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Algebraic and Boolean Methods for

Computation and Certification of Ramsey-type Numbers

Abstract

Ramsey numbers and their variants are among the most interesting and well-studied numbers

in combinatorics. This dissertation explores them through the lenses of algebraic and Boolean

methods.

Many combinatorial problems have natural encodings as systems of polynomial equations where

the system is feasible if and only if the original problem has a solution. When a system f1 = · · · =

fm = 0 has no solution over an algebraically closed field, Hilbert’s Nullstellensatz guarantees

the existence of a certain polynomial identity
∑m

i=1 βifi = 1 called a certificate. The degree of

a certificate is the maximal degree of the βi and is related to the complexity of the underlying

problem. For example, if a suitable encoding of a combinatorial problem gives constant degree

bounds, then the problem is in P.

In Chapter 2, we give a general method to encode a broad class of Ramsey-type problems,

including the problems of computing Ramsey, Schur, and van der Waerden numbers, as systems

of polynomial equations and construct Nullstellensatz certificates when they have no solution.

The degrees of these certificates are given in terms of winning strategies of Builder-Painter games

which generalize the notion of the (restricted) online Ramsey numbers. Additionally, the degrees

are strictly smaller than those given by the best known general bounds for these ideals.

Later in Chapter 2 we study the classical Ramsey numbers through Alon’s Combinatorial

Nullstellensatz and construct “Ramsey polynomials” that give lower bounds for Ramsey numbers

when they are not identically zero. We call the coefficients of these polynomials ensemble numbers

and investigate their combinatorial meaning.

Our main contributions in Chapter 3 deal with computing Rado numbers. Given an equation E ,

the k-color Rado number Rk(E) is the smallest number n such that every k-coloring of {1, 2, . . . , n}

contains a monochromatic solution to E . We encode the problem of computing Rado numbers as

an instance of the Boolean satisfiability problem (SAT) by constructing Boolean formulas F k
n (E)
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that are satisfiable if and only if Rk(E) > n. Using SAT solvers we determine hundreds of new

Rado number values.

We observe that many equations E have the property that not all the integers in [n] are used

in proving upper bounds Rk(E) ≤ n. Moreover, for certain families of equations we can describe

the integers that are used using a single set of polynomials. We exploit this property and use a

modified encoding to compute new values for infinite families of three-color Rado numbers, namely

formulas for R3(x − y = bz), R3(a(x − y) = (a − 1)z) for a ≥ 3, and R3(a(x − y) = bz) for

b ≥ 1, a ≥ b+ 2, gcd(a, b) = 1.

The degree of regularity of an equation E is the largest number of colors k for which Rk(E)

is finite. We prove several new bounds on the degree of regularity for classes of linear equations,

and using this we compute the degree of regularity of ax + by = cz for small values of a, b, and c.

Moreover, we classify the degree of regularity for some equations of the form a(x + y) = bz; this

improves on Rado’s original result for the degree of regularity of these equations. Finally, we answer

a conjecture of Golowich and show that for all m, k ≥ 3 there are m-variable linear equations with

degree of regularity at most k.

In Chapter 4, we study the Ramsey properties of integer sequences. A D-diffsequence is a

sequence whose consecutive differences lie in a prescribed set D. We focus on the case where D

is the set F of Fibonacci numbers. In particular, using combinatorial words and word morphisms,

we construct a 4-coloring of Z+ that avoids 4-term F -diffsequences and a 2-coloring of Z+ that

avoids 5-term arithmetic progressions with common difference in F . These colorings improve on

the best known Ramsey results for the Fibonacci numbers. We also give some related results and

experimental data on diffsequences involving Lucas and Perrin numbers.

Lastly, in Chapter 5 we show how our SAT methods can be applied to other combinatorial

problems. Here we give new bounds and exact values for Ramsey numbers involving book and wheel

graphs. Furthermore, we compute several exact values of Turán numbers for complete bipartite

graphs and two-dimensional analogues of the Sidon-Ramsey numbers. We also apply SAT solving

to geometric problems involving angles in finite fields and compute maximal sizes of sets that avoid

certain angles in Fn
q .
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The Appendix contains large tables of data, including a 3500-entry table of two-color Rado

numbers and colorings of large sets of integers that avoid certain monochromatic sequences.
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CHAPTER 1

Introduction

To state the contributions of this thesis, we begin with an introduction to Ramsey theory. The

discussion in Sections 1.1 and 1.2 is meant to be self-contained and accessible to non-experts; those

familiar with the subject may safely skip the proofs in these sections. Sections 1.3 and 1.4 give

background on the methods used in this thesis. Our main contributions are stated in Section 1.5.

1.1. Ramsey Theory

Ramsey theory is the study of patterns that emerge in sufficiently large mathematical objects.

In particular, it often deals with structures that are preserved under set partitioning or coloring. A

classical example is the so-called friendship theorem, which states that at a party with six guests,

there is necessarily either a group of three guests who all know each other, or a group of three

guests who are all mutual strangers. However, the same is not true of every party of five guests: if

each guest is arranged in a circle and knows only the two adjacent guests, then there is no group

of three mutual acquaintances or three mutual strangers.

This phenomenon is a special case of Ramsey’s theorem, first proven by the logician Frank

Plumpton Ramsey in 1926 [115]. The simplest version of the theorem is stated below.

Theorem 1.1.1 (Ramsey). Fix positive integers r and s. Then there exists an n such that every

red-blue edge coloring of Kn contains either a red Kr or a blue Ks.

A major question in combinatorics asks how small n can be. The smallest such n is called the

Ramsey number R(r, s).

Definition 1.1.1. For given positive integers r and s, the Ramsey number R(r, s) is the small-

est n such that every red-blue edge coloring of Kn contains either a red Kr or a blue Ks. Equiva-

lently, R(r, s) is the smallest n such that every graph on n vertices contains either a clique of size

r or an independent set of size s.
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We give some simple properties of Ramsey numbers below.

Proposition 1.1.1. Let r and s be positive integers. The Ramsey numbers R(r, s) satisfy the

following properties.

(i) R(r, s) = R(s, r).

(ii) R(1, s) = 1.

(iii) R(2, s) = s.

Despite their apparent simplicity, the Ramsey numbers are notoriously hard to compute when

r, s ≥ 3. The following quote by Paul Erdős illustrates this difficulty:

“Suppose aliens invade the earth and threaten to obliterate it in a year’s time unless human

beings can find the Ramsey number for red five and blue five. We could marshal the world’s best

minds and fastest computers, and within a year we could probably calculate the value. If the aliens

demanded the Ramsey number for red six and blue six, however, we would have no choice but to

launch a preemptive attack.”

In fact, only nine such values are known, and we display them in Table 1.1 below. We omit the

entries below the main diagonal because R(r, s) = R(s, r).

Table 1.1. Ramsey numbers R(r, s)

r
s

1 2 3 4 5 6 7 8 9

1 1 1 1 1 1 1 1 1 1 . . .
2 2 3 4 5 6 7 8 9 . . .
3 6 9 14 18 23 28 36
4 18 25

Several of these numbers can be calculated by hand using elementary methods. The calculation

of R(3, 3) = 6 is well-known, and it was featured as a problem on the Kürschák and Putnam

competitions in 1947 and 1953, respectively [114]. The exact values of R(3, 4), R(3, 5), and R(4, 4)

were established by Greenwood and Gleason in 1955 [63]. The following lemma is the key ingredient

in proving upper bounds for these small nontrivial Ramsey numbers, and it can also be used to

prove Ramsey’s theorem.
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Lemma 1.1.1. The Ramsey numbers R(r, s) satisfy R(r, s) ≤ R(r, s−1)+R(r−1, s). Moreover,

if R(r, s− 1) and R(r − 1, s) are both even, then R(r, s) ≤ R(r, s− 1) +R(r − 1, s)− 1.

Proof. Let n = R(r, s − 1) + R(r − 1, s), and consider an arbitrary red-blue edge coloring of

Kn. We wish to show that there is either a red Kr or blue Ks. Consider the n− 1 edges incident

to some vertex v. Then either at least R(r, s − 1) of them are blue or R(r − 1, s) of them are red

since if these both do not hold, then deg(v) < n − 1. Without loss of generality, suppose at least

R(r, s − 1) of these edges are blue. Then by the definition of R(r, s − 1), there is either a red Kr

or a blue Ks−1 contained in the blue neighbors of v. In the former case we are done, and in the

latter case, the graph induced by the vertices of the blue Ks−1 together with v is a blue Ks. The

case where at least R(r − 1, s) edges incident to v are red follows by a similar argument.

Now suppose that R(r, s− 1) and R(r− 1, s) are both even, and consider an arbitrary red-blue

edge coloring of Kn−1. Let rv denote the red-degree of a vertex v, and let Er be the number of red

edges. Then we have ∑
v∈V

rv = 2Er.

Notice that |V | = n− 1 is odd, so it follows that there is some v such that rv is even.

Now suppose for this vertex v that rv < R(r − 1, s). Since rv and R(r − 1, s) are both even,

then this inequality can be strengthened to rv < R(r− 1, s)− 1. Then the number of blue edges bv

incident to v is at least R(r, s− 1), because otherwise bv ≤ R(r, s− 1)− 1 and we would have

n− 2 = rv + bv < R(r − 1, s)− 1 +R(r, s− 1)− 1 = n− 2,

a contradiction. Therefore rv ≥ R(r − 1, s) or bv ≥ R(r, s − 1), and the result follows from the

previous argument. □

Ramsey’s theorem is a consequence of Proposition 1.1.1 and Lemma 1.1.1, and we can use it

to obtain a crude upper bound on Ramsey numbers.

Proof of Theorem 1.1.1. Using the facts that R(r, s) = R(s, r) and R(1, s) is finite for all

s, it follows by induction and Lemma 1.1.1 that R(r, s) is finite for all s.

We claim that R(r, s) ≤
(
r+s−2
r−1

)
. Observe that this inequality is true for r = s = 1 since

R(1, s) = 0 for all s. Now suppose it is true whenever r + s ≤ k. If r + s = k + 1, then by Lemma
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1.1.1, it follows that

R(r, s) ≤ R(r − 1, s) +R(r, s− 1) ≤
(
r + s− 3

r − 2

)
+

(
r + s− 3

r − 1

)
=

(
r + s− 2

r − 1

)
as desired. □

Using Stirling’s approximation, the bound shown in the above proof gives the bound

(1.1) R(s, s) ≤ (1 + o(1))
4s−1√
π(s− 1)

.

We can obtain a lower bound using the probabilistic method.

Theorem 1.1.2. For all s ≥ 3, the Ramsey number R(s, s) satisfies R(s, s) > 2s/2.

Proof. For s = 3, we have R(3, 3) = 6, and the desired inequality holds. Now suppose s ≥ 4,

and let n = 2s/2. Let p denote the probability that a randomly chosen red-blue edge coloring of

Kn does not contain a monochromatic Ks. If this probability is positive, then we are done.

Observe that for each Ks in Kn, the probability that it is monochromatic is 21−(
s
2). Since

there are
(
n
s

)
copies of Ks, the probability that at least one is monochromatic is at most

(
n
s

)
21−(

s
2).

Therefore since n = 2s/2 and s! > 2s for s > 4, it follows that

1− p ≤
(
n

s

)
21−(

s
2) ≤ n!

s!(n− s)!
21−(

s
2) ≤ 2s

2/2+1−(s2)

s!
=

2s/2+1

s!
< 21−s/2 < 1.

Therefore p is positive, and we are done. □

Theorem 1.1.2 and (1.1) show (roughly) that the diagonal Ramsey numbers R(s, s) satisfy

(1.2)
√
2
s ≤ R(s, s) ≤ 4s.

The precise asymptotics of Ramsey numbers are a major open question in Ramsey theory, but there

have been no improvements to the bases
√
2 and 4 in (1.2), which have stood since 1947 [48,49],

until a recent preprint improved the upper bound to (4− c)s for a small constant c [27]. The best

lower bound R(s, s) >
√
2
e s2

s/2(1 + o(1)) was shown by Spencer in 1975 by applying the Lovász

Local Lemma [127].
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We turn back to the computation of precise values of Ramsey numbers. Lemma 1.1.1 also

enables us to calculate four of the values in Table 1.1.

Proposition 1.1.2. The Ramsey numbers R(3, 3), R(3, 4), R(3, 5), and R(4, 4) satisfy

R(3, 3) = 6, R(3, 4) = 9, R(3, 5) = 14, R(4, 4) = 18.

Proof. First, we will show R(3, 3) = 6. To show the lower bound R(3, 3) ≥ 6, observe in

Figure 1.1 that coloring the edges of a 5-cycle in K5 red and all other edges blue avoids a red

K3 and a blue K3. For the upper bound R(3, 3) ≤ 6, suppose towards contradiction that there is

a red-blue edge coloring of K6 that contains no red K3 and no blue K3. Consider a vertex v in

K6. By the pigeonhole principle, at least 3 of the edges incident to v must be the same color, say

red. Label these three red edges {v, w1}, {v, w2}, {v, w3}. Then if the edge {w1, w2} is red, then

{v, w1, w2} is a red K3, so {w1, w2} must be blue. By similar reasoning, it follows that {w1, w3}

and {w2, w3} must be blue as well. But then the vertices w1, w2, and w3 form a blue K3, which is

a contradiction.

Next we will show that R(3, 4) = 9. Since R(2, 4) = 4 and R(3, 3) = 6 are even, by Lemma

1.1.1, we have R(3, 4) ≤ R(2, 4) +R(3, 3)− 1 = 9. For the lower bound, the edge coloring of K8 in

Figure 1.1 does not contain a red K3 or a blue K4. Here, if the vertices are labeled 1 to 8 in order

around the circle, the edge ij (with i < j) is colored red if and only if j − i ≡ 1, 4 (mod 8).

Moving to R(3, 5), applying Lemma 1.1.1 again we have R(3, 5) ≤ R(2, 5)+R(3, 4) = 5+9 = 14.

For the lower bound, the edge coloring of K13 in Figure 1.1 does not contain a red K3 or a blue

K5. If the vertices are labeled 1 to 13 in order around the circle, the edge ij (with i < j) is colored

red if and only if j − i ≡ 1, 5 (mod 13).

For R(4, 4), we have R(4, 4) ≤ R(3, 4)+R(4, 3) = 2R(3, 4) = 18. For the lower bound, the edge

coloring of K17 in Figure 1.1 does not contain a red K4 or a blue K4. If the vertices are labeled 1

to 17 in order around the circle, the edge ij (with i < j) is colored red if and only if j− i ≡ 1, 2, 4, 8

(mod 17).

□
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Figure 1.1. From left to right, colorings that give tight lower bounds for
R(3, 3), R(3, 4), R(3, 5), and R(4, 4)

We remark that this proof method does not give tight upper bounds for any of the other known

nontrivial Ramsey numbers. The value of R(3, 6) = 18 was first proven in 1964 by Kéry [83], though

a short, elementary proof in English was given by Cariolaro in 2007 [28]. Kalbfleisch proved the

lower bound R(4, 5) ≥ 25 in 1965 [80], and one year later proved R(3, 7) ≥ 23 and R(3, 9) ≥ 36

in his thesis [81]. The next exact value was confirmed in 1968 when Graver and Yackel proved

R(3, 7) ≤ 23 [61].

The calculations of the remaining known values all required extensive use of computers. Grin-

stead and Roberts established the lower bound R(3, 8) ≥ 28 and the upper bound R(3, 9) ≤ 36 in

1982 [64]. McKay and Zhang established the upper bound R(3, 8) ≤ 28 in 1992 [104]. The value

R(4, 5) = 25 was established by McKay and Radziszowski in 1995 [102].

No other exact values have been computed in the past twenty-seven years, though various

bounds have been improved. The smallest unknown diagonal Ramsey number, R(5, 5) is known to

satisfy 43 ≤ R(5, 5) ≤ 48 [5,51]. The other “next” unknown values, R(3, 10) and R(4, 6) satisfy

40 ≤ R(3, 10) ≤ 42 and 36 ≤ R(4, 6) ≤ 41 [52,53,55,103].

There are many generalizations of Ramsey numbers that extend the definition to more colors

and graphs other than Kr and Ks. We give one version of generalized Ramsey numbers below.

Definition 1.1.2. Let G1, . . . , Gk be graphs. The Ramsey number R(G1, . . . , Gk) is the small-

est number n such that every edge k-coloring of Kn contains a copy of Gi in color i.

We remark that the classical Ramsey number R(r, s) is the same as the generalized Ramsey

number R(Kr,Ks). We will use the term “Ramsey number” to both the classical Ramsey numbers

R(r, s) and the generalized Ramsey numbers in Definition 1.1.2. In the case that Gi = Kji for

all i, we will simply write R(j1, . . . , jk) instead of R(Kj1 , . . . ,Kjk). These numbers are sometimes
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referred to as multicolor Ramsey numbers. Greenwood and Gleason showed that R(3, 3, 3) = 17 [63]

in 1955, but it took over sixty years to prove the next known value, R(3, 3, 4) = 30 [34]. The

numbers R(G1, G2) have known formulas for some families of G1 and G2, for instance Chvátal

showed that R(K1,n,Km) = n(m− 1)+ 1 [32]. However, in general computing values of R(G1, G2)

is still a difficult problem. A “dynamic survey” of the best known bounds for hundreds of Ramsey

numbers is maintained at [114].

The existence of generalized Ramsey numbers is guaranteed by the following theorem.

Theorem 1.1.3. The Ramsey numbers R(G1, . . . , Gk) are finite for all G1, . . . , Gk.

Proof. We will prove that R(r1, . . . , rk) is finite for all choices of r1, . . . , rk. This is sufficient

because every graph Gi is a subgraph of the complete graph K|V (Gi)|, so we have R(G1, . . . , Gk) ≤

R(|V (G1)|, . . . , |V (Gk)|.

We will proceed by induction on k. For k = 2, this is simply Theorem 1.1.1. For k > 2,

assume the numbers R(r1, . . . , rm) exist for m < k and let n = R(r1, . . . , rk−2, R(rk−1, rk)). We

claim R(r1, . . . , rk) ≤ n. Consider a k-coloring χ of the edges of Kn. Let χ
′ be the (k− 1)-coloring

of Kn that agrees with χ except every edge assigned color k is instead assigned color k− 1. By the

definition of n, there is either a clique of size ri in color i for some i, 1 ≤ i ≤ k − 2, or else there

is a clique of size R(rk−1, rk) in color k − 1. In the former case, we are done, so suppose there is a

clique of size R(rk−1, rk) in color k − 1. Now de-identify colors k − 1 and k, so that the edges in

this clique are colored in these two colors. By the definition of R(rk−1, rk), there is either a clique

of size rk−1 in color k− 1 or a clique of size rk in color k contained within this copy of KR(rk−1,rk),

which is contained in Kn. Therefore every coloring χ produces a clique of size ri in color i for some

i, and this completes the proof. □

1.2. Arithmetic Ramsey Theory

A large part of this thesis deals not with graphs, but with numbers in arithmetic Ramsey theory.

Often we are interested in solutions to an equation over the set {1, 2, . . . , n}, which we henceforth

denote by [n]. One of the most important results in this area is Schur’s theorem, and the proof

follows quickly from the existence of the numbers R(r1, . . . , rk).

7



Theorem 1.2.1 (Schur, 1916). For all integers k, there exists a number n such that every

k-coloring of [n] contains a monochromatic solution to the equation x+ y = z.

Proof. Let n = R(3, . . . , 3), where there are k threes in the argument of R. Consider an

arbitary k-coloring χ of [n − 1]. Assign the vertices of Kn the labels 1 through n. Let ψ be the

k-coloring of Kn where the edge ij is colored χ(|i− j|).

By the definition of n, there exists a monochromatic triangle abc with a < b < c. Let x = b−a,

y = c− b, and z = c− a. Then x+ y = z and χ(x) = χ(y) = χ(z), so we are done. □

Schur’s motivation for proving Theorem 1.2.1 was to attack Fermat’s Last Theorem, and in

doing so he was able to prove that the equation xn + yn ≡ zn (mod p) has nontrivial solutions for

sufficiently large primes p.

Like Ramsey numbers, we are interested in the smallest number n where the pattern, in this

case a monochromatic solution to x+ y = z, appears.

Definition 1.2.1. The Schur number S(k) is the smallest number n such that every k-coloring

of [n] contains a monochromatic solution to the equation x+ y = z.

As a simple example, consider the Schur number S(2). It is straightforward to check that the

coloring of {1, 2, 3, 4} where 1 and 4 are colored red and 2 and 3 are colored blue does not contain

a monochromatic solution to x+ y = z. But every coloring of {1, 2, 3, 4, 5} does contain a solution.

Without loss of generality, suppose 1 is red. Then 2 is blue since 1 + 1 = 2. Moreover, 4 is red

since 2 + 2 = 4. Then 3 is blue since 1 + 2 = 3, and then 5 cannot be either color since 1 + 4 =

5 and 2 + 3 = 5. Hence S(2) = 4.

The calculation of the third Schur number S(3) = 14 is a more difficult exercise, but still doable

by hand. Computing S(k) for k ≥ 4 is still yet more difficult, and almost surely requires machine

assistance. The number S(4) = 45 was first computed in 1966 by Golomb and Baumert using a

backtracking algorithm [56]. The largest known Schur number is S(5) = 161, which was computed

by Heule in 2017-2018 [71]. This calculation required a staggering amount of computational power

using SAT solvers and parallelized computation. The key technique used is called the cube and

conquer method, which partitions the problem into many tractable subproblems and solves them

in parallel. The computation required 14 years of CPU time, and another 36 years of CPU time

8



for the verification of the calculation. However, the cube and conquer procedure allowed this to

be done in mere days of real time on a supercomputer. The verification of this result is especially

notable because it produced a proof over 2 petabytes in size, which is arguably the longest proof

in history. We will discuss SAT solvers in detail in Section 1.3.

Another celebrated theorem in arithmetic Ramsey theory is van der Waerden’s theorem, which

concerns arithmetic progressions, sequences of the form x, x+d, . . . , x+(ℓ− 1)d. Van der Waerden

attributed the statement of the theorem to Baudet, but in fact it was originally conjectured by

Schur while he studied the distribution of quadratic residues over Zp [60].

Theorem 1.2.2 (Van der Waerden, 1927 [130]). For all positive integers k and ℓ, there exists

a smallest number n = w(ℓ; k) such that every k-coloring of [n] contains a monochromatic ℓ-term

arithmetic progression, i.e. a sequence of the form x, x+d, x+2d, . . . , x+(ℓ−1)d for some positive

integer d.

The numbers w(ℓ; k) are called van der Waerden numbers. There exist elementary proofs of

van der Waerden’s theorem using a double induction (see [60] or [91]), but we omit them here.

As with Ramsey numbers, finding precise bounds on van der Waerden numbers is difficult,

and perhaps even more so. The best known lower bounds are due to a finite field construction

due to Berlekamp [13], who showed w(p + 1; 2) ≥ p2p. The upper bounds given for w(ℓ; k) in the

original proof of van der Waerden’s theorem grow like the notorious Ackermann function. Shelah

later made a striking improvement in [124], giving upper bounds that were primitive recursive,

but are nonetheless described as “wowzer” functions in [60] due to their fast growth. The best

known bounds today are due to Gowers [59], who showed w(ℓ; k) ≤ 22
k2

2ℓ+9

. While a massive

breakthrough, this bound is still huge compared to the values of known van der Waerden numbers

(see Table 1.2 below). It is a major open question what the “true” bounds for van der Waerden

numbers are; Graham asked whether w(ℓ; 2) ≤ 2ℓ
2
and offered a $1000 prize for an answer [91].

Schur’s theorem has a number of generalizations, the most notable of which is Rado’s theorem,

proven by Schur’s Ph.D. student Richard Rado. The full version of theorem extends Schur’s theorem

to arbitrary systems of equations with integer coefficients. To state the theorem, we need to use

the following definition.
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Table 1.2. Table of van der Waerden numbers w(ℓ; k)

ℓ
k

2 3 4

3 9 27 76
4 35 293
5 178
6 1132

Definition 1.2.2. Let A be an ℓ×m matrix, and denote the columns of A by a1, . . . , am. We

say that A satisfies the columns condition if there exists a partition {C1, . . . , Ck} of {1, . . . ,m}

such that the following conditions hold. Define si =
∑

j∈Ci
aj to be the vector sum of the columns

whose indices are in Ci.

(i) s1 = 0

(ii) sk can be written as a (rational) linear combination of the elements of
⋃

1≤j<k{ai}i∈Cj for

all k ≥ 2.

Theorem 1.2.3 (Rado, 1933 [113]). Let Ax = 0 be a system of linear equations with integer

coefficients. Then for every positive integer k, there exists an n such that every k-coloring of [n]

contains a monochromatic solution to Ax = 0 if and only if A satisfies the columns condition.

We will be most interested in the case where there is only a single equation, in which case

Theorem 1.2.3 becomes the following.

Theorem 1.2.4. Let E be the equation
∑m

i=1 aixi = 0 in the variables xi with nonzero integer

coefficients ai. Then for every positive integer k, there exists an n such that every k-coloring of [n]

contains a monochromatic solution to E if and only if there exists a nonempty subset of the ai that

sums to 0.

We will prove only Theorem 1.2.4, but the proof of Theorem 1.2.3 is similar. We present this

proof because for one direction the coloring construction involved is similar to those in Chapter

3, and the other direction serves as a nice application of van der Waerden’s theorem. Before the

proof, we need the following two corollaries which extend van der Waerden’s theorem.

Corollary 1.2.1. Let a, b, k, ℓ ∈ Z+ with a ≤ b. Then every k-coloring of [bw(ℓ; k)] contains

a monochromatic ℓ-term arithmetic progression whose gap is a multiple of a.
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Proof. Let χ be an arbitrary k-coloring of [bw(ℓ; k)]. Define a coloring χ′ of [w(ℓ; k)] by

χ′(x) = χ(ax). By van der Waerden’s theorem, there is an ℓ-term arithmetic progression y, y +

d, . . . , y + (ℓ− 1)d with χ′(y) = χ′(y + d) = · · · = χ′(y + (ℓ− 1)d). But then χ(ay) = χ(ay + ad) =

· · · = χ(ay+ a(ℓ− 1)d), so ay, ay+ ad, ay+ 2ad, . . . , ay+ a(ℓ− 1)d is a monochromatic arithmetic

progression with gap ad as desired. □

Corollary 1.2.2. Let n = w(ℓ; k), and suppose the set S := a[1, n] = {a, 2a, . . . , na} is k-

colored. Then S contains a monochromatic ℓ-term arithmetic progression.

Proof. Let χ be an arbitrary k-coloring of S. Then define the k-coloring χ′ of [n] by χ′(x) =

χ(ax). By van der Waerden’s theorem, there is an arithmetic progression x, x+ d, . . . , x+ (ℓ− 1)d

with χ′(x) = · · · = χ′(x + (ℓ − 1)d). Then χ(ax) = χ(ax + ad) = · · · = χ(ax + ad(ℓ − 1)),

so ax, ax + ad, . . . , ax + ad(ℓ − 1) is a monochromatic ℓ-term arithmetic progression contained in

S. □

We are now able to prove Theorem 1.2.4.

Proof of Theorem 1.2.4. We follow the proof given in [91]. Fix an equation E :
∑m

i=1 aixi =

0 with ai ̸= 0 for all i. Suppose first that there is no subset of the ai that sums to zero. Let p

be a prime that does not divide any sum of a nonempty subset of the ai. We will construct a

(p− 1)-coloring χ of the positive integers that contains no monochromatic solutions to E .

Each positive integer x has a unique p-ary expansion x =
∑t

j=0 cjp
j with 0 ≤ cj ≤ p − 1. Let

j∗ be the smallest j such that cj ̸= 0, and let χ(x) = cj∗ .

Suppose for the sake of contradiction that x1, . . . , xm is a monochromatic solution to E with

χ(x1) = · · · = χ(xm) = α. Let e be the smallest positive integer such that there is some index i

with pe ∤ xi. Now let I = {i : xi ≡ α (mod pe)} and let I ′ = [m] \ I = {i : xi ≡ 0 (mod pe)}, and

note that I is nonempty. Now consider the equation E modulo p: we are left with

0 ≡
∑
i∈I

cixi ≡ α
∑
i∈I

xi (mod pe).

Since 1 ≤ α ≤ p− 1, we have pe |
∑

i∈I xi, and so p |
∑

i∈I xi. Recall that I is nonempty, so this is

a contradiction.
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For the other direction, we proceed by induction on the number of colors k. Let S be the

largest subset of the ai that sums to 0. Without loss of generality, suppose S = {a1, . . . , ar} and

a1 > 0. If r = m, then the solution x1 = · · · = xr = 1 is monochromatic, so suppose r < m.

Let s =
∑m

j=r+1 aj , and observe that s ̸= 0. Set x1 to be a positive integer large enough so that

x1 + s > 0, and set x2 = · · · = xr = x1 + s, and set xr+1 = · · · = xm = a1. Then we have∑m
i=1 aixi = a1x1 +

∑r
i=2 ai(x1 + s) +

∑m
i=r+1 aia1 = a1x1 − a1(x1 + s) + a1s = 0, so (x1, . . . , xm)

is a monochromatic solution.

Now suppose the theorem holds for k colors, and we will show that it holds for k + 1 colors.

Let Rk(E) denote the smallest number n such that every k-coloring of [n] contains a monochro-

matic solution to E . We once again suppose that
∑r

i=1 ai = 0 with r < m maximal and let

s =
∑m

i=r+1 ai ̸= 0. Moreover, let A :=
∑m

i=1 |ai|.

We will show that Rk+1(E) ≤ Aw(Rk(E) + 1; k) =: n. Let χ be an arbitrary (k + 1)-coloring of

[n]. As with the k = 1 case, we will set x2 = x3 = · · · = xr and xr+1 = · · · = xm so that E becomes

the three-variable equation a1(x1 − x2) + sxm = 0.

Since 1 ≤ |s| < A, by Corollary 1.2.1, there is a monochromatic (Rk(E) + 1)- term arithmetic

progression whose gap is a multiple of |s|. Let y, y + d|s|, . . . , y +Rk(E)d|s| be such an arithmetic

progression.

There are now two cases to consider. First, assume there exists some element z ∈ [Rk(E)] such

that χ(zda1) = χ(y). If s > 0, then setting x1 = y, x2 = y + zda1, xm = zda1 is a monochromatic

solution to E , and if s < 0, then x1 = y + zda1, x2 = y, xm = zda1 is a monochromatic solution.

Otherwise, we have χ(zda1) ̸= χ(y) for 1 ≤ d ≤ Rk(E), so the set {da1, 2da1, . . . , Rk(E)da1} has

only k colors, so by the induction hypothesis and Corollary 1.2.2, the proof is complete. □

We will refer to both Theorem 1.2.3 and Theorem 1.2.4 as Rado’s theorem. We also introduce

the notion of regularity, which will simplify the statements of many of our results.

Definition 1.2.3. An equation E is k-regular if there exists an n such that every k-coloring of

[n] contains a monochromatic solution to E. If E is k-regular for all k ≥ 1, then we say that E is

regular.
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For example, Schur’s theorem states that the equation x + y = z is regular. Rado’s theorem

states that the equation 2x1 + 3x2 − 5x3 − 7x4 = 0 is regular since 2 + 3− 5 = 0, but the equation

2x1 + 2x2 − x3 = 0 is not since no subset of the coefficients sums to 0.

Some of the central numbers in this thesis are the Ramsey-type numbers associated to Rado’s

theorem, which are appropriately called Rado numbers. We study the Rado numbers in great detail

in Chapter 3.

Definition 1.2.4. Given an equation E and integer k ≥ 1, the Rado number Rk(E) is the

smallest number n such that every k-coloring of [n] contains a monochromatic solution to E. If no

such number exists, then we say Rk(E) =∞.

Note that the Schur numbers S(k) are simply the Rado numbers Rk(x+y = z). An interesting–

and difficult–question is when Rado numbers for a given equation are finite (exist) and when they

are not. For example, R2(2x + 2y = z) = 34, but R3(2x + 2y = z) = ∞. There is a known

characterization of 2-regular linear equations, which was also given by Rado.

Theorem 1.2.5. For m ≥ 3, the equation
∑m

i=1 aixi = 0 is 2-regular if and only if there exist

coefficients ai and aj with opposite sign.

However, there is no known general characterization of k-regular equations for arbitrary k.

Another interesting statistic is the degree of regularity of an equation.

Definition 1.2.5. The degree of regularity of an equation E, denoted dor(E), is the largest

integer k for which E is k-regular. If E is regular, then we say dor(E) =∞.

From the example above, we see that dor(2x + 2y = z) = 2. Rado made several observations

on the degree of regularity in his thesis, and proved the following results for three variable linear

homogeneous equations (see also [18]).

Theorem 1.2.6 (Rado). The following results on degree of regularity hold.

(i) If E is the equation a(x+ y) = z with a ∈ Q and a ̸= 2k for all k ∈ Z, then dor(E) ≤ 3.

(ii) For all k ∈ Z, dor(2k(x+ y) = z) =∞ or dor(2k(x+ y) = z) ≤ 5.
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(iii) Let a, b, c, α ∈ Z. If α ̸= 0 and p is a prime such that p ∤ abc(a + b), then dor(ax + by +

pαcz) =∞ or dor(ax+ by + pαcz) ≤ 5

(iv) Let a, b, c ∈ Z. If α, β, γ ∈ Z are pairwise distinct and p ∤ abc, then dor(pαax + pβby +

pγcz) ≤ 7.

In general it is difficult to determine the degree of regularity of a given equation. The question

of whether there is an equation of degree of regularity exactly k was raised by Rado and answered

in 2010 by Alexeev and Tsimerman [2], who showed that the equation Lk given by

k∑
i=1

2i

2i − 1
xi =

(
−1 +

k∑
i=1

2i

2i − 1

)
x0

has degree of regularity precisely k. Notice, however, that the equation Lk has k + 1 variables. If

the number of variables is fixed, then the answer is not so clear. That is, given a fixed m, for every

k ≥ 1, can we find a linear homogeneous equation E in m variables with dor(E) = k? Rado himself

conjectured that the answer is no, and this is known as Rado’s boundedness conjecture.

Conjecture 1.2.1 (Rado’s boundedness conjecture). Given a positive integer m, there is a

universal constant ∆ = ∆(m) such that every linear homogeneous equation E in m variables is

regular or satisfies dor(E) < ∆(m).

In other words, Rado’s boundedness conjecture says that nonregular equations in a fixed number

of variables have a bound on their degree of regularity. The only nontrivial case where this is known

is for m = 3; Fox and Kleitman proved that ∆ = 24 is sufficient [54].

We end our discussion of Rado numbers and regularity here, but we will return to and build

upon these results in Chapter 3. The next two sections give background on the methods used in

this dissertation.

1.3. Boolean Satisfiability

Many of the problems in this thesis can be encoded in terms of the satisfiability of Boolean

formulas. The Boolean satisfiability problem (SAT) is of fundamental importance in computer

science and complexity theory (see [126] for an introduction). SAT was shown by Cook and Levin

to be NP-complete, and there is no known polynomial-time algorithm to decide whether a given
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formula is satisfiable. However, recent computational advances have produced powerful tools known

as SAT solvers that can determine the satisfiability of large Boolean formulas and are often efficient

in practice.

We recall the following standard terminology, all of which can be found in [21]. A literal is a

Boolean variable x or its negation, which we denote x̄. A clause is a logical disjunction of literals,

e.g. x ∨ ȳ ∨ z. A formula ϕ is in conjuctive normal form (CNF) if it is a logical conjunction of

clauses, e.g. ϕ = (x ∨ ȳ) ∧ (x̄ ∨ z) ∧ (x ∨ y ∨ z). We will sometimes write clauses as sets of literals

and formulas as sets of clauses, e.g. ϕ = {{x, ȳ}, {x̄, z}, {x, y, z}}. All formulas we consider will

be written in conjunctive normal form, and this is the standard input for most SAT solvers. A

formula is satisfiable if there is a truth assignment to the variables such that at least one literal in

each clause is true, and unsatisfiable otherwise.

1.3.1. Algorithms for satisfiability. The core algorithm behind many modern SAT solvers

is Conflict-Driven Clause Learning (CDCL), though they are equipped with numerous prepro-

cessing methods, heuristics, and other procedures to solve instances efficiently. We will discuss

only a barebones version of the CDCL algorithm, but a thorough treatment can be found in [21].

A key procedure for simplifying clauses in the formula is unit propagation. Consider the formula

ϕ1 = {{x1, x̄2, x3}, {x2}, {x̄2, x4}, {x̄1, x4}.{x1, x2, x̄4}}. Notice that if ϕ1 is satisfiable, then x2 must

be assigned true. Then we can remove the literal x̄2 from each clause where it appears and delete

each clause where x2 appears, so ϕ1 is equivalent to the formula ϕ2 = {{x1, x3}, {x4}, {x̄1, x4}}.

Now we see that x4 must be assigned true and obtain ϕ3 = {{x1, x3}, {x̄1}}. Applying unit propa-

gation two more times, we set x1 to false and x3 to true, and obtain the satisfying assignment x1 =

false, x2 = x3 = x4 = true.

CDCL begins by selecting a variable, assigning it true or false, and then applying unit propa-

gation to build an implication graph. The vertices of the implication graph are literals, and there

is a directed edge (x, y) if x being assigned true is the “reason” y is assigned true; more precisely,

an edge (x, y) is constructed when there is a clause C containing x̄ and y, and all other literals

in C besides y are false. In the example above, the implication graph is x2 → x4 → x̄1 → x3. A

conflict in the implication graph occurs when a literal and its negation are both vertices (assigned

to true). When a conflict occurs, we find a cut in the implication graph that led to the conflict
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Figure 1.2. Illustration of the implication graph for Example 1.3.1. Each node is
of the form ℓ@d, which corresponds to the literal ℓ being assigned true at decision
level d. The cut is displayed in red.

and learn a new clause that contains the negations of all the literals on one side of the cut edges.

The solver then backtracks to an appropriate decision level and begins the search anew. We give

an illustration of CDCL and the implication graph with a simple example.

Example 1.3.1. Consider the formula

ϕ = (x̄1∨x̄2)∧(x̄1∨x3∨x4)∧(x4∨x̄5∨x6)∧(x̄3∨x̄5∨x̄6)∧(x5∨x7∨x8)∧(x̄4∨x̄7∨x9)∧(x1∨x̄8∨x9).

Suppose x1 is arbitrarily assigned to true. Then x2 is assigned false by unit propagation. At

the next decision level, x4 is assigned false, and then x3 is assigned true. Continuing, we assign x5

true, then a conflict arises: x6 must be assigned both true and false. Since the assigning x3, x̄4,

and x5 to true led to this conflict, we learn the clause (x̄3 ∨ x4 ∨ x̄5).

1.3.2. SAT solvers and combinatorics. In recent years, SAT solvers have proven to be

extremely useful in computing precise bounds for Ramsey-type numbers. Among the first such

results are the calculations of the van der Waerden numbers w(6; 2) and w(4; 3) [86,87]. Another

significant result is the solution to the Pythagorean triples problem, which asks for the Rado number

R2(x
2 + y2 = z2); a monetary prize for this result was also offered by Graham. Heule, Kullmann,

and Marek proved that R2(x
2 + y2 = z2) = 7825 in [74]. This was notable on a theoretical level

because it was not known at the time whether x2 + y2 = z2 was 2-regular, and it is still not known
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whether Rk(x
2 + y2 = z2) < ∞ when k = 3. On a computational level this was also remarkable

because of the sheer size of the proof, which, like the proof of S(5) = 161, required terabytes of

memory to produce. These computational successes are founded in part on the cube and conquer

paradigm. Cube and conquer pairs a CDCL solver with a complementary look-ahead solver to

partition a hard CNF formula ϕ into cubes. A cube is simply a partial assignment to the variables

in ϕ. The look-ahead solver selects variables according to a heuristic and splits the formula into

(potenitally millions of) subproblems that consist of ϕ together with unit clauses that make up a

cube. The heuristics involved in this partitioning attempt to make each subproblem much easier

to solve, and then subproblems can be passed to the CDCL solver independently and in parallel.

Empirical data suggests that cube and conquer often performs better than running a single CDCL

or look-ahead solver. We will not discuss the finer details of cube and conquer or the heuristics

involved here, and we refer the reader to [71,73,74].

1.3.3. Proofs of unsatisfiability. Computer-generated results are often met with skepticism.

Perhaps the most famous proof by computer is the proof of the Four Color Theorem by Appel and

Haken [6], part of which included checking nearly two-thousand cases with computer assistance.

This raises a fundamental question: does “the computer says this result is true” really constitute

a proof? Computers are prone to bugs, crashes, and other inexplicable errors, so one might argue

that computer results are more like experiments than rigorous proofs. SAT solver proofs are no

different; the solvers themselves are complicated programs that involve thousands of lines of code.

How can we say that they work correctly one-hundred percent of the time, especially on large, hard

problems with long solve times? This is a valid concern: subtle errors have in fact been found

in otherwise well-trusted, state of the art solvers [79]. Some of this is a matter of philosophy:

Are humans really more reliable? Contradictory results have been published in top mathematics

journals (see [85,123]). It is not unusual to find small errors or typos in peer-reviewed literature.

For these reasons there is a growing movement to formalize and catalog results in Lean in libraries

such as mathlib (see https://github.com/leanprover-community). Another common complaint

about computer-generated proofs is that they are inelegant, or not understandable by humans.

While this is often the case (the 2000-terabyte proof of S(5) = 161 is hardly bedtime reading, for

instance), again, we ask: Are human proofs really better? One of the famous long human proofs is
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the classification of finite simple groups, a result that spans thousands of pages and many authors.

Is the proof fully understood? This is not meant as an insult to the contributors to this result, but

rather to say that there are few, if any, mathematicians who could recreate the proof alone.

So why, then, should one trust a SAT solver proof? If a formula ϕ is satisfiable, then the solver

outputs a truth assignment to the variables (a certificate) which can be verified to satisfy each clause

in ϕ efficiently. But when ϕ is unsatisfiable, the answer is less clear. For unsatisfiable instances,

solvers can output a proof which can then be checked independently by a simpler, more trustworthy

algorithm. A commonly used proof format is DRAT (deletion resolution asymmetric tautology). A

DRAT proof consists of a sequence of clauses Ci that preserve satisfiability of the original formula

ϕ, i.e. ϕ ∪
⋃k

i=1{Ci} is equisatisfiable to ϕ for all k. At any time some of these clauses can be

deleted from the proof; this is done in practice to save space when the proof is verified. A proof of

unsatisfiability culminates in the empty clause, which is by definition unsatisfiable. The clauses Ci

are called RAT clauses, which are defined as follows.

Definition 1.3.1. A clause C has the property AT (asymmetric tautology) with respect to a

formula ϕ if ϕ ∪ C̄ := ϕ ∪
⋃

ℓ∈C{{ℓ̄}} results in a conflict. In other words, assigning all the literals

in C to false and applying unit propagation results in a conflict.

A clause C has the property RAT (resolution asymmetric tautology) with respect to ϕ if there

exists a literal ℓ ∈ C such that for all clauses D ∈ ϕ with ℓ̄ ∈ D, the clause C ∪ (D \ {ℓ̄}) has

property AT with respect to ϕ.

The RAT property is useful for two reasons: it can be checked in polynomial time, and the

processing and solving steps done by SAT solvers can be translated into RAT clauses. We will

not discuss the implementation of the verification algorithm or the generation of DRAT proofs by

solvers, but more details can be found in [72], for example.

1.4. Polynomial Systems of Equations and Solvability

Another way we encode combinatorial problems is through systems of polynomial equations.

There is a rich body of literature surrounding the relationships between combinatorics and poly-

nomials. We could not hope to detail the full extent of this work in this thesis. Here we give some

highlights that are relevant to our work, and we refer the reader to the forthcoming survey [39].
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Among the first instances of this paradigm is the graph coloring ideal given by Bayer [10].

Recall that a graph G = (V,E) is k-colorable if there is a function χ : V → {1, . . . , k} such that

χ(u) ̸= χ(v) for all {u, v} ∈ E.

Encoding A. Given a graph G = (V,E), the following system of equations has a solution over

C if and only if G is k-colorable.

xkv − 1 = 0 ∀v ∈ V,

k−1∑
i=0

xiux
k−1−i
v = 0 ∀{u, v} ∈ E.

Each vertex has a corresponding variable xv, and the first set of equations forces each xv to be

assigned a k-th root of unity, which in turn correspond to the k colors. The second set of equations

forces adjacent vertices to take on different roots of unity (colors); this can be seen by rewriting

the equations as (xku − xkv)/(xu − xv) = 0. Moreover, there is a one-to-one correspondence between

proper k-colorings of G and solutions to this system of equations.

When a system of equations over an algebraically closed field has no solution, Hilbert’s Null-

stellensatz says that there exists a polynomial identity that certifies this fact.

Theorem 1.4.1 (Hilbert, 1893 [75]). Let f1 = · · · = fm = 0 be a system of equations over an

algebraically closed field K. Then this system has no solution if and only if there exist polynomials

αi such that
m∑
i=1

αifi = 1.

The identity
∑m

i=1 αifi = 1 is called a Nullstellensatz certificate. The degree of a certificate is

the maximal degree of the polynomials αi, though we note that some authors define the degree to

be the maximal degree among all αifi. The certificate degree is a rough measure of how difficult it

is to prove that a system has no solution; systems with higher minimum Nullstellensatz degree are

in some sense “harder” to refute. There is a more precise link between computing Nullstellensatz

certificates and complexity theory. We say that an problem of size n has an O(g(n))-encoding as a

system of polynomial equations if the number of variables, number of equations, and the bit-sizes of

the number of monomials, all coefficients, and all exponents in the equations are all at most g(n).

19



For example, Encoding A is an O(n2)-encoding for graphs of order n. Given an NP -complete

problem L with an O(g(n))-encoding for some polynomial g(n), under the assumption P ̸= NP ,

for every n ≥ 0 there must be instances I of L, where the minimum degree of a Nullstellensatz

certificate is at least n (for a detailed proof, see [99]).

The fundamental idea behind this fact is that computing Nullstellensatz certificates is equivalent

to solving a linear system of equations. For a fixed degree d, one can write out the certificate

polynomials αi as arbitrary polynomials of degree d, expand the identity
∑m

i=1 αifi = 1, and

equate the coefficients of the monomials on both sides. The resulting system is a linear system

in the coefficients of the αi. If this new linear system has no solution, then one can increment d

and try again with a larger system. This is the Nullstellensatz Linear Algebra algorithm (NulLA)

developed in [42].

There are bounds on the degrees of Nullstellensatz certificates for general systems of linear

equations, so NulLA is indeed an algorithm. However, these bounds are exponential and sharp

in the most general case. Kollár [84] showed for all algebraically closed fields K, there exists a

a polynomial system f1 = · · · = fm = 0 of degree d > 2 in n variables whose minimal degree

Nullstellensatz certificate has degree dm. One such system is

xd1 = x1x
d−1
n − xd2 = · · · = xn−2x

d−1
n − xdn−1 = xn−1x

d−1
n − 1 = 0.

Fortunately, there is a significant improvement on this bound when the systems of equations have

additional structure. Brownawell [23] observed that result of Lazard [93] gives a linear bound on

the Nullstellensatz certificate degree in these cases.

Lemma 1.4.1. Let K be an algebraically closed field, and let f1 = · · · = fm = 0 be an infeasible

system of equations of degree at most d. If the fi have no common zeros at infinity, then the system

has a Nullstellensatz certificate of degree at most n(d− 1).

While Lemma 1.4.1 gives a stark improvement over the exponential degree bounds, even a linear

degree bound is far from practical. A non 3-colorable graph on a modest 20 vertices whose minimal

certificate degree is the maximum possible in Lemma 1.4.1 would require solving for the coefficients

of
(
60
20

)
> 1015 monomials for each equation in Encoding A. The practical success of NulLA is in
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part due to many optimizations, for instance modifying Encoding A to be an encoding over F̄2

rather than C, and adding redundant “degree cutting” equations that do not affect the feasibility

of the system but lower the certificate degree. But more remarkably, the extensive computational

experiments done in [42] and [99] did not find a certificate degree of degree more than four, even

on difficult benchmarks.

Since the hypothesis P ̸= NP is widely regarded as true, we should expect to find a family of

instances whose minimal degree Nullstellensatz certificates grow. However, it seemed difficult to

find a graph with high minimal Nullstellensatz degree “in the wild,” and it was not obvious how

to construct one. A few years later, Lauria and Nordström [92] constructed a family with linear

degree growth using a reduction from the so-called functional pigeonhole principle, which had

previously known lower bounds in the polynomial calculus proof system. While this quashed any

hopes of NulLA as a polynomial-time algorithm for 3-coloring, the point remains that in practice,

Nullstellensatz certificate computations can be effective.

A related problem is to find combinatorial interpretations for Nullstellensatz certificates. For

Encoding A (using F̄2 instead of C), De Loera, Hillar, Malkin, and Omar characterized graphs that

have a degree one minimal Nullstellensatz certificate in terms of oriented cycles [41]. Moreover,

this class of graphs can be recognized in polynomial time. Another combinatorial characterization

of these graphs that does not impose any directed graph structures is given in [94]. No such

characterization is known for graphs whose minimal degree Nullstellensatz certificate is equal to

4 or higher (note that degrees 2 and 3 are not possible; see [99]). In [100], Margulies, Onn,

and Pasechnik study the partition problem, which takes as input a set of positive integers and

asks whether it can be partitioned into two disjoint subsets whose sums are equal. The following

encoding describes this problem using polynomial equations over C.

Encoding B. Given a set S = {s1, . . . , sn} of integers, there is no partition of S into two

equal-sum subsets if and only if the following system of equations has no solution over C.

x2i − 1 = 0, ∀i ∈ S,
∑
i∈S

sixi = 0.
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They characterize the form of minimal degree certificates using Encoding B in terms of carefully

chosen subsets of [n], and moreover give combinatorial interpretations for the monomials involved

in the certificates as well as their coefficients.

1.5. Contributions

Broadly stated, the contributions of this dissertation deal with both the theoretical and practical

complexity of computing Ramsey-type numbers. On the theoretical side, we study encodings of

“Ramsey-type” problems using polynomial equations and ideals. For each problem, we give a

sequence of polynomial systems that become feasible precisely when the Ramsey-type number is

reached. The solutions to these system correspond to “Ramsey colorings” of the respective objects

(integers, graph edges, points, etc.) for the problem, meaning those colorings that successfully

avoid the given monochromatic substructure.

Using these encodings, we give a general framework to construct Nullstellensatz certificates

for these infeasible systems. These certificates have combinatorial meaning in terms of Builder-

Painter games. The Builder-Painter game was first described in [36] for the classical Ramsey

numbers. We fix graphs G1, . . . , Gk and an integer n. The game is played on the graph Kn, and

each turn Builder selects an edge, and Painter assigns it a color in [k]. Builder’s objective is to

construct a monochromatic copy of Gi in color i for some i; Painter’s goal is to delay this as long

as possible. Notice that if n ≥ R(G1, . . . , Gk), then Builder is guaranteed to win eventually. The

restricted online Ramsey number R̃(G1, . . . , Gk;n) is the smallest number of turns for which Builder

is guaranteed a victory no matter what Painter does. In the case Gi = Kri for all i, we simply

write R̃(r1, . . . , rk;n) for R̃(G1, . . . , Gk;n). These certificates have degree strictly smaller than the

maximum given in Lemma 1.4.1, and the minimal degree is bounded above by generalizations of

the restricted online Ramsey numbers. Our results for the graphical Ramsey numbers are given

below.

Theorem 2.3.1. The Ramsey number R(G1, . . . , Gk) is at most n if and only if there is no

solution to the following system over F2, where Kn = (V,E) is the complete graph on n vertices.

Moreover, when the system has solutions, the number of solutions to this system is equal to the

22



number of graphs of order n that avoid copies of Gi in color i. In particular, when k = 2, G1 = Kr,

and G2 = Ks, this is the number of Ramsey graphs RG(n, r, s).

pH,i :=
∏

e∈E(H)

xi,e = 0 ∀i, 1 ≤ i ≤ k, ∀H ⊆ Kn, H ∼= Gi,(2.3)

qe := 1 +
k∑

i=1

xi,e = 0 ∀e ∈ E,(2.4)

ui,j,e := xi,exj,e = 0 ∀e ∈ E, ∀i, j, i ̸= j.(2.5)

When k = 2, G1 = Kr, and G2 = Ks, the Ramsey ideal RI(n, r, s) is ideal of the polynomial

ring F2[x1,e, x2,e]e∈E(Kn) generated by the polynomials pH , qe and ui,j,e. Then we have

RI(n, r, s) ⊇ RI(n, r + 1, s) ⊇ · · · ⊇ RI(n, n, s) ⊇ RI(n, n+ 1, s) = RI(n, n+ 2, s) = . . .

and

RI(n, r, s) ⊇ RI(n, r, s+ 1) ⊇ · · · ⊇ RI(n, r, n) ⊇ RI(n, r, n+ 1) = RI(n, r, n+ 2) = . . .

Theorem 2.3.2. If n ≥ R(G1, . . . , Gk), then there is an explicit Nullstellensatz certificate of

degree R̃(G1, . . . , Gk;n) − 1 that the statement R(G1, . . . , Gk) > n is false using the encoding in

Theorem 2.3.1. In particular, in the case of 2-color classical Ramsey numbers, this implies that if

n ≥ R(r, s), then there exists a Nullstellensatz certificate of degree R̃(r, s;n)− 1 that the statement

R(r, s) > n is false.

We emphasize that graphical Ramsey numbers do not have any special properties that are used

to prove Theorems 2.3.1 and 2.3.2. In fact, a similar encoding and certificate construction work

for Ramsey-type problems, which we define precisely in Chapter 2. Ramsey-type problems include

some of the most famous in Ramsey theory, including the problems of computing Schur, Rado,

van der Waerden, and Hales-Jewett numbers. We will also define a Builder-Painter game for other

Ramsey-type problems in Chapter 2. These results are consolidated in our metatheorem, Theorem

2.3.3 which is a generalization of Theorems 2.3.1 and 2.3.2 to other Ramsey-type problems; the
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bounds of the certificate degrees are given in terms of analogues of the restricted online Ramsey

numbers.

Our second contribution in Chapter 2 deals with Alon’s Combinatorial Nullstellensatz. This is a

popular technique where combinatorial problems are encoded by a single polynomial f(x1, . . . , xn),

and the combinatorial property of interest is true depending on whether f vanishes or not at

certain testing points. This approach has been used with great success in many situations (see, for

example, [4,46,66,77,82,118,132] and the references therein).

We show that lower bounds for Ramsey numbers can be obtained by showing that a certain

Ramsey polynomial fr,s,n is not identically zero. Its coefficients are new combinatorial numbers

En,k,r,H which we call ensemble numbers. We show that En,k,r,H equals the number of ways to

choose two distinct edges from k-tuples of r-cliques inside Kn such that, every edge in a subgraph

H is chosen an odd number of times and every edge in its complement H̄ is chosen an even number

of times. We give a detailed example computing a value of En,k,r,H in Section 2.3.

Theorem 2.4.2 shows that the numbers En,k,r,H can be used to find lower bounds for the diagonal

Ramsey number R(r, r), and it is an analogue of Theorem 7.2 in [4].

Theorem 2.4.2. If

∑
k odd

2k

((
r

2

)2

−
(
r

2

))(r2)−k

En,k,r,H ̸=
∑

k even

2k

((
r

2

)
−
(
r

2

)2
)(r2)−k

En,k,r,H

for some H, then R(r, r) > n.

The use of NulLA or the Combinatorial Nullstellensatz as a practical means to compute or

certify upper bounds for Ramsey numbers is limited. We encountered difficulty attempting to

certify bounds for numbers as low as R(3, 4), and it is unlikely that NulLA can compute new Ramsey

number upper bounds due to the size of the polynomial systems involved. Our computational focus

shifted to the Rado numbers, and inspired by the successes in computing S(5) and R2(x
2+y2 = z2),

we turned to SAT solvers.

Our first computational contribution is the calculation of many new Rado numbers for three

variable linear homogeneous equations ax+ by = cz. These computations were carried out by SAT

solvers and use an encoding that, given an equation E and positive integers k and n, produces a
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formula F k
n (E) that is satisfiable if and only if Rk(E) > n. This encoding is based on the one given

in [71] and is described in Chapter 3.

Theorem 3.6.1. The values of the following Rado numbers are known.

(i) R2(ax+ by = cz) for 1 ≤ a, b, c ≤ 20.

(ii) R3(a(x− y) = bz) for 1 ≤ a, b ≤ 15.

(iii) R3(a(x+ y) = bz) for 1 ≤ a, b ≤ 10.

(iv) R3(ax+ by = cz) for 1 ≤ a, b, c ≤ 6.

(v) R4(x− y = az) for 1 ≤ a ≤ 4.

(vi) R4(a(x− y) = z) for 1 ≤ a ≤ 5.

Most of the values given in Theorem 3.6.1 are new, though some of the lower values were

previously known. The results of Theorem 3.6.1 suggest that several patterns hold for the Rado

numbers R3(a(x − y) = bz), 1 ≤ a, b ≤ 15, and we show that these patterns continue for higher

values of a and b.

Theorem 3.4.1. The values of the following Rado numbers are known:

(i) R3(x− y = (m− 2)z) = m3 −m2 −m− 1 for m ≥ 3.

(ii) R3(a(x− y) = (a− 1)z) = a3 + (a− 1)2 for a ≥ 3.

(iii) R3(a(x− y) = bz) = a3 for b ≥ 1, a ≥ b+ 2, gcd(a, b) = 1.

These are among the first infinite families of three color Rado numbers that are known. In

particular, a corollary of Theorem 3.4.1 is an exact formula for the generalized Schur numbers

given by S(m, k) = Rk(x1 + · · ·+ xm−1 = xm) for k = 3, though we note this result was obtained

independently in [22]. In Chapter 3 we also prove several results on degree of regularity. These

results, combined with additional computations, yield the following.

Theorem 3.6.2. The degree of regularity of the equation ax + by = cz is known for all 1 ≤

a, b, c ≤ 5.

We are also able to give the degree of regularity for every equation of the form a(x + y) = bz

with a, b ∈ Z+ satisfying a ≤ 5 or b ≤ 2.
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Theorem 3.6.3. Let a, b ∈ Z with gcd(a, b) = 1 and either a ≤ 5 or b ≤ 2. Then

dor(a(x+ y) = bz) =


∞ a = b = 1, or a = 1, b = 2,

2 a ≥ 2b or b ≥ 4a,

3 otherwise.

A simple corollary of Theorem 3.6.3 is an improvement on Theorem 1.2.6 (ii), a complete

characterization of the degree of regularity for the equations a(x+ y) = bz with a
b = 2ℓ.

Corollary 3.6.1. Let a, b ∈ Z+ with a
b = 2ℓ, ℓ ∈ Z. Then

dor(a(x+ y) = bz) =


∞ ℓ = −1, 0,

2 otherwise.

We also answer a related conjecture of Golowich [57].

Conjecture 3.6.1. For each positive integer k there is an integer m(k) such that for any

m ≥ m(k), any linear homogeneous equation in m variables with nonzero integer coefficients not

all of the same sign is k−regular.

This conjecture suggests that for a given k and sufficiently many variables, 2-regularity implies

k-regularity. However, we give counterexamples showing that this is not enough, and for allm, k ≥ 3

there is a linear homogeneous equation in m variables that is not k-regular.

Theorem 3.6.4. For all m, k ≥ 3, there is a linear homogeneous equation E in m variables that

is not k-regular. In particular,

x1 + · · ·+ xm−1 = ⌈(m− 1)
k−1
k−2 ⌉xm

is not k-regular. Thus Conjecture 3.6.1 is false.

As a corollary, for m ≥ 3 there exists a linear homogeneous equation in m variables with degree

of regularity exactly 2.
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Corollary 3.6.2. For all m ≥ 3, there is a linear homogeneous equation E in m variables with

dor(E) = 2. In particular,

dor(x1 + · · ·+ xm−1 = (m− 1)2xm) = 2.

In Chapter 4, we study Ramsey-type results involving two types of sequences, diffsequences and

arithmetic progressions with prescribed gap set. We recall some terminology from [91]. Given a set

D, a D-diffsequence is a sequence where the differences between consecutive terms are all elements

of D. The Ramsey-type number associated to diffsequences is denoted n = ∆(D, ℓ; k), the smallest

number n such that every k-coloring of [n] contains a D-diffsequence of length ℓ. For arithmetic

progressions, we define the number n = n(APD, ℓ; k) to be the smallest number n such that every

k-coloring of [n] contains an arithmetic progression of length ℓ whose common difference lies in D.

If the numbers ∆(D, ℓ; k) exist for all ℓ, then we say that D is k-accessible. The largest k for which

D is k-accessible is called the degree of accessibility of D, denoted doa(D). Similarly, if the numbers

n(APD, ℓ; k) exist for all ℓ, then we say the set APD is k-regular, and the largest k for which APD

is k-regular is called the degree of regularity of APD, denoted dor(APD) (note the similarity to the

definition of degree of regularity for equations, defined in terms of the Rado numbers).

Landman and Robertson studied the existence of and bounds for the numbers ∆(D, ℓ; k) for

various choices of D, with particular emphasis on translates of the set of primes [90]. More recent

work by Clifton [33] and Chokshi, Clifton, Landman, and Sawin [31] has examined diffsequences

involving sets such as D = {2i : i ≥ 0} and given bounds on ∆(D, ℓ; 2).

Another interesting choice for D is the set of Fibonacci numbers F = {1, 2, 3, 5, 8, 13, . . . }.

Ramsey results involving sequences that satisfy the Fibonacci recurrence, among other linear re-

currences, have been studied in [16,69,89,108,109]. Landman and Robertson showed that F is

2-accessible and left the matter of determining doa(F ) as an open question [90,91]. In [7], Ardal,

Gunderson, Jungić, Landman, and Williamson showed that dor(APF ) ≤ 5 by constructing an ex-

plicit 6-coloring of Z+ that does not contain any monochromatic 2-term F -diffsequences. Moreover,

they proved that 1 ≤ dor(APF ) ≤ 3 and gave several values of ∆(F, ℓ; k). Our results build upon

the work in [7]: we give improvements on the bounds for dor(APF ) and doa(F ). In particular, this

shows doa(F ) = 1.
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Theorem 4.2.1. The degree of accessibility of the Fibonacci numbers F is at most three.

Theorem 4.2.2. The set APF of arithmetic progressions whose gaps are Fibonacci numbers is

not 2-regular. Moreover, dor(APF ) = 1.

We conclude Chapter 4 by studying diffsequences when D is the set L of Lucas numbers or set

P of (nonzero) Perrin numbers. We show in Proposition 4.3.1 that dor(L) ≤ 3, though this proof

is far simpler than that of Theorem 4.2.1. In addition, it is simple to modify the SAT encoding for

Rado numbers to suit our sequences. We give experimental results and compute values of ∆(L, ℓ; k)

and ∆(P, ℓ; k) via SAT solving.

Chapter 5 gives some miscellaneous computational results. In Section 5.1 we use SAT solvers

to compute bounds for Ramsey numbers involving book and wheel graphs Bn and Wn. The precise

definitions of these graphs are given in Section 5.1.

Theorem 5.1.1. R(B4, B5) = R(B3, B6) = 19, R(W5,W7) ≥ 15.

Section 5.2 showcases applications of our SAT methods to other combinatorial problems. We

give several tables of experimental data involving Turán numbers, Sidon-Ramsey numbers, and sets

avoiding angles in vector spaces over finite fields. In Section 5.3, we mention some open questions

raised in this thesis and suggest methods and avenues for future research.
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CHAPTER 2

Ramsey Theory and Hilbert’s Nullstellensatz

2.1. Ramsey Numbers and Complexity Theory

While we know in practice computing Ramsey numbers is extremely difficult (and considered

harder than fighting a war with an alien civilization), it is not clear what is the appropriate com-

putational complexity class to show hardness of computing Ramsey numbers R(r, s). For example,

the closely related arrowing decision problem asks whether given three graphs F,G,H is there is a

red-blue edge-coloring of F that contains neither a red G or a blue H? This decision problem was

shown to be in co-NP for fixed choices of G,H [24]. Later Schaefer [122] showed that in general

it is in the polynomial hierarchy to answer this queries, but it is not clear what to do with this

complexity question when F,G,H are complete graphs KN ,Kr,Ks because there is only one value

R(r, s) for each input N, r, s, hence it is not clear how it can be hard for any of the usual classes

like NP. See details in [24,67,122].

In recent years, Pak and collaborators [78,111,112] have proposed another way to measure

complexity is by looking at counting sequences. We propose that their point of view could be

another way to assert hardness of R(r, s) by counting of Ramsey graphs: Ramsey (r, s)-graphs, are

graphs with no red clique of size r, and no independent set of size s. Clearly, the number of vertices

of a Ramsey (r, s)-graph is less than the Ramsey number R(r, s). We are interested in the number

of Ramsey graphs on n vertices denoted by RG(n, r, s). What is the complexity of counting the

sequence of numbers {RG(n, r, s)}∞n=1? From Ramsey’s theorem this sequence consists of R(r, s)−1

positive numbers and then an infinite tail of zeroes.

The #SAT problem asks how many satisfying assignments there are to a given Boolean formula

ϕ. For any given r and s, it is possible to construct formulas whose satisfying assignments are in one-

to-one correspondence with Ramsey (r, s)-graphs. We defer the details to Encoding C in Chapter

5. We give some examples of RG(n, r, s) in Table 2.1, which are computed using the #SAT solver
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relsat [9]. The hardness of R(r, s) can then be rephrased as the question of whether the counting

function RG(n, r, s) is in #P .

Table 2.1. Tables of RG(n, r, s) for small n, r, s.

n RG(n, 3, 3) RG(n, 3, 4) RG(n, 3, 5) RG(n, 3, 6) RG(n, 3, 7) RG(n, 4, 4)

1 1 1 1 1 1 1

2 2 2 2 2 2 2

3 6 7 7 7 7 8

4 18 40 41 41 41 62

5 12 322 387 388 388 892

6 0 2812 5617 5788 5789 22484

7 0 13842 113949 133080 133500 923012

8 0 17640 2728617 4569085 4681281 55881692

9 0 0 55650276 220280031 245743539 4319387624

2.2. Polynomial Ideals, Ramsey-type Problems, and Analogues of Restricted Online

Ramsey Numbers

Our first contribution, Theorem 2.3.1, reintroduces the sequence {RG(n, r, s)}∞n=1 as the number

of solutions of certain zero-dimensional ideals over the polynomial ring F2[x1, . . . , xn]. The solutions

are indicator vectors that yield all Ramsey graphs (note, here they are not counted up to symmetry

or automorphism classes). Some simple properties of RG(n, r, s), such as the fact that RG(n, r, s) ≤

RG(n, r+1, s), follow immediately from Theorem 2.3.1, and the first value of n for which the system

of equations in Theorem 2.3.1 has no solution is equal to the Ramsey number.

The proof of Theorems 2.3.1 and 2.3.2 do not rely on the graph-theoretic properties of Ramsey

numbers specifically, and in fact they apply to a much larger class of problems in Ramsey theory.

In particular, we can modify the encoding in Theorem 2.3.1 to suit several well-known problems in

Ramsey theory, such as computing Schur, Rado, and van der Waerden numbers. We express these

problems using the general framework below.
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Definition 2.2.1. Let k be a positive integer, and let {Sn} be a sequence of sets. For c in [k],

the set of colors, let Pc
n be a subset of Sn. A triple A := ({Sn}, {Pc

n}; k) is a Ramsey-type problem

if the following hold:

(i) Si ⊆ Si+1 for i ≥ 1,

(ii) Pc
i ⊆ Pc

i+1 for i ≥ 1, 1 ≤ c ≤ k,

(iii) There exists an integer N such that for all i ≥ N and every k-coloring of Si there is a

color c and some element X ∈ Pc
i where each element of X is assigned color c.

The smallest such N is called the Ramsey-type number for A, and is denoted R(A).

We see that in the problem of computing classical Ramsey numbers R(r, s), we have Sn =

E(Kn) = {(i, j) : 1 ≤ i < j ≤ n}. The families P1
n and P2

n consist of all the sets of edges

of induced subgraphs of Kn containing r and s vertices, respectively. As another example, the

problem of computing Schur numbers asks for the smallest n such that every k-coloring [n] contains

a monochromatic solution to the equation x + y = z. In this case we have Sn = [n], and for all c

we have Pc
n = {{x, y, z} : {x, y, z} ⊆ [n], x+ y = z}.

We will see in Section 2.3 that the encoding in Theorem 2.3.1 can be modified to give bounds

for many other Ramsey-type numbers, including Schur, Rado, van der Waerden, and Hales-Jewett

numbers [60, 91]. As mentioned, these bounds are given in terms of a certain two-player game.

One of the first connections between Ramsey theory and games is the Hales-Jewett theorem, which

roughly says that certain generalizations of tic-tac-toe cannot end in draws [68]. More general

“Ramsey games” were introduced by Beck [11]. A particular game he studied was the van der

Waerden game in which two players select alternately select integers from [n] and a player wins when

they have selected a length ℓ arithmetic progression. Beck went on to introduce the (unrestricted)

online Ramsey numbers R̃(r, s) in [12], and Kurek and Ruciński independently studied them in [88].

The online Ramsey numbers are defined similarly as their restricted counterparts, except Builder

is not restricted to Kn, and instead may choose any edge from an infinite set of vertices. Work by

Conlon [35] has shown that for infinitely many r,

R̃(r, r) ≤ 1.001−r

(
R(r, r)

2

)
,
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for infinitely many r, giving an exponential improvement for the online Ramsey numbers versus

the number of edges in KR(r,r). Another recent result [36] gives the lower bound

R̃(r, r) ≥ 2(2−
√

(2))r−O(1).

We are most interested in the restricted online Ramsey numbers R̃(r, r;n) and their analogues

for other Ramsey-type problems. For diagonal Ramsey numbers, the best known upper bound

is R̃(r, r;n) ≤
(
n
2

)
− Ω(n log n) when n = R(r, r) [58]. We can define numbers analogous to the

restricted online Ramsey numbers for Ramsey-type problems in terms of another Builder-Painter

game. For a fixed n, we define this game as follows.

For each turn, Builder selects one object from Sn and Painter assigns it a color in [k]. Builder

wins once there is a color c and an element X ∈ Pc
n where every element of X is assigned color

c. Define the number R̃k(P1
n, . . . ,Pk

n;Sn) to be the smallest number of turns for which Builder is

guaranteed a victory. We will call these numbers restricted online Schur, Rado, van der Waerden,

etc. numbers as appropriate. In this notation, the restricted online Ramsey number R̃(r, s;n) is

equal to R̃2(P1
n,P2

n;Sn) with Pn and Sn defined as above for the Ramsey number R(r, s). Theorem

2.3.3 generalizes Theorems 2.3.1 and 2.3.2.

Theorem 2.3.3. Let A = ({Sn}, {Pc
n}; k) be a Ramsey-type problem. Then for each n, the

Ramsey-type number for A is strictly greater than n if and only if the following system of equations

has no solution over F2.

pX,c :=
∏
s∈X

xc,s = 0 ∀X ∈ Pc
n, 1 ≤ c ≤ k

qs := 1 +
k∑

i=1

xi,s = 0 ∀s ∈ Sn,

ui,j,s := xi,sxj,s = 0 ∀s ∈ Sn, ∀i, j, 1 ≤ i < j ≤ k.

If n ≥ R(A), then the minimal degree of a Nullstellensatz certificate for this system is at most

R̃k(P1
n, . . . ,Pk

n;Sn)− 1.
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Moreover, the number of solutions to this system is equal to the number of k-colorings of Sn

such that for every color c, each set X ∈ Pc
n contains an object that is not assigned color c.

For example, in the case of Schur numbers, the number of solutions to this system is exactly

the number of k-colorings of [n] that do not contain any monochromatic solutions to x + y = z.

In Section 2.3 we give some examples of values of R̃(r, s;n) and R̃(P1
n, . . . ,Pk

n;Sn) and discuss the

Nullstellensatz certificates for the associated polynomial systems.

2.3. Ramsey and Hilbert’s Nullstellensatz

We have seen in Section 1.4 that combinatorial problems, including coloring, finding inde-

pendent sets, partitions, etc. can be encoded as a system of polynomial equations (see, e.g.,

[10,25,40,44,45,76,98,101]). A Nullstellensatz certificate for such a combinatorial polynomial

system is therefore a proof that a combinatorial theorem is true. We are interested on bounding

the Nullstellensatz degree for our Ramsey systems.

Recall from the discussion in Section 1.4 that while the most general bounds for Nullstellensatz

certificates are exponential, Lemma 1.4.1 shows that for “combinatorial ideals,” the bounds are

much better, linear in the number of variables. Over finite fields there are degree bounds that

are independent of the number of variables [62], and a recent paper [105] gives substantial im-

provements to these bounds. The bounds we give in Theorems 2.3.2 and 2.3.3 for our systems of

equations are better than the above bounds. Moreover, it has been documented that in practice

the degrees of Nullstellensatz certificates of NP-hard problems (e.g., non-3-colorability), tend to

be small “in practice” (see, for example, [43,94,99] and the references therein), especially when

the polynomial encodings are over finite fields. Note also that when we know the degree of the

Nullstellensatz certificate, one can compute explicit coefficients of the Nullstellensatz certificate

using a linear algebra system derived by equating the monomials of the identity. This has been

exploited in practical computation with great success, see [42,43,94].

We now prove Theorem 2.3.1 of our encoding for Ramsey numbers over F2 below.

Proof of Theorem 2.3.1. Suppose there is a solution x to the system over F2. For each

edge e of Kn and each color i, the system has a variable xi,e. The polynomials ui,j,e guarantee

that for a given e, at most one variable xi,e is nonzero. From the polynomials qe, we then see that
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exactly one index i such that xi,e = 1, and let ϕ(x) be the coloring χ where χ(e) is this index.

Color each edge e of Kn with the color χ(e). In the equations involving the polynomials pH , for

each subgraph H of Kn with H ∼= Gi, there is at least one edge e in H with xi,e = 0. Therefore

χ(e) ̸= i, so there is no monochromatic copy of Gi in color i.

Conversely, if we have a coloring χ of the edges of Kn with no monochromatic Gi in color i,

then let ψ(χ) be the solution x where

xi,e =


1 if χ(e) = i,

0 otherwise.

One can check easily that x satisfies the system of equations. The maps ϕ and ψ are inverses of

each other, and so the number of solutions to the system is equal to the number of colorings of Kn

with no monochromatic Gi in color i.

For the first chain of ideals, observe that for a fixed i, the polynomial
∏

e∈E(H) xi,e divides∏
e∈E(H′) xi,e if and only if H is a subgraph of H ′. Since every copy of Kr+1 in Kn contains a copy

of Kr as a subgraph, in the ideal RI(n, r + 1, s), every polynomial of the form
∏

e∈E(H′) xi,e with

H ′ ∼= Kr+1 is divisible by a generator
∏

e∈E(H) xi,e of RI(n, r, s) with H ∼= Kr. The ideals in the

chain are equal for r > n since in this case Kr is not a subgraph of Kn. The proof for the second

chain of ideals is similar. □

Before we prove Theorem 2.3.2, we show a special case as a warm-up example. There is a

simple certificate of the fact that R(r, 2) ≤ r.

Example 2.3.1. For all r, there exists a Nullstellensatz certificate of degree
(
r
2

)
− 1 of the

statement R(r, 2) ≤ r.

Proof. Label the edges of Kr from 1 to n =
(
r
2

)
. The following identity is a certificate that

R(r, 2) ≤ r. Polynomials in parentheses are part of the system of equations in Theorem 2.3.1.
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1 = (1 + x1,1 + x2,1) + x1,1(1 + x1,2 + x2,2) + x1,1x1,2(1 + x1,3 + x2,3) + . . .

+ x1,1x1,2 · · ·x1,n−1(1 + x1,n + x2,n)

+ x2,1 + x1,1(x2,2) + x1,1x1,2(x2,3) + · · ·+ x1,1x1,2 · · ·x1,n−1(x2,n)

+ (x1,1 · · ·x1,n)

□

In the proof of Theorem 2.3.2, we show how to translate a strategy for Builder into a Null-

stellensatz certificate. This method can be used to construct a certificate for all (known) upper

bounds for R(G1, . . . , Gs). Notably, better strategies for Builder yield lower degree certificates. In

Example 2.3.1, this is not a concern since the order in which Builder selects edges does not matter,

and in fact R̃(r, 2) =
(
r
2

)
. Painter can simply use the first color for every edge, and Builder wins

only when all
(
r
2

)
edges are selected.

The proofs of Theorems 2.3.2 and 2.3.3 are similar, and in fact Theorem 2.3.2 follows from

Theorem 2.3.3, but for the sake of concreteness we begin with Theorem 2.3.2.

Proof of Theorem 2.3.2. Number the edges of Kn from 1 to
(
n
2

)
. A t-turn game state g is

a set {(ei1 , c1), (ei2 , c2), . . . , (eit , ct)} of pairs of edges eij ∈ E chosen by Builder and colors cj ∈ [k]

chosen by Painter. A game is complete if there is some color c ∈ [k] where Painter has colored a

monochromatic Gc in color c. Let d := R̃(G1, . . . , Gk;n). If Builder follows an optimal strategy for

choosing edges, then the game lasts at most d turns, that is t ≤ d.

For a t-turn game state g, define the monomial π(g) to be

π(g) :=

t∏
j=1

xcj ,eij .

Similarly, for any monomial f =
∏t

j=1 xcj ,eij with distinct eij , let σ(f) denote the game state

{(ei1 , c1), (ei2 , c2), . . . , (eit , ct)}.
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We will describe an algorithm to construct a Nullstellensatz certificate of the form

(2.1)
k∑

i=1

∑
H∼=Gi

βH,ipH,i +
∑
e∈E

γeqe = 1.

Denote the left-hand side of Equation 2.1 by L. For each i ∈ [k], initialize βH,i to 0 for all

H ∼= Gi. Initialize γe to 0 for all edges e except e1, and set γe1 := 1. Then repeat the following:

(1) Expand and simplify L so that L is a sum of monomials. If L = 1, then we are done.

(2) Otherwise, at least one term in L is a nonconstant monomial f .

(3) If σ(f) is a completed game state, then pH,i divides f for some color i and H ∼= Gi. Then

set

βH,i ← βH,i +
f

pH,i
.

This results in L ← L + f , which cancels the original f in the certificate since it is an

expression over F2, which has characteristic 2.

(4) If σ(f) is not a completed game state, then let e be an edge that Builder should choose in

an optimal strategy from the game state σ(f). Set

γe ← γe + f.

Since fqe = f +
∑k

i=1 fxi,e, we obtain L ← L + f +
∑k

i=1 fxi,e. This results in the

cancellation of f in L, but adds k additional terms (one for each of Painter’s k choices for

coloring e) to L. Note that if σ(f) is a t-turn game state, then σ(fxi,e) is a (t + 1)-turn

game state for all i.

By the symmetry of Kn, it does not matter which edge Builder selects first. Therefore each

nonconstant term that appears in L corresponds to a game state where Builder (but not necessarily

Painter) has followed an optimal strategy. Since terms that correspond to completed games are

cancelled out in step 3, this procedure terminates, resulting in a Nullstellensatz certificate. Because

Builder follows an optimal strategy, the maximal degree of any term in any γe is d−1, so the degree

of the certificate is d− 1.

□
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To illustrate the importance of Builder’s strategy in this method, observe that one can construct

a degree 7 certificate for the statement R(3, 3) ≤ 6 using the following strategy that mimics the

proof in Proposition 1.1.2: For the first five turns, Builder selects each edge incident to some vertex

v. No matter how Painter colors these edges, three must be colored the same color. Call these

edges vw1, vw2, vw3. Then for the next three turns, Builder selects the edges w1w2, w1w3, and

w2w3, and Painter must construct a monochromatic triangle. However, if Builder plays poorly and

selects, for example, the edges (1, 2), (2, 3), (3, 4), (4, 5), (5, 6), (1, 6), (1, 4), (2, 5), and (3, 6), then no

matter what Painter does there are no monochromatic triangles, and this leads to a higher degree

certificate.

The proof of Theorem 2.3.2 shows that the polynomials can “simulate” a tree of Builder-Painter

games. However, in general the degrees of certificates can be strictly smaller than the bounds given

in Theorems 2.3.2. For example, a result from [88] implies R̃(3, 3; 6) = 8. However, there exists

a Nullstellensatz certificate of degree 5 using the encoding in Theorem 2.3.1, which is better than

the bound given in Theorem 2.3.2. We now give the proof of Theorem 2.3.3.

Proof of Theorem 2.3.3. Let A = ({Sn}, {Pc
n}; k) be a Ramsey-type problem. A t-turn

game state g after t is a set {(si1 , c1), (si2 , c2), . . . , (sit , ct)} of objects s ∈ Sn chosen by Builder and

colors cj ∈ [k] chosen by Painter. A game is complete if there is a color c ∈ [k] and some element

X ∈ Pc
n where Painter has colored all the elements of X color c. Let d := R̃k(Pn;Sn). If Builder

follows an optimal strategy for choosing edges, then the game lasts at most d turns, that is t ≤ d.

For a game state gt, define the monomial π(gt) to be

π(gt) :=

t∏
j=1

xcj ,sij .

Similarly, for any monomial f =
∏t

j=1 xcj ,sij with distinct sij , let σ(f) denote the game state

{(si1 , c1), (si2 , c2), . . . , (sit , ct)}.

We will describe an algorithm to construct a Nullstellensatz certificate of the form

(2.2)
∑

(X,c)∈Pn

βX,cpX,c +
∑
s∈Sn

γsqs = 1.
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Denote the left-hand side of Equation 2.2 by L. Initialize βX,c to 0 for all (X, c) ∈ Pn. Let s∗

be an object that Builder selects first in an optimal strategy. Initialize γs∗ to 1 and γs to 0 for all

other s ∈ Sn. Then repeat the following:

(1) Expand and simplify L so that L is a sum of monomials. If L = 1, then we are done.

(2) Otherwise, at least one term in L is a nonconstant monomial f .

(3) If σ(f) is a completed game state, then pX,c divides f for some (X, c) ∈ Pn. Then set

βX,c ← βX,c +
f

pX,c
.

This results in L ← L + f , which cancels the original f in the certificate since it is an

expression over F2, which has characteristic 2.

(4) If σ(f) is not a completed game state, then let s be an object that Builder should choose

in an optimal strategy from the game state σ(f). Set

γs ← γs + f.

Since fqs = f +
∑k

i=1 fxi,s, we obtain L ← L + f +
∑k

i=1 fxi,e. This results in the

cancellation of f in L, but adds k additional terms (one for each of Painter’s k choices for

coloring s) to L. Note that if σ(f) is a t-turn game state, then σ(fxi,s) is a (t + 1)-turn

game state for all i.

For each nonconstant monomial f that appears in L, its corresponding game state σ(L) is one

where Builder (but not necessarily Painter) has followed an optimal strategy. Since terms that

correspond to completed games are cancelled out in step 3, this procedure terminates and results

in a Nullstellensatz certificate. Because Builder follows an optimal strategy, the maximal degree of

any term in any γs is at most d− 1, so the degree of the certificate is at most d− 1. □

As an application of Theorem 2.3.3, let E be a linear equation, and let Rk(E) denote the k-color

Rado number for E , the smallest n such that every k-coloring of [n] contains a monochromatic

solution to E . Let Xn,E be the set of all solutions over [n] to E . Let Pc
n := Xn,E for all c. If Rk(E)

exists, then ({[n]}, {Pc
n}; k) is a Ramsey-type problem, and we have the following corollary.
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Corollary 2.3.1. Let E be the linear equation
∑t

j=1 aiyi = a0 with a finite Rado number

Rk(E). Let Xn,E = {(m1, . . . ,mt) :
∑t

j=1 ajmj = a0, 1 ≤ mj ≤ n} be the set of solutions over [n]

to E. Then for every n, the following system has no solution over F2 if and only if n ≥ Rk(E).

t∏
j=1

xi,mj = 0 ∀(m1, . . . ,mt) ∈ Xn,E , 1 ≤ i ≤ k,

1 +
k∑

i=1

xi,m = 0 1 ≤ m ≤ n,

xi,mxj,m = 0 1 ≤ m ≤ n, 1 ≤ i < j ≤ k.

The degree of a minimal Nullstellensatz certificate for this system has degree at most

R̃k(Xn,E , . . . , Xn,E ; [n])− 1.

Example 2.3.2. Let E denote the equation x+3y = 3z, and letX9,E be the solutions to E over [9]

as above. It is known that R2(E) = 9 [91]. However, Builder can select, in order, the integers 4,6,9,3,

and 7 to win the Builder-Painter game in at most 5 turns: since (6, 4, 6) is a solution, 4 and 6 must

be different colors, and then since (9, 6, 9) and (3, 3, 4) are solutions, 4 and 9 must be one color and 3

and 6 are the other color. But then (3, 6, 7) and (9, 4, 7) are solutions, so there is a monochromatic

solution no matter which color Painter selects for 7. Therefore R̃2(X9,E , X9,E ; [9]) ≤ 5, and the

minimal degree of a Nullstellensatz certificate for the system of equations in Corollary 2.3.1 is at

most 4. In fact, some computations show the minimal degree is 2.

Figure 2.1. Depiction of the game in Example 2.3.2. Leaves of the tree denote
completed games where Builder has won.
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Similarly, the encoding in Theorem 2.3.1 for the Schur number S(2) = R2(x + y = z) also

gives an example of Nullstellensatz certificates that are smaller than the ones given by games. It is

well-known that S(2) = 5, and from the encoding in Theorem 2.3.3, we have S(2) ≤ 5 if and only

if the following system of equations has no solutions over F2.

1 + x1,i + x2,i = 0, 1 ≤ i ≤ 5,

xi,1xi,2 = 0, xi,2xi,4 = 0,

xi,1xi,3xi,4 = 0, xi,1xi,4xi,5 = 0, xi,2xi,3xi,5 = 0.

 i = 1, 2

A computer search shows that the number R̃2(X5,x+y=z, X5,x+y=z; [5]) = 5, where X5,x+y=z is

the set of positive integer solutions to x + y = z in [1, 5]. The following identity (over F2) is a

degree 3 Nullstellensatz certificate for the above system of equations, which is an improvement on

the bound in Theorem 2.3.3.

1 = (x2,5 + x1,4x1,5 + x1,5x2,3x2,4)(1 + x1,1 + x2,1)+

(x1,1x1,3 + x2,1x2,5 + x1,1x1,5x2,4 + x1,1x2,3x2,5 + x1,3x1,5x2,4 + x1,4x1,5x2,1)(1 + x1,2 + x2,2)+

(x1,1x2,5 + x2,4x1,5 + x1,1x1,5x2,4)(1 + x1,3 + x2,3)+

(x1,5 + x1,1x1,3x1,5 + x1,1x1,3x2,2 + x1,2x2,1x2,5)(1 + x1,4 + x2,4)+

(1 + x1,1x1,3)(1 + x1,5 + x2,5)+

(x1,3 + x2,3x2,5 + x2,4x1,5)x1,1x1,2 + (x2,1x1,5 + x2,1x2,5)x1,2x2,4

(x2,5 + x1,4x1,5)x2,1x2,2 + (x1,1x1,3 + x1,1x1,5 + x1,3x3,5)x2,2x2,4 + (x1,5 + x2,2)x1,1x1,3x1,4+

(x1,1x1,4x1,5) + x2,4(x1,2x1,3x1,5) + x1,5(x2,1x2,3x2,4) + x1,2(x2,1x2,4x2,5) + x1,1(x2,2x2,3x2,5).

Recall the van der Waerden number w(ℓ; k) is the smallest n such that every k-coloring of

[n] contains a monochromatic ℓ-term arithmetic progression [60]. Let APn,ℓ denote the set of all
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ℓ-term arithmetic progressions in [n]. Then setting Pc
n := APn,ℓ for all c, then ({[n]}, {Pc

n}; k) is a

Ramsey-type problem as well.

Corollary 2.3.2. For every n, the following system has no solution over F2 if and only if

n ≥ w(ℓ; k).

t∏
j=1

xi,mj = 0 ∀(m1, . . . ,mt) ∈ APn,t, 1 ≤ i ≤ k,

1 +
k∑

i=1

xi,m = 0 1 ≤ m ≤ n,

xi,mxj,m = 0 1 ≤ m ≤ n, 1 ≤ i < j ≤ k.

The minimal degree of a Nullstellensatz certificate for this system is at most

R̃r(APn,k, . . . , APn,k; [n])− 1.

The number of solutions to this system is the number of k-colorings of [n] that contain no t-term

monochromatic arithmetic progressions.

We give one last consequence of Theorem 2.3.3. For fixed parameters t and n, a combinatorial

line is a nonconstant sequence of points v1, . . . , vt, where vi ∈ [t]n such that for every coordinate

j, the sequence (vij)
t
i=1 is either constant or vij = i for all i. The Hales-Jewett number HJ(t, k) is

the smallest number n such that every k-coloring of [t]n contains a monochromatic combinatorial

line [60]. Let Lt,n denote the set of all combinatorial lines on tn. If we set Pc
n = Lt,n for all c, then

({[t]n, {Pc
n}; k) is a Ramsey-type problem.

Corollary 2.3.3. For every n, the following system has no solution over F2 if and only if

n ≥ HJ(t, k).

t∏
j=1

xi,vj = 0 ∀(v1, . . . , vt) ∈ Lt,n, 1 ≤ i ≤ k,

1 +
k∑

i=1

xi,v = 0 v ∈ [t]n,

xi,vxj,v = 0 v ∈ [t]n, 1 ≤ i < j ≤ k.
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The number of solutions to this system is the number of k-colorings of [t]n that do not contain any

monochromatic combinatorial lines.

2.4. Ramsey and Alon’s Combinatorial Nullstellensatz

In this section we introduce a way to encode the problem of finding a lower bound for R(r, s) in

terms of properties of a single polynomial. We also define a family of numbers En,k,r,H whose values

can provide bounds for R(r, r). The following theorem of Alon, the “Combinatorial Nullstellensatz,”

has been used to solve many problems in combinatorics and graph theory (see, for example, [4,46,

66,77,82,132] and the references therein).

Theorem 2.4.1 (Alon, [4]). Let F be a field, and let f ∈ F [x1, . . . , xn]. Let deg(f) =
∑n

i=1 ti

with each ti a nonnegative integer, and suppose the coefficient of
∏n

i=1 x
ti
i is nonzero. Then

if S1, . . . , Sn are subsets of F with |Si| > ti, then there exist s1 ∈ S1, . . . , sn ∈ Sn such that

f(s1, . . . , sn) ̸= 0.

Here we apply the Combinatorial Nullstellensatz to show that lower bounds for Ramsey numbers

can be obtained by showing that a certain polynomial is not identically zero. Consider the following

polynomial, where Kn = (V,E) is the complete graph on n vertices:

(2.3) f(x) = fr,s,n(x) =

 ∏
S⊂V, |S|=r

 ∑
e∈E(S)

xe −
(
r

2

) ∏
S⊂V, |S|=s

 ∑
e∈E(S)

xe +

(
s

2

) .

Every 2-coloring of the edges of G corresponds to an assignment c : {xe}e∈E → {−1, 1}. If an

edge e is colored with the first color, then we set c(xe) = 1, and if e is colored with the second

color, then c(xe) = −1. Then f(c(x)) = 0 if and only if G contains an r-clique in the first color

or an s-clique in the second color. Therefore if f(c(x1), . . . , c(x|E|)) = 0 for all colorings c, then

R(r, s) ≤ n.

Since we only consider the values of f on {−1, 1}|E|, we may instead consider the multilinear

representative of f in the ideal
〈
x2e − 1

〉
e∈E . This representative can be obtained by deleting each

variable with an even exponent from each term in f . By Theorem 2.4.1, this representative is the

zero polynomial if and only if R(r, s) ≤ |V |.
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In the proof of Theorem 2.4.2, we focus on the case when r = s and study the polynomial fr,r,n.

Before proving Theorem 2.4.2, we give an example of a value of an ensemble number En,k,r,H , which

are coefficients of the multilinear representative of fr,r,n. We recall the definition of En,k,r,H below.

We call a collection of k r-cliques a (k, r)-ensemble. For each clique in the ensemble, we select

exactly two edges, and if each edge in H is selected an odd number of times and each edge of H̄ is

selected an odd number of times, then we call this a valid covering of a subgraph H. The ensemble

number En,k,r,H is the total number of valid coverings of H counted from all (k, r)-ensembles of

Kn.

If H is the graph on five vertices with edge set {(1, 2), (1, 5)}, then E5,3,3,H = 8. The figure

below depicts all eight ways. Each graph has an associated (3, 3)-ensemble E , and each 3-clique in

E is assigned a distinct color c ∈ {red,green,blue}. The two edges from that 3-clique are colored c.

Edges colored with more than one color are drawn as multiple edges. In the upper left figure, for

example, the associated ensemble is {{1, 2, 3}, {1, 3, 4}, {1, 4, 5}. The edges (1, 2) and (1, 3) were

chosen from the clique {1, 2, 3}, the edges (1, 3) and (1, 4) were chosen from the clique {1, 3, 4}, and

the edges (1, 4) and (1, 5) were chosen from the clique {1, 4, 5}. The edges of H are chosen exactly

once, and all other edges are chosen zero or two times. Note that for some (3, 3)-ensembles, such

as {{1, 2, 3}, {1, 2, 4}, {3, 4, 5}}, it is impossible to choose edges in H an odd number of times.
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We now prove Theorem 2.4.2.

43



Proof of Theorem 2.4.2. We will use the symbol ≡ to denote equivalent representatives in

the ideal I :=
〈
x2e − 1

〉
e∈E . Consider the product of the two terms in f that arise from a fixed

r-subset S of V . Expanding this product and using the relations x2e ≡ 1 gives ∑
e∈E(S)

xe −
(
r

2

) ∑
e∈E(S)

xe +

(
r

2

) ≡
 ∑

{e,e′}∈(E(S)
2 )

2xexe′ +

(
r

2

)
−
(
r

2

)2

 .

Taking the product of these terms over all r-subsets of V gives

(2.4) f(x) ≡
∏

S⊂V, |S|=r

 ∑
{e,e′}∈(E(S)

2 )

2xexe′ +

(
r

2

)
−
(
r

2

)2

 .

After expanding the product, we may write f as a sum of monomials of the form
∏

e∈E x
be
e .

Two monomials of this form are equivalent modulo I if and only if the parity of be is the same for

all edges e. If H is a subgraph of G, it follows that every monomial that satisfies the condition

that be is odd if and only if e ∈ E(H) is equivalent to the squarefree monomial mH :=
∏

e∈E(H) xe.

Therefore, f is equivalent to a sum of the form

(2.5) f ≡
∑
H⊆G

aHmH .

We now calculate the coefficients aH in terms of En,k,r,H .

In the expansion of the right-hand side of (2.4), we have the following combinatorial interpre-

tation of the terms. Each term in the product corresponds to an r-subset S of V . For each S, the

term represents a choice of picking either a pair of edges (one of the 2xexe′ terms in the sum), or

zero edges (the term
(
r
2

)
−
(
r
2

)2
) from E(S). Therefore the coefficient aH is

(2.6) aH =

(nr)∑
k=0

2k

((
r

2

)2

−
(
r

2

))(r2)−k

En,k,r,H .

If aH is nonzero for some graph H, then the multilinear representative of f is nonzero, and by

Theorem 2.4.1 there exists a coloring of Kn that makes f nonzero, and in this case it follows that
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R(r, r) > n. Setting the expression (2.6) to be not equal to zero and rearranging terms by the

parity of k concludes the proof. □

As an example, we give the values of En,k,r,H for n = 5, r = 3, and H a graph of order five with

an even number of edges. We denote by G1 the graph with edge set {{1, 2}, {1, 3}, {2, 3}, {1, 4}}

and G2 the graph with edge set {{1, 2}, {2, 3}, {3, 4}, {3, 5}}.

H

k
0 1 2 3 4 5 6 7 8 9 10

K5 1 0 0 20 30 132 220 540 585 460 60

P3 ∪K2 0 1 2 8 44 106 280 496 612 413 86

K2 ∪K2 ∪K1 0 0 4 12 28 124 276 484 628 404 88

K1,4 0 0 3 4 36 132 242 588 516 428 99

G1 0 0 2 8 32 120 292 504 592 392 106

G2 0 0 1 10 34 114 292 510 590 390 107

P5 0 0 1 8 40 112 282 520 592 384 109

C4 ∪K1 0 0 2 8 28 136 272 504 612 376 110

K2 ∪K3 0 0 0 12 36 108 292 516 588 388 108

K1,4 0 0 0 8 24 120 328 504 552 392 120

G1 0 0 0 6 30 118 318 514 554 386 122

G2 0 0 0 4 36 116 308 524 556 380 124

P5 0 0 0 4 32 132 288 524 576 364 128

C4 ∪K1 0 0 0 4 36 116 308 524 556 380 124

K2 ∪K3 0 0 0 4 36 108 348 444 636 340 132

P3 ∪K2 0 0 0 0 24 128 344 512 520 384 136

K2 ∪K2 ∪K1 0 0 0 0 20 144 324 512 540 368 140

K5 0 0 0 0 0 144 400 480 480 400 144

Unfortunately, we were unable to find any nontrivial patterns in the above data, and it appears to

be difficult to compute the numbers En,k,r,H in general.
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CHAPTER 3

Rado Numbers, SAT Solvers, and Degree of Regularity

3.1. Rado Numbers

Recall that for a given equation E , the k-color Rado number Rk(E) is the smallest number n such

that every k-coloring of [n] induces a monochromatic solution to E , or infinity if no such n exists.

In the latter case, this is equivalent to the existence of a k-coloring of Z+ with no monochromatic

solution to E (see [91]).

The 2-color Rado numbers for various types of equations (linear, nonlinear, nonhomogeneous,

etc.) have been studied the most widely, and many computations can be found in, for example,

[74,106,117,121]. Here we focus on homogeneous three-variable linear equations. These are an

interesting case for two reasons. First, Rado numbers for two variable linear homogeneous equations

are completely known.

Proposition 3.1.1. For all k ∈ Z+, the Rado number Rk(ax = by) satisfies

Rk(ax = by) =


1 if a = b,

∞ otherwise.

A proof of Proposition 3.1.1 can be found in [106]. The second reason is that Rado numbers for

(linear homogeneous) equations in m = 3 variables bound those for equations with m > 3 variables.

For k = 2 colors, this is useful because we know exactly when R2(E) is finite by Theorem 1.2.5.

The following proposition is also given in [106].

Proposition 3.1.2. Suppose an equation E ′ can be obtained from setting equal some of the

variables in the equation E. Then Rk(E) ≤ Rk(E ′) for all k.

For instance, we see that R2(w+2x+y = z) ≤ R2(2x+2y = z) by setting w = y. Unfortunately,

there is no known formula for the general family of Rado numbers R2(ax + by = cz), a, b, c > 0.
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However, formulas for the Rado numbers R2(a(x − y) = bz) and R2(a(x + y) = bz) are known.

The first proof for the former family is attributed to an unpublished work of Burr and Loo, but a

proof can be found in [91]. The formula for the latter family is due to Harborth and Maasberg,

and it includes fourteen cases. Both formulas are quasipolynomial in a and b subject to algebraic

conditions on a and b. Other special cases of 2-color Rado numbers are known as well, for instance

a formula for R2(
∑m−1

i=1 aixi = xm−c) was proven for c = 0 by Guo and Sun [65] and then extended

for constants c ≥ 1−
∑m−1

i=1 ai by Schaal and Zinter [120].

There are some computations of 3-color Rado numbers scattered throughout the literature

[106,116,119], but Rado numbers with more than two colors have not been studied as often. We

present a systematic study of these numbers.

Recall that the generalized Schur numbers are given by S(m, k) = Rk(x1 + · · ·+ xm−1 = xm).

In [17] it was shown that S(m, 3) ≥ m3−m2−m−1, and it was conjectured in [1] and later proved

in [22] that S(m, 3) = m3−m2−m−1. Myers showed in [106] that the numbers Rk(x−y = (m−2)z)

give an upper bound for S(m, k), and several more values of Rk(x− y = (m− 2)z) were shown to

be equal to S(m, k), thus giving exact values for more generalized Schur numbers. Myers went on

to make the following conjecture in [106].

Conjecture 3.1.1 (Myers). R3(x− y = (m− 2)z) = m3 −m2 −m− 1 for m ≥ 3.

In this chapter we focus on computing Rado numbers for three variable linear homogeneous

equations using SAT-based methods described in Section 3.2. In particular, we show Conjecture

3.1.1 is true. Our main result is Theorem 3.4.1, which was stated in Section 1.5, and as a corollary

we obtain the following.

Corollary 3.1.1. S(m, 3) = m3 −m2 −m− 1 for m ≥ 3.

Theorem 3.6.1 gives calculations for many 3-color and 4-color Rado numbers. We collect the

3-color Rado number values we computed in Theorem 3.6.1 in Tables 3.1 to 3.8. We also give

the additional values R3(ax + ay = bz) for 3 ≤ a ≤ 6, 11 ≤ b ≤ 20 as well as our values

for R4(a(x − y) = bz) in Section 3.8 (Tables 3.9 and 3.10). Underlined entries in these tables

correspond to equations whose coefficients are not coprime.
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Table 3.1. 3-color Rado numbers R3(a(x− y) = bz)

b
a

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 14 14 27 64 125 216 343 512 729 1000 1331 1728 2197 2744 3375
2 43 14 31 14 125 27 343 64 729 125 1331 216 2197 343 3375
3 94 61 14 73 125 14 343 512 27 1000 1331 64 2197 2744 125
4 173 43 109 14 141 31 343 14 729 125 1331 27 2197 343 3375
5 286 181 186 180 14 241 343 512 729 14 1331 1728 2197 2744 27
6 439 94 43 61 300 14 379 73 31 125 1331 14 2197 343 125
7 638 428 442 456 470 462 14 561 729 1000 1331 1728 2197 14 3375
8 889 173 633 43 665 109 644 14 793 141 1331 31 2197 343 3375
9 1198 856 94 892 910 61 896 896 14 1081 1331 73 2197 2744 125
10 1571 286 1171 181 43 186 1190 180 1206 14 1431 241 2197 343 31
11 2014 1508 1530 1552 1574 1596 1618 1584 1575 1580 14 1849 2197 2744 3375
12 2533 439 173 94 2005 43 2053 61 109 300 2024 14 2341 379 141
13 3134 2432 2458 2484 2510 2536 2562 2588 2574 2530 2541 2544 14 2913 3375
14 3823 638 3039 428 3095 442 43 456 3207 470 3113 462 3146 14 3571
15 4606 3676 286 3736 94 181 3826 3856 186 61 3795 180 3835 3836 14

Table 3.2. 3-color Rado numbers R3(a(x+ y) = bz)

b
a

1 2 3 4 5 6 7 8 9 10

1 14 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
2 1 14 243 ∞ ∞ ∞ ∞ ∞ ∞ ∞
3 54 54 14 384 2000 ∞ ∞ ∞ ∞ ∞
4 ∞ 1 108 14 875 243 4459 ∞ ∞ ∞
5 ∞ 105 135 180 14 864 3430 3072 12393 ∞
6 ∞ 54 1 54 750 14 3087 384 243 2000
7 ∞ 455 336 308 875 756 14 1536 8748 7500
8 ∞ ∞ 432 1 1000 108 2744 14 8019 875
9 ∞ ∞ 54 585 1125 54 3087 1224 14 6000
10 ∞ ∞ 1125 105 1 135 3430 180 7290 14
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Table 3.3. R3(ax+ by = z)

b

a
1 2 3 4 5 6

1 14 43 94 173 286 439

2 ∞ 1093 ∞ 2975 4422

3 ∞ ∞ ∞ ∞

4 ∞ ∞ ∞

5 ∞ ∞

6 ∞

Table 3.4. R3(ax+by = 2z)

b

a
1 2 3 4 5 6

1 1 14 54 ∞ 70 126

2 14 61 43 181 94

3 243 ∞ 395 648

4 ∞ ∞ 1093

5 ∞ ∞

6 ∞

Table 3.5. R3(ax+by = 3z)

b

a
1 2 3 4 5 6

1 54 1 27 54 89 195

2 54 31 ∞ 140 108

3 14 109 186 43

4 384 220 ∞

5 2000 1074

6 ∞

Table 3.6. R3(ax+by = 4z)

b

a
1 2 3 4 5 6

1 ∞ ∞ 1 64 100 ∞

2 1 ∞ 14 ∞ 54

3 108 73 105 ∞

4 14 180 61

5 141 ∞

6 31

Table 3.7. R3(ax+by = 5z)

b

a
1 2 3 4 5 6

1 ∞ 45 60 1 125 150

2 105 1 ∞ 125 70

3 135 100 125 108

4 180 141 ∞

5 14 300

6 864

Table 3.8. R3(ax+by = 6z)

b

a
1 2 3 4 5 6

1 ∞ 40 81 ∞ 1 216

2 54 81 1 90 27

3 1 ∞ 135 14

4 54 ∞ 31

5 750 241

6 14
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Recall that if the number Rk(E) is finite for a fixed k, we say that the equation E is k-regular. If

E is k-regular for all k ≥ 1, we say E is regular. The degree of regularity of an equation E , denoted

dor(E) is the largest k for which E is k-regular. For example, R2(2x + 2y = z) = 34, but we will

see that R3(2x + 2y = z) = ∞, so dor(2x + 2y = z) = 2. When E is regular, we say dor(E) = ∞,

so dor(x + y = z) = ∞ by Theorem 1.2.1. It is possible to define degree of regularity for coloring

other sets besides Z+, for example Z, Q, or other rings R as in [18,54]. We are concerned only

with the positive integers here, though some of our results can be extended to larger sets.

One of the most interesting open questions concerning regularity is Conjecture 1.2.1, Rado’s

boundedness conjecture. In [54] Fox and Kleitman showed that Rado’s boundedness conjecture is

true if it is true for the case of homogeneous equations. They also proved the first nontrivial case

of the conjecture by showing that if a linear homogeneous equation in three variables is 24-regular,

then it is regular. However, it is not known if 24 is the best possible constant. Moreover, in [54],

several coloring lemmas give more precise bounds on the degree of regularity of 3-variable linear

homogeneous equations. We contribute further improvements on their results and compute the

degree of regularity of all sufficiently small equations ax + by = cz. In particular, we were unable

to find any nonregular, 4-regular equations of the form ax+ by = cz.

This chapter is organized as follows: In Section 3.2 we describe our SAT encoding and the

computational methods we used to compute Rado numbers. Sections 3.3 and 3.4 show how to

obtain the lower and upper bounds, respectively, for the numbers in Theorem 3.4.1. Section 3.5

gives several lemmas used to obtain improved bounds on the degree of regularity of certain families

of equations. We accumulate all of these results to prove Theorem 3.6.1 and our other theorems on

degree of regularity in Section 3.6. The remainder of the chapter contains more computational data

and details on our methods. Section 3.7 gives additional details on the computational aspects of this

project. Sections 3.8 and 3.9 contain additional tables of Rado numbers and degrees of regularity

for various equations. Finally, Section 3.10 gives additional details on part of the method used to

prove Theorem 3.4.1.
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3.2. SAT Solving and Encoding

In this section we explain how to encode the problem of finding Rado numbers as an instance

of SAT and describe additional techniques used to increase performance. The code used for our

computations can be found at [30].

Given an equation E and positive integers n, k, we construct a formula F k
n (E) that is satisfiable

if and only if there exists a k-coloring of [n] that does not contain a monochromatic solution to E .

Therefore if F k
n (E) is satisfiable, then Rk(E) > n, and otherwise Rk(E) ≤ n. We use the variables

vij that are assigned the value true if and only if the integer j is colored with color i. Following

the language used in [71], a formula F k
n (E) consists of three different types of clauses: positive,

negative, and optional.

• Positive clauses encode that every number j is assigned at least one color, and are of the

form v1j ∨ v2j ∨ · · · ∨ vkj for 1 ≤ j ≤ n.

• Negative clauses encode that there are no monochromatic solutions to E . If (x1, x2, . . . , xm)

is a solution to E , then its corresponding negative clauses are v̄ix1
∨ · · · ∨ v̄ixm

for 1 ≤ i ≤ k.

Every solution x ∈ [n]m contributes these k negative clauses to F k
n (E).

• Optional clauses encode that every number j is assigned at most one color, and are of the

form v̄i1j ∨ v̄
i2
j for 1 ≤ j ≤ n and 1 ≤ i1 < i2 ≤ k. These clauses are not strictly necessary

since they do not affect the satisfiability of F k
n (E), but they ensure that satisfying assign-

ments are in one-to-one correspondence with k-colorings of [n] that avoid monochromatic

solutions to E .

Example 3.2.1. The clauses in the formula F 3
4 (x+ y = z) are:

Positive clauses:

(v11 ∨ v21 ∨ v31) ∧ (v12 ∨ v22 ∨ v32) ∧ (v13 ∨ v23 ∨ v33) ∧ (v14 ∨ v24 ∨ v34)
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Negative clauses:

(v11 ∨ v11 ∨ v12) ∧ (v12 ∨ v11 ∨ v13) ∧ (v13 ∨ v11 ∨ v14)∧

(v11 ∨ v12 ∨ v13) ∧ (v12 ∨ v12 ∨ v14) ∧ (v11 ∨ v13 ∨ v14)∧

(v21 ∨ v21 ∨ v22) ∧ (v22 ∨ v21 ∨ v23) ∧ (v23 ∨ v21 ∨ v24)∧

(v21 ∨ v22 ∨ v23) ∧ (v22 ∨ v22 ∨ v24) ∧ (v21 ∨ v23 ∨ v24)∧

(v31 ∨ v31 ∨ v32) ∧ (v32 ∨ v31 ∨ v33) ∧ (v33 ∨ v31 ∨ v34)∧

(v31 ∨ v32 ∨ v33) ∧ (v32 ∨ v32 ∨ v34) ∧ (v31 ∨ v33 ∨ v34)

Optional clauses:

(v11 ∨ v21) ∧ (v11 ∨ v31) ∧ (v21 ∨ v31) ∧ (v12 ∨ v22) ∧ (v12 ∨ v32) ∧ (v22 ∨ v32)∧

(v13 ∨ v23) ∧ (v13 ∨ v33) ∧ (v23 ∨ v33) ∧ (v14 ∨ v24) ∧ (v14 ∨ v34) ∧ (v24 ∨ v34)

If we input F 3
4 (x+ y = z) into a SAT solver, it will output satisfiable. The 3−coloring 1, 2, 3, 4,

for example, avoids monochromatic solutions. We remark that even though some clauses, such as

v11 ∨ v11 ∨ v12, contain redundant literals, these literals are removed in a preprocessing step.

We will use this SAT encoding to prove Theorem 3.6.1. In Section 3.7 we give practical details

on this encoding and how to generate formulas efficiently.

3.3. Lower bounds for Rado Number Families

In order to prove Theorem 3.4.1, we require lower bounds for each equation. The main results of

this section are explicit colorings that give general lower bounds for the three families of equations

in Theorem 3.4.1. The following lemma gives a general lower bound on the Rado numbers Rk(a(x−

y) = bz) for any number of colors k.

Lemma 3.3.1. Suppose a, b ≥ 1 and gcd(a, b) = 1. Then Rk(a(x− y) = bz) ≥ ak.

Proof. Let va(n) denote the highest power of a that divides n. Then va : [1, ak − 1] →

{0, 1, . . . , k−1} defines a k−coloring of [1, ak−1] that has no monochromatic solutions of a(x−y) =

bz. To see this, suppose (x, y, z) is a monochromatic solution in color c. If x ≤ y, then there is
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no z ∈ [1, ak − 1] that satisfies a(x − y) = bz, so suppose x > y. Then x = acx′ and y = acy′,

where a ∤ x′, y′. Since gcd(a, b) = 1, va(z) = va(bz) = va(a(x − y)) = va(a
c+1(x′ − y′)) ≥ c + 1, a

contradiction. □

For the case b = a− 1, we have an improved lower bound on R3(a(x− y) = (a− 1)z).

Lemma 3.3.2. R3(a(x− y) = (a− 1)z) ≥ a3 + (a− 1)2.

Proof. We will construct a coloring of [1, a3 + (a − 1)2 − 1] that induces no monochromatic

solutions to a(x− y) = (a− 1)z. Define

χ(i) :=


0 va(i) = 2 or (va(i) = 0 and (i < a2 − a or i > a3 − a)),

1 va(i) = 1,

2 otherwise.

Let (x, y, z) be a positive integer solution to a(x− y) = (a− 1)z. Suppose χ(x) = χ(y) = 0. If

va(x) = va(y) ≥ 2, then since a and a−1 are relatively prime, va(z) = va((a−1)z) = va(a(x−y)) ≥

3, and χ(z) ̸= 0. If va(x) = 2 and va(y) = 0, then va(z) = va(a(x − y)) = 1, so χ(z) = 1.

The case va(x) = 0 and va(y) = 2 is similar. Note that x > y since z must be positive. If

va(x) = va(y) = 0, x ≥ a3 − a and y ≤ a2 − a, then a(x − y) ≥ a(a3 − a2) > (a − 1)(a3 − a).

Then z ∈ [a3 − a, a3 + (a − 1)2 − 1]. Since (a − 1)z = a(x − y), it follows that va(z) ≥ 1, so

va(z) ̸= 0. But the only value z ∈ [a3 − a, a3 + (a− 1)2 − 1] with va(z) ≥ 2 is a3, so χ(z) ̸= 0. Now

if va(x) = va(y) = 0 and x, y ∈ [1, a2−a) or x, y ∈ (a3−a, a3+(a−1)2−1], then x−y < a2−a, so

(a− 1)z = a(x− y) < a3 − a2. Then va(z) ∈ {1, 2}. If va(z) = 1, then χ(z) = 1 ̸= 0. If va(z) = 2,

then z ≥ a2 and (a− 1)z ≥ a3 − a2, a contradiction.

Now suppose χ(x) = χ(y) = 1. Then va(z) = va(a(x− y)) ≥ 2, so χ(z) ̸= 1.

If χ(x) = χ(y) = 2, then either va(x) = va(y) = 0, or x = a3. In the former case we have

va(z) = va(a(x− y)) ≥ 1. We have z ̸= a3 since this implies x− y = a3 − a2, but this is impossible

since x, y ∈ [1, a3− (a−1)2−1], and it follows that χ(z) ̸= 2. If x = a3, then y ̸= a3 and va(y) = 0.

Therefore va(z) = va(a(x− y)) = 1, so χ(z) ̸= 2.

Therefore there are no monochromatic solutions to a(x− y) = (a− 1)z. □

We illustrate the colorings given by Lemmas 3.3.1 and 3.3.2 in Figures 3.1 and 3.2.
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

Figure 3.1. 3-colorings of [26] and [63] that avoid monochromatic solutions to
3(x− y) = z and 4(x− y) = z, respectively.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68

69 70 71 72

Figure 3.2. 3-colorings of [30] and [72] that avoid monochromatic solutions to
3(x− y) = 2z and 4(x− y) = 3z, respectively.

We also require a related result from [17] that constructs explicit colorings that give lower

bounds for the generalized Schur numbers. We will see that this result, along with Proposition

3.1.2, gives the tight lower bound for the Rado numbers R3(x+ (m− 2)y = z).

Lemma 3.3.3 (Beutelspacher and Brestovansky). The generalized Schur numbers S(k,m) satisfy

S(k,m) ≥ mk −mk−1 −mk−2 − · · · −m− 1.

3.4. Modified SAT Encoding and Proof of Theorem 3.4.1

In this section we prove Theorem 3.4.1 using an encoding of the Rado number problem similar

to that in Section 3.2. The key difference is that in this new encoding, indices of variables are

indexed by polynomials rather than fixed integers.

Let E be a linear equation in m variables, and let S be a set of polynomials. Let C ⊆ Sm

be a set of solutions to E . The variable vis is assigned the value true if and only if the expression

s ∈ S is assigned color i. Positive and optional clauses are constructed similarly to the method

in Section 3.2. The negative clauses are constructed from the solutions in C. For example, if

S = {ia : 1 ≤ i ≤ 7}, and E is the equation x− y = 5z, then (x, y, z) = (7a, 2a, a) is a solution. If

(7a, 2a, a) ∈ C, then we add the negative clause v̄17a ∨ v̄12a ∨ v̄1a to our formula. The following lemma

formalizes this procedure and describes how to use these formulas to compute Rado numbers for

families of equations.
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Lemma 3.4.1. Let Σ = {σ1, . . . , σℓ} be a finite alphabet of parameters. Let E be a linear

equation in the variables x1, . . . , xm with coefficients in Σ. Let S be a set of expressions over Σ,

and let C ⊂ Sm be a set of solutions to E. We define Fk,S,C(E) to be the corresponding formula for

the k-color Rado number generated by the clauses from C as follows.

Fk,S,C(E) := Posk,S ∧Negk,C ∧Optk,S ,where

Posk,S :=
∧
s∈S

(
k∨

i=1

vis

)
,

Negk,C :=
∧

(s1,...,sm)∈C

k∧
i=1

m∨
j=1

v̄isj ,

Optk,S :=
∧
s∈S

∧
1≤i1<i2≤k

(v̄i1s ∨ v̄i2s ).

Let A ⊂ Zℓ. If 1 ≤ s(a) = s(a1, . . . , aℓ) ≤ f(a) for all s ∈ S, a ∈ A and Fk,S(E) is unsatisfiable,

then Rk(E) ≤ f(a) for all a ∈ A.

In other words, if substituting values for parameters in a formula F always gives a valid formula,

i.e., one whose variables with indices bounded between 1 and n, then the unsatisfiability of F gives

an upper bound on the Rado numbers for a family of equations. For each equation E in the family,

F is an unsatisfiable subformula (possibly with some variables identified, for instance v2a and va2

are the same when a = 2) in the corresponding Rado number formula for E . Such formulas are also

called unsatisfiable cores. We give a simple example to illustrate the idea behind Lemma 3.4.1.

Example 3.4.1. Let E be the equation x+ (a− 2)y = z for a parameter a. Consider the Rado

numbers R2(E) = a2 − a − 1 for a ≥ 3. Let S = {1, a − 1, a, a2 − 2a + 1, a2 − a − 1}. Then the
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formula F2,S(E) is

(v11 ∨ v21) ∧ (v1a ∨ v2a) ∧ (v1a−1 ∨ v2a−1) ∧ (v1a2−2a+1 ∨ v
2
a2−2a+1) ∧ (v1a2−a−1 ∨ v

2
a2−a−1)∧

(v11 ∨ v1a−1) ∧ (v21 ∨ v2a−1) ∧ (v1a2−2a+1 ∨ v
1
a−1) ∧ (v2a2−2a+1 ∨ v

2
a−1)∧

(v11 ∨ v1a ∨ v1a2−2a+1) ∧ (v21 ∨ v2a2−a−1 ∨ v
2
a2−2a+1)∧

(v11 ∨ v1a ∨ v1a2−2a+1) ∧ (v21 ∨ v2a2−a−1 ∨ v
2
a2−2a+1)∧

(v1a−1 ∨ v1a ∨ v1a2−a−1) ∧ (v2a−1 ∨ v2a ∨ v2a2−a−1)∧

(v11 ∨ v21) ∧ (v1a ∨ v2a) ∧ (v1a−1 ∨ v2a−1) ∧ (v1a2−2a+1 ∨ v
2
a2−2a+1) ∧ (v1a2−a−1 ∨ v

2
a2−a−1).

It a routine check that for all a ≥ 3 and p(a) ∈ S we have 1 ≤ p(a) ≤ a2 − a − 1. The formula

F2,S(E) is unsatisfiable, so Lemma 3.4.1 implies R2(E) ≤ a2 − a− 1 for a ≥ 3.

The formula in Example 3.4.1 is simple enough that one could show it is unsatisfiable by hand.

But for more colors and formulas with many clauses, this becomes far more difficult, and SAT

solvers are necessary. We are able to prove Conjecture 3.1.1 using Lemma 3.4.1 and a solver’s

assistance.

Proof of Theorem 3.4.1. For the Rado numbers R3(x− y = (m− 2)z), in Lemma 3.4.1 let

Σ = {m}, and let E be the equation x−y = (m−2)z. The set S is a family of 685 polynomials and

the set C contains 9468 solutions to E . It is straightforward to show that 1 ≤ s(m) ≤ m3−m2−m−1

for all m ≥ 3 and all s ∈ S. The formula F3,S(E) was shown to be unsatisfiable in 0.03 seconds

by Satch, proving R3(x − y = (m − 2)z) ≤ m3 −m2 −m − 1 for m ≥ 3. By Proposition 3.1.2

and Lemma 3.3.3, we have R3(E) ≥ S(m, 3) ≥ m3 −m2 −m − 1 for m ≥ 3, and so R3(x − y =

(m− 2)z) = m3 −m2 −m− 1 for m ≥ 3.

For the Rado numbers R3(a(x − y) = (a − 1)z), let Σ = {a}, and let E denote the equation

a(x− y) = (a− 1)z. We constructed a set S of 1365 polynomials and a set C of 20811 solutions to

E . It is again straightforward to show that 1 ≤ s(a) ≤ a3 + (a − 1)2 for all a ≥ 16 and all s ∈ S.

The formula F3,S,C(E) was shown to be unsatisfiable in 0.05 seconds by Satch, proving R3(E) ≤

a3 + (a− 1)2 for a ≥ 16. By Lemma 3.3.2 and Theorem 3.6.1, it follows that R3(E) = a3 + (a− 1)2

for a ≥ 3.
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For the Rado numbers R3(a(x − y) = bz), let Σ = {a, b}, and let E denote the equation

a(x−y) = bz. We constructed a set S of 40645 polynomials and a set C of 490897 solutions to E . All

polynomials p(a, b) were verified to satisfy 1 ≤ p(a, b) ≤ a3 for all integers a, b satisfying a ≥ 16, b ≥

1, and a ≥ b + 2 using the software GloptiPoly 3 [70]. Some additional valid inequalities were

added to the region specified in GloptiPoly 3 using elementary calculus techniques. The formula

F3,S,C was shown to be unsatisfiable in 1.72 seconds by Satch, proving R3(a(x − y) = bz) ≤ a3

for all (a, b) satisfying a ≥ 16, b ≥ 1, and a ≥ b + 2. By Theorem 3.6.1 and Lemma 3.3.1,

R3(a(x− y) = bz) = a3 for a ≥ 3, b ≥ 1, a ≥ b+ 2 with gcd(a, b) = 1.

For each of these formulas, the sets S and C were constructed using a heuristic search procedure.

We give details of this procedure in Section 3.10.

□

We remark also that the sets S are not necessarily of minimum, or even minimal size. The

problem of extracting general a minimal unsatisfiable core of an unsatisfiable formula is in general

difficult [107]. We have made no serious effort to optimize the sizes of S and C, and this would be

an interesting direction for future research.

An interesting consequence of Theorem 3.4.1 is that it gives an upper bound for the “restricted

online” Rado numbers from Chapter 2.

Corollary 3.4.1. The following bounds for restricted online Rado numbers hold.

(i) R̃3(x− y = (m− 2)z;m3 −m2 −m− 1) ≤ 685 for m ≥ 3.

(ii) R̃3(a(x− y) = (a− 1)z; a3 + (a− 1)2) ≤ 1365 for a ≥ 16.

(iii) R̃3(a(x− y) = bz; a3) ≤ 40645 for a ≥ 16, b ≥ 1, a ≥ b+ 2, gcd(a, b) = 1.

Proof. Given an equation E with coefficients a and possibly b that belongs to one of the three

families, let S be the corresponding set of polynomials from the proof of Theorem 3.4.1. Builder

can evaluate all of the polynomials in S at a and b and choose only integers from the resulting set.

The SAT solving computations of the proof of Theorem 3.4.1 then guarantee Builder’s victory in

at most |S| turns. □

In particular, Corollary 3.4.1 shows that the restricted online Rado numbers for these families

are bounded by a constant while the ordinary Rado numbers themselves grow.
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3.5. Coloring Lemmas for Degree of Regularity

Working towards the goal of computing the degree of regularity and Rado number for as many

equations as possible, in this section we collect several results on colorings that avoid monochromatic

solutions. These colorings give upper bounds on the degree of regularity of certain equations, and

this allows us to avoid doing unnecessary computations. We are especially interested in cases

where we can show that the degree of regularity of an equation is at most three. In these cases a

computation of a (finite) 3-color Rado number is a proof that the degree of regularity equals three.

The following result gives two algebraic conditions that guarantee an upper bound on the degree

of regularity for a class of equations. Roughly speaking, if certain coefficients in an equation are

too large or small compared to the sum of all the coefficients, then this prevents k-regularity. A

version of the first condition was proved in [54].

Lemma 3.5.1. Let E be the equation a1x1+ · · ·+am−1xm−1 = amxm with a1 ≤ a2 ≤ · · · ≤ am−1

and ai > 0 for all i. Let S :=
∑m−1

i=1 ai. Then E is not k-regular if one of the following conditions

holds:

(i) S ≤ ak−1
1

ak−2
m

, (ii) S ≤ a
1

k−1

1 a
1− 1

k−1
m .

Proof. For the first condition, let d :=
(

S
am

) 1
k−1

. Define the coloring χ(n) := ⌈logd n⌉

(mod k). Suppose (x1, . . . , xm) is a solution to E , and let M := max{x1, . . . , xm−1}. Let i be

the unique integer such that M ∈ (di−1, di]. Then xm =
∑m−1

i=1 aixi

am
≤ dk−1M ≤ di+k−1. By

hypothesis we have dk−1 ≤
(

a1
am

)k−1
. Therefore xm ≥ a1M

am
≥ dM > di. We have shown that

χ(xm) ∈ [i+ 1, i+ k − 1], so χ(xm) ̸= χ(M) and there are no χ-monochromatic solutions to E .

For the second condition, suppose S ≤ a
1

k−1

1 a
1− 1

k−1
m and that (x1, . . . , xm) is a solution to E .

Again let M = max{x1, . . . , xm−1}, and let d =
(

a1
am

) 1
k−1

. Define a k-coloring χ(n) = ⌈logd(n)⌉

(mod k). Suppose M ∈ (di+1, di], so χ(M) = i (mod k). Note d < 1 since a1 < S <= a
1

k−1

1 a
1− 1

k−1
m

implies a1 < am. Then xm =
∑m−1

i=1 aixi

am
≤ SM

am
≤ dM ≤ di+1. Moreover, xm ≥ a1M

am
= dk−1M >

di+k. Therefore ⌈logd xm⌉ ∈ [i+ k− 1, i+1], so χ(xm) ̸= χ(M) and there are no χ-monochromatic

solutions to E . □
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Recall that for any prime p, the p-adic valuation vp(x) is the largest integer n such that

pn divides x. Many useful colorings come from p-adic valuations and studying the divisibility

properties of an equation’s coefficients. Indeed, this idea is used directly in the proof of Rado’s

theorem (Theorem 1.2.4). We will freely use the fact that vp(xy) = vp(x) + vp(y) for all integers x

and y. In [54] the following result was shown:

Lemma 3.5.2. Suppose E is an equation of the form ax+ by+ cz = 0 with vp(a), vp(b), vp(c) all

distinct for some prime p. Then E has degree of regularity at most 3.

If the condition in Lemma 3.5.2 is strengthened to distinct p-adic valuations modulo 3, then we

obtain an improved bound on the degree of regularity.

Example 3.5.1. Let E denote the equation x+ 2y = 4z. Consider the 3-coloring χ(n) = v2(n)

(mod 3), so that, for example, χ(2) = χ(24) = χ(27) = · · · = 1. If (x, y, z) is a solution to E and

χ(x) = χ(y) = χ(z), then v2(x), v2(2y), and v2(4z) are all distinct since these values are all different

modulo 3. Let α = min{v2(x), v2(2y), v2(4z)}. Then reducing each side of E modulo pα+1 gives a

contradiction. Therefore χ induces no monochromatic solutions to E .

The following lemma generalizes the proof in the example above.

Lemma 3.5.3. Let E be the equation
∑m

i=1 aixi = 0. If there is a prime p for which vp(ai) ̸≡

vp(aj) (mod k) for all i ̸= j, then E is not k-regular.

Proof. Define a k-coloring χ(n) := vp(n) (mod k). Suppose (x1, . . . , xm) is a monochromatic

solution to E . Then vp(aixi) ̸= vp(ajxj) for i ̸= j since these values are distinct modulo k. Let

α = minmi=1{vp(aixi)}. Then
∑m

i=1 aixi ̸≡ 0 (mod pα+1), so
∑m

i=1 aixi ̸= 0, a contradiction. □

The following two results are similar to Lemma 5 and Lemma 6 in [54]. Here we show that

under additional assumptions on vp(a + b) and vp(b + c), respectively, it follows that the degrees

of regularity of certain equations are at most six, which is stronger than the corresponding best

bounds in [54]. We also show that another hypothesis on the order of a particular group element

further improves this upper bound to four.
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Lemma 3.5.4. Let E denote the equation ax + by + cz = 0. If E is not regular and 0 =

vp(a) = vp(b) = vp(a + b) < vp(c) =: r, then dor(E) < 6. If additionally the element −ab−1 in the

multiplicative group G = Z×
pr has even order, then dor(E) < 4.

Proof. Since vp(a) = vp(b) = 0, let g := −ab−1 ∈ G. Since a + b ̸≡ 0 (mod pr), it follows

that g is not the identity element of G. Let Γ denote the graph with vertex set {1, . . . , pr − 1} and

edges (x, y) if x ≡ gy (mod pr) (see Figure 3.3 for an example). Since vp(a + b) = 0, it follows

that −ab−1 ̸≡ 1 (mod p), so Γ is loopless. Then Γ is a union of disjoint cycles, and each cycle

has size ord(g)
pi

for some i. If ord(g) is even, then all of the cycles in Γ have even length, and so

Γ is 2-colorable (note the conditions 0 = vp(a) = vp(b) = vp(a + b) imply p ̸= 2). Otherwise, Γ is

3-colorable since each vertex has degree at most 2. Let C1 be a proper vertex coloring of Γ that

uses the fewest number of colors. We will construct a (4- or 6-) coloring C to show that E is not 4-

or 6- regular and conclude dor(E) < 4 or dor(E) < 6, respectively.

Let q := p2r. For all n ∈ N, write n = qαn′ with n′ ̸≡ 0 (mod q). Define the coloring C2 to be

C2(n) =


1 if n′ ̸≡ 0 (mod pr),

2 if n′ ≡ 0 (mod pr).

Let C be the product coloring

C(n) =


(C1(n

′), 1) if C2(n) = 1,

(C1(n
′/pr), 2) if C2(n) = 2.

We claim that C is a coloring with no monochromatic solutions to E .

Suppose (x, y, z) is a monochromatic solution to E . Write x = qαx′, y = qβy′, z = qγz′ with

x′, y′, z′ ∤ q and ax + by + cz = 0. Without loss of generality, we may assume that at least one of

α, β, and γ is zero, and in each case we will show a contradiction.

Suppose first that C2(x) = C2(y) = C2(z) = 1.

Case 1: Suppose α = 0. Then if β > 0, then we may reduce E modulo pr to obtain a

contradiction since b, c ≡ 0 (mod pr), but ax ̸≡ 0 (mod pr). So we may assume β = 0. Now

suppose ax+ by ≡ 0 (mod pr). Then y ≡ gx (mod pr). But this is impossible since x and y would

60



have different colors by the coloring C1 (recall that Γ is loopless). Therefore ax+ by ̸≡ 0 (mod pr),

and so ax+ by + cz ̸≡ 0 (mod pr), a contradiction.

Case 2: The case β = 0 is similar to the case α = 0.

Case 3: Suppose γ = 0 and α, β > 0. Then ax+ by ≡ 0 (mod q), but cz ̸≡ 0 (mod q), and so

ax + by + cz ̸≡ 0 (mod q), a contradiction. Therefore α = 0 or β = 0, and the proof follows from

one of the previous cases.

If C2(x) = C2(y) = C2(z) = 2, then in all cases we may divide x′, y′, and z′ by pr, and the

proof follows similarly.

□

Lemma 3.5.5. Let E denote the equation ax+ by + cz = 0. If E is not regular and 0 = vp(a) <

vp(b) = vp(c) = vp(b + c) =: r for some prime p, then dor(E) < 6. Write b = prb′ and c = prc′.

If additionally the element g := −b′c′−1 in the multiplicative group G = Z×
ps has even order, then

dor(E) < 4.

Proof. Since vp(b + c) = r and vp(b
′) = vp(c

′) = 0, g ∈ G and g is not the identity element

of G. Let Γ denote the graph with vertex set {1, . . . , pr − 1} and edges (x, y) if x ≡ gy (mod pr).

Then Γ is a union of disjoint cycles, and each cycle has size ord(g)
pi

for some i. Note that Γ is not

loopless since vp(b+c) = r. If g has even order, then Γ is 2-colorable, and otherwise Γ is 3-colorable.

Let C1 be a proper vertex coloring of Γ that uses the fewest number of colors. We will construct a

(4- or 6-) coloring C to show that E is not 4- or 6- regular and conclude dor(E) < 4 or dor(E) < 6,

respectively.

Let q := p2r, and for all n ∈ N, write n = qαn′ with n′ ̸≡ 0 (mod p2r). Define the coloring C2

to be

C2(n) =


1 if n′ ̸≡ 0 (mod pr),

2 if n′ ≡ 0 (mod pr).

Let C be the product coloring

C(n) =


(C1(n

′), 1) if C2(n) = 1,

(C1(n
′/pr), 2) if C2(n) = 2.
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Figure 3.3. 2-coloring of graph with vertex set [8] and edges (x, y) if x ≡ 2y
(mod 9).

Suppose (x, y, z) is a monochromatic solution to E with respect to C. Write x = qαx′, y = qβy′, z =

qγz′ with x′, y′, z′ ∤ q and ax+ by+ cz = 0. Without loss of generality, we may assume that at least

one of α, β, and γ is zero, and in each case we will show a contradiction.

Suppose C2(x
′) = C2(y

′) = C2(z
′) = 1. Case 1: Suppose α = 0. Then ax + by + cz ̸≡ 0

(mod pr). Case 2: Suppose α > 0 and β = 0. Then if γ > 0, then ax + by + cz ̸≡ 0 (mod q), so

assume γ = 0. If by + cz ≡ 0 (mod q), then z = z′ ≡ −b′c′−1y′ (mod pr). But by coloring C1 it

follows that z and y have different colors, a contradiction. The case γ = 0 is similar.

Suppose C2(x
′) = C2(y

′) = C2(z
′) = 2. If α = 0, then ax + by + cz ̸≡ 0 (mod q). The cases

β = 0, γ = 0 are similar to above. □

3.6. Proofs of Theorem 3.6.1 and Results on Degree of Regularity

We begin this section with a proof of Theorem 3.6.1. Most of the work was carried out by

computer, though we use Lemma 3.5.1 when the Rado numbers are infinite.

Proof of Theorem 3.6.1. For each finite number Rk(ax+by = cz), we produced a k-coloring

of [Rk(ax+ by = cz)− 1] that contained no monochromatic solutions to ax+ by = cz and verified

using a SAT solver that the formula F k
Rk(ax+by=cz)(ax+by = cz) from the encoding in Section 3.2 is

unsatisfiable. For the remaining cases, we concluded R3(ax+by = cz) =∞ using Lemma 3.5.1. □

We are now able to prove Theorem 3.6.2.

Proof of Theorem 3.6.2. Let E denote the equation ax + by = cz. For each triple (a, b, c)

that satisfies 1 ≤ a, b, c ≤ 5 and a ≤ b, we performed the following calculations. If a nonempty

subset of {a, b,−c} sums to zero, then dor(E) =∞ by Theorem 1.2.4. If vp(a), vp(b), and vp(c) are

all distinct modulo 3 for some prime p, or if one of the inequalities a+ b ≤ a2

c or a+ b ≤
√
ac holds,

then dor(E) = 2 by Lemma 3.5.3, Lemma 3.5.1, and Theorem 1.2.5.
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In all other cases we see that dor(E) ≤ 3 by either Theorem 3.6.1, Lemma 3.5.1, Lemma 3.5.4,

or Lemma 3.5.5. The computation of a finite Rado number in Theorem 3.6.1 gives dor(E) = 3. □

Recall from Theorem 1.2.6 (ii) that Rado proved the following result on the family of equations

a(x+ y) = bz.

Theorem 3.6.1 (Rado). If a/b ̸= 2k for all k ∈ Z, then dor(a(x+ y) = bz) ≤ 3.

The following lemma strengthens Rado’s result to include the case when a/b = 2k for some

integer k.

Lemma 3.6.1. R3(x+ y = bz) =∞ for b ≥ 4, and R3(a(x+ y) = z) =∞ for a ≥ 2. Moreover,

dor(a(x+ y) = bz) ≤ 3 unless a = b = 1 or a = 1, b = 2.

Proof of Theorem 3.6.3. Let a, b ∈ Z+, and assume gcd(a, b) = 1. Denote by Ea,b the

equation a(x+ y) = bz. Theorem 1.2.4 says dor(Ea,b) =∞ if and only if a = b = 1 or a = 1, b = 2.

For all other a and b, Theorem 1.2.5 and Theorem 1.2.6 give 2 ≤ Ea,b ≤ 3.

From Lemma 3.5.1 (i), we have Ea,b is not 3-regular if 2a ≤ a2

2b , and from Lemma 3.5.1 (ii), it

follows that Ea,b is not 3-regular if 2a ≤
√
ab. After rearranging, we see that a(x + y) = bz is not

3-regular if a ≥ 2b or b ≥ 4a. Then in these cases we immediately have dor(Ea,b) = 2. For the

remaining cases, the Rado number calculations from Theorem 3.6.1 (see Tables 3.2 and 3.9) give

dor(Ea,b) = 2. □

We now prove Theorem 3.6.4 and Corollary 3.6.2

Proof of Theorem 3.6.4 and Corollary 3.6.2. The proof of Theorem 3.6.4 is immediate

from Lemma 3.5.1 condition (ii) since S = m− 1 ≤ ⌈(m− 1)
k−1
k−2 ⌉

k−2
k−1 . Corollary 3.6.2 follows from

Theorem 1.2.5 and setting k = 3 in Theorem 3.6.4. □

3.7. Rado CNF File Generation

For the remainder of this chapter, we discuss some of the computational details from our

calculations. The steps for computing a Rado number for a given linear equation E are the following:

• Generate the CNF file encoding F k
n (E), including symmetry-breaking clauses if desired.

• Determine the satisfiability of F k
n (E) with a SAT solver.
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• Adjust n to find the smallest n for which F k
n (E) is unsatisfiable.

In the following subsections, we explain how to achieve each step of the computation procedure.

3.7.1. Generating CNF Files. The first step in computing a Rado number is writing a

formula F k
n (E) to a file in DIMACS .cnf format (see [21], Chapter 2). For many Rado numbers,

especially those with 3 or fewer colors, this step took far longer than the actual SAT solving. This

is in contrast to the paper [71], where the solutions to the single equation x + y = z in [161] can

be generated easily, but the solving process is extremely difficult. Our work involved computing

with thousands of easier instances and larger values of n. The main bottleneck is negative clause

generation since it requires enumerating all solutions to E in [n], and there are O(n2) solutions for

the three-variable case.

For efficient solution generation to homogeneous linear equations, we used the built-in function

isolve in Maple to parameterize the solutions. We then used SymPy to parse the output of

Maple and generate the solutions with values in [1, n].

Example 3.7.1. If we want to generate all integer solutions in the interval [1, 1000] for the

equation 43x− 5y = 13z, we can feed 43x− 5y = 13z into Maple’s isolve function, which gives

the output

{x = i, y = 6i− 13j, z = i+ 5j}.

Since we want all integer solutions within [1, 1000], we can loop i from 1 to 1000 and manipulate

the inequality

1 ≤ y = 6i− 13j ≤ 1000

into an inner loop where j is looped from ⌈1000−6i
−13 ⌉ to ⌊

1−6i
−13 ⌋. For z, we can simply check whether

1 ≤ i+ 5j ≤ 1000 is satisfied or not inside the loops to determine if (x, y, z) is a solution.

Some of the formulas in our computations contain millions of clauses, and writing these clauses

to a file is a time-consuming part of CNF file generation. For example, the CNF file which encodes

F 3
16397(5x + 5y = 19z) contains more than 20 million clauses, of which only 65588 are positive or

optional.
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The algorithm to generate all the positive and optional clauses is done though Python. Since

the parameterization of the equation E is also passed to Python, we also used Python to generate

the CNF files.

3.7.2. Symmetry Breaking. Symmetry breaking is a SAT solving technique that can lead

to significant speedups by preventing the solver from looking in isomorphic areas of the search

space. In our case, permuting colors in a coloring has no effect on whether it avoids monochromatic

solutions to a given equation. Therefore, it can be helpful to add additional clauses to our formula

to forbid color permutations.

We can break this symmetry in the formula F 3
4 (x+ y = z), for example, by adding the clauses

(v11) and (v22). These clauses force number 1 to be red and number 2 to be blue. In general, if E is

a linear homogeneous equation in three variables and we have a solution (x, y, z) where two of x, y,

and z are equal to each other, then we can add clauses that force the two equal variables to be the

first color and the remaining variable to be the second color. For Rado numbers Rk(E) with k > 3,

we can also add clauses that break the symmetries on the other colors (see [71]).

Generating a larger set of symmetry breaking clauses with more sophisticated preprocessing is

more difficult and requires far more time than normal file generation. We included only a simple

preprocessing step in our solving process. The benefit of this preprocessing becomes more apparent

when n and k grow. Without symmetry breaking, Satch takes nearly 15 minutes to determine

that F 4
45(x+y = z) is unsatisfiable, but only a few seconds after adding symmetry breaking clauses.

3.7.3. SAT Solvers. Most of the SAT solving computations were done with the solver Satch

v0.4.17, developed by Biere [19]. We initially used Satch because it is remarkably fast at proving

upper bounds for many 3-color Rado numbers and relatively easy to use. For example, Satch is

able to prove the upper bounds for the values in the first column and last row of Table 3.1 in under

10 seconds for each equation. Later, as we moved towards larger CNF files and more colors, Satch

started to struggle. We also experimented with Cadical [20] and the multithreaded SAT solver

Glucose [8]. In general, Satch performed better on smaller instances, but Glucose solved larger

instances up to two times as quickly.
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3.7.4. Binary Search. In order to compute the exact value of a Rado number Rk(E), we

often must determine the satisfiability of F k
n (E) for many values of n. A convenient property of

the formulas F k
n (E) is that if m < n, then we can obtain the formula F k

m(E) simply by deleting all

the clauses that contain variables vij with j > m. Therefore, once we have a formula F k
u (E) that

is unsatisfiable, we have an upper bound Rk(E) ≤ u, and we no longer need to do any solution

(negative clause) generation. After obtaining a lower bound Rk(E) > ℓ with a satisfiable formula

F k
ℓ (E), we can compute the exact value of the Rado number Rk(E) using binary search to jump

between ℓ and u. Our initial guesses for suitable bounds on Rk(E) were made largely through trial

and error. However, even with the poor estimates 10 ≤ R3(x− y = bz) ≤ 5000 for 1 ≤ b ≤ 15, it is

possible to compute the exact values for all of these numbers in under two hours.

3.8. Additional Rado Number Calculations

In this section we give additional bounds and exact values for various Rado numbers.

3.8.1. 3-color Rado Numbers. Table 3.9 gives R3(ax+ay = bz) for 3 ≤ a ≤ 6, 11 ≤ b ≤ 20.

Table 3.9. R3(ax+ ay = bz)

b

a
3 4 5 6

11 2019 847 1958 1188

12 ∞ 54 2400 1

13 ∞ 1710 3445 1963

14 ∞ 455 3675 336

15 ∞ 5408 54 105

16 ∞ ∞ 5725 432

17 ∞ ∞ 8330 4743

18 ∞ ∞ 12069 54

19 ∞ ∞ 16397 6726

20 ∞ ∞ ∞ 1025
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3.8.2. 4-color Rado Numbers. Table 3.10 gives some values for the 4-color Rado numbers

R4(a(x− y) = bz). These numbers are considerably more difficult to compute than R3(a(x− y) =

bz), and it took the solver CaDiCaL [20] up to 20 hours to prove some of the upper bounds.

Notably, R4(x − y = (m − 2)z) = m4 −m3 −m2 −m − 1 for 4 ≤ m ≤ 6, which implies S(4, 4) =

171, S(5, 4) = 469, and S(6, 4) = 1037 by Lemma 3.3.3 and Proposition 3.1.2.

Table 3.10. R4(a(x− y) = bz)

b

a
1 2 3 4 5

1 45 56 81 256 625

2 171 45 103 56

3 469 > 225 45

4 1037

3.9. Degree of Regularity Values

Tables 3.11 to 3.15 give the values of dor(ax+ by = cz) for all a, b, c with 1 ≤ a, b, c ≤ 5.

Table 3.11. dor(ax + by =
z)

b

a
1 2 3 4 5

1 ∞ ∞ ∞ ∞ ∞

2 ∞ 2 3 2 3

3 ∞ 3 2 2 2

4 ∞ 2 2 2 2

5 ∞ 3 2 2 2

Table 3.12. dor(ax + by =
2z)

b

a
1 2 3 4 5

1 ∞ ∞ 3 2 3

2 ∞ ∞ ∞ ∞ ∞

3 3 ∞ 3 2 3

4 2 ∞ 2 2 2

5 3 ∞ 3 2 2
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Table 3.13. dor(ax + by =
3z)

b

a
1 2 3 4 5

1 3 ∞ ∞ 3 3

2 ∞ 3 ∞ 2 3

3 ∞ ∞ ∞ ∞ ∞

4 3 2 ∞ 3 3

5 3 3 ∞ 3 3

Table 3.14. dor(ax + by =
4z)

b

a
1 2 3 4 5

1 2 2 ∞ ∞ 3

2 2 ∞ 2 ∞ 2

3 ∞ 2 3 ∞ 3

4 ∞ ∞ ∞ ∞ ∞

5 3 2 3 ∞ 3

Table 3.15. dor(ax + by =
5z)

b

a
1 2 3 4 5

1 2 3 3 ∞ ∞

2 3 3 ∞ 2 ∞

3 3 ∞ 3 3 ∞

4 ∞ 2 3 3 ∞

5 ∞ ∞ ∞ ∞ ∞

3.10. Heuristic Search Procedure in Proof of Theorem 3.4.1

Here we detail the method FindPolynomials which we used to find the sets S of polynomials

in the proof of Theorem 3.4.1. We give the version of FindPolynomials used for the equation

a(x − y) = (a − 1)z. The procedures for the other two equations were similar, but had minor

modifications.

In brief, we initialize S to a set of polynomials S0, and we use an auxiliary set of “gaps” G to

add more polynomials to S. The procedure BoundedIntegerPolynomial returns true if and

only if all of its arguments are polynomials p(a) ∈ Z[a] that satisfy 1 ≤ p(a) ≤ a3 + (a − 1)2

for all a ≥ 16. The FindPolynomials procedure is not guaranteed to produce a set of clauses
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that yields an unsatisfiable formula, and it took several attempts to come up with suitable choices

for the initial sets S0 and G0. As an example, for the equation a(x − y) = (a − 1)z, we set

S0 = {1, a − 1, a, a + 1, a2 − 1, a2, a2 + 1, a3, a3 + (a − 1)2}, G0 = {1, a − 1, a, (a − 1)2, a2}, and

maxIterations = 3. Files containing the polynomials and clauses used in our formulas can be found

in [30].

69



Algorithm 1 FindPolynomials(S0, G0,maxIterations)

S ← S0

G← G0

for i = 1 to maxIterations do

for p, q in S do

r ← p−q
a−1

if BoundedIntegerPolynomial(r) then

G← G ∪ {r}

end if

end for

for p ∈ S, q ∈ G do

r+ ← p+ (a− 1)q

if BoundedIntegerPolynomial(r+) then

S ← S ∪ {r+}

end if

r− ← p− (a− 1)q

if BoundedIntegerPolynomial(r−) then

S ← S ∪ {r−}

end if

end for

end for

C ← ∅

for p, q ∈ S do

x← p

y ← p− (a− 1)q

z ← aq ▷ Here (x, y, z) is a solution to a(x− y) = (a− 1)z.

if BoundedIntegerPolynomial(x, y, z) then

S ← S ∪ {x, y, z}

C ← C ∪ {{x, y, z}}

end if

end for

return S,C
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CHAPTER 4

Diffsequences and Arithmetic Progressions Involving Fibonacci

Numbers

The main goal of this chapter is to prove Theorems 4.2.1 and 4.2.2, which are stated in Section

1.5. Recall that a D-diffsequence is a sequence x1, . . . , xℓ satisfying xi+1− xi ∈ D for 1 ≤ i ≤ ℓ− 1

and that ∆(D, ℓ; k) is the smallest n such that every k-coloring of [n] contains a monochromatic ℓ-

term D-diffsequence. Our proofs of these results involve combinatorial words that produce colorings

that avoid either F -diffsequences or arithmetic progressions with gap in F of a certain length. The

search for these words was aided by the Online Encyclopedia of Integer Sequences (OEIS) and the

computational power of SAT solvers. We also use SAT solvers to compute other exact values of

∆(D, ℓ; k) for other sets D.

This chapter is organized as follows. In Section 4.1, we formally define some of the objects

studied in this paper and recall some well-known properties of Fibonacci numbers and combinatorial

words. Section 4.2 contains the proofs of Theorems 4.2.1 and 4.2.2. We conclude in Section 4.3

with some experimental data.

4.1. Combinatorial Words and Fibonacci Numbers

In this section we collect several results that are used in the proofs of Theorems 4.2.1 and 4.2.2.

We also fix the following notation for numbers and objects used throughout this chapter.

We let F := {1, 2, 3, 5, 8, . . . } denote the set of Fibonacci numbers, and letG := {1, 4, 17, 72, . . . } =

{f2 : f ∈ F} ∩ Z. We let fn be the n-th term of the Fibonacci sequence, where f1 = f2 = 1 and

fn+1 = fn + fn−1 for n > 2. Similarly, we set gn := f3n
2 . We denote the Lucas numbers ℓn by

ℓ0 = 2, ℓ1 = 1, ℓn = ℓn−1 + ℓn−2 for n ≥ 2. For any real number r, we denote the fractional part of

r by {r} := r − ⌊r⌋. We let ϕ denote the golden ratio ϕ := 1+
√
5

2 . When a number ∆(D, ℓ; k) does

not exist, we write ∆(D, ℓ; k) =∞, and similarly for n(APD, ℓ; k).
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The following lemma consists of two well-known results that give exact formulas for the Fi-

bonacci numbers fn and Lucas numbers ℓn in terms of ϕ.

Lemma 4.1.1. The following identities for Fibonacci numbers fn and Lucas numbers ℓn hold.

(i) fn = ϕn−(−ϕ)−n
√
5

for n ≥ 1.

(ii) ℓn = ϕn + (−ϕ)−n for n ≥ 0.

There are straightforward proofs of Lemma 4.1.1 using induction or generating functions (see

[131], for example). An immediate consequence of Lemma 4.1.1 is the following identity.

Corollary 4.1.1. For n ≥ 2, fn
ϕ − fn−1 = (−1)n+1ϕ−n.

We recall several standard definitions on combinatorial words (see [15] or [3] for an introduc-

tion). A word is a (possibly infinite) sequence of symbols of a finite, nonempty alphabet Σ. Given

two words w1 and w2, we write w1w2 for the concatenation of w1 and w2. A word morphism is a

map α from the set of words over an alphabet Σ to the set of words over an alphabet Σ′ satisfying

α(xy) = α(x)α(y) for all words x and y. Practically speaking, we need only specify a morphism on

Σ, and the word α(x) is obtained by replacing each instance of σ in x by α(σ), for each σ ∈ Σ.

In this thesis we consider only words over the alphabet {0, 1}. Of particular interest is the n-th

Fibonacci word Fn, which is given by

F0 = 0, F1 = 01, Fn = Fn−1Fn−2 if n ≥ 2.

The infinite Fibonacci word is the limit F∞ = 010010100100 . . . , the unique word that contains Fn

as a prefix for all n. We use the infinite Fibonacci word to define two new words, S and T , which

provide us colorings used in the proof of Theorems 4.2.1 and 4.2.2, respectively.

Definition 4.1.1. Let µ be the word morphism given by 0 7→ 10, 1 7→ 01, and let ν be the word

morphism given by 0 7→ 1, 1 7→ 00. The words S and T are given by

S := µ(F∞) = 1001101001 . . . , T := ν(F∞) = 1001100100 . . . .

The morphism µ is known as the Thue-Morse morphism. The fixed point of µ (which is unique

up to binary complement) is the famous Thue-Morse infinite word 0110100110010 . . . , which has
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many interesting properties. One motivation for Thue’s study of his eponymous word was pattern

avoidance. Thue showed that it is overlap-free, meaning it does not contain any consecutive string

of the form 0x0x0 or 1x1x1 (see [15] for a proof in English). In this light it is not surprising that

µ should appear in the construction of words avoiding the patterns of diffsequences and arithmetic

progressions.

The following lemma lists some key properties of the words F∞, S, and T . In particular, it

shows that F∞ is Sturmian. Sturmian words are well-studied and have several useful properties

(see [3], Chapter 9). In particular, the positions of the ones in a Sturmian word are given by

terms in a Beatty sequence, a sequence of the from an = ⌊nα⌋ for some positive irrational α. This

property allows us to determine the positions of ones in S and T as well. We refer the interested

reader to [14], [3], and the references therein for additional results on Sturmian words.

Lemma 4.1.2. The following results on the words F∞, S, and T hold.

(i) The infinite Fibonacci word F∞ satisfies

F∞(n) =


0 if n = ⌊mϕ⌋ for some integer m,

1 otherwise.

(ii) If n ̸= ⌊mϕ⌋ for all integers m, then there exist integers m′ and m′′ such that n+1 = ⌊m′ϕ⌋

and n− 1 = ⌊m′′ϕ⌋.

(iii) The word S satisfies

S(n) =



0 if n is even and n
2 = ⌊mϕ⌋ for some integer m,

1 if n is even and n
2 ̸= ⌊mϕ⌋ for all integers m,

0 if n is odd and n+1
2 ̸= ⌊mϕ⌋ for all integers m,

1 if n is odd and n+1
2 = ⌊mϕ⌋ for some integer m.

(iv) The word T satisfies

T (n) =


1 if n = 2 ⌊mϕ⌋ −m for some integer m,

0 otherwise.
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Proof. The statement (i) was proven in [128]. The statement (ii) follows easily from the fact

that 1 < ϕ < 2, and (iii) follows from (i) and the definition of S. The proof of (iv) was originally

given by Michel Dekking on the OEIS entry A287772 for νF∞. For completeness, we give a slightly

different proof here.

By (i), the positions of the zeros in F∞ are given by the sequence ⌊mϕ⌋, and by the definition

of ν, every 1 in T is obtained from a 0 in F∞. It therefore suffices to show that ν maps the 0 at

position ⌊mϕ⌋ to the 1 at position 2 ⌊mϕ⌋ −m. This is easy to verify for m = 1, and suppose it

holds for m = k.

We consider two cases, noting that ⌊(k + 1)ϕ⌋ − ⌊kϕ⌋ ∈ {1, 2} for all integers k. First, if

⌊(k + 1)ϕ⌋−⌊kϕ⌋ = 1, then the k-th and (k+1)-th zeros in F∞ are adjacent, and so in T , the k-th

and (k+1)-th ones are adjacent. By the induction hypothesis, the k-th one is in position 2 ⌊kϕ⌋−k

and the (k + 1)-th one is in position 2 ⌊kϕ⌋ − k + 1 = 2 ⌊(k + 1)ϕ⌋ − (k + 1) as desired.

Now suppose ⌊(k + 1)ϕ⌋− ⌊kϕ⌋ = 2. Then there is a one between the k-th and (k+1)-th zeros

in F∞. Therefore in T , by the definition of ν and the induction hypothesis, the (k+1)-th one is in

position 2 ⌊kϕ⌋ − k + 3 = 2 ⌊(k + 1)ϕ⌋ − (k + 1), which completes the proof. □

4.2. Proofs of Theorems 4.2.1 and 4.2.2

In this section we prove our main results, Theorems 4.2.1 and 4.2.2. In each case we construct

a coloring of Z+ and show by contradiction that it does not contain a suitable monochromatic

diffsequence or arithmetic progression. Our main technique in the proofs of Theorems 4.2.1 and 4.2.2

is constructing a sequence of numbers {miϕ} whose fractional parts are either strictly increasing or

strictly decreasing. If there exist i and j such that |{miϕ}−{mjϕ}| ≥ 1, then this is a contradiction.

4.2.1. Proof of Theorem 4.2.1. To prove F is not 4-accessible, we must find a 4-coloring

of Z+ with no k-term F -diffsequences for some positive integer k. Instead of working directly with

such a 4-coloring, we will use a 2-coloring that avoids k-term G-diffsequences. The following lemma

shows that the existence of this 2-coloring is enough to prove that F is not 4-accessible.

Lemma 4.2.1. Suppose G is not 2-accessible, i.e., ∆(G, k; 2) = ∞ for some k. Then F is not

4-accessible.
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Proof. Let χ : Z+ → {1, 2} be a 2-coloring of Z+ that does not contain a monochromatic

k-term G-diffsequence. Then define a 4-coloring χ′ : Z+ → {c1,1, c1,2, c2,1, c2,2} by

χ′(n) =


c1,χ(n+1

2
) n odd,

c2,χ(n
2
) n even.

Now suppose towards contradiction that χ′ contains a k-term monochromatic F -diffsequence n1, . . . , nk.

By the construction of χ′, each term in the diffsequence has the same parity. Suppose first

that n1, . . . , nk are all odd. Then ni+1 − ni is even for 1 ≤ i ≤ k − 1. Moreover, observe

that χ(n1+1
2 ) = · · · = χ(nk+1

2 ). Therefore ni+1+1
2 − ni+1

2 = ni+1−ni

2 ∈ G for 1 ≤ i ≤ k − 1, so

n1+1
2 , . . . , nk+1

2 is a k-term G-diffsequence, a contradiction. If we assume instead that n1, . . . , nk

are even, then we can reach a contradiction by a similar argument, which completes the proof. □

The following result gives several bounds on differences of fractional parts, and it is central to

the proof of Theorem 4.2.1.

Lemma 4.2.2. The following bounds hold.

(i) Suppose x2 − x1 = gi
2 with gi ∈ G even. If x1 = ⌊m1ϕ⌋ and x2 = ⌊m2ϕ⌋ for some integers

m1 and m2, then

{m2ϕ} − {m1ϕ} <
ϕ−3i+1 − ϕ

4
< −0.38.

(ii) Suppose x2 − x1 = gi+1
2 with gi ∈ G odd. If x1 = ⌊m1ϕ⌋ and x2 + 1 = ⌊m2ϕ⌋ for some

integers m1 and m2, then

{m2ϕ} − {m1ϕ} <
3ϕ− 6

4
< −0.28.

(iii) Suppose x2 − x1 = gi−1
2 with gi ∈ G odd and i > 1. If x1 + 1 = ⌊m1ϕ⌋ and x2 = ⌊m2ϕ⌋

for some integers m1 and m2, then

{m2ϕ} − {m1ϕ} <
−5ϕ+ 6

4
< −0.52.
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Proof. For (i), we have

m2ϕ−m1ϕ− {m2ϕ}+ {m1ϕ} = x2 − x1 =
gi
2

=
f3i
4
,

and after rearranging and applying Corollary 4.1.1, we have

m2 −m1 =
f3i
4ϕ

+
{m2ϕ} − {m1ϕ}

ϕ
=
f3i−1

4
− ϕ−3i

4
+
{m2ϕ} − {m1ϕ}

ϕ
.

Since gi is even, it follows from the definition of gi that i is even, so f3i−1 ≡ 1 (mod 4). Observe

also that
∣∣∣{m2ϕ}−{m1ϕ}

ϕ

∣∣∣ < 1. Because m2−m1 is an integer, it follows that either {m2ϕ}−{m1ϕ} =

ϕ(ϕ
−3i−1
4 ) or {m2ϕ} − {m1ϕ} = ϕ(1 − 1

4 + ϕ−3i

4 ). However, the latter case is impossible since we

must have | {m2ϕ} − {m1ϕ} | < 1, but ϕ(1− 1
4 + ϕ−3i

4 ) > 1 for all i. The minimum value of i is 2,

so we have

{m2ϕ} − {m1ϕ} =
ϕ−3i+1 − ϕ

4
≤ ϕ−5 − ϕ

4
< −0.38

for all i.

The proofs of the remaining parts are similar. For (ii), since gi is odd, gi =
f3i
2 with i odd.

Then we have

m2ϕ−m1ϕ− {m2ϕ}+ {m1ϕ} = x2 + 1− x1 =
gi + 3

2
=
f3i
4

+
3

2
.

Rearranging and applying Corollary 4.1.1 gives

m2 −m1 =
f3i−1

4
+
ϕ−3i

4
+

3

2ϕ
+
{m2ϕ} − {m1ϕ}

ϕ
.

Here, note that f3i−1 ≡ 1 (mod 4) and 1 < 1
4 + 3

2ϕ < 2. By a similar argument as above, it

follows that either {m2ϕ} − {m1ϕ} = −ϕ
(

3
2ϕ −

3
4 + ϕ−3i

4

)
= 3ϕ−6

4 − ϕ−3i+1

4 or {m2ϕ} − {m1ϕ} =

ϕ
(
1−

(
3
2ϕ −

3
4 + ϕ−3i

4

))
= 7ϕ−6

4 − ϕ−3i+1

4 . Since i ≥ 1, it follows that 7ϕ−6
4 − ϕ−3i+1

4 > 1 and the

latter case is impossible. Therefore {m2ϕ} − {m1ϕ} = 3ϕ−6
4 − ϕ−3i+1

4 < 3ϕ−6
4 < −0.28 for all i.

For (iii), we again have gi =
f3i
2 with i odd. Then we have

m2ϕ−m1ϕ− {m2ϕ}+ {m1ϕ} = x2 − (x1 + 1) =
gi − 3

2
=
f3i
4
− 3

2
.

Rearranging and applying Corollary 4.1.1 gives
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m2 −m1 =
f3i−1

4
+
ϕ−3i

4
− 3

2ϕ
+
{m2ϕ} − {m1ϕ}

ϕ
.

Here we have −1 < 1
4 −

3
2ϕ < 0, so it follows that either {m2ϕ} − {m1ϕ} = −ϕ

(
1
4 −

3
2ϕ + ϕ−3i

4

)
=

6−ϕ
4 −

ϕ−3i+1

4 > 1 since i > 1, or {m2ϕ} − {m1ϕ} = ϕ
(
−1−

(
1
4 −

3
2ϕ + ϕ−3i

4

))
= 6−5ϕ

4 − ϕ−3i+1

4 .

The former case is impossible, so {m2ϕ} − {m1ϕ} < 6−5ϕ
4 < −0.52 for all i. □

We are now equipped to prove Theorem 4.2.1.

Proof of Theorem 4.2.1. By Lemma 4.2.1, it is sufficient to find a 2-coloring of Z+ that

contains no monochromatic 4-term G-diffsequences. We will show that the coloring χ(n) = S(n),

where S(n) is the n-th symbol in the word S, satisfies this property.

Throughout this proof, we assume that y1, y2, y3, y4 is a 4-term G-diffsequence, and we will

show a contradiction. First, consider the following finite state machine.

Suppose S(y1) = S(y2) = S(y3) = S(y4) with yi+1 − yi = gji for some gji ∈ G and i = 1, 2, 3. For

each diffsequence, we have a sequence of states q1, q2, q3, q4, and a sequence of transitions t1, t2, t3.

If yi is even, then we set qi := qeven, and if yi is odd, we set qi := qodd. The transitions ti are

determined by the transition arrow that takes qi to qi+1, so that, for example, if q1 = qeven and

q2 = qodd, then t1 = b. For each yi, set

xi :=


yi
2 if yi is even ,

yi+1
2 if yi is odd .
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By Lemma 4.1.2, for each i there is a unique integer mi that satisfies

xi =



⌊miϕ⌋ if yi is even and S(yi) = 0,

⌊miϕ⌋ − 1 if yi is odd and S(yi) = 0,

⌊miϕ⌋+ 1 if yi is even and S(yi) = 1,

⌊miϕ⌋ if yi is odd and S(yi) = 1.

We are done if we show that {m4ϕ}−{m1ϕ} < −1, which is a contradiction. By Lemma 4.2.2,

for all i we have that

{mi+1ϕ} − {miϕ} <


−0.38 if ti = a,

−0.28 if ti = b,

−0.52 if ti = c.

By examining all the combinations of values for t1, t2, t3, we see that {m4ϕ} − {m1ϕ} < −1 unless

t1 = t2 = t3 = b. But this case is impossible since consecutive transitions cannot both be b, and

the proof is complete.

□

4.2.2. Proof of Theorem 4.2.2. The proof of Theorem 4.2.2 is similar to the proof of The-

orem 4.2.1. We will show that the 2-coloring induced by T = ν(F∞) has no monochromatic 5-term

arithmetic progressions whose gaps are in F . The following lemma is a technical result which is

essential for the computations in the proof of Theorem 4.2.2.

Lemma 4.2.3. Let fn be the n-th Fibonacci number, and suppose ϵ ∈ {−4, 0, 4} and n ≥ 13.

Then the following identities hold:

(i) {
fn + ϵ

2ϕ− 1

}
=

2(−ϕ)−n

5
+ cn,ϵ,
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where

cn,ϵ =



4+(2
√
5−5)ϵ

10 if n ≡ 0 (mod 4),

4+(4
√
5−5)ϵ

20 if n ≡ 1 (mod 4) and ϵ ∈ {0, 4},

11−4
√
5

5 if n ≡ 1 (mod 4) and ϵ = −4,

6+(2
√
5−5)ϵ

10 if n ≡ 2 (mod 4),

8+(2
√
5−5)ϵ

10 if n ≡ 3 (mod 4) and ϵ ∈ {0, 4},

9−4
√
5

5 if n ≡ 3 (mod 4) and ϵ = −4.

(ii)
⌊
fn+ϵ
2ϕ−1

⌋
is even if and only if one of the following cases holds:

• ϵ = 0 and n ≡ 0, 1, 2, 3, 5, 10 (mod 12),

• ϵ = 4 and n ≡ 0, 2, 3, 9, 10 (mod 12),

• ϵ = −4 and n ≡ 0, 1, 2, 5, 7, 10, 11 (mod 12).

Proof. By Lemma 4.1.1, we have

(4.1)
fn + ϵ

2ϕ− 1
=
fn + ϵ√

5
=
ϕn − (−ϕ)−n

5
+

ϵ√
5
=
ℓn
5
− 2(−ϕ)−n

5
+

ϵ√
5
.

Note that the Lucas numbers ℓn are periodic modulo 5 with period 4, so ℓn
5 = m + r

5 for

some m ∈ Z and r ∈ {1, 2, 3, 4}, with r depending only on the value of n modulo 4. Therefore,

if n is sufficiently large, then
{

fn+ϵ
2ϕ−1

}
= −2(−ϕ)−n

5 +
{

r
5 + ϵ√

5

}
. Moreover, for n ≥ 13, we have∣∣∣2(−ϕ)−n

5

∣∣∣ < .001, and some straightforward calculations give part (i).

For part (ii), we take the floor of both sides of Equation 4.1. If we write ℓn = 10m + r for

m ∈ Z with 0 ≤ r ≤ 9, we observe that

⌊
fn + ϵ

2ϕ− 1

⌋
=

⌊
10m+ r

5
− 2(−ϕ)−n

5
+

ϵ√
5

⌋
= 2k +

⌊
r

5
− 2(−ϕ)−n

5
+

ϵ√
5

⌋
,

and we see that the parity of
⌊
fn+ϵ
2ϕ−1

⌋
is dependent only on ϵ and the value of r. (The term 2(−ϕ)−n

5

is negligible since n ≥ 13 and the Lucas numbers are nonzero modulo 5.) The Lucas numbers are

periodic modulo 10 with period 12, and a straightforward check of all the possible values of ϵ and

n (mod 12) gives the result. □
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We now prove Theorem 4.2.2.

Proof of Theorem 4.2.2. Suppose towards contradiction that T contains a 5-term arith-

metic progression x1, x2, x3, x4, x5 with common difference fn ∈ F and T (x1) = · · · = T (x5). We

first consider the case where T (xi) = 1 for all i. By Lemma 4.1.2, for all i there exists a positive

integer mi such that xi = 2 ⌊miϕ⌋ −mi.

Therefore for i = 1, 2, 3, 4 we have

mi+1 −mi = 2(⌊mi+1ϕ⌋ − ⌊miϕ⌋) + xi − xi+1 = 2(⌊mi+1ϕ⌋ − ⌊miϕ⌋)− fn,

so mi+1−mi + f is even, hence mi+1−mi and fn have the same parity. After simplifying further,

we obtain

mi+1 −mi = 2(mi+1ϕ− {mi+1ϕ} −miϕ+ {miϕ})− fn,

which implies

mi+1 −mi =
fn

2ϕ− 1
+

2

2ϕ− 1
({mi+1ϕ} − {miϕ}).

Since
∣∣∣ 2
2ϕ−1({mi+1ϕ} − {miϕ})

∣∣∣ < 1, it follows that either mi+1−mi = ⌊ fn
2ϕ−1⌋ or mi+1−mi =

⌈ fn
2ϕ−1⌉. By the parity argument above, mi+1 −mi is equal to the value in {⌊ fn

2ϕ−1⌋, ⌈
fn

2ϕ−1⌉} that

has the same parity as fn. Therefore we have

(4.2) {mi+1ϕ} − {miϕ} =


2ϕ−1
2

(
1−

{
fn

2ϕ−1

})
if mi+1 −mi = ⌈ fn

2ϕ−1⌉,

2ϕ−1
2

(
−
{

fn
2ϕ−1

})
if mi+1 −mi = ⌊ fn

2ϕ−1⌋.

The Fibonacci number fn is even if and only if n is a multiple of 3, and so by using Equation

4.2 and Lemma 4.2.3, we can now calculate the differences {mi+1ϕ} − {miϕ}. Note that these

differences are dependent only on fn, so they are equal for all i. If the absolute value of these

differences is at least 1
4 , then there are no 5-term arithmetic progressions with T (xi) = 1 for all i.

We give the values of {mi+1ϕ}−{miϕ}, rounded to three decimal places, of fn below for 1 ≤ n ≤ 12:
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n fn {mi+1ϕ} − {miϕ}

1,2 1 .618

3 2 -1

4 3 -.382

5 5 .854

6 8 .472

7 13 -.910

8 21 -.438

9 34 .889

10 55 .451

11 89 -.897

12 144 -.446

For n ≥ 13, using Equation 4.2 and Lemma 4.2.3, we see that {mi+1ϕ} − {miϕ} is approximately

−1√
5
, 2√

5
, 1√

5
, or −2√

5
when n is congruent to 0, 1, 2, or 3 modulo 4, respectively. We see that

|{mi+1ϕ}−{miϕ}| > 1
3 for all n, and so in fact there are not even any 4-term arithmetic progressions

x1, x2, x3, x4 with gaps in F with T (xi) = 1 for i = 1, 2, 3, 4.

We now move to the case T (xi) = 0. First, observe that the string 11 never appears in

the word F∞, hence the string 000 never appears in T . Moreover, each 0 in T is adjacent to

another 0. Consequently, if T (x) = 0, then either T (x − 2) = 1 or T (x + 2) = 1. For each xi,

choose yi ∈ {xi − 2, xi + 2} such that T (yi) = 1. Therefore, if xi+1 − xi = fn for all i, then

yi+1 − yi ∈ {fn − 4, fn, fn + 4} for all i. By Lemma 4.1.2, for all i there exists an mi such that

yi = 2 ⌊miϕ⌋ −mi.

Our analysis is now similar as above. Notice again that mi+1 −mi and fn must have the same

parity since

mi+1 −mi = 2(⌊mi+1ϕ⌋ − ⌊miϕ⌋) + yi − yi+1 = 2(⌊mi+1ϕ⌋ − ⌊miϕ⌋)− (fn + ϵi),

and ϵi ∈ {−4, 0, 4}.
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Rearranging and using a similar argument as above, we havemi+1−mi = ⌊ f+ϵi
2ϕ−1⌋ ormi+1−mi =

⌈ f+ϵi
2ϕ−1⌉, where ϵi ∈ {−4, 0, 4}. Therefore we have

(4.3) {mi+1ϕ} − {miϕ} =


2ϕ−1
2

(
1−

{
f+ϵi
2ϕ−1

})
if mi+1 −mi = ⌈ f+ϵi

2ϕ−1⌉,

2ϕ−1
2

(
−
{

f+ϵi
2ϕ−1

})
if mi+1 −mi = ⌊ f+ϵi

2ϕ−1⌋.

We again calculate the first several values of {mi+1ϕ} − {miϕ} when ϵ = ±4 below.

n fn + 4 {mi+1ϕ} − {miϕ}

1,2 5 .854

3 6 -.764

4 7 -.146

5 9 1.090

6 12 .708

7 17 -.674

8 25 -.202

9 38 -1.111

10 59 .687

11 93 -.661

12 148 -.210

n fn − 4 {mi+1ϕ} − {miϕ}

1,2 -3 .382

3 -2 1

4 -1 -.618

5 1 .618

6 4 .236

7 9 1.090

8 17 -.674

9 30 .652

10 51 .215

11 85 1.103

12 140 -.682

If ϵi = 4, then by Lemma 4.2.3, for n ≥ 13, the values of {mi+1ϕ} − {miϕ} are approximately

(within .001 of) one of the values

2(2−
√
5)√

5
≈ −.211, 2(1−

√
5)√

5
≈ −1.106, 2(3−

√
5)√

5
≈ .683, 3− 2

√
5√

5
≈ −.658,

depending on whether n ≡ 0, 1, 2, or 3 modulo 4, respectively. Similarly, if ϵi = −4, then the values

of {mi+1ϕ} − {miϕ} are approximately (within .001 of) one of the values

−2(3−
√
5)√

5
≈ −.683, −3 + 2

√
5√

5
≈ .658, −2(2−

√
5)√

5
≈ .211, −2(1−

√
5)√

5
≈ 1.106,

again depending on whether n ≡ 0, 1, 2, or 3 modulo 4, respectively.
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Let di := {mi+1ϕ}− {miϕ}. If |di| ≥ 1 for any i, then we are done immediately. First, one can

show that di > 0 if and only if ϵi = 0 and n ≡ 1, 2 (mod 4), or ϵi = 4 and n ≡ 2 (mod 4) or n = 5,

or ϵi = −4 and n ̸≡ 0 (mod 4).

Note also that |di| ≥ 1 when ϵi = 4 and n ≡ 1 (mod 4) and when ϵi = −4 and n ≡ 3 (mod 4).

Therefore these two cases are impossible, and considering the remaining possibilities of n (mod 4)

and ϵi, we see that di always has the same sign regardless of ϵi.

Observe that if ϵi = ±4, then ϵi+1 = 0 or ϵi+1 = ∓4. Using the approximations for di for large

n and considering all possible sequences of ϵi for i = 1, 2, 3, 4, we have |d1 + d2 + d3 + d4| ≥ 1 in all

cases (in fact, |d1 + d2 + d3| ≥ 1 unless n = 4), which concludes the proof.

□

4.3. Experimental Results and Further Questions

In this section we give some results on ∆(D, ℓ; k) and n(APD, ℓ; k) for different sets D and

discuss some open questions. Our primary method for computing these values is the SAT solver

CaDiCaL [20].

For each number ∆(D, ℓ; k) (or n(APD, ℓ; k), we construct formulas ϕn that are satisfiable if

and only if ∆(D, ℓ; k) > n (or n(APD, ℓ; k) > n). These formulas are constructed in essentially

the same way as our formulas for Rado numbers in Chapter 3. The set of variables in each ϕn is

{vci : 1 ≤ i ≤ n, 1 ≤ c ≤ r}. The variable vci is assigned true if and only if integer i is colored

color c. We again use positive, negative, and optional clauses. Positive and optional clauses are

exactly the same as we saw in Section 3.2. The only small difference is that now negative clauses

ensure that there are no monochromatic D-diffsequences (or arithmetic progressions with common

difference in D). If x1, . . . , xk is a k-term D-diffsequence (or arithmetic progression with common

difference in D), then we include a clause of the form

v̄cx1
∨ v̄cx2

∨ · · · ∨ v̄cxk

for all colors c and all k-term diffsequences (or arithmetic progressions with common difference in

D) with 1 ≤ x1 ≤ · · · ≤ xk ≤ n.
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The formula ϕn is the conjunction of all positive, negative, and optional clauses for the given

parameters n,D, k, r.

We first consider the set of Lucas numbers L = {2, 1, 3, 4, 7, 11, . . . } and doa(L). It is easily

shown that no Lucas number is a multiple of 5, so ∆(L, 2; 5) =∞ since coloring each integer its con-

gruence class mod 5 avoids 2-term L-diffsequences. The following result gives a slight improvement

and shows doa(L) ≤ 3.

Proposition 4.3.1. Let L be the set of Lucas numbers. Then ∆(L, 3; 4) = ∞. In particular,

L is not 4-accessible and doa(L) ≤ 3.

Proof. Define a coloring χ : Z+ → [4] as follows:

χ(n) =



1 if n ≡ 1, 7 (mod 8),

2 if n ≡ 2, 4 (mod 8),

3 if n ≡ 3, 5 (mod 8),

4 if n ≡ 0, 6 (mod 8).

We suppose towards contradiction that x1, x2, x3 is a 3-term L-diffsequence with χ(x1) = χ(x2) =

χ(x3). Observe that the Lucas numbers are periodic modulo 8 and congruent to

2, 1, 3, 4, 7, 3, 2, 5, 7, 4, 3, 7, 2, 1, . . . (mod 8),

so no Lucas number is congruent to 0 or 6 modulo 8. Thus by the definition of χ, one can check

that we must have x2−x1 ≡ 2 (mod 8). But then we must have that x3−x2 is congruent to either

0 or 6 modulo 8, which is a contradiction. □

Table 4.1 gives some additional computed values of ∆(L, ℓ; k).

We next study the set P = {2, 3, 5, 7, 10, 12, 17, 22, . . . }, the set of nonzero Perrin (or “skiponacci”)

numbers pn, which are given by p1 = 3, p2 = 0, p3 = 2, and pn = pn−2 + pn−3 for n ≥ 4. Ta-

ble 4.2 gives some values of ∆(P, ℓ; k). The most difficult computation was the upper bound

∆(P, 3; 5) ≤ 107, which required over 5 hours using CaDiCaL. For this computation we produced
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Table 4.1. Table of numbers ∆(L, ℓ; k)

k
ℓ

2 3 4 5 6 7

2 3 5 7 13 15 21
3 4 13 22 51
4 5 ∞
5 ∞

Table 4.2. Table of numbers ∆(P, ℓ; k)

k
ℓ

2 3 4 5 6 7

2 5 9 13 19 23 31
3 7 17 28 43
4 13 35 81
5 18 107
6 25
7 > 5000

a certificate of unsatisfiability for the upper bound; this used over 3.3GB of memory. In contrast,

CaDiCaL gives the lower bound ∆(P, 3; 5) ≥ 107 in merely two seconds, outputting the 5-coloring

of [106] shown in Table 4.3.

Color Color class
1 {1, 5, 8, 12, 16, 23, 27, 31, 38, 42, 46, 53, 57, 64, 68, 72, 79, 83, 87, 94, 100}
2 {2, 13, 20, 24, 28, 35, 39, 43, 50, 54, 61, 65, 69, 76, 80, 84, 91, 95, 99, 102, 106}
3 { 3, 4, 11, 15, 19, 26, 30, 34, 41, 45, 49, 56, 60, 67, 71, 75, 82, 86, 90, 97, 98}
4 {6, 7, 14, 18, 22, 29, 33, 37, 44, 48, 52, 55, 59, 63, 70, 74, 78, 85, 89, 93, 101, 105}
5 {9, 10, 17, 21, 25, 32, 36, 40, 47, 51, 58, 62, 66, 73, 77, 81, 88, 92, 96, 103, 104}

Table 4.3. 5-coloring of [106] avoiding 3-term P -diffsequences.

Figure 4.1 displays a 7-coloring of [5000] avoiding 2-term P -diffsequences. The precise numerical

color classes are given in the Appendix.
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Figure 4.1. Read left to right, top to bottom: 7-coloring of [5000] avoiding 2 term
P -diffsequences.
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CHAPTER 5

Additional Ramsey-type Numbers and Research Directions

In this chapter we give more results that were obtained from our computational endeavors.

This work is a further illustration of our SAT methods and shows their applications not just to

arithmetic Ramsey theory, but a more diverse array of combinatorial problems.

5.1. Ramsey Numbers for Book and Wheel Graphs

Our computations using SAT solvers yielded new lower bounds for Ramsey numbers involving

the book graphs Bn and wheel graphs Wn. The book graph Bn is the graph K2 + Kn (here +

denotes the join operation). The numbers R(Bm, Bn) are known for several families of m,n, but

many cases are unknown (see [114]). The upper bounds R(B4, B5) ≤ 19 and R(B3, B6) ≤ 19 were

established by Lidický and Pfender in [97] using semidefinite programming. The wheel graph is the

graph K1 + Cn−1. In [97] it is also shown that R(W5,W7) ≤ 16, and the previously known best

lower bound was R(W5,W7) ≥ 13. Theorem 5.1.1 shows that the bounds for the book graphs are

tight and improves the lower bound for R(W5,W7) by two.

We used a simple SAT encoding to produce formulas Fn(G1, G2) for graphs G1, G2 that are

satisfiable if and only if R(G1, G2) > n. This encoding has a variable xe for each edge of Kn which

is set to true if and only if e is included in the graph.

Encoding C. The Ramsey number R(G1, G2) is at most n if the formula Fn(G1, G2) is unsat-

isfiable, where (V,E) = Kn and

Fn(G1, G2) :=

 ∧
H⊂Kn,H∼=G1

 ∨
e∈E(H)

x̄e

 ∧
 ∧

H⊂Kn,H∼=G2

 ∨
e∈E(H)

xe

 .

Moreover, if Fn(G1, G2) is satisfiable, then R(G1, G2) ≥ n+ 1.

Proof of Theorem 5.1.1. The following adjacency list describes a graph of order 18 that

contains no B4 or B5:
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v neighbors of v

1 2, 8, 9, 12, 14, 15, 17, 18

2 1, 5, 7, 10, 12, 14, 16, 17

3 4, 5, 7, 8, 9, 12, 13, 17

4 3, 6, 7, 10, 11, 12, 15, 16

5 2, 3, 7, 8, 9, 11, 16, 18

6 4, 8, 9, 11, 13, 14, 15, 16

7 2, 3, 4, 5, 13, 14, 15, 18

8 1, 3, 5, 6, 11, 14, 15, 17

9 1, 3, 5, 6, 12, 13, 16, 18

10 2, 4, 11, 12, 13, 16, 17, 18

11 4, 5, 6, 8, 10, 12, 14, 18

12 1, 2, 3, 4, 9, 10, 11, 14

13 3, 6, 7, 9, 10, 14, 17, 18

14 1, 2, 6, 7, 8, 11, 12, 13

15 1, 4, 6, 7, 8, 16, 17, 18

16 2, 4, 5, 6, 9, 10, 15, 17

17 1, 2, 3, 8, 10, 13, 15, 16

18 1, 5, 7, 9, 10, 11, 13, 15

The following adjacency list describes a graph of order 18 that contains no B3 or B6:
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v neighbors of v

1 2, 3, 6, 7, 10, 11, 18

2 1, 6, 8, 9, 10, 12, 16

3 1, 7, 12, 14, 15, 16, 18

4 5, 6, 7, 10, 12, 13, 17

5 4, 6, 9, 13, 14, 16, 18

6 1, 2, 4, 5, 11, 12, 14

7 1, 3, 4, 8, 10, 14, 17

8 2, 7, 11, 13, 14, 16, 17

9 2, 5, 10, 14, 15, 17, 18

10 1, 2, 4, 7, 9, 13, 15

11 1, 6, 8, 13, 15, 17, 18

12 2, 3, 4, 6, 15, 16, 17

13 4, 5, 8, 10, 11, 15, 16

14 3, 5, 6, 7, 8, 9, 15

15 3, 9, 10, 11, 12, 13, 14

16 2, 3, 5, 8, 12, 13, 18

17 4, 7, 8, 9, 11, 12, 18

18 1, 3, 5, 9, 11, 16, 17

The following adjacency list describes a graph of order 14 that contains no W5 or W7:
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Figure 5.1. From left to right, a graph that contains no B4 or B5, a graph that
contains no B3 or B6, a graph that contains no W5 or W7.

v neighbors of v

1 3, 6, 7, 9, 10, 11, 12

2 4, 6, 8, 10, 11, 12

3 1, 6, 7, 9, 11, 12

4 2, 5, 6, 7, 9, 11, 12

5 4, 7, 8, 9, 10, 12

6 1, 2, 3, 4, 7, 14

7 1, 3, 4, 5, 6, 8, 13, 14

8 2, 5, 7, 13, 14

9 1, 3, 4, 5, 10, 13, 14

10 1, 2, 5, 9, 13, 14

11 1, 2, 3, 4, 12, 13, 14

12 1, 2, 3, 4, 5, 11, 13, 14

13 7, 8, 9, 10, 11, 12, 14

14 6, 7, 8, 9, 10, 11, 12, 13

Figure 5.1 gives drawings of (isomorphic copies of) each of the three graphs. All three graphs

were found using Satch. Satch and CaDiCaL were unable to find a graph on 15 vertices con-

taining no copies of W5 or W7 in over twelve days of computation time.

□
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5.2. Results for Extremal Problems

Though this dissertation has focused on problems in Ramsey theory, we note that our SAT

methods have application to other areas of combinatorics as well. This section largely consists

of experimental data rather than theoretical results, but it may be helpful in future work. In

particular, we are interested in extremal problems in graph theory and geometry.

Our main method is to use cardinality constraints in Boolean formulas to find graphs or point

configurations that avoid certain properties. We use the notation ≤r (x1, . . . , xn) to denote the

constraint “at most r of the variables in {x1, . . . xn} are assigned to true.” There are many ways to

encode this constraint using Boolean variables (see [133]), but here we use the sequential counter

encoding from [125].

Encoding D ( [125]). The following clauses encode the constraint ≤r (x1, . . . , xn).

r∧
k=1

n+k−r−2∧
j=k

ekj ∨ ekj+1,

r∧
k=0

n+k−r−1∧
j=k

ekj ∨ ek+1
j+1 ∨ xj+1.

We used this encoding for its relative simplicity; other encodings may be faster for the problems

we consider, but we did not explore them.

A fundamental result in extremal graph theory is Turán’s theorem, which gives a tight bound on

the number of edges in a graph on n vertices that does not contain a copy of Kr. More generally,

we define the Turán number ex(n,G) of a graph G as the largest number of edges in a graph

on n vertices that does not contain G as a subgraph. In this language, Turán’s theorem [129]

says ex(n,Kr) =
(
1− 1

r−1 + o(1)
)

n2

2 . Another famous result is the Kővári-Sós-Turán theorem ,

which says ex(n,Ks,t) = O(n2−
1
t ) for complete bipartite graphs Ks,t with 2 ≤ s ≤ t. This bound

is asymptotically tight when t ≤ 3 (see [66]), but this is not known for t ≥ 4. Many values of

ex(n,K2,2) = ex(n,C4) have been computed (see OEIS entry A006855 and the references there),

but to our knowledge little has been done in computing ex(n,Ks,t) for higher values of s, t. We

computed several of these values using the following encoding.
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Encoding E. There is a graph of order n with E edges that does not contain a copy of G if

and only if the following formula is satisfiable.

Fn,E(G) :=

 ∧
H⊂Kn,H∼=G

 ∨
e∈E(H)

x̄e

∧ ≤E (xe)e∈E(Kn)∧ ≤(n2)−E (x̄e)e∈E(Kn),

where ≤r (x1, . . . , xn) is the cardinality constraint described in Encoding D.

Here each edge has a variable xe that is assigned true if and only if the edge is present in our

graph. The first set of clauses forbids a copy of G, the second constraint forbids more than E edges,

and the last constraint forbids more than
(
n
2

)
− E nonedges. Using this encoding, we computed

data for ex(n,G) for G ∈ {K2,3,K3,3,K4,4}.

Table 5.1. Table of values of ex(n,G) for G ∈ {K2,3,K3,3,K4,4}.

n ex(n,K2,3)
5 7
6 10
7 12
8 16
9 19
10 22
11 25

n ex(n,K3,3)
6 12
7 16
8 19
9 24
10 30
11 34

n ex(n,K4,4)
8 24
9 30
10 35
11 ≥ 41

Another natural modification of Ramsey problems is to look not for monochromatic subgraphs

in edge colorings of Kn, but subgraphs with a given coloring pattern. This has been studied, for

instance, in [29,37]. A corollary of the main results of [37] is that for sufficiently large n, there

exists a smallest number e = α(n, r) such that 2-coloring the edges of Kn with at least e red

edges and e blue edges induces a monochromatic Kr with edges to some vertex the other color.

In other words, if there are sufficiently many red and blue edges, either the red subgraph or the

blue subgraph contains an induced K1,r. We investigated the parameter α(n, r) using SAT solvers

using an encoding similar to Encoding E. We give the results in Table 5.2. The results suggest

that α(n, 3) = n + 1 for n ≥ 10, which agrees with the known Turán number ex(n,K1,3) = n + 1

(see [96] for a generalization of this result). Notably, coloring the Paley graph of order 9 red and

all other edges blue gives an equal number of edges of each color and avoids induced K1,3. For

r = 4, there is a critical graph with at least ⌊n/2⌋ edges of each color for up to n = 20.
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Table 5.2. Table of values of α(n, 3) for small n.

n α(n, 3)
8 doesn’t exist
9 doesn’t exist
10 11
11 12
12 13
13 14

A Sidon set is a subset of an abelian group that contains no solution to the equation x+ y =

z + w where {x, y} ̸= {z, w}. Another Ramsey-type number is the Sidon-Ramsey number SR(k)

introduced in [95], which is the minimum n such that there is no k-coloring of [n] where each

color class is a Sidon set. The authors of [50] improved the asymptotics of SR(n) and studied the

numbers sr(n1, . . . , nd), the largest number of colors k such that there is no k-coloring of
∏d

i=1[ni]

where each color class (viewed as a subset of Zd) is a Sidon set. We computed several values of the

d = 2 case using SAT solvers, and we give the values in Table 5.3.

Table 5.3. Table of numbers sr(m,n).

m
n

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

2 1 1 1 2 2 2 2 2 3 3 3 3 3 3 4
3 1 2 2 2 3 3 3 3 4
4 2 3 3 3 3 4
5 3 3 4
6 4

The next problems we examine have a slightly different flavor than what we have seen. An

old conjecture of Erdős [47] stated that any collection of more than 2n points in Rn determines

an obtuse angle, and this was proven by Danzer and Grünbaum in [38]. Harangi et al. went on

to study sets S ⊆ Rn that do not contain three points making a given angle α and investigated

how large the Hausdorff dimension of S can be. Bennett asked similar questions over finite fields

rather than Rn and determined asymptotic bounds for sets of Fn
q that necessarily contain i) right

angles and ii) right angles whose vertex is at the origin. In finite fields with q odd, a triple (x, y, z)

with x, y, z distinct forms a right angle with vertex y if 2 ⟨x− y, z − y⟩ = 0, an acute angle if

2 ⟨x− y, z − y⟩ ∈ Q, where Q is the set of quadratic residues in Fq, and an obtuse angle otherwise.
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Omar recently generalized Bennett’s result to acute and obtuse angles [110]. Our results here give

some explicit values of maximal sizes of Fn
q that avoid right, acute, and obtuse angles.

Our most complete result is the case of right angles with vertex at the origin. We let ρ0n,q denote

the largest size of a subset of Fn
q that does not contain two distinct orthogonal vectors. We give a

table of values in Table 5.4.

Table 5.4. Largest size of a subset of Fn
q that does not contain two orthogonal

vectors.

n
q

2 3 5 7 11 13 17 19 23 29

2 2 4 10 24 60 74 130 180 264 394
3 3 7 29
4 4 11
5 5 19
6 6
7 8
8 9

We have an exact formula for ρ02,q when n = 2.

Proposition 5.2.1. For q prime, ρ02,q =


q2−1
2 q ≡ 3 (mod 4),

q2−1
2 − q + 3 q ≡ 1 (mod 4).

Proof. Let Lq be the set of lines in F2
q through the origin. One can check that |Lq| = q + 1

since there are q distinct lines spanned by elements of the form (1, t), t ∈ Fq together with the line

spanned by (0, 1). The lines spanned by (0, 1) and (1, 0) are orthogonal, and then two lines (1, t1)

and (1, t2) are orthogonal if and only if t1t2 = −1.

Recall that −1 is a square in Fq if and only if q ≡ 1 (mod 4). Therefore if q ≡ 1 (mod 4), then

there are q−1
2 pairs of orthogonal lines and 2 self-orthogonal lines spanned by (1, t1) and (1, t2),

where t21 = t22 = −1. If q ≡ 3 (mod 4), then there are q+1
2 pairs of orthogonal lines.

To show lower bounds for ρ02,q, we exhibit sets S that do not contain any orthogonal points. If

q ≡ 3 (mod 4), then for each pair of orthogonal lines, we include the q − 1 nonzero points on one

of those lines in S, for a total of (q−1)(q+1)
2 = q2−1

2 . None of these points are orthogonal because if

a point (a, b) lies on some line ℓ through the origin, then the only points orthogonal to (a, b) lie on

the line ℓ′ orthogonal to ℓ, and there are no points on ℓ′ in S.
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Similarly, for the case where q ≡ 1 (mod 4), for every pair of orthogonal lines we include the

q − 1 nonzero points in S, and then from the self-orthogonal lines we include 1 point from each of

them for a total of (q−1)(q−1)
2 + 2 = q2−1

2 − q + 3.

To show the upper bound for the case q ≡ 3 (mod 4), by the pigeonhole principle, if |S| > q2−1
2 ,

then there is one pair of orthogonal lines that contains at least q points in S. Since the origin can

never be in S, by the pigeonhole principle again, there must be two points in S that are on

orthogonal lines, so these points are orthogonal, a contradiction.

When q ≡ 1 (mod 4), we note that there can be a maximum of one point on each self-orthogonal

line, and the claim follows by a similar contradiction as before. □

We do the same for acute and obtuse angles with vertex at the origin. Let α0
n,q (respectively

ω0
n,q) denote largest size of subset of Fn

q that does not contain two distinct vectors that form an

acute (respectively obtuse) angle. We give values of α0
n,q and ω0

n,q in Tables 5.5 and 5.6.

Table 5.5. Table of values of α0
n,q

n
q

3 5 7 11 13 17 19 23

2 5 7 10 17 25 33 30 ≥ 45
3 7 15 28
4 11
5 ≥ 18

Table 5.6. Table of values of ω0
n,q

n
q

3 5 7 11 13 17

2 5 7 10 17 25 33
3 7 13
4 11

We can also do the same analysis when we allow the vertex to be any point. Let (ρn,q αn,q, ωn,q)

denote the largest size of subset of Fn
q that does not contain a (right, acute, obtuse) angle. We give

the values in Tables 5.7, 5.8, and 5.9.

5.3. Future Directions

We conclude by mentioning some open problems and directions for future research.
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Table 5.7. Table of values of ρn,q

n
q

3 5 7 11

2 3 5 7 11
3 5

Table 5.8. Table of values of αn,q

n
q

3 5 7

2 4 5 4
3 4

Table 5.9. Table of values of ωn,q

n
q

3 5 7

2 4 5 4
3 6
4 < 10

5.3.1. Problems on Nullstellensatz certificates. Theorem 2.3.3 gives upper bounds for

polynomial encodings of Ramsey-type numbers in terms of Builder-Painter games. An obvious

related question is to study the corresponding lower bounds for these certificates. One way of

obtaining lower bounds is through designs of degree d, which are certain maps from the set poly-

nomials of degree at most d to the base field K (for a precise definition, see [26]). The existence

of a design of degree d is equivalent to the nonexistence of a Nullstellensatz certificate of degree at

most d. It is plausible that the underlying combinatorial structure of Ramsey-type problems could

be leveraged to construct designs.

Another observation that we have made is that the certificate degree bounds in terms of Builder-

Painter games are not tight in general. In some sense this means that the Nullstellensatz is more

powerful as a proof system than Builder-Painter games. If d(r, s, n) is the smallest degree of a

Nullstellensatz certificate for the polynomial system in Theorem 2.3.1 that has a solution if and

only if R(r, s) > n, then we have

d(r, r, n) ≤ R̃(r, r;n)− 1 ≤
(
R(r, r)

2

)
.
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We know that these inequalities are strict already in the case n = 6, r = 3. We suspect they

are strict in general, and it would be interesting to give a more precise description of how these

numbers relate.

Problem 5.3.1. Investigate lower bounds and the tightness of upper bounds for the minimal

degrees of Nullstellensatz certificates for the polynomial systems in Theorem 2.3.3.

5.3.2. Problems on Rado Numbers. Perhaps one of the most interesting open questions

mentioned already is Conjecture 1.2.1, Rado’s boundedness conjecture. The work of Fox and Kleit-

man in [54] shows that 24 colors are sufficient to avoid solutions to nonregular three variable

homogeneous linear equations, but our experimental data suggests that as few as 4 colors may be

enough. An interesting problem would be to optimize this bound, and this may be an incremental

step towards Rado’s boundedness conjecture for m ≥ 4 variable equations.

Problem 5.3.2. What is the smallest number of colors k required to avoid monochromatic

solutions to all nonregular three variable linear homogeneous equations? Is k = 24 the best possible?

Lemma 3.3.3 gives colorings that give lower bounds for the generalized Schur numbers S(k,m).

These bounds are tight for all m when k ≤ 3. However, for k = 4, this fails for m = 3. The

(ordinary) Schur number S(4, 3) = R4(x1 + x2 = x3) = S(4) = 45, but the bound given in

Lemma 3.3.3 gives only S(4, 3) ≥ 41. Theorem 3.6.1 shows that the bound becomes tight again

for S(4, 4), S(4, 5), and S(4, 6), suggesting that this may hold for m ≥ 7 as well. It seems plausible

that for all k, the 3.3.3 holds for sufficiently large m, though this is difficult to verify experimentally

for large k.

Our proof of R3(x + (m − 2)y = z) = m3 −m2 −m − 1 in Theorem 3.4.1 used a set of 685

polynomials for the set S in Lemma 3.4.1, but the result in [22] showed R3(x1+x2+x3+(m−4)x4 =

x5) = m3−m2−m−1 using similar methods on a set of only 30 polynomials. Reducing the number

of polynomials in these sets would give a better understanding on the reasons for when the bound

from Lemma 3.3.3 is tight, and the size of these sets also gives an upper bound for the restricted

online Rado numbers as in Corollary 3.4.1.

Moreover, it is not so clear what the best way to generate these sets S is. The procedure detailed

in Section 3.10 required much experimentation, and it would be useful to have an algorithm that
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guarantees that a set of polynomials will be sufficient to prove a given upper bound for a specified

Rado number.

Problem 5.3.3. Investigate methods to generate sets of polynomials S to use in Lemma 3.4.1.

Specifically, study the sets used in proving bounds for S(3,m). Determine when the best known

lower bounds for S(k,m) are tight.

Theorem 3.6.3 gave the degree of regularity for dor(Ea,b) = dor(a(x + y) = bz) when a ≤ 5 or

b ≤ 2. The essential part of the proof was using Lemma 3.5.1 to show that the interesting cases

happen when a < 2b and b < 4a. For all of these cases it turned out that Ea,b was 3-regular, and

it is reasonable to conjecture the following.

Conjecture 5.3.1. The equation a(x+ y) = bz is 3-regular if and only if a < 2b and b < 4a.

A similar result does not hold in general for the equations ax + by = cz. For example, the

equation x+ 3y = 9z is not 3-regular by Lemma 3.5.3, but it also does not satisfy the inequalities

in Lemma 3.5.1. However, it seems worthwhile to investigate when the bounds given by Lemma

3.5.1 are “tight” in the sense that they characterize exactly when an equation is k-regular. This

might be a step towards generalizing Theorem 1.2.5 to characterize 3-regular equations, and it

seems likely that both algebraic and modular conditions are a part of such a characterization.

5.3.3. Problems on Diffsequences. The proofs of Theorem 4.2.1 and Theorem 4.2.2 give

new bounds on doa(F ) and doa(APF ) by showing, respectively, that ∆(F, 4; 4) =∞ and

n(APF , 5; 2) =∞, where F is the set of Fibonacci numbers. It is known from [7] that ∆(F, 2; 4) = 9,

and a SAT solver easily shows n(APF , 3; 2) = 17. However, we were unable to compute the values

∆(F, 3; 4) and n(APF , 4; 2).

Using a greedy algorithm based on CaDiCaL’s “lucky” heuristic, which is essentially greedy

assignment combined with unit propagation, we were able to find a 2-coloring of [50000] that does

not contain any 3-term G-diffsequences, which implies the bound ∆(G, 3; 2) > 50000. The coloring

used in the proof of Lemma 4.2.1 then gives the bound ∆(F, 3; 2) > 100000. Figure 5.2 gives a

4-coloring of [5000] with no 3-term F -diffsequence. Moreover, with a SAT solver we were able

to show n(APF , 4; 2) > 8000. We see there are large gaps between ∆(F, 3; 4) and ∆(F, 4; 4) as
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well as n(APF , 3; 2) and n(APF , 4; 2). Similarly, there is also large gap between ∆(P, 2; 6) = 25

and ∆(P, 2; 7), which is at least 5000. We feel there is sufficient evidence to make the following

conjecture.

Conjecture 5.3.2. ∆(F, 3; 4) = n(APF , 4; 2) = ∆(P, 2; 7) =∞.
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Figure 5.2. Read left to right, top to bottom: 4-coloring of [5000] avoiding 3-term
F -diffsequences.
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APPENDIX A

Rado Number Tables

A.1. 2-color Rado Numbers

This section displays our largest table of Rado numbers from Theorem 3.6.1; it contains 3500

entries.

Table A.1. 2-color Rado numbers R2(ax+ by = cz), 1 ≤ a ≤ b ≤ 20, 1 ≤ c ≤ 20,
gcd(a, b, c) = 1.

a b c R2(ax+ by = cz) a b c R2(ax+ by = cz) a b c R2(ax+ by = cz)

1 1 1 5 1 1 2 1 1 1 3 9

1 1 4 10 1 1 5 15 1 1 6 21

1 1 7 28 1 1 8 36 1 1 9 45

1 1 10 55 1 1 11 66 1 1 12 78

1 1 13 91 1 1 14 105 1 1 15 120

1 1 16 136 1 1 17 153 1 1 18 171

1 1 19 190 1 1 20 210 1 2 1 11

1 2 2 4 1 2 3 1 1 2 4 4

1 2 5 15 1 2 6 4 1 2 7 14

1 2 8 16 1 2 9 14 1 2 10 26

1 2 11 20 1 2 12 20 1 2 13 39

1 2 14 28 1 2 15 41 1 2 16 40

1 2 17 68 1 2 18 44 1 2 19 49

1 2 20 50 1 3 1 19 1 3 2 9

1 3 3 9 1 3 4 1 1 3 5 15

1 3 6 9 1 3 7 4 1 3 8 18

1 3 9 15 1 3 10 25 1 3 11 33
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1 3 12 9 1 3 13 52 1 3 14 26

1 3 15 36 1 3 16 36 1 3 17 42

1 3 18 34 1 3 19 43 1 3 20 60

1 4 1 29 1 4 2 8 1 4 3 14

1 4 4 16 1 4 5 1 1 4 6 12

1 4 7 14 1 4 8 16 1 4 9 27

1 4 10 14 1 4 11 33 1 4 12 24

1 4 13 9 1 4 14 28 1 4 15 36

1 4 16 32 1 4 17 57 1 4 18 52

1 4 19 57 1 4 20 16 1 5 1 41

1 5 2 15 1 5 3 15 1 5 4 15

1 5 5 25 1 5 6 1 1 5 7 18

1 5 8 20 1 5 9 16 1 5 10 25

1 5 11 33 1 5 12 30 1 5 13 65

1 5 14 35 1 5 15 25 1 5 16 40

1 5 17 68 1 5 18 32 1 5 19 57

1 5 20 30 1 6 1 55 1 6 2 18

1 6 3 9 1 6 4 14 1 6 5 18

1 6 6 36 1 6 7 1 1 6 8 16

1 6 9 12 1 6 10 20 1 6 11 24

1 6 12 36 1 6 13 39 1 6 14 22

1 6 15 35 1 6 16 32 1 6 17 43

1 6 18 36 1 6 19 57 1 6 20 40

1 7 1 71 1 7 2 18 1 7 3 39

1 7 4 15 1 7 5 20 1 7 6 28

1 7 7 49 1 7 8 1 1 7 9 27

1 7 10 25 1 7 11 16 1 7 12 33

1 7 13 39 1 7 14 49 1 7 15 60

1 7 16 34 1 7 17 68 1 7 18 63
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1 7 19 76 1 7 20 52 1 8 1 89

1 8 2 24 1 8 3 20 1 8 4 16

1 8 5 21 1 8 6 20 1 8 7 32

1 8 8 64 1 8 9 1 1 8 10 20

1 8 11 26 1 8 12 24 1 8 13 65

1 8 14 42 1 8 15 50 1 8 16 64

1 8 17 68 1 8 18 16 1 8 19 44

1 8 20 52 1 9 1 109 1 9 2 27

1 9 3 18 1 9 4 20 1 9 5 27

1 9 6 18 1 9 7 20 1 9 8 45

1 9 9 81 1 9 10 1 1 9 11 33

1 9 12 18 1 9 13 52 1 9 14 28

1 9 15 21 1 9 16 72 1 9 17 68

1 9 18 81 1 9 19 57 1 9 20 54

1 10 1 131 1 10 2 36 1 10 3 35

1 10 4 30 1 10 5 25 1 10 6 26

1 10 7 27 1 10 8 25 1 10 9 50

1 10 10 100 1 10 11 1 1 10 12 24

1 10 13 30 1 10 14 28 1 10 15 35

1 10 16 32 1 10 17 36 1 10 18 54

1 10 19 65 1 10 20 100 1 11 1 155

1 11 2 44 1 11 3 22 1 11 4 22

1 11 5 38 1 11 6 33 1 11 7 33

1 11 8 33 1 11 9 21 1 11 10 66

1 11 11 121 1 11 12 1 1 11 13 40

1 11 14 35 1 11 15 45 1 11 16 44

1 11 17 50 1 11 18 35 1 11 19 76

1 11 20 85 1 12 1 181 1 12 2 48

1 12 3 24 1 12 4 16 1 12 5 41
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1 12 6 36 1 12 7 16 1 12 8 40

1 12 9 27 1 12 10 34 1 12 11 72

1 12 12 144 1 12 13 1 1 12 14 24

1 12 15 33 1 12 16 32 1 12 17 53

1 12 18 42 1 12 19 36 1 12 20 48

1 13 1 209 1 13 2 52 1 13 3 32

1 13 4 52 1 13 5 65 1 13 6 40

1 13 7 39 1 13 8 65 1 13 9 34

1 13 10 52 1 13 11 39 1 13 12 91

1 13 13 169 1 13 14 1 1 13 15 60

1 13 16 40 1 13 17 65 1 13 18 71

1 13 19 54 1 13 20 51 1 14 1 239

1 14 2 64 1 14 3 32 1 14 4 36

1 14 5 28 1 14 6 42 1 14 7 49

1 14 8 18 1 14 9 25 1 14 10 36

1 14 11 38 1 14 12 35 1 14 13 98

1 14 14 196 1 14 15 1 1 14 16 28

1 14 17 41 1 14 18 30 1 14 19 46

1 14 20 48 1 15 1 271 1 15 2 68

1 15 3 45 1 15 4 45 1 15 5 45

1 15 6 24 1 15 7 50 1 15 8 60

1 15 9 45 1 15 10 25 1 15 11 48

1 15 12 30 1 15 13 48 1 15 14 120

1 15 15 225 1 15 16 1 1 15 17 68

1 15 18 30 1 15 19 80 1 15 20 45

1 16 1 305 1 16 2 80 1 16 3 64

1 16 4 48 1 16 5 52 1 16 6 48

1 16 7 72 1 16 8 64 1 16 9 50

1 16 10 38 1 16 11 55 1 16 12 40
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1 16 13 52 1 16 14 36 1 16 15 128

1 16 16 256 1 16 17 1 1 16 18 36

1 16 19 57 1 16 20 40 1 17 1 341

1 17 2 85 1 17 3 44 1 17 4 102

1 17 5 61 1 17 6 48 1 17 7 50

1 17 8 68 1 17 9 68 1 17 10 68

1 17 11 48 1 17 12 68 1 17 13 62

1 17 14 42 1 17 15 68 1 17 16 153

1 17 17 289 1 17 18 1 1 17 19 68

1 17 20 50 1 18 1 379 1 18 2 100

1 18 3 45 1 18 4 40 1 18 5 70

1 18 6 54 1 18 7 39 1 18 8 63

1 18 9 81 1 18 10 38 1 18 11 63

1 18 12 42 1 18 13 78 1 18 14 48

1 18 15 57 1 18 16 28 1 18 17 162

1 18 18 324 1 18 19 1 1 18 20 44

1 19 1 419 1 19 2 105 1 19 3 102

1 19 4 41 1 19 5 48 1 19 6 60

1 19 7 41 1 19 8 76 1 19 9 68

1 19 10 57 1 19 11 45 1 19 12 76

1 19 13 57 1 19 14 57 1 19 15 57

1 19 16 51 1 19 17 80 1 19 18 190

1 19 19 361 1 19 20 1 1 20 1 461

1 20 2 120 1 20 3 50 1 20 4 60

1 20 5 25 1 20 6 32 1 20 7 50

1 20 8 60 1 20 9 75 1 20 10 100

1 20 11 62 1 20 12 60 1 20 13 63

1 20 14 42 1 20 15 40 1 20 16 44

1 20 17 60 1 20 18 40 1 20 19 200
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1 20 20 400 2 2 1 34 2 2 3 10

2 2 5 15 2 2 7 28 2 2 9 45

2 2 11 66 2 2 13 91 2 2 15 120

2 2 17 153 2 2 19 190 2 3 1 53

2 3 2 13 2 3 3 9 2 3 4 10

2 3 5 1 2 3 6 9 2 3 7 9

2 3 8 16 2 3 9 9 2 3 10 14

2 3 11 20 2 3 12 18 2 3 13 65

2 3 14 26 2 3 15 12 2 3 16 36

2 3 17 39 2 3 18 30 2 3 19 76

2 3 20 52 2 4 1 76 2 4 3 4

2 4 5 18 2 4 7 14 2 4 9 10

2 4 11 18 2 4 13 39 2 4 15 40

2 4 17 68 2 4 19 49 2 5 1 103

2 5 2 31 2 5 3 24 2 5 4 15

2 5 5 25 2 5 6 15 2 5 7 1

2 5 8 24 2 5 9 27 2 5 10 25

2 5 11 20 2 5 12 24 2 5 13 52

2 5 14 20 2 5 15 30 2 5 16 32

2 5 17 34 2 5 18 52 2 5 19 34

2 5 20 25 2 6 1 134 2 6 3 12

2 6 5 20 2 6 7 12 2 6 9 9

2 6 11 33 2 6 13 52 2 6 15 30

2 6 17 37 2 6 19 45 2 7 1 169

2 7 2 57 2 7 3 28 2 7 4 20

2 7 5 35 2 7 6 17 2 7 7 49

2 7 8 17 2 7 9 1 2 7 10 20

2 7 11 33 2 7 12 28 2 7 13 24

2 7 14 49 2 7 15 50 2 7 16 16
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2 7 17 45 2 7 18 16 2 7 19 49

2 7 20 52 2 8 1 208 2 8 3 32

2 8 5 16 2 8 7 20 2 8 9 27

2 8 11 33 2 8 13 24 2 8 15 36

2 8 17 51 2 8 19 57 2 9 1 251

2 9 2 91 2 9 3 27 2 9 4 27

2 9 5 29 2 9 6 18 2 9 7 45

2 9 8 24 2 9 9 81 2 9 10 38

2 9 11 1 2 9 12 24 2 9 13 41

2 9 14 30 2 9 15 30 2 9 16 54

2 9 17 51 2 9 18 81 2 9 19 52

2 9 20 40 2 10 1 298 2 10 3 20

2 10 5 25 2 10 7 16 2 10 9 20

2 10 11 38 2 10 13 65 2 10 15 25

2 10 17 68 2 10 19 57 2 11 1 349

2 11 2 133 2 11 3 63 2 11 4 44

2 11 5 43 2 11 6 35 2 11 7 27

2 11 8 29 2 11 9 66 2 11 10 29

2 11 11 121 2 11 12 34 2 11 13 1

2 11 14 33 2 11 15 60 2 11 16 33

2 11 17 34 2 11 18 56 2 11 19 51

2 11 20 77 2 12 1 404 2 12 3 36

2 12 5 32 2 12 7 24 2 12 9 24

2 12 11 26 2 12 13 39 2 12 15 30

2 12 17 34 2 12 19 57 2 13 1 463

2 13 2 183 2 13 3 65 2 13 4 52

2 13 5 27 2 13 6 26 2 13 7 52

2 13 8 52 2 13 9 39 2 13 10 65

2 13 11 91 2 13 12 40 2 13 13 169
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2 13 14 39 2 13 15 1 2 13 16 72

2 13 17 68 2 13 18 26 2 13 19 57

2 13 20 52 2 14 1 526 2 14 3 70

2 14 5 70 2 14 7 49 2 14 9 34

2 14 11 32 2 14 13 48 2 14 15 60

2 14 17 68 2 14 19 76 2 15 1 593

2 15 2 241 2 15 3 45 2 15 4 72

2 15 5 35 2 15 6 45 2 15 7 66

2 15 8 65 2 15 9 45 2 15 10 30

2 15 11 50 2 15 12 24 2 15 13 120

2 15 14 40 2 15 15 225 2 15 16 60

2 15 17 1 2 15 18 32 2 15 19 60

2 15 20 30 2 16 1 664 2 16 3 40

2 16 5 62 2 16 7 72 2 16 9 16

2 16 11 42 2 16 13 74 2 16 15 42

2 16 17 68 2 16 19 26 2 17 1 739

2 17 2 307 2 17 3 111 2 17 4 85

2 17 5 72 2 17 6 63 2 17 7 68

2 17 8 65 2 17 9 57 2 17 10 60

2 17 11 48 2 17 12 53 2 17 13 68

2 17 14 49 2 17 15 153 2 17 16 68

2 17 17 289 2 17 18 68 2 17 19 1

2 17 20 68 2 18 1 818 2 18 3 56

2 18 5 36 2 18 7 70 2 18 9 81

2 18 11 42 2 18 13 65 2 18 15 36

2 18 17 80 2 18 19 57 2 19 1 901

2 19 2 381 2 19 3 59 2 19 4 111

2 19 5 95 2 19 6 57 2 19 7 57

2 19 8 50 2 19 9 60 2 19 10 57
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2 19 11 57 2 19 12 46 2 19 13 52

2 19 14 29 2 19 15 43 2 19 16 76

2 19 17 190 2 19 18 37 2 19 19 361

2 19 20 57 2 20 1 988 2 20 3 80

2 20 5 40 2 20 7 32 2 20 9 104

2 20 11 40 2 20 13 54 2 20 15 60

2 20 17 44 2 20 19 64 3 3 1 111

3 3 2 15 3 3 4 12 3 3 5 15

3 3 7 28 3 3 8 32 3 3 10 50

3 3 11 66 3 3 13 91 3 3 14 105

3 3 16 136 3 3 17 153 3 3 19 190

3 3 20 210 3 4 1 151 3 4 2 35

3 4 3 21 3 4 4 16 3 4 5 17

3 4 6 9 3 4 7 1 3 4 8 16

3 4 9 18 3 4 10 20 3 4 11 33

3 4 12 16 3 4 13 24 3 4 14 16

3 4 15 30 3 4 16 16 3 4 17 68

3 4 18 33 3 4 19 44 3 4 20 60

3 5 1 197 3 5 2 40 3 5 3 31

3 5 4 15 3 5 5 25 3 5 6 15

3 5 7 18 3 5 8 1 3 5 9 18

3 5 10 25 3 5 11 33 3 5 12 18

3 5 13 39 3 5 14 28 3 5 15 25

3 5 16 40 3 5 17 52 3 5 18 26

3 5 19 36 3 5 20 25 3 6 1 249

3 6 2 48 3 6 4 12 3 6 5 21

3 6 7 18 3 6 8 18 3 6 10 20

3 6 11 16 3 6 13 39 3 6 14 28

3 6 16 36 3 6 17 68 3 6 19 45
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3 6 20 48 3 7 1 307 3 7 2 58

3 7 3 57 3 7 4 28 3 7 5 17

3 7 6 18 3 7 7 49 3 7 8 25

3 7 9 15 3 7 10 1 3 7 11 41

3 7 12 18 3 7 13 39 3 7 14 49

3 7 15 24 3 7 16 48 3 7 17 68

3 7 18 45 3 7 19 44 3 7 20 46

3 8 1 371 3 8 2 82 3 8 3 73

3 8 4 27 3 8 5 39 3 8 6 22

3 8 7 20 3 8 8 64 3 8 9 33

3 8 10 30 3 8 11 1 3 8 12 16

3 8 13 39 3 8 14 16 3 8 15 30

3 8 16 64 3 8 17 47 3 8 18 36

3 8 19 57 3 8 20 40 3 9 1 441

3 9 2 63 3 9 4 9 3 9 5 30

3 9 7 18 3 9 8 18 3 9 10 27

3 9 11 33 3 9 13 52 3 9 14 15

3 9 16 36 3 9 17 36 3 9 19 40

3 9 20 50 3 10 1 517 3 10 2 108

3 10 3 111 3 10 4 49 3 10 5 27

3 10 6 31 3 10 7 55 3 10 8 22

3 10 9 25 3 10 10 100 3 10 11 26

3 10 12 20 3 10 13 1 3 10 14 38

3 10 15 25 3 10 16 20 3 10 17 68

3 10 18 24 3 10 19 57 3 10 20 100

3 11 1 599 3 11 2 91 3 11 3 133

3 11 4 37 3 11 5 39 3 11 6 44

3 11 7 33 3 11 8 66 3 11 9 27

3 11 10 40 3 11 11 121 3 11 12 26
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3 11 13 65 3 11 14 1 3 11 15 35

3 11 16 72 3 11 17 68 3 11 18 51

3 11 19 77 3 11 20 50 3 12 1 687

3 12 2 114 3 12 4 27 3 12 5 24

3 12 7 30 3 12 8 27 3 12 10 12

3 12 11 33 3 12 13 18 3 12 14 30

3 12 16 16 3 12 17 51 3 12 19 57

3 12 20 24 3 13 1 781 3 13 2 162

3 13 3 183 3 13 4 65 3 13 5 78

3 13 6 48 3 13 7 56 3 13 8 52

3 13 9 27 3 13 10 91 3 13 11 65

3 13 12 52 3 13 13 169 3 13 14 35

3 13 15 65 3 13 16 1 3 13 17 52

3 13 18 45 3 13 19 57 3 13 20 75

3 14 1 881 3 14 2 148 3 14 3 211

3 14 4 63 3 14 5 53 3 14 6 58

3 14 7 49 3 14 8 46 3 14 9 32

3 14 10 34 3 14 11 98 3 14 12 32

3 14 13 62 3 14 14 196 3 14 15 35

3 14 16 34 3 14 17 1 3 14 18 36

3 14 19 76 3 14 20 40 3 15 1 987

3 15 2 129 3 15 4 36 3 15 5 30

3 15 7 45 3 15 8 42 3 15 10 25

3 15 11 48 3 15 13 78 3 15 14 30

3 15 16 45 3 15 17 69 3 15 19 57

3 15 20 30 3 16 1 1099 3 16 2 243

3 16 3 273 3 16 4 64 3 16 5 80

3 16 6 73 3 16 7 40 3 16 8 64

3 16 9 61 3 16 10 48 3 16 11 54
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3 16 12 32 3 16 13 128 3 16 14 42

3 16 15 57 3 16 16 256 3 16 17 52

3 16 18 36 3 16 19 1 3 16 20 44

3 17 1 1217 3 17 2 181 3 17 3 307

3 17 4 72 3 17 5 136 3 17 6 77

3 17 7 80 3 17 8 38 3 17 9 52

3 17 10 68 3 17 11 68 3 17 12 51

3 17 13 68 3 17 14 153 3 17 15 48

3 17 16 48 3 17 17 289 3 17 18 34

3 17 19 68 3 17 20 1 3 18 1 1341

3 18 2 198 3 18 4 36 3 18 5 54

3 18 7 27 3 18 8 36 3 18 10 48

3 18 11 48 3 18 13 45 3 18 14 30

3 18 16 36 3 18 17 45 3 18 19 60

3 18 20 42 3 19 1 1471 3 19 2 315

3 19 3 381 3 19 4 83 3 19 5 122

3 19 6 105 3 19 7 89 3 19 8 86

3 19 9 57 3 19 10 61 3 19 11 57

3 19 12 55 3 19 13 65 3 19 14 46

3 19 15 59 3 19 16 190 3 19 17 76

3 19 18 38 3 19 19 361 3 19 20 57

3 20 1 1607 3 20 2 268 3 20 3 421

3 20 4 135 3 20 5 60 3 20 6 112

3 20 7 101 3 20 8 64 3 20 9 60

3 20 10 100 3 20 11 75 3 20 12 60

3 20 13 52 3 20 14 50 3 20 15 35

3 20 16 75 3 20 17 200 3 20 18 46

3 20 19 50 3 20 20 400 4 4 1 260

4 4 3 36 4 4 5 20 4 4 7 28
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4 4 9 45 4 4 11 66 4 4 13 91

4 4 15 120 4 4 17 153 4 4 19 190

4 5 1 329 4 5 2 93 4 5 3 25

4 5 4 31 4 5 5 25 4 5 6 15

4 5 7 15 4 5 8 16 4 5 9 1

4 5 10 25 4 5 11 33 4 5 12 20

4 5 13 39 4 5 14 18 4 5 15 25

4 5 16 44 4 5 17 41 4 5 18 20

4 5 19 57 4 5 20 25 4 6 1 406

4 6 3 34 4 6 5 18 4 6 7 4

4 6 9 12 4 6 11 25 4 6 13 65

4 6 15 9 4 6 17 34 4 6 19 76

4 7 1 491 4 7 2 155 4 7 3 66

4 7 4 57 4 7 5 34 4 7 6 41

4 7 7 49 4 7 8 20 4 7 9 27

4 7 10 36 4 7 11 1 4 7 12 32

4 7 13 65 4 7 14 49 4 7 15 60

4 7 16 28 4 7 17 56 4 7 18 36

4 7 19 57 4 7 20 56 4 8 1 584

4 8 3 24 4 8 5 32 4 8 7 24

4 8 9 16 4 8 11 17 4 8 13 39

4 8 15 40 4 8 17 68 4 8 19 45

4 9 1 685 4 9 2 233 4 9 3 63

4 9 4 91 4 9 5 54 4 9 6 21

4 9 7 34 4 9 8 27 4 9 9 81

4 9 10 26 4 9 11 33 4 9 12 16

4 9 13 1 4 9 14 45 4 9 15 30

4 9 16 32 4 9 17 68 4 9 18 81

4 9 19 76 4 9 20 55 4 10 1 794
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4 10 3 70 4 10 5 30 4 10 7 20

4 10 9 32 4 10 11 28 4 10 13 52

4 10 15 30 4 10 17 34 4 10 19 9

4 11 1 911 4 11 2 327 4 11 3 67

4 11 4 133 4 11 5 34 4 11 6 33

4 11 7 77 4 11 8 44 4 11 9 25

4 11 10 33 4 11 11 121 4 11 12 25

4 11 13 44 4 11 14 30 4 11 15 1

4 11 16 24 4 11 17 68 4 11 18 66

4 11 19 57 4 11 20 28 4 12 1 1036

4 12 3 68 4 12 5 48 4 12 7 28

4 12 9 24 4 12 11 36 4 12 13 52

4 12 15 30 4 12 17 40 4 12 19 33

4 13 1 1169 4 13 2 437 4 13 3 131

4 13 4 183 4 13 5 77 4 13 6 78

4 13 7 65 4 13 8 47 4 13 9 91

4 13 10 37 4 13 11 44 4 13 12 34

4 13 13 169 4 13 14 52 4 13 15 60

4 13 16 56 4 13 17 1 4 13 18 54

4 13 19 79 4 13 20 65 4 14 1 1310

4 14 3 84 4 14 5 64 4 14 7 49

4 14 9 20 4 14 11 40 4 14 13 36

4 14 15 80 4 14 17 59 4 14 19 41

4 15 1 1459 4 15 2 563 4 15 3 125

4 15 4 241 4 15 5 75 4 15 6 60

4 15 7 82 4 15 8 68 4 15 9 41

4 15 10 25 4 15 11 120 4 15 12 33

4 15 13 57 4 15 14 44 4 15 15 225

4 15 16 76 4 15 17 68 4 15 18 36
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4 15 19 1 4 15 20 36 4 16 1 1616

4 16 3 96 4 16 5 16 4 16 7 48

4 16 9 64 4 16 11 44 4 16 13 36

4 16 15 48 4 16 17 64 4 16 19 57

4 17 1 1781 4 17 2 705 4 17 3 119

4 17 4 307 4 17 5 117 4 17 6 68

4 17 7 85 4 17 8 80 4 17 9 68

4 17 10 54 4 17 11 51 4 17 12 47

4 17 13 153 4 17 14 68 4 17 15 68

4 17 16 51 4 17 17 289 4 17 18 51

4 17 19 68 4 17 20 50 4 18 1 1954

4 18 3 124 4 18 5 108 4 18 7 72

4 18 9 81 4 18 11 36 4 18 13 52

4 18 15 48 4 18 17 64 4 18 19 34

4 19 1 2135 4 19 2 863 4 19 3 266

4 19 4 381 4 19 5 114 4 19 6 90

4 19 7 62 4 19 8 107 4 19 9 58

4 19 10 95 4 19 11 62 4 19 12 58

4 19 13 96 4 19 14 59 4 19 15 190

4 19 16 45 4 19 17 85 4 19 18 57

4 19 19 361 4 19 20 57 4 20 1 2324

4 20 3 92 4 20 5 48 4 20 7 44

4 20 9 32 4 20 11 120 4 20 13 78

4 20 15 35 4 20 17 85 4 20 19 68

5 5 1 505 5 5 2 65 5 5 3 70

5 5 4 35 5 5 6 30 5 5 7 35

5 5 8 40 5 5 9 45 5 5 11 66

5 5 12 72 5 5 13 91 5 5 14 98

5 5 16 128 5 5 17 153 5 5 18 162
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5 5 19 190 5 6 1 611 5 6 2 113

5 6 3 57 5 6 4 40 5 6 5 43

5 6 6 36 5 6 7 23 5 6 8 19

5 6 9 24 5 6 10 25 5 6 11 1

5 6 12 36 5 6 13 52 5 6 14 36

5 6 15 25 5 6 16 24 5 6 17 68

5 6 18 36 5 6 19 57 5 6 20 30

5 7 1 727 5 7 2 126 5 7 3 50

5 7 4 40 5 7 5 57 5 7 6 30

5 7 7 49 5 7 8 28 5 7 9 31

5 7 10 25 5 7 11 26 5 7 12 1

5 7 13 32 5 7 14 49 5 7 15 25

5 7 16 51 5 7 17 68 5 7 18 41

5 7 19 57 5 7 20 25 5 8 1 853

5 8 2 244 5 8 3 92 5 8 4 57

5 8 5 73 5 8 6 39 5 8 7 30

5 8 8 64 5 8 9 32 5 8 10 25

5 8 11 39 5 8 12 36 5 8 13 1

5 8 14 34 5 8 15 45 5 8 16 64

5 8 17 68 5 8 18 36 5 8 19 64

5 8 20 25 5 9 1 989 5 9 2 145

5 9 3 93 5 9 4 78 5 9 5 91

5 9 6 40 5 9 7 35 5 9 8 36

5 9 9 81 5 9 10 27 5 9 11 33

5 9 12 18 5 9 13 55 5 9 14 1

5 9 15 25 5 9 16 48 5 9 17 40

5 9 18 81 5 9 19 57 5 9 20 30

5 10 1 1135 5 10 2 205 5 10 3 45

5 10 4 40 5 10 6 25 5 10 7 30
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5 10 8 30 5 10 9 25 5 10 11 25

5 10 12 26 5 10 13 45 5 10 14 28

5 10 16 34 5 10 17 68 5 10 18 40

5 10 19 55 5 11 1 1291 5 11 2 195

5 11 3 128 5 11 4 70 5 11 5 133

5 11 6 66 5 11 7 36 5 11 8 35

5 11 9 38 5 11 10 44 5 11 11 121

5 11 12 42 5 11 13 34 5 11 14 43

5 11 15 32 5 11 16 1 5 11 17 94

5 11 18 63 5 11 19 57 5 11 20 35

5 12 1 1457 5 12 2 271 5 12 3 145

5 12 4 105 5 12 5 157 5 12 6 45

5 12 7 83 5 12 8 40 5 12 9 42

5 12 10 45 5 12 11 46 5 12 12 144

5 12 13 78 5 12 14 40 5 12 15 25

5 12 16 36 5 12 17 1 5 12 18 54

5 12 19 78 5 12 20 25 5 13 1 1633

5 13 2 295 5 13 3 106 5 13 4 100

5 13 5 183 5 13 6 43 5 13 7 69

5 13 8 91 5 13 9 52 5 13 10 49

5 13 11 52 5 13 12 65 5 13 13 169

5 13 14 65 5 13 15 31 5 13 16 80

5 13 17 54 5 13 18 1 5 13 19 40

5 13 20 70 5 14 1 1819 5 14 2 322

5 14 3 171 5 14 4 147 5 14 5 211

5 14 6 58 5 14 7 49 5 14 8 56

5 14 9 105 5 14 10 57 5 14 11 56

5 14 12 56 5 14 13 81 5 14 14 196

5 14 15 50 5 14 16 53 5 14 17 52
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5 14 18 54 5 14 19 1 5 14 20 40

5 15 1 2015 5 15 2 265 5 15 3 130

5 15 4 45 5 15 6 30 5 15 7 40

5 15 8 35 5 15 9 35 5 15 11 45

5 15 12 25 5 15 13 55 5 15 14 30

5 15 16 45 5 15 17 40 5 15 18 25

5 15 19 50 5 16 1 2221 5 16 2 443

5 16 3 193 5 16 4 145 5 16 5 273

5 16 6 64 5 16 7 56 5 16 8 64

5 16 9 63 5 16 10 74 5 16 11 136

5 16 12 44 5 16 13 55 5 16 14 35

5 16 15 40 5 16 16 256 5 16 17 44

5 16 18 40 5 16 19 76 5 16 20 25

5 17 1 2437 5 17 2 316 5 17 3 255

5 17 4 165 5 17 5 307 5 17 6 119

5 17 7 109 5 17 8 102 5 17 9 78

5 17 10 78 5 17 11 68 5 17 12 153

5 17 13 61 5 17 14 68 5 17 15 55

5 17 16 68 5 17 17 289 5 17 18 66

5 17 19 76 5 17 20 55 5 18 1 2663

5 18 2 545 5 18 3 191 5 18 4 152

5 18 5 343 5 18 6 80 5 18 7 72

5 18 8 74 5 18 9 81 5 18 10 91

5 18 11 48 5 18 12 42 5 18 13 171

5 18 14 55 5 18 15 45 5 18 16 54

5 18 17 74 5 18 18 324 5 18 19 64

5 18 20 40 5 19 1 2899 5 19 2 525

5 19 3 265 5 19 4 111 5 19 5 381

5 19 6 74 5 19 7 102 5 19 8 72
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5 19 9 75 5 19 10 96 5 19 11 65

5 19 12 57 5 19 13 77 5 19 14 190

5 19 15 57 5 19 16 47 5 19 17 58

5 19 18 57 5 19 19 361 5 19 20 57

5 20 1 3145 5 20 2 485 5 20 3 165

5 20 4 105 5 20 6 60 5 20 7 100

5 20 8 40 5 20 9 55 5 20 11 60

5 20 12 60 5 20 13 30 5 20 14 60

5 20 16 40 5 20 17 55 5 20 18 50

5 20 19 65 6 6 1 870 6 6 5 48

6 6 7 42 6 6 11 66 6 6 13 91

6 6 17 153 6 6 19 190 6 7 1 1021

6 7 2 202 6 7 3 95 6 7 4 50

6 7 5 52 6 7 6 57 6 7 7 49

6 7 8 28 6 7 9 30 6 7 10 34

6 7 11 33 6 7 12 36 6 7 13 1

6 7 14 49 6 7 15 45 6 7 16 30

6 7 17 51 6 7 18 54 6 7 19 57

6 7 20 40 6 8 1 1184 6 8 3 112

6 8 5 56 6 8 7 18 6 8 9 16

6 8 11 34 6 8 13 19 6 8 15 30

6 8 17 68 6 8 19 47 6 9 1 1359

6 9 2 279 6 9 4 72 6 9 5 18

6 9 7 21 6 9 8 30 6 9 10 9

6 9 11 15 6 9 13 66 6 9 14 18

6 9 16 32 6 9 17 34 6 9 19 76

6 9 20 24 6 10 1 1546 6 10 3 138

6 10 5 50 6 10 7 50 6 10 9 32

6 10 11 38 6 10 13 39 6 10 15 25
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6 10 17 53 6 10 19 32 6 11 1 1745

6 11 2 368 6 11 3 195 6 11 4 105

6 11 5 117 6 11 6 133 6 11 7 51

6 11 8 41 6 11 9 33 6 11 10 51

6 11 11 121 6 11 12 44 6 11 13 32

6 11 14 36 6 11 15 39 6 11 16 84

6 11 17 1 6 11 18 39 6 11 19 58

6 11 20 60 6 12 1 1956 6 12 5 60

6 12 7 42 6 12 11 36 6 12 13 54

6 12 17 72 6 12 19 48 6 13 1 2179

6 13 2 588 6 13 3 251 6 13 4 125

6 13 5 118 6 13 6 183 6 13 7 104

6 13 8 73 6 13 9 65 6 13 10 52

6 13 11 52 6 13 12 51 6 13 13 169

6 13 14 56 6 13 15 37 6 13 16 59

6 13 17 70 6 13 18 36 6 13 19 1

6 13 20 91 6 14 1 2414 6 14 3 246

6 14 5 44 6 14 7 56 6 14 9 52

6 14 11 36 6 14 13 48 6 14 15 34

6 14 17 68 6 14 19 48 6 15 1 2661

6 15 2 582 6 15 4 123 6 15 5 57

6 15 7 30 6 15 8 63 6 15 10 30

6 15 11 33 6 15 13 65 6 15 14 30

6 15 16 21 6 15 17 45 6 15 19 36

6 15 20 25 6 16 1 2920 6 16 3 290

6 16 5 112 6 16 7 52 6 16 9 48

6 16 11 40 6 16 13 65 6 16 15 56

6 16 17 52 6 16 19 57 6 17 1 3191

6 17 2 707 6 17 3 433 6 17 4 234
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6 17 5 159 6 17 6 307 6 17 7 134

6 17 8 72 6 17 9 68 6 17 10 136

6 17 11 159 6 17 12 80 6 17 13 92

6 17 14 68 6 17 15 69 6 17 16 54

6 17 17 289 6 17 18 46 6 17 19 71

6 17 20 68 6 18 1 3474 6 18 5 90

6 18 7 42 6 18 11 54 6 18 13 60

6 18 17 54 6 18 19 48 6 19 1 3769

6 19 2 1200 6 19 3 517 6 19 4 215

6 19 5 105 6 19 6 381 6 19 7 106

6 19 8 94 6 19 9 63 6 19 10 76

6 19 11 81 6 19 12 100 6 19 13 190

6 19 14 76 6 19 15 95 6 19 16 59

6 19 17 68 6 19 18 57 6 19 19 361

6 19 20 56 6 20 1 4076 6 20 3 442

6 20 5 100 6 20 7 136 6 20 9 72

6 20 11 44 6 20 13 44 6 20 15 40

6 20 17 85 6 20 19 84 7 7 1 1379

7 7 2 175 7 7 3 182 7 7 4 91

7 7 5 70 7 7 6 63 7 7 8 56

7 7 9 63 7 7 10 70 7 7 11 77

7 7 12 84 7 7 13 91 7 7 15 120

7 7 16 128 7 7 17 153 7 7 18 162

7 7 19 190 7 7 20 200 7 8 1 1583

7 8 2 435 7 8 3 98 7 8 4 99

7 8 5 55 7 8 6 49 7 8 7 73

7 8 8 64 7 8 9 36 7 8 10 28

7 8 11 37 7 8 12 36 7 8 13 52

7 8 14 49 7 8 15 1 7 8 16 64
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7 8 17 56 7 8 18 30 7 8 19 37

7 8 20 49 7 9 1 1801 7 9 2 288

7 9 3 220 7 9 4 75 7 9 5 97

7 9 6 56 7 9 7 91 7 9 8 35

7 9 9 81 7 9 10 39 7 9 11 45

7 9 12 39 7 9 13 73 7 9 14 49

7 9 15 30 7 9 16 1 7 9 17 49

7 9 18 81 7 9 19 57 7 9 20 53

7 10 1 2033 7 10 2 362 7 10 3 204

7 10 4 126 7 10 5 74 7 10 6 69

7 10 7 111 7 10 8 58 7 10 9 51

7 10 10 100 7 10 11 41 7 10 12 37

7 10 13 51 7 10 14 49 7 10 15 42

7 10 16 36 7 10 17 1 7 10 18 56

7 10 19 45 7 10 20 100 7 11 1 2279

7 11 2 289 7 11 3 182 7 11 4 118

7 11 5 118 7 11 6 51 7 11 7 133

7 11 8 60 7 11 9 39 7 11 10 55

7 11 11 121 7 11 12 38 7 11 13 58

7 11 14 49 7 11 15 76 7 11 16 45

7 11 17 66 7 11 18 1 7 11 19 76

7 11 20 70 7 12 1 2539 7 12 2 524

7 12 3 242 7 12 4 133 7 12 5 141

7 12 6 74 7 12 7 157 7 12 8 60

7 12 9 58 7 12 10 64 7 12 11 47

7 12 12 144 7 12 13 45 7 12 14 49

7 12 15 39 7 12 16 52 7 12 17 88

7 12 18 48 7 12 19 1 7 12 20 56

7 13 1 2813 7 13 2 371 7 13 3 243
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7 13 4 119 7 13 5 91 7 13 6 141

7 13 7 183 7 13 8 67 7 13 9 65

7 13 10 52 7 13 11 56 7 13 12 46

7 13 13 169 7 13 14 49 7 13 15 54

7 13 16 51 7 13 17 65 7 13 18 63

7 13 19 104 7 13 20 1 7 14 1 3101

7 14 2 546 7 14 3 119 7 14 4 77

7 14 5 77 7 14 6 49 7 14 8 49

7 14 9 49 7 14 10 56 7 14 11 49

7 14 12 49 7 14 13 63 7 14 15 56

7 14 16 49 7 14 17 84 7 14 18 49

7 14 19 49 7 14 20 50 7 15 1 3403

7 15 2 431 7 15 3 300 7 15 4 140

7 15 5 141 7 15 6 126 7 15 7 241

7 15 8 120 7 15 9 76 7 15 10 50

7 15 11 60 7 15 12 45 7 15 13 56

7 15 14 66 7 15 15 225 7 15 16 88

7 15 17 73 7 15 18 35 7 15 19 46

7 15 20 63 7 16 1 3719 7 16 2 869

7 16 3 274 7 16 4 228 7 16 5 180

7 16 6 117 7 16 7 273 7 16 8 72

7 16 9 143 7 16 10 69 7 16 11 61

7 16 12 68 7 16 13 62 7 16 14 76

7 16 15 74 7 16 16 256 7 16 17 72

7 16 18 72 7 16 19 70 7 16 20 48

7 17 1 4049 7 17 2 602 7 17 3 255

7 17 4 196 7 17 5 230 7 17 6 153

7 17 7 307 7 17 8 85 7 17 9 70

7 17 10 153 7 17 11 77 7 17 12 68

123



7 17 13 103 7 17 14 79 7 17 15 72

7 17 16 68 7 17 17 289 7 17 18 60

7 17 19 74 7 17 20 85 7 18 1 4393

7 18 2 765 7 18 3 427 7 18 4 193

7 18 5 147 7 18 6 133 7 18 7 343

7 18 8 85 7 18 9 81 7 18 10 70

7 18 11 171 7 18 12 72 7 18 13 47

7 18 14 91 7 18 15 36 7 18 16 50

7 18 17 89 7 18 18 324 7 18 19 40

7 18 20 72 7 19 1 4751 7 19 2 868

7 19 3 376 7 19 4 215 7 19 5 216

7 19 6 154 7 19 7 381 7 19 8 127

7 19 9 100 7 19 10 95 7 19 11 75

7 19 12 190 7 19 13 57 7 19 14 97

7 19 15 104 7 19 16 72 7 19 17 69

7 19 18 76 7 19 19 361 7 19 20 58

7 20 1 5123 7 20 2 917 7 20 3 289

7 20 4 287 7 20 5 162 7 20 6 120

7 20 7 421 7 20 8 126 7 20 9 70

7 20 10 100 7 20 11 75 7 20 12 72

7 20 13 210 7 20 14 111 7 20 15 50

7 20 16 65 7 20 17 74 7 20 18 60

7 20 19 88 7 20 20 400 8 8 1 2056

8 8 3 240 8 8 5 104 8 8 7 80

8 8 9 72 8 8 11 88 8 8 13 104

8 8 15 120 8 8 17 153 8 8 19 190

8 9 1 2321 8 9 2 613 8 9 3 283

8 9 4 143 8 9 5 100 8 9 6 65

8 9 7 68 8 9 8 91 8 9 9 81
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8 9 10 45 8 9 11 34 8 9 12 21

8 9 13 42 8 9 14 34 8 9 15 51

8 9 16 64 8 9 17 1 8 9 18 81

8 9 19 72 8 9 20 40 8 10 1 2602

8 10 3 108 8 10 5 82 8 10 7 50

8 10 9 20 8 10 11 46 8 10 13 44

8 10 15 25 8 10 17 45 8 10 19 57

8 11 1 2899 8 11 2 823 8 11 3 277

8 11 4 195 8 11 5 140 8 11 6 100

8 11 7 76 8 11 8 133 8 11 9 57

8 11 10 53 8 11 11 121 8 11 12 40

8 11 13 54 8 11 14 68 8 11 15 60

8 11 16 64 8 11 17 74 8 11 18 38

8 11 19 1 8 11 20 52 8 12 1 3212

8 12 3 260 8 12 5 52 8 12 7 40

8 12 9 32 8 12 11 32 8 12 13 80

8 12 15 16 8 12 17 40 8 12 19 76

8 13 1 3541 8 13 2 1065 8 13 3 221

8 13 4 266 8 13 5 167 8 13 6 120

8 13 7 72 8 13 8 183 8 13 9 52

8 13 10 66 8 13 11 54 8 13 12 65

8 13 13 169 8 13 14 65 8 13 15 65

8 13 16 64 8 13 17 68 8 13 18 102

8 13 19 66 8 13 20 40 8 14 1 3886

8 14 3 292 8 14 5 150 8 14 7 82

8 14 9 82 8 14 11 28 8 14 13 88

8 14 15 60 8 14 17 44 8 14 19 66

8 15 1 4247 8 15 2 1339 8 15 3 373

8 15 4 323 8 15 5 116 8 15 6 124
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8 15 7 189 8 15 8 241 8 15 9 100

8 15 10 60 8 15 11 60 8 15 12 50

8 15 13 56 8 15 14 60 8 15 15 225

8 15 16 64 8 15 17 65 8 15 18 36

8 15 19 69 8 15 20 25 8 16 1 4624

8 16 3 176 8 16 5 112 8 16 7 64

8 16 9 64 8 16 11 64 8 16 13 72

8 16 15 64 8 16 17 96 8 16 19 64

8 17 1 5017 8 17 2 1645 8 17 3 382

8 17 4 441 8 17 5 136 8 17 6 164

8 17 7 108 8 17 8 307 8 17 9 187

8 17 10 64 8 17 11 86 8 17 12 68

8 17 13 83 8 17 14 85 8 17 15 80

8 17 16 83 8 17 17 289 8 17 18 77

8 17 19 68 8 17 20 40 8 18 1 5426

8 18 3 358 8 18 5 186 8 18 7 156

8 18 9 90 8 18 11 86 8 18 13 42

8 18 15 72 8 18 17 68 8 18 19 76

8 19 1 5851 8 19 2 1983 8 19 3 292

8 19 4 483 8 19 5 279 8 19 6 208

8 19 7 114 8 19 8 381 8 19 9 80

8 19 10 99 8 19 11 209 8 19 12 57

8 19 13 84 8 19 14 73 8 19 15 65

8 19 16 100 8 19 17 88 8 19 18 42

8 19 19 361 8 19 20 95 8 20 1 6292

8 20 3 344 8 20 5 132 8 20 7 80

8 20 9 120 8 20 11 60 8 20 13 80

8 20 15 64 8 20 17 72 8 20 19 40

9 9 1 2925 9 9 2 369 9 9 4 189
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9 9 5 153 9 9 7 108 9 9 8 99

9 9 10 90 9 9 11 99 9 9 13 117

9 9 14 126 9 9 16 144 9 9 17 153

9 9 19 190 9 9 20 200 9 10 1 3259

9 10 2 674 9 10 3 457 9 10 4 127

9 10 5 110 9 10 6 95 9 10 7 65

9 10 8 71 9 10 9 111 9 10 10 100

9 10 11 55 9 10 12 42 9 10 13 35

9 10 14 32 9 10 15 25 9 10 16 28

9 10 17 65 9 10 18 81 9 10 19 1

9 10 20 100 9 11 1 3611 9 11 2 550

9 11 3 533 9 11 4 118 9 11 5 84

9 11 6 88 9 11 7 107 9 11 8 77

9 11 9 133 9 11 10 43 9 11 11 121

9 11 12 33 9 11 13 66 9 11 14 40

9 11 15 28 9 11 16 68 9 11 17 71

9 11 18 81 9 11 19 60 9 11 20 1

9 12 1 3981 9 12 2 897 9 12 4 165

9 12 5 129 9 12 7 36 9 12 8 45

9 12 10 54 9 12 11 54 9 12 13 9

9 12 14 32 9 12 16 36 9 12 17 72

9 12 19 51 9 12 20 40 9 13 1 4369

9 13 2 551 9 13 3 703 9 13 4 207

9 13 5 203 9 13 6 127 9 13 7 105

9 13 8 97 9 13 9 183 9 13 10 73

9 13 11 52 9 13 12 65 9 13 13 169

9 13 14 45 9 13 15 47 9 13 16 59

9 13 17 92 9 13 18 81 9 13 19 65

9 13 20 65 9 14 1 4775 9 14 2 835
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9 14 3 797 9 14 4 288 9 14 5 235

9 14 6 151 9 14 7 110 9 14 8 107

9 14 9 211 9 14 10 80 9 14 11 72

9 14 12 57 9 14 13 88 9 14 14 196

9 14 15 47 9 14 16 65 9 14 17 46

9 14 18 81 9 14 19 106 9 14 20 46

9 15 1 5199 9 15 2 663 9 15 4 96

9 15 5 165 9 15 7 111 9 15 8 54

9 15 10 45 9 15 11 81 9 15 13 72

9 15 14 48 9 15 16 48 9 15 17 63

9 15 19 9 9 15 20 25 9 16 1 5641

9 16 2 1511 9 16 3 1003 9 16 4 364

9 16 5 162 9 16 6 169 9 16 7 219

9 16 8 110 9 16 9 273 9 16 10 72

9 16 11 97 9 16 12 52 9 16 13 87

9 16 14 70 9 16 15 72 9 16 16 256

9 16 17 68 9 16 18 81 9 16 19 66

9 16 20 68 9 17 1 6101 9 17 2 786

9 17 3 1115 9 17 4 282 9 17 5 257

9 17 6 181 9 17 7 126 9 17 8 218

9 17 9 307 9 17 10 106 9 17 11 102

9 17 12 68 9 17 13 68 9 17 14 54

9 17 15 136 9 17 16 104 9 17 17 289

9 17 18 81 9 17 19 68 9 17 20 59

9 18 1 6579 9 18 2 1143 9 18 4 171

9 18 5 153 9 18 7 99 9 18 8 81

9 18 10 81 9 18 11 81 9 18 13 81

9 18 14 81 9 18 16 81 9 18 17 108

9 18 19 81 9 18 20 81 9 19 1 7075
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9 19 2 1044 9 19 3 1357 9 19 4 228

9 19 5 366 9 19 6 215 9 19 7 114

9 19 8 127 9 19 9 381 9 19 10 190

9 19 11 93 9 19 12 66 9 19 13 138

9 19 14 63 9 19 15 87 9 19 16 72

9 19 17 85 9 19 18 103 9 19 19 361

9 19 20 95 9 20 1 7589 9 20 2 1432

9 20 3 1487 9 20 4 324 9 20 5 211

9 20 6 241 9 20 7 154 9 20 8 147

9 20 9 421 9 20 10 110 9 20 11 219

9 20 12 80 9 20 13 125 9 20 14 77

9 20 15 50 9 20 16 90 9 20 17 82

9 20 18 115 9 20 19 93 9 20 20 400

10 10 1 4010 10 10 3 470 10 10 7 150

10 10 9 120 10 10 11 110 10 10 13 130

10 10 17 170 10 10 19 190 10 11 1 4421

10 11 2 851 10 11 3 301 10 11 4 225

10 11 5 156 10 11 6 87 10 11 7 80

10 11 8 89 10 11 9 77 10 11 10 133

10 11 11 121 10 11 12 71 10 11 13 84

10 11 14 33 10 11 15 35 10 11 16 42

10 11 17 55 10 11 18 33 10 11 19 73

10 11 20 100 10 12 1 4852 10 12 3 444

10 12 5 170 10 12 7 100 10 12 9 54

10 12 11 50 10 12 13 68 10 12 15 30

10 12 17 68 10 12 19 57 10 13 1 5303

10 13 2 1048 10 13 3 511 10 13 4 265

10 13 5 214 10 13 6 155 10 13 7 145

10 13 8 93 10 13 9 104 10 13 10 183
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10 13 11 78 10 13 12 65 10 13 13 169

10 13 14 55 10 13 15 74 10 13 16 92

10 13 17 61 10 13 18 52 10 13 19 76

10 13 20 100 10 14 1 5774 10 14 3 218

10 14 5 226 10 14 7 122 10 14 9 56

10 14 11 60 10 14 13 42 10 14 15 42

10 14 17 68 10 14 19 58 10 15 1 6265

10 15 2 1265 10 15 3 455 10 15 4 220

10 15 6 80 10 15 7 45 10 15 8 70

10 15 9 45 10 15 11 45 10 15 12 30

10 15 13 100 10 15 14 45 10 15 16 40

10 15 17 50 10 15 18 30 10 15 19 80

10 16 1 6776 10 16 3 552 10 16 5 290

10 16 7 80 10 16 9 108 10 16 11 64

10 16 13 50 10 16 15 56 10 16 17 94

10 16 19 58 10 17 1 7307 10 17 2 1502

10 17 3 408 10 17 4 430 10 17 5 365

10 17 6 221 10 17 7 251 10 17 8 158

10 17 9 136 10 17 10 307 10 17 11 136

10 17 12 68 10 17 13 97 10 17 14 89

10 17 15 68 10 17 16 102 10 17 17 289

10 17 18 68 10 17 19 65 10 17 20 100

10 18 1 7858 10 18 3 626 10 18 5 362

10 18 7 80 10 18 9 122 10 18 11 114

10 18 13 84 10 18 15 50 10 18 17 82

10 18 19 66 10 19 1 8429 10 19 2 2000

10 19 3 681 10 19 4 429 10 19 5 407

10 19 6 263 10 19 7 220 10 19 8 145

10 19 9 277 10 19 10 381 10 19 11 135
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10 19 12 103 10 19 13 82 10 19 14 92

10 19 15 58 10 19 16 81 10 19 17 97

10 19 18 77 10 19 19 361 10 19 20 100

10 20 1 9020 10 20 3 340 10 20 7 120

10 20 9 100 10 20 11 100 10 20 13 100

10 20 17 120 10 20 19 100 11 11 1 5335

11 11 2 671 11 11 3 616 11 11 4 341

11 11 5 275 11 11 6 231 11 11 7 198

11 11 8 176 11 11 9 154 11 11 10 143

11 11 12 132 11 11 13 143 11 11 14 154

11 11 15 165 11 11 16 176 11 11 17 187

11 11 18 198 11 11 19 209 11 11 20 220

11 12 1 5831 11 12 2 1414 11 12 3 471

11 12 4 302 11 12 5 256 11 12 6 145

11 12 7 99 11 12 8 88 11 12 9 82

11 12 10 94 11 12 11 157 11 12 12 144

11 12 13 78 11 12 14 43 11 12 15 51

11 12 16 45 11 12 17 68 11 12 18 44

11 12 19 48 11 12 20 48 11 13 1 6349

11 13 2 936 11 13 3 325 11 13 4 238

11 13 5 256 11 13 6 130 11 13 7 119

11 13 8 81 11 13 9 106 11 13 10 105

11 13 11 183 11 13 12 57 11 13 13 169

11 13 14 54 11 13 15 91 11 13 16 65

11 13 17 48 11 13 18 52 11 13 19 65

11 13 20 97 11 14 1 6889 11 14 2 1514

11 14 3 663 11 14 4 282 11 14 5 146

11 14 6 179 11 14 7 160 11 14 8 115

11 14 9 135 11 14 10 98 11 14 11 211
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11 14 12 74 11 14 13 75 11 14 14 196

11 14 15 63 11 14 16 56 11 14 17 105

11 14 18 61 11 14 19 86 11 14 20 52

11 15 1 7451 11 15 2 937 11 15 3 753

11 15 4 345 11 15 5 280 11 15 6 187

11 15 7 189 11 15 8 157 11 15 9 135

11 15 10 108 11 15 11 241 11 15 12 85

11 15 13 60 11 15 14 70 11 15 15 225

11 15 16 69 11 15 17 60 11 15 18 78

11 15 19 120 11 15 20 56 11 16 1 8035

11 16 2 2417 11 16 3 498 11 16 4 532

11 16 5 385 11 16 6 192 11 16 7 200

11 16 8 145 11 16 9 104 11 16 10 123

11 16 11 273 11 16 12 64 11 16 13 120

11 16 14 76 11 16 15 80 11 16 16 256

11 16 17 87 11 16 18 47 11 16 19 82

11 16 20 65 11 17 1 8641 11 17 2 1112

11 17 3 710 11 17 4 319 11 17 5 317

11 17 6 254 11 17 7 153 11 17 8 132

11 17 9 162 11 17 10 170 11 17 11 307

11 17 12 91 11 17 13 88 11 17 14 74

11 17 15 107 11 17 16 95 11 17 17 289

11 17 18 81 11 17 19 73 11 17 20 69

11 18 1 9269 11 18 2 1604 11 18 3 985

11 18 4 550 11 18 5 326 11 18 6 204

11 18 7 289 11 18 8 148 11 18 9 145

11 18 10 133 11 18 11 343 11 18 12 108

11 18 13 80 11 18 14 100 11 18 15 87

11 18 16 108 11 18 17 71 11 18 18 324
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11 18 19 63 11 18 20 82 11 19 1 9919

11 19 2 1247 11 19 3 704 11 19 4 429

11 19 5 220 11 19 6 178 11 19 7 161

11 19 8 284 11 19 9 132 11 19 10 91

11 19 11 381 11 19 12 98 11 19 13 95

11 19 14 97 11 19 15 71 11 19 16 124

11 19 17 88 11 19 18 95 11 19 19 361

11 19 20 55 11 20 1 10591 11 20 2 2133

11 20 3 757 11 20 4 665 11 20 5 320

11 20 6 284 11 20 7 200 11 20 8 187

11 20 9 313 11 20 10 151 11 20 11 421

11 20 12 120 11 20 13 134 11 20 14 98

11 20 15 92 11 20 16 88 11 20 17 107

11 20 18 88 11 20 19 107 11 20 20 400

12 12 1 6924 12 12 5 348 12 12 7 252

12 12 11 168 12 12 13 156 12 12 17 204

12 12 19 228 12 13 1 7513 12 13 2 1945

12 13 3 649 12 13 4 334 12 13 5 169

12 13 6 236 12 13 7 158 12 13 8 129

12 13 9 93 12 13 10 58 12 13 11 90

12 13 12 183 12 13 13 169 12 13 14 97

12 13 15 41 12 13 16 65 12 13 17 50

12 13 18 65 12 13 19 81 12 13 20 48

12 14 1 8126 12 14 3 638 12 14 5 306

12 14 7 170 12 14 9 94 12 14 11 80

12 14 13 40 12 14 15 54 12 14 17 64

12 14 19 64 12 15 1 8763 12 15 2 1941

12 15 4 447 12 15 5 219 12 15 7 66

12 15 8 93 12 15 10 57 12 15 11 87
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12 15 13 78 12 15 14 54 12 15 16 39

12 15 17 54 12 15 19 69 12 15 20 30

12 16 1 9424 12 16 3 848 12 16 5 272

12 16 7 32 12 16 9 80 12 16 11 112

12 16 13 48 12 16 15 64 12 16 17 96

12 16 19 48 12 17 1 10109 12 17 2 2885

12 17 3 829 12 17 4 768 12 17 5 456

12 17 6 325 12 17 7 290 12 17 8 175

12 17 9 122 12 17 10 178 12 17 11 102

12 17 12 307 12 17 13 121 12 17 14 98

12 17 15 91 12 17 16 73 12 17 17 289

12 17 18 68 12 17 19 81 12 17 20 136

12 18 1 10818 12 18 5 108 12 18 7 90

12 18 11 72 12 18 13 120 12 18 17 72

12 18 19 96 12 19 1 11551 12 19 2 3427

12 19 3 1071 12 19 4 673 12 19 5 458

12 19 6 423 12 19 7 338 12 19 8 264

12 19 9 199 12 19 10 179 12 19 11 125

12 19 12 381 12 19 13 145 12 19 14 121

12 19 15 98 12 19 16 75 12 19 17 90

12 19 18 68 12 19 19 361 12 19 20 95

12 20 1 12308 12 20 3 1044 12 20 5 340

12 20 7 172 12 20 9 92 12 20 11 156

12 20 13 128 12 20 15 40 12 20 17 84

12 20 19 48 13 13 1 8801 13 13 2 1105

13 13 3 1027 13 13 4 559 13 13 5 442

13 13 6 377 13 13 7 325 13 13 8 286

13 13 9 247 13 13 10 221 13 13 11 208

13 13 12 195 13 13 14 182 13 13 15 195
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13 13 16 208 13 13 17 221 13 13 18 234

13 13 19 247 13 13 20 260 13 14 1 9491

13 14 2 1762 13 14 3 635 13 14 4 412

13 14 5 349 13 14 6 182 13 14 7 197

13 14 8 153 13 14 9 93 13 14 10 136

13 14 11 98 13 14 12 116 13 14 13 211

13 14 14 196 13 14 15 105 13 14 16 63

13 14 17 107 13 14 18 65 13 14 19 67

13 14 20 72 13 15 1 10207 13 15 2 1470

13 15 3 733 13 15 4 326 13 15 5 365

13 15 6 270 13 15 7 154 13 15 8 156

13 15 9 131 13 15 10 117 13 15 11 150

13 15 12 90 13 15 13 241 13 15 14 78

13 15 15 225 13 15 16 74 13 15 17 120

13 15 18 45 13 15 19 82 13 15 20 65

13 16 1 10949 13 16 2 3125 13 16 3 1095

13 16 4 901 13 16 5 406 13 16 6 277

13 16 7 168 13 16 8 197 13 16 9 212

13 16 10 147 13 16 11 120 13 16 12 127

13 16 13 273 13 16 14 78 13 16 15 124

13 16 16 256 13 16 17 84 13 16 18 64

13 16 19 136 13 16 20 70 13 17 1 11717

13 17 2 1471 13 17 3 742 13 17 4 483

13 17 5 247 13 17 6 234 13 17 7 266

13 17 8 196 13 17 9 208 13 17 10 136

13 17 11 132 13 17 12 102 13 17 13 307

13 17 14 104 13 17 15 78 13 17 16 136

13 17 17 289 13 17 18 95 13 17 19 85

13 17 20 91 13 18 1 12511 13 18 2 2752
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13 18 3 1345 13 18 4 542 13 18 5 556

13 18 6 380 13 18 7 182 13 18 8 247

13 18 9 197 13 18 10 157 13 18 11 176

13 18 12 117 13 18 13 343 13 18 14 113

13 18 15 95 13 18 16 91 13 18 17 104

13 18 18 324 13 18 19 85 13 18 20 69

13 19 1 13331 13 19 2 1683 13 19 3 1163

13 19 4 570 13 19 5 477 13 19 6 337

13 19 7 301 13 19 8 171 13 19 9 202

13 19 10 197 13 19 11 162 13 19 12 134

13 19 13 381 13 19 14 106 13 19 15 146

13 19 16 78 13 19 17 128 13 19 18 106

13 19 19 361 13 19 20 104 13 20 1 14177

13 20 2 3026 13 20 3 793 13 20 4 759

13 20 5 433 13 20 6 320 13 20 7 459

13 20 8 184 13 20 9 182 13 20 10 197

13 20 11 120 13 20 12 125 13 20 13 421

13 20 14 117 13 20 15 91 13 20 16 107

13 20 17 116 13 20 18 88 13 20 19 112

13 20 20 400 14 14 1 10990 14 14 3 1316

14 14 5 560 14 14 9 308 14 14 11 252

14 14 13 224 14 14 15 210 14 14 17 238

14 14 19 266 14 15 1 11789 14 15 2 2248

14 15 3 1055 14 15 4 407 14 15 5 335

14 15 6 322 14 15 7 272 14 15 8 181

14 15 9 128 14 15 10 111 14 15 11 138

14 15 12 95 14 15 13 133 14 15 14 241

14 15 15 225 14 15 16 120 14 15 17 75

14 15 18 60 14 15 19 72 14 15 20 52
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14 16 1 12616 14 16 3 520 14 16 5 208

14 16 7 290 14 16 9 64 14 16 11 128

14 16 13 120 14 16 15 16 14 16 17 60

14 16 19 60 14 17 1 13471 14 17 2 2621

14 17 3 1388 14 17 4 586 14 17 5 475

14 17 6 313 14 17 7 325 14 17 8 228

14 17 9 226 14 17 10 181 14 17 11 147

14 17 12 153 14 17 13 119 14 17 14 307

14 17 15 144 14 17 16 85 14 17 17 289

14 17 18 82 14 17 19 102 14 17 20 153

14 18 1 14354 14 18 3 1154 14 18 5 496

14 18 7 362 14 18 9 226 14 18 11 88

14 18 13 180 14 18 15 92 14 18 17 84

14 18 19 78 14 19 1 15265 14 19 2 3066

14 19 3 674 14 19 4 686 14 19 5 655

14 19 6 278 14 19 7 401 14 19 8 258

14 19 9 198 14 19 10 215 14 19 11 132

14 19 12 118 14 19 13 131 14 19 14 381

14 19 15 126 14 19 16 98 14 19 17 118

14 19 18 95 14 19 19 361 14 19 20 95

14 20 1 16204 14 20 3 1488 14 20 5 480

14 20 7 442 14 20 9 204 14 20 11 196

14 20 13 150 14 20 15 100 14 20 17 54

14 20 19 64 15 15 1 13515 15 15 2 1695

15 15 4 855 15 15 7 495 15 15 8 435

15 15 11 315 15 15 13 270 15 15 14 255

15 15 16 240 15 15 17 255 15 15 19 285

15 16 1 14431 15 16 2 3767 15 16 3 1365

15 16 4 1189 15 16 5 582 15 16 6 258
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15 16 7 279 15 16 8 257 15 16 9 184

15 16 10 115 15 16 11 182 15 16 12 126

15 16 13 177 15 16 14 142 15 16 15 273

15 16 16 256 15 16 17 136 15 16 18 64

15 16 19 72 15 16 20 45 15 17 1 15377

15 17 2 2176 15 17 3 1535 15 17 4 497

15 17 5 434 15 17 6 430 15 17 7 201

15 17 8 221 15 17 9 230 15 17 10 168

15 17 11 121 15 17 12 102 15 17 13 157

15 17 14 96 15 17 15 307 15 17 16 90

15 17 17 289 15 17 18 68 15 17 19 153

15 17 20 61 15 18 1 16353 15 18 2 2979

15 18 4 468 15 18 5 531 15 18 7 279

15 18 8 153 15 18 10 111 15 18 11 63

15 18 13 147 15 18 14 117 15 18 16 75

15 18 17 108 15 18 19 117 15 18 20 42

15 19 1 17359 15 19 2 2177 15 19 3 1905

15 19 4 693 15 19 5 687 15 19 6 500

15 19 7 239 15 19 8 277 15 19 9 213

15 19 10 158 15 19 11 238 15 19 12 140

15 19 13 172 15 19 14 111 15 19 15 381

15 19 16 118 15 19 17 91 15 19 18 76

15 19 19 361 15 19 20 72 15 20 1 18395

15 20 2 3460 15 20 3 1645 15 20 4 755

15 20 6 260 15 20 7 105 15 20 8 145

15 20 9 130 15 20 11 170 15 20 12 80

15 20 13 70 15 20 14 40 15 20 16 60

15 20 17 120 15 20 18 50 15 20 19 55

16 16 1 16400 16 16 3 1968 16 16 5 832
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16 16 7 592 16 16 9 464 16 16 11 384

16 16 13 320 16 16 15 288 16 16 17 272

16 16 19 304 16 17 1 17441 16 17 2 4473

16 17 3 673 16 17 4 1577 16 17 5 660

16 17 6 368 16 17 7 240 16 17 8 325

16 17 9 153 16 17 10 214 16 17 11 144

16 17 12 119 16 17 13 170 16 17 14 105

16 17 15 152 16 17 16 307 16 17 17 289

16 17 18 153 16 17 19 98 16 17 20 89

16 18 1 18514 16 18 3 1734 16 18 5 638

16 18 7 310 16 18 9 290 16 18 11 102

16 18 13 146 16 18 15 116 16 18 17 66

16 18 19 68 16 19 1 19619 16 19 2 5243

16 19 3 2065 16 19 4 1907 16 19 5 445

16 19 6 490 16 19 7 228 16 19 8 401

16 19 9 331 16 19 10 190 16 19 11 157

16 19 12 185 16 19 13 183 16 19 14 100

16 19 15 133 16 19 16 381 16 19 17 157

16 19 18 106 16 19 19 361 16 19 20 74

16 20 1 20756 16 20 3 788 16 20 5 516

16 20 7 152 16 20 9 84 16 20 11 176

16 20 13 176 16 20 15 52 16 20 17 116

16 20 19 108 17 17 1 19669 17 17 2 2465

17 17 3 2227 17 17 4 1241 17 17 5 986

17 17 6 833 17 17 7 714 17 17 8 629

17 17 9 561 17 17 10 493 17 17 11 459

17 17 12 425 17 17 13 391 17 17 14 357

17 17 15 340 17 17 16 323 17 17 18 306

17 17 19 323 17 17 20 340 17 18 1 20843
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17 18 2 4112 17 18 3 2783 17 18 4 855

17 18 5 528 17 18 6 632 17 18 7 272

17 18 8 290 17 18 9 325 17 18 10 225

17 18 11 215 17 18 12 171 17 18 13 199

17 18 14 114 17 18 15 119 17 18 16 170

17 18 17 343 17 18 18 324 17 18 19 171

17 18 20 68 17 19 1 22051 17 19 2 3078

17 19 3 1442 17 19 4 698 17 19 5 784

17 19 6 340 17 19 7 462 17 19 8 323

17 19 9 221 17 19 10 245 17 19 11 275

17 19 12 139 17 19 13 254 17 19 14 147

17 19 15 187 17 19 16 121 17 19 17 381

17 19 18 102 17 19 19 361 17 19 20 97

17 20 1 23293 17 20 2 5484 17 20 3 2331

17 20 4 1247 17 20 5 667 17 20 6 550

17 20 7 463 17 20 8 395 17 20 9 325

17 20 10 325 17 20 11 204 17 20 12 221

17 20 13 273 17 20 14 204 17 20 15 147

17 20 16 130 17 20 17 421 17 20 18 136

17 20 19 111 17 20 20 400 18 18 1 23346

18 18 5 1170 18 18 7 846 18 18 11 540

18 18 13 450 18 18 17 360 18 18 19 342

18 19 1 24661 18 19 2 4681 18 19 3 3313

18 19 4 1013 18 19 5 901 18 19 6 787

18 19 7 278 18 19 8 387 18 19 9 401

18 19 10 251 18 19 11 290 18 19 12 182

18 19 13 215 18 19 14 151 18 19 15 164

18 19 16 127 18 19 17 189 18 19 18 381

18 19 19 361 18 19 20 190 18 20 1 26012
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18 20 3 2396 18 20 5 802 18 20 7 216

18 20 9 442 18 20 11 118 18 20 13 96

18 20 15 96 18 20 17 124 18 20 19 68

19 19 1 27455 19 19 2 3439 19 19 3 3135

19 19 4 1729 19 19 5 1387 19 19 6 1159

19 19 7 988 19 19 8 874 19 19 9 779

19 19 10 703 19 19 11 627 19 19 12 589

19 19 13 532 19 19 14 494 19 19 15 475

19 19 16 437 19 19 17 418 19 19 18 399

19 19 20 380 19 20 1 28919 19 20 2 7097

19 20 3 1954 19 20 4 1189 19 20 5 916

19 20 6 630 19 20 7 543 19 20 8 480

19 20 9 211 19 20 10 401 19 20 11 210

19 20 12 230 19 20 13 152 19 20 14 203

19 20 15 131 19 20 16 150 19 20 17 161

19 20 18 209 19 20 19 421 19 20 20 400

20 20 1 32020 20 20 3 3620 20 20 7 1160

20 20 9 900 20 20 11 740 20 20 13 620

20 20 17 480 20 20 19 440
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APPENDIX B

Diffsequence-Avoiding Colorings

Here we give the numerical data for various colorings used that avoid certain sequences.

B.1. 7-coloring of [5000] Avoiding 2-term P -Diffsequences (Figure 4.1)

Color 1: {1, 5, 9, 20, 24, 28, 39, 43, 47, 58, 62, 66, 81, 85, 89, 100, 104, 108, 119, 123, 127,

142, 146, 161, 165, 169, 180, 184, 188, 203, 207, 222, 226, 230, 241, 245, 249, 260, 264, 268, 283,

287, 302, 306, 310, 321, 325, 329, 340, 344, 348, 359, 363, 367, 386, 390, 394, 405, 409, 413, 424,

428, 432, 443, 447, 451, 470, 474, 489, 493, 497, 508, 512, 516, 527, 531, 535, 550, 554, 558, 573,

577, 581, 592, 596, 600, 611, 615, 619, 634, 638, 642, 657, 661, 665, 676, 680, 684, 695, 699, 703,

714, 718, 722, 737, 741, 745, 756, 760, 764, 775, 779, 783, 798, 802, 817, 821, 825, 836, 840, 844,

859, 863, 878, 882, 886, 897, 901, 905, 916, 920, 924, 935, 939, 943, 958, 962, 966, 977, 981, 985,

996, 1000, 1004, 1015, 1019, 1023, 1042, 1046, 1050, 1061, 1065, 1069, 1080, 1084, 1088, 1099, 1103,

1107, 1126, 1130, 1145, 1149, 1153, 1164, 1168, 1172, 1183, 1187, 1191, 1206, 1210, 1214, 1229,

1233, 1237, 1248, 1252, 1256, 1267, 1271, 1275, 1290, 1294, 1298, 1313, 1317, 1321, 1332, 1336,

1340, 1351, 1355, 1359, 1374, 1378, 1397, 1401, 1405, 1416, 1420, 1424, 1435, 1439, 1443, 1454,

1458, 1462, 1477, 1481, 1485, 1500, 1504, 1508, 1519, 1523, 1527, 1538, 1542, 1546, 1561, 1565,

1569, 1580, 1584, 1588, 1599, 1603, 1607, 1622, 1626, 1641, 1645, 1649, 1660, 1664, 1668, 1679,

1683, 1687, 1702, 1706, 1725, 1729, 1733, 1744, 1748, 1752, 1763, 1767, 1771, 1782, 1786, 1790,

1809, 1813, 1828, 1832, 1836, 1847, 1851, 1855, 1866, 1870, 1874, 1889, 1893, 1897, 1912, 1916,

1920, 1931, 1935, 1939, 1950, 1954, 1958, 1973, 1977, 1981, 1996, 2000, 2004, 2015, 2019, 2023,

2034, 2038, 2042, 2053, 2057, 2061, 2076, 2080, 2084, 2095, 2099, 2103, 2114, 2118, 2122, 2137,

2141, 2156, 2160, 2164, 2175, 2179, 2183, 2198, 2202, 2217, 2221, 2225, 2236, 2240, 2244, 2255,

2259, 2263, 2274, 2278, 2282, 2297, 2301, 2305, 2316, 2320, 2324, 2335, 2339, 2343, 2354, 2358,

2362, 2381, 2385, 2389, 2400, 2404, 2408, 2419, 2423, 2427, 2438, 2442, 2446, 2465, 2469, 2484,

2488, 2492, 2503, 2507, 2511, 2522, 2526, 2530, 2545, 2549, 2553, 2568, 2572, 2576, 2587, 2591,
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2595, 2606, 2610, 2614, 2629, 2633, 2637, 2652, 2656, 2660, 2671, 2675, 2679, 2690, 2694, 2698,

2709, 2713, 2717, 2732, 2736, 2740, 2751, 2755, 2759, 2770, 2774, 2778, 2789, 2793, 2797, 2812,

2816, 2820, 2831, 2835, 2839, 2850, 2854, 2858, 2873, 2877, 2881, 2892, 2896, 2900, 2911, 2915,

2919, 2930, 2934, 2938, 2953, 2957, 2961, 2972, 2976, 2980, 2991, 2995, 2999, 3010, 3014, 3018,

3037, 3041, 3045, 3056, 3060, 3064, 3075, 3079, 3083, 3094, 3098, 3102, 3117, 3121, 3125, 3140,

3144, 3148, 3159, 3163, 3167, 3178, 3182, 3186, 3201, 3205, 3209, 3224, 3228, 3232, 3243, 3247,

3251, 3262, 3266, 3270, 3285, 3289, 3293, 3308, 3312, 3316, 3327, 3331, 3335, 3346, 3350, 3354,

3365, 3369, 3373, 3392, 3396, 3400, 3411, 3415, 3419, 3430, 3434, 3438, 3449, 3453, 3457, 3472,

3476, 3480, 3495, 3499, 3503, 3514, 3518, 3522, 3533, 3537, 3541, 3556, 3560, 3564, 3575, 3579,

3583, 3594, 3598, 3602, 3613, 3617, 3621, 3636, 3640, 3644, 3655, 3659, 3663, 3674, 3678, 3682,

3693, 3697, 3701, 3720, 3724, 3728, 3739, 3743, 3747, 3758, 3762, 3766, 3777, 3781, 3785, 3800,

3804, 3808, 3823, 3827, 3831, 3842, 3846, 3850, 3861, 3865, 3869, 3884, 3888, 3892, 3907, 3911,

3915, 3926, 3930, 3934, 3945, 3949, 3953, 3968, 3972, 3976, 3991, 3995, 3999, 4010, 4014, 4018,

4029, 4033, 4037, 4048, 4052, 4056, 4071, 4075, 4079, 4090, 4094, 4098, 4109, 4113, 4117, 4128,

4132, 4136, 4151, 4155, 4159, 4170, 4174, 4178, 4189, 4193, 4197, 4212, 4216, 4220, 4231, 4235,

4239, 4250, 4254, 4258, 4269, 4273, 4277, 4292, 4296, 4300, 4311, 4315, 4319, 4330, 4334, 4338,

4349, 4353, 4357, 4376, 4380, 4384, 4395, 4399, 4403, 4414, 4418, 4422, 4433, 4437, 4441, 4456,

4460, 4464, 4479, 4483, 4487, 4498, 4502, 4506, 4517, 4521, 4525, 4540, 4544, 4548, 4563, 4567,

4571, 4582, 4586, 4590, 4601, 4605, 4609, 4624, 4628, 4632, 4647, 4651, 4655, 4666, 4670, 4674,

4685, 4689, 4693, 4704, 4708, 4712, 4727, 4731, 4735, 4746, 4750, 4754, 4765, 4769, 4773, 4784,

4788, 4792, 4807, 4811, 4815, 4826, 4830, 4834, 4845, 4849, 4853, 4868, 4872, 4876, 4887, 4891,

4895, 4906, 4910, 4914, 4925, 4929, 4933, 4948, 4952, 4956, 4967, 4971, 4975, 4986, 4990, 4994}

Color 2: {2, 6, 10, 25, 29, 33, 44, 48, 52, 63, 67, 71, 82, 86, 90, 105, 109, 113, 124, 128, 132,

143, 147, 151, 162, 166, 170, 185, 189, 193, 204, 208, 212, 223, 227, 231, 246, 250, 254, 265, 269,

273, 284, 288, 292, 303, 307, 311, 326, 330, 334, 345, 349, 353, 364, 368, 372, 383, 387, 391, 410,

414, 418, 429, 433, 437, 448, 452, 456, 467, 471, 475, 490, 494, 498, 513, 517, 521, 532, 536, 540,

551, 555, 559, 574, 578, 582, 597, 601, 605, 616, 620, 624, 635, 639, 643, 658, 662, 666, 681, 685,

689, 700, 704, 708, 719, 723, 727, 738, 742, 746, 761, 765, 769, 780, 784, 788, 799, 803, 807, 818,

822, 826, 841, 845, 849, 860, 864, 868, 879, 883, 887, 902, 906, 910, 921, 925, 929, 940, 944, 948,
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959, 963, 967, 982, 986, 990, 1001, 1005, 1009, 1020, 1024, 1028, 1039, 1043, 1047, 1066, 1070, 1074,

1085, 1089, 1093, 1104, 1108, 1112, 1123, 1127, 1131, 1146, 1150, 1154, 1169, 1173, 1177, 1188,

1192, 1196, 1207, 1211, 1215, 1230, 1234, 1238, 1253, 1257, 1261, 1272, 1276, 1280, 1291, 1295,

1299, 1314, 1318, 1322, 1337, 1341, 1345, 1356, 1360, 1364, 1375, 1379, 1383, 1394, 1398, 1402,

1421, 1425, 1429, 1440, 1444, 1448, 1459, 1463, 1467, 1478, 1482, 1486, 1501, 1505, 1509, 1524,

1528, 1532, 1543, 1547, 1551, 1562, 1566, 1570, 1585, 1589, 1593, 1604, 1608, 1612, 1623, 1627,

1631, 1642, 1646, 1650, 1665, 1669, 1673, 1684, 1688, 1692, 1703, 1707, 1711, 1722, 1726, 1730,

1749, 1753, 1757, 1768, 1772, 1776, 1787, 1791, 1795, 1806, 1810, 1814, 1829, 1833, 1837, 1852,

1856, 1860, 1871, 1875, 1879, 1890, 1894, 1898, 1913, 1917, 1921, 1936, 1940, 1944, 1955, 1959,

1963, 1974, 1978, 1982, 1997, 2001, 2005, 2020, 2024, 2028, 2039, 2043, 2047, 2058, 2062, 2066,

2077, 2081, 2085, 2100, 2104, 2108, 2119, 2123, 2127, 2138, 2142, 2146, 2157, 2161, 2165, 2180,

2184, 2188, 2199, 2203, 2207, 2218, 2222, 2226, 2241, 2245, 2249, 2260, 2264, 2268, 2279, 2283,

2287, 2298, 2302, 2306, 2321, 2325, 2329, 2340, 2344, 2348, 2359, 2363, 2367, 2378, 2382, 2386,

2405, 2409, 2413, 2424, 2428, 2432, 2443, 2447, 2451, 2462, 2466, 2470, 2485, 2489, 2493, 2508,

2512, 2516, 2527, 2531, 2535, 2546, 2550, 2554, 2569, 2573, 2577, 2592, 2596, 2600, 2611, 2615,

2619, 2630, 2634, 2638, 2653, 2657, 2661, 2676, 2680, 2684, 2695, 2699, 2703, 2714, 2718, 2722,

2733, 2737, 2741, 2756, 2760, 2764, 2775, 2779, 2783, 2794, 2798, 2802, 2813, 2817, 2821, 2836,

2840, 2844, 2855, 2859, 2863, 2874, 2878, 2882, 2897, 2901, 2905, 2916, 2920, 2924, 2935, 2939,

2954, 2958, 2962, 2977, 2981, 2985, 2996, 3000, 3004, 3015, 3019, 3023, 3034, 3038, 3042, 3061,

3065, 3069, 3080, 3084, 3088, 3099, 3103, 3107, 3118, 3122, 3126, 3141, 3145, 3149, 3164, 3168,

3172, 3183, 3187, 3191, 3202, 3206, 3210, 3225, 3229, 3233, 3248, 3252, 3256, 3267, 3271, 3275,

3286, 3290, 3294, 3309, 3313, 3317, 3332, 3336, 3340, 3351, 3355, 3359, 3370, 3374, 3378, 3389,

3393, 3397, 3416, 3420, 3424, 3435, 3439, 3443, 3454, 3458, 3462, 3473, 3477, 3481, 3496, 3500,

3504, 3519, 3523, 3527, 3538, 3542, 3546, 3557, 3561, 3565, 3580, 3584, 3588, 3599, 3603, 3607,

3618, 3622, 3626, 3637, 3641, 3645, 3660, 3664, 3668, 3679, 3683, 3687, 3698, 3702, 3706, 3717,

3721, 3725, 3744, 3748, 3752, 3763, 3767, 3771, 3782, 3786, 3790, 3801, 3805, 3809, 3824, 3828,

3832, 3847, 3851, 3855, 3866, 3870, 3874, 3885, 3889, 3893, 3908, 3912, 3916, 3931, 3935, 3939,

3950, 3954, 3958, 3969, 3973, 3977, 3992, 3996, 4000, 4015, 4019, 4023, 4034, 4038, 4042, 4053,

4057, 4061, 4072, 4076, 4080, 4095, 4099, 4103, 4114, 4118, 4122, 4133, 4137, 4141, 4152, 4156,
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4160, 4175, 4179, 4183, 4194, 4198, 4202, 4213, 4217, 4221, 4236, 4240, 4244, 4255, 4259, 4263,

4274, 4278, 4293, 4297, 4301, 4316, 4320, 4324, 4335, 4339, 4343, 4354, 4358, 4362, 4373, 4377,

4381, 4400, 4404, 4408, 4419, 4423, 4427, 4438, 4442, 4446, 4457, 4461, 4465, 4480, 4484, 4488,

4503, 4507, 4511, 4522, 4526, 4530, 4541, 4545, 4549, 4564, 4568, 4572, 4587, 4591, 4595, 4606,

4610, 4614, 4625, 4629, 4633, 4648, 4652, 4656, 4671, 4675, 4679, 4690, 4694, 4698, 4709, 4713,

4728, 4732, 4736, 4751, 4755, 4759, 4770, 4774, 4778, 4789, 4793, 4797, 4808, 4812, 4816, 4831,

4835, 4839, 4850, 4854, 4858, 4869, 4873, 4877, 4892, 4896, 4900, 4911, 4915, 4919, 4930, 4934,

4938, 4949, 4953, 4957, 4972, 4976, 4980, 4991, 4995, 4999}

Color 3: {3, 7, 11, 22, 26, 30, 45, 49, 53, 64, 68, 72, 83, 87, 91, 106, 110, 114, 125, 129, 133,

144, 148, 152, 167, 171, 175, 186, 190, 194, 205, 209, 213, 224, 228, 232, 247, 251, 255, 266, 270,

274, 285, 289, 293, 304, 308, 312, 327, 331, 335, 350, 354, 358, 369, 373, 377, 388, 392, 396, 407,

411, 415, 434, 438, 442, 453, 457, 461, 472, 476, 480, 491, 495, 499, 514, 518, 522, 537, 541, 545,

556, 560, 564, 575, 579, 583, 598, 602, 606, 621, 625, 629, 640, 644, 648, 659, 663, 667, 678, 682,

686, 701, 705, 709, 720, 724, 728, 739, 743, 747, 762, 766, 770, 781, 785, 789, 800, 804, 808, 823,

827, 831, 842, 846, 850, 861, 865, 869, 880, 884, 888, 903, 907, 911, 922, 926, 930, 941, 945, 949,

960, 964, 968, 983, 987, 991, 1006, 1010, 1014, 1025, 1029, 1033, 1044, 1048, 1052, 1063, 1067, 1071,

1090, 1094, 1098, 1109, 1113, 1117, 1128, 1132, 1136, 1147, 1151, 1155, 1170, 1174, 1178, 1193,

1197, 1201, 1212, 1216, 1220, 1231, 1235, 1239, 1254, 1258, 1262, 1277, 1281, 1285, 1296, 1300,

1304, 1315, 1319, 1323, 1338, 1342, 1346, 1361, 1365, 1369, 1380, 1384, 1388, 1399, 1403, 1407,

1418, 1422, 1426, 1445, 1449, 1453, 1464, 1468, 1472, 1483, 1487, 1491, 1502, 1506, 1510, 1525,

1529, 1533, 1544, 1548, 1552, 1563, 1567, 1571, 1586, 1590, 1594, 1605, 1609, 1613, 1624, 1628,

1632, 1643, 1647, 1651, 1666, 1670, 1674, 1689, 1693, 1697, 1708, 1712, 1716, 1727, 1731, 1735,

1746, 1750, 1754, 1773, 1777, 1781, 1792, 1796, 1800, 1811, 1815, 1819, 1830, 1834, 1838, 1853,

1857, 1861, 1876, 1880, 1884, 1895, 1899, 1903, 1914, 1918, 1922, 1937, 1941, 1945, 1960, 1964,

1968, 1979, 1983, 1987, 1998, 2002, 2006, 2017, 2021, 2025, 2040, 2044, 2048, 2059, 2063, 2067,

2078, 2082, 2086, 2101, 2105, 2109, 2120, 2124, 2128, 2139, 2143, 2147, 2162, 2166, 2170, 2181,

2185, 2189, 2200, 2204, 2208, 2219, 2223, 2227, 2242, 2246, 2250, 2261, 2265, 2269, 2280, 2284,

2288, 2299, 2303, 2307, 2322, 2326, 2330, 2345, 2349, 2353, 2364, 2368, 2372, 2383, 2387, 2391,

2402, 2406, 2410, 2429, 2433, 2437, 2448, 2452, 2456, 2467, 2471, 2475, 2486, 2490, 2494, 2509,
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2513, 2517, 2532, 2536, 2540, 2551, 2555, 2559, 2570, 2574, 2578, 2593, 2597, 2601, 2616, 2620,

2624, 2635, 2639, 2643, 2654, 2658, 2662, 2673, 2677, 2681, 2696, 2700, 2704, 2715, 2719, 2723,

2734, 2738, 2742, 2757, 2761, 2765, 2776, 2780, 2784, 2795, 2799, 2803, 2818, 2822, 2826, 2837,

2841, 2845, 2856, 2860, 2864, 2875, 2879, 2883, 2898, 2902, 2906, 2917, 2921, 2925, 2936, 2940,

2944, 2955, 2959, 2963, 2978, 2982, 2986, 3001, 3005, 3009, 3020, 3024, 3028, 3039, 3043, 3047,

3058, 3062, 3066, 3085, 3089, 3093, 3104, 3108, 3112, 3123, 3127, 3131, 3142, 3146, 3150, 3165,

3169, 3173, 3188, 3192, 3196, 3207, 3211, 3215, 3226, 3230, 3234, 3249, 3253, 3257, 3272, 3276,

3280, 3291, 3295, 3299, 3310, 3314, 3318, 3333, 3337, 3341, 3356, 3360, 3364, 3375, 3379, 3383,

3394, 3398, 3402, 3413, 3417, 3421, 3440, 3444, 3448, 3459, 3463, 3467, 3478, 3482, 3486, 3497,

3501, 3505, 3520, 3524, 3528, 3539, 3543, 3547, 3558, 3562, 3566, 3581, 3585, 3589, 3600, 3604,

3608, 3619, 3623, 3627, 3638, 3642, 3646, 3661, 3665, 3669, 3684, 3688, 3692, 3703, 3707, 3711,

3722, 3726, 3730, 3741, 3745, 3749, 3768, 3772, 3776, 3787, 3791, 3795, 3806, 3810, 3814, 3825,

3829, 3833, 3848, 3852, 3856, 3871, 3875, 3879, 3890, 3894, 3898, 3909, 3913, 3917, 3932, 3936,

3940, 3955, 3959, 3963, 3974, 3978, 3982, 3993, 3997, 4001, 4012, 4016, 4020, 4035, 4039, 4043,

4054, 4058, 4062, 4073, 4077, 4081, 4096, 4100, 4104, 4119, 4123, 4134, 4138, 4142, 4157, 4161,

4165, 4176, 4180, 4184, 4195, 4199, 4203, 4214, 4218, 4222, 4237, 4241, 4245, 4256, 4260, 4264,

4275, 4279, 4283, 4294, 4298, 4302, 4317, 4321, 4325, 4340, 4344, 4348, 4359, 4363, 4367, 4378,

4382, 4386, 4397, 4401, 4405, 4424, 4428, 4432, 4443, 4447, 4451, 4462, 4466, 4470, 4481, 4485,

4489, 4504, 4508, 4512, 4527, 4531, 4535, 4546, 4550, 4554, 4565, 4569, 4573, 4588, 4592, 4596,

4611, 4615, 4619, 4630, 4634, 4638, 4649, 4653, 4657, 4668, 4672, 4676, 4695, 4699, 4710, 4714,

4718, 4729, 4733, 4737, 4752, 4756, 4760, 4775, 4779, 4794, 4798, 4813, 4817, 4821, 4832, 4836,

4840, 4855, 4859, 4874, 4878, 4893, 4897, 4916, 4920, 4924, 4935, 4939, 4943, 4954, 4958, 4962,

4973, 4977, 4996, 5000}

Color 4: {4, 15, 19, 23, 34, 38, 42, 57, 61, 65, 76, 80, 84, 95, 99, 103, 118, 122, 126, 137, 141,

145, 156, 160, 164, 179, 183, 187, 198, 202, 206, 217, 221, 225, 236, 240, 244, 259, 263, 267, 278,

282, 286, 297, 301, 305, 316, 320, 324, 339, 343, 347, 362, 366, 370, 381, 385, 389, 400, 404, 408,

419, 423, 427, 446, 450, 454, 465, 469, 473, 484, 488, 492, 503, 507, 511, 526, 530, 534, 549, 553,

557, 568, 572, 576, 587, 591, 595, 610, 614, 618, 633, 637, 641, 652, 656, 660, 671, 675, 679, 690,

694, 698, 713, 717, 721, 732, 736, 740, 751, 755, 759, 774, 778, 782, 793, 797, 801, 812, 816, 820,
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835, 839, 843, 854, 858, 862, 873, 877, 881, 892, 896, 900, 915, 919, 923, 934, 938, 942, 953, 957,

961, 972, 976, 980, 995, 999, 1003, 1018, 1022, 1026, 1037, 1041, 1045, 1056, 1060, 1064, 1075, 1079,

1083, 1102, 1106, 1110, 1121, 1125, 1129, 1140, 1144, 1148, 1159, 1163, 1167, 1182, 1186, 1190,

1205, 1209, 1213, 1224, 1228, 1232, 1243, 1247, 1251, 1266, 1270, 1274, 1289, 1293, 1297, 1308,

1312, 1316, 1327, 1331, 1335, 1350, 1354, 1358, 1373, 1377, 1381, 1392, 1396, 1400, 1411, 1415,

1419, 1430, 1434, 1438, 1457, 1461, 1476, 1480, 1484, 1495, 1499, 1503, 1514, 1518, 1522, 1537,

1541, 1545, 1556, 1560, 1564, 1575, 1579, 1583, 1598, 1602, 1606, 1617, 1621, 1625, 1636, 1640,

1644, 1655, 1659, 1663, 1678, 1682, 1686, 1701, 1705, 1709, 1720, 1724, 1728, 1739, 1743, 1747,

1758, 1762, 1766, 1785, 1789, 1793, 1804, 1808, 1812, 1823, 1827, 1831, 1842, 1846, 1850, 1865,

1869, 1873, 1888, 1892, 1896, 1907, 1911, 1915, 1926, 1930, 1934, 1949, 1953, 1957, 1972, 1976,

1980, 1991, 1995, 1999, 2010, 2014, 2018, 2029, 2033, 2037, 2052, 2056, 2060, 2071, 2075, 2079,

2090, 2094, 2098, 2113, 2117, 2121, 2132, 2136, 2140, 2151, 2155, 2159, 2174, 2178, 2182, 2193,

2197, 2201, 2212, 2216, 2220, 2231, 2235, 2239, 2254, 2258, 2262, 2273, 2277, 2281, 2292, 2296,

2300, 2311, 2315, 2319, 2334, 2338, 2342, 2357, 2361, 2365, 2376, 2380, 2384, 2395, 2399, 2403,

2414, 2418, 2422, 2441, 2445, 2449, 2460, 2464, 2468, 2479, 2483, 2487, 2498, 2502, 2506, 2521,

2525, 2529, 2544, 2548, 2552, 2563, 2567, 2571, 2582, 2586, 2590, 2605, 2609, 2613, 2628, 2632,

2636, 2647, 2651, 2655, 2666, 2670, 2674, 2685, 2689, 2693, 2708, 2712, 2716, 2727, 2731, 2735,

2746, 2750, 2754, 2769, 2773, 2777, 2788, 2792, 2796, 2807, 2811, 2815, 2830, 2834, 2838, 2849,

2853, 2857, 2868, 2872, 2876, 2887, 2891, 2895, 2910, 2914, 2929, 2933, 2937, 2948, 2952, 2956,

2967, 2971, 2975, 2990, 2994, 3013, 3017, 3021, 3032, 3036, 3040, 3051, 3055, 3059, 3070, 3074,

3078, 3097, 3101, 3105, 3116, 3120, 3124, 3135, 3139, 3143, 3154, 3158, 3162, 3177, 3181, 3185,

3200, 3204, 3208, 3219, 3223, 3227, 3238, 3242, 3246, 3261, 3265, 3269, 3284, 3288, 3292, 3303,

3307, 3311, 3322, 3326, 3330, 3345, 3349, 3353, 3368, 3372, 3376, 3387, 3391, 3395, 3406, 3410,

3414, 3425, 3429, 3433, 3452, 3456, 3471, 3475, 3479, 3490, 3494, 3498, 3509, 3513, 3517, 3532,

3536, 3540, 3551, 3555, 3559, 3570, 3574, 3578, 3593, 3597, 3601, 3612, 3616, 3620, 3631, 3635,

3639, 3650, 3654, 3658, 3673, 3677, 3681, 3696, 3700, 3704, 3715, 3719, 3723, 3734, 3738, 3742,

3753, 3757, 3761, 3780, 3784, 3788, 3799, 3803, 3807, 3818, 3822, 3826, 3837, 3841, 3845, 3860,

3864, 3868, 3883, 3887, 3891, 3902, 3906, 3910, 3921, 3925, 3929, 3944, 3948, 3952, 3967, 3971,

3975, 3986, 3990, 3994, 4005, 4009, 4013, 4024, 4028, 4032, 4047, 4051, 4055, 4066, 4070, 4074,
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4085, 4089, 4093, 4108, 4112, 4116, 4127, 4131, 4135, 4146, 4150, 4154, 4169, 4173, 4177, 4188,

4192, 4196, 4207, 4211, 4215, 4226, 4230, 4234, 4249, 4253, 4268, 4272, 4276, 4287, 4291, 4295,

4306, 4310, 4314, 4329, 4333, 4352, 4356, 4360, 4371, 4375, 4379, 4390, 4394, 4398, 4409, 4413,

4417, 4436, 4440, 4444, 4455, 4459, 4463, 4474, 4478, 4482, 4493, 4497, 4501, 4516, 4520, 4524,

4539, 4543, 4547, 4558, 4562, 4566, 4577, 4581, 4585, 4600, 4604, 4608, 4623, 4627, 4631, 4642,

4646, 4650, 4661, 4665, 4669, 4680, 4684, 4688, 4703, 4707, 4711, 4722, 4726, 4730, 4741, 4745,

4749, 4764, 4768, 4783, 4787, 4791, 4802, 4806, 4810, 4825, 4829, 4844, 4848, 4852, 4863, 4867,

4871, 4882, 4886, 4890, 4901, 4905, 4909, 4928, 4932, 4936, 4947, 4951, 4955, 4966, 4970, 4981,

4985, 4989}

Color 5: {8, 12, 16, 27, 31, 35, 46, 50, 54, 69, 73, 77, 88, 92, 96, 107, 111, 115, 130, 134, 138,

149, 153, 157, 168, 172, 176, 191, 195, 199, 210, 214, 218, 229, 233, 237, 248, 252, 256, 271, 275,

279, 290, 294, 298, 309, 313, 317, 328, 332, 336, 351, 355, 374, 378, 382, 393, 397, 401, 412, 416,

420, 431, 435, 439, 458, 462, 466, 477, 481, 485, 496, 500, 504, 515, 519, 523, 538, 542, 546, 561,

565, 569, 580, 584, 588, 599, 603, 607, 622, 626, 630, 645, 649, 653, 664, 668, 672, 683, 687, 691,

702, 706, 710, 725, 729, 733, 744, 748, 752, 763, 767, 771, 786, 790, 794, 805, 809, 813, 824, 828,

832, 847, 851, 855, 866, 870, 874, 885, 889, 893, 904, 908, 912, 927, 931, 946, 950, 954, 965, 969,

973, 984, 988, 992, 1007, 1011, 1030, 1034, 1038, 1049, 1053, 1057, 1068, 1072, 1076, 1087, 1091,

1095, 1114, 1118, 1122, 1133, 1137, 1141, 1152, 1156, 1160, 1171, 1175, 1179, 1194, 1198, 1202,

1217, 1221, 1225, 1236, 1240, 1244, 1255, 1259, 1263, 1278, 1282, 1286, 1301, 1305, 1309, 1320,

1324, 1328, 1339, 1343, 1347, 1362, 1366, 1370, 1385, 1389, 1393, 1404, 1408, 1412, 1423, 1427,

1431, 1442, 1446, 1450, 1465, 1469, 1473, 1488, 1492, 1496, 1507, 1511, 1515, 1526, 1530, 1534,

1549, 1553, 1557, 1568, 1572, 1576, 1587, 1591, 1595, 1610, 1614, 1618, 1629, 1633, 1637, 1648,

1652, 1656, 1667, 1671, 1675, 1690, 1694, 1698, 1713, 1717, 1721, 1732, 1736, 1740, 1751, 1755,

1759, 1770, 1774, 1778, 1797, 1801, 1805, 1816, 1820, 1824, 1835, 1839, 1843, 1854, 1858, 1862,

1877, 1881, 1885, 1900, 1904, 1908, 1919, 1923, 1927, 1938, 1942, 1946, 1961, 1965, 1969, 1984,

1988, 1992, 2003, 2007, 2011, 2022, 2026, 2030, 2041, 2045, 2049, 2064, 2068, 2072, 2083, 2087,

2091, 2102, 2106, 2110, 2125, 2129, 2133, 2144, 2148, 2152, 2163, 2167, 2171, 2186, 2190, 2194,

2205, 2209, 2213, 2224, 2228, 2232, 2243, 2247, 2251, 2266, 2270, 2285, 2289, 2293, 2304, 2308,

148



2312, 2323, 2327, 2331, 2346, 2350, 2369, 2373, 2377, 2388, 2392, 2396, 2407, 2411, 2415, 2426,

2430, 2434, 2453, 2457, 2461, 2472, 2476, 2480, 2491, 2495, 2499, 2510, 2514, 2518, 2533, 2537,

2541, 2556, 2560, 2564, 2575, 2579, 2583, 2594, 2598, 2602, 2617, 2621, 2625, 2640, 2644, 2648,

2659, 2663, 2667, 2678, 2682, 2686, 2697, 2701, 2705, 2720, 2724, 2728, 2739, 2743, 2747, 2758,

2762, 2766, 2781, 2785, 2800, 2804, 2808, 2819, 2823, 2827, 2842, 2846, 2861, 2865, 2869, 2880,

2884, 2888, 2899, 2903, 2907, 2918, 2922, 2926, 2941, 2945, 2949, 2960, 2964, 2968, 2979, 2983,

2987, 2998, 3002, 3006, 3025, 3029, 3033, 3044, 3048, 3052, 3063, 3067, 3071, 3082, 3086, 3090,

3109, 3113, 3128, 3132, 3136, 3147, 3151, 3155, 3166, 3170, 3174, 3189, 3193, 3197, 3212, 3216,

3220, 3231, 3235, 3239, 3250, 3254, 3258, 3273, 3277, 3281, 3296, 3300, 3304, 3315, 3319, 3323,

3334, 3338, 3342, 3357, 3361, 3380, 3384, 3388, 3399, 3403, 3407, 3418, 3422, 3426, 3437, 3441,

3445, 3460, 3464, 3468, 3483, 3487, 3491, 3502, 3506, 3510, 3521, 3525, 3529, 3544, 3548, 3552,

3563, 3567, 3571, 3582, 3586, 3590, 3605, 3609, 3624, 3628, 3632, 3643, 3647, 3651, 3662, 3666,

3670, 3685, 3689, 3708, 3712, 3716, 3727, 3731, 3735, 3746, 3750, 3754, 3765, 3769, 3773, 3792,

3796, 3811, 3815, 3819, 3830, 3834, 3838, 3849, 3853, 3857, 3872, 3876, 3880, 3895, 3899, 3903,

3914, 3918, 3922, 3933, 3937, 3941, 3956, 3960, 3964, 3979, 3983, 3987, 3998, 4002, 4006, 4017,

4021, 4025, 4036, 4040, 4044, 4059, 4063, 4067, 4078, 4082, 4086, 4097, 4101, 4105, 4120, 4124,

4139, 4143, 4147, 4158, 4162, 4166, 4181, 4185, 4200, 4204, 4208, 4219, 4223, 4227, 4238, 4242,

4246, 4257, 4261, 4265, 4280, 4284, 4288, 4299, 4303, 4307, 4318, 4322, 4326, 4337, 4341, 4345,

4364, 4368, 4372, 4383, 4387, 4391, 4402, 4406, 4410, 4421, 4425, 4429, 4448, 4452, 4467, 4471,

4475, 4486, 4490, 4494, 4505, 4509, 4513, 4528, 4532, 4536, 4551, 4555, 4559, 4570, 4574, 4578,

4589, 4593, 4597, 4612, 4616, 4620, 4635, 4639, 4643, 4654, 4658, 4662, 4673, 4677, 4681, 4692,

4696, 4700, 4715, 4719, 4723, 4734, 4738, 4742, 4753, 4757, 4761, 4772, 4776, 4780, 4795, 4799,

4803, 4814, 4818, 4822, 4833, 4837, 4841, 4856, 4860, 4864, 4875, 4879, 4883, 4894, 4898, 4902,

4913, 4917, 4921, 4940, 4944, 4959, 4963, 4974, 4978, 4982, 4993, 4997}

Color 6: {13, 17, 21, 32, 36, 40, 51, 55, 59, 70, 74, 78, 93, 97, 101, 112, 116, 120, 131, 135,

139, 150, 154, 158, 173, 177, 181, 192, 196, 200, 211, 215, 219, 234, 238, 242, 253, 257, 261, 272,

276, 280, 291, 295, 299, 314, 318, 322, 333, 337, 341, 352, 356, 360, 371, 375, 379, 398, 402, 406,

417, 421, 425, 436, 440, 444, 455, 459, 463, 478, 482, 486, 501, 505, 509, 520, 524, 528, 539, 543,

547, 562, 566, 570, 585, 589, 593, 604, 608, 612, 623, 627, 631, 646, 650, 654, 669, 673, 677, 688,
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692, 696, 707, 711, 715, 726, 730, 734, 749, 753, 757, 768, 772, 776, 787, 791, 795, 806, 810, 814,

829, 833, 837, 848, 852, 856, 867, 871, 875, 890, 894, 898, 909, 913, 917, 928, 932, 936, 947, 951,

955, 970, 974, 978, 989, 993, 997, 1008, 1012, 1016, 1027, 1031, 1035, 1054, 1058, 1062, 1073, 1077,

1081, 1092, 1096, 1100, 1111, 1115, 1119, 1134, 1138, 1142, 1157, 1161, 1165, 1176, 1180, 1184,

1195, 1199, 1203, 1218, 1222, 1226, 1241, 1245, 1249, 1260, 1264, 1268, 1279, 1283, 1287, 1302,

1306, 1310, 1325, 1329, 1333, 1344, 1348, 1352, 1363, 1367, 1371, 1382, 1386, 1390, 1409, 1413,

1417, 1428, 1432, 1436, 1447, 1451, 1455, 1466, 1470, 1474, 1489, 1493, 1497, 1512, 1516, 1520,

1531, 1535, 1539, 1550, 1554, 1558, 1573, 1577, 1581, 1592, 1596, 1600, 1611, 1615, 1619, 1630,

1634, 1638, 1653, 1657, 1661, 1672, 1676, 1680, 1691, 1695, 1699, 1710, 1714, 1718, 1737, 1741,

1745, 1756, 1760, 1764, 1775, 1779, 1783, 1794, 1798, 1802, 1817, 1821, 1825, 1840, 1844, 1848,

1859, 1863, 1867, 1878, 1882, 1886, 1901, 1905, 1909, 1924, 1928, 1932, 1943, 1947, 1951, 1962,

1966, 1970, 1985, 1989, 1993, 2008, 2012, 2016, 2027, 2031, 2035, 2046, 2050, 2054, 2065, 2069,

2073, 2088, 2092, 2096, 2107, 2111, 2115, 2126, 2130, 2134, 2145, 2149, 2153, 2168, 2172, 2176,

2187, 2191, 2195, 2206, 2210, 2214, 2229, 2233, 2237, 2248, 2252, 2256, 2267, 2271, 2275, 2286,

2290, 2294, 2309, 2313, 2317, 2328, 2332, 2336, 2347, 2351, 2355, 2366, 2370, 2374, 2393, 2397,

2401, 2412, 2416, 2420, 2431, 2435, 2439, 2450, 2454, 2458, 2473, 2477, 2481, 2496, 2500, 2504,

2515, 2519, 2523, 2534, 2538, 2542, 2557, 2561, 2565, 2580, 2584, 2588, 2599, 2603, 2607, 2618,

2622, 2626, 2641, 2645, 2649, 2664, 2668, 2672, 2683, 2687, 2691, 2702, 2706, 2710, 2721, 2725,

2729, 2744, 2748, 2752, 2763, 2767, 2771, 2782, 2786, 2790, 2801, 2805, 2809, 2824, 2828, 2832,

2843, 2847, 2851, 2862, 2866, 2870, 2885, 2889, 2893, 2904, 2908, 2912, 2923, 2927, 2931, 2942,

2946, 2950, 2965, 2969, 2973, 2984, 2988, 2992, 3003, 3007, 3011, 3022, 3026, 3030, 3049, 3053,

3057, 3068, 3072, 3076, 3087, 3091, 3095, 3106, 3110, 3114, 3129, 3133, 3137, 3152, 3156, 3160,

3171, 3175, 3179, 3190, 3194, 3198, 3213, 3217, 3221, 3236, 3240, 3244, 3255, 3259, 3263, 3274,

3278, 3282, 3297, 3301, 3305, 3320, 3324, 3328, 3339, 3343, 3347, 3358, 3362, 3366, 3377, 3381,

3385, 3404, 3408, 3412, 3423, 3427, 3431, 3442, 3446, 3450, 3461, 3465, 3469, 3484, 3488, 3492,

3507, 3511, 3515, 3526, 3530, 3534, 3545, 3549, 3553, 3568, 3572, 3576, 3587, 3591, 3595, 3606,

3610, 3614, 3625, 3629, 3633, 3648, 3652, 3656, 3667, 3671, 3675, 3686, 3690, 3694, 3705, 3709,

3713, 3732, 3736, 3740, 3751, 3755, 3759, 3770, 3774, 3778, 3789, 3793, 3797, 3812, 3816, 3820,

3835, 3839, 3843, 3854, 3858, 3862, 3873, 3877, 3881, 3896, 3900, 3904, 3919, 3923, 3927, 3938,
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3942, 3946, 3957, 3961, 3965, 3980, 3984, 3988, 4003, 4007, 4011, 4022, 4026, 4030, 4041, 4045,

4049, 4060, 4064, 4068, 4083, 4087, 4091, 4102, 4106, 4110, 4121, 4125, 4129, 4140, 4144, 4148,

4163, 4167, 4171, 4182, 4186, 4190, 4201, 4205, 4209, 4224, 4228, 4232, 4243, 4247, 4251, 4262,

4266, 4270, 4281, 4285, 4289, 4304, 4308, 4312, 4323, 4327, 4331, 4342, 4346, 4350, 4361, 4365,

4369, 4388, 4392, 4396, 4407, 4411, 4415, 4426, 4430, 4434, 4445, 4449, 4453, 4468, 4472, 4476,

4491, 4495, 4499, 4510, 4514, 4518, 4529, 4533, 4537, 4552, 4556, 4560, 4575, 4579, 4583, 4594,

4598, 4602, 4613, 4617, 4621, 4636, 4640, 4644, 4659, 4663, 4667, 4678, 4682, 4686, 4697, 4701,

4705, 4716, 4720, 4724, 4739, 4743, 4747, 4758, 4762, 4766, 4777, 4781, 4785, 4796, 4800, 4804,

4819, 4823, 4827, 4838, 4842, 4846, 4857, 4861, 4865, 4880, 4884, 4888, 4899, 4903, 4907, 4918,

4922, 4926, 4937, 4941, 4945, 4960, 4964, 4968, 4979, 4983, 4987, 4998}

Color 7: {14, 18, 37, 41, 56, 60, 75, 79, 94, 98, 102, 117, 121, 136, 140, 155, 159, 163, 174, 178,

182, 197, 201, 216, 220, 235, 239, 243, 258, 262, 277, 281, 296, 300, 315, 319, 323, 338, 342, 346,

357, 361, 365, 376, 380, 384, 395, 399, 403, 422, 426, 430, 441, 445, 449, 460, 464, 468, 479, 483,

487, 502, 506, 510, 525, 529, 533, 544, 548, 552, 563, 567, 571, 586, 590, 594, 609, 613, 617, 628,

632, 636, 647, 651, 655, 670, 674, 693, 697, 712, 716, 731, 735, 750, 754, 758, 773, 777, 792, 796,

811, 815, 819, 830, 834, 838, 853, 857, 872, 876, 891, 895, 899, 914, 918, 933, 937, 952, 956, 971,

975, 979, 994, 998, 1002, 1013, 1017, 1021, 1032, 1036, 1040, 1051, 1055, 1059, 1078, 1082, 1086,

1097, 1101, 1105, 1116, 1120, 1124, 1135, 1139, 1143, 1158, 1162, 1166, 1181, 1185, 1189, 1200,

1204, 1208, 1219, 1223, 1227, 1242, 1246, 1250, 1265, 1269, 1273, 1284, 1288, 1292, 1303, 1307,

1311, 1326, 1330, 1334, 1349, 1353, 1357, 1368, 1372, 1376, 1387, 1391, 1395, 1406, 1410, 1414,

1433, 1437, 1441, 1452, 1456, 1460, 1471, 1475, 1479, 1490, 1494, 1498, 1513, 1517, 1521, 1536,

1540, 1555, 1559, 1574, 1578, 1582, 1597, 1601, 1616, 1620, 1635, 1639, 1654, 1658, 1662, 1677,

1681, 1685, 1696, 1700, 1704, 1715, 1719, 1723, 1734, 1738, 1742, 1761, 1765, 1769, 1780, 1784,

1788, 1799, 1803, 1807, 1818, 1822, 1826, 1841, 1845, 1849, 1864, 1868, 1872, 1883, 1887, 1891,

1902, 1906, 1910, 1925, 1929, 1933, 1948, 1952, 1956, 1967, 1971, 1975, 1986, 1990, 1994, 2009,

2013, 2032, 2036, 2051, 2055, 2070, 2074, 2089, 2093, 2097, 2112, 2116, 2131, 2135, 2150, 2154,

2158, 2169, 2173, 2177, 2192, 2196, 2211, 2215, 2230, 2234, 2238, 2253, 2257, 2272, 2276, 2291,

2295, 2310, 2314, 2318, 2333, 2337, 2341, 2352, 2356, 2360, 2371, 2375, 2379, 2390, 2394, 2398,

2417, 2421, 2425, 2436, 2440, 2444, 2455, 2459, 2463, 2474, 2478, 2482, 2497, 2501, 2505, 2520,
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2524, 2528, 2539, 2543, 2547, 2558, 2562, 2566, 2581, 2585, 2589, 2604, 2608, 2612, 2623, 2627,

2631, 2642, 2646, 2650, 2665, 2669, 2688, 2692, 2707, 2711, 2726, 2730, 2745, 2749, 2753, 2768,

2772, 2787, 2791, 2806, 2810, 2814, 2825, 2829, 2833, 2848, 2852, 2867, 2871, 2886, 2890, 2894,

2909, 2913, 2928, 2932, 2943, 2947, 2951, 2966, 2970, 2974, 2989, 2993, 2997, 3008, 3012, 3016,

3027, 3031, 3035, 3046, 3050, 3054, 3073, 3077, 3081, 3092, 3096, 3100, 3111, 3115, 3119, 3130,

3134, 3138, 3153, 3157, 3161, 3176, 3180, 3184, 3195, 3199, 3203, 3214, 3218, 3222, 3237, 3241,

3245, 3260, 3264, 3268, 3279, 3283, 3287, 3298, 3302, 3306, 3321, 3325, 3329, 3344, 3348, 3352,

3363, 3367, 3371, 3382, 3386, 3390, 3401, 3405, 3409, 3428, 3432, 3436, 3447, 3451, 3455, 3466,

3470, 3474, 3485, 3489, 3493, 3508, 3512, 3516, 3531, 3535, 3550, 3554, 3569, 3573, 3577, 3592,

3596, 3611, 3615, 3630, 3634, 3649, 3653, 3657, 3672, 3676, 3680, 3691, 3695, 3699, 3710, 3714,

3718, 3729, 3733, 3737, 3756, 3760, 3764, 3775, 3779, 3783, 3794, 3798, 3802, 3813, 3817, 3821,

3836, 3840, 3844, 3859, 3863, 3867, 3878, 3882, 3886, 3897, 3901, 3905, 3920, 3924, 3928, 3943,

3947, 3951, 3962, 3966, 3970, 3981, 3985, 3989, 4004, 4008, 4027, 4031, 4046, 4050, 4065, 4069,

4084, 4088, 4092, 4107, 4111, 4115, 4126, 4130, 4145, 4149, 4153, 4164, 4168, 4172, 4187, 4191,

4206, 4210, 4225, 4229, 4233, 4248, 4252, 4267, 4271, 4282, 4286, 4290, 4305, 4309, 4313, 4328,

4332, 4336, 4347, 4351, 4355, 4366, 4370, 4374, 4385, 4389, 4393, 4412, 4416, 4420, 4431, 4435,

4439, 4450, 4454, 4458, 4469, 4473, 4477, 4492, 4496, 4500, 4515, 4519, 4523, 4534, 4538, 4542,

4553, 4557, 4561, 4576, 4580, 4584, 4599, 4603, 4607, 4618, 4622, 4626, 4637, 4641, 4645, 4660,

4664, 4683, 4687, 4691, 4702, 4706, 4717, 4721, 4725, 4740, 4744, 4748, 4763, 4767, 4771, 4782,

4786, 4790, 4801, 4805, 4809, 4820, 4824, 4828, 4843, 4847, 4851, 4862, 4866, 4870, 4881, 4885,

4889, 4904, 4908, 4912, 4923, 4927, 4931, 4942, 4946, 4950, 4961, 4965, 4969, 4984, 4988, 4992}

B.2. 4-coloring of [5000] Avoiding 3-term F -Diffsequences (Figure 5.2)

Color 1: {1, 3, 7, 9, 13, 15, 19, 21, 25, 27, 31, 33, 39, 45, 51, 53, 57, 59, 63, 65, 69, 71, 75, 77,

81, 83, 89, 95, 101, 107, 113, 119, 121, 125, 127, 131, 133, 137, 139, 143, 145, 149, 151, 157, 163,

169, 175, 181, 187, 189, 193, 195, 199, 201, 205, 207, 211, 213, 217, 219, 225, 231, 237, 243, 249,

255, 257, 261, 263, 267, 269, 273, 275, 279, 281, 285, 287, 293, 299, 305, 311, 317, 323, 325, 329,

331, 335, 337, 341, 343, 347, 349, 353, 355, 361, 367, 373, 375, 379, 381, 385, 387, 391, 393, 397,

399, 403, 405, 411, 417, 423, 429, 435, 441, 443, 447, 449, 453, 455, 459, 461, 465, 467, 471, 473,
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479, 485, 491, 497, 503, 509, 511, 515, 517, 521, 523, 527, 529, 533, 535, 539, 541, 547, 553, 559,

565, 571, 577, 579, 583, 585, 589, 591, 595, 597, 601, 603, 607, 609, 615, 621, 627, 633, 639, 645,

647, 651, 653, 657, 659, 665, 671, 677, 683, 689, 695, 697, 701, 703, 707, 709, 713, 715, 719, 721,

725, 727, 733, 739, 745, 751, 757, 763, 765, 769, 771, 775, 777, 781, 783, 787, 789, 793, 795, 801,

807, 813, 819, 825, 831, 833, 837, 839, 843, 845, 849, 851, 855, 857, 861, 863, 869, 875, 881, 887,

893, 899, 901, 905, 907, 911, 913, 917, 919, 923, 925, 929, 931, 937, 943, 949, 951, 955, 957, 961,

963, 967, 969, 973, 975, 979, 981, 987, 993, 999, 1005, 1011, 1017, 1019, 1023, 1025, 1029, 1031,

1035, 1037, 1041, 1043, 1047, 1049, 1055, 1061, 1067, 1073, 1079, 1085, 1087, 1091, 1093, 1097,

1099, 1103, 1105, 1109, 1111, 1115, 1117, 1123, 1129, 1135, 1141, 1147, 1153, 1155, 1159, 1161,

1165, 1167, 1171, 1173, 1177, 1179, 1183, 1185, 1191, 1197, 1203, 1209, 1215, 1221, 1223, 1227,

1229, 1233, 1235, 1239, 1241, 1245, 1247, 1251, 1253, 1259, 1265, 1271, 1273, 1277, 1279, 1283,

1285, 1289, 1291, 1295, 1297, 1301, 1303, 1309, 1315, 1321, 1327, 1333, 1339, 1341, 1345, 1347,

1351, 1353, 1357, 1359, 1363, 1365, 1369, 1371, 1377, 1383, 1389, 1395, 1401, 1407, 1409, 1413,

1415, 1419, 1421, 1425, 1427, 1431, 1433, 1437, 1439, 1445, 1451, 1457, 1463, 1469, 1475, 1477,

1481, 1483, 1487, 1489, 1493, 1495, 1499, 1501, 1505, 1507, 1513, 1519, 1525, 1531, 1537, 1543,

1545, 1549, 1551, 1555, 1557, 1563, 1569, 1575, 1581, 1587, 1593, 1595, 1599, 1601, 1605, 1607,

1611, 1613, 1617, 1619, 1623, 1625, 1631, 1637, 1643, 1649, 1655, 1661, 1663, 1667, 1669, 1673,

1675, 1679, 1681, 1685, 1687, 1691, 1693, 1699, 1705, 1711, 1717, 1723, 1729, 1731, 1735, 1737,

1741, 1743, 1747, 1749, 1753, 1755, 1759, 1761, 1767, 1773, 1779, 1785, 1791, 1797, 1799, 1803,

1805, 1809, 1811, 1815, 1817, 1821, 1823, 1827, 1829, 1835, 1841, 1847, 1853, 1859, 1865, 1867,

1871, 1873, 1877, 1879, 1885, 1891, 1897, 1903, 1909, 1915, 1917, 1921, 1923, 1927, 1929, 1933,

1935, 1939, 1941, 1945, 1947, 1953, 1959, 1965, 1971, 1977, 1983, 1985, 1989, 1991, 1995, 1997,

2001, 2003, 2007, 2009, 2013, 2015, 2021, 2027, 2033, 2039, 2045, 2051, 2053, 2057, 2059, 2063,

2065, 2069, 2071, 2075, 2077, 2081, 2083, 2089, 2095, 2101, 2107, 2113, 2119, 2121, 2125, 2127,

2131, 2133, 2137, 2139, 2143, 2145, 2149, 2151, 2157, 2163, 2169, 2171, 2175, 2177, 2181, 2183,

2187, 2189, 2193, 2195, 2199, 2201, 2207, 2213, 2219, 2225, 2231, 2237, 2239, 2243, 2245, 2249,

2251, 2255, 2257, 2261, 2263, 2267, 2269, 2275, 2281, 2287, 2293, 2299, 2305, 2307, 2311, 2313,

2317, 2319, 2323, 2325, 2329, 2331, 2335, 2337, 2343, 2349, 2355, 2361, 2367, 2373, 2375, 2379,

2381, 2385, 2387, 2391, 2393, 2397, 2399, 2403, 2405, 2411, 2417, 2423, 2429, 2435, 2441, 2443,
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2447, 2449, 2453, 2455, 2459, 2461, 2465, 2467, 2471, 2473, 2479, 2485, 2491, 2493, 2497, 2499,

2503, 2505, 2509, 2511, 2515, 2517, 2521, 2523, 2529, 2535, 2541, 2547, 2553, 2559, 2561, 2565,

2567, 2571, 2573, 2577, 2579, 2583, 2585, 2589, 2591, 2597, 2603, 2609, 2615, 2621, 2627, 2629,

2633, 2635, 2639, 2641, 2645, 2647, 2651, 2653, 2657, 2659, 2665, 2671, 2677, 2683, 2689, 2695,

2697, 2701, 2703, 2707, 2709, 2713, 2715, 2719, 2721, 2725, 2727, 2733, 2739, 2745, 2751, 2757,

2763, 2765, 2769, 2771, 2775, 2777, 2783, 2789, 2795, 2801, 2807, 2813, 2815, 2819, 2821, 2825,

2827, 2831, 2833, 2837, 2839, 2843, 2845, 2851, 2857, 2863, 2869, 2875, 2881, 2883, 2887, 2889,

2893, 2895, 2899, 2901, 2905, 2907, 2911, 2913, 2919, 2925, 2931, 2937, 2943, 2949, 2951, 2955,

2957, 2961, 2963, 2967, 2969, 2973, 2975, 2979, 2981, 2987, 2993, 2999, 3005, 3011, 3017, 3019,

3023, 3025, 3029, 3031, 3035, 3037, 3041, 3043, 3047, 3049, 3055, 3061, 3067, 3073, 3079, 3085,

3087, 3091, 3093, 3097, 3099, 3105, 3111, 3117, 3123, 3129, 3135, 3137, 3141, 3143, 3147, 3149,

3153, 3155, 3159, 3161, 3165, 3167, 3173, 3179, 3185, 3191, 3197, 3203, 3205, 3209, 3211, 3215,

3217, 3221, 3223, 3227, 3229, 3233, 3235, 3241, 3247, 3253, 3259, 3265, 3271, 3273, 3277, 3279,

3283, 3285, 3289, 3291, 3295, 3297, 3301, 3303, 3309, 3315, 3321, 3327, 3333, 3339, 3341, 3345,

3347, 3351, 3353, 3357, 3359, 3363, 3365, 3369, 3371, 3377, 3383, 3389, 3391, 3395, 3397, 3401,

3403, 3407, 3409, 3413, 3415, 3419, 3421, 3427, 3433, 3439, 3445, 3451, 3457, 3459, 3463, 3465,

3469, 3471, 3475, 3477, 3481, 3483, 3487, 3489, 3495, 3501, 3507, 3513, 3519, 3525, 3527, 3531,

3533, 3537, 3539, 3543, 3545, 3549, 3551, 3555, 3557, 3563, 3569, 3575, 3581, 3587, 3593, 3595,

3599, 3601, 3605, 3607, 3611, 3613, 3617, 3619, 3623, 3625, 3631, 3637, 3643, 3649, 3655, 3661,

3663, 3667, 3669, 3673, 3675, 3679, 3681, 3685, 3687, 3691, 3693, 3699, 3705, 3711, 3713, 3717,

3719, 3723, 3725, 3729, 3731, 3735, 3737, 3741, 3743, 3749, 3755, 3761, 3767, 3773, 3779, 3781,

3785, 3787, 3791, 3793, 3797, 3799, 3803, 3805, 3809, 3811, 3817, 3823, 3829, 3835, 3841, 3847,

3849, 3853, 3855, 3859, 3861, 3865, 3867, 3871, 3873, 3877, 3879, 3885, 3891, 3897, 3903, 3909,

3915, 3917, 3921, 3923, 3927, 3929, 3933, 3935, 3939, 3941, 3945, 3947, 3953, 3959, 3965, 3971,

3977, 3983, 3985, 3989, 3991, 3995, 3997, 4003, 4009, 4015, 4021, 4027, 4033, 4035, 4039, 4041,

4045, 4047, 4051, 4053, 4057, 4059, 4063, 4065, 4071, 4077, 4083, 4089, 4095, 4101, 4103, 4107,

4109, 4113, 4115, 4119, 4121, 4125, 4127, 4131, 4133, 4139, 4145, 4151, 4157, 4163, 4169, 4171,

4175, 4177, 4181, 4183, 4187, 4189, 4193, 4195, 4199, 4201, 4207, 4213, 4219, 4225, 4231, 4237,

4239, 4243, 4245, 4249, 4251, 4255, 4257, 4261, 4263, 4267, 4269, 4275, 4281, 4287, 4293, 4299,
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4305, 4307, 4311, 4313, 4317, 4319, 4325, 4331, 4337, 4343, 4349, 4355, 4357, 4361, 4363, 4367,

4369, 4373, 4375, 4379, 4381, 4385, 4387, 4393, 4399, 4405, 4411, 4417, 4423, 4425, 4429, 4431,

4435, 4437, 4441, 4443, 4447, 4449, 4453, 4455, 4461, 4467, 4473, 4479, 4485, 4491, 4493, 4497,

4499, 4503, 4505, 4509, 4511, 4515, 4517, 4521, 4523, 4529, 4535, 4541, 4547, 4553, 4559, 4561,

4565, 4567, 4571, 4573, 4577, 4579, 4583, 4585, 4589, 4591, 4597, 4603, 4609, 4611, 4615, 4617,

4621, 4623, 4627, 4629, 4633, 4635, 4639, 4641, 4647, 4653, 4659, 4665, 4671, 4677, 4679, 4683,

4685, 4689, 4691, 4695, 4697, 4701, 4703, 4707, 4709, 4715, 4721, 4727, 4733, 4739, 4745, 4747,

4751, 4753, 4757, 4759, 4763, 4765, 4769, 4771, 4775, 4777, 4783, 4789, 4795, 4801, 4807, 4813,

4815, 4819, 4821, 4825, 4827, 4831, 4833, 4837, 4839, 4843, 4845, 4851, 4857, 4863, 4869, 4875,

4881, 4883, 4887, 4889, 4893, 4895, 4899, 4901, 4905, 4907, 4911, 4913, 4919, 4925, 4931, 4933,

4937, 4939, 4943, 4945, 4949, 4951, 4955, 4957, 4961, 4963, 4969, 4975, 4981, 4987, 4993, 4999}

Color 2: {2, 4, 8, 10, 14, 16, 20, 22, 26, 28, 32, 34, 40, 46, 52, 54, 58, 60, 64, 66, 70, 72, 76, 78,

82, 84, 90, 96, 102, 108, 114, 120, 122, 126, 128, 132, 134, 138, 140, 144, 146, 150, 152, 158, 164,

170, 176, 182, 188, 190, 194, 196, 200, 202, 206, 208, 212, 214, 218, 220, 226, 232, 238, 244, 250,

256, 258, 262, 264, 268, 270, 274, 276, 280, 282, 286, 288, 294, 300, 306, 312, 318, 324, 326, 330,

332, 336, 338, 342, 344, 348, 350, 354, 356, 362, 368, 374, 376, 380, 382, 386, 388, 392, 394, 398,

400, 404, 406, 412, 418, 424, 430, 436, 442, 444, 448, 450, 454, 456, 460, 462, 466, 468, 472, 474,

480, 486, 492, 498, 504, 510, 512, 516, 518, 522, 524, 528, 530, 534, 536, 540, 542, 548, 554, 560,

566, 572, 578, 580, 584, 586, 590, 592, 596, 598, 602, 604, 608, 610, 616, 622, 628, 634, 640, 646,

648, 652, 654, 658, 660, 666, 672, 678, 684, 690, 696, 698, 702, 704, 708, 710, 714, 716, 720, 722,

726, 728, 734, 740, 746, 752, 758, 764, 766, 770, 772, 776, 778, 782, 784, 788, 790, 794, 796, 802,

808, 814, 820, 826, 832, 834, 838, 840, 844, 846, 850, 852, 856, 858, 862, 864, 870, 876, 882, 888,

894, 900, 902, 906, 908, 912, 914, 918, 920, 924, 926, 930, 932, 938, 944, 950, 952, 956, 958, 962,

964, 968, 970, 974, 976, 980, 982, 988, 994, 1000, 1006, 1012, 1018, 1020, 1024, 1026, 1030, 1032,

1036, 1038, 1042, 1044, 1048, 1050, 1056, 1062, 1068, 1074, 1080, 1086, 1088, 1092, 1094, 1098,

1100, 1104, 1106, 1110, 1112, 1116, 1118, 1124, 1130, 1136, 1142, 1148, 1154, 1156, 1160, 1162,

1166, 1168, 1172, 1174, 1178, 1180, 1184, 1186, 1192, 1198, 1204, 1210, 1216, 1222, 1224, 1228,

1230, 1234, 1236, 1240, 1242, 1246, 1248, 1252, 1254, 1260, 1266, 1272, 1274, 1278, 1280, 1284,

1286, 1290, 1292, 1296, 1298, 1302, 1304, 1310, 1316, 1322, 1328, 1334, 1340, 1342, 1346, 1348,
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1352, 1354, 1358, 1360, 1364, 1366, 1370, 1372, 1378, 1384, 1390, 1396, 1402, 1408, 1410, 1414,

1416, 1420, 1422, 1426, 1428, 1432, 1434, 1438, 1440, 1446, 1452, 1458, 1464, 1470, 1476, 1478,

1482, 1484, 1488, 1490, 1494, 1496, 1500, 1502, 1506, 1508, 1514, 1520, 1526, 1532, 1538, 1544,

1546, 1550, 1552, 1556, 1558, 1564, 1570, 1576, 1582, 1588, 1594, 1596, 1600, 1602, 1606, 1608,

1612, 1614, 1618, 1620, 1624, 1626, 1632, 1638, 1644, 1650, 1656, 1662, 1664, 1668, 1670, 1674,

1676, 1680, 1682, 1686, 1688, 1692, 1694, 1700, 1706, 1712, 1718, 1724, 1730, 1732, 1736, 1738,

1742, 1744, 1748, 1750, 1754, 1756, 1760, 1762, 1768, 1774, 1780, 1786, 1792, 1798, 1800, 1804,

1806, 1810, 1812, 1816, 1818, 1822, 1824, 1828, 1830, 1836, 1842, 1848, 1854, 1860, 1866, 1868,

1872, 1874, 1878, 1880, 1886, 1892, 1898, 1904, 1910, 1916, 1918, 1922, 1924, 1928, 1930, 1934,

1936, 1940, 1942, 1946, 1948, 1954, 1960, 1966, 1972, 1978, 1984, 1986, 1990, 1992, 1996, 1998,

2002, 2004, 2008, 2010, 2014, 2016, 2022, 2028, 2034, 2040, 2046, 2052, 2054, 2058, 2060, 2064,

2066, 2070, 2072, 2076, 2078, 2082, 2084, 2090, 2096, 2102, 2108, 2114, 2120, 2122, 2126, 2128,

2132, 2134, 2138, 2140, 2144, 2146, 2150, 2152, 2158, 2164, 2170, 2172, 2176, 2178, 2182, 2184,

2188, 2190, 2194, 2196, 2200, 2202, 2208, 2214, 2220, 2226, 2232, 2238, 2240, 2244, 2246, 2250,

2252, 2256, 2258, 2262, 2264, 2268, 2270, 2276, 2282, 2288, 2294, 2300, 2306, 2308, 2312, 2314,

2318, 2320, 2324, 2326, 2330, 2332, 2336, 2338, 2344, 2350, 2356, 2362, 2368, 2374, 2376, 2380,

2382, 2386, 2388, 2392, 2394, 2398, 2400, 2404, 2406, 2412, 2418, 2424, 2430, 2436, 2442, 2444,

2448, 2450, 2454, 2456, 2460, 2462, 2466, 2468, 2472, 2474, 2480, 2486, 2492, 2494, 2498, 2500,

2504, 2506, 2510, 2512, 2516, 2518, 2522, 2524, 2530, 2536, 2542, 2548, 2554, 2560, 2562, 2566,

2568, 2572, 2574, 2578, 2580, 2584, 2586, 2590, 2592, 2598, 2604, 2610, 2616, 2622, 2628, 2630,

2634, 2636, 2640, 2642, 2646, 2648, 2652, 2654, 2658, 2660, 2666, 2672, 2678, 2684, 2690, 2696,

2698, 2702, 2704, 2708, 2710, 2714, 2716, 2720, 2722, 2726, 2728, 2734, 2740, 2746, 2752, 2758,

2764, 2766, 2770, 2772, 2776, 2778, 2784, 2790, 2796, 2802, 2808, 2814, 2816, 2820, 2822, 2826,

2828, 2832, 2834, 2838, 2840, 2844, 2846, 2852, 2858, 2864, 2870, 2876, 2882, 2884, 2888, 2890,

2894, 2896, 2900, 2902, 2906, 2908, 2912, 2914, 2920, 2926, 2932, 2938, 2944, 2950, 2952, 2956,

2958, 2962, 2964, 2968, 2970, 2974, 2976, 2980, 2982, 2988, 2994, 3000, 3006, 3012, 3018, 3020,

3024, 3026, 3030, 3032, 3036, 3038, 3042, 3044, 3048, 3050, 3056, 3062, 3068, 3074, 3080, 3086,

3088, 3092, 3094, 3098, 3100, 3106, 3112, 3118, 3124, 3130, 3136, 3138, 3142, 3144, 3148, 3150,

3154, 3156, 3160, 3162, 3166, 3168, 3174, 3180, 3186, 3192, 3198, 3204, 3206, 3210, 3212, 3216,

156



3218, 3222, 3224, 3228, 3230, 3234, 3236, 3242, 3248, 3254, 3260, 3266, 3272, 3274, 3278, 3280,

3284, 3286, 3290, 3292, 3296, 3298, 3302, 3304, 3310, 3316, 3322, 3328, 3334, 3340, 3342, 3346,

3348, 3352, 3354, 3358, 3360, 3364, 3366, 3370, 3372, 3378, 3384, 3390, 3392, 3396, 3398, 3402,

3404, 3408, 3410, 3414, 3416, 3420, 3422, 3428, 3434, 3440, 3446, 3452, 3458, 3460, 3464, 3466,

3470, 3472, 3476, 3478, 3482, 3484, 3488, 3490, 3496, 3502, 3508, 3514, 3520, 3526, 3528, 3532,

3534, 3538, 3540, 3544, 3546, 3550, 3552, 3556, 3558, 3564, 3570, 3576, 3582, 3588, 3594, 3596,

3600, 3602, 3606, 3608, 3612, 3614, 3618, 3620, 3624, 3626, 3632, 3638, 3644, 3650, 3656, 3662,

3664, 3668, 3670, 3674, 3676, 3680, 3682, 3686, 3688, 3692, 3694, 3700, 3706, 3712, 3714, 3718,

3720, 3724, 3726, 3730, 3732, 3736, 3738, 3742, 3744, 3750, 3756, 3762, 3768, 3774, 3780, 3782,

3786, 3788, 3792, 3794, 3798, 3800, 3804, 3806, 3810, 3812, 3818, 3824, 3830, 3836, 3842, 3848,

3850, 3854, 3856, 3860, 3862, 3866, 3868, 3872, 3874, 3878, 3880, 3886, 3892, 3898, 3904, 3910,

3916, 3918, 3922, 3924, 3928, 3930, 3934, 3936, 3940, 3942, 3946, 3948, 3954, 3960, 3966, 3972,

3978, 3984, 3986, 3990, 3992, 3996, 3998, 4004, 4010, 4016, 4022, 4028, 4034, 4036, 4040, 4042,

4046, 4048, 4052, 4054, 4058, 4060, 4064, 4066, 4072, 4078, 4084, 4090, 4096, 4102, 4104, 4108,

4110, 4114, 4116, 4120, 4122, 4126, 4128, 4132, 4134, 4140, 4146, 4152, 4158, 4164, 4170, 4172,

4176, 4178, 4182, 4184, 4188, 4190, 4194, 4196, 4200, 4202, 4208, 4214, 4220, 4226, 4232, 4238,

4240, 4244, 4246, 4250, 4252, 4256, 4258, 4262, 4264, 4268, 4270, 4276, 4282, 4288, 4294, 4300,

4306, 4308, 4312, 4314, 4318, 4320, 4326, 4332, 4338, 4344, 4350, 4356, 4358, 4362, 4364, 4368,

4370, 4374, 4376, 4380, 4382, 4386, 4388, 4394, 4400, 4406, 4412, 4418, 4424, 4426, 4430, 4432,

4436, 4438, 4442, 4444, 4448, 4450, 4454, 4456, 4462, 4468, 4474, 4480, 4486, 4492, 4494, 4498,

4500, 4504, 4506, 4510, 4512, 4516, 4518, 4522, 4524, 4530, 4536, 4542, 4548, 4554, 4560, 4562,

4566, 4568, 4572, 4574, 4578, 4580, 4584, 4586, 4590, 4592, 4598, 4604, 4610, 4612, 4616, 4618,

4622, 4624, 4628, 4630, 4634, 4636, 4640, 4642, 4648, 4654, 4660, 4666, 4672, 4678, 4680, 4684,

4686, 4690, 4692, 4696, 4698, 4702, 4704, 4708, 4710, 4716, 4722, 4728, 4734, 4740, 4746, 4748,

4752, 4754, 4758, 4760, 4764, 4766, 4770, 4772, 4776, 4778, 4784, 4790, 4796, 4802, 4808, 4814,

4816, 4820, 4822, 4826, 4828, 4832, 4834, 4838, 4840, 4844, 4846, 4852, 4858, 4864, 4870, 4876,

4882, 4884, 4888, 4890, 4894, 4896, 4900, 4902, 4906, 4908, 4912, 4914, 4920, 4926, 4932, 4934,

4938, 4940, 4944, 4946, 4950, 4952, 4956, 4958, 4962, 4964, 4970, 4976, 4982, 4988, 4994, 5000}
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Color 3: {5, 11, 17, 23, 29, 35, 37, 41, 43, 47, 49, 55, 61, 67, 73, 79, 85, 87, 91, 93, 97, 99, 103,

105, 109, 111, 115, 117, 123, 129, 135, 141, 147, 153, 155, 159, 161, 165, 167, 171, 173, 177, 179,

183, 185, 191, 197, 203, 209, 215, 221, 223, 227, 229, 233, 235, 239, 241, 245, 247, 251, 253, 259,

265, 271, 277, 283, 289, 291, 295, 297, 301, 303, 307, 309, 313, 315, 319, 321, 327, 333, 339, 345,

351, 357, 359, 363, 365, 369, 371, 377, 383, 389, 395, 401, 407, 409, 413, 415, 419, 421, 425, 427,

431, 433, 437, 439, 445, 451, 457, 463, 469, 475, 477, 481, 483, 487, 489, 493, 495, 499, 501, 505,

507, 513, 519, 525, 531, 537, 543, 545, 549, 551, 555, 557, 561, 563, 567, 569, 573, 575, 581, 587,

593, 599, 605, 611, 613, 617, 619, 623, 625, 629, 631, 635, 637, 641, 643, 649, 655, 661, 663, 667,

669, 673, 675, 679, 681, 685, 687, 691, 693, 699, 705, 711, 717, 723, 729, 731, 735, 737, 741, 743,

747, 749, 753, 755, 759, 761, 767, 773, 779, 785, 791, 797, 799, 803, 805, 809, 811, 815, 817, 821,

823, 827, 829, 835, 841, 847, 853, 859, 865, 867, 871, 873, 877, 879, 883, 885, 889, 891, 895, 897,

903, 909, 915, 921, 927, 933, 935, 939, 941, 945, 947, 953, 959, 965, 971, 977, 983, 985, 989, 991,

995, 997, 1001, 1003, 1007, 1009, 1013, 1015, 1021, 1027, 1033, 1039, 1045, 1051, 1053, 1057, 1059,

1063, 1065, 1069, 1071, 1075, 1077, 1081, 1083, 1089, 1095, 1101, 1107, 1113, 1119, 1121, 1125,

1127, 1131, 1133, 1137, 1139, 1143, 1145, 1149, 1151, 1157, 1163, 1169, 1175, 1181, 1187, 1189,

1193, 1195, 1199, 1201, 1205, 1207, 1211, 1213, 1217, 1219, 1225, 1231, 1237, 1243, 1249, 1255,

1257, 1261, 1263, 1267, 1269, 1275, 1281, 1287, 1293, 1299, 1305, 1307, 1311, 1313, 1317, 1319,

1323, 1325, 1329, 1331, 1335, 1337, 1343, 1349, 1355, 1361, 1367, 1373, 1375, 1379, 1381, 1385,

1387, 1391, 1393, 1397, 1399, 1403, 1405, 1411, 1417, 1423, 1429, 1435, 1441, 1443, 1447, 1449,

1453, 1455, 1459, 1461, 1465, 1467, 1471, 1473, 1479, 1485, 1491, 1497, 1503, 1509, 1511, 1515,

1517, 1521, 1523, 1527, 1529, 1533, 1535, 1539, 1541, 1547, 1553, 1559, 1561, 1565, 1567, 1571,

1573, 1577, 1579, 1583, 1585, 1589, 1591, 1597, 1603, 1609, 1615, 1621, 1627, 1629, 1633, 1635,

1639, 1641, 1645, 1647, 1651, 1653, 1657, 1659, 1665, 1671, 1677, 1683, 1689, 1695, 1697, 1701,

1703, 1707, 1709, 1713, 1715, 1719, 1721, 1725, 1727, 1733, 1739, 1745, 1751, 1757, 1763, 1765,

1769, 1771, 1775, 1777, 1781, 1783, 1787, 1789, 1793, 1795, 1801, 1807, 1813, 1819, 1825, 1831,

1833, 1837, 1839, 1843, 1845, 1849, 1851, 1855, 1857, 1861, 1863, 1869, 1875, 1881, 1883, 1887,

1889, 1893, 1895, 1899, 1901, 1905, 1907, 1911, 1913, 1919, 1925, 1931, 1937, 1943, 1949, 1951,

1955, 1957, 1961, 1963, 1967, 1969, 1973, 1975, 1979, 1981, 1987, 1993, 1999, 2005, 2011, 2017,

2019, 2023, 2025, 2029, 2031, 2035, 2037, 2041, 2043, 2047, 2049, 2055, 2061, 2067, 2073, 2079,

158



2085, 2087, 2091, 2093, 2097, 2099, 2103, 2105, 2109, 2111, 2115, 2117, 2123, 2129, 2135, 2141,

2147, 2153, 2155, 2159, 2161, 2165, 2167, 2173, 2179, 2185, 2191, 2197, 2203, 2205, 2209, 2211,

2215, 2217, 2221, 2223, 2227, 2229, 2233, 2235, 2241, 2247, 2253, 2259, 2265, 2271, 2273, 2277,

2279, 2283, 2285, 2289, 2291, 2295, 2297, 2301, 2303, 2309, 2315, 2321, 2327, 2333, 2339, 2341,

2345, 2347, 2351, 2353, 2357, 2359, 2363, 2365, 2369, 2371, 2377, 2383, 2389, 2395, 2401, 2407,

2409, 2413, 2415, 2419, 2421, 2425, 2427, 2431, 2433, 2437, 2439, 2445, 2451, 2457, 2463, 2469,

2475, 2477, 2481, 2483, 2487, 2489, 2495, 2501, 2507, 2513, 2519, 2525, 2527, 2531, 2533, 2537,

2539, 2543, 2545, 2549, 2551, 2555, 2557, 2563, 2569, 2575, 2581, 2587, 2593, 2595, 2599, 2601,

2605, 2607, 2611, 2613, 2617, 2619, 2623, 2625, 2631, 2637, 2643, 2649, 2655, 2661, 2663, 2667,

2669, 2673, 2675, 2679, 2681, 2685, 2687, 2691, 2693, 2699, 2705, 2711, 2717, 2723, 2729, 2731,

2735, 2737, 2741, 2743, 2747, 2749, 2753, 2755, 2759, 2761, 2767, 2773, 2779, 2781, 2785, 2787,

2791, 2793, 2797, 2799, 2803, 2805, 2809, 2811, 2817, 2823, 2829, 2835, 2841, 2847, 2849, 2853,

2855, 2859, 2861, 2865, 2867, 2871, 2873, 2877, 2879, 2885, 2891, 2897, 2903, 2909, 2915, 2917,

2921, 2923, 2927, 2929, 2933, 2935, 2939, 2941, 2945, 2947, 2953, 2959, 2965, 2971, 2977, 2983,

2985, 2989, 2991, 2995, 2997, 3001, 3003, 3007, 3009, 3013, 3015, 3021, 3027, 3033, 3039, 3045,

3051, 3053, 3057, 3059, 3063, 3065, 3069, 3071, 3075, 3077, 3081, 3083, 3089, 3095, 3101, 3103,

3107, 3109, 3113, 3115, 3119, 3121, 3125, 3127, 3131, 3133, 3139, 3145, 3151, 3157, 3163, 3169,

3171, 3175, 3177, 3181, 3183, 3187, 3189, 3193, 3195, 3199, 3201, 3207, 3213, 3219, 3225, 3231,

3237, 3239, 3243, 3245, 3249, 3251, 3255, 3257, 3261, 3263, 3267, 3269, 3275, 3281, 3287, 3293,

3299, 3305, 3307, 3311, 3313, 3317, 3319, 3323, 3325, 3329, 3331, 3335, 3337, 3343, 3349, 3355,

3361, 3367, 3373, 3375, 3379, 3381, 3385, 3387, 3393, 3399, 3405, 3411, 3417, 3423, 3425, 3429,

3431, 3435, 3437, 3441, 3443, 3447, 3449, 3453, 3455, 3461, 3467, 3473, 3479, 3485, 3491, 3493,

3497, 3499, 3503, 3505, 3509, 3511, 3515, 3517, 3521, 3523, 3529, 3535, 3541, 3547, 3553, 3559,

3561, 3565, 3567, 3571, 3573, 3577, 3579, 3583, 3585, 3589, 3591, 3597, 3603, 3609, 3615, 3621,

3627, 3629, 3633, 3635, 3639, 3641, 3645, 3647, 3651, 3653, 3657, 3659, 3665, 3671, 3677, 3683,

3689, 3695, 3697, 3701, 3703, 3707, 3709, 3715, 3721, 3727, 3733, 3739, 3745, 3747, 3751, 3753,

3757, 3759, 3763, 3765, 3769, 3771, 3775, 3777, 3783, 3789, 3795, 3801, 3807, 3813, 3815, 3819,

3821, 3825, 3827, 3831, 3833, 3837, 3839, 3843, 3845, 3851, 3857, 3863, 3869, 3875, 3881, 3883,

3887, 3889, 3893, 3895, 3899, 3901, 3905, 3907, 3911, 3913, 3919, 3925, 3931, 3937, 3943, 3949,
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3951, 3955, 3957, 3961, 3963, 3967, 3969, 3973, 3975, 3979, 3981, 3987, 3993, 3999, 4001, 4005,

4007, 4011, 4013, 4017, 4019, 4023, 4025, 4029, 4031, 4037, 4043, 4049, 4055, 4061, 4067, 4069,

4073, 4075, 4079, 4081, 4085, 4087, 4091, 4093, 4097, 4099, 4105, 4111, 4117, 4123, 4129, 4135,

4137, 4141, 4143, 4147, 4149, 4153, 4155, 4159, 4161, 4165, 4167, 4173, 4179, 4185, 4191, 4197,

4203, 4205, 4209, 4211, 4215, 4217, 4221, 4223, 4227, 4229, 4233, 4235, 4241, 4247, 4253, 4259,

4265, 4271, 4273, 4277, 4279, 4283, 4285, 4289, 4291, 4295, 4297, 4301, 4303, 4309, 4315, 4321,

4323, 4327, 4329, 4333, 4335, 4339, 4341, 4345, 4347, 4351, 4353, 4359, 4365, 4371, 4377, 4383,

4389, 4391, 4395, 4397, 4401, 4403, 4407, 4409, 4413, 4415, 4419, 4421, 4427, 4433, 4439, 4445,

4451, 4457, 4459, 4463, 4465, 4469, 4471, 4475, 4477, 4481, 4483, 4487, 4489, 4495, 4501, 4507,

4513, 4519, 4525, 4527, 4531, 4533, 4537, 4539, 4543, 4545, 4549, 4551, 4555, 4557, 4563, 4569,

4575, 4581, 4587, 4593, 4595, 4599, 4601, 4605, 4607, 4613, 4619, 4625, 4631, 4637, 4643, 4645,

4649, 4651, 4655, 4657, 4661, 4663, 4667, 4669, 4673, 4675, 4681, 4687, 4693, 4699, 4705, 4711,

4713, 4717, 4719, 4723, 4725, 4729, 4731, 4735, 4737, 4741, 4743, 4749, 4755, 4761, 4767, 4773,

4779, 4781, 4785, 4787, 4791, 4793, 4797, 4799, 4803, 4805, 4809, 4811, 4817, 4823, 4829, 4835,

4841, 4847, 4849, 4853, 4855, 4859, 4861, 4865, 4867, 4871, 4873, 4877, 4879, 4885, 4891, 4897,

4903, 4909, 4915, 4917, 4921, 4923, 4927, 4929, 4935, 4941, 4947, 4953, 4959, 4965, 4967, 4971,

4973, 4977, 4979, 4983, 4985, 4989, 4991, 4995, 4997}

Color 3: 5, 11, 17, 23, 29, 35, 37, 41, 43, 47, 49, 55, 61, 67, 73, 79, 85, 87, 91, 93, 97, 99, 103,

105, 109, 111, 115, 117, 123, 129, 135, 141, 147, 153, 155, 159, 161, 165, 167, 171, 173, 177, 179,

183, 185, 191, 197, 203, 209, 215, 221, 223, 227, 229, 233, 235, 239, 241, 245, 247, 251, 253, 259,

265, 271, 277, 283, 289, 291, 295, 297, 301, 303, 307, 309, 313, 315, 319, 321, 327, 333, 339, 345,

351, 357, 359, 363, 365, 369, 371, 377, 383, 389, 395, 401, 407, 409, 413, 415, 419, 421, 425, 427,

431, 433, 437, 439, 445, 451, 457, 463, 469, 475, 477, 481, 483, 487, 489, 493, 495, 499, 501, 505,

507, 513, 519, 525, 531, 537, 543, 545, 549, 551, 555, 557, 561, 563, 567, 569, 573, 575, 581, 587,

593, 599, 605, 611, 613, 617, 619, 623, 625, 629, 631, 635, 637, 641, 643, 649, 655, 661, 663, 667,

669, 673, 675, 679, 681, 685, 687, 691, 693, 699, 705, 711, 717, 723, 729, 731, 735, 737, 741, 743,

747, 749, 753, 755, 759, 761, 767, 773, 779, 785, 791, 797, 799, 803, 805, 809, 811, 815, 817, 821,

823, 827, 829, 835, 841, 847, 853, 859, 865, 867, 871, 873, 877, 879, 883, 885, 889, 891, 895, 897,

903, 909, 915, 921, 927, 933, 935, 939, 941, 945, 947, 953, 959, 965, 971, 977, 983, 985, 989, 991,
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995, 997, 1001, 1003, 1007, 1009, 1013, 1015, 1021, 1027, 1033, 1039, 1045, 1051, 1053, 1057, 1059,

1063, 1065, 1069, 1071, 1075, 1077, 1081, 1083, 1089, 1095, 1101, 1107, 1113, 1119, 1121, 1125,

1127, 1131, 1133, 1137, 1139, 1143, 1145, 1149, 1151, 1157, 1163, 1169, 1175, 1181, 1187, 1189,

1193, 1195, 1199, 1201, 1205, 1207, 1211, 1213, 1217, 1219, 1225, 1231, 1237, 1243, 1249, 1255,

1257, 1261, 1263, 1267, 1269, 1275, 1281, 1287, 1293, 1299, 1305, 1307, 1311, 1313, 1317, 1319,

1323, 1325, 1329, 1331, 1335, 1337, 1343, 1349, 1355, 1361, 1367, 1373, 1375, 1379, 1381, 1385,

1387, 1391, 1393, 1397, 1399, 1403, 1405, 1411, 1417, 1423, 1429, 1435, 1441, 1443, 1447, 1449,

1453, 1455, 1459, 1461, 1465, 1467, 1471, 1473, 1479, 1485, 1491, 1497, 1503, 1509, 1511, 1515,

1517, 1521, 1523, 1527, 1529, 1533, 1535, 1539, 1541, 1547, 1553, 1559, 1561, 1565, 1567, 1571,

1573, 1577, 1579, 1583, 1585, 1589, 1591, 1597, 1603, 1609, 1615, 1621, 1627, 1629, 1633, 1635,

1639, 1641, 1645, 1647, 1651, 1653, 1657, 1659, 1665, 1671, 1677, 1683, 1689, 1695, 1697, 1701,

1703, 1707, 1709, 1713, 1715, 1719, 1721, 1725, 1727, 1733, 1739, 1745, 1751, 1757, 1763, 1765,

1769, 1771, 1775, 1777, 1781, 1783, 1787, 1789, 1793, 1795, 1801, 1807, 1813, 1819, 1825, 1831,

1833, 1837, 1839, 1843, 1845, 1849, 1851, 1855, 1857, 1861, 1863, 1869, 1875, 1881, 1883, 1887,

1889, 1893, 1895, 1899, 1901, 1905, 1907, 1911, 1913, 1919, 1925, 1931, 1937, 1943, 1949, 1951,

1955, 1957, 1961, 1963, 1967, 1969, 1973, 1975, 1979, 1981, 1987, 1993, 1999, 2005, 2011, 2017,

2019, 2023, 2025, 2029, 2031, 2035, 2037, 2041, 2043, 2047, 2049, 2055, 2061, 2067, 2073, 2079,

2085, 2087, 2091, 2093, 2097, 2099, 2103, 2105, 2109, 2111, 2115, 2117, 2123, 2129, 2135, 2141,

2147, 2153, 2155, 2159, 2161, 2165, 2167, 2173, 2179, 2185, 2191, 2197, 2203, 2205, 2209, 2211,

2215, 2217, 2221, 2223, 2227, 2229, 2233, 2235, 2241, 2247, 2253, 2259, 2265, 2271, 2273, 2277,

2279, 2283, 2285, 2289, 2291, 2295, 2297, 2301, 2303, 2309, 2315, 2321, 2327, 2333, 2339, 2341,

2345, 2347, 2351, 2353, 2357, 2359, 2363, 2365, 2369, 2371, 2377, 2383, 2389, 2395, 2401, 2407,

2409, 2413, 2415, 2419, 2421, 2425, 2427, 2431, 2433, 2437, 2439, 2445, 2451, 2457, 2463, 2469,

2475, 2477, 2481, 2483, 2487, 2489, 2495, 2501, 2507, 2513, 2519, 2525, 2527, 2531, 2533, 2537,

2539, 2543, 2545, 2549, 2551, 2555, 2557, 2563, 2569, 2575, 2581, 2587, 2593, 2595, 2599, 2601,

2605, 2607, 2611, 2613, 2617, 2619, 2623, 2625, 2631, 2637, 2643, 2649, 2655, 2661, 2663, 2667,

2669, 2673, 2675, 2679, 2681, 2685, 2687, 2691, 2693, 2699, 2705, 2711, 2717, 2723, 2729, 2731,

2735, 2737, 2741, 2743, 2747, 2749, 2753, 2755, 2759, 2761, 2767, 2773, 2779, 2781, 2785, 2787,

2791, 2793, 2797, 2799, 2803, 2805, 2809, 2811, 2817, 2823, 2829, 2835, 2841, 2847, 2849, 2853,
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2855, 2859, 2861, 2865, 2867, 2871, 2873, 2877, 2879, 2885, 2891, 2897, 2903, 2909, 2915, 2917,

2921, 2923, 2927, 2929, 2933, 2935, 2939, 2941, 2945, 2947, 2953, 2959, 2965, 2971, 2977, 2983,

2985, 2989, 2991, 2995, 2997, 3001, 3003, 3007, 3009, 3013, 3015, 3021, 3027, 3033, 3039, 3045,

3051, 3053, 3057, 3059, 3063, 3065, 3069, 3071, 3075, 3077, 3081, 3083, 3089, 3095, 3101, 3103,

3107, 3109, 3113, 3115, 3119, 3121, 3125, 3127, 3131, 3133, 3139, 3145, 3151, 3157, 3163, 3169,

3171, 3175, 3177, 3181, 3183, 3187, 3189, 3193, 3195, 3199, 3201, 3207, 3213, 3219, 3225, 3231,

3237, 3239, 3243, 3245, 3249, 3251, 3255, 3257, 3261, 3263, 3267, 3269, 3275, 3281, 3287, 3293,

3299, 3305, 3307, 3311, 3313, 3317, 3319, 3323, 3325, 3329, 3331, 3335, 3337, 3343, 3349, 3355,

3361, 3367, 3373, 3375, 3379, 3381, 3385, 3387, 3393, 3399, 3405, 3411, 3417, 3423, 3425, 3429,

3431, 3435, 3437, 3441, 3443, 3447, 3449, 3453, 3455, 3461, 3467, 3473, 3479, 3485, 3491, 3493,

3497, 3499, 3503, 3505, 3509, 3511, 3515, 3517, 3521, 3523, 3529, 3535, 3541, 3547, 3553, 3559,

3561, 3565, 3567, 3571, 3573, 3577, 3579, 3583, 3585, 3589, 3591, 3597, 3603, 3609, 3615, 3621,

3627, 3629, 3633, 3635, 3639, 3641, 3645, 3647, 3651, 3653, 3657, 3659, 3665, 3671, 3677, 3683,

3689, 3695, 3697, 3701, 3703, 3707, 3709, 3715, 3721, 3727, 3733, 3739, 3745, 3747, 3751, 3753,

3757, 3759, 3763, 3765, 3769, 3771, 3775, 3777, 3783, 3789, 3795, 3801, 3807, 3813, 3815, 3819,

3821, 3825, 3827, 3831, 3833, 3837, 3839, 3843, 3845, 3851, 3857, 3863, 3869, 3875, 3881, 3883,

3887, 3889, 3893, 3895, 3899, 3901, 3905, 3907, 3911, 3913, 3919, 3925, 3931, 3937, 3943, 3949,

3951, 3955, 3957, 3961, 3963, 3967, 3969, 3973, 3975, 3979, 3981, 3987, 3993, 3999, 4001, 4005,

4007, 4011, 4013, 4017, 4019, 4023, 4025, 4029, 4031, 4037, 4043, 4049, 4055, 4061, 4067, 4069,

4073, 4075, 4079, 4081, 4085, 4087, 4091, 4093, 4097, 4099, 4105, 4111, 4117, 4123, 4129, 4135,

4137, 4141, 4143, 4147, 4149, 4153, 4155, 4159, 4161, 4165, 4167, 4173, 4179, 4185, 4191, 4197,

4203, 4205, 4209, 4211, 4215, 4217, 4221, 4223, 4227, 4229, 4233, 4235, 4241, 4247, 4253, 4259,

4265, 4271, 4273, 4277, 4279, 4283, 4285, 4289, 4291, 4295, 4297, 4301, 4303, 4309, 4315, 4321,

4323, 4327, 4329, 4333, 4335, 4339, 4341, 4345, 4347, 4351, 4353, 4359, 4365, 4371, 4377, 4383,

4389, 4391, 4395, 4397, 4401, 4403, 4407, 4409, 4413, 4415, 4419, 4421, 4427, 4433, 4439, 4445,

4451, 4457, 4459, 4463, 4465, 4469, 4471, 4475, 4477, 4481, 4483, 4487, 4489, 4495, 4501, 4507,

4513, 4519, 4525, 4527, 4531, 4533, 4537, 4539, 4543, 4545, 4549, 4551, 4555, 4557, 4563, 4569,

4575, 4581, 4587, 4593, 4595, 4599, 4601, 4605, 4607, 4613, 4619, 4625, 4631, 4637, 4643, 4645,

4649, 4651, 4655, 4657, 4661, 4663, 4667, 4669, 4673, 4675, 4681, 4687, 4693, 4699, 4705, 4711,
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4713, 4717, 4719, 4723, 4725, 4729, 4731, 4735, 4737, 4741, 4743, 4749, 4755, 4761, 4767, 4773,

4779, 4781, 4785, 4787, 4791, 4793, 4797, 4799, 4803, 4805, 4809, 4811, 4817, 4823, 4829, 4835,

4841, 4847, 4849, 4853, 4855, 4859, 4861, 4865, 4867, 4871, 4873, 4877, 4879, 4885, 4891, 4897,

4903, 4909, 4915, 4917, 4921, 4923, 4927, 4929, 4935, 4941, 4947, 4953, 4959, 4965, 4967, 4971,

4973, 4977, 4979, 4983, 4985, 4989, 4991, 4995, 4997}

Color 4: {6, 12, 18, 24, 30, 36, 38, 42, 44, 48, 50, 56, 62, 68, 74, 80, 86, 88, 92, 94, 98, 100,

104, 106, 110, 112, 116, 118, 124, 130, 136, 142, 148, 154, 156, 160, 162, 166, 168, 172, 174, 178,

180, 184, 186, 192, 198, 204, 210, 216, 222, 224, 228, 230, 234, 236, 240, 242, 246, 248, 252, 254,

260, 266, 272, 278, 284, 290, 292, 296, 298, 302, 304, 308, 310, 314, 316, 320, 322, 328, 334, 340,

346, 352, 358, 360, 364, 366, 370, 372, 378, 384, 390, 396, 402, 408, 410, 414, 416, 420, 422, 426,

428, 432, 434, 438, 440, 446, 452, 458, 464, 470, 476, 478, 482, 484, 488, 490, 494, 496, 500, 502,

506, 508, 514, 520, 526, 532, 538, 544, 546, 550, 552, 556, 558, 562, 564, 568, 570, 574, 576, 582,

588, 594, 600, 606, 612, 614, 618, 620, 624, 626, 630, 632, 636, 638, 642, 644, 650, 656, 662, 664,

668, 670, 674, 676, 680, 682, 686, 688, 692, 694, 700, 706, 712, 718, 724, 730, 732, 736, 738, 742,

744, 748, 750, 754, 756, 760, 762, 768, 774, 780, 786, 792, 798, 800, 804, 806, 810, 812, 816, 818,

822, 824, 828, 830, 836, 842, 848, 854, 860, 866, 868, 872, 874, 878, 880, 884, 886, 890, 892, 896,

898, 904, 910, 916, 922, 928, 934, 936, 940, 942, 946, 948, 954, 960, 966, 972, 978, 984, 986, 990,

992, 996, 998, 1002, 1004, 1008, 1010, 1014, 1016, 1022, 1028, 1034, 1040, 1046, 1052, 1054, 1058,

1060, 1064, 1066, 1070, 1072, 1076, 1078, 1082, 1084, 1090, 1096, 1102, 1108, 1114, 1120, 1122,

1126, 1128, 1132, 1134, 1138, 1140, 1144, 1146, 1150, 1152, 1158, 1164, 1170, 1176, 1182, 1188,

1190, 1194, 1196, 1200, 1202, 1206, 1208, 1212, 1214, 1218, 1220, 1226, 1232, 1238, 1244, 1250,

1256, 1258, 1262, 1264, 1268, 1270, 1276, 1282, 1288, 1294, 1300, 1306, 1308, 1312, 1314, 1318,

1320, 1324, 1326, 1330, 1332, 1336, 1338, 1344, 1350, 1356, 1362, 1368, 1374, 1376, 1380, 1382,

1386, 1388, 1392, 1394, 1398, 1400, 1404, 1406, 1412, 1418, 1424, 1430, 1436, 1442, 1444, 1448,

1450, 1454, 1456, 1460, 1462, 1466, 1468, 1472, 1474, 1480, 1486, 1492, 1498, 1504, 1510, 1512,

1516, 1518, 1522, 1524, 1528, 1530, 1534, 1536, 1540, 1542, 1548, 1554, 1560, 1562, 1566, 1568,

1572, 1574, 1578, 1580, 1584, 1586, 1590, 1592, 1598, 1604, 1610, 1616, 1622, 1628, 1630, 1634,

1636, 1640, 1642, 1646, 1648, 1652, 1654, 1658, 1660, 1666, 1672, 1678, 1684, 1690, 1696, 1698,

1702, 1704, 1708, 1710, 1714, 1716, 1720, 1722, 1726, 1728, 1734, 1740, 1746, 1752, 1758, 1764,
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1766, 1770, 1772, 1776, 1778, 1782, 1784, 1788, 1790, 1794, 1796, 1802, 1808, 1814, 1820, 1826,

1832, 1834, 1838, 1840, 1844, 1846, 1850, 1852, 1856, 1858, 1862, 1864, 1870, 1876, 1882, 1884,

1888, 1890, 1894, 1896, 1900, 1902, 1906, 1908, 1912, 1914, 1920, 1926, 1932, 1938, 1944, 1950,

1952, 1956, 1958, 1962, 1964, 1968, 1970, 1974, 1976, 1980, 1982, 1988, 1994, 2000, 2006, 2012,

2018, 2020, 2024, 2026, 2030, 2032, 2036, 2038, 2042, 2044, 2048, 2050, 2056, 2062, 2068, 2074,

2080, 2086, 2088, 2092, 2094, 2098, 2100, 2104, 2106, 2110, 2112, 2116, 2118, 2124, 2130, 2136,

2142, 2148, 2154, 2156, 2160, 2162, 2166, 2168, 2174, 2180, 2186, 2192, 2198, 2204, 2206, 2210,

2212, 2216, 2218, 2222, 2224, 2228, 2230, 2234, 2236, 2242, 2248, 2254, 2260, 2266, 2272, 2274,

2278, 2280, 2284, 2286, 2290, 2292, 2296, 2298, 2302, 2304, 2310, 2316, 2322, 2328, 2334, 2340,

2342, 2346, 2348, 2352, 2354, 2358, 2360, 2364, 2366, 2370, 2372, 2378, 2384, 2390, 2396, 2402,

2408, 2410, 2414, 2416, 2420, 2422, 2426, 2428, 2432, 2434, 2438, 2440, 2446, 2452, 2458, 2464,

2470, 2476, 2478, 2482, 2484, 2488, 2490, 2496, 2502, 2508, 2514, 2520, 2526, 2528, 2532, 2534,

2538, 2540, 2544, 2546, 2550, 2552, 2556, 2558, 2564, 2570, 2576, 2582, 2588, 2594, 2596, 2600,

2602, 2606, 2608, 2612, 2614, 2618, 2620, 2624, 2626, 2632, 2638, 2644, 2650, 2656, 2662, 2664,

2668, 2670, 2674, 2676, 2680, 2682, 2686, 2688, 2692, 2694, 2700, 2706, 2712, 2718, 2724, 2730,

2732, 2736, 2738, 2742, 2744, 2748, 2750, 2754, 2756, 2760, 2762, 2768, 2774, 2780, 2782, 2786,

2788, 2792, 2794, 2798, 2800, 2804, 2806, 2810, 2812, 2818, 2824, 2830, 2836, 2842, 2848, 2850,

2854, 2856, 2860, 2862, 2866, 2868, 2872, 2874, 2878, 2880, 2886, 2892, 2898, 2904, 2910, 2916,

2918, 2922, 2924, 2928, 2930, 2934, 2936, 2940, 2942, 2946, 2948, 2954, 2960, 2966, 2972, 2978,

2984, 2986, 2990, 2992, 2996, 2998, 3002, 3004, 3008, 3010, 3014, 3016, 3022, 3028, 3034, 3040,

3046, 3052, 3054, 3058, 3060, 3064, 3066, 3070, 3072, 3076, 3078, 3082, 3084, 3090, 3096, 3102,

3104, 3108, 3110, 3114, 3116, 3120, 3122, 3126, 3128, 3132, 3134, 3140, 3146, 3152, 3158, 3164,

3170, 3172, 3176, 3178, 3182, 3184, 3188, 3190, 3194, 3196, 3200, 3202, 3208, 3214, 3220, 3226,

3232, 3238, 3240, 3244, 3246, 3250, 3252, 3256, 3258, 3262, 3264, 3268, 3270, 3276, 3282, 3288,

3294, 3300, 3306, 3308, 3312, 3314, 3318, 3320, 3324, 3326, 3330, 3332, 3336, 3338, 3344, 3350,

3356, 3362, 3368, 3374, 3376, 3380, 3382, 3386, 3388, 3394, 3400, 3406, 3412, 3418, 3424, 3426,

3430, 3432, 3436, 3438, 3442, 3444, 3448, 3450, 3454, 3456, 3462, 3468, 3474, 3480, 3486, 3492,

3494, 3498, 3500, 3504, 3506, 3510, 3512, 3516, 3518, 3522, 3524, 3530, 3536, 3542, 3548, 3554,

3560, 3562, 3566, 3568, 3572, 3574, 3578, 3580, 3584, 3586, 3590, 3592, 3598, 3604, 3610, 3616,
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3622, 3628, 3630, 3634, 3636, 3640, 3642, 3646, 3648, 3652, 3654, 3658, 3660, 3666, 3672, 3678,

3684, 3690, 3696, 3698, 3702, 3704, 3708, 3710, 3716, 3722, 3728, 3734, 3740, 3746, 3748, 3752,

3754, 3758, 3760, 3764, 3766, 3770, 3772, 3776, 3778, 3784, 3790, 3796, 3802, 3808, 3814, 3816,

3820, 3822, 3826, 3828, 3832, 3834, 3838, 3840, 3844, 3846, 3852, 3858, 3864, 3870, 3876, 3882,

3884, 3888, 3890, 3894, 3896, 3900, 3902, 3906, 3908, 3912, 3914, 3920, 3926, 3932, 3938, 3944,

3950, 3952, 3956, 3958, 3962, 3964, 3968, 3970, 3974, 3976, 3980, 3982, 3988, 3994, 4000, 4002,

4006, 4008, 4012, 4014, 4018, 4020, 4024, 4026, 4030, 4032, 4038, 4044, 4050, 4056, 4062, 4068,

4070, 4074, 4076, 4080, 4082, 4086, 4088, 4092, 4094, 4098, 4100, 4106, 4112, 4118, 4124, 4130,

4136, 4138, 4142, 4144, 4148, 4150, 4154, 4156, 4160, 4162, 4166, 4168, 4174, 4180, 4186, 4192,

4198, 4204, 4206, 4210, 4212, 4216, 4218, 4222, 4224, 4228, 4230, 4234, 4236, 4242, 4248, 4254,

4260, 4266, 4272, 4274, 4278, 4280, 4284, 4286, 4290, 4292, 4296, 4298, 4302, 4304, 4310, 4316,

4322, 4324, 4328, 4330, 4334, 4336, 4340, 4342, 4346, 4348, 4352, 4354, 4360, 4366, 4372, 4378,

4384, 4390, 4392, 4396, 4398, 4402, 4404, 4408, 4410, 4414, 4416, 4420, 4422, 4428, 4434, 4440,

4446, 4452, 4458, 4460, 4464, 4466, 4470, 4472, 4476, 4478, 4482, 4484, 4488, 4490, 4496, 4502,

4508, 4514, 4520, 4526, 4528, 4532, 4534, 4538, 4540, 4544, 4546, 4550, 4552, 4556, 4558, 4564,

4570, 4576, 4582, 4588, 4594, 4596, 4600, 4602, 4606, 4608, 4614, 4620, 4626, 4632, 4638, 4644,

4646, 4650, 4652, 4656, 4658, 4662, 4664, 4668, 4670, 4674, 4676, 4682, 4688, 4694, 4700, 4706,

4712, 4714, 4718, 4720, 4724, 4726, 4730, 4732, 4736, 4738, 4742, 4744, 4750, 4756, 4762, 4768,

4774, 4780, 4782, 4786, 4788, 4792, 4794, 4798, 4800, 4804, 4806, 4810, 4812, 4818, 4824, 4830,

4836, 4842, 4848, 4850, 4854, 4856, 4860, 4862, 4866, 4868, 4872, 4874, 4878, 4880, 4886, 4892,

4898, 4904, 4910, 4916, 4918, 4922, 4924, 4928, 4930, 4936, 4942, 4948, 4954, 4960, 4966, 4968,

4972, 4974, 4978, 4980, 4984, 4986, 4990, 4992, 4996, 4998}
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[46] Z. Dvořák, S. Norin, and L. Postle, List coloring with requests, J. Graph Theory, 92 (2019), pp. 191–206.
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Gröbner bases, in 32nd Computational Complexity Conference, vol. 79 of LIPIcs. Leibniz Int. Proc. Inform.,

Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern, 2017, pp. Art. No. 2, 20.
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