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Natural Graph Wavelet Dictionaries: Methods and Applications

Abstract

The graph Laplacian is widely used in the graph signal processing field. When attempting to design

graph wavelet transforms, people have been using its eigenvalues and eigenvectors in place of the fre-

quencies and complex exponentials that are the backbone of the Fourier theory on Euclidean domains.

However, this viewpoint could be misleading since the Laplacian eigenvalues cannot be interpreted as

the frequencies of the eigenvectors on a general graph. Instead, we introduce and review several “nat-

ural” metrics of graph Laplacian eigenvectors, and propose a new way to naturally organize the eigen-

vectors by incorporating these metrics into a “dual” graph. We then introduce a set of novel multiscale

basis transforms for graph signals fully utilizing this dual graph, rather than simply using the eigenvalue

ordering. These basis dictionaries can be seen as generalizations of the classical Shannon/Meyer wavelet

packet dictionary to arbitrary graphs, and do not rely on the frequency interpretation of Laplacian eigen-

values. We describe the algorithms (involving vector rotations, or orthogonalizations, or lapped orthog-

onal projections) to efficiently approximate and compress signals through the best-basis algorithm, and

demonstrate the strengths of these basis dictionaries for graph signals on sunflower graphs and road

traffic networks. Lastly, we propose a way to modify the spectral filters in the spectral graph wavelet

transform by utilizing the structure of the dual graph instead of using the eigenvalue-dependent smooth

functions. By doing so, we generate a redundant wavelet frame, propose a way to reduce its redundancy,

and discuss its potential for applications.
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CHAPTER 1

Introduction

There is an explosion of interest and demand to analyze data sampled on graphs and networks. This

has motivated development of more flexible yet mathematically sound dictionaries (i.e., an overcom-

plete collection of atoms or basis vectors) for data analysis and signal processing on graphs. Our main

goal here is to build smooth multiscale localized basis dictionaries on an input graph, with beneficial

reconstruction and sparsity properties, and to fill the “gap” left from the previous graph basis dictionar-

ies [33, 34, 35, 36, 77] constructed by Prof. Saito’s group as we explain below. Our approach differs from

the standard literature as we fully utilize both the similarities between the nodes (through the graph ad-

jacency matrix) and the similarities between the eigenvectors of the graph Laplacian matrix (through

new nontrivial eigenvector distances).

Previous approaches to construct such graph basis dictionaries break down into two main cate-

gories. The first category partitions the nodes through recursive graph cuts to generate multiscale ba-

sis dictionaries. This includes: the Hierarchical Graph Laplacian Eigen Transform (HGLET) [34]; the

Generalized Haar-Walsh Transform (GHWT) [33]; its extension, the eGHWT [77]; and other Haar-like

graph wavelets (see, e.g., [11, 25, 46, 58, 83]). But their basis vectors either are nonsmooth piecewise

constants or have non-overlapping supports. The second category uses spectral filters on the Laplacian

(or diffusion kernel) eigenvalues to generate multiscale smooth dictionaries. This includes: the Spectral

Graph Wavelet Transform (SGWT) [29]; Diffusion Wavelets [13]; extensions to spectral graph convolu-

tional networks [48]. However, these dictionaries do not fully address the relationships among eigenvec-

tors [10, 51, 72], which should be utilized for graph dictionary construction; instead, they focus on the

eigenvalue distributions to organize the corresponding eigenvectors (although there are some works,

e.g., [64, 66, 80], which recognized the graph structures strongly influence the eigenvector behaviors).

These relationships among eigenvectors can result from eigenvector localization in different clusters,
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differing scales in multi-dimensional data, etc. These notions of similarity and distance between eigen-

vectors, while studied in the literature [10, 51, 72], have yet to be incorporated into building localized

dictionaries on graphs.

We first propose a novel way to organize the eigenvectors by incorporating these eigenvector metrics

into a complete dual graph as the dual domain. We then construct three graph wavelet packet dictionar-

ies and two graph wavelet frames based on the dual graph.

Our first graph wavelet packet dictionary, detailed in Chapter 6, fills the “gap” in the cycle of our

development of the graph basis dictionaries, i.e., HGLET, GHWT, and eGHWT. It is a direct generalization

of the classical wavelet packet dictionary [54, Chap. 8] to the graph setting: we hierarchically partition

the dual domain to generate a tree-structured “subbands” each of which is an appropriate subset of the

graph Laplacian eigenvectors. We also want to note the following correspondence: The HGLET [34]

is a graph version of the Hierarchical Block Discrete Cosine Transform (DCT) dictionary [54, Sec. 8.3]

(i.e., the non-smooth non-overlapping version of the local cosine dictionary [15], [54, Sec. 8.5]), and the

former exactly reduces to the latter if the input graph is PN , a path graph with N nodes. The former

hierarchically partitions the input graph while the latter does the same (with a non-adaptive manner)

on the unit interval [0,1] in the time domain. On the other hand, the GHWT [33] is a graph version of

the Haar-Walsh wavelet packet dictionary [14], [54, Sec. 8.1], and the former exactly reduces to the latter

if the input graph is PN . The latter hierarchically partitions the interval [0, N ) in the sequency domain

while the former does the same by the graph domain partitioning plus reordering; see [33, 35, 36] for

the details. Our first graph wavelet packet dictionary is a graph version of the Shannon wavelet packet

dictionary [54, Sec. 8.1.2], which hierarchically partitions the interval [0,1/2) (or [0,π] depending on how

one defines the Fourier transform) in the frequency domain. Again, the former essentially reduces to the

latter if the input graph is PN .

Our second graph wavelet packet dictionary, detailed in Chapter 7, is obtained by partitioning both

the input graph and its dual domain; more precisely, we first hierarchically partition the dual domain,

and then partition the input graph with constraints imposed by the dual domain partition. This ap-

proach parallels and generalizes classical time-frequency analysis, where the time domain is replaced by

a general node-domain geometry and the frequency domain is replaced by a general eigenvector-domain
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organization. A version of this approach of node-eigenvector organization that embeds the eigenvec-

tors to a one-dimensional Euclidean domain has also been considered as a visualization technique for

low-frequency eigenvectors on clustered graphs [26].

Our third graph wavelet packet dictionary, detailed in Chapter 8, is closely related to our first one. It

also bipartitions the dual domain recursively but smoothly with overlaps, which is achieved by general-

izing the smooth orthogonal projectors [15] for graph setting. It is a generalization of the classical Meyer

wavelet packet dictionary [54, Sec. 7.2.2, 8.4.2]. Again, the former essentially reduces to the latter if the

input graph is PN .

Our first graph wavelet frame, detailed in Chapter 10, modifies the spectral filters of the SGWT by

fully utilizing the information of the dual domain instead of using the eigenvalue-dependent smooth

functions. Specifically, it is constructed by the set of Gaussian filters on the dual domain. Its wavelet

frame vectors inherit the behavior patterns from the eigenvectors, which is useful for the graph signal

feature extraction. On the other hand, our second graph wavelet frame is just a reduced version of the

first, which has much less redundancy and could be used in graph signal approximation and compres-

sion.

We aim for the significance and impact of this research to be twofold. First, these results will provide

the first set of graph wavelet dictionaries that adaptively scale to the local structure of the graph. This

is especially important for graphs with complicated multiscale structure, whose graph Laplacians have

localized eigenvectors, for example. Second, in the long term, this is a first method of systematically

using the novel concept of eigenvector dual geometry [10,51,72]. This direction can set a path for future

modification of spectral graph theory applications to incorporate dual geometry.

The structure of this dissertation is organized as follows. Chapter 2 reviews fundamentals: the ba-

sics of graphs, graph Laplacians and graph Fourier transform, graph wavelet transforms and frames that

were proposed previously, as well as graph wavelet packets and the best-basis algorithm. Chapter 3 re-

views the issue of viewing the eigenvalues as frequencies on general graphs. Chapter 4 introduces and

reviews the nontrivial metrics of graph Laplacian eigenvectors, and studies their relationships. Chap-

ter 5 presents the dual geometry/eigenvector-domain of an input graph with numerical experiments.

Chapter 6 presents a natural graph wavelet packet dictionary constructed through hierarchical parti-

tion of the eigenvector-domain. Chapter 7 presents a second version of a natural graph wavelet packet

3



Symbol Usual Meaning

N the number of nodes/eigenvectors in a graph or the length of the vector

M the number of edges in a graph

j the scale/level index

k the subgraph index

l an index for the eigenvectors or the basis vectors, l = 0 : N −1

x a location/node index, x = 1 : N

i a generic index variable

d the non-trivial eigenvector distance

G an input/primal graph

V the node set of G

V ( j )
k the node set of a subgraph

G? the dual graph of G

V ? the set of the eigenvectors or the node set of G?

V ?( j )
k the subset of V ?

φl a Laplacian eigenvector

φ
( j )
k,l an HGLET basis vector

ψ
( j )
k,l a NGWP basis vector

ψl ,x a NGWF vector

ψl ,x a rNGWF vector

TABLE 1.1. List of symbols we consistently use throughout this dissertation.

dictionary constructed through a pair of hierarchical partitions, one on the input graph and one on its

dual domain. Chapter 8 presents a third version of natural graph wavelet packet dictionary constructed

through hierarchical partition of the eigenvector-domain but smoothly with overlaps. In Chapter 9, we

demonstrate the usefulness of our proposed graph wavelet packet dictionaries in graph signal approxi-

mation using numerical experiments. In Chapter 10, we present the natural graph wavelet frame and its

reduced version, and show their potentials for applications. We conclude with discussing our findings

gained through these numerical experiments and near-future projects for further improvements of our

dictionaries.

Throughout this dissertation, we make an effort to be consistent with our notation. Table 1.1 shows

what we typically use and their corresponding meaning.
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Accompanying this dissertation is the NGWP.jl package [50], which is written in Julia [4] and is

now merged into the MultiscaleGraphSignalTransforms.jl package [32]. It includes code scripts

for reproducing many of the figures and tables in this dissertation, which we list as below. We note that

most of the figures are generated by the Plots.jl package [6].
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CHAPTER 2

Background

2.1. Basics of Graph Theory

In this section, we cover some basics of graph theory and introduce our notation that will be used

throughout this dissertation.

A graph G = (V ,E) consists of a set of nodes (or vertices) V = V (G) = {v1, v2, . . . , vN }1, where N :=
|V (G)|; and a set of edges E = E(G) = {e1,e2, . . . ,eM } where each ek connects two nodes, say, i and j , and

M := |E(G)|. If M , N < ∞, then G is a finite graph. If any ek ∈ E(G) does not specify a direction, then

G is undirected. If any two nodes i , j ∈ V (G) are connected by a sequence of head-tail edges, then G is

connected. Furthermore, if G does not have any loops (an edge connecting a node to itself) or multiple

edges (more than one edge connecting a pair of nodes), then G is a simple graph. In this dissertation,

we only consider finite undirected connected simple graphs. We use f = [ f (1), . . . , f (N )]T ∈ RN to denote

a graph signal on G , and we define 1 := [1, . . . ,1]T ∈RN .

We now discuss several matrices associated with graphs. The information in both V and E is cap-

tured by the edge weight matrix W = W (G) ∈ RN×N , where Wi j ≥ 0 is the edge weight between nodes i

and j . In an unweighted graph, this is restricted to be either 0 or 1, depending on whether nodes i and

j are adjacent, and we may refer to W (G) as an adjacency matrix. In a weighted graph, Wi j indicates the

affinity between nodes i and j . In either case, since G is undirected, W (G) is a symmetric matrix. We

then define the incidence matrix Q(G) = [q1| · · · |qM ] ∈ RN×M where qk indicates the head and tail of the

kth edge ek ∈ E . However, we note that we need to orient each edge of G in an arbitrary manner to form

a directed graph temporarily in order to construct its incidence matrix. For example, suppose ek joins

nodes i and j , then we can set either (Qi k ,Q j k ) = (−√
Wi j ,

√
Wi j ) or (

√
Wi j ,−√

Wi j ). Of course, we set

Qlk = 0 for l 6= i , j . Note that Q(G)T can be viewed as the graph gradient operator ∇G . Next, we define the

degree matrix D(G) as the diagonal matrix with entries Di i = ∑
j Wi j . With this in place, we are able to

1For simplicity, we typically associate each node with its index and write i in place of vi .
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define the (unnormalized) Laplacian matrix, random-walk normalized Laplacian matrix, and symmetric

normalized Laplacian matrix, respectively, as

L(G) := D(G)−W (G)

Lrw(G) := D(G)−1L(G)(2.1)

Lsym(G) := D(G)−1/2L(G)D(G)−1/2.

We use 0 =λ0 ≤λ1 ≤ . . . ≤λN−1 to denote the sorted Laplacian eigenvalues andφ0,φ1, . . . ,φN−1 to denote

their corresponding eigenvectors with unit length, where the specific Laplacian matrix to which they

refer will be clear from either contexts or subscripts.

REMARK 2.1.1. Note that the eigenvectors are unique up to sign flips provided that all eigenvalues are

simple. We standardize the sign of φl as follows: 1) if max(φl ) < −min(φl ), we flip the sign of φl ; 2) if

max(φl ) =−min(φl ), we adjust the sign ofφl to ensure its first non-zero entry is positive.

REMARK 2.1.2. If the multiplicity of an eigenvalue is greater than 1, then the choice of corresponding

eigenvectors is not unique even up to sign flips. One can apply the varimax rotation algorithm (i.e., Al-

gorithm 2) discussed in Chapter 6 on the corresponding eigenspace to ensure the sparsest eigenvectors are

selected. However, this case did not happen among the numerical experiments of this dissertation.

Denoting Φ := [φ0| · · · |φN−1] and Λ := diag([λ0, . . . ,λN−1]), the eigendecomposition of L(G) can be

written as L(G) =ΦΛΦT. Similarly, denotingΦsym := [
φ

sym
0 | · · · |φsym

N−1

]
andΛsym := diag(

[
λ

sym
0 , . . . ,λsym

N−1

]
),

the eigendecomposition of Lsym(G) can be written as Lsym(G) =ΦsymΛsymΦ
T
sym. Both L and Lsym are sym-

metric matrices and therefore their eigenvectors form orthonormal bases (ONBs) for RN .

Since we only consider connected graphs here, we have 0 = λ0 � λ1, and φ0 = 1/
p

N , which is

called the direct current component vector or the DC vector for short; 0 = λ
sym
0 � λ

sym
1 , and φ

sym
0 (i ) =√

Di i /
∑N

j=1 D j j . The second smallest eigenvalue λ1 is called the algebraic connectivity of G and the cor-

responding eigenvectorφ1 is called the Fiedler vector of G . The Fiedler vector plays an important role in

graph partitioning and spectral clustering; see, e.g., [87], which suggests the use of the Fiedler vector of

Lrw(G) for spectral clustering over that of the other Laplacian matrices. Furthermore, for l = 1 : N −1, we

have 1Tφl = 0, i.e.,
∑N

x=1φl (x) = 0, due to 〈φ0,φl 〉 = 0, while
∑N

x=1φ
sym
l (x) 6= 0 sinceφsym

0 is not a constant

vector.
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For a weighted graph G(V ,E ,W ), one may also be interested in studying the connectivity of the graph.

We denote the unweighted version of the adjacency matrix and the unweighted version of the incidence

matrix, respectively, as

W̃ (G) := sign.(W (G)) ∈RN×N

Q̃(G) = [q̃1| · · · |q̃M ] := sign.(Q(G)) ∈RN×M

where sign.(·) applies the sign function in the entrywise manner to its argument. We then define the

unweighted version of the degree matrix D̃(G) as the diagonal matrix with entries D̃i i = ∑
j W̃i j and the

the unweighted (unnormalized) Laplacian matrix as L̃(G) := D̃(G)−W̃ (G). Denoting Φ̃ := [φ̃0| · · · |φ̃N−1]

and Λ̃ := diag([λ̃0, . . . , λ̃N−1]), the eigendecomposition of L̃(G) can be written as L̃(G) = Φ̃Λ̃Φ̃T. Since G is

connected, λ̃0 =λ0 = 0 and φ̃0 =φ0 =1/
p

N .

As an important example and for future reference, let us consider the Laplacian eigenpairs of an un-

weighted path graph PN , which is also discussed earlier in [35,60,71,73,74]. In this case, the eigenvectors

of L(PN ) are exactly the DCT Type II basis vectors (used in the JPEG standard) [82]:

(2.2) λl =λl ;N := 4sin2
(
πl

2N

)
, φl (x) =φl ;N (x) := al ;N cos

(
πl

N

(
x − 1

2

))
,

where l = 0 : N − 1, x = 1 : N , and al ;N is a normalization constant to have ‖φl ;N‖2 = 1. It is clear that

the eigenvalue is a monotonically increasing function of the frequency, which is the eigenvalue index l

divided by 2 in this case.

2.2. Graph Fourier Transform and Graph Wavelet Transforms

The Fourier transform is a classical tool in harmonic analysis. The graph Laplacian eigenvectors

are often viewed as the generalized Fourier modes on graphs. Therefore, for any graph signal f ∈ RN

and coefficient vector g ∈ RN , the graph Fourier transform and inverse graph Fourier transform [79] are

defined by

FG (f ) := ΦT ·f ∈RN and F −1
G (g) := Φ ·g ∈RN .(2.3)

Since Φ is an orthogonal matrix, it is not hard to see that F −1
G ◦FG = IN . Thus, we can use FG as an

analysis operator and F −1
G as a synthesis operator for graph harmonic analysis.
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We now briefly review graph wavelet transforms and frames; see, e.g., [62, 79] for more informa-

tion. Translation and dilation are two important operators for classical wavelet construction. However,

unlike Rd (d ∈ N) or its finite and discretized lattice graph PN1 × ·· · ×PNd , we cannot assume the un-

derlying graph has self-symmetric structure in general, i.e., its interior nodes may not always have the

same neighborhood structure. Therefore, it is difficult to construct graph wavelet bases or frames by

translating and dilating a single mother wavelet function of a fixed shape, e.g., the Mexican hat mother

wavelet in R, because the graph structure varies at different locations. Instead, some researchers, e.g.,

Hammond et al. [29], constructed wavelet frames by the Spectral Graph Wavelet Transform (SGWT), i.e.,

by shifting smooth graph spectral filters to be centered at different nodes. Let us take the SGWT frame as

an example to summarize a general framework of building wavelet frames as follows:

ψSGWT
j ,x :=

Filtering︷ ︸︸ ︷
ΦF jΦ

Tδx for j = 0 : J and x = 1 : N ,(2.4)

where the index j stands for different scale of spectral filtering (the greater j , the finer the scale, and

J ∈N represents the finest scale specified by the user), the index x represents the center location of the

wavelet, δx is the standard basis vector centered at node x, and the diagonal matrices F j ∈RN×N are the

so-called spectral graph filters and usually defined by (F0)i ,i = h(λi−1) and (F j )i ,i = g (s jλi−1) for i = 1 : N ,

j = 1 : J . Here, h is a scaling function (which mainly deals with the small eigenvalues), while g is a

graph wavelet generating kernel. For example, the kernel proposed in [29] can be approximated by the

Chebyshev polynomial and lead to a fast algorithm. Note that {s j } j=1:J are dilation parameters.

Furthermore, one can show that as long as the generalized partition of unity

(2.5) A · IN ≤
J∑

j=0
F j ≤ B · IN , 0 < A ≤ B

holds,
{
ψSGWT

j ,x

}
j=0:J ;x=1:N

forms a graph wavelet frame, which can be used to decompose and recover

any given graph signals [29].

However, one important drawback of the above method is that the construction of the spectral fil-

ters F j solely depends on the eigenvalue distribution (except some flexibility in choosing the filter pair

(h, g ), and the dilation parameters {s j } j=1:J ) and does not reflect how the eigenvectors behave. For sim-

ple graphs such as PN and CN (a cycle graph with N nodes), the graph Laplacian eigenvectors are global
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sinusoids whose frequencies can be simply read off from the corresponding eigenvalues, as discussed in

Section 2.1. Hence, the usual Littlewood-Paley wavelet theory (see, e.g., [17, Sec. 4.2], [37, Sec. 2.4]) ap-

plies for those simple graphs. Unfortunately, the graph Laplacian eigenvectors of a general graph — even

if it is ever so slightly more complicated than PN and CN — can behave in a much more complicated or

unexpected manner than those of PN or CN , as discussed in [10, 35, 51, 60, 71, 72, 73, 74] and Chapter 3.

2.3. Graph Wavelet Packets and Best-Basis Algorithm

Instead of building the graph wavelet dictionary by graph wavelet frames using spectral filters as

summarized in Section 2.2, one could also accomplish it by generalizing the classical wavelet packets to

graphs. The classical wavelet packet decomposition (or dictionary construction) of a 1D discrete signal is

obtained by passing it through a full binary tree of filters (each node of the tree represents either low-pass

filtered or high-pass filtered versions of the coefficients entering that node followed by the subsampling

operation) to get a set of binary-tree-structured coefficients [16], [54, Sec. 8.1]. This basis dictionary for

an input signal of length N has up to N (1+ log2 N ) basis vectors (hence clearly redundant), yet contains

more than 1.5N searchable orthonormal bases (ONBs) [16, 85].

For the purpose of efficient signal approximation, the best-basis algorithm originally proposed by

Coifman and Wickerhauser [16] can find the most desirable ONB (and the expansion coefficients of the

input signal) for a given task among such an immense number of ONBs. The best-basis algorithm re-

quires a user-specified cost function, e.g., the `p -norm (0 < p ≤ 1) of the expansion coefficients for sparse

signal approximation, and the basis search starts at the bottom level of the dictionary and proceeds up-

wards, comparing the cost of the coefficients at the children nodes to the cost of the coefficients at their

parents nodes. This best-basis search procedure only costs O(N ) operations provided that the expansion

coefficients of the input signal have already been computed.

In order to generalize the classical wavelet packets to the graph setting, however, there are two main

difficulties: 1) the concept of the frequency domain of a given graph is not well-defined (see Chapter 3

for the details); and 2) the relation between the Laplacian eigenvectors and sample locations are much

more subtle on general graphs. For 1), we propose to construct a dual graph2 G? of the input graph G

and view it as the natural spectral domain of G , and use any graph partition method to hierarchically

2Our definition of a dual graph is different from the standard definition in the graph theory; see Remark 5.1.1 for the details.
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bipartition G? instead of building low and high pass filters like the classical case. This can be viewed as

the generalized Littlewood-Paley theory. For 2), we propose a node-eigenvector organization algorithm

called the pair-clustering algorithm, which implicitly provides a downsampling process on graphs; see

Chapter 7 for the details.
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CHAPTER 3

Motivating Examples

In order to concretely demonstrate the problem of using eigenvalues to organize the corresponding

eigenvectors, we examine the following two examples that were also discussed in [10, 51, 72]: the 2D

lattice graph and the neuronal dendritic tree.

3.1. Lattice Graph

Let us consider a thin rectangle in R2, and suppose that this rectangle is discretized as PNx ×PNy

(Nx > Ny > 1). The Laplacian eigenpairs of this lattice graph can be easily derived from Eq. (2.2) as:

λl =λ(lx ,ly ) := λlx ;Nx +λly ;Ny

φl (x, y) =ϕlx ,ly (x, y) := φlx ;Nx (x) ·φly ;Ny (y)

where l = 0 : Nx Ny −1; lx = 0 : Nx −1, ly = 0 : Ny −1, x = 1 : Nx , and y = 1 : Ny . As always, let {λl }l=0:Nx Ny−1

be ordered in the nondecreasing manner. Figure 3.1a shows the corresponding eigenvectors ordered in

this manner (with Nx = 7, Ny = 3). Note that the layout of 3× 7 grid of subplots is for the page saving

purpose: the layout of 1×21 grid of subplots would be more natural if we use only the eigenvalue size

for eigenvector ordering. For such a 2D lattice graph, the smallest eigenvalue is still λ0 = λ(0,0) = 0, and

the corresponding eigenvector is constant. The second smallest eigenvalue λ1 is λ(1,0) = 4sin2(π/2Nx ),

since π/2Nx < π/2Ny , and its eigenvector has one oscillation (i.e., half period) in the x-direction. But,

how about λ2? Even for such a simple situation there are two possibilities for λ2, depending on Nx and

Ny . If Nx > 2Ny , then λ2 = λ(2,0) < λ(0,1). On the other hand, if Ny < Nx < 2Ny , then λ2 = λ(0,1) < λ(2,0).

More generally, if K Ny < Nx < (K +1)Ny for some K ∈N, then λl = λ(l ,0) = 4sin2(lπ/2Nx ) for l = 0, . . . ,K .

Yet we have λK+1 = λ(0,1) = 4sin2(π/2Ny ) and λK+2 is equal to either λ(K+1,0) = 4sin2((K + 1)π/2Nx ) or

λ(1,1) = 4[sin2(π/2Nx ) + sin2(π/2Ny )] depending on Nx and Ny . Clearly, the mapping between l and

(lx , ly ) is quite nontrivial, and moreover, the eigenpair computation does not tell us how to map from l
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(a) Nondecreasing eigenvalue ordering (b) Natural frequency ordering

FIGURE 3.1. Laplacian eigenvectors of P7 ×P3 ordered sequentially in terms of nonde-
creasing eigenvalues (a); those ordered in terms of their natural horizontal/vertical fre-
quencies (b). The color scheme called viridis [68] is used to represent the amplitude of
eigenvectors ranging from deep violet (negative) to teal (zero) to yellow (positive).

to (lx , ly ). In Figure 3.1a, one can see this behavior with K = 2, i.e., notice that φ2(≡ ϕ2,0) has two os-

cillation in the x-direction and no oscillation in the y-direction whereas φ3(≡ ϕ0,1) has no oscillation

in the x-direction and one oscillation in the y-direction. In other words, all of a sudden the eigenvalue

of a completely different type of oscillation sneaks into the eigenvalue sequence. Hence, on a general

graph, by simply looking at its Laplacian eigenvalue sequence {λl }l=0,1,..., it is almost impossible to orga-

nize the eigenvectors into physically meaningful dyadic blocks and follow the Littlewood-Paley approach

unless the underlying graph is of very simple nature, e.g., PN or CN . Therefore, it will be problematic to

design graph wavelets by using spectral filters built solely upon eigenvalues and we need to find a way to

distinguish eigenvector behaviors.

What we really want to do is to organize those eigenvectors based on their natural frequencies or

their behaviors, as shown in Figure 3.1b instead of Figure 3.1a, without explicitly knowing the mapping

from l to (lx , ly ) in this example.

3.2. Neuronal Dendritic Tree

Figure 3.2 shows a dendritic tree of a retinal ganglion cell (RGC) of a mouse, which is referred to as the

RGC #100 (see [73] for the details of this RGC tree of a mouse). This graph G(V ,E ,W ), is in fact a tree (i.e.,

acyclic connected graph), and has N = 1154 nodes and M = 1153 edges, and its edge weights are assigned

as the inverse of the Euclidean distance between two adjacent nodes. If we order the eigenvectors of its
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FIGURE 3.2. The dendritic tree of RGC #100 graph in R3.

FIGURE 3.3. Eigenvalues of the unweighted graph Laplacian of the RGC #100.

unweighted graph Laplacian (i.e., L̃(G)) based on the size of corresponding eigenvalues, we encounter a

peculiar phenomenon around λ̃= 4 [73].

The eigenvalue distribution, as shown in Figure 3.3, has a nice bell-shape curve starting at λ̃0 = 0,

and then around the eigenvalue 4, there is a sudden jump, followed by several eigenvalues greater than

4. As discussed in [73], this is a kind of phase transition phenomenon: the eigenvectors corresponding to
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(a) φ̃1141 corresponding to λ̃1141 = 3.9994 (b) φ̃1142 corresponding to λ̃1142 = 4.3829

FIGURE 3.4. Two consecutive graph Laplacian eigenvectors of RGC #100 (2D plan view).

the eigenvalues below 4 are semi-global oscillations (like Fourier cosines) over the entire dendrites or one

of the dendrite arbors (e.g., Figure 3.4a) while those corresponding to the eigenvalues above 4 are much

more localized (like wavelets) around junctions/bifurcation nodes (e.g., Figure 3.4b).

Even though we can detect the above phase transition phenomenon by monitoring the eigenvalues,

it is still impossible to tell how the behaviors of the eigenvectors change based solely on the eigenvalues.

Therefore, it is important to define and compute quantitative similarity or difference between its eigen-

vectors for a general graph. Then, it is more natural to use these eigenvector metrics for the eigenvector

organization instead of using the eigenvalues. However, we cannot use the usual `2-distances among

them since they all have the same value
p

2 due to their orthonormality. So a natural question is: how

can we quantify the similarity/difference between the eigenvectors ?
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CHAPTER 4

Metrics of Graph Laplacian Eigenvectors

To answer the question in the previous chapter, we introduce five non-trivial behavioral metrics of

the graph Laplacian eigenvectors in a chronological order based on the time they are invented in this

chapter. We also investigate the relationships among them.

4.1. Ramified Optimal Transport (ROT) Distance

The ramified optimal transport (ROT) distance [72] is a non-trivial eigenvector metric introduced by

Saito to qualify the behavioral difference between the eigenvectors on graphs.

4.1.1. ROT Distance Between Probability Mass Functions (pmfs). The ROT theory [89] is a branch

of the more general optimal transport theory [44, 65]. It studies transporting the “mass” between two

probability measures along the ramified transport paths, and has been used as a tool to analyze the opti-

mal branching structures, e.g., the veins on a leaf, animal cardiovascular/circulatory systems, communi-

cation networks, etc. Given an undirected graph G = (V ,E ,W ), let Path(p,q) ⊂G be all possible transport

paths from one pmf p to another q without cycles, i.e., each P ∈ Path(p,q) is a weighted acyclic directed

graph whose edge weights (> 0) satisfy the Kirchhoff law (or the balance equation) at each node in V (G).

˜̃Qτ = q−p, τ ∈R2M
≥0 ,(4.1)

where ˜̃Q = Q̃( ˜̃G) := [Q̃(G)|−Q̃(G)] ∈ RN×2M is the (unweighted) incidence matrix of the bidirected graph

˜̃G generated from the undirected original graph G , i.e., each edge in E(G) becomes two directed edges in

E( ˜̃G), so that the probability “mass” can move in either directions. The reason of using the unweighted

incidence matrix instead of the weighted one is because at this step we only care about the possibilities

of how the masses can be moved through edges in E( ˜̃G), not how easy or hard they can be moved over

different edges. Note that any τ satisfying Eq. (4.1) represents a transportation path (or plan) from p to
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q, and there may be multiple solutions. Hence, we define the cost of a transport path P ∈ Path(p,q) as:

Mα(P ) := ∑
e∈E(P )

τ(e)α length(e), α ∈ [0,1].

where length(e) is the “length” of the edge e ∈ E(P ), which may be the Euclidean distance between the

two nodes associated with e, or the inverse of the original edge weight of the input graph G if the original

edge weight represents the affinity between those two nodes. And length(e) quantifies the difficulty of

moving masses through e. Now, we can define the minimum transportation cost

dROT(p,q;α) := min
P∈Path(p,q)

Mα(P ).(4.2)

Xia proved in [89] that this is a metric on the space of pmfs and of homogeneous of degree α; and more-

over he derived numerical algorithms to generate theα-optimal path for a given pair (p,q). In particular,

when α = 1, dROT(p,q;α = 1) = W1(p,q), where W1 is the 1st Wasserstein distance [65] (a.k.a. the Earth

Mover’s Distance (EMD)) on graphs.

In practice, we propose to solve the following Linear Programming (LP) problem (see, e.g., [63]):

min
τ∈R2M

≥0

‖τ‖1 subject to: ˜̃Q τ = q−p,(4.3)

to obtain one of the sparsest solutions of Eq. (4.1). We then compute the ROT distance by

dROT(p,q;α) = ∑
e∈E(P )

τ(e)α length(e).

In our NGWP.jl package [50], we used the JuMP.jl optimization package [19] to solve Eq. (4.3).

4.1.2. ROT Distance Between Eigenvectors. There are two ways to define the ROT distance between

the eigenvectors. The first way, as discussed in [72], is by: 1) converting the eigenvectors to pmfs based on

a specific rule, denoted by pmf(·), and 2) computing the minimum ROT cost between the corresponding

pmfs.

There are two methods that we typically use to convert an eigenvectorφl to a pmf. The first method

is based on the fact that each eigenvectorφl has the unit length, we can turn it to a pmf by simply taking
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entrywise squares:

pmf(1) (φl
)

(x) := φl (x)2, l = 0 : N −1 and x = 1 : N .

Although this method is straightforward, we lose the sign information of the eigenvectors when taking

squares. Another method inspired by [21] is to apply the exponential function on each entry followed by

a normalization step, which carries the sign or phase information of an eigenvector:

pmf(2) (φl
)

(x) := exp(φl (x))∑N
y=1 exp(φl (y))

, l = 0 : N −1 and x = 1 : N .(4.4)

After we convert the eigenvectorsφi andφ j to pmfs, we can define their ROT distance accordingly by

d (1)
ROT

(
φi ,φ j ;α

)
:= dROT

(
pmf(φi ),pmf(φ j );α

)
.(4.5)

However, no matter which method we choose for the pmf conversion, we lose some information

about the behaviour of the original eigenvectors. Fortunately, Eq. (4.2) is also well-defined for any vector

measures p,q ∈RN , as long as p and q have the same total mass, i.e.,
∑N

x=1 p(x) =∑N
x=1 q(x). Considering∑N

x=1φl (x) = 0 for l = 1 : N −1, so if we replace the DC vectorφ0 by 0 ∈RN , all the eigenvectors share the

same total mass 0. Besides,φ0 and 0 can be considered as two graph signals that behave the same on G ,

i.e., being flat or a constant. Therefore, we introduce the second way to define the ROT distance between

eigenvectors as follows.

d (2)
ROT

(
φi ,φ j ;α

)
:=


dROT

(
0,φ j ;α

)
, i = 0,

dROT
(
φi ,0;α

)
, j = 0,

dROT
(
φi ,φ j ;α

)
, i , j = 1 : N −1.

(4.6)

4.2. Simplified ROT (sROT) Distance for Trees

The high computational cost of solving Eq. (4.3) motivates us to speed up or simplify the ROT metric.

If the underlying graph is a tree, we develop a computationally efficient simplified ROT (sROT) metric.

Notice that there are only three types of nodes in a tree: terminal nodes (degree 1); internal nodes (degree

2); and junction nodes (degree greater than 2). When we consider using the pmfs of the eigenvectors in
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d (1)
ROT of Eq. (4.5) for the ordering and organization purposes, we are mainly analyzing how the probability

masses are distributed on different branches (consisting of terminal and internal nodes) and junctions.

Therefore, let us decompose the tree into branches and junctions as follows. We first find all the

junction nodes by checking the degree of each node. Then, we use the junction nodes to chop the

tree into several branches and junctions (i.e., subgraphs). In particular, the junction nodes represent

a bunch of one-node subgraphs. After this process, we get K disconnected subgraphs Gk = (Vk ,Ek )

(k = 0 : K − 1) including all the branches and junctions of the tree. We also get a graph of these sub-

graphs, denoted as G s = (V s ,E s), which describes how the subgraphs connected with each other. Specif-

ically, V s = {G0,G1, . . . ,GK−1} and edges in E s connect V s based on the connectivity between branches

and junctions in the original tree. Moreover, one can use the centroid of nodes in Vk to represent the lo-

cation of Gk ∈V s . Intuitively speaking, we compress the branches of G as one node of G s , and G s can be

viewed as the simplified version of G . The above procedures form a further simplified version of the tree

simplification algorithm introduced in [75]. An example of this G s construction is given in Section 5.3.2.

Then, instead of computing the dROT directly between pmf(φi ) and pmf(φ j ) on G , we add a prepro-

cessing step to compress their probability masses into subgraphs. In other words, we compute the mass

of pmf(φl ) (l = 0 : N −1) in each subgraph Gk = (Vk ,Ek ) (k = 0 : K −1): 1) if Gk is a junction one-node

subgraph (i.e., Vk = {v}), we just preserve the value of pmf(φl ) at node v ; and 2) if Gk is a branch-type

subgraph, we sum the mass of pmf(φl ) over the branch nodes Vk . We end up getting a K -dim vector θl

for each pmf(φl ), i.e.,

θl (k) := ∑
x∈Vk

pmf(φl )(x), l = 0 : N −1 and k = 0 : K −1.

Denote Θ := [θ0,θ1, · · · ,θN−1] ∈ RK×N (K ≤ N ). Note that each θl can be also viewed as a K -dim pmf

representation of φl . Thus, the computational cost of the ROT distance between θi and θ j on G s is

significantly lower than the original ROT distance between pmf(φi ) and pmf(φ j ) on G if the original tree

contains long branches. Finally, the sROT distance betweenφi andφ j is defined as follows.

dsROT(φi ,φ j ;α) := dROT(θi ,θ j ;α)(4.7)
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4.3. Hadamard (HAD) Product Affinity and Distance

The Hadamard product affinity [10] defines a similarity between the graph Laplacian eigenvectors in

terms of average local correlations. Letφi ,φ j be eigenvectors of the graph Laplacian L(G). It was shown

in [81] that for all x ∈V ,

e−tL(φiφ j )(x) = ∑
y∈V

pt (x, y)(φi (y)−φi (x))(φ j (y)−φ j (x)),

whereφiφ j is the Hadamard (i.e., entrywise) product ofφi andφ j , pt (x, y) is the (x, y)-th entry of e−tL ,

and t satisfies

e−tλi +e−tλ j = 1.(4.8)

This implies that, rather than computing the local correlation between eigenvectors for all x ∈ V , one

can simply compute the Hadamard product between the eigenvectors and apply the heat kernel matrix

e−tL at time t satisfying (4.8). When e−tL(φiφ j ) is similar in magnitude to φiφ j , this implies the local

correlation betweenφi andφ j is large. This yields a natural similarity measure between eigenvectors

(4.9) aHAD(φi ,φ j ) :=


1, λi =λ j = 0,∥∥e−tL(φiφ j )

∥∥
2

‖φiφ j‖2
, otherwise.

Based on the above definition, it can be easily shown 0 ≤ aHAD(φi ,φ j ) ≤ 1, for i , j = 0 : N − 1. For the

case of λi =λ j = 0, Eq. (4.8) does not hold and t is unsolvable, so we define aHAD(φ0,φ0) independently

by the maximum affinity value 1. Intuitively, aHAD measures the fraction of φiφ j that projects into the

graph Laplacian eigenvectors with smaller eigenvalues (i.e., more global low-frequency eigenvectors).

We define the Hadamard (HAD) product distance by

(4.10) dHAD(φi ,φ j ) :=


0, λi =λ j ,√

1− (
aHAD(φi ,φ j )

)2, λi 6=λ j .

We note that this “distance” does not satisfy the identity of discernible of the axioms of metric, yet it still

quantifies the behavioral difference between the eigenvectors as shown in [10] and Section 5.3.1.
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4.4. Difference of Absolute Gradient (DAG) Distance

Another effective way to measure “behavioral” difference between the eigenvectors is by the so-

called Difference of Absolute Gradient (DAG) pseudometric [51]. The advantages of the DAG pseudo-

metric are: 1) its computational efficiency compared to the other eigenvector metrics; 2) its superior

performance for grid-like graphs; and 3) its close relationship with the Hadamard-product affinity pro-

posed in [10]. This DAG distance is introduced as below.

Instead of the usual `2-distance, we use the absolute gradient of each eigenvector as its feature vec-

tor describing its behavior. More precisely, let Q(G) ∈ RN×M be the incidence matrix of an input graph

G(V ,E ,W ). Based on the definition of Q(G) in Section 2.1, it is easy to see that Q(G)Q(G)T = L(G).

We now define the DAG distance betweenφi andφ j by

(4.11) dDAG(φi ,φ j ) := ∥∥|∇G |φi −|∇G |φ j
∥∥

2 where |∇G |φ := abs.
(
Q(G)Tφ

) ∈RM
≥0,

where abs.(·) applies the absolute value in the entrywise manner to its argument. We note that |∇G |φ,

the absolute gradient of an eigenvector φ, is invariant with respect to: 1) sign flip, i.e., |∇G |φ≡ |∇G |(−φ)

and 2) choice of sign of each column (i.e., edge orientation) of the incidence matrix Q(G). We also note

that this quantity is not a metric but a pseudometric because the identity of discernible of the axioms of

metric is not satisfied. In order to see the meaning of this quantity, let us analyze its square as follows.

dDAG(φi ,φ j )2 = 〈|∇G |φi −|∇G |φ j , |∇G |φi −|∇G |φ j
〉

E

= 〈|∇G |φi , |∇G |φi 〉E +〈|∇G |φ j , |∇G |φ j
〉

E −2
〈|∇G |φi , |∇G |φ j

〉
E(4.12)

=λi +λ j −
∑

x∈V

∑
y∼x

|φi (x)−φi (y)| · |φ j (x)−φ j (y)| thanks to Q(G)Q(G)T = L(G)

where 〈·, ·〉E is the inner product over edges. The last term of the formula can be viewed as a global

average of absolute local correlation between eigenvectors. In this sense, this quantity is related to the

Hadamard-product affinity between eigenvectors discussed in Section 4.3. Note that the computational

cost is O(M) for each dDAG(·, ·) evaluation provided that the eigenvectors have already been computed.
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4.5. Time-Step Diffusion (TSD) Distance

4.5.1. TSD Metric on graphs. Given G = (V ,E ,W ), consider the governing heat diffusion ODE sys-

tem1 on the graph, which describes the evolution of the graph signal f0 ∈RN :

d

dt
f (t )+ L̃(G) ·f (t ) =0 t ≥ 0, f (0) = f0 ∈RN .(4.13)

Since the (unweighted) graph Laplacian (i.e., L̃(G)) eigenvectors {φ̃0,φ̃1, · · · ,φ̃N−1} form an ONB of RN ,

we have:

f (t ) =
N−1∑
l=0

〈f0,φ̃l 〉e−λ̃l t φ̃l .(4.14)

At a time T > 0, we define the following TSD functional:

KTSD(f0,T ) :=
∫ T

0
‖∇̃Gf (t )‖1,wdt ,(4.15)

where ∇̃Gf = Q̃(G)Tf ∈ RM is the (unweighted) graph gradient of f and ‖ · ‖1,w : RM 7→ R≥0 is a weighted

`1-norm,

‖x‖1,w =
M∑

k=1
|x(k)| · length(ek ), for x ∈RM ,

in which length(ek ) is the “length” of the kth edge in E(G), which may be the Euclidean distance between

the two nodes associated with ek , or the inverse of the original edge weight of the input graph G if the

original edge weight represents the affinity between those two nodes. This functional can be viewed as

the cost (or effort) to “flatten” the initial graph signal f0 via diffusion process up to the time T , and also as

the time-accumulated “anisotropic total variation norm” [30] of f0. Clearly, KTSD(f0,T ) is an increasing

1Here we use the unweighted version of the graph Laplacian matrix L̃(G) to study the heat diffusion based solely on the connec-
tivity of the graph. Our reasoning is the same as in the case when we considered the ROT balance equation Eq. (4.1).
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function w.r.t. T . Moreover, we can show that limT→∞ KTSD(f0,T ) <∞ for any f0 ∈RN :

lim
T→∞

KTSD(f0,T ) =
∫ ∞

0

∥∥∥∥∥∇̃G

N−1∑
l=0

〈
f0,φ̃l

〉
e−λ̃l t φ̃l

∥∥∥∥∥
1,w

dt

≤
∫ ∞

0

N−1∑
l=0

∥∥∥〈
f0,φ̃l

〉
e−λ̃l t ∇̃Gφ̃l

∥∥∥
1,w

dt

=
∫ ∞

0

N−1∑
l=1

∥∥∥〈
f0,φ̃l

〉
e−λ̃l t ∇̃Gφ̃l

∥∥∥
1,w

dt thanks to ∇̃Gφ̃0 =0

=
N−1∑
l=1

∫ ∞

0

∥∥∥〈
f0,φ̃l

〉
e−λ̃l t ∇̃Gφ̃l

∥∥∥
1,w

dt

=
N−1∑
l=1

∥∥〈
f0,φ̃l

〉∇̃Gφ̃l
∥∥

1,w

∫ ∞

0
e−λ̃l t dt

=
N−1∑
l=1

|〈f0,φ̃l
〉 |

λ̃l

∥∥∇̃Gφ̃l
∥∥

1,w <∞.

Now, KTSD(·,T ) is well defined for T ∈ R>0 ∪ {∞}. With this in place, we can further show the following

lemma.

LEMMA 4.5.1. Given G(V ,E) and T ∈ R>0 ∪ {∞}, KTSD(·,T ) is a norm on RN
0 := {

f ∈RN |1Tf = 0
}
, i.e.,(

RN
0 ,KTSD(·,T )

)
is a normed vector space. Thus, we get a metric vector space

(
RN

0 ,dTSD(·, ·;T )
)

by defining

dTSD(f ,g;T ) := KTSD(g−f ,T ), f ,g ∈RN
0 .

See Appendix A.1 for the proof.

After setting the input signal f0 =φ j −φi , we can define the TSD distance between eigenvectors2 at

time T ∈R>0 ∪ {∞} by

dTSD(φi ,φ j ;T ) := KTSD(f0,T ).(4.16)

In practice, we used the QuadGK.jl [39] to compute the numerical integration of Eq. (4.15) and conse-

quently the approximated TSD distance in Eq. (4.16).

2Since φ0 6∈RN
0 , φ0 is replaced by 0 ∈RN

0 when computing the TSD distance.
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4.5.2. TSD metric on a compact Riemannian manifold M . We can also define the TSD metric on a

compact Riemannian manifold M where the heat diffusion system in Eq. (4.14) can be defined based on

the Laplace-Beltrami operator ∆.

We consider the heat diffusion on M with Neumann boundary conditions

∂
∂t f (x, t ) =∆ f (x, t ), x ∈M , t ≥ 0

∂
∂n f (x, t ) = 0, x ∈ ∂M , t ≥ 0

f (x,0) = f0,

(4.17)

wheren is the normal direction at boundary ∂M and the initial signal

f0 ∈ L2
0(M ) :=

{
f ∈ L2(M ) |

∫
M

f (x)dµ(x) = 0

}
.

Then, the TSD functional on M can be defined by:

KTSD( f0,T ) :=
∫ T

0

∫
M

|∇x f (x, t )|dµ(x)dt ,

where dµ is the measure on M .

We denote the eigenfunctions of∆ in Eq. (4.17) asφl with ‖φl‖2 = 1, l ∈ {0}∪N. The following theorem

shows an upper bound of this functional on M .

THEOREM 4.5.2. For T ∈RN
>0 ∪ {∞} and f0 ∈ L2

0(M ),

KTSD( f0,T ) ≤
∞∑

l=1

1√
λl

| f̂0(l )| ·
√

Vol(M ),

where λl ’s are the positive eigenvalues of Laplace-Beltrami operator, f̂0(l ) := 〈φl , f0〉 are the Fourier coeffi-

cients of f0 and Vol(M ) := ∫
M dµ(x).

See Appendix A.2 for the proof.
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Therefore, the TSD distance with parameter T on L2
0(M ) between eigenfunctions3 φi and φ j is well

defined by

dTSD(φi ,φ j ;T ) := KTSD(φ j −φi ,T ) ≤

 1√
λi

+ 1√
λ j

√
Vol(M ) <∞.

4.6. Relationship Between ROT and TSD

The motivation of designing the TSD metric is to construct a time-evolving optimal transport-like

metric. Actually, we have the following theorem for T =∞.

THEOREM 4.6.1. Given a graph G =G(V ,E ,W ) and two associated vector measures p,q with the same

total mass, i.e.,
∑N

x=1 p(x) =∑N
x=1 q(x), we have

dROT(p,q;α= 1) ≤KTSD(q−p,T =∞) ≤C (G) ·dROT(p,q;α= 1),

i.e., W1(p,q) ≤KTSD(q−p,T =∞) ≤C (G) ·W1(p,q),(4.18)

where C (G) is a constant depending on the graph G.

The following lemma proves the first inequality in Eq. (4.18).

LEMMA 4.6.2. Given G(V ,E) and two vector measures p,q ∈RN with the same total mass, i.e.,

N∑
x=1

p(x) =
N∑

x=1
q(x).

The following inequality holds

W1(p,q) ≤ KTSD(q−p,T =∞).

PROOF. If we can show that KTSD with T =∞ provides a transport plan τTSD that satisfies the balance

equation Eq. (4.1), then the above inequality holds automatically based on the definition of the ROT cost

3except the DC component φ0
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in Eq. (4.2). In other words, we want to find a τTSD ∈R2M
≥0 such that

˜̃Q τTSD = q−p,

where ˜̃Q = [Q̃|−Q̃] = [ ˜̃q1| · · · | ˜̃q2M ] ∈RN×2M is the unweighted incidence matrix of the bidirected graph ˜̃G4,

and Q̃ = Q̃(G) for short. Based on the definition of KTSD, we perform the following derivations.

KTSD(q−p,T =∞) =
∫ ∞

0
‖Q̃T ·f (t )‖1,wdt

=
M∑

k=1

(∫ ∞

0
|q̃T

k ·f (t )|dt

)
· length(ek )

≥
M∑

k=1

∣∣∣∣∫ ∞

0
q̃T

k ·f (t )dt

∣∣∣∣ · length(ek )

=
2M∑
k=1

(∫ ∞

0
˜̃qT

k ·f (t )dt

)
+
· length( ˜̃ek ),

where (·)+ turns negative values to zero, ek is the k-th edge in E(G) and ˜̃ek is the k-th edge in E( ˜̃G). Then,

a natural guess for τTSD would be

τTSD(k) :=
(∫ ∞

0
˜̃qT

k ·f (t )dt

)
+

, for k = 1,2, . . . ,2M .

Now, let us verify the defined τTSD satisfies the balance equation Eq. (4.1).

˜̃Q τTSD =
2M∑
k=1

˜̃qk ·
(∫ ∞

0
˜̃qT

k ·f (t )dt

)
+

(a)=
∫ ∞

0
L̃(G) ·f (t )dt =

∫ ∞

0
− d

dt
f (t )dt = f (0)−f (∞)

(b)= f (0) = q−p.

The equality (a) holds is because without loss of generality, we can assume
∫ ∞

0
˜̃qT

k ·f (t )dt ≥ 0 for k = 1 : M ,

which implies
∫ ∞

0
˜̃qT

k ·f (t )dt =−∫ ∞
0

˜̃qT

k−M ·f (t )dt ≤ 0 for k = M +1 : 2M . Therefore,

2M∑
k=1

˜̃qk ·
(∫ ∞

0
˜̃qT

k ·f (t )dt

)
+
=

M∑
k=1

˜̃qk ·
∫ ∞

0
˜̃qT

k ·f (t )dt =
∫ ∞

0
Q̃Q̃T ·f (t )dt =

∫ ∞

0
L̃(G) ·f (t )dt .

The equality (b) holds is because p and q have the same total mass such that
〈
φ̃0,q−p〉 = 0, which

implies f (∞) =0 ∈RN . Hence, τTSD represents a transportation plan on ˜̃G and the inequality holds. �

On the other hand, the following lemma shows the second inequality of Eq. (4.18).

4which is defined under Eq. (4.1).
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LEMMA 4.6.3. Given a finite graph G(V ,E) and two vector measures p,q ∈ RN with the same total

mass, i.e.,

N∑
x=1

p(x) =
N∑

x=1
q(x).

The following inequality holds

KTSD(q−p,T =∞) ≤C (G) · ‖q−p‖W1 ,

where ‖q−p‖W1 := W1(p,q).

This lemma can be proved by the well-known fact: all norms are equivalent in finite vector spaces.

With that, we concluded our proof of Theorem 4.6.1. Note that how one can properly estimate the lower

bound of the constant C (G) based on the properties of G itself remains as a question.

Furthermore, the underlying domain in Eq. (4.18) could also be a compact Riemannian manifold

M instead of a graph. Unfortunately, the optimal transportation plan of W1 on M generally cannot

be expressed in an explicit form [49], so it is hard to prove the inequalities in Eq. (4.18). However, if

the underlying manifold is M = [0,2π] and input measures are probability density functions, (where

the explicit expression of W1 is known [49]), we can show the first inequality of Eq. (4.18) on M by the

following theorem.

THEOREM 4.6.4. Given two probability density functions p, q on [0,2π],

W1(p, q) ≤ KTSD(q −p,T =∞).

See Appendix A.3 for the proof.

Another perspective to study the inequalities in Eq. (4.18) is by numerical simulations. For conve-

nience, we define the ratio ρ between KTSD(q−p,T =∞) and W1(p,q) as

ρ(p,q) :=


KTSD(q−p,T =∞)

W1(p,q)
, if p 6= q,

1, if p= q.
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FIGURE 4.1. Boxplots of ρ in four different graphs.

The numerical experiments are performed on four different graphs: (a) the unweighted path graph

P64 (N = 64, M = 63); (b) the unweighted grid lattice graph P7 ×P3 (N = 21, M = 32), as seen in Fig-

ure 3.1; (c) an unweighted connected Erdős Rényi (ER) random graph [22] (N = 50, M = 200); and (d) the

weighted RGC #100 graph (N = 1154, M = 1153), as seen in Figure 3.2.

We create 500 pairs of pmfs (p,q) randomly on each G(V ,E): 1) sample each entry in p,q indepen-

dently from the standard uniform distribution U (0,1), i.e., p(x), q(x) i .i .d .∼ U (0,1) for x = 1 : N . 2) normal-

ize the obtained vectors p and q respectively such that
∑N

x=1 p(x) =∑N
x=1 q(x) = 1.

Finally, the ratio ρ is computed on each graph 500 times and the four corresponding boxplots are dis-

played in Figure 4.1. We see that ρ ≥ 1 for all four graphs no matter if the graph is weighted or unweighted,

which verifies the result in Lemma 4.6.2. Based on the numerical simulation results, the estimated lower

bound of C (G), i.e., the max of ρ, equals to: (a) 1.7463 for P64; (b) 1.5810 for P7 ×P3; (c) 1.5995 for the

Erdős Rényi random graph; and (d) 1.7562 for the weighted RGC #100 graph.
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4.7. Relationship Between DAG and TSD

Beside the relationship between ROT and TSD, the TSD metric is also related to the DAG pseudomet-

ric. Given an unweighted graph G = G(V ,E) and a small T > 0, we have the following approximation of

dTSD based on the continuity of the function inside the integral of Eq. (4.15).

dTSD(φi ,φ j ;T ) = KTSD(φ j −φi ,T ) ≈ T
∥∥∇G (φ j −φi )

∥∥
1 = T

∥∥∇Gφi −∇Gφ j
∥∥

1 , T = o(1),

where we also used the facts ∇̃G ≡∇G and ‖ · ‖1,w ≡ ‖ · ‖1 when G is unweighted. Moreover, this approxi-

mated quantity is related to dDAG
5 by the following inequality.

dDAG(φi ,φ j ) = ∥∥|∇G |φi −|∇G |φ j
∥∥

2 ≤
∥∥∇Gφi −∇Gφ j

∥∥
2 ≤

∥∥∇Gφi −∇Gφ j
∥∥

1 .

The last inequality holds is because for any f ∈RN ,

‖f‖2
1 =

(| f (1)|+ | f (2)|+ · · ·+ | f (N )|)2 ≥ f (1)2 + f (2)2 +·· ·+ f (N )2 = ‖f‖2
2.

Therefore,

dTSD(φi ,φ j ;T )& T ·dDAG(φi ,φ j ), T = o(1).(4.19)

Hence, the TSD metric in some sense bridges the DAG pseudometric with T = o(1) and the ROT

metric with T =∞ on unweighted graphs.

5Note that φ0 is replaced by 0 ∈ RN before feeding into the TSD metric, but this does not have any effect on the DAG pseudo-
metric since |∇G |φ0 = |∇G |0=0 ∈RM .
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CHAPTER 5

Natural Organization of Graph Laplacian Eigenvectors

The metrics introduced in the previous chapter are summarized in Table 5.1. With these non-trivial

metrics in place, the next questions are: 1) how can we use these metrics to naturally organize the eigen-

vectors ? 2) how can we visualize the organization in a low dimensional Euclidean space, i.e., R2 or R3 ? In

this chapter, we focus on answering these two questions.

5.1. Dual Graph

Given a graph G = G(V ,E ,W ) with |V | = N and an eigenvector distance d in Table 5.1, we build a

dual graph G? = G?(V ?,E?,W ?) by viewing the eigenvectors as its nodes, V ? = {φ0, . . . ,φN−1}, and the

nontrivial affinity between eigenvector pairs as its edge weights,

W ?
i j := 1/d(φi−1,φ j−1), i , j = 1 : N .

We note that one can use the alternative and popular Gaussian affinity, i.e., exp(−d(φi−1,φ j−1)2/ε). This

affinity, however, requires a user to select an appropriate scale parameter ε> 0, which is not a trivial task

1EMD is short for the Earth Mover’s Distance, i.e., the ROT distance with α= 1.

metrics input arguments parameter notes

d (1)
ROT pmf(1) (φi

)
, pmf(1) (φ j

)
α ∈ [0,1] entrywise square

d (1)
ROT pmf(2) (φi

)
, pmf(2) (φ j

)
α ∈ [0,1] entrywise exponentiation

d (2)
ROT φi ,φ j (φ0 replaced by 0) α ∈ [0,1] measures with total mass 0

dsROT pmf(1) (φi
)
, pmf(1) (φ j

)
α ∈ [0,1] only work on trees

dsROT pmf(2) (φi
)
, pmf(2) (φ j

)
α ∈ [0,1] only work on trees

dHAD φi ,φ j — related to dDAG

dDAG φi ,φ j — fast computation

dTSD φi ,φ j (φ0 replaced by 0) T ∈R>0 ∪ {∞} time-evolving EMD1-like

TABLE 5.1. List of all metrics introduced in Chapter 4.
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as explained in [53], for example. Moreover, our edge weights using the inverse distances tend to connect

the eigenvectors more globally compared to the Gaussian affinity with a fixed bandwidth. Using G?,

which is a complete graph, for representing the graph spectral domain and studying relations between

the eigenvectors is clearly more natural and effective than simply using the eigenvalue magnitudes, as

[10, 51, 72] hinted at.

REMARK 5.1.1. Our definition of the “dual graph” G? of a given (primal) graph G is a graph repre-

senting the dual geometry/eigenvector domain of the primal graph; in particular, it is not related to the

graph-theoretic notion of dual graph (see, e.g., [27, Sec. 1.8]), and does not satisfy the equivalence of the

double dual graph and the primal graph. Our definition is also different from that of Leus et al. [47] who

defined the dual graph of a primal graph by first assuming that the eigenbasis of a graph shift operator

(e.g., the adjacency matrix) of the dual graph is the transpose of the eigenbasis of the graph shift operator

of the primal graph. Furthermore, their definition does not work for graph Laplacian matrices.

REMARK 5.1.2. As known from the discrete 1D Fourier transform [23, Sec. 7.6], the dual graph of PN

can be viewed as itself. Therefore, we directly use PN as the dual graph of PN , i.e., P?
N = PN , without

computing the non-trivial metrics listed in Table 5.1 for all the numerical experiments in this dissertation.

We denote the dual graph signal g = [g (1), . . . , g (N )]T ∈ RN as a graph signal on G?, whose support

node set is V ? and whose entry g (l +1) is associated with the eigenvectorφl for l = 0 : N −1. We say that

g is supported on V ?
0 ⊂V ?, if g (l +1) 6= 0 forφl ∈V ?

0 and g (l +1) = 0 forφl ∈V ? \V ?
0 .

5.2. Classical Multidimensional Scaling (MDS)

Even though the eigenvectors in V ? can be naturally organized by the dual graph G?, we still cannot

visualize the arrangement and get a better understanding of the intrinsic structure provided by the un-

derlying metric. Fortunately, if some notion of distances between points is given, there are a number of

ways to embed points into a low dimensional Euclidean space while preserving the inter-point distance

as much as possible [1,5,12,40,76]. Throughout this dissertation, we use the classical Multidimensional

Scaling (MDS) method [5, Chap. 12] to embed the eigenvectors into R2 or R3 for visualization purpose.
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Given G(V ,E ,W ) and an eigenvector distance d in Table 5.1, we assemble the distance matrix ∆ ∈
RN×N by the mutual distance between the eigenvectors

∆i j := d(φi−1,φ j−1), i , j = 1 : N .(5.1)

Clearly, ∆ is symmetric and the diagonal elements of ∆ are zeros. Then, we input the distance matrix ∆

along with an embedding dimension s (e.g., s = 2,3) to the classical MDS algorithm, i.e., Algorithm 1, and

we get the coordinate matrix of classical scaling X ∈RN×s , whose (l+1)-th row represents the embedding

position ofφl in Rs (l = 0 : N −1).

Algorithm 1: The Classical Multidimensional Scaling (MDS) Algorithm [5, Chap. 12]

Input: A distance matrix ∆ ∈RN×N and the dimension of the embedding space s (e.g., s = 2,3).
Output: The coordinate matrix of classical scaling X ∈RN×s .
1. Compute the matrix of squared distance sqr.(∆) , where sqr.(·) applies the square function in

the entrywise manner to its argument.
2. Apply double centering to sqr.(∆) to get the Gram matrix B :

B =−1

2
C sqr.(∆)C ,

where C := I − 1
N 1 ·1T is the so called centering matrix.

3. Compute the eigendecomposition of B =UΛUT.
4. Let the diagonal matrix of the largest s eigenvalues greater than zero beΛs ∈Rs×s and the

corresponding eigenvector matrix be Us ∈RN×s . Then, the coordinate matrix of classical scaling
is given by

X =UsΛ
1/2
s .

Note that if the selected eigenvalues inΛs are simple, X is unique up to reflections over i -th
coordinate (i = 1 : s). Otherwise, if multiple eigenvalues are selected, X is also unique up to
orthogonal rotations in the corresponding eigensubspaces.

In fact, Gower (1966) [28] proved that the coordinate matrix X computed in Algorithm 1 minimizes

the cost function cMDS :RN×s 7→R≥0,

cMDS(X ) := ∥∥X X T−B
∥∥

F =
∥∥∥∥X X T+ 1

2
C sqr.(∆)C

∥∥∥∥
F

,

where ‖ · ‖F is the Frobenius norm, and the Gram matrix B and the centering matrix C are as defined in

Algorithm 1. Furthermore, the dimensions are nested for the classical MDS. It means that, for example,

the first two columns of X ∈ RN×3 obtained by 3D MDS are the same as the two columns of X ∈ RN×2

obtained by 2D MDS.
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5.3. Experimental Results

After we set up the concept of the dual graph G?(V ?,E?,W ?) and the procedure of the classical MDS

algorithm, we can visualize V ? in Rs (s = 2,3)2 and examine the performance of various eigenvector

metrics in Table 5.1. In this section, we run numerical experiments on two graphs: the 2D lattice P7 ×P3

(as seen in Figure 3.1) and a simple synthetic dendritic tree. On each graph, we show and explore the

classical MDS embedding results3 based on the metrics chosen from Table 5.1.

REMARK 5.3.1. In the following experiments, if the chosen metric is associated with the parameterα or

T , we try out α= 0.1,0.2,0.5,1 or T = 0.1,1,10,∞, and select the one with the clearest embedding structure

(i.e., not congested and good for visualization).

5.3.1. 2D Lattice P7 ×P3. We have introduced the lattice graph P7 ×P3 in Section 3.1 as a motiva-

tional example. As demonstrated in Figure 3.1, we want to order the Laplacian eigenvectors in terms of

their natural horizontal/vertical frequencies instead of nondecreasing eigenvalues. Let us see how the

eigenvector metrics in Table 5.1 organize the dual graph’s nodes V ? in R2 via the classical MDS.

Figure 5.1 shows the embedding of these 21 eigenvectors intoR2 via the d (1)
ROT◦pmf(1) metric (Eq. (4.5))

with α= 0.5 [72]. It somewhat reveals the two-dimensional ordering of the eigenvectors, but the eigen-

vectors with even or odd oscillations in either x (horizontal axis) or y (vertical axis) direction are em-

bedded in a symmetric pattern around the DC vector ϕ0,0(= φ0). As explained in the paper [72], this

phenomenon is due to the use of squared eigenvectors as pmfs and the facts

ϕlx ,ly (x, y)2 +ϕNx−lx ,ly (x, y)2 = a2
lx ;Nx

φly ;Ny (y)2, lx = 1 : Nx −1, ly = 0 : Ny −1, x = 1 : Nx , y = 1 : Ny ,

ϕlx ,ly (x, y)2 +ϕlx ,Ny−ly (x, y)2 = a2
ly ;Ny

φlx ;Nx (x)2, lx = 0 : Nx −1, ly = 1 : Ny −1, x = 1 : Nx , y = 1 : Ny ,

where Nx = 7, Ny = 3, and alx ;Nx ,φlx ;Nx , aly ;Ny ,φly ;Ny are as defined in Eq. (2.2).

Figure 5.2 shows the embedding of the 21 eigenvectors into R2 via the d (1)
ROT ◦pmf(2) metric (Eq. (4.5))

with α= 0.1. The eigenvectors are nicely grouped into four clusters around the DC vectorϕ0,0: 1) eigen-

vectors only oscillate along y-axis (i.e., ϕ0,ly , ly = 1 : Ny −1); 2) eigenvectors only oscillate along x-axis

(i.e., ϕlx ,0, lx = 1 : Nx − 1); 3) eigenvectors oscillate in both directions but only having one oscillation

2In general, when a distance matrix is given for the classical MDS, we cannot assume the best embedding dimension a priori.
But for visualization purposes, we choose s = 2 or 3.
3Without explicitly saying, the MDS results in this dissertation are unique up to reflections over the i -th coordinate (i = 1 : s).
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FIGURE 5.1. Embedding of the Laplacian eigenvectors of P7×P3 intoR2 via d (1)
ROT◦pmf(1)

(α= 0.5) and the classical MDS.

FIGURE 5.2. Embedding of the Laplacian eigenvectors of P7×P3 intoR2 via d (1)
ROT◦pmf(2)

(α= 0.1) and the classical MDS.
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FIGURE 5.3. Embedding of the Laplacian eigenvectors of P7 ×P3 into R2 via d (2)
ROT (α =

0.1) and the classical MDS.

along y-axis (i.e.,ϕlx ,1, lx = 1 : Nx −1); and 4) eigenvectors oscillate in both directions but having two os-

cillations along y-axis (i.e.,ϕlx ,2, lx = 1 : Nx −1). Within each cluster, however, there is no clear ordering

of these eigenvectors in terms of their horizontal frequencies.

Figure 5.3 shows the embedding of the 21 eigenvectors into R2 via the d (2)
ROT metric (Eq. (4.6)) with

α= 0.1. As we can see, it shows a very similar arrangement of the eigenvectors compared to the previous

case: d (1)
ROT ◦pmf(2). This is due to the use of exponential function in pmf(2) as defined in Eq. (4.4). Based

on the Taylor expansion of the exponential function, i.e., exp(x) = 1+x +o(x2),

exp(φl (x)) ≈ 1+φl (x), l = 0 : N −1 and x = 1 : N .

So if we ignore the normalization factor in pmf(2), we are approximately computing the ROT distance

between a set of input vector measures {1+φl }l=0:N−1
4. This would generate exactly the same result as

the d (2)
ROT metric. In other words, the normalization factor in pmf(2) and the approximation in the Taylor

expansion slightly differentiate the outcomes obtained by the metrics d (1)
ROT ◦pmf(2) and d (2)

ROT.

4As before, we replace φ0 by 0 ∈RN , so that all input measures share the same total mass N .
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FIGURE 5.4. Embedding of the Laplacian eigenvectors of P7 ×P3 into R2 via dHAD and
the classical MDS.

Figure 5.4 shows the embedding of the 21 eigenvectors into R2 via dHAD (Eq. (4.10)). It nicely reveals

the two dimensional ordering of the eigenvectors, but the positions slightly deviate from a 2D lattice. We

note that: 1) the authors of [10] use the Hadamard product affinity (i.e., aHAD in Eq. (4.9)) instead of the

Hadamard product distance (i.e., dHAD in Eq. (4.10)) to organize the eigenvectors of a lattice graph; and

2) the authors apply another embedding technique instead of the classical MDS. Yet, the outcomes look

similar. It shows our definition of dHAD in Eq. (4.10) is reasonable.

Figure 5.5 shows the embedding of the 21 eigenvectors into R2 via dDAG (Eq. (4.11)). It clearly re-

veals the natural two-dimensional organization of the eigenvectors, and is similar to a rotated version

of Fig. 3.1b. Moreover, the embedding result is somewhat similar with the one via dHAD. This is mainly

because of the relation between dDAG and aHAD we derived in Eq. (4.12).

Figure 5.6 shows the embedding of the 21 eigenvectors into R2 via dTSD metric (Eq. (4.16)) with T =
0.1. Like the results via dHAD and dDAG, it also reveals the two-dimensional ordering of the eigenvectors.

However, the eigenvectors having no oscillation along y-axis (i.e.,ϕlx ,0, lx = 0 : Nx −1) are sandwiched by

the eigenvectors having one oscillation along y-axis (i.e.,ϕlx ,1, lx = 0 : Nx−1) and the eigenvectors having

two oscillations along y-axis (i.e., ϕlx ,2, lx = 0 : Nx −1), which is slightly different with the organization
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FIGURE 5.5. Embedding of the Laplacian eigenvectors of P7 ×P3 into R2 via dDAG and
the classical MDS.

FIGURE 5.6. Embedding of the Laplacian eigenvectors of P7 ×P3 into R2 via dTSD (T =
0.1) and the classical MDS.
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described in Fig. 3.1b. On the other hand, note that the chosen parameter T is very small in this example.

Therefore, the resemblance between the classical MDS results via dDAG and dTSD (T = 0.1) somewhat

verifies the relation we discussed in Section 4.7.

Figure 5.7 shows the affinity between the embedding results via d (2)
ROT (α= 1) and dTSD (T =∞)5. We

can see that everything centers around the DC vector ϕ0,0: 1) low frequency6 eigenvectors (e.g., ϕ1,0,

ϕ0,1, and ϕ2,0) are far apart from the center; and 2) high frequency eigenvectors are congested around

the center. These phenomena are due to the fact that it is harder to flatten the vector measures of low

frequency eigenvectors by either ROT or TSD comparing to the high frequency ones, because their pos-

itive measures and negative measures are more isolated across the graph. This similarity between the

two embedding results shows the close relation between ROT and TSD we discussed in Section 4.6.

Furthermore, dTSD is actually a time-dependent metric. In other words, we can get an embedding of

these eigenvectors via dTSD for any given T ∈R>0∪{∞}. To examine the time evolution of the embedding

via dTSD, we generated a movie7 to show how the embedding results evolve from Figure 5.6 (T = 0.1) to

Figure 5.7b (T =∞).

5.3.2. A Simple Synthetic Dendritic Tree. Since the dsROT metric only works on trees, we create an

unweighted tree G =G(V ,E) with N = 100 and M = 99 as shown in Figure 5.8a. Unlike the 2D lattice case,

we do not have any clear priori information of the eigenvector behaviors on a general tree. Thus, we first

study this particular tree and its Laplacian eigenvectors as follows. In Figure 5.8a, there are five regions

that we are interested in: 1) the top left branch G0(V0,E0) (marked by pink); 2) the bottom left branch

G1(V1,E1) (marked by orange); 3) the bottom right branch G2(V2,E2) (marked by green); 4) the top right

branch G3(V3,E3) (marked by yellow); and 5) the four junctions (marked by red). We define and compute

the energy score ES(·, ·) of each eigenvector on each branch as

ES(φl ,Vk ) := ∑
x∈Vk

φ2
l (x) ∈ [0,1], l = 0 : N −1 and k = 0 : 3.

We then select the eigenvectors that mainly concentrate on the k-th branch, i.e., ES(φl ,Vk ) > 0.5, k = 0 : 3.

By doing so, we get four groups of eigenvectors and we use the same four colors, i.e., pink, orange, green,

5In numerical simulations, we cannot really reach T =∞, we stop at some T when e−λ1T is less than or equal to a predefined
tolerance threshold, e.g., here we use the default tol = 10−5, which amounts to T = 58.13.
6Here frequency means the magnitude of the eigenvalue.
7https://github.com/UCD4IDS/NGWP.jl/blob/master/dissertation/gifs/Grid7x3_MDS_TSD_T01_inf.gif
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(a) d (2)
ROT (α= 1)

(b) dTSD (T =∞)

FIGURE 5.7. Comparison between the classical MDS results of the Laplacian eigenvec-
tors of P7 ×P3 via d (2)

ROT (α= 1) and dTSD (T =∞).
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(a) an unweighted tree (b) the simplified version

FIGURE 5.8. A synthetic dendritic tree and its simplified version.

and yellow, to represent them respectively. Figure 5.9 shows examples of such eigenvectors of the four

groups. We end up getting: 1) 18 eigenvectors for the pink-group; 2) nine eigenvectors for the orange-

group; 3) 23 eigenvectors for the green-group; and 4) seven eigenvectors for the yellow-group.

On the other hand, the phase transition phenomenon as discussed in Section 3.2 and [60,73,75] also

happens on this tree. Figure 5.10 shows the eigenvalue distribution of the tree. As we can see, there is also

a sudden jump around the eigenvalue 4. In particular, there are four eigenvalues greater than 4 after the

jump. The corresponding eigenvectors, as shown in Figure 5.11, are localized around the junctions (i.e,

the red nodes marked in Figure 5.8a). Note that these four eigenvectors do not belong to any group we

mentioned earlier. We denote them as the red-group. Now, we have five eigenvector groups of interest in

total. The eigenvectors within each group can be considered as having similar behavior on the tree.

Figure 5.12a and Figure 5.12b show the classical MDS embedding of the 100 eigenvectors into R3

via d (1)
ROT ◦pmf(1) (α = 1) and dsROT ◦pmf(1) (α = 1) respectively. The meanings of the colors used in the
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(a)φ94 (pink-group) (b)φ92 (orange-group) (c)φ95 (green-group) (d)φ91 (yellow-group)

FIGURE 5.9. Examples of four eigenvector groups that concentrated on V0, V1, V2 and
V3, respectively. The eigenvector amplitudes within (−0.3,0.3) are mapped to the viridis
colormap.

FIGURE 5.10. Eigenvalues of the graph Laplacian of the tree in Figure 5.8a.
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(a)φ96 (λ96 = 4.1922) (b)φ97 (λ97 = 4.4384) (c)φ98 (λ98 = 4.5289) (d)φ99 (λ99 = 4.6776)

FIGURE 5.11. The four eigenvectors whose eigenvalues are great than 4. The eigenvector
amplitudes within (−0.3,0.3) are mapped to the viridis colormap.

figures are described as follows: 1) the big magenta circle represents the DC vector φ0; 2) the 18 pink

circles represent the pink-group whose eigenvectors are mainly concentrated on V0; 3) the nine orange

circles represent the orange-group whose eigenvectors are mainly concentrated on V1; 4) the 23 green

circles represent the green-group whose eigenvectors are mainly concentrated on V2; 5) the seven yellow

circles represent the yellow-group whose eigenvectors are mainly concentrated on V3; 6) the four red

circles represent the red-group whose eigenvectors are localized around the junctions; and 7) the rest

grey circles represent the eigenvectors that we are not interested in.

We can see from both of the classical MDS embedding results that all eigenvectors are centered

around the DC vector and the eigenvectors within each color-group are nicely clustered. If we interpret

or view the DC vector as the root node of a tree, the arrangement of the eigenvectors in the embedding

space look like a “dual” tree in some sense. It means that the eigenvectors concentrated on the branches

are farther away from the DC vector and get clustered into four corners just like the four branches, while

the four eigenvectors localized on the junctions are closer to the DC vector and get allocated to the two
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(a) d (1)
ROT ◦pmf(1) (α= 1)

(b) dsROT ◦pmf(1) (α= 1)

FIGURE 5.12. Comparison between the classical MDS results of the Laplacian eigenvec-
tors of the tree (Figure 5.8a) via d (1)

ROT ◦pmf(1) (α= 1) and dsROT ◦pmf(1) (α= 1).
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sides of the DC vector (two for each side) just like the positions of the four junctions in the original tree.

These embedding results via the ROT metric and the sROT metric naturally organize the eigenvectors of

the tree and help us get a better understanding of the dual domain. On the contrary, if we use the eigen-

values to organize the eigenvectors, we will group, for example, φ94, φ95 and φ96 together even though

their behaviors on the tree are very different, i.e.,φ94 (Figure 5.9a) has a semi-global oscillation structure

on V0;φ95 (Figure 5.9c) has a semi-global oscillation structure on V2; andφ96 (Figure 5.11a) is extremely

localized on the junctions.

Also, the embedding results via the two metrics are similar, but the dsROT is more computation-

ally efficient than dROT. Figure 5.8b shows the simplified version of Figure 5.8a. The simplified tree is

constructed as described in Section 4.2. It only has K = 13 nodes, which represent the four interested

branches, the four junctions and the five disinterested branches, respectively. Computing the ROT dis-

tance on the simplified tree is much faster than on the original tree which has N = 100 nodes. Hence,

dsROT is a good replacement of d (1)
ROT for organizing the eigenvectors on trees.

We also examined the case of d (1)
ROT ◦pmf(2) vs. d (1)

sROT ◦pmf(2), which gave us more congested embed-

ding results aroundϕ0,0.

5.4. Summary

We have presented the classical MDS embedding results on P7 ×P3 and a simple synthetic dendritic

tree demonstrating the effectiveness of using the metrics (as introduced in Chapter 4) to organize the

graph Laplacian eigenvectors (i.e., the nodes of the dual graph). In general, we are interested in two types

of eigenvector behavior patterns on graphs: 1) global and directional (or oriented) oscillation pattern;

and 2) energy localization/concentration pattern. The first pattern characterizes how the eigenvector

globally oscillate on the graphs, e.g., the DCT type II eigenvectors of PN where the oscillations pattern

are completely characterized by the eigenvalues; or the eigenvectors of PN1 ×·· ·×PNd (d ≥ 2) where the

oscillation patterns can be characterized by different directional frequencies. On the other hand, the

second pattern describes node locations where the eigenvectors are more active, e.g., the eigenvectors of

trees may be concentrated on the junctions or may have a semi-global oscillation structure on a certain

branch. Some metrics we described in Chapter 4 (summarized in Table 5.1) work well to discriminate

the first pattern while the others work better detecting the second pattern. It is a hard but important
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question to ask which metric is preferable for eigenvector organization on a given graph. In the following,

we discuss some empirical observations on different type of graphs.

For Cartesian product graphs, the ROT metric does not perform very well for detecting the oscillation

patterns of the eigenvectors in general. On the contrary, the DAG and the HAD pseudometrics reveal the

directional oscillation patterns of the eigenvectors quite well. For trees, however, the sROT and the ROT

metrics are great at detecting the energy localization of the eigenvectors. For the TSD metric with small

T > 0, perceptually, it is good at oscillation detection because of its similarity to the DAG pseudometric

as discussed in Section 4.7. On the other hand, for the TSD with large T (or T =∞), it is good at detecting

energy concentration because of the similarity to the ROT metric (withα= 1) as discussed in Section 4.6.

However, it is hard to tell which T is the “best” for a given input graph.

Although these metrics provide natural and interpretable organizations of the eigenvectors, there

remain several questions that need to be answered:

Q1: What is the best way to turn aφl ∈RN to a pmf in d (1)
ROT or dsROT?

Q2: How do we choose the best parameter α ∈ [0,1] in the ROT metrics?

Q3: How do we choose the best parameter T ∈R>0 ∪ {∞} in the TSD metric?

Q4: Is it possible to design fast algorithms to compute the ROT and the TSD metrics? If so, how?

Q5: Besides the two types of eigenvector behavior patterns on graphs we discussed above, are there

other patterns that are also interesting and need to be addressed?

Q6: How can we design an auto-adaptive and cost efficient metric that is good for all types of eigen-

vector behavior detection?

Q7: How can we develop the true Littlewood-Paley theory on graphs and most “natural” wavelets on

graphs once the above embedding is done or the dual graph is constructed by the eigenvector

distances?

Q1 to Q6 are left for the future research, while the last question Q7 is answered in the following chapters.
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CHAPTER 6

Natural Graph Wavelet Packets using Varimax Rotations

In this chapter, we propose one of our natural graph wavelet packet dictionary constructions solely

based on hierarchical bipartitioning of G? = G?(V ?,E?,W ?). Basic steps to generate such a graph

wavelet packet dictionary for G =G(V ,E ,W ) are quite straightforward:

Step 1: Bipartition the dual graph G? recursively via any method, e.g., spectral graph bipartition

using the Fiedler vectors;

Step 2: Generate wavelet packet vectors using the eigenvectors belonging to each subgraph of G?

that are well localized on G .

Note that Step 1 corresponds to bipartitioning the frequency band of an input signal using the char-

acteristic functions in the classical setting. Hence, our graph wavelet packet dictionary constructed as

above can be viewed as a graph version of the Shannon wavelet packet dictionary [54, Sec. 8.1.2]. We

now describe the details of each step of our graph wavelet packet dictionary construction below.

6.1. Hierarchical Bipartitioning of G?

Let V ?(0)
0 := V ? be the node set of the dual graph G?, which is simply the set of the eigenvectors of

the unnormalized graph Laplacian matrix L(G). Suppose we get the hierarchical bipartition tree of V ?(0)
0

as shown in Figure 6.1, where we use K j to denote the number of sets of nodes on level j of the tree,

and use k = 0 : K j −1 to index these sets. Hence, each V ?( j )
k contains an appropriate subset of the eigen-

vectors of L(G). As we mentioned earlier, any graph bipartitioning method can be used to generate this

hierarchical bipartition tree of G?. Typically, we use the Fiedler vector of the random-walk normalized

graph Laplacian matrix Lrw (see Eq. (2.1)) of each subgraph of G? throughout this dissertation, whose

use is preferred over that of L or Lsym as von Luxburg discussed [87].
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V ?(0)
0

V ?(1)
1

V ?(2)
3V ?(2)

2

V ?(1)
0

V ?(2)
1V ?(2)

0

FIGURE 6.1. The hierarchical bipartition tree of the dual graph nodes V ? ≡V ?(0)
0 , which

corresponds to the frequency domain bipartitioning used in the classical wavelet packet
dictionary.

REMARK 6.1.1. We recursively apply the above bipartition algorithm until we reach j = jmax > 0, where

each V ?( jmax)
k , 0 ≤ k < K jmax = N , contains a single eigenvector. Note that the previous graph basis dictio-

naries, i.e., HGLET [34], GHWT [33], and eGHWT [77], also constructed such “full” hierarchical bipartition

trees in the primal (input graph) domain, not in the dual domain. Note also that during the hierarchical

bipartition procedure, some V ?( j )
k may become a singleton before reaching j = jmax. If this happens, such

a subset is copied to the next lower level j +1. See [36] for the detailed explanation of such situations. We

can also stop the recursion at some level J (< jmax), of course. Below, we denote jmax as the deepest possible

level at which every subset becomes a singleton for the first time whereas we denote J (≤ jmax) as a more

general deepest level specified by a user.

As an example, Figure 6.2 demonstrates the above strategy for the 2D lattice graph discussed in Sec-

tion 3.1 and Section 5.3.1 accompanied with the DAG pseudometric dDAG, whose dual domain geome-

try together with the graph Laplacian eigenvectors belonging to V ?(0)
0 was displayed in Figure 5.5. The

thick red line indicates the first split of V ?(0)
0 , i.e., all the eigenvectors above this red line belong to V ?(1)

0

while those below it belong to V ?(1)
1 . Then, our hierarchical bipartition algorithm further splits them into{

V ?(2)
0 ,V ?(2)

1

}
and

{
V ?(2)

2 ,V ?(2)
3

}
, respectively. This two-level bipartition pattern is quite reasonable and

natural considering the fact that the size of the original rectangle is 7×3, both of which are odd integers.

6.2. Localization on G via Varimax Rotation

For realizing Step 2 of the above basic algorithm, we propose to use the varimax rotation on the

eigenvectors in V ?( j )
k for each j and k. Let Φ( j )

k ∈RN×N j
k be a matrix whose columns are the eigenvectors

belonging to V ?( j )
k . A varimax rotation is an orthogonal rotation, originally proposed by Kaiser [42] and
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FIGURE 6.2. The result of the hierarchical bipartition algorithm applied to the dual ge-
ometry of the 2D lattice graph P7 ×P3 via dDAG shown in Figure 5.5 with J = 2. The thick
red line indicates the bipartition at j = 1 while the orange lines indicate those at j = 2.

often used in factor analysis (see, e.g., [57, Chap. 11]), to maximize the variances of energy distribution

(or a scaled version of the kurtosis) of the input column vectors, which can also be interpreted as the

approximate entropy minimization of the distribution of the eigenvector components [70, Sec. 3.2].

Thanks to the orthonormality of columns ofΦ( j )
k , this is equivalent to finding an orthogonal rotation

that maximizes the overall 4th order moments, i.e.,

(6.1) Ψ
( j )
k := Φ

( j )
k ·R( j )

k , where R( j )
k = arg max

R∈SO(N j
k )

N∑
x=1

N j
k∑

y=1

[(
Φ

( j )
k ·R

)4
]

x,y
.

The algorithm of varimax rotation we adopted and used in this article is the so-called Basic Singular Value

(BSV) algorithm proposed by Jennrich [38]. Algorithm 2 describes the details. Jennrich also showed that

under general conditions, this algorithm converges to a stationary point from any initial estimate. The

BSV algorithm seems to be the standard varimax rotation algorithm available in many packages, e.g.,

MATLAB ®1, R, etc. The procedures of solving R( j )
k in Eq. (6.1) can be summarized as follows:

(0) Initialize an orthogonal rotation matrix R.

1MATLAB is a registered trademark of The MathWorks, Inc.
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Algorithm 2: The Varimax Rotation Algorithm

Input: Full column rank input matrix whose columns to be rotated A ∈RN×K (K ≤ N ); maximum
number of iteration steps maxit (default: 1000); relative tolerance tol (default: 1e-12)

Output: Rotated matrix B ∈RN×K

B = A // initialize the output matrix
S = 0 // initialize the nuclear norm
for i = 1 : maxit do

S0 = S
[U ,Σ,V ] = svd(AT · (N ·cube.(B)−B ·diag(BT ·B))) // where cube.(·) applies

// the cube function in the entrywise manner to its argument
R =U ·V ∗ // update the orthogonal rotation matrix
S = trace(Σ)
B = A ·R // update the rotated matrix
if |S −S0|/S < tol then

break // stop when S does not change much
end

end
return B

(1) Compute d f /dR, where f is the objective function defined in Eq. (6.1), and d f /dR is the matrix

of partial derivatives of f at R.

(2) Find the singular value decomposition UΣV ∗ of d f /dR.

(3) Replace R by UV ∗ and go to (1) or stop.

(4) Set R( j )
k := R.

The column vectors of obtained Ψ( j )
k are more “localized” in the primal domain G than those of Φ( j )

k .

This type of localization is important since the graph Laplacian eigenvectors in Φ( j )
k are of global nature

in general. We also note that the column vectors of Ψ( j )
k are orthogonal to those of Ψ( j ′)

k ′ as long as the

latter is neither a direct ancestor nor a direct descendant of the former. Hence, Steps 1 and 2 mentioned

in the beginning of this chapter truly generate the graph wavelet packet dictionary for an input graph.

We refer to this graph wavelet packet dictionary
{
Ψ

( j )
k

}
j=0:J ;k=0:K j−1

generated by this algorithm as the

Varimax Natural Graph Wavelet Packet (VM-NGWP) dictionary.

One can run the best-basis algorithm of Coifman-Wickerhauser [16] on this dictionary to extract the

ONB most suitable for a task at hand (e.g., an efficient graph signal approximation) once an appropriate

cost function is specified (e.g., the `p -norm minimization, 0 < p ≤ 1). Note also that it is easy to extract

a graph Shannon wavelet basis from this dictionary by specifying the appropriate dual graph nodes, i.e.,
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(a) Father wavelet vectorsΨ(4)
0 (b) Mother wavelet vectorsΨ(4)

1 (c) Wavelet packet vectorsΨ(4)
4

FIGURE 6.3. Some of the Shannon wavelet packet vectors on P512.

Ψ(1)
1 ,Ψ(2)

1 , . . . ,Ψ(J )
1 , and the father wavelet vectors Ψ(J )

0 where J (≤ jmax) is the user-specified deepest level

of the hierarchical bipartition tree. We point out that the meaning of the level index j in our NGWP dic-

tionaries is different from that in the general graph wavelet frames (2.4) discussed in Section 2.2: in our

NGWP dictionaries, a smaller j corresponds to a finer and more localized (in the primal graph domain)

basis vector in V ?( j )
k .

Let us now demonstrate that our algorithm actually generates the classical Shannon wavelet packets

dictionary [54, Sec. 8.1.2] when an input graph is the simple path PN . Note that the varimax rotation algo-

rithm does not necessarily sort the vectors as shown in Figure 6.3 because the minimization in Eq. (6.1) is

the same modulo to any permutation of the columns and any sign flip of each column. In other words, to

produce Figure 6.3, we carefully applied sign flip to some of the columns, and sorted the whole columns

so that each subfigure simply shows translations of the corresponding wavelet packet vectors.

Let us also demonstrate how some VM-NGWP basis vectors of the 2D lattice graph P7 ×P3 look like.

Figure 6.4 shows such VM-NGWP basis vectors with J = 2. Those basis vectors are placed at the same

locations as the graph Laplacian eigenvectors in the dual domain shown in Figure 6.2 for the demonstra-

tion purpose. It is quite clear that those VM-NGWP basis vectors are more localized in the primal graph

domain than those graph Laplacian eigenvectors shown in Figure 6.2. We note that we determined the

index l inψk,l for each k in such a way that the main features of the VM-NGWP basis vectors translates

nicely in the horizontal and vertical directions, and some sign flips were applied as in the case of the

1D Shannon wavelet packets shown in Figure 6.3. As one can see, like the classical wavelet packet vec-

tors on a rectangle, {ψ0,l }l=0:2, are the father wavelets and clearly function as local averaging operators

along the horizontal direction, while {ψ1,l }l=0:3, work as localized first order differential operators along
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FIGURE 6.4. The VM-NGWP basis vectors of the 2D lattice graph P7 ×P3 computed by
the varimax rotations in the hierarchically partitioned dual domain shown in Figure 6.2.
Note that the column vectors of the basis matrix Ψ(2)

k are denoted as ψk,l , l = 0,1, . . ., in

this figure instead ofψ(2)
k,l for simplicity.

the horizontal direction. On the other hand, {ψ2,l }l=0:2 work as localized first order differential operators

along the vertical direction; {ψ2,l }l=3:6 work as localized second order differential operators along the

vertical direction; {ψ3,l }l=0:3 work as localized mixed differential operators; and finally, {ψ3,l }l=4:6 work

as localized Laplacian operators.

6.3. Computational Complexity

The varimax rotation algorithm (i.e., Algorithm 2) is of iterative nature and is an example of the BSV

algorithms [38]: for each iteration at the dual node set V ?( j )
k , it requires computing the full Singular Value

Decomposition (SVD) of a matrix of size N j
k ×N j

k representing a gradient of the objective function, which

itself is computed by multiplying matrices of sizes N j
k × N and N × N j

k . The convergence is checked

with respect to the relative error between the current and previous gradient estimates measured in the

nuclear norm (i.e., the sum of the singular values). For our numerical experiments in Chapter 9, we set

the maximum iteration as 1000 and the error tolerance as 10−12. Therefore, to generate Ψ( j )
k for each
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( j ,k), the computational cost in the worst case scenario is O
(
c · (N j

k )3 +N · (N j
k )2

)
where c = 1000 and

the first term accounts for the SVD computation and the second does for the matrix multiplication. For a

perfectly balanced and fully developed bipartition tree with N = 2 jmax , we have K j = 2 j and N j
k = 2 jmax− j ,

j = 0 : jmax, k = 0 : 2 j −1. Hence we have:

(6.2)
2 j−1∑
k=0

(N j
k )2 =

2 j−1∑
k=0

22( jmax− j ) = 22 jmax−2 j ·2 j = N 2 ·2− j ,

and
2 j−1∑
k=0

(N j
k )3 =

2 j−1∑
k=0

23( jmax− j ) = 23 jmax−3 j ·2 j = N 3 ·2−2 j .

Note that at the bottom level j = jmax, each node is a leaf containing only one eigenvector, and there

is no need to do any rotation estimation and computation. Note also that at the root level j = 0, the

columns of Φ(0)
0 span the whole RN , and we know that the varimax rotation turns Φ(0)

0 into the identity

matrix (or its permuted version). Hence, we do not need to run the varimax rotation algorithm on the

root node. Finally, summing the cost O
(
c · (N j

k )3 +N · (N j
k )2

)
from j = 1 to jmax −1, the total worst case

computational cost becomes O((1+ c/3)N 3 − 2N 2 − 4c/3N ). So after all, it is an O(N 3) algorithm. In

practice, the convergence is often achieved with less than 1000 iterations at each node except possibly

for the nodes with small j where N j
k is large. For example, when computing the VM-NGWP dictionary

for the path graph P512 ( jmax = 9) shown in Figure 6.3, the average number of iterations over all the dual

graph nodes
{

V ?( j )
k

}
j=0:9;k=0:2 j−1

was 68.42 with the standard deviation 98.09.

6.4. Lsym Version of the VM-NGWP

So far, we use the unnormalized graph Laplacian eigenvectors of L(G) to construct the VM-NGWP

dictionary. In parallel, we can also use the symmetric normalized graph Laplacian eigenvectors of Lsym(G)

as V ? to construct another version of the VM-NGWP dictionary.2 However, note thatφsym
0 is no longer a

constant vector; furthermore,φsym
l andφsym

l ′ (l 6= l ′) do not share the same total mass in general. Hence,

the metrics d (2)
ROT and dTSD in Table 5.1 cannot be used to construct W ?. The remaining viable metrics

(or pseudometrics) are d (1)
ROT, dsROT (for trees), dHAD, and dDAG. After the Lsym version of G? is built, we

continue to construct the Lsym version of the Varimax Natural Graph Wavelet Packet (VM-NGWP-Lsym)

dictionary by following the same procedures as discussed in Section 6.1 and Section 6.2.

2We cannot use the random-walk normalized graph Laplacian eigenvectors of Lrw(G), since they do not form an ONB for RN .
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CHAPTER 7

Natural Graph Wavelet Packets using Pair-Clustering

Another way to construct a natural graph wavelet packet dictionary is to mimic the convolution and

subsampling strategy of the classical wavelet packet dictionary construction: form a binary tree of spec-

tral filters in the dual domain via
{

V ?( j )
k

}
j=0:J ;k=0:K j−1

and then perform the filtering/downsampling pro-

cess based on the relations between the sampling points (primal nodes) and the eigenvectors of L(G). In

order to fully utilize such relations, we look for a coordinated pair of partitions on G and G?, which is real-

ized by our pair-clustering algorithm described below. We will first describe the one-level pair-clustering

algorithm and then proceed to the hierarchical version.

7.1. One-Level Pair-Clustering

Suppose we partition the dual graph G? into K ≥ 2 clusters using any method including the spectral

clustering [87] as we used in the previous chapter. Let V ?
0 , . . . ,V ?

K−1 be those mutually disjoint K clusters

of the nodes V ?, i.e., V ? =
K−1⊔
k=0

V ?
k , which is also often written as

K−1⊕
k=0

V ?
k . Denote the cardinality of each

cluster as Nk := |V ?
k |, k = 0 : K −1, and we clearly have

K−1∑
k=0

Nk = N . Then, we also partition the primal

graph nodes V into mutually disjoint K clusters, V0, . . . ,VK−1 with the constraint that |Vk | = |V ?
k | = Nk , k =

0 : K −1, and the members of Vk and V ?
k are as “closely related” as possible. The purpose of partitioning

V is to select appropriate primal graph nodes as sampling points around which the graph wavelet packet

vectors using the information on V ?
k are localized. With a slight abuse of notation, let V also represent a

collection of the standard basis vectors in RN , i.e., V := {δ1, . . . ,δN }, where δx (x) = 1 and 0 otherwise. In

order to formalize this constrained clustering of V , we define the affinity measure αPC between Vk and

V ?
k as follows:

αPC(Vk ,V ?
k ) := ∑

δ∈Vk ,φ∈V ?
k

| 〈δ,φ〉 |2,(7.1)
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V ? = {
φ0, . . . ,φ15

}

V ?
1 = {

φ8,φ9,φ10,φ11,φ12,φ13,φ14,φ15
}

V ?
0 = {

φ0,φ1,φ2,φ3,φ4,φ5,φ6,φ7
}

FIGURE 7.1. One-level pair-clustering (K = 2) result of P16.

where 〈·, ·〉 is the standard inner product in RN . In particular,

αPC(V ,V ?) = ∑
δ∈V ,φ∈V ?

| 〈δ,φ〉 |2 = ∑
φ∈V ?

‖φ‖2 = N .

Denote the feasible partition set as

U (V ; N0, . . . , NK−1) :=
{

(V0, . . . ,VK−1)
∣∣∣K−1⊔

k=0
Vk =V ; |Vk | = Nk ,k = 0 : K −1

}
.

Now we need to solve the following optimization problem for a given partition of V ? =
K−1⊔
k=0

V ?
k :

(7.2) (V0, . . . ,VK−1) = arg max
(V0,...,VK−1)∈U (V ;N0,...,NK−1)

K−1∑
k=0

αPC(Vk ,V ?
k ).

This is a discrete optimization problem. In general, it is not easy to find the global optimal solution

except for the case of K = 2. When K = 2, we can find the desired partition of V by the following greedy

algorithm:

1) Compute score(δ) := αPC({δ},V ?
0 )−αPC({δ},V ?

1 ) for each δ ∈V .

2) Select N0 δ’s in V that give the largest N0 values of score(·), set them as V0, and set V1 =V \V0.
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Figure 7.1, as an example, shows the one-level pair-clustering result (K = 2) of P16, given V ? ={
φl

}
l=0:15 is evenly partitioned into V ?

0 = {
φl

}
l=0:7 and V ?

1 = {
φl

}
l=8:15. The standard basis vectors V

is then evenly partitioned into two sets as shown in the figure, i.e., V0 = {δ1,δ3,δ5,δ7,δ10,δ12,δ14,δ16} and

V1 = {δ2,δ4,δ6,δ8,δ9,δ11,δ13,δ15}. In other words, the indices of standard basis vectors in V0 are odd up

to the middle and switch to even till the end, while the indices of standard basis vectors in V1 does the

other way around. Actually, we have the following theorem for the one-level pair-clustering (K = 2) result

on PN .

THEOREM 7.1.1. Assume the (unnormalized) graph Laplacian eigenvectors of the unweighted path

graph PN as defined in Eq. (2.2) is partitioned into K = 2 clusters, i.e.,

V ?
0 = {

φl
}

l=0:b N−1
2 c and V ?

1 = {
φl

}
l=b N−1

2 c+1:N−1 .

Then, the solutions of Eq. (7.2) would be

1. If N is even, i.e., N = 2m, and m is also even, i.e., m = 2n, then V0 = {δ2x−1}x=1:n ∪ {δ2x }x=n+1:m

and V1 =V \V0.

2. If N is even, i.e., N = 2m, but m is odd, i.e., m = 2n −1, then there are two solutions of Eq. (7.2):

(a) V0 = {δ2x−1}x=1:n ∪ {δ2x }x=n+1:m and V1 =V \V0.

(b) V0 = {δ2x−1}x=1:n−1 ∪ {δ2x }x=n:m and V1 =V \V0.

3. If N is odd, i.e., N = 2m −1, then V0 = {δ2x−1}x=1:m and V1 =V \V0 = {δ2x }x=1:m−1.

See Appendix A.4 for the proof.

On the other hand, when K > 2, we can find a local optimum by the similar strategy:

1) Compute the values αPC({δ},V ?
0 ) for each δ ∈V .

2) Select N0 δ’s giving the largest N0 values, and set them as V0.

3) Compute the values αPC({δ},V ?
1 ) for each δ ∈ V \ V0, select N1 δ’s giving the largest N1 values,

and set them as V1.

4) Repeat the above process to produce V2, . . . ,VK−1.
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While this greedy strategy does not reach the global optimum of Eq. (7.2), we find that empirically

the algorithm attains a reasonably large value of the objective function. We note that our one-level pair-

clustering problem is a particular example of the so-called submodular welfare problem [88] with cardi-

nality constraints; however, we will not pursue this direction for a general K > 2 with the one-level pair

clustering. Rather, we will apply it with K = 2 in a hierarchical manner, which will be discussed next.

7.2. Hierarchical Pair-Clustering

In order to build a multiscale graph wavelet packet dictionary, we develop a hierarchical (i.e., multi-

level) version of the pair-clustering algorithm. First, let us assume that the hierarchical bipartition tree of

V ? is already computed using the same algorithm discussed in Section 6.1. We now begin with level j = 0

where V (0)
0 is simply V = {δ1,δ2, · · · ,δN } and V ?(0)

0 is V ? = {φ0,φ1, · · · ,φN−1}. Then, we perform one-level

pair-clustering algorithm (K = 2) to get
(
V ?(1)

0 ,V (1)
0

)
and then

(
V ?(1)

1 ,V (1)
1

)
. We iterate the above process

to generate paired clusters
(
V ?( j )

k ,V ( j )
k

)
, j = 0 : J , k = 0 : K j −1. Note that the hierarchical pair-clustering

algorithm ensures nestedness in both the primal node domain V and the dual/eigenvector domain V ?.

7.3. Generating the NGWP Dictionary

Once we generate two hierarchical bipartition trees
{

V ( j )
k

}
and

{
V ?( j )

k

}
, we can proceed to gener-

ate the NGWP vectors
{
Ψ

( j )
k

}
that are necessary to form an NGWP dictionary. For each δl ∈ V ( j )

k , we

first compute the orthogonal projection of δl onto the span of V ?( j )
k , i.e., span

(
Φ

( j )
k

)
where Φ( j )

k are

those eigenvectors of L(G) belonging to V ?( j )
k . Unfortunately, Φ( j )

k

(
Φ

( j )
k

)T
δl and Φ

( j )
k

(
Φ

( j )
k

)T
δl ′ are not

mutually orthogonal for δl ,δl ′ ∈ V ( j )
k in general. Hence, we need to perform orthogonalization of the

vectors
{
Φ

( j )
k

(
Φ

( j )
k

)T
δl

}
l
. We use the modified Gram-Schmidt with `p (0 < p < 2) pivoting orthogonaliza-

tion (MGSLp) [13] to generate the orthonormal graph wavelet packet vectors associated with V ?( j )
k (and

hence also V ( j )
k ).

In particular, we implemented a simplified version (i.e., Algorithm 3) of the modified Gram-Schmidt

with mixed `2-`p (0 < p < 2) pivoting algorithm in [13]. Our version skips the step of computing the

largest `2 norm and picking the parameter λ (a notation used in [13]) to increase the numerical stability.

Instead, we directly set up a tolerance parameter, i.e., tol in Algorithm 3, for the robustness. On the other

hand, we keep the `p (0 < p < 2) pivoting portion in MGS (i.e., always perform the orthogonalization

62



process of the vector with minimum `p -norm in the candidate pool), which nicely preserves the sparsity

of the obtained wavelet-like vectors after the orthogonalization process.

Algorithm 3: Modified Gram-Schmidt Orthogonalization with `p pivoting (MGSLp)

Input: List of unit vectors v = [v1, . . . , vm] ∈RN×m ; norm parameter 0 < p < 2 (default: 1); error
tolerance tol (default: 1e-12)

Output: List of orthonormal vectors q = [q1, . . . , qr ] ∈RN×r where r = rank(v)
q =; // initialize the output list
w = [‖v1‖p , . . . ,‖vm‖p ]
for i = 1 : m do

k = i −1+findmin(w) // find the minimum `p-norm index
swap(vi , vk ) // pivoting
if ‖vi‖2 < tol then

break // check linear dependency
ṽ = vi /‖vi‖2

w =; // re-initialize the `p-norm vector
for j = i +1 : m do

v j = v j − (ṽT · v j )ṽ
w ← w ∪{‖v j‖p

}
q ← q ∪ {ṽ}

return q

This MGSLp algorithm tends to generate localized orthonormal vectors because the `p -norm1 piv-

oting promotes sparsity. We refer to the graph wavelet packet dictionary
{
Ψ

( j )
k

}
j=0:J ;k=0:K j−1

generated

by this algorithm as the Pair-Clustering Natural Graph Wavelet Packet (PC-NGWP) dictionary.

Let us now briefly discuss the performance of the PC-NGWP dictionary on the same examples in

Section 6.2, i.e., P512 and P7 ×P3, without displaying figures to save pages. We essentially obtained the

similar wavelet packet vectors in both cases as those shown in Figures 6.3 and 6.4 using the VM-NGWP

dictionaries; yet they are not exactly the same: the localization of those PC-NGWP vectors in the primal

node domain is worse (e.g., with larger sidelobes) than that of the VM-NGWP vectors mainly due to the

MGSLp orthogonalization procedure (even if it promoted sparsity).

1We typically set p = 1 here, and in fact, that setting was used in all the numerical experiments with the PC-NGWP dictionary
in this dissertation.
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7.4. Computational Complexity

At each V ?( j )
k of the hierarchical bipartition tree of the dual graph G?, the orthogonal projection of

the standard basis vectors in V ( j )
k onto span

(
Φ

( j )
k

)
and the MGSLp procedure are the two main compu-

tational burdens for our PC-NGWP dictionary construction. Specifically, the orthogonal projection costs

O
(
N · (N j

k )2 +N ·N j
k

)
and the MGSLp costs O

(
2N · (N j

k )2
)
. Hence, the dominating cost for this proce-

dure is O
(
3N · (N j

k )2
)

for each ( j ,k). And we need to sum up this cost on all the tree nodes. Let us analyze

the special case of the perfectly balanced and fully developed bipartition tree with N = 2 jmax as we did

for the VM-NGWP in Section 6.3. In this case, the bipartition tree has 1+ jmax levels, and N j
k = 2 jmax− j ,

k = 0 : 2 j −1. So, for the j th level, using Eq. (6.2), we have O(3N 3 ·2− j ). Finally, by summing this from

j = 1 to jmax − 1 (again, no computation is needed at the root and the bottom levels), the total cost

for PC-NGWP dictionary construction in this ideal case is: O(3N 3 · (1− 2/N )) ≈ O(3N 3). So, it still re-

quires O(N 3) operations; the difference from that of the VM-NGWP is the constants, i.e., 3 (PC-NGWP)

vs 1+1000/3 ≈ 334 (the worst case VM-NGWP).

7.5. Lsym Version of the PC-NGWP

As explained in Section 6.4, we can also construct the Lsym version of G? = G?(V ?,E?,W ?) via one

of the viable metrics in Table 5.1, i.e., d (1)
ROT, dsROT (for trees), dHAD, and dDAG. After that, we can build the

Lsym version of the Pair-Clustering Natural Graph Wavelet Packet (PC-NGWP-Lsym) dictionary by follow-

ing the same procedures in Section 7.2 and Section 7.3.
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CHAPTER 8

Natural Graph Wavelet Packets using Lapped Orthogonal Projections

In Chapters 6 and 7, we constructed the natural graph wavelet packets based on hierarchical bipar-

titioning of the dual graph G? = G?(V ?,E?,W ?). Specifically, we used the sign of the Fiedler vectors1

to bipartition the dual graph recursively. Those partitions are the so-called hard bipartitions, i.e., each

node is only assigned to one cluster or the other. Moreover, since the eigenvectors (i.e., V ?) form an ONB

of RN , the hard bipartition of V ?( j )
k nicely yields two subspaces span

(
V ?( j+1)

k ′

)
and span

(
V ?( j+1)

k ′+1

)
such

that

span
(
V ?( j+1)

k ′

)⊕
span

(
V ?( j+1)

k ′+1

)
= span

(
V ?( j )

k

)
and span

(
V ?( j+1)

k ′

)
⊥ span

(
V ?( j+1)

k ′+1

)
,

where V ?( j )
k contains at least two eigenvectors. Therefore, any dual graph signal2 g supported on V ?( j )

k

can be sharply split into two pieces, each of which is supported on either V ?( j+1)
k ′ or V ?( j+1)

k ′+1 , by orthog-

onal projections (or simply restrictions in this case). This orthogonal splitting property is essential in

the following natural graph wavelet packet constructions. But the question is whether we can biparti-

tion V ?( j )
k in a soft or lapped way by allowing some spillovers across the cutoff boundary between V ?( j+1)

k ′

and V ?( j+1)
k ′+1 such that their associated supporting subspaces still satisfy the orthogonal splitting property

while the dual graph signal on V ?( j )
k is split in a more gentle or smooth manner near the cutoff boundary.

Recall the local cosine basis dictionary [15], [54, Sec. 8.4.3] is built based on such desired lapped par-

titions via the orthogonal folding/unfolding operators and the smooth orthogonal projectors on the time

domain (i.e., R). Thus, we propose a strategy in this chapter to generalize these operators to the general

graph settings. Our strategy is a variant of the method discussed in [83] and it is easier to implement with

little cost.

1Without explicit saying, the Fiedler vector used in bipartitioning is associated with the random-walk normalized graph Lapla-
cian matrix in Eq. (2.1). Based on the context, it could be the Laplacian of the primal graph G or the dual graph G?.
2See the end of Section 5.1 for the definitions of the dual graph signal and its support.
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V (0)
0

V (1)
1

V (2)
3V (2)

2

V (1)
0

V (2)
1V (2)

0

FIGURE 8.1. The hierarchical bipartition tree of the primal graph nodes V ≡V (0)
0 via the

Fiedler vectors, which is used in the HGLET construction.

The HGLET [34] is a graph version of the Hierarchical Block DCT dictionary, which is based on the

hierarchical (hard) bipartition tree of a primal graph G . By applying the orthogonal unfolding operators

on the primal graph to the HGLET basis vectors, we can obtain a lapped version of HGLET.

On the other hand, the VM-NGWP dictionary can be viewed as a graph version of the Shannon

wavelet packet dictionary [54, Sec. 8.1.2], which is based on the hard bipartition tree of V ? as shown

in Figure 6.1. Bipartitioning G? recursively but smoothly with overlaps via the smooth orthogonal pro-

jectors on the dual graph, we can analogously build a graph version of the Meyer wavelet packet dictio-

nary [54, Sec. 7.2.2, 8.4.2].

Since our goal is to construct such lapped bipartitions in a hierarchical manner, we first introduce

some multiscale notation of graphs. On the dual graph G?, we continue using the notation introduced

in Section 6.1, i.e.,
{

V ?( j )
k

}
j=0:J ;k=0:K j−1

. On the primal graph G , we introduce the notation by removing

the “?” as follows. Let V (0)
0 := V be the node set of the primal graph G . Suppose we get the hierarchical

hard bipartition tree of V (0)
0 as shown in Figure 8.1. Then, the hierarchical subgraphs can be represented

by
{

G ( j )
k

}
j=0:J ;k=0:K j−1

with the corresponding node sets
{

V ( j )
k

}
j=0:J ;k=0:K j−1

. Note that, unlike in Sec-

tion 7.2, the bipartitions on the primal graph are achieved by using the Fiedler vectors of each subgraph

of G instead of the pair-clustering algorithm in Eq. (7.2).

Now, let us review the smooth orthogonal projector on the unweighted path graph PN , where we

closely follow [69] and introduce some important notation and concepts for later use in the general graph

case.
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8.1. Smooth Orthogonal Projector on PN

Given a graph signal f ∈ RN on PN (V ,E), we can easily split the signal brutally into two pieces by

the restriction operator (or matrix) χVk
∈ RN×N each of which is supported on Vk , where Vk is the node

set of the subgraph PNk for k = 0,1 such that V0,V1 are disjoint and V0
⋃

V1 = V , and χVk
∈ RN×N is a

diagonal matrix with
(
χVk

)
x,x

= 1 if x ∈ Vk , = 0 otherwise (for x = 1 : N ). With a slight abuse of nota-

tion as we did in Chapter 7, let V also represents a collection of the standard basis vectors in RN , i.e.,

V := {δx }x∈V , and in parallel Vk := {δx }x∈Vk . Then such brutal splitting by the restriction operator χVk

is equivalent to projecting the signal f ∈ RN onto the subspace span(Vk ) (k = 0,1) thanks to the fact

span(V0)
⊕

span(V1) = span(V ) =RN and span(V0) ⊥ span(V1).

On the other hand, instead of such hard splitting, we would like to split the signal f smoothly into

two pieces each of which is supported on Vk (with some overlaps). We define two subspaces Ωk asso-

ciated with Vk (k = 0,1) such that Ω0
⊕
Ω1 = RN and Ω0 ⊥Ω1. To achieve that, Coifman and Meyer [15]

introduced the following smooth orthogonal projector3 from RN into Ωk = PVk

(
RN )

(also as discussed

in [69, 83]):

PVk
f := U TχVk

U f , k = 0,1.(8.1)

It consists of three operators: 1) the orthogonal folding operator U ∈ RN×N ; 2) the restriction operator

χVk
∈ RN×N ; and 3) the orthogonal unfolding operator U T ∈ RN×N , i.e., the transpose of the orthogonal

folding operator. PVk
works as a smooth version of χVk

. For example, Figure 8.2 shows the bipartitions

of a constant signal f ≡1 into V0 = {δx }x=1:64 and V1 = {δx }x=65:128 on P128, which are done byχVk
(hard)

and PVk
(soft), respectively. Note that the negative dent appeared in the top figure of Figure 8.2b is

necessary for the orthogonality between PV0
and PV1

.

Before moving on to the definition of U , we first introduce the action region (β−η,β+η) ⊂ (1, N ) ⊂
R, where the cutoff boundary β ∈ (1, N ) and the action region bandwidth η ∈ (

0,min
(
β−1, N −β)]

. In

particular, (β−η,β) is the negative action region and (β,β+η) is the positive action region. We denote the

node set of PN within the negative action region by R− := V ∩ (β−η,β) and the node set of PN within

the positive action region by R+ := V ∩ (β,β+η). With these concepts in place, we can define the set

of reflection triples
{
(v−

i , v+
i ,ri )

}
i=1:Np

, where 1) v−
i is the i -th closest node to β in R−; 2) v+

i is the i -th

3They actually introduced a more broadly concept on L2(R), but we only focus on the discrete setting in this dissertation.

67



(a) Hard bipartition byχVk
on P128. (b) Soft (Lapped) bipartition by PVk

on P128.

FIGURE 8.2. Splitting the constant signal into V0 = {δx }x=1:64 and V1 = {δx }x=65:128, by the
restriction operators (a), and by the smooth orthogonal projectors (b).

closest node to β in R+; 3) v−
i and v+

i are a reflection pair about β such that β− v−
i = v+

i −β, and their

reflection radius is defined by ri := β−v−
i = v+

i −β; and 4) the total number of reflection pairs within the

action region is given by Np := min
(|R−|, |R+|). Note that 0 < ri < η for i = 1 : Np , and r1 < r2 < ·· · < rNp .

Then, the orthogonal folding operator U := U (s,β,η) ∈RN×N associated with the action region (β−
η,β+η) and the set of reflection triples

{
(v−

i , v+
i ,ri )

}
i=1:Np

is defined by modifying the identity matrix IN

as below

Uv−
i ,v−

i
:= s

(
ri

η

)
, Uv−

i ,v+
i

:= −s

(
−ri

η

)
,

Uv+
i ,v−

i
:= s

(
−ri

η

)
, Uv+

i ,v+
i

:= s

(
ri

η

)
.(8.2)

Note that if the boundary β happens to be a node of PN , the diagonal entry Uβ,β = 1. The function s(t )

above is the so-called rising cutoff function, which is a smooth version of the Heaviside step function
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i 1 2 3 4 5 6 7 8

v−
i 64 63 62 61 60 59 58 57

v+
i 65 66 67 68 69 70 71 72

ri 0.5 1.5 2.5 3.5 4.5 5.5 6.5 7.5

i 9 10 11 12 13 14 15 16

v−
i 56 55 54 53 52 51 50 49

v+
i 73 74 75 76 77 78 79 80

ri 8.5 9.5 10.5 11.5 12.5 13.5 14.5 15.5

TABLE 8.1. The reflection triples on P128 with β= 64.5 and η= 16.

such that

|s(t )|2 +|s(−t )|2 = 1 for all t ∈R, and s(t ) =


0, if t ≤−1,

1, if t ≥ 1.

As mentioned in [69], a typical example of s ∈C 1(R) is the following iterated sine function4:

s(t ) =


0, if t ≤−1,

sin[π4 (1+ sin π
2 t )], if |t | < 1,

1, if t ≥ 1.

We can easily verify that U is an orthogonal matrix, i.e., U TU = IN .

Now, let us continue the example of P128 with V0 = {δx }x=1:64 and V1 = {δx }x=65:128 by setting β= 64.5

and η = 16. Then, the action region is (48.5,80.5) and the reflection triples are listed in Table 8.1. The

entries of the orthogonal folding operator U are as shown in Figure 8.3. As one can see from the figures,

the orthogonal folding operator U makes a signal locally odd for the negative action region (β−η,β) and

locally even for the positive action region (β,β+η) [69].

In summary, the procedures of generating such desired lapped bipartition subspacesΩk of span(V ) =
RN are: 1) setting the cutoff boundary β, e.g., β = N+1

2 , and setting the action region bandwidth η, e.g.,

4which will be used in all the numerical experiments throughout this dissertation.
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(a) Heatmap plot of U

(b) Diagonal entries and antidiagonal entries of U

FIGURE 8.3. The orthogonal folding operator U (s,β,η) on P128 with β= 64.5 and η= 16.

Ω(0)
0

Ω(1)
1

Ω(2)
3Ω(2)

2

Ω(1)
0

Ω(2)
1Ω(2)

0

FIGURE 8.4. The hierarchical bipartition subspaces of the primal graph supporting
space span(V ) ≡Ω(0)

0 ≡RN , which is the soft/lapped version of Figure 8.1.

η = 1
8 N ; 2) finding the set of reflection triples

{
(v−

i , v+
i ,ri )

}
i=1:Np

within the action region; 3) assem-

bling the orthogonal folding operator U ; 4) computing the smooth orthogonal projector PVk
based on

Eq. (8.1); and 5) projecting RN into the subspaceΩk =PVk

(
RN )

(for k = 0,1).

The above procedures also can be done recursively, yielding a hierarchical family of subspaces Ω( j )
k

of span(V ) =RN , as shown in Figure 8.4. Note that any two subspaces Ω( j )
k1

and Ω( j )
k2

at the same level are
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(a) Heatmap plot of U (2) (b) Heatmap plot of U (3)

FIGURE 8.5. Orthogonal folding operator U ( j ) on P128 with j = 2 (a) and j = 3 (b). The

cutoff boundaries are set to be the middle point of each subgraph G ( j )
k and the action

region bandwidths η( j ) = 1
8

∣∣∣V ( j )
k

∣∣∣.
orthogonal to each other. Moreover, if dim

(
Ω

( j )
k

)
> 1 andΩ( j+1)

k ′ ,Ω( j+1)
k ′+1 are the two children ofΩ( j )

k ,

Ω
( j )
k =Ω( j+1)

k ′
⊕

Ω
( j+1)
k ′+1 , j = 0 : J −1 and k = 0 : K j −1.

Each Ω( j )
k is associated with: 1) the supporting node set V ( j )

k ; 2) the j -th level orthogonal folding opera-

tor U ( j ) with the j -th level action region bandwidth η( j ); and 3) the corresponding smooth orthogonal

projector PV ( j )
k

. In particular, Ω( j )
k = PV ( j )

k

(
RN )

. Therefore, the previous one-level notation V ≡ V (0)
0 ,

Vk ≡ V (1)
k , U ≡ U (1) and PVk

≡ PV (1)
k

(for k = 0,1). Note that it becomes problematic when the action

regions of different levels start to overlap, which is also discussed in [83]. It means that one node could

be the reflections of multiple nodes at different levels. These one-to-many mappings break the orthog-

onality of the folding operator U ( j ). As a simple remedy to this issue, we keep the ancestor’s one-to-one

reflection correspondence if a node has multiple reflection pairs across levels. In other words, U ( j+1) is

built upon U ( j ) without changing its modified columns and rows from U ( j−1), for j = 1 : J (where we

denote U (0) ≡ IN ). Figure 8.5 shows how U ( j ) on P128 looks like at levels j = 2 and j = 3. As one can

see from Figure 8.5b, the entries U (3)
x,x and U (3)

x,97−x (for x = 45 : 52) do not get updated since the nodes

within the positive action region of V (2)
1 , i.e., x = {49,50,51,52}, have been paired with the reflection

points in the positive action region of V (0)
0 , i.e., x = {80,79,78,77}, as listed in Table 8.1. We note that this

71



simple remedy may result in oversized or discontinuous spillovers at V ( j )
k with large j , nevertheless it

can easily implement and generalize to the general graph settings. Alternative remedies can be found

in [2, 3, 83], but they are either hard to generalize or having an expensive computational cost. For in-

stance, the authors of [83] repeatedly use eigendecomposition of N × N matrices to tackle such issue,

which is obviously more expensive than our approach.

8.2. Smooth Orthogonal Projector on General Graphs

The key of constructing the smooth orthogonal projector is the orthogonal folding operator, and in

turn the key of assembling the orthogonal folding operator is to find the proper set of reflection triples{
(v−

i , v+
i ,ri )

}
i=1:Np

. To generalize the smooth orthogonal projector to the general graph settings, we uti-

lize the Fiedler vector to define the reflection triples on graphs.

Given G(V ,E ,W ), the Fiedler vector φrw
1 of Lrw(G) provides an embedding of the graph nodes into

R such that the affinities between the nodes in G are best preserved in the 1D embedding space in

the sense of minimizing certain loss function as discussed in [1]. In other words, we can view each

coordinate of φrw
1 , i.e., φrw

1 (x) (x = 1 : N ), as an 1D representation of the node x. As mentioned in

Chapters 6 and 7, the spectral clustering theory [87] suggests us the value zero is a good choice for

the cutoff if we want to bipartition the nodes sharply into two pieces. Denote the resulting bipartitions

V0 := {
v ∈V |φrw

1 (v) > 0
}

and V1 := V \ V0. The question is how can we do it in a soft or smooth manner

by allowing some overlaps. Naturally, we can set the lapped region, i.e., the action region (β−η,β+η),

to be
(−ε · ‖φrw

1 ‖∞, ε · ‖φrw
1 ‖∞

)
in the 1D embedding space, where the cutoff boundary β = 0, and the

action region bandwidth η = ε · ‖φrw
1 ‖∞ , and ε ∈ (0,1) is the relative action region bandwidth that mea-

sures the fraction of the action region relative to the whole embedding region of the graph nodes. We

use the medium size ε = 0.3 as an example consistently in all numerical experiments of this disser-

tation. Then, we can pair the nodes whose 1D representations are within the negative action region

R−
ε := {

v− ∈V |φrw
1 (v−) ∈ (−ε · ‖φrw

1 ‖∞, 0
]}

and the nodes whose 1D representations are within the pos-

itive action region R+
ε := {

v+ ∈V |φrw
1 (v+) ∈ (

0, ε · ‖φrw
1 ‖∞

)}
in the following manner: we start from the

cutoff boundary β = 0 and go both directions simultaneously, and pair the nodes in R−
ε and R+

ε along

the way until the nodes within either R−
ε or R+

ε are exhausted. In practice, we carry out the following

operations: 1) sort the nodes in R−
ε based on the value of φrw

1 (v) in decreasing order and denote the
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(a)φrw
1 on the RGC #100

(b) 1D representation of the RGC #100

FIGURE 8.6. 1D embedding of the nodes of the RGC #100 viaφrw
1 .

sorted result as {v−
i }i=1:|R−

ε |; 2) sort the nodes in R+
ε based on the value of φrw

1 (v) in increasing order

and denote the sorted result as {v+
i }i=1:|R+

ε |; and 3) put together the first Np pairs {(v−
i , v+

i )}i=1:Np , where

Np := min
(|R−

ε |, |R+
ε |

)
. If there is a tie while sorting, we use higher dimensional embeddings and sort

the nodes with respect to their embedding coordinate values in the lexicographic order. For example, if

φrw
1 (v+

1 ) =φrw
1 (v+

2 ), we then sort v+
1 and v+

2 w.r.t. their corresponding two dimensional embedding coor-

dinates
(
φrw

1 (v+
i ),φrw

2 (v+
i )

)
(i = 1 : 2). After we found the paired nodes, the next step is to define a proper

reflection radius ri for each pair (v−
i , v+

i ). Normally, β−φrw
1 (v−

i ) 6= φrw
1 (v+

i )−β in the case of general

graphs. Therefore, the definition of ri in PN cannot be directly adopted. Instead, we redefine the reflec-

tion radius of the paired nodes (v−
i , v+

i ) as ri := 1
2

(
φrw

1 (v+
i )−φrw

1 (v−
i )

)
, i.e., half of the distance between

v−
i and v+

i in the 1D embedding space. For example, Figure 8.6 shows the 1D embedding result of the
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(a) Finding the action region viaφrw
1 (ε= 0.3) (b) Finding the (first two) reflection triples

FIGURE 8.7. Locating the positive and negative action regions on the 1D embedding of
the RGC #100 (a); and finding the (first two) reflection triples, i.e., (v−

i , v+
i ,ri ) (i = 1,2),

near the cutoff boundary β= 0 (b).

RGC #100 graph discussed in Section 3.2 via the Fiedler vectorφrw
1 . Figure 8.7 further demonstrates how

we find the reflection triples based on the above procedures.

With the reflection triples
{
(v−

i , v+
i ,ri )

}
i=1:Np

in place, we can assemble the orthogonal folding op-

erator U on graphs by making the same modifications of IN in Eq. (8.2). Consequently, the smooth

orthogonal projector on graphs PVk
(k = 0,1) can be derived based on Eq. (8.1). Moreover, the subspaces

Ωk (k = 0,1) associated with Vk (with spillovers) can be obtained by Ωk = PVk
(RN ). So far, we have

demonstrated the construction of the smooth orthogonal projector on graphs in the one-level setting.

Of course, it can be done recursively as in Section 8.1, yielding: 1) a set of multiscale orthogonal fold-

ing operators
{
U ( j )

}
j=1:J

with the uniform relative action bandwidth ε; 2) a hierarchical tree of smooth

orthogonal projectors
{
PV (k)

j

}
j=0:J ;k=0:K j−1

; and 3) a hierarchical tree of subspaces
{
Ω

( j )
k

}
j=0:J ;k=0:K j−1

as

shown in Figure 8.4. As an example, Figure 8.8 shows the diagonal entries of the resulting orthogonal

folding operator U ( j ) on the RGC #100 graph with j = 1 and j = 2, which is in parallel with the PN case

in the top figure of Figure 8.3b.

74



(a) diag
(
U (1)

)
(b) diag

(
U (2)

)
FIGURE 8.8. The diagonal entries of the orthogonal folding operatorU ( j ) (ε= 0.3) on the
RGC #100 at levels j = 1 and j = 2.

8.3. Lapped HGLET

One of direct applications of such generalized operators on primal graphs is to get a lapped version

of HGLET. As briefly mentioned in the beginning of this chapter, the HGLET [34] is a graph version of the

Hierarchical Block DCT dictionary and is based on the hierarchical bipartition tree of a primal graph G .

We use φ( j )
k,l ∈ RN to denote one of its basis vectors, which is essentially the l-th5 eigenvector of L(G ( j )

k )

extended by zeros outside of its support V ( j )
k . Like in the case of the Hierarchical Block DCT, the hard

bipartitions of the underlying domain G used in HGLET cause discontinuities of φ( j )
k,l near the cutoff

boundaries. As a remedy, we can utilize the orthogonal unfolding operators
(
U ( j )

)T
to eliminate the dis-

continuities and get the smoothed HGLET basis vectors with spillovers across the cutoff boundaries, i.e.,{(
U ( j )

)T
φ

( j )
k,l

}
. Note that both

(
U ( j )

)T
and PV (k)

j
have the smoothing effect for the HGLET basis vectors

near the cutoff boundaries. However, PV (k)
j

are not orthogonal matrices. To ensure the orthogonality of

the basis vectors, we use
(
U ( j )

)T
. This is in parallel with the way Coifman and Meyer defined the local co-

sine functions in [15]. We denote such obtained dictionary as the Lapped Hierarchical Graph Laplacian

Eigen Transform (LP-HGLET) dictionary.

5with respect to the magnitude of the eigenvalues in non-decreasing order
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(a)φ(1)
0,0 (b)φ(1)

0,11

(c)φ(2)
0,2 (d)φ(2)

0,4

(e)φ(3)
4,5 (f)φ(5)

22,2

(g)φ(6)
4,1 (h)φ(7)

14,0

FIGURE 8.9. HGLET vs. LP-HGLET on the RGC #100 (zoomed in on the cutoff bound-
aries). In each subfigure, the left is an HGLET basis vector and the right is its lapped ver-

sion by applying
(
U ( j )

)T
. The basis vector amplitudes within (−0.05,0.05) are mapped

to the viridis colormap.
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(a)φ(2)
1,5 (b)

(
U (2)

)T
φ(2)

1,5

FIGURE 8.10. An HGLET basis vector vs. its lapped version on P512.

Figure 8.9 shows the comparison between some of the HGLET basis vectors and their lapped version

on the RGC #100, where U ( j ) is constructed with ε= 0.3. As we can see, the basis vectors in the shallow

levels (i.e., smaller j ) are nicely smoothed over the cutoff boundaries (i.e., Figure 8.9a, b, c, d), while the

smoothing effects of the basis vectors in the deeper levels are not so ideal (i.e., Figure 8.9e, f, g, h). This

is due to the shrinkage of the action regions as we go deeper: 1) the action regions start intersecting with

the ones used in the shallower levels, such that the intersected nodes are ignored when assembling the

orthogonal folding operators as discussed in Section 8.1; and 2) the subgraphs have fewer nodes so that

the action regions become smaller or even become empty sets.

Figure 8.10 compares an HGLET basis vector, i.e., φ(2)
1,5, with its lapped version

(
U (2)

)T
φ(2)

1,5 on P512,

where U (2) is constructed with ε= 0.3. Note that the right end of V (2)
1 = 129 : 256 is essentially lapped by

the action region on level j = 1, and the left end of V (2)
1 is lapped by one of the action regions on level

j = 2, which has a smaller bandwidth. Therefore, we can see that the lapped basis vector is smoother on

the right end of V (2)
1 compared to the left end of V (2)

1 .

The LP-HGLET dictionary is associated with the parameter ε ∈ (0,1). When ε = 0, it degenerates

to the HGLET dictionary since the orthogonal unfolding operators reduce to IN . Note that the HGLET

basis vectors can also choose the extended eigenvectors of Lrw and Lsym. Yet, the eigenvectors of Lrw

are not orthogonal to each other, so the Lapped HGLET also applies to HGLET with Lsym but not Lrw.

Furthermore, the HGLET best basis algorithm [31, 34] can be easily adapted to the LP-HGLET without
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Ω?(0)
0

Ω?(1)
1

Ω?(2)
3Ω?(2)

2

Ω?(1)
0

Ω?(2)
1Ω?(2)

0

FIGURE 8.11. The hierarchical bipartition subspaces of the dual graph supporting space
span(V ?) ≡Ω?(0)

0 ≡RN , which is the soft/lapped version of Figure 6.1.

further modifications. This is because of the same hierarchical bipartition structures of Figure 8.1 and

Figure 8.4.

8.4. Construction of the Lapped Natural Graph Wavelet Packet

We now focus on the application of the smooth orthogonal projectors on a dual graph G?. To be

clear, we introduce another set of symbols associated with the smooth orthogonal projectors on dual

graphs. Figure 8.11 shows the hierarchical soft/lapped bipartition subspaces Ω?( j )
k of span(V ?) = RN ,

whose definition is explicitly described under Eq. (8.4). Note that any two subspaces Ω?( j )
k1

and Ω?( j )
k2

at

the same level are orthogonal to each other. Moreover, if dim
(
Ω
?( j )
k

)
> 1 andΩ?( j+1)

k ′ ,Ω?( j+1)
k ′+1 are the two

children ofΩ?( j )
k ,

Ω
?( j )
k =Ω?( j+1)

k ′
⊕

Ω
?( j+1)
k ′+1 , j = 0 : J −1 and k = 0 : K j −1.

Each Ω
?( j )
k is associated with: 1) the supporting set of eigenvectors V ?( j )

k ; 2) the j -th level dual graph

orthogonal folding operator U ( j ) with the uniform relative action region bandwidth ε; and 3) the corre-

sponding smooth orthogonal projector PV ?( j )
k

.

Recall the construction of the VM-NGWP dictionary can be summarized as below:

Φ
( j )
k =Φχ

V ?( j )
k

I ( j )
k , Ψ

( j )
k = varimax

(
Φ

( j )
k

)
,(8.3)

where the dual graph restriction operator χ
V ?( j )

k
∈ RN×N is a diagonal matrix with

(
χ

V ?( j )
k

)
l+1,l+1

= 1 if

φl ∈ V ?( j )
k , = 0 otherwise (for l = 0 : N −1), and I ( j )

k ∈ RN×N j
k (N j

k :=
∣∣∣V ?( j )

k

∣∣∣) is the slicing operator and

it can be simply obtained by removing all the zero columns of χ
V ?( j )

k
. The column space of Φ( j )

k is the
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subspace span
(
V ?( j )

k

)
and the columns of Φ( j )

k form an ONB of span
(
V ?( j )

k

)
. By performing the varimax

rotation onΦ( j )
k , we obtainΨ( j )

k whose columns are more “localized” in the primal domain G .

Likely, we can build a graph version of the Meyer wavelet packet dictionary as follows. We replace

the dual graph restriction operator χ
V ?( j )

k
in Eq. (8.3) by the smooth orthogonal projector PV ?( j )

k
and get

the matrix Y ( j )
k ∈RN×N j

k .

Y ( j )
k := ΦPV ?( j )

k
I ( j )

k , PV ?( j )
k

=
(
U ( j )

)T
χ

V ?( j )
k

U ( j ).(8.4)

The column space of Y ( j )
k isΩ?( j )

k , but the column vectors of Y ( j )
k do not form an ONB ofΩ?( j )

k . Thus, we

first perform the modified Gram-Schmidt (MGS) algorithm (i.e., Algorithm 3 without the pivoting step)

to find an ONB of Ω?( j )
k . Then, we apply the varimax rotation (i.e., Algorithm 2) on the obtained ONB to

get the graph wavelet packet vectors, which are more “localized” in the primal domain G .

Ψ
( j )
k = varimax

(
MGS

(
Y ( j )

k

))
.(8.5)

We refer to this graph wavelet packet dictionary
{
Ψ

( j )
k

}
j=0:J ;k=0:K j−1

generated by the above procedures

as the Lapped Natural Graph Wavelet Packet (LP-NGWP) dictionary. Since all the dual graph orthogonal

folding operators used in the construction depend on a relative action region bandwidth ε, the LP-NGWP

dictionary also depends on such a parameter ε ∈ (0,1). Furthermore, the LP-NGWP dictionary with ε= 0

degenerates to the VM-NGWP dictionary, because U ( j ) ≡ IN and PV ?( j )
k

≡χ
V ?( j )

k
when ε= 0.

Figure 8.12 shows the comparison between the VM-NGWP basis vectors and the LP-NGWP (ε= 0.3)

basis vectors on P512. As one can see, the basis vectors of LP-NGWP are more compactly supported

and localized in the primal domain than those of VM-NGWP. Moreover, we can define the following two

quantities to measure the basis vector’s main support width and degree of localization on P512.

main support width ofψ( j )
k,l := min

{
xr −xl +1

∣∣∣1 ≤ xl ≤ xr ≤ 512, s.t. max
x=1:512,x 6∈[xl ,xr ]

∣∣∣ψ( j )
k,l (x)

∣∣∣< 0.01

}

sidelobe attenuation ofψ( j )
k,l :=

the second largest local maximum value ofψ( j )
k,l

the maximum value ofψ( j )
k,l

Table 8.2 shows these two quantities of the basis vectors in Figure 8.12, which also indicates the basis

vectors of LP-NGWP have shorter supports and more localized structures.
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(a)ψ(2)
0,63 (b)ψ(2)

1,63 (c)ψ(2)
2,63

(d)ψ(3)
0,31 (e)ψ(3)

1,31 (f)ψ(3)
2,31

(g)ψ(4)
0,15 (h)ψ(4)

1,15 (i)ψ(4)
2,15

FIGURE 8.12. Comparison between the NGWP basis vectors on P512 (VM-NGWP vs. LP-
NGWP (ε= 0.3)).
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basis vector main support width sidelobe attenuation

ψ(2)
0,63 (VM) 118 0.1266

ψ(2)
0,63 (LP) 44 0.1156

ψ(2)
1,63 (VM) 218 0.6374

ψ(2)
1,63 (LP) 47 0.4377

ψ(2)
2,63 (VM) 248 0.9969

ψ(2)
2,63 (LP) 47 0.6540

ψ(3)
0,31 (VM) 170 0.1286

ψ(3)
0,31 (LP) 86 0.1114

ψ(3)
1,31 (VM) 306 0.6638

ψ(3)
1,31 (LP) 79 0.4396

ψ(3)
2,31 (VM) 302 0.9941

ψ(3)
2,31 (LP) 83 0.7850

ψ(4)
0,15 (VM) 245 0.1285

ψ(4)
0,15 (LP) 144 0.1127

ψ(4)
1,15 (VM) 411 0.6633

ψ(4)
1,15 (LP) 142 0.4330

ψ(4)
2,15 (VM) 414 0.7723

ψ(4)
2,15 (LP) 150 0.7371

TABLE 8.2. Quantitative measurements of localization of the NGWP basis vectors in Fig-
ure 8.12.

8.5. Computational Complexity

At eachΩ?( j )
k of the hierarchical bipartition tree of span

(
V ?

)
in Figure 8.11, there are two main com-

putational burdens for our LP-NGWP dictionary construction: 1) the matrix multiplications when as-

sembling the matrix Y ( j )
k in Eq. (8.4) cost O

(
2N 2 ·N j

k

)
; and 2) performing the MGS algorithm followed by

the varimax algorithm in Eq. (8.5) costs O
(
3N · (N j

k )2 + c · (N j
k )3

)
where c = 1000; see Section 6.3 for the

details of the cost of the varimax algorithm. Therefore, the total cost at each ( j ,k) is

O
(
2N 2 ·N j

k +3N · (N j
k )2 + c · (N j

k )3
)

.

And we need to sum up this cost on all the tree nodes. Let us analyze the special case of the perfectly

balanced and fully developed bipartition tree with N = 2 jmax as we did for VM-NGWP in Section 6.3 and

PC-NGWP in Section 7.4. In this case, the bipartition tree has 1+ jmax levels, and N j
k = 2 jmax− j , k = 0 : 2 j−1.
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Thus, at each level j , we have:

2 j−1∑
k=0

2N 2 ·N j
k +3N · (N j

k )2 + c · (N j
k )3 = 2N 3 +3N 3 ·2− j + cN 3 ·2−2 j .

Finally, by summing this from j = 1 to jmax (no computation is needed at the root),

jmax∑
j=1

N 3(2+3 ·2− j + c ·2−2 j ) = 2N 3 · log2 N + (3+ c

3
) ·N 3 −3 ·N 2 − c

3
·N ,

the total cost for LP-NGWP dictionary construction in this ideal case is O
(
N 3 log2 N

)
, which is slightly

more expensive than the O
(
N 3

)
cost of VM-NGWP and PC-NGWP.

8.6. Lsym Version of the LP-NGWP

As explained in Section 6.4 and Section 7.5, we can also construct the Lsym version of G?(V ?,E?,W ?)

via one of the viable metrics in Table 5.1, i.e., d (1)
ROT, dsROT (for trees), dHAD, and dDAG. Then, we can build

the Lsym version of the Lapped Natural Graph Wavelet Packet (LP-NGWP-Lsym) dictionary by following

the same procedures in Section 8.4. Note that the LP-NGWP-Lsym dictionary is also associated with ε ∈
(0,1) and it reduces to the VM-NGWP-Lsym dictionary if ε= 0.
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CHAPTER 9

Graph Signal Approximation via Natural Graph Wavelet Packets

In this chapter, we demonstrate the usefulness of our proposed NGWP dictionaries in efficient ap-

proximation of graph signals on two graphs, and compare the performance with the other previously

proposed methods: the global eigenbasis of L(G); the global eigenbasis of Lsym(G); the HGLET best ba-

sis [34]; the LP-HGLET best basis (Section 8.3); and the eGHWT best basis [77]. Note that the LP-HGLET,

the LP-NGWP and the LP-NGWP-Lsym are associated with ε = 0.3 consistently in this chapter’s experi-

ments. Note also that, although the HGLET best basis can choose three different types of graph Laplacian

eigenvectors of L, Lrw, and Lsym at each subgraph (see Eq. (2.1)), we only use L and Lsym at each subgraph

in order to compare its performance in a fair manner with the NGWP dictionaries that are based on the

eigenvectors of L(G) and Lsym(G) respectively. And likewise, we use the lapped eigenvectors of L and Lsym

at each subgraph for the LP-HGLET best basis. Next, we use the `1-norm minimization as the best-basis

selection criterion for all the best bases in our experiments. The edge weights of the dual graph G? are

the reciprocals of the DAG pseudometric (i.e., dDAG) between the corresponding eigenvectors of L(G) as

defined in Eq. (4.11). For a given graph G and a graph signal f defined on it, we decompose f into those

dictionaries and select those bases first. Then, to measure the approximation performance, we sort the

expansion coefficients in non-increasing order of their magnitude, and use the top k most significant

terms to approximate f where k starts from 0 up to about 50% of the total number of terms, or more

precisely, b0.5Nc+1. All of the approximation performance is measured by the relative `2 approximation

error with respect to the fraction of coefficients retained, which we denote FC R for simplicity.

9.1. Sunflower Graph Signals Sampled on Images

We consider the so-called “sunflower” graph shown in Figure 9.1a. This particular graph has 400

nodes and each edge weight is set as the reciprocal of the Euclidean distance between the endpoints of

that edge. Consistently counting the number of spirals in such a sunflower graph gives rise to the Fi-

bonacci numbers: 0,1,1,2,3,5,8,13,21,34,55, . . . ; see Figure 9.1a. We also note that the majority of nodes
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(a) Sunflower graph (b) Voronoi tessellation

FIGURE 9.1. (a) Sunflower graph (N = 400); node radii vary for visualization purpose; (b)
its Voronoi tessellation.

(374 among 400) have degree1 4 while there are eight nodes with degree 2, 17 nodes with degree 3, and

the central node has the greatest degree 9. See, e.g., [55, 86] and our code SunFlowerGraph.jl in [50],

for algorithms to construct such sunflower grids and graphs. We can also view such a distribution of

nodes as a simple model of the distribution of photoreceptors in mammalian visual systems due to cell

generation and growth; see, e.g., [67, Chap. 9]. Such a viewpoint motivates us the following sampling

scheme: 1) overlay the sunflower graph on several parts of the standard Barbara image; 2) construct the

Voronoi tessellation of the bounding square region with the nodes of the sunflower graph as its seeds

as shown in Figure 9.1b; 3) compute the average pixel value within each Voronoi cell; and 4) assign that

average pixel value to the corresponding seed/node2. See [90] for more about the relationship between

the Voronoi tessellation and the sunflower graph. We also note that for generating the Voronoi tessel-

lation, we used the following open source Julia packages developed by the JuliaGeometry team [84]:

VoronoiDelaunay.jl; VoronoiCells.jl; and GeometricalPredicates.jl. For our numerical exper-

iments, we sampled two different regions: her left eye and pants, where quite different image features

are represented, i.e., a piecewise-smooth image containing oriented edges and a textured image with

directional oscillatory patterns, respectively.

1Here we are talking about the unweighted node degree, i.e., the diagonal entry of D̃(G).
2If a Voronoi cell does not contain any original image pixels (which occurs at some tiny cells around the center), we bilinearly
interpolate the pixel value at the node location using the nearest image pixel values.
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(a) The sunflower graph overlaid on Barbara’s left eye (b) Barbara’s left eye as an input graph signal

(c) Approximation performance of various methods

FIGURE 9.2. Barbara’s left eye region sampled on the sunflower graph nodes (a) as a
graph signal (b); the relative `2 approximation errors by various methods (c).

First, let us discuss our approximation experiments on Barbara’s eye graph signal, which are shown

in Figure 9.2. From Figure 9.2c, we observe the following: 1) the Lsym version of NGWP best bases per-

formed best closely followed by the regular L version of NGWP best bases; 2) the HGLET best basis

and the LP-HGLET best basis were the next best performers, both of which chose the global eigenba-

sis of Lsym(G), and they worked quite well particularly up to FC R ≈ 0.25; 3) the global eigenbasis of L(G)

worked relatively well up to FC R ≈ 0.27; and 4) the eGHWT best basis only performed fair enough in the

range FC R ' 0.27. These observations can be attributed to the fact that this Barbara’s eye graph signal is
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(a)ψ(11)
0,0 ≡φsym

0 (b)ψ(11)
3,0 ≡φsym

1 (c)ψ(11)
94,0 ≡φ

sym
17 (d)ψ(6)

1,1

(e)ψ(6)
4,2 (f)ψ(4)

5,3 (g)ψ(11)
95,0 ≡φ

sym
18 (h)ψ(4)

6,0

(i)ψ(6)
16,0 (j)ψ(11)

93,0 ≡φ
sym
7 (k)ψ(4)

5,2 (l)ψ(4)
6,13

(m)ψ(11)
118,0 ≡φ

sym
42 (n)ψ(6)

1,0 (o)ψ(11)
10,0 ≡φ

sym
39 (p)ψ(9)

44,1

FIGURE 9.3. Sixteen most significant VM-NGWP-Lsym best basis vectors for Barbara’s
eye. The basis vector amplitudes within (−0.15,0.15) are mapped to the grayscale col-
ormap.

not of piecewise-constant nature; rather, it is a locally smooth graph signal. Hence, the NGWP dictionar-

ies containing smooth and more localized basis vectors made a difference in performance compared to

the global graph Laplacian eigenbases, the HGLET best basis, the LP-HGLET best basis and the eGHWT

best basis.

In order to examine what kind of basis vectors were chosen as the best basis to approximate this

Barbara’s eye signal, we display the 16 most significant VM-NGWP-Lsym best basis vectors in Figure 9.3.

The other versions of the NGWP best bases vectors are relatively similar; hence they are not shown here.
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We note that many of these top basis vectors essentially work as oriented edge detectors for Barbara’s

eye. For example, ψ(6)
1,1 (Figure 9.3d), ψ(6)

4,2 (Figure 9.3e) and ψ(6)
1,0 (Figure 9.3n) try to capture her eyelid

whileψ(4)
5,3 (Figure 9.3f),ψ(4)

6,0 (Figure 9.3h), andψ(4)
6,13 (Figure 9.3l) do the same for her iris and sclera. The

other basis vectors take care of shading and peripheral features of her eye region. We also note that seven

among these top 16 best basis vectors are the global eigenvectors of Lsym(G); see Figure 9.3a, b, c, g, j, m,

o.

Now, let us discuss our second approximation experiments: Barbara’s pants region as an input graph

signal as shown in Figure 9.4. The nature of this graph signal is completely different from the eye re-

gion: it is dominated by directional oscillatory patterns of her pants. From Figure 9.4c, we observe the

following: 1) the regular L version of NGWP best bases and the eGHWT best basis performed very well

and competitively; the L version of NGWP best bases performed better than the eGHWT best basis up to

FC R ≈ 0.2 while the latter outperformed all the others for FC R ' 0.2; 2) there is a gap in performance

between those four bases and the rest: the Lsym version of NGWP best bases; the HGLET best basis; the

LP-HGLET best basis; and the global Laplacian eigenbases. Note that both the HGLET and the LP-HGLET

choose the global eigenbasis of L(G). The poor performance of the Lsym version of NGWP best bases is

mainly because the importantφsym
0 (see Figure 9.3a) contained in the basis dictionaries is nonconstant,

and it does not work well comparing to φ0 in capturing the average of this oscillatory signal. We knew

that the eGHWT is known to be quite efficient in capturing oscillating patterns as shown by Shao and

Saito for the graph setting [77] and by Lindberg and Villemoes for the classical non-graph setting [52].

Hence, it is a good thing to observe that our L version of the NGWP dictionaries are competitive with the

eGHWT for this type of textured signal.

Figure 9.5 shows the 16 most significant VM-NGWP best basis vectors for approximating Barbara’s

pants signal. We note that the majority of these basis vectors are of high-frequency nature than those

for the eye signal shown in Figure 9.3, which reflect the oscillating anisotropic patterns of her pants.

The basis vectors ψ(6)
3,1 (Figure 9.5a), ψ(11)

9,0 (Figure 9.5j), and ψ(11)
1,0 (Figure 9.5p) take care of shading and

peripheral features3 in this region while the other basis vectors extract oscillatory patterns of various

scales. We also note that four among these top 16 best basis vectors are the global graph Laplacian

eigenvectors; see Figure 9.5h, j, k, p.

3Since the Voronoi cells used in the signal sampling are larger in the peripheral region, more pixel values got averaged result in
a different feature compared to the center.
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(a) The sunflower graph overlaid on Barbara’s pants (b) Barbara’s pants region as an input graph signal

(c) Approximation performance of various methods

FIGURE 9.4. Barbara’s pants region sampled on the sunflower graph nodes (a) as a graph
signal (b); the relative `2 approximation errors by various methods (c).

9.2. Toronto Street Network

We obtained the street network data of the City of Toronto from its open data portal4. Using the

street names and intersection coordinates included in the dataset, we construct the graph representing

the street network there with N = 2275 nodes and M = 3381 edges. Figure 9.6a displays this graph. As

4URL: https://open.toronto.ca/dataset/traffic-signal-vehicle-and-pedestrian-volumes
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(a)ψ(6)
3,1 (b)ψ(6)

49,4 (c)ψ(9)
325,0 (d)ψ(6)

56,0

(e)ψ(5)
26,13 (f)ψ(6)

56,2 (g)ψ(7)
79,3 (h)ψ(11)

266,0 ≡φ270

(i)ψ(5)
27,4 (j)ψ(11)

9,0 ≡φ6 (k)ψ(11)
253,0 ≡φ237 (l)ψ(8)

206,0

(m)ψ(7)
74,2 (n)ψ(8)

171,0 (o)ψ(7)
64,2 (p)ψ(11)

1,0 ≡φ1

FIGURE 9.5. Sixteen most significant VM-NGWP best basis vectors (the DC vector not
shown) for Barbara’s pants. The basis vector amplitudes within (−0.15,0.15) are mapped
to the grayscale colormap.

before, each edge weight was set as the reciprocal of the Euclidean distance between the endpoints of

that edge.

We analyze two graph signals on this street network: 1) spatial distribution of the street intersec-

tions and 2) pedestrian volume measured at each intersection. The first graph signal was constructed by

counting the number of the nodes within the disk of radius 4.7 km centered at each node. In other words,

this is a smooth version of histogram of the distribution of street intersections computed with the over-

lapping circular bins of equal size. The longest edge length measured in the Euclidean distance among
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(a) A smooth spatial distribution of the street intersec-
tions

(b) Approximation performance of various methods

FIGURE 9.6. A graph signal representing the smooth spatial distribution of the street
intersections on the Toronto street network (a). The horizontal and vertical axes of this
plot represent the longitude and latitude geo-coordinates of this area, respectively. The
results of our approximation experiments (b).

all these 3381 edges was chosen as this radius of this disk, which is located at the northeast corner of this

graph as one can easily see in Figure 9.6a. The second graph signal is the most recent 8 peak-hour pedes-

trian volume counts collected at intersections (i.e., nodes in this graph) where there are traffic signals.

The dataset was collected between the hours of 7:30 am and 6:00 pm, over the period of 03/22/2004–

02/28/2018.

From Figure 9.6b, we observe that qualitative behaviors of these error curves (except the Lsym version

bases) are relatively similar to those of Barbara’s eye signal shown in Figure 9.2c. More precisely, 1) the L

version of NGWP best bases outperformed all the others, and the difference between the VM-NGWP and

the PC-NGWP is negligible, and the LP-NGWP is followed closely; 2) the HGLET best basis and the LP-

HGLET best basis chose the global eigenbasis of L(G), which worked quite well following the L version of

NGWP best bases; 3) the eGHWT did not perform well; and 4) the Lsym version of NGWP best bases and

the global eigenbasis of Lsym(G) performed very badly mainly due to the following reasons. Unlike in the

sunflower graph, the nodes in the Toronto street network are sampled in a quite non-uniform manner
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such that the variance of the node degrees5 is quite large. Specifically, the average node degree of the

Toronto street network is 924.06 with the standard deviation 579.44, while the average node degree of

the sunflower graph is 47.69 with the standard deviation 68.50. Since Lsym(G) is obtained by normalizing

L(G) with those node degrees in Eq. (2.1), its eigenvectors lose the global smoothness. In particular, they

do not have a constant-like basis vector in their dictionaries to approximate this smooth graph signal.

In order to examine what kind of basis vectors were chosen to approximate this smooth histogram

of street intersections, we display the most important 16 VM-NGWP best basis vectors in Figure 9.7.

We note that these top basis vectors exhibit different spatial scales. The basis vectors with levels j = 5

and j = 6 are relatively localized to specific regions of Toronto. For example, ψ(5)
4,4 (Figure 9.7h) tries to

differentiate the eastern neighbor of the dense downtown region along the north-south direction while

ψ(6)
2,0 (Figure 9.7b) tries to do the same along the east-west direction. ψ(6)

2,2 (Figure 9.7j) tries to differentiate

the intersection density around the northeast region of Toronto. On the other hand, there are coarse scale

basis vectors with j = jmax = 43, which are in fact the global eigenvectors of L(G), i.e., Figure 9.7a, e, k,

n. It is not surprising that these coarse scale basis vectors were selected as a part of the VM-NGWP best

basis considering that the global eigenbasis of L(G) performed quite well on this graph signal as shown

in Figure 9.6b.

Now, let us analyze the pedestrian volume data measured at the street intersections as shown in

Figure 9.8a, which is highly localized around the specific part of the downtown region (the dense region

in the lower middle section) of the street graph. Figure 9.8b shows the approximation errors of various

methods. From Figure 9.8b, we observe the following: 1) the eGHWT best basis clearly outperformed all

the other methods; 2) the HGLET best basis followed the eGHWT best basis; 3) the LP-HGLET best basis

followed the HGLET best basis; 4) the NGWP best bases were the next best performers in the following

order: the VM-NGWP, the VM-NGWP-Lsym, the LP-NGWP, the LP-NGWP-Lsym, the PC-NGWP-Lsym, and

the PC-NGWP; and 5) the global Laplacian eigenbases were the worst performers. Considering the non-

smooth and highly localized nature of the input signal, it is not surprising that the global bases did not

perform well and that the non-smooth local bases (the eGHWT) and the basis vectors whose supports

5Here we refer to the weighted node degrees, i.e., the diagonal entries of the degree matrix D(G).
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(a)ψ(43)
2,0 ≡φ2 (b)ψ(6)

2,0 (c)ψ(6)
1,0 (d)ψ(6)

5,2

(e)ψ(43)
1,0 ≡φ1 (f)ψ(6)

2,4 (g)ψ(8)
24,0 (h)ψ(5)

4,4

(i)ψ(6)
5,3 (j)ψ(6)

2,2 (k)ψ(43)
12,0 ≡φ10 (l)ψ(6)

2,3

(m)ψ(6)
5,5 (n)ψ(43)

18,0 ≡φ18 (o)ψ(6)
5,1 (p)ψ(7)

8,0

FIGURE 9.7. Sixteen most significant VM-NGWP best basis vectors (the DC vector not
shown) for street intersection density data on the Toronto street map. The basis vector
amplitudes within (−0.075,0.075) are mapped to the viridis colormap.

strictly or softly follow the partition pattern of the primal graph (i.e., the HGLET best basis or the LP-

HGLET best basis) had an edge over the NGWP best bases that contain smooth basis vectors whose

supports are not controlled in the primal graph.

In order to examine the performance difference among the regular L version of the NGWP best bases,

we display their 16 most significant basis vectors in Figure 9.9 (VM), Figure 9.10 (PC), and Figure 9.11

(LP), respectively. The relationship among the Lsym version of NGWP best bases is relatively similar,
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(a) Pedestrian volume data measured at the street inter-
sections

(b) Approximation performance of various methods

FIGURE 9.8. The pedestrian volume graph signal on the Toronto street network (a); the
results of our approximation experiments (b).

thus their top basis vectors are not shown here. Firstly, we note that the top VM-NGWP best basis vec-

tors exhibit local to intermediate spatial scales. The basis vectors with j = 1 (Figure 9.9d, l, m, n, o,

p) are highly localized at certain nodes within the dense downtown region while the basis vectors with

j = 2,3,4 (Figure 9.9b, c, f, g, h, i, j, k) try to characterize the pedestrian volume within the downtown

region and its neighbors as oriented edge detectors. The top basis vector ψ(4)
0,2 in Figure 9.9a works as

a local averaging operator around the downtown region. Secondly, the top PC-NGWP best basis vec-

tors are more localized than those of the VM-NGWP best basis vectors. As one can see from Figure 9.10,

there are neither medium nor coarse scale basis vectors in these top 16 basis vectors. The reason be-

hind these performance difference between the VM-NGWP and the PC-NGWP is the following. The VM-

NGWP best basis for this graph signal turned out to be “almost” the graph Shannon wavelet basis with the

deepest level J = 4, i.e., the basis for the union of the following subspaces: V ?(4)
0 , V ?(7)

8 , V ?(43)
18 (= {φ18}),

V ?(43)
19 (= {φ19}), V ?(6)

5 , V ?(5)
3 , V ?(3)

1 , V ?(2)
1 , and V ?(1)

1 . Note that V ?(7)
8 ∪V ?(43)

18 ∪V ?(43)
19 ∪V ?(6)

5 ∪V ?(5)
3 =V ?(4)

1 ,

hence this is “almost” the graph Shannon wavelet basis with J = 4, which is the basis for the union

V ?(4)
0 ∪V ?(4)

1 ∪V ?(3)
1 ∪V ?(2)

1 ∪V ?(1)
1 . Hence, this VM-NGWP best basis should behave similarly to that
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(a)ψ(4)
0,2 (b)ψ(3)

1,22 (c)ψ(3)
1,75 (d)ψ(1)

1,1245

(e)ψ(7)
8,0 (f)ψ(3)

1,87 (g)ψ(4)
0,11 (h)ψ(2)

1,136

(i)ψ(4)
0,5 (j)ψ(2)

1,16 (k)ψ(3)
1,98 (l)ψ(1)

1,1660

(m)ψ(1)
1,1585 (n)ψ(1)

1,1161 (o)ψ(1)
1,1487 (p)ψ(1)

1,1612

FIGURE 9.9. Sixteen most significant VM-NGWP best basis vectors for pedestrian vol-
ume data on the Toronto street map. The basis vector amplitudes within (−0.075,0.075)
are mapped to the viridis colormap.

graph Shannon wavelet basis (except the mother wavelet vectors at level j = 4). In particular, it does not

contain oscillatory basis vectors of large scale that are not really necessary to approximate this highly lo-

calized pedestrian volume data. On the other hand, the PC-NGWP best basis turned out to be the graph

Shannon wavelet basis with J = 1, i.e., the basis for the subspaces V ?(1)
0 and V ?(1)

1 . Since the pedestrian

volume data is quite non-smooth and localized, δ-like basis vectors with scale j = 1 in the PC-NGWP

dictionary tend to generate sparser coefficients, i.e., having a small number of large magnitude coeffi-

cients with many negligible ones. Therefore, the best basis algorithm with `1-norm ends up favoring
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(a)ψ(1)
0,587 (b)ψ(1)

0,580 (c)ψ(1)
0,588 (d)ψ(1)

0,584

(e)ψ(1)
0,583 (f)ψ(1)

1,1188 (g)ψ(1)
0,581 (h)ψ(1)

0,585

(i)ψ(1)
1,906 (j)ψ(1)

0,582 (k)ψ(1)
1,1421 (l)ψ(1)

1,1685

(m)ψ(1)
1,1159 (n)ψ(1)

1,1214 (o)ψ(1)
1,1419 (p)ψ(1)

1,1203

FIGURE 9.10. Sixteen most significant PC-NGWP best basis vectors for pedestrian vol-
ume data on the Toronto street map. The basis vector amplitudes within (−0.075,0.075)
are mapped to the viridis colormap.

those fine scale basis vectors in the PC-NGWP best basis for this graph signal. Lastly, the top LP-NGWP

best basis vectors exhibit similar scale structures with those in the VM-NGWP. In fact, as one can see

from Figure 9.11, there are several selected top LP-NGWP basis vectors that also appeared in Figure 9.9.

Also, we note that those common basis vectors are at levels j = 1,3,4. Yet, the level j = 2 basis vectors

that nicely characterized the local structure of the pedestrian volume within the downtown region in

Figure 9.9 are not shown. Considering the LP-NGWP dictionary actually reduces to the VM-NGWP dic-

tionary with ε = 0, this phenomenon could be due to the inappropriate choice of ε, i.e., the choice of
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(a)ψ(4)
0,3 (b)ψ(3)

1,72 (c)ψ(1)
1,675 (d)ψ(3)

1,2

(e)ψ(3)
1,88 (f)ψ(4)

1,4 (g)ψ(4)
0,11 (h)ψ(1)

1,889

(i)ψ(1)
1,1089 (j)ψ(1)

1,422 (k)ψ(1)
1,17 (l)ψ(1)

1,911

(m)ψ(4)
0,7 (n)ψ(1)

1,244 (o)ψ(1)
1,11 (p)ψ(4)

0,10

FIGURE 9.11. Sixteen most significant LP-NGWP best basis vectors for pedestrian vol-
ume data on the Toronto street map. The basis vector amplitudes within (−0.075,0.075)
are mapped to the viridis colormap.

ε = 0.3 was too large, such that the LP-NGWP basis vectors did not perform well in approximating this

highly localized signal. We also note that the uniform choice of ε across all levels might not be the best

for graph signal approximations. So, how can we appropriately and adaptively set ε at each level in the

LP-NGWP dictionary forms one of the future research projects.
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CHAPTER 10

Natural Graph Wavelet Frames

Given G = (V ,E ,W ) with |V | = N , its Laplacian eigenvectors1 (i.e., {φl }l=0:N−1), and an eigenvector

distance d from Table 5.1, we constructed the dual graph G?(V ?,E?,W ?) in Chapter 5. In Chapters 6, 7

and 8, we introduced three methods of building the natural graph wavelet packet dictionaries. In this

chapter, we utilize the eigenvector distance d and mimic the framework of building the SGWT frames

in Eq. (2.4) to construct the Natural Graph Wavelet Frame (NGWF). We then propose an algorithm to

reduce its redundancy and get the reduced Natural Graph Wavelet Frame (rNGWF). Finally, we show

several numerical experiments to demonstrate their usefulness.

10.1. Natural Spectral Graph Filters

The spectral graph filters as introduced in Section 2.2, i.e., the diagonal matrices F j ∈ RN×N , are

built by the smooth function pair (h, g ) of the eigenvalues accompanied with a set of dilation parameters

{s j } j=1:J [29],

(F0)i ,i = h(λi−1) and (F j )i ,i = g (s jλi−1), i = 1 : N ,

where the index j stands for different scale of spectral filtering (the greater j , the finer the scale, and

J ∈ N represents the finest scale specified by the user). As we emphasised throughout this dissertation

(e.g., see Chapter 3), it is not reliable to organize the graph Laplacian eigenvectors by the correspond-

ing eigenvalues. Therefore, one may potentially face serious problems using such smooth function pair

(h, g ) and a set of dilation parameters {s j } j=1:J over the eigenvalue distribution to assemble the spectral

graph filters. Instead, we create a set of natural spectral graph filters
{
Fl

}
l=0:N−1

2 centered at each node

of V ? (i.e.,φl ) via the eigenvector distance d . The diagonal entries of the diagonal matrix Fl ∈RN×N are

1We can choose either the eigenvectors of L(G) or the eigenvectors of Lsym(G), since they both form an ONB for RN . However,
we mainly use the former for demonstration purpose as before.
2Here we discard the subscript j , because the term “scale” is not well-defined on G?. Instead, we use the subscript l to represent
the dual graph node φl ∈V ? that Fl centers on.
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defined by

(Fl )i+1,i+1 := exp
(−(d(φi ,φl )/σ)2

)∑N−1
i ′=0 exp

(−(d(φi ′ ,φl )/σ)2
) , i = 0 : N −1 and l = 0 : N −1,(10.1)

where σ is a scale parameter for the distances and φl is the centered eigenvector of Fl . In particular, we

define σ as follows.

σ := c ·dmax, ∃c > 0 and dmax := max
φi ,φ j∈V ?

d(φi ,φ j ).(10.2)

For convenience, we denote µl ∈ RN
>0 by the diagonal entries of Fl , i.e., µl = diag(Fl ) for l = 0 : N −

1. Note that
∑N−1

i=0 µl (i + 1) = 1 thanks to the normalization factor in Eq. (10.1). Thus, {µl }l=0:N−1 can

be viewed as a set of pmfs on the dual graph G?. Moreover, {µl }l=0:N−1 can be also viewed as a set of

Gaussian window functions (with different window width parameter σ) on G? centered at each node

in V ? = {φl }l=0:N−1. Note also that the corresponding Gaussian kernels use the eigenvector distance d

instead of the Euclidean distance in the dual domain in general, except for the case when the input graph

is a path PN or a cycle CN that we utilize their special properties as follows.

Let us take PN as an example. Based on Remark 5.1.2, P?
N = PN . Therefore, the ground truth metric

between the DCT type-II basis vectors is defined by the Euclidean distance in the dual domain.

dDCT(φi ,φ j ) := |i − j |, i , j = 0 : N −1.

For instance, when N = 128 and l = 63, Figure 10.1 displays the diagonal entries of the natural spec-

tral graph filters F63, i.e.,µ63 = diag(F63), which is built by the distance d = dDCT along with three differ-

ent values of scale parameter σ on the dual graph P?
128. As we can see from this figure, these three µ63

are truly the Gaussian window functions on P?
128. In addition,µ63 with a larger σ corresponds to a larger

window width Gaussian function centered atφ63.

On the other hand, if the underlying graph G is not PN or CN , we choose other non-trivial behavioral

eigenvector distance d from Table 5.1. By doing so, the Gaussian pmfµl on G? is essentially windowing

the eigenvectors in V ? that have similar “behaviors” asφl .
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FIGURE 10.1. µ63 (d = dDCT) with three different σ on P?
128.

10.2. Generating Redundant Natural Graph Wavelet Frame

With the set of natural spectral graph filters {Fl }l=0:N−1 in place, we generate the Natural Graph

Wavelet Frame (NGWF) vectors based on the general framework provided by Eq. (2.4).

ψl ,x := ΦFlΦ
Tδx , l = 0 : N −1 and x = 1 : N .(10.3)

Note thatψl ,x is a wavelet vector that centers onφl ∈V ? in the dual graph and concentrates on x ∈V in

the primal graph. The obtained {ψl ,x }l=0:N−1;x=1:N contains N 2 number of wavelet vectors in total and it

forms a redundant graph wavelet frame for RN because of the following theorem.

THEOREM 10.2.1. The natural spectral graph filters {Fl }l=0:N−1 built by an eigenvector distance d sat-

isfies the generalized partition of unity in Eq. (2.5). In particular,

1

N
· IN <

N−1∑
l=0

Fl <
N +1

2
· IN .

See Appendix A.5 for the proof.

For convenience, we introduce a sequential index set Γ of the NGWF.

Γ := {
γi |γi = (l , x), i = N · l +x, l = 0 : N −1, x = 1 : N

}
, |Γ| = N 2.

We then can represent the NGWF as
{
ψγi

}
γi∈Γ.
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Given a graph signal f ∈RN , we denote the natural graph wavelet frame operator U :RN 7→RN 2
as

Uf (i ) = 〈
ψγi ,f

〉
, γi ∈ Γ,

e.g., see [17, Chap. 3]. With a slight abuse of notation, let U also represent the corresponding matrix of

the frame operator, i.e., U ∈RN 2×N .

Applying (U TU )−1 to the NGWF vectors, we get a new set of vectors denoted by {ψ̃γi
}γi∈Γ,

ψ̃γi
= (U TU )−1ψγi .

By the Proposition 3.2.3 in [17, Chap. 3], we know {ψ̃γi
}γi∈Γ is also a wavelet frame and we call it the dual

natural graph wavelet frame. We use V to denote its corresponding frame operator and we call it the

dual natural graph wavelet frame operator, which is defined by V := U (U TU )−1 ∈RN 2×N .

Now, one can decompose the graph signal f to get the expansion coefficient vector α ∈ RN 2
by the

NGWF transform,

α=Uf ∈RN 2
,

and recover it by the inverse NGWF transform,

V Tα= (
U (U TU )−1)TUf = (U TU )−1U TUf = f ,

which is equivalent to

∑
γi∈Γ

α(i )ψ̃γi
= ∑
γi∈Γ

〈
ψγi ,f

〉
ψ̃γi

= f .(10.4)

Eq. (10.4) provides a way to approximate the input graph signal via a frame. See Algorithm 4 for the

details.

On the other hand, the NGWF transform can be interpreted as follows. Let us first reshape the ex-

pansion coefficient vectorα ∈RN 2
into a 2D manner:

α2(l , x) := 〈
ψl ,x ,f

〉= δT
xΦFlΦ

Tf , l = 0 : N −1 and x = 1 : N .
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Algorithm 4: Graph Signal Approximation via a Frame

Input: A graph signal f ∈RN ; a set of frame vectors
{
ψγi

}
γi∈Γ; the corresponding set of dual

frame vectors {ψ̃γi
}γi∈Γ; and the total number of kept coefficients Kp ∈ [1, |Γ|] (default:

b0.5 · |Γ|c).
Output: The relative approximation error vector relerror ∈RKp+1.
relerror = [1.0] // initialize the relative approximation error vector
α = zeros(|Γ|) // initialize the expansion coefficient vector
for i = 1 : |Γ| do

α(i ) = 〈
ψγi ,f

〉
end
ind = sortperm(abs.(α)) // get a permutation vector of indices of abs.(α)

// that puts it in decreasing sorted order
fapprox = zeros(N ) // initialize the approximated graph signal
for j = 1 : Kp do

i = ind( j )
fapprox = fapprox +α(γi )ψ̃γi

// update fapprox

relerror← relerror∪{‖f −fapprox‖2/‖f‖2
}

end
return relerror

If we look at the right hand side of the above formula closely, there are four steps involved in the process

of the NGWF transform:

Step 1: Perform the graph Fourier transform of f to get its graph Fourier coefficient vector g ∈RN ,

i.e., g =ΦTf . Note that g can be also viewed as a graph signal on G?.

Step 2: Windowing g by the Gaussian filter Fl (with the scale parameter σ) to get a well-localized

(in terms of the eigenvector distance d) slice of g on G?, i.e., Fl g =: gw .

Step 3: Perform the inverse graph Fourier transform of the windowed signal to get a partially re-

covered graph signal fw on G , i.e.,Φgw =: fw .

Step 4: Extract the x-th entry of fw to get the NGWF transform expansion coefficient α2(l , x), i.e.,

α2(l , x) = δT
xfw .

Hence, we can view the NGWF transform as the graph Fourier transform followed by the windowed

inverse graph Fourier transform. The two dimensional structure of the set of expansion coefficients

{α2(l , x)}l=0:N−1;x=1:N reveals the information of the graph signal f in both G and G?. We denote the

expansion coefficient matrix of the NGWF transform as A ∈RN×N with Al+1,x := α2(l , x), for l = 0 : N −1

and x = 1 : N . Moreover, we call the heatmap plot of the matrix abs.(A) as the NGWF spectrogram.
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10.3. Reducing the Redundancy of Natural Graph Wavelet Frame

Comparing to the Spectral Graph Wavelet Transform [29] (SGWT) frame
{
ψSGWT

j ,x

}
j=0:J ;x=1:N

, the

NGWF
{
ψγi

}
γi∈Γ contains too many frame vectors. This is not very efficient for graph signal approxi-

mation and we should reduce its redundancy. To achieve that, we change two places when generating

the NGWF in Eq. (10.3).

1. After constructing the set of natural spectral graph filters
{
Fl

}
l=0:N−1 by the eigenvector metric

d , we zero out some of the diagonal entries of Fl , i.e., the entries of µl , if they are smaller than

a preset threshold. By doing so, we get a more compactly supported set of filters
{
Fl

}
l=0:N−1

.

2. For each l = 0 : N −1, the matrix H l := ΦFlΦ
T is rank deficient depending on the preset thresh-

old in Item 1 above. Therefore, we use the pivoted QR algorithm to select a subset of nodes for

subsampling.

We denote the resulting wavelet frame as
{
ψγ

}
γ∈Γ where Γ ⊂ Γ and |Γ| ¿ |Γ| = N 2, and we call it the re-

duced Natural Graph Wavelet Frame (rNGWF). See Algorithm 5 for the details. Note that the rNGWF may

contain global Laplacian eigenvectors because of the two changes mentioned above. If an eigenvectorφl

is far from all the others in terms of the eigenvector distance d , we could obtain diag
(
Fl

)
= const·δl+1 by

the cut-off procedure in the first change. Then, the obtained H l is clearly a rank one matrix. Therefore,

the pivoted QR algorithm used in the second change will generate one wavelet vector from H l , which is

const ·φl .

10.4. Computational Complexity

The algorithm of generating the NGWF is of iterative nature. Assume the graph Laplacian eigenvec-

tors Φ ∈ RN×N and their pairwise eigenvector distances are provided. For l = 0 : N −1, the costs within

each iteration are: 1) O(N ) for assembling the natural spectral graph filter Fl ; 2) O(N 3) for computing

the matrix Hl =ΦFlΦ
T for future use; and 3) O(N 2) for getting the NGWF vectorψl ,x = Hl δx for x = 1 : N

since multiplying δx is equivalent to selecting the x-th column of Hl . Hence, the total cost of generating

the NGWF is O
(
N · (N +N 3 +N 2)

)=O(N 4).

On the other hand, generating the rNGWF algorithm (i.e., Algorithm 5) just adds two additional steps

in each iteration of l in above algorithm: 1) O(N ) for the cut-off procedure of Fl and 2) O(N 3) for the
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Algorithm 5: Generating the reduced Natural Graph Wavelet Frame (rNGWF)

Input: The graph Laplacian eigenvectorsΦ ∈RN×N ; an eigenvector metric d ; a scale parameter
σ> 0 (default: 0.2 ·dmax, where dmax is defined in Eq. (10.2)) and a threshold thres ∈ (0,1)
(default: 0.15).

Output: The rNGWFΨ=
{
ψγ

}
γ∈Γ.

Ψ=; // initialize the output rNGWF
Γ=; // initialize the rNGWF index set
for l = 0 : N −1 do
µl = zeros(N) // initialize the filter vector
for i = 1 : N do

µl (i ) = exp
(−(d(φi−1,φl )/σ)2

)
end
µl =µl /

∑N
i=1µl (i ) // normalize the filter vector

for i = 1 : N do
if µl (i ) ≤ thres ·max

(
µl

)
then

µl (i ) = 0 // zero out the small entries
end

end

Fl = diag
(
µl

)
H l =ΦFlΦ

T

Q,R,Π= pivotedQR
(
H l

)
// apply the pivoted QR algorithm s.t. H lΠ=QR

r = rank
(
H l

)
// compute the numerical rank of H l by SVD

// s.t., σr

(
H l

)
> (104εmach) ·σ1

(
H l

)
≥σr+1

(
H l

)
,

// where εmach is the machine epsilon.
for i = 1 : r do
δx =Π[:, i ] // select the i-th column of the permutation matrix Π

γ= (l , x)
Γ← Γ∪ {γ}
ψγ = H l δx

Ψ←Ψ∪
{
ψγ

}
end

end

return Ψ

pivoted QR algorithm and computing the numerical rank of H l ∈ RN×N since they essentially use the

SVD of an N ×N matrix. Hence, the total operations of generating the rNGWF is also O(N 4).
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(a) f on P128. (b) g =ΦTf on P?
128.

FIGURE 10.2. (a) The graph signal f as defined in Eq. (10.5); (b) its graph Fourier trans-
form coefficient g.

10.5. Numerical Experiments

Here we show four experimental results of NGWF and rNGWF on three graphs: P128, P23 ×P22
3 and

the synthetic dendritic tree introduced in Section 5.3.2.

10.5.1. NGWF Spectrograms on P128. We first examine the results of the NGWF spectrograms on

P128 (where d = dDCT is used as the eigenvector metric). As an example, we create a graph signal f ∈R128

as follows:

f (x) =


1.5φ10(x)+φ30(x)+φ60(x)+0.5φ110(x), x = 1 : 32,

1.5φ10(x)+φ60(x)+0.5φ110(x), x = 33 : 64,

1.5φ10(x)+0.5φ110(x), x = 65 : 128,

(10.5)

where φl (l = 10,30,60,110) are the DCT type-II basis vectors as given in Eq. (2.2). Figure 10.2a shows

how the graph signal f looks like on P128, while Figure 10.2b shows how the graph Fourier transform

coefficient vector g looks like on P?
128. This graph signal f contains a strong low-frequency sinusoid

1.5φ10 and a weak high-frequency sinusoid 0.5φ110 over the entire path. It also contains the sinusoid

φ60 over the first half of the path and the sinusoid φ30 over the first quarter of the path. Consequently,

its graph Fourier transform coefficient vector g contains four peaks at φl (l = 10,30,60,110). Given a

3We choose the peculiar numbers Nx = 23 and Ny = 22 because they are relatively prime to each other so that no multiple
eigenvalues of the graph Laplacian exist. See Remarks 2.1.1, 2.1.2 and Section 3.1 for the details.
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(a) σ= 0.01 ·dmax (b) σ= 0.02 ·dmax

(c) σ= 0.05 ·dmax (d) σ= 0.1 ·dmax

FIGURE 10.3. The NGWF spectrograms of f , i.e., abs.(A) as computed in Eq. (10.6), with
four different values of the scale parameter σ displayed in heatmap plots.

scale parameter σ of the natural spectral graph filters, we can compute the NGWF expansion coefficient

matrix A ∈R128×128 with,

Al+1,x = 〈
ψl ,x ,f

〉
, l = 0 : 127 and x = 1 : 128.(10.6)

Figure 10.3 shows four NGWF spectrograms, i.e., abs.(A) generated by
{
ψγi

}
γi∈Γ with four different val-

ues of the scale parameter σ. Overall, they showed the four frequency components of f (i.e., the four

peaks of g on P?
128) and their corresponding active regions on P128 with different resolutions. As σ gets
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larger, the NGWF spectrograms show more accurate and localized information about the active region

of each frequency component of f on P128; while as σ gets smaller, the NGWF spectrograms show more

accurate and localized information about the four peaks of g on P?
128. This phenomenon is due to the

Heisenberg uncertainty principle (e.g., see [23, Sec. 7.3]). In particular, let us consider two extreme cases

of σ:

Case 1: σ= 0. Then,µl = δl+1 for l = 0 : 127.

ψl ,x =Φdiag(δl+1)ΦTδx = 〈φl ,δx〉φl .

Therefore,ψl ,x is essentially the eigenvector φl multiplied by the constant φl (x) for x = 1 : 128.

The NGWF transform of f becomes

Al+1,x = 〈φl ,δx〉 · 〈φl ,f 〉 =φl (x) · g (l +1), l = 0 : 127 and x = 1 : 128,

i.e., the x-th column of A is φl (x) ·g. Hence, A does not contain any explicit information about

f on P128.

Case 2: σ=∞. Then,µl = 1/N (i.e., the uniform pmf) for l = 0 : 127.

ψl ,x = 1

N
Φ IN Φ

Tδx = 1

N
δx .

Therefore, ψl ,x is essentially the standard basis vector δx divided by the constant N for x = 1 :

128. The NGWF transform of f becomes

Al+1,x = 1

N
〈δx ,f 〉 = 1

N
f (x), l = 0 : 127 and x = 1 : 128,

i.e., the (l +1)-th row of A is 1
N ·f . Hence, A does not contain any explicit information about g

on P?
128.

Thus, there is a trade-off of the explicit information A contained between f on P128 and g on P?
128 by

selecting different σ. Especially, we can see a very nice and interpretable NGWF spectrogram of f from

Figure 10.3c (σ = 0.05 ·dmax). It roughly reveals the four peaks of g on P?
128 with their corresponding

strength, i.e., 1.5φ10, φ30, φ60 and 0.5φ110, and it also approximately reveals the interval duration for
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FIGURE 10.4. The SGWT filter bank on P23 ×P22.

each frequency component on P128, i.e., 1) φ30(x) is active for x = 1 : 32; 2) φ60(x) is active for x = 1 : 64;

and 3) φ10(x) and φ110(x) are active for the whole path.

10.5.2. Anisotropic Wavelets on P23 ×P22. Having shown the NGWF spectrograms with d = dDCT

on a path graph, we now present the use of NGWF with the non-trivial eigenvector distance d = dDAG on

a lattice graph P23 ×P22 (N = 506). As discussed in Section 5.4, the DAG pseudometric is very good at

detecting the directional oscillation patterns of the eigenvectors. In particular, it perfectly recovers the

horizontal/vertical oscillation patterns of the eigenvectors on lattice graphs (e.g., see Figure 5.5). We will

examine the performance of the frame vectors generated by the NGWF transform by comparing it with

the SGWT frame vectors.

In Figure 10.4, we use the PyGSP [18] package to generate the SGWT filter bank (i.e., {F j } j=0:J with

J = 5) over the eigenvalues of L(P23 ×P22). See Section 2.2 for the details. We then use the package to

construct the corresponding SGWT frame
{
ψSGWT

j ,x

}
j=0:5;x=1:506

on P23×P22. For demonstration purpose,

we select x = 242 (in the middle of the grids) and displayψSGWT
j ,242 for j = 0 : 5 in Figure 10.5. As we can see

from the figure, there are six scales (from coarse to fine) of the SGWT frame vectors localized at the node

x = 242, but they do not have any anisotropic oscillatory patterns.

On the other hand, we use dDAG and σ = 0.2 ·dmax to build the set of natural spectral graph filters

{Fl }l=0:505 and consequently the NGWF vectors {ψl ,x }l=0:505;x=1:506. Figure 10.6d, e, f show three examples

of ψl ,242 with l = 10,15,29. We can see that these frame vectors have the same anisotropic oscillatory

patterns inherited from their centered eigenvectors, i.e., φ10 (Figure 10.6a), φ15 (Figure 10.6b), and φ29
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(a)ψSGWT
0,242 (b)ψSGWT

1,242 (c)ψSGWT
2,242

(d)ψSGWT
3,242 (e)ψSGWT

4,242 (f)ψSGWT
5,242

FIGURE 10.5. The SGWT frame vectors ψSGWT
j ,x on P23 ×P22 with j = 0 : J (J = 5) and

x = 242 (brightest yellow point), which are built by the six spectral graph filters shown in
Figure 10.4, respectively.

(Figure 10.6c), respectively. For instance, since φ10 slowly oscillates only in the vertical direction, dDAG

puts the eigenvectors in V ? that also have only slow vertical oscillations closer toφ10. Then, the natural

spectral graph filter F10 selects this feature by windowing out the neighborhood of φl on G? via the

Gaussian window function with σ = 0.2 ·dmax. Finally, we get the NGWF (vertical) anisotropic wavelet

vectorψ10,242 =ΦF10Φ
Tδ242. Meanwhile, it is the same story for the case ofψ15,242 withφ15 (horizontal)

and the case ofψ29,242 withφ29 (mixed in both directions).

10.5.3. Graph Signal Approximation via Frames on P23 ×P22. These kinds of anisotropic NGWF

vectors on P23 ×P22 could provide an edge comparing to the SGWT in graph signal approximation. We

continue our experiments on P23 ×P22 by creating a graph signal as follows. First, we select a hand-

written digit image “3” from the MNIST dataset [45]. It is a 28 by 28 grey scale image. We then overlay

P23 ×P22 in the center of the image such that each node collapses at a pixel, and we take the normalized
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(a)φ10 (b)φ15 (c)φ29

(d)ψ10,242 (e)ψ15,242 (f)ψ29,242

FIGURE 10.6. Three NGWF vectors (d) (e) (f) on P23 ×P22 localized at the node x = 242
(brightest yellow point), which are built by Fl (d = dDAG and σ = 0.2 ·dmax) centered at
φl with l = 10 (a), l = 15 (b), l = 29 (c), respectively.

(a) A hand-written digit “3” graph signal. (b) Approximation performance of two frames.

FIGURE 10.7. The hand-written digit “3” on P23 ×P22 (a); the results of our approxima-
tion experiments (b).
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pixel values as the graph signal on P23 ×P22. Figure 10.7a shows the resulting graph signal in a heatmap

plot.

As discussed in Section 10.3, there are too many frame vectors in NGWF compared to the SGWT,

i.e., N 2 = 256036 vs. (J +1)N = 3036. Therefore, we use Algorithm 5 (with default parameters) to get the

rNGWF
{
ψγ

}
γ∈Γ, which only has |Γ| = 2986 number of frame vectors in total. Considering the rNGWF

and the SGWT frame have nearly the same number of frame vectors, it is fair to use Algorithm 4 to com-

pare their graph signal approximation performance. Figure 10.7b shows the approximation experiment

results on the hand-written digit “3” graph signal, where the approximation performance is measured

by the relative `2 approximation error with respect to the number of coefficients retained (denote as

NC R for simplicity). Specifically, the NC R in the experiments starts from 0 up to 3N = 1518. From Fig-

ure 10.7b, we observe that the rNGWF clearly outperformed the SGWT frame, and especially with a big

lead up to NC R ≈ 500.

In order to examine the performance difference between the SGWT frame and the rNGWF, we display

their 100 most significant frame vectors in Figure 10.8 and Figure 10.9, respectively. We note that the top

SGWT frame vectors are generally coarse scales, and they try to capture the main body of the digit “3”.

Yet, there is one fine scale SGWT wavelet vector marked by the red box in Figure 10.8, which captures the

details of the digit in the bottom left corner. On the other hand, most of wavelets among the top rNGWF

vectors also try to capture the main body of the digit “3”, while some of them exhibit horizontal/vertical

anisotropic patterns (marked by red boxes in Figure 10.9) and try to capture the edges of the digit “3”.

These anisotropic wavelets make the rNGWF perform better than the SGWT frame in the digit “3” signal

approximation experiment. We also note that there are five global graph Laplacian eigenvectors (marked

by orange boxes in Figure 10.9) appeared among the top 100 rNGWF vectors. This phenomenon is due

to the two changes when generating the rNGWF as explained in Section 10.3.

10.5.4. Graph Signal Approximation via Frames on a Synthetic Dendritic Tree. Next, we consider

the unweighted synthetic dendritic tree graph (see Figure 5.8a), whose eigenvectors are carefully studied

in Section 5.3.2. It has N = 100 nodes and M = 99 edges. Figure 10.10a shows a synthetic graph signal on

this tree, which is composed of four delta impulses at four junctions, and four sinusoids with different

oscillatory frequencies on four branches, and zeros elsewhere.
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FIGURE 10.8. Top 100 SGWT frame vectors used in the hand-written digit “3” approximation.
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FIGURE 10.9. Top 100 rNGWF vectors used in the hand-written digit “3” approximation.
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(a) A synthetic tree signal. (b) Approximation performance of two frames.

FIGURE 10.10. A synthetic signal on the tree (a); the results of our approximation exper-
iments (b).

We use d (1)
ROT ◦pmf(1) (α = 1) and σ = 0.1 ·dmax to construct the set of natural spectral graph filters{

Fl
}

l=0:N−1. They can be viewed as the Gaussian filters on the 3D MDS embedding space of the eigen-

vectors as shown in Figure 5.12a. We then get the rNGWF
{
ψγ

}
γ∈Γ via Algorithm 5 with the default

threshold 0.15. The obtained rNGWF has |Γ| = 632 frame vectors, which is much less than the number

of frame vectors contained in the NGWF (|Γ| = N 2 = 10000). On the other hand, we use the same set of

eigenvalue-dependent smooth functions in Figure 10.4 to construct the SGWT frame
{
ψSGWT

j ,x

}
j=0:J ;x=1:N

(with J = 5) on the tree, which contains (J +1) ·N = 600 frame vectors in total. Considering the rNGWF

and the SGWT frame have about the same number of frame vectors, it is reasonable to compare their

graph signal approximation performance via Algorithm 4. Figure 10.10b shows the approximation re-

sults of the synthetic tree signal. The NC R in the experiments goes from 0 to 3N = 300. We observe that

the rNGWF plainly beat the SGWT frame. Besides that, we also observe that the approximation curves

in this figure are jagged compared to the ones in Chapter 9 (e.g., see Figure 9.2c). This phenomenon is

because these curves are generated by frames not orthonormal bases. Since the frame vectors are not

always orthogonal to each other, we cannot guarantee that the relerror in Algorithm 4 is monotonically

decreasing.

In order to examine the performance difference between the SGWT frame and the rNGWF, we display

their top 21 frame vectors in Figure 10.11 and Figure 10.12, respectively. The top SGWT frame vectors are
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FIGURE 10.11. Top 21 SGWT frame vectors used in the synthetic tree signal approximation.

coarse scales ( j = 0 : 2), and try to characterize the oscillations of the synthetic signal on the branches.

On the other hand, the top rNGWF vectors exhibit more rich structures that try to capture both the oscil-

lations on branches and delta impulses at junctions. These behaviors are inherited from their centered
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FIGURE 10.12. Top 21 rNGWF vectors used in the synthetic tree signal approximation.

eigenvectors with the ROT distance. Note that there are two eigenvectors selected among the rNGWF

vectors, i.e., φ2 and φ16. Figure 10.13 shows the centered eigenvectors of the top rNGWF vectors for

reference. The ROT distance, as discussed in Section 5.4, is good at detecting the energy localization
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FIGURE 10.13. The centered eigenvectors of the top 21 rNGWF vectors in Figure 10.12.
See Figure 5.11 for the eigenvectors localized at junctions, i.e.,φl (l = 96 : 99).

patterns of the eigenvectors. As one can see from Figure 10.12, Figure 10.13 and Figure 5.11, the rNGWF

vectors behave similarly to their centered eigenvectors in terms of energy distribution on the tree, but

they are more “localized” in the primal domain G . These rich structures of rNGWF vectors make it more

efficient to approximate this synthetic tree signal comparing to the SGWT frame.

10.6. Summary

We first introduced the natural spectral graph filters by utilizing the eigenvector distance d , and we

then built the NGWF by following the framework of building the SGWT frames in Eq. (2.4). To reduce its

redundancy, we presented an algorithm to get its reduced version, i.e., the rNGWF. We also demonstrated

how to use them for graph signal analysis and synthesis. We displayed the 2D expansion coefficients of

the NGWF transform of an artificial graph signal on P128, i.e., the NGWF spectrogram. We also showcased

the NGWF vectors built by dDAG on P23 ×P22 and compared them with the SGWT frame vectors, and we

observed the anisotropic wavelets among the NGWF vectors. At last, we showed the power of the rNGWF

by comparing its performance with the SGWT frame in two graph signal approximation experiments: 1)

a hand-written digit “3” signal on P23 ×P22 and 2) a synthetic signal on the synthetic dendritic tree.
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CHAPTER 11

Conclusion

In this dissertation, we have introduced and reviewed several non-trivial metrics of graph Laplacian

eigenvectors to characterize the eigenvectors behavioral patterns on an input graph G , and used these

metrics to naturally organize the dual domain of G by building a complete dual graph G?. We used

the classical MDS technique to visualize those eigenvector organizations in R2 or R3, and presented the

experimental results in Section 5.3.

We then proposed three methods to construct graph wavelet packet dictionaries that fully utilize

the dual graph: the VM-NGWP, the PC-NGWP and the LP-NGWP dictionaries. Then, using two differ-

ent graph signals on each of the two different graphs, we compared their performance in approximating

a given graph signal against the multiscale graph basis dictionaries previously designed by Prof. Saito’s

group, such as the HGLET and eGHWT dictionaries; and the LP-HGLET dictionary developed in Sec-

tion 8.3. Our proposed dictionaries outperformed the others on locally smooth graph signals, and per-

formed reasonably well for a graph signal sampled on an image containing oriented anisotropic texture

patterns. On the other hand, our new dictionaries were beaten by the eGHWT on the non-smooth and

localized graph signal. The potential reasons for such a behavior are the facts that 1) the VM-NGWP and

the PC-NGWP dictionaries are a direct generalization of the “Shannon” wavelet packet dictionaries, i.e.,

their spectral (i.e., dual) domain support is localized and well-controlled while the primal domain sup-

port is not compact; and 2) although the LP-NGWP dictionary is a generalization of the “Meyer” wavelet

packet dictionary whose basis vectors are more localized on primal domain, it does not have the appro-

priate control of how much the basis vectors are localized on primal domain at different scales.

We also note that the VM-NGWP and the PC-NGWP dictionaries performed generally better than

the LP-NGWP dictionary for the graph signals we have examined in Chapter 9. This could be due to the

inappropriate choice of ε of the LP-NGWP dictionary, considering it actually reduces to the VM-NGWP

dictionary with ε= 0. Thus, one important question left in the LP-NGWP dictionary is: how do we choose
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appropriate sizes of the action regions at different levels in order to get the best multiscale LP-NGWP ba-

sis vectors in graph signal approximations? Also, the VM-NGWP dictionary performed generally better

than the PC-NGWP dictionary. One of the possible reasons is the use of the explicit localization proce-

dure, i.e., the varimax rotation, in the former; the latter allows one to try to “pinpoint” a particular primal

node where the basis vector should concentrate, but the MGSLp procedure unfortunately shuffles and

slightly delocalizes the basis vectors after orthogonalization. On the other hand, the differences in their

computational costs are not significant: the VM-NGWP and PC-NGWP dictionaries cost O(N 3) opera-

tions with a different constant, while the LP-NGWP dictionary costs O
(
N 3 log2 N

)
operations. Hence, it

is important to investigate how to reduce the computational complexity in the three cases. One such

possibility is to use only the first N0 graph Laplacian eigenvectors with N0 ¿ N . Clearly, one cannot

represent a given graph signal precisely with N0 eigenvectors, but this scenario may be acceptable for

certain applications including graph signal clustering, classification, and regression. Of course, it is of

our interest to investigate whether we can come up with faster versions of the varimax rotation algorithm

and the MGSLp algorithm, which forms one of the future research projects.

Next, we proposed the natural graph wavelet frame (NGWF) and its reduced version (rNGWF) by

utilizing the dual graph and the framework of the Spectral Graph Wavelet Transform (SGWT). Then, we

compared the performance of rNGWF and the SGWT in approximating a hand-written digit “3” signal on

a lattice graph and a synthetic signal on a synthetic dendritic tree. The rNGWF clearly beats the SGWT,

and its frame vectors present more rich structures, which are inherited from the global graph Laplacian

eigenvectors via the natural graph spectral filters with the non-trivial eigenvector metrics. On the other

hand, the computational cost of building the NGWF and the rNGWF are both O(N 4) operations. So,

reducing the computational complexity is also an important task for both cases. Note that, although one

can use the NGWF or the rNGWF to approximate graph signals, they are generally not as efficient as the

NGWP dictionaries, because the frames tend to need more vectors with a higher computational cost.

Although it is not explicitly included in this dissertation, a major contribution of this work is the

accompanying software package [50]1. We have developed a framework to build the complete dual

graph by computing the non-trivial distances between the eigenvectors, and consequently construct the

NGWP dictionaries and NGWFs for graph signal processing. Along with the software we provide scripts

1which is now merged into [32].
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for reproducing figures from our articles [9,51] and this dissertation. It is our hope that interested readers

will download the software themselves, recreate our figures, and possibly conduct their own experiments

with it.

Finally, we would like to emphasize that the natural dual domain G? can be used in applications be-

yond dictionary construction. Such applications include: graph cuts and spectral clustering [61, 78] to

move beyond noted limitations to using the first few eigenvectors [59]; graph visualization and embed-

dings [1] to represent embeddings with lower distortion [41] as was done in [43]; and anomaly detection

through spectral methods [20, 56] by going beyond the first few eigenvectors [7, 8]. It is interesting to

investigate going beyond the initial set of eigenvectors with small eigenvalues in a method informed by

G?, and the effect of G? on such methods.
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APPENDIX A

Supporting Proofs

A.1. Proof of Lemma 4.5.1

PROOF. Let us prove KTSD(·,T ) is a norm on RN
0 by verifying that it satisfies the following four prop-

erties. Denote Q̃ = Q̃(G) as the unweighted incidence matrix of G .

(1) (Non-negativity) KTSD(f0,T ) ≥ 0, because of the non-negativity of the weighted `1-norm inside

the integral.

(2) (Identity of discernible) First, if f =0 ∈RN
0 , then it is easy to see that KTSD(0,T ) = 0.

On the other hand, if KTSD(f ,T ) = 0,

KTSD(f ,T ) =
∫ T

0

∥∥∥∥∥Q̃T
N−1∑
l=0

〈f ,φ̃l 〉e−λ̃l t φ̃l

∥∥∥∥∥
1,w

dt = 0

=⇒
∥∥∥∥∥Q̃T

N−1∑
l=0

〈f ,φ̃l 〉e−λ̃l t φ̃l

∥∥∥∥∥
1,w

= 0 for any t ∈ [0,T )

=⇒ Q̃T
N−1∑
l=0

〈f ,φ̃l 〉e−λ̃l t φ̃l =0 for any t ∈ [0,T )

=⇒ Q̃T
N−1∑
l=1

〈f ,φ̃l 〉e−λ̃l t φ̃l =0 thanks to Q̃T φ̃0 =0 ∈RM

=⇒ Q̃T

[
φ̃1 φ̃2 · · · φ̃N−1

]
·



〈f ,φ̃1〉e−λ̃1t

〈f ,φ̃2〉e−λ̃2t

...

〈f ,φ̃N−1〉e−λ̃N−1t


=0.

Since the G is connected (implies M ≥ N −1), it is easy to show that rank(Q̃) = N −1 [24]. Denot-

ing A := Q̃T[φ̃1,φ̃2, · · · ,φ̃N−1] ∈RM×(N−1), A is full column rank, i.e., rank(A) = N −1. Therefore,
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it implies 〈f ,φ̃l 〉e−λ̃l t = 0, i.e., 〈f ,φ̃l 〉 = 0 for l = 1 : N −1. Since f ∈RN
0 , we also have 〈f ,φ̃0〉 = 0.

Hence, f =∑N−1
l=0 〈f ,φ̃l 〉φ̃l =0 ∈RN

0 .

(3) (Absolutely homogeneous) For α ∈R and f ∈RN
0 , KTSD(αf ,T ) = |α|KTSD(f ,T ).

(4) (Triangle inequality) For any f ,g ∈RN
0 ,

KTSD(f +g,T ) =
∫ T

0

∥∥∥∥∥Q̃T
N−1∑
l=0

〈f +g,φ̃l 〉e−λ̃l t φ̃l

∥∥∥∥∥
1,w

dt

≤
∫ T

0

∥∥∥∥∥Q̃T
N−1∑
l=0

〈f ,φ̃l 〉e−λ̃l t φ̃l

∥∥∥∥∥
1,w

+
∥∥∥∥∥Q̃T

N−1∑
l=0

〈g,φ̃l 〉e−λ̃l t φ̃l

∥∥∥∥∥
1,w

dt

= KTSD(f ,T )+KTSD(g,T ).

Therefore, KTSD(·,T ) is a norm on RN
0 and (RN

0 ,KTSD(·,T )) is a normed vector space.

�

A.2. Proof of Theorem 4.5.2

PROOF.

KTSD
(

f0,T
) =

∫ T

0

∫
M

∣∣∇x f (x, t )
∣∣dxdt

=
∫ T

0

∫
M

∣∣∣∣∣∇x

∞∑
l=0

〈φl , f0〉e−λl tφl (x)

∣∣∣∣∣dxdt

[
φ0 ≡ a constant

] =
∫ T

0

∫
M

∣∣∣∣∣∇x

∞∑
l=1

〈φl , f0〉e−λl tφl (x)

∣∣∣∣∣dxdt

[
by triangle inequality

] ≤
∫ T

0

∫
M

∞∑
l=1

∣∣∣〈φl , f0〉e−λl t∇φl (x)
∣∣∣dxdt

[
by Fubini theorem

] =
∞∑

l=1

∫ T

0
e−λl t dt ·

∫
M

∣∣〈φl , f0〉∇φl (x)
∣∣dx

[
as T →∞] ≤

∞∑
l=1

1

λl
| f̂0(l )| ·

∫
M

∣∣∇φl (x)
∣∣dx

[
by Cauchy–Schwarz inequality

] ≤
∞∑

l=1

1

λl
| f̂0(l )| · ‖∇φl‖2 ·

√
Vol(M )

[
since ‖∇φl‖2 =

√
λl by Green’s formula

] =
∞∑

l=1

1√
λl

| f̂0(l )| ·
√

Vol(M ).

�
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A.3. Proof of Theorem 4.6.4

The heat diffusion PDE with the Neumann boundary condition on [0,2π]:

∂
∂t f (x, t )− ∂2

∂x2 f (x, t ) = 0, x ∈ [0,2π]

f (x,0) = f0(x) = q(x)−p(x) ∈ L2
0([0,2π])

∂
∂x f (0, t ) = ∂

∂x f (2π, t ) = 0, t ≥ 0

and its general solution using Laplacian eigenfunctions φl :

f (x, t ) =
∞∑

l=0
〈φl , f0〉e−λl tφl (x) in which φl (x) =


1p
2π

, l = 0,

1p
π

cos
(

l
2 x

)
, l ≥ 1.

and λl =
1

4
l 2.

Now, the functional KTSD in Eq. (4.15) becomes

KTSD( f0,T ) =
∫ T

0

∫ 2π

0

∣∣∣∣ ∂∂x
f (x, t )

∣∣∣∣dxdt .

PROOF.

KTSD(q −p,∞) =
∫ ∞

0

∫ 2π

0

∣∣∣∣∣ ∞∑
l=0

〈φl , q −p〉e−λl tφ′
l (x)

∣∣∣∣∣dxdt

[
since φ′

0 ≡ 0
] =

∫ ∞

0

∫ 2π

0

∣∣∣∣∣ ∞∑
l=1

〈φl , q −p〉e−λl tφ′
l (x)

∣∣∣∣∣dxdt

[
by Fubini theorem

] =
∫ 2π

0

∫ ∞

0

∣∣∣∣∣ ∞∑
l=1

〈φl , q −p〉e−λl tφ′
l (x)

∣∣∣∣∣dtdx

[
by triangle inequality

] ≥
∫ 2π

0

∣∣∣∣∣
∫ ∞

0

∞∑
l=1

〈φl , q −p〉e−λl tφ′
l (x)dt

∣∣∣∣∣dx

=
∫ 2π

0

∣∣∣∣∣ ∞∑
l=1

〈φl , q −p〉 1

λl
φ′

l (x)

∣∣∣∣∣dx

[
since −φ′′

l =λlφl
] =

∫ 2π

0

∣∣∣∣∣ ∞∑
l=1

〈φl , q −p〉
∫ x

0
φl (s)ds

∣∣∣∣∣dx

=
∫ 2π

0

∣∣∣∣∫ x

0
(q(s)−p(s))ds

∣∣∣∣dx =W1(p, q).

For the last equation, we used the explicit formula of W1 in R as shown in [49]. �
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A.4. Proof of Theorem 7.1.1

PROOF. The graph Laplacian eigenvectorsφl =φl ;N as defined in Eq. (2.2) are

φl (x) =


1p
N

, l = 0,√
2
N cos

(
πl
N

(
x − 1

2

))
, l = 1 : N −1.

Our goal is to solve Eq. (7.2) based on the greedy algorithm, i.e.,

1) compute score(δx ) =αPC({δx },V ?
0 )−αPC({δx },V ?

1 ) = 2αPC({δx },V ?
0 )−1, in which the last equal-

ity is due to the factαPC({δx },V ?
0 )+αPC({δx },V ?

1 ) =αPC({δx },V ?) =∑N−1
l=0 φl (x)2 = 1, for x = 1 : N .

2) select N0(= bN+1
2 c) δx ’s that give the largest N0 values of score(·).

Also, the following trigonometric identity is repeatedly used in our proofs.

m−1∑
l=1

cos2 (lπθ) =
m−1∑
l=1

1+cos(2lπθ)

2
= 1

4

(
sin((2m −1)πθ)

sin(πθ)
+2m −3

)
.

Now, let us prove the theorem under two cases: 1) N is even and 2) N is odd.

Case 1: N = 2m. In this case, N0 = bN+1
2 c = m.

αPC({δx },V ?
0 ) = 1

N
+ 2

N

m−1∑
l=1

cos2
(
πl

N

(
x − 1

2

))
[
let θ := x − 1

2

N

] = 1

N
+ 2

N

m−1∑
l=1

cos2 (lπθ)

= 1

N
+ 1

2N

(
sin(N −1)πθ

sinπθ
+N −3

)
= 1

2
+ 1

2N

(
sin(N −1)πθ

sinπθ
−1

)
.
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Therefore, for x = 1 : N ,

score(δx ) = 1

N

(
sin(N −1)πθ

sinπθ
−1

)
= 1

N

(
sin(Nπθ)cosπθ−cos(Nπθ)sinπθ

sinπθ
−1

)
= 1

N
(sin(Nπθ)cotπθ−1)

= 1

N

(
sin

(
π

(
x − 1

2

))
cot

(
π

N

(
x − 1

2

))
−1

)
= 1

N

(
−cos(πx)cot

(
π

N

(
x − 1

2

))
−1

)
= 1

N

(
(−1)x−1 cot

(
π

N

(
x − 1

2

))
−1

)
.

Note that: 1) score(·) is symmetric based on the above formula, i.e., score(δx ) = score(δN+1−x ),

so we only need to analyze score(δx ), for x = 1 : bN+1
2 c = 1 : m; 2) cot(·) is a positive and decreas-

ing function over the interval (0,π/2], so the series
{
score(δx )+ 1

N

}
x=1:m is an alternating series

and its terms monotonically decrease in magnitude; and 3) the indices of the largest m terms in{
score(δx )+ 1

N

}
x=1:N are the same as the indices of the largest m terms in {score(δx )}x=1:N .

If m is even, i.e., m = 2n, then the m δx ’s that have the largest m values of score(·) are the

combination of the n δx ’s that have the largest n terms in the series
{
score(δx )+ 1

N

}
x=1:m and

the n δx ’s that have the largest n terms in the symmetric series
{
score(δx )+ 1

N

}
x=m+1:N , i.e.,

V0 = {δ2x−1}x=1:n ∪ {δ2x }x=n+1:m .

If m is odd, i.e., m = 2n −1, then the m−1 δx ’s that have the largest m−1 values of score(·) are

the combination of the n−1 δx ’s that have the largest n−1 terms in the series
{
score(δx )+ 1

N

}
x=1:m

and the n−1 δx ’s that have the largest n−1 terms in the (symmetric) series
{
score(δx )+ 1

N

}
x=m+1:N .

We also need a last term, i.e., the m-th largest term in
{
score(δx )+ 1

N

}
x=1:N . However, there are

two m-th largest terms in the series, i.e.,

score(δm)+ 1

N
= score(δm+1)+ 1

N
.
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We have to choose one of them and put it into V0, so the two possibilities of the m δx ’s that have

the largest m values of score(·) are

V0 = {δ2x−1}x=1:n ∪ {δ2x }x=n+1:m and V0 = {δ2x−1}x=1:n−1 ∪ {δ2x }x=n:m .

At last, we set V1 =V \V0 in each case.

Case 2: N = 2m −1. In this case, N0 = bN+1
2 c = m.

αPC({δx },V ?
0 ) = 1

N
+ 2

N

m−1∑
l=1

cos2
(
πl

N

(
x − 1

2

))
[
let θ := x − 1

2

N

] = 1

N
+ 2

N

m−1∑
l=1

cos2 (lπθ)

= 1

N
+ 1

2N

(
sin(Nπθ)

sinπθ
+N −2

)
= 1

N
+ 1

2N

(−cos(πx)

sinπθ
+N −2

)
= 1

2
+ 1

2N
(−1)x−1 csc

(
π

N

(
x − 1

2

))
.

Therefore, for x = 1 : N ,

score(δx ) = 1

N
(−1)x−1 csc

(
π

N

(
x − 1

2

))
.

Again, score(·) is symmetric based on the formula, i.e., score(δx ) = score(δN+1−x ), so we only

need to analyze it for x = 1 : m. Meanwhile, csc(·) is also a positive and decreasing function

over the interval (0,π/2], so the series {score(δx )}x=1:m is an alternating series and its terms

monotonically decrease in magnitude. Using the similar arguments in Case 1, i.e., split into

m = 2n and m = 2n−1 two subcases and so forth, we end up getting m δx ’s that have the largest

m values of score(·) in both subcases:

V0 = {δ2x−1}x=1:m .

Finally, we set V1 =V \V0 = {δ2x }x=1:m−1.

�
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A.5. Proof of Theorem 10.2.1

PROOF. Since Fl = diag(µl ), it is equivalent to show

1

N
1<

N−1∑
l=0
µl <

N +1

2
1.

In other words, we need to show the above inequalities hold for each entry ofµl , i.e.,

1

N
<

N−1∑
l=0

µl (i +1) < N +1

2
, i = 0 : N −1.(A.1)

For eachµl (l = 0 : N −1), its entries satisfy
∑N−1

i=0 µl (i +1) = 1 with µl (i +1) > 0 and

l = argmax
i=0:N−1

µl (i +1) = argmax
i=0:N−1

exp
(−(d(φi ,φl )/σ)2

)∑N−1
i ′=0 exp

(−(d(φi ′ ,φl )/σ)2
) ,

because d(φl ,φl ) = 0. Now, the first inequality in Eq. (A.1) can be derived as follows.

N−1∑
l=0

µl (i +1) >µl (l +1) > 1

N

N−1∑
i=0

µl (i +1) = 1

N
.

On the other hand, we can show the second inequality in Eq. (A.1) as below.

N−1∑
l=0

µl (i +1) = µi (i +1)+ ∑
l=0:N−1

l 6=i

µl (i +1)

< 1+ ∑
l=0:N−1

l 6=i

1

2
(µl (i +1)+µl (l +1))

< 1+ ∑
l=0:N−1

l 6=i

1

2

N−1∑
i ′=0

µl (i ′+1)

= N +1

2
.

�

126



Bibliography

[1] M. BELKIN AND P. NIYOGI, Laplacian eigenmaps for dimensionality reduction and data representation, Neural Comput., 15

(2003), pp. 1373–1396.
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