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Advances in Discrete Chemical Computation:

Algorithms, Lower Bounds, and Software for Population Protocols

Abstract

The population protocols model [19] describes a population of n finite-state computational

agents, whose states change through successive pairwise interactions. Crucially, the agents have

no control over the interaction schedule, and agents in the same state are indistinguishable. One

motivating example are chemical reaction networks, viewing the agents as molecules undergoing

pairwise collisions and changing state via reactions. Since this model is mathematically fundamen-

tal, equivalent processes have been independently studied in many fields. This work contributes

new software tools for simulating population protocols, studies the time and space complexity of

fundamental tasks, and explores various additional constraints on the model that ensure reliability,

low bandwidth, and composability.

A standard choice of dynamics is to pick a uniform random pair of agents to interact at each step.

The set of states and update rule then give a discrete Markov process. In the first part of this work,

we introduce ppsim, a software package for simulating such processes. Complex protocols can be

succinctly described in Python code, and are simulated by an algorithm [41] which is asymptotically

faster than the standard algorithm which repeatedly samples interacting pairs of agents and updates

their state.

Chemical reaction networks (CRNs) are typically described by continuous time dynamics, where

the Gillespie algorithm [103] is able to sample trajectories from the chemical master equation. A

CRN with only unimolecular (1 input, 1 output) or bimolecular (2 input, 2 output) reactions, with

arbitrary rate constants, can be faithfully represented by a continuous time population protocol.

In this way, ppsim is able to exactly sample the same chemical master equation, while achieving

asymptotic gains in running time that can exactly simulate hundreds of billions of reactions in

seconds.

What differentiates population protocols from other models that capture the same dynamics

is that, coming from the field of distributed computing, it studies which computational tasks the

population can perform. Typically, there is some global property of the initial configuration, and

the task is to converge to a configuration where each agent locally has knowledge of this property.
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The correct output must be reached with probability 1 and then be stable, unable to be changed

by future interactions. A prototypical example is the majority problem. There, the initial config-

uration has two states A and B, and the agents must determine whether there are more A, more

B, or a tie.

A recent line of work has established progressively more efficient protocols for solving the ma-

jority problem. In the second part of this work, we describe and analyze a majority protocol using

O(log n) states and taking expected time O(log n) (O(n log n) pairwise interactions). Existing lower

bounds [6] for protocols with natural constraints show that this protocol is asymptotically optimal

in both state space and convergence time.

The other most studied problem in population protocols is leader election. There, the popu-

lation must reach a configuration with a unique agent in a designated leader state. Typically, the

entire population starts in some fixed initial state, but the additional self-stabilizing constraint

requires the protocol to correctly converge starting from any possible initial configuration. In the

third part of this work, we develop multiple new protocols for solving self-stabilizing leader

election, exhibiting a trade-off in state space and convergence time.

In the original model, the agents’ state set was fixed and independent of the population size

n. Most recent results, including the work above, allow the number of states to scale with the

population size. The standard transition rule assumes that when two agents interact, each observes

the entire state of the other agent. In the fourth part of this work, we initiate the study of message

complexity for population protocols, where the state of an agent is divided into an externally-visible

message and an internal component, and only the message can be observed by the other agent in an

interaction. The focus is on constant-size message complexity, so only the number of internal states

can grow with the population size. This models a regime where communication bandwidth between

agents is more limited than internal storage. Without restricting convergence time, we obtain an

exact characterization of the computational power, based on the number of internal states. We also

introduce multiple novel O(polylog(n)) expected time protocols, solving problems of leader election,

general purpose broadcast, and population size counting.

The final part of this work considers the more general model of discrete chemical reaction

networks, which now allow reactions such as X → 2Y which change the size of the population.

This reaction can be viewed as computing the function f(x) = 2x, treating species X as input and

v



Y as output. An additional output oblivious constraint, where the output species cannot be the

input to any further reactions, enables these CRNs to be easily composed. We exactly characterize

which integer-valued functions f : Nd → N can be computed by these output oblivious CRNs.
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CHAPTER 1

Introduction

Nature is filled with examples where simple local rules, applied across a large scale, give rise to

emergent global behavior. One simple abstract model that captures this phenomenon is population

protocols, where a large population of agents undergo random pairwise interactions which change

their state. These local state changes lead to global stochastic dynamics, which are determined by

the set of states and the transition function that describes how each pair of interacting states

will update in an interaction. These rules define a protocol, and protocols are studied which solve

computational tasks, where often each agent will locally obtain information about some global

property of the system.

A primary application of this model is as a simple description of chemical reaction net-

works (CRNs), where the agents are molecules randomly colliding in solution and the transition

function describes the allowable chemical reactions. Recent advances in DNA nanotechnology have

implemented artificial CRNs using the physical primitive of nucleic-acid strand displacement cas-

cades [56,66,152,153]. This lets CRNs be viewed as a programming language, which motivates

the work in population protocols about the computational power of these models.

The population protocols model is mathematically fundamental, and has thus been indepen-

dently studied across a range of fields. It was originally motivated by wireless sensor networks [19],

but has been independently studied for social networks: modelling the propagation of trust [77],

diseases [27], and rumors [73]. It also arises in the study of game theory [4,48,49], and to model

gene regulatory networks [50] or animal populations [165]. Fundamental processes in population

protocols are equivalent to well-studied distributed computing tasks such as gossip algorithms [147]

and load balancing [39, 130]. Generalizing beyond uniform random pairs of interacting agents

to more complicated interaction graphs gives the models of interacting particle systems [124] or

stochastic cellular automata [164], both widely studied in physics and probability theory.
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Population protocols describe discrete CRNs where every reaction has 2 inputs (reactants) and

2 outputs (products). The more general CRN model allows arbitrary number of reactants and prod-

ucts in each reaction, which can now change the size of the population. Still, fundamental results

about which functions CRNs can compute [63] were based on theoretical results from population

protocols [20]. These discrete CRNs are equivalent to multiple other mathetmatical models: vector

addition systems [119], Petri nets [139], and commutative semi-Thue systems (or, when all tran-

sitions are reversible, “commutative semigroups”) [59,126]. These other models have focused more

on the question of reachability. The computational complexity of determining if a configuration in

a CRN is reachable had been a long-standing open question, and was recently resolved as being

Ackermann-complete [72,123] (i.e., the problem is decidable, but not even primitive recursive).

In this work, we advance the theoretical understanding of the computational power of population

protocols and chemical reaction networks. In Chapter 2, we introduce ppsim, a Python software

package built to easily encode and efficiently simulate complicated population protocols. For any

chemical reaction network with unimolecular (1 input, 1 output) and bimolecular (2 input, 2 out-

put) reactions (and arbitrary rate constants), the ppsim simulation exactly samples the chemical

master equation [104] with asymptotic gains in run-time over standard approaches [103]. Chap-

ter 3 focuses on the well-studied majority problem, where the population must reach consensus

on which of two opinions was in the initial majority. There, we provide the first protocol which is

asymptotically optimal in both state space and run-time. Then in Chapter 4, we consider the prob-

lem of self-stabilizing leader election, where starting from any adversarial initial configuration,

the population must stabilize to a configuration with a unique leader agent. There was one existing

protocol [54] which solved this problem in its original setting, and we provide multiple more efficient

protocols that exhibit a trade-off in state space and run-time. Next in Chapter 5, we introduce the

idea of message complexity for population protocols, which enables the distinction between com-

munication complexity and internal storage, both of which increase in larger-state protocols that

are more common in the recent literature. Here, we focus on protocols with limited communication

bandwidth but larger internal storage. In this regime, we find an exact computational characteriza-

tion as well as multiple novel time-efficient protocols. Finally, Chapter 6 studies the more general

model of discrete CRNs, which compute functions f : Nd → N using counts of designated input

and output species, and are able compute exactly the semilinear functions [63]. We explore the
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additional output-oblivious constraint, which forbids the output species from being a reactant in

any further reactions, and enables straightforward composition of CRNs. We exactly characterize

which subclass of semilinear functions are computable by this restricted class of modular CRNs.

1.1. Simple Example Protocols

As a warm-up to the population protocol model, we start by analyzing a few examples of

important protocols that use a very small number of states.

1.1.1. Leader Election. As a first example, consider the protocol with only two states {L,F}

and the single non-null transition

L,L→ L,F.

We start in an initial configuration with all n agents in state L. The dynamics then correspond

to choosing a uniform random (ordered) pair of agents to interact at each step. If both are in

state L, then the latter agent changes to state F , and otherwise there is no change. This gives

rise to a discrete-time, discrete-state Markov process. Because of the symmetry where each pair of

agents is equally likely to interact, the dynamics of a configuration only depend on the counts of

agents in each state. We thus have a Markov chain, whose state space are the n+ 1 configurations

corresponding to #L = 0, 1, . . . , n, see Fig. 1.1a.

This simple 2-state rule solves the task of leader election, by the standard technique of

“fratricide” where whenever two leader agents in state L meet, one becomes a follower in state F .

Starting from the {nL} configuration, the system will converge to the {1L, (n− 1)F} configuration

with a unique leader agent. Crucially, this configuration is stable, where the leader status of all

agents can no longer change. In this case, it has the even stronger property of being silent, where

the only possible future transitions are null. In other words, by being silent, the Markov chain

has reached a unique terminal state. But it was only necessary to be stable, reaching a strongly

connected component of configurations that all had a single agent in a subset of possible leader

states. Note also that this protocol does not solve the strictly harder problem of self-stabilizing

leader election that is studied in Chapter 4, because of the possible initial configuration {nF}.

This protocol has optimal space complexity, using only 2 states (1 bit of memory). To think

about time complexity, we analyze the convergence time of the Markov chain, which for this simple

case we can do in full detail. From each configuration {kL, (n−k)F}, the probability of the non-null

3
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(a) Illustrating the full Markov chain for n = 5 agents.
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(b) Using ppsim to simulate the rule with n = 50 agents,
and comparing the trajectories with the deterministic
ODE solution L(t) = n · 1

1+t
.
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(c) Simulating a larger population of n = 106 agents, now
viewed on a log-log scale. Around 1013 total interactions
were simulated, but near the end most interactions are
null, so ppsim will use the Gillespie algorithm to only
simulate the non-null interactions (see Chapter 2).

Figure 1.1. Simulating the 2-state leader election protocol, defined in ppsim as
rule = {('L','L'):('L','F')}.

transition between two leaders is (k2)
(n2)

= k(k−1)
n(n−1) . Then the number of interaction steps it takes for this

transition to decrement the count of leaders is a geometric random variable Gk, with E[Gk] = n(n−1)
k(k−1) .

The total number of steps to converge T = Gn+ . . .+G2 is then the sum of independent geometrics,

with expected value

E[T ] =

n∑
k=2

n(n− 1)

k(k − 1)
= n(n− 1)

n∑
k=2

(
1

k − 1
− 1

k

)
= n(n− 1)

(
1− 1

n

)
= (n− 1)2.

In discussing time complexity, the natural time scale is that of parallel time, with Θ(n)

pairwise interactions per time step, so time is proportional to the number of interactions per agent.

Thus this 2-state leader election takes Θ(n) time to stabilize. It was later shown that any leader

election protocol, when the number of states is constant (independent of population size n), must

take linear time to stabilize, so this simple protocol is optimal in that sense. See Section 1.3 for

more discussion.
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This notion of time also lines up with other common modelling choices, such as a “mean-field”

approximation using differential equations. This would be equivalent to using the standard law of

mass action [95] to model this CRN L,L → L,F . Letting l = #L
n denote the concentration of

leaders, we would have the differential equation dl
dt = −l2 with initial value l(0) = 1 and solution

l(t) = 1
1+t . When all counts are large, this is a good approximation to the discrete stochastic

process, see Fig. 1.1b and Fig. 1.1c. This convergence of the discrete stochastic model to the de-

terministic continuous model in the limit of large counts can be made rigorous [121, 166, 168].

Unfortunately, these results do not give powerful black box methods for reasoning about popula-

tion protocol dynamics. The error bound between the differential equation and stochastic system

increases exponentially with time, and the results only hold if all states are present in large count,

which is not the case in most protocols of interest. For this 2-state process, the ideal tool to get

large deviation bounds on the likely behavior would be tail bounds on the sum of independent

geometrics [115].

1.1.2. Epidemic (Rumor Spreading) Process. The next two state rule is essentially the

reverse reaction. We will now call the states {I, S} and have a single non-null transition 1

I, S → I, I.

The names come from viewing this as a simple SI epidemic model, where susceptible agents in state

S are infected by agents in state I. As a CRN, this describes an autocatalytic reaction. This is also

the natural way to broadcast information, where the informed state I spreads through the whole

population. For this reason, this is an extremely common primitive in more complicated protocols,

whenever there is a Boolean property i ∈ {True,False} of the agents’ states which gets updated as

a.i, b.i← (a.i or b.i) in an interaction between agents a and b.

This protocol by itself can also be viewed as solving the detection problem, determining whether

some initial agent is in state I. Recent works [9, 93] have found protocols for detection with

additional desirable properties, being self-stabilizing and robust to faulty reactions.

We can analyze this 2-state protocol in a very similar way to Section 1.1.1. Now the Markov

chain (see Fig. 1.2a) will reach the terminal {nI} configuration as long as there are any infected

1Here, the order of interacting agents does not matter, giving a two-way epidemic. Some works in the literature
consider the similar one-way epidemic, where the interaction order matters. This gives an identical process, just
progressing at half the rate.
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agents. From each configuration {kI, (n−k)S}, the number of interactions until the next infection is

a geometric random variable Gk with probability k(n−k)

(n2)
. Starting from a single infected agent, the

total number of steps to converge, T = G1 + . . .+Gn−1 is again the sum of independent geometrics.

The expected value is now

E[T ] =
n−1∑
k=1

n(n− 1)

2k(n− k)
=
n− 1

2

n−1∑
k=1

(
1

k
+

1

n− k

)
= (n− 1)

n−1∑
i=1

1

i
∼ n lnn.

Thus it takes expected lnn parallel time for the epidemic to finish.
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(a) Illustrating the full Markov chain for n = 5 agents.
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(b) Using ppsim to simulate the rule with n = 109 agents
starting from #I = 1, compared with the deterministic
ODE solution I(t) = n · 1

1+(n−1)e−2t .

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
time (n interactions)

0.0

0.2

0.4

0.6

0.8

1.0
1e9Simulating 2-state epidemic, n=10^9, initial #I=1000
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Count of S
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(c) Now starting from #I = 1000 = n1/3, and comparing
to the ODE solution I(t) = n · 1

1+(n2/3−1)e−2t .

Figure 1.2. Simulating the 2-state epidemic protocol, defined in ppsim as
rule = {('I','S'):('I','I')}.

Θ(log n) time is the optimal time for efficient computation in population protocols, because

this is also how long it takes for each agent to have an interaction. If we picked one agent at each

interaction (or were waiting for each agent to be the first initiator agent in the interacting pair),

then waiting for all n agents to be chosen would exactly be the well-known coupon collector
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process. This gives an expected number of interactions n
∑n

i=1
1
i ∼ n lnn. Since two agents are

picked at each interaction2 , it will take an expected ∼ 1
2n lnn interactions for all agents to interact.

A common strategy for more complicated protocols is to try to organize the population into

synchronous rounds, when they can all perform the same part of an algorithm. These synchroniza-

tion sub-protocols are called phase clocks, where each phase lasts Θ(log n) time. This is necessary

for the entire population to interact during the phase, and it is also sufficient to broadcast messages

by epidemic that will reach the entire population. The epidemic process itself is the basis for the

original leader-driven phase clock [21], see Section 1.3 for more discussion.

The mean field approximation to the epidemic process gives the well-known logistic curve. With

concentration i of infected agents, the probability of choosing an infected-susceptible pair gives the

differential equation di
dt = 2i(1 − i). This has general solution i(t) = 1

1+e−2t+C . Fitting the initial

condition i(0) = 1
n corresponding to #I = 1, as in Fig. 1.2b, we see a random offset from the

deterministic curve, coming from the variance in how quickly the epidemic initially spreads. 3

Deviation bounds on the time for the epidemic process are used multiple times in this work. A

detailed analysis in [134] found very precise upper bounds on the time for the epidemic to complete.

These were simplified in Lemma 4.2.7 in order to be easier to apply, while still as sharp as possible.

As an application, we study a related roll call process. There, each agent has a unique piece of

information (its name), and in each interaction the agents share the set of all names they have heard

about (the roster). While it would take a very large number of states (exponential in n) to realize,

this process shows when it is information-theoretically possible for every agent to have complete

information about initial global configuration. Viewing the spread of each name as an epidemic, we

are able to get bounds on the time for the roll call process to complete, and show the expected time

is ∼ 3
2n lnn.

We also use time bounds for sections of the epidemic process, which come from tail bounds on

the sum of independent geometric random variables [115]. The time for an epidemic to spread from

a fraction a to a fraction b of the population (where 0 < a < b < 1 are independent of population

size n) has extremely low variance, as shown in Lemma 3.3.5. Fig. 1.2c shows an example, where an

2Since each successive pair of agents must be different, this is slightly faster than choosing two independent coupons
at each step, but the difference from the exact coupon collector process is asymptotically negligible.
3It follows from large deviation theory of the coupon collector process [112] that the random offset has a Gumbel
distribution.
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epidemic starting from a fraction a = 10−6 of the population very follows a deterministic trajectory.

In Lemma 5.4.4, we consider a more general setting where only a subset of agents are susceptible.

1.1.3. Approximate Majority. One of the most well-studied 3-state protocols can be de-

scribed the rules

A,B → U,U A,U → A,A B,U → B,B.

Intuitively, states A and B can be thought of as “opinionated”, whose opinions cancel to become the

undecided U state. The U agents then adopt the opinion of the an opinionated agent. The agents

will reach a consensus all-A or all-B configuration, and this consensus output is very likely to be

the initial majority opinion.

As a result of this useful behavior and small number of states, equivalent rules have been found

to exist in real biological networks [57]. Yet despite only having 3 states, rigorous proofs about these

dynamics are surprisingly nontrivial. It was shown in [22] that the configuration will stabilize in

O(log n) time, and if the initial majority has an advantage of at least ω(
√
n log n) agents, then this

opinion will become the consensus with high probability. A later work [69] simplified the arguments

and showed high-probability correctness required a smaller gap of Ω(
√
n log n) agents.
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time (n interactions)
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1e9 Simulating 3-state approximate majority, n=10^9
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(a) Using ppsim to simulate the rule with n = 109

agents starting from equal counts of A and B. The
inset shows the difference between counts performing
a random walk until A attains a significant majority.

101 102 103 104 105 106 107 108 109

population size n

5

10

15

20

25

30

av
er

ag
e 

st
ab

iliz
at

io
n 

tim
e 

(1
00

 tr
ia

ls)

Average stabilization time of approximate majority

(b) For a range of values of n, 100 trials were simu-
lated starting from #A = #B = n/2. The average
time until stabilizing is shown here, on a log-linear
plot to clearly show the Θ(logn) time stabilization.

Figure 1.3. Simulating the 3-state approximate majority protocol, defined in ppsim
as rule = {('A','B'):('U','U'), ('A','U'):('A','A'), ('B','U'):('B':'B')}.

Fig. 1.3a shows a typical example of the approximate majority dynamics, starting from an equal

counts of half a billion A and B agents. The corresponding system of ODEs has a saddle point at
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(#A
n , #B

n , #U
n ) = (1

3 ,
1
3 ,

1
3). We see the discrete process quickly approach this point, while at a finer

scale the difference between counts of A and B is essentially performing a random walk. The most

involved part of the rigorous analysis is to show an anti-concentration result, that these random

effects push the system to then converge to the stable fixed points at either all-A or all-B. Because

of these random effects, if the initial gap between opinions is significantly small, either opinion is

equally likely.

Fig. 1.3b shows data generated by ppsim, which supports the result that even from an initial

split case of half A and half B, the dynamics reach consensus in O(log n) time. Note to get data

that conclusively supports the O(log n) time stabilization requires n to scale across a wide range

of orders of magnitude, making it useful that ppsim can handle such large population sizes. See

Fig. 2.2 for a comparison of how long ppsim takes to simulate this rule on large population sizes,

compared to existing CRN simulators.

1.1.4. Exact Majority. The 3-state protocol above does not solve the exact majority problem,

because the agents are not guaranteed to reach the correct answer of which state was in the initial

majority. It is provably necessary to use at least 4 states [127], but with an additional state the

exact majority problem can be solved. The basic rules are

A,B → a, b A, b→ A, a B, a→ B, b.

Intuitively, when states A and B meet, they become the “passive” states a, b, which hold the same

output opinion. The “active” A and B agents then convert the passive agents to their opinion.

These rules now preserve #A − #B as an invariant, which is key to correctness. Eventually, the

only remaining active agents have the majority opinion, and they convert all the passive agents and

stable consensus is reached.

If the initial gap between opinions is a constant fraction #A−#B = c
n , then all active minority

agents will be eliminated by the first “cancel” reaction in Θ(log n) time (the precise time shown in

Lemma 3.3.6) and then all passive agents will be converted to the correct opinion in Θ(log n) time

(see Lemma 3.3.7).
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The worst case for convergence time happens when the initial counts are almost equal4. For

example, if the initial gap #A−#B = 1, then the final cancel reaction (with #A = 2,#B = 1) will

take Θ(n) time (the sum of the times for all cancel reactions also takes Θ(n) time, with an analysis

similar to Section 1.1.1). Waiting for the one A agent to interact with and convert all passive agents

looks like the coupon collector process, and takes Θ(n log n) time. See Fig. 1.4a for a simulation

with this initial gap #A−#B = 1.

0 100 101 102 103 104 105 106

time (n interactions)

0
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101

102

103

104

105

Simulating 4-state exact majority, n=10^5

A
B
a
b

(a) Using ppsim to simulate the rule with n = 105 +
1 agents starting with #A − #B = 1. The final
remaining active A agent must directly convert all
remaining passive b agents to a.
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time (n interactions)

0
100

101

102
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104

105

4-state exact majority with random walk broadcast

A
B
a
b

(b) Starting from the same initial condition with ad-
ditional random walk transitions between passive a
and b states. Now with a single remaining A agent,
the population more quickly stabilizes to all a.

Figure 1.4. Simulating the 4-state exact majority protocol, defined in ppsim
as rule = {('A','B'):('a','b'), ('A','b'):('A','a'), ('B','a'):('B':'b')}. Random
walk transitions are added as rule | {('a','b'):('b','a'), ('b','a'):('b','b')}.

This convergence time can be dropped to Θ(n) by the “random-walk broadcast” technique

from [21]. This adds the additional pair of ordered transitions

(a, b)→ (a, a) (b, a)→ (b, b).

Whenever an a meets a b agent, they both adopt one the same state based on the order of the

interaction. This rule makes the count of a and b agents perform a symmetric random walk. The

remaining active A agent forces this random walk to reach the all-a configuration, which is shown

in [21] to take Θ(n) time. See Fig. 1.4b for a simulation that shows the effect of these additional

random walk transitions.

4Note this 4-state rule does have not well-defined output if the initial configuration is a tie. There is a related 6-state
rule which additional recognizes this tie case, used as Phase 10 for our the majority protocol in Chapter 3.
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1.1.5. Parity. Another property of the initial configuration which can be exactly computed

is parity, determining if the population size is odd or even. The following protocol uses 4 states

{L0, L1, F0, F1}. All agents start in state L1, and the subscript “output bit” for each agent will

stabilize to n mod 2:

Li, Lj → L(i+j mod 2), F(i+j mod 2) Li, Fj → Li, Fi (Fi, Fj)→ (Fi, Fi).

This does simple leader election, while preserving the parity of the sum of all leader output

bits. Thus the ultimate final leader will have the correct output bit (in Θ(n) time), which is then

broadcast to the entire population by the same Θ(n) time random-walk broadcast from [21].

The majority problem is a representative special case of a threshold predicate, which asks

whether a particular weighted sum of input states
∑k

i=1wiXi > c exceeds a constant c. (For

majority, w1 = 1, w2 = −1, c = 0.) This parity problem is a special case of a mod predicate,

which asks whether a particular weighted sum of input states
∑k

i=1wiXi ≡ b mod m (For parity,

w1 = 1, b = 0,m = 2). There are constructions which generalizing these last two protocols, and

show that any threshold or mod predicate can be stably computed in O(n) time [19,21]. Taking

arbitrary Boolean combinations of threshold and mod predicates gives the class of semilinear

predicates, which precisely characterize the computational power of population protocols with a

constant number of states (independent of population size n). See Section 1.3 for more discussion.

1.2. Formal Model Definitions and Notation

1.2.1. Defining a protocol. A population protocol is a pair P = (Q, δ), where Q is a set of

states, and δ : Q×Q→ Q×Q is the transition function which describes how agents update their

states in an interaction. In general, the transition is asymmetric, applied to the ordered pair of

an initiator agent and responder agent. Most transitions in this work are symmetric, so we only

explicitly label the initiator and responder for asymmetric transitions where the interaction order

is relevant.5 Furthermore, any asymmetric protocol can be simulated by a symmetric protocol [49],

so this distinction does not add fundamental power to the model.

We additionally make use of random transition functions that instead output a discrete

distribution over pairs of output states. This also does not add fundamental computational power

5The same convention is used for specifying protocols in ppsim, via the default value of parameter transition_order
= 'symmetric'.
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to the model, because standard “synthetic coin” techniques [5] are able to exploit the randomness

of the scheduler to give the agents access to additional random bits, but rigorous analysis becomes

more cumbersome than assuming purely random transitions. ppsim is able to directly simulate ran-

domized transitions, which is used crucially to faithfully simulate CRNs with varying rate constants.

A transition (a.k.a., reaction) is written r1, r2 → p1, p2. For simple protocols, such as the

examples in Section 1.1, we directly list all transitions. For every pair of states r1, r2 without an

explicitly listed transition r1, r2 → p1, p2, there is an implicit null transition r1, r2 → r1, r2 in which

the agents interact but do not change state.

For more complicated protocols in later chapters, we instead rely on pseudocode to implicitly

describe the state set Q and transition function δ. We describe states of agents by several fields,

using fixed-width font to refer to a field such as field. Constant values are displayed in a sans

serif front such as Yes/No. If an agent has several fields each from a certain set, then that agent’s

potential set of states is the cross product of all the sets for each field, i.e., adding a field from a

set of size k multiplies the number of states by k. A special type of field is called a role, used in

some of our protocols to optimize space usage. A role is used to partition the state space: different

roles correspond to different sets of fields, so switching roles amounts to deleting the fields from the

previous role. Thus the total number of states is obtained by adding the number of states in each

role. When two agents a and b interact, we describe the update of each of them using pseudocode,

where we refer to field of agent i ∈ {a, b} as i.field.

1.2.2. Defining a population. A population A is a set of n agents. A configuration c : A →

Q is formally a mapping from agents to states. More generally, there could be a interaction graph

which describes possible ordered pairs of agents which can interact. In this work, we exclusively use

the common assumption of the complete interaction graph and uniform random scheduler where

all n(n − 1) ordered pairs of agents are equally likely to be chosen. This well-mixed assumption

is a modelling choice that is also the basis for standard kinetics of chemical reactions, described in

Section 1.2.5. As a result, the agents are indistinguishable and the dynamics of a configuration only

depend on the counts of states. Thus we can equivalently define a configuration c as a multiset

over Q. This multiset (as an array of counts) is used internally by ppsim, and is crucial for the

simulation algorithm.
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This uniform scheduler then gives a discrete Markov chain, where at each step a uniform ran-

dom ordered pair of agents is chosen, and a transition (possibly chosen at random if δ outputs a

distribution of pairs of states) is applied. Each interaction uses 1
n units of parallel time, which we

also henceforth refer to as simply time. There is a related continuous-time variant [96], where each

agent has a rate-1 Poisson clock, upon which it interacts (as the initiator) with a randomly chosen

responder agent. In this case, each ordered pair is still equally likely to be chosen next, and the

expected time until the next interaction is 1
n , so up to a re-scaling of time, which by straightforward

Chernoff bounds is negligible, these two models are equivalent. ppsim can use either time model.

1.2.3. Stable computation. There are many modes of computation considered in population

protocols: computing integer-valued functions [32,63,86] where the number of agents in a particular

state is the output, Boolean-valued predicates [20,21] where each agent outputs a Boolean value as

a function of its state and the goal is for all agents eventually to have the correct output, problems

such as leader election [5, 10, 40, 42, 88, 99, 100], and generalizations of predicate computation,

where each agent individually outputs a value from a larger range, such as reporting the population

size [43, 83, 85]. The computational task and possible input configurations then define a notion

of correct output configurations. For example, in leader election these are configurations with

exactly one agent in a subset L ⊂ Q of designated leader states. For local computation tasks such

as majority or population size counting, there is a mapping φ : Q → O of states to output values,

and all states in a correct output configuration must have the same correct output value.

To stably compute the given task, the population must reach and maintain correct output

configurations with probability 1. Stable computation can be equivalently defined solely based on

reachability, without referencing the precise random dynamics. The possible transitions in the

Markov chain on configurations give a directed graph on configurations (this graph describes the

reachability relation), and this graph only depends on which transitions are possible, not their

exact probabilities. A configuration is stable if it belongs to a strongly connected component of

correct output configurations, i.e., no incorrect configuration is reachable. Stable computation

then requires that from all reachable configurations, it is possible to reach a stable configuration.

Stable computation is rate-independent: it does not depend on the exact stochastic dynamics of

a kinetic model and is thus a more robust property.
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Results on time complexity, however, do depend on the exact dynamics coming from the uniform

random scheduler. Given the associated stochastic process, we can define the stabilization time as

the hitting time required to reach a stable configuration (ie. reach the strongly connected component

of correct configurations). The convergence time of the stochastic process is the time after which

all future configurations in the sequence are correct output configurations. Once a protocol has

stabilized, it has also converged, but it is possible to converge before stabilizing if there are still

reachable configurations with an incorrect output. As long as the reachability graph is finite, a

protocol converges from a configuration c with probability p ∈ [0, 1] if and only if it stabilizes

from c with probability p. All existing time lower bounds [5,6,32,88,156] are lower bounds on

stabilization time. At the time of writing, there are still no lower bounds on convergence time for

fundamental tasks in this model. And there are examples [36,120] which show some of these lower

bounds do not also hold for convergence time.

1.2.4. Uniformity. A uniform protocol [62,83,85] is a single set of transitions that can be

used in any population size. The original population protocols model [19] was uniform because it

had a finite state set Q and transition function δ, independent of the population size n. More recent

works have allowed the size of the state set |Q| to grow with n. Many of them [5,6,10,13,35,42,

44,53,100,132,133,158] are nonuniform, where both (Q, δ) depend on the population size n.

A uniform protocol whose states grow with the population size n now technically has an infinite

state set Q. One formalization is to have a Turing machine that computes the transition function

δ [62,83,85]. The state bound for such protocols can now be described as a bound on the total

number of reachable states, based on an initial configuration of fixed size n, such as in [62]. For

most uniform protocols, however, the number of reachable states can be unbounded. Still there is a

high probability bound on the number of states that will be reached in a particular execution (for

instance, if each agent has an integer counter that will sample a geometric random variable, this

will use at most O(log n) states with high probability).

1.2.5. Discrete chemical reaction networks. In a population protocol, each reaction (tran-

sition) consists of two reactants (input states) and two products (output states). This is a special

case of a discrete CRN, which can more generally have an arbitrary multiset of reactant states

(a.k.a. species) and product states, such as in the reaction A,B → 3C. A configuration c is still a
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multiset of states / species, or equivalently a vector of their counts. The same reachability relation

from population protocols now generalizes, where a reaction is applicable from a configuration c

if all reactant species are present in sufficient count, which then gives a new configuration by sub-

tracting counts of reactants and adding counts of products. Using this notion of reachability, the

same definition of stable computation applies to more general discrete CRNs.

The standard kinetic model for discrete CRNs is a continuous time Markov chain coming from

the chemical master equation [104], which is simulated by the Gillespie algorithm [103]. Each

reaction has an associated rate constant k. Given a fixed volume v ∈ R+, the propensity of a

unimolecular reaction r : X
k→ . . . is ρ(r) = k ·#X, where #X is the count of X. The propensity of

a bimolecular reaction r : X + Y
k→ . . . is ρ(r) = k · #X·#Y

v if X 6= Y and k · #X·(#X−1)
2v otherwise.

The Gillespie algorithm calculates the sum of the propensities of all reactions: ρ =
∑

r ρ(r). The

time until the next reaction is sampled as an exponential random variable T with rate ρ, and a

reaction rnext is chosen with probability ρ(rnext)/ρ to be applied.

1.2.6. Notation. N denotes the set of nonnegative integers. The variable n is exclusively

used to refer to the population size. We write log n to denote log2 n, and lnn to denote the

natural logarithm loge n. Hk =
∑k

i=1
1
i denotes the kth harmonic number, with Hk ∼ ln k, where

f(k) ∼ g(k) denotes that lim
k→∞

f(k)
g(k) = 1. We additional use the standard “big-oh” asymptotic

notations o(n), O(n), Θ(n), Ω(n), ω(n). We omit floors or ceilings (which are asymptotically

negligible) when writing quantities such as lnn to describe a quantity that should be integer-valued.

We say event E happens with high probability if P[¬E] = O(n−c), where c is a constant

that depends on our choice of parameters in the protocol, where c can be made arbitrarily large by

changing the parameters. In other words, the probability of failure can be made an arbitrarily small

polynomial. For concreteness, we will write a particular polynomial probability such as O(n−2), but

in each case we could tune some parameter (say, increasing the time complexity by a constant factor)

to increase the polynomial’s exponent. We say event E happens with very high probability if

P[¬E] = O(n−ω(1)), i.e., if its probability of failure is smaller than any polynomial probability.
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1.3. Population Protocols Literature Review

In this section, we review the key foundational results that have been shown in the population

protocols model. See also [26,128] for surveys on early results, and [11,94] for surveys on more

recent algorithmic techniques.
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Figure 1.5. An example semilinear set S ⊂ N2.

1.3.1. Computational power of population protocols. Population protocols were origi-

nally defined in [19]. These first works did not focus on issues of time complexity with the uniform

scheduler, instead focusing on the the power of stable computation, and exclusively considered

constant-state protocols (independent of n). There it was shown that the model could stably com-

pute all semilinear predicates (see Section 1.1.5). A follow-up work [20] then showed any stably

computable predicate must also be semilinear.

For example, Fig. 1.5 shows an arbitrary semilinear set, so there is a population protocol which

stably computes whether the input configuration (with input states X,Y ) is in S. A semilinear

set has multiple equivalent definitions. One is as the union of linear sets of the form L = {b +

p1N + . . . + pkN}, so the example S = {(1, 2) + (1, 3)N} ∪ {(3, 1) + (2, 2)N + (3, 1)N}. Semilinear
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sets are also defined as a Boolean combination of threshold and mod sets, as in Section 1.1.5 and

Definition 6.2.5. For example, the second linear set that comprises S is the interaction of the

threshold sets {X − Y ≥ 2}, {X − 3Y ≤ 0} and the mod set {X + Y ≡ 0 mod 4}. Semilinear sets

are also exactly the sets which are definable in Presburger arithmetic [109].

It was also shown the semilinear predicates can still be computed under the model of stabilizing

inputs [17], where the input field for each agent could repeatedly change before finally stabilizing.

This allows for a natural form of composition, since this input could be an output field from an

upstream protocol, which will initially be incorrect but eventually stabilize. A stronger notion

of self-stabilization [79] lets the entire memory of an agent change. These transient faults are

modelled by starting the population in an arbitrary configuration, from which they must stabilize

to some desired behavior. In the original model, with constant states and a complete interaction

graph, it was shown fundamental tasks like self-stabilizing leader election were impossible [24].

Our work in Chapter 4 circumvents this by allowing a larger number of states, see Section 4.1.2 for

other problem relaxations.

Some of these relaxations considered special interaction graphs, such as rings. An argument

from the original paper [19] shows that the complete interaction graph is the hardest case, because

it can be simulated in any other connected interaction graph. The agents switch their states in each

interaction, which effectively creates a population of “virtual agents” which are getting passed like

tokens across the graph. The later focus on time complexity has standardized the uniform random

scheduler with a complete interaction graph, motivated by a well-mixed assumption in the modelling

of chemical kinetics. Questions about dynamics on arbitrary interaction graphs have been much

less studied in general, but the recent work of [12] has initiated a study of fast protocols for general

interaction graph dynamics.

These semilinear results also applied to more general discrete CRNs. There, stable computation

has focused on functions f : Nd → Nk, represented by counts of input and output states (species).

Discrete CRNs can stably compute exactly the semilinear functions, whose graph is a semilinear

set. They can also be defined as piecewise affine functions, see Definition 6.2.6. One natural mode of

composition for this discrete CRN function computation is to be output oblivious, never using the

output states as future inputs, which allows them to be freely used by downstream computation.
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Unlike stabilizing inputs for population protocols, however, this creates a proper subclass of the

semilinear functions, which we precisely classify in Chapter 6.

1.3.2. Fast population protocols. The work [21] initiated the study of efficient population

protocols, with time measured by the uniform random scheduler. They established that all semilin-

ear predicates can be computed in O(n) time. Moreover, they showed more efficient computation

was possible starting from a leader. A key technical contribution was the leader-driven phase

clock. The basic rule is

Li, Fi → Li+1, Fi Li, Fj → Li, Fi
j<i

Fi, Fj → Fmax(i,j), Fmax(i,j).

Intuitively, there are leader and follower agents, which have a “minute” field (the subscript). The

leader increments the minute when it sees the same minute, and the other rules increase the minute

by epidemic. This epidemic must bring most of the population up to the same minute before

the leader is likely to see an agent in the same minute, which keeps the population synchronized.

This clock can then use a finite state set {L0, . . . , Lm−1, F0, . . . , Fm−1}, with the minutes wrapping

around mod m.6 Results from [21] show the population will stay synchronized7 within a constant

number of consecutive minutes for polynomial amount of time, with high probability. So for a

sufficiently large constant value m of total minutes, we can partition them into “hours” (consecutive

blocks of minutes) and the entire population will be synchronized in the same hour.

This original phase clock was used in [21] to simulate a register machine, correct with high

probability, whose operations take O(polylog n) time. For semilinear predicates, this fast compu-

tation can be combined with a stable backup (the O(n) time stable protocol). The initial leader

can then set a timer which takes ω(n) time8 , after which all agents will use switch to the results of

the slow backup. Note that this technique yields O(polylog n) convergence time, because with

high probability the original fast computation is correct, and by the time the agents switch to the

slow backup, that is also correct. However, it has Ω(n) stabilization time, because until the slow

6Now to determine max(i, j), we use the non-transitive “cyclic order” where i ≤ j means (j − i mod m) < m
2
.

7This requires the population to be initialized in the same minute, however. The rule is not self-stabilizing, and
cannot recover from configurations where all minutes are simultaneously present.
8One method is to have the leader mark a single other agent, and wait to encounter that agent multiple times. Note
the termination lemma of [83] implies that such a timer is not possible without a leader. With constant states, all
states with the signal that the timer has finished will be produced in constant time. The initial leader is necessary
to delay this timer signal.
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backup has stabilized, it is possible for the agents to switch early to using this backup and become

incorrect.

1.3.3. Lower bounds. The work of [21] left open the question of more efficiently electing a

single leader. It was then shown in [88] that any stable leader election protocol (in the original

model with constant states) must take Ω(n) time to stabilize, so the simple protocol of Section 1.1.1

is asymptotically optimal. The arguments were later generalized [32] to show a wide variety of

problems have Ω(n) lower bounds on stabilization time, including most semilinear predicates such

as majority and parity, as well as functions like f(x) = bx2 c computed by the discrete CRN 2X → Y .

These techniques were also extended in [5] to show the time lower bound for leader election still

holds if the number of states is ≤ 1
2 log logn.

The bound of Θ(log log n) states comes from generalizing the density lemma, the key first step

in the lower bound argument which requires showing all reachable states are present in large count.

The argument starts in an initial configuration where all input states ∈ Q0 have a large count, ≥ cn

for some constant c. We then consider all transitions between states in Q0, letting the set Q1 be

all new states produced this way. The probability of each of these transitions is at least c2, and it

follows that each new state in Q1 appears in at least count ≈ c2n. We then repeat this argument,

where the repeated squaring shows that all states at level Qk are produced in count ≈ c2kn. The

state bound then implies k ≤ 1
2 log logn, and all states become present in sufficiently large count

for the remainder of the proof.

These same ideas were also used to show impossibility of termination in uniform, leaderless

population protocols [83]. There, the uniform protocol has a potentially infinite number of states,

but some subset of states are terminated (ie. have some flag terminated = True, which corresponds

to choosing an output value or proceeding to a later part of the algorithm). As above, all states

in the initial configuration must be present in large count (so there can not be an initial leader).

In that case, the terminated states are produced in constant O(1) time and in large Ω(n) count.

Thus, the only way the delay the production of a termination signal is to either have a nonuniform

protocol where the agents can agree on some value related to the population size n, or to start with

a state in small count (ie. a leader or more generally a junta of leaders). This argument is very

useful for showing that potential ideas for fast and stable algorithms cannot work.
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1.3.4. Protocols for leader election. With a larger number of states, it does become possible

to solve stable leader election in sublinear time. The first provably correct protocol of [10] used

polylog(n) time and polylog(n) states. The idea of their “leader-minon” protocol can be described

by transitions

Li, Lj → Lx+1, Fx+1
x=max(i,j)

Li, Fj → Li+1, Fi+1
j≤i

Li, Fj → Fj , Fj
j>i

Fi, Fj → Fx, Fx
x=max(i,j)

.

Agents all start in state L0, as leaders with value 0. In addition to doing simple leader election,

leaders increment their value at each interaction. The maximum value then spreads among all

followers, and leaders drop out if they see a larger value, knowing for certain that there exists

another leader.

As written, this protocol is uniform, but agents will use an unbounded number of states. The

analysis from [10] showed that there will be a unique leader with high probability within time

O(log3 n), when the maximum counter value is still O(log3 n). This it suffices to add a bound

m = Θ(log3 n) to all counters to bound the state space. This protocol is now nonuniform, since

the transitions depend on n, although in the weakest possible way, since the nonuniformity is just a

bound on the reachable states of what would otherwise be a uniform protocol. A follow-up protocol

from [42] added synthetic coins to this leader-minion logic, now only needing O(log n) states and

O(log2 n) time.

Following the Ω(log log n) state lower bound, a breakthrough result [99] showed that using only

O(log log n) states, stable leader election was possible in time O(log2 n). These super-constant states

were used for stable junta election, selecting a subset of O(
√
n) junta agents. The idea behind

junta election is for every agent to start “active” with level = 0. If an active agent interacts with

another active agent at their level or higher, it increments its level and remains active. Otherwise,

the active agent becomes inactive. The maximum level achieved will be O(log log n), because the

fraction of active agents at each level decays by the same repeated squaring process. Letting ai

denote the fraction of agents who ever reach level i or above, then each of those agents must have

met another agent at level i or above in their first interaction after reaching level i. Thus the

expected fraction to reach level i + 1 is (ai)
2. This gives the same doubly-exponential decay that

was seen in the Ω(log log n) state lower bound. The inactive agents will then spread the maximum

level by epidemic, and the agents that themselves reached the maximum level (ie. never heard above
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a larger level than the one they reached) will be in the junta. The number of agents that reach the

maximum level is O(
√
n), because if ω(

√
n) agents are at the same level, it is likely that a pair of

them will interact and increase to a new higher level.

This O(
√
n) sized junta is sufficient to drive the leader-driven phase clock from [21], which only

actually needed the number of leaders to be O(nε) for some fixed ε < 1. Whenever the agents

increment their level, they reset this phase clock. Thus the clock corresponding to the maximum

level will only ever have a small O(
√
n) sized junta and start with all agents at minute 0, so it will

stay synchronized with high probability.

Using the synchronization from this phase clock, the protocol will then reduce the size of the

junta to a single remaining leader. In each cycle of the clock, all junta agents flip a coin and

broadcast the result of the flip. If an agent flips tails and sees that another agent flips heads, it

drops out. This causes half the junta to drop out in each clock cycle (which takes O(log n) time).

Thus we get down to a single leader in O(log n) cycles which takes O(log2 n) time.

Crucially, the protocol must always stabilize to a unique leader, in expected time O(log2 n). It

is possible, with low probability, for the phase clock to get out of sync, and for the last remaining

leader to flip tails, but drop by out by meeting a delayed agent that has not interacted since the

previous round and is still broadcasting that the leader flipped heads. To handle this, the agents

will run the simple 2-state leader election as a stable backup, and use this value of the true output.

If all junta agents drop out, then the phase clocks will stop advancing, and the protocol will stabilize

when the slow backup stabilizes. To stabilize with high probability in O(log2 n) time, the protocol

of [99] uses a second junta-driven phase clock, whose interactions are only executed once per cycle

of the first junta-driven phase clock. Since the first clock takes O(log n) time per cycle, the second

clock will take O(log2 n) time per cycle. Then when the second clock finishes, there will be a unique

leader with high probability, which sends out a termination signal which tells the population to stop

using the slow backup as their output value.

The protocol from [99] is uniform. There is no bound on level, so it uses unbounded states, but

with high probability will only use O(log log n) states because this is the largest level that is reached.

The later result of [40] improved the expected stabilization time to the optimal value O(log n)9,

9The coupon-collector argument that it takes O(logn) time for all agents to interact is not technically enough for
a lower bound here, since in principle the initial state could be a non-leader and a unique leader could be elected
before all agents have finished interacting. A more involved proof in [156] shows this is not possible, and that even
with unbounded states, leader election needs Ω(logn) time to stabilize.
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while still using O(log log n) states. This time and space optimal protocol is crucially nonuniform.

The nonuniform variant of junta election uses a maximum level value m = Θ(log log n), and defines

the junta to be all agents whose level reaches the maximum value. This allows the agents to “forget”

their level value after the junta election step in order to use less space. Later phases are then able

to also use Θ(log log n) states, for example to count how many rounds of coin-flip elimination is

required to bring the count of leaders from O(log n) down to O(1).

If the conditions from the Ω(n) time lower bound on stabilization time for leader election

are relaxed, it seems that sublinear time does become possible using O(1) states. The methods

from [120] shows an O(1)-space and expected O(log2 n)-time protocol leader election protocol, that

has a nonzero probability of error. They also give a protocol with is correct with probability 1, and

takes sublinear (e.g.,
√
n) expected convergence time, although it provably must take longer to

then stabilize.

1.3.5. Protocols for majority. The other most studied problem in population protocols is

majority. The approximate majority protocol, discussed in Section 1.1.3 and analyzed in [22,69],

has optimal O(log n) time, but is not correct with probability 1, and is only even correct with high

probability when the gap between initial opinions is Ω(
√
n log n).

The exact majority problem was solved in the original paper [19] as a special case of a semilinear

predicate, but can also be solved by a 4-state protocol [89,127], which when optimized takes O(n)

time, as discussed in Section 1.1.4. Variants of this protocol, also able to distinguish the case of a

tie, were discussed in [47].

The time lower bounds discussed above showed that o(n)-time majority must use Ω(log log n)

states. For the special case of majority, these techniques were adapted to show there must be at

least Ω(log n) states to stabilize in sublinear time.10 Table 1.1 summarizes the state space and

run-time of existing stable majority protocols.

The simplest rule which is able to efficiently solve exact majority is discrete averaging, where

the agents’ states are integers which update as

i, j →
⌊
i+ j

2

⌋
,

⌈
i+ j

2

⌉
.

10Technically the result is for stabilizing in o(n/polylogn) time, and the techniques require the protocol to satisfy two
additional conditions (satisfied by all known stable majority protocols, including ours) monotonicity and output
dominance. These concepts are discussed in Section 3.8.
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Table 1.1. Summary of known work on the stable exact majority problem in pop-
ulation protocols, including Chapter 3 [∗]. Gray regions are provably impossible:
o(log log n) state, o(n) time unconditionally [5], o(log n) state, O(n1−ε) time for
monotone, output-dominant protocols [6], and o(log n) time unconditionally.

Time

O(1)

O(log n)

O(log3/2 n)

O(log5/3 n)

O(log2 n)

Ω(n)

StatesO
(1)

O
(log n)

O
(log 2

n)

O
(log 3

n)

O
(n ε

)

Ω
(n)

[19,21,89,127]

[5][44]

[33]

[35]

[6,36] [13]

[36] [132,133][∗]

This process was shown [39,135] to converge in O(log n) time to a configuration where all agents

have at most 3 consecutive integer values. If we then have a nonuniform protocol where the initial

state A maps to a value m ≥ 2n, and the initial state B maps to the value −m, then if the majority

state is A (resp. B), the population average will be ≥ 2 (resp. ≤ −2) which can be stably detected

by all agents having the same sign. Also, this detects ties, which are the unique situation that

stabilizes to a configuration containing a majority of agents in state 0. This approach was used

in [132,133], and while time optimal, requires a very large number Ω(n) states.

Most other efficient majority protocols use alternating phases of cancelling (two biased agents

with opposite opinions both become unbiased, preserving the difference between the majority and

minority counts) and splitting (a.k.a. doubling): a biased agent converts an unbiased agent to its

opinion; if all biased agents that didn’t cancel can successfully split in that phase, then the count

difference doubles. The goal is to increase the count difference until it is n; i.e., all agents have the

majority opinion. If each of these phases is an O(log n) time round of a phase clock, this will give an

O(log2 n) time protocol. This phase clock could come from the junta-driven phase clock from [99],

which was the approach of [36].

Another phase clock scheme, introduced for the majority problem in [6], is based on the power

of two choices load balancing scheme [130]. The basic idea is to update the minutes by the rule

i, j → i+ 1, j
i≤j
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ie. the smaller11 of the two minutes increments. Analysis from [137] shows all minutes remain

concentrated in an interval of O(log n), so with Ω(log n) total minutes, they can be partitioned into

disjoint hours, and all agents will stay synchronized in the same hour with high probability.

Other results dropped the stabilization time to O(log5/3 n) [35] and then O(log3/2 n) [33],

by compressing the lengths of the some of these phases. Our optimal O(log n) time result in

Chapter 3 could then be interpreted as compressing the length of all phases down to O(1) time.

Our synchronization scheme uses a new phase clock (see Fig. 3.2 and Section 3.5.1) with a similar

distribution to the power of two choices phase clock. Our O(1) time hours are now not long enough

to ensure perfect synchronization, so substantial analysis is required to show the effects of the loose

synchronization provided by this clock.

As with leader election, by relaxing the stabilization requirements, the Ω(log n) state lower

bound no longer holds, and majority can be solved efficiently with a smaller number of states.

Results in [36,120] show that with fewer states, it is still possible to have O(polylog n) time if the

protocol is only correct with high probability. Also, these fast error prone protocols can be composed

with slow backups to get probability 1 correctness, with sublinear convergence time, although still

Ω(n) stabilization time as required by the lower bound of [6].

1.3.6. Other problems. One generalization of the majority problem is plurality consensus,

where there are now a larger number of initial opinions, which was studied in [98], and more widely

studied in related synchronous gossip models [37,101].

Applications to engineered chemical reaction networks have motivated additional definitions

of leak reactions [9], which are spurious events that change the state of an agent, modelling

side effects of chemical implementation [162]. The only states which are not affected by leaks are

catalysts, which can only appear in catalytic reactions such as A,B → A,C where state A does not

change. The majority problem has been considered for comparing two inputs which are catalytic

states. It was shown in [16] that the 3-state approximate majority protocol can be adapted to

these catalytic inputs, and no fast O(log n) time protocol can reliably distinguish catalytic inputs

if the difference in their counts is o(
√
n). The work of [14] considered catalytic inputs with very

11Again, when minutes wrap around mod m, we use the non-transitive “cyclic order” where i ≤ j means (j − i
mod m) < m

2
.
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small count, and showed how to amplify their count to detect the difference. In addition to being

leak-robust, this work is also self-stabilizing, able to recover from changes in this input counts.

Detection The basic rule for self-stabilization signal amplification was developed in [9], where

it was used in the context of the detection problem. This problem of detecting the small presence

of a signal has clear biological application, and the protocol of [9] has desirable properties of being

both leak-robust and self-stabilizing. Moreover, this self-stabilizing rule has proven to be applicable

in other contexts, such as generalizing to majority in [14] above and being used in our self-stabilizing

subprotocol Propagate-Reset, a key part of our efficient solutions to self-stabilizing leader election

in Chapter 4.12

The detection problem was also considered in the work of [93]. There, the signal to be detected

was used to drive a modified version of the rock-paper-scissors oscillator (the basic 3-state oscillator

is shown in Fig. 2.3). The oscillatory dynamics will persist in the presence of a small signal, but

otherwise die out, leading to a solution to the detection problem. Moreover, this oscillator was used

in [120] to be the basis for a phase clock which gives efficient constant-state protocols.

Size counting Once the number of states grows with the population size, one new problem

that becomes possible is population size counting. A simple protocol for exact size counting is

given by

Li, Lj → Li+j , Fi+j Fi, Fj → Fm, Fm
m=max(i,j)

.

All agents start in state L1, which intuitively can be thought of as leaders holding one token. The

tokens all get given to remaining leaders during the simple leader election process of Section 1.1.1,

which will eventually leave one leader in state Ln. The maximum number of tokens spreads by

epidemic, so the rest of the population stabilizes in state Fn. This process takes Θ(n) time, since

the epidemic is negligible compared to the leader election.

Exact size counting necessarily requires Ω(n) states, but one smaller state variant is approxi-

mate size counting, requiring only an estimate of n. One simple approach to do this is to restrict

12Note that self-stabilizing leader election as considered in Chapter 4 has the stricter requirement of stable compu-
tation, where the eventually output must be correct and never change. The detection protocols do not satisfy such
strict conditions on the output. A similar notion of loose stabilization was applied to leader election [157], which
only requires the output to be correct for a sufficiently long period of time. This gets around impossibility results,
and can be done with fewer states. See Section 4.1.2 for more discussion of variants of self-stabilizing leader election.
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the count of allowable tokens to perfect powers of two, with new rules

L2i , L2i → L2i+1 , F2i+1 F2i , F2j → F2m , F2m

m=max(i,j)

.

This will stabilize to a configuration with one agent in state L2i for each i giving the position of

a 1 in the binary expansion of n, and all other agents in state F2k , where k = blog2 nc. For more

detailed analysis, see Section 3.7.2.

Recent work has considered more time efficient protocols for both exact and approximate size

counting [43, 83, 85], where one of the most important building blocks to faster protocols is the

discrete averaging process. Another well-studied variant of counting uses an initial leader (also

called “base-station”). Given an initialized leader, it is possible to solve self-stabilizing counting,

where the initial states of all other agents are arbitrary [25,29,31,114].

For approximate size counting, notice that this function f : N→ N given by f(n) = blog2 nc is

no longer semilinear. The simple approximate size counting protocol shows more functions can be

computed using a non-constant state bound of O(log n) states.13 The work of [62] formalized stable

computation with uniform, super-constant state protocols.14 They showed this threshold O(log n)

states is tight: if the number of reachable states grows with n, it must grow at least as Ω(log n), so

the only smaller reachable state bounds are constant, computing only semilinear predicates. They

also show in [62] that with Ω(n) states, it is possible to assign unique identifiers, and then simulate

a space-bounded Turing machine. See Section 5.3 for more discussion. Our work in Chapter 5 then

gives a similar analysis for the case of large internal states but constant size message complexity.

The approximate size counting protocol can be viewed in a separate framework, as instead

computing the semilinear threshold predicate n ≥ m using O(logm) states. This connects to a

different question about space complexity: what is the most space-efficient way to compute a given

semilinear predicate? [45, 46, 71] Now space is not scaling with the population size, it is instead

scaling with the complexity of the semilinear predicate. Unfortunately, it is not very clear what

a canonical choice of complexity is for semilinear predicates: there can be a doubly exponential

difference between the size of a formula in Presburger arithmetic and its corresponding expansion

as threshold and mod predicates [109]. Thus a reasonable case study is to focus on just these

13Here the state bound is in the strict sense of reachable states, where there will be only O(logn) reachable states
from an initial configuration of n agents in state L20 .
14They give a formalization of uniform protocols via linear space Turing machines, see Chapter 5 for more discussion.
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threshold predicates, to ask what the most space efficient protocol is for a given threshold predicate.

It was shown in [46], using an older construction from vector-additional systems [126], that starting

from an additional leader, for some values of m, there are protocols that stably compute n ≥ m

using only O(log logm) states. In other words, with an additional leader, there is a protocol using

exponentially fewer states. The recent work of [71] has established some of the first lower bounds

on the minimum number of states needed in both the leader and leaderless settings.

1.4. Thesis Contributions

1.4.1. ppsim: A Software Package for Efficiently Simulating Population Protocols.

In Chapter 2, we introduce ppsim [141], a software package for efficiently simulating population

protocols. In a recent breakthrough, Berenbrink, Hammer, Kaaser, Meyer, Penschuck, and Tran [41]

discovered a population protocol simulation algorithm quadratically faster than the naïve algorithm,

simulating Θ(
√
n) reactions in constant time (independently of n, though the time scales with

the number of species), while preserving the exact stochastic dynamics. ppsim implements this

algorithm, with a tightly optimized Cython implementation that can exactly simulate hundreds of

billions of reactions in seconds. It dynamically switches to the CRN Gillespie algorithm for efficiency

gains when the number of applicable reactions in a configuration becomes small. As a Python library,

ppsim also includes many useful tools for data visualization in Jupyter notebooks, allowing robust

visualization of time dynamics such as histogram plots at time snapshots and averaging repeated

trials.

Finally, we give a framework that takes any CRN with only bimolecular (2 reactant, 2 product)

or unimolecular (1 reactant, 1 product) reactions, with arbitrary rate constants, and compiles it into

a continuous-time population protocol. This lets ppsim exactly sample from the chemical master

equation (unlike approximate heuristics such as τ -leaping), while achieving asymptotic gains in

running time. In linked Jupyter notebooks, we demonstrate the efficacy of the tool on some protocols

of interest in molecular programming, including the approximate majority CRN and CRN models

of DNA strand displacement reactions.

1.4.2. A Time and Space Optimal Stable Population Protocol Solving Exact Ma-

jority. In Chapter 3, we describe and analyze a protocol that solves exact majority using O(log n)

states and optimal expected time O(log n). The number of states O(log n) is known to be optimal for
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the class of polylogarithmic time stable protocols that are “output dominant” and “monotone” [6].

These are two natural constraints satisfied by our protocol, making it simultaneously time- and

state-optimal for that class. We introduce a key technique called a “fixed resolution clock” to

achieve partial synchronization.

Our protocol is nonuniform: the transition function has the value dlog ne encoded in it. We

show that the protocol can be modified to be uniform, while increasing the state complexity to

Θ(log n log log n).

1.4.3. Time-Optimal Self-Stabilizing Leader Election in Population Protocols. In

Chapter 4, we study self-stabilizing leader election, where the population must converge on a

single leader agent from any possible initial configuration. We initiate the study of time complexity

of population protocols solving this problem in its original setting: with probability 1, in a complete

interaction graph. The only previously known protocol [54] runs in expected parallel time Θ(n2)

and uses an optimal count of n states. The existing protocol has the additional property that it

becomes silent, i.e., the agents’ states eventually stop changing.

Observing that any silent protocol solving self-stabilizing leader election requires Ω(n) expected

parallel time, we introduce a silent protocol that uses optimal O(n) parallel time and states. With-

out any silence constraints, we show that it is possible to solve self-stabilizing leader election in

asymptotically optimal expected parallel time of O(log n), but using at least exponential states (a

quasipolynomial number of bits). Like the original protocol from [54], all of our protocols work by

solving the more difficult ranking problem: assigning agents the ranks 1, . . . , n.

1.4.4. Message Complexity of Population Protocols. The standard population protocol

model assumes that when two agents interact, each observes the entire state of the other agent. In

Chapter 5, we initiate the study of message complexity for population protocols, where the state

of an agent is divided into an externally-visible message and an internal component, where only

the message can be observed by the other agent in an interaction.

We consider the case of O(1) message complexity. When time is unrestricted, we obtain an

exact characterization of the stably computable predicates based on the number of internal states

s(n): If s(n) = o(n) then the protocol computes semilinear predicates (unlike the original model,

which can compute non-semilinear predicates with s(n) = O(log n)), and otherwise it computes a
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predicate decidable by a nondeterministic O(n log s(n))-space-bounded Turing machine. We then

introduce novel O(polylog(n)) expected time protocols for junta/leader election and general purpose

broadcast correct with high probability, and approximate and exact population size counting correct

with probability 1. Finally, we show that the main constraint on the power of bounded-message-size

protocols is the size of the internal states: with unbounded internal states, any computable function

can be computed with probability 1 in the limit by a protocol that uses only 1-bit messages.

1.4.5. Composable Computation in Discrete Chemical Reaction Networks. In Chap-

ter 6, we study the composability of discrete CRNs that stably compute integer-valued functions

f : Nd → N. We consider output-oblivious CRNs in which the output species is never a reactant

(input) to any reaction. The class of output-oblivious CRNs is fundamental, appearing in earlier

studies of CRN computation, because it is precisely the class of CRNs that can be composed by

simply renaming the output of the upstream CRN to match the input of the downstream CRN.

Our main theorem precisely characterizes the functions f that are stably computable by output-

oblivious CRNs with an initial leader. The key necessary condition is that for sufficiently large

inputs, f is the minimum of a finite number of nondecreasing quilt-affine functions. (An affine

function is linear with a constant offset; a quilt-affine function is linear with a periodic offset).

This work left an open conjecture about classifying the functions computable without an initial

leader. A more recent follow-up work from Hashemi, Chugg, and Condon [111] built off this theory

to exactly characterize this leaderless case.

29



CHAPTER 2

ppsim: A Software Package for Efficiently Simulating Population

Protocols

This chapter is joint work with David Doty. It was originally published as [87].

2.1. Introduction

The tool ppsim was built to define, simulate, and visualize population protocols. Its development

came after most of the results in later chapters, and was largely motivated by wishing this tool had

existed for that earlier research. The basic dynamics of population protocols are simple enough that

it is straightforward to write an ad-hoc simulation of a particular protocol: creating an array of

n agents and successively sampling a random pair and updating their state. A recent algorithmic

breakthrough [41] has shown that a much more efficient simulation is possible, able to update O(
√
n)

agents in parallel, while preserving the exact dynamics. This is especially useful for simulating

cutting-edge population protocols: they use a relatively small number of states, and have polylog(n)

running time, so the number of interactions to simulate is n polylog(n). And the claims we want

to prove about such protocols are often detailed statements about runtime. For example, the

protocol Propagate-Reset used in Chapter 4 has a simpler analysis that it takes O(log2 n) time,

but a sharper analysis shows the true time is O(log n). Distinguishing between these two values

in simulation requires simulating population sizes n that scale across a wide range of orders of

magnitude. And for large population sizes such as n = 1012, this quadratic speedup is crucial.

Beyond implementing a faster simulator, ppsim was built to encourage and enable easier collab-

oration and sharing of results. It is a package in Python, an easily accessible language that is part

of a powerful open source ecosystem for scientific programming. It is designed to run easily in a

Jupyter notebook, where code cells can unambiguously describe the exact logic of the protocol. An

optimized Cython backend then handles the work of simulating the protocol rules. The simulation

data is then available for immediate visualization, creating figures to be used in papers such as this,

as well as animations.
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ppsim also has additional applications beyond the theory of population protocols. This model

is also a simple description of chemical reaction networks. For CRNs, the standard continuous-time

kinetic model (chemical master equation) is simulated by the Gillespie algorithm (see Section 1.2.5).

For any CRN that has only bimolecular (2-input, 2-output) or unimolecular (1-input, 1-output) re-

actions, with arbitrary rate constants, there is a continuous time population protocol with equivalent

dynamics (proven in Theorem 2.6.1). Using these ideas, ppsim is able to take descriptions of such

CRNs and faithfully simulate the exact dynamics from the chemical master equation. Its asymptotic

gains in efficiency mean that in many situations (very large total number of molecules n compared

to the number of species / reactions) it is considerably faster than existing CRN simulators based

on the Gillespie algorithm (see Fig. 2.2).

2.2. The algorithm

One speedup heuristic for population protocol simulation is to sample the number of each

interaction that would result from a random matching of size m, and update species counts in a

single step. This, is an inexact approximation: unlike the true process, it prevents any molecule

from participating in more than one of the nextm interactions, adding a negative dependency which

can bias the overall dynamics. The algorithm implemented by ppsim, due to Berenbrink, Hammer,

Kaaser, Meyer, Penschuck, and Tran [41], builds on this heuristic. Conditioned on the event that

no molecule is picked twice during the next m interactions, these interacting pairs are a random

disjoint matching of the molecules. Define the random variable C as the number of interactions until

the same molecule is picked twice. Their basic algorithm samples this collision length C according

to its exact distribution, then updates counts in batch assuming all pairs of interacting molecules

are disjoint until this collision, and finally simulates the interaction involving the collision. By the

Birthday Paradox, EC ≈
√
n in a population of n molecules, giving a quadratic factor speedup over

the naïve algorithm. The time to update a batch scales quadratically with q, the total number of

states. The “multibatch” variant, used by ppsim, samples multiple successive collisions to process

an even larger batch, and uses O
(
|Q|
√

logn
n

)
time per simulated interaction. See [41] for details.

Comparing this multibatch simulation strategy to the CRN Gillespie algorithm, there is an

important difference: the Gillespie algorithm only simulates non-null interactions (reactions), so

spends time proportional to the number of non-null interactions that take place. Consider the
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simple 2-state leader election from Section 1.1.1, when #L = 2 and #F = n − 2. The multibatch

interaction is able to simulate O(
√
n) interactions in one step, but it is very likely these interactions

are all null L,F → L,F or F, F → F, F . A smarter approach for this exact situation is used by

the Gillespie algorithm, sampling the time until the next non-null interaction. So here the number

of interactions to advance by can be sampled as a geometric random variable with expected value(
n
2

)
, which now simulates O(n2) interactions in a single step. To better handle cases like this, ppsim

dynamically switches to a discrete-time Gillespie algorithm when the number of null interactions is

sufficiently large. As a bonus, this gives ppsim the ability to detect when a configuration is silent,

because it calculates that the probability of a non-null interaction is 0. Thus, by default ppsim will

simulate a protocol until the configuration becomes silent, and gives a fast an easy way to sample

this silence time, such as was done in Fig. 2.1b. See documentation [141] for implementation details.

During the simulation of 2-state leader election on n = 106 agents from Fig. 1.1c, ppsim is able

to use the Gillespie algorithm for the tail when the count of leaders is sufficiently small, and thus

very quickly simulate out to time 107 (ie. 1013 simulated interactions). For another example, for

the simple 4-state exact majority simulated in Fig. 1.4a, once the number of active A and B states

is O(1), then the probability of a non-null interaction is O( 1
n), so the Gillespie algorithm is able

to simulate O(n) interactions at once. Adding the random-walk variant in Fig. 1.4b means all a, b

pairs now have a non-null interaction, so the Gillespie algorithm is no longer efficient even when the

count of A and B agents is small. As a result, this random walk variant is considerably slower to

simulate all the way until silence time.

Other CRN simulation algorithms. Variants of the Gillespie algorithm reduce the time to

apply a single reaction from O(|R|) to O(log |R|) [102] or O(1) [149], where |R| is the number of

types of reactions. However, the time to apply n reactions still scales with n. A common speedup

heuristic for simulating ω(1) reactions in O(1) time is τ-leaping [55, 105, 106, 143, 150], which

“leaps” ahead by time τ , by assuming reaction propensities will not change and updating counts in a

single batch step by sampling according these propensities. Such methods necessarily approximate

the kinetics inexactly, though it is possible in some cases to prove bounds on the approximation

accuracy [150]. Linear noise approximation (LNA) [58] can be used to approximate the discrete

kinetics, by adding stochastic noise to an ODE approximation.
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2.3. Usage of the ppsim tool

We direct the reader to [141] for detailed installation, usage instructions, and examples. Here

we highlight basic usage examples for specifying protocols.

There are three ways one can specify a population protocol, each best suited for different con-

texts. The most direct specification of a protocol directly encodes the mapping of input state

pairs to output state pairs using a Python (the following is the well-studied approximate major-

ity protocol, which has been studied theoretically [22,69] and implemented experimentally with

DNA [66]):

1 a,b,u = 'A','B','U'

2 approx_majority = {(a,b):(u,u), (a,u):(a,a), (b,u):(b,b)}

More complex protocols with many possible species are often specified in pseudocode instead

of listing all possible reactions. ppsim supports this by allowing the transition function mapping

input states to output states to be computed by a Python function. The following allows species to

be integers and computes an integer average of the two reactants:

1 def discrete_averaging(s: int , r: int):

2 return math.floor((s+r)/2), math.ceil((s+r)/2)

States and transition rules are converted to integer arrays for internal Cython methods, so there

is no efficiency loss for the ease of representing protocol rules, since a Python function defining

the transition function is not called during the simulation: producible states are enumerated before

starting the simulation.

For complicated protocols, an advantage of ppsim over standard CRN simulators is the ability

to represent species/states as Python objects with different fields (as they are often represented in

pseudocode), and to plot counts of agents based on their field values.1

Finally, protocols can be specified using CRN-like notation for CRNs with reactions that are

bimolecular (2-input, 2-output) or unimolecular (1-input, 1-output), with arbitrary rate constants.

For instance, this code specifies the CRN

A+B
0.5


4

2C, C
5→D

1Download and run https://github.com/UC-Davis-molecular-computing/ppsim/blob/main/examples/majority.
ipynb to visualize such large state protocols.
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1 a,b,c,d = species('A B C D')

2 crn = [(a+b | 2*c).k(0.5).r(4), (c >> d).k(5)]

This will then get compiled into a continuous time population protocol that samples the same

distribution as Gillespie.

Any of the three specifications (dict, Python function, or list of CRN reactions) can be passed

to the Simulation constructor. The Simulation can be run to generate a history of sampled configu-

rations.

1 init_config = {a: 51, b: 49}

2 sim = Simulation(init_config , approx_majority)

3 sim.run(16, 0.1) # 160 samples up to time 16

4 sim.history.plot() # Pandas dataframe with counts

This would produce the plot shown in Fig 2.1a. When the input is a CRN, ppsim defaults to

continuous time and produces the exact same distributions as the Gillespie algorithm. Fig 2.1b

shows a test against the package GillesPy2 [107] to confirm they sample the same distribution.
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(a) Plot of sim.history.
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Figure 2.1. Time 5 (dotted line in Fig 2.1a) was sampled 106 times with ppsim and
GillesPy2 to verify they both sample the same chemical master equation distribution
(Fig 2.1b).
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2.4. Speed comparison with other CRN simulators

We ran speed comparisons of ppsim against both GillesPy2 [107] and StochKit2 [145], the

latter being the fastest option we found for Gillespie simulation. Fig 2.2 shows that ppsim is able

to reach significantly larger population sizes. Other tests shown in an example notebook2 show how

each package scales with the number of species and reactions.
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Figure 2.2. Comparing runtime with population size n shows O(n) scaling for
Gillespie (slope 1 on log-log plot) versus O(

√
n) scaling for ppsim (slope 1/2).

2.5. Issues with other speedup methods

It is reasonable to conjecture that exact stochastic simulation of large-count systems is un-

necessary, since Gillespie is fast enough on small-count systems, and faster ODE approximation is

“reasonably accurate” for large-count systems. However, there are example large count systems with

stochastic effects not observed in ODE simulation, and where τ -leaping introduces systematic inac-

curacies that disrupt the fundamental qualitative behavior of the system, demonstrating the need

for exact stochastic simulation. A simple such example is the 3-state rock-paper-scissors oscillator:

2https://github.com/UC-Davis-molecular-computing/ppsim/blob/main/examples/crn.ipynb shows further
plots and explanations.
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(b) Over a long Θ(n) timescale, the varying amplitudes will cause two species to go
extinct.
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(c) Dynamics from Figs 2.3a, 2.3b in phase space.
The ODE solution has a neutrally stable orbit.
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(d) τ -leaping adds a consistent outward drift that
will lead to extinction on a much shorter timescale.

Figure 2.3. The rock-paper-scissors oscillator has qualitative dynamics missed by
both ODE simulation (never goes extinct) and τ -leaping (too quickly goes extinct).

B + A → 2B, C + B → 2C, A + C → 2A. Figure 2.3 compares exact simulation of this CRN to

τ -leaping and ODEs.

The population protocol literature furnishes more examples, with problems such as leader elec-

tion [10,40,42,44,53,88,94,99,100,156,159] and single-molecule detection [9,93],3 that crucially

3Download and run https://github.com/UC-Davis-molecular-computing/ppsim/blob/main/examples/rps_
oscillator.ipynb to see visualizations of the generalized 7-state rps oscillator used for single-molecule detection
in [93].
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use small counts in a very large population, a regime not modelled correctly by ODEs. See also [122]

for examples of CRNs with qualitative stochastic behavior not captured by ODEs, yet that behavior

appears only in population sizes too large to simulate with Gillespie.

2.6. Full specification of compilation of CRN to population protocol

It is possible to specify 1-reactant/1-product reactions such as A→ B, which are compiled into

2-reactant/2-product reactions A + C → B + C for every species C, with reaction rates adjusted

appropriately. The full transformation is described in the proof of Theorem 2.6.1. Here, we give an

example of the transformation on the CRN

2A
3


2
B + C

C
1→D

First, each reversible reaction is turned into two irreversible reactions:

2A
3→B + C

B + C
2→ 2A

C
1→D

For each non-symmetric bimolecular reaction (with two unequal reactants), add its “swapped”

reaction reversing the order of reactants and the order of products. From now on we write reactions

using ordered pair notation (e.g., (A,A)→(B,C) instead of 2A→B + C).

(A,A)
3→(B,C)

(B,C)
2→(A,A)

(C,B)
2→(A,A)

C
1→D
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Each (originally) bimolecular reaction (not the result of converting a unimolecular reaction

below) has its rates multiplied by the corrective factor (n−1)/(2 ·v), where n is the population size

and v is the volume. We choose n = v = 10 for this example, so (n− 1)/(2 · v) = 0.45. (See proof

of Theorem 2.6.1 for explanation of correction factor.)

(A,A)
1.35→ (B,C)

(B,C)
0.9→(A,A)

(C,B)
0.9→(A,A)

C
1→D

Each unimolecular reaction is converted to several bimolecular reactions with all other species

in the CRN.

(A,A)
1.35→ (B,C)

(B,C)
0.9→(A,A)

(C,B)
0.9→(A,A)

(C,A)
1→(D,A)

(C,B)
1→(D,B)

(C,C)
1→(D,C)

(C,D)
1→(D,D)

Finally, for each ordered pair of input states (x, y), sum the rates of all reactions that have

ordered reactants (x, y), and we let m be the maximum value of this sum over all ordered pairs of

reactants. In this example, the pair (C,B) has rates 0.9 and 1 for its two reactions, whose sum

achieves the maximum m = 1.9. Divide rates by m to convert them to probabilities.

This gives us the final randomized transitions of the population protocol. Below, whenever the

probabilities for a given input state pair (x, y) sum to a value p < 1, implicitly the transition on

input (x, y) is null (i.e., outputs (x, y)) with probability 1− p.
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(A,A) : (B,C) with probability 1.35/1.9

(B,C) : (A,A) with probability 0.9/1.9

(C,B) : {(A,A) with probability 0.9/1.9, (D,B) with probability 1/1.9}

(C,A) : (D,A) with probability 1/1.9

(C,C) : (D,C) with probability 1/1.9

(C,D) : (D,D) with probability 1/1.9

Time is now scaled by m = 1.9. Thus in one unit of time, there should be an expected 1.9 · n

interactions. In order to simulate t units of time, we choose a Poisson random variable with mean

1.9 · n · t to get the number of interactions to simulate.

The following theorem shows that the above transformation results in a population protocol

whose continuous time dynamics exactly sample from the same distribution as the Gillespie sto-

chastic model applied to the original CRN.

Theorem 2.6.1. Let C be a CRN consisting of only unimolecular reactions ri : Xi1
ki→Xi2 and

bimolecular reactions rj : Xj1 +Xj2

kj→Xj3 +Xj4 .

Then for any initial configuration I = {a1X1, . . . , asXs} and fixed volume v ∈ R+, there exists

an equivalent continuous time population protocol P with time scaling constant m. For any time

t ∈ R+, the distribution over all possible configurations sampled by the Gillespie algorithm at time

t is the same distribution as configurations of P at time m · t.

Proof. The continuous time population protocol P will use the same state set {X1, . . . , Xs}

and initial configuration I. In the population protocol dynamics, each agent has a rate 1 Poisson

process for the event where they interact with a randomly chosen agent. Thus for each ordered pair

of agents, that pair meets in that order as a rate 1
n−1 Poisson process.

After converting all reactions, we will be left with a set of ordered transitions with rates, of the

form (a, b)
k→(c, d). An ordinary population protocol transition should correspond to rate k = 1, so

for each ordered pair of agents (v1, v2) in states (a, b), this transition should happen as a Poisson

process with rate k
n−1 . We must handle the fact that these rates could exceed 1, and also there could
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be multiple ordered transitions starting from the same pair (a, b). Define m to be the maximum

over all ordered pairs (a, b) of the sum of the rates of any ordered transitions with pair (a, b) on the

left. The population protocol transition rule for a pair (a, b) is then a randomized rule, where each

ordered reaction (a, b)
k→(c, d) happens with probability k

m (and otherwise the transition is null).

Because we are also scaling time by this factor m, it follows that the rate of this ordered transition

between a single pair of agents (v1, v2) in states (a, b) will be m
n−1 ·

k
m = k

n−1 , as desired.

Next we show how each unimolecular reaction ri : Xi1
ki→Xi2 is converted to a set of ordered

transitions with rates. For each j = 1, . . . , s, we add the ordered transition (Xi1 , Xj)
ki→(Xi2 , Xj).

In other words, the first agent in the pair v1, independent of the state of the other agent, will change

state from Xi1 to Xi2 . This agent v1 gets chosen as the first agent in the pair as a Poisson process

with rate m, and this unimolecular transition will happen (independent of the state of the other

agent) with probability ki
m . Thus each agent in state Xi1 changes to state Xi2 as a rate ki Poisson

process, which is exactly the model simulated by the Gillespie algorithm.

Finally, we show how each bimolecular reaction rj : Xj1 + Xj2

kj→Xj3 + Xj4 is converted to

a set of ordered transitions with rates. In the Gillespie model, for each unordered pair {v1, v2}

of agents in states Xj1 and Xj2 , the time until this reaction happens is an exponential random

variable with rate kj
v , where v ∈ R

+ is the volume. In our protocol P, the time when this unordered

pair of agents will interact is an exponential random variable with rate 2m
n−1 . Thus, we multiply

each rate by the conversion factor n−1
2v to get k′j = kj · n−1

2v . Then we add the ordered transition

(Xj1 , Xj2)
k′j→(Xj3 , Xj4), and ifXj1 6= Xj2 , also the reverse ordered transition (Xj2 , Xj1)

k′j→(Xj4 , Xj3).

As a result, each unordered pair {v1, v2} will interact with rate 2m
n−1 , then do this transition with

probability
k′j
m . This gives the reaction a total rate of k′j · 2

n−1 =
kj
v , as desired.

�

2.7. Conclusion

Unfortunately, the algorithm of Berenbrink et al. [41] implemented by ppsim seems inherently

suited to population protocols, not more general CRNs. For instance, reversible dimerization reac-

tions A+B
C (used, for example, in [153] to model toehold occlusion reactions in DNA systems)
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seem beyond the reach of the batching technique of [41]. Although such reactions can be approxi-

mated by A+B
C +F for some anonymous “fuel” species F , the count of F influences the rate

of the reverse reaction F + C → A+B, with a different rate than C → A+B.

Another area for improvement is the handling of null reactions. There could be a way to more

deeply intertwine the logic of the Gillespie and batching algorithms, to gain the simultaneous benefits

of each, skipping the null reactions while simulating many non-null reactions in batch.
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CHAPTER 3

A Time and Space Optimal Stable Population Protocol Solving

Exact Majority

This chapter is joint work with David Doty, Mahsa Eftekhari, Leszek Ga̧sieniec, Grzegorz Sta-

chowiak, and Przemyslaw Uznański. It was originally published as [84].

3.1. Introduction

We show a stable population protocol solving the exact majority problem in optimal O(log n)

time (in expectation and with high probability) that uses O(log n) states. Our protocol is both

monotone and output dominant (see Section 3.8 or [6] for discussion of these definitions), so by

the Ω(log n) state lower bound of [6], our protocol is both time and space optimal for the class

of monotone, output-dominant stable protocols. We define the slightly generalized problem that

requires recognizing when there is a tie, so the range of outputs is {A,B,T}.

A high-level overview of the algorithm is given in Sections 3.2.1 and 3.2.2, with a full formal

description given in Section 3.2.4. Like most known majority protocols using more than constant

space (the only exceptions being in [36]), our protocol is nonuniform: agents have an estimate of

the value dlog ne embedded in the transition function and state space. Section 3.7 describes how

to modify our main protocol to make it uniform, retaining the O(log n) time bound, but increasing

the state complexity to O(log n log log n) in expectation and with high probability. That section

discusses challenges in creating a uniform O(log n) state protocol.

3.2. Nonuniform majority algorithm description

The goal of Sections 3.2 through 3.6 is to show the following theorem:

Theorem 3.2.1. There is a nonuniform population protocol Nonuniform Majority, using

O(log n) states, that stably computes majority in O(log n) stabilization time, both in expectation and

with high probability.
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3.2.1. High-level overview of algorithm. In this overview we use “pseudo-transitions” such

as A,B → O,O to describe agents updating a portion of their states, while ignoring other parts of

the state space.

Each agent initially has a bias: +1 for opinion A and −1 for opinion B, so the population-wide

sum g =
∑

v v.bias gives the gap between opinions. The majority problem is equivalent to deter-

mining sign(g). Transitions redistribute biases among agents but, to ensure correctness, maintain

the population-wide g as an invariant. Biases change through cancel reactions + 1
2i
,− 1

2i
→ 0, 0

and split reactions ± 1
2i
, 0→ ± 1

2i+1 ,± 1
2i+1 , down to a minimum ± 1

2L
. The constant L = dlog2(n)e

ensures Θ(log n) possible states.

The cancel and split reactions average the power-of-2 bias between both agents, but only when

the average is also a power of 2, or 0. If we had averaging reactions between all pairs of biases (also

allowing, e.g., 1
2 ,

1
4 →

3
8 ,

3
8), then all biases would converge to g

n , but this would use too many states.1

With our limited set {0,±1
2 ,±

1
4 , . . . ,±

1
2L
} of possible biases, allowing all cancel and split reactions

simultaneously does not work. Most biases become present simultaneously, which slows the rate

of cancel reactions, and the count of unbiased 0 agents is reduced, which slows the rate of split

reactions, see Fig. 3.1a. Also, there is a non-negligible probability for the initial minority opinion to

reach a much greater count, if those agents happen to do more split reactions, see Fig. 3.1b. Thus

using only the count of positive versus negative biases will not work to solve majority even with

high probability.

To solve this problem, we partially synchronize the unbiased agents with a field hour, adding

log n states 00, 01, 02, . . . , 0L. The new split reactions

± 1

2i
, 0h → ±

1

2i+1
,± 1

2i+1
if h > i

will wait until hour ≥ h before doing splits down to bias = ± 1
2h
. We could use existing phase

clocks to perfectly synchronize hour, by making each hour use Θ(log n) time, enough time for all

opinionated agents to split. Then WHP all agents would be in states {0h,+ 1
2h
,− 1

2h
} by the end

of hour h, see Fig. 3.1c. The invariant g =
∑

v v.bias implies that all minority opinions would

be eliminated by hour dlog2
1
g e ≤ L. This would give an O(log n)-state, O(log2 n)-time majority

algorithm, essentially equivalent to [6,36].

1This was effectively the approach used for majority in [133], for an O(n) state, O(logn) time protocol.
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(a) Cancel/split reactions with no synchronization. All
states become present, many in about equal counts. Rate
of cancel reactions and fraction of 0 agents are Θ( 1

logn
).
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(b) Later snapshot of the simulation in Fig. 3.1a. The
initial minority B now has a much larger count, because
those agents happened to undergo more split reactions.
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(c) Cancel/split reactions, fully synchronized into
O(logn) time hours, at the beginning of hour 16. All
minority are eliminated by hour logn in O(log2 n) time.
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(d) Main phase of our protocol, split reactions partially
synchronized using the clock in Fig. 3.2, at the end of
this O(logn) time phase. Most agents are left with
bias ∈

{
+ 1

218
,+ 1

219
,+ 1

220

}
. Later phases eliminate the

remaining minority agents.

Figure 3.1. Cancel / split reactions with no synchronization (3.1a,3.1b), perfect
synchronization (3.1c), and partial synchronization (3.1d) via the fixed-resolution
phase clock of our main protocol. Plots generated from [1].

The main idea of our algorithm is to use these rules with a faster clock using only O(1) time

per hour. The hour field of unbiased agents is synchronized to a separate subpopulation of clock

agents, who use a field minute, with k consecutive minutes per hour. Minutes advance by drip

reactions Ci, Ci → Ci, Ci+1, and catch up by epidemic reactions Ci, Cj → Cmax(i,j), Cmax(i,j).

See Fig. 3.2 for an illustration of the clock minute and hour dynamics.

Since O(1) time per hour is not sufficient to bring all agents up to the current hour before

advancing to the next, we now have only a large constant fraction of agents, rather than all agents,

synchronized in the current hour. Still, we prove this looser synchronization keeps the values of hour

and bias relatively concentrated, so by the end of this phase, we reach a configuration as shown

in Fig. 3.1d. Most agents have the majority opinion (WLOG positive), with three consecutive biases

+ 1
2l
,+ 1

2l+1 ,+
1

2l+2 .

Detecting ties. This algorithm gives an elegant way to detect a tie with high probability. In

this case, g = 0, and with high probability, all agents will finish the phase with bias ∈
{

0,± 1
2L

}
.
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Figure 3.2. Clock rules of our protocol, showing a travelling wave distribution
over minutes, on a larger population of size n = 1017 to emphasize the distribution.
The distribution’s back tail decays exponentially, and its front tail decays doubly
exponentially. A large constant fraction of agents are in the same two consecutive
hour’s (here 7 and 8). Plot generated from [1].

Checking this condition stably detects a tie (i.e., with probability 1, if this condition is true, then

there is a tie), because for any nonzero value of g, there must be some agent with |bias| > 1
2L

.

Cleanup Phases. We must next eliminate all minority opinions, while still relying on the

invariant g =
∑

v v.bias to ensure correctness. Note that is it possible with low probability to have

a greater count of minority opinions (with smaller values of bias), so only relying on counts of

positive and negative biases would give possibilities of error.

We first remove any minority agents with large bias, by using an additional subpopulation of

Reserve agents that enable additional split reactions for large values of |bias| > 1
2l
. Then after cancel

reactions with the bulk of majority agents, the only minority agents left must have |bias| < 1
2l+2 .

To then remove minority agents with small bias, we allow agents with larger bias to “consume”

agents with smaller bias, such as an interaction between agents +1
4 and − 1

256 . Here the positive

agent can be thought to hold the entire bias +1
4 −

1
256 = + 63

256 , but since this value is not in the

allowable states, it can only store that its bias is in the range +1
8 ≤ bias ≤ +1

4 . Without knowing its

exact bias, this agent cannot participate in future averaging interactions. However, we show there

are enough available majority agents to eliminate all remaining minority via these consumption

reactions. Thus with high probability, all minority agents are eliminated.

A final phase checks for the presence of both positive and negative bias, and if one has been

completely eliminated, it stabilizes to the correct output. In the case where both are present, this
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is a detectable error, where we can move to a slow, correct backup that using the original inputs.

Due to the low probability of this case, it contributes negligibly to the total expected time.

3.2.2. Intuitive description of each phase. Our full protocol is broken up into 11 consec-

utive phases. We describe each phase intuitively before presenting full pseudocode in Section 3.2.4.

Note that some further separation of phases was done to create more straightforward proofs of cor-

rectness, so simplicity of the proofs was optimized over simplicity of the full protocol pseudocode.

It is likely possible to have simpler logic that still solves majority via the same strategy.

Phase 0: “Population splitting” [11] divides agents into roles used in subsequent phases: Main,

Reserve, Clock. In timed phases (those not marked as Untimed or Fixed-resolution

clock, including the current phase), Clock agents count from Θ(log n) to 0 to cause the

switch to the next phase after Θ(log n) time.

“Standard” population splitting uses reactions such as x, x → r1, r2 to divide agents

into two roles r1, r2. This takes Θ(n) time to converge, which can be decreased to Θ(log n)

time via r1, x → r1, r2 and r2, x → r2, r1, while maintaining that #r1 and #r2 are both

n/2±
√
n whp. However, since all agents initially have an opinion, but Clock and Reserve

agents do not hold an opinion, agents that adopt role Clock or Reserve must first pass off

their opinion to a Main agent.

From each interacting pair of unassigned agents, one will take the Main role and hold

the opinions of both agents, interpreting A as +1 and B as −1. This Main agent will then

be allowed to take at most one other opinion (in an additional reaction that enables rapid

convergence of the population splitting), and holding 3 opinions can end up with a bias in

the range {−3,−2,−1, 0,+1,+2,+3}.

Phase 1: Agents do “integer averaging” [10] of biases in the set {−3, . . . ,+3} via reactions i, j →

b i+j2 c, d
i+j
2 e. Although taking Θ(n) time to converge in some cases, this process is known to

result in three consecutive values in O(log n) time [135]. If those three values are detected

to be {−1, 0,+1} in the next phase, the algorithm continues.

Phase 2: (Untimed) Agents propagate the set of opinions (signs of biases) remaining after Phase 1

to detect if only one opinion remains. If so, we have converged on a majority consensus,

and the algorithm halts here (see Fig. 3.6). At this point, this is essentially the exact

majority protocol of [127], which takes O(log n) time with an initial gap Ω(n), but longer
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for sublinear gaps (e.g., Ω(n) time for a gap of 1). Thus, if agents proceed beyond this

phase (i.e., if both opinions A and B remain at this point), we will use later that the gap

was smaller than 0.025 ·#Main. With low probability we have opposite signs but absolute

value > 1, in which case we proceed directly to a slow stable backup protocol in Phase 10.

Phase 3: (Fixed-resolution clock) The key goal at this phase is to use cancel and split reactions

to average the bias across the population to give almost all agents the majority opinion.

Biased agents hold a field exponent ∈ {−L, . . . ,−1, 0}, describing the magnitude |bias| =

2exponent, a quantity we call the agent’s mass. Cancel reactions eliminate opposite biases

+ 1
2i
,− 1

2i
→ 0, 0 with the same exponent; cancel reactions strictly reduce total mass. Split

reactions ± 1
2i
, 0 → ± 1

2i+1 ,± 1
2i+1 give half of the bias to an unbiased agent, decrementing

the exponent; split reactions preserve the total mass. The unbiased O agents, with role =

Main, opinion = bias = 0, act as the fuel for split reactions.

We want to obtain tighter synchronization in the exponents than Fig. 3.1a, approxi-

mating the ideal synchronized behavior of the O(log2 n) time algorithm of Fig. 3.1c while

using only O(log n) time. To achieve this, the Clock agents run a “fixed resolution” clock

that keeps them roughly synchronized (though not perfectly; see Fig. 3.2) as they count

their “minutes” from 0 up to L′ = kL, using O(1) time per minute. This is done via “drip”

reactions Ci, Ci → Ci, Ci+1 (when minute i gets sufficiently populated, pairs of Ci agents

meet with sufficient likelihood to increment the minute) and Cj , Ci → Cj , Cj for i < j

(new higher minute propagates by epidemic).2 If randomized transitions are allowed, by

lowering the probability p of the drip reaction, the clock rate can be slowed by a constant

2This clock is similar to the power-of-two-choices leaderless phase clock of [6], where the agent with smaller (or equal)
minute increments their clock (Cj , Ci → Cj , Ci+1 for i ≤ j), but increasing the smaller minute by only 1. Similarly
to our clock, the maximum minute can increase only with both agents at the same minute. A similar process was
analyzed in [34], and in fact was shown to have the key properties needed for our clock to work—an exponentially-
decaying back tail and a double-exponentially-decaying front tail—so it seems likely that a power-of-two-choices clock
could also work with our protocol.
The randomized variant of our clock with drip probability p is also similar to the “junta-driven” phase clock of [99],
but with a linear number 2pn of agents in the junta, using O(1) time per minute, rather than the O(nε)-size junta
of [99], which uses O(logn) time per minute. There, smaller minutes are brought up by epidemic, and only an agent
in the junta seeing another agent at the same minute will increment. The epidemic reaction is exactly the same in
both rules. The probability p of a drip reaction can be interpreted as the probability that one of the agents is in the
junta. For similar rate of O(1) time per minute phase clock construction see also Dudek and Kosowski work [93].
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factor. Although we prove a few lemmas about this generalized clock, and some of our sim-

ulation plots in Section 3.2.3 use p < 1, our proofs work even for p = 1, i.e., a deterministic

transition function.

Now the O agents will use Θ(log n) states to store an “hour”, coupled to the C clock

agents via Cbi/kc,Oj → Cbi/kc,Oi if bi/kc > j, i.e., every consecutive k Clock minutes

corresponds to one Main hour, and clock agents drag O agents up to the current hour (see

Fig. 3.3). Our proofs require k = 45 minutes per hour when p = 1, but smaller values of

k work in simulation. For example, the simulation in Fig. 3.1d showing intended behavior

of this phase used only k = 3 minutes per hour with p = 1.

This clock synchronizes the exponents because agents with exponent = −i can only

split down to exponent = −(i+ 1) with an O agent that has hour ≥ i+ 1.

This prevents the biased agents from doing too many splits too quickly. As a re-

sult, during hour i, most of the biased agents have |bias| = 1
2i
, so the cancel reactions

+ 1
2i
,− 1

2i
→ 0, 0 happen at a high rate, providing many O agents as “fuel” for future split

reactions. We tune the constants of the clock to ensure hour i lasts long enough to bring

most biased agents down to exponent = −i via split reactions and then let a good fraction

do cancel reactions (see Fig. 3.4c).

The key property at the conclusion of this phase is that unless there is a tie, WHP

most majority agents end up in three consecutive exponents −l,−(l + 1),−(l + 2), with

a negligible mass of any other Main agent (majority agents at lower/higher exponents,

minority agents at any exponent, or O agents).3 Phases 5-7 use this fact to quickly push

the rest of the population to a configuration where all minority agents have exponents

strictly below −(l + 2); Phase 8 then eliminates these minority agents quickly.

Phase 4: (Untimed) The special case of a tie is detected by the fact that, since the total bias

remains the initial gap g, if all biased agents have minimal exponent −L, g has magnitude

less than 1:

|g| =

∣∣∣∣∣ ∑
a.role=Main

a.bias

∣∣∣∣∣ ≤ ∑
a.role=Main

|a.bias| ≤
∑

a.role=Main

1

2L
<

n

2dlog2(n)e ≤ 1.

3l is defined such that if all biased agents were at exponent −l, the gap would be between 0.4 ·#Main and 0.8 ·#Main.
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The initial gap g is integer valued, so |g| < 1 =⇒ g = 0. Thus this condition implies

there is a tie with probability 1; the converse that a tie forces all biased agents to exponent

−L holds with high probability. If only exponent −L is detected, the algorithm halts here

with all agents reporting output T (see Fig. 3.7). Otherwise, the algorithm proceeds to the

next phase.

Phase 5, Phase 6: Using the key property of Phase 3, these phases WHP pull all biased agents

above exponent −l down to exponent −l or below using the Reserve R agents. The R’s

activate themselves in Phase 5 by sampling the exponent of the first biased agent they meet.

This ensures WHP that sufficiently many Reserve agents exist with exponents −l,−(l +

1),−(l + 2) (distributed similarly to the agents with those exponents). Then in Phase 6,

they act as fuel for splits, via Ri,± 1
2j
→ ± 1

2j+1 ,± 1
2j+1 when |i| > |j|. The reserve agents,

unlike the O agents in Phase 3, do not change their exponent in response to interactions

with Clock agents. Thus sufficiently many reserve agents will remain to allow the small

number of biased agents above exponent −l to split down to exponent −l or below.4

Phase 7: This phase allows more general reactions to distribute the dyadic biases, allowing re-

actions between agents up to two exponents apart, to eliminate the opinion with smaller

exponent: 1
2i
,− 1

2i+1 → 1
2i+1 , 0 and 1

2i
,− 1

2i+2 → 1
2i+1 ,

1
2i+2 (and the equivalent with pos-

itive/negative biases swapped). Since all agents have exponent −l or below, and many

more majority agents exist at exponents −l,−(l + 1),−(l + 2) than the total number of

minority agents anywhere, these (together with standard cancel reactions 1
2i
,− 1

2i
→ 0, 0)

rapidly eliminate all minority agents at exponents −l,−(l+ 1),−(l+ 2), while maintaining

Ω(n) majority agents at exponents ≥ −(l + 2) and < 0.01n total minority agents, now all

at exponents ≤ −(l + 3).

4The reason we do this in two separate phases is to ensure that the Reserve agents have close to the same distribution
of exponents that the Main agents have at the end of Phase 3. If Reserve agents allowed split reactions in the same
phase that they sample the exponent of Main agents, then the splits would disrupt the distribution of the Main agents
before all Reserve agents have finished sampling. Thus would possibly give the Reserve agents a significantly different
distribution among levels than the Main agents had at the start. While this may possibly work anyway, we find it
is more straightforward to prove if the Reserve agents have a close distribution over exponent values to that of the
Main agents.
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Phase 8: This phase eliminates the last minority agents, while ensuring that if any error occurred in

previous phases, some majority agents remain, to allow detecting the error by the presence

of both opinions.5

The biased agents add a Boolean field full, initially False, and consumption reactions

that allow an agent at a larger exponent i to consume (set to mass 0 by setting it to be O)

an agent at an arbitrarily smaller exponent j < i. Now the remaining agent represents some

non-power-of-two massm = 2i−2j , which it lacks sufficient memory to track exactly. Thus

setting the flag full = True corresponds to the agent having an uncertain mass m in the

range 2i−1 ≤ m < 2i. Because of this uncertainty, full agents are not allowed to consume

other smaller levels. However, there are more than enough high-exponent majority agents

by this phase to consume all remaining lower exponent minority agents.

Crucially, agents that have consumed another agent and set full = True may them-

selves then be consumed by a third agent (with full = False) at an even larger exponent.

This is needed because a minority agent at exponent i ≤ −(l + 3) may consume a (rare)

majority agent at exponent j < i, but the minority agent itself can be consumed by another

majority agent with exponent k > i.

Phase 9: (Untimed) This is identical to Phase 2: it detects whether both biased opinions A and

B remain. If not (the likely case), the algorithm halts, otherwise we proceed to the next

phase.

Phase 10: (Untimed) Agents execute a simple, slow stable majority protocol [47], similar to that

of [89, 127] but also handling ties. This takes Θ(n log n) time, but the probability that

an earlier error forces us to this phase is O(1/n2), so it contributes negligibly to the total

expected time.

3.2.3. Simulation of full algorithm. In this section we show simulation results, where the

complete pseudocode of Section 3.2.4 was translated into Java code available on GitHub [2]. In

these simulations, we stop the protocol once all agents reach Phase 9. For the low probability case

that agents switch to the Phase 10, the simulator prints an error indicating the agents should switch

5A naïve idea to reach a consensus at this phase is to allow cancel reactions 1
2i
,− 1

2j
→ 0, 0 between arbitrary pairs of

exponents with opposite opinions. However, this has a positive probability of erroneously eliminating the majority.
This is because the majority, while it necessarily has larger mass than the minority at this point, could have smaller
count. For example, we could have 16 A’s with exponent = −2 and 32 B’s with exponent = −5, so A’s have mass
16 · 2−2 = 4 and B’s have smaller mass 32 · 2−5 = 1, but larger count than A.
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Figure 3.3. Fixed-resolution phase clock used in Phase 3, with n ≈ 223. All Clock agents set
minute = 0 and count up to k · L with special rules defined in Phase 3. The solid curves show the
distributions of the counts at each value of minute in the Clock agents. Blocks of k = 5 consecutive
minutes correspond to a hour in the unbiased O agents with role = Main and bias = 0. The
dashed curves show the distribution of the counts of each value of hour, with the value written on
top. We show every k minutes with one color equal to its hour color. Near the end of Phase 3, the
O count falls to 0 as the majority count takes over. This plot used the value k = 5 to emphasize
the clock behavior. Later plots will all use the weaker constant k = 2. In later plots we also omit
the minute distribution and only show the hour from the O agents.

to slow back up, but as expected this was not observed in our simulations. For all our plots, we

collect data from simulations with n ≈ 223, p (drip probability) = 0.1. The first simulation in

Fig. 3.3 shows the relationship between minute of Clock agents and hour of Main agents. Here we

used k = 5 minutes per hour to show clearly the relationship and the discrete nature of the hours.

All remaining simulations used the even weaker value k = 2, to help see enough low probability

behavior that the logic enforcing probability-1 correctness in later phases is necessary. We show 3

simulations corresponding to the 3 different types of initial gap. Figs. 3.4 and 3.5 show constant

initial gap g = +2. This is our “typical” case, where the simulation eventually stabilizes to the

correct output in Phase 9. Fig. 3.6 shows linear initial gap g ≈ n
10 , which stabilizes in Phase 2 after

quickly cancelling all minority agents. Fig. 3.7 shows initial tie g = 0, which stabilizes in Phase 4

after all biased agents reach the minimum exponent = −L = −23.

All three simulations show various snapshots of configurations of the biased agents. These

particular snapshots are at special times marked in Figs. 3.4d, 3.6a and 3.7a. In all cases, an

animation is available at GitHub [3], showing the full evolution of these distributions over all

recorded time steps from the simulation.
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(a) The phase distribution, giving counts of the agents with each value of phase. We show these markers on the
horizontal axis in later plots. We have set max counter = 5 log2(n), and removed the counting requirements
for Clock agents in Phase 0. This makes all timed phases 0, 1, 5, 6, 7, 8 take around the same parallel time
2.5 log2(n). The fixed-resolution clock in Phase 3 uses O(logn) time with a larger constant. Phase 2 and
Phase 4 are untimed, so they end almost immediately and are not labeled above.
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(b) The role distribution. All agents start in role RoleMCR. By the end of Phase 0 almost all agents decide on
a role. They enter Phase 1 with ≈ n

2
, ≈ n

4
, and ≈ n

4
agents in the respective roles Main, Clock, and Reserve.

An agent’s role remain the same in the following phases except Phase 6, where split reactions convert Reserve
agents into Main agents.
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(c) The distribution of exponent and hour in biased and unbiased Main agents. This plot only shows the time during
Phase 3, the only time hour is used. The values for exponent can decrease from 0 to −L. As described in Phase
3, during hour h, only agents with exponent > −h are allowed to split and decrease their exponent by one. Thus,
the changes of exponent are synchronized with the the changes in the hour values. In this simulation, the Phase 3
stopped with majority of agents having 3 consecutive values (−19,−20,−21) in their exponent. The hour values are
shown behind the next plot in Fig. 3.4d, which shows the totals of these 3 types of Main agents.
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(d) The distribution of opinion over all Main agents, with count shown on a log scale. The green line shows the
difference in count between majority and minority agents. Special snapshots at times marked S0, S1, S2, S3, S4, S5
are shown in Fig. 3.5. All Main agents are assigned in Phase 0, with bias ∈ {0,±1,±2,±3}, and all initial biases
represented held by this Main subpopulation. Here the gap depends randomly on the distribution of |bias| ∈ {1, 2, 3}.
Then Phase 1 brings all bias ∈ {−1, 0,+1}, so the gap returns to exactly the true initial gap of 2, and the biased
counts decrease polynomially like 1

t
from cancel reactions. In the first part of Phase 3 the gap oscillates randomly

about 0, (S0 in Fig. 3.5a). Once we reach a high enough hour / low enough exponent, the doubling trend takes over
and the gap undergoes constant exponential growth (S1 in Fig. 3.5b). Finally, this becomes visible as a separation
between counts of majority and minority agents (S2 in Fig. 3.5c). Phase 3 ends with a small but nonzero count of
minority agents and the count of unbiased O agents brought near 0 (S3 in Fig. 3.5d). Then during Phase 6, this
minority count is amplified slightly by more split reactions bringing the minority exponents down (S4 in Fig. 3.5e).
During Phase 7, additional cancel reactions bring the minority count to 0 (S5 in Fig. 3.5f). Since minority agents are
gone, Phase 8 has no effect, and the protocol stabilizes to the correct majority output in Phase 9.

Figure 3.4. The case of constant initial gap g = 2, from simulation with n = 5122666 ≈ 223,
p = 0.1 (drip probability), k = 2 (number of minutes per hour). The horizontal axis is in units
of parallel time, with the ranges corresponding to each phase marked. All agents converge to the
correct majority output in Phase 9.
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(a) Snapshot S0. At the start of Phase 3. Minority agents
(blue) currently exceed majority agents (red) because the
minorities have done more split reactions. Summing the
signed biases, however, gives +50101 − 49955 + 9738
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= +146− 144 = +2, the invariant initial gap.

2^(-12) 2^(-11) 2^(-10) 2^(-9) 2^(-8) 2^(-7)
|Bias|

n/16

n/32

C
ou

nt
 o

f A
ge

nt
s

10

193604

55123

17
10

194344

55765

23

Time step 191 (Hour 10 in Phase 3)

(b) Snapshot S1. A typical distribution at hour =
10, when split reactions have brought most agents to
exponent = −10. Only a few O agents leaked ahead to
hour = 11 and enabled splits down to exponent = −11,
and no agents have leaked further ahead than this.
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(c) Snapshot S2. We have reached the special exponent
−l = −19. The count of minority (blue) agents has vastly
decreased over the last few hours, and now there will be
few more cancel reactions to produce more O agents.
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(d) Snapshot S3. We end Phase 3 with most Main agents
with the majority opinion, and bias ∈ {−19,−20,−21}
in a range of 3 consecutive values, as shown in Theo-
rem 3.5.2. Only a few minutes minority agents are left.
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(e) Snapshot S4. After Phase 6, where Reserve agents
with sample ∈ {−19,−20,−21} enabled additional split
reactions that brought all minority agents down.
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(f) Snapshot S5. After Phase 7, additional generalized
cancel reactions eliminate all minority agents at the higher
exponent values. There are no minority agents left, and
we will stabilize to the correct output in Phase 9.

Figure 3.5. Snapshots S0, S1, S2, S3, S4, S5 from Fig. 3.4d, showing the distribution of bias
among agents with |bias| > 0. The red and blue bars give the count of A (majority, with bias > 0)
and B (minority, with bias < 0) agents respectively. The exact counts are written above the bars,
and everywhere not explicitly written the count of is 0. See the link to animations of these plots at
the end of this section.

54



phase=0 phase=1 phase=2

Parallel Time

n/4

n/8

n/16
n/32

C
ou

nt
 o

f A
ge

nt
s

S0 S1

Distribution of Opinions in Main Agents

Majority: bias > 0, opinion = +1
Minority: bias < 0, opinion = -1
Unbiased: bias = 0, role = Main
Gap: # majority - # minority

(a) The distribution of opinion in the Main agents in case of a linear size gap g = n/10. The red line gives the
majority count (opinion = +1), the blue line the minority count (opinion = −1), and the green line their difference.
The black line gives the unbiased O agents.
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(b) Snapshot S0. At the end of Phase 0, the biased agents
have |bias| ∈ {1, 2, 3}.
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(c) Snapshot S1. The discrete averaging of Phase 1 first
brings all bias ∈ {−1, 0,+1}. Then all bias = −1 cancel,
leaving bias = +1 as the only nonzero bias. With the
minority opinion eliminated, we converge in Phase 2.

Figure 3.6. The case of linear size gap g = n/10, again with n = 5122666 ≈ 223,
p = 0.1, k = 2. With large initial gap, the simulation converges in Phase 2. Fig. 3.6a
shows the counts of each opinion among the population of Main agents. Two special
times S0 and S1, and the configurations of biased agents at these snapshots are
shown in Figs. 3.6b and 3.6c. See link to animations of these plots at the end of this
section.
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(a) The distribution of opinion in the Main agents in case of a tie. In Phase 3 we see the same qualitative behavior
as the first part of Phase 3 with a constant initial gap in Fig. 3.4d. Now this continues the whole phase, with the
gap in counts oscillating about 0 until finally reaching 0 when all biased agents have exponent = −23 at time S2.
With no exponent > −23, we stabilize to output T in Phase 4.
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(b) Snapshot S1. We see similar distributions as in
Fig. 3.5b all the way until the end of Phase 3.
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(c) Snapshot S2. After reaching synchronous hour 23,
split reactions bring all remaining biased agents down to
exponent = −23, which is only possible with an initial
tie.

Figure 3.7. The case of a tie, with initial gap g = 0, again with n = 5122666 ≈ 223, p = 0.1,
k = 2. The simulation converges in Phase 2. Fig. 3.6a shows the counts of each opinion among the
population of Main agents. Three special times S1, S2, and the configurations of biased agents at
these snapshots are shown in Figures 3.7b, 3.7c.
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3.2.4. Algorithm pseudocode. In this section we give a full formal description of the main

algorithm.

Every agent starts with a read-only field input ∈ {A,B}, a field output ∈ {A,B,T} correspond-

ing to outputs that the majority is A, B, or a tie. The protocol is broken up into 11 consecutive

phases, marked by the additional field phase = 0 ∈ {0, . . . , 10}. The phase updates via the epidemic

reaction u.phase, v.phase← max(u.phase, v.phase). Some fields are only used in particular phases,

to ensure the total state space is Θ(log n). Such fields and the initial behavior of an agent upon

entering a phase are described in the Init section above each phase. Whenever an agent increments

their phase, they execute Init for the new phase (and sequentially for any phases in between if they

happen to increment phase by more than 1). We refer to the “end of phase i” to mean the time

when the first agent sets phase ← i + 1. Note that the agents actually enter each new phase by

epidemic, so there is technically no well-defined “beginning of phase i”. However, an arbitrarily large

constant fraction of agents will have the correct phase within a constant amount of time. After this

point, interactions between two agents that are out of phase become negligible and otherwise both

interacting agents will now have the correct phase. Thus we will formally start our arguments for

each phase assuming each agent is in the current phase.

Each timed phase i each requires setting agents to count from ci lnn down to 0, where the

minimum required value of ci depends on the phase. These constants can be derived from the

technical analysis in Sections 3.4-3.6 but for brevity we avoid giving them concrete values in the

pseudocode. Our simulations (Section 3.2.3) that used the same small constant 5 log2(n) for all

counters seem to work, but the proofs require larger constants to ensure the necessary behavior

within each phase can complete with high probability 1 − O(1/n2). By increasing these constants

ci (along with changing the phase clock constants p, k; see Phase 3 and Theorem 3.5.9), we could

also push high probability bound to 1− O(1/nc) for any desired constant c. For concreteness, use

1−O(1/n2) for most high probability guarantees, since this is large enough to take appropriate union

bounds and ensure the extra time from low probability failures does not contribute meaningfully to

the total O(log n) time bound.

Phase 0 is a timed phase that splits the population into three subpopulations: Main to compute

majority, Clock to time the phases and the movement through exponents in Phase 3, and Reserve to

aid in cleanup during Phase 6. An agent can only move into role Clock or Reserve by “donating” its
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Protocol 3.1 Nonuniform MajorityL(u, v). For population sizes n with L = dlog ne.
Init: phase← 0 ∈ {0, 1, . . . , 10} and execute Init for Phase 0.

1: if i.phase < j.phase where {i, j} = {u, v} then
2: for p = {i.phase + 1, . . . , j.phase} do
3: execute Init for Phase p on agent i
4: i.phase← j.phase

5: execute Phase u.phase(u, v)

opinion to a Main agent, who can collect up to two other opinions in addition to their own, leading

to a bias of up to ±3. After this phase, the populations of the three roles are near the expected one

quarter Main, one quarter Clock, and one half Reserve. Lemma 3.4.2 shows that all initial opinions

have been given to assigned Main agents and these subpopulations are near their expected fractions,

both with high probability.

Phase 0 Initialize-Roles. Agent u interacting with agent v.
Init role← RoleMCR ∈ {Main,Clock,Reserve,RoleMCR,RoleCR}
assigned← False ∈ {True,False}
if input = A, bias← +1 ∈ {−3,−2,−1, 0,+1,+2,+3}
if input = B, bias← −1 ∈ {−3,−2,−1, 0,+1,+2,+3}
we always maintain the invariant opinion = sign(bias) ∈ {−1, 0,+1}
if role = Clock, counter← c0 lnn ∈ {0, . . . , c0 lnn} only used in the current phase

1: if u.role = v.role = RoleMCR then . Allocate ≈ 1
2Main agents

2: u.role← Main; u.bias← u.bias + v.bias
3: v.bias← 0; v.role← RoleCR . v won’t use its bias subsequently
4: if i.role = RoleMCR, j.role = Main, j.assigned = False where {i, j} = {u, v} then
5: j.assigned← True; j.bias← j.bias + i.bias . Main agents can assign 1 non-Main agent
6: i.bias← 0; i.role← RoleCR . i won’t use its bias subsequently
7: if i.role = RoleMCR, j.role 6= Main,RoleMCR, j.assigned = False where {i, j} = {u, v} then
8: j.assigned← True . non-Main agents can assign 1 Main agent
9: i.role← Main

10: if u.role = v.role = RoleCR then . Allocate ≈ 1
4Clock agents, ≈ 1

4Reserve agents
11: u.role← Clock; u.counter← Θ(log n)
12: v.role← Reserve
13: if u.role = v.role = Clock then . time the phase once we have at least 2 Clock agents
14: execute Standard Counter Subroutine(u), execute Standard Counter Sub-

routine(v)

Protocol 3.2 Standard Counter Subroutine(c). Agent c with field counter.
1: c.counter← c.counter− 1
2: if c.counter = 0 then
3: c.phase← c.phase + 1 . move to next phase
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Phase 1 is a timed phase that averages the biases in Main agents; with high probability at the

end of the phase the bias fields have three consecutive values, shown in Lemma 3.4.3.

Phase 1 Discrete-Averaging. Agent u interacting with agent v.
Init if role = RoleMCR, phase← 10 (error, skip to stable backup)
if role = RoleCR, role← Reserve
if role = Clock, counter← c1 lnn ∈ {0, . . . , c1 lnn} only used in the current phase
1: if u.role = v.role = Main then
2: u.bias← bu.bias+v.bias

2 c; v.bias← du.bias+v.bias
2 e

3: for c ∈ {u, v} with c.role = Clock do
4: execute Standard Counter Subroutine(c)

Phase 2 (an untimed phase) checks to see if the entire minority population was eliminated in

Phase 1 by checking whether both positive and negative biases still exist. If not, the minority

opinion is gone, and the protocol will stabilize here to the correct output. Otherwise, we proceed to

the next phase; note this phase is untimed and proceeds immediately upon detection of conflicting

opinions. Lemma 3.4.3 shows that starting from a large initial gap, we will stabilize here with high

probability.

Phase 2 Output-the-Consensus. Agent u interacting with agent v.
Init opinions← {opinion} ⊆ {−1, 0,+1}
1: u.opinions, v.opinions← u.opinions ∪ v.opinions . union opinions

2: if {−1,+1} ⊆ opinions then
3: u.phase, v.phase← u.phase + 1 . no consensus, move to next phase
4: else if +1 ∈ opinions then
5: u.output, v.output← A . current consensus is A
6: else if −1 ∈ opinions then
7: u.output, v.output← B . current consensus is B
8: else if opinions = {0} then
9: u.output, v.output← T . current consensus is T

Phase 3 is where the bulk of the work gets done. It assumes a starting condition where all

bias ∈ {−1, 0,+1} (ie. like the initial condition, but allowing some cancelling to have already

happened). So the Init checks if any |bias| > 1, which can only happen with low probability, and

we consider this an error and simply proceed immediately to Phase 10. The biased agents (with non-

zero opinion) have an additional field exponent ∈ {−L, . . . , 0}, initially 0, where L = dlog2(n)e,

corresponding to holding 2exponent units of mass. The unbiased O agents have an additional field

hour = L ∈ {0, . . . , L}, and will only participate in split reactions with −exponent > hour. The
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field hour is set by the Clock agents, who have a field minute = 0 ∈ {0, . . . , kL}, which counts up

as Phase 3 proceeds. Intuitively, there are k minutes in an hour, so hour = dminutek e ranges from 0

to L. Fig. 3.3 shows how nonconsecutive minutes in the Clock agents may overlap significantly, but

non-consecutive hours in the O agents have negligible overlap. Once a Clock agent has minute at its

maximum value kL, they initialize a new field counter = Θ(log n) ∈ {0, . . . ,Θ(log n)} to wait for

the end of the phase (waiting for any remaining O agents to reach hour = L and the distribution

to settle).

See the overview in Section 3.2.2 for an intuitive description of this phase. Theorem 3.5.1 gives

the main result of Phase 3 in the case of an initial tie, where all remaining biased agents are at the

minimal exponent = −L. In the other case, Theorem 3.5.2 gives the main result that most of the

population settle on the majority output with exponent ∈ {−l,−(l + 1),−(l + 2)}.

Phase 3 Synchronized-Rational-Averaging. Agent u interacting with agent v.
Init if |bias| > 1, phase← 10 (error, skip to stable backup)
if role = Main and opinion ∈ {−1,+1}, exponent← 0 ∈ {−L, . . . ,−1, 0}, and we define bias =
opinion · 2exponent
if role = Main and opinion = 0, hour← 0 ∈ {0, . . . , L}
if role = Clock, minute← 0 ∈ {0, . . . , kL} and counter← c3 lnn ∈ {0, . . . , c3 lnn}
1: if u.role = v.role = Clock then
2: if u.minute = v.minute < kL then
3: u.minute← minute + 1 . clock drip reaction
4: else if u.minute 6= v.minute then
5: u.minute, v.minute← max(u.minute, v.minute) . clock epidemic reaction
6: else if u.minute = v.minute = kL then . count only when both clocks finished
7: execute Standard Counter Subroutine(u), Standard Counter Subrou-

tine(v)
8: if m.role = Main,m.opinion = 0 and c.role = Clock where {m, c} = {u, v} then
9: m.hour← max

(
m.hour, b c.minutek c

)
. clock update reaction

10: else if u.role = v.role = Main then
11: if {u.opinion, v.opinion} = {−1,+1} and u.exponent = v.exponent = −h then
12: u.opinion, v.opinion← 0; u.hour, v.hour← h . cancel reaction
13: if t.opinion = 0, i.opinion ∈ {−1,+1} and |t.hour| > |i.exponent|, where {t, i} = {u, v}

then
14: t.opinion← i.opinion . split reaction
15: i.exponent, t.exponent← i.exponent− 1 . sets i.bias, t.bias← i.bias/2

In Phase 4 (an untimed phase), the population checks if all Main agents have reached the

minimum exponent = −L, which only happens in the case of a tie. If so, the population will
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stabilize to the tie output. Otherwise, any Main agent with exponent above L can trigger the move

to the next phase.

Phase 4 Output-Tie. Agent u interacting with agent v.
Init output← T

1: if |m.bias| > 2−L where m ∈ {u, v} then . stable if all bias ∈
{
− 1

2L
, 0,+ 1

2L

}
2: u.phase, v.phase← u.phase + 1 . end of this phase

If there was not a tie detected in Phase 4, then most agents should have the majority opinion,

with exponent ∈ {−l,−(l+ 1),−(l+ 2)} in a small range. The next goal is to bring all agents with

exponent > −l down to exponent ≤ −l. This will be accomplished by the Reserve agents, whose

goal is to let exponents above l do split reactions.

The Reserve agents do this across two consecutive phases. In Phase 5, the Reserve agents

become active, and will set sample = ⊥ ∈ {⊥, 0, . . . , L} to the exponent of the first biased agent

they meet, which is likely in {−l,−(l + 1),−(l + 2)}. The Clock agents now only hold a field

counter = Θ(log n) ∈ {0, . . . ,Θ(log n)} to act as a simple timer for how long to wait until moving

to the next phase. This allows the Reserve agents to adopt a distribution of exponent values

approximately equal to that of the Main agents. This behavior is proven in Lemma 3.6.1 and

Lemma 3.6.2.

Phase 5 Reserves-Sample-Exponent. Agent u interacting with agent v.
Init if role = Reserve, sample← ⊥ ∈ {⊥,−L, . . . ,−1, 0}
if role = Clock, counter← c5 lnn ∈ {0, . . . , c5 lnn}
1: if r.role = Reserve and m.role = Main,m.opinion ∈ {−1,+1} where {r,m} = {u, v} then
2: if r.sample = ⊥ then . sample exponent of biased agent m
3: r.sample← m.exponent

4: for c ∈ {u, v} with c.role = Clock do
5: execute Standard Counter Subroutine(c)

In Phase 6, the Reserve agents can help facilitate more split reactions, with any agent at a

exponent above their sampled exponent. Because they have approximately the same distribution

across all exponents as Main agents, particular exponents −l,−(l + 1),−(l + 2), this allows them

to bring all agents above exponent = −l down to −l or below. Again, the Clock agents keep a

counter ∈ {0, . . . , c6 lnn}. Lemma 3.6.2 proves that Phase 6 works as intended, bringing all agents

down to exponent ≤ −l with high probability.
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Phase 6 Reserve-Splits. Agent u interacting with agent v.
Init if role = Clock, counter← c6 lnn ∈ {0, . . . , c6 lnn}
1: if r.role = Reserve and m.role = Main,m.opinion ∈ {−1,+1} where {r,m} = {u, v} then
2: if r.sample 6= ⊥ and r.sample < m.exponent then
3: r.role← Main; r.opinion← m.opinion . split reaction
4: r.exponent,m.exponent← m.exponent− 1 . sets r.bias,m.bias← m.bias/2

5: for c ∈ {u, v} with c.role = Clock do
6: execute Standard Counter Subroutine(c)

Now that all agents are exponent ≤ −l, the goal of Phase 7 is to eliminate any minority agents

with exponents −l,−(l + 1),−(l + 2). This is done by letting the biased agents do generalized

cancel reactions that allow their difference in exponents to be up to 2, while still preserving the

mass invariant. Again, the Clock agents keep a counter ∈ {0, . . . , c7 lnn}. Lemma 3.6.5 shows that

by the end of this phase, any remaining minority agents must have exponent < −(l+ 2), with high

probability.

Phase 7 High-exponent-Minority-Elimination. Agent u interacting with agent v
Init if role = Clock, counter← c7 lnn ∈ {0, . . . , c7 lnn}
1: if u.role = v.role = Main and {u.opinion, v.opinion} = {−1,+1} then
2: if u.exponent = v.exponent then
3: u.opinion, v.opinion← 0 . cancel reaction
4: else if i.exponent = j.exponent + 1 where {i, j} = {u, v} then
5: i.exponent← i.exponent− 1 . gap-1 cancel reaction
6: j.opinion← 0 . example bias update: +1

4 ,−
1
8 → +1

8 , 0
7: else if i.exponent = j.exponent + 2 where {i, j} = {u, v} then
8: j.opinion← i.opinion . gap-2 cancel reaction
9: i.exponent← i.exponent− 1 . example bias update: +1

4 ,−
1
16 → +1

8 ,+
1
16

10: j.exponent← i.exponent− 2

11: for c ∈ {u, v} with c.role = Clock do
12: execute Standard Counter Subroutine(c)

Now that all minority agents occupy exponents below −(l + 2), yet a large number of majority

agents remain at exponents −l,−(l + 1),−(l + 2), in Phase 8, the algorithm eliminates the last

remaining minority opinions at any exponent. It allows opposite-opinion agents of any two expo-

nents to react and eliminate the smaller-exponent opinion. The larger exponent 1
2i

“absorbs” the

smaller − 1
2j
, setting the smaller to mass 0; the larger now represents mass 1

2i
− 1

2j
, which it lacks the

memory to track exactly, so it cannot absorb any further agents (though it can itself be absorbed

by − 1
2m for m > i). Lemma 3.6.6 shows that Phase 8 eliminates any remaining minority agents

with high probability.
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Phase 8 Low-exponent-Minority-Elimination. Agent u interacting with agent v
Init if role = Clock, counter← c8 lnn ∈ {0, . . . , c8 lnn}
1: if u.role = v.role = Main and {u.bias, v.bias} = {−1,+1} then
2: if i.exponent > j.exponent and i.full = False where {i, j} = {u, v} then
3: i.full← True . consumption reaction
4: j.opinion← 0

5: for c ∈ {u, v} with c.role = Clock do
6: execute Standard Counter Subroutine(c)

Phase 9 (an untimed phase) acts exactly as Phase 2, to check that agents have reached consensus.

Phase 9 Output-the-Consensus. Exact repeat of Phase 2.

In Phase 10, the agents give up on the fast algorithm, having determined in Phase 9 that it

failed to reach consensus, or detected an earlier error with role or bias assignment. Instead they

rely instead on a slow stable backup protocol. This is a 6-state protocol that stable decides between

the three cases of majority A, B, and tie T. They only use the fields output = input ∈ {A,B,T},

and the initial field active = True ∈ {True,False}. Lemma 3.6.7 proves this 6-state protocol stably

computes majority in O(n log n) time.

Phase 10 Stable-Backup. Agent u interacting with agent v. Similar to 6-state algorithm
from [47], slight modification of 4-state algorithm from [89,127].
Init output← input, active← True

1: if u.active = v.active = True then
2: if {u.output, v.output} = {A,B} then
3: u.output, v.output← T . cancel reaction
4: else if i.output ∈ {A,B} and t.output = T where {i, t} = {u, v} then
5: t.output← i.output, t.active← False . biased converts unbiased
6: if a.active = True and p.active = False where {a, p} = {u, v} then
7: p.output← a.output . active converts passive

3.3. Useful time bounds

This section introduces various probability bounds which will be used repeatedly in later anal-

ysis.

We will use the following standard multiplicative Chernoff bound:

Theorem 3.3.1. Let X = X1 + . . . + Xk be the sum of independent {0, 1}-valued random

variables, with µ = E[X]. Then for any δ > 0, P[X ≥ (1 + δ)µ] ≤ exp
(
− δ2µ

2+δ

)
.
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We use the standard Azuma inequality for supermartingales:

Theorem 3.3.2. Let X0, X1, X2, . . . be a supermartingale such that, for all i ∈ N, |Xi+1−Xi| ≤

ci. Then for all n ∈ N and ε > 0, P[(Xn −X0)− E[Xn −X0] ≥ ε] ≤ exp
(
− 2ε2∑n

i=0 c
2
i

)
.

In application we will consider potential functions φ that decay exponentially, with E[φj+1] ≤

(1−ε)φj . In this case, we will take the logarithm Φ = ln(φ), which we will show is a supermartingale

upon which we can apply Azuma’s Inequality to conclude that φ achieves a requisite amount of

exponential decay.

We will also use the following two concentration bounds on heterogeneous sums of geometric

random variables, due to Janson [115, Theorems 2.1, 3.1]:

Theorem 3.3.3. Let X be sum of k independent geometric random variables with success prob-

abilities p1, ..., pk, let µ = E[X] =
∑k

i=1
1
pi
, and let p∗ = min

1≤i≤k
pi. For all λ ≥ 1, P[X ≥ λµ] ≤

e−p
∗µ(λ−1−lnλ). For all λ ≤ 1, P[X ≤ λµ] ≤ e−p∗µ(λ−1−lnλ).

The expression λ − 1 − lnλ is hard to work with if we are not fixing exact constant values for

λ. The following Corollary gives asymptotic approximation to the error bound:

Corollary 3.3.4. Let X be sum of k independent geometric random variables with success prob-

abilities p1, ..., pk, let µ = E[X] =
∑k

i=1
1
pi
, and let p∗ = min

1≤i≤k
pi. For any 0 < ε < 1, we have

(1− ε)µ ≤ X ≤ (1 + ε)µ with probability 1− exp
(
−Θ(ε2p∗µ)

)
.

Proof. Setting λ = 1 + a in Theorem 3.3.3, where a = ε in the upper bound and a = −ε

in the lower bound, by Taylor series approximation of ln(1 + a), λ − 1 − ln(λ) = a − ln(1 + a) ≥

a− (a− a2

2 + a3

3 ) = a2(1
2 −

a
3 ) = Θ(ε2). The stated inequality then follows from Theorem 3.3.3. �

The following lemmas give applications of Theorem 3.3.3 and Corollary 3.3.4 to common pro-

cesses that we will repeatedly analyze. When the fractions we consider are distinct and independent

of n, Corollary 3.3.4 applies to give tight time bounds with very high probability. We also consider

cases where we run a process to completion and bring a count to 0. Here we must use Theorem 3.3.3

and only get a high probability bound with times at most a constant factor above the mean.

First we consider the epidemic process, i, s → i, i, moving from a constant fraction infected to

another constant fraction infected.
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Lemma 3.3.5. Let 0 < a < b < 1. Consider the epidemic process starting from a count of a · n

infected agents. The expected parallel time t until there is a count b · n of infected agents is

E[t] =
ln
(
b− 1

n

)
− ln

(
1− b+ 1

n

)
− ln(a) + ln(1− a)

2
∼ ln(b)− ln(1− b)− ln(a) + ln(1− a)

2
.

Let c = min(a, 1− b+ 1
n) and 0 < ε < 1. Then (1− ε)E[t] < t < (1 + ε)E[t] with probability at least

1− exp
[
−Θ(ε2E[t]nc)

]
.

Proof. When there are i infected agents, the probability the next reaction infects another

agent and increases this count is i(n−i)
(n2)

. The number of interactions T for the count to increase from

a · n to b · n is a sum of geometric random variables, with expected value

E[T ] =
b·n−1∑
i=a·n

(
n
2

)
i(n− i)

∼ 1

2

b·n−1∑
i=a·n

1
i
n(1− i

n)
∼ n

2

∫ b− 1
n

x=a

dx

x(1− x)

=
n

2
[ln(x)− ln(1− x)]

b− 1
n

a = n ·
ln
(
b− 1

n

)
− ln

(
1− b+ 1

n

)
− ln(a) + ln(1− a)

2
,

giving the stated value of E[t] after converting from interactions to parallel time. The minimum

probability p∗ = Θ(min(a, 1 − b + 1
n)), so using Corollary 3.3.4 we have Then (1 − ε)E[t] < t <

(1 + ε)E[t] with probability at least 1− exp
[
−Θ(ε2E[T ]p∗)

]
. �

Note that if a, (1−b), ε are all constants independent of n, then the bound above is with very high

probability. If we wanted to consider the complete epidemic process (which starts with a = 1/n and

ends with (1−b) = 1/n), we would have E[t] = Θ(log n) and minimum probability p∗ = Θ( 1
n). Then

the probability bound would become 1−exp[−Θ(log n)] = 1−n−Θ(1), which is high probability, but

requires carefully considering the constants to get the exact polynomial bound. In our proofs, we

only use the very high probability case. For tight bounds on a full epidemic with precise constants,

see [53,134].

Next we consider the cancel reactions a, b→ 0, 0, which are key to the majority protocol.

Lemma 3.3.6. Consider two disjoint subpopulations A and B of initial sizes |A| = a · n and

|B| = b · n, where 0 < b < a < 1. An interaction between an agent in A and an agent in B is a

cancel reaction which removes both agents from their subpopulations. Thus after i cancel reactions

we have |A| = a · n− i and |B| = b · n− i.
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The expected parallel time t until d · n cancel reactions occur, where d < b is

E[t] =
ln(b)− ln(a)− ln

(
b− d+ 1

n

)
+ ln

(
a− d+ 1

n

)
2(a− b)

.

Let c = (a− d+ 1
n)(b− d+ 1

n) and 0 < ε < 1. Then (1− ε)E[t] < t < (1 + ε)E[t] with probability

at least 1− exp
[
−Θ(ε2E[t]nc)

]
.

The parallel time t until all b · n cancel reactions occur has E[t] ∼ lnn
2(a−b) and satisfies t ≤ 5 lnn

2(a−b)

with high probability 1−O(1/n2).

Again, the first bound is with very high probability if all constants a, b, d are independent of n.

Proof. After i cancel reactions, the probability of the next cancel reaction is p ∼ 2|A|·|B|
n2 =

2(a − i
n)(b − i

n), and the number of interactions until this cancel reaction is a geometric random

variable with mean p. The number of interactions T for d · n cancel reactions to occur is a sum of

geometrics with mean

E[T ] =

d·n−1∑
i=0

1

2(a− i
n)(b− i

n)
∼ n

∫ d− 1
n

x=0

dx

2(a− x)(b− x)
=

n

2(a− b)

∫ d− 1
n

x=0

(
1

b− x
− 1

a− x

)
dx

=
n

2(a− b)

[
− ln(b− x) + ln(a− x)

]d− 1
n

0

= n ·
ln(b)− ln(a)− ln

(
b− d+ 1

n

)
+ ln

(
a− d+ 1

n

)
2(a− b)

.

Translating to parallel time and using Corollary 3.3.4 gives the first result, where minimum proba-

bility p∗ = Θ(c).

In the second case where d = b and we are waiting for all cancel reactions to occur, then

E[t] ∼ ln(b)− ln(a) + ln(n) + ln(a− b)
2(a− b)

=
lnn

2(a− b)
,

and µ = E[T ] ∼ n lnn
2(a−b) . Now the minimum geometric probability is when i = bn−1 and p∗ ∼ 2(a−b)

n .

Choosing λ = 5 so that λ− 1− lnλ > 2, by Theorem 3.3.3 we have

P
[
t ≥ 5 lnn

2(a− b)

]
≤ P[T ≥ λµ] ≤ e−p∗µ(λ−1−lnλ) = exp

(
−2(a− b)

n
· n lnn

2(a− b)
· 2
)

= n−2.

Thus t ≤ 5 lnn
2a with high probability.

Note we get the same result for this second case also by assuming a fixed minimal fraction a− b

in |A| is always there to cancel the agents from |B|, and using the next Lemma 3.3.7. �
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Now we consider a “one-sided” cancel process, where reactions a, b → a, 0 change only the b

agents into a different state. This process happens for example when Clock agents change the hour

of O agents.

Lemma 3.3.7. Let 0 < a, b1, b2, ε < 1 be constants with b1 > b2. Consider a subpopulation A

maintaing its size above a · n, and B initially of size b1 · n. Any interaction between an agent in A

and in B is meaningful, and forces the agent in B to leave its subpopulation.

The expected parallel time t until the subpopulation B reaches size b2 · n is

E[t] =
ln(b1)− ln(b2)

2a
,

and satisfies (1− ε)E[t] < t < (1 + ε)E[t] with probability at least 1− exp
[
−Θ(ε2E[t]nab2)

]
.

The parallel time t until the subpopulation B reaches size 0 has E[t] ∼ lnn
2a and satisfies t ≤ 5 lnn

2a

with high probability 1−O(1/n2).

Again, the first bound is with very high probability if constants a, b2 are independent of n.

Proof. When |B| = i, then the probability of a meaningful interaction p ∼ 2ia
n . Then the

number of interactions before the next meaningful interaction is a geometric with probability p, and

the total number T of interaction is a sum of geometrics with mean

E[T ] =

b1n∑
i=b2n+1

n

2ia
=

n

2a

(
b1n∑
i=1

1

i
−
b2n+1∑
i=1

1

i

)
∼ n

2a
(ln(b1n)− ln(b2n+ 1)) ∼ n

ln(b1)− ln
(
b2 + 1

n

)
2a

.

Translating to parallel time and using Corollary 3.3.4 gives the first result, where minimum

probability p∗ = Θ(a · b2).

In the case where b2 = 0, we have µ = E[T ] ∼ n lnn
2a and E[t] ∼ ln(n)

2a . Now the minimum

geometric probability p∗ = 2a
n . Choosing λ = 5 so that λ− 1− lnλ > 2, by Theorem 3.3.3 we have

P
[
t ≥ 5 lnn

2a

]
≤ P[T ≥ λµ] ≤ e−p∗µ(λ−1−lnλ) = exp

(
−2a

n
· n lnn

2a
· 2
)

= n−2.

Thus t ≤ 5 lnn
2a with high probability. �

3.4. Analysis of initial phases

DefineM, C, and R to be the sub-populations of agents with roles Main, Clock, Reserve when

they first set phase = 1. Let |M| = m · n, |C| = c · n, |R| = r · n, where m+ c+ r = 1.

67



The population splitting of Phase 0 will set the fractions m ≈ 1
2 , c ≈

1
4 , and r ≈

1
4 . The rules

also ensure deterministic bounds on these fractions once all RoleMCR agents have been assigned.

The probability 1 guarantees on subpoplation sizes using this method will be key for a later uniform

adaptation of the protocol. We first prove the behavior of the rules used for this initial top level

split in Phase 0 between the roles Main and RoleCR.

Lemma 3.4.1. Consider the reactions

U,U → Sf ,Mf

Sf , U → St,Mf

Mf , U →Mt, Sf

starting with n U agents. Let u = #U , s = #Sf + #St, and m = #Mf + #Mt. This converges

to u = 0 in expected time at most 2.5 lnn and in 12.5 lnn time with high probability 1 − O(1/n2).

Once u = 0, n
3 ≤ s,m ≤ 2n

3 with probability 1, and for any ε > 0, n
2 (1− ε) ≤ s,m ≤ n

2 (1 + ε) with

very high probability.

Proof. Let sf = #Sf , st = #St,mf = #Mf ,mt = #Mt.

First we consider the interactions that happen until u = 2n/3. Note that while u ≥ 2n/3, the

probability of the first reaction is ∼
(
u
n

)2 ≥ 4
9 and the probability of the other two reactions is

∼ 2
(
u
n

)(mf+sf
n

)
≤ 2 · 2

3 ·
1
3 = 4

9 . Thus until u = 2n/3, each non-null interaction is the top reaction

with at least probability 1/2. Then by standard Chernoff Bounds at least a fraction 1
2 − ε of these

reactions are the top reaction, which create a count sf +mf ≥ 2
9(1− ε)n > n

5 .

Now notice that this count sf +mf can never decrease, so we have sf +mf >
n
5 for all future

interactions. Now we can use the rate of the second and third reactions to bound the completion

time. The probability of decreasing u is at least 2
(
u
n

)
(1

5), so the number of interactions it takes to

decrement u is stochastically dominated by a geometric random variable with probability p = 2u
5n .

Then the number of interactions for u to decrease from 2n
3 down to 0 is dominated by a sum T of

geometric random variables with mean

E[T ] =

2n/3∑
u=1

5n

2u
=

5n

2

2n/3∑
u=1

1

u
∼ 5n

2
ln(2n/3) ∼ 5

2
n lnn.
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Now we will apply the upper bound of Theorem 3.3.3, using µ = 5
2n lnn, p∗ = 2

5n (when u = 1)

and λ = 5, where λ− 1− ln(λ) > 2, so we get

P[T ≥ λµ] ≤ exp(−p∗µ(λ− 1− lnλ)) ≤ exp

(
− 2

5n
· 5

2
n lnn · 2

)
= n−2.

Thus with high probability 1 − O(1/n2), this process converges in at most λµ
n = 12.5 lnn parallel

time.

Observe that the reactions all preserve the following invariant: sf + 2st = mf + 2mt. The

probability-1 count bounds follow by observing that when u = 0 (i.e., we have converged) we have

sf + st + mf + mt = n. Maximizing s = sf + st and minimizing m = mf + m + t is achieved by

setting sf = 2n/3, st = 0,mf = 0,mt = n/3, and symmetrically for maximizing m.

Assume we have s > m at some point in the execution, so sf + st > mf +mt. Subtracting the

invariant equation gives −st > −mt, which implies st < mt. Together with the first inequality this

implies that sf > mf . Thus the rate of second reaction is higher than the rate of the third reaction,

so it is more likely that the next reaction changing the value s−m decreases it.

By symmetry the opposite happens when m > s, so we conclude that the absolute value |m− s|

is more likely to decrease than increase. Thus we can stochastically dominate |m− s| by a sum of

independent coin flips. The high probability count bounds follow by standard Chernoff bounds. �

Now we can prove bounds on the sizes |M| = mn, |C| = cn, |R| = rn of Main, Clock, and Reserve

agents from the population splitting of Phase 0.

Lemma 3.4.2. For any ε > 0, with high probability 1−O(1/n2), by the end of Phase 0, |RoleMCR| =

0, n
2 (1 − ε) ≤ |M| ≤ n

2 (1 + ε) and |C|, |R| ≥ n
4 (1 − ε). If |RoleMCR| = 0 and Phase 1 initializes

without error, then with probability 1, 1
3n ≤ |M| ≤

2
3n,

1
6n ≤ |R| ≤

2
3n, and 2 ≤ |C| ≤ 1

3n.

Proof. The top level of splitting of RoleMCR into RoleCR and Main is equivalent to the reactions

of Lemma 3.4.1, with U = RoleMCR,M = Main, S = RoleCR, and the f and t subscripts representing

the Boolean value of the field assigned. Lemma 3.4.1 gives the stated bounds on Main, if there

were no further splitting of RoleCR.

Lemma 3.4.1 gives that with high probability, all RoleMCR are converted to RoleCR and Main

in 12.5 lnn time; we begin the analysis at that point, letting s be the number of RoleCR agents
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produced, noting n/3 ≤ s ≤ 2n/3 with probability 1, and for any ε′ n2 (1− ε′) ≤ s ≤ n
2 (1 + ε′) with

high probability.

The splitting of RoleCR into Clock and Reserve follows a simpler process that we analyze here.

Let r = |R| and c = |C| at the end of Phase 0. To see the high probability bounds on r and c, we

model the splitting of RoleCR by the reaction U,U → R,C during Phase 0 and U → R at the end

of Phase 0, since all un-split RoleCR agents become Reserve agents upon leaving Phase 0.

The reaction U,U → R,C reduces the count of U from its initial value s (= n/2± ε′n/2 whp) to

ε′s, with the number of interactions between each reaction when #U = l governed by a geometric

random variable with success probability O(l2/n2). Applying Corollary 3.3.4 with k = s − ε′s,

pi = O((i + ε′s)2/n2) for i ∈ {1, . . . , k}, the reaction U,U → R,C takes O(1) time to reduce the

count of U from its initial value m (= n/2 ± ε′n/2 whp) to ε′m with very high probability. This

implies that after O(1) time, r and c are both at least

s/2− ε′s = s(1/2− ε′) ≥ (n/2− ε′n/2)(1/2− ε′)

= n/4− ε′n/2− ε′n/4 + (ε′)2n/2

> n/4− ε′n = n/4(1− 4ε′)

with very high probability. Choosing ε = ε′/4 gives the high probability bounds on r and c. Thus

we require 12.5 lnn + O(1) ≤ 13 lnn time, and for appropriate choice of counter constant c0, this

happens before the first Clock agent advances to the next phase with high probability.

We now argue the probability-1 bounds. The bound r ≤ 2n/3 follows from |M| ≥ n/3. The

bound r ≥ n/6 follows from |M| ≤ 2n/3, so RoleCR ≥ n/3 if no U,U → R,C splits happen, and

the fact that at least half of RoleCR get converted to Reserve: exactly half by U,U → R,C and the

rest by U → R.

Although the reactions U,U → R,C and U → R can produce only a single C, there must be

at least two Clock agents for Standard Counter Subroutine to count at all and end Phase 0,

so if Phase 1 initializes, c ≥ 2. The bound c ≤ n/3 follows from the fact that c is maximized

when |M| = n/3 and no U → R reactions happen, i.e., all 2n/3 RoleCR agents are converted via

U,U → R,C, leading to c = n/3. �

We now reason about Phase 1, which has different behavior based on the initial gap g.
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Lemma 3.4.3. If the initial gap |g| ≥ 0.025|M|, then we stabilize to the correct output in Phase 2.

If |g| < 0.025|M|, then at the end of Phase 1, all agents have bias ∈ {−1, 0,+1}, and the total

count of biased agents is at most 0.03|M|. Both happen with high probability 1−O(1/n2).

Proof. In the case where all agents enter Phase 1, none are still in RoleMCR, so every non-Main

agent has given their bias to a Main agent via Line 2 or Line 5 of Phase 0. Thus the initial gap

g =
∑

m.role=Mainm.bias.

Let µ = b g
|M|e be the average bias among all Main agents, rounded to the nearest integer.

By [135], we will converge to have all bias ∈ {µ−1, µ, µ+1}, in O(log n) time with high probability

1−O(1/n2). We use Corollary 1 of [135], where the constant K = O(
√
n) and δ = 1

n2 . This gives

that with probability 1− δ, all bias ∈ {µ− 1, µ, µ+ 1} after a number of interactions

t ≥ (n− 1)(2 ln
(
K +

√
n
)
− ln(δ)− ln(2)) ∼ n(2 ln

(√
n
)

+ ln
(
n2
)
) = 3n lnn.

Thus after time 3 lnn, all bias ∈ {µ− 1, µ, µ+ 1} with high probability 1− 1/n2.

If |g| > 0.5|M|, then |µ| ≥ 1, so all remaining biased agents have the majority opinion, and we

will stabilize in Phase 2 to the correct majority output.

If |g| ≤ 0.5|M|, then µ = 0, so now all bias ∈ {−1, 0,+1}. We will use Lemma 3.3.6, with the

sets of biased agents A = {a : a.bias = +1} and B = {b : b.bias = −1}, which have initial sizes

|A| = a · n and |B| = b · n.

In the first case where 0.025|M| ≤ |g| ≤ 0.5|M|, we have a − b ≥ 0.025m (assuming WLOG

that A is the majority). Then by Lemma 3.3.6, with high probability 1 − O(1/n2), the count of

B becomes 0 in at most time 5 lnn
2(a−b) = lnn 5

2·0.025m = 100
m lnn ≤ 201 lnn. With all minority agents

eliminated, we will again stabilize in Phase 2 with the correct output.

In the second case where |g| < 0.025|M|, we can use Lemma 3.3.6 with constant d = b−0.0025m.

Then even with maximal gap a− b = 0.025m, with very high probability in constant time we bring

the counts down to b = 0.0025m and a = 0.0275m. Thus the total count of biased agents is at most

(0.0025m+ 0.0275m)n = 0.03|M|.

Since all the above arguments take at most O(log n) time, for appropriate choice of counter

constant c1, the given behavior happens before the first Clock agent advances to the next phase

with high probability. �
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3.5. Analysis of main averaging Phase 3

The longest part in the proof is analyzing the behavior of the main averaging Phase 3. The

results of this section culminate in the following two theorems, one for the case of an initial tie, and

the other for an initial biased distribution.

In the case of an initial tie, we will show that all biased agents have minimal exponent = −L

by the end of the phase.

Theorem 3.5.1. If the initial configuration was a tie with gap 0, then by the end of Phase 3,

all biased agents have exponent = −L, with high probability 1−O(1/n2).

Note that the where all biased agents have exponent = −L gives a stable configuration in the

next Phase 4, with all agents having output = T. Thus from Theorem 3.5.1, we conclude that

from an intial tie, the protocol will stabilize in Phase 4 with high probability. Conversely, we have

already observed that this configuration can only be reached in the case of a tie, since the sum of

all biased agents would bound the magnitude of the initial gap |g| < 1. Thus in the other case of a

majority initial distribution, the agents will proceed through to Phase 5 with probability 1.

In this majority case, we will show that a large majority of the Main agents have opinion set to

the majority opinion and exponent ∈ {−l,−(l+ 1),−(l+ 2)} is in a consecutive range of 3 possible

exponents, where the value −l depends on the initial distribution. In addition, we show the upper

tail above this exponent −l is very small.

Theorem 3.5.2. Assume the initial gap |g| < 0.025|M|. Let the exponent −l = blog2( g
0.4|M|)c.

Let i = sign(g) be the majority opinion and M be the set of all agents with role = Main, opinion =

i, exponent ∈ {−l,−(l + 1),−(l + 2)}. Then at the end of Phase 3, |M | ≥ 0.92|M| with high

probability 1−O(1/n2).

In addition, the total mass above exponent −l is µ(>−l) =
∑

a.exponent>−l
|a.bias| ≤ 0.002|M|2−l,

and the total minority mass is β− =
∑

a.opinion=−i
|a.bias| ≤ 0.004|M|2−l.

Note the assumption of small initial gap g that we get from Phase 1 is just for convenience in the

proof, to reason uniformly about the base case behavior at hour h = 0 for our inductive argument.

The rules of Phase 3 would also work as intended with even larger initial gaps, just requiring a
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variant of the later analysis to acknowledge that the initial exponent = 0 is quite close to the final

range exponent ∈ {−l,−(l + 1),−(l + 2)}.

3.5.1. Clock synchronization theorems. We will first consider the behavior of the Clock

agents in Phase 3. The goal is to show their minute fields remain tightly concentrated while moving

from 0 up to kL, summarized in Theorem 3.5.9. See Fig. 3.8 for simulations of the clock distribution.

The back tail behind the peak of the minute distribution decays exponentially, since each agent

is brought ahead by epidemic at a constant rate and thus their counts each decay exponentially.

The front part of the distribution decays much more rapidly. With a fraction f of agents at

minute = i, the rate of the drip reaction is proportional to pf2. This repeated squaring leads to

the concentrations at the leading minutes decaying doubly exponentially. The rapid decay is key to

showing that very few Clock agents can get very far ahead of the rest.

While our algorithm runs for only O(log n) minutes, the clock behavior we require can be made

to continue for O(nc) minutes for arbitrary c. Our proofs rely on induction on minutes, and all

results in this section hold with very high probability. Thus, we can take a union bound over

polynomially many minutes and still keep the very high probability guarantees. If the clock runs

for a superpolynomial number of minutes, the results of this section no longer hold.

We start by consider an entire population running the clock transitions (lines 1-5 of Phase 3),

so |C| = n. The following lemmas describe the behavior of just this clock protocol. In our actual

protocol, the clock agents are a subpopulation |C| = c · n, and these clock transitions only happen

when two clock agents meet with probability
(|C|

2

)/(
n
2

)
∼ 1

c2
. This more general situation is handled

in later theorems applying to our exact protocol.

Definitions of values used in subsequent lemma statements. Throughout this section,

we reference the following quantities. For each minute i and parallel time t, define c≥i(t) = |{c :

c.minute ≥ i}|/|C| to be the fraction of clock agents at minute i or beyond at time t. Then define

t+≥i = min{t : c≥i(t) > 0}, t0.1≥i = min{t : c≥i(t) ≥ 0.1} and t0.9≥i = min{t : c≥i(t) ≥ 0.9} to be the

first times where this fraction becomes positive, hits 0.1 and hits 0.9.

We first show that the c≥i+1 is significantly smaller than c≥i while both are still increasing, so

the front of the clock distribution decays very rapidly. In our argument, we consider three types of

reactions that change the counts at minutes i or above:
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(a) Simulating the clock rules with p = 1.
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Figure 3.8. Simulating the clock rules on a large population of size n = 1017, with
k = 5 minutes per hour and multiple values of p. The minute distribution gets
tighter for smaller values of p. To make the hour distribution tighter, we can also
simply make k larger. The full evolution of these distributions can be seen in the
example notebook [1], along with the code that ran the large simulation to generate
the data.
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(i) Drip reactions i, i→ i, (i+ 1) (Line 3 in Phase 3)

(ii) Epidemic reactions j, k → j, j, for any minutes j, k with k ≤ i < j (Line 5 in Phase 3)

(iii) Epidemic reactions j, k → j, j, for any minutes j, k with k < i ≤ j (Line 5 in Phase 3)

Note we ignore the drip reactions (i− 1), (i− 1)→ (i− 1), i, which would only help the argument,

but we do not have guarantees on the count at minute i− 1.

We will try to show the relationship pictured in Fig. 3.8, that c≥(i+1)(t) ≈ c≥i(t)2. One challenge

here is that this relationship will no longer hold with high probability for small values of c≥i. For

example, if c≥i(t) = n−1/2−ε, the desired relationship would require c≥i+1(t) < 1
n , meaning the

count above minute i is 0. A drip reaction at minute i could happen with non-negligible probability

≈ n−2ε.

To handle this difficulty, we define the set of early drip agents d≥i+1(t), the set of agents that

moved above minute i via a drip reaction at a time ≤ t when c≥i(t) < n−0.45, or that were brought

above minute i via an epidemic reaction with another early drip agent in d≥i+1. Note that the latter

group of agents can move to minute ≥ i + 1 after time t>0
≥i+1. Thus, this set represents the effect

of any drip reactions that happen before c≥i(t) grows large enough for our large deviation bounds

to work. We then define d≥i+1(t) = |d≥i+1(t)|/|C| to be the fraction of early drip agents. The set

of agents above minute i that comprise the fraction c≥(i+1) is then partitioned into the early drip

agents that comprise d≥i+1, and the rest. By first ignoring these early drip agents d≥i+1, we can

show that the rest of c≥(i+1) stays small compared to c≥i.

Lemma 3.5.3. With very high probability, if n−0.45 ≤ c≥i(t) ≤ 0.1, then c≥i+1(t) ≤ 0.9pc≥i(t)
2 +

d≥i+1(t).

Proof. The proof will proceed by induction on time t. As a base case, for all t such that

c≥i(t) < n−0.45, the statement holds simply by definition of d≥i+1(t), which is equal to c≥i+1(t).

For the inductive step, to show the relationship c≥(i+1)(t) < 0.9pc≥i(t)
2 +d≥i+1(t) holds at time

t, we will use the inductive hypothesis that c≥(i+1)(t− 0.1) < 0.9pc≥i(t− 0.1)2 + d≥i+1(t− 0.1). Let

x(t) = c≥i(t) and y(t) = c≥i+1(t)− d≥i+1(t), so we need to show y(t) < 0.9px(t)2.

We first bound how much x(t) grows by epidemic reactions, in order to show x(t−0.1) < 0.84x(t).

Using Lemma 3.3.5, the expected amount of time for an epidemic to grow from fraction 0.84x to x
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is
1

2

[
ln(x)− ln(0.84x) + ln

(
1− 0.84x

1− x

)]
≤ 1

2

[
− ln(0.84) + ln

(
1− 0.84 · 0.1

1− 0.1

)]
< 0.096,

where we used the fact that 1−0.84x
1−x is nondecreasing and x(t) ≤ 0.1.

The minimum probability p∗ = Θ(x(t)) = Ω(n−0.45), and the expected number of interactions

µ = Θ(n). So the application of Theorem 3.3.3 will give probability 1− e−Ω(n0.55) for the epidemic

to have grown enough within time 0.1. Thus x(t− 0.1) < 0.84x(t) with very high probability.

Next we bound how much y(t) grows, by both epidemic reactions and drip reactions. The

probability of a drip reaction is at most px(t)2, so the expected number of drip reactions in time 0.1

is 0.1px(t)2. A standard Chernoff bound then gives that there are at most 0.11px(t)2 drip reactions

with very high probability. We assume in the worst case all these drip reactions happen at time

t− 0.1, and then y grows by epidemic starting from z = y(t− 0.1) + 0.11px(t)2.

By Lemma 3.3.5, the expected amount of time for an epidemic to grow from fraction z to 1.23z

is

1

2

[
ln(1.23z)− ln(z) + ln

(
1− z

1− 1.23z

)]
≥ 1

2
ln(1.23) > 0.103.

The minimum probability p∗ = Ω(x(t)2) = Ω(n−0.9), and the expected number of interactions

µ = Θ(n). So the application of Theorem 3.3.3 will give probability 1 − e−Ω(n0.1). Thus with very

high probability

y(t) ≤ 1.23[y(t− 0.1) + 0.11px(t)2]

≤ 1.23[0.9px(t− 0.1)2 + 0.11px(t)2]

≤ 1.23[0.9p(0.84x(t))2 + 0.11px(t)2] < 0.9px2. �

In order to bound c≥(i+1)(t) as a function of c≥i(t) only (Theorem 3.5.5), we need to bound how

large the set D≥i+1 of early drip agents can be. The strategy will be to show there is not enough

time for the set D≥i+1 to grow very large starting from, t+≥i+1, the first time any agent appears at

minute ≥ i + 1 (i.e., the first drip reaction into minute i + 1), because there are only O(log log n)

minutes in the front tail (see Fig. 3.8), so the time between t+≥i+1 and t0.1≥i+1 is O(log log n).

We will first need an upper bound on how long it takes the clock to move from one minute to

the next.

76



Lemma 3.5.4. t0.1≥i+1 − t0.1≥i ≤ 2.11 + 1
2 ln

(
1
p

)
with very high probability.

Proof. First we argue that c≥i+1(t0.1i + 1
2) > 0.0045p. If not, the count at minute i, c≥i(t) −

c≥i+1(t) > 0.1−0.0045 = 0.0955 for all t0.1i < t < t0.1i +0.5. Then, the probability of a drip reaction

is at least 0.09552p > 0.0091p. By standard Chernoff bounds, we then have that in time 1
2 , there

are at least 0.0045p drip reactions with very high probability. Thus c≥i+1(t0.1i + 1
2) > 0.0045p from

just those drip reactions alone.

Now we argue that the amount of time it takes for epidemic reactions to bring c≥(i+1) up to

0.1. By Lemma 3.3.5, the expected amount of time for an epidemic to grow from fraction 0.0045p

to 0.1 is

1

2
[ln(0.1)− ln(0.0045p) + ln(1− 0.0045p)− ln(0.9)] <

ln(0.1)− ln(0.0045)− ln(0.9)

2
− ln p

2

< 1.603− ln p

2
.

As long as p = Θ(1), then the minimum probability p∗ = Θ(p) is constant, and by Lemma 3.3.5,

the epidemic takes at most time 1.61− ln p
2 with very high probability.

In total, we then get that t0.1i+1 − t0.1i ≤ 0.5 + 1.61 − ln p
2 = 2.11 + 1

2 ln
(

1
p

)
with very high

probability. �

Proving that the set D≥i+1 remains small will let us prove the main theorem about the front

tail of the clock distribution:

Theorem 3.5.5. With very high probability, if n−0.4 ≤ c≥i(t) ≤ 0.1, then c≥(i+1)(t) < pc≥i(t)
2.

Proof. The proof will proceed by induction on the minute i, where the base case is vacuous

because c≥0(0) = 1, so c≥0(t) > 0.1 for all times t.

The inductive hypothesis will use two claims. The first is that the time t0.1≥i − t
+
≥i = O(log log n)

for minute i. The second is that d≥i+1(t0.1≥i ) = O(n−0.85). Note that using this second claim along

with Lemma 3.5.3 proves the Theorem statement at minute i: when n−0.4 ≤ c≥i(t) ≤ 0.1, by

Lemma 3.5.3 we have

c≥(i+1)(t) < 0.9pc≥i(t)
2 + d≥i+1(t) ≤ pc≥i(t)2,

because c≥i(t)2 ≥ n−0.8, so the d≥i+1 term is negligible for sufficiently large n.

77



We will prove the first claim in two parts. First we argue that t0.1≥i − t
+
≥i = O(log log n), because

the width of the front tail is at most 2 log log n. We will show that at t+≥i, when the first agent

arrives at minute = i, we already have c≥j(t+≥i) ≥ 0.1, where j = i− 2 log log n (for i < 2 log log n,

we just have j = 0 and there is nothing to show because the width of the front tail can be at most

i). First we move log logn levels back to k = i− log log n, to show c≥k(t
+
≥i) ≥ n−0.4.

Assume, for the sake of contradiction that c≥k(t+≥i) < n−0.4. Between t+≥k and tn−0.4

≥k , consider

the number of drips that happen from levels k + 1 and above. By the inductive hypothesis, we

have c≥k+1(t) ≤ pc≥k(t)
2 < n−0.8 during this whole time. Thus in any interaction of this period

the probability of a drip above level k + 1 is at most p · (n−0.8)2 ≤ n−1.6. The interval length is

tn
−0.4

≥k − t+≥k = O(log log n) by the inductive hypothesis, so the probability of having at least log logn

drips during this interval is at most

(
O(n log logn)

log log n

)
(n−1.6)log logn ≤

(
O(n log log n)

n1.6

)log logn

= n−ω(1).

This implies c≥i(tn
−0.4

≥k ) = 0 with very high probability.

Thus with very high probability, we already have c≥k(t+≥i) ≥ n−0.4. Then we can iterate the

inductive hypothesis cl(t) ≤ p(cl−1(t))2 for the log logn minutes l = k, k − 1, . . . , j, which implies

c≥j(t
+
≥i) ≥ 0.1. Now that we have shown the width of the front tail is at most 2 log log n, we use

Lemma 3.5.4, which shows that each minute takes O(1) time, so it takes O(log log n) time between

t+≥i when the first agent gets to minute = i and t0.1≥i , when the fraction at minute ≥ i reaches 0.1.

Now we prove the second claim, arguing that in this O(log log n) time, d≥i+1 can grow to at most

O(n−0.85). By definition of d≥i+1, the drip reactions that increase d≥i+1 happen with probability

at most p(n−0.45)2 = pn−0.9. By a standard Chernoff bound, the number of drip reactions in

O(log log n) time is O(log log n ·n−0.9) = O(n−0.89). Then we assume in the worst case this maximal

number of drip reactions happen, and then d≥i+1 can grow by epidemic. By Lemma 3.3.5, the

time for an epidemic to grow from fraction O(n−0.89) to Ω(n−0.85) is Ω(log n) > O(log log n) with

very high probability. Thus, with very high probability, we still have d≥i+1 = O(n−0.85) within

O(log log n) time. �

Now the relationship proven in Theorem 3.5.5 implies that c≥(i+1)(t
0.1
≥i ) ≤ 0.01p. We can now

use this bound to get lower bounds on the time required to move from one minute to the next.
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Lemma 3.5.6. With very high probability, t0.1i+1 − t0.1i ≥ 1
2 ln
(

1 + 2
9p

)
− 0.01.

Proof. We start at time t0.1≥i , where by Theorem 3.5.5 we have c≥i+1(t0.1≥i ) ≤ 0.01p with very

high probability.

Define x = x(t) = c≥i(t) and y = y(t) = c≥i+1(t). The number of interactions for Y = yn

to increase by 1 is a geometric random variable with mean 1
P[(i)]+P[(ii)] , where the drip reaction

(i) has probability P[(i)] ∼ p(x − y)2 ≤ p(1 − y)2 and the epidemic reaction (ii) has probability

P[(ii)] ∼ 2y(1−y). Assuming in the worst case that y(t0.1i ) = 0.01p, then the number of interactions

T = (t0.1i+1 − t0.1i )n for Y to increase from 0.1pn to 0.1n is a sum of independent geometric random

variables with mean

E[T ] ≥
0.1n−1∑
Y=0.01pn

1

p(1− Y/n)2 + 2(Y/n)(1− Y/n)
∼ n

∫ 0.1

0.01p

dy

p(1− y)2 + 2y(1− y)

= n

∫ 0.1

0.01p

dy

(1− y)(p+ (2− p)y)
= n

∫ 0.1

0.01p

1/2

1− y
+

1− p/2
p+ (2− p)y

dy

= n

[
−1

2
ln(1− y) +

1

2
ln (p+ (2− p)y)

]0.1

0.01p

=
n

2
[− ln(0.9) + ln(1− 0.01p) + ln(p+ 0.1(2− p))− ln(p+ 0.01p(2− p))]

=
n

2

[
− ln(0.9) + ln

(
1− 0.01p

p− 0.01p2 + 0.02p

)
+ ln(0.9p+ 0.2)

]
≥ n

2

[
− ln(0.9) + ln

(
0.9p+ 0.2

1.02p

)]
≥ n

2

[
−0.02 + ln

(
1 +

2.04

9p

)]
Note that the probability in the geometric includes the term p(1 − y)2 ≥ 0.81p since y ≤ 0.1,

thus the minimum geometric probability p∗ ≥ 0.81p is bounded by a constant. Also the mean

µ = Θ(n) so by Corollary 3.3.4, P[T ≤ n(−0.01 + 1
2 ln
(

1 + 2
9p

)
] ≤ exp(−Θ(n)), so the time

t0.1i+1 − t0.1i = T/n ≥ 1
2 ln
(

1 + 2
9p

)
− 0.01 with very high probability. �

The worst case upper bound for the dripping probability, p(1− y)2, used in the above Lemma,

is weakest when p = 1. We now give a special case lower bound that is stronger in the deterministic

case with p = 1.

Lemma 3.5.7. With very high probability, t0.1i+1 − t0.1i ≥ 0.45.

Proof. We assume in the worst case that p = 1. Then by Theorem 3.5.5, we have c≥i+1(t0.1i ) ≤

0.01. This initial fraction will grow by epidemic to at most 0.01 · e2·0.45(1 + ε) with very high
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probability by Lemma 3.3.5. We must also consider all agents that later make it to minute i+ 1 by

a drip reaction, and how much they grow by epidemic.

By time t0.1i + s, the fraction c≥i could have increased to at most 0.1 + s, since at most 1 agent

can increase its minute in each interaction. Then the probability of a drip reaction at this time

is at most (0.1 + s)2. By standard Chernoff bounds, there will be at most (1 + ε)(0.1 + s)2n0.5

drip reactions in the next n0.5 interactions with very high probability. Then by Lemma 3.3.5, these

agents can grow by epidemic by at most a factor (1 + ε)e2·(0.45−s) by time t0.1i + 0.45, with very

high probability. Summing over consecutive groups of n0.5 interactions at time i · n0.5

n and using the

union bound, we get a total bound

c≥i+1(t0.1i + 0.45) ≤ 0.01 · e2·0.45(1 + ε) +

0.45n0.5∑
i=0

(1 + ε)(0.1 + n−0.5i)2n0.5 · e2·(0.45−n−0.5i)

∼ (1 + ε) · e0.9

[
0.01 +

∫ 0.45

0
(1 + s)2e−2sds

]
≤ 0.45.

�

We now summarize all bounds on the length of a clock minute in a single theorem:

Theorem 3.5.8. Let t0.1≥i+1−t0.1≥i be the time between when a fraction 0.1 of agents have minute ≥

i and when a fraction 0.1 of agents have minute ≥ i+ 1. Then with very high probability,

max

(
0.45,

1

2
ln

(
1 +

2

9p

)
− 0.01

)
≤ t0.1≥i+1 − t0.1≥i ≤ 2.11 +

1

2
ln

(
1

p

)
These bounds are shown in Fig. 3.9, along with sampled minute times from simulation. This

suggests the actual time per minute is roughly 0.75 + 1
2 ln
(

1
p

)
.

We can now build from these theorems to get bounds on the values of hour. For a clock agent

a, define a.hour = ba.minutek c. Define starth = min
(
t : |{a : a(t).hour ≥ h}| ≥ 0.9|C|

)
be the first

time when the fraction of clock agents at hour h or beyond reaches 0.9 and endh = min
(
t : |{a :

a(t).hour > h}| ≤ 0.001|C|
)
be the first time when the fraction of clock agents beyond hour h

reaches 0.001. Define the synchronous hour h to be the parallel time interval [starth, endh], i.e.

when fewer than 0.1% are in any hour beyond h and at least (90 - 0.1) = 89.9% are in hour h. Note

that if endh < starth then this interval is empty, but we show this happens with low probability.

We choose the threshold 0.001|C| to be a sufficiently small constant for later proofs.
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Figure 3.9. The upper and lower bounds from Theorem 3.5.8 for the time of one
clock minute, along with samples from simulation. For each value of n, 100 minute
times were sampled, taking t0.1i+1 − t0.1i for i = 9, . . . , 18 over 10 independent trials.
All our proofs assume p is constant, and for any fixed value of p, will only hold for
sufficiently large n. The case n = 103 shows that when p = O(1/n), the bounds no
longer hold. This is to be expected because the expected number of drips becomes
too small for large deviation bounds to still hold.

Recall c = |C|/n is the fraction of clock agents and k is the number of minutes per hour.

Theorem 3.5.9. Consider a fraction c of agents running the clock protocol, with p = 1. Then

for every synchronous hour h, its length endh − starth ≥ 1
c2

[0.45k − 3.1], with very high probability.

The time between consecutive synchronous hours starth+1 − starth ≤ 1
c2

[2.11k + 2.2] with very high

probability.

Proof. Note that the previous lemmas assumed |C| = n, so the entire population was running

the clock algorithm. In reality, we have a fraction c = |C|/n of clock agents. The reactions we

considered only happen between two clock agents, which interact with probability ∼ c2. Thus we

can simply multiply the bounds from our lemmas by the factor 1
c2

to account for the number of

regular interactions for the requisite number of clock interactions to happen, which is very close to

its mean with very high probability by standard Chernoff bounds.

Because our definition references time t0.9≥i when the fraction reaches 0.9, we will first bound the

time it takes an epidemic to grow from 0.1 to 0.9. By Lemma 3.3.5, this takes parallel time t, where

E[t] ∼ ln(0.9)− ln(1− 0.9)− ln(0.1) + ln(1− 0.1)

2
= ln(9) < 2.2.

Since ln(9)(1 + ε) < 2.2, this completes within parallel time 2.2 with very high probability.
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Since c.hour = h ⇐⇒ hk ≤ c.minute < (h + 1)k, the times starth = t0.9hk and endh = t0.001
hk .

For the upper bound, by Lemma 3.5.4 we have t0.1i+1− t0.1i ≤ 2.11/c2 with very high probability. We

start at t0.9hk ≥ t0.1hk , and sum over the k minutes in hour h, then add at most time 2.2
c2

between t0.1(h+1)k

and t0.1(h+1)k. This gives that starth+1 − starth ≤ 1
c2

[2.11k + 2.2] with very high probability.

For the lower bound, by Theorem 3.5.5, at time t0.1(h+1)k−2, we have c≥(h+1)k ≤ (0.12)2 = 10−4 <

0.001, so t0.1(h+1)k−2 < endh. Then starth ≤ t0.1hk+ 2.2
c2
. Using Lemma 3.5.7, we have t0.1i+1−t0.1i ≤ 0.45/c2

with very high probability, for each i = hk, . . . , hk+ k− 3. All together, this gives endh − starth ≥
1
c2

[0.45(k − 2)− 2.2] = 1
c2

[0.45k − 3.1]. �

We will set k = 45 to give us sufficiently long synchronous hours for later proofs. Since every

hour takes constant time with very high probability, all L hours will finish within O(log n) time.

We finally show one more lemma concerning how the Clock agents affect the Main agents. The

Clock agents will change the hour of the O agents via Line 9 of Phase 3. There are a small fraction

0.001|C| of Clock agents that might be running too fast and thus have a larger hour than the

synchronized hour. We must now show these agents are only able to affect a small fraction of the

Main agents. Intuitively, the Clock agents with hour > h bring up the hour of both O agents and

other Clock agents. The following lemma will show they don’t affect too many Main agents before

also bringing in a large number of Clock agents.

We will redefine c>h = c>h(t) = |{c : c.hour > h}|/|C| to be the fraction of Clock agents beyond

hour h, and similarly m>h = m>h(t) = |{m : m.hour > h}|/|M| to be the fraction of Main agents

beyond hour h.

Lemma 3.5.10. For all times t ≤ endh, we have m>h(t) ≤ 1.2c>h(endh) = 0.0012 with very high

probability.

Proof. We have c>h(endh) = 0.001 by the definition of synchronous hour h. Thus it suffices

to show that m>h(t) ≤ 1.2c>h(endh).

Recall c = |C|/n and m = |M|/n, so c · c>h and m · m>h are rescaled to be fractions of the

whole population.

We will assume in the worst case that every Main agent can participate in the clock update

reaction

Ch,Mj → Ch,Mh where h > j,
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so the probability of clock update reaction is 2c · c>h ·m(1 −m>h). Among the Clock agents, we

will now only consider the epidemic reactions Ch, Cj → Ch, Ch between agents in different hours

h > j, so the probability of the clock epidemic reaction is 2c2 · c>h(1− c>h).

We use the potential Φ(t) = m>h(t)− 1.1 · c>h(t). Note that initially Φ(0) = 0 since both terms

are 0. The desired inequality is Φ(endh) ≤ 0.1c>h(endh) = 0.0001, and we will show this holds with

very high probability by Azuma’s Inequality because Φ is a supermartingale. The clock update

reaction increases Φ by 1
|M| = 1

mn . The clock epidemic reaction decreases Φ by 1.1
|C| = 1.1

cn . This gives

an expected change

E[Φ(t+ 1/n)− Φ(t)] =
1

mn
[2c · c>h ·m(1−m>h)]− 1.1

cn

[
2c2 · c>h(1− c>h)

]
=

2c · c>h
n

[(1−m>h)− 1.1(1− c>h)]

≤ 2c · c≥i
n

[1− 1.1(0.999)] < 0.

Thus the sequence
(
Φj = Φ( jn)

)n·endh
j=0

is a supermartingale, with bounded differences |Φj+1 −

Φj | ≤ max
(

1
mn ,

r
cn

)
= O( 1

n). So we can apply Azuma’s Inequality (Theorem 3.3.2) to conclude

P[Φn·endh ≥ δ] ≤ exp

(
− δ2

2
∑n·endh

j=0 O( 1
n)2

)
= exp

(
−O(n)δ2

)
,

since by Theorem 3.5.9, we have time endh = O(1) with very high probability. Thus we can choose

δ = 0.1c>h(endh) = 0.0001 to conclude that m>h(endh) ≤ 1.2c>h(endh) with very high probability

1− exp(−Ω(n)) = 1−O(n−ω(1)).

The lemma statement for times t ≤ endh simply follows from the monotonicity of the value

m>h, since agents only decrease their hour field. �

3.5.2. Phase 3 exponent dynamics. We now analyze the behavior of the Main agents in

Phase 3. We will show their exponent fields stay roughly synchronized with the hour of the Clock

agents, decreasing from 0 toward −L. We first use the above results on the clock to conclude

that during synchronous hour h, the tail of either O agents with hour > h or biased agents with

exponent < −h is sufficiently small.

Lemma 3.5.11. Until time endh, the count |{O : O.hour > h} ∪ {b : b.exponent < −h}| ≤

0.0024|M| with very high probability.
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Proof. By Lemma 3.5.10, the count of O agents that have been pulled up by a Clock agent to

hour > h is at most 0.0012|M| with very high probability. Each of these agents could participate

in a split reaction that results in two biased agents with exponent < −h, increasing the total count

of |{O : O.hour > h} ∪ {b : b.exponent < −h}| by 1. Thus this total count can be at most twice as

large: ≤ 0.0024|M|. �

Our main argument will proceed by induction on synchronous hours. During each synchronous

hour h, we will first show that at least a constant fraction 0.77|M| of agents have bias = T with

hour = h. Then we will show that split reactions bring most biased agents down to exponent = −h.

Finally we will show that cancel reactions will reduce the count of biased agents, leaving sufficiently

many O agents for the next step of the induction.

Recall that the initial gap

g = (|{a : a.input = A}| − |{b : b.input = B}|) =
∑

m.role=Main

m.bias

is both the difference between the counts of A and B agents in the initial configuration and the

invariant value of the total bias. We define β+ = β+(t) =
∑

a.opinion=+1 |a.bias| and β− = β−(t) =∑
b.opinion=−1 |b.bias| to be the total unsigned bias of the positive A agents at time t and negative

B agents at time t. Then the net bias g = β+ − β− is the invariant.

We also define µ = µ(t) = β+ + β− to be the total unsigned bias, which we interpret as

“mass”. Note that split reactions preserve µ, while cancel reactions strictly decrease µ. The initial

configuration has mass µ(0) = n, and if we eliminate all of the minority opinion then we will get

β− = 0 and µ = g. Thus decreasing the mass shows progress toward reaching consensus. Also, if

every biased agent decreased their exponent by 1, this would exactly cut the µ in half. We will show

an upper bound on µ that cuts in half after each synchronous hour, which implies that on average

all biased agents are moving down one exponent.

We also define µ(>−i)(t) =
∑

m.exponent>−i |m.bias| as the total mass of all biased agents above

exponent −i. Note that a bound µ(>−i) ≤ x2−i+1 gives a bound on total count |{a : a.exponent >

−i}| ≤ x, since even if all agents above exponent −i+ 1 split down to exponent −i+ 1, they would

have count at most x. Also note that µ(t) and µ(>−i)(t) are nonincreasing in t, since the mass above

a given exponent can never increase.
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This inductive argument will stop working once we reach a low enough exponent that the gap

has been sufficiently amplified. We define gi = g · 2i, which we call the relative gap to hour i

/ exponent −i, because if all agents had exponent = −i, then a gap gi = |{a : a.opinion =

+1}| − |{b : b.opinion = −1}| would maintain the invariant g =
∑

v v.bias =
∑

a.opinion=+1
1
2i
−∑

b.opinion=−1
1
2i

= gi
2i
. Note that g0 = g, and the relative gap doubles as we increment the hour

and decrement the exponent. So if the Main agents have roughly synchronous exponents, there will

be some minimal exponent where the relative gap has grown to exceed the number of Main agents

|M|, and there are not enough agents available to maintain the invariant using lower exponents.

We now formalize this idea of a minimal exponent. In the case where there is an initial majority,

gi 6= 0, and because we assume the majority is A, we have gi > 0. Define the minimal exponent

−l = blog2( g
0.4|M|)c to be the unique exponent corresponding to relative gap 0.4|M| ≤ gl < 0.8|M|.

For larger exponents −i ≥ −l + 5 = −(l − 5), we have gi ≤ gl−5 < 0.025|M|. Thus for hours

0, 1, . . . , l− 5 and exponents 0,−1, . . . ,−l+ 5, the gap is still very small. The small gap makes the

inductive argument stronger, and we will use this small gap to show a high rate of cancelling keeps

shrinking the mass µ in half each hour and keeps the count of O agents large, above a constant

fraction 0.77|M|.

For the last few hours l − 4, . . . , l and exponents −l + 4, . . . ,−l, the doubling gap weakens the

argument. Thus we have separate bounds for each of these hours. These weaker bounds acknowledge

the fact that the majority count is starting to increase while the count of O agents is starting to

decrease.

Theorem 3.5.12. For all synchronous hours h = 0, . . . , l, during times [starth + 2
c , endh], the

count of O agents at hour = h, |Oh| ≥ τh|M|. Then by time starth+ 2
c + 41

m , the mass µ(>−h) above

exponent −h satisfies µ(>−h) ≤ 0.001 · 2−h+1. Then by time starth + 2
c + 47

m ≤ endh, the total mass

µ(endh) ≤ ρh|M|2−h.

The constant ρh = 0.1 for h ≤ l − 5. Then we have ρl−4 = 0.104, ρl−3 = 0.13, ρl−2 = 0.212,

ρl−1 = 0.408, and ρl = 0.808.

The constant τh ≥ 0.97− 2ρ(h−1), so τh ≥ 0.77 for h ≤ l− 4, and the minimum value τl ≥ 0.15.
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Note that in the case of a tie, l is undefined since we always have gap gi = 0. Here the stronger

inductive argument will hold for all hours and exponents. In the tie case, we will technically define

l = L+ 5 so the stronger h ≤ l − 5 bounds apply to all hours.

We will prove the three sequential claims via three separate lemmas. The first argument of

Lemma 3.5.13, where the clock brings a large fraction of O agents up to hour h, will need parallel

time 2
c . The second argument of Lemma 3.5.15, where the O agents reduce the mass above exponent

−h by split reactions, will need parallel time 41
m . The third argument of Lemma 3.5.16, where cancel

reactions at exponent −h reduce the total mass, will need parallel time 6
m . Thus the total time we

need in a synchronous hour is

2

c
+

47

m
≤ 49

c
≤ 17

c2
≤ 0.45 · 45− 3.1

c2
,

where we use that c < 1
3 < m by Lemma 3.4.2. Thus by Theorem 3.5.9, since we have constant

k = 45 minutes per hour, each synchronous hour is long enough with very high probability.

The argument proceeds by induction, with each lemma using the previous lemmas and the

inductive hypotheses at previous hours. The base case comes from Lemma 3.4.3, where we have

that the initial gap |g| < 0.025m, so l− 5 ≥ 0, and the starting mass is at most 0.03|M|. This mass

bound gives the base case for Lemma 3.5.16, whereas since h = 0 is the minimum possible hour,

the base cases for Lemma 3.5.13 and Lemma 3.5.15 are trivial.

Lemma 3.5.13. For each hour h = 0, . . . , l, during the whole synchronous hour [starth, endh], the

count of O agents |O| ≥ (0.9976− 2ρ(h−1))|M|. Then during times [starth + 2
c , endh], the count of

O agents at hour = h, |Oh| ≥ (0.97− 2ρ(h−1))|M| with very high probability.

Proof. We show the first claim, that during synchronous hour h, the count |O| ≥ (0.9976 −

2ρ(h−1))|M| by process of elimination. By Lemma 3.5.16, by time endh−1 < starth, the total

mass µ ≤ ρ(h−1)|M|2−h+1, which implies the total count {a : a.exponent ≥ −h} ≤ 2ρ(h−1)|M|

in all future configurations, since total mass is nonincreasing. Then by Lemma 3.5.11, the count

|{O : O.hour > h} ∪ {b : b.exponent < −h}| ≤ 0.0024|M| until time endh. This leaves |M| −

0.0024|M|−2ρ(h−1)|M| = (0.9976−2ρ(h−1))|M| agents who must be O agents with hour ≥ h until

time endh.
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By definition of time starth, there are at least 0.9|C| Clock agents with hour ≥ h that will bring

these O agents up to hour = h. We need to bring all but 0.0276|M| of these agents up to hour = h

to achieve the desired bound |Oh| ≥ (0.97−2ρ(h−1))|M|. We can apply Lemma 3.3.7, with a = 0.9c,

b1 = (0.9976 − 2ρ(h−1))m < (0.9976 − 2 · 0.1)m, and b2 = 0.0276m to conclude this happens after

parallel time t, where t < (1 + ε)E[t] with very high probability. The expected time

E[t] =
ln(b1)− ln(b2)

2a
≤ ln(0.7976m)− ln(0.0276m)

2 · 0.9c
≤ 1.89

c
.

Thus for small constant ε > 0, we have t < (1 + ε)1.89
c < 2

c with very high probability.

�

In order to reason about the total mass µ(>−h) above exponent −h, we will define the potential

function φ(>−h), where for a biased agent a with a.exponent = −i ≥ −h+1 at time t, φ(>−h)(a, t) =

4−i+h−1. The global potential

φ(>−h)(t) =
∑

a.exponent>−h
φ(a, t) ≥

∑
a.exponent>−h

4−h+1+h−1 = |{a : a.exponent > −h}|.

Since φ(>−h) upper bounds the count above exponent h, we can bound the mass µ(>−h)(t) ≤

2−h+1φ(>−h)(t). Also note that unlike the mass, φ(>−h)(t) strictly decreases via split reactions since

4−i > 4−i−1 + 4−i−1. This will let us show that φ(>−h) exponentially decays to 0 when there are a

constant fraction of O agents to do these splits.

We first show that by hour h exponents significantly far above −h are empty. Letting q = b lnn
3 c,

we will show the potential φ(>−h+q) hits 0 by hour h.

Lemma 3.5.14. For each hour h = 0, . . . , l, by time starth+ 2
c , the maximum level among all biased

agents is at most −h+ q with high probability 1−O(1/n12).

Proof. The statement is vacuous for hours h < q, so we must only consider hours h ≥ q. We use

the potential φ(>−h+q), and start the argument at time tstart = start(h−q) + 2
c + 41

m where inductively

by Lemma 3.5.15 φ(>−h+q)(tstart) ≤ 0.001|M|. We must show that by time tend = starth + 2
c , we

have φ(>−h+q)(tend) = 0.

By Lemma 3.5.13, the count of O agents with hour ≥ h − q, |O(≥h−q)| ≥ 0.77|M| during all

synchronous hours after start(h−q) + 2
c and up through synchronous hour l − 5 ≥ h − 5. Thus the

interval we consider consists of at least q−5 synchronous hours. By Theorem 3.5.9, each synchronous
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hour takes at least time [1.48(45− 2)− 2.2]/c2 ≥ 17/c2 ≥ 51/m, since c < 1
3 < m by Lemma 3.4.2.

Thus the total time for this argument is at least tend − tstart ≥ 51(q−5)
m time.

For each of the 51(q−5)
m n interactions in this interval, we consider the expected change to

φ(>−h+q). For each biased agent a with a.exponent = −i > −h + q, a split reaction will change

the potential by ∆φa ≤ 4h−1(2 · 4−i−1 − 4−i) = 4h−1(−1
24−i) = −1

2φa. Then in each interaction at

parallel time t, the expected change in the potential

E[φ(>−h+q)(t+ 1/n)− φ(>−h+q)(t)] ≤
∑

a.exponent>(−h+q)

P[a splits] ·∆φa

≤
∑

a.exponent>(−h+q)

2 · 0.77m

n
· −1

2
φa = −0.77m

n
φ(>−h+q)(t).

Then we have E[φ(>−h+q)(t+ 1/n)|φ(>−h+q)(t)] ≤ (1− 0.77m
n )φ(>−h+q)(t).

We now recursively apply this bound to all 51(q−5)
m n interactions beginning at time tstart:

E
[
φ(>−h+q)(tend)|φ(>−h+q)(tstart)

]
≤
(

1− 0.77m

n

) 51(q−5)
m

n

φ(>−h+q)(tstart)

E
[
φ(>−h+q)(tend)

]
≤ exp(−0.77 · 51 lnn/3) · exp(51 · 5 · 0.77) · 0.001|M|

≤ n−13 exp(197) · 0.001mn

= O
(
n1−13

)
= O

(
n−12

)
.

Finally, since φ(>−h+q) takes nonnegative integer values, we can apply Markov’s Inequality to con-

clude P[φ(>−h+q)(tend) > 0] = O(1/n12). �

Now we can reason about the potential φ(>−h) during hour h, which will decrease by a large

constant factor. The upper bound on φ(>−h) gives the a bound on the mass of the upper tail µ(>−h).

Lemma 3.5.15. For each hour h = 0, . . . , l, by time starth+ 2
c+ 41

m , the potential φ(>−h) ≤ 0.001|M|

with very high probability. This implies the mass above exponent −h is µ(>−h) ≤ 0.001|M|2−h+1.

Proof. By Lemma 3.5.13, after time starth + 2
c , we have a count |Oh| ≥ τh|M|, where the

weakest bound is at hour l, where τl = 0.15.

Inductively, we have φ(>−h+1)(starth) ≤ 0.001|M| by time start(h−1)+ 2
c+ 41

m . By Lemma 3.5.16,

by time end(h−1), the total mass µ ≤ ρ(h−1)|M|2−h+1 ≤ ρ(l−1)|M|2−h+1. Thus there are at most
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ρ(l−1)|M| = 0.408|M| biased agents with exponent −h + 1, which lets us bound the potential

φ(>−h)(starth + 2
c ) ≤ (0.408 + 4 · 0.001)|M| = 0.412|M|. Thus we must drop the potential by the

constant factor 412.

To show that φ drops by a constant factor, we will use Φ(t) = ln
(
φ(>−h)(t)

)
, which will be

a supermartingale. If agent a at with exponent −i splits, with φa = 4−i+h−1, this changes the

potential φ by ∆φa = −1
2φa. The potential Φ then changes by

∆Φa = ln
(
φ(>−h) + ∆φa

)
− ln

(
φ(>−h)

)
= ln

(
1 +

−1
2φa

φ(>−h)

)
≤ − φa

2φ(>−h)
.

The expected change in Φ is then

E[∆Φ] ≤
∑

a.exponent>−h
P[a splits] ·∆Φa ≤

∑
a.exponent>−h

2τhm

n
· − φa

2φ(>−h)
= −0.15m

n
.

We define the supermartingale (Φj)
41
m
n

j=0, where Φj = Φ(starth + 2
c + j

n). Then the desired

inequality is φ>(h+1)(starth + 2
c + 41

m ) ≤ 0.001|M| ≤ φ>(h+1)(starth + 2
c )/412, so we need to show

Φ 41
m
n − Φ0 ≤ ln

(
1

412

)
. The expected value

E[Φ 41
m
n − Φ0] ≤ −0.15m

n
· 41

m
n = −6.15 ≤ ln

(
1

412

)
− 0.12.

To apply Azuma’s Inequality, we will need a bound on the difference |Φj+1−Φj | ≤ max
∣∣∣ φa

2φ(>−h)

∣∣∣.
During the interval we consider, φ(>−h) ≥ 0.001|M|, since after that the desired inequality will hold.

By Lemma 3.5.14, by time starth + 2
c , the maximum exponent in the population is at most −h+ q,

where q = b lnn
3 c, so φa ≤ 4(−h+q)+h−1 = 4q−1. Using the fact that 4q = eln 4 lnn/3 = O(n0.47), we

can bound the largest change in Φ as

|Φj+1 − Φj | ≤
4q−1

0.002|M|
= O

(
4q

n

)
= O(n0.47/n) = O(1/n0.53).

Now by Azuma’s Inequality (Theorem 3.3.2) we have

P
[
(Φ 41

m
n − Φ0)− E[Φ 41

m
n − Φ0] ≥ 0.12] ≤ exp

− 0.122

2
∑ 41

m
n

j=0(O(n−0.53))2

 = exp
(
−Θ(n0.06)

)
.

Thus φ(>−h) will drop by at least the constant factor 412 with very high probability, giving

φ(>−h)(starth + 2
c + 41

m ) ≤ 0.001|M|. �
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Lemma 3.5.16. For each hour h = 0, . . . , l, by time starth + 2
c + 47

m ≤ endh, the total mass

µ ≤ ρh|M|2−h with very high probability. The constant ρh = 0.1 for all h ≤ l+ 5, then the last few

constants ρl−4 = 0.104, ρl−3 = 0.13, ρl−2 = 0.212, ρl−1 = 0.408, and ρl = 0.808.

Proof. We start the argument at time starth+2
c+

41
m . LetA = {a : a.opinion = +1, a.exponent =

−h} and B = {b : b.opinion = −1, b.exponent = −h}. We will show that by time endh, large

number of cancel reactions happen between the agents in A and B to reduce the total mass. In-

ductively, by endh−1 we have total mass µ ≤ ρ(h−1)|M|2−h+1. We assume in the worst case (since

we need the total mass to be small) that we start with the maximum possible amount of mass

µ = ρ(h−1)|M|2−h+1. We use the upper bound on the gap gh ≤ α|M|, where α = 0.8 · 2h−l and

assume in the worst case (since larger gaps reduce the rate of cancelling reactions) the largest pos-

sible gap β+ − β− = gh2−h = α|M|2−h. This gives majority mass β+ = (ρ(h−1) + α
2 )|M|2−h and

minority mass β− = (ρ(h−1) − α
2 )|M|2−h.

Since the minority is the limiting reactant in the cancelling reactions, we assume in the worst

case the smallest possible minority count at exponent −h, where all mass outside of exponent −h is

the minority. Then the majority count at exponent −h is |A| = (ρ(h−1) + α
2 )|M|. By Lemma 3.5.15,

the mass above exponent −h is µ(>−h)(starth + t2) ≤ 0.001|M|2−h+1. By Lemma 3.5.11, the

maximum count below exponent −h is 0.0024|M|, so the mass µ(<−h) ≤ 0.0024|M|2−h−1. This

leaves a minority count at exponent −h of |B| = (ρ(h−1) − α
2 − 0.002− 0.0012)|M|.

Now we will apply Lemma 3.3.6 with a = (ρ(h−1) + α
2 )m and b = (ρ(h−1) − α

2 − 0.0032)m.

First we consider the cases where h ≤ l + 5, where ρh = ρ(h−1) = 0.1 There the bound on the gap

α = 0.8 · 2(l−5)−l = 0.025. This gives a = 0.1125m and b = 0.0843m. By Lemma 3.3.6, the time t

to cancel a fraction d = 0.05m from both a and b has mean

E[t] ∼ ln(b)− ln(a)− ln(b− d) + ln(a− d)

2(a− b)

=
ln(0.0843)− ln(0.1125)− ln(0.0343) + ln(0.0625)

2(0.0282m)
<

5.53

m
,

so E[t](1 + ε) < 6
m and t < 6

m with very high probability. Cancelling this fraction d reduces the

total mass by 2dn2−h = 0.1|M| · 2−h = ρ(h−1)|M|2−h+1 − ρh|M|2−h. Then the total mass is at

most ρh|M|2−h by time starth + 2
c + 47

m .
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For the remaining levels h = l − 4, l − 3, l − 2, l − 1, l, we will repeat the above argument and

calculation, but now the bound will change so ρh 6= ρ(h−1). First our bound on the gap α will

double as we move down each level. This causes the worst case fractions a and b to be spread

further apart. Then d, the largest fraction which will cancel from both sides within 6
m time with

high probability, will be smaller. This gives the new mass bound ρh, since from the equation

ρ(h−1)|M|2−h+1 − ρh|M|2−h = 2dn2−h, we have d = (ρ(h−1) − ρh
2 )m and ρh = 2(ρ(h−1) − d

m). This

relative total mass bound ρh will be growing larger as h decreases. This is to be expected, since we

do in fact see the count of biased agents growing as they reach the final exponents before the count

of O agents runs out (see Fig. 3.4c and Fig. 3.4d, where the value −l = −19).

The following table shows the constants used in the computations at each of the steps h =

l − 5, l − 4, . . . , l. The top row h = l − 5 corresponds to the exact calculations above, then the

following rows are the constants used in the same argument for lower levels.

h = l − 5 α = 0.025 a = 0.1125m b = 0.0843m d = 0.05m E[t] < 5.53/m ρ(l−5) = 0.1

h = l − 4 α = 0.05 a = 0.125m b = 0.0718m d = 0.048m E[t] < 5.83/m ρ(l−4) = 0.104

h = l − 3 α = 0.1 a = 0.154m b = 0.0508m d = 0.039m E[t] < 5.66/m ρ(l−3) = 0.13

h = l − 2 α = 0.2 a = 0.23m b = 0.0268m d = 0.024m E[t] < 5.29/m ρ(l−2) = 0.212

h = l − 1 α = 0.4 a = 0.412m b = 0.0088m d = 0.008m E[t] < 2.95/m ρ(l−1) = 0.408

h = l α = 0.8 a = 0.808m b = 0.0048m d = 0.004m E[t] < 1.11/m ρl = 0.808

Note that for the last couple hours, the worst case for b is very small, so the amount of cancelling

that happens is negligible, and the relative mass bound essentially doubles. We will see later that

the minority count does in fact sharply decrease, so it is accurate that the rate of cancellation drops

to zero, and the count of biased majority agents is roughly doubling for these last couple rounds. �

3.5.3. End of Phase 3. Now that we have proven Theorem 3.5.12, we will finish analyzing

separately the cases of an initial tie and an initial majority opinion.

In the case of a tie, the stronger bounds from Theorem 3.5.12 hold all through the final hour

h = L. Thus at hour L we still have a constant fraction 0.77|M| of O agents. We now show that

in the remaining O(log n) time in Phase 3, while the Clock agents with hour = h decrement their

counter in Line 6, these O agents can keep doing split reactions to bring all remaining biased agents
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down to exponent −L. This lets us now prove Theorem 3.5.1, the main result of the section for the

case of a tie.

Theorem 3.5.1. If the initial configuration was a tie with gap 0, then by the end of Phase 3,

all biased agents have exponent = −L, with high probability 1−O(1/n2).

Proof. We start by using Theorem 3.5.12, where at hour L, the total mass µ(endL) ≤

0.1|M|2−L. Thus the count of biased agents is at most 0.1|M|. We also have at least 0.77|M|

O agents with hour = L (this count is actually slightly higher, as we could show almost all of the

0.9|M| O agents reach hour = L quickly by the same argument as Lemma 3.5.13, but this bound

will suffice).

We use the potential φ(>−L), where by Lemma 3.5.15, we have φ(>−L)(end0) ≤ 0.001|M|. The

goal is to now show that φ(>−L) = 0 within the O(log n) time it takes for any counter to hit 0 and

trigger the move to the next phase. This proof proceeds identically to the proof of Lemma 3.5.14,

where we had shown that E[φ(>−L)(t+1/n)|φ(>−L)(t)] ≤ (1− 0.77m
n )φ(>−L)(t). We again recursively

bound the expected value of φ(>−L) after an additional 16 lnn time.

E[φ(>−L)(endL + 16 lnn)|φ(>−L)(end0)] ≤
(

1− 0.77m

n

)16n lnn

φ(>−L)(end0)

E[φ(>−L)(endL + 16 lnn)] ≤ exp(−0.77 · 0.25 · 16 lnn) · 0.001|M|

≤ n−3.080.001mn = O(1/n2).

Again we conclude by Markov’s Inequality that P[φ(>−L)(endL + 16 lnn) > 0] ≤ O(1/n2).

Finally we must argue that Phase 3 lasts at least until time endL + 16 lnn. We will bound the

probability that a Clock agent can decrement its counter down to 0 before time endL+16 lnn. Note

the if statement on Line 6 will only decrement the counter when both Clock agents have reached

the final minute. Even if in the worst case an agent was at the final minute at the beginning

of the phase, until time endL−1 the count of other Clock agents with minute = kL is at most

0.1p|C| = 0.001|C|. By Theorem 3.5.9, the time between consecutive hours is at most 3.86k
c2

< 290
c

using k = 45 and the bound c > 0.2 with very high probability from Lemma 3.4.2. Then the

number of interactions until endL−1 is at most 290
c Ln. In each interaction, the probability of the

Clock agent decrementing its counter is at most 2 · 0.001c · 1
n , so the expected number of decrements

E[X] ≤ 290L · 0.002 ≤ 0.58(log2(n)) ≤ 0.84 lnn. Then by Chernoff bounds in Theorem 3.3.1, with
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µ = 0.84 lnn, δ = 5, we have

P[X ≥ 5.04 lnn] ≤ P[X ≥ (1 + δ)µ] ≤ exp

(
− δ2µ

2 + δ

)
= exp(−3 lnn) = n−3.

Then after time endL−1, we assume that all Clock agents have minute = kL. In this case, the

probability a given Clock agent decrements its counter is at most 2c
n . Thus in 16n lnn interactions,

the expected number of decrements E[X] ≤ 32c lnn ≤ 11 lnn, using c < 1
3 from Lemma 3.4.2. We

again use Theorem 3.3.1, with µ = 11 lnn, δ = 0.9, to conclude

P[X ≥ 20.9 lnn] ≤ P[X ≥ (1 + δ)µ] ≤ exp

(
− δ2µ

2 + δ

)
≤ exp(−3.07 lnn) ≤ n−3.

Then by union bound, Clock agents decrements their counter at most 5.04 lnn+ 20.9 lnn < 26 lnn

times with high probability 1 − O(1/n2). In Phase 3, we initialize counter ← c3 lnn, so setting

this counter constant c3 = 26, we conclude that no agent moves to the next phase before time

endL+16 lnn with high probability. This gives enough time to conclude that all biased agents have

exponent = −L by the end of Phase 3. �

Now we consider the case where there is an initial majority, which we have assumed without loss

of generality was A. Here the argument of Theorem 3.5.12 stops working at exponent −l, because

of the substantial relative gap 0.4|M| ≤ gl < 0.8|M|. Next we will need to show that the count of

O gets brought to almost 0 by split reactions with the majority. In order to show that the count

of O stays small however, we will need some way to bound future cancel reactions. To do this, we

will now show that during the last few hours l− 4, . . . , l, the minority mass β− drops to a negligible

amount. We will then use this tight bound to show the majority consumes most remaining O agents,

and finally that constraints on the majority mass β+ will force the majority count to remain above

99% at exponents −l,−(l + 1),−(l + 2) for all reachable configurations in the rest of Phase 3.

We first show inductively that the minority mass becomes negligible during the last few hours

l − 5, . . . , l. We already showed a bound on the total mass in Lemma 3.5.16, which used an upper

bound on the gap. If we want the minority mass to be small, now the worst case is the smallest

possible gap. Notice that just using the final mass bound µ < ρl|M|2−l = 0.808|M|2−l in the

worst case with the smallest possible gap gl = 0.4 at exponent −l, would imply β+ ≈ 0.6|M|2−l

and β− ≈ 0.2|M|2−l. To get a much tighter upper bound on minority mass, we will make a similar
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inductive argument to Lemma 3.5.16, now using the lower bound for each gap gh, to show enough

minority mass cancels at exponent −h during each hour h.

Lemma 3.5.17. For each hour h = l − 5, . . . , l, by time endh, the minority mass β− ≤ ξh|M|2−h

with very high probability. The constants ξ(l−5) = 0.04375, ξ(l−4) = 0.0375, ξ(l−3) = 0.0267, ξ(l−2) =

0.0145, ξ(l−1) = 0.0056, and ξl = 0.004.

Proof. For the base case h = l−5, by Lemma 3.5.16, the total mass µ(end(l−5)) ≤ 0.1|M|2−l+5.

The relative gap 0.0125|M| ≤ g(l−5) < 0.025|M|, so now in the worst case (for minority mass

being small), we assume the smallest gap g(l−5) = 0.0125|M| and largest total mass µ(end(l−5)) =

β+ + β− = 0.1|M|2−l+5. Since the invariant gap g = β+ − β− = g(l−5)2
−l+5, we have β+ =

0.05625|M|2−l+5 and β− = 0.04375|M|2−l+5, giving an upper bound constant ξ(l−5) = 0.04375.

Now we outline the inductive step, for each level h = l−4, . . . , l. We will show the constants for

the first step h = l − 4 here, and then list constants for the remaining steps in a table below. Let

A = {a : a.opinion = +1, a.exponent = −h} and B = {b : b.opinion = −1, b.exponent = −h}.

We start the argument at time starth + 2
c + 41

m , and with the previous bound β−(end(h−1)) =

ξ(h−1)|M|2−h+1 = 0.0875|M|2−h. We will then assume in the worst case the smallest possible gap

gh = α|M| = 0.4 · 2h−l|M| = 0.025|M|. This gives β+ = (2ξ(h−1) + α)|M|2−h. We then assume

in the worst case that all mass allowed outside exponent −h belongs to the minority (so doesn’t

reduce by cancelling), giving majority count |A| = (2ξ(h−1) +α)|M|. We also assume the maximum

amount of mass outside exponent−h. By Lemma 3.5.11, before time endh, the count below exponent

−h is at most 0.0024|M|, so the mass is at most 0.0024|M|2−h−1. By Lemma 3.5.15, after time

starth + 2
c + 41

m , the mass above exponent −h is µ(>−h) ≤ 0.001 · 2−h+1. This leftover remaining

mass at exponent −h gives minority count |B| = (2ξ(h−1) − 0.0012− 0.002)|M|.

Now we will apply Lemma 3.3.6 with fractions a = (2ξ(h−1)+α)m = 0.1125m and b = (2ξ(h−1)−

0.0036)m = 0.0843m. These match the first fractions a, b used in the proof of Lemma 3.5.16, and

again we use that the time t to cancel a fraction d = 0.05m from both a and b has mean

E[t] ∼ ln(b)− ln(a)− ln(b− d) + ln(a− d)

2(a− b)

=
ln(0.0843)− ln(0.1125)− ln(0.0343) + ln(0.0625)

2(0.0282m)
<

5.53

m
,
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so E[t](1 + ε) < 6
m and t < 6

m with very high probability. Cancelling this fraction d reduces the

minority mass by dn2−h = 0.05|M| ·2−h, giving a new minority mass β− = (2ξ(h−1)− d
m)|M|2−h =

0.0375|M|2−h. Thus for ξh = 0.0375, the minority mass is at most ξh|M|2−h by time starth+ 2
c + 47

m .

For the remaining levels h = l − 4, l − 3, l − 2, l − 1, l, we will repeat the above argument and

calculation. The following table shows the constants used in the computations at each of the steps

h = l − 4, l − 3, . . . , l. The top row h = l − 4 corresponds to the exact calculations above, then the

following rows are the constants used in the same argument for lower levels.

h = l − 4 α = 0.025 a = 0.1125m b = 0.0843m d = 0.05m E[t] < 5.53/m ξ(l−4) = 0.0375

h = l − 3 α = 0.05 a = 0.125m b = 0.0718m d = 0.048m E[t] < 5.83/m ξ(l−3) = 0.0267

h = l − 2 α = 0.1 a = 0.154m b = 0.0508m d = 0.039m E[t] < 5.66/m ξ(l−2) = 0.0145

h = l − 1 α = 0.2 a = 0.23m b = 0.0268m d = 0.024m E[t] < 5.29/m ξ(l−1) = 0.0056

h = l α = 0.4 a = 0.412m b = 0.0088m d = 0.008m E[t] < 2.95/m ξl = 0.004

Note that the structure of the proof yields the same sequence of values a, b as the proof of

Lemma 3.5.16, so we have repeated the exact same applications of Lemma 3.3.6. This time, however,

we are using the cancelled fraction d to show the minority mass becomes very small. �

Now Lemma 3.5.17 gives that minority mass β− ≤ 0.004|M|2−l by time endl. The rest of the

argument will not try to reason about probabilistic guarantees on what the distribution looks like.

Instead, we will make claims purely about reachability, and show that we get to a configuration

where invariants force the count of majority agents to remain high in any reachable configuration

using the transitions of Phase 3.

Lemma 3.5.18. By the time end(l+2), the count of majority agents with exponent ∈ {−l,−(l +

1),−(l+2)} is at least 0.96|M|, with very high probability. Then in all reachable configurations where

all agents are still in Phase3, the count of majority agents with exponent ∈ {−l,−(l+ 1),−(l+ 2)}

is at least 0.92|M|.

Proof. We argue by process of elimination. First we apply Lemma 3.5.11 to conclude that

until time end(l+2), the count |{O : O.hour > l + 2} ∪ {b : b.exponent < −(l + 2)}| ≤ 0.0024|M|

with very high probability.
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Now Lemma 3.5.17 gives that minority mass β− ≤ 0.004|M|2−l after time endl. Then we can

bound the maximum minority count at exponent −(l + 2) and above by 0.016|M|. In addition,

these minority agents could eliminate more majority agents by cancel reactions. The count of agents

they could cancel with is at most 0.016|M|.

This leaves at least |M|−0.0024|M|−0.016|M−|0.016|M| = 0.9656|M| agents that are either

majority or O agents at time endl. We will next show that in hour l + 2, most of any remaining

O agents set hour = l + 2 and then are consumed in split reactions with majority agents with

exponent > −(l + 2).

The majority mass β+ ≥ g = gl2
−l ≥ 0.4|M|2−l. By Lemma 3.5.15, at most 0.001|M|2−l+1 =

0.002|M|2−l of β+ can come from exponents above −l. Thus we need mass 0.398|M|2−l from ma-

jority agents at exponent −l and below. Note that if the count |{a : a.opinion = +1, a.exponent ∈

{−l,−(l + 1)}}| ≤ 0.19|M|, then the maximum majority mass could achieve would be 0.81|M|

with exponent = −l − 2 and 0.19|M| with exponent = −l, which gives (0.81
4 + 0.19)|M|2−l <

0.398|M|2−l. This implies we must have a count of at least 0.19|M| of majority agents at expo-

nents −(l + 1) and −l in all reachable configurations.

Next we show that all but at most 0.0036|M| of these O agents gets brought up to hour = l+2.

We start at time startl+2, when the count |O| ≤ (0.9656 − 0.398)M = 0.5676|M|, and the count

of clock agents at hour = l + 2 is at least 0.9|C|. Thus we can apply Lemma 3.3.7, with a = 0.9c,

b1 = 0.5676m, b2 = 0.0056m to conclude that at most 0.0056|M| of O agents are left at the wrong

hour after parallel time t1 < (1 + ε)E[t1], where the expected time

E[t1] =
ln(b1)− ln(b2)

2a
=

ln(0.5676m)− ln(0.0036m)

1.8c
≤ 2.82

c
.

Thus with very high probability t1 < 3
c .

Next the at least 0.19|M| majority agents at exponents −(l+ 1) and −l will eliminate these O

agents by split reactions. We show that at most 0.001|M| of Oh agents are left. We again apply

Lemma 3.3.7, with a = 0.19m, b1 = 0.5676m, b2 = 0.01m to conclude this takes at most parallel

time t2 < (1 + ε)E[t2], where

E[t2] =
ln(b1)− ln(b2)

2a
=

ln(0.5676m)− ln(0.001m)

0.38m
≤ 16.69

m
.

Thus with very high probability t2 < 17
m .
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Account for these counts 0.0032|M| and 0.001|M| of leftover O agents, along with the maximal

count 0.001|M| of biased agents above exponent −l, we are left with 0.9656|M| − 0.0032|M| −

0.001|M| − 0.001|M| = 0.96|M| agents that must be majority agents with exponent ∈ {−l,−(l +

1),−(l + 2)}.

Now we argue that no reachable configurations can bring this count below 0.92|M|. We have

already accounted for the maximum number of minority agents that can do cancel reactions at

exponents −l,−(l+ 1),−(l+ 2). Thus we only have to argue that no amount of split reactions can

bring this count down by 0.04|M|. Note that reducing the count by 0.04|M| will reduce the mass

at these exponents by at least 0.04|M|2−(l+2). It will take at least 0.08|M| agents below exponent

−l− 2 to account for the same mass, for a total of 0.96|M|− 0.04|M|+ 0.08|M| = |M|. Thus it is

not possible to move more than 0.04|M| majority agents below exponent −(l+2) by split reactions,

because there are not enough Main agents to account for the mass. �

We can now use the results of Lemma 3.5.18, Lemma 3.5.15, and Lemma 3.5.17, including the

high probability requirements from all previous lemmas, to prove Theorem 3.5.2, the main result

for Phase 3 in the non-tie case:

Theorem 3.5.2. Assume the initial gap |g| < 0.025|M|. Let the exponent −l = blog2( g
0.4|M|)c.

Let i = sign(g) be the majority opinion and M be the set of all agents with role = Main, opinion =

i, exponent ∈ {−l,−(l + 1),−(l + 2)}. Then at the end of Phase 3, |M | ≥ 0.92|M| with high

probability 1−O(1/n2).

In addition, the total mass above exponent −l is µ(>−l) =
∑

a.exponent>−l
|a.bias| ≤ 0.002|M|2−l,

and the total minority mass is β− =
∑

a.opinion=−i
|a.bias| ≤ 0.004|M|2−l.

3.6. Analysis of final phases

3.6.1. Reserve agent Phases 5 and 6. We now consider the behavior of the Reserve agents

in Phase 5 and Phase 6. We first show that with high probability they are also able to set their

sample field during Phase 5.

Lemma 3.6.1. By the end of Phase 5, all Reserve agents have sample 6= ⊥, with high probability

1−O(1/n2).

97



Proof. By Theorem 3.5.2, we have at least 0.92|M|majority agents with exponent ∈ {−l,−(l+

1),−(l+ 2)} by the end of Phase 3. Now we can analyze the process of Reserve agents sampling the

exponent of the first biased agent they encounter in Phase 5 with Lemma 3.3.7, where subpopula-

tions A = {a : a.role = Main, a.bias = ±1} with and B = R, comprising fractions a ≥ 0.92m and

b1 = r. Then by Lemma 3.3.7, all Reserve agents set their sample within time t, where t ≤ 5 lnn
2·0.92m

with high probability 1 − O(1/n2). Thus for appropriate choice of counter constant c5, this will

happen before the first Clock agent advances to the next phase. �

We next show that the Reserve agents are able to bring the exponents of all biased agents down

to at most −l during Phase 6.

Lemma 3.6.2. By the end of Phase 6, all biased agents have exponent ≤ −l, with high probability

1−O(1/n2).

Proof. Theorem 3.5.2, the mass above exponent −l is µ(>−l) ≤ 0.001|M|2−l+1. We must

show that all of this mass moves down to at least exponent −l via split reactions with the Reserve

agents (Line 3 in Phase 6). We consider the following two cases based on whether the size of

A−l = {a : a.opinion = +1, a.exponent = −l}.

In the first case, |A| > 0.19|M| and we will show all agents get brought down to exponent ≤ −l.

Because of the sampling process in Phase 5, the count of R−l = {r : r.role = Reserve, r.sample =

−l} has size at least |R−l| ≥ 0.18|R| with very high probability, by standard Chernoff bounds. If all

the agents above exponent −l split down to exponent −l, they would have count at most 0.002|M|,

potentially all coming out of the initial count of R−l. Thus for the entirety of Phase 6, we have

|R−l| ≥ 0.18|R| − 0.002|M| = n(0.18r − 0.002m) ≥ n(0.18 · 0.24− 0.002) ≥ 0.04n,

using the very high probability bound r > 0.24 from Lemma 3.4.2.

In the second case |A| ≤ 0.19|M|. Now we cannot make guarantees on the size |R−l|, so we will

instead reason about A−(l+1) = {a : a.opinion = +1, a.exponent = −(l + 1)} and R−(l+1) = {r :

r.role = Reserve, r.sample = −(l + 1)}.

We first show that |A−(l+1)| > 0.59|M|. Recall by definition of l and gl that the majority mass

β+ ≥ gl2
−l ≥ 0.4|M|2−l. At most 0.001|M|2−l+1 can come from exponents above −l and at most

0.19|M|2−l comes from exponent −l. Thus there must be at least mass (0.398− 0.19)|M|2−l from
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A−(l+1) and the exponents below. If |A−(l+1)| = 0.59|M|, then even putting all 0.41|M| remaining

Main agents at exponent = −(l + 2) would only give mass 0.59|M|2−(l+1) + 0.41|M|2−(l+2) =

0.3975|M|2−l. Thus we require |A−(l+1)| > 0.59|M|. Again by standard Chernoff bounds from the

sampling process of Phase 5, this implies the initial size of |R−(l+1)| ≥ 0.58|R|.

If all the agents above exponent −l split down to exponent −(l + 1), they would have count

at most 0.004|M|, potentially all coming out of the initial count of R−l. In addition, we can lose

count |A| ≤ 0.19|M| from R−l from additional split reactions. This implies that for the entirety of

Phase 6, we have count at least

|R−(l+1)| ≥ 0.58|R| − 0.004|M| − 0.19|M| = n(0.58r − 0.004m− 0.19m)

≥ n(0.58 · 0.24− (0.004 + 0.19) · 0.51) ≥ 0.04n,

using the very high probability bounds r > 0.24 and m < 0.51 from Lemma 3.4.2.

Thus in both cases we maintain a count of at least 0.04n Reserve agents at level −l or −(l+ 1).

For an agent a with a.exponent > −l, the probability that in a given interaction agent a does a

split reaction (Line 3 in Phase 6) with an agent in R−l ∪ R−(l+1) is at least 2·0.04n·1
n2 = 0.08

n . Now

we proceed as in the proofs of Lemma 3.5.14 and Theorem 3.5.1, analyzing the potential φ(>−l) to

show it hits 0 in O(log n) time.

Recall that for each biased agent a with a.exponent = −i > −l and local potential φa = 4−i+l−1,

a split reaction changes the potential by ∆φa ≤ 4l−1(2 · 4−i−1− 4−i) = 4l−1(−1
24−i) = −1

2φa. Then

in each interaction at parallel time t, the expected change in the potential

E[φ(>−l)(t+ 1/n)− φ(>−l)(t)] ≤
∑

a.exponent>−l
P[a splits] ·∆φa

≤
∑

a.exponent>−l

0.08

n
· −1

2
φa = −0.04

n
φ(>−l)(t).

Thus we have E[φ(>−l)(t+ 1/n)|φ(>−l)(t)] ≤ (1− 0.04
n )φ(>−l)(t).

When we begin the argument at time tstart at the beginning of Phase 6, we start with φ(>−l)(tstart) ≤

0.001|M| from the final iteration of Lemma 3.5.15. We will wait until time tend = tstart + 75 lnn,

and now recursively bound the potential after these 75n lnn interactions:
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E
[
φ(>−l)(tend)|φ(>−l)(tstart)

]
≤
(

1− 0.04

n

)75n lnn

φ(>−l)(tstart)

E
[
φ(>−h+q)(tend)

]
≤ exp(−0.04 · 75 lnn) · 0.001|M|

≤ n−3 · 0.001mn = O
(
n−2

)
Finally, since φ(>−l) takes nonnegative integer values, we can apply Markov’s Inequality to conclude

P[φ(>−l)(tend) > 0] = O(1/n2). So after 75 lnn time in Phase 6, all biased agents have exponent ≤

−l, with high probability. For appropriate choice of counter constant c6, this happens before any

Clock agent advances to the next phase. �

Recall M is the set of all majority agents with exponent ∈ {−l,−(l + 1),−(l + 2)}, where

|M | ≥ 0.92|M| at the end of Phase 3 by Theorem 3.5.2. We finally observe that after Phase 6, M

is still large.

Lemma 3.6.3. At the end of Phase 6, |M | ≥ 0.87|M| with very high probability.

Proof. By Theorem 3.5.2, |M | ≥ 0.92|M| at the end of Phase 3, so the count of all other main

agents is at most 0.08|M|. By standard Chernoff bounds on the sampling process in Phase 5, the

count

|{r : r.role = Reserve, r.sample /∈ {−l,−(l + 1),−(l + 2)}}| ≤ 0.09|R| ≤ 0.05|M|.

Split reactions that consume these Reserve agents are the only way to bring agents out of the set

M . Thus at the end of Phase 6, the count is still at least

|M | ≥ 0.92|M| − 0.09|R| ≥ 0.87|M|,

using |R| < 5
9 |M| with very high probability by Lemma 3.4.2. �

3.6.2. Minority elimination Phases 7 and 8. Next we argue that in Phase 7, the agents

in M are able to eliminate all minority agents with exponent ∈ {−l,−(l+ 1),−(l+ 2)}. Note that

these minority agents are able to do a cancel reaction with any agent in M , since by design Phase 7

allows reactions between agents with an exponent gap of at most 2. We first argue that |M | must

stay large through the entirety of Phase 7:
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Lemma 3.6.4. At the end of Phase 7, |M | ≥ 0.8|M|.

Proof. We use the bound on minority mass β− ≤ 0.004|M|2−l from Theorem 3.5.2. This

implies the minority count at exponent −(l+ 4) and above is at most 0.064|M|, since a 0.064|M| ·

2−(l+4) ≥ β. Note that cancelling with these minority agents is the only way for a majority agent

in M to change its state in Phase 7. Using the previous bound from Lemma 3.6.3, the count of M

can decrease at most to |M | = 0.87|M| − 0.064|M| ≥ 0.8|M|. �

Now we argue that these agents in M eliminate all high exponent minority agents.

Lemma 3.6.5. At the end of Phase 7, all minority agents have exponent < −(l + 2), with high

probability 1−O(1/n2).

Proof. From Lemma 3.6.2, all minority agents already have exponent ≤ −l. Let B−l, B−(l+1),

B−(l+2) be the sets of minority agents with exponent = −l,−(l + 1),−(l + 2), respectively. We

argue successively that |B−l| = 0, then |B−(l+1)|, then |B−(l+2)| = 0.

The initial bound on minority mass β− ≤ 0.004|M|2−l from Theorem 3.5.2 implies that initially

|B−l| ≤ 0.004|M|. Note that an interaction with any agent in M will bring remove an agent from

B−l via one of the Phase 7 cancel reactions. Using the bound |M | ≥ 0.8|M| during the entire phase

from Lemma 3.6.4, we can use Lemma 3.3.7 to bound the time for |B−l| = 0. We have constants

a = 0.8m and b1 = 0.004m. Then by Lemma 3.6.4, with high probability 1−O(1/n2), the time t1

to eliminate the count of B−l is at most t1 ≤ 5 lnn
2(0.8m−0.004m) ≤ 6.41 lnn, using the bound m ≥ 0.49

from Lemma 3.4.2.

Next we wait to eliminate the count of B−(l+1), by a similar argument. Initially the count

is at most |B−(l+2)| ≤ 0.008|M|, and this will all cancel in at most time t2. By Lemma 3.6.4,

with high probability, t2 ≤ 5 lnn
2(0.8m−0.008m) ≤ 6.45 lnn. The same argument for B−(l+2), initially

|B−(l+2)| ≤ 0.016|M|, gives t3 ≤ 5 lnn
2(0.8m−0.016m) ≤ 6.51 lnn.

Thus the entire process requires time at most t1 + t2 + t3 < 20 lnn. So for appropriate choice of

counter constant c7, this will happen before the first Clock agent advances to the next phase. �

Now we will prove that the remaining 0.8|M| majority agents in M are able to eliminate all

remaining minority agents in Phase 8.
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Lemma 3.6.6. At the end of Phase 8, there are no more minority agents, with high probability

1−O(1/n2).

Proof. From Lemma 3.6.4 and Lemma 3.6.5, by the end of Phase 7, we have |M | ≥ 0.8|M|

and all minority agents have exponent < −(l + 2). We assume in the worst case all 0.2|M|

other Main agents have the minority opinion. Note by the consumption reaction in Phase 8, every

minority agent will be eliminated by an agent in M that still has full = False. Thus we can apply

Lemma 3.3.6, with a = 0.8m and b = 0.2m, to conclude that all remaining minority agents are

eliminated in time t, where t ≤ 5 lnn
2(0.8m−0.2m) ≤ 8.5 lnn, using m ≥ 0.495 with very high probability

from Lemma 3.4.2. So for appropriate choice of counter constant c8, this will happen before the

first Clock agent advances to the next phase. �

3.6.3. Fast Stabilization. We next give a time bound for the stable backup:

Lemma 3.6.7. The 6-state protocol in Phase 10 stably computes majority in O(n log n) stabilization

time, both in expectation and with high probability.

Proof. Note that agents in the initial state with active = True and output ∈ {A,B} can

only change their state by a cancel reaction in Line 3 with another active agent with the opposite

opinion.

First we consider the case where one opinion, without loss of generality A, is the majority. We

first wait for all active B agents to meet an active A agent and changed their state to active T via

Line 3. This is modelled by the “cancel reaction” process described in Lemma 3.3.6, taking expected

O(n) time and O(n log n) time with high probability. At this point, there are no active B agents

and at least one active A agent remaining. We next wait for this active A agent to interact with all

remaining active T agents, which will then become passive via Line 5. This takes O(n log n) time in

expectation and with high probability by a standard coupon-collector argument, after which point

there are only active A agents and passive agents. Finally, we wait for these active A agents to

convert all passive agents to output = A via Line 7, taking another O(n log n) time by the same

coupon-collector argument.

Next we consider the case where the input distribution is a tie. We first wait for all n/2 pairs

of active A and B agents to cancel via Line 3, taking O(n) time in expectation and O(n log n) time

with probability. Consider the last such interaction. At this point, those two agents have become
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active T agents, and there are no active A or B agents left. Thus after interacting with one of the

T agents, all passive agents will output T via Line 7. This takes O(n log n) time in expectation and

with high probability by the same coupon-collector argument. �

We are now able to combine all the results from previous sections to prove Theorem 3.2.1, giving

guarantees on the behavior of the protocol:

Theorem 3.2.1. There is a nonuniform population protocol Nonuniform Majority, using

O(log n) states, that stably computes majority in O(log n) stabilization time, both in expectation and

with high probability.

Proof. We first argue that with high probability 1 − O(1/n2), the protocol Nonuniform

Majority stabilizes to the correct output in O(log n) time. We consider three cases based on the

size of the initial gap |g|. For the majority cases where |g| > 0, we assume without loss of generality

g > 0, so A is the majority.

If |g| ≥ 0.025|M|?, then by Lemma 3.4.3, we stabilize in Phase 2 to the correct output with

high probability 1−O(1/n2).

If 0 < |g| < 0.025|M|, then by Theorem 3.5.2, with high probability 1 − O(1/n2), we end

Phase 3 with at least 92% of Main agents in the set M , with the majority opinion and exponent ∈

{−l,−(l+1),−(l+2)}. Then after Phase 5 and Phase 6, all biased agents have exponent ≤ −l with

high probability 1−O(1/n2) by Lemma 3.6.2. Then after Phase 7 and Phase 7, there are no more

minority agents with high probability 1−O(1/n2) by Lemma 3.6.6. Thus in Phase 9, the majority

opinion +1 will spread to all agents by epidemic, and we reach a stable correct configuration where

all agents have opinions = {0,+1} and output = A.

If g = 0, then by Theorem 3.5.1, with high probability 1 − O(1/n2), we end Phase 3 with all

biased agents at exponent = −L. Thus in Phase 4, we reach a stable correct configuration where

all agents have output = T, and there are no agents with exponent > −L to increment the phase.

Next we justify that Nonuniform Majority stably computes majority, since it is always

possible to reach a stable correct configuration. By Lemma 3.4.2, we must produce at least 2 Clock

agents by the end of Phase 0. Thus we must eventually advance through all timed phases 0, 1, 3, 5,

6, 7, 8 using the counter field. Also all agents have left the initial role RoleMCR, otherwise the Init
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of Phase 1 will trigger all agents to move to Phase 10 by epidemic. Thus the sum of bias across all

Main agents is the initial gap g, and this key invariant is maintained through all phases.

Using this invariant, if the agents stabilize in Phase 2, they have a consensus on their output,

the sign of their bias, and this consensus must be the sign of the sum of the biases, giving the sign

of the initial gap. If the agents stabilize in Phase 4, all |bias| ≤ 1
2L
≤ 1

n . This implies the gap

|g| ≤ |M| · 1
n < 1, so the gap g = 0 and the agents are correctly outputting T. Finally, note that in

Phase 8, when the agents set the field full = True, they can no longer actually store in memory the

true bias they are holding. For example an agent with opinion = +1, exponent = −i, full = True,

is actually representing the interval 1
2i+1 ≤ bias < 1

2i
. Then we still have the guarantee that if we

reach stable consensus in Phase 9, then this consensus is the sign of the sum of the biases and is

thus correct. The final case is that we do not stabilize here, and then move to Phase 10, where they

agents eventually stabilize to the correct output.

We finally justify that the expected stabilization time is O(n log n). By Lemma 3.6.7, the

stable backup Phase 10 will stabilize in expected O(n log n) time. Note that the high probability

guarantees are all at least 1 − O(1/n2), so the time for the stable backup contributes at most

O
(
n logn
n2

)
= o(1) to the total expected time. Now by Lemma 3.4.2, with very high probability

we have at least |C| ≥ 0.24n Clock agents. In this case, the time upper bounds of Theorem 3.5.9

and upper bounds on the counter times using standard Chernoff bound, imply that every timed

phase lasts expected O(log n) time. If we do not stabilize in the untimed phases, then we also pass

through by epidemic expected O(log n) time. Thus we either stabilize or reach the backup Phase 10

in expected O(log n) time. There is a final very low probability case that |Clock| = o(n), but we

must at least have |Clock| = 2. Even in this worst case, the time upper bounds of Theorem 3.5.9

and all counter rounds are at most polynomial in n, whereas the low probability of such a small

Clock population is smaller than any polynomial. Thus this event adds a negligible contribution,

and we conclude the total expected stabilization time is O(log n). �

3.7. Uniform, stable protocols for majority using more states

The algorithm described in Section 3.2 is nonuniform: the set of transitions used for a pop-

ulation of size n depends on the value dlog ne. A uniform protocol [62, 83, 85] is a single set of
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transitions that can be used in any population size. Since it is “uniformly specified”, the transi-

tion function is formally defined by a linear-space6 Turing machine, where the space bound is the

maximum space needed to read and write the input and output states. The original model [19]

used O(1) states and transitions for all n and so was automatically uniform, but many recent ω(1)

state protocols are nonuniform. With the exception of the uniform variant in [36], all ω(1) state

stable majority protocols are nonuniform [5,6,13,33,35,44]. The uniform variant in [36] has a

tradeoff parameter s that, when set to O(1) to minimize the states, uses O(log n log log n) states

and O(log2 n) time.

In this section we show that there is a way to make Nonuniform Majority in Section 3.2

uniform, retaining the O(log n) time bound, but increasing expected states to Θ(log n log logn).7

3.7.1. Main idea of O(log n log log n) state uniform majority (not handling ties). Since

Nonuniform Majority uses the hard-coded value L = dlog ne, to make the algorithm uniform,

we require a way to estimate log n and store it in a field L (called logn below) stored in each agent.

For correctness and speed, it is only required that logn be within a constant multiplicative factor

of log n.

Gąsieniec and Stachowiak [99] show a uniform O(log log n) state, O(log n) time protocol (both

bounds in expectation and with high probability) that computes and stores in each agent a value

` ∈ N+ that, with high probability, is within additive constant O(1) of dlog logne (in particular, whp

` ≥ blog log nc− 3 [36, Lemma 8]), so 2` = Θ(log n). (This is the so-called junta election protocol

used as a subroutine for a subsequent leader election protocol.) Furthermore, agents approach this

estimate from below, propagating the maximum estimate by epidemic `′, ` → `, ` if `′ < `. This

gives an elegant way to compose the size estimation with a subsequent nonuniform protocol P that

requires the estimate: agents store their estimate logn of log n and use it in P. Whenever an agent’s

estimate logn updates—always getting larger—it simply resets P, i.e., sets the entire state of P to

6That is, the Turing machine is allowed to use a bit more than the space necessary simply to read and write the
input and output states, but not significantly more (constant-factor). This allows it to do simple operations, such as
integer multiplication, that require more than constant space, without “cheating” by allowing the internal memory
usage of the Turing machine to vastly exceed that required to represent the states.
7We say “expected” because this protocol has a non-zero probability of using an arbitrarily large number of states.
The number of states will be O(logn log log n) in expectation and with high probability.

105



its initial state. We can then reason as though all agents actually started with their final convergent

value of logn.8

To make our protocol uniform, but remove its correctness in the case of a tie, as we explain

below, all agents conduct this size estimation, stored in the field logn, in parallel with the majority

protocol P of Section 3.2. Each agent resets P to its initial state whenever logn updates. This gives

the stated O(log n) time bound and O(log n log log n) state bound. Note that in Phase 0, agents

count from counter = Θ(log n) down to 0. It is sufficient to set the constant in the Θ sufficiently

large that all agents with high probability receive by epidemic the convergent final value of logn

significantly before any agent with the same convergent estimate counts down to 0.

Acknowledging that, with small probability, the estimate of log n could be too low for Phase 4 to

be correct, we simply remove Phase 4 and do not attempt to detect ties. So if we permit undefined

behavior in the case of a tie (as many existing fast majority protocols do), then this modification

of the algorithm otherwise retains stably correct, O(log n) time behavior, while increasing the state

complexity to O(log n log log n).

3.7.2. How to stably compute ties. With low but positive probability, the estimate of log n

could be too small. For most phases of the algorithm, this would merely amplify the probability of

error events (e.g., Phase 1 doesn’t last long enough for agents to converge on biases {−1, 0,+1})

that later phases are designed to handle. However, the correctness of Phase 4 (which detects ties)

requires agents to have split through at least log n exponents in Phase 3. Since the population-wide

bias doubles each time the whole population splits down one exponent, the only way for the whole

population to split through log n exponents is for there to be a tie (i.e., the population-wide bias

is 0, so can double unboundedly many times). In this one part of the algorithm, for correctness

we require the estimate to be at least log n with probability 1. (It can be much greater than log n

without affecting correctness; an overestimate merely slows down the algorithm.)

To correct this error, we will introduce a stable backup size estimate, to be done in Phase 4.

Note that there are only a constant number of states with phase = 4: Clock agents do not store a

counter in this phase, and Main agents that stay in this phase must have bias ∈
{

0,± 1
2L

}
. Thus

8One might hope for a stronger form of composition, in which the size estimation terminates, i.e., sets an initially
False Boolean flag to True only if the size estimation has converged, in order to simply prohibit the downstream
protocol P from starting with an incorrect estimate of logn. However, when both states A and B are initially Ω(n),
this turns out to be impossible; Ω(n) agents will necessarily set the flag to True in O(1) time, long before the O(logn)
time required for the size estimation to converge [83, Theorem 4.1].
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we can use an additional Θ(log n) states for the agents that are currently in phase = 4 to stably

estimate the population size. If they detect that their estimate of L was too small, they simply go

to the stable backup Phase 10.

Stable computation of blog nc. The stable computation of log n has all agents start in

state L0, where the subscript represents the agent’s estimate of blog nc. We have the following

transitions: for each i ∈ N, Li, Li → Li+1, Fi+1 and, for each 0 ≤ j < i, Fi, Fj → Fi, Fi. Among

the agents in state Li, half make it to state Li+1, reaching a maximum of Lk at k = blog2 nc.9

All remaining F agents receive the maximum value k by epidemic. A very similar protocol was

analyzed in [43, Lemma 12]. We give a quick analysis below for the sake of self-containment.

Time analysis of stable computation of blog nc. The expected time is Θ(n log n). For

the upper bound, for each i, if j is the count of Li agents, then the probability of a Li, Li → . . .

reaction is O(j2/n2), so for any possible starting count k of Li agents, it takes expected time at

most O
(

1
n

∑k
j=1

n2

j2

)
= O(n) for the count of Li agents to get from k to 0 or 1. Assuming in the

worst case that no Li+1, Li+1 → . . . reaction happens until all Li, Li → . . . reactions complete, then

summing over blog nc values of i gives the O(n log n) time upper bound to converge on one Lk agent,

where k = blog nc. It takes additional O(log n) time for the F agents to propagate k by epidemic.

For the lower bound, observe that for each value of i, the last reaction Li, Li → . . . occurs when

the count of Li is either 2 (and will increase at most once more), or 3 (and will never increase again).

This takes expected time Θ(n). Since the count of Li will increase at most once more, at that time

(just before the last Li, Li → . . . reaction), the count of Li−1 is at most 3, otherwise two more Li’s

could be produced, and this would not be the last Li, Li → . . . reaction. Thus, to produce the Li

needed for this last Li, Li → . . . reaction, the previous Li−1, Li−1 → Li, Fi reaction occurs when

the count of Li−1 is at most 5, also taking Θ(n) time. Thus the final reaction at each level takes

time Θ(n) and depends on a reaction at the previous level that also takes time Θ(n), so summing

across blog nc levels gives Ω(n log n) completion time.

It is shown in [43, Lemma 12] that the time is O(n log2 n) with high probability, i.e., slower

than the expected time by a log n factor. Since the probability is O(1/n2) that we need to rely on

this slow backup, even this larger time bound contributes negligibly to our total expected time.

9More generally, the unique stable configuration encodes the full population size n in binary in the following distributed
way: for each position i of a 1 in the binary expansion of n, there is one agent Li. Thus, these remaining agents lack
the space to participate in propagating the value k = blognc by epidemic, but there are Ω(n) followers F to complete
the epidemic quickly.
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3.7.3. Challenges in creating O(log n) state uniform algorithm. It is worth discussing

some ideas for adjusting the uniform protocol described above to attempt to reduce its space com-

plexity to O(log n) states. The primary challenge is to enable the population size n to be estimated

without storing the estimate in any agent that participates in the main algorithm (i.e., the agent

has role Main, Clock, or Reserve). If agents in the main algorithm do not store the size, then

by [83, Theorem 4.1] they will provably go haywire initially, with agents in every phase, totally

unsynchronized, and require the size estimating agents to reset them after having converged on a

size estimate that is Ω(log n).

The following method would let the Size agents reset main algorithm agents, without actually

having to store an estimate of log n in the algorithm agents, but it only works with high probability.

The size estimating agents could start a junta-driven clock as in [99], which is reset whenever they

update their size estimate. Then, as long as there are Ω(n) Size agents, they could for a phase

timed to last Θ(log n) time, reset the algorithm agents by direct communication (instead of by

epidemic). This could put the algorithm agents in a quiescent state where they do not interact

with each other, but merely wait for the Size agents to exit the resetting phase, indicating that the

algorithm agents are able to start interacting again. Since there are Ω(n) size-estimating agents,

each non-size-estimating agent will encounter at least one of them with high probability in O(log n)

time.

The problem is that the reset signal is not guaranteed to reach every algorithm agent. There is

some small chance that a Main agent with a bias different from its input does not encounter a Size

agent in the resetting phase, so is never reset. The algorithm from that point on could reach an

incorrect result when the agent interacts with properly reset agents, since the sum of biases across

the population has changed. In our algorithm, by “labeling” each reset with the value logn, we

ensure that no matter what states the algorithm agents find themselves in during the initial chaos

before size computation converges, every one of them is guaranteed to be reset one last time with

the same value of logn. The high-probability resetting described above seems like a strategy that

could work to create a high probability uniform protocol using O(log n) time and states, though we

have not thoroughly explored the possibility.

But it seems difficult to achieve probability-1 correctness using the technique of “reset the whole

majority algorithm whenever the size estimate updates,” without multiplying the state complexity
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by the number of possible values of logn. Since we did not need blog nc exactly, but only a value

that is Θ(log n), we paid only Θ(log log n) multiplicative overhead for the size estimate, but it’s

not straightforward to see how to avoid this using the resetting technique. Of course, one could

imagine that the savings could come from reducing the state complexity of the main majority-

computing agents in the nonuniform algorithm. However, reducing the nonuniform algorithm’s

state complexity to below the Ω(log n) lower bound of [6] would provably require the algorithm to

be not monotonic or not output dominant. (See Section 3.8 for a discussion of those concepts.)

Another possible approach is to intertwine more carefully the logic of the majority algorithm with

the size estimation, to more gracefully handle size estimate updates without needing to reset the

entire majority algorithm.

3.8. Conclusion

There are two major open problems remaining concerning the majority problem for population

protocols.

3.8.1. Uniform O(log n)-time, O(log n)-state majority protocol. Our main O(log n) state

protocol, described in Section 3.2, is nonuniform: all agents have the value dlog ne encoded

in their transition function. The uniform version of our protocol described in Section 3.7 uses

O(log n log log n) states. It remains open to find a uniform protocol that uses O(log n) time and

states.

3.8.2. Unconditional Ω(log n) state lower bound for stable majority protocols. The

lower bound of Ω(log n) states for (roughly) sublinear time majority protocols shown by Alistair,

Aspnes, and Gelashvili [6] applies only to stable protocols satisfying two conditions: monotonicity

and output dominance.

Recall that a uniform protocol is one where a single set of transitions works for all population

sizes; nonuniform protocols typically violate this by having an estimate of the population size (e.g.,

the integer dlog ne) embedded in the transition function. Monotonicity is a much weaker form of

uniformity satisfied by nearly all known nonuniform protocols. While allowing different transitions

as the population size grows, monotonicity requires that the transitions used for population size

n must also be correct for all smaller population sizes n′ < n (i.e., an overestimate of the size

cannot hurt), and furthermore that the transitions be no slower on populations of size n′ than on
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populations of size n (though the transitions designed for size n may be slower on size n′ than the

transitions intended for size n′). Typically the nonuniform estimate of log n is used by the protocol

to synchronize phases taking time ≈ T = Θ(log n), by having each agent individually count from T

down to 0 (a so-called “leaderless phase clock”, our Standard Counter Subroutine). Θ(log n)

is the time required for an epidemic to reach the whole population and communicate some message

to all agents before the phase ends. Most errors in such protocols are the result of some agent not

receiving a message before a phase ends, i.e., the clock runs atypically faster than the epidemic. If

the size estimate is significantly larger than log n, this slows the protocol down, but only increases

the probability that all agents receive intended epidemic messages before a phase ends; thus such

protocols are monotone.

In our nonuniform protocol Nonuniform Majority, which gives each agent the value L =

dlog ne, giving a different value of L does not disrupt the stability (only the speed) of the protocol,

with one exception: Phase 3 must go for at least log n exponents, or else (i.e., if L is an underesti-

mate) Phase 4 could incorrectly report a tie. If we consider running Phase 3 on a smaller population

size n′ than the size n for which it was designed, L = dlog ne of dlog n′e will be an overestimate,

which does not disrupt correctness. Furthermore, since Clock agents are counting to L in each case,

they are just as fast on population size n′ as on size n. This implies that Phase 3, thus the whole

protocol Nonuniform Majority, is monotone.

Output dominance references the concept of a stable configuration c, in which all agents have

a consensus opinion that cannot change in any configuration subsequently reachable from c. A

protocol is output dominant if in any stable configuration c, adding more agents with states

already present in c maintains the property that every reachable stable configuration has the same

output (though it may disrupt the stability of c). This condition holds for all known stable majority

protocols, including that described in this paper, because they obey the stronger condition that

adding states already present in c does not even disrupt its stability. Such protocols are based on

the idea that two agents with the same opinion cannot create the opposite opinion, so stabilization

happens exactly when all agents first converge on a consensus output.

To see that our protocol is output dominant, define a configuration to be silent if no transition is

applicable (i.e., all pairs of agents have a null interaction); clearly a silent configuration is also stable.

Although the definition of stable computation allows non-null transitions to continue happening in
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a stable configuration, many existing stable protocols have the stronger property that they reach

a silent configuration with probability 1, including our protocol. It is straightforward to see that

any silent configuration has the property required for output dominance, since if no pair of states

in a configuration can interact nontrivially, their counts can be increased while maintaining this

property. (One must rule out the special case of a state with count 1 that can interact with another

copy of itself, which does not occur in our protocol’s stable configurations.)

Monotonicity can be seen as a natural condition that all “reasonable” non-uniform protocols

must satisfy, but output dominance arose as an artifact that was required for the lower bound

proof strategy of [6]. It remains open to prove an unconditional (i.e., removing the condition of

output dominance) lower bound of Ω(log n) states for any stable monotone majority protocol taking

polylogarithmic time, or to show a stable polylogarithmic time monotone majority protocol using

o(log n) states, which necessarily violates output dominance. If the unconditional lower bound

holds, then our protocol is simultaneously optimal for both time and states. Otherwise, it may be

possible to use o(log n) states to stably compute majority in polylogarithmic stabilization time with

a non-output-dominant protocol. In this case, there may be an algorithm simultaneously optimal

for both time and states, or there may be a tradeoff.

111



CHAPTER 4

Time-Optimal Self-Stabilizing Leader Election in Population

Protocols

This chapter is joint work with Janna Burman, Ho-Lin Chen, Hsueh-Ping Chen, David Doty,

Thomas Nowak, and Chuan Xu. It was originally published as [53].

4.1. Introduction

4.1.1. Reliable leader election. This chapter studies leader election in the context of reli-

ability. What if agents are prone to memory or communication errors? What if errors cannot be

directly detected, so agents cannot be re-initialized in response?

We adopt the approach of self-stabilization [24, 79]. A protocol is called self-stabilizing if

it stabilizes with probability 1 from an arbitrary configuration1 (resulting from any number of

transient faults). Non-self-stabilizing (a.k.a., initialized) leader election is easily solvable using

only two states {L,F}, see Section 1.1.1. However, this protocol fails (as do nearly all other

published leader election protocols) in the self-stabilizing setting from an all-F configuration, see

Fig. 1.1a. Thus, any self-stabilizing leader election (SSLE) protocol must be able not only to reduce

multiple potential leaders to one, but also to create new leaders. A particular challenge here is a

careful verification of leader absence, to avoid creating excess leaders forever.

Because of this challenge, in any SSLE protocol, agents must know the exact population size

n, and the number of states must be at least n [54] (Theorem 4.2.1 in the preliminaries section).

Despite the original assumption of constant space, population protocols with linear space (merely

O(log n) bits of memory) may be useful in practice, similarly to distributed algorithms in other

models (message passing, radio networks, etc.). One may now imagine such memory-equipped

devices communicating in a way as agents do in population protocols [117,140]. Think of a group of

mobile devices (like sensors, drones or smart phones) operating in different types of rescue, military

1For a self-stabilizing protocol, it is equivalent to consider probability 1 and fixed probability p > 0 of correctness;
See Section 4.2.
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or other monitoring operations (of traffic, pollution, agriculture, wild-life, etc.). Such networks may

be expected to operate in harsh inaccessible environments, while being highly reliable and efficient.

This requires an efficient “strong” fault-tolerance in form of automatic recovery provided by self-

stabilization. Moreover, even if one considers only protocols with polylog(n) states interesting, it

remains an interesting fact that such protocols cannot solve SSLE.

Finally, self-stabilizing algorithms are easier to compose [80, 81]. Composition is in general

difficult for population protocols [61,146], since they lack a mechanism to detect when one compu-

tation has finished before beginning another. However, a self-stabilizing protocol S can be composed

with a prior computation P , which may have set the states of S in some unknown way before P

stabilized, c.f. [24, Section 4], [15, Theorem 3.5].

4.1.2. Problem variants. To circumvent the necessary dependence on population size n,

previous work has considered relaxations of the original problem. One approach, which requires

agents only to know an upper bound on n, is to relax the requirement of self-stabilization: loose-

stabilization requires only that a unique leader persists for a long time after a stabilization, but

not forever [155,157,160]. Other papers study leader election in more general and powerful models

than population protocols, which allow extra computational ability not subject to the limitations

of the standard model. One such model assumes an external entity, called an oracle, giving clues

to agents about the existence of leaders [28, 97]. Other generalized models include mediated

population protocols [131], allowing additional shared memory for every pair of agents, and the

k-interaction model [169], where agents interact in groups of size 2 to k.

While this paper considers only the complete graph (the most difficult case), other work considers

protocols that assume a particular non-complete graph topology. In rings and regular graphs with

constant degree, SSLE is feasible even with only a constant state space [24,64,65,170]. In another

recent related work [161], the authors study the feasibility requirements of SSLE in arbitrary graphs,

as well as the problem of ranking that we also study (see below). They show how to adapt protocols

in [28,54] into protocols for an arbitrary (and unknown) connected graph topology (without any

oracles, but knowing n).

4.1.3. Contribution. We initiate the study of the limits of time efficiency or the time/space

trade-offs for SSLE in the standard population protocol model, in the complete interaction graph.
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Table 4.1. Overview of time and space (number of states) complexities of self-stabilizing
leader election protocols (which all also solve ranking). For the silent protocols, the silence
time also obeys the stated upper bound. Times are measured as parallel time until sta-
bilization both in expectation and with high probability (WHP is defined as probability
1−O(1/n), but implies a guarantee for any 1−O(1/nc), see Section 4.2). Entries marked
with * are asymptotically optimal in their class (silent/non-silent); see Observation 4.2.6.
The final two rows really describe the same protocol Sublinear-Time-SSR; it is parame-
terized by the positive integer H; setting H = Θ(log n) gives the time-optimal O(log n) time
protocol.

protocol expected time WHP time states silent
Silent-n-state-SSR [54] Θ(n2) Θ(n2) * n yes
Optimal-Silent-SSR (Sec. 4.4) * Θ(n) * Θ(n log n) * O(n) yes
Sublinear-Time-SSR (Sec. 4.5) * Θ(log n) * Θ(log n) exp

(
O(nlog n · log n)

)
no

Sublinear-Time-SSR (Sec. 4.5) Θ(H · n
1

H+1 ) Θ(log n · n
1

H+1 ) Θ(nΘ(nH) log n) no

The most related protocol, of Cai, Izumi, andWada [54] (Silent-n-state-SSR, Protocol 4.1), given

for complete graphs, uses exactly n states and Θ(n2) expected parallel time (see Theorem 4.2.4),

exponentially slower than the polylog(n)-time non-self-stabilizing existing solutions [40, 99, 100,

120,159]. Our main results are two faster protocols, each making a different time/space tradeoff.

Our protocols, along with that of [54], are summarized in Table 4.1. These main results are

later proven as Theorem 4.4.3 and Theorem 4.5.7. Both expected time and high-probability time are

analyzed. Any silent protocol (one guaranteed to reach a configuration where no agent subsequently

changes states) must use Ω(n) parallel time in expectation (Observation 4.2.6). This lower bound

has helped to guide our search for sublinear-time protocols, since it rules out ideas that, if they

worked, would be silent. Thus Optimal-Silent-SSR is time- and space-optimal for the class of

silent protocols.

Sublinear-Time-SSR is actually a family of sublinear time protocols that, depending on a

parameter H that can be set to an integer between 1 and Θ(log n), causes the algorithm’s running

time to lie somewhere in O(
√
n) and O(log n), while using more states the larger H is; setting

H = Θ(log n) gives the time-optimal O(log n) time protocol. However, even with H = 1, it requires

exponential states. It remains open to find a sublinear-time SSLE protocol that uses sub-exponential

states. We note that any protocol solving SSLE requires Ω(log n) time: from any configuration

where all n agents are leaders, by a coupon collector argument, it takes Ω(log n) time for n − 1 of

them to interact and become followers. (This argument uses the self-stabilizing assumption that

“all-leaders” is a valid initial configuration; otherwise, for initialized leader election, it requires

considerably more care to prove an Ω(log n) time lower bound [159].)
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For some intuition behind the parameterized running times for Sublinear-Time-SSR, the

protocol works by detecting “name collisions” between agents, communicated via paths of length

H + 1. For example, H = 0 corresponds to the simple linear-time algorithm that relies on two

agents s, a with the same name directly interacting, i.e., the path s→ a. H = 1 means that s first

interacts with a third agent b, who then interacts with a, i.e., the path s→ b→ a. To analyze the

time for this process to detect a name collision, consider the following “bounded epidemic” protocol.

The “source” agent s that starts the epidemic is in state 0, and all others are in state ∞, and they

interact by i, j → i, i + 1 whenever i < j. The time τk is the first time some target agent a has

state ≤ k. In other words, this agent has heard the epidemic via a path from the source of length

at most k. We have E[τ1] = O(n), since a must meet s directly. An iterative process can then

show E[τ2] = O(
√
n), and more generally E[τk] = O(kn1/k). τn is the hitting time for the standard

epidemic process, since the path from any agent to the source can be at most n. However, with

high probability, the epidemic process will reach each agent via a path of length O(log n), so it

follows that τk = O(log n) if k = Ω(log n), so setting H = Θ(log n) will detect this name collisions

in O(log n) time. Bounds on τk are given as Lemma 4.2.10 and Lemma 4.2.11.

Ranking. All protocols in the table solve a more difficult problem than leader election: ranking

the agents by assigning them the IDs 1, . . . , n. Ranking is helpful for SSLE because it gives a

deterministic way to detect the absence of a state (such as the leader state). If any rank is absent,

the pigeonhole principle ensures multiple agents have the same rank, reducing the task of absence

detection to that of collision detection.

Collision detection is accomplished easily in O(n) time by waiting for the colliding agents to

meet, which is done by Optimal-Silent-SSR. Achieving stable collision detection in optimal

O(log n) time is key to our fast protocol Sublinear-Time-SSR. This collision detection problem

is interesting in its own right, see Conclusion.

Ranking is similar to the naming problem of assigning each agent a unique “name” (ID) [52,

129], but is strictly stronger since each agent furthermore knows the order of its name relative to

those of other agents. Naming is related to leader election: if each agent can determine whether

its name is “smallest” in the population, then the unique agent with the smallest name becomes

the leader. However, it may not be straightforward to determine whether some agent exists with a

smaller name; much of the logic in the faster ranking algorithm Sublinear-Time-SSR is devoted
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to propagating the set of names of other agents while determining whether the adversary has planted

“ghost” names in this set that do not actually belong to any agent. On the other hand, any ranking

algorithm automatically solves both the naming and leader election problems: ranks are unique

names, and the agent with rank 1 can be assigned as the leader. (Observation 4.2.5 shows that the

converse does not hold.)

4.2. Preliminaries

If a self-stabilizing protocol stabilizes with high probability, then we can make this high proba-

bility bound 1−O(1/nc) for any constant c. This is because in the low probability of an error, we

can repeat the argument, using the current configuration as the initial configuration. Each of these

potential repetitions gives a new “epoch”, where the Markovian property of the model ensures the

events of stabilizing in each epoch are independent. Thus the protocol will stabilize after at most c

of these “epochs” with probability 1−O(1/nc). By the same argument, if a self-stabilizing protocol

can stabilize with any positive probability p > 0, it will eventually stabilize with probability 1.

Leader election and ranking. The two tasks we study in this paper are self-stabilizing leader

election (SSLE) and ranking (SSR). For both, the self-stabilizing requirement states that from

any configuration, a stably correct configuration must be reached with probability 1. For leader

election, each agent has a field leader with potential values {Yes,No}, and a correct configuration

is defined where exactly one agent a has a.leader = Yes.2 For ranking, each agent has a field

rank with potential values {1, . . . , n}, and a correct configuration is defined as one where, for each

r ∈ {1, . . . , n}, exactly one agent a has a.rank = r. As noted in Sec. 6.1, any protocol solving SSR

also solves SSLE by assigning leader to Yes if and only if rank = 1; for brevity we omit the leader

bit from our protocols and focus solely on the ranking problem. Observation 4.2.5 shows that the

converse does not hold.

SSLE Protocol from [54]. Protocol 4.1 shows the original SSLE protocol from [54]. We

display it here to introduce our pseudocode style and make it clear that this protocol is also solving

ranking.3

2We do not stipulate the stricter requirement that one agent stays the leader, rather than letting the leader = Yes
bit swap among agents, but we claim these problems are equivalent due to the complete interaction graph. A protocol
solving SSLE can also “immobilize” the unique leader = Yes bit by replacing any transition (x, y) → (w, z), where
x.leader = z.leader = Yes and y.leader = w.leader = No, with (x, y)→ (z, w).
3Their state set {0, . . . , n − 1} from [54] is clearly equivalent to our formal definition of a rank ∈ {1, . . . , n}, but
simplifies the modular arithmetic.
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The convergence proofs in [54] did not consider our definition of parallel time via the uniform

random scheduler. Thus we also include proofs that Silent-n-state-SSR stabilizes in Θ(n2) time,

in expectation and WHP (see Theorem 4.2.4). It is straightforward to argue an Ω(n2) time lower

bound from a configuration with 2 agents at rank = 0, 0 agents at rank = n − 1, and 1 agent at

every other rank. This requires n − 1 consecutive “bottleneck” transitions, each moving an agent

up by one rank starting at 0. Each takes expected time Θ(n) since two specific agents (the two

with the same rank) must interact directly. Our arguments for a O(n2) time upper bound give a

separate proof of correctness from that in [54], reasoning about a barrier rank that is never crossed.

Protocol 4.1 Silent-n-state-SSR, for initiator a interacting with responder b
Fields: rank ∈ {0, . . . , n− 1}
1: if a.rank = b.rank then

2: b.rank← (b.rank + 1) mod n

Cai, Izumi, and Wada [54] show that the state complexity of this protocol is optimal. A protocol

is strongly nonuniform if, for any n1 < n2, a different set of transitions is used for populations

of size n1 and those of size n2 (intuitively, the agents hardcode the exact value n).

Theorem 4.2.1 ( [54]). Any population protocol solving SSLE has ≥ n states and is strongly

nonuniform.

It is worth seeing why any SSLE protocol must be strongly nonuniform. Suppose the same

transitions are used in population sizes n1 < n2. By identifying in a single-leader population of

size n2 any subpopulation of size n1 that does not contain the leader, sufficiently many interactions

strictly within the subpopulation must eventually produce a second leader. Thus the full population

cannot be stable. These conflicting requirements to both produce a new leader from a leaderless

configuration, but also make sure the single-leader configuration is stable, is the key new challenge

of leader election in the self-stabilizing setting. Protocols solving SSLE circumvent this error by

using knowledge of the exact population size n.

We analyze the time complexity of the Silent-n-state-SSR protocol. It crucially relies on

the fact that every (initial) configuration guarantees the existence of a “barrier rank” that is never

exceeded by an interaction, disallowing indefinite cycles. More formally, denote by mi(C) the

number of agents with rank i in configuration C. We will show that, starting from a configuration C0,
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there exists some k such that

(4.1) ∀r ∈ {0, . . . , n− 1} :
r∑

d=0

m(k−d) mod n(C) ≤ r + 1

for all configurations C that are reachable from C0. Then k is a barrier rank as it guarantees

mk(C) ≤ 1 during the whole execution.

Lemma 4.2.2. For every configuration C of Silent-n-state-SSR, there exists some k ∈ {0, . . . , n−

1} such that (4.1) holds in C.

Proof. Define Si =
∑i

j=0

(
mj(C) − 1

)
for i ∈ {0, . . . , n − 1}. Note that Sn−1 = 0 since∑n−1

j=1 mj(C) = n. Choose k ∈ {0, . . . , n− 1} such that Sk is minimal. For r ≤ k we have

r∑
d=0

m(k−d) mod n(C) =

k∑
j=k−r

mj(C) = (r+1)+

k∑
j=k−r

(
mj(C)−1

)
= (r+1)+(Sk − Sk−r+1) ≤ r+1

since Sk ≤ Sk−r+1. For r > k we have

r∑
d=0

m(k−d) mod n(C) =
k∑
j=0

mj(C) +
n−1∑

j=n−r+k
mj(C) = (r + 1) + (Sk + Sn−1 − Sn−r+k−1) ≤ r + 1

since Sn−1 = 0 and Sk ≤ Sn−r+k−1. �

Lemma 4.2.3. Let k ∈ {0, . . . , n − 1}. If (4.1) holds for k in configuration C, then (4.1) holds

for k in all configurations reachable from C.

Proof. Without loss of generality we assume k = n− 1 by cyclic permutation of the ranks. It

suffices to show the lemma’s statement for a direct successor configuration C ′ of C. Let i be the

rank of the initiator and j that of the responder in the interaction leading from C to C ′. If i 6= j,

then m`(C
′) = m`(C) for all ` ∈ {0, . . . , n− 1} and thus the statement follows from the hypothesis

on C. So assume i = j in the rest of the proof. Then i < n− 1 since mn−1(C) ≤ 1 using (4.1) with

r = 0. Thus mi(C
′) = mi(C) − 1 and mi+1(C ′) = mi+1(C) + 1. This means that all sums except

for r = n− i− 2 in (4.1) remain constant when passing from C to C ′.

To bound the sum for r = n− i− 2, we prove that we actually have
∑r

d=0mk−d(C) ≤ r, which

then implies
∑r

d=0mk−d(C
′) = 1 +

∑r
d=0mk−d(C) ≤ r+ 1 as required. In fact, if

∑r
d=0mk−d(C) =
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r + 1, then

mi(C) =
r+1∑
d=0

mk−d(C)−
r∑

d=0

mk−d(C) ≤ (r + 2)− (r + 1) = 1 ,

which is a contradiction to the fact that there are two different agents with rank i in configuration C

that can interact. �

Theorem 4.2.4. The Silent-n-state-SSR protocol solves self-stabilizing ranking. The si-

lence time from the worst-case initial configuration is Θ(n2) in expectation and with probability

1− exp(−Θ(n)).

Proof. We first prove the time lower bound. We let the protocol start in initial configura-

tion C0 with m1(C0) = 2, mn−1(C0) = 0, and mi(C0) = 1 for all i ∈ {1, . . . , n − 2}. If we

define T−1, T0, T1, . . . , Tn−1 by T−1 = 0 and Ts = min{t ≥ Ts−1 | ms(t) = 1}, then Ti is the first

time that two agents with rank i − 1 interact. As there is at most one rank with more than one

agent, the difference Ti − Ti−1 is equal to the number of interactions until the two agents with

rank i interact, which is a geometric random variable with probability of success p = 1/
(
n
2

)
. Then

ETn−1 =
∑n−1

i=0 E(Ti − Ti−1) = (n− 1)
(
n
2

)
= Θ(n3). As Tn−1 is the sum of independent geometric

random variables, we will also use Theorem 3.1 from [115], where µ = ETn−1 and λ = 1/2, to show

the lower tail bound

P[Tn−1 ≤ λµ] ≤ exp (−pµ(λ− 1− lnλ)) = exp(−Θ(n)).

Thus the convergence time from C0 is Ω(n2) (Ω(n3) interactions) in expectation and with probability

1− exp(−Θ(n)). This concludes the proof of the time lower bound.

We now turn to the time upper bound. Now let the initial configuration C0 be arbitrary. By

Lemmas 4.2.2 and 4.2.3 we get the existence of some k ∈ {0, . . . , n− 1} such that (4.1) holds for all

t ∈ N0. In particular mk(t) ≤ 1, which means that rank k is indeed a barrier for every execution

starting in C0. Without loss of generality, by cyclic permutation of the ranks, we assume k = n− 1.

We inductively define T−1, T0, T1, . . . , Tn−1 by T−1 = 0 and Ts = min{t ≥ Ts−1 | ms(t) = 1}. Then

ms(t) = 1 for all t ≥ Ts.

Now Ts − Ts−1 is the number of interactions for rank collisions to reduce the count ms to

1. This is stochastically dominated by the convergence of the classic “fratricide” leader election

(L + L → L + F , starting from all L). Letting F be the number of interactions for the fratricide
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process to converge to a single L, we have F is the sum of independent (non-identical) geometric

random variables, where EF = Θ(n2) and the minimum parameter p∗ = 1/
(
n
2

)
. We then have Tn−1

stochastically dominated by a sum S =
∑n−1

i=1 Fi of n− 1 independent copies of F (which is a sum

of Θ(n2) geometric random variables). Then ETn−1 ≤ ES = (n − 1)EF = O(n3). Also, we can

use Theorem 2.1 of [115] to show an upper tail bound (where µ = ES and λ = 3/2)

P[S ≥ λµ] ≤ exp (−p∗µ(λ− 1− lnλ)) = exp(−Θ(n)).

Thus from any initial configuration C0, the convergence time is O(n2) (O(n3) interactions) in

expectation and with probability 1− exp(−Θ(n)). �

Observation 4.2.5. There is a silent SSLE protocol whose states cannot be assigned ranks such

that it also solves the SSR problem.

Proof. The following protocol solves silent SSLE for a population size n = 3. (Note the

construction from [54] in Protocol 4.1 is strictly better protocol, the purpose of this construction is

just to show an example solving silent SSLE without solving ranking).

The state set is S = {l} ∪ F , where F = {f0, f1, f2, f3, f4}. There will be exactly 5 silent

configurations of the three agents: {l, f0, f1}, {l, f1, f2}, {l, f2, f3}, {l, f3, f4}, {l, f4, f0}. (In other

words, a leader l and two distinct followers fi, fj with |i− j| ≡ 1 mod 5).

This can be easily accomplished by adding transitions from (s, s) (for all states s ∈ S) and from

(fi, fj) (for all fi, fj ∈ F with |i− j| 6≡ 1 mod 5) to a uniform random pair of states (a, b) ∈ S×S.

It is easily observed that starting from any configuration of 3 agents, this protocol must stabilize to

one of the 5 silent configurations above, and thus solves SSLE.

However, there is no way to consistently assign the ranks 1, 2, 3 to the states in the silent

configurations. If WLOG we denote l to be rank 1, then we must assign ranks 2 or 3 to each state

in F . But since |F | is odd, every such assignment places two states fi, fj in the same rank where

|i − j| ≡ 1 mod 5. Since {l, fi, fj} is a silent configuration that is incorrectly ranked, we have a

contradiction. �

Note that Observation 4.2.5 does not rule out a more sophisticated way to transform any SSLE

protocol to a SSR protocol. It merely rules out the most simple approach: assigning ranks to the

existing states, without otherwise changing the protocol.
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Silent protocols. A configuration C is silent if no transition is applicable to it (put another

way, every pair of states present in C has only a null transition that does not alter the configuration).

A self-stabilizing protocol is silent if, with probability 1, it reaches a silent configuration from every

configuration. Since convergence time ≤ stabilization time ≤ silence time, the following bound

applies to all three.

Observation 4.2.6. Any silent SSLE protocol has Ω(n) expected convergence time and for any

α > 0, probability ≥ 1
2n
−3α to require ≥ αn lnn convergence time.

For example, letting α = 1/3, with probability ≥ 1
2n the protocol requires ≥ 1

3n lnn time.

Proof. Let C be a silent configuration with a single agent in a leader state `. Let C ′ be the

configuration obtained by picking an arbitrary non-leader agent in C and setting its state also to

`. Since C is silent and the states in C ′ are a subset of those in C, no state in C ′ other than `

can interact nontrivially with `. So the two `’s in C ′ must interact to reduce the count of `. The

number of interactions for this to happen is geometric with P[success] = 1/
(
n
2

)
= 2

n(n−1) < 3/n2, so

expected time ≥ n/3 and for any α > 0, at least αn2 lnn interactions (αn lnn time) are required

with probability at least (
1− 3/n2

)αn2 lnn ≥ 1

2
e−3α lnn =

1

2
n−3α. �

4.2.1. Probabilistic Tools. We consider the epidemic process from Section 1.1.2), arising

whenever agents have a variable infected ∈ {True,False} updating as

a.infected, b.infected← (a.infected ∨ b.infected).

Mocquard, Sericola, Robert, and Anceaume [134] gave an in-depth analysis of the two-way epidemic

process. This analysis gives upper bounds for many processes in our protocols. In any process where

some field value is propagated this way, in addition to other transitions or initial conditions with

more than one infected agent, which may speed up the propagation but cannot hinder it, we denote

that process a superepidemic. The number of interactions X to spread to the whole population

is clearly stochastically dominated by the two-way epidemic.4 Consequently, we state the results

below for normal epidemics, but use them to reason about superepidemics.

4We note that this sort of process, which is stochastically dominated by a “pure epidemic”, is generally the sort of
process studied in most population protocols papers that use the term epidemic.
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The next lemma uses results of [134] to prove a simplified upper tail bound.

Lemma 4.2.7 ( [134]). Starting from a population of size n with a single infected agent, let Tn be the

number of interactions until a.infected = True for all a ∈ A. Then E[Tn] = (n− 1)Hn−1 ∼ n lnn,

and for n ≥ 8 and δ ≥ 0,

P[Tn > (1 + δ)E[Tn]] ≤ 2.5 ln(n) · n−2δ.

Proof. From [134] we have E[Tn] = (n− 1)Hn−1 ∼ n lnn. Also from [134], for any n ≥ 3 and

c ≥ 1, we have large deviation bound

P[Tn > cE[Tn]] ≤ f(c, n) =

(
1 +

2c(n− 1)Hn−1(n− 2)2

n

)
×
(

1− 2

n

)c(n−1)Hn−1−2

≤
(

1

(1− 2/n)2
+

2c(n− 1)Hn−1(n− 2)2

n(1− 2/n)2

)(
e−

2
n

)c(n−1)Hn−1

=

(
1

(1− 2/n)2
− 2cnHn−1 + 2cn2Hn−1

)
exp

(
−2c

n− 1

n
Hn−1

)
≤
(

1

(1− 2/3)2
− 2 · 3 ·H3−1 + 2cn2Hn−1

)
exp

(
−2c

n− 1

n
Hn−1

)
=
(
0 + 2cn2Hn−1

)
exp

(
−2c

n− 1

n
Hn−1

)
.

Now observe that n−1
n Hn−1 > lnn+ 0.189 for all n ≥ 8. Then

P[Tn > cE[Tn]] ≤ 2cn2Hn−1e
−2c(lnn+0.189)

= 2Hn−1ce
−0.378cn2−2c.

Now we observe thatHn−1 < 1.25 lnn for all n ≥ 8 and ce−0.378c < 1 for all c ≥ 1. These inequalities

give

P[Tn > cE[Tn]] ≤ 2 · 1.25 lnn · n2−2c = 2.5 lnn · n−2δ

taking c = 1 + δ. �

Corollary 4.2.8. Define Tn as in Lemma 4.2.7. Then E[Tn] < 1.2n lnn and P[Tn > 3n lnn] < 1
n2 .
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Proof. Observe that E[Tn] = (n − 1)Hn−1 < 1.2n lnn for all n ≥ 2. Then E[Tn] < 1.2n lnn.

Also 3n lnn > 2.5E[Tn], so by the upper tail bound of Lemma 4.2.7, we have

P[Tn > 3n lnn] ≤ P[Tn > (1 + 1.5)E[Tn]] ≤ 2.5 lnn · n−3 ≤ n−2

since n > 2.5 lnn for all n ≥ 2. �

We now consider a variation called the roll call process, where every agent starts with a

roster containing a single entry: their unique ID. The agents update with a.roster← (a.roster∪

b.roster). Let Rn be the number of interactions to reach the terminal configuration where a.set

contains all n IDs for every a ∈ A.

Again, we will consider processes that are stochastically dominated by Rn. We can view the roll

call process as the spreading of n epidemics in parallel. Note that the roll call process as described

takes exponential states, but it also gives an upper bound for any constant number of epidemics

spreading in parallel. We find that asymptotically Rn is 1.5 times larger than Tn. This result about

the expected value was shown independently in [51,60,110,136]. The results we give here use a

different technique which also gives our required large deviation bounds on the time for the roll call

process.

Lemma 4.2.9. Let Rn be the number of interactions for the roll call process to complete. Then

E[Rn] ∼ 1.5n lnn. Also P[Rn > 3n lnn] < 1
n .

Proof. Notice that in the roll call process, each individual ID spreads as a two-way epidemic.

Thus we have n epidemic processes happening in parallel; however they are not independent.

We start by observing a lower bound for E[Rn].

First it is necessary for every agent to have an interaction. Let E1 be the expected number of

interactions for every agent to interact. This is a coupon collector process where we select two agents

(coupons) at each step. It follows from a standard coupon collector analysis that E1 ∼ 1
2n lnn.

It is then necessary for the last agent to be picked to spread their ID to the whole population.

Let E2 be the expected number of interactions for this ID to spread to the whole population, starting

from this agent’s first interaction. This is a standard epidemic process (starting with two infected

agents, which is an asymptotically negligible difference), so by Lemma 4.2.7 E2 ∼ n lnn interactions.
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Then E[Rn] ≥ E1 + E2 ∼ 1.5n lnn. (Note that the entire process may still be incomplete by this

point.)

Now we can get an upper tail bound on Rn by considering it as the maximum of n (non

independent) epidemic processes. Taking the union bound with Lemma 4.2.7 gives

P[Rn > (1 + δ)E[Tn]] ≤ n · 2.5 lnn · n−2δ

and then taking δ = 1
2 + u for u > 0 we have

P[Rn > (1.5 + u)E[Tn]] ≤ 2.5 lnn · n−2u

Now since Rn ≥ 0 we can compute E[Rn] as

E[Rn] =

∫ ∞
t=0
P[Rn > t] dt

≤
∫ 1.5E[Tn]

t=0
1 dt+

∫ ∞
1.5E[Tn]

P[Rn > t] dt

= 1.5E[Tn] +
1

E[Tn]

∫ ∞
0
P[Rn > (1.5 + u)E[Tn]] du

≤ 1.5E[Tn] +
1

E[Tn]

∫ ∞
0

2.5 lnn · n−2u du

= 1.5E[Tn] +
2.5

E[Tn]
· −1

2
n−2u

∣∣∣∞
0

= 1.5E[Tn] +
1.25

E[Tn]
∼ 1.5n lnn

Thus we have E[Rn] ∼ 1.5n lnn.

The observation that P[Rn > 3n lnn] < 1
n then follows immediately from the same union bound

and Corollary 4.2.8. �

We next consider another variation called the bounded epidemic process. Here some source

agent s has s.level = 0, and when agents a, b interact, a updates as a.level← min(a.level, b.level+

1) (and symmetrically for b). Let a be a fixed target agent. We define the time τk to be the first

time that a.level ≤ k. Intuitively, τk is the time at which a hears information from the source s

through a path of length at most k. For example, τ1 is the time until a and s interact directly, and

τ2 is the time until a interacts with some agent who has already interacted with s.
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Lemma 4.2.10. For any constant k = O(1), E[τk] ≤ kn1/k and τk ≤ n1/k · c2 lnn with high

probability 1− 1/nc.

Proof. For each i = 0, 1, . . . , k − 1, define Li to be the first time when the count of agents

with level ≤ i is at least ni/k. Note L0 = 0, since at time 0 (and all future times) we have a single

source agent at level = 0. We will now show inductively that E[Li] ≤ kn1/k and Li = O(kn1/k).

After time Li, we have at least ni/k agents with level ≤ i. We next need to wait until time

Li+1, when at least n(i+1)/k agents have level ≤ i + 1. Let x(t) be the number of agents with

level ≤ i+1 at time t, so x(Li) ≥ n(i+1)/k. Then the probability x increases in the next interaction

is at least

px =
#(level ≤ i) ·#(level > i+ 1)(

n
2

) ≥ 2ni/k(n− x)

n2
≥ ni/k

n
,

since x ≤ ni+1/k ≤ n(k−1)/k < n
2 . Now the number of interactions T = n(Li+1−Li) until time Li+1

is bounded by a sum of independent geometric random variables with probability px, as x ranges

from ni/k to n(i+1)/k. This gives

E[T ] ≤
n(i+1)/k∑
x=ni/k

n

ni/k
≤ n(i+1)/k · n

ni/k
= n1+1/k.

Moving from interactions to parallel time, we get E[Li+1 − Li] ≤ n1/k, so E[Li+1] ≤ (i+ 1)n1/k as

desired.

We can also get a high probability bound on T , using the Chernoff bound variant for independent

geometric random variables from [115], which will show that Li = O(kn1/k) with high probability.

This will end up being negligible compared to the O(log n · n1/k) high probability bound we need

for the last step, so we omit the details here.

After time Lk−1, we have a count n(k−1)/k agents with level ≤ k − 1, and now must wait for

the target agent a to meet one of these agents, which will ensure a.level ≤ k. The number T of

required interactions is a single geometric random variable with probability p ≥ n(k−1)/k·1
(n2)

≥ 2
n1+1/k .

Thus E[T ] ≤ 1
2n

1+1/k, giving less than n1/k time, so E[τk] ≤ kn1/k. For the high probability bound,

P[T ≥ c

2
lnnn1+1/k] ≤ (1− p)c lnn·n1+1/k ≤ exp

(
− 2

n1+1/k
· c

2
lnn · n1+1/k

)
= n−c.

Since this bound is asymptotically larger than the high probability bounds for the inductive argu-

ment on earlier levels, we have τk ≤ c
2n

1/k lnn with high probability 1− 1/nc. �
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The following lemma is similar to Lemma 4.2.10 but for k = Θ(log n) rather than k = O(1).

Lemma 4.2.11. For k = 3 log2 n, τk ≤ 3 lnn, in expectation and with probability 1−O(1/n2).

Proof. Consider the standard epidemic process starting at the source s. By Corollary 4.2.8, it

takes at most 3 lnn time to complete with high probability 1−O(1/n2). We consider this epidemic

process as generating a random tree in the population as follows. The source s is the root, labeled

1. Then each other agent is a vertex whose parent is the agent who infected them. Furthermore,

we can label each vertex by the order in which that agent was infected. This process will exactly

create a uniform random recursive tree, as discussed in [91]. By Theorem 3 in [90], this tree has

expected height E[H] = e lnn, and there is a high probability bound P[|H − E[H]| ≥ η] ≤ e−cη for

some constant c, which implies that H = O(log n) with high probability 1 − 1/na for any desired

constant a.

We then set k to be this bound on the height H. It follows that when agent a gets infected in

the full epidemic process, a also has level ≤ k, since the whole tree has height ≤ k.

It is also possible to analyze the depth of agent a in this random tree more directly. In the

worst case, a has label n (it is the last to be infected). Then for a vertex with label i, their parent’s

label is uniform in the range {1, . . . , i− 1}, since at the time this agent gets infected, who infected

them has uniform probability over all currently infected agents. Thus we get a recursive process,

where T0 ≤ n, and Ti = Uniform({1, . . . , Ti−1 − 1}), giving a sequence of random variables. We

have E[Ti|Ti−1] = 1+(Ti−1−1)
2 = Ti−1

2 when Ti−1 > 1, and the depth of a is d = min{i : Ti = 1}.

To get a high probability bound on d, we will formally define Ti = 1
2Ti−1 for all i > d. This

way, the recurrence E[Ti|Ti−1] = Ti−1

2 holds for all i. Unwrapping the recurrence, we get E[Ti] =

1
2i
T0 ≤ n

2i
. Then setting i = 3 log2 n gives E[T3 log2 n] ≤ n

n3 = 1
n2 , and by Markov’s Inequality,

P[T3 log2 n ≥ 1] ≤ 1
n2 . Thus choosing k = 3 log2 n ensures a has depth ≤ k in the epidemic tree with

probability 1 − 1/n2. Then using the union bound with the event the epidemic takes longer than

3 lnn time, we have τk ≤ 3 lnn with probability 1−O(1/n2). �

4.3. Resetting subprotocol

Propagate-Reset (Protocol 4.2) is used as a subroutine in both of our protocols Optimal-

Silent-SSR (Sec. 4.4) and Sublinear-Time-SSR (Sec. 4.5). Intuitively, it provides a way for

agents (upon detecting an error that indicates the starting configuration was “illegal” in some way)
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to “reset” quickly, after which they may be analyzed as though they began from the reset state. For

that, the protocol Reset has to be defined for use by Propagate-Reset. We assume that Reset

changes the role variable to something different from Resetting. Crucially, after the reset, agents

have no information about whether a reset has happened and do not attempt any synchronization

to ensure they only reset once, lest the adversary simply sets every agent to believe it has already

reset, preventing the necessary reset from ever occurring.5

We now define some terms used in the analysis of Propagate-Reset, and their intuition:

If a.role 6= Resetting, then we say a is computing (it is executing the outside protocol).

Otherwise, for a.role = Resetting, we use three terms. If a.resetcount = Rmax, we say a is

triggered (it has just detected an error and initiated this global reset). If a.resetcount > 0 we

say a is propagating (intuitively this property of positivity spreads by epidemic to restart the

whole population; we also consider triggered agents to be propagating). If a.resetcount = 0, we

say a is dormant (it is waiting for a delay to allow the entire population to become dormant before

they start waking up, this prevents an agent from waking up multiple times during one reset).

Likewise, we will refer to a configuration as fully / partially propagating (resp. dormant,

computing, triggered) if all / some agents are propagating (resp. dormant, computing, triggered).

A configuration C is awakening if it is the first partially computing configuration reachable

from a fully dormant configuration. Protocols that use Propagate-Reset will start their analysis

by reasoning about an awakening configuration, which formalizes the idea of having gone through a

“clean reset”. In an awakening configuration, all agents are dormant except one agent who has just

executed Reset. Computing agents will awaken dormant agents by epidemic, so within O(log n)

time, all agents will have executed Reset once and then be back to executing the main algorithm.

5This is unlike in standard population protocol techniques in which “phase information” is carried in agents indicating
whether they are encountering an agent “before” or “after” a new phase starts.
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Protocol 4.2 Propagate-Reset(a,b), for Resetting agent a interacting with agent b.
Fields: If role = Resetting, resetcount ∈ {0, 1, . . . , Rmax} and when resetcount = 0 an addi-
tional field delaytimer ∈ {0, 1, . . . , Dmax}.
1: if a.resetcount > 0 and b.role 6= Resetting then . bring b into Resetting role
2: b← Resetting, b.resetcount← 0, b.delaytimer← Dmax

3: if b.role = Resetting then . change resetcount
4: a.resetcount, b.resetcount← max(a.resetcount− 1, b.resetcount− 1, 0)

5: for i ∈ {a, b} with i.role = Resetting and i.resetcount = 0 do . dormant agents
6: if i.resetcount just became 0 then . initialize delaytimer
7: i.delaytimer← Dmax

8: else
9: i.delaytimer← i.delaytimer− 1

10: if i.delaytimer = 0 or b.role 6= Resetting then . awaken by epidemic
11: execute Reset(i) . Reset subroutine provided by main protocol

We require Rmax = Ω(log n), and for our protocol will choose the concrete value Rmax = 60 lnn.

We also require Dmax = Ω(Rmax). For our O(log n) time protocol Sublinear-Time-SSR, we have

Dmax = Θ(log n). In Optimal-Silent-SSR, we set Dmax = Θ(n), to give enough time for the

dormant agents to do a slow leader election so they finish reset with a unique leader.

Propagate-Reset begins by some agent becoming triggered (resetcount = Rmax). Although

introduced for a different purpose, Propagate-Reset is essentially equivalent to a subprotocol

used in [9], so we adopt their time analysis to prove it completes in O(log n) time. Briefly, from a

partially triggered configuration, the propagating condition (resetcount > 0) spreads by epidemic

(in O(log n) time) (Lemma 4.3.2). Once the configuration is fully propagating, it becomes fully

dormant in O(log n) time (Lemma 4.3.3). From the fully dormant configuration, we reach an

awakening configuration within O(log n) time when the first agent executes Reset (Theorem 4.3.4).

Then the instruction to execute Reset spreads by epidemic (in O(log n) time).

4.3.1. Proofs for Propagate-Reset. We first observe (by lines 2 and 4 of Propagate-

Reset) that we can analyze the resetcount field a using the definition from [160] of a propagating

variable (that updates as a, b← max(a− 1, b− 1, 0)):

Observation 4.3.1. If we define the resetcount field for all agents by letting a.resetcount = 0

for any computing agent a (a.role 6= Resetting), then in any interaction between a, b ∈ A, their

resetcount fields both become max(a.resetcount− 1, b.resetcount− 1, 0).
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Lemma 4.3.2. Using the specific value Rmax = 60 lnn, starting from a partially triggered configu-

ration, we reach a fully propagating configuration after at most 4 lnn time with probability at least

1−O(1/n).

Proof. Noting that resetcount is a propagating variable [160], we can use the same proof

as [160, Corollary 8]. The constant Rmax = 60 lnn matches the constant used in their result. �

Although we set Rmax = 60 lnn, the following lemma holds for arbitrary positive Rmax.

Lemma 4.3.3. Let Rmax ∈ N+ and Dmax = Ω(log n + Rmax). Starting from a fully propagating

configuration, we reach a fully dormant configuration after O(log n+Rmax) time with high probability

1−O(1/n).

An equivalent process was analyzed in [9], and this proof follows Lemma 1 from [9].

Proof. We first assume no agents are computing, so no further agents will become triggered,

and the resetcount field will only change as noted in Observation 4.3.1. We define a local potential

Φt(a) = 3a.resetcount for agent a in Ct, except Φt(a) = 0 if a.resetcount = 0. We then define

a global potential Φt =
∑

a∈AΦt(a). We assume as a worst case that every agent starts with

resetcount = Rmax, so Φ0 ≤ n3Rmax . The goal will now be to show this global potential drops

quickly to 0 (corresponding to a fully dormant configuration). We will show that Φt = 0 with high

probability 1−O(1/n), where t = O(n(log n+Rmax)).

Now from Observation 4.3.1, if agents a and b interact in the tth interaction, we can further

observe that

Φt+1(a) + Φt+1(b) ≤ 2/3 · (Φt(a) + Φt(b))

(with equality when Φt(a) = 0 or Φt(b) = 0). We will thus have the change in global potential

Φt+1 − Φt ≤ −1/3 · (Φt(a) + Φt(b))

Then conditioning on the configuration Ct, we can compute

E[Φt+1 − Φt|Ct] ≤
∑
{a,b}∈A

P[a, b interact in tth interaction] · (−1/3) · (Φt(a) + Φt(b))

=
1(
n
2

) · (−1/3)
∑
a∈A

(n− 1)Φt(a) = − 2

3n
Φt
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and thus E[Φt+1|Ct] ≤ (1− 2
3n)Φt, so E[Φt+1] = E[E[Φt+1|Ct]] ≤ (1− 2

3n)E[Φt]. Then by induction

we have

E[Φt] ≤
(

1− 2

3n

)t
Φ0 ≤ exp

(
− 2

3n
t

)
n3Rmax

Thus we have E[Φt] ≤ 1
n for t = 3

2n ln
(
n2 · 3Rmax

)
= 3

2n(2 lnn+Rmax · ln 3) = O(n(log n+Rmax)),

so by Markov’s inequality we have P[Φt = 0] ≥ 1− 1
n .

We assumed that no agents are computing during these t interactions. For the first agent

to become computing, delaytimer must hit 0 starting from Dmax (after that agent has become

dormant). Choosing Dmax = Ω(log n+Rmax), then no agent will have more than Dmax interactions

during these t interactions, with high probability 1 − O(1/n) by standard Chernoff bounds. Thus

all agents will become dormant before the first agent becomes computing with high probability. �

We now combine the previous lemmas to describe the behavior of Propagate-Reset when ini-

tialized by a triggered agent. Recall that an awakening configuration is the first partially computing

configuration reached from a fully dormant configuration, so the first agent has set delaytimer = 0

and executed Reset.

Theorem 4.3.4. Let Rmax = 60 lnn and Dmax = Ω(log n + Rmax). Starting from a partially-

triggered configuration, we reach an awakening configuration in at most O(Dmax) parallel time with

probability at least 1−O(1/n).

Proof. By Lemmas 4.3.2 and 4.3.3, we reach a fully dormant configuration after O(n(log n+

Rmax)) interactions.

Next, after an additional nDmax
2 interactions (which each include 2 of the n agents), by Pigeon-

hole Principle some agent must have participated in Dmax interactions. This agent had delaytimer

at most Dmax in the fully dormant configuration, so by lines 9-11 of Propagate-Reset that

agent has executed Reset. When the first such agent executes Reset, we reach an awakening

configuration. �

Theorem 4.3.4 describes the intended behavior of Propagate-Reset. This will let protocols

start their analysis from an awakening state, and show that given this “clean reset” the protocol

will then stabilize. The remaining step in the analysis will be to show from any configuration, we

quickly become triggered and enter Propagate-Reset (or simply stabilize). It is possible that this

initial configuration includes some agents in arbitrary Resetting states. The following Corollary will
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let us only have to reason about starting from a fully computing configuration (so we can essentially

assume WLOG that our initial configuration is fully computing, since we will quickly leave the

Resetting states).

Corollary 4.3.5. Starting from any configuration, we reach either an awakening configuration or a

fully computing configuration after O(log n+Dmax) parallel time with probability at least 1−O(1/n).

Proof. If at any point we enter a partially-triggered configuration, then the result follows from

Theorem 4.3.4. Now we will show that if we do not enter a partially-triggered configuration, we

must reach some fully computing configuration.

We consider a non-fully-computing configuration that is also not triggered (some agents are

in Resetting state, but none have resetcount = Rmax). In this case, following the proof of

Lemma 4.3.3, every agent will become dormant (or computing) after O(n(log n + Rmax)) inter-

actions with probability 1−O(1/n). Then as in the proof of Theorem 4.3.4, some agent will become

computing after O(nDmax) interactions. Once some agent is computing, the process for the whole

population to become computing is a superepidemic, so by Corollary 4.2.8, this takes at most 3n lnn

with high probability 1−O(1/n2). �

4.4. Linear-time, linear-state, silent protocol

In this section, we present a silent self-stabilizing ranking protocol, Optimal-Silent-SSR,

which achieves asymptotically optimal O(n) time and state complexity. Like Silent-n-state-SSR,

there will be a unique stable and silent configuration where every agent has a unique rank, but now

a rank collision will trigger our Propagate-Reset, causing the entire population to reset. The key

idea behind Optimal-Silent-SSR is to add a large delay Dmax = Θ(n) in the Propagate-Reset,

which will ensure that the entire population is dormant for long enough to do a simple slow leader

election via L,L → L,F , where all agents set themselves to L upon entering the Resetting role.

Thus after the population has undergone a reset, we have a unique leader with high probability.

After this reset, we do a linear-time leader-driven ranking, where the ranks correspond to nodes in

a full binary tree rooted at the leader. In this ranking algorithm, each agent that has been assigned

a rank (starting with the leader) assigns ranks directly to 0, 1, or 2 other agents (depending on its

number of children in the tree).
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In more detail, each agent can be classified into three roles: Settled, Unsettled, and Resetting. A

Settled agent has the field rank ∈ {1, 2, ..., n}. On the other hand, an Unsettled agent has no rank,

and it waits for the assignment of a rank from Settled agents.

We use the subprotocol Propagate-Reset described in Section 4.3 to reset each agent when

detecting errors. For Optimal-Silent-SSR, the resetting process is triggered under two different

situations. 1) Two Settled agents have an identical rank. The rank conflict can be detected when

the two agents interact. 2) An Unsettled agent does not get its rank after Θ(n) interactions.

During the dormant phase of Propagate-Reset, lasting for Θ(n) time in this protocol, we

do slow leader election via L,L → L,F . Upon awakening (calling Reset), the (likely unique)

leader L is Settled with rank = 1 and followers F are Unsettled. Thus, after resetting, with high

probability there will be exactly one Settled agent with rank = 1, and all the other agents are

Unsettled. The Settled agent will act as a leader to assign ranks to all Unsettled agents in the

following way. At this point the protocol executes an initialized ranking algorithm, similar to others

in the renaming literature [7,8]. Intuitively, a full binary tree forms within the population. Each

Settled agent recruits at most two Unsettled agents, assigning them ranks based on its own to

guarantee uniqueness. The children of rank i are 2i and 2i + 1; in other words if an agent’s rank

has binary expansion s, its childrens’ ranks have binary expansions s0 and s1. Since each agent

knows the exact population size, each knows whether its rank corresponds to a node with 0, 1, or

2 children in the full binary tree with n nodes. See Figure 4.1 for an example. This process clearly

terminates when all agents are recruited and become settled into different ranks.

Optimal-Silent-SSR takes linear time by the following high-level argument: If there is a rank

collision, this is detected inO(n) time. If any agent remains Unsettled without a rank, this is detected

via counting up to errorcount in O(n) time. Either of these triggers a call to Propagate-Reset.

Upon exiting and reaching a fully computing configuration, taking O(n) time by Corollary 4.3.5, we

have the leader-driven ranking protocol analyzed in Lemma 4.4.1. There is a constant probability

the slow leader election fails (i.e., we end up with multiple leaders), but the expected number of

times we must repeat this process before getting a unique leader is constant. The fact that this

ranking protocol is O(n) time follows by analyzing each level of the binary tree created across the

population: each level takes time proportional to the number of nodes in the level, whence the time

is proportional to the size of the tree, i.e., O(n).
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Settled Agents:

Unsettled Agents:

Figure 4.1. An example of the rank assignment in Optimal-Silent-SSR with
n = 12 agents. There are 8 settled agents on the left (blue circles), with ranks given
by the numbers. There are 4 ranks in the binary tree left to be filled by the unsettled
agents, when they interact with the settled agents with ranks 3,4 or 5. Lemma 4.4.1
shows this process completes in expected Θ(n) time.

Protocol 4.3 Optimal-Silent-SSR, for initiator a interacting with responder b
Fields: role ∈ {Settled,Unsettled,Resetting}
If role = Settled, rank ∈ {1, ..., n}, children ∈ {0, 1, 2}
If role = Unsettled, errorcount ∈ {0, 1, ..., Emax = Θ(n)}
If role = Resetting, leader ∈ {L,F}, resetcount ∈ {1, . . . , Rmax}, delaytimer ∈
{0, 1, . . . , Dmax = Θ(n)}
1: if a.role = Resetting or b.role = Resetting then
2: execute Propagate-Reset(a,b)
3: if a.leader = L and b.leader = L then
4: b.leader← F
5: if a.role = b.role = Settled and a.rank = b.rank then
6: a.role, b.role← Resetting, a.resetcount, b.resetcount← Rmax

7: a.leader, b.leader← L

8: for (i, j) ∈ {(a, b), (b, a)} do
9: if i.role = Settled, j.role = Unsettled, i.children < 2, and 2 · i.rank + i.children < n

then
10: j.role← Settled, j.children← 0
11: j.rank← 2 · i.rank + i.children . j becomes a child node of i
12: i.children← i.children + 1

13: for i ∈ {a, b} do
14: if i.role = Unsettled then
15: i.errorcount← max(i.errorcount− 1, 0)
16: if i.errorcount = 0 then
17: a.role, b.role← Resetting, a.resetcount, b.resetcount← Rmax

18: a.leader, b.leader← L
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Protocol 4.4 Reset(a) for Optimal-Silent-SSR, for agent a.
(Called in line 11 of Propagate-Reset.)
1: if a.leader = L then
2: a.role← Settled, a.rank← 1, a.children← 0

3: if a.leader = F then
4: a.role← Unsettled, a.errorcount← Emax = Θ(n)

4.4.1. Proofs for Optimal-Silent-SSR. We first consider the binary-tree rank assign-

ment process, which is given by lines 8 to 12 of Optimal-Silent-SSR, starting from a configura-

tion with one agent a with a.role = Settled, a.leader = L, a.children = 0 and all other agents b

with b.role = Unsettled (we ignore the field errorcount in this analysis). In other words, we are

starting from a single leader a, who builds a binary tree, rooted at a that assigns roles to the entire

population.

Lemma 4.4.1. The binary-tree rank assignment process takes expected O(n) time, starting from a

single leader and n− 1 Unsettled agents.

Proof. We consider the time taken to assign all nodes at level d of the tree, assuming all nodes

at level d− 1 have been assigned, showing that this time is O(2d) (i.e., proportional to the number

2d of nodes at level d). Thus, even if we consider the stochastically dominating process in which no

agent is assigned at level > d until all agents at level d have been assigned, the time to complete

the tree is O
(∑logn

d=1 2d
)

= O(n).

Assume that level d−1 is completely assigned, and let i be the number i of nodes still unassigned

at level d, with 0 < i ≤ 2d. We will now estimate the probability that the next interaction assigns

a new node at level d. The count of agents at level d − 1 with children < 2 is at least i
2 . To

estimate the number of Unsettled agents, for each of the i unassigned nodes at level d, we consider

the eventually subtree rooted at that node. Each such subtree contains

logn−d∑
j=0

2j = 2 · 2logn−d − 1 ≤ 2logn−d

nodes. Since the root of the subtree has not been assigned yet, none of the nodes in the subtree

have been assigned either. Thus the number of Unsettled agents is at least i ·n ·2−d. The probability
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of an Unsettled agent meeting an agent at level d− 1 with children < 2 is at least

(i/2)(i · n · 2−d)(
n
2

) ∼ i2

n2d
.

The total number of interactions to assign all nodes at level d is stochastically dominated by

a sum T =
∑n

i=1 Ti of independent geometric random variables, where Ti is a geometric random

variable with success probability i2

n2d
. We can then compute

E[T ] =

n∑
i=1

n2d

i2
≤ n2d

∞∑
i=1

1

i2
= O(n2d).

Since T is counting interactions, the expected parallel time to assign all nodes at level d is O(2d),

as desired. �

Lemma 4.4.2. An awakening configuration has a single leader with constant probability.

Proof. We first analyze the simple leader election process executed in line 4 of Optimal-

Silent-SSR. The process L,L→ L,F completes in number of interactions
∑n

i=2 Ti, where Ti is a

random variable representing the number of interactions to get from i leaders down to i− 1. This

is geometric with probability of success (i2)
(n2)

= i(i−1)
n(n−1) . Thus the expected number of interactions is

n∑
i=2

n(n− 1)

i(i− 1)
= (n− 1)n

n∑
i=2

1

i− 1
− 1

i
= n(n− 1)

[
1− 1

n

]
∼ n2,

so the expected parallel time is ∼ n.

For an awakening configuration to have a single leader, we need this leader election process to

finish before the first agent sets delaytimer = 0, which takes O(n) interactions, and will take O(n)

parallel time with high probability by standard Chernoff bounds. By Markov’s inequality, for any

α > 0, the probability that the leader election takes longer than αn time is a most 1/α. Thus we

have a constant probability of successfully electing a single leader before the first dormant agent

counts up to Dmax, where the precise constant depends on the choice of Dmax = Θ(n). �

The required proofs for Optimal-Silent-SSR are given in Section 4.4.1 and yield the following

main results:

Theorem 4.4.3. Optimal-Silent-SSR is a silent protocol that solves self-stabilizing ranking

with O(n) states and O(n) expected parallel time.
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Proof. By Corollary 4.3.5, we only have to consider initial configurations that are fully com-

puting or awakening. First consider any fully computing configuration, and argue until we either

reach a partially triggered configuration or the unique stable configuration. After expected O(n)

time, any Unsettled agents have had enough interactions to count down to errorcount = 0. By

standard Chernoff bounds, this is true after O(n log n) time with high probability. Thus we have

either reached a partially triggered configuration, or have only Settled agents left. Now if this

configuration is not the unique silent, stable configuration, there is a rank collision between two

Settled agents, which again will be detected in expected O(n) time and O(n log n) time with high

probability. After reaching a partially triggered configuration, by Theorem 4.3.4, we will then be in

an awakening configuration after O(n) time with high probability.

It now remains to analyze the process starting from an awakening configuration. Define an

epoch to be the sequence of configurations, starting from an awakening configuration, that ends

at either the unique stable configuration or another partially triggered configuration. If it ends in

the unique stable configuration, we call the epoch successful. We will now show that an epoch is

successful with constant probability, the expected time for an epoch is O(n).

For an epoch to be successful, we first require the awakening configuration to have a single

leader, which is true with constant probability by Lemma 4.4.2. Then given a single leader in an

awakening configuration, we can analyze the process of the leader assigning ranks to the rest of

the population with the analysis of the binary-tree rank assignment process in Lemma 4.4.1, which

shows that it takes expected O(n) time. By Markov’s inequality, it will also take O(n) time with

constant probability, which will be before any of the Unsettled agents have had enough interactions

to reach errorcount = 0 (again by standard Chernoff bounds on the number of interactions for

each agent, where the exact probability depends on the initial value Emax = Θ(n)). As a result,

with constant probability we finish the rank assignment, and reach the unique stable configuration

with all Settled agents, having unique ranks.

The expected O(n) time for an epoch follows immediately from Lemma 4.4.1 and Theorem 4.3.4.

Now the number of required epochs is a geometric random variable with constant expectation, so

the total expected time is still O(n).

In analyzing the state set, note that each role using O(n) states. The Settled agents have O(n)

states for rank, the Unsettled agents have O(n) states for errorcount, and the Resetting agents
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have O(Rmax +Dmax) = O(n) states. The total state set is the sum of each of these disjoint roles,

giving O(n) total states. �

Corollary 4.4.4. Optimal-Silent-SSR takes O(n log n) time with high probability.

Proof. By Theorem 4.4.3, Optimal-Silent-SSR takes expected O(n) time, so by Markov’s

inequality it takes O(n) time with constant probability. Now consider epochs of fixed length O(n)

time, where an epoch is successful if we reach the unique stable configuration by the end of the

epoch. If the epoch is not successful, then we can consider the final configuration as the initial

configuration, because the protocol is self-stabilizing. Thus the analysis of Theorem 4.4.3 holds

for each epoch. The total number of epochs required is then a geometric random variable with

constant success probability, which is O(log n) with high probability (1 − O(1/nc) for any desired

c). Since these epochs were defined to use a fixed amount of O(n) time, the high probability bound

is O(n log n) time. �

4.5. Logarithmic-time protocol

In this section, we show a protocol solving SSR, and thus SSLE, in optimal O(log n) expected

time, using a “quasi-exponential” number of states: exp
(
O(nlogn · log n)

)
. Observation 4.2.6 shows

that to achieve sublinear time, the protocol necessarily must be non-silent: agents change states

forever.

4.5.1. Overview. Intuitively, Sublinear-Time-SSR works as follows. Each agent has a field

name, a bitstring of length 3 log2 n. The n3 possible values ensure that if all agents pick a name

randomly, with high probability, there are no collisions. The set of all name values in the population

is propagated by epidemic in O(log n) time in a field called roster (which has an exponential

number of possible values). Agents update their rank (a write-only output field) only when their

roster field has size n; in this case the agent’s rank is its name’s lexicographical order in the set

roster.

One source of error is that we can start in a configuration with a “ghost name”: a name that

is in the roster set of some agent, but that is not the name of any agent. If there are no collisions
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among actual name’s, this error is easy to handle: eventually we will have |roster| > n, indicating

that there is a ghost name, triggering Propagate-Reset.6

The main challenge is then to detect name collisions. Sublinear-Time-SSR calls a subroutine

Detect-Name-Collision that detects whether two agents have the same name. If so, we call the

same subroutine Propagate-Reset used in Optimal-Silent-SSR, now with Dmax = Θ(log n)

rather than Θ(n) as in Optimal-Silent-SSR. Upon awakening from Propagate-Reset, agents

pick a new name randomly. They use their dormant time, while still in role Resetting, but with

resetcount = 0 while counting delaytimer down to 0, to generate random bits to pick a new

random name.

The bulk of the analysis is in devising an O(log n) time protocol implementing Detect-Name-

Collision. The rest of the protocol outside of Detect-Name-Collision is silent: once the

protocol stabilizes, no name or rank field changes. Indeed, we can implement a silent protocol on

top of this scheme if we are content with Θ(n) time: Detect-Name-Collision can be implemented

with the simple rule that checks whether the name fields of the two interacting agents are equal, i.e.,

direct collision detection. The challenge, therefore, is in implementing Detect-Name-Collision

in sublinear time by indirectly detecting collisions, without requiring agents with the same name

to meet directly. Any method of doing this will necessarily be non-silent.

The protocol Detect-Name-Collision is parameterized to give a tradeoff between stabilizing

time and state complexity. For instance, there is a O(
√
n) time protocol that uses a data structure

with kn bits for a parameter k, i.e., 2kn possible values. Of course, all of the schemes use at least

exponential states, since the field roster has ≈ n3n possible values. However, the faster schemes

will use even more states than this, and their analysis is more complex. This is discussed in more

detail in Section 4.5.3.

The proofs in Section 4.5.2 shows this top-level protocol works as intended, once we have correct

and efficient collision detection from Detect-Name-Collision.

6Eventually we will introduce a tree data structure that also has all the names. However, it is necessary to keep a
separate set roster of names for the following reason. The set roster is propagated in time O(logn), whereas in
slower variants of our algorithm, the tree takes too long to collect the names. For example, in the O(

√
n) time (and

uses less memory) variant, the tree takes time Ω(n) to populate with all names.
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Protocol 4.5 Sublinear-Time-SSR, for agent a interacting with agent b.
Fields: role ∈ {Collecting,Resetting}, name ∈ {0, 1}≤3 log2 n

If role = Collecting, rank ∈ {1, . . . , n}, roster ⊆ {0, 1}≤3 log2 n, |roster| ≤ n, other fields from
Detect-Name-Collision
If role = Resetting, resetcount ∈ {1, . . . , Rmax}, delaytimer ∈ {0, 1, . . . , Dmax = Θ(log n)}
1: if a.role = b.role = Collecting then
2: if Detect-Name-Collision(a,b) or |a.roster ∪ b.roster| > n then
3: a.role, b.role← Resetting, a.resetcount, b.resetcount← Rmax

4: else
5: a.roster, b.roster← a.roster ∪ b.roster
6: if |a.roster ∪ b.roster| = n then . do not set rank until all names collected
7: for i ∈ {a, b} do
8: i.rank← lexicographic order of i.name in roster

9: else . some agent is Resetting
10: execute Propagate-Reset(a,b)
11: for i ∈ {a, b} such that |i.resetcount| > 0 do
12: i.name← ε . clear names while propagating the reset signal
13: for i ∈ {a, b} such that i.resetcount = 0 and |i.name| < 3 log2 n do
14: append a random bit to i.name . can be derandomized, see Section 4.6

Protocol 4.6 Reset(a) for Sublinear-Time-SSR, for agent a.
(Called in line 11 of Propagate-Reset.)
1: role← Collecting
2: roster← {name}

4.5.2. Proofs for Sublinear-Time-SSR. We will first prove a series of Lemmas about

the behavior of Propagate-Reset, which will show that if Detect-Name-Collision works as

intended to detect collisions in O(TH) time, then Sublinear-Time-SSR will solve self-stabilizing

ranking in O(TH) time.

We call a configuration non-colliding if all agents have distinct names (a.name 6= b.name for all

a, b ∈ A) and |a.name| = 3 log2 n for all a ∈ A. This ensures any Resetting agents have generated

enough random bits to have picked a new name, and all new names are unique. We first reason

about awakening configurations, which we show are non-colliding with high probability.

Lemma 4.5.1. With high probability 1−O(1/n), from a partially triggered configuration, we reach

an awakening, non-colliding configuration.

Proof. By Theorem 4.3.4, we reach an awakening configuration after O(Dmax) time. Also, for

Θ(Dmax) time, all agents will be dormant (with resetcount = 0 and decrementing delaytimer).
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By standard Chernoff bounds for appropriate choice of constant Dmax = Θ(log n), all agents will

be dormant for long enough to generate all 3 log2 n bits of a new name, with high probability.

In this case, each agent has a uniform random name out of all O(n3) possible bit strings. The

probability of any arbitrary pair of agents choosing the same name is O(1/n3), by union bound

over all pairs of agents, the probability of name collision is O(1/n). Thus with high probability

1−O(1/n), the awakening configuration we reach is non-colliding. �

Now we can appeal to the roll call process to show that from an awakening, non colliding

configuration, we quickly get to unique ranks.

Lemma 4.5.2. From an awakening, non-colliding configuration, we reach a configuration with

unique ranks in O(log n) time with high probability 1−O(1/n).

Proof. The agents update their field roster by taking unions, so the process of all agents

getting a complete roster is exactly the roll call process. By Lemma 4.2.9, this finishes within

3 lnn parallel time with high probability 1 − O(1/n). Once every agent has all n unique names

in their roster, they choose unique ranks by the lexicographic order of their name, in line 8 of

Sublinear-Time-SSR. �

Note that if we were using simple direct interactions to detect name collisions, then this unique

rank configuration would be silent and stable. For the actual algorithm, we must later prove a

safety condition, that Detect-Name-Collision will never falsely detect a collision in this stable

configuration, shown as Lemma 4.5.4.

There are now two different errors that we must quickly detect. One is name collisions, which

we will handle in the next section with Detect-Name-Collision. The other is “ghost names”.

We say a configuration is ghostly if some roster set contains a ghost name, i.e., if

⋃
a∈A

a.roster 6⊆ {b.name | b ∈ A} .

If the configuration is non-colliding, then it is easy to detect ghost names, because the full set of

names will be larger than n. Thus we can again appeal to the roll call process to show we quickly

detect an error in this case.
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Lemma 4.5.3. Starting from a ghostly and non-colliding configuration, we reach a partially triggered

configuration after O(log n) time with high probability 1−O(1/n).

Proof. The agents update their field roster by taking unions, so the process of all agents

getting a complete roster is exactly the roll call process. By Lemma 4.2.9, this finishes within

3 lnn parallel time with high probability 1 − O(1/n). Because the configuration is ghostly and

noncolliding, the total number of distinct names in the rosters is > n. Once some agent has

roster > n, they will become triggered by line 3 of Sublinear-Time-SSR. �

4.5.3. Fast Collision Detection. In Sublinear-Time-SSR, both Propagate-Reset and

filling all agents’ roster take O(log n) time, so the time bottleneck is waiting to detect a name

collision. If we simply wait for two agents with the same name to meet to detect a collision, this

will take Θ(n) time in the worst case, which would give a Θ(n) time silent algorithm.

The goal of Detect-Name-Collision is to detect these names collisions in sublinear time.

Because of the lower bound of Observation 4.2.6, this protocol must not be silent. Detect-Name-

Collision will have to satisfy two conditions. In order to allow O(log n) time convergence, from

any configuration with a name collision, some agent must detect this collision in O(log n) time to

initiate Propagate-Reset. Second, to ensure the eventual ranked configuration is stable, it must

satisfy a safety condition where from a configuration with unique names, no agent will ever think

there is a name collision.7

As a warm-up to the full O(log n)-time protocol of Detect-Name-Collision, consider the

following simpler O(
√
n)-time protocol. Each agent keeps a dictionary keyed by names of other

agents they have encountered in the population. Whenever agents a and b meet, they generate a

random shared value sync ∈ {1, . . . , k}, which a stores in its dictionary keyed by the name of b,

and b stores in its dictionary keyed by the name of a. If the two agents disagree on this sync value

at the beginning of an interaction, they declare a name collision.

From a configuration with two agents a and a′ who share the same name, within O(
√
n) time,

some agent b will interact with both a and a′ (assume b first interacts with a, then a′). With

probability 1 − 1
k , the sync value that b generates with a will disagree with the sync value that a′

7The initial configuration could have unique names, but with auxiliary data adversarially planted to mislead agents
into believing there is a name collision, triggering a reset. So the actual safety condition is more subtle and involves
unique-name configurations reachable only after a reset.
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has with b. Thus when b then meets a′, it is able to detect a name collision. Also note that from a

configuration with unique names, an invariant is maintained that all pairs of agents agree on their

corresponding sync values, giving the required safety property.

The actual protocol Detect-Name-Collision is a generalization of this idea. The agents now

store a more complicated data structure: a tree whose nodes are labelled by names. See Figure 4.2

for an example. The root is labelled by the agent’s own name, and every root-to-leaf path is simply

labelled, meaning that each node on the path contains unique names (it is permitted for the same

name to appear on multiple nodes in the tree, but neither of these nodes can be an ancestor of

the other). Each edge is labelled by a sync value. The intuition is that these paths correspond to

histories: chains of interactions between agents, where the sync values on the edges were generated

by the interaction between that pair of agents. For instance, if a has a path a 3−→ b
5−→ c

7−→ d, the

interpretation is that when a last met b, a and b generated sync value 3, and in that interaction,

b told a that when b last met c, b and c generated sync value 5, and in that interaction, c told b

that when c last met d, c and d generated sync value 7. In particular, it could be that c and d have

interacted again, generating a different sync value than 7, before a and b interact, but b has not

heard about that interaction. See Fig. 4.2 for an example showing how this information is built up.

Protocol 4.7 Detect-Name-Collision(a,b) for Sublinear-Time-SSR, for agent a, b.
Fields: tree: depth H, root labelled name, other nodes have node.name ∈ roster. Edges have
edge.sync ∈ {1, . . . , Smax = Θ(n2)} and edge.timer ∈ {0, . . . , TH}. The parameter TH = Θ(H ·
n1/(H+1)) for H = O(1) and TH = Θ(log n) for H = Θ(log n) (we need TH = Θ(τH+1) as in
Lemmas 4.2.10 and 4.2.11).

1: for (i, j) ∈ {(a, b), (b, a)} do
2: for every path (i.e1, . . . , i.ep) in i.tree with i.e1.timer, . . . , i.ep.timer > 0 and last node v

with v.name = j.name do . All of i’s histories about j that aren’t outdated
3: if Check-Path-Consistency(j, (i.e1, . . . , i.ep)) = Inconsistent then
4: Return True . collision detected
5: x← chosen uniformly at random from {1, . . . , Smax} . Choose new sync value
6: for (i, j) ∈ {(a, b), (b, a)} do . Update trees to share new information
7: if i.tree has node v at depth 1 with v.name = j.name then
8: Remove the subtree rooted at v from i.tree
9: Add j.tree (to depth H − 1) as a subtree of i.tree via new edge e from the root

10: e.sync← x, e.timer← TH

11: for i ∈ {a, b} do . Keep the trees simply labelled
12: remove from i.tree all subtrees with root labelled with i.name
13: for each edge e in a.tree and b.tree do
14: e.timer← max(e.timer− 1,0)
15: Return False . no collision detected
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The O(
√
n) time algorithm above can be thought of as a tree of depth 1, where each agent

stores only the names and sync values of the agents it has directly interacted with. The general

algorithm has a tree of depth H, which allows agents to hear about other agents’ sync values

through longer chains of interactions. In line 3 of Detect-Name-Collision, each agent checks

any paths ending at the name of the other agent (the additional fields edge.timer are a technicality

to handle certain adversarial initial conditions, see Lemma 4.5.5). Intuitively, they require the other

agent to show information that is logically consistent with this path, formalized in the conditions

of Check-Path-Consistency. To detect a name collision between agents a and a′, it will now

suffice for some agent b to have heard about agent a before meeting a′. With constant probability,

the duplicate agent a′ will not have any sync values that are logically consistent with this path,

and b will declare a collision. Allowing longer paths decreases the time it takes for this information

to travel between a and a′. Because the paths that spread information in the epidemic process have

length at most O(log n) with high probability (see Lemma 4.2.11), once we take H = O(log n), in

the O(log n) time it would take for an epidemic starting at a to reach a′, some agent will detect a

collision in this way.

Protocol 4.8 Check-Path-Consistency(j,P) for Detect-Name-Collision, for agent j veri-
fying path P = (i.e1, . . . , i.ep)

1: q ← min{q′ | ∃(j.ep, . . . , j.eq′) in j.tree} . (j.ep, . . . , j.eq) is a root-to-leaf path
2: for edge j.e ∈ (j.ep, . . . , j.eq) do
3: if j.e.sync = i.e.sync then
4: Return True
5: Return Inconsistent

4.5.4. Proofs for Detect-Name-Collision. We first argue the safety condition, that

configurations with unique names will not return false collisions. We start by arguing about awak-

ening, non-colliding configuration, where every agent will execute Reset and initialize a tree only

containing the root with their unique value of name. Here every value node.name in an agent’s tree

will refer to the name of some unique agent. We will sometimes abuse notation and use a to refer

to both an agent and the unique name held by that agent.

We now show that from this initialized setting, no collisions are ever detected, ie. there are no

“false positives”. See Figure 4.2 for an example of why collisions are not detected started from an

awakening configuration.
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Figure 4.2. Example executions building up trees in agents, starting from a “clean” configuration with singleton
trees. Red sync values are those that are newly generated or communicated in the preceding interaction. As an
example of how agents check for consistency, when a and d interact, before updating their trees, d checks any paths p
that end with a (here there’s just one, d 3−→ c

2−→ b
1−→ a) against a’s corresponding path, which is a’s longest reversed

suffix of p. In the example on the left, a’s reverse suffix is a 1−→ b, with just a single edge that matches the final sync
value in this path p, so Check-Path-Consistency will return True after checking the first edge. In the example
on the right, a’s reverse suffix is a 7−→ b

2−→ c. The first edge a 7−→ b does not match d’s tree, because agents a and b
generated the new sync value 7 in a later interaction. However, in that interaction, a added the edge b 2−→ c, hearing
about the b-c interaction with sync value 2 that matches the path in d’s tree. Now Check-Path-Consistency will
return True after checking the second edge.
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Lemma 4.5.4 (Safety after a correct reset). An awakening, non-colliding configuration is safe:

Detect-Name-Collision will return False in all future reachable configurations.

Proof. Observe that because the configuration is non-colliding, every name used to label the

nodes in all trees uniquely correspond to one agent in the population. Also, because the configuration

is awakening, every agent will at some point start with an empty tree. Thus every edge e = (i, j)

in the tree of any agent corresponds to some interaction between agents i and j, who randomly

generated the sync value x = e.sync.

Now consider any time we run Check-Path-Consistency(j, P ), for a simply labelled path

P = (i.e1, . . . , i.ep) in the tree of agent i, checking this path against agent j. We prove this returns

True, arguing by induction on the length p of the path.

Base case for paths of length p = 1: i.e1 corresponds to the last interaction between i and j,

where they agreed on a sync value i.e1.sync = j.e1.sync. Thus j will still have a matching edge

j.e1 in its tree, with the same sync value, causing it to return True.

Induction step for paths of length p ≥ 2: Let i.e1 = (i, a), where a is the unique agent with the

other name on this edge, and i.ep = (b, j), where b is the unique agent with the other name on this

edge. (Note that for p = 2, a = b.) Consider which of the two pairs (i, a) and (b, j) interacted most

recently.

In the first case, assume (i, a) had the more recent interaction than (b, j), at some time Tia

before the current time Tij . The path P in i.tree goes from the root to node a, so a has a

path P ′ = (a.e2, . . . , a.ep) ending at j that is a length-(p − 1) suffix of P , which gets copied to

i.tree in this interaction (line 9 in Detect-Name-Collision). Now consider a hypothetical

interaction scheduled instead between a and j at time Tia, when a has the path P ′ in a.tree. By

the induction hypothesis, in this hypothetical (a, j) interaction, Check-Path-Consistency(j, P ′)

would return True, so j has some reverse suffix (j.ep, . . . , j.eq) with a matching edge j.e where

j.e.sync = a.e.sync = i.e.sync. Also, because agents b and j do not interact between times Tia and

Tij , this path will not change in j.tree. Thus Check-Path-Consistency(j, P ) will also return

True at the time Tij .

The second case is mostly symmetric. Assume (b, j) was more recent than (i, a), at some time Tbj

before the current time Tij . Now consider a hypothetical interaction scheduled instead between i and

b at time Tbj . i has the prefix P ′ = (i.e1, . . . , i.ep−1) ending at b, and Check-Path-Consistency(b, P ′)

145



would return True, so b has some reverse suffix S′ = (b.ep−1, . . . , b.eq) with a matching edge b.e where

b.e.sync = i.e.sync. Also, because agents i and a do not interact between times Tbj and Tij , the

path P ′ will not change in i.tree. In the actual interaction between b and j at time T , this re-

verse suffix S′ gets copied to j.tree, so j has a suffix S = (j.ep, j.ep−1, . . . , j.eq), which does not

change because j has no further interactions with b. Thus Check-Path-Consistency(j, P ) will

also return True at the current time, via the edge e in this suffix S. �

In a non-self-stabilizing setting, where we could assume the agents are initialized with empty

trees, Lemma 4.5.4 would have been sufficient. However, there is the possibility of adversarial initial

conditions that do not have any collisions, but where agents are initialized with inconsistent trees

that could falsely detect a collision in a later interaction. It could take up to linear time for the

pair of agents with inconsistent data to meet.

In order to circumvent this issue, we add the field edge.timer to each edge. From such an

adversarial initial condition, once edge.timer has counted down to 0 for each edge coming from

the initial condition and not a true interaction, then by the check on line 2 of Detect-Name-

Collision, no paths from the initial data will ever get checked. Note that paths whose timers have

hit 0 can still be used as verification in Check-Path-Consistency, which is essential to ensure

correctness, but only if the reverse path still has positive timers.

The following lemma shows that starting from any non-colliding configuration, once all initial

timers have run out, either we will have detected a collision, or we will have reached a situation

where Lemma 4.5.4 can apply to give safety in all reachable configurations. It reasons about O(TH)

time, where TH is the parameter giving the maximum value of the edge.timer.

Lemma 4.5.5 (Safety from all configurations). Starting from any non-colliding configuration C,

after O(TH) time, with probability 1−O(1/n), either some agent has become triggered, or we reach

a configuration C0 that is safe: Detect-Name-Collision will return False in all future reachable

configurations.

Proof. First we argue that after O(TH) time, with high probability, all timers that correspond

to edges from the initial configuration have reached 0. Define E as the set of all edges in the trees

of any agents in the initial configuration. For each agent a, define m(a) = max{e.timer : e ∈

E ∩ a.tree}, i.e. the largest timer value corresponding to an edge that agent has that came
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from the initial configuration, so is possibly corrupted initial data. Note that because agents

share edges in their interaction, and also all edge timers decrement, these counts m update via

m(a),m(b)← max(m(a)− 1,m(b)− 1, 0). So m is a “propagating” variable of the exact type ana-

lyzed in Propagate-Reset. By Lemma 4.3.3, setting Rmax = TH , we have maxam(a) = 0 with

high probability in time O(TH).

Note that before these timers have all run out, it is possible for some agent to return True from

Detect-Name-Collision, and thus become triggered. Also, if the configuration is ghostly, then

some agent will become triggered in O(log n) time with probability 1 − O(1/n) by Lemma 4.5.3

(since the configuration is non-colliding), so we can now assume there are no ghost names. But if

no agent has become triggered, then after O(TH) time we will reach a configuration C0 where every

remaining edge that was originally present in C has edge.timer = 0.

Now we wish to show that C0 is safe. Consider a coupled configuration Cempty, which is identical

to C0, except every tree only contains the root, i.e., is in the state just after executing Reset. Let

D′ be the configuration where we follow the exact same execution that reached D starting from

configuration C0. We start by arguing that Cempty is safe, then use this to argue that C0 is safe.

Note that Cempty is reachable from an awakening and non-colliding configuration (if all agents

immediately executed Reset before future interactions). Thus we can apply Lemma 4.5.4 to show

Detect-Name-Collision will return False from every interaction possible from D′, i.e., Cempty is

safe. It remains to argue that C0 is safe.

Now consider some interaction between agents i and j in configuration D, where they then

instantiate Check-Path-Consistency on some path P in i.tree. In this case, every edge in

P has edge.timer > 0, so these all correspond to interactions that happened in the execution

sequence from C0. Because Check-Path-Consistency returns True in the coupled configuration

D′, there must be some matching reverse path in j.tree. This same path will also be present in D,

so Check-Path-Consistency also returns True, whence C0 is safe. �

Lemma 4.5.6 (Fast Detection). If the configuration is colliding, then Detect-Name-Collision

returns True for some pair of agents in expected O(TH) time. When H = Θ(log n), it also takes

O(TH) with high probability 1−O(1/n).
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Proof. Let a, a′ be two agents with a.name = a′.name. Consider the bounded epidemic process

with agent a as the source and a′ as the target, and time τH+1 as defined in Lemma 4.2.10. At exactly

time τH+1, there will first be a sequence of interacting agents P = (a, x1, x2, . . . , xh, a
′) with h ≤ H,

where a interacted with x1, then x1 interacted with x2, etc. Let b = xh be the agent that interacted

with a′. In the case where H = O(1), Lemma 4.2.10 gives E[τH+1] = O(Hn1/(H+1)) = O(TH),

so τH+1 = O(Hn1/(H+1)) with constant probability by Markov’s inequality. In the case where

H = Θ(log n), we use Lemma 4.2.11 to instead say τH+1 = O(log n) = O(TH) with high probability

1−O(1/n2).

Let b be the agent that interacts with a′ on this path. Then there is a sequence of interacting

agents Q = (a, x1, . . . , xh−1, b), ie. the prefix of P without the final agent a′. There are h ≤ H agents

before b, which is at most the maximum depth of b.tree. Because of this history of interactions,

b.tree will contain a node labelled a at depth h, whose edges have sync values corresponding to the

various interactions in Q, i.e., b’s tree has a root-to-leaf path Qr = (b, xh−1, . . . , x1, a) that is the

reverse of Q.

We will now justify that all edges in Qr have edge.timer > 0, which will follow because we have

only waited O(TH) time. As the sequence of interacting agents P grows from a to a′, we consider the

number of interactions from the agent at the current front of the sequence. This will give the number

of times the edges on the eventual path Qr in b.tree have decremented edge.timer. By standard

Chernoff bounds, there will be at most O(TH) of these interactions within O(TH) parallel time with

very high probability 1−exp(−Θ(n)). Since the initial value of edge.timer = TH , it follows that all

edges for path P in b.tree still have positive timers. Thus by line 2 in Detect-Name-Collision,

in the interaction between b and a′, they will instantiate Check-Path-Consistency with this

path Qr in b.tree.

a′ has not interacted with any of the agents a, x1, . . . , xh−1, so it has not had any interactions

where it would learn any sync values of the path. Thus for each edge, the probability of a′ having

a matching sync value is at most 1
Smax

= O
(

1
n2

)
. Then taking the union bound over the whole

path of length at most O(log n), a′ does not have any matching sync values with high probability

1 − O(log n/n2). So with high probability, Check-Path-Consistency returns Inconsistent, and

Detect-Name-Collision returns True as desired.
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In the case where H = O(1), the probability of all required events was at least some constant.

Thus, we repeat the argument until Detect-Name-Collision returns True, an expected constant

number of times, to conclude that Detect-Name-Collision returns True in expected O(TH)

time. In the case where H = Θ(log n), we have stronger high probability 1−O(1/n) for all required

events, so we can in addition conclude that Detect-Name-Collision returns True in O(TH) time

with high probability 1−O(1/n). �

Section 4.5.4 proves that Detect-Name-Collision works in O(TH) time, and also satisfies

required safety conditions that ensure there are no “false positives” where collisions are detected

from configurations with unique names. These results will let us prove the main theorem about the

behavior of Sublinear-Time-SSR:

Theorem 4.5.7. Sublinear-Time-SSR uses exp
(
O(nH) log n

)
states.

When H = O(1), Sublinear-Time-SSR solves self-stabilizing ranking in expected O(H ·

n1/(H+1)) time, and O(H · log n · n1/(H+1)) time with high probability 1−O(1/n).

When H = Θ(log n), Sublinear-Time-SSR solves self-stabilizing ranking in time O(log n), in

expectation and with high probability 1−O(1/n).

Proof. We first count the number of states by counting the number of bits each agent must

store. The main memory cost comes from the field tree, which has depth H, and each node can

have at most n children, so will have O(nH) nodes. Each node uses O(log n) bits for node.name,

and each edge uses O(log n) bits for edge.sync and edge.timer. Thus the tree uses O(nH log n)

bits. Compared to this, all other fields in the protocol are negligible, so it follows that the protocol

uses O(nH log n) bits, or exp
(
O(nH) log n

)
states.

We now argue that Sublinear-Time-SSR solves self-stabilizing ranking. By Corollary 4.3.5,

we only have to consider initial configurations that are fully computing or awakening. We first

consider fully computing configurations that are colliding. Here by Lemma 4.5.6, the configuration

becomes triggered in O(TH) time. When H = O(1), this is in expectation (and thus with constant

probability by Markov’s inequality). When H = Θ(log n), this is with high probability 1−O(1/n).

We next consider fully computing configurations which are non-colliding. By Lemma 4.5.5, after

O(TH) time we reach either a partially triggered configuration, or a safe configuration. In the case

where we reach a safe configuration, there were no ghost names, so every agent has |roster| = n
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and will have unique ranks based on the lexicographic ordering of roster. Thus we have a stable

ranked configuration.

We finally argue about awakening configurations. By Lemma 4.5.1, this awakening configura-

tion is non-colliding with high probability 1 − O(1/n). In this case, by Lemma 4.5.2, we reach a

configuration with unique ranks in O(log n) time, which is again a stable ranked configuration, since

by Lemma 4.5.4 this configuration is also safe.

For the time bounds, when H = Θ(log n), we have TH = O(log n), and all probability bounds

were high probability 1−O(1/n), so we use O(log n) time in expectation and with high probability.

When H = O(1), we have TH = O(H ·n1/(H+1)), and we stabilize in O(TH) time with constant

probability. Then we can consider “epochs” of O(TH) time, where we declare an epoch successful

if it stabilizes. Each epoch has a constant probability of being successful, so the expected number

of required epochs is constant, giving an expected O(H · n1/(H+1)). With high probability 1 −

O(1/n), the required number of epochs is O(log n), giving time O(H · log n · n1/(H+1)) with high

probability. �

4.6. Derandomization of Protocols

Note that our model as defined allowed random transitions. However, this was simply for ease

of presentation, and the randomness can be simulated through standard “synthetic coin” techniques

that exploit the randomness of the scheduler.

We only used randomness in the Reset for Sublinear-Time-SSR, to generate a name uni-

formly from the set {0, 1}3 log2 n. We show one approach for how an agent can collect O(log n)

random bits to generate this name.

This approach was inspired by a similar technique from [158], but substitutes their “space

multiplexing” (splitting the population into two approximately equal-size subpopulations A and F ,

which is not clear how to implement in a self-stabilizing manner) with “time-multiplexing”. On

each interaction the agent switches between two roles: “normal algorithm” role (Alg), and “coin flip”

role (Flip). When an agent needs a random bit, it waits until it is role Alg and its partner is role

Flip. If Alg is the initiator, this represents heads, and if Alg is the responder, this represents tails.

This decouples any dependence of the coin flips on each other or on the state of the agent being

interacted with. It also incurs an expected slowdown of factor only 1/4 per bit (since each agent
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requiring a random bit waits expected 4 interactions until it is in role Alg and the other is in role

Flip). Thus, by the Chernoff bound, with high probability, the actual slowdown over all O(log n)

bits is at most of factor 1/8.

Thus the agents can become inactive during Reset for the O(log n) interactions it takes to

generate enough random bits to create a new name.

Our constructions here relied on initiator / responder asymmetry as the source of randomness.

It would also be possible to avoid this capability and use a symmetric synthetic coin technique as

described in [5]. In that case, our protocols would be almost entirely symmetric, with one exception:

the slow leader election L,L → L,F required as part of Reset used in Optimal-Silent-SSR.

This line itself could use the symmetric synthetic-coin to be simulated with symmetric transitions,

leading to entirely symmetric protocols.

4.7. Conclusion and Perspectives

For the first time, we addressed time-space trade-offs of self-stabilizing leader election and rank-

ing in population protocols over complete graphs. We emphasize that solving these problems,

while ensuring such a strong form of fault-tolerance, necessitates linear states and strong nonuni-

formity (Theorem 4.2.1). Other forms of “strong” fault-tolerance, such as Byzantine-tolerance [108]

or loosely-stabilizing leader election with exponential holding time (a period of time where a

unique leader persists after stabilization) [113,160], similarly necessitate Ω(n) states. By contrast,

a sublinear number of states suffices for many non-fault-tolerant protocols (cf. [11]) and weaker

forms of tolerance, such as loosely-stabilizing leader election with polynomial holding time [160]

or tolerance to a constant number of crashes and transient faults [75].8

To conclude, we propose several perspectives.

Time/space tradeoffs. It is open to find a subexponential-state sublinear-time self-stabilizing

ranking protocol. Observation 4.2.6 states that any sublinear time SSR protocol is not silent.

Sublinear-Time-SSR is non-silent because it perpetually passes around information about agents’

recent interactions with each other, as a way to detect name collisions without requiring the agents

with equal names to meet directly. Even when limiting the tree of interactions to depth 1, this

results in an exponential number of states, since each agent must maintain a value to associate

8Recall that self-stabilization tolerates any number of transient faults.
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to every other agent in the population. Thus, a subexponential-state protocol (if based upon fast

collision detection) would somehow need to embed enough information in each agent to enable fast

collision detection, while somehow allowing the agent to forget “most” of the information about its

interactions. Furthermore, our strategy of using the set roster of all names to go from unique

names to unique ranks fundamentally requires exponential states.

Ranking vs. leader election. Ranking implies leader election (“automatically”), but the

converse does not hold. In the initialized case where we can specify an initial state for each agent,

it is possible to elect a leader without ranking, using the single transition `, ` → `, f (using too

few states for the ranking problem even to be definable). Though any self-stabilizing protocol for

leader election must use at least n states [54] (Theorem 4.2.1 here), it is not the case that any SSLE

protocol implicitly solves the ranking problem. (See Observation 4.2.5.) It would be interesting

to discover an SSLE algorithm that is more efficient than our examples because it does not also

solve ranking.

Initialized ranking. In the other direction, consider the ranking problem in a non-self-

stabilizing setting. Without the constraint of self-stabilization, there is no longer the issue of ghost

names. Compared to self-stabilization, it may be easier to find an initialized ranking protocol that

still uses polylogarithmic time, but only polynomial states.

Initialized collision detection. The core difficulty of Sublinear-Time-SSR is collision

detection: discovering that two agents have been assigned the same name without waiting Θ(n)

time for them to interact directly. It would be interesting to study this problem in the (non-self-

stabilizing) setting where an adversary assigns read-only names to each agent, but the read/write

memory can be initialized to the same state for each agent. Can a name collision be detected in

sublinear time and sub-exponential states?
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CHAPTER 5

Message Complexity of Population Protocols

This chapter is joint work with Talley Amir, James Aspnes, David Doty and Mahsa Eftekhari.

It was originally published as [15].

5.1. Introduction

The original population protocols model [19] limited the agents to O(1) states, independent of

the population size n. This limited the computational power (to only semilinear predicates [20]) and

the time efficiency possible in performing fundamental tasks (such as the linear-time lower bound

for leader election [88]). Recent work has generalized to ω(1) states, increasing with n, finding more

efficient algorithms for fundamental tasks (e.g., [5,6,10,13,40,99,100,120,158]). Is the improved

performance a consequence of higher communication throughput or higher local storage capacity?

The original model supposes that agents can view the entirety of the other’s local state upon

interacting with another agent, which we call an open protocol. We introduce a new variant of this

model that draws a distinction between the state of the agent and the segment of the state that is

externally visible to its interacting partner, called the message. This variant generalizes previous

work in the context of consensus that examines the particular case of binary signaling [18,138],

where the message is limited to a single bit. We study the computational power of population

protocols that have O(1) message complexity and varying local state complexity, ranging from O(1)

to unbounded.

5.1.1. Motivation. The population protocol framework was conceived to model passively mo-

bile ad hoc sensor networks. In this setting the amount of communication bandwidth can be a tighter

constraint than the local computation performed by a sensor. These two constraints—bandwidth

efficiency and energy efficiency—are viewed as distinct in the networking literature. In some sce-

narios it makes more sense to optimize for one or the other, or to strike a balance [76,125,163].

The restriction to O(1) messages but ω(1) internal states is germane when the communication in

an interaction is more costly than the accompanying local computation.
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Synthetic chemistry is another domain in which population protocols are an appropriate ab-

stract model of computation. They are a subclass of chemical reaction networks, which are known

to have similar computational power [63,151]. Using a physical primitive known as DNA strand

displacement [171], every chemical reaction network with O(1) species (states in the language of

population protocols) can be theoretically implemented by a set of DNA complexes [152], justifying

the use of chemical reactions as an implementable programming language. Using this approach,

nontrivial chemical systems have been synthesized in the wet lab, resulting in pure DNA implemen-

tations of a chemical oscillator [153] and the “approximate majority” population protocol [22,66].

Some theoretical [142] and experimental [167] systems are able to assemble unbounded-length het-

eropolymers such as DNA in an algorithmic way. For such systems, reactions may best be modeled

as allowing arbitrarily many states (exponential in the polymer length) but only O(1) messages

modeling the smaller “locally visible region” near one or both ends of the polymer.

Finally, our model of ω(1) internal states and O(1) external messages is a natural mathematical

intermediate between the original O(1) states/messages model and the more recent ω(1) states/mes-

sages model. Because population protocols with superconstant states and messages are provably

more powerful [62], it is intrinsically interesting to determine how powerful this new intermediate

model is.

5.1.2. Our Contribution. We introduce this new variant of population protocols and show

three main results:

We first (Section 5.3) completely resolve the question of the computational power of O(1) mes-

sages, with Theorem 5.3.2. In the positive direction, with poly(n) states, we give a simulation of

Ω(1)-bit messages (Theorems 5.3.3 and 5.3.5). Corollary 5.3.9 is an asymptotically sharp negative

result: O(1)-message, o(n)-state protocols compute only semilinear predicates.

Secondly (Section 5.5), we focus on time-efficient computation. We develop novel O(log2 n)-time

algorithms for junta election (the key primitive to leader election) and exact population size counting

(naturally suited to this model, where O(n) local states and O(1) messages are the minimal power

to make this problem solvable). The counting protocol can specialize with fewer states to estimate

the size (count log n), and also generalize with more states to count the entire input configuration

(so any predicate can be locally computed).
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Problem solved Pr[error] Time States |M | Leader
Simulate s(n)-state open
protocol (Corollary 5.3.4) 0 O(tPn

2 log s(n)) O(s(n)2) O(1) Yes
Junta election
(Theorem 5.5.1) > 0 O(log2 n) O(log2 n) 1-bit No

Compute n
(Theorem 5.5.7) > 0 O(log2 n) O(n log2 n) O(1) Yes
Compute log n
(Corollary 5.5.8) > 0 O(log2 n) O(log n) O(1) Yes
Stably compute n
(Corollary 5.5.9) 0 O(log2 n) O(n4 log4 n) O(1) Yes

Leaderlessly compute
n (Corollary 5.5.10) > 0 O(log2 n) O(n polylog(n)) O(1) No
Leaderlessly compute

log n (Corollary 5.5.10) > 0 O(log2 n) O(polylog(n)) O(1) No
Compute d-input

predicate (Corollary 5.5.11) > 0 O(d log2 n) O(nd log2 n) O(1) Yes
TM simulation
(Theorem 5.6.5) 0 unbounded unbounded 1-bit No

Table 5.1. Summary of positive results: Above, the event of “not error” means that the answer
is correct and the stated time and state bounds hold, unless the error probability is 0, in which
case it refers only to the output being correct. In that case, the time and state bounds are in
expectation, but still hold with high probability: in all cases, the probability of error is O(1/n). (It
should be straightforward to extend to O(1/nk) for any k, but for simplicity in proof statements we
fix k = 1.) Note that when the probability of computing the correct output is 1 (i.e. the protocol
stabilizes), the Time column denotes time to convergence. State complexities are accurate with
high probability. |M | is the number of messages, either a constant larger than 1, or exactly 2 (1-
bit). Compute logn means computing either blognc or dlogne. In the first row tP is the expected
convergence time for P .

Thirdly (Section 5.6), we explore the extreme limits of the model where message complexity is

limited to 1 bit. We construct a 1-bit broadcast primitive, showing it is powerful enough to simulate

a Turing Machine with probability 1 correctness using unbounded local memory.

5.1.3. Comparison to existing work and new techniques required. Most protocols us-

ing ω(1) states [5, 6, 10, 35, 36, 42, 43, 44, 53, 83, 99, 100, 132, 133, 158] crucially use ω(1)-size

messages. Key transitions in such protocols involve comparing two integers/ids of size ω(1) in a

single step, which is not possible with O(1)-size messages. Sending a superconstant-size message

over multiple interactions is not efficient (though it is a trick we employ for unbounded time results

such as Theorem 5.3.3), since there is not enough time for the two agents to wait for another inter-

action (which takes Θ(n) expected time), nor is there any way to distinguish each other in future

interactions. We introduce new techniques that rely on timing of internal counters to get around

this limitation.

155



Protocol 5.2, Junta-Election, is our primary fast leaderless protocol, used to make other

leader-driven protocols leaderless. It elects a junta, a group of O(
√
n) agents, in O(log2 n) time.

As with many other existing protocols [40,99,100,158], this is used to drive a junta-driven phase

clock [21] that allows agents to synchronize in a downstream computation. The cited protocols have

agents choose an integer “level” `, propagating by epidemic the maximum level (Θ(log log n) [40,

99,100] as in our case, or Θ(log n) [158]). Agents who chose the maximum level are in the junta.

Lacking the ability to communicate the levels in 1-bit messages, we rely on timing of internal

counters of agents to detect whether a higher level exists: Agents with level ` count up to ≈ 4`,

(roughly) telling all other agents to continue counting up, and stop at ≈ 4`, unless another agent

(with high probability with a higher level) tells them to continue counting. The actual details are

more involved and require intricate choice of timing and analysis to conclude that all agents with

high probability stop at the same counter value.

We push the technique of communication via timing further, showing that only 1-bit messages

suffice to elect a leader, broadcast arbitrary messages, and simulate a Turing Machine.

All of our protocols are uniform (requiring no estimate of n), in contrast to several existing

ω(1)-state protocols [5,6,10,13,35,42,44,53,100,132,133,158]. Many of our protocols could be

simplified greatly by allowing nonuniformity. Briefly, an estimate of log n within a constant factor

allows agents to run a leaderless phase clock in which they count up to c · log n (for some large

constant c), which aids in synchronizing agents in rounds r = 0, 1, 2, . . . based on the number of

times they have counted from 0 up to c log n; the lack of such synchronization is a major challenge

in devising correct, efficient O(1)-message protocols.

5.2. Model

We consider a refinement of the basic model defined in Section 1.2. Now the state of an agent

is explicitly divided into an internal component that is not visible to other agents, and an external

component that is. The internal component of the state is drawn from the state space I and

the external component, or message, is drawn from a message space M . The set of states Q

is the Cartesian product I ×M . The transition function δ is modified to enforce the restriction

that an agent in an interaction cannot observe the internal state of the other agent: δ is now a

function from Q ×M × {initiator, responder} to Q. When an agent in state q1 = 〈i1,m1〉 initiates
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an interaction with an agent in state q2 = 〈i2,m2〉, the new states of the agents are given by

q′1 = 〈i′1,m′1〉 = δ(q1,m2, initiator) and q′2 = 〈i′2,m′2〉 = δ(q2,m1, responder).

The set of producible states Q(n) and the set of producible messages M(n) can both depend on

n. The function s : N → N defined as s(n) = |Q(n)| is the state complexity 1 of a population

protocol. The function n 7→ |M(n)| is the message complexity. If |I| = 1 and each agent’s state

is merely defined by its message (the original model [19] and its superconstant state generalization),

we say the protocol is open, so |Q(n)| = |M(n)| for all n. We will mostly be interested in population

protocols with modest state complexity (at most polynomial in n, and often only polylogarithmic

in n) and constant message complexity. Given two functions s,m : N → N, a s(n)-state, m(n)-

message population protocol is one with state complexity s and message complexity m. Note

that the complexity bounds we discuss are worst-case: s(n) is the most number of states that can

be produced in any population of size n under any execution.

We will also place high probability bounds on the state complexity (such as Protocol 5.2 where

each agent generates a geometric random variable, which may take on any positive integer value).

These are not statements about the set of producible states, so our impossibility results (Theo-

rem 5.3.8) on state and message complexity do not apply.

Some of our protocols utilize an initial leader. Formally, a population protocol is leader-

driven if its states have a Boolean field leader ∈ {L,F} (i.e. the state set Q = {L,F} × Q′),

such that in every valid initial configuration, exactly one agent has leader = L. For this chapter

only, we will slightly modify the definition of parallel time, to now say one unit of parallel time

is n/2 interactions. This scaling ensures in time t, the expected number of interactions that an

agent participates in is also t. Our protocols heavily involve counters where agents count all their

interactions, so it is convenient for the analysis to have time match up to expected interactions in

this way.

1This definition of state complexity abstracts away the space used for the local computation of δ as counted in [62].
It can be thought of as a simpler information-theoretic measure of how many different memory configurations agents
can be in before and after—but not during—their transitions. Also, the space overhead to compute δ will always use
O(log |Q|) bits, so the asymptotic size Θ(log |Q|) of the state space in bits will be unchanged. Because the results
of [62] are all asymptotic statements about the number of bits of memory, they can apply directly.
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5.3. Computability with unrestricted time

In this section we study s(n)-state, O(1)-message protocols, when the time is not restricted.

Theorem 5.3.2 is our main result in this section, which completely characterizes the power of such

protocols in terms of the number of bits required to store the states.

Let CMPP(f(n)) be the set of all predicates stably computed by an s(n)-state, O(1)-message

population protocol, where s(n) = 2O(f(n)) (using O(f(n)) bits of memory) 2. Let SNSPACE(g(n))

be the set of all predicates φ : Nd → {0, 1} decidable by a nondeterministic O(g(n))-space-bounded

Turing machine, when inputs are given in unary.3 The results of [62] considered a similar complexity

class PMSPACE(f(n)) of stably computable predicates using O(f(n)) bits of memory and O(f(n))

bit messages.4 Let SL be the set of all semilinear predicates (see Section 1.3.1). Their main result

is the following characterization:

Theorem 5.3.1 ( [62]). Let f : N→ N. If f(n) = o(log log n), then PMSPACE(f(n)) = SL. If

f(n) = Ω(log n), then PMSPACE(f(n)) = SNSPACE(n · f(n)).

Since the memory is expressed in Theorem 5.3.1 as number of bits (exponentially smaller than

number of states), the multiplicative constants hidden in the O() notation become polynomial-

factor terms in number of states. Theorem 5.3.2 is a similar dichotomy theorem for O(1)-message

population protocols, which is sharper in that it holds for all values of f(n).

Theorem 5.3.2. Let f : N → N. If f(n) = o(log n), then CMPP(f(n)) = SL, otherwise

CMPP(f(n)) = SNSPACE(n · f(n)).

Proof. First note that 2O(f(n))-state O(1)-message population protocols are a special case of

the Passively Mobile Machines from [62] with space bound f(n) (since we assume the space overhead

to compute δ is O(f(n)) bits5). Thus CMPP(f(n)) ⊆ PMSPACE(f(n)).

2Our model formally requires the local computation of δ to take O(f(n)) bits, so here f(n) is the full memory bound
on local computation, as in [62].
3In [62] these are called symmetric predicates on the assumption that the d counts in i ∈ Nd are presented to the
Turing machine as a ‖i‖-length string of symbols from an input alphabet Σ with |Σ| = d, with the same answer on
all permutations of the string.
4In fact, to obtain their positive result for large space bounds, they do not need fully open protocols. Their simulation
of nondeterministic nf(n)-space-bounded Turing machines just requires O(logn) bit messages to exchange unique
IDs, even if f(n) = ω(logn).
5Note even if our definitions were more powerful and the space overhead to compute δ was as large as O(nf(n)) bits,
we could still make the argument of Theorem 5 of [62] to conclude an O(nf(n)) nondeterministic Turing Machine
can simulate an 2O(f(n))-state O(1)-message population protocols, and Theorem 5.3.2 would still hold.
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When f(n) = Ω(log n), we will show via Theorem 5.3.5 and Theorem 5.3.3, that 2O(f(n))-state

O(1)-message population protocols can simulate a open protocols, with a polynomial state overhead

(ie. a constant overhead in f(n) which does not change the definition of the complexity classes).

The ability to simulate large messages then implies PMSPACE(f(n)) ⊆ CMPP(f(n)), and then

using Theorem 5.3.1 we have CMPP(f(n)) = PMSPACE(f(n)) = SNSPACE(n · f(n)).

Finally, when f(n) = o(log n), we have s(n) = 2O(f(n)) = o(n) and we will show via Corol-

lary 5.3.9 that CMPP(f(n)) = SL. Note that our necessary condition s(n) = o(n) in Corollary 5.3.9

is actually even sharper than log(s(n)) = o(log n). �

5.3.1. Leader-driven O(s(n)2)-state, O(1)-message protocols can simulate open s(n)-

state protocols. In this section we show that O(s(n)2)-state, O(1)-message, leader-driven proto-

cols can simulate s(n)-state open protocols (whether leader-driven or not). Thus, allowing a leader

and ignoring quadratic differences in state complexity (see discussion of quadratic blowup below

), there is no difference whatsoever between the computational power of O(1)-message protocols

and open protocols. Theorem 5.3.3 proves the general case of m(n)-message protocols, and Corol-

lary 5.3.4 is the special case of open protocols, where s(n) = m(n). The simulation incurs a time

slowdown of factor n2 logm(n), where n is the population size and m(n) ≤ s(n) is the message

complexity of the simulated protocol, so it helps port computability results from the open protocol

model, but not sublinear time results.

Quadratic state blowup in Theorem 5.3.3. The quadratic state blowup of Theorem 5.3.3

is an artifact of definitional choice, in a sense, owing to each agent a needing to write down the

state of another agent b, bit by bit over many interactions, before a can execute the transition δ.

However, the model from [62] explicitly counts the space required to store the other agent’s message

against the total space required, so there is no space blowup in that case.

Intuitively, the construction of Theorem 5.3.3 chooses two agents to “mark” as initiator and

responder, which then successively pass a bit string as they interact, until they have transmitted

the full message of size logm(n) bits. Crucially, starting with a leader allows only one simulated

transition to be taking place at a time.

Simulation of a population protocol by another. Formal definitions of simulation

in population protocols exist [118,148] (for the strictly more general model of chemical reaction

networks), but such definitions are complex and have to cover many corner cases when applied

159



to arbitrary systems. Since we study just a single simulation construction in Theorem 5.3.3, we

avoid a completely formal definition in this paper. Let P, S be population protocols and cP , cS be

configurations of P and S, respectively. Intuitively, we say that S from cS simulates P from cP

if, for every execution EP of P starting at cP , there is an execution ES of S starting at cS that

“looks like” EP , and furthermore every fair execution ES of S starting at cS “looks like” some fair

execution EP of P starting at cP .

Here, “looks like” is a tricky concept that can be formalized in a few ways. Intuitively, we

imagine that the states of P are projections of the states of S, i.e., each state of S is a pair (p, e),

where p is a state of P and e is extra “overhead” information that S requires for the simulation.

Furthermore, if we project states from ES onto only the first state element p for each agent, and we

remove those transitions that appear null from the point of view of P (i.e., the p portion of the state

does not change in any agent), and we similarly remove null transitions from EP , then the resulting

executions E ′S and E ′P are identical (i.e., go through the exact same sequence of configurations of

P ).

Theorem 5.3.3. For every s(n)-state, m(n)-message protocol P , there is a leader-driven, O(s(n)·

m(n))-state, O(1)-message6 protocol S that simulates P , and each interaction of P takes expected

O(n2 logm(n)) interactions of S to simulate.

Proof. LetMP be the messages of the simulated protocol P , and δP : QP×MP×{initiator, responder} →

QP be its transition function. Intuitively, we will simulate δP by marking two agents to exchange

bit strings over O(log |QP |) interactions, so each learns the message of the other and can locally

compute δP .

We now define Q = I ×M , the state set of the simulating protocol S. The internal state I

contains two fields:

(1) a value p ∈ QP representing the state of this agent in the simulated protocol P

(2) a value mo ∈MP representing a message of the “other” agent. It is easiest to think of the

messages in MP as binary strings in {0, 1}∗, because this field will be built up bit-by-bit

6The message bound is an absolute constant that does not depend on P . By inspecting the messages as defined in
the proof, it is at most 2 · 2 · 3 · 3 = 36 total messages, though some combinations of fields never appear together, so
can be reduced somewhat.
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in interactions to learn the other agent’s full message. Thus, λ (the empty string) will

represent having no information about any other agent’s message.

S is leader-driven, so there is a field leader ∈ {L,F} within the message state M . M also

contains a field token ∈ {True,False}, a field mark ∈ {r, i, u} (responder,initiator,unmarked), and a

field bit ∈ {0, 1, end}.

To represent an initial configuration cP of P , we define the initial configuration cS (with ‖cS‖ =

‖cP ‖) of S as follows. Each agent in S has its field p representing a state in QP in the obvious way,

λ for po, token = False and mark = u (unmarked). Because S is leader-driven, exactly one agent

starts with leader = L.

We now describe the transition function δ of S, at a high level. All non-null interactions are

between an agent with token = True. The leader L, on its first interaction, immediately becomes

a follower F , and the other agent sets token = True.

If the initiator agent has token = True with mark u, then it marks itself as i and the other

agent with r; otherwise it marks itself as r and the other agent with i. The other agent now knows

it is a receiver/initiator in the simulated transition. All agents have null transitions now, except for

two marked agents. (They could be picked in the opposite order on subsequent transitions and still

carry out the following protocol; the initiator-responder distinction in S only matters for the very

first transition of S simulating a transition of P .)

Now, the responder and initiator communicate their messages fromMP one bit at a time, storing

the other agent’s message by appending the received bits to the field po, using the field bit, sending

the value end to indicate their message string has ended. Once both agents have received the other’s

full message, they can compute δP to change their simulated state p. Finally, they both set their

mark value to u, and the agent with token = True sets token = False and leader = L. It is now

ready to pass the token to the next agent it sees to simulate another transition of P .

Note that there is one form of asymmetry in the sense that no agent can have the token twice

in a row; hence the probabilities of transitions S simulates are different from the original transition

probabilities in P . Still, at each new step in the simulation (when an agent who had the token sets

leader = L and then passes off the token), every possible transition can be simulated (since the new

token recipient can pick the old token holder to mark for the next interaction as well, giving them
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either r or i). After this nondeterministic choice, the protocol S stably simulates the transition is

has committed to by the assignment of mark.

Since all possible transitions can be chosen at each step, and the transition will be stably

executed (in expected O(n2 logm(n)) interactions for the i and r mark to meet enough to pass the

whole message), S faithfully simulates P . �

We note that execution probabilities are not preserved by this simulation. The agent with the

token in the current simulated interaction is half as likely to be chosen in the next simulated inter-

action as the rest of the population. Section 5.3 focuses on probability-1 results, which are robust to

this change. By passing the initial token a larger number of times, the agent-pair probabilities are

closer, but not equal, to uniform. We leave open whether there is a simulation as in Theorem 5.3.3

that exactly preserves execution probabilities.

The next corollary applies to open protocols, where each agent’s message is its full state.

Corollary 5.3.4. For every s(n)-state, open population protocol P , there is a leader-driven, O(s(n)2)-

state, O(1)-message population protocol S that simulates P , and each interaction of P takes expected

O(n2 log s(n)) interactions of S to simulate.

It is known that Ω(log n)-state open protocols have computational power beyond that of O(1)-

state protocols (limited to semilinear predicates [20] and functions [63]), and Corollary 5.3.4 grants

this same computational power to leader-driven O(1)-message protocols. Theorem 5.3.8 in subsec-

tion 5.3.4 shows that Corollary 5.3.4 crucially depends on the assumption of an initial leader in the

simulating protocol, by demonstrating that leaderless O(1)-message, o(n)-state protocols are no

more powerful than O(1)-state open protocols.

5.3.2. Leader election can be composed with leader-driven, s(n)-state, O(1)-message

protocols using O(n3 log n) state overhead. Leader election is possible in linear time with 1-bit

messages by “fratricide”: `, `→ `, f . A downstream leader-driven protocol P will not work unaltered

if composed with this leader election, because the presence of multiple leaders prior to convergence

causes incorrect transitions of P . A straightforward fix using O(n) messages involves exact size

counting via transitions `i, `j → `i+j , fi+j (requiring Ω(n) messages) and each transition between

agents with respective values n and i < n resets the latter agent to its initial state in P . At the

moment the last agent is reset with value n, the protocol at that point faithfully executes a tail of an
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execution of P from i, i.e., an execution starting at a configuration c reachable from i. Thus if P is

correct with probability 1, the composed protocol is also correct with probability 1. Theorem 5.3.5

shows how to achieve a similar “composition by resetting” strategy using only O(1) messages.

Protocol 5.1 Stably-Composable-Leader-Election(Agent v seeing message m).
P is the downstream protocol with state set QP , message set MP , and transition function δP :
QP ×MP × {initiator, responder} → QP .
P is leader-driven, with a field leaderP ∈ {L,F} and possible input states ΣP .
State set Q of composed protocol S is QS×QP , where QS = N×N×N×ΣP×MS is the overhead of
the composition. The fields are named c0 ∈ N, c1 ∈ N, count ∈ N, iP ∈ ΣP (representing the input
symbol for protocol P ), andMS has fields role ∈ {L,F}, phase ∈ {0, 1} and signal ∈ {restart, go}.
initial state of agent v: c0 = c1 = count = 0, iP = qP = initial input state of v in P , role = L,
phase = 0, signal = restart

1: if v.signal = go and m.signal = go then
2: v.qP ← δP (v.qP ,m, initiator if v is initiator, else responder)

3: if v.role = L and m.role = L then
4: if v is responder then
5: v.role← F . fratricide leader election
6: else
7: reinitialize v . surviving leader goes back to initial state
8: else if v.role = L and m.role = F then . base-station counting from [25]
9: if b = v.phase = m.phase then

10: v.count← 0
11: v.c1−b ← v.c1−b + 1
12: if v.cb = 0 then
13: v.signal← restart . population estimate c0 + c1 has increased
14: v.qP ← v.iP
15: v.leaderP ← L
16: else if v.cb > 0 then
17: v.cb ← v.cb − 1
18: if v.cb = 0 then
19: v.signal← go . all counted agents have been restarted
20: else if v.count ≥ 6c1−b ln c1−b + 1 then
21: v.count← 0
22: v.phase← 1− v.phase
23: else if cv.phase = 0 then
24: v.count← v.count + 1

25: else if v.role = F and m.role = L then
26: v.phase← 1−m.phase
27: v.signal← m.signal
28: if v.signal = restart then
29: v.qP ← v.iP
30: v.leaderP ← F
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Theorem 5.3.5. For any leader-driven, s(n)-state, O(1)-message protocol P , there is a lead-

erless, O(s(n)n3 log n)-state, O(1)-message protocol S (Protocol 5.1) that, after O(n log n) expected

time, executes a tail of an execution of P .

Proof sketch. Briefly, we elect a leader in O(n) time by fratricide. The leader counts the

followers using the O(n log n)-time counting protocol of [25], which is self-stabilizing under the

assumption (proven necessary in [30]) of a “base-station”: a leader that is initialized (starts in a

pre-determined state), though other agents can start in arbitrary states. That paper does not use

the term “self-stabilizing” explicitly, but the assumptions we claimed are stated in their introduction.

In our case, the remaining leader resets to the initial state whenever it kills another leader, so after

the last such transition, the unique leader is initialized, and other agents are in arbitrary states,

exactly the setting handled in [25]. Whenever the leader’s population count increases, it tries to

reset each follower. Once the leader has counted the whole population and knows n, its count will

never change, and it will reset every follower to its initial state of P by direct interaction (using its

knowledge of n to ensure all n− 1 followers are reset), at which point a tail of P executes. �

Proof. First observe that the field role updates via the standard “fratricide” leader election.

Thus there exists some first time t1, (with E(t1) = O(n)), where there is a unique agent a.role =

L. By line 7, a has reinitialized with c0 = c1 = count = phase = 0.

Now agent a acts as the base-station in the self-stabilizing counting protocol of [25], communi-

cating with the other agents via the field phase. In each phase b ∈ {0, 1}, a counts the other agents

it sees in phase = b, moving them into phase 1 − b, decrementing its counter cb (if possible) and

incrementing c1−b. By the results of [25], the count c0 + c1 increases monotonically, and stabilizes

at a maximum value of n− 1 in O(n log n) expected time.

Let t2 be the first time c0 + c1 = n− 1, with a.phase = b. Then c1−b just incremented to n− 1,

and cb = 0 and failed to decrement. The if condition in line 12 was true, so a.signal = restart. In

all future interactions, c0 and c1 accurately count the number of follower agents in each phase, so

the condition of line 12 will never be met again.

Now consider the next time t3 when a changes to phase 1 − b and brings the count c1−b = 0.

By [25] this will also take an expected O(n log n) time. Then, since time t2, a has interacted with

all agents, who now have v.signal = restart. By line 19, a.signal = go for the first time since t2.

Then every agent v who interacts with a will have v.signal = go for all future interactions.
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Let i denote the configuration in protocol P when every agent has their original input state iP ,

alongside a.leaderP = L and v.leaderP = F for all v 6= a. Now observe that when each agent

sets v.signal ← go for the last time, they have the same configuration as in i. They only execute

transitions in P via line 2 with other agents with signal = go.

Let t4 be the next time when every agent has signal = go, and c the configuration within P

at t4. Then the only transitions that have made c different from i were between two agents with

signal = go, who began from an initialized state. Thus c is reachable from the correctly initialized

configuration i. Finally, all future transitions execute δP on both agents, so the composed protocol

now exactly implements P , i.e., executes an execution of P from c, i.e., a tail of an execution from

i.

Note that we assume that (as is the case in most population protocols, even with ω(1) states),

that only a O(1)-size subset Σ of states appear in valid initial configurations, thus iP in Protocol 5.1

gives at most a constant-factor overhead to the simulation. If instead agents could start with more

states, then the factor would be |ΣP |. �

Theorem 5.3.5 depends crucially on using ≥ n states, since Theorem 5.3.8 shows leaderless,

O(1)-message, o(n)-state protocols are no more powerful than O(1)-state open protocols.

5.3.3. Deterministic Broadcast. The construction used in Protocol 5.1 can be modified to

also give the leader the ability to stably broadcast a message to the entire population. After the last

restart, the leader agent a counts the entire population by moving them between phases. We can

view these phases now as deterministically synchronized rounds (each expected timeO(n log n) [25]).

Add a field bit ∈ {0, 1} to the message. The leader a can then communicate a bit string to the

population by sending one bit during each round. This lets the entire population stably compute

the population size n, by having the leader send n as a bit string in O(log n) rounds (stabilizing

in expected O(n log2 n) time). It uses O(log n) state overhead to store the number of bits it has

broadcast, so O(n3 log2 n) states total. We can thus conclude:

Corollary 5.3.6. There is an O(n3 log2 n)-state, O(1)-message protocol that stably computes the

population size n (storing in every agents state), in expected O(n log2 n) time.

Building on the ideas used in Corollary 5.3.6, we can have the leader assign unique IDs to the

agents, for example marking a new unmarked agent in each synchronized round. On top of this
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deterministic broadcast primitive, we could set up a nondeterministic Turing Machine simulation

equivalent to the construction in [62]. This gives a direct constructive proof of Theorem 5.3.2,

rather than relying on the simulation arguments via Corollary 5.3.4 and Theorem 5.3.5.

5.3.4. Leaderless o(n)-state, O(1)-message protocols compute only semilinear pred-

icates. Theorem 5.3.8 is broad and does not apply to a particular “mode of computation” (e.g.,

deciding predicates [19, 20], computing functions [32, 63, 86], leader election [40, 94]). It does,

however, assume a problem-specific notion of valid initial configurations.7 We say a protocol is ad-

ditive if the set of valid initial configurations is closed under addition. This rules out, for instance,

protocols with an initial leader. Indeed, Corollary 5.3.9 is false if an initial leader is allowed, by

applying Theorem 5.3.3 to let a leader-driven O(1)-message protocol simulate any o(n)-state open

protocol that stably computes a non-semilinear predicate/function.8

A lower bound result in [62] shows that with an absolute space bound 9 of o(log n) states, their

model is limited to only stably computing the semilinear predicates.10 The core of their argument

bounds the number of reachable memory states.

Theorem 5.3.7 ( [62]). Let s : N → N and consider an additive, s(n)-state, open population

protocol. Then either s(n) = O(1) or s(n) = Ω(log n).

As a corollary, if s(n) = o(log n), then s(n) is in fact constant, reducing to the original O(1)-state

model, which can only stably compute semilinear predicates [20]. We use a similar proof technique

to show an exponentially stronger result in the model of O(1) messages.

Theorem 5.3.8. Let s : N → N and consider an additive, s(n)-state, O(1)-message population

protocol. Then either s(n) = O(1) or s(n) = Ω(n).

Proof sketch. A fixed population ic suffices to produce any of the O(1) messages. Consider

a population in of size n. If s(n) 6= O(1), then for some state b not producible from in, b is

7For example, for leader election, all agents have the same initial state. For computation of predicates [19] or
functions [32,63], all agents represent “input” from a constant alphabet, with possibly an extra leader.
8For example, transitions (i; `), (i; `) → (i + 1; `), (i + 1; f) and (j; `), (i; f) → (j; `), (j; f), which starting from all
agents in state (1, `), give each agent the value blognc.
9The notion of a state bound has a few different meanings. By “absolute”, we mean that s(n) is the most number
of states producible from any valid initial configuration of size n. Some uniform protocols (those without pre-
programmed knowledge of n) have a space bound s(n) that is only probabilistic, so memory usage can (with low
probability) grow arbitrarily large in a fixed population; for example, see [43,83,99,100] or Protocol 5.2.
10Theorem 14 of [62] states “o(log logn)” bits, which implies o(logn) states, though the converse does not hold.
However, inspecting their proof reveals that the result holds up to log(n)− 1 states.
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producible by sending some message m to a state a producible from in (though a and m cannot

appear simultaneously in a configuration reachable from in). By combining in with ic, we have

a population of size n + O(1) that can produce b. Thus the number of producible states grows at

least linearly with n. �

Proof. If s(n) = O(1) we are done, so assume s(n) grows without bound. Let M(n) (re-

spectively, S(n)) be the set of all messages (respectively, states) producible from a valid initial

configuration of size n. Note |M(n)| = O(1) and |S(n)| = s(n). It suffices to show that for some

constant ε > 0 depending on the protocol, there are infinitely many n such that |S(n)| ≥ εn.

Let c be the smallest population size n such that M(n) is the set of all messages M . We do

not require all messages to be producible simultaneously, only that for each m ∈ M(n), there is

a valid initial configuration im such that m can be produced from im. Let ε = 1/c. Inductively

assume for some n ∈ N+ that |S(n)| ≥ εn. Let n′ = n + c = n + 1/ε. It suffices to show that

|S(n′)| ≥ |S(n)| + 1 = εn + 1 = εn′, i.e., a new state not in S(n) is producible from some valid

initial configuration of size n′.

There is some state b 6∈ S(n) producible by an interaction of an agent in state a ∈ S(n) with

some message m ∈ M . Let in be a valid initial configuration of size n from which a is producible,

and let ic be a valid initial configuration of size c from which m is producible. Define in′ = in + ic,

which is valid because the protocol is additive. Since a is producible from in and m is producible

from ic, a and m are simultaneously producible from in′ . By interacting the agent in state a with

the agent with message m, the state b 6∈ S(n) is produced. Thus |S(n′)| ≥ |S(n)|+ 1. �

Population protocols using O(1) states compute only semilinear predicates [20], resulting in the

following corollary. Since we require additivity of valid initial configurations, the corollary applies

only to leaderless protocols.

Corollary 5.3.9. If a leaderless, o(n)-state, O(1)-message protocol stably computes a predicate φ,

then φ is semilinear.

Corollary 5.3.9 is asymptotically tight by Observation 5.3.10.

Observation 5.3.10. For every ε > 0, there is a leaderless, (εn+ O(1))-state, 6-message protocol

stably computing a non-semilinear predicate.
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Proof. Let c ∈ N+ and consider the protocol where each agent’s internal state is a natural

number k ∈ N, initially 1, representing a number of “balls.” Each message m ∈ {0, 1, c} × {L,F}

represents a number of balls to give away and a leader bit. Each state is a leader bit and a counter k.

Agents conduct leader election by fratricide (L,L→ L,F ). The leaders will collect balls from only

the followers, and only in units of c balls. Thus all followers with counter k ≥ c display the message

m = (c, F ), and only interact with a leader. In this interaction, the leader increments k by c and

the follower decrements k by c. This guarantees the leader’s counter k only actually uses values

{1 + ic : i ∈ N}. Finally, followers with counter 1 ≤ k < c display the message m = (1, F ). If two

agents with m = (1, F ) interact, the initiator gives one ball to the responder (i.e. one increments

k, one decrements k).

It is straightforward to show that eventually this protocol will stabilize to a single leader with

count “about n”: k = 1 + c
⌊
n−1
c

⌋
. The sum of counts are clearly preserved. Followers with k ≥ c

balls must eventually give all units of c balls to the leader, who never decreases its count. While

there are still j ≥ c total balls among the followers, eventually some follower will collect c balls to

give to the leader.

Notice that this protocol can only achieve counter values k ∈ {0, 1, . . . , c, 1 + c, 1 + 2c, 1 +

3c, . . . , 1+c
⌊
n−1
c

⌋
}, thus this counter uses n

c +O(1) states. Counting the 6 messages gives n
6c +O(1)

states.

Finally, the leader can compute some non-semilinear predicate of its count k = 1+ c
⌊
n−1
c

⌋
(e.g.,

whether
⌊
n−1
c

⌋
= 2j is a power of two11), and use its message bit to tell the output to the rest of

the population. (So a follower seeing message m = (i, L) sets its output bit to i.) �

5.4. Timing Lemmas

The following technical lemmas are about the relationship between agents’ local counts and the

global number of interactions, and the time it takes to spread information by epidemic. They are

used in the runtime analysis of our time efficient protocols.

5.4.1. Clock Drift Lemma.

11Our model does not directly count the memory required to compute the transition δ. However, for this argument
the Turing Machine would only need O(1) bits of overhead, storing a counter i to represent 1 + ic, which is a power
of two if and only if its binary expansion matches the regex 10∗. Thus this asymptotic tightness on states holds even
under a stricter state-complexity definition that counts space requirements of local computation.
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Lemma 5.4.1. Consider some interval of an execution of a population protocol with uniform random

scheduling. Let Ais be the indicator variable for the event that agent i is one of the two agents that

interact in step s of this interval. Let Cit =
∑t

s=1Ais be the cumulative number of interactions

involving agent i during the first t steps of the interval. Fix two agents i and j, and let τ be the first

time at which Ciτ + Cjτ = m. Then P [maxt≤τ (Cit − Cjt) > b] ≤ e−b2/2m.

Proof. Because only steps involving at least one of i or j change Cis and Cjs, we can restrict

our attention to the sequence of steps s1, s2, . . . at which at least one of i or j interacts. Let

Xk = Aitk −Ajtk ; then E [Xk | X1, . . . , Xk−1] = 0 and the Xk form a martingale difference sequence

with |Xk| ≤ 1. We also have that Citk − Cjtk =
∑k

`=1X`, so maxt≤τ (Cit − Cjt) > b if and only

if there is some k with tk ≤ τ such that
∑k

`=1X` > b. Define the truncated martingale difference

sequence Yk = Xk if tk ≤ τ and
∑k−1

`=1 X` ≤ b, and Yk = 0 otherwise. Let Sk =
∑k

`=1 Y`.

We have defined Sk so that it tracks Citk −Cjtk until that quantity reaches b+1 or tk reaches τ ,

after which Sk does not change. The condition tk = τ occurs for some k ≤ m, so if Citk−Cjtk reaches

b+ 1 before tk > τ , it must do so for some k ≤ m, after which S will not change, giving Sm = Sk.

So P [maxt≤τ (Cit − Cjt) > b] = P [Sm > b] ≤ e−b2/2m, by the Azuma-Hoeffding inequality. �

Corollary 5.4.2. For any agents i and j, and any m and b, P [∃t : Cit = m ∧ Cjt > m+ b] <

e−b
2/(2m+b+1).

Proof. If Cjt − Cit > b when Cit = m, then there is some first time s at which Cjs − Cis > b.

Because s ≤ t, Cis ≤ Cit = m, and because this is the first time at which Cjs − Cis > b, we have

Cjs = Cis + b+ 1 ≤ m+ b+ 1. So s is a time at which Cis +Cjs ≤ 2m+ b+ 1 with Cjs −Cis > b.

Now apply Lemma 5.4.1. �

5.4.2. Drift Fraction Lemma. Recall that µ units of time is defined as n
2 · µ interactions.

Lemma 5.4.3. Consider some set S of agents and interval of length T = n
2 · µ interactions.

Let L ⊆ S be the subset of S who have less than µ − l interactions during the interval. Then for

εL = 2
√

2 ln(n)/|S|+exp
(
−l2/2µ

)
, P [|L| ≤ εL|S|] ≥ 1−1/n2 and P [|L| = 0] ≥ 1−|S| exp

(
−l2/2µ

)
.

Likewise, let H ⊆ S be the subset of S who have more than µ + h interactions during the

interval, where h ≤ µ. Then for εH = 2
√

2 ln(n)/|S| + exp
(
−h2/3µ

)
, P [|H| ≤ εH |S|] ≥ 1 − 1/n2

and P [|H| = 0] ≥ 1− |S| exp
(
−h2/3µ

)
.
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Proof. For each agent v and step t of the interval, let Av,t be the indicator variable for the

event that agent v is one of the two agents that interact in step t (with P [Av,t = 1] = 2
n). For each

agent v, let Lv, Hv to be the indicator variables for the events that agent v participates in fewer

than µ− l interactions and more than µ+ h interactions, respectively. Then L = {v ∈ S : Lv = 1}

and H = {v ∈ S : Hv = 1}, so S′ = L ∩H.

Let Cv =
∑T

t=1Av,t be the number of interactions in which agent v participates, with E [Cv] =

T · 2n = µ. Since each step is independent, we can apply standard Chernoff bounds on the probability

P [Lv = 1] = P [Cv < µ− l] = P [Cv < µ(1− l/µ)] ≤ exp
(
−(l/µ)2µ/2

)
= exp

(
− l

2

2µ

)
.

Likewise, we can get an upper bound on the probability

P [Hv = 1] = P [Cv > µ+ h] = P [Cv > µ(1 + h/µ)] ≤ exp
(
−(h/µ)2µ/3

)
= exp

(
−h

2

3µ

)
.

Then P [L = 0] ≥ 1− |S| exp
(
− l2

2µ

)
and P [H = 0] ≥ 1− |S| exp

(
−h2

3µ

)
follow simply from the

union bound over all v ∈ S. It is less straightforward to place high probability bounds on |L| and

|H|, because the indicator variables Lv and Hv are not independent. Intuitively, however, they have

negative dependence, since if Lv = 1, that agent had a small number of interactions, making other

agents more likely to have more. We formalize this intuition by showing that the joint distributions

{Lv : v ∈ S} and {Hv : v ∈ S} are each negatively associated, which allows Chernoff bounds to

be applied [92, Section 3.1].

First we show that for fixed t, the distribution {Av,t : v ∈ [n]} is negatively associated, since

precisely two variables will have value 1 and the rest 0. Theorem 2.11 of [116] shows that all

permutation distributions (random variables X1, . . . , Xn whose values are a random permutation

of x1, . . . , xn) are negatively associated. The distribution {Av,t : v ∈ [n]} is a special case of a

permutation distribution where the variables are a random permutation of 0, . . . , 0, 1, 1, and thus

is negatively associated. Therefore the entire distribution {Av,t : v ∈ [n], t ∈ [T ]} is negatively

associated as the union of independent negatively associated variables (over the independent steps

of the uniform scheduler).

Finally, the distribution {Lv | v ∈ S} is a collection of monotone functions each defined on a

disjoint subset of the distribution {Av,s : v ∈ [n], s ∈ [T ]}. This is precisely the property of disjoint
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monotone aggregation ( [92]), which shows that {Lv | v ∈ S} is negatively associated. The same

argument also holds for {Hv : v ∈ S}.

Now we will actually apply Chernoff bounds to the complements |S \ L| =
∑

v∈S(1 − Lv) and

|S\H| =
∑

v∈S(1−Hv), which are justified by negative association. Then by linearity of expectation,

σ = E [|S \ L|] ≥ (1− exp
(
−l2/2µ

)
)|S|.

Now letting δ = 2
√

2 lnn/|S| and εL = δ + exp
(
−l2/2µ

)
, we have

P [|L| > εL|S|] = P [|S \ L| < (1− εL)|S|)]

≤ P
[
|S \ L| < (1− δ)(1− exp

(
−l2/2µ

)
)|S|

]
≤ P [|S \ L| < (1− δ)σ] ,

and we can apply the Chernoff bound to get

P [|S \ L| < (1− δ)σ)] ≤ exp
(
−δ2σ/2

)
≤ exp

(
−δ2|S|/4

)
≤ 1/n2,

where we also assumed σ ≥ |S|/2 since P [Cv ≥ µ− l] > 1/2. Thus P [|L| ≤ εL|S|] ≥ 1− 1/n2.

The same argument, for εH = δ+ exp
(
−h2/3µ

)
also shows that P [|H| ≤ εH |S|] ≥ 1− 1/n2. �

5.4.3. Epidemics. Recall an epidemic process in a population protocol starts with a single

agent infected (i) and all others susceptible (s), and every encounter between an infected and

uninfected agent causes the latter to become infected (i.e., the transition i, s→ i, i).

The following lemma generalizes to a susceptible subset of the population, and considers a

symmetric middle interval of an epidemic process, to be used in the analysis of Protocol 5.2.

Lemma 5.4.4. Consider the two way epidemic process starting from a configuration of n agents with

a = αn infected agents and b = γn ≥ a susceptible agents (and n− a− b agents not participating).

Let T be the number of interactions to reach b+1 infected agents (with a−1 susceptible agents left).

Then T ≤ 5
γn ln

( γ
α

)
with probability 1− (γn)−2.

Proof. The number of infected agents i will increase monotonically from a to b + 1. At each

stage, when there are i infected agents and b+a− i susceptible agents, there are i(b+a− i) pairs of

agents whose interaction increases the number of infected agents, so the next interaction is one of

these with probability pi = i(b+a−i)
(n2)

. Thus T =
∑b

i=aGi where Gi is a geometric random variable
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with parameter pi. Then

µ = E(T ) =
b∑
i=a

1

pi
=

(
n

2

) b∑
i=a

1

i(b+ a− i)
=
n(n− 1)

2(b+ a)

b∑
i=a

1

i
+

1

b+ a− i
=
n(n− 1)

(b+ a)
(Hb −Ha−1)

where Hn =
∑n

i=1
1
i is the nth Harmonic number. Then

µ ≈ n

α+ γ
ln

(
b

a

)
=

n

α+ γ
ln
(γ
α

)
and because γ ≥ α > 0 we can bound

n

2γ
ln
(γ
α

)
≤ µ ≤ n

γ
ln
(γ
α

)
Then by Theorem 2.1 of [115], we have the large deviation bound

P [T ≥ λµ] ≤ exp (−p∗µ(λ− 1− lnλ))

where p∗ = mini pi = ab

(n2)
≈ 2αγ.

Letting λ = 5, λ− 1− lnλ > 2, this gives

P
[
T ≥ 5

γ
n ln

(γ
α

)]
≤ P [T ≥ 5µ] ≤ exp

(
−2αn ln

(γ
α

))
.

Now observe that α ln(1/α) is increasing for all α ∈ (0, 1). Since α ≥ 1/n, we can take this

minimum value to get

P
[
T ≥ 5

γ
n ln

(γ
α

)]
≤ exp (−2 ln(γn)) = (γn)−2.

�

5.5. Computability with polylogarithmic time complexity

In this section we study O(1)-message population protocols when the goal is “fast” computation

(polylog(n) time).

5.5.1. High-probability junta election using 1-bit messages. In this section, we describe

a uniform protocol using 1-bit messages that, with high probability, elects a “junta” of O(
√
n) agents

in polylogarithmic time. The protocol also lets each agent compute an integer k ∈ N+ that is the
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same for all agents and is one of blog lognc, dlog logne, or dlog log ne+ 1. Thus 2k is an estimate of

log n within a multiplicative factor 2.

Furthermore, Junta-Election is composable, in that we can use the protocol as a black box to

initialize other protocols that require either a junta for a phase clock, or an approximation of log n

(e.g. for a leaderless phase clock). Thus, for any nonuniform protocol that requires k-bit messages,

we can compose it with our Junta-Election protocol and achieve a uniform protocol that uses

(k + 1)-bit messages with an additive time overhead of O(log2 n). For example, we can compose

the Junta-Election protocol with the the leader election protocol of [99] using 1
2 -coin flips to

convert the O(
√
n)-size junta to size 1, i.e., elect a unique leader, in expected O(log2 n) time and

O(1) messages, or with majority protocols that use O(1) messages for doubling/cancelling phases,

synchronized by the junta-driven phase clock [36].

Our protocol has a positive probability of failure. It is an open question if there exists an O(1)-

message protocol that can stably (i.e., with probability 1) approximate log n or elect a junta of size

nε for some 0 < ε < 1 in sublinear stabilization time.

Protocol 5.2 Junta-Election(Agent v seeing message m)
initial state of agent:
geometric← 1

2 -geometric random variable (used for estimating level)
v.level← dlog(geometric)e
v.count← 0
v.inJunta← True

1: if v.count = di and v.level ≤ i then
2: if m = Go then
3: v.count← v.count + 1

4: else
5: v.count← v.count + 1

6: if v.count ∈ Gi and v.level ≤ i then
7: v.message← Go
8: else if v.count ∈ Ri and v.level ≤ i then
9: v.message← Stop

10: if v.count ∈ [Gi ∪ Ri] and v.level > i then
11: v.message← Go

12: if v.count = di then
13: v.lognEstimation← 2i

14: v.inJunta← v.level ≥ i

5.5.1.1. High-level description of protocol. The protocol is described formally in Protocol 5.2.

Intuitively, it works as follows. Most other leader/junta election protocols generate an id, where
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the agents generating the maximum id are the junta. In our protocol, we also generate an id (called

level), but O(1) messages prevent direct communication of levels, so we employ a timing-based

strategy for agents to learn the maximum level. The message consists of a single bit, taking values

Go and Stop.

Each agent initially generates a local geometric random variable G (number of fair coin flips

until the first heads, i.e., an immediate heads results in G = 1) and computes its level as dlogGe.

(We can also use synthetic coin techniques [5] to simulate fair coin flips and increment their level

from i to i+ 1 as they flip 2i consecutive tails.)

We define consecutive disjoint intervals G0, R0, G1, R1, . . . ⊂ N (green and red) partitioning the

natural number line. We callRi’s last element di = maxRi a door. (See Figure 5.1, formal definition

below.) Each agent keeps a local counter, initially 0, that is incremented on some interactions. An

agent is in round i if its counter is in Gi ∪ Ri. The goal is to get every agent to count up until

the round equal to the maximum level k generated by any agent and stop its counter at dk. An

agent with level l in round i is eager if i < l and cautious otherwise. Intuitively, eager agents race

through doors until their own level, telling all other agents to keep going, but become cautious at

and beyond their own level, advancing past a door into the next round only if another agent tells

them to do so (via a message m = Go). More formally, an eager agent always sends a message

of Go and increments its counter on every interaction. A cautious agent sends message Go if and

only if its counter is in Gi for some i, increments its counter on every interaction in Gi ∪Ri \ {di}

unconditionally, and increments its counter beyond di if and only if the other agent’s message is

Go. Agents drop out of the junta when they leave their own level, so (assuming no agent leaves the

maximum level) those who generated the maximum level are the eventual junta.

To formally defined the intervals, let c ∈ N+. Each Gi, with |Gi| = c4i, is called a green

interval, Ri, with |Ri| = 3c
2 4i, a red interval. Note that di =

∑i−1
j=0(|Gj | + |Rj |) = c

(
1 + 3

2

)
4i−1
4−1 <

5c
6 4i = 5

6 |Gi|, so |Gi| is larger by a constant multiplicative factor than the union of all the previous

intervals. The max level k is Θ(log log n) with high probability, so its corresponding interval |Gk| =

Θ(4log logn) = Θ(log2 n). Thus, with high probability, the agents will use O(log2 n) states for their

counters and stop at the door dk after O(log2 n) time.

To compose Junta-Election with a downstream protocol P , agents can simply restart P

whenever they move beyond a di, and then wait to start simulating P until they reach the next di+1
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(Restarting is a common technique in distributed computing for composition and is not original

to this paper, e.g., [99].) In the early stages of Junta-Election, the downstream protocol gets

restarted many times, but eventually, all agents will move past dk−1, after which they will restart

the downstream protocol for the last time. The agents will all simultaneously be in the last interval

Gk ∪ Rk before stopping at dk. Thus all simulated downstream interactions of P will be between

agents that agree on k.

G0R0 G1 R1 G2 R2

d0 d1 d2

L = 0 L = 2L = 1

u2 τ2

Figure 5.1. Agents, represented as dots, increment their counters through the
G0, R0, G1, R1, G2, R2 intervals. Agents in green intervals or any interval before their own level
have message Go. Agents in red intervals at their own level or later have message Stop. At the
end of a red interval (the door di, shown with black horizontal line) at their own level or later, the
agents (black dots) wait to increment their counter until they see a message Go. The special times
marked ui, τi are used in proving Lemma 5.5.4.

Theorem 5.5.1. With probability 1 − O(1/n), Protocol 5.2 uses O(log2 n) states and elects

a junta of size O(
√
n) in O(log2 n) time, after which v.count = dk for all agents v, where k ∈

{blog lognc, dlog log ne, dlog logne+ 1}.

Theorem 5.5.1 is proven formally via Lemmas 5.5.2, 5.5.3, 5.5.4, 5.5.5, 5.5.6 in Subsection 5.5.2.

Proof sketch. We must show the agents remain synchronized. By the time the interval

lengths are Ω(log n), we could argue that the number of interactions of each agent are tightly

concentrated enough for agents to by synchronized in the same interval. However, the main challenge

is how to reason about agents that might be stuck behind at a door.

Our argument shows that a constant fraction n/4 of agents stay synchronized in each green

interval, up until near the max level (Lemma 5.5.4). Then, we argue that during the later green

intervals, straggler agents are able to catch up, because they have a constant probability of passing

through each door and the length of the green interval is more than the sum of all previous intervals.

We then show the entire population in synchronized within the last few intervals (Lemma 5.5.5).
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Thus all agents will have a Stop message when the population reaches the final door dk, and the

agents will stop their counters at dk. �

Our proof techniques require setting |Gi| = 700·4i. However, simulation results (Figure 5.2) show

successful convergence when |Gi| = 16 ·2i. Scaling the intervals this way would let |GM | = Θ(log n),

so the protocol would take O(log n) time and O(log n) internal states.

5.5.2. Proof of Theorem 5.5.1. Theorem 5.5.1 follows from Lemmas 5.5.2, 5.5.3, 5.5.4, 5.5.5,

5.5.6, proven in this subsection.

5.5.2.1. Distribution of levels.

Lemma 5.5.2. Let n ∈ N+ and consider n i.i.d. geometric random variables V1, . . . , Vn. Let i ∈ N+,

Ei = |{j | dlog Vje = i}|. Let 0 < δ < 1. Let µ = n
(

2−2i−1 − 2−2i
)
. Then P [(1− δ)µ < Ei < (1 + δ)µ] >

1− 2 · exp
(
−nδ22−1−2i−1

/3
)
.

Proof. Let G be a geometric random variable, so for each a ∈ N, P [G > a] = 2−a. Then

for each i ∈ N, P [dlogGe > i] = P
[
G > 2i

]
= 2−2i . Then P [dlogGe = 0] = 1/2 and for i > 0,

P [dlogGe = i] = P [dlogGe > i− 1] − P [dlogGe > i] = 2−2i−1 − 2−2i . Note that for all a ∈ N+,

2−a − 2−2a ≥ 2−1−a, so 2−2i−1 − 2−2i ≥ 2−1−2i−1
.

Now consider n i.i.d. variables V1, . . . , Vn. For each j ∈ {1, . . . , n}, let Ij be the indicator for

the event Vj ∈ Li. Let p = 2−2i−1 − 2−2i ≥ 2−1−2i−1 , noting P [Ij = 1] = p and
∑n

j=1 Ij = Ei, with

µ = E [Ei] = np. Since p > 2−1−2i−1 , it follows that µ ≥ n · 2−1−2i−1 . By independence of the Vj ’s

and the Chernoff bound,

P [Ei < (1− δ)µ or Ei > (1 + δ)µ] < 2 · exp
(
−δ2µ/3

)
< 2 · exp

(
−δ2n2−1−2i−1

/3
)
. �

Letting δ = 1/2, and noting n/22i−1+1 < µ < n/22i−1−1, gives the following corollary.

Corollary 5.5.3. Let n ∈ N+ and consider n i.i.d. geometric random variables V1, . . . , Vn. For each

i ∈ N+, let Ei = |{j | dlog Vje = i}|. Then P
[
n/22i−1+2 < Ei < n/22i−1

]
> 1−2·exp

(
−n2−5−2i−1

)
.

Note that Corollary 5.5.3 is useful as long as i ≤ log logn. There is a Θ(1) failure probability

when i = 1 + log log n, and a very large failure probability when i ≥ 2 + log log n. But for i =

log log n (and smaller), the failure probability is at most 2 exp
(
−n1/2/32

)
. Of course, i is an
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integer and log logn in general is not; nevertheless, with appropriate rounding we conclude that

k = max
j∈{1,...,n}

dlog Vje is very likely to be blog log nc, dlog logne, or dlog logne+ 1.

In the following we use the fact that Ei is the number of agents choosing exactly level i.

For any field field of an agent v and any t ∈ N, let fieldv(t) denote the value of field in

agent v at time t (n2 t interactions). Write v.field when the time is clear from context (or v.field

is constant over time, e.g. v.level).

Define ui, τi to be the points 1
16 and 1

8 of the way through interval Gi (see Figure 5.1). Thus

ui = di−1 + c
164i and τi = di−1 + c

84i. (Recall we have the bound di−1 <
5
64i). At time τi, the

average number of interactions is τi, and we hope for most agents’ counters to also be near τi. Si

denotes the cautious agents that, at time τi, are synchronized with counters in the interval Gi. The

following lemma shows that a constant fraction of the population are in Si:

Lemma 5.5.4. Let i ∈ {0, 1, . . . , blog lognc−1}. Let Si be the set of agents v such that v.level ≤ i

(cautious by round i) and v.count(τi) ∈ Gi. Then P [|Si| ≥ n/4] > 1−O
(

log logn
n2

)
.

Proof. We prove this by induction on i.

Base case. S0 is the set of agents v with v.level = 0 and v.count(τ0) ∈ G0. Then E [E0] = n/2,

and taking δ = 1/4 in Lemma 5.5.2, we get

P [E0 < 3n/8] = P [E0 > (1− δ)µ] ≤ 2 · exp
(
−n2−5.5/3

)
.

We now show that of these level 0 agents, we only lose an additional fraction of 1/3 due to drift

in the first τ · n/2 interactions (τ units of time). We apply Lemma 5.4.3, with S as the agents at

level 0, µ = τ0 = c/8, and µ+ h = maxGi = c. Then S′ = S0, and the error fraction

εH = 2
√

2 lnn/|S|+ exp
(
−h2/3µ

)
≤ 2
√

2 lnn/(3n/8) + exp(−49c/24) ≤ 1/3,

for sufficiently large values of n. Then by Lemma 5.4.3, |S0| ≥ (1 − 1/3)(3n/8) = n/4 with

probability 1− 1/n2.

Inductive case. Assume |Si| ≥ n/4, recalling that for all v ∈ Si, v.level ≤ i and v.count(τi) ∈ Gi.

We will first wait until time ui+1, and consider the agents from Si and also those at level i+ 1 that

have at least made it to the door di < ui+1.
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Let Ai+1 be the set of agents v with v.level = i+ 1 and v.count(ui+1) ≥ di. Let Bi+1 be the

set of agents v ∈ Si with v.count(ui+1) ≥ di.

Intuitively, the agents in Bi+1 have had enough interactions to at least be at the door di, but

could be stuck waiting to see the signal. The agents in Ai+1 are broadcasting a signal and moving

the agents in Bi+1 through the door. This process will be stochastically dominated by a section of

an epidemic process. We must ensure |Ai+1| + |Bi+1| > n/4 so that we can wait for |Si+1| ≥ n/4

agents to finish this epidemic.

First, we must bound the size |Ai+1|. Let Ei+1 be the set of agents v with v.level = i + 1.

Then by Corollary 5.5.3, P
[
|Ei+1| > n/22+2i

]
> 1− exp

(
−n2−5−2i

)
. Since i+ 1 ≤ blog log nc − 1,

we have

|Ei+1| > n/22+2log logn−2
= n/(4 · 2logn/4) =

1

4
n3/4

Now Ai+1 is the subset of Ei+1 that have at least di interactions between time 0 and time ui+1.

We apply Lemma 5.4.3 with S = Ei+1, l = ui+1 − di = c
164i+1, and µ = ui+1 = di + c

44i+1 <(
5
6 + 1

4

)
c4i+1 < 18l. Then we can use a simple upper bound for the fraction

εL = 2
√

2 lnn/|S|+ exp
(
−l2/2µ

)
≤ 4
√

8 lnn/n3/4 + exp
(
− c

16 · 18
4i+1

)
≤ 1/2

as long as c ≥ 72, for sufficiently large values of n. Then Lemma 5.4.3 will give that |Ai+1| >

(1− 1
2)|Ei+1| > n/23+2i with probability 1− 1/n2.

Next we must bound the size |Bi+1| again using Lemma 5.4.3. S = Si, since we are starting

from the agents in Si at time τi (who have v.count(τi) < di−1). We will consider the drift during

the interval between time τi and ui+1, so

µ = ui+1 − τi = c

(
7

8
4i +

3

2
4i +

1

16
4i+1

)
=

21c

8
· 4i.

The agents in Bi+1 must have v.count(ui+1) ≥ di, meaning they have at least µ− l = di − di−1 =

c(1 + 3
2)4i interactions.

Then l = c
84i, and Lemma 5.4.3 gives that |Bi+1| ≥ (1 − εL)|Si| ≥ n

4 (1 − εB) with probability

1− 1/n2, where

εB = εL = 2
√

2 lnn/|S|+ exp
(
−l2/2µ

)
≤ 4
√

2 lnn/n+ exp
(
− c

336
4i
)
.
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Now at time ui+1 we have |Ai+1|+ |Bi+1| agents that are at least at door di. Agents from Bi+1

might be stuck at the door, but they will advance past as soon as they encounter an agent from

Ai+1 or another agent from Bi+1 that has already past the door. Thus this looks like an epidemic

process where |Ai+1| + |Bi+1| agents are participating, and we start with at least |Ai+1| infected

agents. We will wait τi+1 − ui+1 time and hope to reach at least n/4 infected agents.

However, there is the added complication that agents might drift past Gi+1, so they can’t get

counted in Si+1 and will no longer be acting as an infected agent in the epidemic. We will again

use Lemma 5.4.3 to bound the count |D| of any agents that have more than maxGi+1 interactions

by time τi+1. We use µ = τi+1 = di + c
84i+1 < c(5

6 + 1
8)4i+1, h = maxGi+1 − τi+1 = 7c

8 4i+1, so

h2/3µ > 49
184c4

i+1 > c4i. We will consider the worst case for the size of |D|, with |S| = n agents

possible to drift. Lemma 5.4.3 gives that |D| ≤ εDn, where

εD = 2
√

2 lnn/|S|+ exp
(
−h2/3µ

)
≤ 2
√

2 lnn/n+ exp
(
−c4i

)
Now we will make a worst case assumption that all drifted agents come from the initially

infected agents Ai+1, and argue about an epidemic starting from |Ai+1| − |D| infected agents with

|Ai+1|+ |Bi+1| − |D| agents participating.

We will use the bound

|Ai+1| ≥
1

2
|Ei+1| =

1

4
|Ei+1|+

1

8
|Ei+1|+

1

8
|Ei+1| ≥

1

16
n3/4 + n/25+2i + n/25+2i ,

broken up with two terms that will dominate each of the terms in εB and εD.

Then we can bound

|Ai+1|+ |Bi+1| − |D| ≥
1

16
n3/4 + n/25+2i + n/25+2i +

n

4

(
1− 4

√
2 lnn/n− exp

(
− c

336
4i
))

− n
(

2
√

2 lnn/n+ exp
(
−c4i

))
≥ n

4
+ n/25+2i +

(
1

16
n3/4 − 16

√
2n lnn− 2

√
2n lnn

)
+ n

(
2−5−2i − 1

4
exp

(
− c

336
4i
)
− exp

(
−c4i

))
≥ n

4
+ n/25+2i + 0 + 0
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for sufficiently large values of n (since
√
n lnn = o(n3/4)), and for c ≥ 700 (since the rightmost

difference is minimized at i = 0 at positive for c ≥ 700).

These calculations also show that |Ai+1| − |D| ≥ n/25+2i . Thus, the true process will be

stochastically dominated by a two-way epidemic, starting from a = n/25+2i infected agents and n/4

susceptible agents. Recall we are waiting τi+1−ui+1 time, which is n
2 ·

c
164i+1 = n · c84i interactions.

Now we can apply Lemma 5.4.4 (with α = 2−5−2i and γ = 1/4) to conclude this process will

reach s+ 1 > n/4 infected agents after T interactions, where

T ≤ 5

γ
n ln

(γ
α

)
= 20n ln

(
23+2i

)
= n · 20 ln 2 · (3 + 2i) ≤ n · c

8
4i

with probability 1− (γn)−2 = 1− 16/n2 (as long as c ≥ 333).

Thus by time τi+1, at least n/4 agents have passed the door di without leave Gi+1. Therefore

we have showed |Si+1| ≥ n/4 with probability 1−O(1/n2), completing the inductive case.

Note that we considered i < log log n levels, where each of these inductive steps added an error

probability O(1/n2). Therefore we have P [|Si| ≥ n/4] > 1−O
(

log logn
n2

)
. �

Lemma 5.5.5. Let i ∈ {blog log nc − 1, . . . , k}, where k = maxv v.level. Then with probability

1 − O(1/n), there is some time t such that v.count(t) ∈ Gi for all agents v, and also some time t

such that v.count(t) ∈ Ri for all agents v.

Proof. Notice that i ≥ (log log n) − 2, so 4i > 1
16 log2 n, and for any constant a > 0, we have

exp
(
−a4i

)
< exp

(
− a

16 log2 n
)
< 1/n2 for sufficiently large n. Thus we will find that all error terms

of the form exp
(
−l2/3µ

)
and exp

(
−h2/3µ

)
from Lemma 5.4.3 will now be small enough that we

can use the union bound result and conclude |L| = 0 and |H| = 0.

First we consider i = blog lognc− 1. By Lemma 5.5.4, |Si| ≥ n/4, meaning at time τi, there are

at least n/4 agents at level ≤ i in Gi.

Now let Ω = di−1 + 47c
48 4i be the point 47

48 of the way through the interval Gi. Let D be the set

of agents that have more than maxGi interactions by time Ω. We apply Lemma 5.4.3 with |S| = n,

µ = Ω < (1 + 5
6)c4i < 2c4i and µ + h = maxGi, so h = c

484i. Now we have h2/3µ = Θ(4i), so as

observed above exp
(
−h2/3µ

)
< 1/n2 and we can conclude that |D| = 0 with probability 1−O(1/n).

Now we consider the time between τi and Ω. Since no agent has had more than maxGi inter-

actions, there are at least n/4 agents in Gi during this entire interval. We can now show that every
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agent will enter Gi by the time Ω. In the worst case, an agent v could still have v.count(τi) = 0.

If v has an interaction while at a door during this interval, the chance of increasing its counter is

at least n
4 /n = 1/4. The probability of taking more than 8 lnn interactions to pass a door is at

most (1 − 1/4)8 lnn < exp
{
−8

4 lnn
}

= 1/n2. The probability of taking more than 8 lnn log log n

interactions to pass all doors is then at most log logn/n2. This number of interactions is negligible

compared to di = Θ(4i) = Θ(log2 n).

Now we are waiting

Ω− τi =

(
7

8
− 1

48

)
|Gi| >

5

6
|Gi| > di

time and need to have di + o(log2 n) interactions. Thus we can again apply Lemma 5.4.3, where

again µ = Θ(4i) and l = Θ(4i). This will show that with probability 1−O(1/n2), every agent has

enough interactions between τi and Ω to reach the interval Gi.

We have now shown that v.count(Ω) ∈ Gi for all v. Then the number of interactions for an agent

to enter Ri is at most |Gi| = c4i and the number of interactions to reach di is at least |Ri| = 3c
2 4i,

so we can find some time t ∈ Ri when Lemma 5.4.3 will give that with probability 1 − O(1/n2),

every agent will have at least enough interactions to enter Ri but not enough interactions to reach

di.

While i < k, there will be at least one agent at level i+1. We can then make the same epidemic

argument as in the proof of Lemma 5.5.4. Now, we can assume in the worst case we have an

epidemic that starts with one agent that must reach the whole population. By either Lemma 4.2.7

or Lemma 5.4.4, this takes O(log n) time (O(n log n) interactions, with probability 1− 1/n2. This

is now negligible compared to the Θ(log2 n) time during each green interval.

Thus we can inductively claim that for all intervals Gi+1, Ri+1, . . . , GM , RM there is some time

t when all agents are synchronized with counts in that interval. �

Finally, we establish the state complexity bound for Protocol 5.2 stated in Theorem 5.5.1.

Lemma 5.5.6. With probability 1−O(1/n), Protocol 5.2 uses O(log2 n) internal states.

Proof. Note the space is dominated by the field count = O(log2 n) with probability 1−O(1/n).

All the intervals are properties of the transition function δ not the state. Finally, as written holding

the level would take O(log log n) state overhead, but we could actually compute the level on the fly

and only need to track if we are still eager or cautious in each interval. �
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Figure 5.2. Data from two simulations on n = 2·107 agents, with different values of
|Gi| and |Ri|. Both yielded maximum level k = 6. The horizontal axis shows parallel
time (n2 -interactions). The vertical axis represents the value v.count for agents
(summarized for the whole population by min, max, and average). The purple line,
the orange line, and the green line are respectively showing the maximum, average,
and minimum v.count for agents. As shown in the figures the maximum count and
minimum count drift in the middle of the protocol but eventually they all converge
to dk, where k represents the maximum level.

5.5.3. Leader-driven, O(log2 n)-convergence-time exact size counting. In this section

we show a O(log2 n) time, high-probability protocol for a problem that is natural for agents with

non-constant memory: exact population size counting. The probability of error can be reduced to

0 with standard techniques; see Corollary 5.5.9. This problem has been studied in the context of

open protocols, in both the exact [43,85] and approximate [43,83] settings, where it is known that

open protocols can approximate n within multiplicative factor 2, by computing either blog nc or

dlog ne, using O(log n log log n) states, and O(log2 n) time [43], and open protocols can compute

the exact value of n, using O(n log n log log n) states, and O(log n) time [43]. Both protocols

can be changed to probability-1, with a multiplicative factor increase of O(log n) states in case,

i.e., O(log2 n log log n) states for calculating blog nc or dlog ne, and O(n log2 n log log n) states for

exactly computing n. However, note that our results below are leader-driven, so direct comparison

with the leaderless results of [43] is not appropriate.
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Figure 5.3. Update rule for fast exact counting protocol. All agents start with a mass of 0 and
weight w = 0, except the leader, who starts with mass = 1 and w = 4. They conduct averaging on
weight w for one round, at which point (with high probability) three consecutive weights remain.
The figure shows how the remaining masses map to the next subinterval, with the weight w updating
to 2(w− wmin) where wmin is the minimum value of w at the end of the Averaging phase. The right
side shows the subintervals to scale. Each agent updates its internal state to represent the interval
[a, b]. Once [a, b] contains only a single number of the form 1

n
, the protocol terminates, and each

agent knows the value n. The first logn rounds would always have 0 as the minimum remaining
weights, but we allow other values to show concretely how the updating rule works.

Protocol 5.3 Exact-Counting(Agent v seeing message m) is leader-driven with message fields
leader ∈ {L,F}, w, wmin ∈ {0, 1, 2, 3, 4}, and internal field a ∈ Q.
Subroutine Leader-Driven-Phase-Clock gives internal field round r ∈ N, message field phase ∈
{Averaging,Updating}, and uses O(1) message overhead to communicate the current phase.
initial state of agent v: w ← 0 if leader = F , w ← 4 if leader = L, a ← 0.00, r ← 0,
phase← Averaging

1: . w is a weight with a shrinking 2−2−r units of mass . each agent has mass = a + w/22+r

2: execute Leader-Driven-Phase-Clock . round r has phases Averaging then Updating
3: if v.phase = m.phase = Averaging then
4: if v is initiator then
5: v.w ←

⌈
v.w+m.w

2

⌉
. average both weights

6: else
7: v.w←

⌊
v.w+m.w

2

⌋
8: if Averaging phase just ended then
9: v.wmin ← min(v.w, 3)

10: if v.phase = m.phase = Updating then
11: v.wmin ← min(v.wmin,m.wmin) . learn the minimum weight in the population
12: if Updating phase just ended then
13: v.a← v.a + wmin

4·2r . update the mass interval lower bound
14: v.w← 2(v.w− v.wmin) . update the weight to preserve mass for new round
15: if [v.a, v.a + 2−r] contains a unique 1

n then
16: terminate with population size n
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Theorem 5.5.7. There is an O(1)-message leader-driven population protocol (Exact-Counting)

that, with probability 1 − O(1/n), exactly counts the population size n (storing it in each agent’s

internal state), in O(log2 n) time and using O(n log2 n) states.

Proof. Intuitively, the protocol tries uses the discrete averaging technique that has been useful

in other population protocols [13, 43, 85, 132, 133], in which each agent holds an integer and

computes the transition i, j →
⌊
i+j
2

⌋
,
⌈
i+j
2

⌉
. In the O(1)-message setting, of course, this will not

work exactly as described.

Intuitively, the leader will distribute 1 unit of what we can imagine is a continuous mass into

the population. Rational-valued averaging of this mass would result in each agent converging to

1/n, from which n can be computed. O(1) messages cannot represent arbitrary rationals. Instead,

we allow agents to communicate a few bits of their number at a time, while ensuring that before

moving on, they agree on an interval containing the true average, which shrinks by half each round,

synchronized by a leader-driven phase clock [21]).

Figure 5.3 shows the updating rule.

Each agent’s state will represent an interval [a, b] ⊆ [0, 1], where b−a = 2−r during round r ∈ N

(initialized to r = 0). a will be a dyadic rational, initialized to a = 0.00, containing r + 2 bits after

the binary point. There is a message field W = {0, 1, 2, 3, 4} describing varying amounts of extra

weight. The value w ∈ W counts for w
4·2r units of mass in round r. An agent is interpreted as

having mass = a + w
4·2r ∈ [a, b] (note representing w

4·2r is what requires r + 2 bits after the binary

point). The leader is initialized with w = 4 (and mass = 0.00 + 4
4·1 = 1.00), and the followers are

initialized with w = 0 (and mass = 0.00).

We will prove that with high probability every agent will always have the same value of a. This

will imply, via the averaging rule for weights, that mass is conserved and the sum of mass in the

population is 1. Thus for all agents at all times, it holds that the true average 1
n stays within the

interval [a, b].

We first discuss the guarantees of the leader-driven phase clock from [21]. The agents will go

through consecutive rounds, where each round contains an Averaging phase followed by an Updating

phase. Choosing appropriate constant parameters, we can ensure with probability 1−O(1/n) that

for time Ω(n), all agents are synchronized within each phase for Θ(log n) time, and no two agents
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are ever more than one phase apart (thus we can be sure that two agents in the same type of phase

are also in the same round).

Averaging phaseWhen two agents meet and both are in the Averaging phase, they each update

just their weights via the standard averaging rule i, j →
⌊
i+j
2

⌋
,
⌈
i+j
2

⌉
for any i, j ∈ W . Note that

assuming the invariant that every agent agrees on a, this rule preserves the sum of mass in the

population.

Averaging takes time Θ(n) to converge in the worst case, where convergence happens when all

agents agree on one of two consecutive integers a and a + 1. (Thus further interactions are null.)

However, Berenbrink, Friedetzky, Kaaser, and Kling [38] show that with probability 1−O(1/n2) it

takes only O(log n) time to reach a configuration where all agents share three consecutive integers,

two of which are a and a + 1. The third could be either a − 1 or a + 2, depending on the true

population-wide average; full convergence happens when all remaining a − 1’s encounter a + 1’s

in the former case, and when all remaining a + 2’s all encounter a’s in the latter case. Thus, for

appropriate constant parameters of the phase clock, with probability 1 − O(1/n), every Averaging

phase lasts long enough such that at the end of each Averaging phase, we have maxw ≤ minw +2.

Updating phase During the Updating phase, each agent spreads by epidemic the minimum

weight wmin they have seen since the start of the Updating phase. By Lemma 4.2.7, we can guarantee

with probability 1 − O(1/n) that every Updating phase lasts long enough for every agent to learn

the minimum remaining message. (To ensure the wmin, wmin + 1, wmin + 2 ∈ W in case wmin > 3 we

take min(wmin, 3)).

At the end of the Updating phase, the agents update their lower bound to ar+1 = a + wmin
4·2r .

Because all agents agree on wmin, they still agree on the value a as desired. Assuming the weight

in round r was wr, the weight updates to wr+1 = 2(wr − wmin). Because we have maxw ≤ wmin + 2

after the successful Averaging phase, the set of weights at the start of every round will be in {0, 2, 4}

(see Figure 5.3). Notice that mass = ar+1 + mr+1

4·2r+1 = a + m
4·2r is preserved during the update as

desired.

Thus we have finished proving the invariant that all agents store the same interval [a, b], and

the sum of mass is conserved, so 1
n ∈ [a, b]. Finally, we can consider the time and space complexity,

assuming that with probability 1−O(1/n), this invariant holds and each round is Θ(log n) time.
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We first analyze the first round r when the minimum weight wmin > 0, so through this round

we have a = 0 for all agents. Since the minimum weight wmin ≥ 1, the minimum mass is at least

0 + 1
4·2r ≤

1
n , so r ≥ log n− 2. The maximum mass is at most 0 + 4

4·2r ≥
1
n , so r ≤ log n. Thus we

will have wmin > 0 for the first time, increasing the lower bound a after the Updating phase, at the

end of round r, where log n ≤ r ≤ log n+ 2. Corollary 5.5.8 argues how to use this fact to obtain a

O(log n)-state protocol for estimating log n.

We next analyze the first round r when the interval [a, b] contains a unique reciprocal 1
n . It

is necessary and sufficient to have 1
n+1 < a ≤ b = a + 2−r < 1

n−1 . Thus it is necessary for

2−(r+1) < 1
n−1 −

1
n+1 = 2

n2−1
, so r > log

(
n2 − 1

)
− 1. In the other direction, if round r − 1 did

not uniquely determine n, then 2−(r−1) ≥ 1
n −

1
n+1 = 1

n(n+1) , so r ≤ log(n(n+ 1)) + 1. Thus the

protocol will terminate at the start of round r = 2 log n+O(1), and will take O(log2 n) time.

Next, we analyze the space complexity. Naively storing a (with r+2 bits after the binary point)

would use 22 logn+O(1) = O(n2) states. However, by the arguments given above, we have a = 0

until round r1 ≈ log n, so simply store the counter r1 to denote how many leading zeros a has. The

protocol will terminate at round r2 ≈ 2 log n, so we can store a with log n + log log n + O(1) bits.

Including the counter r and all constant space overhead gives a space bound of log n+ 2 log log n+

O(1) bits, so the total number of states is O(n log2 n). �

Terminating Exact-Counting early gives a more space efficient protocol for estimating log n:

Corollary 5.5.8. A leader-driven, O(1)-message protocol, with probability 1 − O(1/n), computes

r ∈ {blog nc, dlog ne}, in O(log2 n) time using O(log n) states.

Proof sketch. We run Exact-Counting until the interval [a, b] contains exactly one power

of two 2−k, and then output k, unless it contains no powers of two, in which case we output

arbitrarily either of the powers of 2 contained in the interval of the previous round. If n = 2k,

then k = log n exactly. Otherwise, since the interval contains no other power of 2, but it contains

1/n, then k ∈ {blog nc, dlog ne}. �

Proof. We run Exact-Counting until the interval [a, b] contains exactly one power of two

2−k, and then output k (with one exception described below). If n = 2k, then k = log n ex-

actly. Otherwise, since the interval contains no other power of 2, but it contains 1/n, then

k ∈ {blog nc, dlog ne}.
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The interval [a, b] endpoints are eventually arbitrary dyadic rationals. However, as observed in

the proof of Theorem 5.5.7, in the first log n− 1 rounds, the interval is of the form [0, 2−j ], storable

using only O(log n) states, because the minimum weight wmin = 0. In the next round, depending on

wmin, the interval becomes one of I1 = [2−(j+2), 2−(j+2) +2−(j+1)] (if wmin = 1), or I2 = [2−(j+1), 2−j ]

(if wmin = 2). If I1, then 2−(j+2) is the only power of two in the interval.

If I2, then one more round must pass. Note I2 has only two powers of 2, the endpoints, and

the interval will shrink to I ′1 in the next round, containing one of the endpoints (if w = 0 or 2), or

neither (if w = 1). If I ′1 contains neither, then we know n is not a power of 2, so we output 2−(j+1)

or 2−j arbitrarily, since j = blog nc and j + 1 = dlog ne.

OnlyO(1) extra states are needed to advance one more round, so O(log n) total states suffice. �

By the standard technique of running in parallel with a slower deterministic counting protocol,

we can convert Exact-Counting to have probability 0 of error while retaining fast convergence

time.

Corollary 5.5.9. There are O(1)-message, leader-driven population protocols that, with probability

1, respectively count the exact population size n and estimate it by computing blog nc or dlog ne,

both with expected O(log2 n) convergence time and O(n log2 n) stabilization time. With probability

1−O(1/n), they use O(n4 log4 n) and O(log2 n) states, respectively.

Proof. First consider the case of exact size counting. We can compose Exact-Counting

with a slow stable counting algorithm. As a backup, we could use the deterministic broadcast

mechanism sketched in Corollary 5.3.6, which stably counts the population with O(n3 log2 n) states

in expected O(n log2 n) time. Together with the O(n log2 n) states of Exact-Counting, this is

O(n4 log4 n) states.

Because our protocol is leader-driven, we can use standard tricks to have the leader set a timer

(see [21]) for when to tell all agents via epidemic to change their output to the deterministic backup.

With probability 1−O(1/n), the fast Exact-Counting will correctly compute n, and the timer will

not go off until the backup has also stabilized. The probability O(1/n) for errors add an expected

O((n log2 n)/n) = O(log2 n) convergence time to wait for the slow backup. Note the stabilization

time is Ω(n log2 n) because until the slow backup has stabilized, there is a chance of switching to

the backup before it is correct.
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The case of size estimation is similar, although unlike the case of exact counting, in this paper

we do not have a O(1)-message protocol that directly computes log n with probability 1. However,

there is a simple open O(log n)-state protocol that computes blog nc: All agents start in state `1,

and for each i and j < i we have the transitions `i, `i → `i+1, fi+1 and fi, fj → fi, fi. This takes

expected time O(n) to elect a leader `blognc by the first type of transition and expected time O(log n)

to propagate the value blog nc to all agents by epidemic.

Theorem 5.3.3 shows how any open, s(n)-state protocol can be simulated by a leader-driven,

O(1)-message protocol withO(n log s(n)) expected slowdown. This implies a leader-driven, probability-

1 protocol for calculating blog nc with expected time O(n2 log log n). By combining this with the

fast, error prone protocol described in Corollary 5.5.8, and setting the phase clock parameters of

Exact-Counting to ensure probability of error at most 1/n2, the contribution to the expected

time of the slow, probability-1 protocol is negligible, and the whole protocol runs in expected time

O(log2 n) time as in Corollary 5.5.8. It contributes O(log n) state complexity, so the total number

of states is O(log2 n). �

The next corollary shows that Exact-Counting can be made leaderless by composing with

the leader election protocol derived from junta election (Protocol 5.2).

Corollary 5.5.10. There is a leaderless, O(1)-message population protocol that exactly counts the

population size n in O(log2 n) time and O(n polylog n) states, succeeding with probability 1−O(1/n).

There is also a leaderless, O(1)-message population protocol that computes blog nc or dlog ne in

O(log2 n) time and O(polylog n) states, succeeding with probability 1−O(1/n).

Proof. Both protocols work similarly. We can use Junta-Election (Protocol 5.2) to get

a leader election protocol as in [99]. This will use O(log2 n) state overhead and take O(log2 n)

parallel time. With probability 1− O(1/n), all agents in Protocol 5.2 will restart when they enter

the last level together with the same constant-factor estimate of log n. They can use this estimate

to set a timer to wait for the leader election to converge after O(log2 n) time. Then we can start

the downstream Exact-Counting to count the population, either exactly as in Theorem 5.5.7 or

approximately as in Corollary 5.5.8. �

5.5.4. Leader-driven, O(log2 n)-time predicate computation. We can use techniques from

Theorem 5.5.7 to show how to compute, using a leader and with high probability, any predicate

188



on a constant alphabet Σ, up to the space bounds allowed by the agents. We assume that there

is one leader agent, and that every other agent has a state from a fixed alphabet Σ. Exactly the

semilinear predicates are computable with probability 1 by O(1)-state open protocols [20] (with

> log n states, more predicates are possible [62]).

Corollary 5.5.11. Let d ∈ N+ and let Σ be a d-symbol input alphabet. Then there is an O(1)

message leader-driven population protocol that, with probability 1−O(1/n), exactly counts the input

vector i ∈ Nd (storing it in each agent’s internal state), in O(d log2 n) time and using O(nd log2 n)

states.

Proof sketch. Agents first run the Exact-Counting of Theorem 5.5.7 to store locally the

value n. Agents then use a similar strategy to Exact-Counting to count how many agents have

input x for each symbol x ∈ Σ. Having now stored the entire initial population’s input in their

internal state, they can simply compute any computable predicate φ locally. �

Proof. First, agents run the Exact-Counting of Theorem 5.5.7 to store locally the value n.

This protocol is terminating (i.e., agents signal when they are done and with high probability, no

agent signals before all agents have converged), so it can be straightforwardly composed with the

subsequently described protocol. Note that the state bound was O(n log2 n), but we can store n in

a separate field that will only contribute O(n) additional state overhead.

Next, we iterate over each element x ∈ Σ, counting the number of elements with symbol x in

the population, using the same transitions as Exact-Counting, except now each agent storing

x starts with weight w = 4 and other agents start with w = 0. The same argument as the proof

of Theorem 5.5.7, only now the total mass is |x|, and the agents will wait until the interval [a, b]

contains only one number k
n for k ∈ N. (Note this will only require an interval of length O( 1

n)

and thus take log n+ O(1) rounds). After each of these sub-protocols terminates, the agents store

the number k = |x| in their internal state. Finally, note that the last element does not need to be

counted, as it can recovered as the difference between n and the counts of the other inputs.

It follows that this protocol will take O(d log2 n) time and use O(nd log2 n) states. Alternately,

we could run all these steps in parallel, which would reduce the time by a constant factor d, but

increase the amount of messages used (to have d independent copies of the weight and min weight
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fields w, i for Exact-Counting). The error probability follows from that of Theorem 5.5.7, taking

a union bound over each of the d+ 1 instances of Exact-Counting. �

If an agent can locally store the entire initial configuration, it can compute any predicate com-

putable by the transition function δ. Formally, we required that δ be computable by a Turing

Machine with O(log s(n)) bits of memory, to make our model comparable with [62]. Thus we

can compute all predicates computable by O(log n) bit space-bounded Turing Machines via Corol-

lary 5.5.11.

5.6. Computability with one-bit messages

We will show that with one-bit messages, it is possible to simulate a synchronous system that

provides a one-bit broadcast channel. This in turn will be used to simulate more complex systems.

The price is that we sacrifice stabilization for convergence, and rely on unbounded counters to ensure

convergence in the limit with probability 1.

Let us begin by defining the simulated system. A synchronous broadcast system consists

of n synchronous agents that carry out a sequence of rounds. In a broadcast round, each agent

generates a one-bit outgoing message. These outgoing messages are combined using the OR function

to produce the outcome for this round.

Broadcast operations can be used to detect conditions such as the presence of a leader, or

ordinary message transmission if a unique agent is allowed to broadcast in a particular round.

However, because broadcast operations are symmetric, they cannot be used for symmetry breaking.

For the purpose of electing a leader, we assume that agents have the ability to flip coins; once we

have a leader, further agents may be recruited for particular roles using an auxiliary protocol that

allows the leader to select a single agent from the population in some round. The broadcast and

selection protocols are mutually exclusive: either all agents participate in a broadcast in some round

or all agents participate in selection. This is possible by showing that all agents eventually agree

on the round number forever with probability 1.

Simulating this model in a population protocol requires (a) enforcing synchrony across agents,

so that each agent updates its state consistently with the round structure; (b) implementing the

broadcast channel that computes the OR of the agents’ outputs; and (c) implementing the selection

protocol. We show how to do this in the following section.
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5.6.1. Implementing the core primitives. Broadcasts are implemented by epidemics that

propagate 1 messages, separated by barrier phases in which all agents display 0. Selection is imple-

mented by having the leader display a 1 to the first agent it meets. Both protocols depend on the

number of steps at each agent being approximately synchronized with high probability; after t(n/2)

steps, all agents’ step counts should be within the range t±O(
√
t log n) with high probability (see

Lemma 5.4.1). The time to carry out a broadcast is also O(log n) with high probability (see Lemma

5.4.4). By increasing the length of each round over time, the total probability across all rounds of

an error occurring in either the broadcast or selection protocol due to out-of-sync agents or slow

broadcasts converges to a finite value. Applying the Borel-Cantelli lemma then shows that there is

a round after which no further failures occur with probability 1.

5.6.1.1. Details. Observe that the probability that a particular agent i participates in an inter-

action is exactly 2/n, and that the events that i participates in distinct interactions are indepen-

dent. If we let Xt
i be the indicator variable that agent i participates in the t-th interaction, then

Sti =
∑t

j=1X
t
i is a sum of independent Bernoulli random variables, and obeys the Chernoff bound

P
[
|Sti − µ| > µδ

]
< 2e−µδ

2/3, where µ = E
[
Sti
]

= 2t/n and 0 ≤ δ ≤ 1.

The execution of each agent is organized as a sequence of rounds, where each round r for

r = 1, 2, . . . consists of exactly 5r2 steps. The first 2r2 steps will be a barrier phase during which

the agent displays message 0 and updates its state during an interaction only by incrementing its step

counter. The remaining 3r2 steps will be an interaction phase in which the agents may execute

one of two protocols. In a broadcast phase, each agent will propagate an epidemic represented

by message 1, recording if it observed such an epidemic and possibly initiating the epidemic itself

if instructed to do so by the protocol. In a selection phase, a leader agent displays 1 for its

first encounter, and the agent interacting with the leader receives a special mark. The choice of

broadcast/selection phase is determined by the controlling protocol and is the same for all agents.

As in a barrier phase, an agent in an interaction phase continues to update its step counter with

each interaction.

The controlling protocol updates the state of the agent at the end of each round. Each agent v

has a state v.state that is one of broadcasting (agent is initiating a broadcast of value 1) receiving

(agent is waiting to detect a 1), received (agent has detected a 1), selecting (agent is attempting

to select another agent), candidate (agent is a candidate for selection), selected (agent has been
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selected), or idle (agent has selected another agent and is now waiting for the end of the round). We

assume that the controlling protocol assigns consistent values to the agents in each phase: if one or

more agents start in state broadcasting, the rest should start in state receiving; while if some agent

starts in state selecting, the rest should start in state candidate. Pseudocode for the communication

protocol is given in Algorithm 5.4 in 5.6.2, followed by a proof of its correctness. The correctness of

this protocol relies on carefully chosen phase interval lengths which allow us to simulate synchronous

rounds wherein the above operations are executed in sequence.

Protocol 5.4 Convergent-Broadcast(Agent v seeing message m)
1: v.tick← v.tick + 1
2: if v.tick < 2r2 then . Barrier phase: do nothing
3: else if v.tick = 2r2 and v.state = broadcasting then . End of barrier phase: start epidemic
4: v.m← 1
5: else if v.tick = 5r2 then . End of interaction phase
6: Update v.state according to controlling protocol
7: r ← r + 1
8: v.tick← 0
9: else if v.tick > 2r2 and v.state = receiving and m = 1 then . Receive and propagate

epidemic
10: v.state← received
11: v.m← 1
12: else if v.tick = 3r2 and v.state = selecting then . Attempt to select
13: v.m← 1
14: else if v.tick > 3r2 and v.state = selecting and m = 0 then . Selected a candidate
15: v.m← 0
16: v.state← idle
17: else if v.tick > 2r2 and v.state = candidate and m = 1 then . We are the selected candidate
18: v.state← selected

5.6.2. Convergent Broadcast Algorithm. Define sr =
∑r−1

j=1 5r2; this is the total length of

all rounds up to but not including r. Observe that sr = Θ(r3). Consider the midpoint ar = sr + r2

of the barrier phase of round r. Let Air be the event |Sti − ar| > r2 − 1, where t = (n/2)ar so that

E
[
Sti
]

= ar. Then the Chernoff bound gives P
[
Air < 2e−ar((r

2−1)/ar)2/3
]

= e−Θ(r). Similarly define

br = sr + 3r2 and cr = sr + 4r2 as the steps 1/3 and 2/3 of the way through the interaction phase

of round r, and define Bir as the event |Sti − br| > r2 − 1 when t = (n/2)br and Cir as the event

|Sti − cr| > r2 − 1 when t = (n/2)cr. Then we also have P [Bir] = e−Θ(r) and P [Cir] = e−Θ(r).

Finally, define Dir as the event that the schedule of interactions is such that an epidemic that

has infected agent i after (n/2)br steps has not infected all agents after (n/2)cr steps. Note that this
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definition does not depend on whether an actual epidemic is in progress after (n/2)br steps; instead,

we consider a hypothetical epidemic starting at i running on the same schedule. From Lemma 4.2.7,

we have that for any two-way epidemic on n processes, the expected value E [Tn] of the number of

interactions to infect all agents is O(n log n) and P [Tn > (1 + δ)E [Tn]] ≤ 2.5 ln(n) · n−2δ. For Dir

to occur, we need Tn > r2, giving δ = r2/O(n log n) − 1 and thus P [Dir] = e−Ω(r2/n logn) lnn =

e−Ω(r2/n logn).

Call a round r safe if none of the events Air, Bir, Cir, or Dir occur for any i ∈ {1, . . . , n}. These

events are not even remotely independent, but the the union bound still applies, giving a probability

that round r is not safe of at most 3ne−Ω(r) +ne−Ω(r2/n logn) = eΩlogn−r+eΩlogn−r2/n logn. The sum

of of these bounds over all rounds converges to a finite value for any fixed n, so by the Borel-Cantelli

lemma, with probability 1 all but finitely many rounds are safe.

The following lemmas demonstrate that the protocol does what it is supposed to, once we

reach the suffix of the execution containing only safe rounds. We start by excluding false positive

broadcasts.

Lemma 5.6.1. If rounds r and r + 1 are both safe, then no process observes a 1 in round r unless

some process initiates a broadcast or selection in round r.

Proof. If rounds r and r + 1 are both safe, then the events Air and Ai,r+1 do not occur for

any i. In particular, this means that at time t = (n/2)ar, all agents have an internal clock Sti that

is within the interval ar ± r2 − 1, which lies within the barrier phase for round r. So at this time

all agents display message 0, have completed the interaction phase for round r − 1, and have not

yet started the interaction phase for round r. A similar constraint holds at time t′ = (n/2)ar+1. It

follows that any 1 observed by an agent during its round-r interaction phase must result from some

process setting its message to 1 either because it initiated an epidemic or selection during its own

round-r interaction phase, or because it is propagating an epidemic initiated by such a process. �

Similarly, a safe round has no false negative broadcasts:

Lemma 5.6.2. If round r is safe and all agents start round r in either a broadcasting or receiving

state, then any epidemic initiated in round r is observed by all agents.

Proof. Because Bir does not occur for any i, after (n/2)br steps, all agents are in their round-

r interaction phase, and because Cir does not occur for any i, all agents remain in their round-r
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interaction phase until at least (n/2)cr steps. If some agent i initiates an epidemic in round r, then

i.state = broadcasting after (n/2)br steps, and under the assumptions, of the lemma every other

agent is either in the broadcasting, receiving, or received state. A simple induction shows that the

set of infected agents in the real process throughout the [(n/2)br, (n/2)cr] interval is bounded below

by the set of infected agents in the hypothetical epidemic considered in the definition of Dir. This

means that if Dir does not occur, both such sets contain all processes after (n/2)cr interactions. �

And a safe round allows selection. Selection is not necessarily uniform conditioned on safety,

but each agent has an Ω(1/n) chance of being selected when r is sufficiently large:

Lemma 5.6.3. If round r is safe, exactly one agent i starts round r in a selecting state, and all

other agents start round r a candidate state, then exactly one agent finishes round r in a selected

state. For each agent j, the probability p that its is chosen conditioned on the safety of round r and

the events of previous rounds is at least 1
2n for sufficiently large r.

Proof. Use the non-occurrence of any Bir or Cir to argue that agent i reaches tick 3r2 while

all agents are in the interaction phase. Then the next interaction between i and any j causes j to

observe a 1 and switch to a selected state.

We would like to argue that the next interaction between i and another agent j chooses each j

with independent probability 1/n. Unfortunately, we are conditioning on safety of round r. Let A

be the event that i selects j and B the event that round r is unsafe. Then P [A | ¬B] = P[A∧¬B]
P[¬B] ≥

P [A ∧ ¬B] = P [A] − P [A ∧B] ≥ P [A] − P [B] = 1/(n − 1) −
(
e−Ω(r) + e−Ω(r2/n logn)

)
≥ 1

2n for

sufficiently large r. �

5.6.3. Convergent computation of arbitrary symmetric functions. Early rounds pro-

duce incorrect results, so we need an error-recovery mechanism. We describe a basic protocol for

electing a leader and having it gather inputs from the other agents. This in principle allows the

leader to compute the output of an arbitrary symmetric function and broadcast it to the other

agents. The protocol guarantees termination with probability 1 even in executions where some of

the rounds exhibit errors in the underlying broadcast mechanism. By restarting the protocol when

it terminates, we can guarantee that the protocol eventually runs without errors, thus converging

to the correct output.
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Each agent v maintains a Boolean field v.leader that marks it as a leader (or candidate leader)

and a field v.processed that marks whether it has reported its input v.input to the leader. All

agents rotate through a repeating sequence of 7 rounds, where the round number for the purposes

of the protocol is r mod 7. These are organized as follows:

Round 0: Any leader broadcasts 1. A non-leader that receives 0 sets its leader bit. This round

allows recovery from states with no leaders.

Round 1: Any leader broadcasts 1 with probability 1/2. A leader that does not broadcast but

receives a 1 clears its leader bit.

Round 2: Any agent that cleared its leader bit in the previous round broadcasts 1. This causes

any remaining leaders that receive a 1 to restart the information-gathering protocol and

causes any non-leaders that receive a 1 to clear their processed bits. Broadcasting a 1 in

this round is also used by the leader to restart the protocol after completion.

Round 3: Any agent v with v.processed = 1 broadcasts 1. This is used by the leader and other

agents to detect unprocessed inputs.

Round 4: If a leader received a 1 in the previous round, and there is no transmission in progress

from a non-leader agent, the leader executes a selection operation. The selected agent sets

its processed bit and transmits its input if its processed bit is not already set. If the

processed bit is set, the agent transmits nothing in the following two rounds.

Rounds 5 and 6: These are used to transmit either (a) one bit of a selected agent’s input, or (b)

one bit of the protocol output. In either case the bit is encoded as two bits using the

convention 01 = 0, 10 = 1, 00 = stop. Note that the absence of a broadcast in both

rounds is interpreted as stop, which both allows a selected agent to signal it has already

been processed and guarantees eventual termination after an agent finishes transmitting

its input even if some of the broadcasts are garbled.

It is possible for two agents to be transmitting simultaneously (this can occur if there

are multiple surviving leaders). This requires that agents be prepared to handle receiving

11. The simplest way to handle 11 may be to have agents just interpret it as a fixed value:

11 = 1. Alternatively, we could implement an optimization where any agent that observes

11 triggers a restart of the protocol by broadcasting a 1 in the next Round 2.
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The protocol terminates when the leader has collected all inputs (detected by the absence of a

signal in Round 3) and transmits the computed output to all agents (using Rounds 5 and 6 over

however many iterations are needed). We assume that the computed output has finite length for

any combination of inputs. After transmitting the output, the leader broadcasts a 1 in Round 2 to

restart the information-gathering component of the protocol.

Lemma 5.6.4. In any execution with finite errors in the underlying broadcast protocol, with prob-

ability 1, the above protocol converges to a single leader and then restarts infinitely often.

Lemma 5.6.4 is proven correct by demonstrating that, as defined, this protocol elects exactly

one leader by Round 2 which correctly processes all non-leader agents with probability 1 by the end

of Round 6. The full proof can be found in 5.6.4

5.6.4. Proof of Lemma 5.6.4.

Proof. Consider a sequence of iterations in which no errors occur.

If there are no leaders initially, the first execution of Round 0 sets the leader bit in all agents.

The only way that an agent can lose its leader bit is if it sees another leader broadcast a 1 in

Round 1. But this always leaves at least one leader. If there is more than one leader, half the

remaining leaders on average will drop out in each execution of Round 1. This guarantees that

there will eventually be exactly one leader with probability 1.

If there is a leader, the leader believes that there is no transmission in progress, and at least

one agent v with v.processed = False, then v is selected with probability at least 1
2n for sufficiently

large r in Round 3 (Lemma 5.6.3). This causes some agent to be selected in Round 3 eventually

with probability 1, reducing the number of unprocessed agents by one.

If there is a transmission in progress, each transmitting agent sends finitely many bits before

stopping. Once all transmitting agents have stopped, any agent waiting for a transmission to finish

will observe 00 in Rounds 5 and 6.

It follows that starting from an arbitrary initial configuration, with probability 1 the protocol

reaches a configuration with exactly one leader, the leader finishes waiting for any outstanding

transmissions, and the leader then selects an unprocessed agent and collects its input until no

unprocessed agents are left. After the leader transmits its computed (though possibly incorrect)

output, the protocol restarts. �
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Once the protocol restarts with a single leader, any subsequent error-free execution produces

correct output. This follows from the fact that the leader collects the input from every agent exactly

once. Since each agent records as its output the last output broadcast by the leader, this causes all

agents to converge to holding the correct output with probability 1.

Because the leader has unbounded states, it can simulate an arbitrary Turing machine. This

allows the output to converge to the value of any computable symmetric function. The restriction

to symmetric functions follows from uniformity of the agents in the initial configuration, but can be

overcome, assuming inputs include indexes. We have thus shown:

Theorem 5.6.5. For any computable symmetric function f , there is a population protocol using

1-bit messages and unbounded internal states that starts in an initial configuration where each agent i

is distinguished only by its input xi, that converges to having each agent holding output f(x1, . . . , xn).

Our construction exploits the unbounded state at each agent to allow the leader to simulate

the entire computation. While the probability-1 convergence property requires unbounded state in

the limit (otherwise there is a nonzero probability that any round fails), it may be desirable to put

off expanding the state as long as possible. In 5.6.5, we argue that with some small tweaks, the

construction can be adapted to distribute the contents of a Turing machine tape of s bits across

all agents of the population as in [62], reducing the storage overhead at each agent for the Turing

machine computation to O(s/n+ log s) bits.

5.6.5. Simulating a Turing machine. In this section, we show how to adapt the construction

of Section 5.6.3 to simulate a Turing machine directly. For the most part, we retain the round

structure of the previous construction, but make some adjustments to how the leader interacts with

the other agents.

As in the construction in Section 5.6.3, we elect a leader using Rounds 0 and 1, which resets

the other agents by broadcasting in Round 2. Non-leader agents reset to an unallocated state

in which they hold only their input while waiting to be recruited to hold tape cells; such agents

will set processed to False until recruited to hold a tape cell. The leader agent holds the state of

the finite-state controller and the index for the current head position and manages communication

with the other agents through Round 5 and 6 broadcasts. Using the same self-delimiting encoding
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Protocol 5.5 TM-Simulation-Leader
1: h← 0 . initial head position
2: q ← q0 . initial state
3: n← 1 . count of agents
4: counted← False . indicates if n is correct
5: Restart computation by sending 1 in Round 2
6: while counted = False do . Initialize tape
7: if at least one agent reported processed = False in Round 3 then
8: Select an agent in Round 4
9: Transmit Recruit(n+ 1)

10: if some agent responds then
11: n← n+ 1

12: else
13: Transmit PopulationSize(n) . No agents remaining!
14: counted← True
15: s← f(n) . Initialize runtime bound
16: for each Turing machine step do
17: Read cell at current head position h by transmitting Read(h)
18: if some agent responds with c then
19: (q′, c′, d)← δ(q, c)
20: Write c′ to cell h by transmitting Write(h, c′)
21: q ← q′

22: h← h+ d
23: s← s− 1
24: if q is a halting state then
25: Transmit result of computation
26: Jump to start of algorithm
27: else if s = 0 then
28: Jump to start of algorithm . Runtime bound exceeded
29: else
30: Jump to start of algorithm . No agent holds h ⇒ initialization failed

as before allows transmission of messages of arbitrary length, so long as all agents agree on which

agent’s turn it is to speak.

A very high level overview of the simulation is given in Algorithms 5.5 and 5.6. Algorithm 5.5

is written from the perspective of the leader, and assumes that we have already elected a unique

leader and reset all the other agents. The function δ : Q×Σ→ Q×Σ×{−1, 0,+1} is the transition

function for the simulated Turing machine. Algorithm 5.6 is written from the perspective of a

non-leader and describes how it responds to transmissions from the leader.

The simulation starts by organizing the agents into a Turing machine tape. This involves

selecting agents one at a time and assigning them indices. Because an agent might be selected more

than once, the expected number of rounds to find all agents scales as O(n log2 n), where O(n log n)
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Protocol 5.6 TM-Simulation-Follower

if receiving Restart then
processed← False . I am unallocated
j ← ⊥ . j indexes which cells I hold
n←∞ . n is initially unknown. We use the convention that x mod∞ = x and x/∞ = 0
Clear list T [] . T [i] holds cell (n− 1)i+ c. Unset locations default to blank
Set T [0] to my input

if receiving Read(i) then
if i mod (n− 1) = j then

Transmit T [bi/nc]
if receiving Write(i, c) then

if i mod (n− 1) = j then
T [bi/nc]← c

if receiving Recruit(h) then
if I have been selected then

if j = ⊥ then
j = h
Transmit acknowledgment

Clear selected status
if receiving PopulationSize(m) then

n← m
if receiving result of computation then

Record result as output

comes from the expected time to finish a coupon collector process and the extra O(log n) comes

from the time to transmit indexes one bit at a time. We assume that counting n is also enough for

the leader to compute a bound f(n) on the number of steps used by the Turing machine; this is

needed to enforce restarts if the simulated machine does not terminate on its own.

For simplicity we assume that inputs can be placed in arbitrary order on the first n− 1 cells of

the tape (this will require special handling of any input on the leader, which we omit for simplicity

of presentation). A complication is that inputs to the protocol might exceed the size of the constant

tape alphabet. This does not affect the simulation directly, since no restriction on tape alphabet is

assumed, but it may require adding a preamble to the Turing machine computation that unpacks

large-alphabet inputs into the constant-size TM alphabet. We leave the details of this tedious and

unenlightening preamble to the imagine of the reader.

The analysis of Algorithms 5.5 and 5.6 essentially follows the proof of Theorem 5.6.5. Once the

simulation reaches the safe phase of the construction, it reaches a configuration with one leader after

some finite time with probability 1. At this point the leader may already have an inaccurate estimate
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n̂ of n, but whether the estimate is accurate or not, each iteration of the main loop will require

at most O(log f(n̂)) rounds to finish, leading to a restart after at most O(n log2 n+ f(n̂) log f(n̂))

rounds on average. Each subsequent iteration will run the Turing machine to completion and

produce the correct output. The space complexity at each agent, measured in bits, is bounded by

O(s/n+ log s) during non-faulty simulations, where s is the largest tape cell index used. For faulty

executions, we accept a small probability that a larger estimate of n̂ at some leader agent may

leader to larger space overhead. In either case the state complexity is dominated in the limit by the

unbounded round and tick counters.

Theorem 5.6.6. Algorithms 5.5 and 5.6 use the synchronous broadcast primitive to simulate a

Turing machine with known time complexity f(n), converging to the correct output with probability

1. In any execution, the additional space required at each agent to simulate a Turing machine that

uses s tape cells is bounded after an initial prefix by O(s/n+ log s) with probability 1.

5.7. Open problems

Probability-1 computation. Many of our protocols have a positive probability of error. Common

techniques for achieving zero error probability in ω(1)-state protocols require ω(1) messages. Based

on this, we conjecture that probability-1 leader election using O(1) messages requires Ω(n) time to

stabilize. This is known to hold for O(1) states [88], though sublinear-time convergence is possible

with O(1) states [120].

Time lower bounds. A tool for time lower bounds (e.g., probability-1 leader election [5,88]) is

a “density lemma” [5,82] showing that when the state complexity is ≤ 1
2 log log n, all states appear

in “large” count. This is false for s(n) > log log n, which is the key to the fastest space-optimal

leader election protocols [40,99,100]. A density lemma applies to the messages of O(1)-message

protocols, no matter the state complexity (derivable from [83, Lemma 4.2]). Does this imply that

O(1)-message leader election requires linear stabilization time?

Power of 1-bit messages with O(1)-states. O(1)-state open protocols can stably compute

exactly the semilinear predicates [20]. Can all semilinear predicates be stably computed with 1-bit

messages? A related question is whether there is a direct simulation of O(1)-message protocols by

1-bit message protocols (similar to Theorem 5.3.3).
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Efficient predicate computation. Corollary 5.5.11 can be used to efficiently compute any com-

putable predicate φ : Nd → {0, 1} but requires storing the entire initial configuration locally in each

agent (Θ(nd) states). Corollary 5.3.6 can be used to compute any computable predicate storing

unique IDs in each agent (O(n) states), but it is slow since communication is routed through a

leader. What predicates can be computed time- and space-efficiently?
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CHAPTER 6

Composable Computation in Discrete Chemical Reaction Networks

This chapter is joint work with David Doty and David Haley. It was originally published as [146].

6.1. Introduction

6.1.1. Function computation. Computation of functions f : Nd → N was discussed briefly

in the first population protocols paper [19, Section 3.4], which focused more on Boolean predicate

computation, and it was defined formally first for CRNs [63, 86] and later for population proto-

cols [32]. The class of functions stably computable in either model is the same: the semilinear

functions [23,63]. We use the CRN model because it is more natural for describing functions, but

our results also apply to the population protocol model.

To represent an input x ∈ Nd, we start in a configuration with counts x(i) of species Xi for each

i ∈ {1, . . . , d}, and count 1 of a “leader” species L.1 A function f : Nd → N is stably computable

by a CRN if a correct and stable configuration O (i.e., on input x the count of Y is f(x) in all

configurations reachable from O) remains reachable no matter the order in which reactions occur.2

1The leader is discussed in Section 6.1.3. A CRN may ignore its leader, as in Fig. 6.2 (left side), or include it, as in
Fig. 6.2 (right side).
2We use this definition of stably computable throughout this chapter, but we mention here that it is equivalent to
two other natural definitions. The first definition is that any fair sequence of reactions will take the CRN to such a
correct stable configuration, where fair means that any configuration that is infinitely often reachable is eventually
reached. The second definition is that a correct stable configuration is actually reached with probability 1.

f(x) = 2x
X → 2Y

f(x1, x2) = min(x1, x2)
X1 +X2 → Y

f(x1, x2) = max(x1, x2)
X1 → Z1 + Y
X2 → Z2 + Y

Z1 + Z2 → K
K + Y → ∅

Figure 6.1. Functions stably computed by CRNs. Note max is computed as x1 + x2 −min(x1, x2).
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See Fig. 6.1 for examples. It is known that a function f : Nd → N is stably computable by a CRN

if and only if it is semilinear: intuitively, it is a piecewise affine function. (See Definition 6.2.6.)

6.1.2. Composability. Note a key difference between the CRNs for min and max in Fig. 6.1:

the former produces, but does not consume, the output species Y , whereas the latter also contains

reactions that consume Y . In one possible sequence of reactions for the max CRN, the inputs can

be exhausted through the first two reactions before ever executing the last two reactions. In doing

so, the count of Y overshoots its correct value of max(x1, x2) before the excess is consumed by the

reaction K + Y → ∅.

For this reason, the min CRN is more easily composed with a downstream CRN. For example, the

function 2 ·min(x1, x2) is stably computed by the reactions X1 +X2 →W (computing w = x1 +x2)

and W → 2Y (computing y = 2w), renaming the output of the min CRN to match the input of the

multiply-by-2 CRN. However, this approach does not work to compute 2 ·max(x1, x2); changing Y

to W in the four-reaction max CRN and adding the reaction W → 2Y can erroneously result in up

to 2(x1 +x2) copies of Y being produced. Intuitively, the multiply-by-2 reactionW → 2Y competes

with the upstream reaction K +W → ∅ from the max CRN.

This motivates us to study the class of functions f : Nd → N stably computable by output-

oblivious CRNs: those in which the output species Y appears only as a product, never as a

reactant. We call such a function obliviously-computable. Any obliviously-computable function

must be nondecreasing, otherwise reactions could incorrectly overproduce output (see Observation

6.2.1).

An obliviously-computable function, being a special kind of stably computable function, must

be semilinear [20, 63], so it is reasonable to conjecture that a function is obliviously-computable

if and only if it is semilinear and nondecreasing. In fact, this is true for 1D functions f : N →

N (see Section 6.3). However, in higher dimensions, the function max : N2 → N is semilinear

and nondecreasing, yet not obliviously-computable; its consumption of output turns out to be

unavoidable. Assuming there is no leader, this is simple to prove: Since max(1, 0) = 1, starting

with one X1, a Y can be produced. Similarly, a Y can be produced starting with one X2. Then

with one X1 and one X2, these reactions can happen in parallel and produce two Y ’s, too many
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f(x) = min(1, x)
X → Y
2Y → Y

f(x) = min(1, x)
L+X → Y

Figure 6.2. min(1, x) is stably computed by a leaderless non-output-oblivious CRN (left),
and an output-oblivious CRN with a single leader L (right).

𝑥

3𝑥

2

(a) A 1D (single-input) quilt-affine function b 3x
2
c =

3
2
x+B(x mod 2), where B(0) = 0 and B(1) = − 1

2
.

𝑥1
𝑥2

𝑔

(b) A 2D quilt-affine function g(x) = (1, 2) · x + B(x

mod 3), where B(x) = 0 except for B((1, 2)) = 2 and
B((2, 1)) = B((2, 2)) = 1.

Figure 6.3. Examples of 1D and 2D quilt-affine functions.

since max(1, 1) = 1. It is more involved to prove that even with a leader, it remains impossible to

obliviously compute max; see Section 6.4.3

6.1.3. The role of the leader. The class of stably computable functions is identical whether

an initial leader is allowed or not [86], as is the class of stably computable predicates [23]. Our

model includes an initial leader, which is essential for our general constructions (see Sections 6.3

and 6.6).

In fact, the class of obliviously-computable functions we study is provably larger when an initial

leader is allowed. For example, consider the function f(x) = min(1, x) (see Fig. 6.2). f is stably

computable with or without a leader, but only the construction with a leader is output-oblivious.

Without using a leader, f is not obliviously-computable (see Observation 6.9.1).

Including the leader gives additional power to the model. This gives more power to our CRN

constructions, but makes our impossibility results stronger. This work left fully classifying the

obliviously-computable functions in a leaderless model as an open question, which has since been

resolved in [111].

3This result was obtained independently by Chugg, Condon, and Hashemi [68].
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(a) A 2D function satisfying Theorem 6.5.2.
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(b) The scaling limit gives a 2D real-valued obliviously-
computable function from [61].

Figure 6.4. Example discrete and real-valued obliviously-computable functions.

6.1.4. Contribution. Our main result, Theorem 6.5.2, provides a complete characterization

of the class of obliviously-computable functions. It builds off of a key definition: a quilt-affine

function is a nondecreasing function that is the sum of a rational linear function and periodic function

(formalized as Definition 6.5.1). For example, functions such as b3x
2 c are quilt-affine (see Fig. 6.3a).

Such floored division functions are natural to the discrete CRN model (b3x
2 c is stably computed by

reactions X → 3Z, 2Z → Y ). Fig. 6.3b shows a higher-dimensional quilt-affine function, with a

“bumpy quilt” structure that motivates the name. Quilt-affine functions are also characterized by

nonnegative periodic finite differences, a structure key to showing they are obliviously-computable.

Theorem 6.5.2 states that a function f : Nd → N is obliviously-computable if and only if

i) [nondecreasing] f is nondecreasing,

ii) [eventually-min] for sufficiently large inputs, f is the minimum of a finite number of quilt-

affine functions, and

iii) [recursive] every restriction fr : Nd−1 → N obtained by fixing an input to a constant value4

is obliviously-computable (i.e., eventually the minimum of quilt-affine functions).

Condition ii) characterizes f when all inputs are sufficiently large (greater than some n ∈ Nd),

whereas condition iii) characterizes f when some inputs are fixed to smaller values. See Fig. 6.4a

for a representative example of an obliviously-computable f : N2 → N. This pictured function has

arbitrary nondecreasing values in the “finite region” where x < (4, 4), has eventual 1D quilt-affine

4Note that Theorem 6.5.2 defines fixed-input restrictions slightly differently; see Section 6.5 for an explanation.
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behavior along the lines x1 = 0, 1, 2, 3 and x2 = 0, 1, 2, 3, and is the minimum of 3 different quilt-

affine functions in the “eventual region” where x ≥ (4, 4). This behavior generalizes naturally to

higher dimensions.

The most technically sophisticated part of our result is the proof that the eventually-min con-

dition ii) of Theorem 6.5.2 is necessary; the main ideas of this proof are outlined in Section 6.7.1.

6.1.5. Related work. Chalk, Kornerup, Reeves, and Soloveichik [61] showed an analogous

result in the continuous model of CRNs in which species amounts are given by nonnegative real

concentrations. A consequence of their characterization is that any obliviously-computable real-

valued function is a minimum of linear functions when all inputs are positive. In Theorem 6.8.2, we

demonstrate that the limit of “scalings” of a function f : Nd → N satisfying our main Theorem 6.5.2

is in fact a function f̂ : Rd≥0 → R≥0 satisfying the main theorem of [61] (see Fig. 6.4b). The discrete

details lost in the scaling limit constitute precisely the unique challenges of proving Theorem 6.5.2

that are not handled by [61]. In particular, our function class can contain arbitrary finite behavior

and repeated finite irregularities.

Returning to the discrete (a.k.a., stochastic) CRN model we study, Chugg, Condon, and

Hashemi [68] independently investigated the special case of two-input functions f : N2 → N com-

putable by output-oblivious CRNs, obtaining a characterization equivalent to ours when restricted

to 2D. In a followup result [111], they extended the results of this work to give a characterization

of the leaderless case.

6.1.6. Other ways of composing computation. In Section 6.2.3 we show that for a CRN

C be composable with downstream CRN D by “concatenation” (renaming C’s output species to

match D’s input species and ensuring all other species names are disjoint between C and D), it is

(in a sense) necessary and sufficient for C to be output-oblivious. There are other ways to compose

computations, however.

A common technique (e.g. [99]) is for C to detect when its output has changed and send a

restart signal to D. However, it is not obvious how to do this with function computation as defined

in this paper, where D changes C’s output by consuming it.

Another technique (e.g. [21]) is to set a termination signal, which is a sub-CRN that, with

high probability, creates a copy of a signal species T , but not before C has converged. T then
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“activates” the reactions of D, so that D will not consume the output of C until it is safe to do

so. However, this has some positive failure probability. In fact, if we require T to be guaranteed

with probability 1 to be produced only after the CRN has converged, only constant functions can

be stably computed [70]. Worse yet, in the leaderless case, it is provably impossible to achieve this

guarantee even with positive probability [83].

6.2. Preliminaries

6.2.1. Notation. For a set S (of species), we write NS to denote the set of vectors indexed by

the elements of S (equivalently, functions f : S → N). Vectors appear in boldface, and we reserve

uppercase A ∈ NS for such vectors indexed by species, and lowercase a ∈ Nd,Zd,Qd,Rd for vectors

indexed by integers. A(S) or a(i) denotes the element indexed by S ∈ S or i ∈ {1, . . . , d}. We

write a ≤ b to denote pointwise vector inequality a(i) ≤ b(i) for all i.

For p ∈ N+, Z/pZ denotes the additive group of integers modulo p, whose elements are congru-

ence classes. Generalizing to higher dimensions, Zd/pZd denotes the additive group of Zd modulo

p, whose elements are congruence classes. For x ∈ Nd where d ≥ 1, we write x mod p to denote

the congruence class {x + pz : z ∈ Zd} ∈ Zd/pZd, also denoted x when p is clear from context.

Rd≥0 denotes the nonnegative orthant in Rd. We consider regions R = {x ∈ Rd≥0 : Tx−h ≥ 0}

which are convex polyhedra given by a set of inequalities. R ∩ Nd denotes all integer points in R ,

and for x ∈ Nd, R ∩ (x mod p) denotes the integer points in R in the same congruence class as x.

‖x‖ denotes the standard Euclidean norm. Br(x) = {y ∈ Rd : ‖x− y‖ < r} denotes the open

ball of radius r centered at x.

6.2.2. Chemical reaction networks. We use the established definitions of stable function

computation by (discrete) chemical reaction networks [20,68]:

A chemical reaction network (CRN) C = (S,R) is defined by a finite set S of species and

a finite set R of reactions, where a reaction (R,P) ∈ NS × NS describes the counts of consumed

reactant species and produced product species.5 For example, given S = {A,B,C}, the reaction

((1, 0, 2), (0, 2, 1)) would represent A+ 2C → 2B + C.

5We do not limit ourselves to bimolecular (two input) reactions, but the higher-order reactions we use can easily
be converted to have this form. For example, 3X → Y is equivalent in its reachability to two reactions 2X
X2 and
X +X2 → Y .
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A configuration C ∈ NS specifies the integer counts of all species. Reaction (R,P) is applicable

to C if R ≤ C, and yields C′ = C−R + P, so we write C→ C′. A configuration D is reachable

from C if there exists a finite sequence of configurations such that C→ C1 → . . .→ Cn → D; we

write C→∗ D to denote that D is reachable from C. Note this reachability relation is additive: if

A→∗ B, then A + C→∗ B + C. This property is key in future proofs to show the reachability of

configurations which overproduce output.

To compute a function6 f : Nd → N, the CRN C will include an ordered subset {X1, . . . , Xd} ⊂ S

of input species, an output species Y , and a leader species L ∈ S. (Note that we consider

removing the leader in Section 6.9).

The computation of f(x) will start from an initial configuration Ix encoding the input with

Ix(Xi) = x(i) for all i = 1, . . . , d, along with a single leader Ix(L) = 1, and count 0 of all other

species. A stable configuration C has unchanged output C(Y ) = D(Y ) for any configuration D

reachable from C. The CRN C stably computes f : Nd → N if for each initial configuration Ix

encoding any x ∈ Nd, and configuration C reachable from Ix, there is a stable configuration O

reachable from C with correct output O(Y ) = f(x).

6.2.3. Composition via output-oblivious CRNs. This section formally defines our notions

of “composable computation with CRNs via concatenation of reactions” and “output-oblivious”

CRNs that don’t consume their output, showing these notions to be essentially equivalent.

A CRN is output-oblivious if the output species Y is never a reactant7: for any reaction

(R,P), R(Y ) = 0. A function f : Nd → N is obliviously-computable if f is stably computed by

an output-oblivious CRN.

We begin with an easy observation:

Observation 6.2.1. An obliviously-computable function f : Nd → N must be nondecreasing.

Proof. Assume a CRN C (with output species Y ) stably computes f , but f(a) > f(b) for a ≤

b. To stably compute f(a), input configuration Ia →∗ O for some configuration with O(Y ) = f(a).

However, since a ≤ b, that same sequence of reactions can be applied from the input configuration

6We consider codomain N without loss of generality, since f : Nd → Nl is stably computable if and only if each output
component is stably computable by parallel CRNs.
7A more general definition in [68] of output-monotonic CRNs just requires no reaction to reduce the count of
output species. This can be directly seen to classify the same set of functions, see Observation 6.2.4.
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Ib ≥ Ia. This overproduces Y since f(a) > f(b). Thus to stably compute f(b), some reaction

must consume Y as a reactant, so C cannot be output-oblivious. �

A CRN being output-oblivious was shown in [61] (for continuous CRNs) to be equivalent to

being “composable via concatenation”, meaning renaming the output species of one CRN to match

the input of another. This equivalence still holds in our discrete CRN model. This is formalized

as Observation 6.2.2 and Lemma 6.2.3.

For CRNs Cf stably computing f : Nd → N and Cg stably computing g : N → N, define the

concatenated CRN Cg◦f by combining species and reactions, with Cf ’s output species as Cg’s input

species and no other common species, plus a reaction L → Lf + Lg creating copies of the leader

available to each of Cf and Cg.

We first observe that this composition works correctly if the upstream CRN Cf is output-

oblivious. Intuitively, the reactions from Cg can only affect the reactions from Cf via the common

species W , but this output species of Cf is never used as a reactant to stably compute f(x).

Observation 6.2.2. If Cf stably computes f : Nd → N, Cg stably computes g : N → N, and Cf is

output-oblivious, then the concatenated CRN Cg◦f stably computes the composition g ◦ f : Nd → N.

Note that the downstream CRN Cg need not be output-oblivious, but if two output-oblivious

CRNs are composed, then the composition Cg◦f remains output-oblivious. More generally, g can take

any number of inputs from output-oblivious CRNs, which act as modules for arbitrary feedforward

composition.

The converse shows that a composable CRN is essentially output-oblivious. If Cf can be correctly

composed with any downstream Cg, then Cf must function correctly even if downstream reactions

from Cg starve it of the common species W . Thus Cf will still stably compute f if we remove all

reactions with output W as a reactant, making it output-oblivious.

Lemma 6.2.3. Let Cf stably compute f : Nd → N such that for any Cg stably computing g : N→ N,

the concatenated CRN Cg◦f stably computes the composition g ◦ f : Nd → N. Let C′f be the output-

oblivious CRN removing any reactions using the output species as a reactant from Cf . Then C′f
stably computes f .

Proof. Let Cf (with output species W ) stably compute f : Nd → N. Let g(x) = x be

the identity function, stably computed by W → Y . Assume the concatenated CRN Cg◦f stably
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computes g ◦ f = f . Let C′f be the output-oblivious CRN with all reactions using W as a reactant

removed from Cf . We now show that C′f also stably computes f .

For any x ∈ Nd, let Ix be the initial configuration encoding x in C′f , and C be any configuration

reachable from Ix. Now we will naturally view Ix and C also as configurations in the concatenated

CRN Cg◦f . We first consider configuration D reachable from C by applying the reaction W → Y

C(W ) times, so D(W ) = 0. Now because Cg◦f stably computes f , there exists a sequence of

reactions α from D to a stable configuration O with O(Y ) = f(x). α could contain reactions that

use W as a reactant, but because D(W ) = 0, any such reactions must occur after additional W has

been produced.

Before any such reactions usingW as a reactant, we can insert more reactionsW → Y , reaching

an intermediate configuration D2 again with D2(W ) = 0. There must exist some new sequence of

reactions α2 from D2 to a stable configuration O2 with O2(Y ) = f(x). Repeating this process,

we can construct a sequence of reactions β from C to a correct stable configuration On, where β

does not contain any reactions with W as a reactant. Notice that we only have to “splice in” new

reactions when W is produced, and this can only happen at most f(x) times, so this process will

terminate.

Now On(Y ) = f(x), so β contains precisely f(x) copies of the reaction W → Y . Ignoring these

reactions then gives a sequence of reactions β′ in C′f from C to a correct configuration O′ with

O′(W ) = f(x). Notice that On being stable in Cg◦f implies O′ is stable in C′f since no additional

W can be produced. This shows C′f stably computes f as desired. �

We finally observe that the more general definition of output-monotonic CRNs (which cannot

decrease the count of the output species) stably compute precisely the same set of functions as

output-oblivious CRNs:

Observation 6.2.4. f : Nd → N is stably computable by an output-oblivious CRN ⇐⇒ f is stably

computable by an output-monotonic CRN.

Proof. =⇒ : Any output-oblivious CRN must be output-monotonic.

⇐= : If f was stably computed by an output-monotonic CRN C which is not already output-

oblivious, then there must be reactions of the form aY + . . .→ aY + . . . with a ≥ 1 copies of output

species Y acting as a catalyst. C can be made output-oblivious by replacing all such occurrences
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of Y as a catalyst by a new catalyst species Z that is always produced alongside Y . Since C was

output-monotonic, if a Y is ever produced, it cannot be consumed. Thus any reactions with aY as

a catalyst are “turned on” the moment a copies of Y are produced and never turn off again. So it

does not change the reachable configurations to irreversibly produce a Z alongside Y and use Z as

the catalyst in place of Y . This output-oblivious CRN thus also stably computes f . �

6.2.4. Semilinear functions. The functions stably computable by a CRN were shown in [63],

building from work in [20], to be precisely the semilinear functions, which are defined based on

semilinear sets. The following definition is useful for the proofs in this work, see Section 1.3.1 for

other definitions and discussion.

Definition 6.2.5. A subset S ⊆ Nd is semilinear if S is a finite Boolean combination (union,

intersection, complement) of threshold sets of the form {x ∈ Nd : a · x ≥ b} for a ∈ Zd, b ∈ Z and

mod sets of the form {x ∈ Nd : a · x ≡ b mod c} for a ∈ Zd, b ∈ Z, c ∈ N+.

A semilinear function can be concisely defined as having a semilinear graph, but a more useful

and equivalent definition follows from Lemma 4.3 in [63]8:

Definition 6.2.6 ( [63]). A function f : Nd → N is semilinear if f is the finite union of affine

partial functions, whose domains are disjoint semilinear subsets of Nd.

Thus we will view semilinear functions as piecewise affine, where a finite number of theshold

and mod sets determine which affine function. All functions discussed so far have been semilinear.

For example, the function

min(x1, x2) =


x1, if x1 ≤ x2

x2, if x1 > x2

is semilinear with affine partial functions on disjoint domains which are defined by a single threshold

and thus semilinear.

Similarly, the function ⌊
3x

2

⌋
=


3
2x, if x is even

3
2x−

1
2 , if x is odd

8Lemma 4.3 in [63] has domains that are non-disjoint linear sets. We assume the domains are disjoint for convenience,
making the domains semilinear sets.
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Figure 6.5. Every semilinear nondecreasing f : N→ N is eventually quilt-affine, with periodic
finite differences δx.

is semilinear with affine partial functions on disjoint domains which are defined by parity (a single

mod predicate) and thus semilinear. All quilt-affine f : Nd → N (see Fig. 6.3b, Definition 6.5.1) are

semilinear by the same argument.

Lemma 6.2.7 ( [63]). A function f : Nd → N is stably computable ⇐⇒ f is semilinear.

6.3. Warm-up: One-dimensional case

For functions with one-dimensional input, the necessary conditions of being nondecreasing and

semilinear are also sufficient.

Theorem 6.3.1. f : N→ N is obliviously-computable ⇐⇒ f is semilinear and nondecreasing.

Intuitively, the proof works as follows. We show semilinear, nondecreasing f : N → N must

have the eventually quilt-affine structure in Fig. 6.5. From this structure, we define a CRN that

uses auxiliary leader states to track the value of x (or x mod p once x ≥ n), while outputting the

correct finite differences from adding each input.

Proof. =⇒ : Lemma 6.2.7 and Observation 6.2.1.

⇐= : Assume f : N → N is semilinear and nondecreasing. We will show that it is eventually

quilt-affine (generalized to higher-dimensional functions as Definition 6.5.1), thus has periodic

finite differences: for some n ∈ N, period p ∈ N+, and finite differences δ0, . . . , δp−1 ∈ N. This will

imply that for all x ≥ n, f(x+ 1)− f(x) = δ(x mod p) (see Fig. 6.5).
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Because f is semilinear, by Definitions 6.2.5 and 6.2.6, it can be represented as a disjoint union

of affine partial functions, whose domains are semilinear sets, and thus represented as finite Boolean

combinations of threshold {x ∈ N : x ≥ a} and mod {x ∈ N : x ≡ b mod c} sets. Now take

n ∈ N greater than all such a and p = lcm(c) for all such c. Then for all x ≥ n, f periodically

cycles between affine partial functions. Because f is nondecreasing, these periodically-repeated

affine partial functions must all have the same slope. This implies f is eventually quilt-affine, with

periodic finite differences for all x ≥ n as claimed.

The CRN C to stably compute f uses input species X, output species Y , leader L, and species

L0, . . . , Ln−1, P0, . . . , Pp−1 corresponding to auxiliary “states” of the leader, i.e., exactly one of

L,L0, . . . , Ln−1, P0, . . . , Pp−1 is present at any time. Intuitively the leader tracks how many in-

put X it has seen, where the count past n wraps around mod p, and outputs the correct finite

differences. The reactions of C are as follows

L→ f(0)Y + L0

Li +X → [f(i+ 1)− f(i)]Y + Li+1 for all i = 0, . . . , n− 2

Ln−1 +X → [f(n)− f(n− 1)]Y + Pn

Pa +X → δaY + Pa+1 for all a = 0, . . . , p− 1. �

In the 1D case, we can also characterize the functions obliviously-computable without a leader:

they are semilinear and superadditive: meaning f(x)+f(y) ≤ f(x+y) for all x, y. (Theorem 6.9.2)

6.4. Impossibility result

The characterization of obliviously-computable functions as precisely semilinear and nondecreas-

ing from Theorem 6.3.1 is insufficient in higher dimensions. As an example, consider the function

max : N2 → N, which is both semilinear and nondecreasing. We prove max is not obliviously-

computable via a more general lemma:

Lemma 6.4.1. Let f : Nd → N. If there exists an increasing sequence (a1,a2, . . .) ∈ Nd such that

for all i < j there exists some ∆ij ∈ Nd with

f(ai + ∆ij)− f(ai) > f(aj + ∆ij)− f(aj),
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Figure 6.6. Lemma 6.4.1 applied to f = max(x1, x2).

then f is not obliviously-computable.

Before proving Lemma 6.4.1, we use it to show max is not obliviously-computable.

For f = max(x1, x2), we let ai = (i, 0) and ∆ij = (0, j), so for i < j,

max(i, j)−max(i, 0) = j − i > max(j, j)−max(j, 0) = 0

as desired (see Fig. 6.6). Adding ∆ij input after computing f(ai) should produce j − i additional

output Y . However, adding ∆ij input after computing f(aj) should not. Lemma 6.4.1 uses this to

show there exists a reaction sequence that overproduces Y , thus max is not obliviously-computable.

We now prove Lemma 6.4.1.

Proof. Assume toward contradiction an output-oblivious CRN C stably computes f . To stably

compute each f(ai), the initial configuration Iai →∗ Oi for some configuration with Oi(Y ) = f(ai),

giving a sequence of configurations (Oi)
∞
i=1. By Dickson’s Lemma [78], any sequence of nonnegative

integer vectors has a nondecreasing subsequence, so there must be Oi ≤ Oj for some i < j. By

assumption there exists ∆ij ∈ Nd such that

f(ai + ∆ij)− f(ai) > f(aj + ∆ij)− f(aj).

Now consider the initial configuration Iai+∆ij ≥ Iai , so define the difference D = Iai+∆ij−Iai ∈

NS . Then the same sequence of reactions as Iai →∗ Oi is applicable to Iai+∆ij reaching configuration

Ci = Oi + D, with Ci(Y ) = Oi(Y ) = f(ai). Then to stably compute f(ai + ∆ij) there must exist

a further sequence of reactions α from Ci that produce an additional f(ai + ∆ij)− f(ai) copies of

output Y .
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By the same argument, from initial configuration Iaj+∆ij the configuration Cj = Oj + D is

reachable, with Cj(Y ) = Oj(Y ) = f(aj). Then since Oi ≤ Oj , we have Ci ≤ Cj , so the same

sequence of reactions α is applicable to Cj , reaching some configuration C′j with an additional

f(ai + ∆ij)− f(ai) copies of output Y . Now

C′j(Y ) = f(aj) + f(ai + ∆ij)− f(ai) > f(aj + ∆ij).

Since Iaj+∆ij →∗ C′j , which overproduces Y , the output-oblivious CRN C cannot stably compute

f(aj + ∆ij). �

Lemma 6.4.1 is our main technical tool used to show that a particular semilinear, nondecreasing

function is not obliviously-computable, the key challenge in the impossibility direction of The-

orem 6.5.2. In fact, it is the only way a semilinear and nondecreasing function can fail to be

obliviously-computable (see Theorem 6.5.4).

6.5. Main result: Full-dimensional case

To formally state our main result, Theorem 6.5.2, we must first define a quilt-affine function

as the sum of a linear and periodic function (see Fig. 6.3b):

Definition 6.5.1. A nondecreasing function g : Nd → Z is quilt-affine (with period p) if there exists

∇g ∈ Qd≥0 and B : Zd/pZd → Q such that

g(x) = ∇g · x +B(x mod p).

We call ∇g the gradient of g, and the periodic function B the periodic offset. Without loss of

generality we have the same period p along all inputs, since p could be the least common multiple of

the periods along each input component i = 1, . . . , d. Note that ∇g · x and B can each be rational,

but the sum g(x) ∈ Z will be integer-valued. We allow g to have negative output for technical

reasons9, but in the case that g is quilt-affine with nonnegative output (i.e. g : Nd → N), there

is a simple output-oblivious CRN construction to stably compute g. The intuitive idea is to use a

single leader that reacts with every input species sequentially, tracks the periodic value x mod p,

and outputs the correct changes in g.

9The quilt-affine functions that describe f for large inputs may be negative on inputs close to the origin.
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Our main result has a recursive condition where we fix an input of a function f : Nd → N. For

each i = 1, . . . , d and j ∈ N, define the fixed-input restriction10 f[x(i)→j] : Nd → N of f for all

x ∈ Nd by f[x(i)→j](x) = f(x(1), . . . ,x(i− 1), j,x(i+ 1), . . . ,x(d)).

We can now formally state our main result:

Theorem 6.5.2. f : Nd → N is obliviously-computable ⇐⇒

(i) [nondecreasing] f is nondecreasing,

(ii) [eventually-min] there exist quilt-affine g1, . . . , gm : Nd → Z and n ∈ Nd such that for all

x ≥ n, f(x) = mink(gk(x)), and

(iii) [recursive] all fixed-input restrictions f[x(i)→j] are obliviously-computable.

We first prove that these conditions imply f is obliviously-computable via a general CRN con-

struction in Section 6.6.

The nondecreasing condition (i) is necessary by Observation 6.2.1. It is immediate to see the

recursive condition (iii) is also necessary:

Observation 6.5.3. If f : Nd → N is obliviously-computable, then any fixed-input restriction

f[x(i)→j] : Nd → N is obliviously-computable.

Proof. Let the output-oblivious CRN C stably compute f . We define the output-oblivious

CRN C′ to “hardcode” the input x(i) = j by modifying the reactions of C. Replace all instances

of the leader L and input species Xi by L′ and X ′i respectively, then add the initial reaction

L→ jX ′i + L′. It is straightforward to verify that C′ stably computes f[x(i)→j]. �

Then the remaining work (and biggest effort of this paper) is to show the necessity of the

eventually-min condition (ii): that every obliviously-computable function can be represented as

eventually a minimum of a finite number of quilt-affine functions, which is shown as Theorem 6.7.1.

The proof relies on f being semilinear, nondecreasing, and not having any “contradiction sequences”

of the type described by Lemma 6.4.1. Thus the proof of Theorem 6.7.1 also yields the following

alternative characterization to Theorem 6.5.2:

Theorem 6.5.4. f : Nd → N is obliviously-computable ⇐⇒ f is semilinear, nondecreasing,

and has no sequence (a1,a2, . . .) meeting the conditions of Lemma 6.4.1.

10We define f[x(i)→j] to have domain Nd because it is notationally convenient to have the same domain as f , but
f[x(i)→j] only has relevant input in d− 1 of its input components, making condition (iii) recursive.
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This gives a “negative characterization” identifying behavior obliviously-computable functions

must avoid, whereas Theorem 6.5.2, is a “positive characterization” describing the allowable be-

havior of such functions. We include Theorem 6.5.4, though it is less descriptive of the function,

because it may be useful in other contexts.

6.6. Construction

First we show that any quilt-affine function with nonnegative range is stably computed by an

output-oblivious CRN:

Lemma 6.6.1. Every quilt-affine function g : Nd → N is obliviously-computable.

Proof. Let g : Nd → N be quilt-affine with period p (recalling Definition 6.5.1). Notice that

g has periodic finite differences. For each congruence class a ∈ Zd/pZd and input component

i = 1, . . . , d, where ei is the ith standard basis vector, define

δia = ∇g · ei +B(a + ei mod p)−B(a mod p) ∈ N.

Observe that for all x ∈ a, g(x + ei) − g(x) = δia. We now use these periodic finite differences to

construct an output-oblivious CRN C to stably compute g.

The CRN C has input species X1, . . . , Xd, output species Y , leader species L and pd additional

species La for each a ∈ Zd/pZd corresponding to auxiliary “states” of the leader. The initial reaction

L→ g(0)Y + L0 is accompanied by dpd reactions of the form

La +Xi → δiaY + La+ei

for each a ∈ Zd/PZd and i = 1, . . . , d. This CRN first creates g(0) output, then sequentially outputs

all finite differences, and is easily verified to stably compute g. �

We now prove (in Lemma 6.6.2) one direction of Theorem 6.5.2: that conditions (i), (ii), and

(iii) imply an output-oblivious CRN can stably compute f . Intuitively, by the eventually-min

condition (ii) we can compute f(x) for x ≥ n by composing min and quilt-affine functions. If

x � n, then for some input i, x(i) = j, where j < n(i). By the recursive condition (iii) we can
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compute f[x(i)→j](x) = f(x)11. The key remaining insight is a technique (similar to a proof in [61])

to compose these pieces using minimum and indicator functions.

The proof of Lemma 6.6.2 then expresses f as such a minimum of finitely many pieces. We

justify that f is obliviously-computable by showing that each piece is obliviously-computable, since

by Observation 6.2.2 obliviously-computable functions are closed under composition.

Lemma 6.6.2. If f : Nd → N satisfies the conditions of Theorem 6.5.2, f is obliviously-computable.

Proof. Assume f : Nd → N satisfies the conditions of Theorem 6.5.2. Then by eventually-

min condition (ii), there exist quilt-affine g1, . . . , gm : Nd → Z and n ∈ Nd such that f(x) =

mink(gk(x)) for all x ≥ n. Without loss of generality, assume n = (n, . . . , n). This assumption may

be made because if n is not of this form, we can take n = max{n(1),n(2), . . . ,n(d)} and still satisfy

condition (ii). (Note that condition (ii) is the only condition to reference n.)

Let x ∨ n = (max(x(1), n), . . . ,max(x(d), n)) denote the componentwise max of x and n. Let

1{x(i)>j} : Nd → {0, 1} denote the indicator function that is 1 ⇐⇒ its input x obeys x(i) > j.

Recall f[x(i)→j] is the fixed-input restriction setting input x(i) = j. We claim that f can be expressed

as

(6.1) f(x) = min

[
f(x ∨ n), f[x(i)→j](x) + 1{x(i)>j}(x) · f(x ∨ n)︸ ︷︷ ︸

i=1,...,d
j=0,...,n−1

]
.

We first show f ≥ min[. . .] since for all x ∈ Nd, f(x) is achieved by some term. If x ≥ n, then

f(x) = f(x ∨ n). If x � n, there must be x(i) = j for some i = 1, . . . , d and j = 0, . . . , n − 1, so

f(x) = f[x(i)→j](x) = f[x(i)→j](x) + 1{x(i)>j}(x) · f(x ∨ n) since the indicator is 0.

We next show f ≤ min[. . .] since f(x) ≤ each term for all x ∈ Nd. f(x) ≤ f(x∨n) since x ≤ (x∨

n) and f is nondecreasing. When 1{x(i)>j}(x) = 1, we then have f(x) ≤ f[x(i)→j](x) +1{x(i)>j}(x) ·

f(x ∨ n). If 1{x(i)>j}(x) = 0, then x(i) ≤ j so f(x) ≤ f[x(i)→j](x) since f is nondecreasing. Thus

equation 6.1 holds as claimed.

It remains to show that f is obliviously-computable. From Observation 6.2.2, output-oblivious

CRNs are closed under composition, and equation 6.1 gives a method to express f as a composition

of functions. Thus it suffices to show that each piece is obliviously-computable. Specifically, we

11As a result, this construction is recursive, with an additional input being fixed at each level of the recursion, so the
base case is simply a constant function.
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show the functions min : Nk → N (for any k), f(x ∨ n) : Nd → N, f[x(i)→j](x) : Nd → N,

and c(a, b,x) = a + 1{x(i)>j}(x) · b : Nd+2 → N are each obliviously-computable. Implicit in the

composed CRN to stably compute f as the composition from equation 6.1 is the “fan out” operation

where reactions of the form Xi → X1
i , . . . , X

m
i create multiple copies of species Xi to be used as

independent inputs to multiple “modules” in this composition.

min : Nk → N is obliviously-computable:

Consider the CRN with single reaction X1, . . . , Xk → Y , the natural generalization of

two-input min from Fig. 6.1.

f(x ∨ n) : Nd → N is obliviously-computable:

By condition (ii), f(x ∨ n) = mink(gk(x ∨ n)) since x ∨ n ≥ n, so it suffices to show for

each quilt-affine gk : Nd → Z that gk(x ∨ n) is obliviously-computable.

By condition (ii), gk(x + n) ≥ f(x + n) ≥ 0 since x + n ≥ n. Then gk(x + n) : Nd → N

is still quilt-affine since that property is preserved by translation, but now has guaranteed

nonnegative output. Thus by Lemma 6.6.1, gk(x + n) : Nd → N is obliviously-computable.

Letting (x−n)+ = (max(x(1)−n, 0), . . . ,max(x(d)−n, 0)), we then show the function

(x − n)+ : Nd → Nd is obliviously-computable via the CRN with reactions (n + 1)Xi →

nXi + Yi for each component i = 1, . . . , d.

Finally, because x∨n = (x−n)+ + n, we have shown gk(x∨n) = gk((x−n)+ + n) is

obliviously-computable as the composition of obliviously-computable gk(x + n) and (x −

n)+.

f[x(i)→j](x) : Nd → N is obliviously-computable:

This is precisely the assumed recursive condition (iii).

c(a, b,x) = a+ 1{x(i)>j}(x) · b : Nd+2 → N is obliviously-computable:

Consider the output-oblivious CRN (with input species A,B,X1, . . . , Xd and output

species Y ) with two reactions A → Y and (j + 1)Xi + B → (j + 1)Xi + Y . The A is

all converted to Y , and (j + 1) copies of input species Xi catalyze the conversion of B to

Y , which will only happen when 1{x(i)>j}(x) = 1. Thus this stably computes c(a, b,x) as

desired. �
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6.7. Output-oblivious implies eventually min of quilt-affine functions

To complete the proof of Theorem 6.5.2, it remains to show the necessity of the eventually-min

condition (ii):

Theorem 6.7.1. If f : Nd → N is obliviously-computable, then there exist quilt-affine g1, . . . , gm :

Nd → Z and n ∈ Nd such that for all x ≥ n, f(x) = mink(gk(x)).

For the remainder of Section 6.7, we fix an obliviously-computable f : Nd → N, and Section 6.7

is devoted to finding g1, . . . , gm and n satisfying Theorem 6.7.1.

6.7.1. Proof outline. Here we outline the proof of Theorem 6.7.1, which is spread over Sec-

tions 6.7.2-6.7.4.

Section 6.7.2.

Since f : Nd → N is obliviously-computable, f is semilinear (recall Definition 6.2.6), and we first

consider all threshold sets used to define the semilinear domains of the affine partial functions that

define f . Each threshold set defines a hyperplane, and we use these hyperplanes to define regions

(see Fig. 6.8a and Fig. 6.8c). We consider regions as subsets of Rd≥0, so they are convex polyhedra

with useful geometric properties12.

The regions partition13 the points in the domain Nd. To prove Theorem 6.7.1, for each region Rk

we will identify a quilt-affine function gk (the extension of f from region Rk) such that g(x) = f(x)

for all integer x ∈ Rk. To ensure f = mink(gk), we further require that these quilt-affine extensions

eventually dominate f (each gk(x) ≥ f(x) for sufficiently large x). Also, because we only care

about sufficiently large x, we need only consider eventual regions which are unbounded in all inputs

(for example regions 3,4, and 5 in Fig. 6.8a).

As an example, consider the semilinear, nondecreasing function

f(x1, x2) =


x1 + 1, if x1 < x2 (region D1)

x2 + 1, if x1 > x2 (region D2)

x1 if x1 = x2 (region U)

12What we consider is a restricted case of a hyperplane arrangement [154], with well-studied combinatorial
properties.
13Without loss of generality, we assume that the hyperplanes do not intersect Nd, so that the partition is well-defined
(see Fig. 6.8a).
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𝑥1𝑥2

𝑓

𝐷1 𝑈 𝐷2

(a) Plot of f , whose domain has 3 regions: D1,
D2, and U .

𝑥1𝑥2

𝑔1

(b) g1 (green) is the unique quilt-affine exten-
sion of f from region D1.

𝑥1𝑥2

𝑔

(c) g (green) is a quilt-affine extension of f from
U , but g < f on D1.

𝑥1𝑥2

𝑔𝑈

(d) gU (green) is a quilt-affine extension of f
from U , and gU ≥ f .

Figure 6.7. Obliviously-computable f can be expressed as a min of quilt-affine functions.

As in Definition 6.2.6, f is piecewise-affine, with semilinear domains that happen to be only defined

by threshold sets. These thresholds then partition the domain into three regions: D1, D2, and U

(see Fig. 6.7a). For region D1, there is a unique quilt-affine extension g1(x1, x2) = x1 + 1 (note

an affine function is the special case of a quilt-affine function with period 1). Also, g1 eventually

dominates f as desired, since g1(x) ≥ f(x) for all x ∈ N2 (see Fig. 6.7b). By symmetry, we have

the same for region D2 and its extension g2(x1, x2) = x2 + 1.

These desirable properties follow from D1 and D2 being “wide” regions that we define to be de-

termined (formalized later). On the other hand, U is a “narrow” region that is under-determined

(formalized later). As a result, there is not a unique quilt-affine extension from U . For example,

g(x1, x2) = x1 is a quilt-affine extension, however, we do not have g(x) ≥ f(x) for all sufficiently

large x (see Fig. 6.7c).
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(a) Three threshold hyperplanes creating five regions.
Regions 3 and 5 are determined, region 4 is under-
determined but still eventual (unbounded in all in-
put).

𝑥1

𝑥2

𝑥1

𝑥2

recc(1) recc(2)

recc(4)

recc(3)

recc(5)

𝑥1

𝑥2

𝑥1

𝑥2

𝑥1

𝑥2

(b) The recession cones of all five regions. For finite
regions, recc(1) = recc(2) = {0}. Under-determined
region 4 has a 1D recession cone, determined regions
3 and 5 have 2D recession cones.

𝑥1
𝑥2

𝑥3

𝟏 𝟐 𝟑

𝟒 𝟓 𝟔
𝟕 𝟖 𝟗

(c) Two pairs of parallel threshold hyperplanes cre-
ating nine eventual regions. Regions 1,3,7,9 are de-
termined. Region 5 is under-determined with 1D re-
cession cone. Regions 2,4,6,8 are under-determined
with 2D recession cones.

𝑥1
𝑥1

𝑥1
𝑥2

𝑥2𝑥2

𝑥3

𝑥3 𝑥3

recc(5)
recc(6)

recc(3)

(d) recc(5) ⊆ recc(6) ⊆ recc(3) so region 3 is a de-
termined neighbor of under-determined region 5 and
under-determined region 6. Also, region 6 is a neigh-
bor of region 5.

Figure 6.8. Examples with domains N2 (top) and N3 (bottom), with threshold hyperplanes
giving regions (left), which are classified by their recession cones (right).

In order to identify a quilt-affine extension from U that does eventually dominate f , we will refer

to the unique extensions g1 and g2 from regions D1 and D2, which are neighbors of U (formalized

later). We can construct a quilt-affine function with a gradient (1
2 ,

1
2) that is the average of the

gradients (1, 0) of g1 and (0, 1) of g2. In particular, we can let gU (x1, x2) = dx1+x2
2 e (note this is a

quilt-affine function with period 2, see Fig. 6.7d). We then have f(x) = min (g1(x), g2(x), gU (x))

for all x ≥ n = 0 as guaranteed by Theorem 6.7.1.

We now describe how we formalize the notion of a determined region, under-determined

region, and neighbor, for the general case of domain Nd, where the regions are convex polyhedra

in Rd.
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Section 6.7.3. To formally define determined regions, we identify the recession cone recc(R) ⊆

Rd of each region R: the set of vectors along infinite rays in R [144] (and 0; see Fig. 6.8b and

Fig. 6.8d). A determined region D is defined as having a d-dimensional recession cone (see regions

3 and 5 in Fig. 6.8a and regions 1,3,7,9 in Fig. 6.8c). For determined regions, we can prove (see

Lemmas 6.7.7 and 6.7.9) there is a unique quilt-affine extension, which eventually dominates f .

Section 6.7.4. Under-determined regions are then defined as having a recession cone with

dimension < d (see regions 1,2,4 in Fig. 6.8a and regions 2,4,5,6,8 in Fig. 6.8c). The above arguments

do not work for under-determined regions. Instead, identify the neighbors of an under-determined

region U as regions R with recc(U) ⊆ recc(R) (see Fig. 6.8b and Fig. 6.8d). We consider the

neighbors of U that are determined regions. The possible behavior of f on U is constrained by the

unique extensions from these regions, and we can define an extension from U based on an averaging

process. (See Lemma 6.7.16.)

6.7.2. Domain Decomposition. To identify the quilt-affine components gk, the strategy will

be to partition the domain Nd into regions where the restriction of f to that region yields a quilt-

affine function. Definition 6.2.6 as stated is not enough to expose this structure of f , but we argue

below that it implies Lemma 6.7.3, which characterizes the semilinear functions in a more detailed

way conducive to our proof strategy.

By Lemma 6.2.7, f is semilinear, so by Definition 6.2.6, f is the union of affine partial functions,

whose disjoint domains are semilinear subsets of Nd. This representation is not unique, so for the

rest of the section we fix some arbitrary such representation of f . Recall by Definition 6.2.5, these

semilinear domains are finite Boolean combinations of threshold and mod sets, so consider the

collection T of all threshold sets and the collection M of all mod sets that defined any of these

semilinear domains.

Let T consist of l threshold sets {x ∈ Nd : ti ·x ≥ hi} for each i = 1, . . . , l, where ti ∈ Zd and hi ∈

Z. These thresholds are equivalently written 2ti ·x > 2hi−1 (since ti ·x ≥ hi ⇐⇒ ti ·x > hi− 1
2), so

we can assume without loss of generality that the boundary hyperplanes Hi = {x ∈ Rd : ti ·x = hi}

contain no integer points (see Fig. 6.8a). These hyperplanes then partition the domain Nd.

For all y ∈ Nd, we describe how to formally define the region which contains y. Let si =

sign(ti · y − hi) = ±1 for each i = 1, . . . , l. Defining the threshold matrix T ∈ Zl×d, offset vector
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h ∈ Zl, and diagonal sign matrix S ∈ Zl×l as

T =


tT1
...

tTl

 h =


h1

...

hl

 S =


s1 0 . . . 0

0 s2 . . . 0
...

...
. . .

...

0 0 . . . sl,


where each si ∈ {−1, 1}, then S(Ty − h) ≥ 0. This concise form will let us define the region

of points that are in precisely the same threshold sets as y (those that agree on the signs of the

components of Ty − h):

Definition 6.7.2. Let S be a sign matrix: a diagonal matrix with diagonal entries = ±1. Then the

region (induced by S) is defined as

R = {x ∈ Rd≥0 : S(Tx− h) ≥ 0}.

When referring to a region R, we use SR to denote the sign matrix that induces R.

We consider nonnegative real vectors x ∈ Rd rather than just x ∈ Nd, but we are only truly

concerned with the integer points R ∩Nd, and only consider regions where R ∩Nd 6= ∅. Also, since

each y ∈ Nd induces a unique sign matrix as shown above, it follows that every y ∈ Nd is contained

in some unique region. The reason to consider R ⊂ Rd is that each region R is a convex polyhedron,

with convenient properties from convex geometry (see Fig. 6.8a and Fig. 6.8c).

Now consider the collectionM, consisting of m mod sets {x ∈ Nd : ai ·x ≡ bi mod ci} for each

i = 1, . . . ,m, where ai ∈ Zd, bi ∈ Z, ci ∈ N+. Then let the global period p be the least common

multiple lcmi(ci), so all elements of each congruence class a ∈ Zd/pZd are contained in precisely the

same mod sets. Thus for a region R, the set R∩ a is contained in precisely the same threshold and

mod sets, so the restriction f |R∩a is an affine partial function (recall Definition 6.2.6).

We now summarize this decomposition in the following lemma (proof argued above) as a char-

acterization of a semilinear function. Note that this applies to all semilinear functions, even those

that are decreasing.

Lemma 6.7.3. Let f : Nd → N be a semilinear function. Then there exist a finite set of regions

R1, . . . , Rn ⊆ Rd and a global period p ∈ N+ such that for each region Ri and congruence class
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a ∈ Zd/pZd, there exist ∇Ri,a ∈ Qd and bRi,a ∈ Q such that the restriction of f defined for all

x ∈ Ri ∩ a by

f |Ri∩a(x) = ∇Ri,a · x + bRi,a

is a (rational) affine partial function.

Notice the similarity in form between these affine partial functions in Lemma 6.7.3 and Defini-

tion 6.5.1 of quilt-affine functions. In fact, we will show the behavior of f on some regions has a

unique quilt-affine structure. This will require the region to be “infinitely wide in all directions”, a

notation we now make precise to define these determined regions.

6.7.3. Determined Regions. To formally define determined regions, we must first make the

connection between regions and their recession cones (more information on recession cones can be

found in [144]).

Definition 6.7.4. For a region R, the recession cone of R is

recc(R) = {y ∈ Rd : x + λy ∈ R for all x ∈ R, λ ∈ R≥0}.

The recession cone corresponds to the vectors y along infinite rays in the region R, and is a

convex polyhedral cone (recall that a subset of Rd is a cone if it is closed under positive scalar

multiplication) (see Fig. 6.8b and Fig. 6.8d). Note that vectors y ∈ recc(R) should not be thought

of as positions within R, but instead as directions of motion that will keep one within R no

matter how far one moves in that direction.

Recall by Definition 6.7.2 a region R = {x ∈ Rd≥0 : S(Tx−h) ≥ 0}. It is possible to equivalently

define

recc(R) = {y ∈ Rd≥0 : SRTy ≥ 0}.

In other words, the recession cone is defined by the homogenized version of the same inequalities

that defined R. One can easily verify this is equivalent to Definition 6.7.4.

We then say a region R is determined if dim recc(R) = d. Otherwise, the region R is under-

determined. We now make precise the idea that a determined region with full-dimensional reces-

sion cone is “infinitely wide in all directions”:
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Lemma 6.7.5. Let D be a determined region. Then the recession cone recc(D) contains open balls

of arbitrarily large radius.

Proof. Since recc(D) is a d-dimensional convex polyhedron, it has nonempty interior, so there

exists some x ∈ int(recc(D)) and an open ball Bε(x) ⊂ recc(D) of radius ε around x contained

in the cone. Since recession cones are closed under positive scalar multiplication, for any positive

scalar c, the ball Bcε(cx) ⊂ recc(D). �

We next make precise the idea that the function has a unique quilt-affine structure on a deter-

mined region.

Definition 6.7.6. An extension g : Nd → Z (of f) from a region R is a quilt-affine function that

agrees with f on R: f(x) = g(x) for all integer x ∈ R ∩ Nd.

We will now show there is a unique extension from each determined region (such as in Fig. 6.7(b)).

The construction of the regions yields a periodic piecewise-affine structure f restricted to a region

(Lemma 6.7.3). In order for f to be nondecreasing, these affine gradients must all agree, which will

let us uniquely describe a quilt-affine extension g using Definition 6.5.1.

Lemma 6.7.7. There is a unique extension g : Nd → Z from any determined region D.

Proof. By Definition 6.5.1, it suffices to show that there is a ∇g ∈ Qd and B : Zd/pZd → Q

such that, defining g : Nd → Z for all x ∈ Nd as

g(x) = ∇g · x +B(x mod p),

then for all x ∈ D ∩ Nd, g(x) = f(x).

By Lemma 6.7.3, for each a ∈ Zd/pZd, there are ∇a ∈ Qd and ba ∈ Q such that

f |D∩a(x) = ∇a · x + ba.

Since D contains arbitrarily large open balls by Lemma 6.7.5, it contains points in all congruence

classes, so all pd constants ba are well-defined. Then we define the periodic offset function B(x

mod p) = bx mod p. This is almost what we require to prove the lemma, except that ∇a depends

on a. It remains to show that all vectors ∇a are equal, so we can define the gradient ∇g = ∇a for

any a ∈ Zd/pZd.
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Assuming for the sake of contradiction that ∇a 6= ∇b for some equivalence classes a,b, we

will show that f cannot be nondecreasing. Since the recession cone recc(D) is full-dimensional and

∇a − ∇b 6= 0, there must exist some v ∈ recc(D) such that ∇a · v 6= ∇b · v. Furthermore, by

density of the rationals, we can assume v ∈ Qd, and by scaling by the denominator we can assume

v ∈ Nd. Now without loss of generality assume ∇a · v > ∇b · v.

Now pick some y ∈ D ∩ a, and some z ∈ D ∩ b with y < z, which must exist because again

D contains arbitrarily large open balls by Lemma 6.7.5. But since ∇a · v > ∇b · v, moving along

v, the function values in a grow faster than in b when moving along v from y and z, respectively.

Note that y + cpv, z + cpv ∈ D by definition of v ∈ recc(D), and cpv ∈ pZd, so y + cpv ∈ D ∩ a

and z + cpv ∈ D ∩ b. Thus for some multiple cp of the period p, we must have

f(y + cpv) > f(z + cpv)

but then f is not nondecreasing, since y + cpv < z + cpv.

Thus there is a uniquely determined gradient ∇g. While there was not necessarily a unique

choice for the period p, any valid choice will define the same function g. �

Note that although the function g : Nd → Z of Lemma 6.7.7 is uniquely defined based on D,

it can have different representations in terms of the periodic term B. For example, doubling the

period p [and appropriately defining B on the new values] would preserve the definition of g. (The

lack of a unique extension from an under-determined region, and the fact that not all of them can

be chosen to define f , is what makes such regions more challenging to deal with in Section 6.7.4.)

We next make precise why these extensions gk can be used in the eventual-min that will define

f to prove Theorem 6.7.1.

Definition 6.7.8. An extension g : Nd → Z eventually dominates f if there exists n ∈ Nd such

that f(x) ≤ g(x) for all x ≥ n.

We now show the uniquely defined extension g from a determined region D eventually dominates

f . The idea is that if the extension g did not eventually dominate f , then we can apply Lemma 6.4.1

to show f is not obliviously-computable.
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For example, the function

max(x1, x2) =


x2, if x1 ≤ x2

x1, if x1 > x2

is naturally identified by two determined regions, with unique extensions g1(x) = (0, 1) · x and

g2(x) = (1, 0) ·x. These extensions do not eventually dominate f , and we already saw in Section 6.4

how Lemma 6.4.1 applies to max. Thus the following lemma generalizes this example, finding a

“contradiction sequence” (a1,a2, . . .) to apply Lemma 6.4.1 whenever a determined extension g does

not eventually dominate f :

Lemma 6.7.9. The unique extension g from a determined region D eventually dominates f .

Proof. Let g be the extension from some determined region D. Assume toward contradiction

that g does not eventually dominate f , so for any point n ∈ Nd there exists some “bad point” b ≥ n

with f(b) > g(b). (Fig. 6.6 shows an example of the variables below as used in Lemma 6.4.1,

although the sequence (ai) is chosen more straightforwardly when proving max is not obliviously

computable.) We will use Lemma 6.4.1 to show this implies f is not obliviously-computable. To

satisfy the Lemma conditions, we must construct an increasing sequence (a1,a2, . . .) ∈ Nd such that

for all i < j there exists some ∆ij ∈ Nd with

f(ai + ∆ij)− f(ai) > f(aj + ∆ij)− f(aj).

We will choose (a1,a2, . . .) ∈ D ∩ a to be points in D that are all in the same congruence class

a mod p, and a sequence of vectors (v1,v2, . . .) ∈ Nd such that for all i, ai + vi is a “bad point”:

f(ai + vi) > g(ai + vi), while for all j > i, aj + vi ∈ D, so f(aj + vi) = g(aj + vi). Then for i < j,

let ∆ij = vi, so

f(ai + ∆ij)− f(ai) > g(ai + vi)− g(ai) since ai + vi is a “bad point”

= g(aj + vi)− g(aj) since g is quilt-affine and ai ≡ aj mod p

= f(aj + ∆ij)− f(aj)

as desired, where f = g for points in ai,aj ,aj + vi ∈ D.
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It remains to show how to construct the sequences (a1,a2, . . .) and (v1,v2, . . .) recursively, to

ensure for all i < j that ai ∈ a, ai + vi is a “bad point”, and aj + vi ∈ D. Let a1 ∈ D arbitrarily,

and the fixed congruence class a = a1. For each ai, there must be a “bad point” above ai, so we

recursively define each vi based on ai such that ai + vi is this “bad point”: f(ai + vi) > g(ai + vi).

Now we recursively define each aj based on aj−1 and v1, . . . ,vj−1 to ensure the sequence

(a1,a2, . . .) is increasing, congruent, and aj + vi ∈ D for all i < j. Since the recession cone recc(D)

contains open balls of arbitrary radius by Lemma 6.7.5, we can find some vector y ∈ recc(D) such

that such that the open ball Br(y) ⊂ recc(D) for a large radius r ≥ maxi<j ‖vi‖. Also, we can en-

sure y ≡ 0 mod p. Then we can let aj = aj−1 +y ∈ a. For all i < j, we have aj +vi ∈ Br(aj) ⊂ D

as desired.

By the above analysis, this increasing sequence (a1,a2, . . .) with ∆ij = vi satisfies the conditions

of Lemma 6.4.1, giving the contradiction that f is not obliviously-computable. �

The results of Lemmas 6.7.7 and 6.7.9 bring us close to proving Theorem 6.7.1. From each

determined region D1, . . . , Dq we have a quilt-affine extension g1, . . . , gq : Nd → Z that eventually

dominates f . Thus for some large enough n ∈ Nd we have f(x) ≤ mink gk(x) for all x ≥ n.

Furthermore, f(x) = gk(x) if x ∈ Dk for some determined region Dk. However, it is possible

f(x) < mink gk(x) for any x that belong to an under-determined region. Since the bound n can be

arbitrarily large, we need only consider eventual under-determined regions that are unbounded in

all inputs:

Definition 6.7.10. A region R is eventual if for any n ∈ Nd, there exists some x ∈ Nd ∩ R such

that x ≥ n.

To finish the proof of Theorem 6.7.1, it remains to show how to construct a quilt-affine extension

gU from each eventual under-determined region U , where gU eventually dominates f . We describe

how to do this in Sec. 6.7.4.

6.7.4. Under-determined regions. The key property that makes under-determined regions

more difficult to handle is that, unlike Lemma 6.7.7, there is not a unique extension from an under-

determined region. The key challenge of this section then is to reason about possible extensions

from U to show that one can be chosen that, as in Lemma 6.7.9, eventually dominates f .
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Let U ⊂ R≥0 be an under-determined eventual region. The eventual condition implies that

there is some v ∈ recc(U) strictly positive on all coordinates. In order to reason about U we will

need to identify other regions which are neighbors.

6.7.4.1. Neighbors of under-determined regions. We now formally define neighbor by recession

cone containment:

Definition 6.7.11. Region R is a neighbor of an under-determined region U if recc(U) ⊆ recc(R).

Intuitively, region R contains all the same infinite rays as region U , thus the two regions remain

“close at infinity." This relationship will constrain the function behavior on the two regions to be

similar.

We will construct the extension from U by referencing the determined regions that are neighbors

of U . Any under-determined eventual region will in fact have at least two determined neighbors

(proved as Corollary 6.7.19 to the later Lemma 6.7.18). Geometrically, we can think of the under-

determined recession cones as faces of each of the recession cones of the determined neighbors (see

Fig. 6.8d).

Unlike in the proof of Lemma 6.7.7, the affine partial functions defining f within U do not need

to have equal gradients. However, these gradients will be equal along directions in recc(U), in other

words projected onto the subspaceW = span(recc(U)). We now show a stronger statement, that this

common gradient (projected ontoW ) agrees with the gradient of the extension from any determined

neighbor D. Intuitively, if these gradients disagreed within W , then moving along directions in

recc(U), the differences between f on U and on D become arbitrarily large, contradicting that f

must be nondecreasing.

Lemma 6.7.12. Let U be an under-determined eventual region. Let D be a determined neighbor of

U , with unique extension g(x) = ∇g ·x +B(x mod p) given by Lemma 6.7.7. For any u ∈ U ∩Nd,

consider the affine partial function f |U∩(u mod p)(x) = ∇u · x + bu given from Lemma 6.7.3. Then

for all w ∈W = span(recc(U)), w · ∇u = w · ∇g.

Proof. This proof uses similar techniques to the proof of Lemma 6.7.7: with two nonequal

gradients, moving far enough along a recession cone direction to contradict the fact that f is

nondecreasing.
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Assume toward contradiction that for some u ∈ U ∩ Nd and w ∈ W , w · ∇u 6= w · ∇g. Then

since W = span(recc(U)), we have ∇u · y 6= ∇g · y for some y ∈ recc(U). Again, we can assume

y ∈ Nd by density of the rationals then scaling to clear denominators. Without loss of generality

further assume ∇u · y > ∇g · y.

Now pick some d ∈ D ∩Nd such that d ≥ u, so f(d) ≥ f(u) because f is nondecreasing. Then

since y ∈ recc(U) ⊂ recc(D), for any c ∈ N, u + cpy ∈ U ∩ u and d + cpy ∈ D ∩ d. Thus

f(u + cpy) = f |U∩u(u + cpy) = ∇u · (u + cpy) + bu

and

f(d + cpy) = f |D∩d(d + cpy) = ∇g · (d + cpy) +B(d).

Since ∇u · y > ∇g · y, for some large enough c ∈ N, we have f(u + cpy) > f(d + cpy). But this

contradicts the fact that f is nondecreasing, since u + cpy ≤ d + cpy. �

6.7.4.2. Strips within under-determined regions. Lemma 6.7.12 motivated the definition ofW =

span(recc(U)), which we call the determined subspace of U , with 1 ≤ dimW < d. See

Fig. 6.9b,6.9d,6.9f for examples.

Lemma 6.7.12 constrains the behavior of f moving from points in U within the subspace W .

The region U , however, could have a finite “width” in other directions. This motivates us to separate

U into “strips”, partitioning its integer points to classes lying on translated versions of W :

Definition 6.7.13. Let U be an under-determined region with W = span(recc(U)). The equivalence

relation ≡W , where x ≡W y if x − y ∈ W , partitions U ∩ Nd into sets called strips. Thus a strip

I = {x ∈ U ∩ Nd : x ≡W u} for some u ∈ U ∩ Nd.

For a strip I ∈ Nd, we will consider the smallest affine set containing I: the affine hull

aff(I) ⊂ Rd [74]. Note that for every u ∈ I, aff(I) = u + W = {u + w : w ∈ W}, and aff(I) is a

rational affine subspace. See Fig. 6.9a,6.9c,6.9e for examples.

We next show a useful lemma about the distance from rational affine subspaces to surrounding

integer points. This will be used to show there are only a finite number of strips, and will also be

key to a trick in the later proof of Lemma 6.7.16.
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𝑥1

𝑥2

H2

H1

U

(a) Dimension d = 2. Two threshold hyperplanes
H1, H2 define the under-determined region U ∈ R2

≥0.
A strip I ⊂ U ∩ N2 is shown as white integer points,
with its affine hull aff(I) ⊂ R2.

𝑊 
𝑊⟂ 

𝑥1 

𝑥2 

(b) The 1D recession cone recc(U), the determined
subspace W = span(recc(U)), and its orthogonal
complement W⊥.

U

aff(I)

𝑥1

𝑥3

(c) Dimension d = 3. A “1D” under-determined re-
gion U inside an infinite rectangular prism bounded
by two pairs of parallel threshold hyperplanes.

W
W⟂

𝑥1

𝑥3

(d) recc(U) is a 1D cone, W is 1D subspace, W⊥ is
a 2D subspace.

U

aff(I)

𝑥1

𝑥3

(e) Dimension d = 3. A “2D” under-determined re-
gion U bounded by a pair of parallel threshold hy-
perplanes on the left and right side.

recc U 

W⟂ 

W 

𝑥1 

𝑥3 

(f) recc(U) is 2D cone, W is a 2D subspace, w⊥ is a
1D subspace.

Figure 6.9. Three examples with different dimensions of an underdetermined region U , a strip
I, its affine hull aff(I), the recession cone recc(U), and determined subspace W .
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Lemma 6.7.14. Let A ⊂ Rd be a rational affine subspace, containing some point x ∈ Nd. Then

there exists a constant c > 0 such that for any period p∗ ∈ N+, for all y ∈ (x mod p∗) with y /∈ A,

the distance dist(y, A) ≥ cp∗.

Proof. Let A be a rational affine subspace containing x ∈ Nd. Let y ∈ x mod p∗ with y /∈ A,

so we can write y = x + p∗v for some v ∈ Zd.

First we consider the case that A is a hyperplane, so we can write A = {z ∈ Rd : a · z = b} for

some a ∈ Zd and b ∈ Z. Then using a standard formula [67] for the distance from a point y ∈ Rd

to A:

dist(y, A) =
|a · y − b|
‖a‖

=
|a · (x + p∗v)− b|

‖a‖
=
p∗|a · v|
‖a‖

≥ p∗

‖a‖

where the inequality follows from |a ·v| ≥ 1: a ·v ∈ Z and a ·v 6= 0 since y /∈ A. The desired result

then holds taking c = 1/‖a‖, which depends only on A (and not on p∗).

Finally if the rational affine space A is not a hyperplane, it is the intersection of a finite number

of hyperplanes, so A is contained in some rational hyperplane H and then by the above result

dist(y, A) ≥ dist(y, H) ≥ cp∗. �

Now we can show there are only a finite number of strips in each under-determined region.

Lemma 6.7.15. The equivalence relation ≡W partitions U ∩ Nd into a finite number of strips.

Proof. Consider the set of unique strips {I1, I2, . . .} each with some representative uj ∈ Ij .

For each strip Ij , consider the affine hull aff(Ij) = uj +W . These are rational affine spaces which

are all parallel. For any Ij 6= Ik, since both aff(Ij) and aff(Ik) contain integer points, using Lemma

6.7.14 with p = 1 implies that dist(aff(Ij), aff(Ik)) ≥ c for some constant c > 0. This lower bound

c is the same for all j, k because the aff(Ij) are all parallel. We will now use the fact that the affine

hulls of the strips are bounded away from each other to show there can only be finitely many strips.

Since U is a convex polyhedron, by [74] there exists a bounded polytope H such that U =

H + recc(U) = {h + y : h ∈ H, y ∈ recc(U)}. Thus each representative uj = hj + yj for some

hj ∈ H and yj ∈ recc(U), so hj = uj − yj ∈ aff(Ij) (since yj ∈ W ). Then dist(hj ,hk) ≥ c for all

j 6= k. Since all hj are contained in the bounded polytope H, there must be finitely many and thus

finitely many strips. �
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6.7.4.3. Defining an extension from a strip of an under-determined region. Since there are a

finite number of under-determined regions, by Lemma 6.7.15 there are a finite total number of

strips, so to finish proving Theorem 6.7.1 it suffices to consider each strip separately. For each strip

I, we must define an extension gI from I that eventually dominates f . The following lemma shows

how to define this extension based on the extensions from the determined neighbors, if we crucially

satisfy a technical condition that their gradients not all the same.

Lemma 6.7.16. Let I be a strip of an under-determined eventual region U . Let D1, . . . , Dm be the

determined neighbors of U , with extensions g1, . . . , gm. Assume for all z ∈W⊥, the gradients of the

extensions along z are not all equal: ∇gi · z 6= ∇gj · z for some i, j. Then there exists an extension

gI from the strip I that eventually dominates f .

Proof sketch. By Lemma 6.7.12, the gradient ∇I of gI must agree with the gradient from

any determined neighbors in all directions within W . We will define ∇I to be the average of

the gradients of the extensions from all determined neighbors (see Fig. 6.7(d), and note that any

weighted average of the gradients would work here). We crucially assume these gradients from the

extensions are not all the same. (Lemma 6.7.20 shows how to handle the case that the gradients are

all the same). This will imply that their average grows faster than the minimum (and thus grows

faster than f) moving away from aff(I). It is then immediate that gI will eventually dominate f

sufficiently far from aff(I), but requires a subtle trick to define gI to dominate f near aff(I).

We choose gI to have a larger period p∗ that will guarantee (via Lemma 6.7.14) that points

congruent mod p∗ to points in I are sufficiently far from aff(I) (where gI ≥ f). The offsets in these

congruence classes mod p∗ must be uniquely defined so gI = f on I. The remaining offsets are then

maximized subject to the constraint that gI is nondecreasing.

Finally, we must show gI eventually dominates f on integer points in aff(I). This is only

nontrivial for dimension d ≥ 3. For example, for strip I in Fig. 6.9e, we must argue that gI will

eventually dominate f within the whole spanning plane aff(I) (which includes regions directly above

U). We repeat the argument from Lemma 6.7.9, but now restrict our attention to aff(I). This works

because U is “infinitely wide" within the directions of W . �

Proof. Let D1, . . . , Dm be determined neighbors of U , each with a quilt-affine extension

gi(x) = ∇gi · x + Bgi(x mod p). Let ∇avg = 1
m

∑m
i=1∇gi ∈ Qd. We will define p∗ ∈ N+ and
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B∗ : Zd/p∗Zd → Q and let the extension be

gI(x) = ∇avg · x +B∗(x mod p∗),

which is quilt-affine with a potentially larger period p∗ = kp for some k ∈ N+, so each congruence

class (x mod p∗) ⊆ (x mod p). To ensure that gI still has integer outputs, we pick p∗ such that

p∗∇avg ∈ Nd. We will show later that p∗ can be chosen large enough to make gI eventually dominate

f . Let r ∈ I be a fixed reference vector we will use to define B∗.

First we show that for each u ∈ I, B∗(u mod p∗) is uniquely defined so that gI(x) = f(x) for all

x ∈ I ∩ (u mod p∗) (in other words there are fixed values of B∗ for inputs in I that will make gI an

extension of f from I). By Lemma 6.7.3 we have affine partial function f |U∩(u mod p)(x) = ∇u·x+bu

and by Lemma 6.7.12 we have projW (∇u) = projW (∇gi) for all gradients of determined neighbor

extensions gi. Thus we also have projW (∇u) = projW (∇avg), so ∇u ·w = ∇avg ·w for all w ∈ W .

We then define B∗(u mod p∗) = ∇u · r−∇avg · r + bu, which depends only on the congruence class

u mod p (but doesn’t depend on p∗). We can now verify that for any x ∈ I ∩ (u mod p∗), where

x− r ∈W by definition of the strip I, we have

gI(x) = ∇avg · x +B∗(x mod p∗)

= ∇avg · (x− r) +∇avg · r +∇u · r−∇avg · r + bu

= ∇u · (x− r) +∇u · r + bu since x− r ∈W

= ∇u · x + bu = f |U∩(u mod p)(x) = f(x).

Thus we have shown that B∗(u mod p∗) is uniquely defined so that gI(x) = f(x) for all x ∈ I ∩ (u

mod p∗).

gI is currently a partial function, only defined on the set I∗ = (I+p∗Zd)∩Nd of points congruent

mod p∗ to some u ∈ I. For all other congruence classes a mod p∗ ∈ Zd/p∗Zd such that a ∩ I = ∅,

we will define B∗(a) to be as large as possible while still having gI be nondecreasing. For gI to be

nondecreasing, gI(x) ≤ miny≥x gI(y) for all x ∈ Nd. We maximize B∗(a) such that for all x ∈ a,

gI(x) = min
y∈I∗,y≥x

gI(y).
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Observe that since the finite differences above each x are periodic (as observed formally to prove

Lemma 6.6.1), this required offset B∗(a) depends only on the congruence class a of x.

Now in order to show that gI eventually dominates f , we claim it suffices to show that gI

eventually dominates f on I∗: for some n ∈ Nd, gI(x) ≥ f(x) for all x ∈ I∗ with x ≥ n. If this

holds, then for any x /∈ I∗ with x ≥ n, we have gI(x) = gI(y) for some y ∈ I∗,y ≥ x, so

gI(x) = gI(y) ≥ f(y) ≥ f(x)

showing that gI eventually dominates f as long as gI eventually dominates f on I∗.

We will next show gI eventually dominates f for x sufficiently far from aff(I) by comparing gI

to the extension gj(x) = ∇gj · x + Bgj (x mod p) from some determined neighbor Dj . Let x ∈ I∗

and let gj be the extension of any determined neighbor Dj . Writing x = r + w + z for the fixed

reference r ∈ I, w = projW (x− r) ∈W and z = projW⊥(x− r) ∈W⊥, we have

gI(x)− gj(x) = ∇avg · (r + w + z) +B∗(x mod p∗)−∇gj · (r + w + z)−Bgj (x mod p)

= ∇avg · z−∇gj · z + [∇avg · r−∇gj · r +B∗(x mod p∗)−Bgj (x mod p)].

Notice that the term [. . .] depends only on j and x mod p (since B∗ was uniquely defined on

I∗ based only on x mod p). Thus minimizing over all finitely many j and x mod p gives some

(possibly negative) lower bound −q ∈ Q (which crucially does not depend on the choice p∗) such

that

gI(x)− gj(x) ≥ ∇avg · z−∇gj · z− q

for all x ∈ I∗ and extensions gj .

Now we use the crucial assumption that for any z ∈ W⊥, ∇gi · z 6= ∇gj · z for some i, j.

Considering first unit vectors v ∈ W⊥ with ‖v‖ = 1, then there is some j minimizing ∇gj · v with

∇avg · v − ∇gj · v > 0. We claim that there exists ε > 0 such that ∇avg · v − ∇gj · v ≥ ε for

all such v and their corresponding j. If not, then there is a sequence (vi) of unit vectors with

∇avg · vi − ∇gj · vi → 0. Since the unit ball is compact, there must be a subsequence of (vi)

converging to some v, which implies ∇avg · v − ∇gj · v = 0. This completes the claim that such
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ε > 0 exists. Then as long as ‖z‖ ≥ q/ε, we have for some j (which minimizes ∇gj · z)

gI(x)− gj(x) ≥ ‖z‖
(
∇avg ·

z

‖z‖
− ∇gj ·

z

‖z‖

)
− q ≥ ‖z‖ε− q ≥ 0.

Since x = r + w + z for some r + w ∈ aff(I) and z ∈ W⊥, we have ‖z‖ = dist(x, aff(I)).

Thus we have shown for x sufficiently far from aff(I), gI(x) ≥ gj(x) for some quilt-affine gj which

itself eventually dominates f (by Lemma 6.7.9). Crucially this bound ‖z‖ ≥ q/ε did not depend

on p∗, so we will now use Lemma 6.7.14 to choose p∗ large enough that dist(x, aff(I)) ≥ q/ε for all

x ∈ I∗ with x /∈ aff(I). Since such x ∈ (u mod p∗) for some u ∈ I ⊂ aff(I) and aff(I) is a rational

affine subspace, by Lemma 6.7.14 there is some bound c > 0 (depending only on aff(I)) such that

dist(x, aff(I)) ≥ cp∗. Thus we choose a large enough multiple p∗ = kp such that cp∗ ≥ q/ε.

We have shown that gI(x) eventually dominates f(x) for all x ∈ I∗ with x /∈ aff(I). It finally

remains to show that gI eventually dominates f on aff(I). This is true for the same reasons as

Lemma 6.7.9 (because gI is a quilt-affine extension of f from I) following the same proof strategy.

In the proof of Lemma 6.7.9 we assumed toward contradiction a sequence of “bad points”, and

used the fact that a determined region D contained arbitrarily large open balls to construct a

contradiction sequence for Lemma 6.4.1. Now we are only showing gI eventually dominates f on

aff(I), so all “bad points” would be in aff(I). We can construct a contradiction sequence (ai) ∈ I

by the same argument. Since W = span(recc(U)), by the same argument as Lemma 6.7.5, recc(U)

contains arbitrarily large open balls within the subspace W . This is sufficient to ensure (ai) ∈ I,

since the sequence of vectors (vi) with ai + vi being “bad points” are in W because all “bad points”

are in aff(I).

Thus gI eventually dominates f everywhere, as desired. �

Lemma 6.7.16 crucially assumed that along any z ∈ W⊥, the gradients of all extensions from

determined neighbors are not equal. If these gradients are all equal, there might not exist a quilt-

affine extension gI that eventually dominates f as we desired. For example, consider the function

(6.2) f(x1, x2) =


x1 + x2 + 1, if x1 6= x2

x1 + x2, if x1 = x2

which is a single affine function, depressed by 1 along the diagonal x1 = x2. f is semilinear and

nondecreasing. The two determined regions where x1 > x2 and x1 < x2 have the same quilt-affine
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extension ((1, 1) ·x+1), which eventually dominates f . On the underdetermined region, which here

consists of just the single strip where x1 = x2, f is strictly smaller. There does not actually exist a

quilt-affine extension from this strip that eventually dominates f . (One can show directly f is not

obliviously-computable by Lemma 6.4.1, with ai = (i, 0) and ∆ij = (0, j)).

6.7.4.4. Remaining case: equal gradients from determined neighbors. The remaining case thus

serves to disallow general versions the counterexample 6.2. Lemma 6.7.16 assumed for all z ∈W⊥,

∇gi · z 6= ∇gj · z for some i, j. We will now consider the negation: that for some z ∈ W⊥ we have

∇gi ·z = ∇gj ·z for all i, j. To proceed in this case, we will need to be able to identify the neighbor

of U in the direction of z.

For example, consider the under-determined eventual region 5 in Fig. 6.8c. The determined

subspace W is 1D, so the orthogonal complement W⊥ is 2D. For each z ∈W⊥, the neighbor in the

direction of z will correspond to one of the 8 other pictured regions.

We now identify which threshold hyperplanes can distinguish a region from its neighbors. Recall

the threshold hyperplanes Hi = {x ∈ Rd : ti · x = hi} for i = 1, . . . , l. We now show that some of

these hyperplanes must be parallel to all vectors in recc(U). If not, we will show there is a vector

in the interior of recc(U), so U must be a determined region.

Lemma 6.7.17. Let U be an under-determined eventual region. Then there exists some threshold

hyperplane Hi = {x ∈ Rd : ti · x = hi} such that ti · y = 0 for all y ∈ recc(U).

Proof. Assume toward contradiction that for all ti, there exists some yi ∈ recc(U) such that

ti · yi 6= 0, so si(ti · yi) > 0, where si is the ith sign that defined the region U , and sj(tj · yi) ≥ 0

for all j = 1, . . . , l since yi ∈ recc(U). Then y =
∑l

i=1 yi ∈ recc(U) since recc(U) is closed under

addition, so si(ti · y) > 0 for all i = 1, . . . , l.

Recall that recc(U) = {x ∈ Rd≥0 : (∀i)si(ti · x) ≥ 0} is a closed convex polyhedron that is

the intersection of closed half-spaces. Then int(recc(U)) = {x ∈ Rd>0 : (∀i)si(ti · x) > 0} is

the intersection of the respective open half-spaces, and we have y ∈ int(recc(U)). Thus because

int(recc(U)) is nonempty, recc(U) must be full-dimensional, contradicting that U is an under-

determined region. �

We call such hyperplanes neighbor-separating hyperplanes for reasons that will be made

clear shortly. If ti · y = 0 for all y ∈ recc(U), we also have ti · y = 0 for all y ∈ W , so by
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definition ti ∈ W⊥. Then let LU = {i ∈ {1, . . . , l} | ti ∈ W⊥} be the subset of labels of all such

neighbor-separating hyperplanes for U .

For example, in Fig. 6.8c, for under-determined region 5, all four hyperplanes are neighbor-

separating hyperplanes. For under-determined region 6, only the pair of horizontally oriented hy-

perplanes are neighbor-separating hyperplanes.

Recalling Definition 6.7.2, let SU = diag(s1, . . . , sl) be the sign matrix that defined U . For

z ∈ W⊥, define Rz, the neighbor of U in the direction of z, by a related sign matrix Sz =

diag(s′1, . . . , s
′
l), where if i ∈ LU and sign(ti · z) = −si, then let s′i = −si, but otherwise s′i = si for

all other i = 1, . . . , l. Intuitively, for all neighbor-separating hyperplanes, Rz is on the same side as

the direction z, but is otherwise identical to U .

The following lemma justifies the use of the word “neighbor” in the previous definition, and

further shows that such a neighbor is “more determined” (recession cone has higher dimension) than

U . This allows us to reason recursively about neighbors of an under-determined region U helping

us to define the extension on U , terminating in base cases of determined regions.

Lemma 6.7.18. Let U be an under-determined eventual region with W = span(recc(U)), let z ∈

W⊥, and let the region Rz be the neighbor of U in the direction of z. Then Rz ∩ Nd is nonempty,

Rz is a neighbor of U and furthermore dim recc(U) < dim recc(Rz).

Proof. We first show that Rz is a neighbor of U , i.e., that

recc(U) = {x ∈ Rd≥0 : SUTx ≥ 0} ⊂ recc(Rz) = {x ∈ Rd≥0 : SzTx ≥ 0}.

Let x ∈ recc(U). Then for all i ∈ LU , si · x = 0, so s′i · x = 0, and otherwise s′i = si, so SzTx ≥ 0.

This implies x ∈ recc(Rz), i.e., recc(U) ⊂ recc(Rz), proving the claim that Rz is a neighbor of U .

Next we argue that dim recc(U) < dim recc(Rz). Now similar to the proof of Lemma 6.7.17, for

each i /∈ LU there exists some yi ∈ recc(U) such that ti · yi 6= 0, so si(ti · yi) > 0. Then taking

y =
∑

i/∈LU yi we have y ∈ recc(U), and also si(ti · y) > 0 for all i /∈ LU .14

We will show for some ε > 0, y + εz ∈ recc(Rz), which will imply z ∈ span(recc(Rz)) so

dim recc(Rz) ≥ dim recc(U) + 1 since z ∈ W⊥. Intuitively, to show this, we perturb the vector

y by a slight amount in the direction of z to be on the correct side of all neighbor-separating

14In fact y can be shown to be in the relative interior of recc(U), where the relative interior is the interior within
the affine hull. [74]
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hyperplanes, while remaining on the same side of all other hyperplanes. Formally, for all i ∈ LU , we

have s′i(ti ·z) ≥ 0 by construction of s′i. This might not hold for i /∈ LU , but in that case s′i(ti ·y) > 0.

Thus we can pick some small enough ε > 0 such that s′i(ti · (y + εz)) ≥ 0 for all i /∈ LU . For i ∈ LU ,

we have ti · y = 0 (by definition of LU since y ∈ recc(U)), so we also have s′i(ti · (y + εz)) ≥ 0 and

thus y + εz ∈ recc(Rz). This concludes the claim that dim recc(U) < dim recc(Rz).

Finally, we argue that Rz ∩ Nd is nonempty, so the region Rz is meaningfully defined. We

can further assume that the vector y+ = y + εz ∈ Nd (again by density assuming that the pieces

are rational and then scaling up to clear denominators). Now consider a point u ∈ U ∩ Nd, so

SU (Tu−h) ≥ 0, and consider moving along y+. For all i such that si 6= s′i, we have s
′
i(ti ·y+) > 0.

Thus for all sufficiently large constants c, Sz(T (u + cy+) − h) ≥ 0 so u + cy+ ∈ Rz. Intuitively,

the path from U along the vector y+ will eventually remain in the region Rz. This shows that the

neighbor of U in the direction of z is well-defined. �

For under-determined eventual region U , by repeatedly applying Lemma 6.7.18 using directions

±z for any z ∈W⊥, we can show that determined neighbors must actually exist:

Corollary 6.7.19. An under-determined eventual region U has at least 2 determined neighbors.

Proof. Since U is an under-determined region, there exists some nonzero z ∈ W⊥. Applying

Lemma 6.7.18 to z and −z will give regions Rz and R−z, which are the neighbors in the directions

z and −z, respectively. Note that the definition of Rz implies that R−z will have a different sign

matrix and thus be a separate region. Furthermore, the dimension of their recession cones is strictly

larger than that of U . If Rz and R−z are not determined, we can repeat this argument taking

Rz as the under-determined region. Since the recession cone dimension is bounded by d, we will

eventually find a pair of determined neighbors. �

We are now ready to consider the remaining case left after Lemma 6.7.16, when all determined

neighbor gradients agree along some z ∈W⊥.

Lemma 6.7.20. Let I be a strip of an under-determined eventual region U . Let D1, . . . , Dm be the

determined neighbors of U , with extensions g1, . . . , gm. Assume there exists z ∈ W⊥ such that the

gradients of the extensions along z are all equal: ∇gi · z = ∇gj · z for all i, j. Let Rz be the neighbor

of U in the direction z, with extension gz. Then gz is also an extension from I: gz(x) = f(x) for

all x ∈ I, so taking gz gives an extension from I that eventually dominates f .
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Proof. Let I be a strip of under-determined eventual region U , with extensions g1, . . . , gm from

determined neighbors D1, . . . , Dm respectively. Let z ∈ W⊥ such that ∇gi · z = ∇gj · z for all i, j.

We will consider the regions Rz and R−z that are the neighbors of U in the directions z and −z.

Recall by Lemma 6.7.18 that dim recc(U) < dim recc(R±z). The proof will proceed by induction on

the codimension: d−dim recc(U). For U with codimension 1, R±z must be determined regions with

unique extensions. In general, R±z could be under-determined, but will have lower codimension, so

by the inductive hypothesis we assume R±z have extensions that eventually dominate f (considering

this Lemma alongside Lemma 6.7.16). Thus there exist quilt-affine extensions gz and g−z (from Rz

and R−z) that eventually dominate f . Note these may have a larger period p∗ as used in the proof of

Lemma 6.7.16. We assume gz and g−z have common period p∗ by taking the least common multiple

if necessary. Thus we can write gz(x) = ∇gz · x +Bgz(x mod p∗) and g−z(x) = ∇g−z · x +Bg−z(x

mod p∗).

Now by assumption ∇gi ·z = ∇gj ·z for any of U ’s determined neighbors Di, Dj . Also by Lemma

6.7.12, projW (∇gi) = projW (∇gj ). Thus all determined gradients agree along span(W, z). The re-

gions R±z are either determined, or their determined neighbors are among D1, . . . , Dm (by transitiv-

ity of the neighbor relation). Regardless, we can say projspan(W,z)(∇gz) = projspan(W,z)(∇g−z). For

this proof, we will consider the affine space A = aff(I)+span(z) = {i+w+cz : i ∈ I,w ∈W, c ∈ R}

containing all points reachable from I by vectors in span(W, z). We now claim that gz(x) = g−z(x)

for all x ∈ A∩Nd. The gradients along directions in A (span(W, z)) were already shown to be equal.

Thus if gz(x) 6= g−z(x) (without loss of generality gz(x) < g−z(x)), then gz(y) < g−z(y) for all

congruent y ∈ x mod p∗. However, g−z is an extension of f from R−z, so we have gz(y) < f(y) for

all y ∈ R−z∩ (x mod p∗). This contradicts the fact that gz eventually dominates f , and completes

the claim that gz(x) = g−z(x) on A ∩ Nd.

Thus we must have gz(x) = f(x) for all x ∈ A∩Rz ∩Nd (since gz is an extension from Rz) and

x ∈ A ∩R−z ∩ Nd (since gz = g−z, the extension from R−z). We now show also that gz(x) = f(x)

for all x ∈ I. Assume toward contradiction that gz(u) 6= f(u) for some u ∈ I. By Lemma 6.7.3

we have affine partial function f |U∩(u mod p)(x) = ∇u · x + bu and by Lemma 6.7.12 we have

projW (∇u) = projW (∇gz). Then for any x ∈ I ∩ (u mod p∗), x = u + w for some w ∈ W by
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definition of I, so

gz(x)− f(x) = ∇gz · (u + w) +Bgz(u mod p∗)−∇u · (u + w)− bu

= (∇gz ·w −∇u ·w)︸ ︷︷ ︸
= 0 since w∈W

+(∇gz · u +Bgz(u mod p∗))− (∇u · u + bu)

= gz(u)− f(u)(6.3)

In other words, if gz(u) 6= f(u), they are also unequal for all x within the strip I on the entire

congruence class u.

If we had gz(u) < f(u), then gz(x) < f(x) for all x ∈ I ∩ (u mod p∗) by 6.3, which contradicts

that gz eventually dominates f .

The other case is that gz(u) > f(u), so again by 6.3, we have gz(x) > f(x) for all x ∈ I ∩ (u

mod p∗). (This is the behavior of our example 6.2, which will be shown to not be obliviously-

computable by the following general argument). Here, similar to the proof of Lemma 6.7.9, we will

apply Lemma 6.4.1 by creating a contradiction sequence (a1,a2, . . .) ∈ Nd such that for all i < j

there exists some ∆ij ∈ Nd with

f(ai + ∆ij)− f(ai) > f(aj + ∆ij)− f(aj).

To do this, we will find a sequence (a1,a2, . . .) ∈ A ∩ Rz ∩ (u mod p∗), so gz(ai) = f(ai) for all i.

We will then find another sequence (v1,v2, . . .) ∈ Nd such that ai + vi ∈ I ∩ (u mod p∗) for all i,

implying gz(ai+vi) > f(ai+vi). Also, we need that for all i < j, ai+vj ∈ A∩R−z∩ (u mod p∗),

so gz(ai + vj) = f(ai + vj). If these are both true, then choosing ∆ij = vj for i < j gives

f(ai + ∆ij)− f(ai)

= gz(ai + vj)− gz(ai)

= gz(aj + vj)− gz(aj) since gz is quilt-affine and ai ≡ aj mod p∗

> f(aj + vj)− f(aj) = f(aj + ∆ij)− f(aj).

Lemma 6.4.1 then tells us that f is not obliviously-computable, a contradiction. It remains to show

that such sequences (a1,a2, . . .) ∈ Rz and (v1,v2, . . .) ∈ Nd can be found satisfying ai + vi ∈ I ∩ (u

mod p∗) for all i, and for all i < j, ai + vj ∈ A ∩R−z ∩ (u mod p∗).
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Now from the proof of Lemma 6.7.18, we take the same y ∈ recc(U) and perturbed y+ =

y + εz ∈ recc(Rz) that were defined in that proof. Recall we showed for x ∈ U , for all large enough

c, x + cy+ ∈ Rz. Likewise, we also have y− = y − εz ∈ recc(R−z) (taking ε small enough to work

for both Rz and R−z) and we can assume (by density of rationals and scaling up denominators)

that y+,y− ∈ Nd.

Pick c ∈ N large enough that u + cp∗y+ ∈ Rz and u + cp∗y− ∈ R−z. Then for all i ∈ N+, let

ai = u + icp∗y+ and vi = icp∗y−. Since y+,y− ∈ span(W, z), we have ai ∈ A for all i, and the

multiple of p∗ ensures all points are in (u mod p∗) as desired. Finally, we can check that

ai + vi = u + icp∗y+ + icp∗y− = u + 2icp∗y ∈ I

since y+ + y− = 2y ∈ recc(U). Also, for i < j we have

ai + vj = u + icp∗y+ + jcp∗y− = u + (j − i)cp∗y− + icp∗y

Note that j − i ≥ 1, u + (j − i)cp∗y− ∈ R−z, and icp∗y ∈ recc(R−z). Thus

ai + vj = u + (j − i)cp∗y− + icp∗y ∈ R−z

as required.

Thus Lemma 6.4.1 gives a contradiction that f cannot be obliviously-computable. We reached

this contradiction by assuming that gz(u) 6= f(u) for some u ∈ I. Thus we conclude that gz(x) =

f(x) for all x ∈ I, so gz is an extension from I that eventually dominates f . �

For any strip I of an under-determined eventual region U , one of the cases from Lemmas 6.7.16

or 6.7.20 applies to show there exists an extension from I that eventually dominates f . There

are only finitely many such strips (Lemma 6.7.15), so alongside the unique extensions from the

determined regions (Lemmas 6.7.7 and 6.7.9), we have identified a finite collection g1, . . . , gm of

quilt-affine functions to complete the proof of Theorem 6.7.1.

6.8. Comparison to continuous case

In [61], the authors classified the power of output-oblivious continuous CRNs to stably com-

pute real-valued functions f : Rd≥0 → R≥0. We can generalize to also consider such functions by

introducing the following natural scaling:
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Definition 6.8.1. For a function f : Nd → N, the ∞-scaling f̂ : Rd≥0 → R≥0 is given by

f̂(z) = lim
c→∞

f(bczc)
c

.

Note this limit may not exist for arbitrary f : Nd → N, but it will exist for all obliviously-

computable f .

The next theorem shows that in this scaling limit, our output-oblivious function class exactly

corresponds to the real-valued function class from [61] (see Fig. 6.4b).

Theorem 6.8.2. If f : Nd → N is obliviously-computable, then the ∞-scaling f̂ : Rd≥0 → R≥0

is obliviously-computable by a continuous CRN. Furthermore, every function obliviously-computable

by a continuous CRN is the ∞-scaling of some function obliviously-computable by a discrete CRN.

Proof. To prove the first statement, let f : Nd → N be obliviously-computable. We will show

the ∞-scaling f̂ : Rd≥0 → R≥0 satisfies the main classification of [61]: that f̂ is superadditive,

positive-continuous, and piecewise rational-linear.

First we prove that for any quilt-affine g : Nd → Z, the∞-scaling ĝ is nonnegative and rational-

linear. From Definition 6.5.1, we can express g(x) = ∇g · x + B(x mod p) for ∇g ∈ Qd≥0 and

B : Zd/pZd → Q. Then for any z ∈ Rd≥0,

ĝ(z) = lim
c→∞

∇g · bczc+B(bczc mod p)

c
= ∇g · z,

since B is bounded. Because ∇g ∈ Qd≥0, ĝ is nonnegative and rational-linear.

Now by the eventually-min condition (ii) of Theorem 6.5.2, there exists quilt-affine g1, . . . , gm :

Nd → Z and n ∈ Nd such that f(x) = mink(gk(x)) for all x ≥ n. Then for any z ∈ Rd>0, bczc ≥ n

for large enough c, so

(6.4) f̂(z) = lim
c→∞

f(bczc)
c

= lim
c→∞

mink(gk(bczc))
c

= min
k

(
lim
c→∞

gk(bczc)
c

)
= min

k
(ĝk(z)),

where we pass the limit through the min function because min is continuous. Since ĝk(z) = ∇gk · z

are all rational-linear, on the domain R>0, f̂(z) = mink(ĝk(z)) is continuous and piecewise rational-

linear.
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We will now generalize this argument to show on the full domain Rd≥0, f̂ is piecewise rational-

linear and positive-continuous: for each subset S ⊆ {1, . . . , d}, f̂ is continuous on domain DS =

{z ∈ Rd≥0 : z(i) = 0 ⇐⇒ i ∈ S}. Fix any such S. By repeatedly applying the recursive

condition (iii) of Theorem 6.5.2, the fixed-input restriction f[(∀i∈S) x(i)→0] fixing input coordinates

in S to 0, is obliviously-computable. Then by the eventually-min condition (ii), there exists quilt-

affine gS1 , . . . , gSm and n ∈ Nd such that f[(∀i∈S) x(i)→0](x) = mink(g
S
k (x)) for all x ≥ n. Because

f[(∀i∈S) x(i)→0](x) does not actually depend on the input coordinates i ∈ S, we only actually require

x(i) ≥ n(i) for all i /∈ S. Now let z ∈ DS , so z(i) = 0 ⇐⇒ i ∈ S. Then for large enough c,

bczc(i) ≥ n(i) for all i /∈ S, so

f(bczc) = f[(∀i∈S) x(i)→0](bczc) = min
k

(
gSk (bczc)

)
.

Now repeating equation 6.4, we have f̂(z) = mink(ĝ
S
k (z)), so f̂ is continuous and piecewise rational-

linear on DS . This holds for all S ⊆ {1, . . . , d}, so f̂ is positive-continous and piecewise rational

linear.

It remains to show that f̂ must be superadditive: f̂(a) + f̂(b) ≤ f̂(a + b) for all a,b ∈ Rd≥0.

Let a,b ∈ Rd≥0 with a + b ∈ DS for a domain DS defined as above. Then

f̂(a + b) = min
k

(ĝSk (a + b)) = ĝSi (a + b) = ĝSi (a) + ĝSi (b)

for some minimizing rational-linear ĝSi . It remains to show ĝSi (a) ≥ f̂(a) (and by symmetry ĝSi (b) ≥

f̂(b)). This is immediate if a ∈ DS since f̂(a) = mink(ĝ
S
k ). Otherwise if a /∈ DS , assume toward

contradiction that f̂(a) > ĝSk (a). Then for some small enough ε > 0, we also have f̂(a) > ĝSk (a+εb).

Observing that a+εb ∈ DS , then ĝSk (a+εb) ≥ f̂(a+εb). But then f̂(a) > f̂(a+εb), a contradiction

since f̂ must be nondecreasing as the ∞-scaling of the nondecreasing function f .

Thus f̂ is semilinear, positive-continuous, and piecewise rational-linear as desired.

Next, to prove the second statement, let f̂ : Rd≥0 → R≥0 be any semilinear, positive-continuous,

and piecewise rational-linear function. We will show that there exists some obliviously-computable

f : Nd → N such that its ∞-scaling is f̂ .

On each domain DS = {z ∈ Rd≥0 : z(i) = 0 ⇐⇒ i ∈ S} for S ⊆ {1, . . . , d}, f̂ |DS is

superadditive, continuous, and piecewise rational-linear. By Lemma 8 in [61], f̂ |DS can be written

as the minimum of a finite number of rational linear functions ĝSk (z) = ∇gk · z. For each ĝSk , we will
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identify a quilt-affine gSk with gradient ∇gk . In particular, we can define gSk : Nd → N for all x ∈ Nd

by gSk (x) = b∇gk · xc, which will be quilt-affine.

Now for all S and integer x ∈ DS ∩ Nd, define f(x) = mink(g
S
k (x)). From the above proof

it follows that f̂ is the ∞-scaling of f . It is also straightforward to verify that f is obliviously-

computable by satisfying Theorem 6.5.2. f is nondecreasing, satisfying condition ((i)), because

f̂ was semilinear and thus nondecreasing. f satisfies eventually-min condition ((ii)) since for all

x ≥ (1, . . . , 1), x ∈ D∅ = Rd>0, so f(x) = mink(g
∅
k(x)). For all other S 6= ∅, the fixed-input

restriction f[(∀i∈S) x(i)→0](x) = mink(g
S
k (x)). It follows that f satisfies recursive condition ((iii)),

because any fixed-input restriction will be eventually-min of quilt-affine functions.

Thus any function f̂ obliviously-computable by a continuous CRN is the∞-scaling limit of some

f obliviously-computable by a discrete CRN. �

6.9. Leaderless one-dimensional case

In this section we show a characterization of 1D functions f : N → N that are obliviously-

computable without a leader.

Note that the following observation applies to any number of dimensions. We say f : Nd → N

is superadditive if f(x) + f(y) ≤ f(x + y) for all x,y ∈ Nd.

Observation 6.9.1. Every f obliviously-computable by a leaderless CRN is superadditive.

Proof. Let C be a leaderless CRN stably computing f . We prove the observation by contra-

positive. Suppose f is not superadditive. Then there are x, z ∈ Nd such that f(x)+f(z) > f(x+z).

Recall Iw is the initial configuration of C representing input w. Let αx be a sequence of reactions

applied to Ix to produce f(x) copies of Y , and let αz be a sequence of reactions applied to Iz to

produce f(z) copies of Y .

Since C is leaderless, Ix+z = Ix + Iz. Thus we can apply αx to Ix+z, followed by αz, producing

f(x) + f(z) copies of Y . Since this is greater than f(x + z), to stably compute f , C must have a

reaction consuming Y , so it is not output-oblivious. Since C was arbitrary, f cannot be obliviously-

computable. �

This added condition of superadditivity gives us the 1D leaderless characterization.
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Theorem 6.9.2. For any f : N → N, f is obliviously-computable by a leaderless CRN ⇐⇒ f

is semilinear and superadditive.

Proof. =⇒ : By Lemma 6.2.7 and Observation 6.9.1.

⇐= : If f is superadditive, then f is also nondecreasing (since f(x+ 1) ≥ f(x) + f(1) ≥ f(x)).

Then as in the Proof of Theorem 6.3.1, f is eventually quilt-affine, so there exist n ∈ N, period

p ∈ N+, and finite differences δ0, . . . , δp−1 ∈ N, such that for all x ≥ n, f(x+ 1)−f(x) = δ(x mod p).

Also, without loss of generality assume p divides n, so n mod p = 0.

The new CRN construction is motivated by trying to simply remove the leader species L from

the construction used in Theorem 6.3.1. Recall that set of reactions was

L→ f(0)Y + L0

Li +X → [f(i+ 1)− f(i)]Y + Li+1 for all i = 0, . . . , n− 2

Ln−1 +X → [f(n)− f(n− 1)]Y + Pn

Pa +X → δaY + Pa+1 for all a = 0, . . . , p− 1.

Since f is superadditive, we must have f(0) = 0. We then remove the species L and L0, and the

two reaction that contain them, and add the first reaction

X → f(1)Y + L1

If this reaction only occurred once, this would still correctly compute f . Otherwise, however, there

will be multiple “auxiliary leader species” from {L1, . . . , Ln−1, P0, . . . , Pp−1} in the system. To

correctly compute f , we must introduce pairwise reactions between these species that reduce the

count of auxiliary leaders and add a corrective difference.

For all i, j ∈ {1, . . . , n− 1}, the reaction between Li and Lj is

Li + Lj → Di,jY +


Li+j if i+ j < n

Pi+j if i+ j ≥ n

where Di,j := f(i+ j)− f(i)− f(j) ≥ 0 by superadditivity, and is the difference between how much

output Y was released in the reactions that produced Li and Lj and how much should have been

produced from the input that led to Li and Lj .
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We have similar reactions between Li and Pj for all i ∈ {1, . . . , n− 1} and a ∈ {0, . . . , p− 1}

Li + Pa → Di,aY + Pi+a

where Di,a := f(i + n + a) − f(i) − f(n + a) ≥ 0 by superadditivity. The reaction sequences that

produced Li consumed i copies of input X, and those that produced Pa consumed n + a + kp for

some k ∈ N, so we have undercounted by f(i+ n+ a+ kp)− f(i)− f(n+ a+ kp) = Di,a since the

periodic differences cancel.

Finally, the reactions between Pa and Pb for all a, b ∈ {0, . . . , p− 1} are

Pa + Pb → Da,bY + Pa+b

where Da,b := f(n + a + n + b) − f(n + a) − f(n + b) ≥ 0 by superadditivity, and this gives the

corrective difference in output by a similar argument.

Note that the rest of the reactions used in Theorem 6.3.1 are not strictly necessary, since if all

input X undergoes the first reaction X → f(1)Y + L1, the corrective difference reactions will then

reduce the count of auxiliary leader species down to 1, while outputting the correct differences to

produce precisely f(x) output. �

6.10. Conclusion

This work left open the question of the computational power of output-oblivious CRNs without

an initial leader. A leaderlessly-obliviously-computable function must be superadditive, which is

a strictly stronger condition than being nondecreasing. The continuous result [61] had the same

restriction of superadditivity, so our “scaling limit” reduction to their function class (Theorem 6.8.2)

shows our main function class is already “almost superadditive.” We also showed in the 1D case,

f : N → N is leaderlessly-obliviously-computable if and only if f is semilinear and superadditive

(Theorem 6.9.2).

The more recent result of [111] resolved this question in the higher dimensional case. There

it was shown that adding superadditivity as a condition to our full result (Theorem 6.5.2) gives

an exact classification of leaderlessly-obliviously-computable functions f : Nd → N. Moreover,

they give an alternative description of the classification of obliviously-computable functions with a

leader. This is based on a novel definition of well-ordered quilt-affine functions. Using this
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definition, they give a simplified version of our main characterization (Theorem 6.5.2), that is now

just a minimum of a finite number of nondecreasng well-ordered quilt-affine functions. Eliminating

the recursive characterization needed in our Theorem 6.5.2 then makes the CRN construction (our

Lemma 6.6.2) much simpler, which is crucial for making the argument then work in a leaderless

setting.
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