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Abstract

Let θ1, ..., θN be the angles of the eigenvalues of a N ×N matrix sampled from either CβE, SO(N),

or Sp(N). In this dissertation, we study the limiting distribution of the "pair dependent" linear

statistic Å
1√
LN

ã ∑
1≤i 6=j≤N

f(LN (θi − θj)),

where f is a sufficiently smooth function and LN is a positive, non-decreasing sequence such that

1 ≤ LN << N . When LN = 1 (global case), the limiting distribution is an infinite sum of

independent random variables, exponential in the case of CβE and chi-squared distributed in the

cases of SO(N) and Sp(N). When LN → ∞ (mesoscopic case), we are able to prove central limit

theorems for each of the mentioned random matrix ensembles.
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CHAPTER 0

Notations

For convenience, we list the notations that will be commonly used throughout this text.

(1) N: The dimension of a random matrix from the contextually relevant ensemble

(2) CβE: Circular Beta Ensemble

(3) CUE=CβE (β = 2): Circular Unitary Ensemble

(4) U(N): Ensemble of N ×N unitary matrices.

(5) SO(N): Ensemble of N ×N orthogonal matrices with determinant one

(6) SO−(N): Ensemble of N ×N orthogonal matrices with determinant negative one

(7) Sp(N): Ensemble of 2N × 2N symplectic matrices

(8) D−→: ‘Converges in distribution to’

(9) CLT: Central Limit Theorem

(10) m.g.f. : moment generating function

(11) c.g.f. : cumulant generating function

(12) bxc : greatest integer less than or equal to x, bxc = k ∈ Z where k ≤ x < k + 1

(13) aN << bN :
∣∣∣aNbN ∣∣∣→ 0 as N →∞

(14) aN,k = oN (bN ):
∣∣∣aN,kbN

∣∣∣→ 0 as N →∞, independent of k

(15) aN = O(bN ):
∣∣∣aNbN ∣∣∣ ≤ C for sufficiently large N

(16) tN,k, tk: The trace of the k-th power of a random matrix from the contextually relevant

ensemble

(17) χA: Indicator function on condition A

(18) =(z): The imaginary part of z

(19) <(z): The real part of z

(20) Tn: The n-torus

(21) Hα(T) (α ≥ 0) :=
¶
f ∈ L2(T) such that

∑
k∈Z k

2α|f̂(k)|2 <∞
©
.
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CHAPTER 1

Introduction

Random Matrix Theory (RMT) can be traced back to the study of random covariance matrices

by John Wishart in 1928 [27]. In the 1950s, RMT received a great deal of attention from the

Physics community after Eugene Wigner used statistical properties of random matrix ensembles as

a means to model the interactions of large systems of nuclear particles [26]. Since then, random

matrices have been utilized as a valuable tool for studying a broad range of problems in areas such

as Mathematics, Statistics, Physics, and Computer Science.

If M is random matrix, then the operator norm, determinant, trace, eigenvalues, and eigenvectors

of M are all examples of random quantities that one might be interested in studying. In this

dissertation, we consider statistics related to pairs of eigenvalues from a variety of random matrix

ensembles, namely the Circular-Beta Ensembles (CβE), the ensemble of N×N orthogonal matrices

with determinant one,SO(N), sampled according to Haar measure, and the ensemble of 2N × 2N

symplectic matrices, Sp(N) (also sampled with respect to Haar measure). In each of these ensembles,

the eigenvalues are random quantities distributed on the unit circle.

O(N)

Classical Compact
Groups

Sp(N)

COE

Circular Beta
Ensembles

CSE

CUE
=

U(N)

The CβE was first introduced by F. Dyson as a collection of random matrix ensembles in [9]-

[11] for the particular cases β = 1, β = 2, and β = 4 corresponding to the Circular Orthogonal
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Ensemble (COE), the Circular Unitary Ensemble (CUE), and the Circular Symplectic Ensemble

(CSE), respectively. In all three cases, the N eigenvalues of these random matrix ensembles are of

the form eiθ, where θ ∈ [0, 2π). Moreover, we say that θ1, . . . , θN are distributed according to the

CβE if their joint probability density is given by

PN,β(θ) =
1

ZN,β

∏
1≤j<k≤N

∣∣∣eiθj − eiθk ∣∣∣β(1.0.1)

=
1

ZN,β
exp

β
2

∑
1≤j 6=k≤N

ln

Å
2 sin

Å
θj − θk

2

ãã ,(1.0.2)

where ZN,β is a normalization constant that can be explicitly written in terms of the Gamma

function. In particular,

ZN,β =

∫
TN

∏
1≤j<k≤N

∣∣∣eiθj − eiθk ∣∣∣β dθ = (2π)N ·
Γ
Ä
1 + βN

2

äî
Γ
Ä
1 + β

2

äóN
which follows from the Selberg integral formula (see [21]). Equivalently, we might say that the

spectrum of a random matrix M has CβE statistics or is CβE distributed if its eigenvalues are

distributed according to (1.0.1). Similar distributions are known for SO(N) and Sp(N), which we

describe at the start of Chapter 3. Let us first consider the CβE in the particular case where β = 2.

The associated β ensemble describes the eigenvalue distribution for the group of N × N unitary

matrices, U(N), sampled according to Haar measure. As stated above, the eigenvalues of a CUE

distributed matrix are of the form exp(iθ1) . . . exp(iθN ), where {θi}Ni=1 are distributed according to

(1.0.1). A matrix with CUE statistics can be obtained by performing a Gram-Schmidt procedure on

N N-dimensional vectors with i.i.d. complex standard normal entries. If U is distributed according

to the CUE, then UTU is distributed according to the COE (β = 1). Similarly, if U is a 2N × 2N

CUE distributed matrix, then it is algebraically equivalent to an N ×N quaternion matrix and so

has a corresponding quaternion dual, UD. UDU is then a matrix distributed according to CSE

(β = 4). For more details, we refer the reader to [21]. In this dissertation, we also consider the

more general case β > 0. For β 6= 1, 2, 4, there are explicitly defined matrix models with eigenvalues

distributed according to (1.0.1), but the constructions are more sophisticated than for COE and

3



CSE. A general construction for tridiagonal random matrices with eigenvalues jointly distributed

according to (1.0.1) is given by R. Killip in [17].

From a Mathematical Physics point of view, one may view the eigenvalues of a CβE matrix as a finite

system of repelling unit charges on the unit circle (T) under a logarithmic Coulomb potential (see

1.0.2), where β, corresponding to inverse temperature, indicates the strength of repulsion between

particles. Moreover, a straightforward calculation given in [14] shows that the logarithmic potential

obtains its maximum on equidistant spaced particle configurations. A particular point of interest to

us will be statistics related to the trace of a large CβE distributed matrix. Heuristically, if M is an

N×N CβE distributed random matrix, then Tr(Mk) is the sum of many weakly dependent random

quantities with a significant amount of cancellation that comes from the uniform behavior of the

eigenvalues on the unit circle. As a result, each individual eigenvalue gives a small contribution to

the sum and the Central Limit Theorem suggests that Tr(Mk) (k ∈ N) should be approximately

normally distributed when N is large. It is then reasonable to assume that statistics related to

Tr(Mk) might have close connections to the normal distribution.

Let f be a reasonably well behaved test function and M be an N × N CβE distributed matrix

with eigenvalues
{
eiθj
}N
j=1

. Additionally, let LN be a positive, non-decreasing sequence satisfying

LN ≤ N . Then linear statistics of the form

TN (f(LN ·)) :=
N∑
j=1

f(LNθj) =
∑
k∈Z

f̂(k) Tr
Ä
Mk
ä
,(1.0.3)

were f̂(k) denotes the k-th Fourier coefficient of f(LN ·), have been studied at length in [14], [7],

[6], [15], [25], and [19]. It was proven by K. Johansson in [14](1988) that, when LN = 1, TN (f)

converges in distribution to a normally distributed random variable. The result was extended for

the case β = 2 and LN << N by A. Soshnikov in [25](2000). The result was again extended to

the case β > 0 and LN << N by G. Lambert in [19](2019). The analogous statistic for the O(N)

and Sp(N) was studied in [7] and [15] when LN = 1. Central limit theorems were proven in [18]

and [12] for the case where TN (f) is equal to the eigenvalue counting function, i.e. f is a sum of

indicators for the eigenvalues of the CβE.
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In the following chapters, we consider a closely related ‘pair counting’ or ‘pair dependent’ statistic,

namely

SN (f(LN ·)) :=
∑

1≤i 6=j≤N
f(LN (θi − θj)),(1.0.4)

where the θjs are jointly distributed according to the CβE, SO(N), or Sp(N), LN is a non-decreasing

sequence satisfying 1 ≤ LN << N , and f is a suitable test function. The case for LN = N (local

statistics) is studied in [2] for the CUE. This work is largely motivated by a classical result stated

by H. Montgomery [22]- [23], which connected the behavior of rescaled non-trivial zeros of the

Riemann zeta function with the local eigenvalue statistics (LN = N) for the CUE. Assuming the

Riemann Hypothesis to be true, suppose that {1/2±γn} are the ‘non-trivial’ zeroes of the Riemann

zeta function and consider the scaling γn = γn
2π log(γn), so that the spacing between neighboring,

rescaled zeros is on the order of a constant. Montgomery essentially studied the statistic

ST (α) =
1

T

∑
0<γj ,γk≤T

exp(iα(γj − γk))

1 +
Ä
γj−γk
2 log(T )

ä2
for real α, and large, real T . Assuming the Riemann Hypothesis, he was able to rigorously show

that ST (α) behaves as

α+ [T log(T )]−2α(1 + o(1)) + o(1)

for large T and 0 ≤ α ≤ 1. When α > 1, Montgomery used heuristic arguments to show that

ST (α) = 1 + o(1). Together, this implies that ST (α) converges in T to min(|α|, 1), which is the

Fourier transform of

δ(x)−
Å

sin(πx)

πx

ã2

,

the limiting pair correlation function for the local CUE eigenvalue statistics. A very natural next

step is to consider statistics of the form (1.0.4).

A crucial part of our analysis comes from the fact that SN (f(LN ·)) can be rewritten in terms of the

traces of integer powers of appropriately distributed random matrices when the Fourier coefficients

of f decay reasonably fast. In particular, if we consider the case where LN = 1 and f ∈ H1(T) is

5



even with f̂(0) = 0, then

SN (f) = 2
∑
k∈N

f̂(k)
Ä
|tN,k|2 −N

ä
,

where tN,k = TN
(
eikθ
)
denotes the trace of the k-th power of an appropriately distributed random

matrix. For completeness, we present here two particularly influential results regarding the statis-

tical behavior of the traces of random matrices sampled from CβE, O(N), and Sp(N) that will be

essential to our analysis of SN (f(LN ·)). The first is due to P. Diaconis and M. Shahshahani:

Proposition 1.0.1. [7]

(1) Let Z1, ..., Zm be i.i.d. complex, standard normal random variables and let α = (α1, ..., αm),

β = (β1, . . . , βm) ∈ Nm. Then, for all N ≥ max
Ä∑m

j=1 jαj ,
∑m

j=1 jβj
ä
,

EU(N)

Ñ
m∏
j=1

tN,j(tN,j)

é
= δα,β

m∏
j=1

jαjαj !

= δα,βE

Ñ
m∏
j=1

(
√
jZj)

αj (
√
jZj)

βj

é
,

where δα,β = 1 if α = β and zero otherwise.

(2) Let X1, ..., Xm be i.i.d. real, standard normal random variables and let α = (α1, ..., αm) ∈

Nm. Then, for all N ≥
∑m

j=1 jαj,

(a)

EO(N)

Ñ
m∏
j=1

t
αj
N,j

é
=

m∏
j=1

E(
√
jXj + ηj)

αj ,

(b)

ESp(N)

Ñ
m∏
j=1

t
αj
N,j

é
=

m∏
j=1

E(
√
jXj − ηj)αj ,

where ηj = 1 if j is even and zero otherwise.

In short, for any finite collection {tN,α1 , . . . , tN,αm} and fixed l, all of the l-th order joint moments

are precisely the same as those for independent Gaussian random variables for large enough N .
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Consequently, {tαi,N}mi=1 converges in finite dimensional distribution to a collection of Gaussian

random variables as N →∞.

Remark 1.0.2. While Diaconis and Shahshahani proved an exact formula for the joint moments of

a finite collection {tN,α1 , . . . , tN,αm} for sufficiently large N , it was K. Johansson who first proved

the finite dimensional convergence of {tN,α1 , . . . , tN,αm} to independent Gaussians via analysis of

Hankel determinants in [14].

The second result is due to T. Jiang and and S. Matsumoto, which extends the result of Diaconis

and Shahshahani for CUE (β = 2) to the case of general β

Proposition 1.0.3. [13] Let M be distributed according to CβE and α = (a1, . . . , am), b =

(b1, . . . , bm), with aj , bj ∈ {0, 1, . . .}. If a = b and N ≥ K =
∑M

j=1 j · aj, then

A(N,K, β)
k∏
j=1

jajaj ! ≤ E

Ñ
k∏
j=1

|tN,j |2aj

é
≤ B(N,K, β)

k∏
j=1

jajaj !,

where

A(N,K, β) =

Ñ
1−

∣∣∣ 2β − 1
∣∣∣

N −K + 2
β

χ(β≤2)

éK

and B(N,K, β) =

Ñ
1 +

∣∣∣ 2β − 1
∣∣∣

N −K + 2
β

χ(β>2)

éK

.

Once again, we can see that the joint moments of any finite collection tN,k1 , . . . , tN,kl behave asymp-

totically like those of independent complex Gaussians up to a well behaved constant multiple.

This dissertation is organized as follows. Chapter Two is dedicated to proving results related to

CβE. We pay special attention CUE (β = 2), where our main results hold under optimal conditions.

The primary tool for proving optimal conditions is an explicit variance calculation using the k-point

correlation functions for CUE, which we provide in Section 2.4. Chapter Three is dedicated to

proving analogous results for the classical compact groups SO(N) and Sp(N). Again, we are able

to obtain optimal conditions via a lengthy variance calculation, this time using joint cumulants.

The details of the calculation are given in Section 3.5.
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CHAPTER 2

Pair Dependent Linear Statistics for CβE

In this chapter, we consider the limiting distribution of pair counting eigenvalues statistics for the

Circular Beta Ensembles (CβE). In particular, let θ1, . . . θN be jointly distributed according to

CβE (see 1.0.1) and f be a sufficiently smooth, even, test function. Then we study the limiting

distribution of

SN (f(LN ·)) :=
∑

1≤i 6=j≤N
f(LN (θi − θj))(2.0.1)

as N → ∞, i.e. the dimension of our matrix from CβE goes to infinity. Here, LN is a positive

sequence satisfying LN << N . When LN = 1, we determine that the limiting distribution is a sum

of independent exponentials under mild conditions on f (depending on β). When 1 << LN << N ,

we prove a central limit theorem. For the case β = 2, our primary tools are the k-point correlation

functions, which allow us to give an exact formula for variance and, consequently, determine optimal

conditions for convergence. For the case β 6= 2, we rely on the results of Jiang and Matsumoto [13]

on the joint moments of traces of general CβE matrices.

2.1. Main Results

Denote by

f̂(k) =
1

2π

∫
T
f(θ)e−ikθdθ

the k − th Fourier coefficient of f . The following result holds for the case where LN = 1.

Theorem 2.1.1. Let {θi}Ni=1 be distributed according to CβE and

SN (f) =
∑

1≤i 6=j≤N
f(θi − θj),(2.1.1)

8



where f is a real valued, even function on the unit circle such that f ∈ H1(T) for β = 2,
∑

k∈Z |k| ×

|f̂(k)| for β < 2,
∑

k∈Z |k|2|f̂(k)| for β > 2. Then we have the following convergence in distribution

as N →∞ :

SN (f)− ESN (f)
D−−−→ 4

β

∞∑
k=1

f̂(k)(ϕk − 1),(2.1.2)

where {ϕk}∞k=1 are i.i.d. exponential(1) random variables.

Remark 2.1.2. For the case where β = 4, corresponding to CSE, we can relax the condition on f

to
∑

k∈Z |f̂(k)||k| log(|k|+ 1) <∞.

Remark 2.1.3. For the case where β = 2, one has

ESN (f) = N2f̂(0)−Nf(0) +
∑
k∈Z

min(|k|, N)f̂(k)(2.1.3)

and

Var(SN (f)) = 2

N−1∑
k=1

(kf̂(k))2 + oN (1).

A rigorous calculation is given in Section 2.4. More generally, when β 6= 2, we can write

ESN (f) = N2f̂(0)−Nf(0) +
2

β

∑
k∈Z
|k|f̂(k) + oN (1).(2.1.4)

Remark 2.1.4. If
∑

k∈Z k
2f̂2(k)→∞, then Var(SN (f))→∞, so it is reasonable to assume that,

after renormalization, one might still be able to prove a CLT in certain cases. Although a general

proof of such a statement is outside the scope of this dissertation, we prove the special case where

f(θ) = 1
2 ln

(
2 sin

(
θ
2

))
in Section 2.5.

We now turn our attention to the mesoscopic case, 1 << LN << N . Let f ∈ C∞c (R) be a smooth,

compactly supported, even function and consider the random variable

SN (f(LN ·)) =
∑

1≤i 6=j≤N
f(LN (θi − θj))(2.1.5)

9



In this context, denote by

f̂(ξ) =
1√
2π

∫
R
f(x)e−ixξdx

the Fourier transform of f . The following result holds:

Theorem 2.1.5. Assume that 1 << LN << N, for β = 2 and that LN grows to infinity slower

than any power of N for β 6= 2. Then (SN (f(LN ·))−ESN (f(LN ·)))L−1/2N converges in distribution

to centered real Gaussian random variable with the variance

4

πβ2

∫
R
|f̂(t)|2t2dt.

Remark 2.1.6. For the case where β = 2, we can actually weaken the smoothness condition to

f ∈ C2
c (R).

Remark 2.1.7. A central limit theorem for the case where LN = N and β = 2 is proven in [2]

via a combinatorial argument involving joint cumulants. In particular, let f ∈ C∞c (R) be an even,

smooth, compactly supported function. Then

SN (f(N ·))− ESN (f(N ·))√
N

(2.1.6)

converges in distribution to a centered real Gaussian variable with variance

1

π

∫
R
|f̂(t)|2 min(|t|, 1)2dt− 1

π

∫
|s−t|≤1,|s|∨|t|≥1

f̂(t)f̂(s)(1− |s− t|)dsdt(2.1.7)

− 1

π

∫
0≤s,t≤1,s+t>1

f̂(s)f̂(t)(s+ t− 1)dsdt.

The formula for variance follows immediately from the computation given in Section 2.4.

10



2.2. Proof of Theorem 2.1.1

This section is devoted to the proof of Theorem 2.1.1. We begin with the case where β = 2. We

provide the details for β 6= 2 at the end of the section. We first show that the case where f is a

trigonometric polynomial is in fact an immediate corollary of Theorem 1.1.1. To extend the result

to more general test functions, we utilize a variance bound to give an ε/3 type argument. To prove

the theorem under the optimal condition
∑

k∈Z k
2|f̂(k)|2 < ∞, we require the explicit formula for

Var(SN (f)) given in Section 2.4. The details for β 6= 2 are given at the end of the section.

Throughout this section we will denote by

tN,k :=
N∑
j=1

eikθj(2.2.1)

the trace of the k-th power of an N ×N CβE matrix.

We begin with the case β = 2. Let f be a real, even, trigonometric polynomial, i.e.

f(θ) =
∑
|k|≤m

f̂(k)eikθ.

We may assume that f̂(0) = 1
2π

∫
T f(θ)dθ = 0, since

SN (f)− ESN (f) =
∑

1≤i,j≤N
f(θi − θj)− (N2 −N)f̂(0)− 2

m∑
k=1

(|k| −N)f̂(k)

=
∑

1≤i,j≤N
[f(θi − θj)− f̂(0)]− 2

m∑
k=1

(|k| −N)f̂(k).(2.2.2)

Moreover, we can rewrite (2.2.2) in terms of traces, {tN,k}k∈Z. In particular,

SN (f)− ESN (f) = 2
m∑
k=1

f̂(k)
(
|tN,k|2 −N − k

)
+Nf(0)

= 2
m∑
k=1

kf̂(k)

Å
1

k
|tN,k|2 − 1

ã
Proposition 1.0.1 implies that

¶
tN,k√
k

©m
k=1

converge, in finite dimensional distribution, to a sequence

of i.i.d. complex, standard normal random variables. By the Continuous Mapping theorem [3],

11



SN (f)− ESN (f) converges in distribution to

2
m∑
k=1

kf̂(k)
(
X2
k + Y 2

k − 1
)
,

where {Xk}mk=1, {Yk}mk=1 are i.i.d. Real Gaussian random variables withe mean zero and variance
1
2 . Recalling that X2

k + Y 2
k has exponential(1) distribution completes the proof of the case where f

is trigonometric polynomial.

We now consider the case of more general test functions. Before proceeding with the proof, we

present two necessary propositions. The first proposition gives an exact formula for Var (SN (f)).

Proposition 2.2.1. Let f be a real valued, even function on the unit circle such that f ′ ∈ L2[T]

and let β = 2. Then

Var (SN (f)) = 4

Ñ ∑
1≤s≤N−1

s2[f̂(s)]2 +N2
∑
N≤s

[f̂(s)]2 −N
∑
N≤s

[f̂(s)]2

é
−4

â
∑
1≤s,t

1≤|s−t|≤N−1
N≤max(s,t)

(N − |s− t|)f̂(s)f̂(t) +
∑

1≤s,t≤N−1
N+1≤s+t

((s+ t)−N)f̂(s)f̂(t)

ì
.

The next proposition allows us to prove Theorem 2.1.1 under the optimal assumptions on the test

function f.

Proposition 2.2.2. Let β = 2 and f satisfy the conditions of Theorem 2.1.1, i.e. f is an even real

function such that f ′ ∈ L2(T). Then

Var(SN (f)) = 4
∑

1≤k≤N−1
k2|f̂(k)|2 + oN (1).

We provide proofs of Propositions 2.2.1-2.2.2 in Section 2.4.

Now, continuing with the proof, let

fm(θ) = 2
m∑
k=1

f̂(k)eikθ, fm(θ) = 2
∞∑

k=m+1

f̂(k)eikθ,

12



Tm = 2

m∑
k=1

f̂(k)(ϕk − 1), and T∞ = 2

∞∑
k=1

f̂(k)(ϕk − 1).

By the previously stated argument, SN (fm)− ESN (fm) converges in distribution to Tm. Now

∞∑
k=1

Var
Ä
kf̂(k)(X2

k + Y 2
k − 1)

ä
=

∞∑
k=1

k2(f̂(k))2

converges under the assumptions of the theorem and E(Tm) = 0 for all k, so the Kolmogorov Two

Series theorem [8] implies that Tm converges almost surely to T∞. To complete the proof, one

shows that SN (f) converges to T∞ with respect to the Lèvy metric, which implies convergence in

distribution, by using a standard ε/3 type argument combined with a Chebyshev bound for the

tail statistic SN (fm). The necessary Chebyshev bound follows from Proposition 2.2.2. The precise

details of the proof can be found in Appendix A.1.

For the case where β 6= 2, we apply the same ε/3 argument in the case of β = 2, but replace the

Chebyshev bound by the corresponding Markov and apply Proposition 1.0.3. Once again, we direct

the reader to Appendix A.1 for the complete details.
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2.3. Proof of Theorem 2.1.5

This section is devoted to the proof of Theorem 2.1.5. We use the Lindeberg-Feller condition when

β = 2 and the method of moments when β 6= 2.

Proof of Theorem 2.1.5

WhenN is sufficiently large, the support of f(LN ·) is contained in the interval [−π, π). In particular,

f(LN ·) has a Fourier series given by

f(LNθ) =
∑
k∈Z

1√
2πLN

f̂

Å
k

LN

ã
eikθ

where θ ∈ [−π, π) and

f̂(ξ) =
1√
2π

∫
R
f(x)e−iξxdx

is the Fourier transform of f.

Remark 2.3.1.

It follows immediately from the joint probability density for {θi}Ni=1, (1.0.1), that {LNθi}Ni=1 are not

truly distributed on the real line, but rather a circle of increasing radius. Accordingly, the above

LN
0−πLN ≡ πLN

Figure 2.1. Example Configuration

Fourier series is a 2π-periodization of f(LN ·), which correctly preserves the circular relationship

between {θi}Ni=1.

Rewriting SN (f(LN ·)) in terms of the above Fourier series, we have

SN (f(LN ·)) =
∑

1≤j 6=k≤N
f(LN (θj − θk)) =

∑
k∈Z

1√
2πLN

f̂

Å
k

LN

ãÑ∣∣∣∣∣ N∑
m=1

eikθm

∣∣∣∣∣
2

−N

é
.
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Consider first the case β = 2, so {θj}Nj=1 are distributed according to the CUE. We have

SN (f(LN ·))− E(SN (f(LN ·))) = 2
∑
k≥1

1√
2πLN

f̂

Å
k

LN

ãÑ∣∣∣∣∣ N∑
m=1

eikθm

∣∣∣∣∣
2

−min(k,N)

é
.(2.3.1)

By inserting the Fourier coefficients for the mesoscopic case into the variance formula given in

Proposition 2.2.1, we see that the term which determined variance in the unscaled case, the last

term in (2.4.13), becomes

LN

 2

πLN

∑
1≤k≤N−1

Å
k

LN

ã2 Å
f̂

Å
k

LN

ãã2
 .

The term in the brackets is nearly a Riemann sum which converges to ||f ′||2/π. Thus, the variance

of SN (f(LN ·)) is proportional to LN . We then normalize (2.3.1) by
√
LN/(2π) and break it up into

two pieces:

2√
LN

mN∑
k=1

k

LN
f̂

Å
k

LN

ã
(ϕ

(N)
k − 1)(2.3.2)

+
2√
LN

∞∑
k=mN+1

1

LN
f̂

Å
k

LN

ãÑ∣∣∣∣∣ N∑
m=1

eikθm

∣∣∣∣∣
2

−min(k,N)

é
,

where mN = b
√
NLNc and

ϕ
(N)
k :=

1

k

∣∣∣∣∣
N∑
m=1

eikθm

∣∣∣∣∣
2

=
1

k
|tN,k|2.

We show in Appendix A.2 that the variance of the second sum in (2.3.2) converges to zero by

applying Proposition 2.2.1 and analogous arguments from the proof of Proposition 2.2.2. Therefore,

it is enough to study the asymptotic distribution of the first sum:

ΣN =
2√
LN

mN∑
k=1

k

LN
f̂

Å
k

LN

ã
(ϕ

(N)
k − 1).(2.3.3)

Consider the sequence of random variables {ϕ(N)
k }

mN
k=1 labeled by positive integer k. As N →∞, this

sequence converges, in finite-dimensional distributions, to a sequence of i.i.d. exponential random

variables {ϕk}mNk=1. Moreover, (1.0.1), together with the fact that LN <<
√
NLN << N , implies

that, for any fixed n and sufficiently large N (depending on n), all joint moments up to order n

15



of random variables {ϕ(N)
k }

mN
k=1 coincide with the corresponding joint moments of i.i.d. exponential

random variables {ϕk}mNk=1. Therefore, it is enough to study the asymptotic distribution of

ΣN =
2√
LN

mN∑
k=1

k

LN
f̂

Å
k

LN

ã
(ϕk − 1).(2.3.4)

This is done below by routine computation, as we show that the sequence of random variables in

the above sum satisfy the Lindeberg-Feller condition [8]. Since the moment generating function for

a finite sum of independent exponential random variables is well defined on an interval of positive

radius about the origin, one could also proceed by showing that the moment generating function

for the truncated sum converges to that of the desired Gaussian distribution. For completeness, we

provide the details for the Lindeberg-Feller argument directly below and the details for the moment

generating function argument in Appendix A.2.

Let

cN,k =
2k

L
(3/2)
N

f̂

Å
k

LN

ã
, XN,k = cN,k(ϕk − 1).

Then E(Xk) = 0, Var(Xk) = c2N,k, and

ΣN =

mN∑
k=1

XN,k,

Denote by s2N the variance of ΣN , i.e.

s2N =

mN∑
k=1

c2N,k.

To see that the sequence of random variables (Xk) satisfy the Lindeberg-Feller condition, we check

that, given ε > 0,
1

s2N

mN∑
k=1

E(X2
k1|Xk|>εsN )→ 0.

If |cN,k| = 0 for some k, then E(X2
k1|Xk|>εsN ) = 0, so, without loss of generality, we will assume that

|cN,k| > 0 for all k and N . Moreover, sN is proportional to a constant and, since f ′ is continuous

and bounded, we have 1/|cN,K | ≥ C
√
LN for some positive constant C that is independent of k and
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N . It follows that, for large enough N , we can write

E(X2
k1|Xk|>εsN ) = c2N,kE([ϕ2

k − 2ϕk + 1]1(ϕk−1)>εsN/|cN,k|) + c2N,kE([ϕ2
k − 2ϕk + 1]1(ϕk−1)<−εsN/|cN,k|)

= c2N,kE([ϕ2
k − 2ϕk + 1]1(ϕk−1)>εsN/|cN,k|)

= c2N,k

∫
x>1+(εsN/|cN,k|)

(x2 − 2x+ 1)e−xdx.

Once again, for large enough N , we have

E(X2
k1|Xk|>εsN ) ≤ c2N,k

∫
x>γN

(x2 − 2x+ 1)e−xdx

= c2N,ke
−γN (γ2N + 1),

where γN = C
√
LN [ε sN ]. Clearly γN = O(

√
LN ) and e−γN (γ2N + 1) goes to zero independent of k.

This immediately implies

1

s2N

mN∑
k=1

E(X2
k1|Xk|>εsN ) ≤ 1

s2N

mN∑
k=1

c2N,k · oN (1) = oN (1),

so the Lindeberg-Feller condition is satisfied and we can conclude that

ΣN

sN

D−−→ N (0, 1) ,(2.3.5)

where s2N is a Riemann sum that converges to

2

∫
R

[xf̂(x)]2 dx

as N →∞. This completes the proof of Theorem 2.1.5 when β = 2.

The proof for the case when β 6= 2 relies on the results by Jiang and Matsumoto [13] that, in

particular, state that for any finitely many positive integers k1, k2, . . . kn, ki << N, 1 ≤ i ≤ n, one

has

E
n∏
i=1

ϕ
(N)
ki

=

(
E

n∏
i=1

ϕki

)Å
1 +O

Å
k1 + . . . kn

N

ãã
.(2.3.6)
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Namely, we proceed as follows. As in the case when β = 2, we write

SN (f(LN ·))− E(SN (f(LN ·)))√
LN

=
2√

2πLN

∑
k≥1

1

LN
f̂

Å
k

LN

ãÄ
|tN,k|2 − E |tN,k|2

ä
=

2√
2πLN

∞∑
k=1

k

LN
f̂

Å
k

LN

ã
(ϕ

(N)
k − Eϕ(N)

k ).

We then split the last sum into three pieces, namely

2√
LN

L2
N∑

k=1

k

LN
f̂

Å
k

LN

ã
(ϕ

(N)
k − Eϕ(N)

k ) +
2√
LN

N/10∑
k=L2

N+1

k

LN
f̂

Å
k

LN

ã
(ϕ

(N)
k − Eϕ(N)

k )

+
2√
LN

∞∑
k>N/10

k

LN
f̂

Å
k

LN

ã
(ϕ

(N)
k − Eϕ(N)

k ),

and deal with each term separately. The variance of the second term goes to zero as N →∞ since

the Fourier transform of f decays sufficiently fast for f ∈ C∞c (R) and E|ϕ(N)
k −Eϕ(N)

k |
2 is bounded

for k ≤ N/10. Here, the bound on the variance of ϕ(N)
k follows from (2.3.6).

The variance of the third term goes to zero as well. Indeed, we bound E|ϕ(N)
k −Eϕ(N)

k |
2 from above

by N4/k2 for k > N/10 and again use the fast decay of f̂
Ä
k
LN

ä
to finish the argument.

Now we turn our attention to the first term,

2√
LN

L2
N∑

k=1

k

LN
f̂

Å
k

LN

ã
(ϕ

(N)
k − Eϕ(N)

k ).(2.3.7)

It follows from (2.3.6) that, for any positive integer l, the l-th moment of (2.3.7) is equal to the l-th

moment of

2√
LN

L2
N∑

k=1

k

LN
f̂

Å
k

LN

ã
(ϕk − 1),(2.3.8)

up to a vanishing error term of order O(L
l/2+2
N N−1). Again, the exponential moment of (2.3.8)

converges to that of a Gaussian random variable. Theorem 2.1.5 is proven.
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2.4. Variance Calculation (β = 2)

This section is devoted to the computation and asymptotic analysis of the variance of the pair

counting statistic SN (f) defined in (1.0.4). In particular, we prove Proposition 2.2.1 and Proposition

2.2.2. The covariance function for {|tN,k|2}∞k=1 is presented as a corollary to Proposition 2.2.1 We

assume β = 2 for the rest of the section.

First, we prove Proposition 2.2.1. The proof follows from quite straightforward, but somewhat

tedious computations given below. The reader might want to skip the details initially.

Proof of Proposition 2.2.1

We may assume, without loss of generality, that f̂(0) = 0. Let ρN,k(θ) be the k-point correlation

functions for {θj}Nj=1 distributed according to the CUE. It is well known that CUE point correlation

functions have determinantal structure (see e.g. [21]). In particular, if QN (x, y) is the kernel of the

orthogonal projection on

Span{ 1√
2π
eikx, 0 ≤ k ≤ N − 1}, namely

QN (x, y) =
1

2π

N−1∑
k=0

ei(x−y),(2.4.1)

then

ρN,k(θ1, . . . , θk) = det (QN (θi, θj))1≤i,j≤k.(2.4.2)

Using the above determinental structure for ρN,2(θ1, θ2), we can see that

E(SN (f)) = E

Ñ ∑
1≤i 6=j≤N

f(θi − θj)

é
=

∫
T2

f(θ1 − θ2)ρN,2(θ1, θ2)dθ1dθ2

=

∫
T2

f(θ1 − θ2)[QN (θ1, θ1)QN (θ2, θ2)−QN (θ1, θ2)QN (θ2, θ1)]dθ1dθ2
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=

Å
N

2π

ã2 ∫
T2

f(θ1 − θ2)dθ1dθ2 −
∑

0≤j,k≤N−1

Å
1

2π

ã2 ∫
T2

f(θ1 − θ2)eij(θ1−θ2)eik(θ2−θ1)dθ1dθ2

= N2f̂(0)−
∑

0≤j,k≤N−1

Ä
f̂(j − k)

ä2
= −

∑
|k|≤N−1

(N − |k|)f̂(k).

Furthermore, using the fact that f is even, we can see that the variance of SN (f) is given by

E((SN (f))2)− (E(SN (f)))2 =(2.4.3)

E

Ñ
2

∑
1≤i 6=j≤N

f2(θi − θj)

é
(2.4.4)

+ E

Ñ
4

∑
1≤i 6=j 6=k≤N

f(θi − θj)f(θk − θj)

é
(2.4.5)

+ E

Ñ ∑
1≤i 6=j 6=k 6=l≤N

f(θi − θj)f(θk − θl)

é
− (EN (SN (f)))2(2.4.6)

Rewriting these expectations in terms of the two, three, and four point correlations functions for

the CUE, we have

Var (SN (f)) =(2.4.7)

2

∫
T2

f2(θ1 − θ2)ρN,2(θ1, θ2)dθ1dθ2(2.4.8)

+ 4

∫
T3

f(θ1 − θ2)f(θ3 − θ2)ρN,3(θ1, θ2, θ3)dθ1dθ2dθ3(2.4.9)

+

∫
T4

f(θ1 − θ2)f(θ3 − θ4)ρN,4(θ1, θ2, θ3, θ4)dθ1dθ2dθ3dθ4 − (EN (SN (f)))2,(2.4.10)
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which can be written as

= 2N2

Ñ
f̂2(0)−

∑
|k|≤N−1

|f̂(k)|2
é

(2.4.11)

+ 4
∑

0≤j,k,l≤N−1
f̂(j − k)f̂(k − l)− 2

∑
0≤j,k,l,m≤N−1

f̂(j − k)f̂(k − l)χ(j−m=k−l)(2.4.12)

− 2N
∑

|k|≤N−1

f̂2(k) + 2
∑

|k|≤N−1

|k|f̂2(k) + 2
∑

|k|≤N−1

|k|2|f̂(k)|2.(2.4.13)

To see this, we first observe that our expectation calculation above immediately implies that (2.4.8)

is equal to

2N2f̂2(0) + 2
∑

|k|≤N−1

(|k| −N)f̂2(k).(2.4.14)

Using the assumption f̂(0) = 0 and (2.4.2) to expand ρN,3(θ) in (2.4.9), we observe that the majority

of terms will give zero contribution after integrating. Combining the remaining non-negligible terms

that give an equal contribution, we can rewrite (2.4.9) as

− 4N

2π

∫
T3

f(θ1 − θ3)f(θ2 − θ3)QN (θ1, θ2)QN (θ2, θ1)dθ1dθ2dθ3(2.4.15)

+ 4

∫
T3

f(θ1 − θ3)f(θ2 − θ3)QN (θ1, θ2)QN (θ2, θ3)QN (θ3, θ1)dθ1dθ2dθ3(2.4.16)

+ 4

∫
T3

f(θ1 − θ3)f(θ2 − θ3)QN (θ1, θ3)QN (θ3, θ2)QN (θ2, θ1)dθ1dθ2dθ3.(2.4.17)

Term (2.4.15) is equal to

− 4N

(2π)3

∑
0≤j,k≤N−1

∫
T3

f(θ1 − θ3)f(θ2 − θ3)ei(j−k)θ1ei(k−j)θ2dθ1dθ2dθ3(2.4.18)

= −4N

2π

∑
0≤j,k≤N−1

f̂(k − j)f̂(j − k)

∫
T

1 · dθ3(2.4.19)

= −4N
∑

0≤j,k≤N−1
|f̂(j − k)|2(2.4.20)

= 4N
∑

|k|≤N−1

(|k| −N)|f̂(k)|2.(2.4.21)
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Similarly, (2.4.16) can be rewritten as

4

(2π)3

∑
0≤j,k,l≤N−1

∫
T3

f(θ1 − θ3)f(θ2 − θ3)ei(j−l)θ1ei(k−j)θ2ei(l−k)θ3dθ1dθ2dθ3

=
4

2π

∑
0≤j,k,l≤N−1

f̂(l − j)f̂(k − j)
∫
T
ei[(j−l)+(k−j)+(l−k)]θ3dθ3

=
4

2π

∑
0≤j,k,l≤N−1

f̂(l − j)f̂(k − j)
∫
T

1 dθ3

= 4
∑

0≤j,k,l≤N−1
f̂(k − j)f̂(j − l).(2.4.22)

Term (2.4.17) is equal to (2.4.16), so, together, they contribute

8
∑

0≤j,k,l≤N−1
f̂(k − j)f̂(j − l).(2.4.23)

Finally, we turn our attention to (2.4.10). Again, using (2.4.2) with the assumption f̂(0) = 0 and

ignoring the terms that give zero contribution after integrating, we can rewrite (2.4.10) as

2

∫
T4

f(θ1 − θ2)f(θ3 − θ4)|QN (θ1, θ4)|2|QN (θ2, θ3)|2dθ1dθ2dθ3dθ4(2.4.24)

− 4

∫
T4

f(θ1 − θ2)f(θ3 − θ4)QN (θ1, θ4)QN (θ4, θ3)QN (θ3, θ2)QN (θ2, θ1)dθ1dθ2dθ3dθ4(2.4.25)

− 2

∫
T4

f(θ1 − θ2)f(θ3 − θ4)QN (θ1, θ4)QN (θ4, θ2)QN (θ2, θ3)QN (θ3, θ1)dθ1dθ2dθ3dθ4.(2.4.26)

Again using (2.4.1) and “opening the brackets", term (2.4.24) becomes

2

(2π)4

∑
0≤j,k,l,m≤N−1

∫
T4

f(θ1 − θ2)f(θ3 − θ4)ei(j−k)θ1ei(l−m)θ2ei(m−l)θ3ei(k−j)θ4dθ1dθ2dθ3dθ4

=
2

(2π)2

∑
0≤j,k,l,m≤N−1

f̂(k − j)f̂(l −m)

∫
T2

ei[(j−k)+(l−m)]θ2ei[(m−l)+(k−j)]θ4dθ2dθ4

= 2
∑

0≤j,k,l,m≤N−1
f̂(k − j)f̂(l −m)χ(k−j=l−m)
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= 2
∑

0≤j,k≤N−1
|f̂(k − j)|2

Ü ∑
0≤l,m≤N−1
l−m=k−j

1

ê
= 2

∑
0≤j,k≤N−1

(N − |k − j|)|f̂(k − j)|2

= 2
∑

|k|≤N−1

(N − |k|)2|f̂(k)|2

= 2N2
∑

|k|≤N−1

|f̂(k)|2 − 4N
∑

|k|≤N−1

|k|f̂(k) + 2
∑

|k|≤N−1

k2|f̂(k)|2.(2.4.27)

The calculation for (2.4.25) is very similar to (2.4.36). Its contribution is

−4
∑

0≤j,k,l≤N−1
f̂(j − k)f̂(k − l).(2.4.28)

Lastly, we consider (2.4.26). Using (2.4.1) and “opening the brackets", this term becomes

− 2

(2π)4

∑
0≤j,k,l,m≤N−1

∫
T4

f(θ1 − θ2)f(θ3 − θ4)ei(j−m)θ1ei(l−k)θ2ei(m−l)θ3ei(k−j)θ4dθ1dθ2dθ3dθ4

= − 2

(2π)2

∑
0≤j,k,l,m≤N−1

f̂(m− j)f̂(l −m)

∫
T2

ei[(j−m)+(l−k)]θ2ei[(k−j)+(m−l)]θ4dθ2dθ4

= − 2

(2π)

∑
0≤j,k,l,m≤N−1

f̂(m− j)f̂(l −m)χ(j−m=k−l)

∫
T

1 dθ4

= −2
∑

0≤j,k,l,m≤N−1
f̂(j − k)f̂(k − l)χ(j−m=k−l),(2.4.29)

where the last equality comes from using the restriction j −m = k − l and the fact that f is even.

By combining (2.4.14), (2.4.21), (2.4.23), (2.4.27), (2.4.28), and (2.4.29), we recover the terms in

(2.4.11), (2.4.12), and (2.4.13).

Continuing with our calculation, we use the Plancherel theorem to rewrite (2.4.11) as

2N2

Ñ∑
k∈Z
|f̂(k)|2 −

∑
|k|≤N−1

|f̂(k)|2
é

= 4N2
∑
k≥N
|f̂(k)|2.(2.4.30)
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Next, we rewrite the terms in (2.4.12). We start with the first one:

4
∑

0≤j,k,l≤N−1
f̂(j − k)f̂(k − l) = 4

∑
|s|,|t|≤N−1

f̂(s)f̂(t) max(0, N − (max(0, s, t)−min(0, s, t)))

(2.4.31)

= 4
∑

|s|,|t|≤N−1

f̂(s)f̂(t) max(0, N − L(s, t)),(2.4.32)

where

L(s, t) =


max(|s|, |t|), if sgn(s) = sgn(t)

|s|+ |t|, otherwise.

Splitting up the sum and recalling that f̂(s) = f̂(−s), we can further rewrite the first term in

(2.4.12) as

2
∑

|s|,|t|≤N−1
|s|+|t|≤N−1

f̂(s)f̂(t)(N − (|s|+ |t|)) + 4
∑

|s|,|t|≤N−1
sgn(s)=sgn(t)

f̂(s)f̂(t)(N −max(|s|, |t|)).

We rewrite the second term in (2.4.12) as

2
∑

0≤j,k,l,m≤N−1
f̂(j − k)f̂(k − l)χ(j−m=k−l) = 2

∑
|s|,|t|≤N−1
|s|+|t|≤N−1

f̂(s)f̂(t)(N − (|s|+ |t|)).

Thus, (2.4.12) becomes

4
∑

|s|,|t|≤N−1
sgn(s)=sgn(t)

f̂(s)f̂(t)(N −max(|s|, |t|)),

which can be rewritten as

2N
∑

|s|,|t|≤N−1

f̂(s)f̂(t)− 2
∑

|s|,|t|≤N−1
sgn(s)=sgn(t)

f̂(s)f̂(t)(|s− t|+ |s+ t|).(2.4.33)

Combining (2.4.33) with the first two terms of (2.4.13), we have a term proportional to N,

2N

Ñ ∑
|s|,|t|≤N−1

f̂(s)f̂(t)−
∑

|k|≤N−1

f̂2(k)

é
,(2.4.34)

24



and a term proportional to a constant,

2

Ü ∑
|k|≤N−1

|k|f̂2(k)−
∑

|s|,|t|≤N−1
sgn(s)=sgn(t)

|s− t|f̂(s)f̂(t)−
∑

|s|,|t|≤N−1
sgn(s)=sgn(t)

|s+ t|f̂(s)f̂(t)

ê
.(2.4.35)

The expression (2.4.34) can be rewritten as

2N

Ñ ∑
|s|,|t|≤N−1

f̂(s)f̂(t)−
∑

|s+t|≤N−1

f̂(s)f̂(t)

é
=2N

∑
|s|,|t|≤N−1
N≤|s+t|

f̂(s)f̂(t)− 2N
∑

|s+t|≤N−1
N≤max(|s|,|t|)

f̂(s)f̂(t).(2.4.36)

Furthermore, (2.4.35) can be rewritten as follows:

2
∑

|s+t|≤N−1

|s+ t|f̂(s)f̂(t)− 2
∑

|s|,|t|≤N−1
sgn(s)=sgn(t)

|s− t|f̂(s)f̂(t)− 2
∑

|s|,|t|≤N−1
sgn(s)=sgn(t)

|s+ t|f̂(s)f̂(t).

We break up the sum into two parts, namely

2
∑

|s+t|≤N−1
sgn(s)6=sgn(t)

|s+ t|f̂(s)f̂(t)− 2
∑

|s|,|t|≤N−1
sgn(s)=sgn(t)

|s− t|f̂(s)f̂(t)(2.4.37)

and

2
∑

|s+t|≤N−1
sgn(s)=sgn(t)

|s+ t|f̂(s)f̂(t)− 2
∑

|s|,|t|≤N−1
sgn(s)=sgn(t)

|s+ t|f̂(s)f̂(t).(2.4.38)

25



The expression (2.4.37) can be rewritten as

2
∑

|s−t|≤N−1
sgn(s)=sgn(t)

|s− t|f̂(s)f̂(t)− 2
∑

|s|,|t|≤N−1
sgn(s)=sgn(t)

|s− t|f̂(s)f̂(t)

= 4

Ü ∑
|s−t|≤N−1

1≤s,t

|s− t|f̂(s)f̂(t)−
∑

1≤s,t≤N−1
|s− t|f̂(s)f̂(t)

ê
= 4

Ü ∑
|s−t|≤N−1

1≤s,t

|s− t|f̂(s)f̂(t)−
∑

1≤s,t≤N−1
|s−t|≤N−1

|s− t|f̂(s)f̂(t)

ê
= 4

â
∑

|s−t|≤N−1
N≤max(s,t)

1≤s,t

|s− t|f̂(s)f̂(t)

ì
.(2.4.39)

Rewriting (2.4.38), we have

4
∑

s+t≤N−1
1≤s,t≤N−1

(s+ t)f̂(s)f̂(t)− 4
∑

1≤s,t≤N−1
(s+ t)f̂(s)f̂(t)

= −4
∑

1≤s,t≤N−1
N≤s+t

(s+ t)f̂(s)f̂(t).(2.4.40)

Combining the last term in (2.4.13) with (2.4.31), (2.4.36), (2.4.39), and (2.4.40) gives

Var(SN (f)) = 2
∑

|s|≤N−1

|s|2|f̂(s)|2

+4N2
∑
N≤s
|f̂(s)|2 + 2N

∑
|s|,|t|≤N−1
N≤|s+t|

f̂(s)f̂(t)− 2N
∑

|s+t|≤N−1
N≤max(|s|,|t|)

f̂(s)f̂(t)

+4
∑

|s−t|≤N−1
N≤max(s,t)

1≤s,t

|s− t|f̂(s)f̂(t)− 4
∑

1≤s,t≤N−1
N≤s+t

(s+ t)f̂(s)f̂(t),
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which can be rewritten as

Var(SN (f)) = 4
∑

1≤s≤N−1
|s|2|f̂(s)|2

+4(N2 −N)
∑
N≤s
|f̂(s)|2 + 4N

∑
1≤s,t≤N−1
N≤s+t

f̂(s)f̂(t)− 4N
∑

1≤|s−t|≤N−1
N≤max(s,t)

1≤s,t

f̂(s)f̂(t)

+4
∑

1≤|s−t|≤N−1
N≤max(s,t)

1≤s,t

|s− t|f̂(s)f̂(t)− 4
∑

1≤s,t≤N−1
N≤s+t

(s+ t)f̂(s)f̂(t).

Combining like sums gives the desired result. Proposition 2.2.1 is proven.

�

As a corollary to Proposition 2.2.1 , we obtain:

Corollary 2.4.1. Let s, t ∈ Z≥0 and {θm}Nm=1 be distributed according to the CUE. Then

cov

Ñ∣∣∣∣∣ N∑
m=1

eisθm

∣∣∣∣∣
2

,

∣∣∣∣∣
N∑
m=1

eitθm

∣∣∣∣∣
2
é

=



s2, 1 ≤ s = t ≤ N − 1, 2s ≤ N,

N + s2 − 2s, 1 ≤ s = t ≤ N − 1, N + 1 ≤ 2s,

N(N − 1), N ≤ s = t,

|s− t| −N, 1 ≤ |s− t| ≤ N − 1, N ≤ max(s, t),

N − (s+ t), 1 ≤ s 6= t ≤ N − 1, N + 1 ≤ s+ t,

0, else.

.

We note that the above formula trivially extends to the case where either s or t is negative, since∣∣∑ eisθm
∣∣ =

∣∣∑ e−isθm
∣∣.

Proof of Corollary 2.4.1

Let s ∈ N and f(θ) = cos(sθ). Then

SN (f)− E(SN (f)) = |tN,s|2 .
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Since f̂(s) = f̂(−s) = 1
2 , Proposition 2.2.1 implies that

Var(SN (f)) = Var
Ä
|tN,s|2

ä
=


s2, 1 ≤ s = t ≤ N − 1, 2s ≤ N,

N + s2 − 2s, 1 ≤ s = t ≤ N − 1, N + 1 ≤ 2s,

N(N − 1), N ≤ s.

(2.4.41)

Similarly, let (s1, s2) ∈ N2 and g(θ) = cos(sθ) + cos(tθ). Then

SN (g)− E(SN (g)) = |tN,s1 |
2 + |tN,s2 |

2

and

Var(SN (g)) = Var
Ä
|tN,s1 |

2
ä

+ Var
Ä
|tN,s2 |

2
ä

+ 2 cov
Ä
|tN,s1 |

2 , |tN,s2 |
2
ä

Applying Proposition 2.2.1 and using (2.4.41) to solve for cov
Ä
|tN,s1 |

2 , |tN,s2 |
2
ä
gives the desired

result.

�

For a graphical representation of the covariance function, see the diagram below.

N(N − 1)

s

t
N − 1

N − 1

0

0

0

0

s2

|s− t| −N

|s− t| −N

N − (s+ t)

N − (s+ t)

N + s2 − 2s

Figure 2.2. cov(s, t)
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Remark 2.4.2. If we restrict our attention to (s, t) ∈ N2 s.t. s+ t ≤ N/2 for s 6= t and 2s ≤ N for

s = t, we recover a special case of Proposition 1.0.1.

Now, we turn our attention to the proof of Proposition 2.2.2. It will follow from Proposition 2.2.1

and the following technical lemma that allows us to control the negligible terms.

Lemma 2.4.3. Let f ′ ∈ L2(T). Then, as N →∞, we have

(i)

∑
1≤s,t≤N
s+t≥N+1

s|f̂(s)| · |f̂(t)| → 0,

(ii)

(N + 1)
∑

s−t≤N
s≥N+1
1≤t≤N

|f̂(s)| · |f̂(t)| → 0,

(iii)

N
∑

|s−t|≤N−1
s,t≥N

|f̂(s)| · |f̂(t)| → 0.

We first quickly prove Proposition 2.2.2 modulo Lemma 2.4.3 and then prove Lemma 2.4.3 at the

end of the section.

Proof of Proposition 2.2.2

Recall that β = 2 and we require that
∑∞

s=1 s
2[f̂(s)]2 < ∞, i.e. f ′ ∈ L2(T). We examine the last

four sums on the r.h.s. of the formula for VarN (SN (f)) in Proposition 2.2.1. Our goal is to show

that these four sums go to zero as N →∞. The analysis of the first two sums is trivial, since

0 ≤
∑
s≥N

N [f̂(s)]2 ≤
∑
s≥N

N2[f̂(s)]2 ≤
∑
s≥N

s2[f̂(s)]2,
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which goes to zero under our stated assumptions. The remaining two sums require a little bit more

work taken care of by Lemma 2.4.3. We have∣∣∣∣∣∣∣∣
∑

1≤s,t≤N−1
N+1≤s+t

((s+ t)−N)f̂(s)f̂(t)

∣∣∣∣∣∣∣∣ ≤ 2
∑

1≤s,t≤N−1
N+1≤s+t

(s+ t)|f̂(s)| · |f̂(t)| = 4
∑

1≤s,t≤N−1
N+1≤s+t

s|f̂(s)| · |f̂(t)|.

It follows from Lemma 2.4.3(i) that the r.h.s. goes to zero as N →∞. Finally, we observe that∣∣∣∣∣∣∣∣∣∣∣
∑
1≤s,t

1≤|s−t|≤N−1
N≤max(s,t)

(N − |s− t|)f̂(s)f̂(t)

∣∣∣∣∣∣∣∣∣∣∣
≤ 2N

∑
1≤s,t

1≤|s−t|≤N−1
N≤max(s,t)

|f̂(s)| · |f̂(t)|

= 4N
∑

|s−t|≤N−1
s≥N

1≤t≤N−1

|f̂(s)| · |f̂(t)|+ 2N
∑

1≤|s−t|≤N−1
s,t≥N

|f̂(s)| · |f̂(t)|

≤ 4N
∑

|s−t|≤N−1
s≥N

1≤t≤N−1

|f̂(s)| · |f̂(t)|+ 2N
∑

|s−t|≤N−1
s,t≥N

|f̂(s)| · |f̂(t)|

The first term goes to zero by Lemma 2.4.3(ii) and the second term goes to zero by Lemma 2.4.3(iii).

This completes the proof of Proposition 2.2.2 modulo Lemma 2.4.3.

�

The rest of the section is devoted to the proof of Lemma 2.4.3.

Proof of Lemma 2.4.3

Let xs = s|f̂(s)| for 1 ≤ s ≤ N and XN = {xs}Ns=1. By the assumption of Lemma 4.4 the Euclidean

norm of the vector XN is bounded in N . Note that

∑
1≤s,t≤N
s+t≥N+1

s|f̂(s)| · |f̂(t)| =
N∑
t=1

xt ·

(
1

t

N∑
s=N−t+1

xs

)
=

N∑
t=1

xt ·

(
1

t

t∑
s=1

(UNXN )s

)
= 〈XN , ANXN 〉,

(2.4.42)
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with AN = BNUN , where UN is a unitary permutation matrix given by (UN )s,t = 1(t=N−s+1) and

BN is a lower triangular matrix given by (BN )s,t = (1/s)1(t≤s). In particular,

BN =



1 0 0 0 . . . 0

1
2

1
2 0 0 . . . 0

1
3

1
3

1
3 0 . . . 0

...
...

...
...

. . .
...

1
N

1
N

1
N

1
N . . . 1

N


Our goal is to show that the expression in (2.4.42) vanishes in the limit of large N. First we show that

the operator norm of the matrix AN is bounded in N . Indeed, BN (BN )T = BN +(BN )T −D, where

Ds,t = (1/s)1(s=t). This gives us the bound ||BN ||2op ≤ 2||BN ||op + 1, so ||AN ||op = ||BN ||op ≤ 3.

The fact that AN weakly converges to 0 finishes the proof of the Lemma. Indeed,

〈XN , ANXN 〉 =

〈
XN −

L∑
s=1

〈es, XN 〉es, ANXN

〉
+

〈
L∑
s=1

〈es, XN 〉es, ANXN

〉

=

〈
XN −

L∑
s=1

〈es, XN 〉es, ANXN

〉
+

L∑
s=1

〈〈es, XN 〉es, ANXN 〉

=

〈
XN −

L∑
s=1

〈es, XN 〉es, ANXN

〉
+

L∑
s=1

xs(ANXN )s

=

〈
XN −

L∑
s=1

〈es, XN 〉es, ANXN

〉
+

L∑
s=1

xs
xN−s+1 + · · ·+ xN

s
.

Let ε > 0. Then we can choose L sufficiently large such that,

|〈XN , ANXN 〉| ≤
∣∣∣∣∣
〈
XN −

L∑
s=1

〈es, XN 〉es, ANXN

〉∣∣∣∣∣+

∣∣∣∣∣
L∑
s=1

xs
xN−s+1 + · · ·+ xN

s

∣∣∣∣∣
≤ ε

2
+

∣∣∣∣∣
L∑
s=1

xs
xN−s+1 + · · ·+ xN

s

∣∣∣∣∣
≤ ε
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Since this holds for arbitrary ε, we can conclude that 〈XN , ANXN 〉 → 0. This completes the proof

of Lemma 4.4(i).

To prove part (ii), let BN be defined as in the proof of part (i). Similarly, let xs = s|f̂(s)| and

XN = {xs}2Ns=1. Now, XN is a 2N -dimensional vector bounded, uniformly with respect to N, in

Euclidean norm. Observe that

N
∑

s−t≤N
s≥N+1
1≤t≤N

|f̂(s)| · |f̂(t)| ≤
N∑
t=1

xt

(
1

t

N+t∑
s=N+1

xs

)

= 〈CNXN ,MNXN 〉,

where

CN =

Ü
IN 0

0 0

ê
and MN =

Ü
BN 0

0 0

êÜ
0 IN

IN 0

ê
.

Using the same arguments as in the proof of (i), we can see that ||MN ||op ≤ 3. Clearly, ||CN ||op =

1.The rest of the proof is similar to that of (i). Indeed, for any ε > 0, we can choose L sufficiently

large such that

|〈CNXN ,MNXN 〉| ≤
∣∣∣∣∣
〈
CNXN −

L∑
k=1

〈ek, CNXN 〉ek,MNXN

〉∣∣∣∣∣+

∣∣∣∣∣
〈

L∑
k=1

〈ek, CNXN 〉ek,MNXN

〉∣∣∣∣∣
≤ ε

2
+

∣∣∣∣∣
L∑
k=1

xk(MNXN )k

∣∣∣∣∣
=
ε

2
+

∣∣∣∣∣
L∑
k=1

xk
xN+1 + · · ·+ xN+k

k

∣∣∣∣∣
≤ ε

In the above inequalities, we assume N is large enough such that we can choose L ≤ N . This

completes the proof of (ii).
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To prove (iii), we first observe that

N
∑

|s−t|≤N−1
s,t≥N

|f̂(s)| · |f̂(t)| ≤
∑

|s−t|≤N−1
s,t≥N

s|f̂(s)| · |f̂(t)| ≤
∑

|s−t|≤N−1
t≥N

s|f̂(s)| · |f̂(t)|(2.4.43)

Now let xs = s|f̂(s)| for s ≥ 1. Then X = {xs}∞s=1 ∈ `2(N) and the rightmost sum in (2.4.43) can

be rewritten as

∑
t−N+1≤s≤N+t−1

t≥N

s|f̂(s)| · |f̂(t)| =
∞∑
t=N

xt

(
1

t

N+t−1∑
s=t−N+1

xs

)

= 〈LN−1X,RNX〉,

where L,RN are bounded linear operators on `2(N). In particular, L,RN are infinite dimensional

matrices such that Ls,t = 1t=s+1 and (RN )s,t = 1
N+s−11(s≤t≤s+2N−2).

L =

á
0 1 0 0 · · ·

0 0 1 0 · · ·
...

...
. . . . . . . . .

ë
RN =



1
N

1
N

1
N · · · 1

N 0 0 0 · · ·

0 1
N+1

1
N+1

1
N+1 · · · 1

N+1 0 0 · · ·

0 0 1
N+2

1
N+2

1
N+2 · · · 1

N+2 0 · · ·
...

...
. . . . . . . . . . . . . . . . . . . . .


Clearly ||L||op = 1 and

||RN ||op ≤ ||RN ||2 =

Ã
(2N − 1)

∞∑
k=N

1

k2
≤
 

2N − 1

N − 1
≤
√

3

for N ≥ 2. Now, by the Cauchy-Schwarz inequality,

|〈LN−1X,RNX〉|2 ≤ ||LN−1X||22 · ||RN ||2op · ||X||22

≤ 3

( ∞∑
k=N

|k|2|f̂(k)|2
)( ∞∑

k=1

|k|2|f̂(k)|2
)

= oN (1).

This completes the proof of Lemma 2.4.3.
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2.5. The Case of Growing Variance

In this section we briefly touch upon the global case where the smoothness condition on f is relaxed,

namely when f ′ is no longer assumed to be in L2(T). Proposition 2.2.1 implies that, in this case,

Var(SN (f))→∞ as N →∞. It is reasonable to assume that, after renormalization, one might still

be able to prove a Central Limit Theorem in some cases. We prove a special case below.

Proposition 2.5.1. Let f = (1/2) ln |2 sin(θ/2)| and {θ1}Ni=1 be distributed according to the CβE

for any β > 0. We we have the following convergence in distribution as N →∞:

SN (f)− E(SN (f))√
N

−→ N

Ñ
0,

2− βΨ(2)
Ä
1 + β

2

ä
4β

é
,

where Ψ(k)(x) =
(
d
dx

)k
log(Γ(x)).

Remark 2.5.2. Ψ(2)(z) is known as the trigamma function. For the special cases β = 1 (COE),

β = 2 (CUE), and β = 4 (CSE), the limiting variances are 3
2 −

π2

8 , 1
2 −

π2

24 , and
7
16 −

π2

24 , respectively.

Remark 2.5.3. In [1], A. Aguirre and A. Soshnikov proved a CLT for more general functions f

under the condition that
∑
|k|≤N k

2|f̂(k)|2 is a slowly varying sequence with respect to N for the

CUE (β = 2). Their proof relies on the variance formula given in Proposition 2.2.1.

Our proof is based on the fact that the moment generating function of SN (f) can be conveniently

written in terms of the partition function for CβE.

Proof of Proposition 2.5.1

It was shown by Selberg [21] that the partition function for Circular β-ensembles is given by

ZN,β =
1

(2π)N

∫
TN

∏
j<k

∣∣∣eiθj − eiθk ∣∣∣β dθ
=

1

(2π)N

∫
TN

exp (βSN (f)) dθ(2.5.1)

=
Γ
Ä
1 + βN

2

äî
Γ
Ä
1 + β

2

äóN(2.5.2)
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for all β > 0, where Γ(z) is the gamma function. We denote by MN (t) the moment generating

function of [SN (f)− E (SN (f))]/
√
N . It follows immediately from (2.5.1) that

MN (t) = E exp

Å
t
SN (f)− E (SN (f))√

N

ã
(2.5.3)

= E exp

Å
t
SN (f)√

N

ã
exp

Å
−tE (SN (f))√

N

ã
(2.5.4)

=

Å
1

ZN,β

∫
TN

exp

Å
(β +

t√
N

)SN (f)

ã
dθ

ã
exp

Å
−tE (SN (f))√

N

ã
(2.5.5)

=

(
ZN,(β+ t√

N
)

ZN,β

)
exp

Å
−tE (SN (f))√

N

ã
(2.5.6)

=

î
Γ
Ä
1 + β

2

äóN
Γ
Ä
1 + βN

2 +
√
Nt
2

ä
Γ
Ä
1 + βN

2

ä î
Γ
Ä
1 + β

2 + t
2
√
N

äóN exp

Å
−tE (SN (f))√

N

ã
(2.5.7)

for all t ∈ (−
√
Nβ,+∞).

To start, we use (2.5.7) to first compute E(SN (f)/
√
N) explicitly. The computation is as follows:

E(SN (f)/
√
N) =

ï
d

dt
MN (t)

ò
t=0

=

î
Γ
Ä
1 + β

2

äóN
Γ
Ä
1 + βN

2

ä ·Ñ d

dt
·

Γ
Ä
1 + βN

2 +
√
Nt
2

äî
Γ
Ä
1 + β

2 + t
2
√
N

äóNé
t=0

=

î
Γ
Ä
1 + β

2

äóN
Γ
Ä
1 + βN

2
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We now continue with the proof. Because BN
2 , BN2 + tN

2
√
N
→ ∞ as N → ∞ for any t > 0, we can

use Sterling’s Approximation for the gamma function to write

MN (t) =

exp

Å−tE(SN (f))√
N

ãÖ√
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√
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×
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1 +O

Å
1

βN +
√
Nt

ããÅ
1 +O

Å
1

βN

ãã
.

The last two terms in (2.5.9) are error terms for Sterling’s Approximation. Instead of dealing with

the above product, it will be easier to consider log(MN (t)), the cumulant generating function of

[SN (f)− ESN (f)]/
√
N .

Recall that ifX is a random variable with finite moments E (Xn) = mn then its n-th order cumulant,

kn, is explicitly defined in terms of m1, . . . ,mn. In particular, we have

kn =
∑
π

(|π| − 1)!(−1)|π|−1
∏
B∈π

m|B|,

where the sum is over all partitions π of {1, . . . , n}, B runs through the list of all blocks of the

partition π, and |π| is the number of blocks in the partition. We note that k1 = E (X) and

k2 = Var(X). The cumulant generating function (c.g.f.) for X is given by

KX(t) = log
Ä
EetX

ä
=
∞∑
n=1

kn
tn

n!
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Moreover, ifX is a Gaussian random variable with E (X) = µ and Var(X) = σ2, then its distribution

uniquely satisfies k1 = µ, k2 = σ2 and kn = 0 for n ≥ 3. It follows that

KX(t) = µt+ σ2
t2

2
.

The cumulant generating function for [SN (f)− ESN (f)]/
√
N is then given by

KN (t) = log (MN (t))(2.5.11)

=
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βN + 1

2
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(2.5.12)
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2
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ãã
− t√

N
E(SN (f)) + EN (t),

where EN (t) denotes the corresponding error term that comes from (2.5.9). log[Γ(1 + x)] is an

analytic function on (−1,∞) [28], so we can expand the first, second, and fourth terms of (2.5.12)

using Taylor series’, assuming that t ∈ (−β
√
N, β
√
N). The first term becomesÅ

βN + 1

2

ãÅ
t

β
√
N
− t2

2β2N
+R

(1)
2

Å
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β
√
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ãã
,(2.5.13)

where R(1)
2 (x) is the second order error term from Taylor’s theorem corresponding to log(1 + x).

Similarly, the second term becomes
√
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2
log
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2

ã
+
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and the fourth term becomes

−N log
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−
√
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ã
,(2.5.15)

where R(2)
1 (x) and R

(3)
2 (x) are first and second order error terms for the Taylor expansions of

log
Ä
βN
2 + x

ä
and log

Ä
Γ
Ä
1 + β

2 + x
ää

about x = 0, respectively. By combining (2.5.12-2.5.15), we

37



have
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Å
βN + 1

2

ãÅ
t

β
√
N
− t2

2β2N

ã
+

√
Nt

2
log

Å
βN

2

ã
+
t2

2β
−
√
Nt

2
(2.5.16)

−
√
NΨ(1)

Å
1 +

β

2

ã
t

2
−Ψ(2)

Å
1 +

β

2

ã
t2

8
− t√

N
E(SN (f))(2.5.17)

+ EN (t) +

Å
βN + 1

2

ã
R

(1)
2

Å
t

β
√
N

ã
−
√
Nt

2
R

(2)
1

Ç√
Nt

2

å
−N ·R(3)

2

Å
t

2
√
N

ã
(2.5.18)

The terms in (2.5.18) are all error terms that disappear in the limit N →∞ for any fixed t ∈ R. We

postpone the details until the end of the proof. Let CN,1 and CN,2 be the terms in (2.5.16-2.5.17)

that are proportional to t and t2/2, respectively. Then

CN,1 =
1 + βN

Ä
log(βN/2)−Ψ(1)
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2
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√
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− E (SN (f))√
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and
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ä
4β

− 1

2β2N
.

Now, CN,1 is equal to the first cumulant of [SN (f) − E (SN (f))]/
√
N up to an asymptotically

negligible error term. Since the first cumulant of a random variable is equal to its expectation, it

should be the case that CN,1 → 0 as N →∞. Indeed, using (2.5.8), we observe that

CN,1 − E(SN (f)/
√
N) =
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= O(N−1),(2.5.21)
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where (2.5.19) follows from an integral representation of Ψ(1)(z) given by Binet’s second integral

for the gamma function (Section 12.32 in [28]). (2.5.21) follows from the fact that the integral in

(2.5.21) is uniformly bounded above with respect to both N and β. We note that Ψ(1)(z) is the

logarithmic derivative of the gamma function, also referred to as the digamma function.

Finally, let us consider the error terms in (2.5.18). It follows from (2.5.9) that, for any fixed t and

sufficiently large N , the first term is given by

EN (t) = log
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For the second term, we observe that, for any fixed t,∣∣∣∣R(1)
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For the third term in (2.5.18), we recall that R(2)
1 (x) is the first order error term for the Taylor

expansion of log
Ä
βN
2 + x

ä
about x = 0 (Once again, we are assuming that β > 0 is fixed and N is

large). It follows that ∣∣∣∣∣R(2)
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For the third term, we recall that R(3)
2 (x) is the second order error term for the Taylor expansion

of log
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combining (2.5.16-2.5.18) and (2.5.22-2.5.25), we can see that, for any fixed t ∈ R and large enough

N ,

KN (t) = CN,2
t2

2
+ oN (1) =

Ñ
2− βΨ(2)

Ä
1 + β

2

ä
4β

é
t2

2
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This completes the proof of Proposition 2.5.1.

�
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CHAPTER 3

Pair Dependent Linear Statistics for SO(N) & Sp(N)

In this chapter, we prove analogous results to Theorems 2.1.1-2.1.5 for random matrices sampled

from two other classical compact groups (according to Haar measure): N ×N orthogonal matrices

with determinant one (SO(N)), and the 2N × 2N symplectic matrices (Sp(N)). We also prove a

CLT in the case where LN = 1 and Var(SN (f)) is allowed to grow very slowly. We break up SO(N)

into two cases: even N and odd N , based upon the distinctive behavior of their eigenvalues. Similar

to the case of the CUE, the main underlying tools for studying the "pair counting" statistic [2] with

respect to these matrix ensembles are the k-point correlation functions, which can be found in [24].

Unlike with the CUE, the three and four point correlations functions are too unwieldy to be applied

directly. Instead, we further develop tools introduced in [25] and [2] regarding joint cumulants in

order to reformulate the necessary variance computation into something more manageable.

3.1. Distributional Properties for SO(N) & Sp(N)

Like the N ×N unitary matrices (U(N)=CUE), SO(N) and Sp(N) are compact topological groups,

so they each have unique Haar probabilitiy measures. Moreover, the distribution of the eigenvalues

of a matrix sampled from any of these groups, according to the corresponding Haar measure, has

the form of a determinantal random point field with a fixed number of particles on the interval

[0, π). For more on determinental random point fields and their associated correlation functions, we

defer the reader to [24].

IfM is sampled from SO(2N), then, with probability one,M hasN pairs of eigenvalues eiθ1 , e−iθ1 , . . .

eiθN , e−iθN , where θj ∈ [0, π) for 1 ≤ j ≤ N . The joint probability density of {θj}Nj=1 is given by

PSO(2N)(θ1, . . . , θN ) =

Å
1

π

ãN ∏
1≤i<j≤N

(2 cos(θi)− 2 cos(θj))
2(3.1.1)
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Like in the case of the CUE, SO(2N) has k-point correlation functions with a determinental struc-

ture. Let

K2N−1(θi, θj) =
1

2π
·
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sin
Ä
(2N−1)(θi−θj)

2

ä
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Ä
θi−θj

2

ä é
=
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2π
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eik(θi−θj).(3.1.2)

Then the k-point correlation function for SO(2N) is given by the following determinental formula:

ρ2N,k(θ1, . . . , θN ) := det
(
K+

2N−1(θi, θj)
)
1≤i,j≤k ,(3.1.3)

where

K+
2N−1(θi, θj) = K2N−1(θi, θj) +K2N−1(θi,−θj).(3.1.4)

Remark 3.1.1. The integration kernel KN (θ1, θ2) is unitarily equivalent to QN (θ1, θ2), the kernel

used for CUE(see 2.4.1), in the sense that

[KN (θi, θj)]1≤i,j≤k = U∗ [QN (θi, θj)]1≤i,j≤k U,

where U is a unitary matrix.

Remark 3.1.2. Suppose f ∈ L2(T) is even. Then
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so the integration kernel K+
N (θ1, θ2) is the restriction of KN (θ1, θ2) onto the space of even L2(T)

functions.
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If M is distributed according to SO(2N + 1), then, with probability one, 1 is an eigenvalue of M

and the remaining eigenvalues of M can once again be arranged in pairs, eiθ1 , e−iθ1 , . . . eiθN , e−iθN ,

where θj ∈ (0, π) for 1 ≤ j ≤ N . The corresponding joint probability density function for {θj}Nj=1

is given by

PSO(2N+1)(θ1, . . . , θN ) =

Å
2

π

ãN ∏
1≤i<j≤N

(2 cos(θi)− 2 cos(θj))
2 ·

N∏
i=1

sin2

Å
θi
2

ã
.(3.1.5)

The k-point correlation functions are given by

ρ2N+1,k(θ1, . . . , θN ) = det
(
K−2N (θi, θj)

)
1≤i,j≤k ,(3.1.6)

where

K−2N (θi, θj) = K2N (θi, θj)−K2N (θi,−θj)(3.1.7)
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Remark 3.1.3. Suppose f ∈ L2(T) is odd. Then
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so the integration kernel K−N (θ1, θ2) is the restriction of KN (θ1, θ2) onto the space of odd L2(T)

functions.
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Finally, if M is sampled from Sp(N), M has 2N eigenvalues on the unit circle, which again come in

pairs of complex conjugates eiθ1 , e−iθ1 , . . . , eiθN , e−iθN . The corresponding joint probability density

for {θj}Nj=1 is given by

PSp(N)(θ1, . . . , θN ) =

Å
2

π

ãN ∏
1≤i<j≤N

(2 cos(θi)− 2 cos(θj))
2 ·

N∏
i=1

sin2 (θi) .(3.1.8)

The k-point correlation functions are given by

ρN,k(θ1, . . . , θN ) = det
(
K−2N+1(θi, θj)

)
1≤i,j≤k .(3.1.9)

As in the case for the CUE, the k-point correlation functions for SO(2N), SO(2N+1), and Sp(N)

play a crucial role in our analysis of the limiting distribution of the "pair counting" statistic defined

in (1.0.4).

Remark 3.1.4. The k-point correlation functions for SO−(2N) are the same as those for Sp(N−1).

As a consequence, every result in this chapter involving Sp(N) holds for SO−(2N). Similarly, the

kernel for SO−(2N + 1) is given by

K+
2N (θi, θj) = K2N (θi, θj) +K2N(θi,−θj).

The results for SO(2N + 1) given in Section 3.5 hold for SO−(2N + 1) up to a minor sign change

that is asymptotically negligible with respect to the main results in the following section.

Remark 3.1.5. The joint probability density function given in (3.1.1) can be rewritten as a degree

2N − 2 trigonometric polynomial in terms of eiθ1 , . . . , eiθN . Let k ∈ Z such that |k| ≥ 2N − 1 and

α1, . . . , αN ∈ N0 such that
∑N

j=1 αi ≥ 1. If θ1, . . . , θN are distributed according to (3.1.1), then

ESO(2N)

Ñ
N∏
j=1

Ä
eikθj

äαjé
=

N∏
j=1

ESO(2N)

ÄÄ
eikθj

äαjä
= 0,

i.e. eikθ1 , . . . , eikθN are mutually independent. Analogous statements hold for (3.1.5) and (3.1.8).
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3.2. Main Results

For the cases SO(N) and Sp(N), the limiting distribution for (1.0.4), with LN = 1, is a sum of

mutually independent χ2
k(λ) distributed random variables, where χ2

k(λ) denotes the non-central chi-

squared distribution with k ∈ N degrees of freedom and non-centrality parameter λ ≥ 0. Recall that

if X1, . . . , Xk are possibly non-central, real, independent, Gaussians with E(Xj) = µj , Var(Xj) = 1,

and Y =
∑k

j=1X
2
j , then Y is said to be χ2

k(λ) distributed, where

λ =

k∑
j=1

µ2j .

Moreover,

E(Y ) = k + λ , Var(Y ) = 2k + 4λ.

and the probability density function for Y is given by

fY (x, k, λ) =

∞∑
i=0

e−
λ
2

(
λ
2

)i
i!

Ç
x(k+2i)/2−1

2(k+2i)/2 · Γ
(
k+2i
2

)å e−x2(3.2.1)

Remark 3.2.1. When λ = 0, (3.2.1) is the density function for the central/standard χ2
k distribution.

If, in addition, we set k=2, (3.2.1) gives the density for the exponential(1/2) distribution. For more

details regarding χ2 distributions, we refer the reader to [5].

Theorem 3.2.2.

Let f be an even function satisfying
∑∞

k=1 k
2|f̂(k)|2 <∞. If θ1, . . . , θN are distributed according to

SO(N) or Sp(N), then SN (f)− E (SN (f)) converges in distribution to

2

∞∑
k=1

kf̂(k)(ϕk − λk),(3.2.2)

where λk = 1 + 1
k

(
1+(−1)k

2

)
and {ϕk}∞k=1 are independent, mean λk, variance 2 +

(
4
k

) (1+(−1)k
2

)
random variables. In particular , ϕk is χ2

1(0) distributed for odd k and non-central χ2
1

(
1
k

)
for

even k. We note that, in the case of Sp(N), there are actually 2N eigenvalues of the form

eiθ1 , e−iθ1 , . . . , eiθN , e−iθN .
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Remark 3.2.3. Similar to the case of CUE, the key to the proof of Theorem 3.2.2 is an explicit

variance calculation, given in Section 3.5, that allows us to extend the result for trigonometric

polynomials to more general test functions. Unlike the case of CUE, the three and four point

correlation functions for SO(N) and Sp(N) have far too many terms to be used directly. Instead, we

further develop tools from Appendix 2 of [2] in order to derive explicit formulas for joint cumulants

of traces of powers of SO(N) and Sp(N) distributed random matrices.

For the case 1 << LN << N , we once again recover a central limit theorem.

Theorem 3.2.4. (Mesoscopic CLT)

Let f be an even function in C2
c (R). If θ1, . . . , θN are distributed according to SO(N) or Sp(N) and

1 << LN << N , then L−1/2N [SN (f(LN ·))− ESN (f(LN ·))] converges in distribution to

N
Å

0,
2

π

∫
R
t2|f̂(t)|2dt

ã
.(3.2.3)

Here

f̂(ξ) =
1√
2π

∫
R
f(x)e−ixξdx

denotes the Fourier transform of f .

Remark 3.2.5. Both Theorem 3.2.2 and Theorem 3.2.4 hold in the case of SO−(N). The case of

SO−(2N) is identical to Sp(N − 1). The case of SO−(2N + 1) is the same as that for SO(2N + 1)

up to a change of sign in a term with asymptotically negligible magnitude.

Finally, we present a theorem that emerges naturally when we relax the conditions of the Theorem

3.2.2. When f is no longer assumed to be in H1(T), Proposition 3.5.4 implies that Var(SN (f))

diverges to infinity. If the variance grows sufficiently slowly, we are able to prove a central limit

theorem after renormalization.

Definition 3.2.6. A positive sequence VN is said to be slowly varying in the sense of Karamata [4]

if

lim
N→∞

VbλNc

VN
= 1, ∀λ > 0,

where bmc denotes the integer part of m.
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Remark 3.2.7. It’s easy to see from the above definition that any convergent sequence is slowly

varying. If VN is slowly varying, then, for any λ > 0, so is VbλNc. Furthermore, VN = log(N) is

slowly varying while VN = Nα (α > 0) is not.

Theorem 3.2.8.

Let f ∈ L2(T) be a real valued, even function such that VN =
∑N

k=1 |k2||f̂(k)|2 is a slowly varying

sequence that diverges to infinity as N → ∞. If θ1, . . . , θN are distributed according to SO(N) or

Sp(N), then we have the following convergence in distribution

SN (f)− ESN (f)

2
√

2VN

D−−−→ N (0, 1).
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3.3. Proof of Theorem 3.2.2

This section is devoted to the proof of Theorem 3.2.2. We first consider the case where f is a

trigonometric polynomial and then extend the result to more general test functions using Proposition

3.5.4. Throughout the remainder of this chapter we will use tk to denote the trace of the k-th power

of an SO(N) or Sp(N) distributed random matrix, suppressing ‘N’. It will also often be convenient

to distinguish between SO(2N), SO(2N+1), and Sp(N) by using a triplet of the form (MN , δ, α). In

particular, we will associate (MN = 2N−1, δ = 1, α = 0) with SO(2N), (MN = 2N, δ = −1, α = 1)

with SO(2N + 1), and (MN = 2N + 1, δ = −1, α = 0) with Sp(N).

Proof. ( of Theorem 3.2.2)

Let us first consider the case where f is an even trigonometric polynomial with f̂(0) = 0. In

particular, let

f(θ) =

m∑
k=1

f̂(k) cos(kθ).

we will assume that N is much larger than m. Then

tk = α+
N∑
j=1

2 cos(kθj)

and

SN (f) = 2

m∑
k=1

f̂(k)t2k − (2N + α)f(0).

Furthermore, it follows from Corollary 3.5.7 that

SN (f)− E (SN (f)) = 2
m∑
k=1

kf̂(k)

Ç
1

k
t2k −

ñ
1 +

1

k

Ç
1 + (−1)k

2

åôå
when N is sufficiently large. The work of Diaconis and Shahshahani [7] tells us that the joint

moments of any finite collection tk1 , . . . , tkl are precisely those of real, independent, Gaussians with

mean
Ç

1 + (−1)ki

2

å
and variance ki. It follows immediately that

SN (f)− E (SN (f))
D−→ 2

m∑
k=1

kf̂(k)(ϕk − λk)
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as N → ∞, where λk = 1 + 1
k

(
1+(−1)k

2

)
and {ϕk}mk=1 are independent χ2

1 (possibly non-central)

distributed random variables with mean λk and variance 2 +
(
4
k

) (1+(−1)k
2

)
. This completes the

proof in the case where f is a trigonometric polynomial.

In order to extend the case for trigonometric polynomials to a more general class of functions,

we will need to consider Var (SN (f)). Proposition 3.5.4 states that, in all three cases (SO(2N),

SO(2N + 1), Sp(N)),

Var (SN (f)) = 4

bN2 c∑
k=1

Ç
2k2 + 4k

Ç
1 + (−1)k

2

åå
|f̂(k)|2 + oN (1).

Let

fm := 2

m∑
k=1

f̂(k) cos(kθ).

Then Proposition 3.5.4 implies that

Var (SN (f)− SN (fm)) = O

Ö
bN2 c∑
k=m+1

k2|f̂(k)|2

è
+ oN (1)

= om(1) + oN (1),

where the first term decays uniformly inm, independent of N , and the second term decays uniformly

in N , independent of m. The proof of Theorem 3.2.2 can now be completed using a Chebyshev

inequality and standard ε/3-type argument to show that the desired distributions converges with

respect to the Lévy Metric. Since the details for the remainder of the proof are precisely the

same as those of the proof of Theorem 2.1.1, but with χ2 distributed random variable in place of

exponentially distributed random variables, we refer the reader to Appendix A.1. �
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3.4. Proofs for Theorem 3.2.4 and Theorem 3.2.8

This section is devoted to the proofs of Theorem 3.2.4 and Theorem 3.2.8. In both cases, we show

that the moment generating function for the truncated statistic converges to that of the desired

Gaussian distribution, while the tail gives a negligible contribution to the limiting distribution.

Proof. (of Theorem 3.2.4)

Let f ∈ C2
c (R) be an even, real valued function and mN =

⌊√
N · LN

⌋
. Then LN << mN << N

and, for large enough N , we can writeÇ√
2π

2

å
· SN (f(LN ·))− E (SN (f(LN ·)))√

LN
=

1

L
3/2
N

mN∑
k=1

f̂

Å
k

LN

ã (
t2k − E

(
t2k
))

+
1

L
3/2
N

∞∑
k=mN+1

f̂

Å
k

LN

ã (
t2k − E

(
t2k
))
,(3.4.1)

where f̂(ξ) denotes the Fourier transform of f .

Similar to the proof of Theorem 2.1.5, Proposition 3.5.4 can be generalized to the mesoscopic case

in the exact same way as Proposition 2.2.2 was in the case of CUE (see Appendix A.2). It follows

that the variance of the second term in (3.4.1) goes to zero as N → ∞. As a result it suffices to

consider the asymptotic distribution of the the first term, which can be rewritten as

1

L
3/2
N

mN∑
k=1

kf̂

Å
k

LN

ãÅ
1

k
t2k − λk

ã
,(3.4.2)

where λk = 1 +
(
1+(−1)k

2k

)
. It follows from Proposition 1.0.1 that, for any l ∈ N and sufficiently

large N , the l-th order joint moments of {t2k}
mN
k=1 are precisely the same as those for independent

squared, real Gaussian random variables. For the remainder of the proof, we are then justified in

replacing (3.4.2) with a sum of independent random variables, namely

1

L
3/2
N

mN∑
k=1

kf̂

Å
k

LN

ã
(ϕk − λk),(3.4.3)

where {ϕk}∞k=1 are χ2
1 (0) distributed (mean one and variance two) when k is odd and non-central

χ2
1

(
1
k

)
distributed (mean 1 + 1

k and variance 2 + 4
k ) when k is even.
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We complete the proof of Theorem 3.2.4 by showing that the moment generating function (m.g.f.)

of (3.4.3) converges pointwise to that of the desired normal distribution. In our case, we will actually

show the pointwise convergence of the cumulant generating function (c.g.f.).

Let

ck,N =
k

L
(3/2)
N

f̂

Å
k

LN

ã
and Xk,N = ck,Nϕk.

Recall that f is assumed to be compactly supported. Since we also require that f is continuously

differentiable, we can write |ck,N | ≤ CfL
−1/2
N , where Cf is positive constant depending only on f .

Now, for any fixed t and large enough N, independent of k, the moment generating function for

ck,NXk is given by

Fk(t) =


(1− 2ck,N t)

−1/2 exp (−ck,N t) k odd

(1− 2ck,N t)
−1/2 exp

Ä
−ck,N t−

ck,N t
k

ä
exp

Ä
ck,N t

k(1−2ck,N t)

ä
k even

.

(3.4.2) is a finite sum of independent random variables, so its m.g.f. is given by

mN∏
k=1

Fk(t)

and c.g.f. by

mN∑
k=1

log (Fk(t)) =

bmN/2c∑
k=1

c2k,N t

2k

1

1− 2c2k,N t
−
c2k,N

2k
t

− [mN∑
k=1

(1/2) log(1− 2ck,N t) + ck,N t

]
.

(3.4.4)

Once again, since |ck,N | ≤ CfL
−1/2
N , we may assume that N is large enough such that 2|ck,N t| ≤ 1/2,

independent of k. Applying Taylor’s Theorem to each term in the second sum on the r.h.s. of (3.4.4),

we have

mN∑
k=1

(1/2) log(1− 2ck,N t) + ck,N t = − t
2

2

mN∑
k=1

2c2k,N +

Å
1

2

ã mN∑
k=1

R2(−2ck,N t),(3.4.5)
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where log(1 + x) = x− x2

2 +R2(x), i.e. R2(x) is the second order error term for log(1 + x) given by

Taylor’s Theorem. Since ∣∣∣∣∣
Å
d

dx

ã3

log(1 + x)

∣∣∣∣∣ =

∣∣∣∣ 2

(1 + x)3

∣∣∣∣ ≤ 24

for all x ∈
[
−1

2 ,
1
2

]
, we can write

|R2(−2ck,N t)| ≤
27

3!
|ck,N t|3.(3.4.6)

The term proportional to −t2/2 in (3.4.5) is a Riemann sum converging to

2

∫ ∞
0

[xf̂(x)]2 dx,

whereas (3.4.6) implies that the second term on the r.h.s of (3.4.5) is on the order of L−1/2N times a

Riemann sum converging to ∫ ∞
0
|xf̂(x)|3 dx <∞.

Similarly, using the series expansion for (1 − x)−1, the first sum on the r.h.s. of (3.4.4) can be

written as

−t2
bmN/2c∑
k=1

c22k,N
k

+O

Ñ
bmN/2c∑
k=1

|c2k,N t|3

k
· |(1− 2c2k,N t)

−1|

é
= t2 ·O(L−1N ) + |t|3 ·O(L

−3/2
N ),(3.4.7)

which goes to zero as N → ∞. By combining (3.4.4), (3.4.5), and (3.4.7), we have the pointwise

convergence
mN∑
k=1

log (Fk(t))→
t2

2

Å∫
R
|xf̂(x)|2

ã
for all t ∈ R. This completes the proof. �

We now proceed to the proof of Theorem 3.2.8, which is easily obtained by generalizing the results

of Section 3.5 using the results of [1]. Before we begin, we present the following technical lemma.
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Lemma 3.4.1. Let {ak}∞k=1 be a positive sequence such that VN =
∑N

k=1 a
2
k is slowly varying. If

lim
N→∞

VN =∞, then

max
1≤k≤N

(ak) = oN
Ä√

VN
ä
.

Proof.

Let AN = max
1≤k≤N

ak. AN is a non-decreasing, integer valued sequence. If AN converges, then

AN must be constant for sufficiently large N . Since VN diverges, it then must be the case that

AN/
√
VN → 0. Let us then consider the case where AN diverges. By the definition of AN ,

AN+1 = AN or AN+1 = aN+1 for all N ∈ N. Let {N`}∞`=1 be sequence such that AN`+1
= aN`+1

.

Now

1 =
VN`
VN`

=
1

VN`

Ñ
bN`/2c∑
k=1

a2k +

N∑̀
k=bN`/2c

a2k

é
=
VbVN`/2c
VN`

+
1

VN`

N∑̀
k=bN`/2c

a2k.(3.4.8)

Since VN is slowly varying, it must be the case that

lim
`→∞

VbVN`/2c
VN`

= 1 and lim
`→∞

1

VN`

N∑̀
k=bN`/2c

a2k = 0.

Since A2
N`

= a2N` , it must be the case that lim
l→∞

AN`/
√
VN` = 0. For any ε > 0 we can then choose

`
′ ∈ N such that, for all ` ≥ `′ , AN`/

√
VN` < ε. Suppose N` ≤ N < N`+1. Then

AN√
VN

=
AN`√
VN
≤ AN`√

V`
.

It follows that, for all N > N`′ , AN/
√
VN < ε. This completes the proof. �

Proof. (of Theorem 3.2.8)

Let f ∈ L2(T) be a real valued, even function and VN =
∑N

k=1 k
2|f̂ |2 be a slowly varying sequence

such that VN → ∞. Furthermore, let {BN}∞N=1 be a positive, integer-valued sequence that grows

to ∞ sufficiently slowly as N →∞ in such a way that

lim
N→∞

VbN ·BN c

VN
= lim

N→∞

VN
VbN/BN c

= 1.(3.4.9)
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Such a sequence can be constructed using (3.2.6) and routine subsequence arguments. We now split

[SN (f)− ESN (f)]/(2
√

2VN ) into two parts. Namely,

SN (f)− ESN (f)

2
√

2VN
=

1√
2VN

mN∑
k=1

f̂(k)(t2k − Et2k) +
1√
2VN

∞∑
k=mN+1

f̂(k)(t2k − Et2k),(3.4.10)

where mN = bN/BNc. Replacing Lemma 2.4.3 with Lemma 2.1 from [1] in the proof of Proposition

3.5.4 shows that

Var
Å
SN (f)

2
√

2VN

ã
=

1

VN

mN∑
k=1

k2|f̂(k)|2 +O

Ñ
VbN/2c − VmN

VN
+

1

VN

bN/2c∑
k=1

k|f̂(k)|2 +
1

VN

∞∑
k=bN/2c+1

N2|f̂(k)|2
é

+ oN (1)

=
VmN
VN

+O

Ö
1

VN

Ñ
bN/2c∑
k=1

k2|f̂(k)|2
é1/2

è
+O

( ∞∑
k=1

1

k2

Å
V(k+1)bN/2c − VkbN/2c

VN

ã)
+ oN (1)

=
VmN
VN

+O

Å
1√
VN

ã
+ oN (1)

=
VmN
VN

+ oN (1)

As a result, the variance of the second term on the r.h.s. of (3.4.10) goes to zero as N →∞, while

the variance of the first term converges to one. It then suffices to study the asymptotics of the first

sum. It follows from Proposition 1.0.1 that, for 1 ≤ m < BN/2,

E

(
1√
2VN

mN∑
k=1

f̂(k)(t2k − Et2k)

)m
= E

(
1√
2VN

mN∑
k=1

kf̂(k)(ϕk − λk)

)m
,(3.4.11)

where λk = 1 + 1+(−1)k
2k and {ϕk}∞k=1 are independent χ2

1 distributed random variables. In partic-

ular, ϕk is χ2
1 (0) distributed (mean one and variance two) when k is odd and non-central χ2

1

(
1
k

)
distributed (mean 1 + 1

k and variance 2 + 4
k ) when k is even.

54



The remainder of the proof follows from a standard moment generating function argument that is

nearly identical to the one given in the proof of Theorem 3.2.4. As in the proof of Theorem 3.2.4,

(3.4.11) implies that it is sufficient to study the convergence of the moment generating function for

1√
2VN

mN∑
k=1

kf̂(k)(ϕk − λk).(3.4.12)

Let

ck,N =
kf̂(k)√

2VN
and Xk,N = ck,N (ϕk − λk).

It follows from Lemma 3.4.1 that

max
1≤k≤N

{k|f̂(k)|} = oN (
√
VN ).(3.4.13)

We may then assume that, for any fixed t and large enough N, the moment generating function for

ck,NXk is given by

Fk(t) =


(1− 2ck,N t)

−1/2 exp (−ck,N t) k odd

(1− 2ck,N t)
−1/2 exp

Ä
−ck,N t−

ck,N t
k

ä
exp

Ä
ck,N t

k(1−2ck,N t)

ä
k even

.

for 1 ≤ k ≤ mN . (3.4.12) is a finite sum of independent random variables, so its m.g.f. is given by

mN∏
k=1

Fk(t)

and c.g.f. by

mN∑
k=1

log (Fk(t)) =

bmN/2c∑
k=1

c2k,N t

2k

1

1− 2c2k,N t
−
c2k,N

2k
t

− [mN∑
k=1

(1/2) log(1− 2ck,N t) + ck,N t

]
.

(3.4.14)

It follows from (3.4.13) that, when N is sufficiently large, 2|ck,N t| ≤ 1/2 for 1 ≤ k ≤ mN . Applying

Taylor’s Theorem to each term in the second sum on the r.h.s. of (3.4.14), we have

mN∑
k=1

(1/2) log(1− 2ck,N t) + ck,N t = − t
2

2

mN∑
k=1

2c2k,N +

Å
1

2

ã mN∑
k=1

R2(−2ck,N t),(3.4.15)
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where log(1 + x) = x− x2

2 +R2(x), i.e. R2(x) is the second order error term for log(1 + x) given by

Taylor’s Theorem. As before, for all x ∈
[
−1

2 ,
1
2

]
, we can write

|R2(−2ck,N t)| ≤ C|ck,N t|3,(3.4.16)

where C > 0 is a constant independent of k, N , and f . The term proportional to −t2/2 in (3.4.15)

is the sum
1

VN

mN∑
k=1

k2|f̂(k)|2,

which converges to one. (3.4.16) implies that the second term on the r.h.s of (3.4.15) is equal to

oN (1) ·

(
1

VN

mN∑
k=1

k2|f̂(k)|2
)

= oN (1).

Similarly, using the series expansion for (1 − x)−1, the first sum on the r.h.s. of (3.4.14) can be

written as

−t2
bmN/2c∑
k=1

c22k,N
k

+O

Ñ
bmN/2c∑
k=1

|c2k,N t|3

k
· |(1− 2c2k,N t)

−1|

é
= (t2 + |t|3) ·O(V −1N ),(3.4.17)

which goes to zero as N →∞. By combining (3.4.14), (3.4.15), and (3.4.17), we have the pointwise

convergence
mN∑
k=1

log (Fk(t))→
t2

2

for all t ∈ R. This completes the proof.

�
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3.5. Variance Calculation

In this section we prove analogous results regarding Var(SN (f)) to Corollary 2.4.1 and Proposition

2.2.2 in the case of SO(N) and Sp(N). Assuming that
∑

1≤k1,k2

∣∣∣Cov Ät2k1 , t2k2ä∣∣∣ <∞, we can write

Var (SN (f)) as

4
∑

1≤k1,k2

Cov
(
t2k1 , t

2
k2

)
f̂(k1)f̂(k2)

= 4
∑
1≤k

Var(t2k)|f̂(k)|2 + 4
∑

1≤k1 6=k2

Cov
(
t2k1 , t

2
k2

)
f̂(k1)f̂(k2).

In the case of U(N), the first sum gives the primary contribution to the variance, whereas the second

sum is negligible in the limit. We will show that this is still the case for the SO(N) and Sp(N).

As such, the majority of this section is devoted to computing Cov
Ä
t2k1 , t

2
k2

ä
and verifying the above

assumption. Unlike in Section 2.4, we will use joint cumulants. The Section is organized as follows.

We start by giving a short introduction to joint cumulants and some of their proprieties that will

be used throughout this section. We then state the main results of the section, namely Propositions

3.5.3-3.5.4, which are proven using several technical lemmas. Proofs of technical lemmas are given

at the end of the section.

Definition 3.5.1. Let X1, ...Xn be random variables. Their joint cumulants are defined in terms of

the coefficients of the logarithm of their joint moment generating function in the following manner:

K(t1, ..., tn) = log
î
E
Ä
e
∑n
j=1Xj ·tj

äó
=
∑
1≤`

∑
m1+...mn=`
mi∈N0

κ`(X1, ..., X1︸ ︷︷ ︸
m1 times

, . . . , Xn, ..., Xn︸ ︷︷ ︸
mn times

)
n∏
j=1

t
mj
j .

K(t1, ...tn) is referred to as the joint cumulant generating function for X1, ..., Xn. [20]

Remark 3.5.2. It easy to see from the above definition that `-th order joint cumulant κ`(X, ...,X)

is equal to the `-th order standard cumulant of X, c`(X). As such κ1(X) = E (X) and κ2(X,X) =

Var (X).
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Recall that, for a family of random variables {X1, ..., Xn}, we can explicitly express joint cumulants

in terms of joint moments in the following manner:

κn(Xi1 , . . . , Xin) =
∑
π

(|π| − 1)!(−1)|π|−1
∏
B∈π

E

(∏
i∈B

Xi

)
,(3.5.1)

where the sum is over all partitions π of {i1, . . . , in}, B runs through the list of all blocks of the

partition π, and |π| is the number of blocks in the partition. Joint cumulants are symmetric, i.e.

κn(X1, . . . , Xn) = κn(Xσ(1), . . . , Xσ(n)), σ ∈ Sn,(3.5.2)

and have the multilinearity property

κn−1(c1X1 + c2X2, X3, . . . , Xn) = c1κn−1(X1, X3, . . . , Xn) + c2κn−1(X2, X3, . . . , Xn).

It is also the case that joint moments can be expressed in terms of joint cumulants

E(X1 · . . . ·Xn) := E
∏

1≤i≤n
Xi =

∑
π

∏
B∈π

κ|B|(Xi : i ∈ B).(3.5.3)

Finally, we recall that κ1 (X1) = E (X1) and κ2(X1, X2) = Cov (X1, X2).

We now proceed to the main results of the section.

Proposition 3.5.3. Let tk denote the trace of the k-th power of an SO(2N), SO(2N+1), or Sp(N)

distributed random matrix. Then the covariance statistics for t2k are as follows.

(i) In the case of SO(2N) (MN = 2N − 1, δ = 1) or Sp(N) (MN = 2N + 1, δ = −1),

Var(t2k) =



2k2 + 4k · χk even 1 ≤ k < (MN + 1)/4

2k2 + 4k · χk even + δ (MN + 1)/4 ≤ k < (MN + 1)/3

2k2 + 4(k − δ) · χk even + δ (MN + 1)/3 ≤ k ≤ (MN − 1)/2

2(k + δ)2 − 6k + 4k · χk even + 3(MN − δ) (MN + 1)/2 ≤ k ≤MN − 1

2N(4N − 3) MN ≤ k
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and

Cov(t2k1 , t
2
k2) =

δ

Ö
4χ k1,k2 even
|k1−k2|≤MN−1
MN+1≤k1+k2

+ 2χ k1≤(MN−1)/2
(MN+1)/2≤k1+k2
|k1−k2|≤(MN−1)/2

+ 2χ k2≤(MN−1)/2
(MN+1)/2≤k1+k2
|k1−k2|≤(MN−1)/2

− 3χ (MN+1)/2≤k1+k2
|k1−k2|≤(MN−1)/2

è
+O (N) ·

Ç
χ k2=2k1
(MN+1)/4≤k1≤(MN−1)/2

+ χ k1=2k2
(MN+1)/4≤k2≤(MN−1)/2

å
−2δ

á
χ k2 even

k2≤MN−1
|2k1−k2|≤MN−1
MN+1≤2k1+k2

+ χ k1 even
k1≤MN−1

|2k2−k1|≤MN−1
MN+1≤2k2+k1

ë
−2

Ç
(MN − |k1 − k2|)χ |k1−k2|≤MN−1

MN≤max(k1,k2)

) + (k1 + k2 −MN )χ k1,k2≤MN−1
MN+1≤k1+k2

å
+ 2χ k1,k2 even

|k1−k2|≤MN−1
MN+1≤k1+k2

for k1 6= k2.

(ii) In the case of SO(2N + 1),

Var(t2k) =


2k2 + 4k · χk even 1 ≤ k ≤ N

2k2 + 4k · χk even − 6k + 6N N + 1 ≤ k ≤ 2N − 1

2N(4N + 1) 2N ≤ k

and

Cov(t2k1 , t
2
k2) = O(1) · χ |k1−k2| odd

|k1−k2|≤2N−1
2N+1≤k1+k2

+O(N) ·
Ç
χ 2k1=k2
N/2<k1≤N−1

+ ·χ 2k2=k1
N/2<k2≤N−1

å
− 2

Ç
(2N − |k1 − k2|)χ |k1−k2|≤2N−1

2N≤max(k1,k2)

) + (k1 + k2 − 2N)χ k1,k2≤2N−1
2N+1≤k1+k2

å
for k1 6= k2.

Proposition 3.5.4. Let θ1, ..., θN be distributed according to SO(N) or Sp(N) and f ∈ H1(T).

Then

Var (SN (f)) = 4

bN/2c∑
k=1

Ç
2k2 + 4k

Ç
1 + (−1)k

2

åå
|f̂(k)|2 + oN (1).

59



It follows from (3.5.3) that, in order to compute Cov(t2k1 , t
2
k2

) = E
Ä
t2k1t

2
k2

ä
− E

Ä
t2k1

ä
E
Ä
t2k2

ä
, it is

sufficient to understand the behavior of the first, second, third, and fourth order joint cumulants

of tk1 , tk1 , tk2 , tk2 . We summarize this analysis in the form of the following lemma, which will be

proven toward the end of the section.

Lemma 3.5.5.

Let tk denote the trace of the k-th power of a SO(2N) (MN = 2N − 1, α = 0, δ = 1), SO(2N + 1)

(MN = 2N,α = 1, δ = −1), or Sp(N) (MN = 2N + 1, α = 0, δ = −1) distributed random matrix

and κn(ki1 , ..., kin) denoted the n-th order joint cumulant of (tki1 − α), ...(tkin − α). Then

(i)

κ1(k) = δ · χk+α even
k≤MN−1

(ii)

κ2(k1, k2) = min (k,MN ) · χk=k1=k2 + δ · χ|k1−k2|+α even
|k1−k2|≤M−1
MN+1≤k1+k2

(iii)

κ3(k1, k1, k2) =
1

2
(κ
′
3(tk1 , tk1 , t−k2) + κ

′
3(t−k1 , t−k1 , tk2)) · χ 2k1=k2

2k1+k2≥MN+1
− δ · χ k2+α even

k2≤MN−1
2k1+k2≥MN+1
|2k1−k2|≤MN−1

where κ′3 and tki denote the third order joint cumulant with respect to U(MN ) and trace of

the ki-th power of a U(MN ) distributed random matrix, respectively.

(iv)

κ4(k1, k1, k2, k2) =

− χk1=k2 ·
Å
MN · χMN≤k1) + (2k1 −MN )χ k1≤MN−1

MN+1≤2k1

ã
− 2

Ç
(MN − |k1 − k2|)χ |k1−k2|≤MN−1

MN≤max(k1,k2)

) + (k1 + k2 −MN )χ k1,k2≤MN−1
MN+1≤k1+k2

å
+ δ(1− α) ·

Ö
2χ k1≤(MN−1)/2

(MN+1)/2≤k1+k2
|k1−k2|≤(MN−1)/2

+ 2χ k2≤(MN−1)/2
(MN+1)/2≤k1+k2
|k1−k2|≤(MN−1)/2

− 3χ (MN+1)/2≤k1+k2
|k1−k2|≤(MN−1)/2

è
.
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Remark 3.5.6. As we will later show, the primary contribution to Var (SN (f)) will come from the

first and second order joint cumulants. The formulas given above make it clear that the third and

fourth order joint cumulants give a vanishing contribution unless (k1, k2) is sufficiently far away

from (0, 0). This observation is the main idea behind the proof of Proposition 3.5.4.

Corollary 3.5.7. (to Lemma 3.5.5) Let f ∈ H1(T) and θ1, . . . , θN be distributed according to

SO(2N) (MN = 2N − 1, α = 0, δ = 1), SO(2N + 1) (MN = 2N,α = 1, δ = −1), or Sp(N)

(MN = 2N + 1, α = 0, δ = −1). Then

E (SN (f)) = 2

MN−1∑
k=1

(
k +χk even + δ(1− α) ·χ(MN+1)/2≤k − (2N + α)

)
f̂(k).

Proof. (of Corollary 3.5.7)

As discussed in Section 3.3,

SN (f) = 2
∑
1≤k

(
t2k − (2N + α)

)
f̂(k).

Here we assume that f̂(0) = 0. Using Lemma 3.5.5, we can easily compute E
(
t2k
)
for k ≥ 1. In

particular we have

E
(
t2k
)

= κ2(k, k) + κ21(k)

= min(k,MN ) + δ · χ(MN+1)/2≤k + χ k even
k≤MN−1

for SO(2N)/Sp(N) and

E
(
t2k
)

= κ2(k, k) + 2κ1(k) + 1 + κ21(k)

= min(k, 2N) + (1− χ k odd
k≤2N−1

)

= min(k, 2N) + χ k even
k≤2N−2

+ χ2N≤k.

for SO(2N + 1). We remind that reader that, in the above calculation, κn(ki1 , ..., kin) denotes the

n-th order joint cumulant of (tki1 − α), ...(tkin − α).
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It follows that

E
(
t2k − (2N + α)

)
=


k + χk even + δ(1− α) · χ(MN+1)/2≤k − (2N + α) for 1 ≤ k ≤MN − 1

0 for MN ≤ k
.

Since ∑
1≤k

E
Ä
|(t2k − (2N + α))f̂(k)|

ä
<∞,

under the assumption that f ∈ H1(T), this completes the proof. �

The following lemma about joint cumulants for U(N) will be helpful in proving Lemma 3.5.5 and

will allow us to control the asymptotic behaviour of the ’unitary part’ of the third order joint

cumulants in the proof of Proposition 3.5.3. Parts (i)-(iv) are precisely Lemma 5.2 in [2]. The proof

of part (v) follows directly from Proposition 2.2.1.

Lemma 3.5.8.

Let tk denote the k-th power of a U(N) distributed random matrix and κn(k1, . . . , kn) denote the

n-th order joint cumulant of tk1 , . . . , tkn. Then

(i) |κ`(k1, . . . , kn)| ≤ CnN , where Cn is some universal constant that depends only on n.

(ii) Let n ≥ 1 and
∑n

i=1 ki 6= 0. Then κn(k1, . . . , kn) = 0.

(iii) Let
∑n

i=1 ki = 0,
∑n

i=1 |ki| ≤ N and n > 2. Then κn(k1, . . . , kn) = 0.

(iv) Let n = 2 and k1 = −k2. Then κ2(k1, k2) = κ2(k1,−k1) = min(N, |k1|).

(v) Let n = 4 Then κ4(k1,−k1, k2,−k2) is equal to

−

Ö
(N − |k1 − k2|) · χ 1≤k1,k2

|k1−k2|≤N−1
N≤max(k1,k2)

+ (k1 + k2 −N) · χ1≤k1,k2≤N−1
N+1≤k1+k2

è
.

Proof. (of Lemma 3.5.8 (v))

Let θ1, . . . , θN be distributed according to U(N) and tk =
∑N

j=1 e
ikθj . The one point marginal

density for U(N) is normalized Lebesgue measure, so κ1(k) = E (tk) = 0. It follows from (3.5.3)

that Var(SN (f)) can be expressed as a sum of second and fourth order joint cumulants. In particular,
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we have Å
1

4

ã
Var(SN (f)) =

∑
1≤k1,k2

κ2(k1, k2)κ2(−k1,−k2)f̂(k1)f̂(k2)

+
∑

1≤k1,k2

κ2(k1,−k2)κ2(−k1, k2)f̂(k1)f̂(k2)

+
∑

1≤k1,k2

κ4(k1,−k1, k2,−k2)f̂(k1)f̂(k2).

Since k1, k2 > 0, the first sum is equal to zero by part (ii) of Lemma 3.5.8. The terms in the second

sum are equal to zero unless k1 = k2, in which case, κ22(k, k) = min(k2, N2). It follows thatÅ
1

4

ã
Var(SN (f)) =

N−1∑
k=1

k2|f̂(k)|2 +N2
∑
k≥N

(k2)|f̂(k)|2 +
∑

1≤k1,k2

κ4(k1,−k1, k2,−k2)f̂(k1)f̂(k2).

Equivalently, Proposition 2.2.1 states that
(
1
4

)
Var(SN (f)) is equal to

N−1∑
k=1

k2|f̂(k)|2 +N2
∑
k≥N

(k2)|f̂(k)|2

−

â
∑

1≤k1,k2
|k1−k2|≤N−1
N≤max(k1,k2)

(N − |k1 − k2|)f̂(k1)f̂(k2) +
∑

1≤k1,k2≤N−1
N+1≤k1+k2

((k1 + k2)−N)f̂(k1)f̂(k2)

ì
.

Equating these two expressions gives,

κ4(k1,−k1, k2,−k2) = −

Ö
(N − |k1 − k2|) · χ 1≤k1,k2

|k1−k2|≤N−1
N≤max(k1,k2)

+ (k1 + k2 −N) · χ1≤k1,k2≤N−1
N+1≤k1+k2

è
.

This completes the proof. �

We now proceed to the proofs of Propositions 3.5.3-3.5.4. In the proof of Proposition 3.5.3, we begin

by proving the case of SO(2N) and, by a trivial generalization, Sp(N). We then prove the case of

SO(2N + 1), which will require some additional modifications. In the proof of 3.5.4 we consider

the cases SO(2N) and Sp(N) simultaneously. The proof for the case of SO(2N + 1) is simpler and

follows immediately from that of SO(2N) and Sp(N).

63



Proof. (of Proposition 3.5.3)

We start our computation of Cov
Ä
t2k1 , t

2
k2

ä
by first expressing E

Ä
t2k1t

2
k2

ä
in terms of joint cumu-

lants using (3.5.3). To simplify notation, we will let κn(ki1 , . . . , kin) denote the joint cumulant of

tki1 , . . . , tkin with respect to SO(2N). As such, we have

E
(
t2k1t

2
k2

)
= κ21(k1)κ

2
1(k2) + κ21(k1)κ2(k2, k2) + κ21(k2)κ2(k1, k1) + 4κ1(k1)κ1(k2)κ2(k1, k2)

+ κ2(k1, k1)κ2(k2, k2) + 2κ2(k1, k2)κ2(k1, k2)

+ 2κ1(k1)κ3(k1, k2, k2) + 2κ1(k2)κ3(k1, k1, k2)

+ κ4(k1, k1, k2, k2).

We note that there are 15 terms, including multiplicity, corresponding to the 15 different partitions

of {1, 2, 3, 4}. To obtain the desired formula for covariance, we subtract

E
(
t2k1,n

)
E
(
t2k1,n

)
=
(
κ2(k1, k1) + κ21(k1)

) (
κ2(k2, k2) + κ21(k2)

)
to get an expression for covariance in terms of joint cumulants. Namely,

Cov
(
t2k1 , t

2
k2

)
=

4κ1(k1)κ1(k2)κ2(k1, k2)(3.5.4)

+ 2κ2(k1, k2)κ2(k1, k2)(3.5.5)

+ 2κ1(k2)κ3(k1, k1, k2) + 2κ1(k1)κ3(k1, k2, k2)(3.5.6)

+ κ4(k1, k1, k2, k2).(3.5.7)

We will consider two separate cases: k = k1 = k2, and k1 6= k2. When k = k1 = k2, parts (i) and

(ii) of Lemma 3.5.5 imply that (3.5.4) is equal to

4

Å
min(k, 2N − 1) · χ k even

k≤2N−2
+ χkeven

k≥N

ã
=


4k · χk even 1 ≤ k ≤ N − 1

4(k + 1) · χk even N ≤ k ≤ 2N − 2

.(3.5.8)
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When k1 6= k2, (3.5.4) is equal to

4χ k1,k2 even
k1,k2≤2N−2
|k1−k2|≤2N−2
2N≤k1+k2

.(3.5.9)

Again, using part (ii) of Lemma 3.5.5, we can see that (3.5.5) is equal to

2 (min(k, 2N − 1) + χN≤k)
2 =


2k2 1 ≤ k ≤ N − 1

2(k + 1)2 N ≤ k ≤ 2N − 2

2(2N)2 2N − 1 ≤ k

(3.5.10)

when k = k1 = k2 and

2χ k1,k2 even
|k1−k2|≤2N−2
2N≤k1+k2

(3.5.11)

when k1 6= k2.

It follows from parts (i) and (iii) of Lemma 3.5.5, that (3.5.6) is equal to

−4χ k even
2N/3≤k≤2N−2

(3.5.12)

when k = k1 = k2. When k1 6= k2, the first term in (3.5.6) is equal toÄ
κ
′
3(tk1 , tk1 , t−k2) + κ

′
3(t−k1 , t−k1 , tk2)

ä
χ k2=2k1
k2≤N−1

− 2χ k2 even
k2≤2N−2

|2k1−k2|≤2N−2
2N≤2k1+k2

,

which can be rewritten as

O (N) · χ k2=2k1
N/2≤k1≤N−1

− 2χ k2 even
k2≤2N−2

|2k1−k2|≤2N−2
2N≤2k1+k2
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using parts (i) and (iii) of Lemma 3.5.8. Interchanging k1 and k2 gives an expression for the second

term in (3.5.6). It follows that (3.5.6) is equal to

O (N) ·
Ç
χ k2=2k1
N/2≤k1≤N−1

+ χ k1=2k2
N/2≤k2≤N−1

å
− 2

á
χ k2 even

k2≤2N−2
|2k1−k2|≤2N−2
2N≤2k1+k2

+ χ k1 even
k1≤2N−2

|2k2−k1|≤2N−2
2N≤2k2+k1

ë
.(3.5.13)

Finally, we consider the contribution from the fourth order joint cumulant. When k = k1 = k2, part

(iv) of Lemma 3.5.5 implies that (3.5.7) is equal to

−3 ((2N − 1)χ2N−1≤k + 2kχN≤k≤2N−2 − (2N − 1)χN≤k≤2N−2) + χN/2≤k≤N−1 − 3χN≤k

=



0 1 ≤ k < N/2

1 N/2 ≤ k ≤ N − 1

−6k + 3(2N − 2) N ≤ k ≤ 2N − 2

−3(2N) 2N − 1 ≤ k

.(3.5.14)

When k1 6= k2, (3.5.7) is equal to

−2

Ç
(2N − 1− |k1 − k2|)χ |k1−k2|≤2N−2

2N−1≤max(k1,k2)

) + (k1 + k2 − 2N + 1)χk1,k2≤2N−2
2N≤k1+k2

å
(3.5.15)

+ 2χ k1≤N−1
N≤k1+k2
|k1−k2|≤N−1

+ 2χ k2≤N−1
N≤k1+k2
|k1−k2|≤N−1

− 3χ N≤k1+k2
|k1−k2|≤N−1

.

By combining (3.5.8), (3.5.10),(3.5.12), and (3.5.14), we have

Var(t2k) = Cov(t2k, t
2
k) =



2k2 + 4k · χk even 1 ≤ k < N/2

2k2 + 1 + 4k · χk even N/2 ≤ k < 2N/3

2k2 + 1 + 4(k − 1) · χk even 2N/3 ≤ k ≤ N − 1

2(k + 1)2 − 6k + 3(2N − 2) + 4k · χk even N ≤ k ≤ 2N − 2

2N(4N − 3) 2N − 1 ≤ k

.
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Remark 3.5.9. When 2N − 1 ≤ k, {cos(kθi)}Ni=1 are independent, mean zero, random variables.

One can then confirm the formula for variance in this case directly through a somewhat simple

computation.

Finally, when k1 6= k2, (3.5.9), (3.5.11), (3.5.13), and (3.5.15) imply that Cov(t2k1 , t
2
k2

) is equal to

4χ k1,k2 even
k1,k2≤2N−2
|k1−k2|<2N−1
2N≤k1+k2

+ 2χ k1,k2 even
|k1−k2|<2N−1
2N≤k1+k2

+ 2χ k1≤N−1
N≤k1+k2
|k1−k2|≤N−1

+ 2χ k2≤N−1
N≤k1+k2
|k1−k2|≤N−1

− 3χ N≤k1+k2
|k1−k2|≤N−1

+O (N) ·
Ç
χ k2=2k1
N/2≤k1≤N−1

+ χ k1=2k2
N/2≤k2≤N−1

å
− 2

á
χ k2 even

k2≤2N−2
|2k1−k2|≤2N−2
2N≤2k1+k2

+ χ k1 even
k1≤2N−2

|2k2−k1|≤2N−2
2N≤2k2+k1

ë
−2

Ç
(2N − 1− |k1 − k2|)χ |k1−k2|≤2N−2

2N−1≤max(k1,k2)

) + (k1 + k2 − 2N + 1)χk1,k2≤2N−2
2N≤k1+k2

å
.

This completes the proof for SO(2N) and, by extension, Sp(N).

We now turn our attention to the case of SO(2N +1). Recalling that every SO(2N +1) distributed

matrix M has one as an eigenvalue, Tr
(
Mk
)
is given by

tk = 1 +
N∑
j=1

2 cos(kθj),

where θ1, . . . , θN ∈ (0, π] are distributed according to (3.1.5). Again, we use (3.5.3) to rewrite

Cov(t2k1 , t
2
k2

) as follows:

E(t2k1t
2
k2)− E(t2k1)E(t2k2)

= E
(
(tk1 − 1)2(tk2 − 1)2

)
+ 2κ3(k1, k1, k2) + 2κ3(k1, k2, k2) + 4κ1(k1)κ2(k1, k2) + 4κ1(k2)κ(k1, k2) + 4κ2(k1, k2)

− κ21(k1)κ21(k2)− κ21(k1)κ(k2, k2)− κ21(k2)κ(k1, k1)− κ2(k1, k1)κ2(k2, k2),
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where κn(ki1 , ..., kin) denotes the n-th order joint cumulant of (tki1−1), ...(tkin−1). After simplifying,

we arrive that the following expression for covariance:

Cov
(
t2k1 , t

2
k2

)
=

4(1 + κ1(k1) + κ1(k2) + κ1(k1)κ1(k2))κ2(k1, k2)(3.5.16)

+ 2κ2(k1, k2)κ2(k1, k2)(3.5.17)

+ 2(1 + κ1(k1))κ3(k1, k2, k2) + 2(1 + κ1(k2))κ3(k1, k1, k2)(3.5.18)

+ κ4(k1, k1, k2, k2),(3.5.19)

where κn(ki1 , . . . , kin) denotes the n-th order joint cumulant of tki1 , . . . , tkin .

Once again, we consider the two different cases: k1 = k2 and k1 6= k2. When k1 = k2, it follows

from parts (i) and (ii) of Lemma 3.5.5 that (3.5.16) is equal to

4(1− χ k odd
k≤2N−1

) min(k, 2N) =


4k · χk even 1 ≤ k ≤ 2N − 1

4(2N) 2N ≤ k
.(3.5.20)

Similarly, (3.5.17) is equal to

2 min(k, 2N)2 =


2k2 1 ≤ k ≤ 2N − 1

2(2N)2 2N ≤ k
.(3.5.21)

It follows from part (iii) of Lemma 3.5.5 that (3.5.18) is equal to

4(χ k even
k≤2N−2

+ χ2N≤k) · χ k odd
2N/3<k≤2N−1

= 0.(3.5.22)

It follows from part (iv) of Lemma 3.5.5 that (3.5.19) is equal to

−3((2N)χ2N≤k + (2k − 2N)χ k≤2N−1
2N+1≤2k

) =


0 1 ≤ k ≤ N

6N − 6k N + 1 ≤ k ≤ 2N − 1

−6N 2N ≤ k

.(3.5.23)
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Combining (3.5.20), (3.5.21), (3.5.22), and (3.5.23), we have

Var(t2k) =


2k2 + 4k · χk even 1 ≤ k ≤ N

2k2 + 4k · χk even − 6k + 6N N + 1 ≤ k ≤ 2N − 1

2N(4N + 1) 2N ≤ k

We now consider the case 1 ≤ k1 6= k2. Again, it follows from 3.5.5 that (3.5.16) is equal to

− 4

Ç
1− χ k1 odd

k1≤2N1

− χ k2 odd
k2≤2N1

+ χ k1,k2 odd
k1,k2≤2N−1

å
· χ |k1−k2| odd
|k1−k2|≤2N−1
2N+1≤k1+k2

(3.5.24)

= −4

Å
1− χ k1 odd

k1≤2N1

− χ k2 odd
k2≤2N1

ã
· χ |k1−k2| odd
|k1−k2|≤2N−1
2N+1≤k1+k2

(3.5.25)

= O

Ö
χ |k1−k2| odd
|k1−k2|≤2N−1
2N+1≤k1+k2

è
(3.5.26)

and (3.5.17) is equal to

2

Ö
χ |k1−k2| odd
|k1−k2|≤2N−1
2N+1≤k1+k2

è2

= 2χ |k1−k2| odd
|k1−k2|≤2N−1
2N+1≤k1+k2

.(3.5.27)

(3.5.18) is equal to

2

Å
κ(k1, k1, k2) · χ k2 even

k2≤2N−1
+ κ(k1, k2, k2) · χ k1 even

k1≤2N−1

ã
(3.5.28)

+ 2 (κ(k1, k1, k2) · χ2N≤k2 + κ(k1, k2, k2) · χ2N≤k1) .(3.5.29)

Let us consider the first term in (3.5.28). It follows from part (iii) of Lemma 3.5.5 and part (i) of

Lemma 3.5.8 that this term is equal to

(κ
′
(tk1 , tk1 , t−k2) + κ

′
(t−k1 , t−k1 , tk2))χ 2k1=k2

N/2<k1≤N−1
+ 2χ k2 even

k2≤2N−1
· χ k2 odd

k2≤2N−1
|k2−2k1|≤2N−1
2N≤k2+2k1
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= (κ
′
(tk1 , tk1 , t−k2) + κ

′
(t−k1 , t−k1 , tk2))χ 2k1=k2

N/2<k1≤N−1

= O(N) · χ 2k1=k2
N/2<k1≤N−1

.

Interchanging k1 and k2 gives an analogous expression for the second term in (3.5.28). (3.5.28) is

thus equal to

O(N) · χ 2k1=k2
N/2<k1≤N−1

+O(N) · χ 2k2=k1
N/2<k2≤N−1

.(3.5.30)

We again use part (iii) of Lemma 3.5.5 and part (i) of Lemma 3.5.8 to analyze the first term in

(3.5.29).

(κ
′
(tk1 , tk1 , t−k2) + κ

′
(t−k1 , t−k1 , tk2))χ 2k1=k2

N/2<k1≤N−1
· χ2N≤k2 + 2χ2N≤k2 · χ k2 odd

k2≤2N−1
(3.5.31)

= (κ
′
(tk1 , tk1 , t−k2) + κ

′
(t−k1 , t−k1 , tk2))χ 2k1=k2

N/2<k1≤N−1
· χN≤k1 + 2χ2N≤k2 · χ k2 odd

k2≤2N−1

= 0.

By symmetry, we can conclude that (3.5.29) is equal to zero. It follows that (3.5.18) is equal to

O(N) · χ 2k1=k2
N/2<k1≤N−1

+O(N) · χ 2k2=k1
N/2<k2≤N−1

.(3.5.32)

Finally, it follows from part (iv) of Lemma 3.5.5 that (3.5.19) is equal to

− 2

Ç
(2N − |k1 − k2|)χ |k1−k2|≤2N−1

2N≤max(k1,k2)

) + (k1 + k2 − 2N)χ k1,k2≤2N−1
2N+1≤k1+k2

å
.

We can now combine (3.5.24), (3.5.27), and (3.5.32), and (3.5.22) to get a final expression for

Cov(t2k1 , t
2
k2

) when k1 6= k2. Namely,

Cov(t2k1 , t
2
k2) = O(1) · χ |k1−k2| odd

|k1−k2|≤2N−1
2N+1≤k1+k2

+O(N) ·
Ç
χ 2k1=k2
N/2<k1≤N−1

+ ·χ 2k2=k1
N/2<k2≤N−1

å
− 2

Ç
(2N − |k1 − k2|)χ |k1−k2|≤2N−1

2N≤max(k1,k2)

) + (k1 + k2 − 2N)χ k1,k2≤2N−1
2N+1≤k1+k2

å
This completes the proof. �
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We now turn our attention to the proof of Proposition 3.5.4, which is done via Lemma 2.4.3 and

the following technical lemma.

Lemma 3.5.10.

Let f ∈ H1(T) and f̂(k) denote the k-th Fourier coefficient of f . Then

∑
k1 even

|k1−2k2|≤2N−2
2N≤k1+2k2

f̂(k1)f̂(k2)

goes to zero as N →∞.

The proof of Lemma 3.5.10 follows immediately from that of Lemma 2.4.3, with some minor alter-

ations. The proof is postponed until the end of the section.

Proof. (of Proposition 3.5.4)

Assuming that
∑

1≤k1,k2 |Cov(t2k1 , t
2
k2

)f̂(k1)f̂(k2)| <∞, we can writeÅ
1

4

ã
·Var(SN (f)) =

∑
1≤k

Var
(
t2k
)
|f̂(k)|2 +

∑
1≤k1 6=k2
k2 6=2k1
k1 6=2k2

Cov(t2k1 , t
2
k2)f̂(k1)f̂(k2).(3.5.33)

We first consider the cases of SO(2N) and Sp(N). It follows from part (i) of Proposition 3.5.3 that

the first term on the r.h.s. of (3.5.33) is equal to

bN2 c∑
k=1

(
2k2 + 4kχk even

)
|f̂(k)|2 +O

Ö
N2

∑
bN2 c+1≤k

|f̂(k)|2

è
Assuming that f ∈ H1(T), i.e.

∑
1≤k k

2|f̂(k)|2 < ∞, the sum on the left is finite and the sum on

the right is at most on the order of

∑
bN2 c+1≤k

k2|f̂(k)|2 = oN (1).
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Again, using Proposition 3.5.3, we break up the second term in (3.5.33) into 3 parts:

−2
∑

1≤|k1−k2|≤MN−1
MN≤max(k1,k2)

(MN − |k1 − k2|)f̂(k1)f̂(k2)− 2
∑

k1,k2≤MN−1
MN+1≤k1+k2

(k1 + k2 −MN )f̂(k1)f̂(k2),

(3.5.34)

4δ
∑

k1,k2 even
|k1−k2|≤MN−1
MN+1≤k1+k2

f̂(k1)f̂(k2) + 4δ
∑

k1≤(MN−1)/2
(MN+1)/2≤k1+k2
|k1−k2|≤(MN−1)/2

f̂(k1)f̂(k2)− 3δ
∑

|k1−k2|≤(MN−1)/2
(MN+1)/2≤k1+k2

f̂(k1)f̂(k2)

(3.5.35)

+2
∑

k1,k2 even
|k1−k2|≤MN−1
MN+1≤k1+k2

f̂(k1)f̂(k2),

and

+O(N)
∑

k2=2k1
MN+1

4
≤k1≤

MN−1

2

f̂(k1)f̂(k2)− 4δ
∑

k2 even
k2≤MN−1

|2k1−k2|≤MN−1
MN+1≤2k1+k2

f̂(k1)f̂(k2).(3.5.36)

The fact that the sums in (3.5.34) converge absolutely and are of the order oN (1) is precisely the

second half of the proof of Proposition 2.2.2. Similarly, the fact that all four sums in (3.5.35)

converge absolutely and are of the order oN (1) follows immediately from Lemma 2.4.3. It thus

remains to show that the sums in (3.5.36) converge absolutely and are of the order oN (1). For the

first sum, the Cauchy Schwartz inequality implies that

∑
MN+1

4
≤k≤MN−1

2

N |f̂(k)| · |f̂(2k)| ≤
∑

MN+1

4
≤k≤MN−1

2

2k|f̂(k)| · |f̂(2k)|

≤

Ö ∑
bN2 c+1≤k

k2|f̂(k)|2

è1/2Ö ∑
bN2 c+1≤k

(2k)2|f̂(2k)|2

è1/2

,

which is equal to oN (1). Finally, the second sum in (3.5.36) converges absolutely and is equal to

oN (1) by Lemma 3.5.10.
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It follows immediately that

Var(SN (f)) = 4
∑

1≤k1,k2

Cov(t2k1 , t
2
k2) = 4

bN/2c∑
k=1

Ç
2k2 + 4k

Ç
1 + (−1)k

2

åå
|f̂(k)|2 + oN (1).

This completes the proof of Proposition 3.5.4 in the case of SO(2N) and Sp(N). The proof for the

case of SO(2N + 1) is simpler and follows immediately from the arguments given above. �

A general formula for joint cumulants of linear statistics for determinental random point processes

was formulated as part of the proof of Proposition 9.3 in Appendix II of [2]. We restate this formula

as Lemma 3.5.11.

Lemma 3.5.11. Let {θ1, . . . , θN}, θi ∈ X , be a determinental random point process with kernel

KN (x, y). If f1, . . . , fn are functions defined on X , then the n-th order joint cumulant of the linear

statistics
∑
f1(θj), . . . ,

∑
fn(θj) is given by

n∑
m=1

(−1)m−1

m

∑
ordered collections

of subsets R={R1,..,Rm}

∫
Xm

fR1(θ1)...fRm(θm)
m∏
j=1

KN (θj , θj+1)dθ,(3.5.37)

where fRi(θ) =
∏
j∈Ri fj(θ), θm+1 = θ1, and ‘Ordered subsets R = {R1, ..., Rm}’ refers to all

partitions of {1, ..., n} with m ordered blocks.

Applying this result to the cases of SO(N) and Sp(N), we can prove Lemma 3.5.12, which allows

us to break up joint cumulants for SO(N) and Sp(N) into their ‘unitary’ and ‘non-unitary’ parts.

Lemma 3.5.12. Let θ1, . . . , θN be distributed according to SO(2N) (MN = 2N − 1, α = 0, δ = 1),

SO(2N + 1) (MN = 2N,α = 1, δ = −1), or Sp(N) (MN = 2N + 1, α = 0, δ = −1) and f1, . . . , fn

be even functions on T. Then κn (Σjf1(θj), . . . ,Σjfn(θj)) can be written as

1

2
κ
′
n (Σjf1(θj), . . . ,Σjfn(θj)) +

δ

2

n∑
m=1

(−1)m−1

m

∑
ordered

collections
of subsets
R={R1,..,Rm}

(MN−1+α)/2∑
s1,...,sm=−(MN−1)/2

f̂R1(s1 + sm − α)f̂R2(s1 − s2) . . .‘fRm(sm−1 − sm),
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where κ′n denotes the n-th order joint cumulant with respect to U(MN ).

Proof. (of Lemma 3.5.12)

For SO(2N), the integration kernel K+
MN

(x, y) = KMN
(x, y) +KMN

(x,−y) where

KMN
(x, y) =

sin
Ä
MN (x−y)

2

ä
2π · sin

Ä
(x−y)

2

ä =
1

2π

Ñ
(MN−1)/2∑

k=−(MN−1)/2

eik(x−y)

é
.(3.5.38)

In the case of Sp(N), the integration kernel is K−MN
= KMN

(x, y)−KMN
(x,−y).

It then follows from Lemma 3.5.11 that

κn (Σjf1(θj), . . . ,Σjfn(θj))(3.5.39)

=
n∑

m=1

(−1)m−1

m

∑
ordered collections

of subsets R={R1,..Rm}

· · ·(3.5.40)

· · ·
∑

ε1,...εm=±1

(
m∏
i=1

εi

)(1−δ)/2

+

∫
Hm

fR1(θ1)...fRm(θm)

m∏
j=1

KMN
(θj , εj · θj+1)dθ.

We can break this expression up into two pieces, one where we sum over all ε1, · · · , εm such that∏
j εj = 1, and one where we sum over all ε1, · · · , εm such that

∏
j εj = −1. In either case, the

integrals inside the summations each give the same contribution. To see this, we simply observe

that KN (εj−1θj , εjθj+1) = KN (θj , εj−1εjθj+1). Using the fact that f1...fn are even, the substitution

Θi+1 =
Ä∏i

j=1 εj
ä
· θi+1, 1 ≤ j ≤ m− 1 allows us to rewrite the integral in the above sum as

∆(1−δ)/2
∫
Hm

fR1(θ1)...fRm(θm)

Ñ
m−1∏
j=1

KMN
(θj , θj+1)

é
KMN

(θm,∆ · θ1)dθ,

where ∆ =
∏m
j=1 εj . The part of the sum in (3.5.39) corresponding to ∆ = 1 is given by

1

2

n∑
m=1

(−1)m−1

m

∑
ordered collections

of subsets R={R1,..Rm}

∫
Tm

fR1(θ1)...fRm(θm)
m∏
j=1

KMN
(θj , θj+1)dθ

This is precisely 1
2κn (Σf1, . . . ,Σfn) with respect to U(MN ).
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We now consider the case when ∆ = −1. Using the assumption that f1, . . . , fn are even and (3.5.38),

we expand the integrals inside of the summation in (3.5.11) in the following way:

δ

∫
Hm

fR1(θ1) . . . fRm(θm)

m∏
j=1

KMN
(θj , εj · θj+1)dθ

=
δ

2m

∫
Tm

fR1(θ1) . . . fRm(θm)KMN
(θm,−θ1)

m−1∏
j=1

KMN
(θj , θj+1)dθ

=
δ

(4π)m

∫
Tm

fR1(θ1) . . . fRm(θm)

Ö
MN−1

2∑
sm=−MN−1

2

eism(θm+θ1)

è
m−1∏
j=1

Ö
MN−1

2∑
sj=−

MN−1

2

eisj(θj−θj+1)

è
dθ

=
δ

2m

N−1∑
s1=−(N−1)

· · ·
N−1∑

sm=−(N−1)

f̂R1(εms1 + sm)f̂R2(s2 − s3) . . .‘fRm(sm−1 − sm).(3.5.41)

It follows that

n∑
m=1

(−1)m−1

m

∑
ordered collections

of subsets
R={R1,..Rm}

∑
ε1,...,εm=±1

s.t.
∏
j εj=−1

∆
1−δ
2

∫
Hm

fR1(θ1)...fRm(θm)
m∏
j=1

KM (θj , εj · θj+1)dθ

=
δ

2

n∑
m=1

(−1)m−1

m

∑
ordered collections

of subsets
R={R1,..Rm}

N−1∑
s1,...,sm=−(N−1)

f̂R1(s1 + sm)f̂R1(s1 − s2) · · ·‘fRm(sm−1 − sm).

The case for SO(2N + 1) requires some minor modifications. In particular, the integration kernel

is given by K−MN
(x, y) = KMN

(x, y)−KMN
(x,−y) and

KMN
(x, y) =

1

2π

∑
p odd

|p|≤2N−1

eip(θ1−θ2)/2 =

N∑
s=−(N−1)

ei(s−
1
2
)(θ1−θ2).

Again, the joint cumulant can be split up into a unitary and non-unitary part. The unitary parts

is the same as before, but the non-unitary part becomes

δ

2

n∑
m=1

(−1)m−1

m

∑
ordered collections

of subsets
R={R1,..Rm}

N∑
s1,...sm=−(N−1)

f̂R1(s1 + sm − 1)f̂R1(s1 − s2) · · ·‘fRm(sm−1 − sm).
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This completes the proof of Lemma 3.5.12. �

We now proceed to the proof of Lemma 3.5.5. We focus our attention on the case SO(N). The case

Sp(N) is obtained from that of SO(2N) by making obvious modifications. The proof is done via a

tedious, but straightforward, computation that is made significantly easier modulo Lemma 3.5.12.

Proof. (of Lemma 3.5.5)

To see (i), we simply apply Lemma 3.5.12, breaking κ1(k) into two parts:

k1(k) =
1

2
κ
′
1(k) +

δ

2

N−1+α∑
s=−(N−1)

f̂(2s− α),(3.5.42)

where f = 2 cos(kθ). The first term on the r.h.s. (3.5.42) is equal to

1

2
(E (tk) + E (t−k)) = 0,

which follows from the fact that tk =
∑MN

j=1 e
kθj and the one variable marginal density for U(MN )

is Lebesgue measure. 2 cos(kθ) = eikθ + e−ikθ, so the second term in (3.5.42) is equal to δ if k + α

is even and zero otherwise. This completes the proof of (i).

To see (ii), we again use Lemma 3.5.12 to break up κ2(k1, k2) into its unitary and non-unitary

parts. We first consider the unitary part. Let tk denote the trace of the k − th power of a U(MN )

distributed random matrix. Then, using multi-linearity of joint cumulants, we can rewrite 1
2 ·

κ
′
2(Σj2 cos(k1θj),Σj2 cos(k2θj)) as

1

2
(κ2(tk1 , tk2) + κ2(t−k1 , t−k2) + κ2(tk1 , t−k2) + κ2(t−k1 , tk2))(3.5.43)

By assumption, k1, k2 ≥ 1, so parts (ii) and (iv) of Lemma 3.5.8 imply that the only non-zero

contribution to (3.5.43) comes from

1

2
(κ2(tk1 , t−k2) + κ2(t−k1 , tk2))

when k1 = k2, in which case it is equal to min (k1,MN ).
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We now consider the non-unitary part. In particular, we compute

1

2

2∑
m=1

(−1)m−1

m

∑
ordered collections

of subsets
R={R1,...,Rm}

N−1+α∑
s1,..,sm=−(N−1)

f̂R1(s1 + sm − α) · · ·‘fRm(sm−1 − sm),

which can be rewritten as

1

2

N−1+α∑
s1=−(N−1)

‘f1f2(2s1 − α)(3.5.44)

− 1

4

∑
ordered collections

of subsets
R={R1,R2}

N−1+α∑
s1,s2=−(N−1)

f̂R1(s1 + s2 − α)f̂R2(s1 − s2),(3.5.45)

where f1 = 2 cos(k1θ) and f2 = 2 cos(k2θ). Starting with (3.5.44), we have

f1f2(θ) = ei(k1+k2)θ + e−i(k1+k2)θ + ei(k1−k2)θ + ei(k2−k1)θ.

Clearly, the only non-zero contributions from (3.5.44) come from the cases where |2s1−α| = k1 +k2

or |2s1 − α| = |k1 − k2| for −(N − 1) ≤ s1 ≤ N − 1 + α. (3.5.44) is then equal to

χ k1+k2 even
k1+k2≤2N−2

+ χ |k1−k2| even
|k1−k2|≤2N−2

,(3.5.46)

in the case of SO(2N), and

χ k1+k2 odd
k1+k2≤2N−1

+ χ |k1−k2| odd
|k1−k2|≤2N−1

,(3.5.47)

in the case of SO(2N + 1).

In order to compute (3.5.45), we first observe that making the substitution u = α− s2 is equivalent

to interchanging R1 and R2. Since −(N − 1) ≤ u ≤ N − 1 + α, making this substitution does not

alter the value of the inner sum, i.e. we can conclude that the inner sum over s1, s2 is invariant

under interchanging the role of R1 and R2. As a result, we can rewrite (3.5.45) as

−1

2

N−1+α∑
s1,s2=−(N−1)

“f1(s1 + s2 − α)“f2(s1 − s2).(3.5.48)
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The only terms in the above sum that give a non-zero contribution must satisfy the following system

of equations:

s1 + s2 = t1 + α

s1 − s2 = t2,

where (t1, t2) ∈ {k1,−k1} × {k2,−k2} and −(N − 1) ≤ s1, s2 ≤ N − 1 + α. For any given (t1, t2), a

unique solutions exists, so long as

2s1 − α = t1 + t2

2s2 − α = t1 − t2

for some −(N − 1) ≤ s1, s2 ≤ N − 1 + α. Each such solution gives a contribution of one. It follows

that (3.5.45) equals

−2χ k1+k2 even
k1+k2≤2N−2
|k1−k2|≤2N−2

(3.5.49)

and

−2χ k1+k2 odd
k1+k2≤2N−1
|k1−k2|≤2N−1

(3.5.50)

for SO(2N) and SO(2N + 1), respectively. By combining (3.5.46) and (3.5.47) we can rewrite the

non-unitary part of the joint cumulant as

χ k1+k2 even
k1+k2≤2N−2

+ χ |k1−k2| even
|k1−k2|≤2N−2

− 2χ k1+k2 even
k1+k2≤2N−2
|k1−k2|≤2N−2

= χ k1+k2 even
k1+k2≤2N−2

+ χ |k1−k2| even
|k1−k2|≤2N−2

− 2χ k1+k2 even
k1+k2≤2N−2

= χ |k1−k2| even
|k1−k2|≤2N−2

− χ k1+k2 even
k1+k2≤2N−2

= χ |k1−k2| even
k1+k2 even
|k1−k2|≤2N−2
k1+k2≤2N−2

+ χ |k1−k2| even
k1+k2 even
|k1−k2|≤2N−2
2N≤k1+k2

− χ |k1−k2| even
k1+k2 even
|k1−k2|≤2N−2
k1+k2≤2N−2
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= χ |k1−k2| even
|k1−k2|≤2N−2
2N≤k1+k2

and

χ |k1−k2| odd
|k1−k2|≤2N−1
2N+1≤k1+k2

for SO(2N) and SO(2N + 1), respectively. This completes the proof of (ii).

To prove (iii), we again use Lemma 3.5.12 to break up κ3(k1, k1, k2) into its unitary and non-unitary

parts. Let tk denote the trace of the k−th power of a U(MN ) distributed random matrix. Then, us-

ing multi-linearity of joint cumulants, we can rewrite 1
2 ·κ

′
3(Σj2 cos(k1θj),Σj2 cos(k1θj),Σj2 cos(k2θj))

as

1

2
κ
′
((tk1 + t−k1),(tk1 + t−k1), (tk2 + t−k2)) =

1

2

∑
ε1=±1

· · ·
∑
ε3=±1

κ
′
(tε1·k1 , tε2·k1 , tε3·k2)(3.5.51)

By assumption, k1, k2 ≥ 1, so Lemma 3.5.8(ii) implies that the only non-zero contribution to (3.5.51)

comes from

1

2
(κ
′
(tk1 , tk1 , t−k2) + κ

′
(t−k1 , t−k1 , tk2))(3.5.52)

when 2k1 = k2.

We now consider the non-unitary part of the 3rd order joint cumulants from Lemma 3.5.12. In

particular, we compute

1

2

3∑
m=1

(−1)m−1

m

∑
ordered collections

of subsets R={R1,...,Rm}

N−1∑
s1=−(N−1)

· · ·
N−1∑

sm=−(N−1)

f̂R1(s1 + sm − α) . . .‘fRm(sm−1 − sm)

=
1

2

N−1+α∑
s1=−(N−1)

÷f1f2f3(2s1 − α)(3.5.53)

−1

4

∑
ordered collections

of subsets R={R1,R2}

N−1+α∑
s1,s2=−(N−1)

f̂R1(s1 + s2 − α)f̂R2(s1 − s2) + · · ·(3.5.54)
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+
1

6

∑
ordered collections

of subsets R={R1,R2,R3}

N−1+α∑
s1,...,s3=−(N−1)

f̂R1(s1 + s3 − α)f̂R2(s1 − s2)f̂R3(s2 − s3),(3.5.55)

where f1(θ) = f2(θ) = 2 cos(k1θ), f3(θ) = 2 cos(k2θ).

Now

f1f2f3 = 8 cos2(k1θ) cos(k2θ)

= 2eik2x + 2e−ik2x + ei(2k1+k2)x + e−i(2k1+k2)x + ei(2k1−k2)x + e−i(2k1−k2)x,

so the non-zero contributions to (3.5.53) come from the indices where 2s1−α = k2, 2s1−α = −k2,

2s1 − α = 2k1 + k2, 2s1 − α = −(2k1 + k2), 2s1 − α = 2k1 − k2, and 2s1 − α = −(2k1 − k2), where

−(N − 1) ≤ s1 ≤ N − 1 + α. As such, (3.5.53) can be expressed as

1

2

Ç
4χ k2 even

k2≤2N−2
+ 2χ k2 even

2k1+k2≤2N−2
+ 2χ k2 even

|2k1−k2|≤2N−2

å
= 2χ k2 even

k2≤2N−2
+ χ k2 even

2k1+k2≤2N−2
+ χ k2 even

|2k1−k2|≤2N−2
,(3.5.56)

in the case of SO(2N), and

2χ k2 odd
k2≤2N−1

+ χ k2 odd
2k1+k2≤2N−1

+ χ k2 odd
|2k1−k2|≤2N−1

,(3.5.57)

in the case of SO(2N + 1).

To compute (3.5.54), we again take advantage of the fact that interchanging the order of R1 and

R2 does not alter the value of the sum over s1 and s2.

−1

4

∑
Partitions R={R1,R2}

of {1,2,3}

N−1+α∑
s1,s2=−(N−1)

f̂R1(s1 + s2 − α)f̂R2(s1 − s2)(3.5.58)

= −1

2

N−1=α∑
s1,s2=−(N−1)

‘f1f2(s1 + s2 − α)“f3(s1 − s2) − · · ·(3.5.59)

80



1

2

N−1=α∑
s1,s2=−(N−1)

‘f1f3(s1 + s2 − α)“f2(s1 − s2)− 1

2

N−1+α∑
s1,s2=−(N−1)

‘f2f3(s1 + s2 − α)“f1(s1 − s2)(3.5.60)

Starting with (3.5.59), we have

f1f2 = 4 cos2(k1θ)

= 2 + ei2k1θ + e−i2k1θ.

The only terms in the sum over s1, s2 that give a non-zero contribution must satisfy the following

system of equations:

s1 + s2 = t1 + α

s1 − s2 = t2,

where (t1, t2) ∈ {0, 2k1,−2k1} × {k2,−k2}. Each of the solutions to

s1 + s2 = α s1 + s2 = α

s1 − s2 = k2 s1 − s2 = −k2

gives a contribution of two, whereas each of the solutions to

s1 + s2 = 2k1 + α s1 + s2 = 2k1 + α s1 + s2 = −2k1 + α s1 + s2 = −2k1 + α

s1 − s2 = k2 s1 − s2 = −k2 + s1 − s2 = k2 + s1 − s2 = −k2

gives a contribution of one. Now, given (t1, t2), the corresponding solution must satisfy the relations

2s1 − α = t1 + t2

2s2 − α = t1 − t2.

Since −(N − 1) ≤ s1, s2 ≤ (N − 1 + α), it follows that (3.5.59) is equal to

− 1

2

Ö
4χ k2 even

k2≤2N−2
+ 4χ k2 even

2k1+k2≤2N−2
|2k1−k2|≤2N−2

è
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= −2χ k2 even
k2≤2N−2

− 2χ k2 even
2k1+k2≤2N−2
|2k1−k2|≤2N−2

,(3.5.61)

in the case of SO(2N) and

− 2χ k2 odd
k2≤2N−1

− 2χ k2 odd
2k1+k2≤2N−1
|2k1−k2|≤2N−1

(3.5.62)

in the case of SO(2N + 1).

Both sums in (3.5.60) give the same contribution since f1 = f2. Similar to before, computing

N−1+α∑
s1,s1=−(N−1)

‘f1f3(s1 + s2 − α)“f2(s1 − s2)
amounts to solving system of linear equations of the form

s1 + s2 = t1 + α

s1 − s2 = t2,

where (t1, t2) ∈ {k1 + k2,−(k1 + k2), k1 − k2, k2 − k1} × {k1,−k1}. The total contribution from

(3.5.60) is

−4χ k2 even
k2≤2N−2

2k1+k2≤2N−2

− 4χ k2 even
k2≤2N−2

|2k1−k2|≤2N−2

(3.5.63)

and

−4χ k2 odd
k2≤2N−1

2k1+k2≤2N−1

− 4χ k2 odd
k2≤2N−1

|2k1−k2|≤2N−1

,(3.5.64)

for SO(2N) and SO(2N + 1), respectively.

Finally, we consider (3.5.55). Using the same substitution argument as before, it is easy to see that

every ordering of R1, R2, R3 gives the same contribution, so

1

6

∑
ordered collections

of subsets R={R1,R2,R3}

N−1+α∑
s1,...,s3=−(N−1)

f̂R1(s1 + s3 − α)f̂R2(s1 − s2)f̂R3(s2 − s3)
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=

N−1+α∑
s1,...,s3=−(N−1)

“f1(s1 + s3 − α)“f2(s1 − s2)“f3(s2 − s3).(3.5.65)

As before, computing (3.5.65) is a matter of solving the collection of systems of linear equations of

the form

s1 + s3 = t1 + α

s1 − s2 = t2

s2 − s3 = t3,

where (t1, t2, t3) ∈ {k1,−k1}× {k1,−k1}× {k2,−k2} and −(N − 1) ≤ s1, s2, s3 ≤ N − 1 +α. Given

(t1, t2, t3), the corresponding solution must satisfy

2s1 − α = t1 + t2 + t3

2s2 − α = t1 − t2 + t3

2s3 − α = t1 − t2 − t3.

It follows that (3.5.65) is equal to

2χ k2 even
k2≤2N−2

2k1+k2≤2N−2

+ 2χ k2 even
k2≤2N−2

|2k1−k2|≤2N−2

+ 4χ k2 even
k2≤2N−2

2k1+k2≤2N−2
|2k1−k2|≤2N−2

(3.5.66)

and

2χ k2 odd
k2≤2N−1

2k1+k2≤2N−1

+ 2χ k2 odd
k2≤2N−1

|2k1−k2|≤2N−1

+ 4χ k2 odd
k2≤2N−1

2k1+k2≤2N−1
|2k1−k2|≤2N−1

(3.5.67)

for SO(2N) and SO(2N + 1), respectively.

Combining (3.5.56), (3.5.61), (3.5.63), and (3.5.66), we can see that

1

2

3∑
m=1

(−1)m−1

m

∑
ordered collections

of subsets R={R1,..Rm}

N−1+α∑
s1,...,sm=−(N−1)

f̂R1(s1 + sm − α) . . .‘fRm(sm−1 − sm)(3.5.68)
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is equal to

2χ k2 even
2k1+k2≤2N−2
|2k1−k2|≤2N−2

− χ k2 even
2k1+k2≤2N−2

− χ k2 even
k2≤2N−2

|2k1−k2|≤2N−2

= 2χ k2 even
2k1+k2≤2N−2

− χ k2 even
2k1+k2≤2N−2

− χ k2 even
k2≤2N−2

|2k1−k2|≤2N−2

= χ k2 even
2k1+k2≤2N−2

− χ k2 even
k2≤2N−2

|2k1−k2|≤2N−2

= χ k2 even
k2≤2N−2

2k1+k2≤2N−2

− χ k2 even
k2≤2N−2

2k1+k2≤2N−2

− χ k2 even
k2≤2N−2

|2k1−k2|≤2N−2
2k1+k2≥2N

= −χ k2 even
k2≤2N−2

2k1+k2≥2N
|2k1−k2|≤2N−2

in the case of SO(N). Combining (3.5.57), (3.5.62), (3.5.64), and (3.5.67), it must also be the case

that (3.5.68) is equal to

−χ k2 odd
k2≤2N−1

2k1+k2≥2N+1
|2k1−k2|≤2N−1

in the case of SO(2N + 1).

We note that this term gives a vanishing contribution when 2k1 + k2 ≤ 2N − 1, which is consistent

with the results on third order cumulants for linear statistics in [25] when k1 = k2. This completes

the proof of (iii).

We now proceed to the proof of (iv). The proof is entirely similar to that of (iii), with the addition

that we are able to give an explicit formula for the ’unitary part’ of the joint cumulant, which follows

immediately from the variance computation in Section 2.4.

Using Lemma 3.5.12, we break up κ4(k1, k1, k2, k2) into its unitary and non-unitary parts. Let tk

denote the trace of the k − th power of a U(2N − 1) distributed random matrix. We first consider

the unitary part of the joint cumulant. Using multi-linearity of joint cumulants, we can rewrite

κ
′
4(Σj2 cos(k1θj),Σj2 cos(k1θj),Σj2 cos(k2θj),Σj2 cos(k2θj)) as
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1

2
κ
′
4(tk1 + t−k1 , tk1 + t−k1 , tk2 + t−k2 , tk2 + t−k2) =

1

2

∑
ε1,...ε4=±1

κ(ε1 · tk1 , ε2 · tk1 , ε3 · tk2 , ε4 · tk2)

(3.5.69)

Again, assuming that 1 ≤ k1, k2, Lemma 3.5.8 (ii) implies that the only non-zero terms in the above

sum are

1

2
(κ(tk1 , tk1 , t−k2 , t−k2) + κ(t−k1 , t−k1 , tk2 , tk2))(3.5.70)

and

1

2
(κ(tk1 , t−k1 , tk2 , t−k2) + κ(tk1 , t−k1 , t−k2 , tk2) + κ(t−k1 , tk1 , t−k2 , tk2) + κ(t−k1 , tk1 , tk2 , t−k2)).

(3.5.71)

The terms in (3.5.70) are equal to zero if when k1 6= k2. When this is not the case, both terms are

equal and so (3.5.70) simplifies to

χk1=k2 · κ(tk1 , tk1 , t−k2 , t−k2).(3.5.72)

Since joint cumulants are invariant under permutation (see 3.5.2), the four terms in (3.5.71) are

equal, so (3.5.71) can be rewritten as

2 · κ(tk1 , t−k1 , tk2 , t−k2).(3.5.73)

Together, this means that (3.5.69) can be rewritten as

χk1=k2 · κ(tk1 , tk1 , t−k2 , t−k2) + 2 · κ(tk1 , t−k1 , tk2 , t−k2).(3.5.74)

By part (v) of Lemma 3.5.8,

κ
′
(tk1 , t−k1 , tk2 , t−k2) = −

Ç
(MN − |k1 − k2|)χ |k1−k2|≤MN−1

MN≤max(k1,k2)

) + (k1 + k2 −MN )χ k1,k2≤MN−1
MN+1≤k1+k2

å
.
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It follows that (3.5.74) can be rewritten as

− χk1=k2 ·
Å
MN · χMN≤k1) + (2k1 −MN )χ k1≤MN−1

MN+1≤2k1

ã
(3.5.75)

− 2

Ç
(MN − |k1 − k2|)χ |k1−k2|≤MN−1

MN≤max(k1,k2)

) + (k1 + k2 −MN )χ k1,k2≤MN−1
MN+1≤k1+k2

å
This completes our analysis of the the unitary part of κ4(k1, k1, k2, k2).

We now consider the ’non-unitary’ part of the 4-th order joint cumulant. In particular, we study

1

2

4∑
m=1

(−1)m−1

m

∑
ordered collections

of subsets
R={R1,...,Rm}

N−1+α∑
s1,...,sm=−(N−1)

f̂R1(s1 + sm − α)f̂R2(s1 − s2) . . .‘fRm(sm−1 − sm)

(3.5.76)

=
1

2

N−1+α∑
s1=−(N−1)

ÿ�f1f2f3f4(2s1 − α)

(3.5.77)

− 1

4

∑
ordered collections

of subsets
R={R1,R2}

N−1+α∑
s1,s2=−(N−1)

f̂R1(s1 + s2 − α)f̂R2(s1 − s2)

(3.5.78)

+
1

6

∑
ordered collections

of subsets
R={R1,R2,R3}

N−1+α∑
s1,s2,s3=−(N−1)

f̂R1(s1 + s3 − α)f̂R2(s1 − s2)f̂R3(s2 − s3)

(3.5.79)

− 1

8

∑
ordered collections

of subsets
R={R1,R2,R3,R4}

N−1+α∑
s1,s2,s3,s4=−(N−1)

f̂R1(s1 + s4 − α)f̂R2(s1 − s2)f̂R3(s2 − s3)f̂R4(s3 − s4),

(3.5.80)

where f1(θ) = f2(θ) = 2 cos(k1θ), f3(θ) = f4(θ) = 2 cos(k2θ). Starting with (3.5.77), we follow the

same procedure as before. Writing f1f2f3f4 as a trigonometric polynomial, we have
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f1f2f3f4 = 16 cos2(k1θ) cos2(k2θ)

= 4 + 2ei2k1θ + 2e−i2k1θ + 2ei2k2θ + 2e−i2k2θ

+ ei(2k1+2k2)θ + e−i(2k1+2k2)θ + ei(2k1−2k2)θ + e−i(2k1−2k2)θ.

The only non-zero terms in (3.5.77) occur when 2s1 − α = ±2k1,±2k2,±2(k1 + k2),±2(k1 − k2),

for −(N − 1) ≤ s1 ≤ N − 1 + α. (3.5.77) is then equal to

1

2

(
4 + 4χk1≤N−1 + 4χk2≤N−1 + 2χk1+k2≤N−1 + 2χ|k1−k2|≤N−1

)
(3.5.81)

= 2 + 2χk1≤N−1 + 2χk2≤N−1 + χk1+k2≤N−1 + χ|k1−k2|≤N−1

in the case of SO(2N) (α = 0) and zero in the case of SO(2N + 1) (α = 1).

Using the same substitution argument as in the proof of (ii), we can see that each ordering of

R1, . . . , Rm in (3.5.78) and (3.5.79) gives the same contribution, so we can replace the sum over

ordered subsets with a sum over partitions with m blocks. As a result, (3.5.78) becomes

− 1

2

N−1+α∑
s1,s2=−(N−1)

÷f1f2f3(s1 + s2 + α)“f4(s1 − s2)− 1

2

N−1+α∑
s1,s2=−(N−1)

÷f1f2f4(s1 + s2 + α)“f3(s1 − s2)
− 1

2

N−1+α∑
s1,s2=−(N−1)

÷f1f3f4(s1 + s2 + α)“f2(s1 − s2)− 1

2

N−1+α∑
s1,s2=−(N−1)

÷f2f3f4(s1 + s2 + α)“f1(s1 − s2)
− 1

2

N−1+α∑
s1,s2=−(N−1)

‘f1f3(s1 + s2 + α)‘f2f4(s1 − s2)− 1

2

N−1+α∑
s1,s2=−(N−1)

‘f1f4(s1 + s2 + α)‘f2f3(s1 − s2)
− 1

2

N−1+α∑
s1,s2=−(N−1)

‘f1f2(s1 + s2 + α)‘f3f4(s1 − s2),
which simplifies to

−
N−1+α∑

s1,s2=−(N−1)

÷f1f2f3(s1 + s2 − α)“f4(s1 − s2) · · ·(3.5.82)
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−
+α∑

s1,s2=−(N−1)

÷f1f3f4(s1 + s2 − α)“f2(s1 − s2))(3.5.83)

−
N−1+α∑

s1,s2=−(N−1)

‘f1f3(s1 + s2 − α)‘f2f4(s1 − s2)(3.5.84)

− 1

2

N−1+α∑
s1,s2=−(N−1)

‘f1f2(s1 + s2 − α)‘f3f4(s1 − s2),(3.5.85)

under the assumption that f1 = f2, f3 = f4. Again, computing the above sums is equivalent to

computing solutions to a collection of systems of equations of the form

s1 + s2 = t1 + α

s1 − s2 = t2,

where (t1, t2) ∈ A. For some finite indexing set A. In the case of (3.5.82),

f1f2f3 = 8 cos2(k1θ) cos(k2θ)

= 2eik2x + 2e−ik2x + ei(2k1+k2)x + e−i(2k1+k2)x + ei(2k1−k2)x + e−i(2k1−k2)x,

so A = {k2,−k2, 2k1+k2,−(2k1+k2), 2k1−k2, k2−2k1}×{k2,−k2}. The corresponding contribution

is

−8χk2≤N−1 − 4χ k1≤N−1
k1+k2≤N−1

− 4χ k1≤N−1
|k1−k2|≤N−1

(3.5.86)

for SO(2N) and zero for SO(2N + 1). The formula for (3.5.83) is obtained by interchanging the

role of k1 and k2 in the computation of (3.5.82) and is thus equal to

−8χk1≤N−1 − 4χ k2≤N−1
k1+k2≤N−1

− 4χ k2≤N−1
|k1−k2|≤N−1

(3.5.87)

for SO(2N) and zero for SO(2N + 1)
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For (3.5.84), A = {k1 + k2,−(k1 + k2), k1 − k2, k2 − k1}2. The corresponding contribution is

−4χk1+k2≤N−1 − 4χ|k1−k2|≤N−1 − 8χk1,k2≤N−1(3.5.88)

for SO(2N) and zero for SO(2N + 1).

For (3.5.85), A = {0, 2k1,−2k1} × {0, 2k2,−2k2}. The corresponding contribution is

−1

2

Ç
4 + 4χk1≤N−1 + 4χk2≤N−1 + 4χ k1+k2≤N−1

|k1−k2|≤N−1

å
= −2− 2χk1≤N−1 − 2χk2≤N−1 − 2χ k1+k2≤N−1

|k1−k2|≤N−1
.(3.5.89)

for SO(2N) and, again, zero for SO(2N + 1).

Combining (3.5.86), (3.5.87), (3.5.88), and (3.5.88), we see that (3.5.78) is equal to

−2− 10χk1≤N−1 − 10χk2≤N−1 − 8χk1,k2≤N−1(3.5.90)

− 4χ k1≤N−1
k1+k2≤N−1

− 4χ k1≤N−1
|k1−k2|≤N−1

− 4χ k2≤N−1
k1+k2≤N−1

− 4χ k2≤N−1
|k1−k2|≤N−1

− 4χk1+k2≤N−1 − 4χ|k1−k2|≤N−1 − 2χ k1+k2≤N−1
|k1−k2|≤N−1

for SO(2N) and zero for SO(2N + 1).

We now consider (3.5.79). This sum is equivalent to

N−1+α∑
s1,s2,s3=−(N−1)

‘f1f3(s1 + s3 − α)“f2(s1 − s2)“f4(s2 − s3)
+

N−1+α∑
s1,s2,s3=−(N−1)

‘f2f3(s1 + s3 − α)“f1(s1 − s2)“f4(s2 − s3)
+

N−1+α∑
s1,s2,s3=−(N−1)

‘f1f4(s1 + s3 − α)“f2(s1 − s2)“f3(s2 − s3) + · · ·
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+

N−1+α∑
s1,s2,s3=−(N−1)

‘f2f4(s1 + s3 − α)“f1(s1 − s2)“f3(s2 − s3)
+

N−1+α∑
s1,s2,s3=−(N−1)

‘f3f4(s1 + s3 − α)“f1(s1 − s2)“f2(s2 − s3)
+

N−1+α∑
s1,s2,s3=−(N−1)

‘f1f2(s1 + s3 − α)“f3(s1 − s2)“f4(s2 − s3),
which simplifies down to

+ 4

N−1+α∑
s1,s2,s3=−(N−1)

‘f1f3(s1 + s3 − α)“f2(s1 − s2)“f4(s2 − s3)(3.5.91)

+

N−1+α∑
s1,s2,s3=−(N−1)

‘f1f2(s1 + s3 − α)“f3(s1 − s2)“f4(s2 − s3)(3.5.92)

+

N−1+α∑
s1,s2,s3=−(N−1)

‘f3f4(s1 + s3 − α)“f1(s1 − s2)“f2(s2 − s3),(3.5.93)

under the assumption that f1 = f2, f3 = f4. Again, we must consider the solutions to a collection

of systems of linear equations of the form

s1 + s3 = t1 + α

s1 − s2 = t2

s2 − s3 = t3,

where (t1, t2, t3) ∈ A for some finite indexing set A. In the case of (3.5.91),

f1f3 = 4 cos(k1θ) cos(k2θ)

= ei(k1+k2)θ + e−i(k1+k2)θ + ei(k1−k2)θ + ei(k2−k1)θ,
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so A = {k1+k2,−(k1+k2), k1−k2, k2−k1}×{k1,−k1}×{k2,−k2}. For SO(2N), the corresponding

contribution is

4(4χk1,k2≤N−1 + 2χ k1≤N−1
k1+k1≤N−1

+ 2χ k2≤N−1
k1+k1≤N−1

+ 2χ k1≤N−1
|k1−k2|≤N−1

+ 2χ k2≤N−1
|k1−k2|≤N−1

+ 2χ k1,k2≤N−1
k1+k1≤N−1

+ 2χ k1,k2≤N−1
|k1−k2|≤N−1

)

= 16χk1,k2≤N−1 + 8χ k1≤N−1
k1+k1≤N−1

+ 8χ k2≤N−1
k1+k1≤N−1

+ 8χ k1≤N−1
|k1−k2|≤N−1

+ 8χ k2≤N−1
|k1−k2|≤N−1

(3.5.94)

+ 8χ k1,k2≤N−1
k1+k1≤N−1

+ 8χ k1,k2≤N−1
|k1−k2|≤N−1

.

For SO(2N + 1) we observe that, given (t1, t2, t3) ∈ A, there are no integer solutions satisfying

2s1 − 1 = t1 + t2 + t3. This implies that (3.5.91) is equal to zero in the case of SO(2N + 1).

For (3.5.92),

f1f2 = 4 cos2(k1θ)

= 2 + ei2k1 + e−i2k1 ,

so A = {0, 2k1,−2k1} × {k2,−k2} × {k2,−k2}. The corresponding contribution is

8χk2≤N−1 + 4χ k1≤N−1
k1+k2≤N−1
|k1−k2|≤N−1

+ 2χ k1≤N−1
k1+k2≤N−1

+ 2χ k1≤N−1
|k1−k2|≤N−1

(3.5.95)

for SO(2N) and, by the same reasoning as before, zero for SO(2N + 1).

The formula for (3.5.93) is obtained by interchanging k1 and k2 in (3.5.95) and is thus equal to

8χk1≤N−1 + 4χ k2≤N−1
k1+k2≤N−1
|k1−k2|≤N−1

+ 2χ k2≤N−1
k1+k2≤N−1

+ 2χ k2≤N−1
|k1−k2|≤N−1

(3.5.96)

for SO(2N) and zero for SO(2N + 1).

Combining (3.5.94), (3.5.95), and (3.5.96), we have the following expression for (3.5.79) in the case

of SO(2N):

16χk1,k2≤N−1 + 8χk1≤N−1 + 8χk2≤N−1 + · · ·(3.5.97)
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+10χ k1≤N−1
k1+k1≤N−1

+ 10χ k2≤N−1
k1+k1≤N−1

+ 10χ k1≤N−1
|k1−k2|≤N−1

+ 10χ k2≤N−1
|k1−k2|≤N−1

+8χ k1,k2≤N−1
k1+k1≤N−1

+ 8χ k1,k2≤N−1
|k1−k2|≤N−1

+ 4χ k1≤N−1
k1+k2≤N−1
|k1−k2|≤N−1

+ 4χ k2≤N−1
k1+k2≤N−1
|k1−k2|≤N−1

.

Again, there is no contribution in the case of SO(2N + 1).

Finally we consider (3.5.80). Unlike before, the inner sum over s1, s2, s3, s4 is not invariant under

rearranging R1, R2, R3, R4. Despite this, we can still take advantage of symmetry that comes

from the assumption that f1 = f2, f3 = f4 to drastically reduce the total number of necessary

computations. In particular, the sum is invariant under swapping f1 and f2 or f3 and f4. This

reduces the 24 possible terms that we need to consider down to just 6.

− 1

8

∑
ordered collections

of subsets R={R1,...,R4}

N−1∑
s1,...,s4=−(N−1+α)

f̂R1(s1 + s4 − α)f̂R2(s1 − s2)f̂R3(s2 − s3)f̂R4(s3 − s4)

=

−1

2

N−1+α∑
s1,s2,s3,s4=−(N−1)

“f1(s1 + s4 − α)“f2(s1 − s2)“f3(s2 − s3)“f4(s3 − s4)(3.5.98)

−1

2

N−1+α∑
s1,s2,s3,s4=−(N−1)

“f3(s1 + s4 − α)“f4(s1 − s2)“f1(s2 − s3)“f2(s3 − s4)(3.5.99)

−1

2

N−1+α∑
s1,s2,s3,s4=−(N−1)

“f1(s1 + s4 − α)“f3(s1 − s2)“f2(s2 − s3)“f4(s3 − s4)(3.5.100)

−1

2

N−1+α∑
s1,s2,s3,s4=−(N−1)

“f3(s1 + s4 − α)“f1(s1 − s2)“f4(s2 − s3)“f2(s3 − s4)(3.5.101)

−1

2

N−1+α∑
s1,s2,s3,s4=−(N−1)

“f3(s1 + s4 − α)“f1(s1 − s2)“f2(s2 − s3)“f4(s3 − s4) · · ·(3.5.102)
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−1

2

N−1+α∑
s1,s2,s3,s4=−(N−1)

“f1(s1 + s4 − α)“f3(s1 − s2)“f4(s2 − s3)“f2(s3 − s4).(3.5.103)

We note that the expressions for (3.5.99), (3.5.101), and (3.5.103) are easily obtained from (3.5.98),

(3.5.100), and (3.5.102), respectively, by interchanging k1 and k2. Therefore, we need only consider

the sums in (3.5.98),(3.5.100), and (3.5.102). As before, evaluating these sums amounts to solving

a collection of systems of equations of the form

s1 + s4 = t1 + α

s1 − s2 = t2

s2 − s3 = t3

s3 − s4 = t4,

where (t1, t2, t3, t4) belongs to some finite indexing set A. Any t ∈ A will only give a non-zero

contribution if there exists (s1, s2, s3, s4) ∈ Z4, −(N − 1) ≤ si ≤ N − 1 + α, satisfying

2s1 − α = t1 + t2 + t3 + t4

2s2 − α = t1 − t2 + t3 + t4

2s3 − α = t1 − t2 − t3 + t4

2s4 − α = t1 − t2 − t3 − t4.

. In the case of (3.5.98), A = {k1,−k1}×{k1,−k1}×{k2,−k2}×{k2,−k2}. Since t1 + t2 + t3 + t4 is

even for all t ∈ A, (3.5.98) is equal to zero in the cae of SO(2N+1). For SO(2N), the corresponding

contribution is

−2χk1,k2≤N−1 − χ k1≤N−1
k1+k2≤N−1

− χ k2≤N−1
k1+k2≤N−1

−χ k1≤N−1
|k1−k2|≤N−1

− χ k2≤N−1
|k1−k2|≤N−1

− 2χ k1,k2≤N−1
k1+k2≤N−1
|k1−k2|≤N−1

.
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The above expression is symmetric with respect to k1 and k2, so the total contribution from (3.5.98)

and (3.5.99) is given by

− 4χk1,k2≤N−1 − 2χ k1≤N−1
k1+k2≤N−1

− 2χ k2≤N−1
k1+k2≤N−1

(3.5.104)

− 2χ k1≤N−1
|k1−k2|≤N−1

− 2χ k2≤N−1
|k1−k2|≤N−1

− 4χ k1,k2≤N−1
k1+k2≤N−1
|k1−k2|≤N−1

.

in the case of SO(2N) and zero in the case of SO(2N + 1).

For (3.5.100), A = {k1,−k1} × {k2,−k2} × {k1,−k1} × {k2,−k2}. The corresponding contribution

is

−1

2

Ç
8χ k1,k2≤N−1

k1+k2≤N−1
+ 8χ k1,k2≤N−1

|k1−k2|≤N−1

å
for SO(2N) and zero for SO(2N + 1).

Again, since this expression is symmetric in k1 and k2, the total contribution from (3.5.100) and

(3.5.101) is

−8χ k1,k2≤N−1
k1+k2≤N−1

− 8χ k1,k2≤N−1
|k1−k2|≤N−1

.(3.5.105)

in the case of SO(2N) and zero for SO(2N + 1).

Finally, for (3.5.102), A = {k1,−k1} × {k2,−k2} × {k2,−k2} × {k1,−k1}. The resulting expression

for (3.5.102) is

−2χk1,k2≤N−1 − χ k1≤N−1
k1+k2≤N−1

− χ k2≤N−1
k1+k2≤N−1

−χ k1≤N−1
|k1−k2|≤N−1

− χ k2≤N−1
|k1−k2|≤N−1

− 2χ k1,k2≤N−1
k1+k2≤N−1
|k1−k2|≤N−1

for SO(2N) and zero for SO(2N + 1).
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Again, we notice that the above expression is symmetric with respect to k1 and k2 so the total

contribution from (3.5.102) and (3.5.103) in the case of of SO(2N) is given by

−4χk1,k2≤N−1 − 2χ k1≤N−1
k1+k2≤N−1

− 2χ k2≤N−1
k1+k2≤N−1

+ · · ·(3.5.106)

−4χ k1≤N−1
|k1−k2|≤N−1

− 2χ k2≤N−1
|k1−k2|≤N−1

− 4χ k1,k2≤N−1
k1+k2≤N−1
|k1−k2|≤N−1

.

By combining (3.5.104), (3.5.105), and (3.5.106) , we get the following expression for (3.5.80) in the

case of SO(2N):

− 8χk1,k2≤N−1 − 4χ k1≤N−1
k1+k2≤N−1

− 4χ k2≤N−1
k1+k2≤N−1

(3.5.107)

− 4χ k1≤N−1
|k1−k2|≤N−1

− 4χ k2≤N−1
|k1−k2|≤N−1

− 8χ k1,k2≤N−1
k1+k2≤N−1
|k1−k2|≤N−1

− 8χ k1,k2≤N−1
k1+k2≤N−1

− 8χ k1,k2≤N−1
|k1−k2|≤N−1

.

Finally, we can combine (3.5.81), (3.5.90), (3.5.97), and (3.5.107) to get an expression for the non-

unitary part of κ(k1, k1, k2, k2). The non-unitary part is equal to zero in the case of SO(2N + 1).

In the case of SO(2N), we have

2χ k1≤N−1
k1+k2≤N−1

+ 2χ k2≤N−1
k1+k2≤N−1

+ 4χ k1≤N−1
k1+k2≤N−1
|k1−k2|≤N−1

+ 4χ k2≤N−1
k1+k2≤N−1
|k1−k2|≤N−1

− 8χ k1,k2≤N−1
k1+k2≤N−1
|k1−k2|≤N−1

+ 2χ k1≤N−1
|k1−k2|≤N−1

+ 2χ k2≤N−1
|k1−k2|≤N−1

− 2χ k1+k2≤N−1
|k1−k2|≤N−1

− 3χk1+k2≤N−1 − 3χ|k1−k2|≤N−1,

Which can be rewritten as

2χ k1≤N−1
|k1−k2|≤N−1

+ 2χ k2≤N−1
|k1−k2|≤N−1

− χk1+k2≤N−1 − 3χ|k1−k2|≤N−1
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Once again, in the case where k1 = k2, we note that the above quantity is equal to zero when

k1 ≤ N−1
2 . This is again consistent with the results from [25]. The above expression can further be

simplified to

2χ k1≤N−1
N≤k1+k2
|k1−k2|≤N−1

+ 2χ k2≤N−1
N≤k1+k2
|k1−k2|≤N−1

− 3χ N≤k1+k2
|k1−k2|≤N−1

(3.5.108)

This completes the proof. �

Proof. (of Lemma 3.5.10)

We start by breaking the sum up into 3 pieces:

∑
k1 even

1≤k1≤2N−2
N−1− k1

2
≤k2≤N−1

f̂(k1)f̂(k2) +
∑

k1 even
1≤k1≤2N−2

N≤k2≤N−1+ k1
2

f̂(k1)f̂(k2) +
∑

k1 even
2N≤k1

−(N−1)+ k1
2
≤k2≤(N−1)+ k1

2

f̂(k1)f̂(k2)

(3.5.109)

Substituting k1 = 2t and k2 = s, we can see that the above sums are equal to

∑
1≤t≤N−1

N−t≤s≤N−1

f̂(2t)f̂(s) +
∑

1≤t≤N−1
N≤s≤N−1+t

f̂(2t)f̂(s) +
∑
N≤t

−(N−1)+t≤s≤(N−1)+t

f̂(2t)f̂(s).(3.5.110)

For the first sum, let xs = |sf̂(s)|, yt = |2tf̂(2t)| for 1 ≤ s, t ≤ N and XN = {xs}Ns=1, YN = {yt}Nt=1

. By the assumption of Lemma 3.5.10, the Euclidean norms of of both XN and YN are uniformly

bounded with respect to N . Note that∣∣∣∣∣∣∣∣
∑

1≤t≤N−1
N−t≤s≤N−1

f̂(2t)f̂(s)

∣∣∣∣∣∣∣∣ ≤
N−1∑
t=1

yt

(
1

t

N−1∑
s=N−t

xs

)
= 〈YN−1, AN−1XN−1〉,(3.5.111)

where AN is the N ×N matrix given in the proof of Lemma 2.4.3(i). The weak convergence of AN

is enough to show that (3.5.111) is oN (1). The full details of the proof are identical to those in that

of Lemma 2.4.3.

Similarly, to see that the second sum is oN (1), we bound absolute value of the second sum from

above by
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N−1∑
t=1

yt

(
1

t

N+t−1∑
s=N

xs

)
= 〈CN−1YN−1,MN−1XN−1〉,

where XN = {xs}2Ns=1, YN = {yt}2Nt=1, and CN ,MN are as in the proof of Lemma 2.4.3 (ii). Again,

the details of the proof are identical to those of Lemma 2.4.3 (ii).

Finally, we bound the absolute value of the third sum from above by

∑
N≤t

−(N−1)+t≤s≤(N−1)+t

2s|f̂(2t)| · |f̂(s)| ≤
∞∑
t=N

yt

(
1

t

N+t−1∑
s=t−N+1

xs

)
= 〈LN−1Y,RNX〉,

where X = {xs}∞s=1, Y = {yt}∞t=1 ∈ `2∞, and L,RN are the same operators from the proof of part

(iii) of Lemma 2.4.3. Again, the remaining details are identical to those of the proof of Lemma 2.4.3

(iii). �
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APPENDIX A

Auxiliary Results

A.1. Details for Proof of Theorem 2.1.1

In this section of the appendix we provide the rigorous details needed to complete the proof of

Theorem 2.1.1. We begin by providing some preliminary background information.

Definition A.1.1. (Lèvy Metric)

Let F,G : R→ [0, 1] be two cumulative distribution functions. Define the Lèvy metric to be

L(F,G) := inf{ε > 0 | F (x− ε)− ε ≤ G(x) ≤ F (x+ ε) + ε for all x ∈ R}.

The following theorem is a standard result in measure theory.

Theorem A.1.2. [3] Let FN be a sequence of cumulative distribution functions. Then FN → F at

every continuity point of F iff L(FN , F )→ 0.

We now continue with the proof of Theorem 2.1.1. Let {ϕk}∞k=1 be independent, exp(1) distributed

random variables and recall that

fm(θ) := 2
m∑
k=1

f̂(k)eikθ, fm(θ) := 2

∞∑
k=m+1

f̂(k)eikθ,

Tm :=
4

β

m∑
k=1

f̂(k)(ϕk − 1), and T∞ :=
4

β

∞∑
k=1

f̂(k)(ϕk − 1).

Note that E (Tm) = E (T∞) = 0. In order to prove that SN (f) − E (SN (f)) converges to T∞ in

distribution, we need to verify that, for all ε > 0, there exists sufficiently large N such that the
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following pair of inequalities hold for all x ∈ R:

P(SN (f)− ESN (f) ≤ x) ≤ P(T∞ ≤ x+ ε) + ε(A.1.1)

P(T∞ ≤ x− ε)− ε ≤ P(SN (f)− ESN (f) ≤ x).(A.1.2)

To verify (A.1.1), we start by taking advantage of the following trivial probability bound:

P(SN (f)− ESN (f) ≤ x) ≤ P(SN (fm)− ESN (fm) ≤ x+ ε/3) + P(|SN (fm)− ESN (fm)| > ε/3)

≤ P(SN (fm)− ESN (fm) ≤ x+ ε/3) +
9Var(SN (fm)

ε2
.(A.1.3)

The last line follows from Chebyshev’s inequality. Moreover, Proposition 2.2.2 implies that

9Var(SN (fm))

ε2
≤ δm + δN ,(A.1.4)

where δm goes to zero in m, independent of N , and δN goes to zero in N , independent of m. We

first choose N1,M1 ∈ N sufficiently large such that, for all N ≥ N1, and m ≥ M1, δN , δm ≤ ε/6.

Now, Tm converges in distribution to T∞, so it must also converge in the Lèvy metric, i.e we can

find M2 ∈ N sufficiently large such that the following inequalities hold for any m ≥M2 and x ∈ R:

P(Tm ≤ x) ≤ P(T∞ ≤ x+ ε/3) + ε/3,(A.1.5)

P(T∞ ≤ x− ε/3)− ε/3 ≤ P(Tm ≤ x).(A.1.6)

Let M ′ = max(M1,M2) and note that M ′ is independent of N and depends only upon ε. It is also

the case that SN (fm)− E (SN (fm)) converges in distribution to Tm so we can then choose, for any

m ≥M ′, N2(m) ∈ N such that, for all N ≥ N2(m),

P(SN (fm)− ESN (fm) ≤ x) ≤ P(Tm ≤ x+ ε/3) + ε/3,(A.1.7)

P(Tm ≤ x− ε/3)− ε/3 ≤ P(SN (fm)− ESN (fm) ≤ x)(A.1.8)

99



hold for all x ∈ R. Finally, let m ≥ M ′ and N ′ = max(N1, N2(m)). Combining (A.1.3), (A.1.4),

(A.1.5), and (A.1.7), we can conclude that

P(SN (f)− ESN (f) ≤ x) ≤ P(SN (fm)− ESN (fm) ≤ x+ ε/3) + ε/3

≤ P(Tm ≤ x+ 2ε/3) + 2ε/3

≤ P(T∞ ≤ x+ ε) + ε.

To see that (A.1.2) holds, we use the same choice of m and N ′ as above and observe that

P(T∞ ≤ x− ε)− ε ≤ P(Tm ≤ x− 2ε/3)− 2ε/3 (by A.1.6)

≤ P(SN (fm)− ESN (fm) ≤ x− ε/3)− ε/3 (by A.1.8)

≤ P(SN (f)− ESN (f) ≤ x) + P (|SN (fm)− ESN (fm)| > ε/3)− ε/3

≤ P(SN (f)− ESN (f) ≤ x).

The last inequality follows immediately from the bound in (A.1.4). This completes the proof of

Theorem 2.1.1 for β = 2.

If β 6= 2, then we replace the Chebyshev bound in (A.1.3) with the corresponding Markov bound

and apply Proposition 1.0.3. To see this, we will first rewrite the tail as

SN (fm)− ESN (fm) =
∞∑

m=k+1

f̂(k)
(
|tN,k|2 − E|tN,k|2

)
,(A.1.9)

where

tN,k =

N∑
j=1

eikθj .

For 0 < β < 2, the proof of Lemma 4.3 in [13] gives the bound E|tN,k|2 ≤ (2/β)m for all m ≥ 1

and N ≥ 2. It follows that

Pr

Å
|SN (fm)− ESN (fm)| ≥ δ

3

ã
≤ 3E|SN (fm)− ESN (fm)|

δ

≤ 3

δ
C

( ∞∑
k=m+1

|f̂(k)||k|

)
,
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where C is a constant independent of N . Applying the condition in Theorem 2.1 for 0 < β < 2, the

r.h.s. side of the above inequality vanishes asymptotically, independent of N .

For β = 4 we break up (A.1.9) into three pieces:

SN (fm)− ESN (fm) =

N∑
m=k+1

(∗) +

2N∑
m=N+1

(∗) +

∞∑
m=2N+1

(∗).

Proposition 2 in [13] states that there exist constants C,K, independent of N , such that E|tN,k|2 ≤

Ck in the first sum, E|tN,k|2 ≤ K · k log(k+ 1) in the second sum, and E|tN,k|2 ≤ 2KN in the third

sum. This gives the following bound for any α > 0:

|SN (fm)− ESN (fm)|

≤ C ′
(

N∑
k=m+1

k · |f̂(k)|+
2N∑

k=N+1

k log(k + 1)|f̂(k)|+
∞∑

k=2N+1

k · |f̂(k)|

)
,

where C ′ is a constant independent of m and N . Applying the condition in Theorem 2.1 for β = 4,

the first sum goes to zero in m independent of N and the last two sums go to zero in N independent

of m.

When 2 < β 6= 4, we break the tail as follows:

SN (fm)− ESN (fm)

=

N/2∑
k=m+1

f̂(k)
(
|tN,k|2 − E|tN,k|2

)
+

∞∑
k=N/2+1

f̂(k)
(
|tN,k|2 − E|tN,k|2

)
In the first sum, E|tN,k(θn)|2 ≤ Ck where C = 2/β for 0 < β < 2 and C = e1−2/β for β > 2. For

the second sum, we use the trivial bound E|tN,k|2 ≤ N2 to get

E|SN (fm)− ESN (fm)| ≤

Ñ
2C

N/2∑
k=m+1

|f̂(k)||k|+ 8
∞∑

k=N/2+1

|f̂(k)||k|2
é
.

Once again, the first sum goes to zero in m independent of N and the second sum goes to zero in

N independent of m.
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A.2. Modifications for Mesoscopic Case: CUE, SO(N), Sp(N)

This section of the appendix provides the modifications to Proposition 2.2.1 and Lemma 2.4.3 that

are necessary to adapt the proof of Proposition 2.2.2 to the mesoscopic case. In addition, we prove

a version of Proposition 3.5.4 for the mesoscopic case, which we state as Lemma A.2.3.

Lemma A.2.1. (Extension of Proposition 2.2.1)

If β = 2 and f ∈ C2
c (R) is an even, smooth, compactly supported function on the real line, then, for

sufficiently large N ,
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Proof.

If f ∈ C2
c (R), then we may assume N large enough so that the support of f(LN ·) is contained on

[−π, π). We can immediately express f(LN ·) as a Fourier series with coefficients determined by the

Fourier transform of f . Lemma A.2.1 is then an immediate corollary to Proposition 2.2.1. �

Lemma A.2.2. (Extension of Lemma 2.4.3)

Let f ∈ C2
c (R). Then
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Proof.

To see (i), we replace the Fourier coefficients in the the proof of Lemma 4.4(i) with the corresponding

coefficients for the scaled case to getÅ
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where k ∈ N. The first term in (A.2.1) contains, in brackets, two Riemann Sums and consequently

converges to

3

Å∫ ∞
k

[xf̂(x)]2dx

ã1/2 Å∫ ∞
0

[xf̂(x)]2dx

ã1/2

= ok(1).

Since f ∈ C2
c (R), we can write |f̂(x)| ≤ C ′/x2 for some positive constant C ′ depending only on f ,

i.e. independent of k and N . It follows that
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For any fixed k, the term on the left is O
Ä
LN
N

ä
while the term on the right is a Riemann Sum

converging to ∫ k

0
|f̂(x)| dx ≤ ||f̂ ||1 <∞

as N →∞. It follows immediately that, for any ε > 0, we can choose k and N large enough so that

both terms in (A.2.1) are at most ε/2. This gives the desired result.

To see (ii), we observe that, in the same way as in the proof of (i), the proof of Lemma 4.4(ii)

immediately implies
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The first term in (A.2.2) is the same as the first term in (A.2.1). Similarly, we observe that the

second term is bounded above byÅ
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This completes the proof of (ii).

To see (iii), we once again follow the same argument as in the proof of Lemma 4.4(iii). In particular,

bound the sum from above by N
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The proof of Lemma 4.4(iii) implies that the sum on the r.h.s. is bounded above by
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The term on the r.h.s. is a Riemann sum that converges to∫ ∞
0

[xf̂(x)]2dx <∞

as N →∞, while the term on the l.h.s. is, at most, on the order of∫ ∞
k

[xf̂(x)]2dx

for any k ∈ N, i.e. goes to zero as N →∞. This completes the proof of Lemma A.2.2.

�

We can immediately modify the proof of Proposition 2.2.2 by replacing Proposition 2.2.1 with

Lemma A.2.1 and Lemma 2.4.3 with Lemma A.2.2 to get the desired analogous result for the

mesoscopic/scaled case.

We now consider the case of SO(2N) and Sp(N).

Lemma A.2.3. (Extension of Proposition 3.5.4)

Let θ1, . . . , θN be distributed according to SO(N) or Sp(N) and f ∈ C2
c (R) be an even, smooth,

compactly supported function on the real line. Then, for sufficiently large N ,
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As in the proof of Proposition 3.5.4, we need only consider the following sum:
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We will focus our attention on the cases of SO(2N) and Sp(N). As before, the case of SO(2N + 1)

is simpler and follows from the same arguments. Up to a constant multiple, the first term in (A.2.3)
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is equal to
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Assuming that f ∈ C2

c (R), the first term is a finite Riemann sum converging to 2π · ||f ′ ||2. The

second term is at most on the order of L−1N times a Riemann sum converging to∫
R
|xf̂(x)|2 dx < +∞

and so goes to zero as N → ∞. For any fixed n ∈ N and sufficiently large N , the third term is at

most on the order of ∫ ∞
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and so must also go to zero as N →∞.

Again using Proposition 3.5.3, the second term in (A.2.3) is equal to
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The fact that the sums in (A.2.4-A.2.6) converge absolutely and go to zero as N → ∞ follows

from Lemma A.2.2. Again, we can use the Cauchy Schwartz inequality to see that the first term in

(A.2.7) is on the order of
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which is equal to oN (1). Finally, the second term in (A.2.7) converges absolutely and is equal to

oN (1) by Lemma A.2.2, modulo the arguments given in the proof of Lemma 3.5.10. This completes

the proof of Lemma A.2.3. �
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