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Abstract

This thesis investigates novel theoretical methods in the field of molecular computation. We

investigate these ideas in theory, developing new ideas relating to existing models and rigorously

establishing their correctness. But we also goes one step farther, demonstrating implementations

of these ideas.

Our work encompasses two projects. The first is within the model of Thermodynamic Binding

Networks (TBNs), a highly abstracted model of computation with molecules that bind along com-

plementary sites. The model focuses purely on thermodynamics, and our focus is entirely on the

question of the stability of a given configuration of molecules, rather than kinetic pathways between

different configurations. We demonstrate a way to amplify signal even within these restrictions,

theoretically capable of detecting a single molecule and amplifying its signal by an amount expo-

nential in the complexity of molecules comprising the system. This system differs from common

techniques like PCR due to its purely thermodynamic nature. We show this system’s robustness by

defining its “entropy gap”, a notion of how thermodynamically unfavorable a configuration would

need to be in order for the system to yield a false positive or false negative.

We then show a corresponding negative result: that within TBNs, it is impossible to amplify

signal in this way more than doubly exponentially. This negative result may have more general

implications on the field of thermodynamic computation, a budding research area with strong

promise.

We also implement this system using DNA strands. While this implementation is a work in

progress and has yet to match the exponential nature of the corresponding theory, it serves as a

proof of concept that this method of amplification can work and of the TBN model more generally.

The second project concerns the model of Chemical Reaction networks (CRNs). However, rather

than working within the model, this result shows an efficient algorithm for simulating stochastic

CRNs, adapting work from the related but more restrictive model of population protocols. Our

simulation algorithm is exact, yet still has dramatic speedup over the näıve algorithm, being able

to simulate O(
√
n) reactions in O(log n) time on a population of n molecules, under reasonable

assumptions. This bridges a gap between existing algorithms, which have not been proven to be

both exact and efficient in a way that scales with molecular count.
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We validate this theory by providing an implementation of this algorithm, primarily written in

rust and made public via a python package called batss. While this package technically samples in

approximation, we show that its output is meaningfully indistinguishable from that of exact simu-

lation. We also show that it obtains the theoretically predicted O(
√
n) speedup, rendering it more

efficient at large molecular counts than the most efficient existing exact algorithms. Development

of this package is ongoing, and significant optimizations have yet to be made.
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CHAPTER 1

Introduction

In science as a whole, the gap between theory and application can sometimes be chasmic.

This is true on many levels: epistemologically, methodologically, and even socially. One powerful

exception to this is the field of DNA computing, which aims to rigorously study both the theory

and application of DNA nanotechnology, and ask: what kind of computation can it perform?

Computation is an incredibly broad subject, capable of encompassing not just silicon computers or

even just traditionally studied models like Turing machines that are associated with the theory of

computation generally. Rather, computation in its breadth captures all sorts of systems that are

designed to look at something and act in some prescribed way in response to it. This mindset of

breadth enables DNA computing to tackle challenges across all levels of abstraction, from high-level

models that blur all but the most crucial details of a system, to empirical reality that is grounded

in direct observation.

Yet, it is still very easy to silo oneself into thinking primarily at some preferred layer of ab-

straction. Often, the constructions of science are so complex that anyone could spend their entire

life staring at a single thing and still not find all of its secrets. I aim to utilize the trend in DNA

computing of creating ideas that can span these boundaries. I wish both to expound rigorous theory

that expands our understanding of what kinds of things might be possible at a nanoscale, and to

empirically demonstrate implementations of that theory.

As my knowledge as a mathematician is primarily theoretical, this is in some ways a tall ask.

However, there is a need for people who can think at all of these layers - in some ways analogous to

a full-stack software developer, but specifically able to think in ways more radically different than

a front end and a back end. Because concepts within intricate scientific fields tend to exhibit that

intricacy self-similarly, there can be a great deal of nuance to even the basics of each point of view

from which one can view a particular system or phenomenon. To this end, our focus will not be

on completely arbitrary dispersed among different topics within the field. We will focus on some
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of the models that the field studies, and try to wring as much insight as we can out of our analysis

at each of these levels.

1.1. Models of computation

Many projects in DNA computing focus primarily on some particular model of computation.

These models are useful because they are designed to be conceived at different layers of abstraction,

and to have something useful to say at each of them. This is a useful method of thinking because

it can spur on scientists’ ability to come up with entirely new concepts. As they say, restriction

breeds creativity. By focusing on one model of computation and the aspects of nanotechnology

that it foregrounds, we can learn something not just about the model itself, but also about the

more fine-grained reality that it belies.

Here, we will do exactly this: focus on particular models of computation, and attempt to

do something that transcends the divide of theory and practice. Success in this endeavor means

pushing the envelope toward understanding. After all, without theory, it is hard to truly understand

why complex processes operate in the way that they do. This is a strength of theoretical computer

science, and of models of molecular computation especially: by putting a particular lens over the

laws of physics and chemistry and biology, we can know not just the very mechanical “why” of their

operation, but also the “how” that might allow us to generalize and develop new designs that could

mimic natural phenomena. Each lesson from each point at which we view some phenomenon can

be propagated to other points of view, to other related phenomena, or even to seemingly disjoint

areas where a similar mindset happens to yield similar results.

Here, we will focus our attention on two such models.

1.1.1. Thermodynamic binding networks. Thermodynamics underlies so many physical

phenomena that its presence can easily be taken for granted. The fact that systems tend toward

an equilibrium with low energy is a powerful concept, and one that is both specific enough to

formalize and broad enough to generalize and view as a kind of computation. One attempt to do

this formalization within DNA computing is the model of thermodynamic binding networks [12,23].

This model is highly abstract in its most general form, washing away all distinctions between how

things bind to each other or even what kind of objects are binding. Rather, it cares only about

what is capable of binding to what, and which things are bound together in a given configuration.
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The model is still relatively in its infancy. More generally, thermodynamic computing as a

subfield of molecular computing broadly is a rich area with room not just to answer questions,

but to figure out the right way to ask them. What kinds of computations can be done via only

the process of letting a system reach its equilibrium? What kinds of unique advantages can these

computations have? How well do these theoretical abstractions match reality? These issues may

be of grave importance in the coming years, as traditional computing becomes more and more

costly in terms of time, energy, and physical resources, and thermodynamic computing promises

an alternative that could ameliorate these crises.

Within this model, we tackle the problem of signal amplification. This is a problem with

significant practical utility, allowing for detection of pathogens, toxins, biological markers, and so on.

In Chapter 2, we give a rigorous theoretical definition of what this problem entails within the model,

and demonstrate a specific thermodynamic binding network which can amplify signal by an amount

that is exponential in the complexity of the system (i.e. the number of distinct molecules and size of

molecules). We demonstrate this system’s robustness in the sense that undesired system states (false

positives and negatives) are programmably unfavorable compared to the system’s thermodynamic

equilibrium. We further the model itself, introducing new terminology and concepts that may serve

in future analysis as well. Finally, we show a negative result, providing an upper bound on how

much signal amplification can be done in this context, with potential implications for the field of

thermodynamic computing generally.

In Chapter 3, we demonstrate some early experimental attempts to verify the validity of this

theory. We show two motifs we used for implementing thermodynamic binding networks with real

DNA strands, and discuss practicalities and the relationship between theory and experiment in this

context.

1.1.2. Chemical Reaction Networks. Another useful aspect of chemical computation on

which to focus is the way in which molecules combine and split to form other molecules. These

reactions describe how chemical systems change over time, and therefore capture much of what can

be called computation within them. One very widely studied model within the field is Chemical

Reaction Networks. This model is used not just by those interested in chemical computation, but

also more broadly by scientists in any field where the semantics of chemical reactions adequately

capture the dynamics of a system they wish to study. The model is used descriptively by such

3



scientists, prescriptively by theorists who are interested in what kinds of things the model can

do, and is even studied extensively as its own object by theorists interested in what mathematical

properties it has. The model has direct scientific untility because chemical reaction networks can

be implemented by DNA strand displacement cascades [58]. Thus, advancing and understanding

our knowledge of both the model generally and of individual networks is valuable in the pursuit of

furthering nanotechnology.

In Chapter 4, we turn our attention not to any problems within the model, but to simula-

tion of the model. Simulation is important for working scientists, who may want to verify the

expected behavior of a system before spending costly time and money realizing that system with

real molecules or understand the array of possible behaviors that a system they are studying could

potentially exhibit. The version of chemical reaction networks that most closely describes reality

is stochastic, meaning that the natural way to simulate it is to simulate one reaction at a time.

This algorithm, known as the Gillespie algorithm [30], is used (sometimes with slight variation or

practical optimizations) very widely. Other simulation algorithms are able to simulate multiple

reactions at once, but these algorithms generally only approximate the output of the Gillespie al-

gorithm, with or without theoretical guarantees on the accuracy of that approximation. We show

that it is possible to simulate many reactions at once - on average O(
√

(n)) on a system with n

molecules - without sacrificing exactness. Our work builds on a brilliant insight into the related

model of population protocols [7], adapting it to the more general setting of chemical reaction

networks and rigorously proving that it is still both fast and accurate in theory. This insight allows

for the execution of batches of many reactions at the same time. Our adaptation required several

novel insights in order to work within the more general chemical reaction networks model, which

allows for arbitrary reaction sizes and has much less predictability when modeled in continuous time

compared to population protocols. We overcome these challenges respectively by transforming a

chemical reaction network into one that more closely resembles a population protocol in order to

allow for a variation of the batching algorithm to work properly, and by carefully choosing how we

sample inter-reaction times in such a way that we can make use of work done to obtain previous

samples to obtain future samples more quickly.

While a theoretical simulation algorithm does not correspond to a real system that we might

want to build out of DNA, it does have an analog: an actual implementation of the algorithm
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that can be run by scientists to simulate the model. We provide such an implementation. In

Chapter 5, we show empirically that our implementation actually matches all expected theoretical

benchmarks: it is fast, showing exactly the expected O(
√
(n)) factor of speedup that the theory

predicts. It is accurate, with its output indistinguishable from that of an exact Gillespie algorithm

simulator. And finally, it is able to simulate general chemical reaction networks with properties

that the existing batching algorithm cannot handle.
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CHAPTER 2

Signal Amplification in Thermodynamic Binding Networks

This chapter is joint work with David Doty and David Soloveichik. It was originally published

as [47].

2.1. Introduction

Detecting a small amount of some chemical signal, or analyte, is a fundamental problem in the

field of chemical computation. The current state-of-the-art in nucleic acid signal amplification is

the polymerase chain reaction (PCR) [53]. By using a thermal cycler, PCR repeatedly doubles the

amount of the DNA strand that is present. One downside is the need for a PCR machine, which

is expensive and whose operation can be time-consuming. The advantages of PCR are that it can

reliably detect even a single copy of the analyte if enough doubling steps are taken, and it is fairly

(though not perfectly) robust to incorrect results. Recent work in DNA nanotechnology achieves

“signal amplification” through other kinetic processes involving pure (enzyme-free) DNA systems,

such as hybridization chain reaction (HCR) [18], classification models implemented with DNA [39],

hairpin assembly cascades [68], and “crisscross” DNA assembly [44].

Although highly efficacious, PCR and these other techniques essentially rely on kinetic control

of chemical events, and the thermodynamic equilibria of these systems are not consistent with their

desired output. Can we design a system so that, if the analyte is present, the thermodynamically

most stable state of the system looks one way, and if the analyte is absent, the thermodynami-

cally most stable state looks “very different” (e.g., many fluorophores have been separated from

quenchers)? Besides answering a fundamental chemistry question, such a system is potentially more

robust to false positives and negatives. It also can be simpler and cheaper to operate: for many

systems, heating up the system and cooling it down slowly reaches the system’s thermodynamic

equilibrium.

We tackle this problem of signal detection in the formal model of Thermodynamic Binding

Networks (TBNs) [12,23]. The TBN model of chemical computation ignores kinetic and geometric
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constraints in favor of focusing purely on configurations describing which molecules are bound to

which other molecules. A TBN yields a set of stable configurations, the ways in which monomers

(representing individual molecules, typically strands of DNA) are likely to be bound together in

thermodynamic equilibrium. A TBN performs the task of signal amplification if its stable configu-

rations, and thus the states in which it is likely to be observed at equilibrium, change dramatically

in response to adding a single monomer. TBNs capture a notion of what signal amplification can

look like for purely thermodynamic chemical systems, without access to a process like PCR that

repeatedly changes the conditions of what is thermodynamically favorable.

This chapter asks the question: if we add a single molecule to a pre-made solution, how much

can that change the solution’s thermodynamic equilibrium? To make the question quantitative, we

define a notion of distance between thermodynamic equilibria, and we consider scaling with respect

to meaningful complexity parameters. First, we require an upper limit on the size of molecules in

the solution and the analyte, as adding a single very large molecule can trivially affect the entire

solution. Large molecules are also expensive to synthesize, and for natural signal detection the

structure of the analyte is not under our control. Second, we require an upper limit on how many

different types of molecules are in the solution, as it is expensive to synthesize new molecular species

(though synthesizing many copies is more straightforward).

The main result of this chapter is the existence of a family of TBNs that amplify signal ex-

ponentially. In these TBNs, there are exponentially many free “reporter” monomers compared to

the number of types of monomers and size of monomers. In the absence of the analyte, this TBN

has a unique stable configuration in which all reporter monomers are bound. When a single copy

of the analyte is added, the resulting TBN has a unique stable configuration in which all reporter

monomers are unbound. These TBNs are parameterized by two values: the first is the amplification

factor, determining how many total reporter molecules are freed. The second is a value we call the

system’s “entropy gap”, which determines how thermodynamically unfavorable a configuration of

the system would need to be in order for reporters to be spuriously unbound in the absence of the

analyte (false positive) or spuriously bound in its presence (false negative).

We also show a corresponding doubly exponential upper bound on the signal amplification

problem in TBNs: that given any TBN, adding a single monomer can cause at most a doubly

exponential change in its stable configurations. We leave as an open question to close this gap: either
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* *

{a, b}

{a*, b*}

{a} {b}

Figure 2.1. A simple thermodynamic binding network T with four monomers.
Site types are differentiated by color. Bonds are shown by juxtaposing monomers so
that unstarred sites cover starred sites. Left: the all-singleton configuration melt(T )
with four polymers. Monomers are labeled by their formal identities for reference.
Middle: a configuration with two polymers. As all starred sites are covered, the
configuration is saturated. Right: a configuration with three polymers. As this has
the most possible polymers for a saturated configuration, it is stable.

proving an exponential upper bound, or giving a TBN with a doubly-exponential amplification

factor.

Our work can be compared to prior work on signal amplification that exhibits kinetic barriers.

For example, in reference [44], a detected analyte serves as a seed initiating self-assembly of an

arbitrarily long linear polymer. In the absence of the analyte, an unlikely kinetic pathway is

required for spurious nucleation of the polymer to occur. However, in that system, false positive

configurations are still thermodynamically favorable; if a critical nucleus is able to overcome the

kinetic barrier and assemble, then growth of the infinite polymer is equally favorable as from the

analyte. In contrast, in our system, there are no kinetic paths, however unlikely, that lead to an

undesired yet thermodynamically favored configuration.

2.2. Definitions

2.2.1. General TBN Definitions. A site type is a formal symbol such as a, and has a

complementary type, denoted a∗, with the interpretation that a binds to a∗ (e.g., they could

represent complementary DNA sequences). We also refer to site types as domain types, and sites

as domains. We call a site type such as a an unstarred site type, and a∗ a starred site type. A

monomer type is a multiset of site types (e.g., a DNA strand consisting of several binding domains);

for example monomer type m = {a, a, a, b, c∗} has three copies of site a, one of site b, and one of
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site c∗. A TBN [11,23] is a multiset of monomer types. We call an instance of a monomer type a

monomer and an instance of a site type a site.

We take a convention that, unless otherwise specified, TBNs are star-limiting : for each site

type, there are always at least as many sites of the unstarred type as the starred type among all

monomers. Given a TBN, this can always be enforced by renaming site types to swap unstarred

and starred types, which simplifies many of the definitions below.

A configuration of a TBN is a partition of its monomers into submultisets called polymers.

We say that a site type (or a site) on a polymer is uncovered if, among the monomers in that

polymer, there are more copies of the starred version of that site type than the unstarred version

(otherwise covered). A polymer is self-saturated if it has no uncovered starred sites. A configuration

is saturated if all its polymers are self-saturated. A configuration α of a TBN T is stable if it is

saturated, and no saturated configuration of T has more polymers than α. Fig. 2.1 shows an

example TBN.

An equivalent characterization of stability is in terms of merges rather than polymer counts.

We say that a merge is the process of taking two polymers in a configuration and making a new

configuration by joining them into one polymer; likewise a split is the process of taking one polymer

in a configuration and making a new configuration by splitting it into two polymers. Maximizing

the number of polymers in a saturated configuration is equivalent to minimizing the number of

merges of two polymers necessary to reach a saturated configuration. To this end, some additional

notation:

Definition 2.2.1. The distance to stability of a saturated configuration σ is the number of (splits

minus merges) necessary to get from σ to a stable configuration.

Note that this number will be the same for any path of splits and merges, as all stable config-

urations have the same number of polymers.

Equivalently, distance to stability is the number of polymers in a stable configuration minus

the number of polymers in σ. We only consider this value for saturated configurations to ensure

it is positive and because we may interpret it as a measure of how unlikely we are to observe the

network in a given state under the assumption that enthalpy matters infinitely more than entropy.

The following definitions are not restricted to saturated configurations.
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Definition 2.2.2. Given a TBN T , we say that the all-melted configuration, denoted melt(T ), is

the configuration in which all monomers are separate.

Definition 2.2.3. Given a configuration α in a TBN T , its merginess m(α) is the number of

merges required to get from melt(T ) to α (or equivalently, the number of monomers in T minus the

number of polymers in α).

Definition 2.2.4. Given a configuration α in a TBN T , its starriness s(α) is the number of

polymers in α which contain at least one uncovered starred site.

We observe that α is saturated if and only if s(α) = 0.

Definition 2.2.5. Given configurations α and β in a TBN T , we say α ⪯ β (equivalently, β ⪰ α)

if it is possible to reach β from α solely by splitting polymers zero or more times.

We read α ⪯ β as “α splits to β”. Observe that if α ⪰ β, then we can reach β from α in exactly

m(β) −m(α) merges. In general, we may order the merges required to go from one configuration

to another in whatever way allows the easiest analysis.

2.2.2. Comparing TBNs. We need some notion of how “different” two TBNs are, so that

we can quantify how much a TBN changes after adding a single monomer.

Definition 2.2.6 (distance between configurations). Let α and β be two configurations of a TBN,

or of two TBNs using the same monomer types. We say that the distance d(α, β) between them is

the L1 distance between the vectors of their polymer counts. That is, it is the sum over all types of

polymers of the difference between how many copies of that polymer are in α and in β.

Definition 2.2.7 (distance between TBNs). Given TBNs T and T ′, let C and C′ be their stable

configurations. Define the distance between T and T ′ as

(1) d(T, T ′) = min
α∈C,α′∈C′

d(α, α′).

Note that this distance is not a metric.1 Rather, it is a way to capture how easily we can

distinguish between two TBNs; even the closest stable configurations of T and T ′ have distance

1In particular, it fails to satisfy the triangle inequality, since T could have a stable configuration close to one of T ′,
so d(T, T ′) = 1, and T ′ could have a different stable configuration close to one of T ′′, so d(T ′, T ′′) = 1, but T and T ′′

could have no close stable configurations, so d(T, T ′′) > 2.
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d(T, T ′), so we should be able to distinguish any stable configuration of one of them from all stable

configurations of the other by that amount.

Note that this condition does not directly imply a stronger “experimentally verifiable” notion

of distance, namely that there is some “reporter” monomer which is always bound in one TBN

and always free in the other. However, the system we exhibit in this chapter does also satisfy this

stronger condition. We focus on the distance given here, as it is more theoretically general and our

upper bound result in Section 2.4 apply to it.

We also need a notion of how likely we are to observe a configuration of a TBN that is not stable,

in order to have a notion of the system being robust to random noise. If a TBN has one stable

configuration but many other configurations that are nearly stable, we would expect to observe it

in those configurations frequently, meaning that in practice we may not be able to discern what

the stable configuration is as easily.

We work under the assumption that enthalpy matters infinitely more than entropy, so that we

may assume that only saturated configurations need to be considered. This assumption is typical

for the TBN model, and can be accomplished practically by designing binding sites to be sufficiently

strong. Under this paradigm, a configuration’s distance to stability is a measure of how unlikely

we are to observe it. This motivates the following definition:

Definition 2.2.8 (entropy gap). Given a TBN T , we say that it has an entropy gap of k if, for

any saturated configuration α of T , one of the following is true:

(1) α is stable.

(2) There exists some stable configuration β such that α ⪯ β.

(3) α has distance to stability at least k.

Note that by this definition, all TBNs trivially have an entropy gap of one. Note as well that

stable configurations are technically also included in the second condition by choosing β = α, but

we list them separately for emphasis.

The second condition is necessary in this definition because any TBN necessarily has some

configurations that have distance to stability one, simply by taking a stable configuration and

arbitrarily merging two polymers together. These configurations are unavoidable but are not likely

to be problematic in a practical implementation, because a polymer in such a configuration should
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be able to naturally split itself without needing to interact with anything else—these configurations

will never be local energy minima. Reference [11] discusses self-stabilizing TBNs in which all

saturated configurations have this property, equivalent to an entropy gap of ∞.

2.2.3. Feed-Forward TBNs.

Definition 2.2.9. We say that a configuration α of a TBN is feed-forward if there is an ordering

of its polymers such that for each domain type, all polymers with an excess of unstarred instances

of that domain type occur before all polymers with an excess of starred instances of that domain

type.

We say that a TBN T is feed-forward if there is an ordering of its monomer types with this

same property—that is, T is feed-forward if melt(T ) is feed-forward.

For example, the TBN {(ab), (a∗c), (b∗c∗)} is feed-forward with this ordering of monomers

because the a, b and c come strictly before the a∗, b∗ and c∗ respectively. Note that not all con-

figurations of a feed-forward TBN are necessarily feed-forward; for instance, merging the first and

third monomers in this TBN gives a non-feed-forward configuration.

An equivalent characterization can be obtained by defining a directed graph on the polymers of

a configuration α and drawing an edge between any two polymers that can bind to each other, from

the polymer with an excess unstarred binding site to the polymer with a matching excess starred

binding site (or both directions if both are possible). The configuration α is feed-forward if and

only if this graph is acyclic, and the ordering of polymers can be obtained by taking a topological

ordering of its vertices.

The main benefit of considering feed-forward TBNs is that we can establish a strong lower

bound on the merginess of stable configurations. If any TBN T has n monomers that have starred

sites, it will always take at least n
2 merges to cover all those sites, because each monomer must

be involved in at least one merge and any merge can at most bring a pair of them together. For

instance, the non-feed-forward TBN {{a, b∗}, {a∗, b}} can be stabilized with a single merge. In

feed-forward TBNs, this bound is even stronger, as there is no way to “make progress” on covering

the starred sites of two different monomers at the same time.
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Lemma 2.2.10. If a configuration α is feed-forward, then any saturated configuration σ such that

α ⪰ σ satisfies m(σ) −m(α) ≥ s(α). That is, reaching σ from α requires at least s(α) additional

merges.

Intuitively, in a feed-forward configuration, the best we can possibly do is to cover all of the

starred sites on one polymer at a time. We can never do better than this with a merge like merging

{a, b∗} and {a∗, b} that would let two polymers cover all of each others’ starred sites.

Proof. Given a feed-forward configuration α, let L be the ordered list of polymers from α

being feed-forward. Partition L into separate lists (keeping the ordering from L) based on which

polymers are merged together in σ. That is, for each fully merged polymer P ∈ σ create a list LP

of the polymers from α that are merged to form P, and order this list based on the ordering from

L. We can order the merges to reach σ from α as follows: repeatedly (arbitrarily) pick a polymer

P from σ and merge all of the polymers in LP together in order (merge the first two polymers in

LP, then merge the third with the resulting polymer, and so on).

This sequence of merges gives us a sequence of configurations α = α1, α2, . . . , αℓ = σ. We ob-

serve that for 1 ≤ i ≤ ℓ − 1, we have s(αi) − s(αi+1) ≤ 1. That is, each merge can lower the

starriness by at most one. We know this because each merge is merging a polymer Q ∈ α with one

or more other already-merged polymers from α that all come before Q in L. This means Q cannot

cover any starred sites on any monomers it is merging with. The only way for the starriness of a

configuration to decrease by more than 1 in a single merge is for the two merging polymers to cover

all of each others’ starred sites, so it follows that each merge in this sequence lowers starriness by

at most 1. From this it follows that we need at least s(α) merges to get to σ, because s(σ) = 0.

□

Letting α = melt(T ) (note m(α) = 0) gives the following corollary.

Corollary 2.2.11. Any saturated configuration σ of a feed-forward TBN T satisfies m(σ) ≥

s(melt(T )).

Because stable configurations are saturated configurations with the minimum possible mergi-

ness, this bound gives the following corollary.
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Corollary 2.2.12. If a saturated configuration σ of a feed-forward TBN T satisfies m(σ) =

s(melt(T )), then σ is stable.

2.3. Signal Amplification TBN

2.3.1. Amplification Process. In this section, we prove our main theorem. This theorem

shows the existence of a TBN parameterized by two values n (the amplification factor) and k (the

entropy gap). Intuitively, this TBN amplifies the signal of a single monomer by a factor of 2n, with

any configurations that give “incorrect” readings having Ω(k) distance to stability. Our proof will

be constructive.

Theorem 2.3.1. For any integers n ≥ 1, k ≥ 2, there exists a TBN T = Tn,k and monomer a

(the analyte) such that if T a = T a
n,k is the TBN obtained by adding one copy of a to Tn,k, then

(1) T and T a each have exactly one stable configuration, denoted σn,k and σan,k respectively,

with d(σn,k, σ
a
n,k) ≥ 2n. In particular, there are k monomer types with 2n−1 copies each,

with all of these monomers bound in σn,k and unbound in σan,k.

(2) T and T a each have an entropy gap of ⌊k2⌋ − 1.

(3) T and T a each use O(nk) total monomer types, O(nk2) domain types, and O(k2) domains

per monomer.

The first condition implies that Tn,k can detect a single copy of a with programmable expo-

nential strength - there is only one stable configuration either with or without a, and they can be

distinguished by an exponential number of distinct polymers. Note that this is even stronger than

saying that d(Tn,k, T
a
n,k) ≥ 2n, as that statement would allow each TBN to have multiple stable

configurations. The second condition implies that the system has a programmable resilience to

having incorrect output, because configurations other than the unique stable ones in each case are

“programmably” unstable (based on k), and thus programmably unlikely to be observed. Note that

throughout this chapter we will use k
2 instead of ⌊k2⌋ for simplicity, as we are concerned mainly with

asymptotic behavior. The third condition establishes that the system doesn’t “cheat” - it doesn’t

obtain this amplification by either having an extremely large number of distinct monomers, or by

having any single large monomers.

The entire TBN Tn,k is depicted in Figures 2.2 and 2.3 with n = 2 and k = 3. The former

shows the unique stable configuration before adding the analyte, and the latter shows the unique
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Figure 2.2. The unique stable configuration σ2,3 of T2,3, with 19 polymers. All
starred sites are visually “covered” by unstarred sites on another monomer. The
parts of the diagram are numbered by the order that the signal from the analyte
will cascade through them. Parts (1) and (2) form the “first half”, where the signal
is doubled at each step. Parts (3) and (4) form the “second half”, where the signal
converges so that it can get an “entropic payoff” from part (5).
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Figure 2.3. The unique stable configuration σa2,3 of T a
2,3. The arrow shows the

conceptual order in which the analyte’s signal has been propagated, with a covering
all s1,j , which cover all s2,j , which cover all s′2,j , which cover all s′1,j , which finally
cover p∗. This configuration has 21 polymers, 2 more than σ2,3: conceptually, one of
these is from adding the analyte and the other is from the analyte’s signal cascading
through the layers to release P1 and P2 at the cost of one merge. As they have no
polymers in common, d(σ2,3, σ

a
2,3) = 19 + 21 = 40.
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Figure 2.4. A version of Fig. 2.2 with text labels on domains, for accessibility and
allowing comparison with the domains as defined in the text of the chapter. This
figure shows the unique stable configuration of T2,3.
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Figure 2.5. The unique stable configuration σ3,2 of T3,2. Compared to Fig. 2.2
(or Fig. 2.4 above), which show T2,3, this figure shows one more layer and a smaller
entropy gap parameter. The additional layer means that there are 4 copies of each
monomer in the largest parts of the figure, compared to 2 copies of each monomer
in the other figures; if another layer were added, it would contain 8 copies of each
monomer. The smaller entropy gap parameter manifests in this figure visually hav-
ing a “2 by 2 grid” design motif, compared to the “3 by 3 grid” motif in the other
figures.
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stable configuration after adding the analyte. For comparison, Fig. 2.5 depicting the pre-analyte

configuration with n = 3 and k = 2 is shown as well.

We will start by constructing the first half of Tn,k and describing “how it works”. The monomers

in this first half are the driving force that allows Tn,k and T a
n,k to have exponentially different stable

configurations.

The first half of Tn,k has monomer types ui,j and si,j (named as those with only unstarred

sites, and those with both starred and unstarred sites) for 1 ≤ i ≤ n, 1 ≤ j ≤ k. It has domain

types denoted as triples (i, j, ℓ) for 1 ≤ i ≤ n+ 1, 1 ≤ j, ℓ ≤ k. Each ui,j monomer has k different

unstarred domains, one of each (i, j, ℓ) for each 1 ≤ ℓ ≤ k. Each si,j monomer has a starred copy

of each domain in ui,j , and additionally has two copies of each unstarred domain (i + 1, ℓ, j) for

each 1 ≤ ℓ ≤ k (note that here the second domain type parameter varies instead of the third).

For each ui,j and si,j monomer, there are 2i−1 copies. We can conceptually break these monomers

into n “layers”, each consisting of all monomers with the same value for their first parameter. The

analyte we wish to detect, a, is a monomer that has one copy of each unstarred domain (1, j, ℓ),

1 ≤ j, ℓ ≤ k.

Conceptually, when the analyte is absent, the most efficient way for all starred sites on each

si,j to be covered is by the unstarred sites on a corresponding ui,j , as seen in Fig. 2.2. Although

the TBN model is purely thermodynamic, we can conceptualize that when the analyte is added,

its signal can propagate “kinetically” through each layer. In the first layer, it can “displace” the

k different u1,j monomers and bind to all of the s1,j monomers. In doing so, it brings together all

the unstarred sites on all of the s1,j monomers. Having been brought together, these sites “look

like” two copies of the analyte, but with the domains from layer 2 instead of layer 1. Thus, this

polymer is then able to displace two copies of each u2,j from their corresponding s2,j monomers,

thus bringing all of the s2,j together. This in turn now looks like four copies of the analyte for the

domains in the third layer, and so on. Each layer allows this polymer to assimilate exponentially

more si,j , thus freeing exponentially many ui,j . Each of these displacement steps involves an equal

number of splits and merges.

2.3.2. Convergence Process. So far, the TBN described has exactly one stable configuration

before adding the analyte, and it performs the task of amplifying signal by having the potential to
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change its state exponentially when the analyte is added. However, there is also a stable configura-

tion after adding the analyte in which nothing else changes, and many others in which only a small

amount of change occurs. We must guaranteed that the analyte’s signal “propagates” through all

of the layers.

To design the system to meet this requirement, we observe that all exponentially many monomers

that have been brought together must contribute to some singular change in the system that gains

some entropy, to spur the signal into propagating. The typical way to accomplish this in a TBN

is by having monomers that have been brought together displace a larger number of monomers

from some complex at the cost of a smaller number of merges. Because the pre-analyte TBN has

an entropy gap of k − 1 in this design so far, we can afford to give the TBN with the analyte an

“entropic payoff” of k
2 . When the analyte is absent, this payoff is weak enough that there will still

be an entropy gap of k
2 − 1; when the analyte is present, the existence of this payoff will force the

signal to fully propagate, and will give the TBN with the analyte an entropy gap of k
2 −1 by making

it so that any configurations in which this payoff is not achieved are also far away from stable.

Another challenge is that we cannot simply detect all our exponentially many conjoined monomers

by binding them all to a single exponentially large monomer, because we need to bound the size of

the largest monomer in the system. Our conceptual strategy for overcoming this is as follows: the

signal will converge in much the same way as it was amplified. In the amplification step, one set

of domains coming together in one layer was enough to cause two of them to come together in the

next layer. In this convergence step, two sets of domains in one layer will have to converge together

to activate one set in the next layer. This convergence ends in bringing together a set of binding

sites that is of the same size as the analyte, which can then directly displace some monomers to

gain k
2 total polymers.

We now fully define Tn,k. We start with the already described ui,j and si,j . To these, we first

add monomer types u′
i,j and s′i,j for 1 ≤ i ≤ n, 1 ≤ j ≤ k. These monomers are the ‘converging’

equivalents of ui,j and si,j . Conceptually, they will activate in the reverse order: two copies of each

s′i,j for 1 ≤ j ≤ k, when brought together, will be able to bring together one copy of each s′i−1,j for

1 ≤ j ≤ k.

Each u′
i,j monomer has 2k unstarred domains: two copies each of domains (i+1, j, ℓ)′ for each

1 ≤ ℓ ≤ k. Each s′i,j has a starred copy of each of the 2k domains in u′
i,j and additionally has one
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unstarred domain (i, ℓ, j)′ for 1 ≤ ℓ ≤ k (note again here that the second domain type parameter

varies instead of the third). One exception is the monomers u′
n,j and s′n,j (the first ones to activate)

which use domains (n+1, j, ℓ) and (n+1, ℓ, j) instead of (n+1, j, ℓ)′ and (n+1, ℓ, j)′ respectively

so that they can interact with sn,j monomers that have been brought together. Each monomer u′
i,j

and s′i,j has 2i−1 copies.

Finally, we add “payoff” monomers that will yield an entropic gain of k
2 when the signal from

the analyte has cascaded through every layer. This choice of k
2 is arbitrary—a similar design works

for any integer between 1 and k. Choosing a higher value leads to a higher entropy gap after adding

the analyte and a lower entropy gap before adding it, and vice versa choosing a lower value. For

simplicity of definitions we will assume k is even (though figures are shown with k = 3, which shows

how to generalize to odd k).

We add one monomer p∗, which contains the k2 sites (1, ℓ1, ℓ2)
′∗ for 1 ≤ ℓ1, ℓ2 ≤ k. Note

that this monomer can be replaced with k monomers of size k (in which case a would be the only

monomer with more than 3k domains), but doing so makes the proof more complex. The idea is

that when all s′1,j monomers are already together (as they can be “for free” when a is present),

they can cover p∗ in one merge; if they are apart, this requires k merges. In order to make this

favorable to happen when they’re already together but unfavorable when they’re initially apart,

we add another way to cover p∗ that takes k
2 merges. This is accomplished via monomers pj for

1 ≤ j ≤ k
2 . Each pj contains the 2k sites (1, 2j − 1, ℓ) and (1, 2j, ℓ) for 1 ≤ ℓ ≤ k. We can interpret

this geometrically as p∗ being a square, the s′1,j covering it by rows, and the pj covering it by two

columns at a time. This completes the definition of Tn,k. Recall T a
n,k is Tn,k with one added copy

of a.

Lemma 2.3.2. Tn,k has exactly one stable configuration σn,k.

Proof. We consider merges to get from the melted configuration to any saturated configura-

tion. We may order these merges such that we first make all the merges necessary to cover each

individual si,j in increasing value of i, then each individual s′i,j in decreasing value of i. We see

that at each step of this process, we may cover the monomer in question by a single merge (of

its corresponding ui,j or u′
i,j). If we never merge the corresponding u monomer, the only other

monomers that can cover the starred sites on a given si,j are k different si−1,ℓ monomers. Likewise,
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the only other way to cover the starred sites on a given s′i,j is by using k different s′i+1,ℓ monomers

(except for s′n,j which needs sn,ℓ monomers).

If an s or s′ monomer is covered in multiple different ways, we order the merges such that

it is first covered by one corresponding u monomer (and then ignore any other merges for now,

as we are still ordering the merges to cover each s monomer sequentially). We see then that if

every s monomer is covered by a u monomer, then no s monomers will be brought together during

this process. Therefore, the first time in this sequence that we choose to cover an s without its

corresponding u will require k total merges to cover that s. The resulting configuration is feed-

forward, so by Corollary 2.2.11, reaching a stable configuration requires at least one more merge

per remaining s monomer. This results in at least k − 1 extra merges compared to covering s and

s′ monomers by using u and u′ monomers respectively.

Once all s and s′ monomers are covered, the only other monomer with starred sites is p∗, so we

can make all the merges that are needed to cover it. If none of the s′1,j monomers have been brought

together, then the fewest merges it takes to cover p∗ is k
2 , via the pj monomers. If any of them

have been brought together, then it could potentially take a single merge to cover p∗. However, this

would have required k−1 extra merges at some point during the covering of s monomers, resulting

in k
2 extra total merges compared to covering all s monomers with u monomers, then covering p∗

with pj monomers.

Therefore, this latter set of merges covers all starred sites in as few merges as possible, and

therefore gives the unique stable configuration of Tn,k.

□

Corollary 2.3.3. Tn,k has an entropy gap of k
2 − 1.

Proof. Recall Definition 2.2.8 for what we must show. Any saturated configuration that does

not make all the merges in σn,k must either have some s that is not covered by its corresponding u

(resulting in at least k
2 extra merges, as per the above argument), or must cover p∗ with initially-

separate s′1,j monomers (resulting in k
2 extra merges). Thus, any such configuration has distance

to stability at least k
2 . Any other saturated configuration that does make all of the merges in this

sequence simply makes some extra merges afterward, and therefore splits to σn,k. It follows that Tn,k

has an entropy gap of k
2 (and also of k

2 − 1, for consistency in the statement of Theorem 2.3.1). □
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Lemma 2.3.4. T a
n,k has exactly one stable configuration σan,k, and T

a
n,k has an entropy gap of k

2 −1.

Proof. We see that T a
n,k (like Tn,k) is feed-forward (recall Definition 2.2.9) by first ordering a

along with all the ui,j , u
′
i,j , and pj monomers (none of which have starred sites), then all the si,j

in increasing order of i, then all the s′i,j in decreasing order of i, and finally p∗.

Unlike Tn,k, however, we may reach a stable state by merging a together with every single si,j ,

every single s′i,j and p∗ into a single polymer. This covers all starred sites, and requires exactly

one merge per monomer with starred sites, so by Corollary 2.2.12, this configuration σan,k is stable.

Now, we examine an arbitrary saturated configuration σ of T a
n,k. We consider merges in es-

sentially the opposite order of how they were considered when analyzing Tn,k. First, consider p∗.

It must be covered either by all the pj monomers, or by all the s′1,j monomers. If we merge all

the pj monomers to p∗, we arrive at a configuration that is still feed-forward, but has only one

fewer polymer with uncovered starred sites compared to melt(T a
n,k) in spite of making k

2 merges.

Therefore, by Lemma 2.2.10, reaching a saturated configuration from this point requires at least

k
2 − 1 extra merges compared to σan,k.

Now, we may make a similar argument for all s monomers in the opposite order that we

considered them in Lemma 2.3.2. First, either we have already made k
2 −1 extra merges, or the s′1,j

monomers have all been brought together on a single polymer to cover p∗. If we now make all the

merges necessary to cover all starred sites on this polymer, we must do so either using all the u′
1,j or

by using all the s′2,j . If we use the former, then this will require k total merges but will only reduce

the count of polymers with starred sites by 1. The resulting configuration is still feed-forward, so

again by Lemma 2.2.10 any saturated configuration we reach from this point will require at least

k−1 extra merges compared to σ. Otherwise, we must bring all the s2,j monomers together to cover

these sites. This does not fall victim to the same argument, because bringing these monomers with

starred sites together onto the same polymer lowers the total number of polymers with uncovered

starred sites. Now that they have been brought together, the same argument shows that we must

either cover all the starred sites on the s′2,j using all the s′3,j , or suffer k − 1 extra merges. The

same argument for each layer in the converging part of the TBN also works for each layer in the

amplifying part. Finally, after running through this argument we arrive at all s1,j being brought

together, which can be covered either by a single merge of a or by merging the k u1,j to it.
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Overall, this shows that any saturated configuration of T a
n,k either makes all of the merges in σan,k

or it must make at least k
2 − 1 extra merges. It follows that σan,k is the unique stable configuration

of T a
n,k, with an entropy gap of k

2 − 1 as desired. □

These results together complete the proof of Theorem 2.3.1: each of the more than 2n u and

u′ monomers (which serve as reporters) are bound in σn,k and unbound in σan,k, implying their

distance is more than 2n. The largest monomer is a with k2 domains, and there are (2n + 1)k2

domain types and 4nk monomer types for the si,j , ui,j , s
′
i,j , and u′

i,j , plus 2 + k
2 more for a, p∗,

and pj .

2.3.3. Avoiding Large Polymer Formation. The TBN T a
n,k will, in the process of ampli-

fying the signal of the analyte, form a single polymer of exponential size. This isn’t an issue in the

theoretical TBN model, but it is a practical issue because there is no way to design these monomers

so that this large polymer would form.2

This can be solved by adding “translator gadgets”. These gadgets’ job is to mediate between

consecutive layers. Instead of monomers from one layer directly binding to monomers from the

next layer, they can split apart these translator gadgets with half of the gadget going to each layer.

In exchange, the TBN will no longer have exactly one stable configuration when the analyte is

present, as in the TBN model, the use of these translator gates will be purely “optional”.

We define a new TBN T̃n,k (as well as T̃ a
n,k, which is obtained by adding the analyte a). We

start with the TBN Tn,k. To assist with the amplification step, we add monomer types gi and

g∗
i for each 2 ≤ i ≤ n. Each gi consists of one copy of each unstarred domain (i, j, ℓ) for each

1 ≤ j, ℓ ≤ k. Each g∗
i consists of the same domains but all starred. Each of these monomers has

2i−1 copies. The use of these gadgets can be seen in Fig. 2.6.

To assist with the convergence step, we add monomer types hi and h∗
i for each 2 ≤ i ≤ n+ 1.

Each hi has two copies of each unstarred domain (i, j, ℓ)′ for each 1 ≤ j, ℓ ≤ k. Each h∗
i has only

one copy of each of the corresponding starred domains. There are 2i−1 copies of each hi and 2i

copies of each h∗
i . The use of these gadgets can be seen in Fig. 2.7.

Theorem 2.3.5. Let T̃ = T̃n,k and T̃ a = T̃ a
n,k be as described. Then:

2The binding graph of the monomers within this giant polymer contains many complete k-ary trees of depth n as
subgraphs. If each of the nodes of this graph is a real molecule that takes up some volume, it will be impossible to
embed the whole graph within 3-dimensional space as n grows.
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Figure 2.6. The amplifying translator gadget, before and after it is triggered to
propagate the signal forward by one layer. When s1,1, s1,2 and s1,3 have been
brought together, instead of directly replacing all the u2,j monomers, they can split
two {g2,g∗

2} complexes, and the g2 monomers can replace the u2,j monomers.
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Figure 2.7. The converging translator gadget, before and after it is triggered to
propagate the signal forward by one layer. When two copies each of s′2,1, s

′
2,2 and

s′2,3 have been brought together into two complexes, instead of directly replacing

all the u′
1,j monomers, they can split a {h2,h

∗
2,h

∗
2} complex, and the h2 monomer

can replace the u′
1,j monomers. Note that the only way to propagate the signal

efficiently is to use the translator gadget; not using it requires 3 splits and 4 merges,
showing that this TBN no longer has an entropy gap. If instead we hadn’t used the
translator gadgets in the previous layer, then all six s′2,j monomers in this image
would be together in a single complex, and it would be equally efficient to either use
this translator gadget or directly displace the u′

1,j .
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(1) T̃ has exactly one stable configuration σ̃n,k, and d(T̃ , T̃
a) > 2n.

(2) T̃ has an entropy gap of k
2 , and T̃

a has the property that all of its configurations α that

are within distance to stability k
2 satisfy d(σ̃n,k, α) > 2n.

(3) T̃ = T̃n,k uses O(nk) total monomer types, O(nk2) domain types, and O(k2) domains per

monomer.

(4) The unique stable configuration of T̃ has O(k) monomers in its largest polymer. There is

a stable configuration of T̃ a sharing this property.

Compared to Theorem 2.3.1, this theorem trades away the condition that both TBNs have only

a single stable configuration in exchange for the post-analyte TBN having a configuration with

O(k) monomers per polymer, whereas the previous construction has roughly k · 2n monomers in a

single polymer.

The second condition is somewhat complex. This complexity’s necessity is explained by Fig. 2.7.

In that figure, if we propagate signal without using the translator gadget, we arrive at a config-

uration that is saturated but has only one fewer complex than a stable configuration. However,

such near-stable configurations are still very different from the stable configuration of T̃n,k, so it

is still possible to distinguish the two TBNs with an amplification factor proportional to 2n and a

resilience to false positives and negatives proportional to k.

Proof. Recall the constructions of T̃n,k and T̃ a
n,k from Section 2.3.3. Our argument will be

very similar to that of Theorem 2.3.1 (i.e., the above lemmas), except we need to account for the

extra monomer types.

First, consider T̃n,k, where a is absent. We wish to show that its stable configuration looks

like that of Tn,k, with the added g and h monomers only binding to added g∗ and h∗ monomers

respectively. We order the merges to get to a saturated configuration in essentially the same order

as we did in analyzing Tn,k: first we will make all merges necessary to cover all (1, j, ℓ)∗ sites, then

(2, j, ℓ)∗, and so on up to (n + 1, j, ℓ)∗, then (n, j, ℓ)′∗, and so on. As before, at each step, we will

see that we cannot make merges in any way other than those in the desired stable configuration

without needing k − 1 extra merges for that step.

For (i, j, ℓ)∗ sites, at each step, there is exactly one way to cover all starred sites by making one

merge per monomer with these starred sites: we cover each si,j with a ui,j and each g∗
i with a gi.
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In particular, we already know from the proof of Lemma 2.3.2 that this is true for the si,j if we

only use si−1,j and ui,j to cover it, and that we will otherwise need to make k − 1 extra merges.

Clearly we also cannot cover g∗
i with anything other than gi without making k merges to cover it

(and thus k − 1 extra merges), so we cannot use gi to cover si,j .

Likewise, for (i, j, ℓ)′∗ sites, we only need to observe that each h∗
i monomer can only be covered

in a single merge by hi, so any other way of making merges necessarily involves k−1 extra merges.

So by the same argument as in Lemma 2.3.2 and Corollary 2.3.3, T̃n,k has exactly one stable

configuration with an entropy gap of k
2 . This configuration has 1 + k

2 monomers in the polymer

containing p∗ and all the pj , 3 monomers in each {hi,h
∗
i ,h

∗
i } polymer, and 2 monomers in each

other polymer.

Now, consider T̃ a
n,k, where a is present. If we take the stable configuration of T a

n,k and simply

put all g monomers into {gi,g∗
i } polymers, and all the h monomers into {hi,h

∗
i ,h

∗
i } polymers,

we have still made exactly one merge per monomer with any starred sites, so by Corollary 2.2.12

it is stable. If we then carry out the shifts described in Fig. 2.6 and Fig. 2.7, an equal number

of merges and splits are made at each step, so the resulting saturated configuration is still stable.

Additionally, in this configuration, the largest polymers have k + 3 monomers (specifically, those

containing a set of si,j along with one copy of gi and two copies of g∗
i+1).

All that remains to show is that all configurations of T̃ a
n,k that are within k

2 distance to stability

have exponentially many different polymers from the stable configuration of T̃n,k. We will do this

by showing that all u and u′ monomers are free in all such configurations.

Again, this argument is very similar to the argument without the translator gadgets in Lemma 2.3.4.

We consider merges to cover starred sites in the opposite order of the above argument for T̃n,k.

First, consider the merges necessary to cover all the (1, j, ℓ)′ starred sites (on p∗). Like before,

they must be covered by either all the u′
1,j monomers or all the pj monomers, but using the latter

gives a feed-forward configuration in which k
2 − 1 extra merges have already been made. Thus, to

be within k
2 distance to stability, we must use the s′1,j . Next, for the (2, j, ℓ)′ starred sites, with

the merges already made, there are two copies of each of these sites all together on the polymer

containing all the s′1,j , and one copy of each site on each of the two h∗
2 monomers. If we are to

merge any u′
1,j monomers to any of these in such a way that they cannot be split off without the

result still being saturated, then we must merge all of the u′
1,j into one polymer. Like with the
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argument for T̃ a
n,k, we see that this results in k−1 extra merges compared to a stable configuration.

Thus, we cannot use any u′
1,j , and these sites must be covered by the s′2,j and h2 monomers.

We may do this either by using the h2 to cover both h∗
2 (in effect, not using the translator

gadget) or by using h2 to cover all the s′1,j . The only difference in terms of the argument is that in

the former case all of the s2,j will be brought together in a single polymer, and in the latter case

they will be split between two polymers. In the former case, it may require one extra merge to

use translator gates in the next layer; however, either way, the same argument on each other layer

in sequence shows that we cannot use any u′
i,j monomers without suffering k

2 − 1 extra merges.

Likewise, the exact same argument shows that the same thing is true of ui,j monomers, necessitating

that in any configuration that makes fewer than k
2 − 1 extraneous merges, all exponentially many

u and u′ monomers must be free, as desired. □

2.4. Upper Limit on TBN Signal Amplification

In this section, we show the following theorem providing an upper bound on the distance

between a TBN before and after adding a single copy of a monomer, showing that the distance is

at most double-exponential in the “size” of the system:

Theorem 2.4.1. Let T be a TBN with d domain types, m monomer types, and at most a

domains on each monomer. Let n = max{d,m, a}. Let T ′ be T with one extra copy of some

monomer. Then d(T, T ′) ≤ n8n
7n2

.

Recall Definition 2.2.7 for the distance between TBNs. Essentially, this theorem is saying that

adding a single copy of some monomer can only impact doubly exponentially many total polymers,

no matter how many total copies of each monomer are in the TBN.

Our strategy for proving this theorem is to fix some ordering on polymer types, and bound the

distance between the lexicographically earliest stable configuration of an arbitrary TBN under that

ordering before and after adding a single copy of some monomer. To bound this distance, we cast

the problem of finding stable configurations of a TBN as an integer program (IP), and use methods

from the theory of integer programming value functions to give a bound on how much the solution

to this IP can change given a small change in the underlying TBN.

We first introduce a definition from [34] and some notation that was unnecessary in previous

sections.
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Definition 2.4.2. Given a (star-limiting) TBN T , the polymer basis of T , denoted B(T ), is the

set of polymers P such that both of the following hold:

• P appears in some saturated configuration of a star-limiting TBN using the same monomer

types as T .

• P cannot be split into two or more self-saturated polymers.

The polymer basis is a useful construction because it is known to describe exactly those polymer

types that may appear in stable configurations of T . It is always finite, and we will bound its size

later.

Given a TBN T , letM(T ) denote its monomer types, and let T (m) denote the count of monomer

m in T . Given a polymer P and a monomer type m ∈ M(T ), let P(m) represent the count of

monomer m in polymer P.

Suppose for the rest of this section that we have a TBN T to which we wish to add a single

copy of some monomer a (which may or may not exist in T ). Let T ′ be T with a added.

2.4.1. Finding Stable Configurations via Integer Programming. Prior work [34] has

shown that the problem of finding the stable configurations of a TBN can be cast as an IP. There are

multiple different formulations; we will use a formulation that is better for the purpose of reasoning

theoretically about TBN behavior.

Let {xP : P ∈ B(T )} be variables each representing the count of polymer P in a configuration

of T . Then consider the following integer programming problem:

(2)

max
∑

P∈B(T )

xP

s.t.
∑

P∈B(T )

P(m)xP = T (m) ∀m ∈M(T )

xP ∈ N ∀P ∈ B(T )

Intuitively, the linear equality constraints above express “monomer conservation”: the total

count of each monomer in T should equal the total number of times it appears among all polymers.

The following was shown in [34]; for the sake of self-containment, we show it here as well
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Proposition 2.4.3. The optimal solutions to the IP (2) correspond exactly to stable configurations

of T .

Proof. If the variables xP form a feasible solution, then those counts of polymers are a valid

configuration because they exactly use up all monomers. If the solution is optimal, then there is

no saturated configuration with more polymers (as only polymers from B(T ) can show up in stable

configurations), so the configuration is stable. Conversely, if a configuration σ is stable then it can

be translated into a feasible solution to the IP because it only uses polymers from B(T ) and obeys

monomer conservation. If there were a solution with a greater objective function, then this would

translate to a configuration with more complexes that is still saturated (because all polymers in

the polymer basis are self-saturated), contradicting the assumption of σ’s stability. □

We observe that adding an extra copy of some monomer to a TBN corresponds to changing

the right-hand side of one of the constraints of this IP by one. Note that this is true even if we

add a copy of some monomer for which there were 0 copies, as we may still include variables for

polymers that contain that monomer in the former IP and simply consider there to be 0 copies of

the monomer. Therefore, we are interested in sensitivity analysis of how quickly a solution to an

IP can change as the right-hand sides of constraints change.

However, there is one edge case we must account for first. It is possible that T and T ′ have

different polymer bases. This is because of the first requirement in Definition 2.4.2 requiring that

the polymer basis respects that starred sites are limiting. If we add a single copy of a monomer,

this may change which sites are limiting, if a has more copies of a starred site than T had excess

copies of the unstarred site. We cannot include variables for such polymers in the IP formulation

without taking extra precautions, as if we do there may be optimal solutions that don’t correspond

to saturated configurations. Therefore, we will first account for how many copies of such a polymer

T and T ′ may differ by:

Lemma 2.4.4. Suppose that some polymer P is exactly one of B(T ′) and B(T ). Then any saturated

configuration of T ′ contains at most |a| copies of P, where |a| denotes the number of sites on a.

Note that this result is slightly surprising—one natural way that one might try to design a

TBN that amplifies signal is by designing the analyte so that it intentionally flips which sites are

limiting. This result shows that this is an ineffective strategy: going from 5 excess copies of some
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site a to 5 excess copies of a∗ is seemingly no more helpful in instigating a large change than going

from 60 excess copies of a to 50.

Proof. If P is in B(T ′) but not B(T ), it must contain an excess of a starred site that was

limiting in T , but is no longer limiting in T ′. We see this because P necessarily occurs in a

saturated configuration of the TBN containing precisely the monomers that it is composed of;

therefore, in order to not be in B(T ), by definition of the polymer basis, it must be the case that

this TBN has different limiting sites than T ′.

Let a denote some such site type, so that a∗ is limiting in T and a is limiting in T ′, and P

contains an excess of a∗. Then a must contain an excess of a∗, but it cannot contain more than |a|

excess copies. Therefore, there are at most this many total excess copies of a∗ in T ′. It follows that

if there are more than |a| copies of P in a configuration of T ′, then those copies of P collectively

have more excess copies of a∗ than T ′ does, so some other polymer in that configuration would

have to have an excess of a. This implies that such a configuration is not saturated (and therefore

also cannot be stable). An identical argument shows that the same is true for polymers in B(T )

but not B(T ′). □

In order to analyze and compare the two IP instances, we need them to have the same variable

set. Therefore, we will include variables for all polymers from both polymer bases in both IP

formulations. Let B(T, T ′) = B(T )∪B(T ′) denote this merged polymer basis, and let P = |B(T, T ′)|

denote the total number of possible polymers we must consider, or equivalently the number of

variables we will have in these IPs. In each IP, we will have a constraint on each variable representing

a polymer not in the relevant polymer basis, that says that that variable must equal zero.

2.4.2. Sensitivity Analysis. This sensitivity analysis problem of how IPs change as the right-

hand sides of constraints change was studied by Blair and Jeroslow in [9]. We will not need their

full theory, but we will use some of their results and methods.

In Corollary 4.7 of [9], they show that there is a constant K3, independent of the right-hand

sides of constraints (in our case, independent of how many copies of each monomer exist) such that:

(3) Rc(v) ≤ Gc(v) ≤ Rc(v) +K3,
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where Gc(v) gives the optimal value of the objective function c of a minimization IP as a function

of the vector v of right-hand sides of constraints, and Rc(v) gives the optimal value of the same

problem when relaxing the constraint that variables must have integer values. The objective func-

tion we’ve shown so far is to maximize the sum of polymer counts rather than minimize, but the

same statement applies that the integer and real-valued optimal solutions differ by at most K3. In

defining K3, they also show the existence of a constant M1 such that

(4) |Rc(v)−Rc(w)| ≤M1 ||v − w|| ,

where v and w are different vectors for the right-hand sides of constraints. Note that we take all

norms as 1-norms. Combining these inequalities, we see that

(5) |Gc(v)−Gc(w)| ≤M1 ||v − w||+K3.

For example, if we want to know the difference between the total number of polymers in a stable

configuration before and after adding one copy of a monomer (and if the polymer bases of T and T ′

are identical), then we care about increasing one element of v by 1, so our bound on this difference

is M1 +K3. This statement applies to maximization and minimization problems.

2.4.3. From Optimal Values to Polymer Counts. For ease of analysis, we order the

polymers in B(T, T ′) as follows: first we list all the polymers that are not in B(T ), then all the

polymers that are not in B(T ′), then all the polymers in B(T ) ∩ B(T ′). We need to show that

the number of copies of each individual polymer does not change too much. We do this using a

technique similar to Corollary 5.10 in [9].

Let Ptot be the total number of polymers in a stable configuration (either before or after adding

a, depending on which case we are examining).

We now define a new sequence of integer programs whose optimal values give polymer counts

in the lexicographically earliest stable configuration under this ordering. We do this by finding the

value of each variable xP in order. This sequence of IP problems is defined separately for both

TBNs, before and after adding a.

For those variables representing a polymer that is in one basis but not the other, we do not

need to analyze this IP, so we simply fix such a variable’s value to whatever its value is in this
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lexicographically earliest stable configuration, which will be 0 in one TBN and bounded by |a| by

Lemma 2.4.4 in the other.

Now, to find the value of some particular variable xQ in either of the two TBNs where Q ∈

B(T ) ∩ B(T ′), suppose we have already found the value yP we wish to fix xP to for each P < Q

under our ordering. Then we define a new IP on all the same variables as follows:

(6)

min xQ

s.t.
∑

P∈B(T,T ′)

xP = Ptot

∑
P∈B(T,T ′)

P(m)xP = T (m) ∀m ∈ m(T )

xP = yP ∀P < Q

xP ∈ N ∀P ∈ B(T, T ′)

3

By construction, this IP gives us the smallest possible value that xQ can take on in a stable

configuration (as all variables must sum to Ptot) in which all previous xP have fixed values. Then

this process gives us a sequence of P (minus however many polymers were only in one polymer basis)

different pairs of IP problems that we can sequentially compare to bound the differences between

the values of the individual polymer counts in these lexicographically earliest configurations. We

can repeatedly apply Eq. (5) to each xP in turn, as each variable’s value before and after adding

a will be given by the optimal value of (6) where the only differences are in the right-hand sides

of constraints. The remaining proof of Theorem 2.4.1 consists mostly of making these bounds

concrete.

proof of Theorem 2.4.1. Recall we are trying to sequentially bound the difference between

the amounts xP of polymers in the lexicographically earliest configurations of T and T ′, an arbitrary

TBN before and after adding a copy of a monomer a. We defined a sequence of IPs in Eq. (6)

whose optimal values give the amounts of polymers in these configurations. Throughout we will be

loose with coefficients as our main concern is showing that the bound is doubly exponential.

For those xP representing polymers in only one polymer basis, we already know that their

difference is bounded by |a|. To be conservative, we will both assume that we must account for
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this difference for all P variables, and then carry out the rest of the analysis as though we must

account for all P variables being in B(T ) ∩ B(T ′) (as these latter variables will actually contribute

more to the analysis).

Under these assumptions, we can bound the difference between Ptot (the total number of poly-

mers in a stable configuration) for the two TBNs: Ptot is the optimal value of the IP in Eq. (2)

when adding in constraints that all these variables that are only in one of the two polymer bases

have specific values (which are either 0, or bounded by |a|). Eq. (2) differs between the two cases

by these P constraints differing by up to |a| and one additional constraint T (a) differing by 1

because of the one extra copy of a. Therefore, by Eq. (5), Ptot differs between the two by at most

M1(P |a|+ 1) +K3.

Now, we account for all variables that are in B(T ) ∩ B(T ′). For the first such xP, we see that

Ptot may have changed by M1(P |a|+ 1) +K3, T (a) has changed by a fixed 1, and up to P of the

variables representing polymers in only one polymer basis may have been fixed in value. Thus, we

can bound the difference between the norm of the right-hand side constraint vectors in the two

versions of Eq. (6) for this first such variable by:

(7) P |a|+M1(P |a|+ 1) +K3 + 1 ≤ 2M1P |a|+K3.

It follows by Eq. (5) that the difference between the value of this first xP before and after adding

one copy of a monomer is bounded byM1(2M1P |a|+K3)+K3. Then for the next variable in order,

the value of xP is baked in as the right-hand side of a constraint, meaning that this difference now

contributes to the value ||v − w|| in Eq. (5). Thus, if Pi denotes the ith polymer in our ordering,

we obtain a recurrence relation yielding a bound Bi on the difference between xPi before and after

adding a, for 1 ≤ i ≤ P (where B0 is defined as a base case):

B0 = 2M1P |a|+K3

Bi = K3 +M1

i−1∑
j=0

Bj

(8)

We can bound
∑i−1

j=0Bj by 2Bi−1 as this sequence clearly grows faster than 2i, which allows us

to solve the recurrence to see that all terms of Bi are subleading to K3 · (2M1)
i and each term can

be safely bounded by 2K3 · (2M1)
i.
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Thus, the total distance between these stable configurations is bounded by the sum of P terms

that each have this bound when we replace i with P , giving a bound of 2PK3 · (2M1)
P .

We now bound these individual values. Let S be the maximum number of monomers in any

polymer. The value K3 in [9] is constructed from three other values as the expression M1M3+M2.

These values can each be bounded, some based on another constant K2 which will be bounded

next:

(1) M1 is essentially a bound on how quickly the objective value of the corresponding real-

valued linear program can change as the right-hand side changes, as described earlier. The

optimal value of a linear program is always one of some set of λi · v where the λi vectors

come from the extreme points of a polyhedron based on the IP; [9] bounds M1 by the

maximum norm of these λi. A bound in our case is P : if there was a λi whose elements

summed to more than P , then this would imply we could get a configuration with more

total polymers (as the sum of polymer counts is our objective function) than monomers,

which is impossible.

(2) M2 is the maximum value of the objective function when all variables are at most K2,

which in this case is PK2.

(3) M3 is the maximum norm of the constraint matrix times the vector of variables when all

variables are at most K2. In TBN language, this gives the number of monomers present

in a configuration with K2 copies of every polymer in the polymer basis. The elements of

the constraint matrix are bounded by S, so M3 is bounded by SPK2.

Thus, K3 = M1M3 +M2 ≤ 2SP 2K2. The value of K2 is constructed by taking subsets B of

variables with the following property: the space of aj such that
∑
ajxj = 0 is one-dimensional.

In TBN language, an element of this subspace corresponds to a pair of configurations α and β

of some TBN such that the polymer types present in α and the polymer types present in β are

disjoint subsets of B. In other words, it represents a way to take a configuration using polymer

types in B and reconfigure it to use entirely different polymer types in B. This can be seen by

letting positive aj give counts of polymers in α and negative aj give counts of polymers in β. The

value K2 is as large as the greatest number of a single polymer type that may be necessary for such

a reconfiguration.
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Then to bound this, we observe that we can find the solutions to this homogeneous system of

equations by doing Gaussian elimination on an at most n × P (as there are at most n monomer

types) matrix whose elements are bounded by S. A simple bound for the largest element that can

occur in this Gaussian elimination is Sn+1, so this is also a bound on our constant K2.

Thus, K3 ≤ 2Sn+2P 2.

Finally, we bound S and P . [23] shows that for a TBN with d domain types, m monomer

types and a domains per monomer, the largest polymer in any stable configuration has size at most

2(m+d)(ad)2d+3. Since n is a uniform bound on all these values, the maximum size of any polymer

is 4n · (n4n+6) ≤ n5n. That is to say, S ≤ n5n. Since there are at most n different monomer types,

the number of polymers of a given size i that can be formed out of them is at most i multichoose

n =
(
i+n−1

n

)
≤ (i+ n− 1)n. Therefore, the total number of possible polymer types in the polymer

basis is bounded by:

P ≤
S∑

i=1

(i+ n− 1)n

≤ S · (S + n− 1)n

≤ n5n(n5n + n− 1)n

≤ n6n
2
.

(9)

Thus, we finally obtain the following bound on the distance between these configurations σ and

σ′:

d(σ, σ′) ≤ 2PK3 · (2M1)
P

≤ 4Sn+2P 3 · (2P )P

≤ n6n
2
P 3 · (2P )P

≤ n24n
2 · (2n6n2

)n
6n2

≤ n24n
2 · (n7n7n2

)

≤ n8n
7n2

.

(10)
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□

2.5. Conclusion

In this chapter we have defined the signal amplification problem for Thermodynamic Binding

Networks, and we have demonstrated a TBN that achieves exponential signal amplification. We

also showed a doubly-exponential upper bound for the problem. As TBNs model mixtures of DNA,

a TBN that amplifies signal can potentially be implemented as a real system. An upper bound has

implications for how effective a system designed in this way can potentially be, and shows that there

are some limitations for a purely thermodynamic approach to signal detection and amplification.

One future goal would be to bridge the gap between our singly exponential amplifier and

doubly exponential upper bound by either describing a TBN that can amplify signal more than

exponentially, or deriving a more precise upper bound. If one wished to construct a TBN with

doubly exponential amplification, an examination of our upper bound proof will show that such a

TBN must have an exponentially sized polymer basis, and most likely would need to actually use

an exponential amount of different polymer types in its stable configurations either with or without

the analyte. Such a design seems relatively unlikely to come to fruition, and it seems more likely

that our proof technique or similar techniques can be tightened in order to show a stricter upper

bound. Thus, we conjecture that the true upper bound is (singly) exponential.

There are also other types of robustness that we have not discussed in this work that merit

further analysis. One of these is input specificity: the question of how well the system amplifies

signal if the analyte is changed slightly. Another is sensitivity to the number of copies of each

component. Intuitively, our system’s behavior depends on having exactly equal numbers of com-

plementary strands within each layer; if there are too many copies of one, it may result in those

excess copies spuriously propagating or blocking signal to the next layer. This issue may be intrin-

sic to thermodynamic signal amplifiers, or there may be some system more robust to it. Lastly,

it may be experimentally useful to show that our system achieves its stable states not only in the

limit of thermodynamic equilibrium, but also more practically when annealed. Some systems such

as HCR are designed to reach non-equilibrium, meta-stable states when annealed. We conjecture

that our system should reach equilibrium when annealed, because kinetic traps in the system are

far away from being thermodynamically stable (large entropy gap). Formally studying annealing
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could be done by analyzing versions of the TBN model with different tradeoffs between entropy

and enthalpy to model different temperatures.
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CHAPTER 3

Thermodynamic Signal Amplifier Experiments

The work presented in this chapter was done in David Soloveichik’s lab at the University of

Texas in Austin, with help from him and his students and postdocs, especially Boya Wang and

Tony Szlegowski.

3.1. Introduction

In order to verify the theory described in the previous chapter, we designed real DNA strands

that implement the binding logic of our TBN. We carried out experiments to demonstrate that the

system can amplify signal purely thermodynamically. All experiments were carried out by mixing

together strands, annealing once, and then examining the result to see what strands were binding,

primarily through the use of PAGE gels.

3.2. Single-stranded motif

Our first round of experiments were conducted using a motif where each TBN monomer cor-

responds to a single strand of DNA, as in Fig. 3.1. Each domain has 10 or 11 bases, alternating

in such a way to ensure that crossovers are aligned as seen in Fig. 3.2. This serves as the most

direct realization of the semantics of TBNs. Two strands sharing a sufficiently long complementary

domain will generally bind at room temperature, and strands without complementary domains

generally will not interact. To ensure this latter feature, we used the nuad package [2] to design

DNA sequences that avoided too much undesired interaction. nuad uses NUPACK [27] and Vi-

ennaRNA [40] to evaluate the minimum free energy of strands or of unpseudoknotted secondary

structures among multiple strands. Psuedoknottedness is a technical condition describing DNA

binding patterns, typically of interest because it is generally NP-hard to evaluate the minimum

free energies of complexes when pseudoknotted secondary structures are allowed to form. Because

most of the structures we expect to form are pseudoknotted, we therefore cannot evaluate their

free energies easily. Thus, our approach was to design sequences such that individual strands and
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Figure 3.1. The first motif used for signal amplification experiments, shown using
scadnano [22]. Left: strands corresponding to s and u monomers. Right: strands
corresponding to g and g∗ monomers.

Figure 3.2. The most complicated polymer expected to form. Top: view of strands
at domain level in scadnano. Bottom: rendered view of expected binding pattern
in OxDNA [63].

complexes of a single pair of strands (which we do not expect to bind in a pseudoknotted way) did

not have too low of free energies.

We ran experiments by mixing strands together, annealing overnight from 90-20℃. We then ran

our mixes in pre-cast PAGE gels. PAGE gels were chosen because they allowed us to distinguish

small strands and complexes, with our smallest strands being 31 bases long. The results of our

last experiment with this motif can be seen in Fig. 3.3. While this experiment does not show

amplification, it shows that it is possible for signal to pass between layers of our system in the

way we expect it to. We encountered many issues that seemed to stem from relatively complex
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polymers not forming when we expected them to based on the TBN model. We conjectured that this

is because these complexes were highly geometrically constrained, giving them entropic penalties

not captured in the TBN model.

3.3. Scaffolded motif

In order to fix the perceived geometric issues with the motif we used for our first design, we

built a new design starting over from the semantics of the amplification TBN. Our second round of

experiments consisted of similar experiments, conducted with a set of strands that implement the

amplifier’s logic in a different way. In this “single-stranded scaffold” motif, a single TBN monomer

is reperesented by one scaffold strand, plus one handle strand for each domain. Each handle strand

has a unique domain in common with the corresponding scaffold strand, ensuring that these strands

should always be found together at sufficiently low temperatures when handles are placed in excess

of scaffolds.

While we conducted similar experiments as the first motif, we were not able to find conclusive

evidence that the system was working as expected. The primary issue we encountered was that

many strands generally did not seem to bind to each other at room temperature when we expected

them to do so. Most complexes that we expected to form involve monomers binding along at least

three domains. Each handle strand’s binding domain for complementary handle strands contained

only 7 bases. While we expected this to be sufficient when multiple handles were all binding

together, it is possible that there were unexpected geometric or kinetic barriers to the formation of

the complexes we expected to form. It is also possible that this motif modifies the thermodynamics

of the system in such a way that it does not match the theoretical predictions of the TBN model

as well. Further research is warranted to find if this motif is suitable, or if others exist that might

better be able to match the model.

39



Figure 3.3. The last experiment conducted using the motif described in Sec-
tion 3.2. The lane marked ‘L’ contains ThermoFisher Ultra Low Range DNA Ladder.
The faint band near the bottom of lane 3, absent from the other lanes, contains am-
plifier strands that have been separated from their complementary strands (dark
blue and yellow, lower-right). These strands have no domains in common with the
previous layer (light blue/light green, top). This shows that the analyte from the
previous layer (light green) can act on the next layer in a way that is mediated
through the translator gate (dark green and yellow, lower left).
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Figure 3.4. The single-stranded scaffold motif. The monomer with 9 domains is
represented by one scaffold strand, together with 9 handle strands that bind to it.
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CHAPTER 4

Fast Exact Simulation of Stochastic Chemical Reaction Networks

This chapter is joint work with David Doty. It and most of the following chapter were originally

published as [46].

4.1. Introduction

The model of chemical reaction networks (CRNs) is one of the oldest and most widely used in

natural science [33]. It describes reactions between abstract species, for example A+B
k→C +2D,

which indicates that if a molecule of type A (a.k.a., species A) collides with a molecule of type

B (A and B are the reactants), they may split into three molecules, one of type C and two of

type D (the products). The number k ∈ R>0 is called a rate constant. The standard algorithm for

stochastically simulating CRNs is the Gillespie algorithm [30], which we now describe.

The Gillespie algorithm iteratively executes one reaction at a time, taking time Θ(ℓ) for ℓ

reactions. A configuration is a multiset of species; equivalently a nonnegative integer vector c,

where c(S) ∈ N denotes the count of S; when c is clear from context, we write #S to denote c(S).

A reaction is more likely to occur the more of its reactants there are; more precisely, given a fixed

volume v ∈ R>0, the propensity (a.k.a., rate) of a reaction is proportional to the product of reactant

counts and rate constant k, divided by vr−1, where r is the number of reactants. For example the

propensity of the reaction A+B
k→C+2D is k·#A·#B

v . (See Section 4.2.1 for a detailed definition.)

The Gillespie algorithm repeatedly samples a reaction to execute (for example executing the above

reaction would decrease #A,#B by 1, increase #C by 1, and increase #D by 2), with probability

proportional to its propensity. The time until this occurs is an exponential random variable with

rate equal to the sum of all reaction propensities. In other words the model is a continuous-time

Markov chain whose states are CRN configurations, with transitions determined by reactions.

A distributed computing model known as population protocols [6], originally defined to model

mobile finite-state sensor networks, turns out to be equivalent to the special case of CRNs in which

every reaction has exactly two reactants, two products, and rate constant k = 1. In the population
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protocol model, a scheduler repeatedly picks a pair of distinct molecules A,B uniformly at random

from a population of n molecules and has them interact, which means replacing them with C and

D if there is a reaction A+B→C+D, or doing nothing if there is no such reaction (i.e., simulating

the “null” reaction A + B→A + B). In the natural timescale in which we expect each molecule

to have O(1) interactions per unit of time, the (discrete) parallel time in a population protocol is

defined as the number of interactions to occur, divided by the population size n. A continuous

time variant [25] gives each molecule a rate-1 Poisson clock, upon which it reacts with a randomly

chosen other molecule. The time until the next interaction is an exponential random variable

with expected value 1/n, so these two models are equivalent up to a re-scaling of time, which by

straightforward Chernoff bounds is negligible. The continuous-time variant turns out to coincide

precisely with the Gillespie model restricted to population protocols, when the volume v = n.

The näıve simulation algorithm for population protocols implements the model straightfor-

wardly, one (potentially null) reaction at a time, taking time Θ(ℓ) to simulate ℓ reactions.

4.1.1. Related work on faster stochastic simulation of CRNs. One “speedup heuristic”

changes the model entirely: the deterministic or continuous mass-action model of CRNs represents

the amount of each species as a nonnegative real-valued concentration (average count per unit

volume), defining polynomial ordinary differential equations (ODEs) with a unique trajectory [26].

Integrating the ODEs using standard numerical methods [48] is typically much faster than sto-

chastic simulation. There is a technical sense in which this model is the large-count, large-volume

limit of the discrete stochastic model [37], but the ODE model removes any stochastic effects and

can have vastly different behavior than the stochastic model [24, Fig. 3].

The obvious way to pick the next reaction to occur in the Gillespie algorithm, if there are R

types of reactions, uses time O(R). There are variants of Gillespie that reduce the time to apply

a single reaction from O(R) to O(logR) [28] or even O(1) [56]. However, the time to apply ℓ

total reactions still scales linearly with ℓ. Other exact methods have been developed that, for some

CRNs, empirically appear to simulate ℓ reactions in time o(ℓ) [13,45], but none have been proven

rigorously to give an asymptotic speedup on all CRNs while maintaining exactness. Linear noise

approximation [15] is another workaround, adding stochastic noise to an ODE trajectory.
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Other methods give a provable and practical speedup, but they also provably sacrifice exactness,

i.e., the distribution of trajectories sampled is not the same as the Gillespie algorithm. A com-

mon speedup heuristic for simulating ω(1) reactions in O(1) time is τ -leaping [14,31,32,50,57],

which “leaps” ahead by time τ , by assuming reaction propensities will not change and updating

counts in a single batch step by sampling according these propensities. Such methods necessarily

approximate the kinetics inexactly, though it is sometimes possible to prove bounds on the approx-

imation accuracy [57]. Nevertheless, there are CRNs with stochastic effects not observed in ODE

simulation, and where τ -leaping introduces systematic inaccuracies that disrupt the fundamental

qualitative behavior of the system, demonstrating the need for exact stochastic simulation even

with large population sizes; see [24,38] for examples.

A speedup idea for population protocol simulation is to sample the number of each reaction

that would result from a random matching of size ℓ (i.e., ℓ pairs of molecules, all disjoint), and

update species counts in a single step. This heuristic, too, is inexact: unlike the true process, it

prevents any molecule from participating in more than one of the next ℓ reactions.

However, based on this last heuristic, Berenbrink, Hammer, Kaaser, Meyer, Penschuck, and

Tran [7] created a remarkable “batching” algorithm that is quadratically faster than the näıve

population protocol simulation algorithm, yet samples from the same exact distribution. It can

simulate, on population size n, batches of Θ(
√
n) reactions in time O(log n) each. Conditioned on

the event that no molecule is picked twice during the next ℓ interactions, these interacting pairs

are a random disjoint matching of the molecules. Define the random variable L as the number of

interactions until the same molecule is picked twice. The algorithm samples this “collision” length

L, then updates counts assuming all pairs of interacting molecules are disjoint until this collision,

and finally simulates the interaction involving the collision. By the Birthday Paradox, E [L] ≈
√
n

in a population of n molecules, giving a quadratic factor speedup over the näıve algorithm. (The

time to update a batch scales quadratically with the total number of species.)

The batching algorithm extends straightforwardly to a generalized model of population pro-

tocols in which, for some o ∈ N+, all reactions have exactly o reactants and o products (we call

these uniformly conservative CRNs; see Section 4.2.2). However, the algorithm’s correctness relies

crucially on the fact that the population size n never changes. Reactions such as A+B → C that

decrease n are easy to handle by adding inert “waste” products (A + B→C +W ) to make the
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reaction conservative. The key challenge is reactions such as A→B+C that increase n; this is our

focus.

4.1.2. Our contribution. We extend the batching algorithm of Berenbrink, Hammer, Kaaser,

Meyer, Penschuck, and Tran [7] to the fully general model of CRNs. This is, to our knowledge, the

first simulation algorithm for the CRN model provably preserving the exact stochastic dynamics,

yet simulating ℓ reactions in time provably sublinear in ℓ. We implement our algorithm as a

Python package, with remarkably fast performance in practice. See Section 5.1 for simulation data

generated using this tool.

Our algorithm works on arbitrary CRNs and gives similar asymptotic speedup with respect to

population size to the original batching algorithm for population protocols [7]. Our main theorem,

Theorem 4.5.1, describes this speedup in detail.

There is an important efficiency difference between the Gillespie algorithm and the batching

algorithms (both ours and [7]): the Gillespie algorithm automatically skips null reactions. For

example, a reaction such as L+ L→L+ F in volume n, when #L = 2 and #F = n− 2, is much

more efficient in the Gillespie algorithm, which simply increments the time until the L+L→L+F

reaction by a sampled exponential random variable, in a single step taking time O(1). A näıve

population protocol simulation, on the other hand, iterates through Θ(n) expected null interactions

(L+ F →L+ F and F + F →F + F ) until the two L’s react. Even the batching algorithm, since

it explicitly simulates null reactions, takes time Θ(
√
n), in this regime still asymptotically (and

practically) much slower than the Gillespie algorithm. For this reason, any practical implementation

should switch to the Gillespie algorithm when most sampled reactions in a batch are null. We

describe how many null reactions our algorithm tends to simulate in this way in Definition 4.2.8.

4.1.3. High-level overview of algorithm. The key insight to our extension of the batching

algorithm to handle growing population sizes is that we modify the simulated CRN so that every

reaction in the modified CRN increases the population size by the same amount (the generativity

of the reaction). Furthermore, every reaction has the same number of reactants (the order of

the reaction) in the modified CRN. The full transformation is described in Section 4.3. A simple

example is the reversible reaction A
1
⇌
1
B+C; applying the transformation of Section 4.3 in volume
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v results in the CRN, with two new species K and W , with reactions A+K
v/#K→ B +C +K1 and

B+C
1→A+2W . More generally, add K as catalysts to appropriate reactions, until every reaction

has the same order, then add W as products until every reaction has the same generativity. Note

W (“waste”) is never a reactant so does not affect reaction propensities; after each batch, W can

be removed to prevent the population size from exploding.

Since every reaction has the same order, we can sample reactions in a batch with the same

relative probabilities as the original reactions they represent. When we modify a reaction to have a

K catalyst, we adjust its rate constant to compensate; the reaction retains the same probability of

being sampled as in the original CRN. Since each reaction has the same generativity, the distribution

of collision-free run lengths does not depend on which reactions are part of the run, allowing our

batching algorithm to sample from this exact distribution before sampling which reactions occur.

In Section 4.4, we describe sampling in discrete time, i.e., drawing from the distribution of

configurations after exactly ℓ reactions. This includes our core batching algorithm. Surprisingly,

it is significantly more difficult to sample exactly in continuous time, i.e., from the distribution

of configurations after exactly t time has elapsed. We describe this in Section 4.5, modifying

the discrete-time algorithm and using adaptive rejection sampling [29] to efficiently sample inter-

reaction times.

4.2. Definitions

4.2.1. Preliminaries. We use Λ to denote a generic finite set of labels for chemical species.

We use NΛ to denote the set of functions f : Λ → N. We can also interpret such a function as

a vector r indexed by elements of Λ, calling r(S) the count of S ∈ Λ in r. Equivalently, it can

be interpreted as a multiset, containing r(S) copies of each S ∈ Λ. We use ∥r∥1 =
∑

A∈Λ r(A) or

simply ∥r∥ to denote its 1-norm. We use NΛ
i to denote the set of r such that ∥r∥ = i. For A ∈ Λ and

n ∈ N, we use n ·A to denote the vector a with a(A) = n and a(B) = 0 for all B ̸= A. For a, b ∈ N

with a ≥ b− 1, we write ab to denote the falling power a!/(a− b)! = a(a− 1)(a− 2) . . . (a− b+ 1).

Given a set Λ, a reaction over Λ is a triple α = (r,p, k) ∈ NΛ×NΛ×R>0, with r and p specifying

the stoichiometric coefficients of the reactants and products, and k specifying the rate constant. A

chemical reaction network (CRN) is a pair C = (Λ, R), where Λ is a finite set of chemical species

1Note K is a catalyst, both a reactant and product, so #K never changes; we set #K = n, the molecular count,
updating #K (and adjusting rate constants) between batches if needed to maintain #K = Θ(n).
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and R is a set of reactions over Λ. A configuration of a CRN is a vector c ∈ NΛ. For each species

A ∈ Λ, c(A) gives the count of A in c.

Given a configuration c of a CRN C = (Λ, R), we say a reaction α = (r,p, k) is applicable if

r ≤ c, that is if there is enough of each reactant of α to carry out the reaction. If no reaction

is applicable to c, then we say c is terminal. If α is applicable to c, we write α(c) to denote the

configuration c − r + p obtained by subtracting the reactants and adding the products of α to c.

If d = α(c) for some reaction α ∈ R, then we write c
α→d or simply c→d. An execution E of C is

a finite or infinite sequence of configurations (c0, c1, c2, . . .) such that for each i ≥ 0, ci→ ci+1.

Given a CRN C and a configuration c of C, for this chapter, the evolution of c over time is

governed by the laws of Gillespie kinetics [30]. Each reaction (r,p, k) is treated as a Poisson process

whose rate is given by its propensity, defined for each reaction α = (r,p, k) in a configuration c,

with volume v, as

(11) pc,v(α) =
k

v∥r∥−1
·
∏
A∈r

c(A)r(A)

r(A)!
.

For example, if α is A + 3B
4.5→C, then pc,v(α) = 4.5

6v3
c(A)c(B)(c(B) − 1)(c(B) − 2). The final

product term of (11) (c(A)c(B)(c(B) − 1)(c(B) − 2) in this example) is the number of ways to

choose individual molecules from c with the given reactant identities. Note that reactions lacking

sufficient reactants (e.g., if c(A) = 0 or c(B) < 3) have propensity 0. We also note that propensity

is sometimes defined without this r(A)! factor; these two conventions are equivalent, and conversion

between them is done by multiplying rate constants by a simple correction factor. Define the total

propensity to be the sum of all propensities ptotc,v =
∑

α∈R pc,v(α). The next reaction to be executed

is α with probability
pc,v(α)
ptotc,v

, and the elapsed time until this reaction occurs is distributed as an

exponential random variable with rate ptotc,v.

The evolution of a CRN under Gillespie kinetics in some volume v can be viewed as a continuous-

time Markov chain MC,v = (S,R). The set of states S is the set of configurations of C. The rate

matrix R : S × S → R≥0 is defined by taking, for every (c,d) such that c→d,

R(c,d) =
∑

{α∈R|c α→d}

pc,v(α),
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with R(c,d) = 0 if no such reaction exists. The transition matrix R is obtained by normalizing

each row of R to have sum 1, so that (viewed as a matrix) the row Rc,· gives the probability of

transition from c to each other configuration. If c is terminal, then R(c, c) = 1 and all other values

in the row are 0.

4.2.2. Uniform CRNs.

Definition 4.2.1. The order ord(α) of a reaction α = (r,p, k) is ∥r∥. The order ord(C) of a CRN

C is the maximum order of its reactions. If every reaction has the same order, C has uniform order.

Definition 4.2.2. The generativity gen(α) of a reaction α = (r,p, k) is ∥p∥−∥r∥. The generativity

gen(C) of a CRN C is the maximum generativity of its reactions. If every reaction has the same

generativity, C has uniform generativity.

Definition 4.2.3. A CRN is uniform if it has uniform order and uniform generativity; that is,

there are r, p ∈ N such that every reaction has exactly r reactants and p products.

Uniform CRNs are general enough to allow any CRN to be transformed into a uniform CRN

with the same dynamics, while being constrained enough to allow batching. Previous work [43]

defines and discusses conservative CRNs, which require ∥r∥ = ∥p∥ for each individual reaction

(r,p, k), but allow different values of ∥r∥ between different reactions. We call a CRN that is both

uniform and conservative uniformly conservative. (Population protocols are uniformly conservative

with order 2.) Because uniform CRNs have uniform generativity, their molecular count changes

in a predictable way, allowing similar analytical utility to conservative CRNs. Uniform order is

also important for the batching algorithm, which is designed to simulate uniform CRNs. Thus the

first step of our simulation algorithm is to translate any CRN into a uniform CRN; the next few

definitions describe some quantities that need to be tracked while we do this transformation in order

to preserve the dynamics of the original CRN. We also note that although gen(C) may be negative,

this case is straightforward to handle with the original batching algorithm [7] by adding inert waste

products to each reaction α with gen(α) < gen(C) until the CRN is uniformly conservative. Thus

throughout the rest of our arguments we will assume gen(C) ≥ 0 for any CRN C.

4.2.3. Definitions for CRN transformation.
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Definition 4.2.4. Given a CRN C = (Λ, R), its total rate constant for a multiset of reactants

r ∈ NΛ, denoted ktotC (r), is given by

ktotC (r) =
∑

(r,p,k)∈R

k,

i.e., ktotC (r) is the sum of the rate constants of all reactions in R sharing the same reactants r.

Definition 4.2.5. A uniform CRN C is uniformly reactive if ktotC (r) = ktotC (r′) for all r, r′ ∈ NΛ
ord(C).

In other words, for a uniformly reactive CRN, the sum of rate constants among all reactions

sharing a reactant vector is constant, no matter which reactant vector is chosen. For example, the

reactions

A
1→B + C B

2.5→A+ C C
1.5→A+A

A
2→A+B B

0.5→C + C

are not uniformly reactive because the sum of rate constants for reactions with A as the sole reactant

is 3, same as for reactions with sole reactant B, yet it is 1.5 for C. But if we add the reaction

C
1.5→B +B, the CRN becomes uniformly reactive.

Uniformly reactive CRNs with order o have the useful property that the probability of choosing

a particular multiset of reactants r for the next reaction under Gillespie kinetics (recall Eq. (11)) is

exactly the probability that if we pick omolecules from the population uniformly at random without

replacement, their identities are given by r. In other words, picking reactants “Gillespie-style” is

equivalent to picking reactants “population-protocol-style”.

Lemma 4.2.6. Let C = (Λ, R) be a uniformly reactive CRN and c be some configuration of C. Let

X denote the distribution of reactant vectors in NΛ
ord(C) sampled by the Gillespie algorithm on c in

volume v. Let Y denote the distribution of multisets of k molecules from c, drawn by uniformly

picking individual molecules without replacement. Then X = Y.

Proof. The probability of the next reaction being some α ∈ R is the propensity of α divided

by the total propensity of all reactions. Thus, in X, the probability of the next reactant vector

being r is proportional to the sum of the propensities of all α with that reactant vector, that is, to
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ktotC (r). That is to say,

Pr(ρ(c) = r) =
1∑

β∈R pc,v(β)

∑
α=(r, , )∈R

pc,v(α)

=
ktotC (r)∑

β∈R pc,v(β)
·
∏
A∈r

c(A)r(A)

r(A)!
.

By uniform reactivity, the fraction on the left is constant across choices of r. The remainder then

combinatorially gives exactly the number of ways to choose an ordered list of molecules from c

that comprise r in some order. In Y, the probability of r being drawn uniformly at random is also

proportional to this quantity, so the two distributions must be identical. □

In transforming a CRN into a uniform one and modifying the order of reactions, any reaction

with increased order will have its propensity change as a result of new reactants and the impact of

volume on propensity. We give a way to relate this new propensity to the original propensity.

Definition 4.2.7. Let C = (Λ, R) be a CRN, n be the molecular count of some configuration, and

v ∈ R>0 be volume. Then for α = (r,p, k) ∈ R, the order-adjusted rate constant for α is given by

k̄C(α, n, v) = k · v
δo

nδo
,

Where δo = ord(C)− ord(r). Given a configuration c with ∥c∥ = n, the order-adjusted propensity

of α is given by using its order-adjusted rate constant instead of k in Eq. (11), that is, by

p̄c,v(α) =
k̄C(α, n, v)

k
pc,v(α)

(
=
k · vord(C)−1

nδo
·
∏
A∈r

c(A)r(A)

)
.

This also allows us to precisely describe one potential source of inefficiency. Because we choose

reactants instead of choosing reactions directly, we will sometimes choose reactants that have no

corresponding reaction. We may also choose reactants which have low probability of reacting in the

original CRN due to small rate constants, requiring an artificial slowdown to maintain exactness.

We account for both of these effects together.
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Definition 4.2.8. Let C = (Λ, R) be a CRN, c be a configuration of C with ∥c∥ = n, and v ∈ R>0

be volume. Let p̄totc,v be the total adjusted propensity of C,

p̄totc,v =
∑
α∈R

p̄c,v(α).

Let k̄max be the maximal adjusted rate constant of C,

k̄max = max
α∈R

k̄C(α, n, v).

The scheduler slowdown factor of C on c in volume v, denoted SC,v(c) ≥ 1, is given by

SC,v(c) =
k̄max ·

(
2n

ord(C)
)

p̄totc,v

.

Note that the term 2n is because n is the count of molecules before we add K; since we add n

copies of K, the total count after this step is 2n. Our algorithm can efficiently simulate any CRN

execution whose configurations maintain a constant upper bound on this value. It is sufficient for

this that some reaction with a large (i.e., not asymptotically smaller than any other) adjusted rate

constant has no bottlenecks (i.e., all its reactants have count Ω(n)). We note that it is possible for

this condition to be true at some point in the simulation and become false later; for instance the

reaction 2L→ L+F starts (with only L present) with SC,v(c) ≈ 4 (due to unnecessary added K),

but it increases as L is converted to F, eventually reaching Θ(n2) when #F ≫ #L, because most

interactions are between two F ’s and are therefore passive.

4.2.4. Definitions relating to CRN simulation.

Definition 4.2.9. Let v ∈ R>0 be volume. Let C = (Λ, R) be a CRN with corresponding continuous

time Markov chain MC,v = (NΛ,R). Let c be a configuration of C, and ℓ ∈ N. Then the discrete

ℓ-future distribution of C, denoted Fdis
C,v(c, ℓ), is given by R

ℓ
c,·. That is, it is the distribution of

configurations of C starting from c after ℓ transitions (allowing terminal configurations to self-

transition).

The continuous t-future distribution of C, denoted Fcon
C,v (c, t), is a distribution over NΛ ∪ {∅}

such that if X ∼ Fcon
C,v (c, t), then for any configuration d, Pr(X = d) gives the probability of being

in configuration d after t time starting from configuration c, and Pr(X = ∅) gives the probability
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that C is not in any valid configuration at time t (e.g., for CRNs, that infinitely many reactions

happen by time t).

Definition 4.2.10. A CRN C is said to exhibit finite-time blowup starting from some configuration

c if Pr(Fcon
C,v (c, t) = ∅) > 0 for some v > 0 and t > 0.

Finite-time blowup has been discussed for chemical systems governed by ODEs [36, 65]. It

can also occur in stochastic CRNs. For example, the CRN 2A
1→ 3A exhibits finite-time blowup

from any configuration with at least 2A, in the sense that, for any time t > 0, there is a positive

probability that an infinite number of reactions occur before time t.

We now give a definition of simulation between CRNs. Many definitions of CRN simulation

have been given in the literature. Different definitions are relevant in different contexts, such as

in the continuous ODE model [16] or for formal verification of correspondence between different

CRN implementations [35,55]. Our definition of simulation is much simpler, because we do not

need to worry about checking whether an arbitrary CRN simulates another arbitrary CRN. We are

only worried about showing that any CRN can be simulated by its transformed version as shown in

Section 4.3; the transformed CRN is closely related to the original. To this end, our only concern is

that the CRNs have matching dynamics: that is, that the output of the Gillespie algorithm would

look the same between them, ignoring the extra species introduced in the transformed CRN.

Definition 4.2.11. Let C = (Λ′, R) be a CRN and let Λ ⊆ Λ′. Given a configuration c of C, define

its restriction to Λ, denoted c|Λ, as the configuration obtained by taking c and setting the count of

all species not in Λ to 0.

Definition 4.2.12. Let v ∈ R>0 be volume. Let C = (Λ, R) and C′ = (Λ′, R′) with Λ ⊆ Λ′. We say

C′ simulates C from c if there exists a configuration c′ of C′ such that for all t ≥ 0,

Fcon
C′,v(c

′, t)|Λ = Fcon
C,v (c, t).

We say that C′ conditionally simulates C from c if this statement holds conditioned on these con-

figurations being defined, that is, if X = Fcon
C′,v(c

′, t)|Λ and Y = Fcon
C,v (c, t), simulation requires that

X = Y while conditional simulation requires that

(X | X ̸= ∅) = (Y | Y ̸= ∅) .
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If C′ (conditionally) simulates C from every configuration c of C, we say that C′ (conditionally)

simulates C. We may also say C′ simulates C in continuous time; if any of the above statements

hold for Fdis
C,v(c, ℓ) and Fdis

C′,v(c
′, ℓ) (rather than Fcon

C,v (c, t) and Fcon
C′,v(c

′, t)), then we say C′ simulates

C in discrete time.

4.3. CRN transformations

In [7], working in the model of population protocols, the authors show how to simulate Θ(
√
n)

interactions on a population of n agents in Θ(log n) time. The key insight is that sequential

interactions between non-overlapping pairs of agents can be simulated simultaneously, as a batch.

The results of these interactions only need to be computed once a collision occurs, i.e., an agent

is chosen to interact a second time. On average Θ(
√
n) such interactions will occur before a

collision occurs. These interactions are referred to as a collision-free run. In particular, rather

than simulating reactions individually, the authors first draw from the distribution of the length

of a collision-free run. Then, they determine how many times each particular kind of interaction

occurs within that run. Finally, they simultaneously apply the results of all of these interactions,

along with one extra collision interaction sampled to include at least one agent that was part of

the collision-free run.

Because general CRNs may contain reactions which unpredictably change total molecular count,

this idea is not immediately applicable. However, this methodology can be applied to uniform

CRNs, with some modifications to account for changing molecular count and reactions of arbitrary

uniform order (as opposed to uniform order 2) Thus our first step is to transform an arbitrary CRN

C into a uniform CRN simulating C (see Section 4.2.4 for our definition of CRN simulation).

4.3.1. Transforming an arbitrary CRN into a uniform CRN. Given an arbitrary CRN

C, we transform it into a uniform CRN C′ via Algorithm 1. We will demonstrate how this method

works on the example CRN,

A+B
2→C

C
3→A+B

with a single reversible dimerization reaction, a case that existing methods cannot simulate effi-

ciently. First, the second reaction’s order is one less than the order of the CRN, so we add one
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Algorithm 1 Uniform CRN transformation

Input: CRN C = (Λ, R), volume v ∈ R>0, integer k0 ≥ ord(C)
Output: Uniform CRN C′ = (Λ′, R′) simulating C as in Lemma 4.3.1

(1) Add two new species, K and W , setting Λ′ = Λ+ {K,W}.
(2) To define R′, for each reaction α = (r,p, k) in R, let δo = ord(C) − ord(α) and δg =

gen(C)− gen(α), and add the reaction α′ = (r′,p′, k′) to R′, where
(a) r′ = r+ δo ·K,
(b) p′ = p+ δo ·K + δg ·W ,
(c) k′ = k̄C(α, k0, v) (see Definition 4.2.7).

In other words: add ord(C)− ord(α) copies of K to both r and p, add gen(C)− gen(α)
copies of W to p, and adjust k by a multiplicative factor depending on input constants
and how many K were added to r.

copy of K to catalyze the second reaction:

A+B
2→C

C +K
3→A+B +K

Next, the first reaction’s generativity is -1, while the CRN has generativity 1. So we add 2 copies

of W to the first reactant’s products:

A+B
2→C +W +W

C +K
3→A+B +K

Finally, we must adjust the rate constant, accounting for volume and our choice of k0. Here, this

will result in multiplying the second reaction’s rate constant by v
k0
, so if we take, for example, v = 6

and k0 = 30, this would result in the output CRN:

A+B
2→C +W +W

C +K
0.6→A+B +K

Intuitively, W is an inert waste species and does not affect the dynamics of the CRN. K has

constant count, so its presence has a constant effect on each reaction’s propensity over the course of

a batch, which is accounted for by modifying rate constants. k0 represents the count of K that will

be added to the original CRN configuration for simulation. We require k0 ≥ ord(C) for simplicity.

Choosing k0 ∈ Θ(n) yields the simplest asymptotic analysis, and is a reasonable practical choice.
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Lemma 4.3.1. Let C = (Λ, R) be a CRN, and let C′ = (Λ′, R′) be the output of Algorithm 1 on C

with any choice of v and k0. Then C′ simulates C in continuous and discrete time.

Proof. Let k = k0 ·K. Given a configuration c of C, we will use the configuration c′ = c+ k

of C′ to satisfy the definition of simulation given in Definition 4.2.12.

Consider the Markov chain MC′,v = (S′,R′) representing C′. Define an equivalence relation

∼ on S′ by c1 ∼ c2 ⇐⇒ ∀A ∈ Λ′ \ {W}, c1(A) = c2(A), i.e., they differ only in their count of

W . Let M̃C′ be the continuous time Markov chain whose states are the equivalence classes under

∼ of the states of S′ which contain exactly k0 copies of K, with transitions inherited from R′.

This inheritance is well-defined because W is inert, so equivalent states always have transitions to

equivalent states. Note also that these are the only equivalence classes we need to consider, as any

configuration reachable from c′ has k0 copies of K.

We observe that M̃C′ is isomorphic to MC . For any state d in MC , the corresponding state

in M̃C′ is the equivalence class of d + k. By construction, corresponding reactions have equal

propensities in these two CRNs: the factor by which Algorithm 1 multiplies k to obtain k′ accounts

for the extra K in the reactants and the need to divide by a different power of v. Explicitly, for

any pair of corresponding reactions α = (r,p, k) and α′ = (r′,p′, k′),

pc′,v(α
′) =

k′

v∥r′∥
·

(∏
A∈r′

c′(A)r
′(A)

)

=
k · vr

′(K)

⌊v⌋r(K)

vr′(K)+∥r∥ ·

(
⌊v⌋r(K)

∏
A∈r

c(A)r(A)

)

=
k

v∥r∥
·

(∏
A∈r

c(A)r(A)

)

= pc,v(α).

This shows that corresponding transitions have the same rates in MC and M̃C′ . It follows that

they have identical distributions of configurations sampled at any time or number of steps. □

4.3.2. Transforming a uniform CRN into a uniformly reactive CRN. Our batching

algorithm is based on population protocols: it chooses a random set of molecules, rather than a

random reaction. These molecules may not correspond to a reaction. In this case, for consistency,
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we still need molecular count to update. Additionally, we must account for differing rate constants

between different reactions.

We solve these issues by ensuring that the value ktotC (r) (see Definition 4.2.4) is identical among

all every possible multiset r of reactants the batching algorithm might sample. This is the notion

of a uniformly reactive CRN (Definition 4.2.5). Algorithm 2 transforms the output of Algorithm 1

into such a CRN. It does so by adding passive reactions, which update molecular count consistently

but only add W , and thus do not affect any reaction’s propensity.

For example, the example given for Algorithm 1 would be transformed into the following:

A+B
2→C +W +W

C +K
0.6→A+B +K

C +K
1.4→C +K +W

A+A
2→A+A+W

A+ C
2→A+ C +W

...

W +W
2→W +W +W,

where there is a passive reaction with rate constant 2 for every possible reactant multiset except

for A+B and C +K.

Algorithm 2 Total rate constant uniformity transformation

Input: CRN C = (Λ, R), volume v ∈ R>0, integer k0 ≥ ord(C)
Output: Uniformly reactive CRN C′ simulating C as in Lemma 4.3.3

(1) Let C0 = (Λ+ {K,W}, R0) be the uniform CRN output by Algorithm 1 on C, v and k0.
(2) Let kmax = maxr∈NΛ

ord(C0)
ktotC0 (r), the maximum total rate constant of any set of reac-

tants.
(3) Define a set of passive reactions P: for every r ∈ NΛ

ord(C0) such that ktotC0 (r) < kmax, P

contains the reaction

(r, r+ gen(C0) ·W,kmax − ktotC0 (r)).

(4) Output C′ = (Λ + {K,W}, R0 + P ).

Observation 4.3.2. The output of Algorithm 2 is uniformly reactive (see Definition 4.2.5).
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Lemma 4.3.3. Let C = (Λ, R) be a CRN, and c a configuration of C. Let C′ = (Λ′, R′) be the result

of running Algorithm 2 on C. Then C′ conditionally simulates C in continuous and discrete time.

Note that we can only guarantee conditional simulation because the reactions we add to C′

may cause it to exhibit finite-time blowup. For example, the reaction 2W → 3W causes finite-time

blowup on its own. Removing W between batches prevents this issue.

Proof. Given a configuration c of C, we simulate it from c+ k0 ·K. We must show that these

two CRNs have identical distributions over configurations at time t, conditioned on both of them

having valid configurations at time t. By construction, there is a natural injection f : R → R′

sending α ∈ R to its modified version in R′ that was output by Algorithm 1. We couple the two

CRNs as follows: whenever a reaction α′ occurs in C′, if there is some α ∈ R such that f(α) = α′,

then α occurs in C. Otherwise (i.e., if α′ is passive), nothing happens in C. This is a valid coupling

because any passive α′ only affect the count ofW , so their occurrence does not affect the propensity

of any reactions in R′ nor the count of any species in Λ. Therefore, from the point of view of C,

these extra reactions do not affect the dynamics of the system so long as C′ eventually reaches time

t, which is guaranteed by conditioning. □

4.4. Simulating discrete-time CRN executions

We have shown that any CRN can be simulated by a uniformly reactive CRN. In this section,

we show how to leverage this to efficiently sample a “discrete-time” CRN execution, meaning that

we will merely count the number of reactions in each batch, but make no attempt to sample the

amount of continuous time elapsed during the batch according to the Gillespie distribution. That is,

given a CRN C, a starting configuration c, volume v, and a number of steps to simulate ℓ, we wish

to efficiently draw from the distribution Fdis
C,v(c, ℓ) (Definition 4.2.12). Section 4.5 describes how to

modify the algorithm to sample accurate timestamps to assign to each sampled configuration.

4.4.1. Discrete sampling with a scheduler. We now turn our attention to algorithms

which simulate CRNs, rather than CRNs which simulate each other. The first such algorithm,

Algorithm 3, is analogous to the algorithm SEQ in [7]. It is not intended to be executed, and is

provided for analytical comparison. The only adjustment we must make is to convert rate constants

into probabilities.
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Algorithm 3 Scheduler-based uniform CRN simulation

Input: CRN C = (Λ, R), volume v ∈ R>0, configuration c of C, integer ℓ ∈ N
Output: Configuration c′ of C distributed as in Corollary 4.4.1

Let C′ be the uniformly reactive CRN output by Algorithm 2 on input C, v, and k0 = ∥c∥. Let
c′ = c+ ∥c∥ ·K. Set steps = 0, and repeat until steps = ℓ:

(1) Choose ord(C′) molecules from c′, each uniformly at random without replacement, and
let r be the resulting multiset.

(2) Choose a reaction α from C′ with reactant vector r, with probability proportional to its

rate constant (i.e., reaction αi = (ri,pi, ki) is chosen with probability ki
ktotC′ (r)

). Update

c′ by executing α.
(3) If a non-passive reaction was executed, (i.e., anything other than r→ r+ gen(C′) ·W ),

increment steps.
(4) Set c′(W ) to 0 (to avoid finite-time blowup).

The next corollary follows directly from Lemmas 4.2.6 and 4.3.3.

Corollary 4.4.1. On input C, v c, and ℓ, the output of Algorithm 3 is distributed as Fdis
C,v(c, ℓ).

As we will analyze our main algorithm using this algorithm as an intermediate, we require that

it runs in time linear in ℓ. It may take longer if it repeatedly simulates passive reactions. We

incorporate this into our analysis here.

Lemma 4.4.2. Let C be a CRN, c be a configuration of C, and ℓ ∈ N. Then the process of sampling

from Fdis
C,v(c, ℓ) using Algorithm 3 takes O (SC,v(c)) steps (see Definition 4.2.8). That is, each loop

iteration executes a non-passive reaction with probability Ω( 1
SC,v(c)

).

Proof. Let n = ∥c∥. Consider how likely the Gillespie algorithm is to execute a passive reaction

when running C′ on c. We claim this probability is given exactly by 1
SC,v(c)

. The probability of one

of a set of reactions being run under Gillespie kinetics is the sum of those reactions’ propensities,

divided by the total propensity. This is how SC,v(c) is defined: its denominator gives the total

propensity of all reactions in C′ that came from C, while its numerator gives the total propensity

of all reactions in C′. This latter claim can be seen because we simulate C′ on a configuration of

size 2n, and each set of ord(C) molecules in c will contribute a value of its corresponding total rate

constant to the total propensity, and uniform reactivity implies that this value is the same for all(
2n

ord(C)
)
of these sets. □

4.4.2. Batch size sampling. In [7], the authors use a notion of collision-free runs, and sample

from the length of such a run. Our analysis will be similar to theirs, with some additional details to
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account for arbitrary order and generativity. Below, we use “red” and “green” to refer to molecules

that have interacted (respectively, not interacted) in a batch.

Definition 4.4.3. Let C be a uniformly reactive CRN and c be a configuration of C. Suppose

each molecule in c is colored red or green, and that reactions consume specific copies of molecules

uniformly at random. Whenever a reaction occurs, all products (including catalysts) are colored

red. Then, given an execution E of C from c, we say that the collision index of E is the index

(starting from 0) of the first reaction with any red molecule as a reactant. That is, it is the number

of reactions that are executed before any red molecule is a reactant.

We define the random variable ℓ as the collision index of E when E is sampled (using normal

stochastic sampling) among all (infinite) executions of C from c. We say ℓ ∼ coll(n, r, o, g),2 where

n = |c|, r is the count of red molecules in c, o = ord(C) and g = gen(C).

Note that because C is uniformly reactive (recall Definition 4.2.5), this distribution will not

depend on the specific reactions in C or species present in c.

Definition 4.4.4. The multifactorial n!(g) is given by the product n(n− g)(n− 2g) . . ., continuing

until (and including) the last positive term.

Lemma 4.4.5. Let ℓ ∼ coll(n, r, o, g), where g ≥ 0. Then ℓ has (reverse) cumulative distribution

Pr(ℓ ≥ k) =



(n−r)!
(n−r−ko)!

∏o−1
j=0

(n−g−j)!(g)

(n+g(k−1)−j)!(g)
0 ≤ k ≤ n−r

o , g > 0

(n−r)!
(n−r−ko)!

∏o−1
j=0

1
(n−j)k

0 ≤ k ≤ n−r
o , g = 0

0 otherwise.

Proof. Because of uniform reactivity, we may ignore what species each molecule is: at each

step, every o-tuple of molecules is equally likely to comprise the next reaction’s reactants. There-

fore, we can equivalently consider a scheduler that repeatedly picks individual reactants without

replacement, and executes a reaction every time it picks o of them (returning the products to the

2For our purposes, the parameter r will always be 0; however, we show the computation in generality, as general r
is necessary to implement multibatching as described in [7]. Adapting our result to this regime can be done in much
the same way as in [7].
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pool of molecules it may pick). If, after a reaction, the population has m total molecules with l

green and m− l red, then the probability of this scheduler only picking green molecules in the next

reaction is
o−1∏
j=0

l − j

m− j
.

Initially, there are n molecules, r red and n − r green. After each reaction, o green molecules are

replaced with o+g red molecules. Therefore, the probability of executing at least k reactions before

a collision is given by

Pr[ℓ ≥ k] =
k−1∏
i=0

o−1∏
j=0

#green after i rxns︷ ︸︸ ︷
n− r − oi −j
n+ gi︸ ︷︷ ︸

pop size after i rxns

−j
.

Examining the numerator and denominator separately, we observe that the numerator varies over

all integers from n− r − ko+ 1 to n− r, i.e., the combined product of all numerators is the ratio

(n−r)!
(n−r−ko)! . Factoring this out and commuting the products yields:

Pr[ℓ ≥ k] =
(n− r)!

(n− r − ko)!
·
o−1∏
j=0

k−1∏
i=0

1

n+ gi− j
.

This inner product is the “Pochhammer g-symbol” (n + gi − j)k,g.
3 Our task is now to rewrite it

in a way that can be efficiently computed when k is large. When g > 0, we can rewrite the inner

product as a ratio where all but k terms cancel by using multifactorials (Definition 4.4.4):

(n− r)!

(n− r − ko)!
·
o−1∏
j=0

(n− g − j)!(g)

(n+ g(k − 1)− j)!(g)
.

When g = 0, corresponding to a uniformly conservative CRN, 4 each term in the inner product is

identical and the formula simplifies to:

(n− r)!

(n− r − ko)!
·
o−1∏
j=0

1

(n− j)k
. □

Lemma 4.4.6. It is possible to sample from coll(n, r, o, g) in time O(o · log n).

3This is normally called the “Pochhammer k-symbol”, but we use k as the first parameter rather than the second.
4Note that even in this case and when o = 2 (i.e., for population protocols), we obtain a different expression from [7],
since we use a different definition of this distribution in terms of reactions (o molecules sampled at a time) instead of
reactants (1 molecule sampled at a time).
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Proof. To sample ℓ ∼ coll(n, r, o, g), we can draw a uniform variate U ∼ Unif([0, 1]) and use

inversion sampling [21] to draw a sample via binary search in O(log n) comparisons between U and

the CDF (because 0 ≤ ℓ ≤ n). To compare U to the formula given by Lemma 4.4.5, we take the

log of both sides and see that the relation we must compute is whether or not

log((n− r)!)− log((n− r − ko)!) +

o−1∑
j=0

[
log
(
(n− g − j)!(g)

)
− log

(
(n+ g(k − 1)− j)!(g)

)]
< logU.

To compute this efficiently, we make use of the Γ function, the generalization of factorial to non-

integers. Computing log(x!) for any x can be done efficiently using standard implementations of

the log-gamma function log(Γ(x)). To compute the log of a multifactorial, we make use of the

relation that Γ(x+1) = x ·Γ(x), even for non-integer x. We divide each term of each multifactorial

product by g, and collect these factors of g. This yields a product where consecutive terms differ

by 1, which can be written as a ratio of Gamma functions. For example,

log(17!(5)) = log(17 · 12 · 7 · 2) = log

(
54 · 17

5
· 12
5

· 7
5
· 2
5

)
= log

(
54 · 17

5
· Γ(17/5)
Γ(17/5)

· 12
5

· 7
5
· 2
5

)
= log

(
54 · Γ(22/5)

Γ(17/5)
· 12
5

· 7
5
· 2
5

)
= log

(
54 · Γ(22/5)

Γ(17/5)
· 12
5

· Γ(12/5)
Γ(12/5)

· 7
5
· 2
5

)
= log

(
54 · Γ(22/5)

Γ(17/5)
· Γ(17/5)
Γ(12/5)

· 7
5
· 2
5

)
= log

(
54 · Γ(22/5)

Γ(12/5)
· 7
5
· 2
5

)
. . . = log

(
54 · Γ(22/5)

Γ(2/5)

)
= 4 log(5) + log Γ(22/5)− log Γ(2/5).

Using this method, these log-multifactorial terms can be computed efficiently even if they contain

many terms. It follows that every term on the left-hand side can be computed efficiently, and there

are Θ(o) terms. □

Since we start each batch with no molecules having interacted, in the next lemma, we consider

only this case (r = 0 in coll(n, 0, o, g)); however, we strongly suspect that a similar result holds

that was shown in [7], that for r ≥
√
n, E [ℓ] = Θ(n/r).

Lemma 4.4.7. Let ℓ ∼ coll(n, 0, o, g). Then E [ℓ] = Θ(
√
n).

Proof. Recall from the proof of Lemma 4.4.5 that (setting r = 0)

Pr[ℓ ≥ k] =
k−1∏
i=0

o−1∏
j=0

n− oi− j

n+ gi− j
.
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We first show the lower bound:

E [ℓ] =

⌊n/o⌋∑
k=1

Pr[ℓ ≥ k] =

⌊n/o⌋∑
k=1

k−1∏
i=0

o−1∏
j=0

n− oi− j

n+ gi− j
>

⌊n/o⌋∑
k=1

k−1∏
i=0

o−1∏
j=0

n− oi− (o− 1)

n+ gi

=

⌊n/o⌋∑
k=1

k−1∏
i=0

(
n− oi− o+ 1)

n+ gi

)o

>

⌊n/o⌋∑
k=1

k−1∏
i=0

(
n− o(k − 1)− o+ 1

n+ g(k − 1)

)o

=

⌊n/o⌋∑
k=1

(
n− ok + 1

n+ g(k − 1)

)ok

>

⌊n/o⌋∑
k=1

(
n− ok

n+ gk

)ok

>

√
n∑

k=1

(
n− ok

n+ gk

)ok

=

√
n∑

k=1

(
n

n+ gk
− ok

n+ gk

)ok

=

√
n∑

k=1

(
n+ gk

n+ gk
− ok + gk

n+ gk

)ok

=

√
n∑

k=1

(
1− ok + gk

n+ gk

)ok

>

√
n∑

k=1

(
1− (o+ g)

√
n

n

)ok

=

√
n∑

k=1

(
1− o+ g√

n

)ok

>

√
n∑

k=1

(
1− o(o+ g)√

n

)k Bernoulli’s inequality

(1− x)o > 1− xo when x ≤ 1

=
1−

(
1− o(o+g)√

n

)√n

1−
(
1− o(o+g)√

n

) =
√
n
1−

(
1− o(o+g)√

n

)√n

o(o+ g)
≥

√
n
1− e−o(o+g)

o(o+ g)
, since

(
1 +

x√
n

)√
n

≤ ex.

For the upper bound, recall in the definition of ℓ ∼ coll(n, r, o, g) that g is the number of

additional red molecules added each reaction, in addition to the o green molecules that are turned

red. Clearly ℓ has a smaller expected value when g = 0 than when g > 0, since the extra red

molecules in the latter case make it more likely that we pick a red reactant molecule on each

interaction. Thus for upper-bounding E [ℓ], we make the worst-case assumption that g = 0. Similar

reasoning lets us assume o = 1 in the worst case for the upper bound. This turns out to be precisely

what was analyzed in [7, Lemma 4],5 where it is shown E [ℓ] ≤ 2
√
n. □

4.4.3. Single batch content sampling. To determine what reactions to simulate in a batch,

we also use a method very similar to that of [7]. In population protocols over q states, the authors

view this problem as sampling the values of a q × q transition matrix D. To do this, they first

sample the row sums of D (corresponding to the first reactant) using a multivariate hypergeomet-

ric distribution,6 and then sample values within each row (corresponding, for each possible first

5This is in fact the distribution of the original birthday problem: how many balls can we throw into n bins before
some bin gets two balls? Although [7] studies order-2 CRNs, their definition of a run length is based on the number
of molecules that interact, as opposed to the number of interactions as in our definition.
6A multivariate hypergeometric distribution asks, if we sample ℓ molecules from an urn without replacement, pre-
scribed initial counts of molecule species {1, . . . , q}, how many of each species do we get?
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reactant species r1, how many of each species r2 get paired as second reactant to r1), taking q+ q2

samples. We use a similar approach, except that we must populate an (ord(C))-dimensional array

D. We first sample the q = |Λ| codimension-1 sums of D: that is, for each species, how many

reactions in the batch will have that species as their first reactant. Once we have done this, we

are left with q (ord(C)− 1)-dimensional subarrays, and can recursively use multivariate hypergeo-

metric distributions until we have sampled all elements. This will require Θ(qord(C)) multivariate

hypergeometric samples, each of which each can be obtained in constant time [60]. In distribution,

this process is equivalent to sampling all the individual reactants for every reaction one at a time.

4.4.4. Full discrete-time simulation algorithm. With this, we are ready to describe the

complete algorithm which efficiently samples from the discrete-time distribution Fdis
C,v(c, ℓ). Algo-

rithm 4 simulates one batch, while Algorithm 5 runs batches until it has simulated ℓ reactions.

Algorithm 4 Discrete-time single-batch simulation

Input: Uniformly reactive CRN C′ = (Λ, R), configuration c0 of C′, batch size bound ℓmax ∈ N
Output: Number of steps simulated ℓout ≤ ℓmax, Configuration c of C′ distributed as in

Lemma 4.4.8
(1) Let c′ be an empty configuration, and let c = c0.
(2) Sample a collision-free run length ℓ ∼ coll(n, 0, ord(C′), gen(C′)), as described in

Lemma 4.4.6. If ℓ ≥ ℓmax, set ℓ = ℓmax, set ℓout = ℓ and do collision = False;
otherwise if ℓ < ℓmax, set ℓout = ℓ+ 1 and do collision = True.

(3) Let q = |Λ|. Sample the batch by sampling the values of the ord(C′)-dimensional tran-

sition array D by recursively drawing Θ(qord(C
′)) multivariate hypergeometric samples

summing to ℓ, as described in Section 4.4.3.
(4) Execute the batched reactions. For each entry r ∈ N of D corresponding to reactants r:

Draw a sample from a multinomial distribution on r trials, with probabilities pro-
portional to the rate constants of each reaction in C′ having reactant vector r. For
each sampled value, apply the result of executing the corresponding reaction that many
times, removing the reactants from c and adding the products to c′. If the correspond-
ing reaction is not passive, also increase steps by the sampled value.

(5) If do collision = True, simulate a collision: Draw an ordered list of reactants r
uniformly from c + c′, conditioned on at least one of them being from c′ (see proof
of Lemma 4.4.12 for how). Then, execute a single reaction from C′ with reactant vector
r as described in step 4, and if it is not passive, increment steps.

(6) Set c := c+ c′ (and output it).

Lemma 4.4.8. On input C′, c0, and ℓmax, and for any volume v ∈ R>0, the output of Algorithm 4

is distributed as Fdis
C′,ℓmax

(v, c0).
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Algorithm 5 Discrete-time full simulation

Input: CRN C = (Λ, R), volume v ∈ R>0, configuration c0 of C, number of steps ℓmax ∈ N
Output: Configuration c of C distributed as in Corollary 4.4.9

Set c = c0 and steps = 0. Repeat until steps = ℓmax:
(1) Set k0 = ∥c∥, and let C′ be the output of Algorithm 2 on inputs C, v, and k0. Let

c′ = c+ k0 ·K.
(2) Call Algorithm 4 on input C′, c′, and ℓmax−steps. Set c to the returned configuration,

with all W and K removed. Add the returned number of steps ℓout to steps.

Proof. Note first that v has no effect on this distribution, as C′ is uniform, so the value of v

affects all propensities identically. We couple Algorithm 4 with Algorithm 3, which has the correct

distribution by Corollary 4.4.1.

The only difference between the two processes is that Algorithm 4 batches reactions. Thus, we

can couple the processes by running Algorithm 3 while keeping track of individual molecules, and

whenever a collision occurs (i.e., when a molecule produced since the last collision is chosen as a

reactant), using that number of reactions to sample the length of a collision-free run in Algorithm 4.

From the perspective of Algorithm 4, nothing is changed by this coupling, because it samples from

the exact distribution of collision-free run lengths given in Lemma 4.4.5. If it is possible for this

collision-free run length to be greater than ℓmax − steps, then whenever this many reactions occur

with no collision in Algorithm 3, we also run Algorithm 5 on a batch of this size (with no collision).

This maintains the coupling in all cases. □

Together with Lemma 4.3.3, this implies the following:

Corollary 4.4.9. On input C, v, c0, and ℓmax, the output of Algorithm 5 is distributed as Fdis
C,ℓmax

(v, c0).

We now turn to the issue of efficiency. At its core, our algorithm’s efficiency comes from

batching, allowing the simulation of Θ(
√
n) reactions in O(log n) time. Most batching steps will be

able to run this many reactions, so long as there are at least Θ(
√
n) left to simulate.

Lemma 4.4.10. Suppose that Algorithm 5 calls Algorithm 4 on inputs C′, c′, and ℓmax − steps

with ∥c′∥ = n and (ℓmax − steps) ∈ Ω(
√
n). Then the number of steps returned by Algorithm 4 is

Ω
( √

n
SC,v(c)

)
in expectation (i.e., the iteration simulates this many reactions from the original CRN).

Proof. By Lemma 4.4.7, after step 2, the value ℓ, the number of (possibly passive) reactions

in the batch, is Θ(
√
n) in expectation. As argued in Corollary 4.4.9, Algorithm 5 can be coupled
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with Algorithm 3. Therefore, we can apply Lemma 4.4.2 to see that each individual reaction in

this batch of Θ(
√
n) reactions has probability 1

SC,v(c)
of being non-passive. □

The next lemma refers to the other case from Lemma 4.4.10, which is that we only have O(
√
n)

steps left before reaching ℓmax.

Lemma 4.4.11. Suppose that Algorithm 5 calls Algorithm 4 on inputs C′, c′, and ℓmax − steps

with (ℓmax − steps) ∈ O(
√
n), and that every configuration c appearing at the start of an iteration

from this point satisfies SC,v(c) ≤ s for some s ∈ R>0. Then the algorithm will halt in O (s log n)

more iterations in expectation.

Proof. If ℓmax − steps is in O(
√
n), then most batches will simulate ℓmax − steps reactions.

On average, the fraction of these that are non-passive will be 1
SC,v(c)

. We can view the number of

iterations to completion from this point as the maximum of ℓmax−steps independently distributed

geometric variables with success probability at least s, because each call to Algorithm 4 has inde-

pendent probability at least s to simulate a non-passive reaction for each reaction it simulates. The

given asymptotic expression is a bound on the expectation of this maximum. □

Lemma 4.4.12. Suppose Algorithm 5 is run on input C, v, c0 and ℓmax. Suppose that every

configuration c appearing at the start of an iteration of this execution satisfies nmin ≤ ∥c∥ ≤ nmax

and SC,v(c) ≤ s for some n ∈ N, s ∈ R>0. Then the algorithm runs in time O
(
qord(C)sℓmax log(nmax)√

nmin

)
.

Proof. Step 1 consists of simple transformations on the CRN, so is not relevant to asymptotic

analysis as other steps will take longer. Step 2 takes time O(ord(C) log(nmax)) by Lemma 4.4.6.

Step 3 can be done in time Θ(qord(C)), as each multivariate hypergeometric sample can be drawn

in constant time [60]. Step 4 also takes time Θ(qord(C)), as there are this many entries in D and

relevant samples and configuration updates can be done in constant time per entry. Steps 5 and 6

are not costly; the conditional sampling in step 5 can be done by simple combinatorial calculations.

Thus, each iteration takes time Θ(qord(C)). By Lemma 4.4.10, it will take on average O
(
ℓmax

s
√
n

)
iterations until there are O(

√
n) remaining reactions to simulate. By Lemma 4.4.11, the remainder

of the algorithm from there does not take too long. □

4.5. Simulating with continuous time

In this section, we show our main theorem:
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Theorem 4.5.1. Let C = (Λ, R) be a CRN with |Λ| = q, c be a configuration of C, and v ∈ R>0

be volume. Let p ∈ (0, 12 ] be a parameter. Then it is possible to exactly sample from Fcon
C,v (c, t) (that

is, to sample the configuration of C at time t in volume v, starting from c) in time

O

(
(2q)ord(C)sℓ log(nmax)

npmin

+ n2p/3max ℓ
1/3 log(nmax)

)
,

so long as all ℓ configurations c occurring up to time t satisfy nmin ≤ ∥c∥ ≤ nmax and SC,v(c) ≤ s

(see Definition 4.2.8 for the definition of SC,v(c)).

This theorem is directly implied by Lemma 4.5.2 and Lemma 4.5.3. See Section 4.5.3 for a

discussion of the asymptotics.

So far, we have described an algorithm that exactly simulates CRNs in discrete time. That is,

it can sample accurately from the distribution of executions of a CRN from a given configuration,

and then output some subsequence of that execution (outputting the entire execution would take

linear time). We also wish to know the (continuous) inter-reaction times - that is, not just what

configuration the CRN is in and how many reactions have occurred (i.e., “discrete time”), but also

how long it took to get there: a timestamp. Sampling this information efficiently is surprisingly

difficult compared to merely sampling discrete time information. Our approach is to exploit the

inert W molecule introduced in Algorithm 1. By carefully modifying the count of this molecule

between batches, we ensure that the batching algorithm repeatedly cycles through the same small

(Θ(np) for some p ∈ (0, 12 ]) set of distinct molecular counts. This allows us to take advantage of

a method called adaptive rejection sampling [29] to quickly sample inter-reaction times from the

same distribution repeatedly, rather than sampling the time of each individual reaction.

Throughout this section, let c ∈ NΛ be a configuration of the CRN C at the start of a batch,

let n = ∥c∥, let k ∈ N+ denote the number of interactions for which we wish to sample the total

inter-reaction time, let o = ord(C), and let g = gen(C). Like with individual reactions, sampling

individual inter-reaction times would take linear time, so we must sample the sum of many inter-

reaction times together. Each individual inter-reaction time is distributed as an exponential random

variable with rate equal to total propensity ptotc,v. For uniformly reactive CRNs this value is always

equal to a constant times
(
n
o

)
. Since each reaction increases the total molecular count by g, the i’th

reaction has a rate proportional to
(
n+ig
o

)
; it follows that for a batch of size k, we must sample the
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variable

H =
k−1∑
i=0

X

((
n+ ig

o

))
,

where each X(λ) is independently exponentially distributed with rate λ. The distribution of such a

variable H is known as a hypoexponential distribution.7 Our aim here is to sample from it efficiently.

We first show (Sections 4.5.1 and 4.5.2) a theoretical approach allowing us to efficiently sample

from H exactly under an assumption of bounded molecular count. We then discuss (Section 4.5.4)

more practical approaches for sampling approximately from H, which are faster and appear in

theory and practice to be accurate enough that they do not meaningfully affect the output distri-

bution.

4.5.1. Sampling exactly from the hypoexponential distribution. To drastically sim-

plify this discussion, we assume that the execution we simulate has bounded total molecular count.

This assumption is true of any physically realistic CRN execution. It also does not meaningfully

deviate from what the Gillespie algorithm can simulate; for example, on CRNs which exhibit finite-

time blowup, any algorithm attempting to sample a configuration at some given time must have

some probability of failure. Even on CRNs that do not exhibit finite-time blowup, unbounded

molecular counts typically occur as a result of exponential growth, a case where the Gillespie

algorithm will take exponential time and is not practical.

The PDF P of a hypoexponential distribution with rates λ1, . . . , λk is [51]:

(12) P (t) =

k∑
i=1

Ci,kλie
−λit,

where

Ci,k =
∏

j∈{1,...,k}\{i}

λj
λj − λi

.

Näıvely computing all Ci,k appears to require Θ(k2), taking time O(k) for each of the k products

Ci,k. (Each binomial coefficient λi =
(
n+ig
o

)
can be computed in O(1) time since we consider

o, g = O(1) with respect to n.) However, we can improve this to Θ(k log2 k) time. First note that

7In the case where the CRN is conservative, that is, each reaction has an equal number of reactants and products, the
timestamps follow an Erlang distribution, i.e., a sum of independent and identically distributed exponential random
variables.
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we can write

Ci,k =
∏

j∈{1,...,k}\{i}

λj
λj − λi

=

∏
j ̸=i λj∏

j ̸=i(λj − λi)
.

The top product can be handled in this way. We use time Θ(k) to compute the full product

A =
∏k

j=1 λj . We then compute each term
∏

j ̸=i λj for 1 ≤ i ≤ k in time O(1) by a single division

A/λi. Thus the top products can be computed in total time Θ(k).

Now consider the bottom products
∏

j ̸=i(λj−λi). Consider the polynomial f(x) =
∏k

j=1(λj−x).

Let f ′(x) = d
dxf(x). Then by the product rule,

f ′(x) =
k∑

i=1

d

dx
(λi − x) ·

∏
j ̸=i

(λj − x)

 = −
k∑

i=1

∏
j ̸=i

(λj − x)

 .

If we evaluate f ′(λm) for 1 ≤ m ≤ k, for terms i ̸= m in the sum, one factor (λj −x) in the product

is 0 (specifically for j = m, so those terms of the sum vanish), and we have Ci,k =
∏

j ̸=i(λj −λi) =

−f ′(λi). Thus it suffices to construct f and evaluate its derivative at λi to compute Ci,k.

To evaluate at these points efficiently (time O(k log2 k) for all k products), the first step is to

convert the factored polynomial f(x) =
∏k

j=1(λj−x) into its expanded coefficient form. This can be

done with a standard divide-and-conquer recursion, splitting into two polynomials with k/2 factors

each. The base case is to FOIL the degree-2 (λi − x)(λi+1 − x) = λiλi+1 − (λi + λi+1)x+ x2. The

recursive case can be handled using standard FFT-based polynomial multiplication routines [20],

taking time Θ(k log k) to multiply two degree-k polynomials. Since this will have log k levels of

recursion and spend time O(k log k) at each level of recursion, the total time required is O(k log2 k).

Now that we have computed the polynomial f ′(x), similar FFT-based methods for multipoint

evaluation [62] can be used to evaluate f ′ at k points in time O(k log2 k). (More generally time

O(k +m) log2(k +m) to evaluate a degree-k polynomial at m points; m = k in our case.) Thus in

time O(k log2 k), we can compute the coefficients Ci,k used in the definition of the PDF and CDF;

so long as we continue sampling from the same hypoexponential; these values do not need to be

recomputed, reducing the amortized cost the more reactions are executed in the total simulation.

Nevertheless, once we have the coefficients Ci,k, it still requires time Θ(k) to evaluate the PDF

in (12). However, to achieve an asymptotic speedup over the Gillespie algorithm, we must sample

a hypoexponential defined by k exponentials in time asymptotically smaller than k, so time Θ(k)

remains too expensive. However, this PDF is log-concave: that is, the second derivative of log(P (t))
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is negative for all t > 0.8 This allows us to use the black-box method of adaptive rejection sampling,

outlined in [29], to sample repeatedly from the distribution without having to evaluate the PDF

every time, as with normal rejection sampling. In short, this method works by establishing upper

and lower piecewise linear bounds on log(P (t)), and improving these bounds to match the function

closely as more evaluations are made. The more accurate these bounds are, the less likely that

drawing a sample requires one to explicitly compute the PDF. In [66], the authors give empirical

evidence and outline a proof that this method generally allows one to obtain O(m) samples from

such a distribution in only O( 3
√
m) evaluations of the PDF. We will assume that this is the case.

In order to take advantage of this, we must guarantee that we sample from the same hypoexpo-

nential distribution repeatedly. The key insight is that W can be freely added or removed without

altering any propensities corresponding to the original CRN, since W is inert, but its presence

changes what hypoexponential distribution will be sampled. If we repeatedly execute some number

of (possibly passive) reactions r, then remove r · g copies of W from the configuration (i.e., return

to the molecular count before the r reactions were executed), then each such cycle will have total

elapsed times that are distributed like independent identical hypoexponentials. Because we assume

an upper bound nmax on molecular count, we can guarantee there will always be enough W to

remove. If no such bound exists, our algorithm remains correct, but may be inefficient. To prevent

these extra W from causing too many passive reactions, we can switch to a different hypoexpo-

nential whenever the molecular count halves (or doubles up to nmax). This adds an extra log nmax

factor to the analysis.

4.5.2. Rejection sampling for exact end times. The typical input to the Gillespie algo-

rithm contains an exact continuous time t at which to sample a configuration. We will eventually

run past time t during a batch, but wish to sample the configuration at time exactly t. To avoid

this issue while remaining exact, we use rejection sampling to sample how many reactions from the

batch occur before time t, under the assumption that the last reaction finishes after time t.

The simplest version of this procedure is as follows: when the end time of a batch is sampled

to be past t, sequentially sample the exponential variables that comprise the batch. The first such

sample that would cause simulated time to go past t indicates the first reaction in the batch that

8This follows because the hypoexponential distribution is a convolution of exponentials, which are log-concave, and
convolution preserves log-concavity.
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happens after time t, so we simulate everything before it, without a collision (as the collision would

happen after time t). If all times are sampled and t still has not been reached, we reject the sample

and start over. If the probability in some batch step exceeding time t is p, then the probability

of the sample being accepted is also p, leading to on average 1
p rejections. Therefore, each time a

batch step is run, the expected number of rejections is 1.

Generally, it is fine to run this rejection sampling in this way, as sampling a single batch slowly

does not affect asymptotics. If some low-probability event causes a significant number of rejections,

we can instead sample directly from the conditional distribution of the hypoexponential in question.

This is expensive, but only necessarily with probability that is controllably low.

This can be made more efficient via binary searching by sampling from hypoexponential dis-

tributions. However, on any input t on which we expect Ω(n) reactions to happen, this is not

necessary, as the last batch contains Θ(
√
n) reactions in expectation (see Lemma 4.4.7, so sampling

the last batch slowly does not affect asymptotics.

4.5.3. Full continuous-time simulation algorithm. Here we provide our main algorithm,

Algorithm 6. Like Algorithm 5, it works by repeatedly calling Algorithm 4. However, it does so

in such a way that allows repeated sampling from the same hypoexponential distribution. Note in

particular that for all of these algorithms, we describe the output as a single configuration, but in

practice we would sample a sequence of configurations by calling such algorithms repeatedly.

Algorithm 6 Continuous-time exact simulation

Input: CRN C = (Λ, R), volume v ∈ R>0, configuration c0 of C, end time tmax, batching parameter
p ∈

(
0, 12
]

Output: Configuration c of C distributed as in Lemma 4.5.2
Set c = c0 and t = 0. Repeat until step 2 exits:

(1) Let i be the least integer where ∥c∥ ≤ 2i, k0 = ∥c∥, n0 = 2i+1, ℓmax = ⌊∥c∥p⌋, and C′ =
the output of Algorithm 2 on inputs C, v, and k0. Let c′ = c+k0 ·K+(n0−∥c∥−k0) ·W .

(2) Sample a value t0 from the hypoexponential distribution (see Section 4.5.1) with rates

λi =
(n0+i·gen(C)

ord(C)
)
, 0 ≤ i < ℓmax. If t0+t > tmax, run end-of-simulation rejection sampling

starting from c′ to sample a configuration c (see Section 4.5.2), and then output c with
all K and W removed. Otherwise, add t0 to t.

(3) Repeat until ℓmax = 0: run Algorithm 4 on inputs C′, c′, and ℓmax. Subtract the returned
number of steps from ℓmax. Set c

′ to the returned configuration.
(4) Set c to c′ with all K and W removed.

Lemma 4.5.2. On input C, c, v, and tmax, the output of Algorithm 6 is distributed as Fcon
C,v (c, tmax).
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Proof. We couple Algorithm 6 with the Gillespie algorithm run on C′ over the course of

each loop iteration. By Lemma 4.3.3, this is equivalent to the Gillespie algorithm run on C over

distributions of species other than K and W , even in continuous time. At the start of the iteration,

both algorithms operate on the same configuration c′ described in step 1. If the Gillespie algorithm

simulates ℓmax reactions within time tmax − t, Algorithm 6 runs an iteration where step 2 samples

such a time. In this case, Lemma 4.4.8 implies that the coupling remains valid. If the Gillespie

algorithm runs past time tmax before simulating this many reactions, the coupling remains valid

because, by the discussion in Section 4.5.2 Algorithm 6 correctly conditionally samples how many

reactions to simulate. □

Lemma 4.5.3. Suppose Algorithm 6 is run on input C, v, c0, tmax, and p, simulating an execution

of C that has ℓ reactions. Suppose that every configuration c appearing at the start of an iteration

of this execution satisfies nmin ≤ ∥c∥ ≤ nmax and SC,v(c) ≤ s for some nmin, nmax ∈ N, s ∈ R>0.

Then the algorithm runs in time O
(
(2q)ord(C)sℓ log(nmax)

np
min

+ n
2p/3
max ℓ1/3 log(nmax)

)
.

To break down this expression: ord(C) and q are constants depending only on C. s is a slowdown

factor due to effects of the specific configuration being simulated. Empirically, for example, s ≤ 5

for the Lotka-Volterra oscillator, as shown in Figure 5.4. On many reasonable inputs nmin and

nmax will differ by a multiplicative constant, so we treat them as being the same, and ignore the

logarithmic factors. With these simplifications, we can express the runtime as roughly

O
(
n−pℓ+ n2p/3ℓ1/3

)
.

The first term is the cost of sampling configurations in discrete time using batching. It decreases as

we increase p toward 1
2 , because we are able to run more reactions in each batch. The second term

is the cost of adaptive rejection sampling to exactly sample inter-reaction times. It decreases as we

decrease p, because this allows us to sample more frequently from a less complex hypoexponential

distribution, allowing adaptive rejection sample to learn about the distribution more quickly. Be-

cause of this, we can consider regimes comparing ℓ and n, and find the optimal asymptotic runtime

of our algorithm in each regime by setting these two exponents equal to each other. If ℓ ∈ Ω(n5/4),

the first term is dominant even when p = 1
2 , which is the largest value of p that is beneficial

(because there are typically Θ(n1/2) reactions between collisions). In this regime, the simulated

71



execution is long enough that the adaptive rejection sampling algorithm has enough time to learn

the hypoexponential distribution, and there is no asymptotic slowdown compared to our discrete

time algorithm. If ℓ ∈ Θ(n), the asymptotically optimal value of p is 2/5, and our algorithm gives

a speedup factor over the Gillespie algorithm of n2/5. We generally expect ℓ ∈ Ω(n), because CRNs

do not generally exhibit interesting behavior in a sublinear number of reactions.

Proof. The first term comes from the runtime of step 3, which is shown in Lemma 4.4.12.

There are two relevant differences: first,
√
n is replaced by npmin, because this factor comes from

the number of reactions that are batched, and Algorithm 6 only calls Algorithm 4 to simulate np

reactions at a time. Second, up to half of the molecules in c′ might be W . This might cause

passive reactions to be simulated more often, but each simulated reaction contains no W in its

reactants with probability Ω(2− ord(C)), which is combined with the qord(C) term. The only other

relevant cost in Algorithm 6 is step 2, which samples the hypoexponential distribution. To simulate

ℓ reactions, Algorithm 6 must sample a hypoexponential distribution with np rates (representing

the time to run np reactions) a total of ℓ
np times. We use adaptive rejection sampling, which allows

us to obtain these ℓ
np samples in 3

√
ℓ
np evaluations of the hypoexponential PDF. To evaluate the

hypoexponential PDF for the first time, we must first compute the values Ci,np given in Eq. (12),

which can be done in time O(np) as shown in Section 4.5.1. Then, each subsequent evaluation

takes time O(np) to compute and sum np terms. It follows that this process takes time np · 3

√
ℓ
np

for a given hypoexponential distribution. The process may need to sample from log(nmax) such

distributions as molecular count changes. □

4.5.4. Sampling approximately from the hypoexponential distribution. Implementa-

tions of the algorithm described in Sections 4.5.1 and 4.5.2 spend significant time sampling from the

hypoexponential distribution. Although the asymptotic performance is adequate amortized over

many calls to the sampling procedure, the constants involved make this a performance bottleneck

in practice.

In this section we describe an alternative that is faster in practice and produces nearly identical

outcomes. We give up trying to sample from the hypoexponential distribution exactly, instead

sampling from the computationally much simpler gamma distribution. This technically means

that in practice we are not sampling from precisely the same distribution of times as the Gillespie
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algorithm. We emphasize that this is merely a slight imprecision in timestamps; the sequence of

configurations is still sampled from precisely the same distribution as Gillespie. Thus this will

not lead to inaccuracies in the sampled qualitative behavior of the CRN as with inexact methods

such as τ -leaping. Furthermore, we justify that the measured deviations of timestamps from those

of Gillespie will be negligible, i.e., in any reasonably large population, so small that it would not

change a single pixel on a plot of counts over time. Compared to τ -leaping, which gives worse

approximations with larger τ , we have no time-accuracy tradeoff. There are just some places where

we observed a prohibitive computational cost in practice, despite the asymptotic performance

shown in Section 4.5.1. The optimizations described in this section are therefore largely relevant

to practical implementation, so we focus on whether the approximation leads to inaccurate results

in practice.

The approximations described in this section actually get better for larger population sizes

n. Thus in practice, for small n one can sample the exact time distribution directly, using the

approximations described in this section only on n sufficiently large that the approximation is so

accurate that deviations from the true distribution are undetectable in practice.

Recall that the special case of the hypoexponential, where each of the k ∈ N+ exponentials being

summed has identical rate λ, is called an Erlang distribution Er(k, λ). The gamma distribution

Γ(α, λ) generalizes Er(k, λ) to allow a real-valued first parameter α, but coincides with Er(α, λ)

for positive integer α ∈ N+. The PDF of the Erlang has a term (k − 1)!, and the gamma function

Γ : C → C, defined on all complex numbers, has the property that Γ(k) = (k − 1)! for all positive

integers k. The gamma distribution has the same PDF as the Erlang, but with Γ(k) appearing in

place of the (k − 1)! factorial in Erlang’s PDF.

The reason we use the gamma distribution instead of the Erlang to approximate the hypoex-

ponential distribution is that we use the method of moment matching [10], finding the gamma

distribution with the same mean (first moment) and variance (second moment) as the desired hy-

poexponential. Furthermore, the rates of the exponentials defining the hypoexponential are very

close to each other: since k = Θ(
√
n) in expectation, the ratio of the first and last terms of the sum

defining the mean is very close to 1. If the ratio were equal to 1, then this would be a simple Erlang

distribution. The hypoexponential has many real parameters, but Erlang only has 2, and the first

is an integer. Thus with the integer restriction, we cannot hope to find an Erlang matching both of
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these moments precisely. Yet the gamma distribution can match both, since its two parameters are

both real-valued, i.e., the gamma has the same number of degrees of freedom as the two moments

we want to match. Empirically in practice, the real-valued shape parameter of the gamma is very

close to an integer, so is “almost” an Erlang.

We note that it is possible to have a controllable approximation scheme that trades accuracy

for speed. The hypoexponential is defined as a sum of k exponential random variables. We could

have a parameter 1 ≤ c ≤ k and sample c gamma random variables, with the i’th gamma having

expected value to match the i’th block of k/c exponentials. In the case of c = 1, this is the

approximation we described above. In the case of c = k, this samples exactly the hypoexponential

by individually sampling the k exponentials defining it. In between, as c is larger, this is a better

and better approximation. However, in practice, we found that setting c = 1 leads to a distribution

essentially indistinguishable from the hypoexponential being approximating.

The hypoexponential in our case is parameterized by four parameters:

• n: population size

• k: number of interactions in a collision-free run

• o: order of the CRN (number of reactants)

• g: generativity of the CRN (number of products minus number of reactants)

Recall that the exponential random variables of the inter-reaction times have rates
(
n
o

)
,
(
n+g
o

)
,(

n+2g
o

)
, . . . ,

(
n+(k−1)g

o

)
. Those are the rates for the hypoexponential distribution giving the time of

the entire batch of length k. Such a distribution has

mean µ =
k−1∑
i=0

1(
n+ig
o

) and variance σ2 =
k−1∑
i=0

1(
n+ig
o

)2 .
Computing these directly would take time Ω(k), defeating the goal of processing a batch of size

k in time o(k). (Though in practice we do compute them directly for small values of n.) The rest

of Section 4.5.4 is devoted to showing that we can more efficiently compute the mean and variance

of this hypoexponential distribution.

4.5.4.1. Technical lemmas. We first prove several technical lemmas involving identities that will

be useful for computing both the mean and variance of a hypoexponential with the rates relevant

to our batching algorithm.
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Lemma 4.5.4. For all B, o ∈ N+ such that o ≤ B,

1(
B
o

) = o ·
o−1∑
m=0

(
o− 1

m

)
(−1)m

B − (o− 1−m)
.

Proof. First,
1(
B
o

) =
o!(B − o)!

B!
= o · (o− 1)!∏o−1

j=0 B − j

so it suffices to show

(13)
(o− 1)!∏o−1
j=0 B − j

=

o−1∑
m=0

(
o− 1

m

)
(−1)m

(B − (o− 1−m))
.

Decomposing by partial fractions we can write:

(14)
1∏o−1

j=0 B − j
=

o−1∑
j=0

Aj

B − j
.

where the coefficients Aj are given by the residue formula:

Aj =
1∏o−1

ℓ=0,ℓ̸=j(j − ℓ)
=

1∏j−1
ℓ=0(j − ℓ) ·

∏o−1
ℓ=j+1(j − ℓ)

=
1

j!
∏o−1

ℓ=j+1(j − ℓ)
.

For the product
∏o−1

ℓ=j+1(j−ℓ), when ℓ takes values j+1, j+2, . . . , o−1, then (j−ℓ) takes values

−1,−2, . . . ,−(o−1− j). Conventionally factorial is not defined on negative integer values, but this

product’s absolute value is (o− j − 1)!, equal to (o− 1− j)! if o− 1− j is even or −((o− 1− j)!) if

o− 1− j is odd. Written differently,
∏o−1

ℓ=j+1(j − ℓ) = (−1)o−1−j(o− 1− j)!. Thus we have

Aj =
1

j!(−1)o−1−j(o− 1− j)!
=

(−1)o−1−j

j!(o− 1− j)!
.

Substituting into Equation (14),

1∏o−1
j=0(B − j)

=

o−1∑
j=0

(−1)o−1−j

j!(o− 1− j)!(B − j)
=

o−1∑
m=0

(−1)m

m!(o− 1−m)!(B − (o− 1−m))
,

where the second equality follows by letting m = o − 1 − j (i.e., add the terms of the sum in the

reverse order). Now multiply both sides by (o− 1)! to show Equation (13) holds:

(o− 1)!∏o−1
j=0(B − j)

=
o−1∑
m=0

(o− 1)!(−1)m

m!(o− 1−m)!(B − (o− 1−m))
=

o−1∑
m=0

(
o− 1

m

)
(−1)m

B − (o− 1−m)
. □
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For each n ∈ N, we let ψn : R → R denote the n’th polygamma function with real arguments, the

(n+ 1)’st derivative of the “log gamma” function ln Γ(x). In particular, ψ0(x) = (ln Γ(x))′ = Γ(x)′

Γ(x)

and ψ1 = (lnΓ(x))′′ are respectively known as the digamma and trigamma functions, where f(x)′

and f(x)′′ respectively denote df(x)
dx and d2f(x)

dx2 .

The following is a technical lemma relating sums of a certain form to differences in the digamma

function ψ0.

Lemma 4.5.5. For all A, k, g ∈ N+,

k−1∑
i=0

g

A+ ig
= ψ0

(
k +

A

g

)
− ψ0

(
A

g

)
.

Proof. We use the identity [5,49] for k ∈ N+,

(15) ψ0(k + z) =

k−1∑
i=0

1

z + i
+ ψ0(z).

Then

k−1∑
i=0

g

A+ ig
=

k−1∑
i=0

1
A+ig
g

=
k−1∑
i=0

1
A
g + i

=
k−1∑
i=0

1
A
g + i

+ ψ0

(
A

g

)
− ψ0

(
A

g

)

= ψ0

(
k +

A

g

)
− ψ0

(
A

g

)
by Equation (15). □

The following similar technical lemma involves squaring the terms in the sum of Lemma 4.5.5,

which turns out to be the difference of two trigamma functions ψ1.

Lemma 4.5.6. For all A, k, g ∈ N+,

k−1∑
i=0

(
g

A+ ig

)2

= ψ1

(
A

g

)
− ψ1

(
k +

A

g

)

Proof. The trigamma function ψ1 has infinite series expansion [42] ψ1(z) =
∑∞

i=0
1

(z+i)2
, so

ψ1

(
A

g

)
=

∞∑
i=0

1(
A
g + i

)2 =
∞∑
i=0

1(
A+ig
g

)2 =
∞∑
i=0

(
g

A+ ig

)2
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and similarly

ψ1

(
k +

A

g

)
=

∞∑
i=0

1(
A
g + k + i

)2 =
∞∑
i=0

(
g

(A+ (k + i)g)

)2

=
∞∑

m=k

(
g

A+mg

)2

,

where the last re-indexes the sum letting m = k + i. Now observe

ψ1

(
A

g

)
− ψ1

(
k +

A

g

)
=

∞∑
i=0

(
g

A+ ig

)2

−
∞∑

m=k

(
g

A+mg

)2

=
k−1∑
i=0

(
g

A+ ig

)2

. □

Lemma 4.5.7. For all A,B, k, g ∈ N+ with A ̸= B,

k−1∑
i=0

1

(A+ ig)(B + ig)
=

1

g(A−B)
·
[
ψ0

(
A

g

)
− ψ0

(
k +

A

g

)
− ψ0

(
B

g

)
+ ψ0

(
k +

B

g

)]
.

Proof. Note that by partial fraction decomposition,

1

B + ig
− 1

A+ ig
=
A+ ig − (B + ig)

(A+ ig)(B + ig)
=

A−B

(A+ ig)(B + ig)
,

so dividing both sides by A−B:

1

(A+ ig)(B + ig)
=

1

A−B

(
1

B + ig
− 1

A+ ig

)
.

Thus

k−1∑
i=0

1

(A+ ig)(B + ig)
=

k−1∑
i=0

1

A−B

(
1

B + ig
− 1

A+ ig

)

=
1

A−B
·

[
k−1∑
i=0

1

B + ig
−

k−1∑
i=0

1

A+ ig

]

=
1

g(A−B)
·

[
k−1∑
i=0

g

B + ig
−

k−1∑
i=0

g

A+ ig

]

=
1

g(A−B)
·
[
ψ0

(
k +

B

g

)
− ψ0

(
B

g

)
− ψ0

(
k +

A

g

)
+ ψ0

(
A

g

)]
,

where the final equality follows by applying Lemma 4.5.5 to each sum. The lemma follows by

rearranging terms in the brackets. □

4.5.4.2. Computing mean and variance of hypoexponentials. The mean of a hypoexponential

distribution defined as a sum of exponential random variables with rates
(
n
o

)
,
(
n+g
o

)
,
(
n+2g

o

)
, . . . ,(

n+(k−1)g
o

)
, i.e., with means equal to the reciprocals of those rates, by linearity of expectation, is
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∑k−1
i=0

1

(n+ig
o )

. Calculating this directly by computing the sum takes time Ω(k), but we need to do

this when processing a batch of size k, and the entire point of the algorithm is to use much less

than time k to process k reactions.

The next lemma allows us to compute the mean of a such a hypoexponential with k terms by

computing a sum with only o terms. This is significant because we’ll think of o (the maximum

number of reactants in any reaction in the original CRN) as a small constant, whereas the näıve

way to calculate the mean (the left side of the equation of Lemma 4.5.8) would require time Θ(k),

where k ≫ o, to sum all expected values 1

(n+ig
o )

. The identities proven in Section 4.5.4.1 involving

the digamma ψ0 and trigamma ψ1 functions will be used; fortunately, algorithms exist to compute

these functions in time O(1) [59].9

We note that in actual implementation, these identities are extremely sensitive to floating-point

rounding errors. In particular, even if each term t in the sum of, e.g., Lemma 4.5.8 is “moderately

sized”, i.e., within a few orders of magnitude of 1, in general there are pairs of terms, e.g., 10−2 ≤

t1, t2 ≤ 102, such that |t1 − t2| ≪ 10−15, i.e., the terms suffer “catastrophic cancellation” in which

pairwise differences are much smaller than the precision of standard floating-point arithmetic.10

Thus, when computing these sums, it is necessary to use arbitrary precision libraries such as

Python’s mpmath package [1] to avoid such catastrophic cancellation errors.

Lemma 4.5.8. For all n, k, o, g ∈ N+, where o ≤ n,

k−1∑
i=0

1(
n+ig
o

) =
o

g
·
o−1∑
m=0

(−1)m ·
(
o− 1

m

)
·
[
ψ0

(
k +

n− (o− 1−m)

g

)
− ψ0

(
n− (o− 1−m)

g

)]
.

9More precisely in time depending only on the desired relative error, but independent of the magnitude of the
argument. See also [1,8,54].
10Although IEEE 64-bit double-precision floating point numbers can be as small as 10−308, taking the difference of
two floats close to 1, since they use about 15 digits of precision, can only represent differences between such numbers as
small as 10−15, e.g., 1.000000000000000005− 1.000000000000000004 is equal to 0.000000000000000001, yet the above
expression evaluated with double-precision floats evaluates to 0.0 since both the float literals 1.000000000000000005
and 1.000000000000000004 evaluate to 1.0. So in evaluating the terms of the sums such as in Lemma 4.5.8, we must
take care that the individual terms are evaluated with sufficient precision that two different opposite-sign terms with
very close absolute values are not rounded to have identical absolute values.
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Proof. Letting B = n+ ig in Lemma 4.5.4, we have

k−1∑
i=0

1(
n+ig
o

) =
k−1∑
i=0

o ·
o−1∑
m=0

(
o− 1

m

)
(−1)m

n+ ig − (o− 1−m)
by Lemma 4.5.4

= o ·
o−1∑
m=0

(−1)m ·
(
o− 1

m

)
·
k−1∑
i=0

1

n− (o− 1−m) + ig

=
o

g
·
o−1∑
m=0

(−1)m ·
(
o− 1

m

)
·
k−1∑
i=0

g

n− (o− 1−m) + ig

=
o

g
·
o−1∑
m=0

(−1)m ·
(
o− 1

m

)
·
[
ψ0

(
k +

n− (o− 1−m)

g

)
− ψ0

(
n− (o− 1−m)

g

)]
,

where the last equality follows from Lemma 4.5.5 with A = n− (o− 1−m). □

To analyze the time complexity of computing the right-hand side of Lemma 4.5.8, observe that

the binomial coefficients can be computed iteratively while evaluating the sum, via the identity(
o−1
m

)
=
(
o−1
m−1

)
· o−m

m , so that the entire sum requires time O(o) to compute, since ψ0 can be

computed in time O(1).

Similarly to the mean, by linearity of variance when the random variables are independent, the

variance of a hypoexponential distribution, defined by rates
(
n
o

)
,
(
n+g
o

)
,
(
n+2g

o

)
, . . . ,

(
n+(k−1)g

o

)
, is∑k−1

i=0
1

(n+ig
o )

2 . The next lemma, similarly to Lemma 4.5.8, allows the variance to be computed in

time O(o2).

Lemma 4.5.9. For all n, k, o, g ∈ N+, where o ≤ n,

k−1∑
i=0

1(
n+ig
o

)2 =
o2

g2

o−1∑
m=0

(
o− 1

m

)2 [
ψ1

(
n− (o− 1−m)

g

)
− ψ1

(
k +

n− (o− 1−m)

g

)]

+
2o2

g

o−1∑
m=0

o−1∑
j=m+1

(−1)m+j

m− j

(
o− 1

m

)(
o− 1

j

)

·
[
ψ0

(
n− (o− 1−m)

g

)
− ψ0

(
k +

n− (o− 1−m)

g

)
− ψ0

(
n− (o− 1− j)

g

)
+ ψ0

(
k +

n− (o− 1− j)

g

)]
.

Proof. Letting B = n+ ig in Lemma 4.5.4, we have

(16)
k−1∑
i=0

1(
n+ig
o

)2 =
k−1∑
i=0

o2 ·

(
o−1∑
m=0

(
o− 1

m

)
(−1)m

n+ ig − (o− 1−m)

)2

.
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Recall the identity11

(17)

(
o−1∑
m=0

xm

)2

=
o−1∑
m=0

x2m + 2 ·
o−1∑
m=0

o−1∑
j=m+1

xm · xj .

By Equation (17), we can write the squared sum in Equation (16) as(
o−1∑
m=0

(
o− 1

m

)
(−1)m

n+ ig − (o− 1−m)

)2

=

o−1∑
m=0

[(
o− 1

m

)
(−1)m

n+ ig − (o− 1−m)

]2

+ 2 ·
o−1∑
m=0

o−1∑
j=m+1

(
o− 1

m

)
(−1)m

n+ ig − (o− 1−m)

(
o− 1

j

)
(−1)j

n+ ig − (o− 1− j)

=
o−1∑
m=0

(
o− 1

m

)2( 1

n− (o− 1−m) + ig

)2

((−1)m)2 = 1 for all m ∈ N+

+ 2

o−1∑
m=0

o−1∑
j=m+1

(
o− 1

m

)(
o− 1

j

)
(−1)m+j

(n− (o− 1−m) + ig)(n− (o− 1− j) + ig)
.

Substituting this back into the right side of Equation (16),

k−1∑
i=0

o2

(
o−1∑
m=0

(
o− 1

m

)
(−1)m

n+ ig − (o− 1−m)

)2

=
k−1∑
i=0

o2
o−1∑
m=0

(
o− 1

m

)2( 1

n− (o− 1−m) + ig

)2

+

k−1∑
i=0

2o2
o−1∑
m=0

o−1∑
j=m+1

(
o− 1

m

)(
o− 1

j

)
(−1)m+j

(n− (o− 1−m) + ig)(n− (o− 1− j) + ig)

=o2
o−1∑
m=0

(
o− 1

m

)2

·
k−1∑
i=0

(
1

n− (o− 1−m) + ig

)2

+ 2o2
o−1∑
m=0

o−1∑
j=m+1

(−1)m+j

(
o− 1

m

)(
o− 1

j

) k−1∑
i=0

1

(n− (o− 1−m) + ig)(n− (o− 1− j) + ig)
.

11For example, (a+ b+ c)2 = (a2 + ab+ ac) + (ab+ b2 + bc) + (ac+ bc+ c2) = (a2 + b2 + c2) + 2(ab+ ac+ bc).
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The first summation can be written

o2
o−1∑
m=0

(
o− 1

m

)2

·
k−1∑
i=0

(
1

n− (o− 1−m) + ig

)2

=
o2

g2

o−1∑
m=0

(
o− 1

m

)2

·
k−1∑
i=0

(
g

n− (o− 1−m) + ig

)2

=
o2

g2

o−1∑
m=0

(
o− 1

m

)2 [
ψ1

(
n− (o− 1−m)

g

)
− ψ1

(
k +

n− (o− 1−m)

g

)]
,(18)

applying Lemma 4.5.6 with A = n− (o− 1−m) for the last equality. Applying Lemma 4.5.7 with

A = n− (o− 1−m) and B = n− (o− 1− j), the other terms can be written

2o2
o−1∑
m=0

o−1∑
j=m+1

(−1)m+j

(
o− 1

m

)(
o− 1

j

) k−1∑
i=0

1

(n− (o− 1−m) + ig)(n− (o− 1− j) + ig)

=2o2
o−1∑
m=0

o−1∑
j=m+1

(−1)m+j

(
o− 1

m

)(
o− 1

j

)
1

g[n− (o− 1−m)− (n− (o− 1− j))]

·
[
ψ0

(
n− (o− 1−m)

g

)
− ψ0

(
k +

n− (o− 1−m)

g

)
− ψ0

(
n− (o− 1− j)

g

)
+ ψ0

(
k +

n− (o− 1− j)

g

)]

=
2o2

g

o−1∑
m=0

o−1∑
j=m+1

(−1)m+j

m− j

(
o− 1

m

)(
o− 1

j

)

·
[
ψ0

(
n− (o− 1−m)

g

)
− ψ0

(
k +

n− (o− 1−m)

g

)
− ψ0

(
n− (o− 1− j)

g

)
+ ψ0

(
k +

n− (o− 1− j)

g

)]
.(19)

The lemma follows by adding (18) and (19). □

4.5.4.3. Approximating mean and variance of hypoexponentials. The identities of Lemmas 4.5.8

and 4.5.9 give a way to compute the mean and variance of our hypoexponential distribution, defined

by a sum with k terms, in time o(k). Nevertheless, since empirical testing has shown that these

identities require computing the digamma and trigamma functions at higher floating-point precision

than standard 64-bit double precision, there are significant constant factors associated with this

approach. In practice we actually approximate the mean and variance in the following much faster
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way. Recall the mean of a hypoexponential defined by rates
(
n
o

)
,
(
n+g
o

)
,
(
n+2g

o

)
, . . . ,

(
n+(k−1)g

o

)
is∑k−1

i=0
1

(n+ig
o )

.

Define the relative error between numbers a and b to be |a−b|
min(|a|,|b|) . Consider the first term

t1 = 1

(no)
and last term tk = 1

(n+(k−1)g
o )

of the sum. We compute the relative error between t1 and

tk, and if it is is less than 0.1,12 we approximate the sum by using geometric mean of these terms:

k−1∑
i=0

1(
n+ig
o

) ≈ k ·
√

1(
n
o

) · 1(
n+(k−1)g

o

) .
The following lemma justifies this approximation, establishing a formal relationship between

the relative error of the first and last terms t1, tk and the relative error between the actual sum and

the approximation given using the geometric mean described above.

Lemma 4.5.10. Let δ > 0. If the relative error between t1 = 1/
(
n
o

)
and tk = 1/

(
n+(k−1)g

o

)
is δ,

then the relative error between
∑k−1

i=0
1

(n+ig
o )

and k
√
t1tk is at most δ

2 + δ2

8 .

Proof. Let the terms be ti = 1/
(
n+(i−1)g

o

)
for i ∈ {1, . . . , k}, so the sum is

∑k
i=1 ti. Note that

t1 > ti > tk for all 1 < i < k; in the remainder of the proof, we use only this fact.

The relative error between t1 and tk is then δ = t1−tk
tk

= t1
tk

− 1, implying t1 = tk(1 + δ). Let

A = 1
k

∑k
i=1 ti be the arithmetic mean of the terms t1, . . . , tk (note kA is exactly their sum), and

let G =
(∏k

i=1 ti

)1/k
be the geometric mean of all k terms. Let G1,k =

√
t1tk, the geometric mean

of the first and last term only. We first bound |A−G|, then |G− kG1,k|.

From [17], with each pi = 1/k (or 1/n as stated in [17]; n there is k in this proof) gives

A−G ≤ 1

2tk

k∑
i=1

1

k

ti − k∑
j=1

1

k
tj

2

.

Note that the outer sum on the right side is the sample variance Var [t1, t2, . . . , tk] of the terms,

which we denote as Var [t], so we can write

(20) A−G ≤ Var [t]

2tk
.

12Note that the larger is n, since k ≈
√
n, we expect the relative error between t1 and tk to be quite small, since it

converges to 0 as n → ∞. For example, if n = 106, k =
√
n = 103, o = 2, g = 1, then the relative error between t1

and tk is ≈ 0.002.
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In the worst case, subject to only this constraint, the variance of the terms is maximized when

half the terms are tk and the other half are t1. In that case, writing µ1,k = (t1 + tk)/2 for the

(arithmetic) mean of those two terms, the variance would be

1

k

[
k

2
(ti − µ1,k)

2 +
k

2
(tk − µ1,k)

2

]
=

1

4
(t1 − tk)

2,

which follows by substituting µ1,k = (t1 + tk)/2 and algebraic simplification. Thus Var [t] ≤
1
4(t1 − tk)

2. Since t1 = tk(1 + δ), we have t1 − tk = tk(1 + δ)− tk = tkδ, Thus

Var [t] ≤ 1

4
(t1 − tk)

2 =
t2kδ

2

4
.

Substituting in (20) gives A−G ≤ tkδ
2

8 .

Now we bound the geometric mean G of all terms using the geometric mean G1,k =
√
t1tk of

the first and last terms. Recall t1 = tk(1 + δ), so

G1,k =
√
t1tk =

√
t2k(1 + δ) = tk

√
1 + δ.

Note that tk ≤ G ≤ t1 = tk(1 + δ). If G = tk, then

|G−G1,k| = G1,k −G = tk
√
1 + δ − tk = tk(

√
1 + δ − 1)

and if G = tk(1 + δ), then

|G−G1,k| = G−G1,k = tk
√
1 + δ − tk = tk(1 + δ)− tk

√
1 + δ =

tk(
√
1 + δ − 1)√
1 + δ

.

Since
√
1 + δ > 1 for all δ > 0, this means the first case is larger, so in the worst case,

|G−G1,k| ≤ tk(
√
1 + δ − 1)

Note that for all δ > 0, we have
√
1 + δ < 1 + δ

2 . Combining the above bounds on A − G and

|G−G1,k| to bound |A−G1,k| by the triangle inequality:

|A−G1,k| ≤ |A−G|+|G−G1,k| ≤
tkδ

2

8
+tk

(√
1 + δ − 1

)
=
tkδ

2

8
+tk

(
1 +

δ

2
− 1

)
= tk

(
δ

2
+
δ2

8

)
.
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Recall the sum S =
∑k

i=1 ti = kA. This implies our approximation by kG1,k has absolute error

|S − kG1,k| ≤ ktk

(
δ

2
+
δ2

8

)
.

Recall
√
1 + δ > 1 for all δ > 0. So the absolute error above implies relative error

|S − kG1,k|
kG1,k

≤
ktk

(
δ
2 + δ2

8

)
k
√
t1tk

=
tk

(
δ
2 + δ2

8

)
√
t2k(1 + δ)

=
δ
2 + δ2

8√
1 + δ

<
δ

2
+
δ2

8
. □

We in fact conjecture that the relative error of the approximation of the sum by kG1,k is

O(δ2) (better than merely O(δ) as in Lemma 4.5.10), which appears to be the case empirically. For

example, when the relative error of t1 and tk is 0.1, in practice the relative error of the approximation

and the true mean appears to be < 0.01. However, we have not been able to prove this. It would

likely require using more information about the distribution of the terms ti; under our worst case

assumption in the proof that G could be as small as tk (i.e, assuming all terms in the sum are tk)

or as large as t1 (i.e, assuming all terms in the sum are t1), the bound proven seems asymptotically

tight without additional constraints on the terms.

We similarly approximate the variance
∑k

i=1 t
2
i via k

√
t21t

2
k = kt1tk, though we omit a detailed

analysis. A similar proof to that of Lemma 4.5.10 shows that it is also bounded by the relative

error between the first and last terms. Since these terms are squared and significantly less than 1,

the relative error between t21 and t2k is even smaller than in the case of approximating the mean,

making this an even tighter approximation of the variance than that of the mean in Lemma 4.5.10.

In practice, these approximations appear to result in sampling CRN trajectories indistinguishable

from the Gillespie algorithm.

4.6. Open Questions

There are two pressing theoretical open questions relating to asymptotic efficiency. The first

pertains to slowdown described in Definition 4.2.8 from probabilistic reactions on certain configura-

tions (e.g., 2L→L+ F as #L→ 0). It is possible that any exact algorithm that chooses reactions

by selecting individual reactants will suffer from this slowdown, as it is necessary to ensure correct

reaction probabilities in configurations where a high-propensity reaction has one or more low-count

reactants. There may be some way to utilize the core idea of batching, but choose which reactants

84



comprise a batch in a more clever way. It may also be possible to choose reactions in some other

way than either choosing individual reactions (as in Gillespie) or choosing individual reactants (as

in batching).

The second theoretical question pertains to the asymptotic cost of adaptive rejection sampling.

Ideally, in all situations, our algorithm would be able to simulate Θ(
√
n) reactions in O(log n) time;

however, when sampling from the hypoexponential exactly using adaptive rejection sampling, this

only yields optimal efficiency when ℓ ≥ n5/4. Future work may show how to avoid this by exactly

sampling timestamps more efficiently.

Another question is how broadly applicable this algorithm is beyond CRNs. It may be possible

to adapt the algorithm to other stochastic processes that select elements from some set at each

iteration to undergo a “transition”, but are not modeled exactly by the Gillespie algorithm, for

example surface CRNs [19] or tile displacement systems [52,67], which are both chemical models

that account for geometrical arrangement of some chemical species that interact with each other.

Practically, it may also be useful to develop approximate simulation algorithms that derive

their logic from our exact simulation algorithm. For example, by skipping the step of sampling

collision-free run length and instead simply choosing the run length to be its expected value, one

can avoid the numerical precision issues that our implementation has. It seems feasible that such

practical algorithms may still be amenable to theoretical analysis of bound approximation accuracy

as in e.g. [57].
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CHAPTER 5

Chemical Reaction Network Simulator Implementation

This chapter is joint work with David Doty, built from the ppsim package [24] written by

David Doty and Eric Severson. [46]. In order to verify the theory in the previous chapter, we

implemented it. We will soon make our implementation available publicly as a python package.

Our implementation is written primarily in rust for efficiency. Here we provide simulation data

obtained by running our algorithm on some CRNs, in order to show that the algorithm is correct

(i.e., matches the Gillespie algorithm in distribution) and efficient.

5.1. Simulation data

5.1.1. Empirical sampling of data for some CRNs. This section shows data for a few

CRNs that are best suited for using our batching algorithm; namely they have positive generativity

(hence cannot be simulated by the original batching algorithm) but are order 2, hence have the

fewest problems with passive reactions as described in Algorithm 2. More formally, CRNs with

smaller values of SC,v(c) as defined in Definition 4.2.8.

As in Section 5.1.3, when we compare our batching algorithm to Gillespie, we use rebop [3] as

the fastest Gillespie algorithm implementation that we could find.1 We note that rebop does not

directly support the concept of volume v; it implicitly assumes v = 1. Recall in Section 4.2.1 that

each reaction with o total reactants has a term 1/vo−1 in its rate. So for proper comparison, we

manually adjust the rebop rate constants in this way (i.e., divide order-o reaction rate constants

by vo−1) so that rebop’s reactions have the same total rate as reactions in our batching algorithm.

We note that deviations in simulated trajectories do not imply that the batching algorithm

is sampling from the wrong distribution. Rather, in all cases this is simply stochasticity of the

Gillespie model itself; see Figure 5.2b for further empirical justification of the claim that our

algorithm samples from the Gillespie distribution.

1Rebop is far faster than most Gillespie implementations: https://github.com/Armavica/rebop#performance
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Figure 5.1. Plots of counts vs. time for the Lotka-Volterra oscillator CRN, for
initial population size n ∈ {103, 104, 105, 108} with half predator, half prey, using
both rebop (Gillespie algorithm) and our batching algorithm implementation. Sto-
chastic effects make the plots behave differently for small n, as well as differently
from a deterministic ODE approximation, also plotted. As n increases, stochastic
noise decreases, and both stochastic simulators generate trajectories approaching
the deterministic model. At n = 108 all three plots are nearly indistinguishable.

Figure 5.1 shows simulations of the Lotka-Volterra chemical oscillator [41,61], a.k.a., predator-

prey oscillator: the reactions

R
1→ 2R

F
1→∅

F +R
1→ 2F
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(b) Comparing distribution of batching algorithm to Gillespie (rebop).

Figure 5.2. Figure 5.2a shows a plot of ten example runs of the reversible dimer-

ization reaction 2M
1
⇌
1
D, starting with #M = 100 and #D = 0, showing counts

vs time for each run. The CRN approaches an equilibrium with expected 25 copies
of D and expected 50 copies of M , typically reaching there after about 1 unit of
time. (Though of course the counts bounce around even at equilibrium.) Figure 5.2b
shows a plot of empirical distributions from rebop and the batching algorithm, of
the count of D at time 0.5, just prior to (likely) convergence, where E [#D] ≈ 20.5.
Here, “empirical probability” means the total number of runs in which the given
count was the count of D at time 0.5, divided by the total number of trials.

starting with equal R (rabbits/prey) and F (foxes/predators). Although devised originally by Lotka

to study chemical reaction networks with autocatalytic reactions [41], this model was independently

devised by Volterra [61] to model actual animal populations that were observed empirically to

oscillate over the timescale of years. The intuition is that rabbits always have plenty of plants to

eat, so constantly reproduce (R→ 2R), foxes die if they are hungry (F →∅), but foxes reproduce if

they eat a rabbit (F +R→ 2F ).

5.1.2. Empirically the batching algorithm samples from the Gillespie distribution.

Figure 5.2 demonstrates empirically that the batching algorithm samples from the same distribution

as the Gillespie algorithm. We run both our batching algorithm and rebop on the CRN with the

reversible dimerization reaction 2M
1
⇌
1
D, where two monomers M can join to form an unstable

dimer D, which can in turn split back into monomers. For the sake of collecting many samples,

we choose a small initial population size n = 100: start with #M = 100. Run until time 0.5, and

measure the count of D, for many trials. We plot the empirical distribution (number of times D

had the given count, divided by the number of trials) for both our batching algorithm and rebop.
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We chose the reversible dimerization CRN 2M⇌D because, unlike the Lotka-Volterra CRN

used for other examples, the dimerization CRN cannot “go extinct.” The Lotka-Volterra CRN has

the unfortunate property that, if rabbits die out, then so do foxes eventually, leading to a so-called

“terminal” configuration in which no reactions are applicable. Many CRN simulators, such as

rebop, simply hang if asked to simulate to a certain time, if they go terminal before that time is

reached.

Conceptually, this is not difficult to deal with, but in practice it is easier simply to simulate

a CRN with no reachable terminal configurations. Thus we use the CRN 2M⇌D, which cannot

go terminal, nor can its molecular count increase without bound. Nevertheless, as with Lotka-

Volterra, it represents an excellent test case for our new algorithm, since it fundamentally requires

a reaction with positive generativity, the key challenge in adapting the batching algorithm of [7] to

more general CRNs.

5.1.3. Batching algorithm has quadratic speedup over Gillespie algorithm. Fig-

ure 5.3 shows runtime scaling of our batching algorithm vs. the Gillespie algorithm, as implemented

by the rebop package [3], which is the fastest Gillespie implementation that we have found. We

tested against both the rebop Python package [3], and the rebop Rust crate [4] where one can

implement the CRN in a pure Rust program.

The “kink” in the batching f128 runtime at n = 1011 of Figure 5.3 corresponds to an implemen-

tation issue: Our way of sampling the length of a collision-free run involves several floating-point

operations, mainly to repeatedly compute the log-gamma function ln Γ(x). On sufficiently large

population sizes, we found empirically that standard 64-bit double precision floats lacked the pre-

cision to compute these numbers in rare extreme cases. In particular, our method of inversion

sampling samples a float uniformly in the unit interval u ∈ [0, 1). We compute lnu. In computing

the CDF of the distribution in order to do inversion sampling, this number lnu is compared to

numbers computed as the difference of log-gamma of much larger numbers, scaling with population

size n. When the log-gamma of those large numbers (recall ln Γ(n) ≈ n lnn) is sufficiently large

(in this case, empirically around n ≥ 1011), the imprecision causes the inversion sampling to be

incorrect, because the differences between those large numbers are insufficiently precise to compare

meaningfully to lnu.
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Figure 5.3. Runtime scaling of our batching algorithm, using both standard double
precision floating-point arithmetic (f64), and quadruple precision (f128), vs. the
Gillespie algorithm, as implemented by the rebop Python package [3], and the pure
Rust rebop crate [4]. With the Lotka-Volterra reactions, each is simulated on the
given initial population size n (with half predators and half prey) until time 1.0,
which corresponds to Θ(n) total reactions. As expected, rebop shows asymptotic
scaling of Θ(n) time (slope 1 on a log-log plot) compared to scaling of Θ(

√
n) for

batching (slope 1/2). The “kink” in the batching f128 run time at n = 1011 is
explained in the main text and is due to extra floating-point precision used in some
calculations only in larger population sizes.

To correct for this, we use Rust’s experimental f128 type that has so-called “quadruple” pre-

cision, double that of a standard double (called f64 in Rust). However, because hardware and OS

support for f128 is incomplete, we had to implement our own slower software implementation of the

natural log function and the log-gamma function on f128 values. This is the source of the observed

slowdown when n ≥ 1011. In practice, even if we allow these errors through and just use the faster

f64 implementation (also shown in Figure 5.3), there does not appear to be any systematic bias

that leads the sampled CRN trajectory to appear sufficiently different from the correct Gillespie

distribution. The runtime using that optimization is shown in Figure 5.3. However, we kept the

slow f128 implementation as the standard to ensure correctness. We believe that this can be opti-

mized in practice, and that the f64 data shows something more representative of what we believe

is possible in practice, but we have yet to thoroughly investigate this.
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It is also worth noting that even for n < 1011, the running times for batching are slightly larger

for what is labeled f128 in Figure 5.3 than f64. This is because some simple calculations, for example

adding and subtracting numbers, are done with f128 precision unconditionally (where it would take

at least twice as long just due to having twice as many bits to process, since there is currently scant

hardware support for single-instruction f128 operations), whereas other more complex operations

(because of the nearly 10x slowdown observed in the case n ≥ 1011) only use f128 precision when

certain values are sufficiently large that the extra precision is warranted.

More precisely, all of this happens when we sample the length of a collision-free run. The

algorithm described in the proof of Lemma 4.4.6 involves summing terms that are the output of

the log-gamma function. These outputs are always represented as f128 values, which take roughly

twice as long to add or subtract as f64 values, accounting for the unconditional slowdown in all

population sizes in f128 compared to f64. However, for sufficiently small values as input to log-

gamma, for efficiency we compute log-gamma using f64 values, even though we then store that

output in an f128 to add the terms, and in this case n ≤ 1010 will imply that case. The additional

slowdown for n ≥ 1011 is because the computation of log-gamma itself switches to using f128

values internally, and this computation is sufficiently complex that the constant factor increase

here is more noticeable; in particular, computing the natural log function is a significant factor in

computing log-gamma, but natural log for f128 is not supported yet in Rust, so we had to write

our own software implementation of natural log as well.

Regarding the performance of the rebop Python package versus the rebop pure Rust crate: the

rebop documentation claims

Performance and ergonomics are taken very seriously. For this reason, two in-

dependent APIs are provided to describe and simulate reaction networks:

• a macro-based DSL implemented by [define_system], usually the most effi-

cient, but that requires to compile a rust program;

• a function-based API implemented by the module [gillespie], also available

through Python bindings. This one does not require a rust compilation and

allows the system to be defined at run time. It is typically 2 or 3 times slower

than the macro DSL, but still faster than all other software tried.
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The superior performance of the pure Rust crate (“macro-based DSL”) over the Python API is

evident in the difference between the data labeled “rebop (Python)” and “rebop (Rust)” in Fig. 5.3.

Our package, like the rebop Python package, uses a Rust backend with a Python front-end using

PyO3 to call Rust from Python. Since we intend our package as a Python package, which will

be much easier to use for most users, it seems that the fair comparison is to the rebop Python

API, rather than the faster pure Rust crate. Yet, whether comparing to the rebop Python API or

Rust API, in either case the linear scaling (time Θ(n) to simulate n reactions) shown in Figure 5.3

still holds, but the pure Rust implementation of rebop stays superior to our batching algorithm for

slightly large population sizes than the rebop Python package. Nevertheless the batching algorithm

is clearly superior to both for n ≥ 108.

We intend eventually to implement a pure Rust crate for our batching algorithm. We may

see a performance gain as well, but it is not clear that we can do the same optimizations done by

rebop, which somehow optimizes to get a constant factor speedup based on knowing the reactions

at compile time. In the case of the batching algorithm, there’s no obvious optimization that can

be done based on knowing the reactions at compile time. The constant-factor overhead of rebop’s

Python API is definitely not merely the overhead of calling from Python, because the times for large

population sizes were measured with a single call to rebop’s Gillespie.run method (called from

Python, but implemented as a Rust method), which has only a small additive constant overhead

to call once, yet the performance of the pure Rust implementation remains a constant factor faster

no matter how large n.

5.1.3.1. Multibatching. The batching algorithm of [7] has an optimized version called “multi-

batching”, in which multiple collisions are simulated in a single batch. This is useful when the time

tc to sample the collision-free run length and simulate a collision is less than the time tb required

to process a batch; if tb ≈ tc · m for m ∈ N+, then the ideal tradeoff would be to simulate m

collisions for each batch. This is the main reason it is useful to have a definition of the collision-free

run length distribution coll(n, r, o, g) that allows r > 0, even though here we focused on the case

r = 0, since r > 0 is how we model the question “given that r molecules have already interacted

from previous collisions and the batch length up to this point, how many additional molecules can

be picked before another collision?”, and then that number is added to the growing batch length.
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Figure 5.4. Plot of counts vs. time for the Lotka-Volterra CRN with initial molec-
ular count n = 105, until time 20; with the fraction of passive reactions also shown
(note separate y-axis on right).

In other words, instead of a single step of the algorithm being to process a batch of length

ℓ ∼ coll(n, 0, o, g), then simulate a single collision, we instead imagine the following process. We

sample a collision-free run length ℓ1 ∼ coll(n, 0, o, g), then a second collision-free run length ℓ2 ∼

coll(n, (ℓ1 + 1) · (o + g), o, g) (to model that the first ℓ1 + 1 reactions (ℓ1 in the first part of the

batch, plus 1 for the collision) turn (ℓ1 +1) · (o+ g) total molecules “red”. Then we sample a third

collision-free run length ℓ3 ∼ coll(n, (ℓ1 + ℓ2 + 2) · (o + g), o, g), etc., up to ℓm. We then simulate

the m interactions involving the m collisions (see [7, Section 4] for details), and a single batch of

length
∑m

i=1 ℓi.

Although it is possible to implement multibatching for our generalized batching algorithm, we

have not explored the idea in depth. Empirically our implementation spends the bulk of its time

sampling the collision-free run length, due mostly to the extra complexity of our definition of a

collision, generalized to allow positive generativity. If this could be optimized to take far less time,

then implementing a similar multibatching approach in our algorithm would become beneficial.

5.1.3.2. Passive reactions. Recall that a potential source of slowdown for the batching algorithm

is simulating many passive reactions (see Algorithm 2), which do not correspond to reactions

executed in the original CRN. The greater the fraction of passive reactions in a batch, the less

progress the batching algorithm makes toward simulating the original CRN.

To measure empirically how many reactions are passive, Figure 5.4 shows Lotka-Volterra CRN

with initial population size n = 105, with counts plotted alongside the fraction of passive reactions
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sampled at each time point. The discrete jumps in this plot correspond to the population size n

changing by a significant enough fraction (0.7 in our implementation) that we reset the count of

species K to be the new value of n. Because #K influences correction factors in rate constants

(see Definition 4.2.7 and Algorithm 1), changing #K requires recomputing rate constants. We

avoid changing K on every step because it is computationally prohibitive to recompute the rate

constants that frequently.

Currently we set #K = n (i.e., equal to the number of molecules in the original CRN) when we

reset #K, since this gives the asymptotic behavior that we want of maintaining a Ω(1) constant

fraction of sampled reactions are non-passive. However, it remains to optimize; the optimal choice

of #K is Θ(n), but choosing the actual value more carefully could potentially reduce the number

of null reactions. Given the plot in Figure 5.4, where the fraction of passive reactions hovers under

0.8, this means we ideally hope for a speedup of no greater than 5x for this particular example.
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