
Applications of Lieb-Robinson Bounds to Quantum Dynamics with and without
Disorder

By

JAKE P. RESCHKE
DISSERTATION

Submitted in partial satisfaction of the requirements for the degree of

DOCTOR OF PHILOSOPHY

in

MATHEMATICS

in the

OFFICE OF GRADUATE STUDIES

of the

UNIVERSITY OF CALIFORNIA

DAVIS

Approved:

Prof. Bruno Nachtergaele, Chair

Prof. John Hunter

Prof. Alexander Soshnikov

Committee in Charge

2021

i



Contents

Abstract iii

Acknowledgments iv

Chapter 1. Introduction 1

1.1. Mathematical Formulations of Quantum Mechanics 2

1.2. Quantum Many-Body Models 6

1.3. Summary of Results 21

Chapter 2. Slow propagation in some disordered quantum spin chains 34

2.1. Introduction 34

2.2. Many-body localization properties and main results 36

2.3. Proofs of Main Results 46

2.4. Applications 62

2.5. Appendix: Lieb-Robinson Bounds 66

Chapter 3. Lieb-Robinson bounds and strongly continuous dynamics for a class of many-body

fermion systems in Rd 70

3.1. Introduction 70

3.2. Model and statement of main results 74

3.3. Lieb-Robinson Bound for Schrödinger Operators. Proof of Theorem 3.2.3 80

3.4. Many-body Lieb-Robinson bound. Proof of Theorem 3.2.5 85

3.5. The infinite-system dynamics. Proof of Theorem 3.2.6 93

3.6. Appendix A: Convergence of the σ → 0 limit 95

3.7. Appendix B: Several Fourier transforms 99

Bibliography 103

ii



Abstract

This dissertation presents new results on two problems concerning the dynamics of certain

classes of interacting many-body systems in quantum mechanics. Chapter 1 is an introduction,

which includes mathematical preliminaries and a summary of the results.

In Chapter 2 we introduce the notion of transmission time to study the dynamics of disordered

quantum spin chains and prove results relating its behavior to many-body localization properties.

We also study two versions of the so-called Local Integrals of Motion (LIOM) representation of

spin chain Hamiltonians and their relation to dynamical many-body localization. We prove that

uniform-in-time dynamical localization expressed by a zero-velocity Lieb-Robinson bound implies

the existence of a LIOM representation of the dynamics as well as a weak converse of this statement.

We also prove that for a class of spin chains satisfying a form of exponential dynamical localization,

sparse perturbations result in a dynamics in which transmission times diverge at least as a power

law of distance, with a power for which we provide lower bound that diverges with increasing

sparseness of the perturbation.

In Chapter 3 we introduce a class of UV-regularized two-body interactions for fermions in Rd

and prove a Lieb-Robinson estimate for the dynamics of this class of many-body systems. As a

step toward this result, we also prove a propagation bound of Lieb-Robinson type for Schrödinger

operators. We apply the propagation bound to prove the existence of infinite-volume dynamics as

a strongly continuous group of automorphisms on the CAR algebra.
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CHAPTER 1

Introduction

Quantum mechanics is the mathematical theory that describes the microscopic world at low

energy, i.e. it applies to particles moving at speeds which are small relative to the speed of light.

Quantum mechanics, and its relativistic extensions described by quantum field theories, are to

date arguably the most successful physical theories ever devised. Some of our most indispensable

technologies are possible because of our understanding of quantum mechanics; examples include

the transistor, the microchip, the laser and magnetic resonant imaging (MRI).

In this dissertation we are interested in many-body quantum systems. Roughly speaking, by a

many-body system we mean a model, or a collection of models, with a large number of degrees of

freedom which are interacting. One is inevitable led to such models in the study of bulk matter. We

study two classes of many-body quantum models in this thesis: quantum spin systems and many-

body fermion models in the continuum. Quantum spin systems model systems of particles, called

spins, which are constrained to lie at fixed points in space. The other class of models describe

particles, e.g. electrons, which can move throughout d-dimensional space. The mathematical

preliminaries of quantum mechanics, quantum spin systems and Fermion systems will be presented

in this chapter.

In this thesis we present two main groups of results: The existence of a strongly continuous

dynamics for a class of many-body fermion systems in Rd, and some results concerning slow prop-

agation in some disordered quantum spin chains. A common theme in our results is a tool known

as a Lieb-Robinson bound. Lieb-Robinson bounds provide a bound on the speed of propagation

of information under the dynamics of a quantum mechanical system. Such bounds have been ex-

tensively developed for quantum spin systems, where they have been instrumental in proving a

number of important results. The Lieb-Robinson bounds for fermions in the continuum presented

in this thesis are the first of their kind.
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1.1. Mathematical Formulations of Quantum Mechanics

There are several mathematically rigorous formulations of quantum mechanics, all of which are

equivalent in a certain sense. We will not attempt to give a survey of them all here, rather we will

only present the two formulations that are directly used in this thesis. First we present the Hilbert

space approach to quantum mechanics, then the approach based on C∗-algebras. Afterwards we

discuss dynamics.

1.1.1. The Hilbert Space Formulation. A quantum system is described by a complex

Hilbert space H. The bounded linear operators on H, denoted by B(H) describe the physical

observables of the system, i.e. the quantities that in principle can be measured in the lab (In

physics observables refer to self-adjoint linear operators. In many important applications it is also

necessary to consider observables which are unbounded operators). Typical examples of observables

are position, energy or angular momentum. The state of the system is then encoded as a positive,

normalized linear functional on B(H). A linear functional ω : B(H)→ C is

1. positive if ω(AA∗) ≥ 0 for every A ∈ B(H),

2. normalized if ω(1) = 1, where 1 denotes the identity operator.

A positive, normalized linear functional ω is called a state (on B(H)). It is a fact that a state

is necessarily bounded with (operator) norm equal to 1. Given a state ω on B(H), the expectation

value of an observable A ∈ B(H) is given by ω(A). Some authors require states to be weak*

continuous, in which case there is a unique positive semi-definite trace class operator ρ ∈ B(H)

satisfying Tr(ρ) = 1 such that ω(A) = Tr(ρA). Such a ρ is called a density operator, and

density operators are in 1-1 correspondence with the weak* continuous states through the mapping

ρ 7→ ωρ, where ωρ(A) = Tr(Aρ). Sometimes a density operator is also referred to as a state due

to this correspondence. For quantum systems described by finite dimensional Hilbert spaces, all

states have an associated density operator, which in this case is called a density matrix. The

simplest example of a state is a vector state, which is defined by a density operator of the form

ρ = |ψ〉〈ψ| for a unit vector ψ ∈ H.

Example 1.1.1. All elementary particles carry an intrinsic angular momentum, which is called

spin. The spin state of an elementary particle is described by a finite dimensional Hilbert space
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H = Cn. The simplest non-trivial quantum system is therefore described by the Hilbert space C2.

We will refer to a quantum system described by a finite dimensional Hilbert space H = Cn as a

spin.

1.1.2. The C∗-algebra formulation. There is another approach to formulating quantum

mechanics, called the algebraic formulation. In this approach one forgoes the Hilbert space and

begins with a C∗-algebra A which represents the observables of the system. States are defined to

be positive, normalized linear functionals on A. Given a state ω on A and an observable A ∈ A,

one still interprets ω(A) as the expectation value of the observable A when the system is in the

state ω. The following theorem provides a connection between the two formulations of quantum

mechanics presented.

Theorem 1.1.1 (Gelfand-Naimark). Every C∗-algebra A is isometrically ∗-isomorphic to a

norm closed, ∗-subalgebra of bounded operators on some Hilbert space H.

1.1.3. Dynamics. Given a Hilbert space H describing a quantum system the observable rep-

resenting energy holds special significance. This observable is called the Hamiltonian, and it is

typically denoted by H, and it may be time-dependent. For systems in which energy is conserved

the Hamiltonian is time-independent. In many models of interest it is necessary to consider an

unbounded Hamiltonian, in which case we require H to be a densely-defined self-adjoint operator.

The significance of the Hamiltonian is that it determines the dynamics of the system. Given a

time-independent Hamiltonian H, the functional calculus for densely-defined self-adjoint operators

permits us to define, for each t ∈ R, the unitary operator U(t) : H → H by U(t) = e−itH . The

maps U(t) have the following properties:

1. Strong continuity: limt→0 U(t)ψ = ψ for each ψ ∈ H.

2. Group property: U(t)U(s) = U(t+ s) for every t, s ∈ R.

3. Strong differentiability limt→0
1
t (U(t)− 1)ψ = −iHψ for every ψ ∈ D(H)

The collection {U(t) : t ∈ R} is called a strongly continuous one-parameter group of unitaries on

H. The Heisenberg dynamics on B(H) is defined to be the family of maps τt : B(H) → B(H),

where for each t ∈ R, τt(A) = U(t)∗AU(t). The family {τt : t ∈ R} also possesses a group property:

τtτs = τt+s for every t, s ∈ R. Given a state ω on B(H), the time evolution of ω is given by the family
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of states ωt determined by ωt(A) = ω(τt(A)). In the case that ω is a vector state corresponding to

a unit vector ψ ∈ H we have that for every A ∈ B(H),

(1.1) ωt(A) = 〈ψ,U(t)∗AU(t)ψ〉 = 〈U(t)ψ,AU(t)ψ〉.

Therefore we may define the time evolution of the unit vector ψ by ψ(t) ≡ U(t)ψ. Provided

ψ ∈ D(H), ψ(t) satisfies the Schrödinger equation:

(1.2)
dψ

dt
= −iHψ

Example 1.1.2. The free particle in Rd: A free quantum particle in d-dimensional space is

modeled by the Hilbert space L2(Rd) with the Hamiltonian

(1.3) H0 = −∆,

where ∆ is the Laplacian with domain H2(Rd). Physically H0 represents the observable of ki-

netic energy. Given a measurable set B ⊆ Rd, the operator χB on L2(Rd) given by, (χBψ)(x) =

χB(x)ψ(x), where χB is the indicator function of B (we abuse notation by allowing χB to represent

both the function and the operator), is the observable which asks whether the particle is located

in the set B. Given a pure state ψ, the expected value of χB is

(1.4) 〈ψ, χBψ〉 =

∫
x∈B
|ψ(x)|2dx.

The expected value of χB represents the probability that the particle is observed inside the set B.

Therefore for this model we interpret |ψ|2 as the probability density for the position of the particle.

Example 1.1.3. Schrödinger operator on Rd: A particle moving in d-dimensional space

under the influence of a conservative force with potential function V is described by the Hilbert

space L2(Rd) and the Hamiltonian

(1.5) H = −∆ + V,

where we use V to denote the multiplication operator corresponding to the function V . The energy

is composed of two parts, the kinetic energy described by the free particle Hamiltonian −∆, and
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the potential energy V . Operators of the form (1.5) are called Schrödinger operators. Under

various assumptions on V , the operator in (1.5) can be shown to be essentially self adjoint on some

domain. For example, if supx∈Rd |V (x)| <∞, then H is self-adjoint on the Sobolev space H2(Rd).

Example 1.1.4. A tight binding model: Tight binding models are reductions of models of

a particle in Rd. In these models there is assumed to be an underlying lattice through which the

particle moves. This lattice could model the atoms in a crystalline solid, for example. Typically

this lattice is modeled by a metric graph. For this example we consider it to be modeled by Zd for

some d ∈ N. In a tight binding model the wave function is taken to be a function on Zd, instead

of a function of a continuous variable in Rd. This reduction is reasonable when the particle spends

most of its time in close proximity of one of the lattice sites and the time spent jumping between

lattice sites is small compared to the typical time the particle is bound to a site. The Hilbert space

is then given by `2(Zd). Given a normalized ψ ∈ `2(Zd), |ψ(x)|2 gives the probability of observing

the particle at x ∈ Zd. The free particle in the tight binding model is described by the Hamiltonian

(1.6) H0 = −∆,

where ∆ is the discrete Laplacian:

(1.7) (∆ψ)(x) =
∑
y∼x

(ψ(y)− ψ(x))

where x ∼ y if and only if ‖x − y‖1 = 1. Interactions between the particle and the lattice can be

modeled by adding a multiplication operator V to the Hamiltonian: (V ψ)(x) = V (x)ψ(x), where

V physically represents the potential energy at the site x.

When the Hamiltonian is time-dependent the dynamics becomes slightly more complicated.

Suppose that H(t) is a time-dependent Hamiltonian, which we assume is bounded and norm con-

tinuous in t. The Schrödinger equation reads

i
dψ

dt
= H(t)ψ(t)(1.8)

ψ(0) = ψ0(1.9)
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If one can solve the operator valued equation:

U ′(t) = −iH(t)U(t)(1.10)

U(0) = 1(1.11)

then it is easily verified that U(t) is a unitary for every t ∈ R, and ψ(t) = U(t)ψ0 solves the

Schrödinger equation. The solution to Eq. (1.10) exists and can be expressed using the absolutely

convergent Dyson series

(1.12) U(t) = 1 +

∞∑
n=1

(−i)n
∫ t

0

∫ s1

0
· · ·
∫ sn−1

0
H(s1)H(s2) · · ·H(sn)dsndsn−1 · · · ds1.

There is one last tool relating to dynamics that we will cover here. Often one has a Hamiltonian

H0 for which the dynamics is relatively well understood, and perturbations of it are considered.

We call H0 the free Hamiltonian, and HI the perturbation. For simplicity we will assume that both

H0 and HI are bounded operators. Then there is a decomposition of the dynamics generated by

H = H0 +HI given by,

(1.13) e−itH = e−itH0U(t),

where U(t) is a unitary operator satisfying the following operator differential equation

U ′(t) = −iτH0
t (HI)U(t).(1.14)

We see that U(t) is the unitary operator generated by the time-dependent Hamiltonian τH0
t (HI).

This decomposition of the dynamics is called the interaction picture.

1.2. Quantum Many-Body Models

In this section we develop the mathematics of the many-body models studied in this thesis.

Before doing so, we must address how to form composite systems. Suppose we are given two

quantum mechanical systems described by H1 and H2. We take it as an axiom that the system

which is composed of H1 and H2 is described by the Hilbert space tensor product of H1 and H2:

H1 ⊗ H2. The bounded operators on H1 ⊗ H2 also have a tensor product structure, and there is
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a special physical interpretation of operators tensored with the identity map. If A ∈ B(H1) is an

observable, then the observable A⊗12 ∈ B(H1⊗H2), where 12 is the identity on H2, is interpreted

as an observation of A on H1 as a subsystem of H1 ⊗H2. Similarly, for B ∈ B(H2), 11 ⊗B, where

11 is the identity on H1, represents an observation of B on H2 as a subsystem. We will abuse

notation and simply write A⊗1 and 1⊗B, where the position of 1 in the tensor product indicates

which identity map it is.

1.2.1. Quantum Spin Systems. A quantum spin is a quantum mechanical system de-

scribed by a finite dimensional Hilbert space. We will usually refer to a quantum spin simply as

a spin. The spin of the system, s, is a half-integer: s ∈ {0, 1/2, 1, 3/2, ...}. The dimension of the

corresponding Hilbert space is given by 2s+ 1. So, for example a spin 1/2 particle is described by

a 2-dimensional Hilbert space.

To define a quantum spin system we start with a countable metric space (Γ, d), which we refer

to as the lattice, and an assignment of each x ∈ Γ to a finite-dimensional Hilbert space Hx, called

an on-site Hilbert space. By P0(Γ) we denote the finite subsets of Γ. For every Λ ∈ P0(Γ), the

Hilbert space for subsystem on Λ is HΛ =
⊗

x∈ΛHx. The corresponding algebra of observables is

B(HΛ) = AΛ =
⊗

x∈Λ B(Hx). If Λ1,Λ2 ∈ P0(Γ) with Λ1 ⊆ Λ2, then there is a natural embedding

of AΛ1 into AΛ2 given by

(1.15) A 7→ A⊗ 1Λ2\Λ1
,

where 1Λ2\Λ1
∈ AΛ2\Λ1

is the identity operator. The map defined by Eq. (1.15) is in fact a ∗-

isometry. The natural inclusions permit us to define the algebra of local observables, Aloc
Γ as

the inductive limit

(1.16) Aloc
Γ =

⋃
Λ∈P0(Γ)

AΛ

A model is specified by assigning a Hamiltonian HΛ to each finite volume Λ ∈ P0(Γ). This provides

a Heisenberg dynamics τΛ
t : AΛ → AΛ given by τHΛ

t (A) = eitHΛAe−itHΛ . In fact, since we can take

HΛ ∈ Aloc
Γ , the map τHΛ

t is in fact a *-algebra automorphism on Aloc
Γ . The quantum spin system

in finite volume Λ is then given by the triple (HΛ,AΛ, HΛ). In the case that Γ = Z (or a subinterval
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of Z) we call the system a quantum spin chain. Generally speaking we are interested in models

where the finite volume Hamiltonians are related in some way. A natural and convenient way to

specify a model is through an interaction, which is a map Φ : P0(Γ) → Aloc
Γ with the property

that for every X ∈ P0(Γ),

(1.17) Φ(X) = Φ(X)∗ ∈ AX .

We can then define, for each Λ ∈ P0(Γ), a local Hamiltonian by

(1.18) HΛ =
∑
X⊆Λ

Φ(X).

Physically, the term Φ(X) represents the contribution of |X|-body interactions between the spins

situated on the sites in X to the total energy of the system. For example, if only 2-body interactions

are present, then we will have Φ(X) 6= 0 only if |X| = 2.

An important class of interactions are the finite range interactions. For simplicity consider

Γ = Z. An interaction is said to be finite range if there is an integer R > 0 such that the

interaction can be expressed in the form

(1.19) Φ(X) =


hx if X = [x, x+R] for some x ∈ Z

0 otherwise

In the case that R = 1 we call Φ a nearest neighbor interaction.

Example 1.2.1. The XY Chain: Let Γ = Z. Consider a quantum spin system with Hx = C2

for each x ∈ Z. The Pauli spin matrices are given by

(1.20) σ1 =

 0 1

1 0

 , σ2 =

 0 −i

i 0

 , and σ3 =

 1 0

0 −1


For a matrix (or operator) A ∈ B(C2), let Ax denote the same operator acting on Hx, so Ax ∈

A{x} ⊆ Aloc
Γ . So, for any Λ 3 x, Ax can be thought of as A⊗1Λ\{x}. The XY chain is the quantum
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spin model obtained from the interaction Φ defined by

(1.21) Φ(X) =


µx((1 + γx)σ1

x ⊗ σ1
x+1 + (1− γx)σ2

x ⊗ σ2
x+1) if X = {x, x+ 1} for some x ∈ Z

0 otherwise

where (µx)x∈Z and (γx)x∈Z are real sequences. The local Hamiltonians on intervals [a, b] are then

given by

(1.22) H[a,b] =

b−1∑
x=a

µx((1 + γx)σ1
x ⊗ σ1

x+1 + (1− γx)σ2
x ⊗ σ2

x+1)

It is natural to ask whether we can define an infinite volume quantum spin system, i.e. can

we discuss the limit at Λ ↑ Γ of the finite volume systems (HΛ,AΛ, HΛ) in some mathematically

reasonable way. As a first step in this direction, we define the quasi-local observables, AΓ, to

be the norm completion of Aloc
Γ :

(1.23) AΓ = Aloc
Γ

‖·‖

AΓ is then a C∗-algebra, which we take to be the algebra of observables of the infinite volume

quantum spin system. We can similarly define AΛ for any subset Λ of Γ, where Λ is not necessarily

finite. The support of an observable A ∈ AΓ, denoted by supp(A), is defined to be the smallest

subset X of Γ such that A ∈ AX (if A = 1, we define supp(A) = ∅). The physical interpretation

of the support of an observable A is that A represents some observation of the spins at the lattice

sites in supp(A). We now see the utility of the algebraic formulation of quantum mechanics. The

algebra of observables for the infinite system has a natural definition in terms of the local algebras

AΛ. On the other hand, there is no natural way to define the limit of the Hilbert spaces HΛ, as the

tensor product of infinitely many Hilbert spaces is not well-defined. Now we look to dynamics and

ask what we can say about the limit of τHΛ
t as Λ ↑ Γ. In general we cannot establish the existence

of this limit, but if the limit exists strongly then we can show the limiting object has some nice

properties:

Proposition 1.2.1. Suppose (HΛ,AΛ, HΛ) is a family of finite quantum spin systems indexed

by Λ ∈ P0(Γ). Suppose there exists an increasing, exhaustive sequence Λn ∈ P0(Γ) such that for
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each A ∈ Aloc
Γ and each t ∈ R,

(1.24) lim
n→∞

τ
HΛn
t (A) ≡ τt(A)

exists in the operator norm topology. Then

(1.25) lim
n→∞

τ
HΛn
t (A) ≡ τt(A)

exists for every A ∈ AΓ, and {τt : t ∈ R} is a one-parameter group of automorphisms of AΓ. If

the convergence in Eq. (1.24) is uniform for t in compact subsets of R, then {τt : t ∈ R} is also

strongly continuous.

Proof. Since each τHΛ
t is an isometry of Aloc

Γ , a straightforward application of the bounded

linear transformation theorem (see [50]) shows that τHΛ
t extends to an automorphism of AΓ. For

any n,m ∈ N, and for any A′ ∈ Aloc
Γ we have that

‖τHΛn
t (A)− τHΛm

t (A)‖ ≤ ‖τHΛn
t (A−A′)‖+ ‖τHΛm

t (A−A′)‖+ ‖τHΛn
t (A′)− τHΛm

t (A′)‖

≤ 2‖A−A′‖+ ‖τHΛn
t (A′)− τHΛm

t (A′)‖(1.26)

Since Aloc
Γ is dense in AΓ and τ

HΛn
t (A′) is a Cauchy sequence this shows that τ

HΛn
t (A) is Cauchy,

hence convergent. Since each τHΛ
t is an automorphism of AΓ, it immediately follows that τt is

an automorphism of AΓ. We must establish the group property and the strong continuity of

{τt : t ∈ R}. Given A ∈ AΓ and t, s ∈ R, the inequality

‖τHΛ
t (τHΛ

s (A))− τt(τs(A))‖ ≤ ‖τHΛ
t (τHΛ

s (A)− τs(A))‖+ ‖(τHΛ
t − τt)(τs(A))‖(1.27)

= ‖τHΛ
s (A)− τs(A)‖+ ‖(τHΛ

t − τt)(τs(A))‖

allows us to conclude that τt+s(A) = τt(τs(A)). Now assume the convergence is uniform for t in

compact subsets of R. Given the group property, it suffices to prove that τt is strongly continuous

at t = 0. Given A ∈ AΓ, we have the inequality

(1.28) ‖τt(A)−A‖ ≤ ‖(τt − τHΛ
t )(A)‖+ ‖τHΛ

t (A)−A‖
10



for each Λ ∈ P0(Γ). Given ε > 0, we may choose Λ such that ‖(τt − τHΛ
t )(A)‖ ≤ ε for every

t ∈ [−1, 1] and then choose δ ∈ (0, 1) such that |t| < δ implies ‖τHΛ
t (A)− A‖ < ε. This proves the

strong continuity of τt. �

When the limit limΛ↑Γ τ
HΛ
t exists, we refer to it as the thermodynamic limit of the dynamics.

It is of great interest to know when this limit exists and when the resulting family of automorphisms

forms a strongly continuous one-parameter family of automorphisms. A sufficient condition for the

existence of this limit is that the family of local dynamics τHΛ
t satisfy a locality condition called a

Lieb-Robinson bound. Loosely speaking, a Lieb-Robinson bounds the speed at which the dynamics

τHΛ
t can spread out a local observable. To see what we mean by this, suppose A ∈ AX for some

X ⊆ Λ ∈ P0(Γ). Regardless of how small X is, in general we will have supp(τHΛ
t (A)) = Λ for

t 6= 0. Despite this, in many important situations the observable τHΛ
t (A) can be well approximated

by an observable supported on some set X(t) which typically becomes larger as t does, but may

be much smaller than Λ for small |t|. Before we can make this notion mathematically precise, we

introduce the commutator and discuss how it can be used to measure locality. Given A,B ∈ AΓ,

the commutator, [A,B], of A and B is given by [A,B] = AB − BA. Suppose A,B ∈ AΓ and

supp(A) ∩ supp(B) = ∅. Then it is easy to see that [A,B] = 0. There is an important converse to

this fact: If A ∈ AΓ, and [A,B] = 0 for every B ∈ AX , then supp(A) ∩ X = ∅. In fact, we can

take this result a step further with the following proposition:

Proposition 1.2.2. Let H1 and H2 be two complex Hilbert spaces. Suppose that, for ε > 0,

A ∈ B(H1 ⊗H2) satisfies,

(1.29) ‖[A,1⊗B]‖ ≤ ε‖B‖,

for every B ∈ B(H2). Then there exists A′ ∈ B(H1) with ‖A′‖ ≤ ‖A‖ such that

(1.30) ‖A′ ⊗ 1−A‖ ≤ ε

A proof of proposition 1.2.2 can be found in [68]. The proposition enables us to study the

spread of an observables support under the dynamics by studying commutator bounds. When

the local Hamiltonians are generated by an interaction, Lieb-Robinson bounds follow from certain
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decay conditions on the interaction. These decay conditions are conveniently expressed in terms

of a decay function called an F -function. An F -function for Γ is a function F : [0,∞) → (0,∞)

satisfying the following properties

1. F is non-increasing

2. (uniformly integrable) ‖F‖ ≡ supx∈Γ

∑
y∈Γ F (d(x, y)) <∞

3. (convolution inequality) CF = supx,y∈Γ
1

F (d(x,y))

∑
z∈Γ F (d(x, z))F (d(z, y)) <∞

It is easy to verify that if F is an F -function for Γ and g : [0,∞)→ (0,∞) is a concave function,

then Fg : [0,∞)→ [0,∞) given by Fg(x) = e−g(x)F (x) is also an F -function for Γ with ‖Fg‖ ≤ ‖F‖

and CgF ≤ CF . We also note that if F is an F -function for Γ, then F is also an F -function for any

subset of Γ.

Example 1.2.2. Suppose Γ = Zν for some ν ∈ N. Then for any ε > 0, the function

(1.31) F (x) =
1

1 + xν+ε

is an F -function for Γ.

Given an interaction Φ and an F -function F for Γ, we define the F -norm of Φ to be the

quantity

(1.32) ‖Φ‖F ≡ sup
x,y∈Γ

1

F (d(x, y))

∑
X∈P0(Γ):
x,y∈X

‖Φ(X)‖.

When ‖Φ‖F < ∞ we say that Φ is F -norm bounded. When an interaction Φ satisfies an F -

norm bound with an F -function of the form Fµ(x) = e−µxF (x) for some µ > 0, where F is some

F -function, we say that Φ is short range.

The Φ-boundary of a set X ∈ P0(Γ) is given by ∂ΦX = {x ∈ X : ∃Z ∈ P0(Γ) with x ∈

Z,Z ∩Xc 6= ∅, and Φ(Z) 6= 0}. We are now ready to state a result on Lieb-Robinson bounds.

Theorem 1.2.1. Suppose that Φ is an interaction which is F -norm bounded for an F -function

F . Suppose that A ∈ AX and B ∈ AY , where X,Y ∈ P0(Γ) with X ∩ Y = ∅. Then for any

12



Λ ∈ P0(Γ) with X ∪ Y ⊆ Λ,

(1.33) ‖[τHΛ
t (A), B]‖ ≤ 2‖A‖‖B‖

CF
(e2‖Φ‖FCF |t| − 1)D(X,Y ),

where

(1.34) D(X,Y ) = min

∑
x∈X

∑
y∈∂ΦY

F (d(x, y)),
∑
y∈Y

∑
x∈∂ΦX

F (d(x, y))


The following example investigates the consequences of this theorem for the case of short range

interactions.

Example 1.2.3. Suppose Φ is a short range interaction, with corresponding F -function F (x) =

e−µxF (x) for some F -function F . Then theorem 1.2.1 holds, with

D(X,Y ) ≤ ‖F‖min{|∂ΦX|, |∂ΦY |}e−µd(X,Y ),

It follows that for any A ∈ AX , B ∈ AY and Λ ⊇ X ∪ Y ,

‖[τHΛ
t (A), B]‖ ≤ 2‖A‖‖B‖‖F‖

CF
min{|∂ΦX|, |∂ΦY |}eµ(v|t|−d(X,Y )),(1.35)

(1.36)

where

v =
2‖Φ‖FCF

µ
(1.37)

is called the Lieb-Robinson velocity. Suppose now that Λ ∈ P0(Γ) is a large set, and X ⊆ Λ.

We can imagine that X is a small subset of Λ. Fix ε > 0, and for all t ∈ R, define X(t) = {x ∈ Λ :

d(x,X) ≤ v|t|+ ε}. Let A ∈ AX . For any B ∈ AΛ\X(t) Eq. (1.35) implies that

(1.38) ‖[τHΛ
t (A), B]‖ ≤ 2‖F‖‖A‖‖B‖

CF
min{|∂ΦX|, |∂ΦY |}e−µε

An application of proposition 1.2.2 shows that there is an observable A(t) ∈ AX(t) such that

(1.39) ‖A(t)−A‖ ≤ 2‖F‖‖A‖
CF

min{|∂ΦX|, |∂ΦY |}e−µε.
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This illustrates that for short range interactions, any disturbance which propagates faster than the

Lieb-Robinson velocity is exponentially suppressed in the distance it is ahead of v|t|. It also shows

that the dynamics can at most, up to a small error, grow the support of local observables linearly

in time. When the supports of local observables grow under the dynamics in this way, we say the

dynamics is ballistic.

A particular application of the Lieb-Robinson bound for quantum spin systems is the existence

of a strongly continuous thermodynamic limit, which follows from the next theorem and Proposition

1.2.1

Theorem 1.2.2. Suppose that Φ is an interaction satisfying an F -norm bound. Then for any

increasing, absorbing sequence (Λn) of finite subsets of Γ, any t ∈ R, and any A ∈ Aloc
Γ , the limit

(1.40) lim
n→∞

τ
HΛn
t (A)

exists, and the convergence is uniform for t in compact subsets of R.

Proof. Let A ∈ Aloc
Γ and denote supp(A) = X. Take m ≥ 1 large enough so X ⊆ Λm. For

any n ≥ m we have

(1.41) τ
HΛn
t (A)− τHΛm

t (A) =

∫ t

0

d

ds

(
τΛn
s (τ

HΛm
t−s (A))

)
ds.

A simple computation shows that

(1.42)
d

ds
τΛn
s (τ

HΛm
t−s (A)) = iτ

HΛn
s

(
[HΛn −HΛm , τ

HΛm
t−s (A)

)
.

Therefore for t > 0,

(1.43) ‖τHΛn
t (A)− τHΛm

t (A)‖ ≤
∑

Z∈SΛn (Λm)

∫ t

0
‖[τΛm

s (A),Φ(Z)‖ds

where

(1.44) SΛn(Λm) = {Z ⊆ Λn : Z ∩ Λm 6= ∅ and Z ∩ Λcm 6= ∅}.
14



By dividing the sum on Z and applying Theorem 1.2.1,

‖τHΛn
t (A)− τHΛm

t (A)‖ ≤ 2‖A‖t
∑

Z∈SΛn (Λm):
Z∩X 6=∅

‖Φ(Z)‖(1.45)

+
2‖A‖
CF

∫ t

0
(e2CF ‖Φ‖F s − 1)ds

∑
Z∈SΛn (Λm):
Z∩X=∅

‖Φ(Z)
∑
x∈X
z∈Z

F (d(x, z))(1.46)

Note that

(1.47)
∑

Z∈SΛn (Λm):
Z∩X 6=∅

‖Φ(Z)‖ ≤
∑
x∈X

∑
z∈Λn\Λm

∑
Z⊆Λn
x,z∈Z

‖Φ(Z)‖

and

∑
Z∈SΛn (Λm):
Z∩X=∅

‖Φ(Z)‖
∑
z∈Z

∑
x∈X
z∈Z

F (d(x, z)) ≤
∑
x∈X

∑
z′∈Λn\Λm

∑
z∈Λn

F (d(x, z))
∑
Z⊆Λn:
z,z′∈Z

‖Φ(Z)‖(1.48)

≤ ‖Φ‖F
∑
x∈X

∑
z′∈Λn\Λm

∑
z∈Λn

F (d(x, z))F (d(z, z′))(1.49)

≤ CF
∑
x∈X

∑
z′∈Λn\Λm

F (d(x, z′)).(1.50)

It follows that

(1.51) ‖τHΛn
t (A)− τHΛm

t (A)‖ ≤ 2‖A‖‖Φ‖F
(∫ t

0
e2‖Φ‖FCF sds

)∑
x∈X

∑
z∈Λn\Λm

F (d(x, z)).

Given the F -function conditions, this shows that τ
HΛn
t (A) is a Cauchy sequence in AΓ, uniformly

for t in compact subsets of R. �

1.2.2. Many-Body Fermion Systems. We begin by discussing the model of a single fermion,

and then define the Fock space which is a model in which the number of fermion particles can be

arbitrary.

A quantum particle moving in d-dimensional space is described by the Hilbert space L2(Rd). If

the particle moves through a force field generated by a potential energy function V : Rd → R, then
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the Hamiltonian H is given by

(1.52) H = −∆ + V,

where ∆ is the Laplacian and we abuse notation by using the symbol V to refer to the multiplication

operator on L2(Rd) given by (V f)(x) = V (x)f(x). Some assumptions will need to be made about

V that ensure the operator (1.52) is self-adjoint (or at least essentially self-adjoint) on some dense

subspace of L2(Rd). For example, if V ∈ L∞(Rd) then H is self-adjoint on the domain H2(Rd).

Later we will be precise regarding our assumptions on V .

In macroscopic systems it is impossible to know how many microscopic particles make up the

system. It therefore seems reasonable to consider a quantum system in which the number of

particles is itself an observable. The quantum system of n particles with Hilbert space L2(Rd) is

given by the n-fold Hilbert space tensor product

(1.53) L2(Rd)⊗n,

which is naturally isomorphic to the space L2(Rdn). We will often represent an element ψ ∈

L2(Rd)⊗n as a function ψ(x1, x2, ..., xn) in n d-dimensional coordinates xi ∈ Rd. The coordinate xi

can be thought of as representing the location of the ith particle. Subatomic particles of a given

species are, as far as we can tell, indistinguishable. Therefore physically relevant wave functions

for n identical particles should have a symmetry under particle permutations which preserves the

physical information of the wave function. For identical fermions, this symmetry is anti-symmetry

of the wave function: an n-particle fermion wave function ψ must satisfy

(1.54) ψ(xσ(1), xσ(2), ..., xσ(n)) = sgn(σ)ψ(x1, x2, ..., xn)

for every (x1, x2, ..., xn) ∈ (Rd)n. Therefore the Hilbert space for n-identical fermions is actually

(L2(Rd)⊗n)−, the antisymmetric n-fold tensor product. A system of identical fermions where the

particle number is itself an observable is given by the (antisymmetic) Fock space F−,

(1.55) F− =

∞⊕
n=0

(L2(Rd)⊗n)−,
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where L2(Rd)⊗0 ≡ C is the vacuum Hilbert space, representing a state of the system with no

particles. (L2(Rd)⊗n)− naturally embeds onto a subspace of F−, which we call the n-particle

subspace. It is sometimes useful to consider F− as a closed subspace of the full Fock space F, given

by

(1.56) F =
∞⊕
n=0

L2(Rd)⊗n.

For each n ∈ N, consider the operator An : L2(Rd)⊗n → (L2(Rd)⊗n)− given by,

(1.57) (Anf)(x1, · · · , xn) =
1

n!

∑
σ∈Sn

sgn(σ)f(xσ(1), ..., xσ(n))

It is easy to show that An is an orthogonal projection. If we take A0 = 1, then the antisymmetriza-

tion operator A : F→ F− is the orthogonal projection given by

(1.58) A =
∞⊕
n=0

An.

In Fock space the particle number is itself an observable, and its corresponding operator N is the

self-adjoint operator with domain

(1.59) D(N) = {(ψn) ∈ F :
∞∑
n=0

n2‖ψn‖2 <∞}

given by,

(1.60) N(ψn) = (nψn).

We call N the number operator. It is clear that N restricts to a self-adjoint operator on F−.

We now discuss ways to construct models on Fock space. Suppose we are given a self-adjoint

operator H1 with domain D on L2(Rd), representing the energy of a single particle. Consider the

operator

(1.61) H ′n = H1 ⊗ 1⊗ · · · ⊗ 1 + 1⊗H1 ⊗ 1⊗ · · · ⊗ 1 + · · ·+ 1⊗ · · ·1⊗H1
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acting on the domain
⊗̂n

k=1D, where
⊗̂

indicates the algebraic tensor product of the vector spaces

D. It is possible to show that H ′n is closable, and its closure Hn = H ′n is a self-adjoint operator

on (L2(Rd))⊗n (e.g. see section VIII.10 on tensor products of unbounded operators in [76]). Hn

represents the Hamiltonian of n non-interacting particles where the energy of the single particles

is modeled by H1. We can then define the second quantization of H1, dΓ(H1) on F by

(1.62) dΓ(H1) =
∞⊕
n=0

Hn,

taking H0 = 0. dΓ(H1) is a self-adjoint operator on F, physically representing a non-interacting

system of particles where each particle has energy described by H1. It is not hard to see that

dΓ(H1) is reduced by the subspace F−. We will abuse notation slightly and use dΓ(H1) to denote

the restriction to F−. Later we will discuss some ways to add interactions between particles to the

model.

There are a few distinguished operators on F, called creation and annihilation operators,

which we now discuss. Given ϕ ∈ L2(Rd), denote by b(ϕ) and b∗(ϕ) the operators on F which act

on ψ = (ψn) ∈ F by,

(1.63) (b(ϕ)ψ)n(x1, ..., xn) =
√
n+ 1

∫
Rd
ϕ(x)ψn+1(x, x1, ..., xn+1)dx

and

(1.64) (b∗(ϕ)ψ)n(x1, ..., xn) =
√
nϕ(x1)ψn−1(x2, ..., xn).

The operator b∗(ϕ) creates a particle in the state ϕ and its adjoint b(ϕ) annihilates a particle.

These are densely defined, unbounded closed operators on the full Fock space F. We define the

creation and annihilation operators restricted to F− by

(1.65) a(ϕ) = Ab(ϕ)A and a∗(ϕ) = Ab∗(ϕ)A.

It is easy to check that F− is invariant under a(ϕ), so in fact

(1.66) a(ϕ) = b(ϕ)A and a∗(ϕ) = Ab∗(ϕ).
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Given ψ ∈ F−,

(1.67) (a(ϕ)ψ)n(x1, ..., xn) =
√
n+ 1

∫
Rd
ϕ(x)ψn+1(x, x1, ..., xn)dx

and

(1.68) (a∗(ϕ)ψ)n(x1, ..., xn) =
1√
n

n∑
i=1

(−1)i−1ϕ(xi)ψn−1(x1, ..., x̂i, ..., xn)

where x̂i indicates that the variable xi is absent. The creation and annihilation operators on F−

satisfy the canonical anticommutation relations (CAR):

{a∗(ϕ), a∗(ψ)} = {a(ϕ), a(ψ)} = 0(1.69)

{a∗(ϕ), a(ψ)} = 〈ϕ,ψ〉1(1.70)

where {A,B} = AB + BA is the anticommutator of the operators A and B. The CAR relations

imply that (a∗(ϕ))2 = 0 for every ϕ ∈ L2(Rd), thus making it impossible to create two fermions in

the same state. In physics this is referred to as the Pauli exclusion principle. It follows from the

CAR relations that the creation and annihilation operators are bounded on F−, in fact ‖a(ϕ)‖ =

‖a∗(ϕ)‖ = ‖ϕ‖.

Suppose that we have a Hamiltonian on F− given by second quantization: H = dΓ(H1) for some

one particle Hamiltonian H1. The Heisenberg dynamics generated by dΓ(H1) has a particularly

simple action on elements of the CAR algebra. Let τt denote the Heisenberg dynamics generated

by dΓ(H1) on B(F−). It is not difficult to show that for any ϕ ∈ L2(Rd),

(1.71) τt(a(ϕ)) = a(e−itH1ϕ).

Therefore the Heisenberg dynamics on the CAR algebra is completely determined by the one-

particle evolution. Since the unitary e−itH1 is strongly continuous, the map t 7→ τt(a(ϕ)) is operator

norm continuous.

We will see that many interesting operators can be expressed in terms of the creation and

annihilation operators. The norm closure of the algebra generated by {a(ϕ), a∗(ϕ) : ϕ ∈ L2(Rd)} is
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called the CAR algebra. We may also introduce the fields ax and a∗x whose actions are given by

(1.72) (axψ)n(x1, ..., xn) =
√
n+ 1ψn+1(x, x1, ..., xn)

and

(1.73) (a∗xψ)n(x1, ...., xn) =
1√
n

n∑
i=1

(−1)i−1δ(x− xi)ψn−1(x1, ..., x̂i, ..., xn)

ax and a∗x can be realized rigorously as operator valued distributions, which produce an operator

after integration against a function:

a(ϕ) =

∫
Rd
ϕ(x)axdx(1.74)

a∗(ϕ) =

∫
Rd
ϕ(x)a∗xdx(1.75)

Formally, using Eqs. (1.67) and (1.68) ax = a(δx) and a∗x = a∗(δx). The number operator N can

formally be expressed in terms of the fields by,

(1.76) N =

∫
Rd
a∗xaxdx,

as a simple calculation shows. Given a measurable set Λ ⊆ Rd the observable of the number of

particles in Λ, NΛ, can be expressed as

(1.77) NΛ =

∫
Λ
a∗xaxdx

More generally, given a multiplication operator V acting on L2(Rd), we can formally write

(1.78)

∫
Rd
V (x)a∗xaxdx

It is not difficult to see that this is the same as the second quantization, dΓ(V ), of V . Therefore

the number operator NΛ is the second quantization of the multiplication operator χΛ, which is the

one particle observable of the particle being in the region Λ.

Given a one-particle Hamiltonian H1 on L2(Rd), the second quantization dΓ(H1) represents

the energy of the system of non-interacting particles each of which has energy described by H1. A

more realistic model will incorporate interactions between the particles into the Hamiltonian. A
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common type of interaction is a two-body interaction, where the potential energy only depends on

the relative separation of pairs of particles. Given an n-particle wave function ψ ∈ (L2(Rd))⊗n,

such an interaction may have the form

(1.79) (Wψ)(x1, ..., xn) =
∑
i<j

W (xi − xj)ψ(x1, ..., xn),

where W is a real-valued function on Rd satisfying W (x) = W (−x). Formally, the operator W

acting on the Fock space F− may be written as a double integral:

(1.80) W =
1

2

∫
Rd

∫
Rd
W (x− y)a∗xa

∗
yayax dxdy

We obtain an interacting model H by adding the interactions W to the original second quantization

dΓ(H1): H = dΓ(H1) +W . In general certain assumptions will need to be made on W in order to

guarantee that the operator H is essentially self-adjoint on some dense subspace of F−.

1.3. Summary of Results

Here we provide a summary of the results presented in the subsequent chapters of this thesis.

Chapter 2 of this dissertation is the paper slow propagation in some disordered quantum spin

chains [66], on which I was coauthor with my advisor Bruno Nachtergaele. Chapter 3 is the paper

Lieb-Robinson bounds and strongly continuous dynamics for a class of many-body fermion models

in Rd [41], on which I was coauthor with Martin Gebert, Bruno Nachtergaele and Robert Sims.

Additional background is discussed in the introductory sections of the respective chapters.

1.3.1. Summary of Chapter 2 Results. The results of chapter 2 concern a phenomena

called ‘localization’ which we have not yet discussed. Localization in quantum mechanics is a

phenomena typically associated with disordered systems. Roughly, localization refers to an absence

of transport. Unfortunately it is impossible to give a precise definition of localization in quantum

mechanics. The issue is that what constitutes ‘transport’ in quantum mechanics is model dependent.

Even in a particular model, there may be several distinct ways of quantifying transport. The

study of localization in quantum mechanics began in 1958 when the physicist Philip W. Anderson

introduced what is now called the Anderson model [7]. The Anderson model is a tight binding
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model given by the Hamiltonian

(1.81) Hλ = −∆ + λVω

acting on `2(Zd). Here λ ∈ R and Vω is a random multiplication operator. For ψ ∈ `2(Zd), it acts

as (Vωψ)(x) = ωxψ(x), where ω = (ωx)x∈Zd is a sequence of real valued random variables. If we

consider ω to be an element of
∏
x∈Zd R, then an Anderson model is precisely determined by speci-

fying a probability measure on
∏
x∈Zd R. A common choice is the product measure determined by

a fixed distribution, so that (ωx)x∈Zd is an i.i.d. sequence. The following theorem is well known [5]:

Theorem 1.3.1. For the Anderson model 1.81, suppose that the sequence (ωx)x∈Zd is i.i.d.,

and that ω0 has absolutely continuous distribution with compact support. Then there is a number

λd ≥ 0 such that if |λ| > λd there are positive constants C and η such that

(1.82)
∑
y∈Zd:

‖y−x‖2≥R

E
[

sup
t∈R
|〈δy, e−itHλδx〉|

]
≤ Ce−ηR

holds for all R > 0. Furthermore, if d = 1, then λd = 0.

The property expressed by Eq. (1.82) is called (exponential) dynamical localization. Given a

particle initially located at x ∈ Z, the probability of observing it at site y ∈ Z at time t is given

by |〈δy, e−itHλδx〉|2. Thus property Eq. (1.82) says that the probability of observing a particle

which started at x ∈ Z a distance R away decays exponentially in R. In other words, the particle

is localized under the dynamics. To understand the significance of this effect we investigate the

λ = 0 case, when Hλ is the Hamiltonian for the free particle. For λ = 0, Hλ = −∆, and by use of

Fourier series it is possible to explicitly show that for any normalized ψ ∈ `2(Zd) with finite second

moments,

(1.83) 〈e−itH0ψ,X2e−itH0ψ〉 = O(t2)

as t → ∞, where X2 is the squared position operator X2δx = ‖x‖22δx. Therefore for the free

particle expected distance squared of the particle from the origin increases like t2, regardless of
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the initial spatial probability distribution. This dynamical effect is called ballistic propagation.

Going further, using the fact that H0 has absolutely continuous spectrum one can show that

limt→∞ |〈δy, e−itH0ψ〉| = 0 (see Theorem 2.6 in [5] and the discussion thereafter). It follows that

the probability of observing the particle in any bounded region of Zd tends to 0 as t→∞.

Anderson’s insight was that a disordered potential landscape can lead to a complete absence of

propagation under the dynamics. Besides dynamical localization, there are several other notions of

localization for the tight binding model, which are discussed in depth in [5]. Several of these involve

the structure of the Hamiltonian spectrum or eigenvalues. In this dissertation we focus entirely on

dynamics, and so do not go into these other notions of localization.

The Anderson model is a single particle model, and it is natural to ask whether analogous results

hold in many-body systems. To date, the effects of disorder on quantum many body systems are

not well understood, physically or mathematically. One of the challenges is to first determine what

the appropriate localization properties are in the many-body setting. In the Anderson model the

absence of particle transport indicated localization. In a quantum spin system, for example, the

particles are fixed in space, so a different notion of localization is needed. One idea is that it more

natural to look at localization under the Heisenberg dynamics for quantum spin systems. Here,

localization would be indicated by the support of time evolved local observables spreading extremely

slowly, or not at all. The work presented here is concerned only with dynamical localization, so

we will not discuss other ways in which quantum many-body systems may be localized. The

phenomena of localization in quantum many-body systems is referred to as many-body localization

(MBL). For a review article including a discussion of MBL indicators for quantum spin systems,

see [1].

We adopt the following definition of dynamical localization for a quantum spin chain:

Definition 1.3.1. Let F : Z+ → (0,∞) be a non-increasing function with the property

limx→∞ F (x) = 0. We say that a family {HΛ : Λ ⊂ Z finite intervals} of random local Hamil-

tonians HΛ ∈ AΛ exhibits dynamical localization with decay function F if there exists a constant
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β ≥ 0 and a function χ : N→ (0,∞) such that for any sets X,Y ⊆ Λ with Y ⊂ [minX,maxX]c,

(1.84) E

sup
t∈R

sup
A∈A1

X

B∈A1
Y

‖[τHΛ
t (A), B]‖

χ(|X|)(1 + |t|β)

 ≤ F (d(X,Y )).

Here d(X,Y ) = min{|x−y| : x ∈ X, y ∈ Y } is the usual set distance. We call dynamical localization

with decay function F , where F (x) ∝ e−ηx for some η > 0, exponential dynamical localization.

Example 1.3.1. The Disordered XY Chain: The isotropic XY in an external, disordered

field in the ẑ direction is a spin 1/2 chain with the following family of Hamiltonians

(1.85) H[a,b] =
b−1∑
x=a

(σ1
x ⊗ σ1

x+1 + σ2
x ⊗ σxx+1) + λ

b∑
x=a

ωxσ
3
x,

where λ ∈ R, a < b, and (ωx)x∈Z is a sequence of random variables. If the sequence (ωx)x∈Z is i.i.d.

with an absolutely continuous, compactly supported distribution then the family {H[a,b]} is known

to be exponentially dynamically localized according to definition 1.3.1 [46].

Consider a quantum spin chain with algebra of (quasilocal) observables AZ. We wish to quantify

the speed of propagation of a family of Hamiltonians on finite subsystems. The following definition

provides a tool for this:

Definition 1.3.2. Given a sequence of Hamiltonians Hn ∈ A[0,n] and a sequence of positive

numbers (εn), define the transmission time, tn(εn) of Hn as,

(1.86) tn(εn) = inf{|t| : sup
A∈A1

0

B∈A1
n

‖[τHnt (A), B]‖ > εn}.

In essence, the transmission time tn(εn) measures the time required for a disturbance in the

chain to propagate and reach strength εn a distance n away. One can imagine that an instrument is

used to measure when the signal from site 0 arrives at site n, but this instrument has a sensitivity

and can only detect signals with strength εn. It is trivial to see that tn(ε) is monotone increasing

in ε.

We investigate the behavior of the transmission time for a system satisfying a typical Lieb-

Robinson bound and for a system exhibiting dynamical localization. Suppose that the sequence
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Hn satisfies,

(1.87) sup
A∈A1

x

B∈A1
y

‖[τHnt (A), B]‖ ≤ C(eµv|t| − 1)e−µ|x−y|

for x 6= y, uniformly in n. The bound implies that,

(1.88) tn(εn) ≥ 1

µv
log(1 +

εne
µn

C
),

in which case

(1.89) lim sup
n→∞

n

tn(εn)
≤ v

provided εn decays subexponentially in n. This shows that for large n, tn(εn) & n
v , so the bound

on the speed of propagation puts a lower bound on the transmission time, and we see that the

transmission time grows at least linearly in n.

The following proposition considers what happens when the system is dynamically localized.

Proposition 1.3.1. Suppose that a sequence Hn ∈ A[0,n] of random Hamiltonians exhibits

dynamical localization with decay function F given by F (x) = e−ηx
ρ

for some ρ ∈ (0, 1]. Then for

any positive γ and α such that βγ + α < 1,

(1.90)
eγηn

ρ

tn(e−αηnρ)
→ 0

almost surely.

In the previous proposition, we see that for dynamically localized systems where the decay

function F is a stretched exponential, the transmission time grows at least as fast as a stretched

exponential in n, which demonstrates that transport is extremely slow.

We now present one of the main results of Chapter 2. In the case of exponential dynamical

localization there exists a family of perturbations such that the perturbed model still has long

transmission times. These perturbations consist of additional nearest neighbor interactions that

occur with low density at random positions. For this class of perturbations we can prove that the

transmission time grows super linearly provided the perturbations are sufficiently sparse.

25



Theorem 1.3.2. Let H0
n ∈ A[0,n] be a sequence of random Hamiltonians defined over the prob-

ability space (Ω0,Pr0) which are exponentially dynamically localized in the sense of Definition 2.2.1

(ρ = 1). Let (δx)∞x=0 be an i.i.d. sequence of Bernoulli random variables over the probability space

(Ω1,Pr1), with Pr1(δ0 = 0) = p ∈ (0, 1]. Let (ψx)∞x=0 denote a uniformly bounded sequence with

ψx ∈ A[x,x+1] for all x. Consider the sequence of random Hamiltonians

(1.91) Hn(ω) = H0
n(ω0) +

n−1∑
x=0

δx(ω1)ψx;

over the probability space Ω0×Ω1 equipped with the product measure. If tn is the transmission time

of Hn, then for any γ > 0 and α ∈ (0, 1/3) satisfying

(1.92) η

(
1− 3α

1− α

)
> 2[(β + 1)γ − 1] log

(
1

p

)
,

(1.93)
nγ

tn(e−αηn)
→ 0

in probability.

This theorem can also be generalized to apply directly in the thermodynamic limit under certain

reasonable assumptions (see Theorem 2.2.4).

There is another way of thinking about many-body localization that has gained some traction

in the physics literature. Here, many-body localization is thought to emerge from the existence

of of an extensive set of local conserved quantities (observables) called local integrals of motion

(LIOMs). Heuristic definitions of LIOMs have been given in the physics literature [51], [82] and

LIOMs are thought to account for most (if not all) of the phenomena of MBL [53].

In this thesis we provide two different rigorous definitions of LIOMs and explore the relationship

between LIOMs and dynamical localization. Specifically, we prove that both of our definitions of

LIOMs lead to dynamical localization, and prove a partial converse.

Our first definition of LIOMs is based on the discussion in [51].

Definition 1.3.3 (LIOMs of the first kind). Let Hn ∈ A[0,n] be a sequence of random

Hamiltonians. We say that the sequence Hn has LIOMs of the first kind if the following conditions

are satisfied:
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(1) There is a sequence of random unitary maps Un ∈ A[0,n] such that

(1.94) U∗nHnUn =
∑

X⊆[0,n]

∑
m∈

∏
x∈X{2,...,dx}

φn(m, X)
∏
x∈X

Smx;x,

where Sm;x is the operator supported at the site x given by the matrix,

(1.95) (Sm;x)jk = δj,1δk,1 − δj,mδk,m

and the φn(m, X) are random variables satisfying

(1.96) sup
n

E

 sup
x,y∈[0,n]

1

F (|x− y|)
∑

X⊆[0,n]:
x,y∈X

∥∥∥∥∥∥
∑

m∈
∏
x∈X{2,...,dx}

φn(m, X)
∏
x∈X

Smx;x

∥∥∥∥∥∥
 <∞.

for some non-increasing function F : Z+ → (0,∞) satisfying limx→∞ F (x) = 0.

(2) The sequence of unitary maps Un is quasi-local, in the sense that for all disjoint finite

subsets X,Y ⊂ Γ,

(1.97) sup
n

E sup
A∈A1

X
B∈AY

‖[U∗nAUn, B]‖ ≤
∑
x∈X
y∈Y

G(|x− y|),

for some non-increasing function G : Z+ → (0,∞) satisfying limx→∞G(x) = 0.

The LIOMs in Definition 1.3.3 are the quasi-local operators {U∗nSm;xUn}. We prove that LIOMs

of the first kind lead to a propagation bound. Under certain assumptions on the decay functions

F and G in Definition 1.3.3 (for example, if F and G were decaying exponentials) this propagation

bound readily implies dynamical localization.

Theorem 1.3.3. Suppose that the sequence of Hamiltonians Hn has LIOMs of the first kind.

Let X and Y be finite disjoint subsets of Z+. For a set Z ⊂ Z+, let Zn,λ = {x ∈ [0, n] : d(x, Z) ≤

λd(X,Y )}. Then for λ ∈ (0, 1/2),

(1.98) sup
A∈A1

X

B∈A1
Y

‖[τHnt (A), B]‖ ≤ 2

[
Dn,X,λ +Dn,Y,λ + |t|Cn

∑
x∈Xn,λ
y∈Yn,λ

F (|x− y|)
]
,
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where Dn,X,λ and Dn,Y,λ are nonnegative random variables satisfying,

EDn,X,λ ≤
∑
x∈X
y∈Xc

n,λ

G(|x− y|) and EDn,Y,λ ≤
∑
x∈Y
y∈Y cn,λ

G(|x− y|),(1.99)

and

(1.100) Cn(ω) = sup
x,y∈[0,n]

1

F (|x− y|)
∑

X⊆[0,n]:
x,y∈X

∥∥∥∥∥∥
∑

m∈
∏
x∈X{2,...,dx}

φn(m, X)
∏
x∈X

Smx;x

∥∥∥∥∥∥ ,
where by the assumptions in Definition 2.2.2 we have supn ECn <∞.

Our second definition of LIOMs was motivated by the discussion in [21].

Definition 1.3.4 (LIOMs of the second kind). Suppose that Φ is a (random) finite range

interaction with a thermodynamic limit τt generated by the derivation δ. We say the interaction

has LIOMs of the second kind if there exists a family {Ix}x∈Z of self-adjoint, uniformly bounded

quasi-local observables Ix satisfying the following:

(1) There is a non-increasing function F : Z+ → (0,∞), with limn→∞ F (n) = 0, such that for

all x ∈ Z,

(1.101) E sup
A∈A1

Y

‖[Ix, A]‖ ≤ F (d(x, Y )).

(2) For each x ∈ Z,

(1.102) δ(Ix) = 0.

(3) For each A ∈ Aloc,

(1.103) δ(A) = lim
n→∞

n∑
x=−n

[Ix, A],

almost surely, i.e. the family
∑n

x=−n Ix of quasi-local Hamiltonians almost surely generate

the same dynamics in the thermodynamic limit as Φ.

The arguments in [21] can be adapted to prove that the existence of LIOMs satisfying Def-

inition 1.3.4 leads to dynamical localization with β = 1. The following proposition provides a
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partial converse, by proving that dynamical localization with β = 0 implies the existence of LIOMs

satisfying Definition 1.3.4.

Theorem 1.3.4. Suppose a model with finite-range interactions is dynamically localized with

decay function F uniformly in time (β = 0), and that F has a finite first moment:
∑∞

x=1 xF (x) <

∞. Then the model has LIOMs of the second kind. Moreover, a LIOM representation (canonical

in the sense of [21]) can be given explicitly by the following expression:

(1.104) h̃x = lim
n→∞

1

Tn

∫ Tn

0
τt(hx)dt.

where Tn is a suitably chosen (random) strictly increasing sequence in N. The terms h̃x are time-

invariant, and there is a constant C > 0 such that

(1.105) E( sup
B∈A1

Y

‖[h̃x, B]‖) ≤ CF (d(x, Y ))

for every x ∈ Z.

1.3.2. Summary of Chapter 3 Results. In this chapter we study the dynamics of a class

of interacting many-body fermions in the continuum. Our goal is to prove that the Heisenberg

dynamics of the interacting model in the thermodynamic limit gives strongly continuous (i.e. op-

erator norm continuous) observable evolution in time when we restrict the class of observables to

the CAR algebra. In quantum spin systems, the proof of the existence of the strongly continuous

thermodynamic limit given in Theorem 1.2.2 is facilitated by Lieb-Robinson bounds on the finite

volume Heisenberg dynamics which are uniform in the system volume. Our strategy for interacting

fermion systems is the same. We first prove propagation bounds on the Heisenberg dynamics when

the interaction terms of the model are restricted to finite volumes. This Lieb-Robinson bound for

the many-body fermion system allows us to prove strong continuity of the thermodynamic limit.

We will first introduce the class of models we study. The exact assumptions we make on the

various parameters of the model will be stated in the theorems of this section. Further discussion

can be found in Chapter 3. To construct our model, we start with a one-particle Hamiltonian H1,

which we take to be a Schödinger operator:

(1.106) H1 = −∆ + V,

29



where ∆ is the d-dimensional Laplacian and V is a multiplication operator. The corresponding non-

interacting, or free, system is given by the second quantization dΓ(H1) of H1. A typical two-body

interaction in finite volume would have the form,

(1.107) W 0
λ =

1

2

∫
Λ

∫
Λ
W (x− y)a∗xa

∗
yayax dxdy

where W is a real-valued, even function, and Λ ⊆ Rd is a bounded, measurable set. We then have

a family of models,

(1.108) H0
Λ = dΓ(H1) +W 0

Λ

parameterized by finite volume subsets of Rd. We would like to study the thermodynamic limit

of these models as Λ ↑ Rd. A fundamental difficulty is that the operators W 0
Λ are unbounded,

even when the interaction function W is essentially bounded. This is due to the fact that an

arbitrary number of fermions can occupy a volume Λ (the number operator NΛ is unbounded).

The unboundedness of the interaction terms makes it mathematically difficult (if not impossible)

to obtain a propagation bound on the dynamics. To address this problem in a physically reasonable

way, we smear the fermions in space in a way that effectively gives them a finite size. We introduce

the smeared interaction given by,

(1.109) W σ
Λ =

1

2

∫
Λ

∫
Λ
W (x− y)a∗(ϕσx)a∗(ϕσy )a(ϕσy )a(ϕσx) dxdy

where ϕσx : Rd → R denotes the L1 normalized gaussian centered at x with standard deviation

σ > 0:

(1.110) ϕσx(z) =
1

(2πσ2)
d
2

e−
‖z−x‖22

2σ2 .

The physical effect of smearing the fermions can be seen by investigating the smeared number

operator

(1.111) Nσ
Λ =

∫
Λ
a∗(ϕσx)a(ϕσx) dx,
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which is the observable representing the number of smeared fermions that are observed in Λ. We

have that,

(1.112) ‖NΛ‖ ≤
∫

Λ
‖a∗(ϕσx)‖‖a(ϕσx)‖dx = ‖ϕσx‖22|Λ| =

|Λ|
(4πσ2)d/2

.

This shows that the smeared fermions have a size effectively that of a d-dimensional sphere of radius

σ > 0. In particular, only a finite number of smeared fermions can occupy any finite volume Λ.

The interaction term W σ
Λ can similarly be shown to satisfy

(1.113) ‖W σ
Λ‖ ≤

1

2

|Λ|2

(4πσ2)d
‖W‖∞

Smearing the fermions effectively cuts out the high energy portion of the interaction W 0
Λ. This

removal of the high energy region is called a UV cutoff. Note that W σ
Λ is still generally unbounded

for infinite volume Λ. We now have a two parameter family of models Hσ
Λ = dΓ(H1) +W σ

Λ . All of

our results will apply to this family of models when σ > 0.

If σ > 0 approaches 0, the effective size of the smeared fermions approaches 0. It seems

reasonable to expect that for small σ > 0, the models Hσ
Λ provide a decent approximation to the

point particle model H0
Λ. In fact, if this were not the case then the models Hσ

Λ should really be

discarded. The following proposition shows that the smeared fermion model converges to the point

particle model in a certain sense.

Proposition 1.3.2. Let Λ be a measurable subset of Rd. For t ∈ R we denote by UσΛ(t) = e−itH
σ
Λ

and U0
Λ(t) = e−itH

0
Λ the unitary groups generated by Hσ

Λ and H0
Λ, respectively. Then

lim
σ↓0

UσΛ(t)ψ = U0
Λ(t)ψ

for each ψ ∈ F−, uniformly for t in compact subsets of R.

Now let τΛ
t denote the Heisenberg dynamics on B(F−) generated byHσ

Λ, so τΛ
t (A) = eitH

σ
ΛAe−itH

σ
Λ .

In addition we denote the dynamics non-interacting system by τ∅t , where τ∅t (A) = eitdΓ(H1)Ae−itdΓ(H1 .

In order to prove the strong continuity of the thermodynamic limit we need a Lieb-Robinson type

bound on expressions of the form
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(1.114) {τΛ
t (a(f)), a∗(g)} and {τΛ

t (a(f))a(g)}

for f, g ∈ L2(Rd) with disjoint support. Using the interaction picture we can relate τΛ
t , the dynamics

with interactions, to τ∅t in the following way.

(1.115) τΛ
t (a(f)) = τ∅t (a(f)) + i

∫ t

0
ds τΛ

s

([
W σ

Λ , τ
∅
t−s(a(f))

])
Since τ∅t (a(f)) = a(e−itH1f), we prove a propagation bound on the one-particle dynamics in order

use Eq. (1.115). The following theorem gives such a bound.

Theorem 1.3.5. Assume that V : Rd → C has the form

(1.116) V (x) =

∫
Rd

dµ(k) e−ik·x

where µ : Borel(Rd)→ R is a real-valued finite Borel measure on Rd with compact support, which is

also even in the sense that µ(A) = µ(−A) for every Borel subset A of Rd. Consider the Schrödinger

operator H1 = −∆ + V . Then there exist constants C1, C2, C3 > 0 depending on d, µ, and σ such

that the estimate

(1.117)
∣∣〈e−itH1f, ϕσx〉

∣∣ ≤ C1e
C2|t| ln |t|

∫
Rd

dy e
− C3
t2+1

|x−y||f(y)|

holds for all t ∈ R and f ∈ L2(Rd).

The idea is now to combine Eq. (1.115) with Theorem 1.3.5 iteratively to prove a Lieb-Robinson

type bound on the expressions in Eq. (1.114). The following theorem shows the result of carrying

out this procedure.

Theorem 1.3.6. Let V satisfying the conditions specified in Theorem 1.3.5, and let W ∈

L∞(Rd) be real-valued and satisfy W (−x) = W (x) and |W (x)| ≤ Ce−a|x| for some constants

C, a > 0. Then, there exist continuous functions C(t), a(t) > 0 such that for all bounded and
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measurable Λ ⊂ Rd, and f, g ∈ L1(Rd) ∩ L2(Rd), one has the following bounds:

‖{τΛ
t (a(f)), a∗(g)} − 〈e−it(−∆+V )f, g〉1‖ ≤ ‖f‖1‖g‖1eC(t)e−a(t)d(supp(f),supp(g))(1.118)

‖{τΛ
t (a(f)), a(g)}‖ ≤ ‖f‖1‖g‖1eC(t)e−a(t)d(supp(f),supp(g))(1.119)

where d(supp(f), supp(g)) denotes the distance between the essential supports of f and g.

The main theorem of Chapter 3 is presented next.

Theorem 1.3.7. There exists a strongly continuous one-parameter group of automorphism of

the CAR algebra over L2(Rd), {τt}t∈R, such that

(1.120) lim
Λ↑Rd

τΛ
t (a(f)) = τt(a(f)), for all f ∈ L2(Rd).
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CHAPTER 2

Slow propagation in some disordered quantum spin chains

2.1. Introduction

Anderson localization in random Schrödinger operators is quite well understood. Mathematical

proofs of this phenomenon have been given under a variety of conditions. See the recent book

by Aizenman and Warzel for an overview of the state-of-the-art [5]. The physical phenomenon is

a drastic slowdown of transport in the system’s dynamics, which is seen as the consequence of a

change in the nature of the spectrum from continuous spectrum (extended states) to pure point

spectrum (localized states).

The problem of Many-Body Localization (MBL) is the question of what happens to localization

properties in the presence of interactions. Although Anderson in his work that started the subject

of localization [7] envisioned the phenomenon for interacting systems, research on MBL picked up

only relatively recently stimulated by papers by Basko, Aleiner, and Altshuler [10], Oganesyan and

Huse [73], and Pal and Huse [74].

Quantum spin system with, for example, nearest neighbor interactions, are among the simplest

interacting quantum many-body systems and much of the recent work on MBL dealt with one

of just three one-dimensional quantum spin models: the XY chain, the quantum Ising chain,

and the XXZ chain. The small number of rigorous results that have been obtained so far are

also mostly restricted to these three models. Exponential dynamical localization, uniformly in

time, was proved for a class of disordered XY chains by exploiting their connection to Anderson

models [1,46,83]. Imbrie studied the quantum Ising chain with random couplings and fields [52].

Localization properties in the low-energy region, called the droplet-regime, of the ferromagnetic

XXZ chain were proved in [11,12,34,35,36].

For a single quantum particle, the study of localization for a long time focused on spectral

properties. i.e., proving the occurrence of point spectrum with associated eigenvectors that satisfy
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exponential decay. Later, multi-scale analysis [42] and the fractional-moment method [2] emerged

as two powerful tools to study dynamical localization. Systems of N interacting particles can be

analyzed by extending these methods, as along as N is fixed [3,24].

The first main result of this work is the proof of a relation between uniform dynamical localiza-

tion and the existence of Local Integrals of Motion (LIOM). The LIOM picture [21,81] has been

proposed as the mechanism by which systems exhibiting MBL do not thermalize under their own

(closed system) dynamics and, in particular, that violate the Eigenfunction Thermalization Hy-

pothesis (ETH). We give two definitions of LIOMs, consistent with the different ways this concept

has been considered in the literature. For lack of a better name, we call them LIOMs of the first

kind Definition 2.2.2 and LIOMS of the second kind (Definition 2.2.3). The first kind implies dy-

namical localization of the form generically expected for strongly disordered quantum spin chains.

The second kind, as we show, exist when we have uniform-in-time dynamical localization, such as

has been proved to occur in the random XY chain [46].

In interacting many-body systems it is most natural to express localization in terms of dynami-

cal properties directly. A good (but not typcial) example is the zero-velocity Lieb-Robinson bound

proved for the disordered XY chain in [46]. In this work, we introduce the notion of transmission

time, as the smallest time a signal or disturbance can reach a prescribed strength a given distance

away from the source. See Definition 2.2.4. For exponentially localized systems, we expect trans-

mission times grow exponentially with the distance. We then prove that exponentially localized

systems perturbed by sparse disorder, have transmission times that grow at least as a power law

and we we give a lower bound for the power that diverges with increasing sparseness of the pertur-

bation. A large power indicates sub-diffusive behavior. We model the sparse disorder by adding a

uniformly bounded but otherwise arbitrary nearest-neighbor term to the Hamiltoian at locations

determined by a Bernoulli process with small probability of success.

De Roeck and coworkers have argued that MBL, interpreted as the complete absence of trans-

port, is only possible in one-dimensional systems. They argue that diffusion of energy is inevitable

in higher dimensions [26,27,29,31,59,88]. We only study one dimensional systems in this work,

and therefore we do not have results that either support or contradict these arguments. Rather,

for one-dimensional systems our results implies a degree of robustness of localization phenomena in
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the sense of slow propagation. Others have investigated stability of MBL in spin chains under the

influence of regions of low disorder or coupling to a heat bath [43], in a kicked quantum spin chain

model [14] and by extensive numerical calculation for the Heisenberg chain [86]. The latter studies

consider properties of the spectral form factor (i.e., the Fourier transform of a two-point function)

to look for an indicator of an MBL-type transition. It would be interesting to supplement these

studies with information about transmission times in these models.

In Section 2.2 we introduce several definitions related to MBL and describe our main results.

The proofs are in Section 2.3. Two applications are discussed in Section 2.4. Some auxiliary facts

are collected in an appendix.

2.2. Many-body localization properties and main results

In this section we define several properties associated with localized many-body systems. We

focus on characteristics of the dynamics in terms of which our main results are formulated and

restrict ourselves to the one-dimensional setting. All notions make sense for multi-dimensional

systems but, as discussed in the introduction, the phenomenon of many-body localization as it is

commonly understood may well be restricted to one dimension.

We will consider subsystems of a chain of quantum systems labeled by x ∈ Z, with a finite-

dimensional Hilbert space Hx for each x ∈ Z. The Hilbert space of the subsystem associated with

a finite set X ⊂ Z, is given by HX =
⊗

x∈X Hx, and the observables measurable in this subsystem

are given by AX := B(HX). The elements of Aloc :=
⋃
X⊂ZAX , where the union is over finite

subsets, are called the local observables, whereas the norm completion of Aloc, denoted by AZ, is

the algebra of quasi-local observables. We denote the closed unit ball of AX by A1
X .

A convenient way to specify a model is with an interaction, which is a map Φ assigning to each

finite set X ⊂ Z an element Φ(X) = Φ(X)∗ ∈ AX . Associated to the interaction Φ is the family of

local Hamiltonians HΛ =
∑

X⊂Λ Φ(X) ∈ AΛ, defined for each finite subset Λ ⊂ Z. The Heisenberg

dynamics generated by a family of local Hamiltonians determined by an interaction Φ is defined in

the usual way:

(2.1) τHΛ
t (A) = eitHΛAe−itHΛ

36



The interactions Φ may be random, meaning the following: There is a probability space

(Ω,F ,Pr), and to each ω ∈ Ω there is assigned an interaction Φ(ω). We assume weak measur-

ability of the random operators ω 7→ Φ(ω)(X) for each finite X ⊂ Z.

A finite range interaction is one for which there exists R ≥ 0 such that Φ(X) = 0 unless

diamX ≤ R. R is then the range of the interaction. A common way to introduce a model with a

finite-range interaction is to specify self-adjoint hx ∈ A[x,x+R], for each x ∈ Z.

2.2.1. Dynamical Localization. In the single-particle setting, dynamical localization refers

to the absence of ballistic or diffusive propagation in the system’s Schrödinger evolution. Initially

localized wave functions remain localized for all time under the dynamics. A natural analogue of

this property in the setting of quantum spin chains is localization of the Heisenberg dynamics. We

consider a general notion of dynamical localization expressed by the following definition.

Definition 2.2.1. Let F : Z+ → (0,∞) be a non-increasing function with the property

limx→∞ F (x) = 0.

(i) We say that a family {HΛ : Λ ⊂ Z finite intervals} of random local Hamiltonians HΛ ∈ AΛ ex-

hibits dynamical localization with decay function F if there exists a constant β ≥ 0 and a function

χ : N→ (0,∞) such that for any sets X,Y ⊆ Λ with Y ⊂ [minX,maxX]c, the random variable

(2.2) CΛ;X,Y ≡ sup
t∈R

sup
A∈A1

X

B∈A1
Y

‖[τHΛ
t (A), B]‖

χ(|X|)(1 + |t|β)

satisfies

(2.3) ECΛ;X,Y ≤ F (d(X,Y ))

Here d(X,Y ) = min{|x− y| : x ∈ X, y ∈ Y } is the usual set distance.

(ii) If F is of the form F (x) = e−ηx we say the family {HΛ} exhibits exponential dynamical

localization. In this case η−1 is called (a bound for the) localization length.

(iii) If F is of the form F (x) = e−ηx
ρ

for some ρ ∈ (0, 1), we say the family {HΛ} exhibits stretched

exponential dynamical localization.
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(iv) We say the family {HΛ} exhibits dynamical localization with decay function F uniformly in

time if it satisfies (i) with β = 0.

The following lemma shows that if a family of local Hamiltonians is dynamically localized and

the corresponding family of local dynamics has a thermodynamic limit, then the infinite volume

dynamics is also dynamically localized with the same decay function.

Lemma 2.2.1. Suppose that {HΛ} is a family of dynamically localized Hamiltonians with decay

function F , and that the corresponding family of dynamics {τHΛ
t } has a thermodynamic limit. In

other words, there is an exhaustive sequence Λn ↑ Z such that almost surely,

(2.4) lim
n→∞

τ
HΛn
t ≡ τt

strongly for all t ∈ R, where τt is a ∗-automorphism of Aloc
Z . Then for any finite set X ⊂ Z and

any set Y ⊆ [minX,maxX]c, the random variable

(2.5) CX,Y ≡ sup
t∈R

sup
A∈A1

X

B∈A1
Y

‖[τt(A), B]‖
χ(|X|)(1 + |t|β)

satisfies

(2.6) ECX,Y ≤ F (d(X,Y ))

Proof. First let X,Y ⊂ Z be finite, with Y ⊂ [minX,maxX]c. It follows immediately that,

(2.7) CX,Y = sup
t∈R

sup
A∈A1

X

B∈A1
Y

‖[τt(A), B]‖
χ(|X|)(1 + |t|β)

≤ lim inf
n→∞

CΛn;X,Y .

By Fatou’s lemma, ECX,Y ≤ F (d(X,Y )). Now suppose Y ⊆ [minX,maxX]c is infinite. For any

sequence of finite sets Yn ↑ Y , by using local approximations and the fact that CX,Yn is monotone

in n we obtain

(2.8) CX,Y ≤ lim
n→∞

CX,Yn ,

which proves the lemma. �
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2.2.2. Local Integrals of Motion. The lack of ergodicity seen in MBL systems can be

‘explained’ as a consequence the emergence of an extensive set of local conserved quantities, called

local integrals of motion (LIOMs). In this section we propose precise definitions of LIOMs. Heuristic

definitions of LIOMs have been given in the physics literature, [51], [82]. LIOMs are thought to

account for most of the phenomena of MBL. See, for example, the review paper [53]. To address the

variety seen in the physics literature we formulate two distinct definitions. Specifically, Definition

2.2.2 given below is modeled after the discussion in [51], while Definition 2.2.3 was motivated

by [21]. We refer to them as LIOMs of the first kind and LIOMs of the second kind, respectively.

We briefly discuss the relation between the two at the end of this section.

In the following definition we restrict our attention to quantum spin chains, for simplicity. The

definition can also be formulated in higher-dimensions. Let dx ≥ 2 denote the dimension of the

Hilbert space at x ∈ Z.

Definition 2.2.2 (LIOMs of the first kind). Let Hn ∈ A[0,n] be a sequence of random

Hamiltonians. We say that the sequence Hn has LIOMs of the first kind if the following conditions

are satisfied:

(1) There is a sequence of random unitary maps Un ∈ A[0,n] such that

(2.9) U∗nHnUn =
∑

X⊆[0,n]

∑
m∈

∏
x∈X{2,...,dx}

φn(m, X)
∏
x∈X

Smx;x,

where Sm;x is the operator supported at the site x given by the matrix,

(2.10) (Sm;x)jk = δj,1δk,1 − δj,mδk,m

and the φn(m, X) are random variables satisfying

(2.11) sup
n

E

 sup
x,y∈[0,n]

1

F (|x− y|)
∑

X⊆[0,n]:
x,y∈X

∥∥∥∥∥∥
∑

m∈
∏
x∈X{2,...,dx}

φn(m, X)
∏
x∈X

Smx;x

∥∥∥∥∥∥
 <∞.

for some non-increasing function F : Z+ → (0,∞) satisfying limx→∞ F (x) = 0.
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(2) The sequence of unitary maps Un is quasi-local, in the sense that for all disjoint finite

subsets X,Y ⊂ Γ,

(2.12) sup
n

E sup
A∈A1

X
B∈AY

‖[U∗nAUn, B]‖ ≤
∑
x∈X
y∈Y

G(|x− y|),

for some non-increasing function G : Z+ → (0,∞) satisfying limx→∞G(x) = 0.

Remark 2.2.1. The LIOMs in definition 2.2.2 are the quasi-local operators UnSm;xU
∗
n. The

key feature of the family {Sm;x}dxm=2 is that the operators are uniformly bounded, are mutually

commuting, and generate a maximal abelian subalgebra of observables. Any other set of observables

with these properties could be used in the definition instead.

The following theorem shows that the Heisenberg dynamics generated by a Hamiltonian with

LIOMs of the first kind satisfies the type of propagation bound expressing dynamical localization.

Theorem 2.2.1. Suppose that the sequence of Hamiltonians Hn has LIOMs of the first kind.

Let X and Y be finite disjoint subsets of Z+. For a set Z ⊂ Z+, let Zn,λ = {x ∈ [0, n] : d(x, Z) ≤

λd(X,Y )}. Then for λ ∈ (0, 1/2),

(2.13) sup
A∈A1

X

B∈A1
Y

‖[τHnt (A), B]‖ ≤ 2

[
Dn,X,λ +Dn,Y,λ + |t|Cn

∑
x∈Xn,λ
y∈Yn,λ

F (|x− y|)
]
,

where Dn,X,λ and Dn,Y,λ are nonnegative random variables satisfying,

EDn,X,λ ≤
∑
x∈X
y∈Xc

n,λ

G(|x− y|) and EDn,Y,λ ≤
∑
x∈Y
y∈Y cn,λ

G(|x− y|),(2.14)

and

(2.15) Cn(ω) = sup
x,y∈[0,n]

1

F (|x− y|)
∑

X⊆[0,n]:
x,y∈X

∥∥∥∥∥∥
∑

m∈
∏
x∈X{2,...,dx}

φn(m, X)
∏
x∈X

Smx;x

∥∥∥∥∥∥ ,
where by the assumptions in Definition 2.2.2 we have supn ECn <∞.

The proof of this theorem is given in Section 2.3.1.
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It is natural to ask whether the existence of LIOMs also follows from dynamical localization.

Indeed, the existence of LIOMs and dynamical localization are regarded as equivalent properties

in the physics literature. It turns out to be convenient to use a slightly different notion of LIOMs

to prove a result in this direction.

Definition 2.2.3 (LIOMs of the second kind). Suppose that Φ is a (random) finite range

interaction with a thermodynamic limit τt generated by the derivation δ. We say the interaction

has LIOMs of the second kind if there exists a family {Ix}x∈Z of self-adjoint, uniformly bounded

quasi-local observables Ix satisfying the following:

(1) There is a non-increasing function F : Z+ → (0,∞), with limn→∞ F (n) = 0, such that for

all x ∈ Z,

(2.16) E sup
A∈A1

Y

‖[Ix, A]‖ ≤ F (d(x, Y )).

(2) For each x ∈ Z,

(2.17) δ(Ix) = 0.

(3) For each A ∈ Aloc,

(2.18) δ(A) = lim
n→∞

n∑
x=−n

[Ix, A],

almost surely, i.e. the family
∑n

x=−n Ix of quasi-local Hamiltonians almost surely generate

the same dynamics in the thermodynamic limit as Φ.

Remark 2.2.2. In Definition 2.2.3 we do not assume that the LIOMs Ix commute. From the

time invariance it is necessary that Ix ∈ ker δ, thus if ker δ is abelian the LIOMs will commute. We

expect ker δ to be abelian almost surely, generically for continuous randomness. Note that in finite

volumes, δ(·) = [H, ·] for a local Hamiltonian H, and simplicity of the spectrum of H is equivalent

to ker δ being an abelian algebra.

The following proposition connects dynamical localization uniform in time with the ‘canonical

LIOMs’ introduced in [21].
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Theorem 2.2.2. Suppose a model with finite-range interactions is dynamically localized with

decay function F uniformly in time (β = 0), and that F has a finite first moment:
∑∞

x=1 xF (x) <

∞. Then the model has LIOMs of the second kind. Moreover, a LIOM representation (canonical

in the sense of [21]) can be given explicitly by the following expression:

(2.19) h̃x = lim
n→∞

1

Tn

∫ Tn

0
τt(hx)dt.

where Tn is a suitably chosen (random) strictly increasing sequence in N. The terms h̃x are time-

invariant, and there is a constant C > 0 such that

(2.20) E( sup
B∈A1

Y

‖[h̃x, B]‖) ≤ CF (d(x, Y ))

for every x ∈ Z.

The proof of this result can be found in Section 2.3.1.

In the definition of LIOMs of the first kind, Definition 2.2.2, nothing is said on the dependence

of the unitaries and the interaction coefficients on the length, n, of the chain. One could expect

however, that a random interaction Φ can be defined by

(2.21) Φ(X) = lim
n→∞

∑
m∈{1,...,d−1}|X|

φn(m, X)
∏
x∈X

Smx;x,

where it should be understood that n here refers to a finite spin chain labeled by [−n, n]. Using

the notion of local convergence in F-norm (see [71, Definition 3.7]), it is then straightforward to

define conditions that ensure the existence of a commuting family of LIOMs of the second kind.

2.2.3. Transmission Times.

Definition 2.2.4. Given a Hamiltonian H ∈ A[0,n] and an ε > 0 define the transmission time,

t(ε) of H as,

(2.22) t(ε) = inf{|t| : sup
A∈A1

0

B∈A1
n

‖[τHt (A), B]‖ > ε}.

Suppose we have a sequence Hn ∈ A[0,n] of Hamiltonians with associated transmission times

tn(ε). It is reasonable to expect that dispersive effects may cause the commutator defining the
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transmission time to never exceed some fixed ε > 0 for large values of n. If this occurs then tn(ε)

will cease to be a meaningful quantity. For this reason we should consider a sequence εn, suitably

decaying in n, and instead consider the sequence of transmission times tn(εn). We note that some

authors prefer the term ‘scrambling time’ instead of transmission time [23].

A natural question to ask is whether the transmission time is consistent with the propagation

bounds imposed by a Lieb-Robinson bound. Suppose that the sequence Hn satisfies,

(2.23) sup
A∈A1

x

B∈A1
y

‖[τHnt (A), B]‖ ≤ C(eµv|t| − 1)e−µ|x−y|

for x 6= y, uniformly in n. Such bounds are known to hold for a broad class of quantum spin models

on general lattices [64]. The bound implies that,

(2.24) tn(εn) ≥ 1

µv
log(1 +

εne
µn

C
),

in which case

(2.25) lim sup
n→∞

n

tn(εn)
≤ v

provided εn decays subexponentially in n.

We consider slow transport in a quantum spin chain to be characterized by super-linear growth

of the transmission time. For stretched exponential dynamically localized spin chains the transmis-

sion time grows as a stretched exponential, as the next proposition shows.

Proposition 2.2.1. Suppose that a sequence Hn ∈ A[0,n] of random Hamiltonians exhibits

dynamical localization with decay function F given by F (x) = e−ηx
ρ

for some ρ ∈ (0, 1]. Then for

any positive γ and α such that βγ + α < 1,

(2.26)
eγηn

ρ

tn(e−αηnρ)
→ 0

almost surely.
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Proof. For β = 0 it is easy to see that Pr(tn(e−αηn
ρ
) = ∞ eventually) = 1. Assume β > 0.

By assumption,

(2.27) sup
A∈A1

0
B∈An

‖τHnt (A), B]‖ ≤ χ(1)Cn(1 + |t|β),

where ECn ≤ e−ηn
ρ
. Choose any δ such that βγ + α < δ < 1. Let

An =
{
χ(1)Cn ≤ e−δηn

ρ
}
.

By Markov’s inequality,

Pr(Acn) ≤ χ(1)
ECn
e−δηnρ

≤ χ(1)e−(1−δ)ηnρ .

It follows from the Borel-Cantelli lemma that Pr(1An = 1 eventually) = 1. (2.27) implies that,

1Antn(e−αηn
ρ
)β ≥ 1An

(
e−αηn

ρ

χ(1)Cn
− 1

)
≥ (e(δ−α)ηnρ − 1)1An

Therefore

1An

eγηn
ρ

tn(e−αηnρ)
≤ eγηn

ρ

(e(δ−α)ηnρ − 1)1/β

Since γ < (δ − α)/β and 1An = 1 eventually with probability 1, it follows that eγηn
ρ

tn(e−αηnρ )
→ 0

almost surely.

�

In the case of exponential dynamical localization there exists a family of perturbations such

that the perturbed model still has long transmission times. These perturbations consist of ad-

ditional nearest neighbor interactions that occur with low density at random positions. For this

class of perturbations we can prove that the transmission time grows super linearly provided the

perturbations are sufficiently sparse1.

Theorem 2.2.3. Let H0
n ∈ A[0,n] be a sequence of random Hamiltonians defined over the prob-

ability space (Ω0,Pr0) which are exponentially dynamically localized in the sense of Definition 2.2.1

(ρ = 1). Let (δx)∞x=0 be an i.i.d. sequence of Bernoulli random variables over the probability space

1 After this work appeared on the arXiv, similar perturbations were considered by De Roeck, Huveneers, and Olla,
who proved subdiffusive dynamics in classical Hamiltonian chains [28].
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(Ω1,Pr1), with Pr1(δ0 = 0) = p ∈ (0, 1]. Let (ψx)∞x=0 denote a uniformly bounded sequence with

ψx ∈ A[x,x+1] for all x. Consider the sequence of random Hamiltonians

(2.28) Hn(ω) = H0
n(ω0) +

n−1∑
x=0

δx(ω1)ψx;

over the probability space Ω0×Ω1 equipped with the product measure. If tn is the transmission time

of Hn, then for any γ > 0 and α ∈ (0, 1/3) satisfying

(2.29) η

(
1− 3α

1− α

)
> 2[(β + 1)γ − 1] log

(
1

p

)
,

(2.30)
nγ

tn(e−αηn)
→ 0

in probability.

Unfortunately we do not know how to prove a similar robustness result for models with a decay

function F that decays slower than exponentially. For example, certain anisotropic XY chains are

only known to exhibit stretched exponential dynamical localization, as we note in Section 2.4.1

Theorem 2.2.3 concerns finite volume Hamiltonians. The following theorem shows that in

certain cases one can work directly with the thermodynamic limit.

Theorem 2.2.4. Suppose that Φ0 is a random interaction over the probability space (Ω0,Pr0)

whose finite volume Hamiltonians are exponentially dynamically localized. Suppose that (δx)x∈Z is

a sequence of i.i.d. Bernoulli random variables over the probability space (Ω1,Pr1), with Pr1(δ0 =

0) = p ∈ (0, 1]. Let (ψx)x∈Z denote a uniformly bounded sequence with ψx ∈ A[x,x+1] for all x. Let

Φ2 be the random nearest neighbor interaction given by,

(2.31) Φ2({x, x+ 1}) = δxψx

for all x ∈ Z. Define the random interaction Φ(ω) = Φ0(ω0) + Φ1(ω1) over the probability space

Ω0 × Ω1 equipped with the product measure. If, for almost every ω0 ∈ Ω0, there is a (possibly

random) F -function F such that Φ0 is F -normed, then the thermodynamic limit, τt, of Φ exists
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almost surely. For any fixed r ∈ N, define

(2.32) tn(ε) = inf{|t| : sup
A∈A1

[−r,0]

B∈A1
[n,∞)

‖[τt(A), B]‖ > ε}.

Then for any γ > 0 and α ∈ (0, 1/3) satisfying

(2.33) η

(
1− 3α

1− α

)
> 2[(β + 1)γ − 1] log

(
1

p

)
,

(2.34)
nγ

tn(e−αηn)
→ 0

in probability.

2.3. Proofs of Main Results

2.3.1. Proofs of results about LIOMs. Showing that LIOMs of the fist kind imply dynam-

ical localization is a straightforward application of the quasi-locality properties of the LIOMs.

Proof of Theorem 2.2.1. For any A ∈ A1
X , B ∈ A1

Y ,

(2.35) ‖[τHnt (A), B]‖ = ‖[τ H̃nt (Ã), B̃]‖,

where Õ = U∗nOUn for an observable O. Using the quasi-locality of the unitary Un specified in Eq.

(2.12), by a standard application of conditional expectations (see, for example, [71, Section IV.A]),

we can find (random) local observables Aλ ∈ AXn,λ and Bλ ∈ AYn,λ , with ‖An,λ‖, ‖Bn,λ‖ ≤ 1 such

that,

‖Ã−Aλ‖ ≤ Dn,X,λ(2.36)

‖B̃ −Bλ‖ ≤ Dn,Y,λ,(2.37)

where Dn,X,λ and Dn,Y,λ have the desired expectation bound. Therefore,

‖[τ H̃nt (Ã), B̃]‖ ≤ 2 (DX,λ,n +DY,λ,n) + ‖[τ H̃nt (Aλ), Bλ]‖.(2.38)
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Now,

(2.39) ‖[τ H̃nt (Aλ), Bλ]‖ = ‖[τ H̃X,Yt (Aλ), Bλ]‖

where

(2.40) H̃X,Y (ω) =
∑

Z⊂[0,n]:
Z∩Xn,λ,Z∩Yn,λ 6=∅

∑
m∈

∏
x∈Z{2,...,dx}

φn(m, Z)
∏
z∈Z

Smz ;z

Note that H̃X,Y consist of the terms of H̃n which do not in general commute with either Aλ or Bλ.

If f(t) = [τ
H̃X,Y
t (Aλ), Bλ], then

(2.41) f ′(t) = i[[H̃X,Y , τ
H̃X,Y
t (Aλ)], Bλ] = −i[f(t), H̃X,Y ]− i[[Bλ, H̃X,Y ], τ

H̃X,Y
t (Aλ)]

Since the first term on the right is norm preserving, we have that,

(2.42) ‖[τ H̃X,Yt (Aλ), Bλ]‖ ≤ 4|t|‖H̃X,Y ‖.

The estimate,

‖H̃X,Y ‖ ≤
∑

Z⊂[0,n]:
Z∩Xn,λ,Z∩Yn,λ 6=∅

∥∥∥∥∥∥
∑

m∈
∏
x∈Z{2,...,dx}

φn(m, Z)
∏
z∈Z

Smz ;z

∥∥∥∥∥∥
≤

∑
x∈Xn,λ
y∈Yn,λ

∑
Z:

x,y∈Z

∥∥∥∥∥∥
∑

m∈
∏
x∈Z{2,...,dx}

φn(m, Z)
∏
z∈Z

Smz ;z

∥∥∥∥∥∥ ≤ Cn(ω)
∑

x∈Xn,λ
y∈Yn,λ

F (|x− y|),

together with (2.38) completes the proof. �

The existence of LIOMs of the second kind for uniform-in-time dynamically localized systems

follows from a combination of quasi-locality arguments and compactness.

Proof of Theorem 2.2.2. We first show how to construct a sequence Tn for which the limit

in (2.19) exists almost surely for any dynamics that is sufficiently localized uniformly in time. For

A ∈ A1
X and T > 0, define

AT =
1

T

∫ T

0
τt(A)dt.
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AT is random since τt is.

For each N ∈ N, let ΠN denote the conditional expectation Aloc → AX(N) defined as the

limit of the normalized partial trace over the complement of X(N) = {y ∈ Z : d(y,X) < N}

(see [71, Section 4.2]). Since the dynamics τt is assumed to satisfy (2.3), we have

(2.43) E(sup
T
‖ΠN (AT )−AT ‖) ≤ CF (N)

where C = 2χ(|X|). In particular,
∑∞

N=1 F (N) <∞ implies that

(2.44) lim
N

sup
T
‖ΠN (AT )−AT ‖ = 0 almost surely

Since A1
X(N) is compact, there exists a sequence (T

(N)
n )n≥1, and A(N) ∈ A1

X(N) such that

lim
n

ΠN (A
T

(N)
n

) = A(N).

We can pick the sequences (T
(N)
n )n≥1 such that (T

(N+1)
n )n≥1 is a subsequence of (T

(N)
n )n≥1, for all

N . Fix ε > 0, and let N ≤M . Choose K(N,M) such that for all n ≥ K(N,M), we have

‖ΠN (A
T

(N)
n

)−A(N)‖ ≤ ε, ‖ΠM (A
T

(M)
n

)−A(M)‖ ≤ ε.

Since N ≤M , (T
(M)
n )n≥1 is a subsequence of (T

(N)
n )n≥1. Therefore, we also have

‖ΠN (A
T

(M)
n

)−A(N)‖ ≤ ε, for all n ≥ K(N,M).

Using these bounds we have

‖A(N)−A(M)‖ ≤ 2ε+ ‖ΠN (A
T

(M)
n

)−ΠM (A
T

(M)
n

)‖

≤ 2ε+ ‖ΠN (A
T

(M)
n

)−A
T

(M)
n
‖+ ‖ΠM (A

T
(M)
n

)−A
T

(M)
n
‖

≤ 2ε+ sup
T
‖ΠN (AT )−AT ‖+ sup

T
‖ΠM (AT )−AT ‖.

Since ε > 0 is arbitrary, this estimate along with (2.44) shows that (A(N))N is almost surely a

Cauchy sequence in AZ. Denote its limit by Ã.
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We can now pick an increasing sequence KN such that for all n ≥ KN we have

‖ΠN (A
T

(N)
n

)−A(N)‖ ≤ 1

N
.

Then

lim
N

ΠN (A
T

(N)
KN

) = lim
N
A(N) = Ã.

Since we also have

‖ΠN (A
T

(N)
KN

)−A
T

(N)
KN

‖ ≤ sup
T
‖ΠN (AT )−AT ‖,

we can conclude the convergence of the sequence of time averages:

(2.45) lim
N
A
T

(N)
KN

= Ã.

The time-invariance of Ã is obvious from the fact that it is the limit of time averages as in

(2.45). By taking the lim sup of (2.43) we also obtain a quasi-locality estimate for Ã:

(2.46) E(‖[Ã, B]‖) ≤ CF (d(X, suppB))

We can now apply this to A = hx and, possibly after taking another subsequence, obtain a

sequence of times Tn such that for all x ∈ Z,

(2.47) h̃x = lim
n→∞

1

Tn

∫ Tn

0
τt(hx)dx.

are well-defined, time-invariant, and quasi-local. The model is assumed to be finite range, so the

constant C can be chosen to be uniform in x.

Finally, the quasi-local Hamiltonians H̃Λ defined by

H̃Λ =
∑
x∈Λ

h̃x,

generate the same dynamics τt in the thermodynamic limit. To see the last point we once more

have to argue we can interchange two limits, which we do next.
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Let X be finite, A ∈ A1
X , and ε > 0 . Fix a sufficiently large positive integer M such that for

all Λ containing X(M) we have

∑
x∈Λ

[hx, A] = δ(A).(2.48)

Then, we have

(2.49) ‖δ(A)− δ̃(A)‖ ≤

∥∥∥∥∥∑
x∈Λ

[hx, A]−
∑
x∈Λ

[h̃x, A]

∥∥∥∥∥+
∑
x/∈Λ

‖[h̃x, A]‖

Then, for any L, n ∈ N, starting from (2.49), we obtain the following estimate:

‖δ(A)− δ̃(A)‖ ≤

∥∥∥∥∥∥
∑

x∈X(M+L)

[hx, A]−
∑

x∈X(M+L)

[h̃x, A]

∥∥∥∥∥∥+
∑

x/∈X(M+L)

‖[h̃x, A]‖

=

∥∥∥∥∥∥
 ∑

x∈X(M+L)

1

Tn

∫ Tn

0
τ

(X(M+L))
t (hx)

 , A

− ∑
x∈X(M+L)

[h̃x, A]

∥∥∥∥∥∥
+

∑
x/∈X(M+L)

‖[h̃x, A]‖

≤
∑

x∈X(M+L)\X(M)

(
sup
t∈R
‖[τ (X(M+L))

t (hx), A]‖+ ‖[h̃x, A]‖
)

+

∥∥∥∥∥∥
∑

x∈X(M)

[
1

Tn

∫ Tn

0
τ

(X(M+L))
t (hx) dt− h̃x, A

]∥∥∥∥∥∥+
∑

x/∈X(M+L)

‖[h̃x, A]‖

Therefore, almost surely

‖δ(A)− δ̃(A)‖ ≤ lim inf
L→∞

∑
x/∈X(M)

(
sup
t∈R
‖[τ (X(M+L))

t (hx), A]‖+ ‖[h̃x, A]‖
)

+

∥∥∥∥∥∥
∑

x∈X(M)

[
1

Tn

∫ Tn

0
τt(hx) dt− h̃x, A

]∥∥∥∥∥∥
Letting n→∞ in this inequality gives,

‖δ(A)− δ̃(A)‖ ≤ lim inf
L→∞

∑
x/∈X(M)

(
sup
t∈R
‖[τ (X(M+L))

t (hx), A]‖+ ‖[h̃x, A]‖
)
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almost surely. By Fatou’s lemma,

E lim inf
L→∞

∑
x/∈X(M)

(
sup
t∈R
‖[τ (X(M+L))

t (hx), A]‖+ ‖[h̃x, A]‖
)
≤ 4C

∞∑
d=M

F (d)

This upper bound is summable in M , therefore,

lim
M→∞

lim inf
L→∞

∑
x/∈X(M)

(
sup
t∈R
‖[τ (X(M+L))

t (hx), A]‖+ ‖[h̃x, A]‖
)

= 0

almost surely, which proves that δ(A) = δ̃(A) with probability 1. �

2.3.2. Proofs of results about transmission time. We will prove Theorem 2.2.3 by uti-

lizing the interaction picture decomposition of the Heisenberg dynamics τHnt = τ
HI
n

t ◦ τH
0
n

t , where

HI
n is the time dependent random Hamiltonian given by,

(2.50) HI
n(ω, t) =

n−1∑
x=0

δx(ω1)τ
H0
n(ω0)

t (ψx)

We make use of this decomposition of the dynamics in the following way: for an integer dn ∈ [0, n],

for any A ∈ A1
0 by quasilocality of the the dynamics τ

H0
n

t we can write

(2.51) τ
H0
n(ω0)

t (A) = Ã(ω0, t) + E(ω0, t),

where supp(Ã) ⊂ [0, dn], ‖Ã‖ ≤ 1 and

(2.52) ‖E(ω0, t)‖ ≤ χ(1)Cdn(ω0)(1 + |t|β)

where ECdn ≤ e−η(dn+1). Eq. (2.51) gives the following bound,

(2.53) sup
A∈A1

0

B∈A1
n

‖[τHn(ω)
t (A), B]‖ ≤ 2χ(1)Cdn(ω0)(1 + |t|β) + sup

A∈A1
[0,dn]

B∈A1
n

‖τH
I
n(ω)

t (A), B]‖.

To proceed we will need to derive a suitable Lieb-Robinson bound for the dynamics τ
HI
n

t . The

first step in deriving such a bound is to write HI
n in terms of a suitable time dependent random

interaction.
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First we introduce some notation. Let Λn = [0, n] and Λn;x(m) = {y ∈ Λn : d(y, {x, x + 1}) ≤

m}. We write

(2.54) τ
H0
n(ω0)

t (ψx) =
∑
m≥0

ψ(m)
n;x (ω0, t),

where

(2.55) ψ(m)
n;x (t) =


TrHΛn\Λn;x(0)

(
τ
H0
n

t (ψx)
)

if m = 0

[TrHΛn\Λn;x(m)
− TrHΛn\Λn;x(m−1)

]
(
τ
H0
n

t (ψx)
)

if m ≥ 1

Here Tr denotes the normalized partial trace operator. Note that the sum in Eq. (2.54) is actually

a finite sum, since ψ
(m)
n;x = 0 for any m such that Λn;x(m− 1) = Λn.

Proposition 2.3.1. supp(ψ
(m)
n;x (t)) ⊆ Λn;x(m) for all m ≥ 0 and

(2.56) ‖ψ(m)
n;x (t)‖ ≤


‖ψx‖ if m = 0

‖ψx‖C(m)
n;x (1 + |t|β) if m ≥ 1

where C
(m)
n;x is a non-negative random variable satisfying

(2.57) EC(m)
n;x ≤ 2χ(2)e−ηm

Proof. supp(ψ
(m)
n;x (t)) ⊆ Λn;x(m) follows from properties of the partial trace. The bound

‖ψ(0)
n;x(t)‖ ≤ ‖ψx‖ is immediate. For m ≥ 1,

‖ψ(m)
n;x (t)‖ ≤ ‖τH

0
n

t (ψx)− TrHΛn\Λn;x(m)

(
τ
H0
n

t (ψx)
)
‖(2.58)

+ ‖τH
0
n

t (ψx)− TrHΛn\Λn;x(m−1)

(
τ
H0
n

t (ψx)
)
‖

≤ ‖ψx‖χ(2)
(
CΛn;Λx,Λn\Λn;x(m) + CΛn;Λx,Λn\Λn;x(m−1)

)
|t|β(2.59)

≡ ‖ψx‖C(m)
n;x (1 + |t|β).(2.60)

The expectation bound on C
(m)
n;x follows from the assumptions. �
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The decomposition given in Eq. (2.54) provides a way to write HI
n(t) in terms of a random

interaction. Define Φn(ω, t) : P(Λn)→ AΛn by,

(2.61) Φn(ω, t)(X) =
∑

(x,m):
Λn;x(m)=X

δx(ω1)ψ(m)
n;x (ω0, t).

Then HI
n =

∑
X⊆[0,n] Φn(X) follows from Eq. (2.54).

We will use Theorem 3.1 of [71] in order to obtain a Lieb-Robinson bound for the dynamics

generated by HI
n. If we apply that theorem directly to Φn, with a suitable decaying function F , we

obtain a Lieb-Robinson bound with a time growth factor of

(2.62) exp

∫ t

0
sup

x,y∈[0,n]

1

F (|x− y|)
∑

X⊆[0,n]
x,y∈X

‖Φn(ω, s)(X)‖ds


This will not be of any use to us, as

(2.63) sup
x,y∈[0,n]

1

F (|x− y|)
∑

X⊆[0,n]
x,y∈X

‖Φn(ω, s)(X)‖

will be of order 1 due to the presence of non-zero δx. To remedy this we observe that the methods

used in [71] produce Lieb-Robinson bounds which are independent of on-site terms in the interaction

and also do not depend on the dimension of the Hilbert spaces at each site. This allows us to define

a new lattice for the model, which is effectively a subset of [0, n], by identifying certain spins which

forces certain interaction terms to become on-site terms. As we explain below, we will be able

to obtain a better Lieb-Robinson bound using this method. Specifically, given Γ ⊂ [0, n], we can

define the lattice to obtain a Lieb-Robinson bound for the dynamics generated by HI
n with a time

growth factor of

(2.64) exp

∫ t

0
sup
x,y∈Γ

1

F (|x− y|)
∑

X⊆[0,n]
x,y∈X

‖Φn(ω, s)(X)‖ds

 .
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Note than in Eq. (2.64) the supremum in the exponent is taken over pairs of points x, y ∈ Γ,

as opposed to in Eq. (2.62) where all possible pairs of points in [0, n] enter. The sum in Eq.

(2.64) therefore excludes any interaction term whose support does not contain a point of Γ. The

arguments for obtaining such a Lieb-Robinson bound given the subset Γ are given in detail in the

appendix.

It remains to specify how Γ should be chosen. We know that intervals I of length L ∼ log1/p(n)

with the property that δx = 0 for all x ∈ I exist with high probability. The interaction terms

Φn(X) decay exponentially in the diameter of X, so the sum of all interaction terms linking sites

x, y ∈ I will decay exponentially in the distance d({x, y}, Ic). This suggests that we take Γ to

consist of the intervals I with a collar of length ` removed from both sides. The interaction terms

linking sites x, y ∈ Γ will then decay at least as fast as e−η`. Taking ` to be a fraction of L leads

to power law decay in n of the interaction strength. The following Lemma makes this precise.

Lemma 2.3.1. Fix n ∈ N and consider the time dependent random interaction Φn given by Eq.

(2.61). Let θ ∈ (0, 1) be arbitrary. Consider an event E ⊂ Ω1 with the following two properties:

(i) (δ1, ..., δn−1) is fixed on E

(ii) There are two disjoint intervals Ij = [aj , bj ], j = 1, 2, with |Ij | ≥ θ log1/p(n) such that

δx
∣∣
E

= 0 for each x ∈ I1 ∪ I2.

For σ ∈ [0, 1/2), let ` = bσθ log1/p(n)c and define the collared intervals Ĩj = [aj + `, bj − `]. Then

for any x, y ∈ Ĩ1 ∪ Ĩ2,

(2.65) 1E(ω1)
∑

X⊆[0,n]:
x,y∈X

‖Φn(ω, t)(X)‖ ≤ BE;x,y(ω0)(1 + |t|β),

where there is a constant C̃, depending only on η, such that BE;x,y satisfies,

(2.66) EBE;x,y ≤ C̃n
− λησθ

log(1/p) e−(1−λ)η
|x−y|

2

for any λ ∈ (0, 1) .
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Proof. First note that for any points x < y in [0, n] the following inequality holds,

(2.67)
∑

X⊆[0,n]:
x,y∈X

‖Φn(ω, t)(X)‖ ≤
n−1∑
z=0

∑
m≥

max{|z−x|,|z−y+1|}

δz(ω1)‖ψ(m)
n;z (ω0, t)‖.

This follows from the fact that max{|z − x|, |z − y + 1|} is the smallest integer m such that x, y ∈

Λn;z(m). Without loss of generality assume a1 < a2, and take x ≤ y ∈ Ĩ2 ∪ Ĩ2. Suppose x ∈ Ĩs,

y ∈ Ĩr with s ≤ r. On the event E, δz(ω1) = 0 if z ∈ I1 ∪ I2, so we have the bound

1E(ω1)

n−1∑
z=0

∑
m≥

max{|z−x|,|z−y+1|}

δz(ω1)‖ψ(m)
n;z (ω0, t)‖

≤
∑

z /∈I1∪I2

∑
m≥

max{|z−x|,|z−y+1|}

‖ψ(m)
n;z (ω0, t)‖

≤ (sup
x
‖ψx,x+1‖)

∑
z /∈Ir∪Is

∑
m≥

max{|z−x|,|z−y+1|}

C(m)
n;z (ω0)(1 + |t|β) ≡ BE;x,y(ω0)(1 + |t|β).(2.68)

By Proposition 2.3.1,

EBE;x,y ≤ 2(sup
x
‖ψx‖)χ(2)

∑
z /∈Ir∪Is

∑
m≥

max{|z−x|,|z−y+1|}

e−ηm(2.69)

We have,

∑
z /∈Ir∪Is

∑
m≥

max{|z−x|,|z−y+1|}

e−ηm =

ar−1∑
z=0

+

as−1∑
z=br+1

+

n−1∑
z=bs+1

 ∑
m≥

max{|z−x|,|z−y+1|}

e−ηm(2.70)
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We first estimate,ar−1∑
z=0

+

n−1∑
z=bs+1

 ∑
m≥

max{|z−x|,|z−y+1|}

e−ηm ≤

ar−1∑
z=0

∞∑
m=y−z−1

e−ηm +

n−1∑
z=bs+1

∞∑
m=z−x

e−ηm



≤
∞∑

k=y−ar

∞∑
m=k

e−ηm +

∞∑
k=bs−x

∞∑
m=k

e−ηm

=
1

(1− e−η)2
[e−η(y−ar) + e−η(bs−x)]

≤ 1

(1− e−η)2
e−η[(y−x)+`],(2.71)

where we used that bs − y, x − ar ≥ ` in the last line. The remaining sum in Eq. (2.70) vanishes

when r = s. If r < s then,

as−1∑
z=br+1

∑
m≥

max{z−x,y−z−1}

e−ηm ≤
d y+x−1

2
e−1∑

z=br+1

∞∑
m=y−z−1

e−ηm +

as−1∑
z=d y+x−1

2
e

∞∑
m=z−x

e−ηm

≤
∞∑

k=y−d y+x−1
2
e

∞∑
m=k

e−ηm +
∞∑

k=d y+x−1
2
e−x

∞∑
m=k

e−ηm

≤ 1

(1− e−η)2
[e−η(y−d y+x−1

2
e) + e−η(d y+x−1

2
e−x)]

≤ 1

(1− e−η)2
e
η
2 e−η( y−x

2
)(2.72)

If r < s, then |x− y| ≥ 2` and

e−η( y−x
2

) = e−ηλ( y−x
2

)e−η(1−λ)( y−x
2

) ≤ e−λη`e−(1−λ)η( y−x
2

)(2.73)

Therefore,

∑
z /∈I1∪I2

∑
m≥

max{|z−x|,|z−y+1|}

e−ηm ≤ 1

(1− e−η)2

(
e−η(|x−y|+`) + (1− δs,r)e

η
2 e−λη`e−(1−λ)η

|x−y|
2

)
,

(2.74)

which together with Eq. (2.69) proves the lemma. �
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We now use Lemma 2.3.1 to prove that a Lieb-Robinson bound holds for the dynamics τ
HI
n

t on

an event contained in E which has probability nearly that of E for large n.

Lemma 2.3.2. Assume the hypotheses and notation of Lemma 2.3.1, with the additional as-

sumption that |Ij | ≤ 3
2 log1/p(n) for j = 1, 2. Then for any ν ∈ (0, 1) there is an event WE ⊂ Ω0

such that for any ξ ∈ (0, 1) there are positive constants c0 and c1, which depend only on ν, ξ, λ and

η, such that

(2.75) 1WE
(ω0)1E(ω1) sup

A∈A1
[0,a1]

B∈A1
n

‖[τH
I
n(ω)

t (A), B]‖ ≤ c0(ec1n
− νλησθ

log(1/p) (|t|+|t|β+1) − 1)e−ξ
ν(1−λ)η

2
d(I1,I2).

Furthermore, the event WE satisfies,

Pr(WE) ≥ 1− C̃ ′n−
(1−ν)λησθ

log(1/p) log1/p(n)(2.76)

where

(2.77) C̃ ′ =
3C̃

1− e−
(1−ν)(1−λ)η

2

Proof. For a fixed pair x, y in Ĩ1 ∪ Ĩ2, by Markov’s inequality and Lemma 2.3.1,

(2.78) Pr(BE;x,y ≤ n
− νλησθ

log(1/p) e−ν(1−λ)η
|y−x|

2 ) ≥ 1− C̃n−
(1−ν)λησθ

log(1/p) e−(1−ν)(1−λ)η
|x−y|

2

Let

(2.79) WE = {BE;x,y ≤ n
− νλησθ

log(1/p) e−ν(1−λ)η
|y−x|

2 for all x, y ∈ Ĩ1 ∪ Ĩ2}
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It follows that,

Pr(WE) ≥ 1− C̃n−
(1−ν)λησθ

log(1/p)

∑
x≤y:

x,y∈Ĩ1∪Ĩ2

e−(1−ν)(1−λ)η
|x−y|

2

≥ 1− C̃n−
(1−ν)λησθ

log(1/p)

∑
x∈Ĩ1∪Ĩ2

∞∑
y=x

e−(1−ν)(1−λ)η
|x−y|

2

≥ 1− 3C̃

1− e−
(1−ν)(1−λ)η

2

n
− (1−ν)λησθ

log(1/p) log1/p(n)(2.80)

Let F be any F -function on Z such that for any c > 0,

(2.81) sup
x∈Z

e−c|x|

F (|x|)
<∞.

Then by Lemma 2.3.1 and the definition of WE we have that,

1E∩WE
(ω) sup

x,y∈Ĩ1∪Ĩ2

1

e−ξ
ν(1−λ)η

2
|x−y|F (|x− y|)

∑
X⊆[0,n]:
x,y∈X

‖Φn(ω, t)(X)‖

≤ n−
νλησθ

log(1/p) sup
x,y∈Ĩ1∪Ĩ2

e−ν(1−ξ)(1−λ)η
|y−x|

2

F (|x− y|)

≤ n−
νλησθ

log(1/p) sup
x∈Z

e−
ν(1−ξ)(1−λ)η

2
|x|

F (|x|)
(2.82)

The result now follows from Proposition 2.5.2 in the appendix, using the collection I = {Ĩ1, Ĩ2}. �

From Lemma 2.3.2, we see that the best Lieb-Robinson bound will be obtained on events E

where the intervals I1 and I2 are as far apart as possible. This in fact occurs with high probability:

Let θ ∈ (0, 1) and suppose Fn is the event that there are two intervals of consecutive 0’s of length at

least θ log1/p(n) in n i.i.d. Bernoulli trials, such that the distance rn between the intervals satisfies

lim rn/n = 1. Then the probability of Fn tends to 1 as n tends to infinity. This can be seen by

noting that if θ′ ∈ (θ, 1), then the longest run Rn of zeros in bnθ′c i.i.d. Bernoulli trials has the

property that

(2.83)
Rn

θ′ log1/p(n)
→ 1
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in probability. Therefore, with a probability tending to 1, there is an interval of length at least

θ log1/p(n) in both the first and last bnθ′c trials in n Bernoulli trials. The distance between these

two intervals is at least n− 2nθ
′
.

Proof of Theorem 2.2.3. We will prove the result for β > 0. The case β = 0 requires only

minor modifications. We will show that under the hypotheses of the theorem there is a sequence of

events Qn with limn→∞ Pr(Qn) = 1, and a deterministic sequence xn satisfying limn→∞ n
γ/xn = 0

such that

(2.84) 1Qntn(e−αηn) ≥ xn.

From this it easily follows that nγ/tn(e−αηn)→ 0 in probability.

Let κ ∈ (α, 1). Our starting point is Eq. (2.53), with dn = bκnc. Consider the event Fn =

{2χ(1)Cdn ≤ n−(γβ+1)e−αηn}. By Markov’s inequality,

(2.85) Pr(Fn) ≥ 1− 2χ(1)nγβ+1e−(κ−α)ηn.

It follows from Eq. (2.53) that,

(2.86) 1Fn(ω0) sup
A∈A1

0

B∈A1
n

‖[τHn(ω)
t (A), B]‖ ≤ (1 + |t|β)n−γβ+1e−αηn + sup

A∈A1
[0,dn]

B∈A1
n

‖τH
I
n(ω)

t (A), B]‖.

Choose θ ∈ (0, 1), and let Gn ⊂ Ω1 denote a sequence of events in which there are two runs of

zeros in the list (δdn , ..., δn−1) of length at least θ log1/p(n) and no more than 3
2 log1/p(n), and such

that if rn denotes the distance between the two runs, limn→∞ rn/n → (1 − κ). We have observed

that such a sequence can be chosen with limn→∞ Pr(Gn) = 1. Write,

(2.87) Gn =
⊔

E∈Fn

E,

59



where Fn is the set of events E ⊂ Ω1 on which (δdn , δdn+1, ...δn−1) is fixed. Consider an event

E ∈ Fn. By Lemma 2.3.2 we have that,

(2.88) 1WE
(ω0)1E(ω1) sup

A∈A1
[0,dn]

B∈A1
n

‖[τH
I
n(ω)

t (A), B]‖ ≤ c0(ec1n
− νλησθ

log(1/p) (|t|+|t|β+1) − 1)e−ξ
ν(1−λ)η

2
rn .

Note that Eq. (2.85) and Lemma 2.3.2 imply that for each E ∈ Fn,

(2.89) Pr(WE ∩ Fn) ≥ 1− 2χ(1)nγβ+1e−(κ−α)ηn) − C̃ ′n−
(1−ν)λησθ

log(1/p) log1/p(n) ≡ Xn.

Clearly Xn → 1 as n → ∞. Now define Qn = tE∈FnE ∩WE ∩ Fn. By independence and Eq.

(2.89),

(2.90) Pr(Qn) =
∑
E∈Fn

Pr(E) Pr(WE ∩ Fn) ≥ Xn

∑
E∈Fn

Pr(E) = Xn Pr(Gn),

which shows that Pr(Qn)→ 1 as n→∞.

We now show that the transmission time has a deterministic lower bound on the event Qn.

Eqs. (2.86) and (2.88) give the bound,

(2.91) 1Qn(ω) sup
A∈A1

0

B∈A1
n

‖[τHn(ω)
t (A), B]‖ ≤ (1 + |t|β)n−(γβ+1)e−αηn

+ c0(ec1n
− νλησθ

log(1/p) (|t|+|t|β+1) − 1)e−ξ
ν(1−λ)η

2
rn

It follows that

(2.92) 1Qntn(e−αηn) ≥ min{(1
2n

γβ+1 − 1)
1
β , Yn} ≡ xn,

where

(2.93) Yn =

n λησθ
log(1/p)

2c1
log

(
1 +

1

2c0
e(ξ

ν(1−λ)
2

rn
n
−α)ηn

) 1
β+1

.
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Since limn→∞ rn/n = (1− κ), we have that

(2.94)
n

( νλησθ
log(1/p)

+1)/(β+1)

Yn

converges to a positive constant, provided

(2.95) ξ
ν(1− λ)(1− κ)

2
> α

One can check that Eq. (2.95) can be satisfied only if α < 1/3. In this case, ν and ξ close to 1 can

be chosen so Eq. (2.95) is satisfied only if

(2.96) κ ∈ (α, 1− 2α) and λ ∈ (0, 1− 2α

1− κ
).

If Eq. (2.95) is satisfied, then Eq. (2.94) implies that

(2.97) lim
n→∞

nγ

Yn
= 0

provided

(2.98) η >
[γ(β + 1)− 1]

νλσθ
log(1/p).

We conclude that if Eq. (2.98) is satisfied, then nγ/xn → 0.

We can choose parameters so Eq. (2.98) is satisfied if η is larger than

(2.99) inf
[γ(β + 1)− 1]

νλσθ
log(1/p) =

2[γ(β + 1)− 1]

1− 2α
1−α

log(1/p),

where the infimum is taken over parameter values satisfying Eqs. (2.96) and (2.95). �

The following general proposition is needed to adapt the proof of Theorem 2.2.3 to the ther-

modynamic limit.

Proposition 2.3.2. Suppose Φ1,Φ2 : P0(Z)→ Aloc
Z are two F -norm bounded interactions with

respect to some F -function. Let Hj
Λ =

∑
X⊆Λ Φj(X) denote the corresponding local Hamiltonians

for each finite volume Λ ⊂ Z. Let τt denote the thermodynamic limit of the model Φ1 + Φ2. Then
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the following limit holds,

(2.100) τt = lim
Λ2↑Z

lim
Λ1↑Z

τ
H1

Λ1
+H2

Λ2
t

where the limits are taken along any increasing, exhaustive sequences of finite subsets of Z. For

each finite Λ ⊂ Z, limΛ1↑Z τ
H1

Λ1
+H2

Λ

t can be expressed in terms of the interaction picture:

(2.101) lim
Λ1↑Z

τ
H1

Λ1
+H2

Λ

t = τΛ,I
t ◦ τ0

t ,

where τ0
t is the thermodynamic limit of the model Φ1, and τΛ,I

t is the dynamics generated by the

time-dependent, quasi-local Hamiltonian τ0
t (H2

Λ).

Armed with Proposition 2.3.2, the proof of Theorem 2.2.4 is nearly identical to the proof of

Theorem 2.2.3. Using the decomposition (2.101), one can show that the bound (2.75) in Lemma

2.3.2 holds with τ
HI
n

t replaced by τΛ,I
t , uniformly for intervals Λ ⊇ [0, n]. One can then obtain

the bound (2.91) with τHnt replaced by τ I;Λt ◦ τ0
t . Taking the limit Λ ↑ Z gives this bound for the

thermodynamic limit, and the proof proceeds exactly as before.

2.4. Applications

As mentioned before, MBL in the sense of dynamical localization without an energy restriction,

has been rigorously established only for the random XY chain and partial results exists for the

quantum Ising chain. Naturally, applications of the results in this paper, at the moment, are also

restricted to these two models. An extension we will not discuss in detail here is to fermion chains.

Our arguments go through without change as long the same obvious analogous conditions are

satisfied. Generalizing in another direction, one could consider non-random quasi-periodic chains

with localization properties such as the Fibonacci chain [60] or the fermion models studied by

Mastropietro [61,62].

2.4.1. The Disordered XY Chain. Consider three real-valued sequences µj , γj and ωj .

These sequences may be random. The finite volume anisotropic XY Hamiltonian in an external
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field in the z-direction is given by the Hamiltonian

(2.102) HXY
n =

n−1∑
j=0

µj [(1 + γj)σ
x
j σ

x
j+1 + (1− γj)σyj σ

y
j+1] + λ

n∑
j=0

ωjσ
z
j ,

acting on
⊗n

x=0 C2. Here σxj , σ
y
j , σ

z
j ∈ Aj denote the Pauli spin matrices acting on the jth spin. It

is well known that the many-body XY Hamiltonian can be written in terms of an effective one-body

Hamiltonian via the Jordan-Wigner transformation [58]:

(2.103) HXY
n = C∗MnC,

where Ct = (c0, ..., cn, c
∗
0, ..., c

∗
n) is a column vector of operators cj given by

cj =
1

2
(σxj − iσ

y
j )

j−1∏
k=0

σzk,

and Mn is a 2×2 block matrix,

Mn =

 An Bn

−Bn −An


with

An =



ω0 −µ0 0 0 0

−µ0
. . .

. . . 0 0

0
. . .

. . .
. . . 0

0 0
. . .

. . . −µn

0 0 0 −µn ωn


,

and

Bn =



0 −µ0γ0 0 0 0

µ0γ0
. . .

. . . 0 0

0
. . .

. . .
. . . 0

0 0
. . .

. . . −µnγn

0 0 0 µnγn 0


.

The following result was proved in [46]:
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Theorem 2.4.1. Suppose that the matrices Mn are exponentially dynamically localized in the

following sense: there exist positive constants C and η such that for any integers n ≥ 0 and

j, k ∈ [0, n+ 1],

(2.104) E[sup
t∈R
|(e−itMn)j,k|+ |(e−itMn)j,n+k+1|] ≤ Ce−η|j−k|.

Then the Heisenberg dynamics τ
HXY
n

t of the XY -chain is exponentially dynamically localized, uni-

formly in time, with χ(x) = 4x.

Theorem 2.4.1 shows that if the sequences µj , γj and ωj are such that dynamical localization

for the Mn holds, then Theorem 2.2.3 applies to the XY chain. If, in addition supj µj and supj γj

are almost surely finite, then the XY chain satisfies the hypotheses of Theorem 2.2.4.

There are several instances in which the matrices Mn are known to satisfy (2.104). For example,

if γj = 0 and µj = 1 for all j, and the ωj are i.i.d. with compactly supported density, then

Bn = 0 and An is the finite volume Anderson model. In this case it is well known that (2.104)

holds [55]. In [37] a large class of random block operators were shown to exhibit exponential

dynamical localization at high disorder. Under the assumption that µj and γj are deterministic

and bounded, and that the ωj are i.i.d. with sufficiently smooth distribution, this class of random

block operators includes Mn and (2.104) holds for sufficiently large |λ|. Therefore in these models

the conditions of theorems 2.2.2, 2.2.3 and 2.2.4 are satisfied.

The anisotropic case was also investigated in [22]. The methods there prove localization of

the Mn for ωj with compactly supported distribution contained in (−∞,−2) or (2,∞). For these

results smoothness of the distribution is not needed, however the method produces a bound with a

stretched exponential, not an exponential as in (2.104). This localization bound is shown to imply

a uniform in time localization bound for the XY chain where the decay is given by a stretched

exponential. Therefore disordered anisotropic XY models have LIOMs, as shown by Theorem

2.2.2, but our results do not imply robustness of long transmission times under perturbation.

2.4.2. The Quantum Ising Chain. Another model that has been widely discussed in the

literature is the quantum Ising with random coefficients. For concreteness, consider the following
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family of Hamiltonians for a spin-1/2 systems on a chain [a, b] ⊂ Z:

(2.105) H[a,b] =
b−1∑
x=a

Jxσ
3
xσ

3
x+1 +

b∑
x=a

γΓxσ
1
x + hxσ

3
x,

where (Jx), (Γx), and (hx) are three independent sequences of i.i.d. random variables, each with

bounded density of compact support.

Mathematical work by John Imbrie and a variety of numerical results point towards the existence

of a description of this model in terms of LIOMs of the first kind (Definition 2.2.2). To state the

various claims we need to introduce the assumptions made by Imbrie [52]. Let λ
[a,b]
α denote an

enumeration of the eigenvalues, which are almost surely simple.

Imbrie’s Assumption: There exist γ0, such that for all γ ∈ (−γ0, γ0), there exists constants ν, C > 0,

such that for all δ > 0, a < b ∈ Z we have

(2.106) Pr(min
α 6=β
|λ[a,b]
α − λ[a,b]

β | < δ) ≤ δνCb−a+1.

In [52] Imbrie uses a systematic perturbation theory which, under his assumptions, he argues

combines with a multi-scale analysis to prove detailed properties about the eigenvectors of the

Hamiltonians H[a,b] for sufficiently small γ, uniformly in the length of the chain. We should note,

however, that among experts in the multiscale analysis approach to proving localization there is no

agreement that such an argument can indeed be carried out along the lines described in [52].

In the review paper [53, Section 4.3] the following implications of the perturbation analysis

of [52] are stated: H[a,b] is diagonalized by a quasi-local unitary transformation and the resulting

energy eigenvalues when labeled by Ising configurations take the form of a random Ising model with

multi-spin interactions of strong decay, i.e., something very similar to the LIOM picture we define

in Definition 2.2.2. The LIOM representation is explained by starting from Imbrie’s localization

property for the eigenvectors ψ[a,b] which reads as follows: there exists κ > 0 such that for all

sufficiently long finite intervals [a, b] containing the origin one has∣∣∣∣∣1− E

[∑
α

ρα|〈ψα, σ3
0ψα〉|

]∣∣∣∣∣ ≤ γκ,
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where ρα is a probability distribution such as

ρα =
e−βλ

[a,b]
α∑

γ e
−βλ[a,b]

γ

.

In the spirit of these results it appears that the disordered quantum Ising chain may indeed be

a model where the exponential dynamical localization of Definition 2.2.1 and the LIOM picture of

Definition 2.2.2 indeed both hold.

2.5. Appendix: Lieb-Robinson Bounds

In this appendix we develop a bound on the velocity of propagation under the Heisenberg

dynamics which ignores interaction terms supported in a given subset of the lattice. We use the

results of [71], in which Lieb-Robinson bounds which do not depend on on-site interactions are

developed for Hamiltonians expressed in terms of time-dependent interactions.

Let (Γ, d) denote a countable metric space, and let P0(Γ) denote the collection of finite subsets

of Γ. Assign a spin Hilbert space Hx to each x ∈ Γ. The algebra of local observables is given by

Aloc = ∪X∈P0(Γ)AX , where AX =
⊗

x∈X B(H). A time-dependent interaction Φ : R × P0(Γ) is

called continuous if t 7→ Φ(t,X) is norm continuous for every X ∈ P0(Γ).

To measure the spatial decay of the interaction we introduce the notion of an F -function. Let

(Γ, d) denote a countable metric space. Then an F -function on (Γ, d) is a function F : [0,∞) →

(0,∞) such that

(1) F is non-increasing.

(2) F is integrable, i.e.,

(2.107) ‖F‖ = sup
x∈Γ

∑
y∈Γ

F (d(x, y)) <∞.

(3) F satisfies the convolution identity,

(2.108) CF = sup
x,y∈Γ

1

F (d(x, y))

∑
z∈Γ

F (d(x, z))F (d(z, y)) <∞.
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If µ > 0, it is easy to show that Fµ(x) = e−µxF (x) also defines an F function on (Γ, d) with

‖Fµ‖ ≤ ‖F‖ and CFµ ≤ CF .

Given an F -function F , we denote by BF the set of continuous interactions Φ : R×P0(Γ)→ Aloc

such that the function on R

(2.109) t 7→ sup
x,y∈Γ

1

F (d(x, y))

∑
x,y∈X
|X|>1

‖Φ(t,X)‖

is locally bounded.

Theorem 2.5.1 (Theorem 3.1 in [71]). Let Φ ∈ BFµ for some F -function F and µ > 0, and let

X,Y ∈ P0(Γ) with X ∩ Y = ∅. Then for any Λ ∈ P0(Γ) with X ∪ Y ⊆ Λ, we have

(2.110) sup
A∈A1

X

B∈A1
Y

‖[τHΛ
t (A), B]‖ ≤ 2‖F‖

CFµ
min{|X|, |Y |}(e2CFµI(t) − 1)e−µd(X,Y )

for every t ∈ R, where

(2.111) I(t) =

∫ max{0,t}

min{0,t}
sup
x,y∈Γ

eµd(x,y)

F (d(x, y))

∑
x,y∈X
|X|>1

‖Φ(s,X)‖ds.

We will now apply the previous theorem to obtain a Lieb-Robinson bound which ignores inter-

action terms in certain parts of the lattice. For simplicity we restrict ourselves to one-dimensional

finite volume systems. Neither of these restrictions is essential.

Suppose that we have a quantum spin chain H =
⊗n

x=0Hx on the interval Λn = [0, n] ⊂ Z+

together with a time-dependent Hamiltonian H(t) generated by an interaction Φ(t) : P(Λn) →

B(H). Let I = {Ij}mj=1 be a collection of disjoint subintervals Ij = [aj , bj ] ⊂ Λn, satisfying

bj < aj+1. For purposes of notation let b0 = 0 and am+1 = n. We seek to define an equivalent spin

chain in which the spins located on the sites [bj , aj+1] are identified. Define the contracted lattice

ΓI by,

ΓI = ∪mj=1[aj , bj) ∪ {n}
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Define a map C : Λn → ΓI by,

(2.112) C(x) =


aj if x ∈ [bj−1, aj ] for some j = 1, 2, ...,m+ 1

x Otherwise

Note that C maps a site in Λn to its corresponding site in ΓI . For each x ∈ ΓI , define

(2.113) H′x =
⊗

z∈C−1({x})

Hz

Then
⊗n

x=0Hx =
⊗

x∈ΓI
H′x, and an observable which has support X in AΛn has support C(X) in

AΓI . Define an interaction Φ̃(t) on ΓI by,

(2.114) Φ̃(t)(X) =
∑
Z⊆Λn
C(Z)=X

Φ(t)(Z)

Then Φ̃ and Φ generate the same Hamiltonian. With this setup we have the following proposition.

Theorem 2.5.2. Suppose d is a metric on ΓI . Let µ > 0 and let F denote any F -function on

(ΓI , d). Then for any X,Y ⊆ Λn with C(X) ∩ C(Y ) = ∅ we have,

(2.115) sup
A∈A1

X

B∈A1
Y

‖[τHt (A), B]‖ ≤ 2‖F‖
CFµ

min{|C(X)|, |C(Y )|}(e2CFµI(t) − 1)e−µd(C(X),C(Y ))

holds for all t ∈ R, where

(2.116) I(t) =

∫ max{0,t}

min{0,t}
sup

x,y∈ΓI

eµd(x,y)

F (d(x, y))

∑
X⊆ΓI :
x,y∈X,
|X|>1

‖Φ̃(s)(X)‖ds.

Proof. Apply Theorem 2.5.1 to the spin model Φ̃. �

A few remarks about this theorem need to be made. Note that

(2.117)
∑

X⊆ΓI :
x,y∈X,
|X|>1

‖Φ̃(t)(X)‖ =
∑

X⊆ΓI :
x,y∈X,
|X|>1

‖
∑
Z⊆Λn
C(Z)=X

Φ(t)(Z)‖ ≤
∑
Z⊆Λn:
x,y∈Z,
|C(Z)|>1

‖Φ(t)(Z)‖
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for any pair x, y ∈ ΓI . If Z ⊂ [bj−1, aj ] for some j, then C(Z) will contain at most one point of

ΓI . Therefore Theorem 2.5.2 provides an upper bound on the speed of propagation which excludes

elements from the original interaction with support Z.

While Theorem 2.5.2 was stated for an arbitrary metric d on ΓI , there are two natural metrics

which both allow (ΓI , d) to be isometrically embedded into Z+. One choice to simply restrict the

usual metric on Z+ to ΓI . Another choice is to define d so that (ΓI , d) isometrically embeds into

[0, L], where L =
∑m

j=1(bj−aj). With either of these metrics, given an F -function F on Z+ with the

usual metric, the constants in Theorem 2.5.2 can be chosen to be c0 = 2‖F‖/CFµ and c1 = 2CFµ .

In particular, these constants do not depend on n or the collection of intervals I. This follows from

the fact that ΓI isometrically embeds into (Z+, | · |) when equipped with either of these metrics.
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CHAPTER 3

Lieb-Robinson bounds and strongly continuous dynamics for a

class of many-body fermion systems in Rd

3.1. Introduction

The goal of this paper is to study propagation estimates for interacting fermion systems in Rd,

d ≥ 1, and to apply them to construct the infinite-volume dynamics for a class of such systems

as a strongly continuous one-parameter group of automorphisms of the standard canonical anti-

commutation relations (CAR) algebra. We introduce a class of short-range, ultra-violet-regularized

two-body interactions for which this is possible. Without the use of an ultra-violet (UV) cut-off of

some kind, such a result cannot be expected to hold. See, for example, the discussion in [13, In-

troduction to Section 6.3]. Nevertheless, as Sakai notes in the last paragraph of his book [79],

constructing the dynamics for interacting systems is one of the most important problems. To

address this problem, a common approach is to consider the dynamics in representations of the

algebra of observables associated with a class of sufficiently regular states. This is not our approach

here. Instead we introduce a UV regularization of the interactions. This allow us to construct the

infinite system dynamics as automorphisms of the CAR algebra of observables that depend con-

tinuously on time. A typical situation where it is advantageous to consider the dynamics on the

observables algebra of the infinite system is in non-equilibrium statistical mechanics, where until

now one would either use a quasi-free dynamics (as, e.g., in [39]) or work in a lattice setting where

UV regularization is provided by the lattice (see, e.g., [8,9,45,49], and [77,78] for the original and

fundamental existence result for quantum spin systems.).

One broad class of models in which UV degrees of freedom are naturally absent are mean field

models and related limiting regimes and the dynamics of such models have been studied including

in infinite volume. For example, well-posedness for the Hartree equation in infinite volume, which

describes the mean field limit [33], has been proved by Lewin and Sabin in [56].

70



The regularization we adopt in this paper is smearing the interactions by Gaussians parame-

terized by σ > 0 in such a way that the pair interaction between point particles is recovered in

the limit σ → 0 (See Appendix 3.6 for a proof). Formally, in second quantization, this leads to a

Hamiltonian of the form

(3.1) Hσ
Λ =

∫
Rd

(∇a∗x∇ax + V (x)a∗xax)dx+
1

2

∫
Λ

∫
Λ
W (x− y)a∗(ϕσx)a∗(ϕσy )a(ϕσy )a(ϕσx)dxdy,

where V is an external potential such as a smooth periodic function, and W is a short-range two-

body interaction. We defer stating precise conditions on V and W until Section 3.2. The smearing

is only needed in the interaction and one can take for ϕσx an L1-normalized Gaussian of width σ and

centered at x ∈ Rd. The parameter σ can be interpreted as the size of the particles and, as discussed

in Appendix 3.6, restricted to the N -particle Hilbert space, for any finite number of particles N ,

in either a finite or infinite volume, the dynamics converges to the standard Schrödinger dynamics

generated by the self-adjoint Hamiltonian HN given by

(3.2) HN =

N∑
k=1

(−∆k + V (xk)) +
∑

1≤k<l≤N
W (xk − xl).

Having a state-independent definition of the dynamics has both conceptual and practical ad-

vantages. From early on it was realized however that the subtle, non-robust, property of (thermo-

dynamic) stability may be an obstacle to using perturbation series to define Heisenberg dynamics

for infinite systems in the continuum [32]. Therefore, it is not surprising that attempts were made

to construct toy models of interacting theories for which stability could be proved. An early exam-

ple is [84]. In [85] an infinite-volume dynamics for interacting fields is obtained using relativistic

locality (Minkowski space). The only previous Euclidean construction of infinite-system dynamics

on the CAR algebra over L2(Rd) that explicitly considers a regularized pair interaction, as far as

we are aware, is by Narnhofer and Thirring [72]. In that work the authors were motivated by the

desire to preserve the Galilean invariance of the dynamics, which led them to employ a somewhat

contrived UV regularization. The smearing of the form (3.1) used here is, we believe, more natural

and likely to faithfully reproduce the low-energy physics.
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Before summarizing our results, we point out that defining a dynamics on the CAR algebra over

L2(Rd) is by itself not the issue. Including pair interactions in a densely defined self-adjoint Hamil-

tonian on Fock space has been accomplished a long time ago. The corresponding one-parameter

group of unitaries can be used to define a dynamics as a group of automorphisms on the bounded

operators on Fock space, which includes the CAR algebra. This dynamics, however, is in general

not strongly continuous. This is because the commutator of the unregularized interaction term with

a creation or annihilation operator is unbounded.

Our proof of convergence of the thermodynamic limit of the infinite-volume dynamics hinges on

a propagation estimate of Lieb-Robinson type [57] for systems in which the interaction is only active

in a bounded volume Λ, with estimates that are uniform in Λ. Let τΛ
t (·) denote the Heisenberg

evolution with the interactions restricted to Λ (see (3.26) for the precise definition) and define the

one-particle Schrödinger evolution in the usual way:

(3.3) ft = e−it(−∆+V )f, f ∈ L2(Rd), t ∈ R.

Lieb-Robinson Bound for Schrödinger operators. Let V be given as the Fourier transform

of a finite Borel measure of compact support on Rd. For σ > 0 and x ∈ Rd, denote by ϕσx the L1

normalized Gaussian on Rd with mean x and variance σ. Then, there exist constants C1, C2, C3 > 0,

such that for all f ∈ L2(Rd) and t ∈ R one has

(3.4)
∣∣〈e−it(−∆+V )f, ϕσx〉

∣∣ ≤ C1e
C2|t| ln |t|

∫
Rd

dy e
− C3
t2+1

|x−y||f(y)|.

A more detailed estimate and explicit constants are given in Proposition 3.3.1 and Corollary

3.3.1. For discrete Schrödinger operators on graphs a Lieb-Robinson type propagation estimate

holds for any real-valued diagonal potential [4].

Let τΛ
t , be the Heisenberg dynamics generated by HΛ in (3.1) for bounded Λ ⊂ Rd, and t ∈ R.

We will prove the following result as Theorem 3.2.5.

Propagation Bound for many-body fermion dynamics. Let W ∈ L∞(Rd) be real-valued

and satisfying W (−x) = W (x) and |W (x)| ≤ Ce−a|x|, for some C, a > 0. Then, there exist

continuous functions C(t), a(t) > 0 such that for all bounded and measurable Λ ⊂ Rd, and f, g ∈
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L1(Rd) ∩ L2(Rd), one has the following bounds:

‖{τΛ
t (a(f)), a∗(g)} − 〈e−it(−∆+V )f, g〉1‖ ≤ ‖f‖1‖g‖1eC(t)e−a(t)d(supp(f),supp(g))(3.5)

‖{τΛ
t (a(f)), a(g)}‖ ≤ ‖f‖1‖g‖1eC(t)e−a(t)d(supp(f),supp(g))(3.6)

where d(supp(f), supp(g)) denotes the distance between the essential supports of f and g.

Explicit forms of C(t) and a(t) are given in Theorem 3.2.5. This Lieb-Robinson type bound

provides localization estimates for general elements in the CAR algebra by the usual algebraic

relations in the same way as for lattice fermion systems as in [18,48,69].

As an application of this propagation bound above, which is of independent interest, we then

prove the existence and continuity of the infinite systems dynamics. See Theorem 3.2.6 for the

precise statement. There are other approaches to proving the convergence of the dynamics in the

thermodynamic limit. Using propagation bounds, however, yields a short and intuitive proof.

Strongly continuous infinite-volume dynamics. There exists a strongly continuous one-

parameter group of automorphism of the CAR algebra over L2(Rd), {τt}t∈R, such that

(3.7) lim
Λ↑Rd

τΛ
t (a(f)) = τt(a(f)), for all f ∈ L2(Rd).

The strategy for proving existence of the thermodynamic limit of the Heisenberg dynamics

using propagation bounds appears to be quite general and has been employed successfully for

lattice systems [13,67,71]. This method works whenever the interactions restricted to a bounded

region are described by a bounded self-adjoint operator. It is worth noting that the free part of

the dynamics does not require a cut-off for this result to hold. Due to its uniformity in Λ, the

propagation bound (3.5) extends to the infinite-system dynamics.

Several generalizations of the propagation bounds could be considered. For Schrödinger oper-

ators, we expect that the restrictions on V can be relaxed. The many-body bounds are derived

here for regularized pair interactions only. Our approach can handle k-body terms with virtually

no changes. A different type of extension of obvious interest would be to consider fermions in an

external magnetic field. In contrast, constructing the many-body dynamics for boson systems one

has to face an additional element of unboundedness that has long been understood to force one to

consider a weaker topology to express the continuity in time [89]. Already for boson lattice systems,

73



such as oscillator lattices, Lieb-Robinson bounds can be derived but one finds bounds that are no

longer in terms of the operator norm of the observables [6,65]. Such bounds can nevertheless still

be used to prove the existence of infinite-systems dynamics [67]. Another approach to define the

dynamics of infinite oscillator lattices was developed by Buchholz [19], who constructs a strongly

continuous dynamics on the Resolvent Algebra [20].

The existence of propagation bounds of Lieb-Robinson type and the strongly continuous infinite-

volume dynamics for many-body systems with Hamiltonians of the form (3.1) provide a new avenue

for applications. For example, if we choose for V a periodic potential, such that −∆ + V has

a band structure with a gap, the non-interacting many-body ground state at suitable fermion

density is gapped. We expect this gap to persist in the presence of interactions as in (3.1) with

W sufficiently small. Stability of the ground state gap has been proved for broad classes of lattice

systems [15,16,25,30,40,47,54,63,70,80]. We believe that an analogous result for the continuum

systems studied in this paper is now within reach.

3.2. Model and statement of main results

Let d ≥ 1 and take ∆ to be the Laplace operator on Rd. For any real-valued V ∈ L∞(Rd), we

will denote by

(3.8) H1 = −∆ + V

the corresponding (self-adjoint) Schrödinger operator with domain H2(Rd) ⊂ L2(Rd), see [75] for

more details. As required, we will impose further conditions on V , e.g. see (3.18).

Our goal is to analyze a class of operators on the fermionic Fock space. We will follow closely

the notation in [13], see specifically Section 5.2.1, and refer the reader there for more details. Let

us denote by

(3.9) F− =

∞⊕
n=0

(
L2(Rd)⊗n

)−
the anti-symmetric Fock space (Hilbert space) generated by L2(Rd). In the above, L2(Rd)⊗n is short

for
⊗n

k=1 L
2(Rd) and ( · )− denotes anti-symmetrization. For each f ∈ L2(Rd), take a(f) ∈ B(F−),

the bounded linear operators over F−, to be the annihilation operator corresponding to f , and
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denote by a∗(f), its adjoint, the corresponding creation operator. It is well-known that these

creation and annihilation operators satisfy the canonical anti-commutation relations (CAR)

(3.10)
{
a(f), a(g)

}
= 0 and

{
a(f), a∗(g)

}
= 〈f, g〉1 for all f, g ∈ L2(Rd)

where {A,B} = AB +BA denotes the anti-commutator, 〈·, ·〉 the scalar product in L2(Rd), and 1

is the identity acting on F−. In addition, one has that

(3.11) ‖a∗(f)‖ = ‖a(f)‖ = ‖f‖2 for all f ∈ L2(Rd)

where here, and in the following, ‖ · ‖p will refer to the Lp-norm for p ∈ [1,∞] and ‖ · ‖ will denote

the operator norm.

The models we will consider are defined in terms of a particular class of annihilation and creation

operators. Let σ > 0, take x ∈ Rd, and consider the Gaussian ϕσx : Rd → R with

(3.12) ϕσx(y) =
1

(2πσ2)d/2
e−
|y−x|2

2σ2 for all y ∈ Rd .

We say that ϕσx is centered at x ∈ Rd with variance σ2. We have chosen an L1-normalization, i.e.

‖ϕσx‖1 = 1 for all x ∈ Rd. Given (3.11), it is clear that for any x ∈ Rd,

(3.13) ‖a∗(ϕσx)‖2 = ‖a(ϕσx)‖2 = ‖ϕσx‖22 = (4πσ2)−d/2 =: Cσ

where we have introduced the notation Cσ > 0 as this quantity will enter our estimates frequently.

For any bounded and measurable set Λ ⊂ Rd, we will analyze the operator

(3.14) Hσ
Λ = dΓ(H1) +W σ

Λ

acting on F−, where dΓ(H1) denotes the second quantization of H1, again see [13] for the definition,

and the interaction W σ
Λ is given by

(3.15) W σ
Λ =

1

2

∫
Rd

∫
Rd

dx dyWΛ(x, y)a∗(ϕσx)a∗(ϕσy )a(ϕσy )a(ϕσx)

where WΛ : Rd × Rd → R has the form WΛ(x, y) = χΛ×Λ(x, y)W (x − y) for some real-valued

W ∈ L∞(Rd) and χΛ×Λ(x, y) denotes the indicator function of the set Λ×Λ. In this case, for each
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fixed σ > 0 and any Λ ⊂ Rd that is bounded and measurable, we have that

(3.16) ‖W σ
Λ‖ ≤

1

2
C2
σ

∫
Rd

∫
Rd

dx dy |WΛ(x, y)| ≤ 1

2

(
1

4πσ2

)d
‖W‖∞|Λ|2

where |Λ| denotes the Lebesgue measure of Λ. Thus for bounded W , W σ
Λ ∈ B(F−) for each choice

of σ > 0 and Λ ⊂ Rd as above. We conclude that, in these cases, Hσ
Λ is a well-defined self-adjoint

operator on the anti-symmetric Fock space F−.

As we progress, more assumptions will need to be made on W . For ease of later reference, we

state them here.

Assumption 3.2.1 (On W ). Let W : Rd → R satisfy

(1) W ∈ L∞(Rd) is real-valued;

(2) W is symmetric, i.e. W (−x) = W (x) for almost every x ∈ Rd;

(3) W is short-range, i.e. there are positive numbers a and cW for which

(3.17) |W (x)| ≤ cW e−a|x| for almost every x ∈ Rd .

3.2.1. Bounds on the propagator of one-particle Schrödinger operators. In this sec-

tion, we derive propagation bounds for one-particle Schrödinger operators with the form H1 as in

(3.8). To make a precise statement, we require the following from the potential V .

Assumption 3.2.2 (On V ). Let V : Rd → C have the form

(3.18) V (x) =

∫
Rd

dµ(k) e−ik·x

where µ : Borel(Rd)→ R is a Borel measure on Rd satisfying:

(1) µ has support contained in a ball, i.e. there is some M > 0 and suppµ ⊂ BM (0);

(2) µ = µ+ − µ− where µ+ and µ− are non-negative finite measures on Borel(Rd), i.e.

µ±(Rd) <∞. We set |µ| = µ+ + µ−;

(3) µ is even, i.e. µ(A) = µ(−A) for all A ∈ Borel(Rd).

Under these assumptions, V is the Fourier transform of a signed, compactly supported, finite

measure µ, which is real-valued and bounded. Two parameters that will appear in estimates are
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Cµ and M , to characterize V . They need not be chosen optimally but should satisfy

(3.19)

∫
Rd

d|µ|(x) ≤ Cµ, sup{|k| | k ∈ supp(|µ|)} ≤M.

Two classes of examples of potentials V satisfying Assumption 3.2.2 are the following.

(i) Let V satisfy Assumption 3.2.2 and suppose the corresponding measure µ has a density f ∈

L1(Rd). Then, these assumptions imply that f has compact support, that f(x) = f(−x), and that

(3.20) V (x) =

∫
Rd

dk f(k)e−ik·x.

For example, our class of potentials V includes V (x) = sinck(x) for all k ∈ N for which the density

is the k-fold convolution of the indicator function f(y) = 1[−1,1](y).

(ii) Let V satisfy Assumption 3.2.2 and suppose the corresponding measure µ satisfies: There is

some N ∈ N, points {an}Nn=1 in Rd, and numbers {bn}Nn=1 in R for which

(3.21) µ(A) =
1

2

N∑
n=1

bn(δan(A) + δ−an(A)) for any A ∈ Borel(Rd).

Here δ(·) denotes the Dirac measure. This form gives rise to potentials V with

(3.22) V (x) =
N∑
n=1

bn cos(an · x).

The main result of this section is:

Theorem 3.2.3 (Lieb-Robinson bound for Schrödinger operators). Let V satisfy Assump-

tion 3.2.2 and consider the Schrödinger operator H1 = −∆ + V as defined in (3.8). Then there

exist constants C1, C2, C3 > 0 depending on d, µ, and σ such that the estimate

(3.23)
∣∣〈e−itH1f, ϕσx〉

∣∣ ≤ C1e
C2|t| ln |t|

∫
Rd

dy e
− C3
t2+1

|x−y||f(y)|

holds for all t ∈ R and f ∈ L2(Rd).

The constants C1, C2, and C3 are derived in the proof of Corollary 3.3.1.

Remarks 3.2.4. (i) Theorem 3.2.3 relies, in general, on the smoothness of the class of test

functions ϕσy that we used to probe the locality properties of the dynamics. For example, we can see
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from an explicit computation in the case of V = 0, that the exponential decay does generally not

hold when the Gaussians is replaced by a non-smooth functions such as, for example a characteristic

function. Using the formula

(3.24) (e−it(−∆)ψ)(x) =
1

(4πit)d/2

∫
Rd

dy e
i|x−y|2

4t ψ(y),

valid for t 6= 0 and general ψ ∈ L1(Rd) ∩ L2(Rd), a straightforward calculation, in the case d = 1,

shows that the leading behavior of |(e−it(−∆)χ[−1,1])(x)|, for t > 0 and |x| large is given by

|(e−it(−∆)χ[−1,1])(x)| ∼ 2

√
t

π

x

x2 − 1
sin

x

2t
.

(ii) In the case V = 0 and for the Gaussians ϕσy another explicit computation (see e.g. [87, Sec.

7.3]), shows that

(3.25)
∣∣(e−it(−∆)ϕσy

)
(x)
∣∣ =

1

(2π)d/2
e
−σ

2|x−y|2

8t2+2σ4

(4t2 + σ4)d/4
.

Using this form one immediately sees that an estimate analogous to (3.4) holds with a Gaussian

distance dependence of the kernel.

(iii) In view of the first two remarks it is clear that Theorem 3.2.3 is far from optimal. It is also

likely that similar bounds hold for a broader class of potentials V .

3.2.2. Lieb-Robinson bounds and the thermodynamic limit. Our next results concern

Lieb-Robinson bounds for the Heisenberg dynamics associated to the operator Hσ
Λ defined in (3.14).

We begin by recalling the notion of dynamics on Fock space.

As before, let B(F−) denote the bounded linear operators on F−. For each σ > 0 and any

bounded, measurable Λ ⊂ Rd, we define the Heisenberg dynamics associated to Hσ
Λ for each t ∈ R

as the map τΛ
t : B(F−)→ B(F−) defined by

(3.26) τΛ
t (A) = eitH

σ
ΛAe−itH

σ
Λ for all A ∈ B(F−) .

We note that although τΛ
t (A) depends on σ, we have suppressed this in our notation.
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We will analyze this dynamics on the CAR algebra generated by the set
{
a(f), a∗(f) : f ∈

L2(Rd)
}

. Again, we refer to [13, Sec 5.2] for more details. In particular, we will focus our attention

to operators A = a(f) ∈ B(F−) for some f ∈ L2(Rd).

Let us also recall the free dynamics, i.e. the case where W =0 and there is no interaction. We

will denote this well-studied, free dynamics of the CAR algebra by

(3.27) τ∅t (a(f)) = eitdΓ(H1)a(f)e−itdΓ(H1), f ∈ L2(Rd), t ∈ R .

A straight forward calculation shows

(3.28) τ∅t (a(f)) = a(ft) where ft = e−itH1f.

Our goal is to examine the behavior of τΛ
t as Λ tends to Rd, and in particular, we wish to establish

the existence of a dynamics in this thermodynamic limit. To do so, we regard τΛ
t as a perturbation

of the infinite volume free dynamics τ∅t on the finite volume Λ. In this case, the key to constructing

the thermodynamic limit is an appropriate form of the Lieb-Robinson bound. To express the

Lieb-Robinson bound for this model, we find it convenient to introduce the non-negative function

(3.29) FΛ
t (f, g) = ‖{τΛ

t (a(f)), a∗(g)} − {τ∅t (a(f)), a∗(g)}‖+ ‖{τΛ
t (a(f)), a(g)}‖

Iteration is at the heart of most Lieb-Robinson bounds, and in the present context, our proof will

show that the function FΛ
t above iterates more simply than either term on the right-hand-side of

(3.29). In any case, we find the following Lieb-Robinson bound.

Theorem 3.2.5 (Lieb-Robinson bound). Fix σ > 0. Let V satisfy Assumption 3.2.2, W satisfy

Assumption 3.2.1, and for each t ∈ R and any bounded, measurable set Λ ⊂ Rd, denote by τΛ
t the

dynamics associated to Hσ
Λ as defined in (3.26). For any f, g ∈ L1(Rd) ∩ L2(Rd), the bound

(3.30) FΛ
t (f, g) ≤ D(t)(eP3(t) − 1)

∫
Rd

∫
Rd

dxdy e−
ct|x−y|

4 |f(x)||g(y)|

holds for functions D(t) ∼ ec|t|| ln |t||, P3 a polynomial of degree 6d+ 1 in |t|, and ct ∼ 1
1+t2

. Explicit

values for these functions are given in Section 3.4, see specifically Lemma 3.4.3 and Lemma 3.4.4.
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Remark 3.2.1. Here it is crucial to subtract the free time evolution

(3.31)
{
τ∅t (a∗(f)), a(g)

}
= 〈ft, g〉1

since |〈ft, g〉| does not, in general, decay exponentially; see Remark 3.2.4 (i).

Our main application concerns the existence of a dynamics in the thermodynamic limit. In

Section 3.5 we show how the following theorem is a consequence of the Λ-independent bounds

proven in Theorem 3.2.5.

Theorem 3.2.6. Under the assumptions of Theorem 3.2.5 there exists a strongly continuous

one-parameter group of automorphisms of the CAR algebra over L2(Rd), {τt}t∈R, such that for all

f ∈ L2(Rd) and any increasing sequence (Λn) of bounded subsets of Rd such that ∪nΛn = Rd,

(3.32) lim
n→∞

τΛn
t (a(f)) = τt(a(f))

in the operator norm topology, with convergence uniform in t in compact subsets of R.

3.3. Lieb-Robinson Bound for Schrödinger Operators. Proof of Theorem 3.2.3

In this section we use the notation H0 = −∆ and H1 = −∆ + V . To prove Theorem 3.2.3 we

will use a Dyson series expansion for eitH1 :

(3.33) e−itH1 = e−itH0 +
∞∑
n=1

(−i)n
∫ t

0
dtn · · ·

∫ t2

0
dt1 e

−i(t−tn)H0V e−i(tn−tn−1)H0V · · ·V eit1H0 .

Since V is bounded (by Assumption 3.2.2), this series is absolutely convergent in norm. We are

interested in estimating
∣∣(e−itH1ϕσy

)
(x)
∣∣, where ϕσy is the Gaussian function given in (3.12). Using

the Fourier representation of V (3.18), the integrand of the n-th term in the expansion (3.33)

applied to ϕσy can be expressed as follows:

(
e−i(t−tn)H0V e−i(tn−tn−1)H0V · · ·V eit1H0ϕσy

)
(x)(3.34)

=

∫
Rd

dµ(kn) · · ·
∫
Rd

dµ(k1)A(t1, ..., tn, t, k1, ..., kn, y, x)
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where

A(t1, ..., tn, t, k1, ..., kn, y, x) =
(
e−i(t−tn)H0Vkne

−i(tn−tn−1)H0Vkn−1 · · ·Vk1e
it1H0ϕσy

)
(x).(3.35)

Here Vk is the multiplication operator by Vk(x) = e−ik·x.

Lemma 3.3.1. Let n ∈ N. For all k1, ..., kn, y, x ∈ Rd, t ≥ tn ≥ ... ≥ t1 ≥ 0 one has

∣∣A(t1, ..., tn, t, k1, ..., kn, y, x)
∣∣ =

1

(2π)d/2
e
− σ2

8t2+2σ4

∣∣(x−y)−2
∑n
l=0(tl+1−tl)

∑l
j=1 kj

∣∣2
(4t2 + σ4)d/4

,(3.36)

where we use the conventions tn+1 = t, t0 = 0 and
∑0

j=1 = 0. Furthermore,

(3.37)
∣∣(e−itH0ϕσy

)
(x)
∣∣ =

1

(2π)d/2
e
−σ

2|x−y|2

8t2+2σ4

(4t2 + σ4)d/4
.

Proof. Let F be the unitary Fourier transform on Rd and F∗ be its inverse then we obtain

(3.38) A(t1, ...tn, t, k1, ..., kn, y, x) =
(
F∗Fe−i(t−tn)H0F∗FVknF∗ · · · FVk1F∗Feit1H0F∗Fϕσy

)
(x).

Now, for all t ∈ R, k ∈ Rd and ψ ∈ L2(Rd) we have Fe−itH0F∗ψ = e−i(·)
2tψ and FVkF∗ψ = ψ(·−k).

Therefore,

A(t1, ...tn, t, k1, ..., kn, y, x) =
1

(2π)d/2

∫
Rd

dk eikx
n∏
l=0

e−i(tl+1−tl)
(
k−

∑n
j=l+1 kj

)2(
Fϕσy

)
(k −

n∑
j=1

kj),

where we use the convention that
∑n

j=n+1 = 0. Next we use that

(Fϕσy )(k) =
1

(2π)d/2
e−ik·ye−

σ2|k|2
2

and perform a change of variables to obtain

(3.39)

A(t1, ...tn, t, k1, ..., kn, y, x) =
ei

∑n
j=1 kj ·(x−y)

(2π)d

∫
Rd

dk eik·(x−y)
n∏
l=0

e−i(tl+1−tl)
∣∣k+

∑l
j=1 kj

∣∣2
e−

σ2|k|2
2 ,
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where we use the convention
∑0

j=1 = 0. Multiplying out
∣∣k +

∑l
j=1 kj

∣∣2 = |k|2 + 2k ·
∑l

j=1 kj +∣∣∑l
j=1 kj

∣∣2, using
∑n

l=0(tl+1 − tl) = tn+1 − t0 = t and taking the absolute value give

∣∣A(t1, ...tn, t, k1, ..., kn, y, x)
∣∣ =

1

(2π)d

∣∣∣ ∫
Rd

dk eik·(x−y)e−i|k|
2te−2i

∑n
l=0(tl+1−tl)

∑l
j=1 k·kje−

σ2|k|2
2

∣∣∣.
Now, a calculation shows that for any c > 0 and a, b ∈ R

(3.40)
1

(2π)1/2

∣∣∣ ∫
R

dk eikbe−k
2(c+ia)

∣∣∣ =
e
− cb2

4(a2+c2)

(4(a2 + c2))1/4
.

Hence,

∣∣A(t1, ...tn, t, k1, ..., kn, y, x)
∣∣ =

1

(2π)d/2
1

(4t2 + σ4)d/4
e
− σ2

8t2+2σ4

∣∣(x−y)−2
∑n
l=0(tl+1−tl)

∑l
j=1 kj

∣∣2
,(3.41)

which proves (3.36). Identity (3.37) follows from an explicit calculation using the integral kernel of

e−itH0 , see e.g. [87, Sec. 7.3]. �

With this lemma we have arrived at the following estimate. For t ∈ R and x, y ∈ Rd, we have

∣∣(e−itH1 − e−itH0
)
ϕσy (x)

∣∣ ≤ 1

(2π)d/2
1

(4t2 + σ4)d/4

∞∑
n=1

∫
Rd

d|µ|(k1) · · ·
∫
Rd

d|µ|(kn)(3.42)

×
∫ |t|

0
dtn · · ·

∫ t2

0
dt1 e

− σ2

8t2+2σ4

∣∣(x−y)−2
∑n
l=0(tl+1−tl)

∑l
j=1 kj

∣∣2)
,

where, as before, we use the convention
∑0

j=1 = 0 and recall that |µ| = µ+ + µ−. By estimating

the RHS of this estimate, we will obtain the following proposition. Recall the definitions of Cµ and

M in (3.19).

Proposition 3.3.1. For all t ∈ R and x, y ∈ Rd, we have

∣∣(e−itH1−e−itH0
)
ϕσy (x)

∣∣ ≤ 1

(2π)d/2
1

(4t2 + σ4)d/4
(
e
− σ2|x−y|2

32t2+8σ4 (eCµ|t|−1)+
1√
2π
e
− |x−y|

4|t|M (ln
|x−y|

4MCµt2
−1)

eCµ|t|
)
.

Using (3.37) to bound |e−itH0ϕσy (x)|, it is then straightforward to obtain an estimate for

|e−itH1ϕσy (x)|. In our application, however, the following simplified estimate is easier to use.
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Corollary 3.3.1. There exist constants C1, C2, and C3, such that for all t ∈ R and x, y ∈ Rd,

we have

(3.43)
∣∣e−itH1ϕσy (x)

∣∣ ≤ C1e
C2|t| ln |t|−C3

|x−y|
1+t2 .

Proof of Proposition 3.3.1. Note that, as expected from translation invariance, the RHS

of (3.42) depends only on x − y. Therefore, w.l.o.g., we can assume y = 0. Let In, n ≥ 1, denote

the n-th term of the sum in the RHS of (3.42):

(3.44) In =

∫
Rd

d|µ|(k1) · · ·
∫
Rd

d|µ|(kn)

∫ |t|
0

dtn · · ·
∫ t2

0
dt1 e

− σ2

8t2+2σ4

∣∣(x−y)−2
∑n
l=0(tl+1−tl)

∑l
j=1 kj

∣∣2
.

Given x ∈ Rd, t ∈ R, we split the sum over n in (3.42) as follows:

(3.45) B0 =

N0∑
n=1

In, B1 =

∞∑
n=N0+1

In, with N0 =

[
|x|

(4|t|M)

]
,

where [a] denotes the integer part of a and M is as in (3.19).

First, if |x|
(4|t|M) ≥ 1, the first sum is non-empty and we estimate its terms as follows. Let

n ≤ |x|/(4|t|M), and note that for kj ∈ BM (0) with 1 ≤ j ≤ l ≤ n and |t| = tn+1 ≥ tn ≥ ... ≥ t0 = 0

(3.46)
∣∣∣ n∑
l=0

(tl+1 − tl)
l∑

j=1

kj

∣∣∣ ≤Mn
n∑
l=0

(tl+1 − tl) = Mn|t|.

Therefore, we obtain

(3.47)
∣∣x− 2

n∑
l=0

(tl+1 − tl)
l∑

j=1

kj
∣∣2 ≥ 1

4
|x|2

and

(3.48) B0 ≤ e
− σ2|x|2

32t2+8σ4

N0∑
n=1

Cnµ |t|n

n!
≤ e−

σ2|x|2

32t2+8σ4 (eCµ|t| − 1).

To estimate the terms in B1, note that the integrand in (3.44) is bounded by 1. Hence, using Cµ

defined in (3.19),

(3.49) B1 ≤
∞∑

n=N0+1

(Cµ|t|)n

n!
≤ (Cµ|t|)N0+1

(N0 + 1)!
eCµ|t|.

83



Stirling’s formula yields for all m ≥ 1 the bound

(3.50)
1

m!
≤ 1√

2π
em−m lnm.

Using this and N0 + 1 ≥ |x|/(4|t|M), we obtain

(3.51) B1 ≤
1√
2π
e
− |x|

4|t|M (ln
|x|

4MCµt2
−1)

eCµ|t|.

If |x|
(4|t|M) < 1, B0 = 0 and we estimate B1 as in (3.51) with N0 = 0.

The proposition is proved by combining the estimates (3.48) and (3.51). �

Proof of Corollary 3.3.1. We may again restrict ourselves to the case y = 0. Proposition

3.3.1 and (3.37) together immediately give the estimate

∣∣e−itH1ϕσ0 (x)
∣∣ ≤ 1

(2π)d/2
1

(4t2 + σ4)d/4

×

[
e
− σ2|x|2

8t2+2σ4 + e
− σ2|x|2

32t2+8σ4 (eCµ|t| − 1) +
1√
2π
e
− |x|

2

4M|t| (ln
|x|

4MCµt2
−1)

eCµ|t|

]
.

The last term in the square bracket is the estimate (3.51) for B1, which we can simplify by con-

sidering two cases for (x, t) ∈ Rd+1, namely |x|
4MCµt2

≥ e2, and |x|
4MCµt2

< e2. In the first case, we

have

(3.52) B1 ≤
e
− |x|

4|t|M +Cµ|t|
√

2π
.

On the other hand, if |x|
4MCµt2

< e2, we use the inequality e−u lnu ≤ e
1
e for all u > 0, to obtain

(3.53) B1 ≤
1√
2π
e

1
e ee

2Cµ|t|(lnCµ|t|+1)+Cµ|t|e
− |x|

4MCµt2
+e2

.

By bounding B1 by the sum of the RHSs of (3.52) and (3.53) and making a few more easy simpli-

fications we arrive at the following bound:

∣∣e−itH1ϕσ0 (x)
∣∣ ≤ 1

(2πσ2)d/2

×
[
e
− σ2|x|2

32t2+8σ4 eCµ|t| +
1√
2π
e
− |x|

4|t|M +Cµ|t| +
1√
2π
e

1
e ee

2Cµ|t|(lnCµ|t|+1)+Cµ|t|e
− |x|

4MCµt2
+e2
]
.
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To estimate the Gaussian decay of the first term between the square brackets by a simple

exponential, we use that for all u ∈ R, u2 ≥ u − 1/4. Furthermore, since u lnu ≥ u − 1, we also

have

eCµ|t| ≤ e1+Cµ|t| lnCµ|t|.

Using this and replacing the constant prefactors by their maximum, we find

∣∣e−itH1ϕσ0 (x)
∣∣ ≤ 1

(2πσ2)d/2
e

1
8σ2 + 1

e
+e2ee

2Cµ|t|(lnCµ|t|+2)
(
e
− σ2|x|

32t2+8σ4 + e−
|x|

4tM + e
− |x|

4MCµt2
)
.

Finally, we use the estimate

min
{ σ2

32t2 + 8σ4
,

1

4tM
,

1

4MCµt2

}
≥ 1

t2( 32
σ2 + 4MCµ) + 4tM + 8σ2

≥ 1

t2( 32
σ2 + 4MCµ + 2) + 2M2 + 8σ2

≥ 1
32
σ2 + 4MCµ + 2(M2 + 1) + 8σ2

1

t2 + 1
(3.54)

to bound the sum of three exponentials by

3e
−C3

|x|
t2+1 , with C3 =

1
32
σ2 + 4MCµ + 2(M2 + 1) + 8σ2

.

It is now straightforward to find suitable values for C1 and C2 for which the bound given in the

corollary holds. �

3.4. Many-body Lieb-Robinson bound. Proof of Theorem 3.2.5

The main goal of this section is to prove Theorem 3.2.5. We do so in three steps. First, in

Section 3.4.1 we establish a basic estimate which facilitates an iteration scheme; this is the content

of Lemma 3.4.1. Next, in Section 3.4.2, we estimate a kernel function which, among other things,

ultimately justifies the convergence of our iteration, see Lemma 3.4.2 and Lemma 3.4.3. Finally, in

Section 3.4.3 we perform the iteration and verify the bound claimed in Theorem 3.2.5.

3.4.1. A Preliminary Bound. In this section, we provide an estimate on the basic quantity

of interest in Theorem 3.2.5. Let us briefly recall the set-up. We have fixed σ > 0, taken V and

W satisfying Assumption 3.2.2 and Assumption 3.2.1 respectively, and introduced, see (3.29), the
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non-negative function

(3.55) FΛ
t (f, g) =

∥∥{τΛ
t (a(f)), a∗(g)} − {τ∅t (a(f)), a∗(g)}

∥∥+
∥∥{τΛ

t (a∗(f)), a∗(g)}
∥∥

for any bounded, measurable set Λ ⊂ Rd, t ∈ R, and functions f, g ∈ L2(Rd). Our first estimate is

as follows.

Lemma 3.4.1. Under the assumptions described above, for any t ≥ 0, we find that

FΛ
t (f, g) ≤ Cσ

∫ t

0
ds

∫
Rd

dxKt−s(f, x)|〈e−isH1ϕσx, g〉|

+Cσ

∫ t

0
ds

∫
Rd

dxKt−s(f, x)FΛ
s (ϕσx, g)(3.56)

where Cσ > 0 is as in (3.13) and with kernel function Kt(f, x) given by

(3.57) Kt(f, x) = ‖W‖1|〈e−itH1f, ϕσx〉|+ 2
(
|W | ∗ |〈e−itH1f, ϕσ(·)〉|

)
(x) .

Proof. We begin by recalling a useful perturbation formula. Fix a bounded, measurable set

Λ ⊂ Rd and take σ > 0, t ≥ 0, and f ∈ L2(Rd). In this case,

(3.58) τΛ
t (a(f)) = τ∅t (a(f)) + i

∫ t

0
ds τΛ

s

([
W σ

Λ , τ
∅
t−s(a(f))

])
a proof of which can be found in [13, Prop. 5.4.1]. Note that

[
W σ

Λ , τ
∅
t−s(a(f))

]
=

1

2

∫
Rd

∫
Rd

dxdyWΛ(x, y)
[
a∗(ϕσx)a∗(ϕσy )a(ϕσy )a(ϕσx), a(ft−s)

]
=

1

2

∫
Rd

∫
Rd

dxdyWΛ(x, y)
[
a∗(ϕσx)a∗(ϕσy ), a(ft−s)

]
a(ϕσy )a(ϕσx)(3.59)

where we have set ft = e−itH1f and used (3.10). Further calculating, we find

[
a∗(ϕσx)a∗(ϕσy ), a(ft−s)

]
=a∗(ϕσx)

{
a∗(ϕσy ), a(ft−s)

}
− {a∗(ϕσx), a(ft−s)} a∗(ϕσy )

=〈ft−s, ϕσy 〉a∗(ϕσx)− 〈ft−s, ϕσx〉a∗(ϕσy ).(3.60)
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Using now the symmetry of W , we obtain

{τΛ
t (a(f)), a∗(g)} − {τ∅t (a(f)), a∗(g)}

=i

∫ t

0
ds

∫
Rd

∫
Rd

dxdyWΛ(x, y)〈ft−s, ϕσy 〉
{
τΛ
s (a∗(ϕσx)) τΛ

s

(
a(ϕσy )

)
τΛ
s (a(ϕσx)) , a∗(g)

}
.

With the anti-commutator relation

(3.61) {ABC,D} = {A,D}BC −A{B,D}C +AB{C,D} ,

the norm bound∥∥∥{τΛ
t (a(f)), a∗(g)} − {τ∅t (a(f)), a∗(g)}

∥∥∥
≤Cσ

∫ t

0
ds

∫
Rd

∫
Rd

dxdy|W (x− y)||〈ft−s, ϕσy 〉|

×
(∥∥{τΛ

s (a∗(ϕσx)), a∗(g)
}∥∥+

∥∥{τΛ
s (a(ϕσy )), a∗(g)

}∥∥ +
∥∥{τΛ

s (a(ϕσx)), a∗(g)
}∥∥)(3.62)

readily follows. Here we have used the bound |WΛ(x, y)| ≤ |W (x − y)| for all x, y ∈ Rd. Similar

arguments yield the bound

∥∥{τΛ
t (a∗(f)), a∗(g)}

∥∥
≤Cσ

∫ t

0
ds

∫
Rd

∫
Rd

dxdy |W (x− y)||〈ft−s, ϕσy 〉|

×
(∥∥{τΛ

s (a∗(ϕσx)), a∗(g)
}∥∥+

∥∥{τΛ
s (a∗(ϕσy )), a∗(g)

}∥∥+
∥∥{τΛ

s (a(ϕσx)), a∗(g)
}∥∥) .(3.63)

Our goal, as in most Lieb-Robinson bounds, is to derive bounds which can be iterated. Since

neither (3.62) nor (3.63) iterate separately, we bound their sum, i.e. the function FΛ
t (f, g) intro-

duced in (3.55) above. Recalling that {τ∅t (a(f)), a∗(g)} = 〈ft, g〉1, we find

FΛ
t (f, g) ≤ Cσ

∫ t

0
ds

∫
Rd

∫
Rd

dxdy |W (x− y)||〈ft−s, ϕσy 〉|

×
(
2FΛ

s (ϕσx, g) + 2|〈e−isH1ϕσx, g〉|+ FΛ
s (ϕσy , g) + |〈e−isH1ϕσy , g〉|

)
= Cσ

∫ t

0
ds

∫
Rd

dxKt−s(f, x)
(
FΛ
s (ϕσx, g) + |〈e−isH1ϕσx, g〉|

)
,(3.64)

where we have introduced Kt(f, x) as in (3.57). This is the claim in (3.56). �
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Looking at the bound proven in Lemma 3.4.1, in particular (3.56), it is natural to begin an

iteration. To ensure convergence, we first provide an estimate on the kernel function Kt(f, x).

3.4.2. Estimating the Kernel. In this section, we provide two useful apriori estimates on

the kernel function Kt(f, x) defined in (3.57) of Lemma 3.4.1. First, we estimate this function for

general f ∈ L2(Rd). This result is stated in Lemma 3.4.2 below. In Lemma 3.4.3, we provide a

similar estimate in the special case that f is a Gaussian.

Before we prove our first estimate, it will be convenient to introduce the following notation.

For any r > 0, set Gr : Rd → R to be

(3.65) Gr(x) = e−r|x| for all x ∈ Rd .

Lemma 3.4.2. Let t ≥ 0, f ∈ L2(Rd), and x ∈ Rd. We have

(3.66) Kt(f, x) ≤ P1(t)eC2t| ln t|(Gbt ∗ |f |)(x)

where Gbt is as in (3.65) with

(3.67) 4bt =
aC3

a(t2 + 1) + C3

and P1 : R→ (0,∞) is the polynomial of degree 2d given by

(3.68) P1(t) = C1(2cWD
2
3(4bt)

−d + ‖W‖1) .

Here C1, C2, C3 > 0 are as in the proof of Theorem 3.2.3, a and cW are as in (3.17), and D3 > 0

is as in Lemma 3.7.1.

Proof. We first note that

(3.69) K0(f, x) ≤ ‖W‖1(ϕσ0 ∗ |f |)(x) + 2
(
(|W | ∗ ϕσ0 ) ∗ |f |

)
(x)

which may be further estimated as in (3.66).

Now, for t > 0, we recall the bound in (3.4):

(3.70)
∣∣〈e−itH1f, ϕσx〉

∣∣ ≤ C1e
C2t| ln t|

∫
Rd

dy e
− C3
t2+1

|x−y||f(y)| = C1e
C2t| ln t|(Gat ∗ |f |)(x)
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where we use the notation in (3.65) and set

(3.71) at =
C3

t2 + 1

In this case, the bound

Kt(f, x) = ‖W‖1|〈e−itH1f, ϕσx〉|+ 2
(
|W | ∗ |〈e−itH1f, ϕσ(·)〉|

)
(x)

≤ C1e
C2t| ln t|‖W‖1

(
Gat ∗ |f |

)
(x) + 2C1e

C2t| ln t|(|W | ∗ (Gat ∗ |f |))(x)(3.72)

is clear. Moreover, the exponential decay of W , see (3.17) in Assumption 3.2.1, implies

(
|W | ∗

(
Gat ∗ |f |

))
(x) ≤ cW

∫
Rd

dz e−a|x−z|
(
Gat ∗ |f |

)
(z)

≤ cW
∫
Rd

dz

∫
Rd

dy e−4bt|x−z|e−4bt|z−y||f(y)|(3.73)

where we have used (3.67), and in particular, that 4bt ≤ min{a, at}. By Lemma 3.7.1 there is

D3 > 0, depending only on d, such that

(3.74)

∫
Rd
dze−4bt|x−z|e−4bt|z−y| ≤ D2

3

(4bt)d
e−bt|x−y| .

We conclude that

(3.75)
(
|W | ∗

(
Gat ∗ |f |

))
(x) ≤ cW

D2
3

(4bt)d
(Gbt ∗ |f |)(x)

and note that (3.66) follows from the point-wise bound Gat(x) ≤ Gbt(x). �

We now turn to the special case of a Gaussian.

Lemma 3.4.3. Let t ≥ 0, σ > 0, and x, y ∈ Rd. We have

(3.76) Kt(ϕ
σ
x, y) ≤ P2(t)eC2t| ln t|Gct(x− y)

where Gct is as in (3.65) with

(3.77) ct =
aC3

16(a(t2 + 1) + C3(1 + aσ2))
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and P2 : R→ R is the polynomial of degree 4d given by

(3.78) P2(t) =
e

1
8σ2

(2πσ2)d/2
P1(t)

D2
3

(4ct)d
.

Here we use freely the notation established in Lemma 3.4.2.

Proof. Applying Lemma 3.4.2 and the simple bound u2 ≥ u− 1/4, for all u ∈ R, we find that

Kt(ϕ
x
σ, y) ≤ P1(t)eC2t| ln t|(Gbt ∗ ϕσx)(y)

=
P1(t)e

1
8σ2

(2πσ2)d/2
eC2t| ln t|

∫
Rd

dz e−bt|y−z|e−
|x−z|
2σ2 .(3.79)

Recalling also Lemma 3.7.1, the bound∫
Rd

dz e−bt|y−z|e−
|x−z|
2σ2 ≤ D2

3

( 1

4ct

)d
e−ct|x−y|,(3.80)

follows from the estimate

(3.81) 4ct ≤ min
{
bt,

1

2σ2

}
.

This proves the assertion. �

3.4.3. Iterating the Bound. In this section, we will iterate the bound proven in Lemma 3.4.1,

i.e. (3.56), and complete the proof of Theorem 3.2.5.

We first note that iteration of (3.56) produces, for any N ∈ N, a bound of the form

(3.82) FΛ
t (f, g) ≤

N∑
n=1

an(t, f, g) +RN (t, f, g)

where for each 1 ≤ n ≤ N the terms

an(t, f, g) = Cnσ

∫ t

0
dt1

∫
Rd

dx1Kt−t1(f, x1)

∫ t1

0
dt2

∫
Rd

dx2Kt1−t2(ϕσx1
, x2) · · ·

×
∫ tn−1

0
dtn

∫
Rd

dxnKtn−1−tn(ϕσxn−1
, xn)|〈e−itnH1ϕσxn , g〉|(3.83)
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and similarly, the remainder is given by

RN (t, f, g) = CNσ

∫ t

0
dt1

∫
Rd

dx1Kt−t1(f, x1)

∫ t1

0
dt2

∫
Rd

dx2Kt1−t2(ϕσx1
, x2) · · ·

×
∫ tN−1

0
dtN

∫
Rd

dxN KtN−1−tN (ϕσxN−1
, xN )FΛ

tN
(ϕσxN , g)(3.84)

Next, we estimate the terms an(t, f, g).

Lemma 3.4.4. Let t > 0 and n ∈ N. We find the following bound

an(t, f, g) ≤ D(t)
P3(t)n

n!

∫
Rd

dx

∫
Rd

dy e−
ct|x−y|

4 |f(x)||g(y)|(3.85)

where P3 : R→ R is a polynomial in t of degree 6d+ 1 with

(3.86) P3(t) =
Cσe

C2D3tP2(t)

cdt
and D(t) = C1e

C2D3
P1(t)

P2(t)
eC2t| ln t| .

All quantities appearing above are as in Lemma 3.4.2 and Lemma 3.4.3.

Proof. Fix t > 0. For our estimate, it will be convenient to recall some bounds from Sec-

tion 3.4.2. First, let f ∈ L2(Rd) and x ∈ Rd. Lemma 3.4.2 shows that for 0 ≤ t1 ≤ t,

Kt−t1(f, x) ≤ P1(t− t1)eC2(t−t1)| ln(t−t1)|(Gbt−t1 ∗ |f |)(x)

≤ P1(t)eC2(t−t1)| ln(t−t1)|(Gct ∗ |f |)(x)(3.87)

where we have used that P1 is increasing in t and that bt−t1 ≥ bt ≥ ct. Next, an application of

Lemma 3.4.3 shows that for any 0 ≤ tj ≤ tj−1 ≤ t and all x, y ∈ Rd,

Ktj−1−tj (ϕ
σ
x, y) ≤ P2(tj−1 − tj)eC2(tj−1−tj)| ln(tj−1−tj)|Gctj−1−tj

(x− y)

≤ P2(t)eC2(tj−1−tj)| ln(tj−1−tj)|Gct(x− y)(3.88)

Here we used that the polynomial P2(t) is increasing in t and the function ct is decreasing in t.

Similarly, arguing as in (3.70), we see that

(3.89) |〈e−itnH1ϕσxn , g〉| ≤ C1e
C2tn| ln tn|(Gatn ∗ |g|)(xn) ≤ C1e

C2tn| ln tn|(Gct ∗ |g|)(xn)
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for any 0 ≤ tn ≤ t and xn ∈ Rd. As a final observation, note that for parameters 0 = tn+1 ≤ tn ≤

· · · ≤ tj ≤ tj−1 ≤ · · · ≤ t1 ≤ t0 = t, we have the bound

n+1∑
j=1

(tj−1 − tj)| ln(tj−1 − tj)| ≤
n+1∑
j=1

(tj−1 − tj) ln(tj−1 − tj)1{tj−1 − tj ≥ 1}+ n+ 1

≤ ln t 1{t ≥ 1}t+ n+ 1

≤ t| ln t|+ n+ 1,(3.90)

where 1{·} stands for the indicator function, we used that x| lnx| ≤ 1 for all x ∈ (0, 1], and in the

argument of the ln, we use the bound tj−1 − tj ≤ t, for j = 1, . . . , n + 1, to produce a telescopic

sum.

Putting all this together we find that

an(t, f, g) ≤ C1C
n
σP1(t)P2(t)n−1

∫ t

0
dt1 · · ·

∫ tn−1

0
dtne

C2
∑n+1
j=1 (tj−1−tj)| ln(tj−1−tj)|

×
∫
Rd
dx1 · · ·

∫
Rd
dxn(Gct ∗ |f |)(x1)Gct(x1 − x2) · · ·Gct(xn−1 − xn)(Gct ∗ |g|)(xn)

≤ C1C
n
σP1(t)P2(t)n−1eC2t| ln t|e(n+1)C2

tn

n!

×
∫
Rd
dx1(Gct ∗ |f |)(x1)(Gct ∗ · · · ∗Gct ∗ |g|)(x1).(3.91)

The latter integral can be further estimated as∫
Rd
dx(Gct ∗ |f |)(x)(Gct ∗ · · · ∗Gct ∗ |g|)(x) =

∫
Rd
dx|f(x)|(Gct ∗ · · · ∗Gct ∗ |g|)(x)

≤ cdt

(
D3

cdt

)n+1 ∫
Rd
dx

∫
Rd
dye−

ct|x−y|
4 |f(x)||g(y)|(3.92)

by using the point-wise estimate in Lemma 3.7.1 on the n + 1-fold convolution of Gct with itself.

This is the bound claimed in (3.85). �

We can now complete the proof of Theorem 3.2.5.

Proof of Theorem 3.2.5. Given (3.82) and the estimate in Lemma 3.4.4, i.e. (3.85), it is

clear that we need only show that the remainder term RN (t), see (3.84), goes to zero as N → ∞.

We will see that this is the case uniformly for t in compact sets.
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Fix T > 0 and let t ∈ [−T, T ]. We argue as in the proof of Lemma 3.4.4. The only differ-

ence between the term aN (t, f, g) and RN (t) is the final factor in the integrand: more precisely,

|〈e−itNH1ϕσxn , g〉| is replaced with FΛ
tN

(ϕσxN , g). In this case, the naive bound

(3.93) FΛ
tN

(ϕσxN , g) ≤ 6‖ϕσxN ‖2‖g‖2 = 6
√
Cσ‖g‖2

will suffice. In fact,

RN (t) ≤ 6
√
Cσ‖g‖2CNσ P1(t)P2(t)N−1

∫ t

0
dt1 · · ·

∫ tN−1

0
dtne

C2
∑N
j=1(tj−1−tj)| ln(tj−1−tj)|

×
∫
Rd
dx1 · · ·

∫
Rd
dxN (Gct ∗ |f |)(x1)Gct(x1 − x2) · · ·Gct(xN−1 − xN )

≤ 6
√
Cσ‖g‖2CNσ P1(t)P2(t)N−1eC2t| ln t|eNC2

tN

N !

×
∫
Rd
dxN (Gct ∗ · · · ∗Gct ∗ |f |)(xN ).(3.94)

Now, another application of Lemma 3.7.1 demonstrates that∫
Rd
dx(Gct ∗ · · · ∗Gct ∗ |f |)(x) ≤

∫
Rd
dx

∫
Rd
dy(Gct ∗ · · ·Gct)(x− y)|f(y)|

≤
(
D3

cdt

)N
cdt

∫
Rd
dx

∫
Rd
dye−

ct|x−y|
4 |f(y)|

=

(
D3

cdt

)N
cdt ‖Gct/4‖1‖f‖1(3.95)

where here we have used that f ∈ L1(Rd) ∩ L2(Rd). Since all the quantities in these estimates are

explicit, it is clear that

(3.96) lim
N→0

sup
t∈[−T,T ]

RN (t) = 0

which completes the proof of Theorem 3.2.5. �

3.5. The infinite-system dynamics. Proof of Theorem 3.2.6

Our proof of Theorem 3.2.6 will make essential use of the following direct consequences of the

propagation bounds of Theorem 3.2.5.
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Let V and W satisfy Assumptions 3.2.2 and 3.2.1, respectively. Then, there exist continuous

functions C̃(·), ã(·) > 0, such that with ϕσx the Gaussians introduced in (3.12), and f ∈ L2(Rd) of

compact support, denoted by supp(f), we have

(3.97) ‖{τΛ
t (a(f)), a#(ϕσz )}‖ ≤ ‖f‖1eC̃(|t|)e−ã(|t|)d(supp(f),z)

where a#(·) refers to either an annihilation or creation operator, compare with (3.5). This estimate

follows from Theorem 3.2.5 and Theorem 3.2.3 where we again use arguments as in (3.79) and

(3.80).

Apart from this key estimate, the proof below uses a combination of several ideas introduced

in [13,17,64,67].

Proof of Theorem 3.2.6. We first prove (3.32) for f ∈ L2(Rd) of compact support, say

suppf ⊂ X ⊂ Rd, for some compact X. Let (Λn)n≥1 be an increasing sequence of bounded,

measurable sets such that
⋃
n Λn = Rd. To show that (τΛn

t (a(f)))n≥1 is Cauchy, uniformly in

t ∈ [−T, T ] for T > 0, note that, for any Λm ⊆ Λn, the operator

W σ
Λn −W

σ
Λm =

∫
Λn×Λn\Λm×Λm

dxdyW (x− y)a∗(ϕσx)a∗(ϕσy )a(ϕσy )a(ϕσx)

is bounded by our assumptions. Hence, the generator of the strongly continuous dynamics τΛn
t is

a bounded perturbation of the generator of τΛm
t . In this case, we can apply the same perturbation

formula as in (3.58) to compare the two dynamics. The following identity then holds

τΛn
t (a(f))− τΛm

t (a(f))(3.98)

=
i

2

∫ t

0
ds

∫
Λn×Λn\Λm×Λm

dxdyW (x− y)τΛn
t

([
a∗(ϕσx)a∗(ϕσy )a(ϕσy )a(ϕσx), τΛm

t−s(a(f))
])
.

94



Note the identity

[
a∗(ϕσx)a∗(ϕσy )a(ϕσy )a(ϕσx), τΛm

t−s(a(f))
]

=a∗(ϕσx)a∗(ϕσy )a(ϕσy )
{
a(ϕσx), τΛm

t−s(a(f))
}

− a∗(ϕσx)a∗(ϕσy )
{
a(ϕσy ), τΛm

t−s(a(f))
}
a(ϕσx)

+ a∗(ϕσx)
{
a∗(ϕσy ), τΛm

t−s(a(f))
}
a(ϕσy )a(ϕσx)

−
{
a∗(ϕσx), τΛm

t−s(a(f))
}
a∗(ϕσy )a(ϕσy )a(ϕσx).(3.99)

Bounding (3.98) in norm, applying (3.97), and using the symmetry of W , we then find for any

T > 0 constants C and b > 0, such that for every t ∈ [−T, T ] and every n > m,

(3.100) ‖τΛn
t (a(f))− τΛm

t (a(f))‖ ≤ C‖ϕσ0‖32‖f‖1
∫

Λn×Λn\Λm×Λm

dxdy |W (x− y)|e−bd(X,x),

which converges to 0 as n > m → ∞ since |W (x − y)|e−bd(X,x) ∈ L1(R2d). This shows that for

compactly supported f , the sequence (τΛn
t (a(f)))n≥1 is Cauchy (in norm) uniformly for t ∈ [−T, T ].

Thus, the limit exists and gives rise to an isometry from Pc, the set algebraically generated by

{a(f), a∗(f) : f ∈ L2(Rd) of compact support}, into A(L2(Rd)). Equation (3.98) can be applied

to see this limit is independent of the sequence (Λn). As Pc is dense in A(L2(Rd)), this isometry

extends uniquely to a homomorphism, τt, of A(L2(Rd)). It is straightforward to verify that τt ◦τs =

τt+s and, in particular, that τ−t is the inverse of τt. Hence, {τt | t ∈ R} is a one-parameter group

of automorphisms of the CAR algebra.

To prove the strong continuity in t, it suffices to note that, for f ∈ L2(Rd) and of compact

support, the continuity of t 7→ τΛn
t (a(f)) − τ∅t (a(f)) carries over to the limiting function t 7→

τt(a(f))− τ∅t (a(f)) due to the uniform convergence on compact intervals. Then, since τ∅t is already

known to be strongly continuous, τt(a(f)) must be too. Finally, an ε/3 argument shows that the

strong continuity extends to the full CAR algebra. �

3.6. Appendix A: Convergence of the σ → 0 limit

We prove that, for any fixed finite number of fermions, the UV-regularized dynamics converges

to the standard one as σ tends to 0. For this we consider arbitrary, not necessarily bounded,

measurable Λ ⊂ Rd. When Λ is not bounded, the interaction operator W σ
Λ is generally unbounded.
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Therefore, we start by providing a more careful definition of Hσ
Λ. Note that (3.15) defines a bounded

operator W σ
Λ;n on the n-particle subspace

(
L2(Rd)⊗n

)−
for each n. Define the operator W 0

Λ;n on(
L2(Rd)⊗n

)−
to be multiplication by the function

∑
1≤k<l≤nWΛ(xk − xl). For σ ≥ 0, define

(3.101) H1;n +W σ
Λ;n =

n∑
k=1

(−∆k + V (xk)) +W σ
Λ;n

acting on
(
L2(Rd)⊗n

)−
. For real-valued V,W ∈ L∞(Rd) this operator is self-adjoint on the domain

D(H1;n) = (H2(Rd)⊗n)−. With σ ≥ 0, let Hσ
Λ be the operator acting on Fock space by

Hσ
Λ =

∞⊕
n=0

(H1;n +W σ
Λ;n)

with domain

D(Hσ
Λ) = {(ψn) ∈ F− : ψn ∈ D(H1;n) and

∞∑
n=0

‖(H1;n +W σ
Λ;n)ψn‖22 <∞}.

This operator is well-known to be self-adjoint, see e.g. [90, Exercise 5.43].

Theorem 3.6.1. For real-valued V,W ∈ L∞(Rd), take H1 as in (3.8). Then, for any measurable

set Λ ⊂ Rd

Hσ
Λ → H0

Λ

in the strong resolvent sense as σ ↓ 0.

Using a slight modification of [76, Thm VIII.20(a)], the above theorem readily implies:

Corollary 3.6.1. For t ∈ R we denote by UσΛ(t) = e−itH
σ
Λ and U0

Λ(t) = e−itH
0
Λ the unitary

groups generated by Hσ
Λ and H0

Λ, respectively. Then

lim
σ↓0

UσΛ(t)ψ = U0
Λ(t)ψ

for each ψ ∈ F−, uniformly for t in compact subsets of R.

Remark 3.6.1. Theorem 3.6.1 and Corollary 3.6.1 apply more generally to any self-adjoint

operator H1.
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Proof of Theorem 3.6.1. We start by reducing the proof Theorem 3.6.1 to what is essen-

tially the 2-particle situation. Recall that for σ ≥ 0,

Hσ
Λ =

∞⊕
n=0

(H1;n +W σ
Λ;n).

For each n, let D−n = (S(Rd)⊗n)− be the antisymmetrized n-fold tensor product of the Schwarz

space S(Rd), where S(Rd)⊗n =
⊗n

j=1 S(Rd) is the set of finite linear combinations of functions

ψ of the form ψ(x1, ..., xn) = ψ1(x1) · · ·ψn(xn), with each ψj ∈ S(Rd). Since S(Rd) is a core for

H1, D−n is a core for H1;n by the Corollary to [76, Thm VIII.33]. It follows that D−n is a core for

H1;n +W σ
Λ;n for every σ ≥ 0. If

(3.102) D− = {(ψn) ∈ F− : ψn ∈ D−n and ∃N with ψn = 0∀n ≥ N},

then it is not difficult to see that D− is a core for Hσ
Λ for every σ ≥ 0 (this is essentially Example

2 in [76, Sec VIII]).

As is well-known, strong resolvent convergence follows from strong convergence on a common

core, see e.g. [76, Thm VIII.25(a)], and thus to prove Theorem 3.6.1, it suffices to establish that

(3.103) lim
σ↓0

Hσ
Λψ = H0

Λψ

for every ψ ∈ D−. Given the form of D−, see (3.102), it is clear that (3.103) will follow if

(3.104) lim
σ↓0

W σ
Λ;nψ = W 0

Λ;nψ for every ψ ∈ D−n .

We need only prove (3.104). To this end, let b∗(·) and b(·) denote the creation and annihilation

operators on the full Fock space F =
⊕∞

n=0 L
2(Rd)⊗n; for any f ∈ L2(Rd) and ψ ∈ L2(Rd)⊗n,

(b(f)ψ)(x1, ..., xn−1) =
√
n

∫
Rd

dxf(x)ψ(x, x1, ..., xn−1)

and

(b∗(f)ψ)(x1, ..., xn+1) =
√
n+ 1f(x1)ψ(x2, ..., xn+1).
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For any f, g ∈ L2(Rd), the operator b∗(f)b∗(g)b(g)b(f) is reduced by the n-particle subspace,

therefore for σ > 0 we may define

W̃ σ
Λ;n =

1

2

∫
Rd

∫
Rd

dxdyWΛ(x, y)b∗(ϕσx)b∗(ϕσy )b(ϕσy )b(ϕσx)
∣∣∣⊗n

k=1 L
2(Rd)

,

which is a bounded operator on L2(Rd)⊗n. Also define W̃ 0
Λ;n by

(W̃ 0
Λ;nh)(x1, ..., xn) =

n(n− 1)

2
WΛ(x1, x2)h(x1, ..., xn)

for h ∈ L2(Rd)⊗n. With these definitions, for every σ ≥ 0,

W σ
Λ;n = AnW̃

σ
Λ;n

∣∣∣
(
⊗n
k=1 L

2(Rd))−

where An is the antisymmetrization projection L2(Rd)⊗n → (L2(Rd)⊗n)−. We conclude that: if we

prove that limσ↓0 W̃
σ
Λ;nψ = W̃ 0

Λ;nψ for every ψ of the form ψ(x1, ..., xn) = ψ1(x1) · · ·ψn(xn), where

ψ1, ..., ψn ∈ S(Rd), then (3.104) follows. Moreover, since for every σ ≥ 0 W̃ σ
Λ;n acts nontrivially

only on the first two particles, it will suffice to prove that W̃ σ
Λ;2 → W̃ 0

Λ;2 strongly as σ ↓ 0.

Let σ > 0 and introduce the function Φσ : R2d → R by setting

(3.105) Φσ(x, y) = ϕσ0 (x)ϕσ0 (y) =
1

(2πσ2)d
e−

1
2σ2 (|x|2+|y|2) for any x, y ∈ Rd .

It is clear that Φσ is L1-normalized, and moreover, a simple calculation shows that for ψ ∈ L2(R2d),

(W̃ σ
Λ;2ψ)(x1, x2)

=

∫
R4d

dxdydz1dz2WΛ(x, y)ψ(z1, z2)ϕσz1(x)ϕσx1
(x)ϕσz2(y)ϕσx2

(y)

= (Φσ ∗ (WΛ(Φσ ∗ ψ)))(x1, x2).

We are now ready to conclude the proof of the theorem.

Let ψ ∈ S(Rd)⊗2. Then

W̃ σ
Λ;2ψ = Φσ ∗ (WΛ(Φσ ∗ ψ)) = Φσ ∗ (WΛψ) + Φσ ∗ (WΛ(Φσ ∗ ψ − ψ))
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The first term above converges to the desired limit. In fact, convolutions with appropriately scaled

L1-functions converge in Lp-norm, see e.g. [38, Thm 8.14 a)], and thus since ψ ∈ L2(R2d),

Φσ ∗ (WΛψ)→WΛψ in L2(R2d) as σ → 0 .

We handle the remainder with Young’s inequality, i.e. the bound

‖Φσ ∗ (WΛ(Φσ ∗ ψ − ψ))‖2 ≤ ‖Φσ‖1‖WΛ(Φσ ∗ ψ − ψ)‖2 ≤ ‖W‖∞‖Φσ ∗ ψ − ψ‖2.

A further application of [38, Thm 8.14 a)] shows that

lim
σ↓0
‖Φσ ∗ ψ − ψ‖2 = 0

which proves the result. �

3.7. Appendix B: Several Fourier transforms

In this section we aim at proving the following Lemma:

Lemma 3.7.1. Let a > 0, n ∈ N with n ≥ 2, and x ∈ Rd. If Ga(x) = e−a|x|, then there exists a

constant D3 > 0 such that

(Ga ∗Ga ∗ · · · ∗Ga︸ ︷︷ ︸
n−1 convolutions

)(x) ≤
(D3

ad

)n
ade−

a|x|
4 .(3.106)

To prove this, we first compute several Fourier transforms. We let F denote the unitary Fourier

transform and F∗ its inverse.

Lemma 3.7.2. Let a > 0 and Ga(x) = e−a|x|. Then for ξ ∈ Rd

(3.107)
(
FGa

)
(ξ) =

2d/2Γ(d+1
2 )

√
π

a

(a2 + ξ2)
d+1

2

,

where Γ denotes the Gamma function.

99



Proof. Let ξ ∈ Rd. We compute using the spherical symmetry of Ga

(
FGa

)
(ξ) =

1

(2π)d/2

∫
Rd

dxe−a|x|e−ixξ

= |ξ|
2−d

2

∫ ∞
0

dr r
d
2 J d−2

2
(|ξ|r) e−ar(3.108)

where Jν(y) denotes the Bessel function of first kind. Computing this integral using [44, Sec. 6.621

eq. 1] gives

(
FGa

)
(ξ) =

2d/2Γ(d+1
2 )

√
π

a

(a2 + |ξ|2)
d+1

2

,(3.109)

which is the assertion. �

Lemma 3.7.3. Let a > 0, ξ ∈ Rd and

(3.110) Ha(ξ) =
a

(a2 + |ξ|2)
d+1

2

.

Then for n ∈ N we obtain

(3.111)
(
F∗Hn

a

)
(x) =

2
2−(d+1)n

2 a
d−(d−1)n

2 |x|
d(n−1)+n

2 K d(n−1)+n
2

(a|x|)

Γ
( (1+d)n

2

) ,

where Γ denotes the Gamma function and Kν(y) the modified Bessel function.

Proof. We compute, using again the Fourier transform for spherically symmetric functions,

(
F∗Hn

a

)
(x) =

an

(2π)d/2

∫
Rd

dξ
( 1

a2 + |ξ|2
)n(d+1)

2
eixξ

= an|x|
2−d

2

∫ ∞
0

dr r
d
2 J d−2

2
(|x|r)

( 1

a2 + r2

)n(d+1)
2

,(3.112)

where Jν(y) is the Bessel function of first kind. Integrating the latter with the help of [44, Sec.

6.565 eq. 4], gives

(
F∗Hn

a

)
(x) =

21− (d+1)n
2 a

d−(d−1)n
2 |x|

d(n−1)+n
2 K d(n−1)+n

2

(a|x|)

Γ
( (1+d)n

2

) .(3.113)

�
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Hence, from Lemma 3.7.2 and Lemma 3.7.3 we obtain

F∗
(
(FGa)n

)
(x) =

(
Γ(d+1

2 )
)n

2
2−n

2 a
d−(d−1)n

2 |x|
d(n−1)+n

2 K d(n−1)+n
2

(a|x|)

πn/2Γ
( (d+1)n

2

) .(3.114)

Lemma 3.7.4. Let η > 0. The modified Bessel function Kη satisfies for y > 0 the bound

(3.115) 0 ≤ Kη(y) ≤ 4η

yη
e−

y
4 Γ(η).

Proof. We write the modified Bessel function Kη as

(3.116) Kη(y) =

∫ ∞
0

dt e−y cosh(t) cosh(ηt),

see [44, Sec. 8.432 eq. 1]. Using 1
2e
x ≤ cosh(x) ≤ ex valid for all x ≥ 0, we obtain∫ ∞

0
dt e−y cosh(t) cosh(ηt) ≤

∫ ∞
0

dt e−
yet

2 eηt =

∫ ∞
1

du e−
uy
2 uη−1,(3.117)

where we performed the change of variables u = et in the last line. Now, for u ≥ 1 and y > 0 we

have e−
uy
2 ≤ e−

y
4 e−

uy
4 and therefore∫ ∞

1
du e−

uy
2 uη−1 ≤ e−

y
4

∫ ∞
0

du e−
uy
4 uη−1

=
4η

yη
e−

y
4

∫ ∞
0

du e−uuη−1 =
4η

yη
e−

y
4 Γ(η).(3.118)

�

Proof of Lemma 3.7.1. Starting with (3.114) and using Lemma 3.7.4 we obtain

(Ga ∗Ga ∗ · · · ∗Ga)(x) = (2π)d(n−1)/2F∗
(
(FGa)n

)
(x)

≤
(
Γ(d+1

2 )π
d−1

2 2
3d+1

2

)n
π−

d
2 2

1
2a−d(n−1)Γ

(d(n−1)+n
2

)
e−

a|x|
4

Γ
( (d+1)n

2

)
≤ Dn

3a
−d(n−1)e−

a|x|
4(3.119)

for some explicit constant D3 > 0 depending on d, where we used that (2/πd)
1
2 ≤ 1 and

(3.120)
Γ(d(n−1)+n

2 )

Γ
( (d+1)n

2

) ≤ 1.
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This gives the assertion. �
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Poincaré, 16 (2015), pp. 405–435.

[23] C.-F. Chen and A. Lucas, Finite speed of quantum scrambling with long range interactions, Phys. Rev. Lett.,

123 (2019).

[24] V. Chulaevsky and Y. Suhov, Multi-particle Anderson localisation: induction on the number of particles,

Math. Phys. Anal. Geom., 12 (2009), pp. 117–139.

[25] J. Cirac, S. Michalakis, D. Perez-Garcia, and N. Schuch, Robustness in projected entangled pair states,

Phys. Rev. B, 88 (2013), p. 115108.

[26] W. De Roeck and F. Huveneers, Stability and instability towards delocalization in many-body localization

systems, Phys. Rev. B, 95 (2017), p. 155129.

[27] W. De Roeck, F. Huveneers, M. Müller, and M. Schiulaz, Absence of many-body mobility edges, Phys.

Rev. B, 93 (2016), p. 014203.

[28] W. De Roeck, F. Huveneers, and S. Olla, Subdiffusion in one-dimensional Hamiltonian chains with sparse

interactions, J. Stat. Phys., (2020).

[29] W. De Roeck and J. Imbrie, Many-body localization: stability and instability, Phil. Trans. R. Soc. A, 375

(2017), p. 20160422.

[30] W. De Roeck and M. Salmhofer, Persistence of exponential decay and spectral gaps for interacting fermions,

Commun. Math. Phys., 365 (2019), pp. 773–796.
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