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Problems in Discrete Probability Theory and Cryptography

Abstract

This thesis discusses two distinct problems, the first of which is concerning format preserving

encryption in cryptography and the second is concerning transience of simple random walks on

infinite graphs.

In Chapter 1, we discuss format preserving encryption (FPE) under the presence of an adversary

who can leak parts of the secret key. The main aim of FPE is to encrypt a plaintext into a ciphertext

of the same format. For example, under FPE, an encrypted credit card number will still look like a

credit card number. One way to achieve this is by generating a uniformly random permutation on

the space of all plaintexts and then applying this permutation on the plaintexts to get ciphertexts.

Storing such a permutation is infeasible. For example in the case of credit cards, it would take

61, 391 terabytes to store such a permutation. So instead, in cryptography what we usually look

for is a random permutation which is an easy to compute function of a typically short random

string called the key. Such a random permutation is never going to be equal to a uniformly random

permutation in distribution as long as the key size is small. All one needs is that it is practically

very hard to distinguish between the two. Such a construction only works as long as the key is

secret, because knowing the key is same as knowing the permutation. In [7], Bellare, Kane and

Rogaway provide an encryption scheme that is secure even in the presence of an adversary who has

partial knowledge of the key. They thwart such an adversary by making the key large and putting

an upper limit on the amount of information about the key that the adversary can steal. The

rationale behind this is that for a threat residing in one’s network, it is hard for it to transfer huge

amounts of data to an external location without being detected. Their encryption scheme isn’t

format preserving. In this chapter, we discuss format preserving encryption in the same setting

as [7]. In particular we provide a format preserving encryption scheme and prove that it is secure

under an appropriately modified notion of security.

In chapter 2 we explore the connection between the entropy growth of a simple random walk

on a connected infinite graph with bounded degree and its transience. In particular, using the

technique of evolving sets we show that for a simple random walk starting at any vertex of an

iv



infinite connected graph with bounded degree, if the entropy of its nth step grows at least linearly

in n, with the constant of linearity being independent of the starting position, then the random

walk is transient. For irreducible transitive Markov chains, it is already known that linear entropy

growth implies transience. So, we end up enlarging the class of chains for which this result holds.

We also give an example to show that this uniformity of the constant of linearity is an essential

condition. That is, if there is no constant of linearity which works for every starting position, then

the random walk is not necessarily transient.
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CHAPTER 1

Format Preserving Encryption Under leakage

1.1. Ciphers, Pseudorandom Permutations and Random Oracles

In this section, we provide some preliminaries from the subject of cryptography, namely we

introduce the concept of pseudorandom permutations and the random oracle model. A cipher is

a function E : K × M → M such that E(x, ·) is a permutation on M for every x. Elements in

K are called keys. An element in M is either called plaintext or a ciphertext based on whether

it is in the domain or co-domain respectively. Plaintexts will be interchangeably referred to as

messages throughout this chapter. Often times, K and M are sets of strings of fixed lengths. The

aim of format preserving cryptography is to send a message m ∈ M to the receiver by changing

it into m′ ∈ M while an adversary is watching and trying to obtain m from m′. The function

m → m′ must be invertible, otherwise there is no way for the receiver to read the original message.

So the best possible way to do this is for the sender and receiver to meetup once and generate

an instance of a random permutation π on M. Then in the future one can transmit π(m) to

the sender. The permutation chosen is kept as a secret and unknown to the adversary. Since

the permutation is completely random, the adversary cannot do anything better than guessing m

from m′. However, as we discussed in the abstract, this is infeasible due to the costs involved in

storing such a permutation. Hence, instead of generating a random permutation, the sender and

receiver generate a shared key K ∈ K and use the permutation E(K, ·) to transfer messages among

themselves. Naturally, since we are trying to emulate uniformly random permutations, we want

E(K, ·) to be close to one in some sense. If E(K, ·) is close to a uniformly random permutation

in some fixed measure of closeness, we call it a pseudorandom permutation. The measure used to

describe this closeness of random permutations depends on applications. We will now describe

two such notions, namely the CCA (chosen ciphertext attack) and CPA (chosen plaintext attack)

security for pseudorandom permutations. Let E be a cipher and let K be a uniformly chosen key.
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Consider the following two worlds and place the adversary in each of these one at a time.

World 0: Choose a uniformly random permutation π : M → M and set g = π. Give the adversary

a black box access to g and g−1. What this means is that the adversary doesn’t get any description

of the functions but rather gets two black boxes. He can enter an m ∈ M into either of these black

boxes and get the corresponding output. He is only allowed to do this operation q times. These

operations are called queries.

World 1: In this world, set g = E(K, ·) and just as in world 0, give the adversary black box access

to both g and g−1. Again, he is allowed to make a total of q queries.

In each of these worlds, we ask the adversary to make an educated guess about the world he is in.

Let A(i) be the answer he gives while in world i. The CCA advantage of an adversary A is defined

to be

AdvCCA(A) = P
(
A(1) = 1

)
−P

(
A(0) = 1

)
.

The maximum CCA advantage is defined to be

MaxAdvCCA
q = max

A

(
AdvCCA(A)

)
,

where the max is taken over all adversaries who are allowed to make at most q queries. We say that

a pseudorandom permutation is secure against CCA if the above maximum advantage is small. If

in worlds 0 and 1, the adversary is only allowed black box access to g, then one gets the notion of

security against CPA. Security against CCA and CPA are standard in the literature. See [6] for

example. We will be using a notion of security that is a modification of CCA/CPA. Refer Section

1.4 for the definitions that we use. The modification was suggested to us by Phillip Rogaway

(personal communication, 2019). In the remaining part of this section, we will go over the random

oracle model of cryptography.

All the proofs in this chapter are in a model called the random oracle model, which was first used

in cryptographic proofs by Bellare and Rogaway in [8]. Given a finite domain A and co-domain

B, the random oracle model assumes the existence of a function f which produces a uniformly

random element from B when applied to an element x ∈ A, such that this random element is

independent of the values of the function at points other than x. When this function is applied on

x once again, it produces the same output as before. Mathematically, what it means is that for
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A = {x1, . . . , xu}, the sequence f(x1), . . . , f(xu) is a single instance of a sequence of i.i.d. random

elements that are uniform over B. In the literature, f is typically defined as a single instance of

a random function that is uniform over the collection of functions with domain A and co-domain

B. These two depictions of the function f are equivalent. f is called a random oracle and f(x)

is called a random oracle call. Typically when one talks about random oracles, the domain and

co-domain are suppressed. So it is a common practice to say for example, “apply the random oracle

on the string 0110 to get a uniformly random string of length 10”. We will be using this language

throughout this chapter. Random oracles are highly idealized representations of cryptographic hash

functions. Without the random oracle model, proofs in cryptography become incredibly hard. We

will not be questioning the validity of the random oracle model since it falls outside the realms of

mathematics.

It is important to note that all parties involved including the adversary have access to the

random oracles. Proofs in the random oracle model use the idea that until a random oracle call

f(x) is made by a party, f(x) is completely random in the eyes of the party. Once the call is made

and its value is revealed, f(x) becomes deterministic. However, revealing the value of f(x) doesn’t

give any information about f(y) for y ̸= x. This is because a random oracle produces outputs that

are independent of each other. Practically, the number of random oracle calls that can be made by

an adversary is limited. So, in the random oracle model one assumes that the adversary can make

at most r random oracle calls and computes security bounds that depend on r.

1.2. Introduction

The main aim of this chapter is to solve the problem of format preserving encryption in the

bounded retrieval model, by constructing a pseudorandom permutation and providing concrete

security bounds in the random oracle model. The bounded retrieval model was introduced to study

cryptographic protocols that remain secure in the presence of an adversary that can transmit or

leak private information including the key from the host’s computer to a remote home base. One

example of such an adversary is an APT (Advanced Persistent Threat), which is a malware that

stays undetected in the host’s network and tries to ex-filtrate the secret keys used by the host. The

premise of the bounded retrieval model is that such an adversary cannot move a large amount of
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data to a remote base without being detected or that it can only communicate with the remote base

through a very narrow channel. That is, the model assumes an upper bound on the amount of data

that an adversary can leak. For a list of works that are set in the bounded retrieval model, refer

to [1,2,7,9,12,15]. In [7] Bellare, Kane and Rogaway introduce an efficient symmetric encryption

scheme in this model and give concrete security bounds for it. They assume that the secret key is

very large and model the leaked data as a function that takes the secret key as the input and outputs

a smaller string. The length of this string is a parameter on which the security bounds depend.

Their algorithm uses a random seed R along with the big key to generate a key of conventional

length that is indistinguishable from a random string of the same length even when the function

used to model the leaked data depends on calls to the random oracle that the algorithm uses. It

then uses this newly generated key and any of the conventionally available symmetric encryption

schemes, say an AES mode of operation, to create a ciphertext C. Finally it outputs (R,C).

The above scheme is not format preserving since the final ciphertext (R,C) is longer than

the original message M . A question posed by Phillip Rogaway (personal communication, 2019)

is whether a secure format preserving encryption scheme exists in the bounded retrieval model.

Another way to pose this question is as follows : If the adversary is allowed to leak data, is it

possible to construct a pseudorandom permutation that is secure under some notion of security,

say the CCA notion of security? The aim of this chapter is to answer this question. Unfortunately

it is not possible to come up with a pseudorandom permutation that is secure under the strong

notion of CCA security. This is because in the CCA model, before trying to distinguish between

a random permutation and the pseudorandom permutation, the adversary can choose to look at a

sequence of plaintext-ciphertext pairs that he chooses. If a leakage of data is allowed, the adversary

can simply leak a single plaintext-ciphertext pair and use it to gain a very high CCA advantage.

Hence we weaken the notion of security by requiring that the adversary can only look at a sequence

of plaintext-ciphertext pairs where the plaintexts are uniformly random and distinct. We then ask

him to distinguish between a truly random permutation and the pseudorandom permutation. In

this chapter we give a pseudorandom permutation in the bounded retrieval model and prove that

it is secure in the weak sense that is discussed above. The precise defintion of security in our setup

can be found in Section 1.4.
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Just as in [7] we utilize a big key. The main idea in this chapter is that if one fixes the string of

leaked bits, the key is a uniform sample from the preimage of the leaked string. If the length of the

leaked string is small, then on average the preimage is very large. What this means is that even

when the leakage is known, with a high probability the total entropy of the key is high. This implies

that the sum of entropies of each bit in our key is large. This intuitively means that if some of

the bits in the key are not very random when the leakage is known, the other bits must somewhat

resemble unbiased random bits. So, if one uses a random oracle to look at various positions of

the key and take an XOR, it is likely that the resulting bit is close to an unbiased random bit.

This idea of probing the key is similar to the one used in [7]. The content of Sections 1.5 and 1.6,

which form the heart of this chapter, is to show that bits generated by probing the key are close to

i.i.d. unbiased random bits. To construct a pseudorandom permutation using these bits, we use a

particular card shuffling scheme called the Thorp shuffle, just as in [25]. This construction is given

in the next section.

1.3. Definition of the Cipher

Let M = {0, 1}m be the set of messages and K = {0, 1}k the set of keys. For a given message

M ∈ M and key K ∈ K, set Al0(M) = M and define Alt(M) inductively as follows. If Alt−1(M) =

b1b2 . . . bm, then apply the random oracle on (b2, b3, . . . , bm, t) to obtain
(
(P1, P2, . . . , Pn),S

)
, where

P1, . . . , Pn are distinct uniform samples from {1, . . . , k} and S is a uniformly chosen random subset

of {1, . . . , n} that is independent of (P1, . . . , Pn). Let c =
⊕

i∈S K[Pi], where K[Pi] denotes the bit

at the P th
i position of the key K. Set Alt(M) = b2b3 . . . bm(c ⊕ b1). Finally, we define the cipher

E : K×M → M to be E(K,M) = AlT (M) where T is some fixed number. We will call P1, . . . , Pn

probes and S sub probe indices.

To put it in words, we generate random bits by probing the key using a random oracle and

then taking the XOR of a subset of bits in these probe positions. We then use these random bits to

do T steps of the Thorp shuffle on the space of messages. Thorp shuffle has been already used by

Morris, Rogaway and Stegers in [25] to build a pseudorandom permutation on the space of binary

strings of desired length from a pseudorandom function. This works to our advantage because now

5



it is enough to show that it is hard to distinguish between our pseudorandom permutation and the

pseudorandom permutation from [25]. This is the content of Section 1.7.

1.4. Security of the Cipher

In this section we introduce a notion of security for pseudorandom permutations under the

assumption that there is a leakage of data. We assume that the adversary can leak l bits of data

and just as in [7], use a function Φ : K → {0, 1}l to model this. Henceforth we will refer to this

function as the leakage function. The adversary has the power to choose this function and this

function can depend on calls to the random oracle. For a key K, we will use L = Φ(K) to denote

the output one gets by applying the leakage function to it. We will call this the leakage. We

allow the adversary to make r random oracle calls and decide on a leakage function Φ. After the

adversary has chosen a leakage function, consider the following two worlds.

World 1: In this world, we first choose distinct uniformly random messages M1, . . . ,Mq ∈ M.

Then, for a uniformly random key K ∈ K, we set Ci = E(K,Mi) where E is the cipher we

defined in Section 1.3. We give the adversary access to the leakage L, the input-output pairs

(M1, C1), . . . , (Mq, Cq) and the random oracle calls that were used by the algorithm to compute the

E(K,Mi)
′s.

World 0: In this world, again we choose distinct uniformly random messages M1, . . . ,Mq ∈ M. We

once again choose a random key K ∈ K and compute L and all the random oracle calls necessary

to evaluate the E(K,Mi)
′s, just like world 1. However, instead of setting C ′

is to be the outputs of

the cipher, we do the following. We choose a uniformly random permutation π : M → M and set

Ci = π(Mi). Just as in world 1, the adversary is provided access to the input-output pairs for the

q messages, the leakage L and the random oracle calls.

We now place him in these two worlds one at a time without telling him which world he is

in. In each of these cases we ask the adversary to guess which world he is in. Let A(0) and A(1)

denote the answers he gives in world 0 and world 1 respectively. Then, we define the advantage of

an adversary as

(1.1) Adv(A) = P1

(
A(1) = 1

)
−P0

(
A(0) = 1

)
,
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where Pi is the probability measure in world i. Define the maximum advantage

(1.2) MaxAdvr,q = max
A

(
Adv(A)

)
,

where the maximum is taken over all adversaries satisfying the above mentioned conditions. Note

that in the above setup if we allow the messages to be chosen by the adversary instead of them being

random, we get the notion of security against chosen plain text attack (CPA) under leakage. Secu-

rity against CPA is weaker than security against CCA (chosen ciphertext attack). Unfortunately, if

a leakage is allowed, it is not possible to design a cipher that is secure in the CPA framework. This

is because of the adversary who does the following: Let q = 1. Assume that the message length m

is less than l. For each key K, the adversary includes the ciphertext E(K,M1) into the leakage, for

a fixed message M1. Then, the adversary answers as follows. If C1 = E(K,M1) then the adversary

guesses that he is in world 1. Else, the guess is world 0. In this case, P1(A(1) = 1) = 1 and

P0(A(0) = 1) = 1/2m. Hence this adversary has a very high advantage. There is an analogue

to this strategy even in our setup, which we will call the naive strategy. We will discuss it after

stating the main theorem. The following notation is useful when we make a comparison between

our bound and the naive strategy. Let M1, . . . ,Mj be distinct uniform samples from M = {0, 1}m.

Then for any subset M′ ⊆ M with |M′| = h, define

(1.3) B(h, j,m) = P
(
Mi ∈ M′ for some 1 ≤ i ≤ j

)
.

Note that B(h, j,m) is increasing in h and that one can bound B(h, j,m) using an union bound in

the following way.

B(h, j,m) ≤
j∑

i=1

P
(
Mi ∈ M′) = j

|M′|
2m

=
hj

2m
.

The main result of this chapter is the following theorem which is a bound on the maximum advan-

tage.

Theorem 1.4.1. Let MaxAdvr,q be as above. Let q be the number of messages available to the

adversary in world 0 or 1 and let l, k, T, n,m be as in Section 1.3. Let s be a whole number such

that T = s(2m − 1) and let r be the maximum number of random oracle calls that the adversary

7



can make while deciding on a leakage function. Assume that l + qT + n/(2 ln 2) ≤ k − n, then

(1.4) MaxAdvr,q ≤ 2qT · 2−n·α(k,l+qT−1,n) +
q

s+ 1

(
4mq

2m

)s

+B(2r, q,m),

where

α(k, a, n) =
1

8 ln 2

(
1− a+ 1 + n/(2 ln 2)

k − n

)2

(1.5)

and the function B is as defined in (1.3).

To make sense of the above result, let’s consider the following strategy which we will call

the naive strategy. For given l, k set u = ⌊l/m⌋. Then for any u distinct messages compute the

corresponding ciphertexts. Call the collection of message used M′. Now set the leakage to be a

concatenation of the u ciphertexts obtained, followed by any l −m⌊l/m⌋ bits. Next, when placed

in either world 0 or world 1, check whether any of the q random messages provided is from the

collection M′. Say Mi is from this collection. Then the ciphertext for Mi for is known. Call this

ciphertext Ci. Answer world 1 if the output corresponding to message Mi is Ci, else answer 0. If

none of the q random messages is from the collection M′, then answer based on an independent

unbiased coin toss. Let Advnaive denote the advantage of this strategy. Then,

Advnaive = B(⌊l/m⌋, q,m)(1− 1/2m).

The maximum number of random oracle calls made in this strategy is ⌊l/m⌋T , one for each message

and time step. So, it makes sense to compare the naive advantage to the bound we get when

r = ⌊l/m⌋T . Let M1, . . . ,Mh be disjoint subsets of M. Set ai = |Mi|. Then,

B

( h∑
v=1

av, j,m

)
= P

(
Mi ∈

h⋃
v=1

Mv for some i

)
= P

( h⋃
v=1

{
Mi ∈ Mv for some i

})

≤
h∑

v=1

P

(
Mi ∈ Mv for some i

)
=

h∑
v=1

B(av, j,m).

This gives us

B(2T ⌊l/m⌋, q,m) ≤ 2T ·B(⌊l/m⌋, q,m).
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So, if we set r = ⌊l/m⌋T , we have

MaxAdvr,q ≤ 2qT · 2−n·α(k,l+qT−1,n) +
q

s+ 1

(
4mq

2m

)s

+ 2T ·Advnaive.

So, at least in the special case of r = ⌊l/m⌋, we can conclude that the advantage of the best strategy

is at most 2T times the advantage of the naive strategy plus an additional error term. Let’s plot

this error term for some concrete values. Fix k = 243, which means the key is 1 Terabyte long.

Fix l = k/8 = 240, i.e., 12.5% or about 125 gigabytes of the key is allowed to be leaked. Fix the

message length to be m = 64 and the number of probes to be n = 500. Fix T = s(2m − 1) with

s = 2, i.e., T = 254. Let

f(q) = 2qT · 2−n·α(k,l+qT−1,n) +
q

s+ 1

(
4mq

2m

)s

and let

Γ(q) = min(f(q), 1).

Figure 1.1 shows a plot with log2(q) on the x-axis and − log2(Γ(q)) on the y-axis.

General outline for the proof of the main theorem: The proof of the main theorem is

broken down into three steps. The first step is to show that if the random oracle call necessary

to compute the probes for a certain bit is not made by the adversary, then on average, the bit

obtained is random even when one conditions on the leakage. To show this we note that given a

leakage, L = Φ(K), the distribution of keys is uniform over Φ−1(L). We know that the size of this

set is typically 2k−l, or more precisely that E
(
1/|Φ−1(L)|

)
= 2−(k−l). So, we prove a bound on

the randomness of the bit assuming that the size of Φ−1(L) is fixed. This easily translates to a

bound for the case when the size of Φ−1(L) is not fixed, by an application of Markov’s inequality.

The second step is to use the randomness of bits obtained by probing to show that the result

of applying our algorithm is close in total variation distance to the result obtained by applying

the Throp shuffle. Pseudorandom permutations that are close in total variation distance are hard

to distinguish from each other. This step also assumes that the random oracle calls required for

applying our algorithm to the inputs in question were not used to decide on a leakage function.

9
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)
The third and final step is to extend it to the case where the adversary makes any random oracle

calls he wants, by simply assuming that if the adversary uses the random oracle on (b2, . . . , bm, t)

where C = b1 . . . bm is the ciphertext at round/time t corresponding to a message M , and a = 0 or

1, then the message M has been compromised. By compromised we mean that the cipher text of

this message is no longer random, i.e., it is completely known.

1.5. Main Technical Results

Let P1, P2, . . . , Pn and S be the random probes and sub probes indices as in Section 1.3.

Throughout this section, by an abuse of notation, we will use K to denote an arbitrary random

string of length k, instead of the key. Most of the time we will assume that P(K = x) ≤ 2−(k−d)

for all x. This is weaker than the condition that K is sampled from a set of size 2k−d. We will also

assume that the probes and sub probe indices are independent of this K. Let c =
⊕

i∈S K[Pi]. We
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begin by relating the randomness of c with the distribution of (K[P1],K[P2], . . . ,K[Pm]) through

the following lemma.

Lemma 1.5.1. Let Y = (Y1, Y2, . . . , Yn) ∈ {0, 1}n be a random n-bit string. For S ⊆ {1, . . . , n},

set fS(Y ) := (−1)⊕i∈SYi, with the convention that f∅ ≡ 1. Also let

E(S) = E[fS(Y )].

Then for a uniformly chosen random subset S ⊆ {1, . . . , n}, we have

(1.6) E
[
E(S)2] =

∑
y∈{0,1}n

P
(
Y = y

)2
.

Proof. Let Ω = {0, 1}n. Note that RΩ, the space of real valued functions on Ω, forms a vector

space of dimension |Ω| over R. Define the following inner product on RΩ.

⟨f, g⟩ = 1

2n

∑
x∈Ω

f(x)g(x), for f, g ∈ RΩ

= E[f(Z)g(Z)],

where Z = (Z1, . . . , Zn) and Z1, Z2, . . . , Zn are i.i.d Bernoulli(1/2) random variables. Observe that

when S ̸= S′,

⟨fS , fS′⟩ = E[fS(Z)fS′(Z)] = E

[ ∏
i∈S∩S′

(−1)2Zi
∏

j∈S△S′

(−1)Zj

]

=
∏

i∈S∩S′

E

[
(−1)2Zi

] ∏
j∈S△S′

E

[
(−1)Zj

]
= 0,

since E[(−1)Zi ] = 0 and S△S′ is non-empty when S ̸= S′. Also observe that

⟨fS , fS⟩ = E
[
(−1)2(⊕i∈SZi)

]
= E[1] = 1.

Therefore, {fS}S∈2[n] forms an orthonormal basis for 2Ω. Next, let U(y) = 1/2n and P (y) =

P
(
Y = y

)
for y ∈ Ω. Then, P,U, P/U ∈ RΩ. Now note that

⟨P/U, fS⟩ =
1

2n

∑
x∈Ω

2nP (x)fS(x) =
∑
x∈Ω

P (x)fS(x) = E[fS(Y )] =E(S)

11



=⇒ 1

2n
⟨P/U, fS⟩2 =

1

2n
E(S)2.

Summing the above equation over all subsets S ⊆ {1, . . . , n} and using the fact that f ′
Ss form an

orthonormal basis, we get

1

2n
⟨P/U, P/U⟩ =

∑
S⊆{1,...,n}

1

2n
⟨P/U, fS⟩2 =

∑
S⊆{1,...,n}

1

2n
E(S)2 = E

[
E(S)2

]
.

The left hand side of the above equation simplifies to
∑

y∈Ω P (y)2 and hence the proof is complete.

□

Notation. Let X,Y be two random variables. Then let L(X) and L(X|Y ) denote the law of X

and the law of X given Y respectively.

Definition (Total variation distance). Let µ and ν be two probability distributions supported on

a finite set Ω. Then the total variation distance between them is denoted by,

(1.7) ∥µ− ν∥TV =
1

2

∑
x∈Ω

|µ(x)− ν(x)|.

Corollary 1.5.1. Let K be a random string. Let Pn = (P1, . . . , Pn) be probes and let S

be random sub probe indices, as defined in Section 1.3. Assume that K,Pn and S are indepen-

dent of each other. Set Y = (Y1, . . . , Yn) where Yi = K[Pi]. Then for c = ⊕i∈SK[Pi] and c′ ∼

Bernoulli(1/2)

E
[
∥L(c |Pn,S)−L(c′)∥TV

]
≤ 1

2
E

[√ ∑
y∈{0,1}n

P (Y = y | Pn)2
]
.

Proof. Condition on the event Pn = p. Let fS(·) be as in Lemma 1.5.1. We will apply

Lemma 1.5.1 to the probability distributions obtained by conditioning. So it is useful to define

Ẽ(·) = E[· | Pn = p]. Begin by observing that

E
[
fS(Y ) | Pn = p,S = S

]
=

∑
y∈{0,1}n

fS(y)P
(
Y = y | Pn = p,S = S

)
=

∑
y∈{0,1}n

fS(y)P
(
Y = y | Pn = p

)

12



since Y = (K[P1], . . . ,K[Pn]) and Pn are independent of S. So we get

(1.8) E
[
fS(Y ) | Pn = p,S = S

]
= Ẽ[fS(Y )].

Define E(S) = Ẽ[fS(Y )]. Note that S is uniformly distributed even after conditioning, due to

independence. Hence we can apply Lemma 1.5.1 to the conditioned random variables Y and S to

get

Ẽ
[
E(S)2

]
=

∑
y∈{0,1}n

P
(
Y = y | Pn = p

)2
.

Applying Jensen’s inequality, we get

(1.9) Ẽ
[
|E(S)|

]
≤
√
Ẽ[E(S)2] =

√ ∑
y∈{0,1}n

P
(
Y = y | Pn = p

)2
.

For Bernoulli distributions, one can check that ∥Bernoulli(q′)−Bernoulli(1/2)∥TV = |q′ − 1/2|. So

for q = P
(
c = 1 | Pn = p,S = S

)
, we have∥∥∥L(c | Pn = p,S = S

)
−L(c′)

∥∥∥
TV

= |1/2− q|.

Also note that

|1/2− q| =
∣∣∣(1/2− 1)q + (1/2− 0)(1− q)

∣∣∣ = ∣∣∣E[1/2− c |Pn = p,S = S
]∣∣∣.

Finally observe that c =
[
1− fS(Y )

]
/2 since ⊕i∈SK[pi] = 0 implies fS(Y ) = 1 and ⊕i∈SK[pi] = 1

implies fS(Y ) = −1. So the above two equations give us∥∥∥L(c | Pn = p,S = S
)
−L(c′)

∥∥∥
TV

=
∣∣∣E[1/2− c |Pn = p,S = S

]∣∣∣
=

1

2

∣∣∣E[fS(Y ) | Pn = p,S = S
]∣∣∣

=
1

2

∣∣∣Ẽ[fS(Y )
]∣∣∣ from (1.8)

=
1

2

∣∣E(S)
∣∣.

13



Using the above equation and inequality (1.9), we get

E

[∥∥∥L(c | Pn,S
)
−L(c′)

∥∥∥
TV

∣∣∣∣ Pn = p

]
≤ 1

2

√ ∑
y∈{0,1}n

P
(
Y = y | Pn = p

)2
.

This is true for every p. So we can take an expectation with respect to Pn to finish the proof of

the corollary. □

This shows that the average randomness of the bit c depends on the average l2-norm of the vector

of probabilities defined by (K[P1], . . . ,K[Pn]), where the average is taken over the probes. Our

aim is to bound this quantity assuming that they key K is sampled from a large enough subset

K′ ⊆ K. The theorem below gives us a bound under a weaker assumption.

Theorem 1.5.1. Assume that a random string K ∈ {0, 1}k satisfies

(1.10) P (K = y) ≤ 1

2k−d
for all y and some d ≥ 0.

Assume that the probes P1, . . . , Pn are independent of K and that d+ 1+ n/(4 ln 2) ≤ k− n. Then

for Y = (K[P1],K[P2], . . . ,K[Pn]),

(1.11) E

[ ∑
y∈{0,1}n

P (Y = y | P1, P2, . . . , Pn )
2

]
≤ 2−2n·β(k,d,n), where

β(k, d, n) =
1

8 ln 2

(
1− d+ 1 + n/(4 ln 2)

k − n

)2

.

We need a series of lemmas before we can prove this. So we postpone the proof to the end of

this section. Our first step in this regard is using Jensen’s inequality to convert the hypothesis of

the above theorem into a lower bound on the entropy of bits in K. This is the content of the lemma

given below.

Lemma 1.5.2. Assume that a random string K ∈ {0, 1}k satisfies

(1.12) P (K = x) ≤ 1

2k−d
for all x and some d ≥ 0.
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Let H(·) be the entropy function using logarithm to base 2. Then,

k∑
i=1

H(K[i]) ≥ k − d.

Proof. This is an application of Jensen’s inequality. Let qx = P (K = x). Then, H(K) =

−E
(
log2(qK)

)
and we have

qx ≤ 2−(k−d) for all x =⇒ E[qK ] ≤ 2−(k−d) =⇒ log2
(
E[qK ]

)
≤ −(k − d)

=⇒ −E[log2(qK)] ≥ k − d, by Jensen’s inequality

=⇒ H(K) ≥ k − d.

For discrete random variables Z,Z ′ on a common probability space, define the conditional entropy

H(Z|Z ′) =
∑

z H(Z|Z ′ = z)P(Z ′ = z), where H(Z|Z ′ = z) denotes the entropy of the law of Z

conditioned on {Z ′ = z}. Applying the chain rule for entropy on K = (K[1], . . . ,K[k]) gives us

k∑
i=1

H
(
K[i]

∣∣ K[i− 1],K[i− 1], . . . ,K[1]
)
= H(K) ≥ k − d.

For any two discrete random variables Z,Z ′, the inequality H(Z|Z ′) ≤ H(Z) always holds. For a

proof of this and the chain rule for conditional entropy, refer to Sections 2.2 and 2.5 from [11]. So

the above inequality gives

k∑
i=1

H(K[i]) ≥
k∑

i=1

H
(
K[i]

∣∣ K[i− 1],K[i− 1], . . . ,K[1]
)
= H(K) ≥ k − d.

□

The entropy of a Bernoulli random variable can be used to bound the probability associated

with it. This is the content of the lemma and corollary given below. We found the lemma on

a math.stack.exchange webpage [26]. Relating the probability and entropy is useful since the con-

clusion of Theorem 1.5.1 is about the probabilities of a sub-string of the large string K. We already

have a lower bound on the total entropy of all the bits in K.

Lemma 1.5.3. Let Z ∼ Bernoulli(θ). Then,

H(Z) = −θ log2(θ)− (1− θ) log2(1− θ) ≤ 2
√
θ(1− θ), for θ ∈ [0, 1].
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Proof. Before we talk about H(Z), it will be useful to prove the following technical lemma:

The equation
1− 2x√
(1− x)x

− log2(1− x) + log2(x) = 0

has exactly one solution on the interval x ∈ (12 , 1). To see this, begin by combining the logarithms,

and moving them to the right hand side to get

1− 2x√
(1− x)x

= log2

(
1− x

x

)
, which implies

1− 2x

1− x
· 1− 2x

x
=

[
log2

(
1− x

x

)]2
.

Note that we can square both sides without consequence, as both sides are negative on (12 , 1). Now

substitute y = 1−x
x . Note that y − 1 = 1−2x

x , and 1− 1
y = 1−2x

1−x . Since y(x) = 1−x
x is a continuous

bijection on x ∈ (12 , 1), we can equivalently show that the equation(
1− 1

y

)(
y − 1

)
= [log2(y)]

2

has exactly one solution on the interval y ∈ (0, 1). Multiplying by y on both sides gives us

(y − 1)2 = y[log2(y)]
2, which implies

(y − 1) =
√
y log2(y).

Note that we can safely take the positive square root on both sides, as (y − 1) and
√
y log2(y) are

both negative on (0, 1). Let g(y) =
√
y log2(y) and let h(y) = (y − 1).

The second derivative, g′′(y) = −1
4 log2(y)y

−3/2, is positive on (0,1], so g(y) is convex on (0, 1].

It follow that g(y) intersects the linear h(y) at most twice on (0, 1]. One of those intersections is

at y = 1, and since g( 1
64) > h( 1

64) and g(14) < h(14), the other intersection does in fact exist. So g

and h intersect exactly once on (0, 1). This proves the technical lemma.

Now we prove Lemma 1.5.3. We define the function f(θ) on [0, 1] by

f(θ) = 2
√
θ(1− θ) + θ log2(θ) + (1− θ) log2(1− θ)
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where f(0) = f(1) := 0. Our goal is to show that f(θ) ≥ 0 for all θ ∈ [0, 1]. Note that as f is

symmetric about θ = 1
2 , it is enough the show that f(θ) ≥ 0 for all θ ∈ [12 , 1]. In order to do this,

we will analyze the derivative of f(θ):

f ′(θ) =
1− 2θ√
(1− θ)θ

− log2(1− θ) + log2(θ).

By our technical lemma, the derivative has exactly one root in (12 , 1). This, along with the fact that

f(12) = f(1) = 0 means that f(θ) ≥ 0 on [12 , 1] or f(θ) ≤ 0 on [12 , 1]. By checking that f(34) > 0,

we determine that it is the former. □

Corollary 1.5.2. If H(Z) = ϵ where Z ∼ Bernoulli(θ) just as above, then

|θ − 1/2| ≤
√
1− ϵ2

2
.

Proof. We get this by applying the above lemma and then completing the squares.

ϵ ≤ 2
√

θ(1− θ) =⇒ θ2 − θ+ ϵ2/4 ≤ 0 =⇒ (θ− 1/2)2 ≤ (1− ϵ2)/4 =⇒ |θ− 1/2| ≤
√

(1− ϵ2)/4.

□

We now essentially prove Theorem 1.5.1 under the assumption that there is only one probe. We

say essentially since the bound obtained here is slightly better than what Theorem 1.5.1 gives us

for a single probe.

Lemma 1.5.4. Assume that a random string K ∈ {0, 1}k satisfies

(1.13) P (K = x) ≤ 1

2k−d
for all x and some d ≥ 0.

Let P be uniformly and independently chosen from {1, . . . , k}. Then for Y = K[P ] and d ≤ k, we

have

E

[
P (Y = 0 | P )2 + P (Y = 1 | P )2

]
≤ 1− 1

2

(
1− d

k

)2

.

Proof. Let f(θ) = θ2 + (1− θ)2. Then, observe that whenever |θ − 1/2| ≤ δ,

(1.14) f(θ) ≤ 2δ2 + 1/2.
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This is because f(θ) = θ2 + (1 − θ)2 = 2(θ − 1/2)2 + 1/2 is an increasing function of |θ − 1/2|.

Define Enti = H(K[i]). Then, applying lemma 1.5.2 we get

(1.15) E(EntP ) =
1

k

k∑
i=1

H(K[i]) ≥ 1

k
(k − d) = 1− d

k
.

Applying corollary 1.5.2 to the random variable K[P ] conditioned on P , we get

(1.16)
∣∣∣P (K[P ] = 1 | P )− 1/2

∣∣∣ ≤ 1

2

√
1− Ent2P .

So,

E

[
P (Y = 0 | P )2 + P (Y = 1 | P )2

]
= E

[
f
(
P (K[P ] = 1 | P )

)]
≤ E

[
2

(
1

2

√
1− Ent2P

)2

+
1

2

]
,by (1.14) and (1.16)

= E

[
1− 1

2
Ent2P

]
≤ 1− 1

2

(
E
[
EntP

])2
, by Jensen’s inequality

≤ 1− 1

2

(
1− d

k

)2

, by (1.15).

□

We will eventually prove Theorem 1.5.1 by applying Lemmas 1.5.5 and 1.5.6 below. Lemma 1.5.5

is an application of Lemma 1.5.4 given above.

Notation: let Y t = (K[P1],K[P2], . . . ,K[Pt]) where P ′
is are the probes as usual. Let Kt de-

note the random string obtained by deleting the bits K[P1],K[P2], . . . ,K[Pt] from the string K.

Let Yi = K[Pi] and Pt = (P1, P2, . . . , Pt). Also the define the following deterministic functions.

(1.17) Qt (b, y,p, p) = P
(
K[Pt+1] = b | Y t = y,Pt = p, Pt+1 = p

)
and

(1.18) Pt (y,p) = P
(
Y t = y | Pt = p

)
.
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Note that K,Pi, Y
t,Pt are random and Qt(·, ·, ·, ·), Pt(·, ·) are not. However, when we apply the

functions Qt and Pt on random quantities, we get random variables. So, Qt(Yt+1, Y
t,Pt, Pt+1) and

Pt(Y
t,Pt) are random.

Lemma 1.5.5. Fix n ∈ N and let t ≤ n. Assume that P (K = x) ≤ 2−(k−d) for all x and some

d ≥ 0. Let γ ≥ 2−(k−d−n) .Then on the event Pt(Y
t,Pt) > γ the following is true.

E

[
Qt(Yt+1, Y

t,Pt, Pt+1)
∣∣ Pt(Y

t,Pt)
]
≤ 1− 1

2

(
1− d− log2(γ)

k − n

)2

.

Proof. We will prove this by applying Lemma 1.5.4 to the string Kt. Fix Y t = y and Pt = p

such that P
(
Y t = y | Pt = p

)
= Pt(y,p) ≥ γ. Let p = (p1, . . . , pt) and y = (y1, . . . , yt), then

P
{
Kt = x | Y t = y,Pt = p

}
=
P
(
Kt = x, Y t = y,Pt = p

)
P
(
Y t = y,Pt = p

)
=
P
(
Kt = x,K[p1] = y1, . . . ,K[pt] = yt

)
P
(
Pt = p

)
Pt

(
y,p

)
P
(
Pt = p

) .

Kt = x,K[p1] = y1, . . . ,K[pt] = yt uniquely determines K. Say K = z. Then, continuing from

above we get

P
{
Kt = x | Y t = y,Pt = p

}
=
P(K = z)

Pt(y,p)
≤ P(K = z)

γ

≤ 2−(k−d)

γ
=

1

2(k−t)−(d−log2(γ)−t)
.

If γ ≥ 2−(k−d−n), then d − log2(γ) − t ≤ k − t. So we can now apply Lemma 1.5.4 to Kt and the

probe Pt+1 to get

E

[
Qt

(
0, Y t,Pt, Pt+1

)2
+Qt

(
1, Y t,Pt, Pt+1

)2∣∣∣Pt = p, Y t = y
]

=E

[
P
(
K[Pt+1] = 0

∣∣ Pt+1,P
t, Y t

)2
+P

(
K[Pt+1] = 1

∣∣ Pt+1,P
t, Y t

)2∣∣∣Pt = p, Y t = y

]
≤1− 1

2

(
1− d− log2(γ)− t

k − t

)2

≤1− 1

2

(
1− d− log2(γ)

k − n

)2

, since t ≤ n and t ≥ 0.(1.19)
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Now note that

E

[
Qt(Yt+1, Y

t,Pt, Pt+1)
∣∣ Y t = y,Pt = p

]
=
∑
p

1∑
b=0

Qt(b, y,p, p)P
(
Yt+1 = b, Pt+1 = p | Y t = y,Pt = p

)
=
∑
p

1∑
b=0

Qt(b, y,p, p)P
(
Yt+1 = b | Y t = y,Pt = p, Pt+1 = p

)
P
(
Pt+1 = p | Y t = y,Pt = p

)
=
∑
p

1∑
b=0

Qt(b, y,p, p)2P
(
Pt+1 = p | Y t = y,Pt = p

)

=E
[
Qt

(
0, Y t,Pt, Pt+1

)2
+Qt

(
1, Y t,Pt, Pt+1

)2∣∣∣Pt = p, Y t = y
]
.

(1.20)

From (1.19) and (1.20) above we can conclude that on the event Pt(Y
t,Pt) ≥ γ,

E

[
Qt(Yt+1, Y

t,Pt, Pt+1)
∣∣ Y t,Pt

]
≤ 1− 1

2

(
1− d− log2(γ)

k − n

)2

.

So, we finally have that on the event Pt(Y
t,Pt) ≥ γ,

E

[
Qt(Yt+1, Y

t,Pt, Pt+1)
∣∣ Pt(Y

t,Pt)
]
= E

[
E

[
Qt(Yt+1, Y

t,Pt, Pt+1)
∣∣ Y t,Pt

] ∣∣∣ Pt(Y
t,Pt)

]

≤ E

[
1− 1

2

(
1− d− log2(γ)

k − n

)2 ∣∣∣∣ Pt(Y
t,Pt)

]

= 1− 1

2

(
1− d− log2(γ)

k − n

)2

.

□

The following lemma is from [24]. The lemma gives a bound on E[Zn] for random variables

Z1, Z2, . . . under the assumption that for fixed Zt, on average the value of Zt+1 is smaller than Zt

by a factor which depends on Zt.

Lemma 1.5.6. Let f : [0,∞) → [0, 1] be an increasing function. Suppose that {Zt}t≥0 are

non-negative random variables with Z0 = L0. Denote Ln = E[Zn]. Assume that E[Zt+1 | Zt] ≤

(1− f(Zt))Zt for all t. Then for every t ≥
∫ L0

δ
2

zf(z/2)dz, we have Lt ≤ δ.
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Proof. This is part (iii) of Lemma 11 in [24]. □(1.5.1).

Proof. (Theorem 1.5.1) Let Pt(·, ·) and Qt(·, ·, ·, ·) be as defined in (1.17) and (1.18). Then,

note that

E[Pt(Y
t,Pt)] =

∑
y,p

Pt(y,p)P
(
Y t = y,Pt = p

)
=
∑
y,p

Pt(y,p)P
(
Y t = y | Pt = p

)
P
(
Pt = p

)
=
∑
p

∑
y

Pt(y,p)2
(
Pt = p

)
= E

[ ∑
y∈{0,1}t

P
(
Y t = y | Pt

)2]
.(1.21)

This is the quantity we want to bound. Let n be as in the hypothesis. For 2−(k−d−n) ≤ γ ≤ 1 set

f(x) =


1
2

(
1− d−log2(γ)

k−n

)2
if x ≥ γ

0 if x < 0

We will choose γ later. For 1 ≤ t ≤ n, set

Zt = Pt(Y
t,Pt).

Define Z0 = 1 and for t ≥ n+ 1 define

Zt = (1− f(Zt−1))Zt−1.

Note that from the above, E[Zt | Zt−1] ≤ (1 − f(Zt−1))Zt−1 whenever t ≥ n + 1. For 2 ≤ t ≤ n,

note that if y = (y1, . . . , yt−1), p
′ = (p1, . . . , pt−1), y

′ = (y1, . . . , yt−1, b) and p = (p1, . . . , pt−1, p)

then

Pt(y
′,p′) =

P(Y t = y′,Pt = p′)

P(Pt = p′)

=
P(Yt = b, Y t−1 = y,Pt−1 = p, Pt = p)

P(Y t−1 = y,Pt−1 = p, Pt = p)
· P(Y

t−1 = y,Pt−1 = p, Pt = p)

P(Pt−1 = p, Pt = p)

= Qt−1(b, y,p, p) · P(Y
t−1 = y,Pt−1 = p, Pt = p)

P(Pt−1 = p, Pt = p)
.(1.22)
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Since P1, . . . , Pt are independent of K, we get

P(Y t−1 = y,Pt−1 = p, Pt = p)

P(Pt−1 = p, Pt = p)
=
P(K[p1] = y1, . . . ,K[pt−1] = yt−1)P(P

t−1 = p, Pt = p)

P(Pt−1 = p, Pt = p)

=
P(K[p1] = y1, . . . ,K[pt−1] = yt−1)P(P

t−1 = p)

P(Pt−1 = p)

=
P(Y t−1 = y,Pt−1 = p)

P(Pt−1 = p)
= Pt−1(y,p).

So, from (1.22) we get

Pt(y
′,p′) = Qt−1(b, y,p, p)Pt−1(y,p).

From above, we get that for 2 ≤ t ≤ n,

(1.23) Zt = Qt−1(Yt, Y
t−1,Pt−1, Pt) · Zt−1.

From Lemma 1.5.5, we see that whenever Pt−1(Y
t−1,Pt−1) = Zt−1 ≥ γ and 2 ≤ t ≤ n,

E
[
Qt−1(Yt, Y

t−1,Pt−1, Pt) | Zt−1

]
≤ 1− 1

2

(
1− d− log2(γ)

k − n

)2

= (1− f(Zt−1)).

If Zt−1 < γ then, since Qt−1(Yt, Y
t−1,Pt−1, Pt) ≤ 1, we have

E
[
Qt−1(Yt, Y

t−1,Pt−1, Pt) | Zt−1

]
≤ 1− 0 = 1− f(Zt−1).

So, we have shown that for 2 ≤ t ≤ n,

E
[
Zt | Zt−1

]
= E

[
Qt−1(Yt, Y

t−1,Pt−1, Pt) | Zt−1

]
· Zt−1 ≤ (1− f(Zt−1)) · Zt−1.

For t ≥ n+ 1 the above is true by definition, as remarked previously. For t = 1, by Lemma 1.5.4,

E[Z1 | Z0] = E[Z1] ≤ 1− 1

2

(
1− d

k

)2

≤ 1− 1

2

(
1− d− log2(γ)

k − n

)2

,

since − log2(γ) ≥ 0 and n ≥ 0. So, by applying Lemma 1.5.6, we get that for t ≥
∫ 1
δ

2
zf(z/2)dz,

Lt = E[Zt] ≤ δ.
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Choose δ = 2γ and choose γ to be a solution to the equation

n =

∫ 1

2γ

2

zf(z/2)
dz,

such that 2−(k−d−n) ≤ γ ≤ 1. If we simplify the above equation, we get

(1.24) − log2(γ) = 1 +
n

4 ln 2

(
1− d− log2(γ)

k − n

)2

.

When γ = 1,

log2(γ) + 1 +
n

4 ln 2

(
1− d− log2(γ)

k − n

)2

= 1 +
n

4 ln 2

(
1− d

k − n

)2

> 0.

Recall that from the hypothesis, d+ 1 + n/(4 ln 2) ≤ k − n. So, for γ = 2−(k−d−n),

log2(γ) + 1 +
n

4 ln 2

(
1− d− log2(γ)

k − n

)2

= −(k − d− n) + 1 ≤ −n/4 ln 2 < 0.

This shows that γ indeed does exist. Next, note that for 2−(k−d−n) ≤ γ ≤ 1,(
1− d− log2(γ)

k − n

)2

≤ 1.

So, from equation (1.24), we get − log(γ) ≤ 1 + n/(4 ln 2). This implies that(
1− d− log2(γ)

k − n

)2

≥
(
1− d+ 1 + n/(4 ln 2)

k − n

)2

.

If we use equation (1.24) once again, we get

− log2(γ) ≥ 1 +
n

4 ln 2

(
1− d+ 1 + n/(4 ln 2)

k − n

)2

.

Recall that β(k, d, n) = 1
8 ln 2

(
1− d+1+n/(4 ln 2)

k−n

)2
. Hence, from the above equation we get

γ ≤ 2−1−2n·β(k,d,n).
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As remarked above, for t ≥
∫ 1
2γ

1
zf(z/2)dz = n, we have Lt ≤ 2γ. So in particular this holds for

t = n. So we can now use (1.21) to conclude

E

[ ∑
y∈{0,1}n

P
(
Y n = y | Pn

)2]
= E[Zn] = Ln ≤ 2γ ≤ 2 · 2−1−2n·β(k,d,n) = 2−2n·β(k,d,n).

□

1.6. Randomness of the Bits Generated by Probing the Key Under Leakage

Note that the results of Section 1.5 are purely mathematical and are interesting on their own

without any reference to cryptography. In this section we will be going back to our original setup of

keys and leakage. That is, from now on we will use K to denote the key and we will use L = Φ(K)

to denote the leakage. Until the final section, we will only look at the special case where the leakage

function doesn’t depend on the random oracle. What this means mathematically is that the probes

and subprobes are truly random even when we condition on the leakage. In other words, this means

that the probes and sub probe indices are independent of the leakage. We will solve the case where

the leakage depends on random oracle calls by applying the preceding case. We will do this in the

final section.

Corollary 1.6.1. Let K be the key and L = Φ(K) the leakage. Let c, P1, . . . , Pn and S be

as in section 1.3; let Pn = (P1, . . . , Pn) and c′ ∼ Bernoulli(1/2). Assume that the random oracle

call required to compute the probes and sub probes corresponding to c is not made by the adversary

while deciding on Φ(·). Assume that d ≥ 0 with d + 1 + n/(4 ln 2) ≤ k − n. Then on the event

1/|Φ−1(L)| ≤ 1/2k−d, we have

E

[∥∥L(c | L,Pn,S
)
−L

(
c′
)∥∥

TV

∣∣∣ L] ≤ 2−1−n·β(k,d,n), where

β(k, d, n) =
1

8 ln 2

(
1− d+ 1 + n/(4 ln 2)

k − n

)2

.
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Proof. Let L = x and assume that 1/|Φ−1(x)| ≤ 1/2k−d. Then, P (K = k | L = x ) ≤

1/|Φ−1(L)| ≤ 1/2k−d. From Corollary (1.5.1) it follows that,

E

[∣∣∣∣∣∣L(c | L,Pn,S
)
−L

(
c′
)∣∣∣∣∣∣

TV

∣∣∣ L = x

]
≤ E

[
1

2

√ ∑
y∈{0,1}n

P (Y n = y | Pn, L )2

∣∣∣∣∣ L = x

]

≤ 1

2

√√√√E[ ∑
y∈{0,1}n

P (Y n = y | Pn, L )2
∣∣∣∣ L = x

]
, by Jensen’s inequality

≤ 1

2

√
2−2n·β(k,d,n) = 2−1−n·β(k,d,n).

where last inequality is obtained by applying theorem (1.5.1) to K conditioned on the event L =

x. □

Lemma 1.6.1. Let Φ be a fixed leakage function. Then,

E

[
1/
∣∣Φ−1(L)

∣∣] ≤ 1/2k−l.

Proof. For i = 1, 2, . . . , 2l let Si = Φ−1(i), where the i on the right is interpreted to be in

binary notation. Note that Φ−1(L) = Si if and only if K ∈ Si. So, P
(
Φ−1(L) = Si

)
= |Si|/2k and

E

[
1/
∣∣Φ−1(L)

∣∣] = 2l∑
i=1

P
(
Φ−1(L) = Si

) 1

|Si|
=

2l∑
i=1

|Si|
2k

1

|Si|

=
1

2k−l
.

□

Lemma 1.6.2. Let c, c′, L,K,Pn and S be as in corollary 1.6.1. Assume that the random oracle

call required to compute the probes and sub probes corresponding to c is not made by the adversary

while deciding on Φ(·). Then for l + 1 + n/(2 ln 2) ≤ k − n,

E

[∥∥L(c|L,Pn,S)−L(c′)
∥∥
TV

]
≤ 2 · 2−n·α(k,l,n), where

α(k, l, n) =
1

8 ln 2

(
1− l + 1 + n/(2 ln 2)

k − n

)2

.
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Proof. Let I1 = 1{1/|Φ−1(L)|≤1/2k−d} and I2 = 1{1/|Φ−1(L)|>1/2k−d}. Think of L(c|L,Pn,S)

as a vector function of (L,Pn,S). Then by triangle equality for total variation distance we have,

E

[∥∥L(c|L,Pn,S)−L(c′)
∥∥
TV

∣∣∣L]
=E
[∥∥(I1 + I2)L(c|L,Pn,S)− (I1 + I2)L(c′)

∥∥
TV

∣∣∣L ]
≤E
[∥∥I1L(c|L,Pn,S)− I1L(c′)

∥∥
TV

+
∥∥I2L(c|Φ−1(L),Pn)− I2L(c′)

∥∥
TV

∣∣∣ L].(1.25)

The first term above can be bounded by noting that when I1 = 0, the term is zero and when

I1 = 1, we can use Corollary [1.6.1]. So we get

(1.26) E

[∥∥I1L(c|L,Pn,S)− I1L(c′)
∥∥
TV

∣∣∣ L] ≤ 2−1−n·β(k,d,n),

where β(k, d, n) = 1
8 ln 2

(
1− d+1+n/(4 ln 2)

k−n

)2
. Next, to bound the second term in (1.25), note that

the total variation distance is always bounded by one and hence,

E

[∥∥I2L(c|L,Pn,S)− I2L(c′)
∥∥
TV

∣∣∣ L] = E[I2∥∥L(c|L,Pn,S)−L(c′)
∥∥
TV

∣∣∣ L]
≤ E

[
I2
∣∣ L].(1.27)

If we now apply E to (1.25) and use (1.26) and (1.27), we get

E

[∥∥L(c|L,Pn,S)−L(c′)
∥∥
TV

]
≤ 2−1−n·β(k,d,n) +E[I2]

= 2−1−n·β(k,d,n) +P
(
1/|Φ−1(L)| > 1/2k−d

)
≤ 2−1−n·β(k,d,n) + 2k−d

E
[
1/|Φ−1(L)|

]
, by Markov’s inequality

= 2−1−n·β(k,d,n) + 2−(d−l).(1.28)

This is true for any d ≥ 0 with d + 1 + n/(4 ln 2) ≤ k − n. Choose d = l + n/4 ln 2. Then, since

β(k, d, n) ≤ 1/8 ln 2 ≤ 1/4 ln 2, we have 2−(d−l) = 2−n/4 ln 2 ≤ 2−nβ(k,d,n). So from (1.28) we get

E

[∥∥L(c|L,Pn,S)−L(c′)
∥∥
TV

]
≤ 2−1−n·β(k,d,n) + 2−n·β(k,d,n)

≤ 2 · 2−n·β(k,l+n/4 ln 2,n) = 2 · 2−n·α(k,l,n).
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□

This shows that on average, the bit c is very close to a Bernoulli(1/2) random variable, even when

the leakage, probes and the sub probe indices are known. We will now need an analogous result

for a sequence of bits (c1, . . . , ct). This is achieved by the next theorem which shows that even

conditioned on (c1, . . . , ct−1), the next bit ct is very close to a Bernoulli(1/2) bit. We prove this

theorem by thinking of the bits c1, . . . , ct−1 as an additional t − 1 bits of leaked information and

applying Lemma 1.6.2.

Theorem 1.6.1. Let c1, c2, . . . , ch+1 be bits generated in a similar fashion to c. Let Pn
i be

the vector of probes associated with the bit ci and let Si be the corresponding sub probe indices.

Let P = (Pn
1 ,P

n
2 , . . . ,P

n
h+1) and S = (S1, . . . ,Sh+1). Assume that the random oracle involved

in generating c′is is applied on different inputs so that the Pn
i are independent of each other for

various i′s and also independent of the key. Also assume that the adversary doesn’t make any of

the random oracle calls necessary to compute the c′is while choosing Φ. Let c′ be a Bernoulli(1/2)

random variables. Then for l + h+ n/(2 ln 2) + 1 ≤ k − n,

E

[∥∥L(ch+1 | ch, . . . , c1, L,P,S
)
−L(c′)

∥∥
TV

]
≤ 2 · 2−n·α(k,l+h,n), where

α(k, a, n) =
1

8 ln 2

(
1− a+ 1 + n/(2 ln 2)

k − n

)2

.

Proof. Let P′ = (Pn
1 ,P

n
2 , . . . ,P

n
h ) and S′ = (S1, . . . ,Sh). Condition on {P′ = A,S′ = B}

and define the function Φ̃A,B : {0, 1}k → {0, 1}l+h as follows.

Φ̃A,B(x) = (Φ(x), c1, c2, . . . , ch)

where (c1, . . . , ch) are the the bits generated when P′ = A, S = B and x is chosen as the key.

Conditioning on P′,S′ doesn’t change the distribution of K,Pn
h+1 and Sh+1. So we can apply

Lemma 1.6.2 by replacing Φ with Φ̃A,B to get

E

[ ∥∥∥L (
ch+1

∣∣ Φ̃P′,S′(K),P,S
)
−L(c′h+1)

∥∥∥
TV

∣∣∣ P′ = A,S′ = B

]
≤ 2 · 2−n·α(k,l+h,n).
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The right hand side of the above inequality doesn’t depend on the value of P′ and S′. So we can

an take expectation over P′,S′ to get

E

[ ∥∥∥L (
ch+1

∣∣ Φ̃P′,S′(K),P,S
)
−L(c′h+1)

∥∥∥
TV

]
≤ 2 · 2−n·α(k,l+h,n).

This completes the proof since Φ̃P′,S′(K) = (L, c1, . . . , ch). □

In the next section we will argue that since the bits we have generated in our algorithm are

very close to i.i.d. Bernoulli(1/2) random bits, it must be that our algorithm/shuffle is close to the

Thorp shuffle in total variation distance.

1.7. Comparison with the Thorp shuffle

Let M1,M2, . . . ,Mq be messages (queries). Let Alt(Mi1 ,Mi2 , . . . ,Mio) be the result of apply-

ing t steps of our algorithm to messages Mi1 ,Mi2 , . . . ,Mio . Let Tht(Mi1 ,Mi2 , . . . ,Mio) be the

result of applying t steps of the Throp shuffle to messages Mi1 , . . . ,Mio . The Thorp shuffle is

defined inductively as follow. For a message M , say Tht−1(M) = b1b2 . . . bm. Let M ′ be the

message such that Tht−1(M
′) = (b1 ⊕ 1)b2 . . . bm. We now take a bit c′ ∼ Bernoulli(1/2) and set

Tht(M) = b2b3 . . . bm(b1 ⊕ c′) and Tht(M
′) = b2b3 . . . bm(b1 ⊕ 1⊕ c′). The various Bernoulli bits we

use are taken to be independent of each other. Our algorithm is actually a modified Thorp shuffle

in which instead of using i.i.d. Bernoulli bits, we use bits that are generated by probing a key.

The Thorp shuffle was first used for format preserving encryption in [25]. Our aim is to bound the

total variation distance between the outcome of our algorithm and that of the Thorp shuffle. This

is the content of Lemma 1.7.1. We will need the notion of optimal coupling in order to prove this

theorem. So we digress a bit and layout some definitions and results below.

Definition. For probability distributions µ and ν, we say that a pair of random variables (X,Y )

with some joint distribution is a coupling if µ(·) = P
(
X = ·

)
and ν(·) = P

(
Y = ·

)
. If in addition

we have ∥µ− ν∥TV = P
(
X ̸= Y

)
, then it is called an optimal coupling.

It can be shown that for discrete probability distributions, an optimal coupling always exists. It is
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also true that for any two discrete probability distributions µ and ν,

(1.29) ∥µ− ν∥TV = inf
(X,Y ) is a coupling

P
(
X ̸= Y

)
.

A proof of these two statements can be found in Section 4.2 of [19].

Lemma 1.7.1. Let L be the leakage. Let P be the tuple consisting of all the probes used to

compute AlT (M1, . . . ,Mq) and let S be the tuple consisting of all the associated sets of sub probe

indices. Let L be the distribution of AlT (M1, . . . ,Mq) conditioned on L,P,S and let L′ be the

distribution of ThT (M1, . . . ,Mq). Assume that the adversary hasn’t made any of the random oracle

calls that are needed to compute P and S. Then for l + qT + n/(2 ln 2) ≤ k − n,

E∥L −L′∥ ≤ 2qT · 2−n·α(k,l+qT−1,n),

where k is the length of the key, l is the length of the leakage, n is the number of probes used to

compute a single bit in our algorithm and

α(k, a, n) =
1

8 ln 2

(
1− a+ 1 + n/(2 ln 2)

k − n

)2

.

Proof. Fix L,P,S. Let C(l, t) be the random bit used at step t of our algorithm for the

message Ml. That is, if Alt−1(Ml) = b1b2 . . . bm then Alt(Ml) = b2 . . . bm(b1⊕C(l, t)). Similarly, let

C ′(l, t) be the random bit used at step t of the Thorp shuffle for the messageMl. Let C1, C2, . . . , CqT

be a reordering of {C(l, t) : 1 ≤ l ≤ q, 1 ≤ t ≤ T} such that for Ci = C(l1, t1) and Cj = C(l2, t2),

we have i ≤ j if and only if either l1 < l2, or l1 = l2 and t1 ≤ t2. That is we order {C(l, t) :

1 ≤ l ≤ q, 1 ≤ t ≤ T} according to the dictionary order on (l, t). Let C ′
1, C

′
2, . . . , C

′
qT be a similar

ordering for {C ′(l, t) : 1 ≤ l ≤ q, 1 ≤ t ≤ T}. With this notation, note that AlT (M1, . . . ,Mq) is a

function of C1, . . . , CqT . Say,

AlT (M1, . . . ,Mq) = f(C1, . . . , CqT ).

Then, note that since ThT is obtained in the same way as AlT , but using the C ′ bits, we have

ThT (M1, . . . ,Mq) = f(C ′
1, . . . , C

′
qT ).
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Let L̃(·) denote the distribution of a random variable conditioned on L,P,S. Then, we have

∥L −L′∥TV =
∥∥L̃(f(C1, . . . , CqT ))−L(f(C ′

1, . . . , C
′
qT ))

∥∥
TV

≤
∥∥L̃(C1, . . . , CqT )−L(C ′

1, . . . , C
′
qT )
∥∥
TV

.

We get the above inequality from the following equivalent definition of total variation distance.

For any two random variables X,Y supported on a finite set Ω, we have ∥L(X) − L(Y )∥TV =

maxA⊆Ω[P(X ∈ A)−P(Y ∈ A)]. Applying this, we get ∥L(f(X))−L(f(Y ))∥TV = maxA⊆Ω[P(X ∈

f−1(A))−P(Y ∈ f−1(A))] ≤ maxA∈Ω∥L(X)−L(Y )∥TV . For a proof of equivalence of the above

definition of total variation distance with the one we gave before this, refer Section 4.1 in [19].

For a given i, say there exists i′ < i such that Ci = C(l, t) and Ci′ = C(l′, t). Also say

Tht−1(Ml′) = b1b2 . . . bm and Tht−1(Ml) = (b1 ⊕ 1)b2 . . . bm. If such an i′ exists, then we say

Ci is an old bit. If no such i′ exists we say Ci is a fresh bit. Loosely speaking, if the bit used at

step t for message Ml is the same as the bit used at step t for the message Ml′ where l′ < l then

we say the bit C(l, t) is old. Define a bit C ′
i to be old/fresh in the same way. We are now going to

couple the Cis and the C ′
is inductively as follows. Choose (C1, C

′
1) to be the optimal coupling of

the distributions L(C1 | P,S, L) and L(C ′
1). Next, assuming (C1, . . . , Ci−1) and (C ′

1, . . . , C
′
i−1)

have been coupled, we will couple Ci and C ′
i. First, we couple these two random variable arbi-

trarily on the event (C1, . . . , Ci−1) ̸= (C ′
1, . . . , C

′
i−1). Then, for any binary string (a1, . . . , ai−1) we

consider the event (C1, . . . , Ci−1) = (C ′
1, . . . , C

′
i−1) = (a1, . . . , ai−1). If Ci is an old bit, then on the

preceding event, C ′
i must also be an old bit. This is because if Ci = C(l, t) and C ′

i = C ′(l, t) then

on the event (C1, . . . , Ci−1) = (C ′
1, . . . , C

′
i−1), we have Alt−1(Ml′) = Tht−1(Ml′) for every l < l′.

By a similar reasoning, if C ′
i is an old bit then on the above event, Ci must also be an old bit. Old

bits have already been coupled. So assume that both Ci and C ′
i are fresh bits. Choose (Ci, C

′
i)

according to the optimal coupling of the distributions L
(
Ci | Cj = ajfor 1 ≤ j ≤ i− 1,P,S, L

)
and L

(
C ′
i | C ′

j = ajfor 1 ≤ j ≤ i− 1
)
. Now use (1.29) to observe that

∥∥L̃(C1, . . . , CqT )−L(C ′
1, . . . , C

′
qT )
∥∥
TV

≤ P
(
(C1, . . . , CqT ) ̸= (C ′

1, . . . , C
′
qT )
)
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=

qT∑
i=1

P

(
Ci ̸= C ′

i, (C1, . . . , Ci−1) = (C ′
1, . . . , C

′
i−1)

)
.(1.30)

As noted above, either both Ci and C ′
i are fresh or both are old. If both of them are old, then it

has to be that on the event (C1, . . . , Ci−1) = (C ′
1, . . . , C

′
i−1) the bits Ci and C ′

i are equal. This is

because on the preceding event, if Ci = C(l, t) and C ′
i = C ′(l, t) then Alt−1(Ml′) = Tht−1(Ml′) and

Alt(Ml′) = Tht(Ml′) for every l′ < l. So in this case the probability in the summand of (1.30) is zero.

So assume that Ci and C ′
i are both fresh bits. UseCj ,C

′
j andaj to denote (C1, . . . , Cj), (C1, . . . , C

′
j)

and (a1, . . . , aj) respectively. Then,

P

(
Ci ̸= C ′

i,Ci−1 = C′
i−1

)
=
∑
ai−1

P
(
Ci ̸= C ′

i

∣∣ Ci−1 = C′
i−1 = ai−1

)
P
(
Ci−1 = C′

i−1 = ai−1

)
≤
∑
ai−1

P
(
Ci ̸= C ′

i

∣∣ Ci−1 = C′
i−1 = ai−1

)
P
(
C′

i−1 = ai−1

)
=
∑
ai−1

∥∥∥∥L(Ci | Ci−1 = ai−1,P,S, L
)
−L

(
C ′
i | C′

i−1 = ai−1

)∥∥∥∥
TV

P
(
C′

i−1 = ai−1

)
,(1.31)

where the last line follows from the fact that on the event Ci−1 = C′
i−1, we coupled (Ci, C

′
i)

optimally. Since C ′
i is a fresh bit, it is independent of C′

i−1 and we can drop the C′
i−1 = ai−1 from

L
(
C ′
i | C′

i−1 = ai−1

)
. Let g(p, S, z) = P

(
P = p,S = S,L = z

)
. Then, continuing from above,

we get

(1.31) = E

[∥∥∥∥L(Ci | Ci−1,P,S, L
)
−L

(
C ′
i

)∥∥∥∥
TV

∣∣∣∣ P,S, L

]
· g
(
P,S, L

)
≤ E

[∥∥∥∥L(Ci | Ci−1,P,S, L
)
−L

(
C ′
i

)∥∥∥∥
TV

∣∣∣∣ P,S, L

]
(1.32)

Next, we will bound the expected value of the total variation distance above using Theorem 1.6.1.

Let {Ci1 , Ci2 , . . . , Cio} ⊆ {C1, . . . , Ci−1} be a maximal set of fresh bits. That is any bit that is

not in the above set is old. Let Ci and C ′
i also be fresh. Then, from Theorem 1.6.1 we have the

following inequality.

E

∥∥∥∥L(Ci | Ci−1,P,S, L
)
−L

(
C ′
i

)∥∥∥∥
TV
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=E

∥∥∥∥L(Ci | Ci1 , Ci2 , . . . , Cio ,P,S, L
)
−L

(
C ′
i

)∥∥∥∥
≤2 · 2−α(k,l+o,n)

≤2 · 2−α(k,l+i−1,n), since o ≤ i− 1.(1.33)

Therefore, by applying E to (1.32) we get

E

[
P

(
Ci ̸= C ′

i,Ci−1 = C′
i−1

)]

≤ E

{
E

[∥∥∥∥L(Ci | Ci−1,P,S, L
)
−L

(
C ′
i

)∥∥∥∥
TV

∣∣∣∣ P,S, L

]}

≤ 2 · 2−α(k,l+i−1,n), from (1.33).(1.34)

Note that in the above string of inequalities, the probability distributions themselves depend on

the values of L,P,S since our coupling depended on it. We would like to clarify that we are not

just taking the expectation of a constant. If we now apply expectations on (1.30) and use (1.34)

above, we get

E
∥∥L̃(C1, . . . , CqT )−L(C ′

1, . . . , C
′
qT )
∥∥
TV

≤
qT∑
i=1

2 · 2−α(k,l+i−1,n)

≤ qT · 2 · 2−α(k,l+qT−1,n).

Since, ∥L − L′∥ ≤ ∥L̃(C1, . . . , CqT ) − L(C ′
1, . . . , C

′
qT )∥ as noted in the beginning of this proof,

our proof is complete. □

Our aim is to compare the expected total variation distance between the result of applying

our algorithm to q messages and the result of applying a uniformly random permutation to the

same. We have already bounded the distance between the Thorp shuffle and our algorithm. So by

triangle inequality, all we need is a bound on the distance between the Throp shuffle and a uniform

permutation. In [25], Morris, Rogaway and Stegers prove the following.
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Theorem 1.7.1. [25] Let π : M → M be a uniformly random permutation on the set of mes-

sages M and let U be the distribution of
(
π(M1), π(M2), . . . , π(Mq)

)
. Also let L′ be the distribution

of ThT (M1, . . . ,Mq) as in Lemma 1.7.1 above. Let T = s(2m− 1) for some whole number s, where

2m = |M|. Then,

∥L′ −U∥TV ≤ q

s+ 1

(
4mq

2m

)s

.

The theorem above is closely related to the notion of mixing of Markov chains. In fact, the

inequality in the theorem above gives a rate of mixing for the projected Thorp shuffle. For further

works on mixing of the Thorp shuffle, refer to [21,22,23]. As discussed above, we now bound the

expected total variation distance between our algorithm and a uniformly random permutation.

Theorem 1.7.2. Let L,S,P be as in Lemma 1.7.1. Let U be the distribution of
(
π(M1), . . . , π(Mq)

)
for a uniformly random permutation π : M → M and let L be the distribution of AlT (M1, . . . ,Mq)

conditioned on L,P,S. Also let

α(k, a, n) =
1

8 ln 2

(
1− a+ 1 + n/(2 ln 2)

k − n

)2

,

where l is the length of L and n is the number of probes used to generate a single random bit in our

algorithm. Assume that l + qT + n/(2 ln 2) ≤ k − n. Then for T = s(2m − 1), where s is a whole

number, we have

E∥L −U∥TV ≤ 2qT · 2−n·α(k,l+qT−1,n) +
q

s+ 1

(
4mq

2m

)s

.

Proof. This follows from Lemma 1.7.1 and Theorem 1.7.1 using triangle inequality for total

variation distance.

E∥L −U∥TV ≤ E
[
∥L −L′∥TV + ∥L′ −U∥TV

]
= E

[
∥L −L′∥TV

]
+ ∥L′ −U∥TV

≤ 2qT · 2−n·α(k,l+qT−1,n) +
q

r + 1

(
4mq

2m

)r

.

□
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1.8. The Bound on Security

In this section we show that the notion of security we defined in Section 1.4 is the same as the

expected total variation distance and hence as a corollary we have a bound on the security. We

then prove the main theorem of this chapter.

Lemma 1.8.1. Let A be any adversary. As defined in section 1.4, let A(1) be the answer given

by the adversary in world 1 when asked what what world he is in. Similarly let A(0) be the answer

he gives while in world 0. Let L and U be as in Theorem 1.7.2, then

Adv(A) = P1

(
A(1) = 1

)
−P

(
A(0) = 1

)
≤ E∥L −U∥.

Proof. The adversary has access to the outputs, the random oracle and the leakage in each

world. Having access to the random oracle means that potentially the adversary has access to all

the probes and sub probe indices. If we condition on the probes P, the sub probe indices S and

the leakage L = Φ(K), then the algorithm the adversary uses to determine whether he is in world

0 or world 1 is a function of the outputs (C1, . . . , Cq) that are provided to him in either of the

worlds. Let O be the set of q-tuples of ciphertexts for which the adversary’s answer is one. Then,

Adv(A) = E
[
P1

(
A(1) = 1 |P,S, L

)
−P0

(
A(0) = 1

)]
= E

[
P1

(
(C1, . . . , Cq) ∈ O |P,S, L

)
−P0

(
(C1, . . . , Cq) ∈ O

)]
.

An alternate equivalent definition for total variation distance is as follows. For probability distri-

butions µ, ν on a finite set Ω,

∥µ− ν∥TV = max
A⊆Ω

[
µ(A)− ν(A)

]
.

One can find the equivalence of the above with the definition we gave, in Section 4.1 of [19].

Combining the two equations above we get,

Adv(A) = E
[
P1

(
(C1, . . . , Cq) ∈ O |P,S, L

)
−P0

(
(C1, . . . , Cq) ∈ O

)]
≤ E

∥∥∥L(AlT (M1), . . . ,AlT (Mq) | P,S, L)−L(π(M1), . . . , π(Mq))
∥∥∥

= E∥L −U∥.
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□

So far, all the analysis we’ve done with total variation distance is under the assumption that

the leakage function doesn’t depend on the random oracle used to generate the probes/sub probes

we are interested in. That is we assumed that the results of the random oracle calls we made in our

algorithm were unknown to the adversary. In other words, we assumed that the probes involved

in our algorithm were truly random. We will now prove the main result in which the adversary is

allowed to make random oracle calls while choosing a leakage function.

Proof. (Theorem 1.4.1) Assume that the adversary A can make at most r random oracle calls

while deciding on a leakage function. Call a message M bad if the adversary makes a random oracle

call with input (b2, b3, . . . , bm, t) for some t and some messageM such that Alt(M) = (b1, b2, . . . , bn).

Since the cipher is invertible for each time t, exactly two bad messages corresponding to each

(b1, b2, . . . , bn−1, t). This is because Alt(M) can be either (0, b2, . . . , bm) or (1, b2, . . . , bm). Let Mb

the set of bad messages corresponding to an adversary. Then, |Mb| ≤ 2r. Since the messages

M1, . . . ,Mq are distinct and uniformly random, we get

P
(
Mi ∈ Mb for some i = 1, 2, . . . , q

)
= B(|M|, q,m) ≤ B(2r, q,m),

where B is as defined in (1.3). Let G be the event that Mi /∈ Mb for i = 1, 2, . . . , q. On the event

G, the bound on total variation we obtained in Theorem 1.7.2 holds. Note that knowing a random

oracle call that is not associated with any of M1, . . . ,Mq doesn’t affect all our analysis till Theorem

1.7.2 since random oracles produce independent outputs when applied on different inputs. So, by

Lemma 1.8.1 we get that for any fixed adversary A

P1

(
A(1) = 1

∣∣G )
−P0

(
A(0) = 1

∣∣ G) ≤ E[∥L −U∥
]

≤ 2qT · 2−n·α(k,l+qT−1,n) +
q

s+ 1

(
4mq

2m

)s

.

Putting all of this together, we have that for any adversary A who makes at most r random oracle

calls,

P
(
A(1) = 1

)
−P

(
A(0) = 1

)
=
[
P
(
A(1) = 1 | G

)
−P

(
A(0) = 1 | G

)]
P(G)
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+
[
P
(
A(1) = 1 | Gc

)
−P

(
A(0) = 1 | Gc

)]
P(Gc)

≤
[
P
(
A(1) = 1 | G

)
−P

(
A(0) = 1 | G

)]
+P(Gc)

≤2qT · 2−n·α(k,l+qT−1,n) +
q

s+ 1

(
4mq

2m

)s

+P(Gc)

≤2qT · 2−n·α(k,l+qT−1,n) +
q

s+ 1

(
4mq

2m

)s

+B(2r, q,m).

This is true for any adversary who makes at most r random oracle calls. So this also holds after

one maximizes over all such adversaries. This completes the proof. □
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CHAPTER 2

Transience of Simple Random Walks With Linear Entropy Growth

2.1. Introduction

In this chapter we show that if the entropy of the nth step of a simple random walk on a

connected graph with bounded degree is at least Cn for every n and some C > 0 which is inde-

pendent of the starting position, then the walk is transient. This was conjectured by Benjamini

Itai (personal communication, 2015). The entropy growth of Markov chains has been extensively

studied for transitive chains on countable state space in works such as [3,4,5,13,16,17,18,27].

In fact, it is already known that for irreducible transitive Markov chains, linear entropy growth

implies transience. Let Z0, Z1, . . . be an irreducible, transitive Markov chain starting at some state

Z0 = z0 such that the entropy of Z1 is finite. Then,

h = lim
n→∞

Entropy of Zn

n

exists and doesn’t depend on z0. h is known as Avez entropy in the literature. It first appeared

in [3]. If h exists, then h > 0 is equivalent to inequality (2.1) which forms the hypothesis of the

main theorem of this chapter. Many important results about Avez entropy have been collected in

the book [20]. One of the equivalences in Theorem 14.20 from [20] is that for the chain described

above, h = 0 if and only if the Liouville property holds. We say that a Markov chain has the

Liouville property if all bounded harmonic functions on the state space of this Markov chain are

constants. So, h > 0 implies that there is a bounded non-constant harmonic function F on the

state space of (Zi)i≥0. If the chain (Zi)i≥0 is recurrent, then by applying the Martingale conver-

gence theorem on
(
F (Zi)

)
i≥0

one can conclude that F is a constant. Hence, we get that (Zi)i≥0

is transient. For random walk on groups, it was shown that h = 0 implies the Liouville property

for the first time in [4]. The equivalence of these two properties for random walks on groups was

first shown in [27] and then later independently in [13]. The equivalence was then generalized to
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transitive chains in [17]. For random walks on groups, the Avez entropy is also related to other

important notions like drift/speed, spectral radius and volume growth. For sharp inequalities re-

lating these quantities to each other, refer to [16].

Most of the work concerning relations between entropy growth and other interesting properties

of a Markov chain seems to be in the setting of either transitive Markov chains or random walk on

groups. Theorem 2.1.1 given below, which is the main theorem of this chapter, relates the entropy

growth of a simple random walk on a connected graph to transience.

Theorem 2.1.1. Let X0, X1, X2, . . . be the simple random walk on an infinite connected graph

G = (V,E) with maximum degree d, such that X0 = x0. Let En be the entropy of Xn, i.e.,

En =
∑

x∈V −P(Xn = x) log
(
P(Xn = x)

)
. If

(2.1) En ≥ Cn

for some C independent of x0, then the random walk is transient.

Note that the entropy defined in the above theorem is a finite sum since each vertex has finite

degree and hence the support of Xn is finite. So the entropy makes perfect sense and there is no

question of convergence. Also note that the converse of the above theorem is obviously false because

the simple random walk on Z3 is transient however since the nth step of such a walk is supported on

a set of order n3, the maximum entropy of the nth step is of the order log(n). Henceforth whenever

the inequality (2.1) holds for some C independent of the starting position, we will say that the

linear entropy condition holds. In Section 2.6 we give an example to show that the theorem fails

to hold if the C in (2.1) is not independent of the starting position of the random walk.

2.2. Entropy and the Probability of Escape in n Steps

Definitions. Let P be the transition matrix of the Markov chain X0, X1, . . . defined above.

Use Pn(x, y) to denote P
(
Xn = y

∣∣ X0 = x
)
. For any set V ′ ⊂ V , use Pn(x, V ′) and Pn(V ′, x) to

denote
∑

v∈V ′ Pn(x, v) and
∑

v∈V ′ Pn(v, x) respectively.

Our proof of Theorem 2.1.1 uses a set valued process called the evolving set process, which
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was used in [24] to obtain bounds on mixing times of Markov chains in terms of isoperimetric

inequalities. The notion of evolving sets is related to strong stationary duals introduced by Fill

and Diaconis [14]. Before we introduce evolving sets, let’s make the following observation. Recall

that d is the maximum degree of G.

Lemma 2.2.1. Assume that the linear entropy growth condition holds and that X0 = x0. Then

for any set A ⊆ V ,

(2.2) Pn(x0, A
c) ≥ Cn− log 2|A|

n log d
.

Proof. For any set A, let B = support(Xn) ∩ A and let B′ = support(Xn) \ A. Then, by the

definition of entropy we have

En =
∑
v∈B

−Pn(x0, v) log
(
Pn(x0, v)

)
+
∑
v∈B′

−Pn(x0, v) log
(
Pn(x0, v)

)
= Pn(x0, B)

∑
v∈B

− Pn(x0, v)

Pn(x0, B)
log

(
Pn(x0, v)

Pn(x0, B)

)
+ Pn(x0, B

′)
∑
v∈B′

− Pn(x0, v)

Pn(x0, B′)
log

(
Pn(x0, v)

Pn(x0, B′)

)

− Pn(x0, B) log
(
Pn(x0, B)

)
− Pn(x0, B

′) log
(
Pn(x0, B

′)
)
.

Now observe that if µ is any probability distribution supported on Ω and X is a random variable

with distribution µ, then
∑

x∈Ω µ(x) log(1/µ(x)) = E log(1/µ(X)) ≤ log
(
E(1/µ(X))

)
= log |Ω|, by

the Jensen’s inequality applied to − log(·). This is in fact a standard result from information theory,

which is stated as Theorem 2.6.4 in [11]. Applying the preceding inequality to Pn(x0, ·)/Pn(x0, B)

and Pn(x0, ·)/Pn(x0, B
′), which are probability measures supported on B and B′ respectively, we

get

En ≤ Pn(x0, B) log |B|+Pn(x0, B
′) log |B′|−Pn(x0, B) log

(
Pn(x0, B)

)
−Pn(x0, B

′) log
(
Pn(x0, B

′)
)
.

Note that Pn(x0, B
′) = Pn(x0, A

c). Also observe that if we set q = Pn(x0, B), then

−Pn(x0, B) log
(
Pn(x0, B)

)
− Pn(x0, B

′) log
(
Pn(x0, B

′)
)
= −q log(q)− (1− q) log(1− q) ≤ log 2
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which again follows from Jensen’s inequality. Combining the two inequalities above, we get,

En ≤ log |B|+ Pn(x0, A
c) log |B′|+ log 2

≤ log |A|+ Pn(x0, A
c) log |support(Xn)|+ log 2.

Since d is the maximum degree of each vertex, we have |support(Xn)| ≤ dn. Hence,

En ≤ log 2|A|+ n log(d)Pn(x0, A
c).

Using the hypothesis that En ≥ Cn, and rearranging, we get the desired result. □

Corollary 2.2.1. Assume that the linear entropy growth condition holds. This time, also

assume that X0 is random. Then for any set A ⊆ V ,

(2.3) P(Xn ∈ Ac) ≥ Cn− log 2|A|
n log d

.

Proof. This follows by conditioning on {X0 = x0} and using the fact that the right side of

(2.2) is independent of x0. □

2.3. The Evolving Set Process

Let U1, U2, . . . be i.i.d Uniform([0, 1]) random variables. For any stationary measure π : V → V ,

define Q1(x, y) = Q(x, y) = π(x)P (x, y) and Qt(x, y) = π(x)P t(x, y). For any set B ⊂ V , use

Qt(B, y) to denote
∑

x∈B Qt(x, y). Define Q(y,B) analogously.

Definition. (Evolving Sets) For a fixed set S we now define an integer valued process T0, T1, . . .

and a set valued process ST0 , ST1 , . . . inductively as follows. Set T0 = 0 and ST0 = S. Now assuming

Tm−1 and STm−1 are given, we define Tm = Tm−1+Lm, where L1, L2, . . . is an integer valued process

such that Lj is a function of STj−1 and Lj ≥ 0 for every j ≥ 1. We then define STm by imposing

the condition that y ∈ STm if and only if QLm(STm−1 , y) ≥ Umπ(y). The construction used here is

similar to the one in [24], with the only difference being that we use a different transition matrix

at each step of the evolving set process.

Note that the definition of the set valued process depends on the sequence of random variables

L1, L2, . . .. The results in this section are true for any such sequence of random variables as long
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as they satisfy the minor conditions imposed in the definition above. From Section 2.4 onwards,

we choose a particular sequence
(
Lj

)
j≥1

. For every integer t ≥ 0, define

a(t) = max{i : Ti ≤ t}.

Then we have the following lemma.

Lemma 2.3.1. With the notation as above, the following is true:

(2.4) Qt(S, y) = E
[
Qt−Ta(t)

(STa(t)
, y)
]
.

Proof. We will prove this using strong induction. That is, we will assume that the statement

holds for t ≤ n and then prove it for t = n+1. Let M be the first time Lm ̸= 0, i.e., L1 = L2 = · · · =

LM−1 = 0 but LM ̸= 0. We will take t ≤ TM to be the base case. If Lm = 0 then STm = STm−1

and hence ST0 = ST1 = · · · = STM−1
= S. Note that TM is not random since TM is a function of

STM−1
= S which is deterministic. For t < TM , note that a(t) = M − 1. So, Ta(t) = TM−1 = 0 and

STat
= S0 = S. Hence, in this case the statement is trivial. Now for t = TM , note that a(t) = M ,

LM = TM and

E
[
Qt−TM

(STM
, y)
]
= E

[
Q0(STM

, y) = E

[ ∑
z∈STM

π(z)1{z=y}

]

= E
[
π(y)1y∈STM

]
= π(y)P(y ∈ STM

)

= π(y)
QLM

(STM−1
, y)

π(y)
= QTM

(S, y) = Qt(S, y).

Now assume that the statement holds any t ≤ n and for any process ST1 , ST2 , . . . which satisfies

the above conditions. Since t ≤ TM is the base case, we can assume n ≥ TM . Now condition on

STM
and define the new process S̃

T̃0
, S̃

T̃1
, . . . by setting S̃

T̃m
= STM+m

, T̃m = TM+m − TM and

L̃m = LM+m. If we now define

ã(t) = max{i : T̃i ≤ t},

then, ã(t) = a(t + TM ) − M and T̃ã(t) = Ta(t+TM ) − TM . Let n + 1 = TM + t, then t ≤ n since

TM ≥ 1. Moreover the process defined above satisfies the hypothesis and hence by induction, we
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have

(2.5) Qt(STM
, y) = E

[
Q

t−T̃ã(t)
(S̃

T̃ã(t)
, y)

∣∣ STM

]
= E

[
Qt+TM−Ta(t+TM )

(STa(t+TM )
, y)

∣∣ STM

]
.

Next, note that

Qn+1(S, y) = QTM+t(S, y) =
∑
z∈Ω

QTM
(S, z)P t(z, y)

=
∑
z∈Ω

Qt(z, y)
QTM

(S, z)

π(z)
=
∑
z∈Ω

Qt(z, y)
QLM

(S, z)

π(z)
=
∑
z∈Ω

Qt(z, y)P(z ∈ STM
)

= E

[∑
z∈Ω

Qt(z, y)1{z∈STM
}

]
= E

[
Qt(STM

, y)
]
.(2.6)

Applying E to equation (2.5) and continuing from (2.6) we get

Qn+1(S, y) = E
[
Qt+TM−Ta(t+TM )

(STa(t+TM )
, y)
]

= E
[
Qn+1−Ta(n+1)

(STa(n+1)
, y)
]
,

which completes the induction. □

Corollary 2.3.1. Let ST0 , ST1 , . . . and a(·) be as in lemma 2.3.1 above. Assume this time that

ST0 = S = {x0}. Then,

P t(x0, y) =
1

π(x0)
E
[
Qt−Ta(t)

(STa(t)
, y)
]
.

Proof. Let S = {x0} in lemma 2.3.1 above. □

2.4. Relating Transience and Evolving Sets

Corollary 2.3.1 is useful since it will help us bound
∑

t≥0 P
t(z, y), the existence of which implies

transience. In the Lemma below we relate this sum to
∑∞

i=0E
[√

π(STi)
]
, for a specific choice of

π and (Lj)j≥1. Henceforth we will fix π and (Lj)j≥1 to be the following :

π(x) = degree(x) and

Lm = 2⌈log(2 · π(STm−1))/C⌉ for m ≥ 1.
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Lemma 2.4.1. Let ST0 , ST1 , . . . be as above and let C be as in theorem 2.1.1. Then for any

y ∈ Ω,

(2.7)
∞∑
t=0

P t(x0, y) ≤ 4d

⌈
1

C

⌉ ∞∑
i=0

E

[√
π(STi)

]
.

Proof. Note that for any m ≥ 0, S′ ⊂ V and y ∈ V , we have Qm(S′, y) ≤ Qm(V, y) = π(x).

The equality in the preceding line is due to the fact that π is a stationary measure. Moreover,

Qm(∅, y) = 0. Therefore, we have

(2.8) Qt−Ta(t)
(STa(t)

, y) ≤ Qt−Ta(t)
(V, y)1{

STa(t)
̸=∅
} = π(y)1{

STa(t)
̸=∅
}.

Using (2.8) above and Corollary 2.3.1, we get

∞∑
t=0

P t(x0, y) =
1

π(x0)

∞∑
t=0

E
[
Qt−Ta(t)

(STa(t)
, y)
]

≤ π(y)

π(x0)

∞∑
t=0

E

[
1{

STa(t)
̸=∅
}]

≤ d

∞∑
t=0

E

[
1{

STa(t)
̸=∅
}],(2.9)

where the last inequality follows from the fact that 1 ≤ π(z) ≤ d for any z. Next, observe that

when STm ≤ t < STm+1 , by definition a(t) = m and hence

∞∑
t=0

1{
STa(t)

̸=∅
} =

∞∑
i=0

(Ti+1 − Ti)1{STi
̸=∅} =

∞∑
i=0

Li1{STi
̸=∅}.

So, continuing from (2.9) we get

(2.10)

∞∑
t=0

P t(x0, y) ≤ d ·E

[ ∞∑
i=0

Li1{STi
̸=∅}

]
= d ·E

[ ∞∑
i=0

2

⌈
log(2 · π(STi))

C

⌉
1{STi

̸=∅}

]
.

Now observe the following fact about the natural logarithm which will be useful for bounding the

above.

(2.11) 2
√
x ≥ ⌈log(2x)⌉ for x ≥ 1.
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To prove this, observe first that 2
√
x ≥ log(2x) + 1 for x ≥ 1. This is true since the inequality

holds for x = 1 and d/dx(2
√
x− log(2x)− 1) =

√
2/
√
x− 1/x ≥ 0 when x ≥ 1. Since ⌈log(2x)⌉ ≤

log(2x) + 1, the previous inequality gives us (2.11).

We can finally use (2.10) and (2.11) above to get

∞∑
t=0

P t(x0, y) ≤ d ·E
[ ∞∑

i=0

2

⌈
log(2 · π(STi))

C

⌉
1{STi

̸=∅}

]
≤ d ·E

[ ∞∑
i=0

2

⌈
1

C

⌉
⌈log(2 · π(STi))⌉1{STi

̸=∅}

]

≤ 4d

⌈
1

C

⌉
E

[ ∞∑
i=0

√
π(STi)1{STi

̸=∅}

]
= 4d

⌈
1

C

⌉ ∞∑
i=0

E

[√
π(STi)

]
.

□

2.5. Decay of E
[√

π(STi)]

We will show that E
[√

π(STi)] decays exponentially in i, by proving the following theorem.

Theorem 2.5.1. Let π, d, C, STj be as above. Then, there exists a constant 0 ≤ α < 1 depending

only on C and d such that

(2.12) E

[√
π(STm)

∣∣∣ STm−1

]
≤ α ·

√
π(STm−1).

We will come back to the proof of theorem 2.5.1 after we prove a lemma. But first, let’s set up

some notation for this section. Throughout this section let

(2.13) S̃ = STm , S = STm−1 and Ẽ[ · ] = E[ · | S].

Then,

Lemma 2.5.1.

(2.14) Ẽ

[(
π(S̃)

π(S)
− 1

)+
]
≥ C

2 log(d)

for every S.

Proof. Let X̃0, X̃1, . . . be a Markov chain with P as the transition matrix and P(X̃0 = y) =

[π(y)/π(S)]1{y∈S}. Let s1, s2, . . . be an enumeration of the elements of our graph in decreasing
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order of QLm(S, si)/π(si). Let U be the uniform[0,1] random variable used to generate S̃ from S.

Define τ to be the minimum integer such that
∑τ

i=1 π(si) ≥ π(S). That is,

τ = min

{
k :

k∑
i=1

π(si) ≥ π(S)

}
.

Define

v = QLm(S, sτ )/π(sτ ).

By the definition of S̃, si ∈ S̃ whenever U ≤ QLm(S, si)/π(si). Note that QLm(S, si)/π(si) ≥

QLm(S, sτ )/π(sτ ) for every i ≤ τ . So, we can conclude that s1, . . . , sτ ∈ S̃ whenever U ≤ v. In

this case π(S̃) ≥
∑τ

i=1 π(si) ≥ π(S). If U > v, then S̃ = {s1, . . . , sk} for k < τ and hence by the

definition of τ , π(S̃) =
∑k

i=1 π(si) < π(S). So we have

(2.15) 1{π(S̃)≥π(S)} = 1{U≤v}

and

(π(S̃)− π(S))+ = (π(S̃)− π(S))1{π(S̃)≥π(S)} = (π(S̃)− π(S))1{U≤v}

= 1{U≤v}

τ∑
i=1

1{si∈S̃}π(si) + 1{U≤v}
∑
i>τ

1{si∈S̃}π(si)− 1{U≤v}π(S).(2.16)

Note that as we remarked above, if i ≤ τ then si ∈ S̃ whenever U ≤ v. Therefore for i ≤ τ , we

have {si ∈ S̃, U ≤ v} = {U ≤ v}. This allows us to simplify the product of indicators in the first

term above and get

(2.16) = 1{U≤v}

[ τ∑
i=1

π(si)− π(S)

]
+ 1{U≤v}

∑
i>τ

1{si∈S̃}π(si) ≥ 1{U≤v}
∑
i>τ

1{si∈S̃}π(si)

=
∑
i>τ

1{si∈S̃, U≤v}π(si).

For i > τ , QLm(S, si)/π(si) ≤ v. So, si ∈ S̃ =⇒ U ≤ QLm(S, si)/π(si) =⇒ U ≤ v. Hence,

{si ∈ S̃, U ≤ v} = {si ∈ S̃} and continuing from above we get

Ẽ
[
(π(S̃)− π(S))+

]
≥ Ẽ

∑
i>τ

1{si∈S̃}π(si) =
∑
i>τ

P
(
si ∈ S̃ | S

)
π(si) =

∑
i>τ

QLm(S, si)

π(si)
π(si)
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= π(S)
∑
i>τ

QLm(S, si)

π(S)
.(2.17)

Now observe that

QLm(S, si)

π(S)
=
∑
y∈S

π(y)PLm(y, si)

π(S)
=
∑
y

[π(y)/π(S)]1{y∈S} · PLm(y, si)

=
∑
y

P(X̃0 = y)PLm(y, si) = P(X̃Lm = si).(2.18)

So, from (2.17) we get

(2.19) Ẽ
[
(π(S̃)− π(S))+

]
≥ π(S)

∑
i>τ

P
(
X̃Lm = si

)
.

Let S′ = {s1, . . . , sπ(S)}. Note that τ ≤ π(S) since π(s) ≥ 1 for every s. Hence, {s1, . . . , sτ} ⊂

{s1, . . . , sπ(S)} and
∑

i>τ P
(
X̃Lm = si

)
≥
∑

i>π(S)P
(
X̃Lm = si

)
. If we apply corollary 2.2.1 with

A = S′, we get

∑
i>π(S)

P
(
X̃Lm = si

)
= P(X̃Lm ∈ (S′)c) ≥ CLm − log(2|S′|)

Lm log(d)

=
C
(
2⌈log(2 · π(S))/C⌉

)
− log(2 · π(S))(

2⌈log(2 · π(S))/C⌉
)
log(d)

≥
C
(
2⌈log(2 · π(S))/C⌉

)
− ⌈log(2 · π(S))⌉(

2⌈log(2 · π(S))/C⌉
)
log(d)

≥
C
(
2⌈log(2 · π(S))/C⌉

)
− C⌈log(2 · π(S))/C⌉(

2⌈log(2 · π(S))/C⌉
)
log(d)

=
C

2 log(d)
.(2.20)

Combining (2.19) and (2.20) we get

Ẽ
[
(π(S̃)− π(S))+

]
≥ π(S)

C

2 log(d)
.

Finally, since Ẽ is the conditional expectation given S, we can rearrange the above to get what we

want. □

Proof. (Theorem 2.5.1) Let S, S̃ be as before. Also let

x = Ẽ

[(
π(S̃)

π(S)
− 1

)+
]

and p = P
(
π(S̃) ≥ π(S)

∣∣S).
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Note that p = Ẽ
[
1
π(S̃)≥π(S)

]
and

(2.21) p+ x = Ẽ

[(
π(S̃)

π(S)
− 1

)
1{π(S̃)≥π(S)}

]
+ Ẽ

[
1{π(S̃)≥π(S)}

]
= Ẽ

[(
π(S̃)

π(S)

)
1{π(S̃)≥π(S)}

]
.

Next observe that

Ẽ[π(S̃)] = Ẽ

[∑
y∈V

1{y∈S̃}π(y)

]
=
∑
y∈V

P
(
y ∈ S̃ | S

)
π(y) =

∑
y∈V

QLm(S, y) = π(S)
∑
y∈V

QLm(S, y)/π(S).

If X̃i is as in the proof of lemma 2.5.1 then from (2.18) we see that

Ẽ[π(S̃)] = π(S)
∑
y∈V

P(X̃Lm = y) = π(S).

This give us

(2.22) Ẽ

(
π(S̃)

π(S)

)
= 1.

Let q = 1− p. Then,

q − x = 1− (p+ x) = Ẽ

(
π(S̃)

π(S)

)
− Ẽ

[(
π(S̃)

π(S)

)
1{π(S̃)≥π(S)}

]
from (2.22)

= Ẽ

[(
π(S̃)

π(S)

)
1{π(S̃)<π(S)}

]
.(2.23)

Note that x ≥ C/
(
2 log(d)

)
due to lemma 2.5.1. Also, q−x ≥ 0 from (2.23). Hence, C/

(
2 log(d)

)
≤

x ≤ q. Let P̃(·) = P(· | S), then we have

Ẽ

[√
π(S̃)

]
= Ẽ

[√
π(S̃)

∣∣∣ π(S̃) ≥ π(S)

]
P̃
(
π(S̃) ≥ π(S)

)
+ Ẽ

[√
π(S̃)

∣∣∣ π(S̃) < π(S)

]
P̃
(
π(S̃) < π(S)

)
= p · Ẽ

[√
π(S̃)

∣∣∣ π(S̃) ≥ π(S)

]
+ q · Ẽ

[√
π(S̃)

∣∣∣ π(S̃) < π(S)

]
≤ p

√
Ẽ
[
π(S̃) | π(S̃) ≥ π(S)

]
+ q

√
Ẽ
[
π(S̃) | π(S̃) < π(S)

]
by Jensen’s inequality

= p

√
Ẽ
[
π(S̃)1

π(S̃)≥π(S)

]
p

+ q

√
Ẽ
[
π(S̃)1

π(S̃)<π(S)

]
q

=
√
p
√

π(S)(p+ x) +
√
q
√

π(S)(q − x) from (2.21) and (2.23).
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Applying Taylor’s theorem to
√
1 + z about z = 0, we get 0 < x1/p < x/p and 0 < x2/q < x/q

such that

p

√
1 +

x

p
= p

(
1 +

x

2p
− x2

8p2
(
1 + x1/p

)−3/2
)

and

q

√
1− x

q
= q

(
1− x

2q
− x2

8q2
(
1− x2/q

)−3/2
)
.

(1 + x1/p)
−3/2 ≥ (1 + q/p)−3/2 = p3/2 since x1 < x ≤ q = 1 − p and similarly (1 − x2/q)

−3/2 ≥ 1

since x2 > 0. So, we get

p

√
1 +

x

p
≤ p

(
1 +

x

2p
− x2

8p2
p3/2

)
and

q

√
1− x

q
≤ q

(
1− x

2q
− x2

8q2

)
.

Adding the two inequalities above and multiplying by
√
π(S), we get

Ẽ

[√
π(S̃)

]
=
√

π(S)

[
p

√
1 +

x

p
+ q

√
1− x

q

]
≤
√
π(S)

[
p+ q − x2

8

√
p− x2

8q

]
=
√
π(S)

[
1− x2

8

√
p− x2

8q

]
≤
√
π(S)

(
1− x2/8

)
since

√
p ≥ 0 and 1/q ≥ 1.

As discussed above, x ≥ C/(2 log(d)) due to lemma 2.5.1. Hence,

(2.24) Ẽ

[√
π(S̃)

]
≤
√
π(S)

(
1− C2/32 log2(d)

)
= α

√
π(S).

□

Corollary 2.5.1. Let π, d, C, STj be as in section 2.3. Then,

(2.25) E

[√
π(STm)

]
≤ αm · π(x0)

where α = 1 − C2/32 log2 d is a non-zero constant less than 1 and independent of the starting

position.
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Proof. The proof is by induction. For m = 0, ST0 = S0 = {x0}. So, E[
√
π(ST0)] = π(x0) ≤

α0π(x0). Now, if we assume the statement for m − 1 then by the tower property of conditional

expectation, we get

E
[√

π(STm)
]
= E

[
E
[√

π(STm)
∣∣ STm−1

]]
≤ E

[
α ·
√

π(STm−1)
]

≤ α · αm−1π(x0) by induction.

□

The main theorem of this chapter can now be easily proved using lemma 2.4.1 and corollary 2.5.1

as follows.

Proof. (Theorem 2.1.1) To show that x0 is transient, it is sufficient to show that
∑∞

t=0 P
t(x0, x0) <

∞ . By Lemma 2.4.1 and Corollary 2.5.1 we get

∞∑
t=0

P t(x0, x0) ≤ 4d

⌈
1

C

⌉ ∞∑
i=0

E

[√
π(STi)

]
≤ 4d

⌈
1

C

⌉ ∞∑
i=0

αiπ(x0) < ∞

since 0 ≤ α < 1. Since the graph is connected, this means all the vertices are transient. Or

alternatively just note that x0 is arbitrary. □

2.6. Necessity of the Uniformity of C in the Linear Entropy Growth Condition

For each n ≥ 1, let Tn be a full binary tree with height Bn − 1 and root rn, where Bn is

inductively defined by setting B1 = 1 and

Bn+1 = 32n22Bn .

Let a1, a2, . . . be a collection of vertices disjoint from the T ′
ns. Form a graph by first forming

the edges aiai+1 for every i and then the edges ajrj for every j. In other words, we form a graph

by taking the infinite path a1a2a3 · · · and joining each aj with the root of Tj . Call this graph G.

Then we will see that the entropy of a simple random walk starting at any point on this graph

grows at least linearly and yet the walk is recurrent. The example above was conveyed by Gady
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a1 a2 a3 a4 . . .
T1

T2

T3

T4

Figure 2.1. The Graph G

Kozma (personal communication, 2016) who suggested that the height of Tn be a tower of powers

of 2, with n 2′s. We modified the height of the trees slightly to make the proofs easier.

Theorem 2.6.1. The simple random walk on G is recurrent.

Proof. Let X0, X1, . . . be a simple random walk on G that starts at a1. For each j ≥ 1, define

Aj to be the set consisting of the vertex aj and all the vertices of Tj , i.e.,

Aj = {aj} ∪ {v : v is a vertex in Tj}.

We will analyze the successive times at which the random walk leaves Aj for some j. So, define

τ(n) inductively by setting τ(0) = 0 and

τ(n) = min
{
t > τ(n− 1) : Xτ(n−1) ∈ Aj and Xt /∈ Aj for some j

}
.

We will first show that τ(n) < ∞ for all n, almost surely. Then, it is enough to show that

Xτ(0), Xτ(1), . . . is recurrent. Note that Xτ(n) is supported on {a1, a2, . . .} for any n. So, to show

that τ(n) < ∞ for all n a.s., it is enough to show that τ(n + 1) − τ(n) < ∞ a.s conditioned on

Xτ(n) = aj , for every j ≥ 1 and n ≥ 0. Let Y0, Y1, . . . be a simple random walk on G starting at aj

for some j ≥ 1. Let θ be the first time this walk exits Aj . then, by the strong Markov property,

P
(
τ(n+ 1)− τ(n) < ∞ | Xτ(n) = aj

)
= P(θ < ∞).
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Since Aj is finite, P(θ < ∞) = 1. To see this, assume that the preceding probability is less than 1.

This implies that there is a non-zero probability for the random walk to get trapped in Aj . This

means that even for a simple random walk on the graph induced by Aj ∪ {aj−1} ∪ {aj+1}, that

starts at aj , there is a non-zero probability for the walk to get trapped in Aj . That is, this random

walk doesn’t hit aj+1 with probability 1. This contradicts the fact that random walks on finite

connected graphs are always recurrent.

Next, observe that since τ(n)′s are stopping times, by the strong Markov property of the original

chain, Xτ(0), Xτ(1), . . . is a Markov chain. We will show that in fact it is the simple random walk on

the path a1a2a3 . . .. Clearly, P(Xτ(n+1) = a2 | Xτ(n) = a1) = 1, since a1a2 is the only edge between

A1 and A2. For j ≥ 2, just as above, let Y0, Y1, . . . be the simple random walk on G starting at aj

and let θ be the first time this random walk exits Aj . Then, by the strong Markov property,

P
(
Xτ(n+1) = b | Xτ(n) = aj

)
= P(Yθ = b).

For b ̸= aj−1, aj+1, we have P(Yθ = b) = 0. Note that Yθ−1 = aj always. If we condition on the

event θ = m and Ym−1 = aj for any m ≥ 1, then we get

P
(
Yθ = aj+1 | θ = m,Ym−1 = aj

)
=

P(Ym−1 = aj) · 1/3
P(Ym−1 = aj) · (1/3 + 1/3)

=
1

2
.

This shows that P(Yθ = aj+1) = 1/2 and hence Xτ(0), Xτ(1), . . . is a simple random walk on the

infinite path a1a2 . . .. It is well known that this walk is recurrent. This combined with the fact

that τ(n) are all finite with probability 1, completes the proof. □

It remains to be shown that for any simply random walk on G, the entropy grows at least

linearly. What we will show is that the random walk starting at a1 has an entropy growth that is

at least linear. From this it follows that for any starting position the entropy growth is at least

linear. We will need the following lemma to prove these claims.

Lemma 2.6.1. Let T be an infinite binary tree with root r and let Z0, Z1, . . . be the simple

random walk on T with Z0 = r. Also, let En be the entropy of Zn. Then for every n,

(2.26) En ≥ log 2

3
n.
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Proof. Let T = (V ′, E′) and Ln = {x ∈ V ′ : d(r, x) = n} where d(·, ·) is the graph distance.

Let

pn(i) = P(Zi ∈ Ln).

By symmetry it follows that for any x ∈ Ln,

P(Zi = x) =
pn(i)

2n
.

So from the above equation, we get

Ei =
∑
x∈V ′

−P(Zi = x) log
(
P(Zi = x)

)
=

∞∑
n=0

∑
x∈Ln

−P(Zi = x) log
(
P(Zi = x)

)
=

∞∑
n=0

∑
x∈Ln

−pn(i)

2n
log

(
pn(i)

2n

)
=

∞∑
n=0

−2n
pn(i)

2n
log

(
pn(i)

2n

)

=
∞∑
n=0

npn(i) log 2−
∞∑
n=0

pn(i) log pn(i).

Note that 0 ≤ pn(i) ≤ 1 and hence −pn(i) log pn(i) ≥ 0 and we have

Ei ≥
∞∑
n=0

npn(i) log 2 = E
(
d(r, Zi)

)
log 2.

{d(r, Zi)}i≥1 is simply a biased random walk on Z starting at 0, with the additional condition that

the random walker goes right with probability one when d(r, Zj) = 0. That is, {d(r, Zi)}i≥1 is a

biased random walk on Z that is reflected at 0. Therefore, the expectation of this random walk is

least E
[∑i

n=1 Yi
]
, where P(Yi = 1) = 2/3 and P(Yi = −1) = 1/3. Hence we have

E
(
d(r, Zi)

)
≥ i(2/3− 1/3) = i/3.

This proves the lemma. □

Recall that Bn − 1 is the height of Tn and rn is its root. We will be needing the following

lemma which will help us prove that the simple random walk on G starting at a1 has linear entropy

growth. What the lemma below tells us is that a random walk starting at a1 spends most of its

time in a large tree Tn, with a probability bounded away from 0.
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Lemma 2.6.2. Let N ≥ 8 and let X0, X1, . . . be the simple walk on G that starts at a1. For any

vertex b, let τb the first time the random walk hits b. Then, there exists a positive integer n such

that 2N < Bn and

∑
j≤N/2

P
(
τrn = j,Xt ∈ Tn for all j ≤ t ≤ N

)
≥ 1/108.

Proof. Define

n′ = min

{
k : 2k

k∑
i=1

2Bi > N/8

}
.

Set n = n′ + 1. Then note that since Bi is non-decreasing in i,

Bn = Bn′+1 = 32(n′)22Bn′ ≥ 16 · 2n′
n′∑
i=1

2Bi > 16(N/8) = 2N.

Define the finite graph H to be the subgraph of G that is induced by the vertices a1, a2, . . . , an′

and all the vertices of T1, T2, . . . , Tn′−1. Let’s count the number of edges in this graph so that we

can apply the commute time identity to the vertices a1 and an′ . Tj has height Bj − 1 and hence

contains 2(2Bj−1−1) edges. There are n′−1 edges between a1, a2, . . . , an′ . For every 1 ≤ j ≤ n′−1

there is one edge between aj and rj . Therefore,

me = Number of edges in H =
n′−1∑
i=1

2(2Bi−1 − 1) + (n′ − 1) + (n′ − 1) =
n′−1∑
i=1

2Bi .

Note that by the minimality of n′,

2(n′ − 1)
n′−1∑
i=1

2Bi ≤ N/8.

Let τ ′an′ be the time a simple random walk starting at a1 in the graph H takes to hit an′ for the

first time. Note that since the random walker cannot leave H before hitting an′ , we can conclude

that τn′ = τ ′n′ in distribution. Now, let τ ′a1an′ be the commute time between a1 and an′ in H, i.e.,

τ ′a1an′ = min{t ≥ τ ′n′ : X ′
t = a1},
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where (X ′
t)t≥0 is the simple random walk on H that starts at a1. Putting all this together and

using the commute time identity, we get

E[τan′ ] = E[τ
′
an′ ] ≤ E[τ

′
a1an′ ]

= 2meR(a1 ↔ an′ in H)(2.27)

= 2(n′ − 1)me

= 2(n′ − 1)

n′−1∑
i=1

2Bi ≤ N/8,(2.28)

where R(a1 ↔ an′ in H) denotes the resistance between a1 and an′ in H. The equality (2.27) is

known as the commute time identity which was first proved in [10]. Let T be an infinite binary

tree with root r. Let x be the vertex below r in T . Let τ̃r be the time it takes for a simple random

walk starting at x to hit r for the first time. Then, it is well known that

P(τ̃r < ∞) = 1/2.

Let y be one of the two vertices connected to rn in the tree Tn. Let Z0, Z1, . . . be the simple random

walk on G such that Z0 = y. Let τ̄rn be the first time this walk hits the root rn. Note that since

Bn > 2N and N ≥ 8, it follows that height(Tn) − 1 = Bn − 2 > N . This means that the walk

Z0, Z1, . . . cannot reach the leaves of Tn within time N . Hence, we have

P(τ̄rn ≤ N) = P(τ̃r ≤ N) ≤ P(τ̃r < ∞) = 1/2.

This means that

P(τ̄rn > N) ≥ 1− 1/2 = 1/2.

So, we finally get the following

(2.29) P(Zt ∈ Tn for 0 ≤ t ≤ N) ≥ P(τ̄rn > N) ≥ 1/2.

We are now in a position to prove the lemma. Let’s focus our attention back to the random walk

on G starting at a1. After hitting an′ , the walk can transition to an′+1 = an with probability 1/3.

It can then transition to rn with probability 1/3 followed by a transition to y with probability 1/3,
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where y as defined above is one of two vertices in Tn that are connected to the root. After reaching

y, by (2.29), the walk can stay in the tree Tn for the next N steps with probability at least 1/2.

Therefore, we get for j ≥ 2

P
(
τrn = j,Xt ∈ Tn for j ≤ t ≤ N

)
≥P
(
τan′ = j − 2, Xj−1 = an, Xj = rn, Xj+1 = y,Xt ∈ Tn for j + 1 ≤ t ≤ j +N + 1

)
≥P
(
τan′ = j − 2

)1
3

1

3

1

3

1

2
=

1

54
P
(
τan′ = j − 2

)
.(2.30)

For j = 1 or j = 0, P
(
τrn = 0

)
= 0. N/4 + 2 ≤ N/2 since N ≥ 8, hence we have

∑
j≤N/2

P
(
τrn = j,Xt ∈ Tn for all j ≤ t ≤ N

)
≥

∑
j≤N/4+2

P
(
τrn = j,Xt ∈ Tn for all j ≤ t ≤ N

)
≥

∑
j≤N/4+2

1

54
P
(
τan′ = j − 2

)
from (2.30)

=
1

54

(
1−P

(
τan′ > N/4

))
≥ 1

54

(
1−

E(τan′ )

N/4

)
by Markov’s inequality

≥ 1

54

(
1− N/8

N/4

)
from (2.28)

=
1

108
.

□

he above lemma combined with the following fact about entropy will enable us to prove that the

entropy growth for a walk starting at a1 is linear.

Lemma 2.6.3. Let Z be a random variable supported on a finite set Ω = {x1, . . . , xk}. Let

E1, E2, . . . , Em be disjoint events measureable with respect to Z. Let P be the distribution of Z

and let P1,P2, . . . ,Pm be the distributions of Z conditioned on E1, E2, . . . , Em respectively. For a

distribution P′ on Ω, use H(P′) to denote its entropy. Then,

H(P) ≥
m∑
i=1

P(Ei)H(Pi).
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Proof. This lemma is a direct consequence of the fact that the function D : [0, 1] → R defined

by D(x) = −x ln(x) for x ̸= 0 and D(0) = 0, is concave. Let Em+1 = (E1 ∪ E2 ∪ · · · ∪ Em)c and

let Pm+1 ∈ R|Ω| be the distribution of Z conditioned on Em+1. First, note that for any probability

distribution P′ on Ω = {x1, . . . , xk}, by definition of the entropy,

H(P′) =
k∑

i=1

D(P′(xi)).

Next, note that by the concavity of D(·), for any i ∈ {1, . . . , k}

(2.31) D

(m+1∑
j=1

P(Ej)Pj(xi)

)
≥

m+1∑
j=1

P(Ej)D
(
Pj(xi)

)
.

So, finally we have

H(P) =
k∑

i=1

D(P(xi)) =
k∑

i=1

D

(m+1∑
j=1

P(Ej)Pj(xi)

)

≥
k∑

i=1

m+1∑
j=1

P(Ej)D
(
Pj(xi)

)
from (2.31)

=
m+1∑
j=1

P(Ej)
k∑

i=1

D
(
Pj(xi)

)
=

m+1∑
j=1

P(Ei)H
(
Pi

)
.

Since the above sum consists of non-negative terms, our proof is complete. □

Theorem 2.6.2. Let X0, X1, . . . be the simple random walk on G with X0 = a1. Let En be the

entropy of Xn. Then there exists a constant γ > 0 such that for every n ≥ 0,

En ≥ γn.

Proof. Fix N ≥ 8 and let n be as in Lemma 2.6.2. Let R be the support of XN . Let P ∈ R|R|

be the distribution of XN viewed as a vector. For any probability distribution P′ ∈ R|R|, let H(P′)

denote its entropy. Our aim is to apply Lemma 2.6.3 above. Let

Ej = {τrn = j,Xt ∈ Tn for all j ≤ t ≤ N}.
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Let Pj be the distribution of XN conditioned on Ej . Note that if we condition on the event that

a random walk starting at rn stays in Tn for m steps where m ≤ height(Tn) then the conditional

distribution of this walk for the first m steps is the same as the distribution for the first m steps of

a simple random walk that starts at the root of an infinite binary tree. Therefore the distribution

of XN conditioned on Ej is no different from the distribution of the (N − j)th step of a simple

random walk starting at the root of an infinite binary tree. Hence, from Lemma 2.6.1 we get that

for j ≤ N/2,

(2.32) H(Pj) ≥
log 2

3
(N − j) ≥ log 2

3

N

2
.

The events Ej are disjoint since the events {τrn = j} are disjoint. Hence we can now apply Lemma

2.6.3 and Lemma 2.6.2 to conclude that

EN = H(P) ≥
∑

j≤N/2

P(Ej)H(Pj)

≥ log 2

3

N

2

∑
j≤N/2

P(Ej) from (2.32)

≥ log 2

3

N

2

1

108
from Lemma 2.6.2.

We have shown that for N ≥ 8,

EN ≥ log 2

648
N.

E0 = 0, hence by choosing a small enough γ > 0 we can ensure that for all N ≥ 0

EN ≥ γN.

□

Corollary 2.6.1. Let X0, X1, . . . be a simple random walk on G such that X0 = x and let En

be the entropy of Xn. Then there exists a constant γ′ > 0 such that

En ≥ γ′n.
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Proof. Let m = d(a1, x) and let E be the event

E = {Xm = a1}.

Then P(E) > 0. Now, for N ≥ 2m let P be the distribution of XN and let P′ be the distribution

of XN conditioned on E. Then by Theorem 2.6.2 and Lemma 2.6.3 we have,

H(P) ≥ P(E)H(P′) ≥ P(E)
log 2

648
(N −m) ≥ P(E)

log 2

648

N

2
.

This holds for N ≥ m and moreover E0 = 0. Therefore, there exists a γ′ > 0 possibly depending

on m, such that

En ≥ γ′n

for every n ≥ 0. □
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