in our model. In γ2 the polymer on the left has
exposed sites {b, a∗} and the polymer on the right {a, b}; they are thus compatible since the exposed site
a∗ of the left is complementary to exposed site a of the right. Since γ2 has compatible polymers it is not
saturated, but γ1 is.

monomer types, and a configuration is a partition of the TBN into polymers.1

The exposed sites of a polymer is the multiset of site types that would remain if

one were to remove as many complementary pairs of sites as possible. Each such pair is

counted as a bond . Note that bonds are not specified as part of a configuration, and

intuitively we think of polymers as being maximally bonded. Two polymers are compatible

if they have some complementary exposed sites. A configuration is saturated if no two

polymers are compatible. This is equivalent to having the maximum possible number of

bonds.

2.1.3 Path

(See Fig. 2.2.) One configuration can change into another by a sequence of elementary

steps. If γ can become δ by replacing two polymers in γ with their union, then γ merges

to δ and δ splits to γ, and we write γ �1 δ.2 We denote by �1, �, � the reflexive,

1Consider swapping two monomers of the same type between two polymers in a configuration. We do
not consider the result a different configuration. Note that monomers of the same type correspond to an
entropy contribution that we ignore (see also footnote 4).

2Note that this would form a lattice of partitions if the configurations were sets instead of multisets.
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transitive, and reflexive transitive closures of �1. A path is a nonempty sequence of

configurations where each merges or splits to the next. Note that there is a path between

any two configurations.3

We could imagine smaller steps that manipulate individual bonds. But surprisingly,

such a bond-aware model leads to essentially equivalent kinetic barriers, which we prove

in Section 2.3.

2.1.4 Energy

(See Fig. 2.2.) For a configuration γ, denote by H(γ) the number of bonds summed over all

polymers. Denote by S(γ) the number of polymers.4 Note that a saturated configuration

has maximum H(γ). The energy of γ is

E(γ) = −wH(γ)− S(γ), (2.1)

where the bond strength w represents the benefit from gaining a bond relative to gaining

a polymer.5 Note that H(γ) ≥ 0 and S(γ) > 0, so E(γ) < 0, and that lower energy,

3Our model allows incompatible polymers to be merged (i.e., two polymers merge without forming any
new bonds). This represents spontaneous co-localization and comes with an energy penalty, as discussed
later. For instance, to get from any configuration to any other, we can merge all initial polymers into one
and then split into the desired end polymers; however, such a path could be very energetically unfavorable.

4The quantities H(γ) and S(γ) are meant to evoke the thermodynamic quantities of enthalpy and
entropy, although the mapping is not exact. Indeed, the free energy contribution of forming additional
bonds typically contains substantial enthalpic and entropic parts. Further, while S(γ) captures entropy
due to independent positions of separate polymers, chemical free energy may consider a variety of other
entropic contributions. These may include geometric configurations of a single polymer, as well as the
entropy due to swapping indistinguishable monomers. We can justify focusing on S(γ) because its contri-
bution arbitrarily predominates in taking the limit of large solution volume—that is, the low concentration
regime [25].

5Our notion of energy idealizes the physical Gibbs free energy. In typical DNA nanotechnology
applications, the Gibbs free energy is likewise a linear combination of H(γ) and S(γ). We can estimate
the Gibbs free energy ∆G(γ) of a configuration γ as follows. Bonds correspond to domains of length l
bases, and forming each base pair is favorable by ∆G◦bp. Thus, the contribution of H(γ) to ∆G(γ) is
(∆G◦bp · l)H(γ). At 1 M concentration, the free energy penalty due to decreasing the number of separate
complexes by one is ∆G◦assoc. At lower concentration c M < 1 M, this penalty increases to ∆G◦assoc +
RT ln((1 M)/c). The point of zero free energy is taken to be the configuration with no bonds, and all
monomers separate. Thus, the contribution of S(γ) to ∆G(γ) is (∆G◦assoc +RT ln((1 M)/c))(m− S(γ)),
where m is the total number of monomers. To summarize,

∆G(γ) = (∆G◦bp · l)H(γ) + (∆G◦assoc +RT ln((1 M)/c))(m− S(γ)). (2.2)

Note that, as expected, this is a linear combination of H(γ) and S(γ), and that increasing the length
of domains l weighs H(γ) more heavily, while decreasing the concentration c weighs S(γ) more heav-

10
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Figure 2.2: A path 1 consisting of γ, α1, α2, δ and a path 1′ consisting of γ, β1, β2, δ in the TBN
T = {{a}, {b}, {a, b}, {a∗, b∗}}. The energy of each configuration is shown graphically below it. A large
wavy disc indicates energy due to a bond. A small solid disc indicates energy due to a polymer. Lower
is more favorable. Here bond strength w = 2, so a wavy disc is twice as tall as a solid disc. The height
of 1 is h(1) = E(α2) − E(γ) = (−4) − (−2w − 2) = 2. The height of 1′ is h(1′) = E(β1) − E(γ) =
(−2w − 1)− (−2w − 2) = 1.

which results from more bonds or more polymers, is more favorable. (The choice to make

favorability correspond to lower energy, that is more negative, is motivated by consistency

with the standard physical chemistry notion of free energy.) We call a minimum energy

ily. Domains are routinely 15 − 25 bases long, and at 100 nM concentration at room temperature this
corresponds to a relative bond strength w of 1.9–3.2.
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configuration stable . However, since we allow the number of polymers to be potentially

infinite, we will sometimes use the equivalent notion that stable configurations are those

that can be “constructed” by starting with the configuration whose polymers are all

singletons with one monomer, performing the minimum number of merges necessary to

reach a saturated configuration. For example, consider the TBN consisting of monomer

types t = {a}, b = {a∗}, with counts∞· t and 2 ·b. The unique stable configuration has

polymers {2 · {b, t},∞ · t}, since two merges of a b and a t are necessary and sufficient

to create this configuration from the individual monomers.

Merging incompatible polymers forms no additional bonds and so is unfavorable, since

S(γ) drops without H(γ) rising. In contrast, when bond strength w > 1, merges between

compatible polymers are energetically favorable. So every stable (that is, minimum en-

ergy) configuration is saturated. This regime is typical of many real systems, and in

particular, we can engineer DNA strand displacement systems [55] to have large bond

strength w by increasing the length of domains.

2.1.5 Barrier

(See Fig. 2.2.) There are many paths from a start configuration γ to an end configuration

δ. The height h(1) of a particular such path 1 is the greatest energy difference E(α)−E(γ)

between any α along 1 and γ. This measures the difficulty of traversing 1. Notice that

h(1) ≥ E(γ)− E(γ) = 0.

Another reasonable definition of height is the greatest energy difference E(β)− E(α)

between any α and later β on the path. We will be considering paths between stable

(lowest energy) configurations, where the two definitions are equivalent.

Going from one configuration to another is difficult if each path has large height. The

barrier b(γ, δ) from γ to δ is the least height of any path from γ to δ. Notice that

b(γ, δ) ≥ 0 as well. Since paths are reversible, it is easy to show that if E(γ) = E(δ) then

b(γ, δ) = b(δ, γ).
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2.2 Saturated paths

Analyzing TBNs is simpler if we reason only about saturated configurations. Clearly, in

the limit of large bond strength w, breaking a bond is so unfavorable that a least height

path has only saturated configurations. The main result of this section, Corollary 8, shows

that the barrier remains the same even if we consider paths that traverse only saturated

configurations as long as w ≥ 2. Such a threshold may be surprising: it might seem

that breaking some bonds, even if locally unfavorable, might allow a path to bypass an

otherwise large barrier elsewhere.

We prove Corollary 8 in Section 2.2.2 by showing how to transform an arbitrary path

into a saturated path with height no greater. Section 2.2.1 defines a relation among

configurations that allows us to keep track of changes in energy as we transform the path.

2.2.1 Bounds on energy change

When two polymers merge, knowing whether they are compatible makes the change in

energy predictable. Recall that merging incompatible polymers results in no more bonds,

so overall energy increases by 1. Merging compatible polymers results in at least one

more bond, so overall energy decreases by at least w− 1. To make this precise, let γ �1 δ

(and let γ �1
• δ) mean that γ merges to δ by combining two incompatible (compatible)

polymers. Let � (�•) be the reflexive, transitive closure of �1 (�1
•).

Observation 1. If γ �1 δ, then E(δ) = E(γ) + 1. If γ �1
• δ, then E(δ) ≤ E(γ) + 1−w.

Observation 2. Let ∆ = S(γ)− S(δ). If γ � δ, then E(δ) = E(γ) + ∆. If γ �• δ, then

E(δ) ≤ E(γ) + ∆(1− w).

To apply these bounds to the general case γ � δ, we decompose � into �• and �.

This allows us to identify an intermediate configuration that has least energy (is most

favorable).

Theorem 3. If γ � δ, then some α has γ �• α � δ.

Proof. Let γ � δ, and let α be a “most merged” configuration with γ �• α � δ (no α′ � α

has γ �• α′ � δ). Then α = β0 �1 · · · �1 βn = δ for some configurations βi. Consider

the polymers 1 and 1 in βk merged by βk �1 βk+1. We claim 1 and 1 are incompatible.
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To see so, note that 1 = 11∪· · ·∪1x and 1 = 11∪· · ·∪1y for some polymers 1i and 1j in

α. If any 1i and 1j are compatible, then merging them in α would produce a configuration

that contradicts α being most merged. So they are pairwise incompatible. Letting [X]

denote the exposed sites of X, we have [1] ⊆ [11]∪ · · · ∪ [1x] and [1] ⊆ [11]∪ · · · ∪ [1y]. So

1 and 1 are incompatible.

So βk �1 βk+1 for each k, and α = β0 � βn = δ.

2.2.2 Saturated paths suffice

A saturated path is a path along which every configuration is saturated. For example, the

bottom path 1′ in Fig. 2.2 is saturated. If γ and δ are saturated, then let bsat(γ, δ) denote

the barrier from γ to δ when allowing only saturated paths. Since a saturated path is

a path, bsat(γ, δ) ≥ b(γ, δ). It turns out that if bond strength w ≥ 2, then the reverse

inequality also holds, so bsat(γ, δ) = b(γ, δ). And if w ≥ 1, then the reverse inequality

“almost” holds.

To show the reverse inequality, we turn an arbitrary path into a saturated path without

increasing its height (much). We do this step by step by always merging just enough

polymers to achieve saturation. To make this precise, let [γ] denote the set of saturated

γ′ with γ �• γ′, and let Emax(1) be the maximum energy of any configuration along the

path 1.

First we show how to saturate a split step.

Lemma 4. Let w ≥ 1. If γ �1 δ and γ′ ∈ [γ], then some δ′ ∈ [δ] and some saturated path

1′ from γ′ to δ′ has Emax(1′) ≤ E(γ).

Proof. Let γ �1 δ and γ′ ∈ [γ]. Then γ � γ′, so δ � γ′. So by Theorem 3, some δ′ has

δ �• δ′ � γ′. By assumption, γ′ is saturated, so δ′ is, so δ′ ∈ [δ]. Now let 1′ be a path

guaranteed by γ′ � δ′. Then Emax(1′) = E(γ′) ≤ E(γ).

To show how to saturate a merge step, we rely on being able to transfer a merge from

one context to another.

Lemma 5. If γ �1 δ and γ � γ′, then some α has γ′ �1 α and δ � α.

14



Proof. Let γ �1 δ and γ � γ′. Let 1 be the polymer merged by γ �1 δ, and let γ∗ be γ

but with all polymers intersecting 1 merged. This way γ∗ = δ and γ′ �1 γ′∗.

Now γ = β0 �1 · · · �1 βn = γ′ for some configurations βi. So δ = γ∗ = β∗0 �1 · · · �1

β∗n = γ′∗. So choose α = γ′∗.

Now we show how to saturate a merge step.

Lemma 6. Let w ≥ 1. If γ �1 δ and γ′ ∈ [γ], then some δ′ ∈ [δ] and some saturated path

1′ from γ′ to δ′ has Emax(1′) ≤ max{E(γ), E(δ)}+ max{0, 2− w}.

Proof. Let γ �1 δ and γ′ ∈ [γ]. If γ′ = γ, then let δ′ = δ, and let 1′ = γ, δ. Then

Emax(1′) = E(δ).

Otherwise γ′ 6= γ. Now by Lemma 5, some α has γ′ �1 α and δ � α. So by Theorem 3,

some δ′ has δ �• δ′ � α. Since γ′ is saturated, α is, so δ′ is, so δ′ ∈ [δ]. Now let 1′ be a path

guaranteed by γ′ �1 α � δ′. Then 1′ is saturated. Also, Emax(1′) = E(α). And γ′ �1 α,

so E(α) ≤ E(γ′)+1. Since γ′ ∈ [γ] and γ 6= γ′, we have γ �• γ′, so E(γ′) ≤ E(γ)+1−w.

So Emax(1′) ≤ E(γ) + 2− w, and the result follows from the identity x ≤ max{x, y}.

To saturate a full path, we saturate each step.

Theorem 7. Let bond strength w ≥ 1 and γ and δ be saturated. Then

bsat(γ, δ) ≤ b(γ, δ) + max{0, 2− w}. (2.3)

Proof. Let α1 and αn be saturated. Consider a path 1 = α1, . . . , αn. Let α′1 = α1. Then

α′1 ∈ [α1]. So by Lemmas 4 and 6, for each i we get α′i+1 ∈ [αi+1] and saturated 1′i from α′i

to α′i+1 with Emax(1′i) ≤ max{E(αi), E(αi+1)}+Mw where Mw = max{0, 2−w}. Now αn

is saturated, so α′n = αn. So let 1′ be the concatenation of the 1′i. Then 1′ is a saturated

path from α1 to αn. And we have

Emax(1′) = maxiEmax(1′i) (2.4)

≤ maxi max{E(αi), E(αi+1)}+Mw (2.5)

= maxiE(αi) +Mw (2.6)

= Emax(1) +Mw. (2.7)
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So h(1′) ≤ h(1) +Mw. So bsat(α1, αn) ≤ b(α1, αn) +Mw.

Notice that we need bond strength w ≥ 1 in Theorem 7. If w < 1, then bsat(γ, δ) can be

larger than b(γ, δ) by an arbitrary amount.

Also notice that max{0, 2 − w} is tight. To see this, the reader may check that

bsat(γ, δ) = b(γ, δ) + max{0, 2 − w} for the following example: γ = {{11, 12}, {13}} and

δ = {{11}, {12, 13}} where 11 = {a, b}, 12 = {a∗}, 13 = {a, c}.

Now since bsat(γ, δ) ≥ b(γ, δ), we have the following corollary of Theorem 7, which is

the main result of this section.

Corollary 8. Let bond strength w ≥ 2 and γ and δ be saturated. Then bsat(γ, δ) = b(γ, δ) .

2.3 Modeling bonds

The model, in Section 2.1, represents bonds implicitly. For example, as Fig. 2.1 shows,

a single configuration can correspond to multiple ways of pairing up binding sites. This

makes it easier to manipulate and reason about configurations.

But does this simplification of configurations affect the height of kinetic barriers?

One might imagine that by having to manipulate individual bonds, one would need to

overcome larger energy barriers than in our original model where all possible bonds are

“automatically made”. Since bonds do change on an individual basis in a chemical system,

this would mean that a barrier that exists in the bond-oblivious model is misleading.

However, we show that the bond-aware model is essentially equivalent.

We now define the bond-aware model analogously to the definitions of Section 2.1.

2.3.1 Bond-Aware Model

A configuration γ of a TBN is a matching among its complementary sites along with a

partition of the components of that matching. A polymer of γ is a part of this partition.

A bond is an edge in the matching. A configuration is saturated if the matching is

maximal.

For a configuration γ, denote by H(γ) the total number of bonds. Let S(γ) and E(γ)

be as before.
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A make adds a missing bond in a polymer. A break removes an existing bond in a

polymer. A three-way swap is changing one endpoint of a bond to another. A four-way

swap is swapping the endpoint of one bond with the endpoint of another. A path is a

sequence of configurations where each gets to the next by a merge, split, make, break, or

swap.

h(·) is as before. Let bbond(γ, δ) be the barrier in the bond-aware model. Let

bsat-bond(γ, δ) be over only paths with no break (and so no make).

2.3.2 Equivalence

We can view the original coarse kinetic model in Section 2.1 as a simplification of the more

detailed model. To move between the two perspectives, we introduce some notation. For

a polymer 1 of the bond-aware model, let 〈1〉 be the collection of monomers in 1 (which

is the corresponding polymer in the bond-oblivious model). For a configuration γ, let 〈γ〉

be the collection of 〈1〉 for each polymer 1 in γ (which is the corresponding configuration

in the bond-oblivious model).

Lemma 9. E(〈α〉) ≤ E(α).

Proof. S(〈α〉) = S(α) and H(〈α〉) ≥ H(α).

The bond-aware model allows as much as the polymer model and more, so intuitively, a

barrier in the bond-aware model should be no higher.

Theorem 10. If E(γ) = E(〈γ〉), then bbond(γ, δ) ≤ b(〈γ〉, 〈δ〉).

Proof. Consider a path 1 = γ1, . . . , γn. Let 〈1〉 = 〈γ1〉, . . . , 〈γn〉, and let 〈γi〉 have highest

energy along 〈1〉. By Lemma 9, E(〈γi〉) ≤ E(γi). So if E(〈γ1〉) = E(γ1), then h(〈1〉) ≤

h(1).

If γ is saturated, then 〈γ〉 is saturated and E(γ) = E(〈γ〉). So this proof also proves the

inequality for saturated paths in the two models.

Lemma 11. If γ and δ are saturated, then bsat-bond(γ, δ) ≤ bsat(〈γ〉, 〈δ〉).

What may be more surprising is that we can also establish a reversed inequality.
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Theorem 12. bbond(γ, δ) + 1 ≥ b(〈γ〉, 〈δ〉).

Proof. Consider a path 1 from 〈γ〉 to 〈δ〉. Form a path 1′ from γ to δ by adding makes,

breaks, and swaps as follows. Before each split, swap enough to break as few bonds as

possible. After each merge, make as many bonds as possible.

A saturated path simply needs no makes or breaks, so this proof also proves the inequality

for saturated paths in the two models.

Corollary 13. bsat-bond(γ, δ) + 1 ≥ bsat(〈γ〉, 〈δ〉).

18



Chapter 3

Engineering Systems with

Programmable Energy Barriers

Sections 3.1-3.2 of this chapter were published as Sections 4.1-4.2 in [10].

In this chapter we first present two constructions. Each is a family of TBNs indexed by

an integer n. We call certain configurations of those TBNs initial and triggered and show

an energy barrier between them. As n increases, the size of the energy barrier increases

linearly. Each also has a catalyst, which reduces the energy barrier to 1 when added.

The first construction (translator cycle), discussed in Section 3.1, is based on a DNA

strand displacement catalyst. Progress from the initial to triggered configurations with

the catalyst can be physically implemented as a strand displacement cascade. Although

this system has been previously proposed[55, 58], we rigorously prove an energy barrier

for the first time.

The second construction (grid gate), discussed in Section 3.2, does not have an evident

physical implementation (e.g., as a strand displacement system), but surpasses the trans-

lator cycle system in two ways. First, the grid gate can exhibit autocatalysis—that is, it

can be modified so that the catalyst transforms the initial polymer into a polymer that

has the same exposed binding sites as the catalyst, which can itself catalyze the transfor-

mation of additional initial polymers (leading to exponential amplification). Second, the

grid gate is self-stabilizing, which we define to mean that from any configuration, there

is a barrier of zero to reach either an initial or triggered configuration. This intuitively

19



Figure 3.1: The two stable configurations of a translator cycle with complex length 1 = 3 and number
of complex types 1 = 5. In place of binding site xi, we write i for clarity.

Figure 3.2: A segment of the height 1 path which is possible because an extra copy of a top monomer,
{x4, x0, x1, x2}, is present to act as a catalyst. The dotted arrow signifies a sequence of merge/split steps.
In place of binding site xi, we write i for clarity.

ensures that the system cannot get stuck in an undesired local energy minimum.

Throughout both sections, we assume w ≥ 2, so that by Corollary 8, we can determine

energy barriers by considering only saturated paths. If we weaken this assumption to

w ≥ 1, then by Theorem 7 the barrier proved is within 1 of the barrier in the unrestricted

pathway model (allowing unsaturated configurations). We believe that for these systems

an Ω(n) energy barrier exists even if w < 1 but sufficiently large. However, studying the

w < 1 regime is left for future work.

The constructions demonstrate that catalysts and autocatalysts with arbitrarily high

energy barriers can be engineered solely by reference to the general thermodynamic driving

forces of binding and formation of separate complexes, which are captured in the TBN

model.

3.1 Translator cycle

3.1.1 Construction

Consider the TBN illustrated in Fig. 3.1. There are two particular configurations that

interest us, an initial configuration 1 and a triggered configuration 1. The two config-

20



urations are stable. In the presence of a catalyst monomer {x4, x0, x1, x2} (or an extra

copy of any top monomer—any of the monomers with unstarred binding sites), a height

one pathway exists to reach 1, illustrated by Fig. 3.2. If the catalyst is not present, we

prove there is a barrier which can be made arbitrarily large by including more and longer

monomer types. Further, this catalytic system is realizable as a DNA strand displace-

ment cascade; more information about this connection can be found in [58]. In the case

of many copies of each complex, since the catalyst is in fact any of the top monomers, the

system may be used as an amplifier: at the end of the pathway shown in Fig. 3.2, another

monomer with binding sites {x4, x0, x1, x2} becomes free which can catalyze another set

of complexes which are in the initial configuration.

To program a large energy barrier, we give a formal definition for generalizing the

translator cycle, parameterized by complex length 1 and number of complex types 1. Given

1 ≤ 1, a (1, 1)−translator cycle is a TBN with monomer types ti (top monomers) and bi

(bottom monomers) for i ∈ Z1, where

ti = {xi, xi+1 (mod 1), . . . , xi+1 (mod 1)},

bi = {x∗i , x∗i+1 (mod 1), . . . , x
∗
i+1−1 (mod 1)}.

A (1, 1)−translator cycle may have any number of each monomer type as long as (1) for all

i, the number of ti is equal to the number of bi and (2) there is at least one of each ti and bi.

To justify constraint (1) note that including an extra top monomer can catalyze the cycle

so the barrier disappears, while extra bottom monomers merge the two-monomer com-

plexes to saturate, disrupting the desired initial and triggered configurations. Constraint

(2) is required for the catalytic pathway (Fig. 3.2).

The initial configuration has each bi in a polymer {bi, ti}, and a triggered configuration

1 is any saturated configuration which contains a subset
{
{bi, ti−1} | i ∈ Zc

}
(at least one

set of complexes in the triggered state). The rest of this section is dedicated to proving

that the barrier between 1 and 1 depends on the complex length 1 and the number of

complex types 1, and can be made arbitrarily large: Formally, we prove that if 12 = 1,

then b(1, 1) > z
2+z−1 .
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To motivate our choice of 12 = 1, it is worth describing three available pathways that

influence how the upper bound for the uncatalyzed barrier scales with 1 and 1. For the

first path, we can reach a configuration with a free top monomer, which can subsequently

be used as a catalyst as in Fig. 3.2. For example, merging the three polymers with

exposed sites x4, x0, and x1 with the polymer {{x4, x0, x1, x2}, {x∗4, x∗0, x∗1}} allows the top

monomer {x4, x0, x1, x2} to be split. In the general case, this requires merging 1 polymers

and then following a height 1 path, and the path in total has height 1. The second path

brings all complexes together while reducing the number of polymers by 1− 1, and then

splits them into the triggered complexes, resulting in a height 1 − 1 path. These paths

show that the barrier is not larger than z or c − 1. Surprisingly, it is still not sufficient

to set 1 = 1 − 1 = n to attain a barrier of n; there is a complicated third path which

has height 21
1
− 1. The third path shows that 1 must be asymptotically larger than 1 to

achieve a non-constant barrier. Thus we fix z = n and c = n2 for the remainder of the

section.

Before we get into details, we give an overview of the proof that b(1, 1) > n
2+n−1 . First,

we show that we can restrict our attention to configurations where polymers must have the

same amount of top monomers as bottom monomers (denoted as normal form), since other

configurations have low polymer count. We think of pairing top and bottom monomers

in normal form polymers. Initially, top and bottom monomers with the same indices are

paired. In the triggered configuration, the top and bottom monomers are paired with

different indices, notably ti is bound to bi+1; we say the top index is offset “to the left”

of the bottom index by one, or has offset “minus one”. We will formalize this notion of

offset, and show that the sum of all offsets between pairs in the configuration, initially

zero, does not change with merges and splits in paths of normal form configurations. In

the single-copy case, this contradicts any path which reaches a triggered configuration,

which must have a negative total offset.

In the multi-copy case, the negative offset of the triggered complexes can be canceled

by positive offset elsewhere, resulting in zero total offset, so the argument is not as simple.

We will show that polymers providing net positive offset have a size which grows along
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with the offset. The large size of these polymers then implies a barrier.

First, we provide an easy way to count how many complexes are in a configuration

of a cycle. Note that since there is at least one unstarred binding site for each starred

site, the starred sites must be bound in a saturated configuration. So we call the starred

sites limiting. We can use this fact to argue about the number of separate polymers in

saturated configurations. Since the starred binding sites are limiting and γ is saturated,

each bottom monomer must be bound to at least one top monomer, so we can count S(γ)

by counting the number of top monomers in separate polymers. This leads to:

Observation 14. Given a (z, c)-translator cycle with k instances of top monomers, in

a saturated configuration γ, if there is a polymer with m top monomers, then S(γ) ≤

k −m+ 1.

Now we restrict the configurations and paths we must consider by describing a normal

form for polymers.

Definition 15. Given a configuration of an (n, n2)-translator cycle, a polymer is normal

form if its number of top monomers is equal to its number of bottom monomers. A

configuration is normal form if every polymer is normal form. A path is normal form if

every configuration is normal form.

Normal form paths are more restricted than arbitrary paths, and will be easier to

reason about. To motivate them, we show that saturated paths from γI to γT that are

not normal form must have a large height via a large polymer in some configuration, and

so low height paths (if they existed) would be normal form.

The following lemma is a technical fact used in proofs of Lemmas 17 and 18. It

gives properties for polymers in saturated configurations with x bottom monomers with

n binding sites each, and y top monomers with (n + 1) sites each, with x > y. This will

help us restrict to normal form polymers, which have x = y.

Lemma 16. Assume x, y, n ∈ N, y(n+ 1) ≥ xn, and x > y. Then y ≥ n and x ≥ n+ 1.

Proof. If x > y, then x ≥ y + 1, so y(n + 1) ≥ xn ≥ (y + 1)n. So yn + y ≥ yn + n. So

y ≥ n. Since x > y, x ≥ n+ 1.
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The next lemma shows the saturated configurations which are not normal form must

have a large (size Ω(n)) polymer.

Lemma 17. If a saturated configuration is not normal form, then some polymer has at

least n top monomers.

Proof. Since the configuration is not normal form, some polymer 1 has either fewer or

more top than bottom monomers. If 1 has fewer, then let 1′ = 1. If 1 has more, then some

other polymer 1′ has fewer top monomers than bottom monomers. Let t (resp., b) be the

number of top (resp., bottom) monomers in 1′. The number of unstarred (resp., starred)

binding sites in 1′ is t(n+ 1) (resp., bn). Recall that the starred sites are limiting. So for

each starred site in 1′, there is at least one corresponding unstarred site, so bn ≤ t(n+ 1).

Since 1′ has b > t, Lemma 16 gives t ≥ n, so P ′ has at least n top monomers.

So saturated paths with low height must consist of normal form configurations, since

otherwise they would have a polymer with many top monomers which implies a large

height by Observation 14.

Now we formalize the offset of a pair of compatible monomers. (Recall that two

monomers are compatible if they have complementary binding sites.) For k ∈ N and

a, b ∈ Zk, define the sequence

[a, b]k = 〈a, a+ 1, . . . , b〉 (mod k). (3.1)

For example, [1, 3]5 = 〈1, 2, 3〉 and [3, 1]5 = 〈3, 4, 0, 1〉. Also let `S be the index of element

` in sequence S. Then for monomers bi and tj, we define the offset to be f(bi, tj) = jS−iS,

where S = [i− n, i+ n− 1]n2 .

We will define the offset of a normal form polymer in terms of compatible pairs of top

and bottom monomers. To choose the pairs, we use the notion of matchings from graph

theory. Given a normal form polymer P , let T be the set of top monomers and B be the

set of bottom monomers. Define a bipartite graph GP = {T,B,E} where {bi, tj} ∈ E if

and only if bi and tj are compatible.

Lemma 18. If a polymer P is in a normal form saturated configuration and has size

|P | < 2n+ 1, then there exists a perfect matching on GP .
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A proof of Lemma 18 appears in [10].

For a perfect matching M on GP , the matching offset is f(M) =
∑

m∈M f(m). It

will turn out that for small polymers, the offset of every perfect matching is the same.

So we will use the matching offset to define the offset of a polymer. To do so, it will

be useful to define a notion of “leftmost” and “rightmost” monomers in a polymer. For

small polymers (of size less than about n), these are intuitively well-defined since there

are not enough monomers to “wrap-around” the entire cycle. We formalize this notion

via a cutoff value for a polymer:

Definition 19. Given a normal form polymer P , a cutoff value cP ∈ Zn2 satisfies the

following: let C be [cP , cP − 1]n2, then there is no edge {bi, tj} ∈ GP such that iC ≤ n

and jC > n2 − n or jC ≤ n and iC > n2 − n (recall that iC denotes the index of i in C).

If a cutoff value exists, it means no possible bonds in the polymer—and equivalently

no possible edges in any matching—cross the cutoff. Then the leftmost and rightmost

pairs are easily defined with respect to the cutoff sequence [cP , cP − 1]n2 . We prove a

sufficient condition for there to exist a cutoff point:

Lemma 20. For a normal form polymer P with size |P | < 2n2

2n+1
, there exists a cutoff

value cP .

Proof. First, we give the reasoning behind the choice of |P | < 2n2

2n+1
. Intuitively, we

want to choose a cutoff point at an index where the top monomer with that index is not

compatible for any bottom monomer in the polymer. If there are k bottom monomers in a

polymer, the union of the sets of compatible top monomers for those bottom polymers is

at most k(2n+ 1). If we have k(2n+ 1) < n2, there will exist an index for a top monomer

which is not compatible to any bottom in the polymer. This gives k < n2

2n+1
, and there

are 2k monomers in the polymer, so we must have |P | = 2k < 2n2

2n+1
. Then let cP be the

index of that incompatible top monomer.

We now show that cP is in fact a cutoff point as in Definition 19. Towards contradic-

tion, let C be [cP , cP − 1]n2 and assume there does exist an edge {bi, tj} ∈ GP such that

iC ≤ n and jC > n2 − n or jC ≤ n and iC > n2 − n. Then tj is compatible for bi, but cP
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is in between i and j, so then tcP is a compatible top monomer for bi, which contradicts

our choice of cP as an index of an incompatible top monomer for any bottom monomer

in the polymer.

To use the cutoff value in future lemmas, we consider configurations and paths with

polymers’ size restricted to less than 2n2

2n+1
. We let n′ = 2n2

2n+1
and define the following:

Definition 21. A polymer is n′-bounded if its size is less than n′. A configuration is

n′-bounded if every polymer is n′-bounded. A path is n′-bounded if every configuration is

n′-bounded.

We can use a cutoff to show that the offset of every matching is the same.

Lemma 22. For an n′-bounded polymer P in a normal form saturated configuration, for

any two perfect matchings M and M ′ on GP , f(M) = f(M ′).

A proof of Lemma 22 appears in [10].

So we define the polymer offset of P , f(P ), simply as the offset of any perfect matching

on GP . Given a configuration γ, we can define the configuration offset as
∑

P∈γ f(P ). We

now show that under certain conditions, merges and splits do not change the configuration

offset.

Lemma 23. In a normal form saturated n′-bounded path, if γ �1 δ, then f(γ) = f(δ).

Proof. Consider the two polymers which merge, P1 and P2, and call the polymer which

is their union P . Let MP1 and MP2 be any perfect matchings of GP1 and GP2 . Then

MP = MP1 ∪MP2 is a perfect matching on GP , and f(MP ) = f(MP1)+f(MP2). Since the

polymers are n′-bounded, we have by Lemma 22 that the polymer offsets equal the offsets

of any matching, so f(P ) = f(P1) + f(P2). Then f(γ) = f(δ) since their only different

summands are f(P ) and f(P1), f(P2).

From the above lemma, one can prove that in the case of one copy of each monomer

type, the (n, n2)−translator cycle has a barrier of Ω(n) to trigger. An informal proof

follows: any path which is not normal form or does not have small polymers must have a
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large height due to a polymer with many top monomers (see Observation 14). Otherwise,

if we restrict paths to saturated normal form n′-bounded paths, Lemma 23 gives that from

the initial configuration offset of zero, there is no path which can change the configuration

offset to −n2, which is the offset of the triggered configuration. We leave out a formal

statement of this proof for brevity, as we prove a more general theorem later—a barrier

in the multi-copy case.

The above argument is not sufficient in the multi-copy case because the −n2 offset

given by triggered polymers can be canceled out by positive n2 offset in other polymers.

We will argue that having a large positive offset is (roughly) proportional to having a large

polymer or several large polymers, so the n2 positive offset would require merging many

complexes. To do so, we define and prove existence of a sorted matching on polymers.

Intuitively, a sorted matching is a matching which has no crossing edges when the indices

are sorted.

Lemma 24. Given an n′-bounded polymer P with cutoff cP , there exists a sorted matching

M on GP which satisfies that there does not exist {bi1 , tj2}, {bi2 , tj1} ∈M with i1 ≤ i2 and

j1 ≤ j2 with respect to the ordering given by the cutoff value sequence, [cP , cP − 1]n2.

A proof of Lemma 24 appears in [10].

Using the sorted matching, we show that the maximum offset (if it is positive) of any

one pair in a polymer is proportional to the size of the polymer. First we relate exposed

sites to the size of a polymer, then relate the exposed sites to the maximum offset.

Lemma 25. If a polymer P in a saturated normal form configuration has k exposed sites,

it has size 2k.

Proof. Assume P is of size 2s for some s. Then P has sn starred domains which must be

bound in a saturated configuration. P has s(n+ 1) unstarred domains. So P has exactly

s exposed sites for any s. Then to have k exposed sites, it must have size 2k.

Lemma 26. Given a normal form n′-bounded polymer P , consider the sorted matching M

of GP . Let m be the value of the maximum offset of any pair in M , then |P | ≥ 2(m+ 1).
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Proof. We will show that P has at least m+ 1 exposed sites, and thus by Lemma 25 is of

size at least 2(m+1). Consider the pairs ordered by smallest bottom index to largest with

respect to the cutoff cP given by Lemma 20. Imagine constructing P by adding one pair

at a time in order. We will show that when adding a pair, the number of exposed sites

cannot decrease due to the order, and when we add the pair with offset m, the constructed

polymer has m+ 1 exposed sites.

First, consider adding a pair p with nonnegative offset f(p) to a polymer with k

exposed unstarred sites. Note that the polymer containing only the two monomers in

the pair p has f(p) + 1 exposed unstarred sites, and f(p) exposed starred sites. By the

ordering, we know that the f(p) + 1 exposed unstarred sites cannot be bound by any

bottom monomers in the polymer constructed thus far. Further, at most f(p) of the k

exposed unstarred sites on the polymer prior to adding p can be bound after adding p,

since only f(p) exposed starred sites are added. Thus the net change in exposed unstarred

sites is plus one. Further, the number of exposed sites on the constructed polymer after

adding p is at least f(p) + 1.

Next, consider adding a pair p with negative offset to a polymer with k exposed

unstarred sites. Note that due to the ordering, the bottom monomer in the pair has no

domains in common with the unstarred exposed sites of the polymer constructed thus far.

So the number of exposed sites does not decrease.

In both cases, the number of exposed unstarred sites cannot decrease by adding poly-

mers. Consider the point in this construction where we have just added the polymer with

positive offset m. The constructed polymer thus far has the m+1 exposed unstarred sites

given by the offset m, and the number of exposed sites cannot be reduced by adding the

remaining polymers, so the final polymer P must have at least m + 1 exposed sites. So

by Lemma 25, |P | ≥ 2(m+ 1).

We prove two more lemmas before the proof of the barrier of the translator cycle.

The first key lemma is that triggered polymers’ negative offset must be canceled out by

polymers with positive offset, but since positive offset results in large polymers (or many

slightly larger polymers), such a configuration implies a large height for the path which
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contains it.

Lemma 27. Given a normal form saturated n′-bounded configuration γ, if there exists a

subset of polymers P = {P1, . . . , Pk} such that
∑

Pi∈P f(Pi) ≥ n2, then S(γI) − S(γ) >

2n+ 1.

Proof. Consider γ and for each polymer Pi in γ, fix any sorted matching Mi on GPi
given

by Lemma 24 and denote the set of Mi by M. Then for each Pi ∈ P ,

f(Pi) ≤
|Pi|
2

max
p∈Mi

f(p),

since there are |Pi|
2

pairs each with offset at most the max over the offsets. Since γ is

n′-bounded, |Pi| < n′, so

f(Pi) <
n′

2
max
p∈Mi

f(p).

So we have the following: ∑
Mi∈M

n′

2
max
p∈Mi

f(p) =
n′

2

∑
Mi∈M

max
p∈Mi

f(p) (3.2)

>
∑
Pi∈P

f(Pi) (3.3)

≥ n2, (3.4)

and further ∑
Mi∈M

max
p∈Mi

f(p) >
2n2

n′
. (3.5)

Now we show that

S(γI)− S(γ) ≥
∑
Mi∈M

max
p∈Mi

f(p).

Consider γ′, the (unsaturated) configuration which is given by taking the polymers in γ

and splitting them into pairs of top and bottom monomers based on the matchings Mi.

Each bottom monomer is in a polymer with exactly one top monomer, so S(γI) = S(γ′).

For each Pi with sorted matching Mi in P , consider the pair p satisfying maxp∈Mi
f(p).
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We know that in γ, each polymer Pi with p ∈ Mi must have size at least 2(f(p) + 1) by

Lemma 26. So Pi must be a polymer containing at least f(p) other pairs. So

S(γ′)− S(γ) ≥
∑
Mi∈M

max
p∈Mi

f(p).

Since S(γI) = S(γ′), Eq. 3.5 gives us S(γI)− S(γ) > 2n2

n′
= 2n+ 1.

Theorem 28. Given an (n, n2)-translator cycle, b(γI , γT ) ≥ n
2+n−1 .

Proof. We split the possible paths from γI to γT into three cases. Case 1: if a saturated

path is normal form and n′-bounded, we have by Lemma 23 that for any γi in the path,

f(γi) = f(γI) = 0. Consider the final configuration on the path, the triggered configura-

tion γT . By definition, in γT there exists at least one pair of each bi bound to ti−1 (mod n)2 .

Each of these pairs has offset minus one, contributing minus n2 to the offset. However, we

know that the configuration offset must be zero. So there must exist a subset of polymers

P = {P1, . . . , Pk} such that
∑k

i=1 f(Pi) ≥ n2, so by Lemma 27, S(γI)− S(γT ) > 2n+ 1.

Case 2: if a path is not normal form, then by Lemma 17, there exists a configuration

γ with a polymer with n top monomers. Let k be the total number of top monomers in

the cycle and note that S(γI) = k. Then by Observation 14, S(γ) ≤ k − n + 1. Then

S(γI)− S(γ) ≥ n− 1.

Case 3: if a path is normal form but is not n′-bounded, then by definition there exists

a polymer of size at least n′ with an equal number of top and bottom monomers; i.e., a

polymer with at least n′

2
top monomers. Let k be the total number of top monomers in

the cycle and note that S(γI) = k. Then by Observation 14, S(γ) ≤ k − n′

2
+ 1. Note

that S(γI) = k. Then S(γI)− S(γ) ≥ n′

2
− 1 = n2

2n+1
− 1.

By Corollary 8, we restrict analysis to saturated paths. Then H(γI) = H(γ), and so

E(γ) − E(γI) = − (S(γI)− S(γ)). Among the three cases, the smallest lower bound on

the height is n2

2n+1
, so the barrier is at least n2

2n+1
= n

2+n−1 .

3.1.2 Proof of Barrier

Lemma 18. If a polymer P is in a normal form saturated configuration and |P | < 2n+1,

then there exists a perfect matching on GP .
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Proof. Given a set S of vertices, let N(S) be the set of vertices adjacent to a vertex in S.

Hall’s condition states that a perfect matching exists on a bipartite graph {V1, V2, E} if

and only if for all subsets S ⊆ V1, |S| ≤ |N(S)|. We prove this holds for GP .

Consider any subset S ⊆ B. There are n|S| starred (limiting) binding sites. The

number of sites on compatible top monomers for the set S is given by (n + 1)|N(S)|.

Since P is saturated, the n|S| starred sites must be bound to the (n+ 1)|N(S)| unstarred

sites, so we have n|S| ≤ (n+1)|N(S)|. If |S| > |N(S)|, Lemma 16 gives us that |S| > n+1

and |N(S)| > n, so to avoid contradicting the assumption that |P | < 2n + 1, it must be

that |S| ≤ |N(S)|.

Lemma 22. For an n′-sized polymer P in a normal form saturated configuration, for

any two perfect matchings M and M ′ on GP , f(M) = f(M ′).

Proof. Intuitively, first we will shift the indices of the top and bottom monomers so that

the leftmost index has value zero. Let cP be a cutoff value given by Lemma 20. We

rewrite each bi or ti as bi−cP mod n2 or ti−cP mod n2 . Since originally no edge crossed the

cutoff, now no edge crosses zero. Note that this does not change the offset of any pair

and thus does not change the offset of any matching. For each f(bi, tj), since no edge

{bi, tj} crosses zero we can think of the indices on a line, so we can rewrite the offset

as f(bi, tj) = j − i. Then f(M) =
∑

k(jk − ik) =
∑

k jk −
∑

k ik. This expression is

independent of the matching and only depends on the indices of the monomers in the

polymer, so for any two matchings M and M ′, f(M) = f(M ′).

Lemma 24. Given an n′-sized polymer P with cutoff cP , there exists a sorted matching

M on GP which satisfies that there does not exist {bi1 , tj2}, {bi2 , tj1} ∈M with i1 ≤ i2 and

j1 ≤ j2 with respect to the ordering given by the cutoff value, [cP , cP − 1]n2.

Proof. Given any matching M ′ which is not sorted, we show that we can swap the offend-

ing edges, resulting in a new matching which is in sorted order. Let Sik be [ik − n, ik +

n − 1]n2 , the sequence giving the indices of compatible top monomers for bik . For any

{bi1 , tj2}, {bi2 , tj1} ∈ M with i1 ≤ i2 and j1 ≤ j2, note that j2 ∈ Si1 and j1 ∈ Si2 . The

orderings given by the sequences Si1 , Si2 are the same orderings as given by [cP , cP −1]n2 ,
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Figure 3.3: The monomer types in the grid gate TBN for the case n = 4. In the figure, any two digit
number ij represents domain xij , e.g. x∗23 is represented as 23∗.

since Si1 , Si2 are both subsequences of [cP , cP−1]n2 . Since i1 ≤ i2, Si1 contains no elements

greater than any of those in Si2 , and Si2 contains no elements less than any of those in Si1 .

So j2 ∈ Si1 and j1 ∈ Si2 with j1 ≤ j2 gives that both j1, j2 ∈ Si1 and further j1, j2 ∈ Si2 .

So both tj1 and tj2 are compatible for both bi1 and bi2 . Since the edges of GP are be-

tween bottom monomers and their compatible tops, we can swap {bi1 , tj2}, {bi2 , tj1} with

{bi1 , tj1}, {bi2 , tj2} and the result is a matching on GP . So given any perfect matching on

GP , we can construct a sorted matching by swapping the offending edges one-by-one.

3.2 Grid gate

3.2.1 Construction

Consider the TBN illustrated in Fig. 3.3. We focus on two polymer types GH and GV

depicted in the figure, and show that there is a barrier n ∈ N to convert GH to GV

and vice versa. We parameterize the construction by n as follows. Define the following

monomer types: “horizontal” Hi = {xij}nj=1 for i ∈ {1, . . . , n}, “vertical” Vj = {xij}ni=1 for

j ∈ {1, . . . , n}, and “gate” G = {x∗ij}ni,j=1. In the notation of chemical reaction networks,
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the net reaction

GH 
 GV

can occur in the presence of sufficiently many free Hi’s and Vj’s, but an energy barrier

of n must be surmounted in order for this conversion to happen. In Section 3.2.3 we will

show how this energy barrier can be reduced to 1 in the presence of a catalyst monomer,

corresponding to the chemical notion of a catalyst reducing the activation energy required

for a reaction to occur.

Note that throughout this section, the configurations considered are saturated, so

that for two configurations γ and δ, we have H(γ) = H(δ), and so E(δ) − E(γ) =

− (S(δ)− S(γ)). That is, the energy difference between two configurations is the opposite

of the difference in their polymer counts.

We fix a network Tgg that contains any number of any of these monomer types, so long

as there are enough of other monomers to completely bind all the G monomers (i.e., in

saturated configurations there are no exposed starred sites). We define base configurations

of the network to be those configurations that contain polymers of type GH or GV , with

all other monomers in separate polymers by themselves. In Theorem 35 we show that

these base configurations are stable (take m = 0).

The following lemma establishes a necessary condition in any saturated configuration:

that any G must be in a polymer with either all of the horizontal monomers or all of the

vertical monomers.

Lemma 29. In a saturated configuration of Tgg, a polymer containing G also contains

{Hi}ni=1 or {Vj}nj=1 as a subset.

Proof. Suppose a polymer contains G but neither Hi nor Vj for some i and j. Then site

x∗ij on G is exposed, and so by definition of Tgg, the configuration is not saturated.

3.2.2 Proof of Barrier

The following theorem then establishes that any saturated configuration in Tgg is self-

stabilizing, that is, it can reach a stable (base) configuration via a path with barrier 0 (i.e.

using all splits).
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Theorem 30. For any saturated γ of Tgg, some base π has γ � π.

Proof. Consider a saturated configuration γ. Suppose γ has a non-base polymer 1. If 1

contains no G, then we can split into polymers of type H, V . Otherwise, 1 contains G,

and by Lemma 29 we can split off a GV or GH polymer. The theorem holds by repeating

this process.

Note that since the base configurations are stable (this follows from Theorem 35 with

m = 0), and by Theorem 30 any other saturated configuration can reach a base configu-

ration using only splits, the base configurations are also the only stable configurations in

this network.

We now prove the desired energy barrier between different base configurations.

Theorem 31. The barrier between different base configurations of Tgg is n.

Proof. Consider a saturated path 1 from a base configuration γ to another, δ. Notice that

δ 6� γ. So δ 6� γ. So some first β along 1 has β 6� γ. But by Theorem 30, some other

base π 6= γ does have β � π.

Now take α just before β along 1. Then α � γ by definition of β. Since α and β

are adjacent on 1, either α ≺1 β or α �1 β. The latter contradicts β 6� γ. So α ≺1 β,

implying α � π.

Let f(γ) count the H monomers with a G in γ. Since γ and π are different bases,

wlog, f(π) ≥ n + f(γ). Consider a path of k merges corresponding to γ � α. It can

increase f(·) by at most k. So f(α) ≤ f(γ) + k. A path of splits does not increase f(·),

so α � π implies f(α) ≥ f(π). So we get

k ≥ f(α)− f(γ) (3.6)

≥ f(π)− f(γ) ≥ n. (3.7)

So S(γ)− S(α) = k ≥ n.

3.2.3 Catalysis

The kinetic barrier shown for the grid gate can be disrupted by the presence of new

monomer types. In fact, the model admits a catalyst monomer C that lowers the energy
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Figure 3.4: Catalysts and autocatalysts in the grid gate TBN for the case n = 4. left: C is a single
monomer that acts as a catalyst to convert between GH and GV . middle: Modified vertical monomers
{Ṽj}nj=1 with extra sites. right: After C converts GH to GṼ with modified vertical monomers, GṼ has
the same excess sites as C and acts as a catalyst itself (i.e. is “active” as a catalyst).

barrier from n to 1, i.e., in the presence of one or more C, a GH can be converted into

a GV , and vice versa, with a sequence of merge-split pairs. In the notation of chemical

reaction networks, this binding network implements the net reaction

GH + C � GV + C

with energy barrier 1, while maintaining a large energy barrier for the reaction GH � GV .

For the grid gate of size n × n, we define a catalyst: C = {xij | 1 ≤ j ≤ i ≤ n}

illustrated in Fig. 3.4 (left). C is a monomer consisting of the “lower triangle” of the

unstarred sites. The mechanism by which C can transform GH to GV with merge-split

pairs is by an alternating processes of merges and splits shown in Fig. 3.5. Intuitively, in

each step of the catalyzed reaction GH + C → GV + C, G switches its association with

Hi (left) to its counterpart on Vj (right) by merging the evolving polymer (center) with

Vj and then splitting off Hi.

Consider a network {G,C} ∪ {Hi}ni=1 ∪ {Vj}nj=1 which includes one instance of every

monomer type that has been introduced, as well as the catalyst. As before, we shall be
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Figure 3.5: Full pathway for reaction GH + C → GV + C. In each stage, exactly one merge and one
split occurs, and the center polymer remains saturated.

36



interested in net transitions between GH and GV , and so for this network we define the

following configurations: γCH = {GH , C} ∪ {Vj}nj=1 and γCV = {GV , C} ∪ {Hi}ni=1.

Theorem 32 states that transitions in the single-copy case, having arbitrarily large

energy barriers according to Theorem 31, in the presence of C have their barrier reduced

to one.

Theorem 32. b(γCH , γ
C
V ) = b(γCV , γ

C
H) = 1.

Proof. Consider the following saturated merge-split pathway that begins with configura-

tion γCH and ends with γCV (illustrated in Figure 3.5).

• Merge GH with C.

• Split Hn from the resulting polymer P1.

• For 1 ≤ i ≤ n − 1, iteratively merge Vi+1 with Pi, then split Hi from Pi to form

Pi+1.

• Merge V1 with Pn and split off C to form GV .

This path maintains saturation while never decreasing the polymer count by more

than one, and so by Corollary 8 we have that b(γCH , γ
C
V ) ≤ 1. As it is not possible to reach

γCV from γCH in a saturated merge-split path that uses only splits, it will not be possible

to have a zero barrier, giving b(γCH , γ
C
V ) = 1.

This merge-split path can be be executed in the reverse fashion to show that b(γCV , γ
C
H) =

1.

To generalize the result to the multi-copy setting, we first observe that the height 1

pathway guaranteed in Theorem 32 still exists. What remains is to show that the base

configurations, plus zero or more separate catalyst monomers, are stable.

In the arguments that follow, it will be useful to define the setD↑ = {xi,i+1}n−1
i=1 ∪{xn,1},

which consists of the domains from the “shifted diagonal”. For m ∈ N, and let T mgg =

Tgg ∪ {m · C} denote the TBN Tgg with m additional catalyst monomers.
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The next lemma states that each G in a polymer in a saturated configuration must

be accompanied by n additional monomers, thus giving a lower bound on the size of any

polymer as a function of the number of G’s contained within it.

Lemma 33. If there are k G’s in a polymer P in a saturated configuration δ of T mgg , then

|P | ≥ k(n+ 1).

Proof. Consider the domains from D↑. As the starred versions of these domains are

present on each G, to maintain saturation in δ, it must be the case that each G in δ is

joined in P with a set of monomers that include these domains; however, no monomer in

{C,H1, . . . , Hn, V1, . . . , Vn} has more than one of these domains. Thus, to be saturated,

if there exist k instances of G in P , there must be at least kn additional monomers in P

to bind the above chosen domains.

The following lemma uses Lemma 33 to show that no saturated configuration has

more polymers than are contained in the base configurations, even when some catalyst

monomers are present.

Lemma 34. If there are k G’s in T mgg , then any saturated configuration δ has S(δ) ≤∣∣T mgg ∣∣− kn.

Proof. Consider the polymers P1, . . . , Pj in δ containing all k copies of G, where Pi has

ki copies. Then by Lemma 33,
∑
|Pi| ≥

∑
ki(n + 1) = k(n + 1). So S(δ) ≤ j +

∣∣T mgg ∣∣ −
k(n+ 1) ≤ k +

∣∣T mgg ∣∣− k(n+ 1) =
∣∣T mgg ∣∣− kn.

The next Theorem establishes that the base configurations, which were stable in the

original network Tgg, are still stable even if any number of catalysts should also be present

in the network.

Theorem 35. Let m ∈ N and let γ be a base configuration of Tgg. Then γm = γ∪(m · {C})

is stable.

Proof. The base configurations satisfy Lemma 34 with equality, thus they are stable.

38



These results show that the catalyzed network is copy tolerant; that is, it behaves in

the expected way even should the amounts of the constituent monomers (and catalyst)

vary.

3.2.4 Autocatalysis

The grid gate can also be modified to act in an autocatalytic manner. By modifying the

vertical monomers it is possible for GV to have a set of exposed monomers acting as a

“catalyzing region”, which has the same structure and function as C (see Figure Fig. 3.4,

middle and right).

To obtain an autocatalytic system, we modify the vertical monomers of the network

to include additional sites that, when combined with G, form a catalyzing region that can

act in the same manner as the catalyst C. See Figure Fig. 3.4 for an illustration.

Formally, we define the modified vertical monomers (see Fig. ) as:

Ṽj = {xij}ni=1 ∪ {xij}ni=j

We define GṼ = {G} ∪ {Ṽj}nj=1 to be the version of GV that uses the modified

monomers. This polymer is the so-called auto-catalyst.

We now consider the network T̃gg = {2 · G} ∪ {Hi}ni=1 ∪ {2 · Ṽj}nj=1 which includes

enough monomers to create the autocatalyst as well as retain enough monomers to analyze

transitions between GH and GṼ . The two configurations that we will be most interested

in are:

γ̃H = {GH , GṼ } ∪ {Ṽj}nj=1

γ̃V = {2 ·GṼ } ∪ {Hi}ni=1

The following theorem establishes that the autocatalyzed configurations γ̃H and γ̃V

are stable, with a low energy barrier between them in the presence of the autocatalyst.

Theorem 36. γ̃H and γ̃V are stable.

Proof. Note that there are 3n+2 total monomers in T̃gg, and that S(γ̃H) = S(γ̃V ) = n+2.

To show that these are stable, it suffices to show any other saturated configuration δ obeys

S(δ) ≤ n + 2. Consider the set of domains D↑ = {xi,i+1}n−1
i=1 ∪ {xn,1}, as in Lemma 33.
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Each monomer has at most one of each type of these domains, and except for xn,1, has

exactly one instance of each. The exception is Ṽ1, which has two instances of xn,1.

Let δ be any saturated configuration of T̃gg. We consider two cases: 1) that the G’s

are in separate polymers, and 2) that the G’s are in the same polymer. In the case that

the G’s are in separate polymers, as each G contains the starred versions of the n domain

types in D↑, each polymer P with a single G must have n additional monomers to bind

each of the starred versions of these domains. Note that in this case a single Ṽ1 cannot

bind both instances of x∗n,1, for this would result in both G’s being on the same polymer.

This leaves at most (3n+ 2)− 2(n+ 1) = n remaining monomers. Thus S(δ) ≤ n+ 2.

Now consider the case that the G are present in the same polymer. Let P be a

polymer in δ that contains two G’s. Then in P , the two instances of site x∗n,1 can be

bound to one instance of Ṽ1. (Note that if there were two Ṽ1 in this polymer, then one

copy could be split into its own polymer while still maintaining saturation, increasing S

and putting us in the first case). The remaining sites in D↑ of these G’s must be bound

to monomers containing 2 · {xi,i+1}n−1
i=1 . No single monomer contains more than one site

from this set, so this requirement must be satisfied by the inclusion of 2(n− 1) additional

non-G monomers in P . Then there are at least 2n + 1 monomers in P , leaving at most

(3n+ 2)− (2n+ 1) = n+ 1 additional monomers. Thus S(δ) ≤ 1 + (n+ 1) = n+ 2.

Since δ was arbitrary, this shows γ̃H and γ̃V have maximal S, thus are stable.

In particular, the desired feature of this network is that GṼ acts as an autocatalyst.

Theorem 37. b(γ̃H , γ̃V ) = 1.

Proof. Figure Fig. 3.4 shows that the exposed sites of GṼ are exactly the sites of C. The

proof then follows as in Theorem 32.

Like the catalyzed network, the results for the autocatalyzed network can be extended

to the multi-copy case. The proof follows in straightforward fashion by an inductive

argument.
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Figure 3.6: The grid gate shown as sets of binding sites (left) and in a more compact notation (right)
where monomers with unstarred domains are shown as the same-color points in a single grid in 2D. The
template monomer G and the unbound monomers are implicit. The geometric depiction does not imply
any underlying geometric arrangement, but is merely for ease of illustration and to aid in analysis.

3.3 Reducing binding site complexity for multistable

TBNs

In this section we consider the problem of creating as many states as possible, with

programmable barriers to transitioning between states. The main result of this section,

Theorem 38, shows that n+1 states can be constructed using monomers of size n (and one

of size n2), with catalysts that lower the energy barrier to 1 between specific pairs of states

while maintaining an energy barrier of n/4 between all other pairs of states. However,

multiple catalysts of different types cannot be present simultaneously while maintaining

the energy barriers between unwanted pairs of states. It is an open problem to do so with

reduced binding site complexity.

In this section we omit a copy-tolerant analysis (that is, an analysis of the case in

which the system is a union of many duplicates of the base design) concentrating on

the case where there is exactly one of each monomer type. However, we are confident

that techniques from our previous work [9] can be used to prove copy-tolerance for the

construction in this section as well.

Rather than generalizing the grid gate to higher dimensions, in this section we stick

to 2 dimensions but generalize how we partition the points into state monomers. Fig. 3.6

shows a notational shorthand in representing the TBNs in this section. Since all binding

sites are elements of the geometric space [n]2 for some n ∈ N+, we represent them as sets

of points in 2D Euclidean space, without always labeling each binding site. It is assumed

there is always one undepicted template monomer G with a single starred version of every
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point in [n]2, so only monomers with unstarred domains are depicted.

Formally we define a state to be a partition of the binding sites [n]2 into n monomers

M1, . . . ,Mn, each with n binding sites. A polymer represents a particular state if it con-

tains one of each monomer in that partition joined together with the template monomer G.

In this notation, the original grid gate has two states: “horizontal” H = {H0, . . . , Hn−1}

and “vertical” V = {V0, . . . , Vn−1}, where Hi = {(x, i) | x ∈ [n]} and Vj = {(j, y) | y ∈

[n]}.

In this section we consider a single copy of template monomer G, and thus we can

identify states with configurations of the TBN. As before, we require these configurations

to be stable. If a catalyst is present, there will be additional stable configurations (in-

tuitively transitioning between states). In a configuration corresponding to a state, the

catalyst must be unbound.

3.3.1 Golfergate: Pairwise intersection 1 of state monomers

Recall the grid gate from Fig. 3.3. Without the catalyst, there is a barrier of n for any

monomers to displace anHi fromGH because, for eachHi ∈ H and eachM ∈ V ∪H\{Hi},

|Hi ∩M | ≤ 1. That is, the pairwise intersection of Hi with any other monomer in the

network is at most one. Thus n monomers must merge to GH before any Hi can be split.

Note that this is stronger than merely requiring a barrier of n to transition all the way

from state H to V . It shows that the construction is “self-stabilizing”: any configuration

reached via paths of height < n can return to the start just by splitting.

Motivated by this observation, we require that any additional state P also has the

property that each of its state monomers has pairwise intersection at most 1 with each

other state monomer in the network; then a barrier of n will remain to remove any

monomer of a state from the polymer. We consider the problem of finding as many states

as possible, where each state is a set of n disjoint monomers, each of n binding sites from

the set [n]2, i.e., each state is a partition of [n]2 into n sets of size n each, with pairwise

intersection 1 between monomers of different states.

Let n ≥ 2 and let P @ [n]2 denote that P = {M0, . . . ,Mn−1} is a partition of [n]2 into

n sets M0, . . . ,Mn−1 ⊂ [n]2 of cardinality n each. Let p(n) be the largest number of such
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partitions of [n]2 such that all pairs of sets M,M ′ in the various partitions have pairwise

intersection ≤ 1; formally,

p(n) = max{k ∈ N | ∃P1, . . . , Pk @ [n]2 such that

∀i 6= j (M ∈ Pi ∧M ′ ∈ Pj) =⇒ |M ∩M ′| ≤ 1}.

Note that this definition would be equivalent if we had written “= 1” instead of “≤ 1”;

for if an intersection were 0, by pigeonhole another would be ≥ 2.

This characterization of partitions with “pairwise intersection 1” is equivalent to the

Mutually Orthogonal Latin Squares problem in combinatorics, and is a special case of the

Social Golfers problem [21, Ch. 22],[1], motivating the golfergate name of the construction

of Theorem 38. The following are well-known and easy to show for all n ≥ 2:

1. p(n) ≥ 3. The “diagonal” D of Section 3.3.3 works as a third partition.

2. p(n) ≤ n + 1. Any partition P 6= V has some set M ∈ P containing (0, 0). The

point (1, i) ∈ V1 ∩M is unique to P : for any partition P ′ 6= P , defining M ′ ∈ P ′

to contain (0, 0), we must have (1, i) 6∈M ′, or else |M ∩M ′| ≥ 2. Since there are n

choices for i, there are ≤ n partitions other than V .

The following are also known, though not as straightforward as the above facts:

1. If n is a prime power, then p(n) = n+ 1 [21]. Fig. 3.7 shows an example.

2. For some n not a prime power, p(n) < n+ 1; e.g., p(6) = 3 [51].

3. If n = pe11 p
e2
2 . . . pekk where pi is prime, then p(n) ≥ mini{peii + 1} [21].

Thus, an infinite (and relatively “frequent”) number of n realize the upper bound

of n + 1, producing a number of states that scale linearly with n. A Golfergate network

containing all of the monomers of Fig. 3.7 simultaneously has six stable configurations and

retains an energy barrier of n to transition between them (assuming no other monomers in

the system, such as catalysts). An intriguing property of such dense networks is that they

admit catalysts, which we describe in the next subsection, albeit catalysts that cannot be

present simultaneously.
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Figure 3.7: Example of n = 5 golfergate having n + 1 = 6 states with intersection ≤ 1 between any
pair of monomers. The construction is explained in the proof of Theorem 38, where these groups of
monomers are called P0 through P5. Note that each monomer is (in the field of size 5) a “line of slope
s” for s ∈ {0, 1, 2, 3, 4,∞}.

3.3.2 Catalysts

If we have states P1, . . . , Pk @ [n]2, then for each 1 ≤ q 6= r ≤ k, a catalyst Cqr is a

monomer that reduces the barrier between Pq and Pr to 1, while maintaining a barrier of

Ω(n) between any other pair of states.

A barrier-1 path between states is a sequence of merge-split pairs. Suppose state q

has monomers {Q0, . . . , Qn−1}, and state r has monomers {R0, . . . , Rn−1}. The catalytic

pathway merges Cqr with the polymer representing a state q, then for each i ∈ [n], splits

Qn−i−1, followed by merging Ri, and finally splits Cqr.

We now show that a large energy barrier (n) is impossible in the golfer gate for any

construction of catalysts. Instead the golfer gate barrier is at most
⌊
n+1

2

⌋
if another

catalyst is present.

We first argue that |Cqr| = n(n+1)
2

, and then show that this implies the barrier upper

bound. Observe that Qn−1 ⊆ Cqr for Qn−1 to split immediately after Cqr merges. Further,

Qn−2 * Cqr since otherwise Qn−2 would immediately split without an intermediate merge,

and the configurations corresponding to states q and r would not be stable. Since Qn−2

splits upon merging of R0, we have Qn−2 ⊆ Cqr ]R0.

Continuing by induction shows that to achieve such a catalytic pathway, for each

i ∈ [n], we must have |Cqr ∩ Qi| = |Cqr ∩ Ri| = i + 1. This condition implies that

|Cqr| =
∑n−1

i=0 (i+ 1) = n(n+1)
2

.

Let state t 6∈ {q, r} be another state with monomers T0, . . . , Tn−1. By the symmetry of

barriers between stable configurations of a network, it suffices to show that there remains

a large energy barrier to displace any Ti, i.e., to convert t to another state. Intuitively,

we must ensure |Cqr ∩Ti| is small for all i ∈ [n]. The smallest such intersection achievable
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Figure 3.8: Example golfergate with three states. The catalyst binding sites are shown in light blue. A
black arrow indicates a reaction pathway which is catalyzed by the catalyst monomer connected to the
arrow with a blue line.

for all i, is to have |Cqr ∩ Ti| =
⌈
n+1

2

⌉
for at least one i since |Cqr| = n(n+1)

2
. This results

in an energy barrier of
⌊
n+1

2

⌋
. This minimum is achieved with the three-state TBN of

Section 3.3.3.

3.3.3 Three states

As a first example of a golfergate with more than two states we can consider a new state

D = {D0, . . . , Dn−1} consisting of the “diagonal” lines on the grid. Fig. 3.8 illustrates

the states and the respective catalysts between them. Although Section 3.3.4 shows how

to achieve more than three states, this is provably impossible for some values of n (e.g.,

n = 6 [51]). The three-state TBN described here works for any value of n ≥ 2, and retains

a barrier n/2 to uncatalyzed state transitions.

This example helps to illustrate many of the key concepts used in the more complex

construction of Section 3.3.4: each pair of monomers has intersection ≤ 1, each catalyst

C intended to catalyze a set of monomers has the property that the monomers can be

put in an order M0, . . . ,Mn−1 so that |C ∩Mi| = i+ 1, and for any monomer M not part

of a state catalyzed by C, |C ∩M | is “significantly” smaller than n (n/2 in this case).

We omit a detailed analysis of this system, as it is simple to verify these properties by

inspection. The next section shows how to extend to more than three states.
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3.3.4 Many states

This section describes our golfergate construction for an arbitrarily large number of states.

Let n be any prime power; our construction achieves up to n+ 1 states.

Intuitively, the construction works as follows. We take one of the states to be GV (as

in Fig. 3.3); we then construct the other n states by envisioning monomers as functions

fib(x) over the field Fn with the form i ·x+ b. Fig. 3.7 shows an example of a complete set

of states for the case that n = 5. In each state, the blue monomer has b = 0 and passes

through the origin in the lower left; note that the slopes of the different partitions are

the integers from 0 to n− 1. All other monomers in the same partition are vertical shifts

of that monomer (b 6= 0), wrapping points from top to bottom if they go above the top

line. Since the integers mod a prime n are a field with addition and multiplication being

defined modulo n, this degree-1 polynomial obeys the property that its intersection with

any other degree-1 polynomial is at most 1.

Note that it is not the case in general that the construction gives such visual intuition

(e.g. for non-prime n), and in the theorem below we prove that the construction holds in

the more general case that n is a prime power.

Theorem 38. Let n ∈ N be a prime power. Then there are n+ 1 states P0, . . . , Pn @ [n]2

such that the following holds. For any q 6= r, there is a barrier of n to convert between Pq

and Pr.

Proof. Because n is a prime power, there is a finite field Fn of size n. For the remainder

of this proof, when the operations of addition and multiplication are indicated, they refer

to the canonical field operations in Fn.

Let the partition Pn = V as in Fig. 3.6 (right). We will define the other partitions

P0, . . . , Pn−1 as the families of graphs of first-order polynomials in Fn that have the same

coefficient on their first-order term; formally Pi = {pib(x)}b∈[n−1] = {i · x + b}b∈[n−1] for

each i ∈ [n− 1].

These define partitions: For any i and any two b 6= c, pib(x)− pic(x) = b− c 6= 0 (any two

functions in the same partition are a nonzero additive constant apart), so pib does not

46



Figure 3.9: Catalyst Chv of Theorem 38, converting between states H and V with energy barrier 1,
while retaining energy barrier n/4 between all other pairs of states, for n = 13.

intersect pic. Thus the monomers in Pi are pairwise disjoint. Since there are n monomers

with n binding site types each, their union is [n]2.

They obey the pairwise intersection ≤ 1 property: Let i, j, b, c ∈ [n] with i 6= j. Then

pib(x)− pjc(x) = (i− j) · x+ (b− c) is a linear polynomial with coefficient (i− j) 6= 0. By

the Fundamental Theorem of Algebra (which holds in Fn), this polynomial has at most

one root. Thus pib intersects pjc on at most (in fact exactly) one point. As observed in

Section 3.3.1, this pairwise-one intersection property gives the desired barrier of n.

We now describe the construction for a catalyst. The particular construction we give

is a catalyst Chv converting between H and V , and is depicted in Fig. 3.9. It is designed

to maintain an energy barrier of n/4 to displace any other monomer (those with positive

finite slope). We will provide justification for why this catalyst works for prime n by

appealing to its continuous equivalent.1

Intuitively, a catalyzed pathway exists because the catalyst intersects H monomers

and V monomers in a decreasing order, starting with intersection n and progressing down

to intersection 1, enabling a pathway functionally similar to that in Fig. 3.4.2 It maintains

energy barrier of n/4 to displace any other monomer (those with positive finite slope) by

the following arguments. Monomers of slopes 1 and n− 1 (also is slope −1 in the field of

size n) are special cases that intersect Chv on 3n/4 points in the worst case. Monomers

of even slope can be shown to have at least 1/4 of their points lying in the upper-left

1It is easier to give intuition in the case that n is prime, for if n is prime, the field operations in Fn are
the normal integer addition and multiplication modulo n, and this paradigm admits certain geometric
intuitions as they relate to slopes of lines. The construction presented in this section would need to be
modified for grids of non-prime dimension.

2For H, the order is H0, H1, . . . ,Hn−1. For V , the order is
Vbn/2c, Vbn/2c+1, . . . , Vn−1, Vbn/2c−1, Vbn/2c−2, . . . , V0.
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“quadrant”, which is entirely outside of Chv. Monomers of odd slope have Θ(n) points in

this quadrant, but must also appeal to the other vacant regions of the graph in order to

obtain n/4 points that do not intersect the catalyst. Then to displace any such monomer

requires an additional≈ n/4 monomers, since each monomer can only displace one binding

site.

While the construction of Chv seems to be somewhat specific to the states H and V ,

this construction can be permuted in such a way as to catalyze between any two pairs of

states. Specifically, for each q, r such that {q, r} 6= {h, v}, a linear transformation Tqr can

be applied that permutes binding sites such that q becomes h and r becomes v. Because

the transformation and its inverse T−1
qr are linear operations performed on linear functions,

they preserve the high barriers between other pairs of states. The desired catalyst is thus

obtained by defining Cqr = T−1
qr (Chv).

The energy barrier achieved with this catalyst, though scaling linearly with n, is not

exactly n. In fact this is a necessary consequence of our setup that reuses the same binding

sites in [n]2 to have more than two states. Even for the three-state system described in

Section 3.3.3, any catalyst Chv must have at least n(n+1)
2

binding sites. This is true by

the Generalized Pigeonhole Principle, for any other state with monomers M0, . . . ,Mn−1,

there is an i ∈ [n] such that |Chv ∩Mi| 6= (n+ 1)/2, lowering the barrier to displacing Mi

to at most n/2.

We conjecture that catalysts exist that retain a (maximal) barrier of n/2 to path-

ways between uncatalyzed states. Numerical experiments seem to confirm a probabilistic

argument that with high probability such catalysts exist in cases for prime values of n.

3.3.5 Catalyst with Barrier n/2−
√
n lnn

We first describe a random process that creates a random catalyst Cσ that converts

between H and V . Let σ : [n] → [n] be a uniform random permutation. Then we can

define the catalyst

Cσ = {(x, y) ∈ [n]2 : y ≤ σ(x)}.

If σ is the identity permutation, this gives the original triangle-shaped CHV catalyst.

Thus what we have here is a random permutation of the columns. By symmetry, the
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same proof holds that Cσ is a catalyst between the states H and V .

We now consider the barrier to pathways between uncatalyzed states. We will show

that some random choice of Cσ has a barrier of n/2−
√
n lnn. This comes from an upper

bound on the overlap Cσ ∩M for any other monomer M , which will give by the union

bound an upper bound on the overlap with any other monomer. Thus for large enough

values of n, we can have barrier cn for c arbitrarily close to the optimal value of 1/2.

Let M be an arbitrary monomer that is not an H or V monomer. Thus M contains

exactly one element in each row and column, and we can represent M : [n] → [n] as a

permutation. Then let the random variable X = |Cσ ∩M |. Summing over the columns

of Cσ, we can write X as the sum of indicators

X =
n∑
i=1

1σ(i)≥M(i) =
n∑
i=1

1M−1(σ(i))≥i

Since M−1 ◦ σ is also a uniform random permutation, X has the same distribution as the

number of weak excedences in a uniform random permutation [49] (the number of values

i such that σ(i) ≥ i).

By linearity of expectation, it is straightforward to calculate

E(X) =
n∑
i=1

i

n
=
n+ 1

2
,

but we require a large deviation bound for P (X > n
2

+ t). These indicators are not

independent, so a straightforward Chernoff bound will not work. Instead, we will identify

a different random process with the exact same distribution as X that is easier to analyze.

By Propisition 1.4.3 in [49], there is a bijection that shows that the number of permu-

tations σ ∈ Sn with k weak excedences is the same as the number of permutations with

k − 1 descents : values i such that σ(i+ 1) < σ(i)3. Thus X has the same distribution as

1 + |{i : σ(i+ 1) < σ(i)}| for a uniform random permutation σ.

We now describe a process that generates a uniform random permutation, to give

an even more convenient process with the same distribution as X. Let U1, . . . , Un be

IID uniform[0, 1] random variables. Let Sj =
∑j

i=1 Ui denote the partial sums, and

3This is referred to as the Eulerian number A(n,k).
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Fj = Sj − bSjc denote the fractional part of the partial sums. It is straightforward

to verify that F1, . . . , Fn are also IID uniform[0, 1] random variables. Now since the

Fi are distinct with probability 1, let σ be the permutation given by the order of the

Fi: σ(i) = |{j : Fj ≤ Fi}|. Since the Fi are IID, their order σ is a uniform random

permutation. Now

σ(i+ 1) < σ(i) ⇐⇒ Fi+1 < Fi ⇐⇒ bSi+1c > bSic ,

thus the number of descents in σ exactly counts the number of times the partial sums

increment past an integer. Thus X has the same distribution as 1 + bSnc.

Now we can bound

P (X >
n

2
+ 1 + t) = P (bSnc >

n

2
+ t) ≤ P (Sn −

n

2
> t)

using Hoeffding’s Inequality. Since Sn is the sum of independent variables bounded in

[0, 1] and E(Sn) = n/2, taking t =
√
n lnn gives

P (Sn − n/2 > t) < e−2t2/n = 1/n2.

This is a bound on the probability that Cσ overlaps a fixed monomer at more than

n/2 +
√
n lnn + 1 binding sites. Thus displacing the monomer M will require at least

n− (n/2 +
√
n lnn+ 1) + 1 = n/2−

√
n lnn merges.

Now there can be at most n(n − 1) other monomer types (excluding the H and V

monomers), so taking the union bound over all monomer types gives

P (Cσ has barrier < n/2−
√
n lnn) <

n(n− 1)

n2
< 1.

Thus there exists some catalyst Cσ that leaves a barrier of at least n/2 −
√
n lnn to all

other pathways.
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Chapter 4

PSPACE-completeness of

Reachability

4.1 Introduction

Our main result in this chapter is that the following problem is PSPACE-complete: given

two configurations of a TBN, compute the energy barrier between them (more precisely, its

decision variant: given threshold τ , is the barrier ≤ τ?). This follows via several interme-

diate results that may be of independent interest, concerning simulation and reachability

in CRNs.

In Section 4.5, we show how a TBN can simulate a CRN, with programmably large

energy barrier to any spurious reaction occurring in the absence of any of its reactants, if

the CRN obeys four constraints. The simulated CRN must be (1) reversible: all reactions

are reversible, (e.g., A+B
C +D), (2) catalytic: in each reaction, exactly one reactant

changes (i.e., all other reactants are catalysts, e.g., A+B +X
A+B + Y , also written

X
A+B←−−→ Y ), (3) binary : each species comes in two forms SF and ST , and can only be

changed between these two (e.g., SF
A+B+C←−−−−→ ST ), and (4) catalytically non-competitive:

if a non-catalytic reactant S appears in multiple reactions, each has only one catalyst,

e.g., SF
C1←→ ST and SF

C2←→ ST .

In our simulation of a chemical reaction (e.g., SF
A+B+C←−−−−→ ST ) with a TBN, changing

SF to ST in the presence of k catalysts (e.g. A, B, and C) can be done with small

barrier k, whereas a programmably large barrier exists to changing SF into ST if any
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catalyst is absent. More precisely, the simulation is parameterized by a parameter w

(where increasing w increases the size/complexity of the TBN), such that a reaction with

k catalysts has energy barrier k +w − 1 to transform the reactant between SF and ST if

any catalyst is absent.

Reactions with many catalysts are unrealistic since many molecules must simultane-

ously collide, and they furthermore have a lower energy barrier for a fixed parameter n

in our TBN simulation. In Section 4.4, we show that any catalytic CRN that is singular

(no catalyst has multiplicity greater than 1, e.g., disallowing X
2C−→ Y or C

C−→ D) can be

simulated by a singular, catalytically non-competitive CRN with at most three catalysts

per reaction, preserving the constraints of binary and reversible if they are obeyed by the

former CRN.

In Section 4.3, we show that the reachability problem for reversible, singular, catalytic,

binary CRNs is PSPACE-complete (thus by the simulation described above, PSPACE-

complete even for catalytically non-competitive CRNs with at most three catalysts per

reaction). Combining these results, the problem of computing the energy barrier between

two TBN configurations is PSPACE-complete as well. Since the energy barrier of spurious

reactions can be made arbitrarily large compared to the barrier k when all k catalysts are

present, this shows that even approximating the energy barrier within a constant factor

is PSPACE-hard.

4.1.1 Related work

The Petri net model is exactly equivalent to the CRN model. The reachability problem in

CRNs is known to be TOWER-hard, i.e., not even elementary [23], but this assumes that

reactions can increase molecular counts. In a 1-conservative CRN [38], every reaction

conserves the total number of molecules, so its reachability problem is in PSPACE.

A special case of 1-conservative CRNs is the model of population protocols [3], in which

each reaction has two reactants and two products, e.g., A + B → X + Y . Reachability

analysis has been important for verifying correctness of population protocols, both in the

case of one fixed initial configuration [18, 20, 43, 50] and infinitely many initial configu-

rations [7, 8], as well as general CRNs [42, 13, 14, 16, 33, 48]. Our model is similar to
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the subclass of immediate observation population protocols [4, 27, 26, 46], in which all

reactions have a catalyst that does not change, e.g., C+X → C+Y . Our catalytic CRNs

generalize this to allow more than 2 reactants and products, retaining the requirement

that exactly one reactant can change.

A notable result of Esparza, Raskin, and Weil-Kennedy [27] is that the reachabil-

ity problem for immediate observation population protocols is PSPACE-complete. Our

PSPACE-completeness result concerns CRNs that are not directly comparable to immedi-

ate observation population protocols—we relax one constraint while tightening others—so

the techniques of [27] are inapplicable to our setting. We allow more than one catalyst,

but we require the system to be binary (SF and ST can change into each other =⇒

they cannot change into anything else), reversible, and catalytically non-competitive. The

reversibility constraint can possibly be relaxed in the PSPACE-hardness proof of [27], by

simulating a space-efficient reversible Turing machine [5]. However, the binary constraint

presents a more significant challenge for the reduction of [27], which crucially relies on

non-binary species for reactions such as off[σ, n]
C−→ on[σ, n] and on[σ, n]

C′−→ off[σ′, n]

for σ 6= σ′. The catalytically non-competitive constraint is a further challenge that we

address in the simulation of Theorem 45.

As part of our presentation we give a construction that simulates a CRN with an

arbitrary number of catalysts by a CRN with at most 3 catalysts; in some ways this re-

sembles a result in population protocols by Blondin, Esparza, and Jaax [6] which showed

that arbitrary k-way population protocols could be simulated by 2-way population proto-

cols. However, while our construction outputs ≤ 4-way protocols (a weaker constraint),

our CRNs have the additional constraints of being catalytic and binary. The construction

of [6] is noncatalytic and crucially uses non-binary species (e.g., in [6], a single agent can

represent any of q1, d1, or r1).

Our reduction more closely follows that of Thachuk and Condon [53], who showed,

by reduction from the QSat problem, PSPACE-completeness of reachability in a different

class of CRNs appropriate for modeling certain DNA strand displacement systems. How-

ever, the construction of [53] is also crucially non-binary, as well as non-catalytic (more
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than one reactant can change in each reaction), so novel techniques are required in our

reduction.

Finally, there is significant work on computing energy barriers in DNA systems, where

configurations are defined by the set of base pairs formed among strands [36, 54, 37,

22, 41, 52]. One can consider a single DNA base as a TBN binding site and a DNA

strand as a TBN monomer. However, these results are not applicable to our setting,

because they concern the subset of configurations (a.k.a. secondary structures) that are

unpseudoknotted, a geometric constraint inexpressible in the TBN model. Furthermore,

with the exception of Thachuk’s study of multi-stranded systems [52], the rest concern

single-strand systems, considering the energetic contribution of forming bonds, but not

that of separating complexes.

4.2 Model

The TBN model will be defined formally in Section 4.5.1; here we formally define CRNs

and the various restrictions on them considered in this paper.

4.2.1 Chemical reaction networks

N denotes the set of nonnegative integers. If Λ is a finite set (in this paper, of chemical

species), we write NΛ to denote the set of functions f : Λ→ N. Equivalently, we view an

element c ∈ NΛ as a vector of |Λ| nonnegative integers, with each coordinate “labeled”

by an element of Λ. Given S ∈ Λ and c ∈ NΛ, we refer to c(S) as the count of S

in c. Given c, c′ ∈ NΛ, we define the vector component-wise operations of addition

c + c′, subtraction c − c′ (when c ≥ c′), and scalar multiplication nc for n ∈ N. We

equivalently view a vector c ∈ NΛ as a multiset (set with multiplicities) of elements of

Λ, e.g., c(A) = 2, c(B) = 0, c(C) = 1 is the multiset {2A,C}. We may also equivalently

write this as 2A+ C.

A reaction is a pair α = (r,p) ∈ NΛ×NΛ, such that r 6= p, specifying the stoichiometry

of the reactants and products, e.g., 2A + B → A + 3C is the pair ((2, 1, 0), (1, 0, 3)). A

(finite) chemical reaction network (CRN) is a pair N = (Λ,R), where Λ is a finite set of

chemical species, and R is a finite set of reactions. A configuration of a CRN N = (Λ,R)
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is a vector c ∈ NΛ. A reaction α = (r,p) is applicable to a configuration c if r ≤ c, i.e., c

contains enough of each of the reactants for the reaction to occur.

If α is applicable to c, then write α(c) to denote the configuration c + r− p (i.e., the

configuration that results from applying reaction α to c). If d = α(c) for some reaction

α ∈ r, we write c −→N d, or merely c −→ d when N is clear from context, and we write

c
α−→ c′ when emphasizing which reaction took place. We say that d is reachable from c,

writing c⇒N d, or merely c⇒ d when the CRN N is clear from context, if zero or more

reactions can take c to d.

4.2.2 Constraints on CRNs

A CRN N = (Λ,R) is reversible if, for every (r,p) ∈ R, also (p, r) ∈ R; we write such

reactions as r ←→ p. A reaction (r,p) is 1-conservative if |r| = |p|, i.e., it has the same

number of products and reactants, e.g., A+B+C → X+Y +Z. The reaction is singular

if r(S) ≤ 1 for all S ∈ Λ, e.g., forbidding 2A→ X + Y . A CRN is 1-conservative if each

reaction is 1-conservative (possibly with different numbers of reactants between different

reactions, e.g., R can have both reactions A + B → C + D and X → Y ). A CRN is

singular if each reaction is singular.

For k ∈ N, a reaction (r,p) is k-catalytic if |r| = |p| = k+1 and for two species R,P ∈

Λ, r(R) = p(P ) = 1,p(R) = r(P ) = 0, and r(S) = p(S) for all other S ∈ Λ \ {R,P}.

In other words, the reaction is 1-conservative, the count of one reactant is decremented

and the count of one product is incremented, and all other species are catalysts that don’t

change in the reaction. We write such a reaction with catalysts C1, . . . , Ck and reactant

R that changes to product P as R
C1+...+Ck−−−−−−→ P . Note that a unimolecular conservative

reaction A → B is 0-catalytic. Note that a singular catalytic reaction forbids C
C−→ D,

since this corresponds to 2C → C + D. A CRN is ≤k-catalytic if each reaction is k′-

catalytic for some 0 ≤ k′ ≤ k, and it is catalytic if it is ≤k-catalytic for some k ∈ N. A

CRN with only 1-catalytic reactions is equivalent to an immediate observation population

protocol [4, 27, 26, 46].

A catalytic CRN is binary if, for any pair of reactions R
C1+...+Ck−−−−−−→ P and R′

C1+...+Ck−−−−−−→

P ′ we have R = R′ =⇒ P = P ′ and R = P ′ =⇒ R′ = P , i.e., any species that can
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change between two states in any reaction can change only between those two states in

the entire CRN. This forbids, for example, reactions such as X
C←→ Y and Y

C′←→ Z. By

convention we write such species as XF and XT , and we refer to F and T as the two

states of X. A catalytic CRN is catalytically non-competitive if for every species S, if

S is a non-catalyst in multiple reactions, then each reaction has only one catalyst, e.g.,

SF
C1←→ ST and SF

C2←→ ST .

A configuration c of a binary CRN is 1-safe if c ∈ {0, 1}Λ and c(SF ) + c(ST ) = 1 for

all binary pairs SF , ST ∈ Λ, i.e., each binary pair (SF , ST ) has exactly one representative

in the configuration. A binary CRN N is 1-safe if, for any 1-safe configuration c, if

c ⇒N d ∈ C, then d is 1-safe, i.e., starting with 1 representative from each binary pair,

every reachable configuration also has exactly 1 representative from each binary pair.

Observation 39. Every 1-conservative, binary, reversible, singular CRN is 1-safe.

4.3 PSPACE-completeness of binary, reversible, singu-

lar, catalytic CRNs

The main result of this section is Theorem 40.

Theorem 40. It is PSPACE-complete to decide, given two configurations c and d of a

binary, reversible, catalytic, singular, 1-safe CRN N , whether c⇒N d.

The proof appears below in Section 4.3.3.

4.3.1 Definition of CRN simulation

Many notions of CRN equivalence exist, based, for example, on weak bisimulation [33],

strong bisimulation [15], and pathway decomposition [48]. We use Milner’s definition of

weak bisimulation [39], adapted for our particular needs in Theorem 45, but we simply

use the term simulate.1

1Unfortunately, for various technical reasons, none of the cited papers on CRN simulation use def-
initions matching the sort of simulation we have. The notions of simulation in [33, 48] extend beyond
Milner’s definition primarily for the purpose of more gracefully handling CRNs with unbounded counts.
Since all the CRNs we study are 1-conservative (they conserve total molecular count), Milner’s theory of
bisimulation suffices for our purposes.
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Definition 41 (formal and implementing CRNs, interpretations). Let S = (ΛS ,RS) and

N = (ΛN ,RN ) be CRNs such that ΛN ⊆ ΛS ; we consider S to be simulating N . We

refer to N as the formal CRN and S as the implementation CRN, and similarly to their

configurations as formal and implementation configurations, respectively. The species in

ΛN are formal species, and the species in ΛS \ ΛN are intermediate species. For every

configuration cS ∈ NΛS , define its interpretation m(cS) ∈ NΛN to be the configuration

restricted to formal species, e.g., if ΛN = {A,B,C} and ΛS = {A,B,C, x, y, z}, then

m({2A, 3B, 4C, 5x, 6y, 7z}) = {2A, 3B, 4C}.

A reaction αS = (r,p) ∈ RS is silent if m(r) = m(p), i.e., it only changes the counts

of intermediate species. For a reaction α and configurations c,d of the same CRN, recall

that c
α−→ d denotes that α is applicable to c, and applying it results in d. If αN ∈ RN is

a formal reaction and cS ,dS ∈ NΛS are implementation configurations, we write cS
αNy dS

to denote that, for some (non-silent) αS ∈ RS , cS
αS−→ dS , and m(cS)

αN−−→ m(dS). In

other words, some S reaction can take cS to dS , and looking at only the formal species

in cS and dS , this “looks like” applying reaction αN .

We write cS
⊥−→ dS to denote that dS is reachable from cS by a sequence of silent

reactions. We write cS
αN−−→ dS to denote that cS

⊥−→ c′S
αNy d′S

⊥−→ dS , i.e., a sequence of

reactions takes cS to dS , one of which looks like αN , and the rest are silent.

Definition 42 (CRN simulation). Let S = (ΛS ,RS) and N = (ΛN ,RN ) be as in Def-

inition 41. Say S simulates (a.k.a., weakly bisimulates) N if the following conditions

hold:

sound: For every reachable2 implementation configuration cS ∈ NΛS and non-silent re-

action αS ∈ RS , if cS
αS−→ dS , then for some αN ∈ RN , cS

αNy dS and cN
αN−−→ dN ,

where cN = m(cS) and dN = m(dS). (If a non-silent reaction occurs in cS , then

it “looks like”—restricted to formal species—a formal reaction αN , and αN is ap-

plicable to formal configuration cN = m(cS), and goes to the expected formal

configuration dN = m(dS).)

2Some definitions of weak bisimulation have no reachability constraint. For correctness of our simula-
tion, we require count ≤ 1 of certain intermediate species, a bound preserved in reachable implementation
configurations by the fact our CRN is catalytic, reversible, and singular.
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complete: For every reachable implementation configuration cS ∈ NΛS such that m(cS) =

cN , if cN
αN−−→ dN for some αN ∈ RN , then cS

αN−−→ dS , where m(dS) = dN . (If αN

can occur in cN , then it can be simulated in any cS representing cN , possibly by

first executing some silent reactions from cS .)3

The primary objective of this definition of simulation, for the purpose of connecting

Theorem 40 with Corollary 43, is that reachability of formal configurations is preserved

by the implementation CRN: cS ⇒ dS for cS ,dS ∈ NΛS if and only if m(cS)⇒ m(dS).

Applying Theorem 45 to the CRN in the proof of Theorem 40 gives the following:

Corollary 43. It is PSPACE-complete to decide, given two configurations c and d of a

binary, reversible, ≤3-catalytic, catalytically non-competitive, singular, 1-safe CRN N ,

whether c⇒N d.

4.3.2 Construction

Since a catalytic CRN is 1-conservative, configurations reachable from c can be rep-

resented in space O(|c|), so the problem is in PSPACE. We now show that QSat,

the PSPACE-complete problem of evaluating a quantified Boolean CNF formula [40], is

polynomial-time many-one reducible to this problem. Throughout Section 4.3, let N refer

to the CRN constructed below.

Let ψ = ∀x1∃x2∀x3∃x4 . . . φ(x1, . . . , xn) be a quantified Boolean formula, where φ is

in 3CNF with m clauses c1 ∧ . . . ∧ cm, with ci = wi,1 ∨ wi,2 ∨ wi,3 for literals wi,j, each

literal equal to some variable xk or its negation ¬xk. We have binary species (each with

F and T states) X1, . . . , Xn, C1, . . . , Cm, L1, . . . , Ln, and R1, . . . , Rn, and Ψ. Uppercase

species X1, . . . , Xn, C1, . . . , Cm, and Ψ represent lowercase Boolean formula variables xi,

and clauses cj, and the whole quantified formula ψ, respectively. Li and Ri represent the

left and right child in the tree (see Fig. 4.1) of xi under the current truth assignment to

x1, . . . , xi represented by the F/T states of species X1, . . . , Xn. Let c be the configuration

3In the theory of weak bisimulation allowing more general interpretation functions, one would typically
also require that every formal configuration is represented by some implementation configuration. This
holds trivially for our definition of interpretation, so we omit the explicit condition.
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with one copy of the F state of each species, and let d have one copy of the T state of

each species.

NP-hardness. To build intuition, it is useful first to consider the simpler task of showing

NP-hardness by transforming the formula ∃x1∃x2 . . . ∃xnφ(x1, . . . , xn) into a CRN. We

allow the CRN to nondeterministically try every possible assignment to x1, . . . , xn, while

ensuring that the current assignment cannot change while the clause values are being

evaluated. To do this, use “assignment” reactions XF
i

CF
1←→ XT

i for each 1 ≤ i ≤ n, and

for each 1 ≤ j ≤ m add three clause evaluation reactions, supposing for example that

clause cj = (x5 ∨ ¬x7 ∨ ¬x9):

CF
j

XT
5 +CT

j−1+CF
j+1←−−−−−−−−→ CT

j , CF
j

XF
7 +CT

j−1+CF
j+1←−−−−−−−−→ CT

j , CF
j

XF
9 +CT

j−1+CF
j+1←−−−−−−−−→ CT

j .

If j = 1, then omit the CT
j−1 catalyst, and if j = n, then omit the CF

j+1 catalyst. The Xi

catalyst in each reaction ensures that the clause can evaluate to true only if at least one

of its literals is true. The other catalysts ensure that clauses are evaluated sequentially

in order, and only if none have been evaluated, i.e., CF
1 is present, can the assignment

reactions alter the truth assignment to the xi’s. In this construction, φ is satisfiable if and

only if CT
m is producible, but in a configuration that reveals the satisfying assignment. To

allow the configuration d to be computable easily from φ, add the “scrambling” reactions

XF
i

CT
m←−→ XT

i for each 1 ≤ i ≤ n; then the “all-T” configuration d is reachable from the

“all-F” configuration c if and only if φ is satisfiable.

Our reduction from QSat is similar to this, but it uses the Li and Ri species to conduct

a more intricate search of the truth assignments to handle the alternating quantifiers of

ψ. The clause evaluation reactions are identical. We explain below how to modify the

assignment reactions and add other reactions.

Consider the complete binary tree of depth n+ 1 whose leaves represent all 2n assign-

ments to x1 . . . xn, with the nodes at depth 1 ≤ i ≤ n (root is depth 1) labeled by xi;

see Fig. 4.1. At any time, the current truth assignment to variables x1, . . . , xn encoded

in X
F/T
1 . . . X

F/T
n represents a root-to-leaf path in the tree, so when we say “node xi”, we

mean “the node labeled with xi along the current path”. A leaf node evaluates to true if

the assignment it represents satisfies φ. An ∃ node evaluates to the Boolean OR of its
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∀x1

∃x2 ∃x2

∀x3 ∀x3

∃x4 ∃x4 ∃x4 ∃x4

∀x3 ∀x3

∃x4 ∃x4 ∃x4 ∃x4

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

L1 R1

L2 R2

L3 R3

L4 R4

Ψ

Figure 4.1: Tree representing all assignments to formula ψ = ∀x1∃x2∀x3∃x4[(x1 ∨ x2 ∨ x3) ∧ (¬x2 ∨
x3 ∨ x4)∧ (¬x1 ∨ x2 ∨¬x4)]. Red (dark) nodes evaluate to false and green (light) nodes evaluate to true.
Every configuration encodes some truth assignment to the xi’s, corresponding to a root-to-leaf path; the
example path shown in bold corresponds to the assignment x1 = F, x2 = T, x3 = T, x4 = F . Depending
on the assignment, the Li, Ri species reference the pair of children of xi nodes along that path. All Li, Ri

start in state F , as does the root Ψ, and we enforce that Li, Ri can only be set to T under a particular
assignment of xi’s if either its node or one of its ancestors evaluates to T .

children, and a ∀ node evaluates to the Boolean AND of its children. The entire quantified

formula ψ is true if the root node evaluates to true.

The species LTi (respectively, RT
i ) represents “the left (resp., right) child of node xi

evaluates to true under the current assignment, and xi = false (resp., true)”.

We first add reactions to evaluate the tree based on the results of the clause evaluation

reactions. For i = n, set Ln (left) or Rn (right) to true if the formula is true under the

current assignment (CT
m is present) and X

F/T
n represents the appropriate leaf child: left

(XF
n ) or right (XT

n ) leaf evaluation reactions:

LFn
XF

n +CT
m←−−−−→ LTn , RF

n

XT
n +CT

m←−−−−→ RT
n .

We also have internal evaluation reactions. Internal ∀ nodes (odd i < n) require both

left and right children to be true:

LFi
XF

i +LT
i+1+RT

i+1←−−−−−−−−→ LTi , RF
i

XT
i +LT

i+1+RT
i+1←−−−−−−−−→ RT

i

Internal ∃ nodes (even i < n) require at least one child to be true:

LFi
XF

i +LT
i+1←−−−−→ LTi , LFi

XF
i +RT

i+1←−−−−→ LTi , RF
i

XT
i +LT

i+1←−−−−→ RT
i , RF

i

XT
i +RT

i+1←−−−−→ RT
i .

The entire formula is evaluated as a ∀ node based on the values of L1 and R1 in the

root evaluation reaction: ΨF LT
1 +RT

1←−−−→ ΨT .
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If a node labeled xi has evaluated to true (i.e., if either LTi or RT
i is present), then we

can “reset” the values Lj, Rj for j > i storing its descendants’ values (getting Lj, Rj back

to state F , to allow testing new values of variable Xj via assignment reactions below),

in order to reuse the species to compute in other branches of the tree; add the following

reset reactions for all 1 ≤ i < j ≤ n:

LFj
LT
i +XF

i←−−−→ LTj , LFj
RT

i +XT
i←−−−→ LTj , RF

j

LT
i +XF

i←−−−→ RT
j , RF

j

RT
i +XT

i←−−−→ RT
j .

If the entire formula ψ is true, then we “scramble” the F/T states to enable d to have

every species in state T ; for all species S 6= Ψ, add scrambling reaction SF
ΨT

←→ ST .

We now require assignment reactions to alter the assignment of truth values to

variables. We retain the reaction XF
n

CF
1←→ XT

n from the NP-hardness reduction, but for

i < n, modify the reactions adjusting truth assignments of xi to have more catalysts:

XF
i

CF
1 +LF

i+1+RF
i+1+...+LF

n +RF
n←−−−−−−−−−−−−−−−−→ XT

i . In other words, we can change a variable xi only if the

Lj/Rj species representing its descendants (those with j > i) are in state F . If the node

labeled with xi evaluates to true, then either LTi or RT
i (depending on whether xi itself is

false or true) will be produced, after which the descendant Lj/Rj’s are no longer required

to determine the truth value of xi’s subtree.

By inspection the CRN is 1-conservative, reversible, and singular, so it is 1-safe by

Observation 39.

4.3.3 Proof

Proof of Theorem 40. We described the construction in Section 4.3.2. Now we argue that

it reduces QSat to our reachability problem, by showing that ψ is true if and only if the

“all-T” configuration d is reachable from the the “all-F” configuration c.

We apply Lemma 44, stated and proven below. Because it is proven by induction, it

depends on some complex definitions prior to the statement, but our use of it here is with

the simplest form of those definitions, those listed in the examples under “k = 0” just

after the statement of Lemma 44.

( =⇒ ): Assume ψ is true. Since the first variable is a ∀ variable, this implies that the

quantified formulas ψ(F ), obtained by setting x1 to F , and ψ(T ), obtained by setting
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x1 to T , are both true. Let Aε be the set of configurations where the following are

present: CF
1 , ΨF , and LFi , R

F
i for all i ∈ {2, . . . , n}. Note that c ∈ Aε. We apply

Lemma 44 with this Aε and S(F ) = {R1,Ψ
F}, which gives that c⇒R1,ΨF x (i.e., c

can reach to x with ΨF present the whole time, while preserving the state of R1),

where x(LT1 ) > 0, such that ΨF is present the whole time, and R1, which starts as

RF
1 , is preserved as RF

1 . Then x ∈ Aε.

Thus we can apply Lemma 44 again (with S(T ) = {L1,Ψ
F}) to get that x⇒L1,ΨF y

such that y(RT
1 ) > 0. Since L1 appears in the reachability subscript, and since we

produced LT1 in the previous step, LT1 is preserved along the path, so y(LT1 ) >

0. Since LT1 and RT
1 are both present in y, apply the root evaluation reaction

ΨF LT
1 +RT

1←−−−→ ΨT to create ΨT . Then apply the scrambling reactions SF
ΨT

←→ ST

forward on all species S 6= Ψ to reach d.

(⇐= ): Assume ψ is false. Then at least one of ψ(F ) or ψ(T ) is false; assume with-

out loss of generality ψ(F ) is false. Suppose for the sake of contradiction that

we could produce LT1 and RT
1 while keeping ΨF . Then no matter what is the

value of x1, the reset reactions LFj
LT
1 +xF1←−−−→ LTj , LFj

RT
1 +xT1←−−−→ LTj , RF

j

LT
1 +xF1←−−−→

RT
j , RF

j

RT
1 +xT1←−−−→ RT

j for all j ≥ 2 can create LF2 , R
F
2 , . . . , L

F
n , R

F
n . Then we would

have c⇒R1,ΨF {LT1 , LF2 , RF
2 , . . . , L

F
n , R

F
n , ?}, violating Lemma 44 since ψ(F ) is false.

So we cannot create both LT1 and RT
1 while ΨF is present, so the root evaluation

reaction ΨF LT
1 +RT

1←−−−→ ΨT can never execute. Thus the all-T configuration d is not

reachable from c.

We now build up the technical definitions required to state and prove Lemma 44.

For x1, . . . , xi ∈ {F, T}, let ψ(x1, . . . , xi) represent ψ with the first i variables assigned

the values x1, . . . , xi. For example, if ψ = ∀x1∃x2∀x3[(x1∨x2)∧(¬x1∨¬x2∨x3)∧(x2∨x3)],

then for x1 = T , ψ(x1) = ∃x2∀x3[(¬x2 ∨ x3) ∧ (x2 ∨ x3)], whereas for x1 = F , ψ(x1) =

∃x2∀x3[(x2) ∧ (x2 ∨ x3)]. ψ(x1, . . . , xi) corresponds to the evaluated value (as described

in the construction) of the subtree labeled by truth values x1, . . . , xi, e.g., ψ(F ) is the

value of the left subtree of the root, ψ(T ) is the value of the right subtree of the root, and

ψ(x1, . . . , xn) is simply the value of the unquantified formula φ on the given assignment
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(value of a leaf node). In the context of a CRN configuration, we write ψ(x1, . . . , xi) to

mean the above with truth values taken from the configuration’s assignment to variables

represented by species X
F/T
1 , . . . , X

F/T
i .

We now define some (unfortunately dense) technical notation to establish the intuitive

claim that the CRN properly evaluates the formula ψ.

For a sequence of 0 ≤ k ≤ n Boolean values b1 . . . bk ∈ {F, T}k, let Ab1...bk be the

set of all reachable configurations of N (intuitively, Ab1...bk represents a particular truth

assignment in the Xi species, with some constraints on other species) with the following

species present:

• for all i ∈ {1, . . . , k}: Xbi
i

• for all i ∈ {1, . . . , k}: LFi if bi = F , and RF
i if bi = T

• for all i ∈ {k + 2, . . . , n}: LFi , RF
i

• CF
1 (Thus all clause species Cj for j > 1 are also state F .)

• ΨF

For example, if n = 7, ATTFT is the set of configurations with the following species

present: XT
1 , R

F
1 , X

T
2 , R

F
2 , X

F
3 , L

F
3 , X

T
4 , R

F
4 , C

F
1 ,Ψ

F , LF6 , L
F
7 , R

F
6 , R

F
7 . The following species

can be any state:

• variable species X5, X6, X7 (indices > k)

• left/right species L1, L2, R3, L4 (indices ≤ k, where interpreting L as F and R as T ,

each is the negation of the corresponding bj, i.e., siblings of ancestors of X5)

As another example, Aε (with no subscript Booleans) is the set of configurations with

the following species present: LFi , R
F
i for all 1 < i ≤ n, CF

1 , and ΨF .

Note that A(b1, . . . , bk−1, bk) ⊂ A(b1, . . . , bk−1), since the former has all the constraints

of the latter.

Below, if we have two sets of species, for example {X, Y, Z} and {D,E}, and a set of

configurations A, we write A⇒X,Y,Z {D,E, . . .} to denote that the CRN can reach from
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every configuration in A to a configuration that has D and E present, while maintaining

that X, Y, Z are present the entire time. Recall that species are binary. The binary species

may be labeled with F or T , or not. If we write, for example, A ⇒XF ,Y T ,Z {D,E, ?}, it

means XF , Y T are present the entire time, and whichever is the state of Z at the start

(whether ZF or ZT ), that state is also present the entire time.

For bk ∈ {F, T}, let child(bk) = Lk if bk = F and child(bk) = Rk if bk = T . Define

S(b1, . . . , bk) as the following set of binary species (for use in the relation ⇒S(b1,...,bk), so

some possibly are unlabeled with F or T as above) See Fig. 4.1.

S(b1, . . . , bk) = { Xb1
1 , child(b1)F , child(¬b1),

Xb2
2 , child(b2)F , child(¬b2),

. . .

X
bk−1

k−1 , child(bk−1)F , child(¬bk−1),

child(¬bk),

ΨF}.

For example, S(F ) = {R1,Ψ
F}, S(T ) = {L1,Ψ

F},

S(F, F ) = {XF
1 , L

T
1 , R1, R2,Ψ

F},

S(F, T ) = {XF
1 , L

T
1 , R1, L2,Ψ

F},

S(T, F ) = {XT
1 , R

T
1 , L1, R2,Ψ

F},

S(T, T ) = {XT
1 , R

T
1 , L1, L2,Ψ

F},

and

S(T, T, F, T, F ) = { XT
1 , R

F
1 , L1,

XT
2 , R

F
2 , L2,

XF
3 , L

F
3 , R3,

XT
4 , R

F
4 , L4,

R5,

ΨF}.

Intuitively, S(b1, . . . , bk) represents a path from the root to a node (internal or leaf),

in the following way: Xi’s for 1 ≤ i ≤ k − 1 set consistently with b′is, the “child” species
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Li/Ri set consistently with those, e.g., LT1 if XF
1 , since this means first non-root node is a

left child (and similarly RT
1 if XT

1 ), and the siblings of each node on the path (including

the final node at index k) are included but have no superscript. Since we use S in the

⇒S relation, this means that those sibling species can be either F or T , but must stay

that way along the entire path.

The following technical lemma expresses the intuitive idea that it is possible to produce

LTi /RT
i only if the node it currently represents in the tree (given values of x1, . . . , xi) is

true, or one of its ancestors is true.4

Lemma 44. Let 0 ≤ k < n and let b1, . . . , bk ∈ {F, T}k be a sequence of k Boolean values.

Then

ψ(b1, . . . , bk, F ) ⇐⇒ Ab1...bk ⇒S(b1,...,bk,F ) {LTk+1, L
F
k+2, R

F
k+2, . . . , L

F
n , R

F
n , ?}

and

ψ(b1, . . . , bk, T ) ⇐⇒ Ab1...bk ⇒S(b1,...,bk,T ) {RT
k+1, L

F
k+2, R

F
k+2, . . . , L

F
n , R

F
n , ?}.

Furthermore, the reached configurations in each case are also in Ab1,...,bk .

For example, here are concrete statements of the lemma for a few values of b1, . . . , bk:

k = 0:

ψ(F ) ⇐⇒ Aε ⇒R1,ΨF {LT1 , LF2 , RF
2 , . . . , L

F
n , R

F
n , ?}

ψ(T ) ⇐⇒ Aε ⇒L1,ΨF {RT
1 , L

F
2 , R

F
2 , . . . , L

F
n , R

F
n , ?}

k = 1:

ψ(F, F ) ⇐⇒ AF ⇒XF
1 ,L

F
1 ,R1,R2,ΨF {LT2 , LF3 , RF

3 , . . . , L
F
n , R

F
n , ?}

ψ(F, T ) ⇐⇒ AF ⇒XF
1 ,L

F
1 ,R1,L2,ΨF {RT

2 , L
F
3 , R

F
3 , . . . , L

F
n , R

F
n , ?}

ψ(T, F ) ⇐⇒ AT ⇒XT
1 ,R

F
1 ,L1,R2,ΨF {LT2 , LF3 , RF

3 , . . . , L
F
n , R

F
n , ?}

ψ(T, T ) ⇐⇒ AT ⇒XT
1 ,R

F
1 ,L1,L2,ΨF {RT

2 , L
F
3 , R

F
3 , . . . , L

F
n , R

F
n , ?}

4The statement about ancestors deserves some clarification. In our construction, suppose x1 = F ,
and suppose the left child ∃x2 node is true because its right child is true, as in Fig. 4.1. Then we can
produce RT

2 when x1 = F, x2 = T . Then we use RT
2 to create LT

1 via the ∃ internal evaluation reaction

LF
1

xF
1 +RT

2←−−−−→ LT
1 . Finally, use LT

1 to produce LT
2 via the reset reaction LF

2

LT
1 +xF

1←−−−−→ LT
2 , even though the

left child of x2 is false in the tree (as in Fig. 4.1).
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k = 2:

ψ(F, F, F ) ⇐⇒ AFF ⇒XF
1 ,L

F
1 ,R1,XF

2 ,L
F
2 ,R2,R3,ΨF {LT3 , LF4 , RF

4 , . . . , L
F
n , R

F
n , ?}

ψ(F, F, T ) ⇐⇒ AFF ⇒XF
1 ,L

F
1 ,R1,XF

2 ,L
F
2 ,R2,L3,ΨF {RT

3 , L
F
4 , R

F
4 , . . . , L

F
n , R

F
n , ?}

ψ(F, T, F ) ⇐⇒ AFT ⇒XF
1 ,L

F
1 ,R1,XT

2 ,R
F
2 ,L2,R3,ΨF {LT3 , LF4 , RF

4 , . . . , L
F
n , R

F
n , ?}

ψ(F, T, T ) ⇐⇒ AFT ⇒XF
1 ,L

F
1 ,R1,XT

2 ,R
F
2 ,L2,L3,ΨF {RT

3 , L
F
4 , R

F
4 , . . . , L

F
n , R

F
n , ?}

ψ(T, F, F ) ⇐⇒ ATF ⇒XT
1 ,R

F
1 ,L1,XF

2 ,L
F
2 ,R2,R3,ΨF {LT3 , LF4 , RF

4 , . . . , L
F
n , R

F
n , ?}

ψ(T, F, T ) ⇐⇒ ATF ⇒XT
1 ,R

F
1 ,L1,XF

2 ,L
F
2 ,R2,L3,ΨF {RT

3 , L
F
4 , R

F
4 , . . . , L

F
n , R

F
n , ?}

ψ(T, T, F ) ⇐⇒ ATT ⇒XT
1 ,R

F
1 ,L1,XT

2 ,R
F
2 ,L2,R3,ΨF {LT3 , LF4 , RF

4 , . . . , L
F
n , R

F
n , ?}

ψ(T, T, T ) ⇐⇒ ATT ⇒XT
1 ,R

F
1 ,L1,XT

2 ,R
F
2 ,L2,L3,ΨF {RT

3 , L
F
4 , R

F
4 , . . . , L

F
n , R

F
n , ?}

For example, if n = 4, the final statement says that ψ(T, F, T ) is true if and only if,

starting from any configuration x with XT
1 , R

F
1 , L1, X

F
2 , L

F
2 , R2, L3,Ψ

F , (i.e., any configu-

ration in ATT without RT
3 ) it is possible to produce RT

3 , with the following species present

the whole time: XT
1 , X

T
2 , R

F
1 , R

F
2 ,Ψ

F , and whatever were the states of the following in x

also preserved the whole time: L1, L2, L3. If we interpret T, F, T to be a length-3 path

in the tree, it’s saying that since the final value representing x3 is T , we can produce

RT
3 , without disturbing L3 (whatever its state), and without disturbing any other sibling

species L1, R2 farther up in the tree. But direct ancestor species RF
1 , L

F
2 are fixed to state

F the entire time, and match the assignment XT
1 , X

F
2 (and those ancestor assignment

species are also fixed).

Proof. The proof is by induction on the number n− k of non-fixed variables in ψ.

Base case k = n−1: We have some assignment xi = bi ∈ {F, T} for each i ∈ {1, . . . , n−

1}. Assume for the sake of concreteness that each bi = T (the other cases are similar). In

this case the lemma statement is

ψ(T, . . . , T, F ) ⇐⇒ AT,...,T ⇒XT
1 ,R

F
1 ,L1,XT

2 ,R
F
2 ,L2,...XT

n−1,R
F
n−1,Ln−1,Rn,ΨF {LTn , ?}

and

ψ(T, . . . , T, T ) ⇐⇒ AT,...,T ⇒XT
1 ,R

F
1 ,L1,XT

2 ,R
F
2 ,L2,...XT

n−1,R
F
n−1,Ln−1,Ln,ΨF {RT

n , ?}.
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We show just the first statement; the other is symmetric. Assume ψ(T, . . . , T, F ) =

φ(T, . . . , T, F ) is true. Let x ∈ AT,...,T , so that x(XT
i ) = 1 for all i ∈ {1, . . . , n− 1}, and

x(CF
1 ) = 1.

Apply assignment reaction XF
n

CT
1←→ XT

n to create XF
n if it is not already present in x.

Apply the clause evaluation reactions in order to create CT
m; since φ(T, . . . , T, F ) is

true and XT
1 , . . . , X

T
n−1, X

F
n are present, this is possible.

Apply leaf evaluation reaction LFn
XF

n +CT
m←−−−−→ LTn to create LT1 . (For the case of the second

part of the lemma where the final variable is T , instead apply RF
n

XT
n +CT

m←−−−−→ RT
n to create

RT
1 .)

Apply the clause evaluation reactions in reverse to create CF
1 .

This configuration is contained in AT,...,T,F and has a LT1 , so the lemma holds for the

base case.

Inductive case k < n− 1:

As in the base case, for the sake of concreteness but without (much) loss of generality,

we choose a particular assignment of xi = bi = T to the first k variables x1, . . . , xk.

( =⇒ ): For b1 = . . . = bk = T , assume ψ(b1, . . . , bk) is true. We need to show

Ab1,...,bk−1
⇒XT

1 ,R
F
1 ,L1,XT

2 ,R
F
2 ,L2,...XT

k−1,R
F
k−1,Lk−1,Lk,ΨF {RT

k , ?}.

(If bk = F instead of T , then we would have to show the same with Rk in place of

Lk and LTk in place of RT
k above, but the proof is symmetric.)

Assume xk+1 is a ∀ variable; the ∃ case is similar (and slightly simpler since we

only need to produce one of LTk+1 or RT
k+1 below). Then ψ(b1, . . . , bk, F ) and

ψ(b1, . . . , bk, T ) are both true. Then inductively we have

ψ(b1, . . . , bk, F ) ⇐⇒ Ab1,...,bk ⇒XT
1 ,R

F
1 ,L1,XT

2 ,R
F
2 ,L2,...XT

k ,R
F
k ,Lk,Rk+1,ΨF {LTk+1, ?}

and

ψ(b1, . . . , bk, T ) ⇐⇒ Ab1,...,bk ⇒XT
1 ,R

F
1 ,L1,XT

2 ,R
F
2 ,L2,...XT

k ,R
F
k ,Lk,Lk+1,ΨF {RT

k+1, ?}.

To begin, let x ∈ Ab1,...,bk−1
. If RT

k is present already in x then we are done. So assume

RF
k is present. Now, x already has XT

1 , . . . , X
T
k−1, and if necessary can immediately
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change the state of Xk to T via assignment reaction XF
k

CF
1 +LF

k+1+RF
k+1+...+LF

n +RF
n←−−−−−−−−−−−−−−−−→

XT
k , since those catalysts are by definition present inAb1,...,bk−1

. Then after producing

XT
k , the resulting configuration is in Ab1,...,bk (since we assumed RF

k is present, and

the other requirements of Ab1,...,bk follow from the species present in x due to its being

in Ab1,...,bk−1
). Neither RT

k+1 nor LTk+1 is present since we started in x ∈ Ab1,...,bk−1
;

the goal is to produce each of them in sequence.

Produce LTk+1 as follows. Since ψ(b1, . . . , bk, F ) is true and we’ve reached a configu-

ration in Ab1,...,bk , by induction LTk+1 is producible via

Ab1,...,bk ⇒XT
1 ,R

F
1 ,L1,XT

2 ,R
F
2 ,L2,...XT

k ,L
F
k ,Lk,Rk+1,ΨF {LTk+1, ?}

Apply reset reactions to set all Li, Ri to state F for i ≥ k + 2. Then we are again

in a configuration in Ab1,...,bk . Since ψ(b1, . . . , bk, T ) is true, by induction RT
k+1 is

producible via

Ab1,...,bk ⇒XT
1 ,R

F
1 ,L1,XT

2 ,R
F
2 ,L2,...XT

k ,L
F
k ,Lk,Lk+1,ΨF {RT

k+1, ?}.

Since Lk+1 is a subscript in the reachability constraint, its value LTk+1 that we created

in the first part is preserved. Thus both LTk+1 and RT
k+1 are now present.

Finally apply the ∀ internal evaluation reaction RF
k

XT
k +LT

k+1+RT
k+1←−−−−−−−−−→ RT

k to create RT
k .

(⇐= ): For b1 = . . . = bk = T , assume ψ(b1, . . . , bk) is false. Then at least one of

ψ(b1, . . . , bk, F ) or ψ(b1, . . . , bk, T ) is false; assume without loss of generality that it

is ψ(b1, . . . , bk, F ). We need to show

Ab1,...,bk−1
6⇒XT

1 ,R
F
1 ,L1,XT

2 ,R
F
2 ,L2,...XT

k−1,R
F
k−1,Lk−1,Lk,ΨF {RT

k , ?}.

Inductively we have that

Ab1,...,bk 6⇒XT
1 ,R

F
1 ,L1,XT

2 ,R
F
2 ,L2,...XT

k ,R
F
k ,Lk,Rk+1,ΨF {LTk+1, ?}

We claim that the following cannot occur: Rk becomes RT
k while XF

k−1 is present,

and subsequently XF
k−1 changes to XT

k−1: The assignment reactions disallow Xk−1

to change while RT
k is present.
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So assume RF
k becomes RT

k while XT
k−1 is present. We examine the first time that

this occurs, so that RF
k was fixed before this point. That is, we are holding fixed

ΨF , RF
1 , . . . , R

F
k . We examine which reactions might change Rk to state T for the

first time. The leaf evaluation reactions do not apply since k < n.

We assumed xk is a ∀ variable, and so we look at the ∀ internal evaluation reac-

tion RF
k

XT
k +LT

k+1+RT
k+1←−−−−−−−−−→ RT

k . It requires XF
k and LTk+1, but since we’ve shown that

XT
1 , . . . , X

T
k−1 are present as well, this violates the inductive hypothesis. Similar

reasoning applies to the case of an ∃ variable, but using two induction hypothesis

based on the fact that both ψ(b1, . . . , bk, F ) and ψ(b1, . . . , bk, T ) are false.

For i < k, the reset reactions RF
k

LT
i +XF

i←−−−→ RT
k and RF

k

RT
i +XT

i←−−−→ RT
k cannot occur

because XT
i and RF

i are present. (These facts are more complex to state but still

true if we assume the assignment to x1, . . . , xk−1 is something other than TT . . . T .)

The scrambling reaction RF
k

ΨT

←→ RT
k cannot occur because ΨF is present.

Thus Ab1,...,bk−1
6⇒XT

1 ,R
F
1 ,L1,XT

2 ,R
F
2 ,L2,...XT

k−1,R
F
k−1,Lk−1,Lk,ΨF {RT

k , ?}.

4.4 Singular ≤3-catalytic CRNs can simulate singular

catalytic CRNs

The main result of this section is Theorem 45. Section 4.3.1 contains the formal definition

of CRN simulation employed in the theorem statement.

4.4.1 Simulation construction

Although this paper applies the following theorem only to the reversible, binary, 1-safe

(all species counts ≤ 1) CRN N of Theorem 40, the theorem also applies to CRNs N

with larger counts (although the simulating CRN S has extra species not in N , whose

counts are required to start at 0 or 1), and that may be irreversible or non-binary.

Intuitively, the construction works as follows. Since N is singular, it suffices to test

that each catalyst of a reaction is present—no need to test exact counts—since no reaction

requires two or more species of the same type to execute. For each of N ’s reactions

X
C1+...+Ck−−−−−−→ Y , we need to test whether C1, . . . , Ck are present using a sequence of 3-

catalytic reactions. The difficulty is that, supposing C1 is present but C4 is absent, a
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näıve implementation could get partway through the test and verify that C1, C2, C3 are

present, but perhaps another pathway in the network allows C1 −→ C4. Once C4 is

present, the sequence can continue, although C1 and C4 were not present simultaneously,

as required for X
C1+...+Ck−−−−−−→ Y to be applicable. The key is to use “mutexes” to lock other

simulated reactions while testing for the presence of C1 + . . . + Ck, so that they cannot

appear and disappear during the test.

For intuition, first consider a simpler 1-catalytic, but non-binary, construction. Start

with a single leader species L0,0. If N has reactions α0, . . . , αm−1, then add to S reactions

Li,0 ←→ Li′,0 for all 0 ≤ i 6= i′ ≤ m − 1. From state Li,0, the leader can sequentially test

for the catalysts in reaction αi : X
C1+...+Ck−−−−−−→ Y via Li,j−1

Cj←→ Li,j for 1 ≤ j ≤ k. Reaction

X
Li,k−−→ Y completes the simulation of αi. Since the test reactions are reversible, the

leader can reverse through them back to Li,0 to simulate another reaction. The challenge

is to achieve something similar without a single leader that can take on more than two

states, and furthermore to obey the constraint of catalytic non-competitiveness.

Each species X ∈ ΛN is represented by the same species X ∈ ΛS . All species below not

explicitly identified as being in ΛN are new species in ΛS . For each reaction α0, . . . , αm−1 ∈

RN , we introduce binary species RF
i , R

T
i for i ∈ {0, . . . ,m−1}. In the initial configuration

of S, we have one copy of each RF
i , and we ensure that at most one RT

i exists in any

reachable configuration. When RT
i is present, this will allow a sequence of reactions in S

that test for the catalysts of αi : X
C1+...+Ck−−−−−−→ Y .

There will be two main stages in simulating any reaction αi: we first activate αi, which

lets us produce the mutex µTi , and then we test for the presence of the catalysts of αi.

We want to make a random choice of which reaction αi to activate, but if one reaction is

activated, we want to shut down the possibility of activating any other reaction, to stop

from possibly changing the count of C1, . . . , Ck (or any other species in ΛN ) during the

sequential test for their presence. This chain of events is illustrated in Fig. 4.2.

To simplify specification, we assume in the following reactions that all addition is mod

m, i.e., if i = m−1, then i+1 = 0, and if i = 0, then i−1 = m−1. Start with species AFi

for each i ∈ {0, . . . ,m−1} and NF
i,j for each i ∈ {0, . . . ,m−1} and j ∈ {0, . . . ,m−1}\{i}.
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Intuitively, ATi means “the CRN is currently attempting to activate reaction αi”, and NT
i,j

additionally means “and the CRN is not currently attempting to activate any reactions

αi+1, . . . , αj.” For example, if m = 10 and NT
7,1 and NT

3,5 are present (which requires AT7

and AT3 to be present), the CRN is attempting to activate α7 and α3 and not attempting

to activate α8, α9, α0, or α1 (due to NT
7,1), nor α4 or α5 (due to NT

3,5). The species RT
i

will mean “reaction αi has successfully been activated”. (Once αi is activated, the CRN

can produce the mutex µTi .) Add the following activation reactions:

AFi
NF

i,i+1←−−→ ATi for i ∈ {0, . . . ,m− 1},

NF
i,i+1

AF
i+1+AT

i +NF
i,i+2←−−−−−−−−−→ NT

i,i+1 for i ∈ {0, . . . ,m− 1},

NF
i,j

AF
j +NT

i,j−1+NF
i,j+1←−−−−−−−−−−→ NT

i,j for i ∈ {0, . . . ,m− 1}, j ∈ {0, . . . ,m− 1} \ {i− 1, i, i+ 1},

NF
i,i−1

AF
i−1+NT

i,i−2+RF
i←−−−−−−−−−→ NT

i,i−1 for i ∈ {0, . . . ,m− 1},

RF
i

NT
i,i−1+µFi←−−−−−→ RT

i .

Once any ATi is present, for every j 6= i, some reaction in the second, third, or fourth

line above will prevent NT
j,i from being produced. NT

j,j−1 can only be produced if all

previous (in the circular order mod m) NT
j,i are produced; this holds by similar reasoning

to the test reactions described below. So at most one NT
i,i−1, therefore at most one RT

i ,

are present.

Once reaction αi is activated, we can acquire its mutex. Add the mutex reaction

µFi
RT

i +PF
i,1←−−−−→ µTi . The presence of the “mutex” µTi means that we are currently simulating

reaction αi (i.e., testing for the presence of its catalysts); we will see below what the other

catalyst P F
i,1 accomplishes.5

Now we explain how to use µTi to test sequentially for the presence of catalysts

C1, . . . , Ck of reaction αi ∈ RN . Add the following catalyst test reactions:

P F
i,1

C1+µTi +PF
i,2←−−−−−−→ P T

i,1,

P F
i,j

Cj+PT
i,j−1+PF

i,j+1←−−−−−−−−−→ P T
i,j for 1 < j < k,

P F
i,k

Ck+PT
i,k−1←−−−−−→ P T

i,k.

5The mutex reaction is not strictly necessary, but if we removed it, we would have to add catalysts
from the activation reactions to the catalyst test reactions, and vice versa. The mutex reaction serves as
a “buffer” to help cleanly and separately understand the activation and catalyst test reactions.
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These reactions ensure that, if Cl is the first catalyst not present, then we can set Pi,j

to state T for all 1 ≤ j ≤ l − 1, but not for any j ≥ l. In other words, P T
i,j represents

“C1, . . . , Cj are all present.” The additional catalysts P T
i,j−1 and P F

i,j+1 ensure monotoncity:

for all 1 ≤ j < j′ ≤ k, P T
i,j′ implies P T

i,j. Since all reactions are reversible, if some catalyst

C1, . . . , Ck of αi is missing, the sequence of test reactions can “back out” by setting all Pi,j

to state F , which allows us to reverse the initial mutex reaction µFi
Ri+P

F
i,1←−−−→ µTi , restoring

µFi , and finally reversing the activation reactions, allowing the random choice of reaction

activation to continue. The monotonicity of states T along the Pi,j’s ensures that this

cannot happen unless all Pi,j are state F . Thus all catalysts must be present when first

setting µi to T in the mutex reaction in order to reach the end of αi’s test reactions and

set Pi,k to T .

Thus, if and only if all catalysts C1, . . . , Ck are present, P T
i,k is producible. The commit

reaction X
PT
i,k−−→ Y completes the simulation of N ’s reaction αi : X

C1+...+Ck−−−−−−→ Y . If αi is

reversible, then use X
PT
i,k←−→ Y instead, to ensure S is reversible if N is.

N2,3A2 N2,0 N2,1 R2 µ2 P2,1 W

A3
F A0

F A1
F

Z

Y
T T T

F F F

Activation Mutex Catalyst Test Commit

T
T

F

TT

FF

N1,2A1 N1,3 N1,0 R1 µ1 P1,1 P1,2 X

A2
F A3

F A0
F

Y

U W
T T T T

F F F F

T
T

F

TT

FF

Figure 4.2: The figure shows an example of a simulation with four formal reactions, with simulation
paths shown for reactions 1 and 2. Each bubble in the figure corresponds to a binary species in the
simulation; the species can only change states if the species pointing into it are present (e.g., there are

reactions AF
1

NF
1,2←−−→ AT

1 and NF
1,2

AT
1 ,AF

2 ,NF
1,3←−−−−−−−→ NT

1,2). To simulate formal reaction 1, X
U,W−−−→ Y (top of

figure), a chain of dependencies must be resolved, beginning from activation attempt A1 and ending with

the commit reaction X
PT

1,2−−→ Y . To simulate formal reaction 2, W
Y−→ Z (bottom of figure), the chain

begins with activation attempt A2 and ends with commit reaction W
PT

2,1−−→ Z. The activation reactions
ensure that only one Ri can be true at any given time (and hence, at any given time only one chain can
potentially reach the commit reaction). The mutex reaction ensures that Ri remains true while the rest
of the chain proceeds. The catalyst test reactions then check for the existence of the correct catalysts
before allowing the commit reaction to occur.
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The CRN is catalytically non-competitive, even if the simulated CRN is not. This is

because the single-catalyst commit reactions of S simulate the original reactions of N ,

which by inspection are the only places where a non-catalytic reactant can appear in

multiple reactions. The initial configuration of S is that of N , plus one copy each of the

F states of all new species described above.

Theorem 45. For every singular, catalytic CRN N , there is a singular, ≤3-catalytic,

catalytically non-competitive CRN S that simulates N . Furthermore, if N is reversible,

then S is reversible, and if N is binary, then S is binary.

Proof. The construction is described and explained intuitively above. Here we explain

how it satisfies the conditions of Definition 42 to justify that S simulates N .

sound: The commit reactions are the only implementation reactions that correspond to

formal reactions. Let cS ∈ NΛS be a reachable configuration to which a commit

reaction is applicable. Since cS is reachable, it has count one of each intermediate

species (each in either the F or T state). Thus applying αS to cS ∈ NΛS results

in implementation configuration dS ∈ NΛS , i.e., cS
αS−→ dS , with one fewer X and

one more Y . As argued in the construction, if a commit reaction αS : X
PT
i,k−−→ Y is

applicable, then all formal catalysts C1, . . . , Ck are present. Thus formal reaction

αN : X
C1,...,Ck−−−−−→ Y is applicable to formal configuration cN ∈ NΛN , where cN =

m(cS). Applying it results in a formal configuration dN ∈ NΛN with one fewer X

and one fewer Y . Since m(cS) = cN and m(dS) = dN , this means cN
αN−−→ dN . This

establishes the soundness condition.

complete: Let cS ∈ NΛS be a reachable implementation configuration. Since cS is reach-

able, it has count one of each intermediate species (each in either the F or T state).

Let αi : (X
C1+...,Ck−−−−−→ Y ) ∈ RN be a formal reaction.

Some steps explained below may be skipped if they are only used to generate an

intermediate species that is already present.

• If µTi′ is present for i′ 6= i, execute the test reactions in reverse until P F
i′,0 is

present.
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• Execute the mutex reaction µFi′
Ri′+P

F
i′,0←−−−−→ µTi′ in reverse to generate µFi′ .

• Execute the activation reactions in reverse until all species changed by the

activation reactions are in state F .

• Execute the activation reactions for αi forward until RT
i is present.

• Execute the mutex reaction µFi
Ri+P

F
i,0←−−−→ µTi forward to generate µTi .

• Execute the catalyst test reactions forward in order until P T
i,k is present.

• Execute the commit reaction X
PT
i,k−−→ Y .

All of these are silent reactions but the last. They reach configuration dS ∈ NΛS such

that m(dS) = dN , where dN has one fewer X and one more Y than m(cS). This

sequence of reactions shows that cS
αN−−→ dS , satisfying the completeness condition.

4.5 TBNs can simulate (restricted) CRNs

The main result of this section is Theorem 48, showing that TBNs can simulate a restricted

class of CRNs, which have a PSPACE-complete reachability problem by Corollary 43. The

rest of this section is devoted to proving Theorem 48.

4.5.1 Thermodynamic Binding Networks Model

A multiset is an unordered collection of objects allowing duplicates, e.g., v = {2·a, b, 5·d}.

Equivalently, a multiset with elements from a finite set U is a vector v ∈ (N ∪ {∞})U

describing the counts, indexed by U ; in the example above, if U = {a, b, c, d}, then

v(a) = 2, v(b) = 1, v(c) = 0, and v(d) = 5. The cardinality of a multiset v ∈ NU is

|v| =
∑

u∈U v(u); a finite multiset v obeys |v| < ∞. A site type is a formal symbol,

such as a, representing a specific binding site on a molecule; in Fig. 1.1 the site types are

a, a∗, b, b∗. Each site type has a corresponding complement type which is denoted by a star:

e.g. a∗. Complementarity is an involution: i.e. (a∗)∗ = a. A site and its complement can

form an attachment called a bond. We follow the convention that for any complementary

pair of sites a, a∗, the total count of a∗ across the whole TBN is at most that of a, i.e.,
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the starred sites are limiting. A monomer type is a finite multiset of site types. When

context implies a single instance of a monomer/site type, we may interchangeably use the

term monomer/site.6

A thermodynamic binding network (TBN) is a multiset of monomer types; equiva-

lently, a vector in Nm, if m is the number of monomer types and we have fixed some

standardized ordering of them. We allow some monomer counts to be infinite in order

to capture the case where some monomers are added in “large excess” over others, a

common experimental approach [47, 45]. A polymer (alt. complex ) is a finite multiset of

monomer types, equivalently, a vector in Nm, where m is the number of monomer types

in a standardized ordering.7 Note that despite the suggestive lines representing bonds

in Fig. 1.1, this definition does not track which pairs of complementary sites are bound

within a polymer.

The exposed sites of a polymer are a finite multiset of site types that results from

removing as many (site, complement) pairs from a polymer as possible. For example, in

the polymer {{a∗, b∗}, {a, c}, {a, b, c}}, the exposed sites are {a, 2 · c}.

A configuration of a TBN is a partition of the TBN into polymers. A polymer is

self-saturated if it has no exposed starred sites. A configuration is saturated if all of its

polymers are self-saturated; since we assume starred sites are limiting, this is equivalent

to stipulating that the maximum number of bonds are formed.

The entropy of a configuration is the number of polymers within a configuration,

representing the energetic contribution of many complexes in a system. A configuration

is stable if it is saturated and has maximum entropy8.

We allow saturated configurations to transition from one to another via paths. These

6Concretely, in a DNA nanotech design, a monomer corresponds to a strand of DNA, whose sequence
is logically partitioned into binding sites corresponding to long (5-20 base) regions, e.g., 5′-AAAGG-3′,
intended to bind to the Watson-Crick complementary sequence 3′-TTTCC-5′ that is part of another
strand.

7The term “polymer” is chosen to convey the concept of combining many atomic objects into a
complex, but it is not necessarily a linear chain of repeated units.

8Note that as we only consider saturated configurations, the enthalpic contribution of bonds between
sites is constant for each TBN and can be omitted from relative energy calculations here; for a more
detailed analysis of energetic contributions and a proof of why saturated configurations are sufficient for
consideration, see [10].
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paths consist of the sequence of configurations reachable consecutively by applying two

types of atomic operations: a merge in which two polymers join and become the union

polymer, and a split in which a single polymer is partitioned into two polymers so long

as the overall configuration remains saturated.

The barrier of a path is the largest difference in entropy between two configurations β

and γ in the path, so long as γ occurs later in the path than β. We will generally consider

barriers of paths that originate from a stable state, and in such cases it is sufficient to

take the largest entropy difference between the starting configuration and any intermediate

configuration.

The energy barrier between configurations is the smallest possible barrier of any path-

way between the two configurations.

4.5.2 Simulation of CRNs

To show that TBNs can (weakly bi-)simulate binary, reversible, catalytic, singular, and

catalytically non-competitive CRNs, we will use similar soundness and completeness def-

initions as were used in Definition 41 and Definition 42, but now applicable to TBNs.

Definition 46 (formal CRNs and implementing TBNs, interpretations). Let T be a TBN

and let N = (ΛN ,RN ). Let B ∈ N and let ΓBT denote the set of saturated configurations of

T that are reachable from some stable configuration of T by a path with barrier at most B.

We refer to B as the global barrier. We refer to configurations of N as formal configura-

tions (of the CRN) and to configurations in ΓBT as the implementation configurations (of

the TBN). Let m : ΓBT → NΛS be a surjective function mapping every TBN configuration

in ΓBT to a corresponding CRN configuration in NΛS . We refer to elements in the range

of m as the interpretation of elements in the pre-image. We consider T subject to global

barrier B to be simulating N .

If a merge or a split can take a configuration β ∈ ΓBT to a configuration γ ∈ ΓBT , we write

β −→ γ. Furthermore, the merge or split is silent if m(β) = m(γ), i.e., it does not change

the interpretation. If αN ∈ RN is a formal reaction and β, γ ∈ ΓBT are implementation

configurations, we write β
αNy γ to denote that, for some (non-silent) merge or split, β −→ γ
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and m(β)
αN−−→ m(γ).

We write β
⊥−→ γ to denote that γ is reachable from β by a sequence of silent merges

and splits. We write β
αN−−→ γ to denote that β

⊥−→ β′
αNy γ′

⊥−→ γ, i.e., a sequence of merges

and splits takes cS to dS , in one operation the interpretation changes as it would in αN ,

and the rest of the operations are silent.

Definition 47 (CRN simulation by TBN). Let T be a TBN, N = (ΛN ,RN ) be a CRN,

and let B ∈ N, as in Definition 46. Say T subject to global barrier B simulates (a.k.a.,

weakly bisimulates) N if the following conditions hold:

sound: For every implementation configuration β ∈ ΓBT , if an operation β −→ γ is not

silent, then for some αN ∈ RN , β
αNy γ and m(β)

αN−−→ m(γ). (If a non-silent

transition occurs in β, then it “looks like” a formal reaction αN , and αN is applicable

to the formal configuration m(β), and goes to the expected formal configuration

m(γ).

complete: For every implementation configuration β ∈ ΓBT , if m(β)
αN−−→ m(γ) for some

αN ∈ RN , then β
αN−−→ γ. (If αN can occur in formal configuration m(β), then it

can also be simulated in any configuration with the same interpretation. Note that

since m is surjective, this implies that all formal reactions are simulated.)

Theorem 48. Let N be a CRN that is binary, reversible, ≤k − catalytic, singular, and

catalytically non-competitive. Then for each w ∈ N, w ≥ 2, there is a TBN T so that

∀B ∈ N, k ≤ B ≤ k + w − 2, T subject to global barrier B simulates N .

Proof. Note that if N is ≤0-catalytic or ≤1-catalytic, then it is ≤2-catalytic, so we may

assume without loss of generality that k ≥ 2. The statement then follows from the proofs

of soundness (Lemma 52) and completeness (Lemma 56).

Setting w = ck − k + 2, any factor-c approximation algorithm computing TBN en-

ergy barriers could solve reachability for such CRNs, which have a PSPACE-complete

reachability problem by Corollary 43, implying the main result of this paper:

Corollary 49. It is PSPACE-complete to approximate within any constant factor the

energy barrier between two configurations of a TBN.
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4.5.3 Grid gate

To demonstrate how CRNs satisfying the constraints of Corollary 43 can be implemented

within the TBN model, we modify the construction of the “grid gate” discussed by Breik,

et al. in [10]. That paper shows that for a given parameter n, a TBN can be constructed

using n2 site types and 2n+1 monomers such that there are two stable configurations, and

the barrier to transition between the configurations is n. An optional “catalyst” monomer

can be added, which reduces this transition barrier to 1.

The grid gate is shown in Fig. 4.3. A monomer G forms the backbone of the ar-

rangement, containing all of the starred sites (each one of the n2 unique site types). The

unstarred sites are divided into rows (alt. columns) to form the Hi (alt. Vi) monomers.

In order to cover G (that is, bind each starred site on G in order to form a self-saturated

polymer), it is necessary to either have all of the H monomers in a complex with G

(denoted GH), or to have all of the V monomers in a complex with G (denoted GV ).

To transition between GH and GV requires an intermediate configuration in which all of

the monomers are merged into a single complex (hence, barrier of n). However, in the

presence of the catalyst C, a pathway of alternating merges and splits has a barrier of 1

(see Fig. 4.4). The bi-stable, reversible, and catalytic nature of this system is the basis

for the binary, reversible, and catalytic constraints on CRNs simulated in Theorem 48.
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V0 V2V1 V3 V4 CG
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Figure 4.3: Example of a grid gate with n = 5. GH is formed by taking the G and H monomers
together; GV by the G and V monomers together. GH and GV each contain n + 1 monomers, but to
transition between GH and GV requires an intermediate configuration in which 2n+1 of these monomers
are brought together into a single polymer, creating an energy barrier of n. This barrier can be lowered
down to 1 in the presence of a catalyst C (shown at right). The 2D depiction is for intuition only and
does not imply a particular physical geometry of the monomers.
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Figure 4.4: A catalyzed pathway with n = 3. The complex GH (left) can transition through a series of
merge/split pairs in order to become the complex GV (right). The H monomers are shown in red (dark),
the V monomers in green (light), and the catalyst C in blue (mid). At each stage in the pathway, one
merge (shown with “+”) and one split (shown with “-”) occur without exposing any of the starred sites.
In this way, all polymers remain self-saturated, and so each configuration in the pathway is saturated.

4.5.4 Modifications to grid gate for simulating CRNs

In our simulation we will use a TBN T that is the union of many grid gates each with

disjoint binding sites, and each grid will represent a different binary pair of formal species.

We will refer to this TBN T as an amalgamated grid gate. Let N = (ΛN ,RN ) be a binary,

reversible, catalytic, singular, 1-safe CRN (that we will be simulating). For a given pair

of formal species {ZF , ZT} ⊂ ΛN , let T |Z denote the Z module: a complete set of

monomers {G,H0, . . . , Hn−1, V0, . . . , Vn−1} as described in Section 4.5.3 and illustrated in

Fig. 4.3 (without C), with domains disjoint from all other modules. T is then constructed

from the union of the modules for all formal species pairs. Note that our CRN is both

singular and 1-safe, and so in the TBN simulation there is exactly one module for each

formal species.

Within the context of a TBN configuration, the configuration of a module is the

configuration of the TBN when restricted to the monomers of the module. For each

formal (binary) species in the CRN, the corresponding module will represent false when

it is in its H-configuration: {GH , {V0}, . . . , {Vn−1}}), and represent true when it is in its

V -configuration: {GV , {H0}, . . . , {Hn−1}}). A base configuration is one in which no two

monomers from separate modules are in the same polymer, and every module is either in

its H-configuration or its V -configuration. Note that the base configurations are stable,

and that there is a unique base configuration for every interpretation.
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We allow the modules to interact through the following mechanism: rather than add

an explicit catalyst C monomer directly as shown in Figs. 4.3 and 4.4, we distribute the

sites of C (i.e. the catalytic region) as “overhangs” to monomers in a different module

(see Fig. 4.5, left). For instance, to simulate XF AF

←→ XT , we create a grid module

X and add its catalytic region as overhangs to the H monomers of the module A. In

this way, the catalytic region for X is only “brought together” if module A is in its

H-configuration (representing AF ). To implement reactions requiring more than one

catalyst, we distribute the catalytic region across several modules (see Fig. 4.5, right). The

distribution achieves several properties that are helpful in proving correctness, e.g., each

overhang has intersection ≤ 1 with each H and V monomer of the module it catalyzes. We

do not directly implement uncatalyzed reactions XF ←→ XT , but instead add a new “fixed

species” Xcat to the CRN that begins in and remains in its V -configuration (representing

XT
cat), so that the 1-catalytic reaction XF XT

cat←−→ XT correctly implements the desired

reaction.9
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Figure 4.5: Left: an implementation of XF AF

←−→ XT . The catalytic region of the grid representing X
is distributed as “overhangs” (site types X??) to the H monomers of the grid representing A, so that the
catalyst is formed when A has all of its H monomers (representing AF ). Right: an implementation of

Y F AF+BF

←−−−−→ Y T is shown. Here the overhangs (site types Y??) are shared between the H monomers of
the A and B grids, so that both AF and BF must cooperate to catalyze the transition of Y .

When a formal species is a catalyst in a formal reaction, we will say in the simulation

that a catalyst has formed if its corresponding grid module is in the correct configuration

9We could equivalently simulate uncatalyzed reactions by adding an explicit monomer C to the system
as in Fig. 4.3; however the proofs contained here are made more straightforward by not considering
uncatalyzed reactions as a special case.
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(H-configuration or V -configuration), as this will bring together the catalytic overhangs

for that reaction (as shown in Fig. 4.5).

To formalize the construction, for a particular binary reaction, let k be the number

of catalysts in the reaction. Choose w ≥ 2 and let n = kw. Without loss of generality,

let the catalysts be the GH complexes of their respective modules (for one can replace

each occurrence of H with V in the following discussion if required). Group the sites of

the catalytic region based upon their L1 distance from the lower-left corner (see Fig. 4.6).

Distribute the sites of groups 0 to w − 1 as overhangs to monomers H0, . . . , Hw−1 in the

module of the first catalyst (i.e. group 0 to monomer H0, group 1 to monomer H1, etc.)

Distribute the next w groups (groups w through 2w − 1) to monomers H0, . . . , Hw−1 in

the second catalyst (i.e. group w to monomer H0, etc.). Continue in this fashion until all

kw groups are distributed as overhangs to other modules.

This scheme can also implement many 1-catalytic reactions involving the same reactant

(e.g. XF AF

←→ XT and XF ZT

←→ XT ). However, if overhangs are distributed in this fashion

and there existed two competing reactions, say XF AF +BF

←−−−→ XT and XF CF +DF

←−−−→ XT ,

then a new pathway would be inadvertently created: XF AF +DF

←−−−→ XT . For this reason,

we will use Theorem 45, which shows that CRNs can be reduced to a form in which there

is no such competition, i.e., the CRN is catalytically non-competitive.
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Figure 4.6: Example of the split catalyst scheme with n = 12, w = 4, and k = 3. The sites in
the catalytic region are labelled with their groups (0 − 11) and colored according to which of the three
catalysts that they will overhang. The off-diagonal sites are represented by filled circles and then marked
with their representatives in an example HV-sequence {H3, . . . ,H11, V11, V10}. The rectangle is the 3×10
portion not covered by the monomers of the HV-sequence.

Define the interpretation function m of a TBN configuration as follows: in the config-
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uration of a particular module T |Z, if G is in the same polymer as all of Hn−1, . . . , Hbn/2c

(at least the “upper half” of the set of Hs), then m maps that module to ZF , else ZT ;

union the result over all modules. In this way every configuration can be interpreted,

even if it is not (fully) in an H-configuration or V -configuration (for instance, if the

configuration resembled one of the intermediate steps shown in Fig. 4.4).

We now proceed with a series of lemmas that serve to establish the two main conditions

required of a simulation (stated in Definition 47 and required by Theorem 48): soundness

(Lemma 52) and completeness (Lemma 56)

Lemma 50 below establishes a minimal set of monomers required in each module, and

is used to prove the stronger Lemma 51 which states that all the modules are effectively in

H-configurations, V -configurations, or else exist in a larger polymer that is in the process

of simulating a formal reaction (and that the catalysts for the reaction are also in the

same polymer).

Lemma 50. Let β ∈ ΓBT . In β, the configuration of each module T |Z must have one

polymer that contains G and an HV -sequence: a set of n − 1 consecutive monomers of

the form {Ht, . . . , Hn−1, Vn−1, . . . , Vn−t+1}(1 ≤ t ≤ n).

Proof. For contradiction, let us suppose that G is not in the same polymer with an HV -

sequence. We consider the off-diagonal sites of the grid (black dots with letters in Fig. 4.6).

Then for some 1 ≤ i ≤ n − 2, Hi and Vi+1 are not both present; and then the site in

row i and column i + 1 would be exposed in configuration β. Then the polymer with

G is not self-saturated, and so the configuration β is not saturated, hence not in ΓBT , a

contradiction.

Lemma 51. Let T be an amalgamated grid gate with parameter w ≥ 2 that is constructed

according to a binary, reversible, ≤k-catalytic, singular, and catalytically non-competitive

CRN N = (ΛN ,RN ) with k ≥ 2. Let B ≤ k+w−2, and let β ∈ ΓBT be an implementation

configuration as described in Definition 46. For every formal species Z ∈ ΛN , at least one

of the following must be true:

1. In β, the configuration of T |Z has a polymer that contains G and all of the H

monomers.
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2. In β, the configuration of T |Z has a polymer that contains G and all of the V

monomers, and ZT ∈ m(β).

3. There is a reaction αN ∈ RN of the form ZF K1,...,Kt←−−−−→ ZT (t ≥ 1) and {K1, . . . , Kt} ⊂

m(β). Furthermore, in β, there is a single polymer that contains the G monomers

of the modules T |K1, . . . , T |Kt, and T |Z.

Proof. If the module T |Z has a polymer that contains G and all of the V monomers,

suppose for contradiction that ZT 6∈ m(β), i.e. ZF ∈ m(β). Then this polymer has

all of the V s and Hn−1, . . . , Hbn/2c. But in this case, the H’s were not necessary to

cover G, and could have all been split from the polymer containing G, and so β has at

least dn/2e ≥ n/k = w ≥ k + w − 1 entropy less than another configuration in ΓBT ,

hence certainly not reachable from a stable configuration within the global barrier of

B ≤ k + w − 2, therefore β 6∈ ΓBT , a contradiction. Therefore if G is in a a polymer with

all of the V monomers, then ZT ∈ m(β).

The remainder of this proof then considers the case that G is not in a polymer with

all of the H monomers, and also not in a polymer with all of the V monomers, and shows

that condition 3 must apply (the module is in transition of some reaction αN , and all

related catalysts are both formed and in the same polymer as G).

Consider the G monomer of the T |Z module and how it is covered in the overall

configuration β. By Lemma 50 there must be an HV -sequence – this will cover the

off-diagonal sites (black dots with letters in Fig. 4.6).

Consider now the area left uncovered by the n − 1 monomers in the sequence just

described. The uncovered area is a rectangle that contains n unique group labels. (Fig. 4.6

shows a 3 × 10 rectangle with group labels 0-11.) We now consider how to cover this

rectangular region.

Beyond the HV -sequence, it is possible for these sites to be covered by additional H

and V monomers (as up to this point we do not currently have any of the Hs or V s that

overlap the rectangle), but since we are under the assumption that we do not have all of

the Hs or all of the V s, merging optimal selections of Hs and V s can at most increase

the number of fully covered groups by 1 for each monomer recruited in this fashion. For

83



example, in Fig. 4.6, the only groups that can be covered by a single H or V monomer

are of type 0, covered by H0 or V0, or type 11, covered by H2 or V9. (Note that H1 would

not fully cover any group, since its groups are 1, . . . , 10, which exist elsewhere in the

rectangle, and similarly V1, . . . , V8 would cover only group labels that have other copies

in the rectangle.)

It is also possible to recruit the monomers that contain the catalytic overhangs. If

the overhangs are not present in the same monomer as the G on their module (i.e. the

catalyst is not formed), recruiting monomers with overhangs in this manner only increases

the number of covered labels by 1 for each monomer recruited, because catalytic overhangs

by definition have only a single group label. For example, in Fig. 4.6, only group 2 would

be covered if we merged H2 of the module that contains the group 2 overhangs.10

If there is one catalyst for this reaction, and it is formed, then it can cover all of the

numeric groups. If there are at least two catalysts for this reaction, and if the catalysts

for this reaction are formed, then w groups can be covered by one monomer (i.e. the

catalyst covers the groups that it contains as overhangs)11.

Thus, to cover all n groups without all of the catalysts formed and in the same polymer

as the G of T |Z, it is necessary to have at least n = kw additional monomers/complexes

in the polymer with G. Adding this to the n− 1 monomers of the HV -sequence, we find

that it is necessary to recruit n− 1 + kw monomers to cover the transitioning grid, which

is kw − 1 more than the number of monomers required in the base configuration (which

requires n monomers – i.e. H-configuration or V -configuration). Then since β has at

least kw− 1 entropy less than a stable configuration, it is not reachable within the global

barrier B ≤ k + w − 2 and this would contradict that β ∈ ΓBT , so we conclude that it is

not possible in β to cover G without the correct catalysts both formed and present in the

10One might also merge the monomers with overhangs together first (with or without their correspond-
ing G) and then merge the resulting complex onto the transitioning grid, but this is functionally the
same as merging each onto the grid individually. One might also try to use a partially formed catalyst
(i.e. another grid in transition), but an inductive argument would explain why this requires more merges
than having only a single grid in transition.

11Here it is important to note that the CRN is catalytically non-competitive, and so the overhangs
must be provided by the correct catalytic species (and not, for example, provided by the two halves of the

catalytic region that overhang the modules T |C1 and T |K2 in the competitive reactions ZF C1+C2←−−−→ ZT

and ZF K1+K2←−−−−→ ZT )
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polymer with G.

Lemma 52 (simulation is sound). Let k ≥ 2. Let B ≤ k+w−2. For every implementation

configuration β ∈ ΓBT , if an operation β −→ γ is not silent, then for some αN ∈ RN , β
αNy γ

and m(β)
αN−−→ m(γ).

Proof. There are two cases in which an operation can be non-silent.

Case 1: Split

In this case, in the configuration of some module T |Z, an H monomer was split from the

polymer containing G (affecting a change in interpretation from ZF → ZT ). More specif-

ically, in the context of β, the configuration of the module had a polymer that contained

G as well as the monomers Hn−1, . . . , Hbn/2c; in the context of γ, the configuration of the

module contains no such polymer. Either the second or third condition of Lemma 51

applies here.

Suppose the second condition applies; but then ZT ∈ m(β), and it is not possible to

change its interpretation via a split (it requires a merge of at least one H).

Then the third condition applies, and all of the necessary catalysts for the reaction

αN = ZF K1,...,Kt←−−−−→ ZT are contained in m(γ), and so were also contained in m(β) (because

this was a split) and so the reaction was applicable to m(β).

Case 2: Merge

This case follows symmetrically from the first case, for as the argument above was made

by reasoning about a split from β to γ, so too could the same argument be made about

a merge from γ to β (and hence by symmetry, about a merge from β to γ).

We now establish certain reachability conditions that are necessary to prove com-

pleteness. Lemma 53 states that each configuration can silently reach its “correct” base

configuration. Lemma 55 gives a path by which a base configuration can correctly tran-

sition to another base configuration according to a formal reaction while using only one

non-silent step. Finally, Corollary 54 states that each base configuration can silently reach

any configuration with the same interpretation. By concatenating these three paths, we

establish the reachability sufficient to prove completeness in Lemma 56.
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Lemma 53. Let B ≤ k + w − 2 and let β ∈ ΓBT . Let β0 ∈ ΓBT be the base configuration

with m(β) = m(β0). Then β
⊥−→ β0.

Proof. The inductive argument below will establish that β can reach β0 by a path with

barrier 1; however, it may be the case that β already has B fewer entropy that β0, in

which case it would not be possible to execute a barrier 1 path without going over the

global barrier B. To argue that such “headroom” exists, recall that β ∈ ΓBT and that by

the definition of ΓBT , β is reachable from some stable configuration of T by a path p with

barrier at most B.

Consider the last operation in path p. If that last operation was a split, then β is at

most B − 1 entropy away from a stable configuration, and the new path of barrier 1 can

be applied without going over the global barrier B. If instead the last operation in p was

a merge, if it did not change the interpretation, we can reverse the merge (with a split) to

arrive at a configuration β− that is at most B−1 entropy away from a stable configuration,

and then append the path of barrier 1. Finally, if the last operation in p was a merge

that changed the interpretation of a module T |Z, then it must have done so by merging

an H into the polymer with G (so that ZF ∈ m(β). By applying Lemma 51 to β, we see

that the third case is the only case that can apply (and also applies to the configuration

β− that preceded it p); that is, the catalysts are present to cover the numerically labelled

sites in Fig. 4.6. But since this is the case, and we also have ZF (indicating the presence

of Hn−1, . . . , Hbn/2c, we can split the singleton Vbn/2c from its monomer, and arrive at a

configuration β+ and the pathway of barrier 1 can now be appended.

We now make the inductive hypothesis that if β has m modules that are not in H-

configurations or V -configurations, then β can reach a configuration β′ that has max{0,m−

1} modules that are not in H-configurations or V -configurations, m(β) = m(β′), and β

can reach β′ by a path with barrier 1. We prove this by induction on m.

The base case m = 0 is evident; note that if β has 0 modules that are not in H-

configurations or V -configurations, then greedily splitting the modules from each other

results in the base configuration β0.

Consider now a configuration that has m+1 modules that are not in H-configurations

86



or V -configurations. Let T |Z be such a module. One of the three conditions of Lemma 51

must apply to this module.

In the first case (all Hs are in the same polymer as G), any V s in the same polymer as

G can be split using a path of zero barrier, and now this module is in an H-configuration.

In the second case (all V s are in the same polymer as G), ZT ⊂ m(β), and any

Hs in the same polymer as G can be split using a path of zero barrier to arrive at the

V -configuration.

In the third case, the module is in the “middle” of simulating a valid transition between

ZF and ZT (or vice versa). All of the necessary catalysts are present (and furthermore,

on the same polymer as the G monomer of the T |Z module. By alternately merging

an H and splitting a V (as in Fig. 4.4), and then splitting off any remaining V s, the

module can resolve to its H-configuration (or it can alternate merging a V and splitting

an H to resolve to its H-configuration). We follow the path that does not change the

interpretation. This silent pathway results in a new configuration β′ in which T |Z is now

in an H-configuration or a V -configuration, and β can reach β′ by a path of barrier 1.

Corollary 54. Let B ∈ N and let β0 ∈ ΓBT be a base configuration. Let β ∈ ΓBT with

m(β) = m(β0). Then β0
⊥−→ β.

Proof. TBN paths are reversible; we obtain the desired result by reversing the path of

Lemma 53.

Lemma 55. Let B ≥ k. Let αN ∈ RN be applicable to a formal configuration cN ∈ NΛN ,

resulting in formal configuration dN ∈ NΛN . Let γ0 ∈ ΓBT be the base configuration with

m(γ0) = cN and let δ0 ∈ ΓBT be the base configuration with m(δ0) = dN . Then γ0
αN−−→ δ0.

Proof. We prove this by the existence of a path; this path follows from the construction

of the amalgamated TBN. If αN was applicable to cN , then all of the necessary catalysts

are present in the formal configuration, and so the corresponding modules in the imple-

mentation will be in the configuration (H-configuration or V -configuration) that brings

together the correct catalytic overhangs as shown in Fig. 4.5. Without loss of generality,
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assume that the species RN converts from false to true in the binary reaction (i.e. from

H-configuration to V -configuration in the TBN).

The path then proceeds as follows: merge the necessary catalysts onto theG-containing

polymer that represents RF
N in αN (there will be at most k polymers to merge, because

the CRN is ≤k-catalytic). Then (as in Fig. 4.4) split from this polymer the monomer

H with the subscript of least value. Then merge the monomer V with the subscript of

greatest value. Continue in this way until there are no H monomers left in the polymer

containing G. Then split off the catalysts. At no point was barrier B exceeded because

each intermediate configuration had no more than k ≤ B entropy less than the (stable)

base configurations.

Lemma 56 (simulation is complete). Let B ≥ k. For every implementation configuration

β ∈ ΓBT , if m(β)
αN−−→ m(γ) for some αN ∈ RN , then β

αN−−→ γ.

Proof. By Lemma 53, there is a base configuration β0 so that β
⊥−→ β0. By Corollary 54,

there is a base configuration γ0 so that γ0
⊥−→ γ. By Lemma 55, β0

αN−−→ γ0. By concate-

nating these paths, we achieve a path β
αN−−→ γ.
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Chapter 5

Verification Software

The content of this chapter comes from Sections 2.1-4.3 of a preprint [30] and is currently

in review for publication.

5.1 Preliminaries

We present now a number of definitions necessary for the exposition of this chapter.

Some definitions (particularly those involving TBNs) will overlap those given in previous

chapters, but here will be presented in a fashion that makes the connection between

the concepts and their equivalents in integer vectors more apparent. This difference in

presentation will be necessary to establish intuitive connections that lead up to the integer

programming model.

5.1.1 Definitions

A multiset is an unordered collection of objects allowing duplicates (including countably

infinite multiplicities), e.g., v = {2 · a, b,∞ · d}. Equivalently, a multiset with elements

from a finite set U is a vector v ∈ (N ∪ {∞})U describing the counts, indexed by U ;

in the example of Fig. 1.1, if U = {a, b, c, d}, then v(a) = 2, v(b) = 1, v(c) = 0, and

v(d) = ∞. The cardinality of a multiset v ∈ NU is |v| =
∑

u∈U v(u); a finite multiset

v obeys |v| < ∞. A site type is a formal symbol, such as a, representing a specific

binding site on a molecule; in Fig. 1.1 the site types are a, a∗, b, b∗. Each site type has

a corresponding complement type denoted by a star, e.g. a∗. Complementarity is an
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involution: (a∗)∗ = a. A site and its complement can form an attachment called a bond.

We follow the convention that for any complementary pair of sites a, a∗, the total count

of a∗ across the whole TBN is at most that of a, i.e., the starred sites are limiting. A

monomer type is a finite multiset of site types. When context implies a single instance of

a monomer/site type, we may interchangeably use the term monomer/site.1

A thermodynamic binding network (TBN) is a multiset of monomer types; equivalently,

a vector in (N ∪ {∞})m, if m is the number of monomer types and we have fixed some

standardized ordering of them. We allow some monomer counts to be infinite in order

to capture the case where some monomers are added in “large excess” over others, a

common experimental approach [47, 45]. A polymer is a finite multiset of monomer types,

equivalently, a vector in Nm, where m is the number of monomer types in a standardized

ordering.2 Note that despite the suggestive lines representing bonds in Fig. 1.1, this

definition does not track which pairs of complementary sites are bound within a polymer.

Let ST (respectively, S∗T ) be the set of unstarred (resp., starred) site types of T . For

a monomer m and site type s ∈ ST , let m(s) denote the count of s minus the count of s∗

in m (intuitively, m(s) is the “net count” of s in m, negative if there are more s∗.) For

s∗ ∈ S∗T let m(s∗) = −m(s). The exposed sites of a polymer P are a finite multiset of

site types that results from removing as many (site, complement) pairs from a polymer

as possible, described by the net count of sites when summed across all monomers in the

polymer. For example, in the polymer {{a∗, b∗}, {a, c}, {a, b, c}, {c, d∗}}, the exposed sites

are {a, 2 · c, d∗}.

A configuration of a TBN is a partition of the TBN into polymers. A polymer is

self-saturated if it has no exposed starred sites. A configuration is saturated if all of its

polymers are self-saturated. Since we assume that, across the entire configuration, starred

sites are limiting, this is equivalent to stipulating that the maximum number of bonds

are formed. Write ΓT to denote the set of all saturated configurations of the TBN T . A

1Concretely, in a DNA nanotech design, a monomer corresponds to a strand of DNA, whose sequence
is logically partitioned into binding sites corresponding to long (5-20 base) regions, e.g., 5′-AAAGG-3′,
intended to bind to the complementary sequence 3′-TTTCC-5′ that is part of another strand.

2The term “polymer” is chosen to convey the concept of combining many atomic objects into a
complex, but it is not necessarily a linear chain of repeated units.
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configuration is stable if it is saturated and has the maximum number of non-singleton

polymers among all saturated configurations.

Since the number of polymers may be infinite, we will use the equivalent notion that

stable configurations are those that can be constructed by starting with the “melted”

configuration whose polymers are all singletons containing only one monomer, performing

the minimum number of polymer merges necessary to reach a saturated configuration. For

example, consider the TBN consisting of monomer types t = {a}, b = {a∗}, with counts

∞· t and 2 ·b. The unique stable configuration has polymers {2 · {b, t},∞· t}, since two

merges of a b and a t are necessary and sufficient to create this configuration from the

individual monomers.

5.1.2 Solvers

The problems addressed in this paper are NP-hard. To tackle this difficulty, we cast the

problems as integer programs and use the publicly available IP solver SCIP [28].

We also use the open-source software OR-tools[44], which is a common front-end for

SCIP[28], Gurobi [29], and a bundled constraint programming solver CP-SAT. Though we

model our problems as IPs, we would also like to be able to solve for all feasible/optimal

solutions rather than just one, which CP-SAT can do. This flexible front-end lets us

switch seamlessly between the two types of solvers without significant alterations to the

model.

We have found that the most efficient way to produce a full set of optimal solutions is

to first use SCIP to find the optimal objective value, then to constrain the model to that

objective value and produce the full set of solutions with CP-SAT. We believe that this

is because SCIP more quickly establishes a bound on the objective value using the dual

bound, whereas CP-SAT (using more of a SAT-based approach) must either explore or

prune all possibilities that might lead to a better objective value. We use the open-source

software package 4ti2[2] to calculate Hilbert Bases as described in Section 5.3.
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5.2 Computing stable configurations of TBNs

Section 5.2.1 formally defines the stable configurations problem. Section 5.2.2 explains

our IP formulation of the problem. Section 5.2.3 shows empirical runtime benchmarks.

5.2.1 Finding stable configurations of TBNs

We consider the problem of finding the stable configurations of a TBN. Given a TBN T ,

let ΓT denote the set of all saturated configurations of T .

Recall that a configuration γ ∈ ΓT is defined as a partition of the monomers of T

into polymers, so its elements P ∈ γ are polymers, i.e., multisets of monomers. For

any γ ∈ ΓT , we define the corresponding partial configuration γ = {P ∈ γ : |P| > 1} that

excludes polymers consisting of only a single monomer. Note that in the context of T , the

mapping γ 7→ γ is one-to-one. We consider only partial configurations with finite-sized

polymers. The notion of partial configuration will be useful in reasoning about TBNs with

infinite monomer counts but finite size polymers, since all but finitely many monomers

will be excluded from the partial configurations we consider.

Now we define the number of elementary merge operations required to reach a satu-

rated configuration from the configuration of all singletons:

m(γ) =

(∑
P∈γ

|P|

)
− |γ| (5.1)

We can then define the stable configurations as those saturated configurations that mini-

mize the number of merges required to reach them from the all-singletons configuration.

StableConfigs(T ) = {γ ∈ ΓT : (∀γ′ ∈ ΓT ) m(γ) ≤ m(γ′)}

Note that m(γ) = m(γ). Thus the StableConfigs problem may be equivalently posed

as finding the set of partial configurations γ that minimize m(γ).

We now describe how to handle infinite counts. A configuration is saturated if and only

if none of its starred sites (elements of S∗T ) are exposed. Thus we focus on the subset of

monomers that contain starred sites: the limiting monomers TL = {m ∈ T : m∩S∗T 6= ∅}.

Limiting monomers are required to have finite count, whereas nonlimiting monomers
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(those with all unstarred sites) are allowed to be finite or infinite count. Our IP represen-

tation of a configuration explicitly accounts for all the limiting monomers, but only the

nonlimiting monomers (in T \ TL) in a polymer with some limiting monomer; implicitly

every other nonlimiting monomer is unbound (i.e., in its own singleton polymer). This al-

lows us to describe infinite configurations where all but finitely many of the infinite count

monomers are unbound, guaranteeing that the number of merges counted in Eq. (5.1) is

finite.

5.2.2 Casting StableConfigs as an IP

5.2.2.1 Finding a single stable configuration

We first describe how to find a single element from StableConfigs(T ) by identifying

its partial configuration in T . We begin by fixing a bound B on the number of non-

singleton polymers in any partial configuration. If no a priori bound for B is available,

conservatively take B = |TL|, the total number of limiting monomers.

Integer variables Assume an arbitrary ordering of the m monomer types m1,m2, . . . .

Our IP formulation uses B ·m+B integer-valued variables describing the solution via its

partial configuration:

• Count(m, j): count of monomer type m ∈ T in polymer Pj where j ∈ {1, 2, . . . , B}

• Exists(j): false (0) if polymer Pj is empty, possibly true (1) otherwise, j ∈ {1, 2, . . . , B}

Example 57. Recall the TBN of Fig. 1.1. Suppose the TBN has 1 each of m1 =

{a∗, b∗},m2 = {a, b},m3 = {a},m4 = {b}, with upper bound B = 2 on the number of

non-singleton polymers. TL = {m1} since m1 is the only monomer with starred sites. The

linear constraints (see below for details) do not require all copies of m2,m3,m4 ∈ T \ TL
to be included in a polymer. The stable configuration on the right of Fig. 1.1 (partition

{m1,m2}, {m3}, {m4}) is represented in the IP by setting Count(m1, 1) = Count(m2, 1) =

1, Count(m3, 1) = Count(m4, 1) = 0 (monomers 1 and 2 are in polymer 1, but monomers

3 and 4 are not), and setting Count(mi, 2) = 0 for i = 1, 2, 3, 4 (no monomers are in

polymer 2), Exists(1) = 1 (polymer 1 is non-empty), and Exists(2) = 0 (polymer 2 is

empty).
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Example 58. Suppose a TBN with the same monomer types as Example 57 has 3 of m1

and infinitely many of the remaining monomers (allowed since they are not limiting), with

B = 4. The partial configuration where two copies of m1 are each bound to a single m2

(forming two polymers with two monomers each, as in the stable configuration of Fig. 1.1),

and the third m1 is bound to an m3 and an m4 (forming one polymer with three monomers,

as in the rightmost non-stable saturated configuration of Fig. 1.1) is represented in the IP

by setting Exists(1) = Exists(2) = Exists(3) = 1 and Exists(4) = 0, and

Count(m1, 1) = 1, Count(m2, 1) = 1, Count(m3, 1) = 0, Count(m4, 1) = 0,

Count(m1, 2) = 1, Count(m2, 2) = 1, Count(m3, 2) = 0, Count(m4, 2) = 0,

Count(m1, 3) = 1, Count(m2, 3) = 0, Count(m3, 3) = 1, Count(m4, 3) = 1,

Count(m1, 4) = 0, Count(m2, 4) = 0, Count(m3, 4) = 0, Count(m4, 4) = 0.

The constraints described below allow Exists(j) = 0 even if polymer j is nonempty, even

though the variables ultimately aim to count exactly the number of nonempty polymers

(as
∑m

j=1 Exists(j)). A false negative undercounts the number of polymers, overcounting

the number of merges in Eq. (5.1). However, the number of merges is being minimized

by the IP. For a given setting of Count variables, the minimum is achieved (subject to the

constraints) by setting each Exists(j) = 1 if and only if polymer j is nonempty.

Linear constraints Let T (m) denote the number of monomers of type m in the TBN

T . Recall that m(s) is the net count of site type s ∈ ST in monomer type m (negative if

m has more s∗ than s).

B∑
j=1

Count(m, j) = T (m) ∀m ∈ TL (5.2)

B∑
j=1

Count(m, j) ≤ T (m) ∀m ∈ T \ TL (5.3)

∑
m∈T

Count(m, j) ·m(s) ≥ 0 ∀j ∈ {1, 2, . . . , B},∀s ∈ ST (5.4)

∑
m∈TL

Count(m, j) ≥ Exists(j) ∀j ∈ {1, 2, . . . , B} (5.5)
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Constraints Eq. (5.2) and Eq. (5.3) intuitively establish “monomer conservation” in

the partial configuration. Constraint Eq. (5.2) enforces that we account for every lim-

iting monomer in T . Constraint Eq. (5.3) establishes that for non-limiting monomers,

we cannot exceed their supply (trivially satisfied for any infinite-count monomer); any

leftovers are assumed to be in singleton polymers in the full configuration, but are not

explicitly described by Count variables. Constraint Eq. (5.4) ensures that all polymers are

self-saturated. Specifically, the count of site s ∈ ST within polymer j must meet or exceed

that of s∗. Lastly, constraint Eq. (5.5) enforces that nonempty polymers contain at least

one limiting monomer. Ideally, this constraint should enforce that if a polymer contains

no monomers at all, then it cannot be part of the nonempty polymer tally; however,

if the constraint were modeled in this way, the formulation would admit invalid partial

configurations that include explicit singleton polymers.

Linear objective function Subject to the above constraints, we minimize the number

of merges needed to go from a configuration where all monomers are separate to a sat-

urated configuration. For finite count TBNs, this is the number of monomers minus the

number of polymers in the partial configuration. Equivalently (and applying to infinite

TBNs), this is the sum over all nonempty polymers of its number of monomers minus 1.

Formally, the IP minimizes Eq. (5.6):

B∑
j=1

[(∑
m∈T

Count(m, j)

)
− Exists(j)

]
(5.6)

If polymer j is empty (
∑

m∈T Count(m, j) = 0), then constraint Eq. (5.4) forces Exists(j) =

0; otherwise Exists(j) = 1 minimizes Eq. (5.6). Thus the outer sum is over the nonempty

polymers.

5.2.2.2 Finding all stable configurations

While an IP formulation for finding a single stable configuration is well-defined above,

without modification it is ill-suited as a formulation to find all stable configurations. In

addition, tightening the available constraints (e.g., enforcing Exists(j) ⇐⇒ polymer j is

nonempty, described below) provides a more robust framework to which to add custom

constraints (e.g. specifying a fixed number of polymers).
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IP to find optimal objective value, CP to enumerate optimal solutions One

straightforward improvement is to solve for the optimal value of the objective function us-

ing a dedicated IP solver such as SCIP, whose primal-dual methods exploit the underlying

real-valued geometry of the search space to find an objective value more efficiently than

Constraint Programming (CP) solvers such as CP-SAT. Then, use this optimal value to

bootstrap the CP formulation, which is better suited to enumerating all solutions with

a given objective value. This works particularly well in our experiments: use SCIP to

solve the optimization problem (but SCIP has no built-in ability to enumerate all feasible

solutions), then use CP-SAT (which takes longer than SCIP to find the objective value)

to locate all feasible solutions to the IP obtaining the objective value found by SCIP.

Enforcing that Exists variables exactly describe nonempty polymers

Constraint Eq. (5.4) enforces that Exists(j) = 0 if polymer Pj is empty, but it does not

enforce the converse. However, when using CP-SAT with a fixed objective value, we can

no longer rely on the minimization of Eq. (5.6) to enforce that Exists(j) = 1 ⇐⇒ Pj is

nonempty.

We add a new constraint to handle this. Let

C = 1 +
∑
s∈ST

∑
m∈T

T (m) ·m(s∗). (5.7)

C is an upper bound on the largest number of monomers in a polymer in any valid partial

configuration of T minimizing Eq. (5.6). This corresponds to the worst case in which a

single polymer contains every limiting monomer, and each starred site is bound to its own

unique monomer. The following constraint enforces that if Exists(j) = 0, then polymer

Pj contains no monomers:∑
m∈TL

Count(m, j) ≤ C · Exists(j) ∀j ∈ {1, 2, . . . , B} (5.8)

Eliminating symmetries due to polymer ordering In the formulation of Sec-

tion 5.2.2, many isomorphic solutions exist in the feasible region. For instance, one could

obtain a “new” solution by swapping the compositions of polymers P1 and P2. The num-

ber of isomorphic partial configurations grows factorially with the number of polymers.
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Before asking the solver to enumerate all solutions, we must add constraints that eliminate

isomorphic solutions. We achieve this by using the (arbitrary) ordering of the monomer

types to induce a lexicographical ordering on the polymers, then add constraints ensuring

that any valid solution contains the polymers in sorted order.

Sorting non-binary vectors in an IP is generally a difficult task (for instance, see [56]).

The primary reason for this difficulty is that encoding the sorting constraints involves

logical implications (p =⇒ q), which, being a type of disjunction (¬p OR q), are

difficult to encode into a convex formulation described as a conjunction (AND) of several

constraints. However, we do have an upper bound C on the values that the Count variables

can take, making certain “large-number” techniques possible.

Intuitively, when comparing two lists of scalars (i.e., vectors) to verify that they are

correctly sorted, one must proceed down the list of entries until one of the entries is larger

than its corresponding entry in the other list. For as long as the numbers are the same,

they are considered “tied”. When one entry exceeds the corresponding other, the tie is

considered “broken”, after which no further comparisons need be conducted between the

two vectors.

We B ·m new Boolean (0/1-valued) variables (Tied(mi, j) for each i = 1, . . . ,m and

j = 1, . . . , B), that reason about consecutive pairs of polymers Pj−1, Pj. We describe

constraints enforcing that for each h ≤ i, Tied(mi, j) = 1 ⇐⇒ Count(mh, j − 1) =

Count(mh, j).

Let C be defined as in Eq. (5.7). For simplicity of notation below, define the constants

Tied(m0, j) = 1 for all j = 1, . . . , B. The meaning of the sorting variables is then enforced

by the following constraints, which we define for i ∈ {1, 2, . . . ,m} and j ∈ {2, 3, . . . , B}:

Tied(mi, j) ≤ Tied(mi−1, j) (5.9)

Count(mi, j − 1)− Count(mi, j) ≤ C · (1− Tied(mi, j)) (5.10)

Count(mi, j − 1)− Count(mi, j) ≥ −C · (1− Tied(mi, j)) (5.11)

Count(mi, j − 1)− Count(mi, j) ≥ 1− C ·
(
1 + Tied(mi, j)− Tied(mi−1, j)

)
(5.12)

Intuitively, Eq. (5.9) enforces Tied(mi, j) =⇒ Tied(mi−1, j): a tie in the current entry
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Figure 5.1: Empirical tests solving StableConfigs for our benchmark problem based upon its com-
plexity parameter n (left), and the multiplicity of the unstarred “fuel” strands (right). Our formulation is
tested against several variations on the approach (which are described in the text) and the StableGen al-
gorithm from [11]. The TBN is parameterized by n and contains the monomers Gn = {x∗ij : 1 ≤ i, j ≤ n},
Hi = {xij : 1 ≤ j ≤ n} for all 1 ≤ i ≤ n, and Vj = {xij : 1 ≤ i ≤ n} ∪ {xij : j ≤ i ≤ n} for all 1 ≤ j ≤ n.
See Fig. 6 from [10] for a detailed explanation of this TBN and its operation. The vertical axis is log
scale. Points at the top of the scale timed out after 100 seconds. The alternate formulations cannot solve
the instance in the case of infinite fuel strands.

is only relevant if the tie was not resolved before. Eq. (5.10) and Eq. (5.11) together enforce

Tied(mi, j) =⇒
(
Count(mi, j − 1) = Count(mi, j)

)
: ties can only continue for as long as

the corresponding entries are equal. Eq. (5.12) enforces Tied(mi−1, j)∧¬Tied(mi, j) =⇒(
Count(mi, j − 1) > Count(mi, j)

)
: ties can only be broken if the tie was not broken

previously and the current entries are ordered correctly. Thus any solution satisfying

these constraints must sort the polymers.

5.2.3 Empirical running time measurements

For our empirical tests we use as a benchmark the autocatalytic TBN described in [10,

Section 4.2.2 and Fig. 6]. This TBN features two large monomers of size n2 in which n is

a parameter in the design, as well as a variable number of additional monomers (“fuels”)

intended to be present in large excess quantities.

In addition to the formulation we give in this paper, we also tested a number of for-

mulation variants, including the StableGen algorithm originally posed in [11] for solving

the StableConfigs problem, justifying some of our design choices. “No Heuristic” per-

forms a thorough accounting of all monomers (not just those needed to achieve saturation

against the limiting monomers). “Labelled Monomers” assumes that the monomers are

provided as a set, rather than a multiset. “Network Model” is a modification of StableGen

with an alternate saturation constraint which does not require the explicit invocation of
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site-level bonds.

Each data point represents the average of three runs, and the solver was allowed to

run for up to 60 seconds before a timeout was forced. Fig. 5.1 (left) shows the runtimes

as they increase with the parameter n, holding the count of each fuel at 2. Fig. 5.1 (right)

fixes n = 3 and shows the runtimes as they increase with the multiplicity of the fuel

monomers. Note that our formulation can solve the case when fuels are in unbounded

excess, while the variant formulations require bounded counts of all monomers.

Our formulation solves all of the benchmark problems in under one second, suggest-

ing that it is suitable for much larger/more complex problems than were approachable

previously.

5.3 Computing bases of locally stable configurations

of TBNs

We now shift attention to locally stably configurations: those in which no polymer can

be split without breaking a bond. Such a configuration may not be stable, but the only

paths to create more polymers, without breaking any bonds, require first merging existing

polymers (i.e., going uphill in energy before going down). The saturated configurations

are precisely those obtained by merging polymers starting from some locally stable con-

figuration. In this section we describe a technique for computing what we call the polymer

basis : the (finite) set of polymers that can exist in locally stable configurations. In Sec-

tion 5.3.1, we show that an algebraic concept called the Hilbert basis [24] characterizes

the polymer basis. In Sections 5.3.2 and 5.3.3 we show how the polymer basis can be used

to reason about TBN behavior.

5.3.1 Equivalence of polymer bases and Hilbert bases

We note that the connection between Hilbert bases and polymer bases is not partic-

ularly deep and does not require clever techniques to prove. Once the definitions are

appropriately set up, the equivalence follows almost immediately. (Though we provide

a self-contained proof.) The primary insight of this section is that casting TBNs in our

IP formulation sets up the connection with Hilbert bases. Since highly optimized soft-
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ware exists for computing Hilbert bases [2], this software can be deployed to automate

reasoning about TBNs.

Let M be a set of monomer types with m = |M |. Let SM denote the TBN schema

of M , the set of all TBNs containing only monomers from M , such that starred sites are

limiting (i.e., such that saturated configurations have all starred sites bound). Let AM be

the matrix representation of the monomer types in SM , describing the contents of each

monomer type: formally, the row-i, column-j entry of AM is mj(si), the net count of site

type si in monomer type mj (as an example, {a∗, b, a, a, a, c, c∗, c∗} has net count 2 of a,

1 of b, and −1 of c). Formally, a TBN T ∈ SM if and only if AMT ≥ 0.

Recall that ΓT is the set of saturated configurations of the TBN T , and that a polymer

P is self-saturated if it has no exposed starred sites, i.e., AMP ≥ 0. Define the polymer

basis BSM to be the set of all polymers P with the following properties:

• (∃T ∈ SM)(∃α ∈ ΓT ) P ∈ α (i.e., P appears in some saturated configuration of a

TBN using only the monomer types from M .)

• There is no partition of P into two (or more) self-saturated polymers.

For example, consider the monomers G = {a∗, b∗, c∗, d∗}, H1 = {a, b}, H2 = {c, d},

V1 = {a, c}, V2 = {b, d} and let M = {G,H1, H2, V1, V2}. The polymer basis BSM is {

{G,H1, H2}, {G, V1, V2}, {H1}, {H2}, {V1}, {V2} }. All other self-saturated polymers are

unions of these.

To show that polymer bases can be characterized by Hilbert bases, we must first define

some additional terms. A conical combination of a set of vectors is a linear combination

of the vectors using only nonnegative coefficients. An integer conical combination of a

set of vectors is a conical combination of the vectors using only integer coefficients. A

(polyhedral) convex cone C = {λ1a1 + · · · + λnan : λ1, . . . , λn ≥ 0} is the space of all

conical combinations of a finite set of vectors {a1, . . . , an} (and is said to be generated

by {a1, . . . , an}). C is pointed if C ∩ (−C) = {0}. A set of the form {x ∈ Rm : Ax ≥

0 and x ≥ 0} is always a pointed convex cone [24].

A set is inclusion-minimal with respect to a property if it has no proper subset that

satisfies the same property. The Hilbert basis of a pointed convex cone C is the unique
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inclusion-minimal set of integer vectors such that every integer vector in C is an integer

conical combination of the vectors in the Hilbert basis. For example, the Hilbert basis

of the convex cone generated (with nonnegative real coefficients) by (1, 3) and (2, 1) is

{(1, 1), (1, 2), (1, 3), (2, 1)}; note that 2
5
· (1, 3) + 4

5
· (2, 1) = (2, 2), which is not an integer

combination of (1, 3) and (2, 1), but 2 · (1, 1) = (2, 2).

Recall that the matrix-vector product AMP gives the number of exposed sites of each

type in the polymer, so that AMP ≥ 0 iff the polymer is self-saturated (i.e. none of the

starred sites are exposed).

We are then interested in vectors contained in {P ∈ Nm : AMP ≥ 0}. Noting that

Nm = {P ∈ Rm : P ≥ 0} ∩ Zm, we can equivalently state that we are interested in all

integer vectors contained in the pointed convex cone {P ∈ Rm : AMP ≥ 0 and P ≥ 0}.

Theorem 59. Let SM be a TBN schema and let AM be the matrix representation of its

monomer types. Then the polymer basis BSM of SM is the Hilbert basis of {P ∈ Rm :

AMP ≥ 0 and P ≥ 0}.

Proof. Note that the integer vectors in {P ∈ Rm : AMP ≥ 0 and P ≥ 0} are precisely the

polymers that appear in saturated configurations of TBNs in SM , since AMP ≥ 0 ⇐⇒

polymer P is self-saturated, and SM is defined to have starred sites limiting, so that a

configuration is saturated if and only if each of its polymers is self-saturated.

We must show two properties to establish that BSM is the Hilbert basis. First we

must show that every polymer in saturated configurations of SM is a nonnegative integer

combination of polymers in BSM . Next, to establish inclusion-minimality, we must show

that no polymer can be removed from BSM while satisfying the first property.

To see the first property, consider a polymer P in a saturated configuration of some

TBN in SM . If it cannot be split into multiple self-saturated polymers, then we are done

since it is in BSM (it is the integer combination consisting of one copy of itself). Otherwise,

we can iteratively split P into polymers P1, . . . ,Pk that themselves cannot be split into

self-saturated polymers. Then P = P1 + · · ·+ Pk.

To see the second property, consider a self-saturated polymer P ∈ BSM that can be

removed while maintaining the first property. Since P is an integer vector in {P ∈ Rm :
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AMP ≥ 0 and P ≥ 0}, P is the nonnegative integer sum of some polymers remaining in

BSM \ {P}. However, all polymers in BSM are self-saturated, so P can be partitioned into

multiple self-saturated polymers. Thus P is not an element of BSM to begin with.

5.3.2 Using the polymer basis to reason about TBN behavior

The complexity of computing the polymer basis in general can be very large; however,

once it is calculated, reasoning about the stable configurations becomes a simpler task.

For instance, in a previous example we had BSM = { {G,H1, H2}, {G, V1, V2}, {H1}, {H2},

{V1}, {V2} }. We can see from the above basis that in saturated configurations, G can

only be present one of two unsplittable polymer types: {G,H1, H2} or {G, V1, V2}, and we

can optimize the number of polymers in a configuration by taking the other monomers as

singletons (which is allowed, as these singletons are in the polymer basis). More generally,

reasoning about stable configurations amounts to determining the number of each polymer

type to use from the polymer basis so that the union of all polymers is the TBN, while

using the maximum number of polymers possible. Our software can also solve for stable

configurations in this way; specifically, for a TBN T , it can calculate the polymer basis

(abbreviated here as B) and then solve for the stable configurations using the following

IP:

max
c∈N|B|

‖c‖1 subject to

|B|∑
i=1

ciBi = T

Alternately, one can solve for the stable systems via an augmentation approach (see [24]).

If the goal is simply to solve the StableConfigs problem, we do not expect that

solving for the stable configurations in this way will be more efficient than the previous

formulation, as the time spent computing the Hilbert basis alone can require a great deal

longer than solving via the formulation of the previous section. Instead, the true value of

the basis is in its ability to describe all saturated configurations of a TBN.

For instance, in [10], the authors define an augmented TBN model in which a system

can move between saturated configurations by two atomic operations: polymers can be

pairwise merged (with an energetic penalty, i.e., higher energy) or they can be split into
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two so long as no bonds are broken (with an energetic benefit, i.e., lower energy; for

instance {a, b}, {a∗, b∗}, {a}, {a∗} can be split into {a, b}, {a∗, b∗} and {a}, {a∗}, whereas

{a}, {a∗} cannot be split). Any saturated polymer not in the basis can split into its basis

components without breaking any bonds. Thus the polymer basis contains all polymers

that can form in a local minimum energy configuration, i.e., one where no polymer can

split.

When designing a TBN, the designer will typically have a sense for which polymers are

to be “allowed” in local energy minima. Proving that the system observes this behavior

was not previously straightforward, but we can now observe that the TBN will behave

ideally when its expected behavior matches its polymer basis.

5.3.3 A case example: Circular Translator Cascade

We now discuss an example of using the polymer basis to reason about a TBN’s kinetic

behavior, studying a TBN known as a circular translator cascade, first defined in [10]:

{{a, b, c}, {b, c, d}, {c, d, e}, {d, e, f}, {e, f, a}, {f, a, b},

{a∗, b∗}, {b∗, c∗}, {c∗, d∗}, {d∗, e∗}, {e∗, f∗}, {f∗, a∗}}

There are two stable configurations of this TBN, shown in Fig. 5.2.

cba

b*a*

dcb

c*b*

edc

d*c*

fed

e*d*

fe a

f*e*

f a b

f* a*
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c*b*

edc

d*c*

fed

e*d*
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f*e*

f a b

f* a*

Figure 5.2: The two stable configurations of a variant of the circular translator cascade described in
[10]. In the left configuration, the unstarred monomers are bound to their “left-side” companions (e.g.
{a, b, c} is bound to {a∗, b∗}), and in the right configuration, the unstarred monomers are bound to their
“right-side” companions (e.g. {a, b, c} is bound to {b∗, c∗}).

We consider now the “pathways” by which one of the stable configurations can “tran-

sition” to another. This process is described formally in [10]; here we give an intuitive

description. Informally, we admit as atomic operations the ability for two polymers to

merge or for one polymer to split into two polymers, so long as the resulting configuration
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remains saturated. In essence, these operations are modelling the physical phenomenon

of solutes colocalizing in solution before reactions occur, specifically in dilute solutions in

which enthalpic bond rearrangements occur on a timescale much faster than the timescale

for entropic colocalization. If many polymers must be merged in some intermediate config-

uration to transition between stable configurations, then since each merge is individually

unlikely, the successive merges required are exponentially unlikely i.e., a large energy

barrier exists to transition between the configurations.

The design intention of this TBN is to have two stable configurations with a large

energy barrier to transition between them. For the largest possible energy barrier, the

transition should require the simultaneous merging of all of the polymers into a single

polymer as an intermediate step. However, this is not the case for the TBN of Fig. 5.2;

the polymer basis gives insight into why. See [10, Section A.2] for an argument why more

domain types and monomer types are required. We interpret this as a design error (in

fact it actually was a design error in an early draft of [10]). We now explain how the error

can be detected by reasoning about the polymer basis of the system, justifying that the

automated computation of the polymer basis by our software enables one to automate

some reasoning about the correct behavior of TBNs.

If it were true that the polymer basis contained only the 12 polymer types that are

present in the two stable configurations of Fig. 5.2, then that would be sufficient to prove

the high energy barrier. To see why this is true, suppose there were a locally stable

intermediate configuration that is part of a lower barrier transition. Since the configu-

ration is locally stable, it is saturated, and none of its polymers can be partitioned into

self-saturated polymers. By definition, the polymer basis should then contain all of the

polymers present in this intermediate configuration. However, all of the polymers in the

basis have exactly two monomers, and so there must be 6 polymers in the intermediate

configuration. The stable configurations also have 6 polymers, and so the intermediate

configuration is also stable, but this contradicts that there are only two stable configura-

tions.

In fact, the polymer basis for this TBN has 57 entries (determined via our software),
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Figure 5.3: A counterexample to the claim that transitioning between stable configurations of this
TBN requires the simultaneous merger of all monomers into a single polymer. Starting from the stable
configuration on the left, by merging the four polymers within the red dotted outline, it is possible to
re-arrange bonds and then split to the middle configuration. Then from the middle configuration, by
merging the three polymers in the red dotted online, it is possible to re-arrange bonds and then split
to the stable configuration on the right. Such intermediate configurations are evident by examining the
elements of the polymer basis.

not 12, and we can use this basis to disprove the high energy barrier, i.e, to show that there

is a sequence of merges and splits that transitions between the two stable configurations,

without all monomers ever being merged into a single polymer. To discover a pathway

that demonstrates the lower energy barrier, consider one unexpected entry in the polymer

basis: P = {{a, b, c}, {d, e, f}, {c∗, d∗}, {f ∗, a∗}}. Its existence in the polymer basis tells

us that there must be some saturated configuration that contains it. If we examine where

these monomers were in one of the original stable configurations (Fig. 5.2, left), we see

that these were originally in polymers

{{a, b, c}, {a∗, b∗}}, {{c, d, e}, {c∗, d∗}}, {{d, e, f}, {d∗, e∗}}, {{f, a, b}, {f ∗, a∗}}.

From the starting configuration, if only these four polymers were merged, then they

could then iteratively split into P, {{c, d, e}, {d∗, e∗}}, and {{f, a, b}, {a∗, b∗}}. Since the

latter two polymers are part of the target configuration, one could now greedily merge

all polymers except for these latter two and then split into the target configuration. At

no point in the interim were all polymers merged together into a single polymer. The

resulting pathway is illustrated in Fig. 5.3.

The difference between intended and actual barrier in this design becomes more pro-

nounced if it is scaled up to include more site types and monomers. In [10] it is shown

that by modifying the design, it is possible to achieve a linear energy barrier by using a

quadratic number of site types.
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Chapter 6

Grid Gate Experiment

In this section I describe the design and partial results of a lab experiment attempting

to implement a 2 × 2 grid gate (as in Section 3.2) using DNA. This experiment was

conducted at UT Austin in March of 2020; however, the experiment was cut short when

the university ordered a stop to visiting student research in an attempt to prevent the

spread of Covid-19. This section will then contain the results that were possible to

obtain before the experiment’s end. In addition to the summary of design principles

and results given here, detailed procedures and all raw data are available at https:

//github.com/drhaley/Exp-2020-Mar.

6.1 Designs

In creating an experiment that had the properties of the 2 × 2 grid gate, we opted to

introduce geometry into the DNA design that reflects the (essentially) square positioning

of the idealized grid gate. We opted to implement the large G monomer as a single strand

which is bound at one (Fig. 6.2) or two positions (Fig. 6.1) by staples to prevent the large

strand from opening, thus creating an inner “region” that acts as the 2× 2 grid. We also

designed a “zero-staple” variant (Fig. 6.3) which uses a different method to keep the large

strand from opening up.

Each design has many of the same characteristics: one large scaffold strand which

represents the G monomer in the TBN model, as well as strands representing H1, H2, V1,

V2, and a catalyst. The domains are located at sites that are the intersection of an H
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Figure 6.1: The two-staple grid gate design. A long scaffold (in black) has a center 2x2 region that can
bind to either a pair of H strands (green) or a pair of V strands (red). The region is flanked on either side
by staples which prevent the region from opening up during displacement. Fluorophores (circles with F)
are placed in locations that will be in close proximity if the corresponding strands are on the scaffold.
The numbers listed indicate the length of each section in nucleotides; the 8 on the right side indicates
the length of the single-stranded section of scaffold.

staple
H1

H2 scaffold

F

F

F F

10 11 10
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V1 V2

Figure 6.2: The one-staple grid gate design. A long scaffold (in black) has a center 2x2 region that
can bind to either a pair of H strands (green) or a pair of V strands (red). The region is flanked on one
side (left) by a staple which prevents the region from opening up on that side during displacement. The
other side (right) is prevented from completely opening by the Fluorophores (circles with F) are placed
in locations that will be in close proximity if the corresponding strands are on the scaffold. The numbers
listed indicate the length of each section in nucleotides; the 8 on the right side indicates the length of the
single-stranded section of scaffold.

monomer with a V monomer. Domains were chosen with lengths that placed crossovers

as close as possible to their natural positions based upon an estimate of 21 bases for two

full turns of the DNA. Single-stranded sections labelled with the numeral 8 are poly-T

segments of length eight and serve to connect sections that are not adjacent in space. In

each figure, lines of a single color are DNA strands with 5’-3’ orientation, and each pair of

adjacent strands are bound in a double helix. At any given time, either the pair of green
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Figure 6.3: The zero-staple grid gate design. The scaffold is a long single strand (beginning and ending
at the “nick” noted in the figure). The center 2x2 region that can bind to either a pair of H strands
(green) or a pair of V strands (red). Because the scaffold is bound at the nick either to a V strand or H
strand, the scaffold cannot open, except during displacement when we rely on the energetic penalties of
the TBN to promote its closure. Here there are several loopouts of length 8. In the figure on the left,
the leftmost and rightmost loopouts are necessary geometrically because of distance between the top and
bottom of the scaffold in that configuration. In the figure on the right, the topmost and bottommost
loopouts are necessary for the same reason. This design does not prescribe a preference between the two
geometric configurations shown.

H strands is present, or the pair of red V strands is present.

The two staple and one staple designs share the same sequences – that is, the sequences

used for the domains are identical, and so many of the same strands can be re-used

for experiments using either design. Indeed, the only difference in sequences is in the

rightmost side of their respective figures, with the one staple scaffold having a poly-T

segment connecting the top and bottom helices, while the two staple scaffold has domains

that complement the staple strand (and no poly-T is necessary because the twisting of the

helix causes the local geometry on the right side of the figure to be in close proximity).

The zero staple design does not use any sequences borrowed from its siblings and has

domains of different sizes which admit two specific geometries (shown left and right).

These symmetric, competing geometries are designed specifically so that that there is no

energetic favorability that biases towards one configuration or the other (that is, for the

H strands or V strands to be attached to the scaffold). Ideally, for all domains to have

equivalent kinetic and energetic properties, the scaffold would be one contiguous, circular

strand; however, since we cannot manufacture a truly circular strand, we position a nick

in the center of one of the domains. On account of its positioning, the scaffold can only
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separate the ends of the nick if it binds the half-domains at its ends with separate strands

– but such an arrangement is entropically disfavored.

To measure the “togetherness” of the H and V strands, we used Cy3 and Cy5 flu-

orophore pairs which together can produce a signal via fluorescence resonance energy

transfer (FRET) [31]. Their locations are denoted on the diagrams by an F with a circle;

the fluorophore at the 3’ end of its strand was always Cy3 and at the 5’ end was always

Cy5. By exciting the combination of fluorophores at 532nm and then reading at 665nm,

it is possible to measure whether the fluorophores are in close proximity.1 Some of the

experiments would use H strands without fluorophores and V strands with fluorophores,

or vice versa, so that there would only be two types of strands with fluorophores present

in any single experiment. However, our early experiments suggested that while FRET is

useful for studying proximity 10 bases apart or more[32], we hypothesize that either this

phenomenon is less pronounced when only one base apart, or else there is some rigidity

to our designs that holds these fluorophores at a relative angle that prevents FRET sig-

nal propogation (as FRET is sensitive to relative angle of the fluorophores). We expect

that using fluorophore/quencher pairs in the future could provide a more robust readout

method than FRET.

In many DNA displacement designs, short segments of exposed, single-stranded DNA

called “toeholds” are used to provide a location at which kinetic behavior can be initiated.

In our designs, there was no apparent manner in which to create a toehold-facilitated

design that was enthalpically neutral at each stage (without changing some of the other

design constraints). For this reason, it is intended in each design that displacement

should occur without toeholds. While we anticipated that while this would increase the

temperature required to perform the displacement, we expected that there would still be

a large energetic gap between the catalyzed pathway and the leak reaction.

All strands were ordered dry from IDT. Scaffold strands and strands with fluorophores

were ordered PAGE-purified; other strands were ordered unpurified.

1Note that despite the suggestive straight lines in our figures, DNA characteristically and predictably
twists, and so the fluorophores on the H strands are in close proximity in the configurations shown.
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6.2 Designing Orthogonal Domains

Central to the TBN model is the concept of orthogonal domains. In theory, a particular

domain a should have strong affinity to bind with domain a∗ and zero affinity to bind

with any other domain (e.g. to b or to b∗). However, in DNA this ideal cannot be

realized. DNA strands are chains of nucleotides with an identifying nitrogenous base

typically abbreviated as A, T , C, or G. Watson-Crick complementarity states that the

strongest bonds are formed between A− T pairs and C −G pairs, but in practice, nearly

all pairs of domains will have enough of these pairs to be able to form at least some

bonds, because the physical strands and the possible locations of bonds are not fixed

in space. For example, if we identify a subsequence of the DNA with a TBN domain

(e.g. a = 5′ − AATCCGTCTT − 3′), a will have a strong affinity to its Watson-Crick

complement a∗ = 5′ − AAGACGGATT − 3′, and a will have significant affinity to bind

with with other domains (e.g. b = 5′ − ACCTTTACCA − 3′). Furthermore, in this

example, a has a significant affinity to bind even with other a domains!

These and many more considerations must be taken into account when designing

sequences so that their behavior matches the TBN model as closely as possible. The

sequence designer was coded in Python with callouts to the packages ViennaRNA [35]

and NUPACK [61]. The source code for the designer is available at https://github.

com/drhaley/SequenceDesigner.

6.2.1 Constraints

We use a number of heurisitics, which were selected with input given to us by Boya

Wang and David Soloveichik. Each is chosen to greatly lessen the chance that the chosen

sequences will form a strand with a strong self-structure.

• The unstarred domains use only the three-letter code A, T, C (and thus, the starred

domains only use A, T,G). This greatly reduces the affinity between pairs of un-

starred domains (e.g. a− b) or starred domains (e.g. a∗ − b∗). It also has the effect

of reducing secondary structure in the eventual strands, if those strands are con-

structed from entirely from unstarred domains (or entirely from starred domains).
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• Substrings of the following forms are not allowed: {C,G}4 (for instance, no CGGG

or GGGG), {A, T}5 (for instance, no ATTAA), AAAA, TTTT .

• Each domain must have a C or a G within three bases of each end.

The sequence designer generates random sequences obeying the heuristics and adds

them to a growing collection of sequences that will be used as TBN domains in the final

design if they obey the energetic constraints specified below (as verified by ViennaRNA).

When enough domains are generated in this way, the designer concatenates the domains

into the final strands according to the design and does a final check to ensure that these

final strands have minimal self-structure.

In the below charts, affinity is the negative of free energy. All affinity values are given

in kcal/mol. When two strands are compared against each other, the value considered is

the difference between their combined free energy and the the sum of their free energies

when separate.

The threshold values given below were selected manually by tightening and relax-

ing constraints until the algorithm could find the correct number of domains within an

overnight time frame. In practice, most thresholds exist only to prevent the choosing

of qualitative outliers. The bulk of computing work is spent enforcing an upper bound

on the affinity of a prospective domain to all pairs of domains that have already been

added to the set (see undesirable_affinity_max below). Improvements to the selection

algorithm in order to speed up the optimization of this bound would be a significant boon

to the sequence design software.

All designs assume that the sequence of all T s (the poly-T domain) is fixed as a first

choice, and so all domains must obey the same relative energetics towards the poly-T

domain as they would towards any other domain. For example, a design needing eight

orthogonal domains would be calculated by finding a set of nine domains (one of which

is the poly-T domain). This was done so that our designs could explicitly include poly-T

segments (e.g. the 8 nucleotide loopouts) without these segments being ”sticky” to the

other domains.

The energetic/affinity thresholds are as follows:
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• hairpin_threshold: upper bound for a domain’s affinity to itself (self-structure of

a strand with only the one domain). This check is repeated for the complemented

domain.

• desired_affinity_min: lower bound on a domain’s affinity to its complement (e.g.

a− a∗)

• desired_affinity_max: upper bound on a domain’s affinity to its complement (e.g.

a− a∗)

• undesirable_affinity_max: upper bound on a domain’s affinity to either one or

two domains that are not its complement (e.g. a− a, a− b, a− b∗, a− b∗c∗, a− aa).

This check is repeated for the complement domain.

• strand_hairpin_threshold: upper bound on a finished strand’s self-affinity. This

is performed for every strand except for the long-scaffold strand.

• strand_hairpin_threshold: upper bound on the finished scaffold strand’s self-

affinity. This strand requires a relaxed threshold on account of its extended length,

because a great deal more self-structure is possible with long strands.

In the following subsections, we give the precise sequences used in the designs. Each

strand is given in the 5’-3’ orientation, and whitespace is added to show breaks in the TBN-

level domains (note that these breaks are for conceptual purposes only and the breaks

are not explicitly represented in the physical strands). Above each section representing a

TBN-level domain, a suggestive name has been added to aid in the visual mapping of the

sequences to the individual designs.
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6.2.1.1 Grid Gate with Staples

In the lab notebook and sequence orders, this is design 8408.

x12 x11 x21

Catalyst: 5’-TCCAATCCCT AACTTAACCAT ACACACAACA-3’

x12 x11

H1: 5’-TCCAATCCCT AACTTAACCAT-3’

x21 x22

H2: 5’-ACACACAACA TCTACTACTCA-3’

x11 x21

V1: 5’-AACTTAACCAT ACACACAACA-3’

x22 x12

V2: 5’-TCTACTACTCA TCCAATCCCT-3’

x2L x1L

Left Staple: 5’-TTCCTTTACATATCCT TCAAATCAAATCACTT-3’

x1R x2R

Right Staple: 5’-TCTTCATACTCTTTCA TCTATTCTCACCTCAA-3’

Scaffold (one-staple):

x1L* x11* x12* poly-T

5’-AAGTGATTTGATTTGA ATGGTTAAGTT AGGGATTGGA TTTTTTTT

x22* x21* xL2*

TGAGTAGTAGA TGTTGTGTGTA GGATATGTAAAGGAA-3’

Scaffold (two-staple):

x1L* x11* x12* x1R*

5’-AAGTGATTTGATTTG AATGGTTAAGTT AGGGATTGGA TGAAAGAGTATGAAGA

x2R* x22* x21* xL2*

TTGAGGTGAGAATAGA TGAGTAGTAGA TGTTGTGTGTA GGATATGTAAAGGAA-3’

This design has domains of size 10, 11 and 16. The domains of size 16 are referred to
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here as staple domains owing to their use in the design, and the domains of size 10 and

11 are referred to here as long domains. The same domains were used for the 1-staple

and 2-staple designs, as the two designs differ only in the concatenation of domains into

the scaffold strand.

# thresholds for the long domains against themselves

hairpin_threshold = 0.05

desired_affinity_min = 13.0

desired_affinity_max = 1.1 * desired_affinity_min

undesirable_affinity_max = 5.5

# thresholds for the staple domains against themselves

staple_hairpin_threshold = 0.05

staple_desired_affinity_min = 20.0

staple_desired_affinity_max = 1.25 * staple_desired_affinity_min

staple_undesirable_affinity_max = 10.0 # staple against staple and/or long

# staples should not be sticky to the long domains

staple_to_long_domain_undesirable_affinity_max = 7.5

# threshold for the strands’ self structure

strand_hairpin_threshold = 1.0

scaffold_hairpin_threshold = 3.0
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6.2.1.2 Grid Gate without Staples

In the lab notebook and sequence orders, this is design 5948.

x12 x11 x21

Catalyst: 5’-ACACTCTCCACCTACT CAATCAACAACCTCAT TCCCTTACTTCTACCA-3’

x12 x11

H1: 5’-ACACTCTCCACCTACT CAATCAACAACCTCAT-3’

x21 x22

H2: 5’-TCCCTTACTTCTACCA ACAAATCCTCCTATCC-3’

x11 x21

V1: 5’-CAATCAACAACCTCAT TCCCTTACTTCTACCA-3’

x22 x12

V2: 5’-ACAAATCCTCCTATCC ACACTCTCCACCTACT-3’

Scaffold:

x22L* poly-T x21* poly-T x11*

5’-GGATTTGT TTTTTTTT TGGTAGAAGTAAGGGA TTTTTTTT ATGAGGTTGTTGATTG

poly-T x12* poly-T x22R*

TTTTTTTT AGTAGGTGGAGAGTGT TTTTTTTT GGATAGGA-3’

This design has domains of size 16. However, there is a nick in the scaffold strand in

the middle of one of the domains, and so this effectively creates two domains each of size

8 in that region. The sequence design extends this principle by designing an appropriate

number of half-domains of size 8 that must obey the prescribed energetics relative to the

other half-domains.

# thresholds for the half domains against themselves

hairpin_threshold = 0.05

desired_affinity_min = 9.5

desired_affinity_max = 1.1 * desired_affinity_min

undesirable_affinity_max = 6.5
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# threshold for the strands’ self structure

strand_hairpin_threshold = 1.0

scaffold_hairpin_threshold = 3.0

6.3 Results

This section is separated into two parts to highlight discoveries as well as design-related

difficulties in different stages of the experiment. Section 6.3.1 addresses the assay tech-

nique (FRET). Section 6.3.2 discusses results related to the formation of the initial grid

gate complexes. All data shown is raw values; no normalization is applied.

6.3.1 Assay technique
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Figure 6.4: Formation experiments for the one-stapled GH complex. 665nm emission signal is on the
vertical axis, time on the horizontal axis. The full GH complex consists of a scaffold monomer, a single
staple, and both the H1 and H2 monomers. An additional staple with orthogonal domains (borrowed
from the two-staple experiment) was also added as part of this test to ensure that none of the staples
interfered with the assay technique. The legend on the right (along with the illustration at right of
figure) provides a breakdown of the subsets of strands that produced which signal, with controls being
expectedly low, the GH signal being expectedly high, and the unstapled experiment (“H1+H2+scaffold”)
being unexpectedly high.

Fig. 6.4 gives empirical insight into how our assay technique is intended to work. When

only fluorophore Cy3 is present (indicated by “H2 Cy3”), the fluorophore is excited by

input at 532nm, but the direct emission signal from Cy3 at 665nm is low. Similarly, when
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Cy5 is present (indicated by “H1 Cy5”), the fluorophore does not excite easily with input

at 532nm, and so the direct emission signal from Cy5 at 665nm is also low. Even when the

two are in solution together (“H1+H2”, with or without the staples), the signal output is

very close to the sum of signal that can be produced by the strands individually.

Instead, FRET is designed to detect if the Cy3 and Cy5 strands are in close proximity,

as they would be in a formed complex (as in Fig. 6.2). Indeed, for the one-staple GH

version of the grid design (“H1+H2+both staples+scaffold” in Fig. 6.4), this appears

quite plainly in the signal results – the formed grid produces a signal that is over four

times that of the controls (at 20nM concentration of the fuel strands). Interestingly, it also

produces a similarly high signal even without the staple, which geometrically would result

in an “opened” configuration of the gate in which Cy3 and Cy5 were 8 bases apart. This

data is promising in that it suggests that there is a great deal of leniency in “how close”

the flourophores need to be for detection, but it turns out that there are complications

with very close proximity (0 bases apart) which we will discuss further below. A close

inspection of the Fig. 6.2 also reveals that there seem to be some sort of non-trivial kinetics

happening even as late as eight hours after the initial complex formation – we will discuss

the possible reasons and some different annealing schedules below.

Unfortunately, such strong signal differences in the formed complexes were not univer-

sal, as seen in Fig. 6.5 and Fig. 6.6. The GH complex with one staple (orange data series

in Fig. 6.5) far exceeds its controls in signal output, but the remainder of the GH designs

produced signals that were only 40%-70% above control. The situation is arguably worse

with the GV complexes, for while there was some success with the no-staple design, many

signals did not appreciably exceed that of the controls.

With only the signals from formation attempts, it would not have been possible to

definitively conclude that our assay technique was responsible for these discrepancies,

for it could be that the intended complexes were simply not forming (or impartially

forming), in which case they should not produce a strong signal. To troubleshoot this, we

ordered new strands denoted “ComplementH” and “ComplementV” in their respective

figures. The ComplementH (alt. ComplementV) strands are each one strand that is the
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Figure 6.5: Formation experiments for each of the GH complex designs. The one-staple GH design
produces an expectedly high signal, but many of the other designs produced signals that only marginally
exceeded the controls (“CtrlH”). Two additional experiments appear here using strands that bind to
bring H1 and H2 into close proximity (with their fluorophores one base apart), these are labelled as
“ComplementH”, and are unexpectedly low.

exact Watson-Crick complement that binds to H1 and H2 (alt. V1 and V2) of the design,

placing the Cy3 and Cy5 flourophores at a distance of one base apart (as they would be in

the overall design). Our expectation was that this would produce a maximal signal, but

instead the signal was similarly lackluster, indicating that FRET does not produce a large

signal when the fluorophores are close together, contrary to our initial expectations from

Fig. 6.4. Our conclusion was that FRET as an assay technique was insufficient for our

purposes, and the likely cause was that the especially close proximity of the fluorophores

in the design was somehow forcing them into a geometric arrangement in which they were

(or were close to) perpendicular. We ordered replacement strands that would assay via a

fluorophore/quencher method instead, which is not sensitive to relative angle, but these

new strands did not arrive before the experiment was brought to its untimely close.

6.3.2 Stable formation of Grid Gate

An early concern in the experiment was the appearance of kinetic artifacts in the data –

changes in signal after the supposed initial formation of the complex. There were two likely

contributors to this phenomenon – the annealing schedule and the relative concentration

118



00:00 01:00 02:00 03:00 04:00 05:00

0

500

1000

1500

2000

2500

Time (HH:MM)

Si
gn

al

GV designs, 10nM scaffold, 50nM else, annealed overnight

GV two-staple

GV one-staple

GV no-staple

CtrlV stapled designs

CtrlV no-staple

ComplementV stapled designs

ComplementV no-staple

Figure 6.6: Formation experiments for each of the GV complex designs. The zero-staple GV design
produces an expectedly high signal, although not as high as GH in the one-staple design. Many of the
other designs produced signals that only marginally exceeded the controls (“CtrlV”). Two additional
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Figure 6.7: Formation experiments for the zero-staple GV design. The V1 and V2 strands were kept at
a 2:1 concentration ratio relative to the scaffold. Two annealing schedules were tested – a “fast” anneal
over approximately one hour, and a “slow” anneal over approximately nine hours. The data shows a
great deal of change (evidence of kinetic behavior) over many hours after the initial anneal is finished.

of the scaffold strand to the fuel strands.

In Fig. 6.7 and Fig. 6.8, we see the effect of both annealing schedule and relative

concentration on the early kinetics. We chose to focus on the zero-staple GV design
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Figure 6.8: Formation experiments for the zero-staple GV design. The V1 and V2 strands were kept at
a 5:1 concentration ratio relative to the scaffold. Two annealing schedules were tested – a “fast” anneal
over approximately one hour, and a “slow” anneal over approximately nine hours. The data from the
fast anneal shows a great deal of change (evidence of kinetic behavior) over many hours after the initial
anneal is finished, but the slow anneal shows very little change, suggesting that the formation of the
complex was able to complete during the slower annealing period.

because while the signal was not as strong as GH one-staple, it had more visible kinetics

that we wanted to investigate. The data points labelled “fast” used the following annealing

schedule: heat to 90C, hold for 10 minutes, then reduce by 0.1C every 6 seconds until 20C

(this fast anneal takes slightly longer than one hour). The data points labelled “slow” also

heated to 90C and held for 10 minutes, but reduced the temperature by 0.1C every 48

seconds until 20C (this slow anneal takes approximately 91
2

hours, and we would typically

run this anneal overnight between lab sessions).

In each graph, we see that the annealing schedule and concentration has a pronounced

effect on early kinetics, and the control signals remain steady in all cases. The slow anneal

shows a marked reduction in early kinetics, and keeping the fuel strands at a ratio of 5:1

over the scaffold strand also gives a strong reduction in kinetic behavior as compared to

its 2:1 counterpart.

While the effect of kinetics became quite muted in the zero-staple GV experiment,

many other complexes in the various designs still showed significant early kinetics, al-

though this was harder to troubleshoot as these experiments had very low signal-to-noise

ratio. Given more time, more experiments might have given more insight to the phe-
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nomenon; however, we did have time to try two things during the time of kinetic activity

that both proved to have no discernable effect on the kinetics: (1) using a clean pipette to

vigorously agitate the contents of the well (by repeatedly removing and re-adding solution

to the same well), and (2) removing the plate from the reader and vigorously shaking it

before placing it back in the reader.

We have also hypothesized that there may be some connection between the kinetics

and the post-annealing treatment of the solution. After annealing, the solution is not

guaranteed to be well-mixed (for instance, evaporated liquid can condense on the inside

of the tube lid). Post-anneal, we vortexed these solutions to re-mix their contents. It

is possible, although we think it unlikely, that such vortexing may disturb the delicate

structures of the gate complex, and this would explain a portion of the kinetics observed.

An alternate treatment might include tapping tubes on the bench to dislodge the con-

densed fluid and/or using a few repeated pulses via a clean pipette to more gently mix

the contents.
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Figure 6.9: Formation experiments for the zero-staple GH design in varying concentrations of ethanol.
The H1 and H2 strands were kept at a 5:1 concentration ratio relative to the scaffold and the solution
was annealed overnight. The presence of ethanol increases both the control and experimental signals.

As our intention with the design was to have a toeholdless displacement pathway, we

expected that in the post-formation experiments, the structure of the formed complexes

would need to be robust to increased temperature and/or increased ethanol concentra-

tion. This was because while this toeholdless version of displacement can occur, it is much
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Figure 6.10: Formation experiments for the zero-staple GV design in varying concentrations of ethanol.
The V1 and V2 strands were kept at a 5:1 concentration ratio relative to the scaffold and the solution was
annealed overnight. The presence of ethanol increases the control signal, and at lower concentration also
increase the experimental signal. At higher ethanol concentration the difference between experimental
signal and control signal is measurably lessened.

less likely to occur than displacement using toeholds, and so we did not enter with the

expectation that it would occur at close to room temperature with typical salt concentra-

tions. Higher temperatures have the relative effect of weakening the bonds between DNA

nucleotides; ethanol can also be used to accomplish this.

Fig. 6.9 and Fig. 6.10 show attempts to form the zero-staple versions of GH and

GV (respectively) in differing concentrations of ethanol. While at first it appears that

a small amount of ethanol in solution causes a slightly larger signal (suggesting a more

stable complex), a further inspection shows that the control signals are also increased

by a similar amount. Indeed, for ethanol concentrations tested (0% to 30%), increasing

amounts of ethanol did not improve the signal-to-noise ratio, and at concentrations closer

to 30%, demonstrably reduced it. In further experiments it might have been possible to

try to narrow in on a concentration range in which the signal-to-noise ratio was largely

undisturbed, but as the ethanol was clearly affecting our assay technique via a mechanism

that was not immediately clear, the potential benefit of using ethanol seemed offset by it

being a potential source of error in future experiments.
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6.4 Next Steps

A solid assay technique being necessary evidence to proper complex formation, we rec-

ommend that future attempts use fluorophore/quencher pairs rather than FRET. In par-

ticular, FRET is sensitive to relative angle of fluorophores, and there is a more limited

selection of fluorophores for which FRET can be effective. The intention of using FRET in

this experiment was to measure proximity of the strands to each other, and thus evidence

the formation of the complex by a stronger signal; however, in fluorophore/quencher pair

proximity is evidenced by an absence of signal. Our initial thoughts in including FRET in

the design were to maximize signal-to-noise, and so we entered with the expectation that

Cy3 and Cy5 control signals would be very low, so that the FRET signal would be rela-

tively high. While this was the case in some of our designs (one-staple GH in particular),

the sensitivity of the technique to geometry makes it unpredictable enough that it does

not serve well in its intended purpose. Furthermore, FRET signals using Cy3 and Cy5 are

strongly temperature dependent [34], and so it should not be expected that these signals

should behave consistently at the different temperatures required in later stages of the

experiment. On the other hand, by using fluorophore/quencher pairs, we expect a high

control signal and a much lower experimental signal, and if the signal fidelity is improved

by this alternate assay technique, then it may not be necessary to run experiments in

concentration ratios as high as 5:1, meaning that less fuel strands are needed, improving

the signal-to-noise ratio substantially.

With an improved assay technique established, and the early experiments re-run to

confirm the formation of the complexes, the next step in the experiment would be to

analyze temperature robustness of the complexes, by first forming them and then testing

the temperature at which they disassemble (the melting temperature). This establishes

the “high barrier” that the grid gate is designed originally to have. This temperature is

likely to vary across the different designs due to intuitive geometric stability provided by

the staples as well as the differing domain lengths between the stapled and zero-staple

designs.

With a uncatalyzed melting temperature established, the next step would be to demon-
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strate that displacement can occur at a temperature below the melting temperature. As

designed, the experiment would test this by trying to displace strands with fluorophores

with versions that do not have fluorophores (and vice versa). For instance, an ideal exper-

iment would begin with a formed grid (say GH) and a positive signal indicating the initial

presence of the correct complex, and then be followed by the addition of H1 strands that

did not have a fluorophore. If displacement occurs, then the experimental signal should

begin to approach the control. Similarly, if starting from a version of the complex using H1

without the fluorophore and then adding H1 strands with fluorophores, the experimental

signal should move away from the control signal. The time scale of the displacement is

evidenced by the convergence of these two experiments.

Lastly, once these experiments have been conducted, the final experiments can be

attempted, specifically adding all of the strands and seeing at what temperature a GH to

GV conversion is affected, with and without the catalyst monomer.
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[51] Gaston Tarry. Le probléme des 36 officiers. Compte Rendu de l’Association Française
pour l’Avancement des Sciences, 1:122–123, 1900. see https://en.wikipedia.org/

wiki/Thirty-six_officers_problem.

[52] Chris Thachuk. Space and energy efficient molecular programming and space efficient
text indexing methods for sequence alignment. PhD thesis, University of British
Columbia, 2013.

[53] Chris Thachuk and Anne Condon. Space and energy efficient computation with DNA
strand displacement systems. In International Conference on DNA Computing and
Molecular Programming, pages 135–149. Springer, 2012.
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