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Abstract

Algebraic statistics is an emerging field that employs tools from algebraic geometry, commu-

tative algebra, and combinatorics to address statistical problems and their applications. This

interdisciplinary subject not only applies algebraic techniques to solve statistical challenges but

also fosters the development of new algebraic results motivated by statistical applications. This dy-

namic exchange has enriched both disciplines, driving advancements in areas such as experimental

design, graphical models, and parametric inference.

In 1998, Diaconis and Sturmfels made a foundational contribution to the field by introducing

a Markov Chain Monte Carlo algorithm for sampling fibers of log-linear models. The algorithm’s

inherently algebraic nature relies on the construction of a Markov basis, a set of moves with origin

in polynomial algebra, thereby establishing a connection between commutative algebra, probability

and statistics.

Since this seminal work, there has been a surge of research into various aspects of Markov bases

and their structure for specific sets of discrete exponential families. This dissertation investigates

the complexity of Markov bases in general and explores their combinatorial aspects in the context

of popular random network models and their applications in statistics.

In Chapter 2, we extend the classical notion of Markov basis by allowing moves to connect

fibers, even when these occasionally take steps in a negative relaxation of the fiber. This concept

is motivated by earlier work of Bunea and Besag in the context of the Rasch model, and Chen,

Dinwoodie, Dobra, and Huber in the context of logistic regression. These studies considered alter-

native methods for defining irreducible Markov chains on fibers without computing a full Markov

basis in certain specific cases.

Nevertheless, we show that for general log-linear models, there is no universal upper bound on

the level of negative relaxation required to connect fibers. Moreover, we extend a result by De

Loera and Onn, showing that Markov basis elements with arbitrarily large degrees may exist even

when relaxed fibers are employed. On the other hand, we provide positive results for hierarchical

models, establishing a polynomial upper bound on the size of their Graver basis in terms of certain

structural parameters of the model.

In Chapter 3, we present a combinatorial description of the Markov basis for a degree-corrected

variant of the Stochastic Block Model (SBM), resolving an open problem posed by Karwa et al. in

iv



their study of goodness-of-fit tests for mixtures of log-linear models. Furthermore, we establish that

the algebraic counterparts of this Markov basis constitute a Gröbner basis for the associated toric

ideal under a pure lexicographical order, thereby extending work by De Loera et al. Furthermore,

we analyze the Markov basis for the 0/1 restricted fibers of this model, showing that its degree

increases as the number of blocks in the SBM grows.

Finally, in Chapter 4, we consider a labeled generalization of the SBM and provide a complete

combinatorial description of its Markov basis. This result is directly relevant to the conditional

goodness-of-fit testing framework for mixtures of exponential log-linear models introduced by Karwa

et al. We also provide theoretical guarantees for the test in the frequentist setting.
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CHAPTER 1

Introduction

This dissertation explores the complexity of Markov bases and their applications in log-linear

models. To provide the necessary context for our contributions, this chapter begins with a discussion

of preliminary background material, which is presented in two sections. Section 1.1 focuses on

algebraic concepts and fundamental known results, while Section 1.2 addresses statistical theory,

emphasizing its connections to the algebraic framework.

In Section 1.3, we review existing results on the behavior of Markov bases and present both

positive and negative findings regarding their complexity. In Section 1.4, we share our results on

the study of a Markov basis used to connect spaces of graphs with a fixed degree sequence. Finally,

in Section 1.5, we explore the application of Markov bases for performing goodness-of-fit tests on

a labeled version of the Stochastic Block Model.

The results presented in this dissertation are based on the published works [4,5] and an addi-

tional paper currently in progress.

Notation. The vector of all zeros is denoted by 0, with its dimension inferred from the context.

For any positive integer n, we write [n] = {1, . . . , n}. Given an integer vector u = (u1, . . . , un) ∈ Zn,

we define its positive and negative parts as u+ := (max(uj , 0))
n
j=1 and u− := (max(−uj , 0))nj=1,

respectively. For variables x1, . . . , xn, the monomial xu is given by xu1
1 · · ·xun

n . For any vector

ω ∈ Rn, ω⊤ denotes its transpose, and ω⊤ν represents the inner product of ω and ν. Given a

distribution π over Ω, the notation π(u) ∝ f(u) indicates that the distribution is proportional to

f(u), with the proportionality constant being the reciprocal of the normalizing factor
∑

u∈Ω f(u).

1.1. Algebraic Preliminaries and an Introduction to Markov Bases

In this section, we introduce the key concept of a Markov basis along with the necessary

background. The material presented here is primarily drawn from [104], an excellent resource

on toric ideals and their applications. Some results presented here have been rephrased to better

align with the flow of our exposition. Comprehensive bibliography on algebraic statistics include
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[7,48,106] and the references therein. The latter two books are particularly noteworthy for being

largely self-contained, offering introductory material before progressing to more advanced topics.

We begin this subsection with the following fundamental definition.

Definition 1.1.1. Let K be an infinite field and A = (aij) ∈ Zd×n be an integer matrix with

aj = (a1j , . . . , adj) for every j ∈ [n]. Let φA : K[x1, . . . , xn]→ K[t±1 , . . . , t
±
d ] be the homomorphism

of semigroup algebras induced by the map xj 7→ tai. We define the toric ideal of A as the kernel

of this homorphism, IA := kerφA.

Toric ideals are of significant interest from a computational perspective and have connections

to various fields, including numerical semigroups [57,95], semigroup rings [59], commutative al-

gebra and combinatorics [19,89,103], algebraic geometry [32,58], linear algebra, and polyhedral

geometry [97,109].

Our work focuses particularly on their applications in algebraic statistics via Markov bases, as

well as their relevance to integer programming through Gröbner and Graver bases. Some of the

well-known properties of toric ideals include the following result.

Proposition 1.1.2 ([104, Corollary 4.3]). The toric ideal IA is generated by the binomials

{xu+ − xu−
: u ∈ kerZA}.

Now, we recall a classic result in commutative algebra and state one of its corollaries that will

be of particular interest to us.

Theorem 1.1.3. [Hilbert basis theorem, [31, Theorem 4]] Every ideal of K[x1, . . . , xn] is finitely

generated.

Corollary 1.1.4. The toric ideal IA is generated by a finite subset of the set of binomials

{xu+ − xu−
: u ∈ kerZA}.

Definition 1.1.5. Let A ∈ Zd×n be an integer matrix such that kerZA ∩ Nd = {0} and b ∈

NA := {Au : u ∈ Nn}. We define the b-fiber as the set

F(A, b) := {u ∈ Nn : Au = b}.

Whenever A is clear from the context, we may suppress the dependence on the matrix A and simply

use the notation F(b). We refer to the elements of NA as margins.
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Fibers can be understood as the set of integer points inside the parametric polytopes P (A, b) :=

{y ∈ Rn : y ≥ 0, Ay = b} as we let b vary over the set of margins. Some natural problems

associated with these objects include enumeration [11, 37, 74], sampling [44, 45, 75] and integer

programming [29,71,105]. As noted earlier, we will focus on the latter two.

Definition 1.1.6. For a finite subsetM⊂ Zn, called the set of moves, and F ⊂ Nn, we define

the fiber graph induced by M on F as the graph with vertex set F and such that u,v ∈ F form

an edge if an only if u− v ∈ ±M. We denote this graph by FM.

Definition 1.1.7. Let A ∈ Zd×n be an integer matrix such that kerZA ∩ Nn = {0}. A finite

subset M ⊂ kerZA is a Markov basis for A if F(b)M is a connected graph for every b ∈ NA.

We say thatM is a minimal Markov basis if it does not properly contain a Markov basis.

Theorem 1.1.8. [Fundamental Theorem of Markov Basis, [106, Theorem 9.2.5]] Let A ∈ Zd×n

be an integer matrix such that kerZ A ∩ Nn = {0}. Then M ⊂ kerZA is a Markov basis for A if

and only if the set of binomials {xu+ − xu−
: u ∈M} generates the toric ideal IA.

This theorem was first introduced in [45] and is one of the foundational results in the field

of algebraic statistics. Moreover, Theorem 1.1.3, together with Corollary 1.1.4, guarantees the

existence of a Markov basis for integer matrices whose integer kernel intersects the non-negative

orthant only on {0}.

Example 1.1.9. For A = (3 4 5) the toric ideal IA ⊂ K[x1, x2, x3] is generated by the binomials

{x1x3 − x22, x31 − x1x2, x21x2 − x23}. By the Fundamental Theorem of Markov basis this means that

M = {(1,−2, 1), (3,−1,−1), (2, 1,−2)} ⊂ kerZA is a Markov basis for A. Figure 1.1 shows the

fiber graphs F(A, b)M for margins b = 15, 30 induced byM.

Notice that all the elements in M are necessary to make F(A, 15)M connected. This means

thatM is minimal.

Proposition 1.1.10. Let A ∈ Zd×n be an integer matrix such that kerZ A ∩ Nn = {0} and let

M⊂ kerZA. The following are equivalent

(1) M is a Markov basis for A, i.e., F(A, b)M is connected for every b ∈ NA,

(2) IA = ⟨xu+ − xu−
: u ∈M⟩,
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(5,0,0)

(2,1,1)

(0,0,3)

(1,3,0)

1

(a) F(A, 15)M

2

(b) F(A, 30)M

Figure 1.1. Fiber graphs induced byM = {(1,−2, 1), (3,−1,−1), (2, 1,−2)}.

(3) For every u,v ∈ Nn with Au = Av = b, there exists a sequence m1, . . . ,mS ∈ M such

that

u− v =

S∑
s=1

ms and v +

s′∑
s=1

ms ∈ F(A, b) for every s′ ≤ S.

One of the most useful applications of Markov bases is their use in generating random samples

from a distribution π on F(b) via the Metropolis-Hastings algorithm (see [86, Section 3.2]), as

described in Algorithm 1. This approach is especially useful when the fibers are too large to be

explicitly enumerated.

Remark 1.1.11. In most of the scenarios encountered throughout this work, we consider dis-

tributions π on F(b) such that π(u) ∝ h(u) for a known function h. Consequently, during the

Metropolis-Hastings step in line 6 of Algorithm 1 we can compute h(un+m)
h(un)

instead of π(un+m)
π(un)

.

Theorem 1.1.12. Let {un}n≥1 be the output of Algorithm 1 as N →∞. Then {un}n≥1 forms

an irreducible Markov chain with stationary distribution π.

The proof of this theorem relies on the connectivity properties inherent to Markov bases, as

stated in Definition 1.1.7. For a general proof of this result, see [98, Chapter 6].

As a consequence of Theorem 1.1.8, finding a Markov basis for a matrix A is equivalent to

identifying a set of generators for the toric ideal IA. However, when the set of generators possesses
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Algorithm 1: Fiber samples given a Markov basis.

Input : u ∈ F(A, b), starting point in a fiber
M, a Markov basis for A
π, a desired distribution on F(A, b)
N , the number of fiber samples

Output: A sequence of points u1,u2, . . . in F(A, b)
1 Set u1 ← u;

2 for n = 1, . . . , N − 1 do
3 Choose m ∈ ±M uniformly at random;

4 if un +m ≥ 0 ; ▷ This checks if un +m ∈ F(A, b)
5 then

6 un+1 ← un +m with probability min
{
1, π(un+m)

π(un)

}
; ▷ Metropolis-Hastings step

7 else
8 un+1 ← un;

9 Return sequence u1, . . . ,uN

additional properties, the Markov basis can be utilized not only for sampling but also for integer

programming tasks, as we elaborate below.

Definition 1.1.13. A monomial order on K[x1, . . . , xn] is a relation ≺ on the set of mono-

mials M = {xα : α ∈ Zn
≥0} (or equivalently, the set Zn

≥0) satisfying the following:

(i) ≺ is a total ordering on M.

(ii) If xα ≺ xβ then xα+γ ≺ xβ+γ for any α,β,γ ∈ Zn
≥0.

(iii) ≺ is a well-ordering. This means that every nonempty subset of M has a smallest element

under ≺.

Example 1.1.14. The following are three examples of monomial orders that can be defined over

the set of monomials M = {xα : α ∈ Zn
≥0}.

• Lexicographic (≺lex): xα ≺lex xβ if the leftmost non-zero entry of β −α is positive.

• Graded reverse lexicographic: xα ≺grevlex xβ if
∑n

i=1 αi <
∑n

i=1 βi, or
∑n

i=1 αi =
∑n

i=1 βi

and the rightmost non-zero entry of β −α is negative.

• Weight order: Given a real vector ω ∈ Rn
≥0 and an arbitrary monomial order ≺, we define

the monomial order ≺ω as xα ≺ω xβ if ω⊤α < ω⊤β or if ω⊤α = ω⊤β and α ≺ β.

Notice that the monomial order ≺ω extends the partial order induced by ω.

Consider the four monomials x22, x1x3, x1x2x3 and x1x
2
3. The monomial orders above would

order these monomials as follows.
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• Lexicographic: x22 ≺lex x1x3 ≺lex x1x
2
3 ≺lex x1x2x3

• Graded reverse lexicographic: x1x3 ≺grevlex x
2
2 ≺grevlex x1x

2
3 ≺grevlex x1x2x3

• Weight order with ω = (1, 3, 0) and ≺ = ≺lex: x1x3 ≺ω x1x
2
3 ≺ω x1x2x3 ≺ω x22

Definition 1.1.15. Given a monomial order ≺ and an ideal I ⊂ K[x1, . . . , xn]. A Gröbner

basis for I is a finite collection of nonzero polynomials G = {g1, . . . , gs} ⊂ I such that

⟨in≺(g1), . . . , in≺(gs)⟩ = ⟨{in≺(g) : g ∈ I}⟩,

where in≺(g) is the leading monomial in g with respect to the monomial order ≺. We say that G is

reduced if every polynomial in G is monic and for each g ∈ G, no monomial appearing in g lies in

⟨in≺(f) : f ∈ G\{g}⟩.

Proposition 1.1.16. Let ≺ be a monomial order and I ⊂ K[x1, . . . , xn] an ideal. If G≺ is a

Gröbner basis for I with respect to ≺, then G≺ generates I as an ideal.

Proposition 1.1.17. Let I ⊂ K[x1, . . . , xn] be an ideal. Then, for any monomial order, I has

an unique reduced Gröbner basis with respect to the monomial order.

For the reader interested in learning more about general Gröbner basis theory and its applica-

tions to computational commutative algebra we recommend the references [30,31]and [65].

Proposition 1.1.18. Let ≺ be a monomial order and I ⊂ K[x1, . . . , xn] be an ideal generated

by binomials of the form xu−xv (known as pure difference binomials). Then, any reduced Gröbner

basis of I consists of pure difference binomials.

Remark 1.1.19. Whenever {xm+ − xm−
: m ∈ G} is a Gröbner basis for a toric ideal IA, it

follows from Proposition 1.1.8 that G is a Markov basis for A.

The previous remark implies that Gröbner basis can be used to generate random samples

from a given distribution on F(A, b) as described in Algorithm 1. However, one of the additional

applications of Gröbner basis for toric ideals relies on integer programming [29,71,105].

Definition 1.1.20. Let A ⊂ Zd×n be an integer matrix, G ⊂ kerZA and ≺ be a monomial

order on Zn
≥0. We denote by F(A, b)G,≺ the fiber digraph whose vertices correspond to F(A, b)

and there is a directed edge from u to v if v ≺ u.
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Proposition 1.1.21. Let A ⊂ Zd×n be an integer matrix, G ⊂ kerZA and ≺ be a monomial

order on Zn
≥0. Then, F(A, b)G,≺ has a unique sink for every b ∈ NA if and only if the set of

binomials {xm+ − xm−
: m ∈ G} is a Gröbner basis for IA with respect to ≺.

Example 1.1.22. Let A = (3 4 5) and M = {(1,−2, 1), (3,−1,−1), (2, 1,−2)} ⊂ kerZA.

Figure 1.2 illustrates the fiber digraphs F(A, 30)M,≺ with two different monomial orders whose

sinks have been highlighted with green. In (a), the reverse lexicographic order produces a digraph

with a unique sink. In contrast, the digraph in (b) has three distinct sinks when using the weight

order induced by ω = (0, 1, 3) with ties broken using the lexicographic order.

3

(a) F(A, 30)M,≺grevlex

4

(b) F(A, 30)M,≺ω

Figure 1.2. Fiber digraphs induced byM = {(1,−2, 1), (3,−1,−1), (2, 1,−2)} and
different monomial orders. Sinks in each digraph are highlited with green.

In fact, {xm+ −xm−
: m ∈M} is a Gröbner basis for IA with respect to ≺grevlex but not with

respect to ≺ω where ω = (0, 1, 3).

As a consequence of Proposition 1.1.21, if ≺ω is a monomial ordering that extends the partial

order induced by ω (i.e., ω⊤u < ω⊤v implies xu ≺ω xv), then integer programs of the form

(1.1)

min ω⊤u

subject to Au = b,

u ≥ 0;

7



can be solved in polynomial time, provided we have access to a Gröbner basis of IA with respect

to ≺ω. Moreover, a wider class of integer linear programs can be solved by considering generators

of IA that satisfy stricter conditions.

Definition 1.1.23. Let A ∈ Zd×n be an integer matrix. A binomial xu+ − xu− ∈ IA is called

primitive if there exists no other binomial xv+ − xv− ∈ IA such that xv+
divides xu+

and xv−

divides xu−
.

Definition 1.1.24. The Graver basis of an integer matrix A ∈ Zd×n is defined as the set

Gr(A) := {u ∈ Zn
≥0 : x

u+ − xu−
is primitive}.

Remark 1.1.25. As shown in [35], the Graver basis Gr(A) can be equivalently defined as the

set of all ⊑-minimal elements in kerZA \ {0}, where for any u,v ∈ Nn, we say u ⊑ v if and only

if ujvj ≥ 0 and |uj | ≤ |vj | for every j ∈ [n].

Proposition 1.1.26. For any reduced Gröbner basis {xu+−xu−
: u ∈ G} for IA, (with respect

to any monomial order), G is a subset of the Graver basis of A.

The Graver basis of a matrix is finite, and an immediate implication of the previous result is

that any Graver basis is also a Markov basis, i.e., IA = ⟨xu+ − xu−
: u ∈ Gr(A)⟩. In general, the

Graver basis of a matrix A is significantly larger and more complex than a minimal Markov basis

of that matrix, as one would expect given Proposition 1.1.29. An illustrative example involving an

small matrix A is provided in Example 1.1.27.

Example 1.1.27. Let A = (3 4 5). The Graver basis for this matrix is given by the set Gr(A) =

{(1,−2, 1), (3,−1,−1), (2, 1,−2), (4,−3, 0), (5, 0,−3), (1, 3,−3), (0, 5,−4)} which consists of 4 more

elements than the minimal Markov basis M = {(1,−2, 1), (3,−1,−1), (2, 1,−2)} ⊂ Gr(A). In

Figure 1.3 the edges induced byM are black while the edges induced by Gr(A)\M are red in order

to illustrate the difference between the fiber graphs induced by the different sets,M and Gr(A).

Another implication of the previous result is that Graver basis can be used to solve any in-

teger linear program of the form (1.1) for any ω, provided an initial feasible point is available.

Furthermore, there exist even stronger applications of Graver bases.

8



5

Figure 1.3. Fiber graph F(A, 30)Gr(A) induced by Gr(A).

Definition 1.1.28. Let A ∈ Zd×n be an integer matrix and a margin b ∈ NA. For l,L ∈ Zn

we define the (b; l,L)-fiber of A as the set

F(A, b; l,L) := {u ∈ Zn : Au = b, and li ≤ ui ≤ Li for every i ∈ [n]}.

We will omit b from both the name and the notation when this is clear from the context.

Proposition 1.1.29 ( [106]). Let A ∈ Zd×n be an integer matrix and Gr(A) its Graver basis.

Then, for every b ∈ NA and any l,L ∈ Zn
≥0, the fiber graph F(A, b; l,L)Gr(A) is connected.

Proposition 1.1.30 ( [60]). Let A ∈ Zd×n be an integer matrix, b ∈ NA, l,L ∈ Zn
≥0 and

ω ∈ Rn
≥0. Then, for every u ∈ F(A, b; l,L) non-minimal (with respect to ω), there exists v ∈ Gr(A)

such that u+ v ∈ F(A, b; l,L) and such that ω⊤(u+ v) < ω⊤u.

In other words, the previous results implies that whenever we have access to Gr(A), it is possible

to solve any integer linear program of the form

(1.2)

min ω⊤u

subject to Au = b,

L ≥ u ≥ l;

for arbitrary choices of b ∈ NA, l,L ∈ Zn
≥0 and ω ∈ Rn

≥0. Moreover, Graver basis can be used to

solve integer programs for a broader class of function called convex separable (see [35, Chapter 3]).
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Several algorithms for computing a generating set of binomials for IA (equivalently, a Markov

basis for A) exist in the literature. The earliest such algorithms were introduced in [29,94] and

relied on computing a Gröbner basis using the Buchberger algorithm. More efficient algorithms,

employing different techniques, were subsequently developed in [16, 17, 70]. The most efficient

algorithm to date is the “Project and Lift” algorithm, introduced in [67], which computes a sequence

of Gröbner bases for a hierarchy of projections of the integer kernel. This algorithm is implemented

in the software package 4ti2 [1].

However, 4ti2’s implementation is practical only for small matrices. For instance, [67, Sec-

tion 6] presents an example of a matrix A ∈ Z48×64 of rank 37, where the Project and Lift algorithm

requires approximately two days to compute its Markov basis. Moreover, [27] shows that Gröbner

and Graver basis computations are strongly NP-hard in the general case.

Therefore, from an application standpoint, having access to a complete description of the

Markov basis, Gröbner basis, or Graver basis for a given matrix A is highly advantageous, and

the specific basis choice depends on the application at hand.

Since the publication of the seminal paper [45], there has been a surge of research examining

various aspects of Markov bases and their structure for matrices associated with particular sta-

tistical models. Notable contributions include [8, 23, 39, 46, 47, 96], among others. While it is

impossible to cite the entire bibliography, we recommend the comprehensive references [7,48,106].

These books provide a compilation of the extensive work that has been conducted in this field so

far.

Before presenting some of the most prominent results, we first discuss the application of Markov

bases to goodness-of-fit tests in statistical models.

1.2. Markov Bases in Probability and Statistics

Denote by X = (X1, . . . , Xm) a discrete random vector in the state space I = [r1]× · · · × [rm]

and define the joint probabilities

p(i) = p(i1, . . . , im) = P(X1 = i1, . . . , Xm = im), ∀i ∈ I,

These form a joint probability table p = (p(i) : i ∈ I).
10



Definition 1.2.1. Let A ∈ Zd×|I| be an integer matrix with 1 ∈ rowspan(A), whose columns

are indexed by I. Let A(·, i) ∈ Zd denote the i-th column of A, and let h = (h(i) : i ∈ I) ∈ R|I|
>0

be a base measure. The log-affine model associated with A and h is the family of probability

distributions LA,h := {pθ}θ∈Θ such that

(1.3) pθ(i) =
h(i)

ψ(θ)
exp{η(θ)⊤A(·, i)} for every i ∈ I,

where θ = (θ1, . . . , θd) is the vector of model parameters, η : Rd → Rn is the natural parameter,

and ψ(θ) is the normalizing constant. The matrix A is referred to as the design matrix for the

model LA,h. When h = 1, the model is called log-linear and is denoted simply by LA.

From now on, when considering a log-affine model LA,h, we will interchangeably refer to the

Markov basis of A or the Markov basis of the model LA,h.

Remark 1.2.2. One of the implications of having 1 ∈ rowspan(A) is that a probability vector

(table) p belongs to LA,h if and only if log p belongs to the affine space logh+ rowspan(A).

Example 1.2.3 (Independence model). Consider a probability vector p = (p(i1, i2) : i1 ∈

[r1], i2 ∈ [r2]), where p(i1, ·) and p(·, i2) represent the marginal probabilities. Suppose that p belongs

to the independence model LX⊥⊥Y , meaning that p(i1, i2) = p(i1, ·)p(·, i2) for every (i1, i2) ∈ [r1] ×

[r2]. Let α = (αi1 : i1 ∈ [r1]) and β = (βi2 : i2 ∈ [r2]) be parameter vectors such that

p(i1, ·) =
eαi1

ψ(α)
and p(·, i2) =

eβi2

ψ(β)
for every (i1, i2) ∈ [r1]× [r2],

where ψ(α) and ψ(β) are normalizing constants for the marginal probabilities. Then, it follows that

p(i1, i2) ∝ exp{θ⊤A(·, (i1, i2))} for θ = (α,β) and a matrix A ∈ Z(r1+r2)×r1r2 such that the rows

are labeled by the parameter vector (α,β) and the (i1, i2)-th column of A has 1s only at rows i1, i2

and 0s everywhere else. In other words, the independence model is log-linear with design matrix A.

11



For a concrete example, consider r1 = 2 and r2 = 3. Then, the design matrix for the model is

the 5× 6 matrix

A =

11 12 13 21 22 23



1 1 1 0 0 0 α1

0 0 0 1 1 1 α2

1 0 0 1 0 0 β1

0 1 0 0 1 0 β2

0 0 1 0 0 1 β3

.

The model representation of interest to us arises when data are arranged in a contingency table

that cross-classifies items according to m categories. Specifically, consider a random sample of N

independent and identically distributed vectors X(1), . . . ,X(N) ∈ I = [r1] × · · · × [rm], and let

U = (U(i) : i ∈ I) denote the m-way table of format r1×· · ·× rm. Here, U(i) = #{k : X(k) = i}

records the number of times i is observed. As we demonstrate below, to compute the likelihood of

observing U , all that is needed is the “summarized” data AU .

Proposition 1.2.4. Let p = (p(i) : i ∈ I) be a probability vector. If p = pθ ∈ LA,h and

u ∈ ZI
≥0 satisfies

∑
i∈I u(i) = N and Au = b, then

P(U = u | θ) = huN !∏
i∈I u(i)!

exp{η(θ)⊤Au},

and the conditional probability P(U = u | AU = Au,θ) does not depend on θ. Moreover,

P(U = u | AU = Au,θ) =
hu/

(∏
i∈I u(i)!

)∑
v∈F(A,b) h

v/
(∏

i∈I v(i)!
) .

Remark 1.2.5. In the previous proposition, I = [r1] × · · · × [rm], A ∈ Zd×|I| is an integer

matrix whose columns are indexed by the set I, and u ∈ ZI
≥0 is an r1 × · · · × rm-table. Hence,

we implicitly assume that the matrix multiplication Au is performed by considering a vectorization

of the table u, with entries ordered according to the column indexing of A, which we assume to be

lexicographic unless otherwise specified. To avoid introducing additional notation, we use u to refer

to both the m-way table and its vectorization; the intended interpretation will usually be clear from

the context.
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Given Proposition 1.2.4, when considering a log-affine model, we write the conditional probabil-

ity of U given u as P(U = u | AU = Au), omitting the vector of parameters θ from the notation.

The vector Au is known as the vector of sufficient statistics for the modelMA,h in the statistics

literature (see [22, Section 6.2]).

Example 1.2.6 (1.2.3, continued). In the independence model, if we consider a table of counts

u = (ui1i2 : i1 ∈ [r1], i2 ∈ [r2]), which we think of as “vectorized,” we can see that in the concrete

example r1 = 2, r2 = 3

Au =



1 1 1 0 0 0

0 0 0 1 1 1

1 0 0 1 0 0

0 1 0 0 1 0

0 0 1 0 0 1





u11

u12

u13

u21

u22

u23


=



u1+

u2+

u+1

u+2

u+3


,

where ui1+ and u+i2 represent the i1-th row sum and i2-th column sum of u, respectively.

In the general setting, for a vector of counts u ∈ Zr1×r2
≥0 , the vector of sufficient statistics Au

consists of the row sums and column sums of u. One can observe that kerZA = {u ∈ Zr1×r2 :

ui1+ = 0 for all i1, and u+i2 = 0 for all i2}. In other words, kerZA is the set of tables with integer

entries whose row sums and column sums are 0.

Now, consider N independent and identically distributed vectors X(1), . . . ,X(N) ∈ I sampled

according to a distribution p = (p(i) : i ∈ I), and let U = (u(i) : i ∈ I) denote their vector of

counts, as defined previously. Also, consider a log-affine model LA,h = {pθ}θ∈Θ. We aim to test

the hypothesis

H0 : p ∈ LA,h against H1 : p /∈ LA,h,

which is commonly referred to as a goodness-of-fit test for the model LA,h. See [111, Section

10.8] and the references therein for a general treatment of hypothesis testing and goodness-of-fit

tests. A standard approach for reporting the results of such a hypothesis test involves computing

and presenting the value of a specific test statistic called the p-value. Informally, the p-value

measures the likelihood of observing U under the assumption that H0 is true.
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Definition 1.2.7. A p-value p(U) is a test statistic satisfying 0 ≤ p(u) ≤ 1 for every sample

point u. Small values of p(U) give evidence that H1 is true. A p-value is valid if, for every θ ∈ Θ

and every 1 ≤ α ≤ 1,

P(p(U) ≤ α | θ) ≤ α.

If p(U) is a valid p-value, we can construct a level α test based on it: the test rejects H0 if

and only if p(U) ≤ α. The level α = .05 is commonly used in practice.

As a consequence of Proposition 1.2.4, we know that if the null hypothesis H0 is true, then

the conditional distribution of U given AU = u does not depend on θ. Consequently, if W (U) is

a test statistic where larger values provide evidence in favor of H1, the test statistic p(U), defined

as

(1.4) p(u) := P(W (U) ≥W (u) | AU = Au),

is a valid p-value, also known in the literature as a conditional p-value. For further details on

conditional p-values, we refer the reader to [22, Subsection 8.3.4].

While we do not study test statistics W (U) in detail, one natural test statistic that generalizes

Fisher’s exact test is the chi-square statistic

X2(U) :=
∑
i∈I

(u(i)− û(i))2

û(i)
,

where û(i) = Np̂(i) and {p̂(i)}i∈I are the maximum likelihood estimates, which can be computed

using iterative proportional scaling when there are no exact formulas for them (see [106, Sec-

tion 7.3]).

One useful application of Markov bases is computing (or approximating) the exact p-value, as

shown by the following result, which follows from Theorem 1.1.12 and the law of large numbers

for Markov chains, commonly known as the Ergodic Theorem. A general proof of this theorem is

provided in [98, Theorem 6.63].

Theorem 1.2.8. Let {un}n≥1 be the output of Algorithm 1 as N → ∞ with u1 = u and

π = P(· | Au). Let W : F(Au)→ R be any function. Then,

P

(
lim

N→∞

1

N

N∑
n=1

1W (un)≥W (u) = P(W (U) ≥W (u) | AU = Au)

)
= 1.
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In practice, if W (U) is a test statistic for which larger values provide evidence that H1 is true

(such as the chi-square test), we can approximate the p-value, as defined in Equation 1.4, by using

a slight modification of Algorithm 1, as shown in Algorithm 2 below.

Algorithm 2: p-value approximation given a Markov basis

Input : An observed vector of counts u ∈ ZI
≥0 with Au = b

M, a Markov basis for A
base measure h ∈ RI

>0

W (·), test statistic
N , number of fiber samples

Output: p-value as in (1.4)
1 Set u1 ← u and p1 ← 1;

2 for n = 1, . . . , N − 1 do
3 Choose m ∈ ±M uniformly at random;

4 if un +m ≥ 0 ; ▷ This checks if un +m ∈ F(A, b)
5 then

6 un+1 ← un +m with probability min
{
1, P(U=un+m|AU=b)

P(U=un|AU=b)

}
;

▷ Metropolis-Hastings step

7 else
8 un+1 ← un;

9 pn+1 = pn + 1W (un+1)≥W (u)

10 Return sequence 1
N pN

Remark 1.2.9. Thanks to Proposition 1.2.4 the ratio computation in line 6 of Algorithm 2 can

be done by computing
hun+m

(∏
i∈I(un)i!

)
hun

(∏
i∈I(un+m)i!

) .
Example 1.2.10. Consider a hypothetical experiment designed to evaluate the effectiveness of

two different pain relief drugs, A and B, on a sample of 40 individuals. Each participant rated

their pain on a scale from 1 to 5, one hour after receiving the drug. The responses are summarized

in Table 1.1.

Drug Pain Score
1 2 3 4 5 Total

A 17 2 1 0 1 22
B 7 3 4 3 2 18

Total 24 5 5 3 3 40

Table 1.1. Summary of responses in the drug effectiveness study, categorized by
drug type and pain score.
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In this scenario, we aim to test the independence between the type of pain relief drug and the pain

score. The p-value for the observed data can be computed using Algorithm 2 through the algstat

package in R [77]. This computation involves the chi-square statistic and the Markov basis for the

corresponding independence model, as described in Proposition 1.3.1 below. The resulting p-value

for the exact test is 11× 10−3, indicating that we should reject the null hypothesis of independence.

1.3. The Complexity of Markov Bases

In the previous section, we outlined a method for performing goodness-of-fit tests for log-linear

models that relies on access to a Markov basis for the corresponding design matrix. Hierarchical

log-linear models, one of the most significant classes of log-linear models in statistics, have been the

focus of considerable research aimed at understanding their Markov bases. Notable contributions

that describe scenarios where hierarchical models have well-behaved Markov bases include [46,47,

72]. However, [39] demonstrated that, in general, Markov bases can be arbitrarily complex.

Motivated by this result, we introduce an extension of the Markov basis concept that enables

fiber connectivity through negative fiber relaxations. These relaxations have been used in [20,25,

113] as alternative methods for defining irreducible Markov chains on fibers with simple moves.

We show that even in this setting, arbitrarily complex moves may still be required to ensure the

irreducibility of the Markov chains.

On the other hand, we provide an upper bound on the size of the Graver basis for certain

hierarchical models. Furthermore, it is worth noting that, driven by applications in integer and

sparse integer programming, substantial effort has been devoted to understanding the complexity

of Graver bases. Recent advances in integer programming have led to new and improved bounds on

the maximum one-norm for Graver basis elements, which depend on the treedepth of the matrix.

For further details, see [49,82,83] and the references therein.

We begin this section by reviewing known results on Markov bases before presenting our own

contributions, starting with a description of the Markov basis for the independence model.

Proposition 1.3.1. Let A ∈ Z(r1+r2)×r1r2 be the design matrix of the independence model

LX⊥⊥Y as described in Example 1.2.3. For every (i1, i2) ∈ [r1] × [r2] let ei1i2 ∈ Zr1r2 be the vector

with 1 at the everywhere but at the (i1, i2)-th position. Then

M = {ei1i2 + ej1j2 − ei1j2 − ej1i2 : 1 ≤ i1 < i2 ≤ r1, 1 ≤ j1 < j2 ≤ r2}
16



is a minimal Markov basis for A.

The independence model is a specific example of a hierarchical model, and as stated in Propo-

sition 1.3.1, its Markov basis can be described in a very compact way. More generally, as with

the independence model, the sufficient statistics for hierarchical models consist of a collection of

sums across higher-dimensional tables. However, we will observe that the size of the elements in a

minimal Markov basis can grow significantly depending on the parameters of the model.

To formally define a hierarchical model, we need to introduce some notation, which is primarily

drawn from [7].

Definition 1.3.2. Let I = [r1] × · · · × [rm] and i = (i1, . . . , im) ∈ I. For any D ⊂ [m], we

define ID :=
∏

j∈D[rj ] and iD := (ij : j ∈ D) ∈ ID. This means that up to the apropriate indices

reordering we have that i = (iD, iDc) where Dc = [m]\D.

Given an m-way table u = (u(i) : i ∈ I), we define the D-margin vector of u as the |D|-way

table uD = (uD(iD) : iD ∈ ID) such that

uD(iD) :=
∑

iDc∈IDc

u(iD, iDc) for every iD ∈ ID.

In other words, uD(iD) represents the sum of all of the entries of u with iD being fixed.

Example 1.3.3. Consider I = [r1] × [r2] and a 2-way table u = (u(i) : i = (i1, i2) ∈ I. The

table u has two 1-margins given by

(1.5) u{1} =

( ∑
i2∈[r2]

u(i1, i2) : i1 ∈ [r1]

)
and u{2} =

( ∑
i1∈[r1]

u(i1, i2) : i2 ∈ [r2]

)
.

In other words, u{1} is the vector of row sums of u and u{2} is the vector of column sums. This

means that for 2-way tables, the vector sufficient statistics of the independence model consists of

the 1-margins of u as we explained in Example 1.2.6.

Now, consider I = [r1]× [r2]× [r3] and let u = (u(i) : i = (i1, i2, i3) ∈ I) be a 3-way table. The

table u has three 1-margins u{1},u{2} and u{3}, also known as plane sums. Figure 1.4 provides a

concrete example of a 3-way table with r1 = r2 = r3 = 3 and Figure 1.5 provides an illustration of

its 1-margins.
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Figure 1.4. Illustration of a 3-way table u.
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Figure 1.5. 1-margins of the table u in Figure 1.4.

A 3-way table u has three 2-margins, u{1,2},u{1,3} and u{1,3} which are also known as line sums

and are illustrated in Figure 1.6 for a particular example where r1 = 5, r2 = 4 and r3 = 3.

Hierarchical models are a class of log-linear models for which the vector of sufficient statistics

is determined by the margins induced by a simplicial complex: a family of subsets ∆ of [m] such

that, for every D ∈ ∆, all subsets of D are also in ∆. The elements of the family ∆ are called

faces, and the maximal elements under inclusion are called facets, denoted by F(∆). Since facets
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Figure 1.6. 2-margins of a 3-way table u.

completely determine a simplicial complex, we describe a simplicial complex by its facets using

bracket notation. For instance, ∆ = [123][24] is the simplicial complex with ground set {1, . . . , 4},

whose facets are {1, 2, 3} and {2, 4}.

Using this informal definition, we can see that the independence model is a hierarchical model

determined by the simplicial complex ∆ = [1][2].

Definition 1.3.4. Let I = [r1]× · · · × [rm], r = (r1, . . . , rm), and let ∆ be a family of subsets

of [m]. The hierarchical model associated with ∆ and r is the family of probability distributions

L∆,r :=

{
pθ : θ = (θ(1), . . . ,θ(|D|)) ∈

∏
D∈∆

R|ID|

}
,

where θ(D) = (θ(D)(iD) : iD ∈ ID), and such that

log pθ(i) =
∑
D∈∆

θ(D)(iD).

In this context, the entries of r are known as the levels of the hierarchical model.

Hierarchical models are log-linear models. Specifically, they can be described through a
∏

D∈∆ |ID|×

|I| design matrix A∆,r associated with the simplicial complex ∆ and the vector r. The columns of

A∆,r are labeled by I, typically in lexicographic order, while the rows are divided into blocks: one

block per facet of ∆. The rows within each block are labeled by ID, also ordered lexicographically.

Finally, the blocks corresponding to the different facets of ∆ are ordered lexicographically.
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If we let eiD be the |ID|-dimensional vector such that for every i′D ∈ ID,

eiD(i
′
D) =


1, if i′D = iD,

0, otherwise.

It is possible to describe the i-th column of A as A(·, i) =
⊕

D∈F(∆) eiD , where ⊕ represents vector

concatenation.

Example 1.3.5. Consider the simplicial complex ∆ = [12][13][23]. The hierarchical model

associated with this simplicial complex is known as the no-three-way interaction model. A

concrete example for the design matrixM∆,r of this model with levels r = (2, 2, 2) is given below.

A∆,r =

111 112 121 122 211 212 221 222



1 1 0 0 0 0 0 0 θ(12)(1, 1)

0 0 1 1 0 0 0 0 θ(12)(1, 2)

0 0 0 0 1 1 0 0 θ(12)(2, 1)

0 0 0 0 0 0 1 1 θ(12)(2, 2)

1 0 1 0 0 0 0 0 θ(13)(1, 1)

0 1 0 1 0 0 0 0 θ(13)(1, 2)

0 0 0 0 1 0 1 0 θ(13)(2, 1)

0 0 0 0 0 1 0 1 θ(13)(2, 2)

1 0 0 0 1 0 0 0 θ(23)(1, 1)

0 1 0 0 0 1 0 0 θ(23)(1, 2)

0 0 1 0 0 0 1 0 θ(23)(2, 1)

0 0 0 1 0 0 0 1 θ(23)(2, 2)

.

Notice that the column associated to (2, 1, 2) ∈ [2]× [2]× [2] is given by

A∆,r(·, 212) = e(2,1) ⊕ e(2,2) ⊕ e(1,2)

= (0, 0, 1, 0)⊕ (0, 0, 0, 1)⊕ (0, 1, 0, 0).

By keeping careful track of indices it can be shown that for an m-way table u ∈ ZI
≥0, A∆,ru =

(uD : D ∈ F(∆)). In other words, (uD : D ∈ F(∆)) is the vector of sufficient statistics for

the hierarchical model L∆,r. For example, the 2-margins illustrated in Figure 1.6 constitute the

sufficient statistics for the no-three-way interaction model introduced in Example 1.3.5.
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Definition 1.3.6. A simplicial complex ∆ on [m] is reducible with decomposition (∆1, S,∆2)

and separator S ⊂ [m] if ∆ = ∆1 ∪∆2 and ∆1 ∩∆2 = 2S, where 2S denotes the power set of S. A

simplicial complex is decomposable if it is reducible and both ∆1 and ∆2 are decomposable or if

they are of the form 2R for some R ⊂ [m].

Remark 1.3.7. Decomposable models can also be defined in an alternative way (see [7, Section

8.1]). A simplicial complex ∆ is graphical if its facets correspond to the maximal cliques of a

graph G. Furthermore, ∆ is decomposable if and only if G is a chordal graph.

Example 1.3.8. The simplicial complex [1][2][3] is decomposable and corresponds to the inde-

pendence model on three variables. In contrast, the simplicial complex [12][13][23], associated with

the no-three-way interaction model, is the simplest non-decomposable model since it is not even

graphical.

On one hand, it is known that for decomposable hierarchical models, the structure of their

Markov basis is well understood thanks to work of [46,107]. In fact, one can always find a Markov

basis with moves whose one-norms equal 4, regardless of the size of the levels r1, . . . , rm. This

was subsequently used to spell out a divide-and-conquer algorithm to compute Markov bases for

reducible models in [47].

On the other hand, such a bound fails to exist for even the simplest non-decomposable model:

the no-three-way interaction of three discrete random variables described in Example 1.3.5. By im-

porting powerful polyhedral geometry results into statistics, [39] showed that any minimal Markov

bases of the no-three-way-interaction model on r1×r2×3 tables can contain moves with arbitrarily

large 1-norm, if r1 and r2 are unrestricted.

Before explicitly stating this result, let us recall that the fibers F(A, b) can be understood as

the set of integer points of the polytope P (A, b) := {y ∈ Rn : y ≥ 0, Ay = b}. In other words,

F(A, b) = P (A, b)∩ZI
≥0. The following remarkable result shows that the no-three-way interaction

model can capture the geometric structure of any polytope P (A, b). Furthermore, it implies that if

one is able to describe a Markov basis for the no-three-way interaction model on r1 × r2 × 3 tables

as we let r1, r2 vary, then we automatically have a Markov basis for any integer matrix A.

Theorem 1.3.9 ( [38]). For any rational matrix A ∈ Qd×n and any integer vector b ∈ Zd,

P (A, b) = {y ∈ Rn
≥0 : Ay = b} is polynomial-time representable as a slim 3-way transportation
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polytope:

T =

x ∈ RI×J×3
≥0 :

3∑
k=1

xi,j,k = ui,j ,
J∑

j=1

xi,j,k = vi,k,
I∑

i=1

xi,j,k = wj,k

 .

For positive integers h and h′, saying that a polytope P ⊂ Rh is representable as a polytope Q ⊂ Rh′

means that there is an injection σ : {1, . . . , h} → {1, . . . , h′} such that the coordinate-erasing

projection

π : Rh′ → Rh : x = (x1, . . . , xh′) 7→ π(x) = (xσ(1), . . . , xσ(h))

provides a bijection between Q and P and between their integer points Q ∩ Zh′
and P ∩ Zh.

As a consequence of Proposition 1.3.9, we have the following.

Corollary 1.3.10. For any nonnegative integer vector θ ∈ Nη, there exist positive integers

r1, r2 such that any Markov basis for the no-three-way interaction model on r1× r2× 3 tables must

contain an element whose restriction to some η entries is precisely θ. In particular, the degree and

support of elements in the minimal Markov bases, as r1 and r2 vary, can be arbitrarily large.

When a Markov basis is unavailable, a natural alternative is to explore simpler subsets L of

kerZA, with the hope that they are sufficiently large to induce connected fiber graphs F(A, b)L,

leading to an irreducible Markov chain on F(A, b). If L induces disconnected fiber graphs, one

could modify Algorithm 1 by temporarily stepping outside of F(A, b) in non-negative vectors u

(still satisfying Au = b) and eventually returning to F(A, b), hoping to achieve an irreducible

Markov chain on F(A, b).

This has been a direction of research for some time with many open questions, some of which

are summarized in [112]. The most common subsets of the integer kernel used for this purpose are:

• Lattice bases. A set of vectors L in kerZA is called a lattice basis if it is linearly in-

dependent and spanZL = kerZA. As noted in [45], a lattice basis is typically a proper

subset of a full Markov basis. While its size is determined by the rank of A and it can be

computed easily using the Hermite normal form of A (see [100, Section 4.1]), it does not

generally form a Markov basis. The workaround for ensuring a provably connected chain

is simple: every Markov move can be expressed as a linear combination of lattice basis

moves. However, the challenge is that the size of these required linear combinations is not

well understood.

22



• Circuits. A vector u ∈ kerZA is a circuit if its support is minimal, meaning there is no

vector v ∈ kerZA such that supp(v) ⊂ supp(u). The set of all such vectors is called the set

of circuits of A and is denoted by C(A). In certain cases, A provides a clear combinatorial

description of the set of circuits.

In general, the following containment relationships hold among these subsets of kerZA: (1)

every Markov basis contains a lattice basis, (2) the Graver basis contains any minimal Markov

basis, and (3) the Graver basis contains the set of circuits.

Example 1.3.11. Consider the matrix A = (3 4 5) from Example 1.1.9, and letM = {(1,−2, 1),

(3,−1,−1), (2, 1,−2)} be a minimal Markov basis for A. Notice that both F(A, 15) and F(A, 30)

require at least 3 moves to be connected. Since rank(A) = 2, no lattice basis of A forms a Markov

basis in this case. Furthermore, removing an element from M recovers a lattice basis for A, but

this induces disconnected fibers F(A, b) even for small values of b (cf. Figure 1.1).

As noted in Example 1.1.27, the Graver basis for A is given by the set Gr(A) = {(1,−2, 1),

(3,−1,−1), (2, 1,−2), (4,−3, 0), (5, 0,−3), (1, 3,−3), (0, 5,−4)}. On the other hand, the set of cir-

cuits for A is C(A) = {(0, 5,−4), (5, 0,−3), (0, 4,−3)}.

There are scenarios where various bases of a model are equal, such as when circuits form a

Markov basis. For example, when the design matrix A is totally unimodular, [45, Proposition

8.11] shows that the Graver basis coincides with the set of circuits of A. However, unimodularity

is a strong condition, as demonstrated by Seymour’s decomposition theorem (see [101, §19.4]).

For more details on unimodular matrices in specific models, we refer the reader to [12,13], which

provide a comprehensive description of hierarchical models with totally unimodular design matrices.

For the no-three-way interaction model, many authors have considered a special set of moves

called basic moves: elements of minimal 1-norm that, like a lattice basis, span kerZA. However,

the set of basic moves is not a Markov basis for the no-three-way interaction model on r1× r2× r3

tables when at least two of r1, r2, r3 are greater than 2 (see [7, Chapter 9]). Nevertheless, this

simple set of moves can still connect certain fibers, as shown in [15], which demonstrates that basic

moves suffice to connect 3-way tables with positive margins.

Some special cases work out particularly well. For instance, [21, Proposition 3] shows that basic

moves generate an irreducible chain for the no-three-way interaction model on 2× r2 × r3 tables if
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the fiber is extended by allowing a single −1 entry at any step. Similarly, [25, Theorem 3.1] applied

the non-negativity relaxation of the fibers to a logistic regression model, allowing some entries to

take −1 values. Motivated by these ideas, [84] and [113] used the same approach to show that

basic moves induce an irreducible Markov chain on the fibers of the no-three-way interaction model

on 3 × 3 × r3 and 3 × 4 × r3 tables, while allowing temporary −1 entries. These results utilized

the full descriptions of the unique minimal Markov bases presented in [9,10]. In the following, we

formalize the non-negativity relaxation approach and study its limitations.

As mentioned previously , the goal of the non-negativity relaxation approach will be to define

irreducible Markov chains on the fibers F (A, b) of a log-linear model with design matrix A by using

a simple set of moves and allowing “temporary” steps of the chain to be taken in relaxed fibers

whose elements allow for negative values in some entries.

Definition 1.3.12. Let A ∈ Zd×n be an integer matrix and b ∈ NA a margin. For l ∈ Zn we

define the unbounded (b; l)-fiber of A as the set

F(A, b; l) := {u ∈ Zn : Au = b, and li ≤ ui for every i ∈ [n]}.

Definition 1.3.13. Let I = [r1]× · · · × [rm] and S ⊆ I with indicator vector 1S, meaning that

for every i ∈ I, the i-th entry of 1S is 1 if i ∈ S and 0 otherwise. Let A ∈ Zd×I and q ∈ Z≥0. We

say that M ⊂ kerZA is a (−q, S)-Markov basis for A if for every margin b ∈ NA and any pair

u,v ∈ F(A, b), there exists a choice of moves m1, . . . ,mK ∈M such that

u− v =
K∑
k=1

mk and v +
k′∑

k=1

mk ∈ F(A, b;−q1S) for every k′ ≤ K.

When S = I, we write 1 instead of 1S, and a (−q, I)-Markov basis is referred to simply as a (−q)-

Markov basis. Notice that when q = 0, a (−q, S)-Markov basis is the same as a usual Markov

basis, as in Definition 1.1.7.

As with a usual Markov basis, there are equivalent ways to test whether a set of movesM ⊂

kerZA is a (−q)-Markov basis, one of which uses a particular type of ideals. Given a polynomial
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f ∈ K[x1, . . . , x|I|] and J ⊂ K[x1, . . . , x|I|], we define the ideal quotient

(J : f∞) := {g ∈ K[x1, . . . , x|I|] : f
tg ∈ J for some t ∈ Z>0}.

Proposition 1.3.14 ( [104]). Let A ∈ Zd×I andM⊂ kerZA. Then, the following are equiva-

lent

(1) there exists q ∈ Z≥0 such thatM is a (−q)-Markov basis for A,

(2) spanZ(M) = kerZA,

(3) (⟨xu+ − xu−
: u ∈M⟩ : (x1 · · ·x|I|)∞) = IA.

Example 1.3.15. The setM = {(3,−1,−2), (2, 1,−2)} is a lattice basis for A = (3 4 5) but not

a Markov basis. On the other hand,M is a (−1)-Markov basis for A. In Figure 1.7, (a) illustrates

the disconnected fiber graph F(A, 15)M, while (b) depicts the fiber graph F(A, 15;−1)M. This shows

how one can connect the elements of F(A, 15) by temporarily stepping in the set F(A, 15;−1). For

example, to go from (2, 1, 1) to (1, 3, 0) we take a step in (4, 2,−1).

(5, 0, 0)

(2, 1, 1)

(0, 0, 3)

(1, 3, 0)

1

(a) F(A, 15)M

(5, 0, 0)

(2, 1, 1)

(0, 0, 3)

(1, 3, 0)

(−1, 2, 2)

(0, 5,−1)

(3,−1, 2)

(4, 2,−1)

(8,−1,−1)

1

(b) F(A, 15;−1)M

Figure 1.7. Fiber graphs induced by M = {(3,−1,−1), (2, 1,−2)} on F(A, 15)
and F(A, 15;−1). Vertices in F(A, 15;−1)\F(A, 15) are shown in red.

A small modification to Algorithm 1 yields a way to sample points of a fiber using a (−q, S)-

Markov basis, formalized in Algorithm 3 below. Hence, by Proposition 1.3.14, for any set of moves
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M spanning kerZA, there exists a sufficiently large q that allows us to define an irreducible Markov

chain on b-fibers F(A, b).

Algorithm 3: Fiber samples given a (−q, S)-Markov basis.

Input : u ∈ F(A, b), starting point in a fiber
M, a (−q, S)-Markov basis for A
π, a desired distribution on F(A, b)
N , the number of fiber samples

Output: A sequence of points u1,u2, . . . in F(A, b)
1 Set u1 ← u;

2 Set v ← u ; ▷ Auxiliary variable keeping current point in F(A, b;−q1S)
3 for n = 1, . . . , N − 1 do
4 Choose m ∈ ±M uniformly at random;

5 if v +m /∈ F(A, b;−q1S) then
6 un+1 ← un;

7 else
8 if v +m ∈ F(A, b) then
9 un+1 ← v +m and v ← v +m with probability min

{
1, π(v+m)

π(un)

}
10 else
11 un+1 ← un;

12 v ← v +m;

13 Return sequence u1, . . . ,uN

In general, the non-negativity relaxation approach can be interpreted as follows:

(1) Identify an easily attainable subset M ⊂ kerZA such that spanZ(M) = kerZA. For

instance, one could compute a lattice basisM for kerZA.

(2) Find a q > 0 such thatM is a (−q, S)-Markov basis for A for some S.

Although this strategy works in certain special situations, it cannot be applied universally

without a careful analysis of the connectivity of F(A, b)M. In the absence of general bounds for q,

it is necessary to prove the irreducibility of the Markov chain on the fibers on a case-by-case basis,

depending on the corresponding relaxation induced by a fixed value of q.

1.3.1. Our contributions

We begin this subsection with the following result whose proof is presented in Section 2.1.

Theorem 1.3.16. For any N > 0, there exists a matrix ΛN with ||ΛN ||1 = 4 andMN ⊂ kerZ ΛN

such that spanZ(MN ) = kerZ ΛN butMN is not a (−q)-Markov basis for any q < N .

26



The conclusion of Theorem 1.3.16 is that having a set of moves that spans kerZA does not

ensure that a small relaxation of the fiber will suffice to construct irreducible Markov chains on the

fibers of the model. However, in specific cases of the no-three-way interaction model, a simple set

of moves has been shown to form a (−1)-Markov basis when r1 and r2 are fixed and r3 grows, as

previously discussed.

The next two results highlight the limitations of the fiber relaxation technique when applied

to the no-three-way interaction model. This particular model is of interest because any fiber of

any model corresponds to a fiber of an associated no-three-way interaction model, as stated in

Proposition 1.3.9.

Given the results of Corollary 1.3.10, a natural question arises: are the non-negativity con-

straints on the entries responsible for the problematic behavior of the Markov basis for the model?

In other words, we would like to investigate how large the elements of a (−q, S)-Markov basis can

be when r1, r2 > 0 are unrestricted and r3 = 3.

The following theorem suggests that translating the non-negativity constraint hyperplanes by

one unit can still lead to arbitrarily complicated elements inside any minimal Markov basis when

S is chosen poorly. The proof of this result is in Section 2.2.

Theorem 1.3.17. For any nonnegative integer vector θ ∈ Nη, there are r1, r2 ∈ Z>0 and

S ⊂ [r1] × [r2] × [3] with |S| = 1 +
∑η

i=1 θi, such that any minimal (−1, S)-Markov basis for the

no-three-way interaction model on r1 × r2 × 3 tables must contain an element whose restriction to

some η entries is θ or 2θ.

We now turn to study on the effectiveness of non-negativity relaxation technique using basic

moves, which for this model have received significant attention (see [15,25,64]).

As mentioned previously, a basic move for the no-three-way model on r1 × r2 × r3 tables is

a zero-margin table with minimal 1-norm. These basic moves can be described as 3-way tables

u = (ui,j,k) of the form

ui,j,k =


1, if (i, j, k) ∈ {(i1, j1, k1), (i1, j2, k2), (i2, j1, k2), (i2, j2, k1)}

−1, if (i, j, k) ∈ {(i2, j2, k2), (i2, j1, k1), (i1, j2, k1), (i1, j1, k2)}

0, otherwise
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for fixed indices i1 ̸= i2 ∈ [r1], j1 ̸= j2 ∈ [r2] and k1 ̸= k2 ∈ [r3]. We denote the basic move

associated to these indices by b(i1, i2; j1, j2; k1, k2) (see Figure 1.8 for an illustration) and we

denote the set of basic moves for the no-three-way interaction model on r1 × r2 × r3 tables by

Br1,r2,r3 or simply by B when r1, r2 and r3 are clear from the context.

i2

i1

j2

j1

1

-1

-1

1

0

0
...

0

0

...

k1

0

0

...

0

0

...

0

i2

i1

j2

j1

-1

1

1

-1

0

0
...

0

0

...

k2

0

0

...

0

0

...

0

Figure 1.8. The basic move b(i1, i2; j1, j2; k1, k2)

It is known that for the design matrix A of the no-three-way-interaction model for r1 × r2 × r3

tables, any element in kerZA can be written as a linear combination of the basic moves, i.e.,

spanZ(B) = kerZA (see [64]). Hence, Proposition 1.3.14 guarantees the existence of a q > 0 such

that B is a (−q)-Markov basis for A.

Although it remains an open problem whether Br1,r2,r3 is a (−1)-Markov basis for the no-three-

way interaction model in general, it has been established, as mentioned earlier, that for specific

cases such as 2 × r2 × r3, 3 × 3 × r3, and 4 × 3 × r3 way tables, B is a (−1)-Markov basis for A.

However, given the complex behavior of the fibers for A described in Corollary 1.3.10, it is hard

to believe that the result generalizes when fixing r3 = 3 and letting r1, r2 be unconstrained. To

address this problem, we present the following partial result with proof in Section 2.2.

Proposition 1.3.18. Let r1, r2 ≥ 3 and let S ⊂ [r1] × [r2] × [3] have an anti-staircase shape

(see Definition 1.3.19). Then, for any q > 0 the set of basic moves is not a (−q, S)-Markov basis

for no-three-way interaction model on r1 × r2 × 3 tables.
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Definition 1.3.19. Let r1, r2 ≥ 3 and let S ⊂ [r1] × [r2] × [3]. We say that S has a staircase

shape if there is a surjective function τ : [r2]→ [3] or a surjective function τ ′ : [r1]→ [3] such that

S =

r2⋃
j=1

{(i, j, τ(j)) : i ∈ [r1]} or S =

r1⋃
i=1

{(i, j, τ ′(i)) : j ∈ [r2]}.

We say that S has an anti-staircase shape if S is a complement of a subset of [r1] × [r2] × [3] in

staircase shape. As an example, the sets S corresponding to the colored cells in Figure 1.9 have a

staircase shape.

Figure 1.9. Subsets of [4]× [6]× [3] with staircase shape.

Despite the previous findings, we show good complexity results for non-decomposable models

as demonstrated in Corollary 1.3.23. The result builds upon two key points:

(1) often the design matrix of a hierarchical model exhibits a block structure. For instance it

could be an n-fold matrix, defined below; and

(2) the Graver basis of an n-fold matrix solely depends on its constituent blocks.

Definition 1.3.20. Given fixed matrices A ∈ Zp×s and B ∈ Zp′×s with positive integer p, p′, s,

the n-fold matrix of the ordered pair (A,B) is defined as the (np+ p′)× sn matrix

[A,B](n) :=



A 0 0 · · · 0

0 A 0 · · · 0
...

...
. . .

...
...

0 0 0 · · · A

B B B · · · B


.

We define the type of a vector u = (u(1), . . . ,u(n)) ∈ Zsn as the number |{j : u(j) ̸= 0}| of nonzero

components u(j) ∈ Ns. The following result establishes a stabilization property of the Graver basis

for n-fold matrices.
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Proposition 1.3.21 ( [72]). Given matrices A ∈ Zp×s, B ∈ Zp′×s, there exists a constant C

such that for all n, the Graver basis of [A,B](n) consists of vectors of type at most C. The smallest

of these constants is known as the Graver complexity of A,B and we denote it by g(A,B).

Furthermore,

g(A,B) = max
u∈Gr(B·Gr(A))

||u||1.

The Graver basis Gr([A,B](n)) for any n-fold of A,B can be obtained from the next result.

Proposition 1.3.22 ( [36]). For fixed matrices A ∈ Zp×s and B ∈ Zp′×s, the Graver basis

Gr([A,B](n)) can be computed in polynomial time on n. Moreover, the size of Gr([A,B](n)) is

bounded by |Gr([A,B](g))|
(
n
g

)
, where g = g(A,B) is the Graver complexity of A,B.

Corollary 1.3.23. Let ∆ be a simplicial complex with ground set [m] and maximal faces

D1, . . . , Dt. Let V ⊂ [m] be such that for every j ∈ [m], either V ⊂ Dj or V ⊂ Dc
j . Let ρ = (ρl)l ̸∈V

be fixed. Then, for any (r1, . . . , rm) ∈ Nm with (rl)l ̸∈V = ρ, the size of the Graver basis |Gr(A∆)|

is bounded by a polynomial in
∏

l∈V rl.

In light of Proposition 1.1.29, which states that Graver elements contain all the necessary moves

for sampling restricted fibers, this has direct implications for the feasibility of sampling restricted

fibers. The proof of this corollary is provided in Section 2.3. This relies on the fact that A∆ is an(∏
l∈V rl

)
-fold matrix.

Example 1.3.24. Let ∆ be a simplicial complex on four vertices with levels (r1, r2, 2, 3) rep-

resented in Figure 1.10 below. The maximal faces of ∆ are D1 = {1, 2, 3}, D2 = {1, 2, 4}, and

D3 = {3, 4}, which do not correspond to the set of maximal cliques of any graph. Thus, ∆ is not

graphical and, consequently, not decomposable.

The set V = {1, 2} satisfies V ⊂ F1, F2 and V ⊂ F c
3 . By the proof of Corollary 1.3.23, it follows

that A∆ = [A,B](r1r2), where B = I6 and A is the design matrix of the independence model with

levels (2, 3). Using the software 4ti2 from [1], we compute g(A,B) = 3 and |Gr([A,B](3))| = 15.

Therefore, we have |Gr(A∆)| ≤ 15
(
r1r2
3

)
for any r1, r2.

Remark 1.3.25. An important assumption made in Proposition 1.3.22 is that the matrices A,B

are fixed. However, it is worth noting that the Graver complexity g(A,B) can become arbitrarily
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1
2

3

4

Figure 1.10. Non-decomposable simplicial complex ∆. The shaded regions repre-
sent the maximal faces.

large when the size of the entries in A and B, or the dimensions of A and B, vary. For example, it

was recently shown in [90, Theorem 5.1] that 2×4 matrices have arbitrarily large Graver complexity

when we let the entries vary. Similar results can be also found in [14].

Remark 1.3.26. In scenarios where it is not feasible to explicitly compute the Graver complexity

g(A,B) for fixed matrices A ∈ Zp×s and B ∈ Zp′×s, we can rely on upper bounds. The best

known upper bounds come from recent developments on sparse integer programming where the tree-

depth plays an important role (see [49, 80, 90]). We would like to emphasize the significance of

the block structure and sparsity within the design matrices when computing Graver bases. While

these attributes have been utilized in optimization contexts [33,34,36,49,82], their application in

statistics remains relatively unexplored.

1.4. Markov Bases and Graphs with Fixed Degree Sequences

A particularly intriguing area of research focuses on the random generation of graphs with a

fixed degree sequence (see [3,24,28,52,78]). The degree sequence of a graph g with vertices

in [n] is represented as the vector d(g) = (d1, . . . , dn), where du denotes the degree of vertex u

in g. It has long been established that the set of all graphs with a fixed degree sequence can be

connected through switches. Informally, a switch is an exchange of edge pairs between two graphs

that preserves the degree sequence.

Notably, [66] and [63] leveraged this insight to provide a constructive solution to the graph

realization problem, which is commonly known as the Havel-Hakimi algorithm. Alternatively, one

can determine whether a degree sequence is graphical without constructing a corresponding graph

by using the characterization given by the Erdős-Gallai theorem [51], which tests the validity of n

inequalities. This characterization is closely related to the hyperplane representation of the degree
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sequence polytope introduced by Koren [81]. Further results regarding this polytope can be found

in [87,91,102].

In 1997, [78] proposed the use of the switch Markov chain to uniformly generate simple graphs

with a fixed degree sequence. As highlighted in [52], “the switch Markov chain can be thought of

as the Markov chain of smallest possible modifications.”

In this section, we delve into a colored generalization of the connectivity problem on spaces of

graphs with a fixed degree sequence and a fixed graph statistic arising from a vertex coloring and

we explore its connections with the theory of Markov bases.

From an algebraic statistics perspective, it is useful to conceptualize the space of graphs with a

fixed degree sequence d ∈ Nn as a set of vectors g = (guv)u<v in Gn :=
∏(n2)

i=1 E satisfying the system

of linear equations Dng = d, where Dn is the incidence matrix of the complete graph Kn, and both

the columns of Dn and the entries of g are ordered lexicographically. Here, E corresponds to the

set of possible values that each guv can take. The set of interest {g ∈ Gn : Dng = d} corresponds

to the d-fiber F(Dn,d) when E = N, and corresponds to the (d;0,1)-fiber F(Dn,d;0,1) when

E = {0, 1}. While the first scenario considers multigraphs with a given degree sequence d, the

second one considers simple graphs with a given degree sequence d.

Remark 1.4.1. For g = (guv)u<v ∈ Gn, guv is interpreted as the number of interactions between

nodes u and v. Since we will be dealing exclusively with undirected graphs, we assume guv = gvu

for any pair of distinct nodes.

Definition 1.4.2. Let A be an integer matrix and M ⊂ kerZA. We say that M is a binary

Markov basis for A if F(A, b;0,1)M is connected for every b ∈ NA.

In terms of Definition 1.4.2, our earlier discussion at the beginning of this section establishes

that for any n ∈ N, the set of switches constitutes both a Markov basis and a binary Markov basis

for Dn. In this case, the set of switches corresponds to the elements in kerZDn of minimal 1-norm:

Mn :=
{
euv + eu′v′ − euv′ − eu′v : u < v, u′ < v′, {u, v} ∩ {u′, v′} = ∅

}
,

where euv is the standard unit vector in R(
n
2) associated with the pair {u, v}. Figure 1.11 illustrates

the move in Mn that consists of replacing the pair of edges {u, v′} and {u′, v} with the pair of

edges {u, v} and {u′, v′}.
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u′ v′

vu

Figure 1.11. Switch in Mn replacing the pair of edges {u, v′} and {u′, v} by the
pair of edges {u, v} and {u′, v′}.

Definition 1.4.3. For a positive integer k and a k-coloring (or block assignment) z : [n]→ [k],

we define the color sequence of a graph g ∈ Gn to be the vector c(g, z) := (c(z, i, j) : 1 ≤ i ≤ j ≤ k)

with c(z, i, j) being equal to the total number of interactions in g between colors i and j. The entries

of c(g, z) are ordered lexicographically with respect to the pairs (i, j) and when z is clear from the

context we simply write c(i, j) and c(g). The degree-color sequence (d(g), c(g)) of g with a

given k-coloring z, is the concatenation of its degree and color sequences. For simplicity, we call

(d(g), c(g)) the c-degree sequence from now on.

Example 1.4.4. For n = 5 and k = 3 let {{1, 2}, {3, 4}, {5}} be the partition of [5] induced

by a 3-coloring z of [5]. , and represent colors 1, 2, and 3, respectively. The c-degree

sequence of the graph g illustrated in Figure 1.12 is the vector in N11 given by (d(g), c(g)) =

(4, 4, 3, 4, 7; 1, 3, 3, 0, 4, 0).

1

2

3

4

5

Figure 1.12. Graph g with vertices 1 and 2 colored blue, 3 and 4 red, and 5 green.

The c-degree sequence is also a linear graph statistic, as we now explain. For a k-coloring

z of [n], we define Cz as the matrix with rows labeled by the k +
(
k
2

)
=
(
k+1
2

)
pairs of colors

(allowing repetition) and columns labeled by the
(
n
2

)
distinct pairs of vertices; with both rows and

columns ordered lexicographically. Each column contains exactly one entry equal to 1 in the row

corresponding to that vertex pair’s color pair, with the remaining entries of the column set to zero.
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For a graph g ∈ Gn, the color sequence of g can be expressed as c(g) = Czg. Consequently,

(d(g), c(g)) = (Dng, Czg) =DCn,z g,

where

(1.6) DCn,z:=

Dn

Cz

 .

Example 1.4.5. Let n = 5, k = 3, and let z be the 3-coloring used in Example 1.4.4. The matrix

DCn,z is explicitly written below alongside a depiction of K5 on the left, which helps visualize the

encoding of the matrix.

1

2

3

4

5

DC5,z=

12 13 14 15 23 24 25 34 35 45



1 1 1 1 0 0 0 0 0 0 1

1 0 0 0 1 1 1 0 0 0 2

0 1 0 0 1 0 0 1 1 0 3

0 0 1 0 0 1 0 1 0 1 4

0 0 0 1 0 0 1 0 1 1 5

1 0 0 0 0 0 0 0 0 0

0 1 1 0 1 1 0 0 0 0

0 0 0 1 0 0 1 0 0 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 1 1

0 0 0 0 0 0 0 0 0 0

As we will see in more detail in Section 1.5, the c-degree sequence arises as the sufficient statistic

of a random network model in which each edge in the graph appears with a probability that depends

on its endpoint vertices as well as their color, which, in statistics, represents blocks or communities.

While [79] discusses how to use Markov bases to extend exact tests to latent block versions of the

model, they left the determination of a Markov basis for DCn,z as an open problem.

1.4.1. Our contributions

The following result, whose proof is provided in Section 3.1, presents a solution to the open

problem mentioned above.

Theorem 1.4.6. The set of quadratic moves Mn,z := {g ∈ kerZDCn,z: ||g||1 = 4} is a Markov

basis for DCn,z. These are the moves in kerZDCn,z of minimal 1-norm.
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Similar to the monochromatic case, this Markov basis is equivalent to the set of smallest possible

modifications. In essence, any two multigraphs with a fixed c-degree sequence can be connected

by applying a sequence of c-degree-preserving switches of 4 edges at a time. A natural follow-up

question is whether the connectivity in the space of multigraphs with a fixed c-degree sequence,

induced by the moves in Theorem 1.4.6, is maintained when restricting to the space of simple

graphs.

In contrast to the behavior observed in the monochromatic case, the 1-norm size of the moves

necessary to connect spaces of simple graphs with a fixed c-degree sequence increases as the number

of colors k used in the k-coloring z varies as we describe with the following three results. We

present a proof of Proposition 1.4.7 in Section 3.2 while Corollary 1.4.9 and Theorem 1.4.10 are

straightforward consequences of Proposition 1.4.7.

In contrast to the monochromatic case, the 1-norm size of the moves required to connect spaces

of simple graphs with a fixed c-degree sequence increases as the number of colors k in the k-coloring

z varies. This phenomenon is established in the following three results. Proposition 1.4.7 is proved

in Section 3.2, while Corollary 1.4.9 and Theorem 1.4.10 follow directly from it.

Proposition 1.4.7. For every integer k ≥ 3 there exists a k-coloring z of [n] with n = 2k,

and a c-degree sequence (dk, ck) ∈ Nn+(k+1
2 ) such that FDCn,z(dk, ck;0,1) = {g, g′}. Furthermore,

||g − g′||1 = 2k.

Example 1.4.8. The simple graphs g1, g2 in Figure 1.13 represent the only two elements of the

simple-graph fiber FA12,z(d6, c6;0,1) where z : [12] → [6] is such that z(u) ≡ u (mod 6) for every

u ∈ [12] and d6, c6 are defined as in the proof of Proposition 1.4.7 in section 3.2. The only move

(up to sign) that connects this fiber is g = g1 − g2.

1

23

4

5 6

7

89

10

11 12

1

23

4

5 6

7

89

10

11 12

1

23

4

5 6

7

89

10

11 12

Figure 1.13. Simple graphs g1 and g2 on the left and center. Markov basis move
g1 − g2 on the right.
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As an immediate consequence of Proposition 1.4.7 we have the following two results.

Corollary 1.4.9. Let n, k ∈ Z+ with k ≥ 3 and let z be a k-coloring of [n]. Then, any simple-

graph Markov basis for DCn,z has an element with 1-norm equal to 2κ where κ is the number of

colors used to color more than one vertex.

Theorem 1.4.10. For any constant η, there exists n, k ∈ Z+ and a k-coloring z of [n] such that

any binary Markov basis for DCn,z has an element with 1-norm greater than η.

As it has been previously mentioned, when the k-coloring z is constant, 4-edge switches are

enough to connect the space of simple graphs with a fixed degree sequence d ∈ Nn for any d.

In contrast, Theorem 1.4.10 shows that when we do not impose any constraints on the coloring

function z, we cannot guarantee the existence of a constant η such that the set of η-edge switches

induces connectivity on the space of simple graphs with fixed c-sequence (d; c) for any degree-color

sequence (d, c) ∈ Nn+(k+1
2 ).

Question 1.4.11. Given k ∈ Z+, is there a constant ηk such that for any n ∈ Z+ and any

k-coloring z of [n], there exists a binary Markov basis B for DCn,z such that maxg∈B ||g||1 ≤ ηk? If

so, what is the minimum ηk satisfying this condition?

For k = 1, the minimum constant that satisfies the conditions in Question 1.4.11 is η1 = 4. For

k = 2, Example 1.4.12 below demonstrates that if η2 exists, it must be at least 8.

Example 1.4.12. The simple graphs g1 and g2 in Figure 1.14 are the only two elements of

the (0,1)-fiber FDCn,z(d, c;0,1), where z is a 2-coloring that induces the partition {{1, 2, 5, 6},

{3, 4, 7, 8}}, with d = (1, 6, 1, 6, 4, 3, 4, 3) and c = (3, 8, 3). The only move (up to sign) that connects

this simple-graph fiber is g = g1 − g2, whose 1-norm is 8, as illustrated in Figure 1.14. One way

to connect g1 to g2 using elements from Mn,z by stepping into FDCn,z(d, c) \ FDCn,z(d, c;0,1) is

depicted in Figure 1.15. The orange-highlighted edges in each graph indicate the switches performed

to reach the next graph in the orange path.

Conjecture 1.4.13. For k = 2, η2 exists and η2 = 8 is the minimum constant satisfying the

condition in Question 1.4.11.
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Figure 1.14. Simple graphs g1 and g2 on the left and center. Markov basis move
g1 − g2 on the right.
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g1 g2

FDCn,z
(d, c;0,1)

FDCn,z
(d; c)\FDCn,z

(d, c;0,1)

Fur 1: Smpl rps γ1 n γ2 n onnt wt swts y lvn t
smpl-rp r. T swts us n  stp r lt n orn.

2

Figure 1.15. Simple graphs g1 and g2 being connected with switches by leaving
the (0,1)-fiber. The switches used in each step are highlighted in orange.

Given the result in Theorem 1.4.6, the fundamental theorem of Markov Bases implies that

IDCn,z is generated by the quadratic binomials {xg+ − xg−
: g ∈ Mn,z}. As discussed previously,

the more conditions satisfied by these set of binomials, the more its applications.
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In the monochromatic case, [40] proved that this set of quadratic binomials is a Gröbner

basis for IDn , and the result was used to study triangulations and optimization of the b-matching

problem—the graph with the smallest cost having a given degree sequence b. The final contribution

of this section, whose proof is presented in Section 3.3, generalizes the quadratic Gröbner basis result

from the monochromatic case to the following general case.

Theorem 1.4.14. There exists a monomial order ≻ on K[xuv : 1 ≤ u < v ≤ n] such that for

any k-coloring z of [n], the set {xg+ − xg−
: g ∈ Mn,z} is in fact a Gröbner basis for IDCn,z with

respect to ≻.

1.5. Goodness-of-Fit Tests for Labeled Stochastic Block Models

The study of Markov bases for the matrixDCn,z in the previous section is primarily motivated by

their applications in goodness-of-fit tests for specific random network models that share similarities

with log-linear models.

In recent years, the analysis of network data has become increasingly significant across diverse

fields, including the social sciences and biological studies. The foundation of probabilistic modeling

for network data lies in classical random graph models, such as the Erdős-Rényi model [50]. These

models provide a starting point for understanding the structural and probabilistic properties of

networks.

Fienberg’s approach to analyzing statistical network models bridges network science and cate-

gorical data analysis by representing graphs as contingency tables (see [55,56]). This framework

enables the application of tools from categorical data analysis to address critical challenges, such

as parameter estimation and model assessment. For example, [92] introduced algebraic statistics

into network analysis by studying Markov bases for the p1 model presented in [69]. For a broader

perspective on the interplay between categorical data analysis, algebraic statistics, and network

science, we recommend [61] and [62].

A particularly relevant class of log-linear models in this context is the Stochastic Block Model

(SBM), which is given a contingency representation in [53]. SBMs extend classical random graph

models by allowing edge probabilities to depend on the block membership of node pairs, thereby
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enabling the detection and modeling of community structures within networks. Originally intro-

duced in the social sciences by [54], SBMs have since gained prominence for their flexibility and

wide applicability.

Despite significant advancements in the development of SBMs, assessing their goodness-of-fit to

observed network data remains an underexplored area. Notable contributions to this field include

spectral goodness-of-fit tests by [85] and graphical methods for model assessment by [73]. In this

section, we focus on a general strategy for performing goodness-of-fit tests for SBMs introduced

in [79]. This approach leverages Markov bases to construct Markov chains that explore the fiber

of observed network data.

As in the previous section, we represent graphs with vertices on [n] by a
(
n
2

)
-dimensional vector

g = (guv)u<v ∈ Gn = E(
n
2), where for each dyad {u, v} (or pair of vertices), guv takes values from

the same support set E . Here, guv is generally understood as the number of interactions between

nodes u and v, and E imposes restrictions on these counts. For example, setting E = {0, 1} restricts

guv to represent the presence (or absence) of an interaction.

Throughout this section, we assume that guv = gvu for every dyad, since all the graphs con-

sidered are undirected, and let guu = 0 since loops are not allowed. Furthermore, the function

z : [n]→ [k] will represent a k-coloring, which, for consistency with the SBM literature, we refer to

as a block assignment in this section. Consequently, we refer to Bi := z−1(i) as the i-th block.

We say that a random graph G = (Guv)u<v with sample space Gn = E(
n
2) is drawn from a

Stochastic Block Model with block assignment z (SBM(z)) if there exists a parameter

vector θ = (θij : 1 ≤ i ≤ j ≤ k) (commonly referred to as the connectivity matrix in the literature)

such that {Guv}u<v are pairwise independent and

(1.7) Guv ∼ f(·, θz(u)z(v)) := fθz(u)z(v)(·),

where fθij is a probability distribution on E for each 1 ≤ i ≤ j ≤ k, known up to the finite-

dimensional parameter θij .

In this section, we will exclusively consider cases in which {f(·, θij)}i≤j belong to the exponential

family. Specifically, we assume that for all ϵ ∈ E and θij ,

f(ϵ, θij) ∝ h(ϵ) exp{⟨η(θij), ϵ⟩},
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where η(θij) is the natural parameter of the family. Consequently, under the SBM(z)

(1.8) P(G = g | θ) ∝ h(g) exp{⟨η(θ), Tz(g)⟩},

where η(θ) = (η(θij))i≤j , Tz(g) = (Tz,ij(g))i≤j and

Tz,ij(g) =


1
2

∑
u∈Bi,v∈Bj

guv, if i = j,∑
u∈Bi,v∈Bj

guv, otherwise.

The vector Tz(g) serves as the sufficient statistic for the SBM(z) and is linear in g, which

implies that the SBM(z) is a log-linear model. Consequently, the sufficient statistic can be encoded

using a design matrix ASBM(z). When guv is a scalar representing interaction counts or a binary

present/absent status, we have E ⊂ N. In this case, ASBM(z) is a
(
k+1
2

)
×
(
n
2

)
matrix with rows

labeled by all possible block pairs and columns labeled by dyads, both ordered lexicographically.

The column associated with the dyad uv contains a 1 in the row corresponding to the pair z(u)z(v)

and 0s elsewhere. In other words, ASBM(z) is identical to the matrix Cz in Equation (1.6) from the

previous section.

As explained in Section 1.2, given an observed graph g0, the goodness-of-fit for the SBM(z) can

be assessed by computing the conditional p-value:

(1.9) p(g0, z) := P(Wz(G) ≥Wz(g) | ASBM(z)G = ASBM(z)g),

where Wz(G) is a test statistic such that large values indicate evidence against g being generated

by an SBM(z). It is worth noting that the support of the conditional distribution in Equation (1.9)

corresponds to the set {g ∈ E(
n
2) : ASBM(z)g = ASBM(z)g0}. This set equals the fiber F(ASBM(z)g0)

when E = N and corresponds to the (l,L)-fiber F(A; l,L) when E = [l,L].

Theorem 1.5.2 below describes a Markov basis that not only connects the b-fibers for ASBM(z)

but also connects all the (b; l,L)-fibers. This provides flexibility in choosing the support E for the

interactions modeled by (1.7). For any of these scenarios, Algorithm 2 can be slightly modified so

that the step in line 4 verifies whether the proposed graph belongs to the corresponding restricted

fiber, rather than the general unrestricted F(ASBM(z)).
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Remark 1.5.1. The matrix DCn,z from section 1.4 corresponds to the design matrix of a vari-

ant of the SBM, known as the β-SBM(z) for which Tz(g) =DCn,z g is the vector of sufficient

statistics. The β-SBM(z) postulates that for a random graph G, Guv ∼ f
(
·, θz(u)z(v) + βu + βv

)
where {f

(
·, θz(u)z(v) + βu + βv

)
: i ≤ j, 1 ≤ u < v ≤ n} belongs to the exponential family. For

this model we have a parameter βv for each node v in addition to the block-interaction parameters

θij. When E = N is the support for each of the random variables Guv, Theorem 1.4.6 guarantees

that the family of moves Mn,z can be used to test whether g0 ∼ β-SBM(z). On the other hand,

Theorem 1.4.10 implies that when E = {0, 1} (e.g., when Guv ∼ Bernoulli(σ(θz(u)z(v)+βu+βv
))),

performing a goodness-of-fit test for the β-SBM(z) becomes a much harder task.

Both the SBM(z) and the β-SBM(z) belong to a more general family known as log-linear expo-

nential random graph models (ERGMs). For reference see [62].

With more generality, one can consider graphs that are better modeled by ℓ different types of

interactions between nodes. We represent such graphs with an ℓ
(
n
2

)
vector g = (guv)u<v where

guv = (g
(l)
uv : u < v, 1 ≤ l ≤ ℓ) and g

(l)
uv denotes the number of l-type interactions between nodes u

and v. In this scenario, the support E for guv is a subset of Nℓ and we say thatG was generated from

a Labeled-SBM(z) with ℓ labels (LSBM(z, ℓ)) if there is θ = (θij : 1 ≤ i ≤ j ≤ k) such that

{Guv}u<v are pairwise independent and Guv ∼ f(·,θz(u)z(v)) where θij is a vector of parameters of

the same dimension for every 1 ≤ i ≤ j ≤ k. This generalization also yields a distribution of the

same form as in (1.8) where Tz(g) = (T
(l)
z,ij(g) : 1 ≤ i ≤ j ≤ k, 1 ≤ l ≤ ℓ) and

T
(l)
z,ij(g) =


1
2

∑
u∈Bi,v∈Bj

g
(l)
uv if i = j,∑

u∈Bi,v∈Bj
g
(l)
uv otherwise.

In other words, T
(l)
z,ij counts the number of l-type interactions between blocks i and j. Under this

setting, the linear transformation Tz(g) corresponds to the design matrix ALSBM(z,ℓ) := I⊗ASBM(z),

where I is the ℓ× ℓ identity matrix, and ⊗ denotes the Kronecker product.

1.5.1. Our contributions

Due to the structured nature of the matrix ASBM(z,ℓ), we can obtain a compact description for

its Graver basis. To do so, we first introduce the following notation.
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For each u ̸= v ∈ [n] and l ∈ [ℓ], let e
(l)
uv ∈ Nℓ represent the vector g = (g

(l′)
u′v′ : 1 ≤ u′ < v′ ≤

n, 1 ≤ l′ ≤ ℓ), defined by:

g
(l′)
u′v′ =


1, if (u′, v′) = (u, v) and l′ = l,

0, otherwise.

Theorem 1.5.2. The set MLSBM(z,ℓ) := {e
(l)
uv − e

(l)
u′v′ : l ∈ [ℓ], z(u) = z(u′), z(v) = z(v′)} is the

Graver basis of ALSBM(z,ℓ).

Hence, by Proposition 1.1.29, we can perform a goodness-of-fit test for the LSBM(z, ℓ) by

computing a natural generalization of the p-value in Equation 1.9, provided that the random vectors

Guv have an interval as their support. However, certain scenarios involve enforcing additional

constraints on the sample space.

A natural example arises whenGuv ∼ Geom(Nuv,θz(u)z(v)), in which case E = {g ∈ Nℓ : ||g||1 =

Nuv}. Despite these constraints, we can demonstrate that a specific subset of kerZALSBM(z,ℓ) in-

duces connected fibers F . This subset ensures the necessary guarantees to perform a valid goodness-

of-fit test for the model, even under such restricted conditions.

Theorem 1.5.3. The set

M̃LSBM(z,ℓ) := {e(l)uv + e
(l′)
u′v′ − e(l

′)
uv − e

(l)
u′v′ : l, l

′ ∈ [ℓ], z(u) = z(u′), z(v) = z(v′)}

induces connected graphs FM̃LSBM(z,ℓ)
for every subset F ⊂ Nℓ(n2) of the form

F = F(ALSBM(z,ℓ), b) ∩ {g = (guv)u<v ∈ Nℓ(n2) : ||guv||1 = Nuv},

where b ∈ NALSBM(z,ℓ) and N = (Nuv)u<v ∈ N(
n
2).

We provide proofs for both of the previous results in Sections 4.1 and 4.2.

The SBM framework is amenable to three modeling assumptions. Specifically, the block assign-

ment for each node can be: 1) fixed and known, as we have assumed so far; 2) fixed and unknown;

or 3) latent, with some underlying distribution.

For scenario 3), both frequentist and Bayesian approaches are possible. In the frequentist

setting, following [88], we assume the existence of a latent block assignment z : [n] → [k] where
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{z(u)}nu=1
i.i.d.∼ π = (π1, . . . , πk). This implies that the LSBM(ℓ) is a mixture of exponential random

graph models, and there exist true parameters π and θ governing the generation of the random

graph G. In the Bayesian approach, one assigns a prior to both π and θ.

In [79], the authors proposed a method to perform a goodness-of-fit test for scenarios 2) and

3), relying on the test developed for the fixed and known z scenario. For instance, under scenario

2), given an observed graph g0 and an unobserved true block assignment z, one can use block

estimation algorithms to recover an estimated assignment ẑ and then compute the plug-in p-value

p(g0, ẑ). To evaluate how closely an estimator approximates the true block assignment z, we adopt

the following notion from the SBM literature (see [2]).

Definition 1.5.4. The agreement between two block assignments z, z′ : [n]→ [k] is defined as

(1.10) A(z, z′) = max
σ∈Sk

1

n

n∑
u=1

1
(
σ(z(u)) = z′(u)

)
,

where Sk is the set of permutations on [k]. Whenever A(z, z′) = 1, there exists a permutation

σ ∈ Sk such that σ(z(u)) = z′(u) for every u ∈ [n]. In this case, we write z′ = σ · z.

Definition 1.5.5. Let G ∼ LSBM(z, ℓ). An estimator ẑ = ẑ(G) is called strongly consistent if

P(A(z, ẑ) = 1) = 1− o(1), meaning that ẑ is strongly consistent if A(z, ẑ) = 1 with high probability

as n tends to infinity.

The proof of the following result is presented in Section 4.2.

Proposition 1.5.6. Consider a goodness-of-fit statistic satisfying Wz̃(g) = Wσ·z̃(g) for any

z̃ : [n]→ [k] and σ ∈ Sk. Let G ∼ LSBM(z, ℓ) and let ẑ = ẑ(G) be a strongly consistent estimator,

then P(p(z,G) = p(ẑ,G)) = 1− o(1) as n tends to infinity.

An example of a goodness-of-fit statistic Wz satisfying the conditions from Proposition 1.5.6 is

the block-corrected chi-square statistic from [79], defined as

(1.11) Wz(g) = χ2
BC(g, z) :=

n∑
u=1

k∑
i=1

ℓ∑
l=1

(m
(l)
ui − niθ̂

(l)
zui

)2

niθ̂
(l)
zui
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where ni = |Bi|, m(l)
ui =

∑
v∈Bi

g
(l)
uv and θ̂

(l)
ij =

T
(l)
z,ij(g)

nij
is the MLE estimate for θ

(l)
ij . Under the

LSBM(z, ℓ), we have the expected value E[m(l)
ui ] = niθzui, therefore large values of χ2

BC(g, z), in

which we have replaced θ
(l)
zui

with the MLE θ̂
(l)
zui

, indicate lack of fit.

Parallel to goodness-of-fit testing, model selection is another crucial aspect of network analysis,

which involves determining the number of communities in a network, assuming it follows an SBM.

Although model selection and goodness-of-fit testing are related, the latter is a more general problem

that can also aid in model selection when applied sequentially. Moreover, goodness-of-fit tests

provide a way to measure the model adequacy, offering valuable insights into how well the model

captures the underlying structure of the network.

Regarding scenario 3), given an observed graph g0 and an unobserved block assignment z

generated from a distribution, [79] proposes the use of the p-value

(1.12) p(g0) :=
∑

z∈Zn,k

p(g0, z)P(z | g0),

where Zn,k represents the set of all possible block assignments for n nodes and k blocks. To estimate

the p-value in Equation 1.12, the key challenge is to approximate P(z | g0). This can be approached

in two ways: In the frequentist setting, one can use model-based estimation algorithms, such as

those proposed in [88] or [108], to estimate the block proportions π. In the Bayesian setting,

algorithms like those introduced in [6] or [76] can be used to directly estimate P(z | g0).

It is worth noting that most of the estimation algorithms mentioned are limited to the case

where ℓ = 1. Among them, only [108] supports a special case where ℓ = 3.
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CHAPTER 2

Complexity of Markov bases: Bad and Good News

In this chapter, we present the proofs of the negative and positive results concerning the com-

plexity of Markov bases, as outlined in Subsection 1.3.1.

Theorem 1.3.16 establishes that, in general log-linear models, there is no universal upper bound

on the “negative” relaxation of the fibers required to connect the original fiber.

Furthermore, Theorem 1.3.17 and Proposition 1.3.18 demonstrate that relaxing a constraint set

of entries S can still result in complex elements within a Markov bases if S is chosen poorly. These

findings extend the results of [39], offering a deeper understanding of the intricacies involved in

these scenarios.

Finally, for hierarchical models on r1×r2×· · ·×rm contigency tables, Corollary 1.3.23 provides

a positive result: it shows that the size of their Graver basis is bounded above by a polynomial in

a proper subset of the levels {rl}ml=1.

2.1. Complexity of (−q)-Markov bases

To construct the family of parametric matrices ΛN referenced in Theorem 1.3.16, we first

introduce a family of matrices whose kernels correspond to arithmetic sequences.

For n ≥ 3, define the (n− 2)× n integer matrix

An−2 :=



1 −2 1 0 · · · 0 0 0

0 1 −2 1 · · · 0 0 0
...

...
...

...
. . .

...
...

...

0 0 0 0 · · · −2 1 0

0 0 0 0 · · · 1 −2 1


.
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In other words, the entries of An−2 are defined as

An−2(i, j) =


1, if j = i or j = i+ 2,

−2, if j = i+ 1,

0, otherwise.

In the proof below we will utilize an operation known as the Lawrence lifting, introduced by [99].

This technique, which is a special case of an n-fold matrix construction, will play a key role in our

analysis and we will take advantage some of its important properties.

Proof of Theorem 1.3.16. Let us notice that the column-style Hermite normal form of An−2

is given by H = (In−2 0n−2 0n−2) where In−2 is the (n− 2)× (n− 2) identity matrix and 0n−2 is

the (n− 2)-dimensional zero vector.

A simple computation shows that the n× n matrix

U =



1 2 3 · · · (n− 1) −(n− 2)

0 1 2 · · · (n− 2) −(n− 3)

0 0 1 · · · (n− 3) −(n− 4)
...

...
...

. . .
...

...

0 0 0 · · · 1 0

0 0 0 · · · 0 1


,

is an unimodular matrix transforming A into its column-style Hermite normal form, i.e, AU = H.

Hence, it follows that the last two columns of U provide a lattice basis for kerZ(An−2). Let us

denote by L the n × 2 matrix whose column vectors are the last two columns of U . Hence, as a

consequence of ( [7], Proposition 16.1) we know that the column vectors of

 L

−L

 provide a lattice

basis for Λ(An−2) where Λ(An−2) =

An−2 0n−2

In−2 In−2

 is the Lawrence lifting of An−2, being 0n−2

the (n− 2)× (n− 2) zero matrix. Let us denote the elements of this lattice basis by z1 and z2.
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Now, consider the n-dimensional column vector w = (0 1 2 · · · n− 1)T and let

u =

w

0n

 , v =

0n

w

 .

Since Λ(An−2)u = Λ(An−2)v = (0n−2 w)
T , we have that u, v are in the same fiber. However,

adding any of the elements {±z1,±z2} to u, results in at least one coordinate smaller or equal to

−(n− 2). Hence, the lattice basis Ln−2 := {z1, z2} fails to connect u, v inside F−q((0n−2, w)
T ) for

any q = 0, . . . , n − 3. Therefore, for any N > 0, ΛN := Λ(AN+2) and MN := LN+2 satisfy the

properties stated in Theorem 1.3.16.

□

2.2. Complexity of (−1, S)-Markov bases

We begin this section by outlining some of the steps used in the proof of Theorem 1.3.9 from [38].

These steps will provide the necessary tools for the proof of Theorem 1.3.17.

Let us start with a bounded polytope P = {y ∈ Rn
≥0 : Ay = b}, where A = (ai,j) is an m× n

matrix. The construction of T in Theorem 1.3.9 is typically carried out in three steps (see [38]).

However, for our purposes, it suffices to focus on the last two steps, which are listed below.

Step 1) Representing P as a plane-sum entry-forbidden transportation polytope T ′.

Let U be an integer upper bound for the entries of P . Then, it can be proved that for

some s, h ∈ Z+ and a subset E ⊂ [s]× [s]× [h], P can be represented as the polytope

T ′ =

{
x ∈ Rs×s×h

≥0 : xi,j,k = 0 for all (i, j, k) /∈ E and

∑
i,j

xi,j,k = ck,
∑
i,k

xi,j,k = bj ,
∑
j,k

xi,j,k = ai

}
.

This representation comes with an injection σ′ : [n] → [s] × [s] × [h] and its induced

coordinate-erasing projection π′ : Rs×s×h → Rn that provides a bijection between P and

T ′ and between their integer points.

Observation 2.2.1. From the description of E in [38], it follows that for a given

y = π′(x) ∈ P (where x ∈ T ′) and for any i ∈ [n] the coordinate yi is embedded in si
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distinct coordinates of x, where

si := max

(
m∑
k=1

{ak,i : ak,i > 0},
m∑
k=1

{|ak,i| : ak,i < 0}

)
.

Moreover, the explicit set of coordinates where yi is embedded is given by

(2.1) Bi :=

{
(j, j, κ(j)) : j ∈

{
1 +

∑
l<i

sl, . . . ,
∑
l≤j

sl

}}
,

where κ is a function κ : [s]→ [h] completely determined by the matrix A and s =
∑n

i=1 si

is the same as in the description of T ′. Then, B :=
⋃n

i=1Bi is a set of indices for which

the corresponding entry in x is equal to some yi. Furthermore, the set B is completely

determined by A, so the previous embedding property holds for any y ∈ P .

Notice that under the assumption that A has nonzero columns we have that |B| =∑n
i=1 si. In other words, the set B is completely determined by the polyhedral representa-

tion of P .

Step 2) Representing the polytope T ′ as a slim line-sum transportation polytope T .

Given T ′ as in the previous step, there are r, c and (ui,j) ∈ ZI×c, (vi,k) ∈ ZI×3, (wj,k) ∈

ZJ×3 such that the transportation polytope

T̂ =

x ∈ RI×J×3
≥0 :

∑
k

xi,j,k = ui,j ,
∑
j

xi,j,k = vi,k,
∑
i

xi,j,k = uj,k


represents T ′.

With this discussion we are ready to present the following proof.

Proof of 1.3.17. Given a polytopeQ = {x ∈ Rk
≥0 : Cx = d}, and a vector u = (u1, . . . , uk) ∈ Zk

we let Qu := {x ∈ Rk : Cx = d and xi ≥ ui for every i ∈ [k]}. Also, given any D ⊂ [k], we let 1D

be the indicator vector of D and write 1 when D = [k].

Now, consider the polytope P = {y ∈ Rη+2
≥0 : y0+yη+1 = 1, θjy0−yj = 0, j = 1, . . . η} introduced

in the proof of Corollary 1.3.10 and let P̂ := P−1 + 1. The integer points in P̂ are exactly

y1 = (0, 0, . . . , 0, 1) + 1, y2 = (1, θ1, . . . , θη, 0) + 1, and

z1 = (2, 2θ1, . . . , 2θη,−1) + 1, z2 = (−1,−θ1, . . . ,−θη, 2) + 1
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By the previous discussion, there are s, h ∈ Z+ and a plane-sum entry-forbidden transportation

polytope T̂ ′ ⊂ Rs×s×h
≥0 representing P̂ . Furthermore, by 2.2.1 we know that there is a subset

B ⊂ [s] × [s] × [h] such that for any x ∈ T̂ ′, the entries corresponding to the indices in B are all

entries of π′(x) ∈ P .

Let r, c and (ui,j) ∈ ZI×c, (vi,k) ∈ ZI×3, (wj,k) ∈ ZJ×3 such that the transportation polytope

T̂ =

x ∈ RI×J×3
≥0 :

∑
k

xi,j,k = ui,j ,
∑
j

xi,j,k = vi,k,
∑
i

xi,j,k = uj,k


represents T̂ ′ and let σ : [s]× [s]× [h]→ [r]× [c]× [3] be the injection given by this representation.

Let S = σ(B) and let p1,p2, q1, q2 ∈ T̂ be the integer points corresponding to y1,y2, z1, z2,

respectively. Then, consider the following transportation polytope

T =

x ∈ RI×J×3
≥0 :

∑
k

xi,j,k = ui,j − (1S)ij+,
∑
j

xi,j,k = vi,k − (1S)i+k,
∑
i

xi,j,k = uj,k − (1S)+jk


and observe that T−1S = T̂ − 1S . Moreover, since T̂ is a representation of P̂ it follows that the

only integer points in T−1S are p1 − 1S ,p
2 − 1S , q

1 − 1S and q2 − 1S . By construction, the first

2 of these points are non-negative and any of the differences between any of the four points has

either θ or θ appearing in the restriction of some η coordinates.

To see that |S| = 1 +
∑η

i=1 θi it is enough to find |Bi| using 2.1 and the defining matrix of the

polytope P . □

Before providing a proof for Proposition 1.3.18 let us introduce some notation. Given i1 ̸= i2 ∈

[r1], k1 ̸= k2 ∈ [3] and j′ ∈ [r2] we define the r1 × r2 × 3 table b(i1, i2; j
′; k1, k2) as follows.

b(i1, i2; j
′; k1, k2)i,j,k =


1, if (i, j, k) ∈ {(i1, j′, k1), (i2, j′, k2)},

−1, if (i, j, k) ∈ {(i1, j′, k2), (i2, j′, k1)},

0, otherwise.

We can think of this table as the embedding of a 2-way basic move in a 3-way table. Even

though b(i1, i2; j′; k1, k2) has one non-zero 2-margin (so it is not a move), it will help us to

describe some moves more easily. For instance, b(i1, i2; j1, j2; k1, k2) can be written as a sum of
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two embedded r1 × 3-moves:

b(i1, i2; j1, j2; k1, k2) = b(i1, i2; j1; k1, k2) + b(i2, i1; j2; k1, k2).

Definition 2.2.2. Given a r1×r2×3 table m and a subset S = Sr1×Sr2×Sr3 ⊂ [I]× [J ]× [3].

We define mS as the restriction of m on S. Under this definition mS is a |Sr1 | × |Sr2 | × |Sr3 |

table.

Proof of 1.3.18. Suppose without losing generality that τ : [r2]→ [3] is a surjective function

such that [r1]× [r2]× [3]\S =
⋃r2

j=1{(i, j, τ(j)) : i ∈ [r1]}.

Now, we will provide a way to find an infinite family of (−q, S)-extended fibers for which their

non-negative r1 × r2 × 3 tables are not connected by basic moves.

Let m = (mi,j,k) be a r1 × r2 × 3 table such that mi,j,k = 0 for every (i, j, k) /∈ S and for

every t ∈ [3] let St = {(i, j, k) ∈ S : τ(j) = t} = [r1] × τ−1(t) × ([3]\{t}). Notice that S1, S2, S3

form a partition of S. Moreover, the support of any basic move that can be added to m while

preserving non-negativity constraint must be contained in some St. Otherwise, if b is a basic move

such that supp(b) ∩ St, supp(b) ∩ St′ ̸= ∅, it would follow that m + b has a −1 for some entry in

[r1]× [r2]× [r3]\S by a pigeonhole principle argument.

This implies that we can connect m to another I×J×3 table m′ (with basic moves) if and only

if for every t ∈ [3] we can connect mSt and m′
St

with basic moves in their respective (−q)-extended

fiber. In particular, if m′ is connected to m we must have that mSt and m′
St

are in the same fiber

for every t ∈ [3]. In the rest of the proof, we will build m and m′ such that the latter doesn’t hold.

For every t ∈ [3] pick some jt ∈ τ−1(t) and let us consider the move

n = b(1, 2; j1; 1, 2) + b(1, 2; j2; 2, 3) + b(1, 2; j3; 1, 3)

of degree 6. By the choice of j1, j2 and j3, we know that we can add n to m while preserving the

non-negativity constraint. i.e., m′ := m + n is a non-negative table in the fiber of m. Moreover,

by the definition of n it follows that m′
S1

= b(1, 2; j1; 1, 2) +mS1 and therefore the 2-margins of

mS1 and m′
S1

are not the same (their ik-margins differ), contradicting our previous observations.

Hence m and m′ are not connected by basic moves and therefore the fiber of m is not connected

by basic moves. □
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2.3. Bounding the Graver Basis Size for Hierarchical Models

Proof of Corollary 1.3.23. Let ∆ be a simplicial complex with ground set [m] and max-

imal faces D1, . . . , Dt. Let V ⊂ [m] such that for every i ∈ [m], V ⊂ Di or V ⊂ Dc
i . We will

prove that , A∆ = [A,B](ηV ) where ηV =
∏

l∈V rl, A is a
∑

j:Dj⊇V
ηj
ηV
× η

ηV
matrix and B is a∑

j:Dc
j⊇V ηj ×

η
ηV

matrix.

First notice that the columns of A∆ are in bijection with the entries of a d1× · · · × dm table so

we can label each column with an multi-index i = (i1, . . . , im). For each multi-index i and D ⊂ [m]

we define iD := (ij)j∈D ∈
∏

l∈D[rl]. Observe that each row can be identified with a pair (Dk,f)

where f ∈
∏

j∈Fk
[dj ]. Without loosing generality assume that V = {1, . . . , v} for some v ∈ [m] and

assume that V ⊂ D1, . . . , Ds and V ⊂ Dc
s+1, . . . , D

c
t .

Now, following the construction of [72] we give a description of A∆ as an ηV -fold matrix.

Let us order the columns of A∆ lexicographically: this order provides a partition of the columns

into groups labeled by multi-indices in
∏v

i=1[ri], i.e., the group corresponding to iV is the set

CiV := {(iV , i′) : i′ ∈
∏m

l=v+1[rl]}, lexicographically ordered.

The rows will be ordered in the following way: For each iV ∈
∏v

l=1[dl] define the set of

rows RiV := {(Fj ,f) : j ∈ [r],fV = iV and fl ∈ [rl] for every l /∈ V }. Furthermore, given

(Fj ,f), (Fj′ ,f
′) ∈ RiV we say (Fj ,f) ≺ (Fj′ ,f

′) if j < j′ or if j = j′ and f is lexicographically

smaller than f ′. We denote by R the rest of the pairs (F,f) that don’t belong to any RiV . Finally,

we order the rows of A∆ by groups RiV using a lexicographic order on {iV : i ∈
∏m

j=1[rj ]} and

leaving the rows R at the end in any order.

This order of the rows and columns provides a block description [A,B](η) for A∆ where A =

Alink∆(V ) and B = A∆\V are the design matrices of the hierarchical model associated to link∆(V ) :=

{F\V : F ⊃ V } and ∆\V = {F ∈ ∆ : V ⊆ F c}, respectively.

□
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CHAPTER 3

Connecting Spaces of Graphs with Fixed Degree-color Sequence

The purpose of this chapter is to provide proofs for the contributions outlined in Section 1.4.1.

Each section builds toward the proofs of the main results introduced there.

Theorem 1.4.6 establishes a quadratic Markov basis for the design matrix DCn,z of the β-SBM,

resolving an open problem posed in [79]. This result has recently been used by [18] to compute

the maximum likelihood degree for the β-SBM.

Proposition 1.4.7 shows that to ensure connected fiber-graphs of simple graphs with a fixed

degree-color sequence, any subset B ⊂ kerZ DCn,z must contain elements whose 1-norm grows as k

increases. Immediate consequences of this proposition include Corollary 1.4.9 and Theorem 1.4.10.

Finally, Theorem 1.4.14 demonstrates that the generators given by Theorem 1.4.6 also form a

Gröbner basis for IDCn,z , extending a result from [41].

3.1. A quadratic Markov basis

In this section, we focus on graphs with vertex set [n], represented by vectors g = (guv)1≤u<v≤n ∈

N(
n
2). We define V (g) = [n] and E(g) = {{u, v} : guv ̸= 0}. Since guv ∈ N for all 1 ≤ u < v ≤ n, we

occasionally refer to g as a multigraph.

As in Section 1.4, for a k-coloring z : [n] → [k], the vector c(g, z) =
(
c(z, i, j) : 1 ≤ i ≤ j ≤ k

)
represents the c-degree of g.

Given a graph g ∈ N(
n
2), we say that an edge uv ∈ E(g) is positive if guv > 0 and negative if

guv < 0, where |guv| represents the multiplicity of the edge uv. For simplicity, we may occasionally

abuse notation and treat g ∈ Z(
n
2) as a graph when the context allows.

For g ∈ Z(
n
2) and v ∈ [n] we define the positive degree and negative degree of v in g as

(3.1) deg+g (v) :=
∑

u∈[n]:guv>0

guv and deg−g (v) :=
∑

u∈[n]:guv<0

−guv,

respectively. In other words, deg+g (u) and deg
−
g (u) are the numbers of positive and negative edges

incident with u, respectively. We define the positive degree sequence and the negative degree sequence
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as the vectors d+(g) = (deg+g (1), . . . ,deg
+
g (n)) and d−(g) = (deg−g (1), . . . ,deg

−
g (n)), respectively.

Also, for any 1 ≤ i ≤ j ≤ k, let

(3.2) c+g (z, i, j) :=
∑

u∈z−1(i), v∈z−1(j):
guv>0

guv and c−g (z, i, j) :=
∑

u∈z−1(i), v∈z−1(j):
guv<0

−guv.

This means that c+g (z, i, j) and c
−
g (z, i, j) are the number of positive and negative edges, respectively,

that are connecting an i-th colored vertex with an j-th colored vertex. We define the positive color

sequence and the negative color sequence as the vectors c+(z, g) =
(
c+g (z, i, j) : 1 ≤ i ≤ j ≤ k

)
and

c−(z, g) =
(
c−g (z, i, j) : 1 ≤ i ≤ j ≤ k

)
, respectively. Notice that when g ∈ N(

n
2), (d+(g); c+(z, g))

coincides with the c-degree sequence and (d−(g); c−(z, g)) is a vector of zeros. When z is clear

from the context we will write c±g (i, j) instead of c±g (z, i, j). We say that g ∈ Z(
n
2) satisfies the

degree-balance condition if d+(g) = d−(g) and the color-balance condition with respect to z if

c+(z, g) = c−(z, g). When z is clear from the context, we simply say that g satisfies the color-

balance condition.

Let n ∈ Z+ be a positive integer, z a k-coloring of [n], and DCn,z the matrix as defined in

Equation 1.6. Notice that for any g ∈ Z(
n
2),

(3.3) DCn,z g = (d+(g)− d−(g); c+(g)− c−(g)).

This means that g ∈ kerZ DCn,z if and only if g satisfies both the degree and the color-balance

conditions. It is not hard to see that any g ∈ Z(
n
2) satisfying the degree-balance condition must

be a union of closed even walks whose edges in the walk alternate between positive and negative

edges. In fact, when DCn,z is regarded as the incidence graph of a 3-uniform hypergraph the

elements of kerZA can be understood using the notion of balanced walk on a hypergraph. These

are known as monomial walks in the literature ( [93], [110]). Hence we say that g ∈ Z(
n
2) is a

monomial walk with respect to z : [n]→ [k] if g ∈ kerZDCn,z. For convenience, when considering a

monomial walk g, sometimes we will describe it using a vertex sequence enclosed by square brackets:

[v1, v2, . . . , v2l−1, v2l]. This notation means that g is the element in kerZDCn,z entrywise defined by

guv =
l∑

i=1

1{u,v}={v2i−1,v2i} − 1{u,v}={v2i,v2i+1},
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with 2l+1 = 1 and 1 being the indicator function. The use of the different notations (either vector

or brackets) will depend on the context.

Example 3.1.1. Let DC5,z the matrix of Example 1.4.5 and g = (0, 0,−1, 1,−1, 2,−1, 0, 1,−1) ∈

kerZ DCn,5 be the monomial walk illustrated below. One way to write g using bracket notation is

g = [1, 5, 2, 4, 5, 3, 2, 4]. In this case xg
+ − xg−

= x15x
2
24x35 − x14x23x25x45.

1

2

3

4

5

Figure 3.1. Monomial walk m = [1, 5, 2, 4, 5, 3, 2, 4].

As noticed previously, for any c-degree sequence (d; c) ∈ Nn+(k+1
2 ), FDCn,z(d; c) is the set of

multigraphs with fixed c-degree sequence (d; c). Meaning that a Markov basis for DCn,z is a set of

moves B that allow us to connect any two multigraphs with a fixed degree sequence by using moves

in B. To prove Theorem 1.4.6 we use the algebraic analogue provided by Theorem 1.1.8. In other

words, we show that Mn,z = {g ∈ kerZDCn,z: ||g||1 = 4} is a Markov basis for DCn,z by proving

that IMn,z := ⟨{xg+ − xg−
: g ∈Mn,z}⟩ is equal to IDCn,z .

To do so, we will use the combinatorial conditions of monomial walks in order to reduce bino-

mials of degree greater than two by splitting the monomial walks of length longer than four into

shorter walks. First, let us see that the toric monomial map introduced in Definition 1.1.1, whose

vanishing ideal is IDCn,z , can be explicitly written as

φβ : K[xuv : 1 ≤ u < v ≤ n]→ K[{s1, . . . , sn} ∪ {tij : 1 ≤ i ≤ j ≤ k}];

xuv 7→ susvtz(u)z(v).(3.4)

Then, for any g ∈ Z(
n
2), φβ(x

g+
) = φβ(x

g−
) if and only if DCn,z g

+ =DCn,z g
−, which means

that xg+ − xg− ∈ kerφβ = IDCn,z if and only if g ∈ kerZDCn,z. In fact, as a consequence of [104,

Corollary 4.3] it follows that IDCn,z = ⟨xg+ − xg−
: g ∈ kerZ DCn,z⟩. This immediately implies that
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IMn,z ⊆ IDCn,z . Therefore, to prove Theorem 1.4.6 it suffices to show that IDCn,z ⊆ IMn,z . To do

so, we start by providing a combinatorial description ofMn,z.

Lemma 3.1.2. Mn,z = {[uvu′v′] : z(u) = z(u′) or z(v) = z(v′)}. In other words, the elements

ofMn,z are 4-cycles with at least two opposite vertices of the same color.

Proof. First suppose without losing generality that g = [uvu′v′] with z(u) = z(u′). By

convention this means that uv, u′v′ are positive edges, vu′, v′u are negative edges in E(g). Since

z(u) = z(u′), we have that tz(u)z(v) = tz(u′)z(v) and tz(u′)z(v′) = tz(u)z(v′), which means

φβ(x
g+ − xg−

) = susvtz(u)z(v) · su′sv′tz(u′)z(v′) − susv′tz(u)z(v′) · su′svtz(u′)z(v)

= susvsu′sv′(tz(u)z(v)tz(u′)z(v′) − tz(u)z(v′)tz(u′)z(v)) = 0,

implying that xg+ − xg− ∈ IDCn,z , or equivalently, g ∈Mn,z.

Now, suppose that g ∈Mn,z. The degree-balance condition implies that g is a 4-cycle [uvu′v′]

with uv, u′v′ positive and vu′, v′u negative edges. Let us assume without losing generality that

z(u) ̸= z(u′). Because g has a positive edge between colors z(u) and z(v), the color-balance

condition implies that at least one of the negative edges uv′ or u′v connects colors z(u) and z(v).

This is equivalent to having z(v′) = z(v) or z(u′) = z(u). Hence, z(v′) = z(v) by our earlier

assumptions. □

We will show that IDCn,z ⊆ IMn,z by proving that for any xg+ − xg− ∈ IDCn,z , we can either

peel off 4-cycles from g (Lemma 3.1.5 below) or, alternatively, use 4-cycles to reconnect g (Lemma

3.1.4 below). This allows us to obtain a new monomial walk from which we can peel off 4-cycles

belonging to IDCn,z . This process enables us to express xg+ − xg−
as the sum of an element in

IMn,z and a binomial in IDCn,z with a degree smaller than deg(xg+ − xg−
). Before presenting the

proofs, we illustrate the idea with the following example.

Example 3.1.3. Let n = 8, k = 2 and z : [8] → [2] such that z−1(1) = {1, 4, 5, 6}, z−1(2) =

{2, 3, 7, 8}. Consider f = xg+ − xg−
= x12x34x56x78 − x14x23x58x67 ∈ IDCn,z and observe that

f = x34x56(x12x78 − x17x28) + f ′ where f ′ = xg′+ − xg′−
= x34x56x17x28 − x14x23x58x67. As we

illustrate in the picture below, this way of rewriting f corresponds to rewriting g as a sum of a

4-cycle and a monomial walk g′ with the same number of edges as g. Notice that g and g′ differ

by a switch.
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3 4

87

56

g g′

Figure 3.2. Reconnecting with a 4-cycle. On the left of the equality is the graph
g, while on the right are the 4-cycle corresponding to x12x78 − x17x28 and g′.

Now, we can peel off a 4-cycle from g′ to obtain a monomial walk g′′ with less edges than g′ (see

Figure 3.3). Algebraically, this means that f ′ = x23x58(x17x46−x14x67)+x46(x28x34x56−x23x58x17),

where f ′′ = xg′′+ − xg′′−
= x28x34x56 − x23x58x17. In fact, we can continue peeling off 4-cycles

from g′′ in order to prove that f ∈ ⟨xg+ − xg−
: g ∈Mn,z⟩.

12

3 4

87

56

=

1

4

6

7

+

12

3 4

87

56

g′ g′′

Figure 3.3. Peeling off a 4-cycle. On the left of the equality is the graph g, while
on the right are the 4-cycle corresponding to x17x46 − x14x67 and g′.

Lemma 3.1.4. For any f = xg+ − xg− ∈ IDCn,z , there exists f ′ ∈ IMn,z and f ′′ ∈ IDCn,z with

deg(f) = deg(f ′′) such that f = f ′ + f ′′, where f ′′ = xg′′+ − xg′′−
and g′′ contains a subwalk uvw

such that z(u) = z(w) and uv, vw have different signs.

Proof. Let f = xg+ − xg− ∈ IDCn,z and let uv be a positive edge in g. By the color-balance

condition, there must exists a negative edge u′v′ ∈ E(g) such that z(u′) = z(u) and z(v′) = z(v).

Since no edge in g can be positive and negative at the same time, it follows that uv ̸= u′v′.
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Moreover, if u = u′ then vuv′ is a subwalk such that z(v) = z(v′) with vu positive and uv′ negative

so the statement would follow. Hence, we assume that u ̸= u′ and similarly v ̸= v′.

Now, given that each of u′ and v′ are adjacent to the negative edge u′v′, the degree-balance

condition guarantees the existence of positive edges u′ŵ, v′w in E(g). Let us consider the following

2 cases:

(i) {w, ŵ} = {u, v}.

In case w = u, ŵ = v, then uv′u′ is a subwalk such that z(u) = z(u′), uv′ = wv′ is

positive and v′u′ is negative, so it would be enough to take f ′ = 0, f ′′ = f . Then, assume

that w = v, ŵ = u. In such case, since u is adjacent to two positive edges, there must

exists (by the degree-balance condition) a negative edge uû ∈ E(g). Notice that since

z(u) = z(u′), xu′ûxuv′ − xuûxu′v′ ∈ IDCn,z and

f = xg+ − xg−
= xg+ − xαxuûxu′v′

= xα(xu′ûxuv′ − xuûxu′v′) + (xg
+ − xαxu′ûxuv′),

where, α ∈ N(
n
2) is such that xαxuûxu′v′ = xg−

. Then we take f ′ = xα(xu′ûxuv′ −

xuûxu′v′), f
′′ = xg+ − xαxu′ûxuv′ and the subwalk vuv′ satisfies that z(v) = z(v′), uv is

positive and uv′ is negative.

(ii) {w, ŵ} ≠ {u, v}.

Assume without loss of generality that w /∈ {u, v}. Given that z(v) = z(v′), it follows

that xuvxwv′ − xuv′xwv ∈ IDCn,z . Let us observe that

f = xg+ − xg−
= xαxuvxwv′ − xg−

= xα(xuvxwv′ − xuv′xwv) + (xαxuv′xwv − xg
−
),

where α ∈ N(
n
2) is such that xαxuvxwv′ = xg+

. In this case we set f ′ = xα(xuvxwv′ −

xuv′xwv), f
′′ = xαxuv′xwv − xg− ∈ IDCn,z . Notice that deg(f ′′) = deg(f) and that the

subwalk uv′u′ satisfies that z(u) = z(u′), uv′ is positive and v′u′ is negative.

□

57



Lemma 3.1.5. Let f = xg+ − xg− ∈ IDCn,z . Suppose g contains a subwalk uvw such that

z(u) = z(w) and uv, vw have different signs. Then, f = f ′ + xuvf
′′ for some f ′ ∈ IMn,z and

f ′′ ∈ IDCn,z with deg(f ′′) = deg(f)− 1.

Proof. Suppose without loss of generality that uv is negative and vw is positive. Then the

degree-balance condition guarantees the existence of a positive edge uu′. Consider the following

two cases:

(i) u′ ̸= w.

Since z(u) = z(w), if follows that xuu′xwv−xuvxwu′ ∈ IDCn,z . Let α,α
′ ∈ N(

n
2) be such

that xg+
= xαxuu′xwv and xg−

= xuvx
α′
. Then, we have that

f = xg+ − xg−
= xαxuu′xwv − xuvxα′

= xα(xuu′xwv − xuvxwu′) + xuv(x
αxwu′ − xα′

).

Let f ′ = xα(xuu′xwv − xuvxwu′) and f ′′ = xαxwu′ − xα′
. Given that IDCn,z is prime

and f, xuu′xwv − xuvxwu′ both belong to IDCn,z we have that f ′′ ∈ IDCn,z . Furthermore,

deg(f ′′) = deg(f)− 1.

(ii) u′ = w.

In this case uw is a positive edge in g so by the degree-balance condition there must

be a negative edge ww′ with w′ /∈ {u, v}. This situation is analogous to the previous case

since uvw is a subwalk with z(u) = z(w), uv negative, vw positive and ww′ a negative

edge in g such that w′ ̸= u.

□

Proof. As previously mentioned, it suffices to show that IDCn,z ⊆ IMn,z . Let us remember

that IDCn,z = ⟨xg+ − xg−
: g ∈ kerZDCn,z⟩ and let f = xg+ − xg− ∈ IDCn,z . If deg(f) = 2, then

f ∈ IMn,z by definition. Suppose that deg(f) = k + 1. By Lemma 3.1.4 and Lemma 3.1.5 we can

write f = f ′ + xuvf
′′ for some 1 ≤ u < v ≤ n where f ′ ∈ IMn,z and deg(f ′′) = k. By induction on

the degree we have that f ′′ ∈ IMn,z , hence f ∈ IMn,z . □
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3.2. Restriction to Simple Graphs

In this section, we provide a proof of Proposition 1.4.7, which demonstrates that as the number

of colors k increases, large moves become necessary in a binary Markov basis for DCn,z.

Proof of Proposition 1.4.7. Let k ≥ 3, be an integer and z be the k-coloring of [2k] such

that z(u) ≡ u (mod k) for every u ∈ [2k]. Let 3k and 1k be the vectors of size k with all 3’s

and all 1’s, respectively. Consider dk = (3k;1k) ∈ N2k and ck ∈ N(
k+1
2 ) be such that for every

1 ≤ u ≤ v ≤ k

ck(u, v) =


2 if |u− v| ≡ 1 (mod k)

0 otherwise.

In order to prove that the simple-graph fiber FDC2k,z
(dk, ck;0,1) contains only two elements we

start by making the following two claims for every g ∈ FDC2k,z
(dk, ck;0,1).

Claim 1. If {u+ k, v} ∈ E(g) for u ∈ [k], v ∈ [2k] with v ≡ u+ ϵ (mod k) and ϵ ∈ {1,−1}; then

{u,w} ∈ E(g) for any w ∈ [2k] with w ≡ u− ϵ (mod k).

Claim 2. The set {k + 1, k + 2, . . . , 2k} is independent in g.

Assuming both claims, let g be a simple graph in FDC2k,z
(dk, ck;0,1). Since ck(1, v) ̸= 0 if and

only if v ∈ {2, k}, it follows from Claim 2 that either {1 + k, 2} or {1 + k, k} is an edge in E(g)

but not both. We will prove that choosing one of the previous two edges determines g completely.

Assume that {1 + k, 2} is an edge in E(g). By Claim 1 we have that {1, k} and {1, 2k} are both

edges in E(g). Now, since {2k, 1} ∈ E(g) it follows from Claim 1 that {k, k − 1} and {k, 2k − 1}

are both edges in E(g). Continuing with this process and repeatedly, applying Claim 1 shows that

for any u ∈ [k] and v ∈ [2k] such that v ≡ u − 1 (mod k), {u, v} ∈ E(g). Let E ⊂ E(g) be

the set with all the edges of this form and let gE be the subgraph of g generated by E. Then,

(deggE (u))u∈[2k] = (3k;1k). This implies that E = E(g), which means g = gE .

An analogous argument shows that if {1+ k, k} is an edge in g (instead of {1+ k, 2}) then the

graph g is generated by the set of edges E′ = {{u, v} : u ∈ [k], v ∈ [2k] and v ≡ u + 1 (mod k)}.

This shows that the only two graphs in FDC2k,z
(dk, ck;0,1) are gE and gE′ . Since E∩E′ = {{u, v} :

u, v ∈ [k] and v − u ≡ 1 (mod k)}, we conclude that ||gE − gE′ ||1 = |E|+ |E′| − 2|E ∩ E′| = 2k.

Now we prove claims 1 and 2. Suppose g ∈ FDC2k,z
(dk, ck;0,1) and let {u + k, v} ∈ E(g)

where u ∈ [k], v ∈ [2k] are such that v ≡ u + ϵ (mod k) with ϵ ∈ {1,−1}. Let w,w′ ∈ [k] such
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that w ≡ u+ ϵ (mod k) and w′ ≡ u− ϵ (mod k). Since ck(u,w
′) = 2, z−1(w′) = {w′, w′ + k} and

degg(u+k) = 1, it follows that {u,w′+k} and {u,w′} are both edges in E(g). This proves Claim 1.

To prove Claim 2 let g ∈ FDCn,z(dk; ck) and suppose that {k+1, k+2, . . . , 2k} is not independent.

Without losing generality assume that {k + 1, k + 2} is an edge in E(g). Claim 1 then implies

that {1, k} and {1, 2k} are both edges in E(g). Following an argument analogous to the proof of

Claim 1 we can see that for every u ∈ [k], {u, v} ∈ E(g) for any v ∈ [2k] such that v ≡ u − 1

(mod k). In particular, this means that {3, 2+ k} ∈ E(g) which would imply that degg(2+ k) ≥ 2.

By the definition of dk, this is a contradiction. Therefore, the set {k + 1, k + 2, . . . , 2k} must be

independent.

□

3.3. A Quadratic Gröbner Basis

The aim of this section is to show that {xg+ − xg−
: g ∈ Mn,z} is in fact a Gröbner basis

for IDCn,z with respect to a monomial order defined below. When the k-coloring z is constant, the

statement follows directly from [40, Theorem 2.1]. As a matter of fact we will use this result, stated

in Proposition 3.3.1 below, as the motivation to prove Theorem 1.4.14.

To prove the main result of this section we start by introducing the monomial order ≻ as

follows. Let us identify the set [n] with the vertices of a complete graph Kn embedded in the

plane in a way that the vertices form a regular n-gon, labeled clockwise from 1 to n. We define

the weight of the variable xuv as the number of edges of Kn which do not meet the edge uv.

For instance, if n = 5, then the variables x12, x23, x34, x45, x15 have weight 3, and the variables

x13, x24, x35, x14, x25 have weight 1. In general, the weight of a monomial xα :=
∏

uv x
αuv
uv is the

sum of the weights of the variables xuv appearing in xα, with multiplicity. Let ≻ denote any

monomial order that refines the partial order on monomials specified by these weights. Given any

pair of non-intersecting edges uv, u′v′ of Kn such that uv′, vu′ intersect, we have from the definition

of weights that in≻(xuvxu′v′ − xuv′xu′v) = xuvxu′v′ .

From Lemma 3.1.2 and the definition of the order ≻, it follows that

{in≻(xg
+ − xg−

) : g ∈Mn,z} = { xuvxu′v′ : uv, u
′v′ do not intersect in the embedding of Kn

in the plane and {z(u), z(v)} ∩ {z(u′), z(v′)} ≠ ∅}.(3.5)
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Proposition 3.3.1 ( [40], Theorem 2.1). The set of binomials {xg+−xg−
: g ∈ kerZDn, ||g||1 =

4} is a Gröbner basis for IDn with respect to ≻.

Proposition 3.3.2. For any monomial walk g ∈ kerZDCn,z there exists a pair of non-intersecting

edges uv, u′v′ in the embedding of Kn in the plane such that xuvxu′v′ divides either xg
+
or xg

−
.

Proof. Let g ∈ kerZDCn,z and letMn = {ω ∈ kerZDn : ||ω||1 = 4}. Similarly to (3.5), from

the definition of ≻ it follows that

{in≻(xω
+ − xω−

) : ω ∈Mn} = { xuvxu′v′ : uv, u
′v′ do not intersect in the embedding of Kn

in the plane}.

As a consequence of the containment kerZ DCn,z⊆ kerZDn, it follows that xg
+ − xg

− ∈ IDn .

Furthermore, Proposition 3.3.1 implies that in≻(IDn) = ⟨{xω
+ − xω−

: ω ∈ Mn}⟩. Hence, there

exists ω ∈ Mn such that in≻(ω) = xuvxu′v′ divides in≻(x
g+ − xg

−
). Since uv and u′v′ don’t

intersect in the embedding of Kn in the plane, the result follows. □

Proposition 3.3.9 below extends the result mentioned above and serves as a crucial step for

proving Theorem 1.4.14. To establish the proof for Proposition 3.3.9, we will introduce the following

notation and lemmas.

Let z : [n]→ [k] and let q, q′ ∈ [k]. We define the k-coloring zq
′

q : [n]→ [k] as

(3.6) zq
′

q (i) :=


q if z(i) = q′,

z(i) otherwise.

In other words, the k-coloring zq
′

q is obtained from the k-coloring z by re-coloring all the q′-th

colored vertices with the q-th color. Then, we have the following.

Lemma 3.3.3. For any k-coloring z of [n] and q, q′ ∈ [k] we have kerZAn,zq
′

q
⊆ kerZDCn,z.

Proof. Let g ∈ kerZ DCn,z and q, q′ ∈ [k]. g satisfies the degree-condition by assumption.

Hence, all we need to prove is that g satisfies the color-balance condition with respect to zq
′

q . To

do so, notice that for every i, j different from q′,
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c±g (z
q′
q , i, j) =


c±g (z, i, j) if i, j ̸= q,

c±g (z, i, j) + c±g (z, q
′, j) if i = q, j ̸= q,

c±g (z, q, q) + c±g (z, q
′, q′) + c±g (z, q, q

′) if i = j = q.

When either i = q′ or j = q′, c±g (z
q′
q , i, j) = 0.

□

Now let g ∈ Z(
n
2), w ∈ [n], and z : [n]→ [k] with z(w) = q. We define the contraction of g with

respect to w and z as the vector σw(g) ∈ Z(
n
2) such that for every distinct u, v ∈ [n],

(3.7) σw(g)uv :=



guv, if z(u) ̸= q and z(v) ̸= q,∑
u′∈z−1(q)

gu′v, if u = w and z(v) ̸= q,

∑
v′∈z−1(q)

guv′ , if v = w and z(u) ̸= q,

0, otherwise .

We call σw(g) simply a contraction when w and z are clear from the context.

Remark 3.3.4. Notice that whenever u or v belong to the set z−1(q)\{w} we have σw(g)uv = 0.

In other words, z−1(q)\{w} is an isolated set of vertices in σw(g) when regarded as a graph. This

implies that for any v ∈ [n], S ⊆ [n]\{v} and S′ ⊆ z−1(q)\{w}

∑
u∈S

σw(g)uv =
∑

u∈S\S′

σw(g)uv =
∑

u∈S∪S′

σw(g)uv.

Example 3.3.5. Consider the monomial walk g from Example 3.1.1. The contraction σ1(g) is

shown in Figure 3.4. Notice that the reduction σ3(σ1(g)) returns a zero-vector, or in other words,

an empty graph.

Lemma 3.3.6. For any k-coloring z of [n], any monomial walk g ∈ kerZ DCn,z and w ∈ [n],

σw(g) is also a monomial walk. In other words, the map σw satisfies σw(kerZDCn,z) ⊆ kerZDCn,z.

Proof. Let g ∈ kerZDCn,z and w ∈ [n] with q := z(w). We will show the following:

(1) σw(g) satisfies the degree-balance condition.
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Figure 3.4. Monomial walk g = [1, 5, 2, 4, 5, 3, 2, 4] on the left and its contraction
σ1(g) = [1, 4, 5, 3] on the right.

Let v ∈ [n]. If v ∈ z−1(q)\{w}, Remark 3.3.4 implies that deg±σw(g)(v) = 0, so let us

assume v /∈ z−1(q)\{w} and consider the following two cases:

(i) v ̸= w. In this case, by properly arranging summation indices and using Remark 3.3.4,

one can see that

deg+σw(g)(v)− deg−σw(g)(v) =
∑
u̸=v

σw(g)uv =
∑
u̸=v

u/∈z−1(q)

σw(g)uv +
∑
u̸=v

u∈z−1(q)

σw(g)uv

=
∑
u̸=v

u/∈z−1(q)

guv + σw(g)wv =
∑
u̸=v

u/∈z−1(q)

guv +
∑

u′∈z−1(q)

gu′v

=
∑
u̸=v

guv = deg+g (v)− deg−g (v) = 0.

(ii) v = w. Similarly to the previous case, by strategically rearranging summation indices

and using Remark 3.3.4, we have

deg+σw(g)(v)− deg−σw(g)(v) =
∑
u̸=w

σw(g)uw =
∑

u/∈z−1(q)

σw(g)uw

=
∑

u/∈z−1(q)

∑
v′∈z−1(q)

guv′ =
∑
i∈[k]
i ̸=q

( ∑
u∈z−1(i)

∑
v′∈z−1(q)

guv′
)

=
∑
i∈[k]
i ̸=q

(
c+g (i, q)− c−g (i, q)

)
= 0.

Where the last equality holds because g satisfies the color-balance conditions.

(2) σw(g) satisfies the color-balance condition.
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Let 1 ≤ i ≤ j ≤ k. It follows from Equation (3.2) and (3.7) that if i, j ̸= q, c±σw(g)(i, j) =

c±g (i, j) and if i = j = q then c±σw(g)(i, j) = 0. In either of these two cases we have

c+σw(g)(i, j) = c−σw(g)(i, j). Now, suppose that i ̸= q and j = q. In this case we have

c+σw(g)(i, j)− c
−
σw(g)(i, j) =

∑
u∈z−1(i)

σw(g)uw =
∑

u∈z−1(i)

∑
v′∈z−1(q)

guv′

= c+g (i, q)− c−g (i, q) = 0.

The case i = q, j ̸= q is analogous to the latter case.

□

For the rest of the section we will assume that the k-coloring z is non-decreasing which will be

useful thanks to the following.

Remark 3.3.7. Consider the embedding of Kn in the plane and suppose the k-coloring z : [n]→

[k] is non-decreasing. If uv, u′v′ are two non-intersecting edges with z(v′) /∈ {z(u), z(u′), z(v)} then

for any vertex w such that z(w) = z(v′), we have that uv, u′w are non-intersecting edges in the

embedding of Kn.

Lemma 3.3.8. Let z be a k-coloring of [n] with k ≥ 2 and g ∈ kerZDCn,z be a monomial walk.

Let w ∈ [n] and uv edge in σw(g). Then,

(i) there exists a vertex v0 ∈ [n] such that uv0 is an edge in E(g) with same sign as uv and

z(v0) = z(v),

(ii) if u′v′ is and edge in E(σw(g)) with u′, v′ ̸= w such that uv, u′v′ do not intersect in the

embedding of Kn in the plane, then uv0 and u′v′ do not intersect in the embedding of Kn

either.

Proof. (i) Let q = z(w) and uv an edge of σw(g). By definition of σw(g) we have that

every vertex in z−1(q)\{w} is isolated. Hence we have two options: either u, v ̸= w or

v = w (or u = w). If u, v ̸= w, uv is also an edge of g in which case we can set v0 = v.

Now, assume that v = w (the case u = w is completely analogous).

Given that uw is an edge in σw(g), we have that σw(g)uw ̸= 0. Assume without

loosing generatity that σw(g)uw > 0 (i.e., uv is positive). By definition, σw(g)uw =∑
v0∈z−1(q) guv0 , which implies that guv0 > 0 for some v0 ∈ z−1(q). This means that uv0 is
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a positive edge in g with z(v0) = q = z(w). We can apply a similar argument for when

σw(g)uw < 0.

(ii) Given that u′, v′ ̸= w, it follows from the construction of σw(g) that u
′v′ is an edge of g. If

v ̸= w ⇒ uv0 = uv so the result follows trivially. If v = w, then z(v) /∈ {z(u), z(u′), z(v′)}

so Remark 3.3.7 implies that uv0 and u′v′ are non-intersecting edges in the embedding of

Kn in the plane.

□

Proposition 3.3.9. For any monomial walk g ∈ kerZDCn,z there is a pair of non-intersecting

edges uv, u′v′ in the embedding of Kn in the plane such that z(u) = z(u′) and xuvxu′v′ divides either

xg
+
or xg

−
.

Proof. Let g ∈ kerZDCn,z be a monomial walk. Notice that a monomial xuvxu′v′ divides x
g+

or xg
−
if and only if uv, u′v′ is pair of edges in E(g) with same sign. Let z : [n]→ [k] be a k-coloring

assumed to be non-decreasing and for convenience suppose z([n]) = {1, . . . , κ} for some κ ∈ Z+.

When κ = 1 (i.e., z is constant) the result follows from Proposition 3.3.2. Let us divide the proof

for κ ≥ 2 in the following two cases:

(a) There exists a monochromatic edge xy ∈ E(g) with z(x) = z(y) = ι.

For every i ∈ [κ]\{ι}, let ui := min{u : z(u) = i}, g̃ := σuκ(σuκ−1(· · ·σu2(m) · · · )) and

w ∈ argmaxv∈[n]: z(v)̸=ι deg
+
g̃ (v).

From Proposition 3.3.2, there exists a pair of edges uv, u′v′ in σw(g̃) such that uv, u′v′

do not intersect in the embedding of Kn in the plane. Since w is the only (potentially)

non-isolated vertex with respect to σw(g̃) with z(w) ̸= ι, we can assume w.l.o.g. that

z(u) = z(v) = z(u′) = ι. By Lemma 3.3.8(i) there exists a vertex v′0 ∈ [n] such that

u′v′0 ∈ E(g̃) has same sign as u′v′ and z(v′0) = z(v′). Moreover, since uv, u′v′ ∈ E(σw(g̃))

do not intersect in the embedding of Kn and u, v ̸= w, it follows from Lemma 3.3.8(ii)

that uv, u′v′0 is also a pair of non-intersecting edges in the embedding of Kn in the plane.

Notice that uv, u′v′0 have same sign. Then, after applying Lemma 3.3.8 repeatedly to g̃,

we will get a vertex v′′0 ∈ [n] such that the edges uv, u′v′′0 ∈ E(g) have the same sign, and

uv, u′v′′0 do not intersect in the embedding of Kn in the plane. Since we assumed that
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z(u) = z(u′), this concludes the proof of Proposition 3.3.9 under the assumptions made

for this case.
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Figure 3.5. Illustration of Proposition 3.3.9, case (a): Recovering the pair of non-
intersecting edges {3, 4}, {1, 7} in g from {3, 4}, {1, w} in E(σw(g̃)).

(b) There are no monochromatic edges in the monomial walk g.

We will prove Proposition 3.3.9 for this case by induction on κ. First, let us observe

that Proposition 3.3.2 guarantees the existence of a pair of non-intersecting edges edges

uv, u′v′ ∈ E(g), both with the same sign and such that do not intersect in the embedding

of Kn in the plane. Now consider the following cases:

(i) Let κ ≤ 3. By the assumption at the beginning of (b) we have that z(u) ̸= z(v), z(u′) ̸=

z(v′). From the Pigeonhole principle either z(u) = z(u′) or z(u) = z(v′). This proves

our base case.

(ii) Let κ ≥ 4. Assume that Proposition 3.3.9 holds for any instance of case (b) for which

the size of the k-coloring’s range is smaller than κ.
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Let us first prove that there exists ν ∈ [n] such that z(u), z(v) /∈ {ν, ν +1} (ν +1 = 1

if ν = n): When κ > 4 this follows from the Pigeonhole principle. When κ = 4 we

can use that z is non-decreasing to see that any pair of edges with vertex colors 1, 3

intersects with any pair of edges with vertex colors 2, 4. In such a case we can assume

w.l.o.g that z(u) = 1, z(v) = 2 and set i = 3.

The existence of ν guarantees that for any w ∈ z−1({q, q′}) the contraction σw(g) is

non-empty. Now, let ν ′ = ν + 1, q = z(ν) and q′ = z(ν ′). Let zq
′

q be the k-coloring

of [n] as defined in 3.6 and notice that by Lemma 3.3.3 g is a monomial walk with

respect to zq
′

q , i.e., g ∈ kerZAn,zq
′

q
. Now, pick w ∈ [n] such that zq

′
q (w) = q and notice

that by previous observation σw(g) is non-empty. Then, either by case (a) above

or by the inductive step applied to σw(g) with respect to zq
′

q , there exists a pair of

edges xy, x′y′ ∈ E(σw(g)) such that zq
′

q (x) = zq
′

q (x′) and xy, x′y′ do not intersect in

the embedding of Kn in the plane. Since w is the only (possibly) non-isolated vertex

with zq
′

q (w) = q, it follows that x, x′ ̸= w and by definition of zq
′

q it follows that

z(x) = zq
′

q (x) = zq
′

q (x′) = z(x′).

Notice that at least one of the vertices y, y′ is different from w. Without losing

generality assume y′ ̸= w. Then, by Lemma 3.3.8 there exists y0 ∈ [n] such that xy0

has the same sign as xy and xy0, x
′y′ do not intersect in the embedding of Kn in the

plane. Moreover, z(x) = z(x′). This finishes the prove of this case.

□

Proof of Theorem 1.4.14. Let ≻ be any monomial order that refines that refines the partial

order specified by weights just as in the beginning of the current section. Let BinMn,z := {xg+−xg−
:

g ∈ Mn,z}. By [104, Corollary 4.4], the set of binomials {xg+ − xg−
: g ∈ kerZ DCn,z} contains

every Gröbner basis (with respect to any monomial order) of IDCn,z . Hence, to show BinMn,z is

a Gröbner basis, it is enough to prove that the leading term of any binomial xg
+ − xg− ∈ IDCn,z

is divisible by a monomial xuvxu′v′ where uv, u′v′ ∈ E(g) do not intersect in the embedding of

Kn in the plane and {z(u), z(v)} ∩ {z(u′), z(v′)} ̸= ∅. Assume that f = xg
+ − xg− ∈ IDCn,z with

in≻(f) = xg
+
, is a minimal counterexample in the sense that f has minimal weight. Here the

weight of a binomial is the sum of the weights of its two monomials. This means that every pair

of positive edges uv, u′v′ ∈ E(g) with z(u) = z(u′) intersect in the embedding of Kn in the plane.
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Furthermore, we can assume that every pair of negative edges uv, u′v′ with z(u) = z(u′) intersect

in the embedding of Kn in the plane as well. Otherwise, we can reduce xg
−

modulo BinMn,z to

get a counterexample of smaller weight. On the other hand, the existence of g would contradict

Proposition 3.3.9. Hence no such binomial xg
+ − xg− ∈ IDCn,z could exist. Therefore, BinMn,z is a

Gröbner basis for IDCn,z with respect to ≻.

□

3.4. Future Directions

The combinatorial description of the Gröbner basis in Theorem 1.4.14 has direct implications

for the combinatorics of the polytope PDCn,z := conv(auv : 1 ≤ u < v ≤ n), defined as the convex

hull of the column vectors auv of DCn,z. More specifically, as a consequence of [104, Theorem 8.3],

the Gröbner basis of IDCn,z described in Theorem 1.4.14 induces a unimodular regular triangulation

T≻ of PDCn,z . Following ideas analogous to [40, Remarks 2.5], this triangulation enables the com-

putation of the Ehrhart polynomial (which, in this case, equals the Hilbert polynomial) of PDCn,z .

For example, for k = 2 and any k-coloring z : [n] → [2] with ni = |z−1(i)|, the Hilbert polynomial

of IDCn,z is given by

HDCn,z(r) = card
(
r · PDCn,z ∩ Zn+3

)
=

∑
τ∈Wr,3

aτ ,

where Wr,3 = {τ ∈ N3 :
∑

1≤i≤j≤2 τi,j = r} is the set of weak 3-partitions of r, and

aτ =

(
n1 + 2τ1,1 + 2τ1,2

n1 − 1

)(
n1 + 2τ1,1 + 2τ1,2

n1 − 1

)
− n1

(
n1 − 2 + τ1,1 + τ1,2

n1 − 1

)(
n1 + 2τ1,1 + 2τ1,2

n1 − 1

)
− n2

(
n1 + 2τ1,1 + 2τ1,2

n1 − 1

)(
n2 − 2 + τ2,2

n2 − 1

)
+ n1n2

(
n1 − 2 + τ1,1 + τ1,2

n1 − 1

)(
n2 − 2 + τ2,2

n2 − 1

)
for every τ ∈ Wr,3. Similar formulas can be derived for k > 2.

When the k-coloring z is constant, PDCn,z is linearly isomorphic to the second hypersimplex

∆n(2). In this case, the triangulation T≻ has been thoroughly described in [40]. However, a

general combinatorial understanding of PDCn,z and the induced triangulation T≻ remains an open

problem.

Additionally, previous research has focused on the study of the degree sequence polytope, defined

as the convex hull

Dn := conv(d(g) : g ∈ Gn),
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where Gn is the set of simple graphs with vertex set [n]. For more details, see [87,91,102] and

references therein. Two key points of interest regarding this polytope include its hyperplane repre-

sentation, which can be used to recover the famous Erdős-Gallai inequalities characterizing degree

sequences of simple graphs, and the vertex description of Dn. In fact,

Vert(Dn) = {g ∈ Gn : |F(d(g);0,1)| = 1}.

The graphs constituting the vertices of Dn are known as threshold graphs, which have multiple

combinatorial characterizations [87, Theorem 1.2.4]. In particular, a graph g ∈ Gn is a threshold

graph if and only if there is no m ∈Mn such thatm+g ∈ Gn. This establishes a natural connection

between threshold graphs and binary Markov bases for Dn.

A natural extension of this idea is to provide a full hyperplane and vertex representation of the

degree-color sequence polytope, defined as

DCn,z:= conv ((d(g), c(g)) : g ∈ Gn) ,

given a fixed coloring z : [n] → [k]. In particular, the H-representation of DCn,z would be useful

for characterizing sequences (d, c) ∈ Nn⊕N(
k+1
2 ) that correspond to the degree-color sequence of a

simple graph under a given coloring z.

Remark 3.4.1. Given a coloring z : [n]→ [k], there exists an injective map from Gn to the set

of 3-regular graphs with vertex set {1, . . . , n} ⊔ {(i, j) : 1 ≤ i ≤ j ≤ k}, which sends g ∈ Gn to the

hypergraph H with edge set

E(H) = {{u, v, (z(u), z(v))} : {u, v} ∈ E(g)}}.

This implies that degree-color sequences can be interpreted as degree sequences of a family of 3-

regular hypergraphs. In general, [42, 43] showed that, for fixed r ≥ 3, determining whether a

sequence of non-negative integers corresponds to the degree sequence of an r-regular hypergraph is

NP-hard.
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CHAPTER 4

Markov Bases for a Labeled Stochastic Block Model

In this chapter, we provide proofs for the contributions presented in Section 1.5.

Theorem 1.5.2 describes the Graver basis of the design matrix of Labeled Stochastic Block

Models, which includes the classic SBM as a special case. While the moves described in this

theorem allow us to connect fibers of the form F(ALSBM(z,ℓ); l,L) for any l,L ∈ Nℓ(n2), these moves

are insufficient to connect fibers when natural constraints are imposed on the space of graphs. As

discussed in Subsection 1.5.1, Theorem 1.5.3 provides a set of moves applicable in scenarios with

different natural constraints on the space of graphs.

Finally, Proposition 1.5.6 establishes that when z is unknown in the Labeled SBM model, using

a consistent block assignment estimator ẑ results in a consistent plug-in p-value.

4.1. A Simple Graver basis description

Before presenting the proof of Theorem 1.5.2, we introduce some notions and a key result. We

say that a 0/1 matrix A satisfies the consecutive 1’s condition if there exists a permutation matrix

P such that the 1’s in each row of AP appear in consecutive positions. A 0/1 matrix A is said

to be totally unimodular if every square submatrix has a determinant of ±1 or 0. It follows from

known results on unimodularity that if A satisfies the consecutive 1’s property, then A is totally

unimodular (see [68]).

Recalling the definition of a circuit from Section 1.3, the circuits of A correspond to the subset

of kerZA with minimal support.

Proposition 4.1.1 ( [104], Proposition 8.11). If A is a totally unimodular 0/1 matrix, then

the set of circuits C(A) is equal to the Graver basis Gr(A).

The proof of the following theorem relies on this proposition.
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Proof of Theorem 1.5.2. By definition, the design matrix of the Labeled SBM with block

assignment z and ℓ interaction types has the form

ALSBM(z,ℓ) = Iℓ×ℓ ⊗ASBM(z) :=


ASBM(z) 0 · · · 0

0 ASBM(z) · · · 0
...

...
. . .

...

0 0 · · · ASBM(z)


︸ ︷︷ ︸

ℓ column blocks

.

Moreover, ASBM(z) satisfies the consecutive 1’s condition: its columns correspond to pairs of

nodes, which can be reordered based on the pairs of blocks they connect according to the block

assignment z. This implies that ALSBM(z,ℓ) itself has the consecutive 1’s property and is therefore

totally unimodular.

Furthermore, it is clear that the set

MLSBM(z,ℓ) : = {e(l)uv − e
(l)
u′v′ | l ∈ [ℓ], z(u) = z(u′), z(v) = z(v′)}

= {g ∈ kerZALSBM(z,ℓ) : ||g||1 = 2}

corresponds to the elements in ALSBM(z,ℓ) of minimal support. In other words, C(ALSBM(z,ℓ)) =

MLSBM(z,ℓ). As a consequence of Proposition 4.1.1, it follows thatMLSBM(z,ℓ) is the Graver basis

of ALSBM(z,ℓ). □

4.2. Connecting Restricted Fibers and Consistency of the Plug-in p-value

Proof of Theorem 1.5.3. Let z be a fixed block assignment and

F = F(ALSBM(z,ℓ), b) ∩ {g = (guv)u<v ∈ Nℓ(n2) : ||guv||1 = Nuv},

where b ∈ NALSBM(z,ℓ) and N = (Nuv)u<v ∈ N(
n
2).

Let f = (f
(l)
uv : u < v, l ∈ [ℓ]), g = (g

(l)
uv : u < v, l ∈ [ℓ]) ∈ F be different labeled graphs with the

same sufficient statistic. Assume without losing generality that g
(l)
uv > f

(l)
uv where z(u) = i, z(v) = j

and l ∈ [ℓ]. Since
∑ℓ

l′=1 g
(l′)
uv = Nuv =

∑ℓ
l′=1 f

(l′)
uv it follows that there is a l′ ∈ [ℓ]\{l} such that
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g
(l′)
uv < f

(l′)
uv . Furthermore, since ALSBM(z,ℓ)f = ALSBM(z,ℓ)g, we have

∑
u′∈Bi,v′∈Bj

g
(l)
u′v′ =

∑
u′∈Bi,v′∈Bj

f
(l)
u′v′ ,

meaning that there exists u′ ∈ Bi, v
′ ∈ Bj with f

(l)
u′v′ > g

(l)
u′v′ . Let m = e

(l)
uv + e

(l′)
u′v′ − e

(l′)
uv − eu′v′

(l) ∈

ZL(n2) and observe that f +m ∈ Nℓ(n2), and
∑ℓ

l=1 (f +m)
(l)
uv =

∑ℓ
l=1 f

(l)
uv = Nuv. In other words,

||f +m|| = Nuv. Furthermore, we have

||(f +m)− g||1 =


||f − g||1 − 4, if g

(l′)
u′v′ > f

(l′)
u′v′

||f − g||1 − 2, otherwise.

By an inductive argument this shows that the set M̃LSBM(z,ℓ) described in the statement of the

theorem connects F . Since F was an arbitrarily picked, the statement of the theorem follows. □

Proof of Proposition 1.5.6. Let G(n) ∼ LSBM(z(n), ℓ) for every n and a fixed ℓ ∈ N. Then

P(p(z(n),G(n)) = p(ẑ(n), G(n)))

≥ P (p(z(n),G(n)) = p(ẑ(n),G(n)) | A(z(n) = ẑ(n)) = 1)P(A(z(n) = ẑ(n)) = 1)

= P(A(z(n) = ẑ(n)) = 1).

Where the last equality follows from the definition of the plug-in p-value, the fact that Tz(g) =

Tz(g
′) ⇐⇒ Tσ·z(g) = Tσz(g

′) for any σ ∈ Sk, and the property that GoFz̃(g) = GoFσ·z̃(g) for any

z̃ ∈ [k]n and σ ∈ Sk. Since ẑ is a strongly consistent estimator, it follows that limn→∞ P(p(z(n),G(n)) =

p(ẑ(n),G(n))) = 1. □

4.3. Experimental Results and Further Questions

We illustrate the performance of the goodness-of-fit test described at the end of Section 1.5.1

for scenario 3) in the frequentist setting with the following experiment. We generated 150 graphs,

each with 70 nodes, from the stochastic block model (SBM) where z ∼ Multinomial(π) and Guv ∼

Poisson(θz(u)z(v)) for fixed π and θ = (θij : 1 ≤ i ≤ j ≤ 6). We tested the null hypothesis that an

SBM with k blocks, for k = 3, . . . , 8, fits the synthetic data and computed the proportion of times

the test rejected the null hypothesis using an approximation of the p-value from Equation 1.12 at a
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nominal level of 0.05. To approximate the p-value, we implemented Algorithm 2 from [79] with the

Markov basis described in Theorem 1.5.2 and the parameter estimation algorithm from [88]. The

results, shown in Table 4.1, align with expectations. As anticipated, when the synthetic networks

are generated from an SBM with an underspecified number of blocks, the test rejects the null

hypothesis more than 99% of the time. However, when the synthetic networks are generated from

an SBM with six or more blocks, the test fails to reject the null hypothesis in most cases.

Number of blocks (k) Power
3 1
4 1
5 0.99
6 0.07
7 0.02
8 0

Table 4.1. Power calculations for the SBM(k) with k = 3, . . . , 8 and n = 70 nodes.

Based on multiple simulations similar to the one described above, we believe it is worthwhile

to explore the following question.

Question 4.3.1. Let k ∈ N and let z : [n] → [k] be a block assignment. Let G ∼ LSBM(z, ℓ),

and for each q ∈ {2, . . . , n}, let ẑ(q) = ẑ(q,G) be an estimator recovered from q and G using

algorithms such as those in [88, 108]. Define p(q)(G) = p(g, ẑ(q)) as the plug-in p-value from

Equation 1.9, computed using the chi-square statistic from Equation 1.11. Under what conditions

does P(p(2)(G) ≤ · · · ≤ p(n)(G)) approach 1?

Assuming a positive answer to this question, the goodness-of-fit test can be used to determine

the number of blocks in an observed network by applying the test sequentially. As an example, we

analyzed two undirected, valued networks, where nodes represent parasitic fungal species (n = 154)

and tree species (n = 51), respectively. In these cases, the edge counts guv correspond to the

number of shared host species and the number of shared parasitic species, respectively. The data

was obtained from the sbm package in R [26].

After sequentially applying our test to assess whether the data fits a Poisson-SBM, we obtained

the results presented in Tables 4.2 and 4.3.

These results suggest that the tree species network and the fungal species network are better

modeled by a Poisson-SBM with k = 10 and k = 22 blocks, respectively.
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Number of Blocks 3–7 8–9 10 11 12 13 14 15
p-value 0 .01 .19 .68 .93 .98 1 1

Table 4.2. Goodness-of-fit results for the tree species network.

Number of Blocks 3–17 18–21 22
p-value 0 .01 .07

Table 4.3. Goodness-of-fit results for the fungal species network.

This differs from the model selection approach in [88], which uses the Integrated Classification

Likelihood (ICL) criterion and suggests modeling the networks with 7 blocks for tree species and

9 blocks for fungal species. Further investigation is needed to understand the differences between

the goodness-of-fit test we propose and the ICL criterion, as well as their relative strengths and

limitations.
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