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Abstract

Ecological systems are shaped by nonlinear interactions, spatial structure, and, increasingly, hu-
man interventions. Understanding the mechanisms that drive species persistence, oscillations, and
spatial pattern formation is essential for predicting ecological outcomes and designing effective
management strategies. This dissertation uses a suite of mathematical models—including discrete-
time and continuous-time dynamical systems, spatially explicit metapopulations, and ecological
networks—to explore the dynamics of insect herbivores, their parasitoid enemies, and multispecies
fisheries systems.

The first part of this work focuses on host-parasitoid dynamics across habitat patches. Using
discrete-time models, we show how migration influences the synchrony of population outbreaks,
identifying parameter regimes that support in-phase or out-of-phase oscillations. These results are
shown to be robust across a variety of functional forms for parasitism and competition. Extending
this analysis to larger, heterogeneous landscapes, we explore how even modest habitat loss can
disrupt spatial synchrony, reduce population densities, and generate novel spatial phenomena such
as spiral waves—emerging from the interplay between local dynamics and spatial heterogeneity.
In the final part of the dissertation, we develop a continuous-time ecological network model of fish-
eries that incorporates both species interactions and heterogeneous human harvesters. We examine
how bioeconomic feedbacks and quota-based management policies affect ecological resilience and
economic outcomes. By simulating multiple food webs and policy scenarios, we highlight trade-offs
between conservation, profit, and harvest sustainability.

Together, these studies demonstrate the power of mathematical modeling in revealing general prin-
ciples of ecological dynamics and informing management strategies in complex, coupled human-

natural systems.



Acknowledgments

As the saying goes, “It takes a village to raise a child.” While I am no longer a child, this PhD
journey has reminded me of how deeply true that sentiment remains. My Indian heritage has
always emphasized the role of community in shaping individual success. This achievement is no

exception—I owe it to the many people who supported me throughout my time in graduate school.

I begin by thanking my parents, who have always encouraged me to carve my own path, even
when it diverged from tradition. Their emotional support and sacrifices made this PhD possible.
My father sparked my love for mathematics early on; some of my fondest childhood memories are
of working on Math and Physics Olympiad problems together. Those long conversations laid the

foundation for my academic path.

I'm grateful to my extended family, especially my cousin Appilineni Disanth, for shielding me from
the challenges back home and taking care of my family’s needs during the global pandemic. His

support allowed me to focus on my research with clarity and single-minded determination.

I am deeply thankful to Alan Hastings for the opportunity to be his student and for his mentorship
over the past six years. As an undergraduate, I had read his work, and it felt surreal to be accepted
into a PhD program where I could work with him. I still remember the night I received my offer—I

couldn’t sleep, knowing how life-changing it would be. Six years later, I know that it truly was.

I would also like to thank Fernanda Valdovinos for welcoming me into her lab, even though I al-
ready had an advisor. She believed in my ability to manage independent projects and supported
me as I stepped into a new research area on fisheries. Her guidance and encouragement were in-
strumental in helping me pursue interdisciplinary work. I was thrilled when she joined UC Davis,
having earlier expressed my interest in working with her while she was at Michigan. I also want to
extend my sincere thanks to Michael Springborn for mentoring me through the fisheries project,
offering valuable feedback, and letting me develop my own questions at the intersection of ecology
and economics—despite my lack of formal background in either. I’d also like to thank other faculty

members at UC Davis with whom I've had fruitful discussions—Sebastian Schreiber, Tim Lewis,

vi



and Marissa Baskett, to name a few.

I am grateful to my labmates in Fernanda’s group— Taran, Sophia, Sabine, Casey, Kayla, Marco,
Lauren, Alaina and Rebecca—for their camaraderie, support, and technical help. Coming to work
was genuinely fun because of them. I also thank Tina Denena from the Department of Mathematics
and Statistics and Jennifer Carriere from Environmental Science and Policy for helping me navigate

many logistical hurdles.

I’d be remiss not to mention those outside academia who stood by me. I'm especially grateful to
my therapist, Blanca, for helping me navigate the mental health hurdles I've battled for a long
time. Thank you to Becca, Emily, and Melanie for their unwavering emotional support during the
highs and lows of the past two years. To my friends in Davis and Sacramento—Sudheer, Shriya,
Lauren, Shisham, Girish, Xue, Davi, Jorge—thank you for making this place feel like home. I'm
also grateful to my friends from back home — Chinmay, Agniva, Shubham, Anurag, Yogesh, An-
shuman, Tara and Sabyasachi for the conversations, travel, and shared experience of navigating
grad school. And to my teammates from Microbes—Eduardo, Courtney, Tyler, Hadi, Dino, Pedro,
Maritza, Ben, to name a few—thank you for helping me pursue my love of football (soccer) while

juggling academic life (no pun intended).

I’ve always found deep inspiration in sports. The discipline, hard work, persistence, and humility
that define athletic excellence have mirrored my own academic journey. As a lifelong football fan,
watching Lionel Messi win the World Cup in 2022 was a profoundly emotional moment. His jour-
ney to win something with his national team—from near misses in 2007, 2014, 2015 and 2016 to
ultimate triumph in 2022—reminded me that perseverance through setbacks can lead to extraordi-
nary outcomes. That story became a wellspring of hope through the hardest stretches of my PhD.
GOAT, for a reason.

vii



Introduction

Mathematical modeling and simulation have become cornerstone tools in developing ecological
theory, providing a quantitative framework to analyze complex biological systems. These tools allow
us to uncover the fundamental governing principles of ecological systems and make predictions by
combining biological insight with tractable models. Ecological systems are complex, nonlinear, and
often spatially structured, with interactions across multiple spatial and temporal scales—conditions
where intuition alone is insufficient for accurate prediction. Through the construction and analysis
of mathematical models, it becomes possible to dissect key mechanisms, explore parameter regimes,
and uncover general principles that govern ecological persistence, oscillations, and stability. From
understanding outbreak cycles in insect populations to predicting the effects of fisheries management
on marine ecosystems, such models serve as a bridge between ecological questions and quantitative
predictions.

This dissertation lies at the intersection of applied mathematics and theoretical ecology, using
discrete-time and continuous-time models, spatially implicit and explicit frameworks, and ecologi-
cal network theory to investigate how movement, spatial structure, species interactions, and human
interventions shape ecological dynamics. Across diverse biological systems—from host-parasitoid
interactions to fisheries dynamics—a common goal is to develop models that are simple enough
to yield analytical and computational insights, yet detailed enough to capture essential ecological
processes. Although the systems studied differ in biological details, they share common challenges:
understanding persistence, oscillations, species interactions, and the consequences of heterogeneities
and human interventions in the form of biological control or management policies. Through a com-
bination of mathematical analysis and numerical simulation, this work advances our understanding
of ecological systems under both natural and anthropogenic pressures.

The first part of this work examines the role of dispersal in synchronizing simple discrete-time
host-parasitoid models. In ecological systems where local populations are coupled by movement,
dispersal can synchronize or desynchronize oscillations, alter extinction risks, and generate complex

1



spatial patterns. To investigate this, classical models of host-parasitoid dynamics, often studied
in isolated patches, are extended to a two-patch framework where movement between patches
induces novel dynamical behaviors. Using a combination of linear stability analysis, bifurcation
theory, and numerical simulations, we investigate how migration between habitat patches influences
outbreak dynamics, with particular focus on conditions under which oscillations in neighboring
patches become synchronized or remain out of phase. Moving beyond specific functional forms, we
emphasize the robustness of these patterns across alternative biological assumptions. We further
extend the analysis to biologically independent cellular automata models, highlighting how general
mirgation and update rules create the same synchronized outcomes as that of a biological model.
Building on these results, the second part extends the two-patch model into a metapopulation frame-
work and introduces spatial heterogeneity. Natural landscapes are rarely homogeneous; habitat loss,
fragmentation, and barriers to dispersal are ubiquitous. By modeling habitat as a lattice of discrete
patches, with a fraction rendered uninhabitable, we investigate how small-scale heterogeneities af-
fect population persistence and spatial synchrony. Two alternative dispersal rules—absorbing and
reflecting at the boundary of uninhabitable patches—are considered to disentangle structural ef-
fects from demographic mortality during movement. Incorporating spatial heterogeneity into host-
parasitoid models reveals that even small amounts of habitat loss can disrupt spatial synchrony
and alter mean population densities, with effects that depend critically on behavioral assumptions
about movement near uninhabitable patches. We also highlight new causes for the emergence
of widely studied spiral wave patterns, thus underscoring the importance of considering spatial
structure explicitly when extrapolating theoretical predictions to real-world systems.

The final part of the dissertation shifts to continuous-time ecological network models to study the
interplay between ecological interactions, human harvesting, and management policies. Fisheries
provide an ideal system to examine the tension between ecological sustainability and economic
incentives. Traditional fisheries models often neglect species interactions, focusing on single-species
dynamics. Moving beyond these, we employ an allometric trophic network (ATN) framework, based
on ordinary differential equations parameterized by metabolic scaling laws, to capture species in-

teractions within marine food webs. Human harvesters, modeled as additional dynamic nodes



connected to target and bycatch species, introduce bioeconomic feedbacks into the network. Het-
erogeneity among fishers—reflecting differences in catch efficiency and bycatch avoidance—is in-
corporated to reflect realistic variation in fishing strategies. This framework allows us to evaluate
how different management policies, such as quota-based closures, affect both ecological outcomes
(species persistence, biodiversity) and economic outcomes (profitability, season length). Through
this bioeconomic model, we evaluate trade-offs and identify strategies that promote long-term sus-
tainability.

Across all chapters, a unifying methodological approach is emphasized: the construction of min-
imal models that retain essential biological realism while allowing for analytical tractability and
systematic exploration of parameter space. Numerical simulations complement analytical work
where necessary, particularly in regimes characterized by complex dynamics such as chaos or emer-
gent spatial patterns. While acknowledging the inevitable trade-offs between model simplicity and
ecological realism, this work aims to identify mechanisms that persist across model structures, func-
tional forms, and ecological contexts. In sum, this dissertation contributes to the broader goals of
theoretical ecology and applied mathematics by developing, analyzing, and interpreting mathemat-
ical models that reveal how ecological systems respond to spatial structure, movement, interaction

networks, and human interventions.



CHAPTER 1

Effect of Migrations on Synchrony in Host-Parasitoid system

Abstract

Insect outbreaks can cause large scale defoliation of forest trees or destruction of crops, leading
to ecosystem degradation and economic losses. Some outbreaks occur simultaneously across large
geographic scales and some outbreaks occur periodically every few years across space. Parasitoids
are a natural enemy of these defoliators and could help mitigate these pest outbreaks. A holistic
understanding of the host-parasitoid interactions in a spatial context would thus enhance our ability
to understand, predict and prevent these outbreaks. We use a discrete time deterministic model
of the host parasitoid system with populations migrating between 2 patches to elucidate features
of spatial host outbreaks. We show that whenever populations persist indefinitely, host outbreaks
in both patches can occur alternatively (out of phase) at low migration between patches whereas
host outbreaks always occur simultaneously (in phase) in both patches at high migration between
patches. We show that our results are robust across a large range of parameters across different
modelling approaches used typically to model intraspecific competition among hosts and parasitism,
in the host-parasitoid literature. We give an analytical expression for the period of oscillations
when the migration is low i.e., when host outbreaks in both patches are out of phase, show it is
in agreement with numerical results. We end our paper by showing that we get the same results
whether we include the biologically rooted formulations from [92] or a general cellular automata

model with qualitative rules.

1.1. Introduction

It is long known that insect herbivores are agents causing threats to ecosystems - threatening ir-
reversible changes to food security, forest cover, etc. [11], [22], [44]. These insect populations can
remain at a low density for many years, often going unnoticed. However, every few years, these
insect populations explode in numbers, causing large scale loss of forest cover [86], [73]. Classical

biological control is a way to deal with these outbreaks, where a foreign species (natural enemy) is
4



purposefully introduced and established to suppress the outbreaks of the native species [23], [29].
Pests which can be controlled by introducing natural enemy includes invertebrates, vertebrates
and weeds. The organisms that function as natural enemy include vertebrates (birds, reptiles) and
invertebrates (parasitoids). Here, we focus our attention on herbivore insect populations and the

parasitoids which attack them.

Parasitoids have long been a subject of ecological interest for several reasons. Roughly 14% of all
insect species are parasitoids [57]. The female parasitoid searches for an immature stage of the
herbivore insect (host) and lays eggs inside it. These eggs hatch inside the body of the host and
the parasitoid larvae feed and grow at the expense of hosts, inside the host. At a later stage, they
emerge from the host, typically killing it in the process. Thus, parasitoids are considered agents
of biological control as they can keep the herbivore insect populations to low numbers by direct

mortality [125], [128], [48], [115].

There are several simplifications which make the study of host-parasitoid system more suited to
study enemy-victim dynamics than more general predator prey dynamics. Many parasitoids are
highly specific to the hosts they predate [115], allowing us to consider the host-parasitoid system
as a closed system, independent of the influence of other populations. Furthermore, this specificity
also leads to synchronized life cycles of host and parasitoid species, allowing the use of discrete time
equations appropriate. Since hosts are attacked only by adult parasitoids, we can further ignore

age structure in our modelling [94].

Population oscillations are an important characteristic of many outbreaking foliage eating insects
dynamics and this is often related to large scale spatial synchrony [7&8]. There has been many the-
oretical studies understanding these oscillations [121], [2], pinning these oscillations to parasitism,
food limitation etc., without considering the spatial extent of these processes and hence missing the
full picture of spatial synchrony. For insect outbreaks, which often have large amplitude oscilla-
tions, previous works have suggested the effect of migration to be a key driver [49]. Migration is of

crucial importance in unraveling the dynamics of spatial synchrony in insect populations [3], [87].



Migration can introduce traveling population waves, leading to complex relationships between syn-
chrony and distance [87], [58]. Migratory movements can synchronize the dynamics of different
species, including those with direct trophic interactions and shared resources [87]. Investigating
migration patterns can lead to insights into the mechanisms driving spatial synchrony which is vital
for predicting and managing insect outbreaks, understanding ecological interactions, and effectively

conserving and controlling insect populations.

Spatial synchrony has long been studied in ecology, both in host-parasitoid systems [4], [58] and
more generally predator-prey models [75], [60], [49], in both continuous and discrete time frame-
work. Despite the rich literature, the relationships between regulatory factors (such as intraspecific
competition, parasitism etc.), migration and spatial synchrony still remains elusive due to lack
of consensus. One reason for the lack of consensus is the strong assumptions and specificity of
the modelling frameworks used, as dynamical systems (and the emergent behavior) are sensitive
to the choice of modelling frameworks involved. Furthermore, focus is often on the stabilizing or
destabilizing effects of migration [3], [75], [107] on the persistence of oscillations, with emphasis on
stability and bifurcation analysis. This misses important features of the coupled spatial system like
frequency of oscillations, which is difficult to infer from bifurcation diagrams especially if the under-
lying dynamics are chaotic and the resulting oscillations are out of phase. Out of phase oscillations

are stable as the populations are less prone to local extinction due to recolonization from adjacent

patches [24]. Out of phase oscillations have been shown in empirical studies [96], [123] and nu-
merical studies [58], [4]. But analytical insights into them are limited to continuous time models
where theory of weakly coupled oscillators is useful [49], [126] or simple discrete models [59], [51]

with period 2 cycles.

We aim to fill some of these gaps in our study using a discrete time host-parasitoid system in 2
patches, with migration between them. Given the rather strong assumptions made in most spatial
host-parasitoid models, it could appear that drawing conclusions about a specific biological system
could be difficult. We address this gap here by trying to demonstrate robust results that should
apply across a range of systems. For example, in Section 3, we show that at low migration, the

host outbreaks in the 2 patches occur alternatively (out of phase) and at high migration, the host



outbreaks in both patches occur simultaneously (in phase). While similar results for host-parasitoid
systems have been shown before [4], we focus our attention to the robustness and cause of such
oscillations, which is novel. We address the robustness (in Section 4) by testing our results across
different biologically relevant functional forms for intraspecific competition and parasitism. Later
in Section 6, we also show that similar results are obtained in a cellular automata model devoid
of biological detail, which only qualitatively captures host-paraisioid systems, thus establishing the
role of migration independent of other biological interactions. Furthermore, we provide an analytical
expression for the time period of oscillations, when patches oscillate out of phase, something that
is often limited to simpler discrete time models. We show a comparison of our analytical results

with numerically obtained time period in Section 5.

1.2. Single patch dynamics

Time Series Phase plot

—®—host a
 —¥—parasitoid

Density

2 3 4 5
Parasitoid density

FIGURE 1.1. a) Time series and b) phase plot of a single host-parasitoid population
at steady state is shown. The 3 stages i.e., Buildup, Outbreak and Crash is shown,
with the diamond on the left showing the included generation in each stage. As
shown, the densities show a quasi-periodicity, where they are confined within a
manifold as shown in (b).

We use the general formulations from [92], which models 3 phenological processes - reproduction,
intraspecific competition amongst hosts and parasitism (by parasitoids). This gives a general form

for annual densities for hosts (H;) and parasitoids (/)
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Hyiy = AF(H)G(Hy, P,)

(1.1) Prr = cF(H,)(1 — G(Hy, Py))

Here X is the intrinsic growth rate of the hosts and ¢ is the number of parasitoids that emerge
from a single larva. Following the analysis done in [121], we assume the following form of non-
dimensionalized equations for the host-parasitoid dynamics within each patch, where the min func-
tion is used to model intraspecific competition. It is exactly compensatory, as opposed to Ricker
or many other forms of intraspecific competition which are over compensatory. This model has an

unstable fixed point and thus leads to oscillations as shown in Figure 1.1.

ht+1 = )\min(ht, 1)67pt

(1.2) pry1 = ymin(hy, 1)(1 — e™Pt)

The oscillations produced by this model (as shown in Figure 1.1 a) can be roughly divided into 3
stages i.e., 1) Buildup - which is marked by low host and parasitoid densities i.e., 1 > h; (typically
hi = 0 for all but the last generation of buildup) and p; =~ 0 (see Supplementary Figure 1). During
buildup, the effect of intraspecific competition and parasitism on host densities are negligible, thus
Equation 2 for host reduces to hiy1 =~ Ah, leading to geometric growth. This is followed by
2) Outbreak - which is marked by high host density but low parasitoid density i.e., hy &= A >
1I,InA > p; (typically p, =~ 0 for all but the last generation of outbreak) (see Supplementary
Figure 1). Intraspecific competition amongst hosts reduces host densities every generation, but the
mortality due to parasitism is still negligible. Thus, the host densities remain high post reproduction
every generation. Because hosts are abundant, parasitoids grow geometrically during outbreaks as
Equation 2 reduces to piy1 = (1 — e ) =~ 7p;. Outbreak is followed by 3) Crash - where
the parasitoid population is large enough to reduce host population significantly (i.e., p; > In \).

Typically, crash lasts for 2-3 generations, as shown in Figure 1.1 a.



1.3. Two patch dynamics

Let hi, p! be the host and parasitoid population in patch i at time ¢. Let A be the growth rate of
the host and v be the growth rate of parasitoid. Let e be the fraction of population migrating from

one patch to another. The equations for the resulting dynamical system is:

hiv1 = hin(1 =€) +€hi,
hig1 = him(1 =€) + € hiy,
p%+1 = pi(1—€) + € piy
(1.3) i1 = D (1 — €) + € Piry

Here hi . p.. represent the host and parasitoid densities in patch i at t before migration after

competition, parasitism and reproduction have taken place i.e.,

(1.4) i = Amin(hi, 1)e "
(1.5) Phy = ymin(hi, 1)(1 — e 7)

In our model, reproduction is given by a multiplicative factor, thus, the order of migration and
reproduction can be interchanged. Biologically, it’ll refer to the scenario where the surviving adults

after competition and parasitism have taken place, migrate and then reproduce.

When € — 0, both patches oscillate almost independently i.e., the effect of coupling due to migra-

tion between patches is negligible. Note that the parameters are identical in both the patches.

As we increase the strength of coupling due to migration i.e., € from 0, we first get out of phase
solutions (as shown in Figure 1.2 (b)), where the peaks in host densities (i.e., host outbreaks) in
2 patches occur alternatively (out of phase). These out of phase oscillations persist indefinitely in
our simulations as long as the initial conditions in the 2 patches aren’t very identical. If the initial
conditions are identical, then both patches behave as one single patch and thus, they oscillate in

unison. In our simulations, initial conditions were selected randomly and the host densities of 2

9



c=0 e‘=10'6

a | —@—patch 1 b
—®—patch 2
4 4
2 2
>
@ 0 0
8 0 10 20 0 10 20
7 e = 0.01 e =0.05
o ‘ ‘ ‘
T c d
4 4
2 2
0 0 ‘
0 10 20 0 10 20
time

FIGURE 1.2. Host densities at steady state are shown for different migration rates.
The parameters A = 3, v = 6 were fixed. In (a), there is no coupling between the
patches. However, when we increase €, we see out of phase solutions (b, ¢), where
the host outbreaks in the 2 patches occur alternatively. These out of phase solutions
exist for a large range of € values. Increasing e, the time period of host outbreaks
decrease till the outbreak occurs for 1-2 generations (as shown in (c)). With further
increase in migration, the host outbreaks in both the patches occur simultaneously
as shown in (d).

patches at steady state is shown in Figure 1.2.

These out of phase solutions occur for a wide range of migrations as shown in Figure 1.2 (b, c),
ranging several orders of magnitude, for any combination of (\,7), as long as parasitism () is
not large enough to result in overall extinctions. With increasing €, we find that the length of the
outbreaks decreases until the outbreaks occur for 1-2 generations. Further increasing €, beyond
this point leads to a transition towards in phase solutions, where the host outbreaks occur simulta-

neously in both patches (as shown in Figure 1.2 (d). We find that, the transition occurs in a very

10



small window for e i.e., (in 0.01 < € < 0.025). The exact nature and window of transition is complex
and depends on other parameters i.e., A and . These out of phase solutions are a result of small
coupling and these oscillations differ greatly from when each of those oscillators are uncoupled, see
Figure 1.2 (b, c¢) and Figure 1.2 (a), for comparison with individual uncoupled oscillators. Such
emergence of new oscillations have been studied in detail in previous works with coupled oscillators
as well [59], [51], although the out of phase solutions in these works were limited to period 2 cycles.
The out of phase solutions in our work occur across a wide range of cycles, more of which we discuss

in the section 5.

Out of phase solutions are further characterized by periods of near absence of hosts are accompa-
nied by sudden outbreaks which last for few generations in each patch. However, if we look at the
overall sum of host densities in both patches, they remain unchanging for most of the generations
as shown in Figure 1.3 (a). However, the in phase solutions are different as periods of near absence
of hosts are accompanied by sudden outbreaks lasting few generations, both at individual patch

level and overall sum over both patches as shown in Figure 1.3 (b).

At higher values of €, we see in phase solutions, where the peaks in host densities (i.e., host
outbreaks) in 2 patches occur simultaneously (as shown in Figure 1.2 d) i.e., both patches oscillate
in phase. High migration rates i.e., (¢ — 0.5) lowers any difference in population in 2 patches. This
happens till both patches oscillate in phase after which the effect of migration is negligible. To
support this numerically observed result, we highlight below some analytical arguments to support

why high migration leads to in phase solutions:

Ahg1 = hypy — iy = A1 = 2€)6

1 2
Apit1 = piy1 — Py

(1.6) = (1 — 2€)(min(h}, 1) — min(h?,1) — 0)

0= (min(h%, 1)e*p% — min(hZ, 1)671)?)

11



10 ; ; 10 ; ;
a —e—patch 1 b —@—patch 1
—@—patch 2 —®—patch 2
87 . sumof | 8] _,_sum of
> 2 patches 2 patches
2 6
)
()]
g4
I
2 L
0
0 10 20 30 0 10 20 30

time

F1GURE 1.3. Host densities at steady state are shown for different migration rates.
At low migration (a) i.e., e = 1079, we see that the host outbreaks in the 2 patches
occur alternatively. The sum of the host densities remains constant with small
fluctuations every few generations. In contrast, at high migration rates i.e. € = 0.05,
host outbreaks in both the patches occur almost simultaneously as shown in b). We
see cycles of large overall host outbreaks followed by generations of near host absence,
as shown by the sum of the host densities in the 2 patches. The parameters used
were A =3, 7 = 6.

and Ah, Ap; represents the difference in host and parasitoid densities between patch 1 and 2 at

time ¢t. From Equation 6, we get:

(1.7) %Ahtﬂ + Aprpr = (1 — 2€)(min(h!, 1) — min(h2, 1))

When both patches are undergoing buildup, p} ~ p? ~ 0 (see Supplementary Figure 1). Thus,
we only focus on the difference in host densities, which without loss in generality, we assume

1 > h} > h?. Furthermore, when migration is high i.e., A(1 — 2¢) < 1, we have:
Aht_H < Aht

i.e., the difference between hosts in 2 patches keeps decreasing every generation during buildup. A
similar argument can be formed when one patch is in outbreak and other is in buildup. Assuming
hi > 1 > h? i.e., patch 1 is in outbreak and patch 2 is in buildup. Given parasitoid densities in
both patches are still very low i.e., pi ~ p? ~ 0 (see Supplementary Figure 1), we again focus only

on difference in host densities. When migration is high i.e.; A\(1 — 2¢) < 1, we have
12



Ahgyr =~ M1 —2¢)(1 — h2) < M1 — 2¢)Ahy < Ahy

i.e., the difference in host densities in 2 patches decreases. Furthermore, if both patches are in
outbreaks, the host densities are in carrying capacity i.e., hf = h? = A\ = Ahy11 = hy = 0, then

from Equation 6, we see that

Aprpr = (1 — 2€)(e7P — e7P1)

Since parasitoid densities are still low i.e., p} ~ p? ~ 0, we can use Taylor expansion and have

eP —e P < pt — p? = Ap; and that at high migration (1 — 2¢) < 1, to get

Apir1 < Apy

i.e., the parasitoid densities decrease every generation as long as both patches are in outbreak.
Lastly, we do not account for crashes or the small times during outbreaks when parasitoid densities
are significant, typically the last generation of outbreaks. We know from numerical studies that
these small times do not destroy the synchronizing behavior of migration during combined time of

buildup and outbreak, for which we provided mathematical arguments above.

1.4. Robustness across choice of functions

TABLE 1.1. List of all different functions we’ve tested in our 2 patch model

Description Mathematical form Other parameters involved

H.
Ricker map for hosts intraspe- | F/(H;) = =% Growth rate r, Carrying Ca-
cific competition pacity K

Growth factor A, Carrying ca-
pacity K, strength of compe-

Smith map for hosts intraspe- | F'(H;) = H—(Aflw
cific competition K

tition b
Independent search by para- | G(Hy, P;) = e~ Per capita searching efficiency
sitoids for hosts a
%
Aggregated attacks by para- | G(Hy, P) = <1 + aljp) Per capita searching efficiency
sitoids on hosts a, Degree of aggregation k

Our results from the previous section are robust across different choices of intraspecific competition
ie., F(H) and parasitism G(Hy, P;). For F(H;), we chose Ricker map and a function described

by Maynard Smith, for annual insects amongst choice of intraspecific competition (as shown in the
13



table below). For G(Hy, P;), we used both independent and aggregated parasitoid search for hosts.
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FIGURE 1.4. Host densities in 2 patches are plotted at steady state. Top (bottom)
row represents cases for low (high) migration rates respectively. a) and c) are ex-
amples where host intraspecific competition was modelled using Ricker map and
the parasitoid attack was aggregated. b) and d) are examples where intraspecific
competition was modelled using Smith map and parasitoid search for hosts are in-
dependent.

We found similar out of phase and in phase oscillations at low and high values of migration for any
combination of functions mentioned above. Figure 1.4 shows a few specific cases of our findings.
In each modelling framework, the existence of out of phase and in phase solutions solely depends
on the migration, across a range of other parameters involved in the modelling framework. This
indicates that the synchrony patterns are robust across modelling choices, as long as intraspecific
competition and parasitism are included in biologically relevant way. Migration is the determining

factor for the resulting synchrony between the patches.
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1.5. Length of the cycle

When migration rate is high, both patches oscillate in phase, behaving like a single patch. Thus, any
measure of length of cycle i.e., time between successive host outbreaks, can be calculated using the
equations derived for a single isolated patch [121]. We provide an approximate expression for length
of cycle when migration rates are low and both patches oscillate out of phase. We assume that
during out of phase oscillations the buildups and outbreaks occur in the two patches alternatively,
without any overlap. This assumption is true for most of the out of phase oscillations we see in
our model with few exceptions (where there’s partial overlap between buildups and outbreaks). We
define Tj, ;, T, ; and T;; as the number of generations patch i undergoes buildup, outbreak and
crash respectively. Following the assumption about out of phase oscillations, we can conclude the

following (without losing generality):

e Duration of buildup in 1 patch must be no more than the combined duration of outbreak

and crash in patch 2 i.e.,
(1.8) Thg < Top+Teo

If this condition isn’t satisfied, then both the patches will have build-up simultaneously,
which isn’t the case in out of phase oscillations.
e Duration of buildup in 1 patch must be no less than the duration of outbreak in patch 2

ie.,
(1.9) Tb71 > TO’Q

If this condition isn’t satisfied, then both the patches will have outbreaks simultane-

ously, which isn’t the case in out of phase solutions.

Since typically a crash occurs for 2-3 generations in our model, as shown in [121], we have T2 =
2 or 3. For the rest of the analysis, we assume T2 = 2, as this provides an upper bound on Tj, ; for
Equation 8, which holds whether the crash is 2 or 3 generations long. If we take T2 = 3 to derive
the upper bound on 7Tj, 1, then the buildups will overlap following the cycles when the crash only

lasts 2 generations long, which is not how we define out of phase solutions. Taking Tt o = 2 gives
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FIGURE 1.5. Length of cycle (numerically and approximate expressions - Equation
18 (black) and Equation 21 (green)) are plotted. Each blue dot represents length
of cycle numerically obtained for a single iteration, after taking the mean of 1000
different cycles at various time points (randomly selected) after steady state was
reached. The green and black curves represent the approximate theoretical expres-
sions for length of a cycle when both patches are out of phase, as derived in the text.
When e < 0.01, we mostly get out of phase solutions which changes as € is increased.
At higher migration i.e., € > 0.02, although most of our simulations result in both
patches oscillating in phase, we still find some cases where both patches oscillate out
of phase. Our theoretical expressions for length of cycle of out of phase solutions
matches the numerically obtained ones even at high migration values, where the
occurrences of out of phase solutions are few. Here A = 3.375 and v = 4.875.

us solutions which always ensure the buildups occur alternatively. Combining Equation 8 and 9,

with the fact that T, o = 2, we get the expression
(110) Tb,l = T072 +1or?2

Because both the patches are symmetric, we have Tj, 1 = T}, o and T;, 1 = T, 2. Henceforth, we will
drop the patch numbers and just talk about buildup (7}), outbreak (75) and crash (7¢) phases and
the total length of the cycle (7).

(1.11) T=T,+T,+T,
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Substituting T}, from Equation 10 in Equation 11 and adding that T, = 2, we get

(1.12) T = 2T, + 3 or 2T, + 4

_ 2_l>
In a single isolated patch, the host density after a crash is given by H = \%e 7( */ (as shown
in [121]). In our 2 patch model, we assume that the host density after the crash (in patch 1) is
changed only by the amount that is migrated by the patch 2. Since the patch 2 is in outbreak, the
host density that migrated to patch 1 is given by e\. Thus, the overall host density in patch 1 in
. . . 2 - 2_% . . 9 —y 2—%
the first generation of buildup is H; = A\°e —+ €. Since v is usually large, A“e ~ 0.

This is supported by the intuition that after the crash, the host densities are reduced to very small
— 2_1)
values due to parasitism. Thus, for very small values of migration i.e., € < Ae 7< */, we don’t

see any effect of migration and the two patches behave as if they are isolated patches. But for

— 2_l>
1>>e>>Xe V2 , Hi =~ e\. Given the geometric nature of the growth of host density during
buildup (as parasitoid density is low, leading to no mortality due to parasitism) in addition to host
migration from the other patch undergoing an outbreak, after ¢ generations, we have

(1)

(1.13) Hy=eN 4+ N4 b)) =€l -

As long as the patch 2 is undergoing outbreak, the host density in the patch 1 in the buildup phase
will continue to grow according to the expression above.
(A —1)
1.14 Hp =ed——=
(1.14) T =N
Following outbreak, the patch 2 undergoes crash which has high parasitoid density, reducing host
densities in that patch. Thus, we can ignore the effect of migration for the remainder of the buildup
in patch 1, which can last 1 or 2 more generations (see Equation 10). Assuming the buildup in

patch 1 lasted 2 more generations after outbreak in patch 2, we get the following

(- 1)
(1.15) Hrp, = e)? -
Similarly, at the end of buildup the host density is Hy, ~ 1 (as shown in [121]). Equating the

expected host densities at the start of outbreak, we get
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(™ 1)
A—1

(1.16) ex’ ~1

This gives us an approximate expression for T, and T = 2T, + 4 as follows

) ° In(\)
In (14254

Furthermore, if instead we assume that the buildup in patch 1 lasted 1 more generation following

outbreak in patch 2, in which case T' = 2T, + 3, we get the approximate expression as

To _
(1.19) Hy, = e)\? (AA — 11) ~1
(1.20) T, = m(/\)
In
(1.21) T=34+2 N/ (1+ A)

We’ve used the host dynamics to calculate the cycle length, hence the final expression doesn’t have
any dependence on «. Parasitoid exclusion until the last stage of outbreak doesn’t significantly
affect the host densities as shown here [121] and supported by empirical evidence [120]. Our ex-
pression is approximate (as we've assumed T, = 2) and could be improved with the inclusion of
parasitoid dynamics as well. To test our expressions against numerical simulations, we plot them
against the length of cycle numerically observed in out of phase solutions for different migration
rates (for fixed A and ). To find the length of the cycle numerically, we measure the number of
generations between peak parasitism (during crash) within each patch, after steady state is reached,
which occurs after few 100 generations. We measure this 1000 times from either patch at random
times after steady state is reached, to account for minor variations in the length of cycle after
steady state is reached. The length of the cycle is the mean of these 1000 instances. Furthermore,

for each value of €, we repeat this for 10,000 different iterations, with different initial conditions,
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to account for any dependency on initial conditions. Complex dependency of synchrony on initial
conditions have been shown in discrete time coupled oscillators in previous works before [59], [4].
Our studies differ from those as we focus on length of cycle to show the dependency on initial
conditions, instead of basin of attraction and bifurcation diagrams (done in previous studies) as

obtaining those for our system is complex.

We plot the length of a cycle for all of these 10,000 iterations (for a given €) in the same plot. When
€ ~ 0 or € ~ 1, the length of cycle should be same as that of a single isolated patch, hence we focus
on when ¢ is far from those extremes. Within the range of values leading to out of phase solution
(0.001 < e < 0.008 in Figure 1.5), increasing € increases the degree of recolonization to the patch
with low host density, thus leading to sooner more frequent outbreaks, hence a decrease in length
of cycle. We see the length of cycle decreases from approximately 10 to 6 as € is increased from
0.001 to 0.028. The exact changes in length of cycles depends on the values of A and ¢, as predicted
by the Equation 18 and 21 and thus can incorporate a larger range of out of phase solutions than
the 2 cycle solutions studied in [59], [51]. Furthermore at low migration i.e., for ¢ < 0.008, we
only find out of phase solutions as long as initial conditions in both patches aren’t identical, unlike
continuous time weakly coupled oscillators where you get multiple stable states (other than an out

of phase and an in phase solution) at low coupling [49], [126].

As € is increased beyond 0.008, we start to see emergence of other stable solutions making the final
state of the system dependent on initial conditions. Increasing ¢ beyond 0.02, we mostly get in
phase solutions, with some out of phase solutions as well which are less common, dependent on the
initial conditions. Our analytical expressions derived in Equation 18 and 21 (shown in green and
black in Figure 1.5) for out of phase solution matches the numerically obtained length of cycle for

out of phase solutions, even at higher ¢ when out of phase solutions are rare.

1.6. Cellular Automata model

In this section, we show that our main result - patches oscillating out of phase at low migration

rates and in phase at higher migration rates - is independent of the exact biological details of our
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FIGURE 1.6. An example of the results for different migration rates from our cellular
automata model is shown. Here m = 10, n = 9, o = 3. State 1 represents outbreak,
state 0 represents crash and state -1 represents buildup. a) migration rate is 0 and
hence both patches oscillate independently. At intermediate values of migration ((b)
and (c)), we see both patches out of phase. At higher values of migration i.e., (d),
we see both patches closer to being in phase.

modelling of host parasitoid system. Higher migration rates imply greater reduction in any differ-
ence in densities between the patches. Hence, it’s not surprising that the result - patches oscillating
in phase at higher migration rates - would hold independent of exact biological modelling details
of the host parasitoid system. We instead focus on cases when migration rates are low, exact bio-
logical details are ignored and instead a cellular automata model is considered. We show that out
of phase solutions arise at low migration rates in our cellular automata model, and show a shift
towards in phase solutions as migration rates are increased (see Figure 1.6). Our cellular automata
model is rooted in the empirical observation common to many insect outbreaks i.e., insect densities
stay at low densities for many years before outbreaking at high densities [78]. Hence, without
going into the biological details of it we assume that the buildup occurs for m generations followed

by outbreak for n generations and then crash for o generations (and the cycle continues). The
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state of the host-parasitoid system in a patch can be written as a variable k, indicating how many
generations have passed since the start of the cycle, such that 1 <k < m+ n + o. In an isolated
patch, this state variable k increases by 1 every generation until the end of the cycle is reached i.e.,

k =m + n + o, after which it resets to 1, indicating start of a new cycle.

Now we consider 2 patches at a given time ¢, patch 1 is in state ki ; and patch 2 in state ko4, with
diffusive migration between them. Earlier in our two patch model with explicit biological details of
host and parasitoid, effect of migration was significant in 2 scenarios i.e., 1) when one patch was in
buildup, other in outbreak, leading to significant changes in host densities in the patch undergoing
buildup and 2) when one patch is in outbreak, other in crash, leading to significant changes in
parasitoid densities in the patch undergoing outbreak. Incorporating those features in the 2 patch
dynamics of our cellular automata model, the rules are as follows (same rules apply if the states of

patches 1 and 2 are reversed):

e If patch 1 is in buildup (1 < ki < m) and patch 2 is in outbreak (m < ko; < m + n),
then the state of patch 1 in the next generation is given by ki 11 = ki + e(kos — ki)
rounded to the next integer. This is supported by the intuition that the changes due to
migration would be dependent on the difference in the current states of the two patches.
The state of patch 2 in the next generation increases as usual i.e., ko ; = ko + 1. This is
supported by the biological intuition that when migration is low, the host and parasitoid
densities in the patch undergoing outbreak doesn’t change significantly.

e If patch 1 is in outbreak (m < ki; < m + n) and patch 2 is in crash (m + n < kg; <
m + n + o), then the state of patch 1 in the next generation is given by kj ;41 = kq ¢ +
€(ka+—ki +) rounded to the next integer. Just like before, this is supported by the intuition
that the changes due to migration would be dependent on the difference in the current
states of the two patches. The state of patch 2 in the next generation increases as usual
i.e., kas = ko + 1. This is supported by the biological intuition that when migration is
low, the parasitoid densities in the patch undergoing crash doesn’t change significantly.

Furthermore, any host migration doesn’t change the host densities in either patch sig-

nificantly because patch 1 undergoing outbreak is already at maximum host density and
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patch 2 undergoing crash has high parasitoid density, which would kill any hosts migrating
into this patch.
e In all other scenarios, patches 1 and 2 behave as if they are isolated i.e., ki, ko increases

by 1 every generation.

Figure 1.6 shows the results for different values of migration. Similar to the cases in host-parasitoid
system with explicit biological detail, when ¢ = 0, both patches have no change in their state due
to migration. At low migration values, we see both patches oscillate out of phase, which changes at
higher migration rates. We used m = 10, n = 9 and o = 3 for our figure. But our results are valid
for many values of m, n and o as long as m =~ n >> o. This is an important condition because

crash is often short-lived compared to buildup or outbreak phases.

1.7. Discussion and Conclusion

Understanding spatial synchrony in foliage eating insect outbreaks has been a long standing prob-
lem in ecology [78]. Since the simplest spatial model has 2 locations, several discrete time 2 patch
models have been studied to understand these spatial processes. We replicate some of the results
from those studies and add new interesting insights into the literature. Specifically, we show the
existence of out of phase solutions at low migration values, which was shown before [4]. However,
the earlier model lacked important stabilizing factors and the parasitism was modelled similar to
the classical Nicholson-Bailey model, without any density dependence in host. Outbreaking insect
herbivores are often resource limited and thus including such interactions can be key to under-
standing the overall emergent dynamics. Density dependent factors can have complex stabilizing
or destabilizing effects in the presence of migration as shown previously in [95], [74]. Furthermore,
parasitoids have different foraging behaviors ranging from independent search for hosts throughout
the area [99], to aggregated search for favorable hosts [93]. Thus, we surveyed the literature of
host-parasitoid systems [24], [56] and used a suite of different functional forms to model intraspe-
cific competition for resources among hosts and parasitism. Our analysis shows that the result that
two patches oscillate out of phase when migration is low, is robust across the modelling choices for
intraspecific competition and parasitism. Robustness across modelling choices is useful whenever

direct comparison with data is lacking or difficult, which is the case in host parasitoid populations
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as most time series data for insect outbreaks are about 20-30 years long, which is inadequate for
testing properties of these cycles [78]. Our robustness to modelling choices also presents avenues
of further analytical work where this robustness is mathematically shown starting from a modified

version of Eq. (1).

Our analysis of discrete time equations is significantly different from previous work on discrete
coupled oscillators [51], [59], [107], where much of the emphasis was on persistence of solutions
and the use of bifurcation diagrams to understand stability and equilibrium. Since outbreaking
insects are not in equilibrium, equilibrium analyses cannot be directly applied here. Instead, we
focus our attention on finding the length of cycle, which corresponds to how often the outbreaks
occur. The benefit of doing this is two fold. Length of cycle is a statistic that could be compared
to real world data, even if the data is limited, as opposed to asymptotic equilibrium states which
most natural systems are far from. Secondly, plotting length of cycles numerically for different
migration rates reveals the richness of our system, in terms of both existence of multiple solutions
and the system’s dependence on initial conditions. Using some assumptions, we show how to derive
an analytical expression for length of a cycle (Eq. (8-21)), when the two patches oscillate out of
phase. Our approach is different from the standard analyses, where the underlying model is lin-
earized and eigenvalues are calculated. We used approximations grounded in our understanding of
different stages (i.e., buildup, outbreak and crash) that are characteristic of insect outbreaks [121].
We found that our theoretical expressions are in agreement with the simulation results (Figure
1.5), even at higher migration, where out of phase solutions are the less dominant solution. In
the range of migration where out of phase solutions occur most commonly, increasing migration
decreases cycle length (from 10 - 6 in Figure 1.5), matching our intuition that greater recolonization
would lead to more frequent outbreaks. The range of cycle length emerging in our analysis matches
some of the empirical data as shown by [18]. Furthermore, at intermediate values of migration,
we see existence of multiple solutions, indicating the system’s sensitivity to initial conditions. This
sensitive dependence on initial conditions is an important lesson for ecologists as it arises due to

non-linear dynamics inherent in coupled oscillators [75], [59].
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Our study supplements the large body of coupled discrete time models, which aim to study spatial
synchrony and population oscillations. We assume that competition, migration, parasitism and
reproduction are separated in time, an assumption that holds for egg and pupal parasitoids. For
species where there is overlap amongst these processes, continuous time models are better suited.
In addition, if the time step between successive generations becomes very small, our system con-
verges to a continuous time predator prey system. Synchronization amongst predator prey models
in continuous time is well studied [49], [126]. Existence of multiple phase locking solutions and
dependence on initial conditions are some of the features that our results on cycle length share
with continuous time models. While previous works have shown how out of phase solutions loses
stability as migration is increased, we also show how the cycle length for out of phase solutions
decrease in the process, which is novel. We also predict that the cycle length shown in Figure 1.5
will approach a bifurcation diagram, where the stable solution transitions from out of phase to in

phase branches as migration is increased.

Lastly, we also asked if such oscillations are rooted in the specific biological details of a host-
parasitoid system. We use a 3 state cellular automata model devoid of any biological details (like
competition, parasitism etc.), which qualitatively undergoes buildup, outbreak and crash for m, n
and o time steps respectively. This is rooted in the empirical studies on the time series of many
insect observations, which remain in very low densities for many years before outbreaking (and the
cycle continues). We show that as long as m ~ n >> o, the two patches oscillate out of phase
when migration is low (Figure 1.6). Our assumption m ~ n >> o translates to the fact that the
hosts either stay at very low densities or are outbreaking and the transition between them is fast,
within 1-2 generations, which is appropriate for many observed insect oscillations. Generations in
which parasitoids impact host numbers significantly is very small compared to the time of buildup
or outbreak, supported by empirical studies [18]. Within the assumptions of our cellular automata
model, migration determines whether the two patches oscillate out of phase, in phase or somewhere
in between. Although similar cellular automata models have been used in studies before (see [58]),
our work presents new insights. Our analysis shows that out of phase oscillations could arise as long
as the population in each patch undergoes a cycle of 3 stages, where one stage (i.e., crash) is much

smaller than the other two (buildup and outbreak). This result could hold true for populations
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other than host-parasitoid system, which have large amplitude oscillations and have many years
of near absence followed by outbreaks. Our results won’t hold for more general oscillations where
the transitions between buildup and outbreaks are gradual, and the condition that m ~ n >> o
doesn’t hold. Our work could be extended to a more general framework which could map oscillations
across patches to oscillations in individual patches, a problem which is of interest in metapopulation

studies.
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CHAPTER 2

Effect of Spatial Heterogeneity in Spatial Metapopulation models

Abstract

Metapopulation models are widely used in spatial ecology to understand how dispersal, local in-
teractions, and spatial structure influence population dynamics. However, such models often rely
on simplifying assumptions - uniform habitat patches and periodic boundary conditions - that
rarely reflect the complexity of real ecosystems. In this study, we explore the consequences of these
assumptions using a discrete-time host-parasitoid model on a two-dimensional lattice, with migra-
tion between adjacent patches. We introduce landscape heterogeneity by randomly designating
a fraction of patches as uninhabitable and impose either absorbing or reflecting conditions near
these uninhabitable patches and lattice boundaries. We examine the relationship between steady-
state host density and migration rate across different levels of heterogeneity and migration values.
Our results reveal three qualitatively distinct spatial regimes: asynchronous local oscillations at
low migration, synchronized landscape-wide outbreaks at intermediate migration, and a novel spi-
ral wave phase at high migration in heterogeneous landscapes, where wavefronts emerge from an
interplay between landscape heterogeneity and local population dynamics - distinct from wave-
generating mechanisms in previous models. These spatial regimes are further characterized using
pairwise temporal correlations between neighboring patches. Notably, we show that even small
degrees of heterogeneity can lead to dramatic reductions in host density and a qualitative shift in
the emerging spatial structure - effects that arise not solely from migration-induced mortality, but
from fundamental changes in spatial population dynamics. Our findings highlight the importance
of explicitly incorporating heterogeneity in spatial ecological models and caution against relying

solely on idealized homogeneous landscapes when interpreting migration effects in real systems.

26



2.1. Introduction

Understanding how spatial structure and movement shape population dynamics remains a central
challenge in theoretical ecology [85]. In systems where local populations are coupled through dis-
persal - whether through active movement, migration, or passive transport - spatial interactions can
stabilize or destabilize dynamics, generate large-scale synchrony, and shape patterns of persistence
and extinction [1]. Classic examples include predator-prey and host-parasitoid systems, where dis-
persal can influence the size and duration of insect outbreaks, and determine spatial patterning
across landscapes [24, 58]; epidemic spread, where host movement influences outbreak synchrony
and wavelike infection fronts [50,80]; invasive species, where dispersal across fragmented landscapes
determines range expansion and control outcomes [97, ]; and metacommunity models, where
movement across habitat patches shapes biodiversity and community stability [83]. Across these
systems, spatial coupling plays a key role in driving ecological patterns at both local and regional

scales.

To explore the complex relationship between movement and emerging population dynamics, metapop-
ulation models and other spatial population models have become a cornerstone of spatial ecology.
These models represent landscapes as discrete habitat patches, within which local dynamics un-
fold and between which individuals migrate. Such frameworks have yielded critical insights into
how dispersal shapes extinction risk, recolonization dynamics, regional persistence, and spatial
synchrony [55,58,61, 84, , ]. For analytical tractability, however, many spatial ecological
models assume homogeneous habitat quality and periodic boundary conditions - simplifications

that, while useful, can obscure the ecological consequences of real-world spatial heterogeneity.

In natural landscapes, habitat quality is rarely uniform, and sharp boundaries, uninhabitable
patches, and patch-level variation are the norm. Spatial heterogeneity, including forms of habi-
tat loss and fragmentation, can profoundly influence population persistence, synchrony, and spatial
patterning [40, ]. Neutral landscape models (NLMs) have played a key role in formalizing how
structural variation in habitat layout affects ecological dynamics [129, |. These models highlight
that even modest changes in habitat distribution can shift core relationships between population

density, dispersal, and persistence. Despite this, many classical spatial ecological models have not
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examined whether the relationships they uncover, like between migration rate and steady-state

population density, remain valid under even small-scale heterogeneity.

In this study, we ask: How robust are the ecological insights derived from idealized spatial eco-
logical models when small amounts of spatial heterogeneity are introduced? Intuitively, one might
expect that minor habitat loss - such as a small fraction of uninhabitable patches scattered across
the landscape - should not dramatically alter the overall system dynamics. If most patches remain
habitable and connected, why should a few structural imperfections lead to significant changes in
population patterns or synchrony? Moreover, how do behavioral responses to these uninhabitable
patches affect the outcome? In particular, we explore two contrasting movement rules near hetero-
geneities: an absorbing case, where individuals disperse blindly into uninhabitable patches and are
lost (representing migration-induced mortality), and a reflecting case, where individuals can detect
and avoid uninhabitable patches, thereby eliminating mortality during dispersal. This allows us to
disentangle the structural effects of heterogeneity from the demographic effects of dispersal loss.

To answer these questions, we begin by reviewing previously studied models of single and two-patch
host-parasitoid dynamics, which form the foundation of our spatially explicit framework. We then
extend those to a spatial model on a square lattice, where each patch contains a host-parasitoid
system. Spatial heterogeneity is introduced in a simple ecologically meaningful way: by randomly
designating a small fraction of patches 7 as uninhabitable. We simulate localized habitat loss
while preserving large-scale connectivity. The landscape also includes sharp boundaries, limiting
dispersal to within the grid. Finally, we compare absorbing and reflecting movement rules near

heterogeneities to isolate the role of migration-induced mortality in shaping spatial outcomes.

2.2. Host-Parasitoid dynamics in Single and Two-Patch Systems

We base our model on well-established formulations for host-parasitoid population dynamics, fol-
lowing [92], in which three sequential phenological stages are modeled: reproduction, intraspecific
competition between hosts, and parasitism by parasitoids. These processes determine the annual

densities of hosts (H;) and parasitoids (P;), which evolve according to the following general form:
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FiGURE 2.1. Time series illustrating host-parasitoid dynamics at steady state,
adapted from previous studies. (a) A single isolated host-parasitoid patch exhibits
characteristic cyclic dynamics marked by three distinct phases—initial buildup of
hosts, rapid host population outbreak, and subsequent crash due to intense para-
sitoid activity. These phases repeat indefinitely in the absence of spatial interac-
tions [121]. (b—c) When two identical patches are connected by migration, the degree
of migration fraction (€) influences synchronization of their host dynamics [82]. (b)
At low migration (e = 0.01), host populations oscillate asynchronously, resulting
in out-of-phase local dynamics. (¢) At higher migration (¢ = 0.3), synchronization
emerges, leading to in-phase oscillations in host densities across connected patches.

Hyi1 = X\F(Hy) G(Hy, Py)
(21) PtJrl :CF(Ht)(l—G(Ht,Pt))
Here, A is the intrinsic growth rate of the hosts, and c is the number of parasitoids emerging from a
single parasitized larva. Following the approach in [121], we reduce the system to a non-dimensional
form (Equation 2). The min function is used to model the effects of intraspecific host competition,

which is exactly compensating. This dynamical system lacks a stable fixed point and thus exhibits

persistent oscillations in both host and parasitoid densities, as shown in Figure 2.1a.

hiy1 = A min(ht, 1) e P

(2.2) pry1 = ymin(hy, 1)(1 — e P)

These oscillations consist of three distinct stages that repeat indefinitely (see Figure 2.1 a):

29



(1) Buildup — host and parasitoid densities are low; the effects of competition and parasitism
are negligible.

(2) Outbreak — host density is high while parasitoid numbers remain low. host abundance
leads to rapid growth of parasitoids.

(3) Crash — parasitoids reach high densities and substantially reduce host numbers over 2-3

generations.

When two such patches are connected by migration, where a fraction € of both host and parasitoid
populations migrate between patches each generation, the patches are synchronized [82]. The de-
gree of synchrony between the patches depends strongly on e. At low €, the patches oscillate out
of phase, with host outbreaks occurring alternatively (Figure 2.1b). As € increases, the dynamics
of the two patches gradually synchronize. At high €, host populations in both patches oscillate in

phase and the system behaves similarly to a single well-mixed patch (Figure 2.1c¢).

This transition from out-of-phase to in-phase oscillations with increasing migration has been ob-
served across various host-parasitoid models, as long as the three key biological processes - repro-
duction, competition, and parasitism - are represented [82]. This robustness makes single-patch
dynamics a natural building block for constructing larger metapopulation models, which we explore

in subsequent sections.

2.3. Spatially explicit metapopulation model

We extend the local host-parasitoid model (Equation 2) to a spatial metapopulation framework
consisting of N = L? habitat patches arranged on a two-dimensional square lattice of size L x L.
Each patch hosts a local population governed by the same phenological structure as in the single-
patch case. After each generation of within-patch dynamics, a fraction € of the host and parasitoid
populations migrates to the four nearest neighboring patches (von Neumann neighborhood), as

described by Equation 3.
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. Habitat patch . Uninhabitable patch

FIGURE 2.2. Schematic representation of the three landscape boundary scenar-
ios considered in this study, illustrating migration from two example habitat
patches—one located within the landscape, and one at its boundary. In (a) the
absorbing landscape, populations migrate indiscriminately and cannot detect bound-
aries or uninhabitable patches (red circles), resulting in mortality when migrating
into these areas. In (b) the baseline landscape, all patches are habitable and pe-
riodic boundary conditions apply; populations migrating beyond one boundary re-
enter from the opposite side, as illustrated by the looping arrow. In (c) the reflect-
ing landscape, populations sense and actively avoid migrating into uninhabitable
patches and boundaries, restricting their migration to habitable regions only. Black
circles represent habitable patches, and red circles represent randomly distributed
uninhabitable patches.
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In typical metapopulation studies, all patches are assumed to be identical and habitable, and the
landscape is wrapped with periodic boundary conditions. Individuals migrating out of one edge
re-enter the landscape from the opposite edge (Figure 2.2b). In contrast, we introduce spatial het-

erogeneity and sharp boundaries into the system to more realistically capture ecological structure.
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Specifically, we randomly designate a fraction n of patches as uninhabitable. Populations migrat-
ing into these patches cannot persist. The landscape is bounded, and habitat patches are confined

strictly within the grid (Figures 2.2a,c).

To model behavior near boundaries and uninhabitable patches, we consider two distinct types of

migration responses:

(1) Absorbing conditions — Populations are unaware of boundaries or uninhabitable patches
and may migrate into them, resulting in mortality.

(2) Reflecting conditions — Populations detect uninhabitable patches and boundaries and
avoid migrating into them. Migration occurs only between habitable patches, so there is

no migration-induced mortality.

Each simulation replicate is initialized by setting host densities to their carrying capacity in all
habitable patches, and introducing a small parasitoid population into a single randomly selected
habitable patch (Figure 2.6a). All patches update synchronously, reflecting annual lifecycles of these
populations. The system is evolved for 5000 generations, with the first 4000 generations discarded
as transients. Steady-state statistics are computed by averaging over the final 1000 generations. To
ensure robustness, we repeat this simulation over 1920 independent landscape realizations for each
parameter set, varying both the spatial configuration of uninhabitable patches and the location of

initial parasitoid introduction.

For each of the 1920 simulation replicates, we simulated the system under four levels of hetero-
geneity: n =0, 0.01, 0.05, and 0.1, corresponding to 0%, 1%, 5%, and 10% of patches (rounded to
the nearest integer) being uninhabitable. To maintain consistency across these four cases within
a given replicate, we ensured that the uninhabitable patches in each landscape were nested such
that the n = 0.01 landscape was a strict subset of the n = 0.05 landscape, which in turn was a
subset of the n = 0.1 landscape. Additionally, the initial parasitoid introduction occurred at the
same randomly selected habitat patch across all four heterogeneity levels within each replicate.
This controlled structure allows for a consistent comparison of how increasing heterogeneity affects
population dynamics while minimizing variability due to spatial configuration and location choices

of parasitoid introduction. The n = 0 case serves as our homogeneous reference landscape, which
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FiGUrRE 2.3. Mean steady-state host densities as a function of migration fraction
(¢) for (a) absorbing and (b) reflecting boundary conditions, across varying levels of
landscape heterogeneity (n). Here, n = 0 (red) corresponds to landscapes without
uninhabitable patches, while n = 0.01 (yellow), n = 0.05 (green), and n = 0.1 (blue)
represent landscapes containing 1%, 5%, and 10% randomly distributed uninhab-
itable patches, respectively. Error bars indicate 95% confidence intervals obtained
from bootstrap resampling, and are often smaller than markers. Vertical dashed
lines indicate approximate locations of qualitative shifts in the system dynamics,
dividing the dynamics into three distinct phases. At low migration (Phase 1), mean
host densities remain low due to asynchronous local dynamics. Intermediate migra-
tion rates (Phase 2) lead to spatially synchronized host outbreaks and substantially
increased host densities. At higher migration (Phase 3), mean host densities remain
high in homogeneous landscapes (7 = 0), whereas heterogeneous landscapes exhibit
a marked decrease due to the emergence of persistent traveling wave patterns (as
illustrated in Figure 2.5). This highlights how even small landscape heterogeneities
can profoundly impact spatial synchronization and host-parasitoid dynamics, par-
ticularly at higher migration rates.

still incorporates absorbing or reflecting boundaries. We present the results from our models by
setting L = 128, A = 3, and v = 6, although our qualitative results remain robust across a broad

range of parameter choices.

We primarily focus on models with heterogeneity (n > 0) and sharp boundaries. We also simulate
baseline scenario with periodic boundaries and no uninhabitable patches (shown in Figure 2.2 (b)).
A direct comparison between this scenario and results from 1 = 0, with sharp absorbing or reflecting

boundaries are provided in the Supplementary Material. Lastly, we restrict ¢ < 0.5 to reflect the
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assumption that host-parasitoid populations exhibit limited dispersal, consistent with empirical

observations in many ecological systems.

2.4. Results

Figure 2.3 shows the mean host density at steady state across different levels of heterogeneity () for

both absorbing and reflecting landscapes. These values represent a combined spatial average (across

all habitable patches) and temporal average (over the final 1000 generations), further averaged

across 1920 independent landscape realizations. Error bars in Figure 2.3 represent 95% confidence

intervals, computed using bootstrap resampling over the 1920 landscape realizations. Based on

these results, we identify three distinct qualitative dynamical regimes:

(1)

Phase 1 (low migration, ¢ < 0.2): In this regime, migration between patches is mini-
mal, resulting in weak coupling across the landscape. As a result, patches oscillate largely
independently of one another. This is supported by the low to moderate temporal cor-
relation between neighboring patches observed in Figure 2.4. Because host outbreaks are
asynchronous in space, the mean host density remains low. Heatmaps in Figure 2.5a and
2.5d illustrate this spatially disordered pattern for a landscape with n = 0 and = 0.1
respectively. The presence of a small number of uninhabitable patches (n > 0) has little
to no impact on the overall dynamics or mean host density in this phase.

Phase 2 (intermediate migration, 0.2 < ¢ < 0.4): With moderate migration, the
coupling between the patches strengthens and the oscillations in the landscape become
increasingly synchronized. This is reflected in the high temporal correlation between ad-
jacent patches (Figure 2.4). Synchronous local outbreaks result in large-scale host popu-
lation surges across the landscape (Figure 2.5b and 2.5¢), leading to a substantial increase
in mean host density. As in Phase 1, the presence of a small number of uninhabitable
patches has minimal effect on the overall steady state or mean host density (Figure 2.3).
Phase 3 (high migration, ¢ > 0.4): In the absence of heterogeneity (7 = 0), the system
continues to behave similarly to Phase 2, with slightly higher mean host densities due to
increase in coupling. However, in heterogeneous landscapes (n > 0), we observe a sharp
drop in the mean host density (Figure 2.3). This shift is accompanied by a qualitative

change in spatial dynamics: instead of synchronous outbreaks, we observe the emergence
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FIGURE 2.4. Mean steady-state temporal correlation between host densities in adja-
cent habitat patches as a function of migration fraction (€) for (a) absorbing and (b)
reflecting boundary conditions, across varying levels of landscape heterogeneity (7).
The temporal correlation was calculated over the last 1000 generations of the simula-
tion, averaged over 100 habitat pairs randomly selected across the landscape lattice.
Upper and lower error bars in the mean correlation were calculated using Fisher’s
index. Vertical dashed lines indicate approximate locations of qualitative shifts in
the system dynamics, dividing the dynamics into three distinct phases. At low mi-
gration (Phase 1), the adjacent patches show weak positive correlation, leading to
asynchronous outbreaks in patches across the landscape, as shown in both Figure
2.3 and 2.5. Intermediate migration rates (Phase 2) show strong positive correlation
between the host densities in adjacent patches. This leads to spatially synchronized
host outbreaks and substantially increased host densities across the lattice as shown
in Figure 2.5. At higher migration (Phase 3), mean temporal correlations remain
high in homogeneous landscapes (n = 0), whereas heterogeneous landscapes exhibit
a dip in temporal correlation to moderate positive values. This highlights how even
small landscape heterogeneities can profoundly impact spatial synchronization and

host-parasitoid dynamics, particularly at higher migration rates.

of persistent wave-like structures that propagate through the lattice (Figure 2.5f). This is

a marked departure from the landscape-spanning outbreaks seen in Phase 2 (Figure 2.5¢),

and it leads to reduced host abundance at steady state.

We also observe a minor increase in mean host density in Phase 3 for heterogeneous landscapes

when the behavior near uninhabitable patches is reflective (Figure 2.3b), compared to their ab-

sorbing counterparts (Figure 2.3a). In absorbing landscapes, migration into uninhabitable patches

results in mortality, leading to slightly lower host densities at high migration rates. In contrast,

when populations avoid uninhabitable patches (reflective case), this mortality is avoided, yielding
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Phase 1 Phase 3

F1GURE 2.5. Heatmaps illustrating steady-state host densities across a spatial lat-
tice for landscapes without heterogeneity (n = 0, top row: panels (a—c)) and with
heterogeneity (7 = 0.1, bottom row: panels (d-f)) for three migration fractions (e),
corresponding to qualitatively different dynamical regimes (Phases 1-3). At low
migration (e = 0.05, Phase 1, panels (a,d)), host densities appear spatially random
with no distinct large-scale patterns, indicating asynchronous local dynamics. At
intermediate migration (e = 0.3, Phase 2, panels (b,e)), coherent and synchronized
host population outbreaks emerge, forming extensive interconnected high-density
regions (red), interspersed with regions of population collapse (blue). Small-scale
heterogeneities can be observed in panel (e) as small dark spots interrupting these
outbreaks. At higher migration (e = 0.45, Phase 3, panels (c,f)), the presence of un-
inhabitable patches dramatically alters dynamics. In panel (¢) (homogeneous case),
large synchronized host outbreaks persist, similar to Phase 2, whereas in panel (f)
(heterogeneous case) we see persistent spiral wavefronts radiating outward from lo-
calized source-like regions. These persistent wavefronts suppress large-scale host
outbreaks, significantly reducing mean host density, as quantified in Figure 2.3.

marginally higher densities.

Interestingly, in the absence of heterogeneity (n = 0), we find no significant difference in host den-
sity between absorbing and reflecting boundary conditions. This suggests that for our system size

(L = 128), boundary effects are negligible. A heuristic explanation can be derived by comparing
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the relative contributions of boundaries and interior habitat. The total number of boundary sites
scales with B = 4L, while the number of habitable patches is H = (1 —n)L?. The effect of bound-
B 4

aries on mean host density therefore scales as 7 = =L ~ % for small n, and diminishes with

increasing system size. In contrast, the effect of uninhabitable patches scales as % = %,
which is independent of L. This implies that while the influence of boundaries decreases in larger
systems, the effect of internal heterogeneity persists. We further support this conclusion with re-
sults from homogeneous landscapes under absorbing, periodic, and reflective boundaries, provided

in the Supplementary Material.

To quantify the degree of synchrony between neighboring patches, we computed the Pearson cor-
relation coefficient between host density time series from 100 randomly selected adjacent habitat
patch pairs across the lattice. Correlations were calculated over the final 1000 generations at steady
state, averaged first over the 100 habitat patch pairs, and then across 1920 independent landscape
realizations. To account for skewed distributions and to compute statistically robust error bars,
we applied Fisher’s Z-transformation to the correlation values before calculating 95% confidence
intervals. The error bars in Figure 2.4 represent these intervals mapped back into correlation space.
Figure 2.5 shows representative steady-state heatmaps for both homogeneous (1 = 0) and heteroge-
neous (n = 0.1) landscapes under reflecting conditions. We focus on reflecting cases for visualization
to isolate the effects of heterogeneity and migration, without the confounding influence of mortality
due to migration present under absorbing conditions. In homogeneous landscapes, we observe two
distinct spatial regimes: (1) an asynchronous, spatially disordered pattern at low migration (Fig-
ure 2.5a), and (2) a synchronized landscape-wide outbreak cycle at intermediate to high migration
(Figures 2.5b, c). However, in heterogeneous landscapes, a third qualitative regime emerges at high
migration (Phase 3), characterized by persistent traveling spiral waves of host density that radiate

outward and dominate the spatial dynamics (Figure 2.5f).
Together with host density trends (Figure 2.3) and temporal correlation patterns (Figure 2.4), these

spatial patterns illustrate how increasing migration promotes local synchrony, and under hetero-

geneous conditions, leads to qualitatively distinct spatial structure. To understand the origin of
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FIGURE 2.6. Heatmaps illustrating the temporal development of host densities from
initial transient dynamics toward steady state in a heterogeneous landscape (n = 0.1)
under reflecting boundary conditions. Panels (a,e) depict the initial condition at
t = 0, with host populations initialized at carrying capacity throughout all hab-
itable patches (red), and parasitoids introduced at a randomly selected habitable
patch (visible as a yellow dot). Panels (b—d) correspond to intermediate migra-
tion (e = 0.35, Phase 2), showing initial parasitoid-driven wave propagation (panel
b), which colonizes the lattice (the dark blue wavefronts indicate host depletion
due to parasitism). Eventually, steady-state dynamics characterized by large syn-
chronized host-density clusters form and dissipate cyclically (panels c,d). Panels
(f-h) illustrate dynamics at high migration (¢ = 0.46, Phase 3), where after ini-
tial wave propagation (panel f), distinct and persistent traveling spiral wavefronts
of host density emerge (panels g,h). These waves originate from localized sources
and suppress large-scale synchronized host clusters. The spiral waves arise due to a
spatial interplay between host refugia created indirectly by uninhabitable patches,
parasitoid-driven host depletion, and rapid host recolonization enabled by high mi-
gration. Such persistent wave patterns significantly reduce mean host densities in
highly migratory scenarios.

the spiral waves observed in Phase 3, we examined the early time series of the simulation (Fig-
ure 2.6). Initially, parasitoids introduced at a single patch spread outward in waves, depleting host
populations across the lattice (Figures 2.6a,f). These transient wavefronts result from symmetric
dispersal combined with local outbreak-crash-buildup cycles (Figure 2.1a). At intermediate migra-
tion rates (Phase 2), large-scale host outbreaks eventually span the lattice, forming a synchronized

steady state (Figures 2.6¢,d). In contrast, at higher migration (Phase 3), spiral waves originate
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near clusters of uninhabitable patches (Figure 2.6g). These uninhabitable patches act as spatial
refuges by delaying parasitoid arrival, allowing the host-dominated patches to recolonize adjacent
areas depleted by previous parasitoid attacks. This interplay between this spatial refuge effect,
local host-parasitoid oscillations, and rapid recolonization - amplified by high migration—creates
rotating wavefronts that propagate outward. Over time, these spiral waves outcompete and sup-
press other outbreak patterns, establishing a steady-state dominated by persistent traveling waves

(Figure 2.6h).

2.5. Discussion

Understanding how spatial structure and dispersal interact to shape population dynamics has been
a central theme in theoretical ecology. Prior studies have highlighted the stabilizing and destabi-
lizing effects of spatial coupling in predator-prey and host-parasitoid systems [24], the emergence
of complex dynamics and chaos in spatially extended systems [33, 58], and the role of synchrony
in driving large-scale insect outbreaks [19,87]. Metapopulation models have been widely used to
investigate these questions, offering insight into how dispersal affects extinction risk, recolonization,
and regional persistence. However, many of these models adopt simplifying assumptions, such as
spatial homogeneity and periodic boundaries, which may limit their ability to capture the full range
of spatial dynamics observed in real ecosystems. Dynamical systems are known to be sensitive to
underlying spatial structure, and even minor deviations from homogeneity can yield qualitatively
different behaviors. Neutral landscape models have demonstrated that small-scale structural varia-
tion in habitat layout - often interpreted as forms of habitat loss or fragmentation - can significantly
influence population persistence, spatial synchrony, and species interactions [ , ]. Motivated
by these insights, we ask whether the key relationships inferred from these ideal metapopulation
models - particularly those linking migration rate and host density - remain robust when small
amounts of spatial heterogeneity (habitat losses) are introduced. Specifically, we examine how the
presence of small but randomly distributed uninhabitable patches alters mean host densities and

emergent spatial patterns in host-parasitoid systems.

One of the novel result of our model is the significant decline in mean host density at high migration

rates (Figure 2.3), illustrating how small-scale habitat loss, modeled here as spatial heterogeneity,
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can shift core ecological relationships. Previous studies have attributed such declines in host den-
sity at high migration rates to migration-induced mortality, particularly in systems with absorbing
boundaries or dispersal into unsuitable habitat [67]. More recent studies has since provided a more
nuanced view: for example, when parasitoids are more mobile and experience higher mortality,
top-down control weakens and host densities can rise [72]. In contrast, a higher host dispersal
mortality leads to lower host densities. In addition, [10&8] and [68] showed that habitat loss can
benefit herbivores when parasitoids are more mobile, contradicting earlier models that excluded

mortality and predicted the opposite.

In contrast to these studies, our model keeps migration rates identical for both hosts and para-
sitoids, eliminating differential dispersal as a driver of population imbalance. Moreover, we observe
similar declines in host density even under reflective boundary conditions, where migration-induced
mortality is explicitly excluded. This indicates that the reduction in host density at high migration
is not a consequence of direct loss, but instead emerges from structural changes in spatial dynamics
introduced by landscape heterogeneity. Uninhabitable patches - analogous to fine-grained habitat
loss - alter the pathways of movement and create localized spatial refuges that delay parasitoid
spread, allowing hosts to recolonize and form rotating wavefronts that reshape outbreak dynamics.
This mechanism highlights a novel pathway by which spatial structure - not mortality - can regu-
late host densities, even in the absence of asymmetric dispersal. Our findings extend the literature
on the relationships between migration and host suppression by demonstrating that it can arise
purely from the interaction between dispersal and spatial heterogeneity in structurally simple but

ecologically realistic metapopulation systems.

Our results reveal three distinct spatial regimes: asynchronous local oscillations at low migration,
synchronized landscape-wide outbreaks at intermediate migration, and a novel spiral wave regime
at high migration in heterogeneous landscapes. The emergence of these spiral waves - absent in
homogeneous models - marks a key qualitative shift in system behavior driven by the interaction
of migration and spatial heterogeneity. Unlike classical spiral wave models that rely on reaction-

diffusion frameworks or explicit oscillatory coupling | , , |, our model demonstrates that
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simple host-parasitoid dynamics combined with random uninhabitable patches in a discrete lat-
tice can give rise to persistent wavefronts. This complements findings in [33, | and [19], but
highlights a distinct mechanism tied to heterogeneity rather than deterministic cycling or external
forcing.

The spiral waves we observe originate near uninhabitable patches, which act as spatial refuges
where host populations can temporarily escape parasitoid suppression. These patches delay the
arrival of parasitoids, allowing host densities to rebound and recolonize adjacent areas, especially
under high migration. This dynamic interplay creates rotating wavefronts that propagate outward,
suppressing other outbreak regions and establishing a new steady-state dominated by traveling
waves. These findings parallel the insights of [58, |, who showed that local interactions and
spatial structure can create self-organizing patterns, but our results emphasize how even minimal

heterogeneity can catalyze such structure in discrete systems.

Temporal correlation analysis further supports our classification of spatial regimes. At low mi-
gration, adjacent patches show weak correlation due to asynchronous dynamics. As migration
increases, correlation strengthens, supporting synchronized outbreaks. However, in heterogeneous
landscapes at high migration, correlation decreases again, indicating a shift from global synchrony
to localized traveling waves. This mirrors earlier work on second-order spatial correlations in host-
parasitoid systems [33], but provides a new lens for interpreting transitions between synchrony and

patterning.

Our study also reinforces and builds upon themes from the literature on neutral landscape models
(NLMs). As emphasized by [129] and critiqued in [134], idealized landscapes can obscure the role
of spatial structure in ecological dynamics. By modifying a standard metapopulation model with
minimal heterogeneity - interpretable as small-scale habitat loss, we demonstrate that core eco-
logical insights - such as the relationship between dispersal and population density - are sensitive
to spatial assumptions. This suggests that NLMs must be used with caution when interpreting

migration-synchrony relationships.

41



Importantly, we find that absorbing and reflecting behavior near heterogeneities can yield similar
spatial outcomes at intermediate migration rates, cautioning against inferring individual movement
rules solely from landscape-scale patterns. Two different behavioral assumptions can produce com-
parable outbreak synchrony, a finding with direct implications for empirical inference in fragmented

landscapes [87].

Our results raise important questions about the link between local structure and global outcomes—a
central challenge in spatial ecology. While we focused on low levels of random heterogeneity
(n < 0.1), future work could explore how different spatial configurations (e.g., clumped, frac-
tal, or interior boundaries) influence wave formation, persistence, and host suppression. These
spatial heterogeneities may stem from ecological processes such as disturbance, succession, or an-
thropogenic habitat loss. Another direction is to investigate local variation in patch connectivity.
In our lattice, most patches have four neighbors, with the exeption of very few patches adjacent
to uninhabitable areas - reflecting minor habitat loss. Higher levels of heterogeneity, achieved by
increasing 7, may lead to habitat fragmentation where core outbreak dynamics collapse. Habitat
fragmentation is a central theme in neutral landscape theory and has often been explored through
the lens of percolation theory, which examines how connectivity is lost as habitat availability falls
below critical thresholds [134]. Understanding how patch-scale structure and connectivity scales
up to affect landscape-level synchrony remains a crucial step toward integrating individual-based

mechanisms with broader ecological predictions [19].

Finally, modifying the dispersal structure - e.g., through a local dispersal kernel rather than strict
nearest-neighbor migration - could reveal how wave structures respond to broader spatial coupling.
Such extensions could improve the applicability of discrete models to real-world systems, where

dispersal is rarely symmetric or strictly local.

Our study shows that even minimal heterogeneity can fundamentally alter host-parasitoid metapop-
ulation dynamics, introducing new spatial regimes that are not observed in homogeneous systems.
The emergence of spiral waves from simple heterogeneity, the reduction in host density independent

of migration-induced mortality, and the context-dependent role of boundary behavior underscore
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the importance of spatial structure in ecological modeling. These results highlight the need to move
beyond idealized assumptions in metapopulation theory and provide a framework for understanding

how local interactions and spatial context jointly shape large-scale ecological patterns.
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CHAPTER 3

Assessing Impacts of Bycatch Policies and Fishers’ Heterogeneous

Information on Food Webs and Fishery Sustainability

Abstract

Ecosystem based fisheries management (EBFM) has emerged as a promising framework for under-
standing and managing the long-term interactions between fisheries and the larger marine ecosys-
tems in which they are nested. However, a successful implementation of EBFM has been elusive
because we still lack a comprehensive understanding of the network of interacting species in marine
ecosystems (the food web) and the dynamic relationship between the food web and the humans who
harvest those ecosystems. Here, we advance such understanding by developing a network framework
that integrates the complexity of food webs with the economic dynamics of different management
policies. Specifically, we generate hundreds of different food web models with 20-30 species each
harvested by five different fishers extracting the biomass of a target and a bycatch species, subject
to two different management scenarios and exhibiting different information in terms of avoiding
bycatch when harvesting the target species. We assess the different ecological and economic conse-
quences of these policy alternatives as species extinctions and profit from sustaining the fishery. We
present the results of different policies relative to a benchmark open access scenario where there are
no management policies in place. The framework of our network model would allow policymakers
to evaluate different management approaches, without compromising on the ecological complexities

of a fishery.

3.1. Introduction

Fisheries across the world remain vital as ever as they serve food, economy and livelihood to
communities, locally and globally [9,53, |. Fish and fish products are one of the most traded
goods in the world [7,10,16, 38, ]. Continual pursuit of profits that come from selling fishing

products has led to fishing practices that threaten marine biodiversity, fishers’ safety, and food
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security [8,39,41,81, |. Current fishery management practices have had partial successes in
rebuilding fish stocks in collapsed fisheries and towards maintaining long term sustainability of
fisheries [14, 64,65, 89]. However, effective fishery management can be hindered by a host of
factors, including failure to incorporate scientific knowledge [98], lack of compliance with fishery
regulation [12], lack of ecological, catch or stock assessment data [43], and failure to account
fully for ecosystem interactions [13, ]. In this paper, we focus on the last factor. That is,
incorporating into management an understanding of the dynamic interaction of species throughout
the marine food web, including impacts from human harvest.

Considering the food web to which the harvested species belong is a core element of Ecosystem-
Based Fisheries Management (EBFM), which has emerged over the past 2 decades as a promising
complement to stock-centric, single species management [37,70,89,90, ]. EBFM recognizes that
effective management should not only focus on individual commercial species but also consider

the broader ecosystem context, and seek a balance between ecological resilience and economic

viability [25, 42, 88, ]. EBFM focuses, for example, on reducing excessive levels of bycatch
associated with fishing [5, 63, |, as these commercially unwanted species play significant role
in ecosystem functioning [88, ]. However, implementing EBFM is challenging because it not

only requires knowledge of the dynamics of the commercial species but also that of the network
of interactions between the commercial species and the other species in the ecosystem [37, 54].
This ecological network determines how species affect each other and, therefore, how each species is
affected directly or indirectly (e.g., via changes in abundance of its prey or predators) by fisheries
[36,47,71,91, , ) |. Likewise, the ecological network may determine that a fish stock
declines despite policy prohibiting its harvest if the fishery, for example, is extracting its prey. The
challenge lies in understanding these complex dynamics and predicting how various changes, such
as policy interventions, might impact ecological and economic outputs. While regulators in the U.S.
and elsewhere are being pressed to incorporate EBFM, given the complexity of implementation,
development and application of this framework is still “evolutionary rather than revolutionary” [90].
While traditional single-species models have moderate success in reducing overfishing of commer-
cially important target species and incidental catch of endangered species, they fall short in captur-
ing the complex dynamics that emerge from the ecological network [28,71, |. To address this,

we turn to ecological network theory (e.g., [47,91, ]). Ecological networks allow us to model
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FIGURE 3.1. An example of the temporal change of a food web network from (A)
initialization, to (B) the start of fishing, to (C) after five years of fishing. Trophic
species are represented by nodes, trophic interactions (who eats whom) as links, and
the vertical axis represents the trophic level of species. The (A) initial network is
generated using the niche model. The Allometric Trophic Network (ATN) model is
then run for 4000 daily time steps with the biomass of each species changing over
time according to Equations 1 and 2 (see Methods). Subsequently, a target species
and bycatch species are selected, and fishing occurs for an additional 5 years (1826
time steps).

species as nodes and their interactions as links, as well as, model the population dynamics of every
species in the network using ordinary differential equations, which is affected by its interactions
with other species in the network. Specifically, we use the well-known and widely-used Allomet-
ric Trophic Network (ATN) framework [17,26,36,45,47,81,91,122] to model the dynamics of
marine food webs, which is an extension of the bioenergetic model by Yodzis and Innes [135] to
multi-species systems. Allometric scaling in this framework provides a biologically informed way
to parameterize trophic interactions and ecological processes based on metabolic theory and life
history traits (e.g., trophic level and vertebrate/invertebrate) [135]. Therefore, this framework is
very useful for developing general understanding on food web dynamics and on how they generally
respond to anthropogenic changes including disturbance caused by fisheries (e.g., [36,47,81,122]).
This general understanding of food web dynamics differs from the more system-specific understand-
ing produced by approaches like Ecopath with Ecosim, for which system specific parameters need

to be determined extensively (e.g., [103,105]).
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Here, we seek to advance the theoretical framework of EBFM by introducing three bioeconomic
factors that have not been considered in ecological networks before. These factors are: 1) uninten-
tional bycatch, defined as species caught incidentally during fishing operations, 2) heterogeneity in
fishing success (based on their access to information) among individual fishers, measured in their
ability to catch commercially important target species and avoid unwanted bycatch species, and 3)
different fishery management policies to achieve long term ecological and economic sustainability of
the fishery. This approach allows us to investigate the complex interplay between the species in the
ecological network, their interaction with heterogeneous fishers, and intervention by management
policies to attain long term sustainability. We achieve this by incorporating fishers with different
levels of fishing success as additional nodes into the ecological network, connected exclusively to
target and bycatch species, and simulating different fishery policies that close the fishing season for
the year when the target quota and/or the bycatch quota are met. Indeed, our model advances
from previous ecological network models (i.e., [47]) by successfully replicating average active fishing
seasons, which typically ranges from a few weeks to few months a year [6,62, ].

The three bio-economic factors we introduced in our network model are well-studied in the bio-
economic literature but only for a handful of species in that ecosystem [15,21,30,77]. Thus,
our work contributes to the bio-economic literature by considering the entire ecological network
to which the target and bycatch species belong. We focus on management policies that play
a crucial role in shaping the dynamics of fisheries but whose consequences can be far-reaching
and sometimes unexpected because of the complex dynamics caused by the ecological network
[76, , |. Specifically, we evaluate the effects of various management policies on both ecological
and economic aspects and investigates trade-offs between conserving species, sustaining yields, and
promoting economic stability. Finally, we present new insights into the potential for sustainable
fishing practices without compromising substantial economic profits and the employment fisheries

provide.

3.2. Methods

Experimental setup and policy implementation. We first generated trophic networks
(food webs) using the niche model [131] (see next sub-section). Food webs generated using the

niche model replicate observed empirical patterns (particularly in aquatic ecosystems) in features
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like distribution of trophic species across different trophic levels and mean trophic chain length,
among others [131]. Each species in the food web was then assigned an initial biomass using a
uniform distribution, Ue(0, 1). Subsequently, the ATN framework (detailed in the “Ecological and
economic dynamics” section) characterized by Egs. 1 and 2, was applied to simulate each food web
across a sequence of 4000 time steps, without any fishing. This preliminary period without fishing
serves to dampen the potential impact of transient dynamics on the subsequent outcomes of fishery
treatments.

Following this initial fishing-free interval, fishing is introduced only in those food webs which meet
the following criteria: i) is connected (i.e., no isolated components), ii) all consumers are linked
to at least one basal species (primary producers) through trophic interactions, iii) has at least 20
species, and iv) has at least one fish species. This treatment led to 400 distinct food webs which
was subjected to an additional 1825 time steps, equivalent to 5 years.

At the start of fishing, a target species and a bycatch species were selected among consumer species
with trophic level equal or above 2 (to avoid choosing a producer species). The target species
was selected randomly at the end of the fishing free interval (i.e., t = 4000). Bycatch was either
selected randomly or as the consumer species which had the lowest biomass at the end of the
fishing free interval (henceforth referred as vulnerable bycatch species). Each day, the biomass of
species change based on Egs. 1 and 2., after which two conditions are evaluated: 1) Is the fishery
(given current target species biomass levels) profitable for at least one fisher? 2) Do the biomasses
of species trigger constraints given by the policy (detailed in section “Policies”), if any, in place?
Once either of the two conditions fail, the fishery is shut down (all fishers efforts are set to 0)
for the remainder of the year. In the following year, if the biomasses of the species meet the two
conditions, the fishery is open and the cycle continues. The annual dynamics mimic annual fishery
closures which are features of real world fisheries for biomass of target species to recover [31,32].
An example of time series from our model is shown in Figure 3.2.

The dynamics of the food webs were run for each policy scenario, for all target-bycatch combinations
possible in each food web. We calculated ecological (see Figure 3.3) and economic (see Figure
3.4) metrics as averages over all possible target-bycatch combinations and over all networks. All
simulations were run in MATLAB 2021a using the solver ode45 for numerical integration with

relative and absolute error tolerances both equal to 1078.
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Network/food web structure. The network structure outlines the connections between fish-
ers, prey, and predators. Initially, each niche-model-generated food web consisted of 30 trophic
species, where trophic species (S) represent groups of individuals sharing the same resources (i.e.,
prey species or primary producers such as algae or phytoplankton) and consumers (i.e., predator or

herbivore species consuming producers). These webs had connectance of 0.125 - 0.175, where con-

L
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nectance (C) indicates the proportion of realized trophic links ( ), with L representing realized
links. Each of the 30 trophic species is assigned a niche value along a single trait axis (inter-
preted here as body size, see next sub-section). Species i preys on species j if j’s niche value falls
within ¢’s feeding range, allowing for potential consumption of species with higher niche values,
which accounts for cannibalism. The feeding range of the lowest niche species is set at 0, which
imposes that at least one primary producer is present. Niche values for the 30 trophic species
are assigned iteratively, ensuring three criteria are met: i) network connectivity (i.e., there are no
isolated nodes/components), ii) linking each consumer species to a primary producer via a trophic
chain, and iii) achieving connectance within the predetermined range of 0.125 - 0.175. Fish species

are identified among consumer species using a Bernoulli trial (P = 0.6), while the remaining species

are treated as invertebrates.

Ecological and economic dynamics. The biomass dynamics of each trophic species within
a generated food web is determined by an ordinary differential equation with parameters scaled
allometrically by the Allometric Trophic Network (ATN) model. The ATN model has enriched our
understanding of food web dynamics by offering flexible approaches to model the biomass dynamics

of dozens to hundreds of interacting species, while retaining tractability [17,26,36,47,81,91, ].

dB;

This model describes the rate of biomass change (7

) of species i depending on whether the trophic
species is a primary producer (Eq. 1) or a consumer (Eq. 2) as follows:

Rate of change in . .
producer biomass Net prlmarg/\productlon

Loss by herbivory
dB; Ek roducer: Bk Yy
(3.1) dtl = (1 - =P (}(uce - )Bi - > o j@,FjiBj,

j € predators

Rate of change in

consumer biomass Gains by consumption Maintenance loss Loss by predation Harvest loss
(4% 3 — > Vi —
t) = fa xzijl]Bz — fm$sz — l‘j;FjiBj — H(BuEkz)
j € prey j € predators It
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Time-varying variables and constants are indicated by upper and lower case fonts, respectively
(values and definitions provided in Table 1). For variables with two indices (e.g., e and F') the first
index represents a consumer species (predator or herbivore) and the second represents its resource
species (its prey or primary producer). r; is the growth rate of producer species i. Fractions f, and
fm signify the assimilated carbon used in production and maintenance respiration, respectively,
which allows for realistic biomass transfers across trophic levels ( [79]). z; is metabolic rate (rate
at which an organism expends energy in physiological processes), defined by z; = %(ZTi*l)*O'Q5),
where a,, is the allometric constant that relates the metabolic rates of consumers to their body size,
a, the allometric constant that relates the reproductive rates of producers to their body size, Z the
body size ratio, and T;, the trophic level [27,46, |. yi represents maximum consumption rate
of species 7, and ej; represents the efficiency of converting biomass of species ¢ when consumed by
species j into its biomass.

Dividing “loss by herbivory (or predation)” by ej; transforms the biomass assimilated by consumer
J into biomass lost of its resource i (see [135]). Fj; is the consumer i’s functional response on
j (i.e., per-capita consumption rate). Following all prior studies using the ATN framework (e.g.,
[17,26,47,81,91, ]), we used what it has been called a “type I1.2” (or weak Holling-type
III) functional response [132] which has a stabilizing effect on food web dynamics [52, 132] and
it is supported by general empirical understanding of consumer-resource interactions because this
response can capture some of the well-known consumer preference for more abundant resources.
This functional response is given by:

wijB]h

h . h'
BO,j + Zk € prey wlk’Bk

(3-3) Iy =

B(’)" jisi’s half-saturation biomass for its resource j. w;; is i’s preference for its resource j, calculated
as the reciprocal of the total number of i’s resource species and is re-calculated as resource species
become extinct. h is the hill coefficient, which sets the sensitivity of the functional response to
resource’s biomass.

The timescale of the dynamics in each food web is established following Glaum et al. ( [47]),
where one model time step corresponds to one real-time day. This timescale results from setting
the mass-specific growth rate of all producers to r; = 1. This rate then normalizes metabolic (z;)

and maximum consumption (y;) rates as in most studies using the ATN model (e.g., [17,26,47,
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) )

locally extinct.

]). We use an extinction threshold of B, = 1079, below which we assume a species as

gcologlcal Description Value (units) Source
arameters
Ti Growth rate of species i 1 (time™1) [47]
K Carrying capacity 1 (%) [26]
o Assimilation efficiency of predator j given that | Carnivore: 0.85, [26]
7 prey consumed ¢ is a carnivore or herbivore herbivore: 0.45
“ Allometric constant relating reproductive rates Variable [26]
" of producers to their body size
Allometric constant relating metabolic rates of .
ay ) . Variable [26]
consumers to their body size
az/a, Allometric constant Eriﬁerge;);a(t te1m?e§ 11 )4 | [26]
' Maximum consumption rate of species i rela- | Invertebrate: 8,
Yi tive to its metabolic rate fish: 4 [26]
zZ Body size ratio 100 [26]
By Half saturation biomass 0.2 (% ) Assumed
h Hill coefficient 1.2 [130]
B, E;{fllsctlon threshold biomass (used in simula 10-6 ( % ) [ ]
Wij Preference of species 4 for species j Variable
F Functiongl response of predator species 7 for Variable
prey species j
fm Factor for maintenance respiration 0.4 Assumed
Fraction of assimilated carbon used for produc-
Ja tion 0.4 20]
Zi Metabolic rate of species i Variable (time™!)
Economic .
Description Value Source
Parameters
Erax Maximum effort 1 Assumed
Qtarget Catchability coefficient for target species 0.002 Assumed
Qbycatch Catchability coefficient for bycatch species 0.002 Assumed
P Threshold for profitable fishery 0.25 Assumed
D Market price 1 Assumed

TABLE 3.1. Parameter definitions, values and sources. Units are indicated for pa-
rameters, except when they are unitless.
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Biomass loss due to harvesting (H(B;, Ey;) in Eq. 2) is dependent on the biomass of the harvested

species ¢ (B;) and the fishing effort of fisher k£ on species i (Ey;) as follows:

>k ¢ fishers Ve EkiqiBi, if ¢ is target
(34) H(Bi, Bki) = 371 ishers(1 = 1) Erigi Bi,  if i is bycatch
0, otherwise

Effort is a measure of the amount of harvesting resources used in a fishery. Depending on the
specific fishery, effort can be a measure of the number of fishing lines, boats, workers, or work
hours dedicated to harvesting. Results presented here do not qualitatively depend on the specific
details of fishing effort. Each fisher extracts biomass of two species in each food web, one as target
and the other as bycatch. The ability of fisher k£ to allocate their effort towards catching target
(and simultaneously avoiding bycatch) is given by 7. Fishers differ in their ability to catch target
while simultaneously avoiding bycatch. This heterogeneity among fishers could be due to to different
levels of skill or access to information on species concentration (as facilitated by information sharing
among fishers). We model 5 fishers with v, € [0.7,0.75,0.8,0.85,0.9]. ¢; is the catchability of species
i.

Within a fishing season, fisher k harvest the biomass of the target species i (Biarget Onward, with
i = target) at a constant maximum effort (Ey.x) as long as fishing is profitable. That is, as long as
gross profits per unit effort (yxpgrarget Btarget) are greater than marginal costs of fishing effort (co),

as follows:

Enax, if ’chpqmrgetBtarget > Cp
(35) Ektarget =

0, otherwise

Whether it is profitable for fisher k to harvest the target species (Extarget = Fmax) OF 10t (Eptarget =
0) depends on their ability to catch the target species (), market price (p), catchability of target
species (qiarget), the biomass of the target-species at that instant (Biarget), and the marginal costs

of effort (cp):

(3.6) Co = wp(hargetBtarget (t = O)
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where 1 is a scaling parameter ranging between 0 and 1. Note that, instead of using a fixed value
(given by co = ¥Dgrarget), Wwe made the marginal costs of fishing dependent on the biomass of the
target species before fishing starts (Biarget(t = 0)). We chose this set-up because every simulated
network is unique in the biomasses of its constituent species, ranging over a few orders of magnitude.
Thus, under a fixed value of marginal costs of fishing, some networks have no fishing at all because
the costs are higher than the gross profits per unit of fishing effort (when target species has low
initial biomass, see Eq. 5), whereas some networks have excess of fishing (when target species has
high initial biomass). Therefore, Eq. 6 ensures that there is initial fishing in every network, and

allows us to compare various levels of marginal fishing costs across networks.

A) Before fishing B) With fishing
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@ 0.15 [ — Shared target quota

€ ——— Shared target and bycatch quota

-_8 -------- Minimum escapement level

3

g).)- 1 0_1 . 0.1

%)

g

S 0.05

= LN,
0 1000 2000 3000 4000 4000 4500 5000 5500

0 D) x10™

2 10° 25

£

R 2

o]

3 1.5

81072

S 1

N

[3]

T 0.5

S

“ 104 | | | 0 | | ‘
0 1000 2000 3000 4000 4000 4500 5000 5500

time time

FIGURE 3.2. An example of a simulated time series from a single food web. Before
fishing, the biomass of (A) the target species and (C) bycatch species can vary widely
before eventually stabilizing (hence the vertical axes are shown in logyg scale). Fish-
ing begins under various policies (see legend), with effects on the (B) target species
and (D) bycatch species biomass. For policies with a target species quota (allowing
fishing down to the minimum escapement level), harvesting periods are evident from
declining target species biomass and non-harvesting periods from increasing target
biomass. In open access, biomass for both species declines with harvest, which oc-
curs whenever fishing is profitable.
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Policies. We incorporated two different policy scenarios and compared our findings with base

reference open access, where there is no policy in place:

(1) Open access: Fishing occurs while the fishery is profitable and the target species is not
extinct (i.e. biomass of target species is not 0).

(2) Shared target quota: A quota is set equal to the current biomass less a minimum es-

esc

capement level (Bfyfyet

) for the target species. Fishers harvest until either the quota is
exhausted or the profit is negative. Minimum escapement level is the minimum num-
ber of fish that are allowed to escape the fishery and spawn to ensure their long term
sustainability and avoiding extinctions.

(3) Shared target and bycatch quota: In addition to the shared target quota defined above, a
shared quota is similarly set for bycatch species according to a minimum escapement level
(Biyeaten)-

We simulate a range of target and bycatch quotas that follow from a minimum biomass escape-

ment policy, which is specified in each new simulation as a share of the biomass at the onset of

esc

fishing: Bfyceet = €SCtarget = Brarget(t = onset of fishing) and By eateh = ©SChycatch * Bhycaten (t =

targe
onset of fishing). To explore a range of policy stringencies, we consider a set of escapement shares
(eSCtarget, €SChycatch) given by the vector [0.15, 0.3, 0.45, 0.6]. Figure 3.2B and D shows an example
of how different policies manifest in a given simulation, while Figure 3.2A and C shows the transient
dynamics in biomass of the target and bycatch species, respectively, until steady state before fishing
starts. After fishing begins, the shared target quota allows the target species to recover its biomass
substantially during non-harvesting periods (i.e., when the fishery is closed, Fig. 3.2B) and slows
down the biomass decline of the bycatch species compared to open access (Fig. 3.2D). Adding
the shared bycatch quota allows for recovery of bycatch species whenever it falls to its minimum

escapement level (Fig. 3.2D). Thus, as expected, having both target and bycatch quotas results in

higher bycatch and target species populations in general.

3.3. Results

We first analyze the effect of different policies on mitigating ecological extinctions of target, bycatch,
and all other species in the food web, which we call secondary species. Figure 3.3 shows the average

probability of those extinctions for different minimum escapement levels of target (esciarget) and
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F1GURE 3.3. Extinction probabilities (shading) for target (A,D), bycatch (B,E), and
secondary (C,F) vary across a range of target (esciarget) and bycatch (escpycaten) min-
imum escapement levels (i.e., minimum biomass allowed to escape the fishery used
in policy, see Methods). Extinction probabilities are calculated as the fraction of
simulations resulting in their extinction after 5 years of fishing across all 400 food
webs. The color bars showing extinction rates differ by subplot with the marker
“x” representing the value obtained in open access. Plots were produced by run-
ning model simulations for each food web with values [0.15, 0.3, 0.45, 0.6] for each
target and bycatch escapement levels (and all their combinations) and then using
spline interpolation to fill the extinction values across a broader continuous range
of esciarger € [0.15,0.6] and escpycaten € [0, 0.6].

bycatch (esChycatch). As the minimum escapement level for the target quota is raised above around

0.3, the probabilities of all extinctions begin to fall. Adding a bycatch policy (escpycaten > 0) has a

limited impact on target species (Fig. 3.3A, D), but it effectively reduces bycatch (Fig. 3.3B, E)

and secondary (Fig. 3.3C, F) extinctions once the minimum escapement level of bycatch increases

above around 0.10. Interestingly, high minimum escapement levels for both target and bycatch has

a similar effect in reducing target and secondary extinctions as a high minimum escapement level

for target alone. Further, setting medium-low target and bycatch minimum escapement levels has

similar effect on reducing bycatch and secondary extinctions as that of setting a medium-high target
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escapement level alone. For example, Fig. 3.3E shows that the probability of bycatch extinctions
at target and bycatch escapement levels of 0.25 and 0.15, respectively, is similar to the one achieved
by setting a target escapement level of 0.45. Overall, simulations in which the bycatch species is
chosen as the species with the lowest biomass in the food web before fishing starts (i.e., the most
vulnerable species), exhibit higher extinctions than those where the bycatch species was chosen

randomly.

Median bycatch species biomass left

esctarget

A) 6 X 103 B) Average profits ( 5th year x10%  C) A(\)/erage bycatch per target yield (S‘h year)
g 5
w E o O 035
29 ¢ 5 o e, 45 )
8 -g ©e :"“'. ..-CQ :Cg
g2 2 | . g 4 g :
c c Sdie . N o & 2 03 z 0
Eiel s [&] 35 O
S ?, o P RN 3 ' 3 )
5' © % 3t e ° L4 ..“"4.,. 0.15 3 .
@ E) ° o
< 5 L4 0 25 .
098 1 1.02 1.04 4 i < S
3 1073 <) o
D) ¢ x10 50 P s
° %\ l= o 7
Q@ o
g8 o° 5 0.45 6
25 B o 5
85 g4 4 S °
22 3 g 0% 4
265 &3 ? ?
3 '% 0 |®e o ® 3 © 3
o 2 o
8 ¢ 2 €l & 2
z 2
1 0
04 045 05 2 i 2 &
o o

% = open access value

FIGURE 3.4. Economic results for two alternative scenarios of selecting the bycatch
species: randomly (A-C) and the most vulnerable species (i.e., species with the
lowest biomass, D-F). Average profit (A) and median remaining biomass of the
bycatch species (D) were calculated across the 5 fishers and 400 food webs, with all
possible target-bycatch combination considered within each food web. Each point
corresponds to a given level set for escarget and escpycatch- LThe dashed lines trace
out the frontier determining the maximum profit for a given unit of bycatch-species’
biomass left (or alternatively the maximum bycatch-species’ biomass achievable for
a given profit). The color bars showing extinction rates differ by subplot with the
marker “x” representing the value obtained in open access. All results are for the
final (fifth) year of fishing to mitigate transient effects apparent in early periods
when fishing is first initiated.
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We then analyze the economic results of our model in year 5, to exclude transient dynamics in the

first four years stemming from the initiation of fishing. We calculated average profits as:

N 365
(3‘7) Z Z ’Ykp%arget Btarget t— CO),
k: t=1

where Ej, ; is the effort of kth fisher on day t and Byarget,t is the biomass of target species at day
t. Figure 3.4A and 3.4D shows profits for each combination of policy scenario (given by esciarget
and eSCpycatch) against the median of the fraction of initial unfished bycatch species biomass that
survived after 5 years of fishing. We use the median for the bycatch species biomass left given the
strong skew of this distribution (across the simulated collection of 400 food webs, with all possible
target-bycatch combination considered within each food web). The frontier of these values (dotted
line) illustrates the set of feasible best options, where for a given level of bycatch biomass preserved,
the expected profits are maximized. Note that we cannot combine the economic and conservation
objectives because the bycatch species is not valued in monetary terms here. We found that the
typical biomass remaining (median) of the bycatch species is near its unfished biomass (1.0) when
the bycatch species is chosen randomly (Fig. 3.4A), but it is typically less than half of its unfished
biomass when the most vulnerable species is caught as bycatch (Fig. 3.4B).

Average profits (Fig. 3.4B and 3.4E) are highest when there is no constraint on bycatch (esChycatch =
0) and the minimum target escapement level is in a middle range. At such policy combination,

“*” indicator for open access is below the

the average profits are higher than in open access (the
maximum profit level). This profit-maximizing point is associated with some reduction in extinct
risks across all species (see Fig. 3.3). Limiting bycatch via a quota reduces extinctions but also
expected profits (Fig. 3.4B, E). This tradeoff is stronger when the bycatch species is vulnerable
(Fig. 3.4E) rather than randomly chosen (Fig. 3.4B). Finally, we find that the policy zone that
minimizes bycatch per unit of target species harvested (top-left corner Fig. 3.4C, F) is different
from the zone that minimizes extinctions (top-right corner of all panels in Fig. 3). Further we
find that the bycatch per unit of target species can be worse (higher) than that achieved in open
access, specifically when there is not constraint on bycatch but the constraint on target species

harvest is stringent (high esciarget). More generally, we find that the bycatch species yield per unit

target species yield first increases and then decreases with increasing target escapement levels. In
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contrast, increasing bycatch escapement levels leads monotonically to more bycatch species yield

per unit target species yield.

3.4. Discussion

One of the factors that aids extensive use of single species based management (and its subsequent
effectiveness in mitigating collapses of fishery) is the abundance of theoretical work, which forms
the basis for effective prediction and management [35]. But there are few theoretical studies which
address the dynamic interaction of all species in the marine food web, including impacts from
human harvest, while considering policy design. We aim to fill this gap by presenting a novel
framework that merges ecological networks and bioeconomic elements to facilitate a quantitative
assessment of fishery management policies, furthering an integrative Ecosystem-Based Fisheries
Management (EBFM) approach [42, ]. We extend the Allometric Trophic Network framework
in fishery studies by incorporating bycatch species, fisher heterogeneity and annual harvestable
quotas for target and bycatch species, which leads to limited fishing periods. We show the effects
of target and bycatch quotas on ecological outcomes (species local extinction) — which are relevant
especially for vulnerable bycatch species — and economic outcomes (profits and bycatch per unit
target yield), which are of primary interest in commercial fishing of the target species.

Having a low minimum escapement level for the target species alone can reduce extinctions in
target, bycatch and secondary species. This is consistent with previous analyses [47, | showing
that the effects of harvesting target species propagate through the ecological network impacting
non-target species. While those works focused solely on take of target species, we add realism by
including unintentional take of bycatch species as part of fishing. Specifically, our model allows us
to quantify how target species and bycatch species harvest policies (given by escapement levels)
mitigate species extinctions. Having medium-low target and bycatch escapement levels mitigates
bycatch and secondary extinctions similarly to having a medium-high target escapement level alone.
Furthermore, having high target and bycatch escapement levels reduce extinctions in target and
secondary extinctions similarly to having a very high harvest policy for target escapement (Figure
3.3 A, C, D and F). High escapement levels can lead to smaller fishing opportunities in a fishery,
potentially driving out fishers and leading to excessive bycatch in other fisheries, as shown in

previous literature [100]. Our model aids in better understanding the benefits of these fishery
58



policies for reducing species extinctions and could potentially aid with setting escapement levels
that align with the goals of specific fisheries. Delving into the economic results, we show that there
is a combination of target and bycatch species harvest policies (among all escapement combinations
possible) which maximizes average profits, for any given level of bycatch species preserved (Figure
3.4 A and D). For some combinations along this frontier, the average profit incurred is higher than
under open access (Figure 3.4 B and E), though this involves a trade-off with the conservation of
bycatch and secondary species.

A key benefit of our modeling approach is that it allows for the assessment of a wide range of fishery
policy stringencies (on constraining removal of target and bycatch species biomass) based on how
they perform across a large set of potential food web configurations. Such configurations are rarely
exhaustively characterized in practice. And we are aware of no examples in which the biomass level
of each species in an extended food web is regularly assessed to inform fishery management. Such
information would be valuable but prohibitively costly to carefully assess on an ongoing basis. Such
food webs are also likely to vary over space and time. For the time being, given that managers will
not have the luxury of full information about the state of a given food web on a regular basis, there
is value in identifying target species and bycatch species harvest policies that achieve objectives in
a manner robust to an array of potential food web realities.

There are several avenues for future exploration. While we studied a scenario where a single
target and bycatch was harvested, the model’s flexibility allows for harvesting of multiple species
(target or bycatch), which mimics the functioning of most fisheries around the world. Concepts
like the Maximum Economic Yield from single species models are difficult to extend to multiple
species [69] effectively. And even when done, such attempts to maximize profits over constraints on
multiple species often leads to overexploitation of harvested species [119]. We provide an alternative
framework which addresses both those problems. We could constrain fishing on multiple species
by setting escapement levels specifically for each of them in our model, leading to newer insights
into profit maximization amidst the constraints imposed by multiple species. Lastly, the model’s
structure can be extended to encompass a broader array of policies, such as setting individual
limits on target and bycatch species yield for every fishers (as opposed to a shared annual limit
determined by the excess of target and bycatch biomasses above escapement levels as implemented

in our study) and or penalties when fishers exceed their individual quota [66, ]. Or more complex
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fisher efforts, which might dynamically grow or shrink in response to the profits incurred from the
fisheries [34]. Our model paves the way for including the complex interactions of different species in
the marine food web and their interactions with fishers and policy makers in multi-species fishery,

thus furthering our insights into achieving sustainable fisheries.
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Conclusion

Allow me to introduce you to my dissertation.
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APPENDIX A

Supplementary to Chapter 1 and 2

Supplementary Information
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FIGURE A.1. The time series of densities of a host-parasitoid system (in a given
cycle) is shown in a) and ¢) for two different growth parameters. Parasitoid densities
are shown in log scale in b) and d), to emphasize the low parasitoid densities attained
in each cycle, which is not clear when plotted in linear scale as shown in a) and c).
The last generation of outbreak is marked by a dotted vertical line. As shown in b)
and d), p; = 0 for all of buildup and up until the last generation of outbreak, which
is further explained mathematically in [121]. For a) A =3, 7 =6 and for b) A = 2,

v =>5.
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FIGURE A.2. Mean steady-state host densities as a function of migration fraction (e)
for absorbing (black), reflecting (orange), and periodic (yellow) boundary conditions
in a homogeneous landscape (n = 0). Error bars represent 95% confidence intervals
obtained through bootstrap resampling and are often smaller than the markers. The
minimal differences between boundary conditions indicate that, in the absence of
heterogeneity, boundary effects are negligible at this system size, where the each side
L of our square lattice is L = 128. This supports the conclusion that our landscape
is sufficiently large for boundary structure to have little impact on overall mean host
densities.
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