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Survival of the Resilient: An Exploration of Tipping Cascades with Positive Change

Abstract

The most important global challenges in these uncertain times can be characterized by critical

transitions – for instance, political instability, loss of biodiversity, and climate change. Critical

transitions in complex systems, the sudden and abrupt changes that occur at tipping points when

thresholds are passed, are at the heart of many different phenomena in ecology and evolution. How

does noise-induced tipping impact the transition of a system between dynamic regimes? What are

the roles of noise and network connectivity in the detection of early-warning signals? Can tipping

be used to generate a positive cascade of behaviors? In this dissertation, I address all of these

central questions in the context of a specific model system. First, I use a minimal, individual-

based stochastic model to show how demographic stochasticity affects the dynamics of a cascade

of tipping elements. Next, I develop a fast-slow stochastic model to explain the critical interplay

between environmental noise and network connectivity in forecasting a tipping cascade. In the last

chapter, I turn toward a useful ecological application of the work described thus far, in the context

of invasive species eradication.
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CHAPTER 1

Introduction

Nature is inherently complex and is comprised of complex systems. Given our rapidly growing

understanding of life at microscopic scales, it seems surprising that our insights at the macroscopic

level are remarkably limited. However, complex systems can exhibit a plethora of behaviors that

make elucidation of phenomena extremely challenging. A classic example of such behavior, known

as a regime shift, typically occurs in the vicinity of a tipping point in a complex dynamical system

(Biggs et al., 2009; Hastings and Gross, 2012; Scheffer, 2009). The ubiquity of tipping points has

been demonstrated both in a wide variety of fields and across many spatial scales, including the

Dansgaard-Oeschger events during the last Ice Age and the switch-like, ultrasensitive response of

the Goldbeter-Koshland loop at the molecular level (Cimatoribus et al., 2013; Gennaretti et al.,

2014; Goldbeter and Koshland Jr, 1984; Lade et al., 2015; Lovejoy and Nobre, 2018; Mallela et al.,

2020; Murray and King, 2012; Scheffer, 2010).

In ecology, a metapopulation that is slowly worsening in quality is a key instance of a spatially

extended dynamical system that can have a tipping point. Mathematically, this system can be

described by local growth via a strong Allee effect and is characterized by a saddle node bifurcation

at the tipping point. Specifically, population densities exceeding the Allee threshold will persist,

but those below the Allee threshold will face extinction (Courchamp et al., 2008). Allee effects

have been demonstrated in a wide variety of biological systems (Brashares et al., 2010; Courchamp

et al., 2006; Johnson et al., 2019; Kramer et al., 2009; Stoner and Ray-Culp, 2000; Tanaka et al.,

2009). Mechanisms that induce an Allee effect, including anti-predator behavior and difficulties in

mate finding, are well-understood (Courchamp et al., 2008; Hastings and Gross, 2012).

Another universal feature of physical systems is the presence of stochasticity, or noise (Hors-

themke and Lefever, 1984). Noise can significantly impact physical processes over a wide range of

scales. In biology, noise can present in sub-cellular processes, tissue dynamics, as well as at the

population level (Tsimring, 2014). In population ecology, noise may be the result of environmental
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factors or may occur due to demography (Coulson et al., 2004). Stochasticity manifests as either

internal or external noise. Internal noise is inherent within the system and is caused by random

interactions among discrete agents (e.g., noise due to randomly occurring births and deaths). This

type of noise is typically represented with a master equation. External noise originates from a

source other than the system itself and is often modeled using a stochastic process.

Although biological systems can be intractable, have several sources of uncertainty, and exist

in high dimensions, considerable insight can often be gleaned from low-dimensional models that

are formulated relatively simply (Hastings, 2013). A recurring theme among Chapters 2 to 4 of

this dissertation is the principle of model parsimony. Another aspect that unifies the upcoming

chapters relates to methodological advances in mathematical ecology. In Chapter 2, I investigate

how demographic stochasticity, or internal noise, influences the dynamics of a cascade of tipping

points. I consider a concrete and minimal individual-based stochastic model that exhibits noise-

induced tipping. Parameterized with a strong Allee effect, this model operates in a regime with

alternative, stable steady-states. From an ecological perspective, I explore the role of rescue effects

in the system, whereby connected populations can rely on each other for survival. Then, using

the theory of Markov chains, I effectively reduce the dimensionality of the system. Analysis of the

reduced model illustrates the scenarios corresponding to a population recovering from the brink of

extinction, as well as when a catastrophic collapse is inevitable. This work has been published in

Bulletin of Mathematical Biology (Mallela and Hastings, 2021a).

In Chapter 3, I discuss the interplay between spatial coupling and multiplicative environmen-

tal stochasticity, a form of external noise, in an ecological tipping element. I develop a spatial

model with two interacting populations that gradually approach a state of population extinction

when the quality of their habitats is degraded. I initially formulate a simple spatial model, then

introduce a version of the model with multiple timescales, and finally augment the system with

noise. Using techniques from the theory of early-warning signals, I derive analytic expressions for

leading indicators of extinction in each patch and assess their performance with simulations. Based

on my findings, I conclude that this theoretical study can be applied to problems of biological

control, including the control of invasive species. This work has also been published in Bulletin of

Mathematical Biology (Mallela and Hastings, 2021b).
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In Chapter 4, I address the degree of manageability of a non-native, invasive species from a

standpoint of optimality. Two factors, in particular, play crucial roles in ensuing analyses: namely,

the aspects of observability and detectability of the species. Here, I build upon the foundations of

the model described in Chapter 2. The model for this study consists of a network of three interacting

populations that live in separate locations, or patches, and are mutually connected through passive

diffusion. For each possible network configuration, I adopt the individual-based modeling approach

previously used in Chapter 2, to obtain a reduced Markov chain model. In the reduced model, each

state is mapped to a combination of population thresholds. Then, I employ a powerful framework

– known as a Partially Observable Markov Decision Process (POMDP), widely used in the fields of

Operations Research and Artificial Intelligence – to answer my research questions in an ecological

context. By analyzing the output of the POMDP, I describe the information that the manager of a

system would need to achieve optimal outcomes. This work is currently under revision at Journal

of Theoretical Biology.
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CHAPTER 2

The role of stochasticity in noise-induced tipping point cascades:

a master equation approach

2.1. Abstract

Tipping points have been shown to be ubiquitous, both in models and empirically in a range

of physical and biological systems. The question of how tipping points cascade through systems

has been less explored and is an important one. A study of noise-induced tipping, in particular,

could provide key insights into tipping cascades. Here, we considered a specific example of a simple

model that could have cascading tipping points. This model consists of two interacting populations

with underlying Allee effects and stochastic dynamics, in separate patches connected by dispersal,

which can generate bistability. From an ecological standpoint, we look for rescue effects whereby

one population can prevent the collapse of a second population. As a way to investigate the

stochastic dynamics, we used an individual-based modeling approach rooted in chemical reaction

network theory. Then, using continuous-time Markov chains and the theory of first-passage times,

we essentially approximated, or emulated, the original high-dimensional model by a Markov chain

with just four states, where each state corresponds to a combination of population thresholds.

Analysis of this reduced model shows when the system is likely to recover, as well as when tipping

cascades through the whole system.

2.2. Introduction

Many systems in nature can transition into a qualitatively distinct dynamic regime when a

critical threshold is approached. The associated threshold of such a system, defined in the context

of bifurcation theory, is the bifurcation point or tipping point of the system. Tipping points

manifest in systems including lake eutrophication (ecology), social contagion (sociology), disease

spread (epidemiology), epileptic seizures (physiology), stock market crashes (finance), and even
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the earth system (Klose et al., 2020; Lenton, 2020; O’Regan, 2018; Scheffer, 2009; Scheffer et al.,

2012). Tipping points arise in the presence of strongly self-amplifying (mathematically positive)

feedbacks (Lenton, 2020). This characterization of tipping points is important in the sense that

only sufficiently strong, self-propelling feedbacks are recognized.

A prime example of a tipping point is an ecological system with an Allee effect (Courchamp

et al., 2008; Hastings and Gross, 2012; Johnson and Hastings, 2018; Vortkamp et al., 2020). Allee

effects occur in populations with low abundances and are believed to be common in ecological

systems (Courchamp et al., 2008; Drake and Kramer, 2011). In a population exhibiting an Allee

effect, the per capita growth rate is a unimodal function of the population abundance with a global

maximum. The sign of the growth rate at low population levels distinguishes a weak Allee effect

from a strong one. In particular, a weak Allee effect does not result in a negative growth rate

for small population sizes but its strong counterpart presents with a negative rate. Therefore, the

existence of a strong Allee effect implies the existence of a critical threshold for survival. The

possibility of alternative stable states in systems that are analogous to those with a strong Allee

effect has significant implications at many levels, from the microscopic scale of budding yeast (Dai

et al., 2012) to the macroscopic scale of tipping elements for the Earth system (Klose et al., 2020;

Lenton, 2020).

In order to investigate how tipping points manifest in systems with a strong Allee effect, one

needs to formulate a model that can exhibit this behavior. A fundamental question in this setting

concerns the propagation of tipping points through an ecosystem consisting of multiple patches. To

what extent are interacting populations interdependent and how is this relationship influenced by

the parameters governing the model behavior? Stated more simply, how do tipping points cascade

through systems?

A simple analysis considers multiple populations in a network that are connected by passive,

symmetric diffusion. In this work, we study a model consisting of two populations to analyze how

their dynamics are related, conditional on the quality of their internal environments. One case

of interest is when one population has fallen below the Allee threshold and we ask whether the

next transition puts both populations above, or alternatively, below, the Allee threshold. A similar

study was conducted in a deterministic setting (Johnson and Hastings, 2018). That study laid the
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foundations for an eventual treatment in a stochastic setting. Hence, in our work, we adopt the

definition of ecological resilience formulated by Holling (Holling, 1973) as well as the framework

proposed by Johnson and Hastings, but we also account for stochasticity in the system.

The literature on single, isolated tipping points is vast. However, studies of cascades of tipping

points are less common. We begin with the background needed to formulate a stochastic, individual-

based model that accounts for strong Allee effects. Our model follows a Markovian birth-death

process, inspired by the theory of chemical reaction networks. We find that this representation

naturally lends itself to a treatment with Markov chains and first-passage times. Then, we employ

dimensionality reduction techniques and novel approximations to propose a reduced model that we

study in detail.

2.3. Model Description

Much of the work done on modeling deterministic systems with one population that manifest

Allee effects are based on either empirical observations or phenomenology. The crux of these models

dates back to 1954 (Odum and Allee, 1954), where the observed per-capita growth rate was fit with

a suitable function. The general form of such a deterministic model in continuous time is the

following ordinary differential equation (ODE):

(2.1)
dρ(t)

dt
= ρf(ρ),

where ρ(t) denotes the average population density at time t, and f(ρ) is a function specifying the

form of the per-capita population growth rate at density ρ. There have been many functional forms

proposed for f(ρ) in the literature. A review of various specifications used in models can be found

(Boukal and Berec, 2002).

In particular, a simple and important model was proposed early in the twentieth century

(Volterra, 1938), where f(ρ) is a quadratic polynomial function of ρ. The underlying assump-

tions of the model are as follows. Given a constant sex ratio, the number of meetings between

males and females is proportional to ρ2. The ratio of births to meetings can be affected by the

population density and is hence assumed to be linearly decreasing in ρ. Also, the mortality rate of
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individuals in the population is assumed to be proportional to ρ. Hence, the Volterra model takes

the following form:

(2.2)
dρ(t)

dt
= −a1ρ+ (a2 − a3ρ)ρ2 = −a1ρ+ a2ρ

2 − a3ρ3,

where a1, a2, a3 > 0. If we define the two real-valued roots,

k1 =
1

2a3

[
a2 −

√
a22 − 4a1a3

]
,(2.3a)

k2 =
1

2a3

[
a2 +

√
a22 − 4a1a3

]
,(2.3b)

with a22 > 4a1a3, then the model is often shown in the following form (Courchamp et al., 1999):

(2.4)
dρ(t)

dt
= a1ρ

(
1− ρ

k2

)(
ρ

k1
− 1

)
,

resembling the logistic model with the addition of a new unstable steady state, ρ = k1.

For the strong Allee effect, the Volterra model has three steady states: two stable states at

ρ = 0 and ρ = k2 and an unstable state at ρ = k1. If the initial population size exceeds k1, the

population grows over time and converges to the stable steady state ρ = k2, the carrying capacity

of the system. If the initial population size is less than k1, the population decays over time to the

stable steady state ρ = 0 and goes extinct.

In order to investigate the effects of internal fluctuations or demographic stochasticity in a two-

population system with both weak and strong Allee effects, we consider the temporal evolution of

the system as specified by a Markovian birth-death process. Demographic stochasticity is included

both in the dynamics of the locations and in the dispersal parameter. We account for the individual

reaction kinetics explicitly, in a mechanistic manner, without relying on phenomenological consid-

erations. Here, we follow the approach of Méndez and colleagues (Méndez et al., 2019) by casting

the system as a chemical reaction network that results in an individual-based model (IBM). The

minimal IBM that displays both the weak and strong Allee effect and also accounts for dispersal

can be described as follows. It consists of two birth processes (linear and binary birth), a ternary
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competition process, a linear death process, and an exchange process. We provide our reaction

scheme below.

X1
µ1
⇀ (1 + b)X1(2.5a)

2X1
λ1⇀ (2 + a)X1(2.5b)

X1
γ1
⇀ ∅(2.5c)

3X1
τ1⇀ (3− c)X1(2.5d)

X1
d
⇀ X2(2.5e)

X2
µ2
⇀ (1 + b)X2(2.5f)

2X2
λ2⇀ (2 + a)X2(2.5g)

X2
γ2
⇀ ∅(2.5h)

3X2
τ2⇀ (3− c)X2(2.5i)

X2
d
⇀ X1(2.5j)

The first reaction is a linear birth process, which occurs at a constant rate µ1, and describes the

baseline reproductive success of the first population in the absence of cooperative effects. It accounts

for the fact that the typical individual produces b offspring that reach reproductive age. The second

reaction is a binary process that occurs at a constant rate λ1. It describes cooperative interactions,

such as breeding, anti-predator behavior, or foraging, that result in producing a additional offspring

which reach reproductive age. The third reaction is a linear death process, occurring at constant

rate γ1, which accounts for mortality due to natural causes. The fourth reaction is a ternary

competition process, accounting for the results of overcrowding and resource depletion, where c

individuals die at rate τ1. Note that 1, 2, and 3 are the only meaningful values for c. The next

reaction is an exchange process of symmetric dispersal between the two populations. This occurs

at a constant rate of d. The last five reactions in the scheme describe the dynamics of the second

population, respectively.
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The reaction scheme (2.5) defines a Markovian process, and the temporal evolution of P (n1, n2, t),

the probability of having ni individuals from the ith population at time t for i = 1, 2, is described by

the following master equation, also known as the forward Kolmogorov equation (Gardiner, 2004):

(2.6)
dP (n, t)

dt
=
∑
r

[W (n− r, r)P (n− r, t)−W (n, r)P (n, t)],

where P (n < 0, t) = P (n1 < 0, n2 < 0, t) = 0. Here W (n, r) denotes the set of transition rates

between the states with n and n + r individuals, where

r = {r1, r2, . . . , r10}

= {(b, 0), (a, 0), (−1, 0), (−c, 0), (−1, 0), (0, b), (0, a), (0,−1), (0,−c), (0,−1)}

is the vector of transition increments corresponding to the system given by (2.5). The transition

rates corresponding to each reaction, W (n, r), are obtained from the reaction kinetics (Gardiner

(2004); Van Kampen (1992)):

W (n, r1) = µ1n1,(2.7a)

W (n, r2) =
λ1
2
n1(n1 − 1),(2.7b)

W (n, r3) = γ1n1,(2.7c)

W (n, r4) =
τ1
6
n1(n1 − 1)(n1 − 2),(2.7d)

W (n, r5) = dn2,(2.7e)

W (n, r6) = µ2n2,(2.7f)

W (n, r7) =
λ2
2
n2(n2 − 1),(2.7g)

W (n, r8) = γ2n2,(2.7h)

W (n, r9) =
τ2
6
n2(n2 − 1)(n2 − 2),(2.7i)

W (n, r10) = dn1(2.7j)
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Deterministic ODEs for the average population sizes can be obtained from Eq. (2.6). Multi-

plying Eq. (2.6) by n1n2, using transition rates (2.7), and summing over all values of n1 and n2,

we find

dρ1
dt

= (bµ1 − γ1 − d)ρ1 +
aλ1
2
ρ21 −

cτ1
6
ρ31 + dρ2,(2.8a)

dρ2
dt

= (bµ2 − γ2 − d)ρ2 +
aλ2
2
ρ22 −

cτ2
6
ρ32 + dρ1(2.8b)

where ρi = 〈ni〉 is the mean number of individuals in population i for i = 1, 2. We note that

this pair of deterministic equations holds strictly when the demographic fluctuations vanish. This

occurs in the macroscopic limit as the population size and spatial extent of each population increase

to infinity such that their ratio, the population density, stays constant or approaches a finite limit.

For the sake of simplicity, in what follows, we focus on the simplest version of this IBM. Namely,

we treat the Markovian process as a single-step process with a = b = c = 1. The set of reactions

(2.5) then becomes

X1
µ1
⇀ 2X1(2.9a)

2X1
λ1⇀ 3X1(2.9b)

X1
γ1
⇀ ∅(2.9c)

3X1
τ1⇀ 2X1(2.9d)

X1
d
⇀ X2(2.9e)

X2
µ2
⇀ 2X2(2.9f)

2X2
λ2⇀ 3X2(2.9g)

X2
γ2
⇀ ∅(2.9h)

3X2
τ2⇀ 2X2(2.9i)

X2
d
⇀ X1(2.9j)
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The mean-field rate equations corresponding to (2.9) are

dρ1
dt

= (µ1 − γ1 − d)ρ1 +
λ1
2
ρ21 −

τ1
6
ρ31 + dρ2,(2.10a)

dρ2
dt

= (µ2 − γ2 − d)ρ2 +
λ2
2
ρ22 −

τ2
6
ρ32 + dρ1(2.10b)

For this set of reactions, the master equation can be explicitly obtained as

dP (n1, n2, t)

dt
= (n1 − 1)

[
λ1
2

(n1 − 2) + µ1

]
P (n1 − 1, n2, t)(2.11)

+ (n1 + 1)
[τ1

6
n1(n1 − 1) + γ1 + d

]
P (n1 + 1, n2, t)

+ (n2 − 1)

[
λ2
2

(n2 − 2) + µ2

]
P (n1, n2 − 1, t)

+ (n2 + 1)
[τ2

6
n2(n2 − 1) + γ2 + d

]
P (n1, n2 + 1, t)

− n1
[
λ1
2

(n1 − 1) + µ1 +
τ1
6

(n1 − 1)(n1 − 2) + γ1 + d

]
P (n1, n2, t)

− n2
[
λ2
2

(n2 − 1) + µ2 +
τ2
6

(n2 − 1)(n2 − 2) + γ2 + d

]
P (n1, n2, t)

We note that the master equation (2.11) includes only single-step processes where the transitions

take place between the states n and n±(1, 0) or n and n±(0, 1). Next, we can define dimensionless

quantities in terms of the reaction rates as follows:

Ni =
3λi
2τi

,(2.12a)

δ2i = 1 +
8τi(µi − γi − d)

3λ2i
,(2.12b)

R
(i)
0 =

µi
γi + d

(2.12c)

Note that Ni defines the scale of the typical size of population i prior to extinction. The identi-

ties (2.12) establish a relation between the microscopic (λi, µi, γi, τi) and macroscopic (Ni, δi, R
(i)
0 )

parameters, which are obtainable through field observations.

Observe that the individual-based model displays the strong Allee effect, if µi < γi + d, or

R
(i)
0 < 1. Furthermore, for R

(i)
0 < 1 we have δi < 1. For the strong Allee effect, we must also

demand that δi > 0.
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As mentioned in the Introduction, our starting point for the model used in this work is the

deterministic skeleton for the non-dimensionalized model described by Johnson and Hastings, re-

produced here for convenience.

Ẋ1 = X1(β1 − (X1 − 1)2) +D(X2 −X1),(2.13a)

Ẋ2 = X2(β2 − (X2 − 1)2) +D(X1 −X2)(2.13b)

In the model above, the parameter βi represents a measure for the quality of the environment by

the population denoted by Xi. The parameter D denotes passive diffusion in the system and is an

indicator of network connectivity. See the work by Johnson and Hastings for a detailed exposition

of the model.

In order to make our subsequent analyses feasible, we aim to reduce the dimensionality of the

parameter space for our stochastic model. So, for the sake of illustration, we treat the stochastic rate

parameters in (2.9) as identical for both populations. This assumption appears to be reasonable in

many cases, because of the presence of dispersal between populations in close proximity. Moreover,

this assumption is consistent with the model parameterization in the work by Johnson and Hastings.

Thus, our matching scheme can be written as follows:

µ1 := β1,(2.14a)

µ2 := β2,(2.14b)

λ := λ1 = λ2 ≡ 4,(2.14c)

γ := γ1 = γ2 ≡ 1,(2.14d)

τ := τ1 = τ2 ≡ 6,(2.14e)

d := D,(2.14f)

Ñ := Ñ1 = Ñ2(2.14g)

So for i = 1 and 2,

(2.15) Ñ = 1, δ2i = βi −D, R
(i)
0 =

βi
D + 1

.
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In what follows, we are interested in the case of bistability, which is manifest in the case of the

strong Allee effect. Because the regime of the strong Allee effect requires 0 < δi < 1 and R
(i)
0 < 1,

we have that βi > D and βi < D + 1. Thus, the following condition is obtained:

(2.16) D < βi < D + 1

2.4. Methods

We note that our stochastic model operates over a two-dimensional state space. We argue

that the dimension of the state space is as low as possible but nevertheless captures the desired

phenomenology. Due to the presence of Allee effects, the deterministic skeleton of our model has

cubic nonlinearities. In order to tackle this complexity, Johnson and Hastings conducted numerical

simulations to understand how the transition rate D between the two patches determines the

bifurcation structure for this system (Johnson and Hastings, 2018). In this study, however, we

restrict our attention to the case of bistability, which is properly addressed with a stochastic model.

As discussed in the previous section, we adopted a master equation approach for our model

(Méndez et al., 2019). Instead of specifying a model with carrying capacities, we used an individual-

based modeling approach using a chemical reaction network. This allows for a fine-grained repre-

sentation of the underlying discrete, stochastic process. Using this approach, we then wrote down

the two-dimensional chemical master equation for the process. Given that this stochastic process is

a continuous-time Markov chain (CTMC), it can be explicitly described by a generator Q-matrix

with a countable state space. A nice feature of most ecological models is that they are built around

processes that will approach a compact region exponentially quickly. Any reasonable ecological

model should not have unbounded population growth. Density dependence in ecology models typ-

ically ensures this. Thus, our model effectively operates over a finite state space as the probability

of arbitrarily large populations is negligibly small. Using this insight, we were able to obtain a

finite-state CTMC in two dimensions.

Since the multi-dimensional master equation was relatively unwieldy to work with, we reduced

the two-dimensional state space to one dimension (Allen, 2010; Allen and Allen, 2003). Denoting

N := N1 = N2 as the maximum number of individuals in either population, the specific mapping

function used was f(x, y) = (N + 1)x+ y + 1, for x, y ∈ [0, N ]. We could also exploit the sparsity
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of the banded Q-matrix to reduce computational cost (van Doorn and Pollett, 2013). Specifically,

the Q-matrix has size (N + 1)2 × (N + 1)2 with 7N2 + 4N − 2 nonzero entries, yielding a matrix

density of O(N−2). Thus, the sparsity of the matrix increases quadratically in N.

For the ensuing analyses, we specified population thresholds by treating them as identical across

patches. Denoting L := L1 = L2 and H := H1 = H2 as the low and high thresholds, we defined

A := A1 = A2 as the Allee threshold, noting that 0 < L < A < H ≤ N . Here N is defined as

previously and can be understood as a system size parameter. The linear ordering of the thresholds

guarantees that L is always less than H. Note that the smallest L threshold, L = 1, behaves as a

state corresponding to quasi-extinction. Moreover, with 2 ≤ A ≤ N − 1, we have A+ 1 ≤ H ≤ N

and 1 ≤ L ≤ A− 1. It can be shown that this results in
(
N
3

)
combinations of the thresholds.

In order to probe the system under consideration, we numerically computed the mean first-

passage times (MFPTs) for model (2.9) with the state-space parameterized by N for all combi-

nations of the parameters βi, D, L, and H (Chou and D’Orsogna, 2014; Polizzi et al., 2016). The

procedure can be described as follows. First, we formed the Q-matrix for each point in parameter

space. We also formed a vector of initial state probabilities p0 governing the subsequent evolution

of the CTMC. Then, the rows and columns of Q corresponding to the trap states (e.g., extinction)

were removed. Similarly, the corresponding entry in p0 was removed. Next, using the truncated

Q-matrix, Q̃, we computed the matrix of mean residence times, or −Q̃−1. Finally, we computed

the sum of the entries in −Q̃−1p0 to yield the MFPT from the initial state to the desired end state.

We could then construct a compartmental system with a reduced state space consisting of

just four states: HH, HL, LL, and LH. Each of these states corresponds to a combination of

population thresholds. For instance, HL means that the first population is at a high abundance

and the second population is at a low level. The MFPTs from the original model were used as

input rates for the transition rate matrix of the reduced model. Thus we used an emulator, or

meta-model, as a proxy to analyze the original system.

Throughout this work, we analyze a simple system that exhibits noise-induced tipping point

cascades in the vicinity of saddle-node bifurcations. We can use the emulator described previously

to construct the schematic diagram in Fig. 2.1.

14



HL

LH

LLHH

r 1 r2

r 3

r5

r4

r 6

r7r 8

Figure 2.1. Schematic diagram of the complete emulator. Each state in the
compartmental system is indicated as a circle and denoted by capital letters. The
letter H corresponds to the high threshold and the letter L corresponds to the low
threshold. The first (second) letter refers to the first (second) population. Each ri
for i = 1, . . . , 8 describes the transition rate, or inverse of the corresponding mean
first-passage time, between appropriate states.

In the diagram, each ri for i = 1, . . . , 8 represents the rate of the transition between the relevant

compartments. Each rate can be obtained as the inverse of the corresponding mean first-passage

time. Given that the process is represented as a CTMC, we can write down the transition rate

matrix S for the emulator. The transition probability matrix of the embedded discrete-time Markov

chain gives the one-step transition probabilities of the system.

The S-matrix is given as:

S =


−r1 − r5 r1 r5 0

r8 −r2 − r8 0 r2

r4 0 −r4 − r6 r6

0 r7 r3 −r3 − r7


where the ordering of the states is (HH,HL,LH,LL). Note that S satisfies the properties of a

generator matrix, namely:
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• All off-diagonal elements are non-negative.

• All diagonal elements are negative.

• Each row sums to zero.

Now, we obtain the transition probability matrix T corresponding to the system:

T =


0 r1

r1+r5
r5

r1+r5
0

r8
r2+r8

0 0 r2
r2+r8

r4
r4+r6

0 0 r6
r4+r6

0 r7
r3+r7

r3
r3+r7

0


Note that T is a row-stochastic matrix. The probability of a system collapse differs from the

likelihood of system resiliency in a manner that is quantified by the following rates:

r2 =
1

MFPT(HL→ LL)
(2.17a)

r4 =
1

MFPT(LH → HH)
(2.17b)

r6 =
1

MFPT(LH → LL)
(2.17c)

r8 =
1

MFPT(HL→ HH)
(2.17d)

From (2.17),

p1 := Pr(HL→ HH) =
r8

r2 + r8

and

p2 := Pr(LH → HH) =
r4

r4 + r6

. Using the inclusion-exclusion principle for probabilities, we obtain the probability p of the system

recovering to high population abundances (i.e., when the terminal state is HH) as

p = p1 + p2 − p1p2.

Our aim henceforth is to explore the multi-dimensional region of parameter space that cor-

responds to the desired probability of system resiliency. In symbols, for a fixed N , we want to
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identify all combinations (D,β1, β2, A,H,L) where D > 0, β1 ∈ (D,D + 1), β2 ∈ (D,D + 1),

A ∈ [2, N − 1], H ∈ [A + 1, N ], and L ∈ [1, A − 1], such that the system recovers to a high-high

state. In order to explore the parameter space numerically, we began by specifying an upper bound

of 1 for the dispersal parameter D. This value for D could be considered as large, because D should

be commensurate with the per-capita rate of the system, which was chosen as r = 1 in the non-

dimensionalization of the model (2.13) (Johnson and Hastings, 2018). This implies that D ∈ (0, 1).

Then, we chose N = 9. This was the largest N such that the largest 1-norm condition number

among the space of all matrices Q̃ taken over the subset of parameter space considered, was less

than 107. For our chosen value of N, we found this condition number to be approximately 5.92×106.

We note that numerical linear algebra was used here instead of Monte-Carlo methods, including

the Doob-Gillespie algorithm (Gillespie, 1976, 1977)). The primary justification for this choice of

method was that some of the simulated mean first-passage times were large, causing long runtimes

with Monte-Carlo simulations. All computations were performed in MATLAB (MATLAB, 2021).

2.5. Results

By defining p as the probability of transitioning from the LH state to the HH state, we can

explore how the behavior of the system depends on the parameters. For purposes of display, we

chose three values for the parameters governing patch quality, for each value of D (i.e., βi =

D + 0.01, D + 0.5, D + 0.99). By analyzing simulation output, we found that the minimum value

of p over the parameter space was approximately 0.73, and the maximum value was 0.81. This

indicates the probability of the system transitioning from the LH to the LL state, and collapsing, is

never more than 0.27. We also varied a threshold η, such that p > η, with values of η = 0.75, 0.76,

and 0.77 (Fig. 2.2). We can expect that the fraction of parameter space ν for which the system

recovers will decrease monotonically with the threshold η. If the goal is population persistence, we

would like to find a region of parameter space that yields relatively large values for both ν and η.

Referring to Fig. 2.2, several observations can be made. For instance, low dispersal (D = 0.01)

guarantees that the desired probability of system resiliency is never 76% or higher (i.e., ν = 0).

This makes sense because rescue effects, by which the stronger patch “rescues” the weaker patch,

are reduced at low dispersal rates. Also, ν decreases as η is increased. This is plausible since η acts
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Figure 2.2. System resilience as a function of model parameters. A matrix
of heatmaps summarizing the simulation study. Each heatmap indicates the value of
ν, the fraction of parameter space for which the system recovers to high abundances,
corresponding to a parameter combination (β1, β2, D, η). The range of β1 values are
on the x-axis and the range of values for β2 are on the y-axis of each heatmap. In
the 3× 3 matrix comprising the entire figure, D increases by row and η increases by
column.

as a constraint on the parameter space and increasing η implies greater specificity. In all cases, if

both Allee effects are weakly strong (i.e., (β1, β2) = (D+0.99, D+0.99)), then ν is maximized for a

given combination of D and η. This is especially noticeable when D = 0.99, regardless of the value

of the threshold parameter η (i.e., see the third row of Fig. 2.2). Lastly, if each heatmap is treated

as a matrix, we see that the column (row) of a given matrix is increasing in ν, as the corresponding

column (row) index is increased. This observation is also reflected within the coloring scheme of

each matrix. As expected, ν is maximal with a value of 1.00, for D = 0.99, η = 0.75, β1 > D+ 0.01,

and β2 > D + 0.01.

We made explicit the correspondence between various combinations of the high threshold and

Allee threshold, with L fixed at a value of 1 (Fig. 2.3). We focused here on the case of low

dispersal (i.e., D = 0.01). We see that the combination (A,H) = (2, 3) is undesirable for the
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system, as it always results in the lowest value of p = 0.726 for a given pair (β1, β2). However, as

the high threshold is increased while the Allee threshold is held constant, we see that p increases

monotonically. This is true for any value of the Allee threshold (i.e., with only H increased). Both

of the Allee effects need to be very strong (i.e., β1 = β2 = D+ 0.01) to see a marked increase in p.

We also explored the case of moderate dispersal (Fig. 2.4), with D = 0.5. Here, we notice that the

lowest value for p is 0.738, which is attained for (A,H) = (2, 3), as in Fig. 2.3. The key difference

between Figs. 2.3 and 2.4 is that p now has a moderate dependence on H for any fixed combination

(β1, β2, D, L). At most one of the Allee effects can be very strong (i.e., either β1 = D + 0.01 or

β2 = D + 0.01) in order for a clear improvement in system resilience, or an increase in p, to be

visible. Finally, in Fig. 2.5, we address the scenario of high dispersal (D = 0.99.) It is clear that

(A,H) = (2, 3) is a consistent minimizer across all levels of dispersal covered thus far, as the lowest

value for p is achieved here with a value of 0.750 (in Fig. 2.5). Also, a vast majority of scenarios

in the presence of high dispersal (D = 0.99) yield better outcomes for the system, compared with

the case of low dispersal (D = 0.01). In other words, p is relatively high throughout the subcases

shown in Fig. 2.5, compared with Fig. 2.3.

For the sake of completeness, we also explored the analogues of Figs. 2.3 to 2.5 by fixing

H = N and varying L. As shown in Fig. 2.6 corresponding to the case of low dispersal (D = 0.01),

L = 1 is an undesirable value for the low threshold in the system, as it guarantees the lowest

value of p for a given combination (β1, β2, A). Interestingly, the highest value of p occurs for

(β1, β2, L) = (D + 0.99, D + 0.99, 5). In other words, p is maximized in the interior of A − L

space, for any given combination of β1 and β2. Similarly, in Fig. 2.7 with moderate dispersal

(D = 0.5), the low threshold L = 1 yields the smallest value for p. On the other hand, p is

now maximized for (β1, β2) = (D + 0.99, D + 0.99), when L ≤ 5. Finally, in Fig. 2.8, we analyze

the case of high dispersal. All scenarios favor system recovery more strongly than in the cases

of low or moderate dispersal, with weaker Allee effects being more favorable for the system. For

instance, (β1, β2) = (D + 0.99, D + 0.99) results in p > 0.806 for all values of A and L, but

(β1, β2) = (D + 0.01, D + 0.01) yields p < 0.77 across the A− L space.

In general, a high degree of dispersal between both patches is needed to yield a desirable

outcome for the system. In other words, in order to tip positive change with confidence, D should
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Figure 2.3. Likelihood of positive tipping in the presence of low dispersal
(D = 0.01), with L = 1. A visualization of the case of low dispersal with a low
threshold (L) corresponding to quasi-extinction. The combinations of A and H are
shown explicitly. Each heatmap shows the value of p, the probability of system
recovery, corresponding to a combination (β1, β2, A,H) for D = 0.01 and L = 1.

be sufficiently large. A key issue which relates to the idea of a rescue effect is the relative likelihood

of the transition from HH to LH (or HL), as compared with the transitions LH (or HL) to LL

and LH (or HL) to HH. The likelihood of system resiliency in the form of a rescue effect is given

by p, whereas the probability of a total failure or catastrophic collapse is given by 1− p. Note that

this means a partial failure of the system is inevitable (i.e., with probability 1 = p+ (1− p)). This

result follows from the nature of the one-step transition probabilities in the emulator framework.

Thus, we can reason that the odds of system recovery is equal to p
1−p .

Given this series of observations, there is an interesting and intuitive explanation that general-

izes our setting. Noting that 0 ≤ p ≤ 1 since p is a probability, we have that

p

1− p
= p+ p2 + p3 + . . .
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Figure 2.4. Likelihood of positive tipping in the presence of moderate
dispersal (D = 0.5), with L = 1. A visualization of the case of moderate dispersal
with a low threshold (L) corresponding to quasi-extinction. The combinations of
A and H are shown explicitly. Each heatmap shows the value of p, the probability
of system recovery, corresponding to a combination (β1, β2, A,H) for D = 0.5 and
L = 1.

is a convergent geometric series. Thus, we can write the left-hand side of the equation above as the

odds of one network tipping favorably, where the network consists of a system with two patches.

The right-hand side of the equation, however, can be interpreted as the cumulative probability of

all such networks tipping favorably, i.e.,

p

1− p
= lim

N→∞

N∑
n=1

pn,

where n is the number of two-patch systems in a network. With this analysis, we thus see an

instance of a tipping cascade of networks in the form of a domino effect. Note that the propagation

of domino dynamics through a collection of networks requires strong connectivity, or high dispersal,

in our model (Lenton, 2020).
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Figure 2.5. Likelihood of positive tipping in the presence of high dispersal
(D = 0.99), with L = 1. A visualization of the case of high dispersal with a low
threshold (L) corresponding to quasi-extinction. The combinations of A and H are
shown explicitly. Each heatmap shows the value of p, the probability of system
recovery, corresponding to a combination (β1, β2, A,H) for D = 0.99 and L = 1.

2.6. Discussion

Our analysis of a minimal, stochastic system that could have cascading tipping points yields

some interesting insights. A novel result of this work is that noise-induced tipping can distinguish a

catastrophic collapse and a successful recovery from the brink of extinction. This idea is expressed

succinctly as the distinction between the tipping of positive change and the failure to adequately

address an impending critical transition (Lenton, 2020). In our two-population model, we showed

that if the system is in the low/high state, a stochastic perturbation due to demographic noise

results in either a collapse of both populations (low/low state) or a full recovery to the high/high

stable state. This may be a key feature of spatially connected populations with strong Allee effects,

and analyzing these dynamics should inform management strategies for similar ecological systems.

We found that a population with higher resilience, in the form of a larger population abundance,

has the capacity to save its counterpart through a rescue effect. In particular, this occurs due to
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Figure 2.6. Likelihood of positive tipping in the presence of low dispersal
(D = 0.01), with H = N . A visualization of the case of low dispersal with a high
threshold (H) corresponding to the carrying capacity. The combinations of A and L
are shown explicitly. Each heatmap shows the value of p, the probability of system
recovery, corresponding to a combination (β1, β2, A, L) for D = 0.01 and H = N .

the presence of dispersal between the populations. In the presence of noise, patch homogeneity, and

strong network connectivity, the system is more likely to exhibit a tipping point cascade (Lenton,

2020).

Some discussion of systems with noise-induced tipping and their features is needed at this

point. In situations where tipping one system increases the probability of another system tipping

– for example, melting of the Greenland ice sheet increases the likelihood of failure of the Atlantic

Meridional Overturning Circulation (AMOC) – the first system should act as a proxy for the

entire network, in terms of a call to action. This is an important point, because by definition, our

system can tip without warning, thus precluding detection through generic early-warning signals.

However, we have been able to characterize the likelihood of its propensity to tip, either favorably

or catastrophically (Lenton, 2020). The results from our analysis support the hypothesis that both

stochastic dynamics might play a key role in regime shifts and their associated tipping (Rocha
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Figure 2.7. Likelihood of positive tipping in the presence of moderate
dispersal (D = 0.5), with H = N . A visualization of the case of moderate
dispersal with a high threshold (H) corresponding to the carrying capacity. The
combinations of A and L are shown explicitly. Each heatmap shows the value of p,
the probability of system recovery, corresponding to a combination (β1, β2, A, L) for
D = 0.5 and H = N .

et al., 2018). In particular, domino effects have relatively slow temporal dynamics and larger

spatial scales; in our case, the spatial scale of the dispersal parameter dominates the time scale in

magnitude. In addition, the one-step transition probabilities in our model support the notion that

structural dependencies manifest as one-way interactions for the domino effect. This is a salient

feature of regime shift couplings. In our system, we note that a partial collapse is inevitable. Most

examples of regime shifts exhibiting domino effects concern the Earth system, including monsoon

weakening and thermohaline circulation collapse, as well as nutrient transport mechanisms (Rocha

et al., 2018; Scheffer, 2009).

Our analysis is based on an individual-based model that describes the dynamics of the system

under consideration and this approach should have general applicability. The mean-field description

of this model necessarily includes a quadratic term. In other work (Abraham, 1991; Klose et al.,
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Figure 2.8. Likelihood of positive tipping in the presence of high dispersal
(D = 0.99), with H = N . A visualization of the case of high dispersal with a high
threshold (H) corresponding to the carrying capacity. The combinations of A and L
are shown explicitly. Each heatmap shows the value of p, the probability of system
recovery, corresponding to a combination (β1, β2, A, L) for D = 0.99 and H = N .

2020), the proposed tipping element omits the quadratic term, in an attempt to describe a dangerous

bifurcation in the form of a cusp catastrophe. This would correspond to zero mortality due to

natural causes in our model (i.e., γ = 0). Similarly, the absence of the quadratic term would

indicate that both the carrying capacity and Allee threshold for either population are identically zero

(Johnson and Hastings, 2018). Thus, we see that important details of the underlying mechanisms

of a tipping element can be lost in a phenomenological description.

Ways to generalize our work include looking at more than two populations which would allow

the study of how specific forms of connectivity could play a role in tipping cascades, or introducing

the possibility of more complex dynamics (Strogatz, 2015). The novelty of the emulator framework

introduced here would be unaffected by the inclusion of additional dimensions, or patches, since

the required (but modified) mapping procedure to store matrix elements in memory would remain

valid. Allowing for patch heterogeneity in the two populations by distinguishing their stochastic
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reaction rates could also produce interesting dynamics. We leave the exploration of these aspects

to future work. Given the ubiquity of Allee effects (Courchamp et al., 2008) and the generality

of our model, we believe that we have uncovered important ecological conclusions that are robust

and should apply in a variety of settings. Within the field of landscape ecology, rescue effects are

important in both metapopulations and species augmentation efforts. Another potential area of

application is network theory.
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CHAPTER 3

Tipping cascades in a multi-patch system with noise and spatial

coupling

3.1. Abstract

Forecasting tipping points in spatially extended systems is a key area of interest to ecologists.

A slowly declining spatially distributed population is an important example of an ecological system

that could exhibit a cascade of tipping points. Here, we developed a spatial two-patch model with

environmental stochasticity that is slowly forced through population collapse, in the presence of

changing environmental conditions. We began with a basic spatial model, then introduced a fast-

slow version of the model using geometric singular perturbation theory, followed by the inclusion

of stochasticity. Using the spectral density of the fluctuating subpopulation in each patch, we

derived analytic expressions for candidate indicators of population extinction and evaluated their

performance through a simulation study. We found that coupling and spatial heterogeneity decrease

the magnitude of the proposed indicators in coupled populations relative to isolated populations.

Moreover, the degree of coupling dictates the trends in summary statistics. We conclude that this

theory may be applied to other contexts, including the control of invasive species.

3.2. Introduction

Complex systems can have thresholds, referred to as tipping points or catastrophic bifurcations,

that mark an abrupt shift to an alternate dynamic regime. Such systems have been actively studied

across a wide range of fields (Scheffer, 2009), including ecology (Boerlijst et al., 2013; Carpenter

et al., 2011; Hastings and Wysham, 2010; Pace et al., 2015; Scheffer et al., 2015), financial systems

(Battiston et al., 2016; May et al., 2008; Tu et al., 2020), climate science (Boulton and Lenton, 2015;

Dakos et al., 2008; Lenton, 2020) and medicine (Maturana et al., 2020; Meisel et al., 2015; van de

Leemput et al., 2014). Detecting tipping points and predicting their associated dynamics presents
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significant challenges, because system observables may show negligible changes until the point of

no return is reached. Since a series of tipping points can manifest through domino dynamics,

as a unidirectional type of tipping cascade, there is an urgent need to adequately address these

challenges. Fortunately, a new research frontier has emerged, harnessing noise as an informer of

the sophisticated and often counterintuitive dynamics of interconnected systems.

A major advancement in this area is the development of early-warning signals (EWS), a suite

of statistical tools that are independent of model assumptions or parameterization (Dakos et al.,

2012). Instead, they capture generic changes in statistical metrics that occur prior to a bifurcation.

The ability to characterize bifurcations is crucial in order to glean insight into upcoming qualitative

changes in a system’s behavior. For example, in ecology, populations subject to Allee effects may be

described in terms of saddle-node (or fold) bifurcations. Most EWS are rooted in the phenomenon

of “critical slowing down”, which is a generic property of local bifurcations (Strogatz, 2015; Wissel,

1984). Akin to a second-order phase transition, critical slowing down (CSD hereafter) results

in a longer return time to equilibrium following a perturbation. In ecology, CSD is used as a

measure of resilience, the ability of a system to tolerate disturbances and restructure itself while

responding to change (Scheffer, 2009). In the presence of stochasticity, this manifests as an increase

in variance, larger temporal correlations, and marked changes in several other statistical measures.

Rising variance and lag-1 autocorrelation are commonly used EWS that have been demonstrated in

empirical settings (Dai et al., 2012; Dakos et al., 2008; Wouters et al., 2015). These statistics can be

derived in linearized models by using stochastic differential equations (Gardiner, 2004), but theory

for multi-dimensional systems on the verge of tipping has not been clearly elucidated. Moreover,

the observability of EWS in real, multi-dimensional networks can be remarkably limited (Boerlijst

et al., 2013), underscoring the need for a coherent theory of such systems.

To understand how CSD manifests in a multi-patch system, patch-specific temporal predictors

are required. These predictors can also be used to assess whether a single patch can have a clear

signal of an impending tipping cascade, or whether every patch needs to be individually monitored.

To our knowledge, a predictive theory for temporal statistics of tipping elements that accounts

for both stochasticity and coupling is currently lacking. It must be noted, however, that O’Regan

made significant headway towards building this theory, although for a metapopulation with logistic
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growth rates (O’Regan, 2018). Thus, the system investigated in that study corresponded to a

non-catastrophic, transcritical bifurcation, implying a lack of hysteresis in the dynamics.

Ecological networks are inherently spatial and multi-dimensional, but the influence of space

and coupling on tipping points is as yet unclear. Several summary statistics have been proposed

as multivariate spatial indicators, such as spatial variance, spatial skewness, and spatial kurtosis

(Guttal and Jayaprakash, 2009; Kéfi et al., 2014). However, spatial statistics are obtained using

temporal snapshots of the system under consideration (Carpenter and Brock, 2010). For example,

the technique of remote sensing may provide higher sensitivity at a lower computational cost than

the processing of time series with high frequency. Also, spatial statistics yield information by

averaging within patches, which might be less accurate in the presence of patch heterogeneity. In

addition, from a theoretical standpoint, spatial statistics are usually difficult to obtain analytically.

Thus, temporal indicators that are specific to each patch are necessary to anticipate tipping in

connected ecological systems.

To address the aforementioned gap in the literature, we model a metapopulation with Allee

effects as a multi-dimensional system in continuous time, where each subpopulation gradually

approaches extinction as a result of patch quality evolving over ecological timescales. Gradually

degraded metapopulations on the brink of population collapse are an important example of a spatial

system that can exhibit a tipping point. Mathematically, a metapopulation that grows locally via

Allee effects is characterized by a (codimension-one) saddle-node bifurcation at the tipping point.

We address the question of how temporal statistics for subpopulation fluctuations can yield insight

into whether or not a metapopulation is losing stability. We extend the framework to explore the

effects of spatial heterogeneities on predicting extinction. We also check whether both patches

exhibit EWS of tipping, or whether partial information (i.e., one patch) is sufficient to inform

system management. Finally, we suggest that this theory of Allee effects and stochasticity can be

applied to the control of invasive species, including insect pests (Liebhold et al., 2016).
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3.3. Model Description

Models of Allee effects with passive dispersal have been discussed in the literature (Amarasekare,

1998; Kang and Lanchier, 2011). For an overview, consult Chapter 3 of a classic reference on Allee

effects (Courchamp et al., 2008).

3.3.1. Base model. We begin our model formulation with the deterministic skeleton for the

nondimensionalized model described by Johnson and Hastings, reproduced here for convenience

(Johnson and Hastings, 2018).

dx1
dt

= x1(β1 − (x1 − 1)2) + d(x2 − x1)

dx2
dt

= x2(β2 − (x2 − 1)2) + d(x1 − x2)
(3.1)

In the model above, the parameter βi represents a measure for the quality of the environment by

the population denoted by xi. The parameter d denotes passive, symmetric diffusion in the system

and is a measure of network connectivity. See Johnson’s work for a detailed exposition of the

nondimensionalization.

Here, xi ≥ 0 for i = 1, 2 denotes the density of subpopulation i that inhabits patch i. In the

absence of dispersal, subpopulation dynamics are determined by Allee effects at the rate xi(βi −

(xi−1)2) in each patch. The model allows for both homogeneity in intrinsic dynamics (β1 = β2 = β)

and spatial heterogeneity in the environment (β1 6= β2). The positive steady-state of the spatially

heterogeneous model (x∗1, x
∗
2) can be obtained numerically.

In the absence of coupling, each population is isolated. If βi < 0, population extinction is

certain due to the presence of a fatal Allee effect. At βi = 0, a saddle-node bifurcation occurs. For

0 < βi < 1, each population is bistable with a positive steady-state at xi = 1 +
√
βi and a stable

population extinction state at xi = 0, owing to a strong Allee effect. At βi = 1, a transcritical

bifurcation occurs. Finally, for βi > 1, the extinction state becomes unstable in the regime of the

weak Allee effect.

In the bistable regime, if environmental conditions are homogeneous (i.e., 0 < β1 = β2 = β < 1)

and the subpopulations disperse at a rate d > 0, the system has two spatially homogeneous steady-

states: a positive steady-state (x∗1, x
∗
2) = (1+

√
β, 1+

√
β) and an extinction state at (x∗1, x

∗
2) = (0, 0).
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The eigenvalues of the spatially homogeneous system (3.1) are −2(
√
β + β) and −2(

√
β + β + d).

If the quality of the environment in each patch is degraded, we assume that β declines. Therefore,

both eigenvalues will decrease in magnitude, and extinction will occur in both patches when the

dominant eigenvalue −2(
√
β+β) is equal to zero. Hence, critical slowing down prior to population

extinction is predicted in the bistable regime of the spatially homogeneous system.

Henceforth, we focus our analyses on the case of the strong Allee effect that gives rise to

bistability.

3.3.2. Fast-slow model. To study the system’s approach toward a catastrophic collapse, we

use a fast-slow model to model the approach to the tipping point. In the spatially homogeneous

system, this necessitates that β declines slowly relative to the dynamics within each patch. Thus,

we modify model (3.1) to account for a slowly varying quality of environment,

dx1
dt

= x1(β − (x1 − 1)2) + d(x2 − x1)

dx2
dt

= x2(β − (x2 − 1)2) + d(x1 − x2)

dβ

dt
= −β0

(3.2)

where β0 > 0 quantifies the rate of change of the parameter β in each patch. By Fenichel’s Theorem

(Berglund and Gentz, 2006; Fenichel, 1979; Kuehn, 2015), as β0 → 0, the trajectories of system

(3.2) approach those of the model where β remains constant. Since β evolves much more slowly

than the population dynamics, we assume that 0 < β0 � 1, and that deteriorating conditions yield

a linear decline in β,

(3.3) β(t) = β − β0t,

with t∗ = β/β0 denoting the time at which β(t) becomes zero.

In the presence of spatial heterogeneity, the quality of one patch may differ from that of its

counterpart. Thus, the underlying growth rates for both patches may be distinct. So, we assume

that environmental conditions stay constant in the first patch but that the second patch is slowly

degraded, effectively decreasing its population growth rate. This set of assumptions yields the

31



following model,

dx1
dt

= x1(β1 − (x1 − 1)2) + d(x2 − x1)

dx2
dt

= x2(β2 − (x2 − 1)2) + d(x1 − x2)

dβ2
dt

= −β0

(3.4)

with

(3.5) β2(t) = β2 − β0t,

where t∗ = β2/β0 indicates the time that β2(t) becomes zero. By Fenichel’s theorem (Berglund and

Gentz, 2006; Fenichel, 1979; Kuehn, 2015), for sufficiently small β0, the dynamics of the fast-slow

system approach those of the system where β2 is fixed at a constant value. Models (3.2) and (3.4)

can be combined as

dx1
dt

= x1(β1(t)− (x1 − 1)2) + d(x2 − x1)

dx2
dt

= x2(β2(t)− (x2 − 1)2) + d(x1 − x2)
(3.6)

where β1(t) = β2(t) = β(t) in the case of spatial homogeneity (see (3.2) and (3.3)). In the spatially

heterogeneous scenario, we assume that β1(t) = β1 and that β2(t) is defined by (3.5).

3.3.3. Stochastic model. We now derive a system of Itô stochastic differential equations

(SDEs) that describes spatially homogeneous metapopulations by assuming that exogenous noise

can influence patch dynamics.

3.3.3.1. Multiplicative noise. Following the derivation in previous work (O’Regan, 2018), and

assuming that σµ is identical for both patches, we obtain the following system of SDEs,

dx1 = (x1(β1(t)− (x1 − 1)2)− dx1 + dx2)dt+ σµx1dW1

dx2 = (x2(β2(t)− (x2 − 1)2)− dx2 + dx1)dt+ σµx2dW2

(3.7)

Since random disturbances scale with the population density xi in each patch, system (3.7) describes

a model with multiplicative noise. Note that system (3.7) is a stochastic analogue of the fast-slow

system (3.6).
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3.3.3.2. Simulations of the homogeneous stochastic models. To study the behavior of the sto-

chastic fast-slow model as the tipping point is approached, we simulated the model using the

parameters in Table 3.1. Fig. 3.1 shows realizations of the x1 subpopulation in isolated patches

(d = 0), as compared to simulations of systems where the x1 population is coupled to another

patch, through low and high dispersal, and under homogeneous environmental conditions. Cou-

pling patches through dispersal dampens the environmental fluctuations in each patch, as compared

to the case of no dispersal. When coupling is low, and intrinsic dynamics are equal in each patch,

coupled populations fluctuate on a similar level as that of isolated populations. When coupling is

high, fluctuations are dampened due to the presence of coupling.

Parameter Symbol Value (per unit time)
Coupling strength (high level of dispersal) dh 1
Coupling strength (moderate level of dispersal) dm 0.1
Coupling strength (low level of dispersal) dl 0.01
Multiplicative noise level σµ 0.05
Initial value of measure of patch quality (homogeneous model) β 0.99
Measure of patch quality (strong source patch 1) β1 0.99
Measure of patch quality (weak source patch 1) β1 0.2
Initial value of measure of patch quality (in deteriorating patch 2) β2 0.99
Rate of change of measure of patch quality (deteriorating patch) β0 0.001

Initial value of population xi (homogeneous system) xi(0) 1+
√

0.99

Initial value of population x1 (strong source patch) x1(0) 1+
√

0.99

Initial value of population x1 (weak source patch) x1(0) 1+
√

0.2

Initial value of population x2 value (deteriorating patch) x2(0) 1+
√

0.99

Table 3.1. Parameter values used for numerical simulations.

3.4. Analytic derivations

In order to predict subpopulation extinction using time series data, we aim to understand the

nature of subpopulation fluctuations with temporal leading indicator statistics. In this section,

we will show that three indicator statistics change systematically as tipping becomes increasing

likely, as a direct consequence of critical slowing down. The steady-state here is chosen as the

mean of the quasi-stationary population distribution. Consequently, we set βi(t) = βi in model

(3.7) and quantify the behavior of fluctuations in the vicinity of the positive steady-state (x∗1, x
∗
2)

of model (3.1). Although the fast-slow model assumes that the mean evolves slowly through time,
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Figure 3.1. Simulations of population x1 in a homogeneous coupled patch
system. The red line shows the mean of 500 realizations of the homogeneous model,
a single realization is shown in black and 50 simulations of the x1 population are
shown in gray. The dashed vertical line indicates the time t∗ at which the saddle-
node bifurcation occurs. The first column shows simulations of isolated popula-
tions (d = 0), the second column corresponds to simulations of populations coupled
through low dispersal levels (d = 0.01), and the last column shows simulations of
populations coupled through high dispersal (d = 1). Numerical values for the pa-
rameters used in the simulations are provided in Table 3.1.

the steady-state is a faithful approximation of the mean of the fast-slow models, provided that the

intrinsic growth rate for each patch changes sufficiently slowly.

To derive summary statistics for fluctuations about the positive steady-state, we note that we

can express system (3.7) as follows,

(3.8) dx(t) = f(x(t), t)dt+
√
D(x(t), t)dW (t),

where x(t) = (x1, x2), the terms of the mean vector f(x(t), t) are fi(x(t), t) = xi(βi(t)− (xi−1)2)−

dxi + dxj and the entries of the variance-covariance matrix D(x(t), t) are Dii(x(t), t) = σ2µx
2
i . The

probability distribution P (x(t), t) of the solutions of system (3.8) satisfies the forward Kolmogorov
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equation (Allen, 2010; O’Regan, 2018),

∂P (x(t), t)

∂t
=−

2∑
i=1

∂

∂xi
[fi(x(t), t)P (x(t), t)]

+
1

2

2∑
i=1

2∑
j=1

∂2

∂xi∂xj
[Dij(x(t), t)P (x(t), t)]

(3.9)

3.4.1. Model linearization. To characterize the behavior of fluctuations near the positive

steady-state, we perform a Taylor expansion of the terms in the mean vector and covariance matrix

about (x∗1, x
∗
2), and truncate at leading-order,

fi(x1, x2, t) ≈ fi(x∗1, x∗2, t) +
∂f(x∗1, x

∗
2, t)

∂x1
z1 +

∂f(x∗1, x
∗
2, t)

∂x2
z2 + . . .

≈ 0 +
2∑
j=1

aijzj . . . ,

(3.10)

where aij refers to the partial derivatives of fi and zi = xi − x∗i denotes perturbations from the

steady-state. Similarly,

(3.11) Dij(x1, x2, t) ≈ Dij(x
∗
1, x
∗
2, t) + . . .

The entries aij of the Jacobian matrix are given by aii = βi − d − 1 + 4x∗i − 3(x∗i )
2 and aij = d,

for i 6= j, and the terms of the variance-covariance matrix are Dii = σ2µ(x∗i )
2. The joint probability

distribution of fluctuations z(t) = (z1, z2) from the steady-state satisfies

∂Π(z(t), t)

∂t
=−

2∑
i=1

∂

∂zi
Π(z(t), t))

 2∑
j=1

aijzi


+

1

2

2∑
i=1

2∑
j=1

∂2

∂zi∂zj
[DijΠ(z(t), t)]

(3.12)

Solutions of the following system of stochastic differential equations,

dz1 = (a11z1 + a12z2)dt+
√
D11dW1

dz2 = (a21z1 + a22z2)dt+
√
D22dW2

(3.13)

share the same probability distribution Π(z(t), t) (Allen et al., 2008; O’Regan, 2018).
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3.4.2. Spectral density. To derive leading indicators of extinction, we begin with the spectral

density of the fluctuating subpopulation within each patch. The technique of Fourier transformation

can be used to obtain this function. For the full derivation, we refer the interested reader to prior

work (Nisbet and Gurney, 1982; O’Regan, 2018).

Briefly, we note that any continuous function z(t) defined for a time-period −∞ ≤ t ≤ ∞ may

be expressed in terms of its Fourier transform z̃(ω),

(3.14) z(t) =
1

2π

∫ ∞
−∞

z̃(ω) exp(iωt) dω,

with ω denoting angular frequency. The Fourier transform of z(t) is then given by

(3.15) z̃(ω) =

∫ ∞
−∞

z(t) exp(−iωt) dt.

We rewrite system (3.13) in a form that lends itself to the method of Fourier transformation,

dz1
dt

= a11z1(t) + a12z2(t) +
√
D11Γ1(t),

dz2
dt

= a21z1(t) + a22z2(t) +
√
D22Γ2(t),

(3.16)

where Γ1(t) and Γ2(t) denote white noise processes associated with the covariance matrix {Dij}.

Fourier transformation of system (3.16) yields,

iωz̃1(ω) = a11z̃1(ω) + a12z̃2(ω) +
√
D11Γ̃1(ω),

iωz̃2(ω) = a21z̃1(ω) + a22z̃2(ω) +
√
D22Γ̃2(ω),

(3.17)

where z̃1(ω), z̃2(ω), Γ̃1(ω) and Γ̃2(ω) are the Fourier transforms of the functions z1(t), z2(t),Γ1(t)

and Γ2(t), respectively. We can then obtain z̃1(ω) as

z̃1(ω) =
(a22 − iω)

√
D11Γ1(ω)

δ − ω2 − iTω
− a12

√
D22Γ2(ω)

δ − ω2 − iTω
,(3.18)

where T and δ are the trace and determinant of the Jacobian matrix {aij}, respectively. Using

(3.18) we can establish the spectral density of the fluctuations, which we denote by

S1(ω) =
D11a

2
22 +D22a

2
12 +D11ω

2

(ω2 − δ)2 + T 2ω2
.(3.19)
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(See the Appendix in the work by O’Regan for the complete derivation.) Similarly, the spectral

density of fluctuations of the subpopulation in the second patch can be obtained as,

S2(ω) =
D22a

2
11 +D11a

2
21 +D22ω

2

(ω2 − δ)2 + T 2ω2
.(3.20)

3.4.3. Leading indicators in the spatially homogeneous setting. Here, we derive ana-

lytic expressions for the variance, coefficient of variation, lag-1 autocovariance function and lag-1

autocorrelation function for the spatially homogeneous model with 0 < β < 1 and d > 0. For the

spatially homogeneous model, a11 = a22 = −2
√
β(
√
β + 1) − d and a12 = a21 = d. The spectral

density of the fluctuations of the subpopulations in each patch i is given by

(3.21) Si(ω) =
σ2µ(1 +

√
β)2[2

√
β(
√
β + 1) + d]2 + σ2ad

2 + σ2aω
2

(ω2 − [(2
√
β(
√
β + 1) + d)2 − d2])2 + 4(2

√
β(
√
β + 1) + d)2ω2

To obtain the variance of the fluctuations, we integrate the spectral density over all frequencies,

(3.22)
1

2π

∫ ∞
−∞

Si(ω)dω =
1

π

∫ ∞
0

Si(ω)dω.

Evaluating this integral expression yields

(3.23) vµ(β, d) =
(
√
β + 1)[2

√
β(
√
β + 1) + d]σ2µ

8
√
β[d+

√
β(
√
β + 1)]

To obtain the autocovariance function, we compute

(3.24)
1

2π

∫ ∞
−∞

Si(ω) cos(ωτ)dω =
1

π

∫ ∞
0

Si(ω) cos(ωτ)dω,

using the evenness of Si(ω). Integrating expression (3.24) with τ = 1 gives

aµ(β, d) =
σ2µ(
√
β + 1)[d exp(2d) +

√
β + exp(2d)

√
β + β + exp(2d)β]

8
√
β[d+

√
β(
√
β + 1)]

× exp(−2[d+
√
β(
√
β + 1)])

(3.25)

Dividing this expression by the variance gives the lag-1 autocorrelation function,

acf1(β) =
d exp(2d) +

√
β + exp(2d)

√
β + β + exp(2d)β

d+ 2
√
β(
√
β + 1)

× exp(−2[d+
√
β(
√
β + 1)])

(3.26)
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It can be shown that the variance and lag-1 autocorrelation functions can be written in terms of

the eigenvalues λ1 and λ2 of the spatially homogeneous system,

(3.27) vµ(β, d) =
σ2µ
16

(|λ1|+ |λ2|)
|λ1|2

|λ2|

(
1

1 +
√

2|λ1|+ 1

)
.

(3.28) acf1(β) =
1

|λ1|+ |λ2|
[|λ1| exp(−|λ2|) + |λ2| exp(−|λ1|)].

To find the coefficient of variation statistic for each patch, we divide the standard deviation of the

fluctuations by the subpopulation mean 1 +
√
β in each patch,

(3.29) CVµ(β, d) =
σµ
√

2

4(1 +
√
β)

√
(1 +

√
β)(d+ 2

√
β + 2β)√

β(d+ β +
√
β)

In summary, measures of variability depend on the strength of noise. It can be seen that the

leading indicators are continuous functions of β and the dispersal parameter d. All leading indicator

functions exist for 0 < β < 1 and are defined for d > 0.

3.4.4. Theoretical predictions. Next, we are interested in the qualitative behavior of the

leading indicators as patch quality is degraded, that is, as the intrinsic patch quality β of each

subpopulation approaches zero from the right, for β ∈ (0, 1). Taking the limit of each expression

as β → 0+ yields,

(3.30) lim
β→0+

vµ(β, d) = +∞,

(3.31) lim
β→0+

CVµ(β, d) = +∞,

(3.32) lim
β→0+

acf1(β, d) = 1.

To better intuit the behavior of the statistics as the tipping point of the system is approached due

to changes in intrinsic dynamics, we compute the first derivative of each statistic with respect to β

(Table 3.2). By calculating the first derivative of each function with respect to β, provided d > 0

and 0 < β < 1, we find that vµ(β, d), CVµ(β, d), and acf1(β, d) are strictly decreasing functions of β;
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therefore, all of these functions increase monotonically as β approaches zero from the right (Table

3.2). Thus, we predict strictly increasing trends in lag-1 autocorrelation, variance and coefficient

of variation, as extinction is approached in each patch.

Statistic h(β, d)
∂

∂β
h(β, d)

∂

∂d
h(β, d)

vµ(β, d) −
(
2(
√
β+1)

2
β+d2−2(β−1)

√
βd
)
σ2
µ

16β3/2(β+
√
β+d)

2 − (
√
β+1)

2
σ2
µ

8(β+
√
β+d)

2

CVµ(β, d) −
(2
√
β+1)(2(β+

√
β)+d)

(
2(
√
β+1)

2
β+d2+2(β+

√
β)d

)
σµ

8
√
2β2(β+

√
β+d)

3
(
(
√
β+1)(2(β+

√
β)+d)√

β(β+
√
β+d)

)
3/2

− (
√
β+1)σµ

4
√
2(β+

√
β+d)

2
√

(
√
β+1)

2
(

1
β+
√
β
+ 1
β+
√
β+d

)
acf1(β, d) −

(
2e2dd2+d(2(β+

√
β)+(6(β+

√
β)+1)e2d−1)+4(β+

√
β)

2
(e2d+1)

)
2
√
β(2(β+

√
β)+d)

2 −
(β+
√
β)e−2(β+

√
β+d)

(
(2
√
β+1)

2−e2d+2d
)

(2(β+
√
β)+d)

2

×
(
2
√
β + 1

)
e−2(β+

√
β+d)

Table 3.2. First derivatives of each statistic, assuming β ∈ (0, 1) and d, σµ ∈
(0,∞).

To understand the effect of coupling on the behavior of the temporal leading indicators, we

examine these functions as d approaches zero from above, and as d approaches positive infinity.

As d decreases to zero from above, the limit of each statistic approaches the expression for the

statistic in the case without dispersal,

(3.33) lim
d→0+

vµ(β, d) =
σ2µ(
√
β + 1)

4
√
β

,

(3.34) lim
d→0+

CVµ(β, d) =
σµ

2
√√

β + β
,

(3.35) lim
d→0+

acf1(β, d) = exp

[
−2

√√
β + β

]
.

Consequently, the summary statistics capture the behavior of the whole system as being similar to

that of isolated subsystems. If coupling increases to infinity, the limits are

(3.36) lim
d→∞

vµ(β, d) =
σ2µ(
√
β + 1)

8
√
β

,

(3.37) lim
d→∞

CVµ(β, d) =
σµ
√

2

4
√√

β + β
,
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(3.38) lim
d→∞

acf1(β, d) = exp

[
−2

√√
β + β

]
.

Increasing the degree of patch connectivity muffles the temporal signals that quantify variability.

As d → ∞, the variance approaches 1/2 of the variance in the absence of dispersal. So, in a very

well-mixed metapopulation, the temporal variance in each patch will be muted relative to isolated

patches. Similarly, as d approaches infinity, the coefficient of variation approaches 1/
√

2 of its

analogue in the absence of coupling. Table 3.2 shows that the derivative of each function decreases

monotonically with d, provided d > 0, σµ > 0, and 0 < β < 1.

Notice that the lag-1 autocorrelation function approaches exp[−2
√√

β + β] as β approaches

either 0 or ∞. The first derivative of acf1(β, d) with respect to d is

∂

∂d
acf1(β, d) = −exp[−2(d+

√
β + β)](

√
β + β)[2d− exp(2d) + (1 + 2

√
β)2]

(d+ 2(
√
β + β))2

Provided that d is strictly positive and β ∈ (0, 1), there is a critical point of acf1(β, d) at

(3.39) dc = −1

2
(1 + 2

√
β)2−1

2
ProductLog[− exp[−(1 + 2

√
β)2].

Applying the second derivative test shows that a local minimum of acf1(β, d) occurs at dc,

∂2acf1(β, dc)

∂2d
=

8(
√
β + β) exp[−2(

√
β + β)]

ProductLog[− exp[−(1 + 2
√
β)2]]

× 1

(1 + ProductLog[− exp[−(1 + 2
√
β)2]])

The second derivative is always positive at dc, because the denominator of the expression above is

strictly positive, owing to the dominance of the square term.

As a result, with low dispersal in the spatially homogeneous system, the neighboring points

xi(t) and xi(t + 1) in a stationary time series are highly correlated. As dispersal increases, the

temporal correlation between xi(t) and xi(t + 1) decreases, due to mixing between both patches.

For d > dc, however, autocorrelation increases because dispersal is sufficiently high to result in a

single population. In summary, xi(t) and xi(t+1) are least correlated at intermediate levels of patch

connectivity. For intermediate levels of dispersal, we can expect the lag-1 autocorrelation to be
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lower relative to that of isolated patches, but if coupling is sufficiently high, the lag-1 autocorrelation

approaches that of a single patch.

3.4.5. Numerical predictions for the summary statistics. Numerically evaluating the

summary statistics at the mean (x∗1, x
∗
2) = (1+

√
β, 1+

√
β) confirms our theoretical predictions. As

β approaches zero from the right in each patch, the leading indicators change as predicted by the

theory (Fig. 3.2). The presence of coupling dampens patterns in indicator statistics that measure

variability. Furthermore, a high dispersal rate leads to larger changes in the lag-1 autocorrelation

statistic for populations in synchrony, in contrast with isolated patches, as predicted with a decrease

in β.

3.5. Simulation methodology

The theoretical predictions for the summary statistics in Section 3.4 are calculated about the

steady-state (i.e., the subpopulation mean (x∗1, x
∗
2) = (1 +

√
β, 1 +

√
β)). In order to test the

robustness of the theoretical predictions for the leading indicator statistics under worsening patch

quality, we conducted a simulation study using the fast-slow model derived in Section 3.3. Using

the parameters in Table 3.1, we simulated the stochastic fast-slow model approaching a tipping

point under low and high dispersal regimes, and under both spatially homogeneous (system (3.2)

and (3.3)) and heterogeneous (system (3.4) and (3.5)) environmental conditions.

Here, we adopt the simulation procedure implemented in previous work (O’Regan, 2018). All

computations were performed in MATLAB (MATLAB, 2021).

3.6. Results

Increases in lag-1 autocorrelation, variance and coefficient of variation are seen in the simulation

study of the coupled two-patch model (Fig. 3.3). As the theory shows, higher dispersal levels result

in decreases in the magnitude and rate of change of the trends in the indicator statistics. Median

Kendall correlation coefficient values are all positive, demonstrating that on average, positive trends

in indicator statistics occur as tipping is approached. Also, the median correlation coefficient values

for the coefficient of variation are very close to 1, indicating that under multiplicative noise, one

can expect a strong positive relationship between a worsening environment and the coefficient of
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Figure 3.2. Theoretical predictions for summary statistics of x1 in a ho-
mogeneous coupled system. The first column of panels shows summary statistic
predictions for isolated patches, the second column of panels displays predictions for
x1 populations coupled through low dispersal levels, and the third column of panels
corresponds to populations coupled through high dispersal. Parameter values used
for the numerical predictions are given in Table 1. Predictions were calculated for
fluctuations about the steady-state (1 +

√
β, 1 +

√
β) of system (3.1) (representing

the mean of the stochastic fast-slow system) for β values ranging from 0.99 down to
0.01, with a spacing of 0.01.

variation. This finding is common across dispersal levels. In summary, indicator statistics behave as

predicted by the theory, with the coefficient of variation performing consistently well as an indicator

of CSD across all cases explored here.
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Figure 3.3. Simulation study predictions for the summary statistics of
the x1 population in a homogeneous coupled system with multiplicative
noise. Thick blue lines indicate the median value of each statistic for population
x1 over 500 simulations; thick black lines correspond to the median value of each
statistic for the x2 population over 500 realizations. Dotted lines show the 95%
prediction interval for each statistic. The median value of Kendall’s correlation
coefficient τ is reported for each indicator statistic over 500 simulations. The first
column of panels are summary statistic predictions for isolated patches, the second
column are predictions for populations coupled through low dispersal levels, and
the last column shows predictions for populations coupled through high dispersal.
Parameter values used for the numerical predictions are given in Table 3.1.

3.6.1. The impact of spatial heterogeneity on CSD. Spatial systems are generally het-

erogeneous in nature (Levin, 1976; O’Regan, 2018). To investigate how spatial heterogeneities affect

CSD in a spatially extended dynamical system, and whether the predictions for the leading indi-

cator statistics for the spatially homogeneous model are robust to heterogeneities, we formulated a

fast-slow spatially heterogeneous model with multiplicative noise. We assumed that environmental

conditions remain constant in the first patch, while conditions steadily decline in the second patch.

We investigated the dynamics when patch 1 is a “strong source”, meaning that the patch quality

is high and population growth occurs under favorable conditions. We also explored the onset of
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CSD when the first patch is a “weak source”, that is, when conditions for population growth are

poor, and the population is close to extinction. Fig. 3.4 shows simulations of the fast-slow model

with a strong source patch and a deteriorating patch under low and high dispersal. Due to mixing

between the subpopulations, both patches decline in habitat quality. Although the second patch

deteriorates at the same rate as the declining patches in the spatially homogeneous system, the

strong source patch exhibits a rescue effect in the regime of high dispersal. Both patches decline

at similar rates due to the high level of connectivity between the subpopulations.

Similar patterns of subpopulation decline due to high levels of coupling are also observed when

the first patch is depleted of resources (Fig. 3.5). When a poor quality patch is coupled with a

degrading subpopulation, both subpopulations decline towards extinction and exhibit larger fluc-

tuations compared to subpopulations where one patch has a good environment (compare Figures

3.4 and 3.5). The spatially heterogeneous metapopulation with a weak source patch appears to

be more responsive to the intrinsic dynamics within each patch, because each patch has an initial

transient before the system relaxes to the moving steady-state of the fast-slow system (Fig. 3.5).

Initially, the subpopulation in patch 1 is buffered from extinction due to dispersal of individuals

from patch 2, which has a better initial environmental quality than the second patch.

Figures 3.4 and 3.5 suggest the following hypothesis: due to a rescue effect, temporal indicators

of CSD should be weaker in a spatially heterogeneous system with a strong source patch than

a spatially heterogeneous system with a weak source patch. The latter system is closer to the

extinction threshold, whereas the metapopulation with a strong source patch is buffered from

extinction.

3.6.1.1. Theoretical predictions. In order to examine the behavior of leading indicators of ex-

tinction in a spatially heterogeneous system, we numerically integrated equations (3.19) and (3.20)

for each steady-state value (x∗1, x
∗
2) of system (3.1) (which we used to represent the mean of the

stochastic fast-slow system) for β2 values ranging between 1 and 10−2, while β1 remained constant

(Table 3.1), and we used the integrals to calculate summary statistics. Figs. 3.6 and 3.7 show the

behaviors of the summary statistics as β2 decreases towards zero from the right. In a similar manner

as the spatially homogeneous system, the lag-1 autocorrelation function, variance and coefficient of

variation all increase, in both patches, as environmental conditions in patch 2 decline. Moreover,
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Figure 3.4. Simulations of both populations, in a heterogeneous coupled
patch system with multiplicative noise and a static patch with a good
environment (i.e., a “strong source” patch). The red line shows the mean of
the 500 xi realizations of the heterogeneous model, a single realization is shown in
black and 50 simulations of each subpopulation xi are shown in gray. The dashed
vertical line indicates the time at which the saddle-node bifurcation occurs. The first
column of panels displays simulations of populations coupled through low dispersal
levels, and the second column corresponds to simulations of populations coupled
through high dispersal. Numerical values for the parameters used in the simulations
are provided in Table 3.1.

trends in leading indicators are dampened with increasing dispersal, just as predicted in the case

of the spatially homogeneous system.
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Figure 3.5. Simulations of the x1 and x2 populations, in a heterogeneous
coupled patch system with multiplicative noise and a bad environment
(i.e., a “weak source” patch). The red line shows the mean of the 500 xi
realizations of the heterogeneous model, a single realization is shown in black and
50 simulations of each subpopulation xi are shown in gray. A transient is observed
before the system relaxes to the moving fast-slow steady-state. The dashed vertical
line indicates the time at which the saddle-node bifurcation occurs. The first column
of panels shows simulations of populations coupled through low dispersal levels, and
the second column corresponds to simulations of populations coupled through high
dispersal. Numerical values for the parameters used in the simulations are provided
in Table 3.1.

Since conditions in the second patch are deteriorating, it is reasonable to expect that subpop-

ulation x2 would exhibit a stronger sign of CSD than the x1 subpopulation subject to a constant

growth rate in the first patch. We find that this is indeed the case. Under low dispersal and good
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Figure 3.6. Theoretical predictions for the summary statistics of a het-
erogeneous coupled system with multiplicative noise and a static patch
with a good environment (i.e., a “strong source” patch). The first col-
umn shows summary statistic predictions for the x1 and x2 subpopulations coupled
through low dispersal levels, and the second column displays predictions for subpop-
ulations coupled through high dispersal. Parameter values used for the numerical
predictions are given in Table 3.1. Predictions were calculated for fluctuations about
the steady-state x∗1, x

∗
2 of system (3.1) (representing the mean of the stochastic fast-

slow system) for β2 values ranging from 0.99 down to 0.01, with a spacing of 0.01,
while β1 remained constant at 0.99.

conditions in patch 1, x2 exhibits a stronger signal of CSD than x1, as indicated by the magnitude

and slope of the summary statistics; this is true under high dispersal as well (Fig. 3.7).
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Figure 3.7. Theoretical predictions for the summary statistics of a het-
erogeneous coupled system with multiplicative noise and a static patch
with a bad environment (i.e. a “weak source” patch). The first column shows
summary statistic predictions for the x1 and x2 subpopulations coupled through
low dispersal levels, and the second column displays predictions for subpopulations
coupled through high dispersal. Parameter values used for the numerical predic-
tions are given in Table 3.1. Predictions were calculated for fluctuations about the
steady-state x∗1, x

∗
2 of system (3.1) (representing the mean of the stochastic fast-slow

system) for β2 values ranging from 0.99 down to 0.01, with a spacing of 0.01, while
β1 remained constant at 0.2.

Under high dispersal and poor environmental quality for the second patch, patterns in leading

indicators are similar in both patches (Fig. 3.7). When dispersal is low, leading indicators obtained

from population fluctuations in patch 2 change more rapidly than those obtained from patch 1 as
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β2 approaches zero from the right. Further away from the extinction point at β2 = 0, patch 1 has

larger variance, lag-1 autocorrelation and coefficient of variation due to poor conditions that make

the x1 subpopulation more susceptible to extinction. All of the summary statistics increase, in

both patches, as β2 approaches zero.

Comparing the magnitudes of the signals in Figures 3.6 and 3.7, we observe stronger signals

of CSD in the summary statistics obtained from the spatially heterogeneous model with a weak

source patch than the model with a good quality patch. These predictions suggest that the spatially

heterogeneous system with a weak source patch, which is near extinction, should exhibit stronger

signals of CSD than the model with a good source patch that favors system longevity.

3.6.1.2. Simulation study predictions. Predictions for the summary statistics calculated from

the spatially heterogeneous fast-slow model over a moving window (Figures 3.8 and 3.9) confirm

the predicted trends obtained by numerical integration (Figures 3.6 and 3.7). From the median τ

values, there is considerably more variability in leading indicator trends than those obtained from

simulations of the spatially homogeneous system (compare the median Kendall’s τ values in Fig.

3.4 with those from Figures 3.8 and 3.9). Furthermore, the prediction that stronger signals of CSD

are observed in the spatially heterogeneous system with a weak source patch than the corresponding

system with a strong source patch is robust in the simulated models (compare τ values in Fig. 3.8

with those in Fig. 3.9). Just as in the spatially homogeneous system, the coefficient of variation

appears to be the most reliable indicator of extinction.

3.6.2. Partial observability in tipping cascades. As discussed in Section 3.2, a given

multi-patch system is likely to be observable in only one patch. We can thus explore the likelihood

of a tipping cascade as follows. By defining the extinction threshold with L := L1 = L2 = 0,

the Allee threshold as Ai := 1 −
√
βi (Johnson and Hastings, 2018), and the high threshold as

Hi := 1 +
√
βi for i = 1, 2, we notice that Li < Ai < Hi in the bistable regime of the strong Allee

effect. Hence, we can consider the question of whether there exists a signal for CSD in the system,

given that only one patch is observable and deteriorates in quality. This amounts to checking

whether or not a transition from H1 to L1 in the first patch is captured by the full system, with

the second patch maintained at either H2 or L2. In other words, the cases here correspond to

(H1, H2) → (L1, H2) and (H1, L2) → (L1, L2) respectively. Together, these two cases capture the
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Figure 3.8. Simulation study predictions for the summary statistics of
the x1 and x2 population in a heterogeneous coupled system with multi-
plicative environmental noise and a static patch with a good environment
(i.e., a “strong source” patch). Thick blue lines indicate the median value of
each statistic for the x1 population over 500 realizations, and thick black lines indi-
cate the median value of each statistic for the x2 population over 500 simulations.
Dotted lines correspond to the 95% prediction interval for each statistic. The me-
dian value of Kendall’s correlation coefficient τ is reported for each indicator statistic
over 500 simulations. The first column shows predictions for populations coupled
through low dispersal levels, and the second column shows predictions for popu-
lations coupled through high dispersal. Parameter values used for the numerical
predictions are given in Table 3.1.

scenario of a tipping cascade, whereby the system can begin at a high-high state and end in a

catastrophic collapse at the low-low state (Mallela and Hastings, 2021a).

In the spatially homogeneous scenario (i.e., β1 = β2 = β), we note that the thresholds discussed

above are the same for both patches. The expressions for the respective leading indicators are

also identical across patches. Thus we can refer to expressions (3.30) to (3.32) in Section 3.4,

to understand that all of the leading indicators describing CSD in the second patch have strictly
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Figure 3.9. Simulation study predictions for the summary statistics of
the x1 and x2 population in a heterogeneous coupled system with multi-
plicative environmental noise and a static patch with a bad environment
(i.e., a “weak source” patch). Thick blue lines indicate the median value of each
statistic for the x1 population over 500 realization, and thick black lines indicate the
median value of each statistic for the x2 population over 500 simulations. Dotted
lines indicate the 95% prediction interval for each statistic. The median value of
Kendall’s correlation coefficient τ is reported for each indicator statistic over 500
simulations. The first column shows predictions for populations coupled through low
dispersal levels, and the second column displays predictions for populations coupled
through high dispersal. Parameter values used for the numerical predictions are
given in Table 3.1. Initial transient behavior of x1 and x2 (Fig. 3.5) is captured by
the sharp change in statistics over the moving window.

increasing trends as extinction is approached in the first patch. Hence, observing the second patch

adequately informs our assessment of the first patch.

For purposes of display, we analyze the case of multiplicative noise in the spatially heterogeneous

case with β1 6= β2 (Fig. 3.10). Increases in lag-1 autocorrelation, variance and coefficient of variation

for the second patch are seen in a study of the coupled two-patch model with multiplicative noise.

Lower values of β2, reflecting a poorer quality of the second patch, result in stronger signals of CSD

for the first patch. This is true across all dispersal levels. For a fixed combination of β1 and β2, the
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Figure 3.10. Theoretical predictions for summary statistics of x2 in a tip-
ping cascade with multiplicative noise. The first column of panels shows sum-
mary statistic predictions for populations coupled through low dispersal, the second
column displays predictions for x1 populations coupled through moderate dispersal,
and the third column of panels corresponds to populations coupled through high dis-
persal. Parameter values used for the numerical predictions are given in Table 3.1.
Predictions were calculated for fluctuations about the steady-state (1+

√
β1, 1+

√
β2)

of the spatially heterogeneous system for β1 values ranging from 0.99 down to 0.01,
with a spacing of 0.01.

strength (magnitude) of the signal decreases with higher dispersal, for all three leading indicators.

We note that our analyses here capture both directions of a tipping cascade.
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3.7. Discussion

Predicting tipping cascades is a complex task. Temporal, patch-specific indicators are poten-

tially useful for anticipating catastrophic events in networks with poor connectivity and environ-

mental noise. We formulated a stochastic fast-slow two-patch model that is valid for different

environmental conditions. By simulating the stochastic fast-slow model, we showed that predicted

trends in the leading indicators are robust, implying that CSD manifests prior to tipping.

Noise, network connectivity and return rates to the steady-state collectively characterize the

behavior of temporal summary statistics for the two-patch model studied here. Assuming spa-

tial homogeneity, we showed that increasing the level of coupling between patches reduces signal

strengths by decreasing their magnitude relative to those obtained for isolated populations. The

lag-1 autocorrelation function exhibits non-monotonic behavior with increasing coupling strength.

The simulation study shows that the coefficient of variation is the most robust temporal indicator

across different coupling regimes, as well as for various environmental conditions. These predictions

for the behavior of the leading indicators are robust even if the constraint of spatial homogeneity

is relaxed. The analytic expressions derived in the homogeneous case are useful for prediction in

spatially heterogeneous systems, where having patch-specific indicators that account for coupling

between subsystems becomes more important.

Increasing the degree of coupling induces synchronous dynamics in both patches in the hetero-

geneous model. When a good quality patch is available, rescue effects due to dispersal buffer the

system from a catastrophic collapse by introducing synchrony in the network dynamics. Alterna-

tively, in the heterogeneous system with a weak source patch, the dynamics of the poor quality

patch follow those of the declining subpopulation over a short transient, and both subpopulations

simultaneously decrease toward extinction. These results suggest that both patches in the system

should be monitored. However, we have a stronger result in the scenario of observing a tipping cas-

cade. In particular, a signal in one patch is sufficient to inform our understanding of its counterpart

(Fig. 3.10). This finding can have important implications in several settings. For example, nearly

all species are buffeted by stochasticity and many of them could have Allee dynamics (Liebhold

and Bascompte, 2003).
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A key shortcoming of our findings relates to the limits of applicability of CSD, which forms

the basis of research on early warning signals (Clements and Ozgul, 2018). As is typical of the

transition from theory to practice, we must be careful when applying our methods that are rooted

in bifurcation theory, to real ecological data (Burthe et al., 2016). Moreover, while CSD and its

associated components of instability are present in some biological models, it is absent from several

others, including systems displaying catastrophic failures (Boerlijst et al., 2013). We must also be

cognizant of the fact that predictability does not necessarily allow for prevention, as the fate of the

system may be unavoidable (Boettiger et al., 2013).

In addition, we used a simple model for a saddle-node bifurcation to describe the intrinsic

patch dynamics, but the framework can be generalized for bistable ecosystems present in nature.

For instance, accounting for spatial structure and movement pathways through networks (Suweis

and D’Odorico, 2014) is a natural way to extend the two-patch model presented here. Because

we are interested in the scenario of noise-induced tipping via a saddle-node bifurcation, with a

smooth and gradual approach to the tipping point, extinction is highly likely. A factor that may

influence the time to extinction is the dispersal rate between patches, which could lead to a rescue

effect. In other words,we emphasize the importance of transient dynamics in our analyses over

a finite time horizon, and do not explore persistence in the long-term dynamics of the system.

We do note, however, that prior work explored the role of patch dispersion in the persistence of

stochastic populations, through a linear model without Allee effects (Evans et al., 2013) and a

density-dependent logistic model without Allee effects (Hening et al., 2018). In summary, we have

studied a general model for early warning systems of tipping cascades. Although the analytic

expressions for leading indicators need to be numerically evaluated for the spatially heterogeneous

model, they still play a key role in the identification of critical slowing down in coupled ecological

networks.
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CHAPTER 4

Optimal management of stochastic invasion in a metapopulation

with Allee effects

4.1. Abstract

Invasive species account for incalculable damages worldwide, in both ecological and bioeconomic

terms. The question of how a network of invasive populations can be optimally managed is one that

deserves further exploration. A study accounting for partial observability and imperfect detection,

in particular, could yield useful insights into species eradication efforts. Here, we generalized a

simple model system that we developed in previous work. This model consists of three interacting

populations with underlying strong Allee effects and stochastic dynamics, inhabiting distinct loca-

tions connected by dispersal, which can generate bistability. To explore the stochastic dynamics,

we formulated an individual-based modeling approach. Next, using the theory of continuous-time

Markov chains, we approximated the original high-dimensional model by a Markov chain with eight

states, with each state corresponding to a combination of population thresholds. We then used the

reduced model as the core for a powerful decision-making tool, referred to as a Partially Observable

Markov Decision Process (POMDP). Analysis of this POMDP indicates when the system results

in optimal management outcomes.

4.2. Introduction

Biological invasions of pests pose a serious and growing threat to ecosystems around the world

(Liebhold et al., 2016; Tobin, 2018; Venette and Hutchison, 2021). They disrupt the structure of

ecosystems, (Bauer, 2012; Dukes and Mooney, 2004), outcompete native species (Huxel, 1999), or

pose dangers to human health by transmitting disease, leading to infections or deaths (Hulme,

2014; Larson et al., 2005). Damages from invasive species worldwide have recently been estimated

at more than 1.4 trillion USD over a time period of four decades, comprising a large fraction of the
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global economy (Diagne et al., 2021). For example, the invasive gypsy moth (Lymantria dispar)

alone caused nearly 500 million USD in economic losses from the years of 1980 to 1996 (Wallner,

1998).

The synergy between mathematical models and experimental data can accelerate the develop-

ment of cost-efficient approaches in exploring and recommending management protocols for invasive

species. The interplay between several important elements – namely, local invasion dynamics, con-

nectivity, control, and observability – should inform these approaches. In particular, it is crucial

to make appropriate management decisions (e.g., by using early-warning signals) when knowledge

about the system is limited, as is typically the case early in the outbreak of an invasive species or

emerging infectious disease (Mallela and Hastings, 2021b).

The inclusion of stochasticity in modeling frameworks is key in exploring the control of an

invasive population, which often initiates through a successful invasion event, after which it estab-

lishes and spreads (Lodge et al., 2016). Because the existence of a strong Allee effect implies the

existence of a survival threshold (Johnson and Hastings, 2018; Méndez et al., 2019), the presence

of a sufficiently strong Allee effect typically enables the extinction of an invasive species (Liebhold

et al., 2016). In particular, eradication can be achieved by bringing a population below its Allee

threshold, rather than by seeking to eliminate every member. Given that populations in nature

rarely exist in isolation, a metapopulation structure would be a reasonable choice for a modeling

study of invasive species management.

Another important feature of a modeling study is the issue of optimality in a problem of dynamic

optimization. When faced with limited resources, which is nearly always the case, principles of

bioeconomics can be helpful in guiding management (Clark, 2010). For instance, the accrual of

economic costs related to control, damages, and observation are all relevant factors that can be

addressed in an application of bioeconomics (Epanchin-Niell and Hastings, 2010).

In order to explore how a connected network of invasive populations can be effectively managed

or eradicated by Allee effects, we conducted a simple analysis involving a metapopulation with a

connectivity structure given by a passive, symmetric diffusion process. We extended the model

described in our previous work (Mallela and Hastings, 2021a) by including an additional location

(or patch) in the model formulation. Then, by using a powerful decision-making framework known

56



as a Partially Observable Markov Decision Process (POMDP) (Chadès et al., 2017, 2021), we

explored the realistic scenario of partial observability with respect to location, for each of the

possible network topologies.

The remainder of the paper is organized as follows. In Section 4.3, following a methodology

we previously developed (Mallela and Hastings, 2021a), we provide the background needed to

formulate a stochastic, individual-based model that accounts for Allee effects. The model dynamics

are described by a Markovian birth-death process. This representation works nicely with the theory

of stochastic processes, including Markov chains and mean first passage times. In Section 4.4, we

employ dimensionality reduction and useful approximations to specify a continuous-time Markov

chain with a finite (but small) number of states. This reduced model then serves as a foundation

for the POMDP used in this study (described in Section 4.4). In Section 4.5, we describe the results

obtained from numeric simulations. Finally, we conclude with discussion in Section 4.6.

4.3. Model Formulation

In this work, we formulate our network model by following the approach of our previous work

(Mallela and Hastings, 2021a). For the sake of completeness, we include the full derivation here.

We consider the case of a network with three identical patches, or locations. There are two distinct

topologies for such a network; namely, the patches are connected either in a straight line or in a

triangular configuration (Fig. 4.1). Our work uses an individual-based model (IBM) that displays

both the weak and strong Allee effects and also accounts for dispersal, consisting of linear and

binary birth processes, a ternary competition process, a linear death process, and an exchange

process. In what follows, we describe the reaction schemes associated with the line and triangle

configurations, respectively.

4.3.1. Line configuration.

X1
µ1
⇀ (1 + b)X1(4.1a)

2X1
λ1⇀ (2 + a)X1(4.1b)

X1
γ1
⇀ ∅(4.1c)

3X1
τ1⇀ (3− c)X1(4.1d)
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X Y Z

X Y

Z
Figure 4.1. Line (top) and triangle (bottom) network topologies for a metapopu-
lation consisting of three locations. The symbols X, Y , and Z denote the identities
of the locations. Arrows indicate dispersal between locations via passive, symmetric
diffusion.

X2
µ2
⇀ (1 + b)X2(4.1e)

2X2
λ2⇀ (2 + a)X2(4.1f)

X2
γ2
⇀ ∅(4.1g)

3X2
τ2⇀ (3− c)X2(4.1h)

X3
µ3
⇀ (1 + b)X3(4.1i)

2X3
λ3⇀ (2 + a)X3(4.1j)
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X3
γ3
⇀ ∅(4.1k)

3X3
τ3⇀ (3− c)X3(4.1l)

X1
d
⇀ X2(4.1m)

X2
d
⇀ X1(4.1n)

X2
d
⇀ X3(4.1o)

X3
d
⇀ X2(4.1p)

Reaction (4.1a) defines a linear birth process, which occurs at a constant rate of µ1, and de-

scribes the baseline reproductive success of the first population in the absence of cooperative effects.

It accounts for the fact that the typical individual produces b offspring that reach reproductive age.

Reaction (4.1b) is a binary birth process that occurs at a constant rate of λ1, and describes coop-

erative interactions, such as breeding, anti-predator behavior, or foraging, that result in producing

a additional offspring which reach reproductive age. Reaction (4.1c) is a linear death process, oc-

curring at a constant rate of γ1, which accounts for mortality due to natural causes. The reaction

(4.1d) is a ternary competition process, accounting for the results of overcrowding and resource

depletion, where c individuals die at rate τ1. Note that 1, 2, or 3 are the only meaningful values for

c. Reactions (4.1e)-(4.1l) are defined analogously for the second and third populations. Finally, re-

actions (4.1m)-(4.1p) define the exchange processes of symmetric dispersal between the populations

in the distinct patches. Dispersal occurs at a constant rate of d.

The reaction scheme (4.1) defines a Markovian process, and the temporal evolution of P (n1, n2, n3, t),

the probability of having ni individuals from the ith population at time t for i = 1, 2, 3, is described

by the following master equation (Gardiner, 2004):

(4.2)
dP (n, t)

dt
=
∑
r

[W (n− r, r)P (n− r, t)−W (n, r)P (n, t)],
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where P (n < 0, t) = P (n1 < 0, n2 < 0, n3 < 0, t) = 0. Here W (n, r) denotes the set of transition

rates between the states with n and n + r individuals, where

r = {r1, r2, . . . , r16}

= {(b, 0, 0), (a, 0, 0), (−1, 0, 0), (−c, 0, 0), (0, b, 0), (0, a, 0), (0,−1, 0), (0,−c, 0),

(0, 0, b), (0, 0, a), (0, 0,−1), (0, 0,−c), (−1, 0, 0), (0,−1, 0), (0,−1, 0), (0, 0,−1)}

is the vector of transition increments corresponding to the system given by (4.1). The transition

rates corresponding to each reaction, W (n, r), are obtained from the reaction kinetics (Gardiner,

2004; Van Kampen, 1992):

W (n, r1) = µ1n1(4.3a)

W (n, r2) =
λ1
2
n1(n1 − 1)(4.3b)

W (n, r3) = γ1n1(4.3c)

W (n, r4) =
τ1
6
n1(n1 − 1)(n1 − 2)(4.3d)

W (n, r5) = µ2n2(4.3e)

W (n, r6) =
λ2
2
n2(n2 − 1)(4.3f)

W (n, r7) = γ2n2(4.3g)

W (n, r8) =
τ2
6
n2(n2 − 1)(n2 − 2)(4.3h)

W (n, r9) = µ3n3(4.3i)

W (n, r10) =
λ3
2
n3(n3 − 1)(4.3j)

W (n, r11) = γ3n3(4.3k)

W (n, r12) =
τ3
6
n3(n3 − 1)(n3 − 2)(4.3l)

W (n, r13) = dn2(4.3m)

W (n, r14) = dn1(4.3n)
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W (n, r15) = dn3(4.3o)

W (n, r16) = dn2(4.3p)

Deterministic ODEs for the average population sizes can be derived using (4.2). Multiplying

(4.2) by n1n2n3, using transition rates (4.3), and summing over all values of n1, n2, and n3, we

obtain

dρ1
dt

= (bµ1 − γ1 − d)ρ1 +
aλ1
2
ρ21 −

cτ1
6
ρ31 + dρ2(4.4a)

dρ2
dt

= (bµ2 − γ2 − 2d)ρ2 +
aλ2
2
ρ22 −

cτ2
6
ρ32 + d(ρ1 + ρ3)(4.4b)

dρ3
dt

= (bµ3 − γ3 − d)ρ3 +
aλ3
2
ρ23 −

cτ3
6
ρ33 + dρ2(4.4c)

where ρi = 〈ni〉 is the mean number of individuals in population i for i = 1, 2, 3. We note that (4.4)

holds strictly when the demographic fluctuations vanish. This occurs in the macroscopic limit as

the population size and spatial extent of each population increase to infinity such that their ratio,

the population density, stays constant or approaches a finite limit.

For the sake of simplicity, in what follows, we focus on the simplest version of this IBM. Namely,

we treat the Markovian process as a single-step process with a = b = c = 1. The set of reactions

(4.1) then becomes

X1
µ1
⇀ 2X1(4.5a)

2X1
λ1⇀ 3X1(4.5b)

X1
γ1
⇀ ∅(4.5c)

3X1
τ1⇀ 2X1(4.5d)

X2
µ2
⇀ 2X2(4.5e)

2X2
λ2⇀ 3X2(4.5f)

X2
γ2
⇀ ∅(4.5g)

3X2
τ2⇀ 2X2(4.5h)
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X3
µ3
⇀ 2X3(4.5i)

2X3
λ3⇀ 3X3(4.5j)

X3
γ3
⇀ ∅(4.5k)

3X3
τ3⇀ 2X3(4.5l)

X1
d
⇀ X2(4.5m)

X2
d
⇀ X1(4.5n)

X2
d
⇀ X3(4.5o)

X3
d
⇀ X2(4.5p)

The mean-field rate equations corresponding to (4.5) are

dρ1
dt

= (µ1 − γ1 − d)ρ1 +
λ1
2
ρ21 −

τ1
6
ρ31 + dρ2(4.6a)

dρ2
dt

= (µ2 − γ2 − 2d)ρ2 +
λ2
2
ρ22 −

τ2
6
ρ32 + d(ρ1 + ρ3)(4.6b)

dρ3
dt

= (µ3 − γ3 − d)ρ3 +
λ3
2
ρ23 −

τ3
6
ρ33 + dρ2(4.6c)

Next, we can define dimensionless quantities in terms of the reaction rates as follows:

(4.7) Ñ1 =
3λ1
2τ1

, δ21 = 1 +
8τ1(µ1 − γ1 − d)

3λ21
, R

(1)
0 =

µ1
γ1 + d

(4.8) Ñ2 =
3λ2
2τ2

, δ22 = 1 +
8τ2(µ2 − γ2 − 2d)

3λ22
, R

(2)
0 =

µ2
γ2 + 2d

(4.9) Ñ3 =
3λ3
2τ3

, δ23 = 1 +
8τ3(µ3 − γ3 − d)

3λ23
, R

(3)
0 =

µ3
γ3 + d

Note that for i = 1 to 3, Ñi defines the scale of the typical size of population i prior to

extinction. The identities (4.7)-(4.9) establish a relation between the microscopic (λi, µi, γi, τi) and

macroscopic (Ñi, δi, R
(i)
0 ) parameters, which are obtainable through field observations.

Observe that the individual-based model displays the strong Allee effect, if R
(i)
0 < 1. Further-

more, for R
(i)
0 < 1 we have δi < 1. For the strong Allee effect, we must also demand that δi > 0.
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As in our previous work (Mallela and Hastings, 2021a), we treat the stochastic rate parameters

in (4.5) as identical for all populations. This assumption appears to be reasonable in many cases

because of the presence of dispersal between populations in close proximity. Given that the three

patches are identical, the matching scheme can be written as follows (for i = 1, 2, 3):

µ := µi = β(4.10a)

λ := λi ≡ 4(4.10b)

γ := γi ≡ 1(4.10c)

τ := τi ≡ 6(4.10d)

Ñ := Ñi(4.10e)

Thus for i = 1 and 3,

(4.11) Ñ = 1, δ2i = β − d, R
(i)
0 =

β

d+ 1

and for i = 2,

(4.12) Ñ = 1, δ2i = β − 2d, R
(i)
0 =

β

2d+ 1

In what follows, we are interested in the case of bistability in each patch, which is manifest in

the case of the strong Allee effect. This means that 0 < δi < 1.

4.3.2. Triangle configuration. The model corresponding to the triangle configuration is

formulated in a similar manner as in Section 4.3.1. However, there is one key modification to the

reaction scheme, namely, the addition of the following reactions to (4.5):

X1
d
⇀ X3(4.13a)

X3
d
⇀ X1(4.13b)

The mean-field rate equations are then:

dρ1
dt

= (µ1 − γ1 − 2d)ρ1 +
λ1
2
ρ21 −

τ1
6
ρ31 + d(ρ2 + ρ3)(4.14a)

63



dρ2
dt

= (µ2 − γ2 − 2d)ρ2 +
λ2
2
ρ22 −

τ2
6
ρ32 + d(ρ1 + ρ3)(4.14b)

dρ3
dt

= (µ3 − γ3 − 2d)ρ3 +
λ3
2
ρ23 −

τ3
6
ρ33 + d(ρ1 + ρ2)(4.14c)

We then obtain (for i = 1, 2, 3):

(4.15) Ñ = 1, δ2i = β − 2d, R
(i)
0 =

β

2d+ 1

As in the case of the line configuration, 0 < δi < 1.

4.4. Methods

Our stochastic model operates over a three-dimensional state space. As in our previous work

(Mallela and Hastings, 2021a), we adopted a master equation treatment of our model. Instead of

specifying a model with carrying capacities, we used an individual-based modeling approach using a

reaction network. This allows for a fine-grained representation of the underlying discrete, stochastic

process. Using this approach, we then wrote down the three-dimensional master equation for the

process. Given that this stochastic process is a continuous-time Markov chain (CTMC), it can

be explicitly described by a generator Q-matrix with a countable state space. A nice feature of

most ecological models is that they are built around processes that will approach a compact region

exponentially quickly. Any reasonable ecological model should not have unbounded population

growth. Density dependence in ecological models typically ensures this. Thus, our model effectively

operates over a finite state space as the probability of arbitrarily large populations is negligibly

small. Using this insight, we were able to obtain a finite CTMC in three dimensions.

Since the multidimensional master equation was relatively unwieldy to work with, we reduced

the three-dimensional state space to one dimension (Allen, 2010; Allen and Allen, 2003). Denoting

N := N1 = N2 = N3 as the maximum number of individuals in a given population, the specific

mapping function used was f(x, y, z) = (N + 1)2x+ (N + 1)y + z + 1, for x, y, z ∈ [0, N ]. We also

used the sparsity of the banded Q-matrix to reduce computational cost.

For the ensuing analyses, we specified population thresholds by treating them as identical across

patches. Denoting L := L1 = L2 = L3 and H := H1 = H2 = H3 as the low and high thresholds, we
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specified A := A1 = A2 = A3 as the Allee threshold, noting that 0 < L < A < H ≤ N . Here N can

be understood as a system size parameter. The linear ordering of the thresholds guarantees that L

is always less than H. Note that the smallest L threshold, L = 1, behaves as a state corresponding

to quasi-extinction. Moreover, with 2 ≤ A ≤ N − 1, we have A+ 1 ≤ H ≤ N and 1 ≤ L ≤ A− 1.

It can be shown that this results in
(
N
3

)
combinations of the thresholds.

In order to probe the system under consideration, we numerically computed the mean first-

passage times (MFPTs) for models (4.5) and (4.13) with the state space parameterized by N for all

combinations of the parameters βi, d, L,A, and H. First, we formed the Q-matrix for each point in

parameter space. We then formed a vector of initial state probabilities p0 governing the subsequent

evolution of the CTMC. Then, the rows and columns of Q corresponding to the trap states (e.g.,

extinction) were removed. Similarly, the corresponding entry in p0 was removed. Next, using the

truncated Q-matrix, Q̃, we computed the matrix of mean residence times, or −Q̃−1. Finally, we

computed the sum of the entries in −Q̃−1p0 to yield the MFPT from the desired initial state to

the desired end state.

We could then construct a compartmental system with a reduced state space consisting of eight

states: HHH,HHL,HLL,LLL,LLH,LHH,LHL, and HLH. Each of these states corresponds

to a combination of population thresholds. For instance, HLL means that the first population is

at a high abundance, while the second and third populations are at low levels. The MFPTs from

the original model were used as input rates in the matrix of transition rates for the reduced model.

Thus we used an emulator as a proxy to analyze the original system.

We can use the emulator (described above) to construct the schematic diagram shown in Fig.

4.2. In the diagram, each ri for i = 1, 2, . . . , 24 represents the transition rate between the relevant

compartments. Each rate can be obtained as the inverse of the corresponding MFPT. Given that

the process is represented as a CTMC, we can write down the transition probability matrix T for

the emulator. The transition probability matrix of the embedded discrete-time Markov chain gives

the one-step transition probabilities of the system.
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Figure 4.2. Schematic diagram of state-dependent transitions for a given metapop-
ulation. In the diagram, each ri for i = 1, 2, . . . , 24 denotes the transition rate be-
tween the relevant compartments, which are indicated in solid circles.For instance,
HLH means that the first and third locations are in a state of high abundance of
the invasive species, and the second location is in a state of low abundance. The
diagram has 2n states, where n indicates the number of locations, and 24 transitions
between states.

The matrix T is given as:

0
r1

r1+r13+r15
0 0 0

r15
r1+r13+r15

0
r13

r1+r13+r15
r2

r2+r3+r17
0

r3
r2+r3+r17

0 0 0
r17

r2+r3+r17
0

0
r4

r4+r5+r19
0

r5
r4+r5+r19

0 0 0
r19

r4+r5+r19

0 0
r6

r6+r7+r21
0

r7
r6+r7+r21

0
r21

r6+r7+r21
0

0 0 0
r8

r8+r9+r23
0

r9
r8+r9+r23

0
r23

r8+r9+r23
r16

r10+r11+r16
0 0 0

r10
r10+r11+r16

0
r11

r10+r11+r16
0

0
r18

r12+r18+r22
0

r22
r12+r18+r22

0
r12

r12+r18+r22
0 0

r14
r14+r20+r24

0
r20

r14+r20+r24
0

r24
r14+r20+r24

0 0 0


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where the ordering of the states is

(HHH,HHL,HLL,LLL,LLH,LHH,LHL,HLH).

Note that T is row-stochastic.

4.4.1. Partial observability. The problem we focus on is one of species eradication: at each

time step, managers allocate their budget to minimize the population size of an invasive species.

Managers need informed guidance in order to allocate resources and decide when to manage or

stop managing. We present a formulation of this problem as a POMDP. A Markov decision process

(MDP) is a stochastic control process in discrete-time that satisfies the Markov property. (Bellman,

1957). Partially observable MDPs (POMDPs) generalize MDPs, where a manager is only partly

aware of the current state of the system (Åström, 1965). POMDPs are described by a tuple

〈S,A,Z, P,O, r,H, b0, γ〉, where:

• S = {HHH,HHL,HLL,LLL,LLH,LHH,LHL,HLH} is the set of states. Each state

represents the status of the metapopulation at a given time step. Managers do not perfectly

detect the state of the system. The current state is denoted as st.

• A = {manage the first location, manage the second location, manage the third location,

do nothing} is the set of actions. An action corresponds to the decision that managers

may implement at any given time step. We assume that a fixed budget allows for the

management of only one location at each time step. The realized action is denoted as at.

• Z = {Absent (L), Present (H)} is the set of observations for an individual location. An

observation (zt) indicates the information received by managers at each time step.

• P (st+1|st, at) are the transition probabilities between states, conditional on an action,

that represent the dynamics of the system; for instance, the probability of eradication of

the metapopulation of invasive species at a given time step, assuming that managers do

nothing, is given by the transition probability matrix T for the emulator described above.

• O(zt+1|st+1, at) denote the detection probabilities given an action at ∈ A undertaken at

time step t, and the system state st+1 ∈ S at time t+ 1.
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• r(st, at) is a reward function that accounts for the economic benefits and costs of being

in a state st ∈ S and performing an action at ∈ A. In our case, we assume that rewards

are obtained only for the actual state of the system (i.e., not for the observed state). We

specify no reward when nothing is done, no reward when an individual location is in a

high (H) state, a reward of 25 units when an individual location is in a low (L) state, and

a cost of 25k units when a location is managed. Here, k = 2.

• H is the time horizon (i.e., finite or infinite) over which actions are implemented. Here,

we use an infinite time horizon. From an ecological standpoint, we are assuming that

the decision-making process of a program should be independent of its time horizon, and

should depend only on its state. In this case, an optimal policy is independent of time.

• b0 denotes the initial belief, a probability distribution over states. A belief state represents

our belief of the system state at a given time step. In our case, b0 = (1, 0, 0, 0, 0, 0, 0, 0),

corresponding to an initial belief that the metapopulation is invaded at all locations.

• γ ∈ [0, 1] is a discount factor, relating future rewards and costs to their total present value.

A discount factor less than 1 indicates that immediate rewards are more valuable than later

ones (Koopmans, 1960). It also ensures the convergence of the optimization procedure and

helps solvers converge more rapidly towards a solution (Kaelbling et al., 1998; Kurniawati

et al., 2008; Spaan and Vlassis, 2005). We define the optimization criterion as the expected

sum of discounted rewards over an infinite time horizon, E(
∞∑
t=0

γtrt). In this study, we take

γ = 0.95.

Solving a POMDP corresponds to finding an optimal policy π : B → A that maps the current

belief state b ∈ B to an allocation of resources. Belief states are used as sufficient statistics as a proxy

for the true state of the system (Åström, 1965). The optimal policy maximizes an optimization

criterion (as described above). The criterion is also referred to as the value function Vπ(bt) for a

given belief state bt and a given policy π. In this study, we used the MATLAB toolbox MDPSolve

(Fackler, 2011) for solving POMDPs with the value iteration algorithm. POMDPs are solved by

discretizing the belief state space and interpolating over rectangular or simplex grids (Zhou and

Hansen, 2001). Then, the discretized problem is solved as an MDP. Our model outcome was chosen
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as the value function evaluated at a belief state corresponding to guaranteed eradication across the

locations, or Vπ(bt), with bt = (0, 0, 0, 1, 0, 0, 0, 0).

As in our previous work (Mallela and Hastings, 2021a), we specified an upper bound of 1 for the

dispersal parameter d. Then, we chose a size of N = 6 for each location. This was the largest value

for N such that the largest condition number among the space of all matrices Q̃, taken over the set

of simulated parameter values, was less than 107. All computations were performed in MATLAB

(MATLAB, 2021).

4.5. Results

One case of interest, corresponding to partial observability of a given location, relates to the

dependence of the model outcome on potentially imperfect detection. A second case of interest

relates to how the model outcome depends on how many locations are observed, as well as on

which locations are observed, in a given network topology. We first explore the case of imperfect

detection. In particular, we focused on the case of L = 1, A = 3, and H = N = 6 for subsequent

analyses. (In our initial explorations, we found qualitatively similar behavior for other sets of

parameter values obeying the constraints discussed in Section 4.4.)

In Fig. 4.3, we show results corresponding to the case of total observability (i.e., all three

patches are observable). Note that each curve in every figure panel is symmetric about o = 0.5.

This is because of the symmetry of the system (i.e., the model is symmetric with respect to the

high (H) and low (L) thresholds, meaning that H and L can be interchanged without ambiguity.

We see that for o > 0.5, the reward value is monotonically increasing with respect to detection

accuracy, meaning that rewards are maximized at perfect detection (i.e., when o = 1). Here, the

metapopulation obeying a triangular configuration always results in the same reward value as one

obeying a line structure.

Next, we explore the second case of interest, which relates to dependence of the model outcome

on both the number and type of location observed in a given network. In Fig. 4.4, we show

results corresponding to the case of perfect observability (i.e., detection of the invasive species is

error-free). For each network configuration,adding a location (i.e., two patches as compared to one

patch) yields a higher reward. This can be seen by comparing Fig. 4.4A with Fig. 4.4B, Fig. 4.4C

69



A

D

G

B C

E F

H I

0 0.2 0.4 0.6 0.8 1

500

550

600

650

700
R

e
w

a
rd

 v
a
lu

e

Very strong Allee effect; low dispersal

0 0.2 0.4 0.6 0.8 1

500

550

600

650

700

Very strong Allee effect; moderate dispersal

0 0.2 0.4 0.6 0.8 1

500

550

600

650

700

Very strong Allee effect; high dispersal

0 0.2 0.4 0.6 0.8 1

500

550

600

650

700

R
e
w

a
rd

 v
a
lu

e

Moderately strong Allee effect; low dispersal

0 0.2 0.4 0.6 0.8 1

500

550

600

650

700

Moderately strong Allee effect; moderate dispersal

0 0.2 0.4 0.6 0.8 1

500

550

600

650

700

Moderately strong Allee effect; high dispersal

 Line
 Triangle

0 0.2 0.4 0.6 0.8 1

Probability of accurate detection

500

550

600

650

700

R
e
w

a
rd

 v
a
lu

e

Weakly strong Allee effect; low dispersal

0 0.2 0.4 0.6 0.8 1

Probability of accurate detection

500

550

600

650

700

Weakly strong Allee effect; moderate dispersal

0 0.2 0.4 0.6 0.8 1

Probability of accurate detection

500

550

600

650

700

Weakly strong Allee effect; high dispersal

Figure 4.3. Dependence of POMDP reward on detection accuracy for the case of
total observability. The dispersal parameter d was chosen to take values of 0.01, 0.50,
and 0.99 corresponding to low, moderate, and high dispersal, respectively. Panels A,
B and C correspond to the case of a very strong Allee effect (i.e., β1 = β3 = d+ 0.01
and β2 = 2d + 0.01 in the line network; β1 = β2 = β3 = 2d + 0.01 in the triangle
network). Panels D, E and F correspond to the case of a moderately strong Allee
effect (i.e., β1 = β3 = d+ 0.5 and β2 = 2d+ 0.5 in the line network; β1 = β2 = β3 =
2d+ 0.5 in the triangle network). Finally, Panels G, H and I correspond to the case
of a weakly strong Allee effect (i.e., β1 = β3 = d + 0.99 and β2 = 2d + 0.99 in the
line network; β1 = β2 = β3 = 2d+ 0.99 in the triangle network). See Section 4.3 for
more information.

with Fig. 4.4D, and Fig. 4.4E with Fig. 4.4F. Moreover, the line network with only one patch

at the end being observable, produces a higher reward value than both the line network with the

middle patch being observable and the triangle network. Model outcomes are very similar in the

cases of the line network with a patch in the middle and the triangle network. When two patches

are observable, all 3 network configurations (i.e., 2 for the line network and 1 for the triangle) result

in comparable model outcomes.
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Figure 4.4. Dependence of POMDP reward on parameters for the case of perfect
observability, with less than three observable locations. Within each panel, the
matrix of values can be interpreted as follows. The horizontal axis indicates levels
of the dispersal parameter d, which was chosen to take values of 0.01, 0.50, and 0.99
corresponding to low, moderate, and high dispersal, respectively. The vertical axis
indicates levels of the parameter β, which were chosen as described in the caption
for Fig. 4.3. Briefly, the value of β increases from top to bottom, with lower values
corresponding to a higher strength of the Allee effect; equivalently, to a lower quality
of the environment in a given patch. Reward values from the POMDP are indicated
in each panel. Panels A, C, and E correspond to the case of one observable patch;
panels B, D, and F correspond to the case of two observable patches.

Across all cases, a higher degree of connectivity (given by the dispersal parameter d) yields a

higher reward value. This feature can be seen by traversing each matrix of values, in a given panel,

from left to right. Conversely, a lower strength of the Allee effect (equivalently, a higher quality of

the environment in a patch, given by the parameter β) gives a higher value for the reward. One

reaches this conclusion by traversing each matrix of values in a given panel from top to bottom.

Fig. 4.5 is an analogue of Fig. 4.4, but for the case of total observability, where all three

patches are observable. Thus, Fig. 4.5 corresponds to the scenario of a Markov Decision Process

(MDP). Interestingly, the results here are identical to those of the case where only two patches are
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Figure 4.5. Dependence of POMDP reward on parameters for the case of perfect
observability, when all three locations are observable. Within each panel, the ma-
trix of values can be interpreted as follows. The horizontal axis indicates levels of
the dispersal parameter d, which was chosen to take values of 0.01, 0.50, and 0.99
corresponding to low, moderate, and high dispersal, respectively. The vertical axis
indicates levels of the parameter β, which were chosen as described in the caption
for Fig. 4.3. Briefly, the value of β increases from top to bottom, with lower values
corresponding to a higher strength of the Allee effect; equivalently, to a lower quality
of the environment in a given patch. Reward values from the POMDP are indicated
in each panel. Panels A and B correspond to the line and triangle networks, respec-
tively.

observable (i.e., compare Fig. 4.5A with Figs. 4.4B and 4D, and Fig. 4.5B with Fig. 4.4F). In

other words, it is necessary to observe only two patches, as including a third patch (resulting in an

MDP) does not add value to the management program. However, including only one patch results

in suboptimal outcomes.

4.6. Summary and Discussion

Careful management of an ecological system is an inherently challenging task. An overriding

issue is the problem that determining the full state of the system can be costly (Epanchin-Niell

et al., 2012; Regan et al., 2011). This may necessitate using approaches that explicitly account
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for this difficulty. Although decision-making tools including Markov Decision Processes (MDPs)

have indeed been demonstrated to be useful in a variety of applications (Boucherie and Van Dijk,

2017; White, 1993), managers of ecological systems should consider the benefits of using a Partially

Observable Markov Decision Process (POMDP) instead of a MDP.

By using a POMDP, one can address the role of possibly costly observation. In a simple system

with three different locations, we can ask the question of which locations need to be observed. In

this work, we have shown that it is necessary to observe only two locations, as opposed to all three,

in order to obtain reasonable management outcomes. We have also demonstrated that a POMDP

can be specified in multiple ways, e.g., by modulating the accuracy of detection, controlling for the

number of observable locations, or doing both.

Connectivity is clearly a fundamental aspect of our analysis, which corresponds to the degree

of isolation in different locations. The spatial organization of a metapopulation also plays a key

role in determining system dynamics. Allowing for dispersal among all three patches (i.e., in the

triangle configuration) results in a global connectivity structure between the patches. However,

the line configuration results in more localized connectivity by placing the locations at the ends at

a disadvantage, because the ends do not communicate directly; they are linked only through the

central location. This could explain why the line network has differential outcomes, given that only

one patch is observable.

For an individual patch, the interplay between dispersal and the quality of the environment

determines the model dynamics. In other words, the outcome of the POMDP is highly dependent on

the model parameters d and β, or the strength of the Allee effect in the regime of bistability. When

the strong Allee effect is especially pronounced, eradication of the invasive species is considerably

easier, yielding a lower reward value from the POMDP. If the strong Allee effect is relatively mild,

however, eradication becomes more difficult, hence producing a larger POMDP reward. Dispersal

acts as a mediating agent for the Allee dynamics, whereby a higher degree of exchange between

patches results in a higher reward value for the POMDP.

The reader must be cautioned that our modeling study has some simplifying assumptions.

In order to manage the curse of dimensionality in parameter space, we assumed that all patches

are identical. This implies that the individual rate parameters in the reaction schemes are also
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identical across patches. Also, the transition rates used to parameterize the stochastic emulator were

obtained in terms of mean first-passage times, but an equally valid choice could be the use of most

likely first-passage times (i.e., the mode of the distribution of first-passage times). Nevertheless,

our theoretical model is valuable as a simulation study, and can be generalized to a larger number

of patches. This could introduce more interesting dynamics and would also imply a larger number

of possible network topologies. We leave these explorations to future work.
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Werner Horsthemke and René Lefever. Noise-induced transitions in physics, chemistry, and biology.

Springer, 1984.

Philip E Hulme. Invasive species challenge the global response to emerging diseases. Trends in

parasitology, 30(6):267–270, 2014.

Gary R Huxel. Rapid displacement of native species by invasive species: effects of hybridization.

Biological conservation, 89(2):143–152, 1999.

Carter L Johnson and Alan Hastings. Resilience in a two-population system: interactions between

Allee effects and connectivity. Theoretical Ecology, 11(3):281–289, 2018.

Kaitlyn E Johnson, Grant Howard, William Mo, Michael K Strasser, Ernesto ABF Lima, Sui

Huang, and Amy Brock. Cancer cell population growth kinetics at low densities deviate from

the exponential growth model and suggest an Allee effect. PLoS biology, 17(8):e3000399, 2019.

Leslie Pack Kaelbling, Michael L Littman, and Anthony R Cassandra. Planning and acting in

partially observable stochastic domains. Artificial intelligence, 101(1-2):99–134, 1998.

Yun Kang and Nicolas Lanchier. Expansion or extinction: deterministic and stochastic two-patch

models with Allee effects. Journal of Mathematical Biology, 62(6):925–973, 2011.
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