
Crystal Combinatorics and Grothendieck Polynomials

By

JIANPING PAN
DISSERTATION

Submitted in partial satisfaction of the requirements for the degree of

DOCTOR OF PHILOSOPHY

in

MATHEMATICS

in the

OFFICE OF GRADUATE STUDIES

of the

UNIVERSITY OF CALIFORNIA

DAVIS

Approved:

Professor Anne Schilling, Chair

Professor Fu Liu

Professor Monica Vazirani

Committee in Charge

2021

i

© Jianping Pan, 2021. All rights reserved.

To my grandpa.

ii

Contents

Abstract iv

Acknowledgments v

Chapter 1. Introduction 1

1.1. Overview 1

1.2. Preliminaries 5

Chapter 2. Crystal for stable Grothendieck polynomials 13

2.1. The ?-crystal 13

2.2. Insertion algorithms 26

2.3. Properties of the ?-insertion 37

2.4. Results on the non-fully-commutative case 47

Chapter 3. Uncrowding algorithm for hook-valued tableaux 52

3.1. Hook-valued tableaux 52

3.2. Uncrowding map on hook-valued tableaux 55

3.3. Applications 79

Appendix A. Proofs for Crystal for stable Grothendieck polynomials 84

A.1. Proofs for ?-insertion 84

A.2. Proofs of micro-moves 92

Appendix B. Proofs for Uncrowding algorithm for hook-valued tableaux 100

B.1. Proofs of Lemma 100

Bibliography 114

iii

Crystal Combinatorics and Grothendieck Polynomials

Abstract

Crystals are models for representations of symmetrizable Kac-Moody Lie algebras. They have

close connections to algebra and geometry via symmetric functions. In this dissertation, combina-

torics related to two kinds of symmetric functions arising from Schubert calculus is discussed. The

first one is the stable Grothendieck polynomial. We introduce a type A crystal structure for the

combinatorial objects underlying the stable Grothendieck polynomials which we call ?-crystal. This

crystal is a K-theoretic generalization of the Morse-Schilling crystal on decreasing factorizations

in the symmetric group. We prove that under the residue map the ?-crystal intertwines with the

crystal on set-valued tableaux introduced by Monical, Pechenik and Scrimshaw. We also define a

new insertion from decreasing factorizations to pairs of semistandard Young tableaux and prove

several properties, such as its relation to the Hecke insertion and the uncrowding algorithm. The

new insertion also intertwines with the crystal operators.

The second one is the stable canonical Grothendieck polynomial. Whereas set-valued tableaux

are the combinatorial objects associated to stable Grothendieck polynomials, hook-valued tableaux

are associated to stable canonical Grothendieck polynomials. We define a novel uncrowding algo-

rithm for hook-valued tableaux. The algorithm “uncrowds” the entries in the arm of the hooks

and yields a set-valued tableau and a column-flagged increasing tableau. We prove that our un-

crowding algorithm intertwines with crystal operators. An alternative uncrowding algorithm that

“uncrowds” the entries in the leg instead of the arm of the hooks is also given. As an application

of uncrowding, we obtain various expansions of the canonical Grothendieck polynomials.

iv

Acknowledgments

Time flies like an arrow; fruit flies like a banana. After a lot of time and a lot of bananas, I am

leaving for my next journey, and I owe a lot of thanks to a lot of people.

First, I would like to thank my advisor Prof. Anne Schilling. Being her student is one of the

best things that has happened to me. Her passion and curiosity are contagious. Her devotion and

perseverance are impressive. In research, it takes many ideas to form a conjecture, and many failed

conjectures to form a theorem (or not). Along the long winding road, I am thankful for her being

so patient, encouraging, advocating, and caring.

I would like to thank the informal discrete group. I had the opportunity to learn a variety of

topics and practice giving presentations with them. I am especially especially thankful to Prof.

Monica Vazirani, for giving me feedback after my presentations and writing me recommendation

letters, and to Prof. Eugene Gorskiy for giving me advice on job search and funding.

I would like to thank Prof. Fu Liu and Prof. Monica Vazirani for serving on my dissertation

committee, and Prof. Eugene Gorskiy and Prof. Jaroslav Trnka for serving on my qualifying exam

committee. I would like to thank my collaborator, Prof. Jennifer Morse for the good work we

did and for writing me recommendation letters. I would like to thank Prof. Elena Fuchs for lots

of inspiring conversations over coffee and for writing me recommendation letters. I would like to

thank Prof. Greg Kuperberg, for telling me many stories, and teaching me some English, including

the first sentence of this page.

I am grateful for my academic brothers Wencin Poh and Joseph Pappe. They are the ones that

I have been reading papers with, staring at figures with, debugging with, arguing with, staying up

with, and also writing papers with. I am thankful for them putting up with me.

I appreciate the insightful discussions and shared learning experiences with many friends, es-

pecially Aram Dermenjian, Emily Gunawan, Colin Hagemeyer, Yonggyu Lee, Beibei Liu, Yanwen

Luo, Jingyang Shu, Austin Trans, Zhenyang Zhang, Yue Zhao, and Yunshen Zhou.

I would like to thank the office staff, especially Tina Denena and Victoria Whistler, for always

being there for students.

Last, I would like to thank the National Science Foundation, for partially supporting this

dissertation with grants DMS–1764153 and DMS–1700814.

v

CHAPTER 1

Introduction

In this chapter, we provide the overview of the dissertation, and some preliminaries on crystals,

tableaux and Grothendieck polynomials.

1.1. Overview

A complete flag F• = {{0} = F0 ⊂ F1 ⊂ · · · ⊂ Fn = Cn} in Cn is a nested sequence of vector

spaces such that dim(Fi) = i for 0 6 i 6 n. The flag manifold F ln is all complete flags in Cn. The

Schubert varieties of F ln are subsets of F ln indexed by permutations in Sn, which will be defined

in Definition 1.2.6. An important problem in Schubert calculus is how to compute the intersection

numbers of the Schubert varieties. One concrete solution is to compute the expansion of the product

of their polynomial representatives. Lascoux and Schützenberger [16,17] introduced Grothendieck

polynomials in 1982, which are representatives for the Schubert classes in the K-theory of the

flag manifold. The stabilizations of Grothendieck polynomials are symmetric functions and were

studied by Fomin and Kirillov [8]. They gave a combinatorial definition of the stable Grothendieck

polynomials, labeled by permutations w ∈ Sn, as

(1.1) Gw(x1, . . . , xm;β) =
∑
(k,h)

β`(h)−`(w)xk,

where the sum is over decreasing factorizations [k,h]t of w in the 0-Hecke monoid, which will be

defined in Definition 2.1.2. When β = 0, Gw specializes to the Stanley symmetric function Fw [29].

A robust combinatorial picture has been developed for the special case of Grothendieck polyno-

mials indexed by Grassmannian permutations. Buch [3] showed that the stable Grassmannian (or

symmetric) Grothendieck polynomials can be realized as the generating functions of semistandard

1

set-valued tableaux:

(1.2) Gλ(x1, . . . , xm;β) =
∑

T∈SVTm(λ)

βex(T)xwt(T),

where semistandard set-valued tableaux SVTm(λ),wt(T) and ex(T) will be defined in Defini-

tion 1.2.4. The set-valued tableaux play an important role in K-Theory. They form a generalization

of semistandard Young tableaux, where boxes may contain sets of intergers instead of just integers.

Stable symmetric Grothendieck polynomials Gλ can be viewed as a K-theory analogue of the Schur

functions sλ (while the Grothendieck polynomial is an analog of the Schubert polynomial), which

will be defined in (1.3). Buch [3] also described the structure coefficients cνλµ of GλGµ in terms of

set-valued tableaux, generalizing the Littlewood–Richardson rule for Schur functions.

The crystal structure on a combinatorial set is the combinatorial shadow of a (quantum) group

representation (see for example [5,12,13,14,20,21]). The characters of connected components of

crystal graphs are the Schur polynomials. Beyond the representation theory, crystals can be used

to prove certain polynomial expansions. Recently, Monical, Pechenik and Scrimshaw [22] provided

a type Am−1-crystal structure on SVTm(λ) which, in particular, implies that

Gλ(x1, . . . , xm;β) =
∑
µ

β|µ|−|λ|Mµ
λ sµ(x1, . . . , xm),

where Mµ
λ is the number of highest-weight set-valued tableaux of weight µ in the crystal SVTm(λ)

and sµ is the Schur function. Their approach recovers a Schur expansion formula for Grassmannian

Grothendieck polynomials given by Lenart [18, Theorem 2.2] in terms of flagged increasing tableaux.

Blasiak, Morse and Pun proved Schur and key expansions of a certain Catalan function by relating

it to the DARK crystal, see [2].

In Chapter 2, we define a type A crystal structure on decreasing factorizations of w in the

0-Hecke monoid of (1.1), when w is fully-commutative [30] (or equivalently 321-avoiding). A

permutation w is fully-commutative if its reduced expressions do not contain any braids. The

number of fully-commutative elements of Sn is the n-th Catalan number. The residue map (see

Section 2.1.4) shows that fully-commutative permutations correspond to skew shapes. We call our

crystal ?-crystal. It is local in the sense that the crystal operators f?i and e?i only act on the

2

i-th and (i + 1)-th factors of the decreasing factorization. It generalizes the crystal of Morse and

Schilling [24] for Stanley symmetric functions (or equivalently reduced decreasing factorizations of

w) in the fully-commutative case. We show that the ?-crystal and the crystal on set-valued tableaux

intertwine under the residue map (see Theorem 2.1.2). We also show that the residue map and

the Hecke insertion [4] are related (see Theorem 2.2.1), thereby resolving [22, Open Problem 5.8]

in the fully-commutative case. In addition, we provide a new insertion algorithm, which we call

?-insertion, from decreasing factorizations on fully-commutative elements in the 0-Hecke monoid to

pairs of (transposes of) semistandard Young tableaux of the same shape (see Definition 2.2.2 and

Theorem 2.2.2), which intertwines with crystal operators (see Theorem 2.3.1). This recovers the

Schur expansion of Gw of Fomin and Greene [7] when w is fully-commutative, stating that

Gw =
∑
µ

β|µ|−`(w)gµwsµ,

where

gµw = |{T ∈ SSYTn(µ′) | wC(T) ≡ w}|,

and wC(T) is the column reading word of T (see Remark 2.3.3). We also show that the com-

position of the residue map with the ?-insertion is related to the uncrowding algorithm [3] (see

Theorem 2.3.2). Other insertion algorithms have recently been studied in [6].

The Grassmannian Gr(k,Cn) of k-planes in Cn has a fundamental duality isomorphism

Gr(k,Cn) ∼= Gr(n− k,Cn).

This implies that the structure constants have the symmetry cνλµ = cν
′
λ′µ′ , where λ′ denotes the

conjugate of the partition λ. Hence one expects a ring homomorphism on the completion of the

ring of symmetric function defined on the basis of stable symmetric Grothendieck polynomials

τ(Gλ) = Gλ′ . The standard involutive ring automorphism ω defined on the Schur basis by ω(sλ) =

sλ′ does not have this property [15]

ω(Gλ) = Jλ 6= Gλ′ .

3

Yeliussizov [32] introduced a new family of canonical stable Grothendieck polynomials Gλ(x;α, β)

such that

ω(Gλ(x;α, β)) = Gλ′(x;β, α).

Combinatorially, the canonical stable Grothendieck polynomials can be expressed as generating

functions of hook-valued tableaux . In a hook-valued tableau, each box contains a semistandard

Young tableau of hook shape, which is weakly increasing in rows and strictly increasing in columns.

More precisely

Gλ(x;α, β) =
∑

T∈HVT(λ)

αa(T)β`(T)xweight(T),

where HVT(λ) is the set of hook-valued tableaux of shape λ, a(T) is the sum of all arm lengths

and `(T) is the sum of all leg lengths of the hook tableaux in T .

A hook-valued tableau T is a set-valued tableau when all hook tableaux entries are single

columns or equivalently a(T) = 0. Hence Gλ(x;α, β) specializes to Gλ(x;β) for α = 0. Similarly, a

hook-valued tableau T is a multiset-valued tableau when all hook tableaux entries are single rows

or equivalently `(T) = 0. Hence Gλ(x;α, β) specializes to Jλ(x;α) for β = 0.

In Chapter 3, we describe a novel uncrowding algorithm on hook-valued tableaux (see Defi-

nitions 3.2.1, 3.2.2 and 3.2.3). The uncrowding algorithm on set-valued tableaux was originally

developed by Buch [3, Theorem 6.11] to give a bijective proof of Lenart’s Schur expansion of

symmetric stable Grothendieck polynomials [18]. This uncrowding algorithm takes as input a set-

valued tableau and produces a semistandard Young tableau (using the RSK bumping algorithm to

uncrowd cells that contain more than one integer) and a flagged increasing tableau (also known as

an elegant filling), which serves as a recording tableau.

Chan and Pflueger [6] provide an expansion of stable Grothendieck polynomials indexed by skew

partitions in terms of skew Schur functions. Their proof uses a generalization of the uncrowding

algorithm of Lenart [18], Buch [3], and Reiner, Tenner and Yong [28] to skew shapes. Their

analysis is motivated geometrically by identifying Euler characteristics of Brill–Noether varieties

up to sign as counts of set-valued standard tableaux. The uncrowding algorithm was also used in

the analysis of K-theoretic analogues of the Hopf algebras of symmetric functions, quasisymmetric

functions, noncommutative symmetric functions, and of the Malvenuto–Reutenauer Hopf algebra

4

of permutations [1, 15, 26]. In [10], a vertex model for canonical Grothendieck polynomials and

their duals was studied, which was used to derive Cauchy identities.

An important property of the uncrowding algorithm on set-valued tableaux is that it intertwines

with crystal operators [22] (see also [23]). A crystal structure on hook-valued tableaux was recently

introduced by Hawkes and Scrimshaw [11]. Our novel uncrowding map on hook-valued tableaux

yields a set-valued tableau and a recording tableau. We prove that it intertwines with crystal

operators (see Proposition 3.2.1 and Theorem 3.2.1). This was stated as an open problem in [11].

As a consequence it provides another proof for that the crystal structure on hook-valued tableaux

is Stembridge.

1.2. Preliminaries

1.2.1. Kawhiwara crystals. Let g be a symmetrizable Kac-Moody algebra with associated

weight lattice Λ. Let I be the index set of the Dynkin diagram and denote the simple roots and

simple coroots αi and α∨i .

Definition 1.2.1. An abstract Uq(g)-Kashiwara crystal (or crystal for short) is a nonempty

set B together with maps

ei, fi :B → B t {0}, (they are called the crystal operators)

εi, ϕi :B → Z t {−∞}, (they are called the string lengths)

wt :B → Λ, (this is called the weight map)

where i ∈ I and 0 /∈ B is an auxiliary element, satisfying the following conditions:

A1 fi and ei are partial inverses of each other. That is, if x, y ∈ B then ei(x) = y if and only

if fi(y) = x. In this case, it is assumed that

wt(y) = wt(x) + α, εi(y) = εi(x)− 1, ϕi(y) = ϕi(x) + 1.

A2 We require that

ϕi(x) = 〈wt(x), α∨i 〉+ εi(x)

5

for all x ∈ B and i ∈ I. In particular, if ϕi(x) = −∞, then εi(x) = −∞. If ϕi(x) = −∞,

then we require that ei(x) = fi(x) = 0.

If ϕi(x) = max{k ∈ Z>0| fki (x) 6= 0}, and εi(x) = max{k ∈ Z>0| eki (x) 6= 0}, for all i ∈ I, then B is

also called seminormal.

The above Definition 1.2.1 defines an edge-labeled directed graph where the vertices are B and

the edges are formed by crystal operators fi’s. In general, they may not correspond to representa-

tions. Stembridge [31] gave a set of local axioms that uniquely characterize the crystals correspond

to representations of algebras of simply-laced types. These crystals are called Stembridge crystals.

Example 1.2.1. When g is of type An, the weight lattice is Zn+1 generated by e1, . . . , en+1 and

the simple roots are α1 = e1 − e2, . . . , αn = en − en+1. The standard seminormal crystal has the

following crystal graph

1
1−→ 2

2−→ . . .
n−→ n+ 1 .

The weight map is wt(i) = ei. We denote this crystal by B.

Definition 1.2.2. Let B and C be two abstract Uq(g)-crystals with index set I. A crystal

morphism is a map φ : B → C t {0} such that

(1) if b ∈ B and φ(b) ∈ C, then

(a) wt(φ(b)) = wt(b),

(b) εi(φ(b)) = εi(b) for all i ∈ I, and

(c) ϕi(φ(b)) = ϕi(b) for all i ∈ I;

(2) if b, eib ∈ B such that φ(b), φ(eib) ∈ C, then we have φ(eib) = eiφ(b);

(3) if b, fib ∈ B such that φ(b), φ(fib) ∈ C, then we have φ(fib) = fiφ(b).

A morphism φ is called strict if φ commutes with ei and fi for all i ∈ I. Moreover, a crystal

morphism φ : B → C t{0} is called a crystal isomorphism if the induced map φ : Bt{0} → C t{0}

with φ(0) = 0 is a bijection. In this case, we write B ∼= C.

Let B and C be two abstract Uq(g)-crystals, we can also take their tensor product B ⊗ C. As a

set, it is the Cartesian product, denote by x⊗ y where x ∈ B and y ∈ C. The weight map is defined

to be wt(x⊗ y) = wt(x) + wt(y), and the crystal operators are defined as follows:

6

fi(x⊗ y) =

fi(x)⊗ y if ϕi(y) 6 εi(x),

x⊗ fi(y) if ϕi(y) > εi(x).

and

ei(x⊗ y) =

ei(x)⊗ y if ϕi(y) < εi(x),

x⊗ ei(y) if ϕi(y) > εi(x).

Note that x⊗ 0 = 0⊗ x = 0. The string maps are defined as follows:

ϕi(x⊗ y) = max(ϕi(x), ϕi(y) + 〈wt(x), α∨i 〉), εi(x⊗ y) = max(εi(y), εi(x)− 〈wt(y), α∨i 〉).

1.2.2. Tableaux combinatorics. The Young diagram of a partition λ = (λ1 > λ2 · · · > λ`)

is a finite collection of boxes, aligned at the left, in which the i-th row has λi boxes. We use the

French convention, where the botton row is the first row. A Young tableau is a way of filling each

box of Young diagram with symbols from an alphabet, with restrictions depending on the context.

They are important models for crystals. A semistandard Young tableau of shape λ is a filling of

boxes of λ by positive integers so that each box contains a single number, the entries of each row

weakly increase from left to right, and the entries of each column strictly increase from bottom

to top. Denote the set of all semistandard Young tableaux of shape λ by SSYTm(λ) where m is

the maximal integer allowed in the filling and m is allowed to be ∞. The generating function for

SSYTm(λ) is the Schur polynomials of partition λ:

(1.3) sλ(x1, . . . , xm) =
∑

T∈SSYTm(λ)

xwt(T).

When setting m =∞, we obtain the Schur function in infinite number of variables.

We can define a crystal structure on SSYTm(λ) by embedding them into B⊗k via row reading

or column reading. The weight of T ∈ SSYTm(λ) is (c1, c2, . . .) where ci is the number of i’s in the

filling of T . We give the simplified version of the crystal operators via the signature rule.

Definition 1.2.3. Let T ∈ SSYTm(λ). We employ the following pairing rule for letters i and

i+ 1. Assign − to every column of T containing an i but not an i+ 1. Similarly, assign + to every

7

column of T containing an i+ 1 but not an i. Then, successively pair each + that is to the left of

and adjacent to a −, removing all paired signs until nothing can be paired.

The operator fi changes the i in the rightmost column with an unpaired − (if this exists) to

i + 1. If no unpaired − exists, then fi annihilates T . Similarly, the operator ei changes the i + 1

in the leftmost column with an unpaired + (if this exists) to i. If no unpaired + exists, then ei

annihilates T .

Based on the pairing procedure above, ϕi(T) is the number of unpaired − while εi(T) is the

number of unpaired +.

Monical, Pechenik and Scrimshaw in [22] defined a semistandard set-valued filling (generalizing

semistandard Young tableaux SSYT by Alfred Young) on Young diagrams of partition shape λ,

called semistandard set-valued tableaux SVT. They also defined a Stembridge crystal structure on

them. A slightly generalized version of the crystal structure on SVT will be given in Section 2.1.3.

Definition 1.2.4 ([3]). A semistandard set-valued tableau T is the filling of a skew shape λ/µ

with nonempty subsets of positive integers such that:

• for all adjacent cells A, B in the same row with A to the left of B, we have max(A) 6

min(B),

• for all adjacent cells A, C in the same column with A below C, we have max(A) < min(C).

The weight of T , denoted by wt(T), is the integer vector whose i-th component counts the number

of i’s that occur in T . The excess of T is defined as ex(T) = |wt(T)| − |λ|. We denote the set of

all semistandard set-valued tableaux of shape λ/µ by SVT(λ/µ). Similarly, if the maximum entry

is restricted to m, the set is denoted by SVTm(λ/µ).

The generating function for SVTm(λ/µ) is the Grothendieck polynomials for skew shapes,

(1.4) Gλ/µ(x1, . . . , xm;β) =
∑

S∈SVTm(λ/µ)

βex(S)xwt(T).

For set-valued tableaux, there exists an uncrowding operator, which maps a set-valued tableau

to a pair of tableaux of identical shape, one being a semistandard Young tableau and the other a

flagged increasing tableau (see for example [1,3,18,28]). In this setting, the uncrowding operator

8

intertwines with the crystal operators on set-valued tableaux and semistandard Young tableaux,

respectively [22].

Consider partitions λ, µ with λ ⊆ µ and λ1 = µ1. A flagged increasing tableau (introduced

in [18] and called elegant fillings by various authors [1,15,26]) is a row and column strict filling of

the skew shape µ/λ such that the positive integer entries in the i-th row of the tableau are at most

i− 1 for all 1 6 i 6 `(µ), where `(µ) is the length of partition µ. In particular, the bottom row is

empty. The set of all flagged increasing tableaux is denoted by F . The set of all flagged increasing

tableaux of shape µ/λ with λ1 = µ1 is denoted by F(µ/λ). We call a cell in a set-valued tableau a

multicell if it contains more than one letter.

Definition 1.2.5. Define the uncrowding operation on T ∈ SVT(λ) as follows. First identify

the topmost row r in T with a multicell. Let x be the largest letter in row r that lies in a multicell;

remove x from the cell and perform RSK row bumping with x into the rows above. The resulting

tableau, whose shape differs from λ by the addition of one cell, is the output of this operation.

The uncrowding map on set-valued tableaux

(1.5) USVT : SVT(λ) −→
⊔
µ⊇λ

SSYT(µ)×F(µ/λ)

is defined as follows. Let T ∈ SVT(λ) with leg excess `.

(1) Initialize P0 = T and Q0 = F0, where F0 is the unique flagged increasing tableau of shape

λ/λ.

(2) For each 1 6 i 6 `, Pi is obtained from Pi−1 by applying the uncrowding operation. Let C

be the cell in shape(Pi)/shape(Pi−1). If C is in row r′, then Fi is obtained from Fi−1 by

adding cell C with entry r′ − r.

(3) Set USVT(T) = (P, F) := (P`, F`).

It was proved by Buch in [3, Section 6] that USVT in (1.5) is a bijection. Monical, Pechenik and

Scrimshaw [22] proved that USVT intertwines with the crystal operators on set-valued tableaux (see

also [23]). A similar uncrowding algorithm for multiset-valued tableaux was given in [11, Section

3.2].

9

Example 1.2.2. Let T be the semistandard set-valued tableau. Perform an uncrowding opera-

tion on T to obtain T ′:

T =

5

4 4 5

2 23 3

1 1 1 12 234 5
−→ T ′ =

5

4

3 4 5

2 2 3

1 1 1 12 234 5
.

Proceeding with uncrowding the remaining multicells and recording the changes, we have uncrowd(T) =

(P,Q), where

P

5 5

4 4

3 3 4

2 2 2 3

1 1 1 1 2 5
and Q =

3 4

3

1
.

1.2.3. Various definitions of the Grothendieck polynomials. We now introduce two

equivalent definitions of the Grothendieck polynomials G
(β)
w . The stable Grothendieck polynomial

is defined to be its stable limit G
(β)
w := limm→∞G

(β)
1m×w.

Definition 1.2.6. The symmetric group Sn for n > 1 is generated by the simple transpositions

s1, s2, . . . , sn−1 subject to the relations

sisj = sjsi, if |i− j| > 1,

sisi+1si = si+1sisi+1, for 1 6 i < n− 1,

s2i = 1, for 1 6 i 6 n− 1.

A reduced expression for an element w ∈ Sn is a word a1a2 . . . a` with ai ∈ [n−1] := {1, 2, . . . , n−1}

such that

(1.6) w = sa1 · · · sa`
10

and ` is minimal among all words satisfying (1.6). In this case, ` is called the length of w.

Definition 1.2.7 (Recursive definition, [16,17]). Let w0 be the permutation in Sn with maximal

length. The Grothendieck polynomials are defined recursively by

(1) G
(β)
w0 = xn−11 xn−22 . . . xn−1;

(2) G
(β)
w = π

(β)
i G

(β)
wsi whenever `(wsi) = `(w) + 1,

where π
(β)
i is the β-divided-difference operator acting on C[x1, x2, . . .] by

π
(β)
i f(x1, x2, . . .) :=

(1 + βxi+1)f(x1, x2, . . .)− (1 + βxi)f(. . . , xi+1, xi, . . .)

xi − xi+1
.

It is not hard to see that G
(β)
w ’s are well-defined since the π

(β)
i satisfies the relations

π
(β)
i ◦ π(β)i = π

(β)
i , π

(β)
i ◦ π(β)i+1 ◦ π

(β)
i = π

(β)
i+1 ◦ π

(β)
i ◦ π(β)i+1 ,

π
(β)
i ◦ π(β)j = π

(β)
j ◦ π(β)i when |i− j| > 1.

Let A(β)
n be the algebra with generators u1, u2, . . . , un−1 satisfying the relations

u2i = βui , uiui+1ui = ui+1uiui+1 ,

uiuj = ujui, |i− j| > 1.

Let x1, x2, . . . , xn−1 be variables such that xixj = xjxi and xiuj = ujxi for any 1 6 i, j 6 n− 1.

Definition 1.2.8 (As coefficients of generating functions, [8]). Define the polynomial

G(β)(x1, x2, . . . , xn−1) =
n−1∏
j=1

j∏
i=n−1

(1 + xjui).

Then the Grothendieck polynomial G
(β)
w (x1, . . . , xn−1) is the coefficient of w ∈ Sn. Here w is

identified with ui1ui2 . . . ui` if i1i2 . . . i` is a reduced expression of w.

Definition 1.2.9 (As coefficients of generating functions, stable version, [8]). Define the poly-

nomial

G(β)(x1, x2, . . . , xn−1) =

n−1∏
j=1

1∏
i=n−1

(1 + xjui).

11

Then the stable Grothendieck polynomial G
(β)
w (x1, . . . , xn−1) is the coefficient of w.

It is not hard to see that this definition is exactly Equation (1.1).

Example 1.2.3. Let n = 3. We compute the Grothendieck polynomials.

G(β)(x1, x2) = (1+x1u2)(1+x1u1)(1+x2u2) = 1+x1u1+(x1+x2+βx1x2)u2+x1x2u1u2+x
2
1u2u1+x

2
1x2u2u1u2.

Thus G
(β)
1 = x1 + x2 + βx1x2, G

(β)
21 = x21 and G

(β)
212 = x21x2. Alternatively we can obtain them via

the β-divided-difference operator.

G
(β)
212 = x21x2 ,

G
(β)
21 = π

(β)
2 x21x2 =

(1 + βx3)x
2
1x2 − (1 + βx2)x

2
1x3

x2 − x3
= x21 ,

G
(β)
2 = π

(β)
1 x21 =

(1 + βx2)x
2
1 − (1 + βx1)x

2
2

x1 − x2
= x1 + x2 + βx1x2.

While the stable version can be computed with an extra factor.

G(β)(x1, x2) =(1 + x1u2)(1 + x1u1)(1 + x2u2)(1 + x2u1) = 1 + (x1 + x2 + βx1x2)u1 + (x1 + x2 + βx1x2)u2

+ x1x2u1u2 + [x21 + x1x2 + x22 + β(x1x
2
2 + x21x2)]u2u1 + (x21x2 + x1x

2
2 + βx21x

2
2)u2u1u2.

Thus

G1(x1, x2) = x1 + x2 + βx1x2 = s1(x1, x2) + βs11(x1, x2) ,

G21(x1, x2) = x21 + x1x2 + x22 + β(x1x
2
2 + x21x2) = s2(x1, x2) + βs21(x1, x2) ,

G212(x1, x2) = x21x2 + x1x
2
2 + βx21x

2
2 = s21(x1, x2) + βs22(x1, x2) .

Note that increasing n will not change Gw’s but may add more terms to Gw’s.

12

CHAPTER 2

Crystal for stable Grothendieck polynomials

This chapter is based on work in collaboration with Jennifer Morse, Wencin Poh and Anne

Schilling published in [23].

The chapter is organized as follows. In Section 2.1, we introduce the ?-crystal on decreasing

factorizations in the 0-Hecke monoid and show that it intertwines with the crystal on semistandard

set-valued tableaux [22] under the residue map. In Section 2.2, we discuss two insertion algorithms

for decreasing factorizations. The first is the Hecke insertion introduced by Buch et al. [4] and

the second is the new ?-insertion. In Section 2.3, properties of the ?-insertion are discussed.

In particular, we prove that it intertwines with the crystal operators and that it relates to the

uncrowding algorithm. We conclude in Section 2.4 with some discussions about the non-fully-

commutative case.

2.1. The ?-crystal

In this section, we define the K-theoretic generalization of the crystal on decreasing factor-

izations by Morse and Schilling [24] when the associated word is fully-commutative. The un-

derlying combinatorial objects are decreasing factorizations in the 0-Hecke monoid introduced in

Section 2.1.1. The ?-crystal on these decreasing factorizations is defined in Section 3.1.2. We review

the crystal structure on set-valued tableaux introduced by Monical, Pechenik and Scrimshaw [22]

in Section 2.1.3. The residue map and the proof that it intertwines the ?-crystal and the crystal

on set-valued tableaux is given in Section 2.1.4.

2.1.1. Decreasing factorizations in the 0-Hecke monoid.

13

Definition 2.1.1. The 0-Hecke monoid H0(n), where n > 1 is an integer, is the monoid of

finite words generated by positive integers in the alphabet [n− 1] subject to the relations

(2.1)

pq = qp if |p− q| > 1,

pqp = qpq for all p, q,

pp = p for all p.

We may form an equivalence relation ≡H0 on all words in the alphabet [n − 1] based on the

relations (2.1). The equivalence classes are infinite since the last relation changes the length of the

word. We say that a word a = a1a2 . . . a` is reduced if ` > 0 is the smallest among all words in

H0(n) equivalent to a. In this case, ` is the length of a. Note that H0(n) is in bijection with Sn

by identifying the reduced word a1a2 . . . a` in H0(n) with sa1sa2 · · · sa` ∈ Sn. We say w ∈ H0(n)

or Sn is fully-commutative or 321-avoiding if none of the reduced words equivalent to w contain a

consecutive braid subword of the form i i+ 1 i or i i− 1 i for any i ∈ [n− 1].

Remark 2.1.1. Any (not necessarily reduced) word w ∈ H0(0) containing a consecutive braid

subword is not fully-commutative.

Definition 2.1.2. A decreasing factorization of w ∈ H0(n) into m factors is a product of the

form

h = hm . . . h2h1,

where the sequence in each factor

hi = hi1h
i
2 . . . h

i
`i

is either empty (meaning `i = 0) or strictly decreasing (meaning hi1 > hi2 > · · · > hi`i) for each

1 6 i 6 m and h ≡H0 w in H0(n).

The set of all possible decreasing factorizations into m factors is denoted by Hm or Hm(n) if

we want to indicate the value of n. We call ex(h) = len(h)− ` the excess of h, where len(h) is the

number of letters in h and ` is the length of w. We say h is fully-commutative (or 321-avoiding)

if w is fully-commutative.

14

2.1.2. The ?-crystal. Let Hm,? be the set of fully-commutative decreasing factorizations in

Hm. We introduce a type Am−1 crystal structure on Hm,?, which we call the ?-crystal . This

generalizes the crystal for Stanley symmetric functions [24] (see also [19]).

Definition 2.1.3. For any h = hm . . . h2h1 ∈ Hm,?, we define crystal operators e?i and f?i for

i ∈ [m − 1] and a weight function wt(h). The weight function is determined by the length of the

factors

wt(h) = (len(h1), len(h2), . . . , len(hm)).

To define the crystal operators e?i and f?i , we first describe a pairing process:

• Start with the largest letter b in hi+1, pair it with the smallest a > b in hi. If there is no

such a, then b is unpaired.

• The pairing proceeds in decreasing order on elements of hi+1 and with each iteration,

previously paired letters of hi are ignored.

If all letters in hi are paired, then f?i annihilates h. Otherwise, let x be the largest unpaired letter

in hi. The crystal operator f?i acts on h in either of the following ways:

(1) If x+ 1 ∈ hi ∩ hi+1, then remove x+ 1 from hi, add x to hi+1.

(2) Otherwise, remove x from hi and add x to hi+1.

If all letters in hi+1 are paired, then e?i annihilates h. Let y be the smallest unpaired letter in hi+1.

The crystal operator e?i acts on h in either of the following ways:

(1) If y − 1 ∈ hi ∩ hi+1, then remove y − 1 from hi+1, add y to hi.

(2) Otherwise, remove y from hi+1 and add y to hi.

It is not hard to see that e?i and f?i are partial inverses of each other.

Example 2.1.1. Let h = (7532)(621)(6), then

f?1 (h) = 0, e?1(h) = (7532)(62)(61),

f?2 (h) = (75321)(61)(6), e?2(h) = (753)(6321)(6).

Remark 2.1.2. Compared to [24], one pairs a letter b in hi+1 with the smallest letter a > b

in hi rather than a > b.

15

Proposition 2.1.1. Let h = hm . . . h1 ∈ Hm,? such that f?i (h) 6= 0. Then f?i (h) ∈ Hm,?,

f?i (h) ≡H0 h, and ex(f?i (h)) = ex(h). Furthermore, the j-th factor in f?i (h) and h agrees for

j /∈ {i, i+ 1}. Analogous statements hold for e?i .

Proof. Suppose h̃ := f?i (h) 6= 0. Then by definition of f?i , h̃ = hm . . . hi+2h̃i+1h̃ihi−1 . . . h1

and hj is unchanged for j /∈ {i, i+ 1}. In addition, the number of factors does not change.

To see h ≡H0 h̃, it suffices to show that hi+1hi ≡H0 h̃
i+1h̃i. Let x be the largest unpaired letter

in hi. By the bracketing procedure this implies that x /∈ hi+1. We can write hi+1 as w1w2, where

w1 is a word containing only letters greater than x, and w2 is a word containing only letters smaller

than x. We can write hi as w3xw4, where w3 contains only letters greater than x and w4 contains

only letters smaller than x.

The pairing process will result in one of the two following cases:

(1) If x + 1 ∈ hi ∩ hi+1, then obtain h̃i by removing x + 1 from hi, and h̃i+1 by adding x to

hi+1.

(2) Otherwise, obtain h̃i by removing x from hi and obtain h̃i+1 by adding x to hi+1.

We first argue that in either case we must have x − 1 /∈ w2. Assume x − 1 ∈ w2 and let k be

the largest number such that the interval [x − k, x − 1] ⊆ w2. By assumption k > 1. In order for

x to be the largest unpaired letter in hi, [x − k, x − 1] must be contained in w4. We can write

w2 = (x− 1) . . . (x− k)w′2 and w4 = (x− 1) . . . (x− k)w′4, where all letters in w′2 are smaller than

x− k − 1. When k = 1, we have the following subword

(x− 1)w′2w3x(x− 1) ≡H0 w
′
2w3(x− 1)x(x− 1),

which contains a braid (x− 1)x(x− 1). When k > 1, we also have the following subword

(x− k)w′2w3x(x− 1) . . . (x− k+ 1)(x− k) ≡H0 w
′
2w3(x− 1) . . . (x− k+ 2)(x− k)(x− k+ 1)(x− k),

which also contains a braid.

Case (1): Let k be the largest letter such that [x+ 1, x+ k] ⊆ w3. Clearly k > 1. Suppose k > 1,

then we can write w3 = w′3(x+k) . . . (x+ 1). Since x is the largest unpaired letter in hi, everything

in [x+1, x+k] ⊆ w3 must be paired. The letter x+1 in w3 is paired with x+1 ∈ w1, which implies

16

that x+ i in w3 is paired with x+ i ∈ w1 for all 1 6 i 6 k. This implies that [x+ 1, x+ k] ⊆ w1.

Then we have the following subword

(x+ 1)w2w
′
3(x+ k) . . . (x+ 2)(x+ 1) ≡H0 w2w

′
3(x+ k) . . . (x+ 1)(x+ 2)(x+ 1)

which contains a braid. Thus, we must have k = 1, which implies that x + 2 /∈ w3. Write

w1 = w′1(x+ 1). Then by direct computation

hi+1hi ≡H0 w
′
1(x+ 1)w2w

′
3(x+ 1)xw4 ≡H0 w

′
1(x+ 1)(x+ 1)w2w

′
3xw4

≡H0 w
′
1(x+ 1)w2w

′
3xxw4 ≡H0

(
w′1(x+ 1)xw2

) (
w′3xw4

)
= h̃i+1h̃i.

Case (2): We claim that if x+ 1 /∈ hi+1, then x+ 1 /∈ hi. Otherwise the x+ 1 ∈ hi must be paired

with some z ∈ hi+1, so we have z 6 x + 1. But x is unpaired, which implies z > x, that gives

us a contradiction. Hence x + 1 /∈ w3. Recall that x − 1 /∈ w2. Therefore, by a straightforward

computation

hi+1hi = w1w2w3xw4 ≡H0 (w1xw2) (w3w4) ≡H0 h̃
i+1h̃i.

The above arguments show that hi+1hi ≡H0 h̃
i+1h̃i, thus h ≡H0 h̃, and the total length of the

decreasing factorization are unchanged under f?i . Furthermore, the excess remains unchanged

under f?i .

Similar arguments hold for e?i . �

Remark 2.1.3. Here we summarize several results from the proof that will be needed later.

Namely, if x is the largest unpaired letter in hi, then

• x− 1 /∈ hi+1.

• One and only one of the three statements hold: x + 1 ∈ hi+1 ∩ hi, x + 1 /∈ hi+1 ∪ hi, and

x+ 1 ∈ hi+1, x+ 1 /∈ hi.

It will be shown in Section 2.1.4 that Hm,? is indeed a Stembridge crystal of type Am−1 (for an

introduction to crystal and terminology, see [5]).

17

2.1.3. The crystal on set-valued tableaux. We now review the crystal structure on semi-

standard set-valued tableaux given in [22]. We state the definition on skew shapes rather than just

straight shapes.

Definition 2.1.4. Let T ∈ SVTm(λ/µ). We employ the following pairing rule for letters i and

i+ 1. Assign − to every column of T containing an i but not an i+ 1. Similarly, assign + to every

column of T containing an i+ 1 but not an i. Then, successively pair each + that is to the left of

and adjacent to a −, removing all paired signs until nothing can be paired.

The operator fi changes the i in the rightmost column with an unpaired − (if this exists) to

i + 1, except if the cell b containing that i has a cell to its right, denoted b→, that contains both i

and i+ 1. In that case, fi removes i from b→ and adds i+ 1 to b. Finally, if no unpaired − exists,

then fi annihilates T .

Similarly, the operator ei changes the i+ 1 in the leftmost column with an unpaired + (if this

exists) to i, except if the cell b containing that i+ 1 has a cell to its left, denoted b←, that contains

both i and i+ 1. In that case, ei removes i+ 1 from b← and adds i to b. Finally, if no unpaired +

exists, then ei annihilates T .

Based on the pairing procedure above, ϕi(T) is the number of unpaired − while εi(T) is the

number of unpaired +.

One can easily show that the crystal on SVTm(λ/µ) of Definition 2.1.4 defines a seminormal

crystal (for definitions see [5]). It was proved in [22, Theorem 3.9] that the above described

operators ei and fi define a type Am−1 Stembridge crystal structure on SVTm(λ). We claim that

their proof goes through also for skew shapes.

Theorem 2.1.1. The crystal SVTm(λ/µ) of Definition 2.1.4 is a Stembridge crystal of type

Am−1.

Proof. Since the proof is exactly the same as in [22, Theorem 3.9], we just state the outline

and give a brief description. For details we refer to [22].

First note that the signature rule given by column-reading is compatible with the signature

rule given by row-reading (top to bottom, left to right, and arrange the letters in the same cell by

descending order) by semistandardness. Hence we may consider the crystal to live inside the tensor

18

product of its rows. A single-row semistandard set-valued tableaux of a fixed shape is isomorphic

to a Stembridge crystal, as shown in [22, Proposition 3.5]:

Φs : SVTm(sΛ1)→
m⊕
k=1

B((s− 1)Λ1 + Λk),

where Λk are the fundamental weights of type Am−1.

Let λ = (λ1, . . . , λ`) and µ = (µ1, . . . , µ`) (the last couple µi could be zero) be two partitions

such that µ ⊆ λ. Construct the map below, which is a strict crystal embedding:

Ψ: SVTm(λ/µ)→ SVTm((λ1 − µ1)Λ1)⊗ SVTm((λ2 − µ2)Λ1)⊗ · · · ⊗ SVTm((λ` − µ`)Λ1).

Thus, we have a strict crystal embedding:

(Φλ1−µ1 ⊕ · · · ⊕ Φλ`−µ`) ◦Ψ: SVTm(λ/µ)→
⊗̀
j=1

(
m⊕
k=1

B((λj − µj)Λ1 + Λk)

)
.

Since SVTm(λ/µ) is a seminormal crystal, we can conclude that it is a Stembridge crystal. �

2.1.4. The residue map. In this section, we define the residue map from set-valued tableaux

of skew shape to fully-commutative decreasing factorizations in the 0-Hecke monoid. We then show

in Theorem 2.1.2 that the residue map intertwines with the crystal operators, proving that Hm,?

is indeed a crystal of type Am−1 (see Corollary 2.1.1).

Definition 2.1.5. Given T ∈ SVTm(λ/µ), we define the residue map res : SVTm(λ/µ)→ Hm

as follows. Associate to each cell (i, j) in λ/µ its content `(λ) + j − i, where `(λ) is the number

of parts in λ. Produce a decreasing factorization h = hmhm−1 . . . h2h1 by declaring hk to be the

(possibly empty) sequence formed by taking the contents of all cells in T containing the entry k and

then arranging the contents in decreasing order. This defines res(T) := h.

Example 2.1.2. Let T be the set-valued tableau of skew shape (2, 2)/(1)

T =
23 3

12
.

19

The content of each cell in T is denoted by a subscript as follows:

231 32

123

.

To read off the third factor, we search for all cells with an entry 3; these cells have contents 1 and

2, so we have 21 in the third factor. Altogether, we obtain res(T) = (21)(31)(3) ∈ H3.

The image of the residue map res is Hm,?, the set of fully-commutative decreasing factorizations

into m factors. In fact, res is a bijection from semistandard set-valued skew tableaux on the alphabet

[m] to Hm,? up to shifts in the skew shape.

For this purpose, let us describe the inverse of the residue map. Let h = hmhm−1 . . . h2h1 ∈

Hm,?. Begin by filling the diagonals of content that appear in hm by the entry m. As the resulting

T is supposed to be of skew shape, the cells containing m along increasing diagonals need to go

weakly down from left to right. If these diagonals are consecutive, then the cells have to be in the

same row of T since T is semistandard. Continue the procedure above by putting entry i into the

diagonals specified by hi for all i = m − 1,m − 2, . . . , 1, applying the condition that the resulting

filling should be semistandard.

Proposition 2.1.2. If h = hmhm−1 . . . h2h1 ∈ Hm,?, then the above algorithm is well-defined up

to shifts along diagonals. It produces a skew semistandard set-valued tableau T such that res(T) = h.

Proof. We shall show more generally that at any given stage in the algorithm for the inverse of

the residue map above, the tableau T produced is of skew shape if and only if h is fully-commutative.

Assume that T is not of skew shape. Consider the earliest stage in the algorithm when the

produced tableau is not of skew shape. Then, either one of the following cases must have occurred

for the first time.

Case 1: There are adjacent cells with nonempty sets A and B (where max(A) 6 min(B)) in the

same row on diagonals i and i+ 1 respectively with no cells appearing directly below these cells, as

illustrated on the left side of Figure 2.1. Moreover, by minimality, we have an integer x with the

following properties:

(1) i+ 1 ∈ hx and x < min(A),

20

(2) there does not exist a y with x 6 y < min(B) and i+ 2 ∈ hy.

By applying semistandardness, a cell containing x is created directly below the cell containing the

set A as in the right side of Figure 2.1. Furthermore, by (2), for all x 6 y < min(B), we have that

every letter in hy is either at most i + 1 or at least i + 3. It follows that, after possibly applying

commutativity (i + 1 with letters at most i − 1 or at least i + 3) and the idempotent relation,

hmin(B) . . . hx+1hx is equivalent to one containing the braid subword i+ 1 i i+ 1. This implies that

h is equivalent to a Hecke word containing the same braid subword.

Case 2: There are adjacent cells with nonempty sets A and B in the same column on diagonals

i+1 and i respectively with no cells appearing directly to the left of these cells, as illustrated on the

left side of Figure 2.2. Moreover, by minimality, we have an integer x with the following properties:

(1) i ∈ hx and x 6 min(A),

(2) there does not exist a y with x < y 6 min(B) and i− 1 ∈ hy.

By applying semistandardness, a cell containing x is created directly to the left of the cell containing

the set A as in the right side of Figure 2.2. Furthermore, by (2), for all x < y 6 min(B), we have

that every letter in hy is either at most i − 2 or at least i. Similar to the argument in Case 1,

hmin(B) . . . hx+1hx is equivalent to one containing the braid subword i i + 1 i. This implies that h

is equivalent to a word in H0(n) containing the same braid subword.

The above arguments imply that the image of res is contained in Hm,?. Conversely, if h is fully-

commutative, then the algorithm for res−1 does not produce Case 1 or Case 2 above and hence the

resulting tableau T is of skew shape which in turn implies that the algorithm is well-defined (up to

shifts along the diagonal if a gap of size at least 3 occurs in the labels). �

If the skew shape λ/µ of the tableau T is known, then one may simplify the procedure above

noting that the filling of i specified by letters in hi must occur along a horizontal strip for all

i = m,m− 1, . . . , 1. In this case, the recovered tableau T is unique and there is no shift ambiguity

if a gap of size at least 3 occurs in the labels.

Example 2.1.3. Let h = (61)(752)(75)(762) be a decreasing factorization of w = 651762.

In the algorithm for the inverse of the residue map, the entry 4 is placed on diagonal 1 and

6, respectively. Due to semistandardness, the entry 3 in diagonal 2 must be placed below the 4 in

21

Ai Bi+1
−→

Ai Bi+1

xi+1

Figure 2.1. A forbidden case while inverting the residue map.

Bi

Ai+1

−→
Bi

xi Ai+1

Figure 2.2. Another forbidden case while inverting the residue map.

diagonal 1, while the 3’s in diagonals 5 and 7 are respectively to the left and below the 4 in diagonal

6. Continuing with the remaining fillings, we have two possibilities:

T1 =

41

132

235 46

16 1237

,

or

T2 =

41

132

235 46

16 1237

,

where T1 ∈ SVT4((4, 4, 1, 1)/(2, 2)) and T2 ∈ SVT4((3, 3, 1, 1, 1)/(1, 1, 1)). Note that they indeed

just differ by a shift along diagonals as stated in Proposition 2.1.2.

Example 2.1.4. Let h = (8431)(863)(8654)(941) be a decreasing factorization of w = 84396541.

Suppose that h = res(T), where T ∈ SVT4(λ/µ) with λ/µ = (5, 5, 4, 2, 1)/(4, 4, 1, 1).

Then, we fill in 4 along the diagonals with labels 1, 3, 4, 8 respectively, noting that the 4 in

diagonal 4 is to the right of the 4 in diagonal 3 (due to the semistandardness of T). Continuing

22

with the remaining fillings, we have

T =

141

343 44

124 25 236

2348

19

.

Theorem 2.1.2. The crystal on set-valued tableaux SVTm(λ/µ) and the crystal on decreasing

factorizations Hm,? intertwine under the residue map. That is, the following diagrams commute:

SVTm(λ/µ) Hm,?

SVTm(λ/µ) Hm,?
fk

res

f?k

res

SVTm(λ/µ) Hm,?

SVTm(λ/µ) Hm,?.

ek

res

e?k

res

Proof. Let T ∈ SVTm(λ/µ), h = res(T) and ` = `(λ). We prove the following three statements

associated to fk(T) and f?k (h).

(1) We claim that if there is no unpaired k in T , then f?k annihilates h. Furthermore, if the

rightmost unpaired k in cell b of T has content x, then x is also the largest unpaired letter in hk.

For the proof of (1) it suffices to notice that the signature rule on tableaux is equivalent to

the pairing process for decreasing factorizations of H0(n). We rephrase the pairing procedure for

decreasing factorizations on tableaux:

• At the beginning, no letter is paired.

• Then start with the rightmost column and work westward.

• Successively, for each k + 1, compute its content a, then pair it with the k of smallest

content weakly greater than a that is yet unpaired.

Next, we argue that the signature rule yields the same result on the rightmost unpaired letter.

Assume we are looking at cell b containing the current k + 1 with content a.

Case (a): Suppose there is no unpaired k with content a but at least one unpaired k with strictly

greater content(s). Then pair it with the current k + 1. This is the direct signature rule.

23

Case (b): Suppose there is no unpaired k with content weakly greater than a, then this k + 1 is

unpaired. This is also the direct signature rule.

Case (c): Suppose there is an unpaired k with content a. Then it must be either in the same cell

b, or one row below and one column to the left of b on the diagonal labeled a. If they are in the

same cell, then the pairing is the direct signature rule.

Otherwise, there must be cells to the left and below b since the shape is skew. Suppose cell b is

in row r. Consider the rightmost entry in cell (r, j) in row r containing a k + 1, and the leftmost

entry in cell (r − 1, q) in row r − 1 containing a k. Considering this as the first of a consecutive

occurrence, cell b is cell (r, j), so we have ` + j − r = a. By semistandardness and the condition

that the shape is skew, we can partially fill out the involved subtableau of T for rows r− 1, r from

column q to j:

k + 1 `+q−r k + 1 `+q+1−r . . . k + 1 `+j−1−r k + 1 . . .`+j−r

. . . k `+q−r+1 k `+q−r . . . k `+j−r k `+j−r+1

.

All the cells (s, t) with q < t < j and s ∈ {r, r−1} and the cells (r, q) and (r−1, j) are single-valued

by semistandardness as shown in the above figure.

From the k+ 1 in (r, j), we start the pairing process. First, we claim that the k in cell (r−1, j)

must be unpaired at this point. Suppose that there is a k+ 1 to the east of cell (r, j) with content

smaller or equal to ` + j − r + 1, then it must be cell (r, j + 1), which violates that (r, j) is the

rightmost cell in row r containing a k + 1. Then the pairing says the k + 1 in cell (r, t) pairs with

the k in cell (r−1, t−1) for q < t 6 j. Lastly, the k+ 1 in cell (r, q) has to pair with the previously

unpaired k in cell (r − 1, j) since there are no unpaired k with label greater or equal to ` + q − r

and smaller than `+ j − r + 1.

Although the pairing is different than the usual signature rule pairing, which pairs k + 1, k in

the same column, the 2(j− q+ 1) letters end up being paired. Since it will not influence which one

will be the rightmost unpaired letter, it is still equivalent to the signature rule.

So in any case, the pairing is equivalent to the signature rule. Thus, the rightmost unpaired k

in T corresponds to the largest unpaired letter in hk.

24

(2) We claim that if fk changes the rightmost unpaired k in T to a k+ 1 (with content x) without

moving it, then f?k moves a letter x from hk to hk+1.

Since fk does not need to move any letter, it means the cell to the right of b, denoted by b→,

does not contain a k. It is the only cell with content x + 1 that could contain a k. This implies

that x+ 1 /∈ hk. By Definition 2.1.3, f?k moves x from hk to hk+1.

(3) We claim the following. If fk changes a k from b→ into a k+ 1 and moves to cell b, then f?k

removes an x+ 1 from hk and changes it to an x in hk+1.

That fk needs to move a number means that k and k + 1 are in b→, which implies that

x+ 1 ∈ hk ∩ hk+1. By Definition 2.1.3, f?k removes the x+ 1 from hk and adds an x to hk+1.

We have proved the three statements and they complete the proof that fk and f?k intertwine

under the residue map. The proof is similar for ek and e?k. �

Corollary 2.1.1. The set Hm,?, together with crystal operators e?i and f?i for 1 6 i < m and

weight function wt defined in Definition 2.1.3, is a Stembridge crystal.

Proof. By Theorem 2.1.2 and the fact that the residue map preserves the weight and is

invertible, this follows from the fact that SVTm(λ/µ) is a Stembridge crystal proven in [22, Theorem

3.9] (see also Theorem 2.1.1). �

Example 2.1.5. Consider the tableau T (with labels in red) given by

T =
31

12 1233

,

with res(T) = (31)(3)(32).

For the crystal operators on set-valued tableaux we obtain

f1(T) =
31

122 233

,

25

with res (f1(T)) = (31)(32)(2). Then it can be easily checked that the following diagram commutes:

T =
31

12 1233
(31)(3)(32)

f1(T) =
31

122 233
(31)(32)(2).

res

res

f1 f?1

2.2. Insertion algorithms

In this section, we discuss two insertion algorithms for decreasing factorizations in Hm (resp.

Hm,?). The first is the Hecke insertion introduced by Buch et al. [4], which we review in Sec-

tion 2.2.1. We prove a relationship between Hecke insertion and the residue map (see Theo-

rem 2.2.1). In particular, this proves [22, Open Problem 5.8] for fully-commutative permutations.

The second insertion is a new insertion, which we call ?-insertion, introduced in Section 2.2.2. It

goes from fully-commutative decreasing factorizations in the 0-Hecke monoid to pairs of (trans-

poses of) semistandard tableaux of the same shape and is well-behaved with respect to the crystal

operators.

2.2.1. Hecke insertion. Hecke insertion was first introduced in [4] as column insertion. Here

we state the row insertion version as in [27]. In this section, we represent a decreasing factorization

h = hmhm−1 · · ·h1, where hi = hi1h
i
2 . . . h

i
`i

, by a decreasing Hecke biwordk

h

 =

m . . . m . . . 1 . . . 1

hm1 . . . hm`m . . . h11 . . . h1`1

 .
In addition, we say that [k,h]t is fully-commutative if h is fully-commutative.

26

Example 2.2.1. Consider the decreasing factorization h = (1)(2)(31)()(32). Then the corre-

sponding biword [k,h]t is k

h

 =

5 4 3 3 1 1

1 2 3 1 3 2

 .
Definition 2.2.1. Starting with a decreasing Hecke biword [k,h]t, we define Hecke row insertion

from the right. The insertion sequence is read from right to left. Suppose there are n columns in

[k,h]t.

Start the insertion with (P0, Q0) being both empty tableaux. We recursively construct (Pi+1, Qi+1)

from (Pi, Qi). Suppose the (n− i)-th column in [k,h]t is [y, x]t.

We describe how to insert x into Pi, denoted Pi ← x, by describing how to insert x into a row

R. The insertion may modify the row and may produce an output integer, which will be inserted

into the next row. First, we insert x into the first row R of Pi following the rules below:

(1) If x > z for all z ∈ R, the insertion terminates in either of the following ways:

(a) If we can append x to the right of R and obtain an increasing tableau, the result Pi+1

is obtained by doing so; form Qi+1 by adding a box with y in the same position where

x is added to Pi.

(b) Otherwise row R remains unchanged. Form Qi+1 by adding y to the existing corner

of Qi whose column contains the rightmost box of row R.

(2) Otherwise, there exists a smallest z in R such that z > x.

(a) If replacing z with x results in an increasing tableau, then do so. Let z be the output

integer to be inserted into the next row.

(b) Otherwise, row R remains unchanged. Let z be the output integer to be inserted into

the next row.

The entire Hecke insertion terminates at (Pn, Qn) after we have inserted every letter from the Hecke

biword. The resulting insertion tableau Pn is an increasing tableau, meaning that both rows and

columns of Pn are strictly increasing. If k = (n, n−1, . . . , 1), the recording tableau Qn is a standard

set-valued tableau.

27

Example 2.2.2. Take [k,h]t from Example 2.2.1. Following the Hecke row insertion, we com-

pute its insertion tableau and recording tableau:

∅ →
2
→

2 3
→ 2

1 3
→ 2

1 3
→ 2 3

1 2
→ 3

2 3

1 2

= P,

∅ →
1
→

1 1
→ 3

1 1
→ 3

1 13
→ 3 4

1 13
→ 5

3 4

1 13

= Q.

Example 2.2.3. Note that the recording tableau for the Hecke insertion of Definition 2.2.1 is

not always a semistandard set-valued tableau. For example, for h = (21)(41) we havek

h

 =

2 2 1 1

2 1 4 1

and

P =
4

1 2
and Q =

22

1 1
.

However, in Theorem 2.2.1 below we will see that in certain cases it is.

Theorem 2.2.1. Let T ∈ SVT(λ) and [k,h]t = res(T). Apply Hecke row insertion from the

right on [k,h]t to obtain the pair of tableaux (P,Q). Then Q = T .

Remark 2.2.1. Combining Theorems 2.2.1 and 2.1.2 shows that Hecke insertion from right to

left (as opposed to left to right in [27]) intertwines the crystal on set-valued tableaux and the ?-

crystal, even though in general it is not always well-defined (see Example 2.2.3). This resolves [22,

Open Problem 5.8] when the decreasing factorizations are fully-commutative. Even when h is fully-

commutative, but does not correspond to a straight-shaped tableau under res−1 as in Example 2.2.3,

one can fill the skew part with small enough numbers and apply the Hecke insertion on this tableau.

In the above examplek

h

 =

2 2 1 1 0 0

2 1 4 1 3 2

 with Q = T =
12 2

0 0 1
.

28

Note, however, that unlike in [22] we use row Hecke insertion from right to left rather than column

insertion from left to right (in analogy to [24] for Edelman–Greene insertion).

Since k ∈ T (i, j) if and only if `+ j − i ∈ hk under the residue map, where ` = `(λ) and hk is

the k-th factor of h, the statement of Theorem 2.2.1 is equivalent to applying Hecke insertion on

the entries of T sorted first by ascending order of entries, followed by ascending diagonal content.

Example 2.2.4. Let T be the semistandard set-valued tableau

T =
21 42

12 233
.

The insertion sequence by entry is listed in the table below:

Cell (1,1) (2,1) (1,2) (1,2) (2,2)
Content 2 1 3 3 2
Entry 1 2 2 3 4

We will prove Theorem 2.2.1 by induction by considering all subtableaux of T , obtained by

adding the entries in T one by one in the order above:

∅ →
12
→ 21

12
→ 21

12 23
→ 21

12 233
→ 21 42

12 233
= T.

In addition, the corresponding sequence of insertion tableaux and recording tableaux is listed here:

∅ →
2
→ 2

1
→ 2

1 3
→ 2

1 3
→ 2 3

1 2
= P.

∅ →
1
→ 2

1
→ 2

1 2
→ 2

1 23
→ 2 4

1 23
= Q.

Proof of Theorem 2.2.1. We prove the theorem by proving the following more specific

statement.

For a given step in the insertion process, suppose that the entries of T that are involved so far

form a nonempty subtableau T ′ of T with shape µ containing cell (1, 1), and the insertion tableau

and recording tableau at the corresponding step are P (T ′) and Q(T ′). Then, they both have shape

µ, and the entry of cell (i, j) of P (T ′) is `+ j−µ′j + i−1, and Q(T ′) = T ′, where µ′ is the transpose

of the partition µ and ` := λ′1 = `(λ).

29

We prove this by induction on subtableaux of T .

Base step: Suppose T ′ only contains a single cell (1, 1) and T ′(1, 1) = S, where S is a subset of

T (1, 1) with cardinality d. Then P (T ′) is obtained by inserting d times the number `. So we have

P (T ′) = ` and Q(T ′) = T ′. Here µ = (1), so for (i, j) = (1, 1), we have `+ j − µ′j + i− 1 = `.

Inductive step: Suppose that the statements hold for some subtableau T ′ of shape µ. Assume

the next insertion step involves adding the entry k in cell (p, q) of T to T ′ to obtain T ′′. There are

two cases: (1) the cell (p, q) is already in T ′, or (2) the cell (p, q) is not in T ′.

Case (1): We must have (p, q) to be an inner corner of T ′ (no cell is to its right or above it), so

p = µ′q and p > µ′q+1. In this case, k is recorded in Q(T ′). Then by the induction on T ′, every cell

(i, j) of P (T ′) has value `+ j − µ′j + i− 1. To determine the insertion path of P (T ′)← `+ q − p,

we compute the columns q and q + 1 of P (T ′) as follows:

row number q-th column (q + 1)-st column

p `+ q − 1
...

µ′q+1 < p `+ q − p+ µ′q+1 − 1 `+ q
...

...

2 `+ q − p+ 1 `+ q + 2− µ′q+1

1 `+ q − p `+ q + 1− µ′q+1

Following Case 2(b) of Hecke insertion, the insertion path is vertically up column q + 1. At

the top of the column, ` + q is inserted into row µ′q+1 + 1. Furthermore, ` + q is greater than

`+ q− p+ µ′q+1 in cell (µ′q+1 + 1, q) because p > µ′q+1. By Hecke insertion Case 1(b), the insertion

ends in row µ′q+1+1. Also P (T ′) is unchanged, and k is recorded in cell (p, q) of Q(T ′) since it is the

corner whose column contains the rightmost box of row µ′q+1 + 1. In this case, we get Q(T ′′) = T ′′.

Since the shape µ is unchanged, we have that P (T ′′) = P (T ′) also satisfies the statement.

Case (2): If cell (p, q) is not in T ′, then it must be an outer corner of T ′, so µ′q = p − 1 and

µ′q−1 > p − 1. Specifically, two cases can happen: (a) p = 1 and (1, q − 1) ∈ T ′, (b) both

(p− 1, q), (p, q − 1) ∈ T ′, or q = 1 and (p− 1, 1) ∈ T .

30

Case 2(a): The first row of P (T ′) is ` + 1 − µ′1, . . . , ` + j − µ′j , . . . , ` + (q − 1) − µ′q−1. Since

` + q − p = ` + q − 1 > ` + (q − 1) − µ′q−1, it is appended to the end of the first row which is the

cell (1, q). The letter k is recorded in the same new cell of Q(T ′). In this case, the only entry in P

that is changed is (1, q), and its entry `+ q − 1 satisfies the statement. Also Q(T ′′) equals T ′′.

Case 2(b): Since entry (i, q − 1) of P (T ′) is ` + q − 1 − µ′q−1 + i − 1 and entry (i, q) of P (T ′) is

`+ q − µ′q + i− 1, the number q − p+ ` is in-between the two when i = 1. So the insertion starts

by bumping (1, q). To get the insertion path, we compute columns q − 1 and q as follows:

row number (q − 1)-st column q-th column

µ′q−1 `+ q − 2

...

p− 1 `+ q + p− µ′q−1 − 3 `+ q − 1

... ...

2 `+ q − µ′q−1 `+ q − p+ 2

1 `+ q − 1− µ′q−1 `+ q − p+ 1

By Hecke insertion Case 2(a), ` + q − p is placed in cell (1, q) and the original column q is

shifted one position higher. By Hecke insertion Case 1(a), the insertion terminates at row p and

the original entry in cell (p−1, q) is appended at the rightmost box of row p. Thus, µ′q increases by

1. The updated entries in column q still satisfy the statement. Since the entries in other columns

of P (T ′) are unchanged and µ′j is unchanged for j 6= q, they also satisfy the statement. So we

have P (T ′′) satisfies the statement. The letter k is inserted into the new cell (p, q) of Q(T ′), which

makes Q(T ′′) = T ′′.

Thus, the statement holds, proving the theorem. �

2.2.2. The ?-insertion. We define a new insertion algorithm, which we call ?-insertion, from

fully-commutative decreasing Hecke biwords [k,h]t to pairs of tableaux P and Q, denoted by

?([k,h]t) = (P,Q), as follows.

Definition 2.2.2. Fix a fully-commutative decreasing Hecke biword [k,h]t. The insertion is

done by reading the columns of this biword from right to left.

31

Begin with (P0, Q0) being a pair of empty tableaux. For every integer i > 0, we recursively

construct (Pi+1, Qi+1) from (Pi, Qi) as follows. Let [q, x]t be the i-th column (from the right) of

[k,h]t. Suppose that we are inserting x into row R of Pi.

Case 1: If R is empty or x > max(R), then form Pi+1 by appending x to row R and form Qi+1

by adding q in the corresponding position to Qi. Terminate and return (Pi+1, Qi+1).

Case 2: Otherwise, if x /∈ R, locate the smallest y in R with y > x. Bump y with x and insert y

into the next row of Pi.

Case 3: Otherwise, if x ∈ R, locate the smallest y in R with y 6 x and interval [y, x] contained in

R. Row R remains unchanged and y is to be inserted into the next row of Pi.

Denote (P,Q) = (P`, Q`) if [k,h]t has length `. We define the ?-insertion by ?([k,h]t) = (P,Q).

Furthermore, denote by P ← x the tableau obtained by inserting x into P . The collection of all

cells in P ← x, where insertion or bumping has occurred is called the insertion path for P ← x. In

particular, in Case 1 the newly added cell is in the insertion path, in Case 2 the cell containing the

bumped letter y is in the insertion path, and in Case 3 the cell containing the same entry as the

inserted letter is in the insertion path.

Example 2.2.5. Let k

h

 =

4 4 2 2 1 1

4 2 4 2 3 1

 .
The corresponding sequence of insertion tableaux and recording tableaux under the ?-insertion

is listed here:

∅ →
1
→

1 3
→ 3

1 2
→ 3

1 2 4
→ 3

1

1 2 4

→ 3

1 4

1 2 4

= P.

∅ →
1
→

1 1
→ 2

1 1
→ 2

1 1 2
→ 4

2

1 1 2

→ 4

2 4

1 1 2

= Q.

Then we have ?([k,h]t) = (P,Q), and the cells in the insertion paths at each step are highlighted

in yellow.

32

Example 2.2.6. Let k

h

 =

4 4 2 2 1 1

4 2 4 2 3 1

 .
The corresponding sequence of insertion tableaux and recording tableaux under the ?-insertion

is listed here:

∅ →
1
→

1 3
→ 3

1 2
→ 3

1 2 4
→ 3

1

1 2 4

→ 3

1 4

1 2 4

= P.

∅ →
1
→

1 1
→ 2

1 1
→ 2

1 1 2
→ 4

2

1 1 2

→ 4

2 4

1 1 2

= Q.

Then we have ?([k,h]t) = (P,Q), and the cells in the insertion paths at each step are highlighted

in yellow.

Lemma 2.2.1. Let [k,h]t be a fully-commutative decreasing Hecke biword. Suppose that ?([k,h]t) =

(P,Q). Then, the following statements hold:

(1) P t is semistandard and Q has the same shape as P .

(2) Let x be an integer such that x ·h is fully-commutative. Then the insertion path for P ← x

goes weakly to the left.

Proof. See Appendix A.1.1. �

For the following results, given a tableau P with positive integer entries, row(P) denotes its row

reading word, obtained by reading these entries row-by-row starting from the top row (in French

notation), reading from left to right. We will consider row(P) as an element in a fixed 0-Hecke

monoid.

Lemma 2.2.2. Let P be a tableau such that P t is semistandard and row(P) is fully-commutative.

Let x be an integer such that row(P) · x is fully-commutative. Then,

(2.2) row(P ← x) ≡H0 row(P) · x.
33

Proof. See Appendix A.1.2. �

Remark 2.2.2. Observe that the assumption that row(P) is fully-commutative implies that

row(R) is fully-commutative for each row R of P . Moreover, in the proof of Lemma 2.2.2, if x is

to be inserted into row R of P when computing P ← y and x ∈ R, then the extra assumption that

row(P) · x is fully-commutative implies that R does not contain x+ 1.

Lemma 2.2.3. Let P be a tableau such that P t is semistandard and row(P) is fully-commutative.

Let x, x′ be integers such that row(P) · x and row(P) · xx′ are fully-commutative.

Denote the insertion paths of P ← x and (P ← x)← x′ as π and π′ respectively. Also, suppose

that P ← x and (P ← x)← x′ introduce boxes B and B′ respectively. Then the following statements

about ?-insertion are true:

(1) If x < x′, then π′ is strictly to the right of π. Moreover, B′ is strictly to the right of and

weakly below B.

(2) If x > x′, then π′ is weakly to the left of π. Moreover, B′ is weakly to the left of and

strictly above B.

Proof. See Appendix A.1.3. �

Let U be a tableau such that U t is semistandard and row(U) is fully-commutative. We describe

the reverse row bumping for ?-insertion of U as follows. Locate an inner corner of U and remove

entry y from that row. Perform the following operations until an entry is bumped out of the

bottommost row. Suppose that we are reverse bumping y into a row R. If y /∈ R, find the largest

x ∈ R with x < y; insert y and bump out x. Otherwise, y ∈ R, so find the largest x ∈ R such that

[y, x] is the longest interval of consecutive integers. In this case, row R remains unchanged but x is

bumped out. Then reverse bump x into the next row below unless there is no further row below.

In this case, terminate and return the resulting tableau as T along with the bumped entry x. It

is straightforward to see that reverse row bumping specified above reverses the bumping process

specified by the ?-insertion.

34

Example 2.2.7. Let U be the tableau

U =

5

2

2 5

2 3 5

1 2 4
.

By performing reverse row bumping on the topmost 5 in U , we obtain

T =

5

2 5

2 3 5

1 3 4

and entry 2. It is also straightforward to check that U = T ← 2.

Corollary 2.2.1. Let T be a tableau of shape λ such that T t is semistandard and row(T) is

fully-commutative. Let k be a positive integer.

Let x1 < x2 < · · · < xk (similarly xk 6 · · · 6 x2 6 x1) be integers such that row(T) · x1x2 . . . xi

is fully-commutative for all 1 6 i 6 k. Then, the collection of boxes added to T to form the tableau

U = ((T ← x1)← x2) · · · ← xk

has the property that no two boxes are in the same column (similarly row).

Conversely, if U is a tableau of shape µ such that λ ⊆ µ and µ/λ consists of k boxes with no

two boxes in the same column, i.e, a horizontal strip of size k (similarly row, i.e., a vertical strip

of size k), then there is a unique tableau T of shape λ and unique integers x1 < x2 < · · · < xk

(similarly xk 6 · · · 6 x2 6 x1) such that

U = ((T ← x1)← x2) · · · ← xk.

In particular, if (P,Q) = ?([k,h]t), where [k,h]t is a fully-commutative decreasing Hecke biword,

then Q is semistandard.

35

Proof. Assume that x1 < x2 < · · · < xk. By statement (1) of Lemma 2.2.3, the sequence of

added boxes in U = ((T ← x1)← x2) · · · ← xk moves weakly below and strictly to the right when

computing U . In particular, no two of the added boxes can be in the same column.

To recover the required tableau T and integers x1 < x2 < · · · < xk, perform reverse row

bumping on the boxes specified by the shape µ/λ within U starting from the rightmost box,

working from right to left. The tableau T and the integers x1, x2, . . . , xk are uniquely determined

by the operations. Moreover, by Lemma 2.2.3, the integers xk, xk−1, . . . , x1 obtained in the given

order of operations satisfy x1 < x2 < · · · < xk.

Now assume xk 6 · · · 6 x2 6 x1. By statement (2) of Lemma 2.2.3, the sequence of added

boxes moves strictly above and weakly to the right when computing U . In particular, no two of

the added boxes can be in the same row.

Similarly, one may perform reverse row bumping on the boxes specified by the shape µ/λ within

U starting from the topmost box, working from top to bottom. Again, the operations uniquely

determine the tableau T and the integers x1, x2, . . . , xk. Moreover, by Lemma 2.2.3, the integers

xk, xk−1, . . . , x1 obtained in the given order of operations satisfy xk 6 · · · 6 x2 6 x1.

Finally, note that in a decreasing Hecke biword [k,h]t, where h = hm . . . h2h1, entries within a

fixed ai are inserted in increasing order. It follows that the collection of all boxes with label i form

a horizontal strip within the tableau Q. Collecting all these horizontal strips with values i from m

to i in order by using the converse recovers Q, implying that Q is semistandard. �

Theorem 2.2.2. The ?-insertion is a bijection from the set of all fully-commutative decreasing

Hecke biwords to the set of all pairs of tableaux (P,Q) of the same shape, where both P t and Q are

semistandard and row(P) is fully-commutative.

Proof. By successive applications of Lemma 2.2.2, if (P,Q) = ?([k,h]t), then as h is fully-

commutative, row(P) is also fully-commutative. Hence, using Lemma 2.2.1 and Corollary 2.2.1,

?-insertion is a well-defined map from the set of all fully-commutative decreasing Hecke biwords to

the set of all pairs of tableaux (P,Q) of the same shape with both P t, Q semistandard and row(P)

being fully-commutative.

36

It remains to show that the ?-insertion is an invertible map. Assume that P and Q are tableaux

of the same shape with both P t, Q semistandard and row(P) being fully-commutative. Since Q is

semistandard, the collection of boxes with the same entry form a horizontal strip. Starting with the

largest such entry m, perform reverse row bumping with the boxes in the strip from right to left.

By Lemma 2.2.3, this recovers the entries in hm in decreasing order. Repeating this procedure in

decreasing order of entries recovers h = hm . . . h2h1, which automatically yields a decreasing Hecke

biword [k,h]t. Furthermore, by repeated applications of Lemma 2.2.2, since row(P) was fully-

commutative, then the reverse word of h is fully-commutative, so that h is fully-commutative too.

Finally, by repeated applications of the converse stated in Corollary 2.2.1, the recovered decreasing

Hecke biword [k,h]t is unique. �

2.3. Properties of the ?-insertion

In this section, we show that the ?-insertion intertwines with the crystal operators. More

precisely, the insertion tableau remains invariant on connected crystal components under the ?-

insertion as shown in Section 2.3.1 by introducing certain micro-moves. In Section 2.3.2, it is

shown that the ?-crystal on Hm,? intertwines with the usual crystal operators on semistandard

tableaux on the recording tableaux under the ?-insertion. In Section 3.2, we relate the ?-insertion

to the uncrowding operation.

2.3.1. Micro-moves and invariance of the insertion tableaux. In this section, we in-

troduce certain equivalence relations of the ?-insertion in order to establish its relation with the

?-crystal. From now on we are focusing on the sequence in the insertion order. Since each decreasing

factorization h is inserted from right to left, we look at h read from right to left.

Definition 2.3.1. We define an equivalence relation through micro-moves on fully-commutative

words in H0(n).

(1) Knuth moves, for x < z < y:

(I1) xyz ∼ yxz

(I2) zxy ∼ zyx

(2) Weak Knuth moves, for y > x+ 1:

(II1) xyy ∼ yxy
37

(II2) xxy ∼ xyx

(3) Hecke move, for y = x+ 1:

(III) xxy ∼ xyy

Note that the micro-moves preserve the relation ≡H0.

Similar relations have appeared in [7, Eq. (1.2)].

Example 2.3.1. The 13242 ∈ H0(5) is equivalent to 31242, 13422, 13224, 31224, and itself.

Next, we use the following notation on ?-insertion tableaux. For a single-row increasing tableau

R, let Rx denote the first row of the tableau R← x and let R(x) denote the output of the ?-insertion

from the first row. If the ?-insertion outputs a letter, then denote it by R(x); if x is appended to the

end of the row R, then the output R(x) is 0, which can be ignored. We always have x ·0 ∼ x ∼ 0 ·x.

Example 2.3.2. Let R =
1 3 4 6 7 8

, then the first row of R← 7 is

R7 =
1 3 4 6 7 8

and R(7) = 6. Furthermore, the first row of R7 ← 9 is R7,9 =
1 3 4 6 7 8 9

and

R8(9) = 0.

Lemma 2.3.1. Let R be a single-row increasing tableau, and x, y, z be letters such that row(R) ·

x · y · z is fully-commutative. Let x′, y′, z′ be letters such that xyz ∼ x′y′z′. Following the above

notation, we have

Rxyz = Rx
′y′z′ and R(x)Rx(y)Rxy(z) ∼ R(x′)Rx

′
(y′)Rx

′y′(z′).

Proof. See Appendix A.2.1. �

Proposition 2.3.1. If two words in H0(n) have the property that their reverse words are equiv-

alent according to Definition 2.3.1, then they have the same insertion tableau under ?-insertion

(inserted from right to left).

Proof. Let P be a ?-insertion tableau. By Lemma 2.2.1, P t is a semistandard tableau. Let

the rows of P be R1, . . . , R`. Then each row is strictly increasing. The row Rj is considered to be

empty for j > `.

38

Let x1, y1, z1 and x′1, y
′
1, z
′
1 be letters such that x1y1z1 ∼ x′1y

′
1z
′
1 and row(P) · x1 · y1 · z1 is

fully-commutative. Let the output of the ?-insertion algorithm of P ← x1 ← y1 → z1 (resp.

P ← x′1 ← y′1 ← z′1) from the row i be xi+1, yi+1, zi+1 (resp. x′i+1, y
′
i+1, z

′
i+1). That is:

• Rxiyizii is the first row of [(Ri ← xi)← yi]← zi and the outputs in order are xi+1, yi+1, zi+1.

• Rx
′
iy
′
iz
′
i

i is the first row of [(Ri ← x′i)← y′i]← z′i and outputs in order are x′i+1, y
′
i+1, z

′
i+1.

By Lemma 2.3.1, we have that Rxiyizii = R
x′iy
′
iz
′
i

i and xi+1yi+1zi+1 ∼ x′i+1y
′
i+1z

′
i+1 for all i (possibly

some extra rows exceeding `). Thus, we have the desired result. �

Example 2.3.3. The four words in H0(5) of Example 2.3.1 all have the same ?-insertion tableau:

3

1

1 2 4 .

With some lemmas in Appendix A, we prove that the crystal operators f?k act by a composition

of micro-moves as given in Definition 2.3.1. More precisely, for a fully-commutative decreasing

factorization h, we have hrev ∼ f?k (h)rev as long as f?k (h) 6= 0, where hrev is the reverse of h.

Remark 2.3.1. By Definition 2.1.3 and Remark 2.1.3, there are two cases for the k-th and

(k + 1)-st factors under the crystal operator f?k , where x is the largest unpaired letter in the k-th

factor, wi, vi > x and ui, bi < x:

(1) (w1 . . . wpu1 . . . uq)(v1 . . . vsxb1 . . . bt)
f?k−→ (w1 . . . wpxu1 . . . uq)(v1 . . . vsb1 . . . bt),

where vs 6= x+ 1.

(2) (w1 . . . wpu1 . . . uq)(v1 . . . vsxb1 . . . bt)
f?k−→ (w1 . . . wpxu1 . . . uq)(v1 . . . vs−1xb1 . . . bt),

where vs = wp = x+ 1.

In both cases, ui < x− 1 since if u1 = x− 1 then b1 = x− 1 due to the fact that x is unbracketed;

but this would mean that the word is not fully-commutative. We also notice that since all ui are

paired with some bj, we have that t > q and bi > ui. Similarly, all vi are paired with some wj,

so we have that p > s and vi > wp−s+i. Let u denote the sequence u1 . . . uq and let b denote the

sequence b1 . . . bt.

39

Proposition 2.3.2. Suppose h is a fully-commutative decreasing factorization such that f?k (h) 6=

0 (resp. e?k(h) 6= 0). Then f?k (h)rev ∼ hrev (resp. e?k(h)rev ∼ hrev) for the equivalence relation ∼ of

Definition 2.3.1.

Proof. We prove the statement for f?k . Since e?k is a partial inverse of f?k , the result follows.

Let h = hm . . . h1 ∈ Hm,? and define h̃ = f?k (h) = hm . . . h̃k+1h̃khk−1 . . . h1. Specifically,

hk+1 = (w1 . . . wpu1 . . . uq) and hk = (v1 . . . vsxb1 . . . bt), where x is the largest unpaired letter in

hk. Then by Lemmas A.2.2 and A.2.3, we have the following sequence of equivalence moves:

(bq . . . b1xvs . . . v1uq . . . u1)wp . . . wp−s+1 ∼ (bquq . . . b1u1xvs . . . v1)wp . . . wp−s+1

bquq . . . b1u1x(vs . . . v1wp . . . wp−s+1) ∼ bquq . . . b1u1x(vswp . . . v1wp−s+1).

Case (1): When vs 6= x+1, h̃k+1 = (w1 . . . wpxu1 . . . uq), h̃
k = (v1 . . . vsb1 . . . bt). By Lemmas A.2.5

and A.2.6, we have

bquq . . . b1u1(xvswp . . . v1wp−s+1) ∼ bquq . . . b1u1(vs . . . v1xwp . . . wp−s+1)

(bquq . . . b1u1vs . . . v1)xwp . . . wp−s+1 ∼ (bq . . . b1vs . . . v1uq . . . u1)xwp . . . wp−s+1.

Thus, we have that

bt . . . b1xvs . . . v1uq . . . u1wp . . . w1 ∼ bt . . . b1xvs . . . v1uq . . . u1xwp . . . w1.

Case (2): When vs = wp = x + 1, h̃k+1 = (w1 . . . wpxu1 . . . uq), h̃
k = (v1 . . . vs−1xb1 . . . bt). Then

by Lemmas A.2.4 and A.2.7, we have

bquq . . . b1u1(xvswp)vs−1wp−1 . . . v1wp−s+1 ∼ bquq . . . b1u1(xxwp)vs−1wp−1 . . . v1wp−s+1

bquq . . . b1u1x(xwpvs−1wp−1 . . . v1wp−s+1) ∼ bquq . . . b1u1x(vs−1 . . . v1xwp . . . wp−s+1)

(bquq . . . b1u1xvs−1 . . . v1)xwp . . . wp−s+1 ∼ (bq . . . b1xvs−1 . . . v1uq . . . u1)xwp . . . wp−s+1.

Thus, we have that

bt . . . b1xvs . . . v1uq . . . u1wp . . . w1 ∼ bt . . . b1xvs−1 . . . v1uq . . . u1xwp . . . w1.

40

Therefore, we have shown that in both cases, f?k (h)rev ∼ hrev. �

Proposition 2.3.3. For h ∈ Hm,? such that f?k (h) 6= 0 for some 1 6 k < m, the ?-insertion

tableau for h equals the ?-insertion tableau for f?k (h).

Proof. By Proposition 2.3.2, the reverse words for h and f?k (h) are ∼-equivalent. By Propo-

sition 2.3.1, the corresponding insertion tableaux are equal. �

Proposition 2.3.4. Let h ∈ Hm,? be a lowest weight element under Definition 2.1.3 of weight

λ. Then there exists r > 1 where λi = 0 for i < r and λi+1 > λi for 1 6 i 6 m. Suppose

h = hm · · ·hr = (hmλm . . . h
m
1)(hm−1λm−1

· · ·hm−11) . . . (hrλr . . . h
r
1), then the i-th row of the ?-insertion

tableau equals hm+1−i
1 , hm+1−i

2 , . . . , hm+1−i
λm+1−i

, that is,

(2.3) P ?(h) =

hr1 . . . hrλr

.

hm−11 hm−12 hm−1λm−1

hm1 hm2 hmλm

.

Proof. Without loss of generality, we may assume that r = 1. We prove the statement by

induction on m. The case m = 1 is trivial.

Let m > 1 be arbitrary and suppose that the statement holds for this m. We prove the

statement for m+ 1. We need to insert P ?(h)← hm+1
1 ← hm+1

2 ← · · · ← hm+1
λm+1

, where P ?(h) is as

in (2.3) with r = 1. Note that hm+1
i 6 hmi for 1 6 i 6 λm. Specifically, hm+1

1 6 hm1 , so its insertion

path is vertical along the first column and we obtain

P ?(h)← hm+1
1 =

h11

h21 . . . hrλr

.

hm1 hm−12 hm−1λm−1

hm+1
1 hm2 hmλm

.

41

Since hm+1
1 < hm+1

2 6 hm2 , the insertion path of hm+1
2 is strictly to the right of the insertion path

of hm+1
1 and weakly left of the second column by Lemma 2.2.3, so it is vertical along the second

column. Similar arguments show that the insertion path for hm+1
i is just vertical along the i-th

column. Thus, the result holds for m+ 1. �

Remark 2.3.2. For a lowest weight element h ∈ Hm,? of weight a, the corresponding insertion

tableau must have shape µ = sort(a), which is the partition obtained by reordering a.

Proposition 2.3.5. Let T ∈ SSYT(λ) and (P,Q) = ? ◦ res(T). Then Q = T .

Proof. The proof is done by induction on subtableaux of T similarly to the proof of Theo-

rem 2.2.1.

For a given step in the insertion process, suppose that the entries of T that are involved so far

form a nonempty subtableau T ′ of T with shape µ containing cell (1, 1). Furthermore, assume that

the insertion and recording tableau at the corresponding step are P (T ′) and Q(T ′). Then they

both have shape µ, and the entry of cell (i, j) of P (T ′) is `+ j−µ′j + i−1. In addition, Q(T ′) = T ′,

where µ′ is the conjugate of the partition µ and ` := λ′1 = `(λ).

Note that we do not encounter Case (1) in the proof of Theorem 2.2.1. All other arguments

still hold since for every insertion the letter is not contained in the row it is inserted into, that is,

the insertion always bumps the smallest letter that is greater than itself. Thus, we omit the detail

of the proof. �

2.3.2. The ?-insertion and crystal operators. In this section, we prove that the ?-insertion

and the crystal operators on fully-commutative decreasing factorizations and semistandard Young

tableaux intertwine.

Theorem 2.3.1. Let h ∈ Hm,?. Let (P ?(h), Q?(h)) = ?(h) be the insertion and recording

tableaux under the ?-insertion of Definition 2.2.2. Then

(1) f?i (h) is defined if and only if fi(Q
?(h)) is defined.

(2) If f?i (h) is defined, then Q?(f?i (h)) = fiQ
?(h).

42

In other words, the following diagram commutes:

Hm,? SSYTm

Hm,? SSYTm.

Q?

f?i fi

Q?

Proof. The crystal operator f?i acts only on factors hi+1 and hi. Hence it suffices to prove

the statement for h = hi+1hi . . . h1 with i+ 1 factors.

Suppose f?i (h) 6= 0. By Proposition 2.3.3, P ?(h) = P ?(f?i (h)). Furthermore, by Lemma 2.2.1

P ?(h) and Q?(h) have the same shape. Hence in particular, Q?(h) and Q?(f?i (h)) have the same

shape and therefore the letters i and i+ 1 in Q?(h) and Q?(f?i (h)) occupy the same skew shape.

Recall from Definition 2.1.3 that f?i removes precisely one letter from factor hi = (hi`h
i
`−1 . . . h

i
1),

say hik. By Lemma 2.2.3, the insertion paths of hi1, . . . , h
i
` into P ?(hi−1 · · ·h1) move strictly to the

right and the newly added cells form a horizontal strip. In addition, the letters hi1, . . . , h
i
` appear

in the first row of P ?(hi · · ·h1). Now compare this to the insertion paths for hi1, . . . , ĥ
i
k, . . . , h

i
`

into P ?(hi−1 . . . h1), where hik is missing. Up to the insertion of hik−1, everything agrees. Suppose

that hik bumps the letter x in the first row and hik+1 bumps the letter y > x in the first row by

Lemma 2.2.3. Then when hik+1 gets inserted without prior insertion of hik, the letter hik+1 either still

bumps y or hik+1 bumps x (in which case x and y are adjacent in the first row in P ?(hi−1 · · ·h1)).

There are no other choices, since if there are letters between x and y in the first row and hik+1

bumps one of these, it would have already bumped a letter to the left of y in P ?(hi · · ·h1). If

hik+1 bumps x without prior insertion of hik, then its insertion path is the same as the insertion

path of hik previously. If hik+1 bumps y, then the letter inserted into the second row by similar

arguments either bumps the same letter as in the previous insertion path of hik+1 or hik and so

on. The last cell added is hence the same cell added in the previous insertion path of either hik

or hik+1. Repeating these arguments, exactly one cell containing i in Q?(hi · · ·h1) is missing in

Q?((hi` . . . ĥ
i
k . . . h

i
1)h

i−1 · · ·h1) and all other cells containing i are the same. Hence, Q?(f?i (h)) is

obtained from Q?(h) by changing exactly one letter i to i+ 1.

It remains to prove that f?i (h) 6= 0 if and only if fi(Q
?(h)) 6= 0 and, if f?i (h) 6= 0, then the

letter i that is changed to i+ 1 from Q?(h) to Q?(f?i (h)) is the rightmost unbracketed i in Q?(h).

First assume that under the bracketing rule for f?i , all letters in the factor hi are bracketed, so that

43

f?i (h) = 0. This means that each letter in hi is paired with a weakly smaller letter in hi+1. Then

by similar arguments as in Lemma 2.2.3 (2), for each insertion path for the letters in hi, there is an

insertion path for the letters in hi+1 that is weakly to the left and the resulting new cell is weakly

to the left and strictly above of the corresponding new cell for the letter in hi. This means that

each i in Q?(h) is paired with an i+ 1 and hence fi(Q
?(h)) = 0.

Now assume that f?i (h) 6= 0. Let us use the same notation as in Remark 2.3.1 (with k replaced

by i). Since all letters uq, . . . , u1 < x are paired with some letters bj < x, their insertion paths

(again by similar arguments as in Lemma 2.2.3) lie strictly to the left of the insertion path for x.

First assume that vs 6= x + 1. Recall that by Proposition 2.3.3, P ?(h) = P ?(f?i (h)). Also, by the

above arguments, moving letter x to factor hi+1 under f?i , changes one i to i+1 (precisely the i that

is missing when removing x from hi). Now the letters wp, . . . , w1 > x are inserted after the letter x

in the (i+ 1)-th factor in f?i (h) and by Lemma 2.2.3 their insertion paths are strictly to the right

of the insertion path of x in f?i (h). But this means that the corresponding i + 1 in Q?(h) cannot

bracket with the i that changes to i + 1 under f?i . This proves that fi(Q
?(h)) 6= 0. Furthermore,

each vs, . . . , v1 is paired with some wj and hence the insertion path of this wj is weakly to the left

of the insertion path of the corresponding vh. Hence all i to the right of the i that changes to an

i + 1 under f?i are bracketed. This proves that this i is the rightmost unbracketed i, proving the

claim. The case vs = x+ 1 is similar. �

Remark 2.3.3. Proposition 2.3.4 and Theorem 2.3.1 provide another proof via ?-insertion, in

the case where w is fully-commutative, of the Schur positivity of Gw of Fomin and Greene [7]

Gw =
∑
µ

β|µ|−`(w)gµwsµ,

where gµw = |{T ∈ SSYTn(µ′) | wC(T) ≡ w}|.

2.3.3. Uncrowding set-valued skew tableaux.

Lemma 2.3.2. For skew shape λ/µ, the crystal operators on SVTm(λ/µ) intertwine with those

on SSYTm(ν/µ), for λ ⊆ ν, under uncrowd.

Proof. Chan and Pflueger [6] proved that the image of T ∈ SVT(λ/µ) under the uncrowding

map is a pair (P,Q), where P is a semistandard tableau of shape ν/µ and Q is a flagged increasing

44

tableau of shape ν/λ. Monical, Pechenik and Scrimshaw in [22, Theorem 3.12] proved that the

crystal operators on SVTm(λ) intertwine with those on SSYTm(ν) under uncrowd. Since uncrowd

is defined equally on skew shapes, the result follows. �

2.3.4. Compatibility of ?-insertion with uncrowding. For a partition µ, let Tµ be the

unique tableau of shape µ with µi letters i in each row i. Note that uncrowd(Tµ) = (Tµ, ∅) since

ex(Tµ) = 0.

Lemma 2.3.3. For T ∈ SVTm(λ/µ), if (P,Q) = ?(hh′) where h = res(T) and h′ = res(Tµ),

then Tµ is contained in Q.

Proof. For T ∈ SVTm(λ/µ), let T∗ be the set-valued tableau of shape λ obtained from T by

adding `(µ) to each entry and filling in the cells of µ with Tµ. By Proposition 2.3.5, we have

(2.4) ? ◦res(Tµ) = (Pµ, Tµ) ,

where Pµ is the semistandard tableau specified in the proof of Proposition 2.3.5. The claim follows

by noting that res(T∗) = res(T)res(Tµ). �

Definition 2.3.2. A modification of ?-insertion is defined on H∗,m as follows: for h ∈ H∗,m,

let λ/µ be the shape of res−1(h) (which is well-defined up to a shift by Proposition 2.1.2). For

h′ = res(Tµ), let (P∗, Q∗) = ?(hh′). Define ?̃(h) = (P,Q) where P is obtained from P∗ by deleting

all entries in cells of µ and Q is defined from Q∗ by deleting Tµ from it and decreasing all other

letters by `(µ).

Note that this is well-defined by Lemma 2.3.3 and the fact that each h ∈ H∗,m can be associated

to a skew shape λ/µ which is the shape of res−1(h) by Proposition 2.1.2. Also note that ?̃(h) = ?(h)

if µ = ∅.

Theorem 2.3.2. Let T ∈ SVTm(λ/µ), (P̃ , Q̃) = uncrowd(T), and (P,Q) = ?̃ ◦ res(T). Then

Q = P̃ .

45

Proof. We start by addressing the straight-shape case; for T∗ ∈ SVTm(λ), consider the fol-

lowing compositions of maps:

(P̃ , Q̃) T∗ h (P,Q)

(fk(P̃), Q̃) fk(T∗) f?k (h) (P, fk(Q)).

fk

res

fk

uncrowd

?

f?k fk

uncrowd

res ?

By Lemma 2.3.2, the left square commutes. By Theorem 2.1.2 the center square commutes. By

Proposition 2.3.3 and Theorem 2.3.1 the right square commutes. Hence it suffices to prove that

Q = P̃ when T∗ is a lowest weight element in the crystal.

Suppose T∗ ∈ SVTm(λ) is of lowest weight with wt(T∗) = a and ex(T∗) = `. Then the

decreasing factorization h ∈ Hm,? is lowest weight by Theorem 2.1.2. By Remark 2.3.2, P and

hence Q has to be of shape ν = sort(a). By Theorem 2.3.1, Q is the unique lowest weight element

in SSYTm of shape ν.

Consider the uncrowding operator on T∗ and record each tableau during the process of uncrowd-

ing as in Definition 1.2.5 by a sequence of set-valued tableaux T∗ = P̃0 → P̃1 → · · · → P̃` = P̃ .

Since T∗ is of lowest weight, so are all the P̃i. Furthermore, all P̃i have the same weight a. Let

(Pi, Qi) = ? ◦ res(P̃i). For all 0 6 i 6 `, Qi is the unique lowest weight element in SSYTm of shape

ν. Hence in particular Qi = Q for all 0 6 i 6 `. By Proposition 2.3.5, Q = Q` = P̃ , proving the

claim for straight shapes.

Now take T ∈ SVTm(λ/µ) and construct T∗ from T by adding `(µ) to each entry and filling in

the cells of µ with Tµ. Note that T∗ is a set-valued tableaux of shape λ. Let (P,Q) = ?◦res(T∗) and

(P∗, Q∗) = ?̃◦res(T). Since res(T∗) = res(T)res(Tµ), Lemma 2.3.3 implies that Q∗ = Q/Tµ. On the

other hand, since T∗ has straight shape, the preceding paragraph gives that uncrowd(T∗) = (Q, Q̃)

for some Q̃. We then note that uncrowd(T) and uncrowd(T∗) are identical on cells of λ/µ up to

a shift of the entries by `(µ); in particular, applying uncrowd to T∗ does not involve any cell of µ

since none of these are multicells and their entries are the smallest `(µ) letters. �

46

2.4. Results on the non-fully-commutative case

In this section, we discuss some aspects when we generalize to the non-fully-commutative case.

In Section 2.4.1, we describe a local crystal on Hm(3). In Section 2.4.2, we show that under very

mild assumptions it is not possible to expect a local crystal for n > 3.

2.4.1. The case n = 3. We provide a description of a type Am−1 crystal structure on Hm(3).

Definition 2.4.1. Let h = hmhm−1 . . . h2h1 ∈ Hm(3). Fix 1 6 k < m. Define the pairing

process of h and the number of pairs in hk−1 . . . hj+1hj, denoted p([j, k−1]), recursively as follows:

(1) The empty factorization, denoted ∅, has no pairs and p(∅) = 0.

(2) If p([1, j − 1]) is defined for all 1 6 j 6 k, then we have p([j, k − 1]) = p([1, k − 1]) −

p([1, j − 1]).

(3) If hk = (), then set p([1, k]) = p([1, k − 1]).

(4) Otherwise, if hk = (21), pair the 2 with the 1 in hk and set p([1, k]) = p([1, k − 1]) + 1.

(5) Otherwise, if hk = (2) and p([1, k−1]) is even, ignoring all previously paired letters, locate

the leftmost unpaired letter in hk−1 . . . h2h1.

(a) If this letter is in hj = (1) and p([j + 1, k− 1]) is even, then pair the 2 in hk with the

1 in hj and set p([1, k]) = p([1, k − 1]) + 1.

(b) If this letter is in hj = (2) and p([j + 1, k − 1]) is odd, then pair the 2 in hk with the

2 in hj and set p([1, k]) = p([1, k − 1]) + 1.

(c) Else, set p([1, k]) = p([1, k − 1]).

(6) Otherwise, if hk = (1) and p([1, k− 1]) is odd, ignoring all previously paired letters, locate

the leftmost unpaired letter in hk−1 . . . h2h1.

(a) If this letter is in hj = (2) and p([j + 1, k− 1]) is even, then pair the 1 in hk with the

2 in hj and set p([1, k]) = p([1, k − 1]) + 1.

(b) If this letter is in hj = (1) and p([j + 1, k − 1]) is odd, then pair the 1 in hk with the

1 in hj and set p([1, k]) = p([1, k − 1]) + 1.

(c) Else, set p([1, k]) = p([1, k − 1]).

(7) Else, set p([1, k]) = p([1, k − 1]).

47

Example 2.4.1. Let m = 8 and consider h = ()(2)()(21)(1)(1)(2)(21) ∈ H8(3). The pairing

process results in ()(2)()(21)(1)(1)(2)(21), where the paired letters are indicated with braces.

Hence, we have the following values of p([1, k]) for 1 6 k 6 8: 0, 1, 1, 2, 2, 3, 3, 3. Note that the

letters in the fourth and seventh factors are left unpaired.

Similarly, if we take h = ()(2)(2)(21)(2)(1)(21)(21) ∈ H8(3), we obtain ()(2)(2)(21)(2)(1)(21)(21).

Thus, we have the following values of p([1, k]) for 1 6 k 6 8: 0, 1, 2, 2, 2, 3 ,4, 5. In this case all

the letters in h are paired.

Definition 2.4.2. Let h = hm . . . h2h1 ∈ Hm(3). The crystal operator fi for 1 6 i < m on

h is defined as follows. The operator fi only depends on hi+1hi and the parity of p([1, i − 1]) of

Definition 2.4.1. In the following cases, we indicate only the changes in hi+1hi under fi as the

remainder of h remains invariant:

(1) (21)(x)
i−→ 0, where (x) ∈ {(), (1), (2), (21)},

(2) (x)()
i−→ 0, where (x) ∈ {(), (1), (2), (21)},

(3) (x)(x)
i−→ 0, where (x) ∈ {(), (1), (2)},

(4) (1)(21)
i−→ (21)(2),

(5) (2)(21)
i−→ (21)(1),

(6) ()(x)
i−→ (x)(), where (x) ∈ {(1), (2)},

(7) ()(21)
i−→ (2)(1)

i−→ (21)(), if p([1, i− 1]) is even,

(8) ()(21)
i−→ (1)(2)

i−→ (21)(), if p([1, i− 1]) is odd.

The operator ei is defined similarly. One reverses the changes introduced in cases (4) to (8) and

annihilates h when the following occurs at hi+1hi:

(1)’ (x)(21)
i−→ 0, where (x) ∈ {(), (1), (2), (21)},

(2)’ ()(x)
i−→ 0, where (x) ∈ {(), (1), (2), (21)},

(3)’ (x)(x)
i−→ 0, where (x) ∈ {(), (1), (2)}.

Similar to Definition 2.1.3, the weight map is defined as wt(h) = (len(h1), len(h2), . . . , len(hm)).

Meanwhile, ϕi(h) (resp. εi(h)) is defined to be the largest nonnegative integer k such that fki (h) 6= 0

(resp. eki (h) 6= 0).

48

(2) (21) (2)

(21) () (21) (21) (1) (2)

(2) (1) (21)

(2, 1) (21) ()

(1) (1) (21)

(1) (2) (21) (1) (21) (2)

(21) (2) (2)

(21) (2) (1)

() (21) (21)

(1) (21) (1)

1

1

22 2

1

2 1

2

1

Figure 2.3. The crystal graph for H3(3) restricted to decreasing factorizations
with four letters.

It is not difficult to check that the operators fi and ei defined above preserve the relation ≡H0 on

Hm(3) whenever they do not annihilate the decreasing factorizations. Furthermore, the structure

above defines an abstract, seminormal Am−1 crystal on Hm(3).

We note that one may also verify that the crystal is a Stembridge crystal by checking that the

axioms formulated in [31] are satisfied. Figure 2.3 displays the crystal graph on H3(3) restricted

to decreasing factorizations that use exactly 4 letters.

2.4.2. Nonlocality. In this subsection, we show that it is impossible to construct a crystal

on Hm with the following properties for fi:

(1) fi only changes the i-th and (i+ 1)-th decreasing factors;

(2) fi is determined by the first (i+ 1) factors;

(3) fi(h) ≡H0 h and ex[fi(h)] = ex(h), for all h ∈ Hm with fi(h) 6= 0.

Let h1 = hm1 . . . h
2
1h

1
1 ∈ Hm and suppose that fi(h1) 6= 0. If we write fi(h1) = hm2 . . . h

2
2h

1
2, then

the above assumptions imply that hi+1
1 hi1 . . . h

1
1 ≡H0 h

i+1
2 hi2 . . . h

1
2. Obviously the crystal on Hm(3)

defined in Section 2.4.1 satisfies these assumptions.

49

(21)()(32)(32)

(21)()()(32)

(2)()(2)(32)

(21)()(32)(3)

(2)()(32)(3)

(2)(1)(32)(32)

(21)()(32)()

(21)()(3)(2)

()(21)(32)(32)

(21)()()(32)

3

2

1

3

3

2

1

1

21

2

3

Figure 2.4. Partial filling of the connected component of H4(3) containing highest
weight element ()(21)(32)(32).

Suppose that a crystal structure with the above assumptions exists on H4(4). Consider the

Schur expansion of the stable Grothendieck polynomial in 4 variables for w = 12132:

G12132(x1, x2, x3, x4;β) = s221 + β(2s222 + 3s2211) + β2(6s2221 + 6s22111) + · · · .

(Note that s22111 is zero in four variables and hence could be omitted). The linear term in β implies

that there are two connected components with highest weight (2, 2, 2, 0) (lowest weight (0, 2, 2, 2))

for the crystal H4(4) with excess 1. All decreasing factorizations mentioned below are those of

w = 12132 with 4 factors and excess 1.

There are two decreasing factorizations of weight (2, 2, 2, 0): ()(21)(21)(32) and ()(21)(32)(32).

Focus on the connected component with highest weight ()(21)(32)(32) and try to complete the

crystal graph from top to bottom. Since the only decreasing factorization of weight (2, 2, 1, 1) with

the first and second factors both being (32) is (2)(1)(32)(32), we can compute the action of f3 on

this highest weight element. By some similar arguments we can fill in part of the crystal graph as

indicated in Figure 2.4 with the above assumptions. The dashed spaces are undetermined.

50

Yet note that the red f2 highlighted in the graph changed the first factor from (3) to (2). Hence,

Condition (1) is violated, providing a counterexample that crystals with the above conditions always

exist on Hm(n) for n > 3.

51

CHAPTER 3

Uncrowding algorithm for hook-valued tableaux

This chapter is based on work in collaboration with Joseph Pappe, Wencin Poh and Anne

Schilling in preprint [25].

The chapter is organized as follows. In Section 3.1, we review the definition of semistandard

hook-valued tableaux of [32] and the crystal structure on them [11]. In Section 3.2, we define

the new uncrowding map on hook-valued tableaux and prove that it intertwines with the crystal

operators and other properties. We also give a variant of the uncrowding algorithm on hook-valued

tableaux. In Section 3.3, we consider applications of the uncrowding algorithm, in particular

expansions of the canonical Grothendieck polynomials using techniques developed in [1].

3.1. Hook-valued tableaux

In Section 3.1.1, we define hook-valued tableaux [32] and in Section 3.1.2 we review the crystal

structure on hook-valued tableaux as introduced in [11].

3.1.1. Hook-valued tableaux. A semistandard Young tableau U of hook shape is a tableau

of the form

U =

`p

...

`1

x a1 . . . aq

,

where the integer entries weakly increase from left to right and strictly increase from bottom to

top. In this case, H(U) = x is called the hook entry of U , L(U) = (`1, `2, . . . , `p) is the leg of U , and

A(U) = (a1, a2, . . . , aq) is the arm of U . Both the arm and the leg of U are allowed to be empty.

Additionally, the extended leg of U is defined as L+(U) = (x, `1, `2, . . . , `p). We denote by max(U)

(resp. min(U)) the maximal (resp. minimal) entry in U .

52

Definition 3.1.1. Fix a partition λ. A semistandard hook-valued tableau (or hook-valued

tableau for short) T of shape λ is a filling of the Young diagram for λ with (nonempty) semistandard

Young tableaux of hook shape such that:

(i) max(A) 6 min(B) whenever the cell containing A is in the same row, but left of the cell

containing B;

(ii) max(A) < min(C) whenever the cell containing A is in the same column, but below the

cell containing C.

The set of all hook-valued tableaux of shape λ (respectively, with entries at most m) is denoted by

HVT(λ) (respectively, HVTm(λ)).

Given a hook-valued tableau T , its arm excess is the total number of integers in the arms of all

cells of T , while its leg excess is the total number of integers in the legs of all cells of T .

Remark 3.1.1. In the special case when a hook-valued tableau has arm excess 0, it is also called

a set-valued tableau. Similarly, a multiset-valued tableau is a hook-valued tableau with leg excess

0. We use the notation SVT(λ) (resp. SVTm(λ)) and MVT(λ) (resp. MVTm(λ)) for the set of

all set-valued tableaux of shape λ (resp. with entries at most m) and the set of all multiset-valued

tableaux of shape λ (resp. with entries at most m), respectively.

3.1.2. Crystal structure on hook-valued tableaux. Hawkes and Scrimshaw [11] defined

a crystal structure on hook-valued tableaux. We review their definition here.

Definition 3.1.2 ([11], Definition 4.1). Let C be a hook-valued tableau of column shape. The

column reading word R(C) is obtained by reading the extended leg in each cell from top to bottom,

followed by reading all of the remaining entries, arranged in a weakly increasing order.

For a hook-valued tableau T , its column reading word is formed by concatenating the column

reading words of all of its columns, read from left to right, that is,

R(T) = R(C1)R(C2) . . . R(C`),

where ` is the number of columns of T and Ci is the ith column of T .

53

Example 3.1.1. Let T be the hook-valued tableau

T =

4

33 5

2

11

4

334 4445

.

The column reading words for the columns of T are respectively 432113, 54334 and 4445, so that

R(C) = 432113543344445.

Definition 3.1.3. [11, Definition 4.3] Let T ∈ HVTm(λ). For any 1 6 i < m, we employ

the following pairing rules. Assign − to every i in R(T) and assign + to every i + 1 in R(T).

Then, successively pair each + that is adjacent and to the left of a −, removing all paired signs

until nothing can be paired.

The operator fi acts on T according to the following rules in the given order. If there is no

unpaired −, then fi annihilates T . Otherwise, locate the cell c with entry the hook-valued tableau

B = T (c) containing the i corresponding to the rightmost unpaired −.

(M) If there is an i+ 1 in the cell above c with entry B↑, then fi removes an i from A(B) and

adds i+ 1 to A(B↑).

(S) Otherwise, if there is a cell to the right of c with entry B→, such that it contains an i in

L+(B→), then fi removes the i from L+(B→) and adds i+ 1 to L(B).

(N) Else, fi changes the i in B into an i+ 1.

Similarly, the operator ei acts on T according to the following rules in the given order. If there

is no unpaired +, then ei annihilates T . Otherwise, locate the cell c with entry the hook-valued

tableau B = T (c) containing the entry i+ 1 corresponding to the leftmost unpaired +.

(M) If there is an i in the cell below c with entry B↓, then ei removes the i+ 1 from A(B) and

adds i to A(B↓).

(S) Otherwise, if there is a cell to the left of c with entry B←, such that it contains an i + 1

in L(B←), then ei removes the i+ 1 from L(B←) and adds i to L+(B).

(N) Else, ei changes the i+ 1 in B into an i.

54

Based on the pairing procedure above, ϕi(T) is the number of unpaired −, whereas εi(T) is the

number of unpaired +.

We remark that the definition of crystal operators on HVT specializes to the definition on SVT

in [22] or the one on MVT in [11] when the arm excess or leg excess of the tableaux is set to 0,

respectively.

Example 3.1.2. Consider the following hook-valued tableau T :

T =

4

34

5

4

2

11

3

233

.

Then, e3 annihilates T , whereas

e1(T) =

4

34

5

4

11

3

2

133

, f1(T) =

4

34

5

4

2

12

3

233

, f3(T) =

4

34

5

44

2

11

3

23

.

For a given cell (r, c) in row r and column c in a hook-valued tableau T , let LT (r, c) be the leg

of T (r, c), let AT (r, c) be arm of T (r, c), let HT (r, c) be the hook entry of T (r, c), and let L+
T (r, c)

be the extended leg of T (r, c).

3.2. Uncrowding map on hook-valued tableaux

In Section 3.2.1, we give a new uncrowding map on hook-valued tableaux and prove some of

its properties in Section 3.2.2. The relation to the uncrowding map on multiset-valued tableaux is

given in Section 3.2.3. In Section 3.2.4, we give the inverse of the uncrowding map on hook-valued

tableaux, called the crowding map. In Section 3.2.5, an alternative definition of the uncrowding

map on hook-valued tableaux is provided.

55

3.2.1. Uncrowding map on hook-valued tableaux. In [11], the authors ask for an un-

crowding map for hook-valued tableaux which intertwines with the crystal operators. Here we

provide such an uncrowding map by uncrowding the arm excess in a hook-valued tableaux to ob-

tain a set-valued tableaux. An alternative obtained by uncrowding the leg excess first is given in

Section 3.2.3.

Definition 3.2.1. The uncrowding bumping Vb : HVT→ HVT is defined by the following algo-

rithm:

(1) Initialize T as the input.

(2) If the arm excess of T equals zero, return T.

(3) Else, find the rightmost column that contains a cell with nonzero arm excess. Within this

column, find the cell with the largest value in its arm. (In French notation this is the

topmost cell with nonzero arm excess in the specified column.) Denote the row index and

column index of this cell by r and c, respectively. Denote the cell as (r, c), its rightmost

arm entry by a, and its largest leg entry by `.

(4) Look at the column to the right of (r, c) (i.e. column c+ 1) and find the smallest number

that is greater than or equal to a.

• If no such number exists, attach an empty cell to the top of column c + 1 and label

the cell as (r̃, c+ 1), where r̃ is its row index. Let k be the empty character.

• If such a number exists, label the value as k and the cell containing k as (r̃, c + 1)

where r̃ is the cell’s row index.

We now break into cases:

(a) If r̃ 6= r, then remove a from AT (r, c), replace k with a, and attach k to the arm of

AT (r̃, c+ 1).

(b) If r̃ = r then remove (a, `] ∩ LT (r, c) from LT (r, c) where (a, `] = {a+ 1, a+ 2, . . . , `},

remove a from AT (r, c), insert (a, `]∩LT (r, c) into LT (r̃, c+ 1), replace the hook entry

of (r̃, c+ 1) with a, and attach k to AT (r̃, c+ 1).

(5) Output the resulting tableau.

See Figures 3.1 and 3.2 for illustration.

56

−
−− a
−
−
−
−−

−
−

Vb−→

−
−−
−
− a
−
−−

−
−

−
−− a

−
−−

−
k
−

Vb−→

−
−−

−
−−

−
a
− k

Figure 3.1. When r̃ 6= r. Left: (r̃, c + 1) is a new cell; Right: (r̃, c + 1) is an
existing cell.

`
∗
−
−− a

Vb−→ −
−−

`
∗
a

`
∗
−
−− a

−
−
k

Vb−→
−
−−

−
−
`
∗
a k

Figure 3.2. When r̃ = r. Left: (r, c+1) is a new cell; Right: (r, c+1) is an existing
cell.

Lemma 3.2.1. The map Vb is well-defined. More precisely, for T ∈ HVT we have Vb(T) ∈ HVT.

Proof. See Appendix B.1.1. �

Definition 3.2.2. The uncrowding insertion V : HVT → HVT is defined as V(T) = Vdb (T),

where the integer d > 1 is minimal such that shape(Vdb (T))/shape(Vd−1b (T)) 6= ∅ or Vdb (T) =

Vd−1b (T).

A column-flagged increasing tableau is a tableau whose transpose is a flagged increasing tableau.

Let F̂ denote the set of all column-flagged increasing tableaux. Let F̂(µ/λ) denote the set of all

column-flagged increasing tableaux of shape µ/λ.

Definition 3.2.3. Let T ∈ HVT(λ) with arm excess α. The uncrowding map

U : HVT(λ)→
⊔
µ⊇λ

SVT(µ)× F̂(µ/λ)

is defined by the following algorithm:

(1) Let P0 = T and let Q0 be the column-flagged increasing tableau of shape λ/λ.

(2) For 1 6 i 6 α, let Pi+1 = V(Pi).

Let c be the index of the rightmost column of Pi containing a cell with nonzero arm excess

57

and let c̃ be the column index of the cell shape(Pi+1)/shape(Pi). Then Qi+1 is obtained

from Qi by appending the cell shape(Pi+1)/shape(Pi) to Qi and filling this cell with c̃− c.

Define U(T) = (P (T), Q(T)) := (Pα, Qα).

Example 3.2.1. Let T be the hook-valued tableau

8

67

5

4

233 66

1

2

11

7

5

Then, we obtain the following sequence of tableaux V ib(T) for 0 6 i 6 2 = d when computing the

first uncrowding insertion:

8

67

5

4

233 66

1

2

11

7

5

→

8

67

5

4

233 6

1

2

11

6

57

→

8

67

5

4

233 6

1

2

11

6

5 7

= V(T).

58

Continuing with the remaining uncrowding insertions, we obtain the following sequences of tableaux

for the uncrowding map:

8

67

5

4

233 66

1

2

11

7

5

→

8

67

5

4

233 6

1

2

11

6

5 7

→

8

67

5

4

233 6

1 1

2

1

6

5 7

→

6

8

7

5

4

233 6

1 1

2

1

6

5 7

→

6

8

7

23

5

4

3 6

1 1

2

1

6

5 7

→

6

8

7

2 3

5

4

3

1 1

2

1

6

5 6 7

= P (T),

→
2

→
2 3

→

1

2 3

→

1

2

2 3

→

1

2

2 3 5

= Q(T).

Corollary 3.2.1. Let T ∈ HVT. Then P (T) is a set-valued tableau.

Proof. By Lemma 3.2.1 and Definition 3.2.2, we have that V(T) is a hook-valued tableau.

Note that if the arm excess of T is nonzero, then the arm excess of V(T) is one less than that of T .

Since P (T) = Vα(T), where α is the arm excess of T , we have that the arm excess of P (T) is zero.

Thus, P (T) is a set-valued tableau. �

59

Definition 3.2.4. Let T ∈ HVT and let d be minimal such that V(T) = Vdb (T). The insertion

path p of T → V(T) is defined as follows:

• If d = 0, set p = ∅.

• Otherwise, let (r0, c0) be the rightmost and topmost cell of T containing a cell with nonzero

arm excess. For all 1 6 j 6 d, let cj = c0 + j and let rj = r̃ be r̃ in Definition 3.2.1 when

Vb is applied to Vj−1b (T). Set p = ((r0, c0), (r1, c1), . . . , (rd, cd)).

Lemma 3.2.2. Let T ∈ HVT. Then Q(T) is a column-flagged increasing tableau.

Proof. By construction, the positive integer entries in column i ofQ(T) are at most i−1. Letm

be the smallest nonnegative integer such that Vm(T) = P (T). Let pi = ((ri0, c
i
0), (r

i
1, c

i
1), . . . , (r

i
di
, cidi))

for 0 6 i < m be the insertion path of V i(T) → V i+1(T). Since ci+1
0 6 ci0 for all 0 6 i < m, the

entries in each row of Q(T) are strictly increasing. To check that the entries in each column of

Q(T) are strictly increasing, it suffices to show that if ci+1
0 = ci0 then pi+1 lies weakly below pi.

In other words, it suffices to check that ci+1
0 = ci0 implies that ri+1

j 6 rij for all 0 6 j 6 di. We

prove this by induction on j. Note that ri+1
0 6 ri0 by the definition of U . Assume by induction

that ri+1
j 6 rij . This implies that the a when applying Vb to Vjb (V i(T)) is weakly smaller than the

a when applying Vb to Vjb (V i−1(T)). Thus, we must have ri+1
j+1 6 r

i
j+1. �

3.2.2. Properties of the uncrowding map. Let T be a hook-valued tableau. Define Ri(T)

as the induced subword of R(T) consisting only of the letters i and i + 1. In the next lemma, we

use the same notation as in Definition 3.2.1. Furthermore, two words are Knuth equivalent if one

can be transformed to the other by a sequence of Knuth equivalences on three consecutive letters

xzy ≡ zxy for x 6 y < z, yxz ≡ yzx for x < y 6 z.

Lemma 3.2.3. For T ∈ HVT, Ri(T) = Ri(Vb(T)) unless T satisfies one of the following three

conditions:

(a) a = i or a = i+ 1 and column c+ 1 contains both an i and an i+ 1,

(b) r̃ = r, i ∈ (a, `] ∩ LT (r, c), k = i, and column c+ 1 contains an i+ 1,

(c) r̃ = r, a = i, i+ 1 ∈ (a, `] ∩ LT (r, c), and (r, c) contains another i besides a.

Moreover, Ri(T) is Knuth equivalent to Ri(Vb(T)).

60

Proof. See Appendix B.1.2. �

Remark 3.2.1. In general, the full reading words are not Knuth equivalent under the uncrowding

map. For example, take the following hook-valued tableau T , which uncrowds to a set-valued tableau

S:

T =

4

3

2

12

5

4

→ 2

1

4

3

2

5

4

= S.

The reading word changed from 4321254 to 2143254, which are not Knuth equivalent.

Proposition 3.2.1. Let T ∈ HVT.

(1) If fi(T) = 0, then fi(P (T)) = 0.

(2) If ei(T) = 0, then ei(P (T)) = 0.

Proof. Since P (T) = Vsb (T) for some s ∈ N and Knuth equivalence is transitive, we have that

Ri(T) is Knuth equivalent to Ri(P (T)) by the previous lemma. As fi(T) = 0, we have that every

i in Ri(T) is i-paired with an i+ 1 to its left. This property is preserved under Knuth equivalence

giving us that fi(P (T)) = 0. The same reasoning implies (2). �

Lemma 3.2.4. Let T ∈ HVT.

(1) If fi(T) 6= 0, then fi(Vb(T)) = Vb(fi(T)) 6= 0.

(2) If ei(T) 6= 0, then ei(Vb(T)) = Vb(ei(T)) 6= 0.

Proof. See Appendix B.1.3. �

Theorem 3.2.1. Let T ∈ HVT.

(1) If fi(T) 6= 0, we have fi(P (T)) = P (fi(T)) and Q(T) = Q(fi(T)).

(2) If ei(T) 6= 0, we have ei(P (T)) = P (ei(T)) and Q(T) = Q(ei(T)).

Proof. Part (2) follows from part (1) since ei and fi are partial inverse. We prove part (1)

here.

61

Let T ∈ HVT with arm excess α such that fi(T) 6= 0 for some i. Then fi(P (T)) = P (fi(T))

follows from Lemma 3.2.4, as P (T) is obtained by successive applications of V on T and each

application of V is a string of applications of Vb.

Since crystal operators do not change arm excess, we may employ the notation in Definition 3.2.3

and denote the pair of insertion and recording tableaux produced at the j-th step for 0 6 j 6 α of

the uncrowding map U for T and fi(T) as (Pj(T), Qj(T)) and (Pj(fi(T)), Qj(fi(T))), respectively.

As crystal operators do not change the shape of T , we have shape(Pj(fiT)) = shape(fi(Pj(T))) =

shape(Pj(T)) for all 0 6 j 6 α. Hence

(3.1)

shape(Pj+1(T))/shape(Pj(T)) = shape(Pj+1(fi(T)))/shape(Pj(fi(T))) for all 0 6 j 6 α− 1.

Next we show Qj(T) = Qj(fi(T)) for all 0 6 j 6 α by induction. When j = 0, Q0(T) =

Q0(fi(T)) since shape(P0(T)) = shape(P0(fi(T))) = shape(T).

Suppose Qj(T) = Qj(fi(T)) for a given j > 0. It suffices to show that the cells

shape(Qj+1(T))/shape(Qj(T)) = shape(Pj+1(T))/shape(Pj(T)) and

shape(Qj+1(fi(T)))/shape(Qj(fi(T))) = shape(Pj+1(fi(T)))/shape(Pj(fi(T)))

in Qj+1(T) and Qj+1(fi(T)) are at the same position with the same entry. By (3.1), the cells are

in the same position, say in column c̃. By Definition 3.1.3, fi does not move elements in the arm

to a different column, so the columns in which we start the uncrowding insertion V on Pj(T) and

Pj(fi(T)) are the same, say c, by Definition 3.2.3. Hence the cells shape(Qj+1(T))/shape(Qj(T))

and shape(Qj+1(fi(T)))/shape(Qj(fi(T))) are at the same position with entry c̃− c. The theorem

follows. �

Hawkes and Scrimshaw [11, Theorem 4.6] proved that HVTm(λ) is a Stembridge crystal by

checking the Stembridge axioms. This also follows directly from our analysis above.

Corollary 3.2.2. The crystal HVTm(λ) of Definition 3.1.3 is a Stembridge crystal of type

Am−1.

62

Proof. According to [22], SVTm(µ) is a Stembridge crystal of type Am−1. By Theorem 3.2.1,

the map

U : HVTm(λ)→
⊔
µ⊇λ

SVTm(µ)× F̂(µ/λ),

is a strict crystal morphism (see for example [5, Chapter 2]). The statement follows. �

3.2.3. Uncrowding map on multiset-valued tableaux. The uncrowding map on hook-

valued tableaux described above turns out to be a generalization of the uncrowding map on multiset-

valued tableaux by Hawkes and Scrimshaw [11, Section 3.2]. We will prove that this is indeed the

case in this section. Let us recall the definition of the uncrowding map in [11, Section 3.2].

Definition 3.2.5. Let T ∈ MVT(λ). The uncrowding map

Υ : MVT(λ)→
⊔
µ⊇λ

SSYT(µ)× F̂(µ/λ)

sends T to a pair of tableaux using the following algorithm:

(1) Set Uλ1+1 = ∅ and Fλ1+1 be the unique column-flagged increasing tableau of shape ∅/∅.

(2) Let 1 6 k 6 λ1 and assume that the pair (Uk+1, Fk+1) is defined. The pair (Uk, Fk) is

defined recursively from (Uk+1, Fk+1) using the following two steps:

(a) Define Uk as the RSK row insertion tableau from the word

R(Ck)R(Ck+1) · · ·R(Cλ1),

where Cj is the j-th column of T for every 1 6 j 6 λ1. In other words, if we denote

by T>k the tableau formed by the columns weakly to the right of the k-th column of

T , Uk is obtained by performing RSK row insertion using the column reading word of

T>k.

(b) Form the tableau Fk of shape shape(Uk)/shape(T>k) as follows. Shift Fk+1 by one

column to the right and fill the boxes in the same positions into Fk; for every unfilled

box in the shape shape(Uk)/shape(Uk+1), label each box in column i with entry i− 1.

Define Υ(T) = (U,F) := (U1, F1).

63

Example 3.2.2. Let T be the multiset-valued tableau

T =

45

233 345

1 11 4

.

Then, we obtain the following pairs of tableaux for the uncrowding map Υ:

(U4, F4) = (∅, ∅)

(U3, F3) =
(

4 ,
)

(U2, F2) =

 3 5

1 1 4 4
,

1

2 3

(U1, F1) =

4 5

2 3 3 5

1 1 1 3 4 4

,
1

1 3

2 3 5

 = (U,F) = Υ(T).

Proposition 3.2.2. Let T ∈ MVT(λ). Then U(T) = Υ(T). In other words, the uncrowding

map as defined in Definition 3.2.3 is equivalent to the uncrowding map of Definition 3.2.5 in [11,

Section 3.2].

Proof. Recall from Definition 3.2.3, that the pair of uncrowding and recording tableaux for

U(T) is denoted by (P (T), Q(T)) = U(T). Similarly, let us denote (U(T), F (T)) := Υ(T).

Assume that S ∈ MVT(λ) is highest weight, that is, ei(S) = 0 for i > 1. By [11, Proposition

3.10], row i of S only contains the letter i. Thus its weight is some partition µ = (µ1, µ2, . . . , µ`)

if λ = (λ1, λ2, . . . , λ`). By Proposition 3.2.1 and Theorem 3.2.1, P (S) ∈ SSYT is highest weight.

As weights of tableaux are preserved under uncrowding, the weight of P (S) is equal to µ. By a

similar argument using [11, Theorem 3.17], U(S) ∈ SSYT is also highest weight with weight µ.

Since highest weight semistandard Young tableaux are uniquely determined by their weights, we

have P (S) = U(S).

Recall that as long as fiT 6= 0 for T ∈ MVT(λ), we have U(fiT) = fiU(T) by [11, Theorem 3.17]

and P (fiT) = fiP (T) by Theorem 3.2.1. Now let T ∈ MVT(λ) be arbitrary. Then T = fi1 · · · fik(S)

64

for some sequence of i1, . . . , ik and S highest weight. Hence,

P (T) = P (fi1 · · · fikS) = fi1 · · · fikP (S) = fi1 · · · fikU(S) = U(fi1 · · · fikS) = U(T).

It remains to show that Q(T) = F (T) for all T ∈ MVT(λ). To do this, we show that the newly

created boxes of the uncrowding map up to a specified column in Definition 3.2.5 are in the same

positions as those for the uncrowding insertion in Definition 3.2.3. For every Y ∈ MVT(µ) and for

every 1 6 j 6 µ1, denote by Y>j the tableau formed by the rightmost j columns of Y ; here Y>µ1+1

is the empty tableau.

Let T ∈ MVT(λ) be arbitrary. For 1 6 k 6 λ1 + 1, let P (k) be the tableau obtained by

performing the uncrowding map U on T on the columns from right to left up to and includ-

ing the k-th column of T ; here P (λ1+1) = T . In other words, P (k) = Vαk(T) as in Definition

3.2.2, where αk is the arm excess of T>k. As the entries to the left of column k of T are un-

touched by the uncrowding insertion in Definition 3.2.2, for every 1 6 k 6 λ1 + 1, we have

(P (k))>k = P (T>k) = U(T>k). It follows that for every 1 6 k 6 λ1, up to horizontal shifts, the

newly formed boxes in shape(P (k))/shape(P (k+1)) = shape[(P (k))>k+1]/shape[(P
(k+1))>k+1] and

shape([U(T>k)]>k+1)/shape([U(T>k+1)]>k+1) are in the same positions. Since the entries in these

boxes both record the difference in column indices relative to the k-th column for each 1 6 k 6 λ1

and since the recording tableaux for both maps are formed from the union of these boxes, we

conclude that Q(T) = F (T), completing the proof. �

3.2.4. Crowding map. In this section, we give a description of the “inverse” of the uncrowd-

ing map.

We begin by introducing some notation. Let F ∈ F̂ with e entries. For each cell (r, c) in F

with entry F (r, c), define the corresponding destination column to be d(r, c) = c − F (r, c). Define

the crowding order on F by ordering all the cells in F with a filling, first determined by their

destination column (smallest to largest) and then by column index (largest to smallest). Denote

the order by (r1, c1), (r2, c2), . . . , (re, ce). Set α(F) = (α1, α2, . . . , αe), where αi = F (ri, ci). Let the

arm excess for a column of a hook-valued tableau be the sum of arm excesses of all its cells.

65

Definition 3.2.6. Let h ∈ HVT and let (r, c) be a cell in h with c > 1 and with at most one

element in Ah(r, c). If Ah(r, c) is empty, we also require that the cell (r, c) is a corner cell in h.

Then we define the crowding bumping Cb on the pair [h, (r, c)] by the following algorithm:

(1) If Ah(r, c) is nonempty, set m to be the only element in Ah(r, c) and b = max{x ∈ L+h (r, c) |

x 6 m}. Otherwise, set m = Hh(r, c) and b = max(L+h (r, c)).

(2) Find the largest r′ such that Hh(r′, c − 1) 6 b. If r′ = r, set q = Hh(r, c). Otherwise, set

q = b. In either case, append q to Ah(r′, c− 1).

(3) (a) If r′ from Step 2 equals r, perform either of the following:

(i) If Ah(r, c) is nonempty, move the set {x ∈ Lh(r, c) | q < x 6 m} from Lh(r, c)

to Lh(r′, c− 1) and keep it strictly increasing. Remove m from Ah(r, c) and set

Hh(r, c) = m.

(ii) Otherwise, Ah(r, c) is empty, so move Lh(r, c) into Lh(r′, c − 1) and keep it to

be strictly increasing. Remove cell (r, c) from h.

(b) Otherwise, r′ 6= r and perform either of the following:

(i) Suppose that Ah(r, c) is nonempty. Replace q in L+h (r, c) with m. Remove m

from Ah(r, c).

(ii) If instead Ah(r, c) is empty, then remove cell (r, c) from h.

Denote the resulting (not necessarily semistandard) hook-valued tableau by h′. We write Cb([h, (r, c)]) =

[h′, (r′, c − 1)]. We also define the projections p1 and p2 by p1 ◦ Cb([h, (r, c)]) = h′ and p2 ◦

Cb([h, (r, c)]) = (r′, c− 1). See Figures 3.3 and 3.4 for illustration.

−
−−

−
b
∗
q m

Cb−→

b
∗
−
−− q

−
m

−
−−

b
∗
m

Cb−→

b
∗
−
−−m

Figure 3.3. When r′ = r. Left: (i) Ah(r, c) 6= ∅. Right: (ii) Ah(r, c) = ∅.

66

−
−−

−
−−

−
b
−m

Cb−→

−
−− b

−
−−

−
m
−

−
−−
−
−

∗
m

−
−−

−
−

Cb−→

−
−−m
−
−
−
−−

−
−

Figure 3.4. When r′ 6= r. Left: Ah(r, c) 6= ∅. Right: Ah(r, c) = ∅.

Example 3.2.3. We compute Cb in two examples:

T =

5

1 1

5

4

3

2 4

, Cb([T, (1, 2)]) = [

5

4

3

1 1 2

5

4

, (1, 1)] = [T ′ , (1, 1)].

S =

3

2

1

3

2

, Cb([S, (1, 2)]) = [

33

2

1

, (2, 1)] = [S′ , (2, 1)].

Remark 3.2.2. In Definition 3.2.6,

• if r′ = r, then h′ is always semistandard and has the same weight as h;

• if r′ 6= r and Ah(r, c) is empty, then h′ might have fewer letters than h. In Example 3.2.3,

S contains 5 letters while S′ only contains 4. This happens precisely when Lh(r, c) is

nonempty.

In principle, the arm in cell (r′, c− 1) could be greater than the q that is to be inserted. However,

we only consider the cases as defined in the order described by the next paragraph. We refer to

Proposition 3.2.3 which states that all tableaux we deal with in this section are indeed semistandard

hook-valued tableaux.

Let (S, F) ∈ SVT(µ) × F̂(µ/λ) with crowding order (r1, c1), (r2, c2), . . . , (re, ce) and α(F) =

(α1, α2, . . . , αe). For all 0 6 j 6 e − 1 and for all 0 6 s 6 αj+1, define T
(s)
j recursively by setting

67

T
(0)
0 := S and

T
(s)
j :=

p1 ◦ Cb([T

(s−1)
j , (rj+1, cj+1)]) when s > 0,

T
(αj)
j−1 when s = 0 and j > 0.

Additionally, define T
(0)
e := T

(αe)
e−1 .

Thus we obtain the following sequence

S = T
(0)
0

p1◦ C
α1
b−−−−→

(r1,c1)
T
(0)
1

p1◦ C
α2
b−−−−→

(r2,c2)
T
(0)
2

p1◦ C
α3
b−−−−→

(r3,c3)
. . .

p1◦ Cαeb−−−−→
(re,ce)

T (0)
e .

Remark 3.2.3. The tableaux T
(s)
j are well-defined. We check the conditions in Definition 3.2.6.

Let h = T
(s)
j for some 0 6 j 6 e− 1 and for some 0 6 s < αj+1, with cell (r, c).

• Since F ∈ F̂ , we always have c > 1.

• The case that Ah(r, c) is empty can only occur in T
(0)
j−1 for some j > 0. In this case,

(r, c) = (rj , cj), which is a corner cell.

• Consider the αj steps in T
(0)
j−1

p1◦ C
αj
b−−−−→

(rj ,cj)
T
(0)
j . We first delete cell (rj , cj), which has no arm.

Then at every step after that, we move leftward one column at a time. Before we reach

column d(rj , cj), there is exactly one column with arm excess being 1 and the rest has zero

arm excess among columns to the right of d(rj , cj) since recall that the cells (rj , cj) are

ordered from smallest to largest destination column. Once we reach column d(rj , cj), the

cell there may contain more than one arm element, but we then go to (rj+1, cj+1), which

is a corner cell instead. Thus there is at most one element in Ah(r, c).

Definition 3.2.7. With the same notation as above, define the insertion path of T
(0)
j−1 → T

(0)
j

for 1 6 j 6 e to be

pathj :=
(

(r
(0)
j , c

(0)
j), (r

(1)
j , c

(1)
j), . . . , (r

(αj)
j , c

(αj)
j)

)
,

where (r
(s)
j , c

(s)
j) := p2 ◦ Csb ([T

(0)
j−1, (rj , cj)]) for 0 6 s 6 αj.

Example 3.2.4. Consider the following pair of tableaux

(S, F) ∈ HVT((5, 3, 2))× F̂((5, 3, 2)/((3, 2, 1))),

68

S =

5

4 5

2 3

4

3

1 1

2

1 4 4

, F =
1

1

3 4

.

The crowding order is (1, 5), (1, 4), (3, 2), (2, 3). The insertion path and destination column for each

of them are:

path1 = ((1, 5), (1, 4), (2, 3), (2, 2), (2, 1)), d(1, 5) = 1,

path2 = ((1, 4), (2, 3), (2, 2), (3, 1)), d(1, 4) = 1,

path3 = ((3, 2), (3, 1)), d(3, 2) = 1,

path4 = ((2, 3), (2, 2)), d(2, 3) = 2.

We obtain the sequence from the algorithm:

5

4 5

2 3

4

3

1 1

2

1 4 4

p1◦ C4b−−−−→
(1,5)

5

4 5

23

4

3 4

1 1

2

1 4

p1◦ C3b−−−−→
(1,4)

5

44 5

23

4

3 4

1 1

2

1

p1◦ Cb−−−→
(3,2)

5

445

23

4

3 4

1 1

2

1

p1◦ Cb−−−→
(2,3)

5

445

23

4

34

1 1

2

1

.

Lemma 3.2.5. If d(rj , cj) = d(rj+1, cj+1), then pathj+1 is weakly above pathj.

Proof. By the definition of crowding order, d(rj , cj) = d(rj+1, cj+1) implies cj > cj+1. Set

zj := cj − cj+1. Then we have c
(s+zj)
j = cj − zj − s = cj+1− s = c

(s)
j+1 for 0 6 s 6 αj+1. We need to

show that r
(s)
j+1 > r

(s+zj)
j for 0 6 s 6 αj+1. Computing T

(s)
j−1 from T

(s−1)
j−1 for 1 6 s 6 αj , we denote

b and q in Step 1 and Step 2 of Definition 3.2.6 by b
(s)
j and q

(s)
j .

Since (rj+1, cj+1) is a corner cell in T
(zj)
j−1 , we have r

(0)
j+1 > r

(zj)
j . We prove that, for 1 6 s 6 αj+1,

we have that q
(s)
j+1 > q

(s+zj)
j , which implies b

(s)
j+1 > b

(s+zj)
j and thus r

(s)
j+1 > r

(s+zj)
j .

69

We prove q
(s)
j+1 > q

(s+zj)
j by induction on s. First we check the case k = 1. If r

(0)
j+1 > r

(zj)
j , then

it is obvious that q
(1)
j+1 > q

(zj+1)
j . Otherwise if r

(0)
j+1 = r

(zj)
j , we consider the following cases. q

(zj)
j is

the only element in A
T

(zj)

j−1

(rj+1, cj+1). Let x = H
T

(zj)

j−1

(rj+1, cj+1), y = max(L
T

(zj)

j−1

(rj+1, cj+1)) and

y′ = max{z ∈ L+
T

(zj)

j−1

(rj+1, cj+1) | z 6 q
(zj)
j }. See Figure 3.5 for illustration.

Case (1): If r
(zj+1)
j = r

(zj)
j , then q

(zj+1)
j = x. If r

(1)
j+1 = r

(0)
j+1, then q

(1)
j+1 = q

(zj)
j . If r

(1)
j+1 6= r

(0)
j+1,

then q
(1)
j+1 equals y when y > y′ and q

(zj)
j when y = y′. In both cases q

(1)
j+1 > x = q

(zj+1)
j .

y
−
y′

∗
x q

(zj)
j

y
−
q
(zj)
j

y
−
q
(zj)
j

∗
x

Figure 3.5. Cell (r
(0)
j+1, c

(0)
j+1) = (r

(zj)
j , c

(zj)
j) in T

(zj)
j−1 (left);

in T
(0)
j , case(1) (middle), case(2) (right).

Case (2): If r
(zj+1)
j 6= r

(zj)
j , then q

(zj+1)
j = y′. In this case we have H

T
(zj)

j−1

(rj+1+1, cj+1−1) 6 y′ 6 y.

Since H
T

(0)
j

(rj+1 + 1, cj+1 − 1) is smaller or equal to y′, we have that r
(1)
j+1 6= r

(0)
j+1. Therefore q

(1)
j+1

equals y when y > y′ and q
(zj)
j when y = y′. In this case q

(1)
j+1 > y

′ = q
(zj+1)
j .

Now we have proved the base case s = 1. Next, suppose it holds for some s > 1 that

q
(s)
j+1 > q

(s+zj)
j and r

(s)
j+1 > r

(s+zj)
j . The statement is similar to the argument of the base case.

If r
(s)
j+1 > r

(zj+s)
j , it is obvious that q

(s+1)
j+1 > q

(s+1+zj)
j and thus r

(s+1)
j+1 > r

(s+1+zj)
j . If r

(s)
j+1 = r

(zj+s)
j ,

we discuss the following cases. q
(s+zj)
j is the only element in A

T
(s+zj)

j−1

(r
(s+zj)
j , c

(s+zj)
j). Let x =

H
T

(s+zj)

j−1

(r
(s+zj)
j , c

(s+zj)
j), y = max(L

T
(s+zj)

j−1

(r
(s+zj)
j , c

(s+zj)
j)) and y′ = max{z ∈ L+

T
(s+zj)

j−1

(r
(s+zj)
j , c

(s+zj)
j) |

z 6 q
(s+zj)
j }. See Figure 3.6 for illustration.

Case (1): If r
(s+1+zj)
j = r

(s+zj)
j , then q

(s+1+zj)
j = x. If r

(s+1)
j+1 = r

(s)
j+1, then q

(s+1)
j+1 = q

(s+zj)
j > x. If

r
(s+1)
j+1 6= r

(s)
j+1, then q

(s+1)
j+1 = max{z ∈ L+

T
(s)
j

(r
(s)
j+1, c

(s)
j+1) | z 6 q

(s)
j+1} > q

(s+zj)
j > x. So in either case

we have q
(s+1)
j+1 > q

(s+1+zj)
j .

Case (2): If r
(s+1+zj)
j 6= r

(s+zj)
j , then q

(s+1+zj)
j = y′. In this case we have H

T
(s+zj)

j−1

(r
(s+zj)
j +

1, c
(s+zj)
j − 1) 6 y′ 6 q

(s+zj)
j . Since H

T
(s)
j

(r
(s)
j+1 + 1, c

(s)
j+1 − 1) is smaller or equal to q

(s+zj)
j , we have

70

y
−
y′

∗
x q

(s+zj)
j

y
−
q
(s+zj)
j q

(s)
j+1

y
−
q
(s+zj)
j

∗
x q

(s)
j+1

Figure 3.6. Cell (r
(s)
j+1, c

(s)
j+1) = (r

(s+zj)
j , c

(s+zj)
j) in T

(s+zj)
j−1 (left);

in T
(s)
j , case(1) (middle), case(2) (right).

that r
(s+1)
j+1 6= r

(s)
j+1. Therefore q

(s+1)
j+1 = max{z ∈ L+

T
(s)
j

(r
(s)
j+1, c

(s)
j+1) | z 6 q

(s)
j+1}. By induction we have

q
(s+zj)
j 6 q(s)j+1, thus q

(s+1)
j+1 > q

(s+zj)
j > y′ = q

(s+1+zj)
j . This completes the proof. �

Lemma 3.2.6. With the notations as above, let 0 6 j 6 e−1, 0 6 s < αj+1 and Cb([T
(s)
j , (r, c)]) =

[T
(s+1)
j , (r′, c − 1)] for some r, c, r′. Then in T

(s+1)
j , column c − 1 is the rightmost column with

nonzero arm excess and (r′, c− 1) is the topmost cell in column c− 1 with nonzero arm excess.

Proof. In any pathj , consider the arm excess of its columns. Those with column index c such

that d(rj , cj) < c < cj started with arm excess 0, then changed to arm excess 1 when the insertion

path passed through that column, and immediately decreased to 0.

Thus the q
(s)
j that is being moved to cell (r′, c−1) is always at the rightmost column containing

nonzero arm excess. When c−1 > d(rj , cj), the arm excess of the column c−1 is exactly 1, (r′, c−1)

is also the topmost cell containing an arm. For c − 1 = d(rj , cj), the path pathj has reached its

destination. At that point, any column to the right of d(rj , cj) has 0 arm excess. It follows from

Lemma 3.2.5 that the cell (r
(αj)
j , c

(αj)
j) is also the topmost cell containing an arm. �

Proposition 3.2.3. The tableau T
(s+1)
j is a semistandard hook-valued tableau for all 0 6 j 6

e− 1 and for all 0 6 s < αj+1.

Proof. We only need to check that the q in Step 2 of Definition 3.2.6 is greater or equal to

the hook entry and arm of the cell q is to be inserted into. When q is the only arm element, it is

obvious that q is greater or equal to the hook entry.

The case when q is not the only arm element can only happen when we reach the destination

column of the path. By the proof of Lemma 3.2.5, we have that for q
(s)
j+1 > q

(s+zj)
j for s > 1 and

for j such that d(rj , cj) = d(rj+1, cj+1). Hence the statement follows by setting k = αj+1. �

71

Before we define the “inverse” of the uncrowding map U : HVT(λ) → tµ⊇λSVT(µ) × F̂(µ/λ),

we need to restrict our domain to a subset Kλ of tµ⊇λSVT(µ)× F̂(µ/λ), as the image of U is not

all of tµ⊇λSVT(µ)× F̂(µ/λ). We define:

Kλ(µ) :={(S, F) ∈ SVT(µ)× F̂(µ/λ) | weight(T (s)
j) = weight(S), ∀ 0 6 j 6 e− 1, ∀ 0 6 s 6 αj+1},

Kλ :=
⊔
µ⊇λ

Kλ(µ).

Remark 3.2.4. From the perspective of the uncrowding map, the set-valued tableau S in Ex-

ample 3.2.3 cannot be obtained from a shape (1, 1) hook-valued tableau via the uncrowding map as

explained in Remark 3.2.2. We say the cell (1, 2) in S practices social distancing. In this case,
3

2

1

3

2

,
1

 /∈ K(1,1).

The (S, F) in Example 3.2.4 is in K(3,2,1)(5, 3, 2).

Definition 3.2.8. We can now define the crowding map C for any partition λ as follows,

C : Kλ −→ HVT(λ)

(S, F) 7→ T (0)
e .

Proposition 3.2.4. The image of the uncrowding map U : HVT(λ)→ tµ⊇λSVT(µ)× F̂(µ/λ)

is a subset of Kλ. Moreover, we have C ◦ U = 1HVT(λ).

Proof. We show that if h̃ = Vb(h), where h ∈ HVT, Vb is as defined in Definition 3.2.1 and

h̃ is obtained by moving some letter(s) from the cell (r, c) to (r̃, c+ 1) (potentially adding a box),

then Cb([h̃, (r̃, c+ 1)]) = [h′, (r′, c)] satisfies [h′, (r′, c)] = [h, (r, c)].

We follow the notation used in Definitions 3.2.1 and 3.2.6. Thus a = max(Ah(r, c)). We have

that Hh(r̃, c) 6 a. If cell (r + 1, c) is in h, then Hh(r + 1, c) > a.

Case (1): r̃ 6= r.

72

Case (1A): If cell (r̃, c+ 1) is not in h, then h′ is obtained by adding cell (r̃, c+ 1) and moving a

from Ah(r, c) to Hh(r̃, c+ 1). Under the action of Cb, by Step 1, b = a and r′ = r. Cb appends a to

Ah̃(r, c) and removes cell (r̃, c+ 1), which recovers h.

−
−− a
−
−
−
−−

−
−

Vb−→

−
−−
−
− a
−
−−

−
−

−
−− a

−
−−

−
k
−

Vb−→

−
−−

−
−−

−
a
− k

Figure 3.7. Left: case (1A): (r̃, c+ 1) is not in h. Right: case (1B): (r̃, c+ 1) is in h.

Case (1B): If cell (r̃, c + 1) is in h, then k ∈ L+h (r̃, c + 1) is the smallest number that is greater

than or equal to a in column c+ 1. h′ is obtained by removing a from Ah(r, c), replacing k with a,

and attaching k to Ah(r̃, c + 1). Under the action of Cb, by Step 1, we can see that m = k, b = a

and r′ = r. By Step 3(b)i, q = b = a, and a is appended to Ah̃(r, c) and q = a in Lh̃(r̃, c + 1) is

replaced with m = k. In the end, m is removed from Ah̃(r̃, c+ 1). We recover h.

Case (2): r̃ = r. Let ` = max(L+h (r, c)).

Case (2A): If cell (r, c+ 1) is not in h, Vb adds cell (r, c+ 1), removes the part of Lh(r, c) that is

greater than a to Lh(r, c+ 1) and moves a from Ah(r, c) to Hh(r, c+ 1). Under the action of Cb, by

Step 1, m = a and b = `. Thus r′ = r. By Step 3(a)ii, we move Lh̃(r, c + 1) into Lh̃(r, c) and we

recover h.

`
∗
−
−− a

Vb−→ −
−−

`
∗
a

`
∗
−
−− a

−
−
k

Vb−→
−
−−

−
−
`
∗
a k

Figure 3.8. Left: Case (1A): (r, c+ 1) is not in h. Right: Case (1B): (r, c+ 1) is in h.

Case (2B): If cell (r, c+1) is in h, h̃ is obtained by moving the part of Lh(r, c) that is greater than

a to Lh(r, c+ 1), moving a from Ah(r, c) to Hh(r, c+ 1), and appending k to Ah(r, c+ 1). Under the

action of Cb, by Step 1, m = k and b = `. Then r′ = r and q = a. By Step 3(a)i, we move the set

73

{x ∈ Lh̃(r, c) | a < x 6 k} from Lh̃(r, c+ 1) into Lh̃(r, c), which is the set that was moved from cell

(r, c) by Vb. Removing k from Ah̃(r, c+ 1) and setting Hh̃(r, c+ 1) = k, we recover h.

Now we have proven Cb([h̃, (r̃, c+ 1)]) = [h′, (r′, c)] = [h, (r, c)]. It follows that for any (S, F) =

U(h), we have that T
(s)
j is semistandard and has the same weight as S for all 0 6 j 6 e− 1, for all

0 6 s 6 αj+1. Thus image(U) ⊂ Kλ and C ◦ U = 1HVT(λ). �

Proposition 3.2.5. Kλ is a subset of the image of U : HVT(λ) → tµ⊇λSVT(µ) × F̂(µ/λ).

Moreover, U ◦ C = 1Kλ.

Proof. Let (S, F) ∈ Kλ, then for all 0 6 j < e and for all 0 6 s < αj+1, Cb([T
(s)
j , (r, c)]) =

[T
(s+1)
j , (r′, c − 1)] for some r, c, r′. We show that Vb(T

(s+1)
j) = T

(s)
j for all 0 6 j < e and for all

0 6 s < αj+1. Following the notation in Definition 3.2.1, we first locate the rightmost column that

contains nonzero arm excess, then determine the topmost cell in row r̃ in that column with nonzero

arm excess. We denote by a the largest arm element in that cell.

By Lemma 3.2.6, in T
(s+1)
j , column c− 1 is the rightmost column with nonzero arm excess and

(r′, c− 1) is the topmost cell in column c− 1 with nonzero arm excess.

Case (1): r′ = r. In this case either cell (r+1, c−1) does not exist in T
(s)
j , or H

T
(s)
j

(r+1, c−1) > b.

Case (1A): A
T

(s)
j

(r, c) = ∅. m = H
T

(s)
j

(r, c) and b = max(L+
T

(s)
j

(r, c)). Since r′ = r, q = m, T
(s+1)
j is

obtained by appending m to A
T

(s)
j

(r, c− 1), moving L
T

(s)
j

(r, c) into L
T

(s)
j

(r, c− 1), and removing cell

(r, c) from T
(s)
j . Note that everything in L

T
(s)
j

(r, c) is greater than m and everything in L
T

(s)
j

(r, c−1)

is smaller or equal to m.

For the Vb action, we have a = m and b is the greatest letter in L
T

(s+1)
j

(r, c − 1). Since every

letter in T
(s+1)
j (r′′, c) is smaller than m for r′′ < r, we have r̃ = r. Vb acts on T

(s+1)
j by adding

the cell (r, c), setting the hook entry to be m, and moving (m, b] ∩ L
T

(s+1)
j

(r, c− 1) to L
T

(s+1)
j

(r, c).

Then we recover T
(s)
j .

−
−−

b
∗
m

Cb−→

b
∗
−
−−m

−
−−

−
b
∗
q m

Cb−→

b
∗
−
−− q

−
m

Figure 3.9. Left: Case (1A): A
T

(s)
j

(r, c) = ∅. Right: Case (1B): A
T

(s)
j

(r, c) 6= ∅.

74

Case (1B): A
T

(s)
j

(r, c) 6= ∅. m is the only element in A
T

(s)
j

(r, c), q = H
T

(s)
j

(r, c) and b = max{x ∈

L+
T

(s)
j

| x 6 m}. T
(s+1)
j is obtained by appending q to A

T
(s)
j

(r, c − 1), setting H
T

(s)
j

(r, c) to be m,

deleting A
T

(s)
j

, and moving {x ∈ L
T

(s)
j (r,c)

| q < x 6 m} to L
T

(s)
j

(r, c− 1).

For the Vb action, a = q and b is the greatest letter in L
T

(s+1)
j

(r, c − 1). Since every letter

in T
(s+1)
j (r′′, c) is smaller than q for r′′ < r and m > q, r̃ = r. Vb acts on T

(s+1)
j by setting

H
T

(s+1)
j

(r, c) = q, A
T

(s+1)
j

(r, c) = m, and moving (q, b] ∩ L
T

(s+1)
j

(r, c− 1) to L
T

(s+1)
j

(r, c). We recover

T
(s)
j .

Case (2): r′ 6= r.

Case (2A): A
T

(s)
j

(r, c) = ∅. Note that in this case, Cb will move m somewhere else and remove the

cell (r, c). Since weight(T
(s+1)
j) = weight(T

(s)
j), we must have that L

T
(s)
j

(r, c) = ∅. So b = q = m.

T
(s+1)
j is obtained from T

(s)
j by appending m to A

T
(s)
j

(r′, c− 1) and removing the cell (r, c).

For the Vb action, a = m. Since every letter in T
(s+1)
j (r′′, c) is smaller than m for r′′ < r, a new

cell (r, c) is added, r̃ = r. Vb acts on T
(s+1)
j by moving m to H

T
(s+1)
j

(r, c). We recover T
(s)
j .

−
−−
−
− m
−
−−

−
−

Cb−→

−
−−m
−
−
−
−−

−
−

−
−−

−
−−

−
b
−m

Cb−→

−
−− b

−
−−

−
m
−

Figure 3.10. Left: case (2A): A
T

(s)
j

(r, c) = ∅. Right: case (2B): A
T

(s)
j

(r, c) 6= ∅.

Case (2B): A
T

(s)
j

(r, c) 6= ∅. m is the only element in A
T

(s)
j

(r, c), q = b = max{x ∈ L+
T

(s)
j

(r, c) | x 6

m}. T
(s+1)
j is obtained by appending b to A

T
(s)
j

(r′, c − 1), replacing b in L
T

(s)
j

(r, c) with m, and

removing m from A
T

(s)
j

(r, c).

For the Vb action, a = b. Since every letter in T
(s+1)
j (r′′, c) is smaller than b for r′′ < r, m is the

smallest letter that is greater or equal to b in column c. Hence r̃ = r. Vb acts on T
(s+1)
j by removing

b from A
T

(s+1)
j

(r′, c − 1), replacing m in L
T

(s+1)
j

(r, c) with b, and attaching m to A
T

(s+1)
j

(r, c). We

recover T
(s)
j .

Therefore we have Vb(T
(s+1)
j) = T

(s)
j for all 0 6 j 6 e−1, for all 0 6 s < αj , and V(T

(0)
j+1) = T

(0)
j .

It follows that we also recover the recording tableau F . Thus U(T
(0)
e) = (S, F). �

75

Corollary 3.2.3. The uncrowding map U is a bijection between HVT(λ) and Kλ with inverse

C.

3.2.5. Alternative uncrowding on hook-valued tableaux. In Section 3.2.1, we defined

an uncrowding map sending hook-valued tableaux to pairs of tableaux with one being set-valued

and the other being column-flagged increasing. As hook-valued tableaux were introduced as a

generalization of both set-valued tableaux and multiset-valued tableaux, it is natural to ask if there

is an uncrowding map taking hook-valued tableaux to pairs of tableaux with one being multiset-

valued. In this section we provide such a map.

Definition 3.2.9. The multiset uncrowding bumping Ṽb : HVT → HVT is defined by the fol-

lowing algorithm:

(1) Initialize T as the input.

(2) If the leg excess of T equals zero, return T.

(3) Find the topmost row that contains a cell with nonzero leg excess. Within this column,

find the cell with the largest value in its leg. (This is the rightmost cell with nonzero leg

excess in the specified row.) Denote the row index and column index of this cell by r and

c, respectively. Denote the cell as (r, c), its largest leg entry by `, and its rightmost arm

entry by a.

(4) Look at the row above (r, c) (i.e. row r + 1) and find the leftmost number that is strictly

greater than `.

• If no such number exists, attach an empty cell to the end of row r + 1 and label the

cell as (r + 1, c̃), where c̃ is its column index. Let k be the empty character.

• If such a number exists, label the value as k and the cell containing k as (r + 1, c̃)

where c̃ is the cell’s column index.

We now break into cases:

(a) If c̃ 6= c, then remove ` from LT (r, c), replace k with `, and attach k to the leg of

LT (r + 1, c̃).

76

(b) If c̃ = c then remove [`, a]∩AT (r, c) from AT (r, c) where [`, a]∩AT (r, c) is the multiset

{z ∈ AT (r, c) | ` 6 z 6 a}. Remove ` from LT (r, c), insert [`, a] ∩ AT (r, c) into

AT (r + 1, c̃), replace the hook entry of (r + 1, c̃) with `, and attach k to LT (r + 1, c̃).

(5) Output the resulting tableau.

Definition 3.2.10. The multiset uncrowding insertion Ṽ : HVT → HVT is defined as Ṽ(T) =

Ṽdb (T), where the integer d > 1 is minimal such that shape(Ṽdb (T))/shape(Ṽd−1b (T)) 6= ∅ or Ṽdb (T) =

Ṽd−1b (T).

Definition 3.2.11. Let T ∈ HVT(λ) with leg excess α. The multiset uncrowding map

Ũ : HVT(λ)→
⊔
µ⊇λ

MVT(µ)×F(µ/λ)

is defined by the following algorithm:

(1) Let P̃0 = T and let Q̃0 be the flagged increasing tableau of shape λ/λ.

(2) For 1 6 i 6 α, let P̃i+1 = Ṽ(P̃i). Let r be the index of the topmost row of P̃i containing

a cell with nonzero leg excess and let r̃ be the row index of the cell shape(P̃i+1)/shape(P̃i).

Then Q̃i+1 is obtained from Q̃i by appending the cell shape(P̃i+1)/shape(P̃i) to Q̃i and

filling this cell with r̃ − r.

Define Ũ(T) = (P̃ (T), Q̃(T)) := (P̃α, Q̃α).

Example 3.2.5. Let T be the hook-valued tableau

T =

79

233

8

78

1

3

223

7

4

.

77

Then, we obtain the following sequence of tableaux Ṽ ib(T) for 0 6 i 6 2 = d when computing the

first multiset uncrowding insertion:

79

233

8

78

1

3

223

7

4

→

9

78

233 78

1

3

223

7

4

→

9

78

233 78

1

3

223

7

4

= Ṽ(T).

Continuing with the remaining multiset uncrowding insertions, we obtain the following sequences

of tableaux for the multiset uncrowding map:

79

233

8

78

1

3

223

7

4

→

9

78

233 78

1

3

223

7

4

→

9

78 8

233 77

1

3

223 4

→

9

8

77 8

233 337

1 22 4

= P̃ (T),

→

2

→

2

2
→

4

2

2 = Q̃(T).

Proposition 3.2.6. Let T ∈ HVT. Then Ũ(T) is well-defined.

Proof. The statement follows from a similar argument to the proofs found in Corollary 3.2.1

and Lemma 3.2.2. �

Similar to the uncrowding map U , the multiset uncrowding map Ũ interwines with the corre-

sponding crystal operators.

Theorem 3.2.2. Let T ∈ HVT.

(1) If fi(T) = 0, then fi(P̃ (T)) = 0.

(2) If ei(T) = 0, then ei(P̃ (T)) = 0.

78

(3) If fi(T) 6= 0, we have fi(P̃ (T)) = P̃ (fi(T)) and Q̃(T) = Q̃(fi(T)).

(4) If ei(T) 6= 0, we have ei(P̃ (T)) = P̃ (ei(T)) and Q̃(T) = Q̃(ei(T)).

Proof. The proof follows similarly to those found in Proposition 3.2.1, Lemma 3.2.4, and

Theorem 3.2.1. �

3.3. Applications

In this section, we provide the expansion of the canonical Grothendieck polynomials Gλ(x;α, β)

in terms of the stable symmetric Grothendieck polynomials Gµ(x;β = −1) and in terms of the dual

stable symmetric Grothendieck polynomials gµ(x;β = 1) using techniques developed in [1]. We

first review the basic definitions and Schur expansions of the two polynomials.

Recall from (1.2), that the stable symmetric Grothendieck polynomial is the generating function

of set-valued tableaux

Gµ(x;−1) =
∑

S∈SVT(µ)

(−1)|S|−|µ|xweight(S).

Its Schur expansion can be obtained from the crystal structure on set-valued tableaux [22]

Gµ(x;−1) =
∑

S∈SVT(µ)
ei(S)=0 ∀i

(−1)|S|−|µ| sweight(S).

Definition 3.3.1. The reading word word(S) = w1w2 · · ·wn of a set-valued tableau S ∈ SVT(µ)

is obtained by reading the elements in the rows of S from the top row to the bottom row in the

following way. In each row, first ignore the smallest element of each cell and read all remaining

elements in descending order. Then read the smallest elements of each cell in ascending order.

Example 3.3.1. The reading word of P (T) in Example 3.2.1 is word(P (T)) = 8675423362111567.

Example 3.3.2. The highest weight set-valued tableaux of shape (2) are

1 1 ,
1

2

1
,

1

3

2

1

,

1

4

3

2

1

, . . . ,

79

which gives the Schur expansion

G(2)(x;−1) = s2 − s21 + s211 − s2111 ± · · · .

The dual stable symmetric Grothendieck polynomials gµ(x; 1) are dual to Gµ(x;−1) under the

Hall inner product on the ring of symmetric functions.

Definition 3.3.2. A reverse plane partition of shape µ is a filling of the cells in the Ferrers

diagram of µ with positive integers, such that the entries are weakly increasing in rows and columns.

We denote the collection of all reverse plane partitions of shape µ by RPP(µ) and the set of all

reverse plane partitions by RPP.

The evaluation ev(R) of a reverse plane partition R ∈ RPP is a composition α = (αi)i>1, where

αi is the total number of columns in which i appears. The reading word word(R) is obtained by

first circling the bottommost occurrence of each letter in each column, and then reading the circled

letters row-by-row from top to bottom and left to right within each row.

Example 3.3.3.

R =
1 2

1 1 3
∈ RPP((3, 2)), ev(R) = (2, 1, 1), word(R) = 2113.

Lam and Pylyavskyy [15] showed that the dual stable symmetric Grothendieck polynomials

gµ(x; 1) are generating functions of reverse plane partitions of shape µ

gµ(x; 1) =
∑

R∈RPP(µ)

xev(R).

They also provided the Schur expansion of the dual stable symmetric Grothendieck polynomials [15,

Theorem 9.8]

gµ(x; 1) =
∑
F

sinnershape(F),

where the sum is over all flagged increasing tableaux whose outer shape is µ.

Example 3.3.4. When µ = (µ1) is a partition with only one row, we have g(µ1)(x; 1) = s(µ1).

80

The flagged increasing tableaux of outer shape (2, 1, 1) are

,

1

,

2

,

2

1

.

Hence g211(x; 1) = s211 + 2s21 + s2.

According to [1], a symmetric function fα over the ring R is said to have a tableaux Schur

expansion if there is a set of tableaux T(α) and a weight function wtα : T(α)→ R so that

fα =
∑

T∈T(α)

wtα(T)sshape(T).

Furthermore, any symmetric function with such a property has the following expansion in terms of

Gµ(x;−1) and gµ(x; 1).

Theorem 3.3.1. [1, Theorem 3.5] Let fα be a symmetric function with a tableaux Schur

expansion fα =
∑

T∈T(α) wtα(T)sshape(T) for some T(α). Let S(α) and R(α) be defined as sets of

set-valued tableaux and reverse plane partitions, respectively, by

S ∈ S(α) if and only if P (word(S)) ∈ T(α), and

R ∈ R(α) if and only if P (word(R)) ∈ T(α),

where P (w) is the RSK insertion tableau of the word w. We also extend wtα to S(α) and R(α) by

setting wtα(X) := wtα(P (word(X))) for any X ∈ S(α) or R(α). Then we have

fα =
∑

R∈R(α)

wtα(R)Gshape(R)(x;−1), and

fα =
∑

S∈S(α)

wtα(S)(−1)|S|−|shape(S)|gshape(S)(x; 1).

Proposition 3.3.1. The canonical Grothendieck polynomials have a tableaux Schur expansion.

Proof. Recall the uncrowding map on set-valued tableaux of Definition 1.2.5

USVT : SVT(µ) −→
⊔
ν⊇µ

SSYT(ν)×F(ν/µ).

81

By Corollary 3.2.3, we have a bijection

U : HVT(λ)→ Kλ =
⊔
µ⊇λ

Kλ(µ).

Note that Kλ ⊆
⊔
µ⊇λ SVT(µ)× F̂(µ/λ). Denote

φλ(S) = |{F ∈ F̂ | (S, F) ∈ Kλ}|.

Note that sometimes φλ(S) = 0.

Given H ∈ HVT(λ), we have U(H) = (S, F) ∈ SVT(µ)×F̂(µ/λ) for some µ ⊇ λ and |µ| = |λ|+

a(H). We can also obtain USVT(S) = (T,Q) ∈ SSYT(ν)×F(ν/µ) for some ν ⊇ µ and |ν| = |H|. The

weights ofH,S and T are the same. WhenH is highest weight, that is ei(H) = 0 for all i, then S and

T are also of highest weight and weight(H) = shape(T). Denote by HVTh(λ),SVTh(λ),SSYTh(λ)

the subset of highest weight elements in HVT(λ), SVT(λ), SSYT(λ), respectively.

Applying [11, Theorem 4.6] and the above correspondence, we obtain

Gλ(x;α, β) =
∑

H∈HVTh(λ)

αa(H)β`(H)sweight(H) =
∑
µ⊇λ

∑
(S,F)∈Kλ(µ)

α|µ|−|λ|β|S|−|µ|sweight(S)

=
∑
µ⊇λ

∑
S∈SVTh(µ)

φλ(S)α|µ|−|λ|β|S|−|µ|sweight(S)

=
∑
µ⊇λ

∑
ν⊇µ

∑
T∈SSYTh(ν)

∑
Q∈F(ν/µ)

φλ(U−1SVT(T,Q))α|µ|−|λ|β|ν|−|µ|sweight(T)

=
∑
µ⊇λ

∑
ν⊇µ

∑
T∈SSYTh(ν)

α|µ|−|λ|β|ν|−|µ|
∑

Q∈F(ν/µ)

φλ(U−1SVT(T,Q))sshape(T)

=
∑

T∈T(λ)

wtλ(T)sshape(T),

where T(λ) = {T ∈ SSYTh(ν) | ν ⊇ λ} and

wtλ(T) =
∑

µ:λ⊆µ⊆shape(T)

α|µ|−|λ|β|shape(T)|−|µ|
∑

Q∈F(shape(T)/µ)

φλ(U−1SVT(T,Q)).

�

82

Corollary 3.3.1. The canonical Grothendieck polynomials have Gµ(x;−1) and gµ(x; 1) ex-

pansions:

Gλ(x;α, β) =
∑

R∈R(λ)

wtλ(R)Gshape(R)(x;−1),

Gλ(x;α, β) =
∑

S∈S(λ)

wtλ(S)(−1)|S|−|shape(S)|gshape(S)(x; 1).

Example 3.3.5. We compute the first couple of terms in G(2)(x;α, β) = s2 + βs21 + 2αs3 +

2αβs31 + · · · . The semistandard Young tableaux involved are

T((2)) =

1 1

,
2

1 1
,

1 1 1
,

2

1 1 1
, . . .

 .

Labelling the tableaux T1, T2, T3, T4, . . . , we have wt(2)(T1) = 1,wt(2)(T2) = β,wt(2)(T3) = 2α,

wt(2)(T4) = 2αβ. Next we compute the elements in R((2)) and S((2)) that correspond to T1 and T2:

{R ∈ R((2)) | P (word(R)) = T1} =
{

1 1
,

1

1 1
,

1 1

1 1
,

1

1

1 1
, . . .

}

{R ∈ R((2)) | P (word(R)) = T2} =
{ 2

1 1
,

1 2

1 1
,

2

1

1 1
,

2

2

1 1
, . . .

}
{S ∈ S((2)) | P (word(S)) = T1} =

{ 1 1 }
{S ∈ S((2)) | P (word(S)) = T2} =

{ 2

1 1
,

1

2

1

}
.

Applying the expansion formulas, we obtain

G(2)(x;α, β) =(G(2)(x;−1) +G(21)(x;−1) +G(22)(x;−1) +G(211)(x;−1) + · · ·)

+ β(G(21)(x;−1) +G(22)(x;−1) + 2G(211)(x;−1) + · · ·) + · · ·

G(2)(x;α, β) =g(2)(x; 1) + β(g(21)(x; 1)− g(2)(x; 1)) + · · · .

83

APPENDIX A

Proofs for Crystal for stable Grothendieck polynomials

A.1. Proofs for ?-insertion

A.1.1. Proof of Lemma 2.2.1.

Proof. We will prove (1) by induction on the number of cells of P . Statement (2) will follow

by some results in the proof of statement (1).

Consider the leftmost column [q, x]t of [k,h]t and let [k′,h′]t be the Hecke biword formed by

taking the remaining columns in the same order. If the ?-insertion of [k′,h′]t yields (P ′, Q′), note

that we have P = P ′ ← x. For all integers j > 1, denote by Rj the (possibly empty) j-th row of

P ′. Denote by u the entry to be inserted into Rj and Bj as the cell in the insertion path at Rj ,

where 1 6 j 6 k. Additionally, if bumping occurs at Rj , denote the entry bumped out as y.

(1) We will prove that if (P ′)t is semistandard, then the transpose of the updated tableau is

semistandard.

Case (a): Suppose that the insertion terminates at R1. Then Case 1 of the ?-insertion has oc-

curred, with a cell containing x appended at the end of the row. If R1 is nonempty, then

x > max(R1). Additionally, as (P ′)t is semistandard, integers strictly increase along R1

but weakly increase along the column containing B1. Hence, the transpose of the resulting

tableau P is semistandard.

Case (b): Suppose that insertion terminates at Rk, where k > 1. We will show that for all

1 6 j 6 k, the changes introduced at row Rj of P ′ maintain the property that the

transpose of the updated tableau is semistandard.

Case (b)(i): Suppose that j = k. In this case, a new cell containing u is appended at the end of

Rk and u > max(Rk) if the row is nonempty, proving that the integers increase strictly

along Rk.

84

If Case 2 occurs at Rk−1, then u is the entry bumped out of Rk−1 with the property

that when u′ is inserted into Rk−1, u ∈ Rk−1 is the smallest entry with u > u′. Let z be

the entry below cell Bk. We claim that z 6 u. If we assume instead that z > u, then the

cell containing z is strictly to the right of Bk−1. However, the cell above Bk−1 has value

greater than u since (P ′)t is semistandard and u /∈ Rk. This contradicts the minimality of

u′, as u′ is greater than this value, hence proving the claim.

If Case 3 occurs at Rk−1, then u is bumped out of Rk−1 with the property that when

u′ is inserted into Rk−1, u ∈ Rk−1 is the smallest entry with [u, u′] ⊆ Rk−1. Let z be the

entry below cell Bk. Then, similar to the argument immediately before, z 6 u′. Hence, we

have established that the integers weakly increase along the column containing Bk after u

is appended at the end of Rk.

Case (b)(ii): Suppose that 1 6 j < k and Case 2 occurs at Rj . Then y is the entry bumped out

of Rj with the property that when u is inserted into Rj , y ∈ Rj is the smallest entry with

y > u. Thus, as u /∈ Rj , for all entries z and z′ respectively to the left and to the right of

Bj , we have z < u < y < z′.

If Case 2 occurs at Rj−1, then u is bumped out of Rj−1 with the property that when

u′ is inserted into Rj−1, u ∈ Rj−1 is the smallest entry with u > u′. Let z be the entry

below cell Bj . Then by repeating the same argument as in the first subcase of in Case

(b)(i), we obtain z 6 u.

If Case 3 occurs at Rj−1, then u was bumped out of Rj−1 with the property that when

u′ is inserted into Rj−1, u ∈ Rj−1 is the smallest entry with [u, u′] ⊆ Rj−1. Let z be the

entry below cell Bj . Then by repeating the same argument as in the second subcase of in

Case (b)(i), we obtain z 6 u′.

Hence, we have established that integers increase weakly along the column containing

Bj but increase strictly along Rj after u bumps out y.

Case (b)(iii): Suppose that 1 6 j < k and Case 3 occurs at Rj . In this case, there are no changes

to row Rj after inserting u and bumping y. Hence, it is trivial that integers increase weakly

along the column containing Bj but increase strictly along Rj after u bumps out y.

85

In all cases, we have shown that if (P ′)t is semistandard, then the transpose of the updated tableau

remains semistandard. Therefore, by induction on the number of added cells, we have proved that

the insertion tableau P under ?-insertion satisfies the property that P t is semistandard.

Finally, note that the shape of the recording tableau is modified only when Case 1 of the ?-

insertion has occurred. In this case, a cell is added to form Q at the same position as the cell added

to form P . Since we always begin with a pair of empty tableaux, by inducting on the number of

added cells, the shapes of P and Q are the same.

(2) Suppose that the insertion terminates at Rk, where k > 1. We shall prove that Bj is weakly

to the left of Bj−1 for all 1 < j 6 k by revisiting the cases explored in the proof of part (1) (note

that P should replace the role of P ′).

If Case 2 occurs at Rj−1, then u is the entry bumped out of Rj−1 with the property that when

u′ is inserted into Rj−1, u ∈ Rj−1 is the smallest entry with u > u′. As in the proof of the first

subcase of Case (b)(i) in part (1), we conclude that the entry z of the cell below Bk satisfies z 6 u,

showing that Bj is weakly to the left of Bj−1.

If Case 3 occurs at Rj−1, then u was bumped out of Rj−1 with the property that when u′ is

inserted into Rj−1, u ∈ Rj−1 is the smallest entry with [u, u′] ⊆ Rj−1. As in the proof of the second

subcase of Case (b)(i) in part (1), we conclude that the entry z of the cell below Bj satisfies z 6 u′,

Bj is weakly to the left of Bj−1.

This completes the proof. �

A.1.2. Proof of Lemma 2.2.2.

Proof. To prove (2.2), let us first prove the following statements for all row tableaux P :

• With the assumptions in lemma, if insertion terminates at row P while computing P ← x,

then

row(P ← x) ≡H0 row(P) · x.

• With the assumptions in lemma, if y is bumped from row P and P changes to P ′ while

computing P ← x, then

row(P ← x) ≡H0 y · row(P ′).

86

Assume that insertion terminates at row P while computing P ← x. Then, Case 1 must have

occurred and P changes to P ′, where P ′ is P appended by a cell containing x. Hence, we have

row(P ← x) ≡H0 row(P ′) ≡H0 row(P) · x.

Assume that y is bumped from row P and P changes to P ′ while computing P ← x. Then,

either Case 2 or Case 3 must have occurred.

If Case 2 occurs at P , then x 6∈ P and there is a y ∈ P with y > x; furthermore, y is the smallest

value with such property. Write P as AyB, where A and B are the row subtableaux of P formed

by entries to the left and to the right of y, respectively. Then, P ← x is the tableau with row

Axb followed by row y. As x /∈ P , we have max(A) < x < y < min(B). Hence by commutativity

relations, for all z ∈ B, we have z · x ≡H0 x · z and for all z ∈ A, we have z · y ≡H0 y · z, so that

regarding A and B as words in H0(n), we obtain

A · y ≡H0 y ·A, B · x ≡H0 x ·B.

It follows that

row(P) ·x ≡H0 row(AyB) ·x ≡H0 A ·y ·B ·x ≡H0 y ·A ·x ·B ≡H0 y · row(AxB) ≡H0 row(P ← x).

If Case 3 occurs at P , then x, y ∈ P with y being the smallest value such that [y, x] ⊆ P . Write

P as ABC, where B = [y, x], A and C are respectively the row subtableaux of P formed by entries

to the left and to the right of B. Then, P ← x is the tableau with row ABC followed by row y.

As row(P) · x was assumed to be fully-commutative, x+ 1 /∈ P . Furthermore, by minimality of y,

y > max(A) + 1. Hence, by commutativity relations, for all z ∈ A, we have z · y ≡H0 y · z and for

all z ∈ C, we have x · z ≡H0 z · x, so that

A · y ≡H0 y ·A, C · x ≡H0 x · C.

87

Moreover, by using the relations p− 1 p p = p− 1 p− 1 p, we have y · B ≡H0 B · x. It follows

that

row(P)·x ≡H0 row(ABC)·x ≡H0 A·B ·C ·x ≡H0 A·y ·B ·C ≡H0 y ·row(ABC) ≡H0 row(P ← x).

Hence, the two statements above hold for all row tableaux P .

We are now ready to prove (2.2) in full generality. The result follows once we prove by induction

on the number of rows of P , with the given setup above, that the following statements hold:

• If the insertion terminates within tableau P while computing P ← x, then

row(P ← x) ≡H0 row(P) · x.

• If y is bumped from tableau P and P changes to P ′ while computing P ← x, then

row(P ← x) ≡H0 y · row(P ′).

Indeed, if P is a (possibly empty) row tableau, then we are done by the two previous statements

that have been proved. Let k > 1 be an arbitrary integer. Assume that both statements mentioned

above hold for all such tableaux P with k rows.

Let P be a tableau with k + 1 rows with the setup as above. Then, we may consider the

subtableau P ∗ formed from its first k rows and denote the final row as R. Note that row(P) =

row(R) · row(P ∗) and row(R) is fully-commutative.

Assume that the changes from P to P ← x involve at most the first k rows of P . Then P ← x

is the same tableau as P ∗ ← x with an extra row R, so that by the inductive hypothesis,

row(P ← x) ≡H0 row(R) · row(P ∗ ← x) ≡H0 row(R) · row(P ∗) · x ≡H0 row(P) · x.

Now assume that the changes from P to P ← x involves all k + 1 rows of P . Let P ′ be the

resulting tableau after performing these changes on P ∗ and let y be the entry bumped from the

final row of P ∗. Then, P ← x is the tableau obtained by concatenating tableau R← y after P ′.

88

If the insertion terminates at row R, then by the previous statements for all row tableaux and

the inductive hypothesis, we obtain

row(P ← x) ≡H0 row(R← y) · row(P ′) ≡H0 row(R) · y · row(P ′)

≡H0 row(R) · row(P ∗ ← x) ≡H0 row(R) · row(P ∗) · x ≡H0 row(P) · x.

Otherwise, if the insertion bumps z from R and R changes to R′ while computing R← y, then

it holds that the insertion bumps z from P while computing P ← x. In this case, if we denote P ′′

as the tableau P ′ concatenated by row R′, then

row(P) · x ≡H0 row(R← y) · row(P ′) ≡H0 z · row(R′) · row(P ′) ≡H0 z · row(P ′′) ≡H0 row(P ← x).

This completes the induction. �

A.1.3. Proof of Lemma 2.2.3.

Proof. Similar to Fulton’s proof [9] of the Row Bumping Lemma, we will keep track of the

entries as they are bumped from a row. Consider a row R of tableau P and suppose that u and u′

are to be inserted into R when computing P ← x and (P ← x) ← x′ respectively, where u < u′.

Denote by C (similarly C ′) the box in π (similarly π′) that is also in R.

Case 1: x < x′. We will prove that the following assertions hold for R:

(a) If the insertion terminates at R while computing P ← x, then the insertion terminates at

R while computing (P ← x)← x′.

(b) C ′ is strictly to the right of C.

Note that the insertion terminates at R when computing P ← x precisely when Case 1 of the

?-insertion occurs at R. Box C containing u is appended at the end of R. As u′ > u, Case 1 occurs

again at R with box C ′ containing u′ appended to the right of C, so bumping does not occur at R

when computing (P ← x)← x′. This proves (a) and simultaneously, (b) for this case.

Let us assume that bumping occurs at R with y bumped out when computing P ← x.

Case A: If y is bumped from R because Case 2 occurs, the insertion at row R introduced to box

C ′ occurs strictly to the right of C (containing u) because:

89

(i) If u′ > max(R), then box C ′ containing u′ is appended to the end of R by Case 1. In

particular, C ′ appears strictly to the right of C.

(ii) Otherwise, since u′ > u, the letter u′ is inserted into a box C ′ strictly to the right

of C with y′ bumped out. If u′ /∈ R, Case 2 occurs and y′ > y because C ′ and C

originally contained y′ and y respectively. Else, u′ ∈ R and Case 3 occurs. Suppose

that [y′, u′] is the longest interval of consecutive integers contained in R. Since box C

that originally contained y is strictly to the left of C ′, we have u < y < u′. Therefore,

[u, u′] cannot be contained in R, so y < y′.

Case B: Otherwise, y is bumped from R because Case 3 occurs when computing P ← x and

[y, u] is the longest interval of consecutive integers contained in R by Remark 2.2.2. The

insertion at row R introduced to box C ′ occurs strictly to the right of C (containing u)

because:

(i) If either u′ > max(R) or u′ /∈ R, then by similar arguments as in Case A(i) and Case

A(ii), C ′ appears to the right of C. Furthermore, in the latter situation, by a similar

argument in Case A(ii), we have y < y′.

(ii) Otherwise, u′ ∈ R and Case 3 occurs. As u′ > u, u′ is inserted into box C ′ strictly

to the right of C with y′ bumped out. In addition, [y′, u′] is the longest interval of

consecutive integers contained in R. As row(R) is fully-commutative before computing

P ← x, u + 1 /∈ R. Hence [u, u′] cannot be contained in R. It follows that y 6 u <

u+ 1 < y′.

Note that in the arguments above, we have also shown that if y and y′ are bumped from R when

computing P ← x and (P ← x) ← x′ respectively, then y < y′. It follows that we may apply

similar arguments in the rows following R. Since assertion (b) now holds for all rows, we conclude

that π′ is strictly to the right of π. In addition, π′ cannot continue after π ends because of assertion

(a). Considering that π′ goes weakly left by Lemma 2.2.1, we conclude that box B′ is strictly to

the right of and weakly below B.

Case 2: x > x′. We will prove that the following assertions hold for R:

90

(1) If the insertion terminates at R while computing P ← x, then bumping occurs at R while

computing (P ← x)← x′.

(2) C ′ is weakly to the left of C.

If the insertion terminates at row R when computing P ← x, then Case 1 occurs and box C

containing u is appended at the end of R. If u′ ∈ R, Case 3 occurs at R with y′ 6 u′ 6 u bumped

out. Furthermore, box C ′ containing u′ is weakly to the left of C. If u′ /∈ R, Case 2 occurs at R

with y′ > u′ bumped out and u′ < u. We have y′ 6 u by minimality of y′, so that box C ′ is weakly

to the left of C. In either of the subcases, bumping occurs at R when computing (P ← x) ← x′.

This proves (a) and simultaneously, (b) for this case.

Let us assume that bumping occurs at R with y bumped out when computing P ← x.

Case A: If y is bumped from R because Case 2 occurs when computing P ← x, the insertion at

row R introduced to box C ′ occurs weakly to the left of C (containing u) because:

(i) If u′ /∈ R, then u′ is inserted into box C ′ containing y′ by Case 2, while bumping out

this y′. As u′ < u, we have y′ 6 u < y and that C ′ appears weakly to the left of C.

(ii) Otherwise, u′ ∈ R and Case 3 occurs. The letter u′ is inserted into box C ′ weakly

to the left of C as u′ 6 u. In addition, if [y′, u′] is the longest interval of consecutive

integers in R, then y′ is bumped out. Furthermore, we have y′ < y as C, which

originally contained y before computing P ← x, is to the right of the box containing

y′.

Case B: Otherwise, y is bumped from R because Case 3 occurs when computing P ← x. Let [y, u]

be the longest interval of consecutive integers that is contained in R. The insertion at row

R introduced to box C ′ occurs weakly to the left of C (containing u) because:

(i) If u′ /∈ R, then u′ < u, u′ is inserted into box C ′ containing y′ and y′ is bumped out by

Case 2. As row(P) ·x is fully-commutative, in particular row(R) is fully-commutative.

Hence u′ < y, so that C ′ is weakly to the left of box containing y (hence also weakly

to the left of C). Furthermore, we have y′ 6 y by the minimality of y′.

(ii) If u′ ∈ R, then either u′ = u or u < u′. The former case is easy as Case 3 occurs

again with u′ inserted into C ′ = C and y′ = y is bumped out. If u < u′, then as

row(P) · x is fully-commutative, row(R) is fully-commutative, so that u′ < y − 1. It

91

follows that C ′ is strictly to the left of box containing y (hence also strictly to the left

of C). Furthermore, we have y′ 6 u′ < y − 1 < y.

Note that in the arguments above, we have also shown that if y and y′ are bumped from R

when computing P ← x and (P ← x)← x′ respectively, then y > y′. It follows that we may apply

similar arguments in the rows following R. Since assertion (b) now holds for all rows, we conclude

that π′ is weakly to the left of π. In addition, π′ must continue after π ends because of assertion

(a). Considering that π′ goes weakly left by Lemma 2.2.1, we conclude that box B′ is weakly to

the left of and strictly above B. �

A.2. Proofs of micro-moves

A.2.1. Proof of Lemma 2.3.1.

Proof. Let R be a single-row increasing tableau and M be the largest letter in R. First note

that if a ∈ R and row(R) · a is fully-commutative, then a+ 1 /∈ R, see also Remark 2.2.2.

There are five types of equivalence triples, so we discuss them in 3 groups.

1. Cases (I1) and (II1): We have x < z < y, or x < z = y and y > x + 1. In both cases

x′ = y, y′ = x, z′ = z.

Case (1A): M < x < z 6 y. In this case, the first resulting tableau is Rxyz =
R x z

and the

outputs are R(x) = Rx(y) = 0 and Rxy(z) = y. The second resulting tableau is Ryxz = R x z

and the outputs are R(y) = 0 = Ryx(z) and Ry(x) = y. So we have Rxyz = Ryxz and also

0 · 0 · y ∼ 0 · y · 0.

Case (1B): x 6 M < z 6 y. In this case, we have Rxy = Ryx and R(x) = Ry(x) since y is just

appended to the end of R and does not influence how x is inserted. This gives Rxyz = Ryxz. The

related outputs are Rx(y) = R(y) = 0, Rxy(z) = Ryx(z) = y. Thus, R(x) · 0 · y ∼ 0 ·R(x) · y.

Case (1C): x < z 6 M < y. In this case, we also have that Rxy = Ryx and R(x) = Ry(x), for

the same reason as case (1B). Thus, we have Rxyz = Ryxz and Rxy(z) = Ryx(z). Since we have

Rx(y) = R(y) = 0, R(x) · 0 ·Rxy(z) ∼ 0 ·Ry(x) ·Ryx(z).

Case (1D): x < z 6 y 6 M . If x is the maximal letter in Rx, then it follows as case (1B).

Otherwise, this case needs further separation into subcases.

92

Case 1D-(i): x, y /∈ R. Then x < R(x), y < R(y) and R(x) 6= y.

(1) If R(x) < y, then Rx(y) = R(y) and Ry(x) = R(x), which implies Rxy = Ryx, thus Rxyz = Ryxz

and Rxy(z) = Ryx(z). Hence R(x)Rx(y)Rxy(z) = Ry(x)R(y)Ryx(z). Since R(x) < Rxy(z) 6 y <

R(y), we have R(y) > Ry(x) + 1 and for the outputs R(x)Rx(y)Rxy(z) = Ry(x)R(y)Ryx(z) ∼

R(y)Ry(x)R(y)Ryx(z) by move type (I1) or (II1).

(2) If R(x) > y, let the letter to the right of R(x) in R be R(x)→. Then both Rxyz and Ryxz

are obtained by replacing R(x) with x and R(x)→ with z. For the output, we have R(x) = R(y),

Rx(y) > R(y), Ry(x) = y, Ryx(z) = Rx(y) and Rxy(z) = y. Since y < R(x) < Rx(y), we have that

Rx(y) = R(x)→ > y + 1. Hence the outputs R(x)Rx(y)Rxy(z) = R(x)R(x)→y ∼ R(x)yR(x)→ =

R(y)Ry(x)Ryx(z) by move of type (I2).

Case 1D-(ii): x ∈ R, y /∈ R. Then R(x) 6 x,R(y) > y and x + 1 /∈ R. In this case, we

have Rx(y) = R(y) and Ry(x) = R(x), thus Rxy = Ryx, Rxy(z) = Ryx(z) and Rxyz = Ryxz.

Since x + 1 /∈ R, we have Rxy(z) > x + 1. This implies R(x) 6 x < Rxy(z) 6 y < R(y), thus

R(x)Rx(y)Rxy(z) ∼ R(y)Ry(x)Ryx(z) as it is a type (I1) move.

Case 1D-(iii): x /∈ R, y ∈ R. Then x < R(x), y > R(y), y + 1 /∈ R, R(x) − 1 /∈ R, R(x) 6 y,

R(y) 6 Rx(y) and Ry = R.

(1) If R(x) = y, denote the box to the right of y in y as y→. Note that y→ > y + 1. Then

Rx(y) = y→, Rxy(z) = y, Ry(x) = y and Ryx(z) = y→. Note y − 1 /∈ R, otherwise R(x) 6 y − 1.

Thus, R(y) = y. Both Rxyz and Ryxz are obtained by replacing y ∈ R with x and y→ with z, so

Rxyz = Ryxz. The outputs R(x)Rx(y)Rxy(z) = yy→y ∼ yyy→ = R(y)Ry(x)Ryx(z) as it is a type

(II2) move.

(2) Suppose R(x) < y and R(x) = R(y). Then [R(x), y] ⊂ R and Rx(y) = R(x) + 1. Since Ry = R

and Rxy = Rx, we have that both Rxy and Ryx equal Rx and furthermore Ry(x) = R(x). Note

that z can either be equal to y or z < Rx(y), otherwise z ∈ Rxy and z+ 1 ∈ Rxy, which will give us

a braid from row(Rxy) · z. Thus, we have Rxy(z) = Ryx(z) = R(x) + 1. In either case, the outputs

are R(x)Rx(y)Rxy(z) = R(x)(R(x) + 1)(R(x) + 1) ∼ R(x)R(x)(R(x) + 1) = R(y)Ry(x)Ryx(z) as

they are type (III) moves.

93

(3) Suppose R(x) < y and R(x) < R(y). Then R(y) > R(x) + 1 and Rx(y) = R(y). Similar to the

previous case, both Rxy and Ryx are equal to Rx, and z is either y or z < R(y). In either case,

Rxy(z) 6 R(y).

Then the outputs areR(x)Rx(y)Rxy(z) = R(x)R(y)Rx(z) ∼ R(y)R(x)Rx(z) = R(y)Ry(x)Ryx(z)

as they are type (I1) or (II1) moves.

Case 1D-(iv): x, y ∈ R. In this case x > R(x), y > R(y), x + 1 /∈ R and y + 1 /∈ R. Since

x+ 1 /∈ R, [x, y] is not contained in R and hence R(y) > x+ 1 > x > R(x).

Then Rx(y) = R(y), Ry(x) = R(x) and Rxy = Ryx = R. Since z > x and x + 1 /∈ R, we have

R(z) > x + 1 > R(x) + 1. By similar reasons to the previous two subcases of Case 1D-(iii), z can

either be y or z < R(y) in order to avoid a braid in row(Rxy)z. So, we have Rxy(z) 6 R(y). Then

the outputs are R(x)Rx(y)Rxy(z) = R(x)R(y)R(z) ∼ R(y)R(x)R(z) = R(y)Ry(x)Ryx(z) as they

are type (I1) moves.

2. Cases (I2) and (II2): We have z < x < y, or z = x < y and y > z + 1. In both cases

x′ = x, y′ = z, z′ = y. By definition, x ∈ Rx.

Case (2A): M < x < y, then R(x) = Rx(y) = 0. Rxy =
R x y is obtained by appending

x and y to the end of R. Since x ∈ Rx and z 6 x < y, we have Rxy(z) = Rx(z). Moreover,

Rxzy is obtained by appending y to the end of Rxz and hence Rxyz = Rxzy. The outputs are

R(x)Rx(y)Rxy(z) = 00Rx(z) ∼ 0Rx(z)0 = R(x)Rx(z)Rxz(y).

Case (2B): z 6 x 6M < y, then Rx(y) = Rxz(y) = 0. Since Rxy = Rx y , x ∈ Rx and z 6 x, we

have Rxy(z) = Rx(z), thus Rxyz = Rxz y = Rxzy. The output R(x)Rx(y)Rxy(z) = R(x)0Rx(z) ∼

R(x)Rx(z)0 = R(x)Rx(z)Rxz(y).

Case (2C): z 6 x < y 6M , then we have Rx(z) 6 x. We discuss the following subcases.

Case 2C-(i): x, y /∈ R, then we have R(x) > x and Rx(y) > y. Since y > x and x replaces

R(x) in R, we have Rx(y) > R(x) from row strictness. Since Rx(y) > R(x) and Rx(z) 6 x,

we have Rxy(z) = Rx(z) and Rxz(y) = Rx(y). Furthermore, Rxyz = Rxzy. Moreover, we have

Rx(z) 6 x < R(x) < Rx(y), which implies Rx(y) > Rx(z) + 1. Hence R(x)Rx(y)Rxy(z) =

R(x)Rx(y)Rx(z) ∼ R(x)Rx(z)Rx(y) = R(x)Rx(z)Rxz(y) by type (I2) moves.

94

Case 2C-(ii): x ∈ R, y /∈ R. Then Rx = R, R(x) 6 x,Rx(y) > y. Since z 6 x and [R(x), x] ⊂ Rx,

we have that Rx(z) 6 R(x). Since Rx(y) > y > x and Rx(z) 6 R(x), we have that Rxy(z) = Rx(z)

and Rxz(y) = Rx(y), thus Rxyz = Rxzy. Since Rx(z) 6 R(x) 6 x < y < Rx(y), we have

Rx(y) > Rx(z) + 1. The outputs are R(x)Rx(y)Rxy(z) = R(x)Rx(y)Rx(z) ∼ R(x)Rx(z)Rx(y) =

R(x)Rx(z)Rxz(y) by type (I2) or (II2) moves.

Case 2C-(iii): x /∈ R, y ∈ R. Then Rxy = Rx, R(x) > x and Rx(y) 6 y. Let the letter to the right

of R(x) in R be R(x)→. Then R(x)→ > R(x) > x implies R(x)→ > x + 1. This also shows that

x+ 1 /∈ Rx and thus Rx(y) > R(x). Since Rxy = Rx and Rxzy = Rxz, we have Rxyz = Rxz = Rxzy.

Since Rx(z) 6 x < R(x) < Rx(y), we have Rx(y) > Rx(z) + 1. Since z 6 x, we also have that

Rx(y) = Rxz(y). Thus, the outputs are R(x)Rx(y)Rxy(z) = R(x)Rx(y)Rx(z) ∼ R(x)Rx(z)Rx(y) =

R(x)Rx(z)Rxz(y) by a type (I2) move.

Case 2C-(iv): x ∈ R, y ∈ R. Then Rx = R, Rxy = R, R(x) 6 x, Rx(y) 6 y, x + 1 /∈ R and

y + 1 /∈ R. Thus, Rx(y) > x + 1. Since z 6 x and [R(x), x] ⊂ Rx, we have that Rx(z) 6 R(x).

Since Rxy = R, Rxyz = Rz. Since Rx(z) 6 x, Rxz(y) = Rz(y) = R(y) and thus Rxzy = Rz. This

implies Rxyz = Rxzy. Now we have R(z) 6 R(x) 6 x < x + 1 < R(y). Therefore, the outputs

are R(x)Rx(y)Rxy(z) = R(x)R(y)R(z) ∼ R(x)R(z)R(y) = R(x)Rx(z)Rxz(y) by type (I2) or (II2)

moves.

3. Case (III): We have y = x, z = x+ 1 and hence x′ = x, y′ = x+ 1 and z′ = x+ 1.

Case (3A): x > M . Then Rx is obtained by appending x to the end of R and R(x) = 0.

Also Rxx = Rx with output Rx(x). Note Rx,x+1(x + 1) = Rx(x). Both Rxx,x+1 and Rx,x+1,x+1

are obtained by appending x + 1 to the end of Rx, thus they are the same. The outputs are

R(x)Rx(x)Rxx(x+ 1) = 0Rx(x)0 ∼ 00Rx(x) = R(x)Rx(x+ 1)Rx,x+1(x+ 1).

Case (3B): x 6M,x+ 1 > M . Both Rxx,x+1 and Rx,x+1,x+1 are obtained by appending x+ 1 to

the end of Rx, so they are equal. Since x ∈ Rx, we have Rx,x+1(x+ 1) = Rx(x). Thus, the outputs

are R(x)Rx(x)Rxx(x+ 1) = R(x)Rx(x)0 ∼ R(x)0Rx,x+1(x+ 1).

Case (3C): x + 1 6 M . It is clear that x ∈ Rx. If x is the maximal letter in Rx, then the rest

follows as case (3B).

95

Otherwise, let x→ be the letter to the right of x in Rx. Since x ∈ Rx, we must have x+ 1 /∈ Rx,

thus x→ > x + 1. Moreover, we have Rxx = Rx, Rx(x + 1) = Rxx(x + 1) = x→. Since Rx,x+1 is

obtained from Rx by replacing x→ with x+1 and x, x+1 ∈ Rx,x+1, we have Rx,x+1(x+1) = Rx(x).

Both Rxx,x+1 and Rx,x+1,x+1 are obtained from Rx by replacing x→ with x+ 1, thus they are the

same. Furthermore, since Rx(x) 6 x and x→ > x + 1, we have that R(x)Rx(x)Rxx(x + 1) =

R(x)Rx(x)x→ ∼ R(x)x→Rx(x) = R(x)Rx(x+ 1)Rx,x+1(x+ 1) by a type (I2) or (II2) move. �

A.2.2. Lemmas for the proof of Proposition 2.3.2.

Lemma A.2.1.

(1) For 2 6 i 6 q, bi−1 > ui + 1.

(2) For 1 6 i < s, vi > wp−s+i+1 + 1.

Proof. (1): When bi−1 > bi + 1 or ui < bi, the result follows directly.

Consider the case that ui = bi = a and bi−1 = bi + 1 = a + 1 for some letter a. Since

a = ui < ui−1 6 bi−1 = a + 1, we must have ui−1 = a + 1. Let c be the largest letter such that

[a, c] ⊆ b. Then c > a+ 1 and c+ 1 /∈ b. Moreover, since all ui are paired, ui 6 bi and uj−1 > uj ,

it is not hard to see that [a, c] ⊆ u and c, c− 1 ∈ u. Since c+ 1 /∈ b, we can use commutativity to

move c ∈ b to the left and obtain a subword c(c− 1)c, which contradicts that the original word is

fully-commutative.

(2): The proof is almost identical to the first part. When wp−s+i > wp−s+i+1 + 1 or vi > wp−s+i,

the result follows.

Consider the case wp−s+i = wp−s+i+1 + 1 = a + 1 and vi = wp−s+i = a + 1 for some letter a.

Since a = wp−s+i+1 6 vi+1 < vi = a+ 1, we must that vi+1 = a. Let c be the smallest letter such

that [c, a+ 1] ⊆ w. Then c 6 a and c− 1 /∈ w. Moreover, since all vi are paired, vj > wp−s+j and

vj+1 < vj , we can see that [c, a+ 1] ⊆ v and c, c+ 1 ∈ v. Since c−1 /∈ w, we can use commutativity

to move c ∈ w to the right and form a subword c(c+ 1)c, which contradicts that the original word

is fully-commutative. �

We now summarize several observations that will be used later.

96

Remark A.2.1. For both types of actions of f?k as in Remark 2.3.1, we have the following

equivalence relations:

(1) For 1 6 i 6 q, 1 6 j 6 s− 1, vj+1vjui ∼ vj+1uivj, since ui < vj+1 < vj.

(2) For 1 6 i 6 q, xvsui ∼ xuivs, since ui < x < vs.

(3) For 1 6 i 6 q, b1xui ∼ b1uix, since ui 6 u1 6 b1 < x, and ui < x− 1.

(4) For 1 6 j < i− 1, 1 6 i 6 q, bj+1bjui ∼ bj+1uibj, since ui 6 bi < bj+1 < bj.

(5) For 2 6 i 6 q, bibi−1ui ∼ biuibi−1, since ui 6 bi < bi−1 and bi−1 > ui + 1 by Lemma

A.2.1.

(6) For 1 6 i 6 s, p − s + i − 1 6 j 6 p − 1, wj+1viwj ∼ viwj+1wj, since wj+1 < wj <

wp−s+i 6 vi.

(7) For 1 6 i 6 s− 1, wp−s+i+1viwp−s+i ∼ viwp−s+i+1wp−s+i, since wp−s+i+1 < wp−s+i 6 vi

and vi > wp−s+i+1 + 1 by Lemma A.2.1.

(8) For all 1 6 j 6 s− 1, 1 6 i 6 q, vj+1uivj ∼ vj+1vjui, since ui < vj+1 < vj.

(9) For 1 < i 6 q, b1uivs ∼ b1vsui, since ui < u1 6 b1 < vs.

(10) For 1 6 i 6 q, 1 6 j 6 s, xuivj ∼ xvjui, since ui < x < vj.

(11) For 1 6 j 6 s− 1, xvjwp ∼ vjxwp, since x < wp 6 vs < vj.

Remark A.2.2. When vs 6= x+ 1, we have the following equivalence relations:

(1) 1 6 i 6 s, xviwp ∼ vixwp, since x < wp 6 vs and vs > x+ 1.

(2) b1u1vs ∼ b1vsu1, since u1 6 b1 < vs and vs > x+ 1 > u1 + 1.

Lemma A.2.2. We have that bq . . . b1xvs . . . v1uq . . . u1 is equivalent to bquq . . . b2u2b1u1xvs . . . v1.

Proof. With the equivalence relations from Remark A.2.1 (1)-(5), we can make the sequences

of equivalence moves as follows:

bq . . . b1xvs . . . v2v1uquq−1 . . . u1 ∼ bq . . . b1xvs . . . v2uqv1uq−1 . . . u1 ∼

bq . . . b1xvsuq . . . v2v1uq−1 . . . u1 ∼ bq . . . b1xuqvs . . . v2v1uq−1 . . . u1 ∼

bq . . . b1uqxvs . . . v2v1uq−1 . . . u1 ∼ bquq . . . b1xvs . . . v2v1uq−1 . . . u1 ∼

bquqbq−1uq−1 . . . b1u1xvs . . . v2v1.

97

�

Lemma A.2.3. We have that vs . . . v1wp . . . wp−s+1 is equivalent to vswpvs−1wp−1 . . . v1wp−s+1.

Proof. With the equivalence relations from Remark A.2.1 (6)-(7), we can make the following

equivalence moves:

vs . . . v2v1wpwp−1 . . . wp−s+1 ∼ vs . . . v2wpwp−1 . . . wp−s+2v1wp−s+1 ∼

vs . . . v3wpwp−1 . . . v2wp−s+2v1wp−s+1 ∼ vswp . . . v1wp−s+1.

�

Lemma A.2.4. We have

xwpvs−1wp−1 . . . v2wp−s+2v1wp−s+1 ∼ vs−1 . . . v1xwp . . . wp−s+1.

Proof. With the equivalence relations from Remark A.2.1 (6),(7) and (11), we can make the

following equivalent moves:

xwpvs−1wp−1 . . . v2wp−s+2v1wp−s+1 ∼ xvs−1wpwp−1 . . . v2wp−s+2v1wp−s+1 ∼

vs−1xwpwp−1 . . . v2wp−s+2v1wp−s+1 ∼ vs−1 . . . v1xwpwp−1 . . . wp−s+2wp−s+1.

�

Lemma A.2.5. When vs 6= x+ 1, we have

xvswpvs−1wp−1 . . . v1wp−s+1 ∼ vs . . . v1xwp . . . wp−s+1.

Proof. With the equivalence relations from Remark A.2.1 (6)-(7) and Remark A.2.2 (1), we

can make the following equivalence moves:

xvswpvs−1wp−1vs−2 . . . v1wp−s+1 ∼ vsxwpvs−1wp−1vs−2 . . . v1wp−s+1 ∼

vsxvs−1wpwp−1vs−2 . . . v1wp−s+1 ∼ vsvs−1xwpwp−1vs−2 . . . v1wp−s+1 ∼

vsvs−1vs−2 . . . v1xwpwp−1 . . . wp−s+1.

98

�

Lemma A.2.6. When vs 6= x+1, we have bquq . . . b1u1vs . . . v1 is equivalent to bq . . . b1vs . . . v1uq . . . u1.

Proof. With the equivalence relations from Remark A.2.1 (4), (5), (8)-(9) and Remark A.2.2

(2), we can make the following equivalence moves:

bquq . . . b1u1vs . . . v1 ∼ bquq . . . b1vsu1 . . . v1 ∼

bquq . . . b1vs . . . v1u1 ∼ bq . . . b1vs . . . v1uq . . . u1.

�

Lemma A.2.7. We have bquq . . . b1u1xvs−1 . . . v1 is equivalent to bq . . . b1xvs−1 . . . v1uq . . . u1.

Proof. With the equivalence relations from Remark A.2.1 (1), (3), (5) and (10) we have the

following equivalence moves:

bquq . . . b1u1xvs−1 . . . v1 ∼ bquq . . . b1xu1vs−1 . . . v1 ∼

bquq . . . b1xvs−1 . . . v1u1 ∼ bq . . . b1xvs−1 . . . v1uq . . . u1.

�

99

APPENDIX B

Proofs for Uncrowding algorithm for hook-valued tableaux

B.1. Proofs of Lemma

B.1.1. Proof of Lemma 3.2.1.

Proof. It suffices to check that Vb preserves the semistandardness condition of both the entire

hook-valued tableau and the filling within each cell. We break into two cases depending on whether

Step (4)a or (4)b in Definition 3.2.1 is applied.

Case 1: Assume Step (4)a is applied. To verify semistandardness within each cell, it suffices to

check cells (r, c) and (r̃, c+ 1). The semistandardness within cell (r, c) is clearly preserved

as the only change to the hook-shaped tableau in cell (r, c) is that an entry was removed

from AT (r, c). We now check the semistandardness condition within cell (r̃, c + 1). We

have that Vb either created the cell (r̃, c+1) and inserted the number a in it or Vb replaced

k with a and appended k to the arm of cell (r̃, c + 1). In both cases, the tableau in cell

(r̃, c+ 1) is a semistandard hook-shaped tableau. In the second case this is true since k is

weakly greater than HT (r̃, c + 1) and k is the smallest number weakly greater than a in

column c+ 1.

We now check the semistandardness of the entire tableau. Note that it suffices to check

the semistandardness in row r̃ and column c+1. Since r̃ < r, the semistandardness in row

r̃ is preserved as a is larger than every number in (r̃, c) and k remains in the same cell.

Also, the semistandardness in column c+ 1 is preserved as k is chosen to be the smallest

number in column c+ 1 that is weakly greater than a.

Case 2: Assume Step (4)b is applied. The semistandardness within cell (r, c) is clearly preserved

as the only change to (r, c) is that entries from LT (r, c) and AT (r, c) are removed. We now

check the semistandardness condition within cell (r, c+ 1). If (a, `] ∩ LT (r, c) = ∅, then a

is weakly larger than all elements of (r, c). In this case, the semistandardness within cell

100

(r, c+ 1) follows from the argument in Case 1. If (a, `]∩ LT (r, c) 6= ∅, then a is not weakly

larger than all elements of (r, c). After applying Vb the semistandardness condition in the

leg of (r, c+1) will still hold as a < x < z for all x ∈ (a, `]∩LT (r, c), where z is the smallest

value in LT (r, c+1). Similarly, the semistandardness condition in the arm of (r, c+1) holds

as a < k or k is the empty character. Thus, the semistandardness condition in each cell is

preserved. The semistandardness of row r is preserved as all numbers strictly greater than

a in (r, c) are moved to (r, c + 1) along with a. The semistandardness condition within

column c + 1 is preserved as every number in (r + 1, c + 1) is strictly greater than ` and

every number in (r − 1, c+ 1) is strictly less than a.

�

B.1.2. Proof of Lemma 3.2.3.

Proof. Let Ri(T) = r1r2 . . . rm. We break into cases based on the value of a.

Case 1: Assume a 6= i, i+ 1.

Assume Step (4)a is applied by Vb. If k 6= i, i + 1, then Ri(T) = Ri(Vb(T)) as the position of all

letters i and i + 1 remains the same. Let k = i. We have that k is the only i in column c + 1.

Hence, when k gets bumped from LT (r̃, c + 1) and appended to AT (r̃, c + 1), the relative position

of k to the other letters i and i + 1 in Ri(T) does not change. Thus, Ri(T) = Ri(Vb(T)). Let

k = i + 1. Note that column c + 1 cannot have a cell containing an i as k is the smallest number

weakly greater than a. Hence, moving k from LT (r̃, c + 1) to AT (r̃, c + 1) will not change Ri(T).

Therefore, we once again have that Ri(T) = Ri(Vb(T)).

Assume Step (4)b is applied by Vb. Consider the subcase when (a, `]∩LT (r, c) = ∅. By a similar

argument to the previous paragraph, we have that Ri(T) = Ri(Vb(T)). Next, consider the subcase

when i+ 1 ∈ (a, `] ∩ LT (r, c). This implies that a < i and the only time i+ 1 occurs in column c is

in LT (r, c). Note that if an i exists in column c, it must be contained in LT (r, c). We also have that

k > i + 1 or k is the empty character and no cell in column c + 1 contains an i. Thus, removing

(a, `] ∩ LT (r, c) from LT (r, c), replacing k with (a, `] ∩ LT (r, c) in LT (r, c + 1), and appending k to

AT (r, c + 1) does not change Ri(T). Therefore Ri(T) = Ri(Vb(T)). Let i ∈ (a, `] ∩ LT (r, c) and

i+ 1 6∈ (a, `] ∩ LT (r, c). Note that the only place i+ 1 can occur in column c is as HT (r+ 1, c) and

101

the only place i can occur in column c is in LT (r, c). This implies that removing (a, `] ∩ LT (r, c)

from LT (r, c), replacing k with (a, `] ∩ LT (r, c) in LT (r, c+ 1) and appending k to AT (r, c+ 1) will

not change Ri(T) unless both i+ 1 and i show up in column c+ 1. This can only occur when k = i

which implies that Ri(T) = r1 . . . i i+1 k . . . rm and Ri(Vb(T)) = r1 . . . i+1 i k . . . rm. We see that

Ri(T) and Ri(Vb(T)) only differ by a Knuth relation implying they are Knuth equivalent. Assume

that i, i+1 6∈ (a, `]∩LT (r, c) 6= ∅. If a > i+1 the positions of all letters i and i+1 remain the same

after Vb is applied. If a < i, then the positions of all letters i and i+ 1 also remain the same unless

k = i or k = i+1. In both of these special subcases, it can be checked that still Ri(T) = Ri(Vb(T)).

Case 2: Assume a = i.

Assume Step (4)a is applied by Vb. If column c + 1 does not contain both an i and an i + 1,

then we have Ri(T) = Ri(Vb(T)). However, if both an i and an i + 1 are in column c + 1, then

Ri(T) = r1 . . . i i+ 1 i . . . rm and Ri(Vb(T)) = r1 . . . i+ 1 i i . . . rm which are Knuth equivalent.

Assume Step (4)b is applied by Vb. Consider the subcase when (a, `]∩LT (r, c) = ∅. By a similar

argument to the previous paragraph, we have that Ri(T) = Ri(Vb(T)) unless both an i and an i+1

are in column c + 1 in which case Ri(T) and Ri(Vb(T)) are only Knuth equivalent. Consider the

subcase given by i+1 ∈ (a, `]∩LT (r, c). Note that no cell in column c+1 can contain an i, the only

cell that could contain an i+ 1 in column c+ 1 is (r, c+ 1), and the only cell containing letters i or

i+ 1 in column c is (r, c). This implies that it suffices to look at the changes to (r, c) and (r, c+ 1).

We see that Ri(T) = r1 . . . i + 1 i . . . i a︸ ︷︷ ︸
γ

. . . rm and Ri(Vb(T)) = r1 . . . i . . . i︸ ︷︷ ︸
γ−1

i + 1 a where γ > 1

is the number of letters i in cell (r, c) including a. We see that Ri(T) and Ri(Vb(T)) are Knuth

equivalent. Consider the subcase when i+ 1 6∈ (a, `] ∩ LT (r, c) 6= ∅. We have that both i and i+ 1

cannot be in a cell in column c+ 1 and an i+ 1 cannot be in column c. Thus applying Vb does not

change Ri(T) giving us that Ri(T) = Ri(Vb(T)).

Case 3: Assume a = i+ 1.

Assume Step (4)a is applied by Vb. If column c + 1 does not contain both i and i + 1, then

we have that Ri(T) = Ri(Vb(T)). However, if both i and i + 1 occur in column c + 1, then

Ri(T) = r1 . . . i+1 i+1 i . . . rm and Ri(Vb(T)) = r1 . . . i+1 i i+1 . . . rm which are Knuth equivalent.

102

Assume Step (4)b is applied by Vb. If (a, `]∩ LT (r, c) = ∅, then Ri(T) = Ri(Vb(T)) unless both

i and i+ 1 occur in column c+ 1. In this exceptional case, we have that Ri(T) and Ri(Vb(T)) are

only Knuth equivalent by a similar argument to the previous paragraph. If (a, `] ∩ LT (r, c) 6= ∅,

then k > i + 1 or k is the empty character and no cell in column c + 1 contains an i + 1. Thus

applying Vb does not change Ri(T) giving us that Ri(T) = Ri(Vb(T)). �

B.1.3. Proof of Lemma 3.2.4.

Proof. We are going to prove (1). Part (2) follows since ei and fi are partial inverses.

Let a, `, k, r, c, and r̃ be defined as in Definition 3.2.1 when Vb is applied to T . Similarly,

define a′, `′, k′, r′, c′, and r̃′ for when Vb is applied to fi(T). Let Ri(T) = r1r2 . . . rm and

Ri(Vb(T)) = r′1r
′
2 . . . r

′
m be the corresponding reading words. Let (r̂, ĉ) denote the cell containing

the rightmost unpaired i in T , where r̂ and ĉ are its row and column index respectively. We break

into cases based on the position of (r̂, ĉ) to (r, c).

Case 1: Assume (r̂, ĉ) = (r, c). We break into subcases based on how fi acts on T .

• Assume that (r + 1, c) contains an i+ 1.

As every entry in (r, c) must be strictly smaller than the values in (r+ 1, c) and (r, c)

must contain an i, we have that ` = i or a = i. If ` = i, then ` is i-paired with the

i+1 in (r+1, c). Hence a is always equal to i and a must correspond to the rightmost

unpaired i of T . Thus, fi acts on T by removing a from (r, c) and appending an i+ 1

to AT (r + 1, c). Note that (a, `] ∩ LT (r, c) = ∅ implying Vb acts on T by removing a

from AT (r, c), replacing k in (r̃, c+ 1) with a, and appending k to AT (r̃, c+ 1) where

r̃ 6 r. We break into subcases based upon where the values of i and i+1 are in column

c+ 1 utilizing the fact that column c+ 1 cannot contain an i without an i+ 1 (since

the arm excess of cell (r+1, c) is zero and cell (r, c) contains the rightmost unpaired i).

Assume that column c+1 does not contain an i. Since a corresponds to the rightmost

unpaired i in T and column c+ 1 does not contain an i, we have that the rightmost

unpaired i in Vb(T) is precisely a in the cell (r̃, c+1). Note that (r̃+1, c+1) does not

contain an i+ 1 in Vb(T) as k > i+ 1 or k is the empty character. Similarly, we have

103

that (r̃, c+ 2) does not contain an i. Thus, fi acts on Vb(T) by changing a to an i+ 1

in (r̃, c + 1). We now consider Vb(fi(T)). When applying Vb to fi(T), a′ is precisely

the i+ 1 appended to AT (r + 1, c) and k′ is the same as k. Since r̃′ = r̃ < r + 1, we

have that Vb acts on fi(T) by removing i+1 from Afi(T)(r+1, c), replacing k with an

i+1 in (r̃, c+1), and appending k to Afi(T)(r̃, c+1). We see that fi(Vb(T)) = Vb(fi(T)).

Assume that column c+ 1 contains both an i and an i+ 1 in the same cell. Note that

this implies that k = i. Since a is the rightmost unpaired i in T and the only cell in

column c+ 1 that contained an i+ 1 or an i is (r̃, c+ 1), we have that the rightmost

unpaired i in Vb(T) is the i appended to AT (r̃, c + 1). Since (r̃, c + 1) contains an

i+ 1, we have that (r̃+ 1, c+ 1) cannot contain an i+ 1 and (r̃, c+ 2) cannot contain

an i. Thus, fi acts on Vb(T) by changing the i in AVb(T)(r̃, c+ 1) to an i+ 1. We now

consider Vb(fi(T)). When applying Vb to fi(T), a′ is precisely the i+ 1 appended to

AT (r + 1, c) and k′ is the i + 1 in (r̃, c + 1). Since r̃′ = r̃ < r + 1, we have that Vb

acts on fi(T) by removing i+ 1 from Afi(T)(r+ 1, c), replacing i+ 1 in (r̃, c+ 1) with

the i+ 1 from Afi(T)(r+ 1, c), and appending an i+ 1 to Afi(T)(r̃, c+ 1). We see that

fi(Vb(T)) = Vb(fi(T)).

Assume that column c+ 1 contains both an i and an i+ 1 in different cells. Note that

this implies that k = i. Since a corresponds to the rightmost unpaired i in Ri(T) and

the only i+1 and i in column c+1 are in cells (r̃+1, c+1) and (r̃, c+1) respectively,

we have that the rightmost unpaired i in Ri(Vb(T)) corresponds to the i appended

to AT (r̃, c + 1). By assumption, we have that (r̃ + 1, c+ 1) contains an i+ 1. Thus,

fi acts on Vb(T) by removing the i from AVb(T)(r̃, c + 1) and appending an i + 1 to

AVb(T)(r̃ + 1, c + 1). We now consider Vb(fi(T)). When applying Vb to fi(T), a′ is

precisely the i + 1 appended to AT (r + 1, c) and k′ is the i + 1 in cell (r̃ + 1, c + 1).

If r̃′ = r + 1, then i + 1 is weakly larger than every value in (r + 1, c). Thus, either

(a′, `′] ∩ Lfi(T)(r + 1, c) = ∅ or r̃′ < r + 1. This implies that Vb acts on fi(T) by

removing i+ 1 from Afi(T)(r+ 1, c), replacing the i+ 1 in Hfi(T)(r̃+ 1, c+ 1) with the

104

i+ 1 removed from Afi(T)(r+ 1, c), and appending an i+ 1 to Afi(T)(r̃+ 1, c+ 1). We

see that fi(Vb(T)) = Vb(fi(T)).

• Assume that (r + 1, c) does not contain an i+ 1 and (r, c+ 1) contains an i.

Under these assumptions, we have that no cell in column c can contain an i+ 1. This

implies that column c+ 1 must contain an i+ 1. The cell (r+ 1, c+ 1) cannot have an

i+ 1 as this would force (r+ 1, c) to also have an i+ 1. Thus, (r, c+ 1) must contain

an i + 1 in its leg. By our assumption we have that fi acts on T by removing the i

from (r, c+ 1) and appending an i+ 1 to LT (r, c). We break into subcases according

to where the rightmost unpaired i sits inside the cell (r, c). If the rightmost unpaired

i is in HT (r, c), then a > i which would either contradict the hook entry being the

rightmost unpaired i or cell (r, c+ 1) containing an i. Thus, we only need to consider

the subcases where the rightmost unpaired i is either in the leg or arm of (r, c).

Assume that the rightmost unpaired i is in LT (r, c) for this entire paragraph. This

implies that ` = i. Since (r, c + 1) contains an i, we have that a < i. If r̃ < r,

then Vb acts on T by removing a from (r, c), replacing k with a in (r̃, c + 1), and

appending k to AT (r̃, c+ 1). Since a, k < i, we have that Vb does not change position

of the rightmost unpaired i. Note that (r + 1, c) still does not contain an i+ 1 while

(r, c+ 1) still contains an i. Thus, fi acts on Vb(T) by removing the i from (r, c+ 1)

and appending an i+ 1 to LVb(T)(r, c). We now consider Vb(fi(T)). Note that (r′, c′),

a′, and k′ are the same as (r, c), a, and k respectively. Thus, Vb acts in the same

way as before. This gives us that fi(Vb(T)) = Vb(fi(T)). If r̃ = r, then k is precisely

the i in cell (r, c + 1). We see that Vb acts on T by removing (a, i] ∩ LT (r, c) from

LT (r, c) and a from AT (r, c), replacing k with ((a, i] ∩ LT (r, c)) ∪ {a}, and appending

k to AT (r+ 1, c). Since there is an i+ 1 in LVb(T)(r, c+ 1), we see that the rightmost

unpaired i in Vb(T) is precisely k in AVb(T)(r, c + 1). Note that (r + 1, c + 1) does

not contain an i + 1 and (r, c + 2) does not contain an i because (r, c + 1) contains

an i + 1. Thus, fi acts on Vb(T) by changing the i in AVb(T)(r, c + 1) to an i + 1.

105

We now consider Vb(fi(T)). We have that a′ is the same as a and k′ is the i + 1 in

(r, c + 1). We have (a′, `′] ∩ Lfi(T)(r
′, c′) = {i + 1} ∪ ((a, i] ∩ LT (r, c)). This implies

that Vb acts on fi(T) by removing {i + 1} ∪ ((a, i] ∩ LT (r, c)) from Lfi(T)(r, c) and a

from Afi(T)(r, c), replacing i+ 1 with {i+ 1}∪ ((a, i]∩LT (r, c))∪{a} in (r, c+ 1), and

appending an i+ 1 to Afi(T)(r, c+ 1). We see that fi(Vb(T)) = Vb(fi(T)).

Assume that the rightmost unpaired i is in AT (r, c). This implies that a = i and forces

a to correspond to the rightmost unpaired i. We also have that k is the i in (r, c+ 1).

Since i is weakly greater than all values in (r, c), we have that (a, `] ∩ LT (r, c) = ∅.

Thus, Vb acts on T by removing a from (r, c), replacing k with a in (r, c + 1), and

appending k to AT (r, c + 1). Since a was the rightmost unpaired i in T and cell

(r, c+ 1) contains an i+ 1 in its leg, we have that the rightmost unpaired i in Vb(T)

is k in AVb(T)(r, c + 1). As i + 1 is in (r, c + 1), we have that (r + 1, c + 1) cannot

contain an i + 1 and (r, c + 2) cannot contain an i. This implies that fi acts on

Vb(T) by changing the i in AVb(T)(r, c + 1) to an i + 1. We now consider Vb(fi(T)).

We have that a′ is the same as a and k′ is equal to the i + 1 in (r, c + 1). Note

that (a′, `′] ∩ LT (r, c) = {i + 1}. This implies that Vb acts on fi(T) by removing

i + 1 from Lfi(T)(r, c) and a from Afi(T)(r, c), replacing the i + 1 in (r, c + 1) with

{i+1, a}, and appending an i+1 to Afi(T)(r, c+1). We see that fi(Vb(T)) = Vb(fi(T)).

• Assume that (r + 1, c) does not contain an i+ 1 and (r, c+ 1) does not contain an i.

We break into subcases based on where the rightmost unpaired i sits inside (r, c).

Assume that rightmost unpaired i is in the hook entry of (r, c) for the remainder of

this paragraph. Note that this implies that a > i and the rightmost unpaired i in

Vb(T) is still the hook entry of (r, c). We see that Vb does not insert an i + 1 into

(r+ 1, c) nor an i into (r, c+ 1). This implies that fi acts on T and Vb(T) in the same

way by changing the hook entry of (r, c) into an i+1. Next, we note that (r′, c′), a′, k′,

and (a′, `′] ∩ Lfi(T)(r′, c′) are the same as (r, c), a, k, and (a, `] ∩ LT (r, c) respectively.

106

Thus, Vb acts on T and fi(T) in the same manner without affecting the hook entry

of (r, c). Therefore, we have that the actions of fi and Vb on T are independent and

fi(Vb(T)) = Vb(fi(T)).

Assume that the rightmost unpaired i is in the leg of (r, c) for the remainder of

this paragraph. This implies that a 6= i. First, we assume that a > i or r̃ < r.

Under this extra assumption, we observe that the action of Vb does not change

the position of the rightmost unpaired i. Also, Vb does not insert an i + 1 into

(r + 1, c) nor an i into (r, c + 1). We see that fi acts on T and Vb(T) in the

same way by changing the i in the leg of (r, c) into an i + 1. Next, we note that

(r′, c′), a′, and k′ are the same as (r, c), a, and k respectively. If a > i, we have

that a > i + 1 implying that (a′, `′] ∩ Lfi(T)(r
′, c′) = (a, `] ∩ LT (r, c). Thus, either

(a′, `′] ∩ Lfi(T)(r
′, c′) = (a, `] ∩ LT (r, c) or r̃ < r. This implies that Vb acts on T and

fi(T) in the same manner and does not affect the i or i+1 in the leg of (r, c). Therefore,

we have that the actions of fi and Vb on T are independent and fi(Vb(T)) = Vb(fi(T)).

Next, assume that r̃ = r and a < i. This implies that (a, `] ∩ LT (r, c) 6= ∅ as

i ∈ (a, `] ∩ LT (r, c). We have that Vb acts on T by removing (a, `] ∩ LT (r, c) from

LT (r, c) and a from AT (r, c), replacing k with ((a, l]∩ LT (r, c))∪ {a} in (r, c+ 1), and

appending k to AT (r, c + 1). By assumption, there was no i in (r, c + 1) to begin

with. Thus, we have that the rightmost unpaired i of Vb(T) is the i in (r, c + 1)

that replaced k. Since k > i + 1 or k is the empty character, we have that the cell

(r + 1, c + 1) does not contain an i + 1 and the cell (r, c + 2) does not contain an

i. Hence, fi acts on Vb(T) by replacing the i in LVb(T)(r, c + 1) with an i + 1. We

now consider Vb(fi(T)). We have that fi acts on T by changing the i in LT (r, c) to

an i + 1. We see that a′ and k′ are the same as a and k respectively. Since i > a,

we have that i + 1 > a or in other words i + 1 ∈ (a′, `′] ∩ LT (r, c). This implies that

(a′, `′] ∩ Lfi(T)(r
′, c′) = (((a′, `′] ∩ LT (r, c)) ∪ {i+ 1})− {i}. We have Vb acts on fi(T)

by removing (a′, `′] ∩ Lfi(T)(r, c) from Lfi(T)(r, c) and a from Afi(T)(r, c), replacing k

with (a′, `′]∩ Lfi(T)(r, c) in (r, c+ 1), and appending k to Afi(T)(r, c+ 1). We see that

107

fi(Vb(T)) = Vb(fi(T)).

Assume that the rightmost unpaired i is in AT (r, c) and r̃ < r or (a, `] ∩ LT (r, c) = ∅

for this entire paragraph. Under this assumption, fi acts on T by changing the right-

most i in the arm of (r, c) to an i+1. Also, Vb acts on T by removing a from AT (r, c),

replacing k in (r̃, c+ 1) with a, and appending k to AT (r̃, c+ 1). First, we make the

additional assumption that i < a. Since we assume the rightmost unpaired i is in

the arm of (r, c) and i < a, we have the rightmost unpaired i in Vb(T) is in the same

position as in T . Note that the cell (r+1, c) still does not contain an i+1 and the cell

(r, c+ 1) still does not contain an i. Thus, we have that fi acts on Vb(T) by changing

the rightmost i in AVb(r, c) into an i+ 1. We now consider Vb(fi(T)). We see that a′

and k′ are the same as a and k respectively. This implies that Vb acts on fi(T) by

removing a from (r, c), replacing k with a in (r̃, c), and appending k to Afi(T)(r̃, c+1).

We see that fi(Vb(T)) = Vb(fi(T)). Next, we make the assumption that a = i and

column c + 1 does not contain both an i and an i + 1. We have that the rightmost

unpaired i in Vb(T) is precisely the i that replaced k in (r̃, c+ 1). We also have that

k > i + 1 or k is the empty character implying that the cell (r̃ + 1, c + 1) does not

contain an i+ 1 and the cell (r̃, c+ 2) does not contain an i. This implies that fi acts

on Vb(T) by changing the i in L+Vb(T)(r̃, c+ 1) to an i+ 1. We now consider Vb(fi(T)).

We see that a′ is the i+1 in (r, c) created by appying fi and k′ is the same as k. Thus,

Vb acts on fi(T) by removing the i+ 1 from (r, c), replacing k with an i+ 1 in (r̃, c),

and appending k to Afi(T)(r̃, c + 1). We see that fi(Vb(T)) = Vb(fi(T)). Next, we

assume that a = i and column c+ 1 contains both an i and an i+ 1 in the same cell.

Note that this implies that k = i. Since a corresponded to the rightmost unpaired i in

T and the only cell in column c+ 1 that contains an i+ 1 or an i is (r̃, c+ 1), we have

that the rightmost unpaired i in Vb(T) corresponds to the i appended to AT (r̃, c+ 1).

Since (r̃, c+ 1) contains an i+ 1 in Vb(T), we have that (r̃ + 1, c+ 1) cannot contain

an i+ 1 and (r̃, c+ 2) cannot contain an i. Thus, fi acts on Vb(T) by changing the i

in AVb(T)(r̃, c+ 1) to an i+ 1. We now consider Vb(fi(T)). We see that a′ is the i+ 1

108

in (r, c) obtained after applying fi and k′ is the i + 1 in cell (r̃, c + 1). This implies

that Vb acts on fi(T) by removing the i+ 1 from (r, c), replacing k′ with an i+ 1 in

(r̃, c + 1), and appending k′ to Afi(T)(r̃, c + 1). We see that fi(Vb(T)) = Vb(fi(T)).

Finally, we make the assumption that a = i and column c+ 1 contains both an i and

an i+ 1 but in different cells. We once again have that k = i, but now we have that

(r̃ + 1, c + 1) contains an i + 1. We have that the rightmost unpaired i in Vb(T) is

the i that was appended to AT (r̃, c + 1). Since (r̃ + 1, c + 1) contains an i + 1, we

have that fi acts on Vb(T) by removing the i from AVb(T)(r̃, c+ 1) and appending an

i + 1 to AVb(T)(r̃ + 1, c + 1). We now consider Vb(fi(T)). We see that a′ is the i + 1

in (r, c) obtained after applying fi and k′ the i+ 1 in cell (r̃ + 1, c+ 1). This implies

that Vb acts on fi(T) by removing the i+ 1 from (r, c), replacing k′ with an i+ 1 in

(r̃+1, c+1), and appending k′ to Afi(T)(r̃+1, c+1). We see that fi(Vb(T)) = Vb(fi(T)).

Assume that the rightmost unpaired i is in the arm of (r, c), r̃ = r, and (a, `] ∩

LT (r, c) 6= ∅ for this entire paragraph. First, we make the additional assumption that

i < a. This gives us that Vb(T) is attained from T by removing (a, `] ∩ LT (r, c) from

LT (r, c) and a from AT (r, c), replacing k in cell (r, c+ 1) with ((a, `]∩ LT (r, c))∪ {a},

and appending k to AT (r, c+ 1). Since k, a > i, we have that the rightmost unpaired

i in Vb(T) remains the same as in T . We also have that the cell (r + 1, c) does not

contain an i+1 and the cell (r, c+1) does not contain an i. Thus, fi acts on Vb(T) by

changing the rightmost i in AVb(T)(r, c) to an i+ 1. We now consider Vb(fi(T)). We

have that fi acts on T by changing the rightmost i in AT (r, c) to an i+1. We see that

a′, k′, and (a′, l′] ∩ Lfi(T)(r′, c′) are the same as a, k, and (a, `] ∩ LT (r, c) respectively.

This implies that Vb acts on fi(T) by removing (a, `]∩ LT (r, c) from Lfi(T)(r, c) and a

from Afi(T)(r, c), replacing k in cell (r, c+1) with ((a, l]∩LT (r, c))∪{a}, and appending

k to Afi(T)(r, c+ 1). We see that fi(Vb(T)) = Vb(fi(T)). Next, we assume that a = i

and (r, c) contains an i+ 1. Since a = i, the i+ 1 in (r, c) must be in its leg. Also as a

is the rightmost unpaired i of T , we must have that (r, c) contains another i besides a.

This gives us that Vb(T) is attained from T by removing (a, `]∩ LT (r, c) from LT (r, c)

109

and a from AT (r, c), replacing k in cell (r, c + 1) with ((a, `] ∩ LT (r, c)) ∪ {a}, and

appending k to AT (r, c+ 1). Note that the i inserted into (r, c+ 1) becomes i-paired

while an i in (r, c) becomes unpaired. This implies that the rightmost unpaired i

in Vb(T) still sits in the cell (r, c). We see that the cell (r + 1, c) still does not

contain an i + 1; however, the cell (r, c + 1) now contains an i. This implies that fi

acts on Vb(T) by removing the i from the cell (r, c + 1) and appending an i + 1 to

LVb(T)(r, c). We now consider Vb(fi(T)). We have that fi acts on T by changing a

into an i + 1. We have that a′ is the i + 1 obtained from applying fi and k′ is same

as k. We see that (a′, `′] ∩ Lfi(T)(r
′, c′) is the same as (a, `] ∩ LT (r, c) excluding the

i+1. We have that Vb acts on fi(T) by removing (a′, `′]∩Lfi(T)(r′, c′) from Lfi(T)(r, c)

and i + 1 from Afi(T)(r, c), leaving the i + 1 in Lfi(T)(r, c), replacing k in (r, c + 1)

with ((a′, `′] ∩ Lfi(T)(r
′, c′)) ∪ {a′}, and appending k to Afi(T)(r, c + 1). We see that

fi(Vb(T)) = Vb(fi(T)). Finally, we assume that a = i and i + 1 is not in the cell

(r, c). This gives us that Vb(T) is attained from T by removing (a, `] ∩ LT (r, c) from

LT (r, c) and a from AT (r, c), replacing k in cell (r, c+ 1) with ((a, `]∩ LT (r, c))∪ {a},

and appending k to AT (r, c + 1). Since k > j > i + 1 for all j ∈ (a, `] ∩ LT (r, c), we

have that the i inserted into the cell (r, c + 1) is the rightmost unpaired i in Vb(T).

Note that the cell (r + 1, c+ 1) does not contain an i+ 1 and the cell (r, c+ 2) does

not contain an i. Thus, fi acts on Vb(T) by changing the i in (r, c + 1) to an i + 1.

We now consider Vb(fi(T)). We have that fi acts on T by changing a into an i + 1.

We have that a′ is the i + 1 obtained from applying fi and k′ is the same as k. We

see that (a′, `′] ∩ Lfi(T)(r
′, c′) = (a, `] ∩ LT (r, c). We have that Vb acts on fi(T) by

removing (a, `] ∩ LT (r, c) from Lfi(T)(r, c) and i + 1 from Afi(T)(r, c), replacing k in

(r, c + 1) with ((a, `] ∩ LT (r, c)) ∪ {a′}, and appending k to Afi(T)(r, c + 1). We see

that fi(Vb(T)) = Vb(fi(T)).

Case 2: Assume that r̂ < r and ĉ = c.

Note that a > i. By Lemma 3.2.3 we have that Ri(T) = Ri(Vb(T)) unless a = i + 1 and

column c + 1 contains both an i and an i + 1. However, even in this special case, we see

that the rightmost unpaired i of Vb(T) is in the same position as the rightmost unpaired

110

i of T . We also see that Vb(T) does not change whether or not cell (r̂ + 1, c) contains an

i + 1 and whether or not cell (r̂, c + 1) contains an i. Thus, fi acts on the same i and in

the same way for both T and Vb(T). Since a > i, we have that k′ is the same as k. Note

that the only way for fi to affect the cell (r, c) in T is if r̂ = r − 1 and (r, c) contains an

i+1. However, even in this special case, we see that (r′, c′), a′, l′, and (a′, `′]∩Lfi(T)(r′, c′)

are the same as (r, c), a, `, and (a, `] ∩ LT (r, c). Thus, Vb acts on T and fi(T) in the

same way. Therefore, we have that the actions of fi and Vb on T are independent and

fi(Vb(T)) = Vb(fi(T)).

Case 3: Assume that ĉ < c.

Let ĩ denote the rightmost unpaired i of T . From the proof of Lemma 3.2.3, we have that

Vb does not change whether or not the i’s to the right of ĩ in Ri(T) are i-paired. Thus,

the rightmost unpaired i in Ri(T) and Ri(Vb(T)) are in the same position. As Vb does not

affect any column to the left of column c, we have that the rightmost unpaired i for Vb(T)

is in the same position as the rightmost unpaired i for T . Note that Vb also does not affect

whether or not cell (r̂ + 1, ĉ) contains an i+ 1 and whether or not cell (r̂, ĉ+ 1) contains

an i. Thus, fi acts on the rightmost unpaired i in T and Vb(T) in exactly the same way.

Next, we note that (r′, c′), a′, k′, and (a′, `′]∩ Lfi(T)(r′, c′) are the same as (r, c), a, k, and

(a, `]∩ LT (r, c) respectively. Thus, Vb acts on T and fi(T) in the same way. Therefore, we

have that the actions of fi and Vb on T are independent and fi(Vb(T)) = Vb(fi(T)).

Case 4: Assume that r̂ 6 r and ĉ = c+ 1.

Under this assumption, we have that column c+ 1 does not contain an i+ 1 and a 6= i+ 1

since the cells in column c+ 1 do not contain any arms. We break into subcases.

• Assume that k 6= i. This implies that the rightmost unpaired i in Vb(T) is in the same

position as the rightmost unpaired i in T . We see that Vb does not change whether

or not cell (r̂ + 1, c+ 1) contains an i+ 1 and whether or not cell (r̂, c+ 2) contains

an i. Thus, fi acts on the rightmost unpaired i in T and Vb(T) in exactly the same

way. We also observe that (r′, c′), a′, `′, k′, and (a′, `′] ∩ Lfi(T)(r
′, c′) are the same

as a, `, k, and (a, `] ∩ Lfi(T)(r, c) respectively. Thus, Vb acts on T and fi(T) in the

111

same way. Therefore, we have that the actions of fi and Vb on T are independent and

fi(Vb(T)) = Vb(fi(T)).

• Assume that k = i. We see that the rightmost unpaired i in Vb(T) is the i that

was appended to AT (r̂, c + 1). Note that Vb does not change whether or not cell

(r̂ + 1, c + 1) contains an i + 1 and whether or not cell (r̂, c + 2) contains an i. We

first make the extra assumption that (r̂, c+ 2) in T contains an i. This implies that

fi acts on Vb(T) and T in the same way by removing the i from the hook entry of

(r̂, c + 2) and appending an i + 1 to the leg of (r̂, c + 1). We also have that (r′, c′),

a′, `′, k′, and (a′, `′] ∩ Lfi(T)(r
′, c′) are equal to (r, c), a, `, k, and (a, `] ∩ Lfi(T)(r, c)

respectively. Thus, Vb acts on T and fi(T) in the same way. Therefore, we have that

the actions of fi and Vb on T are independent and fi(Vb(T)) = Vb(fi(T)). We now

assume that (r̂, c + 2) does not contain an i. This implies that fi acts on Vb(T) by

changing the i in AVb(T)(r̂, c + 1) to an i + 1 and acts on T similarly by changing

the i in LVb(T)(r̂, c+ 1) to an i+ 1. Note that (r′, c′), a′, `′, and (a′, `′] ∩ Lfi(T)(r
′, c′)

are equal to (r, c), a, `, and (a, `] ∩ Lfi(T)(r, c) respectively while k′ is the i + 1 in

Lfi(T)(r̂, c + 1). Thus, besides the value of the number that is bumped from the leg

of (r̂, c+ 1) to its arm, we have Vb acts on T and fi(T) in the same way. Looking at

fi(Vb(T)) and Vb(fi(T)), we see that fi(Vb(T)) = Vb(fi(T)).

Case 5: Assume that r̂ > r and ĉ = c or c+ 1.

Under this assumption, we have that Vb does not change the cells (r̂, ĉ), (r̂ + 1, ĉ), and

(r̂, ĉ + 1). We also have that Ri(T) = Ri(Vb(T)) implying that the rightmost unpaired i

in Vb(T) is in the same position as the rightmost unpaired i in T . Thus, fi acts on the

rightmost unpaired i in Vb(T) and T in the same way. Note that i+1 cannot be in column

ĉ implying that fi can only make changes to the legs and hook entries of (r̂, ĉ) and (r̂, ĉ+1).

Since these changes only affect the legs and hook entries of cells outside of the possible

cells that Vb can change, we have that Vb acts on T and fi(T) in the same way. Therefore,

we have that the actions of fi and Vb on T are independent and fi(Vb(T)) = Vb(fi(T)).

Case 6: Assume that ĉ > c+ 2.

Let ĩ denote the rightmost unpaired i of T . From the proof of Lemma 3.2.3, we have

112

that Vb does not change whether or not the i+ 1’s to the left of ĩ are i-paired. Thus, the

rightmost unpaired i in Ri(T) and Ri(Vb(T)) are in the same position. As Vb does not

affect any column to the right of column c+ 1, we have that the rightmost unpaired i for

Vb(T) is in the same position as the rightmost unpaired i for T . Note that Vb also does

not affect whether or not cell (r̂+ 1, ĉ) contains an i+ 1 and whether or not cell (r̂, ĉ+ 1)

contains an i. Since the cells that fi and Vb could change are different and the rightmost

unpaired i does not change, we have that the actions of fi and Vb on T are independent

and fi(Vb(T)) = Vb(fi(T)).

�

113

Bibliography

[1] J. Bandlow and J. Morse, Combinatorial expansions in K-theoretic bases, Electron. J. Combin., 19 (2012),

pp. Paper 39, 27.

[2] J. Blasiak, J. Morse, and A. Pun, Demazure crystals and the schur positivity of catalan functions, arXiv

preprint arXiv:2007.04952, (2020).

[3] A. S. Buch, A Littlewood-Richardson rule for the K-theory of Grassmannians, Acta Math., 189 (2002), pp. 37–

78.

[4] A. S. Buch, A. Kresch, M. Shimozono, H. Tamvakis, and A. Yong, Stable Grothendieck polynomials and

K-theoretic factor sequences, Math. Ann., 340 (2008), pp. 359–382.

[5] D. Bump and A. Schilling, Crystal bases, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2017.

Representations and combinatorics.

[6] M. Chan and N. Pflueger, Combinatorial relations on skew Schur and skew stable Grothendieck polynomials,

arXiv preprint arXiv:1909.12833, (2019).

[7] S. Fomin and C. Greene, Noncommutative Schur functions and their applications, vol. 193, 1998, pp. 179–200.

Selected papers in honor of Adriano Garsia (Taormina, 1994).

[8] S. Fomin and A. N. Kirillov, Grothendieck polynomials and the Yang-Baxter equation, in Formal power

series and algebraic combinatorics/Séries formelles et combinatoire algébrique, DIMACS, Piscataway, NJ, 1994,

pp. 183–189.

[9] W. Fulton, Young Tableaux:, London Mathematical Society Student Texts, Cambridge University Press, 1996.

With Applications to Representation Theory and Geometry.

[10] A. Gunna and P. Zinn-Justin, Vertex models for canonical Grothendieck polynomials and their duals, arXiv

preprint arXiv:2009.13172, (2020).

[11] G. Hawkes and T. Scrimshaw, Crystal structures for canonical Grothendieck functions, Algebraic Combina-

torics, 3 (2020), pp. 727–755.

[12] J. Hong and S.-J. Kang, Introduction to quantum groups and crystal bases, vol. 42 of Graduate Studies in

Mathematics, American Mathematical Society, Providence, RI, 2002.

[13] M. Kashiwara, Crystalizing the q-analogue of universal enveloping algebras, Comm. Math. Phys., 133 (1990),

pp. 249–260.

[14] , On crystal bases of the Q-analogue of universal enveloping algebras, Duke Math. J., 63 (1991), pp. 465–516.

114

[15] T. Lam and P. Pylyavskyy, Combinatorial Hopf algebras and K-homology of Grassmannians, Int. Math. Res.

Not. IMRN, (2007), pp. Art. ID rnm125, 48.

[16] A. Lascoux and M.-P. Schützenberger, Structure de Hopf de l’anneau de cohomologie et de l’anneau de

Grothendieck d’une variété de drapeaux, C. R. Acad. Sci. Paris Sér. I Math., 295 (1982), pp. 629–633.

[17] , Symmetry and flag manifolds, in Invariant theory (Montecatini, 1982), vol. 996 of Lecture Notes in Math.,

Springer, Berlin, 1983, pp. 118–144.

[18] C. Lenart, Combinatorial aspects of the K-theory of Grassmannians, Ann. Comb., 4 (2000), pp. 67–82.

[19] , A unified approach to combinatorial formulas for Schubert polynomials, J. Algebraic Combin., 20 (2004),

pp. 263–299.

[20] G. Lusztig, Canonical bases arising from quantized enveloping algebras, 3 (1990), p. 447–498.

[21] , Introduction to Quantum Groups, Birkhäuser Boston, 1993.

[22] C. Monical, O. Pechenik, and T. Scrimshaw, Crystal structures for symmetric Grothendieck polynomials,

Transformation Groups, doi:10.1007/S00031-020-09623-y (2020).

[23] J. Morse, J. Pan, W. Poh, and A. Schilling, A crystal on decreasing factorizations in the 0-Hecke monoid,

Electron. J. Combin., 27 (2020), pp. Paper 2, 29.

[24] J. Morse and A. Schilling, Crystal approach to affine Schubert calculus, Int. Math. Res. Not. IMRN, (2016),

pp. 2239–2294.

[25] J. Pan, J. Pappe, W. Poh, and A. Schilling, Uncrowding algorithm for hook-valued tableaux, arXiv preprint

arXiv:2012.14975, (2020).

[26] R. Patrias, Antipode formulas for some combinatorial Hopf algebras, Electron. J. Combin., 23 (2016), pp. Paper

4, 30.

[27] R. Patrias and P. Pylyavskyy, Combinatorics of K-theory via a K-theoretic Poirier-Reutenauer bialgebra,

Discrete Math., 339 (2016), pp. 1095–1115.

[28] V. Reiner, B. E. Tenner, and A. Yong, Poset edge densities, nearly reduced words, and barely set-valued

tableaux, J. Combin. Theory, Ser. A, 158 (2018), pp. 66–125.

[29] R. P. Stanley, On the number of reduced decompositions of elements of Coxeter groups, European J. Combin.,

5 (1984), pp. 359–372.

[30] J. R. Stembridge, On the fully commutative elements of Coxeter groups, J. Algebraic Combin., 5 (1996),

pp. 353–385.

[31] , A local characterization of simply-laced crystals, Trans. Amer. Math. Soc., 355 (2003), pp. 4807–4823.

[32] D. Yeliussizov, Duality and deformations of stable Grothendieck polynomials, J. Algebraic Combin., 45 (2017),

pp. 295–344.

115

