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Abstract

The Kakimizu complexes have been studied for various classes of links. O.Kakimizu initially found the

Kakimizu complexes for knots with crossing numbers less than or equal to 10. Hatcher and Thurston found

the 0-skeleton of the Kakimizu complexes of 2-bridge links, while Sakuma later generalized this finding for

special arborescent links, describing the Kakimizu complexes for the same. Banks provided a comprehensive

proof of results previously announced by Hirasawa and Sakuma, explicitly describing the Kakimizu complexes

of non-split, prime special alternating links.

It is established that the Kakimizu complexes of prime, non-split alternating links contain a finite number

of vertices. In this dissertation, we compute the Kakimizu complexes for all 11-crossing prime alternating

knots, explicitly describing each and primarily using the methods described above. Some remaining Kakimizu

complexes for 11-crossing knots were then determined using Murasugi sums and the sutured manifold theory

developed by Gabai, Scharlemann, Kakimizu, and others. Additionally, we apply these computational tech-

niques to the first 1000 knots with 12-crossings, discussing potential obstructions to existing methodologies.

v



Acknowledgments

Pursuing a doctoral degree in Davis for the past six years has been a great experience, and I am grateful for

the support and companionship I have received along the way.

Firstly, I want to extend my deepest thanks to my best friends, Bidisha, Sagnik, and Arka. From the very

first day of my PhD journey to the last, your ability to lift my spirits and stand by me in the hardest times

has been nothing short of extraordinary. Your friendship is something I will cherish forever. You’ve been my

unwavering support system—cheering me on during every triumph, helping me make the right decisions, and

sharing in my happiest moments. But most importantly, you were there when I wasn’t at my best: when

I made mistakes, when I struggled, when I was sad, or even lost. Your love, patience, and kindness have

been a constant source of strength. I can’t begin to fathom the depth of the love and support you’ve shown

me—it has truly been beyond anything I could have ever expected. Thank you for being there, always.

Bella, whose steadfast presence in my life has been a source of immense comfort and strength—thank you for

being my constant pillar of support. To Zammy, thank you for being by my side through my first conference

and my first instructorship. Your encouragement and support have been a constant source of strength, and

I am deeply grateful for that. Thanks to Addie, whose mathematical prowess has been an inspiration over

the years. David, Jorge, and Benji have all been integral parts of my family in the Americas, providing

much-needed warmth and camaraderie. My roommates, Wendon, deserve a special mention for making

every day in Davis a memorable experience. Subho, my travel buddy, your incredible photography skills and

shared adventures have enriched my time here. Andrew, your important discussions and steadfast support

have been invaluable throughout this journey.

I am incredibly fortunate to have had Christi, Sid, and Alex as my family away from home. Your love and

support have been my anchor, making these years not just bearable, but meaningful and enjoyable.

I am deeply grateful to my incredible friends and mental health mentors—Debsuvra, Aneek, and Prantar—for

being my anchors throughout my PhD journey. You have always been there to lift me up, offering care and

understanding when I needed it the most. Thank you from the bottom of my heart for keeping me grounded

and helping me navigate through every challenge.

I am incredibly grateful to Tina and Sarah, who have been there for me every step of the way in the math

department. Whether it was navigating the challenges of academia, or simply dealing with the ups and

downs of life, they were always there with guidance, support, and wisdom. Their unwavering presence and

advice have helped me find the right path every time. Truly, they are the best, and I cannot thank them

enough.

vi



I owe an immeasurable debt of gratitude to my advisor, Prof. Jennifer Schultens. Jennifer, you have been

more than just an advisor to me—you’ve treated me like family and guided me with a rare combination of

humility, kindness, and unmatched expertise. Your profound knowledge, unwavering support, and the way

you genuinely cared for my growth have been the foundation of my success. What you’ve done for me goes

far beyond academic mentorship. You’ve been a true role model, a brilliant mathematician, and above all,

the kindest and most compassionate person. I honestly could not have asked for a better advisor. I feel

incredibly fortunate to have had the privilege of working with someone as extraordinary as you. I owe my

entire PhD journey to you.

To my parents, Radha Anirban and Kasturi—your unconditional love and encouragement have been my

greatest source of strength. You have been there through every high and low and your belief in me has been

a driving force behind my perseverance. Thank you for believing in me.

To all of you, my heartfelt thanks for making these years unforgettable. Your contributions, in big ways and

small, have shaped my journey and have been instrumental in the completion of this dissertation.

vii



CHAPTER 1

Introduction

1.1. Important Concepts

1.1.1. Knots and Links.

A knot (denoted by K) in a space X (where X = R3 or X = S3) is defined as a smooth embedding of S1 in

X. For our discussions, we primarily focus on the case where X = S3. More broadly, a link L is a disjoint

union of one or more knots, specifically a disjoint union of embedded copies of S1.

Two knots K1 and K2 are considered equivalent if there exists a diffeomorphism h : X → X such that

h(K1) = K2. This means the pairs (X,K1) and (X,K ′) are diffeomorphic through the map h. Similarly,

two links are equivalent if there is a specific ordering of their components and a diffeomorphism of X that

maps the corresponding components of one link to those of the other. For instance, let L1 = K1⊔K2⊔· · ·⊔Kn

and L2 = J1 ⊔ J2 ⊔ · · · ⊔ Jn be two ordered links, where Ki and Ji are their respective components. We say

L1 and L2 are equivalent if a diffeomorphism h : X → X exists such that h(Ki) = Ji for all i.

The equivalence classes of knots and links are called knot types or link types. In this dissertation, we often

use the terms “knot” or “link” to refer to a specific knot type or link type, respectively.

A regular projection is a mapping p : R3 → R2 that ensures that each link component is projected to a closed

curve in R2 such that all intersections are transverse with exactly two strands crossing. The image of a link

L in R2 or S2 under this projection, along with over and under information at each crossing, is called a knot

or link diagram.

Figure 1.1

An orientation of a knot K (or link L) assigns a direction to K (or to each component of the link L).

Two oriented knots (or links) can be summed, denoted by K1#K2 (see Figure 1.1), and referred to as the

connected sum of K1 and K2. This operation naturally provides an orientation on the resulting sum. A knot
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is called a prime knot if it is not the unknot (the knot with zero crossings) and if K = K1#K2 implies that

either K1 or K2 is an unknot.

A link L, with at least two components, is said to be a split link if there exists a sphere S2 in S3−L separating

S3 into two balls B3, each containing at least one component of L. A link L is called a non-split link if it is

not a split link.

A knot diagram D of an oriented knot K is called an alternating diagram if, starting from any point on the

diagram, every undercrossing is followed by an overcrossing, and vice versa. This alternating pattern contin-

ues as one traverses the knot. Similarly, a link diagram is alternating if the overcrossings and undercrossings

alternate from any starting point in the link diagram. A knot K or a link L is said to be alternating if there

exists an alternating knot or link diagram representing it.

A knot or link diagram D which realizes the minimum number of crossings (known as the crossing number)

is referred to as a reduced diagram. A special alternating diagram D is a link diagram, such that applying

Seifert’s algorithm (see the following section and Figure 1.2) results in only innermost Seifert disks in S2. A

link L is a special alternating link if it can be represented by a special alternating diagram D.

1.1.2. Seifert Surfaces.

A Seifert surface for an oriented link L is a connected compact oriented surface S in S3 such that the

boundary of S is L. Every oriented link L has at least one corresponding Seifert surface. Indeed, for an

oriented, non-split link L and a diagram D of that link, there exists an algorithm to construct a Seifert

surface with L as its boundary.

The algorithm, known as Seifert’s algorithm, proceeds from an oriented diagram D of a link L, produces

disks, and connects them with twisted bands to form an oriented surface S with L as its boundary. The

process is as follows:

• Select a starting point : Choose a point in the link diagram that is not at a crossing.

• Traverse the link : Move along the link according to its orientation until reaching a crossing.

• Navigate crossings: Instead of continuing along the link at each crossing, select the adjacent arc

flowing away from the crossing.

• Continue tracing : Follow the newly chosen arc until the next crossing is encountered. Repeat this

process until returning to the starting point.

• Produce Seifert disks: This traversal forms a closed oriented curve, called a Seifert circle that

bounds an oriented disk in S2, known as a Seifert disk.
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• Continue creating disks: Start from a point in the link diagram that hasn’t been part of any

previously formed disks, and continue forming disks until all parts of the diagram are accounted

for.

• Nested Seifert circles: For nested Seifert circles, make the Seifert disks distinct by placing them at

different heights relative to each other in S3.

• Join the disks by bands: Connect the disks by attaching twisted bands, replicating the overcrossings

and undercrossings with either a clockwise or counterclockwise twist.

• Resulting surface: The final result is a Seifert surface with L as its boundary.

The genus g of a knot K (or a link L) is defined as the minimum genus of Seifert surfaces whose boundaries

correspond to K (or L). The canonical genus gc of a knot (or link) is the minimum genus of surfaces derived

by applying Seifert’s algorithm to oriented diagrams of the link L. Notably, Murasugi, [24], in 1958 and,

independently, Crowell, [8], in 1959, proved that for an alternating link, g = gc, with this genus realized by

applying Seifert’s algorithm on a reduced alternating diagram of L.

Concretely, for a non-split alternating link L, a minimal genus Seifert surface — a Seifert surface that realizes

the genus g of the link — can be obtained by applying Seifert’s algorithm on a reduced, oriented, alternating

diagram. The genus g can be calculated using the Euler characteristic, and is given by the formula:

g =
c− s− l + 2

2
,

where:

c = number of crossings in the diagram D,

s = number of Seifert disks,

l = number of link components.

An illustration of Seifert’s algorithm is provided in the diagram below (see Figure 1.2). For more information

on knot theory and Seifert surfaces, see [1], [21], [27].
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Figure 1.2

1.1.3. The Kakimizu complex of a link L.

Given an oriented non-split link L, applying Seifert’s algorithm to a reduced oriented diagram of L yields

a Seifert surface. We denote by MS(L) the collection of minimal genus Seifert surfaces whose oriented

boundaries correspond to the link L. Applying Seifert’s algorithm guarantees the existence of a Seifert

surface and ensures that there is at least one minimal genus Seifert surface for L. This confirms that MS(L)

is a non-empty set. Notably, when Seifert’s algorithm is applied to a reduced oriented alternating diagram of

L, it yields a minimal genus Seifert surface. Seifert surfaces are considered equivalent, if they are ambiently

isotopic. Abusing notation, we will also denote the set of ambient isotopy classes of minimal genus Seifert

surfaces by MS(L).

The Kakimizu complex illustrates the structure of the collection of Seifert surfaces for a fixed link L in S3.

It provides insights into whether two non-isotopic Seifert surfaces can be made disjoint in S3 while keeping

the link L fixed throughout the isotopy. Let N(L) be a regular neighborhood of L in S3, and define the link

complement as E(L) = S3 − N(L). For a non-split link L, the link complement E(L) is an irreducible 3

manifold.

Further abusing notation, any Seifert surface S in S3 with L as its oriented boundary can be considered as

a surface in E(L) by S ∩ E(L) ⊂ E(L). The Kakimizu complex MS(L) of a link L is a finite-dimensional
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simplicial complex. Its 0-skeleton is MS(L), the set of ambient isotopy classes of minimal genus Seifert

surfaces of L. The 1-skeleton consists of vertices and edges, with an edge connecting two vertices v and v′

if there exist representative surfaces S and S′ (corresponding to v and v′, respectively) such that S and S′

are disjoint within E(L). The Kakimizu complex is a flag complex: if there are n + 1 vertices with edges

connecting every pair, then there exists a n-simplex on these n + 1 vertices. See [32, Theorem 5]. It is

therefore determined by its 1-skeleton. The notation IS(L) is used for an analogous simplical complex in

which vertices correspond to isotopy classes of incompressible Seifert surfaces of the link L.

1.2. Historical Background

1.2.1. Early developments.

1n 1966, Burde and Zieschang, [5], established that there exists a unique minimal genus Seifert surface (up

to isotopy) for any fibered link. This result was reproven by W. Whitten in 1974, [35]. In the same paper,

Whitten proved that the minimal genus Seifert surface for the double of a non-trivial non-cable knot is

unique. In contrast, in 1977, Eisner, [9], showed that there exist infinitely many knots with infinitely many

pairwise non-isotopic minimal genus Seifert surfaces. In 1978, Parris [25] demonstrated the existence of

pretzel knots with infinitely many isotopy classes of incompressible Seifert surfaces.

In 1990, O.Kakimizu, [19, Theorem], showed that doubled knots have infinitely many non-isotopic incom-

pressible Seifert surfaces of the same genus provided the knot is not fibered. Later, in 2012, Banks [4]

computed Kakimizu complexes of connected sums of links, proving that MS(L1#L2) is homeomorphic to

MS(L1)×MS(L2)× R, provided that L1 and L2 are non-split, non-fibered links, [4, Theorem 1.2]. Thus,

for every such link L = L1#L2, MS(L) is infinite.

1.2.2. Topological Properties of the Kakimizu complex.

Scharlemann and Thompson, in 1988 in the paper [30] showed that given two minimal genus Seifert surfaces

S and S′ for a knot K, there exists a sequence S = S0, S1, . . . , Sn = S′ such that each Si is a minimal genus

Seifert surface and Si ∩ Si−1 = ∅ for all i = 1, 2, . . . , n. By the definition of the Kakimizu complex, the

isotopy classes of the surfaces [Si] are vertices in the Kakimizu complex. Moreover, [Si] and [Si−1] are either

the same vertex (the surfaces are isotopic) or there is an edge between these vertices (since they can be made

disjoint in the link exterior). Given any two vertices, v and v′, in the Kakimizu complex, we can choose a

representative of each vertex, say S and S′, respectively and use the result of Scharlemann and Thompson to

find a sequence of minimal genus Seifert surfaces, which are consecutively disjoint and “interpolate” between

S and S′. This implies that there is a path in the Kakimizu complex that connects v to v′, showing that the

Kakimizu complex is connected.
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In 1992, Kakimizu, [20], defined the Kakimizu complex of a knot or link and also proved that Kakimizu

complexes are connected. Further, he conjectured that the Kakimizu complex is contractible for every knot.

In 1994 Sakuma, [28], generalizing results of Hatcher and Thurston, [14], computed the Kakimizu complexes

for a class of links called special arborescent links. Such links can be constructed from twisted bands via the

operation of plumbing, which we will discuss later. What Sakuma showed was that for such a link every

minimal genus Seifert surface can be isotoped to a plumbing of 2n-twisted bands. He also proved that the

Kakimizu complex is contractible for this class of links.

In 1997 Hirasawa and Sakuma, [15], showed how to compute the Kakimizu complex for special alternating

links. They showed that the Kakimizu complex of a special arborescent link is homeomorphic to a ball, thus

also proving that the Kakimizu complex is contractible for this class of links.

In 2010 Schultens, [32], proved that the Kakimizu complex of every knot is simply connected. This was the

first breakthrough towards Kakimizu’s contractibility conjecture.

In 2012 Schultens and Przytycki, [26], proved that the Kakimizu complex for a non-split oriented link is

contractible. Subsequently, Johnson, Pelayo, and Wilson, [17] showed that the Kakimizu complex is quasi-

Euclidean.

In 2009, Sakuma and Shackleton, [29], found that for atoroidal knots K, the distance d(v, v′) between two

vertices in MS(K) (defined as the edge-length of the shortest path from v to v′ in MS(K)) is bounded by

a quadratic function on the knot genus. Moreover, they found an upper bound for i([S], [S′]) (defined as the

minimum number of components of |S ∩ S′| for Seifert surfaces isotopic to S, S′ respectively). The number

i([S], [S′]) is again bounded by a quadratic function on the knot genus.

In 2014, Wilson, [36], proved that the complement of a hyperbolic knot can contain only finitely many

non-isotopic surfaces of a given genus. From this, it follows that the Kakimizu complex of a hyperbolic knot

is finite. In 2019, Hass, Thompson, and Tsvietkova, [13], proved that, for alternating links, the number of

genus g Seifert surfaces is bounded by a polynomial in g. This implies finiteness of Kakimizu complexes

for alternating links. In 2022, Agol and Zhang, [2], proved that the Kakimizu complex exhibits a certain

homogeneity, in that the dimension of maximal simplices in MS(K) is the same for all maximal simplices.

(Any simplex lies in a maximal simplex, and all maximal simplices have the same dimension.) This dimension

is thus a knot invariant.

1.2.3. Computations of Kakimizu complexes for various classes of knots.

In 1956 Seifert, [31], classified all 2-bridge knots in terms of rational numbers p
q , called the 2-bridge notation

of a knot. In 1985 Hatcher and Thurston, [14], described how to find all minimal genus Seifert surfaces for
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a 2-bridge knot. Using the continued fraction expansion of the 2-bridge notation, they showed that every

Seifert surface for a 2-bridge knot is obtained as a sequence of plumbings of 2n-twisted bands. The relevant

twist numbers of 2-bridge knots can be found from the even continued fraction expansion of the 2-bridge

notation p/q. For more detail, see [6].

In 1994, Sakuma, [28], provided an algorithm that completely described Kakimizu complexes of special

arborescent links. We will not describe the computational tools developed by Sakuma here, but his algorithm

underlies many of the calculations performed as part of this dissertation. As noted earlier, Sakuma also

showed that the Kakimizu complex is contractible for special arborescent links.

In 2000, Kakimizu, [18], described Kakimizu complexes for all knots with at most ten crossings. For this

purpose, he used the technique of sutured manifold theory developed by Gabai, Scharlemann, Kakimizu, and

others. Kakimizu also used the methods of plumbing and Murasugi disks, and applied sutured manifold

theory to determine Kakimizu complexes for more general links.

In 2022 Banks, [3], outlined an exact algorithm for computing Kakimizu complexes of special alternating

links. Greene, Howie, Banks, and Hirasawa and Sakuma in [12], [16], independently showed that a minimal

genus Seifert surface for a special alternating link L is isotopic to a surface obtained by applying Seifert’s

algorithm to a special alternating link diagram D. Thistlethwaite and Menasco, [23], proved that any two

reduced, prime, oriented, alternating link diagrams of an alternating link could be connected by a sequence

of flypes. An algorithm for computing the Kakimizu complex for a special alternating link was announced by

Hirasawa and Sakuma in 1996, but only given explicitly by Banks in [3]. Recently, in 2023, Valdez-Sanchez,

[33], determined the structure of Kakimizu complexes of genus 1 hyperbolic knots, K ⊂ S3.

1.3. Overview

This dissertation concerns calculations of Kakimizu complexes for alternating 11-crossing knots and some 12-

crossing knots. All calculations of Kakimizu complexes of 11 crossing knots and 12 crossing knots obtained in

this dissertation are original. Several techniques are applied. Important concepts are introduced in Chapter

1. Chapter 2, entitled Preliminaries, covers the basics of sutured manifold theory which constitutes a key

tool for calculating Kakimizu complexes and underlies several of the more specific techniques to calculate

the same. Chapter 3, entitled Flypes and Plumbing, features an original result relating Seifert surfaces that

differ by flypes to those that differ by plumbing.

Chapter 4, entitled The Kakimizu complexes of 11 crossing alternating knots, lists four classes of knots and

tailored methods for calculating the Kakimizu complexes for each of these classes. The classes of knots

considered are fibered knots, special alternating knots, 2-bridge knots, and knots arising as a plumbing of
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links with unique Seifert surfaces. The specific methods for calculating the Kakimizu complexes are only

described in general terms, but the lists of knots falling into each of these classes are given, along with the

results of the calculations. References are provided for background in each of these computational techniques.

In Chapter 5, the general strategy used in this dissertation for computing all the Kakimizu complexes of

11 crossing alternating knots is summarized. The 11 crossing knots not already considered in Chapter 4

are listed and their Kakimizu complexes computed. This Chapter features original results pertaining to a

general strategy for computing Kakimizu complexes along with ad hoc methods to compute the Kakimizu

complexes of the remaining 11 crossing alternating knots.

Chapter 6 follows the general strategy used in the previous two chapters and considers 12 crossing alternating

knots. The same four classes of knots (fibered, special alternating, 2-bridge, and those arising as a plumbing

of two links with unique Seifert surfaces) are considered, along with the general strategy developed in Chapter

5 to compute Kakmizu complexes of several additional alternating 12 crossing knots.
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CHAPTER 2

Preliminaries

2.0.1. Sutured Manifold Theory.

Much of this section is taken verbatim from the paper by Kakimizu, [18]. We refer to sections 1, 2, and 3 of

this paper for details.

Below, we quote from [18, Section 1] for a brief explanation of the theory of sutured manifolds and sutured

surfaces:

A sutured manifold (M,γ) is a compact oriented 3 manifold M together with a subset γ ⊂ ∂M

which is a union of finitely many pairwise disjoint annuli. For each component of γ, a suture, i.e.,

an oriented core circle, is fixed, and s(γ) denotes the set of sutures. Moreover, every component of

R(γ) = ∂M − Intγ is oriented so that the orientations on R(γ) are coherent with respect to s(γ).

Let R+(γ) (resp. R−(γ)) denote the union of those components of R(γ) whose normal vectors point

out of (resp. into) M . In the case that (M,γ) is homeomorphic to (F × [0, 1], ∂F × [0, 1]), where F

is a compact oriented 2-manifold, (M,γ) is called a product sutured manifold.

A properly embedded compact oriented 2-manifold (possibly disconnected) S ⊂ M is said to be

a γ-surface if S has no closed components, the oriented boundary ∂S is contained in Intγ and

isotopic to s(γ) in γ. A γ-surface S is parallel to a surface in R(γ) if there is an embedding

e : (S, ∂S)× [0, 1] → (M,γ) such that e0 = id : S → S and e1(S) ⊂ R(γ): Note that e1(S) is a union

of some components of R(γ). A γ-surface S is essential if S is incompressible in M and not parallel

to a surface in R(γ). A γ-isotopy of M is an isotopy {ht} of M such that h0 = id, ht|R(γ) = id and

ht(γ) = γ for all 0 ≤ t ≤ 1. Two γ-surfaces in M are equivalent if they are ambient isotopic to each

other by a γ-isotopy. Let E (M,γ) denote the set of equivalence classes of essential γ-surfaces in M .
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Lemma. (See [18, Lemma 1.1])

Let (M,γ)) be a sutured manifold, and let S be a γ-surface. Suppose that ∂M is connected and that S is

parallel to a surface in R(γ) by an embedding e : (S, ∂S)× [0, 1] → (M,γ) with e0 = idS and e1(S) ⊂ R(γ).

Then e1(S) = R+(γ) or e1(S) = R−(γ).

An important example of a sutured manifold is the complementary sutured manifold, we again quote from

[18, Section 2, page 56]:

Let L ⊂ S3 be an (oriented) link and S ⊂ E(L) a spanning surface for L. Let (N(S), δ) =

(S × [−1, 1], ∂S × [−1, 1]) be the product sutured manifold associated to S. The complementary

sutured manifold for S is the sutured manifold (M,γ) = (Cl(E(L) − N(S)), Cl(∂E(L) − δ)) with

Rγ = R+(δ) and R+(γ) = R−(δ). If L is non-split, then E(L) and M are irreducible. We also note

that ∂M is connected if and only if so is S.

2.0.2. Product Decomposition. This section briefly explains an important operation on a sutured

manifold called product decomposition and its relation to sutured surfaces. We again quote from [18, Section

1, page 51]:

Let (M,γ) be a sutured manifold. A product disk ∆ ⊂ M is a properly embedded disk such that

∂∆ intersects s(γ) transversely in two points. For a product disk ∆ ⊂ M , we get a new sutured

manifold (M ′, γ′), obtained by cutting M open along the disk ∆. This decomposition

(M,γ)
∆−→ (M ′, γ′)

is called a product decomposition.

Let S ⊂ M be an essential γ-surface. Suppose that M is irreducible. Then we can move S by a

γ-isotopy so that ∂S = s(γ) and that S ∩∆ is a single arc A connecting the two points of ∂∆∩ s(γ).

By cutting S along A, we obtain a γ′-surface S∆ ⊂M ′.

Lemma. (See [18, Lemma 1.3].)

Let (M,γ)
∆−→ (M ′, γ′) be a product decomposition. Suppose that M is irreducible and ∂M ′ is connected.

Then for each essential γ-surface S ⊂M , the γ′-surface S∆ ⊂M ′ is also essential. Moreover if two essential

γ-surfaces S and S′ ⊂M are equivalent, then so are S∆ and S′
∆.
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Under the assumptions of this lemma, Kakimizu defines a map

E∆ : E (M,γ) → E (M ′, γ′), [S]γ → [S∆]γ′ .

Lemma. (See [18, Proposition 1.4].)

Let (M,γ)
∆−→ (M ′, γ′) be a product decomposition. Suppose that M is irreducible and ∂M ′ is connected.

Then the map E∆ : E (M,γ) → E (M ′, γ′) is bijective.

For a fibered link L with fiber S, the complementary sutured manifold (MS , γ) is a product sutured manifold

homeomorphic to (S × I, L× I).

Lemma. (See [18, Proposition 1.5].)

Let (M,γ)
∆−→ (M ′, γ′) be a product decomposition. Suppose that M is irreducible and that (M ′, γ′) has two

components (M1, γ1) and (M2, γ2). Suppose further that (M2, γ2) is a product sutured manifold and ∂M1 is

connected. Then the map E∆,1 : E (M,γ) → E (M1, γ1) is bijective.

Lemma. (See [18, Lemma 1.7] as well as [34].)

Let X be a connected Haken 3-manifold such that ∂X is a union of incompressible tori. Let Y be a compact

irreducible 3-submanifold of X (possibly disconnected) such that each component of Fr(Y ) is a properly

embedded incompressible surface in X. Let F and F ′ be two properly embedded orientable incompressible

surfaces in X (possibly disconnected), which satisfy the following properties (1) − (4). Then there is an

isotopy {ht} of X keeping Y fixed so that h0 = id and h1(F ) = F ′.

(1) F ∪ F ′ ⊂ X − Y .

(2) Each component of ∂X contains at most one component of ∂F and F has no closed components.

(3) There is a homotopy f : F × [0, 1] → X such that f0 = id : F → F and f1 : F → F ′ is a

homeomorphism and f(∂F × [0, 1]) ⊂ ∂X.

(4) There is no component of F which is parallel to a component of Fr(Y ).

An important application of the above Lemma is stated in [18, Section 2, Proposition 2.1], where a spanning

surface is simply a Seifert surface that is not necessarily of minimal genus:
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Let L be a non-split link, S a connected incompressible spanning surface for L and (M,γ) the

complementary sutured manifold for S. Let J S(L) denote the set of equivalence classes of incom-

pressible spanning surfaces for L. Let J S(L, S) denote the set of η ∈ J S(L) such that η ̸= [S] and

there is a representative F ∈ η with F ∩ S = ∅. Then the inclusion M ⊂ E(L) induces a bijection

E(M,γ) → J S(L, S), [F ]γ 7→ [F ].

2.0.3. Murasugi sums and Plumbings.

The following section, taken from [18, Section 2] introduces a fundamental operation on surfaces known as

the Murasugi sum, along with the concept of plumbing :

An oriented surface Σ ⊂ S3 is a Murasugi sum of compact oriented surfaces Σ1 and Σ2 ⊂ S3 if there

are 3-balls V1 and V2 ⊂ S3 satisfying the following property:

V1 ∪ V2 = S3, V1 ∩ V2 = ∂V1 = ∂V2, Σi ⊂ Vi (i = 1, 2),

Σ = Σ1 ∪ Σ2 and D = Σ1 ∩ Σ2 is a 2n− gon.

When D is a 4-gon, the Murasugi sum is called a plumbing of Σ1 and Σ2. Put L = ∂Σ, Li = ∂Σi,

S = Σ ∩ E(L) and Si = Σi ∩ E(Li). Then we will also say that S is a Murasugi sum of S1 and S2.

Note that Σ′ = (Σ−D)∪D′ is an oriented surface with ∂Σ′ = L where D′ = ∂V1− Int(D). We will

say that Σ′ (resp. S′ = Σ′ ∩ E(L)) is the dual of Σ (resp. S′) or the outer plumbing, in which case

we refer to the original plumbing as the inner plumbing. Note that Σ′ (resp. S′) is also a Murasugi

sum of Σ′
1 and Σ′

2 (resp. S′
1 and S′

2) where Σ′
i = (Σi−D)∪D′ and S′

i = Σ′
i ∩E(Li) (i = 1, 2). D′ is

also called a dual of D. Gabai showed that the Murasugi sum operations hold the following natural

properties:

Lemma. [18, Proposition 2.3]

i) S is of minimal genus if and only if so are both S1 and S2.

ii) L is a fibered link with fiber S if and only if both L1 and L2 are fibered links with fibers S1 and S2

respectively.

Notation: For Seifert surfaces S1, S2 of links L1, L2 we will denote the Murasugi sum along a disk D by

S1 ∪D S2 and its dual by S1 ∪Dc S2.
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Definition 2.0.1. If the surface S = S1 ∪D S2 is given as a plumbing, then the deplumbing of S along D is

the surface S1.

13



CHAPTER 3

Flypes and Plumbing

Computing Kakimizu complexes of special alternating links fundamentally involves identifying what are

called essential flypes on a reduced special alternating diagram of a special alternating link L. A flype circle

in a link diagram D of a link L is a simple closed curve that intersects one crossing along with two additional

points of L in the diagram D. A flype is a 180◦ rotation of the disk bounded by a flype circle. This produces

an alternate diagram of L. See Figure 3.1, 3.2, and 3.3. Subtle variations exist concerning the definition of

flype: In this dissertation we will specifically assume that a flype circle intersects a Seifert surface in a single

arc, as in Figure 3.3.

Figure 3.1

Given a link L, a flype on a diagram D of L is called an essential flype if applying Seifert’s algorithm to the

resulting diagram D′ provides a surface S′ that is not isotopic to the original surface S obtained from D via

Seifert’s algorithm. We say that the diagram D′ is obtained by applying a flype to the diagram D.

The following definition of ∗-product below is taken from a paper by Cromwell, [7, Section 1]:

The Seifert circles of a diagram can be separated into two kinds: a circle is of type I if it does

not contain any other Seifert circles, otherwise it is of type II. Let D ⊂ R2 be a link diagram, and

suppose that C is one of its type II Seifert circles. Then C separates R2 into components U, V such

that U ∪ V = R2 and U ∩ V = ∂U = ∂V = C. Let D1 and D2 be the diagrams formed from D ∩ U

and D ∩ V by adding suitable arcs from C. If both (U − C) ∩ D ̸= ∅ and (V − C) ∩ D ̸= ∅ then

the type II Seifert circle C decomposes D as a ∗-product of the two diagrams D1 and D2. This is

written as D = D1 ∗D2.

An alternating knot is special if no nested circles appear in Seifert’s algorithm. Cromwell proves in [7,

Theorem 1] that every homogeneous link (a class that includes alternating links as a subset) is a ∗-product of

special alternating links. Moreover, Cromwell shows that applying Seifert’s algorithm to a reduced alternating

diagram of a link yields a minimal genus Seifert surface. This surface can be decomposed into a tower of
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spanning surfaces corresponding to special alternating links Li. Consequently, the ∗-product of these links

manifests as Murasugi sums of the spanning surfaces on Li.

The diagrams with flype circles are inspired from [3, Figure 3].

Figure 3.2

Figure 3.3

The following is an original result:

Theorem 3.0.1. Let L be a link such that a diagram D of L contains an essential flype. Then there exists a

plumbing disk E such that the surfaces S and S′ (obtained by applying Seifert’s algorithm before and after

the flype) are dual surfaces with respect to E.

A motivating example for this result is the knot K = 74. This knot is a special alternating knot and a

2-bridge knot. The Kakimizu complex of the knot K = 74 consists of two vertices and one edge. Viewing
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it as a special alternating link, we obtain one minimal genus Seifert surface by applying Seifert’s algorithm

to a reduced alternating diagram D (say, the standard diagram) of 74, and the other by applying Seifert’s

algorithm to a diagram D′ obtained from D after the application of the flype, see Figure 3.4, [3]. When the

knot K = 74 is viewed as a 2-bridge knot, the two minimal genus Seifert surfaces correspond to inner and

outer plumbings of two twisted bands (with 2 full twists), see Figure 3.5. The special alternating diagram D

of 74 is isotoped to the 2-bridge diagram by introducing two Reidemeister-2 moves on the top left and the

bottom right corners of the diagram. The three crossings, namely, the flype crossing and the two consecutive

crossings introduced by the Reidemeister-2 moves, provide the plumbing disk’s boundary. The isotopy of the

knot 74 (special alternating diagram of 74 to the 2-bridge diagram of 74) extends to the surface S, making

it isotopic to the surface with inner plumbing (with respect to the 2-bridge diagram) of 74, see Figure 3.6.

Figure 3.4
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Figure 3.5

Figure 3.6

While the example of 74 is distinctive and unique, it highlights the general correspondence between flype

circles and plumbing spheres.
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Proof. To prove the theorem, we generalize the above example of K = 74. We obtain, as in the

example, a diagram as shown in Figures 3.7, 3.8, 3.9, 3.10, below, which illustrate the proof of the theorem.

The first diagram shows a generic flype, with a flype crossing along with the corresponding Seifert surfaces

obtained by applying Seifert’s algorithm to the respective diagrams (Figure 3.7). Denote the components of

L inside and outside the flype circle by A and B. The difference between the two surfaces is that the Seifert

surface S obtained before the flype is the union of A and B with the front of A matching up to the front of

B. Whereas the Seifert surface S′ obtained after the flype is also the union of A and B, but with B rotated

by 180◦, and so the front of A matches up with the back of B.

By applying a pair of Reidemeister-2 moves, as pictured in Figure 3.8, we establish the existence of the

plumbing disk E, a portion of the Seifert surface “between” the locations for the Reidemeister-2 moves. This

exhibits S as the sum S = S1 ∪E S2 where E is the plumbing disk. In this inner plumbing the front of A is

matching up with the front of B. See Figure 3.8.

Likewise, considering S′ as pictured on the top left in Figure 3.9, we can reverse the flype and isotope S′

along. This results in portions of S′ being layered on top of each other. However, we now see that an

analogous pair of Reidemeister moves in the central portions of the diagrams in the bottom row of Figure

3.9 exhibits S′ as the corresponding outer plumbing S′ = S1 ∪Ec S2. In the outer plumbing, the front of A

matches up with the back of B. □
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Figure 3.7
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Figure 3.8
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Figure 3.9
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Figure 3.10
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CHAPTER 4

The Kakimizu complexes of 11 crossing alternating knots

4.1. The Kakimizu complex of a fibered knot

In 1972, Whitten demonstrated in [35] that for a fibered link L, there exists a unique (up to isotopy)

incompressible spanning surface, which can be identified as the unique vertex of the Kakimizu complex.

Consequently, we haveMS(L) = {[S]}, indicating that the Kakimizu complex of a fibered knot is a singleton.

In 1983, Gabai, [11], showed that the Murasugi sum of two links, L1 and L2, is fibered if and only if both L1

and L2 are fibered. See also [18, Proposition 2.3]. Cromwell’s work, [7], on homogeneous links, cited above,

therefore reduces the problem of deciding whether or not an alternating link is fibered to deciding whether

or not a special alternating link is fibered. An algorithm to do so was given by Banks, in [3, Corollary 5.11].

Here is a description of her algorithm:

Let D be a reduced special alternating diagram of a special alternating link L. After applying the first

stages of Seifert’s algorithm, choose S(D) to be a coloring of S2 − L into black and white regions, such

that each Seifert disk corresponds to a black region. Define G(D) to be the planar graph where each white

region corresponds to a vertex, and edges represent crossings. A special alternating link L is fibered if we

can simplify the graph G(D) to a single vertex using the following moves:

• Delete all simple loops (edges with both endpoints on the same vertex).

• Repeatedly contract all edges for which if one of their endpoints is a vertex of valence 2.
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A demonstration to determine whether an alternating knot is fibred. For the alternating knot K = 1114,

applying Seifert’s algorithm reveals that the Murasugi summands of K are two special alternating links.

We apply the fibredness algorithm to each summand, and if each is fibred, then by Gabai’s lemma, [18,

Proposition 2.3], the knot K is fibred.

Figure 4.1

24



We derive the set of fibered knots from KnotInfo [22].

The list of fibered links for 11 crossing alternating links is as follows:

113, 115, 117, 119, 1114, 1115, 1117, 1119, 1122, 1124, 1125, 1126, 1128, 1133, 1134, 1135, 1140, 1142,

1144, 1147, 1151, 1153, 1155, 1157, 1162, 1166, 1168, 1171, 1172, 1173, 1174, 1176, 1179, 1180, 1181,

1182, 1183, 1186, 1188, 1192, 1196, 1199, 11106, 11108, 11109, 11112, 11113, 11121, 11125, 11126, 11127,

11128, 11129, 11131, 11139, 11142, 11146, 11147, 11151, 11156, 11157, 11158, 11159, 11160, 11162, 11163,

11164, 11170, 11171, 11174, 11175, 11176, 11177, 11179, 11180, 11182, 11184, 11189, 11194, 11196, 11203,

11206, 11209, 11215, 11216, 11217, 11218, 11221, 11223, 11228, 11231, 11232, 11233, 11239, 11248, 11250,

11251, 11252, 11253, 11254, 11255, 11257, 11259, 11261, 11264, 11266, 11267, 11268, 11269, 11274, 11277,

11281, 11282, 11284, 11286, 11287, 11288, 11289, 11293, 11300, 11301, 11302, 11305, 11306, 11308, 11314,

11315, 11316, 11326, 11330, 11332, 11346, 11348, 11350, 11351, 11367.

The Kakimizu complex of a fibered link is a single vertex.

T
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4.2. The Kakimizu complex of a special alternating knot

In 2012, Banks [3] presented her explicit algorithm for computing the Kakimizu complex of a prime, non-

split, oriented, special alternating link L. Banks’ algorithm rests on the work of Thistlethwaite and Menasco,

[23], who proved the flyping conjecture, which states: “Given any two reduced alternating diagrams D1 and

D2 of an oriented, prime link L, the diagram D1 can be transformed to D2 by applying a sequence of flypes.”

It also draws on a result of Greene, [12, Corollary 1.3], who demonstrated the following: ”A Seifert surface

for a special alternating link L has minimal genus if and only if it is obtained by applying Seifert’s algorithm

to a special alternating diagram of L.”

The algorithm was originally announced in 1990, by Hirasawa and Sakuma [15]. Banks, [3], Greene, [12],

and others have since independently characterized Seifert surfaces for special alternating knots. Since the

Kakimizu complex is a flag complex, the 1-skeleton completely determines the Kakimizu complex of the link

L.

Banks’ algorithm provides an intricate way to capture all possible essential flypes in a graph so that com-

plementary regions correspond to flypes that can be performed independently of each other (the graph is

called the “θ-graph”). Her algorithm applies to all special alternating knots (by showing that it equals a

“maximal simplex”). We provide an illustration of this algorithm for the knot 11237 and a list of 11 crossing

alternating knots that fall into this class along with their Kakimizu complexes. See Figure 4.2.

K = 11237 is a special alternating knot. We compute the Kakimizu complex to illustrate the algorithm. We

begin with the vertex represented by (0, 1, 0). See the diagram in Figure 4.2, where the θ-graph is computed.

The maximal simplex containing the vertex (0, 1, 0) is given by:

(0, 1, 0) → (0, 0, 1) → (1, 0, 0) → (0, 1, 0).

Thus for K = 11237, the Kakimizu complex is a triangle with these three vertices.
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Figure 4.2. The Kakimizu complex of 11237. The knot 11237 is a special alternating knot.

The list of special alternating links among 11-crossing alternating knots (together with their Kakimizu

complexes) is as follows:

•

K = 1143, 11123, 11124, 11200, 11227, 11240, 11241, 11244, 11245, 11263, 11291, 11292,

11298, 11299, 11318, 11319, 11320, 11329, 11338, 11354, 11361,

are spanned by a minimal genus Seifert surface, unique up to isotopy.

The Kakimizu complexes of these knots consist of a single vertex.

T

• K = 1194. The θ-graph contains 2 regions. The Kakimizu complex is

T1 T2

• K = 11237. The θ-graph contains three regions.
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T3

T2T1 T2T1

T3

• K = 11340. The θ-graph contains 2 regions. The Kakimizu complex is:

T1 T2
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4.3. The Kakimizu complex of a 2-bridge knot

Hatcher and Thurston, [14] provide an algorithm to find all Seifert surfaces of a given 2-bridge knot. The

algorithm also provides information that, using work of Sakuma, [28, Proposition 4.7], to decide whether or

not two such surfaces can be isotoped to be disjoint. The algorithm builds on Conway’s, [6], correspondence

between 2-bridge knots and rational numbers.

Example:

Consider the knot K = 1113. Without going into detail, we will mention that K is a 2-bridge knot with

bridge notation 28/61 and the following continued fraction expansion:

28/61 =
1

2−
1

−6−
1

−2−
1

2

We use the notation:

28/61 = [2,−6,−2, 2].

The knot can be isotoped to a 2-bridge diagram (with respect to the height function), appearing as a

plumbing of three Hopf links and one link with three full twists, corresponding to the continued fraction

[2,−6,−2, 2]. And the algorithm devised by Hatcher and Thurston shows that this plumbing provides the

only minimal genus Seifert surface for K.

The knot 11192 is also a 2-bridge knot. It too corresponds to a rational number with the continued fraction

expansion indicated in Figure 4.3. Figure 4.3 exhibits the knot as a plumbing, but this inner plumbing

admits outer plumbings, corresponding to alternate Seifert sufaces:
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Figure 4.3. The Kakimizu complex of 11192. The knot 11192 is a 2-bridge knot.

The list of the Kakimizu complexes of 2-bridge 11-crossing knots is as follows:

•

K = 1113, 1159, 1165, 1175, 1177, 1184, 1185, 1189, 1190, 1191, 1193, 11110, 11111,

11117, 11120, 11140, 11144, 11178, 11183, 11185, 11188, 11190, 11193, 11195, 11204, 11205,

11207, 11208, 11211, 11220, 11224, 11225, 11230, 11234, 11242, 11246, 11247, 11307, 11309,

11334, 11339, 11342, 11355, 11358, 11364,

are spanned by a unique (up to isotopy) minimal genus Seifert surface.

The Kakimizu complexes of these knots consist of a single vertex.

T

• The list of 2-bridge 11-crossing knots with non-trivial Kakimizu complexes.
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Knots 2-bridge notation Even continued fraction expansion Kakimizu complex

1195 33/73 = −40/73 [−2,−6,−4,−2]
T1 T2

1198 18/47 [4,−4,−2, 2]
T1 T2

11119 64/109 [2,−4,−4, 2],
T1 T2

11145 22/83 [4, 4,−2, 2],
T1 T2

11154 37/67 = −30/67 [−2, 4,−4,−2]
T1 T2

11166 45/59 = −14/59 [−4, 4,−2,−2]
T1 T2

11186 39/95 = −56/95 [−2,−4,−2,−2,−4,−2]
T1 T2T2 T3T3 T4

11191 19/83 = −64/83 [−2,−2,−2,−4,−4,−2],
T1 T2

11192 71/97 = −26/97 [−4,−4,−4,−2]

T3

T2T1 T2T1

T3T3

T2 T4T2 T4

T3

11210 16/73 [4,−2,−4,−2],
T1 T2T2 T3
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Knots 2-bridge notation Continued fraction expansion Kakimizu complex

11226 20/71 [4, 2,−4, 2],
T1 T2T2 T3

11229 55/71 = −16/71 [−4, 2,−4,−2],
T1 T2T2 T3

11235 49/71 = −22/71 [−4,−2,−2,−2,−4,−2],
T1 T2T2 T3T3 T4T4 T5

11236 29/99 = −70/99 [−2,−2,−4,−2,−4,−2],
T1 T2T2 T3

11238 53/65 = −12/65 [−6,−2,−4,−2],
T1 T2T2 T3

11243 49/69 = −20/69 [−4,−2,−6,−2],
T1 T2T2 T3

11311 61/79 = −18/79 [−4, 2,−2,−4],
T1 T2T2 T3T3 T4

11333 14/65 [4,−2,−2, 4],
T1 T2T2 T3T3 T4

11335 17/75 = −58/75 [−2,−2,−2,−4,−2,−4],
T1 T2T2 T3

11336 11/59 = −48/59 [−2,−2,−2,−2,−4,−4],
T1 T2

11337 63/89 = −16/89 [−6,−2, 4, 2],
T1 T2T2 T3

11343 27/31 = −4/31 [−8,−4],
T1 T2

11356 55/79 = −24/79 [−4,−2,−2,−4,−2,−2],
T1 T2T2 T3T3 T4

11357 27/91 = −64/91 [−2,−2,−4,−4,−2,−2],
T1 T2

11359 43/53 = −10/79 [−6,−2,−2,−4],
T1 T2T2 T3T3 T4

11360 47/57 = −10/59 [−6,−4,−2,−2],
T1 T2

11363 29/35 = −6/35 [−6,−6],
T1 T2

11365 35/51 = −16/51 [−4,−2,−2,−2,−2,−4],
T1 T2T2 T3T3 T4T4 T5T5 T6
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4.4. The Kakimizu complex of the plumbing of two links with unique spanning surfaces

Kakimizu uses sutured manifold theory to describe plumbings. To employ his techniques, we provide relevant

portions of [18, Section 3]:

Amarked sutured manifold (M,γ,A) is a sutured manifold (M,γ) together with a properly embedded

arc A ⊂ R(γ), and we call A a mark on (M,γ). If there is a product disk ∆ ⊂ M with A as an

edge, then (M,γ,B) is also a marked sutured manifold, where B is the opposite edge of A, and we

call B an opposite mark of A relative to ∆.

Kakimizu in [18, Lemma 3.3] of his paper also proves:

Let (M,γ,A) be a marked sutured manifold. Suppose that M is irreducible and each component of

R(γ) is incompressible. If there is a product disk with A as an edge, then the ambient isotopy types

of such disks are unique, and hence so are the isotopy types in R(γ) of opposite marks of A.

In this context, we note that if L is a non-split link, then E(L) and the complementary sutured manifold,

(M,γ) associated with a Seifert surface S, are irreducible 3-manifolds. Moreover, if S is incompressible, it

follows that R(γ), the boundary of the complementary sutured manifold (M,γ), is also incompressible.

Kakimizu further observes:

Suppose that S is a plumbing of S1 and S2 where Si is a spanning surface for a link Li (i = 1, 2).

We call D = S1 ∩ S2 the plumbing disk. Let (M1, γ1) and (M2, γ2) be the complementary sutured

manifolds for S, S1 and S2 respectively. Let I1 be a core arc of D relative to the embedding

D ⊂ S1, i.e. I1 is a properly embedded arc in S1 such that D is a regular neighborhood of I1 in S1.

Push out I1 from S1 to the side on which S2 is attached, and consider this arc A1 to be properly

embedded in R(γ1). Thus we get marked sutured manifolds (M1, γ1, A1). In the same way we also

get (M2, γ2, A2). These markings correspond to the way of plumbing S1 and S2.

The following theorem is adapted from [18].

Theorem 4.4.1. [18, Theorems 3.12 and 3.15]

Let L be a non-split, prime, alternating link, and D be a reduced alternating, oriented diagram of L. Let S

be the Seifert surface obtained by applying Seifert’s algorithm on the diagram D. Let S be plumbing of S1

and S2, unique minimal genus Seifert surfaces for links L1 and L2, respectively. Assume that S1 and S2 are

not fibered. Let (Mi, γi, Ai) and (Mi, γi, A
′
i) (i = 1, 2) be the marked sutured manifolds for S = S1 ∪D0 S2

and Sc = S1 ∪Dc
0
S2, the dual of S respectively. Then

• MS(L) = {[S], [Sc]} and the Kakimizu complex is
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[S] [Sc]

provided that the following conditions hold:

– There is no product disk with A1 or A′
1 in M1.

– There is no product disk with A2 or A′
2 in M2.

• Let us assume that there is a product disk in (M1, γ1, A1) with A1 as an edge. Let B1 be the

opposite mark of the product disk. Let S = S1 ∪D0
S2. Suppose T = S1 ∪E0

T2 is the plumbing

with respect to the marking B1. (Note that S = T .)

Then MS(L) = {[S], [Sc], [T c]} and the Kakimizu complex is

[Sc] [S][S] [T c]

provided that the following conditions hold:

– there is no product disk with A′
1 or B′

1 in M1.

– There is no product disk with A2 or A′
2 in M2.

Using this theorem we obtain the list of the Kakimizu complexes of 11-crossing alternating knots K, each

spanning a surface S which is a plumbing of links with unique incompressible surfaces. There are three such

knots:

• K = 1145. Let S = S1 ∪D0
S2 on links L1 and L2.

The link L1 is a special alternating link with a unique minimal genus Seifert surface S1, and

S2 is the 4-half twisted band, a unique minimal genus Seifert surface. There are no product disks

with the markings as an edge. Therefore, the Kakimizu complex of K is:

[S] [Sc]

• K = 11280.

S = S1 ∪D0 S2 with L1 = (2, 2, 2) and L2 = (3, 1, 1) are Pretzel knots. Both S1 and S2 are

unique minimal genus spanning surfaces for L1 and L2 respectively. Then the Kakimizu complex

of K is:
[S] [Sc]

• K = 11325. S = S1 ∪D0
S2 with S1 a 4-half twisted band and S2 is a unique spanning surface on

a special alternating link L2. There is a product disk with the marking as an edge. The Kakimizu

complex of K is:

T1 T2T2 T3
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CHAPTER 5

The Kakimizu complexes of some special knots

5.1. General Strategy

Recall that the Kakimizu complex is a flag complex, hence determining the 1-skeleton of the Kakimizu

complex is sufficient to construct the entire complex. Additionally, the Kakimizu complex is connected,

therefore, starting from a minimal genus Seifert surface S for the knot K, we can proceed as follows:

Identify all vertices adjacent to [S], decide whether they are adjacent to each other, and repeat this process

for all newly found vertices, deciding, at each step, whether a newly found vertex is adjacent to any of the

previously considered vertices.

Let L be a non-split prime alternating link with n > 0 crossings. A surface constructed via Seifert’s algorithm

applied to a n-crossing link has genus at most n/2, so this is an upper bound for the minimal genus, g, of a

Seifert surface for such an L. Hass, Thompson, and Tsvietkova, [13], obtained an explicit (polynomial in g)

bound for the number of genus g Seifert surfaces for such an L. This implies that the Kakimizu complex for

a link L is finite and that this process will eventually terminate.

Moreover, any alternating link K represented by an alternating diagram D can be expressed as a ∗-product

of special alternating links, denoted as K = ∗(Li). When we apply Seifert’s algorithm to an oriented

reduced diagram D of K, the resulting surface S can be viewed as a Murasugi sum of spanning surfaces Si

corresponding to special alternating links Li.

Our general method for computation of the Kakimizu complexes of 11 crossing alternating knots is as follows:

• Firstly, check the table KnotInfo [22] to see whether or not the given knot K is fibered. If it is, its

Kakimizu complex is a single vertex. See Section 4.1.

• Second, check the table KnotInfo[22]) to see if the given 11-crossing alternating link is a 2-bridge

knot. If this is the case, we proceed as in Section 4.3.

If K is neither fibered, nor a 2-bridge knot, choose a diagram D of S to construct a Seifert

surface S for K via Seifert’s algorithm.

• If K is a special alternating link, apply Banks’ algorithm to compute the Kakimizu complex of K

as in Section 4.2.
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• If K is a Murasugi sum of two links with unique minimal genus Seifert surfaces, proceed as in

Section 4.4.

• If K is neither fibered, nor a 2-bridge knot, nor a special alternating knot, identify all fibered

components on S (if any) that are Murasugi sums with a surface S1. If S1 is not fibered, has a

unique Seifert surface, and is Murasugi summed with the fibered surfaces identified earlier, then

the Kakimizu complex of K is a single vertex, by Theorem 5.1.2 proved below.

• After excluding all cases above, the only remaining 11 crossing alternating knots are 1161, 11103,

and 11201. Calculations of the Kakimizu complexes of these knots are included below.

Let L be a non-split prime link and let S be a minimal genus Seifert surface for L. As before, IS(L, S)

denotes the set of isotopy classes of surfaces that can be made disjoint from S in the link complement. In the

context of the Kakimizu complex, surfaces in IS(L, S) (up to isotopy) correspond to vertices in the complex

that share an edge with the vertex [S].

Kakimizu, [18, Proposition 2.4], proves the following (as a consequence of a Theorem of Gabai, [10, Theorem

1.9]):

Theorem 5.1.1. Let L be a non-split oriented link and S a connected incompressible spanning surface for

L. Suppose that S is a Murasugi sum of S1 and S2, where each Si is a spanning surface for an oriented link

Li (for i = 1, 2). Suppose further that L2 is a fibered link with fiber S2. Then L1 is non-split, and S1 is

connected and incompressible. Moreover, there is a bijection

ϕ : IS(L, S) → IS(L1, S1).

The following is an original result:

Theorem 5.1.2. Let L be a non-split, oriented link, and let S be a connected minimal genus Seifert surface

for L. Suppose that S is a Murasugi sum S = S1 ∪D1
F1 ∪D2

F2 · · · ∪Dn
Fn, where S1 is the unique minimal

genus Seifert surface of a link L1 = ∂S1, and each Fi is a spanning surface for an oriented link Li (for

i = 1, . . . , n). Suppose further that the Fi are fibered surfaces, and each Di intersects S1. Then we have

MS(L) = [S].

Proof. MS(L1, S1) = ∅.

Consider the surface

S1
1 = S1 ∪D1

F1.
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Since F1 is a fibered surface for L1, Theorem 5.1.1 (by discarding incompressible spanning surfaces that are

not minimal genus) gives us

MS(∂S1
1 , S

1
1) = MS(∂L1, S1) = ∅.

Next recursively define the surfaces,

Sk1 = S1 ∪D1
F1 ∪D2

F2 ∪ · · · ∪Dk
Fk

for every 1 ≤ k ≤ n. By repeating the same argument, we obtain that

MS(∂Sk1 , S
k
1 ) = MS(∂Sk−1

1 , Sk−1
1 ) = ∅

for each k.

For k = n, this leads to

MS(L, S) = ∅ =⇒ MS(L) = [S].

□

The list of the Kakimizu complexes of 11-crossing alternating knots K that arise in this way and hence have

a unique incompressible spanning surface, and therefore a trivial Kakimizu complex, is given here:

• The following knots K span a unique (up to isotopy) minimal genus Seifert surface.

K = 111, 112, 114, 116, 118, 1110, 1111, 1112, 1116, 1118, 1120, 1121, 1123, 1127, 1129, 1130, 1131,

1132, 1136, 1137, 1138, 1139, 1141, 1146, 1148, 1149, 1150, 1152, 1154, 1156, 1158, 1160, 1163, 1164,

1167, 1169, 1170, 1178, 1187, 1197, 11100, 11101, 11102, 11104, 11105, 11107, 11114, 11115, 11116,

11118, 11122, 11130, 11132, 11133, 11134, 11135, 11136, 11137, 11138, 11141, 11143, 11148, 11149, 11150,

11152, 11153, 11155, 11161, 11165, 11167, 11168, 11169, 11172, 11173, 11181, 11187, 11197, 11198, 11199,

11202, 11212, 11213, 11214, 11219, 11222, 11249, 11256, 11258, 11260, 11262, 11265, 11270, 11271, 11272,

11273, 11275, 11276, 11278, 11279, 11283, 11285, 11290, 11294, 11295, 11296, 11297, 11303, 11304, 11312,

11313, 11317, 11321, 11322, 11323, 11324, 11327, 11328, 11331, 11344, 11345, 11347, 11349, 11352.

The Kakimizu complex of such a knot K is:

T
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Let T, T ′ be surfaces in a 3-manifold M . A product region between subsurfaces E ⊂ T and

E′ ⊂ T ′, is an embedding θ : F × [0, 1] → M for an appropriate compact orientable surface F,

with θ(F × {0}) = E and θ(F × {1}) = E′. Let T, T ′, T ′′ be three surfaces in M and E,E′, E” be

subsurfaces of T, T ′, T ′′ and suppose that there are product regions between E and E′ and between

E and E′′. We say that the two product regions are aligned if they either combine to give a product

region between E′ and E′′ or restrict to such a product region.

The following is an original result:

Theorem 5.1.3. Let K be a knot, and S a minimal genus Seifert surface of K that is realized

as a plumbing S = S1 ∪D S2. Using the notation Li = ∂Si, we will assume that L2 is a fibered link,

S2 a fiber, and, moreover, that every minimal genus Seifert surface S′ of K can be isotoped so that

S2 and a subsurface of S′ cobound a product region. Then MS(K) = MS(L1).

Proof. Let S′ be a minimal genus Seifert surface of K. The product region between a sub-

surface of S′ and S2 tells us whether S′ is “above” or “below” D ⊂ S near D. This allows for a

deplumbing of S′ producing a surface S′
1 such that S′ = S′

1 ∪D S2. Moreover, S and S′ are disjoint

if and only if S1 and S′
1 are disjoint.

We use surfaces such as S′
1 to define a map

f : vertMS(K) → vertMS(L1).

Specifically, for each vertex of MS(K), choose a representative S′ and assign f(v) = [S′
1].

Seeing that this function is well-defined is somewhat subtle. Suppose that S′ = S′
1 ∪D S2 and

T = T1 ∪D S2 are isotopic. Standard cut-and-paste techniques can be used to ensure that the

product regions between the two copies of S2 are aligned. A sequence of product decompositions

of these product regions in the complement of, say, S′, produces a copy of T1 in the complement of

S1. If S
′, T are isotopic, successive applications of Lemma 2.0.2 therefore establish that S′

1 and T1

are isotopic. Hence f is well-defined on vertMS(K).

Moreover, f has a natural inverse function

f−1 : vertMS(L1) → vertMS(K)

given by f−1([R]) = [R ∪D S2]. It follows that f is 1 − 1 and onto between vertMS(K) and

vertMS(L1).
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Standard cut-and-paste techniques can be used to ensure that if S′ and S′′ are two minimal

genus Seifert surface of K, the product regions between subsurfaces of S′, S′′ and S2 are aligned.

This allows for a deplumbing of S′ producing a surface S′
1 such that S′ = S′

1∪DS2, and a deplumbing

of S′′ producing a surface S′′
1 such that S′′ = S′′

1 ∪DS2, with the property that S′ and S′′ are disjoint

if and only if S′′
1 and S′′

1 are disjoint.

This tells us that f extends to the edges of MS(K) and, likewise, f−1 extends to the edges

of MS(L1). Therefore f is an isomorphism on 1-skeleta. Since Kakimizu complexes are flag,

MS(K) = MS(L1). □

The knot K = 1161 is depicted in Figure 5.1. It is a Murasugi sum of a special alternating link

and a Hopf band, and satisfies the hypotheses of Lemma 5.1.3.

MS(K) = {[S1], [S2]} and the Kakimizu complex is:
[S] [Sc]

Figure 5.1. Knot K = 112 with a Seifert surface of K
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Figure 5.2. Deplumb the Hopf band to obtain a special alternating link L1. There is a
unique, up to isotopy, (minimal genus) Seifert surface for L1.
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5.2. Special Cases: The links 11103 and 11201

5.2.1. Special case: The link 11103. The calculations in this section are original.

Let D be a reduced oriented alternating diagram of L = 11103. See Figure 5.3.

Applying Seifert’s algorithm to this diagram, we obtain a surface T1, as illustrated in Figure 5.3.

T1 = S1(74) ∪D1
H1 ∪D2

H2,

where S1(74) and S2(74) are the two distinct surfaces (up to isotopy) depicted, and Hi (dotted circles)

represent Hopf bands plumbed onto S1(74).

Applying Theorem 5.1.1, we obtain

MS(11103, T1)
ϕ1−→ MS(L0, S1(74) ∪D1

H1)
ϕ2−→ MS(74, S1(74)) = [S2(74)],

where ϕ1 and ϕ2 are bijections, and

L0 = ∂(S1(74) ∪D1 H1).

Thus

MS(11103, T1) = [T2] = ϕ−1
1 ◦ ϕ−1

2 ([S2(74)]).

Thus, we establish the following Lemma:

Lemma 5.2.0.1.

MS(11103, T1) = [T2]

where T2 is a surface in E(11103) disjoint from T1 and not isotopic to T1, obtained from S2(74) by attaching

two Hopf bands.

Since the link of [T1] in MS(11103) is a single vertex, [T2], our next task is to compute the link of [T2]. Note

that the surfaces T1 and T2 are parallel along H1 (see Figure 5.3) but not H2 (see Figure 5.4).
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Figure 5.3
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Figure 5.4
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Figure 5.5
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Figure 5.6

45



Set L̃ = ∂S1(74)∪D2(H2) and denote the result of deplumbingH1 from Ti by Si(L̃), i.e. S(L̃) = Si(74)∪D2H2.

Then, applying Theorem 5.1.1, we obtain

MS(11103, T2)
ψ1−−→ MS(L̃, S2(L̃))

Where ψ1 is a bijection. Thus it suffices to prove:

Lemma 5.2.0.2.

MS(L̃, S2(L̃)) = [T1]

Proof.

Let η ∈ MS(L̃, S2(L̃)) and let F be a representative of η.

Figure 5.7

Choose two balls V and W such that

V ∪W = S3, V ∩W = S2

with

V ∩ (S2(L̃)) = H2 − E and W ∩ (S2(L̃)− E) = S2(74),

where E is 4-gon disk, the boundary of which is a rectangle with two opposite sides being ∂V ∩ S2(L̃) =

∂W ∩ S2(L̃). For illustrations, see Figures 5.7 and 5.8, where we assume the ball on the top is V and the

one at the bottom is W .
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We consider F ∩ S2 = F ∩ ∂V = F ∩ ∂W. After isotopy, if necessary, this intersection consists of two arcs.

There are three cases to consider, as shown in Figure 5.8:

Figure 5.8

Case 1: Interpreting V − S2(L̃) as the complementary sutured manifold, (M1, γ1) of the Hopf band H2, we

see that F ∩M1 is a γ1-surface and hence parallel into R+(γ1) (and also into R−(γ1)). It follows that there is

a boundary reducing disk for F ∩M1 between F ∩M1 and R+(γ1) that describes an isotopy of F ∩V −S2(L̃)

after which we are in Case 2. (There is also a boundary reducing disk for F ∩M1 between F ∩M1 and

R−(γ1) that describes an isotopy of F ∩ V − S2(L̃) after which we are in Case 3.)

Case 2: In this case, ∂F ∩M1 is an inessential simple closed curve in ∂M1. Since F ∩M1 is incompressible,

F ∩M1 is a boundary parallel disk. Since (∂F ) ∩ V runs along (∂S2(L̃)) ∩ V, the two surfaces are parallel

in V. Interpreting W − S2(L̃) as the complementary sutured manifold, (M2, γ2), of S2(74) and noting that

F ∩M2 is a γ2-surface, we see that F ∩M2 is either boundary parallel (a copy of S2(74)) or essential (a copy

of S1(74)). If it is boundary parallel, then F = (F ∩ (V − S2(L̃)))∪ (F ∩ (W − S2(L̃))) is a copy of S2(L̃), a

contradiction. Therefore F ∩ (W − S2(L̃)) is a copy of S1(74) and hence F is isotopic to S1(L̃).

Case 3: This case is identical to the previous case with R−(γ2) replacing R
+(γ2).

47



Consequently, we have

MS(L, T2) = {[T1]}.

□

To conclude, by Lemmas 5.2.0.1 and 5.2.0.2:

MS(11103) = {[T1], [T2]}.

T1 T2
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5.2.2. Special Case: 11201. The calculations in this section are original.

Let D be an oriented alternating diagram of L = 11201 and let S be the surface obtained by applying Seifert’s

algorithm to D. See Figures 5.9 and 5.10. Then S = S1 ∪ S2, where S2 is a Hopf band. Since the Hopf link

is fibred, Theorem 5.1.2 yields

MS(L, S) ∼= MS(L1, S1).

The surface S1 is itself a plumbing of two surfaces, S1 = T1 ∪D T2, where T1 and T2 are the unique Seifert

surfaces for special alternating links L̃1, and L̃2 respectively, see Figures 5.11 and 5.12.

If (M,γ) is the complementary sutured manifold for S1 and (M1, γ1, A1) along with (M2, γ2, A2) are the

marked complementary sutured manifolds for T1 and T2 respectively, then M2 contains a product disk with

A2 as an edge. By Theorem 4.4.1 we obtain:

IS(L1) =
[Sc1] [S1][S1] [S̃c1]

Figure 5.9
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Figure 5.10

In particular, MS(L1, S1) = {[Sc1], [Sc2]}. Furthermore, MS(L, S) ∼= MS(L1, S1) and we use the notation

MS(L, S) = {[R1], [R2]}. Under this isomorphism, we can identify one of the surfaces, say, R1, as a plumbing

Sc1 ∪D S2 and the other surface, R2, as a surface that is parallel to S near the plumbing disk of the Hopf

band. (The surface R2 is similar to the surface T2 encountered in the calculation for 11103.)
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Given that R1 = Sc1 ∪D S2 and S2 is a Hopf band, we have MS(L,R1) ∼= MS(L1, S
c
1) = {[S1]}. Thus, we

conclude that MS(L,R1) = {[S1], [S2]}. Since S2 is a Hopf band and R2 is a surface parallel to S2 and L1,

we can apply the same reasoning as in Lemma 5.2.0.2 to determine MS(L, T2), leading to:

Lemma 5.2.0.3.

MS(L,R2) = {[S]}.

The three surfaces are illustrated in Figures 5.11, 5.12 and 5.13.

Consequently, the Kakimizu complex of K = 11201 is:

[R1] [S][S] [R2]
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Figure 5.11
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Figure 5.12
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Figure 5.13
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CHAPTER 6

The Kakimizu complexes of 12 crossing alternating knots

6.1. The Kakimizu complex of a fibered knot

We derive the set of fibered knots from KnotInfo [22].

The list of fibered links for 12 crossing alternating links is as follows :

K = 121, 122, 124, 126, 127, 128, 1211, 1213, 1214, 1215, 1216, 1217, 1218, 1219, 1220, 1224, 1226, 1229, 1230, 1233, 1239,

1240, 1245, 1248, 1250, 1258, 1259, 1260, 1261, 1263, 1265, 1266, 1267, 1269, 1270, 1271, 1274, 1277, 1279, 1280, 1284, 1287,

1288, 1290, 1291, 1292, 1298, 1299, 12101, 12105, 12108, 12111, 12112, 12113, 12115, 12116, 12119, 12120, 12122, 12123, 12125,

12126, 12129, 12131, 12132, 12133, 12134, 12136, 12137, 12138, 12139, 12141, 12142, 12146, 12149, 12157, 12158, 12164, 12166,

12172, 12173, 12174, 12179, 12181, 12182, 12184, 12185, 12186, 12188, 12189, 12190, 12191, 12193, 12195, 12202, 12203, 12207,

12209, 12213, 12214, 12215, 12216, 12217, 12219, 12220, 12222, 12224, 12225, 12228, 12233, 12242, 12243, 12245, 12246, 12250,

12258, 12260, 12261, 12262, 12264, 12265, 12268, 12271, 12278, 12280, 12281, 12282, 12283, 12284, 12285, 12287, 12288, 12292,

12298, 12299, 12304, 12305, 12310, 12316, 12318, 12323, 12324, 12325, 12328, 12331, 12333, 12334, 12335, 12341, 12342, 12349,

12351, 12352, 12358, 12359, 12361, 12362, 12363, 12364, 12369, 12373, 12374, 12377, 12382, 12383, 12386, 12387, 12388, 12389,

12396, 12398, 12402, 12413, 12415, 12416, 12417, 12418, 12419, 12426, 12427, 12434, 12435, 12436, 12438, 12439, 12445, 12446,

12451, 12452, 12453, 12455, 12456, 12457, 12458, 12462, 12464, 12465, 12466, 12467, 12468, 12469, 12470, 12473, 12474, 12475,

12476, 12477, 12478, 12479, 12480, 12483, 12484, 12485, 12486, 12487, 12488, 12493, 12497, 12498, 12499, 12500, 12501, 12503,

12505, 12506, 12512, 12515, 12516, 12517, 12521, 12528, 12535, 12536, 12541, 12561, 12565, 12569, 12576, 12579, 12583, 12584,

12621, 12627, 12629, 12630, 12637, 12649, 12651, 12662, 12664, 12673, 12674, 12681, 12683, 12693, 12695, 12696, 12697, 12698,

12699, 12700, 12702, 12703, 12704, 12705, 12706, 12707, 12708, 12709, 12710, 12711, 12712, 12716, 12722, 12747, 12754, 12756,

12765, 12766, 12768, 12776, 12777, 12778, 12785, 12788, 12793, 12805, 12815, 12818, 12819, 12824, 12835, 12838, 12844, 12846,
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12847, 12850, 12859, 12864, 12867, 12868, 12869, 12878, 12884, 12885, 12886, 12887, 12888, 12893, 12898, 12901, 12906, 12909,

12913, 12916, 12918, 12920, 12928, 12932, 12933, 12935, 12948, 12951, 12961, 12962, 12964, 12965, 12968, 12981, 12984, 12990,

12991, 12992, 12999, 121002, 121011, 121013, 121019, 121020, 121021, 121027, 121039, 121045, 121047, 121047, 121049,

121050, 121051, 121054, 121065, 121067, 121070, 121074, 121076, 121080, 121081, 121082, 121084, 121087, 121088, 121089, 121092,

121093, 121096121102, 121104, 121105, 121114, 121120, 121122, 121123, 121124, 121128, 121134, 121141, 121150, 121152,

121153, 121156, 121167, 121168, 121176, 121188, 121190, 121191, 121195, 121199, 121203, 121209, 121210, 121211, 121212, 121213,

121214, 121215, 121218, 121219, 121220, 121221, 121222, 121223, 121225, 121226, 121227, 121229, 121230, 121231, 121233, 121235,

121238, 121246, 121248, 121249, 121250, 121253, 121254, 121255, 121258, 121260, 121273, 121280, 121283, 121288.

The Kakimizu complex of every fibered links is a single vertex.

T
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6.2. The Kakimizu complex of a 2-bridge knot

We derive the set of non-fibered 12 crossing 2-bridge knots from KnotInfo [22]. They are as follows:

• Knots which are spanned by a unique (up to isotopy) minimal genus Seifert surface:

K = 1238, 12169, 12197, 12204, 12206, 12221, 12241, 12243, 12247, 12251, 12254, 12257, 12259, 12300,

12303, 12306, 12307, 12378, 12379, 12384, 12385, 12406, 12437, 12447, 12454, 12511, 12519, 12533, 12537,

12538, 12550, 12552, 12580, 12585, 12595, 12597, 12652, 12682, 12684, 12691, 12713, 12714, 12717, 12718,

12720, 12723, 12724, 12726, 12728, 12732, 12733, 12738, 12− 740, 12744, 12745, 12758, 12759, 12760, 12762,

12796, 12802, 12803, 121023, 121029, 121040, 121125, 121129, 121130, 121131, 121135, 121136, 121138, 121140,

121148, 121149, 121157, 121274, 121276, 121278.

The Kakimizu complexes of the knots which are a single vertex.

T

• The list of 2-bridge knots with non-trivial Kakimizu complexes.

Knots 2-bridge notation Even continued fraction expansion The Kakimizu complex

12226 70/181 [2,−2,−4,−2,−4,−2]
T1 T2T2 T3

12239 37/87 = −50/87 [−2,−4,−6, 2],
T1 T2

12255 42/107 [2,−2,−6,−4],
T1 T2

12302 53/147 = −94/147 [−2,−2, 4, 2, 4, 2]
T1 T2T2 T3

12330 42/95 [2,−4,−6,−2]
T1 T2

12380 20/77 [4, 6,−2,−2]
T1 T2

12425 35/81 = −46/81 [−2,−4, 6, 2],
T1 T2

12471 38/85 [2,−4, 4,−2]
T1 T2

12482 38/93 [2,−2, 4,−4]
T1 T2

12508 53/129 = −76/129 [−2,−4,−2,−2,−4, 2],
T1 T2T2 T3T3 T4

12510 81/193 = −112/193 [−2,−4,−2, 2, 4, 2]
T1 T2T2 T3T3 T4
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Knots 2-bridge notation Even continued fraction expansion The Kakimizu complex

12514 71/187 = 116/187 [2, 2,−2,−4,−4,−2]
T1 T2

12518 60/157 [−2,−2,−2,−4,−4,−2],
T1 T2

12520 48/133 [2,−2,−2,−2,−4,−4],
T1 T2

12522 64/173 [2,−2,−2,−4,−4,−2],
T1 T2

12532 53/125 = −72/125 [−2,−4,−4, 2, 2, 2],
T1 T2

12534 44/163 [4, 4, 2, 2,−2,−2],
T1 T2

12539 56/145 [2,−2,−4,−2,−2,−4]
T1 T2T2 T3T3 T4

12540 49/165 = −116/165 [−2,−2,−4,−4,−2, 2]
T1 T2

12549 26/111 [4,−4,−4,−2],

T3

T2T1 T2T1

T3T3

T2 T4T2 T4

T3

12551 40/103 [2,−2,−4,−6]
T1 T2

12581 36/119 [4, 2, 2, 4,−2,−2],
T1 T2T2 T3T3 T4

12582 47/131 = −84/131 [−2,−2, 4, 4, 2, 2]
T1 T2

12596 14/81 [6, 4,−2,−2],
T1 T2

12600 25/109 = −84/109 [2, 2, 2, 4, 4,−2],
T1 T2

12601 56/127 [2,−4,−4,−4],

T3

T2T1 T2T1

T3T3

T2 T4T2 T4

T3

12643 43/99 = −56/99, [-2,-4,4,2,2,2]
T1 T2

12644 30/113 [4, 4,−4,−2]

T3

T2T1 T2T1

T3T3

T2 T4T2 T4

T3

12690 40/89 [2,−4, 2,−4]
T1 T2T2 T3

12715 50/169 [4, 2, 2,−2,−4,−2],
T1 T2T2 T3T3 T4T4 T5
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Knots 2-bridge notation Even continued fraction expansion The Kakimizu complex

12721 50/171 [4, 2, 4, 2,−2,−2],
T1 T2T2 T3

12727 58/157 [2,−2,−2,−4,−2,−4]
T1 T2T2 T3

12729 46/167 [4, 2,−2,−2,−4,−2],
T1 T2T2 T3T3 T4T4 T5

12731 22/105 [4,−2,−2,−2,−4,−2]
T1 T2T2 T3T3 T4T4 T5

12736 59/141 = −82/141 [−2,−4,−2, 4, 2, 2],
T1 T2T2 T3

12743 12/79 [6,−2,−4,−2],
T1 T2T2 T3

12760 34/111, [4,2,2,2,-4,-2]
T1 T2T2 T3T3 T4T4 T5

12761 61/139 = −78/139 [−2,−4, 2, 4, 2, 2]
T1 T2T2 T3

12763 42/97 [2,−4,−2,−2,−2,−4],
T1 T2T2 T3T3 T4T4 T5

12764 39/133 = −94/133 [−2,−2,−4,−2,−4, 2],
T1 T2T2 T3

12773 20/91 [4,−2,−6,−2]
T1 T2T2 T3

12774 16/89 [6, 2,−4,−2]
T1 T2T2 T3

12775 38/87 [2,−4,−2,−6]
T1 T2T2 T3

12792 24/85 [4, 2,−6,−2]
T1 T2T2 T3

121024 108/149 [2, 2, 2,−2,−4,−4],
T1 T2

121030 19/91 = −72/91 [−2,−2,−2,−2, 4, 4]
T1 T2

121033 77/107 = −30/107 [−4,−2, 4, 2, 2, 2]
T1 T2T2 T3

121034 32/121 [4, 4,−2,−4],

T3

T2T1 T2T1

T3T3

T2 T4T2 T4

T3

T4

T5T5

T6

T3 T5

T4 T6

121126 26/119 [4,−2,−4,−4]

T3

T2T1 T2T1

T3T3

T2 T4T2 T4

T3

T4

T5T5

T6

T3 T5

T4 T6

121127 22/97 [4,−2, 2,−4]
T1 T2T2 T3T3 T4
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Knots 2-bridge notation Even continued fraction expansion The Kakimizu complex

121132 40/131 [4, 2, 2, 2,−2,−4],
T1 T2T2 T3T3 T4T4 T5T5 T6

121133 112/159 [2, 2, 4, 2,−2,−4],
T1 T2T2 T3T3 T4

121139 18/101 [6, 2,−2,−4]
T1 T2T2 T3T3 T4

121145 15/79 = −64/79 [2,−4,−4, 2],
T1 T2

121146 83/117 = −34/117 [−4,−2,−4, 2, 2, 2],
T1 T2T2 T3

121158 16/77 [4,−2,−2,−2,−2,−4],
T1 T2T2 T3T3 T4T4 T5T5 T6

121159 24/113 [−4, 4,−2,−2]
T1 T2

121161 16/75 [4,−2,−2,−6],
T1 T2T2 T3T3 T4

121162 13/69 = −56/69 [−2,−2,−2,−2,−4, 4],
T1 T2

121163 24/103 [4,−4,−2,−4],

T3

T2T1 T2T1

T3T3

T2 T4T2 T4

T3

T4

T5T5

T6

T3 T5

T4 T6

121165 16/67 [4,−6,−2,−2],
T1 T2

121166 8/33 [4,−8],
T1 T2

121275 44/194, [4,-2,2,-4]
T1 T2T2 T3T3 T4

121277 36/121 [4, 2, 2,−4,−2,−2]
T1 T2T2 T3T3 T4

121279 20/67 [4, 2, 2,−6],
T1 T2T2 T3T3 T4

121281 33/109 = −76/109 [−2,−2,−4, 4, 2, 2]
T1 T2

121282 44/63 [2, 2, 4,−6]
T1 T2

121287 6/37 [6,−6]
T1 T2
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6.3. The Kakimizu complex of plumbings of two links with unique spanning surfaces

For knots that are plumbings of two links with unique minimal genus spanning surfaces the Kakimizu complex

can be computed based on the existence of product disks as in Theorem 4.4.1. One needs to check, on each

side of the plumbing, whether product disks exist with respect to the marking and dual marking of the

complementary sutured manifold. The Kakimizu complexes of the following knots were determined in this

manner.

K = 12183, 12212, 12424, 12429, 12548, 12612, 12642, 12655, 12772, 12790, 12882, 12939, 12945.

6.4. The Kakimizu complex derived from general strategies

The Kakimizu complexes of knots K with a plumbed Hopf band or a fibered surface on a spanning surface

S of a special alternating link with a rather special property, namely that the surface S has a unique flype

passing through the plumbing disk, can be computed using methods similar to those already considered and

have the following Kakimizu complex:

T1 T2

The following knots have this property:

K = 12267, 12269, 12322, 12336, 12327, 12353, 12395, 12556, 12563, 12568, 12611, 12619, 12623, 12624, 12633, 12638,

12748, 12749, 12753, 12845, 12892, 12947.

We have also obtained the Kakimizu complexes of the following non-fibered, non 2-bridge knots with non-

trivial Kakimizu complex using the general strategies described in the previous chapters:

K = 1221, 1235, 1243, 1253, 1286, 1294, 1297, 12104, 12144, 12145, 12152, 12161, 12210, 12237, 12238, 12253, 12270,

12295, 12329, 12412, 12421, 12443, 12575, 12767, 12810, 12814, 12823, 12834, 12849, 12853, 12877, 12880, 12905, 12924.
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6.5. The Kakimizu complexes not determined

• If K is a Murasugi sum of two knots with a 3-Murasugi disk, we do not have any information on

the Kakimizu complex of K.

K = 12273, 12347, 12366, 12593, 12603, 12606, 12631, 12658, 12678, 12821, 12856, 12872, 12890, 12908, 12927, 12936,

12942, 12943, 12955, 12957, 12960, 12971.

• The Kakimizu complexes are not known for knots K with a plumbed Hopf band or a fibered surface

on a spanning surface S of a special alternating link with the property that it has more than one

flype.

K = 1289, 12150, 12232, 12275, 12291, 12313, 12372, 12376, 12410, 12441, 12504, 12513, 12524, 12559, 12608, 12632,

12634, 12661, 12677, 12685, 12719, 12730, 12735, 12750, 12752, 12841, 12862, 12883, 12931, 12938, 12953, 12959, 12989.

• Murasugi sum of two knots with non-unique spanning surfaces.

K = 12787.

• A plumbed surface S on a knot K with each component link having a unique spanning surface with

the condition that there exist product disks with respect to the marking and the dual marking of

the complementary sutured manifold of S.

K = 12235, 12423, 121000.

• The Kakimizu complexes of non-fibered, non-2-bridge knots, 121001 − 121288, were not determined.
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CHAPTER 7

List of the Kakimizu complexes of 11 and 12 crossing alternating

knots [22]

Table 7.1. The Kakimizu complexes of 11 crossing alternating knots

Knot Diagram Complex

111
T

112
T

113
T

114
T

115
T

116
T

Knot Diagram Complex

117
T

118
T

119
T

1110
T

1111
T

1112
T
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Table 7.2. The The Kakimizu complexeses of 11 crossing alternating knots

Knot Diagram Complex

1113
T

1114
T

1115
T

1116
T

1117
T

1118
T

1119
T

1120
T

Knot Diagram Complex

1121
T

1122
T

1123
T

1124
T

1125
T

1126
T

1127
T

1128
T
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Table 7.3. The Kakimizu complexes of 11 crossing alternating knots

Knot Diagram Complex

1129
T

1130
T

1131
T

1132
T

1133
T

1134
T

1135
T

1136
T

Knot Diagram Complex

1137
T

1138
T

1139
T

1140
T

1141
T

1142
T

1143
T

1144
T
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Table 7.4. The Kakimizu complexes of 11 crossing alternating knots

Knot Diagram Complex

1145
T1 T2

1146
T

1147
T

1148
T

1149
T

1150
T

1151
T

1152
T

Knot Diagram Complex

1153
T

1154
T

1155
T

1156
T

1157
T

1158
T

1159
T

1160
T
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Table 7.5. The Kakimizu complexes of 11 crossing alternating knots

Knot Diagram Complex

1161
T1 T2

1162
T

1163
T

1164
T

1165
T

1166
T

1167
T

1168
T

Knot Diagram Complex

1169
T

1170
T

1171
T

1172
T

1173
T

1174
T

1175
T

1176
T

67



Table 7.6. The Kakimizu complexes of 11 crossing alternating knots

Knot Diagram Complex

1177
T

1178
T

1179
T

1180
T

1181
T

1182
T

1183
T

1184
T

Knot Diagram Complex

1185
T

1186
T

1187
T

1188
T

1189
T

1190
T

1191
T

1192
T
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Table 7.7. The Kakimizu complexes of 11 crossing alternating knots

Knot Diagram Complex

1193
T

1194
T1 T2

1195
T1 T2

1196
T

1197
T

1198
T1 T2

1199
T

11100
T

Knot Diagram Complex

11101
T

11102
T

11103
T1 T2

11104
T

11105
T

11106
T

11107
T

11108
T
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Table 7.8. The Kakimizu complexes of 11 crossing alternating knots

Knot Diagram Complex

11109
T

11110
T

11111
T

11112
T

11113
T

11114
T

11115
T

11116
T

Knot Diagram Complex

11117
T

11118
T

11119
T

11120
T

11121
T

11122
T

11123
T

11124
T
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Table 7.9. The Kakimizu complexes of 11 crossing alternating knots

Knot Diagram Complex

11125
T

11126
T

11127
T

11128
T

11129
T

11130
T

11131
T

11132
T

Knot Diagram Complex

11133
T

11134
T

11135
T

11136
T

11137
T

11138
T

11139
T

11140
T
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Table 7.10. The Kakimizu complexes of 11 crossing alternating knots

Knot Diagram Complex

11141
T

11142
T

11143
T

11144
T

11145
T1 T2

11146
T

11147
T

11148
T

Knot Diagram Complex

11149
T

11150
T

11151
T

11152
T

11153
T

11154
T1 T2

11155
T

11156
T
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Table 7.11. The Kakimizu complexes of 11 crossing alternating knots

Knot Diagram Complex

11157
T

11158
T

11159
T

11160
T

11161
T

11162
T

11163
T

11164
T

Knot Diagram Complex

11165
T

11166
T1 T2

11167
T

11168
T

11169
T

11170
T

11171
T

11172
T
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Table 7.12. The Kakimizu complexes of 11 crossing alternating knots

Knot Diagram Complex

11173
T

11174
T

11175
T

11176
T

11177
T

11178
T

11179
T

11180
T

Knot Diagram Complex

11181
T

11182
T

11183
T

11184
T

11185
T

11186
T1 T2T2 T3T3 T4

11187
T

11188
T
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Table 7.13. The Kakimizu complexes of 11 crossing alternating knots

Knot Diagram Complex

11189
T

11190
T

11191
T1 T2

11192

T3

T2T1 T2T1

T3T3

T2 T4T2 T4

T3

11193
T

11194
T

11195
T

11196
T

Knot Diagram Complex

11197
T

11198
T

11199
T

11200
T

11201
T1 T2T2 T3

11202
T

11203
T

11204
T
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Table 7.14. The Kakimizu complexes of 11 crossing alternating knots

Knot Diagram Complex

11205
T

11206
T

11207
T

11208
T

11209
T

11210
T1 T2T2 T3

11211
T

11212
T

Knot Diagram Complex

11213
T

11214
T

11215
T

11216
T

11217
T

11218
T

11219
T

11220
T
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Table 7.15. The Kakimizu complexes of 11 crossing alternating knots

Knot Diagram Complex

11221
T

11222
T

11223
T

11224
T

11225
T

11226
T1 T2T2 T3

11227
T

11228
T

Knot Diagram Complex

11229
T1 T2T2 T3

11230
T

11231
T

11232
T

11233
T

11234
T

11235
T1 T2T2 T3T3 T4T4 T5

11236
T1 T2T2 T3
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Table 7.16. The Kakimizu complexes of 11 crossing alternating knots

Knot Diagram Complex

11237

T3

T2T1 T2T1

T3

11238
T1 T2T2 T3

11239
T

11240
T

11241
T

11242
T

11243
T1 T2T2 T3

11244
T

Knot Diagram Complex

11245
T

11246
T

11247
T

11248
T

11249
T

11250
T

11251
T

11252
T
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Table 7.17. The Kakimizu complexes of 11 crossing alternating knots

Knot Diagram Complex

11253
T

11254
T

11255
T

11256
T

11257
T

11258
T

11259
T

11260
T

Knot Diagram Complex

11261
T

11262
T

11263
T

11264
T

11265
T

11266
T

11267
T

11268
T
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Table 7.18. The Kakimizu complexes of 11 crossing alternating knots

Knot Diagram Complex

11269
T

11270
T

11271
T

11272
T

11273
T

11274
T

11275
T

11276
T

Knot Diagram Complex

11277
T

11278
T

11279
T

11280
T1 T2

11281
T

11282
T

11283
T

11284
T
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Table 7.19. The Kakimizu complexes of 11 crossing alternating knots

Knot Diagram Complex

11285
T

11286
T

11287
T

11288
T

11289
T

11290
T

11291
T

11292
T

Knot Diagram Complex

11293
T

11294
T

11295
T

11296
T

11297
T

11298
T

11299
T

11300
T
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Table 7.20. The Kakimizu complexes of 11 crossing alternating knots

Knot Diagram Complex

11301
T

11302
T

11303
T

11304
T

11305
T

11306
T

11307
T

11308
T

Knot Diagram Complex

11309
T

11310
T

11311
T1 T2T2 T3T3 T4

11312
T

11313
T

11314
T

11315
T

11316
T
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Table 7.21. The Kakimizu complexes of 11 crossing alternating knots

Knot Diagram Complex

11317
T

11318
T

11319
T

11320
T

11321
T

11322
T

11323
T

11324
T

Knot Diagram Complex

11325
T1 T2T2 T3

11326
T

11327
T

11328
T

11329
T

11330
T

11331
T

11332
T
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Table 7.22. The Kakimizu complexes of 11 crossing alternating knots

Knot Diagram Complex

11333
T1 T2T2 T3T3 T4

11334
T

11335
T1 T2T2 T3

11336
T1 T2

11337
T1 T2T2 T3

11338
T

11339
T

11340
T1 T2

Knot Diagram Complex

11341
T1 T2

11342
T

11343
T1 T2

11344
T

11345
T

11346
T

11347
T

11348
T
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Table 7.23. The Kakimizu complexes of 11 crossing alternating knots

Knot Diagram Complex

11349
T

11350
T

11351
T

11352
T

11353
T

11354
T

11355
T

11356
T1 T2T2 T3T3 T4

Knot Diagram Complex

11357
T1 T2

11358
T

11359
T1 T2T2 T3T3 T4

11360
T1 T2

11361
T

11362
T

11363
T1 T2

11364
T
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Table 7.24. The Kakimizu complexes of 11 crossing alternating knots

Knot Diagram Complex

11365
T1 T2T2 T3T3 T4T4 T5T5 T6

11366
T1 T2

11367
T
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Table 7.25. The Kakimizu complexes of 12 crossing alternating knots

Knot Diagram Complex

121
T

122
T

123
T

124
T

125
T

126
T

127
T

128
T

Knot Diagram Complex

129
T

1210
T

1211
T

1212
T

1213
T

1214
T

1215
T

1216
T
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Table 7.26. The Kakimizu complexes of 12 crossing alternating knots

Knot Diagram Complex

1217
T

1218
T

1219
T

1220
T

1221
T1 T2

1222
T

1223
T

1224
T

Knot Diagram Complex

1225
T

1226
T

1227
T

1228
T

1229
T

1230
T

1231
T

1232
T
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Table 7.27. The Kakimizu complexes of 12 crossing alternating knots

Knot Diagram Complex

1233
T

1234
T

1235
T1 T2T2 T3

1236
T

1237
T

1238
T

1239
T

1240
T

Knot Diagram Complex

1241
T

1242
T

1243
T1 T2

1244
T

1245
T

1246
T

1247
T

1248
T
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Table 7.28. The Kakimizu complexes of 12 crossing alternating knots

Knot Diagram Complex

1249
T

1250
T

1251
T

1252
T

1253
T1 T2T2 T3

1254
T

1255
T

1256
T

Knot Diagram Complex

1257
T

1258
T

1259
T

1260
T

1261
T

1262
T

1263
T

1264
T
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Table 7.29. The Kakimizu complexes of 12 crossing alternating knots

Knot Diagram Complex

1265
T

1266
T

1267
T

1268
T

1269
T

1270
T

1271
T

1272
T

Knot Diagram Complex

1273
T

1274
T

1275
T

1276
T

1277
T

1278
T

1279
T

1280
T
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Table 7.30. The Kakimizu complexes of 12 crossing alternating knots

Knot Diagram Complex

1281
T

1282
T

1283
T

1284
T

1285
T

1286
T1 T2

1287
T

1288
T

Knot Diagram Complex

1289 NOT FOUND

1290
T

1291
T

1292
T

1293
T

1294
T1 T2

1295
T

1296
T

92



Table 7.31. The Kakimizu complexes of 12 crossing alternating knots

Knot Diagram Complex

1297
T1 T2

1298
T

1299
T

12100
T

12101
T

12102
T

12103
T

12104
T1 T2

Knot Diagram Complex

12105
T

12106
T

12107
T

12108
T

12109
T

12110
T

12111
T

12112
T
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Table 7.32. The Kakimizu complexes of 12 crossing alternating knots

Knot Diagram Complex

12113
T

12114
T

12115
T

12116
T

12117
T

12118
T

12119
T

12120
T

Knot Diagram Complex

12121
T

12122
T

12123
T

12124
T

12125
T

12126
T

12127
T

12128
T
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Table 7.33. The Kakimizu complexes of 12 crossing alternating knots

Knot Diagram Complex

12129
T

12130
T

12131
T

12132
T

12133
T

12134
T

12135
T

12136
T

Knot Diagram Complex

12137
T

12138
T

12139
T

12140
T

12141
T

12142
T

12143
T

12144
T1 T2T2 T3T3 T4
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Table 7.34. The Kakimizu complexes of 12 crossing alternating knots

Knot Diagram Complex

12145
T1 T2

12146
T

12147
T

12148
T

12149
T

12150 NOT FOUND

12151
T

12152
T1 T2

Knot Diagram Complex

12153
T

12154
T

12155
T

12156
T

12157
T

12158
T

12159
T

12160
T
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Table 7.35. The Kakimizu complexes of 12 crossing alternating knots

Knot Diagram Complex

12161
T1 T2T2 T3

12162
T

12163
T

12164
T

12165
T

12166
T

12167
T

12168
T

Knot Diagram Complex

12169
T

12170
T

12171
T

12172
T

12173
T

12174
T

12175
T

12176
T
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Table 7.36. The Kakimizu complexes of 12 crossing alternating knots

Knot Diagram Complex

12177
T

12178
T

12179
T

12180
T

12181
T

12182
T

12183
T1 T2

12184
T

Knot Diagram Complex

12185
T

12186
T

12187
T

12188
T

12189
T

12190
T

12191
T

12192
T
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Table 7.37. The Kakimizu complexes of 12 crossing alternating knots

Knot Diagram Complex

12193
T

12194
T

12195
T

12196
T

12197
T

12198
T

12199
T

12200
T

Knot Diagram Complex

12201
T

12202
T

12203
T

12204
T

12205
T

12206
T

12207
T

12208
T
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Table 7.38. The Kakimizu complexes of 12 crossing alternating knots

Knot Diagram Complex

12209
T

12210
T1 T2T2 T3

12211
T

12212
T1 T2T2 T3

12213
T

12214
T

12215
T

12216
T

Knot Diagram Complex

12217
T

12218
T

12219
T

12220
T

12221
T

12222
T

12223
T

12224
T
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Table 7.39. The Kakimizu complexes of 12 crossing alternating knots

Knot Diagram Complex

12225
T

12226
T1 T2T2 T3

12227
T

12228
T

12229
T

12230
T

12231
T

12232 NOT FOUND

Knot Diagram Complex

12233
T

12234
T

12235 NOT FOUND

12236
T

12237
T1 T2T2 T3T3 T4

12238
T1 T2

12239
T1 T2

12240
T
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Table 7.40. The Kakimizu complexes of 12 crossing alternating knots

Knot Diagram Complex

12241
T

12242
T

12243
T

12244
T

12245
T

12246
T

12247
T

12248
T

Knot Diagram Complex

12249
T

12250
T

12251
T

12252
T

12253
T1 T2

12254
T

12255
T1 T2

12256
T
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Table 7.41. The Kakimizu complexes of 12 crossing alternating knots

Knot Diagram Complex

12257
T

12258
T

12259
T

12260
T

12261
T

12262
T

12263
T

12264
T

Knot Diagram Complex

12265
T

12266
T

12267
T1 T2

12268
T

12269
T1 T2

12270
T1 T2

12271
T

12272
T

103



Table 7.42. The Kakimizu complexes of 12 crossing alternating knots

Knot Diagram Complex

12273 NOT FOUND

12274
T

12275 NOT FOUND

12276
T

12277
T

12278
T

12279
T

12280
T

Knot Diagram Complex

12281
T

12282
T

12283
T

12284
T

12285
T

12286
T

12287
T

12288
T

104



Table 7.43. The Kakimizu complexes of 12 crossing alternating knots

Knot Diagram Complex

12289
T

12290
T

12291 NOT FOUND

12292
T

12293
T

12294
T

12295
T1 T2

12296
T

Knot Diagram Complex

12297
T

12298
T

12299
T

12300
T

12301
T

12302
T1 T2T2 T3

12303
T

12304
T

105



Table 7.44. The Kakimizu complexes of 12 crossing alternating knots

Knot Diagram Complex

12305
T

12306
T

12307
T

12308
T

12309
T

12310
T

12311
T

12312
T

Knot Diagram Complex

12313 NOT FOUND

12314
T

12315
T

12316
T

12317
T

12318
T

12319
T

12320
T

106



Table 7.45. The Kakimizu complexes of 12 crossing alternating knots

Knot Diagram Complex

12321
T

12322
T1 T2

12323
T

12324
T

12325
T

12326
T

12327
T1 T2

12328
T

Knot Diagram Complex

12329
T1 T2

12330
T1 T2

12331
T

12332
T

12333
T

12334
T

12335
T

12336
T1 T2

107



Table 7.46. The Kakimizu complexes of 12 crossing alternating knots

Knot Diagram Complex

12337
T

12338
T

12339
T

12340
T

12341
T

12342
T

12343
T

12344
T

Knot Diagram Complex

12345
T

12346
T

12347 NOT FOUND

12348
T

12349
T

12350
T

12351
T

12352
T

108



Table 7.47. The Kakimizu complexes of 12 crossing alternating knots

Knot Diagram Complex

12353
T1 T2

12354
T

12355
T

12356
T

12357
T

12358
T

12359
T

12360
T

Knot Diagram Complex

12361
T

12362
T

12363
T

12364
T

12365
T

12366 NOT FOUND

12367
T

12368
T

109



Table 7.48. The Kakimizu complexes of 12 crossing alternating knots

Knot Diagram Complex

12369
T

12370
T

12371
T

12372 NOT FOUND

12373
T

12374
T

12375
T

12376 NOT FOUND

Knot Diagram Complex

12377
T

12378
T

12379
T

12380
T1 T2

12381
T

12382
T

12383
T

12384
T

110



Table 7.49. The Kakimizu complexes of 12 crossing alternating knots

Knot Diagram Complex

12385
T

12386
T

12387
T

12388
T

12389
T

12390
T

12391
T

12392
T

Knot Diagram Complex

12393
T

12394
T

12395
T1 T2

12396
T

12397
T

12398
T

12399
T

12400
T

111



Table 7.50. The Kakimizu complexes of 12 crossing alternating knots

Knot Diagram Complex

12401
T

12402
T

12403
T

12404
T

12405
T

12406
T

12407
T

12408
T

Knot Diagram Complex

12409
T

12410 NOT FOUND

12411
T

12412
T1 T2

12413
T

12414
T

12415
T

12416
T

112



Table 7.51. The Kakimizu complexes of 12 crossing alternating knots

Knot Diagram Complex

12417
T

12418
T

12419
T

12420
T

12421
T1 T2

12422
T

12423 NOT FOUND

12424
T1 T2

Knot Diagram Complex

12425
T

12426
T

12427
T

12428
T

12429
T1 T2

12430
T

12431
T

12432
T

113



Table 7.52. The Kakimizu complexes of 12 crossing alternating knots

Knot Diagram Complex

12433
T

12434
T

12435
T

12436
T

12437
T

12438
T

12439
T

12440
T

Knot Diagram Complex

12441 NOT FOUND

12442
T

12443
T1 T2

12444
T

12445
T

12446
T

12447
T

12448
T

114



Table 7.53. The Kakimizu complexes of 12 crossing alternating knots

Knot Diagram Complex

12449
T

12450
T

12451
T

12452
T

12453
T

12454
T

12455
T

12456
T

Knot Diagram Complex

12457
T

12458
T

12459
T

12460
T

12461
T

12462
T

12463
T

12464
T

115



Table 7.54. The Kakimizu complexes of 12 crossing alternating knots

Knot Diagram Complex

12465
T

12466
T

12467
T

12468
T

12469
T

12470
T

12471
T1 T2

12472
T

Knot Diagram Complex

12473
T

12474
T

12475
T

12476
T

12477
T

12478
T

12479
T

12480
T

116



Table 7.55. The Kakimizu complexes of 12 crossing alternating knots

Knot Diagram Complex

12481
T

12482
T1 T2

12483
T

12484
T

12485
T

12486
T

12487
T

12488
T

Knot Diagram Complex

12489
T

12490
T

12491
T

12492
T

12493
T

12494
T

12495
T

12496
T

117



Table 7.56. The Kakimizu complexes of 12 crossing alternating knots

Knot Diagram Complex

12497
T

12498
T

12499
T

12500
T

12501
T

12502
T

12503
T

12504 NOT FOUND

Knot Diagram Complex

12505
T

12506
T

12507
T

12508
T1 T2T2 T3T3 T4

12509
T

12510
T1 T2T2 T3T3 T4

12511
T

12512
T

118



Table 7.57. The Kakimizu complexes of 12 crossing alternating knots

Knot Diagram Complex

12513 NOT FOUND

12514
T1 T2

12515
T

12516
T

12517
T

12518
T1 T2

12519
T

12520
T1 T2

Knot Diagram Complex

12521
T

12522
T1 T2

12523
T

12524 NOT FOUND

12525
T

12526
T

12527
T

12528
T

119



Table 7.58. The Kakimizu complexes of 12 crossing alternating knots

Knot Diagram Complex

12529
T

12530
T

12531
T

12532
T1 T2

12533
T

12534
T1 T2

12535
T

12536
T

Knot Diagram Complex

12537
T

12538
T

12539
T1 T2T2 T3T3 T4

12540
T1 T2

12541
T

12542
T

12543
T

12544
T

120



Table 7.59. The Kakimizu complexes of 12 crossing alternating knots

Knot Diagram Complex

12545
T

12546
T

12547
T

12548
T1 T2T2 T3

12549

T3

T2T1 T2T1

T3T3

T2 T4T2 T4

T3

12550
T

12551
T1 T2

12552
T

Knot Diagram Complex

12553
T

12554
T

12555
T

12556
T1 T2

12557
T

12558
T

12559 NOT FOUND

12560
T

121



Table 7.60. The Kakimizu complexes of 12 crossing alternating knots

Knot Diagram Complex

12561
T

12562
T

12563
T1 T2

12564
T

12565
T

12566
T

12567
T

12568
T1 T2

Knot Diagram Complex

12569
T

12570
T

12571
T

12572
T

12573
T

12574
T

12575
T1 T2T2 T3

12576
T

122



Table 7.61. The Kakimizu complexes of 12 crossing alternating knots

Knot Diagram Complex

12577
T

12578
T

12579
T

12580
T

12581
T1 T2T2 T3T3 T4

12582
T1 T2

12583
T

12584
T

Knot Diagram Complex

12585
T

12586
T

12587
T

12588
T

12589
T

12590
T

12591
T

12592
T

123



Table 7.62. The Kakimizu complexes of 12 crossing alternating knots

Knot Diagram Complex

12593 NOT FOUND

12594
T

12595
T

12596
T1 T2

12597
T

12598
T

12599
T

12600
T1 T2

Knot Diagram Complex

12601

T3

T2T1 T2T1

T3T3

T2 T4T2 T4

T3

12602
T

12603 NOT FOUND

12604
T

12605
T

12606 NOT FOUND

12607
T

12608 NOT FOUND

124



Table 7.63. The Kakimizu complexes of 12 crossing alternating knots

Knot Diagram Complex

12609
T

12610
T

12611
T1 T2

12612
T1 T2T2 T3

12613
T

12614
T

12615
T

12616
T

Knot Diagram Complex

12617
T

12618
T

12619
T1 T2

12620
T

12621
T

12622
T

12623
T1 T2

12624
T1 T2

125



Table 7.64. The Kakimizu complexes of 12 crossing alternating knots

Knot Diagram Complex

12625
T

12626
T

12627
T

12628
T

12629
T

12630
T

12631 NOT FOUND

12632 NOT FOUND

Knot Diagram Complex

12633
T1 T2

12634 NOT FOUND

12635
T

12636
T

12637
T

12638
T1 T2

12639
T

12640
T

126



Table 7.65. The Kakimizu complexes of 12 crossing alternating knots

Knot Diagram Complex

12641
T

12642
T1 T2T2 T3

12643
T1 T2

12644

T3

T2T1 T2T1

T3T3

T2 T4T2 T4

T3

12645
T

12646
T

12647
T

12648
T

Knot Diagram Complex

12649
T

12650
T

12651
T

12652
T

12653
T

12654
T

12655
T1 T2T2 T3T3 T4

12656
T

127



Table 7.66. The Kakimizu complexes of 12 crossing alternating knots

Knot Diagram Complex

12657
T

12658 NOT FOUND

12659
T

12660
T

12661 NOT FOUND

12662
T

12663
T

12664
T

Knot Diagram Complex

12665
T

12666
T

12667
T

12668
T

12669
T

12670
T

12671
T

12672
T

128



Table 7.67. The Kakimizu complexes of 12 crossing alternating knots

Knot Diagram Complex

12673
T

12674
T

12675
T

12676
T

12677 NOT FOUND

12678 NOT FOUND

12679
T

12680
T

Knot Diagram Complex

12681
T

12682
T

12683
T

12684
T

12685 NOT FOUND

12686
T

12687
T

12688
T

129



Table 7.68. The Kakimizu complexes of 12 crossing alternating knots

Knot Diagram Complex

12689
T

12690
T1 T2T2 T3

12691
T

12692
T

12693
T

12694
T

12695
T

12696
T

Knot Diagram Complex

12697
T

12698
T

12699
T

12700
T

12701
T

12702
T

12703
T

12704
T

130



Table 7.69. The Kakimizu complexes of 12 crossing alternating knots

Knot Diagram Complex

12705
T

12706
T

12707
T

12708
T

12709
T

12710
T

12711
T

12712
T

Knot Diagram Complex

12713
T

12714
T

12715
T1 T2T2 T3T3 T4T4 T5

12716
T

12717
T

12718
T

12719 NOT FOUND

12720
T

131



Table 7.70. The Kakimizu complexes of 12 crossing alternating knots

Knot Diagram Complex

12721
T1 T2T2 T3

12722
T

12723
T

12724
T

12725
T

12726
T

12727
T1 T2T2 T3

12728
T

Knot Diagram Complex

12729
T1 T2T2 T3T3 T4T4 T5

12730 NOT FOUND

12731
T1 T2T2 T3T3 T4T4 T5

12732
T

12733
T

12734
T

12735 NOT FOUND

12736
T1 T2T2 T3

132



Table 7.71. The Kakimizu complexes of 12 crossing alternating knots

Knot Diagram Complex

12737
T

12738
T

12739
T

12740
T

12741
T

12742
T

12743
T1 T2T2 T3

12744
T

Knot Diagram Complex

12745
T

12746
T

12747
T

12748
T1 T2

12749
T1 T2

12750 NOT FOUND

12751
T

12752 NOT FOUND

133



Table 7.72. The Kakimizu complexes of 12 crossing alternating knots

Knot Diagram Complex

12753
T1 T2

12754
T

12755
T

12756
T

12757
T

12758
T

12759
T

12760
T1 T2T2 T3T3 T4T4 T5

Knot Diagram Complex

12761
T1 T2T2 T3

12762
T

12763
T1 T2T2 T3T3 T4T4 T5

12764
T1 T2T2 T3

12765
T

12766
T

12767

T3

T2T1 T2T1

T3

12768
T

134



Table 7.73. The Kakimizu complexes of 12 crossing alternating knots

Knot Diagram Complex

12769
T

12770
T

12771
T

12772
T1 T2T2 T3

12773
T1 T2T2 T3

12774
T1 T2T2 T3

12775
T1 T2T2 T3

12776
T

Knot Diagram Complex

12777
T

12778
T

12779
T

12780
T

12781
T

12782
T

12783
T

12784
T

135



Table 7.74. The Kakimizu complexes of 12 crossing alternating knots

Knot Diagram Complex

12785
T

12786
T

12787 NOT FOUND

12788
T

12789
T

12790
T1 T2T2 T3

12791
T

12792
T1 T2T2 T3

Knot Diagram Complex

12793
T

12794
T

12795
T1 T2T2 T3

12796
T

12797
T

12798
T

12799
T

12800
T

136



Table 7.75. The Kakimizu complexes of 12 crossing alternating knots

Knot Diagram Complex

12801
T

12802
T

12803
T

12804
T

12805
T

12806
T

12807
T

12808
T

Knot Diagram Complex

12809
T

12810
T1 T2

12811
T

12812
T

12813
T

12814
T1 T2

12815
T

12816
T

137



Table 7.76. The Kakimizu complexes of 12 crossing alternating knots

Knot Diagram Complex

12817
T

12818
T

12819
T

12820
T

12821 NOT FOUND

12822
T

12823
T1 T2

12824
T

Knot Diagram Complex

12825
T

12826
T

12827
T

12828
T

12829
T

12830
T

12831
T

12832
T

138



Table 7.77. The Kakimizu complexes of 12 crossing alternating knots

Knot Diagram Complex

12833
T

12834
T1 T2

12835
T

12836
T

12837
T

12838
T

12839
T

12840
T

Knot Diagram Complex

12841 NOT FOUND

12842
T

12843
T

12844
T

12845
T1 T2

12846
T

12847
T

12848
T

139



Table 7.78. The Kakimizu complexes of 12 crossing alternating knots

Knot Diagram Complex

12849
T1 T2

12850
T

12851
T

12852
T

12853
T1 T2

12854
T

12855
T

12856 NOT FOUND

Knot Diagram Complex

12857
T

12858
T

12859
T

12860
T

12861
T

12862 NOT FOUND

12863
T

12864
T

140



Table 7.79. The Kakimizu complexes of 12 crossing alternating knots

Knot Diagram Complex

12865
T

12866
T

12867
T

12868
T

12869
T

12870
T

12871
T

12872 NOT FOUND

Knot Diagram Complex

12873
T

12874
T

12875
T

12876
T

12877
T1 T2

12878
T

12879
T

12880
T1 T2

141



Table 7.80. The Kakimizu complexes of 12 crossing alternating knots

Knot Diagram Complex

12881
T

12882
T1 T2T2 T3

12883 NOT FOUND

12884
T

12885
T

12886
T

12887
T

12888
T

Knot Diagram Complex

12889
T

12890 NOT FOUND

12891
T

12892
T1 T2

12893
T

12894
T

12895
T

12896
T

142



Table 7.81. The Kakimizu complexes of 12 crossing alternating knots

Knot Diagram Complex

12897 NOT FOUND

12898
T

12899
T

12900
T

12901
T

12902
T

12903
T

12904
T

Knot Diagram Complex

12905
T1 T2

12906
T

12907
T

12908 NOT FOUND

12909
T

12910
T

12911
T

12912
T

143



Table 7.82. The Kakimizu complexes of 12 crossing alternating knots

Knot Diagram Complex

12913
T

12914
T

12915
T

12916
T

12917
T

12918
T

12919
T

12920
T

Knot Diagram Complex

12921
T

12922
T

12923
T

12924
T1 T2

12925
T

12926
T

12927 NOT FOUND

12928
T

144



Table 7.83. The Kakimizu complexes of 12 crossing alternating knots

Knot Diagram Complex

12929
T

12930
T

12931 NOT FOUND

12932
T

12933
T

12934
T

12935
T

12936 NOT FOUND

Knot Diagram Complex

12937
T

12938 NOT FOUND

12939
T1 T2

12940
T

12941
T

12942 NOT FOUND

12943 NOT FOUND

12944
T

145



Table 7.84. The Kakimizu complexes of 12 crossing alternating knots

Knot Diagram Complex

12945
T1 T2T2 T3T3 T4

12946
T

12947
T1 T2

12948
T

12949
T

12950
T

12951
T

12952
T

Knot Diagram Complex

12953 NOT FOUND

12954
T

12955 NOT FOUND

12956
T

12957 NOT FOUND

12958
T

12959 NOT FOUND

12960 NOT FOUND

146



Table 7.85. The Kakimizu complexes of 12 crossing alternating knots

Knot Diagram Complex

12961
T

12962
T

12963
T

12964
T

12965
T

12966
T

12967
T

12968
T

Knot Diagram Complex

12969
T

12970
T

12971 NOT FOUND

12972
T

12973
T

12974
T

12975
T

12976
T

147



Table 7.86. The Kakimizu complexes of 12 crossing alternating knots

Knot Diagram Complex

12977
T

12978
T

12979
T

12980
T

12981
T

12982
T

12983
T

12984
T

Knot Diagram Complex

12985
T

12986
T

12987
T

12988
T

12989 NOT FOUND

12990
T

12991
T

12992
T

148



Table 7.87. The Kakimizu complexes of 12 crossing alternating knots

Knot Diagram Complex

12993
T

12994
T

12995
T

12996
T

12997
T

12998
T

12999
T

121000 NOT FOUND

Knot Diagram Complex

121001
T

121002 NOT FOUND

121003 NOT FOUND

121004 NOT FOUND

121005 NOT FOUND

121006 NOT FOUND

121007 NOT FOUND

121008 NOT FOUND

149



Table 7.88. The Kakimizu complexes of 12 crossing alternating knots

Knot Diagram Complex

121009 NOT FOUND

121010 NOT FOUND

121011
T

121012 NOT FOUND

121013
T

121014 NOT FOUND

121015 NOT FOUND

121016 NOT FOUND

Knot Diagram Complex

121017 NOT FOUND

121018 NOT FOUND

121019
T

121020
T

121021
T

121022 NOT FOUND

121023
T

121024
T1 T2

150



Table 7.89. The Kakimizu complexes of 12 crossing alternating knots

Knot Diagram Complex

121025 NOT FOUND

121026 NOT FOUND

121027
T

121028 NOT FOUND

121029
T

121030
T1 T2

121031 NOT FOUND

121032 NOT FOUND

Knot Diagram Complex

121033
T1 T2T2 T3

121034

T3

T2T1 T2T1

T3T3

T2 T4T2 T4

T3

T4

T5T5

T6

T3 T5

T4 T6

121035 NOT FOUND

121036 NOT FOUND

121037 NOT FOUND

121038 NOT FOUND

121039
T

121040
T

151



Table 7.90. The Kakimizu complexes of 12 crossing alternating knots

Knot Diagram Complex

121041 NOT FOUND

121042 NOT FOUND

121043 NOT FOUND

121044 NOT FOUND

121045
T

121046 NOT FOUND

121047
T

121048 NOT FOUND

Knot Diagram Complex

121049
T

121050
T

121051
T

121052 NOT FOUND

121053 NOT FOUND

121054
T

121055 NOT FOUND

121056 NOT FOUND

152



Table 7.91. The Kakimizu complexes of 12 crossing alternating knots

Knot Diagram Complex

121057 NOT FOUND

121058 NOT FOUND

121059 NOT FOUND

121060 NOT FOUND

121061 NOT FOUND

121062 NOT FOUND

121063 NOT FOUND

121064 NOT FOUND

Knot Diagram Complex

121065
T

121066 NOT FOUND

121067
T

121068 NOT FOUND

121069 NOT FOUND

121070
T

121071 NOT FOUND

121072 NOT FOUND

153



Table 7.92. The Kakimizu complexes of 12 crossing alternating knots

Knot Diagram Complex

121073 NOT FOUND

121074
T

121075 NOT FOUND

121076
T

121077 NOT FOUND

121078 NOT FOUND

121079 NOT FOUND

121080
T

Knot Diagram Complex

121081
T

121082
T

121083 NOT FOUND

121084
T

121085 NOT FOUND

121086 NOT FOUND

121087
T

121088
T

154



Table 7.93. The Kakimizu complexes of 12 crossing alternating knots

Knot Diagram Complex

121089
T

121090 NOT FOUND

121091 NOT FOUND

121092
T

121093
T

121094 NOT FOUND

121095 NOT FOUND

121096
T

Knot Diagram Complex

121097 NOT FOUND

121098 NOT FOUND

121099 NOT FOUND

121100 NOT FOUND

121101 NOT FOUND

121102
T

121103 NOT FOUND

121104
T

155



Table 7.94. The Kakimizu complexes of 12 crossing alternating knots

Knot Diagram Complex

121105
T

121106 NOT FOUND

121107 NOT FOUND

121108 NOT FOUND

121109 NOT FOUND

121110 NOT FOUND

121111 NOT FOUND

121112 NOT FOUND

Knot Diagram Complex

121113 NOT FOUND

121114
T

121115 NOT FOUND

121116 NOT FOUND

121117 NOT FOUND

121118 NOT FOUND

121119 NOT FOUND

121120
T
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Table 7.95. The Kakimizu complexes of 12 crossing alternating knots

Knot Diagram Complex

121121 NOT FOUND

121122
T

121123
T

121124
T

121125
T

121126

T3

T2T1 T2T1

T3T3

T2 T4T2 T4

T3

T4

T5T5

T6

T3 T5

T4 T6

121127
T1 T2T2 T3T3 T4

121128
T

Knot Diagram Complex

121129
T

121130
T

121131
T

121132
T1 T2T2 T3T3 T4T4 T5T5 T6

121133
T1 T2T2 T3T3 T4

121134
T

121135
T

121136
T
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Table 7.96. The Kakimizu complexes of 12 crossing alternating knots

Knot Diagram Complex

121137 NOT FOUND

121138
T

121139
T1 T2T2 T3T3 T4

121140
T

121141
T

121142 NOT FOUND

121143 NOT FOUND

121144 NOT FOUND

Knot Diagram Complex

121145
T1 T2

121146
T1 T2T2 T3

121147 NOT FOUND

121148
T

121149
T

121150
T

121151 NOT FOUND

121152
T
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Table 7.97. The Kakimizu complexes of 12 crossing alternating knots

Knot Diagram Complex

121153
T

121154 NOT FOUND

121155 NOT FOUND

121156
T

121157
T

121158
T1 T2T2 T3T3 T4T4 T5T5 T6

121159
T1 T2

121160 NOT FOUND

Knot Diagram Complex

121161
T1 T2T2 T3T3 T4

121162
T1 T2

121163

T3

T2T1 T2T1

T3T3

T2 T4T2 T4

T3

T4

T5T5

T6

T3 T5

T4 T6

121164 NOT FOUND

121165
T1 T2

121166
T1 T2

121167
T

121168
T
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Table 7.98. The Kakimizu complexes of 12 crossing alternating knots

Knot Diagram Complex

121169 NOT FOUND

121170 NOT FOUND

121171 NOT FOUND

121172 NOT FOUND

121173 NOT FOUND

121174 NOT FOUND

121175 NOT FOUND

121176
T

Knot Diagram Complex

121177 NOT FOUND

121178 NOT FOUND

121179 NOT FOUND

121180 NOT FOUND

121181 NOT FOUND

121182 NOT FOUND

121183 NOT FOUND

121184 NOT FOUND
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Table 7.99. The Kakimizu complexes of 12 crossing alternating knots

Knot Diagram Complex

121185 NOT FOUND

121186 NOT FOUND

121187 NOT FOUND

121188
T

121189 NOT FOUND

121190
T

121191
T

121192 NOT FOUND

Knot Diagram Complex

121193 NOT FOUND

121194 NOT FOUND

121195
T

121196 NOT FOUND

121197 NOT FOUND

121198 NOT FOUND

121199
T

121200 NOT FOUND
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Table 7.100. The Kakimizu complexes of 12 crossing alternating knots

Knot Diagram Complex

121201 NOT FOUND

121202 NOT FOUND

121203
T

121204 NOT FOUND

121205 NOT FOUND

121206 NOT FOUND

121207 NOT FOUND

121208 NOT FOUND

Knot Diagram Complex

121209
T

121210
T

121211
T

121212
T

121213 NOT FOUND

121214
T

121215
T

121216 NOT FOUND
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Table 7.101. The Kakimizu complexes of 12 crossing alternating knots

Knot Diagram Complex

121217 NOT FOUND

121218
T

121219
T

121220
T

121221
T

121222
T

121223
T

121224 NOT FOUND

Knot Diagram Complex

121225
T

121226
T

121227
T

121228 NOT FOUND

121229
T

121230
T

121231
T

121232 NOT FOUND
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Table 7.102. The Kakimizu complexes of 12 crossing alternating knots

Knot Diagram Complex

121233
T

121234 NOT FOUND

121235
T

121236 NOT FOUND

121237 NOT FOUND

121238
T

121239 NOT FOUND

121240 NOT FOUND

Knot Diagram Complex

121241 NOT FOUND

121242 NOT FOUND

121243 NOT FOUND

121244 NOT FOUND

121245 NOT FOUND

121246
T

121247 NOT FOUND

121248
T
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Table 7.103. The Kakimizu complexes of 12 crossing alternating knots

Knot Diagram Complex

121249
T

121250
T

121251 NOT FOUND

121252 NOT FOUND

121253
T

121254
T

121255
T

121256 NOT FOUND

Knot Diagram Complex

121257 NOT FOUND

121258
T

121259 NOT FOUND

121260
T

121261 NOT FOUND

121262 NOT FOUND

121263 NOT FOUND

121264 NOT FOUND
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Table 7.104. The Kakimizu complexes of 12 crossing alternating knots

Knot Diagram Complex

121265 NOT FOUND

121266 NOT FOUND

121267 NOT FOUND

121268 NOT FOUND

121269 NOT FOUND

121270 NOT FOUND

121271 NOT FOUND

121272 NOT FOUND

Knot Diagram Complex

121273
T

121274
T

121275
T1 T2T2 T3T3 T4

121276
T

121277
T1 T2T2 T3T3 T4

121278
T

121279
T1 T2T2 T3T3 T4

121280
T
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Table 7.105. The Kakimizu complexes of 12 crossing alternating knots

Knot Diagram Complex

121281
T1 T2

121282
T1 T2

121283
T

121284 NOT FOUND

121285 NOT FOUND

121286 NOT FOUND

121287
T1 T2

121288
T
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