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A trilogy of (super)crystals: the queer, the set-valued and the hook-valued

Abstract

This dissertation compiles three main results concerning crystals or supercrystals. Firstly,

we present a characterization for queer supercrystals introduced by Grantcharov et al. We also

construct a type A crystal whose character is the stable Grothendieck polynomials for fully-

commutative permutations. Finally, we describe an uncrowding map on hook-valued tableaux

which intertwines the crystal operators on hook-valued tableaux to those of set-valued tableaux.
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CHAPTER 1

Introduction

Crystal bases were developed by Kashiwara [Kas91] by taking the limit as q → 0 of the

quantized enveloping algebra Uq(g) for a classical Lie algebra g. Lusztig [Lus90a] employed a

geometric approach to develop the theory of canonical bases, which turn out to yield Kashiwara’s

crystal bases [Lus90b].

A crystal is usually depicted by means of a labeled, directed graph, called a crystal graph.

One utility of crystals is that they provide a combinatorial way to compute the character of the

associated representations. In addition, crystals behave very nicely under taking the tensor product;

indeed, Kashiwara [Kas91] provided a tensor product rule to compute this product. This allows

for an effective determination of tensor multiplicities of the associated representations, giving the

following generalized Littlewood-Richardson rule:

Theorem 1 ( [Nak93]). Let λ, µ be dominant, integral weights for a classical Lie algebra g

and B(λ), B(µ) be the associated crystals with the respective highest weights.

Then, we have the Uq(g)-crystal isomorphism

B(λ)⊗B(µ) ∼=
⊕
ν

cνλµB(ν),

where cνλµB(ν) counts the number of highest weight elements within B(λ)⊗B(µ) of weight ν.

1.0.1. Queer supercrystals. The classification of simple Lie superalgebras was given by Kac

[Kac77]. One of these Lie superalgebras of particular interest is the queer Lie superalgebra, q(n+1),

which arises as a super analogue of the Lie algebra gl(n). In recent years, crystal bases for the

queer Lie superalgebra, q(n+1) have received increasing attention and development. Grantcharov et

al. [GJK+10,GJKK10,GJK+15] defined a crystal bases for crystals of type q(n+1). Additionally,

they [GJK+14] realized a model for queer supercrystal using semistandard decomposition tableaux

and provided a description of those tableaux that are of highest weight. Hiroshima [Hir19] and
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Assaf and Oguz [AKO18a] independently defined odd crystal operators for the type A crystal

on shifted prime tableaux defined by Hawkes, Paramonov and Schilling [HPS17]. Therefore, the

collection of shifted prime tableaux with the structure of a queer supercrystal.

A particular class of problems in the theory of crystal bases is the characterization of crystals.

Given a crystal graph, the problem asks whether or not there exists a set of axioms that identifies

it as a crystal graph of representation of a classical Lie algebra. Indeed, Stembridge [Ste03]

provided a set of local axioms that characterize such crystals in the special case when its root

system is simply-laced. These local axioms turn out to impose global structure on these crystals,

thus enabling a study of crystals of representations from a combinatorial viewpoint. One may

enquire if a characterization of queer supercrystals exists. Assaf and Oguz [AKO18b] provided a

list of local axioms for queer supercrystals involving relations between even crystal operators fi,

where 1 ≤ i ≤ n, and the odd operator f−1. They conjectured that these axioms, in addition to

Stembridge’s local axioms, were sufficient for a characterization.

The first part of the dissertation provides a characterization of queer supercrystals introduced

by Grantcharov et al. This is based on joint work with Maria Gillespie, Graham Hawkes and Anne

Schilling [GHPS20]. This characterization is a combination of an extension of characterization by

Stembridge, for crystals whose root system is simply-laced, using local queer axioms introduced by

Assaf and Oguz, a graph G on type An components associated to a component of queer supercrystal

and a set of axioms describing the odd crystal operators for elements near the lowest weight element

for each component. We also provide a counterexample to an earlier conjecture by Assaf and Oguz

that their axioms uniquely characterizes queer supercrystals. Furthermore, the graph G on type

An components admits a combinatorial description using explicit combinatorial rules for odd queer

operators on certain types of highest weight elements.

1.0.2. Crystal for fully commutative stable Grothendieck polynomials. The

Grothendieck polynomials were introduced by Lascoux and Schützenberger [LS82,LS83] in their

study of the Grothendieck ring of the flag manifold. These functions are indexed by permutations

and serve as K-theoretic analogues of the Schubert polynomials, which are polynomial represen-

tatives of the cohomology classes for the flag manifold. Fomin and Kirillov [FK94] generalized
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Lascoux-Schützenberger’s definition of the Grothendieck polynomials in terms of a parameter β

and provided a definition of the stable limit, known as the stable Grothendieck polynomials, Gw.

In the special case where the permutation is fully-commutative, whose circle diagram is as-

sociated to a skew partition, Buch [Buc02] provided a combinatorial definition of the stable

Grothendieck polynomials in terms of set-valued tableaux (of skew shape):

Gλ/µ(x;β) =
∑

T∈SVT(λ/µ)

xwt(T )β|T |−|λ/µ|.

Here, SVT(λ/µ) refers to the collection of all set-valued tableaux whose shape is λ/µ, |T | counts

the total number of letters within a tableaux T and |λ/µ| counts the number of boxes within the skew

shape λ/µ. The collection of set-valued tableaux additionally carries a type A crystal structure;

Monical, Pechenik and Scrimshaw [MPS20] defined the crystal operators on these tableaux and

showed that their crystal is Stembridge using the uncrowding bijection.

On the other hand, the stable Grothendieck polynomials, Gw, may be viewed as K-theoretic

analogues of the stable limit of Schubert polynomials, which are known as Stanley symmetric func-

tions. Morse and Schilling [MS16] defined a type A crystal on the set of decreasing factorizations of

reduced words in the symmetric group, whose characters are the Stanley symmetric functions. As a

consequence, they showed that the Stanley symmetric functions admit a Schur positive expansion.

Moreover, they showed that their crystal is isomorphic to a crystal on pairs of semistandard Young

tableaux and standard Young tableaux using the Edelman-Greene insertion.

Fomin and Greene [FG98] employed the theory of nonsymmetric Schur functions to prove that

the stable Grothendieck polynomials admit a Schur positive expansion in the following sense:

Gw(x;β) =
∑
λ

gw,λsλβ
`(w)−|λ|,

where `(w) is the length of permutation w and gw,λ counts the number of semistandard Young

tableaux of shape λt whose column reading word is equivalent to w.

The stable Grothendieck polynomials have a combinatorial realization in terms of decreasing

factorizations in the 0-Hecke monoid, whose reduced words that are identified with those of the

symmetric group. One could ask if there is a type A crystal that could be defined on these
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decreasing factorizations for each choice of permutation. Towards this direction, Monical, Pechenik

and Scrimshaw [MPS20] used the inverse of Hecke insertion to obtain an induced crystal on the set

of decreasing factorizations for words in the 0-Hecke monoid. However, unlike the crystal operators

given by Morse-Schilling, their crystal operators in general do not involve local changes.

Within the second part of this dissertation, we construct a type A crystal, which we call the

?-crystal, whose character is the stable Grothendieck polynomials for fully-commutative permuta-

tions. This is based on joint work with Jennifer Morse, Jianping Pan and Anne Schilling [MPPS20].

This crystal is a K-theoretic generalization of the Morse-Schilling crystal on decreasing factoriza-

tions for reduced words in the symmetric group. Using the residue map, we show that this crystal

intertwines with the crystal on set-valued tableaux given by Monical, Pechenik and Scrimshaw. We

prove that this crystal is isomorphic to that of pairs of semistandard Young tableaux using a newly

defined insertion called the ?-insertion. Furthermore, the ?-insertion has interesting properties in

relation to row Hecke insertion and the uncrowding algorithm.

1.0.3. Uncrowding algorithm for hook-valued tableaux. Buch [Buc02] described a bi-

jection from the collection of set-valued tableaux to pairs of tableaux (P,Q) of the same shape,

where P is semistandard and Q is a flagged, increasing tableau. Since then, this bijection, known as

the uncrowding map, has been employed in various settings, including Bandlow and Morse [BM12]

who obtained G-expansions and g-expansions of symmetric functions that have a tableaux Schur

expansion, Reiner, Tenner and Yong [RTY18] who enumerated barely set-valued tableaux. More

recently, Chan and Pflueger [CP19] extended the map on set-valued tableaux of skew shape; their

enumeration is related to the algebraic Euler characteristic of the Brill-Noether variety.

As mentioned above, Buch introduced set-valued tableaux to give a combinatorial definition

for the stable Grothendieck polynomials for Grasmannian permutations, which is also known as

symmetric Grothendieck functions, Gλ. Similar to symmetric Grothendieck functions, Lam and

Pylyavskyy [LP07] introduced weak symmetric Grothendieck functions, Jλ, that are described

combinatorially by multiset-valued tableaux (known as weak set-valued tableaux).

In contrast to the Schur functions, neither the symmetric Grothendieck functions nor the weak

symmetric Grothendieck functions are self dual under the involution ω on symmetric functions.

Yeliusizzov [Yel17] introduced the canonical Grothendieck functions, G̃λ, as a deformation of both
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Gλ and Jλ, that have the same structure constants as Gλ. He also gave a combinatorial definition

of G̃λ in terms of hook-valued tableaux.

Monical, Pechenik and Scrimshaw [MPS20] have shown that the uncrowding map on set-

valued tableaux intertwines the crystal operators on set-valued tableaux with those on pairs of

tableaux (P,Q) of the same shape, where P is semistandard and Q is a flagged, increasing tableau.

Meanwhile, Hawkes and Scrimshaw [HS20] defined the uncrowding map from the collection of

multiset-valued tableaux to pairs of tableaux (P,Q) of the same shape where P is semistandard and

Q is a column flagged, increasing tableau. Similar to [MPS20], they showed that their uncrowding

map intertwines the crystal operators defined on both collections. However, an uncrowding map

on hook-valued tableau that intertwines with the relevant crystal operators interpolating both

uncrowding maps was not known.

The final part of the dissertation describes a new uncrowding algorithm for hook-valued tableaux,

which uncrowds the entries in the arm of the hooks within such a tableau and returns a set-valued

tableau paired with a column-flagged increasing tableau. This is based on joint work with Jianping

Pan, Joseph Pappe and Anne Schilling [PPPS20]. We show that the uncrowding algorithm inter-

twines with the crystal operators on hook-valued tableaux. Moroever, we provide a brief description

of an analogous uncrowding algorithm which uncrowds the entries in the leg rather than those in the

arm of the hooks. We also describe a crowding insertion and use it to provide a recursive definition

for the image of the uncrowding map. This enables us to provide a definition of the crowding map

and show that the constructed crowding map is the inverse to the uncrowding map. Finally, as

an application, we obtain various expansions of the canonical Grothendieck polynomials in terms

of the stable symmetric Grothendieck polynomials and the dual stable symmetric Grothendieck

polynomials.
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CHAPTER 2

Characterization of queer supercrystals

This chapter is based on joint work with Maria Gillespie, Graham Hawkes and Anne Schilling

published in [GHPS20].

2.1. Queer supercrystals

In Section 2.1.1, we review the queer supercrystals constructed in [GJK+10,GJK+14,GJK+15].

In Section 2.1.2, we review some properties of queer supercrystals discovered in [AKO18a,AKO18b].

In Section 2.1.3, we provide new explicit combinatorial descriptions of f−i and e−i on certain high-

est weight elements, which will be used in Section 2.3 to construct the graph G(C). In Section 2.1.4,

we provide relations between e−i when acting on certain highest weight elements, which will be

used in Section 2.3 to deal with “by-pass arrows” in the component graph G(C).

2.1.1. Definition of queer supercrystals. An (abstract) crystal of type An is a nonempty

set B together with the maps

ei, fi : B → B t {0} for i ∈ I,

wt : B → Λ,
(2.1.1)

where Λ = Zn+1
>0 is the weight lattice of the root of type An and I = {1, 2, . . . , n} is the index set,

subject to several conditions. Denote by αi = εi− εi+1 for i ∈ I the simple roots of type An, where

εi is the i-th standard basis vector of Zn+1. Then we require:

A1. For b, b′ ∈ B, we have fib = b′ if and only if b = eib
′. In this case wt(b′) = wt(b)− αi.

For b ∈ B, we also define

ϕi(b) = max{k ∈ Z>0 | fki (b) 6= 0} and εi(b) = max{k ∈ Z>0 | eki (b) 6= 0}.
6



We remark that the above defines what is usually known as a seminormal crystal of type An

elsewhere in the literature. For further details, see for example [BS17, Definition 2.13].

There is an action of the symmetric group Sn on a type An crystal B given by the operators

(2.1.2) si(b) =


fki (b) if k > 0,

e−ki (b) if k < 0,

for b ∈ B, where k = ϕi(b)− εi(b).

An element b ∈ B is called highest weight if ei(b) = 0 for all i ∈ I. Similarly, b is called lowest

weight if fi(b) = 0 for all i ∈ I. For a subset J ⊆ I, we say that b is J-highest weight if ei(b) = 0

for all i ∈ J and similarly b is J-lowest weight if fi(b) = 0 for all i ∈ J .

We are now ready to define an abstract queer supercrystal.

Definition 2. [GJK+14, Definition 1.9] An abstract q(n+ 1)-crystal is a type An crystal B

together with the maps e−1, f−1 : B → B t {0} satisfying the following conditions:

Q1. wt(B) ⊂ Λ;

Q2. wt(e−1b) = wt(b) + α1 and wt(f−1b) = wt(b)− α1;

Q3. for all b, b′ ∈ B, f−1b = b′ if and only if b = e−1b
′;

Q4. if 3 6 i 6 n, we have

(a) the crystal operators e−1 and f−1 commute with ei and fi;

(b) if e−1b ∈ B, then εi(e−1b) = εi(b) and ϕi(e−1b) = ϕi(b).

Given two q(n+ 1)-crystals B1 and B2, Grantcharov et al. [GJK+14, Theorem 1.8] provide a

crystal on the tensor product B1⊗B2, which we state here in reverse convention. It consists of the

type An tensor product rule (see for example [BS17, Section 2.3]) and the tensor product rule for

b1 ⊗ b2 ∈ B1 ⊗B2

e−1(b1 ⊗ b2) =


b1 ⊗ e−1b2 if wt(b1)1 = wt(b1)2 = 0,

e−1b1 ⊗ b2 otherwise,

f−1(b1 ⊗ b2) =


b1 ⊗ f−1b2 if wt(b1)1 = wt(b1)2 = 0,

f−1b1 ⊗ b2 otherwise.

(2.1.3)

7



1 2 3 . . . n+ 1
1

−1

2 3 n

Figure 2.1. q(n+ 1)-crystal of letters B

The crystals of interest are the crystals of words B⊗`, where B is the q(n+ 1)-crystal of letters

depicted in Figure 2.1.

In addition to the queer supercrystal operators f−1, f1, . . . , fn and e−1, e1, . . . , en, we define the

crystal operators for 1 < i 6 n

(2.1.4) f−i := sw−1
i
f−1swi and e−i := sw−1

i
e−1swi ,

where swi = s2 · · · sis1 · · · si−1 and si is the reflection along the i-string in the crystal defined

in (2.1.2). Furthermore for i ∈ I0 := {1, 2, . . . , n}

(2.1.5) f−i′ := sw0e−(n+1−i)sw0 and e−i′ := sw0f−(n+1−i)sw0 ,

where w0 is the longest word in the symmetric group Sn+1. By [GJK+14, Theorem 1.14], with

all operators ei, fi for i ∈ {−1,−2, . . . ,−n, 1, 2, . . . , n} each connected component of B⊗` has a

unique highest weight vector and with all operators ei, fi for i ∈ {−1′,−2′, . . . ,−n′, 1, 2, . . . , n}

each connected component of B⊗` has a unique lowest weight vector.

2.1.2. Properties of queer supercrystals. We now review and prove several properties

about the queer supercrystal operators.

Lemma 3. For 1 6 i < n, we have

f−(i+1) = (sisi+1) f−i (si+1si),

e−(i+1) = (sisi+1) e−i (si+1si).
(2.1.6)

Proof. We use the definition (2.1.4). Note that the following recursion holds

(2.1.7) swi+1 = (s2 · · · si+1)(s1 · · · si) = (s2 · · · si)(s1 · · · si−1)si+1si = swisi+1si,

which implies the statement. �
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Remark 4. The operators fi for i ∈ I0 have an easy combinatorial description on b ∈ B⊗`

given by the signature rule, which can be directly derived from the tensor product rule (see for

example [BS17, Section 2.4]). One can consider b as a word in the alphabet {1, 2, . . . , n + 1}.

Consider the subword of b consisting only of the letters i and i+1. Pair (or bracket) any consecutive

letters i + 1, i in this order, remove this pair, and repeat. Then fi changes the rightmost unpaired

i to i+ 1; if there is no such letter fi(b) = 0. Similarly, ei changes the leftmost unpaired i+ 1 to i;

if there is no such letter ei(b) = 0.

Remark 5. From (2.1.3), one may also derive a simple combinatorial rule for f−1 and e−1.

Consider the subword v of b ∈ B⊗` consisting of the letters 1 and 2. The crystal operator f−1 on b

is defined if the leftmost letter of v is a 1, in which case it turns it into a 2. Otherwise f−1(b) = 0.

Similarly, e−1 on b is defined if the leftmost letter of v is a 2, in which case it turns it into a 1.

Otherwise e−1(b) = 0.

Lemmas 6 and 7 have appeared in [AKO18a,AKO18b]. We provide proofs for completeness.

Lemma 6. Let b ∈ B⊗`. The following holds:

(1) If ϕ1(b) > 2 and ϕ−1(b) = 1, we have ϕ1(b) = ϕ1(f−1(b)) + 2 and ε1(b) = ε1(f−1(b)). If

furthermore ϕ1(b) > 2, then

f1f−1(b) = f−1f1(b).

(2) If ϕ1(b) = ϕ−1(b) = 1, we have

f1(b) = f−1(b).

(3) If ε1(b), ε−1(b) > 0 and e1(b) 6= e−1(b), we have ε1(b) = ε1(e−1(b)), ϕ1(b) = ϕ1(e−1(b))−2,

and

e1e−1(b) = e−1e1(b).

Proof. Let p = ϕ1(b) and q = ε1(b). Consider the subword v consisting of all letters 1 and 2

in b. After performing 1,2-bracketing onto v according to the signature rule, we have a subword of

9



unbracketed letters in b as

(2.1.8) vi1vi2 . . . vipvj1 . . . vjq ,

where vik = 1 for all 1 6 k 6 p and vjk = 2 for all 1 6 k 6 q.

(1) We assume that ϕ−1(b) > 0, so that f−1(b) is defined. This implies v1 = 1. Since v1 is

necessarily unbracketed, i1 = 1 as well. The word b′ = f−1(b) is formed by changing the

leftmost 1 in b, namely vi1 , into 2. This introduces a new bracketed 1,2-pair formed by

v1 = 2 and vi2 = 1. The subword of unbracketed letters in b′ now becomes

vi3 . . . vipvj1 . . . vjq

so that ϕ1(f−1(b)) = p − 2 = ϕ1(b) − 2 and ε1(f−1(b)) = q = ε1(b). This establishes the

first assertion.

Now, assume in addition that p = ϕ1(b) > 2. Using the sequence of unbracketed

letters in b as in the preceding paragraph, f1 changes the rightmost unbracketed 1 in b,

namely vip , into 2. We still have v1 to be 1 after the change, so that f−1(f1(b)) is defined

and the leftmost 1 in f1(b), namely v1, is changed into 2 under f−1. On the other hand,

f1(f−1(b)) is defined precisely because p > 2, and the rightmost unbracketed 1 in f−1(b),

namely vip , is changed into 2 under f1. As the changes introduced in b to form f−1(f1(b))

are the same as in those of f1(f−1(b)), we conclude that f1(f−1(b)) = f−1(f1(b)), proving

the second assertion.

(2) We assume ϕ1(b) = 1, so that (2.1.8) is of the form vi1vj1 . . . vjq . Furthermore, as ϕ−1(b) =

1, f−1(b) is defined and v1 = 1. As v1 is necessarily unbracketed, i1 = 1 as well. Therefore,

we see that f1(b) = f−1(b), since the rightmost unbracketed 1 in b and the leftmost 1 in b

are the same, namely vi1 = v1.

(3) We assume that ε−1(b) > 0, so that e−1(b) is defined. This implies v1 = 2. However,

since e−1(b) 6= e1(b), e−1 and e1 must change a 2 in b at different locations, so we have

j1 > 1. Consequently v1 is a bracketed 2 and hence must be paired with some vh = 1

where h < i1 < j1 (in case p = 0, h < j1 still holds). The word b′ = e−1(b) is obtained by

changing the leftmost 2 in b, namely v1, to 1. This introduces two new unbracketed 1’s,
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namely, v1 and vh. The subword of unbracketed letters in b′ is now

v1vhvi1 . . . vipvj1 . . . vjq

so that ε1(b) = q = ε1(e−1(b)) and ϕ1(e−1(b)) = p + 2 = ϕ1(b) + 2. This establishes the

first two equalities.

Now, e1(e−1(b)) is the word formed by changing the leftmost unbracketed 2 in b′ =

e−1(b), namely vj1 , to 1. On the other hand, using the subword of v in b containing

unbracketed letters as described in the preceding paragraph, e1(b) changes the leftmost

unbracketed 2 in b, namely vj1 , into a 1. We still have v1 = 2 and vh = 1 after the change,

so that e−1(e1(b)) is defined, with the leftmost 2 in e1(b), namely v1, being changed into 1

under e−1. As the changes introduced in b to form e−1(e1(b)) are the same as in those of

e1(e−1(b)), we conclude that e1(e−1(b)) = e−1(e1(b)), thereby proving the final relation.

�

Lemma 7. Let b ∈ B⊗`. The following holds:

(1) If ϕ2(b), ϕ−1(b) > 0, we have ϕ2(b) = ϕ2(f−1(b))− 1, ε2(b) = ε2(f−1(b)) and

f2f−1(b) = f−1f2(b).

(2) If ϕ2(b) = 0 and ϕ−1(b) > 0, we have either

(a) ϕ2(f−1(b)) = 1 and ε2(b) = ε2(f−1(b)), or

(b) ϕ2(f−1(b)) = 0 and ε2(b) = ε2(f−1(b)) + 1.

(3) If ε2(b), ε−1(b) > 0, we have either

(a) ε2(e−1(b)) = ε2(b) + 1, ϕ2(b) = ϕ2(e−1(b)) = 0, or

(b) ε2(e−1(b)) = ε2(b), ϕ2(b) = ϕ2(e−1(b)) + 1, and

e−1e2(b) = e2e−1(b).

Proof. We prove each part separately.

(1) Assume that ϕ2(b), ϕ−1(b) > 0, so that f2(b) and f−1(b) are both nonzero. Let b′ = f−1(b)

and b′′ = f2(b).
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By the signature rule, ϕ2(b) is the number of unbracketed 2 entries in the 2, 3-bracketing

of b. Since ϕ2(b) > 0, there exists a rightmost unbracketed 2, say bj . As in Remark 5

b′ = f−1(b) is formed by changing the leftmost 1, say bi, to b′i = 2, where bi is the leftmost

of all 1 and 2 entries (so in particular i < j).

Since ϕ−1(b) > 0, every 2 must be to the right of bi. Assume that there is a 3 left of bi

bracketed with a 2 to the right of bi, and let bs1 · · · bsrbt1 · · · btr = 3r2r be the subsequence

of all 3 and 2 entries bracketed with each other for which sk < i and i < tk for all k. Then

in b′, we have that b′sr brackets with b′i rather than b′t1 , and b′sr−1
brackets with b′t1 , and so

on, leaving b′tr a new unbracketed 2. Thus we always have ϕ2(b
′) = ϕ2(b)+1. Furthermore,

since the number of unbracketed 3 entries remains unchanged, we have ε2(b) = ε2(f−1(b)).

For the commutativity relation, note that since j > i, so b′j = 2 is still the rightmost

unbracketed 2 in b′ and b′′i = 1 is the leftmost 1 in b′′ without a 2 to the left of b′′i . Thus

both f2(f−1(b)) and f−1(f2(b)) are formed by changing bi to 2 and bj to 3. Hence

f2(f−1(b)) = f−1(f2(b))

as desired.

(2) Assume ϕ2(b) = 0 and ϕ−1(b) > 0, so that b′ = f−1(b) is defined but f2(b) is not. Then

there is an entry bi = 1 with no 1 or 2 left of it that changes to 2 to form b′. There are

also no unbracketed 2 entries in the 2, 3 bracketing.

We consider two cases. First, suppose that every 3 to the left of bi in b is bracketed

with some 2 to its right. Then in b′ with b′i = 2, the bracketed pairs for the entries b′si = 3

to the left of b′i shift left as in part (1) above, leaving a new unbracketed 2 and exactly the

same number of unbracketed 3 entries. Thus ϕ2(b
′) = 1 and ε2(b

′) = ε2(b) in this case.

If instead there is an unbracketed 3 to the left of bi, then this 3 becomes bracketed with

a 2 (after the same shift in bracketed pairs) and we have ϕ2(b
′) = 0 and ε2(b

′) = ε2(b)− 1,

as desired.

(3) Suppose ε2(b), ε−1(b) > 0. Then the leftmost 1 or 2 in b is bi = 2 for some i, and

b′ := e−1(b) is formed by changing bi to 1. Since e2(b) is defined, there also exists a

leftmost unbracketed 3, say bj = 3.
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We consider two cases. First suppose ϕ2(b) = 0, meaning that every 2 is bracketed in

the 2, 3-bracketing of b. Then in particular bi is bracketed; let bs1 · · · bsrbibt1 · · · btr−1 = 3r2r

be the subsequence consisting of all bracketed 3’s (bsi) to the left of bi along with the entries

they are bracketed with (btr−i where t0 = i). Then after lowering bi to 1 to form b′, we have

that b′si brackets with b′tr−i+1
for i > 2, and b′s1 is an unbracketed 3. All other bracketed

pairs are the same as in b, so there is only one more 3 among the unbracketed letters. It

follows that ε2(b
′) = ε2(b) + 1 and ϕ2(b

′) = ϕ2(b) = 0.

For the second case, suppose ϕ2(b) > 0. Then there is some unbracketed 2 in b; let bk

be the leftmost unbracketed 2. Note that k > i because bi is the leftmost 2, and note also

that k < j because bj is the leftmost unbracketed 3. Thus i < j.

Now, lowering bi to 1 to form b′ results in shifting the bracketing as in the cases above,

which makes b′k be bracketed (and all other bracketings the same). Thus there is one

less unbracketed 2 in b′ as b, and the same number of unbracketed 3’s. It follows that

ε2(b
′) = ε2(b) and ϕ2(b

′) = ϕ2(b) − 1. Furthermore, b′j is still the leftmost unbracketed 3

in b′, and so both e−1e2(b) and e2e−1(b) are formed by changing bi to 1 and bj to 2. The

result follows.

�

2.1.3. Explicit description of f−i and e−i. In this section, we give explicit descriptions

of ϕ−i(b), ε−i(b), f−ib, and e−ib for J-highest-weight elements b ∈ B⊗` for certain J ⊆ I0 (see

Proposition 10 and Theorems 13 and 17). We will need these results in Section 2.3 when we

characterize certain graphs on the type A components of the queer supercrystal.

Lemma 8. Let i ∈ I0 and b ∈ B⊗` be {1, 2, . . . , i − 1}-highest weight. If the first letter in the

(i, i+ 1)-subword of b is i+ 1, then ε−i(b) = 1.

Proof. The statement is true for i = 1 by Remark 5. Now suppose that by induction on i the

statement of the lemma is true for 1, 2, . . . , i− 1. By Lemma 3, we have e−i = si−1sie−(i−1)sisi−1.

Let u = i + 1 be the leftmost i + 1 in b and v = i be the leftmost i in b. By assumption, u

appears to the left of v and hence v is bracketed in the (i, i + 1)-bracketing. Since by assumption

b is {1, 2, . . . , i− 1}-highest weight, in the (i− 1, i)-bracketing there are no unbracketed i and si−1
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raises all unbracketed i − 1 to i. In particular, all i − 1 to the left of v are raised to i since v is

the leftmost i. In turn, si acts on unbracketed i and i + 1 in the (i, i + 1)-bracketing. Since v is

bracketed and there are no i− 1 to the left of v, the first letter in the (i− 1, i)-subword of sisi−1(b)

is i. Also, sisi−1(b) is {1, 2, . . . , i − 2}-highest weight. Hence by induction ε−(i−1)(sisi−1(b)) = 1,

which proves that ε−i(b) = 1. �

The next definition below will be used heavily throughout this section.

Definition 9. The initial k-sequence of a word b = b1 . . . b` ∈ B⊗`, if it exists, is the sequence

of letters bpk , bpk−1
, . . . , bp1, where bpk is the leftmost k and bpj is the leftmost j to the right of bpj+1

for all 1 6 j < k.

Let i ∈ I0 and b ∈ B⊗` be {1, 2, . . . , i}-highest weight with wt(b)i+1 > 0, where wt(b)i+1 is the

(i+1)-st entry in wt(b) ∈ Zn+1
>0 . Then note that b has an initial (i+1)-sequence, say bpi+1 , bpi , . . . , bp1 .

Also let bqi , bqi−1 , . . . , bq1 be the initial i-sequence of b. Note that pi+1 < pi < · · · < p1 and

qi < qi−1 < · · · < q1 by the definition of initial sequence. Furthermore either qj = pj or qj < pj+1

for all 1 6 j 6 i.

Proposition 10. Let b ∈ B⊗` be {1, 2, . . . , i}-highest weight for i ∈ I0. Then:

(a) ε−i(b) = 1 if and only if wt(b)i+1 > 0 and pj = qj for at least one j ∈ {1, 2, . . . , i}.

(b) ϕ−i(b) = 1 if and only if wt(b)i > 0 and either wt(b)i+1 = 0 or pj 6= qj for all j ∈

{1, 2, . . . , i}.

Example 11. Take b = 1331242312111 and i = 3. Then p4 = 6, p3 = 8, p2 = 10, p1 = 11

and q3 = 2, q2 = 5, q1 = 9. We indicate the chosen letters pj by underlines and qj by overlines:

b = 1331242312111. Since no letter has a both an overline and underline (meaning pj 6= qj for all

j), we have ϕ−3(b) = 1.

Proof of Proposition 10. Let us first prove claim (a) for i = 1. If wt(b)2 = 0, then certainly

ε−1(b) = 0 since by definition e−1 changes a 2 into a 1. If wt(b)2 > 0, then q1 is the position of the

leftmost 1, p2 is the position of the leftmost 2, and p1 is the position of the first 1 after this 2. If

p1 = q1, there is no 1 to the left of the leftmost 2. By definition in this case ε−1(b) = 1. If on the
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other hand q1 < p2, the leftmost 1 is before the leftmost 2 and hence ε−1(b) = 0. This proves the

claim.

Now assume by induction that claim (a) is true for up to i− 1. If wt(b)i+1 = 0, then ε−i(b) = 0

since e−i changes the weight by the simple root αi. Otherwise assume that wt(b)i+1 > 0.

If pi = qi, the first letter i or i + 1 is the i + 1 in position pi+1 < pi = qi. Hence by Lemma 8

we have ε−i(b) = 1.

If qi < pi (and hence automatically qi < pi+1), recall that by Lemma 3 we have e−i =

si−1sie−(i−1)sisi−1. The operator si−1 leaves the letter i− 1 in positions qi−1 and pi−1 unchanged

since these letters are bracketed with i in positions qi and pi, respectively. All i − 1 to the left of

position qi−1 are unbracketed and since b is {1, 2, . . . , i}-highest weight, si−1 changes all of these

i − 1 to i. In si−1b there are possibly new letters i between positions pi+1 and pi; the i + 1 in

position pi+1 brackets with the leftmost of these in position pi+1 < p′i 6 pi. The operator si on

si−1b changes all letters i to the left of position p′i to i + 1. Hence wt(sisi−1b)i > 0, sisi−1b is

{1, 2, . . . , i− 1}-highest weight with sequences with respect to i− 1 given by p′i > pi−1 > · · · > p1

and qi−1 > qi−2 > · · · > q1. Claim (a) now follows by induction on i.

If b is {1, 2, . . . , i}-highest weight and wt(b)i > 0, we must have ϕ−i(b) + ε−i(b) = 1. Hence

ϕ−i(b) = 1 precisely when ε−i(b) = 0, proving (b). �

Recall that in a queer supercrystal B an element b ∈ B is highest-weight if ei(b) = 0 for all

i ∈ I0 ∪ I−, where I0 = {1, 2, . . . , n} and I− = {−1,−2, . . . ,−n}. Additionally, within the weight

lattice Λ = Zn+1, we say that α = (α1, α2, . . . , αn+1) is a strict partition if the following hold:

• αi > αi+1 for all 1 6 i 6 n and α ∈ Zn+1
>0 ,

• For all 1 6 i 6 n, either αi+1 = 0 or αi > αi+1.

Proposition 12. [GJK+14, Proposition 1.13] Let b ∈ B⊗` be highest weight. Then wt(b) is

a strict partition.

Proof. Let b be highest weight, so that wt(b)i > wt(b)i+1 for all i and wt(b) ∈ Zn+1
>0 . Suppose

that wt(b)i = wt(b)i+1 > 0 for some i, meaning that b contains the same number of letters i and

i + 1. Since all letters i and i + 1 must be bracketed in the (i, i + 1)-bracketing, this means that

the first letter in the (i, i+ 1)-subword of b is the letter i+ 1. Then by Lemma 8, ε−i(b) = 1, which
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means that b is not highest weight. Hence, either wt(b)i > wt(b)i+1 or that wt(b)i+1 = 0 for all i,

implying that wt(b) is a strict partition. �

Next, we provide an explicit description of f−i(b) for i ∈ I0, when b is {1, 2, . . . , i}-highest

weight. Recall that the sequence bqi , bqi−1 , . . . , bq1 is the leftmost sequence of letters i, i − 1, . . . , 1

from left to right. Set r1 = q1 and recursively define rj < rj−1 for 1 < j 6 i to be maximal such

that brj = j. Note that by definition qj 6 rj . Let 1 6 k 6 i be maximal such that qk = rk.

Theorem 13. Let b ∈ B⊗` be {1, 2, . . . , i}-highest weight for i ∈ I0 and ϕ−i(b) = 1 (see

Proposition 10). Then f−i(b) is obtained from b by changing bqj = j to j−1 for j = i, i−1, . . . , k+1

and brj = j to j + 1 for j = i, i− 1, . . . , k.

Example 14. Let us continue Example 11 with b = 1331242312111 and i = 3. We overline

bqj and underline brj , so that b = 1331242312111. From this we read off q3 = 2, q2 = 5, q1 = 9,

r3 = 3, r2 = 7, r1 = 9, k = 1 and f−3(b) = 1241143322111.

As another example, take b = 545423321211 in the q(6)-crystal B⊗12 and i = 5. Again, we

overline bqj and underline brj , so that b = 545423321211. This means that q5 = 1, q4 = 2, q3 = 6,

q2 = 8, q1 = 9, r5 = 3, r4 = 4, r3 = 7, r2 = 8, r1 = 9, k = 2, and f−5(b) = 436522431211.

Proof of Theorem 13. We prove the claim by induction on i. For i = 1, since by assumption

ϕ−1(b) = 1, the first letter in the subword of b of letters in {1, 2} is a 1. This 1 is in position q1 = r1

and changes to 2, which proves the claim.

Now assume that the claim is true for f−1, . . . , f−(i−1). Recall that by Lemma 3 we have

f−i = si−1sif−(i−1)sisi−1. Let b ∈ B⊗` be {1, 2, . . . , i}-highest weight. Applying si−1 to b changes

all unbracketed i−1 in the (i−1, i)-bracketing to i. Subsequently applying si changes all unbracketed

i in the (i, i+ 1)-bracketing to i+ 1. It is not hard to see that the resulting word is {1, . . . , i− 1}-

highest weight, so we can apply the inductive hypothesis in order to apply f−(i−1).

In the notation for Proposition 10, we have either wt(b)i+1 = 0 or qi < pi+1 and qi−1 < pi since

ϕ−i(b) = 1. In particular this means that if pi+1 is defined and pi+1 < qi−1, no letter i lies between

pi+1 and qi−1 since otherwise pi < qi−1 contradicting the requirement qi−1 < pi. This implies that

all i− 1 and i in the positions to the left of position qi−1 become i+ 1 when applying sisi−1. The

letter i − 1 in position qi−1 remains i − 1 under sisi−1 since it is bracketed with an i. Denote the
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sequences for f−(i−1) in sisi−1b by q′i−1, . . . , q
′
1 and r′i−1, . . . , r

′
1 and call k′ the maximal index such

that q′k′ = r′k′ . By the above arguments, we have q′i−1 = qi−1. We need to distinguish three cases

given by k = i, i− 1 and k < i− 1.

Case k = i: The claim is that the i in position qi changes to i + 1. Since qi = ri for k = i, there

is only one i to the left of the i − 1 in position ri−1. Since qi−1 6 ri−1, this implies that all i − 1

between positions qi−1 and ri−1 (and including ri−1) change to i + 1 when applying sisi−1. This

means that k′ = i− 1 and by induction f−(i−1) changes the i− 1 in position qi−1 to i. Hence under

si−1si, the letter in position qi remains an i + 1 and all other letters i + 1 and i return to their

original value. This proves the claim.

Case k = i− 1: In this case, we have at least two i to the left of position qi−1 = ri−1 and there is

no i − 1 between positions qi−1 and ri−2 > qi−2. Since sisi−1 lifts all i to the left of position qi−1

to i+ 1, but leaves the i− 1 in position qi−1 and possible i− 2 in positions qi−2 and ri−2, we have

k′ = i−1. Hence by induction f−(i−1) changes the i−1 in position q′i−1 = qi−1 to i. When applying

si−1si to f−(i−1)sisi−1b, the i+ 1 in position ri remains an i+ 1 since it is now bracketed with the

i in position qi−1 or an i to its left. In addition, the i+ 1 in position qi becomes an i− 1 since the

i in position qi−1 is now bracketed with the previous bracketing partner of letter in position qi in

b, causing it to drop to i− 1. This proves the claim for k = i− 1.

Case k < i − 1: In this case qi < ri and qi−1 < ri−1, so that there are at least two i to the left

of position ri−1 and at least two i − 1 between positions qi and ri−2 > qi−2. By the arguments

above, all i to the left of position qi−1 become i + 1 under sisi−1, the letter i − 1 in position qi−1

remains i − 1 and q′i−1 = qi−1 < r′i−1 6 ri−1. Also, since sisi−1 leaves all letters i − 2 and smaller

untouched, we have q′j = qj and r′j = rj for 1 6 j < i− 1. Hence by induction f−(i−1) changes the

letter in position qi−1 = q′i−1 to i− 2 and the letter in position r′i−1 to i, in addition to the letters

in positions qj , rj for j < i− 1. Next applying si−1si changes the letter in position ri−1 to i since

it is now bracketed with the i − 1 in position ri−2. The letters i + 1 in positions r′i−1 < p < ri−1

are changed back to i− 1 since they are not bracketed. If r′i−1 < ri−1, then the letter i in position

r′i−1 changes to i− 1 since it is also not bracketed. The letter in position qi−1 = q′i−1 remains i− 2.

The letter i + 1 in position ri is bracketed with the i in position r′i−1 in f−(i−1)sisi−1b and hence

remains i+ 1 in si−1sif−(i−1)sisi−1b. The letters i+ 1 between positions qi and ri in f−(i−1)sisi−1b
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return to their original value i under si−1si since they are bracketed with i − 1 to the right. The

letter in position qi lost its bracketing partner since the i− 1 in position qi−1 became i− 2. Hence

the letter in position qi becomes i− 1, proving the claim. �

Corollary 15. Let b ∈ B⊗` be J-highest weight for {1, 2, . . . , i} ⊆ J ⊆ I0 and ϕ−i(b) = 1 for

some i ∈ I0. Then:

(1) Either f−i(b) = fi(b) or f−i(b) is J-highest weight.

(2) f−i(b) is I0-highest weight only if b = fi+1fi+2 · · · fh−1u for some i < h 6 n + 1 and u a

I0-highest weight element.

Proof. We begin by proving (1). By Theorem 13, in f−i(b) the letters bqj are changed from j

to j − 1 for j = i, i− 1, . . . , k + 1 and brj are changed from j to j + 1 for j = i, i− 1, . . . , k. Hence

f−i(b) is not J-highest weight if and only if either there is an i+ 1 to the left of position qi that is

no longer bracketed with an i or the letter k + 1 in position rk is no longer bracketed with a k.

First assume that k < i. Since k is maximal such that qk = rk, there must be at least two k+ 1

to the left of position qk in b, one in position qk+1 and one in position rk+1. Since b is J-highest

weight, both of these k+ 1 must be bracketed with a k to their right in b, which implies that there

is a k to the right of position qk that is bracketed with the k+1 in position qk+1 in b. In f−i(b), the

letter k+ 1 in position qk+1 changes to k, and hence the new k+ 1 in position qk = rk is bracketed

with the k to its right.

Since by assumption ϕ−i(b) = 1, we have by Proposition 10 that either wt(b)i+1 = 0 (in which

case there cannot be an i+ 1 to the left of position qi in b) or pj 6= qj for all j ∈ {1, 2, . . . , i}. The

condition pi 6= qi implies that qi < pi+1, so that there cannot be a letter i+ 1 to the left of position

qi. This proves that f−i(b) is J-highest weight when k < i.

Next assume that k = i. In this case f−i(b) differs from b by changing the letter i in position

qi to i+ 1. If there is a letter i to the right of position qi that is not bracketed with a letter i+ 1,

then the new i+ 1 in position qi will bracket with this i in f−i(b) (or to the left of this i) and hence

f−i(b) is J-highest weight. Otherwise, there is no letter i to the right of position qi in b that is not

bracketed with an i+ 1 and therefore fi(b) = f−i(b). This proves claim (1).
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The above arguments also show that f−i(b) can only be I0-highest weight if either b is I0-highest

weight or εj(b) = 0 for j ∈ I0 \ {i+ 1} and the new letter i+ 1 in position ri in f−i(b) is bracketed

with a letter i+2 in b. Such a b is precisely of the form b = fi+1fi+2 · · · fh−1u proving claim (2). �

Next, we describe e−i on a {1, 2, . . . , i}-highest weight element b. We again use the initial

(i+ 1)-sequence bpi+1 , bpi , . . . , bp1 in b.

We also need the notion of cyclically scanning leftwards for a letter t starting at an entry bj .

By this we mean choosing the rightmost t to the left of bj , if it exists, or else the rightmost t in the

entire word (i.e., “wrapping around” the edge of the word).

We define the k-bracketed entries of a word b as follows. Every k in b is k-bracketed, and for

j = k − 1, k − 2, . . . , 1, we recursively determine which j’s in b are k-bracketed by considering the

subword of only the k-bracketed (j+1)’s and all j’s, and performing an ordinary crystal bracketing

on this subword. The j’s that are bracketed in this process are the k-bracketed j’s.

Example 16. In the word

142334122311322111,

to obtain the 4-bracketed letters we first mark all 4’s as 4-bracketed:

142334122311322111

and then bracket these with 3’s and mark the bracketed 3’s as being 4-bracketed:

142334122311322111.

We then consider only the boldface 3’s and all the 2’s and bracket them to obtain the 4-bracketed

2’s:

142334122311322111

Finally we bracket these boldface 2’s with the 1’s to obtain:

142334122311322111

The boldface letters above are precisely the 4-bracketed letters in this word.
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We now have the tools to describe the application of e−i to an {1, 2, . . . , i}-highest weight word.

Theorem 17. Let b ∈ B⊗` be {1, 2, . . . , i}-highest weight for i ∈ I0 and ε−i(b) = 1 (see Propo-

sition 10). Let bpi+1 , . . . , bp1 be the initial (i+ 1)-sequence of b. Then e−i(b) is obtained from b by

the following algorithm:

• Change bpj from j to j − 1 for j = i+ 1, i, . . . , 3, 2 to form a word c(1).

• Cyclically scan left in c(1) starting just to the left of position p1 for a 1 that is not i-

bracketed in c(1). Change that 1 to 2 to form a word c(2). In c(2), continue cyclically

scanning from just to the left of the previously changed entry for a 2 that is not i-bracketed

in c(2), and change it to 3. Continue this process until an i − 1 changes into an i; the

resulting word c(i) is e−i(b).

Proof. We will prove this by induction on i. For i = 1 the algorithm simply changes the

leftmost 2 to a 1 as required, since the second step is vacuous in this case.

Assume the statement is true for i and let b ∈ B⊗` be {1, 2, . . . , i + 1}-highest weight. Recall

that e−(i+1) = sisi+1e−isi+1si by Lemma 3. We will analyze each step of applying sisi+1e−isi+1si

to b and show that it matches the desired algorithm.

Let bpi+2 , bpi+1 , bpi , . . . , bp2 , bp1 be the initial (i + 2)-sequence of b. Since eib = 0, applying si

to b simply changes all unbracketed i entries in the (i, i + 1)-pairing to i + 1. Note that bpi itself

must be bracketed with an i + 1 in b, for if it is not then bpi+1 is paired with an earlier i to its

right, contradicting the definition of bpi . Thus bpi is still i in sib. Note also that sib still satisfies

ei+1sib = 0.

Let b′ = si+1sib. Note that any i + 1 to the left of bpi+2 in sib is not bracketed with an i + 2

since bpi+2 is the leftmost i+ 2. Thus every i+ 1 left of bpi+2 (including those i’s that changed to

i + 1 from b) changes to i + 2 to form b′, along with any other unpaired i + 1. Let bti+1 be the

leftmost i + 1 between bpi+2 and bpi+1 in sib. Then bti+1 is either equal to bpi+1 or was an i in b.

Furthermore, bti+1 is still i+1 in b′ = si+1sib since it must be paired with either bpi+2 itself or some

i+ 2 to the right of bpi+2 .

Now consider e−ib
′. By the induction hypothesis, this can be computed by first lowering the

entries of the initial (i + 1)-sequence b′p′i+1
, b′p′i

, . . . , b′p′1
appropriately to form a word c′(1), then
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cyclically raising some non-i-bracketed entries 1, 2, 3, . . . , i− 1 in order to form words c′(2), . . . , c′(i).

We will show that p′j = pj for j 6 i, and that the same entries 1, 2, . . . , i− 1 are changed as would

be changed in the e−(i+1) algorithm applied to b.

For the first claim, it suffices to show that p′i = pi. Note that b′p′i+1
may be to the left of

bpi+1 , but it is to the right of bpi+2 by the above analysis. If p′i+1 = pi+1 we are done, so suppose

pi+2 < p′i+1 < pi+1. Assume by contradiction that there is an entry b′a = i between positions p′i+1

and pi in b′. Then we further have p′i+1 < a < pi+1 by the definition of bpi and b′. It follows that ba

is an i in b that is bracketed with an i+ 1, since applying si kept it an i. But then by the definition

of pi+1, the entry bc = i + 1 that brackets with ba in b is to the left of position pi+2. Thus bp′i+1

itself was a bracketed i in b, a contradiction. Thus p′i = pi.

Let c(j) be the word in the definition of e−(i+1) acting on b and c′(j) the word in the definition

of e−i on b′. Similarly, let tj (resp. t′j) be the position of the chosen j in c(j) (resp. c′(j)) that is

raised to j + 1. We now wish to show that, for any j 6 i− 1, we have t′j = tj .

We first show this for j = 1. Note that since p2 = p′2 (assuming i > 2, since otherwise we are

done) the same entries are equal to 1 in both c = c(1) and c′ = c′(1). Moreover, p1 = p′1, so we start

searching cyclically left for a 1 in the same position in both. It therefore suffices to show that an

entry cx = 1 is (i+ 1)-bracketed in c if and only if c′x = 1 is i-bracketed in c′. Note that the i’s in

c that are bracketed with i+ 1’s are precisely either:

• cp′i+1
, or

• an i that was bracketed with an i+ 1 in b.

But since c′ is formed by applying si to b (which changes all unbracketed i’s to i+ 1’s), then si+1

(which does not change any i’s), then lowering certain entries, where bp′i+1
is the only one that

becomes a new i, the above characterization gives precisely all i’s in c′. Since the 1, 2, . . . , i − 1

entries are the same in both c and c′, it follows that an entry is (i + 1)-bracketed in c if and only

if it is i-bracketed in c′.

It now follows that t1 = t′1, and inductively we can conclude that tj = t′j for all j 6 i− 1. Thus

if we apply sisi+1 to c′(i) to obtain e−(i+1)b, the entries less than or equal to i − 1 match those of

c(i+1), the result of the algorithm applied to b. Furthermore, since si, si+1, and e−i only change

letters less than or equal to i+ 2, the entries larger than i+ 2 also match.
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It remains to consider the entries equal to i, i+1, and i+2. For i+2, the application of si+1 to

sib changes all unbracketed i+1 entries in sib to i+2, and e−i changes the single entry b′p′i+1
= i+1

to i and otherwise does not affect the i + 1 or i + 2 entries. In the (i + 1, i + 2)-bracketing in b′,

b′pi+2
is the leftmost bracketed i+ 2, and b′p′i+1

is the first i+ 1 after it, so removing b′p′i+1
from the

(i+ 1, i+ 2)-subword leaves the i+ 2 in position pi+2 unbracketed, with all other bracketed (i+ 2)’s

remaining bracketed. It follows that applying si+1 to e−isi+1sib lowers the i + 2 in position pi+2

to i+ 1, along with any i+ 2 that was raised in the first si+1 step. Therefore, the i+ 2 entries in

si+1e−ib
′, and hence in sisi+1e−ib

′ = e−(i+1)b, match those in the output of the algorithm.

Finally, we consider the (i, i+ 1)-subwords of the words in question. We first analyze how the

(i, i + 1)-subword of w := sib differs from that of w′ := si+1e−isi+1sib. By inspecting the above

analysis, we see that w′ differs from w in the following four ways:

• w′pi+2
= i+ 1 is a new i+ 1 in the (i, i+ 1)-subword in w′ whereas wpi+2 = i+ 2 was not

in the subword in w.

• w′p′i+1
= i whereas wp′

(i+1)
= i+ 1.

• w′pi = i− 1 is no longer in the subword whereas wpi = i was an i in the subword.

• w′ti−1
= i is a new i in the subword, whereas wti−1 = i− 1.

Note that the last two items above may coincide and cancel each other out if ti−1 = pi.

We now apply si to both subwords, and analyze how siw
′ = e−(i+1)b differs from siw = b in

the (i, i+ 1)-subword. In particular, we will show it is the same as how c(i+1) differs from b. Note

that the (i, i+ 1)-subword in c(i+1) is formed from that of b by making the following changes:

• A new i+ 1 is inserted in position pi+2 (bpi+2 = i+ 2 whereas c
(i+1)
pi+2 = i+ 1).

• The i+ 1 in position pi+1 is lowered to i.

• The i in position pi is removed.

• An i is inserted in position ti−1.

• In the current subword, look for the first unbracketed i cyclically left of position ti−1; call

this position ti and change this i to i+ 1.

First, note that there are no i+ 1 entries between w′pi+2
= i+ 1 and w′p′i+1

= i in w′, for if there

were, this would contradict the definition of bpi+1 . It follows that w′pi+2
= i + 1 is bracketed with
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an i to its right in w′, so in siw
′ = e−(i+1)b, the entry in position pi+2 remains i+ 1. So this is one

position in which it differs from b, since bpi+2 = i+ 2, so it matches c(i+1) in this position.

Note also that in w, all i’s are bracketed with (i + 1)’s. Applying si to w simply changes the

unbracketed i+ 1’s back to i’s to form b. We now consider two cases.

Case 1: Suppose p′i+1 6= pi+1.

We know that siw and siw
′ match b and c(i+1), respectively, in position pi+2 by the above

analysis. For position p′i+1, note that it is an unbracketed i + 1 in w, so it changes to i in siw. It

is a bracketed i in w′ since it was the first unbracketed i+ 1 to the right of position pi+1 in w, so

it stays i in siw
′. Thus they are both equal to i in the results, matching b and c(i+1), which do not

differ in this entry.

We now wish to show that the i+ 1 in position pi+1 is unbracketed in w′ unless it is bracketed

via the insertion of the i in position ti−1. In other words, if we make all the changes that define w′

from w besides the i in position ti−1, we claim that position pi+1 is an unbracketed i+ 1. Indeed,

before removing i in position pi, this i + 1 in position pi+1 is the leftmost i + 1 that is bracketed

with an entry weakly right of position pi, since the position pi+2 entry is bracketed with some i

weakly left of position p′i+1. It follows that removing the i in position pi leaves bpi+1 unbracketed,

and otherwise all other i+ 1’s are bracketed if and only if they are bracketed in w.

Furthermore, the combination of lowering both pi+2 and p′i+1 to i+ 1 and i and removing the

i in position pi leaves all i’s still bracketed, as they are in w.

Finally, when we put back the new i in position ti−1 to form w′, there are two subcases: first

suppose inserting this i makes some unbracketed i + 1 to its left become bracketed. Then by the

above analysis, this must have been the position of the first unbracketed i in c(i) to the left of ti−1,

and this is position ti, which remains i + 1 in siw
′. Applying si to w′ then turns the remaining

unbracketed i + 1 entries back to i and matches c(i+1). Otherwise, if inserting the i in position

ti−1 does not bracket any i + 1 to the left, it creates an unbracketed i in the word, and so the

rightmost unbracketed i+ 1 also will not change under applying si to w′. This corresponds to the

first unbracketed i cyclically left of position ti−1 in c(i), and we are done as before.

Case 2: Suppose p′i+1 = pi+1.
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In this case, the analysis matches the above except for the following steps: first, since position

pi+1 contains a bracketed i+1 in w, lowering it to imay make some i to its right become unbracketed.

(The new i in position pi+1 itself is bracketed due to the new i+ 1 in position pi+2 as before.)

Then, removing the i in position pi will make all i’s bracketed once again, since bpi was the first

i to the right of position pi+1 in b and hence in w. So once again, at the step before inserting ti−1,

all i’s are bracketed, and an i+ 1 in that matches one in w is bracketed if and only if it is bracketed

in the modified word. Thus inserting ti−1 has the same effect as above, and we are done. �

We now show that the output of e−i on a {1, 2, . . . , i}-highest weight element is itself {1, 2, . . . , i}-

highest weight if and only if there is no “cycling around the edge” in the cycling step of Theorem 17.

Proposition 18. Let b ∈ B⊗` be {1, 2, . . . , i}-highest weight for i ∈ I0, with ε−i(b) = 1.

Let t1, . . . , ti−1 be the positions of the 1, 2, . . . , i − 1 that change to 2, 3, . . . , i respectively in the

second step of the computation of e−i(b) (see Theorem 17). Also define t0 = p1. Then e−i(b) is

{1, 2, . . . , i}-highest weight if and only if ti−1 < ti−2 < · · · < t1 < t0.

Proof. First, suppose that it is not the case that ti−1 < ti−2 < · · · < t1; let 1 6 k < i be the

smallest index for which tk−1 6 tk, where t0 = p1. Then in the algorithm for computing e−i(b),

after changing a k− 1 to k in position tk−1, we search cyclically left for a k that is not i-bracketed

to find position tk. Since tk−1 6 tk, we cycle around the end of the word, so tk is the position of

the rightmost k that is not i-bracketed.

Any k to the right of tk is i-bracketed, and we claim that the k + 1’s that they bracket with

in the i-bracketing are all to the right of position tk as well. Indeed, if one such k + 1 was to the

left of tk then it should bracket with the k in position tk instead, a contradiction. Thus the suffix

starting at position tk + 1 has at least as many k + 1’s as k’s.

In particular, just after changing each bpr to r−1 in the first step of the algorithm, the resulting

word c is still highest weight. It follows that, just after raising tk−1 to k, the resulting word is still

{k}-highest weight. It follows that the suffix starting at position tk + 1 at this step has exactly as

many k + 1’s as k’s.

Now, if tk+1 < tk, changing tk to k+1 and then changing tk+1 to k+2 leaves the suffix starting

at tk being not {k}-highest weight in the final word. Thus we are done in this case.
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Otherwise, suppose tk+1 also cycles, so that tk+1 > tk and tk+1 is the new position of the

rightmost k + 1 that is not i-bracketed after changing tk to k + 1. Changing tk+1 to k + 2 could

potentially make the word {k}-highest weight again. In fact, suppose for contradiction that, just

after changing tk−1 to k, there were a k + 1 between position tk−1 and tk that makes its suffix not

{k}-highest weight. Then some entry k + 1 in position p < tk brackets with the k in position tk,

and since position tk is not i-bracketed, this k+ 1 is not i-bracketed either. Thus after changing tk

to k + 1, the k + 1 in position p is still not i-bracketed and it would be picked up in the search for

tk+1, a contradiction to the assumption that tk+1 > tk.

We now, however, can repeat the argument with tk+1 and the (k + 1, k + 2)-subword, and so

on until we either reach the last step or a non-cycling step, say with index `. At this point we

conclude that the final word e−i(b) is not {`}-highest weight.

It follows that if tk−1 6 tk for some k, then e−i(b) is not {1, 2, . . . , i}-highest weight.

For the converse, we wish to show that if ti−1 < ti−2 < · · · < t1 < t0 then e−i(b) remains highest

weight. Notice that by construction we must have tk−1 6 pk for all k 6 i.

We first show that the (1, 2)-subword remains highest weight in e−i(b) if t2 < t1. If i = 1, then

the first 2 simply changes to a 1 and so it is still {1}-highest weight. So suppose i > 2.

The changes that affect the (1, 2)-subword are that bp3 changes from 3 to 2, bp2 changes from

2 to 1, bt1 changes from 1 to 2, and (if i > 3) bt2 changes from 2 to 3. Note that after the first two

of these changes, any suffix of the word starting between positions p3 and p2 has at least two more

1’s than 2’s (due to the change in bp2 starting from a highest weight word) and any suffix starting

weakly before position p3 has at least one more 1 than 2.

If i = 2, bt1 is an unbracketed 1, so the suffixes before it must in fact have at least two more 1’s

than 2’s even if t1 < p3. Thus changing bt1 to 2 leaves the word highest weight, and we are done in

this case.

If i > 3, bt1 is a 1 that is not i-bracketed to the left of bp2 , and bt2 is the first 2 that is not

i-bracketed to the left of t1 (and necessarily to the left of bp3). It follows that, after changing them

to 2 and 3 respectively, the suffixes all have at least as many 1’s as 2’s except possibly those starting

between position t2 and t1. Assume to the contrary that there is a suffix with more 2’s than 1’s

starting between t2 and t1; the rightmost such starts at another entry ba = 2 between t2 and t1,
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and this 2 must be i-bracketed by the definition of t2. But then since bt1 is not i-bracketed, ba

must be bracketed with a 1 between ba and bt1 ; hence the suffix starting at ba cannot have a higher

difference between 2’s and 1’s than the suffix starting at bt1 after its change, a contradiction. It

follows that the (1, 2)-subword remains highest weight.

Now consider the (k, k + 1)-subword for some k 6 i − 1. This is changed by bpk+2
, bpk+1

, bpk

changing from k + 2 to k + 1, k + 1 to k, and k to k − 1 respectively, and then btk−1
, btk , btk+1

changing from k − 1 to k, k to k + 1, k + 1 to k + 2 respectively.

If we first change bpk to k− 1, then we have removed a k from the subword, but since there are

no k entries between bpk+1
and bpk , the rightmost suffix that may become not highest weight for k

starts at bpk+1
itself. Thus changing bpk+1

from k + 1 to k afterwards keeps the (k, k + 1)-subword

being {k}-highest weight, and in fact any suffix starting to the left of bpk+1
at this point has at

least one more k than k + 1. Finally if we change bpk+2
to k + 1, this adds a single k + 1 to any

suffix starting left of this position, so again the word remains {k}-highest weight. Next, we change

btk−1
from k − 1 to k, which means any suffix starting left of tk−1 has at least one more k than

k + 1. The argument for what happens after changing tk and tk+1 now is identical to that of the

(1, 2)-subword above.

Finally, consider the (i, i + 1)-subword. This is only affected by the changes to bpi+1 , bpi , and

bti−1 . The same argument as above shows that it stays {i}-highest weight after changing bpi+1 and

bpi , and then changing bti−1 to i certainly keeps it {i}-highest weight as well. This completes the

proof. �

From the above proof, we immediately obtain the following corollary.

Corollary 19. Let b ∈ B⊗` be {1, 2, . . . , i}-highest weight for i ∈ I0, with ε−i(b) = 1. Let

t1, . . . , ti−1 be the positions of the 1, 2, . . . , i− 1 that change to 2, 3, . . . , i respectively in the second

step of the computation of e−i(b) (see Theorem 17). Then if e−i(b) is not {1, 2, . . . , i}-highest

weight, the smallest index ` for which e−i(b) is not {`}-highest weight is precisely the smallest index

for which t`−1 6 t` and t`+1 < t` (where the second inequality is assumed to be vacuously true if

` = i− 1).
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In other words, ` is the smallest index for which one needs to cycle to get from t`−1 to t`, but

one does not need to cycle to get from t` to t`+1.

Proof. The proof of Lemma 18 shows that e−i(b) is not {`}-highest weight, and that it is

{k}-highest weight for k < ` if tk−1 6 tk 6 tk+1 (i.e., if tk and tk+1 both cycle). �

Remark 20. For any word v ∈ B⊗`, we may combine Proposition 10 and Theorem 17 in order

to algorithmically determine the highest weight element in the connected component of the queer

supercrystal containing v. In particular, we may first apply as many ei operators as possible to

obtain an I0-highest weight word v′, then apply Proposition 10 to determine whether there is an e−i

arrow that we may apply. We can then apply e−i to v′ using Theorem 17 and repeat this process on

the new word, and so on until we have reached a highest weight word w for the queer supercrystal.

Since the operators e−i and ei determine graphs having unique highest weight elements in each

connected component [GJK+14, Theorem 1.14], this process will always terminate at the highest

weight word in a component. In particular, e−1 and ei for i ∈ {1, 2, . . . , n} were previously the only

operators having a known direct combinatorial algorithm, which are not by themselves sufficient

to detect the unique highest weight elements. The algorithm in Theorem 17 therefore allows us to

bypass the computational difficulty of conjugating e−1 by swi.

2.1.4. Relation among e−i. The main result of this section is Proposition 25, which provides

relations between e−i that do and do not yield a {1, 2, . . . , i}-highest weight element when acting

on an I0-highest weight element. This proposition will be used in Section 2.3 to deal with “by-pass

arrows” in the component graph G(C).

We require several technical lemmas about k-bracketed entries and the e−i operation on highest

weight words.

Lemma 21. Suppose b ∈ B⊗` is {1, 2, . . . , i}-highest weight and 1 6 k 6 i. If a letter br = a in

b = b1b2 . . . b` is k-bracketed, then br is j-bracketed for all a < j 6 k.

Proof. We first show that if an entry a in b is (a+ 2)-bracketed, then it is (a+ 1)-bracketed;

for simplicity we set a = 1. Let v be the subword of b consisting of only the 2’s that are bracketed

with a 3 along with all the 1’s, and let v′ be the subword consisting of all the 1’s and 2’s. Then v′
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can be formed from v by inserting some 2 letters. It therefore suffices to show that any 1 that was

bracketed in v is still bracketed after inserting a single 2.

Indeed, let vs = 2 and vr = 1 be a bracketed pair in v. Note that by the definition of the

ordinary crystal bracketing rule, the subword vs . . . vr has exactly the same number of 2’s as 1’s, all

of them bracketed with some other letter in vs . . . vr. Therefore, if we insert a 2 to the left or right

of this pair, then the pair (vs, vr) remains bracketed. If instead we insert it between vs and vr, then

the interval between vs and vr contains strictly more 2’s than 1’s, and so there is some entry vt

between vs and vr for which the subword vt · · · vr is tied; in other words, vr is now bracketed with

some 2 to the right of vs. Thus vr stays bracketed after inserting a 2, as desired.

Now, if br = a is k-bracketed, then by the above reasoning it is also (k−1)-bracketed, since there

are weakly more (k − 1)’s available in this bracketing, and hence weakly more (k − 2)’s available,

and so on. The conclusion follows by induction. �

Lemma 22. Let b ∈ B⊗` be {1, 2, . . . , i}-highest weight and ε−i(b) = 1. Let bpi+1 , . . . , bp1 be the

initial (i+ 1)-sequence of b and c the word obtained by changing bpj from j to j− 1. Let k 6 i′ 6 i.

If b contains a sequence of letters k− 1, k− 2, . . . , 1 before position p1 that is not i′-bracketed, then

c contains a sequence of letters k − 1, k − 2, . . . , 1 before position p1 that is not i′-bracketed.

Proof. Suppose that b contains a sequence S of letters k−1, k−2, . . . , 1 in positions sk−1, . . . , s1

respectively, before position p1, that are not i′-bracketed; take S to be the rightmost such sequence

in the sense that it contains the rightmost 1 left of p1 that is not i′-bracketed, then the rightmost

2 that is not i′-bracketed before that, and so on. Note that s1 < p1 implies that s1 < p2 by the

definition of p1. Thus s2 < s1 < p2 and so s2 < p3, and so on, showing that sj < pj+1 for all

j. Also note that the initial (i + 1)-sequence bpi+1 , . . . , bp1 is (i + 1)-bracketed, so that the letters

bpk , . . . , bp1 must also be i′-bracketed by Lemma 21. Since k 6 i′ 6 i, this means that the initial

(i+ 1)-sequence is disjoint from S and hence S remains unchanged in c.

We now form a sequence S′ from S that is not i′-bracketed in c as follows. Consider the largest

entry j 6 i′ for which there exists a j between pj+2 and pj+1. Then all bracketing with higher

letters remains the same in c, but the letter j between positions pj+2 and pj+1 becomes bracketed

with the letter j + 1 in position pj+2 in the i′-bracketing in c, leaving the letter j in position pj+1
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to be an i′-unbracketed j. If sj < pj+2 (or otherwise csj does not become bracketed) we keep it in

S′, and if pj+2 < sj < pj+1 and it becomes bracketed, we replace sj with the first i′-unbracketed

position s′j of a j in c to the right of sj , to choose the j for S′.

We now show that we can choose a j−1 after this step to be in S′. If the j on the previous step

did not change, then we repeat this process for j − 1. If it did change, from sj to an index s′j , note

that if sj−1 < s′j then the previous j − 1 is now i′-bracketed with sj in c as well, so we also have to

choose the next j − 1 to the right. Either way we replace sj−1 with the next i′-unbracketed j − 1,

in position s′j−1, if the j − 1 became bracketed, and we see that s′j < s′j−1. Furthermore, s′j−1 6 pj

since we know that pj becomes an i′-unbracketed j−1 as in the case of j above. Continuing in this

manner we can form a sequence S′ of elements of c that are not i′-bracketed, all weakly to the left

of p2 (and hence strictly before p1). �

Lemma 23. Let b ∈ B⊗` be I0-highest weight such that ε−i(b) > 0 for some i ∈ I0 and e−i(b) is

not {1, 2, . . . , i}-highest weight. Let k be the smallest index for which tk−1 6 tk, where t0 = p1 and

tj for j = 1, . . . , i− 1 are the indices that are raised in the second step of the computation of e−i(b)

(such a k exists by Proposition 18). Then we have that ε−k(b) = 1 and e−k(b) is {1, 2, . . . , k}-highest

weight.

Proof. Let bpi+1 , bpi , . . . , bp1 be the initial (i + 1)-sequence, bqi , bqi−1 , . . . , bq1 be the initial i-

sequence, bp′k+1
, . . . , bp′1 the initial (k+1)-sequence, and bq′k , . . . , bq

′
1

the initial k-sequence of b. Also

define c and c′ respectively to be the words formed by lowering the entries in the sequences {bpj}

or {bp′j} by one, respectively.

Since ε−i(b) > 0, we have by Proposition 10 that qa = pa for some 1 6 a 6 i. If a is maximal

with this property, then in fact qj = pj for all j 6 a by the definition of the initial sequences. Assume

by contradiction that ε−k(b) = 0. Then again by Proposition 10, q′j < p′j for all j ∈ {1, . . . , k}.

Furthermore, p′j 6 pj for all j 6 k so q′j < pj as well.

Suppose that q′a′ = qa′ for some 1 6 a′ 6 k. Then q′j = qj for all j 6 a′ and hence q′j = qj = pj

for j 6 min(a, a′), contradicting the fact that q′j < pj for all j. Hence q′j < qj for all 1 6 j 6 k.

Thus we also have q′j < qj+1 for all 1 6 j 6 k, for otherwise bq′j would be the first j after qj+1 and

we would have q′j = qj .
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The sequence of letters k, k − 1, . . . , 1 in positions q′k, . . . , q
′
1 in b is not i-bracketed since the

first bracketed k + 1 in b must be weakly right of position qk+1 > q′k. Hence by Lemma 22, the

word c also contains a sequence k, k− 1, . . . , 1 of letters that are not i-bracketed before position p1,

contradicting the fact that tk−1 6 tk. It follows that ε−k(b) = 1.

Next we show that e−k(b) is {1, 2, . . . , k}-highest weight. Note that by the definition of the

initial sequences q′j 6 p′j 6 qj 6 pj . Since ε−i(b) = 1 and ε−k(b) = 1, we also have q′j = p′j for

j 6 a′ and qj = pj for j 6 a for some a′, a. Suppose p′j < qj for all j. Then by a similar argument

to that above, in the word c there exists a sequence of positions tk < tk−1 < · · · < t1 < t0 = p1

such that ctj = j which are not i-bracketed in c. This contradicts the fact that tk−1 6 tk. Hence

we must have p′j = qj for some j and hence q′j = p′j = qj = pj for j 6 x for some x > 1. We claim

that tj < q′j for all 1 6 j < k. Indeed, t1 is to the left of position p1 = q′1, so that t1 < q′1. By the

definition of p1 we also cannot have p2 < t1 < p1 so in fact t1 6 p2. The letter in position q′j = pj

for 1 < j 6 x in c is j − 1, so that also tj < q′j for 1 < j 6 x. For j > x, the letter in position

q′j < pj in c as well as in b is j. It is k-bracketed in c and b since the first letter k in c and b is

in position q′k. If tj > q′j then since the sequence of entries q′r for r > j is k-bracketed but not

i-bracketed, we would have tk < tk−1, a contradiction. Thus tj < q′j .

It follows that the tj entries are not k-bracketed, so b contains a sequence k − 1, k − 2, . . . , 1

that is not k-bracketed. By Lemma 22 this means that c′ has a sequence k − 1, . . . , 1 in positions

t′k−1 < · · · < t′1 that is not k-bracketed, proving that e−k(b) is {1, 2, . . . , k}-highest weight by

Proposition 18. �

For an element b ∈ B⊗`, denote by ↑ b the unique I0-highest weight element in the same

component as b. The next lemma describes the action of ↑ after an application of e−i.

Lemma 24. Let b ∈ B⊗` be I0-highest weight such that ε−i(b) > 0 for some i ∈ I0 and e−i(b)

is not {1, 2, . . . , i}-highest weight. Let k be as in Lemma 23 and let the sequences pj and tj be as

in Theorem 17. Then ↑ e−i(b) can be obtained from b by changing j in position pj to j − 1 for

1 < j 6 i + 1 and j in position tj for 1 6 j < k to j + 1, and lowering some letters larger than

i + 1. In particular, the changes in positions tj for j > k in e−i(b) are undone by the application

of ↑.
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Proof. By Corollary 19, the smallest index ` for which e`(e−i(b)) is defined is the first ` for

which t` cycled but t`+1 did not (or does not exist). In particular ` > k and all tj with k 6 j 6 `

cycle around the end of the word.

Note that t` was chosen as the rightmost ` that is not i-bracketed (after raising t1, . . . , t`−1).

Also recall that the word c formed by lowering the bpj entries is {1, 2, . . . , i}-highest weight, so just

before changing t` the word is still {`}-highest weight. Finally, by assumption t` is weakly right of

t`−1 (which is the only new ` since starting at the word c). Thus, after changing t` to ` + 1, if it

bracketed with an ` to its right (in the ordinary crystal bracketing) then in fact that ` is also not

i-bracketed on the previous step, a contradiction since t`−1 6 t`.

Therefore t` is an unbracketed `+1 in e−i(b), and since all other (`+1)’s before it are bracketed

with some `, we know that e` changes it back to an `. After doing so, by the same argument we

see that position t`−1 is now an unbracketed `, so applying e`−1 changes it back to `− 1, and so on

down to tk. At this point the resulting word

w := ek · · · e`−1e`(e−ib)

is {1, 2, . . . , `}-highest weight, since tk−1 did not cycle and so changing tk back to k leaves w highest

weight at that step.

Now suppose t`+1 exists (that is, ` 6 i− 2); then t`+1 < t`, and in w the position t` is changed

back to `. We claim that e`+1 is defined on w and applying it changes t`+1 from ` + 2 back to

`+ 1. Indeed, if t`+1 is bracketed with an `+ 1 in w then this `+ 1 must be to the right of t` (since

otherwise it would have been a preferred non-i-bracketed choice of t`+1 in the e−i algorithm). But

then this ` + 1 is bracketed with an ` to its right since w is {`}-highest weight, and then this `

similarly contradicts the choice of t`. Thus t`+1 is an ` + 2 that is not bracketed with an ` + 1

after lowering t` back to `. By the weight changes it must be the only such `+ 2 and so applying

e`+1 changes t`+1 back to ` + 1. Continuing in this fashion, we can apply e`+2, e`+3, and so on

in that order to change the next entries t`+2, t`+3, and so on back to their original values, until

some t`+r cycles again. Let tm be the next entry for which tm+1 does not cycle (the end of the

next block of cycling entries); by the same arguments as above we can now apply em, then em−1,

and so on down to e`+r. Repeating this process on every block of cycling and non-cycling entries
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yields a {1, . . . , i}-highest weight word formed by changing tk, . . . , ti−1 back to k, k + 1, . . . , i − 1

respectively. Finally, to finish forming ↑ e−i(b), only entries larger than i+ 1 may be changed, and

the conclusion follows. �

The next proposition will be used in Section 2.3 to deal with “by-pass arrows” in the component

graph G(C).

Proposition 25. Let b ∈ B⊗` be I0-highest weight such that ε−i(b) > 0 for some i ∈ I0 and

e−i(b) is not {1, 2, . . . , i}-highest weight. Then there exists 1 6 k < i such that ε−k(b) = 1, e−k(b)

is {1, 2, . . . , k}-highest weight and

(2.1.9) ↑ e−i(b) =↑ e−i ↑ e−k(b) or ↑ e−i(b) =↑ e−k(b).

Example 26. Take b = 343212211 ∈ B⊗9, which satisfies ε−3(b) > 0. Then

↑ e−3b = e2e1e−3b = 332112211 = e2e−3e−1b =↑ e−3 ↑ e−1b.

Furthermore, e−1b = 343112211 is {1}-highest weight.

Take b = 4321321 ∈ B⊗7, which satisfies ε−3(b) > 0. Then

↑ e−3b = e1e2e−3b = 3211321 = e−3e2e−1b =↑ e−3 ↑ e−1b.

Furthermore, e−1b = 4311321 is {1}-highest weight.

Take b = 2154321 ∈ B⊗7, which satisfies ε−4(b) > 0. Then

↑ e−4b = e3e−4b = 3243211 = e4e−3b =↑ e−3b.

Proof of Proposition 25. Let k be as in Lemma 23. Then the first statements hold for k

by Lemma 23 and it only remains to prove (2.1.9). By Lemma 24, ↑ e−ib changes j in position pj

to j − 1 for 1 < j 6 i + 1 and j in position tj for 1 6 j < k to j + 1. The changes in positions tj

for j > k in e−i are undone by ↑. Some letters bigger than i+ 1 might also be lowered by ↑.

We use the same notation as in the proof of Lemma 23. There we proved that tj < q′j for all

1 6 j < k. Since q′j 6 pj and there is no letter j between positions pj+1 and pj in b, it follows that

tj 6 pj+1 for all 1 6 j < k. Now suppose that tj = pj+1 for some 1 6 j < k. We claim that then
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tj−1 = pj as well. Let d − 1 be maximal such that td−1 = pd. Then there has to be a letter d − 1

in position p in b with pd+1 < p < pd, so that the letter d− 1 in position pd in c is not i-bracketed.

Suppose that there is no letter d− 2 between positions p and pd−1 in b. In this case the letter d− 2

in position pd−1 in c is i-bracketed, so that td−2 > pd−1, which contradicts td−2 6 pd−1. Continuing

this argument, there has to be a sequence of letters d− 1, d− 2, . . . , 1 between positions pd+1 and

p2 that is not i-bracketed. Moreover, letter j in this sequence has to appear before position pj+1.

But this means that the letter j in position pj+1 for 1 6 j < d is not i-bracketed, so that tj = pj+1

for all 1 6 j < d.

By the arguments above, we have that tj = pj+1 for 1 6 j < d for some d and tj for j > d

is part of a sequence of non k-bracketed letters in b (by the definition of k and the sequence q′j).

Similarly, we have t′j = p′j+1 for 1 6 j < d′ for some d′ and t′j for j > d′ is part of the same sequence

of non k-bracketed letters in b as tj . Also, d′ > d since p′j 6 pj for all 1 6 j 6 k + 1. In particular,

this implies tj = t′j for d′ 6 j < k.

Furthermore, before applying the ↑ operator the entries that change are:

In ↑ e−ib: bpj : j 7→ j − 1 for d < j 6 i+ 1

btj : j 7→ j + 1 for d 6 j < i

In ↑ e−kb: bp′j : j 7→ j − 1 for d′ < j 6 k + 1

bt′j : j 7→ j + 1 for d′ 6 j < k.

Recall also that p′j = pj for 1 6 j 6 x for some x > 1. Denote by tj and pj the selected positions

by e−i on the element ↑ e−kb.

First assume that x = k + 1, so that p′j = pj for all 1 6 j 6 k + 1. In this case t′j = tj for

1 6 j < k. Furthermore, if in e−k(b) the letter k + 2 in position pk+2 is unbracketed, then in

↑ e−k(b), the letter k+ 2 in position pk+2, then the letter k+ 3 in position pk+3 etc will be lowered.

These are the same changes as in ↑ e−i(b), so that ↑ e−i(b) =↑ e−k(b).

Next assume that d′ < x 6 k or x = k + 1 but the letter k + 2 in position pk+2 in e−k(b) is

bracketed. We first show that in this case pj = pj for x < j 6 i + 1. Note that to form ↑ e−k(b),

since e−k(b) is {1, 2, . . . , k}-highest weight, we apply ek+1, ek+2, . . . , er in order for some r, so that
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we lower a k + 2 to a k + 1, k + 3 to k + 2, and so on until we reach an I0-highest weight word.

Note also that bp′k+1
was the entry that lowered from k + 1 to k, so the k + 2 that gets lowered, if

it exists, is to the left of p′k+1 < pk+1. Similarly the k + 3 that gets lowered is left of p′k+2 < pk+2,

and so on, and hence r < i since pi+1 is the leftmost i + 1. It follows that no i + 1 lowers to an

i, and so pi+1 = pi+1. Since the entries lowered by ↑ are left of pj for each j > x, it follows that

pj = pj for x < j 6 i+ 1.

For the sequence tj , note that the entries pj that we lower for j 6 x cannot be i-bracketed in

c due to the condition pi+1 = pi+1 shown above, and because tx−1 = t′x−1, so that t′x−1 cannot be

between px+1 and px. Furthermore, for x 6 j < k the letters in positions pj+1 are all i-bracketed in

c and tj = t′j < p′j+1 < pj+1 = pj+1. Also note that d = d′ since pj+1 = p′j+1 = t′j for d 6 j < d′ < x

and the letter j in position pj+1 = p′j+1 in c′ is not k-bracketed and hence not i-bracketed in c′ and

c. It follows that

tj =


pj+1 for 1 6 j < x,

p′j+1 for x 6 j 6 k,

and for k < j 6 r, we have that tj is equal to the position of letter j + 1 that is lowered when

applying ↑ to e−k(b). Hence ↑ e−i(b) =↑ e−i ↑ e−k(b).

Finally, assume that x 6 d′. In this case, by a similar argument, we have pj = pj for 1 6 j 6 i+1

and

tj =


pj+1 for 1 6 j < d,

tj for d 6 j < d′,

p′j+1 for d′ 6 j 6 k,

and for k < j 6 r, we have that tj is equal to the position of letter j + 1 that is lowered when

applying ↑ to e−k(b). Again, we have ↑ e−i(b) =↑ e−i ↑ e−k(b). �

2.2. Local axioms

In [AKO18b, Definition 4.11], Assaf and Oguz give a definition of regular queer supercrystals.

In essence, their axioms are rephrased in the following definition, where Ĩ := I0 ∪ {−1}.
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Definition 27 (Local queer axioms). Let C be a graph with labeled directed edges given by fi

for i ∈ I0 and f−1. If b′ = fjb for j ∈ Ĩ define ej by b = ejb
′.

LQ1. The subgraph with all vertices but only edges labeled by i ∈ I0 is a type An Stembridge

crystal.

LQ2. ϕ−1(b), ε−1(b) ∈ {0, 1} for all b ∈ C.

LQ3. ϕ−1(b) + ε−1(b) > 0 if wt(b)1 + wt(b)2 > 0.

LQ4. Assume ϕ−1(b) = 1 for b ∈ C.

(a) If ϕ1(b) > 2, we have

f1f−1(b) = f−1f1(b),

ϕ1(b) = ϕ1(f−1(b)) + 2,

ε1(b) = ε1(f−1(b)).

(b) If ϕ1(b) = 1, we have

f1(b) = f−1(b).

LQ5. Assume ϕ−1(b) = 1 for b ∈ C.

(a) If ϕ2(b) > 0, we have

f2f−1(b) = f−1f2(b),

ϕ2(b) = ϕ2(f−1(b))− 1,

ε2(b) = ε2(f−1(b)).

(b) If ϕ2(b) = 0, we have

ϕ2(b) = ϕ2(f−1(b))− 1 = 0, or ϕ2(b) = ϕ2(f−1(b)) = 0,

ε2(b) = ε2(f−1(b)), ε2(b) = ε2(f−1(b)) + 1.
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Figure 2.2. Illustration of axioms LQ4 (left) and LQ5 (right). The (−1)-arrow
at the bottom of the right figure might or might not be there.

LQ6. Assume that ϕ−1(b) = 1 and ϕi(b) > 0 with i > 3 for b ∈ C. Then

fif−1(b) = f−1fi(b),

ϕi(b) = ϕi(f−1(b)),

εi(b) = εi(f−1(b)).

Axioms LQ4 and LQ5 are illustrated in Figure 2.2.

Proposition 28 ( [AKO18b]). The queer supercrystal of words B⊗` satisfies the axioms in

Definition 27.

Proof. LQ1 follows by definition. LQ2 and LQ3 follow from Remark 5. LQ4 follows from

Lemma 6 and LQ5 follows from Lemma 7. Finally, LQ6 is Q4. �

In [AKO18b, Conjecture 4.16], Assaf and Oguz conjecture that every regular queer supercrystal

is a normal queer supercrystal. In other words, every connected graph satisfying the local queer

axioms of Definition 27 is isomorphic to a connected component in some B⊗`. We provide a
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counterexample to this claim in Figure 2.3. In the figure, the I0-components of the q(3)-crystal

of highest weight (4, 2, 0) are shown. Some of the f−1-arrows are drawn in green. The remaining

arrows can be filled in using the axioms of Figure 2.2 in a consistent manner. If the dashed green

arrow from 331131 to 332131 and the dashed green arrow from 331132 to 332132 are replaced

by the dashed purple arrow from 331131 to 331231 and the dashed purple arrow from 331132 to

332231, respectively, all axioms of Definition 27 are still satisfied with the remaining f−1-arrows

filled in. However, the I0-component with highest weight element 132121 has become disconnected

and hence the two crystals are not isomorphic.

The problem with Axiom LQ5 illustrated in Figure 2.2 is that the (−1)-arrow at the bottom of

the 2-strings is not closed at the top. Hence, as demonstrated by the counterexample in Figure 2.3

switching components with the same I0-highest weights can cause non-uniqueness. In fact, if f−1b

is determined for all b ∈ C such that

(2.2.1) ϕi(b) = 0 for all i ∈ I0 \ {1} and ϕ1(b) = 2,

then, by the relations between f−1 and fi for i ∈ I0 of Definition 27, f−1 is determined on all

elements in C. Namely, fi and f−1 commute for i 6= 1, 2, so that it is enough to consider f−1b

when ϕi(b) = 0. Similarly, by the right picture in Figure 2.2, once f−1b is determined for b with

ϕ2(b) = 0, which are the elements at the bottom of the 2-strings, then f−1c is determined for all

c in this picture. And finally, if f−1b is determined for b with ϕ1(b) = 2, which is the element

at height 2 in the left picture of Figure 2.2, then f−1 is determined on all elements above this b.

Furthermore, f−1(c) = f1(c) when ϕ1(c) = 1. Hence the conditions in (2.2.1) are indeed enough.

Lemma 29. Let v ∈ B⊗` be an I0-lowest weight element, that is, ϕi(v) = 0 for all i ∈ I0. Then

every b ∈ B⊗` satisfying (2.2.1) is of the form

(2.2.2) gj,k := (e1 · · · ej)(e1 · · · ek)v for some 1 6 j 6 k 6 n.

Conversely, every gj,k 6= 0 with 1 6 j 6 k 6 n satisfies (2.2.1).

Proof. The statement of the lemma is a statement about type An crystals and hence can be

verified by the tableaux model for type An crystals (see for example [BS17]). The element v is
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Figure 2.3. Counterexample to the unique characterization of the local queer ax-
ioms of Definition 27.
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I0-lowest weight and hence as a tableau in French notation contains the letter n+ 1 at the top of

each column, the letter n in the second to top box in each column, and in general the letter n+2− i

in the i-th box from the top in its column. If there is a letter k + 1 in the first row of v, then

(e1 · · · ek) applies to v and b′ = (e1 · · · ek)v satisfies ϕi(b
′) = 0 for i ∈ I0 \ {1} and ϕ1(b

′) = 1. The

element b′ has several changed entries in the first row, and otherwise the entries above the first row

all have letter n+ 2− i in the i-th box from the top in their column. If b′ has a letter j + 1 in the

first row with 1 6 j 6 k, then (e1 · · · ej) applies to b′ and b = gj,k = (e1 · · · ej)b′ satisfies (2.2.1).

Note that if j > k, then the last e1 would no longer apply and hence b = 0. This proves that

gj,k 6= 0 as in (2.2.2) satisfies (2.2.1). If conversely b satisfies (2.2.1), then as a tableau it contains

two extra 1’s in the first row that have a 3 or bigger above them rather than a 2 in their columns,

and for entries higher than the first row the i-th box from the top in its column contains n+ 2− i.

It is not hard to check that then (fk · · · f1)(fj · · · f1)b = v for some 1 6 j 6 k 6 n. Hence b is of

the form (2.2.2). �

In the next section, we introduce a new graph just on I0-highest weight elements and new

connectivity axioms (see Definition 33) that uniquely characterizes queer supercrystals (see Theo-

rem 40).

2.3. Graph on type A components

Let C be an abstract q(n + 1)-crystal with index set I0 ∪ {−1} that is a Stembridge crystal of

type An when restricted to the arrows labeled I0. In this section, we define a graph for C labeled

by the type An components of C. We draw an edge from vertex C1 to vertex C2 in this graph

if there is an element b1 in the component C1 and an element b2 in the component C2 such that

f−1b1 = b2. We provide an easy combinatorial way to describe this graph for a queer supercrystal

which is a subcrystal of the crystal of words leveraging the explicit actions of f−i described in

Theorem 13 and e−i described in Theorem 17, respectively (see Theorem 38). We also provide new

axioms in Definition 33 that will be used in Section 2.4 to provide a unique characterization of

queer supercrystals.

Definition 30. Let C be a crystal with index set I0 ∪{−1} that is a Stembridge crystal of type

An when restricted to the arrows labeled I0. We define the component graph of C, denoted by G(C),
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3⊗ 3⊗ 2⊗ 1⊗ 2⊗ 1

2⊗ 3⊗ 1⊗ 1⊗ 2⊗ 1

2⊗ 2⊗ 1⊗ 1⊗ 2⊗ 1

1⊗ 3⊗ 2⊗ 1⊗ 2⊗ 1

1⊗ 3⊗ 1⊗ 1⊗ 2⊗ 1

1⊗ 2⊗ 1⊗ 1⊗ 2⊗ 1

(−2, 3)

(−1, 2)

(−1, 3)

(−1, 2)

(−2, 3)

3⊗ 3⊗ 2⊗ 1⊗ 2⊗ 1

2⊗ 3⊗ 1⊗ 1⊗ 2⊗ 1

2⊗ 2⊗ 1⊗ 1⊗ 2⊗ 1

1⊗ 3⊗ 2⊗ 1⊗ 2⊗ 1

1⊗ 3⊗ 1⊗ 1⊗ 2⊗ 1

1⊗ 2⊗ 1⊗ 1⊗ 2⊗ 1

Figure 2.4. Left: G(C). The graph G(C) is obtained from G(C) by removing the
labels. Right: G(C′) for the crystals of Example 31.

as follows. The vertices of G(C) are the type An components of C (typically labeled by their highest

weight elements). There is an edge from vertex C1 to vertex C2 in this graph, if there is an element

b1 in the component C1 and an element b2 in the component C2 such that

f−1b1 = b2.

Example 31. Let C be the connected component in the q(3)-crystal B⊗6 with highest weight

element 1⊗2⊗1⊗1⊗2⊗1 of highest weight (4, 2, 0). The graph G(C) is given in Figure 2.4 on the

left (disregarding the labels on the edges). The graph G(C′) for the counterexample C′ in Figure 2.3

is given in Figure 2.4 on the right. Since the two graphs are not isomorphic as unlabeled graphs,

this confirms that the purple dashed arrows in Figure 2.3 do not give the queer supercrystal even

though the induced crystal satisfies the axioms in Definition 27.

Example 32. Let C be the connected component with highest weight element 1⊗1⊗2⊗1⊗2⊗1⊗

3⊗2⊗1 in the q(4)-crystal B⊗9. Then the graph G(C) is given in Figure 2.5. One may easily check

using Theorem 13 that all arrows in Figure 2.5 are given by the application of f−i for some i except

for the arrows that by-pass other arrows, the arrow to the lowest vertex, which is given by f−2f3

(which is also determined by Theorem 13), and the arrow going into 3⊗2⊗3⊗1⊗2⊗1⊗3⊗2⊗1,

which is given by f−1f2. The result is shown in Figure 2.6.
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4⊗ 3⊗ 4⊗ 1⊗ 2⊗ 1⊗ 3⊗ 2⊗ 1

1⊗ 1⊗ 4⊗ 1⊗ 2⊗ 1⊗ 3⊗ 2⊗ 1

3⊗ 2⊗ 4⊗ 1⊗ 2⊗ 1⊗ 3⊗ 2⊗ 1

3⊗ 2⊗ 3⊗ 1⊗ 2⊗ 1⊗ 3⊗ 2⊗ 13⊗ 1⊗ 4⊗ 1⊗ 2⊗ 1⊗ 3⊗ 2⊗ 1

3⊗ 1⊗ 2⊗ 1⊗ 2⊗ 1⊗ 3⊗ 2⊗ 1

2⊗ 1⊗ 4⊗ 1⊗ 2⊗ 1⊗ 3⊗ 2⊗ 1

2⊗ 1⊗ 3⊗ 1⊗ 2⊗ 1⊗ 3⊗ 2⊗ 1

2⊗ 1⊗ 2⊗ 1⊗ 2⊗ 1⊗ 3⊗ 2⊗ 1

4⊗ 2⊗ 3⊗ 1⊗ 2⊗ 1⊗ 3⊗ 2⊗ 1

1⊗ 1⊗ 3⊗ 1⊗ 2⊗ 1⊗ 3⊗ 2⊗ 1

1⊗ 1⊗ 2⊗ 1⊗ 2⊗ 1⊗ 3⊗ 2⊗ 1

4⊗ 1⊗ 3⊗ 1⊗ 2⊗ 1⊗ 3⊗ 2⊗ 1

4⊗ 1⊗ 2⊗ 1⊗ 2⊗ 1⊗ 3⊗ 2⊗ 1

Figure 2.5. The graph G(C) for Example 32.

Next we introduce new axioms.

Definition 33 (Connectivity axioms). Let C be a connected crystal satisfying the local queer

axioms of Definition 27. Let v ∈ C be an I0-lowest weight element and u =↑ v. As in (2.2.2), define

gj,k := (e1 · · · ej)(e1 · · · ek)v for 1 6 j 6 k 6 n.

C0. ϕ−1(gj,k) = 0 implies that ϕ−1(e1 · · · ekv) = 0.

C1. Suppose that G(C) contains an edge u → u′ such that wt(u′) is obtained from wt(u) by

moving a box from row n+ 1− k to row n+ 1− h with h < k. For all h < j 6 k such that

gj,k 6= 0, we require that f−1gj,k 6= 0 and

f−1gj,k = (e2 · · · ej)(e1 · · · eh)v′,

where v′ is I0-lowest weight with ↑ v′ = u′.

C2. Suppose that either (a) G(C) contains an edge u → u′ such that wt(u′) is obtained from

wt(u) by moving a box from row n + 1 − k to row n + 1 − h with h < k or (b) no such

edge exists in G(C). For all 1 6 j 6 h in case (a) and all 1 6 j 6 k in case (b) such that

gj,k 6= 0 and f−1gj,k 6= 0, we require that

f−1gj,k = (e2 · · · ek)(e1 · · · ej)v.
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4⊗ 3⊗ 4⊗ 1⊗ 2⊗ 1⊗ 3⊗ 2⊗ 1

1⊗ 1⊗ 4⊗ 1⊗ 2⊗ 1⊗ 3⊗ 2⊗ 1

3⊗ 2⊗ 4⊗ 1⊗ 2⊗ 1⊗ 3⊗ 2⊗ 1

3⊗ 2⊗ 3⊗ 1⊗ 2⊗ 1⊗ 3⊗ 2⊗ 1

3⊗ 1⊗ 4⊗ 1⊗ 2⊗ 1⊗ 3⊗ 2⊗ 1

3⊗ 1⊗ 2⊗ 1⊗ 2⊗ 1⊗ 3⊗ 2⊗ 1

2⊗ 1⊗ 4⊗ 1⊗ 2⊗ 1⊗ 3⊗ 2⊗ 1

2⊗ 1⊗ 3⊗ 1⊗ 2⊗ 1⊗ 3⊗ 2⊗ 1

2⊗ 1⊗ 2⊗ 1⊗ 2⊗ 1⊗ 3⊗ 2⊗ 1

4⊗ 2⊗ 3⊗ 1⊗ 2⊗ 1⊗ 3⊗ 2⊗ 1

1⊗ 1⊗ 3⊗ 1⊗ 2⊗ 1⊗ 3⊗ 2⊗ 1

1⊗ 1⊗ 2⊗ 1⊗ 2⊗ 1⊗ 3⊗ 2⊗ 1

4⊗ 1⊗ 3⊗ 1⊗ 2⊗ 1⊗ 3⊗ 2⊗ 1

4⊗ 1⊗ 2⊗ 1⊗ 2⊗ 1⊗ 3⊗ 2⊗ 1

(−1, 2)

(−1, 3)(−3, 4)

(−2, 3)

(−2, 3)

(−3, 4)

(−3, 4) (−1, 2)

(−1, 2)

(−3, 4)

(−2, 4)

(−1, 2)

(−2, 3)

(−1, 2)

(−2, 3)

Figure 2.6. The graph G(C) of Figure 2.5 obtained from G(C) by labeling each
edge (except for the by-pass edges) by (−i, h) if f(−i,h) applies.

Remark 34. Condition C0 can be replaced by the following condition:

LQ7. If ε1(e2(b)) > ε1(b) for b ∈ C with ε2(b) > 0, then ϕ−1(b) 6 ϕ−1(e1e2(b)).

This condition indeed implies C0. Suppose ϕ−1(e1 · · · ekv) = 1. Then for b = (e3 · · · ej)(e1 · · · ek)v,

we have ϕ−1(b) = 1. However, b satisfies ε1(e2(b)) > ε1(b), so the above condition implies that

ϕ−1(e1e2(b)) = 1 as well. But e1e2(b) = gj,k. Hence ϕ−1(gj,k) = 0 implies that ϕ−1(e1 · · · ekv) = 0.

Moreover, in B⊗` the conditions in LQ7 are satisfied. Namely, the condition ε1(e2(b)) > ε1(b)

implies that e2(b) 6= 0 and e1e2(b) 6= 0. Moreover, this condition implies that e1 acts on e2(b) in a

position weakly to the left of where e2 acts on b. Thus if ϕ−1(b) = 1, it immediately follows that

ϕ−1(e1e2(b)) = 1 which proves the statement.
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4⊗ 3⊗ 4⊗ 1⊗ 2⊗ 1⊗ 3⊗ 2⊗ 1

1⊗ 1⊗ 4⊗ 1⊗ 2⊗ 1⊗ 3⊗ 2⊗ 1

3⊗ 2⊗ 4⊗ 1⊗ 2⊗ 1⊗ 3⊗ 2⊗ 1

3⊗ 2⊗ 3⊗ 1⊗ 2⊗ 1⊗ 3⊗ 2⊗ 1

3⊗ 1⊗ 4⊗ 1⊗ 2⊗ 1⊗ 3⊗ 2⊗ 1

3⊗ 1⊗ 2⊗ 1⊗ 2⊗ 1⊗ 3⊗ 2⊗ 1

2⊗ 1⊗ 4⊗ 1⊗ 2⊗ 1⊗ 3⊗ 2⊗ 1

2⊗ 1⊗ 3⊗ 1⊗ 2⊗ 1⊗ 3⊗ 2⊗ 1

2⊗ 1⊗ 2⊗ 1⊗ 2⊗ 1⊗ 3⊗ 2⊗ 1

4⊗ 2⊗ 3⊗ 1⊗ 2⊗ 1⊗ 3⊗ 2⊗ 1

1⊗ 1⊗ 3⊗ 1⊗ 2⊗ 1⊗ 3⊗ 2⊗ 1

1⊗ 1⊗ 2⊗ 1⊗ 2⊗ 1⊗ 3⊗ 2⊗ 1

4⊗ 1⊗ 3⊗ 1⊗ 2⊗ 1⊗ 3⊗ 2⊗ 1

4⊗ 1⊗ 2⊗ 1⊗ 2⊗ 1⊗ 3⊗ 2⊗ 1

−1

−2 −1−3

−3

−3

−2

−2

−2

−3 −1

−1

−3

−3 −2

−1

−2

−1

−2

Figure 2.7. The graph G̃(C) recovered from the graph G(C) of Figure 2.6.

Theorem 35. The q(n+ 1)-crystal B⊗` satisfies the axioms in Definition 33.

The proof of Theorem 35 is given in the appendix of [GHPS20].

Next we show that the arrows in G(C), where C is a connected component in B⊗`, can be

modeled by e−i on type A highest weight elements.

Proposition 36. Let C be a connected component in the q(n+ 1)-crystal B⊗`. Let C1 and C2

be two distinct type An components in C and let u2 be the I0-highest weight element in C2. Then

there is an edge from C1 to C2 in G(C) if and only if e−iu2 ∈ C1 for some i ∈ I0.

Proof. First note that there is an edge from C1 to C2 in G(C) if there exists b1 ∈ C1 and

b2 ∈ C2 such that e−1b2 = b1. Recall that by (2.1.4) we have e−i := sw−1
i
e−1swi . Hence, if e−iu2

is defined and e−iu2 ∈ C1, then b1 := e−1b2 is defined, where b2 := swiu2 ∈ C2 and b1 ∈ C1. This

proves that there is an edge between C1 and C2 in G(C).
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Conversely assume that b1 = e−1b2 for some b1 ∈ C1 and b2 ∈ C2. We want to show that

then e−iu2 ∈ C1 for some i ∈ I0. By the discussion before Lemma 29, we know that the (−1)-

arrow on b1 is induced (using the local queer axioms of Definition 27) by the (−1)-arrow on gj,k =

(e1 · · · ej)(e1 · · · ek)v1 for some j 6 k. By Theorem 35 and Condition C1 of Definition 33, we must

have

f−1gj,k = (e2 · · · ej)(e1 · · · eh)v2 for some h < j 6 k,

where v2 is the I0-lowest weight element in the component C2. In particular, for the edge u1 → u2

in G(C), where u1 is the I0-highest weight element in the component C1, the weight wt(u2) differs

from wt(u1) by moving a box from row n+1−k to row n+1−h with 1 6 h < k 6 n. Furthermore,

all gj′,k 6= 0 with h < j′ 6 k are mapped to component C2 under f−1.

Claim: Set b := swn−hu2 and b′ := (e2 · · · eh+1)(e1 · · · eh)v2. If wt(b)2 > 0, there exist j1, . . . , jp ∈ I0

such that b′ = fj1 · · · fjpb and

(2.3.1) ϕ2(fja · · · fjpb) > 0 if ja = 2.

The claim is a statement about type An crystal operators, hence one may use the tableaux

model to verify it. It is straightforward to verify that every column of height d > n − h in the

insertion tableau of b contains the letter m in row m; the columns of height n− h contain 1 in the

first row and m+ 1 in row m > 1; finally the columns of height d < n− h contain the letter m+ 2

in row m. Hence wt(b)2 > 0 is only satisfied if there is at least one column of height d > n − h.

Now we start acting with operators fj on b, where j ∈ I0 \ {2}, to make b into a I0 \ {2}-lowest

weight element. This element differs from v2 only in columns of height d > n−h; columns of height

d > n − h contain 1 and 2 in rows 1 and 2, respectively, whereas columns of height d = n − h

contain 2 in row 1. Suppose that there are p columns whose height is less than n + 1 and at

least n− h. Then we can apply fp−12 without violating (2.3.1) since each such column contains an

unbracketed 2. Then apply again fj with j ∈ I0 \ {2} to make the tableau into a I0 \ {2}-lowest

weight element, followed by the maximal number of f2 satisfying (2.3.1), followed by making the

result I0\{2}-lowest weight. This tableau is exactly (e2 · · · eh+1)(e1 · · · eh)v2. This proves the claim.
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Now since by assumption wt(u2) differs from wt(u1) by moving a box from row n+1−k to row

n+ 1−h, as a tableau swn−hu2 indeed has a column of height d > n− k, so that wt(swn−hu2)2 > 0.

By condition (2.3.1), the (−1)-arrow coming into swn−hu2 is induced by the (−1)-arrow coming into

(e2 · · · eh+1)(e1 · · · eh)v2 by the local queer axioms of Definition 27. Hence e−(n−h)u2 ∈ C1, which

proves the proposition where i = n− h. �

Example 37. Let us illustrate the claim in the proof of Proposition 36. Let n = 5, h = 2 and

consider the type A5 component C2 of weight (4, 3, 3, 2, 1). Then, using the model for type A crystals

in terms of semistandard tableaux (see for example [BS17, Chapter 3]), we have

b = sw3u2 =

5
4 4
3 3 4
2 2 3
1 1 1 3

. This becomes

6
5 6
4 5 6
2 3 5
1 1 3 6

after making it {1, 3, 4, 5}-lowest weight and applying f22 . Making this element {1, 3, 4, 5}-lowest

weight again, no further f2 are applicable and we obtain

6
5 6
4 5 6
2 3 5
1 2 4 6

= (e2e3)(e1e2)v2.

By Proposition 36, there is an edge from component C1 to component C2 in G(C) if and only

if e−iu2 ∈ C1 for some i ∈ I0, where u2 is the I0-highest weight element of C2. We call the arrow

combinatorial if e−iu2 is {1, 2, . . . , i}-highest weight. Otherwise the arrow is called a by-pass arrow .

Define f(−i,h) := f−ifi+1fi+2 · · · fh−1.

Theorem 38. Let C be a connected component in B⊗`. Then each by-pass arrow is the compo-

sition of combinatorial arrows. Furthermore, each combinatorial edge in G(C) can be obtained by

f(−i,h) for some i ∈ I0 and h > i minimal such that f(−i,h) applies.

Proof. Consider a combinatorial arrow from component C1 to C2. This means that e−iu2

is defined for some i ∈ I0 and e−iu2 is {1, 2, . . . , i}-highest weight. Then by Theorem 13 and

Corollary 15 we have f(−i,h)u1 = u2 for some h > i.
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If the arrow is a by-pass arrow, then e−iu2 is not {1, 2, . . . , i}-highest weight. By Proposition 25

and induction, there exists a sequence of indices 1 6 i1, . . . , ia < i such that

↑ e−iu2 =↑ e−i ↑ e−i1 · · · ↑ e−iau2

where each partial sequence e−ij ↑ e−ij+1 · · · ↑ e−iau2 is {1, 2, . . . , ij}-highest weight. This means

that each by-pass arrow is the composition of combinatorial arrows. �

Theorem 38 provides a combinatorial description of the graph G(C). Let G(C) be the graph

G(C) with all by-pass arrows removed and each edge labeled by the tuple (−i, h) for the combina-

torial arrow f(−i,h)u1 = u2, where f−i is given by the combinatorial rules stated in Theorem 13.

Hence G(C) can be constructed from the q(n + 1)-highest weight element u by the application of

combinatorial arrows, see for example Figure 2.6. In particular, the graph G(C) and the graph

G(C) have the same vertices.

Next we construct a graph G̃(C) from G(C) by applying ↑ e−i to each vertex b in the graph

G(C) (if applicable). This will add additional labeled edges between the vertices in the graph, see

Figure 2.7. We would like to emphasize that the construction of G̃(C) for a connected component

C of B⊗` is purely combinatorial, starting with the highest weight element u of a given weight

λ, applying f(−i,h) of Theorem 13, and then applying ↑ e−i to all vertices using Theorem 17.

This provides a combinatorial construction of G(C) by dropping the labels in G̃(C) (and removing

multiple edges between vertices when applicable).

Remark 39. The Schur P -polynomial Pλ(x1, . . . , xn+1) in n + 1 variables is the character of

a finite-dimensional irreducible representation of the queer Lie superalgebra q(n + 1) with highest

weight λ (up to a power of 2) [Ser84]. The above combinatorial construction of the component graph

of C with highest weight λ produces a Schur expansion of the Schur P -polynomial Pλ(x1, . . . , xn+1).

This expansion is obtained by counting the multiplicities of highest weights for all type An com-

ponents that are present in G(C). For example, the component graph in Example 31 yields the

expansion P42 = s42 + s33 + s411 + 2s321 + s222. This yields an alternative combinatorial description

of the Schur expansion of the Schur P -polynomials compared to those given by Stembridge [Ste89]

and by Choi and Kwon [CK18].
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2.4. Characterization of queer supercrystals

Our main theorem gives a characterization of the queer supercrystals. We say that two com-

ponent graphs G(C) and G(D) are isomorphic if they are isomorphic as graphs and the weights of

the vertices are preserved.

Theorem 40. Let C be a connected component of a generic abstract queer supercrystal (see

Definition 2). Suppose that C satisfies the following conditions:

(1) C satisfies the local queer axioms of Definition 27.

(2) C satisfies the connectivity axioms of Definition 33.

(3) G(C) is isomorphic to G(D), where D is some connected component of B⊗`.

Then the queer supercrystals C and D are isomorphic.

Theorem 40 states that the local queer axioms, the connectivity axioms, and the component

graph uniquely characterize queer supercrystals.

Remark 41. We would like to point out that checking Condition (3) of Theorem 40 is algo-

rithmically straightforward. Each component graph has a unique highest weight vertex. For the

isomorphism, the weights of these highest weight vertices need to agree. Then one can recursively

compare the edges and weights of adjacent vertices. Condition (3) is similar, albeit more com-

plicated, to the condition by Stembridge [Ste03] that for two connected crystal components of a

simply-laced crystal to be isomorphic, the highest weights must agree.

Before we give the proof of Theorem 40, we need the following statement. Recall that gj,k =

(e1 · · · ej)(e1 · · · ek)v was defined in (2.2.2), where v is an I0-lowest weight vector.

Lemma 42. In a crystal satisfying the local queer axioms of Definition 27 and C0 of Defini-

tion 33, we have for any gj,k 6= 0 with 1 6 j 6 k

ϕ−1(gj,k) = 0 if and only if ϕ−1(e1 · · · ekv) = 0.

Proof. The condition C0 requires that ϕ−1(gj,k) = 0 implies ϕ−1(e1 · · · ekv) = 0.
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For the converse direction, note that wt(e1 · · · ekv)1 > 0. Hence

ϕ−1(e1 · · · ekv) = 0 ⇔ ε−1(e1 · · · ekv) = 1.

By the local queer axioms LQ6 and LQ5 of Definition 27 (see also Figure 2.2), we have

ε−1(e1 · · · ekv) = 1 ⇔ ε−1((e3 · · · ej)(e1 · · · ek)v) = 1 ⇒ ε−1((e2 · · · ej)(e1 · · · ek)v) = 1.

It can be easily checked that ϕ1((e2 · · · ej)(e1 · · · ek)v) = 1 for j 6 k (for example using the tableaux

model for type An crystals). Hence by the local queer axioms

ε−1((e2 · · · ej)(e1 · · · ek)v) = 1 ⇔ ε−1((e1 · · · ej)(e1 · · · ek)v) = 1.

This proves that ϕ−1(e1 · · · ekv) = 0 implies ϕ−1(gj,k) = 0. �

Proof of Theorem 40. By Proposition 28 and Theorem 35, D satisfies the local queer ax-

ioms and the connectivity axioms and hence all conditions of the theorem.

By LQ1 of the local queer axioms of Definition 27, each type An-component of C is a Stembridge

crystal and hence is uniquely characterized by [Ste03]. By assumption G(C) ∼= G(D). In particular,

the vertices of G(C) and G(D) agree. This proves that C and D are isomorphic as An crystals.

Next we show that all (−1)-arrows also agree on C and D. As discussed just before Lemma 29,

given the local queer axioms of Definition 27, it suffices to show that f−1 acts in the same way in

C and D on the almost lowest elements satisfying (2.2.1) or equivalently by Lemma 29 on every

gj,k 6= 0 with 1 6 j 6 k 6 n. For the remainder of this proof, fix gj,k 6= 0 in the I0-component u.

Let us first assume that G(C) contains an edge u→ u′ such that wt(u′) is obtained from wt(u)

by moving a box from row n + 1 − k to row n + 1 − h for some h < k. If h < j 6 k, then f−1gj,k

is determined by C1 of Definition 33. If j 6 h, pick h < j′ 6 k such that gj′,k 6= 0. Such a j′

must exist since there is an edge u → u′ in G(C). By C1, we have ϕ−1(gj′,k) = 1 and hence by

Lemma 42 also ϕ−1(gj,k) = 1. Hence f−1gj,k is determined by C2(a).

Next assume that G(C) does not contain an edge u → u′ such that wt(u′) is obtained from

wt(u) by moving a box from row n+ 1− k.

Claim: If gk,k 6= 0, then f−1gj,k = 0.
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Proof. Suppose f−1gk,k 6= 0. By C2(b), we have f−1gk,k = (e2 · · · ek)(e1 · · · ek)v = f1gk,k. But

this contradicts the local queer axioms of Definition 27 since ϕ1(gk,k) > 1. Hence ϕ−1(gk,k) = 0

and by Lemma 42 also ϕ−1(gj,k) = 0, which proves the claim. �

If gk,k = 0, we have j < k since by assumption gj,k 6= 0.

Claim: Suppose gk,k = 0.

(1) Suppose there is an edge u→ u in G(C) such that wt(u) is obtained from wt(u) by moving

a box from row n+ 1− k to row n+ 1− h such that h < k 6 k. Then f−1gj,k = 0.

(2) Suppose G(C) does not contain an edge as in (1). Then f−1gj,k = (e2 · · · ek)(e1 · · · ej)v.

Proof. Suppose that the conditions in (1) are satisfied. Then by C1 there must exist

gj,k := (e1 · · · ej)(e1 · · · ek)v 6= 0,

where h < j 6 k and v is the I0-lowest weight element in the component of u, such that

(2.4.1) f−1gj,k = (e2 · · · ej)(e1 · · · eh)v.

Since gj,k 6= 0, we have in particular that (e1 · · · ek)v 6= 0. Since wt(u) is obtained from wt(u)

by moving a box from row n + 1 − k to row n + 1 − h, this hence also implies that gk,k =

(e1 · · · ek)(e1 · · · ek)v 6= 0. Hence by C1 Equation (2.4.1) holds for j = k.

If f−1gh,k = 0, we also have f−1gj,k = 0 by Lemma 42 as claimed. Hence we may assume that

f−1gh,k 6= 0. Then by C2(b) we have

f−1gh,k = (e2 · · · ek)(e1 · · · eh)v.

But then f−1gk,k = f−1gh,k = (e2 · · · ek)(e1 · · · eh)v, which contradicts the fact that the crystal

operator f−1 has a partial inverse since gk,k 6= gh,k. This proves (1).

Now suppose that the conditions in (2) are satisfied. Recall that by assumption gj,k 6= 0 with

j < k. This implies that y := (e2 · · · ek)(e1 · · · ej)v 6= 0, ϕi(y) = 0 for i ∈ I0 \ {2} and ϕ2(y) = 1.

By the local queer axioms of Definition 27, this implies that x := e−1y 6= 0 with ϕ1(x) ∈ {1, 2} and

ϕi(x) = 0 for i ∈ I0 \ {1}. Thus we may write x = (e1 · · · es)(e1 · · · et)v, where 0 6 s 6 t and v ∈ C
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4⊗ 3⊗ 2⊗ 1

3⊗ 2⊗ 1⊗ 1

2⊗ 1⊗ 1⊗ 1

1⊗ 1⊗ 1⊗ 1

Figure 2.8. The graph G(C) for the example in Remark 43.

is some I0-lowest weight vector. This yields the equality

f−1(e1 · · · es)(e1 · · · et)v = (e2 · · · ek)(e1 · · · ej)v.

If v 6= v, then by the connectivity axioms of Definition 33 this means that j < k = s 6 t

and there is an edge in G(C) from ↑ v to u =↑ v, moving a box from row n + 1 − t to row

n+ 1− j. This contradicts the assumptions of (2). Hence we must have v = v. By C2(b) we have

f−1gs,t = (e2 · · · et)(e1 · · · es)v, so that k = t and j = s. This implies f−1gj,k = (e2 · · · ek)(e1 · · · ej)v,

proving the claim. �

We have now shown that f−1gj,k is determined in all cases, which proves the theorem. �

Remark 43. Consider the q(4)-crystal B⊗4. The elements 4114 and 4113 both lie in the same

{1, 2, 3}-component of highest weight (3, 1). The highest (resp. lowest) weight element in this

component is u = 2111 (resp. v = 4344). Both 4114 and 4113 satisfy (2.2.1). In fact, 4114 =

(e1e2)(e1e2e3)v = g2,3 and 4113 = (e1e2e3)(e1e2e3)v = g3,3. In the component of u there is no

sequence of crystal operators that would induce the action of f−1 on 4114 from the action of f−1

on 4113 using the local queer axioms of Definition 27.

This suggests that the connectivity axioms of Definition 33 are indeed necessary. However, in

this example the graph G(C), where C is the connected component in B⊗4 containing 2111, is linear

and hence forces 4114 and 4113 to be mapped to the same {1, 2, 3}-component by f−1, see Figure 2.8.
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Remark 44. Consider the connected component C of 111212121 in the q(6)-crystal B⊗9. The

{1, 2, 3, 4, 5}-component containing 321312121 is connected to the components 421312121, 431312121,

and 432312121 in G(C). The elements g4,5 = 651615464 and g3,5 = 651615465 in the component

of 321312121 are mapped to the same component 432312121 by C1 of Definition 33. However,

the element g4,5 is connected to 431413131 in the crystal using only arrows that commute with f−1

and the element g3,5 is connected to 431413143 in the crystal using only arrows that commute with

f−1. However, these two components (containing 431413131 resp. 431413143 using only crystal

operators fi and ei with i ∈ I0 that commute with f−1) are disjoint. This suggests that C1 of

Definition 33 is necessary for uniqueness.
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CHAPTER 3

Crystal for fully commutative stable Grothendieck polynomials

This chapter is based on joint work with Jennifer Morse, Jianping Pan and Anne Schilling

published in [MPPS20].

3.1. The ?-crystal

In this section, we define the K-theoretic generalization of the crystal on decreasing factoriza-

tions by Morse and Schilling [MS16] when the associated word is fully-commutative. The under-

lying combinatorial objects are decreasing factorizations in the 0-Hecke monoid introduced in Sec-

tion 3.1.1. The ?-crystal on these decreasing factorizations is defined in Section 3.1.2. We review the

crystal structure on set-valued tableaux introduced by Monical, Pechenik and Scrimshaw [MPS20]

in Section 3.1.3. The residue map and the proof that it intertwines the ?-crystal and the crystal

on set-valued tableaux is given in Section 3.1.4.

3.1.1. Decreasing factorizations in the 0-Hecke monoid. The symmetric group Sn for

n > 1 is generated by the simple transpositions s1, s2, . . . , sn−1 subject to the relations

sisj = sjsi, if |i− j| > 1,

sisi+1si = si+1sisi+1, for 1 6 i < n− 1,

s2i = 1, for 1 6 i 6 n− 1.

A reduced expression for an element w ∈ Sn is a word a1a2 . . . a` with ai ∈ [n−1] := {1, 2, . . . , n−1}

such that

(3.1.1) w = sa1 · · · sa`

and ` is minimal among all words satisfying (3.1.1). In this case, ` is called the length of w.

52



Definition 45. The 0-Hecke monoid H0(n), where n > 1 is an integer, is the monoid of finite

words generated by positive integers in the alphabet [n− 1] subject to the relations

(3.1.2)

pq = qp if |p− q| > 1,

pqp = qpq for all p, q,

pp = p for all p.

We may form an equivalence relation ≡H0 on all words in the alphabet [n − 1] based on the

relations (3.1.2). The equivalence classes are infinite since the last relation changes the length of

the word. We say that a word a = a1a2 . . . a` is reduced if ` > 0 is the smallest among all words in

H0(n) equivalent to a. In this case, ` is the length of a. Note that H0(n) is in bijection with Sn

by identifying the reduced word a1a2 . . . a` in H0(n) with sa1sa2 · · · sa` ∈ Sn. We say w ∈ H0(n)

or Sn is fully-commutative or 321-avoiding if none of the reduced words equivalent to w contain a

consecutive braid subword of the form i i+ 1 i or i i− 1 i for any i ∈ [n− 1].

Remark 46. Any (not necessarily reduced) word w ∈ H0(0) containing a consecutive braid

subword is not fully-commutative.

Definition 47. A decreasing factorization of w ∈ H0(n) into m factors is a product of the

form

h = hm . . . h2h1,

where the sequence in each factor

hi = hi1h
i
2 . . . h

i
`i

is either empty (meaning `i = 0) or strictly decreasing (meaning hi1 > hi2 > · · · > hi`i) for each

1 6 i 6 m and h ≡H0 w in H0(n).

The set of all possible decreasing factorizations into m factors is denoted by Hm or Hm(n) if

we want to indicate the value of n. We call ex(h) = len(h)− ` the excess of h, where len(h) is the

number of letters in h and ` is the length of w. We say h is fully-commutative (or 321-avoiding)

if w is fully-commutative.
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3.1.2. The ?-crystal. Let Hm,? be the set of fully-commutative decreasing factorizations in

Hm. We introduce a type Am−1 crystal structure on Hm,?, which we call the ?-crystal . This

generalizes the crystal for Stanley symmetric functions [MS16] (see also [Len04]).

Definition 48. For any h = hm . . . h2h1 ∈ Hm,?, we define crystal operators e?i and f?i for

i ∈ [m − 1] and a weight function wt(h). The weight function is determined by the length of the

factors

wt(h) = (len(h1), len(h2), . . . , len(hm)).

To define the crystal operators e?i and f?i , we first describe a pairing process:

• Start with the largest letter b in hi+1, pair it with the smallest a > b in hi. If there is no

such a, then b is unpaired.

• The pairing proceeds in decreasing order on elements of hi+1 and with each iteration,

previously paired letters of hi are ignored.

If all letters in hi are paired, then f?i annihilates h. Otherwise, let x be the largest unpaired letter

in hi. The crystal operator f?i acts on h in either of the following ways:

(1) If x+ 1 ∈ hi ∩ hi+1, then remove x+ 1 from hi, add x to hi+1.

(2) Otherwise, remove x from hi and add x to hi+1.

If all letters in hi+1 are paired, then e?i annihilates h. Let y be the smallest unpaired letter in hi+1.

The crystal operator e?i acts on h in either of the following ways:

(1) If y − 1 ∈ hi ∩ hi+1, then remove y − 1 from hi+1, add y to hi.

(2) Otherwise, remove y from hi+1 and add y to hi.

It is not hard to see that e?i and f?i are partial inverses of each other.

Example 49. Let h = (7532)(621)(6), then

f?1 (h) = 0, e?1(h) = (7532)(62)(61),

f?2 (h) = (75321)(61)(6), e?2(h) = (753)(6321)(6).

Remark 50. Compared to [MS16], one pairs a letter b in hi+1 with the smallest letter a > b

in hi rather than a > b.
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Proposition 51. Let h = hm . . . h1 ∈ Hm,? such that f?i (h) 6= 0. Then f?i (h) ∈ Hm,?,

f?i (h) ≡H0 h, and ex(f?i (h)) = ex(h). Furthermore, the j-th factor in f?i (h) and h agrees for

j /∈ {i, i+ 1}. Analogous statements hold for e?i .

Proof. Suppose h̃ := f?i (h) 6= 0. Then by definition of f?i , h̃ = hm . . . hi+2h̃i+1h̃ihi−1 . . . h1

and hj is unchanged for j /∈ {i, i+ 1}. In addition, the number of factors does not change.

To see h ≡H0 h̃, it suffices to show that hi+1hi ≡H0 h̃
i+1h̃i. Let x be the largest unpaired letter

in hi. By the bracketing procedure this implies that x /∈ hi+1. We can write hi+1 as w1w2, where

w1 is a word containing only letters greater than x, and w2 is a word containing only letters smaller

than x. We can write hi as w3xw4, where w3 contains only letters greater than x and w4 contains

only letters smaller than x.

The pairing process will result in one of the two following cases:

(1) If x + 1 ∈ hi ∩ hi+1, then obtain h̃i by removing x + 1 from hi, and h̃i+1 by adding x to

hi+1.

(2) Otherwise, obtain h̃i by removing x from hi and obtain h̃i+1 by adding x to hi+1.

We first argue that in either case we must have x − 1 /∈ w2. Assume x − 1 ∈ w2 and let k be

the largest number such that the interval [x − k, x − 1] ⊆ w2. By assumption k > 1. In order for

x to be the largest unpaired letter in hi, [x − k, x − 1] must be contained in w4. We can write

w2 = (x− 1) . . . (x− k)w′2 and w4 = (x− 1) . . . (x− k)w′4, where all letters in w′2 are smaller than

x− k − 1. When k = 1, we have the following subword

(x− 1)w′2w3x(x− 1) ≡H0 w
′
2w3(x− 1)x(x− 1),

which contains a braid (x− 1)x(x− 1). When k > 1, we also have the following subword

(x− k)w′2w3x(x− 1) . . . (x− k+ 1)(x− k) ≡H0 w
′
2w3(x− 1) . . . (x− k+ 2)(x− k)(x− k+ 1)(x− k),

which also contains a braid.

Case (1): Let k be the largest letter such that [x+ 1, x+ k] ⊆ w3. Clearly k > 1. Suppose k > 1,

then we can write w3 = w′3(x+k) . . . (x+ 1). Since x is the largest unpaired letter in hi, everything

in [x+1, x+k] ⊆ w3 must be paired. The letter x+1 in w3 is paired with x+1 ∈ w1, which implies
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that x+ i in w3 is paired with x+ i ∈ w1 for all 1 6 i 6 k. This implies that [x+ 1, x+ k] ⊆ w1.

Then we have the following subword

(x+ 1)w2w
′
3(x+ k) . . . (x+ 2)(x+ 1) ≡H0 w2w

′
3(x+ k) . . . (x+ 1)(x+ 2)(x+ 1)

which contains a braid. Thus, we must have k = 1, which implies that x + 2 /∈ w3. Write

w1 = w′1(x+ 1). Then by direct computation

hi+1hi ≡H0 w
′
1(x+ 1)w2w

′
3(x+ 1)xw4 ≡H0 w

′
1(x+ 1)(x+ 1)w2w

′
3xw4

≡H0 w
′
1(x+ 1)w2w

′
3xxw4 ≡H0

(
w′1(x+ 1)xw2

) (
w′3xw4

)
= h̃i+1h̃i.

Case (2): We claim that if x+ 1 /∈ hi+1, then x+ 1 /∈ hi. Otherwise the x+ 1 ∈ hi must be paired

with some z ∈ hi+1, so we have z 6 x + 1. But x is unpaired, which implies z > x, that gives

us a contradiction. Hence x + 1 /∈ w3. Recall that x − 1 /∈ w2. Therefore, by a straightforward

computation

hi+1hi = w1w2w3xw4 ≡H0 (w1xw2) (w3w4) ≡H0 h̃
i+1h̃i.

The above arguments show that hi+1hi ≡H0 h̃
i+1h̃i, thus h ≡H0 h̃, and the total length of the

decreasing factorization are unchanged under f?i . Furthermore, the excess remains unchanged

under f?i .

Similar arguments hold for e?i . �

Remark 52. Here we summarize several results from the proof that will be needed later. Namely,

if x is the largest unpaired letter in hi, then

• x− 1 /∈ hi+1.

• One and only one of the three statements hold: x + 1 ∈ hi+1 ∩ hi, x + 1 /∈ hi+1 ∪ hi, and

x+ 1 ∈ hi+1, x+ 1 /∈ hi.

It will be shown in Section 3.1.4 that Hm,? is indeed a Stembridge crystal of type Am−1 (for an

introduction to crystal and terminology, see [BS17]).

3.1.3. The crystal on set-valued tableaux. In this section, we review the type A crystal

structure on set-valued tableaux introduced in [MPS20]. In fact, in [MPS20] the authors only
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considered the crystal structure on straight-shaped set-valued tableaux. Here we consider the

crystal on skew shapes as well, see Theorem 55.

We use French notation for partitions λ = (λ1, λ2, . . . ) with λ1 > λ2 > · · · > 0, that is, in the

Ferrers diagram for λ, the largest part λ1 is at the bottom.

Definition 53 ( [Buc02]). A semistandard set-valued tableau T is the filling of a skew shape

λ/µ with nonempty subsets of positive integers such that:

• for all adjacent cells A, B in the same row with A to the left of B, we have max(A) 6

min(B),

• for all adjacent cells A, C in the same column with A below C, we have max(A) < min(C).

The weight of T , denoted by wt(T ), is the integer vector whose i-th component counts the number

of i’s that occur in T . The excess of T is defined as ex(T ) = |wt(T )| − |λ|. We denote the set of

all semistandard set-valued tableaux of shape λ/µ by SVT(λ/µ). Similarly, if the maximum entry

is restricted to m, the set is denoted by SVTm(λ/µ).

We now review the crystal structure on semistandard set-valued tableaux given in [MPS20].

We state the definition on skew shapes rather than just straight shapes.

Definition 54. Let T ∈ SVTm(λ/µ). We employ the following pairing rule for letters i and

i+ 1. Assign − to every column of T containing an i but not an i+ 1. Similarly, assign + to every

column of T containing an i+ 1 but not an i. Then, successively pair each + that is to the left of

and adjacent to a −, removing all paired signs until nothing can be paired.

The operator fi changes the i in the rightmost column with an unpaired − (if this exists) to

i + 1, except if the cell b containing that i has a cell to its right, denoted b→, that contains both i

and i+ 1. In that case, fi removes i from b→ and adds i+ 1 to b. Finally, if no unpaired − exists,

then fi annihilates T .

Similarly, the operator ei changes the i+ 1 in the leftmost column with an unpaired + (if this

exists) to i, except if the cell b containing that i+ 1 has a cell to its left, denoted b←, that contains

both i and i+ 1. In that case, ei removes i+ 1 from b← and adds i to b. Finally, if no unpaired +

exists, then ei annihilates T .
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Based on the pairing procedure above, ϕi(T ) is the number of unpaired − while εi(T ) is the

number of unpaired +.

One can easily show that the crystal on SVTm(λ/µ) of Definition 54 defines a seminormal

crystal (for definitions see [BS17]). It was proved in [MPS20, Theorem 3.9] that the above

described operators ei and fi define a type Am−1 Stembridge crystal structure on SVTm(λ). We

claim that their proof goes through also for skew shapes.

Theorem 55. The crystal SVTm(λ/µ) of Definition 54 is a Stembridge crystal of type Am−1.

Proof. Since the proof is exactly the same as in [MPS20, Theorem 3.9], we just state the

outline and give a brief description. For details we refer to [MPS20].

First note that the signature rule given by column-reading is compatible with the signature

rule given by row-reading (top to bottom, left to right, and arrange the letters in the same cell by

descending order) by semistandardness. Hence we may consider the crystal to live inside the tensor

product of its rows. A single-row semistandard set-valued tableaux of a fixed shape is isomorphic

to a Stembridge crystal, as shown in [MPS20, Proposition 3.5]:

Φs : SVTm(sΛ1)→
m⊕
k=1

B((s− 1)Λ1 + Λk),

where Λk are the fundamental weights of type Am−1.

Let λ = (λ1, . . . , λ`) and µ = (µ1, . . . , µ`) (the last couple µi could be zero) be two partitions

such that µ ⊆ λ. Construct the map below, which is a strict crystal embedding:

Ψ: SVTm(λ/µ)→ SVTm((λ1 − µ1)Λ1)⊗ SVTm((λ2 − µ2)Λ1)⊗ · · · ⊗ SVTm((λ` − µ`)Λ1).

Thus, we have a strict crystal embedding:

(Φλ1−µ1 ⊕ · · · ⊕ Φλ`−µ`) ◦Ψ: SVTm(λ/µ)→
⊗̀
j=1

(
m⊕
k=1

B((λj − µj)Λ1 + Λk)

)
.

Since SVTm(λ/µ) is a seminormal crystal, we can conclude that it is a Stembridge crystal. �

3.1.4. The residue map. In this section, we define the residue map from set-valued tableaux

of skew shape to fully-commutative decreasing factorizations in the 0-Hecke monoid. We then show
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in Theorem 61 that the residue map intertwines with the crystal operators, proving that Hm,? is

indeed a crystal of type Am−1 (see Corollary 62).

Definition 56. Given T ∈ SVTm(λ/µ), we define the residue map res : SVTm(λ/µ) → Hm

as follows. Associate to each cell (i, j) in λ/µ its content `(λ) + j − i, where `(λ) is the number

of parts in λ. Produce a decreasing factorization h = hmhm−1 . . . h2h1 by declaring hk to be the

(possibly empty) sequence formed by taking the contents of all cells in T containing the entry k and

then arranging the contents in decreasing order. This defines res(T ) := h.

Example 57. Let T be the set-valued tableau of skew shape (2, 2)/(1)

T =
23 3

12
.

The content of each cell in T is denoted by a subscript as follows:

231 32

123
.

To read off the third factor, we search for all cells with an entry 3; these cells have contents 1 and

2, so we have 21 in the third factor. Altogether, we obtain res(T ) = (21)(31)(3) ∈ H3.

The image of the residue map res is Hm,?, the set of fully-commutative decreasing factorizations

into m factors. In fact, res is a bijection from semistandard set-valued skew tableaux on the alphabet

[m] to Hm,? up to shifts in the skew shape.

For this purpose, let us describe the inverse of the residue map. Let h = hmhm−1 . . . h2h1 ∈

Hm,?. Begin by filling the diagonals of content that appear in hm by the entry m. As the resulting

T is supposed to be of skew shape, the cells containing m along increasing diagonals need to go

weakly down from left to right. If these diagonals are consecutive, then the cells have to be in the

same row of T since T is semistandard. Continue the procedure above by putting entry i into the

diagonals specified by hi for all i = m − 1,m − 2, . . . , 1, applying the condition that the resulting

filling should be semistandard.

Proposition 58. If h = hmhm−1 . . . h2h1 ∈ Hm,?, then the above algorithm is well-defined up

to shifts along diagonals. It produces a skew semistandard set-valued tableau T such that res(T ) = h.
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Proof. We shall show more generally that at any given stage in the algorithm for the inverse of

the residue map above, the tableau T produced is of skew shape if and only if h is fully-commutative.

Assume that T is not of skew shape. Consider the earliest stage in the algorithm when the

produced tableau is not of skew shape. Then, either one of the following cases must have occurred

for the first time.

Case 1: There are adjacent cells with nonempty sets A and B (where max(A) 6 min(B)) in the

same row on diagonals i and i+ 1 respectively with no cells appearing directly below these cells, as

illustrated on the left side of Figure 3.1. Moreover, by minimality, we have an integer x with the

following properties:

(1) i+ 1 ∈ hx and x < min(A),

(2) there does not exist a y with x 6 y < min(B) and i+ 2 ∈ hy.

By applying semistandardness, a cell containing x is created directly below the cell containing the

set A as in the right side of Figure 3.1. Furthermore, by (2), for all x 6 y < min(B), we have that

every letter in hy is either at most i + 1 or at least i + 3. It follows that, after possibly applying

commutativity (i + 1 with letters at most i − 1 or at least i + 3) and the idempotent relation,

hmin(B) . . . hx+1hx is equivalent to one containing the braid subword i+ 1 i i+ 1. This implies that

h is equivalent to a Hecke word containing the same braid subword.

Case 2: There are adjacent cells with nonempty sets A and B in the same column on diagonals

i+1 and i respectively with no cells appearing directly to the left of these cells, as illustrated on the

left side of Figure 3.2. Moreover, by minimality, we have an integer x with the following properties:

(1) i ∈ hx and x 6 min(A),

(2) there does not exist a y with x < y 6 min(B) and i− 1 ∈ hy.

By applying semistandardness, a cell containing x is created directly to the left of the cell containing

the set A as in the right side of Figure 3.2. Furthermore, by (2), for all x < y 6 min(B), we have

that every letter in hy is either at most i − 2 or at least i. Similar to the argument in Case 1,

hmin(B) . . . hx+1hx is equivalent to one containing the braid subword i i + 1 i. This implies that h

is equivalent to a word in H0(n) containing the same braid subword.
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Ai Bi+1
−→

Ai Bi+1

xi+1

Figure 3.1. A forbidden case while inverting the residue map.

Bi

Ai+1

−→
Bi

xi Ai+1

Figure 3.2. Another forbidden case while inverting the residue map.

The above arguments imply that the image of res is contained in Hm,?. Conversely, if h is fully-

commutative, then the algorithm for res−1 does not produce Case 1 or Case 2 above and hence the

resulting tableau T is of skew shape which in turn implies that the algorithm is well-defined (up to

shifts along the diagonal if a gap of size at least 3 occurs in the labels). �

If the skew shape λ/µ of the tableau T is known, then one may simplify the procedure above

noting that the filling of i specified by letters in hi must occur along a horizontal strip for all

i = m,m− 1, . . . , 1. In this case, the recovered tableau T is unique and there is no shift ambiguity

if a gap of size at least 3 occurs in the labels.

Example 59. Let h = (61)(752)(75)(762) be a decreasing factorization of w = 651762.

In the algorithm for the inverse of the residue map, the entry 4 is placed on diagonal 1 and

6, respectively. Due to semistandardness, the entry 3 in diagonal 2 must be placed below the 4 in

diagonal 1, while the 3’s in diagonals 5 and 7 are respectively to the left and below the 4 in diagonal

6. Continuing with the remaining fillings, we have two possibilities:

T1 =

41

132

235 46

16 1237

,
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or

T2 =

41

132

235 46

16 1237

,

where T1 ∈ SVT4((4, 4, 1, 1)/(2, 2)) and T2 ∈ SVT4((3, 3, 1, 1, 1)/(1, 1, 1)). Note that they indeed

just differ by a shift along diagonals as stated in Proposition 58.

Example 60. Let h = (8431)(863)(8654)(941) be a decreasing factorization of w = 84396541.

Suppose that h = res(T ), where T ∈ SVT4(λ/µ) with λ/µ = (5, 5, 4, 2, 1)/(4, 4, 1, 1).

Then, we fill in 4 along the diagonals with labels 1, 3, 4, 8 respectively, noting that the 4 in

diagonal 4 is to the right of the 4 in diagonal 3 (due to the semistandardness of T ). Continuing

with the remaining fillings, we have

T =

141

343 44

124 25 236

2348

19

.

Theorem 61. The crystal on set-valued tableaux SVTm(λ/µ) and the crystal on decreasing

factorizations Hm,? intertwine under the residue map. That is, the following diagrams commute:

SVTm(λ/µ) Hm,?

SVTm(λ/µ) Hm,?
fk

res

f?k

res

SVTm(λ/µ) Hm,?

SVTm(λ/µ) Hm,?.

ek

res

e?k

res

Proof. Let T ∈ SVTm(λ/µ), h = res(T ) and ` = `(λ). We prove the following three statements

associated to fk(T ) and f?k (h).

(1) We claim that if there is no unpaired k in T , then f?k annihilates h. Furthermore, if the

rightmost unpaired k in cell b of T has content x, then x is also the largest unpaired letter in hk.
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For the proof of (1) it suffices to notice that the signature rule on tableaux is equivalent to

the pairing process for decreasing factorizations of H0(n). We rephrase the pairing procedure for

decreasing factorizations on tableaux:

• At the beginning, no letter is paired.

• Then start with the rightmost column and work westward.

• Successively, for each k + 1, compute its content a, then pair it with the k of smallest

content weakly greater than a that is yet unpaired.

Next, we argue that the signature rule yields the same result on the rightmost unpaired letter.

Assume we are looking at cell b containing the current k + 1 with content a.

Case (a): Suppose there is no unpaired k with content a but at least one unpaired k with strictly

greater content(s). Then pair it with the current k + 1. This is the direct signature rule.

Case (b): Suppose there is no unpaired k with content weakly greater than a, then this k + 1 is

unpaired. This is also the direct signature rule.

Case (c): Suppose there is an unpaired k with content a. Then it must be either in the same cell

b, or one row below and one column to the left of b on the diagonal labeled a. If they are in the

same cell, then the pairing is the direct signature rule.

Otherwise, there must be cells to the left and below b since the shape is skew. Suppose cell b is

in row r. Consider the rightmost entry in cell (r, j) in row r containing a k + 1, and the leftmost

entry in cell (r − 1, q) in row r − 1 containing a k. Considering this as the first of a consecutive

occurrence, cell b is cell (r, j), so we have ` + j − r = a. By semistandardness and the condition

that the shape is skew, we can partially fill out the involved subtableau of T for rows r− 1, r from

column q to j:

k + 1 `+q−r k + 1 `+q+1−r . . . k + 1 `+j−1−r k + 1 . . .`+j−r

. . . k `+q−r+1 k `+q−r . . . k `+j−r k `+j−r+1

.

All the cells (s, t) with q < t < j and s ∈ {r, r−1} and the cells (r, q) and (r−1, j) are single-valued

by semistandardness as shown in the above figure.

From the k+ 1 in (r, j), we start the pairing process. First, we claim that the k in cell (r−1, j)

must be unpaired at this point. Suppose that there is a k+ 1 to the east of cell (r, j) with content
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smaller or equal to ` + j − r + 1, then it must be cell (r, j + 1), which violates that (r, j) is the

rightmost cell in row r containing a k + 1. Then the pairing says the k + 1 in cell (r, t) pairs with

the k in cell (r−1, t−1) for q < t 6 j. Lastly, the k+ 1 in cell (r, q) has to pair with the previously

unpaired k in cell (r − 1, j) since there are no unpaired k with label greater or equal to ` + q − r

and smaller than `+ j − r + 1.

Although the pairing is different than the usual signature rule pairing, which pairs k + 1, k in

the same column, the 2(j− q+ 1) letters end up being paired. Since it will not influence which one

will be the rightmost unpaired letter, it is still equivalent to the signature rule.

So in any case, the pairing is equivalent to the signature rule. Thus, the rightmost unpaired k

in T corresponds to the largest unpaired letter in hk.

(2) We claim that if fk changes the rightmost unpaired k in T to a k+ 1 (with content x) without

moving it, then f?k moves a letter x from hk to hk+1.

Since fk does not need to move any letter, it means the cell to the right of b, denoted by b→,

does not contain a k. It is the only cell with content x + 1 that could contain a k. This implies

that x+ 1 /∈ hk. By Definition 48, f?k moves x from hk to hk+1.

(3) We claim the following. If fk changes a k from b→ into a k+ 1 and moves to cell b, then f?k

removes an x+ 1 from hk and changes it to an x in hk+1.

That fk needs to move a number means that k and k + 1 are in b→, which implies that

x+ 1 ∈ hk ∩ hk+1. By Definition 48, f?k removes the x+ 1 from hk and adds an x to hk+1.

We have proved the three statements and they complete the proof that fk and f?k intertwine

under the residue map. The proof is similar for ek and e?k. �

Corollary 62. The set Hm,?, together with crystal operators e?i and f?i for 1 6 i < m and

weight function wt defined in Definition 48, is a Stembridge crystal.

Proof. By Theorem 61 and the fact that the residue map preserves the weight and is invertible,

this follows from the fact that SVTm(λ/µ) is a Stembridge crystal proven in [MPS20, Theorem

3.9] (see also Theorem 55). �
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Example 63. Consider the tableau T (with labels in red) given by

T =
31

12 1233

,

with res(T ) = (31)(3)(32).

For the crystal operators on set-valued tableaux we obtain

f1(T ) =
31

122 233

,

with res (f1(T )) = (31)(32)(2). Then it can be easily checked that the following diagram commutes:

T =
31

12 1233
(31)(3)(32)

f1(T ) =
31

122 233
(31)(32)(2).

res

res

f1 f?1

3.2. Insertion algorithms

In this section, we discuss two insertion algorithms for decreasing factorizations in Hm (resp.

Hm,?). The first is the Hecke insertion introduced by Buch et al. [BKS+08], which we review in Sec-

tion 3.2.1. We prove a relationship between Hecke insertion and the residue map (see Theorem 68).

In particular, this proves [MPS20, Open Problem 5.8] for fully-commutative permutations. The

second insertion is a new insertion, which we call ?-insertion, introduced in Section 3.2.2. It goes

from fully-commutative decreasing factorizations in the 0-Hecke monoid to pairs of (transposes of)

semistandard tableaux of the same shape and is well-behaved with respect to the crystal operators.

3.2.1. Hecke insertion. Hecke insertion was first introduced in [BKS+08] as column inser-

tion. Here we state the row insertion version as in [PP16]. In this section, we represent a decreasing

65



factorization h = hmhm−1 · · ·h1, where hi = hi1h
i
2 . . . h

i
`i

, by a decreasing Hecke biwordk

h

 =

m . . . m . . . 1 . . . 1

hm1 . . . hm`m . . . h11 . . . h1`1

 .
In addition, we say that [k,h]t is fully-commutative if h is fully-commutative.

Example 64. Consider the decreasing factorization h = (1)(2)(31)( )(32). Then the corre-

sponding biword [k,h]t is k

h

 =

5 4 3 3 1 1

1 2 3 1 3 2

 .
Definition 65. Starting with a decreasing Hecke biword [k,h]t, we define Hecke row insertion

from the right. The insertion sequence is read from right to left. Suppose there are n columns in

[k,h]t.

Start the insertion with (P0, Q0) being both empty tableaux. We recursively construct (Pi+1, Qi+1)

from (Pi, Qi). Suppose the (n− i)-th column in [k,h]t is [y, x]t.

We describe how to insert x into Pi, denoted Pi ← x, by describing how to insert x into a row

R. The insertion may modify the row and may produce an output integer, which will be inserted

into the next row. First, we insert x into the first row R of Pi following the rules below:

(1) If x > z for all z ∈ R, the insertion terminates in either of the following ways:

(a) If we can append x to the right of R and obtain an increasing tableau, the result Pi+1

is obtained by doing so; form Qi+1 by adding a box with y in the same position where

x is added to Pi.

(b) Otherwise row R remains unchanged. Form Qi+1 by adding y to the existing corner

of Qi whose column contains the rightmost box of row R.

(2) Otherwise, there exists a smallest z in R such that z > x.

(a) If replacing z with x results in an increasing tableau, then do so. Let z be the output

integer to be inserted into the next row.

(b) Otherwise, row R remains unchanged. Let z be the output integer to be inserted into

the next row.
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The entire Hecke insertion terminates at (Pn, Qn) after we have inserted every letter from the Hecke

biword. The resulting insertion tableau Pn is an increasing tableau, meaning that both rows and

columns of Pn are strictly increasing. If k = (n, n−1, . . . , 1), the recording tableau Qn is a standard

set-valued tableau.

Example 66. Take [k,h]t from Example 64. Following the Hecke row insertion, we compute

its insertion tableau and recording tableau:

∅ →
2
→

2 3
→ 2

1 3
→ 2

1 3
→ 2 3

1 2
→ 3

2 3

1 2

= P,

∅ →
1
→

1 1
→ 3

1 1
→ 3

1 13
→ 3 4

1 13
→ 5

3 4

1 13

= Q.

Example 67. Note that the recording tableau for the Hecke insertion of Definition 65 is not

always a semistandard set-valued tableau. For example, for h = (21)(41) we havek

h

 =

2 2 1 1

2 1 4 1


and

P =
4

1 2
and Q =

22

1 1
.

However, in Theorem 68 below we will see that in certain cases it is.

Theorem 68. Let T ∈ SVT(λ) and [k,h]t = res(T ). Apply Hecke row insertion from the right

on [k,h]t to obtain the pair of tableaux (P,Q). Then Q = T .

Remark 69. Combining Theorems 68 and 61 shows that Hecke insertion from right to left (as

opposed to left to right in [PP16]) intertwines the crystal on set-valued tableaux and the ?-crystal,

even though in general it is not always well-defined (see Example 67). This resolves [MPS20,

Open Problem 5.8] when the decreasing factorizations are fully-commutative. Even when h is fully-

commutative, but does not correspond to a straight-shaped tableau under res−1 as in Example 67,

one can fill the skew part with small enough numbers and apply the Hecke insertion on this tableau.
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In the above examplek

h

 =

2 2 1 1 0 0

2 1 4 1 3 2

 with Q = T =
12 2

0 0 1
.

Note, however, that unlike in [MPS20] we use row Hecke insertion from right to left rather than

column insertion from left to right (in analogy to [MS16] for Edelman–Greene insertion).

Since k ∈ T (i, j) if and only if `+ j − i ∈ hk under the residue map, where ` = `(λ) and hk is

the k-th factor of h, the statement of Theorem 68 is equivalent to applying Hecke insertion on the

entries of T sorted first by ascending order of entries, followed by ascending diagonal content.

Example 70. Let T be the semistandard set-valued tableau

T =
21 42

12 233
.

The insertion sequence by entry is listed in the table below:

Cell (1,1) (2,1) (1,2) (1,2) (2,2)
Content 2 1 3 3 2
Entry 1 2 2 3 4

We will prove Theorem 68 by induction by considering all subtableaux of T , obtained by adding

the entries in T one by one in the order above:

∅ →
12
→ 21

12
→ 21

12 23
→ 21

12 233
→ 21 42

12 233
= T.

In addition, the corresponding sequence of insertion tableaux and recording tableaux is listed here:

∅ →
2
→ 2

1
→ 2

1 3
→ 2

1 3
→ 2 3

1 2
= P.

∅ →
1
→ 2

1
→ 2

1 2
→ 2

1 23
→ 2 4

1 23
= Q.

Proof of Theorem 68. We prove the theorem by proving the following more specific state-

ment.

68



For a given step in the insertion process, suppose that the entries of T that are involved so far

form a nonempty subtableau T ′ of T with shape µ containing cell (1, 1), and the insertion tableau

and recording tableau at the corresponding step are P (T ′) and Q(T ′). Then, they both have shape

µ, and the entry of cell (i, j) of P (T ′) is `+ j−µ′j + i−1, and Q(T ′) = T ′, where µ′ is the transpose

of the partition µ and ` := λ′1 = `(λ).

We prove this by induction on subtableaux of T .

Base step: Suppose T ′ only contains a single cell (1, 1) and T ′(1, 1) = S, where S is a subset of

T (1, 1) with cardinality d. Then P (T ′) is obtained by inserting d times the number `. So we have

P (T ′) = ` and Q(T ′) = T ′. Here µ = (1), so for (i, j) = (1, 1), we have `+ j − µ′j + i− 1 = `.

Inductive step: Suppose that the statements hold for some subtableau T ′ of shape µ. Assume

the next insertion step involves adding the entry k in cell (p, q) of T to T ′ to obtain T ′′. There are

two cases: (1) the cell (p, q) is already in T ′, or (2) the cell (p, q) is not in T ′.

Case (1): We must have (p, q) to be an inner corner of T ′ (no cell is to its right or above it), so

p = µ′q and p > µ′q+1. In this case, k is recorded in Q(T ′). Then by the induction on T ′, every cell

(i, j) of P (T ′) has value `+ j − µ′j + i− 1. To determine the insertion path of P (T ′)← `+ q − p,

we compute the columns q and q + 1 of P (T ′) as follows:

row number q-th column (q + 1)-st column

p `+ q − 1
...

µ′q+1 < p `+ q − p+ µ′q+1 − 1 `+ q
...

...

2 `+ q − p+ 1 `+ q + 2− µ′q+1

1 `+ q − p `+ q + 1− µ′q+1

Following Case 2(b) of Hecke insertion, the insertion path is vertically up column q + 1. At

the top of the column, ` + q is inserted into row µ′q+1 + 1. Furthermore, ` + q is greater than

`+ q− p+ µ′q+1 in cell (µ′q+1 + 1, q) because p > µ′q+1. By Hecke insertion Case 1(b), the insertion

ends in row µ′q+1+1. Also P (T ′) is unchanged, and k is recorded in cell (p, q) of Q(T ′) since it is the
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corner whose column contains the rightmost box of row µ′q+1 + 1. In this case, we get Q(T ′′) = T ′′.

Since the shape µ is unchanged, we have that P (T ′′) = P (T ′) also satisfies the statement.

Case (2): If cell (p, q) is not in T ′, then it must be an outer corner of T ′, so µ′q = p − 1 and

µ′q−1 > p − 1. Specifically, two cases can happen: (a) p = 1 and (1, q − 1) ∈ T ′, (b) both

(p− 1, q), (p, q − 1) ∈ T ′, or q = 1 and (p− 1, 1) ∈ T .

Case 2(a): The first row of P (T ′) is ` + 1 − µ′1, . . . , ` + j − µ′j , . . . , ` + (q − 1) − µ′q−1. Since

` + q − p = ` + q − 1 > ` + (q − 1) − µ′q−1, it is appended to the end of the first row which is the

cell (1, q). The letter k is recorded in the same new cell of Q(T ′). In this case, the only entry in P

that is changed is (1, q), and its entry `+ q − 1 satisfies the statement. Also Q(T ′′) equals T ′′.

Case 2(b): Since entry (i, q − 1) of P (T ′) is ` + q − 1 − µ′q−1 + i − 1 and entry (i, q) of P (T ′) is

`+ q − µ′q + i− 1, the number q − p+ ` is in-between the two when i = 1. So the insertion starts

by bumping (1, q). To get the insertion path, we compute columns q − 1 and q as follows:

row number (q − 1)-st column q-th column

µ′q−1 `+ q − 2

...

p− 1 `+ q + p− µ′q−1 − 3 `+ q − 1

... ...

2 `+ q − µ′q−1 `+ q − p+ 2

1 `+ q − 1− µ′q−1 `+ q − p+ 1

By Hecke insertion Case 2(a), ` + q − p is placed in cell (1, q) and the original column q is

shifted one position higher. By Hecke insertion Case 1(a), the insertion terminates at row p and

the original entry in cell (p−1, q) is appended at the rightmost box of row p. Thus, µ′q increases by

1. The updated entries in column q still satisfy the statement. Since the entries in other columns

of P (T ′) are unchanged and µ′j is unchanged for j 6= q, they also satisfy the statement. So we

have P (T ′′) satisfies the statement. The letter k is inserted into the new cell (p, q) of Q(T ′), which

makes Q(T ′′) = T ′′.

Thus, the statement holds, proving the theorem. �
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3.2.2. The ?-insertion. We define a new insertion algorithm, which we call ?-insertion, from

fully-commutative decreasing Hecke biwords [k,h]t to pairs of tableaux P and Q, denoted by

?([k,h]t) = (P,Q), as follows.

Definition 71. Fix a fully-commutative decreasing Hecke biword [k,h]t. The insertion is done

by reading the columns of this biword from right to left.

Begin with (P0, Q0) being a pair of empty tableaux. For every integer i > 0, we recursively

construct (Pi+1, Qi+1) from (Pi, Qi) as follows. Let [q, x]t be the i-th column (from the right) of

[k,h]t. Suppose that we are inserting x into row R of Pi.

Case 1: If R is empty or x > max(R), then form Pi+1 by appending x to row R and form

Qi+1 by adding q in the corresponding position to Qi. Terminate and return (Pi+1, Qi+1).

Case 2: Otherwise, if x /∈ R, locate the smallest y in R with y > x. Bump y with x and

insert y into the next row of Pi.

Case 3: Otherwise, if x ∈ R, locate the smallest y in R with y 6 x and interval [y, x]

contained in R. Row R remains unchanged and y is to be inserted into the next row of Pi.

Denote (P,Q) = (P`, Q`) if [k,h]t has length `. We define the ?-insertion by ?([k,h]t) = (P,Q).

Furthermore, denote by P ← x the tableau obtained by inserting x into P . The collection of all

cells in P ← x, where insertion or bumping has occurred is called the insertion path for P ← x. In

particular, in Case 1 the newly added cell is in the insertion path, in Case 2 the cell containing the

bumped letter y is in the insertion path, and in Case 3 the cell containing the same entry as the

inserted letter is in the insertion path.

Example 72. Let k

h

 =

4 4 2 2 1 1

4 2 4 2 3 1

 .
The corresponding sequence of insertion tableaux and recording tableaux under the ?-insertion

is listed here:

71



∅ →
1
→

1 3
→ 3

1 2
→ 3

1 2 4
→ 3

1

1 2 4

→ 3

1 4

1 2 4

= P.

∅ →
1
→

1 1
→ 2

1 1
→ 2

1 1 2
→ 4

2

1 1 2

→ 4

2 4

1 1 2

= Q.

Then we have ?([k,h]t) = (P,Q), and the cells in the insertion paths at each step are highlighted

in yellow.

Lemma 73. Let [k,h]t be a fully-commutative decreasing Hecke biword. Suppose that ?([k,h]t) =

(P,Q). Then, the following statements hold:

(1) P t is semistandard and Q has the same shape as P .

(2) Let x be an integer such that x ·h is fully-commutative. Then the insertion path for P ← x

goes weakly to the left.

Proof. We will prove (1) by induction on the number of cells of P . Statement (2) will follow

by some results in the proof of statement (1).

Consider the leftmost column [q, x]t of [k,h]t and let [k′,h′]t be the Hecke biword formed by

taking the remaining columns in the same order. If the ?-insertion of [k′,h′]t yields (P ′, Q′), note

that we have P = P ′ ← x. For all integers j > 1, denote by Rj the (possibly empty) j-th row of

P ′. Denote by u the entry to be inserted into Rj and Bj as the cell in the insertion path at Rj ,

where 1 6 j 6 k. Additionally, if bumping occurs at Rj , denote the entry bumped out as y.

(1) We will prove that if (P ′)t is semistandard, then the transpose of the updated tableau is

semistandard.

Case (a): Suppose that the insertion terminates at R1. Then Case 1 of the ?-insertion has

occurred, with a cell containing x appended at the end of the row. If R1 is nonempty, then

x > max(R1). Additionally, as (P ′)t is semistandard, integers strictly increase along R1

but weakly increase along the column containing B1. Hence, the transpose of the resulting

tableau P is semistandard.
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Case (b): Suppose that insertion terminates at Rk, where k > 1. We will show that for

all 1 6 j 6 k, the changes introduced at row Rj of P ′ maintain the property that the

transpose of the updated tableau is semistandard.

Case (b)(i): Suppose that j = k. In this case, a new cell containing u is appended at the

end of Rk and u > max(Rk) if the row is nonempty, proving that the integers increase

strictly along Rk.

If Case 2 occurs at Rk−1, then u is the entry bumped out of Rk−1 with the property

that when u′ is inserted into Rk−1, u ∈ Rk−1 is the smallest entry with u > u′. Let z be

the entry below cell Bk. We claim that z 6 u. If we assume instead that z > u, then the

cell containing z is strictly to the right of Bk−1. However, the cell above Bk−1 has value

greater than u since (P ′)t is semistandard and u /∈ Rk. This contradicts the minimality of

u′, as u′ is greater than this value, hence proving the claim.

If Case 3 occurs at Rk−1, then u is bumped out of Rk−1 with the property that when

u′ is inserted into Rk−1, u ∈ Rk−1 is the smallest entry with [u, u′] ⊆ Rk−1. Let z be the

entry below cell Bk. Then, similar to the argument immediately before, z 6 u′. Hence, we

have established that the integers weakly increase along the column containing Bk after u

is appended at the end of Rk.

Case (b)(ii): Suppose that 1 6 j < k and Case 2 occurs at Rj . Then y is the entry bumped

out of Rj with the property that when u is inserted into Rj , y ∈ Rj is the smallest entry

with y > u. Thus, as u /∈ Rj , for all entries z and z′ respectively to the left and to the

right of Bj , we have z < u < y < z′.

If Case 2 occurs at Rj−1, then u is bumped out of Rj−1 with the property that when

u′ is inserted into Rj−1, u ∈ Rj−1 is the smallest entry with u > u′. Let z be the entry

below cell Bj . Then by repeating the same argument as in the first subcase of in Case

(b)(i), we obtain z 6 u.

If Case 3 occurs at Rj−1, then u was bumped out of Rj−1 with the property that when

u′ is inserted into Rj−1, u ∈ Rj−1 is the smallest entry with [u, u′] ⊆ Rj−1. Let z be the

entry below cell Bj . Then by repeating the same argument as in the second subcase of in

Case (b)(i), we obtain z 6 u′.
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Hence, we have established that integers increase weakly along the column containing

Bj but increase strictly along Rj after u bumps out y.

Case (b)(iii): Suppose that 1 6 j < k and Case 3 occurs at Rj . In this case, there are

no changes to row Rj after inserting u and bumping y. Hence, it is trivial that integers

increase weakly along the column containing Bj but increase strictly along Rj after u

bumps out y.

In all cases, we have shown that if (P ′)t is semistandard, then the transpose of the updated tableau

remains semistandard. Therefore, by induction on the number of added cells, we have proved that

the insertion tableau P under ?-insertion satisfies the property that P t is semistandard.

Finally, note that the shape of the recording tableau is modified only when Case 1 of the ?-

insertion has occurred. In this case, a cell is added to form Q at the same position as the cell added

to form P . Since we always begin with a pair of empty tableaux, by inducting on the number of

added cells, the shapes of P and Q are the same.

(2) Suppose that the insertion terminates at Rk, where k > 1. We shall prove that Bj is weakly

to the left of Bj−1 for all 1 < j 6 k by revisiting the cases explored in the proof of part (1) (note

that P should replace the role of P ′).

If Case 2 occurs at Rj−1, then u is the entry bumped out of Rj−1 with the property that when

u′ is inserted into Rj−1, u ∈ Rj−1 is the smallest entry with u > u′. As in the proof of the first

subcase of Case (b)(i) in part (1), we conclude that the entry z of the cell below Bk satisfies z 6 u,

showing that Bj is weakly to the left of Bj−1.

If Case 3 occurs at Rj−1, then u was bumped out of Rj−1 with the property that when u′ is

inserted into Rj−1, u ∈ Rj−1 is the smallest entry with [u, u′] ⊆ Rj−1. As in the proof of the second

subcase of Case (b)(i) in part (1), we conclude that the entry z of the cell below Bj satisfies z 6 u′,

Bj is weakly to the left of Bj−1.

This completes the proof. �

For the following results, given a tableau P with positive integer entries, row(P ) denotes its row

reading word, obtained by reading these entries row-by-row starting from the top row (in French
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notation), reading from left to right. We will consider row(P ) as an element in a fixed 0-Hecke

monoid.

Lemma 74. Let P be a tableau such that P t is semistandard and row(P ) is fully-commutative.

Let x be an integer such that row(P ) · x is fully-commutative. Then,

(3.2.1) row(P ← x) ≡H0 row(P ) · x.

Proof. To prove (3.2.1), let us first prove the following statements for all row tableaux P :

• With the assumptions in lemma, if insertion terminates at row P while computing P ← x,

then

row(P ← x) ≡H0 row(P ) · x.

• With the assumptions in lemma, if y is bumped from row P and P changes to P ′ while

computing P ← x, then

row(P ← x) ≡H0 y · row(P ′).

Assume that insertion terminates at row P while computing P ← x. Then, Case 1 must have

occurred and P changes to P ′, where P ′ is P appended by a cell containing x. Hence, we have

row(P ← x) ≡H0 row(P ′) ≡H0 row(P ) · x.

Assume that y is bumped from row P and P changes to P ′ while computing P ← x. Then,

either Case 2 or Case 3 must have occurred.

If Case 2 occurs at P , then x 6∈ P and there is a y ∈ P with y > x; furthermore, y is the smallest

value with such property. Write P as AyB, where A and B are the row subtableaux of P formed

by entries to the left and to the right of y, respectively. Then, P ← x is the tableau with row

Axb followed by row y. As x /∈ P , we have max(A) < x < y < min(B). Hence by commutativity

relations, for all z ∈ B, we have z · x ≡H0 x · z and for all z ∈ A, we have z · y ≡H0 y · z, so that

regarding A and B as words in H0(n), we obtain

A · y ≡H0 y ·A, B · x ≡H0 x ·B.
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It follows that

row(P ) ·x ≡H0 row(AyB) ·x ≡H0 A ·y ·B ·x ≡H0 y ·A ·x ·B ≡H0 y · row(AxB) ≡H0 row(P ← x).

If Case 3 occurs at P , then x, y ∈ P with y being the smallest value such that [y, x] ⊆ P . Write

P as ABC, where B = [y, x], A and C are respectively the row subtableaux of P formed by entries

to the left and to the right of B. Then, P ← x is the tableau with row ABC followed by row y.

As row(P ) · x was assumed to be fully-commutative, x+ 1 /∈ P . Furthermore, by minimality of y,

y > max(A) + 1. Hence, by commutativity relations, for all z ∈ A, we have z · y ≡H0 y · z and for

all z ∈ C, we have x · z ≡H0 z · x, so that

A · y ≡H0 y ·A, C · x ≡H0 x · C.

Moreover, by using the relations p− 1 p p = p− 1 p− 1 p, we have y · B ≡H0 B · x. It follows

that

row(P )·x ≡H0 row(ABC)·x ≡H0 A·B ·C ·x ≡H0 A·y ·B ·C ≡H0 y ·row(ABC) ≡H0 row(P ← x).

Hence, the two statements above hold for all row tableaux P .

We are now ready to prove (3.2.1) in full generality. The result follows once we prove by

induction on the number of rows of P , with the given setup above, that the following statements

hold:

• If the insertion terminates within tableau P while computing P ← x, then

row(P ← x) ≡H0 row(P ) · x.

• If y is bumped from tableau P and P changes to P ′ while computing P ← x, then

row(P ← x) ≡H0 y · row(P ′).

Indeed, if P is a (possibly empty) row tableau, then we are done by the two previous statements

that have been proved. Let k > 1 be an arbitrary integer. Assume that both statements mentioned

above hold for all such tableaux P with k rows.
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Let P be a tableau with k + 1 rows with the setup as above. Then, we may consider the

subtableau P ∗ formed from its first k rows and denote the final row as R. Note that row(P ) =

row(R) · row(P ∗) and row(R) is fully-commutative.

Assume that the changes from P to P ← x involve at most the first k rows of P . Then P ← x

is the same tableau as P ∗ ← x with an extra row R, so that by the inductive hypothesis,

row(P ← x) ≡H0 row(R) · row(P ∗ ← x) ≡H0 row(R) · row(P ∗) · x ≡H0 row(P ) · x.

Now assume that the changes from P to P ← x involves all k + 1 rows of P . Let P ′ be the

resulting tableau after performing these changes on P ∗ and let y be the entry bumped from the

final row of P ∗. Then, P ← x is the tableau obtained by concatenating tableau R← y after P ′.

If the insertion terminates at row R, then by the previous statements for all row tableaux and

the inductive hypothesis, we obtain

row(P ← x) ≡H0 row(R← y) · row(P ′) ≡H0 row(R) · y · row(P ′)

≡H0 row(R) · row(P ∗ ← x) ≡H0 row(R) · row(P ∗) · x ≡H0 row(P ) · x.

Otherwise, if the insertion bumps z from R and R changes to R′ while computing R← y, then

it holds that the insertion bumps z from P while computing P ← x. In this case, if we denote P ′′

as the tableau P ′ concatenated by row R′, then

row(P ) · x ≡H0 row(R← y) · row(P ′) ≡H0 z · row(R′) · row(P ′) ≡H0 z · row(P ′′) ≡H0 row(P ← x).

This completes the induction. �

Remark 75. Observe that the assumption that row(P ) is fully-commutative implies that row(R)

is fully-commutative for each row R of P . Moreover, in the proof of Lemma 74, if x is to be inserted

into row R of P when computing P ← y and x ∈ R, then the extra assumption that row(P ) · x is

fully-commutative implies that R does not contain x+ 1.

Lemma 76. Let P be a tableau such that P t is semistandard and row(P ) is fully-commutative.

Let x, x′ be integers such that row(P ) · x and row(P ) · xx′ are fully-commutative.
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Denote the insertion paths of P ← x and (P ← x)← x′ as π and π′ respectively. Also, suppose

that P ← x and (P ← x)← x′ introduce boxes B and B′ respectively. Then the following statements

about ?-insertion are true:

(1) If x < x′, then π′ is strictly to the right of π. Moreover, B′ is strictly to the right of and

weakly below B.

(2) If x > x′, then π′ is weakly to the left of π. Moreover, B′ is weakly to the left of and

strictly above B.

Proof. Similar to Fulton’s proof [Ful96] of the Row Bumping Lemma, we will keep track of

the entries as they are bumped from a row. Consider a row R of tableau P and suppose that u and

u′ are to be inserted into R when computing P ← x and (P ← x)← x′ respectively, where u < u′.

Denote by C (similarly C ′) the box in π (similarly π′) that is also in R.

Case 1: x < x′. We will prove that the following assertions hold for R:

(a) If the insertion terminates at R while computing P ← x, then the insertion terminates at

R while computing (P ← x)← x′.

(b) C ′ is strictly to the right of C.

Note that the insertion terminates at R when computing P ← x precisely when Case 1 of the

?-insertion occurs at R. Box C containing u is appended at the end of R. As u′ > u, Case 1 occurs

again at R with box C ′ containing u′ appended to the right of C, so bumping does not occur at R

when computing (P ← x)← x′. This proves (a) and simultaneously, (b) for this case.

Let us assume that bumping occurs at R with y bumped out when computing P ← x.

Case A: If y is bumped from R because Case 2 occurs, the insertion at row R introduced

to box C ′ occurs strictly to the right of C (containing u) because:

(i) If u′ > max(R), then box C ′ containing u′ is appended to the end of R by Case 1. In

particular, C ′ appears strictly to the right of C.

(ii) Otherwise, since u′ > u, the letter u′ is inserted into a box C ′ strictly to the right

of C with y′ bumped out. If u′ /∈ R, Case 2 occurs and y′ > y because C ′ and C

originally contained y′ and y respectively. Else, u′ ∈ R and Case 3 occurs. Suppose

that [y′, u′] is the longest interval of consecutive integers contained in R. Since box C
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that originally contained y is strictly to the left of C ′, we have u < y < u′. Therefore,

[u, u′] cannot be contained in R, so y < y′.

Case B: Otherwise, y is bumped from R because Case 3 occurs when computing P ← x

and [y, u] is the longest interval of consecutive integers contained in R by Remark 75. The

insertion at row R introduced to box C ′ occurs strictly to the right of C (containing u)

because:

(i) If either u′ > max(R) or u′ /∈ R, then by similar arguments as in Case A(i) and Case

A(ii), C ′ appears to the right of C. Furthermore, in the latter situation, by a similar

argument in Case A(ii), we have y < y′.

(ii) Otherwise, u′ ∈ R and Case 3 occurs. As u′ > u, u′ is inserted into box C ′ strictly

to the right of C with y′ bumped out. In addition, [y′, u′] is the longest interval of

consecutive integers contained in R. As row(R) is fully-commutative before computing

P ← x, u + 1 /∈ R. Hence [u, u′] cannot be contained in R. It follows that y 6 u <

u+ 1 < y′.

Note that in the arguments above, we have also shown that if y and y′ are bumped from R when

computing P ← x and (P ← x)← x′ respectively, then y < y′. It follows that we may apply similar

arguments in the rows following R. Since assertion (b) now holds for all rows, we conclude that π′

is strictly to the right of π. In addition, π′ cannot continue after π ends because of assertion (a).

Considering that π′ goes weakly left by Lemma 73, we conclude that box B′ is strictly to the right

of and weakly below B.

Case 2: x > x′. We will prove that the following assertions hold for R:

(1) If the insertion terminates at R while computing P ← x, then bumping occurs at R while

computing (P ← x)← x′.

(2) C ′ is weakly to the left of C.

If the insertion terminates at row R when computing P ← x, then Case 1 occurs and box C

containing u is appended at the end of R. If u′ ∈ R, Case 3 occurs at R with y′ 6 u′ 6 u bumped

out. Furthermore, box C ′ containing u′ is weakly to the left of C. If u′ /∈ R, Case 2 occurs at R

with y′ > u′ bumped out and u′ < u. We have y′ 6 u by minimality of y′, so that box C ′ is weakly
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to the left of C. In either of the subcases, bumping occurs at R when computing (P ← x) ← x′.

This proves (a) and simultaneously, (b) for this case.

Let us assume that bumping occurs at R with y bumped out when computing P ← x.

Case A: If y is bumped from R because Case 2 occurs when computing P ← x, the insertion

at row R introduced to box C ′ occurs weakly to the left of C (containing u) because:

(i) If u′ /∈ R, then u′ is inserted into box C ′ containing y′ by Case 2, while bumping out

this y′. As u′ < u, we have y′ 6 u < y and that C ′ appears weakly to the left of C.

(ii) Otherwise, u′ ∈ R and Case 3 occurs. The letter u′ is inserted into box C ′ weakly

to the left of C as u′ 6 u. In addition, if [y′, u′] is the longest interval of consecutive

integers in R, then y′ is bumped out. Furthermore, we have y′ < y as C, which

originally contained y before computing P ← x, is to the right of the box containing

y′.

Case B: Otherwise, y is bumped from R because Case 3 occurs when computing P ← x. Let

[y, u] be the longest interval of consecutive integers that is contained in R. The insertion

at row R introduced to box C ′ occurs weakly to the left of C (containing u) because:

(i) If u′ /∈ R, then u′ < u, u′ is inserted into box C ′ containing y′ and y′ is bumped out by

Case 2. As row(P ) ·x is fully-commutative, in particular row(R) is fully-commutative.

Hence u′ < y, so that C ′ is weakly to the left of box containing y (hence also weakly

to the left of C). Furthermore, we have y′ 6 y by the minimality of y′.

(ii) If u′ ∈ R, then either u′ = u or u < u′. The former case is easy as Case 3 occurs

again with u′ inserted into C ′ = C and y′ = y is bumped out. If u < u′, then as

row(P ) · x is fully-commutative, row(R) is fully-commutative, so that u′ < y − 1. It

follows that C ′ is strictly to the left of box containing y (hence also strictly to the left

of C). Furthermore, we have y′ 6 u′ < y − 1 < y.

Note that in the arguments above, we have also shown that if y and y′ are bumped from R

when computing P ← x and (P ← x)← x′ respectively, then y > y′. It follows that we may apply

similar arguments in the rows following R. Since assertion (b) now holds for all rows, we conclude

that π′ is weakly to the left of π. In addition, π′ must continue after π ends because of assertion
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(a). Considering that π′ goes weakly left by Lemma 73, we conclude that box B′ is weakly to the

left of and strictly above B. �

Let U be a tableau such that U t is semistandard and row(U) is fully-commutative. We describe

the reverse row bumping for ?-insertion of U as follows. Locate an inner corner of U and remove

entry y from that row. Perform the following operations until an entry is bumped out of the

bottommost row. Suppose that we are reverse bumping y into a row R. If y /∈ R, find the largest

x ∈ R with x < y; insert y and bump out x. Otherwise, y ∈ R, so find the largest x ∈ R such that

[y, x] is the longest interval of consecutive integers. In this case, row R remains unchanged but x is

bumped out. Then reverse bump x into the next row below unless there is no further row below.

In this case, terminate and return the resulting tableau as T along with the bumped entry x. It

is straightforward to see that reverse row bumping specified above reverses the bumping process

specified by the ?-insertion.

Example 77. Let U be the tableau

U =

5

2

2 5

2 3 5

1 2 4
.

By performing reverse row bumping on the topmost 5 in U , we obtain

T =

5

2 5

2 3 5

1 3 4

and entry 2. It is also straightforward to check that U = T ← 2.

Corollary 78. Let T be a tableau of shape λ such that T t is semistandard and row(T ) is

fully-commutative. Let k be a positive integer.
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Let x1 < x2 < · · · < xk (similarly xk 6 · · · 6 x2 6 x1) be integers such that row(T ) · x1x2 . . . xi

is fully-commutative for all 1 6 i 6 k. Then, the collection of boxes added to T to form the tableau

U = ((T ← x1)← x2) · · · ← xk

has the property that no two boxes are in the same column (similarly row).

Conversely, if U is a tableau of shape µ such that λ ⊆ µ and µ/λ consists of k boxes with no

two boxes in the same column, i.e, a horizontal strip of size k (similarly row, i.e., a vertical strip

of size k), then there is a unique tableau T of shape λ and unique integers x1 < x2 < · · · < xk

(similarly xk 6 · · · 6 x2 6 x1) such that

U = ((T ← x1)← x2) · · · ← xk.

In particular, if (P,Q) = ?([k,h]t), where [k,h]t is a fully-commutative decreasing Hecke biword,

then Q is semistandard.

Proof. Assume that x1 < x2 < · · · < xk. By statement (1) of Lemma 76, the sequence of

added boxes in U = ((T ← x1)← x2) · · · ← xk moves weakly below and strictly to the right when

computing U . In particular, no two of the added boxes can be in the same column.

To recover the required tableau T and integers x1 < x2 < · · · < xk, perform reverse row

bumping on the boxes specified by the shape µ/λ within U starting from the rightmost box,

working from right to left. The tableau T and the integers x1, x2, . . . , xk are uniquely determined

by the operations. Moreover, by Lemma 76, the integers xk, xk−1, . . . , x1 obtained in the given

order of operations satisfy x1 < x2 < · · · < xk.

Now assume xk 6 · · · 6 x2 6 x1. By statement (2) of Lemma 76, the sequence of added boxes

moves strictly above and weakly to the right when computing U . In particular, no two of the added

boxes can be in the same row.

Similarly, one may perform reverse row bumping on the boxes specified by the shape µ/λ within

U starting from the topmost box, working from top to bottom. Again, the operations uniquely

determine the tableau T and the integers x1, x2, . . . , xk. Moreover, by Lemma 76, the integers

xk, xk−1, . . . , x1 obtained in the given order of operations satisfy xk 6 · · · 6 x2 6 x1.
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Finally, note that in a decreasing Hecke biword [k,h]t, where h = hm . . . h2h1, entries within a

fixed ai are inserted in increasing order. It follows that the collection of all boxes with label i form

a horizontal strip within the tableau Q. Collecting all these horizontal strips with values i from m

to i in order by using the converse recovers Q, implying that Q is semistandard. �

Theorem 79. The ?-insertion is a bijection from the set of all fully-commutative decreasing

Hecke biwords to the set of all pairs of tableaux (P,Q) of the same shape, where both P t and Q are

semistandard and row(P ) is fully-commutative.

Proof. By successive applications of Lemma 74, if (P,Q) = ?([k,h]t), then as h is fully-

commutative, row(P ) is also fully-commutative. Hence, using Lemma 73 and Corollary 78, ?-

insertion is a well-defined map from the set of all fully-commutative decreasing Hecke biwords to

the set of all pairs of tableaux (P,Q) of the same shape with both P t, Q semistandard and row(P )

being fully-commutative.

It remains to show that the ?-insertion is an invertible map. Assume that P and Q are tableaux

of the same shape with both P t, Q semistandard and row(P ) being fully-commutative. Since Q is

semistandard, the collection of boxes with the same entry form a horizontal strip. Starting with

the largest such entry m, perform reverse row bumping with the boxes in the strip from right to

left. By Lemma 76, this recovers the entries in hm in decreasing order. Repeating this procedure

in decreasing order of entries recovers h = hm . . . h2h1, which automatically yields a decreasing

Hecke biword [k,h]t. Furthermore, by repeated applications of Lemma 74, since row(P ) was fully-

commutative, then the reverse word of h is fully-commutative, so that h is fully-commutative too.

Finally, by repeated applications of the converse stated in Corollary 78, the recovered decreasing

Hecke biword [k,h]t is unique. �

3.3. Properties of the ?-insertion

In this section, we show that the ?-insertion intertwines with the crystal operators. More

precisely, the insertion tableau remains invariant on connected crystal components under the ?-

insertion as shown in Section 3.3.1 by introducing certain micro-moves. In Section 3.3.2, it is

shown that the ?-crystal on Hm,? intertwines with the usual crystal operators on semistandard
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tableaux on the recording tableaux under the ?-insertion. In Section 3.3.3, we relate the ?-insertion

to the uncrowding operation.

3.3.1. Micro-moves and invariance of the insertion tableaux. In this section, we in-

troduce certain equivalence relations of the ?-insertion in order to establish its relation with the

?-crystal. From now on we are focusing on the sequence in the insertion order. Since each decreasing

factorization h is inserted from right to left, we look at h read from right to left.

Definition 80. We define an equivalence relation through micro-moves on fully-commutative

words in H0(n).

(1) Knuth moves, for x < z < y:

(I1) xyz ∼ yxz

(I2) zxy ∼ zyx

(2) Weak Knuth moves, for y > x+ 1:

(II1) xyy ∼ yxy

(II2) xxy ∼ xyx

(3) Hecke move, for y = x+ 1:

(III) xxy ∼ xyy

Note that the micro-moves preserve the relation ≡H0.

Similar relations have appeared in [FG98, Eq. (1.2)].

Example 81. The 13242 ∈ H0(5) is equivalent to 31242, 13422, 13224, 31224, and itself.

Next, we use the following notation on ?-insertion tableaux. For a single-row increasing tableau

R, let Rx denote the first row of the tableau R← x and let R(x) denote the output of the ?-insertion

from the first row. If the ?-insertion outputs a letter, then denote it by R(x); if x is appended to the

end of the row R, then the output R(x) is 0, which can be ignored. We always have x ·0 ∼ x ∼ 0 ·x.

Example 82. Let R =
1 3 4 6 7 8

, then the first row of R← 7 is

R7 =
1 3 4 6 7 8
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and R(7) = 6. Furthermore, the first row of R7 ← 9 is R7,9 =
1 3 4 6 7 8 9

and

R8(9) = 0.

Lemma 83. Let R be a single-row increasing tableau, and x, y, z be letters such that row(R)·x·y·z

is fully-commutative. Let x′, y′, z′ be letters such that xyz ∼ x′y′z′. Following the above notation,

we have

Rxyz = Rx
′y′z′ and R(x)Rx(y)Rxy(z) ∼ R(x′)Rx

′
(y′)Rx

′y′(z′).

Proof. Let R be a single-row increasing tableau and M be the largest letter in R. First note

that if a ∈ R and row(R) · a is fully-commutative, then a+ 1 /∈ R, see also Remark 75.

There are five types of equivalence triples, so we discuss them in 3 groups.

1. Cases (I1) and (II1): We have x < z < y, or x < z = y and y > x + 1. In both cases

x′ = y, y′ = x, z′ = z.

Case (1A): M < x < z 6 y. In this case, the first resulting tableau is Rxyz =
R x z

and the

outputs are R(x) = Rx(y) = 0 and Rxy(z) = y. The second resulting tableau is Ryxz = R x z

and the outputs are R(y) = 0 = Ryx(z) and Ry(x) = y. So we have Rxyz = Ryxz and also

0 · 0 · y ∼ 0 · y · 0.

Case (1B): x 6 M < z 6 y. In this case, we have Rxy = Ryx and R(x) = Ry(x) since y is just

appended to the end of R and does not influence how x is inserted. This gives Rxyz = Ryxz. The

related outputs are Rx(y) = R(y) = 0, Rxy(z) = Ryx(z) = y. Thus, R(x) · 0 · y ∼ 0 ·R(x) · y.

Case (1C): x < z 6 M < y. In this case, we also have that Rxy = Ryx and R(x) = Ry(x), for

the same reason as case (1B). Thus, we have Rxyz = Ryxz and Rxy(z) = Ryx(z). Since we have

Rx(y) = R(y) = 0, R(x) · 0 ·Rxy(z) ∼ 0 ·Ry(x) ·Ryx(z).

Case (1D): x < z 6 y 6 M . If x is the maximal letter in Rx, then it follows as case (1B).

Otherwise, this case needs further separation into subcases.

Case 1D-(i): x, y /∈ R. Then x < R(x), y < R(y) and R(x) 6= y.

(1) If R(x) < y, then Rx(y) = R(y) and Ry(x) = R(x), which implies Rxy = Ryx, thus Rxyz = Ryxz

and Rxy(z) = Ryx(z). Hence R(x)Rx(y)Rxy(z) = Ry(x)R(y)Ryx(z). Since R(x) < Rxy(z) 6 y <
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R(y), we have R(y) > Ry(x) + 1 and for the outputs R(x)Rx(y)Rxy(z) = Ry(x)R(y)Ryx(z) ∼

R(y)Ry(x)R(y)Ryx(z) by move type (I1) or (II1).

(2) If R(x) > y, let the letter to the right of R(x) in R be R(x)→. Then both Rxyz and Ryxz

are obtained by replacing R(x) with x and R(x)→ with z. For the output, we have R(x) = R(y),

Rx(y) > R(y), Ry(x) = y, Ryx(z) = Rx(y) and Rxy(z) = y. Since y < R(x) < Rx(y), we have that

Rx(y) = R(x)→ > y + 1. Hence the outputs R(x)Rx(y)Rxy(z) = R(x)R(x)→y ∼ R(x)yR(x)→ =

R(y)Ry(x)Ryx(z) by move of type (I2).

Case 1D-(ii): x ∈ R, y /∈ R. Then R(x) 6 x,R(y) > y and x + 1 /∈ R. In this case, we

have Rx(y) = R(y) and Ry(x) = R(x), thus Rxy = Ryx, Rxy(z) = Ryx(z) and Rxyz = Ryxz.

Since x + 1 /∈ R, we have Rxy(z) > x + 1. This implies R(x) 6 x < Rxy(z) 6 y < R(y), thus

R(x)Rx(y)Rxy(z) ∼ R(y)Ry(x)Ryx(z) as it is a type (I1) move.

Case 1D-(iii): x /∈ R, y ∈ R. Then x < R(x), y > R(y), y + 1 /∈ R, R(x) − 1 /∈ R, R(x) 6 y,

R(y) 6 Rx(y) and Ry = R.

(1) If R(x) = y, denote the box to the right of y in y as y→. Note that y→ > y + 1. Then

Rx(y) = y→, Rxy(z) = y, Ry(x) = y and Ryx(z) = y→. Note y − 1 /∈ R, otherwise R(x) 6 y − 1.

Thus, R(y) = y. Both Rxyz and Ryxz are obtained by replacing y ∈ R with x and y→ with z, so

Rxyz = Ryxz. The outputs R(x)Rx(y)Rxy(z) = yy→y ∼ yyy→ = R(y)Ry(x)Ryx(z) as it is a type

(II2) move.

(2) Suppose R(x) < y and R(x) = R(y). Then [R(x), y] ⊂ R and Rx(y) = R(x) + 1. Since Ry = R

and Rxy = Rx, we have that both Rxy and Ryx equal Rx and furthermore Ry(x) = R(x). Note

that z can either be equal to y or z < Rx(y), otherwise z ∈ Rxy and z+ 1 ∈ Rxy, which will give us

a braid from row(Rxy) · z. Thus, we have Rxy(z) = Ryx(z) = R(x) + 1. In either case, the outputs

are R(x)Rx(y)Rxy(z) = R(x)(R(x) + 1)(R(x) + 1) ∼ R(x)R(x)(R(x) + 1) = R(y)Ry(x)Ryx(z) as

they are type (III) moves.

(3) Suppose R(x) < y and R(x) < R(y). Then R(y) > R(x) + 1 and Rx(y) = R(y). Similar to the

previous case, both Rxy and Ryx are equal to Rx, and z is either y or z < R(y). In either case,

Rxy(z) 6 R(y).

Then the outputs areR(x)Rx(y)Rxy(z) = R(x)R(y)Rx(z) ∼ R(y)R(x)Rx(z) = R(y)Ry(x)Ryx(z)

as they are type (I1) or (II1) moves.
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Case 1D-(iv): x, y ∈ R. In this case x > R(x), y > R(y), x + 1 /∈ R and y + 1 /∈ R. Since

x+ 1 /∈ R, [x, y] is not contained in R and hence R(y) > x+ 1 > x > R(x).

Then Rx(y) = R(y), Ry(x) = R(x) and Rxy = Ryx = R. Since z > x and x + 1 /∈ R, we have

R(z) > x + 1 > R(x) + 1. By similar reasons to the previous two subcases of Case 1D-(iii), z can

either be y or z < R(y) in order to avoid a braid in row(Rxy)z. So, we have Rxy(z) 6 R(y). Then

the outputs are R(x)Rx(y)Rxy(z) = R(x)R(y)R(z) ∼ R(y)R(x)R(z) = R(y)Ry(x)Ryx(z) as they

are type (I1) moves.

2. Cases (I2) and (II2): We have z < x < y, or z = x < y and y > z + 1. In both cases

x′ = x, y′ = z, z′ = y. By definition, x ∈ Rx.

Case (2A): M < x < y, then R(x) = Rx(y) = 0. Rxy = R x y is obtained by appending

x and y to the end of R. Since x ∈ Rx and z 6 x < y, we have Rxy(z) = Rx(z). Moreover,

Rxzy is obtained by appending y to the end of Rxz and hence Rxyz = Rxzy. The outputs are

R(x)Rx(y)Rxy(z) = 00Rx(z) ∼ 0Rx(z)0 = R(x)Rx(z)Rxz(y).

Case (2B): z 6 x 6M < y, then Rx(y) = Rxz(y) = 0. Since Rxy =
Rx y , x ∈ Rx and z 6 x, we

have Rxy(z) = Rx(z), thus Rxyz = Rxz y = Rxzy. The output R(x)Rx(y)Rxy(z) = R(x)0Rx(z) ∼

R(x)Rx(z)0 = R(x)Rx(z)Rxz(y).

Case (2C): z 6 x < y 6M , then we have Rx(z) 6 x. We discuss the following subcases.

Case 2C-(i): x, y /∈ R, then we have R(x) > x and Rx(y) > y. Since y > x and x replaces

R(x) in R, we have Rx(y) > R(x) from row strictness. Since Rx(y) > R(x) and Rx(z) 6 x,

we have Rxy(z) = Rx(z) and Rxz(y) = Rx(y). Furthermore, Rxyz = Rxzy. Moreover, we have

Rx(z) 6 x < R(x) < Rx(y), which implies Rx(y) > Rx(z) + 1. Hence R(x)Rx(y)Rxy(z) =

R(x)Rx(y)Rx(z) ∼ R(x)Rx(z)Rx(y) = R(x)Rx(z)Rxz(y) by type (I2) moves.

Case 2C-(ii): x ∈ R, y /∈ R. Then Rx = R, R(x) 6 x,Rx(y) > y. Since z 6 x and [R(x), x] ⊂ Rx,

we have that Rx(z) 6 R(x). Since Rx(y) > y > x and Rx(z) 6 R(x), we have that Rxy(z) = Rx(z)

and Rxz(y) = Rx(y), thus Rxyz = Rxzy. Since Rx(z) 6 R(x) 6 x < y < Rx(y), we have

Rx(y) > Rx(z) + 1. The outputs are R(x)Rx(y)Rxy(z) = R(x)Rx(y)Rx(z) ∼ R(x)Rx(z)Rx(y) =

R(x)Rx(z)Rxz(y) by type (I2) or (II2) moves.
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Case 2C-(iii): x /∈ R, y ∈ R. Then Rxy = Rx, R(x) > x and Rx(y) 6 y. Let the letter to the right

of R(x) in R be R(x)→. Then R(x)→ > R(x) > x implies R(x)→ > x + 1. This also shows that

x+ 1 /∈ Rx and thus Rx(y) > R(x). Since Rxy = Rx and Rxzy = Rxz, we have Rxyz = Rxz = Rxzy.

Since Rx(z) 6 x < R(x) < Rx(y), we have Rx(y) > Rx(z) + 1. Since z 6 x, we also have that

Rx(y) = Rxz(y). Thus, the outputs are R(x)Rx(y)Rxy(z) = R(x)Rx(y)Rx(z) ∼ R(x)Rx(z)Rx(y) =

R(x)Rx(z)Rxz(y) by a type (I2) move.

Case 2C-(iv): x ∈ R, y ∈ R. Then Rx = R, Rxy = R, R(x) 6 x, Rx(y) 6 y, x + 1 /∈ R and

y + 1 /∈ R. Thus, Rx(y) > x + 1. Since z 6 x and [R(x), x] ⊂ Rx, we have that Rx(z) 6 R(x).

Since Rxy = R, Rxyz = Rz. Since Rx(z) 6 x, Rxz(y) = Rz(y) = R(y) and thus Rxzy = Rz. This

implies Rxyz = Rxzy. Now we have R(z) 6 R(x) 6 x < x + 1 < R(y). Therefore, the outputs

are R(x)Rx(y)Rxy(z) = R(x)R(y)R(z) ∼ R(x)R(z)R(y) = R(x)Rx(z)Rxz(y) by type (I2) or (II2)

moves.

3. Case (III): We have y = x, z = x+ 1 and hence x′ = x, y′ = x+ 1 and z′ = x+ 1.

Case (3A): x > M . Then Rx is obtained by appending x to the end of R and R(x) = 0.

Also Rxx = Rx with output Rx(x). Note Rx,x+1(x + 1) = Rx(x). Both Rxx,x+1 and Rx,x+1,x+1

are obtained by appending x + 1 to the end of Rx, thus they are the same. The outputs are

R(x)Rx(x)Rxx(x+ 1) = 0Rx(x)0 ∼ 00Rx(x) = R(x)Rx(x+ 1)Rx,x+1(x+ 1).

Case (3B): x 6M,x+ 1 > M . Both Rxx,x+1 and Rx,x+1,x+1 are obtained by appending x+ 1 to

the end of Rx, so they are equal. Since x ∈ Rx, we have Rx,x+1(x+ 1) = Rx(x). Thus, the outputs

are R(x)Rx(x)Rxx(x+ 1) = R(x)Rx(x)0 ∼ R(x)0Rx,x+1(x+ 1).

Case (3C): x + 1 6 M . It is clear that x ∈ Rx. If x is the maximal letter in Rx, then the rest

follows as case (3B).

Otherwise, let x→ be the letter to the right of x in Rx. Since x ∈ Rx, we must have x+ 1 /∈ Rx,

thus x→ > x + 1. Moreover, we have Rxx = Rx, Rx(x + 1) = Rxx(x + 1) = x→. Since Rx,x+1 is

obtained from Rx by replacing x→ with x+1 and x, x+1 ∈ Rx,x+1, we have Rx,x+1(x+1) = Rx(x).

Both Rxx,x+1 and Rx,x+1,x+1 are obtained from Rx by replacing x→ with x+ 1, thus they are the

same. Furthermore, since Rx(x) 6 x and x→ > x + 1, we have that R(x)Rx(x)Rxx(x + 1) =

R(x)Rx(x)x→ ∼ R(x)x→Rx(x) = R(x)Rx(x+ 1)Rx,x+1(x+ 1) by a type (I2) or (II2) move. �
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Proposition 84. If two words in H0(n) have the property that their reverse words are equivalent

according to Definition 80, then they have the same insertion tableau under ?-insertion (inserted

from right to left).

Proof. Let P be a ?-insertion tableau. By Lemma 73, P t is a semistandard tableau. Let the

rows of P be R1, . . . , R`. Then each row is strictly increasing. The row Rj is considered to be

empty for j > `.

Let x1, y1, z1 and x′1, y
′
1, z
′
1 be letters such that x1y1z1 ∼ x′1y

′
1z
′
1 and row(P ) · x1 · y1 · z1 is

fully-commutative. Let the output of the ?-insertion algorithm of P ← x1 ← y1 → z1 (resp.

P ← x′1 ← y′1 ← z′1) from the row i be xi+1, yi+1, zi+1 (resp. x′i+1, y
′
i+1, z

′
i+1). That is:

• Rxiyizii is the first row of [(Ri ← xi)← yi]← zi and the outputs in order are xi+1, yi+1, zi+1.

• Rx
′
iy
′
iz
′
i

i is the first row of [(Ri ← x′i)← y′i]← z′i and outputs in order are x′i+1, y
′
i+1, z

′
i+1.

By Lemma 83, we have that Rxiyizii = R
x′iy
′
iz
′
i

i and xi+1yi+1zi+1 ∼ x′i+1y
′
i+1z

′
i+1 for all i (possibly

some extra rows exceeding `). Thus, we have the desired result. �

Example 85. The four words in H0(5) of Example 81 all have the same ?-insertion tableau:

3

1

1 2 4 .

In the next couple of lemmas, we prove that the crystal operators f?k act by a composition of

micro-moves as given in Definition 80. More precisely, for a fully-commutative decreasing factor-

ization h, we have hrev ∼ f?k (h)rev as long as f?k (h) 6= 0, where hrev is the reverse of h.

Remark 86. By Definition 48 and Remark 52, there are two cases for the k-th and (k + 1)-

st factors under the crystal operator f?k , where x is the largest unpaired letter in the k-th factor,

wi, vi > x and ui, bi < x:

(1) (w1 . . . wpu1 . . . uq)(v1 . . . vsxb1 . . . bt)
f?k−→ (w1 . . . wpxu1 . . . uq)(v1 . . . vsb1 . . . bt),

where vs 6= x+ 1.

(2) (w1 . . . wpu1 . . . uq)(v1 . . . vsxb1 . . . bt)
f?k−→ (w1 . . . wpxu1 . . . uq)(v1 . . . vs−1xb1 . . . bt),

where vs = wp = x+ 1.
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In both cases, ui < x− 1 since if u1 = x− 1 then b1 = x− 1 due to the fact that x is unbracketed;

but this would mean that the word is not fully-commutative. We also notice that since all ui are

paired with some bj, we have that t > q and bi > ui. Similarly, all vi are paired with some wj,

so we have that p > s and vi > wp−s+i. Let u denote the sequence u1 . . . uq and let b denote the

sequence b1 . . . bt.

Lemma 87.

(1) For 2 6 i 6 q, bi−1 > ui + 1.

(2) For 1 6 i < s, vi > wp−s+i+1 + 1.

Proof. (1): When bi−1 > bi + 1 or ui < bi, the result follows directly.

Consider the case that ui = bi = a and bi−1 = bi + 1 = a + 1 for some letter a. Since

a = ui < ui−1 6 bi−1 = a + 1, we must have ui−1 = a + 1. Let c be the largest letter such that

[a, c] ⊆ b. Then c > a+ 1 and c+ 1 /∈ b. Moreover, since all ui are paired, ui 6 bi and uj−1 > uj ,

it is not hard to see that [a, c] ⊆ u and c, c− 1 ∈ u. Since c+ 1 /∈ b, we can use commutativity to

move c ∈ b to the left and obtain a subword c(c− 1)c, which contradicts that the original word is

fully-commutative.

(2): The proof is almost identical to the first part. When wp−s+i > wp−s+i+1 + 1 or vi > wp−s+i,

the result follows.

Consider the case wp−s+i = wp−s+i+1 + 1 = a + 1 and vi = wp−s+i = a + 1 for some letter a.

Since a = wp−s+i+1 6 vi+1 < vi = a+ 1, we must that vi+1 = a. Let c be the smallest letter such

that [c, a+ 1] ⊆ w. Then c 6 a and c− 1 /∈ w. Moreover, since all vi are paired, vj > wp−s+j and

vj+1 < vj , we can see that [c, a+ 1] ⊆ v and c, c+ 1 ∈ v. Since c−1 /∈ w, we can use commutativity

to move c ∈ w to the right and form a subword c(c+ 1)c, which contradicts that the original word

is fully-commutative. �

We now summarize several observations that will be used later.

Remark 88. For both types of actions of f?k as in Remark 86, we have the following equivalence

relations:

(1) For 1 6 i 6 q, 1 6 j 6 s− 1, vj+1vjui ∼ vj+1uivj, since ui < vj+1 < vj.
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(2) For 1 6 i 6 q, xvsui ∼ xuivs, since ui < x < vs.

(3) For 1 6 i 6 q, b1xui ∼ b1uix, since ui 6 u1 6 b1 < x, and ui < x− 1.

(4) For 1 6 j < i− 1, 1 6 i 6 q, bj+1bjui ∼ bj+1uibj, since ui 6 bi < bj+1 < bj.

(5) For 2 6 i 6 q, bibi−1ui ∼ biuibi−1, since ui 6 bi < bi−1 and bi−1 > ui + 1 by Lemma 87.

(6) For 1 6 i 6 s, p − s + i − 1 6 j 6 p − 1, wj+1viwj ∼ viwj+1wj, since wj+1 < wj <

wp−s+i 6 vi.

(7) For 1 6 i 6 s− 1, wp−s+i+1viwp−s+i ∼ viwp−s+i+1wp−s+i, since wp−s+i+1 < wp−s+i 6 vi

and vi > wp−s+i+1 + 1 by Lemma 87.

(8) For all 1 6 j 6 s− 1, 1 6 i 6 q, vj+1uivj ∼ vj+1vjui, since ui < vj+1 < vj.

(9) For 1 < i 6 q, b1uivs ∼ b1vsui, since ui < u1 6 b1 < vs.

(10) For 1 6 i 6 q, 1 6 j 6 s, xuivj ∼ xvjui, since ui < x < vj.

(11) For 1 6 j 6 s− 1, xvjwp ∼ vjxwp, since x < wp 6 vs < vj.

Remark 89. When vs 6= x+ 1, we have the following equivalence relations:

(1) 1 6 i 6 s, xviwp ∼ vixwp, since x < wp 6 vs and vs > x+ 1.

(2) b1u1vs ∼ b1vsu1, since u1 6 b1 < vs and vs > x+ 1 > u1 + 1.

Lemma 90. We have that bq . . . b1xvs . . . v1uq . . . u1 is equivalent to bquq . . . b2u2b1u1xvs . . . v1.

Proof. With the equivalence relations from Remark 88 (1)-(5), we can make the sequences of

equivalence moves as follows:

bq . . . b1xvs . . . v2v1uquq−1 . . . u1 ∼ bq . . . b1xvs . . . v2uqv1uq−1 . . . u1 ∼

bq . . . b1xvsuq . . . v2v1uq−1 . . . u1 ∼ bq . . . b1xuqvs . . . v2v1uq−1 . . . u1 ∼

bq . . . b1uqxvs . . . v2v1uq−1 . . . u1 ∼ bquq . . . b1xvs . . . v2v1uq−1 . . . u1 ∼

bquqbq−1uq−1 . . . b1u1xvs . . . v2v1.

�

Lemma 91. We have that vs . . . v1wp . . . wp−s+1 is equivalent to vswpvs−1wp−1 . . . v1wp−s+1.
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Proof. With the equivalence relations from Remark 88 (6)-(7), we can make the following

equivalence moves:

vs . . . v2v1wpwp−1 . . . wp−s+1 ∼ vs . . . v2wpwp−1 . . . wp−s+2v1wp−s+1 ∼

vs . . . v3wpwp−1 . . . v2wp−s+2v1wp−s+1 ∼ vswp . . . v1wp−s+1.

�

Lemma 92. We have

xwpvs−1wp−1 . . . v2wp−s+2v1wp−s+1 ∼ vs−1 . . . v1xwp . . . wp−s+1.

Proof. With the equivalence relations from Remark 88 (6),(7) and (11), we can make the

following equivalent moves:

xwpvs−1wp−1 . . . v2wp−s+2v1wp−s+1 ∼ xvs−1wpwp−1 . . . v2wp−s+2v1wp−s+1 ∼

vs−1xwpwp−1 . . . v2wp−s+2v1wp−s+1 ∼ vs−1 . . . v1xwpwp−1 . . . wp−s+2wp−s+1.

�

Lemma 93. When vs 6= x+ 1, we have

xvswpvs−1wp−1 . . . v1wp−s+1 ∼ vs . . . v1xwp . . . wp−s+1.

Proof. With the equivalence relations from Remark 88 (6)-(7) and Remark 89 (1), we can

make the following equivalence moves:

xvswpvs−1wp−1vs−2 . . . v1wp−s+1 ∼ vsxwpvs−1wp−1vs−2 . . . v1wp−s+1 ∼

vsxvs−1wpwp−1vs−2 . . . v1wp−s+1 ∼ vsvs−1xwpwp−1vs−2 . . . v1wp−s+1 ∼

vsvs−1vs−2 . . . v1xwpwp−1 . . . wp−s+1.

�

Lemma 94. When vs 6= x+1, we have bquq . . . b1u1vs . . . v1 is equivalent to bq . . . b1vs . . . v1uq . . . u1.
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Proof. With the equivalence relations from Remark 88 (4), (5), (8)-(9) and Remark 89 (2),

we can make the following equivalence moves:

bquq . . . b1u1vs . . . v1 ∼ bquq . . . b1vsu1 . . . v1 ∼

bquq . . . b1vs . . . v1u1 ∼ bq . . . b1vs . . . v1uq . . . u1.

�

Lemma 95. We have bquq . . . b1u1xvs−1 . . . v1 is equivalent to bq . . . b1xvs−1 . . . v1uq . . . u1.

Proof. With the equivalence relations from Remark 88 (1), (3), (5) and (10) we have the

following equivalence moves:

bquq . . . b1u1xvs−1 . . . v1 ∼ bquq . . . b1xu1vs−1 . . . v1 ∼

bquq . . . b1xvs−1 . . . v1u1 ∼ bq . . . b1xvs−1 . . . v1uq . . . u1.

�

Proposition 96. Suppose h is a fully-commutative decreasing factorization such that f?k (h) 6= 0

(resp. e?k(h) 6= 0). Then f?k (h)rev ∼ hrev (resp. e?k(h)rev ∼ hrev) for the equivalence relation ∼ of

Definition 80.

Proof. We prove the statement for f?k . Since e?k is a partial inverse of f?k , the result follows.

Let h = hm . . . h1 ∈ Hm,? and define h̃ = f?k (h) = hm . . . h̃k+1h̃khk−1 . . . h1. Specifically,

hk+1 = (w1 . . . wpu1 . . . uq) and hk = (v1 . . . vsxb1 . . . bt), where x is the largest unpaired letter in

hk. Then by Lemmas 90 and 91, we have the following sequence of equivalence moves:

(bq . . . b1xvs . . . v1uq . . . u1)wp . . . wp−s+1 ∼ (bquq . . . b1u1xvs . . . v1)wp . . . wp−s+1

bquq . . . b1u1x(vs . . . v1wp . . . wp−s+1) ∼ bquq . . . b1u1x(vswp . . . v1wp−s+1).
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Case (1): When vs 6= x + 1, h̃k+1 = (w1 . . . wpxu1 . . . uq), h̃
k = (v1 . . . vsb1 . . . bt). By Lemmas 93

and 94, we have

bquq . . . b1u1(xvswp . . . v1wp−s+1) ∼ bquq . . . b1u1(vs . . . v1xwp . . . wp−s+1)

(bquq . . . b1u1vs . . . v1)xwp . . . wp−s+1 ∼ (bq . . . b1vs . . . v1uq . . . u1)xwp . . . wp−s+1.

Thus, we have that

bt . . . b1xvs . . . v1uq . . . u1wp . . . w1 ∼ bt . . . b1xvs . . . v1uq . . . u1xwp . . . w1.

Case (2): When vs = wp = x + 1, h̃k+1 = (w1 . . . wpxu1 . . . uq), h̃
k = (v1 . . . vs−1xb1 . . . bt). Then

by Lemmas 92 and 95, we have

bquq . . . b1u1(xvswp)vs−1wp−1 . . . v1wp−s+1 ∼ bquq . . . b1u1(xxwp)vs−1wp−1 . . . v1wp−s+1

bquq . . . b1u1x(xwpvs−1wp−1 . . . v1wp−s+1) ∼ bquq . . . b1u1x(vs−1 . . . v1xwp . . . wp−s+1)

(bquq . . . b1u1xvs−1 . . . v1)xwp . . . wp−s+1 ∼ (bq . . . b1xvs−1 . . . v1uq . . . u1)xwp . . . wp−s+1.

Thus, we have that

bt . . . b1xvs . . . v1uq . . . u1wp . . . w1 ∼ bt . . . b1xvs−1 . . . v1uq . . . u1xwp . . . w1.

Therefore, we have shown that in both cases, f?k (h)rev ∼ hrev. �

Proposition 97. For h ∈ Hm,? such that f?k (h) 6= 0 for some 1 6 k < m, the ?-insertion

tableau for h equals the ?-insertion tableau for f?k (h).

Proof. By Proposition 96, the reverse words for h and f?k (h) are ∼-equivalent. By Proposi-

tion 84, the corresponding insertion tableaux are equal. �

Proposition 98. Let h ∈ Hm,? be a lowest weight element under Definition 48 of weight

λ. Then there exists r > 1 where λi = 0 for i < r and λi+1 > λi for 1 6 i 6 m. Suppose

h = hm · · ·hr = (hmλm . . . h
m
1 )(hm−1λm−1

· · ·hm−11 ) . . . (hrλr . . . h
r
1), then the i-th row of the ?-insertion
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tableau equals hm+1−i
1 , hm+1−i

2 , . . . , hm+1−i
λm+1−i

, that is,

(3.3.1) P ?(h) =

hr1 . . . hrλr

. . . . . . . . . . . .

hm−11 hm−12 . . . . . . hm−1λm−1

hm1 hm2 . . . . . . . . . hmλm

.

Proof. Without loss of generality, we may assume that r = 1. We prove the statement by

induction on m. The case m = 1 is trivial.

Let m > 1 be arbitrary and suppose that the statement holds for this m. We prove the

statement for m + 1. We need to insert P ?(h) ← hm+1
1 ← hm+1

2 ← · · · ← hm+1
λm+1

, where P ?(h) is

as in (3.3.1) with r = 1. Note that hm+1
i 6 hmi for 1 6 i 6 λm. Specifically, hm+1

1 6 hm1 , so its

insertion path is vertical along the first column and we obtain

P ?(h)← hm+1
1 =

h11

h21 . . . hrλr

. . . . . . . . . . . .

hm1 hm−12 . . . . . . hm−1λm−1

hm+1
1 hm2 . . . . . . . . . hmλm

.

Since hm+1
1 < hm+1

2 6 hm2 , the insertion path of hm+1
2 is strictly to the right of the insertion path of

hm+1
1 and weakly left of the second column by Lemma 76, so it is vertical along the second column.

Similar arguments show that the insertion path for hm+1
i is just vertical along the i-th column.

Thus, the result holds for m+ 1. �

Remark 99. For a lowest weight element h ∈ Hm,? of weight a, the corresponding insertion

tableau must have shape µ = sort(a), which is the partition obtained by reordering a.

Proposition 100. Let T ∈ SSYT(λ) and (P,Q) = ? ◦ res(T ). Then Q = T .
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Proof. The proof is done by induction on subtableaux of T similarly to the proof of Theo-

rem 68.

For a given step in the insertion process, suppose that the entries of T that are involved so far

form a nonempty subtableau T ′ of T with shape µ containing cell (1, 1). Furthermore, assume that

the insertion and recording tableau at the corresponding step are P (T ′) and Q(T ′). Then they

both have shape µ, and the entry of cell (i, j) of P (T ′) is `+ j−µ′j + i−1. In addition, Q(T ′) = T ′,

where µ′ is the conjugate of the partition µ and ` := λ′1 = `(λ).

Note that we do not encounter Case (1) in the proof of Theorem 68. All other arguments still

hold since for every insertion the letter is not contained in the row it is inserted into, that is, the

insertion always bumps the smallest letter that is greater than itself. Thus, we omit the detail of

the proof. �

3.3.2. The ?-insertion and crystal operators. In this section, we prove that the ?-insertion

and the crystal operators on fully-commutative decreasing factorizations and semistandard Young

tableaux intertwine.

Theorem 101. Let h ∈ Hm,?. Let (P ?(h), Q?(h)) = ?(h) be the insertion and recording

tableaux under the ?-insertion of Definition 71. Then

(1) f?i (h) is defined if and only if fi(Q
?(h)) is defined.

(2) If f?i (h) is defined, then Q?(f?i (h)) = fiQ
?(h).

In other words, the following diagram commutes:

Hm,? SSYTm

Hm,? SSYTm.

Q?

f?i fi

Q?

Proof. The crystal operator f?i acts only on factors hi+1 and hi. Hence it suffices to prove

the statement for h = hi+1hi . . . h1 with i+ 1 factors.

Suppose f?i (h) 6= 0. By Proposition 97, P ?(h) = P ?(f?i (h)). Furthermore, by Lemma 73 P ?(h)

and Q?(h) have the same shape. Hence in particular, Q?(h) and Q?(f?i (h)) have the same shape

and therefore the letters i and i+ 1 in Q?(h) and Q?(f?i (h)) occupy the same skew shape.
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Recall from Definition 48 that f?i removes precisely one letter from factor hi = (hi`h
i
`−1 . . . h

i
1),

say hik. By Lemma 76, the insertion paths of hi1, . . . , h
i
` into P ?(hi−1 · · ·h1) move strictly to the

right and the newly added cells form a horizontal strip. In addition, the letters hi1, . . . , h
i
` appear

in the first row of P ?(hi · · ·h1). Now compare this to the insertion paths for hi1, . . . , ĥ
i
k, . . . , h

i
`

into P ?(hi−1 . . . h1), where hik is missing. Up to the insertion of hik−1, everything agrees. Suppose

that hik bumps the letter x in the first row and hik+1 bumps the letter y > x in the first row by

Lemma 76. Then when hik+1 gets inserted without prior insertion of hik, the letter hik+1 either still

bumps y or hik+1 bumps x (in which case x and y are adjacent in the first row in P ?(hi−1 · · ·h1)).

There are no other choices, since if there are letters between x and y in the first row and hik+1

bumps one of these, it would have already bumped a letter to the left of y in P ?(hi · · ·h1). If

hik+1 bumps x without prior insertion of hik, then its insertion path is the same as the insertion

path of hik previously. If hik+1 bumps y, then the letter inserted into the second row by similar

arguments either bumps the same letter as in the previous insertion path of hik+1 or hik and so

on. The last cell added is hence the same cell added in the previous insertion path of either hik

or hik+1. Repeating these arguments, exactly one cell containing i in Q?(hi · · ·h1) is missing in

Q?((hi` . . . ĥ
i
k . . . h

i
1)h

i−1 · · ·h1) and all other cells containing i are the same. Hence, Q?(f?i (h)) is

obtained from Q?(h) by changing exactly one letter i to i+ 1.

It remains to prove that f?i (h) 6= 0 if and only if fi(Q
?(h)) 6= 0 and, if f?i (h) 6= 0, then the

letter i that is changed to i+ 1 from Q?(h) to Q?(f?i (h)) is the rightmost unbracketed i in Q?(h).

First assume that under the bracketing rule for f?i , all letters in the factor hi are bracketed, so that

f?i (h) = 0. This means that each letter in hi is paired with a weakly smaller letter in hi+1. Then

by similar arguments as in Lemma 76 (2), for each insertion path for the letters in hi, there is an

insertion path for the letters in hi+1 that is weakly to the left and the resulting new cell is weakly

to the left and strictly above of the corresponding new cell for the letter in hi. This means that

each i in Q?(h) is paired with an i+ 1 and hence fi(Q
?(h)) = 0.

Now assume that f?i (h) 6= 0. Let us use the same notation as in Remark 86 (with k replaced

by i). Since all letters uq, . . . , u1 < x are paired with some letters bj < x, their insertion paths

(again by similar arguments as in Lemma 76) lie strictly to the left of the insertion path for x. First

assume that vs 6= x + 1. Recall that by Proposition 97, P ?(h) = P ?(f?i (h)). Also, by the above
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arguments, moving letter x to factor hi+1 under f?i , changes one i to i + 1 (precisely the i that is

missing when removing x from hi). Now the letters wp, . . . , w1 > x are inserted after the letter x

in the (i + 1)-th factor in f?i (h) and by Lemma 76 their insertion paths are strictly to the right

of the insertion path of x in f?i (h). But this means that the corresponding i + 1 in Q?(h) cannot

bracket with the i that changes to i + 1 under f?i . This proves that fi(Q
?(h)) 6= 0. Furthermore,

each vs, . . . , v1 is paired with some wj and hence the insertion path of this wj is weakly to the left

of the insertion path of the corresponding vh. Hence all i to the right of the i that changes to an

i + 1 under f?i are bracketed. This proves that this i is the rightmost unbracketed i, proving the

claim. The case vs = x+ 1 is similar. �

Remark 102. Proposition 98 and Theorem 101 provide another proof via ?-insertion, in the

case where w is fully-commutative, of the Schur positivity of Gw of Fomin and Greene [FG98]

Gw =
∑
µ

β|µ|−`(w)gµwsµ,

where gµw = |{T ∈ SSYTn(µ′) | wC(T ) ≡ w}|.

3.3.3. Uncrowding set-valued skew tableaux. Buch [Buc02] introduced a bijection from

a set-valued tableau of straight shape to a pair (P,Q), where P is a semistandard tableau and Q

is a flagged increasing tableau. The map involves the use of a dilation operation [BM12,RTY18]

which can be defined equally to act on set-valued skew tableaux. Chan and Pflueger [CP19]

recently studied the operation in this more general context. We review here the results needed for

our purposes.

Let λ, µ be partitions such that λ ⊆ µ and λ1 = µ1. A flagged increasing tableau (introduced

in [Len00] and called elegant fillings by various authors [Len00, LP07, BM12, Pat16]) is a row

and column strict filling of the skew shape µ/λ such that the positive integers entries in the i-th

row of the tableau are at most i − 1 for all 1 6 i 6 `(µ). In particular, the bottom row is empty.

Denote the set of all flagged increasing tableaux of shape µ/λ by Fµ/λ.

We use multicell to refer to a cell in a set-valued tableau with more than one letter.

Definition 103. For a skew shape λ/µ, the uncrowding operation is defined on T ∈ SVT(λ/µ)

as follows: identify the topmost row r in T containing a multicell. Let x be the largest letter in row
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r which lies in a multicell; delete this x and perform RSK row bumping with x into the rows above.

The resulting tableau is the output of this operation. Note that its shape differs from λ/µ by the

addition of one cell.

The uncrowding map, denoted uncrowd, is defined as follows. Let T ∈ SVT(λ/µ) with ex(T ) = `.

• Start with P̃0 = T and Q̃0 = F , where F is the unique flagged increasing tableau of shape

λ/λ.

• For each 1 6 i 6 `, P̃i is obtained from P̃i−1 by successively applying the uncrowding

operation until no multicells remain. Each operation involves the addition of cell C to

form P̃i by first deleting an entry in cell B of P̃i−1; this is recorded by adding a cell with

entry k to Q̃i−1 at the same position as C, where k is the difference in the row indices of

cells B and C.

• Terminate and return (P̃ , Q̃) = (P̃`, Q̃`).

Example 104. Let T be the semistandard set-valued tableau

T =

5

4 4 5

2 23 3

1 1 1 12 234 5
.

Perform an uncrowding operation to obtain

T ′ =

5

4

3 4 5

2 2 3

1 1 1 12 234 5
.
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Proceeding with uncrowding the remaining multicells and recording the changes, we have uncrowd(T ) =

(P̃ , Q̃), where

P̃ =

5 5

4 4

3 3 4

2 2 2 3

1 1 1 1 2 5
and Q̃ =

3 4

3

1
.

Lemma 105. For skew shape λ/µ, the crystal operators on SVTm(λ/µ) intertwine with those

on SSYTm(ν/µ), for λ ⊆ ν, under uncrowd.

Proof. Chan and Pflueger [CP19] proved that the image of T ∈ SVT(λ/µ) under the un-

crowding map is a pair (P,Q), where P is a semistandard tableau of shape ν/µ and Q is a flagged

increasing tableau of shape ν/λ. Monical, Pechenik and Scrimshaw in [MPS20, Theorem 3.12]

proved that the crystal operators on SVTm(λ) intertwine with those on SSYTm(ν) under uncrowd.

Since uncrowd is defined equally on skew shapes, the result follows. �

3.3.4. Compatibility of ?-insertion with uncrowding. For a partition µ, let Tµ be the

unique tableau of shape µ with µi letters i in each row i. Note that uncrowd(Tµ) = (Tµ, ∅) since

ex(Tµ) = 0.

Lemma 106. For T ∈ SVTm(λ/µ), if (P,Q) = ?(hh′) where h = res(T ) and h′ = res(Tµ), then

Tµ is contained in Q.

Proof. For T ∈ SVTm(λ/µ), let T∗ be the set-valued tableau of shape λ obtained from T by

adding `(µ) to each entry and filling in the cells of µ with Tµ. By Proposition 100, we have

(3.3.2) ? ◦res(Tµ) = (Pµ, Tµ) ,

where Pµ is the semistandard tableau specified in the proof of Proposition 100. The claim follows

by noting that res(T∗) = res(T )res(Tµ). �

Definition 107. A modification of ?-insertion is defined on H∗,m as follows: for h ∈ H∗,m, let

λ/µ be the shape of res−1(h) (which is well-defined up to a shift by Proposition 58). For h′ = res(Tµ),
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let (P∗, Q∗) = ?(hh′). Define ?̃(h) = (P,Q) where P is obtained from P∗ by deleting all entries in

cells of µ and Q is defined from Q∗ by deleting Tµ from it and decreasing all other letters by `(µ).

Note that this is well-defined by Lemma 106 and the fact that each h ∈ H∗,m can be associated

to a skew shape λ/µ which is the shape of res−1(h) by Proposition 58. Also note that ?̃(h) = ?(h)

if µ = ∅.

Theorem 108. Let T ∈ SVTm(λ/µ), (P̃ , Q̃) = uncrowd(T ), and (P,Q) = ?̃ ◦ res(T ). Then

Q = P̃ .

Proof. We start by addressing the straight-shape case; for T∗ ∈ SVTm(λ), consider the fol-

lowing compositions of maps:

(P̃ , Q̃) T∗ h (P,Q)

(fk(P̃ ), Q̃) fk(T∗) f?k (h) (P, fk(Q)).

fk

res

fk

uncrowd

?

f?k fk

uncrowd

res ?

By Lemma 105, the left square commutes. By Theorem 61 the center square commutes. By

Proposition 97 and Theorem 101 the right square commutes. Hence it suffices to prove that Q = P̃

when T∗ is a lowest weight element in the crystal.

Suppose T∗ ∈ SVTm(λ) is of lowest weight with wt(T∗) = a and ex(T∗) = `. Then the

decreasing factorization h ∈ Hm,? is lowest weight by Theorem 61. By Remark 99, P and hence Q

has to be of shape ν = sort(a). By Theorem 101, Q is the unique lowest weight element in SSYTm

of shape ν.

Consider the uncrowding operator on T∗ and record each tableau during the process of un-

crowding as in Definition 103 by a sequence of set-valued tableaux T∗ = P̃0 → P̃1 → · · · → P̃` = P̃ .

Since T∗ is of lowest weight, so are all the P̃i. Furthermore, all P̃i have the same weight a. Let

(Pi, Qi) = ? ◦ res(P̃i). For all 0 6 i 6 `, Qi is the unique lowest weight element in SSYTm of shape

ν. Hence in particular Qi = Q for all 0 6 i 6 `. By Proposition 100, Q = Q` = P̃ , proving the

claim for straight shapes.

Now take T ∈ SVTm(λ/µ) and construct T∗ from T by adding `(µ) to each entry and filling in

the cells of µ with Tµ. Note that T∗ is a set-valued tableaux of shape λ. Let (P,Q) = ?◦res(T∗) and
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(P∗, Q∗) = ?̃ ◦ res(T ). Since res(T∗) = res(T )res(Tµ), Lemma 106 implies that Q∗ = Q/Tµ. On the

other hand, since T∗ has straight shape, the preceding paragraph gives that uncrowd(T∗) = (Q, Q̃)

for some Q̃. We then note that uncrowd(T ) and uncrowd(T∗) are identical on cells of λ/µ up to

a shift of the entries by `(µ); in particular, applying uncrowd to T∗ does not involve any cell of µ

since none of these are multicells and their entries are the smallest `(µ) letters. �

3.4. Results on the non-fully-commutative case

In this section, we discuss some aspects when we generalize to the non-fully-commutative case.

In Section 3.4.1, we describe a local crystal on Hm(3). In Section 3.4.2, we show that under very

mild assumptions it is not possible to expect a local crystal for n > 3.

3.4.1. The case n = 3. We provide a description of a type Am−1 crystal structure on Hm(3).

Definition 109. Let h = hmhm−1 . . . h2h1 ∈ Hm(3). Fix 1 6 k < m. Define the pairing

process of h and the number of pairs in hk−1 . . . hj+1hj, denoted p([j, k−1]), recursively as follows:

(1) The empty factorization, denoted ∅, has no pairs and p(∅) = 0.

(2) If p([1, j − 1]) is defined for all 1 6 j 6 k, then we have p([j, k − 1]) = p([1, k − 1]) −

p([1, j − 1]).

(3) If hk = ( ), then set p([1, k]) = p([1, k − 1]).

(4) Otherwise, if hk = (21), pair the 2 with the 1 in hk and set p([1, k]) = p([1, k − 1]) + 1.

(5) Otherwise, if hk = (2) and p([1, k−1]) is even, ignoring all previously paired letters, locate

the leftmost unpaired letter in hk−1 . . . h2h1.

(a) If this letter is in hj = (1) and p([j + 1, k− 1]) is even, then pair the 2 in hk with the

1 in hj and set p([1, k]) = p([1, k − 1]) + 1.

(b) If this letter is in hj = (2) and p([j + 1, k − 1]) is odd, then pair the 2 in hk with the

2 in hj and set p([1, k]) = p([1, k − 1]) + 1.

(c) Else, set p([1, k]) = p([1, k − 1]).

(6) Otherwise, if hk = (1) and p([1, k− 1]) is odd, ignoring all previously paired letters, locate

the leftmost unpaired letter in hk−1 . . . h2h1.

(a) If this letter is in hj = (2) and p([j + 1, k− 1]) is even, then pair the 1 in hk with the

2 in hj and set p([1, k]) = p([1, k − 1]) + 1.

102



(b) If this letter is in hj = (1) and p([j + 1, k − 1]) is odd, then pair the 1 in hk with the

1 in hj and set p([1, k]) = p([1, k − 1]) + 1.

(c) Else, set p([1, k]) = p([1, k − 1]).

(7) Else, set p([1, k]) = p([1, k − 1]).

Example 110. Let m = 8 and consider h = ( )(2)( )(21)(1)(1)(2)(21) ∈ H8(3). The pairing

process results in ( )(2)( )(21)(1)(1)(2)(21), where the paired letters are indicated with braces.

Hence, we have the following values of p([1, k]) for 1 6 k 6 8: 0, 1, 1, 2, 2, 3, 3, 3. Note that the

letters in the fourth and seventh factors are left unpaired.

Similarly, if we take h = ( )(2)(2)(21)(2)(1)(21)(21) ∈ H8(3), we obtain ( )(2)(2)(21)(2)(1)(21)(21).

Thus, we have the following values of p([1, k]) for 1 6 k 6 8: 0, 1, 2, 2, 2, 3 ,4, 5. In this case

all the letters in h are paired.

Definition 111. Let h = hm . . . h2h1 ∈ Hm(3). The crystal operator fi for 1 6 i < m on

h is defined as follows. The operator fi only depends on hi+1hi and the parity of p([1, i − 1]) of

Definition 109. In the following cases, we indicate only the changes in hi+1hi under fi as the

remainder of h remains invariant:

(1) (21)(x)
i−→ 0, where (x) ∈ {( ), (1), (2), (21)},

(2) (x)( )
i−→ 0, where (x) ∈ {( ), (1), (2), (21)},

(3) (x)(x)
i−→ 0, where (x) ∈ {( ), (1), (2)},

(4) (1)(21)
i−→ (21)(2),

(5) (2)(21)
i−→ (21)(1),

(6) ( )(x)
i−→ (x)( ), where (x) ∈ {(1), (2)},

(7) ( )(21)
i−→ (2)(1)

i−→ (21)( ), if p([1, i− 1]) is even,

(8) ( )(21)
i−→ (1)(2)

i−→ (21)( ), if p([1, i− 1]) is odd.

The operator ei is defined similarly. One reverses the changes introduced in cases (4) to (8) and

annihilates h when the following occurs at hi+1hi:

(1)’ (x)(21)
i−→ 0, where (x) ∈ {( ), (1), (2), (21)},

(2)’ ( )(x)
i−→ 0, where (x) ∈ {( ), (1), (2), (21)},

(3)’ (x)(x)
i−→ 0, where (x) ∈ {( ), (1), (2)}.
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22 2

1

2 1

2

1

Figure 3.3. The crystal graph for H3(3) restricted to decreasing factorizations
with four letters.

Similar to Definition 48, the weight map is defined as wt(h) = (len(h1), len(h2), . . . , len(hm)).

Meanwhile, ϕi(h) (resp. εi(h)) is defined to be the largest nonnegative integer k such that fki (h) 6= 0

(resp. eki (h) 6= 0).

It is not difficult to check that the operators fi and ei defined above preserve the relation ≡H0 on

Hm(3) whenever they do not annihilate the decreasing factorizations. Furthermore, the structure

above defines an abstract, seminormal Am−1 crystal on Hm(3).

We note that one may also verify that the crystal is a Stembridge crystal by checking that the

axioms formulated in [Ste03] are satisfied. Figure 3.3 displays the crystal graph on H3(3) restricted

to decreasing factorizations that use exactly 4 letters.

3.4.2. Nonlocality. In this subsection, we show that it is impossible to construct a crystal

on Hm with the following properties for fi:

(1) fi only changes the i-th and (i+ 1)-th decreasing factors;

(2) fi is determined by the first (i+ 1) factors;

(3) fi(h) ≡H0 h and ex[fi(h)] = ex(h), for all h ∈ Hm with fi(h) 6= 0.
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Let h1 = hm1 . . . h
2
1h

1
1 ∈ Hm and suppose that fi(h1) 6= 0. If we write fi(h1) = hm2 . . . h

2
2h

1
2, then

the above assumptions imply that hi+1
1 hi1 . . . h

1
1 ≡H0 h

i+1
2 hi2 . . . h

1
2. Obviously the crystal on Hm(3)

defined in Section 3.4.1 satisfies these assumptions.

Suppose that a crystal structure with the above assumptions exists on H4(4). Consider the

Schur expansion of the stable Grothendieck polynomial in 4 variables for w = 12132:

G12132(x1, x2, x3, x4;β) = s221 + β(2s222 + 3s2211) + β2(6s2221 + 6s22111) + · · · .

(Note that s22111 is zero in four variables and hence could be omitted). The linear term in β implies

that there are two connected components with highest weight (2, 2, 2, 0) (lowest weight (0, 2, 2, 2))

for the crystal H4(4) with excess 1. All decreasing factorizations mentioned below are those of

w = 12132 with 4 factors and excess 1.

There are two decreasing factorizations of weight (2, 2, 2, 0): ( )(21)(21)(32) and ( )(21)(32)(32).

Focus on the connected component with highest weight ( )(21)(32)(32) and try to complete the

crystal graph from top to bottom. Since the only decreasing factorization of weight (2, 2, 1, 1) with

the first and second factors both being (32) is (2)(1)(32)(32), we can compute the action of f3 on

this highest weight element. By some similar arguments we can fill in part of the crystal graph as

indicated in Figure 3.4 with the above assumptions. The dashed spaces are undetermined.

Yet note that the red f2 highlighted in the graph changed the first factor from (3) to (2). Hence,

Condition (1) is violated, providing a counterexample that crystals with the above conditions always

exist on Hm(n) for n > 3.
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(21)( )(32)(32)

(21)( )( )(32)

(2)( )(2)(32)

(21)( )(32)(3)

(2)( )(32)(3)

(2)(1)(32)(32)

(21)( )(32)( )

(21)( )(3)(2)

( )(21)(32)(32)

(21)( )( )(32)

3

2

1

3

3

2

1

1

21

2

3

Figure 3.4. Partial filling of the connected component of H4(3) containing highest
weight element ( )(21)(32)(32).
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CHAPTER 4

Uncrowding map on hook-valued tableaux

This chapter is based on joint work with Jianping Pan, Joseph Pappe and Anne Schilling

published in [PPPS20].

4.1. Hook-valued tableaux

In Section 4.1.1, we define hook-valued tableaux [Yel17] and in Section 4.1.2 we review the

crystal structure on hook-valued tableaux as introduced in [HS20].

4.1.1. Hook-valued tableaux. A semistandard Young tableau U of hook shape is a tableau

of the form

U =

`p
...

`1

x a1 . . . aq
,

where the integer entries weakly increase from left to right and strictly increase from bottom to

top. In this case, H(U) = x is called the hook entry of U , L(U) = (`1, `2, . . . , `p) is the leg of U , and

A(U) = (a1, a2, . . . , aq) is the arm of U . Both the arm and the leg of U are allowed to be empty.

Additionally, the extended leg of U is defined as L+(U) = (x, `1, `2, . . . , `p). We denote by max(U)

(resp. min(U)) the maximal (resp. minimal) entry in U .

Definition 112. Fix a partition λ. A semistandard hook-valued tableau (or hook-valued

tableau for short) T of shape λ is a filling of the Young diagram for λ with (nonempty) semistandard

Young tableaux of hook shape such that:

(i) max(A) 6 min(B) whenever the cell containing A is in the same row, but left of the cell

containing B;

(ii) max(A) < min(C) whenever the cell containing A is in the same column, but below the

cell containing C.
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The set of all hook-valued tableaux of shape λ (respectively, with entries at most m) is denoted by

HVT(λ) (respectively, HVTm(λ)).

Given a hook-valued tableau T , its arm excess is the total number of integers in the arms of all

cells of T , while its leg excess is the total number of integers in the legs of all cells of T .

Remark 113. In the special case when a hook-valued tableau has arm excess 0, it is also called

a set-valued tableau. Similarly, a multiset-valued tableau is a hook-valued tableau with leg excess

0. We use the notation SVT(λ) (resp. SVTm(λ)) and MVT(λ) (resp. MVTm(λ)) for the set of

all set-valued tableaux of shape λ (resp. with entries at most m) and the set of all multiset-valued

tableaux of shape λ (resp. with entries at most m), respectively.

4.1.2. Crystal structure on hook-valued tableaux. Hawkes and Scrimshaw [HS20] de-

fined a crystal structure on hook-valued tableaux. We review their definition here.

Definition 114 ( [HS20], Definition 4.1). Let C be a hook-valued tableau of column shape.

The column reading word R(C) is obtained by reading the extended leg in each cell from top to

bottom, followed by reading all of the remaining entries, arranged in a weakly increasing order.

For a hook-valued tableau T , its column reading word is formed by concatenating the column

reading words of all of its columns, read from left to right, that is,

R(T ) = R(C1)R(C2) . . . R(C`),

where ` is the number of columns of T and Ci is the ith column of T .

Example 115. Let T be the hook-valued tableau

T =

4

33 5

2

11

4

334 4445

.

The column reading words for the columns of T are respectively 432113, 54334 and 4445, so that

R(C) = 432113543344445.
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Definition 116. [HS20, Definition 4.3] Let T ∈ HVTm(λ). For any 1 6 i < m, we employ

the following pairing rules. Assign − to every i in R(T ) and assign + to every i + 1 in R(T ).

Then, successively pair each + that is adjacent and to the left of a −, removing all paired signs

until nothing can be paired.

The operator fi acts on T according to the following rules in the given order. If there is no

unpaired −, then fi annihilates T . Otherwise, locate the cell c with entry the hook-valued tableau

B = T (c) containing the i corresponding to the rightmost unpaired −.

(M) If there is an i+ 1 in the cell above c with entry B↑, then fi removes an i from A(B) and

adds i+ 1 to A(B↑).

(S) Otherwise, if there is a cell to the right of c with entry B→, such that it contains an i in

L+(B→), then fi removes the i from L+(B→) and adds i+ 1 to L(B).

(N) Else, fi changes the i in B into an i+ 1.

Similarly, the operator ei acts on T according to the following rules in the given order. If there

is no unpaired +, then ei annihilates T . Otherwise, locate the cell c with entry the hook-valued

tableau B = T (c) containing the entry i+ 1 corresponding to the leftmost unpaired +.

(M) If there is an i in the cell below c with entry B↓, then ei removes the i+ 1 from A(B) and

adds i to A(B↓).

(S) Otherwise, if there is a cell to the left of c with entry B←, such that it contains an i + 1

in L(B←), then ei removes the i+ 1 from L(B←) and adds i to L+(B).

(N) Else, ei changes the i+ 1 in B into an i.

Based on the pairing procedure above, ϕi(T ) is the number of unpaired −, whereas εi(T ) is the

number of unpaired +.

We remark that the definition of crystal operators on HVT specializes to the definition on SVT

in [MPS20] or the one on MVT in [HS20] when the arm excess or leg excess of the tableaux is set

to 0, respectively.
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Example 117. Consider the following hook-valued tableau T :

T =

4

34

5

4

2

11

3

233

.

Then, e3 annihilates T , whereas

e1(T ) =

4

34

5

4

11

3

2

133

, f1(T ) =

4

34

5

4

2

12

3

233

, f3(T ) =

4

34

5

44

2

11

3

23

.

For a given cell (r, c) in row r and column c in a hook-valued tableau T , let LT (r, c) be the leg

of T (r, c), let AT (r, c) be arm of T (r, c), let HT (r, c) be the hook entry of T (r, c), and let L+
T (r, c)

be the extended leg of T (r, c).

4.2. Uncrowding map on hook-valued tableaux

In Section 4.2.1, we first review the uncrowding map on set-valued tableaux. In Section 4.2.2,

we give a new uncrowding map on hook-valued tableaux and prove some of its properties in Sec-

tion 4.2.3. The relation to the uncrowding map on multiset-valued tableaux is given in Section 4.2.4.

In Section 4.2.5, we give the inverse of the uncrowding map on hook-valued tableaux, called the

crowding map. In Section 4.2.6, an alternative definition of the uncrowding map on hook-valued

tableaux is provided.

4.2.1. Uncrowding map on set-valued tableaux. For set-valued tableaux, there exists an

uncrowding operator, which maps a set-valued tableau to a pair of tableaux, one being a semistan-

dard Young tableau and the other a flagged increasing tableau (see for example [Len00, Buc02,

BM12,RTY18]). In this setting, the uncrowding operator intertwines with the crystal operators

on set-valued tableaux and semistandard Young tableaux, respectively [MPS20].
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Consider partitions λ, µ with λ ⊆ µ and λ1 = µ1. A flagged increasing tableau (introduced

in [Len00] and called (strict) elegant fillings by various authors [LP07, BM12, Pat16]) is a row

and column strict filling of the skew shape µ/λ such that the positive integer entries in the i-th

row of the tableau are at most i − 1 for all 1 6 i 6 `(µ), where `(µ) is the length of partition µ.

In particular, the bottom row is empty. The set of all flagged increasing tableaux is denoted by F .

The set of all flagged increasing tableaux of shape µ/λ with λ1 = µ1 is denoted by F(µ/λ).

We now review the uncrowding operation on set-valued tableaux. We call a cell in a set-valued

tableau a multicell if it contains more than one letter.

Definition 118. Define the uncrowding operation on T ∈ SVT(λ) as follows. First identify

the topmost row r in T with a multicell. Let x be the largest letter in row r that lies in a multicell;

remove x from the cell and perform RSK row bumping with x into the rows above. The resulting

tableau, whose shape differs from λ by the addition of one cell, is the output of this operation.

The uncrowding map on set-valued tableaux

(4.2.1) USVT : SVT(λ) −→
⊔
µ⊇λ

SSYT(µ)×F(µ/λ)

is defined as follows. Let T ∈ SVT(λ) with leg excess `.

(1) Initialize P0 = T and Q0 = F0, where F0 is the unique flagged increasing tableau of shape

λ/λ.

(2) For each 1 6 i 6 `, Pi is obtained from Pi−1 by applying the uncrowding operation. Let C

be the cell in shape(Pi)/shape(Pi−1). If C is in row r′, then Fi is obtained from Fi−1 by

adding cell C with entry r′ − r.

(3) Set USVT(T ) = (P, F ) := (P`, F`).

It was proved in [Buc02, Section 6] that USVT in (4.2.1) is a bijection. Monical, Pechenik

and Scrimshaw [MPS20] proved that USVT intertwines with the crystal operators on set-valued

tableaux (see also [MPPS20]). A similar uncrowding algorithm for multiset-valued tableaux was

given in [HS20, Section 3.2].

4.2.2. Uncrowding map on hook-valued tableaux. In [HS20], the authors ask for an

uncrowding map for hook-valued tableaux which intertwines with the crystal operators. Here we
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provide such an uncrowding map by uncrowding the arm excess in a hook-valued tableaux to

obtain a set-valued tableaux. An alternative obtained by uncrowding the leg excess first is given

in Section 4.2.4.

Definition 119. The uncrowding bumping Vb : HVT → HVT is defined by the following algo-

rithm:

(1) Initialize T as the input.

(2) If the arm excess of T equals zero, return T.

(3) Else, find the rightmost column that contains a cell with nonzero arm excess. Within this

column, find the cell with the largest value in its arm. (In French notation this is the

topmost cell with nonzero arm excess in the specified column.) Denote the row index and

column index of this cell by r and c, respectively. Denote the cell as (r, c), its rightmost

arm entry by a, and its largest leg entry by `.

(4) Look at the column to the right of (r, c) (i.e. column c+ 1) and find the smallest number

that is greater than or equal to a.

• If no such number exists, attach an empty cell to the top of column c + 1 and label

the cell as (r̃, c+ 1), where r̃ is its row index. Let k be the empty character.

• If such a number exists, label the value as k and the cell containing k as (r̃, c + 1)

where r̃ is the cell’s row index.

We now break into cases:

(a) If r̃ 6= r, then remove a from AT (r, c), replace k with a, and attach k to the arm of

AT (r̃, c+ 1).

(b) If r̃ = r then remove (a, `] ∩ LT (r, c) from LT (r, c) where (a, `] = {a+ 1, a+ 2, . . . , `},

remove a from AT (r, c), insert (a, `]∩LT (r, c) into LT (r̃, c+ 1), replace the hook entry

of (r̃, c+ 1) with a, and attach k to AT (r̃, c+ 1).

(5) Output the resulting tableau.

See Figures 4.1 and 4.2 for illustration.

Lemma 120. The map Vb is well-defined. More precisely, for T ∈ HVT we have Vb(T ) ∈ HVT.
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−
−− a
−
−
−
−−

−
−

Vb−→

−
−−
−
− a
−
−−

−
−

−
−− a

−
−−

−
k
−

Vb−→

−
−−

−
−−

−
a
− k

Figure 4.1. When r̃ 6= r. Left: (r̃, c + 1) is a new cell; Right: (r̃, c + 1) is an
existing cell.

`
∗
−
−− a

Vb−→ −
−−

`
∗
a

`
∗
−
−− a

−
−
k

Vb−→
−
−−

−
−
`
∗
a k

Figure 4.2. When r̃ = r. Left: (r, c+1) is a new cell; Right: (r, c+1) is an existing
cell.

Proof. It suffices to check that Vb preserves the semistandardness condition of both the entire

hook-valued tableau and the filling within each cell. We break into two cases depending on whether

Step (4)a or (4)b in Definition 119 is applied.

Case 1: Assume Step (4)a is applied. To verify semistandardness within each cell, it suffices

to check cells (r, c) and (r̃, c+1). The semistandardness within cell (r, c) is clearly preserved

as the only change to the hook-shaped tableau in cell (r, c) is that an entry was removed

from AT (r, c). We now check the semistandardness condition within cell (r̃, c + 1). We

have that Vb either created the cell (r̃, c+1) and inserted the number a in it or Vb replaced

k with a and appended k to the arm of cell (r̃, c + 1). In both cases, the tableau in cell

(r̃, c+ 1) is a semistandard hook-shaped tableau. In the second case this is true since k is

weakly greater than HT (r̃, c + 1) and k is the smallest number weakly greater than a in

column c+ 1.

We now check the semistandardness of the entire tableau. Note that it suffices to check

the semistandardness in row r̃ and column c+1. Since r̃ < r, the semistandardness in row

r̃ is preserved as a is larger than every number in (r̃, c) and k remains in the same cell.

Also, the semistandardness in column c+ 1 is preserved as k is chosen to be the smallest

number in column c+ 1 that is weakly greater than a.
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Case 2: Assume Step (4)b is applied. The semistandardness within cell (r, c) is clearly

preserved as the only change to (r, c) is that entries from LT (r, c) and AT (r, c) are removed.

We now check the semistandardness condition within cell (r, c+ 1). If (a, `]∩ LT (r, c) = ∅,

then a is weakly larger than all elements of (r, c). In this case, the semistandardness within

cell (r, c + 1) follows from the argument in Case 1. If (a, `] ∩ LT (r, c) 6= ∅, then a is not

weakly larger than all elements of (r, c). After applying Vb the semistandardness condition

in the leg of (r, c + 1) will still hold as a < x < z for all x ∈ (a, `] ∩ LT (r, c), where z is

the smallest value in LT (r, c+ 1). Similarly, the semistandardness condition in the arm of

(r, c+1) holds as a < k or k is the empty character. Thus, the semistandardness condition

in each cell is preserved. The semistandardness of row r is preserved as all numbers strictly

greater than a in (r, c) are moved to (r, c+1) along with a. The semistandardness condition

within column c+ 1 is preserved as every number in (r + 1, c+ 1) is strictly greater than

` and every number in (r − 1, c+ 1) is strictly less than a.

�

Definition 121. The uncrowding insertion V : HVT→ HVT is defined as V(T ) = Vdb (T ), where

the integer d > 1 is minimal such that shape(Vdb (T ))/shape(Vd−1b (T )) 6= ∅ or Vdb (T ) = Vd−1b (T ).

A column-flagged increasing tableau is a tableau whose transpose is a flagged increasing tableau.

Let F̂ denote the set of all column-flagged increasing tableaux. Let F̂(µ/λ) denote the set of all

column-flagged increasing tableaux of shape µ/λ.

Definition 122. Let T ∈ HVT(λ) with arm excess α. The uncrowding map

U : HVT(λ)→
⊔
µ⊇λ

SVT(µ)× F̂(µ/λ)

is defined by the following algorithm:

(1) Let P0 = T and let Q0 be the column-flagged increasing tableau of shape λ/λ.

(2) For 1 6 i 6 α, let Pi+1 = V(Pi). Let c be the index of the rightmost column of

Pi containing a cell with nonzero arm excess and let c̃ be the column index of the cell

shape(Pi+1)/shape(Pi). Then Qi+1 is obtained from Qi by appending the cell

shape(Pi+1)/shape(Pi) to Qi and filling this cell with c̃− c.
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Define U(T ) = (P (T ), Q(T )) := (Pα, Qα).

Example 123. Let T be the hook-valued tableau

8

67

5

4

233 66

1

2

11

7

5

Then, we obtain the following sequence of tableaux V ib(T ) for 0 6 i 6 2 = d when computing the

first uncrowding insertion:

8

67

5

4

233 66

1

2

11

7

5

→

8

67

5

4

233 6

1

2

11

6

57

→

8

67

5

4

233 6

1

2

11

6

5 7

= V(T ).

Continuing with the remaining uncrowding insertions, we obtain the following sequences of tableaux

for the uncrowding map:

8

67

5

4

233 66

1

2

11

7

5

→

8

67

5

4

233 6

1

2

11

6

5 7

→

8

67

5

4

233 6

1 1

2

1

6

5 7

→

6

8

7

5

4

233 6

1 1

2

1

6

5 7

→

6

8

7

23

5

4

3 6

1 1

2

1

6

5 7

→

6

8

7

2 3

5

4

3

1 1

2

1

6

5 6 7

= P (T ),
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→
2

→
2 3

→

1

2 3

→

1

2

2 3

→

1

2

2 3 5

= Q(T ).

Corollary 124. Let T ∈ HVT. Then P (T ) is a set-valued tableau.

Proof. By Lemma 120 and Definition 121, we have that V(T ) is a hook-valued tableau. Note

that if the arm excess of T is nonzero, then the arm excess of V(T ) is one less than that of T . Since

P (T ) = Vα(T ), where α is the arm excess of T , we have that the arm excess of P (T ) is zero. Thus,

P (T ) is a set-valued tableau. �

Definition 125. Let T ∈ HVT and let d be minimal such that V(T ) = Vdb (T ). The insertion

path p of T → V(T ) is defined as follows:

• If d = 0, set p = ∅.

• Otherwise, let (r0, c0) be the rightmost and topmost cell of T containing a cell with nonzero

arm excess. For all 1 6 j 6 d, let cj = c0 + j and let rj = r̃ be r̃ in Definition 119 when

Vb is applied to Vj−1b (T ). Set p = ((r0, c0), (r1, c1), . . . , (rd, cd)).

Lemma 126. Let T ∈ HVT. Then Q(T ) is a column-flagged increasing tableau.

Proof. By construction, the positive integer entries in column i ofQ(T ) are at most i−1. Letm

be the smallest nonnegative integer such that Vm(T ) = P (T ). Let pi = ((ri0, c
i
0), (r

i
1, c

i
1), . . . , (r

i
di
, cidi))

for 0 6 i < m be the insertion path of V i(T ) → V i+1(T ). Since ci+1
0 6 ci0 for all 0 6 i < m, the

entries in each row of Q(T ) are strictly increasing. To check that the entries in each column of

Q(T ) are strictly increasing, it suffices to show that if ci+1
0 = ci0 then pi+1 lies weakly below pi.

In other words, it suffices to check that ci+1
0 = ci0 implies that ri+1

j 6 rij for all 0 6 j 6 di. We

prove this by induction on j. Note that ri+1
0 6 ri0 by the definition of U . Assume by induction

that ri+1
j 6 rij . This implies that the a when applying Vb to Vjb (V i(T )) is weakly smaller than the

a when applying Vb to Vjb (V i−1(T )). Thus, we must have ri+1
j+1 6 r

i
j+1. �
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4.2.3. Properties of the uncrowding map. Let T be a hook-valued tableau. Define Ri(T )

as the induced subword of R(T ) consisting only of the letters i and i + 1. In the next lemma, we

use the same notation as in Definition 119. Furthermore, two words are Knuth equivalent if one

can be transformed to the other by a sequence of Knuth equivalences on three consecutive letters

xzy ≡ zxy for x 6 y < z, yxz ≡ yzx for x < y 6 z.

Lemma 127. For T ∈ HVT, Ri(T ) = Ri(Vb(T )) unless T satisfies one of the following three

conditions:

(a) a = i or a = i+ 1 and column c+ 1 contains both an i and an i+ 1,

(b) r̃ = r, i ∈ (a, `] ∩ LT (r, c), k = i, and column c+ 1 contains an i+ 1,

(c) r̃ = r, a = i, i+ 1 ∈ (a, `] ∩ LT (r, c), and (r, c) contains another i besides a.

Moreover, Ri(T ) is Knuth equivalent to Ri(Vb(T )).

Proof. Let Ri(T ) = r1r2 . . . rm. We break into cases based on the value of a.

Case 1: Assume a 6= i, i+ 1.

Assume Step (4)a is applied by Vb. If k 6= i, i + 1, then Ri(T ) = Ri(Vb(T )) as the position of all

letters i and i + 1 remains the same. Let k = i. We have that k is the only i in column c + 1.

Hence, when k gets bumped from LT (r̃, c + 1) and appended to AT (r̃, c + 1), the relative position

of k to the other letters i and i + 1 in Ri(T ) does not change. Thus, Ri(T ) = Ri(Vb(T )). Let

k = i + 1. Note that column c + 1 cannot have a cell containing an i as k is the smallest number

weakly greater than a. Hence, moving k from LT (r̃, c + 1) to AT (r̃, c + 1) will not change Ri(T ).

Therefore, we once again have that Ri(T ) = Ri(Vb(T )).

Assume Step (4)b is applied by Vb. Consider the subcase when (a, `]∩LT (r, c) = ∅. By a similar

argument to the previous paragraph, we have that Ri(T ) = Ri(Vb(T )). Next, consider the subcase

when i+ 1 ∈ (a, `] ∩ LT (r, c). This implies that a < i and the only time i+ 1 occurs in column c is

in LT (r, c). Note that if an i exists in column c, it must be contained in LT (r, c). We also have that

k > i + 1 or k is the empty character and no cell in column c + 1 contains an i. Thus, removing

(a, `] ∩ LT (r, c) from LT (r, c), replacing k with (a, `] ∩ LT (r, c) in LT (r, c + 1), and appending k to

AT (r, c + 1) does not change Ri(T ). Therefore Ri(T ) = Ri(Vb(T )). Let i ∈ (a, `] ∩ LT (r, c) and
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i+ 1 6∈ (a, `] ∩ LT (r, c). Note that the only place i+ 1 can occur in column c is as HT (r+ 1, c) and

the only place i can occur in column c is in LT (r, c). This implies that removing (a, `] ∩ LT (r, c)

from LT (r, c), replacing k with (a, `] ∩ LT (r, c) in LT (r, c+ 1) and appending k to AT (r, c+ 1) will

not change Ri(T ) unless both i+ 1 and i show up in column c+ 1. This can only occur when k = i

which implies that Ri(T ) = r1 . . . i i+1 k . . . rm and Ri(Vb(T )) = r1 . . . i+1 i k . . . rm. We see that

Ri(T ) and Ri(Vb(T )) only differ by a Knuth relation implying they are Knuth equivalent. Assume

that i, i+1 6∈ (a, `]∩LT (r, c) 6= ∅. If a > i+1 the positions of all letters i and i+1 remain the same

after Vb is applied. If a < i, then the positions of all letters i and i+ 1 also remain the same unless

k = i or k = i+1. In both of these special subcases, it can be checked that still Ri(T ) = Ri(Vb(T )).

Case 2: Assume a = i.

Assume Step (4)a is applied by Vb. If column c + 1 does not contain both an i and an i + 1,

then we have Ri(T ) = Ri(Vb(T )). However, if both an i and an i + 1 are in column c + 1, then

Ri(T ) = r1 . . . i i+ 1 i . . . rm and Ri(Vb(T )) = r1 . . . i+ 1 i i . . . rm which are Knuth equivalent.

Assume Step (4)b is applied by Vb. Consider the subcase when (a, `]∩LT (r, c) = ∅. By a similar

argument to the previous paragraph, we have that Ri(T ) = Ri(Vb(T )) unless both an i and an i+1

are in column c + 1 in which case Ri(T ) and Ri(Vb(T )) are only Knuth equivalent. Consider the

subcase given by i+1 ∈ (a, `]∩LT (r, c). Note that no cell in column c+1 can contain an i, the only

cell that could contain an i+ 1 in column c+ 1 is (r, c+ 1), and the only cell containing letters i or

i+ 1 in column c is (r, c). This implies that it suffices to look at the changes to (r, c) and (r, c+ 1).

We see that Ri(T ) = r1 . . . i + 1 i . . . i a︸ ︷︷ ︸
γ

. . . rm and Ri(Vb(T )) = r1 . . . i . . . i︸ ︷︷ ︸
γ−1

i + 1 a where γ > 1

is the number of letters i in cell (r, c) including a. We see that Ri(T ) and Ri(Vb(T )) are Knuth

equivalent. Consider the subcase when i+ 1 6∈ (a, `] ∩ LT (r, c) 6= ∅. We have that both i and i+ 1

cannot be in a cell in column c+ 1 and an i+ 1 cannot be in column c. Thus applying Vb does not

change Ri(T ) giving us that Ri(T ) = Ri(Vb(T )).

Case 3: Assume a = i+ 1.

Assume Step (4)a is applied by Vb. If column c + 1 does not contain both i and i + 1, then

we have that Ri(T ) = Ri(Vb(T )). However, if both i and i + 1 occur in column c + 1, then

Ri(T ) = r1 . . . i+1 i+1 i . . . rm and Ri(Vb(T )) = r1 . . . i+1 i i+1 . . . rm which are Knuth equivalent.
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Assume Step (4)b is applied by Vb. If (a, `]∩ LT (r, c) = ∅, then Ri(T ) = Ri(Vb(T )) unless both

i and i+ 1 occur in column c+ 1. In this exceptional case, we have that Ri(T ) and Ri(Vb(T )) are

only Knuth equivalent by a similar argument to the previous paragraph. If (a, `] ∩ LT (r, c) 6= ∅,

then k > i + 1 or k is the empty character and no cell in column c + 1 contains an i + 1. Thus

applying Vb does not change Ri(T ) giving us that Ri(T ) = Ri(Vb(T )). �

Remark 128. In general, the full reading words are not Knuth equivalent under the uncrowding

map. For example, take the following hook-valued tableau T , which uncrowds to a set-valued tableau

S:

T =

4

3

2

12

5

4

→ 2

1

4

3

2

5

4

= S.

The reading word changed from 4321254 to 2143254, which are not Knuth equivalent.

Proposition 129. Let T ∈ HVT.

(1) If fi(T ) = 0, then fi(P (T )) = 0.

(2) If ei(T ) = 0, then ei(P (T )) = 0.

Proof. Since P (T ) = Vsb (T ) for some s ∈ N and Knuth equivalence is transitive, we have that

Ri(T ) is Knuth equivalent to Ri(P (T )) by the previous lemma. As fi(T ) = 0, we have that every

i in Ri(T ) is i-paired with an i+ 1 to its left. This property is preserved under Knuth equivalence

giving us that fi(P (T )) = 0. The same reasoning implies (2). �

Lemma 130. Let T ∈ HVT.

(1) If fi(T ) 6= 0, then fi(Vb(T )) = Vb(fi(T )) 6= 0.

(2) If ei(T ) 6= 0, then ei(Vb(T )) = Vb(ei(T )) 6= 0.

Proof. We are going to prove (1). Part (2) follows since ei and fi are partial inverses.

Let a, `, k, r, c, and r̃ be defined as in Definition 119 when Vb is applied to T . Similarly,

define a′, `′, k′, r′, c′, and r̃′ for when Vb is applied to fi(T ). Let Ri(T ) = r1r2 . . . rm and

Ri(Vb(T )) = r′1r
′
2 . . . r

′
m be the corresponding reading words. Let (r̂, ĉ) denote the cell containing
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the rightmost unpaired i in T , where r̂ and ĉ are its row and column index respectively. We break

into cases based on the position of (r̂, ĉ) to (r, c).

Case 1: Assume (r̂, ĉ) = (r, c). We break into subcases based on how fi acts on T .

• Assume that (r + 1, c) contains an i+ 1.

As every entry in (r, c) must be strictly smaller than the values in (r+ 1, c) and (r, c)

must contain an i, we have that ` = i or a = i. If ` = i, then ` is i-paired with the

i+1 in (r+1, c). Hence a is always equal to i and a must correspond to the rightmost

unpaired i of T . Thus, fi acts on T by removing a from (r, c) and appending an i+ 1

to AT (r + 1, c). Note that (a, `] ∩ LT (r, c) = ∅ implying Vb acts on T by removing a

from AT (r, c), replacing k in (r̃, c+ 1) with a, and appending k to AT (r̃, c+ 1) where

r̃ 6 r. We break into subcases based upon where the values of i and i+1 are in column

c+ 1 utilizing the fact that column c+ 1 cannot contain an i without an i+ 1 (since

the arm excess of cell (r+1, c) is zero and cell (r, c) contains the rightmost unpaired i).

Assume that column c+1 does not contain an i. Since a corresponds to the rightmost

unpaired i in T and column c+ 1 does not contain an i, we have that the rightmost

unpaired i in Vb(T ) is precisely a in the cell (r̃, c+1). Note that (r̃+1, c+1) does not

contain an i+ 1 in Vb(T ) as k > i+ 1 or k is the empty character. Similarly, we have

that (r̃, c+ 2) does not contain an i. Thus, fi acts on Vb(T ) by changing a to an i+ 1

in (r̃, c + 1). We now consider Vb(fi(T )). When applying Vb to fi(T ), a′ is precisely

the i+ 1 appended to AT (r + 1, c) and k′ is the same as k. Since r̃′ = r̃ < r + 1, we

have that Vb acts on fi(T ) by removing i+1 from Afi(T )(r+1, c), replacing k with an

i+1 in (r̃, c+1), and appending k to Afi(T )(r̃, c+1). We see that fi(Vb(T )) = Vb(fi(T )).

Assume that column c+ 1 contains both an i and an i+ 1 in the same cell. Note that

this implies that k = i. Since a is the rightmost unpaired i in T and the only cell in

column c+ 1 that contained an i+ 1 or an i is (r̃, c+ 1), we have that the rightmost

unpaired i in Vb(T ) is the i appended to AT (r̃, c + 1). Since (r̃, c + 1) contains an

i+ 1, we have that (r̃+ 1, c+ 1) cannot contain an i+ 1 and (r̃, c+ 2) cannot contain
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an i. Thus, fi acts on Vb(T ) by changing the i in AVb(T )(r̃, c+ 1) to an i+ 1. We now

consider Vb(fi(T )). When applying Vb to fi(T ), a′ is precisely the i+ 1 appended to

AT (r + 1, c) and k′ is the i + 1 in (r̃, c + 1). Since r̃′ = r̃ < r + 1, we have that Vb

acts on fi(T ) by removing i+ 1 from Afi(T )(r+ 1, c), replacing i+ 1 in (r̃, c+ 1) with

the i+ 1 from Afi(T )(r+ 1, c), and appending an i+ 1 to Afi(T )(r̃, c+ 1). We see that

fi(Vb(T )) = Vb(fi(T )).

Assume that column c+ 1 contains both an i and an i+ 1 in different cells. Note that

this implies that k = i. Since a corresponds to the rightmost unpaired i in Ri(T ) and

the only i+1 and i in column c+1 are in cells (r̃+1, c+1) and (r̃, c+1) respectively,

we have that the rightmost unpaired i in Ri(Vb(T )) corresponds to the i appended

to AT (r̃, c + 1). By assumption, we have that (r̃ + 1, c+ 1) contains an i+ 1. Thus,

fi acts on Vb(T ) by removing the i from AVb(T )(r̃, c + 1) and appending an i + 1 to

AVb(T )(r̃ + 1, c + 1). We now consider Vb(fi(T )). When applying Vb to fi(T ), a′ is

precisely the i + 1 appended to AT (r + 1, c) and k′ is the i + 1 in cell (r̃ + 1, c + 1).

If r̃′ = r + 1, then i + 1 is weakly larger than every value in (r + 1, c). Thus, either

(a′, `′] ∩ Lfi(T )(r + 1, c) = ∅ or r̃′ < r + 1. This implies that Vb acts on fi(T ) by

removing i+ 1 from Afi(T )(r+ 1, c), replacing the i+ 1 in Hfi(T )(r̃+ 1, c+ 1) with the

i+ 1 removed from Afi(T )(r+ 1, c), and appending an i+ 1 to Afi(T )(r̃+ 1, c+ 1). We

see that fi(Vb(T )) = Vb(fi(T )).

• Assume that (r + 1, c) does not contain an i+ 1 and (r, c+ 1) contains an i.

Under these assumptions, we have that no cell in column c can contain an i+ 1. This

implies that column c+ 1 must contain an i+ 1. The cell (r+ 1, c+ 1) cannot have an

i+ 1 as this would force (r+ 1, c) to also have an i+ 1. Thus, (r, c+ 1) must contain

an i + 1 in its leg. By our assumption we have that fi acts on T by removing the i

from (r, c+ 1) and appending an i+ 1 to LT (r, c). We break into subcases according

to where the rightmost unpaired i sits inside the cell (r, c). If the rightmost unpaired

i is in HT (r, c), then a > i which would either contradict the hook entry being the
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rightmost unpaired i or cell (r, c+ 1) containing an i. Thus, we only need to consider

the subcases where the rightmost unpaired i is either in the leg or arm of (r, c).

Assume that the rightmost unpaired i is in LT (r, c) for this entire paragraph. This

implies that ` = i. Since (r, c + 1) contains an i, we have that a < i. If r̃ < r,

then Vb acts on T by removing a from (r, c), replacing k with a in (r̃, c + 1), and

appending k to AT (r̃, c+ 1). Since a, k < i, we have that Vb does not change position

of the rightmost unpaired i. Note that (r + 1, c) still does not contain an i+ 1 while

(r, c+ 1) still contains an i. Thus, fi acts on Vb(T ) by removing the i from (r, c+ 1)

and appending an i+ 1 to LVb(T )(r, c). We now consider Vb(fi(T )). Note that (r′, c′),

a′, and k′ are the same as (r, c), a, and k respectively. Thus, Vb acts in the same

way as before. This gives us that fi(Vb(T )) = Vb(fi(T )). If r̃ = r, then k is precisely

the i in cell (r, c + 1). We see that Vb acts on T by removing (a, i] ∩ LT (r, c) from

LT (r, c) and a from AT (r, c), replacing k with ((a, i] ∩ LT (r, c)) ∪ {a}, and appending

k to AT (r+ 1, c). Since there is an i+ 1 in LVb(T )(r, c+ 1), we see that the rightmost

unpaired i in Vb(T ) is precisely k in AVb(T )(r, c + 1). Note that (r + 1, c + 1) does

not contain an i + 1 and (r, c + 2) does not contain an i because (r, c + 1) contains

an i + 1. Thus, fi acts on Vb(T ) by changing the i in AVb(T )(r, c + 1) to an i + 1.

We now consider Vb(fi(T )). We have that a′ is the same as a and k′ is the i + 1 in

(r, c + 1). We have (a′, `′] ∩ Lfi(T )(r
′, c′) = {i + 1} ∪ ((a, i] ∩ LT (r, c)). This implies

that Vb acts on fi(T ) by removing {i + 1} ∪ ((a, i] ∩ LT (r, c)) from Lfi(T )(r, c) and a

from Afi(T )(r, c), replacing i+ 1 with {i+ 1}∪ ((a, i]∩LT (r, c))∪{a} in (r, c+ 1), and

appending an i+ 1 to Afi(T )(r, c+ 1). We see that fi(Vb(T )) = Vb(fi(T )).

Assume that the rightmost unpaired i is in AT (r, c). This implies that a = i and forces

a to correspond to the rightmost unpaired i. We also have that k is the i in (r, c+ 1).

Since i is weakly greater than all values in (r, c), we have that (a, `] ∩ LT (r, c) = ∅.

Thus, Vb acts on T by removing a from (r, c), replacing k with a in (r, c + 1), and

appending k to AT (r, c + 1). Since a was the rightmost unpaired i in T and cell
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(r, c+ 1) contains an i+ 1 in its leg, we have that the rightmost unpaired i in Vb(T )

is k in AVb(T )(r, c + 1). As i + 1 is in (r, c + 1), we have that (r + 1, c + 1) cannot

contain an i + 1 and (r, c + 2) cannot contain an i. This implies that fi acts on

Vb(T ) by changing the i in AVb(T )(r, c + 1) to an i + 1. We now consider Vb(fi(T )).

We have that a′ is the same as a and k′ is equal to the i + 1 in (r, c + 1). Note

that (a′, `′] ∩ LT (r, c) = {i + 1}. This implies that Vb acts on fi(T ) by removing

i + 1 from Lfi(T )(r, c) and a from Afi(T )(r, c), replacing the i + 1 in (r, c + 1) with

{i+1, a}, and appending an i+1 to Afi(T )(r, c+1). We see that fi(Vb(T )) = Vb(fi(T )).

• Assume that (r + 1, c) does not contain an i+ 1 and (r, c+ 1) does not contain an i.

We break into subcases based on where the rightmost unpaired i sits inside (r, c).

Assume that rightmost unpaired i is in the hook entry of (r, c) for the remainder of

this paragraph. Note that this implies that a > i and the rightmost unpaired i in

Vb(T ) is still the hook entry of (r, c). We see that Vb does not insert an i + 1 into

(r+ 1, c) nor an i into (r, c+ 1). This implies that fi acts on T and Vb(T ) in the same

way by changing the hook entry of (r, c) into an i+1. Next, we note that (r′, c′), a′, k′,

and (a′, `′] ∩ Lfi(T )(r′, c′) are the same as (r, c), a, k, and (a, `] ∩ LT (r, c) respectively.

Thus, Vb acts on T and fi(T ) in the same manner without affecting the hook entry

of (r, c). Therefore, we have that the actions of fi and Vb on T are independent and

fi(Vb(T )) = Vb(fi(T )).

Assume that the rightmost unpaired i is in the leg of (r, c) for the remainder of

this paragraph. This implies that a 6= i. First, we assume that a > i or r̃ < r.

Under this extra assumption, we observe that the action of Vb does not change

the position of the rightmost unpaired i. Also, Vb does not insert an i + 1 into

(r + 1, c) nor an i into (r, c + 1). We see that fi acts on T and Vb(T ) in the

same way by changing the i in the leg of (r, c) into an i + 1. Next, we note that

(r′, c′), a′, and k′ are the same as (r, c), a, and k respectively. If a > i, we have
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that a > i + 1 implying that (a′, `′] ∩ Lfi(T )(r
′, c′) = (a, `] ∩ LT (r, c). Thus, either

(a′, `′] ∩ Lfi(T )(r
′, c′) = (a, `] ∩ LT (r, c) or r̃ < r. This implies that Vb acts on T and

fi(T ) in the same manner and does not affect the i or i+1 in the leg of (r, c). Therefore,

we have that the actions of fi and Vb on T are independent and fi(Vb(T )) = Vb(fi(T )).

Next, assume that r̃ = r and a < i. This implies that (a, `] ∩ LT (r, c) 6= ∅ as

i ∈ (a, `] ∩ LT (r, c). We have that Vb acts on T by removing (a, `] ∩ LT (r, c) from

LT (r, c) and a from AT (r, c), replacing k with ((a, l]∩ LT (r, c))∪ {a} in (r, c+ 1), and

appending k to AT (r, c + 1). By assumption, there was no i in (r, c + 1) to begin

with. Thus, we have that the rightmost unpaired i of Vb(T ) is the i in (r, c + 1)

that replaced k. Since k > i + 1 or k is the empty character, we have that the cell

(r + 1, c + 1) does not contain an i + 1 and the cell (r, c + 2) does not contain an

i. Hence, fi acts on Vb(T ) by replacing the i in LVb(T )(r, c + 1) with an i + 1. We

now consider Vb(fi(T )). We have that fi acts on T by changing the i in LT (r, c) to

an i + 1. We see that a′ and k′ are the same as a and k respectively. Since i > a,

we have that i + 1 > a or in other words i + 1 ∈ (a′, `′] ∩ LT (r, c). This implies that

(a′, `′] ∩ Lfi(T )(r
′, c′) = (((a′, `′] ∩ LT (r, c)) ∪ {i+ 1})− {i}. We have Vb acts on fi(T )

by removing (a′, `′] ∩ Lfi(T )(r, c) from Lfi(T )(r, c) and a from Afi(T )(r, c), replacing k

with (a′, `′]∩ Lfi(T )(r, c) in (r, c+ 1), and appending k to Afi(T )(r, c+ 1). We see that

fi(Vb(T )) = Vb(fi(T )).

Assume that the rightmost unpaired i is in AT (r, c) and r̃ < r or (a, `] ∩ LT (r, c) = ∅

for this entire paragraph. Under this assumption, fi acts on T by changing the right-

most i in the arm of (r, c) to an i+1. Also, Vb acts on T by removing a from AT (r, c),

replacing k in (r̃, c+ 1) with a, and appending k to AT (r̃, c+ 1). First, we make the

additional assumption that i < a. Since we assume the rightmost unpaired i is in

the arm of (r, c) and i < a, we have the rightmost unpaired i in Vb(T ) is in the same

position as in T . Note that the cell (r+1, c) still does not contain an i+1 and the cell

(r, c+ 1) still does not contain an i. Thus, we have that fi acts on Vb(T ) by changing

the rightmost i in AVb(r, c) into an i+ 1. We now consider Vb(fi(T )). We see that a′
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and k′ are the same as a and k respectively. This implies that Vb acts on fi(T ) by

removing a from (r, c), replacing k with a in (r̃, c), and appending k to Afi(T )(r̃, c+1).

We see that fi(Vb(T )) = Vb(fi(T )). Next, we make the assumption that a = i and

column c + 1 does not contain both an i and an i + 1. We have that the rightmost

unpaired i in Vb(T ) is precisely the i that replaced k in (r̃, c+ 1). We also have that

k > i + 1 or k is the empty character implying that the cell (r̃ + 1, c + 1) does not

contain an i+ 1 and the cell (r̃, c+ 2) does not contain an i. This implies that fi acts

on Vb(T ) by changing the i in L+Vb(T )(r̃, c+ 1) to an i+ 1. We now consider Vb(fi(T )).

We see that a′ is the i+1 in (r, c) created by appying fi and k′ is the same as k. Thus,

Vb acts on fi(T ) by removing the i+ 1 from (r, c), replacing k with an i+ 1 in (r̃, c),

and appending k to Afi(T )(r̃, c + 1). We see that fi(Vb(T )) = Vb(fi(T )). Next, we

assume that a = i and column c+ 1 contains both an i and an i+ 1 in the same cell.

Note that this implies that k = i. Since a corresponded to the rightmost unpaired i in

T and the only cell in column c+ 1 that contains an i+ 1 or an i is (r̃, c+ 1), we have

that the rightmost unpaired i in Vb(T ) corresponds to the i appended to AT (r̃, c+ 1).

Since (r̃, c+ 1) contains an i+ 1 in Vb(T ), we have that (r̃ + 1, c+ 1) cannot contain

an i+ 1 and (r̃, c+ 2) cannot contain an i. Thus, fi acts on Vb(T ) by changing the i

in AVb(T )(r̃, c+ 1) to an i+ 1. We now consider Vb(fi(T )). We see that a′ is the i+ 1

in (r, c) obtained after applying fi and k′ is the i + 1 in cell (r̃, c + 1). This implies

that Vb acts on fi(T ) by removing the i+ 1 from (r, c), replacing k′ with an i+ 1 in

(r̃, c + 1), and appending k′ to Afi(T )(r̃, c + 1). We see that fi(Vb(T )) = Vb(fi(T )).

Finally, we make the assumption that a = i and column c+ 1 contains both an i and

an i+ 1 but in different cells. We once again have that k = i, but now we have that

(r̃ + 1, c + 1) contains an i + 1. We have that the rightmost unpaired i in Vb(T ) is

the i that was appended to AT (r̃, c + 1). Since (r̃ + 1, c + 1) contains an i + 1, we

have that fi acts on Vb(T ) by removing the i from AVb(T )(r̃, c+ 1) and appending an

i + 1 to AVb(T )(r̃ + 1, c + 1). We now consider Vb(fi(T )). We see that a′ is the i + 1

in (r, c) obtained after applying fi and k′ the i+ 1 in cell (r̃ + 1, c+ 1). This implies

that Vb acts on fi(T ) by removing the i+ 1 from (r, c), replacing k′ with an i+ 1 in

125



(r̃+1, c+1), and appending k′ to Afi(T )(r̃+1, c+1). We see that fi(Vb(T )) = Vb(fi(T )).

Assume that the rightmost unpaired i is in the arm of (r, c), r̃ = r, and (a, `] ∩

LT (r, c) 6= ∅ for this entire paragraph. First, we make the additional assumption that

i < a. This gives us that Vb(T ) is attained from T by removing (a, `] ∩ LT (r, c) from

LT (r, c) and a from AT (r, c), replacing k in cell (r, c+ 1) with ((a, `]∩ LT (r, c))∪ {a},

and appending k to AT (r, c+ 1). Since k, a > i, we have that the rightmost unpaired

i in Vb(T ) remains the same as in T . We also have that the cell (r + 1, c) does not

contain an i+1 and the cell (r, c+1) does not contain an i. Thus, fi acts on Vb(T ) by

changing the rightmost i in AVb(T )(r, c) to an i+ 1. We now consider Vb(fi(T )). We

have that fi acts on T by changing the rightmost i in AT (r, c) to an i+1. We see that

a′, k′, and (a′, l′] ∩ Lfi(T )(r′, c′) are the same as a, k, and (a, `] ∩ LT (r, c) respectively.

This implies that Vb acts on fi(T ) by removing (a, `]∩ LT (r, c) from Lfi(T )(r, c) and a

from Afi(T )(r, c), replacing k in cell (r, c+1) with ((a, l]∩LT (r, c))∪{a}, and appending

k to Afi(T )(r, c+ 1). We see that fi(Vb(T )) = Vb(fi(T )). Next, we assume that a = i

and (r, c) contains an i+ 1. Since a = i, the i+ 1 in (r, c) must be in its leg. Also as a

is the rightmost unpaired i of T , we must have that (r, c) contains another i besides a.

This gives us that Vb(T ) is attained from T by removing (a, `]∩ LT (r, c) from LT (r, c)

and a from AT (r, c), replacing k in cell (r, c + 1) with ((a, `] ∩ LT (r, c)) ∪ {a}, and

appending k to AT (r, c+ 1). Note that the i inserted into (r, c+ 1) becomes i-paired

while an i in (r, c) becomes unpaired. This implies that the rightmost unpaired i

in Vb(T ) still sits in the cell (r, c). We see that the cell (r + 1, c) still does not

contain an i + 1; however, the cell (r, c + 1) now contains an i. This implies that fi

acts on Vb(T ) by removing the i from the cell (r, c + 1) and appending an i + 1 to

LVb(T )(r, c). We now consider Vb(fi(T )). We have that fi acts on T by changing a

into an i + 1. We have that a′ is the i + 1 obtained from applying fi and k′ is same

as k. We see that (a′, `′] ∩ Lfi(T )(r
′, c′) is the same as (a, `] ∩ LT (r, c) excluding the

i+1. We have that Vb acts on fi(T ) by removing (a′, `′]∩Lfi(T )(r′, c′) from Lfi(T )(r, c)

and i + 1 from Afi(T )(r, c), leaving the i + 1 in Lfi(T )(r, c), replacing k in (r, c + 1)
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with ((a′, `′] ∩ Lfi(T )(r
′, c′)) ∪ {a′}, and appending k to Afi(T )(r, c + 1). We see that

fi(Vb(T )) = Vb(fi(T )). Finally, we assume that a = i and i + 1 is not in the cell

(r, c). This gives us that Vb(T ) is attained from T by removing (a, `] ∩ LT (r, c) from

LT (r, c) and a from AT (r, c), replacing k in cell (r, c+ 1) with ((a, `]∩ LT (r, c))∪ {a},

and appending k to AT (r, c + 1). Since k > j > i + 1 for all j ∈ (a, `] ∩ LT (r, c), we

have that the i inserted into the cell (r, c + 1) is the rightmost unpaired i in Vb(T ).

Note that the cell (r + 1, c+ 1) does not contain an i+ 1 and the cell (r, c+ 2) does

not contain an i. Thus, fi acts on Vb(T ) by changing the i in (r, c + 1) to an i + 1.

We now consider Vb(fi(T )). We have that fi acts on T by changing a into an i + 1.

We have that a′ is the i + 1 obtained from applying fi and k′ is the same as k. We

see that (a′, `′] ∩ Lfi(T )(r
′, c′) = (a, `] ∩ LT (r, c). We have that Vb acts on fi(T ) by

removing (a, `] ∩ LT (r, c) from Lfi(T )(r, c) and i + 1 from Afi(T )(r, c), replacing k in

(r, c + 1) with ((a, `] ∩ LT (r, c)) ∪ {a′}, and appending k to Afi(T )(r, c + 1). We see

that fi(Vb(T )) = Vb(fi(T )).

Case 2: Assume that r̂ < r and ĉ = c.

Note that a > i. By Lemma 127 we have that Ri(T ) = Ri(Vb(T )) unless a = i + 1 and

column c + 1 contains both an i and an i + 1. However, even in this special case, we see

that the rightmost unpaired i of Vb(T ) is in the same position as the rightmost unpaired

i of T . We also see that Vb(T ) does not change whether or not cell (r̂ + 1, c) contains an

i + 1 and whether or not cell (r̂, c + 1) contains an i. Thus, fi acts on the same i and in

the same way for both T and Vb(T ). Since a > i, we have that k′ is the same as k. Note

that the only way for fi to affect the cell (r, c) in T is if r̂ = r − 1 and (r, c) contains an

i+1. However, even in this special case, we see that (r′, c′), a′, l′, and (a′, `′]∩Lfi(T )(r′, c′)

are the same as (r, c), a, `, and (a, `] ∩ LT (r, c). Thus, Vb acts on T and fi(T ) in the

same way. Therefore, we have that the actions of fi and Vb on T are independent and

fi(Vb(T )) = Vb(fi(T )).

Case 3: Assume that ĉ < c.

Let ĩ denote the rightmost unpaired i of T . From the proof of Lemma 127, we have that

Vb does not change whether or not the i’s to the right of ĩ in Ri(T ) are i-paired. Thus,
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the rightmost unpaired i in Ri(T ) and Ri(Vb(T )) are in the same position. As Vb does not

affect any column to the left of column c, we have that the rightmost unpaired i for Vb(T )

is in the same position as the rightmost unpaired i for T . Note that Vb also does not affect

whether or not cell (r̂ + 1, ĉ) contains an i+ 1 and whether or not cell (r̂, ĉ+ 1) contains

an i. Thus, fi acts on the rightmost unpaired i in T and Vb(T ) in exactly the same way.

Next, we note that (r′, c′), a′, k′, and (a′, `′]∩ Lfi(T )(r′, c′) are the same as (r, c), a, k, and

(a, `]∩ LT (r, c) respectively. Thus, Vb acts on T and fi(T ) in the same way. Therefore, we

have that the actions of fi and Vb on T are independent and fi(Vb(T )) = Vb(fi(T )).

Case 4: Assume that r̂ 6 r and ĉ = c+ 1.

Under this assumption, we have that column c+ 1 does not contain an i+ 1 and a 6= i+ 1

since the cells in column c+ 1 do not contain any arms. We break into subcases.

• Assume that k 6= i. This implies that the rightmost unpaired i in Vb(T ) is in the same

position as the rightmost unpaired i in T . We see that Vb does not change whether

or not cell (r̂ + 1, c+ 1) contains an i+ 1 and whether or not cell (r̂, c+ 2) contains

an i. Thus, fi acts on the rightmost unpaired i in T and Vb(T ) in exactly the same

way. We also observe that (r′, c′), a′, `′, k′, and (a′, `′] ∩ Lfi(T )(r
′, c′) are the same

as a, `, k, and (a, `] ∩ Lfi(T )(r, c) respectively. Thus, Vb acts on T and fi(T ) in the

same way. Therefore, we have that the actions of fi and Vb on T are independent and

fi(Vb(T )) = Vb(fi(T )).

• Assume that k = i. We see that the rightmost unpaired i in Vb(T ) is the i that

was appended to AT (r̂, c + 1). Note that Vb does not change whether or not cell

(r̂ + 1, c + 1) contains an i + 1 and whether or not cell (r̂, c + 2) contains an i. We

first make the extra assumption that (r̂, c+ 2) in T contains an i. This implies that

fi acts on Vb(T ) and T in the same way by removing the i from the hook entry of

(r̂, c + 2) and appending an i + 1 to the leg of (r̂, c + 1). We also have that (r′, c′),

a′, `′, k′, and (a′, `′] ∩ Lfi(T )(r
′, c′) are equal to (r, c), a, `, k, and (a, `] ∩ Lfi(T )(r, c)

respectively. Thus, Vb acts on T and fi(T ) in the same way. Therefore, we have that

the actions of fi and Vb on T are independent and fi(Vb(T )) = Vb(fi(T )). We now

assume that (r̂, c + 2) does not contain an i. This implies that fi acts on Vb(T ) by
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changing the i in AVb(T )(r̂, c + 1) to an i + 1 and acts on T similarly by changing

the i in LVb(T )(r̂, c+ 1) to an i+ 1. Note that (r′, c′), a′, `′, and (a′, `′] ∩ Lfi(T )(r
′, c′)

are equal to (r, c), a, `, and (a, `] ∩ Lfi(T )(r, c) respectively while k′ is the i + 1 in

Lfi(T )(r̂, c + 1). Thus, besides the value of the number that is bumped from the leg

of (r̂, c+ 1) to its arm, we have Vb acts on T and fi(T ) in the same way. Looking at

fi(Vb(T )) and Vb(fi(T )), we see that fi(Vb(T )) = Vb(fi(T )).

Case 5: Assume that r̂ > r and ĉ = c or c+ 1.

Under this assumption, we have that Vb does not change the cells (r̂, ĉ), (r̂ + 1, ĉ), and

(r̂, ĉ + 1). We also have that Ri(T ) = Ri(Vb(T )) implying that the rightmost unpaired i

in Vb(T ) is in the same position as the rightmost unpaired i in T . Thus, fi acts on the

rightmost unpaired i in Vb(T ) and T in the same way. Note that i+1 cannot be in column

ĉ implying that fi can only make changes to the legs and hook entries of (r̂, ĉ) and (r̂, ĉ+1).

Since these changes only affect the legs and hook entries of cells outside of the possible

cells that Vb can change, we have that Vb acts on T and fi(T ) in the same way. Therefore,

we have that the actions of fi and Vb on T are independent and fi(Vb(T )) = Vb(fi(T )).

Case 6: Assume that ĉ > c+ 2.

Let ĩ denote the rightmost unpaired i of T . From the proof of Lemma 127, we have that

Vb does not change whether or not the i + 1’s to the left of ĩ are i-paired. Thus, the

rightmost unpaired i in Ri(T ) and Ri(Vb(T )) are in the same position. As Vb does not

affect any column to the right of column c+ 1, we have that the rightmost unpaired i for

Vb(T ) is in the same position as the rightmost unpaired i for T . Note that Vb also does

not affect whether or not cell (r̂+ 1, ĉ) contains an i+ 1 and whether or not cell (r̂, ĉ+ 1)

contains an i. Since the cells that fi and Vb could change are different and the rightmost

unpaired i does not change, we have that the actions of fi and Vb on T are independent

and fi(Vb(T )) = Vb(fi(T )).

�

Theorem 131. Let T ∈ HVT.

(1) If fi(T ) 6= 0, we have fi(P (T )) = P (fi(T )) and Q(T ) = Q(fi(T )).

(2) If ei(T ) 6= 0, we have ei(P (T )) = P (ei(T )) and Q(T ) = Q(ei(T )).

129



Proof. Part (2) follows from part (1) since ei and fi are partial inverse. We prove part (1)

here.

Let T ∈ HVT with arm excess α such that fi(T ) 6= 0 for some i. Then fi(P (T )) = P (fi(T ))

follows from Lemma 130, as P (T ) is obtained by successive applications of V on T and each

application of V is a string of applications of Vb.

Since crystal operators do not change arm excess, we may employ the notation in Definition 122

and denote the pair of insertion and recording tableaux produced at the j-th step for 0 6 j 6 α of

the uncrowding map U for T and fi(T ) as (Pj(T ), Qj(T )) and (Pj(fi(T )), Qj(fi(T ))), respectively.

As crystal operators do not change the shape of T , we have shape(Pj(fiT )) = shape(fi(Pj(T ))) =

shape(Pj(T )) for all 0 6 j 6 α. Hence

(4.2.2)

shape(Pj+1(T ))/shape(Pj(T )) = shape(Pj+1(fi(T )))/shape(Pj(fi(T ))) for all 0 6 j 6 α− 1.

Next we show Qj(T ) = Qj(fi(T )) for all 0 6 j 6 α by induction. When j = 0, Q0(T ) =

Q0(fi(T )) since shape(P0(T )) = shape(P0(fi(T ))) = shape(T ).

Suppose Qj(T ) = Qj(fi(T )) for a given j > 0. It suffices to show that the cells

shape(Qj+1(T ))/shape(Qj(T )) = shape(Pj+1(T ))/shape(Pj(T )) and

shape(Qj+1(fi(T )))/shape(Qj(fi(T ))) = shape(Pj+1(fi(T )))/shape(Pj(fi(T )))

in Qj+1(T ) and Qj+1(fi(T )) are at the same position with the same entry. By (4.2.2), the cells are

in the same position, say in column c̃. By Definition 116, fi does not move elements in the arm

to a different column, so the columns in which we start the uncrowding insertion V on Pj(T ) and

Pj(fi(T )) are the same, say c, by Definition 122. Hence the cells shape(Qj+1(T ))/shape(Qj(T ))

and shape(Qj+1(fi(T )))/shape(Qj(fi(T ))) are at the same position with entry c̃− c. The theorem

follows. �

Hawkes and Scrimshaw [HS20, Theorem 4.6] proved that HVTm(λ) is a Stembridge crystal by

checking the Stembridge axioms. This also follows directly from our analysis above.

Corollary 132. The crystal HVTm(λ) of Definition 116 is a Stembridge crystal of type Am−1.

130



Proof. According to [MPS20], SVTm(µ) is a Stembridge crystal of type Am−1. By Theo-

rem 131, the map

U : HVTm(λ)→
⊔
µ⊇λ

SVTm(µ)× F̂(µ/λ),

is a strict crystal morphism (see for example [BS17, Chapter 2]). The statement follows. �

4.2.4. Uncrowding map on multiset-valued tableaux. The uncrowding map on hook-

valued tableaux described above turns out to be a generalization of the uncrowding map on multiset-

valued tableaux by Hawkes and Scrimshaw [HS20, Section 3.2]. We will prove that this is indeed

the case in this section. Let us recall the definition of the uncrowding map in [HS20, Section 3.2].

Definition 133. Let T ∈ MVT(λ). The uncrowding map

Υ : MVT(λ)→
⊔
µ⊇λ

SSYT(µ)× F̂(µ/λ)

sends T to a pair of tableaux using the following algorithm:

(1) Set Uλ1+1 = ∅ and Fλ1+1 be the unique column-flagged increasing tableau of shape ∅/∅.

(2) Let 1 6 k 6 λ1 and assume that the pair (Uk+1, Fk+1) is defined. The pair (Uk, Fk) is

defined recursively from (Uk+1, Fk+1) using the following two steps:

(a) Define Uk as the RSK row insertion tableau from the word

R(Ck)R(Ck+1) · · ·R(Cλ1),

where Cj is the j-th column of T for every 1 6 j 6 λ1. In other words, if we denote

by T>k the tableau formed by the columns weakly to the right of the k-th column of

T , Uk is obtained by performing RSK row insertion using the column reading word of

T>k.

(b) Form the tableau Fk of shape shape(Uk)/shape(T>k) as follows. Shift Fk+1 by one

column to the right and fill the boxes in the same positions into Fk; for every unfilled

box in the shape shape(Uk)/shape(Uk+1), label each box in column i with entry i− 1.

Define Υ(T ) = (U,F ) := (U1, F1).
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Example 134. Let T be the multiset-valued tableau

T =

45

233 345

1 11 4

.

Then, we obtain the following pairs of tableaux for the uncrowding map Υ:

(U4, F4) = (∅, ∅)

(U3, F3) =
(

4 ,
)

(U2, F2) =

 3 5

1 1 4 4
,

1

2 3



(U1, F1) =


4 5

2 3 3 5

1 1 1 3 4 4

,
1

1 3

2 3 5

 = (U,F ) = Υ(T ).

Proposition 135. Let T ∈ MVT(λ). Then U(T ) = Υ(T ). In other words, the uncrowding map

as defined in Definition 122 is equivalent to the uncrowding map of Definition 133 in [HS20, Section

3.2].

Proof. Recall from Definition 122, that the pair of uncrowding and recording tableaux for

U(T ) is denoted by (P (T ), Q(T )) = U(T ). Similarly, let us denote (U(T ), F (T )) := Υ(T ).

Assume that S ∈ MVT(λ) is highest weight, that is, ei(S) = 0 for i > 1. By [HS20, Proposition

3.10], row i of S only contains the letter i. Thus its weight is some partition µ = (µ1, µ2, . . . , µ`)

if λ = (λ1, λ2, . . . , λ`). By Proposition 129 and Theorem 131, P (S) ∈ SSYT is highest weight. As

weights of tableaux are preserved under uncrowding, the weight of P (S) is equal to µ. By a similar

argument using [HS20, Theorem 3.17], U(S) ∈ SSYT is also highest weight with weight µ. Since

highest weight semistandard Young tableaux are uniquely determined by their weights, we have

P (S) = U(S).

Recall that as long as fiT 6= 0 for T ∈ MVT(λ), we have U(fiT ) = fiU(T ) by [HS20, Theorem

3.17] and P (fiT ) = fiP (T ) by Theorem 131. Now let T ∈ MVT(λ) be arbitrary. Then T =
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fi1 · · · fik(S) for some sequence of i1, . . . , ik and S highest weight. Hence,

P (T ) = P (fi1 · · · fikS) = fi1 · · · fikP (S) = fi1 · · · fikU(S) = U(fi1 · · · fikS) = U(T ).

It remains to show that Q(T ) = F (T ) for all T ∈ MVT(λ). To do this, we show that the newly

created boxes of the uncrowding map up to a specified column in Definition 133 are in the same

positions as those for the uncrowding insertion in Definition 122. For every Y ∈ MVT(µ) and for

every 1 6 j 6 µ1, denote by Y>j the tableau formed by the rightmost j columns of Y ; here Y>µ1+1

is the empty tableau.

Let T ∈ MVT(λ) be arbitrary. For 1 6 k 6 λ1+1, let P (k) be the tableau obtained by performing

the uncrowding map U on T on the columns from right to left up to and including the k-th column

of T ; here P (λ1+1) = T . In other words, P (k) = Vαk(T ) as in Definition 121, where αk is the arm

excess of T>k. As the entries to the left of column k of T are untouched by the uncrowding insertion

in Definition 121, for every 1 6 k 6 λ1+1, we have (P (k))>k = P (T>k) = U(T>k). It follows that for

every 1 6 k 6 λ1, up to horizontal shifts, the newly formed boxes in shape(P (k))/shape(P (k+1)) =

shape[(P (k))>k+1]/shape[(P
(k+1))>k+1] and shape([U(T>k)]>k+1)/shape([U(T>k+1)]>k+1) are in the

same positions. Since the entries in these boxes both record the difference in column indices relative

to the k-th column for each 1 6 k 6 λ1 and since the recording tableaux for both maps are formed

from the union of these boxes, we conclude that Q(T ) = F (T ), completing the proof. �

4.2.5. Crowding map. In this section, we give a description of the “inverse” of the uncrowd-

ing map.

We begin by introducing some notation. Let F ∈ F̂ with e entries. For each cell (r, c) in F

with entry F (r, c), define the corresponding destination column to be d(r, c) = c − F (r, c). Define

the crowding order on F by ordering all the cells in F with a filling, first determined by their

destination column (smallest to largest) and then by column index (largest to smallest). Denote

the order by (r1, c1), (r2, c2), . . . , (re, ce). Set α(F ) = (α1, α2, . . . , αe), where αi = F (ri, ci). Let the

arm excess for a column of a hook-valued tableau be the sum of arm excesses of all its cells.
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Definition 136. Let h ∈ HVT and let (r, c) be a cell in h with c > 1 and with at most one

element in Ah(r, c). If Ah(r, c) is empty, we also require that the cell (r, c) is a corner cell in h.

Then we define the crowding bumping Cb on the pair [h, (r, c)] by the following algorithm:

(1) If Ah(r, c) is nonempty, set m to be the only element in Ah(r, c) and b = max{x ∈ L+h (r, c) |

x 6 m}. Otherwise, set m = Hh(r, c) and b = max(L+h (r, c)).

(2) Find the largest r′ such that Hh(r′, c − 1) 6 b. If r′ = r, set q = Hh(r, c). Otherwise, set

q = b. In either case, append q to Ah(r′, c− 1).

(3) (a) If r′ from Step 2 equals r, perform either of the following:

(i) If Ah(r, c) is nonempty, move the set {x ∈ Lh(r, c) | q < x 6 m} from Lh(r, c)

to Lh(r′, c− 1) and keep it strictly increasing. Remove m from Ah(r, c) and set

Hh(r, c) = m.

(ii) Otherwise, Ah(r, c) is empty, so move Lh(r, c) into Lh(r′, c − 1) and keep it to

be strictly increasing. Remove cell (r, c) from h.

(b) Otherwise, r′ 6= r and perform either of the following:

(i) Suppose that Ah(r, c) is nonempty. Replace q in L+h (r, c) with m. Remove m

from Ah(r, c).

(ii) If instead Ah(r, c) is empty, then remove cell (r, c) from h.

Denote the resulting (not necessarily semistandard) hook-valued tableau by h′. We write Cb([h, (r, c)]) =

[h′, (r′, c − 1)]. We also define the projections p1 and p2 by p1 ◦ Cb([h, (r, c)]) = h′ and p2 ◦

Cb([h, (r, c)]) = (r′, c− 1). See Figures 4.3 and 4.4 for illustration.

−
−−

−
b
∗
q m

Cb−→

b
∗
−
−− q

−
m

−
−−

b
∗
m

Cb−→

b
∗
−
−−m

Figure 4.3. When r′ = r. Left: (i) Ah(r, c) 6= ∅. Right: (ii) Ah(r, c) = ∅.
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−
−−

−
−−

−
b
−m

Cb−→

−
−− b

−
−−

−
m
−

−
−−
−
−

∗
m

−
−−

−
−

Cb−→

−
−−m
−
−
−
−−

−
−

Figure 4.4. When r′ 6= r. Left: Ah(r, c) 6= ∅. Right: Ah(r, c) = ∅.

Example 137. We compute Cb in two examples:

T =

5

1 1

5

4

3

2 4

, Cb([T, (1, 2)]) = [

5

4

3

1 1 2

5

4

, (1, 1) ] = [ T ′ , (1, 1) ].

S =

3

2

1

3

2

, Cb([S, (1, 2)]) = [

33

2

1

, (2, 1) ] = [ S′ , (2, 1) ].

Remark 138. In Definition 136,

• if r′ = r, then h′ is always semistandard and has the same weight as h;

• if r′ 6= r and Ah(r, c) is empty, then h′ might have fewer letters than h. In Example 137,

S contains 5 letters while S′ only contains 4. This happens precisely when Lh(r, c) is

nonempty.

In principle, the arm in cell (r′, c− 1) could be greater than the q that is to be inserted. However,

we only consider the cases as defined in the order described by the next paragraph. We refer to

Proposition 144 which states that all tableaux we deal with in this section are indeed semistandard

hook-valued tableaux.

Let (S, F ) ∈ SVT(µ) × F̂(µ/λ) with crowding order (r1, c1), (r2, c2), . . . , (re, ce) and α(F ) =

(α1, α2, . . . , αe). For all 0 6 j 6 e − 1 and for all 0 6 s 6 αj+1, define T
(s)
j recursively by setting
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T
(0)
0 := S and

T
(s)
j :=


p1 ◦ Cb([T

(s−1)
j , (rj+1, cj+1)]) when s > 0,

T
(αj)
j−1 when s = 0 and j > 0.

Additionally, define T
(0)
e := T

(αe)
e−1 .

Thus we obtain the following sequence

S = T
(0)
0

p1◦ C
α1
b−−−−→

(r1,c1)
T
(0)
1

p1◦ C
α2
b−−−−→

(r2,c2)
T
(0)
2

p1◦ C
α3
b−−−−→

(r3,c3)
. . .

p1◦ Cαeb−−−−→
(re,ce)

T (0)
e .

Remark 139. The tableaux T
(s)
j are well-defined. We check the conditions in Definition 136.

Let h = T
(s)
j for some 0 6 j 6 e− 1 and for some 0 6 s < αj+1, with cell (r, c).

• Since F ∈ F̂ , we always have c > 1.

• The case that Ah(r, c) is empty can only occur in T
(0)
j−1 for some j > 0. In this case,

(r, c) = (rj , cj), which is a corner cell.

• Consider the αj steps in T
(0)
j−1

p1◦ C
αj
b−−−−→

(rj ,cj)
T
(0)
j . We first delete cell (rj , cj), which has no arm.

Then at every step after that, we move leftward one column at a time. Before we reach

column d(rj , cj), there is exactly one column with arm excess being 1 and the rest has zero

arm excess among columns to the right of d(rj , cj) since recall that the cells (rj , cj) are

ordered from smallest to largest destination column. Once we reach column d(rj , cj), the

cell there may contain more than one arm element, but we then go to (rj+1, cj+1), which

is a corner cell instead. Thus there is at most one element in Ah(r, c).

Definition 140. With the same notation as above, define the insertion path of T
(0)
j−1 → T

(0)
j

for 1 6 j 6 e to be

pathj :=
(

(r
(0)
j , c

(0)
j ), (r

(1)
j , c

(1)
j ), . . . , (r

(αj)
j , c

(αj)
j )

)
,

where (r
(s)
j , c

(s)
j ) := p2 ◦ Csb ([T

(0)
j−1, (rj , cj)]) for 0 6 s 6 αj.
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Example 141. Consider the following pair of tableaux (S, F ) ∈ HVT((5, 3, 2))×F̂((5, 3, 2)/((3, 2, 1))),

S =

5

4 5

2 3

4

3

1 1

2

1 4 4

, F =
1

1

3 4

.

The crowding order is (1, 5), (1, 4), (3, 2), (2, 3). The insertion path and destination column for each

of them are:

path1 = ((1, 5), (1, 4), (2, 3), (2, 2), (2, 1)), d(1, 5) = 1,

path2 = ((1, 4), (2, 3), (2, 2), (3, 1)), d(1, 4) = 1,

path3 = ((3, 2), (3, 1)), d(3, 2) = 1,

path4 = ((2, 3), (2, 2)), d(2, 3) = 2.

We obtain the sequence from the algorithm:

5

4 5

2 3

4

3

1 1

2

1 4 4

p1◦ C4b−−−−→
(1,5)

5

4 5

23

4

3 4

1 1

2

1 4

p1◦ C3b−−−−→
(1,4)

5

44 5

23

4

3 4

1 1

2

1

p1◦ Cb−−−→
(3,2)

5

445

23

4

3 4

1 1

2

1

p1◦ Cb−−−→
(2,3)

5

445

23

4

34

1 1

2

1

.

Lemma 142. If d(rj , cj) = d(rj+1, cj+1), then pathj+1 is weakly above pathj.

Proof. By the definition of crowding order, d(rj , cj) = d(rj+1, cj+1) implies cj > cj+1. Set

zj := cj − cj+1. Then we have c
(s+zj)
j = cj − zj − s = cj+1− s = c

(s)
j+1 for 0 6 s 6 αj+1. We need to

show that r
(s)
j+1 > r

(s+zj)
j for 0 6 s 6 αj+1. Computing T

(s)
j−1 from T

(s−1)
j−1 for 1 6 s 6 αj , we denote

b and q in Step 1 and Step 2 of Definition 136 by b
(s)
j and q

(s)
j .
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Since (rj+1, cj+1) is a corner cell in T
(zj)
j−1 , we have r

(0)
j+1 > r

(zj)
j . We prove that, for 1 6 s 6 αj+1,

we have that q
(s)
j+1 > q

(s+zj)
j , which implies b

(s)
j+1 > b

(s+zj)
j and thus r

(s)
j+1 > r

(s+zj)
j .

We prove q
(s)
j+1 > q

(s+zj)
j by induction on s. First we check the case k = 1. If r

(0)
j+1 > r

(zj)
j , then

it is obvious that q
(1)
j+1 > q

(zj+1)
j . Otherwise if r

(0)
j+1 = r

(zj)
j , we consider the following cases. q

(zj)
j is

the only element in A
T

(zj)

j−1

(rj+1, cj+1). Let x = H
T

(zj)

j−1

(rj+1, cj+1), y = max(L
T

(zj)

j−1

(rj+1, cj+1)) and

y′ = max{z ∈ L+
T

(zj)

j−1

(rj+1, cj+1) | z 6 q
(zj)
j }. See Figure 4.5 for illustration.

Case (1): If r
(zj+1)
j = r

(zj)
j , then q

(zj+1)
j = x. If r

(1)
j+1 = r

(0)
j+1, then q

(1)
j+1 = q

(zj)
j . If r

(1)
j+1 6= r

(0)
j+1,

then q
(1)
j+1 equals y when y > y′ and q

(zj)
j when y = y′. In both cases q

(1)
j+1 > x = q

(zj+1)
j .

y
−
y′

∗
x q

(zj)
j

y
−
q
(zj)
j

y
−
q
(zj)
j

∗
x

Figure 4.5. Cell (r
(0)
j+1, c

(0)
j+1) = (r

(zj)
j , c

(zj)
j ) in T

(zj)
j−1 (left);

in T
(0)
j , case(1) (middle), case(2) (right).

Case (2): If r
(zj+1)
j 6= r

(zj)
j , then q

(zj+1)
j = y′. In this case we have H

T
(zj)

j−1

(rj+1+1, cj+1−1) 6 y′ 6 y.

Since H
T

(0)
j

(rj+1 + 1, cj+1 − 1) is smaller or equal to y′, we have that r
(1)
j+1 6= r

(0)
j+1. Therefore q

(1)
j+1

equals y when y > y′ and q
(zj)
j when y = y′. In this case q

(1)
j+1 > y

′ = q
(zj+1)
j .

Now we have proved the base case s = 1. Next, suppose it holds for some s > 1 that

q
(s)
j+1 > q

(s+zj)
j and r

(s)
j+1 > r

(s+zj)
j . The statement is similar to the argument of the base case.

If r
(s)
j+1 > r

(zj+s)
j , it is obvious that q

(s+1)
j+1 > q

(s+1+zj)
j and thus r

(s+1)
j+1 > r

(s+1+zj)
j . If r

(s)
j+1 = r

(zj+s)
j ,

we discuss the following cases. q
(s+zj)
j is the only element in A

T
(s+zj)

j−1

(r
(s+zj)
j , c

(s+zj)
j ). Let x =

H
T

(s+zj)

j−1

(r
(s+zj)
j , c

(s+zj)
j ), y = max(L

T
(s+zj)

j−1

(r
(s+zj)
j , c

(s+zj)
j )) and y′ = max{z ∈ L+

T
(s+zj)

j−1

(r
(s+zj)
j , c

(s+zj)
j ) |

z 6 q
(s+zj)
j }. See Figure 4.6 for illustration.

Case (1): If r
(s+1+zj)
j = r

(s+zj)
j , then q

(s+1+zj)
j = x. If r

(s+1)
j+1 = r

(s)
j+1, then q

(s+1)
j+1 = q

(s+zj)
j > x. If

r
(s+1)
j+1 6= r

(s)
j+1, then q

(s+1)
j+1 = max{z ∈ L+

T
(s)
j

(r
(s)
j+1, c

(s)
j+1) | z 6 q

(s)
j+1} > q

(s+zj)
j > x. So in either case

we have q
(s+1)
j+1 > q

(s+1+zj)
j .
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y
−
y′

∗
x q

(s+zj)
j

y
−
q
(s+zj)
j q

(s)
j+1

y
−
q
(s+zj)
j

∗
x q

(s)
j+1

Figure 4.6. Cell (r
(s)
j+1, c

(s)
j+1) = (r

(s+zj)
j , c

(s+zj)
j ) in T

(s+zj)
j−1 (left);

in T
(s)
j , case(1) (middle), case(2) (right).

Case (2): If r
(s+1+zj)
j 6= r

(s+zj)
j , then q

(s+1+zj)
j = y′. In this case we have H

T
(s+zj)

j−1

(r
(s+zj)
j +

1, c
(s+zj)
j − 1) 6 y′ 6 q

(s+zj)
j . Since H

T
(s)
j

(r
(s)
j+1 + 1, c

(s)
j+1 − 1) is smaller or equal to q

(s+zj)
j , we have

that r
(s+1)
j+1 6= r

(s)
j+1. Therefore q

(s+1)
j+1 = max{z ∈ L+

T
(s)
j

(r
(s)
j+1, c

(s)
j+1) | z 6 q

(s)
j+1}. By induction we have

q
(s+zj)
j 6 q(s)j+1, thus q

(s+1)
j+1 > q

(s+zj)
j > y′ = q

(s+1+zj)
j . This completes the proof. �

Lemma 143. With the notations as above, let 0 6 j 6 e−1, 0 6 s < αj+1 and Cb([T
(s)
j , (r, c)]) =

[T
(s+1)
j , (r′, c − 1)] for some r, c, r′. Then in T

(s+1)
j , column c − 1 is the rightmost column with

nonzero arm excess and (r′, c− 1) is the topmost cell in column c− 1 with nonzero arm excess.

Proof. In any pathj , consider the arm excess of its columns. Those with column index c such

that d(rj , cj) < c < cj started with arm excess 0, then changed to arm excess 1 when the insertion

path passed through that column, and immediately decreased to 0.

Thus the q
(s)
j that is being moved to cell (r′, c−1) is always at the rightmost column containing

nonzero arm excess. When c−1 > d(rj , cj), the arm excess of the column c−1 is exactly 1, (r′, c−1)

is also the topmost cell containing an arm. For c − 1 = d(rj , cj), the path pathj has reached its

destination. At that point, any column to the right of d(rj , cj) has 0 arm excess. It follows from

Lemma 142 that the cell (r
(αj)
j , c

(αj)
j ) is also the topmost cell containing an arm. �

Proposition 144. The tableau T
(s+1)
j is a semistandard hook-valued tableau for all 0 6 j 6 e−1

and for all 0 6 s < αj+1.

Proof. We only need to check that the q in Step 2 of Definition 136 is greater or equal to

the hook entry and arm of the cell q is to be inserted into. When q is the only arm element, it is

obvious that q is greater or equal to the hook entry.
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The case when q is not the only arm element can only happen when we reach the destination

column of the path. By the proof of Lemma 142, we have that for q
(s)
j+1 > q

(s+zj)
j for s > 1 and for

j such that d(rj , cj) = d(rj+1, cj+1). Hence the statement follows by setting k = αj+1. �

Before we define the “inverse” of the uncrowding map U : HVT(λ) → tµ⊇λSVT(µ) × F̂(µ/λ),

we need to restrict our domain to a subset Kλ of tµ⊇λSVT(µ)× F̂(µ/λ), as the image of U is not

all of tµ⊇λSVT(µ)× F̂(µ/λ). We define:

Kλ(µ) :={(S, F ) ∈ SVT(µ)× F̂(µ/λ) | weight(T (s)
j ) = weight(S), ∀ 0 6 j 6 e− 1, ∀ 0 6 s 6 αj+1},

Kλ :=
⊔
µ⊇λ

Kλ(µ).

Remark 145. From the perspective of the uncrowding map, the set-valued tableau S in Ex-

ample 137 cannot be obtained from a shape (1, 1) hook-valued tableau via the uncrowding map as

explained in Remark 138. We say the cell (1, 2) in S practices social distancing. In this case,
3

2

1

3

2

,
1

 /∈ K(1,1).

The (S, F ) in Example 141 is in K(3,2,1)(5, 3, 2).

Definition 146. We can now define the crowding map C for any partition λ as follows,

C : Kλ −→ HVT(λ)

(S, F ) 7→ T (0)
e .

Proposition 147. The image of the uncrowding map U : HVT(λ)→ tµ⊇λSVT(µ)×F̂(µ/λ) is

a subset of Kλ. Moreover, we have C ◦ U = 1HVT(λ).

Proof. We show that if h̃ = Vb(h), where h ∈ HVT, Vb is as defined in Definition 119 and h̃ is

obtained by moving some letter(s) from the cell (r, c) to (r̃, c+ 1) (potentially adding a box), then

Cb([h̃, (r̃, c+ 1)]) = [h′, (r′, c)] satisfies [h′, (r′, c)] = [h, (r, c)].
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We follow the notation used in Definitions 119 and 136. Thus a = max(Ah(r, c)). We have that

Hh(r̃, c) 6 a. If cell (r + 1, c) is in h, then Hh(r + 1, c) > a.

Case (1): r̃ 6= r.

Case (1A): If cell (r̃, c+ 1) is not in h, then h′ is obtained by adding cell (r̃, c+ 1) and moving a

from Ah(r, c) to Hh(r̃, c+ 1). Under the action of Cb, by Step 1, b = a and r′ = r. Cb appends a to

Ah̃(r, c) and removes cell (r̃, c+ 1), which recovers h.

−
−− a
−
−
−
−−

−
−

Vb−→

−
−−
−
− a
−
−−

−
−

−
−− a

−
−−

−
k
−

Vb−→

−
−−

−
−−

−
a
− k

Figure 4.7. Left: case (1A): (r̃, c+ 1) is not in h. Right: case (1B): (r̃, c+ 1) is in h.

Case (1B): If cell (r̃, c + 1) is in h, then k ∈ L+h (r̃, c + 1) is the smallest number that is greater

than or equal to a in column c+ 1. h′ is obtained by removing a from Ah(r, c), replacing k with a,

and attaching k to Ah(r̃, c + 1). Under the action of Cb, by Step 1, we can see that m = k, b = a

and r′ = r. By Step 3(b)i, q = b = a, and a is appended to Ah̃(r, c) and q = a in Lh̃(r̃, c + 1) is

replaced with m = k. In the end, m is removed from Ah̃(r̃, c+ 1). We recover h.

Case (2): r̃ = r. Let ` = max(L+h (r, c)).

Case (2A): If cell (r, c+ 1) is not in h, Vb adds cell (r, c+ 1), removes the part of Lh(r, c) that is

greater than a to Lh(r, c+ 1) and moves a from Ah(r, c) to Hh(r, c+ 1). Under the action of Cb, by

Step 1, m = a and b = `. Thus r′ = r. By Step 3(a)ii, we move Lh̃(r, c + 1) into Lh̃(r, c) and we

recover h.

`
∗
−
−− a

Vb−→ −
−−

`
∗
a

`
∗
−
−− a

−
−
k

Vb−→
−
−−

−
−
`
∗
a k

Figure 4.8. Left: Case (1A): (r, c+ 1) is not in h. Right: Case (1B): (r, c+ 1) is in h.
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Case (2B): If cell (r, c+1) is in h, h̃ is obtained by moving the part of Lh(r, c) that is greater than

a to Lh(r, c+ 1), moving a from Ah(r, c) to Hh(r, c+ 1), and appending k to Ah(r, c+ 1). Under the

action of Cb, by Step 1, m = k and b = `. Then r′ = r and q = a. By Step 3(a)i, we move the set

{x ∈ Lh̃(r, c) | a < x 6 k} from Lh̃(r, c+ 1) into Lh̃(r, c), which is the set that was moved from cell

(r, c) by Vb. Removing k from Ah̃(r, c+ 1) and setting Hh̃(r, c+ 1) = k, we recover h.

Now we have proven Cb([h̃, (r̃, c+ 1)]) = [h′, (r′, c)] = [h, (r, c)]. It follows that for any (S, F ) =

U(h), we have that T
(s)
j is semistandard and has the same weight as S for all 0 6 j 6 e− 1, for all

0 6 s 6 αj+1. Thus image(U) ⊂ Kλ and C ◦ U = 1HVT(λ). �

Proposition 148. Kλ is a subset of the image of U : HVT(λ) → tµ⊇λSVT(µ) × F̂(µ/λ).

Moreover, U ◦ C = 1Kλ.

Proof. Let (S, F ) ∈ Kλ, then for all 0 6 j < e and for all 0 6 s < αj+1, Cb([T
(s)
j , (r, c)]) =

[T
(s+1)
j , (r′, c − 1)] for some r, c, r′. We show that Vb(T

(s+1)
j ) = T

(s)
j for all 0 6 j < e and for all

0 6 s < αj+1. Following the notation in Definition 119, we first locate the rightmost column that

contains nonzero arm excess, then determine the topmost cell in row r̃ in that column with nonzero

arm excess. We denote by a the largest arm element in that cell.

By Lemma 143, in T
(s+1)
j , column c− 1 is the rightmost column with nonzero arm excess and

(r′, c− 1) is the topmost cell in column c− 1 with nonzero arm excess.

Case (1): r′ = r. In this case either cell (r+1, c−1) does not exist in T
(s)
j , or H

T
(s)
j

(r+1, c−1) > b.

Case (1A): A
T

(s)
j

(r, c) = ∅. m = H
T

(s)
j

(r, c) and b = max(L+
T

(s)
j

(r, c)). Since r′ = r, q = m, T
(s+1)
j is

obtained by appending m to A
T

(s)
j

(r, c− 1), moving L
T

(s)
j

(r, c) into L
T

(s)
j

(r, c− 1), and removing cell

(r, c) from T
(s)
j . Note that everything in L

T
(s)
j

(r, c) is greater than m and everything in L
T

(s)
j

(r, c−1)

is smaller or equal to m.

For the Vb action, we have a = m and b is the greatest letter in L
T

(s+1)
j

(r, c − 1). Since every

letter in T
(s+1)
j (r′′, c) is smaller than m for r′′ < r, we have r̃ = r. Vb acts on T

(s+1)
j by adding

the cell (r, c), setting the hook entry to be m, and moving (m, b] ∩ L
T

(s+1)
j

(r, c− 1) to L
T

(s+1)
j

(r, c).

Then we recover T
(s)
j .
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−
−−

b
∗
m

Cb−→

b
∗
−
−−m

−
−−

−
b
∗
q m

Cb−→

b
∗
−
−− q

−
m

Figure 4.9. Left: Case (1A): A
T

(s)
j

(r, c) = ∅. Right: Case (1B): A
T

(s)
j

(r, c) 6= ∅.

Case (1B): A
T

(s)
j

(r, c) 6= ∅. m is the only element in A
T

(s)
j

(r, c), q = H
T

(s)
j

(r, c) and b = max{x ∈

L+
T

(s)
j

| x 6 m}. T
(s+1)
j is obtained by appending q to A

T
(s)
j

(r, c − 1), setting H
T

(s)
j

(r, c) to be m,

deleting A
T

(s)
j

, and moving {x ∈ L
T

(s)
j (r,c)

| q < x 6 m} to L
T

(s)
j

(r, c− 1).

For the Vb action, a = q and b is the greatest letter in L
T

(s+1)
j

(r, c − 1). Since every letter

in T
(s+1)
j (r′′, c) is smaller than q for r′′ < r and m > q, r̃ = r. Vb acts on T

(s+1)
j by setting

H
T

(s+1)
j

(r, c) = q, A
T

(s+1)
j

(r, c) = m, and moving (q, b] ∩ L
T

(s+1)
j

(r, c− 1) to L
T

(s+1)
j

(r, c). We recover

T
(s)
j .

Case (2): r′ 6= r.

Case (2A): A
T

(s)
j

(r, c) = ∅. Note that in this case, Cb will move m somewhere else and remove the

cell (r, c). Since weight(T
(s+1)
j ) = weight(T

(s)
j ), we must have that L

T
(s)
j

(r, c) = ∅. So b = q = m.

T
(s+1)
j is obtained from T

(s)
j by appending m to A

T
(s)
j

(r′, c− 1) and removing the cell (r, c).

For the Vb action, a = m. Since every letter in T
(s+1)
j (r′′, c) is smaller than m for r′′ < r, a new

cell (r, c) is added, r̃ = r. Vb acts on T
(s+1)
j by moving m to H

T
(s+1)
j

(r, c). We recover T
(s)
j .

−
−−
−
− m
−
−−

−
−

Cb−→

−
−−m
−
−
−
−−

−
−

−
−−

−
−−

−
b
−m

Cb−→

−
−− b

−
−−

−
m
−

Figure 4.10. Left: case (2A): A
T

(s)
j

(r, c) = ∅. Right: case (2B): A
T

(s)
j

(r, c) 6= ∅.

Case (2B): A
T

(s)
j

(r, c) 6= ∅. m is the only element in A
T

(s)
j

(r, c), q = b = max{x ∈ L+
T

(s)
j

(r, c) | x 6

m}. T
(s+1)
j is obtained by appending b to A

T
(s)
j

(r′, c − 1), replacing b in L
T

(s)
j

(r, c) with m, and

removing m from A
T

(s)
j

(r, c).

For the Vb action, a = b. Since every letter in T
(s+1)
j (r′′, c) is smaller than b for r′′ < r, m is the

smallest letter that is greater or equal to b in column c. Hence r̃ = r. Vb acts on T
(s+1)
j by removing
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b from A
T

(s+1)
j

(r′, c − 1), replacing m in L
T

(s+1)
j

(r, c) with b, and attaching m to A
T

(s+1)
j

(r, c). We

recover T
(s)
j .

Therefore we have Vb(T
(s+1)
j ) = T

(s)
j for all 0 6 j 6 e−1, for all 0 6 s < αj , and V(T

(0)
j+1) = T

(0)
j .

It follows that we also recover the recording tableau F . Thus U(T
(0)
e ) = (S, F ). �

Corollary 149. The uncrowding map U is a bijection between HVT(λ) and Kλ with inverse

C.

4.2.6. Alternative uncrowding on hook-valued tableaux. In Section 4.2.2, we defined

an uncrowding map sending hook-valued tableaux to pairs of tableaux with one being set-valued

and the other being column-flagged increasing. As hook-valued tableaux were introduced as a

generalization of both set-valued tableaux and multiset-valued tableaux, it is natural to ask if there

is an uncrowding map taking hook-valued tableaux to pairs of tableaux with one being multiset-

valued. In this section we provide such a map.

Definition 150. The multiset uncrowding bumping Ṽb : HVT→ HVT is defined by the follow-

ing algorithm:

(1) Initialize T as the input.

(2) If the leg excess of T equals zero, return T.

(3) Find the topmost row that contains a cell with nonzero leg excess. Within this column,

find the cell with the largest value in its leg. (This is the rightmost cell with nonzero leg

excess in the specified row.) Denote the row index and column index of this cell by r and

c, respectively. Denote the cell as (r, c), its largest leg entry by `, and its rightmost arm

entry by a.

(4) Look at the row above (r, c) (i.e. row r + 1) and find the leftmost number that is strictly

greater than `.

• If no such number exists, attach an empty cell to the end of row r + 1 and label the

cell as (r + 1, c̃), where c̃ is its column index. Let k be the empty character.

• If such a number exists, label the value as k and the cell containing k as (r + 1, c̃)

where c̃ is the cell’s column index.

We now break into cases:
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(a) If c̃ 6= c, then remove ` from LT (r, c), replace k with `, and attach k to the leg of

LT (r + 1, c̃).

(b) If c̃ = c then remove [`, a]∩AT (r, c) from AT (r, c) where [`, a]∩AT (r, c) is the multiset

{z ∈ AT (r, c) | ` 6 z 6 a}. Remove ` from LT (r, c), insert [`, a] ∩ AT (r, c) into

AT (r + 1, c̃), replace the hook entry of (r + 1, c̃) with `, and attach k to LT (r + 1, c̃).

(5) Output the resulting tableau.

Definition 151. The multiset uncrowding insertion Ṽ : HVT → HVT is defined as Ṽ(T ) =

Ṽdb (T ), where the integer d > 1 is minimal such that shape(Ṽdb (T ))/shape(Ṽd−1b (T )) 6= ∅ or Ṽdb (T ) =

Ṽd−1b (T ).

Definition 152. Let T ∈ HVT(λ) with leg excess α. The multiset uncrowding map

Ũ : HVT(λ)→
⊔
µ⊇λ

MVT(µ)×F(µ/λ)

is defined by the following algorithm:

(1) Let P̃0 = T and let Q̃0 be the flagged increasing tableau of shape λ/λ.

(2) For 1 6 i 6 α, let P̃i+1 = Ṽ(P̃i). Let r be the index of the topmost row of P̃i containing

a cell with nonzero leg excess and let r̃ be the row index of the cell shape(P̃i+1)/shape(P̃i).

Then Q̃i+1 is obtained from Q̃i by appending the cell shape(P̃i+1)/shape(P̃i) to Q̃i and

filling this cell with r̃ − r.

Define Ũ(T ) = (P̃ (T ), Q̃(T )) := (P̃α, Q̃α).

Example 153. Let T be the hook-valued tableau

T =

79

233

8

78

1

3

223

7

4

.
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Then, we obtain the following sequence of tableaux Ṽ ib(T ) for 0 6 i 6 2 = d when computing the

first multiset uncrowding insertion:

79

233

8

78

1

3

223

7

4

→

9

78

233 78

1

3

223

7

4

→

9

78

233 78

1

3

223

7

4

= Ṽ(T ).

Continuing with the remaining multiset uncrowding insertions, we obtain the following sequences

of tableaux for the multiset uncrowding map:

79

233

8

78

1

3

223

7

4

→

9

78

233 78

1

3

223

7

4

→

9

78 8

233 77

1

3

223 4

→

9

8

77 8

233 337

1 22 4

= P̃ (T ),

→

2

→

2

2
→

4

2

2 = Q̃(T ).

Proposition 154. Let T ∈ HVT. Then Ũ(T ) is well-defined.

Proof. The statement follows from a similar argument to the proofs found in Corollary 124

and Lemma 126. �

Similar to the uncrowding map U , the multiset uncrowding map Ũ interwines with the corre-

sponding crystal operators.

Theorem 155. Let T ∈ HVT.

(1) If fi(T ) = 0, then fi(P̃ (T )) = 0.

(2) If ei(T ) = 0, then ei(P̃ (T )) = 0.
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(3) If fi(T ) 6= 0, we have fi(P̃ (T )) = P̃ (fi(T )) and Q̃(T ) = Q̃(fi(T )).

(4) If ei(T ) 6= 0, we have ei(P̃ (T )) = P̃ (ei(T )) and Q̃(T ) = Q̃(ei(T )).

Proof. The proof follows similarly to those found in Proposition 129, Lemma 130, and Theo-

rem 131. �

4.3. Applications

In this section, we provide the expansion of the canonical Grothendieck polynomials Gλ(x;α, β)

in terms of the stable symmetric Grothendieck polynomials Gµ(x;β = −1) and in terms of the dual

stable symmetric Grothendieck polynomials gµ(x;β = 1) using techniques developed in [BM12].

We first review the basic definitions and Schur expansions of the two polynomials.

Recall that the stable symmetric Grothendieck polynomial is the generating function of set-

valued tableaux

Gµ(x;−1) =
∑

S∈SVT(µ)

(−1)|S|−|µ|xweight(S).

Its Schur expansion can be obtained from the crystal structure on set-valued tableaux [MPS20]

Gµ(x;−1) =
∑

S∈SVT(µ)
ei(S)=0 ∀i

(−1)|S|−|µ| sweight(S).

Definition 156. The reading word word(S) = w1w2 · · ·wn of a set-valued tableau S ∈ SVT(µ)

is obtained by reading the elements in the rows of S from the top row to the bottom row in the

following way. In each row, first ignore the smallest element of each cell and read all remaining

elements in descending order. Then read the smallest elements of each cell in ascending order.

Example 157. The reading word of P (T ) in Example 123 is word(P (T )) = 8675423362111567.

Example 158. The highest weight set-valued tableaux of shape (2) are

1 1 ,
1

2

1
,

1

3

2

1

,

1

4

3

2

1

, . . . ,
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which gives the Schur expansion

G(2)(x;−1) = s2 − s21 + s211 − s2111 ± · · · .

The dual stable symmetric Grothendieck polynomials gµ(x; 1) are dual to Gµ(x;−1) under the

Hall inner product on the ring of symmetric functions.

Definition 159. A reverse plane partition of shape µ is a filling of the cells in the Ferrers

diagram of µ with positive integers, such that the entries are weakly increasing in rows and columns.

We denote the collection of all reverse plane partitions of shape µ by RPP(µ) and the set of all

reverse plane partitions by RPP.

The evaluation ev(R) of a reverse plane partition R ∈ RPP is a composition α = (αi)i>1, where

αi is the total number of columns in which i appears. The reading word word(R) is obtained by

first circling the bottommost occurrence of each letter in each column, and then reading the circled

letters row-by-row from top to bottom and left to right within each row.

Example 160. Consider the reverse plane partition

R =
1 2

1 1 3
∈ RPP((3, 2)).

By circling the bottommost occurrence of each letter in each column, we obtain

R =
1 2

1 1 3
, ev(R) = (2, 1, 1), word(R) = 2113.

Lam and Pylyavskyy [LP07] showed that the dual stable symmetric Grothendieck polynomials

gµ(x; 1) are generating functions of reverse plane partitions of shape µ

gµ(x; 1) =
∑

R∈RPP(µ)

xev(R).

They also provided the Schur expansion of the dual stable symmetric Grothendieck polynomi-

als [LP07, Theorem 9.8]

gµ(x; 1) =
∑
F

sinnershape(F ),

where the sum is over all flagged increasing tableaux whose outer shape is µ.
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Example 161. When µ = (µ1) is a partition with only one row, we have g(µ1)(x; 1) = s(µ1).

The flagged increasing tableaux of outer shape (2, 1, 1) are

,

1

,

2

,

2

1

.

Hence g211(x; 1) = s211 + 2s21 + s2.

According to [BM12], a symmetric function fα over the ring R is said to have a tableaux Schur

expansion if there is a set of tableaux T(α) and a weight function wtα : T(α)→ R so that

fα =
∑

T∈T(α)

wtα(T )sshape(T ).

Furthermore, any symmetric function with such a property has the following expansion in terms of

Gµ(x;−1) and gµ(x; 1).

Theorem 162. [BM12, Theorem 3.5] Let fα be a symmetric function with a tableaux Schur

expansion fα =
∑

T∈T(α) wtα(T )sshape(T ) for some T(α). Let S(α) and R(α) be defined as sets of

set-valued tableaux and reverse plane partitions, respectively, by

S ∈ S(α) if and only if P (word(S)) ∈ T(α), and

R ∈ R(α) if and only if P (word(R)) ∈ T(α),

where P (w) is the RSK insertion tableau of the word w. We also extend wtα to S(α) and R(α) by

setting wtα(X) := wtα(P (word(X))) for any X ∈ S(α) or R(α). Then we have

fα =
∑

R∈R(α)

wtα(R)Gshape(R)(x;−1), and

fα =
∑

S∈S(α)

wtα(S)(−1)|S|−|shape(S)|gshape(S)(x; 1).

Proposition 163. The canonical Grothendieck polynomials have a tableaux Schur expansion.
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Proof. Recall the uncrowding map on set-valued tableaux of Definition 118

USVT : SVT(µ) −→
⊔
ν⊇µ

SSYT(ν)×F(ν/µ).

By Corollary 149, we have a bijection

U : HVT(λ)→ Kλ =
⊔
µ⊇λ

Kλ(µ).

Note that Kλ ⊆
⊔
µ⊇λ SVT(µ)× F̂(µ/λ). Denote

φλ(S) = |{F ∈ F̂ | (S, F ) ∈ Kλ}|.

Note that sometimes φλ(S) = 0.

Given H ∈ HVT(λ), we have U(H) = (S, F ) ∈ SVT(µ)×F̂(µ/λ) for some µ ⊇ λ and |µ| = |λ|+

a(H). We can also obtain USVT(S) = (T,Q) ∈ SSYT(ν)×F(ν/µ) for some ν ⊇ µ and |ν| = |H|. The

weights ofH,S and T are the same. WhenH is highest weight, that is ei(H) = 0 for all i, then S and

T are also of highest weight and weight(H) = shape(T ). Denote by HVTh(λ),SVTh(λ),SSYTh(λ)

the subset of highest weight elements in HVT(λ), SVT(λ), SSYT(λ), respectively.

Applying [HS20, Theorem 4.6] and the above correspondence, we obtain

Gλ(x;α, β) =
∑

H∈HVTh(λ)

αa(H)β`(H)sweight(H) =
∑
µ⊇λ

∑
(S,F )∈Kλ(µ)

α|µ|−|λ|β|S|−|µ|sweight(S)

=
∑
µ⊇λ

∑
S∈SVTh(µ)

φλ(S)α|µ|−|λ|β|S|−|µ|sweight(S)

=
∑
µ⊇λ

∑
ν⊇µ

∑
T∈SSYTh(ν)

∑
Q∈F(ν/µ)

φλ(U−1SVT(T,Q))α|µ|−|λ|β|ν|−|µ|sweight(T )

=
∑
µ⊇λ

∑
ν⊇µ

∑
T∈SSYTh(ν)

α|µ|−|λ|β|ν|−|µ|
∑

Q∈F(ν/µ)

φλ(U−1SVT(T,Q))sshape(T )

=
∑

T∈T(λ)

wtλ(T )sshape(T ),

where T(λ) = {T ∈ SSYTh(ν) | ν ⊇ λ} and

wtλ(T ) =
∑

µ:λ⊆µ⊆shape(T )

α|µ|−|λ|β|shape(T )|−|µ|
∑

Q∈F(shape(T )/µ)

φλ(U−1SVT(T,Q)).
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Corollary 164. The canonical Grothendieck polynomials have Gµ(x;−1) and gµ(x; 1) expan-

sions:

Gλ(x;α, β) =
∑

R∈R(λ)

wtλ(R)Gshape(R)(x;−1),

Gλ(x;α, β) =
∑

S∈S(λ)

wtλ(S)(−1)|S|−|shape(S)|gshape(S)(x; 1).

Example 165. We compute the first two terms in G(2)(x;α, β) = s2+βs21+2αs3+2αβs31+· · · .

The semistandard Young tableaux involved are

T((2)) =


1 1

,
2

1 1
,

1 1 1
,

2

1 1 1
, . . .

 .

Labelling the tableaux T1, T2, T3, T4, . . . , we have wt(2)(T1) = 1,wt(2)(T2) = β,wt(2)(T3) = 2α,

wt(2)(T4) = 2αβ. Next we compute the elements in R((2)) and S((2)) that correspond to T1 and T2:

{R ∈ R((2)) | P (word(R)) = T1} =
{

1 1
,

1

1 1
,

1 1

1 1
,

1

1

1 1
, . . .

}

{R ∈ R((2)) | P (word(R)) = T2} =
{ 2

1 1
,

1 2

1 1
,

2

1

1 1
,

2

2

1 1
, . . .

}
{S ∈ S((2)) | P (word(S)) = T1} =

{ 1 1 }
{S ∈ S((2)) | P (word(S)) = T2} =

{ 2

1 1
,

1

2

1

}
.

Applying the expansion formulas, we obtain

G(2)(x;α, β) =(G(2)(x;−1) +G(21)(x;−1) +G(22)(x;−1) +G(211)(x;−1) + · · · )

+ β(G(21)(x;−1) +G(22)(x;−1) + 2G(211)(x;−1) + · · · ) + · · ·

G(2)(x;α, β) =g(2)(x; 1) + β(g(21)(x; 1)− g(2)(x; 1)) + · · · .
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APPENDIX A

Conjectures for weakly decreasing factorizations

The appendix discusses conjectures concerning the relation between crystal on multiset-valued

tableaux and a ?-crystal on weakly decreasing factorizations. All of these conjectures were developed

by the author through SageMath computer explorations [Sag20] and many of them are analogous

to the results in [MPPS20].

Definition 166. Let n be a positive integer. A weakly decreasing factorization of w ∈ H0(n)

into m factors is a product of the form

h = hm . . . h2h1,

where the sequence in each factor

hi = hi1h
i
2 . . . h

i
`i

is either empty or weakly decreasing for each 1 6 i 6 m and h ≡H0 w in the 0-Hecke monoid

H0(n). The set of all possible weakly decreasing factorizations into m factors shall be denoted as

Hmweak.

We call ex(h) = len(h) − ` the excess of h, where len(h) is the length of h as a word and ` is

the length of a reduced expression for w.

We say that h is fully-commutative if w is fully-commutative.

A.0.1. Weak ?-crystal. This subsection introduces a crystal on fully-commutative weakly

decreasing factorizations.

Definition 167. We define the weak ?-crystal Hm,?weak as follows. As a set, Hm,?weak consists of

all fully-commutative weakly decreasing factorizations in Hmweak.

Let h = hm . . . h2h1 ∈ Hm,?weak. The weight function is defined as

wt(h) = (len(h1), len(h2), . . . , len(hm)).
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For every 1 6 i < m, we define the i-pairing of h as follows.

• Perform the following step in weakly decreasing order on elements of hi+1, removing pre-

viously paired letters in hi from consideration at each iteration.

• Suppose that the letter in hi+1 under consideration is x.

Case (a): If there was another copy of x in hi+1 that was previously paired to an x + 1 in hi,

identify the smallest letter y that is yet to be paired in hi such that y > x + 1, if

possible. Pair this x with this y, if y exists.

Case (b): Otherwise, identify the smallest letter y that is yet to be paired in hi such that y > x,

if possible. Pair this x with this y, if y exists.

Case (c): Else, if there is no such y from the cases above, x is unpaired.

After the above i-pairing, if all letters in hi have been paired, then f?i annihilates h. Otherwise,

let y be the largest unpaired letter in hi. The crystal operator f?i acts on h in either of the following

ways:

(1) If y − 1 ∈ hi+1 and y ∈ hi, then remove y from hi, add y − 1 to hi+1.

(2) Otherwise, remove y from hi and add y to hi+1.

Similarly, if all letters in hi+1 have been i-paired, then e?i annihilates h. Otherwise, let x be the

smallest unpaired letter in hi+1. The crystal operator e?i acts on h in either of the following ways:

(1) If x ∈ hi+1 and x+ 1 ∈ hi, then remove x from hi+1, add x+ 1 to hi.

(2) Otherwise, remove x from hi+1 and add x to hi.

Example 168. Let h = (22111)(333)(55444) ∈ H3,?
weak.

We have

f?1 (h) = (22111)(3333)(5544), e?1(h) = 0,

f?2 (h) = 0, e?2(h) = (2211)(3331)(55444).

A.0.2. Residue map.

Definition 169. Given T ∈ MVTm(λ), we define the residue map res : MVTm(λ)→ Hmweak as

follows. Associate each cell (i, j), where i, j > 1, with its content `(λ) + j − i. Produce a weakly
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decreasing factorization h = hmhm−1 . . . h2h1 by declaring hk to be the (possibly empty) sequence

formed by taking the contents of all cells in T containing k and then arranging the contents in

weakly decreasing order. We define res(T ) := h.

Example 170. Consider the following tableau T given by

T =
566

34

2 33

11 112 2333

,

whose contents of each cell are labeled in red:

T =
5661

342

23 334

114 1125 23336

,

The third factor is formed as follows: searching through all cells with entry 3 (counting mul-

tiplicity), three of them has content 6, two has content 4 and one has content 2; hence the third

factor reads 666442. We have res(T ) = (11)(1)(2)(666442)(63)(5544).

As the definition of residue map is not too different as provided in Definition 56, we expect that

its image is contained in Hm,?weak.

Conjecture 171. The image of the residue map lies within Hm,?weak.

It turns out that the residue map serves as a crystal morphism between the crystal on Hm,?weak

with the crystal on multiset-valued tableaux given by [HS20]. The following conjecture has been

verified for partitions up to size 6, excess 5 and maximum entry 4.

Conjecture 172. The residue map intertwines the crystal operators on multiset-valued tableaux

with those of Hm,?weak.
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In other words, the following diagram commutes:

MVTm(λ) Hm,?weak

MVTm(λ) Hm,?weak.

fi

res

f?i

res

Example 173. Consider the following tableau T :

T =
223

111 123

,

Then, one can verify that we have the following commutative diagram:

T =
2231

1112 1233

(31)(311)(3222)

f1(T ) =
22231

112 1233

(31)(3111)(322).

res

res

f1 f?1

A.0.3. ?-insertion. Similar to decreasing factorizations, one may represent a weakly decreas-

ing factorization h = hmhm−1 · · ·h1, where hi = hi1h
i
2 . . . h

i
`i

, by a weakly decreasing Hecke biwordk

h

 =

m . . . m . . . 1 . . . 1

hm1 . . . hm`m . . . h11 . . . h1`1

 .
In addition, we say that [k,h]t is fully commutative if h is fully-commutative.

Here, we define the weak ?-insertion on fully-commutative weakly decreasing Hecke biwords.

Definition 174. Fix a fully-commutative decreasing Hecke biword [k,h]t. The insertion is

done by reading the columns of this biword from right to left.
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Begin with (P0, Q0) being a pair of empty tableaux. For every integer i > 0, we recursively

construct (Pi+1, Qi+1) from (Pi, Qi) as follows. Let [q, x]t be the i-th column (from the right) of

[k,h]t. Suppose that we are inserting x into column C of Pi.

Case 1: If C is empty or x < min(C), then form Pi+1 by appending x to column C and form

Qi+1 by adding q in the corresponding position to Qi. Terminate and return (Pi+1, Qi+1).

Case 2: Otherwise, if x /∈ C, locate the largest y in C with y < x. Bump y with x and insert

y into the next column of Pi.

Case 3: Otherwise, x ∈ C, then locate the largest y in C with x 6 y and interval [x, y]

contained in C. Column C remains unchanged and y is to be inserted into the next

column of Pi.

Denote (P,Q) = (P`, Q`) if [k,h]t has length `. We define the weak ?-insertion by ?([k,h]t) =

(P,Q).

In addition, for a Young diagram of shape λ, a reverse semistandard Young tableau of shape λ

is a filling of the Young diagram with positive integers such that the entries weakly decrease along

rows from left to right and strictly decrease along columns from bottom to top.

Denote col(T ) as the column reading word of a tableau T .

Example 175. Let k

h

 =

3 3 2 2 2 2 1 1 1

3 1 3 1 1 1 3 2 2

 .
By performing weak ?-insertion with columns inserted from right to left, we obtain

∅ → 2 → 2 2 → 3 2 2 → 1

3 2 2

1 1

3 2 2
→ 1 1 1

3 2 2
→ 1 1 1

3 3 2 2
→ 1 1 1

3 3 2 2 2
→ 1 1 1

3 3 3 2 2 2
= P

∅ → 1 → 1 1 → 1 1 1 → 2

1 1 1

2 2

1 1 1
→ 2 2 2

1 1 1
→ 2 2 2

1 1 1 2
→ 2 2 2

1 1 1 2 3
→ 2 2 2

1 1 1 2 3 3
= Q.
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We conjecture that the weak ?-insertion is a bijection.

Conjecture 176. The weak ?-insertion is a bijection from the set of all fully-commutative

weakly decreasing Hecke biwords to the set of all pairs of tableaux (P,Q) of the same shape, where

both P is reverse semistandard, Q is semistandard and the word col(P ) is fully-commutative.

Moreover, we have the following conjecture, which has been verified for all elements in Hm,?weak

up to excess 5, for words in H0(5).

Conjecture 177. Let h ∈ Hm,?weak be a fully-commutative weakly decreasing Hecke factorization.

Let (P ?(h), Q?(h)) = ?(h) be the insertion and recording tableaux under the weak ?-insertion of

Definition 174. Then f?i (h) 6= 0 if and only if fi(Q
?(h)) 6= 0. Furthermore, if f?i (h) 6= 0, then

Q?(f?i (h)) = fiQ
?(h).

In other words, we have the following commutative diagram:

Hm,?weak SSYTm

Hm,?weak SSYTm.

f?i

Q?

fi

Q?
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