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Abstract

Algebraic statistics is an emerging field that employs tools from algebraic geometry, commu-
tative algebra, and combinatorics to address statistical problems and their applications. This
interdisciplinary subject not only applies algebraic techniques to solve statistical challenges but
also fosters the development of new algebraic results motivated by statistical applications. This dy-
namic exchange has enriched both disciplines, driving advancements in areas such as experimental
design, graphical models, and parametric inference.

In 1998, Diaconis and Sturmfels made a foundational contribution to the field by introducing
a Markov Chain Monte Carlo algorithm for sampling fibers of log-linear models. The algorithm’s
inherently algebraic nature relies on the construction of a Markov basis, a set of moves with origin
in polynomial algebra, thereby establishing a connection between commutative algebra, probability
and statistics.

Since this seminal work, there has been a surge of research into various aspects of Markov bases
and their structure for specific sets of discrete exponential families. This dissertation investigates
the complexity of Markov bases in general and explores their combinatorial aspects in the context
of popular random network models and their applications in statistics.

In Chapter 2, we extend the classical notion of Markov basis by allowing moves to connect
fibers, even when these occasionally take steps in a negative relaxation of the fiber. This concept
is motivated by earlier work of Bunea and Besag in the context of the Rasch model, and Chen,
Dinwoodie, Dobra, and Huber in the context of logistic regression. These studies considered alter-
native methods for defining irreducible Markov chains on fibers without computing a full Markov
basis in certain specific cases.

Nevertheless, we show that for general log-linear models, there is no universal upper bound on
the level of negative relaxation required to connect fibers. Moreover, we extend a result by De
Loera and Onn, showing that Markov basis elements with arbitrarily large degrees may exist even
when relaxed fibers are employed. On the other hand, we provide positive results for hierarchical
models, establishing a polynomial upper bound on the size of their Graver basis in terms of certain
structural parameters of the model.

In Chapter 3, we present a combinatorial description of the Markov basis for a degree-corrected

variant of the Stochastic Block Model (SBM), resolving an open problem posed by Karwa et al. in

v



their study of goodness-of-fit tests for mixtures of log-linear models. Furthermore, we establish that
the algebraic counterparts of this Markov basis constitute a Grobner basis for the associated toric
ideal under a pure lexicographical order, thereby extending work by De Loera et al. Furthermore,
we analyze the Markov basis for the 0/1 restricted fibers of this model, showing that its degree
increases as the number of blocks in the SBM grows.

Finally, in Chapter 4, we consider a labeled generalization of the SBM and provide a complete
combinatorial description of its Markov basis. This result is directly relevant to the conditional
goodness-of-fit testing framework for mixtures of exponential log-linear models introduced by Karwa

et al. We also provide theoretical guarantees for the test in the frequentist setting.
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CHAPTER 1

Introduction

This dissertation explores the complexity of Markov bases and their applications in log-linear
models. To provide the necessary context for our contributions, this chapter begins with a discussion
of preliminary background material, which is presented in two sections. Section 1.1 focuses on
algebraic concepts and fundamental known results, while Section 1.2 addresses statistical theory,
emphasizing its connections to the algebraic framework.

In Section 1.3, we review existing results on the behavior of Markov bases and present both
positive and negative findings regarding their complexity. In Section 1.4, we share our results on
the study of a Markov basis used to connect spaces of graphs with a fixed degree sequence. Finally,
in Section 1.5, we explore the application of Markov bases for performing goodness-of-fit tests on
a labeled version of the Stochastic Block Model.

The results presented in this dissertation are based on the published works [4,5] and an addi-
tional paper currently in progress.

Notation. The vector of all zeros is denoted by 0, with its dimension inferred from the context.

For any positive integer n, we write [n] = {1,...,n}. Given an integer vector u = (uy, ..., u,) € Z",
we define its positive and negative parts as u™ := (max(u;,0))}_; and u~ := (max(-u;,0))7_;,
respectively. For variables xi,...,z,, the monomial % is given by z|'---zi*. For any vector

w € R", w' denotes its transpose, and w'v represents the inner product of w and v. Given a
distribution 7 over €, the notation 7(u) o< f(u) indicates that the distribution is proportional to

f(u), with the proportionality constant being the reciprocal of the normalizing factor ), ¢ f(u).

1.1. Algebraic Preliminaries and an Introduction to Markov Bases

In this section, we introduce the key concept of a Markov basis along with the necessary
background. The material presented here is primarily drawn from [104], an excellent resource
on toric ideals and their applications. Some results presented here have been rephrased to better

align with the flow of our exposition. Comprehensive bibliography on algebraic statistics include
1



(7,48, | and the references therein. The latter two books are particularly noteworthy for being
largely self-contained, offering introductory material before progressing to more advanced topics.

We begin this subsection with the following fundamental definition.

DEFINITION 1.1.1. Let K be an infinite field and A = (a;;) € Z4™ be an integer matriz with
aj = (a1j,...,aq) for every j € [n]. Let pa: Ka1,...,z,) — K[, ..., tF] be the homomorphism
of semigroup algebras induced by the map x; — t*. We define the toric ideal of A as the kernel

of this homorphism, I4 :=ker p4.

Toric ideals are of significant interest from a computational perspective and have connections

to various fields, including numerical semigroups [57,95], semigroup rings [59], commutative al-
gebra and combinatorics [19, 89, |, algebraic geometry [32, 58], linear algebra, and polyhedral
geometry [97, ]

Our work focuses particularly on their applications in algebraic statistics via Markov bases, as
well as their relevance to integer programming through Grobner and Graver bases. Some of the

well-known properties of toric ideals include the following result.

ProposITION 1.1.2 ([104, Corollary 4.3]). The toric ideal 14 is generated by the binomials

{x%" —x" :u€kerg A},

Now, we recall a classic result in commutative algebra and state one of its corollaries that will

be of particular interest to us.

THEOREM 1.1.3. [Hilbert basis theorem, [31, Theorem 4]] Every ideal of K[x1, ..., xy] is finitely

generated.

COROLLARY 1.1.4. The toric ideal 15 is generated by a finite subset of the set of binomials

{a*" — 2" :wu € kerg A},
DEFINITION 1.1.5. Let A € Z%¥*™ be an integer matriz such that kerz ANN? = {0} and b €
NA := {Au : u € N"}. We define the b-fiber as the set

F(A,b) :={u e N": Au = b}.

Whenever A is clear from the context, we may suppress the dependence on the matriz A and simply

use the notation F(b). We refer to the elements of NA as margins.
2



Fibers can be understood as the set of integer points inside the parametric polytopes P(A,b) :=
{y € R" : y > 0,Ay = b} as we let b vary over the set of margins. Some natural problems
associated with these objects include enumeration [11,37,74], sampling [44,45,75] and integer

programming [29,71, ]. As noted earlier, we will focus on the latter two.

DEFINITION 1.1.6. For a finite subset M C Z', called the set of moves, and F C N, we define
the fiber graph induced by M on F as the graph with vertex set F and such that uw,v € F form
an edge if an only if u —v € M. We denote this graph by F.

DEFINITION 1.1.7. Let A € Z%¥*" be an integer matriz such that kery ANN" = {0}. A finite
subset M C kery A is a Markov basis for A if F(b)s is a connected graph for every b € NA.

We say that M is a minimal Markov basis if it does not properly contain a Markov basis.

THEOREM 1.1.8. [Fundamental Theorem of Markov Basis, [106, Theorem 9.2.5]] Let A € Z.3*"
be an integer matriz such that kery ANN" = {0}. Then M C kerz A is a Markov basis for A if
u—

and only if the set of binomials {a:“+ —ax% :u € M} generates the toric ideal 14.

This theorem was first introduced in [45] and is one of the foundational results in the field
of algebraic statistics. Moreover, Theorem 1.1.3, together with Corollary 1.1.4, guarantees the
existence of a Markov basis for integer matrices whose integer kernel intersects the non-negative

orthant only on {0}.

EXAMPLE 1.1.9. For A = (34 5) the toric ideal 14 C K[z1,x2, x3] is generated by the binomials
{z123 — x%,xz{’ — 131.%2,.73%352 — x%} By the Fundamental Theorem of Markov basis this means that
M= {(1,-2,1),(3,—-1,-1),(2,1,-2)} C kerz A is a Markov basis for A. Figure 1.1 shows the
fiber graphs F(A,b)am for margins b = 15,30 induced by M.

Notice that all the elements in M are necessary to make F(A,15)p connected. This means

that M is minimal.

PROPOSITION 1.1.10. Let A € Z%*™ be an integer matriz such that kery ANN" = {0} and let

M C kerg A. The following are equivalent

(1) M is a Markov basis for A, i.e., F(A,b)aq is connected for every b € NA,

+

(2) In = (z* —x% :ue M),



(0,0,3)

1.1
(1,3,0)
(500
(a) ‘F(A7 15)/\/1 .
(b) F(A,30)m
FIGURE 1.1. Fiber graphs induced by M = {(1, -2, 1), ,(2,1,-2)}.
(3) For every u,v € N" with Au = Av = b, there exists a sequence my,...,mg € M such
that
S s’
U—v= st and U+st € F(A,b) for every s’ < S.
s=1 s=1

One of the most useful applications of Markov bases is their use in generating random samples
from a distribution 7 on F(b) via the Metropolis-Hastings algorithm (see [86, Section 3.2]), as
described in Algorithm 1. This approach is especially useful when the fibers are too large to be

explicitly enumerated.

REMARK 1.1.11. In most of the scenarios encountered throughout this work, we consider dis-
tributions w on F(b) such that w(u) o< h(u) for a known function h. Consequently, during the

Metropolis-Hastings step in line 6 of Algorithm 1 we can compute % instead of %

THEOREM 1.1.12. Let {wy, }n>1 be the output of Algorithm 1 as N — oco. Then {uy,}n,>1 forms

an irreducible Markov chain with stationary distribution .

The proof of this theorem relies on the connectivity properties inherent to Markov bases, as
stated in Definition 1.1.7. For a general proof of this result, see [98, Chapter 6].
As a consequence of Theorem 1.1.8, finding a Markov basis for a matrix A is equivalent to

identifying a set of generators for the toric ideal 14. However, when the set of generators possesses
4



Algorithm 1: Fiber samples given a Markov basis.

Input :u € F(A,b), starting point in a fiber

M, a Markov basis for A

7, a desired distribution on F(A,b)

N, the number of fiber samples
Output: A sequence of points ui, us, ... in F(A,b)
1 Set uy < u;
2 forn=1,...,N—1do
3 Choose m € £ M uniformly at random;
4 if u, +m >0 > This checks if u, +m € F(A,b)
5 then
6
7
8

m(un)

‘ Up41 < Uy +m with probability min {1, M} ;> Metropolis-Hastings step
else
| g1 up;

9 Return sequence uq,...,uy

additional properties, the Markov basis can be utilized not only for sampling but also for integer

programming tasks, as we elaborate below.

DEFINITION 1.1.13. A monomial order on K[z1,...,x,] is a relation < on the set of mono-
mials M = {x* : o € ZL} (or equivalently, the set Z2 ) satisfying the following:
(i) < is a total ordering on M.
(ii) If x> < 2P then Y < 2P for any o, B, € Z%,.
(iii) < is a well-ordering. This means that every nonempty subset of MM has a smallest element

under <.

EXAMPLE 1.1.14. The following are three examples of monomial orders that can be defined over
the set of monomials M = {x : av € ZL}.

o Lexicographic (e ): T <iep P if the leftmost non-zero entry of B — a is positive.

e Graded reverse lexicographic: € < grevics xP if Yo <Y Bi,ory o=y B
and the rightmost non-zero entry of 3 — a is negative.

o Weight order: Given a real vector w € RY, and an arbitrary monomial order <, we define
the monomial order <o, as *®* <o, P ifwla < w'B or ifw'a = w'B and a < B.
Notice that the monomial order <, extends the partial order induced by w.

Consider the four monomials $%,Q?1IE3,1}1$2$3 and xlxg. The monomial orders above would

order these monomials as follows.



e Lexicographic: a;% <lex T1T3 <lex $1m§ <lex T1XT2T3
e Graded reverse lexicographic: 1123 <grevies m% < greviex xlavg <grevier T1T2T3

o Weight order with w = (1,3,0) and < = <jep’ T1T3 <@ T175 <w T1T2T3 <@ T3

DEFINITION 1.1.15. Given a monomial order < and an ideal I C Klz1,...,z,]. A Grobner

basis for I is a finite collection of nonzero polynomials G = {g1,...,9s} C I such that

(in<(g1),---,in<(gs)) = ({in<(g9) : g € I}),

where in<(g) is the leading monomial in g with respect to the monomial order <. We say that G is

reduced if every polynomial in G is monic and for each g € G, no monomial appearing in g lies in

(in<(f): f € G\{g}).

PROPOSITION 1.1.16. Let < be a monomial order and I C Klx1,...,xy]| an ideal. If G- is a

Grébner basis for I with respect to <, then G- generates I as an ideal.

ProPOSITION 1.1.17. Let I C K[z1,...,xy,] be an ideal. Then, for any monomial order, I has

an unique reduced Grobner basis with respect to the monomial order.

For the reader interested in learning more about general Grobner basis theory and its applica-

tions to computational commutative algebra we recommend the references [30,31]and [65].

PROPOSITION 1.1.18. Let < be a monomial order and I C Klx1,...,x,] be an ideal generated
by binomials of the form x* —x® (known as pure difference binomials). Then, any reduced Grébner

basis of I consists of pure difference binomials.

REMARK 1.1.19. Whenever {wm+ —x™ :m € G} is a Grobner basis for a toric ideal 14, it

follows from Proposition 1.1.8 that G is a Markov basis for A.

The previous remark implies that Grobner basis can be used to generate random samples
from a given distribution on F(A,b) as described in Algorithm 1. However, one of the additional

applications of Grobner basis for toric ideals relies on integer programming [29,71, ].

DEFINITION 1.1.20. Let A C Z%*" be an integer matriz, G C kerz A and < be a monomial
order on Z%,. We denote by F(A,b)g < the fiber digraph whose vertices correspond to F(A,b)

and there is a directed edge from u to v if v < u.

6



PROPOSITION 1.1.21. Let A C Z%™ pe an integer matriz, G C kergz A and < be a monomial
order on Z%,. Then, F(A,b)g < has a unique sink for every b € NA if and only if the set of
-

binomials {ar;m+ —ax™ :m € G} is a Grébner basis for 14 with respect to <.

EXAMPLE 1.1.22. Let A = (3 4 5) and M = {(1,-2,1),(3,-1,-1),(2,1,-2)} C kerz A.
Figure 1.2 illustrates the fiber digraphs F(A,30)pm,< with two different monomial orders whose
sinks have been highlighted with green. In (a), the reverse lexicographic order produces a digraph
with a unique sink. In contrast, the digraph in (b) has three distinct sinks when using the weight

order induced by w = (0,1, 3) with ties broken using the lezicographic order.

K
<
K
<
(a) F(A,30) M. <grcore (b) F(A,30) m, <.
FIGURE 1.2. Fiber digraphs induced by M = {(1, -2, 1), ,(2,1,-2)} and

different monomial orders. Sinks in each digraph are highlited with green.

In fact, {xm+ —x™ :m e M} is a Grobner basis for 15 with respect to <grepies but not with

respect to <, where w = (0,1, 3).

As a consequence of Proposition 1.1.21, if <, is a monomial ordering that extends the partial

order induced by w (i.e., w'u < w'v implies % <, ?), then integer programs of the form

T

min w u
(1.1) subject to Au = b,
u > 0;



can be solved in polynomial time, provided we have access to a Grobner basis of 14 with respect
to <. Moreover, a wider class of integer linear programs can be solved by considering generators

of I4 that satisfy stricter conditions.

DEFINITION 1.1.23. Let A € Z%*™ be an integer matriz. A binomial x* — &% € I, is called
primitive if there exists no other binomial ¥ — xv € I4 such that ¥ divides ¥ and z¥

divides % .

DEFINITION 1.1.24. The Graver basis of an integer matric A € Z%" is defined as the set

Gr(A) ={ueZ%: " — ¥ s primitive}.

REMARK 1.1.25. As shown in [35], the Graver basis Gr(A) can be equivalently defined as the
set of all C-minimal elements in kery A\ {0}, where for any u,v € N, we say u C v if and only

if ujv; > 0 and |uj| < |vj| for every j € [n].

PROPOSITION 1.1.26. For any reduced Grobner basis {m“+ —x% :u e G} forIa, (with respect

to any monomial order), G is a subset of the Graver basis of A.

The Graver basis of a matrix is finite, and an immediate implication of the previous result is
that any Graver basis is also a Markov basis, i.e., Iy = (z*" —x* :u € Gr(A)). In general, the
Graver basis of a matrix A is significantly larger and more complex than a minimal Markov basis
of that matrix, as one would expect given Proposition 1.1.29. An illustrative example involving an

small matrix A is provided in Example 1.1.27.

EXAMPLE 1.1.27. Let A = (34 5). The Graver basis for this matriz is given by the set Gr(A) =
{(1,-2,1),(3,-1,-1),(2,1,-2), (4,-3,0), (5,0, —3),(1,3,-3), (0,5, —4) } which consists of 4 more
elements than the minimal Markov basis M = {(1,-2,1),(3,-1,-1),(2,1,-2)} C Gr(A4). In
Figure 1.3 the edges induced by M are black while the edges induced by Gr(A)\M are red in order
to illustrate the difference between the fiber graphs induced by the different sets, M and Gr(A).

Another implication of the previous result is that Graver basis can be used to solve any in-
teger linear program of the form (1.1) for any w, provided an initial feasible point is available.

Furthermore, there exist even stronger applications of Graver bases.
8



FIGURE 1.3. Fiber graph F (A, 30)gy(4) induced by Gr(A).

DEFINITION 1.1.28. Let A € Z%™ be an integer matriz and a margin b € NA. Forl,L € 7"

we define the (b;l, L)-fiber of A as the set
FAbL L) :={uecZ": Au=>b, andl; <wu; < L; for every i € [n]}.
We will omit b from both the name and the notation when this is clear from the context.

PROPOSITION 1.1.29 ( [106]). Let A € Z9™ be an integer matriz and Gr(A) its Graver basis.

Then, for every b € NA and any l, L € 7%, the fiber graph F(A,b;l, L)gy(a) is connected.

PROPOSITION 1.1.30 ( [60]). Let A € Z4™ be an integer matriz, b € NA, I, L € 7%, and
w € RL,. Then, for everyu € F(A,b;l, L) non-minimal (with respect to w), there exists v € Gr(A)

such that u +v € F(A,b;1, L) and such that w' (u +v) < w ' u.

In other words, the previous results implies that whenever we have access to Gr(A), it is possible

to solve any integer linear program of the form

min w'u
(1.2) subject to Au = b,
L>u>l;

for arbitrary choices of b € NA,l, L € Z%; and w € RY,. Moreover, Graver basis can be used to

solve integer programs for a broader class of function called conver separable (see [35, Chapter 3]).
9



Several algorithms for computing a generating set of binomials for 74 (equivalently, a Markov
basis for A) exist in the literature. The earliest such algorithms were introduced in [29,94] and
relied on computing a Grobner basis using the Buchberger algorithm. More efficient algorithms,
employing different techniques, were subsequently developed in [16,17,70]. The most efficient
algorithm to date is the “Project and Lift” algorithm, introduced in [67], which computes a sequence
of Grobner bases for a hierarchy of projections of the integer kernel. This algorithm is implemented
in the software package 4ti2 [1].

However, 4ti2’s implementation is practical only for small matrices. For instance, [67, Sec-
tion 6] presents an example of a matrix A € Z*®*64 of rank 37, where the Project and Lift algorithm
requires approximately two days to compute its Markov basis. Moreover, [27] shows that Grébner
and Graver basis computations are strongly NP-hard in the general case.

Therefore, from an application standpoint, having access to a complete description of the
Markov basis, Grébner basis, or Graver basis for a given matrix A is highly advantageous, and
the specific basis choice depends on the application at hand.

Since the publication of the seminal paper [45], there has been a surge of research examining
various aspects of Markov bases and their structure for matrices associated with particular sta-
tistical models. Notable contributions include [8, 23,39, 46,47, 96], among others. While it is
impossible to cite the entire bibliography, we recommend the comprehensive references [7,48, ].
These books provide a compilation of the extensive work that has been conducted in this field so
far.

Before presenting some of the most prominent results, we first discuss the application of Markov

bases to goodness-of-fit tests in statistical models.

1.2. Markov Bases in Probability and Statistics

Denote by X = (Xi,...,X,,) a discrete random vector in the state space Z = [rq] X -+ X [rp,]

and define the joint probabilities
p(’L) :p(il,... ,im) = ]P’(Xl =11,...,Xm = im), Viel,

These form a joint probability table p = (p(¢) : ¢ € 7).
10



DEFINITION 1.2.1. Let A € Z¥ be an integer matriz with 1 € rowspan(A), whose columns
are indexed by I. Let A(-,i) € Z¢ denote the i-th column of A, and let h = (h(3) : i € T) € RLI(')
be a base measure. The log-affine model associated with A and h is the family of probability

distributions L p, := {pe}toco such that

(i
(1.3) pe(i) = wé;)) exp{n(0) " A(-,4)} for everyi € I,
where @ = (01,...,0,) is the vector of model parameters, n : R — R™ is the natural parameter,

and ¥ (0) is the normalizing constant. The matriz A is referred to as the design matrix for the

model Lapn. When h =1, the model is called log-linear and is denoted simply by L4.

From now on, when considering a log-affine model L4 p, we will interchangeably refer to the

Markov basis of A or the Markov basis of the model L4 p,.

REMARK 1.2.2. One of the implications of having 1 € rowspan(A) is that a probability vector

(table) p belongs to L4 p if and only if log p belongs to the affine space log h + rowspan(A).

ExXAMPLE 1.2.3 (Independence model). Consider a probability vector p = (p(i1,iz) : i1 €
[r1], 12 € [re]), where p(i1,-) and p(-,i2) represent the marginal probabilities. Suppose that p belongs
to the independence model Lx 11y, meaning that p(i1,i2) = p(i1,)p(-,i2) for every (i1, i2) € [r1] X
[ro]. Let oo = (i, : i1 € [r1]) and B = (Bi, : 12 € [r2]) be parameter vectors such that

Qg eﬁig

PO = ey P = )

for every (i1,i2) € [r1] X [ra],

where Y (a) and ¥ (B) are normalizing constants for the marginal probabilities. Then, it follows that
p(i1, i) o< exp{@T A(-, (i1,i2))} for 8 = (o, B) and a matriz A € Z1+72)X172 sych that the rows
are labeled by the parameter vector (e, 3) and the (i1,i2)-th column of A has 1s only at rows i1,

and 0s everywhere else. In other words, the independence model is log-linear with design matrixz A.
11



For a concrete example, consider r1 = 2 and ro = 3. Then, the design matrixz for the model is

the 5 x 6 matriz

no
w
no

N
no
[N}

0O 0 0 1 1 11| as
A=1'1 0 01 0 0 By
010 0 1 05

The model representation of interest to us arises when data are arranged in a contingency table
that cross-classifies items according to m categories. Specifically, consider a random sample of N
independent and identically distributed vectors X ..., X(N) € T = [;1] x -+ X [ry], and let
U = (U(4) : i € Z) denote the m-way table of format | X - - - X r,,. Here, U(3) = #{k : X¥) =4}
records the number of times % is observed. As we demonstrate below, to compute the likelihood of

observing U, all that is needed is the “summarized” data AU.

PROPOSITION 1.2.4. Let p = (p(¢) : 4 € Z) be a probability vector. If p = pg € Lap and
u € Zéo satisfies Y ;.7 u(i) = N and Au = b, then

I%exp{nwmu},

and the conditional probability P(U = u | AU = Au, 0) does not depend on 6. Moreover,

W (L)
Sverap) 0/ (TTiez v(3)!)

P(U=u|0) =

P(U =u | AU = Au,0) =

REMARK 1.2.5. In the previous proposition, T = [r1] x --- X [rm], A € Z9V is an integer
matriz whose columns are indexed by the set Z, and u € Zéo is an r1 X --- X ry,-table. Hence,
we implicitly assume that the matrix multiplication Aw is performed by considering a vectorization
of the table w, with entries ordered according to the column indexing of A, which we assume to be
lexicographic unless otherwise specified. To avoid introducing additional notation, we use w to refer
to both the m-way table and its vectorization; the intended interpretation will usually be clear from

the context.
12



Given Proposition 1.2.4, when considering a log-affine model, we write the conditional probabil-
ity of U given u as P(U = u | AU = Au), omitting the vector of parameters 6 from the notation.
The vector Au is known as the vector of sufficient statistics for the model M 4, in the statistics

literature (see [22, Section 6.2]).

EXAMPLE 1.2.6 (1.2.3, continued). In the independence model, if we consider a table of counts
u = (Ui, & 91 € [11],92 € [r2]), which we think of as “vectorized,” we can see that in the concrete

example ri = 2,79 = 3

Uil

111000 U4
U2

000111 Uot
u13

Au=|1 0 0 1 0 0 = uq |
Uu21

0100710 Uso
u22

001001 Ups
u23

where u;,+ and u;, represent the i1-th row sum and iz-th column sum of w, respectively.
In the general setting, for a vector of counts u € ZZ; ", the vector of sufficient statistics Au
consists of the row sums and column sums of w. One can observe that kerzy A = {u € Z/*"2 :

Ui+ = 0 for all iy, and ui;, =0 for all iz}. In other words, kery A is the set of tables with integer

entries whose row sums and column sums are 0.

Now, consider N independent and identically distributed vectors X™®, ..., X(N) e T sampled
according to a distribution p = (p(¢) : ¢ € Z), and let U = (u(2) : © € Z) denote their vector of
counts, as defined previously. Also, consider a log-affine model L4 = {Po}oco. We aim to test
the hypothesis

Hy:peLap against Hy:p ¢ Lap,

which is commonly referred to as a goodness-of-fit test for the model £4 5. See [111, Section
10.8] and the references therein for a general treatment of hypothesis testing and goodness-of-fit
tests. A standard approach for reporting the results of such a hypothesis test involves computing
and presenting the value of a specific test statistic called the p-value. Informally, the p-value

measures the likelihood of observing U under the assumption that Hy is true.
13



DEFINITION 1.2.7. A p-value p(U) is a test statistic satisfying 0 < p(u) < 1 for every sample
point w. Small values of p(U) give evidence that Hy is true. A p-value is valid if, for every 6 € ©
and every 1 < a <1,

Pp(U) <al0) <a

If p(U) is a valid p-value, we can construct a level a test based on it: the test rejects Hy if
and only if p(U) < a. The level @ = .05 is commonly used in practice.

As a consequence of Proposition 1.2.4, we know that if the null hypothesis Hj is true, then
the conditional distribution of U given AU = u does not depend on 6. Consequently, if W(U) is
a test statistic where larger values provide evidence in favor of Hy, the test statistic p(U), defined

(1.4) p(u) == P(W(U) > W(u) | AU = Au),

is a valid p-value, also known in the literature as a conditional p-value. For further details on
conditional p-values, we refer the reader to [22, Subsection 8.3.4].
While we do not study test statistics W (U) in detail, one natural test statistic that generalizes
Fisher’s exact test is the chi-square statistic
2y N ((d) —a(d))?
X*(U) = Z; - :
where 4(¢) = Np(i) and {p(2)};e7 are the maximum likelihood estimates, which can be computed
using iterative proportional scaling when there are no exact formulas for them (see [106, Sec-
tion 7.3]).
One useful application of Markov bases is computing (or approximating) the exact p-value, as
shown by the following result, which follows from Theorem 1.1.12 and the law of large numbers

for Markov chains, commonly known as the Ergodic Theorem. A general proof of this theorem is

provided in [98, Theorem 6.63].

THEOREM 1.2.8. Let {up}n>1 be the output of Algorithm 1 as N — oo with u; = u and

=P(- | Au). Let W : F(Au) — R be any function. Then,

(ngnoo ~ Z Ly (w)>w(w) = BW(U) = W(u) | AU = Au)> =1.

14



In practice, if W(U) is a test statistic for which larger values provide evidence that Hj is true
(such as the chi-square test), we can approximate the p-value, as defined in Equation 1.4, by using

a slight modification of Algorithm 1, as shown in Algorithm 2 below.

Algorithm 2: p-value approximation given a Markov basis

Input : An observed vector of counts u € ZL, with Au =b
M, a Markov basis for A a
base measure h € Rgo
W (-), test statistic
N, number of fiber samples
Output: p-value as in (1.4)
Set w1 + w and p; + 1;
forn=1,...,N—-1do
Choose m € £ M uniformly at random;
if u, +m >0 ; > This checks if u,, + m € F(A,b)
then

Up 41 ¢ Uy +m with probability min {

o Uk W N

7

1 P(U=u,+m|AU=b)
' T P(U=u,|AU=D)

> Metropolis-Hastings step
else

L Up+1 < Up;

w

O | Pot1 =Dn+ Lwiu,)>ww
10 Return sequence %pN

REMARK 1.2.9. Thanks to Proposition 1.2.4 the ratio computation in line 6 of Algorithm 2 can

be done by computing ::TLE;(H;EIfn))i!l)) ’
n( [Tier(untm);!

ExXAMPLE 1.2.10. Consider a hypothetical experiment designed to evaluate the effectiveness of
two different pain relief drugs, A and B, on a sample of 40 individuals. Fach participant rated

their pain on a scale from 1 to 5, one hour after receiving the drug. The responses are summarized

i Table 1.1.

Drug Pain Score
1|2|3|4|5| Total
A 171211101 22
B 71814182 18
Total | 24| 5| 5| 3| 8| 40

TABLE 1.1. Summary of responses in the drug effectiveness study, categorized by
drug type and pain score.
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In this scenario, we aim to test the independence between the type of pain relief drug and the pain
score. The p-value for the observed data can be computed using Algorithm 2 through the algstat
package in R [77]. This computation involves the chi-square statistic and the Markov basis for the
corresponding independence model, as described in Proposition 1.3.1 below. The resulting p-value

for the exact test is 11 x 1072, indicating that we should reject the null hypothesis of independence.
1.3. The Complexity of Markov Bases

In the previous section, we outlined a method for performing goodness-of-fit tests for log-linear
models that relies on access to a Markov basis for the corresponding design matrix. Hierarchical
log-linear models, one of the most significant classes of log-linear models in statistics, have been the
focus of considerable research aimed at understanding their Markov bases. Notable contributions
that describe scenarios where hierarchical models have well-behaved Markov bases include [46,47,

|. However, [39] demonstrated that, in general, Markov bases can be arbitrarily complex.

Motivated by this result, we introduce an extension of the Markov basis concept that enables
fiber connectivity through negative fiber relaxations. These relaxations have been used in [20,25,

| as alternative methods for defining irreducible Markov chains on fibers with simple moves.
We show that even in this setting, arbitrarily complex moves may still be required to ensure the
irreducibility of the Markov chains.

On the other hand, we provide an upper bound on the size of the Graver basis for certain
hierarchical models. Furthermore, it is worth noting that, driven by applications in integer and
sparse integer programming, substantial effort has been devoted to understanding the complexity
of Graver bases. Recent advances in integer programming have led to new and improved bounds on
the maximum one-norm for Graver basis elements, which depend on the treedepth of the matrix.
For further details, see [49,82,83] and the references therein.

We begin this section by reviewing known results on Markov bases before presenting our own

contributions, starting with a description of the Markov basis for the independence model.

PROPOSITION 1.3.1. Let A € Z(+7m2)x"72 be the design matriz of the independence model
Lx iy as described in Example 1.2.3. For every (i1,i2) € [r1] X [ro| let €;,i, € Z™" be the vector

with 1 at the everywhere but at the (i1,12)-th position. Then

M = {€iis + €jjy — €i1jo — €j1ip : 1 <1 < i <711,1 < ji < jo <o}
16



is a minimal Markov basis for A.

The independence model is a specific example of a hierarchical model, and as stated in Propo-
sition 1.3.1, its Markov basis can be described in a very compact way. More generally, as with
the independence model, the sufficient statistics for hierarchical models consist of a collection of
sums across higher-dimensional tables. However, we will observe that the size of the elements in a
minimal Markov basis can grow significantly depending on the parameters of the model.

To formally define a hierarchical model, we need to introduce some notation, which is primarily

drawn from [7].

DEFINITION 1.3.2. Let Z = [ri| X -+ X [rp] and ¢ = (i1,...,im) € Z. For any D C [m], we
define Ip := [[;cplrj] and ip := (ij : j € D) € Ip. This means that up to the apropriate indices
reordering we have that ¢ = (ip,ipec) where D¢ = [m]\D.

Given an m-way table w = (u(2) : ¢ € I), we define the D-margin vector of w as the |D|-way

table up = (up(ip) : ¢p € Ip) such that

UD(’iD) = Z u(iD,iDc) for every ip € Ip.
ipc€lpe

In other words, up(ip) represents the sum of all of the entries of w with ip being fixed.

EXAMPLE 1.3.3. Consider T = [r1] X [r2] and a 2-way table w = (u(2) : © = (i1,i2) € Z. The

table u has two 1-margins given by

(1.5) upy = ( > uliy,ig) iy € m) and ugoy = ( > uliy,ig) iy € [r2]>.

i2€[ra] i1€[r1]
In other words, wyyy is the vector of row sums of w and uyyy is the vector of column sums. This
means that for 2-way tables, the vector sufficient statistics of the independence model consists of
the 1-margins of u as we explained in FExample 1.2.6.
Now, consider T = [r1] x [ro] X [r3] and let w = (u(3) : © = (i1,42,13) € Z) be a 3-way table. The
table w has three 1-margins ugiy, ugoy and w3y, also known as plane sums. Figure 1.4 provides a
concrete example of a 3-way table with 11 = ro = r3 = 3 and Figure 1.5 provides an illustration of

its 1-margins.
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F1GURE 1.4. Illustration of a 3-way table u.

T

(a) wgry = (u(l, 4, +),u(2,+,4),u(3, +,+)) (b) ugoy = (u(+,1,4), u(+,2,+), u(+,3,+))

(¢) ugay = (u(+,+,1),u(+, +,2), u(+,+,3))

FIGURE 1.5. 1-margins of the table v in Figure 1.4.

A 3-way table w has three 2-margins, w(y 2y, w1 3y and w3y which are also known as line sums

and are illustrated in Figure 1.6 for a particular example where 11 = 5,179 =4 and r3 = 3.

Hierarchical models are a class of log-linear models for which the vector of sufficient statistics
is determined by the margins induced by a simplicial complex: a family of subsets A of [m] such
that, for every D € A, all subsets of D are also in A. The elements of the family A are called

faces, and the maximal elements under inclusion are called facets, denoted by F(A). Since facets
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73

i3
; wpy oy (in,io) = Y @i, iz, i)
i

T2

ugy 3y (71, 73) = Z x(i1,J,13)

U{1,3} ix=1

T1
g3y (in,i3) = Z x(i,i0.13)
’U,{273} @%{12} i1=1

FIGURE 1.6. 2-margins of a 3-way table wu.

completely determine a simplicial complex, we describe a simplicial complex by its facets using
bracket notation. For instance, A = [123][24] is the simplicial complex with ground set {1,...,4},
whose facets are {1,2,3} and {2,4}.

Using this informal definition, we can see that the independence model is a hierarchical model

determined by the simplicial complex A = [1][2].

DEFINITION 1.3.4. Let T = [r1] X --- X [rp], = (11, ..,7m), and let A be a family of subsets

of [m]. The hierarchical model associated with A and r is the family of probability distributions

Loy = {p,, =007 e ] R'ID|},

DeA
where 8P = (0P)(ip) 1 ip € Ip), and such that
logpe(i) = Y _ 0P (ip).
DeA

In this context, the entries of r are known as the levels of the hierarchical model.

Hierarchical models are log-linear models. Specifically, they can be described through a []pca [Zp]%
|Z| design matrix Aa , associated with the simplicial complex A and the vector 7. The columns of
Ap » are labeled by Z, typically in lexicographic order, while the rows are divided into blocks: one
block per facet of A. The rows within each block are labeled by Zp, also ordered lexicographically.

Finally, the blocks corresponding to the different facets of A are ordered lexicographically.
19



If we let e;,, be the |Zp|-dimensional vector such that for every i/, € Zp,

e
. 1, ify =1ip,

€ip (zD) =
0, otherwise.

It is possible to describe the -th column of A as A(+, %) = @ per(a) €ip, Where @ represents vector

concatenation.

EXAMPLE 1.3.5. Consider the simplicial complex A = [12][13][23]. The hierarchical model
associated with this simplicial complex is known as the no-three-way interaction model. A

concrete example for the design matrizc Ma , of this model with levels r = (2,2,2) is given below.

1
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Notice that the column associated to (2,1,2) € [2] x [2] x [2] is given by

Apr(-,212) = e2,1) D ep2 Deny

=(0,0,1,0)#(0,0,0,1) & (0,1,0,0).

By keeping careful track of indices it can be shown that for an m-way table u € Zgo, Apnru =
(up : D € F(A)). In other words, (up : D € F(A)) is the vector of sufficient statistics for
the hierarchical model £La ,. For example, the 2-margins illustrated in Figure 1.6 constitute the

sufficient statistics for the no-three-way interaction model introduced in Example 1.3.5.
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DEFINITION 1.3.6. A simplicial complex A on [m] is reducible with decomposition (Aq, S, Ag)
and separator S C [m] if A = Ay UAy and A; N Ay =25, where 25 denotes the power set of S. A
simplicial complex is decomposable if it is reducible and both A1 and Ao are decomposable or if

they are of the form 28 for some R C [m].

REMARK 1.3.7. Decomposable models can also be defined in an alternative way (see [7, Section
8.1]). A simplicial complex A is graphical if its facets correspond to the mazximal cliques of a

graph G. Furthermore, A is decomposable if and only if G is a chordal graph.

EXAMPLE 1.3.8. The simplicial complex [1][2][3] is decomposable and corresponds to the inde-
pendence model on three variables. In contrast, the simplicial complex [12][13][23], associated with
the no-three-way interaction model, is the simplest non-decomposable model since it is not even

graphical.

On one hand, it is known that for decomposable hierarchical models, the structure of their
Markov basis is well understood thanks to work of [46, ]. In fact, one can always find a Markov
basis with moves whose one-norms equal 4, regardless of the size of the levels ry,...,7r,. This
was subsequently used to spell out a divide-and-conquer algorithm to compute Markov bases for
reducible models in [47].

On the other hand, such a bound fails to exist for even the simplest non-decomposable model:
the no-three-way interaction of three discrete random variables described in Example 1.3.5. By im-
porting powerful polyhedral geometry results into statistics, [39] showed that any minimal Markov
bases of the no-three-way-interaction model on r1 X ro X 3 tables can contain moves with arbitrarily
large 1-norm, if r; and ro are unrestricted.

Before explicitly stating this result, let us recall that the fibers F(A, b) can be understood as
the set of integer points of the polytope P(A,b) := {y € R" : y > 0, Ay = b}. In other words,
F(A,b) =P(A,b)N Zgo. The following remarkable result shows that the no-three-way interaction
model can capture the geometric structure of any polytope P(A,b). Furthermore, it implies that if
one is able to describe a Markov basis for the no-three-way interaction model on r1 x ro x 3 tables

as we let rq, o vary, then we automatically have a Markov basis for any integer matrix A.

THEOREM 1.3.9 ( [38]). For any rational matriz A € Q™™ and any integer vector b € Z2,

P(A,b) = {y € RY, : Ay = b} is polynomial-time representable as a slim 3-way transportation
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polytope:

3 J I
IxXJx3 . § : _ § : _ E —
T — x € RZO . xi,j,k - u’i,ju $i,j,k - Ui’k, xi,j,k - wj’k
k=1 j=1 =1

For positive integers h and h', saying that a polytope P C R is representable as a polytope Q@ C R
means that there is an injection o : {1,...,h} — {1,...,h'} such that the coordinate-erasing
projection

T RY SR = (3, an) o () = (To(1)s -+ To(n))

provides a bijection between Q and P and between their integer points Q N ZM and PN Z".
As a consequence of Proposition 1.3.9, we have the following.

COROLLARY 1.3.10. For any nonnegative integer vector @ € N there exist positive integers
r1, 79 such that any Markov basis for the no-three-way interaction model on r1 X 19 X 3 tables must
contain an element whose restriction to some 1 entries is precisely 0. In particular, the degree and

support of elements in the minimal Markov bases, as r1 and ro vary, can be arbitrarily large.

When a Markov basis is unavailable, a natural alternative is to explore simpler subsets £ of
kerz A, with the hope that they are sufficiently large to induce connected fiber graphs F(A,b).,
leading to an irreducible Markov chain on F(A,b). If £ induces disconnected fiber graphs, one
could modify Algorithm 1 by temporarily stepping outside of F(A,b) in non-negative vectors u
(still satisfying Au = b) and eventually returning to F(A,b), hoping to achieve an irreducible
Markov chain on F(A, b).

This has been a direction of research for some time with many open questions, some of which

are summarized in [112]. The most common subsets of the integer kernel used for this purpose are:

e Lattice bases. A set of vectors L in kery A is called a lattice basis if it is linearly in-
dependent and spanyL = kerz A. As noted in [45], a lattice basis is typically a proper
subset of a full Markov basis. While its size is determined by the rank of A and it can be
computed easily using the Hermite normal form of A (see [100, Section 4.1]), it does not
generally form a Markov basis. The workaround for ensuring a provably connected chain
is simple: every Markov move can be expressed as a linear combination of lattice basis
moves. However, the challenge is that the size of these required linear combinations is not

well understood.
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e Clircuits. A vector u € kery A is a circuit if its support is minimal, meaning there is no
vector v € kerz A such that supp(v) C supp(u). The set of all such vectors is called the set
of circuits of A and is denoted by C'(A). In certain cases, A provides a clear combinatorial

description of the set of circuits.

In general, the following containment relationships hold among these subsets of kerz A: (1)
every Markov basis contains a lattice basis, (2) the Graver basis contains any minimal Markov

basis, and (3) the Graver basis contains the set of circuits.

EXAMPLE 1.3.11. Consider the matrix A = (3 4 5) from Ezample 1.1.9, and let M = {(1,-2,1),
(3,—-1,-1),(2,1,-2)} be a minimal Markov basis for A. Notice that both F(A,15) and F(A,30)
require at least 3 moves to be connected. Since rank(A) = 2, no lattice basis of A forms a Markov
basis in this case. Furthermore, removing an element from M recovers a lattice basis for A, but
this induces disconnected fibers F(A, b) even for small values of b (cf. Figure 1.1).

As noted in Example 1.1.27, the Graver basis for A is given by the set Gr(A) = {(1,-2,1),
(3,-1,-1),(2,1,-2),(4,-3,0),(5,0,-3),(1,3,-3),(0,5,—4)}. On the other hand, the set of cir-
cuits for A is C(A) ={(0,5,—4),(5,0,-3),(0,4,—3)}.

There are scenarios where various bases of a model are equal, such as when circuits form a
Markov basis. For example, when the design matrix A is totally unimodular, [45, Proposition
8.11] shows that the Graver basis coincides with the set of circuits of A. However, unimodularity
is a strong condition, as demonstrated by Seymour’s decomposition theorem (see [101, §19.4]).
For more details on unimodular matrices in specific models, we refer the reader to [12,13], which
provide a comprehensive description of hierarchical models with totally unimodular design matrices.

For the no-three-way interaction model, many authors have considered a special set of moves
called basic moves: elements of minimal 1-norm that, like a lattice basis, span kery A. However,
the set of basic moves is not a Markov basis for the no-three-way interaction model on 1 X r9 X 13
tables when at least two of r1,ry, 73 are greater than 2 (see [7, Chapter 9]). Nevertheless, this
simple set of moves can still connect certain fibers, as shown in [15], which demonstrates that basic
moves suffice to connect 3-way tables with positive margins.

Some special cases work out particularly well. For instance, [21, Proposition 3] shows that basic

moves generate an irreducible chain for the no-three-way interaction model on 2 x r9 X r3 tables if
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the fiber is extended by allowing a single —1 entry at any step. Similarly, [25, Theorem 3.1] applied
the non-negativity relaxation of the fibers to a logistic regression model, allowing some entries to
take —1 values. Motivated by these ideas, [84] and [113] used the same approach to show that
basic moves induce an irreducible Markov chain on the fibers of the no-three-way interaction model
on 3 X 3 x rg and 3 x 4 X r3 tables, while allowing temporary —1 entries. These results utilized
the full descriptions of the unique minimal Markov bases presented in [9,10]. In the following, we
formalize the non-negativity relaxation approach and study its limitations.

As mentioned previously , the goal of the non-negativity relaxation approach will be to define
irreducible Markov chains on the fibers F'(A, b) of a log-linear model with design matrix A by using
a simple set of moves and allowing “temporary” steps of the chain to be taken in relaxed fibers

whose elements allow for negative values in some entries.

DEFINITION 1.3.12. Let A € Z%" be an integer matriz and b € NA a margin. Forl € Z" we

define the unbounded (b;l)-fiber of A as the set

F(Abl) :={uecZ": Au=0>b, andl; < u; for every i € [n]}.

DEFINITION 1.3.13. Let Z = [rq] x - -+ X [ry] and S C T with indicator vector 1g, meaning that
for every i € I, the i-th entry of 1g is 1 if i € S and 0 otherwise. Let A € Z%T and q € L>o. We

say that M C kerz A is a (—q,S)-Markov basis for A if for every margin b € NA and any pair

u,v € F(A,b), there exists a choice of moves myq,..., myg € M such that
K K
u—v:ka and v—{—kae]:(A,b;—qls) for every k' < K.
k=1 k=1

When S = I, we write 1 instead of 1g, and a (—q,Z)-Markov basis is referred to simply as a (—q)-
Markov basis. Notice that when q¢ = 0, a (—q,S)-Markov basis is the same as a usual Markov

basis, as in Definition 1.1.7.

As with a usual Markov basis, there are equivalent ways to test whether a set of moves M C

kerz A is a (—g)-Markov basis, one of which uses a particular type of ideals. Given a polynomial
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f€Kzy,...,77] and J C K[z1,. .., 27, we define the ideal quotient
(J: f®):={g €Klz1,...,27] : f'g € J for some t € z>%.

PROPOSITION 1.3.14 ( [104]). Let A € Z%T and M C kerz A. Then, the following are equiva-

lent

(1) there exists ¢ € Z>o such that M is a (—q)-Markov basis for A,
(2) spang (M) = kery A,
(3) (<33'Uz+ — % -u € ./\/l> : (gjl .. xm')oo) — IA-

EXAMPLE 1.3.15. The set M = {(3,—-1,—-2),(2,1,—2)} is a lattice basis for A = (3 4 5) but not
a Markov basis. On the other hand, M is a (—1)-Markov basis for A. In Figure 1.7, (a) illustrates
the disconnected fiber graph F (A, 15) s, while (b) depicts the fiber graph F(A,15; —=1)pq. This shows
how one can connect the elements of F(A,15) by temporarily stepping in the set F(A,15;—1). For

example, to go from (2,1,1) to (1,3,0) we take a step in (4,2,—1).

(0,0,3)

(0,0,3) (-1,2,2)
(3.4.2)1”’/
2(2,1,1)
e +(1,3,0)
«(1,3,0) (5,079)/.// (0,5, 1)
(5,0,0)‘//// (4.2_;1)
(a) F(A,15)m N ;;’/1)
(b) F(A,15; =1) m
FIGURE 1.7. Fiber graphs induced by M = { ,(2,1,-2)} on F(A,15)

and F(A,15;—1). Vertices in F(A, 15; —1)\F (A, 15) are shown in red.

A small modification to Algorithm 1 yields a way to sample points of a fiber using a (—q, S)-

Markov basis, formalized in Algorithm 3 below. Hence, by Proposition 1.3.14, for any set of moves
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M

spanning kery A, there exists a sufficiently large ¢ that allows us to define an irreducible Markov

chain on b-fibers F (A, b).

Algorithm 3: Fiber samples given a (—g, S)-Markov basis.

10
11
12

13

Input :wu € F(A,b), starting point in a fiber
M, a (—q, S)-Markov basis for A
7, a desired distribution on F(A,b)
N, the number of fiber samples
Output: A sequence of points uj, ug, ... in F(A,b)

Set u; + u;
Set v + u ; > Auxiliary variable keeping current point in F(A, b; —qlg)
forn=1,...,N—-1do
Choose m € £ M uniformly at random;
if v+ m ¢ F(A,b;—qlg) then
‘ Up41 < Up;
else
if v+m € F(A,b) then
‘ Upy1 < U+ m and v < v + m with probability min {1, ”SE::;)}
else
Unp+1 < Un;
v+ v+ m;
Return sequence u1,...,uyN

In general, the non-negativity relaxation approach can be interpreted as follows:

(1) Identify an easily attainable subset M C kerz A such that spany(M) = kerz A. For
instance, one could compute a lattice basis M for kery A.

(2) Find a ¢ > 0 such that M is a (—¢, S)-Markov basis for A for some S.

Although this strategy works in certain special situations, it cannot be applied universally

without a careful analysis of the connectivity of F(A, b) . In the absence of general bounds for ¢,

it is necessary to prove the irreducibility of the Markov chain on the fibers on a case-by-case basis,

depending on the corresponding relaxation induced by a fixed value of q.

1.3.1. Our contributions

We begin this subsection with the following result whose proof is presented in Section 2.1.

THEOREM 1.3.16. For any N > 0, there exists a matriz A with ||Anx||1 = 4 and My C kerz Ay

such that spany(My) = kerz Ax but My is not a (—q)-Markov basis for any ¢ < N.
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The conclusion of Theorem 1.3.16 is that having a set of moves that spans kerz A does not
ensure that a small relaxation of the fiber will suffice to construct irreducible Markov chains on the
fibers of the model. However, in specific cases of the no-three-way interaction model, a simple set
of moves has been shown to form a (—1)-Markov basis when r1 and ro are fixed and r3 grows, as
previously discussed.

The next two results highlight the limitations of the fiber relaxation technique when applied
to the no-three-way interaction model. This particular model is of interest because any fiber of
any model corresponds to a fiber of an associated no-three-way interaction model, as stated in
Proposition 1.3.9.

Given the results of Corollary 1.3.10, a natural question arises: are the non-negativity con-
straints on the entries responsible for the problematic behavior of the Markov basis for the model?
In other words, we would like to investigate how large the elements of a (—¢, S)-Markov basis can
be when r{,ry > 0 are unrestricted and r3 = 3.

The following theorem suggests that translating the non-negativity constraint hyperplanes by
one unit can still lead to arbitrarily complicated elements inside any minimal Markov basis when

S is chosen poorly. The proof of this result is in Section 2.2.

THEOREM 1.3.17. For any monnegative integer vector @ € N"  there are r1,79 € Z~o and
S C [r1] x [ro] x [3] with |S| = 14 >_1_, 6;, such that any minimal (—1,S)-Markov basis for the
no-three-way interaction model on r1 X ro X 3 tables must contain an element whose restriction to

some n entries is 0 or 20.

We now turn to study on the effectiveness of non-negativity relaxation technique using basic
moves, which for this model have received significant attention (see [15,25,64]).

As mentioned previously, a basic move for the no-three-way model on r; X ry X r3 tables is
a zero-margin table with minimal 1-norm. These basic moves can be described as 3-way tables

u = (u; ) of the form

1, if (4,4, k) € {(i1, 41, k1), (i1, 2, k2), (@2, j1, k2), (i2, j2, k1) }
Ui,jk = _1) if (i7j7 k) € {(i27j2’k2)7 (i27j17k1)7 (i17j27k1)7 (i17j17 k?)}
0, otherwise
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for fixed indices iy # i € [r1], j1 # Jjo € [r2] and k1 # ko € [r3]. We denote the basic move
associated to these indices by b(i1,i2; j1,72; ki,k2) (see Figure 1.8 for an illustration) and we
denote the set of basic moves for the no-three-way interaction model on r; X r9 X r3 tables by

By, ry.r5 o simply by B when 71,72 and r3 are clear from the context.

J2
a7 jo
) . 0
0 ! 1
.11 : .
(31 : J.~ .- 0
o () o 0 .
) 1 il - .
: 0 o () o
0 .
0 0 -1
-1 O )
12 k1 0
1
12 )

FIGURE 1.8. The basic move b(i1,i2; j1, j2; k1, k2)

It is known that for the design matrix A of the no-three-way-interaction model for 1 X ro X r3
tables, any element in kerzy A can be written as a linear combination of the basic moves, i.e.,
spany (B) = kery A (see [64]). Hence, Proposition 1.3.14 guarantees the existence of a ¢ > 0 such
that B is a (—¢)-Markov basis for A.

Although it remains an open problem whether B,, ,, r, is a (—1)-Markov basis for the no-three-
way interaction model in general, it has been established, as mentioned earlier, that for specific
cases such as 2 X rg X r3, 3 X 3 X r3, and 4 X 3 x r3 way tables, B is a (—1)-Markov basis for A.
However, given the complex behavior of the fibers for A described in Corollary 1.3.10, it is hard
to believe that the result generalizes when fixing r3 = 3 and letting 71,72 be unconstrained. To

address this problem, we present the following partial result with proof in Section 2.2.

PROPOSITION 1.3.18. Let ri,m3 > 3 and let S C [r1] x [r2] x [3] have an anti-staircase shape
(see Definition 1.3.19). Then, for any q > 0 the set of basic moves is not a (—q, S)-Markov basis

for no-three-way interaction model on r1 X 19 X 3 tables.
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DEFINITION 1.3.19. Let 71,72 > 3 and let S C [r1] x [r2] x [3]. We say that S has a staircase
shape if there is a surjective function T : [ra] — [3] or a surjective function 7' : [r1] — [3] such that

S=J{GarG)iemly or S={J{G4.7():j € r]).
=1

j=1
We say that S has an anti-staircase shape if S is a complement of a subset of [r1] X [ro] X [3] in
staircase shape. As an example, the sets S corresponding to the colored cells in Figure 1.9 have a

staircase shape.

)

FIGURE 1.9. Subsets of [4] x [6] x [3] with staircase shape.

Despite the previous findings, we show good complexity results for non-decomposable models
as demonstrated in Corollary 1.3.23. The result builds upon two key points:
(1) often the design matrix of a hierarchical model exhibits a block structure. For instance it

could be an n-fold matriz, defined below; and

(2) the Graver basis of an n-fold matrix solely depends on its constituent blocks.

DEFINITION 1.3.20. Given fized matrices A € ZP*5 and B € ZP'*5 with positive integer p,p’, s,

the n-fold matriz of the ordered pair (A, B) is defined as the (np + p') X sn matriz

A 0 0 0

0 A 0 0
[A,B](") —

o o o --- A

B B B --- B

We define the type of a vectoru = (u(), ... u™) € Z°" as the number |{j : u'9) # 0}| of nonzero

components u'9) € N°. The following result establishes a stabilization property of the Graver basis

for n-fold matrices.
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PROPOSITION 1.3.21 ( [72]). Given matrices A € ZP*, B € ZF'*%, there exists a constant C
such that for all n, the Graver basis of [A, B] () consists of vectors of type at most C'. The smallest
of these constants is known as the Graver complexity of A, B and we denote it by g(A, B).
Furthermore,

A, B) = :
9(A,B) = omax Il

The Graver basis Gr([A, B](™) for any n-fold of A, B can be obtained from the next result.

PROPOSITION 1.3.22 ( [36]). For fized matrices A € ZP** and B € ZP'**, the Graver basis
Gr([A, B]™) can be computed in polynomial time on n. Moreover, the size of Gr([A, B]™) is

bounded by |Gr([A, B](g))](Z), where g = g(A, B) is the Graver complexity of A, B.

COROLLARY 1.3.23. Let A be a simplicial complex with ground set [m] and mazimal faces
Dy, ..., Dy. Let V C [m] be such that for every j € [m], either V.C Dj or V.C DS. Let p = (pi)igv
be fized. Then, for any (ri,...,7m) € N™ with (r;)igv = p, the size of the Graver basis |Gr(Aa)|

is bounded by a polynomial in [[;cy 1.

In light of Proposition 1.1.29, which states that Graver elements contain all the necessary moves
for sampling restricted fibers, this has direct implications for the feasibility of sampling restricted
fibers. The proof of this corollary is provided in Section 2.3. This relies on the fact that Aa is an
(IT,ey 71)-fold matrix.

EXAMPLE 1.3.24. Let A be a simplicial complex on four vertices with levels (r1,79,2,3) rep-
resented in Figure 1.10 below. The mazximal faces of A are D1 = {1,2,3}, Dy = {1,2,4}, and
D3 = {3,4}, which do not correspond to the set of mazimal cliques of any graph. Thus, A is not
graphical and, consequently, not decomposable.

The set V = {1, 2} satisfies V C Fy, Fy and V' C F5. By the proof of Corollary 1.3.23, it follows
that Apn = [A, B](T”z), where B = Ig and A is the design matriz of the independence model with
levels (2,3). Using the software 4ti2 from [1], we compute g(A, B) = 3 and |Gr([A, B]®)| = 15.

Therefore, we have |Gr(Aa)| < 15("32) for any r1,72.

REMARK 1.3.25. An important assumption made in Proposition 1.8.22 is that the matrices A, B

are fized. However, it is worth noting that the Graver complexity g(A, B) can become arbitrarily
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FiGURE 1.10. Non-decomposable simplicial complex A. The shaded regions repre-
sent the maximal faces.

large when the size of the entries in A and B, or the dimensions of A and B, vary. For example, it
was recently shown in [90, Theorem 5.1] that 2 x4 matrices have arbitrarily large Graver complezity

when we let the entries vary. Similar results can be also found in [1/].

REMARK 1.3.26. In scenarios where it is not feasible to explicitly compute the Graver complexity
g(A, B) for fized matrices A € ZP** and B € ZF'*5, we can rely on upper bounds. The best
known upper bounds come from recent developments on sparse integer programming where the tree-
depth plays an important role (see [/9,80,90]). We would like to emphasize the significance of
the block structure and sparsity within the design matrices when computing Graver bases. While
these attributes have been utilized in optimization contexts [33,3/,36,49,82], their application in

statistics remains relatively unexplored.

1.4. Markov Bases and Graphs with Fixed Degree Sequences

A particularly intriguing area of research focuses on the random generation of graphs with a
fixed degree sequence (see [3,24,28 52 78]). The degree sequence of a graph g with vertices
in [n] is represented as the vector d(g) = (di,...,dy), where d,, denotes the degree of vertex u
in g. It has long been established that the set of all graphs with a fixed degree sequence can be
connected through switches. Informally, a switch is an exchange of edge pairs between two graphs
that preserves the degree sequence.

Notably, [66] and [63] leveraged this insight to provide a constructive solution to the graph
realization problem, which is commonly known as the Havel-Hakimi algorithm. Alternatively, one
can determine whether a degree sequence is graphical without constructing a corresponding graph
by using the characterization given by the Erdds-Gallai theorem [51], which tests the validity of n

inequalities. This characterization is closely related to the hyperplane representation of the degree
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sequence polytope introduced by Koren [81]. Further results regarding this polytope can be found
in [87,91,102].

In 1997, [78] proposed the use of the switch Markov chain to uniformly generate simple graphs
with a fixed degree sequence. As highlighted in [52], “the switch Markov chain can be thought of
as the Markov chain of smallest possible modifications.”

In this section, we delve into a colored generalization of the connectivity problem on spaces of
graphs with a fixed degree sequence and a fixed graph statistic arising from a vertex coloring and
we explore its connections with the theory of Markov bases.

From an algebraic statistics perspective, it is useful to conceptualize the space of graphs with a
fixed degree sequence d € N™ as a set of vectors g = (guy )u<o I Gy, == Hg)l £ satisfying the system
of linear equations D,g = d, where D,, is the incidence matrix of the complete graph K,,, and both
the columns of D,, and the entries of g are ordered lexicographically. Here, £ corresponds to the
set of possible values that each g, can take. The set of interest {g € G,, : D,,g = d} corresponds
to the d-fiber F(D,,d) when £ = N, and corresponds to the (d;0,1)-fiber F(D,,d;0,1) when
€ = {0,1}. While the first scenario considers multigraphs with a given degree sequence d, the

second one considers simple graphs with a given degree sequence d.

REMARK 1.4.1. For g = (guv)u<v € Gn, Guv 1 interpreted as the number of interactions between
nodes u and v. Since we will be dealing exclusively with undirected graphs, we assume Guy = Gou

for any pair of distinct nodes.

DEFINITION 1.4.2. Let A be an integer matriz and M C kery A. We say that M is a binary
Markov basis for A if F(A,b;0,1)r is connected for every b € NA.

In terms of Definition 1.4.2, our earlier discussion at the beginning of this section establishes
that for any n € N, the set of switches constitutes both a Markov basis and a binary Markov basis

for D,,. In this case, the set of switches corresponds to the elements in kery D,, of minimal 1-norm:
M, = {euv + ey — eyt — €y i u < v, U <V {u, v} N {u '} = @},

where ey, is the standard unit vector in R(3) associated with the pair {u,v}. Figure 1.11 illustrates
the move in M,, that consists of replacing the pair of edges {u,v’'} and {u’,v} with the pair of
edges {u,v} and {u/,v'}.

32



FIGURE 1.11. Switch in M,, replacing the pair of edges {u, v’} and {u/,v} by the
pair of edges {u,v} and {u/,v'}.
DEFINITION 1.4.3. For a positive integer k and a k-coloring (or block assignment) z : [n] — [k],
we define the color sequence of a graph g € G, to be the vector c(g, z) := (¢(z,1,7) : 1 <i < j < k)
with ¢(z, 1, j) being equal to the total number of interactions in g between colors i and j. The entries
of c(g,z) are ordered lexicographically with respect to the pairs (i,j) and when z is clear from the
context we simply write c(i,j) and c(g). The degree-color sequence (d(g),c(g)) of g with a
given k-coloring z, is the concatenation of its degree and color sequences. For simplicity, we call

(d(g),c(g)) the c-degree sequence from now on.

EXAMPLE 1.4.4. For n =5 and k = 3 let {{1,2},{3,4},{5}} be the partition of [5] induced
by a 3-coloring z of [5]. ©, & and ¥ represent colors 1, 2, and 3, respectively. The c-degree
sequence of the graph g illustrated in Figure 1.12 is the vector in N given by (d(g),c(g)) =
(4,4,3,4,7:1,3,3,0,4,0).

Ficure 1.12. Graph g with vertices 1 and 2 colored blue, 3 and 4 red, and 5 green.

The c-degree sequence is also a linear graph statistic, as we now explain. For a k-coloring
z of [n], we define C, as the matrix with rows labeled by the k + (g) = (k;rl) pairs of colors
(allowing repetition) and columns labeled by the (g) distinct pairs of vertices; with both rows and
columns ordered lexicographically. Each column contains exactly one entry equal to 1 in the row

corresponding to that vertex pair’s color pair, with the remaining entries of the column set to zero.
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For a graph g € G,, the color sequence of g can be expressed as ¢(g) = C,g. Consequently,

(d(g)7c<g)) - (Dngacz ) :mn,z g,

EXAMPLE 1.4.5. Letn =5, k = 3, and let z be the 3-coloring used in Example 1.4.4. The matrix
IO, . is explicitly written below alongside a depiction of K5 on the left, which helps visualize the

encoding of the matrix.

-
N
-
w
-
'S
—
ot
[\
w
[\
g
[\~
ot
w
=
w
t
S
t

1 111000 0 0 0\ I
1000 1 1100 0]:
0100100 11 0]s

@4 001 00 1 0 1 0 1]4
V 000 100 10 1 1]:
(1) C5:=[1 0 0 0 00 0 0 0 0]eo

‘ 01 1 01 100 0 0]oo
@‘ 000 1 00 10 0 0]os
000 00000 1 0 0]co
00000000 1 1]oe

00 000000 0 0/en

As we will see in more detail in Section 1.5, the c-degree sequence arises as the sufficient statistic
of a random network model in which each edge in the graph appears with a probability that depends
on its endpoint vertices as well as their color, which, in statistics, represents blocks or communities.
While [79] discusses how to use Markov bases to extend exact tests to latent block versions of the

model, they left the determination of a Markov basis for IX;, . as an open problem.

1.4.1. Our contributions

The following result, whose proof is provided in Section 3.1, presents a solution to the open

problem mentioned above.

THEOREM 1.4.6. The set of quadratic moves M, , := {g € kerz ICy, .: ||g||1 = 4} is a Markov

basis for IC;, .. These are the moves in kerz LI, , of minimal 1-norm.
34



Similar to the monochromatic case, this Markov basis is equivalent to the set of smallest possible
modifications. In essence, any two multigraphs with a fixed c-degree sequence can be connected
by applying a sequence of c-degree-preserving switches of 4 edges at a time. A natural follow-up
question is whether the connectivity in the space of multigraphs with a fixed c-degree sequence,
induced by the moves in Theorem 1.4.6, is maintained when restricting to the space of simple
graphs.

In contrast to the behavior observed in the monochromatic case, the 1-norm size of the moves
necessary to connect spaces of simple graphs with a fixed c-degree sequence increases as the number
of colors k used in the k-coloring z varies as we describe with the following three results. We
present a proof of Proposition 1.4.7 in Section 3.2 while Corollary 1.4.9 and Theorem 1.4.10 are
straightforward consequences of Proposition 1.4.7.

In contrast to the monochromatic case, the 1-norm size of the moves required to connect spaces
of simple graphs with a fixed c-degree sequence increases as the number of colors k in the k-coloring
z varies. This phenomenon is established in the following three results. Proposition 1.4.7 is proved
in Section 3.2, while Corollary 1.4.9 and Theorem 1.4.10 follow directly from it.

PROPOSITION 1.4.7. For every integer k > 3 there exists a k-coloring z of [n] with n = 2k,
and a c-degree sequence (dy,cy) € N*+(*2") such that Fro, . (dy,cr;0,1) = {g,g'}. Furthermore,
lg — gl = 2k.

EXAMPLE 1.4.8. The simple graphs g1, g2 in Figure 1.13 represent the only two elements of the
simple-graph fiber Fa,, . (ds, cs;0,1) where z : [12] — [6] is such that z(u) = u (mod 6) for every
u € [12] and dg, cs are defined as in the proof of Proposition 1.4.7 in section 3.2. The only move

(up to sign) that connects this fiber is g = g1 — ga.

12 o
G o

10, /4 ORO {0 s JO

S P

FiGURE 1.13. Simple graphs g; and go on the left and center. Markov basis move
g1 — g2 on the right.
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As an immediate consequence of Proposition 1.4.7 we have the following two results.

COROLLARY 1.4.9. Let n,k € Zy with k > 3 and let z be a k-coloring of [n]. Then, any simple-
graph Markov basis for DO, . has an element with 1-norm equal to 2k where K is the number of

colors used to color more than one vertex.

THEOREM 1.4.10. For any constant 1, there exists n,k € Z and a k-coloring z of [n] such that

any binary Markov basis for LU, . has an element with 1-norm greater than 7.

As it has been previously mentioned, when the k-coloring z is constant, 4-edge switches are
enough to connect the space of simple graphs with a fixed degree sequence d € N" for any d.
In contrast, Theorem 1.4.10 shows that when we do not impose any constraints on the coloring
function z, we cannot guarantee the existence of a constant 1 such that the set of n-edge switches
induces connectivity on the space of simple graphs with fixed c-sequence (d; c¢) for any degree-color
sequence (d,¢) € N+ (2),

QUESTION 1.4.11. Given k € Z,, is there a constant ny such that for any n € Z4+ and any
k-coloring z of [n], there exists a binary Markov basis B for IC, . such that maxgep ||g||1 < i ? If

so, what is the minimum ng satisfying this condition?

For k = 1, the minimum constant that satisfies the conditions in Question 1.4.11 is n; = 4. For

k = 2, Example 1.4.12 below demonstrates that if 7y exists, it must be at least 8.

EXAMPLE 1.4.12. The simple graphs g1 and go in Figure 1.1} are the only two elements of
the (0,1)-fiber Fpo, .(d,c;0,1), where z is a 2-coloring that induces the partition {{1,2,5,6},
{3,4,7,8}}, withd = (1,6,1,6,4,3,4,3) and c = (3,8,3). The only move (up to sign) that connects
this simple-graph fiber is g = g1 — g2, whose 1-norm is 8, as illustrated in Figure 1.14. One way
to connect g1 to gz using elements from M, . by stepping into Fro, .(d,c) \ Fro, .(d,¢;0,1) is
depicted in Figure 1.15. The orange-highlighted edges in each graph indicate the switches performed

to reach the next graph in the orange path.

CONJECTURE 1.4.13. For k = 2, 19 exists and ng = 8 is the minimum constant satisfying the

condition in Question 1.4.11.
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FiGURE 1.14. Simple graphs g; and g on the left and center. Markov basis move
g1 — g2 on the right.

Fx (d; e)\Fn (d,c;0,1

Ficure 1.15. Simple graphs g; and gs being connected with switches by leaving
the (0,1)-fiber. The switches used in each step are highlighted in orange.

Given the result in Theorem 1.4.6, the fundamental theorem of Markov Bases implies that
I, . is generated by the quadratic binomials {31:-‘7+ —x9 :g e M,.}. As discussed previously,

the more conditions satisfied by these set of binomials, the more its applications.
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In the monochromatic case, [40] proved that this set of quadratic binomials is a Grébner
basis for Ip,, and the result was used to study triangulations and optimization of the b-matching
problem—the graph with the smallest cost having a given degree sequence b. The final contribution
of this section, whose proof is presented in Section 3.3, generalizes the quadratic Grébner basis result

from the monochromatic case to the following general case.

THEOREM 1.4.14. There exists a monomial order = on K[z, : 1 < u < v < n| such that for
any k-coloring z of [n], the set {x9 —x9 :g e My, .} is in fact a Grébner basis for Inc, , with

respect to .

1.5. Goodness-of-Fit Tests for Labeled Stochastic Block Models

The study of Markov bases for the matrix I, . in the previous section is primarily motivated by
their applications in goodness-of-fit tests for specific random network models that share similarities
with log-linear models.

In recent years, the analysis of network data has become increasingly significant across diverse
fields, including the social sciences and biological studies. The foundation of probabilistic modeling
for network data lies in classical random graph models, such as the Erdés-Rényi model [50]. These
models provide a starting point for understanding the structural and probabilistic properties of
networks.

Fienberg’s approach to analyzing statistical network models bridges network science and cate-
gorical data analysis by representing graphs as contingency tables (see [55,56]). This framework
enables the application of tools from categorical data analysis to address critical challenges, such
as parameter estimation and model assessment. For example, [92] introduced algebraic statistics
into network analysis by studying Markov bases for the pl model presented in [69]. For a broader
perspective on the interplay between categorical data analysis, algebraic statistics, and network
science, we recommend [61] and [62].

A particularly relevant class of log-linear models in this context is the Stochastic Block Model
(SBM), which is given a contingency representation in [53]. SBMs extend classical random graph

models by allowing edge probabilities to depend on the block membership of node pairs, thereby
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enabling the detection and modeling of community structures within networks. Originally intro-
duced in the social sciences by [54], SBMs have since gained prominence for their flexibility and
wide applicability.

Despite significant advancements in the development of SBMs, assessing their goodness-of-fit to
observed network data remains an underexplored area. Notable contributions to this field include
spectral goodness-of-fit tests by [85] and graphical methods for model assessment by [73]. In this
section, we focus on a general strategy for performing goodness-of-fit tests for SBMs introduced
in [79]. This approach leverages Markov bases to construct Markov chains that explore the fiber
of observed network data.

As in the previous section, we represent graphs with vertices on [n] by a (g) -dimensional vector
g = (Guv)u<v € Gn =& (Z)’ where for each dyad {u,v} (or pair of vertices), gy, takes values from
the same support set £. Here, gy, is generally understood as the number of interactions between
nodes u and v, and £ imposes restrictions on these counts. For example, setting & = {0, 1} restricts
guv to represent the presence (or absence) of an interaction.

Throughout this section, we assume that g,, = gy for every dyad, since all the graphs con-
sidered are undirected, and let g,, = 0 since loops are not allowed. Furthermore, the function
z @ [n] — [k] will represent a k-coloring, which, for consistency with the SBM literature, we refer to
as a block assignment in this section. Consequently, we refer to B; := z7!(i) as the i-th block.

We say that a random graph G = (Gyy)u<y with sample space G, = & (3) is drawn from a
Stochastic Block Model with block assignment z (SBM(z)) if there exists a parameter
vector @ = (0 : 1 <i < j < k) (commonly referred to as the connectivity matrix in the literature)

such that {Gyy fu<v are pairwise independent and

(17) Guv ~ f(, ez(u)z(v)) = f@z(u)z(v)(')v

where fp,. is a probability distribution on & for each 1 < 7 < j < k, known up to the finite-
dimensional parameter 6;;.
In this section, we will exclusively consider cases in which { f(-, 6;;) }i<; belong to the exponential

family. Specifically, we assume that for all € € £ and 6,,
(e, 035) o< h(e) exp{(n(bs;), €)},
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where 7)(6;;) is the natural parameter of the family. Consequently, under the SBM(z)
(1.8) P(G =g |0) o h(g) exp{(n(0),T=(9))},

where 7(0) = (7(05))i<j, T2(g) = (T%,;(g))i<; and

1 ap - .
EZ €B,; veB,; Juv; if i =7,
Tz,ij(g) = h =

ZueBi,vij Guv, otherwise.

The vector T,(g) serves as the sufficient statistic for the SBM(z) and is linear in g, which
implies that the SBM(z) is a log-linear model. Consequently, the sufficient statistic can be encoded
using a design matrix Agpnz)- When gy, is a scalar representing interaction counts or a binary
present/absent status, we have & C N. In this case, Agp() is a (k;rl) X (g) matrix with rows
labeled by all possible block pairs and columns labeled by dyads, both ordered lexicographically.
The column associated with the dyad uv contains a 1 in the row corresponding to the pair z(u)z(v)
and Os elsewhere. In other words, Aggy(;) is identical to the matrix C, in Equation (1.6) from the
previous section.

As explained in Section 1.2, given an observed graph go, the goodness-of-fit for the SBM(z) can

be assessed by computing the conditional p-value:

(1.9) p(go, 2) :=P(W.(G) > W.(g) | AsBm(»)G = Asm(2)9)

where W, (G) is a test statistic such that large values indicate evidence against g being generated
by an SBM(z). It is worth noting that the support of the conditional distribution in Equation (1.9)
corresponds to the set {g € g . AsBM(2)g = AsBM(z)go}- This set equals the fiber F(Agpni(2)90)
when € = N and corresponds to the (I, L)-fiber F(A;l, L) when £ = [I, L].

Theorem 1.5.2 below describes a Markov basis that not only connects the b-fibers for Agpny(z)
but also connects all the (b;1, L)-fibers. This provides flexibility in choosing the support £ for the
interactions modeled by (1.7). For any of these scenarios, Algorithm 2 can be slightly modified so
that the step in line 4 verifies whether the proposed graph belongs to the corresponding restricted

fiber, rather than the general unrestricted J(Agpu(z))-
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REMARK 1.5.1. The matriz IC,, , from section 1.4 corresponds to the design matriz of a vari-
ant of the SBM, known as the B-SBM(z) for which T,(g) =IC, . g is the vector of sufficient
statistics. The $-SBM(z) postulates that for a random graph G, Gy, ~ f(~,93(u)z(v) + By + ﬁy)
where {f(-,ﬁz(u)z(v) + Bu + ﬁv) :1 < 4,1 <u < v < n} belongs to the exponential family. For
this model we have a parameter B, for each node v in addition to the block-interaction parameters
t;;. When & = N is the support for each of the random variables Gy, Theorem 1.4.6 guarantees
that the family of moves My, , can be used to test whether go ~ [-SBM(z). On the other hand,
Theorem 1.4.10 implies that when & = {0,1} (e.g., when Gy, ~ Bernoulli(o(0.(u)z(v)+8.+8.)));
performing a goodness-of-fit test for the 3-SBM(z) becomes a much harder task.

Both the SBM(z) and the 3-SBM(z) belong to a more general family known as log-linear expo-
nential random graph models (ERGMs). For reference see [62].

With more generality, one can consider graphs that are better modeled by ¢ different types of
interactions between nodes. We represent such graphs with an /¢ (g) vector g = (Guy)u<v Where
Guv = (gff3 cu<wv,1 <1</ and g&lg denotes the number of [-type interactions between nodes u
and v. In this scenario, the support & for g, is a subset of N¢ and we say that G was generated from
a Labeled-SBM(z) with ¢ labels (LSBM(z, ¢)) if there is @ = (0;; : 1 < i < j < k) such that
{Guv}u<v are pairwise independent and Gy ~ f(+, 0, (y)2(v)) Where 8;; is a vector of parameters of
the same dimension for every 1 <4 < j < k. This generalization also yields a distribution of the
same form as in (1.8) where T,(g) = (T(l) (g):1<i<j<k,1<1</{) and

2,17
1 ) ..
5 ZueBi,vij Guv ifi1= 7,

()

l
! (9) = l
ZUGBi,UEBj Guv otherwise.

In other words, Tz(ll) ; counts the number of [-type interactions between blocks ¢ and j. Under this
setting, the linear transformation 7’ (g) corresponds to the design matrix Aygpm(z,¢) = I ® Agpm(z),

where [ is the £ x £ identity matrix, and ® denotes the Kronecker product.

1.5.1. Our contributions

Due to the structured nature of the matrix Aggpi(.,¢), we can obtain a compact description for

its Graver basis. To do so, we first introduce the following notation.
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For each u # v € [n] and [ € [(], let ell) € Nt represent the vector g= (g(l/) 1 <d < <

u'v’

n,1 <1' <), defined by:

, 1, if (v/,v") = (u,v) and I =1,
S0 _

0, otherwise.

THEOREM 1.5.2. The set Mspun(z0) = {eﬁf?) - eg,)v, cle [l z(u) = z(u), z(v) = z(v')} is the

Graver basis of Apspu(z,e)-

Hence, by Proposition 1.1.29, we can perform a goodness-of-fit test for the LSBM(z, ¢) by
computing a natural generalization of the p-value in Equation 1.9, provided that the random vectors
G, have an interval as their support. However, certain scenarios involve enforcing additional
constraints on the sample space.

A natural example arises when G,y ~ Geom(Nuyy, 0 (4)5(1)), in which case £ = {g € N : [|g||, =
Nyy}. Despite these constraints, we can demonstrate that a specific subset of kerz Apgpmy.,¢) in-
duces connected fibers F. This subset ensures the necessary guarantees to perform a valid goodness-

of-fit test for the model, even under such restricted conditions.

THEOREM 1.5.3. The set

O1el) —el) —eh) 11 e[l 2(u) = 2(0)), 2(v) = 2(v/)}

M LSBM(z,t) *= {e

induces connected graphs ]:/\7LSBM< ) for every subset F C N¢() of the form

F = ‘F(ALSBM(z,Z)a b) N {g = (guv)u<v € Ne(g) : ngle = Nuv}a

where b € NAspy-.0) and N = (Nyy)uey € NG,

We provide proofs for both of the previous results in Sections 4.1 and 4.2.

The SBM framework is amenable to three modeling assumptions. Specifically, the block assign-
ment for each node can be: 1) fixed and known, as we have assumed so far; 2) fixed and unknown;
or 3) latent, with some underlying distribution.

For scenario 3), both frequentist and Bayesian approaches are possible. In the frequentist

setting, following [88], we assume the existence of a latent block assignment z : [n] — [k] where
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{z(w)}2_4 N = (71, ..., 7). This implies that the LSBM(¥) is a mixture of exponential random

graph models, and there exist true parameters w and 6 governing the generation of the random
graph G. In the Bayesian approach, one assigns a prior to both 7 and 6.

In [79], the authors proposed a method to perform a goodness-of-fit test for scenarios 2) and
3), relying on the test developed for the fixed and known z scenario. For instance, under scenario
2), given an observed graph gy and an unobserved true block assignment z, one can use block
estimation algorithms to recover an estimated assignment Z and then compute the plug-in p-value
p(go, 2). To evaluate how closely an estimator approximates the true block assignment z, we adopt

the following notion from the SBM literature (see [2]).

DEFINITION 1.5.4. The agreement between two block assignments z,z' : [n] — [k] is defined as

(1.10) Az, 2') = max % Z L(o(2(u) = 7' (u)),
u=1

where Sy is the set of permutations on [k]. Whenever A(z,2') = 1, there exists a permutation

o € Sy such that o(z(u)) = 2'(u) for every u € [n]. In this case, we write 2/ = o - z.

DEFINITION 1.5.5. Let G ~ LSBM(z,¢). An estimator 2 = Z2(QG) is called strongly consistent if
P(A(z,2) =1) =1—0o(1), meaning that % is strongly consistent if A(z,2) = 1 with high probability

as n tends to infinity.

The proof of the following result is presented in Section 4.2.

PROPOSITION 1.5.6. Consider a goodness-of-fit statistic satisfying Ws(g) = Wy.(g) for any
Z:[n] — [k] and 0 € Si. Let G ~ LSBM(z,£) and let zZ = 2(G) be a strongly consistent estimator,

then P(p(z,G) = p(2,G)) =1 —o(1) as n tends to infinity.

An example of a goodness-of-fit statistic W, satisfying the conditions from Proposition 1.5.6 is

the block-corrected chi-square statistic from [79], defined as

n k m\ —n;0\". 2
(1.11) W-(9) = Xbo(g.2) = g Z( - A(l)zul)



where n; = |B;], mﬁ} = D e B, gffﬁ and ég) = #Z](g) is the MLE estimate for Qg). Under the
LSBM(z, ¢), we have the expected value E[mgz)] = n;0.,,;, therefore large values of x%. (g, 2), in
which we have replaced Ggu)l with the MLE éii)w indicate lack of fit.

Parallel to goodness-of-fit testing, model selection is another crucial aspect of network analysis,
which involves determining the number of communities in a network, assuming it follows an SBM.
Although model selection and goodness-of-fit testing are related, the latter is a more general problem
that can also aid in model selection when applied sequentially. Moreover, goodness-of-fit tests
provide a way to measure the model adequacy, offering valuable insights into how well the model
captures the underlying structure of the network.

Regarding scenario 3), given an observed graph gg and an unobserved block assignment z

generated from a distribution, [79] proposes the use of the p-value

(1.12) p(go) == Y pl(g0,2)P(z | go),

Zezmk

where Z,, , represents the set of all possible block assignments for n nodes and £ blocks. To estimate
the p-value in Equation 1.12, the key challenge is to approximate P(z | gg). This can be approached
in two ways: In the frequentist setting, one can use model-based estimation algorithms, such as
those proposed in [88] or [108], to estimate the block proportions 7. In the Bayesian setting,
algorithms like those introduced in [6] or [76] can be used to directly estimate P(z | go).

It is worth noting that most of the estimation algorithms mentioned are limited to the case

where ¢ = 1. Among them, only [108] supports a special case where ¢ = 3.
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CHAPTER 2

Complexity of Markov bases: Bad and Good News

In this chapter, we present the proofs of the negative and positive results concerning the com-
plexity of Markov bases, as outlined in Subsection 1.3.1.

Theorem 1.3.16 establishes that, in general log-linear models, there is no universal upper bound
on the “negative” relaxation of the fibers required to connect the original fiber.

Furthermore, Theorem 1.3.17 and Proposition 1.3.18 demonstrate that relaxing a constraint set
of entries S can still result in complex elements within a Markov bases if S is chosen poorly. These
findings extend the results of [39], offering a deeper understanding of the intricacies involved in
these scenarios.

Finally, for hierarchical models on 71 X 9 X - - - X 1, contigency tables, Corollary 1.3.23 provides
a positive result: it shows that the size of their Graver basis is bounded above by a polynomial in

a proper subset of the levels {7} .

2.1. Complexity of (—¢)-Markov bases

To construct the family of parametric matrices Ay referenced in Theorem 1.3.16, we first
introduce a family of matrices whose kernels correspond to arithmetic sequences.

For n > 3, define the (n — 2) x n integer matrix

1 -2 1 0 0 0 0

0 1 -21 0 0 O
Ap_g =

0 0 0 0 -2 1 0

0 0 0 0 1 -2 1



In other words, the entries of A,,_o are defined as

1, ifj=diorj=1i+2,
Apo(i,j) =4 -2, ifj=i+1,
0, otherwise.
In the proof below we will utilize an operation known as the Lawrence lifting, introduced by [99].

This technique, which is a special case of an n-fold matrix construction, will play a key role in our

analysis and we will take advantage some of its important properties.

PrROOF OF THEOREM 1.3.16. Let us notice that the column-style Hermite normal form of A,,_»
is given by H = (I,,—2 0,,_2 0,_2) where I,,_5 is the (n — 2) x (n — 2) identity matrix and 0,_2 is

the (n — 2)-dimensional zero vector.

A simple computation shows that the n x n matrix

1 2 3 (n—1) —(n—2)
01 2 (n—2) —(n—3)
U 0 01 (n—3) —(n—4) 7
0 00 1 0
000 0 1

is an unimodular matrix transforming A into its column-style Hermite normal form, i.e, AU = H.
Hence, it follows that the last two columns of U provide a lattice basis for kerz(A,_2). Let us

denote by L the n x 2 matrix whose column vectors are the last two columns of U. Hence, as a

consequence of ( [7], Proposition 16.1) we know that the column vectors of provide a lattice
—L
. Anz On-2) s .
basis for A(A,_2) where A(A,_2) = is the Lawrence lifting of A, _o, being 0,,_o
In—o In—2

the (n —2) x (n — 2) zero matrix. Let us denote the elements of this lattice basis by z; and zs.
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Now, consider the n-dimensional column vector w = (012 --- n — 1)1 and let

Since A(A,_2)u = A(A,_2)v = (0,2 w)?, we have that u,v are in the same fiber. However,
adding any of the elements {4z1,£22} to u, results in at least one coordinate smaller or equal to
—(n — 2). Hence, the lattice basis £,_o := {21, 22} fails to connect u, v inside F_,((0,,—2,w)T) for
any ¢ = 0,...,n — 3. Therefore, for any N > 0, Ay := A(An42) and My := Ly o satisfy the

properties stated in Theorem 1.3.16.

2.2. Complexity of (—1,5)-Markov bases

We begin this section by outlining some of the steps used in the proof of Theorem 1.3.9 from [38].
These steps will provide the necessary tools for the proof of Theorem 1.3.17.

Let us start with a bounded polytope P = {y € R%, : Ay = b}, where A = (a;;) is an m x n
matrix. The construction of 7" in Theorem 1.3.9 is typically carried out in three steps (see [38]).

However, for our purposes, it suffices to focus on the last two steps, which are listed below.

Step 1) Representing P as a plane-sum entry-forbidden transportation polytope T”.
Let U be an integer upper bound for the entries of P. Then, it can be proved that for

some s,h € ZT and a subset FE C [s] x [s] x [h], P can be represented as the polytope

T = {ar; € RS;OSXh : ;5 =0 for all (4,7,k) ¢ E and
D @ik =k Y Tigh = bjy D Tk = az}-
4,J i,k J:.k

This representation comes with an injection ¢’ : [n] — [s] x [s] x [h] and its induced
coordinate-erasing projection 7’ : R***" — R™ that provides a bijection between P and

T’ and between their integer points.

OBSERVATION 2.2.1. From the description of E in [38], it follows that for a given

y = 7'(x) € P (where x € T') and for any i € [n| the coordinate y; is embedded in s;
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distinct coordinates of @, where

m m

$; = max (Z{ak,i tag > 0},2{\%71\ tag; < 0}) )

k=1 k=1

Moreover, the explicit set of coordinates where y; is embedded is given by
(2.1) B;:= {(j,j,rs(j)):je{1+Zsl,...,231}},
I<i 1<j
where k is a function  : [s] — [h] completely determined by the matriz A and s =Y | s;
is the same as in the description of T'. Then, B := J;"_, B; is a set of indices for which
the corresponding entry in @ is equal to some y;. Furthermore, the set B is completely
determined by A, so the previous embedding property holds for any y € P.
Notice that under the assumption that A has nonzero columns we have that |B| =

Sy si. In other words, the set B is completely determined by the polyhedral representa-
tion of P.

Step 2) Representing the polytope T” as a slim line-sum transportation polytope T

Given T” as in the previous step, there are r,c and (u; ;) € ZI*¢, (v, 1) € Z1*3, (wjy) €

Z7*3 such that the transportation polytope

e IxJx3 . - _ _
T=axeRYD:D> " wijn=1wi, Y Tijh =ik Y Tijk = Uk
k i 7

represents 1”.

With this discussion we are ready to present the following proof.

PROOF OF 1.3.17. Given a polytope @ = {x € Rgo : Cx = d}, and a vector u = (uq,...,u) € ZF
we let Qy := {x € R¥ : Cx = d and z; > u; for every i € [k]}. Also, given any D C [k], we let 1p

be the indicator vector of D and write 1 when D = [k].
Now, consider the polytope P = {y € Rg}z cYo+yn+1 = 1,0;50—y; = 0,5 = 1,...n} introduced
in the proof of Corollary 1.3.10 and let P:= P_1 + 1. The integer points in P are exactly
y' =(0,0,...,0,1) +1, y*=(1,01,...,0,,0)+1, and
2 =1(2,201,...,20,, 1) +1, 2*=(-1,-61,...,—6,,2)+1
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By the previous discussion, there are s, h € Z* and a plane-sum entry-forbidden transportation
polytope T' C RSZXOSX}’ representing P. Furthermore, by 2.2.1 we know that there is a subset
B C [s] x [s]  [h] such that for any @ € T, the entries corresponding to the indices in B are all
entries of 7'(z) € P.

Let 7,c and (u; ;) € Z'*¢, (v; ) € Z'*3, (w; ;) € Z7*3 such that the transportation polytope
5 I
T= S RZEJXi; : Z xlv]vk‘ = uimj’ Z ml:jzk = Ui,k’ Z x7’7.77k = u.]7k
k j i

represents 7" and let o : [s] X [s] x [h] = [r] x [¢] x [3] be the injection given by this representation.
Let S = o(B) and let p',p? q',¢° € T be the integer points corresponding to y',y?, 2!, 22,

respectively. Then, consider the following transportation polytope
T=<SxeREP Y mijn = wij— (Us)igrs Y Tijk = vik — (L8)iths Y Tijk = i — (L8) 4 jn
k j i

and observe that T 1, = T - 1s. Moreover, since Tis a representation of P it follows that the
only integer points in T_q are p' —1g,p?> —1g,q" — 15 and q°> — 1. By construction, the first
2 of these points are non-negative and any of the differences between any of the four points has
either 0 or 6 appearing in the restriction of some 7 coordinates.

To see that |S| =1+ >_7 , 0; it is enough to find | B;| using 2.1 and the defining matrix of the

polytope P. O

Before providing a proof for Proposition 1.3.18 let us introduce some notation. Given iy # is €

[r1], k1 # ko € [3] and j' € [ro] we define the r1 X ro x 3 table b(iy,i2; j'; ki, k2) as follows.

Lo if (4,5, k) € {(i,5', k1), (i2, 5, k2) },
blir,io; j's ki k)i = S =1, if (4,4, k) € {(i1, 7', ka), (i2, 4, k1) },
0, otherwise.
We can think of this table as the embedding of a 2-way basic move in a 3-way table. Even

though b(i1,i2; j'; ki1,k2) has one non-zero 2-margin (so it is not a move), it will help us to

describe some moves more easily. For instance, b(i1,42; ji,j2; k1,ke2) can be written as a sum of
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two embedded r; x 3-moves:
b(i1,i2; j1,72; k1, k2) = b(i1, i2; j1; k1, k2) + b(iz,i1; jo; k1, ko).

DEFINITION 2.2.2. Given a 11 X2 X 3 table m and a subset S = Sy, X Sy, X Sy, C [I] x [J] x[3].
We define mg as the restriction of m on S. Under this definition mg is a |Sy,| X |Spy| X |Srs]

table.

PROOF OF 1.3.18. Suppose without losing generality that 7 : [re] — [3] is a surjective function
such that [r1] x [ro] x [3)\S = U2 {(4,,7(5)) : i € [r]}.

Now, we will provide a way to find an infinite family of (—g¢, S)-extended fibers for which their
non-negative r1 X ro X 3 tables are not connected by basic moves.

Let m = (m; ;i) be a 11 x r2 x 3 table such that m, ;; = 0 for every (4,j,k) ¢ S and for
every t € [3] let Sy = {(i,4,k) € S : 7(j) =t} = [r1] x 771(t) x ([3]\{t}). Notice that Sy, S, S3
form a partition of S. Moreover, the support of any basic move that can be added to m while
preserving non-negativity constraint must be contained in some S;. Otherwise, if b is a basic move
such that supp(b) N S, supp(b) N Sy # 0, it would follow that m + b has a —1 for some entry in
[r1] x [ra] x [r3]\\S by a pigeonhole principle argument.

This implies that we can connect m to another I x J x 3 table m’ (with basic moves) if and only
if for every ¢ € [3] we can connect myg, and m’y, with basic moves in their respective (—¢q)-extended
fiber. In particular, if m/ is connected to m we must have that mg, and m:gt are in the same fiber
for every t € [3]. In the rest of the proof, we will build m and m’ such that the latter doesn’t hold.

For every t € [3] pick some j; € 771(¢) and let us consider the move
n=>b(1,2; ji; 1,2) + b(1,2; j2; 2,3) + b(1,2; js; 1,3)

of degree 6. By the choice of ji,jo and j3, we know that we can add n to m while preserving the
non-negativity constraint. i.e., m’ := m + n is a non-negative table in the fiber of m. Moreover,
by the definition of n it follows that m/y = b(1,2; j1; 1,2) +mg, and therefore the 2-margins of
mg, and M are not the same (their ik-margins differ), contradicting our previous observations.
Hence m and m/’ are not connected by basic moves and therefore the fiber of m is not connected

by basic moves. O
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2.3. Bounding the Graver Basis Size for Hierarchical Models

PROOF OF COROLLARY 1.3.23. Let A be a simplicial complex with ground set [m] and max-
imal faces Di,...,D;. Let V C [m] such that for every i € [m], V C D; or V.C D§. We will
prove that , Ax = [A, B]™) where ny = [[,cy 71, A is a Zj:DjQV 7;7—{/ X nlv matrix and B is a
Zj:D]c_QV nj X niv matrix.

First notice that the columns of Aa are in bijection with the entries of a dy x - -- X d,,, table so
we can label each column with an multi-index 4 = (i1, ..., 4y,). For each multi-index ¢ and D C [m]
we define ip := (i;)jep € [[;eplri]. Observe that each row can be identified with a pair (Dy, f)
where f € [];cp, [d;]. Without loosing generality assume that V = {1,..., v} for some v € [m] and
assume that V' C Dy,...,Dsand V C D¢, 4,..., Dy.

Now, following the construction of [72] we give a description of Aa as an ny-fold matrix.
Let us order the columns of Aa lexicographically: this order provides a partition of the columns
into groups labeled by multi-indices in [[7_,[r], i.e., the group corresponding to 4y is the set
Ciy = {(v,?') : &' € T[;Z,,1[m]}, lexicographically ordered.

The rows will be ordered in the following way: For each ¢y € [][,_,[di] define the set of
rows R;, = {(F},f) : j € [r],fv = iv and f; € [r)] for every | ¢ V}. Furthermore, given
(F5, 1), (Fjyr, f') € Ry, we say (Fj, f) < (Fy, f')if j < j/ orif j = j and f is lexicographically
smaller than f’. We denote by R the rest of the pairs (F, f) that don’t belong to any R;,,. Finally,
we order the rows of Ax by groups R;, using a lexicographic order on {iy : 4 € [[JL;[r;]} and
leaving the rows R at the end in any order.

This order of the rows and columns provides a block description [A, B for Ax where A =
Alinka(v) and B = Ap\y are the design matrices of the hierarchical model associated to linka (V) :=

{F\V :F>V}and A\V ={F € A:V C F¢}, respectively.
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CHAPTER 3

Connecting Spaces of Graphs with Fixed Degree-color Sequence

The purpose of this chapter is to provide proofs for the contributions outlined in Section 1.4.1.
Each section builds toward the proofs of the main results introduced there.

Theorem 1.4.6 establishes a quadratic Markov basis for the design matrix I, . of the 3-SBM,
resolving an open problem posed in [79]. This result has recently been used by [18] to compute
the maximum likelihood degree for the S-SBM.

Proposition 1.4.7 shows that to ensure connected fiber-graphs of simple graphs with a fixed
degree-color sequence, any subset B C kerz I, . must contain elements whose 1-norm grows as k
increases. Immediate consequences of this proposition include Corollary 1.4.9 and Theorem 1.4.10.

Finally, Theorem 1.4.14 demonstrates that the generators given by Theorem 1.4.6 also form a

Grobner basis for Ing, ., extending a result from [41].

3.1. A quadratic Markov basis

In this section, we focus on graphs with vertex set [n], represented by vectors g = (guv)1<u<v<n €
N(2). We define V(g) = [n] and E(g) = {{u, v} : guy # 0}. Since gy € Nforall 1 <u < v <n, we
occasionally refer to g as a multigraph.

As in Section 1.4, for a k-coloring z : [n] — [k], the vector ¢(g, z) = (c(z,i,j) 1< <5< k:)
represents the c-degree of g.

Given a graph g € N(g), we say that an edge uwv € E(g) is positive if gy, > 0 and negative if
guv < 0, where |gyy| represents the multiplicity of the edge uv. For simplicity, we may occasionally
abuse notation and treat g € 7(3) as a graph when the context allows.

For g € 7(3) and v € [n] we define the positive degree and negative degree of v in g as
(3.1) degy (v) == Z guw and degg (v) := Z —Guws
UE[N]:guv>0 UE[n]:guv<0

respectively. In other words, deg;]Ir (u) and degy (u) are the numbers of positive and negative edges

incident with u, respectively. We define the positive degree sequence and the negative degree sequence
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as the vectors d*(g) = (degg (1),...,deg} (n)) and d~(g) = (degy (1),...,degy (n)), respectively.

Also, for any 1 < i < j <k, let

(3.2) c;(z,i,j) = Z Guw and cg(z,1,7) = Z —Gup-

u€z~1(i), vez~1(4): u€z~1(i), vez~1(4):
Juv>0 Guv<0

This means that c;(z, i,7) and cg (2,1, j) are the number of positive and negative edges, respectively,
that are connecting an i-th colored vertex with an j-th colored vertex. We define the positive color
sequence and the negative color sequence as the vectors ¢t (z,g) = (c;(z,i,j) 1<i<j< k:) and
¢ (2,9) = (¢5(2,4,5) : 1 <i < j < k), respectively. Notice that when g € N(;), (dt(g);c(z,9))
coincides with the c-degree sequence and (d~(g);c¢ (z,g)) is a vector of zeros. When z is clear
from the context we will write c!j;(i,j) instead of c;t(z,i,j). We say that g € 7(3) satisfies the
degree-balance condition if d*(g) = d (g) and the color-balance condition with respect to z if
ct(z,9) = ¢ (z,g9). When z is clear from the context, we simply say that g satisfies the color-
balance condition.

Let n € Z4 be a positive integer, z a k-coloring of [n], and [, . the matrix as defined in

Equation 1.6. Notice that for any g € Z(g),

(33) IC,.g = (d"(g) —d (g);c"(g) — ¢ (9)).

This means that g € kerz IU, . if and only if g satisfies both the degree and the color-balance
conditions. It is not hard to see that any g € 7(3) satisfying the degree-balance condition must
be a union of closed even walks whose edges in the walk alternate between positive and negative
edges. In fact, when I, . is regarded as the incidence graph of a 3-uniform hypergraph the
elements of kerz A can be understood using the notion of balanced walk on a hypergraph. These
are known as monomial walks in the literature ( [93], [110]). Hence we say that g € z(3) is a
monomial walk with respect to z : [n] — [k] if g € kerz IO, .. For convenience, when considering a
monomial walk g, sometimes we will describe it using a vertex sequence enclosed by square brackets:

[v1,v2,...,V9-1,vy]. This notation means that g is the element in kerz IC;, , entrywise defined by

l

Guv = Z ]l{u,v}={vzi—1»v2i} - ]l{uw}:{vzi,vziﬂ}v
=1
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with 2/4+1 =1 and 1 being the indicator function. The use of the different notations (either vector

or brackets) will depend on the context.

EXAMPLE 3.1.1. Let IC5 , the matriz of Example 1.4.5 and g = (0,0,—-1,1,-1,2,-1,0,1,-1) €
kerz ICy, 5 be the monomial walk illustrated below. One way to write g using bracket notation is

g=1[1,5,2,4,5,3,2,4]. In this case 29" — 29 = x15x%4$35 — X14%23%25L45.

FIGURE 3.1. Monomial walk m = [1,5,2,4,5,3,2,4].

As noticed previously, for any c-degree sequence (d;c¢) € N”+(k;1), Frc,..(d;c) is the set of
multigraphs with fixed c-degree sequence (d;c). Meaning that a Markov basis for I, . is a set of
moves B that allow us to connect any two multigraphs with a fixed degree sequence by using moves
in B. To prove Theorem 1.4.6 we use the algebraic analogue provided by Theorem 1.1.8. In other
words, we show that M,, ., = {g € kery I}, .: ||g||1 = 4} is a Markov basis for I}, , by proving
that In, . = ({297 — 29 : g € M,.}) is equal to Irg, .-

To do so, we will use the combinatorial conditions of monomial walks in order to reduce bino-
mials of degree greater than two by splitting the monomial walks of length longer than four into
shorter walks. First, let us see that the toric monomial map introduced in Definition 1.1.1, whose

vanishing ideal is Iy, ., can be explicitly written as

05 Klryw : 1 <u<v<n] = K[{s1,...,sp} U{ty; : 1 <i <5< Ek};

(3.4) Tyy — Susvtz(u)z(v)-

Then, for any g € Z(g), @g(mw) = pp(x9 ) if and only if IC, ., gt =IC, . g, which means
that 29" — 29 € ker g = Ing, . if and only if g € kerz [0, .. In fact, as a consequence of [104,

Corollary 4.3] it follows that Ing, , = (9" —x9 : g € kery IO, ). This immediately implies that
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Im,, . € Ing, .. Therefore, to prove Theorem 1.4.6 it suffices to show that I, . € I, .. To do

so, we start by providing a combinatorial description of M,, ..

LEMMA 3.1.2. M, ., = {[uvu/V'] : z(u) = z2(v) or z(v) = 2(v')}. In other words, the elements

of My, . are 4-cycles with at least two opposite vertices of the same color.

PROOF. First suppose without losing generality that g = [uvu/v'] with z(u) = 2(v/). By
convention this means that uv,u/v’ are positive edges, vu', v'u are negative edges in F(g). Since

z(u) = z(u'), we have that ¢, (,):(s) = to(u)z(v) a0 to(w)z(0r) = ta(u)z(vr), Which means

+ —
(pﬁ(mg — a9 ) = S’usvtz(u)z(v) : Su’sv’tz(u’)z(v’) - Susv’tz(u)z(v’) : Su’svtz(u’)z(v)

= Susvsu’sv’(tz(u)z(v)tz(u’)z(v’) - tz(u)z(v’)tz(u’)z(v)) =0,

implying that 29" — z9 € I'rg, ., or equivalently, g € M,, .

Now, suppose that g € M,, .. The degree-balance condition implies that g is a 4-cycle [uvu/v’]
with wwv,u/v" positive and vu’,v'u negative edges. Let us assume without losing generality that
z(u) # z(u'). Because g has a positive edge between colors z(u) and z(v), the color-balance
condition implies that at least one of the negative edges uv’ or u'v connects colors z(u) and z(v).
This is equivalent to having z(v') = z(v) or z(u') = z(u). Hence, z(v') = z(v) by our earlier

assumptions. O

We will show that I'ng, . C In, . by proving that for any xd" — 29 € I, ., we can either
peel off 4-cycles from g (Lemma 3.1.5 below) or, alternatively, use 4-cycles to reconnect g (Lemma
3.1.4 below). This allows us to obtain a new monomial walk from which we can peel off 4-cycles
belonging to I, .. This process enables us to express 9 — 29 as the sum of an element in
Inm,, . and a binomial in Ipp, . with a degree smaller than deg(a:g+ — 29 ). Before presenting the

proofs, we illustrate the idea with the following example.

EXAMPLE 3.1.3. Let n = 8,k = 2 and z : [8] — [2] such that 2~ 1(1) = {1,4,5,6},271(2) =
{2,3,7,8}. Consider f = 29" — 9T = 21973475678 — T14T93T58T6T € Inc, . and observe that
f = w3aws6(x12078 — T17228) + f' where f' = 29" — @9 = wywseairras — T14T23Ts8Ter. As we
illustrate in the picture below, this way of rewriting f corresponds to rewriting g as a sum of a
4-cycle and a monomial walk g' with the same number of edges as g. Notice that g and g’ differ

by a switch.
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FiGURE 3.2. Reconnecting with a 4-cycle. On the left of the equality is the graph
g, while on the right are the 4-cycle corresponding to x12278 — 172728 and g'.

Now, we can peel off a 4-cycle from g’ to obtain a monomial walk g" with less edges than g’ (see

Figure 3.3). Algebraically, this means that ' = xo3x58(x17046—T14267)+ 246 (228734756 —T23T58217),

"+
where f" = x9 " — x9

11—

= T9gT34T56 — T23x58T17. In fact, we can continue peeling off 4-cycles

from g" in order to prove that f € (:c9+ —x9 geM,.).

X
"
)
e

FiGURE 3.3. Peeling off a 4-cycle. On the left of the equality is the graph g, while
on the right are the 4-cycle corresponding to x17246 — T142767 and g’.

LEMMA 3.1.4. For any f = o9 —a9 ¢ I, ., there exists f' € Iny, . and f" € I, . with
deg(f) = deg(f") such that f = f' + f", where f" = 9" —x9"" and ¢" contains a subwalk uvw

such that z(u) = z(w) and uwv,vw have different signs.

PROOF. Let f = xd — a9 € Irc, . and let uv be a positive edge in g. By the color-balance
condition, there must exists a negative edge u'v' € FE(g) such that z(u') = 2(u) and z(v') = z(v).

Since no edge in g can be positive and negative at the same time, it follows that uv # u'v'.

56



Moreover, if u = ' then vuv’ is a subwalk such that z(v) = z(v") with vu positive and uv’ negative

so the statement would follow. Hence, we assume that u # v’ and similarly v # v'.

Now, given that each of v/ and v’ are adjacent to the negative edge u'v’, the degree-balance

condition guarantees the existence of positive edges v/, v'w in E(g). Let us consider the following

2 cases:

(i)

{w,w} = {u,v}.

In case w = u,w = v, then wv'v/ is a subwalk such that z(u) = z(v'), wv' = wv' is
positive and v'u’ is negative, so it would be enough to take f' =0, f”/ = f. Then, assume
that w = v,w = w. In such case, since u is adjacent to two positive edges, there must
exists (by the degree-balance condition) a negative edge utt € E(g). Notice that since

2(u) = 2(v'), TwaTuy — TyaTuw € Ing, , and

+ - +
f=a9 —a9 =29 —x%,qzyy

= ma(aju’ﬁxuv’ - -Tuﬁl‘u’v’) =+ (xg+ - maxu’ﬂxuv’)a

where, o € N(;) is such that *®z,42.y = ®? . Then we take [’ = (T qTyy —
TyaZure' ), | = 29" — 2%2,42., and the subwalk vuyv’ satisfies that 2(v) = 2(v'), uv is
positive and uv’ is negative.
{w, w} # {u,v}.

Assume without loss of generality that w ¢ {u,v}. Given that z(v) = z(v'), it follows
that TyyTwy — TuwTwe € Irg, .- Let us observe that

f=a9 —a9 = a0ty — 7
= wa(xuvxwv’ - xuv’-rwv) + ($axuv/xwv - ng)’

where a € N(g) is such that *®z Ty = 29" . In this case we set = ¥ (xypTwy —
Ty Tuww), [ = Ty T — 29 € Ipp, .. Notice that deg(f”) = deg(f) and that the

subwalk uv'u’ satisfies that z(u) = z(u'), uv’ is positive and v’/ is negative.
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LEMMA 3.1.5. Let f = a9 —x9 € Ic, .. Suppose g contains a subwalk uvw such that
z(u) = z(w) and wv,vw have different signs. Then, f = f' 4+ xuf" for some f' € Iz, , and

f" € I, . with deg(f") = deg(f) — 1.

PROOF. Suppose without loss of generality that wv is negative and vw is positive. Then the

degree-balance condition guarantees the existence of a positive edge uu’. Consider the following

two cases:
(i) v # w.
Since z(u) = z(w), if follows that . Twy — TwwTww € Ino, - Let o, € N() be such
that 29" = LTy Ty and 9 = xuvma/. Then, we have that

+ — /
f=29 —x9 =x%%wTw — Tyx®

= Y (Tyw Tww — TurTww) + Tup (TF Ty — a:al).
Let f/ = *(XywTwy — TupTww ) and [ = %@y — z%. Given that Irg, . is prime
and f, Ty Two — TuvTyw both belong to Ing, . we have that f” € Ipg, . Furthermore,
deg(f") = deg(f) — 1.
(i) v = w.

In this case uw is a positive edge in g so by the degree-balance condition there must
be a negative edge ww’ with w’ ¢ {u,v}. This situation is analogous to the previous case
since uvw is a subwalk with z(u) = z(w), uv negative, vw positive and ww’ a negative

edge in g such that w' # u.

PROOF. As previously mentioned, it suffices to show that I, . € Inq, .. Let us remember

that I, , = (9" —ax9 g ekergI0,.) and let f = a9 —a9 € Iy

m,z "

If deg(f) = 2, then
f € Im, . by definition. Suppose that deg(f) = k+ 1. By Lemma 3.1.4 and Lemma 3.1.5 we can
write f = f' 4 zy, f" for some 1 <u < v < n where f' € Iy, . and deg(f”) = k. By induction on

the degree we have that " € Iy, ., hence f € I, .. O
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3.2. Restriction to Simple Graphs

In this section, we provide a proof of Proposition 1.4.7, which demonstrates that as the number

of colors k increases, large moves become necessary in a binary Markov basis for IC,, .

PROOF OF PROPOSITION 1.4.7. Let k > 3, be an integer and z be the k-coloring of [2k] such
that z(u) = u (mod k) for every u € [2k]. Let 3, and 1y be the vectors of size k with all 3’s
and all 1’s, respectively. Consider dy = (3x;1x) € N% and ¢, € N(kgl) be such that for every
1<u<v<k

2 iflu—v=1 (mod k)
cr(u,v) =

0 otherwise.
In order to prove that the simple-graph fiber Fr,, . (di, cx;0,1) contains only two elements we

start by making the following two claims for every g € Frr,, , (di, cx; 0, 1).

Claim 1. If {u+k,v} € E(g) for u € [k], v € [2k] with v = u+ € (mod k) and € € {1, —1}; then
{u,w} € E(g) for any w € [2k] with w = u — € (mod k).
Claim 2. The set {k + 1,k + 2,...,2k} is independent in g.

Assuming both claims, let g be a simple graph in Fpp,, _(dy,cy;0,1). Since ¢ (1,v) # 0 if and
only if v € {2,k}, it follows from Claim 2 that either {1 + k,2} or {1 + k,k} is an edge in E(g)
but not both. We will prove that choosing one of the previous two edges determines g completely.
Assume that {1+ k,2} is an edge in E(g). By Claim 1 we have that {1, %} and {1,2k} are both
edges in E(g). Now, since {2k, 1} € E(g) it follows from Claim 1 that {k,k — 1} and {k,2k — 1}
are both edges in E(g). Continuing with this process and repeatedly, applying Claim 1 shows that
for any u € [k] and v € [2k] such that v = u — 1 (mod k), {u,v} € E(g). Let E C E(g) be
the set with all the edges of this form and let gg be the subgraph of g generated by E. Then,
(degg,, (u))uefor] = (3k; 1). This implies that £ = E(g), which means g = gg.

An analogous argument shows that if {1+ k&, k} is an edge in g (instead of {1+ &, 2}) then the
graph g is generated by the set of edges E' = {{u,v} : u € [k],v € [2k] and v = u+ 1 (mod k)}.
This shows that the only two graphs in Fno,, _ (dg, cx;0,1) are gg and gp. Since ENE' = {{u, v} :
u,v € [k] and v —u =1 (mod k)}, we conclude that ||gg — gp'|1 = |E| + |E'| — 2|E N E'| = 2k.

Now we prove claims 1 and 2. Suppose g € Froy, . (di,cx;0,1) and let {u + k,v} € E(g)

where u € [k], v € [2k] are such that v = u + € (mod k) with € € {1,—1}. Let w,w’ € [k] such
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that w = u + € (mod k) and w’ = u — ¢ (mod k). Since cp(u,w’) =2, 271 (w') = {w',w' + k} and
degg(u+k) =1, it follows that {u,w’+k} and {u,w’} are both edges in E(g). This proves Claim 1.
To prove Claim 2 let g € Fpp, . (dg; ¢x) and suppose that {k+1,k+2,...,2k} is not independent.
Without losing generality assume that {k + 1,k + 2} is an edge in E(g). Claim 1 then implies
that {1,k} and {1,2k} are both edges in F(g). Following an argument analogous to the proof of
Claim 1 we can see that for every u € [k], {u,v} € E(g) for any v € [2k] such that v = u — 1
(mod k). In particular, this means that {3,2+k} € E(g) which would imply that degy (2 +k) > 2.
By the definition of dj, this is a contradiction. Therefore, the set {k + 1,k + 2,...,2k} must be

independent.

3.3. A Quadratic Grobner Basis

The aim of this section is to show that {#9" — 29 : g € M,.} is in fact a Grobner basis
for I'np, , with respect to a monomial order defined below. When the k-coloring z is constant, the
statement follows directly from [40, Theorem 2.1]. As a matter of fact we will use this result, stated
in Proposition 3.3.1 below, as the motivation to prove Theorem 1.4.14.

To prove the main result of this section we start by introducing the monomial order > as
follows. Let us identify the set [n] with the vertices of a complete graph K, embedded in the
plane in a way that the vertices form a regular n-gon, labeled clockwise from 1 to n. We define
the weight of the variable x,, as the number of edges of K, which do not meet the edge uv.
For instance, if n = 5, then the variables x12, x23, T34, T45, x15 have weight 3, and the variables
x13, T4, T35, T14, T25 have weight 1. In general, the weight of a monomial ® := [[,, x5u is the
sum of the weights of the variables x,, appearing in <, with multiplicity. Let > denote any
monomial order that refines the partial order on monomials specified by these weights. Given any
pair of non-intersecting edges uv, u'v" of K,, such that uv’, vu’ intersect, we have from the definition
of weights that iny (TyyTye — Tuw Tury) = Tup Ty -

From Lemma 3.1.2 and the definition of the order >, it follows that

{iny (a:g+ —129 ):g € My} = { TuwTww : uv,u'v’ do not intersect in the embedding of K,

(3.5) in the plane and {z(u), z(v)} N {z(v), z(v')} # 0}.
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PROPOSITION 3.3.1 ( [40], Theorem 2.1). The set of binomials {29 —a9~ : g € kerz D, ||g||1 =

4} is a Grobner basis for Ip, with respect to >.

PROPOSITION 3.3.2. For any monomial walk g € kerz, IC,, , there exists a pair of non-intersecting

edges uv,uw'v' in the embedding of K, in the plane such that Xy, divides either 29" or 29" .

PRrROOF. Let g € kery IC,, , and let M,, = {w € kerz D,, : ||w||1 = 4}. Similarly to (3.5), from

the definition of > it follows that

+

{ing (2% — 2 ):w € My} = { TyuTy : uv,u'v’ do not intersect in the embedding of K,

in the plane}.

As a consequence of the containment kerz X, .C kerz D,, it follows that 29" — 29 € 1 D, -
Furthermore, Proposition 3.3.1 implies that iny (Ip, ) = ({z*" — 2% : w € M,}). Hence, there
exists w € M, such that in, (w) = ZyyZww divides ing (29 — 29 ). Since wv and w'v/ don’t

intersect in the embedding of K, in the plane, the result follows. ]

Proposition 3.3.9 below extends the result mentioned above and serves as a crucial step for
proving Theorem 1.4.14. To establish the proof for Proposition 3.3.9, we will introduce the following
notation and lemmas.

Let z : [n] — [k] and let q,q¢" € [k]. We define the k-coloring zg/ : [n] — [k] as

(3.6) 29 (i) == K fali)=d,

z(1) otherwise.

In other words, the k-coloring zg/ is obtained from the k-coloring z by re-coloring all the ¢’-th

colored vertices with the ¢g-th color. Then, we have the following.
LEMMA 3.3.3. For any k-coloring z of [n] and q,q’ € [k] we have kerzg A C kerz ICy, .
»2q

PROOF. Let g € kery IC, , and q,¢' € [k]. g satisfies the degree-condition by assumption.
Hence, all we need to prove is that g satisfies the color-balance condition with respect to zgl. To

do so, notice that for every i, j different from ¢/,
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cg (2,,7) ifi,j #q,
g (28 00) = { ek (2,0 ) + (=, 0 5) ifi=q,j#aq,
¢ (2,0,9) + 5 (2,4, ¢) + 5 (2,0,¢)  ifi=j=q
When either i = ¢’ or j = ¢, c;t(zgl,z',j) =0.
[l

Now let g € Z(Z), w € [n], and z : [n] — [k] with z(w) = q. We define the contraction of g with

respect to w and z as the vector o,(g) € 7(3) such that for every distinct u,v € [n],

,

Guv, if 2(u) # q and z(v) # g,
> Guw, fu=wand z(v) #q,
(3‘7) Uw(g)uv — u'€z1(q)
Z Guv's if v =w and Z(’LL) # q,
v'ez1(q)
0, otherwise .

We call 0,,(g) simply a contraction when w and z are clear from the context.

REMARK 3.3.4. Notice that whenever u or v belong to the set z~1(q)\{w} we have 04 (g)uy = 0.

In other words, z~'(q)\{w} is an isolated set of vertices in o,(g) when regarded as a graph. This
implies that for any v € [n], S C [n]\{v} and S’ C 271(q)\{w}

ng(g)uv = Z Uw(g)uv = 2 Uw(g)uv-

ueS ueS\S’ ueSuUS’

EXAMPLE 3.3.5. Consider the monomial walk g from Example 3.1.1. The contraction o1(g) is
shown in Figure 3.4. Notice that the reduction o3(o1(g)) returns a zero-vector, or in other words,

an empty graph.

LEMMA 3.3.6. For any k-coloring z of [n], any monomial walk g € kery IC, , and w € [n],

ow(g) is also a monomial walk. In other words, the map o, satisfies oy, (kery IC,, ;) C kerz ICy, .

PRrROOF. Let g € kerz I, , and w € [n] with ¢ := z(w). We will show the following:

(1) ow(g) satisfies the degree-balance condition.
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FIGURE 3.4. Monomial walk g = [1,5,2,4,5,3,2,4] on the left and its contraction
o1(g) = [1,4,5, 3] on the right.

Let v € [n]. If v € 271 (¢)\{w}, Remark 3.3.4 implies that deg (g)( v) = 0, so let us
assume v ¢ 2z~ 1(q)\{w} and consider the following two cases:

(i) v # w. In this case, by properly arranging summation indices and using Remark 3.3.4,

one can see that

deg (g)( ) - Uw Z Uw uv = Z Uw(g)uv + Z Uw(g)uv

UFEV UFEV uUFv
u¢z""(q) ucz""(q)
= Z Guv + O (g)wv = Z Guv + Z Ju'v
uFv UFv u'€271(q)
ugz""(q) ugz""(q)
=" guo = deg] (v) — deg; (v) = 0.
uFv

(ii) v = w. Similarly to the previous case, by strategically rearranging summation indices

and using Remark 3.3.4, we have

deg:w(g) (v) — deg;w(g) (v) = Z ow(G)uw = Z 0w(9)uw

uFw ugz"*(q)
= Z Z Guv' = Z < Z Z guv)
ugz"1(q) v'€271(q) iclk] uezl(3)v'ez"1(q)
i#q
= (chiyq) — ¢g(i,q)) =0
i€[k]
i#q

Where the last equality holds because g satisfies the color-balance conditions.

(2) ow(g) satisfies the color-balance condition.
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Let 1 <i < j < k. It follows from Equation (3.2) and (3.7) that if ¢, j # ¢, cfw(g)(ijj) =

+

c?;(i,j) and if i = j = ¢ then c @) (i,7) = 0. In either of these two cases we have

c:fw(g) (1,5) = c;w(g)(i,j). Now, suppose that ¢ # ¢ and j = ¢. In this case we have

Cuie) (B 9) = €y (19) = > w@uw= Y, > )guv’

u€z=1(3) u€z=1(i) v ez"1(q

— (s — (s —
_Cg(ZaQ)_Cg(%Q)_O'

The case i = q,j # q is analogous to the latter case.

0

For the rest of the section we will assume that the k-coloring z is non-decreasing which will be

useful thanks to the following.

REMARK 3.3.7. Consider the embedding of K,, in the plane and suppose the k-coloring z : [n] —
[k] is non-decreasing. If uwv,u'v’ are two non-intersecting edges with z(v') ¢ {z(u), z(u'), z(v)} then
for any vertex w such that z(w) = z(v'), we have that uwv,u'w are non-intersecting edges in the

embedding of K.

LEMMA 3.3.8. Let z be a k-coloring of [n] with k > 2 and g € kery, IC;, , be a monomial walk.
Let w € [n] and uwv edge in 0.,,(g). Then,
(i) there exists a vertex vy € [n] such that uvy is an edge in E(g) with same sign as uv and
z(vo) = 2(v),
(i) if v'v' is and edge in E(0y(g)) with u',v" # w such that uwv,u'v’ do not intersect in the
embedding of K,, in the plane, then uvy and u'v' do not intersect in the embedding of K,

either.

PROOF. (i) Let ¢ = z(w) and wv an edge of 0,(g). By definition of 0,(g) we have that
every vertex in z~'(g)\{w} is isolated. Hence we have two options: either u,v # w or
v=w (or u =w). If u,v # w, uv is also an edge of g in which case we can set vy = v.
Now, assume that v = w (the case v = w is completely analogous).

Given that uw is an edge in o0,(g), we have that 0y (g)uw # 0. Assume without
loosing generatity that oy, (g)uw > 0 (i.e., uv is positive). By definition, oy (g)uw =

ZUO €2-1(g) Juvos which implies that gy, > 0 for some vy € 27!(g). This means that uwvy is
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(i)

a positive edge in g with z(vg) = ¢ = z(w). We can apply a similar argument for when
ow(g)uw < 0.
Given that v/, v" # w, it follows from the construction of o,,(g) that v'v’ is an edge of g. If
v # w = uvy = uv so the result follows trivially. If v = w, then 2(v) € {z(u), z(v), z(v")}
so Remark 3.3.7 implies that uvg and u/v’ are non-intersecting edges in the embedding of
K, in the plane.

[l

PROPOSITION 3.3.9. For any monomial walk g € kerz LC,, , there is a pair of non-intersecting

edges uwv,u'v' in the embedding of K,, in the plane such that z(u) = z(u') and xy, 2y divides either

+ —
29 ora9 .

Proor. Let g € kerz IX;, . be a monomial walk. Notice that a monomial x,x,/, divides 9"

(a)

or 29 if and only if wv, u'v’ is pair of edges in F(g) with same sign. Let z : [n] — [k] be a k-coloring
assumed to be non-decreasing and for convenience suppose z([n]) = {1,...,x} for some k € Z,.
When k =1 (i.e., z is constant) the result follows from Proposition 3.3.2. Let us divide the proof

for k > 2 in the following two cases:

There exists a monochromatic edge zy € E(g) with z(z) = 2(y) = ¢.

For every i € [k]\{¢}, let u; := min{u : z(u) =i}, g := oy, (O, (- ou,(m)---)) and

w e argmaXycn]: z(v)#£e degg (2))

From Proposition 3.3.2, there exists a pair of edges uv, /v in 7,,(g) such that uv, u'v’
do not intersect in the embedding of K, in the plane. Since w is the only (potentially)
non-isolated vertex with respect to o,(g) with z(w) # ¢, we can assume w.l.o.g. that
z(u) = z(v) = z(u') = ¢. By Lemma 3.3.8(i) there exists a vertex v € [n] such that
u'v)y € E(g) has same sign as v'v" and z(v()) = z(v"). Moreover, since uv,u'v’ € E(0.,(g))
do not intersect in the embedding of K, and u,v # w, it follows from Lemma 3.3.8(ii)
that wv,u'v] is also a pair of non-intersecting edges in the embedding of K, in the plane.
Notice that uv,u'v) have same sign. Then, after applying Lemma 3.3.8 repeatedly to g,
we will get a vertex vjj € [n] such that the edges uv,u'vj € E(g) have the same sign, and

uv,v'v] do not intersect in the embedding of K, in the plane. Since we assumed that
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z(u) = z(u'), this concludes the proof of Proposition 3.3.9 under the assumptions made

for this case.

@ 5y @

FIGURE 3.5. Illustration of Proposition 3.3.9, case (a): Recovering the pair of non-
intersecting edges {3,4},{1,7} in g from {3,4}, {1, w} in E(0w(g)).

(b) There are no monochromatic edges in the monomial walk g.

We will prove Proposition 3.3.9 for this case by induction on x. First, let us observe
that Proposition 3.3.2 guarantees the existence of a pair of non-intersecting edges edges
wv,u'v’ € E(g), both with the same sign and such that do not intersect in the embedding
of K,, in the plane. Now consider the following cases:

(i) Let k < 3. By the assumption at the beginning of (b) we have that z(u) # 2(v), z(u') #
2(v"). From the Pigeonhole principle either z(u) = z(u') or z(u) = z(v'). This proves
our base case.

(ii) Let k > 4. Assume that Proposition 3.3.9 holds for any instance of case (b) for which

the size of the k-coloring’s range is smaller than «.
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Let us first prove that there exists v € [n] such that z(u), z(v) ¢ {v,v+1} (v+1=1
if v = n): When k > 4 this follows from the Pigeonhole principle. When x = 4 we
can use that z is non-decreasing to see that any pair of edges with vertex colors 1,3
intersects with any pair of edges with vertex colors 2,4. In such a case we can assume
w.l.o.g that z(u) = 1,2(v) = 2 and set i = 3.

The existence of v guarantees that for any w € 271({q, ¢'}) the contraction o,(g) is
non-empty. Now, let v/ = v+ 1, ¢ = 2(v) and ¢’ = z(V/'). Let zg, be the k-coloring
of [n] as defined in 3.6 and notice that by Lemma 3.3.3 g is a monomial walk with
respect to zgl, i.e., g € kery An,zg" Now, pick w € [n] such that zg/ (w) = q and notice
that by previous observation o,(g) is non-empty. Then, either by case (a) above
or by the inductive step applied to o,(g) with respect to zg,, there exists a pair of
edges zy,x'y’ € E(oy(g)) such that zg/ (x) = zg/ (') and zy,z'y’ do not intersect in
the embedding of K, in the plane. Since w is the only (possibly) non-isolated vertex
with zg/ (w) = q, it follows that x,2’ # w and by definition of z'qll it follows that
2(w) = 2 (2) = 2§ (') = 2(2).

Notice that at least one of the vertices y,y’ is different from w. Without losing
generality assume 3’ # w. Then, by Lemma 3.3.8 there exists yog € [n] such that xyg
has the same sign as zy and zyg, 'y’ do not intersect in the embedding of K, in the

plane. Moreover, z(z) = z(z'). This finishes the prove of this case.

O

PROOF OF THEOREM 1.4.14. Let > be any monomial order that refines that refines the partial
order specified by weights just as in the beginning of the current section. Let Biny, , 1= {:c9+ -9
g € M, .}. By [104, Corollary 4.4], the set of binomials {ngr — 29 :g € kery IC, .} contains
every Grobner basis (with respect to any monomial order) of Irg, .. Hence, to show Binyy, , is
a Grobner basis, it is enough to prove that the leading term of any binomial 29" — 29 €1 IC, .
is divisible by a monomial .,y where uv,u’v’ € E(g) do not intersect in the embedding of
K, in the plane and {z(u), 2(v)} N {z(«), ()} # 0. Assume that f = 29" — 29 ¢ Ing, . with
in. (f) = 29", is a minimal counterexample in the sense that f has minimal weight. Here the

weight of a binomial is the sum of the weights of its two monomials. This means that every pair

of positive edges uv,u'v’ € E(g) with z(u) = z(u') intersect in the embedding of K, in the plane.
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Furthermore, we can assume that every pair of negative edges uv,u'v' with z(u) = z(u’) intersect
in the embedding of K, in the plane as well. Otherwise, we can reduce 29 modulo Biny, , to
get a counterexample of smaller weight. On the other hand, the existence of g would contradict
Proposition 3.3.9. Hence no such binomial 29" — 29~ € I 1o, . could exist. Therefore, Biny, , is a

Grobner basis for I, . with respect to .

3.4. Future Directions

The combinatorial description of the Grébner basis in Theorem 1.4.14 has direct implications
for the combinatorics of the polytope Prp, ., := conv(ay, : 1 < u < v < n), defined as the convex
hull of the column vectors ay, of I, .. More specifically, as a consequence of | , Theorem 8.3],
the Grobner basis of I, . described in Theorem 1.4.14 induces a unimodular regular triangulation
T- of Prc, .. Following ideas analogous to [40, Remarks 2.5], this triangulation enables the com-
putation of the Ehrhart polynomial (which, in this case, equals the Hilbert polynomial) of Prg, ..
For example, for k = 2 and any k-coloring z : [n] — [2] with n; = |271(4)], the Hilbert polynomial
of I, . is given by

Hpg, . (r) = card (7" “Pro,.. N Z”+3) = Z ar,
TEWT,3

where W3 = {r € N3 > 1<i<j<a Ti,j = 1} is the set of weak 3-partitions of r, and

a (m + 271 + 27’172> <n1 + 271 + 27’1,2) n (m —2+7111+ 7'1,2> <n1 + 271 + 27’172>
T = —

n1—1 n1—1 77,1—1 77,1—1
ny+2711 + 2112\ (N2 — 2+ 122 ny—2+711+712)\ (N2 — 2+ T2
_n2 +n1n2
m—l n2—1 n1—1 n2—1

for every 7 € W, 3. Similar formulas can be derived for k > 2.

When the k-coloring z is constant, Prg, . is linearly isomorphic to the second hypersimplex
A, (2). In this case, the triangulation 7. has been thoroughly described in [40]. However, a
general combinatorial understanding of Ppg, . and the induced triangulation 7. remains an open
problem.

Additionally, previous research has focused on the study of the degree sequence polytope, defined

as the convex hull

D,, :=conv(d(g) : g € Gn),
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where G, is the set of simple graphs with vertex set [n]. For more details, see [87,91, | and
references therein. Two key points of interest regarding this polytope include its hyperplane repre-
sentation, which can be used to recover the famous Erdés-Gallai inequalities characterizing degree

sequences of simple graphs, and the vertex description of D,,. In fact,
Vert(Dn) = {g €Gn: |~F(d(g)a 0, 1)| = 1}

The graphs constituting the vertices of D,, are known as threshold graphs, which have multiple
combinatorial characterizations [87, Theorem 1.2.4]. In particular, a graph g € G, is a threshold
graph if and only if there is no m € M,, such that m+g € G,,. This establishes a natural connection
between threshold graphs and binary Markov bases for D,,.

A natural extension of this idea is to provide a full hyperplane and vertex representation of the

degree-color sequence polytope, defined as
TC,, .= conv ((d(g),c(g)) : g € Gn),

given a fixed coloring z : [n] — [k]. In particular, the H-representation of TC,, , would be useful
k+1
for characterizing sequences (d,c) € N" @ N (*3") that correspond to the degree-color sequence of a

simple graph under a given coloring z.

REMARK 3.4.1. Given a coloring z : [n] — [k], there exists an injective map from Gy, to the set
of 3-reqular graphs with vertex set {1,...,n} U{(i,7) : 1 <1i < j <k}, which sends g € G, to the

hypergraph H with edge set

E(H) = {{u,v, (2(u), 2(v))} : {u, v} € E(g)}}.

This implies that degree-color sequences can be interpreted as degree sequences of a family of 3-
reqular hypergraphs. In general, [/2, /3] showed that, for fized r > 3, determining whether a
sequence of non-negative integers corresponds to the degree sequence of an r-regular hypergraph is

NP-hard.
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CHAPTER 4

Markov Bases for a Labeled Stochastic Block Model

In this chapter, we provide proofs for the contributions presented in Section 1.5.

Theorem 1.5.2 describes the Graver basis of the design matrix of Labeled Stochastic Block
Models, which includes the classic SBM as a special case. While the moves described in this
theorem allow us to connect fibers of the form F(Aygpwm(z);l, L) for any I, L € Nz(g)’ these moves
are insufficient to connect fibers when natural constraints are imposed on the space of graphs. As
discussed in Subsection 1.5.1, Theorem 1.5.3 provides a set of moves applicable in scenarios with
different natural constraints on the space of graphs.

Finally, Proposition 1.5.6 establishes that when z is unknown in the Labeled SBM model, using

a consistent block assignment estimator 2 results in a consistent plug-in p-value.

4.1. A Simple Graver basis description

Before presenting the proof of Theorem 1.5.2, we introduce some notions and a key result. We
say that a 0/1 matrix A satisfies the consecutive 1’s condition if there exists a permutation matrix
P such that the 1’s in each row of AP appear in consecutive positions. A 0/1 matrix A is said
to be totally unimodular if every square submatrix has a determinant of +1 or 0. It follows from
known results on unimodularity that if A satisfies the consecutive 1’s property, then A is totally
unimodular (see [68]).

Recalling the definition of a circuit from Section 1.3, the circuits of A correspond to the subset

of kery A with minimal support.

PROPOSITION 4.1.1 ( [104], Proposition 8.11). If A is a totally unimodular 0/1 matriz, then

the set of circuits C(A) is equal to the Graver basis Gr(A).

The proof of the following theorem relies on this proposition.
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PROOF OF THEOREM 1.5.2. By definition, the design matrix of the Labeled SBM with block

assignment z and /¢ interaction types has the form

AspMm(z) 0 . 0

0 AsBM(z) - 0

ALsBM(z,0) = Loxe @ Agpm(z) = _ . * :
0 0 < AsBM(z)

£ column blocks
Moreover, Agpwm(.) satisfies the consecutive 1’s condition: its columns correspond to pairs of
nodes, which can be reordered based on the pairs of blocks they connect according to the block
assignment z. This implies that Apgpwm(. ¢ itself has the consecutive 1’s property and is therefore
totally unimodular.

Furthermore, it is clear that the set

Muspmip - = {el) - eff,)v, [Lell], 2(u) = 2(4), 2(v) = 2(v')}
= {g € kerz Arspm(z0) ¢ |19l = 2}

corresponds to the elements in Apgpyi(z,¢) of minimal support. In other words, C(Arspm(zr)) =

MrsBM(z,0)- As a consequence of Proposition 4.1.1, it follows that Mygpnz,) is the Graver basis

of ALsBM(z,0)- U

4.2. Connecting Restricted Fibers and Consistency of the Plug-in p-value

PRrROOF OF THEOREM 1.5.3. Let z be a fixed block assignment and

F = F(ALspui(0),5) N {9 = (Guo)uco € NG+ [|guulli = Nuw},

where b € NALgpp(z.0) and N = (Nyo)uey € NG,

Let f = ( Diu<ule ),g = (95’3 cu < wv,l € [l]) € F be different labeled graphs with the

same sufficient statistic. Assume without losing generality that gq(fg > qulv) where z(u) =i,2(v) =7

and | € [¢]. Since S _, gz(fll,) = Nuw = b, fq(fl:) it follows that there is a I’ € [(]\{l} such that
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g&l;) < flsi:) Furthermore, since Apspm(.,0)f = ALsBm(z,0)g, We have

2 : o _ E : O]
gu/U/ — fu/v/,
'U/GBZ',”UIGB]' U,GBi,UIGB]'

meaning that there exists v’ € B;, v’ € B; with fl(f,zj, > gq(f,z),. Let m = eg?; + eg,z)), — egv) —eyyV €

7L(3) and observe that f+me Ne(g), and Zle (f+ m)gq), = Zle f&? = Nyv. In other words,

||f +m|| = Nyp. Furthermore, we have

||f _ng - 47 lf gfj//g/ > fisil,u)/
[(f+m)—glh=
|f —glli —2, otherwise.

By an inductive argument this shows that the set //\/IVLSBM(Z’Z) described in the statement of the

theorem connects F. Since F was an arbitrarily picked, the statement of the theorem follows. [
PROOF OF PROPOSITION 1.5.6. Let G ~ LSBM(z(™, ¢) for every n and a fixed £ € N. Then

P(p(z™, G™) = p(z™), "))

Where the last equality follows from the definition of the plug-in p-value, the fact that T,(g) =
T.(9") < T,..(9) = T5.(qg’) for any o € S, and the property that GoF:(g) = GoF,.z(g) for any
% € [k]" and o € Sj. Since % is a strongly consistent estimator, it follows that lim,,_,, P(p(z(™, G™) =

Pz, G)) = 1. O

4.3. Experimental Results and Further Questions

We illustrate the performance of the goodness-of-fit test described at the end of Section 1.5.1
for scenario 3) in the frequentist setting with the following experiment. We generated 150 graphs,
each with 70 nodes, from the stochastic block model (SBM) where z ~ Multinomial(7) and Gy, ~
Poisson (0 (y).(v)) for fixed m and 6 = (0;; : 1 <7 < j <6). We tested the null hypothesis that an
SBM with & blocks, for k = 3,...,8, fits the synthetic data and computed the proportion of times

the test rejected the null hypothesis using an approximation of the p-value from Equation 1.12 at a
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nominal level of 0.05. To approximate the p-value, we implemented Algorithm 2 from [79] with the
Markov basis described in Theorem 1.5.2 and the parameter estimation algorithm from [88]. The
results, shown in Table 4.1, align with expectations. As anticipated, when the synthetic networks
are generated from an SBM with an underspecified number of blocks, the test rejects the null
hypothesis more than 99% of the time. However, when the synthetic networks are generated from

an SBM with six or more blocks, the test fails to reject the null hypothesis in most cases.

Number of blocks (k) | Power
3 1
1
0.99
0.07
0.02
0

O | O U1 >

TABLE 4.1. Power calculations for the SBM (k) with &k = 3,...,8 and n = 70 nodes.

Based on multiple simulations similar to the one described above, we believe it is worthwhile

to explore the following question.

QUESTION 4.3.1. Let k € N and let z : [n] — [k] be a block assignment. Let G ~ LSBM(z,¥),
and for each q € {2,...,n}, let 249 = 2(¢q,G) be an estimator recovered from q and G using
algorithms such as those in [88, ]. Define p'9(G) = plg, 29) as the plug-in p-value from
Equation 1.9, computed using the chi-square statistic from Equation 1.11. Under what conditions

does P(pP(G) < --- < p™(G)) approach 17

Assuming a positive answer to this question, the goodness-of-fit test can be used to determine
the number of blocks in an observed network by applying the test sequentially. As an example, we
analyzed two undirected, valued networks, where nodes represent parasitic fungal species (n = 154)
and tree species (n = 51), respectively. In these cases, the edge counts g,, correspond to the
number of shared host species and the number of shared parasitic species, respectively. The data
was obtained from the sbm package in R [26].

After sequentially applying our test to assess whether the data fits a Poisson-SBM, we obtained
the results presented in Tables 4.2 and 4.3.

These results suggest that the tree species network and the fungal species network are better

modeled by a Poisson-SBM with £ = 10 and k& = 22 blocks, respectively.
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Number of Blocks | 3-7 [ &89 |10 | 11 | 12 | 13 |14 | 15
p-value 0 |.01.19]68.93].98| 11

TABLE 4.2. Goodness-of-fit results for the tree species network.

Number of Blocks | 3-17 | 1821 | 22
p-value 0 .01 | .07

TABLE 4.3. Goodness-of-fit results for the fungal species network.

This differs from the model selection approach in [88], which uses the Integrated Classification
Likelihood (ICL) criterion and suggests modeling the networks with 7 blocks for tree species and
9 blocks for fungal species. Further investigation is needed to understand the differences between
the goodness-of-fit test we propose and the ICL criterion, as well as their relative strengths and

limitations.
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