
Stochastic Optimization for Machine Learning: Investigations on Bilevel Optimization and Large
Learning Rates

By

XUXING CHEN
DISSERTATION

Submitted in partial satisfaction of the requirements for the degree of

DOCTOR OF PHILOSOPHY

in

Applied Mathematics

in the

OFFICE OF GRADUATE STUDIES

of the

UNIVERSITY OF CALIFORNIA

DAVIS

Approved:

Krishnakumar Balasubramanian, Chair

Jesús De Loera

Mina Karzand

Shiqian Ma

Committee in Charge

2024

i

© Xuxing Chen, 2024. All rights reserved.

To my family

ii

Contents

Abstract v

Acknowledgments vi

Chapter 1. Introduction 1

1.1. Preliminaries 1

1.2. Outline of the Dissertation 7

Chapter 2. Stochastic Bilevel Optimization 9

2.1. Introduction 9

2.2. Proposed Framework: the MA-SOBA Algorithm 14

2.3. Theoretical Analysis 16

2.4. Min-Max Bilevel Optimization 19

2.5. Experiments 22

2.6. Conclusion 32

Chapter 3. Decentralized Stochastic Bilevel Optimization 33

3.1. Introduction 33

3.2. Preliminaries 37

3.3. DSBO Algorithm with Improved Per-Iteration Complexity 39

3.4. Numerical experiments 46

3.5. Conclusion 48

Chapter 4. Training Dynamics of Gradient Descent for Quadratic Regression 49

4.1. Introduction 49

4.2. Analyzing a discrete dynamical system with cubic map 54

4.3. Applications to quadratic regression models 60

4.4. Experimental investigations 64

iii

4.5. Conclusion 66

Appendix A. Additional Experiments, Proofs, and Discussions 69

A.1. Proofs of Theorems in Chapter 2 69

A.2. Discussions on the Prior Works Related to Chapter 2 97

A.3. Additional Experiments on Heterogeneous Data of Chapter 3 99

A.4. Proofs of Theorems in Chapter 3 100

A.5. Discussions on the Prior Works Related to Chapter 3 127

A.6. Experimental Investigations of Chapter 4 129

A.7. Proofs of Theorems in Chapter 4 135

A.8. Auxiliary Results in Chapter 4 152

Bibliography 154

iv

Abstract

Stochastic optimization is fundamental to modern machine learning and deep learning problems.

It provides various algorithmic frameworks, such as stochastic gradient descent (SGD), adaptive

gradient algorithm (ADAGRAD) and adaptive moment estimation (ADAM), to efficiently minimize

loss functions constructed from large-scale datasets. In this dissertation, we explore the theoretical

properties and empirical performance of bilevel optimization algorithms and the phenomenon of

large learning rates in machine learning. First, we introduce a novel algorithm, the Moving-Average

Stochastic Bilevel Algorithm (MA-SOBA), designed for solving stochastic bilevel optimization under

standard smoothness assumptions. Next, we extend the scope of bilevel optimization algorithms from

single-agent training to a multi-agent context, i.e., distributed training, by proposing the Moving-

Average Decentralized Stochastic Bilevel Optimization (MA-DSBO) algorithm. This approach

improves the per-iteration complexity of previous methods, reducing the quadratic dependency on

dimensionality to linear dependency. Lastly, inspired by the Edge of Stability (EoS) phenomenon

observed in modern deep learning, we examine the training dynamics of gradient descent in a class

of quadratic regression models with large learning rates —- a scenario that classical optimization

theory struggles to explain.

v

Acknowledgments

First and foremost, I would like to express my deepest gratitude to my advisors, Prof. Krish-

nakumar Balasubramanian and Prof. Shiqian Ma. Their patience and professionalism provided me

with invaluable support and guidance, allowing me to freely pursue my interests during my Ph.D.

studies. Through their mentorship, I have gained significant insights into optimization and developed

essential soft skills for conducting scientific research. I am especially thankful that they recognized

the value of my mathematical background and accepted me as their student, even when I had no

prior publications.

I am also deeply grateful to Prof. Naoki Saito, Prof. Lifeng Lai, Prof. Xiaodong Li, Prof. Mina

Karzand, and Prof. Jesús De Loera for serving as the committee members of my Qualifying Exam

and Dissertation. Their professional suggestions and comments have greatly improved my work.

My life at Davis would have been incomplete without my amazing friends. I enjoy every chat

with Jiaxiang Li, whose knowledge extends far beyond mathematics into many other areas like

history and music. I am thankful to Minhui Huang for his encouragement and assistance while I was

writing my first manuscript. Working with Tesi Xiao is a great pleasure, and our fruitful discussions

always lead to high-quality work. I also cherish the time spent with my roommates, Qi Yu and

Cheng Li. I am extremely fortunate to have all of them at Davis, and I want to thank them for

enriching my Ph.D. life with their companionship.

I am also grateful to other collaborators, including Saeed Ghadimi, Kaiyi Ji, Promit Ghosal,

Bhavya Agrawalla, Yifan Hu, Abhishek Roy, Xiaoyu Wang, and many others. I have learned so

much from their expertise in various domains.

In addition to my academic experiences, I was also fortunate to have the opportunity to conduct

research in the industry. I am particularly thankful to my mentor, Yun He, and my manager, Xiaoyi

(Leo) Liu, during my internship at Meta. They provided me with great support to freely explore

how to bridge the gap between theory and practice. I also thank Prof. Rong Jin for our insightful

discussions on the theory and experiments of optimization algorithms in both academia and industry.

I am grateful to my Metamates, including Jiayi Xu, Fei Tian, Xiaohan Wei, Xue Feng, Boyang Liu,

Yang Yang, Chiyu Zhang, Tan Wang, and many others.

vi

Special thanks go to my old friends, Jiwei Li, Zihan Chen, Panke Jing, and many others.

Although we were in different time zones during my Ph.D. studies, they were always there willing to

offer emotional support whenever I was going through difficult times.

I also want to extend a heartfelt thank you to my favorite singer-songwriter Aimyon, whose

beautiful songs guided me through the darkest moments of my Ph.D. journey.

I would also like to acknowledge my high school Mathematical Olympiad coaches, Jia Zhang

and Rui Zhang. They gave me the confidence and courage to enjoy the art of problem solving.

Thanks to their rigorous training, I never doubted my ability to overcome the technical challenges of

math problems encountered in my Ph.D. life, not even for a second.

Finally, I want to thank my parents, Mr. Chen and Mrs. Xu, for their unconditional love and

support. Without them, I could never have achieved so much in my life.

vii

CHAPTER 1

Introduction

In this Section, we first briefly introduce the basic setup of stochastic optimization theory as

well as the background of bilevel optimization, decentralized optimization, and large learning rates

phenomenon in deep learning. In Section 1.1, we present the preliminaries of the main topics and

include commonly-used definitions and assumptions in optimization literature. In Section 1.2, we

provide an overview of the main contents in this dissertation.

Notation. We use ∥·∥ for ℓ2 norm of a vector and Frobenius norm of a matrix. 1n denotes the

all-one vector in Rn. ∆n = {λ | λi ≥ 0,
∑n

i=1 λi = 1} denotes the probability simplex. For a convex

compact set X , ΠX (·) denotes the Euclidean projection onto it. ⟨·, ·⟩ denotes the inner product.

1.1. Preliminaries

1.1.1. Preliminaries of Stochastic Optimization. Many machine learning problems can be

thought of as stochastic optimization problems as

min
θ∈X

f(θ) := Eξ [F (θ; ξ)] ,(1.1)

where X is a convex compact set, and ξ is a random variable that denotes the sampling process

to generate the objective function f . For example, ξ can refer to a mini-batch of data points, and

F (θ; ξ) represents the loss function evaluated based on ξ.

Remark. Suppose we are given a dataset D with N datapoints, i.e., D = {(Xi, yi)}Ni=1. A

typical choice of training objective is

f(θ) =
1

N

N∑
i=1

F (θ;Xi, yi)(1.2)

where F (θ;Xi, yi) represents the loss function evaluated on a single data point (Xi, yi). We note

that (1.2) can fit into the expectation formulation in (1.1). To see this, we denote by ξ the random

variable to generate Bξ, a batch of data with a fixed size B uniformly sampled from the dataset. We

1

further define

F (θ; ξ) =
1

B

∑
(X,y)∈Bξ

F (θ;X, y).(1.3)

We notice that

Eξ[F (θ; ξ)] =
∑

ξ:Bξ⊆D

1(
N
B

)F (θ; ξ)(1.4)

=
∑

ξ:Bξ⊆D

 ∑
(X,y)∈Bξ

1(
N
B

) · 1

B
F (θ;X, y)


=

∑
(X,y)∈D

 ∑
ξ:(X,y)∈Bξ

1(
N
B

) · 1

B
F (θ;X, y)


=

∑
(X,y)∈D

(
N−1
B−1

)(
N
B

) · 1

B
F (θ;X, y)

=
1

N

∑
(X,y)∈D

F (θ;X, y) = f(θ).

Here the third equality holds since we can exchange the summation order of a mini-batch and a

particular data point, and the fourth equality holds since for a fixed datapoint (X, y) ∈ D, we

have in total
(
N−1
B−1

)
batches with size B containing (X, y). This indicates that the average of the

loss functions evaluated on the whole dataset can be seen as the expectation of the loss functions

evaluated on a mini-batch of data points uniformly sampled from the whole dataset.

Unless specified, we will assume the functions of interest are continuously differentiable. We

define of the notion of Lipschitz continuity, smoothness, and convexity assumptions as follows.

Definition 1.1.1. Suppose we are given a differentiable function f : Rd → R. For any constants

ℓ0, ℓ1 > 0, we say f is ℓ0-Lipschitz continuous, when |f(θ1)− f(θ2)| ≤ ℓ0 ∥θ1 − θ2∥ for any θ1, θ2. f

is ℓ1-smooth, when ∥∇f(θ1)−∇f(θ2)∥ ≤ ℓ1 ∥θ1 − θ2∥ for any θ1, θ2. We say f is convex when there

exists a constant µ ≥ 0 such that f(θ2) ≥ f(θ1) + ⟨∇f(θ1), θ2 − θ1⟩+ µ
2 ∥θ1 − θ2∥2 for any θ1, θ2. In

particular, we say f is µ-strongly convex when µ > 0.

2

Remark. For any symmetric positive semi-definite matrix A, we can verify that f(θ) = 1
2⟨Aθ, θ⟩

is smooth and convex, since we have

∥∇f(θ1)−∇f(θ2)∥ = ∥Aθ1 −Aθ2∥ ≤ ∥A∥2 ∥θ1 − θ2∥ ,

and

f(θ2)− f(θ1)− ⟨∇f(θ1), θ2 − θ1⟩

=
1

2
(⟨Aθ2, θ2⟩ − ⟨Aθ1, θ1⟩ − 2⟨Aθ1, θ2 − θ1⟩)

=
1

2
⟨A(θ2 − θ1), (θ2 − θ1)⟩

≥λmin(A)

2
∥θ2 − θ1∥2 ,

where λmin(A) denotes the smallest eigenvalue of A. Hence we know f(θ) is ∥A∥2-smooth and

convex.

To develop stochastic optimization algorithms, we assume that we access to unbiased estimates

of derivatives of different orders with bounded variance.

Assumption 1. Suppose we are given a function f(θ) = Eξ [F (θ; ξ)] defined on a convex

compact set X . We assume access to unbiased stochastic function values, first-order derivatives and

second-order derivatives with bounded variance, i.e., there exist constants σ1, σ2 > 0 such that for

any θ ∈ X ,

Eξ [∇F (θ; ξ)] = ∇f(θ), Eξ

[
∥∇F (θ; ξ)−∇f(θ)∥2

]
≤ σ21,

Eξ

[
∇2F (θ; ξ)

]
= ∇2f(θ), Eξ

[∥∥∇2F (θ; ξ)−∇2f(θ)
∥∥2] ≤ σ22.

Remark. To see the Assumptions hold in practice, we take a linear regression problem as

an example. Consider training a linear model under the setup in that of (1.2) and (1.3), the loss

functions are defined as

F (θ;X, y) =
1

2
(⟨X, θ⟩ − y)2, F (θ; ξ) =

1

B

∑
(X,y)∈Bξ

F (θ;X, y).

3

We can follow (1.4) to similarly verify that the unbiasedness of ∇F (θ; ξ) and ∇2F (θ; ξ). To see the

variances are bounded, we notice that ∇F (θ;X, y) = XX⊤θ − yX,∇2F (θ;X, y) = XX⊤ and thus

Eξ

[
∥∇F (θ; ξ)−∇f(θ)∥2

](1.5)

=Eξ

∥∥∥∥∥∥
 1

B

∑
(Xi,yi)∈Bξ

XiX
⊤
i − 1

N

N∑
j=1

XjX
⊤
j

 θ −

 1

B

∑
(Xi,yi)∈Bξ

yiXi −
1

N

N∑
j=1

yjXj

∥∥∥∥∥∥
2

≤2Eξ

∥∥∥∥∥∥ 1B
∑

(Xi,yi)∈Bξ

XiX
⊤
i − 1

N

N∑
j=1

XjX
⊤
j

∥∥∥∥∥∥
2 ∥θ∥2 + 2Eξ

∥∥∥∥∥∥ 1B
∑

(Xi,yi)∈Bξ

yiXi −
1

N

N∑
j=1

yjXj

∥∥∥∥∥∥
2

<+∞

where the first inequality holds by Cauchy-Schwarz inequality, and the second inequality holds since

θ belongs to a compact set. Also we have

Eξ

[∥∥∇2F (θ; ξ)−∇2f(θ)
∥∥2] = Eξ

∥∥∥∥∥∥ 1B
∑

(Xi,yi)∈Bξ

XiX
⊤
i − 1

N

N∑
j=1

XjX
⊤
j

∥∥∥∥∥∥
2 < +∞.

It is worth noting that the boundedness of X plays a crucial role in the upper bound of the variance

of ∇F (θ; ξ). When X is unbounded and (1.5) does not hold, then we may need to analyze the

variance of the gradients evaluted at the iterates of the algorithms. See Theorem 1 in Chen et al.

[2024] and its proof techniques for an example.

We call ∇F (θ; ξ),∇2F (θ; ξ) first-order, and second-order stochastic oracles respectively. In

practice, for example, we may sample a mini-batch of data points (represented by ξ), and then

evaluate oracles of different orders according to the algorithmic design.

We next discuss convergence criteria of optimization algorithms. For bounded continuously

differentiable convex functions, it can be shown that there exists θ∗ such that f(θ∗) equals to the

minimum value of f . In deep learning, however, most loss functions constructed from deep neural

networks are highly non-convex, and finding a global minimum point is usually infeasible. We thus

consider finding first-order stationary points defined as follows.

4

Definition 1.1.2. Suppose we are given a differentiable function f : Rd → R. For a positive

constant ϵ > 0, we say θ ∈ Rd is an ϵ-stationary point of f , when ∥∇f(θ)∥2 ≤ ϵ. Moreover, we say a

stochastic optimization algorithm is able to find an ϵ-stationary point, when there exists a positive inte-

ger K such that the iterates {θk}Kk=0 generated by the algorithm satisfy min0≤k≤K E
[
∥∇f(θk)∥2

]
≤ ϵ.

Note that for non-convex functions, a 0-stationary point can be a local minima, a local maxima,

or a saddle point. In non-convex optimization, they represent critical points of interest because they

can potentially offer good enough solutions in the absence of global guarantees. Additionally, many

algorithms designed for non-convex optimization are built around the goal of efficiently converging to

these stationary points, making them a central concept in the analysis and application of non-convex

optimization algorithms like SGD [Robbins and Monro, 1951] and Adam [Kingma, 2014]. For a

particular stochastic optimization algorithm, we are interested in analyzing the relationship between

K and ϵ in Definition 1.1.2, which reveals the rate of convergence or the number of samples needed

to find such a solution.

1.1.2. Preliminaries of (Decentralized) Bilevel Optimization. Despite that most machine

learning problems can be written as the optimization formulation in (1.1), which can then be solved

effectively by algorithms like SGD, there is a broad class of problems that cannot be formulated

as (1.1). We will take hyperparameter optimization as an example. In classical wisdom of machine

learning, the hyperparameter tuning process aims at finding the best hyperparameters based on the

validation dataset after model training. Note that the training and tuning are based on different

datasets and thus the optimization problems involved are different. We can write the hperparameter

optimization problem as follows.

min
λ

Lval(λ, θ
∗(λ)),

s.t. θ∗(λ) = argmin
θ

Ltrain(λ, θ).

Here, we denote by λ the hyperparameters and θ the trainable model parameters. We use Lval and

Ltrain to represent validation loss and training loss respectively. Note that the problem considered

here has a bilevel structure, in which we can evaluate the gradients in both levels to solve this problem

through some gradient-based algorithms. The study of gradient-based hypergradient optimization

can be dated back to Bengio [2000]. In general, bilevel optimization aims at solving problems with a

5

Hyperparameter Tuning

Model Training

minλ Lval(λ, θ
∗(λ))

θ∗(λ) = argmin θ Ltrain(λ, θ)

Figure 1.1. Hyperparameter optimization as a bilevel optimization problem.

bilevel structure, and can be written as follows.

min
λ

Φ(λ) := f(λ, θ∗(λ)),

s.t. θ∗(λ) = argmin
θ

g(λ, θ).

It has attracted a lot of attention in recent years due to its capabilities of handling machine learning

problems in different domains like hyperparameter optimization [Bengio, 2000, Franceschi et al.,

2018, Bertrand et al., 2020], reinforcement learning [Hong et al., 2020, Chakraborty et al., 2024],

meta-learning [Bertinetto et al., 2019, Franceschi et al., 2018, Rajeswaran et al., 2019, Ji et al., 2020],

etc. We study the convergence rates and sample complexity of BO algorithms in Chapter 2.

Another important line of research is extending the single-agent training to decentralized set-

ting [Lian et al., 2017], in which multiple agents, such as different devices distributed in heterogeneous

environments [Yuan et al., 2022], work collaboratively to solve the problem. The decentralized

version of Problem 1.1 can be formulated as

min
θ

f(θ) =
1

n

n∑
i=1

fi(θ).

Similarly, decentralized bilevel optimization can be written as

min
λ

Φ(λ) :=
1

n

n∑
i=1

fi(λ, θ
∗(λ)),

s.t. θ∗(λ) = argmin
θ

g(λ, θ) :=
1

n

n∑
i=1

gi(λ, θ),

where n represents the number of agents for solving the problem. The information related to

functions fi and gi (e.g., the data points used to generate them), is termed as local information only

available to agent i. Typically, each agent in the network sends (receives) certain iterates to (from)

6

their neighbors, through a given communication network, to collect the global information. The

network can be represented as a graph with vertices representing agents and edges representing the

neighboring relations between pairs of agents. See, for example, Figure 1.2 for a visualization of

different communication networks. The number of communication rounds between different agents

is denoted as the communication complexity. We will elaborate how to design the communication

process to achieve convergence for decentralized bilevel optimization in Chapter 3.

Ring Random Ladder Complete

Figure 1.2. Different communication networks for n = 8. The four graphs represent
the ring, (an instance of) the random, the ladder and the complete graph. The figure
is adopted from Li et al. [2024].

1.1.3. Beyond Small Learning Rates in Optimization. Finally, we note that, from a

theoretical perspective, classical optimization theory may require the learning rates in algorithms to

be sufficiently small to achieve convergence guarantee for finding the stationary points. In practice,

however, most empirical selection of the learning rates are larger than what the theory predicts, and

usually the training process can be greatly accelerated as compared to the settings with conservative

learning rates. See, for example, the Edge of Stability (EoS) [Cohen et al., 2021] phenomenon. Hence

there is a clear gap between theory and practice. We aim at providing a partial answer to this open

question in Chapter 4.

1.2. Outline of the Dissertation

Now that we have introduced the preliminaries of stochastic optimization with its applications

in machine learning, we present the outline of the dissertation in this section.

In Chapter 2, we propose a fully single-loop algorithm for solving stochastic bilevel optimization

problems. Our theoretical analysis reveals that the sample complexity of our algorithm for finding an

ϵ-stationary point matches the optimal lower bound under standard assumptions, and thus closes the

gap between the lower bound and upper bound. Furthermore, we show that by a slight modification

of our approach, our algorithm can handle a more general multi-objective robust bilevel optimization

7

problem. For this case, we obtain the state-of-the-art oracle complexity results demonstrating

the generality of both the proposed algorithmic and analytic frameworks. Numerical experiments

demonstrate the performance gain of the proposed algorithms over existing ones.

In Chapter 3, we extend the single-agent training of bilevel problems to the decentralized

setting. We provide a novel algorithm that successfully improves the per-iteration computational and

communication complexity from quadratic dependence on dimension parameter to linear dependence,

as compared to prior works on this topic. Numerical experiments showcase the efficiency of our

algorithms on both synthetic datasets and real-world datasets.

In Chapter 4, we study the training dynamics of gradient descent with large learning rates for

a class of quadratic regression problems. Through the lens of discrete dynamical systems, we show

that the dynamics of gradient descent can exhibit five distinct phases based on different choices of

learning rates.

8

CHAPTER 2

Stochastic Bilevel Optimization

2.1. Introduction

Bilevel optimization is gaining increasing popularity within the machine learning community

due to its extensive range of applications, including meta-learning [Bertinetto et al., 2019, Franceschi

et al., 2018, Rajeswaran et al., 2019, Ji et al., 2020], hyperparameter optimization [Bengio, 2000,

Franceschi et al., 2018, Bertrand et al., 2020], data augmentation [Cubuk et al., 2019, Rommel et al.,

2022], and neural architecture search [Liu et al., 2019, Zhang et al., 2022b]. The objective of bilevel

optimization is to minimize a function that is dependent on the solution of another optimization

problem. Formally, we have

(2.1) min
x∈X⊆Rdx

Φ(x) := f(x, y∗(x)) s.t. y∗(x) = argmin
y∈Rdy

g(x, y)

where the upper-level (UL) function f (a.k.a. outer function) and the lower-level (LL) function g

(a.k.a. inner function) are two real-valued functions defined on Rdx × Rdy . The set X is either Rdx

or a closed convex set in Rdx , and the LL function g is strongly convex. We call x the outer variable

and y the inner variable. The objective function Φ(x) is called the value function. In this paper,

we consider the stochastic setting in which the f and g are expressed in the form of expectations,

i.e., f(x, y) = Eξ∼Df
[F (x, y; ξ)] , g(x, y) = Eϕ∼Dg [G(x, y;ϕ)] . Stochastic bilevel optimization can

be considered as an extension of bilevel empirical risk minimization [Dagréou et al., 2023], allowing

to effectively handle streaming data (ξ, ϕ).

In many instances, the analytical expression of y∗(x) is unknown and can only be approximated

using an optimization algorithm. This adds to the complexity of problem (2.1) compared to its

single-level counterpart. Under regular conditions such that Φ is differentiable, the hypergradient

∇Φ(x) derived by chain rule and implicit function theorem is given by

(2.2) ∇Φ(x) = ∇1f(x, y
∗(x))−∇2

12g(x, y
∗(x))z∗(x),

9

where z∗(x) ∈ Rdy is the solution of a linear system:

(2.3) z∗(x) =
[
∇2

22g(x, y
∗(x))

]−1∇2f(x, y
∗(x)).

Solving (2.1) using only stochastic oracles poses significant challenges since there is no direct unbiased

estimator available for
[
∇2

22g(x, y
∗(x))

]−1 and also for ∇Φ(x) as a consequence.

To mitigate the estimation bias, many existing methods [Ghadimi and Wang, 2018, Ji et al.,

2021, Yang et al., 2021, Hong et al., 2023, Guo et al., 2021b, Khanduri et al., 2021, Chen et al.,

2021a, Akhtar et al., 2022] employ a Hessian Inverse Approximation (HIA) subroutine, which

involves drawing a mini-batch of stochastic Hessian matrices and computing a truncated Neumann

series [Stewart, 1998]. However, this subroutine comes with an increased computational burden and

introduces an additional factor of log(ϵ−1) in the sample complexity. Alternative methods proposed

by Chen et al. [2022a] and Guo et al. [2021a] calculate the explicit inverse of the stochastic Hessian

matrix with momentum updates. To circumvent the need for explicit Hessian inversion and the HIA

subroutine, Arbel and Mairal [2022] and Dagréou et al. [2022] propose running Stochastic Gradient

Descent (SGD) steps to approximate the solution z∗(x) of the linear system (2.3). In particular,

the state-of-the-art Stochastic Bilevel Algorithm (SOBA) only utilizes SGD steps to simultaneously

update three variables: the inner variable y, the outer variable x, and the auxiliary variable z. It was

claimed that SOBA achieves the same complexity lower bound of its single-level counterpart (Φ ∈ C1,1
L

‡‡) in the non-convex setting [Arjevani et al., 2023].

Despite the superior computational and sample efficiency of SOBA, there is crucial shortcoming

as the current theoretical framework assumes high-order smoothness for the UL function f and the

LL function g such that z∗(x) has Lipschitz gradient. Specifically, unlike the typical assumptions

in stochastic bilevel optimization that state f ∈ C1,1
L and g ∈ C2,2

L (A1), the current theory of

SOBA requires f ∈ C2,2
L and g ∈ C3,3

L (A2). The necessity of (A2) is counter-intuitive as the partial

gradients of x, y, z utilized in constructing SGD steps are already Lipschitz continuous under (A1).

Furthermore, assuming g is strongly convex and the partial gradient of the UL function with respect

to the inner variable y is bounded for all pairs of (x, y∗(x)), (i.e., ∥∇2f(x, y
∗(x))∥ ≤ Lf for all

x ∈ X), there exists a subset relation among three function classes as indicated by Ghadimi and

‡‡ Cp,p
L denotes p-times differentiability with Lipschitz k-th order derivatives for 0 < k ≤ p.

10

Wang [2018, Lemma 2.2] that

(A2) {f ∈ C2,2
L , g ∈ C3,3

L } ⊂ (A1) {f ∈ C1,1
L , g ∈ C2,2

L } ⊂ {Φ ∈ C1,1
L }.

In light of this, it can be concluded that (A1) is sufficient to ensure the first-order Lipschitzness

of Φ, which is the standard assumption in the single-level setting. On the other hand, it is worth

noting that under (A2) it can be shown that Φ ∈ C2,2
L , i.e., ∇Φ(x) and ∇2Φ(x) are both Lipschitz

continuous. It is known that higher order smoothness (e.g., Lipschitz continuity of ∇2Φ(x)) will

lead to better sample complexity [Carmon et al., 2017, Arjevani et al., 2020]. This indicates that the

sample complexity O(ϵ−2) obtained in Dagréou et al. [2022] may not be optimal under the set of

assumptions made in their work.

Therefore, a natural question follows: Is it possible to develop a fully single-loop and Hessian-

inversion-free algorithm for solving stochastic bilevel optimization problems that achieves an optimal

sample complexity of O(ϵ−2) under standard smoothness assumptions {f ∈ C1,1
L , g ∈ C2,2

L }‡‡? In this

paper, we provide an affirmative answer to the aforementioned question. Our contributions can be

summarized as follows.

• We propose a class of fully single-loop and Hession-inversion-free algorithm, named Moving-

Average SOBA (MA-SOBA), which builds upon the SOBA algorithm by incorporating an additional

sequence of average hypergradients. Unlike SOBA, MA-SOBA achieves an optimal sample complexity

of O(ϵ−2) under standard smoothness assumptions, without relying on high-order smoothness.

In particular, in Section A.1.1.1 we explain how the introduced MA updates help reduce the order

of bias in hypergradient estimation, and avoid higher order Taylor expansion (which requires

higher-order smoothness of f and g) used in Dagréou et al. [2022]. Moreover, the introduced

sequence of average hypergradients converges to ∇Φ(x), thus offering a reliable termination

criterion in the stochastic setting.

• We expand the scope of MA-SOBA to tackle a broader class of problems, specifically the min-max

multi-objective bilevel optimization problem with significant applications in robust machine

learning. We introduce MORMA-SOBA, an algorithm that can find an ϵ-first-order stationary

point of the µλ-strongly-concave regularized formulation while achieving a sample complexity of

O(n5µ−4
λ ϵ−2), which fills a gap (in terms of the order of ϵ-dependency) in the existing literature.

11

Method
(double-loop)

Sample
Complexity (UL) f ‡ (LL) g Hession

Inversion Inner Loop Batch Size

BSA [Ghadimi and Wang, 2018] Õ(ϵ−3) C1,1
L SC and C2,2

L Neumann approx. SGD on inner Õ(1)

stocBiO [Ji et al., 2021] Õ(ϵ−2) C1,1
L SC and C2,2

L Neumann approx. SGD on inner Õ(ϵ−1)

¶ALSET [Chen et al., 2021a] Õ(ϵ−2) C1,1
L SC and C2,2

L Neumann approx. SGD on inner Õ(1)

AmIGO [Arbel and Mairal, 2022] O(ϵ−2) C1,1
L SC and C2,2

L SGD SGD on inner O(ϵ−1)

Method
(single-loop)

Sample
Complexity (UL) f ‡ (LL) g Hession

Inversion Inner Step Batch Size

¶TTSA [Hong et al., 2023] Õ(ϵ−2.5) C1,1
L SC and C2,2

L Neumann approx. SGD Õ(1)

STABLE [Chen et al., 2022a] O(ϵ−2) C1,1
L SC and C2,2

L Direct SGD O(1)

SOBA [Dagréou et al., 2022] O(ϵ−2) C2,2
L SC and C3,3

L SGD SGD O(1)

MA-SOBA (Alg. 1) O(ϵ−2) C1,1
L SC and C2,2

L SGD SGD O(1)

Table 2.1. Comparison of the stochastic bilevel optimization solvers in the
nonconvex-strongly-convex setting under smoothness assumptions ‡‡ on f and g.
We omit the comparison with variance reduction-based methods (VRBO, MRBO [Yang
et al., 2021]; SUSTAIN [Khanduri et al., 2021]; SABA [Yang et al., 2021]; SRBA [Da-
gréou et al., 2023]; SVRB [Guo et al., 2021a]; FLSA [Li et al., 2022a]; SBFW [Akhtar
et al., 2022]) that may achieve O(ϵ−1.5) sample complexity and under mean-squared
smoothness assumptions on stochastic functions Fξ and Gϕ, and SBMA [Guo et al.,
2021b] that achieves O(ϵ−4) sample complexity. The sample complexity corresponds
to the number of calls to stochastic gradients and Hessian(Jacobian)-vector products
to get an ϵ-stationary point. The Õ notation hides a factor of log(ϵ−1). “SC” means
“strongly-convex”.

• We conduct experiments on several machine learning problems. Our numerical results show the

efficiency and superiority of our algorithms.

Related Work. The concept of bilevel optimization was initially introduced in the work of

Bracken and McGill [1973]. Since then, numerous gradient-based bilevel optimization algorithms

have been proposed, broadly categorized into two groups: ITerative Differentiation (ITD) based

methods [Domke, 2012, Maclaurin et al., 2015, Franceschi et al., 2018, Grazzi et al., 2020, Ji et al.,

2021] and Approximate Implicit Differentiation (AID) based methods [Domke, 2012, Pedregosa,

2016, Gould et al., 2016, Ghadimi and Wang, 2018, Grazzi et al., 2020, Ji et al., 2021, Arbel and

Mairal, 2022, Grazzi et al., 2023]. The ITD-based algorithms typically involve approximating the

solution of the inner problem using an iterative algorithm and then computing an approximate

hypergradient through automatic differentiation. However, a major drawback of this approach is

‡ All methods also assume ∥∇2f(x, y
∗(x))∥ ≤ Lf < ∞ for all x ∈ X .

¶ ALSET can achieve convergence without the need for double loops, but it comes at the cost of a worse dependence
on κ in sample complexity. The mechanisms of single-loop ALSET and TTSA are essentially the same, except that ALSET
employs single time-scale stepsizes while TTSA employs two time-scales.

12

the necessity of storing each iterate of the inner optimization algorithm in memory. The AID-based

algorithms leverage the implicit gradient given by (2.2), which requires the solution of a linear

system characterized by (2.3). Extensive research has been conducted on designing and analyzing

deterministic bilevel optimization algorithms with strongly-convex LL functions; see Ji et al. [2021]

and references therein.

In recent years, there has been a growing interest in stochastic bilevel optimization, especially

in the setting of a non-convex UL function and a strongly-convex LL function. To address estimation

bias, one set of methods uses SGD iterations for the inner problem and employs truncated stochastic

Neumann series to approximate the inverse of the Hessian matrix in z∗(x) [Ghadimi and Wang,

2018, Ji et al., 2021, Yang et al., 2021, Hong et al., 2023, Guo et al., 2021b, Khanduri et al., 2021,

Chen et al., 2021a, Akhtar et al., 2022]. The analysis of such methods was refined by [Chen et al.,

2021a] to achieve convergence rates similar to those of SGD. However, Neumann approximation

subroutine introduces an additional factor of log(ϵ−1) in the sample complexity. Some alternative

approaches [Arbel and Mairal, 2022, Chen et al., 2022a, Guo et al., 2021a] calculate the explicit

inverse of the stochastic Hessian matrix with momentum updates. Nevertheless, these methods

encounter challenges related to computational complexity in matrix inversion and numerical stability.

To avoid the need for explicit Hessian inversion and Neumann approximation, recent algo-

rithms [Arbel and Mairal, 2022, Dagréou et al., 2022] propose running SGD steps to approximate

the solution z∗(x) of the linear system (2.3). One such algorithm called AmIGO [Arbel and Mairal,

2022] employs a double-loop approach with warm-start strategy and achieves an optimal sample

complexity of O(ϵ−2) under regular assumptions. However, AmIGO requires a growing batch size

inversely proportional to ϵ. Following AmIGO, Grazzi et al. [2023] proposes BSGM, which avoids using

large batch size in the LL problem and warm-start strategy, but still requires double-loop framework

and large batch sizes in the UL problem. On the other hand, the single-loop algorithm SOBA [Dagréou

et al., 2022] achieves the same complexity lower bound but with constant batch size. Unfortunately,

the current analysis of SOBA relies on the assumption of higher-order smoothness for the UL and LL

functions. In this work, we introduce a novel algorithm framework that differs slightly from SOBA

but can achieve optimal sample complexity in theory without higher-order smoothness assumptions.

A summary of our results and comparison to prior work is provided in Table 2.1.

13

In addition, there exist several variance reduction-based methods following the line of research

by Yang et al. [2021], Khanduri et al. [2021], Yang et al. [2021], Dagréou et al. [2023], Guo et al.

[2021a], Li et al. [2022a]. Some of these methods achieve an improved sample complexity of O(ϵ−1.5)

and match the lower bounds of their single-level counterparts when stochastic functions Fξ and Gϕ

satisfy mean-squared smoothness assumptions and the algorithm is allowed simultaneous queries

at the same random seed [Arjevani et al., 2023]. However, since we are specifically considering

smoothness assumptions on f and g, we will not delve into the comparison with these methods.

The most recent advancements in (stochastic) bilevel optimization focus on several new ideas: (i)

addressing constrained lower-level problems [Shen and Chen, 2023, Xiao et al., 2023, Tsaknakis et al.,

2022, Giovannelli et al., 2021], (ii) handling lower-level problems that lack strong convexity [Chen

et al., 2023a, Huang, 2023, Liu et al., 2023, 2021, Sow et al., 2022a, Jiang et al., 2023], (iii) developing

fully first-order (Hessian-free) algorithms [Liu et al., 2022, Kwon et al., 2023, Sow et al., 2022b], (iv)

establishing convergence to the second-order stationary point [Huang et al., 2023], and (v) expanding

the framework to encompass multi-objective optimization problems [Giovannelli et al., 2023, Gu

et al., 2023, Hu et al., 2022]. It is promising to apply some of these advancements to our specific

framework. Moreover, in this work, we also contribute to multi-objective bilevel problems with a

slight modification of our approach. Other directions are left as future work.

2.2. Proposed Framework: the MA-SOBA Algorithm

Similar to Dagréou et al. [2022], Arbel and Mairal [2022], our algorithm initiates with inexact

hypergradient descent techniques and seeks to offer an alternative in the stochastic setting. To

provide a clear illustration, let us initially consider the deterministic setting. The SOBA framework

keeps track of three sequences, denoted as {xk, yk, zk}, and updates them using Dx, Dy, Dz as follows:

(inner) yk+1 = yk − βk ∇2g(x
k, yk) = yk − βkDy(x

k, yk, zk)(2.4)

(aux) zk+1 = zk − γk

{
∇2

22g(x
k, y∗(xk))zk −∇2f(x

k, y∗(xk))
}

bias → ≈ zk − γk

{
∇2

22g(x
k, yk)zk −∇2f(x

k, yk)
}

= zk − γkDz(x
k, yk, zk)(2.5)

(outer) xk+1 = xk − αk

{
∇1f(x

k, y∗(xk))−∇2
12g(x

k, y∗(xk))z∗(xk)
}
= xk − αk∇Φ(xk)

bias → ≈ xk − αk

{
∇1f(x

k, yk)−∇2
12g(x

k, yk)zk
}

= xk − αkDx(x
k, yk, zk)(2.6)

14

where (2.4) is the GD step to minimize g(xk, ·), (2.6) is the inexact hyper gradient descent step, and

(2.5) is the GD step to minimize a quadratic function with z∗(xk) being the solution, i.e.,

z∗(xk) = argmin
z

1

2
⟨∇2

22g(x
k, y∗(xk))z, z⟩ − ⟨∇2f(x

k, y∗(xk)), z⟩.

Given that the above update rule, highlighted in blue, does not involve the Hessian matrix inversion,

SOBA can directly utilize the stochastic oracles of ∇1f,∇2f,∇2g,∇2
22g,∇2

12g to obtain unbiased

estimators of Dx, Dy, Dz in Eq.(2.4), (2.5), (2.6). This approach circumvents the requirement for a

Neumann approximation subroutine or a direct matrix inversion. However, due to the update rule

for y, which only utilizes one-step SGD at each iteration k, the value of yk does not coincide with

y∗(xk). As a result, a certain bias is introduced in the partial gradient of z in Eq.(2.5). Similarly,

when estimating the hypergradient ∇Φ(x), another bias term arises in Eq.(2.6). Although the

bias decreases to zero as yk → y∗(xk) and zk → z∗(xk) under standard smoothness assumptions

as indicated by Lemma 3.4 in Dagréou et al. [2022], the current analysis of SOBA requires more

regularity on f and g to carefully handle the bias; it assume that f has Lipschitz Hessian and g has

Lipschitz third-order derivative.

The inability to obtain an unbiased gradient estimator is a common characteristic in stochastic

optimization involving nested structures; see, for example, stochastic compositional optimization

[Wang et al., 2017, Yang et al., 2019, Ghadimi et al., 2020, Balasubramanian et al., 2022, Chen et al.,

2021b] as a specific case of (2.1). One popular approach is to introduce a sequence of dual variables

that approximates the true gradient by aggregating all past biased stochastic gradients using a

moving averaging technique [Ghadimi et al., 2020, Balasubramanian et al., 2022, Xiao et al., 2022].

Motivated by this approach, we introduce another sequence of variables, denoted as {hk}, and update

it at k-th iteration given the past iterates Fk as hk+1 = (1− θk)h
k + θkw

k+1, where E[wk+1|Fk] =

Dx(x
k, yk, zk), θk ∈ (0, 1]. Following the update rule in the constrained setting (X ⊂ Rdx) [Ghadimi

et al., 2020], the outer variable is updated as xk+1 = xk+αk

(
ΠX (xk − τhk)− xk

)
, which is reduced to

the GD step when X ≡ Rdx . Denote the stochastic oracles of ∇1f(x
k, yk),∇2f(x

k, yk),∇2g(x
k, yk),

∇2
22g(x

k, yk),∇2
12g(x

k, yk) at k-th iteration as uk+1
x , uk+1

y , vk+1, Hk+1, Jk+1 respectively. We present

our method, referred to as Moving-Average SOBA (MA-SOBA), in Algorithm 1.

15

Algorithm 1: Moving-Average SOBA

Input: x0, y0, z0, h0 = 0, {αk}, {βk}, {γk}, {θk}
1 for k = 0, 1, . . . ,K − 1 do
2 xk+1 = xk + αk

(
ΠX (xk − τhk)− xk

)
update xk via average hypergradient hk

3 yk+1 = yk − βkv
k+1 # update yk by one-step SGD

4 zk+1 = zk − γk(H
k+1zk − uk+1

y) # update zk by one-step SGD
5 hk+1 = (1− θk)h

k + θk
(
uk+1
x − Jk+1zk

)
update average hypergradient hk

6 end

2.3. Theoretical Analysis

In this section, we provide convergence rates of MA-SOBA under standard smoothness conditions

on f, g and regular assumptions on stochastic oracles. We also present a proof sketch and have

detailed discussions about assumptions made in the literature. The complete proofs are deferred in

Section A.1.

2.3.1. Preliminaries and Assumptions. As we consider the general setting in which X can

be either Rdx or a closed convex set in Rdx , we use the notion of gradient mapping to characterize

the first-order stationarity, which is a classical measure widely used in the literature as a convergence

criterion when solving nonconvex constrained problems [Nesterov, 2018]. For τ > 0, we define the

gradient mapping of at point x̄ ∈ X as GX (x̄,∇Φ(x̄), τ) := 1
τ (x̄−ΠX (x̄− τ∇Φ(x̄))). When X ≡ Rd,

the gradient mapping simplifies to ∇Φ(x̄). Our main goal in this work is to find an ϵ-stationary

solution to (2.1), in the sense of E[∥GX (x̄,∇Φ(x̄), τ)∥2] ≤ ϵ.

We first state some regularity assumptions on the functions f and g.

Assumption 2. The functions f and g satisfy:

(a) (f ∈ C1,1
L and g ∈ C2,2

L)‡‡ ∇f,∇g,∇2g are L∇f , L∇g, L∇2g Lipschitz continuous.

(b) (SC LL) g is µg-strongly convex.

(c) ∥∇2f(x, y
∗(x))∥ ≤ Lf <∞ for all x ∈ X .

Remark. The above assumption serves as a sufficient condition for the Lipschitz continuity

of ∇Φ, y∗(x), and z∗(x), as well as Dx, Dy, and Dz in Eq. (2.4), (2.5), (2.6). The inclusion of

high-order smoothness assumptions (f ∈ C2,2
L and g ∈ C3,3

L) in the current analysis of SOBA [Dagréou

et al., 2022] is primarily intended to ensure the Lipschitzness of ∇z∗(x). However, the necessity of

such assumptions is subject to doubt, given that ∇z∗(x) is not involved in designing the algorithm.

16

Furthermore, the Lipschitzness of f or uniformly boundedness of ∇2f made in several previous

works is unnecessary. Instead, the boundedness assumption on ∇2f is only required for all pairs of

(x, y∗(x)) as demonstrated by Assumption 2(c).

Next, we discuss assumptions made on the stochastic oracles.

Assumption 3. For any k ≥ 0, denote by Fk the sigma algebra generated by all iterates

with superscripts not greater than k : Fk = σ
{
h1, . . . , hk, x1, . . . , xk, y1, . . . , yk, z1, . . . , zk

}
. The

stochastic oracles of ∇1f(x
k, yk),∇2f(x

k, yk),∇2g(x
k, yk),∇2

22g(x
k, yk),∇2

12g(x
k, yk), denoted as

uk+1
x , uk+1

y , vk+1, Hk+1, Jk+1 respectively, used in Algorithm 2 at k-th iteration are unbiased with

bounded variance given Fk, i.e., there exist positive constants σf,1, σf,2, σg,1, σg,2 such that

E[uk+1
x |Fk] = ∇1f(x

k, yk), E
[∥∥∥uk+1

x −∇1f(x
k, yk)

∥∥∥2 |Fk

]
≤ σ2f,1,

E
[
uk+1
y |Fk

]
= ∇2f(x

k, yk), E
[∥∥∥uk+1

y −∇2f(x
k, yk)

∥∥∥2 |Fk

]
≤ σ2f,2,

E
[
vk+1|Fk

]
= ∇2g(x

k, yk), E
[∥∥∥vk+1 −∇2g(x

k, yk)
∥∥∥2 |Fk

]
≤ σ2g,1,

E
[
Hk+1|Fk

]
= ∇2

22g(x
k, yk), E

[∥∥∥Hk+1 −∇2
22g(x

k, yk)
∥∥∥2 |Fk

]
≤ σ2g,2,

E
[
Jk+1|Fk

]
= ∇2

12g(x
k, yk), E

[∥∥∥Jk+1 −∇2
12g(x

k, yk)
∥∥∥2 |Fk

]
≤ σ2g,2.

In addition, they are conditionally independent conditioned on Fk.

Remark. The unbiasedness and bounded variance assumptions on stochastic oracles are

standard and typically satisfied in several practical stochastic optimization problems [Lan, 2020]. It

is important to highlight that we explicitly impose these assumptions on the stochastic oracles, unlike

Assumption 3.6 in Dagréou et al. [2022], which assumes E[∥vk+1∥2|Fk] ≤ B2
y(1 + ∥Dy(x

k, yk, zk)∥2)
and E[∥Hk+1zk−uk+1

y ∥2|Fk] ≤ B2
z (1+∥Dz(x

k, yk, zk)∥2). In this case, By and Bz represent constants

in terms of the Lipschitz constants (L) and variance bounds (σ2). Moreover, Assumption 3.7 in

Dagréou et al. [2022] assumes E[∥wk+1∥2|Fk] ≤ B2
x holds for a constant Bx, which is considerably

stronger than our assumptions and may not hold for a broad class of problems.

2.3.2. Convergence Results. We have the following theorem characterizing the convergence

results of MA-SOBA.

17

Theorem 2.3.1. Define xk+ = ΠX (xk − τhk). Suppose Assumptions 2 and 3 hold. Then there

exist positive constants c1, c2, c3, τ > 0 such that if αk ≡ Θ(1/
√
K), βk = c1αk, γk = c2αk, θk = c3αk,

in Algorithm 1, then the iterates in Algorithm 1 satisfy

(2.7)
1

K

K∑
k=1

1

τ2
E
[∥∥∥xk+ − xk

∥∥∥2] = O
(

1√
K

)
,

1

K

K∑
k=1

E
[∥∥∥hk −∇Φ(xk)

∥∥∥2] = O
(

1√
K

)
,

which imply
1

K

K∑
k=1

1

τ2
E
[∥∥∥xk −ΠX (xk − τ∇Φ(xk))

∥∥∥2] = O
(

1√
K

)
.

That is to say, when uniformly randomly selecting a solution xR from {x1, . . . , xK}, the sample

complexity of Algorithm 1 for finding an ϵ-stationary point is O(ϵ−2).

Remark. In contrast to most existing methods, in MA-SOBA, the introduced sequence of dual

variables {hk} converges to the exact hypergradient ∇Φ(x), even in the presence of estimation bias.

This attribute provides reliable terminating criteria in practice. In addition, similar results with an

extra factor of log(K) in the convergence rate can be established under decreasing αk [Dagréou et al.,

2022]. We also note that Algorithm 1 only requires stochastic gradient and Hessian(Jacobian)-vector

product oracles, whose computational complexity are typically O(max(dx, dy)) with the help of

automatic differentiation techniques [Pearlmutter, 1994, Dagréou et al., 2024]. Moreover, the sample

complexity of fully first-order methods for bilevel optimization usually have worse dependency on

ϵ [Kwon et al., 2023].

2.3.3. Proof Sketch of Theorem 2.3.1. Define

Vk =
1

τ2
∥xk+ − xk∥2 + ∥hk −∇Φ(xk)∥2.

To obtain (2.7), we consider the merit function:

Wk = Φ(xk)− ηX (xk, hk, τ) + ∥yk − yk∗∥2 + ∥zk − zk∗∥2,

where ηX (x, h, τ) = ⟨h, x+ − x⟩+ 1
2τ ∥x+ − x∥2. By leveraging the moving-average updates of xk

(line 2 of Algorithm 1), we can obtain

K∑
k=0

αkE [Vk] = O
(K∑

k=0

(
αkE

[∥∥∥E[wk+1|Fk]−∇Φ(xk)
∥∥∥2]+ α2

k

))
,

18

which reduces the error analysis to controlling the hypergradient estimation bias, i.e., ∥E[wk+1|Fk]−
∇Φ(xk)∥2. This term, by the construction of wk+1, satisfies

∑K
k=0 αkE

[∥∥E[wk+1|Fk]−∇Φ(xk)
∥∥2] = O

(∑K
k=0 αkE

[∥∥xk+ − xk
∥∥2 + ∥∥yk − yk∗

∥∥2 + ∥∥zk − zk∗
∥∥2]) .

It is worth noting that Dagréou et al. [2022] requires the existence and Lipschitzness of ∇2f and

∇3g to ensure the Lipschitzness of ∇z∗(x) (see (2.3)) which is used in proving the sufficient decrease

of
∥∥zk − zk∗

∥∥2. In contrast, based on the moving-average updates of xk and hk, our refined analysis

does not necessitate such assumptions to obtain that

K∑
k=0

αkE
[∥∥∥yk − yk∗

∥∥∥2 + ∥∥∥zk − zk∗
∥∥∥2] = O

(K∑
k=0

αkE
[∥∥∥xk+ − xk

∥∥∥2]).
The proof of Theorem 2.3.1 can then be completed by choosing appropriate αk, c1, c2, c3, τ > 0.

2.4. Min-Max Bilevel Optimization

To incorporate robustness in the multi-objective setting where each objective can be expressed

as a bilevel optimization problem in (2.1), the following mini-max bilevel problem formulation was

proposed in Gu et al. [2023]:

(2.8) min
x∈X

max
1≤i≤n

Φi(x) := fi(x, y
∗
i (x)) s.t. y∗i (x) = argmin

yi∈Rdyi

gi(x, yi), 1 ≤ i ≤ n.

Note that (2.8) can be reformulated as a general nonconvex-concave min-max optimization problem

(with a bilevel substructure):

(2.9) min
x∈X

max
λ∈∆n

Φ(x, λ) :=
n∑

i=1

λiΦi(x).

Instead of solving (2.9) directly, in this work, we focus on solving the regularized version,

(2.10) min
x∈X

max
λ∈∆n

Φµλ
(x, λ) := Φ(x, λ)− µλ

2

∥∥∥∥λ− 1

n
1n

∥∥∥∥2 .
Note that in (2.10), we include an ℓ2 regularization term that penalizes the discrepancy between λ

and 1n
n . When µλ = 0, it corresponds to equation (2.8), and as µλ → +∞, it enforces λ = 1n

n , leading

to direct minimizing of the average loss. It is important to note that minimizing the worst-case

loss (i.e., max1≤i≤n fi(x, y
∗
i (x))) does not necessarily imply the minimization of the average loss (i.e.,

19

1
n

∑n
i=1 fi(x, y

∗
i (x))). Therefore, in practice, it may be preferable to select an appropriate µλ > 0

[Qian et al., 2019, Wang et al., 2021] to strike a balance between these two types of losses. Hu

et al. [2022] considered solving a similar problem under stronger assumptions. We defer a detailed

discussion to Section A.2.2.

2.4.1. Proposed Framework: the MORMA-SOBA Algorithm. The proposed algorithm,

which we refer as to Multi-Objective Robust MA-SOBA (MORMA-SOBA), for solving (2.10) is presented

in Algorithm 2. In addition to the basic framework of Algorithm 1, we also maintain a moving-

average step in the updates of λk for solving the max part of problem 2.4.1. It is worth noting

that in its single-level counterpart without the inner variable y, the proposed MORMA-SOBA algorithm

is fundamentally similar to the single-timescale averaged SGDA algorithm proposed in the general

nonconvex-strongly-concave setting [Qiu et al., 2020]. Moreover, our algorithmic framework can be

leveraged to solve the distributionally robust compositional optimization problem as discussed in

Gao et al. [2021].

Remark (Comparison with MORBiT [Gu et al., 2023]). In contrast to our approach in (2.10), the

work of Gu et al. [2023], for the min-max bilevel problem, attempted to combine TTSA [Hong et al.,

2023] and SGDA [Lin et al., 2020a] to solve the nonconvex-concave problem as (2.9). However, we

identified an issue in Gu et al. [2023] related to the ambiguity and inconsistency in the expectation and

filtration, which may not be easily resolved within their current proof framework. As a consequence,

their current proof is unable to demonstrate E[maxi∈[n] ∥yki − y∗i (x
(k−1))∥2] ≤ Õ(

√
nK−2/5) as

claimed in Theorem 1 (10b) of Gu et al. [2023]. Thus, the subsequent arguments made regarding

the convergence analysis of x and λ are incorrect (at least in its current form); see Section A.2 for

further discussions. Moreover, the practical implementation of MORBiT incorporates momentum and

weight decay techniques to optimize the simplex variable λ. This approach can be seen as a means

of solving the regularized formulation in (2.10).

2.4.2. Convergence Results. We first present additional assumptions required in the analysis

of MORMA-SOBA.

Assumption 4. For any k ≥ 0, functions Φ(x),∇Φi(x) are bounded, functions fi are Lf -

Lipschitze continuous in the second input, and their stochastic versions are unbiased with bounded

20

Algorithm 2: Multi-Objective Robust Moving-Average SOBA

Input: x0, λ0, {y0i }, {z0i }, h0x = 0, h0λ = 0, {αk}, {βk}, {γk}, {θk}
1 for k = 0, 1, . . . ,K − 1 do
2 xk+1 = xk + αk

(
ΠX (xk − τxh

k
x)− xk

)
update xk via average hypergradient hkx

3 λk+1 = λk + αk

(
Π∆n(λ

k + τλh
k
λ)− λk

)
update λk via average gradient hkλ

4 for i = 1, . . . , n (in parallel) do
5 yk+1

i = yki − βkv
k+1
i # update yki by one-step SGD based on (2.4)

6 zk+1
i = zki − γk

(
Hk+1

i zki − uk+1
y,i

)
update zki by one-step SGD based on (2.5)

7 end
8 hk+1

x = (1− θk)h
k
x + θk

∑n
i=1 λ

k
i

(
uk+1
x,i − Jk+1

i zki
)

9 # update average hypergradient hkx
10 hk+1

λ = (1− θk)h
k
λ + θk

(
sk+1 − µλ

(
λk − 1n

n

))
update average gradient hkλ

11 end

variance, i.e., there exists LΦ, Lf , σf,0 ≥ 0 such that

|Φi(x)| ≤ bΦ, ∥∇Φi(x)∥ ≤ LΦ, |fi(x, y)− fi(x, ỹ)| ≤ Lf ∥y − ỹ∥ , for all x, y, ỹ, 1 ≤ i ≤ n,

sk+1 =
(
sk+1
1 , ..., sk+1

n

)⊤
, E

[
sk+1
i |Fk

]
= fi(x

k, yki), E
[∥∥∥sk+1

i − fi(x
k, yki)

∥∥∥2 |Fk

]
≤ σ2f,0.

⋃n
i=1

{
uk+1
x,i , u

k+1
y,i , v

k+1
i , Hk+1

i , Jk+1
i

}
∪
{
sk+1

}
are conditionally independent under Fk.

We have the following convergence theorem of MORMA-SOBA.

Theorem 2.4.1. Suppose Assumptions 2, 3 (for all fi, gi) and Assumption 4 hold. Then there

exist positive constants c1, c2, c3, τx, τλ > 0 such that if αk ≡ Θ(1/
√
nK), βk = c1αk, γk = c2αk, θk =

c3αk, µλ < 1 in Algorithm 2, then the iterates in Algorithm 2 satisfy

1

K

K∑
k=0

1

τ2x
E
[∥∥∥xk −ΠX

(
xk − τx∇Ψµλ

(xk)
)∥∥∥2] = O

(
n2

µ2λ
√
K

)
,

where Ψµλ
(x) := maxλ∈∆n Φµλ

(x, λ). That is to say, when uniformly randomly selecting a solution

xR from {x1, . . . , xK}, the sample complexity (the total number of calls to stochastic oracles) of

finding an ϵ-stationary point by Algorithm 2 is O(n5µ−4
λ ϵ−2).

Theorem 2.4.1 indicates that Algorithm 2 is capable of generating an ϵ-first-order stationary

point of minxΨµλ
(x) with K ≳ n5µ−4

λ ϵ−2. As µλ → 0, the problem (2.10) changes towards the

nonconvex-concave problem (2.9) and the sample complexity becomes worse, which to some extent

implies the difficulty of directly solving (2.9). We defer the proof details to Section A.1.2. For

21

Problem (2.9), we adopt the definition of ϵ-stationary point in Definition 3.5 in Lin et al. [2020b],

and choose µλ = O(
√
ϵ) to help shed light on the sample complexity.

Corollary 2.4.1. Under the same setup of Theorem 2.4.1, setting µλ = O(
√
ϵ), the sample

complexity of finding an ϵ-stationary point of Problem (2.9) via Algorithm 2 is O(n5ϵ−4).

Remark. Note that in Theorem 2.4.1 we explicitly characterize the dependency on n and

µλ in the convergence rate and the sample complexity. It is worth noting that two variants of

stochastic gradient descent ascent (SGDA) algorithms for solving the nonconvex-strongly-concave

min-max optimization problems (without bilevel substructures), have been studied in Lin et al.

[2020a], Qiu et al. [2020]. While such algorithms are not immediately applicable to solve (2.10) due

to the presence of the additional bilevel substructure, it is instructive to compare to those methods

assuming direct access to y∗i (x) in (2.8). Specifically, we observe that the sample complexity of SGDA

with batch size M = Θ(n1.5ϵ−1) in Lin et al. [2020a] and moving-average SGDA with O(1) batch

size in Qiu et al. [2020] for solving (2.10) assuming direct access to y∗i (x) will be O
(
n4µ−2

λ ϵ−2
)

and

O
(
n5µ−4

λ ϵ−2
)∗ respectively. Our results in Theorem 2.4.1 indicate that the sample complexity of

the proposed algorithm MORMA-SOBA for solving min-max bilevel problems has the same dependency

on n and µλ as the sample complexity of the moving-average SGDA introduced in Qiu et al. [2020] for

solving min-max single-level problems, while also computing y∗i (x) instead of assuming direct access.

2.5. Experiments

While our contributions primarily focus on theoretical aspects, we also conducted experiments

to validate our results. We first compare the performance of MA-SOBA with other benchmark methods

on two common tasks proposed in previous works [Ji et al., 2021, Hong et al., 2023, Dagréou et al.,

2022], hyperparameter optimization for ℓ2 penalized logistic regression and data hyper-cleaning on

the corrupted MNIST data set. To demonstrate the practical performance of MORMA-SOBA, we then

conduct experiments in robust multi-task representation learning introduced in Gu et al. [2023] on

the FashionMNIST data set [Xiao et al., 2017].

2.5.1. Experimental Details for MA-SOBA. Our experiments for MA-SOBA are performed

with the aid of the recently developed package Benchopt [Moreau et al., 2022] and the open-sourced
∗Note that Φµλ(x, λ) in (2.9) is quadratic in λ, and these two sample complexities are obtained under this special

case, i.e., ∇2
2f(x, y) = −µI applied to Lin et al. [2020a], Qiu et al. [2020].

22

bilevel optimization benchmark†. For a fair comparison, we exclusively consider benchmark methods

that do not utilize variance reduction techniques in Table 2.1: (i) BSA [Ghadimi and Wang, 2018]; (ii)

stocBiO [Ji et al., 2021]; (iii) TTSA [Hong et al., 2023]/ALSET [Chen et al., 2021a]; (iv) SOBA [Dagréou

et al., 2022]. Noting that ALSET only differs from TTSA regarding time scales, we use TTSA to represent

this class of approach. Also, we omit the comparison with AmIGO [Arbel and Mairal, 2022] below,

given that it is essentially a double-loop SOBA with increasing batch sizes. The tunable parameters

in benchmark methods are selected in the same manner as those in benchmark_bilevel†.

Setup. We strictly adhere to the settings provided in benchmark_bilevel, as detailed in

Appendix B.1 of Dagréou et al. [2022]. The previous results and setups of Dagréou et al. [2022]

have also been available in https://benchopt.github.io/results/benchmark_bilevel.html. For

completeness, we provide a summary of the setup below.

• To avoid redundant computations, we utilize oracles for functions Fξ, Gϕ, which pro-

vide access to quantities such as ∇1Fξ(x, y), ∇2Fξ(x, y), ∇2Gϕ(x, y), ∇2
22Gϕ(x, y)v, and

∇2
12Gϕ(x, y)v, although this may violate the independence assumption in Assumption 3.

• In all our experiments, we employ a batch size of 64 for all methods, even for BSA and

AmIGO that theoretically require increasing batch sizes.

• For methods involving an inner loop (stocBiO, BSA, AmIGO), we perform 10 inner steps per

each outer iteration as proposed in those papers.

• For methods that involve Neumann approximation for Hessian-vector product (such as BSA,

TTSA, SUSTAIN, and MRBO), we perform 10 steps of the subroutine per outer iteration. For

AmIGO, we perform 10 steps of SGD to approximate the inversion of the linear system.

• The step sizes and momentum parameters used in all benchmark algorithms are directly

adopted from the fine-tuned parameters provided by Dagréou et al. [2022]. From a grid

search, we select the best constant step sizes for MO-SOBA.

We have excluded SRBA [Dagréou et al., 2023] from the benchmark due to its limited reported

improvement over SABA.

2.5.1.1. Hyperparameter Optimization on IJCNN1. In the first task, we fit a multi-regularized

logistic regression model (for binary classification), and select the regularization parameters (one

†https://github.com/benchopt/benchmark_bilevel

23

https://benchopt.github.io/results/benchmark_bilevel.html
https://github.com/benchopt/benchmark_bilevel

100 200 300 400
Time [sec]

10−4

10−3

10−2

10−1

O
pt

im
al

it
y

Φ
(x

k
)
−

Φ
∗

TTSA StocBiO BSA SOBA MA-SOBA

100 200 300 400

Time [sec]

10−4

10−3

10−2

10−1

O
p

ti
m

al
it

y
Φ

(x
k
)
−

Φ
∗

(a) ℓ2 Penalized Logistic Regression on IJCNN1

10−1 100 101 102

Time [sec]

15%

20%

30%

40%

T
es

t
er

ro
r

(b) Data Hyper-Cleaning on MNIST

Figure 2.1. Comparison of MA-SOBA with other stochastic bilevel optimization
methods without using variance reduction techniques. For each algorithm, we plot
the median performance over 10 runs. Left: Hyperparameter optimization for ℓ2
penalized logistic regression on IJCNN1 data set. Right. Data hyper-cleaning on
MNIST with p = 0.5 (corruption rate).

hyperparameter per feature) on the IJCNN1 data set‡. The functions f and g of the problem (2.1)

are the average logistic loss on the validation set and training set respectively, with ℓ2 regularization

for g. Specifically, the problem can be formulated as:

min
ν∈Rd

Φ(ν) := E
(X,Y)∼Dval

[ℓ (⟨ω∗(ν), X⟩, Y)]︸ ︷︷ ︸
f(ν,ω∗(ν))

s.t. ω∗(ν) = argmin
ω∈Rd

E
(X,Y)∼Dtrain

[ℓ (⟨ω,X⟩, Y)] +
1

2
ω⊤diag (eν1 , . . . , eνd)ω︸ ︷︷ ︸

g(ν,ω)

.

In this case, |Dtrain| = 49, 990, |Dval| = 91, 701, and d = 22. For each sample, the covariate and

label are denoted as (X,Y), where X ∈ R22 and Y ∈ {0, 1}. The inner variable (ω ∈ R22) is the

regression coefficient. The outer variable (ν ∈ R22) is a vector of regularization parameters. The loss

function ℓ(y′, y) = −y log(y′)− (1− y) log(1− y′) is the log loss.

In Figure 2.1(a), we plot the suboptimality gap against the runtime for each method. Surpris-

ingly, we observed that MA-SOBA achieves lower objective values after several iterations compared to

‡https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html

24

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html

all benchmark methods. This improvement can be attributed to the convergence of average hyper-

gradients {hk}. These findings demonstrate the practical superiority of our algorithm framework,

even with the same sample complexity results.

To supplement the comparison, we conducted additional experiments that involved comparing

all benchmark methods, including the variance reduction based method. In Figure 2.2, we plot the

suboptimality gap (Φ(x)− Φ∗) against runtime and the number of calls to oracles. Unfortunately,

the previous results obtained for MRBO and AmIGO on the IJCNN1 data set are not reproducible at the

moment due to some conflicts in the current developer version of Benchopt. As reported in Dagréou

et al. [2022], MRBO exhibits similar performance to SUSTAIN, while the curve of AmIGO initially follows

a similar trend as SUSTAIN and eventually reaches a similar level as SABA towards the end. Following a

grid search, we have selected the parameters in MA-SOBA as αkτ = 0.02, βk = γk = 0.01, and θk = 0.1.

As shown in Figure 2.2, our proposed method MA-SOBA outperforms SOBA significantly, achieving a

slightly lower suboptimality gap compared to the state-of-the-art variance reduction-based method

SABA.

100 200 300 400
Time [sec]

10−4

10−3

10−2

10−1

O
pt

im
al

it
y

Φ
(x

k
)
−

Φ
∗

SUSTAIN

TTSA

FSLA

StocBiO

BSA

SOBA

MA-SOBA

SABA

100 200 300 400
Time [sec]

10−4

10−3

10−2

10−1

O
pt

im
al

it
y

Φ
(x

k
)
−

Φ
∗

SUSTAIN

TTSA

FSLA

StocBiO

BSA

SOBA

MA-SOBA

SABA

0.0 0.5 1.0 1.5 2.0
Number of calls to oracles ×1010

10−4

10−3

10−2

10−1

O
pt

im
al

it
y

Φ
(x

k
)
−

Φ
∗

SUSTAIN

TTSA

FSLA

StocBiO

BSA

SOBA

MA-SOBA

SABA

Figure 2.2. Comparison of MA-SOBA with other stochastic bilevel optimization
methods in the problem of hyperparameter optimization for ℓ2 regularized logistic
regression on the IJCNN1 data set. We plot the median performance over 10 runs
for each method. Left: Performance in runtime; Right: Performance in the number
of gradient/Hessian(Jacobian)-vector products sampled.

2.5.1.2. Data Hyper-Cleaning on MNIST. In the second task, we conduct data hyper-cleaning

on the MNIST data set introduced in Franceschi et al. [2017]. Data cleaning aims to train a

multinomial logistic regression model on the corrupted training set and determine a weight for

25

each training sample. These weights should approach zero for samples with corrupted labels. The

data set is partitioned into a training set Dtrain, a validation set Dval, and a test set Dtest, where

|Dtrain| = 20, 000, |Dval| = 5, 000, and |Dtest| = 10, 000. Each sample is represented as a vector X of

dimension 784, where the input image is flattened. The corresponding label takes values from the

set {0, 1, . . . , 9}. We use Y ∈ R10 to denote its one-hot encoding. Each sample in the training set is

corrupted with probability p by replacing its label with a random label {0, 1, . . . , 9}.
The task can be formulated into the bilevel optimization problem (2.1) with the inner variable

y being the regression coefficients and the outer variable x being the sample weight. The LL function

g is the sample-weighted cross-entropy loss on the corrupted training set with ℓ2 regularization. The

UL function f is the cross-entropy loss on the validation set. Precisely, the task can be formulated

into the bilevel optimization problem as below:

min
ν∈R|Dtrain|

Φ(ν) := E
(X,Y)∼Dval

[ℓ(W ∗(ν)X,Y)]︸ ︷︷ ︸
f(ν,W ∗(ν))

s.t. W ∗(ν) = argmin
ω∈Rd

1

|Dtrain|
∑

(Xi,Yi)∼Dtrain

σ(νi)ℓ(WXi,

corrupted︷︸︸︷
Ỹi) + Cr ∥W∥2

︸ ︷︷ ︸
g(ν,W)

,

where the outer variable (ν ∈ R20,000) is a vector of sample weights for the training set, the inner

variable W ∈ R10×784, and ℓ is the cross entropy loss and σ is the sigmoid function. The regularization

parameter Cr = 0.2 following Dagréou et al. [2022]. The objective of data hyper-cleaning is to train

a multinomial logistic regression model on the training set and determine a weight for each training

sample using the validation set. The weights are designed to approach zero for corrupted samples,

thereby aiding in the removal of these samples during the training process.

We report the test error in Figure 2.1(b). We observe that MA-SOBA outperforms other benchmark

methods by achieving lower test errors faster.

To supplement the comparison, we conducted additional experiments that involved comparing

all benchmark methods, including the variance reduction-based method. Following a grid search,

we have selected the parameters in MA-SOBA as αkτ = 103, βk = γk = 10−2, and θk = 10−1. In

Figure 2.3, we plot the test error against runtime and the number of calls to oracles with different

corruption probability p ∈ {0.5, 0.7, 0.9}. We observe that MA-SOBA has comparable performance to

26

the state-of-the-art method SABA. Remarkably, MA-SOBA is the fastest algorithm to reach the best

test accuracy when p = 0.5.

10−1 100 101 102

Time [sec]

15%

20%

30%

40%

T
es

t
er

ro
r

MRBO

SUSTAIN

TTSA

FSLA

AmIGO

StocBiO

BSA

SOBA

MA-SOBA

SABA

10−1 100 101 102

Time [sec]

15%

20%

30%

40%

T
es

t
er

ro
r

MRBO

SUSTAIN

TTSA

FSLA

AmIGO

StocBiO

BSA

SOBA

MA-SOBA

SABA

10−1 100 101 102

Time [sec]

15%

20%

30%

40%

T
es

t
er

ro
r

MRBO

SUSTAIN

TTSA

FSLA

AmIGO

StocBiO

BSA

SOBA

MA-SOBA

SABA

10−1 100 101 102 103

Time [sec]

15%

20%

30%

40%

T
es

t
er

ro
r

MRBO

SUSTAIN

TTSA

FSLA

AmIGO

StocBiO

BSA

SOBA

MA-SOBA

SABA

105 106 107

Number of calls to oracles

15%

20%

30%

40%

T
es

t
er

ro
r

MRBO

SUSTAIN

TTSA

FSLA

AmIGO

StocBiO

BSA

SOBA

MA-SOBA

SABA

(a) p = 0.5

104 105 106 107

Number of calls to oracles

15%

20%

30%

40%

T
es

t
er

ro
r

MRBO

SUSTAIN

TTSA

FSLA

AmIGO

StocBiO

BSA

SOBA

MA-SOBA

SABA

(b) p = 0.7

105 106 107

Number of calls to oracles

15%

20%

30%

40%

T
es

t
er

ro
r

MRBO

SUSTAIN

TTSA

FSLA

AmIGO

StocBiO

BSA

SOBA

MA-SOBA

SABA

(c) p = 0.9

Figure 2.3. Comparison of MA-SOBA with other stochastic bilevel optimization
methods in the problem of data hyper-cleaning on the MNIST data set when the
corruption probability p ∈ {0.5, 0.7, 0.9}. We plot the median performance over 10
runs for each method. Top: Performance in runtime; Bottom: Performance in the
number of gradient/Hessian(Jacobian)-vector products sampled.

2.5.2. Experimental Details for MORMA-SOBA. To demonstrate the practical perfor-

mance of MORMA-SOBA as compared to MORBiT [Gu et al., 2023], we conduct experiments in robust

multi-task representation learning introduced in Gu et al. [2023] on the FashionMNIST data set [Xiao

et al., 2017]. We adopt the same setup as described in Gu et al. [2023], which can be summarized as

follows.

Setup. We consider binary classification tasks generated from FashionMNIST where we select

8 “easy” tasks (lowest loss ∼ 0.3 from independent training) and 2 “hard” tasks (lowest loss ∼ 0.45

from independent training) for multi-objective robust representation learning:

• “easy” tasks: (0, 9), (1, 7), (2, 7), (2, 9), (4, 7), (4, 9), (3, 7), (3, 9)

• “hard” tasks: (0, 6), (2, 4)

27

For each task i ∈ [10] above, we partition its data set into the training set Dtrain
i , validation set Dval

i ,

and test set Dtest
i . We also generate 7 (unseen) binary classification tasks for testing:

• “easy” tasks: (1, 9), (2, 5), (4, 5), (5, 6) • “hard” tasks: (2, 6), (3, 6), (4, 6)

We train a shared representation network that maps the 784-dimensional (vectorized 28x28

images) input to a 100-dimensional space. To learn a shared representation and per-task models

that generalize well on each task, we aim to solve the following problem:

min
E∈R100×784

max
1≤i≤n

Φi(E) := E
(X,Y)∼Dval

i

ℓ
W ∗

i (E) ◦
representation︷ ︸︸ ︷
ReLU(EX)+b∗i (E), Y


︸ ︷︷ ︸

fi(E,(W ∗
i ,b

∗
i))

s.t.

W ∗
i (E)

b∗i (E)

 =

argmin
Wi∈R10×100,bi∈R10

E
(X,Y)∼Dtrain

i

ℓ
weight︷︸︸︷

Wi ◦ReLU(EX) +

bias︷︸︸︷
bi , Y

+ ρ ∥Wi∥2F︸ ︷︷ ︸
gi(E,(Wi,bi))

, 1 ≤ i ≤ n.

Each bilevel objective Φi in this setup represents a distinct binary classification “task” i ∈ [n] with

its own training and validation sets. The optimization variable is engaged in a shared representation

network, parameterized by the outer variable E ∈ R100×784, along with per-task linear models

parameterized by each inner variable (Wi, bi). The UL function fi is the average cross-entropy loss

over the Dval
i , and the LL function gi is the ℓ2 regularized cross-entropy loss over Dtrain

i . Each sample

is represented as a vector X of dimension 784, where the input image is flattened. The corresponding

label takes values from the set {0, 1, . . . , 9}. We use Y ∈ R10 to denote its one-hot encoding.

In the experiment, the regularization parameter in the LL function ρ = 5 × 10−4. The

implementation of MORBiT follows the same manner described in Gu et al. [2023]. Specifically, the

code of MORBiT [Gu et al., 2023] uses vanilla SGD with a learning rate scheduler and incorporates

momentum and weight decay techniques to optimize each variable:

• Outer variable: learning rate = 0.01, momentum = 0.9, weight_decay = 10−4

• Inner variable: learning rate = 0.01, momentum = 0.9, weight_decay = 10−4

• Simplex variable: learning rate = 0.3, momentum = 0.9, weight_decay = 10−4

28

0 100 200 300 400 500

Iteration

0.40

0.45

0.50

0.55

0.60

0.65

0.70

L
os

s

MORBiT (max)

MORMA-SOBA (max)

MORBiT (avg)

MORMA-SOBA (avg)

Figure 2.4. MORMA-SOBA (µλ = 0.01) vs. MORBiT on robust multi-task representation
learning.

In addition, MORBiT adopts a straightforward iterative auto-differentiation to calculate the

hypergradient without using Neumann approximation of the Hession inversion.

For the implementation of MORMA-SOBA, the regularization parameter µλ in 2.10 is set to be

0.01. All remaining parameters are chosen as constant values, as listed below:

• Outer variable: τx = 1, αk = 0.02,

• Inner variable: βk = 0.02

• Auxiliary variable: γk = 0.02

• Simplex variable: τλ = 1, αk = 0.02

• Average gradient: θk = 0.6

Both evaluated methods use batch sizes of 8 and 128 to compute gi for each inner step and fi

for each outer iteration, respectively.

In Figure 2.4, we compare our algorithm with the existing min-max bilevel algorithm MORBiT [Gu

et al., 2023] in terms of the average loss ((1/n)
∑

iΦi) and maximum loss (maxiΦi). The results

demonstrate the superiority of MORMA-SOBA over MORBiT in terms of lowering both the max loss

and average loss at a faster rate. In addition to Figure 2.4, which showcases the performance

on 10 seen tasks used for representation learning, we present Figure 2.5. This figure displays the

maximum/average loss values against the number of iterations on test sets consisting of 10 seen

tasks and 7 unseen tasks. Our approach, MORMA-SOBA, demonstrates superior performance in terms

of faster reduction of both maximum and average loss.

29

0 100 200 300 400 500

Iteration

0.40

0.45

0.50

0.55

0.60

0.65

0.70
L

os
s

(s
ee

n
ta

sk
s)

MORBiT (max) MORMA-SOBA (max) MORBiT (avg) MORMA-SOBA (avg)

0 100 200 300 400 500

Iteration

0.40

0.45

0.50

0.55

0.60

0.65

0.70

L
os

s
(s

ee
n

ta
sk

s)

MORBiT (max) MORMA-SOBA (max) MORBiT (avg) MORMA-SOBA (avg)

0 100 200 300 400 500

Iteration

0.50

0.55

0.60

0.65

0.70

0.75

0.80

L
os

s
(u

n
se

en
ta

sk
s)

MORBiT (max) MORMA-SOBA (max) MORBiT (avg) MORMA-SOBA (avg)

Figure 2.5. Comparison of MORMA-SOBA with MORBiT in the problem of multi-
objective robust representation learning for binary classification tasks on the Fash-
ionMNIST data set. We aggregate the results over 10 runs for each method. Left:
Performance on test sets of seen tasks; Right: Performance on unseen tasks.

2.5.3. Moving Average vs. Variance Reduction. Through empirical studies, we have

demonstrated that our proposed method, MA-SOBA, achieves comparable performance to the state-of-

the-art variance reduction-based approach SABA using SAGA updates [Defazio et al., 2014]. In this

context, we would like to highlight the key difference and relationship between these two methods.

We start with presenting the update rules of the sequence of estimated gradients {gk} for the

variance reduction techniques SAGA [Defazio et al., 2014] and our moving-average method (MA) for

the single-level problem:

SAGA (finite-sum:) min 1
n

∑n
i=1 fi(x)

gk = ∇fik(xk)−∇fik(x̄ik) +
1

n

n∑
j=1

∇fj(x̄j)

The SAGA update is designed for finite-sum problems with offline batch data. At each iteration

k, the algorithm randomly selects an index ik ∈ [n] and updates the gradient variable gk using a

reference point x̄ik , which corresponds to the last evaluated point for ∇fik . However, it should be

noted that SAGA requires storing the previously evaluated gradients ∇fj(x̄j) in a table, which can

be memory-intensive when sample size n or dimension d is large. In the finite-sum setting, there

exist several other variance reduction methods, such as SARAH [Dagréou et al., 2023], that can be

employed to further enhance the dependence on the number of samples, n, for bilevel optimization

30

problems. However, the SARAH-type method requires double gradient evaluations on each iteration

of xk and xk−1:

MA (expectation): min Eξ[f(x; ξ)]

gk = (1− αk)g
k−1 + αk∇f(xk; ξk+1)

Unlike variance reduction techniques, the moving-average methods can solve the general

expectation-form problem with online and streaming data using a simple update per iteration. In

addition, the moving-average techniques offer two more advantages:

Theoretical Assumption. All variance reduction methods, including SVRG [Reddi et al.,

2016], SAGA [Defazio et al., 2014], SARAH [Nguyen et al., 2017], STORM [Cutkosky and Orabona, 2019],

and others, typically rely on assuming mean-squared smoothness assumptions. In particular, for

stochastic optimization problems in the form of minx{f(x) = E[F (x, ξ)]}, the definition of mean-

squared smoothness (MSS) is: (MSS) Eξ[∥∇F (x, ξ)−∇F (x′, ξ)∥2] ≤ L2∥x−x′∥2. However, MSS is

a stronger assumption than the general smoothness assumption on f : ∥∇f(x)−∇f(x′)∥ ≤ L∥x−x′∥.
By Jensen’s inequality, we have that MSS is stronger than the general smoothness assumption on

f : ∥∇f(x)−∇f(x′)∥2 ≤ Eξ[∥∇F (x, ξ)−∇F (x′, ξ)∥2]. In this work, the theoretical results of the

proposed methods are only built on the smoothness assumption on the UL and LL functions f, g

without further assuming MSS on Fξ and Gϕ. It is worth noting that a clear distinction in the lower

bounds of sample complexity for solving the single-level stochastic optimization has been proven

in Arjevani et al. [2023]. Specifically, they establish a separation under the MSS assumption on Fξ

and smoothness assumptions on f (O(ϵ−1.5) vs. O(ϵ−2)). Thus, it is important to emphasize that

MA-SOBA achieves the optimal sample complexity O(ϵ−2) under our weaker assumptions.

Practical Implementation. Variance reduction methods often entail additional space com-

plexity, require double-loop implementation or double oracle computations per iteration. These

requirements can be unfavorable for large-scale problems with limited computing resources. For

instance, in the second task, the runtime improvement achieved by using SABA is limited. This

limitation can be attributed to the dimensionality of the variables ν (with a dimension of 20, 000) and

W (with a dimension of 10× 784). The benefit of using variance reduction methods is expected to be

less significant for more complex problems involving computationally expensive oracle evaluations.

31

2.6. Conclusion

In this work, we propose a novel class of algorithms (MA-SOBA) for solving stochastic bilevel

optimization problems in (2.1) by introducing the moving-average step to estimate the hypergradient.

We present a refined convergence analysis of our algorithm, achieving the optimal sample complexity

without relying on the high-order smoothness assumptions employed in the literature. Furthermore,

we extend our algorithm framework to tackle a generic min-max bilevel optimization problem within

the multi-objective setting, identifying and addressing the theoretical gap present in the literature.

32

CHAPTER 3

Decentralized Stochastic Bilevel Optimization

3.1. Introduction

Many machines learning problems can be formulated as a bilevel optimization problem of the

form,

(3.1)
min
x∈Rp

Φ(x) = f(x, y∗(x))

s.t. y∗(x) = argmin
y∈Rq

g(x, y),

where we minimize the upper level function f with respect to x subject to the constraint that y∗(x)

is the minimizer of the lower level function. Its applications can range from classical optimization

problems like compositional optimization [Chen et al., 2021a] to modern machine learning problems

such as reinforcement learning [Hong et al., 2020], meta learning [Snell et al., 2017, Bertinetto

et al., 2019, Rajeswaran et al., 2019, Ji et al., 2020], hyperparameter optimization [Pedregosa, 2016,

Franceschi et al., 2018], etc. State-of-the-art bilevel optimization algorithms with non-asymptotic

analyses include BSA [Ghadimi and Wang, 2018], TTSA [Hong et al., 2020], StocBiO [Ji et al., 2020],

ALSET [Chen et al., 2021a], to name a few.

Decentralized bilevel optimization aims at solving bilevel problems in a decentralized setting,

which provides additional benefits such as faster convergence, data privacy preservation and robustness

to low network bandwidth compared to the centralized setting and the single-agent training [Lian

et al., 2017]. For example, decentralized meta learning, which is a special case of decentralized bilevel

optimization, arise naturally in the context of medical data analysis in the context of protecting

patient privacy; see, for example, Altae-Tran et al. [2017], Zhang et al. [2019], Kayaalp et al. [2022].

Motivated by such applications, the works of Lu et al. [2022], Chen et al. [2022b], Yang et al. [2022],

Gao et al. [2022] proposed and analyzed various decentralized stochastic bilevel optimization (DSBO)

algorithms.

33

From a mathematical perspective, DSBO aims at solving the following problem in a distributed

setting:

(3.2)

min
x∈Rp

Φ(x) =
1

n

n∑
i=1

fi(x, y
∗(x))

s.t. y∗(x) = argmin
y∈Rq

g(x, y) :=
1

n

n∑
i=1

gi(x, y),

where x ∈ Rp, y ∈ Rq. fi is possibly nonconvex and gi is strongly convex in y. Here n denotes the

number of agents, and agent i only has access to stochastic oracles of fi, gi. The local objectives fi

and gi are defined as:

fi(x, y) = Eϕ∼Dfi
[F (x, y;ϕ)] , gi(x, y) = Eξ∼Dgi

[G(x, y; ξ)] .

Dfi and Dgi represent the data distributions used to generate the objectives for agent i, and each

agent only has access to fi and gi. In practice we can replace the expectation by empirical loss,

and then use samples to approximate the gradients in the updates. Existing works on DSBO

require computing the full Hessian (or Jacobian) matrices in the hypergradient estimation, whose

per-iteration complexity is O(q2) (or O(pq)). In problems like hyperparameter estimation, the lower

level corresponds to learning the parameters of a model. When considering modern overparametrized

models, the order of q is hence extremely large. Hence, to reduce the per-iteration complexity, it is

of great interest to have each iteration based only on Hessian-vector (or Jacobian-vector) products,

whose complexity is O(q) (or O(p)); see, for example, Pearlmutter [1994].

3.1.1. Our contributions. Our contributions in this work are as follows.

• We propose a novel method to estimate the global hypergradient. Our method estimates the

product of the inverse of the Hessian and vectors directly, without computing the full Hessian or

Jacobian matrices, and thus improves the previous overall (both computational and communication)

complexity on hypergradient estimation from O(Nq2) to O(Nq), where N is the total steps of the

hypergradient estimation subroutine.

• We design a DSBO algorithm (see Algorithm 5), and in Theorem 3.3.2 and Corollary 3.3.1 we

show the sample complexity is of order O(ϵ−2 log 1
ϵ), which matches the currently well-known

results of the single-agent bilevel optimization [Chen et al., 2021a]. Our proof relies on weaker

34

assumptions comparing to Yang et al. [2022], and is based on carefully combining moving average

stochastic gradient estimation analyses with the decentralized bilevel algorithm analyses.

• We conduct experiments on several machine learning problems. Our numerical results show the

efficiency of our algorithm in both the synthetic and the real-world problems. Moreover, since our

algorithm does not store the full Hessian or Jacobian matrices, both the space complexity and the

communication complexity are improved comparing to Chen et al. [2022b], Yang et al. [2022].

3.1.2. Related work. Bilevel optimization. Different from classical constrained optimization,

bilevel optimization restricts certain variables to be the minimizer of the lower level function, which

is more applicable in modern machine learning problems like meta learning [Snell et al., 2017,

Bertinetto et al., 2019, Rajeswaran et al., 2019] and hyperparameter optimization [Pedregosa, 2016,

Franceschi et al., 2018]. In recent years, Ghadimi and Wang [2018] gave the first non-asymptotic

analysis of the bilevel stochastic approximation methods, which attracted much attention to study

more efficient bilevel optimization algorithms including AID-based [Domke, 2012, Pedregosa, 2016,

Gould et al., 2016, Ghadimi and Wang, 2018, Grazzi et al., 2020, Ji et al., 2021], ITD-based

[Domke, 2012, Maclaurin et al., 2015, Franceschi et al., 2018, Grazzi et al., 2020, Ji et al., 2021], and

Neumann series-based [Chen et al., 2021a, Hong et al., 2020, Ji et al., 2021] methods. These methods

only require access to first order stochastic oracles and matrix-vector product (Hessian-vector and

Jacobian-vector) oracles, which demonstrate great potential in solving bilevel optimization problems

and achieve Õ(ϵ−2) sample complexity [Chen et al., 2021a, Arbel and Mairal, 2021] that matches

the result of SGD for single level stochastic optimization ignoring the log factors. Moreover, under

stronger assumptions and variance reduction techniques, better complexity bounds are obtained

[Guo et al., 2021a, Khanduri et al., 2021, Yang et al., 2021, Chen et al., 2022a].

Decentralized optimization. Extending optimization algorithms from a single-agent setting

to a multi-agent setting has been studied extensively in recent years thanks to the modern parallel

computing. Decentralized optimization, which does not require a central node, serves as an important

part of distributed optimization. Because of data heterogeneity and the absence of a central

node, decentralized optimization is more challenging and each node communicates with neighbors

to exchange information and solve a finite-sum optimization problem. Under certain scenarios,

decentralized algorithms are more preferable comparing to centralized ones since the former preserve

35

data privacy [Ram et al., 2009, Yan et al., 2012, Wu et al., 2017, Koloskova et al., 2020] and have

been proved useful when the network bandwidth is low [Lian et al., 2017].

Decentralized stochastic bilevel optimization. To make bilevel optimization applicable

in parallel computing, recent work started to focus on distributed stochastic bilevel optimization.

FEDNEST [Tarzanagh et al., 2022] and FedBiO [Li et al., 2022b] impose federated learning, which is

essentially a centralized setting, on stochastic bilevel optimization. Existing work on DSBO can be

classified to two categories: global DSBO and personalized DSBO. Problem (3.2) that we consider

in this paper is a global DSBO, where both lower-level and upper-level functions are not directly

accessible to any local agent. Other works on global DSBO include Chen et al. [2022b], Yang et al.

[2022], Gao et al. [2022]∗. The personalized DSBO [Lu et al., 2022] replaces y∗(x) by the local one

y∗i (x) = argmin y∈Rq gi(x, y) in (3.2), which leads to

(3.3)
min
x∈Rp

Φ(x) =
1

n

n∑
i=1

fi(x, y
∗
i (x))

s.t. y∗i (x) = argmin
y∈Rq

gi(x, y), i = 1, . . . , n.

To solve global DSBO (3.2), Chen et al. [2022b] proposes a JHIP oracle to estimate the Jacobian-

Hessian-inverse product while Yang et al. [2022] introduces a Hessian-inverse estimation subroutine

based on Neumann series approach which can be dated back to Ghadimi and Wang [2018]. However,

they both require computing the full Jacobian or Hessian matrices, which is extremely time-consuming

when q is large. In comparison, computing a Hessian-vector or Jacobian-vector product is more

efficient in large-scale machine learning problems [Bottou et al., 2018], and is commonly used in

vanilla bilevel optimization [Ghadimi and Wang, 2018, Ji et al., 2021, Chen et al., 2021a] to avoid

computing the Hessian inverse. In personalized DSBO (3.3), local computation is sufficient to

approximate ∇fi(x, y∗i (x)), and thus does not require computing the Hessian or Jacobian matrices

and single-agent bilevel optimization methods can be directly incorporated in the distributed regime.

In our paper we propose a novel algorithm that estimates the global hypergradient using only

first-order oracle and matrix-vector products oracle. Based on this we further design our algorithm

∗Here we point out that although Gao et al. [2022] claim that they solve the global DSBO, based on equations (2)
and (3) in their paper (https://arxiv.org/abs/2206.15025v1), it is clear that they are only solving a special case
of global DSBO problem. See appendix A.5.2 for detailed discussion.

36

https://arxiv.org/abs/2206.15025v1

Table 3.1. We compare our Algorithm 5 (MA-DSBO) with existing distributed
bilevel optimization algorithms: SPDB [Lu et al., 2022], DSBO-JHIP [Chen et al.,
2022b], and GBDSBO [Yang et al., 2022]. The problem types include Personalized-
Decentralized Stochastic Bilevel Optimization (P-DSBO), and Global-Decentralized
Stochastic Bilevel Optimization (G-DSBO). In the table we define d = max (p, q).
’Computation’ (See Section A.5.3 for details) and ’Samples’ represent the computa-
tional and sample complexity of finding an ϵ-stationary point, respectively. Õ hides
the log(1ϵ) factor. ’Jacobian’ refers to whether the algorithm requires computing full
Hessian or Jacobian matrix. ’Mini-batch’ refers to whether the algorithm requires
their batch size depending on ϵ−1.

Algorithm Problem Computation Samples Jacobian Mini-batch

SPDB P-DSBO Õ(dn−1ϵ−2) Õ(n−1ϵ−2) No Yes
DSBO-JHIP G-DSBO Õ(pqϵ−3) Õ(ϵ−3) Yes No
GBDSBO G-DSBO O((q2 log(1ϵ) + pq)n−1ϵ−2) Õ(n−1ϵ−2) Yes No
MA-DSBO G-DSBO Õ(dϵ−2) Õ(ϵ−2) No No

for solving DSBO that does not require to compute the full Jacobian or Hessian matrices. We

summarize the results of aforementioned works and our results in Table 3.1.

Notation. We denote by ∇f(x, y) and ∇2f(x, y) the gradient and Hessian matrix of f ,

respectively. We use ∇xf(x, y) and ∇yf(x, y) to represent the gradients of f with respect to x and

y, respectively. Denote by ∇2
xyf(x, y) ∈ Rp×q the Jacobian matrix of f and ∇2

yf(x, y) the Hessian

matrix of f with respect to y. ∥ · ∥ denotes the ℓ2 norm for vectors and Frobenius norm for matrices,

unless specified. 1n is the all one vector in Rn, and Jn = 1n1
⊤
n is the n× n all one matrix. We use

uppercase letters to represent the matrix that collecting all the variables (corresponding lowercase)

as columns. For example Xk = (x1,k, ..., xn,k) , Y
(t)
k =

(
y
(t)
1,k, ..., y

(t)
n,k

)
. We add an overbar to a letter

to denote the average over all nodes. For example, x̄k = 1
n

∑n
i=1 xi,k, ȳ

(t)
k = 1

n

∑n
i=1 y

(t)
i,k.

3.2. Preliminaries

The following assumptions are used throughout this paper. They are standard assumptions

that are made in the literature on bilevel optimization [Ghadimi and Wang, 2018, Hong et al., 2020,

Chen et al., 2021a, Ji et al., 2021, Huang et al., 2023] and decentralized optimization [Qu and Li,

2017, Nedic et al., 2017, Lian et al., 2017, Tang et al., 2018].

Assumption 5 (Smoothness). There exist positive constants µg, Lf,0, Lf,1, Lg,1, Lg,2 such that

for any i, functions fi, ∇fi, ∇gi, ∇2gi are Lf,0, Lf,1, Lg,1, Lg,2 Lipschitz continuous respectively,

and function gi is µg-strongly convex in y.

37

Assumption 6 (Network topology). The weight matrix W = (wij) ∈ Rn×n is symmetric and

doubly stochastic, i.e.:

W =W⊤, W1n = 1n, wij ≥ 0, ∀i, j,

and its eigenvalues satisfy 1 = λ1 > λ2 ≥ ... ≥ λn and ρ := max{|λ2|, |λn|} < 1.

The weight matrix given in Assumption 6 characterizes the network topology by setting the

weight parameter between agent i and agent j to be wij . The condition ρ < 1 is termed as ’spectral

gap’ [Lian et al., 2017], and is used in distributed optimization to ensure the decay of the consensus

error, i.e., E[∥Xk−x̄k1
⊤
n ∥2]

n , among the agents, which eventually guarantees the consensus among

agents.

Assumption 7 (Gradient heterogeneity). There exists a constant δ ≥ 0 such that for all

1 ≤ i ≤ n, x ∈ Rp, y ∈ Rq,

∥∇ygi(x, y)−
1

n

n∑
l=1

∇ygl(x, y)∥ ≤ δ.

The above assumption is commonly used in distributed optimization literature (see, e.g., Lian

et al. [2017]), and it indicates the level of similarity between the local gradient and the global

gradient. Moreover, it is weaker than the Assumption 3.4 (iv) of Yang et al. [2022] which assumes

that ∇ygi(x, y; ξ) has a bounded second moment. This is because the bounded second moment

implies the boundedness of ∇yg(x, y), as we have

∥∇yg(x, y)∥2 ≤E
[
∥∇yg(x, y)−∇yg(x, y; ξ)∥2

]
+ ∥∇yg(x, y)∥2

=E
[
∥∇yg(x, y; ξ)∥2

]
– uniformly bounded,

where the equality holds since we have E
[
∥X∥2

]
= E

[
∥X − E [X] ∥2

]
+ ∥E [X] ∥2 for any random

vector X. It directly gives the inequality in Assumption 7. However Assumption 7 does not imply

the boundedness of ∇yg(x, y) (e.g., gi(x, y) = y⊤y for all i satisfies Assumption 7 but does not have

bounded gradient.)

Assumption 8 (Bounded variance). The stochastic derivatives, ∇fi(x, y;ϕ), ∇gi(x, y; ξ), and

∇2gi(x, y; ξ), are unbiased with bounded variances σ2f , σ
2
g,1, σ

2
g,2, respectively.

Note that we do not make any assumptions on whether the data distributions are heterogeneous

or identically distributed.

38

3.3. DSBO Algorithm with Improved Per-Iteration Complexity

We start with following standard result in the bilevel optimization literature [Ghadimi and

Wang, 2018, Hong et al., 2020, Ji et al., 2020, Chen et al., 2021a] that gives a closed form expression

of the hypergradient ∇Φ(x), making gradient-based bilevel optimization tractable.

Lemma 3.3.0.1. Suppose Assumption 5 holds. The hypergradient ∇Φ(x) of (3.2) takes the

form:

(3.4)

∇Φ(x) =
1

n

(
n∑

i=1

∇xfi(x, y
∗(x))

)
−∇2

xyg(x, y
∗(x))

(
∇2

yg(x, y
∗(x))

)−1

[
1

n

(
n∑

i=1

∇yfi(x, y
∗(x))

)]
.

We also include smoothness properties of ∇Φ(x) and y∗(x) in Section A.4 in the appendix.

3.3.1. Main challenge. As discussed in Chen et al. [2022b] and Yang et al. [2022], the main

challenge in designing DSBO algorithms is to estimate the global hypergradient. This is challenging

because of the data heterogeneity across agents, which leads to

(3.5) ∇2
xyg(x, y

∗(x))
(
∇2

yg(x, y
∗(x))

)−1 ̸= 1

n

n∑
i=1

∇2
xygi(x, y

∗
i (x))

(
∇2

ygi(x, y
∗
i (x))

)−1
,

where y∗i (x) = argmin y∈Rq gi(x, y). This shows that simply averaging the local hypergradients does

not give a good approximation to the global hypergradient. A decentralized approach should be

designed to estimate the global hypergradient ∇Φ(x).

To this end, the JHIP oracle in Chen et al. [2022b] manages to estimate(
n∑

i=1

∇2
xygi(x, y

∗(x))

)(
n∑

i=1

∇2
ygi(x, y

∗(x))

)−1

using decentralized optimization approach, and Yang et al. [2022] proposed to estimate the global

Hessian-inverse, i.e., (
n∑

i=1

∇2
ygi(x, y

∗(x))

)−1

via a Neumann series based approach. Instead of focusing on full matrices computation, we consider

approximating

(3.6) z =

(
n∑

i=1

∇2
ygi(x, y

∗(x))

)−1(n∑
i=1

∇yfi(x, y
∗(x))

)
.

39

According to (3.4), the global hypergradient is given by

(3.7) ∇Φ(x) =
1

n

n∑
i=1

(∇xfi(x, y
∗(x))−∇2

xygi(x, y
∗(x))z).

From the above expression we know that as long as node i can have a good estimate of ∇xfi(x, y
∗(x))

and ∇2
xygi(x, y

∗(x))z, then on average the update will be a good approximation to the global

hypergradient. More importantly, the process of estimating z can avoid computing the full Hessian

or Jacobian matrices.

3.3.2. Hessian-Inverse-Gradient-Product oracle. Solving (3.6) is essentially a decentralized

optimization with a strongly convex quadratic objective function. Suppose each agent only has

access to Hi ∈ Sq×q
++ and bi ∈ Rq, and all the agents collectively solve for

(3.8)
n∑

i=1

Hiz =

n∑
i=1

bi, or z =

(
n∑

i=1

Hi

)−1(n∑
i=1

bi

)
.

From an optimization perspective, the above expression is the optimality condition of:

(3.9) min
z∈Rq

1

n

n∑
i=1

hi(z), where hi(z) =
1

2
z⊤Hiz − b⊤i z.

Hence we can design a decentralized algorithm to solve for z without the presence of a central server.

Based on this observation and (3.7), we present our Hessian-Inverse-Gradient Product oracle in

Algorithm 3.

Algorithm 3: Hessian-Inverse-Gradient Product oracle

1: Input: (H
(k)
i,t , b

(k)
i,t), for 0 ≤ t ≤ N accessible only to agent i. Stepsize γ, number of total

iterations N , d(k)i,0 = −b(k)i,0 , s
(k)
i,0 = −b(k)i,0 , and z(k)i,0 = 0.

2: for t = 0, 1, ..., N − 1 do
3: for i = 1, ..., n do
4: z

(k)
i,t+1 =

∑n
j=1wijz

(k)
j,t − γd

(k)
i,t ,

5: s
(k)
i,t+1 = H

(k)
i,t+1z

(k)
i,t+1 − b

(k)
i,t+1,

6: d
(k)
i,t+1 =

∑n
j=1wijd

(k)
j,t + s

(k)
i,t+1 − s

(k)
i,t ,

7: end for
8: end for
9: Output:z(k)i,N on each node.

It is known that vanilla decentralized gradient descent (DGD) with a constant stepsize only

converges to a neighborhood of the optimal solution even under the deterministic setting [Yuan

40

et al., 2016]. Therefore, one must use diminishing stepsize in DGD, and this leads to the sublinear

convergence rate even when the objective function is strongly convex. To resolve this issue, there are

various decentralized algorithms with a fixed stepsize [Xu et al., 2015, Shi et al., 2015, Di Lorenzo

and Scutari, 2016, Nedic et al., 2017, Qu and Li, 2017] achieving linear convergence on a strongly

convex function in the deterministic setting. Among them, one widely used technique is the gradient

tracking method [Xu et al., 2015, Qu and Li, 2017, Nedic et al., 2017, Pu and Nedić, 2021], which

is also incorporated in our Algorithm 3. Instead of using the local stochastic gradient in line 4 of

Algorithm 3, we maintain another set of variables d(k)i,t+1 in line 6 as the gradient tracking step. We

will utilize the linear convergence property of gradient tracking in our convergence analysis.

Algorithm 4: Hypergradient Estimation

1: Input: Samples ϕ = (ϕi,0, ..., ϕi,N), ξ = (ξi,0, ..., ξi,N) on node i.
2: Run Algorithm 3 with H(k)

i,t = ∇2
ygi(xi,k, y

(T)
i,k ; ξi,t), b

(k)
i,t = ∇yfi(xi,k, y

(T)
i,k ;ϕi,t) to get z(k)i,N .

3: Set ui,k = ∇xfi(xi,k, y
(T)
i,k ;ϕi,0)−∇2

xygi(xi,k, y
(T)
i,k ; ξi,0)z

(k)
i,N .

4: Output: ui,k on node i.

Note that for simplicity we write H(k)
i,t = ∇2

ygi(xi,k, y
(T)
i,k ; ξi,t) in line 3 of Algorithm 4, however,

the real implementation only requires Hessian-vector products, as shown in Algorithm 3, and we do

not need to compute the full Hessian.

3.3.3. Decentralized Stochastic Bilevel Optimization. Now we are ready to present our

DSBO algorithm with the moving average technique, which we refer to as the MA-DSBO algorithm.

In Algorithm 5 we adopt the basic structure of double-loop bilevel optimization algorithm [Ghadimi

and Wang, 2018, Ji et al., 2021, Chen et al., 2021a] – we first run T -step inner loop (line 4-8) to

obtain a good approximation of y∗. Next, we run Algorithm 4 to estimate the hypergradient. To

reduce the order of the bias in hypergradient estimation error (see Section 3.3.5.1 for details), we

introduce the moving average update to maintain another set of variables ri,k as the update direction

of x. The using of the moving average update helps reduce the order of bias in the stochastic

gradient estimate. It is worth noting that similar techniques have been used in the context of nested

stochastic composition optimization in Ghadimi et al. [2020], Balasubramanian et al. [2022]. Note

that all communication steps of our Algorithms (lines 4 and 6 of Algorithm 3, lines 6 and 11 of

Algorithm 5) only include sending (resp. receiving) vectors to (resp. from) neighbors, which greatly

41

Algorithm 5: MA-DSBO Algorithm

1: Input: Stepsizes αk, βk, iteration numbers K,T,N , y(0)i,k = 0, and xi,0 = ri,0 = 0.
2: for k = 0, 1, ...,K − 1 do
3: y

(0)
i,k = y

(T)
i,k−1.

4: for t = 0, 1, ..., T − 1 do
5: for i = 1, ..., n do
6: y

(t+1)
i,k =

∑n
j=1wijy

(t)
j,k − βkv

(t)
i,k with v

(t)
i,k = ∇ygi(xi,k, y

(t)
i,k; ξ̃

(t)
i,k)

7: end for
8: end for
9: Run Algorithm 4 and set the output as ui,k.

10: for i = 1, ..., n do
11: xi,k+1 =

∑n
j=1wijxj,k − αkri,k.

12: ri,k+1 = (1− αk)ri,k + αkui,k.
13: end for
14: end for
15: Output: x̄K = 1

n

∑n
i=1 xi,K .

reduce the per-iteration communication complexity from max{pq, q2} of GBDSBO (see line 8 and 11

of Algorithm 1 in Yang et al. [2022]).) to max{p, q}.
We now introduce our notion of convergence. Specifically, the ϵ-stationary point of (3.3) is

defined as follows.

Definition 3.3.1. For a sequence {x̄k}Kk=0 generated by Algorithm 5, if

min
0≤k≤K

E
[
∥∇Φ(x̄k)∥2

]
≤ ϵ

for some positive integer K, then we say that we find an ϵ-stationary point of (3.3).

The above notion of stationary point is commonly used in decentralized non-convex stochastic

optimization [Lian et al., 2017]. When ϵ = 0, it indicates that the hypergradient at some iterate x̄k

is zero. The convergence result of Algorithm 5 is given in Theorem 3.3.2.

Theorem 3.3.2. Suppose Assumptions 5, 6, 7, and 8 hold. There exist constants † 0 < c1 < c2

such that in Algorithm 5 if we set γ ∈ (c1, c2), T ≥ 1, and

αk ≡ Θ

(
1√
K

)
, βk ≡ Θ

(
1√
K

)
, N = Θ(logK) ,

†The constants are independent of K and the details are given in the appendix.

42

then we have

min
0≤k≤K

E
[
∥∇Φ(x̄k)∥2

]
= O

(
1√
K

)
, min

0≤k≤K

E
[
∥Xk − x̄k1

⊤
n ∥2

]
n

= O
(

1

K

)
.

Note that this theorem indicates that the consensus error is of order O
(
1
K

)
, and for any positive

constant ϵ, the iteration complexity of Algorithm 5 for obtaining an ϵ-stationary point of (3.2) is

O(ϵ−2). Moreover, we have the following corollary that gives the sample complexity of our algorithm.

Corollary 3.3.1. Suppose the conditions of Theorem 3.3.2 hold. For any ϵ > 0, if we set

K = O
(
ϵ−2
)
, N = Θ(log 1

ϵ), and T = 1, then in Algorithm 5 the sample complexity to find an

ϵ-stationary point is O(ϵ−2 log(1ϵ)).

It is worth noting that T ≥ 1 in Theorem 3.3.2 implies, to some extent, that by setting a

single timescale, more inner loop iterations will not help improve the convergence result in terms

of K. This observation partially answers the decentralized version of the question ‘Will Bilevel

Optimizers Benefit from Loops?’ mentioned in the title of Ji et al. [2022]. It is interesting to study

how setting T dependent on other problem parameters will improve the dependency on problem

parameters in the final convergence rate. The hypergradient estimation algorithms (i.e., HIGP oracle

and Algorithm 4) provide an additional O(log 1
ϵ) factor in the sample complexity, which matches

Chen et al. [2021a]. To further remove the log factor, Arbel and Mairal [2021] applies warm start

to hypergradient estimation and uses mini-batch method (whose batch sizes are dependent on ϵ−1)

to reduce this complexity and eventually obtain O(ϵ−2). It would be interesting to study how to

apply the warm start strategy to remove the log factor in our complexity bound without using

mini-batch method. One restriction of Theorem 3.3.2 is that we do not obtain the convergence rate

O(1√
nK

), i.e., the linear speedup in terms of the number of the agents. The recent work of Yang

et al. [2022] achieves linear speedup. However, some of their assumptions are restrictive (see Section

A.5 for a detailed discussion). Besides, according to Table 3.1, our Algorithm is more efficient and

preferable when min{p, q} > n since we improve the per-iteration computational and communication

complexity from max{pq, q2} in Yang et al. [2022] to max{p, q}. It would be interesting to study

how to incorporate Jacobian-computing-free algorithm in DSBO under the mild assumptions without

affecting linear speedup.

43

3.3.4. Consequences for Decentralized Stochastic Compositional Optimization. Note

that our algorithm can be used to solve Decentralized Stochastic Compositional Optimization (DSCO)

problem:

(3.10) min
x∈Rp

Φ(x) =
1

n

n∑
i=1

fi

 1

n

n∑
j=1

gj(x)

 ,

which can be written in a bilevel formulation:

(3.11)

min
x∈Rp

Φ(x) =
1

n

n∑
i=1

fi(y
∗(x))

s.t. y∗(x) = argmin
y∈Rq

1

n

n∑
i=1

(
1

2
y⊤y − gi(x)

⊤y
)
,

To solve DSCO, Zhao and Liu [2022] proposes D-ASCGD and its compressed version. Both of

them have O(ϵ−2) sample complexity. However, their algorithm requires stronger assumptions (see

Assumption 1 (a) in Zhao and Liu [2022]) and needs to compute full Jacobians (i.e., ∇gi(x; ξ)),
which lead to O(pqϵ−2) computational complexity. By using our Algorithm 5, we can obtain

Õ(max(p, q)ϵ−2) computational complexity, which is preferable in high dimensional problems. We

state the result formally in the corollary below; the proof is immediate.

Corollary 3.3.2. Suppose the conditions of Theorem 3.3.2 hold. For any ϵ > 0, if we set

K = O
(
ϵ−2
)
, N = Θ(log 1

ϵ), and T = 1, then the sample complexity of using Algorithm 5 to

find an ϵ-stationary point of Problem (3.11) is O(ϵ−2 log(1ϵ)), and the computational complexity is

Õ(max(p, q)ϵ−2).

3.3.5. Proof sketch. In this section we briefly introduce a sketch of our proof for Theorem

3.3.2 as well as the ideas of the algorithm design. Throughout our analysis, we define the filtration as

Fk = σ

(
n⋃

i=1

{y(T)
i,0 , ..., y

(T)
i,k , xi,0, ..., xi,k, ri,0, ..., ri,k}

)
.

3.3.5.1. Moving average method. The moving average method used in line 12 of Algorithm 5

serves as a key step in setting up the convergence analysis framework. We focus on estimating

1

K

K∑
k=0

E
[
∥r̄k∥2 + ∥r̄k −∇Φ(x̄k)∥2

]
,

44

which provides another optimality measure for finding the ϵ-stationary point since we know

E
[
∥r̄k∥2 + ∥r̄k −∇Φ(x̄k)∥2

]
≥ 1

2
E
[
∥∇Φ(x̄k)∥2

]
.

It can then be shown that by appropriately choosing parameters (see Lemma A.4.0.11 and A.4.0.12

for details), we obtain

1

K

K∑
k=0

E
[
∥r̄k∥2 + ∥r̄k −∇Φ(x̄k)∥2

]
= O

(
1√
K

+
1

K

K∑
k=0

E
[
∥E [ūk|Fk]−∇Φ(x̄k)∥2

])
,

which implies that it suffices to bound the hypergradient estimation error, namely, the second term

on the right hand side of the above equality. The moving average technique reduces the bias in

the hypergradient estimate so that we can directly bound E
[
∥E [ūk|Fk]−∇Φ(x̄k)∥2

]
instead of

E
[
∥ūk −∇Φ(x̄k)∥2

]
, and the former one makes use of the linear convergence property of the gradient

tracking methods, which is elaborated in the next section.

3.3.5.2. Convergence of HIGP. Define

y∗k = y∗(x̄k), z
(k)
∗ =

(
n∑

i=1

∇2
ygi(x̄k, y

∗
k)

)−1(n∑
i=1

∇yfi(x̄k, y
∗
k)

)
.

To bound the hypergradient estimation error, a rough analysis (see Lemma A.4.0.13) shows that

E
[
∥E [ūk|Fk]−∇Φ(x̄k)∥2

]
=O

(
E
[
∥Xk − x̄k1

⊤∥2 + ∥Y (T)
k − ȳ

(T)
k 1⊤∥2 + ∥ȳ(T)

k − y∗k∥2
]

+ E
[
∥E
[
z
(k)
i,N − z̄

(k)
N |Fk

]
∥2 + ∥E

[
z̄
(k)
N |Fk

]
− z

(k)
∗ ∥2

])
,

where the first two terms on the right hand side denote the consensus error among agents, and can be

bounded via techniques in decentralized optimization (Lemma A.4.0.7). The third term represents

the inner loop estimation error, which can be bounded by considering its decrease as k increases

(Lemma A.4.0.8). Our novelty lies in bounding the last two terms – the consensus and convergence

analysis of the HIGP oracle. Observe that by setting

ż
(k)
i,t = E

[
z
(k)
i,t |Fk

]
, ḋ

(k)
j,t = E

[
d
(k)
j,t |Fk

]
, ṡ

(k)
i,t = E

[
s
(k)
i,t |Fk

]
,

we know from Algorithm 3

ż
(k)
i,t+1 =

n∑
j=1

wij ż
(k)
j,t − γḋ

(k)
i,t , Z

(k)
0 = 0,

45

ḋ
(k)
i,t+1 =

n∑
i=1

wij ḋ
(k)
j,t + ṡ

(k)
i,t+1 − ṡ

(k)
i,t ,

ṡ
(k)
i,t = ∇2

ygi(xi,k, y
(T)
i,k)ż

(k)
i,t −∇yfi(xi,k, y

(T)
i,k),

which is exactly a deterministic gradient descent scheme with gradient tracking on a strongly convex

and smooth quadratic function. Hence the linear convergence results in gradient tracking methods

can be applied, and this also explains why γ can be chosen as a constant that is independent of K.

Mathematically, in Lemmas A.4.0.9 and A.4.0.13 we explicitly characterize the error and eventually

obtain the final convergence result in Theorem 3.3.2.

0 20 40 60 80 100
Iteration

0.5

0.6

0.7

0.8

0.9

Te
st

 A
cc

ur
ac

y

Test Accuracy, = = 0.01
Test Accuracy, = = 0.03

(a)

0 10 20 30 40 50 60
Time

0.5

0.6

0.7

0.8

0.9

Ac
cu

ra
cy

DSBO_JHIP
GB_DSBO
MA_DSBO

(b)

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Communicated Blocks 1e8

0.5

0.6

0.7

0.8

0.9

Ac
cu

ra
cy

DSBO_JHIP
GB_DSBO
MA_DSBO

(c)

Figure 3.1. ℓ2-regularized logistic regression on synthetic data.

0 5 10 15 20 25 30
Iteration

0.0

0.2

0.4

0.6

0.8

Te
st

 A
cc

ur
ac

y

Test Accuracy, =0.3, =0.3
Test Accuracy, =0.9, =0.3
Test Accuracy, =0.3, =0.9
Test Accuracy, =0.9, =0.9

(a)

0 5 10 15 20 25 30
Iteration

0

10

20

30

40

Tr
ai

ni
ng

 L
os

s

Training Loss, =0.3, =0.3
Training Loss, =0.9, =0.3
Training Loss, =0.3, =0.9
Training Loss, =0.9, =0.9

(b)

0 5 10 15 20 25 30
Iteration

0

10

20

30

40

Te
st

 L
os

s

Test Loss, =0.3, =0.3
Test Loss, =0.9, =0.3
Test Loss, =0.3, =0.9
Test Loss, =0.9, =0.9

(c)

Figure 3.2. ℓ2-regularized logistic regression on MNIST.

3.4. Numerical experiments

In this section we study the applications of Algorithm 5 on hyperparameter optimization:

min
λ∈Rp

1

n

n∑
i=1

fi(λ, ω
∗(λ)),

s.t. ω∗(λ) = argmin
w∈Rq

1

n

n∑
i=1

gi(λ, ω),

46

where we aim at finding the optimal hyperparameter λ under the constraint that ω∗(λ) is the optimal

model parameter given λ. We consider both the synthetic and real world data. Comparing to

hypergradient estimation algorithms in Chen et al. [2022b] and Yang et al. [2022], our HIGP oracle

(Algorithm 3) reduces both the per-iteration complexity and storage from O(q2) to O(q). All the

experiments are performed on a local device with 8 cores (n = 8) using mpi4py [Dalcin and Fang,

2021] for parallel computing and PyTorch [Paszke et al., 2019] for computing stochastic oracles. The

network topology is set to be the ring topology with the weight matrix W = (wij) given by

wii = w, wi,i+1 = wi,i−1 =
1− w

2
, for some w ∈ (0, 1).

Here w1,0 = w1,n and wn,n+1 = wn,1. In other words, the neighbors of agent i only include i− 1 and

i+ 1 for i = 1, 2, ..., n with 0 and n+ 1 representing n and 1 respectively.

3.4.1. Heterogeneous and normally distributed data. Following Pedregosa [2016], Grazzi

et al. [2020], Chen et al. [2022b], fi and gi are defined as:

fi(λ, ω) =
∑

(xe,ye)∈D′
i

ψ(yex
⊤
e ω),

gi(λ, ω) =
∑

(xe,ye)∈Di

ψ(yex
⊤
e ω) +

1

2

p∑
i=1

eλiω2
i ,

where ψ(x) = log(1 + e−x) and p = 200 denotes the dimension parameter. A ground truth vector w∗

is generated in the beginning, and each xe ∈ Rp is generated according to the normal distribution.

The data distribution of xe on node i is N (0, i2). Then we set ye = x⊤e w+ε ·z, where ε = 0.1 denotes

the noise rate and z ∈ Rp is the noise vector sampled from standard normal distribution. The task

is to learn the optimal regularization parameter λ ∈ Rp. We also compare our Algorithm 5 with

GBDSBO [Yang et al., 2022] and DSBO-JHIP [Chen et al., 2022b] under this setting with dimension

parameter p = 100. Figures 3.1(a), 3.1(b) and 3.1(c)‡ demonstrate the efficiency of our algorithm

in both time and space complexity. Due to space limit, we include our additional experiments in

Section A.3.

‡The word "block" is a term used in tracemalloc module in Python (see https://docs.python.org/3/library/
tracemalloc.html) to measure the memory usage, and we keep track of the number of the communicated blocks
between different agents as a direct measure for communication cost.

47

https://docs.python.org/3/library/tracemalloc.html
https://docs.python.org/3/library/tracemalloc.html

3.4.2. MNIST. Now we consider hyperparameter optimization on MNIST dataset [LeCun

et al., 1998]. Following Grazzi et al. [2020], we have

fi(λ, ω) =
1

|D′
i|

∑
(xe,ye)∈D′

i

L(x⊤e ω, ye),

gi(λ, ω) =
1

|Di|
∑

(xe,ye)∈Di

L(x⊤e ω, ye) +
1

cp

c∑
i=1

p∑
j=1

eλjω2
ij ,

where c = 10, p = 784 denote the number of classes and the number of features, ω ∈ Rc×p is the

model parameter, and L denotes the cross entropy loss. Di and D′
i denote the training and validation

set respectively. The batch size is 1000 in each stochastic oracle. We include the numerical results of

different stepsize choices in Figure 3.2. Note that in previous algorithms [Chen et al., 2022b, Yang

et al., 2022] one Hessian matrix of the lower level function requires O(c2p2) storage, while in our

algorithm a Hessian-vector product only requires O(cp) storage, which improves both the space

and the communication complexity. The accuracy and the loss curves indicate that our MA-DSBO

Algorithm 5 has a considerably good performance on real world dataset. Note that this problem has

larger dimension, and the other algorithms took more time so we do not do the comparison.

3.5. Conclusion

In this paper, we propose a DSBO algorithm that does not require computing full Hessian

and Jacobian matrices, thereby improving the per-iteration complexity of currently known DSBO

algorithms, under mild assumptions. Moreover, we prove that our algorithm achieves Õ(ϵ−2) sample

complexity, which matches the result in state-of-the-art single-agent bilevel optimization algorithms.

We would like to point out that Assumption 7 (or bounded second moment condition in Yang et al.

[2022]) requires certain types of upper bounds on ∥∇yg(x, y)∥, which may not hold in decentralized

optimization (see, e.g., Pu and Nedić [2021]). It is interesting to study decentralized stochastic

bilevel optimization without this type of conditions, and one promising direction is to apply variance

reduction techniques like in Tang et al. [2018]. It is also interesting to incorporate Hessian-free

methods [Sow et al., 2022c] in DSBO, and we leave it as future work.

48

CHAPTER 4

Training Dynamics of Gradient Descent for Quadratic Regression

4.1. Introduction

Iterative algorithms like the gradient descent and its stochastic variants are widely used to

train deep neural networks. For a given step-size (or learning rate) parameter η > 0, the gradient

descent algorithm is of the form w(t+1) = w(t) − η∇ℓ(w(t)) where ℓ is the training objective function

being minimized, which depends on the loss function and the neural network architecture and the

dataset. Classical optimization theory operates under small-order step-sizes. In this regime, one can

think of the gradient descent algorithm as a discretization of so-called gradient flow equation given

by ẇ(t) = −∇ℓ(w(t)), which could be obtained from the gradient descent algorithm by letting η → 0.

Additionally, assuming that the objective function ℓ has gradients that are L-Lipschitz, selecting a

step-size η < 1/L guarantees convergence to stationarity.

In stark contrast to traditional optimization, recent empirical studies in deep learning have

revealed that training deep neural networks with large-order step-sizes yields superior generalization

performance. Unlike the scenario with small step-sizes, where gradient descent dynamics follow

a monotonic pattern, larger step-sizes introduce a more intricate behavior. Various patterns like

catapult, (also related to edge of stability), periodicity and chaotic dynamics in neural network

training with large step-sizes have been observed empirically, for example, by Lewkowycz et al.

[2020], Jastrzebski et al. [2020], Cohen et al. [2021], Lobacheva et al. [2021], Gilmer et al. [2022], Zhang

et al. [2022a], Kodryan et al. [2022], Herrmann et al. [2022]. A recent work by Sohl-Dickstein [2024]

also empirically observe that the boundary between stable and divergent training behaviour, in terms

of hyperparameters (including the step-size parameter), exhibits a fractal structure. Furthermore,

the necessity for step-size schedules to include large-order step-sizes to expedite convergence and the

ensuing chaotic behavior has also been observed empirically outside the deep learning community

by Van Den Doel and Ascher [2012], much earlier.

49

Faster convergence of gradient descent with iteration-dependent step-size schedules that have

specific patterns (including cyclic and fractal patterns) has been examined empirically by Lebedev

and Finogenov [1971], Smith [2017], Oymak [2021], Agarwal et al. [2021], Goujaud et al. [2022],

and Grimmer [2023], with Altschuler and Parrilo [2023] and Grimmer et al. [2023] proving the

state-of-the art remarkable results; see also Altschuler and Parrilo [2023, Section 1.2] for a historical

overview. Notably, the stated faster convergence behavior of gradient descent requires large order

step-sizes, very much violating the classical case. More importantly, the corresponding optimization

trajectory, while being non-monotonic, exhibits intriguing patterns [Van Den Doel and Ascher, 2012].

Considering the aforementioned factors, gaining insight into the dynamics of gradient descent

with large-order step-sizes emerges as a pivotal endeavor. A precise theoretical characterizing of the

gradient descent dynamics in the large step-size regime for deep neural network, and other such non-

convex models, is a formidably challenging problem. Existing findings (as detailed in Section 4.1.1)

often rely on strong assumptions, even when attempting to delineate a subset of the aforementioned

patterns, and do not provide a comprehensive account of the entire narrative underlying the training

dynamics. Recent research, such as Agarwala et al. [2023], Zhu et al. [2024], and Zhu et al. [2023b],

has pivoted towards comprehending the dynamics of quadratic regression models based on a local

analysis. These models offer a valuable testing ground due to their ability to provide tractable

approximations for various machine learning models, including phase retrieval, matrix factorization,

and two-layer neural networks, all of which exhibit unstable training dynamics. Despite their seeming

simplicity, a fine-grained understanding of their training dynamics is far from trivial. Building in

this direction, the primary aim of our work is to attain a precise characterization of the training

dynamics of gradient descent in quadratic models, thereby fostering a deeper comprehension of the

diverse phases involved in the training process.

50

0 2 4 6 8 10 12 14
k

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

|x
k|

a = 0.0001

(a)

0 2 4 6 8 10 12 14
k

0.2

0.4

0.6

0.8

1.0

1.2

1.4

|x
k|

a = 1

(b)

0 2 4 6 8 10 12 14
k

0.4

0.6

0.8

1.0

1.2

1.4

|x
k|

a = 1.2

(c)

0 25 50 75 100 125 150 175 200
k

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

|x
k|

a = 1.8

(d)

0 2 4 6 8 10 12 14
k

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

|x
k|

1e70

a = 2.016

(e)

Figure 4.1. Phases of cubic-map based dynamical system in (4.2) parameterized
by a. Sub-figure 4.1(a) corresponds to the monotonic phases, where the dynamics
monotonically decays to zero. Sub-figure 4.1(b) corresponds to the generalized
catapult phase where the dynamics decays to zero but is non-monotonic in a specific
manner. Sub-figure 4.1(c) corresponds to the periodic phase, where the dynamics
decays and settles in a period-2 orbit (i.e., shuttles between two points) but never
decays to zero. Sub-figures 4.1(d) and 4.1(e) correspond to the chaotic phase (see
Definition 4.2.1) and divergent phases, respectively. Note that the order of x-axis
and y-axis in Sub-figures 4.1(d) and 4.1(e) are different from the rest.

Contribution 1. We perform a fine-grained, global theoretical analysis of a cubic-map-based

dynamical system (see Equation 4.2), and identify the precise boundaries of the following

five phases: (i) monotonic, (ii) generalized catapult, (iii) periodic, (iv) Li-Yorke chaotic, and

(v) divergent. See Figure 4.1 for an illustration, and Definition 4.2.2 and Theorem 4.2.3 for

formal results. We show in Theorem 4.3.2 and 4.3.3, that the dynamics of gradient descent

for two non-convex statistical problems, namely phase retrieval and two-layer neural networks

with constant outer layers and quadratic activation functions, with orthogonal training data

is captured by the cubic-map-based dynamical system. We provide empirical evidence of the

presence of similar phases in training with non-orthogonal data.

51

We also empirically examine the effect of training models in the above-mentioned phases, in

particular the non-monotonic ones, on the generalization error. Indeed, provable model-specific

statistical benefits for training in catapult phase are studied in Lyu et al. [2022] and Ahn et al.

[2022]. Lim et al. [2022] proposed to induce controlled chaos in the training trajectory to obtain

better generalization. Approaches to explain generalization with chaotic behavior are examined

in Chandramoorthy et al. [2022] based on a relaxed notion of statistical algorithmic stability.

Although our focus is on gradient descent, related notions of generalization of stochastic gradient

algorithms, based on characterizing the fractal-like properties of the invariant measure they converge

to (with larger-order constant step-size choices) have been explored, for example, in Birdal et al.

[2021], Camuto et al. [2021], Dupuis et al. [2023], and Hodgkinson et al. [2022]. Hence, we also

conduct empirical investigations into the performance of generalization when training within the

different non-monotonic (and non-divergent) phases and make the following contribution.

Contribution 2. We propose a natural ergodic trajectory averaging based prediction

mechanism (see Section 4.4.2) to stabilize the predictions when operating in any non-monotonic

(and non-divergent) phase.

4.1.1. Related works. General results. Lewkowycz et al. [2020] empirically examine the

catapult phase particularly in neural networks with one hidden layer and linear activations, the

phase in which the linear approximation of the model becomes less informative. In this case, they

observe that the loss does not have monotonic decrease but eventually converges when the curvature

(maximum of the eigenvalue of the Neural Tangent Kernel [Jacot et al., 2018]) stabilizes at a value

less than 2/(step-size). Similar oscillations with convergence behavior have been also observed in

Cohen et al. [2021], which empirically demonstrate that the sharpness (largest eigenvalue of the

Hessian matrix of the loss) in gradient descent on neural networks training hovers just above the

value 2/(step-size), indicating that gradient descent usually operates in the regime they call Edge

of Stability (EoS). This is also formally studied in Ahn et al. [2022]. Damian et al. [2023] propose

self-stabilization as a phenomenological reason for the occurrence of catapults and EoS in gradient

descent dynamics. Kreisler et al. [2023] investigate how gradient descent monotonically decreases

the sharpness of Gradient Flow solutions, specifically in one-dimensional deep neural networks.

Although they do not formally prove the existence of chaos in the dynamics, they conjecture its

52

possibility. Arora et al. [2022] and Lyu et al. [2022] explore sharpness reduction flows, related to

the above findings. Andriushchenko et al. [2023] prove that large step-sizes in gradient descent

can lead to the learning of sparse features. Wu et al. [2023] investigate the EoS phenomenon for

logistic regression. Kong and Tao [2020] theoretically explore the chaotic dynamics (and related

stochasticity) in gradient descent for minimizing multi-scale functions under additional assumptions.

While being extremely insightful, their results are fairly qualitative and are not directly applicable

to the cubic maps analyzed in our work. As we focus on specific models, our results are more precise

and quantitative.

Specific Models. Zhu et al. [2023b] and Chen and Bruna [2023] studied gradient descent

dynamics for minimizing the functions ℓ(u, v) = (u2v2 − 1)2 and ℓ(u) = (u2 − 1)2, respectively. Both

works primarily focused on characterizing period-2 orbits and hint at the possibility of chaos without

rigorous theoretical justifications. Furthermore, their proofs are relatively ad-hoc and significantly

different from ours. Song and Yun [2024] provided empirical evidence of periodicity and chaos for

training a fully-connected neural network using gradient descent. However, their theoretical results

are not applicable to quadratic regression models. Ahn et al. [2024] examined the Edge of Stability

(EoS) between the monotonic and catapult phase for minimizing ℓ(u, v) = l(uv), where l is convex,

even, and Lipschitz. Their analysis is not directly extendable to the quadratic regression models

we consider in this work. See also the discussion below Theorem 4.2.3 for important technical

comparisons. Wang et al. [2022] analyzed additional benefits (e.g., taming homogeneity) of gradient

descent with large step-sizes for matrix factorization. Ziyin et al. [2022] also studied stochastic

gradient descent with large step-sizes for the case when the loss function ℓ(u) = au2 for a ∈ R.

Note in this case that the point 0 is the minimum when a > 0. However, when a < 0, the point

0 is a maximum. In this setup, Ziyin et al. [2022] precisely characterize the behaviour of SGD for

converging to a minimum or a maximum, in terms of the step-size parameter, initialization and the

noise distribution of the stochastic gradient.

Agarwala et al. [2023] explored gradient descent dynamics for a class of quadratic regression

models and identified the EoS. Zhu et al. [2023a,b] also studied the catapult phase and EoS for a

class of quadratic regression models. Agarwala and Dauphin [2023] examined the EoS in the context

of Sharpness Aware Minimization for quadratic regression models. The above works are related to

our work in terms of the model that they study. However, none of the above works characterize the

53

five distinct phases (with precise boundaries) like we do, along with precise boundaries. Furthermore,

our analysis is distinct (and is also global∗) from the above works and is firmly grounded in the rich

literature on dynamical systems.

Dynamical systems. Our results draw upon the rich literature available in the field of

dynamical systems. We refer the interested reader to Alligood et al. [1997], Lasota and Mackey

[1998], Devaney [1989], Ott [2002], and De Melo and Van Strien [2012] for a book-level introduction.

Birfurcation analysis of some classes of cubic maps has been studied, for example, by Skjolding

et al. [1983], Rogers and Whitley [1983], Branner and Hubbard [1988] and Milnor [1992]. Some

of the above works are rather empirical, and the exact maps considered in the above works differ

significantly from our case.

4.2. Analyzing a discrete dynamical system with cubic map

Notations and definitions. We say a sequence {xk}∞k=0 is increasing (decreasing), if xt+1 ≥ xt

(xt+1 ≤ xt) for any t. Moreover, it is strictly increasing (decreasing) if the equalities never hold.

For a real-valued function f and a set S, define f(S) = {f(x) : x ∈ S}, and f (k)(x) := f(f (k−1)(x))

for any k ∈ N+ with f (0)(x) = x. The preimage of x under f on S is the set f−1(x) := {y ∈ S :

f(y) = x}. We say a property P holds for almost every x ∈ S or almost surely in S, if the subset

{x ∈ S : property P does not hold for x} is Lebesgue measure zero. A critical point of f is a point

x satisfying f ′(x) = 0. We call x0 a period-k point of f , when f (k)(x0) = x0 and f (i)(x0) ̸= x0 for

any 0 ≤ i ≤ k − 1. The orbit of a point x0 denotes the sequence {f (t)(x0)}∞t=0. A point x0 is called

asymptotically periodic if there exists a periodic point y0 such that limt→∞ |f (t)(x0)− f (t)(y0)| = 0.

The stable set of a period-k point x0 is defined as W s(x0) :=
{
x : limn→∞ f (kn)(x) = x0.

}
.

The stable set of the orbit of a periodic point x0 is the union of the stable sets of all points in

the orbit of x0. A point x0 is an aperiodic point if it is not an asymptotically periodic point and the

orbit of x0 is bounded. We say a fixed point x0 of f is stable if, for any ϵ > 0, there is a δ > 0 such

that for any x satisfying |x− x0| < δ, we have |f (n)(x)− x0| < ϵ for all n ≥ 0. The fixed point x0 is

said to be unstable if it is not stable. The fixed point x0 is asymptotically stable if it is stable and

there is an δ > 0 such that limn→∞ f (n)(x) = x0 for all x satisfying |x− x0| < δ. A period-p point

x0 and its associated periodic orbit are asymptotically stable if x0 is an asymptotically stable fixed

∗Analysis in Wang et al. [2022] and Chen and Bruna [2023] is also global, but not applicable to our model.

54

point of f (p). A point x0 ∈ R
⋃{+∞,−∞}\S is called an absorbing boundary point of S for f with

period p, for some p ∈ {1, 2}, if there exists an open set U ⊆ S such that limk→∞ f (pk)(y) → x for

all y ∈ U .

We now introduce two quantities that are common in dynamical systems theory to study the

stability properties. The Schwarzian derivative of a three-times continuously differentiable function

f is defined (at non-critical points) as

Sf(x) := (f ′′′(x)/f ′(x))− 1.5
(
f ′′(x)/f ′(x)

)2
, where f ′(x) ̸= 0.(4.1)

It is widely used for its sign-preservation property under compositions; see, for example, De Melo and

Van Strien [2012]. Specifically, the stability of a fixed point is related to the sign of the Schwarzian

derivative at that point. Positive values may indicate instability, while negative values suggest

stability. The Lyapunov exponent of a given orbit with initialization x0 is defined as

Lf(x0) = lim
n→∞

1

n

n−1∑
i=1

log |f ′(xi)|.

It is another related quantity associated with the stability properties of dynamical systems and is used

to measure the sensitive dependence on initial conditions [Strogatz, 2018]. Chaotic systems typically

exhibit positive Lyapunov exponents, reflecting their sensitive dependence on initial conditions.

Similarly, a negative Lyapunov exponent is a characteristic of stable systems. Finally, we also define

the sharpness of a loss function is defined as the maximum eigenvalue of the Hessian matrix of the

loss.

Bifurcation analysis. Our main goal in this section is to undertake a bifurcation analysis of

the following discrete dynamics system defined by a cubic map. For a > 0, first define the functions

g and f , parameterized by a, as

ga(z) = z2 + (a− 2)z + 1− 2a = (z + a)(z − 2) + 1 and fa(z) = zga(z).(4.2)

Next, consider the discrete dynamical system given by

zt+1 = fa(zt) = ztga(zt).(4.3)

55

Note that for any a, ϵ > 0 and z0 ≥ 2+ ϵ or z0 ≤ −a− ϵ, we will have limt→∞ |zt| = +∞. Hence, we

only study the case when z0 ∈ [−a, 2]. We will show in Section 4.3 that the dynamics of the training

loss for several quadratic regression models could be captured by (4.3). The parameter a in (4.2) for

the models will naturally correspond to the step-size of the gradient descent algorithm.

We next introduce the precise definitions of the five phase that arise in the bifurcation analysis

of (4.2). To do so, we need the following definition of chaos in the Li-Yorke sense [Li and Yorke,

1975]. Li-Yorke chaos is widely used in the study of dynamical systems and is also directly related

to important measures of the complexity of dynamical systems, like the topological entropy [Adler

et al., 1965, Franzová and Smítal, 1991]. We also refer to Aulbach and Kieninger [2001] and Kolyada

[2004] for its relationship to other notions of chaos and related history.

Definition 4.2.1 (Li-Yorke Chaos [Li and Yorke, 1975]). Suppose we are given a function f(x).

If there exists a compact interval I such that f : I → I, then it is called Li-Yorke chaotic [Li and

Yorke, 1975, Aulbach and Kieninger, 2001] when it satisfies

• For every k = 1, 2, ... there is a periodic point in I having period-k.

• There is an uncountable set S ⊆ I (containing no periodic points), which satisfies for any p, q ∈ S

with p ̸= q, lim supt→∞ |f (t)(p)− f (t)(q)| > 0, lim inft→∞ |f (t)(p)− f (t)(q)| = 0, and for any p ∈ S

and periodic point q ∈ I, lim supn→∞ |f (t)(p)− f (t)(q)| > 0.

To define the 5 phases in particular, we consider the orbit {f (k)(x)}+∞
k=0 generated by a given

function f defined over a set I, in which the initial point x belongs to.

Definition 4.2.2. Given a function f(x) defined on a set I, we say the discrete dynamics is in

the

• Monotonic phase, when {|f (k)(x)|}∞k=0 is decreasing and limn→∞ |f (n)(x)| = 0 for almost every

x ∈ I.

• Generalized† catapult phase, when {|f (k)(x)|}∞k=m is not decreasing for any m, and for almost

every x ∈ I limn→∞ |f (n)(x)| = 0. We say such sequences have catapults.

• Periodic phase, when f is not Li-Yorke chaotic, {|f (k)(x)|}∞k=0 is bounded and does not have a

limit for almost every x ∈ I, and there exists period-2 points in I.

†Here, we use the term generalized to distinguish from Lewkowycz et al. [2020] who consider the case of a single
spike in the training loss.

56

• Chaotic phase, when the function f is Li-Yorke chaotic and {|f (k)(x)|}∞k=0 is bounded for almost

every x ∈ I.

• Divergent phase‡, when limn→∞ |f (n)(x)| = +∞ for almost every x ∈ I.

We emphasize here that our use of the word “phase” refers to the whole sequence {|f (k)(x)|}∞k=0,

and the categorization is with respect to the different step-sizes. As an illustration, in Figure 4.1, we

plot the five phases for the parameterized function and its discrete dynamical system defined in (4.2)

with initialization 1.9, i.e., xk = f
(k)
a (x0), x0 = 1.9. We have the following main result for different

phases of dynamics.

(a) (b)

Figure 4.2. Bifurcation diagram and Lyapunov exponent. Initialization z0 = 0.1.

Theorem 4.2.3. Suppose fa(z) is defined in (4.2). Define zt+1 = fa(zt) with z0 sampled

uniformly at random in (−a, 2). Then there exists a∗ ∈ (1, 2) such that the following holds.

• If a ∈ (0, 2
√
2 − 2], then almost surely limt→∞ |zt| = 0 and |zt| is decreasing, and hence the

dynamics is in the monotonic phase.

• If a ∈ (2
√
2 − 2, 1], then almost surely limt→∞ |zt| = 0 and |zt| have catapults, and hence the

dynamics is in the generalized catapult phase.

• If a ∈ (1, a∗), then there exists a period-2 point in (0, 1). zt ∈ (−a, 2) for all t. If there exists an

asymptotically stable periodic orbit, then the orbit of z0 is asymptotically periodic almost surely,

and hence the dynamics is in the periodic phase.

‡We do not further sub-characterize the divergent phase as it is uninteresting.

57

• If a ∈ (a∗, 2], fa is Li-Yorke chaotic. zt ∈ (−a, 2) for all t. If there exists an asymptotically stable

periodic orbit, then the orbit of z0 is asymptotically periodic almost surely, and hence the dynamics

is in the chaotic phase.

• If a ∈ (2,+∞), then limt→∞ |zt| = +∞ almost surely, and hence the dynamics is in the divergent

phase.

From a pure optimization perspective, Phase 1 and 2 are the most relevant, as training loss

actually minimized. However, from a generalization perspective, similar to other works [Lyu et al.,

2022, Lim et al., 2022, Chandramoorthy et al., 2022] we empirically observe that often times phases

2, 3 and 4 lead to comparatively improved generalization for various models.

Connections with sharpness and EoS. As we will see in Section 4.3, the training loss and

sharpness of a special class of quadratic regression models can be written as functions of zt, and

hence their dynamics can be explicitly given by Theorem 4.2.3. As a byproduct of our theory, we

reveal that the EoS phenomenon happens in the catapult phase and quantify the limit that the

sharpness eventually converges to, which matches the empirical observations in Cohen et al. [2021]

and Ahn et al. [2022].

As a direct application of Theorem 4.2.3, we have the following result characterizing the

dynamics generated by n different functions.

Corollary 4.2.1. Suppose fa(z) is defined in (4.2), and we are given 2n positive scalars

ai, ρi for 1 ≤ i ≤ n. Define z(t+1)
i = fai(z

(t)
i), L(z(t), ρ) =

∑n
i=1 ρi(z

(t)
i)2. Then for almost all

z(0) ∈ {z : −ai ≤ zi ≤ 2} we have

• If 0 < max1≤i≤n ai ≤ 1, then limt→∞ L(z(t), ρ) = 0 . Moreover, if 0 < max1≤i≤n ai ≤ 2
√
2 − 2,

the sequence {L(z(t), ρ)}∞t=0 is decreasing.

• If 1 < max1≤i≤n ai ≤ 2, then {L(z(t), ρ)}∞t=0 is bounded and does not converge to 0.

• If max1≤i≤n ai > 2, then limt→∞ L(z(t), ρ) = +∞.

We highlight here that even if we know from Theorem 4.2.3 the dynamics of each individual

z
(t)
i , explicitly characterizing the phase of L(z(t), ρ) is not trivial. To see this, we provide one simple

example as follows.

S1 := {S(n)
1 } =

{
1,

1

2
,
1

3
,
1

4
, ...
}
, S2 := {S(n)

2 } =
{
1,

1

22
,
1

32
,
1

42
, ...
}
, S3 := {S(n)

3 } =
{1
2
, 1,

1

4
,
1

3
, ...
}
,

58

where S3 is obtained by switching the (2i − 1)-th and 2i-th terms in S1. Sequences S1 and S2

are decreasing to 0, and S3 is in the catapult phase. We can verify that both {S(n)
1 + S

(n)
3 } and

{S(n)
2 + S

(n)
3 } are converging to 0 but the former is decreasing while the latter is in the generalized

catapult phase. This implies that the summation of a decreasing sequence and a catapult sequence

can be either decreasing or catapult, which makes analyzing the dynamics of the weighted summation

L(z(t), ρ) non-obvious. As we will see in Section 4.3.1, the above result gives the training dynamics

of generalized phase retrieval and a two-layer neural network with quadratic activation functions on

n orthogonal data points.

In Figures 4.2(a) and 4.2(b) we numerically plot a bifurcation diagram for a ∈ (0, 2) and

Lyapunov exponent scatter plot with initialization z0 = 0.1. The main ingredients in proving

Theorem 4.2.3 are the following Lemmas 4.2.3.1, 4.2.3.2, and 4.2.3.3. Note that by straightforward

computations, we have

f ′a(0) = 1− 2a ∈ (−1, 1) ⇔ a ∈ (0, 1).(4.4)

This implies 0 is a asymptotically stable fixed point when a ∈ (0, 1). This type of local stability

analysis is standard in dynamical systems literature [Hale and Koçak, 2012, Strogatz, 2018], and has

been used in analyzing the training dynamics of gradient descent recently [Zhu et al., 2024, Song

and Yun, 2024]. However, such results are limited to only local regions. In contrast, the following

results provide a global convergence analysis.

Lemma 4.2.3.1. Suppose 0 < a ≤ 1 and −a ≤ z0 ≤ 2. Then we have

• (i) −a ≤ zt ≤ 2 for any t, and fa does not have a period-2 point on [−a, 2].
• (ii) If z0 is chosen from [−a, 2] uniformly at random, then limt→∞ zt = 0 almost surely. Moreover,

if 0 < a ≤ 2
√
2 − 2, then almost surely |zt+1| ≤ |zt| for all t. If 2

√
2 − 2 < a ≤ 2, then almost

surely {|zt|}∞t=0 has catapults.

Lemma 4.2.3.2. Suppose 1 < a ≤ 2 and −a ≤ z0 ≤ 2. Then we have

• (i) −a ≤ zt ≤ 2 for any t, and fa(z) has a period-2 point on [0, 1].

• (ii) There exists a∗ ∈ (1, 2) such that for any a ∈ (a∗, 2), fa is Li-Yorke chaotic, and for any

a ∈ (1, a∗), fa is not Li-Yorke chaotic.

59

• (iii) If there exists an asymptotically stable orbit and z0 is chosen from [−a, 2] uniformly at random,

then the orbit of z0 is asymptotically periodic almost surely.

Lemma 4.2.3.3. Suppose a > 2. z0 is chosen from [−a, 2] uniformly at random. Then

limt→∞ |zt| = +∞ almost surely.

In Lemma 4.2.3.2, part (iii), we assume the existence of an asymptotically stable periodic point.

Note that such a point must have negative Lyapunov exponent [Strogatz, 2018]. It is possible to

obtain particular values for a under which fa(z) has an asymptotically stable orbit. For example,

a can be chosen such that |f ′a(p)f ′a(q)| < 1, where p ∈ (0, 1) is a period-2 point with fa(p) = q.

In Figure 4.2(b) we plot the Lyapunov exponent of fa at the orbit starting from z0 = 0.1. It is

interesting to explicitly characterize the set of a values in (1, 2) such that fa(z) has an asymptotically

stable periodic orbit. Furthermore, we conjecture that a∗ defined in Lemma 4.2.3.2 is the smallest

number a ∈ (1, 2) such that (1− 2a)/3 is a period-3 point. The above two problems are challenging

and left as future work.

4.3. Applications to quadratic regression models

We now provide illustrative examples based on quadratic or second-order regression models,

motivated by the works of Zhu et al. [2024] and Agarwala et al. [2023]. Specifically, we consider a

generalized phase retrieval model and training hidden-layers of 2-layer neural networks with quadratic

activation function as examples.

4.3.1. Example 1: Generalized phase retrieval. Single Data Point. Following Zhu et al.

[2024], it is instructive to study the dynamics with a single training sample. Consider the following

optimization problem on a single data point (X, y):

min
w

{
ℓ(w) =

1

2
(g(w;X)− y)2

}
, where g(w;X) =

γ(X⊤w)2

2
+ cX⊤w,(4.5)

where γ, c are arbitrary constants. The above model, with γ = 2 and, c = 0 corresponds to the

classical phase retrieval model (also called as a single-index model with quadratic link function). We

refer to Jaganathan et al. [2016] and Fannjiang and Strohmer [2020] for an overview, importance

and applications of the phase retrieval model. We would like to point out that the analysis of

seemingly simple models is already non-trivial and has been done in various ways. For example,

60

single-data-point setting [Zhu et al., 2024, Song and Yun, 2024], simple-model setting [Lobacheva

et al., 2021, Ahn et al., 2024, Kodryan et al., 2022, Zhu et al., 2023b, Chen and Bruna, 2023, Zhu

et al., 2023a], etc. Different from existing works that mostly focus on asymptotic or local analysis

that only hold when certain quantities are sufficiently large or small (small step-sizes [Lobacheva

et al., 2021, Ahn et al., 2024, Zhu et al., 2023b], large network size [Zhu et al., 2024, 2023a]), in the

following result we provide a refined global analysis on solving (4.5) that does not contain any big-O

notation.

Theorem 4.3.1. Suppose we run gradient descent on (4.5) with step-size to be η. Define

e(t) := g(w(t);X)− y, zt := ηγ ∥X∥2 e(t), a =
(
γy +

c2

2

)
η ∥X∥2 .(4.6)

Then we have (i) zt+1 = fa(zt) and thus Theorem 4.2.3 holds for fa and zt; (ii) The sharpness is

given by λmax(∇2ℓ(w(t))) = 3zt+2a
η .

Comparison with existing results. An interesting conclusion from the above theorem is

that, under certain cases the step-size η should depend on the model initialization. For example when

e(0) > 0 then we should have ηγ ∥X∥2 e(0) = z0 < 2, since for z0 > 2 we have limt→ |zt| = ∞ (see,

e.g., discussions under (4.3)). Note that Zhu et al. [2024] studied a related neural quadratic model

(see their Eq. (3)). Here, we highlight that their results do not cover our case. Indeed, defining

ηcrit = 2/λmax(∇2ℓ(w(0))), according to their claim, catapults happen when ηcrit < η < 2ηcrit. In

our notation, this condition is equivalent to 2 < 3z0 + 2a < 4. However this cannot happen because

if the initialization z0 is sufficiently small, say z0 = O(ϵ), then we know the previous condition

become 1−O(ϵ) < a < 2−O(ϵ). However, according to Lemmas 4.2.3.1 and 4.2.3.2, we have that

for 1 < a < 2 the training dynamics is in the periodic or the chaotic phase and zt (and thus the loss

function) will not converge to 0. Our theory (Lemma 4.2.3.1) suggests that catapults for quadratic

regression model happens for almost every z0 ∈ (−a, 2) provided that 2
√
2−2 < a ≤ 1. This intricate

observation reveals that extending the current results on the catapult phenomenon from the model

in Zhu et al. [2024] to our setting is not immediate and is actually highly non-trivial.

Relationship with Sharpness and EoS. We also notice that, interestingly, in the monotonic

and catapult phases (i.e., 0 < a ≤ 1), we have the limiting sharpness satisfy limt→∞ λmax(∇2ℓ(w(t))) =

2a/η = (2γy + c2) ∥X∥2 . In particular, for the catapult phase (2
√
2 − 2 < a ≤ 1) the sharpness

61

converges to 2a
η ∈ (4

√
2−4
η , 2η], which theoretically and quantitatively explains the empirical obser-

vations of EoS in Cohen et al. [2021]. More importantly, the notion of EoS only provides a coarse

characterization of the oscillations of the limiting sharpness at the interface of the monotonic and

catapult phase. For the quadratic models that we study, the limiting sharpness exhibits a more

nuanced behaviour as identify in Theorem 4.3.1, while also recovering and extending existing results

on EoS.

Multiple Orthogonal Data Points. We now consider gradient descent on quadratic regression

on multiple data points that are mutually orthogonal. Suppose we are given a dataset {(Xi, yi)}ni=1

with X = (X1, ..., Xn)
⊤ satisfying XX⊤ = diag(∥X1∥2 , ..., ∥Xn∥2). Similar orthogonality conditions

are widely used in the literature on sparse linear regression to understand the optimization or

statistical properties [Tibshirani, 1996, Yuan and Lin, 2006]. Consider the optimization problem

min
w
ℓ(w) :=

1

n

n∑
i=1

ℓi(w) =
1

2n

n∑
i=1

(g(w;Xi)− yi)
2 ,(4.7)

where ℓi(w) and g(w;Xi) are as defined in (4.5).

Theorem 4.3.2. Define the following:

α(t)(Xi) := c(Xi) + γX⊤
i w

(t), β(Xi) := yi +
(c(Xi))

2

2γ
, κn(Xi) :=

ηγ ∥Xi∥2
n

,(4.8)

e(t)(Xi) := g(w(t);Xi)− yi, z
(t)
i = κn(Xi)e

(t)(Xi), ai = β(Xi)κn(Xi).(4.9)

If we run gradient descent on solving (4.7) with step-size η, then we have (i) z(t+1)
i = fai(z

(t)
i) and

thus Theorem 4.2.3 hols for fai and z(t)i . (ii) The sharpness λmax(∇2ℓ(w(t))) = max1≤i≤n
3z

(t)
i +2ai
η .

For this setup, the above theorem shows that the loss function is a summation of the loss on

each individual data point. Recall that the training loss takes the form

ℓ(w(t)) =
1

2n

n∑
i=1

(
g(w(t);Xi)− yi

)2
=

1

2n

n∑
i=1

(z
(t)
i)2

κ2n(Xi)
=

n∑
i=1

n(z
(t)
i)2

2η2γ2 ∥Xi∥4
.(4.10)

Setting ρi = n
2η2γ2∥Xi∥4

, we can deduce that the dynamics of ℓ(w(t)) is given by Corollary 4.2.1. This

leads to the following Corollary.

Corollary 4.3.1. Under the setup in Theorem 4.3.2, for almost all z(0) ∈ {z : −ai ≤ zi ≤ 2}
we have

62

• If 0 < max1≤i≤n ai ≤ 1, then limt→∞ ℓ(w(t)) = 0 . Moreover, if 0 < max1≤i≤n ai ≤ 2
√
2− 2, the

sequence {ℓ(w(t))}∞t=0 is decreasing.

• If 1 < max1≤i≤n ai ≤ 2, then {ℓ(w(t))}∞t=0 is bounded and does not converge to 0.

• If max1≤i≤n ai > 2, then limt→∞ ℓ(w(t)) = +∞.

Under the orthogonality assumption, the loss functions defined on each data point exhibit a

non-interacting behavior. Removing this orthogonality condition entirely is highly non-trivial. It

would be interesting to extend our setting to the nearly-orthogonal one in Frei et al. [2022], and Kou

et al. [2023].

4.3.2. Example 2: Neural network with quadratic activation. In this section, we consider

the following two layer neural networks with its loss function on data point (Xi, yi) defined as:

g(u, v;Xi) =
1√
m

m∑
j=1

vjσ
(1√

d
u⊤j Xi

)
, ℓi =

1

2
(g(u, v;Xi)− yi)

2(4.11)

where the hidden-layer weights ui ∈ Rd are to be trained and outer-layer weights vi ∈ R are held

constant, which corresponds to the feature-learning setting for neural networks. Also m is the width

of the hidden layer and σ is the activation function. Define U := (u1, ..., um). When the activation

function is quadratic and vi = 1 for all i, the loss function becomes

min
U

ℓ(U) :=
1

n

n∑
j=1

ℓj(U) =
1

2n

n∑
j=1

(1√
md

m∑
i=1

(X⊤
j ui)

2 − yj

)2
.(4.12)

As in the previous example, we assume XX⊤ = diag(∥X1∥2 , ..., ∥Xn∥2). We then have the following

result on the gradient descent dynamics of the above problem.

Theorem 4.3.3. Define the following:

e
(t)
i =

1√
md

m∑
j=1

(X⊤
i u

(t)
j)2 − yi, z

(t)
i =

2η ∥Xi∥2 e(t)i√
mdn

, ai =
2η ∥Xi∥2 yi√

mdn
(4.13)

If we run gradient descent on solving problem (4.12) with step-size η, we have z(t+1)
i = fai(z

(t)
i) and

thus Theorem 4.2.3 and Corollary 4.3.1 hold for ℓ(U(t)).

The orthogonal assumption that XX⊤ = diag(∥X1∥2 , ..., ∥Xn∥2), helps decouple the loss

function across the samples and makes the evolution of the overall loss non-interacting (across the

63

training samples). In order to relax this assumption, it is required to analyze bifurcation analysis

of interacting dynamical systems, which is extremely challenging and not well-explored [Xu et al.,

2021]. In Section A.6.2, we present empirical results showing that similar phases exists in the general

non-orthogonal setting as well. Theoretically characterizing this is left as an open problem.

4.4. Experimental investigations

Before we proceed, we remark that the original PDF files for all the figures are provided as a

part of the supplementary material for the sake of easier visualization. The naming convention is as

follows: (i) each sub-folder correspond to the respective figure numbers and (ii) each file within a

sub-folder is named according to matrix conventions. For e.g., file 1x3.pdf in sub-folder Figure 1

corresponds to Figure 4.1(c), and file 1x1.pdf in sub-folder Figure 3 corresponds to Figure 4.3.

4.4.1. Gradient descent dynamics with orthogonal data for model (4.12). Experimen-

tal setup. We now conduct experiments to evaluate the developed theory. We consider gradient

descent for training the hidden layers of a two-layer neural network with orthogonal training data,

described in Section 4.3.2. Recall that d,m, and n represents the dimension, hidden-layer width,

and number of data points respectively. We set d = 100,m ∈ {5, 10, 25}, n = 80. We generate the

ground-truth matrix U∗ ∈ Rd×m where each entry is sampled from the standard normal distribution.

The training data points collected in the data matrix, denoted as X ∈ Rn×d, are the first n rows of a

randomly generated orthogonal matrix. The labels are generated via the model in Section 4.3.2, i.e.,

yi =
1√
md

∑m
j=1

(
X⊤

i uj
)2

+ εi where εi is scalar noise sampled from a zero-mean normal distribution,

with variances equal to 0, 0.25, 1 in different experiments.

We set the step-size η such that max1≤i≤n ai defined in Theorem 4.3.2 belongs to the intervals of

the first four phases. In particular, we choose 0.3, 0.9, 1, 1.2, 1.8 for m = 5, 10 and 0.3, 0.9, 1, 1.2, 1.6

for m = 25 (for each m, 0.9 and 1 are both in the catapult phase, and we pick 1 since it is the largest

step-size choice allowed in the catapult phase). The numbers 0, 1, 2, 3, 4 of the plot labels correspond

to these step-size choices respectively. In Figure 4.4 we present the training loss curves in log scale

and the sharpness curves for m = 25. The horizontal axes denote the number of steps of gradient

descent. In Section A.6.1, we also provide additional simulation results for different hidden-layer

64

0 25 50 75 100 125 150 175 200
Iterations

0.5

0.0

0.5

1.0

1.5

2.0

Lo
g

Lo
ss

Testing Log Loss 3
Testing Log Loss 4
Ergodic Testing Log Loss 3
Ergodic Testing Log Loss 4

Figure 4.3. Test loss with and without averaging: The chaotic versions of purple and
red lines correspond to the test error without averaging. The corresponding smooth
versions refer to the test error with averaging. The plot demonstrates the benefit of
ergodic trajectory averaging based predictions (according to Definition 4.4.1), as the
averaging based predictions become more stable across the iterations. Numbers 3, 4
denote different stepsize choices (see Section 4.4.2 for details).

widths. From the training loss curves (left column) and the sharpness curves (middle column) we

can clearly observe the four phases§ thereby confirming our theoretical results.

4.4.2. Prediction based on ergodic trajectory averaging. A main take-away from our

analysis and experiments so far is that gradient descent with large step-size effectively resembles a

randomized gradient descent procedure with a special type of noise, i.e., the randomness here is with

respect to the orbit it converges to (in the non-monotonic phases).¶ Recall that this viewpoint is

also put-forward is several works, in particular Kong and Tao [2020]. Hence, a natural approach is to

do perform ergodic trajectory averaging to reduce the fluctuations (see right column in Figure 4.4).

Definition 4.4.1. For any given point X ∈ Rd, and any training iteration count t, the ergodic

trajectory averaging based prediction, ŷ, for the point X is given by ŷ := 1
t

∑t
i=1 g(w

(i);X), where

w(i) corresponds to the training trajectory of the gradient descent algorithm trained with step-size η.

Another way to think about the above prediction strategy is that the ergodic average approxi-

mates, in the limit, expectation with respect to the invariant distribution (supported on the orbit

to which the trajectory converges to). In particular, Figure 4.4 right column, for the orthogonal

setup, we see that as the noise increases, training in the chaotic regime and performing ergodic

§Here, we do not plot the divergent phase here for simplicity.
¶One way to show this formally is by connecting large step-size GD with slow-fast deterministic systems; see, for

example, Chevyrev et al. [2020], Lim et al. [2022].

65

trajectory averaging provides a fast decay of training loss. A disadvantage of the ergodic averaging

based prediction strategy described above is the test-time computational cost increases by O(t), per

test point.

Figure 4.3 plots the testing loss for the model in (4.12), when trained with two values of large

step-sizes (η = 48, 60). We observe that the ergodic trajectory averaging prediction smooths out the

more chaotic testing loss. However, we also remark that from the plots in Figure A.7‖, operating with

slightly smaller step-size choice (η = 36) achieves the best testing error curves. See Section A.6.2 for

additional observations. In the literature, ways of artificially inducing controlled chaos in the gradient

descent trajectory has been proposed to obtain improved testing accuracy; see, for example, Lim et al.

[2022]. We believe the ergodic trajectory averaging based prediction methodology discussed above

may prove to be fruitful to stabilize the testing loss in such cases as well. A detailed investigation of

provable benefits of the ergodic trajectory averaging predictor, is beyond the scope of the current

work, and we leave it as intriguing future work.

Additional Experiments. We also provide the following additional simulation results in the

appendix: (i) Section A.6.2 corresponds to non-orthogonal training data. We also include testing

loss plots, and (ii) Section A.6.3 corresponds to training the hidden-layer weights of a two-layer

neural network with ReLU activation functions and non-orthogonal inputs.

Take-away points from experiments. The main take-away points from the above experiments

are the following: (i) in the case of orthogonal data, the experiments confirm the theoretical results

in Section 4.3, (ii) in the case of non-orthogonal data, the experiments show that similar phases

(including the chaotic phases) exists in the training dynamics, and (iii) ergodic averaging based

prediction stabilizes the test error along the GD trajectory.

4.5. Conclusion

Unstable and chaotic behavior is frequently observed when training deep neural networks

with large-order step-sizes. Motivated by this, we presented a fine-grained theoretical analysis of a

cubic-map based dynamical system. We show that the gradient descent dynamics is fully captured

by this dynamical system, when training the hidden layers of a two-layer neural networks with

quadratic activation functions with orthogonal training data. Our analysis shows that for this class

‖Figure A.7 provides a detailed comparison across various step-sizes, for different noise variances.

66

0 10 20 30 40 50 60 70
Iterations

12

11

10

9

8

7

Lo
g

Lo
ss

Training Log Loss 0
Training Log Loss 1
Training Log Loss 2
Training Log Loss 3
Training Log Loss 4

0 10 20 30 40 50 60 70
Iterations

0.0002

0.0004

0.0006

0.0008

Sh
ar

pn
es

s

Sharpness 0
Sharpness 1
Sharpness 2
Sharpness 3
Sharpness 4

0 10 20 30 40 50 60 70
Iterations

10.5

10.0

9.5

9.0

8.5

8.0

7.5

Lo
g

Lo
ss

Ergodic Training Log Loss 0
Ergodic Training Log Loss 1
Ergodic Training Log Loss 2
Ergodic Training Log Loss 3
Ergodic Training Log Loss 4

0 10 20 30 40 50 60 70
Iterations

3.1

3.0

2.9

2.8

2.7

2.6

2.5

2.4

Lo
g

Lo
ss

Training Log Loss 0
Training Log Loss 1
Training Log Loss 2
Training Log Loss 3
Training Log Loss 4

0 10 20 30 40 50 60 70
Iterations

0.0002

0.0003

0.0004

0.0005

0.0006

0.0007

0.0008

0.0009

Sh
ar

pn
es

s

Sharpness 0
Sharpness 1
Sharpness 2
Sharpness 3
Sharpness 4

0 10 20 30 40 50 60 70
Iterations

3.0

2.9

2.8

2.7

2.6

2.5

2.4

Lo
g

Lo
ss

Ergodic Training Log Loss 0
Ergodic Training Log Loss 1
Ergodic Training Log Loss 2
Ergodic Training Log Loss 3
Ergodic Training Log Loss 4

0 10 20 30 40 50 60 70
Iterations

1.7

1.6

1.5

1.4

1.3

1.2

1.1

1.0

Lo
g

Lo
ss

Training Log Loss 0
Training Log Loss 1
Training Log Loss 2
Training Log Loss 3
Training Log Loss 4

0 10 20 30 40 50 60 70
Iterations

0.0002

0.0004

0.0006

0.0008

0.0010

Sh
ar

pn
es

s

Sharpness 0
Sharpness 1
Sharpness 2
Sharpness 3
Sharpness 4

0 10 20 30 40 50 60 70
Iterations

1.6

1.5

1.4

1.3

1.2

1.1

1.0

Lo
g

Lo
ss

Ergodic Training Log Loss 0
Ergodic Training Log Loss 1
Ergodic Training Log Loss 2
Ergodic Training Log Loss 3
Ergodic Training Log Loss 4

Figure 4.4. Hidden layer width = 25, with orthogonal data points. Rows from top
to bottom represent different levels of noise – mean-zero normal distribution with
variance 0, 0.25, 1 respectively. The vertical axes are in log scale for the training
loss curves. The second column is about the sharpness of the training loss functions.
Numbers 0, 1, 2, 3, 4 denote different stepsize choices (see Section 4.4.1 for details).

of models, as the step-size of the gradient descent increases, the gradient descent trajectory has

five distinct phases (from being monotonic to chaotic and eventually divergent). We also provide

empirical evidence that show similar behavior occurs for generic non-orthogonal data. Our results

also indicate a subtle interplay on the relation between step-size and the initialization provided

to the gradient descent algorithm in terms determining which phase the training trajectory will

operate in. Finally, we empirically examined the impact of training in the different phases, on the

generalization error.

Immediate future works include: (i) developing a theoretical characterization of the training

dynamics with generic non-orthogonal training data, which involves undertaking non-trivial bifurca-

tion analysis of interacting dynamical systems, (ii) moving beyond quadratic activation functions

67

and two-layer neural networks, and (iii) developing tight generalization bounds when training with

large-order step-sizes. Overall, our contributions make concrete steps towards developing a fine-

grained understanding of the gradient descent dynamics when training neural networks with iterative

first-order optimization algorithms with large step-sizes.

68

APPENDIX A

Additional Experiments, Proofs, and Discussions

A.1. Proofs of Theorems in Chapter 2

We will prove Theorems 2.3.1 and 2.4.1 in Section A.1.1 and A.1.2 respectively. In each section

we will first establish the relations between the optimality measure (see Vk in Section 2.3.3) and the

gradient mapping, which reduce the proof of main theorems to proving the convergence of primal

variables (xk in Theorem 2.3.1 or (xk, λk) in Theorem 2.4.1) and dual variables (hk in Theorem

2.3.1 or (hkx, h
k
λ) in Theorem 2.4.1). Then we will prove the hypergradient estimation error, primal

convergence and dual convergence separately. In our notation convention, the superscript k usually

denotes the iteration number and the subscript i represents variables related to functions fi, gi. L#

with being a function # denotes its Lipschitz constant.

Next we state some technical lemmas that will be used in both sections.

Lemma A.1.0.1 (Lemma 10 in Qu and Li [2017].). Suppose f(x) is µ-strongly convex and

L-smooth. For any x and γ < 2
µ+L , define x+ = x − γ∇f(x), x∗ = argmin f(x). Then we have

∥x+ − x∗∥ ≤ (1− γµ)∥x− x∗∥.

Lemma A.1.0.2. Define κ = max(L∇f , L∇g)/µg, z
∗(x) =

(
∇2

22g(x, y
∗(x))

)−1∇2f(x, y
∗(x)).

Suppose Assumption 2 holds. Then Φ(x) is differentiable and ∇Φ(x) is given by Then Φ(x), y∗(x),

z∗(x) are differentiable and ∇Φ(x), y∗(x), z∗(x) are L∇Φ, Ly∗ , Lz∗-Lipschitz continuous, and

∇Φ(x) = ∇1f(x, y
∗(x))−∇2

12g(x, y
∗(x))

(
∇2

22g(x, y
∗(x))

)−1∇2f(x, y
∗(x)),(A.1)

∇y∗(x) = −∇2
12g(x, y

∗(x))
(
∇2

22g(x, y
∗(x))

)−1
.(A.2)

The constants are given by

Ly∗ =
L∇g

µg
= O (κ) , Lz∗ =

√
1 + L2

y∗

(
L∇f

µg
+
LfL∇2

22g

µ2g

)
= O

(
κ3
)
,

L∇Φ = L∇f +
2L∇fL∇g + L2

fL∇2g

µg
+

2LfL∇gL∇2g + L∇fL
2
∇g

µ2g
+
LfL∇2gL

2
∇g

µ3g
= O

(
κ3
)
.

69

Moreover, we have

(A.3) ∥z∗(x)∥ ≤ Lf

µg
.

Proof. See Lemma 2.2 in Ghadimi and Wang [2018] for the proof of (A.1) and (A.2), Lipschitz

continuity of ∇Φ and y∗. For the Lipschitz continuity of z∗ we have for any x, x̃, we know

∥z∗(x)− z∗(x̃)∥

=
∥∥∥(∇2

22g(x, y
∗(x))

)−1∇2f(x, y
∗(x))−

(
∇2

22g(x̃, y
∗(x̃))

)−1∇2f(x̃, y
∗(x̃))

∥∥∥
≤
∥∥∥(∇2

22g(x, y
∗(x))

)−1∇2f(x, y
∗(x))−

(
∇2

22g(x̃, y
∗(x̃))

)−1∇2f(x, y
∗(x))

∥∥∥
+
∥∥∥(∇2

22g(x̃, y
∗(x̃))

)−1∇2f(x, y
∗(x))−

(
∇2

22g(x̃, y
∗(x̃))

)−1∇2f(x̃, y
∗(x̃))

∥∥∥
≤Lf

∥∥∥(∇2
22g(x, y

∗(x))
)−1
∥∥∥∥∥∇2

22g(x, y
∗(x))−∇2

22g(x̃, y
∗(x̃))

∥∥∥∥∥(∇2
22g(x, y

∗(x))
)−1
∥∥∥

+
1

µg
∥∇2f(x, y

∗(x))−∇2f(x̃, y
∗(x̃))∥

≤
LfL∇2

22g

µ2g

√
∥x− x̃∥2 + ∥y∗(x)− y∗(x̃)∥2 + L∇f

µg

√
∥x− x̃∥2 + ∥y∗(x)− y∗(x̃)∥2

≤Lz∗ ∥x− x̃∥ ,

where the first inequality uses triangle inequality, the second and third inequalities use Assumption

2, and the fourth inequality uses Lipschitz continuity of y∗(x). The inequality in (A.3) holds since

g(x, ·) is µg-strongly convex and ∥∇2f(x, y
∗(x))∥ ≤ Lf (Assumption 2). □

Lemma A.1.0.3 (Lemma 3.2 in Ghadimi et al. [2020]). For any closed convex set X , and the

function ηX (x, h, τ) defined in Section 2.3.3 is differentiable and ∇ηX is L∇ηX -Lipschitz continuous,

with the closed form expression and constant given by

∇1ηX (x, h, τ) = −h+
1

τ
(x− d̄),∇2ηX (x, h, τ) = d̄− x, L∇ηX = 2

√
(1 + 1/τ)2 + (1 + τ/2)2,

where d̄ is defined as d̄ = argmin d∈X {⟨h, d− x⟩+ 1
2τ ∥d− x∥2} = ΠX (x− τh), which satisfies

(A.4) ⟨h+
1

τ
(d̄− x), d− d̄⟩ ≥ 0, for all d ∈ X .

70

A.1.1. Proof of Theorem 2.3.1. For simplicity, we summarize the notations that will be used

in Section A.1.1 as follows.

κ = max(L∇f , L∇g)/µg, w
k+1 = uk+1

x − Jk+1zk,

yk∗ = y∗(xk) = argmin
y∈Rdy

g(xk, y), zk∗ =
(
∇2

22g(x
k, yk∗)

)−1∇2f(x
k, yk∗),

Φ(x) = f(x, y∗(x)), ηX (x, h, τ) = min
d∈X

{
⟨h, d− x⟩+ 1

2τ
∥d− x∥2

}
.(A.5)

In this section we suppose Assumptions 2 and 3 hold. We assume stepsizes in Algorithm 1 satisfy

βk = c1αk, γk = c2αk, θk = c3αk, where c1, c2, c3 > 0 are constants to be determined. We will utilize

the following merit function in our analysis:

Wk = Φ(xk)− inf
x∈X

Φ(x)− 1

c3
ηX (xk, hk, τ)︸ ︷︷ ︸

Wk,1

+
1

c1

∥∥∥yk − yk∗
∥∥∥2 + 1

c2

∥∥∥zk − zk∗
∥∥∥2︸ ︷︷ ︸

Wk,2

.

By definition of ηX , we can verify that Wk,1 ≥ 0. Moreover, as discussed in Section 2.3.3, we consider

the following optimality measure:

(A.6) Vk =
1

τ2
∥xk+ − xk∥2 + ∥hk −∇Φ(xk)∥2.

Next we characterize the relation between Vk and gradient mapping of problem 2.1.

Lemma A.1.0.4. Suppose Assumptions 2 and 3 hold. In Algorithm 1 we have

1

τ2

∥∥∥xk −ΠX
(
xk − τ∇Φ(xk)

)∥∥∥2 ≤ 2Vk.

Proof. Note that we have∥∥∥xk −ΠX
(
xk − τ∇Φ(xk)

)∥∥∥2 ≤2
(∥∥∥xk+ − xk

∥∥∥2 + ∥∥∥ΠX
(
xk − τhk

)
−ΠX

(
xk − τ∇Φ(xk)

)∥∥∥2)
≤2
(∥∥∥xk+ − xk

∥∥∥2 + τ2
∥∥∥hk −∇Φ(xk)

∥∥∥2) = 2τ2Vk,

where the first inequality uses Cauchy-Schwarz inequality and the second inequality uses the non-

expansiveness of projection onto a closed convex set. This completes the proof. □

Then we bound the variance of wk+1 and
∥∥hk+1 − hk

∥∥.
71

Lemma A.1.0.5. Suppose Assumptions 2 and 3 hold. In Algorithm 1 we have

E
[∥∥∥wk+1 − E[wk+1|Fk]

∥∥∥2] ≤ σ2w,k+1

σ2w,k+1 := σ2w + 2σ2g,2E
[∥∥∥zk − zk∗

∥∥∥2] , σ2w = σ2f,1 +
2σ2g,2L

2
f

µ2g
,(A.7)

E
[∥∥∥hk+1 − hk

∥∥∥2] ≤ σ2h,k,

σ2h,k := 2θ2kE
[∥∥∥hk −∇Φ(xk)

∥∥∥2 + ∥∥∥E[wk+1|Fk]−∇Φ(xk)
∥∥∥2]+ θ2kσ

2
w,k+1.(A.8)

Proof. We first consider wk. Note that

wk+1 − E[wk+1|Fk] = uk+1
x − E[uk+1

x |Fk]−
(
Jk+1 − E

[
Jk+1|Fk

])
zk.

Hence we know

E
[∥∥∥wk+1 − E[wk+1|Fk]

∥∥∥2 |Fk

]
=E

[∥∥∥uk+1
x − E[uk+1

x |Fk]
∥∥∥2 |Fk

]
+ E

[∥∥∥Jk+1 − E
[
Jk+1|Fk

]∥∥∥2 |Fk

] ∥∥∥zk∥∥∥2
≤σ2f,1 + 2σ2g,2

∥∥∥zk∗∥∥∥2 + 2σ2g,2

∥∥∥zk − zk∗
∥∥∥2 ≤ σ2f,1 +

2σ2g,2L
2
f

µ2g
+ 2σ2g,2

∥∥∥zk − zk∗
∥∥∥2 ,

where the first equality uses independence, the first inequality uses Cauchy-Schwarz inequality, and

the second inequality uses (A.3). This proves (A.7). Next for
∥∥hk+1 − hk

∥∥ we have

E
[∥∥∥hk+1 − hk

∥∥∥2 |Fk

]
=θ2kE

[∥∥∥hk − E[wk+1|Fk]
∥∥∥2 |Fk

]
+ θ2kE

[∥∥∥wk+1 − E[wk+1|Fk]
∥∥∥2 |Fk

]
≤2θ2kE

[∥∥∥hk −∇Φ(xk)
∥∥∥2 |Fk

]
+ 2θ2kE

[∥∥∥E[wk+1|Fk]−∇Φ(xk)
∥∥∥2 |Fk

]
+ θ2kσ

2
w,k+1,

which proves of (A.8) by taking expectation on both sides. □

Remark. We would like to highlight that in (A.7), we explicitly characterize the upper bound

of the variance of wk+1, which contains E
[∥∥zk − zk∗

∥∥2] and requires further analysis. In contrast,

Assumption 3.7 in Dagréou et al. [2022] directly assumes the second moment of Dt
x is uniformly

bounded, i.e., E
[∥∥Dt

x

∥∥2] ≤ B2
x for some constant Bx ≥ 0. Note that Dt

x in Dagréou et al. [2022] is

72

the same as our wk+1 (see (2.6), line 5 of Algorithm 1 and definition of wk+1 in (A.5)). The second

moment bound can directly imply the variance bound, i.e., E
[∥∥Dt

x − E
[
Dt

x

]∥∥2] ≤ E
[∥∥Dt

x

∥∥2] ≤ B2
x.

This implies that some stronger assumptions are needed to guarantee Assumption 3.7 in Dagréou

et al. [2022], as also pointed out by the authors (see discussions right below it). Instead, our refined

analysis does not require that.

A.1.1.1. Hypergradient Estimation Error. Note that Assumptions 3.1 and 3.2 in Dagréou et al.

[2022] state that the upper-level function f is twice differentiable, the lower-level function g is three

times differentiable and ∇2f,∇3g are Lipschitz continuous so that zk∗ , as a function of xk (see (A.5)),

is smooth, which is a crucial condition for (31) and (81) in Dagréou et al. [2022] (v∗(xt) in their

notation), which follows the analysis in Equation (49) in Chen et al. [2021a]. In this section we show

that, by incorporating the moving-average technique recently introduced to decentralized bilevel

optimization [Chen et al., 2023b], we can remove this additional assumption. We have the following

lemma characterizing the error induced by yk and zk.

Lemma A.1.0.6. Suppose Assumptions 2 and 3 hold. If the stepsizes satisfy

(A.9) βk <
2

µg + L∇g
, γk ≤ min

(
1

4µg
,
0.06µg
σ2g,2

)
,

then in Algorithm 1 we have

K∑
k=0

αkE
[∥∥∥yk − yk∗

∥∥∥2] ≤ Cyx

K∑
k=0

αkE
[∥∥∥xk+ − xk

∥∥∥2]+ Cy,0 + Cy,1

(K∑
k=0

α2
k

)
K∑
k=0

αkE
[∥∥∥zk − zk∗

∥∥∥2] ≤ Czx

K∑
k=0

αkE
[∥∥∥xk+ − xk

∥∥∥2]+ Cz,0 + Cz,1

(K∑
k=0

α2
k

)
.(A.10)

where the constants are defined as

Cyx =
2L2

y∗

c21µ
2
g

, Cy,0 =
1

c1µg
E
[∥∥y0 − y0∗

∥∥2] , Cy,1 =
2c1σ

2
g,1

µg
,

Czx =
5L2

f

µ2g

(L2
∇2

22g

µ2g
+ 1

)
2L2

y∗

c21µ
2
g

+
4L2

z∗

c22µ
2
g

,

Cz,0 =
5L2

f

µ2g

(L2
∇2

22g

µ2g
+ 1

)
· 1

c1µg
E
[∥∥y0 − y0∗

∥∥2]+ 1

c2µg
E
[∥∥z0 − z0∗

∥∥2] ,
Cz,1 =

5L2
f

µ2g

(L2
∇2

22g

µ2g
+ 1

)
·
2c1σ

2
g,1

µg
+

2c2σ
2
w

µg
.

73

Proof. We first consider the error induced by yk. We have∥∥∥yk+1 − yk+1
∗
∥∥∥2 ≤ (1 + βkµg)

∥∥∥yk+1 − yk∗
∥∥∥2 + (1 + 1

βkµg

)∥∥∥yk+1
∗ − yk∗

∥∥∥2
≤ (1 + βkµg)

∥∥∥yk+1 − yk∗
∥∥∥2 + (α2

k

βkµg
+ α2

k

)
L2
y∗

∥∥∥xk+ − xk
∥∥∥2 ,(A.11)

where the first inequality uses Cauchy-Schwarz inequality: ∥u+ v∥2 ≤ (1 + c)
(
∥u∥2 + 1

c ∥v∥
2),

for any vectors u, v and constant c > 0. Thanks to the moving-average step of xk, our analysis of∥∥yk+1
∗ − yk∗

∥∥ is simplified comparing to that in Chen et al. [2021a]. Also,

E
[∥∥∥yk+1 − yk∗

∥∥∥2 |Fk

]
= E

[∥∥∥yk − βk∇2g(x
k, yk)− yk∗ − βk(v

k+1 −∇2g(x
k, yk))

∥∥∥2 |Fk

]
≤
∥∥∥yk − βk∇2g(x

k, yk)− yk∗
∥∥∥2 + β2kσ

2
g,1 ≤ (1− βkµg)

2
∥∥∥yk − yk∗

∥∥∥2 + β2kσ
2
g,1,(A.12)

where the first inequality uses Assumption (3) and Lemma A.1.0.1, and the second inequality uses

Lemma A.1.0.1 (which requires strong convexity of g, Lipschtiz continuity of ∇2g, and the first

inequality in (A.9)). Combining (A.11) and (A.12), we know

E
[∥∥∥yk+1 − yk+1

∗
∥∥∥2 |Fk

]
≤ (1 + βkµg) (1− βkµg)

2
∥∥∥yk − yk∗

∥∥∥2 + (α2
k

βkµg
+ α2

k

)
L2
y∗

∥∥∥xk+ − xk
∥∥∥2 + (1 + βkµg)β

2
kσ

2
g,1

≤(1− βkµg)
∥∥∥yk − yk∗

∥∥∥2 + 2α2
kL

2
y∗

βkµg

∥∥∥xk+ − xk
∥∥∥2 + 2β2kσ

2
g,1.

where the second inequality uses βk < 2
µg+L∇g

≤ 1
µg

. Taking summation (k from 0 to K) on both

sides and taking expectation, we know

K∑
k=0

βkµgE
[∥∥∥yk − yk∗

∥∥∥2] ≤ E
[∥∥y0 − y0∗

∥∥2]+ K∑
k=0

2α2
kL

2
y∗

βkµg
E
[∥∥∥xk+ − xk

∥∥∥2]+ K∑
k=0

2β2kσ
2
g,1,

which proves the first inequality in (A.10) by dividing c1µg on both sides. Next we analyze the error

induced by zk. Our analysis is substantially different from Dagréou et al. [2022]:∥∥∥zk+1 − zk+1
∗
∥∥∥2 ≤ (1 + γkµg

3

)∥∥∥zk+1 − zk∗
∥∥∥2 + (1 + 3

γkµg

)∥∥∥zk+1
∗ − zk∗

∥∥∥2
≤
(
1 +

γkµg
3

)∥∥∥zk+1 − zk∗
∥∥∥2 + (3α2

k

γkµg
+ α2

k

)
L2
z∗

∥∥∥xk+ − xk
∥∥∥2(A.13)

74

where we use Cauchy-Schwarz inequality in the first and second inequality, we use the facts that

∇y∗ is Lipschitz continuous. For
∥∥zk+1 − zk∗

∥∥, we may follow the analysis of SGD under the strongly

convex setting:

zk+1 − zk∗

=zk − γk(H
kzk − uky)− zk∗

=zk − γk∇2
22g(x

k, yk)zk + γk∇2f(x
k, yk)− zk∗ − γk(H

k+1 −∇2
22g(x

k, yk))zk

+γk(u
k
y −∇2f(x

k, yk))

which gives

E
[∥∥∥zk+1 − zk∗

∥∥∥2 |Fk

]
≤
∥∥∥zk − γk∇2

22g(x
k, yk)zk + γk∇2f(x

k, yk)− zk∗
∥∥∥2 + γ2kσ

2
g,2

∥∥∥zk∥∥∥2 + γ2kσ
2
f,1

=
∥∥∥(I − γk∇2

22g(x
k, yk))(zk − zk∗)− γk(∇2

22g(x
k, yk)zk∗ −∇2f(x

k, yk))
∥∥∥2 + γ2kσ

2
g,2

∥∥∥zk∥∥∥2 + γ2kσ
2
f,1

≤
(
1 +

γkµg
2

)∥∥∥(I − γk∇2
22g(x

k, yk))(zk − zk∗)
∥∥∥2

+

(
1 +

2

γkµg

)∥∥∥γk (∇2
22g(x

k, yk)zk∗ −∇2
22g(x

k, yk∗)z
k
∗ +∇2f(x

k, yk∗)−∇2f(x
k, yk)

)∥∥∥2
+ 2γ2kσ

2
g,2

(∥∥∥zk − zk∗
∥∥∥2 + ∥∥∥zk∗∥∥∥2)+ γ2kσ

2
f,1

≤
((

1 +
γkµg
2

)
(1− γkµg)

2 + 2γ2kσ
2
g,2

)∥∥∥zk − zk∗
∥∥∥2

+

(
4γk
µg

+ 2γ2k

)(
L2
∇2

22g

∥∥∥zk∗∥∥∥2 + L2
∇2f

)∥∥∥yk − yk∗
∥∥∥2 + 2γ2kσ

2
g,2

∥∥∥zk∗∥∥∥2 + γ2kσ
2
f,1.

≤
(
1− 4γkµg

3

)∥∥∥zk − zk∗
∥∥∥2 + (4γk

µg
+ 2γ2k

)(L2
∇2

22g
L2
f

µ2g
+ L2

f

)∥∥∥yk − yk∗
∥∥∥2 + (2σ2g,2L

2
f

µ2g
+ σ2f,1

)
γ2k ,

(A.14)

where the first inequality uses Assumption 3, the second inequality uses Cauchy-Schwarz inequality

and the definition of zk∗ , the third inequality uses Cauchy-Schwarz inequality and the fact that

g is µg-strongly convex, and the fourth inequality uses Cauchy-Schwarz inequality, (A.3) and

−γkµg

6 + 2γ2kσ
2
g,2 +

γ3
kµ

3
g

2 ≤ 0, which is a direct result from the bound of γk in (A.9). It is worth

noting that our estimation can be viewed as a refined version of (72) - (75) in Dagréou et al. [2022]

75

Combining (A.13) and (A.14) we may obtain

E
[∥∥∥zk+1 − zk+1

∗
∥∥∥2 |Fk

]
≤
(
1 +

γkµg
3

)
E
[∥∥∥zk+1 − zk∗

∥∥∥2 |Fk

]
+

(
3α2

k

γkµg
+ α2

k

)
L2
z∗

∥∥∥xk+ − xk
∥∥∥2

≤
(
1 +

γkµg
3

)[(
1− 4γkµg

3

)∥∥∥zk − zk∗
∥∥∥2 + (4γk

µg
+ 2γ2k

)(L2
∇2

22g
L2
f

µ2g
+ L2

f

)∥∥∥yk − yk∗
∥∥∥2]

+
(
1 +

γkµg
3

)(2σ2g,2L
2
f

µ2g
+ σ2f,1

)
γ2k +

(
3α2

k

γkµg
+ α2

k

)
L2
z∗

∥∥∥xk+ − xk
∥∥∥2

=(1− γkµg)
∥∥∥zk − zk∗

∥∥∥2 + (4γk
µg

+
10γ2k
3

+
2γ3kµg

3

)(L2
∇2

22g
L2
f

µ2g
+ L2

f

)∥∥∥yk − yk∗
∥∥∥2

+ σ2w

(
γ2k +

γ3kµg
3

)
+

(
3α2

k

γkµg
+ α2

k

)
L2
z∗

∥∥∥xk+ − xk
∥∥∥2

≤ (1− γkµg)
∥∥∥zk − zk∗

∥∥∥2 + 5γkL
2
f

µg

(L2
∇2

22g

µ2g
+ 1

)∥∥∥yk − yk∗
∥∥∥2 + 2σ2wγ

2
k +

4α2
kL

2
z∗

γkµg

∥∥∥xk+ − xk
∥∥∥2 ,

where the equality uses the definition of σ2w in (A.7) and the third inequality uses γkµg ≤ 1
4 . Taking

summation (k from 0 to K) and expectation, we know

K∑
k=0

γkµgE
[∥∥∥zk − zk∗

∥∥∥2] ≤E
[∥∥z0 − z0∗

∥∥2]+ K∑
k=0

5γkL
2
f

µg

(L2
∇2

22g

µ2g
+ 1

)
E
[∥∥∥yk − yk∗

∥∥∥2]

+

K∑
k=0

2σ2wγ
2
k +

K∑
k=0

4α2
kL

2
z∗

γkµg
E
[∥∥∥xk+ − xk

∥∥∥2] .
This completes the proof of the second inequality in (A.10) by dividing c2µg on both sides and

replacing
∑K

k=0 αkE
[∥∥yk − yk∗

∥∥2] with its upper bound in (A.10). □

Lemma A.1.0.7. Suppose Assumptions 2 and 3 hold. We have∥∥∥E[wk+1|Fk]−∇Φ(xk)
∥∥∥2 ≤3

((
L2
∇f + L2

∇2g

) ∥∥∥yk − yk∗
∥∥∥2 + L2

∇g

∥∥∥zk − zk∗
∥∥∥2),

Proof. Note that we have the following decomposition:

E[wk+1|Fk]−∇Φ(xk)

=E[uk+1
x |Fk]−∇1f(x

k, yk∗)−
(
E
[
Jk+1|Fk

]
zk −∇2

12g(x
k, yk∗)z

k
∗
)

76

=∇1f(x
k, yk)−∇1f(x

k, yk∗)−∇2
12g(x

k, yk)
(
zk − zk∗

)
−
(
∇2

12g(x
k, yk)−∇2

12g(x
k, yk∗)

)
zk∗ .

which, together with Cauchy-Schwarz inequality, implies the conclusion:∥∥∥E[wk+1|Fk]−∇Φ(xk)
∥∥∥2 ≤3

∥∥∥∇1f(x
k, yk)−∇1f(x

k, yk∗)
∥∥∥2 + 3

∥∥∥∇2
12g(x

k, yk)(zk − zk∗)
∥∥∥2

+ 3
∥∥∥(∇2

12g(x
k, yk)−∇2

12g(x
k, yk∗)

)
zk∗
∥∥∥2

≤3

((
L2
∇f + L2

∇2g

) ∥∥∥yk − yk∗
∥∥∥2 + L2

∇g

∥∥∥zk − zk∗
∥∥∥2) .

This completes the proof. □

A.1.1.2. Primal Convergence.

Lemma A.1.0.8. Suppose Assumptions 2 and 3 hold. If

(A.15) αk ≤ min

(
τ2

20c3
,

c3
2τ (c3L∇Φ + L∇ηX)

, 1

)
, τ < 1, c3 ≤

1

10
,

then in Algorithm 1 we have

K∑
k=0

αk

τ2
E
[∥∥∥xk+ − xk

∥∥∥2] ≤2

τ
E [W0,1] + 3

K∑
k=0

αkE
[∥∥∥∇Φ(xk)− E[wk+1|Fk]

∥∥∥2]

+
1

2

K∑
k=0

αkE
[∥∥∥hk −∇Φ(xk)

∥∥∥2]+ K∑
k=0

(
α2
kσ

2
g,2E

[∥∥∥zk − zk∗
∥∥∥2]+ α2

kσ
2
w

)
.(A.16)

Proof. The smoothness of Φ(x) and ηX (Lemmas A.1.0.2, A.1.0.3) imply

(A.17) Φ(xk+1)− Φ(xk) ≤ αk⟨∇Φ(xk), xk+ − xk⟩+ L∇Φ

2

∥∥∥xk+1 − xk
∥∥∥2

and

ηX (xk, hk, τ)− ηX (xk+1, hk+1, τ)

≤⟨−hk + 1

τ
(xk − xk+), x

k − xk+1⟩+ ⟨xk+ − xk, hk − hk+1⟩+ L∇ηX

2

(∥∥∥xk+1 − xk
∥∥∥2 + ∥∥∥hk+1 − hk

∥∥∥2)
=αk⟨hk, xk+ − xk⟩+ αk

τ

∥∥∥xk+ − xk
∥∥∥2 + θk⟨hk, xk+ − xk⟩ − θk⟨wk+1, xk+ − xk⟩

+
L∇ηX

2

(∥∥∥xk+1 − xk
∥∥∥2 + ∥∥∥hk+1 − hk

∥∥∥2)
77

≤− θk
τ

∥∥∥xk+ − xk
∥∥∥2 − θk⟨wk+1, xk+ − xk⟩+ L∇ηX

2

(∥∥∥xk+1 − xk
∥∥∥2 + ∥∥∥hk+1 − hk

∥∥∥2),
(A.18)

where the first inequality uses L∇ηX -smoothness of ∇ηX , and the second inequality uses the optimality

condition (A.4) (with d = xk). Hence by computing (A.17) + (A.18)/c3 and taking conditional

expectation with respect to Fk we know

αk

τ

∥∥∥xk+ − xk
∥∥∥2

≤ 1

c3

(
E
[
ηX (xk+1, hk+1, τ)|Fk

]
− ηX (xk, hk, τ)

)
+Φ(xk)− E

[
Φ(xk+1)|Fk

]
+ αk⟨∇Φ(xk)− E[wk+1|Fk], x

k
+ − xk⟩+ (c3L∇Φ + L∇ηX)

2c3

∥∥∥xk+1 − xk
∥∥∥2

+
L∇ηX

2c3
E
[∥∥∥hk+1 − hk

∥∥∥2 |Fk

]
=Wk,1 − E [Wk+1,1|Fk] + αk⟨∇Φ(xk)− E[wk+1|Fk], x

k
+ − xk⟩

+
(c3L∇Φ + L∇ηX)

2c3

∥∥∥xk+1 − xk
∥∥∥2 + L∇ηX

2c3
E
[∥∥∥hk+1 − hk

∥∥∥2 |Fk

]
≤Wk,1 − E [Wk+1,1|Fk] + αk

(
τ
∥∥∥∇Φ(xk)− E[wk+1|Fk]

∥∥∥2 + 1

4τ

∥∥∥xk+ − xk
∥∥∥2)

+
αk

4τ

∥∥∥xk+ − xk
∥∥∥2 + 5

2c3τ
E
[∥∥∥hk+1 − hk

∥∥∥2 |Fk

]
,(A.19)

where the second inequality uses Young’s inequality and α2
k(c3L∇Φ+L∇ηX)

2c3
≤ αk

4τ , L∇ηX < 5
τ when

(A.15) holds. Note that by (A.8) we know

5

c3τ2
E
[∥∥∥hk+1 − hk

∥∥∥2]
(A.20)

≤10c3α
2
k

τ2
E
[∥∥∥hk −∇Φ(xk)

∥∥∥2 + ∥∥∥E[wk+1|Fk]−∇Φ(xk)
∥∥∥2]+ 5c3α

2
k

τ2
σ2w

+
10c3α

2
kσ

2
g,2

τ2
E
[∥∥∥zk − zk∗

∥∥∥2]
≤αk

2
E
[∥∥∥hk −∇Φ(xk)

∥∥∥2]+ αkE
[∥∥∥E[wk+1|Fk]−∇Φ(xk)

∥∥∥2]+ α2
kσ

2
w + α2

kσ
2
g,2E

[∥∥∥zk − zk∗
∥∥∥2]

where the second inequality uses (A.15). Taking summation and expectation on both sides of (A.19)

and using (A.20), we obtain (A.16). □

78

A.1.1.3. Dual Convergence.

Lemma A.1.0.9. Suppose Assumptions 2 and 3 hold. In Algorithm 1 we have

K∑
k=0

αkE
[∥∥∥hk −∇Φ(xk)

∥∥∥2]

≤ 1

c3
E
[∥∥h0 −∇Φ(x0)

∥∥2]+ 2
K∑
k=0

αkE
[∥∥∥E[wk+1|Fk]−∇Φ(xk)

∥∥∥2]

+
2L2

∇Φ

c23

K∑
k=0

αkE
[∥∥∥xk+ − xk

∥∥∥2]+ 2c3σ
2
g,2

K∑
k=0

α2
kE
[∥∥∥zk − zk∗

∥∥∥2]+ K∑
k=0

c3α
2
kσ

2
w.(A.21)

Proof. Note that by moving-average update of hk, we have

hk+1 −∇Φ(xk+1)

=(1− θk)h
k + θk(w

k+1 − E[wk+1|Fk]) + θkE[wk+1|Fk]−∇Φ(xk+1)

=(1− θk)(h
k −∇Φ(xk)) + θk(E[wk+1|Fk]−∇Φ(xk)) +∇Φ(xk)−∇Φ(xk+1)

+ θk(w
k+1 − E[wk+1|Fk])

Hence we know

E
[∥∥∥hk+1 −∇Φ(xk+1)

∥∥∥2 |Fk

](A.22)

=
∥∥∥(1− θk)(h

k −∇Φ(xk)) + θk(E[wk+1|Fk]−∇Φ(xk)) +∇Φ(xk)−∇Φ(xk+1)
∥∥∥2

+ θ2kE
[∥∥∥wk+1 − E[wk+1|Fk]

∥∥∥2 |Fk

]
≤(1− θk)

∥∥∥hk −∇Φ(xk)
∥∥∥2 + θk

∥∥∥∥E[wk+1|Fk]−∇Φ(xk) +
1

θk
(∇Φ(xk)−∇Φ(xk+1))

∥∥∥∥2 + θ2kσ
2
w,k+1

≤(1− θk)
∥∥∥hk −∇Φ(xk)

∥∥∥2 + 2θk

∥∥∥E[wk+1|Fk]−∇Φ(xk)
∥∥∥2

+
2

θk

∥∥∥∇Φ(xk)−∇Φ(xk+1)
∥∥∥2 + θ2kσ

2
w,k+1

≤(1− θk)
∥∥∥hk −∇Φ(xk)

∥∥∥2 + 2θk

∥∥∥E[wk+1|Fk]−∇Φ(xk)
∥∥∥2 + 2α2

kL
2
∇Φ

θk

∥∥∥xk+ − xk
∥∥∥2 + θ2kσ

2
w,k+1,

where the first equality uses the fact that xk, hk, xk+1, are all Fk-measurable and are independent

of wk+1 given Fk, the first inequality uses the convexity of ∥·∥2 and (A.7), the second inequality

79

uses Cauchy-Schwarz inequality, the third inequality uses the Lipschitz continuity of ∇Φ in Lemma

A.1.0.10, and the update rules of xk+1. Taking summation, expectation on both sides of (A.22),

dividing c3 and using (A.7), we know (A.21) holds. □

A.1.1.4. Proof of Theorem 2.3.1. Now we are ready to prove Theorem 2.3.1. From Lemma

A.1.0.4 we know it suffices to bound Vk. By definition of Vk in (A.6), (A.16) and (A.21) we have

K∑
k=0

αkE [Vk] =
K∑
k=0

(
αk

τ2
E
[∥∥∥xk+ − xk

∥∥∥2]+ αkE
[∥∥∥hk −∇Φ(xk)

∥∥∥2])(A.23)

≤2L2
∇Φ

c23

K∑
k=0

αkE
[∥∥∥xk+ − xk

∥∥∥2]+ 1

2

K∑
k=0

αkE
[∥∥∥hk −∇Φ(xk)

∥∥∥2]

+ 5

K∑
k=0

αkE
[∥∥∥∇Φ(xk)− E[wk+1|Fk]

∥∥∥2]+ (1 + 2c3)σ
2
g,2

K∑
k=0

α2
kE
[∥∥∥zk − zk∗

∥∥∥2]

+
2

τ
E [W0,1] +

1

c3
E
[∥∥h0 −∇Φ(x0)

∥∥2]+ (1 + c3)σ
2
w

(K∑
k=0

α2
k

)
,

≤2L2
∇Φ

c23

K∑
k=0

αkE
[∥∥∥xk+ − xk

∥∥∥2]+ 1

2

K∑
k=0

αkE
[∥∥∥hk −∇Φ(xk)

∥∥∥2]

+ 15

K∑
k=0

αkE
[(
L2
∇f + L2

∇2g

) ∥∥∥yk − yk∗
∥∥∥2 + L2

∇g

∥∥∥zk − zk∗
∥∥∥2]+ L2

∇g

K∑
k=0

αkE
[∥∥∥zk − zk∗

∥∥∥2]

+
2

τ
E [W0,1] +

1

c3
E
[∥∥h0 −∇Φ(x0)

∥∥2]+ (1 + c3)σ
2
w

(K∑
k=0

α2
k

)

≤Cvxτ
2

K∑
k=0

αk

τ2
E
[∥∥∥xk+ − xk

∥∥∥2]+ Cvh

K∑
k=0

αkE
[∥∥∥hk −∇Φ(xk)

∥∥∥2]+ Cv,0 + Cv,1

(K∑
k=0

α2
k

)
,

where we assume

(A.24) (1 + 2c3)σ
2
g,2αk ≤ L2

∇g,

in the second inequality. The constants are defined as

Cvx = 15
(
L2
∇f + L2

∇2g

)
Cyx + 16L2

∇gCzx +
2L2

∇Φ

c23
, Cvh =

1

2
,

Cv,0 = 15
(
L2
∇f + L2

∇2g

)
Cy,0 + 16L2

∇gCz,0 +
2

τ
E [W0,1] +

1

c3
E
[∥∥h0 −∇Φ(x0)

∥∥2] ,
Cv,1 = 15

(
L2
∇f + L2

∇2g

)
Cy,1 + 16L2

∇gCz,1 + (1 + c3)σ
2
w.

80

Using constants defined in Lemma A.1.0.6, we know

Cvx = O
(
κ8

c21
+
κ4

c22
+
κ6

c23

)
, Cvh = O(1), Cv,0 = O

(
κ5

c1
+
κ2

c2
+

1

τ

)
, Cv,1 = O

(
c1κ

5 + c2κ
2
)
.

Hence we can pick αk ≡ Θ(1/
√
K), τ = Θ

(
κ−4

)
, c1 = O(1), c2 = O(1), c3 = O(1) so that the

conditions ((A.9), (A.15) and (A.24)) in previous lemmas hold, and τ = Θ(κ−4) such that

Cvxτ
2 = O(κ8τ2) ≤ 1

2
.

Plugging in all the constants in (A.23), we have

1

K

K∑
k=0

E[Vk] ≤
1

2K

(K∑
k=0

1

τ2
E
[∥∥∥xk+ − xk

∥∥∥2]+ K∑
k=0

E
[∥∥∥hk −∇Φ(xk)

∥∥∥2])+O
(κ5√

K

)
.

Then we have 1
K

∑K
k=0 E [Vk] = O(κ5/

√
K). which, together with Lemma A.1.0.4, proves

Theorem 2.3.1.

A.1.2. Proof of Theorem 2.4.1. In this section we present our proof of Theorem 2.4.1. For

simplicity, we summarize the notations that will be used in our proof as follows.

L∇f = max
1≤i≤n

L∇fi , L∇g = max
1≤i≤n

L∇gi , L∇2gi = max
1≤i≤n

L∇2gi , µg = max
1≤i≤n

µgi ,

κ = max(L∇f , L∇g)/µg, u
k+1
x =

n∑
i=1

uk+1
x,i , w

k+1 =
n∑

i=1

λki
(
uk+1
x,i − Jk+1

i zki
)
,

λk∗ = λ∗(xk) = argmax
λ∈∆n

Φµλ
(xk, λ), yk∗,i = y∗i (x

k) = argmin
y∈Rdy

gi(x
k, y),

Φi(x) = fi(x, y
∗
i (x)), Φ

k =
(
Φ1(x

k), ...,Φn(x
k)
)⊤

, zk∗,i =
(
∇2

22gi(x
k, yk∗,i)

)−1∇2fi(x
k, yk∗,i),

Ψ(x) = max
λ∈∆n

Φµλ
(x, λ) = max

λ∈∆n

(n∑
i=1

λiΦi(x)−
µλ
2

∥∥∥∥λ− 1n
n

∥∥∥∥2),
ηX(x, h, τ) = min

d∈X

{
⟨h, d− x⟩+ 1

2τ
∥d− x∥2

}
, where X = X or ∆n.

In this subsection we suppose Assumptions 2, 3 hold for all fi, gi and Assumption 4 holds. We

suppose stepsizes in Algorithm 2 satisfy βk = c1αk, γk = c2αk, θk = c3αk, where c1, c2, c3 > 0 are

constants to be determined. We will utilize the following merit function in our analysis:

W̃k = W̃k,1 + W̃k,2, W̃k,1 = W̃
(1)
k,1 + W̃

(2)
k,1 , W̃

(1)
k,1 = Ψ(xk)− Φµλ

(xk, λk)− 1

c3
η∆n(λ

k,−hkλ, τλ)

81

W̃
(2)
k,1 = Ψ(xk)− inf

x∈X
Ψ(x)− 1

c3
ηX (xk, hkx, τx), W̃k,2 =

n∑
i=1

(1
c1

∥∥∥yki − yk∗,i
∥∥∥2 + 1

c2

∥∥∥zki − zk∗,i
∥∥∥2).

By definition of Ψ, ηX , η∆n , we can verify that W̃ (1)
k,1 ≥ 0, W̃

(2)
k,1 ≥ 0. Moreover, as discussed in Section

2.4.2, we consider the following optimality measure:

Ṽk =
1

τ2x

∥∥∥xk+ − xk
∥∥∥2 + ∥∥∥hkx −∇1Φµλ

(xk, λk)
∥∥∥2︸ ︷︷ ︸

Ṽk,1: Optimality of min problem

+
1

τ2λ

∥∥∥λk+ − λk
∥∥∥2 + ∥∥∥hkλ −∇2Φµλ

(xk, λk)
∥∥∥2︸ ︷︷ ︸

Ṽk,2: Optimality of max problem

.

(A.25)

The following lemma provides some smoothness of functions that we will use in our proof.

Lemma A.1.0.10. Functions ∇Ψ(·),∇1Φµλ
(·, λ),∇1Φ(·, λ),∇1Φµλ

(x, ·),∇1Φ(x, ·),∇2Φµλ
(·, λ),

∇2Φµλ
(x, ·) are L∇Ψ, L∇Φ, L∇Φ, L∇1Φµλ

, L∇1Φµλ
, L∇2Φµλ

, µλ-Lipschitz continuous respectively, with

constants given by L∇Ψ = n
µλ

(
L2
Φ + bΦL∇Φ

)
+ L∇Φ, L∇1Φµλ

= L∇2Φµλ
=

√
nLΦ.

Proof. For ∇Ψ we first notice that the nonconvex-strongly-concave problem in (2.10) can be

reformulated as a bilevel problem:

min
x∈X

Ψ(x) = Φµλ
(x, λ∗(x)) s.t. λ∗(x) = argmin

λ∈∆n

(−Φµλ
(x, λ)) =

µλ
2

∥∥∥∥λ− 1n
n

∥∥∥∥2 − n∑
i=1

λiΦi(x).

By Lemma A.1.0.2 we know

∇Ψ(x) =∇1Φµλ
(x, λ∗(x))−∇2

12Φµλ
(x, λ∗(x))

(
∇2

22Φµλ
(x, λ∗(x))

)−1∇2Φµλ
(x, λ∗(x))

=
n∑

i=1

λ∗i (x)∇Φi(x) +
1

µλ
(∇Φ1(x), ...,∇Φn(x))



Φ1(x)

...

Φn(x)

− µλ

(
λ∗(x)− 1n

n

)
=

1

µλ

n∑
i=1

Φi(x)∇Φi(x) +
1

n

n∑
i=1

∇Φi(x),

from which we know ∇Ψ(·) is L∇Ψ-Lipschitz continuous since

∥Φi(x)∇Φi(x)− Φi(x̃)∇Φi(x̃)∥

≤∥Φi(x)∇Φi(x)− Φi(x)∇Φi(x̃)∥+ ∥Φi(x)∇Φi(x̃)− Φi(x̃)∇Φi(x̃)∥

≤
(
L2
Φ + bΦL∇Φ

)
∥x− y∥ .

82

Note that for any fixed λ ∈ ∆n and x, x̃ ∈ X , we have

∇1Φµλ
(x, λ) = ∇1Φ(x, λ) =

n∑
i=1

λi∇Φi(x),(A.26)

∥∇1Φµλ
(x, λ)−∇1Φµλ

(x̃, λ)∥ =

∥∥∥∥∥
n∑

i=1

λi (∇Φi(x)−∇Φi(x̃))

∥∥∥∥∥ ≤ L∇Φ ∥x− x̃∥ .(A.27)

Similarly, for any fixed x ∈ X and λ, λ̃ ∈ ∆n we know

(A.28)
∥∥∥∇1Φµλ

(x, λ)−∇1Φµλ
(x, λ̃)

∥∥∥ =

∥∥∥∥∥
n∑

i=1

(λi − λ̃i)∇Φi(x)

∥∥∥∥∥ ≤ √
nLΦ

∥∥∥λ− λ̃
∥∥∥ .

(A.26), (A.27) and (A.28) imply ∇1Φµλ
(·, λ),∇1Φ(·, λ) are L∇Φ-Lipschitz continuous and ∇1Φ(x, ·),

∇1Φµλ
(x, ·) are L∇1Φµλ

-Lipschitz continuous. Finally, for ∇2Φµλ
(x, λ) we have ∇2Φµλ

(x, λ)

= (Φ1(x), ...,Φn(x))
⊤ − µλ

(
λ− 1n

n

)
, and thus functions ∇2Φµλ

(·, λ),∇2Φµλ
(x, ·) are

√
nLΦ,

µλ-Lipschitz continuous respectively. □

Next we present a technical lemma that will be used in analyzing the strongly convex function

over a closed convex set.

Lemma A.1.0.11. Suppose f(x) is µ-strongly convex and L-smooth over a closed convex set

X . For any τ ≤ 1
L define x+ = ΠX (x − τ∇f(x)) and x∗ = argmin x∈X f(x), we have

(
1 −

√
1− τµ

)
∥x− x∗∥ ≤ ∥x− x+∥.

Proof. By Corollary 2.2.4 in Nesterov [2018] we know

1

τ
⟨x− x+, x− x∗⟩ ≥

1

2τ
∥x− x+∥2 +

µ

2
∥x− x∗∥2 +

µ

2
∥x+ − x∗∥2

=

(
1

2τ
+
µ

2

)
∥x− x+∥2 + µ ∥x− x∗∥2 − µ⟨x− x+, x− x∗⟩

which implies ∥x− x+∥ ∥x− x∗∥ ≥ ⟨x − x+, x − x∗⟩ ≥ 1
2 ∥x− x+∥2 + r ∥x− x∗∥2 , where r =

µ
1
τ
+µ

≤ 1
2 . Applying Young’s inequality to the left hand side of the above inequality, we know

1+
√
1−2r
4r ∥x− x+∥2 + r

1+
√
1−2r

∥x− x∗∥2 ≥ 1
2 ∥x− x+∥2 + r ∥x− x∗∥2 , which gives ∥x− x+∥ ≥(

1−
√
1− 2r

)
∥x− x∗∥ ≥

(
1−√

1− τµ
)
∥x− x∗∥ . This completes the proof. □

The next lemma shows the relation between the stationarity used in Theorem 2.4.1 and our

measure of optimality Ṽk in (A.25).

83

Lemma A.1.0.12. Suppose Assumptions 2, 3 hold for all fi, gi and Assumption 4 holds. If

τλµλ = 1, then in Algorithm 2 we have

1

τ2x

∥∥∥xk −ΠX
(
xk − τx∇1Φµλ

(xk, λk)
)∥∥∥2 ≤ 2

(
1

τ2x

∥∥∥xk+ − xk
∥∥∥2 + ∥∥∥hkx −∇1Φµλ

(xk, λk)
∥∥∥2),∥∥∥λk − λk∗

∥∥∥2 ≤ 2

µ2λ

(
1

τ2λ

∥∥∥λk+ − λk
∥∥∥2 + ∥∥∥hkλ −∇2Φµλ

(xk, λk)
∥∥∥2),

which imply
∥∥∥ 1
τx

(
xk −ΠX

(
xk − τx∇1Φµλ

(xk, λk)
))∥∥∥2 + ∥∥λk − λk∗

∥∥2 ≤ max
(
2, 2

µ2
λ

)
Ṽk.

Proof. The first inequality follows (A.1.0.4):∥∥∥xk −ΠX
(
xk − τx∇1Φµλ

(xk, λk)
)∥∥∥2

≤2
(∥∥∥xk+ − xk

∥∥∥2 + ∥∥∥ΠX
(
xk − τxh

k
x

)
−ΠX

(
xk − τx∇1Φµλ

(xk, λk)
)∥∥∥2)

≤2
(∥∥∥xk+ − xk

∥∥∥2 + τ2x

∥∥∥hkx −∇1Φµλ
(xk, λk)

∥∥∥2),
where the first inequality uses Cauchy-Schwarz inequality and the second inequality uses the non-

expansiveness of projection onto a closed convex set. Note λk∗ = argmin λ∈∆n
Φµλ

(xk, λ) is a

minimizer (over the probability simplex) of a µλ-smooth and µλ-strongly convex function Φµλ
(xk, ·).

Hence we know from Lemma A.1.0.11 that

µ2λ

∥∥∥λk∗ − λk
∥∥∥2

≤τ−2
λ

(
1 +

√
1− τλµλ

)2 ∥∥∥λk −Π∆n

(
λk + τλ∇2Φµλ

(xk, λk)
)∥∥∥2

≤2τ−2
λ

(
1 +

√
1− τλµλ

)2(∥∥∥λk+ − λk
∥∥∥2 + ∥∥∥Π∆n(λ

k + τλh
k
λ)−Π∆n(λ

k + τλ∇2Φµλ
(xk, λk))

∥∥∥2)
≤2τ−2

λ

(
1 +

√
1− τλµλ

)2(∥∥∥λk+ − λk
∥∥∥2 + τ2λ

∥∥∥hkλ −∇2Φµλ
(xk, λk)

∥∥∥2),
where the second inequality uses Cauchy-Schwarz inequality and the third inequality uses non-

expansiveness of the projection operator. Setting τλµλ = 1 completes the proof. □

Lemma A.1.0.13. Suppose Assumptions 2, 3 hold for all fi, gi and Assumption 4 holds. In

Algorithm 2 we have

E
[∥∥∥wk+1 − E[wk+1|Fk]

∥∥∥2] ≤ σ2w,k+1(A.29)

84

E
[∥∥∥hk+1

x − hkx

∥∥∥2] ≤ σ2hx,k, E
[∥∥∥hk+1

λ − hkλ

∥∥∥2] ≤ σ2hλ,k
,(A.30)

σ2w,k+1 := σ2w + 2σ2g,2

n∑
i=1

E[λki
∥∥∥zki − zk∗,i

∥∥∥2], σ2w = σ2f,1 +
2σ2g,2L

2
f

µ2g

σ2hx,k := 2θ2kE[
∥∥∥hkx −∇1Φµλ

(xk, λk)
∥∥∥2 + ∥∥∥E[wk+1|Fk]−∇1Φµλ

(xk, λk)
∥∥∥2] + θ2kσ

2
w,k+1

σ2hλ,k
:= θ2kE

[∥∥∥hkλ −∇2Φµλ
(xk, λk)

∥∥∥2]+ nθ2kσ
2
f,0.

Proof. We first consider wk. Note that

wk+1 − E[wk+1|Fk] =
n∑

i=1

λki

(
uk+1
x,i − E[uk+1

x,i |Fk]−
(
Jk+1
i − E[Jk+1

i |Fk]
)
zki

)
.

Hence we know

E
[∥∥∥wk+1 − E[wk+1|Fk]

∥∥∥2 |Fk

]
=

n∑
i=1

(
λki
)2(E [∥∥∥ukx,i − E[ukx,i|Fk]

∥∥∥2 |Fk

]
+ E

[∥∥∥Jk+1
i − E[Jk+1

i |Fk]
∥∥∥2 |Fk

] ∥∥∥zki ∥∥∥2)

≤
n∑

i=1

λki

(
σ2f,1 + 2σ2g,2

∥∥∥zk∗,i∥∥∥2 + 2σ2g,2

∥∥∥zki − zk∗,i
∥∥∥2)

≤σ2f,1 +
2σ2g,2L

2
f

µ2g
+ 2σ2g,2

n∑
i=1

λki

∥∥∥zki − zk∗,i
∥∥∥2 .

Taking expectation on both sides proves (A.29). Next for
∥∥hk+1

x − hkx
∥∥ we have

E
[∥∥∥hk+1

x − hkx

∥∥∥2 |Fk

]
= θ2kE

[∥∥∥hkx − E[wk+1|Fk]
∥∥∥2 |Fk

]
+ θ2kE

[∥∥∥wk+1 − E[wk+1|Fk]
∥∥∥2 |Fk

]
≤ 2θ2kE

[∥∥∥hkx −∇1Φ(x
k, λk)

∥∥∥2 |Fk

]
+ 2θ2kE

[∥∥∥E[wk+1|Fk]−∇1Φ(x
k, λk)

∥∥∥2 |Fk

]
+ θ2kσ

2
w,k+1,

which proves the first inequality of (A.30). Similarly we have

E
[∥∥∥hk+1

λ − hkλ

∥∥∥2 |Fk

]

=θ2kE

[∥∥∥∥hkλ − E[sk+1|Fk] + µλ
(
λk − 1n

n

)∥∥∥∥2 |Fk

]
+ θ2kE

[∥∥∥sk+1 − E[sk+1|Fk]
∥∥∥2 |Fk

]

≤θ2kE
[∥∥∥hkλ −∇2Φµλ

(xk, λk)
∥∥∥2 |Fk

]
+ nθ2kσ

2
f,0,

85

which proves the second inequality of (A.30). □

A.1.2.1. Hypergradient Estimation Error.

Lemma A.1.0.14. Suppose Assumptions 2, 3 hold for all fi, gi and Assumption 4 holds. In

Algorithm 2 if the stepsizes satisfy

(A.31) βk <
2

µg + L∇g
, γk ≤ min

(
1

4µg
,
0.06µg
σ2g,2

)
,

then we have

K∑
k=0

αkE
[n∑

i=1

∥∥∥yki − yk∗,i
∥∥∥2] ≤ nCyx

K∑
k=0

αkE
[∥∥∥xk+ − xk

∥∥∥2]+ n∑
i=1

Cyi,0 + nCy,1

(K∑
k=0

α2
k

)
K∑
k=0

αkE
[n∑

i=1

∥∥∥zki − zk∗,i
∥∥∥2] ≤ nCzx

K∑
k=0

αkE
[∥∥∥xk+ − xk

∥∥∥2]+ n∑
i=1

Czi,0 + nCz,1

(K∑
k=0

α2
k

)
where constants Cyx, Cy,1, Czx, Cz,1 are defined in Lemma A.1.0.6. Cyi,0, Czi,0 are defined as

Cyi,0 =
1

c1µg
E
[∥∥y0i − y0∗,i

∥∥2] , Czi,0 =
5L2

f

µ2g

(L2
∇2

22g

µ2g
+ 1

)
Cyi,0 +

1

c2µg
E
[∥∥z0i − z0∗,i

∥∥2] .
Proof. Note that the proof follows almost the same reasoning in Lemma A.1.0.6. Since

Assumptions 2 and 3 hold for all fi, gi, by replacing yk, yk∗ , zk, zk∗ with yki , y
k
∗,i, z

k
i , z

k
∗,i respectively,

we have similar results hold for each 1 ≤ i ≤ n,

K∑
k=0

αkE
[∥∥∥yki − yk∗,i

∥∥∥2] ≤ Cyx

K∑
k=0

αkE
[∥∥∥xk+ − xk

∥∥∥2]+ Cyi,0 + Cy,1

(K∑
k=0

α2
k

)
,

K∑
k=0

αkE
[∥∥∥zki − zk∗,i

∥∥∥2] ≤ Czx

K∑
k=0

αkE
[∥∥∥xk+ − xk

∥∥∥2]+ Czi,0 + Cz,1

(K∑
k=0

α2
k

)
.(A.32)

Taking summation on both sides of (A.32), we complete the proof. □

The next lemma shows that the inequalities above will be used in the error analysis of∥∥E[wk+1|Fk]−∇1Φ(x
k, λk)

∥∥.
Lemma A.1.0.15. Suppose Assumptions 2, 3 hold for all fi, gi and Assumption 4 holds. We

have∥∥∥E[wk+1|Fk]−∇1Φµλ
(xk, λk)

∥∥∥2 ≤ n∑
i=1

3λki

{(
L2
∇f + L2

∇2g

) ∥∥∥yki − yk∗,i
∥∥∥2 + L2

∇g

∥∥∥zki − zk∗,i
∥∥∥2} ,

86

∥∥∥E[wk+1|Fk]−∇Ψ(xk)
∥∥∥2 ≤ n∑

i=1

4λki

{(
L2
∇f + L2

∇2g

) ∥∥∥yki − yk∗,i
∥∥∥2 + L2

∇g

∥∥∥zki − zk∗,i
∥∥∥2}

+ 8nL2
Φ

{∥∥∥λk+ − λk
∥∥∥2 + 1

µ2λ

∥∥∥hkλ −∇2Φµλ
(xk, λk)

∥∥∥2} .
Proof. Note that we have the following decomposition:

E[wk+1|Fk]−∇1Φµλ
(xk, λk)

=E[uk+1
x |Fk]−

n∑
i=1

λki∇1fi(x
k, yk∗,i)−

n∑
i=1

λki

(
E[Jk+1

i |Fk]z
k
i −∇2

12gi(x
k, yk∗,i)z

k
∗,i
)

=
n∑

i=1

λki

{
∇1fi(x

k, yki)−∇1fi(x
k, yk∗,i)−∇2

12gi(x
k, yki)

(
zki − zk∗,i

)
−
[
∇2

12gi(x
k, yki)−∇2

12gi(x
k, yk∗,i)

]
zk∗,i

}
.(A.33)

which, together with Cauchy-Schwarz inequality, implies∥∥∥E[wk+1|Fk]−∇1Φµλ
(xk, λk)

∥∥∥2
≤3

∥∥∥∥∥
n∑

i=1

λki
(
∇1fi(x

k, yki)−∇1fi(x
k, yk∗,i)

)∥∥∥∥∥
2

+ 3

∥∥∥∥∥
n∑

i=1

λki∇2
12gi(x

k, yki)
(
zki − zk∗,i

)∥∥∥∥∥
2

+ 3

∥∥∥∥∥
n∑

i=1

(
∇2

12gi(x
k, yki)−∇2

12gi(x
k, yk∗,i)

)
zk∗,i

∥∥∥∥∥
2

≤
n∑

i=1

3λki
((
L2
∇f + L2

∇2g

) ∥∥∥yki − yk∗,i
∥∥∥2 + L2

∇g

∥∥∥zki − zk∗,i
∥∥∥2).

Similarly we have

E[wk+1|Fk]−∇Ψ(xk) = E[wk+1|Fk]−∇1Φµλ
(xk, λk) +∇1Φµλ

(xk, λk)−∇1Φµλ
(xk, λk∗).

Applying Cauchy-Schwarz inequality, Assumption 2 and Lemma A.1.0.10 to the above equation and

(A.33), we know∥∥∥E[wk+1|Fk]−∇Ψ(xk)
∥∥∥2

≤4

∥∥∥∥∥
n∑

i=1

λki
(
∇1fi(x

k, yki)−∇1fi(x
k, yk∗,i)

)∥∥∥∥∥
2

+ 4

∥∥∥∥∥
n∑

i=1

λki∇2
12gi(x

k, yki)
(
zki − zk∗,i

)∥∥∥∥∥
2

87

+ 4

∥∥∥∥∥
n∑

i=1

(
∇2

12gi(x
k, yki)−∇2

12gi(x
k, yk∗,i)

)
zk∗,i

∥∥∥∥∥
2

+ 4
∥∥∥∇1Φ(x

k, λk)−∇1Φ(x
k, λk∗)

∥∥∥2
≤

n∑
i=1

4λki

{(
L2
∇f + L2

∇2g

) ∥∥∥yki − yk∗,i
∥∥∥2 + L2

∇g

∥∥∥zki − zk∗,i
∥∥∥2}+ 4nL2

Φ

∥∥∥λk − λk∗
∥∥∥2 ,

which together with Lemma A.1.0.12 completes the proof. □

A.1.2.2. Primal Convergence.

Lemma A.1.0.16. Suppose Assumptions 2, 3 hold for all fi, gi and Assumption 4 holds. If

αk ≤ min

(
τ2x
20c3

,
c3

2τx (c3L∇Φ + L∇ηX)
,

c3
4τλ(L∇η∆n

+ c3µλ)
,

nτλL
2
Φ

LΨ + L∇Φ
, 1

)
,

τx < 1, τλµλ = 1, c3 ≤ min

(
1

10
,

1

8(µλ + 1)2

)
,(A.34)

then in Algorithm 2 we have

K∑
k=0

αk

τ2x
E
[∥∥∥xk+ − xk

∥∥∥2]

≤ 2

τx
E
[
W̃

(1)
0,1

]
+ 2

K∑
k=0

αkE
[∥∥∥E[wk+1|Fk]−∇Ψ(xk)

∥∥∥2]

+

K∑
k=0

αkE
[∥∥∥E[wk+1|Fk]−∇1Φµλ

(xk, λk)
∥∥∥2]+ 1

2

K∑
k=0

αkE
[∥∥∥hkx −∇1Φµλ

(xk, λk)
∥∥∥2]

+ σ2g,2

K∑
k=0

α2
kE
[n∑

i=1

λki

∥∥∥zki − zk∗,i
∥∥∥2]+ σ2w

K∑
k=0

α2
k,

K∑
k=0

αk

τ2λ
E
[∥∥∥λk+ − λk

∥∥∥2]

≤ 2

τλ
E
[
W̃

(2)
0,1

]
+

1

2

K∑
k=0

αkE
[∥∥∥hkλ −∇2Φµλ

(xk, λk)
∥∥∥2]+ 4L2

f

K∑
k=0

αkE
[n∑

i=1

∥∥∥yki − yk∗,i
∥∥∥2]

+ 13nL2
Φ

K∑
k=0

αkE
[∥∥∥xk+ − xk

∥∥∥2]+ nσ2f,0

K∑
k=0

α2
k.(A.35)

Proof. The proof of the first inequality in (A.35) is almost the same as that in (A.1.0.8). Note

that by replacing Φ, hk,Wk,1 with Ψ, hkx, W̃k,1, we know

αk

τx

∥∥∥xk+ − xk
∥∥∥2

88

≤W̃ (1)
k,1 − E

[
W̃

(1)
k+1,1|Fk

]
+ αk

(
τx

∥∥∥∇Ψ(xk)− E[wk+1|Fk]
∥∥∥2 + 1

4τx

∥∥∥xk+ − xk
∥∥∥2)

+
αk

4τx

∥∥∥xk+ − xk
∥∥∥2 + 5

2c3τx
E
[∥∥∥hk+1

x − hkx

∥∥∥2 |Fk

]
,(A.36)

Similar to (A.20), from (A.30) we have that

5

c3τ2x
E
[∥∥∥hk+1

x − hkx

∥∥∥2]
≤10c3α

2
k

τ2x
E
[∥∥∥hkx −∇1Φµλ

(xk, λk)
∥∥∥2 + ∥∥∥E[wk+1|Fk]−∇1Φµλ

(xk, λk)
∥∥∥2]+ 5c3α

2
k

τ2x
σ2w

+
10c3α

2
kσ

2
g,2

τ2x
E
[n∑

i=1

λki

∥∥∥zki − zk∗,i
∥∥∥2].

≤αk

2
E
[∥∥∥hkx −∇1Φµλ

(xk, λk)
∥∥∥2]+ αkE

[∥∥∥E[wk+1|Fk]−∇1Φµλ
(xk, λk)

∥∥∥2]+ α2
kσ

2
w

+ α2
kσ

2
g,2E

[n∑
i=1

λki

∥∥∥zki − zk∗,i
∥∥∥2],(A.37)

where the second inequality uses (A.34). Taking summation and expectation on both sides of (A.36)

and using (A.37), we obtain the first inequality in (A.35). For the second inequality in (A.35), the

L∇Ψ-smoothness of Ψ(x) and L∇ηX -smoothness of ηX in Lemma A.1.0.10 imply

Ψ(xk+1)−Ψ(xk) ≤ αk⟨∇Ψ(xk), xk+ − xk⟩+ L∇Ψ

2

∥∥∥xk+1 − xk
∥∥∥2 ,(A.38)

η∆n(λ
k,−hkλ, τλ)− η∆n(λ

k+1,−hk+1
λ , τλ)

≤⟨hkλ +
1

τλ
(λk − λk+), λ

k − λk+1⟩+ ⟨λk+ − λk,−hkλ + hk+1
λ ⟩

+
L∇η∆n

2

(∥∥∥λk+1 − λk
∥∥∥2 + ∥∥∥−hk+1

λ + hkλ

∥∥∥2)
=αk⟨−hkλ, λk+ − λk⟩+ αk

τλ

∥∥∥λk+ − λk
∥∥∥2 + θk⟨λk+ − λk, sk+1 − hkλ − µλ

(
λk − 1n

n

)
⟩

+
L∇η∆n

2

(∥∥∥λk+1 − λk
∥∥∥2 + ∥∥∥hk+1

λ − hkλ

∥∥∥2)
≤− θk

τλ

∥∥∥λk+ − λk
∥∥∥2 + θk⟨sk+1 − µλ

(
λk − 1n

n

)
, λk+ − λk⟩

+
L∇η∆n

2

(∥∥∥λk+1 − λk
∥∥∥2 + ∥∥∥hk+1

λ − hkλ

∥∥∥2) .(A.39)

89

We also have

Φµλ
(xk, λk)− Φµλ

(xk+1, λk+1)

=

n∑
i=1

(
λkiΦi(x

k)− λk+1
i Φi(x

k+1)
)
+
µλ
2

∥∥∥∥λk+1 − 1n
n

∥∥∥∥2 − µλ
2

∥∥∥∥λk − 1n
n

∥∥∥∥2

=⟨λk,Φk⟩ − ⟨λk+1,Φk+1⟩+ µλ
2

(∥∥∥∥λk+1 − λk + λk − 1n
n

∥∥∥∥2 − ∥∥∥∥λk − 1n
n

∥∥∥∥2
)

=⟨λk − λk+1,Φk⟩+ ⟨λk+1,Φk − Φk+1⟩+ µλαk⟨λk −
1n
n
, λk+ − λk⟩+ µλ

2

∥∥∥λk+1 − λk
∥∥∥2

=αk⟨λk − λk+,E[sk+1|Fk]− µλ
(
λk − 1n

n

)
⟩+ αk⟨λk − λk+,Φ

k − E[sk+1|Fk]⟩

+
µλ
2

∥∥∥λk+1 − λk
∥∥∥2 + ⟨λk+1,Φk − Φk+1⟩

≤αk⟨λk − λk+,E[sk+1|Fk]− µλ
(
λk − 1n

n

)
⟩+ αk⟨λk − λk+,Φ

k − E[sk+1|Fk]⟩

+
µλ
2

∥∥∥λk+1 − λk
∥∥∥2 − αk⟨∇1Φ(x

k, λk), xk+ − xk⟩+√
nLΦ

∥∥∥λk+1 − λk
∥∥∥∥∥∥xk+ − xk

∥∥∥
+
L∇Φ

2

∥∥∥xk+1 − xk
∥∥∥2 .(A.40)

where the inequality uses Lemma A.1.0.10 and (c) in Assumption 2 to obtain

⟨λk+1,Φk − Φk+1⟩ =
n∑

i=1

λk+1
i (Φi(x

k)− Φi(x
k+1))

≤
n∑

i=1

λk+1
i

(
⟨∇Φi(x

k), xk − xk+1⟩+ L∇Φ

2

∥∥∥xk − xk+1
∥∥∥2)

≤− αk⟨∇1Φ(x
k, λk), xk+ − xk⟩+√

nLΦ

∥∥∥λk+1 − λk
∥∥∥∥∥∥xk+ − xk

∥∥∥+ L∇Φ

2

∥∥∥xk+1 − xk
∥∥∥2 .

Taking conditional expectation with respect to Fk on (A.38) + (A.39)/c3 + (A.40), we know

αk

τλ

∥∥λk+ − λk
∥∥2

≤W̃ (2)
k,1 − E

[
W̃

(2)
k+1,1|Fk

]
+ αk⟨∇Ψ(xk)−∇1Φ(x

k, λk), xk+ − xk⟩

+ αk⟨λk − λk+,Φ
k − E[sk+1|Fk]⟩+

(L∇Ψ + L∇Φ)

2

∥∥xk+1 − xk
∥∥2

+
(L∇η∆n

+ c3µλ)

2c3

∥∥λk+1 − λk
∥∥2 +√

nLΦ

∥∥λk+1 − λk
∥∥∥∥xk+ − xk

∥∥+ L∇η∆n

2c3
E
[∥∥hk+1

λ − hkλ
∥∥2 |Fk

]
≤W̃ (2)

k,1 − E
[
W̃

(2)
k+1,1|Fk

]
+ αk

√
nLΦ

∥∥λk − λk∗
∥∥∥∥xk+ − xk

∥∥

90

+ αkLf

∥∥λk+ − λk
∥∥(n∑

i=1

∥∥yki − yk∗,i
∥∥2) 1

2

+ αk

√
nLΦ

∥∥λk+ − λk
∥∥∥∥xk+ − xk

∥∥
+
α2
k(L∇Ψ + L∇Φ)

2

∥∥xk+ − xk
∥∥2 + α2

k(L∇η∆n
+ c3µλ)

2c3

∥∥λk+ − λk
∥∥2 + L∇η∆n

2c3
E
[∥∥hk+1

λ − hkλ
∥∥2 |Fk

]
≤W̃ (2)

k,1 − E
[
W̃

(2)
k+1,1|Fk

]
+ αk

(
1

16τλ

∥∥λk − λk∗
∥∥2 + 4nτλL

2
Φ

∥∥xk+ − xk
∥∥2)

+ αk

(
1

8τλ

∥∥λk+ − λk
∥∥2 + 2τλL

2
f

n∑
i=1

∥∥yki − yk∗,i
∥∥2)+ αk

(
1

8τλ

∥∥λk+ − λk
∥∥2 + 2nτλL

2
Φ

∥∥xk+ − xk
∥∥2)

+
αknτλL

2
Φ

2

∥∥xk+ − xk
∥∥2 + αk

8τλ

∥∥λk+ − λk
∥∥2 + L∇η∆n

2c3
E
[∥∥hk+1

λ − hkλ
∥∥2 |Fk

]
,(A.41)

where the second inequality uses Lemma A.1.0.10, and the third inequality uses Young’s inequality

and the conditions on αk (see (A.34)): αk
8τλ

− α2
k(L∇η∆n

+c3µλ)

2c3
≥ 0, α2

k(L∇Ψ + L∇Φ) ≤ αknτλL
2
Φ.

Recall that in Lemma A.1.0.12 we have

(A.42)
∥∥∥λk − λk∗

∥∥∥2 ≤ 2
∥∥∥λk+ − λk

∥∥∥2 + 2

µ2λ

∥∥∥hkλ −∇2Φµλ
(xk, λk)

∥∥∥2 ,
and by (A.30) we know

L∇η∆n

c3τλ
E
[∥∥∥hk+1

λ − hkλ

∥∥∥2] ≤ 2c3α
2
k(µλ + 1)2

(
E
[∥∥∥hkλ −∇2Φµλ

(xk, λk)
∥∥∥2]+ nσ2f,0

)
≤ αk

4
E
[∥∥∥hkλ −∇2Φµλ

(xk, λk)
∥∥∥2]+ nα2

kσ
2
f,0.(A.43)

where the second inequality uses 2c3(µλ+1)2 ≤ 1
4 , αk ≤ 1 in (A.34). By (A.41), (A.42), and (A.43):

αk

τ2λ
E
[∥∥∥λk+ − λk

∥∥∥2] ≤ 2

τλ
E
[
W̃

(2)
k,1 − W̃

(2)
k+1,1

]
+
αk

2
E
[∥∥∥hkλ −∇2Φµλ

(xk, λk)
∥∥∥2]

+ 4αkL
2
fE
[n∑

i=1

∥∥∥yki − yk∗,i
∥∥∥2]+ 13αknL

2
ΦE
[∥∥∥xk+ − xk

∥∥∥2]+ nα2
kσ

2
f,0,

which implies the second inequality in (A.35) by taking summation. □

A.1.2.3. Dual Convergence.

Lemma A.1.0.17. Suppose Assumptions 2, 3 hold for all fi, gi and Assumption 4 holds. In

Algorithm 2 we have

K∑
k=0

αkE
[∥∥∥hkx −∇1Φµλ

(xk, λk)
∥∥∥2]

91

≤ 1

c3
E
[∥∥h0x −∇1Φµλ

(x0, λ0)
∥∥2]+ 3

K∑
k=0

αkE
[∥∥∥E[wk+1|Fk]−∇1Φµλ

(xk, λk)
∥∥∥2]

+
3L2

∇Φ

c23

K∑
k=0

αkE
[∥∥∥xk+ − xk

∥∥∥2]+ 3nL2
Φ

c23

K∑
k=0

αkE
[∥∥∥λk+ − λk

∥∥∥2]

+ 2c3σ
2
g,2

K∑
k=0

α2
kE
[n∑

i=1

λki

∥∥∥zki − zk∗,i
∥∥∥2]+ c3σ

2
w

K∑
k=0

α2
k,

K∑
k=0

αkE
[∥∥∥hkλ −∇2Φµλ

(xk, λk)
∥∥∥2]

≤ 1

c3
E
[∥∥h0λ −∇2Φµλ

(x0, λ0)
∥∥2]+ 3αkL

2
f

n∑
i=1

E
[∥∥∥yki − yk∗,i

∥∥∥2]

+
3nL2

Φ

c23

K∑
k=0

αkE
[∥∥∥xk+ − xk

∥∥∥2]+ 3µ2λ
c23

K∑
k=0

αkE
[∥∥∥λk+ − λk

∥∥∥2]+ nc3σ
2
f,0

K∑
k=0

α2
k.(A.44)

Proof. The proof is similar to that of Lemma A.1.0.9, except that we now have another λk to

handle. Since ∇1Φ(x, λ) = ∇1Φµλ
(x, λ) for all (x, λ) (see (2.10)), for simplicity we omit subscript

µλ in ∇1Φµλ
(x, λ) in proof. Note that by moving-average update of hkx, we have

hk+1
x −∇1Φ(x

k+1, λk+1)

=(1− θk)h
k
x + θk(w

k+1 − E[wk+1|Fk]) + θkE[wk+1|Fk]−∇1Φ(x
k+1, λk+1)

=(1− θk)(h
k
x −∇1Φ(x

k, λk)) + θk(E[wk+1|Fk]−∇1Φ(x
k, λk))

+∇1Φ(x
k, λk)−∇1Φ(x

k+1, λk+1) + θk(w
k+1 − E[wk+1|Fk])

Hence we know

E
[∥∥∥hk+1

x −∇1Φ(x
k+1, λk+1)

∥∥∥2 |Fk

]
=
∥∥∥(1− θk)(h

k
x −∇1Φ(x

k, λk)) + θk(E[wk+1|Fk]−∇1Φ(x
k, λk))

+ ∇1Φ(x
k, λk)−∇1Φ(x

k+1, λk+1)
∥∥∥2 + θ2kE

[∥∥∥wk+1 − E[wk+1|Fk]
∥∥∥2 |Fk

]
≤(1− θk)

∥∥∥hkx −∇1Φ(x
k, λk)

∥∥∥2 + θ2kσ
2
w,k+1

+ θk

∥∥∥∥(E[wk+1|Fk]−∇1Φ(x
k, λk)) +

1

θk
(∇1Φ(x

k, λk)−∇1Φ(x
k+1, λk+1))

∥∥∥∥2

92

≤(1− θk)
∥∥∥hkx −∇1Φ(x

k, λk)
∥∥∥2 + 3θk

∥∥∥E[wk+1|Fk]−∇1Φ(x
k, λk)

∥∥∥2 + θ2kσ
2
w,k+1

+
3

θk

∥∥∥∇1Φ(x
k, λk)−∇1Φ(x

k+1, λk)
∥∥∥2 + 3

θk

∥∥∥∇1Φ(x
k+1, λk)−∇1Φ(x

k+1, λk+1)
∥∥∥2

≤(1− θk)
∥∥∥hkx −∇1Φ(x

k, λk)
∥∥∥2 + 3θk

∥∥∥E[wk+1|Fk]−∇1Φ(x
k, λk)

∥∥∥2
+

3α2
k

θk

(
L2
∇Φ

∥∥∥xk+ − xk
∥∥∥2 + nL2

Φ

∥∥∥λk+ − λk
∥∥∥2)+ θ2kσ

2
w,k+1,(A.45)

where the first equality uses the fact that xk, λk, hkx, xk+1, λk+1 are all Fk-measurable and are

independent of wk+1 given Fk, the first inequality uses the convexity of ∥·∥2 and (A.29), the second

inequality uses Cauchy-Schwarz inequality, the third inequality uses the Lipschitz continuity of ∇1Φ

in Lemma A.1.0.10, and the update rules of xk+1 and λk+1. Taking summation, expectation on

both sides of (A.45), dividing c3, and applying (A.29), we know the first inequality in (A.44) holds.

Similarly we have

hk+1
λ −∇2Φµλ

(xk+1, λk+1)

=(1− θk)h
k
λ + θk

(
sk+1 − µλλ

k + µλ
1n
n

)
−∇2Φµλ

(xk+1, λk+1)

=(1− θk)(h
k
λ −∇2Φµλ

(xk, λk)) + θ
(
E[sk+1|Fk]−∇2Φ(x

k, λk)
)

+∇2Φµλ
(xk, λk)−∇2Φµλ

(xk+1, λk+1) + θk(s
k+1 − E[sk+1|Fk]).

where the second equality uses ∇2Φµλ
(xk, λk) = ∇2Φ(x

k, λk)− µλ
(
λk − 1n

n

)
. So we know

E
[∥∥∥hk+1

λ −∇2Φµλ
(xk+1, λk+1)

∥∥∥2 |Fk

]
=
∥∥∥(1− θk)(h

k
λ −∇2Φµλ

(xk, λk)) + θ
(
E[sk+1|Fk]−∇2Φ(x

k, λk)
)

+ ∇2Φµλ
(xk, λk)−∇2Φµλ

(xk+1, λk+1)
∥∥∥2 + θ2kE

[∥∥∥sk+1 − E[sk+1|Fk]
∥∥∥2 |Fk

]
≤(1− θk)

∥∥∥hkλ −∇2Φµλ
(xk, λk)

∥∥∥2 + nθ2kσ
2
f,0

+ θk

∥∥∥∥E[sk+1|Fk]−∇2Φ(x
k, λk) +

1

θk
(∇2Φµλ

(xk, λk)−∇2Φµλ
(xk+1, λk+1))

∥∥∥∥2
≤(1− θk)

∥∥∥hkλ −∇2Φµλ
(xk, λk)

∥∥∥2 + 3θk

∥∥∥E[sk+1|Fk]−∇2Φ(x
k, λk)

∥∥∥2 + nθ2kσ
2
f,0

+
3

θk
(
∥∥∥∇2Φµλ

(xk, λk)−∇2Φµλ
(xk+1, λk)

∥∥∥2 + ∥∥∥∇2Φµλ
(xk+1, λk)−∇2Φµλ

(xk+1, λk+1)
∥∥∥2)

93

≤(1− θk)
∥∥∥hkλ −∇2Φµλ

(xk, λk)
∥∥∥2 + 3θkL

2
f

n∑
i=1

∥∥∥yki − yk∗,i
∥∥∥2

+
3α2

k

θk

(
nL2

Φ

∥∥∥xk+ − xk
∥∥∥2 + µ2λ

∥∥∥λk+ − λk
∥∥∥2)+ nθ2kσ

2
f,0,(A.46)

where the third inequality uses Lemma A.1.0.10 and the fact that

E[sk+1|Fk] =
(
f1(x

k, yk1), ..., fn(x
k, ykn)

)⊤
,∇2Φ(x

k, λk) =
(
f1(x

k, yk∗,1), ..., fn(x
k, yk∗,n)

)⊤
Taking summation, expectation on both sides of (A.46), and dividing c3, we know the second

inequality in (A.44) holds. □

A.1.2.4. Proof of Theorem 2.4.1 and Corollary 2.4.1. Now we are ready to present our main

convergence results. Note that by Lemmas (A.1.0.16) and (A.1.0.17), for Ṽk,1 we have

K∑
k=0

αkE
[
Ṽk,1

]
=

K∑
k=0

αk

τ2x
E
[∥∥∥xk+ − xk

∥∥∥2]+ K∑
k=0

αkE
[∥∥∥hkx −∇1Φµλ

(xk, λk)
∥∥∥2]

≤3L2
∇Φ

c23

K∑
k=0

αkE
[∥∥∥xk+ − xk

∥∥∥2]+ 1

2

K∑
k=0

αkE
[∥∥∥hkx −∇1Φµλ

(xk, λk)
∥∥∥2]

+
2

τx
E
[
W̃

(1)
0,1

]
+

1

c3
E
[∥∥h0x −∇1Φµλ

(x0, λ0)
∥∥2]+ 2

K∑
k=0

αkE
[∥∥∥E[wk+1|Fk]−∇Ψ(xk)

∥∥∥2]

+ 4

K∑
k=0

αkE
[∥∥∥E[wk+1|Fk]−∇1Φµλ

(xk, λk)
∥∥∥2]+ 3nL2

Φ

c23

K∑
k=0

αkE
[∥∥∥λk+ − λk

∥∥∥2]

+ (1 + 2c3)σ
2
g,2

K∑
k=0

α2
kE
[n∑

i=1

λki

∥∥∥zki − zk∗,i
∥∥∥2]+ (1 + c3)σ

2
w

(K∑
k=0

α2
k

)
.(A.47)

By Lemma A.1.0.15 we know

4
K∑
k=0

αkE
[∥∥∥E[wk+1|Fk]−∇1Φµλ

(xk, λk)
∥∥∥2]+ 2

K∑
k=0

αkE
[∥∥∥E[wk+1|Fk]−∇Ψ(xk)

∥∥∥2]

≤
K∑
k=0

αkE
[n∑

i=1

20

((
L2
∇f + L2

∇2g

) ∥∥∥yki − yk∗,i
∥∥∥2 + L2

∇g

∥∥∥zki − zk∗,i
∥∥∥2)]

+
K∑
k=0

16nL2
ΦαkE

[∥∥∥λk+ − λk
∥∥∥2 + 1

µ2λ

∥∥∥hkλ −∇2Φµλ
(xk, λk)

∥∥∥2].(A.48)

94

Choosing

(A.49) (1 + 2c3)σ
2
g,2αk ≤ L2

∇g

in (A.47), and using (A.48), we know

K∑
k=0

αkE[Ṽk,1] ≤Cv1,xτ
2
x

K∑
k=0

αk

τ2x
E
[∥∥∥xk+ − xk

∥∥∥2]+ Cv1,hx

K∑
k=0

αkE
[∥∥∥hkx −∇1Φµλ

(xk, λk)
∥∥∥2]

+ Cv1,λτ
2
λ

K∑
k=0

αk

τ2λ
E
[∥∥∥λk+ − λk

∥∥∥2]+ Cv1,hλ

K∑
k=0

αkE
[∥∥∥hkλ −∇2Φµλ

(xk, λk)
∥∥∥2]

+ Cv1,0 + Cv1,1

(K∑
k=0

α2
k

)
,(A.50)

where the constants are defined as

Cv1,x =20n
(
L2
∇f + L2

∇2g

)
Cyx + 21nL2

∇gCzx +
3L2

∇Φ

c23
, Cv1,hx =

1

2
,

Cv1,λ =

(
16 +

3

c23

)
nL2

Φ, Cv1,hλ
=

16nL2
Φ

µ2λ
,

Cv1,0 =20
(
L2
∇f + L2

∇2g

)(n∑
i=1

Cyi,0

)
+ 21L2

∇g

(
n∑

i=1

Czi,0

)
+

2

τx
E
[
W̃

(1)
0,1

]
+

1

c3
E
[∥∥h0x −∇1Φµλ

(x0, λ0)
∥∥2] ,

Cv1,1 =20n
(
L2
∇f + L2

∇2g

)
Cy,1 + 21nL2

∇gCz,1.

For Ṽk,2 we have

K∑
k=0

αkE
[
Ṽk,2

]
=

K∑
k=0

αk

τ2λ
E
[∥∥∥λk+ − λk

∥∥∥2]+ K∑
k=0

αkE
[∥∥∥hkλ −∇2Φµλ

(xk, λk)
∥∥∥2]

≤3µ2λ
c23

K∑
k=0

αkE
[∥∥∥λk+ − λk

∥∥∥2]+ 1

2

K∑
k=0

αkE
[∥∥∥hkλ −∇2Φµλ

(xk, λk)
∥∥∥2]

+
2

τλ
E
[
W̃

(2)
0,1

]
+

1

c3
E
[∥∥h0λ −∇2Φµλ

(x0, λ0)
∥∥2]+ 7L2

f

K∑
k=0

αkE
[n∑

i=1

∥∥∥yki − yk∗,i
∥∥∥2]

+

(
13 +

3

c23

)
nL2

Φ

K∑
k=0

αkE
[∥∥∥xk+ − xk

∥∥∥2]+ n(1 + c3)σ
2
f,0

(K∑
k=0

α2
k

)
,

95

which implies

K∑
k=0

αkE
[
Ṽk,2

]
≤Cv2,xτ

2
x

K∑
k=0

αk

τ2x
E
[∥∥∥xk+ − xk

∥∥∥2]+ Cv2,hx

K∑
k=0

αkE
[∥∥∥hkx −∇1Φµλ

(xk, λk)
∥∥∥2]

+ Cv2,λτ
2
λ

K∑
k=0

αk

τ2λ
E
[∥∥∥λk+ − λk

∥∥∥2]+ Cv2,hλ

K∑
k=0

αkE
[∥∥∥hkλ −∇2Φµλ

(xk, λk)
∥∥∥2]

+ Cv2,0 + Cv2,1

(K∑
k=0

α2
k

)
(A.51)

where the constants are defined as

Cv2,x =7nL2
fCyx +

(
13 +

3

c23

)
nL2

Φ, Cv2,hx = 0, Cv2,λ =
3µ2λ
c23

, Cv2,hλ
=

1

2
,

Cv2,0 =7L2
f

(
n∑

i=1

Cyi,0

)
+

2

τλ
E
[
W̃

(2)
0,1

]
+

1

c3
E
[∥∥h0λ −∇2Φµλ

(x0, λ0)
∥∥2]

Cv2,1 =7nL2
fCy,1 + n(1 + c3)σ

2
f,0.

According to the definition of the constants in Lemmas A.1.0.6 and A.1.0.14, we could obtain (for

simplicity we omit the dependency on κ here)

Cv1,x = O
(
n

c21
+
n

c22
+

1

c23

)
, Cv1,hx =

1

2
= O (1) , Cv1,λ = O

(
n+

n

c23

)
, Cv1,hλ

= O
(
n

µ2λ

)
,

Cv1,0 = O
(
n

c1
+
n

c2
+

1

c3
+

1

τx
+

1

c3τx

)
, Cv1,1 = O (nc1 + nc2) ,

Cv2,x = O
(
n

c21
+ n+

n

c23

)
, Cv2,hx = 0, Cv2,λ = O

(
1

c23

)
, Cv2,hλ

=
1

2
= O (1) ,

Cv2,0 = O
(
n

c1
+

1

c3

)
, Cv2,1 = O (nc1 + n+ nc3) .

Hence we can pick αk, c1, c2, c3, τx, τλ such that αk ≡ Θ(1/
√
nK), c1 = c2 =

√
n, c3 = Θ(1), τx =

O (µλ/n) , τλ = 1/µλ, which leads to Cv1,xτ
2
x ≤ 1

2 , Cv2,xCv1,λτ
2
xτ

2
λ ≤ 1

8 , Cv2,λτ
2
λ ≤ 1

2 , and the

conditions ((A.31), (A.34), and (A.49)) in previous lemmas hold. Moreover, using the above

conditions in (A.50) and (A.51), we can get

K∑
k=0

αkE
[
Ṽk,1

]
≤ 1

2

K∑
k=0

αkE
[
Ṽk,1

]
+ Cv1,λτ

2
λ

K∑
k=0

αkE
[
Ṽk,2

]
+O (n)

96

K∑
k=0

αkE
[
Ṽk,2

]
≤ 1

2

K∑
k=0

αkE
[
Ṽk,2

]
+ Cv2,xτ

2
x

K∑
k=0

αkE
[
Ṽk,1

]
+O

(√
n
)
.

Combining the above two inequalities, we have

1

K

K∑
k=0

E
[
Ṽk,1

]
= O

(
n2

µ2λ
√
K

)
,

1

K

K∑
k=0

E
[
Ṽk,2

]
= O

(
n√
K

)
,

which completes the proof of Theorem 2.4.1 since we have

1

τ2x
E[
∥∥xk −ΠX

(
xk − τx∇Ψµλ

(xk)
)∥∥2]

≤ 2

τ2x
E[
∥∥xk −ΠX

(
xk − τx∇1Φµλ

(xk, λk)
)∥∥2]

+
2

τ2x
E[
∥∥ΠX

(
xk − τx∇Ψµλ

(xk)
)
−ΠX

(
xk − τx∇1Φµλ

(xk, λk)
)∥∥2]

≤ 2

τ2x
E[
∥∥xk −ΠX

(
xk − τx∇1Φµλ

(xk, λk)
)∥∥2] + 2nL2

ΦE[
∥∥λk − λk∗

∥∥2] ≤ 4E[Ṽk,1] +
4nL2

Φ

µ2
λ

E[Ṽk,2]

where the second inequality uses non-expansiveness of projection operator and
√
nLΦ-Lipschitz

continuity of ∇1Φµλ
(x, ·) in Lemma A.1.0.10. Note that we have n2 in the numerator since we

explicitly write out the Lipschitz constant L∇1Φµλ
.

To prove Corollary 2.4.1, we notice that by choosing µλ = O(
√
ϵ), we have

∥∇Φµλ
(x, λ)−∇Φ(x, λ)∥2 ≤ µ2λ

∥∥∥∥λ− 1n
n

∥∥∥∥2 ≤ µ2λ = O(ϵ),

and thus under the same setup of Theorem 2.4.1, we know from Section D.2 of Lin et al. [2020b]

that any ϵ-stationary point of Problem (2.10) is an ϵ-stationary point of Problem (2.9). Hence the

corresponding sample complexity is O(n5ϵ−4).

A.2. Discussions on the Prior Works Related to Chapter 2

A.2.1. Regarding Gu et al. [2023]. In this section, we discuss several issues in the current form

of Gu et al. [2023], which introduces a Multi-Objective Robust Bilevel Two-timescale optimization

algorithm (MORBiT).

The primary issue in the current analysis of MORBiT arises from the ambiguity and inconsistency

regarding the expectation and filtration. As a consequence, the current form of the paper was unable

to demonstrate E[maxi∈[n] ∥yki − y∗i (x
(k−1))∥2] ≤ Õ(

√
nK−2/5) claimed in Theorem 1 (10b) of Gu

97

et al. [2023]. The subsequent arguments are incorrect. We discuss some mistakes made in Gu et al.

[2023] as follows.

We start by looking at Lemma 8 (informal) and Lemma 14 (formal) in Gu et al. [2023] that

characterize the upper bound of L(k+1)−L(k) where L(k) = E[
∑n

i=1 λ
(k)
i ℓi(x

(k))]. Here, the function ℓi

is the function Φi(x) in our notation. The paper incorrectly asserted that Lk =
∑n

i=1 λ
(k)
i E[ℓi(x(k))].

To see why, let Fk denote the sigma algebra generated by all iterates (x, y, λ) with superscripts

not greater than k. It is important to note that both {λ(k)i } and x(k) are random objectives given

the filtration Fk. The ambiguity lies in the lack of clarity regarding the randomness over which

the expectation operation is performed. In fact, we can rewrite the claim of Lemma 14 in Gu et al.

[2023] without hiding the randomness. Let L(k) =
∑n

i=1 λ
(k)
i ℓi(x

(k)). Then, we have

L(k+1) − L(k) ≤O(α)

(
n∑

i=1

λki

∥∥∥yk+1
i − y∗i (x

(k))
∥∥∥)2

︸ ︷︷ ︸
≤maxi∈[n]∥yk+1

i −y∗i (x
(k))∥2

(A.52)

− 1

α

∥∥∥xk+1 − xk
∥∥∥2 +O(γn) +O(α)

∥∥∥h(k)x − E[h(k)x | Fk]
∥∥∥2 ,

where α, β, γ are step sizes for x, y, and λ respectively. We hide the dependency for constants in

their assumptions for simplicity. In addition, we want to emphasize that, unlike our notation, h(k)x

and h(k)λ are stochastic gradients at step k. Therefore, h(k)x and h(k)λ are random objects given Fk.

By taking expectations over all the randomness above, we can see that Lemma 14 in Gu et al. [2023]

is incorrect because it writes in the form of maxE[·] instead of E[max(·)]. Therefore, the subsequent

arguments regarding the convergence of x, y, λ are incorrect, at least in the current form.

Regardless of the error, one may be able to proceed with the proof by utilizing Eq.(A.52) since

our ultimate goal is to demonstrate the convergence of E[maxi∈[n] ∥yki − y∗i (x
(k−1))∥2]. One possible

direction is to utilize the basic recursive inequality of maxi∈[n] ∥yk+1
i − y∗i (x

(k))∥2. Observe that

for each i ∈ [n], we can establish the following inequality similar to Lemma 13 in Gu et al. [2023]

without hiding the randomness:∥∥∥y(k+1)
i − y∗i (x

(k))
∥∥∥2 ≤ (1−O(µgβ))

∥∥∥y(k)i − y∗i (x
(k−1))

∥∥∥2 +O
(

1

µgβ

)∥∥∥xk − xk−1
∥∥∥2

+O(β2)
∥∥∥h(k)y,i − E[h(k)y,i |Fk]

∥∥∥2 +O(β)⟨y(k)i − y∗i (x
(k−1)), h

(k)
y,i − E[h(k)y,i |Fk]⟩

98

However, the order of taking the expectation over the randomness and the maximum over i ∈ [n]

adds complexity to the problem. The last inner-product term can only be zero when first taking

expectation given Fk. When applying Young’s inequality to bound this term, it inevitably introduces

terms such as O(β)∥h(k)y,i − E[h(k)y,i |Fk]∥2 or O(1)∥y(k)i − y∗i (x
(k−1))∥2, which make it challenging to

proceed further with the convergence analysis.

Finally, we remark about the choice of the stationarity condition used in Gu et al. [2023].

Although the algorithmic aspect in Gu et al. [2023] is motivated by Lin et al. [2020a], the notion

of stationarity for λ in Gu et al. [2023] is different from Lin et al. [2020a]. Under the notion of

stationarity in Lin et al. [2020a] (Definition 3.7) Φ1/2ℓ(·) is the Moreau envelope of Φ(·), which is

defined after taking the max over y (i.e., λ in our notation) in Definition 3.5 in Lin et al. [2020a],

and a point x is ϵ-stationarity when
∥∥∇Φ1/2ℓ(x)

∥∥ ≤ ϵ. It is unclear if (10a) and (10c) in Gu et al.

[2023] will imply similar convergence results under the notion of stationarity in Definition 3.7 in Lin

et al. [2020a].

A.2.2. Regarding Hu et al. [2022]. Hu et al. [2022] considered a multi-block min-max bilevel

optimization, which shares similarity with Problem (2.10) we consider. However, we note that their

Assumption 2.2 on the LL function gi requires ∇2
22gi(x, y; ζ) ⪰ µgI, and is much stronger than ours

and that in Gu et al. [2023]. For example, for any 0 < µg < Lg and

∇2
22gi(x, yi; ζ) =

2Lg 0

0 0

 or

0 0

0 2µg

 with equal probability

indicates that ∇2
22gi(x, yi) = diag(Lg, µg) ⪰ µgI can hold even if ∇2

22gi(x, yi; ζ) ⪰ µgI does not hold

for any ζ. Further, they do not characterize the dependence on µg in the final complexity. Hence we

omit a detailed comparison with Hu et al. [2022].

A.3. Additional Experiments on Heterogeneous Data of Chapter 3

To introduce heterogeneity, we set r as the heterogeneity rate, and the data distribution of xe

in Section 3.4.1 on node i is N (0, i2 · r2). In Figure A.1(a), A.1(b) and A.1(c) (and similarly for

A.1(d), A.1(e), and A.1(f)) we set r as 0.5, 1.0, and 1.5 respectively. The accuracy and loss results

demonstrate that our algorithm works well under different heterogeneity rates.

99

0 20 40 60 80 100
Iteration

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

Te
st

 A
cc

ur
ac

y

Test Accuracy, = = 0.01
Test Accuracy, = = 0.03

(a)

0 20 40 60 80 100
Iteration

0.5

0.6

0.7

0.8

0.9

Te
st

 A
cc

ur
ac

y

Test Accuracy, = = 0.01
Test Accuracy, = = 0.03

(b)

0 20 40 60 80 100
Iteration

0.5

0.6

0.7

0.8

0.9

Te
st

 A
cc

ur
ac

y

Test Accuracy, = = 0.01
Test Accuracy, = = 0.03

(c)

0 20 40 60 80 100
Iteration

0

2

4

6

8

10

12

Lo
ss

Training Loss, = = 0.01
Test Loss, = = 0.01
Training Loss, = = 0.03
Test Loss, = = 0.03

(d)

0 20 40 60 80 100
Iteration

0

5

10

15

20

Lo
ss

Training Loss, = = 0.01
Test Loss, = = 0.01
Training Loss, = = 0.03
Test Loss, = = 0.03

(e)

0 20 40 60 80 100
Iteration

0

5

10

15

20

25

30

35

Lo
ss

Training Loss, = = 0.01
Test Loss, = = 0.01
Training Loss, = = 0.03
Test Loss, = = 0.03

(f)

Figure A.1. ℓ2-regularized logistic regression on synthetic data.

A.4. Proofs of Theorems in Chapter 3

Figure A.2 represents the structure of the proof. For convenience we restate our notation

convention here again:

• We use the first subscript (usually denoted as i) to represent the agent number, and the

second subscript (usually denoted as k or t) to represent the iteration number. For example

xi,k represents the x variable of agent i at k-th iteration. For the inner loop iterate like y(t)i,k ,

the superscript t represents the iteration number of the inner loop.

• We use uppercase letters to represent the matrix that collecting all the variables (corre-

sponding lowercase) as columns. For example Xk = (x1,k, ..., xn,k) , Y
(t)
k =

(
y
(t)
1,k, ..., y

(t)
n,k

)
.

• We add an overbar to a letter to denote the average over all nodes. For example, x̄k =

1
n

∑n
i=1 xi,k, ȳ

(t)
k = 1

n

∑n
i=1 y

(t)
i,k.

• The filtration is defined as

Fk = σ

(
n⋃

i=1

{y(T)
i,0 , ..., y

(T)
i,k , xi,0, ..., xi,k, ri,0, ..., ri,k}

)
.

100

Lemma A.4.0.1 Lemma A.4.0.2 Lemma A.4.0.3 Lemma A.4.0.6

Lemma A.4.0.4

Lemma A.4.0.7 Lemma A.4.0.5

Lemma A.4.0.9

Lemma A.4.0.11 Lemma A.4.0.8

Lemma A.4.0.10

Lemma A.4.0.12

Lemma A.4.0.13

Theorem 3.3.2

Figure A.2. Structure of the proof

We first state several well-known results in bilevel optimization literature (see, e.g., Lemma 2.2

in Ghadimi and Wang [2018].).

Lemma A.4.0.1. Suppose Assumptions 5 and 8 hold, we know ∇Φ(x) and y∗(x) defined in (3.2)

are LΦ and Ly∗-Lipschitz continuous respectively with the constants given by

(A.53) LΦ = Lf,1 +
2Lf,1Lg,1 + Lg,2L

2
f,0

µg
+

2Lg,1Lf,0Lg,2 + L2
g,1Lf,1

µ2g
+
Lg,2L

2
g,1Lf,0

µ3g
, Ly∗ =

Lg,1

µg
.

The following inequality is a standard result and will be used in our later analysis. We prove it

here for completeness.

Lemma A.4.0.2. Suppose we are given two sequences {ak} and {bk} that satisfy

ak+1 ≤ δak + bk, ak ≥ 0, bk ≥ 0 for all k ≥ 0

for some δ ∈ (0, 1). Then we have

ak+1 ≤ δk+1a0 +

k∑
i=0

biδ
k−i.

Proof of Lemma A.4.0.2. Setting ci = ai
δi

, we know

ci+1 ≤ ci + bi · δ−i−1 for all i ≥ 0.

101

Taking summation on both sides (i from 0 to k) and multiplying δk+1, we know for k ≥ 0,

ak+1 ≤ δk+1a0 +

k∑
i=0

biδ
k−i,

which completes the proof. □

The following lemma is standard in stochastic optimization (see, e.g., Lemma 10 in Qu and Li

[2017]).

Lemma A.4.0.3. Suppose f(x) is µ-strongly convex and L− smooth. For any x and η < 2
µ+L ,

define x+ = x− η∇f(x), x∗ = argmin f(x). Then we have

∥x+ − x∗∥ ≤ (1− ηµ)∥x− x∗∥

Next, we characterize the bounded second moment of the HIGP oracle. Note that Algorithm 3

is essentially decentralized stochastic gradient descent with gradient tracking on a strongly convex

quadratic function.

Lemma A.4.0.4. Suppose we are given matrices Ai and vectors bi such that there exist 0 < µ < L

such that µI ⪯ Ai ⪯ LI for 1 ≤ i ≤ n. W = (wij) satisfies Assumption 6. The sequences

{xi,k}, {si,k} and {vi,k} satisfy for any k ≥ 0 and 1 ≤ i ≤ n,

xi,k+1 =
n∑

j=1

wijxj,k − αsi,k, si,k+1 =
n∑

j=1

wijsj,k + vi,k+1 − vi,k, vi,k = Ai,kxi,k − bi,k, si,0 = vi,0,

E [Ai,k] = Ai, E [bi,k] = bi, E
[
∥Ai,k −Ai∥2

]
≤ σ21, E

[
∥bi,k − bi∥2

]
≤ σ22.

Moreover, we assume Ai,k, xj,k, bi,k are independent for any i, j ∈ {1, ..., n}, {Ai,k}ni=1 are independent

and {bi,k}ni=1 are independent. Define

σ̃21 = σ21 + L2, σ̃22 = σ22 +max
i

∥bi∥2, x∗ :=
(
1

n

n∑
i=1

Ai

)−1(
1

n

n∑
i=1

bi

)
,

C1 = 9σ21 + 6α2σ̃21 +
18α2σ21σ̃

2
1

n
, C2 = 12σ̃21 + 9σ21 + 12α2L2σ̃21 +

18α2σ21σ̃
2
1

n
,

C3 = 6ρ2σ̃21, C4 = 2σ22 +
6α2σ22σ̃

2
1

n
+

(
9σ21 +

18α2σ21σ̃
2
1

n

)
∥x∗∥2,

102

c =

(
α2

n
(3σ21∥x∗∥2 + σ22), 0,

(1 + ρ2)

1− ρ2
C4

)⊤
, M =


M11 M12 0

0 M22 M23

M31 M32 M33

 ,

M11 = 1− αµ, M12 =

(
2α

µ
+ 2α2

)
σ̃21, M22 =

1 + ρ2

2
, M23 = α2 1 + ρ2

1− ρ2

M31 =
1 + ρ2

1− ρ2
C1, M32 =

1 + ρ2

1− ρ2
C2, M33 =

1 + ρ2

2
+

1 + ρ2

1− ρ2
C3α

2.

If α satisfies

(
1 +

αµ

2

)
(1− αµ)2 +

3α2σ21
n

< 1− αµ, 0 < α1 ≤ α ≤ α2 for some 0 < α1 < α2,

ρ(M) < 1− 2αµ

3
, and M has 3 different positive eigenvalues,(A.54)

then we have

E
[
∥x̄k+1 − x∗∥2

]
≤ (1− αµ)E

[
∥x̄k − x∗∥2

]
+

(
2α

µ
+ 2α2

)
σ̃21
n
E
[
∥Xk − x̄k1

⊤∥2
]

+
α2

n
(3σ21∥x∗∥2 + σ22),

∥Xk+1 − x̄k+11
⊤∥2 ≤ (1 + ρ2)

2
∥Xk − x̄k1

⊤∥2 + α2 1 + ρ2

1− ρ2
∥Sk − s̄k1

⊤∥2,

E
[∥Sk+1 − s̄k+11

⊤∥2
n

]
≤ 1 + ρ2

1− ρ2
C1E

[
∥x̄k − x∗∥2

]
+

1 + ρ2

1− ρ2
C2E

[∥Xk − x̄k1
⊤∥2

n

]
+

(
1 + ρ2

2
+

1 + ρ2

1− ρ2
C3α

2

)
E
[∥Sk − s̄k1

⊤∥2
n

]
+

1 + ρ2

1− ρ2
C4.(A.55)

Moreover, we set P such that M = P · diag(λ1, λ2, λ3)P−1 with 0 < λ3 < λ2 < λ1 being eigenvalues

and each column of P is a unit vector. Define CM := ∥P∥2∥P−1∥2, we have

max

(
1

n
E
[
∥Xk − x∗1⊤∥2

]
,
1

n
E
[
∥Xk − x̄k1

⊤∥2
])

≤3CM

(
1− 2αµ

3

)k (
E
[
∥x̄0 − x∗∥2

]
+ E

[∥X0∥2 + ∥S0∥2
n

])
+

5CM∥c∥
αµ

,

(A.56)

1

n
E
[
∥Xk∥2

]
≤ 6CM

(
1− 2αµ

3

)k (
E
[
∥x̄0 − x∗∥2

]
+ E

[∥X0∥2 + ∥S0∥2
n

])
+

10CM∥c∥
αµ

+ 2∥x∗∥2.

(A.57)

103

Proof of Lemma A.4.0.4. Note that by definition of σ̃21 and σ̃22 we have

E
[
∥Ai,k∥2

]
= E

[
∥Ai,k −Ai∥2

]
+ ∥Ai∥22 ≤ σ21 + L2 = σ̃21,

E
[
∥bi,k∥2

]
= E

[
∥bi,k − bi∥2

]
+ ∥bi∥2 ≤ σ22 +max

i
∥bi∥2 = σ̃22.(A.58)

By si,0 = vi,0 we know s̄0 = v̄0. From the recursion we know

s̄k+1 = s̄k + v̄k+1 − v̄k,

and hence s̄k = v̄k by induction. For x̄k we know

x̄k+1 − x∗

=x̄k − x∗ − α

n

n∑
i=1

(Ai,kxi,k − bi,k)

=x̄k − x∗ − α

n

n∑
i=1

(Aix̄k − bi) +
α

n

n∑
i=1

(Aix̄k − bi)−
α

n

n∑
i=1

(Ai,kxi,k − bi,k)

=

(
I − α

n

n∑
i=1

Ai

)
(x̄k − x∗) +

α

n

n∑
i=1

Ai,k(x̄k − xi,k) +
α

n

n∑
i=1

((Ai −Ai,k)x̄k + bi,k − bi).

Using the above equality, E [Ai,k] = Ai and E [bi,k] = bi, we know

E
[
∥x̄k+1 − x∗∥2

]
=E

[
∥
(
I − α

n

n∑
i=1

Ai

)
(x̄k − x∗) +

α

n

n∑
i=1

Ai,k(x̄k − xi,k)∥2
]

+
α2

n2
E

[
∥

n∑
i=1

((Ai −Ai,k)x̄k + bi,k − bi)∥2
]

+E

[
⟨
(
I − α

n

n∑
i=1

Ai

)
(x̄k − x∗) +

α

n

n∑
i=1

Ai,k(x̄k − xi,k),
α

n

n∑
i=1

((Ai −Ai,k)x̄k + bi,k − bi)⟩
]

≤
(
1 +

αµ

2

)
(1− αµ)2E

[
∥x̄k − x∗∥2

]
+

(
1 +

2

αµ

)
α2σ̃21
n

n∑
i=1

E
[
∥x̄k − xi,k∥2

]
+
α2

n2
(nσ21E

[
∥x̄k∥2

]
+ nσ22) +

α2

2n2

n∑
i=1

E
[
σ21∥x̄k∥2 + σ̃21∥x̄k − xi,k∥2

]
=
(
1 +

αµ

2

)
(1− αµ)2E

[
∥x̄k − x∗∥2

]
+

(
2α

µ
+ α2 +

α2

2n

)
σ̃21
n
E
[
∥Xk − x̄k1

⊤∥2
]

104

+
α2

n

(
3σ21
2

E
[
∥x̄k∥2

]
+ σ22

)
≤
[(

1 +
αµ

2

)
(1− αµ)2 +

3α2σ21
n

]
E
[
∥x̄k − x∗∥2

]
+

(
2α

µ
+ 2α2

)
σ̃21
n
E
[
∥Xk − x̄k1

⊤∥2
]

+
α2

n
(3σ21∥x∗∥2 + σ22)

≤(1− αµ)E
[
∥x̄k − x∗∥2

]
+

(
2α

µ
+ 2α2

)
σ̃21
n
E
[
∥Xk − x̄k1

⊤∥2
]
+
α2

n
(3σ21∥x∗∥2 + σ22).

The first inequality holds because we have

E

[
⟨
(
I − α

n

n∑
i=1

Ai

)
(x̄k − x∗) +

α

n

n∑
i=1

Ai,k(x̄k − xi,k),
α

n

n∑
i=1

((Ai −Ai,k)x̄k + bi,k − bi)⟩
]

=E

[
⟨α
n

n∑
i=1

Ai,k(x̄k − xi,k),
α

n

n∑
i=1

((Ai −Ai,k)x̄k + bi,k − bi)⟩
]

=E

[
⟨α
n

n∑
i=1

Ai,k(x̄k − xi,k),
α

n

n∑
i=1

(Ai −Ai,k)x̄k⟩
]

=
α2

n2

n∑
i=1

E
[
(x̄k − xi,k)

⊤A⊤
i,k(Ai −Ai,k)x̄k

]
≤ α2

2n2

n∑
i=1

E
[
σ21∥x̄k∥2 + σ̃21∥x̄k − xi,k∥2

]
,

the second inequality uses ∥x̄k∥2 ≤ 2∥x̄k − x∗∥2 + 2∥x∗∥2, and the third inequality uses (A.54). For

∥Xk+1 − x̄k+11
⊤∥2 we know

∥Xk+1 − x̄k+11
⊤∥2 = ∥XkW − x̄k1

⊤ − α(Sk − s̄k1
⊤)∥2

≤
(
1 +

1− ρ2

2ρ2

)
ρ2∥Xk − x̄k1

⊤∥2 +
(
1 +

2ρ2

1− ρ2

)
α2∥Sk − s̄k1

⊤∥2.(A.59)

The inequality uses Cauchy-Schwarz inequality and the fact that

∥XkW − x̄k1
⊤∥ = ∥

(
Xk − x̄k1

⊤
)(

W − 11⊤

n

)
∥ = ∥

(
W − 11⊤

n

)(
Xk − x̄k1

⊤
)⊤

∥

≤∥W − 11⊤

n
∥2∥Xk − x̄k1

⊤∥ ≤ ρ∥Xk − x̄k1
⊤∥,

where the last inequality uses Assumption 6. For ∥Sk − s̄k1
⊤∥2 we know

∥Sk+1 − s̄k+11
⊤∥2 = ∥SkW − s̄k1

⊤ + Vk+1 − Vk − v̄k+11
⊤ + v̄k1

⊤∥2

≤
(
1 +

1− ρ2

2ρ2

)
∥Sk − s̄k1

⊤∥2 +
(
1 +

2ρ2

1− ρ2

)
∥ (Vk+1 − Vk)

(
I − 11⊤

n

)
∥2

105

=
1 + ρ2

2
∥Sk − s̄k1

⊤∥2 + 1 + ρ2

1− ρ2
∥Vk+1 − Vk∥2.(A.60)

For Vk+1 − Vk we have

E
[
∥Vk+1 − Vk∥2

]
=

n∑
i=1

E
[
∥Ai,k+1(xi,k+1 − xi,k) + (Ai,k+1 −Ai +Ai −Ai,k)xi,k + (bi,k − bi + bi − bi,k+1)∥2

]
=

n∑
i=1

E
[
∥Ai,k+1(xi,k+1 − xi,k) + (Ai,k+1 −Ai)xi,k∥2 + ∥(Ai −Ai,k)xi,k∥2

]
+

n∑
i=1

E
[
∥bi,k − bi∥2 + ∥bi − bi,k+1∥2

]
≤

n∑
i=1

E
[
2∥Ai,k+1(xi,k+1 − xi,k)∥2 + 2∥(Ai,k+1 −Ai)xi,k∥2 + ∥(Ai −Ai,k)xi,k∥2

]
+

n∑
i=1

E
[
∥bi,k − bi∥2 + ∥bi − bi,k+1∥2

]
≤2σ̃21E

[
∥Xk+1 −Xk∥2

]
+ 3σ21E

[
∥Xk∥2

]
+ 2nσ22.

For ∥Xk+1 −Xk∥ we know

E
[
∥Xk+1 −Xk∥2

]
= E

[
∥XkW −Xk − αSkW∥2

]
=E

[
∥
(
Xk − x̄k1

⊤
)
(W − I)− α(SkW − s̄k1

⊤)− αs̄k1
⊤∥2

]
≤3∥W − I∥22E

[
∥Xk − x̄k1

⊤∥2
]
+ 3α2ρ2E

[
∥Sk − s̄k1

⊤∥2
]
+ 3nα2E

[
∥s̄k∥2

]
≤6E

[
∥Xk − x̄k1

⊤∥2
]
+ 3α2ρ2E

[
∥Sk − s̄k1

⊤∥2
]

+ 3α2(
σ21
n
E
[
∥Xk∥2

]
+ σ22 + 2L2E

[
∥Xk − x̄k1

⊤∥2 + n∥x̄k − x∗∥2
]
)

=(6 + 6α2L2)E
[
∥Xk − x̄k1

⊤∥2
]
+ 3α2ρ2E

[
∥Sk − s̄k1

⊤∥2
]
+

3α2σ21
n

E
[
∥Xk∥2

]
+ 3nα2E

[
∥x̄k − x∗∥2

]
+ 3α2σ22,

where the second inequality holds since

E
[
∥s̄k∥2

]
= E

[
∥ 1
n

n∑
i=1

(Ai,kxi,k − bi,k)∥2
]

106

=E

[
∥ 1
n

n∑
i=1

((Ai,k −Ai)xi,k − (bi,k − bi)) +
1

n

n∑
i=1

(Aixi,k −Aix̄k) +
1

n

n∑
i=1

Ai(x̄k − x∗)∥2
]

=
1

n2

n∑
i=1

E
[
∥(Ai,k −Ai)xi,k∥2 + ∥bi,k − bi∥2

]
+

1

n2
E

[
∥

n∑
i=1

((Aixi,k −Aix̄k) +Ai(x̄k − x∗))∥2
]

≤σ
2
1

n2
E
[
∥Xk∥2

]
+
σ22
n

+
2L2

n
E
[
∥Xk − x̄k1

⊤∥2 + n∥x̄k − x∗∥2
]
.

Hence we know

E
[
∥Vk+1 − Vk∥2

]
≤ 2σ̃21E

[
∥Xk+1 −Xk∥2

]
+ 3σ21E

[
∥Xk∥2

]
+ 2nσ22

≤2σ̃21

{
(6 + 6α2L2)E

[
∥Xk − x̄k1

⊤∥2
]
+ 3α2ρ2E

[
∥Sk − s̄k1

⊤∥2
]
+ 3nα2E

[
∥x̄k − x∗∥2

]}
+

(
3σ21 +

6α2σ21σ̃
2
1

n

)
E
[
∥Xk∥2

]
+ (2nσ22 + 6α2σ22σ̃

2
1)

≤nC1E
[
∥x̄k − x∗∥2

]
+ C2E

[
∥Xk − x̄k1

⊤∥2
]
+ α2C3E

[
∥Sk − s̄k1

⊤∥2
]
+ nC4,

where the second inequality uses

∥Xk∥2 ≤ 3
[
∥Xk − x̄k1

⊤∥2 + n∥x̄k − x∗∥2 + n∥x∗∥2
]
.

The above inequalities and (A.60) imply

1

n
E
[
∥Sk+1 − s̄k+11

⊤∥2
]

≤1 + ρ2

2n
∥Sk − s̄k1

⊤∥2

+
1 + ρ2

1− ρ2

(
C1E

[
∥x̄k − x∗∥2

]
+ C2E

[∥Xk − x̄k1
⊤∥2

n

]
+ α2C3E

[∥Sk − s̄k1
⊤∥2

n

]
+ C4

)
≤1 + ρ2

1− ρ2
C1E

[
∥x̄k − x∗∥2

]
+

1 + ρ2

1− ρ2
C2E

[∥Xk − x̄k1
⊤∥2

n

]
+

(
1 + ρ2

2
+

1 + ρ2

1− ρ2
C3α

2

)
E
[∥Sk − s̄k1

⊤∥2
n

]
+

1 + ρ2

1− ρ2
C4.

Now if we define

Γk =

(
E
[
∥x̄k − x∗∥2

]
, E

[∥Xk − x̄k1
⊤∥2

n

]
, E

[∥Sk − s̄k1
⊤∥2

n

])⊤
,

107

c =

(
α2

n
(3σ21∥x∗∥2 + σ22), 0,

(1 + ρ2)

1− ρ2
C4

)⊤
, M =


M11 M12 0

0 M22 M23

M31 M32 M33

 ,

M11 = 1− αµ, M12 =

(
2α

µ
+ 2α2

)
σ̃21, M22 =

1 + ρ2

2
, M23 = α2 1 + ρ2

1− ρ2

M31 =
1 + ρ2

1− ρ2
C1, M32 =

1 + ρ2

1− ρ2
C2, M33 =

1 + ρ2

2
+

1 + ρ2

1− ρ2
C3α

2,

then by (A.55) we know Γi+1 ≤MΓi + c for any i, and thus

Γk+1 ≤MΓk + c ≤ ... ≤Mk+1Γ0 +

k∑
i=0

M ic,

where all the inequalities are element-wise. By (A.54) we know there exists an invertible matrix

P ∈ R3×3 such that M = P · diag(λ1, λ2, λ3)P−1, and 0 < λ3 < λ2 < λ1 < 1− 2αµ
3 . Without loss of

generality we may assume each column of P (as an eigenvector) is a unit vector. Hence we know

(A.61) ∥Mk∥2 = ∥P · diag(λk1, λ
k
2, λ

k
3)P

−1∥2 ≤
(
1− 2αµ

3

)k

∥P∥2∥P−1∥2 = CM ·
(
1− 2αµ

3

)k

,

where we define CM := ∥P∥2∥P−1∥2 in the last equality. Note that since we choose P such that

each column is a unit vector and M = P · diag(λ1, λ2, λ3)P−1, P is uniquely determined and CM

is a continuous function of α and other constants (σ1, σ2, µ, L, maxi ∥bi∥, ∥x∗∥, n, ρ). On the

other hand, observe that

∥
k∑

i=0

M i∥2 = ∥
k∑

i=0

P · diag(λi1, λ
i
2, λ

i
3)P

−1∥2 = ∥P · diag

(
k∑

i=0

λi1,
k∑

i=0

λi2,
k∑

i=0

λi3

)
P−1∥2

≤ CM ·max
i

1

1− λi
<

3CM

2αµ
,(A.62)

where the last inequality uses the upper bound of the eigenvalues. For (A.56) we have

max

(
1

n
E
[
∥Xk − x∗1⊤∥2

]
,
1

n
E
[
∥Xk − x̄k1

⊤∥2
])

≤ 2

n
E
[
∥Xk − x̄k1

⊤∥2 + n∥x̄k − x∗∥2
]
≤ 2

√
2∥Γk∥

≤2
√
2∥MkΓ0 +

k−1∑
i=0

M ic∥ ≤ 2
√
2(∥Mk∥2∥Γ0∥+ ∥

k−1∑
i=1

M i∥2∥c∥)

108

≤2
√
2CM

(
1− 2αµ

3

)k

∥Γ0∥+ 2
√
2 · 3CM

2αµ
∥c∥

≤2
√
2CM

(
1− 2αµ

3

)k

(E
[
∥x̄0 − x∗∥2

]
+ E

[∥X0 − x̄01
⊤∥2

n

]
+ E

[∥S0 − s̄01
⊤∥2

n

]
) +

3
√
2CM∥c∥
αµ

≤3CM

(
1− 2αµ

3

)k (
E
[
∥x̄0 − x∗∥2

]
+ E

[∥X0∥2 + ∥S0∥2
n

])
+

5CM∥c∥
αµ

,

where the fifth inequality uses (A.61) and (A.62), and the seventh inequality uses the fact that

∥X0 − x̄01
⊤∥ = ∥X0

(
I − 11⊤

n

)
∥ ≤ ∥X0∥ (same for S0). (A.57) can be viewed as a corollary of the

above inequality by noticing that

1

n
E
[
∥Xk∥2

]
≤ 2

n
E
[
∥Xk − x∗1⊤∥2 + n∥x∗∥2

]
≤6CM

(
1− 2αµ

3

)k (
E
[
∥x̄0 − x∗∥2

]
+ E

[∥X0∥2 + ∥S0∥2
n

])
+

10CM∥c∥
αµ

+ 2∥x∗∥2.

□

Remark:

• Lemma A.4.0.4 characterizes convergence results of decentralized stochastic gradient descent

with gradient tracking on strongly convex quadratic functions. Moreover, it also indicates

that the second moment of Xk can be bounded by using (A.57), which will be used in

proving the boundedness of second moment of Z(k)
t of our HIGP oracle.

• If we consider the same updates under the deterministic setting, then σ1 = σ2 = 0 and

thus ∥c∥ = 0 by definition, which indicates the constant term in (A.56) vanishes (i.e., linear

convergence). We will utilize this important observation in the next lemma.

Lemma A.4.0.5. Suppose Assumptions 5, 6 and 8 hold. In Algorithm 3 define

C1 = 9σ2g,2 + 6γ2(σ2g,2 + L2
g,1) +

18γ2σ2g,2(σ
2
g,2 + L2

g,1)

n
,

C2 = 12(σ2g,2 + L2
g,1) + 9σ2g,2 + 12γ2L2

g,1(σ
2
g,2 + L2

g,1) +
18γ2σ2g,2(σ

2
g,2 + L2

g,1)

n
,

C3 = 6ρ2(σ2g,2 + L2
g,1), C4 = 2σ2f +

6γ2σ2f (σ
2
g,2 + L2

g,1)

n
+ (9σ2g,2 +

18γ2σ2g,2(σ
2
g,2 + L2

g,1)

n
)∥x∗∥2,

109

c =

(
γ2

n

(
3σ2g,2

L2
f,0

µ2g
+ σ2f

)
, 0,

(1 + ρ2)

1− ρ2
C4

)⊤

, M =


M11 M12 0

0 M22 M23

M31 M32 M33

 ,

M11 = 1− γµg, M12 =

(
2γ

µg
+ 2γ2

)
(σ2g,2 + L2

g,1), M22 =
1 + ρ2

2
, M23 = γ2

1 + ρ2

1− ρ2
,

M31 =
1 + ρ2

1− ρ2
C1, M32 =

1 + ρ2

1− ρ2
C2, M33 =

1 + ρ2

2
+

1 + ρ2

1− ρ2
C3γ

2.

Define M̃ to be matrix M and CM̃ to be CM when σg,2 = σf = 0. If γ satisfies

(
1 +

γµg
2

)
(1− γµg)

2 +
3γ2σ2g,2
n

< 1− γµg, 0 < γ1 ≤ γ ≤ γ2 for some 0 < γ1 < γ2,

max
(
ρ(M̃), ρ(M)

)
< 1− 2γµg

3
, both M and M̃have 3 different positive eigenvalues,(A.63)

then for any 0 ≤ t ≤ N we have

E
[
∥z̄(k)t ∥2|Fk

]
≤ 1

n
E
[
∥Z(k)

t ∥2|Fk

]
≤ σ2z := 6CM

(
L2
f,0

µ2g
+ σ2f + L2

f,0

)
+

10CM∥c∥
γµg

+
2L2

f,0

µ2g
,

(A.64)

1

n
∥E
[
Z

(k)
t − z̄

(k)
t 1⊤|Fk

]
∥2 ≤ 3CM̃

(
1− 2γµg

3

)t
(
L2
f,0

µ2g
+ L2

f,0

)
.

(A.65)

Proof of Lemma A.4.0.5. Note that (A.64) is a direct results of Lemma A.4.0.4 by noticing

that

z
(k)
i,t+1 =

n∑
j=1

wijz
(k)
j,t − γd

(k)
i,t , Z

(k)
0 = 0,

d
(k)
i,t+1 =

n∑
i=1

wijd
(k)
j,t + s

(k)
i,t+1 − s

(k)
i,t , s

(k)
i,t = H

(k)
i,t z

(k)
i,t − b

(k)
i,t ,

E
[
H

(k)
i,t |Fk

]
= ∇2

ygi(xi,k, y
(T)
i,k), E

[
∥H(k)

i,t −∇2
ygi(xi,k, y

(T)
i,k)∥2|Fk

]
≤ σ2g,2,

E
[
b
(k)
i,t |Fk

]
= ∇yfi(xi,k, y

(T)
i,k), E

[
∥b(k)i,t −∇yfi(xi,k, y

(T)
i,k)∥2|Fk

]
≤ σ2f ,

for any k ≥ 0, 1 ≤ i ≤ n, and t ≥ 0. Assumption 5 also indicates that

µgI ⪯ ∇2
ygi(xi,k, y

(T)
i,k) ⪯ Lg,1I, ∥∇yfi(xi,k, y

(T)
i,k)∥ ≤ Lf,0.

110

Hence we know by (A.57),

E
[
∥z̄(k)t ∥2|Fk

]
≤ 1

n
E
[
∥Z(k)

t ∥2|Fk

]
≤6CM

(
1− 2γµg

3

)k (Lsf, 0
2

µ2g
+ σ2f + L2

f,0

)
+

10CM∥c∥
γµg

+
2L2

f,0

µ2g
≤ σ2z ,

which proves (A.64). To prove (A.65), we notice that in expectation, the updates can be written as

E
[
z
(k)
i,t+1|Fk

]
=

n∑
j=1

wijE
[
z
(k)
j,t |Fk

]
− γE

[
d
(k)
i,t |Fk

]
, Z

(k)
0 = 0,

E
[
d
(k)
i,t+1|Fk

]
=

n∑
i=1

wijE
[
d
(k)
j,t |Fk

]
+ E

[
s
(k)
i,t+1|Fk

]
− E

[
s
(k)
i,t |Fk

]
,

E
[
s
(k)
i,t |Fk

]
= ∇2

ygi(xi,k, y
(T)
i,k)E

[
z
(k)
i,t |Fk

]
−∇yfi(xi,k, y

(T)
i,k).

The updates of E
[
z
(k)
i,t |Fk

]
can be viewed as a noiseless case (i.e., σg,2 = σf = 0) of Lemma A.4.0.4.

Using this observation, (A.56), and the definition of ∥c∥ and M̃ , we know (A.65) holds. □

Now we provide a technical lemma that guarantees (A.54) and (A.63). For simplicity we can

just consider (A.54).

Lemma A.4.0.6. Let M be the matrix defined in Lemma A.4.0.4. There exist 0 < α1 < α2 such

that α ∈ (α1, α2) and

(
1 +

αµ

2

)
(1− αµ)2 +

3α2σ21
n

< 1− αµ,(A.66)

ρ(M) < 1− 2αµ

3
, and M has 3 different positive eigenvalues.(A.67)

Proof of Lemma A.4.0.6. Note that (A.66) is equivalent to

µ3α2 +
6ασ21
n

− µ < 0,

which implies any α1, α2 satisfying

(A.68) 0 < α1 < α2 <

√
9σ41 + n2µ4 − 3σ21

nµ3

111

will ensure (A.66). Next we consider (A.67). Define

φ(λ) := det(λI −M) =
3∏

i=1

(λ−Mii)−M23M32(λ−M11)−M12M23M31.

We know that a sufficient condition to guarantee (A.67) is

(A.69) φ

(
1− 2αµ

3

)
> 0, φ(M11) < 0, φ(M22) > 0, φ(0) < 0, M11 > M22,

since this implies 0 < M22 < M11 = 1− αµ < 1− 2αµ
3 and

φ

(
1− 2αµ

3

)
· φ(M11) < 0, φ(M11) · φ(M22) < 0, φ(M22) · φ(0) < 0,

which together with continuity of φ indicate the roots of φ(λ) = 0 (i.e., the eigenvalues of M , denoted

as λ1, λ2, λ3 in descending order) satisfy

0 < λ3 < M22 < λ2 < M11 < λ1 < 1− 2αµ

3
.

The condition φ(M11) < 0 is automatically true by definition of φ and M , and for the rest of the

conditions in (A.69) we have

φ

(
1− 2αµ

3

)
> 0

⇔α · φ1(α) :=
αµ

3

[(
1− ρ2

2
− 2αµ

3

)(
1− ρ2

2
− 2αµ

3
− 1 + ρ2

1− ρ2
C3α

2

)
−
(
1 + ρ2

1− ρ2

)2

C2α
2

]

−
(
1 + ρ2

1− ρ2

)2

C1α
2

(
2α

µ
+ 2α2

)
σ̃21 > 0,

φ(M22) > 0 ⇔M23((M11 −M22)M32 −M12M31) > 0 ⇔ (M11 −M22)M32 −M12M31 > 0

⇔φ2(α) :=

(
1− ρ2

2
− αµ

)
1 + ρ2

1− ρ2
C2 −

1 + ρ2

1− ρ2
C1

(
2α

µ
+ 2α2

)
σ̃21 > 0,

(by definition of C2, C2 > 0 when α = 0)

φ(0) < 0 ⇔ −M11(M22M33 −M23M32)−M12M23M31 < 0 ⇐M22M33 −M23M32 > 0

⇔φ3(α) :=
1 + ρ2

2

(
1 + ρ2

2
+

1 + ρ2

1− ρ2
C3α

2

)
−
(
1 + ρ2

1− ρ2

)2

C2α
2 > 0,

M11 > M22 ⇔ α <
1− ρ2

2µ
.

112

Hence a sufficient condition for (A.69) is

φ1(α) > 0, φ2(α) > 0, φ3(α) > 0, α <
1− ρ2

2µ
.

Given the expressions of φi(α) above, we know they satisfy φi(0) > 0. Hence we can define β to be

the minimum positive constant such that φ1(β)φ2(β)φ3(β) = 0, and

α2 = min

(√
9σ41 + n2µ4 − 3σ21

nµ3
,
1− ρ2

2µ
, β

)
, α1 = any constant in (0, α2),

which implies that for any α ∈ (α1, α2), we always have

φ1(α) > 0, φ2(α) > 0, φ3(α) > 0, α <

√
9σ41 + n2µ4 − 3σ21

nµ3
, α <

1− ρ2

2µ
,

because of the definition of β, and φi(0) = 0 for all 1 ≤ i ≤ 3. (A.68). The above expression implies

(A.68) and (A.69), and hence (A.66) and (A.67) are satisfied. □

Remark:

• One can follow the proof of Corollary 1 in Pu and Nedić [2021] to obtain an explicit

dependence between α1, α2 and other parameters, which is purely technical and we omit it

in this lemma.

• Define α̃2 to be the constant α2 when σ1 = σ2 = 0 in the above lemma. We can check that

the proof is still valid and thus for any α ∈ (min(α2,α̃2)
2 ,min (α2, α̃2)) we have

(
1 +

αµ

2

)
(1− αµ)2 +

3α2σ21
n

< 1− αµ,

max
(
ρ(M̃), ρ(M)

)
< 1− 2αµ

3
, both M and M̃ have 3 different positive eigenvalues,

and thus the existence of γ1 and γ2 in (A.63) is also guaranteed.

Using Lemma A.4.0.5 we could directly bound ∥Xk − x̄k1
⊤∥2 and ∥Y (t+1)

k − ȳ
(t+1)
k 1⊤∥2.

Lemma A.4.0.7. Suppose Assumptions 5, 6, 7, and 8 hold. Define

σ2u = 2(L2
f,0 + σ2f) + 2(L2

g,1 + σ2g,2)σ
2
z , σ

2
x =

1 + ρ2

1− ρ2
· σ2u, α̃2

k+1 =

k∑
i=0

α2
i

(
1 + ρ2

2

)k−i

,

β̃2k+1 =
1 + ρ2

1− ρ2

k∑
i=0

β2i (2σ
2
g,1 + 6L2

g,1σ
2
xα̃

2
i + 3δ2)

(
3 + ρ2

4

)k−i

, α̃0 = β̃0 = 0.

113

If βk satisfy

(A.70)
(1 + ρ2)

2
+ β2k

1 + ρ2

1− ρ2
· 6L2

g,1 ≤
3 + ρ2

4
< 1,

then in Algorithm 5, for any k ≥ 0 and 0 ≤ t ≤ T − 1 we have

E
[
∥Uk∥2

]
≤ nσ2u, E

[
∥Xk − x̄k1

⊤∥2
]
≤ nσ2xα̃

2
k,

1

n
E
[
∥Y (t)

k − ȳ
(t)
k 1⊤∥2

]
≤
[(

3 + ρ2

4

)t

T − t

(
3 + ρ2

4

)]
β̃2k + tβ̃2k+1.(A.71)

Proof of Lemma A.4.0.7. Note that the inner and outer loop updates satisfy

x̄k+1 = x̄k − αkr̄k, Xk+1 − x̄k+11
⊤ = XkW − x̄k1

⊤ − αk(Rk − r̄k1
⊤),

ȳ
(t+1)
k = ȳ

(t)
k − βkv̄

(t)
k , Y

(t+1)
k − ȳ

(t+1)
k = Y

(t)
k W − ȳ

(t)
k 1⊤ − βk(V

(t)
k − v̄

(t)
k 1⊤),

which gives

∥Xk+1 − x̄k+11
⊤∥2 ≤ (1 + ρ2)

2
∥Xk − x̄k1

⊤∥2 + α2
k

1 + ρ2

1− ρ2
∥Rk − r̄k1

⊤∥2,(A.72)

∥Y (t+1)
k − ȳ

(t+1)
k 1⊤∥2 ≤ (1 + ρ2)

2
∥Y (t)

k − ȳ
(t)
k 1⊤∥2 + β2k

1 + ρ2

1− ρ2
∥V (t)

k − v̄
(t)
k 1⊤∥2.(A.73)

The inequalities hold similarly as the inequality in (A.59). Notice that we have

∥Rk − r̄k1
⊤∥ = ∥Rk

(
I − 11⊤

n

)
∥ = ∥ [(1− αk)Rk−1 + αkUk−1]

(
I − 11⊤

n

)
∥

≤max

(
∥Rk−1

(
I − 11⊤

n

)
∥, ∥Uk−1

(
I − 11⊤

n

)
∥
)

≤ max
0≤i≤k−1

(
∥Ui

(
I − 11⊤

n

)
∥
)
.

The second inequality holds by repeating the first inequality multiple times. For each ∥Uk − ūk1
⊤∥

we have

E
[
∥Uk − ūk1

⊤∥2
]
= E

[
∥Uk

(
I − 11⊤

n

)
∥2
]
≤ E

[
∥Uk∥2

]
=

n∑
i=1

E
[
∥ui,k∥2

]
≤2

n∑
i=1

(
E
[
∥∇xfi(xi,k, y

(T)
i,k ;ϕi,0)∥2

]
+ E

[
∥∇2

xygi(xi,k, y
(T)
i,k ; ξi,0)z

(k)
i,N∥2

])
≤2

n∑
i=1

(
L2
f,0 + σ2f + (L2

g,1 + σ2g,2)E
[
∥z(k)i,N∥2

])
≤ 2n(L2

f,0 + σ2f) + 2n(L2
g,1 + σ2g,2)σ

2
z = nσ2u.

114

The fourth inequality uses (A.64). Using the above two inequaities in (A.72) we know

∥Xk+1 − x̄k+11
⊤∥2 ≤ (1 + ρ2)

2
∥Xk − x̄k1

⊤∥2 + nα2
kσ

2
x.

Using Lemma A.4.0.2 and X0 = 0, we can obtain the first two results of (A.71). To analyze

∥V (t)
k − v̄

(t)
k 1⊤∥, we first notice that

v
(t)
i,k − v̄

(t)
k = v

(t)
i,k −∇ygi(xi,k, y

(t)
i,k)− (v̄

(t)
k − 1

n

n∑
l=1

∇ygl(xl,k, y
(t)
l,k)) +∇ygi(xi,k, y

(t)
i,k)−∇ygi(x̄k, ȳ

(t)
k)

− 1

n

n∑
l=1

(∇ygl(xl,k, y
(t)
l,k)−∇ygl(x̄k, ȳ

(t)
k)) +∇ygi(x̄k, ȳ

(t)
k)− 1

n

n∑
l=1

∇ygl(x̄k, ȳ
(t)
k).

Hence we know

E
[
∥V (t)

k − v̄
(t)
k 1⊤∥2

]
=

n∑
i=1

E
[
∥v(t)i,k − v̄

(t)
k ∥2

]
≤(n+ 1)σ2g,1

+3

n∑
i=1

E

[
L2
g,1(∥xi,k − x̄k∥2 + ∥y(t)i,k − ȳ

(t)
k ∥2) +

L2
g,1

n

n∑
l=1

(∥xl,k − x̄k∥2 + ∥y(t)l,k − ȳ
(t)
k ∥2) + δ2

]

=(n+ 1)σ2g,1 + 6L2
g,1E

[
∥Xk − x̄k1

⊤∥2 + ∥Yk − ȳ
(t)
k 1⊤∥2

]
+ 3nδ2

≤6L2
g,1E

[
∥Y (t)

k − ȳ
(t)
k 1⊤∥2

]
+ 2nσ2g,1 + 6nL2

g,1σ
2
xα̃

2
k + 3nδ2,

where the second inequality uses the first result of (A.71). The above inequality together with (A.73)

imply

1

n
E
[
∥Y (t+1)

k − ȳ
(t+1)
k 1⊤∥2

](A.74)

≤
[
(1 + ρ2)

2
+ β2k

1 + ρ2

1− ρ2
· 6L2

g,1

]
· 1
n
E
[
∥Y (t)

k − ȳ
(t)
k 1⊤∥2

]
+ β2k

1 + ρ2

1− ρ2
(2σ2g,1 + 6L2

g,1σ
2
xα̃

2
k + 3δ2)

≤
(
3 + ρ2

4

)t+1

· 1
n
E
[
∥Y (0)

k − ȳ
(0)
k 1⊤∥2

]
+ β2k

1 + ρ2

1− ρ2
(2σ2g,1 + 6L2

g,1σ
2
xα̃

2
k + 3δ2)

t∑
l=0

(
3 + ρ2

4

)i

≤
(
3 + ρ2

4

)t+1

· 1
n
E
[
∥Y (0)

k − ȳ
(0)
k 1⊤∥2

]
+ (t+ 1)β2k

1 + ρ2

1− ρ2
(2σ2g,1 + 6L2

g,1σ
2
xα̃

2
k + 3δ2),

115

where the second inequality uses Lemma A.4.0.2 and (A.70). Notice that we use warm-start strategy

(i.e., Y (0)
k+1 = Y

(T)
k), hence we know

1

n
E
[
∥Y (0)

k+1 − ȳ
(0)
k+11

⊤∥2
]
=

1

n
E
[
∥Y (T)

k − ȳ
(T)
k 1⊤∥2

]
≤
(
3 + ρ2

4

)T

· 1
n
E
[
∥Y (0)

k − ȳ
(0)
k 1⊤∥2

]
+ Tβ2k

1 + ρ2

1− ρ2
(2σ2g,1 + 6L2

g,1σ
2
xα̃

2
k + 3δ2)

≤T 1 + ρ2

1− ρ2

k∑
i=0

β2i (2σ
2
g,1 + 6L2

g,1σ
2
xα̃

2
i + 3δ2)

(
3 + ρ2

4

)k−i

= T β̃2k+1,

where the second inequality uses Lemma A.4.0.2. Using the above estimation in (A.74), we know

1

n
E
[
∥Y (t+1)

k − ȳ
(t+1)
k 1⊤∥2

]
≤
(
3 + ρ2

4

)t+1

· 1
n
E
[
∥Y (0)

k − ȳ
(0)
k 1⊤∥2

]
+ (t+ 1)β2k

1 + ρ2

1− ρ2
(2σ2g,1 + 6L2

g,1σ
2
xα̃

2
k + 3δ2)

≤
(
3 + ρ2

4

)t+1

T β̃2k + (t+ 1)

(
β̃2k+1 −

(
3 + ρ2

4

)
β̃2k

)
,

and thus the proof is complete by rearranging the terms. □

Now we are ready to analyze the convergence of the inner loop of Algorithm 5.

Lemma A.4.0.8. Suppose Assumptions 5 and 8 hold. For any 0 ≤ t ≤ T − 1 define

(A.75)

Ck,t+1 =
t∑

l=0

[(
βk
µg

+ β2k

)
L2
g,1

(
σ2xα̃

2
k +

[(
3 + ρ2

4

)l

T − l

(
3 + ρ2

4

)]
β̃2k + lβ̃2k+1

)
+
β2kσ

2
g,1

n

]
.

If T ≥ 1 and 0 < βk ≤ min{1, 1
µg
}, then in Algorithm 5, we have

(A.76)
µg
2

K∑
k=1

βkE
[
∥ȳ(0)k − y∗k−1∥2

]
≤ E

[
∥ȳ(0)1 − y∗0∥2

]
+ L2

y∗

K∑
k=1

(
2α2

k−1

βkµg
+ α2

k−1

)
E
[
∥r̄k−1∥2

]
+

K∑
k=1

Ck,T ,

where y∗k = y∗(x̄k) = argmin y

∑n
i=1 gi(x̄k, y)

Proof of Lemma A.4.0.8. For any k ≥ 0, 1 ≤ t ≤ T − 1, define

G(k)
t = σ

(
n⋃

i=1

{y(T)
i,0 , ..., y

(T)
i,k−1, y

(t)
i,k, xi,0, ..., xi,k, ri,0, ..., ri,k}

)
.

116

We know

E
[
∥ȳ(t+1)

k − y∗k∥2|Gt

](A.77)

=E
[
∥ȳ(t)k − βk∇yg(x̄k, ȳ

(t)
k)− y∗k − βk

(
v̄
(t)
k − E

[
v̄
(t)
k |Gt

])
− βk

(
E
[
v̄
(t)
k |Gt

]
−∇yg(x̄k, ȳ

(t)
k)
)
∥2|Gt

]
=E

[
∥ȳ(t)k − βk∇yg(x̄k, ȳ

(t)
k)− y∗k − βk

(
E
[
v̄
(t)
k |Gt

]
−∇yg(x̄k, ȳ

(t)
k)
)
∥2|Gt

]
+
β2kσ

2
g,1

n

≤(1 + βkµg)∥ȳ(t)k − βk∇yg(x̄k, ȳ
(t)
k)− y∗k∥2

+

(
1 +

1

βkµg

)
β2kE

[
∥E
[
v̄
(t)
k |Gt

]
−∇yg(x̄k, ȳ

(t)
k)∥2|Gt

]
+
β2kσ

2
g,1

n

≤(1 + βkµg)(1− βkµg)
2∥ȳ(t)k − y∗k∥2

+

(
βk
µg

+ β2k

)
∥ 1
n

n∑
i=1

(
∇ygi(xi,k, y

(t)
i,k)−∇ygi(x̄k, ȳ

(t)
k)
)
∥2 +

β2kσ
2
g,1

n

≤(1− βkµg)∥ȳ(t)k − y∗k∥2 +

(
βk
µg

+ β2k

)
L2
g,1

n

(
∥Xk − x̄k1

⊤∥2 + ∥Y (t)
k − ȳ

(t)
k 1⊤∥2

)
+
β2kσ

2
g,1

n
,

where the second equality holds since v̄(t)k − E
[
v̄
(t)
k |Gt

]
has expectation 0 and

E
[
∥v̄(t)k − E

[
v̄
(t)
k |Gt

]
∥2|Gt

]
= E

[
∥ 1
n

n∑
i=1

(
v
(t)
i,k − E

[
v
(t)
i,k|Gt

])
∥2|Gt

]
≤
σ2g,1
n
,

due to independence, the second inequality holds due to Lemma A.4.0.3 and βk ≤ 1, and the third

inequality holds due to Lipschitz continuity of ∇yg. Taking expectation on both sides and using

(A.71) we know

E
[
∥ȳ(t+1)

k − y∗k∥2
]

≤(1− βkµg)E
[
∥ȳ(t)k − y∗k∥2

]
+

(
βk
µg

+ β2k

)
L2
g,1

(
σ2xα̃

2
k +

[(
3 + ρ2

4

)t

T − t

(
3 + ρ2

4

)]
β̃2k + tβ̃2k+1

)
+
β2kσ

2
g,1

n

≤(1− βkµg)
t+1E

[
∥ȳ(0)k − y∗k∥2

]
+ Ck,t+1,

117

where the second inequality uses Lemma A.4.0.2. Observe that we also have

E
[
∥ȳ(0)k+1 − y∗k∥2

]
= E

[
∥ȳ(T)

k − y∗k∥2
]
≤ (1− βkµg)

TE
[
∥ȳ(0)k − y∗k∥2

]
+ Ck,T

≤(1− βkµg)
TE
[(

1 +
βkµg
2

)
∥ȳ(0)k − y∗k−1∥2 +

(
1 +

2

βkµg

)
∥y∗k−1 − y∗k∥2

]
+ Ck,T

≤
(
1 +

βkµg
2

)
(1− βkµg)

TE
[
∥ȳ(0)k − y∗k−1∥2

]
+

(
2α2

k−1

βkµg
+ α2

k−1

)
L2
y∗E

[
∥r̄k−1∥2

]
+ Ck,T

≤
(
1− βkµg

2

)
E
[
∥ȳ(0)k − y∗k−1∥2

]
+

(
2α2

k−1

βkµg
+ α2

k−1

)
L2
y∗E

[
∥r̄k−1∥2

]
+ Ck,T ,

where the third inequality holds since (1 + a
2)(1− a)T ≤ (1− a

2) for any a > 0 and T ≥ 1, and y∗(x)

is Ly∗-smooth. This implies

βkµg
2

E
[
∥ȳ(0)k − y∗k−1∥2

]
≤E

[
∥ȳ(0)k − y∗k−1∥2

]
− E

[
∥ȳ(0)k+1 − y∗k∥2

]
+

(
2α2

k−1

βkµg
+ α2

k−1

)
L2
y∗E

[
∥r̄k−1∥2

]
+ Ck,T .

Taking summation on both sides, we have

µg
2

K∑
k=1

βkE
[
∥ȳ(0)k − y∗k−1∥2

]
≤ E

[
∥ȳ(0)1 − y∗0∥2

]
+ L2

y∗

K∑
k=1

(
2α2

k−1

βkµg
+ α2

k−1

)
E
[
∥r̄k−1∥2

]
+

K∑
k=1

Ck,T .

□

Lemma A.4.0.9. Suppose Assumptions 5, 6, 7, and 8 hold. In Algorithm 3 define

H(k) :=
1

n

n∑
i=1

∇2
ygi(x̄k, y

∗
k), b

(k) :=
1

n

n∑
i=1

∇yfi(x̄k, y
∗
k),

z
(k)
∗ :=

(
H(k)

)−1
· b(k) =

(
n∑

i=1

∇2
ygi(x̄k, y

∗
k)

)−1(n∑
i=1

∇yfi(x̄k, y
∗
k)

)
,

If γ satisfies (A.63), then we have

E
[
∥E
[
z̄
(k)
t |Fk

]
− z

(k)
∗ ∥2

]
≤(1− γµg)

N ·
L2
f,0

µ2g
+ 5

(
1

µ2g
+

γ

µg

)(
L2
g,2σ

2
z + L2

f,1

) (
E
[
∥ȳ(0)k+1 − y∗k∥2

]
+ σ2xα̃

2
k + T β̃2k+1

)
+90CM̃L

2
g,1

(
1

µ2g
+

γ

µg

)(
L2
f,0

µ2g
+ L2

f,0

)(
1− 2γµg

3

)N−1

.(A.78)

118

Proof of Lemma A.4.0.9. Define

żt,k := E
[
z̄
(k)
t |Fk

]
, ṡt,k := E

[
s̄
(k)
t |Fk

]
.

We know

żt+1,k − z
(k)
∗ = żt+1,k − z

(k)
∗ = E

[
z̄
(k)
t |Fk

]
− γE

[
s̄
(k)
t |Fk

]
− z

(k)
∗

=E
[
z̄
(k)
t |Fk

]
− γ

(
H(k)E

[
z̄
(k)
t |Fk

]
− b(k)

)
− z

(k)
∗ − γ

(
E
[
s̄
(k)
t |Fk

]
−
(
H(k)E

[
z̄
(k)
t |Fk

]
− b(k)

))
=żt,k − γ

(
H(k)żt,k − b(k)

)
− z

(k)
∗ − γ

(
ṡt,k −

(
H(k)żt,k − b(k)

))
.

Hence we know

∥żt+1,k − z
(k)
∗ ∥2

=∥żt,k − γ
(
H(k)żt,k − b(k)

)
− z

(k)
∗ − γ

(
ṡt,k −

(
H(k)żt,k − b(k)

))
∥2

≤(1 + γµg)∥żt,k − γ
(
H(k)żt,k − b(k)

)
− z

(k)
∗ ∥2 + (1 +

1

γµg
)γ2∥ṡt,k −

(
H(k)żt,k − b(k)

)
∥2

≤(1 + γµg)(1− γµg)
2∥żt,k − z

(k)
∗ ∥2 +

(
γ

µg
+ γ2

)
∥ṡt,k −

(
H(k)żt,k − b(k)

)
∥2

≤(1− γµg)∥żt,k − z
(k)
∗ ∥2 +

(
γ

µg
+ γ2

)
∥ṡt,k −

(
H(k)żt,k − b(k)

)
∥2,(A.79)

where the second inequality uses Lemma A.4.0.3. For ṡt,k −
(
H(k)żt,k − b(k)

)
we have

∥ṡt,k −
(
H(k)żt,k − b(k)

)
∥2

=
1

n2
∥

n∑
i=1

(
∇2

ygi(xi,k, y
(T)
i,k)E

[
z
(k)
i,t |Fk

]
−∇2

ygi(x̄k, y
∗
k)E

[
z̄
(k)
t |Fk

])
+

n∑
i=1

(
∇yfi(x̄k, y

∗
k)−∇yfi(xi,k, y

(T)
i,k)

)
∥2

=
1

n2
∥

n∑
i=1

[
∇2

ygi(xi,k, y
(T)
i,k)E

[
z
(k)
i,t − z̄

(k)
t |Fk

]
−
(
∇2

ygi(xi,k, y
(T)
i,k)−∇2

ygi(x̄k, ȳ
(T)
k)

)
żt,k

]
+

n∑
i=1

[(
∇2

ygi(x̄k, ȳ
(T)
k)−∇2

ygi(x̄k, y
∗
k)
)
żt,k +∇yfi(x̄k, y

∗
k)−∇yfi(x̄k, ȳ

(T)
k)

]
+

n∑
i=1

(
∇yfi(x̄k, ȳ

(T)
k)−∇yfi(xi,k, y

(T)
i,k)

)
∥2

119

≤ 5

n

n∑
i=1

L2
g,1∥E

[
z
(k)
i,t − z̄

(k)
t |Fk

]
∥2

+
5

n

n∑
i=1

(∥xi,k − x̄k∥2 + ∥y(T)
i,k − ȳ

(T)
k ∥2 + ∥ȳ(T)

k − y∗k∥2)(L2
g,2∥żt,k∥2 + L2

f,1)

=
5L2

g,1

n
∥E
[
Z

(k)
t − z̄

(k)
t 1⊤|Fk

]
∥2

+
5
(
L2
g,2σ

2
z + L2

f,1

)
n

(
n∥ȳ(T)

k − y∗k∥2 + ∥Xk − x̄k1
⊤∥2 + ∥Y (T)

k − ȳ
(T)
k 1⊤∥2

)
.

The above inequality and (A.79) imply

E
[
∥żN,k − z

(k)
∗ ∥2

]
(A.80)

≤(1− γµg)E
[
∥żN−1,k − z

(k)
∗ ∥2

]
+

(
γ

µg
+ γ2

)
E
[
∥ṡN−1,k −

(
H(k)żN−1,k − b(k)

)
∥2
]

≤(1− γµg)
NE
[
∥z(k)∗ ∥2

]
+

5L2
g,1

(
γ
µg

+ γ2
)

n

N−1∑
t=0

(1− γµg)
N−1−tE

[
∥E
[
Z

(k)
t − z̄

(k)
t 1⊤|Fk

]
∥2
]

+

γ
µg

+ γ2

1− (1− γµg)
·
5
(
L2
g,2σ

2
z + L2

f,1

)
n

E
[
n∥ȳ(T)

k − y∗k∥2 + ∥Xk − x̄k1
⊤∥2 + ∥Y (T)

k − ȳ
(T)
k 1⊤∥2

]
≤(1− γµg)

N ·
L2
f,0

µ2g
+ 5

(
1

µ2g
+

γ

µg

)(
L2
g,2σ

2
z + L2

f,1

) (
E
[
∥ȳ(T)

k − y∗k∥2
]
+ σ2xα̃

2
k + T β̃2k+1

)
+5L2

g,1

(
γ

µg
+ γ2

)N−1∑
t=0

(
1− γµg

2

)N−1−t
(
3CM̃

(
1− 2γµg

3

)t
(
L2
f,0

µ2g
+ L2

f,0

))

≤(1− γµg)
N ·

L2
f,0

µ2g
+ 5

(
1

µ2g
+

γ

µg

)(
L2
g,2σ

2
z + L2

f,1

) (
E
[
∥ȳ(T)

k − y∗k∥2
]
+ σ2xα̃

2
k + T β̃2k+1

)
+90CM̃L

2
g,1

(
1

µ2g
+

γ

µg

)(
L2
f,0

µ2g
+ L2

f,0

)(
1− 2γµg

3

)N−1

,

where the second inequality uses Lemma A.4.0.2, the third inequality uses (A.65), and the fourth

inequality holds since

N−1−t∑
t=0

(
1− γµg

2

)N−1−t
(
1− 2γµg

3

)t

=

(
1− 2γµg

3

)N−1 N−1∑
t=0

1− 2γµg

3

1− γµg

2

<

(
1− 2γµg

3

)N−1

· 6

γµg
.

□

120

Lemma A.4.0.10. If 0 < βk ≤ 1 and αk > 0 for any k ≥ 0, then the parameters α̃k, β̃k, and

Ck,T defined in Lemmas A.4.0.7 and A.4.0.8 satisfy

K∑
k=0

α̃2
k ≤ 2

1− ρ2

K−1∑
i=0

α2
i = O

(
K∑
k=0

α2
k

)
K∑
k=0

β̃2k+1 ≤
4(1 + ρ2)

(1− ρ2)2

[(
10σ2g,1 + 5δ2

) K∑
i=0

β2i +
20L2

g,1σ
2
x

1− ρ2

K−1∑
i=0

α2
i

]
= O

(
K∑
k=0

(α2
k + β2k)

)
K∑
k=1

Ck,T ≤
(

1

µg
+ 1

)
L2
g,1

[
Tσ2x

K∑
k=1

α̃2
k + 2T 2

K∑
k=0

β̃2k+1

]
+
Tσ2g,1
n

K∑
k=1

β2k = O
(

K∑
k=0

(α2
k + β2k)

)
.

Proof of Lemma A.4.0.10. The first inequality holds due to α̃0 = 0 and

K−1∑
k=0

α̃2
k+1 =

K−1∑
k=0

k∑
i=0

α2
i

(
1 + ρ2

2

)k−i

=
K−1∑
i=0

K−1∑
k=i

α2
i

(
1 + ρ2

2

)k−i

≤ 2

1− ρ2

K−1∑
i=0

α2
i .

Similarly, we have

K∑
k=0

β̃2k+1 =
1 + ρ2

1− ρ2

K∑
k=0

k∑
i=0

β2i (10σ
2
g,1 + 10L2

g,1σ
2
xα̃

2
i + 5δ2)

(
3 + ρ2

4

)k−i

≤4(1 + ρ2)

(1− ρ2)2

K∑
i=0

β2i (10σ
2
g,1 + 10L2

g,1σ
2
xα̃

2
i + 5δ2)

≤4(1 + ρ2)

(1− ρ2)2

[
(10σ2g,1 + 5δ2)

K∑
i=0

β2i +
20L2

g,1σ
2
x

1− ρ2

K−1∑
i=0

α2
i

]
.

Lastly, we know

K∑
k=1

Ck,T

=

K∑
k=1

T−1∑
l=0

[(
βk
µg

+ β2k

)
L2
g,1

(
σ2xα̃

2
k +

[(
3 + ρ2

4

)l

T − l

(
3 + ρ2

4

)]
β̃2k + lβ̃2k+1

)
+
β2kσ

2
g,1

n

]

≤
K∑
k=1

(
βk
µg

+ β2k

)
L2
g,1

(
Tσ2xα̃

2
k + T 2β̃2k + T 2β̃2k+1

)
+

K∑
k=1

T
β2kσ

2
g,1

n

≤
(

1

µg
+ 1

)
L2
g,1

[
Tσ2x

K∑
k=1

α̃2
k + 2T 2

K∑
k=0

β̃2k+1

]
+
Tσ2g,1
n

K∑
k=1

β2k,

where the last inequality uses 0 < βk ≤ 1. □

Now we are ready to give the proof of Theorem 3.3.2.

121

Lemma A.4.0.11. Suppose Assumptions 5, 6, 7, and 8 hold. For Algorithm 5 we have

K∑
k=0

(
αk

2
− LΦα

2
k

2

)
E
[
∥r̄k∥2

]
(A.81)

≤1

2

K∑
k=0

αkE
[
∥E [ūk|Fk]−∇Φ(x̄k)∥2

]
+ 2σ2u

K∑
k=0

α2
k +Φ(0)− inf

x
Φ(x) +

1

2
E
[
∥r̄0∥2

]
.

Proof of Lemma A.4.0.11. The LΦ-smoothness of Φ indicates that

(A.82) Φ(x̄k+1)− Φ(x̄k) ≤ ∇Φ(x̄k)
⊤(−αkr̄k) +

LΦα
2
k

2
∥r̄k∥2.

Notice that we also have

(A.83)
1

2
E
[
∥r̄k+1∥2|Fk

]
− 1

2
∥r̄k∥2 = −αk∥r̄k∥2 + αkE [ūk|Fk]

⊤ r̄k +
1

2
E
[
∥r̄k+1 − r̄k∥2|Fk

]
.

Hence we know

Φ(x̄k+1)− Φ(x̄k) +
1

2
E
[
∥r̄k+1∥2|Fk

]
− 1

2
∥r̄k∥2

≤αk(E [ūk|Fk]−∇Φ(x̄k))
⊤r̄k + (

LΦα
2
k

2
− αk)∥r̄k∥2 +

1

2
E
[
∥r̄k+1 − r̄k∥2|Fk

]
≤αk

2

(
∥E [ūk|Fk]−∇Φ(x̄k)∥2 + ∥r̄k∥2

)
+ (

LΦα
2
k

2
− αk)∥r̄k∥2 +

1

2
E
[
∥r̄k+1 − r̄k∥2|Fk

]
,

which implies

(
αk

2
− LΦα

2
k

2

)
E
[
∥r̄k∥2

](A.84)

≤αk

2
E
[
∥E [ūk|Fk]−∇Φ(x̄k)∥2

]
+

1

2
E
[
∥r̄k+1 − r̄k∥2

]
+ E [Φ(x̄k)− Φ(x̄k+1)]

+
1

2
E
[
∥r̄k∥2

]
− 1

2
E
[
∥r̄k+1∥2

]
≤αk

2
E
[
∥E [ūk|Fk]−∇Φ(x̄k)∥2

]
+ 2α2

kσ
2
u + E [Φ(x̄k)− Φ(x̄k+1)] +

1

2
E
[
∥r̄k∥2

]
− 1

2
E
[
∥r̄k+1∥2

]
,

where the second inequality holds since we know

E
[
∥r̄k∥2

]
≤ max

(
E
[
∥r̄k−1∥2

]
,E
[
∥ūk∥2

])
≤ max

0≤i≤k
E
[
∥ūi∥2

]
≤ σ2u,

E
[
∥r̄k+1 − r̄k∥2

]
= α2

kE
[
∥r̄k − ūk∥2

]
≤ 2α2

kE
[
∥r̄k∥2 + ∥ūk∥2

]
≤ 4σ2u.

122

In these two conclusions E
[
∥ūi∥2

]
≤ σ2u is due to the first inequality in (A.71). Taking summation

on both sides of (A.84), we have (A.81). □

Lemma A.4.0.12. For Algorithm 5 we have

K∑
k=0

αkE
[
∥r̄k −∇Φ(x̄k)∥2

]
≤E

[
∥r̄0 −∇Φ(0)∥2

]
+ 2

K∑
k=0

αkE
[
∥E [ūk|Fk]−∇Φ(x̄k)∥2

]
+ 2

K∑
k=0

αkE
[
∥r̄k∥2

]
+ σ2u

K∑
k=0

α2
k.(A.85)

Proof of Lemma A.4.0.12. Recall that in Algorithm 5 we know

r̄k+1 = (1− αk)r̄k + αkūk,

which implies

∥r̄k+1 −∇Φ(x̄k+1)∥

=∥(1− αk)(r̄k −∇Φ(x̄k)) + αk(E [ūk|Fk]−∇Φ(x̄k))

+∇Φ(x̄k)−∇Φ(x̄k+1) + αk(ūk − E [ūk|Fk])∥.

Hence we know

E
[
∥r̄k+1 −∇Φ(x̄k+1)∥2

]
=E

[
∥(1− αk)(r̄k −∇Φ(x̄k)) + αk(E [ūk|Fk]−∇Φ(x̄k)) +∇Φ(x̄k)−∇Φ(x̄k+1)∥2

]
+α2

kE
[
∥ūk − E [ūk|Fk] ∥2

]
≤(1− αk)E

[
∥r̄k −∇Φ(x̄k)∥2

]
+ αkE

[
∥E [ūk|Fk]−∇Φ(x̄k) +

1

αk
(∇Φ(x̄k)−∇Φ(x̄k+1)∥2

]
+ α2

kσ
2
u

≤(1− αk)E
[
∥r̄k −∇Φ(x̄k)∥2

]
+ 2αkE

[
∥E [ūk|Fk]−∇Φ(x̄k)∥2 + ∥r̄k∥2

]
+ α2

kσ
2
u.

Taking summation on both sides, we obtain (A.85). □

The next lemma characterizes ∥∇Φ(x̄k)− E [ūk|Fk] ∥2, which together with previous lemmas

prove Theorem 3.3.2.

123

Lemma A.4.0.13. In Algorithm 5 if we define

αk =
µ4g

3L2
g,1Cy

· βk ≡ 1√
K
, γ such that (A.63) holds, N = Θ(logK), T ≥ 1,

Cy = 5

(
L2
f,1 +

L2
g,2L

2
f,0

µ2g

)
+ 50L2

g,1

(
1

µ2g
+

γ

µg

)(
L2
g,2σ

2
z + L2

f,1

)
.

we have

K∑
k=0

αk∥E [ūk|Fk]−∇Φ(x̄k)∥2 = Cy

K∑
k=0

αk∥ȳ(T)
k − y∗k∥2 +O

(
1 +

(
1− γµg

2

)N K∑
k=0

αk

)
,

1

K

K∑
k=0

E
[
∥∇Φ(x̄k)∥2

]
= O

(
1√
K

)
.

Proof of Lemma A.4.0.13. Notice that we have

E [ūk|Fk] =
1

n

n∑
i=1

∇xfi(xi,k, y
(T)
i,k)− 1

n

n∑
i=1

∇2
xygi(xi,k, y

(T)
i,k)E

[
z
(k)
i,N |Fk

]
and

∇Φ(x̄k)

=
1

n

n∑
i=1

∇xfi(x̄k, y
∗
k)−

(
1

n

n∑
i=1

∇2
xygi(x̄k, y

∗
k)

)(
1

n

n∑
i=1

∇2
ygi(x̄k, y

∗
k)

)−1(
1

n

n∑
i=1

∇yfi(x̄k, y
∗
k)

)

=
1

n

n∑
i=1

∇xfi(x̄k, y
∗
k)−

1

n

(
n∑

i=1

∇2
xygi(x̄k, y

∗
k)

)(
n∑

i=1

∇2
ygi(x̄k, y

∗
k)

)−1(n∑
i=1

∇yfi(x̄k, y
∗
k)

)

=
1

n

n∑
i=1

∇xfi(x̄k, y
∗
k)−

1

n

(
n∑

i=1

∇2
xygi(x̄k, y

∗
k)

)
z
(k)
∗ .

Hence we know

∥E [ūk|Fk]−∇Φ(x̄k)∥

=
1

n

n∑
i=1

(
∥∇xfi(xi,k, y

(T)
i,k)−∇xfi(x̄k, ȳ

(T)
k)∥+ ∥∇xfi(x̄k, ȳ

(T)
k)−∇xfi(x̄k, y

∗
k)∥
)

+
1

n

n∑
i=1

(
∥∇2

xygi(xi,k, y
(T)
i,k)

(
E
[
z
(k)
i,N |Fk

]
− z

(k)
∗
)
∥+ ∥

(
∇2

xygi(xi,k, y
(T)
i,k)−∇2

xygi(x̄k, ȳ
(T)
k)

)
z
(k)
∗ ∥

)
+
1

n

n∑
i=1

∥
(
∇2

xygi(x̄k, ȳ
(T)
k)−∇2

xygi(x̄k, y
∗
k)
)
z
(k)
∗ ∥,

124

which implies

∥E [ūk|Fk]−∇Φ(x̄k)∥2

≤ 5

n

n∑
i=1

[
L2
f,1

(
∥xi,k − x̄k∥2 + ∥y(T)

i,k − ȳ
(T)
k ∥2 + ∥ȳ(T)

k − y∗k∥2
)
+ L2

g,1∥E
[
z
(k)
i,N |Fk

]
− z

(k)
∗ ∥2

]

+
5

n

n∑
i=1

[
L2
g,2L

2
f,0

µ2g

(
∥xi,k − x̄k∥2 + ∥y(T)

i,k − ȳ
(T)
k ∥2 + ∥ȳ(T)

k − y∗k∥2
)]

≤5

(
L2
f,1 +

L2
g,2L

2
f,0

µ2g

)
· 1
n

(
∥Xk − x̄k1

⊤∥2 + ∥Y (T)
k − ȳ

(T)
k 1⊤∥2 + n∥ȳ(T)

k − y∗k∥2
)

+10L2
g,1 ·

1

n

(
∥E
[
Z

(k)
N − z̄

(k)
N 1⊤|Fk

]
∥2
)
+ 10L2

g,1∥E
[
z̄
(k)
N |Fk

]
− z

(k)
∗ ∥2

≤
[
5

(
L2
f,1 +

L2
g,2L

2
f,0

µ2g

)
+ 50L2

g,1

(
1

µ2g
+

γ

µg

)(
L2
g,2σ

2
z + L2

f,1

)]
·
(
∥ȳ(T)

k − y∗k∥2 + σ2xα̃
2
k + T β̃2k+1

)

+30L2
g,1

(
1− γµg

2

)N (L2
f,0

µ2g
+ L2

f,0

)

+10L2
g,1

[
(1− γµg)

N ·
L2
f,0

µ2g
+ 90CM̃L

2
g,1

(
1

µ2g
+

γ

µg

)(
L2
f,0

µ2g
+ L2

f,0

)(
1− 2γµg

3

)N−1
]
,

where the third inequality uses (A.71), (A.65) and (A.78). Taking summation on both sides, we have

K∑
k=0

αk∥E [ūk|Fk]−∇Φ(x̄k)∥2

=Cy

K∑
k=0

αk∥ȳ(T)
k − y∗k∥2 +O

(
K∑
k=0

αk(α̃
2
k + β̃2k) +

(
1− γµg

2

)N−1
K∑
k=0

αk

)
.

Setting for all k that

αk = Cα,β · βk ≡ 1√
K
, Cα,β =

µg

2
√
3CyLy∗

,

and using (A.76) and Lemma A.4.0.10, we know

1√
K

K∑
k=0

E
[
∥E [ūk|Fk]−∇Φ(x̄k)∥2

]
(A.86)

=CyCα,β

K∑
k=0

βk∥ȳ(T)
k − y∗k∥2 +O

(
1√
K

+
√
K
(
1− γµg

2

)N−1
)

=CyCα,βL
2
y∗

K∑
k=0

(
4Cα,β√
Kµ2g

+
2

Kµg

)
E
[
∥r̄k∥2

]
+O

(
1 +

√
K
(
1− γµg

2

)N−1
)

125

=

K∑
k=1

(
1

3
√
K

+
2CyCα,βL

2
y∗

Kµg

)
E
[
∥r̄k∥2

]
+O

(
1 +

√
K
(
1− γµg

2

)N−1
)
,

which together with (A.81) and (A.53) imply

(
1

2
√
K

− LΦ

2K

) K∑
k=0

E
[
∥r̄k∥2

]
≤ 1

2
√
K

K∑
k=0

E
[
∥E [ūk|Fk]−∇Φ(x̄k)∥2

]
+ 2σ2u

K∑
k=0

1

K
+Φ(0)− inf

x
Φ(x) +

1

2
E
[
∥r̄0∥2

]
≤ 1

2
√
K

K∑
k=1

(
1

3
+

2CyCα,βL
2
y∗√

Kµg

)
E
[
∥r̄k∥2

]
+O

(
1 +

√
K
(
1− γµg

2

)N−1
)
.

Hence we know(
1

3
√
K

− LΦ

2K
−
CyCα,βL

2
y∗

Kµg

)
K∑
k=0

E
[
∥r̄k∥2

]
= O

(
1 +

√
K
(
1− γµg

2

)N−1
)
.

Using the above expression, (A.86) and Lemma A.4.0.12, we know

1√
K

K∑
k=0

E
[
∥∇Φ(x̄k)∥2

]
≤ 2√

K

K∑
k=0

E
[
∥r̄k∥2 + ∥r̄k −∇Φ(x̄k)∥2

]
= O

(
1 +

√
K
(
1− γµg

2

)N−1
)
,

for sufficiently large K. Note that γ is in a constant interval by (A.63), hence
(
1− γµg

2

)
is a constant

that is independent of K. Picking N = Θ(logK) such that
(
1− γµg

2

)N−1
= O

(
1√
K

)
, we know

1

K

K∑
k=0

E
[
∥∇Φ(x̄k)∥2

]
= O

(
1√
K

)
.

Moreover, from (A.71) we know:

1

K

K∑
k=0

E
[
∥Xk − x̄k1

⊤∥2
]

n
= O

(
1

K

K∑
k=0

α̃2
k

)
= O

(
1

K

)
,

where the second equality holds due to Lemma A.4.0.10 The above two equalities prove Theorem

3.3.2. To find an ϵ-stationary point, we may set K = Θ(ϵ−2) and we know from T ≥ 1, N = logK

that the sample complexity will be Õ(ϵ−2). □

126

A.5. Discussions on the Prior Works Related to Chapter 3

We briefly discuss Assumption 3.4 (iv) and (v) in Yang et al. [2022] and MDBO in Gao et al.

[2022] in this section.

A.5.1. Assumption 3.4 (iv) and (v) in Yang et al. [2022].

• Assumption 3.4 (iv) assumes bounded second moment of ∇ygi(x, y; ξ). It is stronger than

our Assumption 7 as discussed right after Assumption 7.

As pointed out by one reviewer during the discussion period, bounded moment condition

on ∇ygi(x, y; ξ) is also restrictive especially when gi is strongly convex in y. To see this, we

notice that the unbiasedness of ∇ygi(x, y; ξ) and its bounded second moment imply

∥∇yg(x, y)∥2 = E
[
∥∇yg(x, y; ξ)∥2

]
− E

[
∥∇g(x, y)− E [∇yg(x, y; ξ)] ∥2

]
≤ C2

g

for all x, y. Here ∇yg(x, y; ξ) :=
1
n

∑n
i=1∇ygi(x, y; ξi). Then for any y1, y2

2Cg ≥ ∥∇yg(x, y1)−∇yg(x, y2)∥ ≥ µg∥y1 − y2∥

where the second inequality uses the fact that g(x, y) is µg-strongly convex in y for any x.

However supy1,y2 ∥y1 − y2∥ = +∞, which leads to the contradiction, meaning that there

does not exist a function g satisfying all the assumptions above. In short, a function cannot

be strongly convex and have bounded gradient at the same time , but both assumptions

are used in Yang et al. [2022].

• Assumption 3.4 (v) assumes each I − 1
Lg

∇2
ygi(x, y; ξ) has bounded second moment such

that

E
[
∥I − 1

Lg
∇2

ygi(x, y; ξ)∥22
]
≤ (1− κg)

2,

for some constant κg ∈ (0,
µg

Lg
), where Lg =

√
L2
g,2 + σ2g,2. It serves as a key role in proving

the linear convergence of the Hessian matrix inverse estimator (see Lemma A.2, A.3 and

the definition of b right under section B of the Supplementary Material). However, it is

restrictive under certain cases. For any given 0 < µg < Lg, consider X ∈ R2×2 to be a

127

random matrix and

X =

2Lg 0

0 0

 or

0 0

0 2µg

 with equal probability,

then it is easy to verify that X has bounded variance and in expectation equals diag(L, µ),

but

E
[
∥I − 1

Lg
X∥22

]
= 1,

and thus their Assumption 3.4 (v) does not hold in this example.

A.5.2. MDBO. Although Gao et al. [2022] claims that they solve the G-DSBO problem, their

hypergradient (see equations (2) and (3) of their paper accessed from arXiv at the time of the

submission of our manuscript to ICML: https://arxiv.org/abs/2206.15025v1) is defined as

∇F (x) := 1

K

K∑
k=1

∇F (k)(x),

where

∇F (k)(x) := ∇xf
(k)(x, y∗(x))−∇2

xyg
(k)(x, y∗(x))(∇2

yg
(k)(x, y∗(x)))−1∇yf

(k)(x, y∗(x)).

Clearly, this is not the hypergradient of G-DSBO, unless g(i)(x, y) = g(j)(x, y) for any 1 ≤ i < j ≤ n,

which requires an additional assumption that the data distributions that generate the lower level

function g(i) are the same. Note that their algorithm cannot be classified as P-DSBO either, because

y∗(x) in the above expression is defined globally. Therefore, their algorithm is not designed for

neither G-DSBO nor P-DSBO. It is not clear what problem that their algorithm is designed for.

While we are preparing our camera-ready version, we find the latest version of Gao et al. [2022]

(which is Gao et al. [2023]), which implicitly uses the condition that all lower level functions are

the same. See equation (2) on page 3 of Gao et al. [2023] and the description right above it: “Then,

according to Lemma 1 of (Gao, 2022a), we can compute the gradient of F (k)(x) as follows:", where

“(Gao, 2022a)" represents Gao [2022], in which their Lemma 1 explicitly states “When the data

distributions across all devices are homogeneous". However, all assumptions about MDBO in Gao

et al. [2022] do not mention anything about the data distributions of the lower level functions g(i).

It should be noted that once all lower level functions g(i) are the same then their problem setup is

128

https://arxiv.org/abs/2206.15025v1

one special case of ours in (3.2) (i.e., when g(i) = g(j) for any i ̸= j), and it does not need to tackle

the major challenge discussed in (3.5).

A.5.3. Computational complexity. Assume that computing a stochastic derivative with

size m requires O(m) computational complexity. For example the complexity of computing a

stochastic Hessian matrix ∇2
ygi(x, y; ξ) is O(q2) and the complexity of computing a stochastic

gradient ∇xf(x, y;ϕ) is O(p). Note that computing a Hessian-vector product (or Jacobian-vector

product) is as cheap as computing a gradient [Pearlmutter, 1994, Bottou et al., 2018]. FEDNEST

[Tarzanagh et al., 2022], SPDB [Lu et al., 2022], and our Algorithm 5 MA-DSBO only require

stochastic first order and matrix-vector product oracles and thus the computational complexity is

Õ(dϵ−2), where d := max(p, q). Note that DSBO-JHIP [Chen et al., 2022b] requires computing full

Jacobian matrices which lead to Õ(pqϵ−3) complexity. GBDSBO [Yang et al., 2022] computes full

Hessian matrices in the Hessian inverse estimation inner loop (Line 10-13 of Algorithm 1 in Yang

et al. [2022]), and full Jacobian matrices in the outer loop (Line 8 of Algorithm 1 in Yang et al.

[2022]), and thus their computational cost is O((q2 log(1ϵ) + pq)n−1ϵ−2).

A.6. Experimental Investigations of Chapter 4

A.6.1. Additional experiments for the orthogonal case. For this section, we follow the

same experimental setup as described in Section 4.4.1. Only the hidden-layer width is changed.

Specifically, in Figures A.3 and A.4 we plot the training loss, sharpness of training loss and the

trajectory-averaging training in various phases.

129

0 10 20 30 40 50 60 70
Iterations

13

12

11

10

9

8

Lo
g

Lo
ss

Training Log Loss 0
Training Log Loss 1
Training Log Loss 2
Training Log Loss 3
Training Log Loss 4

0 10 20 30 40 50 60 70
Iterations

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

0.0007

Sh
ar

pn
es

s

Sharpness 0
Sharpness 1
Sharpness 2
Sharpness 3
Sharpness 4

0 10 20 30 40 50 60 70
Iterations

11.0

10.5

10.0

9.5

9.0

8.5

8.0

Lo
g

Lo
ss

Ergodic Training Log Loss 0
Ergodic Training Log Loss 1
Ergodic Training Log Loss 2
Ergodic Training Log Loss 3
Ergodic Training Log Loss 4

0 10 20 30 40 50 60 70
Iterations

2.3

2.2

2.1

2.0

1.9

Lo
g

Lo
ss

Training Log Loss 0
Training Log Loss 1
Training Log Loss 2
Training Log Loss 3
Training Log Loss 4

0 10 20 30 40 50 60 70
Iterations

0.0004

0.0006

0.0008

0.0010

0.0012

Sh
ar

pn
es

s

Sharpness 0
Sharpness 1
Sharpness 2
Sharpness 3
Sharpness 4

0 10 20 30 40 50 60 70
Iterations

2.30

2.25

2.20

2.15

2.10

2.05

2.00

1.95

1.90

Lo
g

Lo
ss

Ergodic Training Log Loss 0
Ergodic Training Log Loss 1
Ergodic Training Log Loss 2
Ergodic Training Log Loss 3
Ergodic Training Log Loss 4

0 10 20 30 40 50 60 70
Iterations

0.90

0.85

0.80

0.75

0.70

0.65

0.60

0.55

0.50

Lo
g

Lo
ss

Training Log Loss 0
Training Log Loss 1
Training Log Loss 2
Training Log Loss 3
Training Log Loss 4

0 10 20 30 40 50 60 70
Iterations

0.00075

0.00100

0.00125

0.00150

0.00175

0.00200

0.00225

0.00250

Sh
ar

pn
es

s

Sharpness 0
Sharpness 1
Sharpness 2
Sharpness 3
Sharpness 4

0 10 20 30 40 50 60 70
Iterations

0.85

0.80

0.75

0.70

0.65

0.60

0.55

0.50

Lo
g

Lo
ss

Ergodic Training Log Loss 0
Ergodic Training Log Loss 1
Ergodic Training Log Loss 2
Ergodic Training Log Loss 3
Ergodic Training Log Loss 4

Figure A.3. Hidden-layer width =5, with orthogonal data points. Rows from top
to bottom represent different levels of noise – mean-zero normal distribution with
variance 0, 0.25, 1. The vertical axes are in log scale for the training loss curves.
The second column is about the sharpness of the training loss functions. Numbers
0, 1, 2, 3, 4 denote different stepsize choices (see Section 4.4.1 for details).

130

0 10 20 30 40 50 60 70
Iterations

13

12

11

10

9

Lo
g

Lo
ss

Training Log Loss 0
Training Log Loss 1
Training Log Loss 2
Training Log Loss 3
Training Log Loss 4

0 10 20 30 40 50 60 70
Iterations

0.00005

0.00010

0.00015

0.00020

0.00025

0.00030

Sh
ar

pn
es

s

Sharpness 0
Sharpness 1
Sharpness 2
Sharpness 3
Sharpness 4

0 10 20 30 40 50 60 70
Iterations

12.0

11.5

11.0

10.5

10.0

9.5

9.0

Lo
g

Lo
ss

Ergodic Training Log Loss 0
Ergodic Training Log Loss 1
Ergodic Training Log Loss 2
Ergodic Training Log Loss 3
Ergodic Training Log Loss 4

0 10 20 30 40 50 60 70
Iterations

2.5

2.4

2.3

2.2

2.1

Lo
g

Lo
ss

Training Log Loss 0
Training Log Loss 1
Training Log Loss 2
Training Log Loss 3
Training Log Loss 4

0 10 20 30 40 50 60 70
Iterations

0.0002

0.0004

0.0006

0.0008

0.0010

Sh
ar

pn
es

s

Sharpness 0
Sharpness 1
Sharpness 2
Sharpness 3
Sharpness 4

0 10 20 30 40 50 60 70
Iterations

2.45

2.40

2.35

2.30

2.25

2.20

2.15

2.10

Lo
g

Lo
ss

Ergodic Training Log Loss 0
Ergodic Training Log Loss 1
Ergodic Training Log Loss 2
Ergodic Training Log Loss 3
Ergodic Training Log Loss 4

0 10 20 30 40 50 60 70
Iterations

1.10

1.05

1.00

0.95

0.90

0.85

0.80

0.75

0.70

Lo
g

Lo
ss

Training Log Loss 0
Training Log Loss 1
Training Log Loss 2
Training Log Loss 3
Training Log Loss 4

0 10 20 30 40 50 60 70
Iterations

0.00025

0.00050

0.00075

0.00100

0.00125

0.00150

0.00175

0.00200

Sh
ar

pn
es

s

Sharpness 0
Sharpness 1
Sharpness 2
Sharpness 3
Sharpness 4

0 10 20 30 40 50 60 70
Iterations

1.05

1.00

0.95

0.90

0.85

0.80

0.75

0.70

Lo
g

Lo
ss

Ergodic Training Log Loss 0
Ergodic Training Log Loss 1
Ergodic Training Log Loss 2
Ergodic Training Log Loss 3
Ergodic Training Log Loss 4

Figure A.4. Hidden-layer width =10, with orthogonal data points. Rows from
top to bottom represent different levels of noise – mean-zero normal distribution
with variance 0, 0.25, 1. The vertical axes are in log scale for the training loss curves.
The second column is about the sharpness of the training loss functions. Numbers
0, 1, 2, 3, 4 denote different stepsize choices (see Section 4.4.1 for details).

131

A.6.2. Non-orthogonal data. We next investigate the case when orthogonality condition

does not hold. The setup is the same as described in Section 4.4.1 except that n = 5000 and each

entry of the data matrix X ∈ Rn×d is now sampled from a standard normal distribution. We also

generate 500 data points from the same distribution for testing. Note that our theory in this work is

only applicable for orthogonal data. hence, for these experiments with non-orthogonal data, we first

tune the step-size to be as large as possible, say ηmax, so that the training does not diverge and then

run the experiments for i+1
5 ηmax with i = 0, ..., 4. Hence, the step-sizes for loss and sharpness curves

0, 1, 2, 3, 4 are chosen to be 10, 20, 30, 40, 50 for m = 5, 10 and 12, 24, 36, 48, 60 for m = 25.

In Figures A.5, A.6 and A.7 we plot the training loss and the testing loss (with and without

ergodic trajectory averaging) in log scale. Notably different phases (including the periodic and

catapult phases) characterized theoretically for the case of orthogonal data, also appear to be present

for the non-orthogonal case. We also make the following intriguing conclusions:

• As a general trend, training roughly in the generalized catapult phase and predicting without

doing the ergodic trajectory averaging appears to have the best test error performance.

• In some cases (especially the one with high noise variance), when testing after training in the

periodic phase, the test error goes down rapidly in the initial few iterations. Correspondingly,

ergodic trajectory averaging after training in the periodic phase, helps to obtain better test error

decay compared to ergodic trajectory averaging after training in the catapult phase. However, as

mentioned in the previous point, training roughly in the generalized catapult phase and predicting

without doing the ergodic trajectory averaging performs the best.

• As discussed in Lim et al. [2022], in various cases, artificially infusing control chaos help to obtain

better test accuracy. Given our empirical observations and the results in Lim et al. [2022], it is

interesting to design controlled chaos infusion in gradient descent and perform ergodic training

averaging to obtain stable and improved test error performance.

Obtaining theoretical results corroborating the above-mentioned observations is challenging

future work.

132

0 25 50 75 100 125 150 175 200
Iterations

30

25

20

15

10

5

0
Lo

g
Lo

ss

Training Log Loss 0
Training Log Loss 1
Training Log Loss 2
Training Log Loss 3
Training Log Loss 4

0 25 50 75 100 125 150 175 200
Iterations

25

20

15

10

5

0

Lo
g

Lo
ss

Testing Log Loss 0
Testing Log Loss 1
Testing Log Loss 2
Testing Log Loss 3
Testing Log Loss 4

0 25 50 75 100 125 150 175 200
Iterations

5

4

3

2

1

0

Lo
g

Lo
ss

Ergodic Training Log Loss 0
Ergodic Training Log Loss 1
Ergodic Training Log Loss 2
Ergodic Training Log Loss 3
Ergodic Training Log Loss 4

0 25 50 75 100 125 150 175 200
Iterations

4

3

2

1

0

1

Lo
g

Lo
ss

Ergodic Testing Log Loss 0
Ergodic Testing Log Loss 1
Ergodic Testing Log Loss 2
Ergodic Testing Log Loss 3
Ergodic Testing Log Loss 4

0 25 50 75 100 125 150 175 200
Iterations

2.0

1.5

1.0

0.5

0.0

0.5

1.0

Lo
g

Lo
ss

Training Log Loss 0
Training Log Loss 1
Training Log Loss 2
Training Log Loss 3
Training Log Loss 4

0 25 50 75 100 125 150 175 200
Iterations

4

3

2

1

0

1

Lo
g

Lo
ss

Testing Log Loss 0
Testing Log Loss 1
Testing Log Loss 2
Testing Log Loss 3
Testing Log Loss 4

0 25 50 75 100 125 150 175 200
Iterations

2.0

1.5

1.0

0.5

0.0

0.5

Lo
g

Lo
ss

Ergodic Training Log Loss 0
Ergodic Training Log Loss 1
Ergodic Training Log Loss 2
Ergodic Training Log Loss 3
Ergodic Training Log Loss 4

0 25 50 75 100 125 150 175 200
Iterations

3

2

1

0

1

Lo
g

Lo
ss

Ergodic Testing Log Loss 0
Ergodic Testing Log Loss 1
Ergodic Testing Log Loss 2
Ergodic Testing Log Loss 3
Ergodic Testing Log Loss 4

0 25 50 75 100 125 150 175 200
Iterations

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

1.25

Lo
g

Lo
ss

Training Log Loss 0
Training Log Loss 1
Training Log Loss 2
Training Log Loss 3
Training Log Loss 4

0 25 50 75 100 125 150 175 200
Iterations

2.5

2.0

1.5

1.0

0.5

0.0

0.5

1.0

Lo
g

Lo
ss

Testing Log Loss 0
Testing Log Loss 1
Testing Log Loss 2
Testing Log Loss 3
Testing Log Loss 4

0 25 50 75 100 125 150 175 200
Iterations

0.75

0.50

0.25

0.00

0.25

0.50

0.75

Lo
g

Lo
ss

Ergodic Training Log Loss 0
Ergodic Training Log Loss 1
Ergodic Training Log Loss 2
Ergodic Training Log Loss 3
Ergodic Training Log Loss 4

0 25 50 75 100 125 150 175 200
Iterations

2.5

2.0

1.5

1.0

0.5

0.0

0.5

1.0

Lo
g

Lo
ss

Ergodic Testing Log Loss 0
Ergodic Testing Log Loss 1
Ergodic Testing Log Loss 2
Ergodic Testing Log Loss 3
Ergodic Testing Log Loss 4

Figure A.5. Hidden-layer width=5, with non-orthogonal data points. Rows from
top to bottom represent different levels of noise – mean-zero normal distribution
with variance 0, 0.25, 1. The vertical axes are in log scale for loss curves. Numbers
0, 1, 2, 3, 4 denote different stepsize choices (see Section A.6.2 for details).

0 25 50 75 100 125 150 175 200
Iterations

10

8

6

4

2

0

Lo
g

Lo
ss

Training Log Loss 0
Training Log Loss 1
Training Log Loss 2
Training Log Loss 3
Training Log Loss 4

0 25 50 75 100 125 150 175 200
Iterations

10

8

6

4

2

0

Lo
g

Lo
ss

Testing Log Loss 0
Testing Log Loss 1
Testing Log Loss 2
Testing Log Loss 3
Testing Log Loss 4

0 25 50 75 100 125 150 175 200
Iterations

3

2

1

0

Lo
g

Lo
ss

Ergodic Training Log Loss 0
Ergodic Training Log Loss 1
Ergodic Training Log Loss 2
Ergodic Training Log Loss 3
Ergodic Training Log Loss 4

0 25 50 75 100 125 150 175 200
Iterations

3.0

2.5

2.0

1.5

1.0

0.5

0.0

0.5

Lo
g

Lo
ss

Ergodic Testing Log Loss 0
Ergodic Testing Log Loss 1
Ergodic Testing Log Loss 2
Ergodic Testing Log Loss 3
Ergodic Testing Log Loss 4

0 25 50 75 100 125 150 175 200
Iterations

2.0

1.5

1.0

0.5

0.0

0.5

1.0

Lo
g

Lo
ss

Training Log Loss 0
Training Log Loss 1
Training Log Loss 2
Training Log Loss 3
Training Log Loss 4

0 25 50 75 100 125 150 175 200
Iterations

3

2

1

0

1

Lo
g

Lo
ss

Testing Log Loss 0
Testing Log Loss 1
Testing Log Loss 2
Testing Log Loss 3
Testing Log Loss 4

0 25 50 75 100 125 150 175 200
Iterations

2.0

1.5

1.0

0.5

0.0

0.5

Lo
g

Lo
ss

Ergodic Training Log Loss 0
Ergodic Training Log Loss 1
Ergodic Training Log Loss 2
Ergodic Training Log Loss 3
Ergodic Training Log Loss 4

0 25 50 75 100 125 150 175 200
Iterations

2.5

2.0

1.5

1.0

0.5

0.0

0.5

Lo
g

Lo
ss

Ergodic Testing Log Loss 0
Ergodic Testing Log Loss 1
Ergodic Testing Log Loss 2
Ergodic Testing Log Loss 3
Ergodic Testing Log Loss 4

0 25 50 75 100 125 150 175 200
Iterations

0.5

0.0

0.5

1.0

Lo
g

Lo
ss

Training Log Loss 0
Training Log Loss 1
Training Log Loss 2
Training Log Loss 3
Training Log Loss 4

0 25 50 75 100 125 150 175 200
Iterations

2.0

1.5

1.0

0.5

0.0

0.5

1.0

Lo
g

Lo
ss

Testing Log Loss 0
Testing Log Loss 1
Testing Log Loss 2
Testing Log Loss 3
Testing Log Loss 4

0 25 50 75 100 125 150 175 200
Iterations

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Lo
g

Lo
ss

Ergodic Training Log Loss 0
Ergodic Training Log Loss 1
Ergodic Training Log Loss 2
Ergodic Training Log Loss 3
Ergodic Training Log Loss 4

0 25 50 75 100 125 150 175 200
Iterations

1.5

1.0

0.5

0.0

0.5

Lo
g

Lo
ss

Ergodic Testing Log Loss 0
Ergodic Testing Log Loss 1
Ergodic Testing Log Loss 2
Ergodic Testing Log Loss 3
Ergodic Testing Log Loss 4

Figure A.6. Hidden-layer width=10, with non-orthogonal data points. Rows from
top to bottom represent different levels of noise – mean-zero normal distribution
with variance 0, 0.25, 1. The vertical axes are in log scale for loss curves. Numbers
0, 1, 2, 3, 4 denote different stepsize choices (see Section A.6.2 for details).

133

0 25 50 75 100 125 150 175 200
Iterations

4

3

2

1

0

1

2
Lo

g
Lo

ss

Training Log Loss 0
Training Log Loss 1
Training Log Loss 2
Training Log Loss 3
Training Log Loss 4

0 25 50 75 100 125 150 175 200
Iterations

2

1

0

1

2

Lo
g

Lo
ss

Testing Log Loss 0
Testing Log Loss 1
Testing Log Loss 2
Testing Log Loss 3
Testing Log Loss 4

0 25 50 75 100 125 150 175 200
Iterations

2.5

2.0

1.5

1.0

0.5

0.0

0.5

1.0

Lo
g

Lo
ss

Ergodic Training Log Loss 0
Ergodic Training Log Loss 1
Ergodic Training Log Loss 2
Ergodic Training Log Loss 3
Ergodic Training Log Loss 4

0 25 50 75 100 125 150 175 200
Iterations

1.0

0.5

0.0

0.5

Lo
g

Lo
ss

Ergodic Testing Log Loss 0
Ergodic Testing Log Loss 1
Ergodic Testing Log Loss 2
Ergodic Testing Log Loss 3
Ergodic Testing Log Loss 4

0 25 50 75 100 125 150 175 200
Iterations

2

1

0

1

2

Lo
g

Lo
ss

Training Log Loss 0
Training Log Loss 1
Training Log Loss 2
Training Log Loss 3
Training Log Loss 4

0 25 50 75 100 125 150 175 200
Iterations

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

Lo
g

Lo
ss

Testing Log Loss 0
Testing Log Loss 1
Testing Log Loss 2
Testing Log Loss 3
Testing Log Loss 4

0 25 50 75 100 125 150 175 200
Iterations

2.0

1.5

1.0

0.5

0.0

0.5

1.0

Lo
g

Lo
ss

Ergodic Training Log Loss 0
Ergodic Training Log Loss 1
Ergodic Training Log Loss 2
Ergodic Training Log Loss 3
Ergodic Training Log Loss 4

0 25 50 75 100 125 150 175 200
Iterations

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

Lo
g

Lo
ss

Ergodic Testing Log Loss 0
Ergodic Testing Log Loss 1
Ergodic Testing Log Loss 2
Ergodic Testing Log Loss 3
Ergodic Testing Log Loss 4

0 25 50 75 100 125 150 175 200
Iterations

1.0

0.5

0.0

0.5

1.0

1.5

2.0

Lo
g

Lo
ss

Training Log Loss 0
Training Log Loss 1
Training Log Loss 2
Training Log Loss 3
Training Log Loss 4

0 25 50 75 100 125 150 175 200
Iterations

1.0

0.5

0.0

0.5

1.0

1.5

2.0

Lo
g

Lo
ss

Testing Log Loss 0
Testing Log Loss 1
Testing Log Loss 2
Testing Log Loss 3
Testing Log Loss 4

0 25 50 75 100 125 150 175 200
Iterations

1.0

0.5

0.0

0.5

1.0

Lo
g

Lo
ss

Ergodic Training Log Loss 0
Ergodic Training Log Loss 1
Ergodic Training Log Loss 2
Ergodic Training Log Loss 3
Ergodic Training Log Loss 4

0 25 50 75 100 125 150 175 200
Iterations

0.8

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

Lo
g

Lo
ss

Ergodic Testing Log Loss 0
Ergodic Testing Log Loss 1
Ergodic Testing Log Loss 2
Ergodic Testing Log Loss 3
Ergodic Testing Log Loss 4

Figure A.7. Hidden-layer width=25, with non-orthogonal data points. Rows from
top to bottom represent different levels of noise – mean-zero normal distribution
with variance 0, 0.25, 1. The vertical axes are in log scale for loss curves. Numbers
0, 1, 2, 3, 4 denote different stepsize choices (see Section A.6.2 for details).

134

A.6.3. Two-layer Neural Network with ReLU. While our main focus in this work is for

quadratic activation functions, it is also instructive to examine the dynamics with other activation

function, in particular the ReLU activation. Hence, we follow the experimental setup from Section

A.6.2, except that the activation function is now ReLU and repeat our experiments. For this

case, the step-sizes manually chosen to be 60, 120, 180, 240, 300 for loss/sharpness curves 0, 1, 2, 3, 4,

respectively.

0 20 40 60 80 100
Iterations

10

8

6

4

2

Lo
g

Lo
ss

Training Log Loss 0
Training Log Loss 1
Training Log Loss 2
Training Log Loss 3
Training Log Loss 4

0 20 40 60 80 100
Iterations

10

8

6

4

2

Lo
g

Lo
ss

Testing Log Loss 0
Testing Log Loss 1
Testing Log Loss 2
Testing Log Loss 3
Testing Log Loss 4

0 20 40 60 80 100
Iterations

8

7

6

5

4

3

2

1

Lo
g

Lo
ss

Ergodic Training Log Loss 0
Ergodic Training Log Loss 1
Ergodic Training Log Loss 2
Ergodic Training Log Loss 3
Ergodic Training Log Loss 4

0 20 40 60 80 100
Iterations

8

7

6

5

4

3

2

1

Lo
g

Lo
ss

Ergodic Testing Log Loss 0
Ergodic Testing Log Loss 1
Ergodic Testing Log Loss 2
Ergodic Testing Log Loss 3
Ergodic Testing Log Loss 4

0 20 40 60 80 100
Iterations

0.0036

0.0038

0.0040

0.0042

0.0044

0.0046

Sh
ar

pn
es

s

Sharpness 0
Sharpness 1
Sharpness 2
Sharpness 3
Sharpness 4

0 20 40 60 80 100
Iterations

2.2

2.0

1.8

1.6

1.4

1.2

1.0

0.8

0.6

Lo
g

Lo
ss

Training Log Loss 0
Training Log Loss 1
Training Log Loss 2
Training Log Loss 3
Training Log Loss 4

0 20 40 60 80 100
Iterations

5

4

3

2

1

Lo
g

Lo
ss

Testing Log Loss 0
Testing Log Loss 1
Testing Log Loss 2
Testing Log Loss 3
Testing Log Loss 4

0 20 40 60 80 100
Iterations

2.2

2.0

1.8

1.6

1.4

1.2

1.0

0.8

0.6

Lo
g

Lo
ss

Ergodic Training Log Loss 0
Ergodic Training Log Loss 1
Ergodic Training Log Loss 2
Ergodic Training Log Loss 3
Ergodic Training Log Loss 4

0 20 40 60 80 100
Iterations

5

4

3

2

1

Lo
g

Lo
ss

Ergodic Testing Log Loss 0
Ergodic Testing Log Loss 1
Ergodic Testing Log Loss 2
Ergodic Testing Log Loss 3
Ergodic Testing Log Loss 4

0 20 40 60 80 100
Iterations

0.0036

0.0037

0.0038

0.0039

0.0040

0.0041

0.0042

Sh
ar

pn
es

s

Sharpness 0
Sharpness 1
Sharpness 2
Sharpness 3
Sharpness 4

0 20 40 60 80 100
Iterations

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

Lo
g

Lo
ss

Training Log Loss 0
Training Log Loss 1
Training Log Loss 2
Training Log Loss 3
Training Log Loss 4

0 20 40 60 80 100
Iterations

4.0

3.5

3.0

2.5

2.0

1.5

1.0

Lo
g

Lo
ss

Testing Log Loss 0
Testing Log Loss 1
Testing Log Loss 2
Testing Log Loss 3
Testing Log Loss 4

0 20 40 60 80 100
Iterations

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

Lo
g

Lo
ss

Ergodic Training Log Loss 0
Ergodic Training Log Loss 1
Ergodic Training Log Loss 2
Ergodic Training Log Loss 3
Ergodic Training Log Loss 4

0 20 40 60 80 100
Iterations

4.0

3.5

3.0

2.5

2.0

1.5

1.0

Lo
g

Lo
ss

Ergodic Testing Log Loss 0
Ergodic Testing Log Loss 1
Ergodic Testing Log Loss 2
Ergodic Testing Log Loss 3
Ergodic Testing Log Loss 4

0 20 40 60 80 100
Iterations

0.0038

0.0040

0.0042

0.0044

0.0046

Sh
ar

pn
es

s

Sharpness 0
Sharpness 1
Sharpness 2
Sharpness 3
Sharpness 4

Figure A.8. Hidden-layer width=5 with ReLU activation. Rows from top to bottom
represent different levels of noise – mean-zero normal distribution with variance 0,
0.25, 1. The vertical axes are in log scale for loss curves. The last column is about
the sharpness of the training loss functions. Numbers 0, 1, 2, 3, 4 denote different
stepsize choices (see Section A.6.3 for details).

From Figures A.8 and A.9, (in particular from the sharpness plots), we observe various non-

monotonic patterns, roughly including periodic and chaotic patterns. Obtaining a precise theoretical

characterization of the training dynamics for this setting is extremely interesting as future work.

A.7. Proofs of Theorems in Chapter 4

A.7.1. Proofs of results in Section 4.2. We first present several technical results required

to prove our main results.

135

0 20 40 60 80 100
Iterations

8

6

4

2

0
Lo

g
Lo

ss

Training Log Loss 0
Training Log Loss 1
Training Log Loss 2
Training Log Loss 3
Training Log Loss 4

0 20 40 60 80 100
Iterations

8

7

6

5

4

3

2

1

0

Lo
g

Lo
ss

Testing Log Loss 0
Testing Log Loss 1
Testing Log Loss 2
Testing Log Loss 3
Testing Log Loss 4

0 20 40 60 80 100
Iterations

7

6

5

4

3

2

1

0

Lo
g

Lo
ss

Ergodic Training Log Loss 0
Ergodic Training Log Loss 1
Ergodic Training Log Loss 2
Ergodic Training Log Loss 3
Ergodic Training Log Loss 4

0 20 40 60 80 100
Iterations

7

6

5

4

3

2

1

0

Lo
g

Lo
ss

Ergodic Testing Log Loss 0
Ergodic Testing Log Loss 1
Ergodic Testing Log Loss 2
Ergodic Testing Log Loss 3
Ergodic Testing Log Loss 4

0 20 40 60 80 100
Iterations

0.0034

0.0035

0.0036

0.0037

0.0038

Sh
ar

pn
es

s

Sharpness 0
Sharpness 1
Sharpness 2
Sharpness 3
Sharpness 4

0 20 40 60 80 100
Iterations

2.00

1.75

1.50

1.25

1.00

0.75

0.50

0.25

Lo
g

Lo
ss

Training Log Loss 0
Training Log Loss 1
Training Log Loss 2
Training Log Loss 3
Training Log Loss 4

0 20 40 60 80 100
Iterations

5

4

3

2

1

0

Lo
g

Lo
ss

Testing Log Loss 0
Testing Log Loss 1
Testing Log Loss 2
Testing Log Loss 3
Testing Log Loss 4

0 20 40 60 80 100
Iterations

2.00

1.75

1.50

1.25

1.00

0.75

0.50

0.25

Lo
g

Lo
ss

Ergodic Training Log Loss 0
Ergodic Training Log Loss 1
Ergodic Training Log Loss 2
Ergodic Training Log Loss 3
Ergodic Training Log Loss 4

0 20 40 60 80 100
Iterations

5

4

3

2

1

Lo
g

Lo
ss

Ergodic Testing Log Loss 0
Ergodic Testing Log Loss 1
Ergodic Testing Log Loss 2
Ergodic Testing Log Loss 3
Ergodic Testing Log Loss 4

0 20 40 60 80 100
Iterations

0.0034

0.0035

0.0036

0.0037

0.0038

0.0039

Sh
ar

pn
es

s

Sharpness 0
Sharpness 1
Sharpness 2
Sharpness 3
Sharpness 4

0 20 40 60 80 100
Iterations

0.6

0.4

0.2

0.0

0.2

Lo
g

Lo
ss

Training Log Loss 0
Training Log Loss 1
Training Log Loss 2
Training Log Loss 3
Training Log Loss 4

0 20 40 60 80 100
Iterations

4.0

3.5

3.0

2.5

2.0

1.5

1.0

0.5

Lo
g

Lo
ss

Testing Log Loss 0
Testing Log Loss 1
Testing Log Loss 2
Testing Log Loss 3
Testing Log Loss 4

0 20 40 60 80 100
Iterations

0.6

0.4

0.2

0.0

0.2

Lo
g

Lo
ss

Ergodic Training Log Loss 0
Ergodic Training Log Loss 1
Ergodic Training Log Loss 2
Ergodic Training Log Loss 3
Ergodic Training Log Loss 4

0 20 40 60 80 100
Iterations

4.0

3.5

3.0

2.5

2.0

1.5

1.0

0.5

Lo
g

Lo
ss

Ergodic Testing Log Loss 0
Ergodic Testing Log Loss 1
Ergodic Testing Log Loss 2
Ergodic Testing Log Loss 3
Ergodic Testing Log Loss 4

0 20 40 60 80 100
Iterations

0.0034

0.0036

0.0038

0.0040

0.0042

0.0044

Sh
ar

pn
es

s

Sharpness 0
Sharpness 1
Sharpness 2
Sharpness 3
Sharpness 4

Figure A.9. Hidden-layer width=10 with ReLU activation. Rows from top to
bottom represent different levels of noise – mean-zero normal distribution with
variance 0, 0.25, 1. The vertical axes are in log scale for loss curves. The last column
is about the sharpness of the training loss functions. Numbers 0, 1, 2, 3, 4 denote
different stepsize choices (see Section A.6.3 for details).

Lemma A.7.0.1. Let f(x) be a polynomial. If all the roots of f ′(x) are real and distinct, then

we have

Sf(x) =
f ′′′(x)
f ′(x)

− 3

2

(
f ′′(x)
f ′(x)

)2

< 0 for all x ∈ I with f ′(x) ̸= 0.

Proof. See, e.g., the proof of Proposition 11.2 in Devaney [1989]. □

Lemma A.7.0.2. Suppose we are given a real-valued continuous function f(x) : R → R and

a bounded closed interval I ⊆ R with x0 ∈ I. Define xk := f (k)(x0). If the sequence {xk}∞k=0 is

monotonic, then one of the following holds.

• (i) {xk}∞k=0 ⊊ I, i.e., there exists xt /∈ I for some t.

• (ii) {xk}∞k=0 ⊆ I, and limt→∞ f (t)(x0) exists and is a fixed point of f(x) in I.

Proof. If (i) holds, then the conclusion is true. When (i) does not hold, then {xk}∞k=0 ⊆ I.

Since this sequence is monotonic and included in a bounded closed interval, we know its limit exists

and is in I. Moreover, we have

lim
t→∞

xt = lim
t→∞

xt+1 = lim
t→∞

f(xt) = f(lim
t→∞

xt),

136

where the last equality holds since f is continuous. Clearly limt→∞ xt is a fixed point of f . □

The following lemma characterizes the basic properties of the cubic function fa defined in (4.2).

Lemma A.7.0.3. Suppose a > 0. Then fa(z) has the following properties.

• (i) The local minimum and maximum of fa(z) are at z = 1 and z = 1−2a
3 respectively, and

fa(1) = −a, fa
(
1− 2a

3

)
=

(2a− 1)(2a2 + 7a− 4)

27
=

4a3 + 12a2 − 15a+ 4

27
.

• (ii) fa(z) is monotonically increasing on [−a, 1−2a
3], monotonically decreasing on [1−2a

3 , 1],

and monotonically increasing on [1, 2].

• (iii) For any −a ≤ z ≤ 2, we have −a ≤ fa(z) ≤ max
{
fa
(
1−2a
3

)
, 2
}
. Moreover,

fa
(
1−2a
3

)
≤ 2 if and only if a ≤ 2.

Proof. Note that we have

f ′a(z) = 3z2 + 2(a− 2)z + (1− 2a) = (z − 1)(3z + 2a− 1).(A.87)

which implies 1 and 1−2a
3 are critical points of fa(z). Moreover, by f ′′a (z) = 6z + 2a− 4 we know

f ′′a (1) > 0 and f ′′a (
1−2a
3) < 0. Hence, they are local minimum and maximum respectively. The rest

of (i) is true by calculation. (ii) is true by noticing the expression of f ′a(z) in (A.87). (iii) is a direct

conclusion of (i) and (ii) since for −a ≤ z ≤ 2 we have

−a = min {fa(1), fa(−a)} ≤ fa(z) ≤ max

{
fa

(
1− 2a

3

)
, fa(2)

}
.

By (i) and some calculation we know

fa

(
1− 2a

3

)
− 2 =

4a3 + 12a2 − 15a− 50

27
=

(2a+ 5)2(a− 2)

27
.

This proves the rest of (iii). □

Lemma A.7.0.4. Suppose 2
√
2− 2 < a ≤ 1. Define five subintervals of [−a, 2] as follows.

I1 =

[
−a, 2− a−

√
a2 + 4a

2

]
, I2 =

[
2− a−

√
a2 + 4a

2
, 0

]
,

I3 = [0, 0.25] , I4 =

[
0.25,

2− a+
√
a2 + 4a

2

]
, I5 =

[
2− a+

√
a2 + 4a

2
, 2

]
.

137

Then we have

• (i) fa(I1) ⊆ I1 = I2, fa(I4) = I1 ∪ I2, fa(I5) = I3 ∪ I4 ∪ I5.
• (ii) fa(I2) ⊆ I3, fa(I3) ⊆ I2.

Proof. We first prove (i). By Lemma A.7.0.3 we know fa(z) is increasing on I1, achieving its

local minimum at z = 1 on I4, increasing on I5, then we know

fa(I1) =

[
fa(−a), fa

(
2− a−

√
a2 + 4a

2

)]
= [−a, 0] = I1 ∪ I2.

fa(I4) =

[
fa(1),max

{
fa(0.25), fa

(
2− a+

√
a2 + 4a

2

)}]
= [−a, 0] = I1 ∪ I2.

fa(I5) =

[
fa

(
2− a+

√
a2 + 4a

2

)
, fa(2)

]
= [0, 2] = I3 ∪ I4 ∪ I5.

This completes the proof of (i).

To prove (ii), observe that when a ∈ (2
√
2− 2, 1] we have 2−a−

√
a2+4a

2 < 1−2a
3 < 0. By Lemma

A.7.0.3 we know the local maximum of fa over I2 =
[
2−a−

√
a2+4a

2 , 0
]

is achieved at 1−2a
3 , this

together with the fact that fa(0) = fa

(
2−a−

√
a2+4a

2

)
= 0 implies

fa (I2) =

[
fa(0), fa

(
1− 2a

3

)]
=

[
0,

4a3 + 12a2 − 15a+ 4

27

]
⊆ [0, 0.25],

where the last subset inclusion is true since

(4a3 + 12a2 − 15a+ 4)′ = 12a2 + 24a− 15 > 0, ∀a ∈ (2
√
2− 2, 1].

This implies when a ∈ (2
√
2− 2, 1],

4a3 + 12a2 − 15a+ 4

27
≤ (4a3 + 12a2 − 15a+ 4)|a=1

27
=

5

27
< 0.25.

On the other hand, we know from Lemma A.7.0.3 that on I3 = [0, 0.25](⊆
[
1−2a
3 , 1

]
) fa is decreasing.

Hence,

fa(I3) = [fa(0.25), fa(0)] =

[
− 7

16
a+

9

16
, 0

]
⊆
[
2− a−

√
a2 + 4a

2
, 0

]
= I2.

138

where the last subset inclusion is true since

fa(0.25) = − 7

16
a+

9

16
>

2− a−
√
a2 + 4a

2
, ∀a ∈ (2

√
2− 2, 1].

This completes the proof of (ii). □

See Figure A.10(a) for a visualization of the subintervals I1, ..., I5 for a = 1 and an example of

the orbit on it.

1.0 0.5 0.0 0.5 1.0 1.5 2.0
z

1.0

0.5

0.0

0.5

1.0

1.5

2.0

f a
(z

)

(a)

1.0 0.5 0.0 0.5 1.0 1.5 2.0
z

1.0

0.5

0.0

0.5

1.0

1.5

2.0

f a
(z

)

(b)

1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
z

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

f a
(z

)

(c)

2 1 0 1 2 3
z

2

1

0

1

2

3

4

f a
(z

)

(d)

Figure A.10. From left to right: cubic function f1(z) with different regions diveded
by subintervals and a trajectory of {zi}5i=0, cubic function f1.2(z) with two period-2
point, cubic function f1.6(z) with a period-3 point, and cubic function f2.1(z) with
a diverging orbit. We have the cubic curve and the identical mapping line as the
solid curves. We use four colored dashed lines in Figure A.10(a) to represent the
boundaries that are orthogonal to the endpoints of I2 and I4 defined in Lemma
A.7.0.4 respectively. The triangle markers represent some terms of a certain orbit,
in which horizontal and vertical dotted lines visualize the transitioning trajectory
between consecutive terms in an orbit.

Lemma A.7.0.5. Suppose 0 < a ≤ 1 and −a ≤ z0 ≤ 2. Then we have

• (i) −a ≤ zt ≤ 2 for any t, and fa does not have a period-2 point on [−a, 2].
• (ii) If z0 is chosen from [−a, 2] uniformly at random, then limt→∞ zt = 0 almost surely.

Moreover, if 0 < a ≤ 2
√
2− 2, then almost surely |zt+1| ≤ |zt| for all t. If 2

√
2− 2 < a ≤ 2,

then almost surely {|zt|}∞t=0 has catapults.

Proof. The boundedness of each iterate (i.e., zt ∈ [−a, 2]) can be proved by using simple

induction and Lemma A.7.0.3, 0 < a ≤ 1, and −a ≤ z0 ≤ 2. To prove the rest of (i), by (4.2) we

know a period-2 point is a solution of

f (2)a (z) = z, fa(z) ̸= z

139

which are equivalent to

ga(z)ga(zga(z)) = 1, z /∈ {−a, 0, 2}.(A.88)

Hence it suffices to prove (A.88) do not have a solution. Define

ha(z) = ga(z)− 1 = (z + a)(z − 2) < 0, ∀z ∈ (−a, 2).

We have

ga(z)ga(zga(z))− 1

=ha(z) + ha(z)ha(zga(z)) + ha(zga(z))

=ha(z)(1 + ha(zga(z))) + (z + a+ zha(z))(z − 2 + zha(z))

=ha(z)(1 + ha(zga(z))) + ha(z) + (z(z − 2) + z(z + a))ha(z) + z2h2a(z)

=ha(z)(ha(zga(z)) + z2ha(z) + 2z2 + (a− 2)z + 2).(A.89)

We have

ha(zga(z)) + z2ha(z) + 2z2 + (a− 2)z + 2

=(zga(z) + a)(zga(z)− 2) + z2(z + a)(z − 2) + 2z2 + (a− 2)z + 2

=z2(z2 + (a− 2)z + 1− 2a)2 + (a− 2)z(z2 + (a− 2)z + 1− 2a)− 2a

+ z2(z + a)(z − 2) + 2z2 + (a− 2)z + 2

=z6 + (2a− 4)z5 + (a2 − 8a+ 7)z4 − (4a2 − 12a+ 8)z3 + (5a2 − 10a+ 7)z2

− (2a2 − 6a+ 4)z + 2− 2a

=(z2 + (a− 1)z + 1− a)(z4 + (a− 3)z3 + (3− 3a)z2 + (2a− 2)z + 2).(A.90)

Observe that

z2 + (a− 1)z + (1− a) ≥ (1− a)− (a− 1)2

4
=

(3 + a)(1− a)

4
≥ 0, ∀a ∈ (0, 1].(A.91)

140

The equalities hold if and only if z = 0, a = 1. We also have

z4 + (a− 3)z3 + (3− 3a)z2 + (2a− 2)z + 2 > 0, ∀z ∈ {0, 1, 2}

z4 + (a− 3)z3 + (3− 3a)z2 + (2a− 2)z + 2

=z(z − 1)(z − 2)

(
a+ z +

1

z
+

1

z2 − 3z + 2

)
,∀z /∈ {0, 1, 2}.

For different z we can verify the following inequalities via basic algebra or Young’s inequality:

z(z − 1)(z − 2) < 0,

(
a+ z +

1

z
+

1

z2 − 3z + 2

)
< 1 + 2 +

1

2
+

1

−0.25
< 0, ∀z ∈ (1, 2).

z(z − 1)(z − 2) > 0,

(
a+ z +

1

z
+

1

z2 − 3z + 2

)
> 0 + 1 + 1 + 0 > 0, ∀z ∈ (0, 1).

z(z − 1)(z − 2) < 0,

(
a+ z +

1

z
+

1

z2 − 3z + 2

)
< 1− 1− 1 +

1

2
< 0, ∀z ∈ (−a, 0).

Thus we may conclude that

z4 + (a− 3)z3 + (3− 3a)z2 + (2a− 2)z + 2 > 0, ∀z ∈ (−a, 2).(A.92)

By (A.89), (A.90), (A.91), (A.92), we know ga(z)ga(zga(z))− 1 ̸= 0 if z /∈ {−a, 0, 2}. Hence fa does

not have a period-2 point on [−a, 2].
To prove the first part in (ii) (the limit converges to 0 almost surely), we will prove

(1) lim
t→∞

zt ∈ {−a, 0, 2}, (2) The set S such that the orbit with z0 ∈ S has measure 0.(A.93)

We now consider two cases – a ∈ (0, 2
√
2− 2] and a ∈ (2

√
2− 2, 1].

Case 1: a ∈ (0, 2
√
2− 2]. Note that we have

|ga(zt)| = |z2t + (a− 2)zt + 1− 2a| ≤ max
(
|ga(−a)|, |ga(2)|, |ga

(
1− a

2

)
|
)
= 1,

where the last equality holds since ga(−a) = ga(2) = 1 and |ga
(
1− a

2

)
| = a2+4a

4 ≤ 1 for any

a ∈ (0, 2
√
2− 2]. Hence, we know

|zt+1| = |fa(zt)| = |ztga(zt)| ≤ |zt|, ∀zt ∈ [−a, 2](A.94)

141

Hence limt→∞ |zt| exists.

lim
t→∞

|zt| = lim
t→∞

|zt+1| = lim
t→∞

|zt||ga(zt)|

Hence, we know

lim
t→∞

|zt| = 0, or lim
t→∞

|zt| ≠ 0, lim
t→∞

|ga(zt)| = 1.

If limt→∞ |zt| ≠ 0, then we have two subcases

• Sub-case 1: limt→∞ zt exists. We can verify that

lim
t→∞

zt = lim
t→∞

zt+1 = fa(lim
t→∞

zt)

and thus limt→∞ zt is one of the fixed points of fa(z) ∈ {−a, 0, 2}.
• Sub-case 2: limt→∞ zt does not exist. Since limt→∞ |zt| exists, we know there exists an

infinite subsequence (denoted as A1) of {zt}∞t=0 with some limit c and the complement

of the sequence, as another infinite subsequence (denoted as A2), has limit −c for some

constant c > 0. Hence, we can pick a sequence of the subscripts k1 < k2 < ... < kn < ...

such that zk1 , ..., zkn , ... belong to A1 and zk1+1, ..., zkn+1, ... belong to A2. Moreover, we

have

c = lim
i→∞

zki = − lim
i→∞

zki+1 = − lim
i→∞

zkiga(zki) = −cga(c)(A.95)

This implies that ga(c) = −1, i.e.,

c2 + (a− 2)c+ 2− 2a = 0.

From its discriminant (a − 2)2 − 4(2 − 2a) = a2 + 4a − 4 ≤ 0 for a ∈ (0, 2
√
2 − 2] where

equality holds only at 2
√
2− 2, we know a = 2

√
2− 2 and thus c = 2−

√
2. However, we

can apply the similar trick and pick another sequence k̃1 < k̃2 < ... < k̃n < ... such that

zk̃1 , ..., zk̃n , ... belong to A2 and zk̃1+1, ..., zk̃n+1, ... belong to A1. This implies

−c = lim
i→∞

zk̃i = − lim
i→∞

zk̃i+1 = − lim
i→∞

zkiga(zki) = −(−c)ga(−c)

142

which gives

c2 − (a− 2)c+ 2− 2a = 0.

This contradicts with a = 2
√
2− 2 and c = 2−

√
2. This means case 2 does not exist.

Hence, we know |zt| is decreasing (not necessarily strictly) and limt→∞ zt ∈ {−a, 0, 2}.

Case 2: a ∈ (2
√
2− 2, 1]. We divide the interval [−a, 2] into the following five parts:

I1 =

[
−a, 2− a−

√
a2 + 4a

2

]
, I2 =

[
2− a−

√
a2 + 4a

2
, 0

]
,

I3 = [0, 0.25] , I4 =

[
0.25,

2− a+
√
a2 + 4a

2

]
, I5 =

[
2− a+

√
a2 + 4a

2
, 2

]
.

Recall that by Lemma A.7.0.4 we have:

fa(I1) = I1 ∪ I2, fa(I2) ⊆ I3, fa(I3) ⊆ I2, fa(I4) = I1 ∪ I2, fa(I5) = I3 ∪ I4 ∪ I5.(A.96)

We have the following conclusion. Observe that fa is continuous, and

zt+1 − zt = fa(zt)− zt = zt(zt + a)(zt − 2) ≥ 0, ∀zt ∈ I1 =

[
−a, 2− a−

√
a2 + 4a

2

]
,

zt+1 − zt = fa(zt)− zt = zt(zt + a)(zt − 2) ≤ 0, ∀zt ∈ I5 =

[
2− a+

√
a2 + 4a

2
, 2

]
.

We know if the sequence {zt}∞t=0 visits I5, by Lemma A.7.0.2 we know either limt→∞ zt = 2 or there

exists M > 0 such that zt /∈ I5 for any t ≥M . Then if the sequence visits I1 then by Lemma A.7.0.2

either limt→∞ zt = −a or there exists M̃ > M > 0 such that zt ∈ I2 ∪ I3 for any t ≥ M̃ , since

fa(I1) ⊆ I1 ∪ I2 and fa(I2 ∪ I3) ⊆ I2 ∪ I3. Hence, the proof is reduced to the case when z0 ∈ I2 ∪ I3.
For the case when z0 ∈ I2 ∪ I3 =

[
2−a−

√
a2+4a

2 , 0.25
]
. The key observation is to show that in this

interval

|zt+2| ≤ |zt|.(A.97)

Recall that by Lemma A.7.0.4 (ii) we have

fa (I2) ⊆ I3, fa(I3) ⊆ I2.(A.98)

143

To prove (A.97), we know it holds when zt = 0. When zt ≠ 0, by (A.98) we know f
(2)
a (zt) and zt

have the same sign provided zt ∈ I2 ∪ I3 =
[
2−a−

√
a2+4a

2 , 0.25
]
. This together with

f (2)a (z) = fa(z)ga(fa(z)) = zga(z)ga(zga(z))

implies that ga(z)ga(zga(z)) ≥ 0 when z ∈
[
2−a−

√
a2+4a

2 , 0
)
∪ (0, 0.25]. Thus we know

|zt+2| = |ztga(zt)ga(ztga(zt))| = |zt|ga(zt)ga(ztga(zt)).

Thus to prove (A.97) it suffices to show ga(z)ga(zga(z))− 1 ≤ 0, which is true by combining (A.89),

(A.90), (A.91), and (A.92). This completes the proof of (1) in (A.93). To prove (2) in (A.93), we

first notice that fa(z)− z = z(z + a)(z − 2) > 0 for any z ∈ (−a, 0), and thus zt+1 > zt for any zt

near −a. Hence, limt→∞ zt = −a if and only if there exists t such that zt = −a. This implies that

f
(t)
a (z0) = −a for some t. Similarly, fa(z)− z < 0 for any z ∈ (0, 2), which implies zt+1 < zt for any

zt near 2. Hence, limt→∞ zt = 2 if and only if z0 = 2. Define

S =
∞⋃
n=0

f (−n)
a (−a) ∪ {2}

where f (−n)
a (−a) denotes the preimage of −a under f (n)a . Clearly, each preimage is a finite set, and

thus S is countable. Hence, we know as long as z0 ∈ [−a, 2]\S, we have limt→∞ zt = 0. Since S is a

countable set and z0 is chosen uniformly at random, we know limt→∞ zt = 0 almost surely.

For the rest of (ii), we have already proved in (A.94) that {|zt|}∞t=0 is decreasing when 0 < a ≤
2
√
2− 2. To see {|zt|}∞t=0 has catapults when 2

√
2− 2 < a ≤ 1, we consider the following intervals

J1 = [−a, 0] = I1 ∪ I2, J2 =
[
0,min

{
2− a+

√
a2 + 4a− 4

2
, 0.25

}]
⊆ I3,

where we have a2 + 4a− 4 > 0 for a > 2
√
2− 2 so J2 is well-defined. Notice that

0 < z <
2− a+

√
a2 + 4a− 4

2
⇔ ga(z) < −1, z > 0.

Hence we know for any zt ∈ J2, we will have

|zt+1| = |ztga(zt)| > |zt|.(A.99)

144

On the other hand, notice that 0 is in the orbit if and only if z0 /∈ S0, where S0 is defined as

S0 =
∞⋃
n=0

f (−n)
a (0)

where f−n
a (z) denotes the set of preimage of z under f (n)a . Note that each preimage is finite and

thus S0 is countable. Hence, we know almost surely the orbit will not contain 0, and recall that

by Lemma (A.7.0.4) (ii) and limt→∞ zt = 0, we know there are infinitely many t such that t ∈ J2,

and thus (A.99) holds for infinitely many t almost surely. By definition 4.2.2, we know {|zt|} has

catapults almost surely. □

The following theorem indicates that, fa is chaotic provided that a > a∗ where a∗ ∈ (1, 2)

Lemma A.7.0.6. Suppose 1 < a ≤ 2 and −a ≤ z0 ≤ 2. Then we have

• (i) −a ≤ zt ≤ 2 for any t, and fa(z) has a period-2 point on [0, 1].

• (ii) There exists a∗ ∈ (1, 2) such that for any a ∈ (a∗, 2), fa is Li-Yorke chaotic, and for

any a ∈ (1, a∗), fa is not Li-Yorke chaotic.

• (iii) If there exists an asymptotically stable orbit and z0 is chosen from [−a, 2] uniformly at

random, then the orbit of z0 is asymptotically periodic almost surely.

Proof. The boundedness of zt is a direct result of Lemma A.7.0.3 (iii). To prove the rest of (i),

we notice that for a ∈ (1, 2],

ga(0)ga(0ga(0)) = (1− 2a)2 > 1, ga(1)ga(1ga(1)) = −a < −1.

By continuity of ga(zga(z)) we know there exists a point z0 ∈ (0, 1) such that ga(z0ga(z0)) = 1. This

indicates that f (2)(z0) = z0ga(z0ga(z0)) = z0 but clearly fa(z0) ̸= z0 since (0, 1) does not contain

any fixed point of fa.

To prove (ii), notice that

f1

(
1− 2× 1

3

)
=

5

27
< 1 < 2 = f2

(
1− 2× 2

3

)
.

By continuity of fa
(
1−2a
3

)
(with respect to a) there exists c ∈ (1, 2) such that

fc

(
1− 2c

3

)
=

(2c− 1)(2c2 + 7c− 4)

27
= 1.(A.100)

145

Moreover we have

fc(−c) = −c < 1− 2c

3
, fc

(
1− 2c

3

)
= 1 >

1− 2c

3
.

Hence by continuity of fc(z), we can pick z0 ∈
(
−c, 1−2c

3

)
such that fc(z0) = 1−2c

3 . We have

−c < z0 <
1− 2c

3
= fc(z0).(A.101)

By (A.100), (A.101), and Lemma A.7.0.3 (i), we have

f (3)c (z0) = f (2)c

(
1− 2c

3

)
= fc(1) = −c ≤ z0,(A.102)

fc(z0) =
1− 2c

3
< 1 = fc(1) = f (2)c (z0) .(A.103)

Combining (A.101), (A.102), (A.103) we can easily verify that

f (3)c (z0) ≤ z0 < fc(z0) < f (2)c (z0).

By Theorem A.8.1 (i.e., Theorem 1 in Li and Yorke [1975]), we know fc is Li-Yorke chaotic. Moreover,

for any a ∈ (c, 2], we know

fa

(
1− 2a

3

)
=

(2a− 1)(2a2 + 7a− 4)

27
>

(2c− 1)(2c2 + 7c− 4)

27
= fc

(
1− 2c

3

)
= 1,

which together with fa(0) = 0 < 1 implies we can pick y0 such that

1− 2a

3
< y0 < 0, fa(y0) = 1.(A.104)

Similarly, we have

fa(−a) = −a < 1− 2a

3
< y0, fa

(
1− 2a

3

)
> 1 > y0

which implies we can pick x0 such that

−a < x0 <
1− 2a

3
, fa(x0) = y0.(A.105)

Now we know

f (3)a (x0) < x0 < fa(x0) < f (2)a (x0).

146

By Theorem A.8.1 (i.e., Theorem 1 in Li and Yorke [1975]), we know fa is Li-Yorke chaotic. Hence,

we know c defined in (A.100) satisfies that for any a ∈ (c, 2], fa is Li-Yorke chaotic. Hence, we know

a∗ = inf
a∈(1,2)

{a : fb is Li-Yorke chaotic for any b ∈ [a, 2].}

where the set is not empty, since we have proven c belongs to the above set. This completes the

proof of (ii).

To prove (iii), we notice that if fa(z) has an asymptotically stable periodic orbit, by Theorem

A.8.2 (i.e., Theorem 2.7 in Singer [1978]) and the fact that fa(x) has negative Schwarzian derivative

at non-critical points (Lemma A.7.0.1) and we know there exists a critical point c of fa(z) such

that the orbit of c converges to this asymptotically stable orbit. Notice that by Lemma A.7.0.3 we

know c = 1 or 1−2a
3 . c = 1 can be excluded since fa(1) = −a, and −a is an unstable period-1 point.

Hence, we know c = 1−2a
3 is asymptotically periodic. By Theorems A.8.3 and A.8.4 (i.e., Theorem B

and Corollary in Nusse [1987]), we know almost surely z0 will not converge to any periodic orbit if

z0 is chosen from [−a, 2] uniformly at random. This completes the proof.

□

Remarks:

• See Figure A.10(b) for a pair of period-2 points when a = 1.2, and Figure A.10(c) for a period-3

orbit when a = 1.6. The triangle markers denote the periodic points.

• By Theorem A.8.2 (i.e., Theorem 2.7 in Singer [1978]) and the fact that −a is an unstable period-1

point we know fa(z) has at most one asymptotically stable periodic orbit.

Lemma A.7.0.7. Suppose a > 2. z0 is chosen from [−a, 2] uniformly at random. Then

limt→∞ |zt| = +∞ almost surely.

Proof. Notice that by Lemma A.7.0.3 we know

fa

(
1− 2a

3

)
=

4a3 + 12a2 − 15a+ 4

27
>

(4a3 + 12a2 − 15a+ 4)|a=2

27
= 2, ∀a > 2,

where the inequality holds since 4a3 + 12a2 − 15a+ 4 is increasing on (2,∞). Moreover, we have

fa(z)− z = z(z + a)(z − 2) > 0, ∀z ∈ (2,∞).

147

Hence we know for the initialization at the critical point z0 = 1−2a
3 , we have z1 > 2, and the whole

sequence is increasing. On the other hand, all fixed points of fa(z) are no greater than 2, we know

zt will diverge to +∞. For another critical point z0 = 1 we know its orbit converges to the periodic

orbit of z0 = −a, which is an unstable period-1 point. Hence, we know from Theorem A.8.2 (i.e.,

Theorem 2.7 in Singer [1978]) that there does not exist an asymptotically stable periodic orbit,

otherwise the orbit of one critical point must converge to it. Hence, by Theorems A.8.3 and A.8.4

(i.e., Theorem B and Corollary in Nusse [1987]) we know limt→∞ |zt| = +∞ almost surely provided

z0 uniformly chosen from (−a, 2), i.e., almost all points in [−a, 2] converge to the absorbing boundary

point +∞. □

A.7.2. Proofs of results in Section 4.3.

Proof of Theorem 4.3.1. Define

α(t) := c+ γX⊤w(t), β := y +
c2

2γ
, κ := ηγ ∥X∥2 .

To prove (i), we observe that

∇wg(w;X) = (c+ γ(X⊤w))X

Let weights at time t be w(t). Thus, the gradient descent takes the form

w(t+1) = w(t) − η(g(w(t);X)− y)(c+ γX⊤w(t))X = w(t) − ηe(t)α(t)X.

Simple calculation gives

e(t) =
(α(t))2

2γ
− β(A.106)

and

α(t+1) = (1− ηγ ∥X∥2 e(t))α(t) = (1− κe(t))α(t).(A.107)

Hence

e(t+1) − e(t) =
1

2γ

(
(α(t+1))2 − (α(t))2

)
=
(
(1− κe(t))2 − 1

) (α(t))2

2γ

148

which together with (A.106) implies

κe(t+1) = κe(t)(κe(t) + βκ)
(
κe(t) − 2

)
+ κe(t).(A.108)

By definition of a and zt in (4.6) we know a = βκ and zt = κe(t). We know (i) holds.

To compute the largest eigenvalue of the Hessain matrix (i.e., the sharpness defined in EoS

literature) of the loss in (ii), we notice that the gradient of the loss function takes the form

∇ℓ(w) = (g(w;X)− y)∇wg(w;X).

Hence

∇2ℓ(w) = ∇wg(w;X)∇wg(w;X)⊤ + (g(w;X)− y)∇2
wg(w;X) = (α2 + γe)XX⊤,

where we overload the notation and define

α = c+ γX⊤w, e = g(w;X)− y.

The sharpness is given by

λmax(∇2ℓ(w(t))) = ((α(t))2 + γe(t)) ∥X∥2 = (3γe(t) + 2γy + c2) ∥X∥2 = 3zt + 2a

η
.

□

Proof of Theorem 4.3.2. The gradient descent takes the form

w(t+1) = w(t) − η

2n

n∑
i=1

∇ℓi(w(t)) = w(t) − η

n

n∑
i=1

e(t)(Xi)α
(t)(Xi)Xi.

Similarly to (A.106), for each error term e(t)(Xi) we have

e(t)(Xi) =
(α(t)(Xi))

2

2γ
− β(Xi),(A.109)

and

α(t+1)(Xi) = γX⊤
i w

(t+1) + c(Xi)

=γ

X⊤
i w

(t) − η

n

n∑
j=1

e(t)(Xj)α
(t)(Xj)X

⊤
i Xj

+ c(Xi)

149

=α(t)(Xi)−
γη

n

n∑
j=1

e(t)(Xj)α
(t)(Xj)X

⊤
i Xj

=α(t)(Xi)−
γη

n

n∑
j=1

(
α(t)(Xj)

3

2γ
− β(Xj)α

(t)(Xj)

)
X⊤

i Xj

We overload the notation and set

X = (X1, ..., Xn)
⊤ , #(X) = (#(X1), ...,#(Xn))

⊤ , ∀# ∈ {α(t), e(t), a, β}.

We can obtain

α(t+1)(X) = α(t)(X)− η

n
XX⊤

(
α(t)(X)3

2
− γβ(X)⊙ α(t)(X)

)
,(A.110)

where ⊙ denotes the Hadamard product.

As XX⊤ = diag(∥X1∥2 , ..., ∥Xn∥2), we can rewrite (A.110) as the following non-interacting

version for each data point:

α(t+1)(Xi) =α
(t)(Xi)−

η ∥Xi∥2
2n

(
α(t)(Xi)

3 − 2γβ(Xi)α
(t)(Xi)

)
=

(
1− γη ∥Xi∥2

n
e(t)(Xi)

)
α(t)(Xi).

This together with (A.109) implies

e(t+1)(Xi)− e(t)(Xi) =
1

2γ

(
(α(t+1)(Xi))

2 − (α(t)(Xi))
2
)

=

(
−2γη ∥Xi∥2

n
e(t)(Xi) +

γ2η2 ∥Xi∥4
n2

(e(t)(Xi))
2

)(
e(t)(Xi) + β(Xi)

)
=κn(Xi)e

(t)(Xi)
(
κn(Xi)e

(t)(Xi)− 2
)(

e(t)(Xi) + β(Xi)
)

By definition of z(t)i and ai we know

z
(t+1)
i = z

(t)
i (z

(t)
i + ai)(z

(t)
i − 2) + z

(t)
i = fai(z

(t)
i).

The sharpness is given by

∇2ℓ(w(t)) =
1

n

n∑
i=1

(
∇wg(w

(t);Xi)∇wg(w
(t);Xi)

⊤ + (g(w(t);Xi)− yi)∇2
wg(w

(t);Xi)
)

150

=
1

n

n∑
i=1

(
(α(t)(Xi))

2 + γe(t)(Xi)
)
XiX

⊤
i

=
1

n

n∑
i=1

(3γe(t)(Xi) + 2γyi + c2(Xi))XiX
⊤
i .

Therefore we know

∇2ℓ(w(t))Xi =
1

n
(3γe(t)(Xi) + 2γyi + c2(Xi)) ∥Xi∥2Xi =

3z
(t)
i + 2ai
η

Xi, for all 1 ≤ i ≤ n.

which means we find n eigenvalues and eigenvectors pairs
(

3z
(t)
1 +2a1

η , X1

)
, ...,

(
3z

(t)
n +2an

η , Xn

)
. Note

that ∇2ℓ(w(t)) is a sum of n rank-1 matrices, and we have found n orthogonal eigenvalues. Hence

we know λmax(∇2ℓ(w(t))) = max1≤i≤n
3z

(t)
i +2ai
η . This completes the proof. □

Proof of Theorem 4.3.3. Define

A(t) =
2η√
mdn

n∑
j=1

e
(t)
j XjX

⊤
j .

Note that we have

∇ℓ(t)j (U(t)) =

(
1√
md

m∑
i=1

(X⊤
j u

(t)
i)2 − yj

)(
2√
md

XjX
⊤
j U(t)

)
=

2√
md

e
(t)
j XjX

⊤
j U(t).(A.111)

This implies that the gradient descent update takes the form

U(t+1) = U(t) − η

n

n∑
j=1

∇ℓ(t)j (U(t)) = U(t) − 2η√
mdn

n∑
j=1

e
(t)
j XjX

⊤
j U(t) =

(
I −A(t)

)
U(t).

Also we have

e
(t+1)
j − e

(t)
j =

1√
md

m∑
i=1

(
(X⊤

j u
(t+1)
i)2 − (X⊤

j u
(t)
i)2

)
=

1√
md

X⊤
j

(
U(t+1)(U(t+1))⊤ −U(t)(U(t))⊤

)
Xj

and

U(t+1)(U(t+1))⊤ =

I − 2η√
mdn

n∑
j=1

e
(t)
j XjX

⊤
j

U(t)(U(t))⊤

I − 2η√
mdn

n∑
j=1

e
(t)
j XjX

⊤
j

 .

151

Hence we know

e
(t+1)
j − e

(t)
j

=
1√
md

(
X⊤

j A(t)A(t)(A(t))⊤A(t)Xj − 2X⊤
j A(t)U(t)(U(t))⊤Xj

)
=

1√
md

(
4η2

md2n2
(e

(t)
j)2 ∥Xj∥4X⊤

j U(t)(U(t))⊤Xj −
4η√
mdn

e
(t)
j ∥Xj∥2X⊤

j U(t)(U(t))⊤Xj

)

=

(
4η2 ∥Xj∥4
md2n2

(e
(t)
j)2 − 4η ∥Xj∥2√

mdn
e
(t)
j

)(
e
(t)
j + yj

)
,

where the second equality uses XX⊤ = diag(∥X1∥2 , ..., ∥Xn∥2). By definition of z(t)i and ai we know

z
(t+1)
i = fai(z

(t)
i).

Hence we know the training dynamics of this model can be captured by the cubic map as well. □

A.8. Auxiliary Results in Chapter 4

Theorem A.8.1 (Theorem 1 in Li and Yorke [1975]). Let I be a compact interval and let

f : I → I be continuous. Assume there is a point a ∈ I for which the points b = f(a), c = f (2)(a)

and d = f (3)(a) satisfy

d ≤ a < b < c (or d ≥ a > b > c).

Then f is Li-Yorke chaotic.

Theorem A.8.2 (Theorem 2.7 in Singer [1978]). Let I be a compact interval and let f : I → I

be a three times continuously differentiable function. If the Schwarzian derivative of f satisfies

Sf(x) =
f ′′′(x)
f ′(x)

− 3

2

(
f ′′(x)
f ′(x)

)2

< 0 for all x ∈ I with f ′(x) ̸= 0.

Then the stable set of every asymptotically stable orbit of f contains a critical point of f .

Theorem A.8.3 (Theorem B in Nusse [1987]). Let I be an interval and let f : I → I be a three

times continuously differentiable function having at least one aperiodic point on I and satisfying:

152

• (i) f has a nonpositive Schwarzian derivative, i.e.,

Sf(x) =
f ′′′(x)
f ′(x)

− 3

2

(
f ′′(x)
f ′(x)

)2

≤ 0 for all x ∈ I with f ′(x) ̸= 0.

• (ii) The set of points, whose orbits do not converge to an (or the) absorbing boundary point(s) of I

for f is a nonempty compact set.

• (iii) The orbit of each critical point for f converges to an asymptotically stable periodic orbit of f

or to an (or the) absorbing boundary point(s) of I for f .

• (iv) The fixed points of f (2) are isolated.

Then we have

• (1) The set of points whose orbits do not converge to an asymptotically stable periodic orbit of f

or to an (or the) absorbing boundary point(s) of I for f has Lebesgue measure 0;

• (2) There exists a positive integer p such that almost every point x in I is asymptotically periodic

with f (p)(x) = x, provided that f(I) is bounded.

Theorem A.8.4 (Corollary in Nusse [1987]). Assume that f : R → R is a polynomial function

having at least one aperiodic point and satisfying the following conditions:

• (i) The orbit of each critical point of f converges to an asymptotically stable periodic orbit of f or

to an (or the) absorbing boundary point(s) for f;

• (ii) Each critical point of f is real.

Then f satisfies the assumptions (i)-(iv) of Theorem A.8.3.

153

Bibliography

R. L. Adler, A. G. Konheim, and M. H. McAndrew. Topological entropy. Transactions of the

American Mathematical Society, 114(2):309–319, 1965.

N. Agarwal, S. Goel, and C. Zhang. Acceleration via fractal learning rate schedules. In Proceedings

of the 38th International Conference on Machine Learning, pages 87–99, 2021.

A. Agarwala and Y. Dauphin. SAM operates far from home: Eigenvalue regularization as a dynamical

phenomenon. In Proceedings of the 40th International Conference on Machine Learning, pages

152–168. PMLR, 2023.

A. Agarwala, F. Pedregosa, and J. Pennington. Second-order regression models exhibit progressive

sharpening to the edge of stability. In Proceedings of the 40th International Conference on Machine

Learning, 2023.

K. Ahn, J. Zhang, and S. Sra. Understanding the unstable convergence of gradient descent. In

Proceedings of the 39th International Conference on Machine Learning, pages 247–257. PMLR,

2022.

K. Ahn, S. Bubeck, S. Chewi, Y. T. Lee, F. Suarez, and Y. Zhang. Learning threshold neurons via

edge of stability. Advances in Neural Information Processing Systems, 36, 2024.

Z. Akhtar, A. S. Bedi, S. T. Thomdapu, and K. Rajawat. Projection-free stochastic bi-level

optimization. IEEE Transactions on Signal Processing, 70:6332–6347, 2022.

K. T. Alligood, T. D. Sauer, and J. A. Yorke. Chaos: An introduction to dynamical systems., 1997.

H. Altae-Tran, B. Ramsundar, A. S. Pappu, and V. Pande. Low data drug discovery with one-shot

learning. ACS central science, 3(4):283–293, 2017.

J. M. Altschuler and P. A. Parrilo. Acceleration by Stepsize Hedging I: Multi-Step Descent and the

Silver Stepsize Schedule. preprint arXiv:2309.07879, 2023.

M. Andriushchenko, A. V. Varre, L. Pillaud-Vivien, and N. Flammarion. SGD with large step sizes

learns sparse features. In Proceedings of the 40th International Conference on Machine Learning,

pages 903–925. PMLR, 2023.

154

M. Arbel and J. Mairal. Amortized implicit differentiation for stochastic bilevel optimization. arXiv

preprint arXiv:2111.14580, 2021.

M. Arbel and J. Mairal. Amortized implicit differentiation for stochastic bilevel optimization. In

International Conference on Learning Representations, 2022. URL https://openreview.net/

forum?id=3PN4iyXBeF.

Y. Arjevani, Y. Carmon, J. C. Duchi, D. J. Foster, A. Sekhari, and K. Sridharan. Second-order

information in non-convex stochastic optimization: Power and limitations. In Conference on

Learning Theory, pages 242–299. PMLR, 2020.

Y. Arjevani, Y. Carmon, J. C. Duchi, D. J. Foster, N. Srebro, and B. Woodworth. Lower bounds for

non-convex stochastic optimization. Mathematical Programming, 199(1-2):165–214, 2023.

S. Arora, Z. Li, and A. Panigrahi. Understanding gradient descent on the edge of stability in

deep learning. In Proceedings of the 39th International Conference on Machine Learning, pages

948–1024. PMLR, 2022.

B. Aulbach and B. Kieninger. On three definitions of chaos. Nonlinear Dyn. Syst. Theory, 1(1):

23–37, 2001.

K. Balasubramanian, S. Ghadimi, and A. Nguyen. Stochastic multilevel composition optimization

algorithms with level-independent convergence rates. SIAM Journal on Optimization, 32(2):

519–544, 2022.

Y. Bengio. Gradient-based optimization of hyperparameters. Neural computation, 12(8):1889–1900,

2000.

L. Bertinetto, J. F. Henriques, P. Torr, and A. Vedaldi. Meta-learning with differentiable closed-

form solvers. In International Conference on Learning Representations, 2019. URL https:

//openreview.net/forum?id=HyxnZh0ct7.

Q. Bertrand, Q. Klopfenstein, M. Blondel, S. Vaiter, A. Gramfort, and J. Salmon. Implicit

differentiation of lasso-type models for hyperparameter optimization. In International Conference

on Machine Learning, pages 810–821. PMLR, 2020.

T. Birdal, A. Lou, L. Guibas, and U. Simsekli. Intrinsic dimension, persistent homology and

generalization in neural networks. In Advances in Neural Information Processing Systems, 2021.

L. Bottou, F. E. Curtis, and J. Nocedal. Optimization methods for large-scale machine learning.

Siam Review, 60(2):223–311, 2018.

155

https://openreview.net/forum?id=3PN4iyXBeF
https://openreview.net/forum?id=3PN4iyXBeF
https://openreview.net/forum?id=HyxnZh0ct7
https://openreview.net/forum?id=HyxnZh0ct7

J. Bracken and J. T. McGill. Mathematical programs with optimization problems in the constraints.

Operations research, 21(1):37–44, 1973.

B. Branner and J. H. Hubbard. The iteration of cubic polynomials. part I: The global topology of

parameter space. Acta mathematica, 160(3-4):143–206, 1988.

A. Camuto, G. Deligiannidis, M. A. Erdogdu, M. Gurbuzbalaban, U. Simsekli, and L. Zhu. Fractal

structure and generalization properties of stochastic optimization algorithms. In Advances in

Neural Information Processing Systems, 2021.

Y. Carmon, J. C. Duchi, O. Hinder, and A. Sidford. “convex until proven guilty”: Dimension-free

acceleration of gradient descent on non-convex functions. In International conference on machine

learning, pages 654–663. PMLR, 2017.

S. Chakraborty, A. Bedi, A. Koppel, H. Wang, D. Manocha, M. Wang, and F. Huang. Parl: A

unified framework for policy alignment in reinforcement learning from human feedback. In The

Twelfth International Conference on Learning Representations, 2024.

N. Chandramoorthy, A. Loukas, K. Gatmiry, and S. Jegelka. On the generalization of learning

algorithms that do not converge. Advances in Neural Information Processing Systems, 35:34241–

34257, 2022.

L. Chen and J. Bruna. Beyond the edge of stability via two-step gradient updates. In Proceedings of

the 40th International Conference on Machine Learning, 2023.

L. Chen, J. Xu, and J. Zhang. On bilevel optimization without lower-level strong convexity. arXiv

preprint arXiv:2301.00712, 2023a.

T. Chen, Y. Sun, and W. Yin. Closing the gap: Tighter analysis of alternating stochastic gradient

methods for bilevel problems. Advances in Neural Information Processing Systems, 34, 2021a.

T. Chen, Y. Sun, and W. Yin. Solving stochastic compositional optimization is nearly as easy as

solving stochastic optimization. IEEE Transactions on Signal Processing, 69:4937–4948, 2021b.

T. Chen, Y. Sun, Q. Xiao, and W. Yin. A single-timescale method for stochastic bilevel optimization.

In International Conference on Artificial Intelligence and Statistics, pages 2466–2488. PMLR,

2022a.

X. Chen, M. Huang, and S. Ma. Decentralized bilevel optimization. arXiv preprint arXiv:2206.05670,

2022b.

156

X. Chen, M. Huang, S. Ma, and K. Balasubramanian. Decentralized stochastic bilevel optimization

with improved per-iteration complexity. In International Conference on Machine Learning, pages

4641–4671. PMLR, 2023b.

X. Chen, A. Roy, Y. Hu, and K. Balasubramanian. Stochastic optimization algorithms for instru-

mental variable regression with streaming data. arXiv preprint arXiv:2405.19463, 2024.

I. Chevyrev, P. K. Friz, A. Korepanov, and I. Melbourne. Superdiffusive limits for deterministic

fast–slow dynamical systems. Probability theory and related fields, 178(3-4):735–770, 2020.

J. Cohen, S. Kaur, Y. Li, J. Z. Kolter, and A. Talwalkar. Gradient descent on neural networks typically

occurs at the edge of stability. In The 9th International Conference on Learning Representations,

2021.

E. D. Cubuk, B. Zoph, D. Mane, V. Vasudevan, and Q. V. Le. Autoaugment: Learning augmentation

strategies from data. In Proceedings of the IEEE/CVF conference on computer vision and pattern

recognition, pages 113–123, 2019.

A. Cutkosky and F. Orabona. Momentum-based variance reduction in non-convex SGD. Advances

in neural information processing systems, 32, 2019.

M. Dagréou, P. Ablin, S. Vaiter, and T. Moreau. A framework for bilevel optimization that enables

stochastic and global variance reduction algorithms. In A. H. Oh, A. Agarwal, D. Belgrave,

and K. Cho, editors, Advances in Neural Information Processing Systems, 2022. URL https:

//openreview.net/forum?id=wlEOsQ917F.

M. Dagréou, T. Moreau, S. Vaiter, and P. Ablin. A lower bound and a near-optimal algorithm for

bilevel empirical risk minimization. arXiv e-prints, pages arXiv–2302, 2023.

M. Dagréou, P. Ablin, S. Vaiter, and T. Moreau. How to compute hessian-vector products? In

ICLR Blogposts 2024, 2024. URL https://iclr-blogposts.github.io/2024/blog/bench-hvp/.

https://iclr-blogposts.github.io/2024/blog/bench-hvp/.

L. Dalcin and Y.-L. L. Fang. mpi4py: Status update after 12 years of development. Computing in

Science & Engineering, 23(4):47–54, 2021.

A. Damian, E. Nichani, and J. D. Lee. Self-stabilization: The implicit bias of gradient descent at

the edge of stability. In The 11th International Conference on Learning Representations, 2023.

W. De Melo and S. Van Strien. One-dimensional dynamics, volume 25. Springer Science & Business

Media, 2012.

157

https://openreview.net/forum?id=wlEOsQ917F
https://openreview.net/forum?id=wlEOsQ917F
https://iclr-blogposts.github.io/2024/blog/bench-hvp/

A. Defazio, F. Bach, and S. Lacoste-Julien. SAGA: A fast incremental gradient method with support

for non-strongly convex composite objectives. Advances in neural information processing systems,

27, 2014.

R. Devaney. An introduction to chaotic dynamical systems. An Introduction to Chaotic Dynamical

Systems, 1989.

P. Di Lorenzo and G. Scutari. Next: In-network nonconvex optimization. IEEE Transactions on

Signal and Information Processing over Networks, 2(2):120–136, 2016.

J. Domke. Generic methods for optimization-based modeling. In Artificial Intelligence and Statistics,

pages 318–326. PMLR, 2012.

B. Dupuis, G. Deligiannidis, and U. Simsekli. Generalization bounds using data-dependent fractal

dimensions. In Proceedings of the 40th International Conference on Machine Learning, pages

8922–8968, 2023.

A. Fannjiang and T. Strohmer. The numerics of phase retrieval. Acta Numerica, 29:125–228, 2020.

L. Franceschi, M. Donini, P. Frasconi, and M. Pontil. Forward and reverse gradient-based hyperpa-

rameter optimization. In International Conference on Machine Learning, pages 1165–1173. PMLR,

2017.

L. Franceschi, P. Frasconi, S. Salzo, R. Grazzi, and M. Pontil. Bilevel programming for hyperparameter

optimization and meta-learning. In International Conference on Machine Learning, pages 1568–

1577. PMLR, 2018.

N. Franzová and J. Smítal. Positive sequence topological entropy characterizes chaotic maps.

Proceedings of the American Mathematical Society, pages 1083–1086, 1991.

S. Frei, G. Vardi, P. L. Bartlett, N. Srebro, and W. Hu. Implicit bias in leaky relu networks trained

on high-dimensional data. arXiv preprint arXiv:2210.07082, 2022.

H. Gao. On the convergence of momentum-based algorithms for federated stochastic bilevel opti-

mization problems. arXiv preprint arXiv:2204.13299, 2022.

H. Gao, X. Wang, L. Luo, and X. Shi. On the convergence of stochastic compositional gradient

descent ascent method. In Thirtieth International Joint Conference on Artificial Intelligence

(IJCAI), 2021.

H. Gao, B. Gu, and M. T. Thai. Stochastic bilevel distributed optimization over a network. arXiv

preprint arXiv:2206.15025, 2022.

158

H. Gao, B. Gu, and M. T. Thai. On the convergence of distributed stochastic bilevel optimization

algorithms over a network. In International Conference on Artificial Intelligence and Statistics,

pages 9238–9281. PMLR, 2023.

S. Ghadimi and M. Wang. Approximation methods for bilevel programming. arXiv preprint

arXiv:1802.02246, 2018.

S. Ghadimi, A. Ruszczynski, and M. Wang. A single timescale stochastic approximation method for

nested stochastic optimization. SIAM Journal on Optimization, 30(1):960–979, 2020.

J. Gilmer, B. Ghorbani, A. Garg, S. Kudugunta, B. Neyshabur, D. Cardoze, G. E. Dahl, Z. Nado,

and O. Firat. A loss curvature perspective on training instabilities of deep learning models. In

The 12th International Conference on Learning Representations, 2022.

T. Giovannelli, G. Kent, and L. N. Vicente. Inexact bilevel stochastic gradient methods for constrained

and unconstrained lower-level problems. arXiv preprint arXiv:2110.00604, 2021.

T. Giovannelli, G. Kent, and L. N. Vicente. Bilevel optimization with a multi-objective lower-level

problem: Risk-neutral and risk-averse formulations. arXiv preprint arXiv:2302.05540, 2023.

B. Goujaud, D. Scieur, A. Dieuleveut, A. B. Taylor, and F. Pedregosa. Super-acceleration with

cyclical step-sizes. In International Conference on Artificial Intelligence and Statistics, pages

3028–3065. PMLR, 2022.

S. Gould, B. Fernando, A. Cherian, P. Anderson, R. S. Cruz, and E. Guo. On differentiating

parameterized Argmin and Argmax problems with application to bi-level optimization. arXiv

preprint arXiv:1607.05447, 2016.

R. Grazzi, L. Franceschi, M. Pontil, and S. Salzo. On the iteration complexity of hypergradient

computation. In International Conference on Machine Learning, pages 3748–3758. PMLR, 2020.

R. Grazzi, M. Pontil, and S. Salzo. Bilevel optimization with a lower-level contraction: Optimal

sample complexity without warm-start. Journal of Machine Learning Research, 24(167):1–37,

2023. URL http://jmlr.org/papers/v24/22-1043.html.

B. Grimmer. Provably faster gradient descent via long steps. preprint arXiv:2307.06324, 2023.

B. Grimmer, K. Shu, and A. L. Wang. Accelerated Gradient Descent via Long Steps . preprint

arXiv:2309.09961, 2023.

A. Gu, S. Lu, P. Ram, and T.-W. Weng. Min-max multi-objective bilevel optimization with

applications in robust machine learning. In The Eleventh International Conference on Learning

159

http://jmlr.org/papers/v24/22-1043.html

Representations, 2023. URL https://openreview.net/forum?id=PvDY71zKsvP.

Z. Guo, Q. Hu, L. Zhang, and T. Yang. Randomized stochastic variance-reduced methods for

multi-task stochastic bilevel optimization. arXiv preprint arXiv:2105.02266, 2021a.

Z. Guo, Y. Xu, W. Yin, R. Jin, and T. Yang. A novel convergence analysis for algorithms of the

ADAM family and beyond. arXiv preprint arXiv:2104.14840, 2021b.

J. K. Hale and H. Koçak. Dynamics and bifurcations, volume 3. Springer Science & Business Media,

2012.

L. Herrmann, M. Granz, and T. Landgraf. Chaotic dynamics are intrinsic to neural network training

with SGD. In Advances in Neural Information Processing Systems, 2022.

L. Hodgkinson, U. Simsekli, R. Khanna, and M. Mahoney. Generalization bounds using lower tail

exponents in stochastic optimizers. In Proceedings of the 39th International Conference on Machine

Learning, pages 8774–8795, 2022.

M. Hong, H.-T. Wai, Z. Wang, and Z. Yang. A two-timescale framework for bilevel optimization:

Complexity analysis and application to actor-critic. arXiv preprint arXiv:2007.05170, 2020.

M. Hong, H.-T. Wai, Z. Wang, and Z. Yang. A two-timescale stochastic algorithm framework

for bilevel optimization: Complexity analysis and application to actor-critic. SIAM Journal on

Optimization, 33(1):147–180, 2023.

Q. Hu, Y. Zhong, and T. Yang. Multi-block min-max bilevel optimization with applications in

multi-task deep auc maximization. Advances in Neural Information Processing Systems, 35:

29552–29565, 2022.

F. Huang. On momentum-based gradient methods for bilevel optimization with nonconvex lower-level.

arXiv preprint arXiv:2303.03944, 2023.

M. Huang, X. Chen, K. Ji, S. Ma, and L. Lai. Efficiently escaping saddle points in bilevel optimization.

arXiv preprint arXiv:2202.03684v3, 2023.

A. Jacot, F. Gabriel, and C. Hongler. Neural tangent kernel: Convergence and generalization in

neural networks. Advances in neural information processing systems, 31, 2018.

K. Jaganathan, Y. C. Eldar, and B. Hassibi. Phase retrieval: An overview of recent developments.

Optical Compressive Imaging, pages 279–312, 2016.

S. Jastrzebski, M. Szymczak, S. Fort, D. Arpit, J. Tabor, K. Cho, and K. Geras. The break-even

point on optimization trajectories of deep neural networks. In The 8th International Conference

160

https://openreview.net/forum?id=PvDY71zKsvP

on Learning Representations, 2020.

K. Ji, J. D. Lee, Y. Liang, and H. V. Poor. Convergence of meta-learning with task-specific adaptation

over partial parameters. Advances in Neural Information Processing Systems, 33:11490–11500,

2020.

K. Ji, J. Yang, and Y. Liang. Bilevel optimization: Convergence analysis and enhanced design. In

International conference on machine learning, pages 4882–4892. PMLR, 2021.

K. Ji, M. Liu, Y. Liang, and L. Ying. Will bilevel optimizers benefit from loops. arXiv preprint

arXiv:2205.14224, 2022.

R. Jiang, N. Abolfazli, A. Mokhtari, and E. Y. Hamedani. A conditional gradient-based method

for simple bilevel optimization with convex lower-level problem. In International Conference on

Artificial Intelligence and Statistics, pages 10305–10323. PMLR, 2023.

M. Kayaalp, S. Vlaski, and A. H. Sayed. Dif-maml: Decentralized multi-agent meta-learning. IEEE

Open Journal of Signal Processing, 3:71–93, 2022.

P. Khanduri, S. Zeng, M. Hong, H.-T. Wai, Z. Wang, and Z. Yang. A near-optimal algorithm for

stochastic bilevel optimization via double-momentum. Advances in Neural Information Processing

Systems, 34:30271–30283, 2021.

D. P. Kingma. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980, 2014.

M. Kodryan, E. Lobacheva, M. Nakhodnov, and D. P. Vetrov. Training scale-invariant neural

networks on the sphere can happen in three regimes. Advances in Neural Information Processing

Systems, 35:14058–14070, 2022.

A. Koloskova, N. Loizou, S. Boreiri, M. Jaggi, and S. Stich. A unified theory of decentralized sgd

with changing topology and local updates. In International Conference on Machine Learning,

pages 5381–5393. PMLR, 2020.

S. Kolyada. Li-Yorke sensitivity and other concepts of chaos. Ukrainian Mathematical Journal, 56

(8), 2004.

L. Kong and M. Tao. Stochasticity of deterministic gradient descent: Large learning rate for

multiscale objective function. Advances in Neural Information Processing Systems, 33:2625–2638,

2020.

Y. Kou, Z. Chen, and Q. Gu. Implicit bias of gradient descent for two-layer relu and leaky relu

networks on nearly-orthogonal data. arXiv preprint arXiv:2310.18935, 2023.

161

I. Kreisler, M. S. Nacson, D. Soudry, and Y. Carmon. Gradient descent monotonically decreases the

sharpness of gradient flow solutions in scalar networks and beyond. In Proceedings of the 40th

International Conference on Machine Learning, 2023.

J. Kwon, D. Kwon, S. Wright, and R. D. Nowak. A fully first-order method for stochastic bilevel

optimization. In International Conference on Machine Learning, pages 18083–18113. PMLR, 2023.

G. Lan. First-order and stochastic optimization methods for machine learning, volume 1. Springer,

2020.

A. Lasota and M. C. Mackey. Chaos, fractals, and noise: stochastic aspects of dynamics, volume 97.

Springer Science & Business Media, 1998.

V. Lebedev and S. Finogenov. Ordering of the iterative parameters in the cyclical Chebyshev iterative

method. USSR Computational Mathematics and Mathematical Physics, 11(2):155–170, 1971.

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document

recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

A. Lewkowycz, Y. Bahri, E. Dyer, J. Sohl-Dickstein, and G. Gur-Ari. The large learning rate phase

of deep learning: The catapult mechanism. preprint arXiv:2003.02218, 2020.

J. Li, B. Gu, and H. Huang. A fully single loop algorithm for bilevel optimization without Hessian

inverse. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 36, pages

7426–7434, 2022a.

J. Li, F. Huang, and H. Huang. Local stochastic bilevel optimization with momentum-based variance

reduction. arXiv preprint arXiv: 2205.01608, 2022b.

J. Li, X. Chen, S. Ma, and M. Hong. Problem-parameter-free decentralized nonconvex stochastic

optimization. arXiv preprint arXiv:2402.08821, 2024.

T.-Y. Li and J. A. Yorke. Period three implies chaos. The American Mathematical Monthly, 82(10):

985–992, 1975.

X. Lian, C. Zhang, H. Zhang, C.-J. Hsieh, W. Zhang, and J. Liu. Can decentralized algorithms

outperform centralized algorithms? a case study for decentralized parallel stochastic gradient

descent. Advances in Neural Information Processing Systems, 30, 2017.

S. H. Lim, Y. Wan, and U. Simsekli. Chaotic regularization and heavy-tailed limits for deterministic

gradient descent. Advances in Neural Information Processing Systems, 35:26590–26602, 2022.

162

T. Lin, C. Jin, and M. Jordan. On gradient descent ascent for nonconvex-concave minimax problems.

In International Conference on Machine Learning, pages 6083–6093. PMLR, 2020a.

T. Lin, C. Jin, and M. I. Jordan. Near-optimal algorithms for minimax optimization. In Conference

on Learning Theory, pages 2738–2779. PMLR, 2020b.

B. Liu, M. Ye, S. Wright, P. Stone, and Q. Liu. BOME! Bilevel Optimization Made Easy: A Simple

First-Order Approach. Advances in Neural Information Processing Systems, 35:17248–17262, 2022.

H. Liu, K. Simonyan, and Y. Yang. Darts: Differentiable architecture search. In International

Conference on Learning Representations, 2019.

R. Liu, Y. Liu, S. Zeng, and J. Zhang. Towards gradient-based bilevel optimization with non-convex

followers and beyond. Advances in Neural Information Processing Systems, 34:8662–8675, 2021.

R. Liu, Y. Liu, W. Yao, S. Zeng, and J. Zhang. Averaged method of multipliers for bi-level

optimization without lower-level strong convexity. arXiv preprint arXiv:2302.03407, 2023.

E. Lobacheva, M. Kodryan, N. Chirkova, A. Malinin, and D. P. Vetrov. On the periodic behavior

of neural network training with batch normalization and weight decay. In Advances in Neural

Information Processing Systems, 2021.

S. Lu, X. Cui, M. S. Squillante, B. Kingsbury, and L. Horesh. Decentralized bilevel optimization for

personalized client learning. In ICASSP 2022-2022 IEEE International Conference on Acoustics,

Speech and Signal Processing (ICASSP), pages 5543–5547. IEEE, 2022.

K. Lyu, Z. Li, and S. Arora. Understanding the generalization benefit of normalization layers:

Sharpness reduction. Advances in Neural Information Processing Systems, 35:34689–34708, 2022.

D. Maclaurin, D. Duvenaud, and R. Adams. Gradient-based hyperparameter optimization through

reversible learning. In International conference on machine learning, pages 2113–2122. PMLR,

2015.

J. Milnor. Remarks on iterated cubic maps. Experimental Mathematics, 1(1):5–24, 1992.

T. Moreau, M. Massias, A. Gramfort, P. Ablin, P.-A. Bannier, B. Charlier, M. Dagréou, T. Dupre la

Tour, G. Durif, and C. F. Dantas. Benchopt: Reproducible, efficient and collaborative optimization

benchmarks. Advances in Neural Information Processing Systems, 35:25404–25421, 2022.

A. Nedic, A. Olshevsky, and W. Shi. Achieving geometric convergence for distributed optimization

over time-varying graphs. SIAM Journal on Optimization, 27(4):2597–2633, 2017.

Y. Nesterov. Lectures on convex optimization, volume 137. Springer, 2018.

163

L. M. Nguyen, J. Liu, K. Scheinberg, and M. Takáč. SARAH: A novel method for machine learning

problems using stochastic recursive gradient. In International Conference on Machine Learning,

pages 2613–2621. PMLR, 2017.

H. E. Nusse. Asymptotically periodic behaviour in the dynamics of chaotic mappings. SIAM Journal

on Applied Mathematics, 47(3):498–515, 1987.

E. Ott. Chaos in dynamical systems. Cambridge university press, 2002.

S. Oymak. Provable super-convergence with a large cyclical learning rate. IEEE Signal Processing

Letters, 28:1645–1649, 2021.

A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein,

L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy,

B. Steiner, L. Fang, J. Bai, and S. Chintala. Pytorch: An imperative style, high-performance

deep learning library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and

R. Garnett, editors, Advances in Neural Information Processing Systems 32, pages 8024–8035.

Curran Associates, Inc., 2019.

B. A. Pearlmutter. Fast exact multiplication by the Hessian. Neural computation, 6(1):147–160,

1994.

F. Pedregosa. Hyperparameter optimization with approximate gradient. In International conference

on machine learning, pages 737–746. PMLR, 2016.

S. Pu and A. Nedić. Distributed stochastic gradient tracking methods. Mathematical Programming,

187(1):409–457, 2021.

Q. Qian, S. Zhu, J. Tang, R. Jin, B. Sun, and H. Li. Robust optimization over multiple domains. In

Proceedings of the AAAI Conference on Artificial Intelligence, volume 33, pages 4739–4746, 2019.

S. Qiu, Z. Yang, X. Wei, J. Ye, and Z. Wang. Single-timescale stochastic nonconvex-concave

optimization for smooth nonlinear TD-learning. arXiv preprint arXiv:2008.10103, 2020.

G. Qu and N. Li. Harnessing smoothness to accelerate distributed optimization. IEEE Transactions

on Control of Network Systems, 5(3):1245–1260, 2017.

A. Rajeswaran, C. Finn, S. M. Kakade, and S. Levine. Meta-learning with implicit gradients.

Advances in neural information processing systems, 32, 2019.

S. S. Ram, A. Nedić, and V. V. Veeravalli. Asynchronous gossip algorithms for stochastic optimization.

In Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009

164

28th Chinese Control Conference, pages 3581–3586. IEEE, 2009.

S. J. Reddi, A. Hefny, S. Sra, B. Poczos, and A. Smola. Stochastic variance reduction for nonconvex

optimization. In International conference on machine learning, pages 314–323. PMLR, 2016.

H. Robbins and S. Monro. A stochastic approximation method. The annals of mathematical statistics,

pages 400–407, 1951.

T. D. Rogers and D. C. Whitley. Chaos in the cubic mapping. Mathematical Modelling, 4(1):9–25,

1983.

C. Rommel, T. Moreau, J. Paillard, and A. Gramfort. Cadda: Class-wise automatic differentiable data

augmentation for eeg signals. In ICLR 2022-International Conference on Learning Representations,

2022.

H. Shen and T. Chen. On penalty-based bilevel gradient descent method. arXiv preprint

arXiv:2302.05185, 2023.

W. Shi, Q. Ling, G. Wu, and W. Yin. Extra: An exact first-order algorithm for decentralized

consensus optimization. SIAM Journal on Optimization, 25(2):944–966, 2015.

D. Singer. Stable orbits and bifurcation of maps of the interval. SIAM Journal on Applied

Mathematics, 35(2):260–267, 1978.

H. Skjolding, B. Branner-Jørgensen, P. L. Christiansen, and H. E. Jensen. Bifurcations in discrete

dynamical systems with cubic maps. SIAM Journal on Applied Mathematics, 43(3):520–534, 1983.

L. N. Smith. Cyclical learning rates for training neural networks. In 2017 IEEE winter conference

on applications of computer vision (WACV), pages 464–472. IEEE, 2017.

J. Snell, K. Swersky, and R. Zemel. Prototypical networks for few-shot learning. Advances in neural

information processing systems, 30, 2017.

J. Sohl-Dickstein. The boundary of neural network trainability is fractal. arXiv preprint

arXiv:2402.06184, 2024.

M. Song and C. Yun. Trajectory alignment: Understanding the edge of stability phenomenon via

bifurcation theory. Advances in Neural Information Processing Systems, 36, 2024.

D. Sow, K. Ji, Z. Guan, and Y. Liang. A constrained optimization approach to bilevel optimization

with multiple inner minima. arXiv preprint arXiv:2203.01123, 2022a.

D. Sow, K. Ji, and Y. Liang. On the convergence theory for hessian-free bilevel algorithms. Advances

in Neural Information Processing Systems, 35:4136–4149, 2022b.

165

D. Sow, K. Ji, and Y. Liang. On the convergence theory for hessian-free bilevel algorithms. In

Advances in Neural Information Processing Systems, 2022c.

G. W. Stewart. Matrix algorithms: volume 1: basic decompositions. SIAM, 1998.

S. H. Strogatz. Nonlinear dynamics and chaos: With applications to physics, biology, chemistry, and

engineering. CRC press, 2018.

H. Tang, X. Lian, M. Yan, C. Zhang, and J. Liu. d2: Decentralized training over decentralized data.

In International Conference on Machine Learning, pages 4848–4856. PMLR, 2018.

D. A. Tarzanagh, M. Li, C. Thrampoulidis, and S. Oymak. Fednest: Federated bilevel, minimax,

and compositional optimization. arXiv preprint arXiv:2205.02215, 2022.

R. Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical

Society Series B: Statistical Methodology, 58(1):267–288, 1996.

I. Tsaknakis, P. Khanduri, and M. Hong. An implicit gradient-type method for linearly constrained

bilevel problems. In ICASSP 2022-2022 IEEE International Conference on Acoustics, Speech and

Signal Processing (ICASSP), pages 5438–5442. IEEE, 2022.

K. Van Den Doel and U. Ascher. The chaotic nature of faster gradient descent methods. Journal of

Scientific Computing, 51:560–581, 2012.

J. Wang, T. Zhang, S. Liu, P.-Y. Chen, J. Xu, M. Fardad, and B. Li. Adversarial attack generation

empowered by min-max optimization. Advances in Neural Information Processing Systems, 34:

16020–16033, 2021.

M. Wang, E. X. Fang, and H. Liu. Stochastic compositional gradient descent: algorithms for

minimizing compositions of expected-value functions. Mathematical Programming, 161:419–449,

2017.

Y. Wang, M. Chen, T. Zhao, and M. Tao. Large learning rate tames homogeneity: Convergence and

balancing effect. In The 10th International Conference on Learning Representations, 2022.

J. Wu, V. Braverman, and J. D. Lee. Implicit bias of gradient descent for logistic regression at the

edge of stability. preprint arXiv:2305.11788, 2023.

T. Wu, K. Yuan, Q. Ling, W. Yin, and A. H. Sayed. Decentralized consensus optimization with

asynchrony and delays. IEEE Transactions on Signal and Information Processing over Networks,

4(2):293–307, 2017.

166

H. Xiao, K. Rasul, and R. Vollgraf. Fashion-mnist: a novel image dataset for benchmarking machine

learning algorithms. arXiv preprint arXiv:1708.07747, 2017.

Q. Xiao, H. Shen, W. Yin, and T. Chen. Alternating projected sgd for equality-constrained bilevel

optimization. In International Conference on Artificial Intelligence and Statistics, pages 987–1023.

PMLR, 2023.

T. Xiao, K. Balasubramanian, and S. Ghadimi. A projection-free algorithm for constrained stochastic

multi-level composition optimization. In Advances in Neural Information Processing Systems,

volume 35, pages 19984–19996, 2022.

C. Xu, X. Wang, Z. Zheng, and Z. Cai. Stability and bifurcation of collective dynamics in phase

oscillator populations with general coupling. Physical Review E, 103(3):032307, 2021.

J. Xu, S. Zhu, Y. C. Soh, and L. Xie. Augmented distributed gradient methods for multi-agent

optimization under uncoordinated constant stepsizes. In 2015 54th IEEE Conference on Decision

and Control (CDC), pages 2055–2060. IEEE, 2015.

F. Yan, S. Sundaram, S. Vishwanathan, and Y. Qi. Distributed autonomous online learning:

Regrets and intrinsic privacy-preserving properties. IEEE Transactions on Knowledge and Data

Engineering, 25(11):2483–2493, 2012.

J. Yang, K. Ji, and Y. Liang. Provably faster algorithms for bilevel optimization. Advances in Neural

Information Processing Systems, 34:13670–13682, 2021.

S. Yang, M. Wang, and E. X. Fang. Multilevel stochastic gradient methods for nested composition

optimization. SIAM Journal on Optimization, 29(1):616–659, 2019.

S. Yang, X. Zhang, and M. Wang. Decentralized gossip-based stochastic bilevel optimization over

communication networks. In Advances in Neural Information Processing Systems, 2022.

B. Yuan, Y. He, J. Davis, T. Zhang, T. Dao, B. Chen, P. S. Liang, C. Re, and C. Zhang. Decentralized

training of foundation models in heterogeneous environments. Advances in Neural Information

Processing Systems, 35:25464–25477, 2022.

K. Yuan, Q. Ling, and W. Yin. On the convergence of decentralized gradient descent. SIAM Journal

on Optimization, 26(3):1835–1854, 2016.

M. Yuan and Y. Lin. Model selection and estimation in regression with grouped variables. Journal

of the Royal Statistical Society Series B: Statistical Methodology, 68(1):49–67, 2006.

167

J. Zhang, H. Li, S. Sra, and A. Jadbabaie. Neural network weights do not converge to stationary

points: An invariant measure perspective. In Proceedings of the 39th International Conference on

Machine Learning, pages 26330–26346, 2022a.

X. S. Zhang, F. Tang, H. H. Dodge, J. Zhou, and F. Wang. Metapred: Meta-learning for clinical

risk prediction with limited patient electronic health records. In Proceedings of the 25th ACM

SIGKDD International Conference on Knowledge Discovery & Data Mining, pages 2487–2495,

2019.

Y. Zhang, Y. Yao, P. Ram, P. Zhao, T. Chen, M. Hong, Y. Wang, and S. Liu. Advancing model

pruning via bi-level optimization. In Advances in Neural Information Processing Systems, 2022b.

S. Zhao and Y. Liu. Numerical methods for distributed stochastic compositional optimization

problems with aggregative structure. arXiv preprint arXiv:2211.04532, 2022.

L. Zhu, C. Liu, A. Radhakrishnan, and M. Belkin. Catapults in SGD: Spikes in the training loss

and their impact on generalization through feature learning. preprint arXiv:2306.04815, 2023a.

L. Zhu, C. Liu, A. Radhakrishnan, and M. Belkin. Quadratic models for understanding neural

network dynamics. In The Twelfth International Conference on Learning Representations, 2024.

URL https://openreview.net/forum?id=PvJnX3dwsD.

X. Zhu, Z. Wang, X. Wang, M. Zhou, and R. Ge. Understanding edge-of-stability training dynamics

with a minimalist example. In The 11th International Conference on Learning Representations,

2023b.

L. Ziyin, B. Li, J. B. Simon, and M. Ueda. SGD with a Constant Large Learning Rate Can

Converge to Local Maxima. In International Conference on Learning Representations, 2022. URL

https://openreview.net/forum?id=9XhPLAjjRB.

168

https://openreview.net/forum?id=PvJnX3dwsD
https://openreview.net/forum?id=9XhPLAjjRB

	Abstract
	Acknowledgments
	Chapter 1. Introduction
	1.1. Preliminaries
	1.2. Outline of the Dissertation

	Chapter 2. Stochastic Bilevel Optimization
	2.1. Introduction
	2.2. Proposed Framework: the MA-SOBA Algorithm
	2.3. Theoretical Analysis
	2.4. Min-Max Bilevel Optimization
	2.5. Experiments
	2.6. Conclusion

	Chapter 3. Decentralized Stochastic Bilevel Optimization
	3.1. Introduction
	3.2. Preliminaries
	3.3. DSBO Algorithm with Improved Per-Iteration Complexity
	3.4. Numerical experiments
	3.5. Conclusion

	Chapter 4. Training Dynamics of Gradient Descent for Quadratic Regression
	4.1. Introduction
	4.2. Analyzing a discrete dynamical system with cubic map
	4.3. Applications to quadratic regression models
	4.4. Experimental investigations
	4.5. Conclusion

	Appendix A. Additional Experiments, Proofs, and Discussions
	A.1. Proofs of Theorems in Chapter 2
	A.2. Discussions on the Prior Works Related to Chapter 2
	A.3. Additional Experiments on Heterogeneous Data of Chapter 3
	A.4. Proofs of Theorems in Chapter 3
	A.5. Discussions on the Prior Works Related to Chapter 3
	A.6. Experimental Investigations of Chapter 4
	A.7. Proofs of Theorems in Chapter 4
	A.8. Auxiliary Results in Chapter 4

	Bibliography

