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Abstract

We find the Borel-Moore homology of unramified affine Springer fibers for GL,, under the assump-
tion that they are equivariantly formal and relate them to generalized Haiman ideals. For n = 3,
we give an explicit description of these ideals, compute their Hilbert series, generators and rela-
tions, and compare them to generalized (¢,t)-Catalan numbers. We also compute the triply-graded
Khovanov-Rozansky homology for Coxeter braids on up to 4 strands and compare the result, prov-

ing a version of a conjecture of Oblomkov, Rasmussen, and Shende in this case.
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CHAPTER 1

Introduction

In this thesis, we study the relationship between affine Springer fibers and Khovanov-Rozansky
homology of links using geometric, algebraic, and combinatorial techniques. In addition to link
homology, affine Springer fibers are related to the Langlands program [25], Hilbert schemes of
singular curves [28,29], and to coherent sheaves on the Hilbert scheme of C? [18]. Sometimes
these relationships are discussed in terms of compactified Jacobians, which are equivalent to affine
Springer fibers [26].

Given a matrix v € g, ((t)) (or sl,((t))), the affine Springer fiber Sp, is a certain ind-subvariety
of the affine Grassmanian, see Definition 2.1.3. Its characteristic polynomial p(\,t) = det(y — AI)
defines a singular curve C in C2, called the spectral curve of 7. As long as C, is reduced, Sp,
depends only on its spectral curve C,, in particular on its completion at the origin (C.,0). In this

paper we will work with « with distinct eigenvalues so that C, will be reduced.

Facr 1.0.1 ( [34]). If (C,,0) is irreducible, then Sp, is a projective variety, but if (C.,0) is not

irreducible, Sp,, is an ind-variety with infinitely many irreducible components.

Intersecting the C, with a small sphere around the origin (where C, is often singular) gives a link
L, in S3. Each irreducible component of (C,,0) corresponds to a component of the link, and the
intersection numbers of irreducible components are the linking numbers of the corresponding link
components. Any smooth components of the curve correspond to unknots. The class of links that
can be realized from an algebraic curve in this way are called algebraic links.

Oblomkov, Rasmussen, and Shende [31] have conjectured that for all algebraic links, the homology
of Sp, is closely related to the triply-graded Khovanov-Rozansky homology [22, 23] (also called
HHH) of L. This relationship has previously been shown for all torus knots, and for (n,nd)-torus

links by Kivinen in [24].



CONJECTURE 1.0.2 (ORS [31]). If Ly is the link associated to v, we have
grpH.(Sp,) ® C[x] = HHH*"(L,)
where grp is a certain perverse filtration on H*(Spv).

ExaMPLE 1.0.3. For the matrix
0 ¢
= 5
t 0
the characteristic polynomial is given by p(\,t) = A2 = 3. The associated link to this curve in C2 is

a trefoil. The affine Springer fiber Sp, is isomorphic to P!, and the reduced HHH homology of the

trefoil is isomorphic to H., (P!).

In this thesis, we calculate the homology for a large class of affine Springer fibers with « of the form

thdl 0
(1.1) = ,

0 zntd”

with z; € C* pairwise distinct and d; > 0, under the assumption that Sp, is equivariantly formal
(see Definition 2.1.6).

The characteristic polynomial of this ~y is TT;(A - zitdi). The corresponding curve C, has n smooth
irreducible components with pairwise intersection numbers d;; = min(d;,d;). So the corresponding
link L, is a link of n unknots with pairwise linking numbers d;;. These are part of a class of links
called Coxeter links, which can be expressed as the closure of a Coxeter braid.

In Chapter 4, we calculate HHH of Coxeter braids L for n = 3 and n = 4, and explicitly compare
the result to H.(Sp,) for n = 3.

1.1. Affine Springer fibers

In Chapter 2, we focus on computing the equivariant Borel-Moore homology H! (Spy) with respect
to the natural torus action of 7' = (C*)" on Sp, (explained in Section 2.1). Given the assump-
tion that Sp,, is equivariantly formal with respect to 7', we can recover the ordinary Borel-Moore

homology of Sp., by quotienting out by the equivariant parameters, see Fact 2.1.7.
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In order to calculate HI (Sp,), we view it as a module over

R=Hp(pt) ® C[A] 2 C[ty,...,tn,27,..., 25 ]

rrn

Here, the ¢;’s are our equivariant parameters, and the z;’s parametrize the integer lattice A which
acts on Sp,, by translations.
In [10], Goresky, Kottwitz, and MacPherson (GKM) conjectured that Sp,, is pure for all unramified

(i.e. diagonal) v. The following is a more narrow conjecture that is what we will rely on in this

paper.

CoNJECTURE 1.1.1 ( [10]). For ~ as above, Sp, is equivariantly formal, as defined in Definition

2.1.6.
Assuming that Sp, is equivariantly formal, we can calculate its equivariant Borel-Moore homology.

THEOREM 1.1.2. Consider v as in (1.1). Define the ideal

T =Ty =\t~ tj,wi - 2% < R

1<J

with d;j = min(d;,d;). If Sp,, is equivariantly formal, then as R-modules,

AH!(Sp,)=J where A=T](ti—t;)%.
i<j
These J ideals are a generalization of ideals considered by Haiman in his work on the Hilbert
schemes of points [9], so we refer to them as generalized Haiman ideals, or just Haiman ideals.

Since R is a domain, multiplication by A is injective, and

HI(Sp,) = AH (Sp,) =T

as modules over R = C[t1,...,tn,X],...,z5]. It is still useful to keep track of A if we want to retain

»rrn
the localization information of H! (Sp,), but we can omit A when we only care about H r (Sp,) as
an R-module. Given the assumption that Sp, is equivariantly formal, we can recover the ordinary

Borel-Moore homology of Sp., as well by simply quotienting by the action of ¢’s.



COROLLARY 1.1.3. For v as in (1.1), if Sp,, is equivariantly formal, then
H.(Sp,) =J/(t)J.

Here (t) ¢ H}.(pt) = C[t] is the mazimal ideal generated by t1,...,t,.

If n = 3,4, it is known that Sp, is equivariantly formal, shown in [27] and [7] respectively. It is also

known for the equivalued case, when d; = d for all ¢, due to GKM [10].

COROLLARY 1.1.4. Ifn<4, orifd; =d for all i, then

AH’T(SPV) =2J= m(tz - tj,ﬂﬂi - xj)dij.

i<j
The equivalued case of 1.1.4 was previously shown by Kivinen in [24] using GKM theory as defined
in [12]. The proof of Theorem 1.1.2 relies on this result by Kivinen.
1.1.1. The Coulomb branch algebra. In [15] Gorsky, Kivinen and Oblomkov define a

graded algebra with some specific properties called the graded Coulomb branch algebra Ag =
@D Aq- Here we consider the case G = GL,. One of the key properties is that for any 7 € g, the

direct sum of homologies of affine Springer fibers

F, = @ H.(Spu,)
k=0
is a graded module over Ag or, equivalently, that there is a corresponding quasi-coherent sheaf F,

on Proj @7, Aq. They conjecture the following.
CONJECTURE 1.1.5 ( [15]). The module F, is finitely generated and the sheaf F. is coherent.
THEOREM 1.1.6. Conjecture 1.1.5 holds for G = GL3 and 7y as in (1.1).

This result and many of the results in Section 1.2 rely on the specific combinatorics of the ideal J

when n = 3, which is covered in detail in Chapter 3.
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1.2. Generalized Haiman ideals

For the rest of the introduction we assume that the d;’s are ordered: d; < ... <d,. We will consider

a similar ideal to J defined above,

J’(dl,.. .,dn) = m(tz —tj,l‘i —Cﬂj)dij c (C[tl,.. .,tn,l‘l,.. . ,.’En].

i<j
The ideal J is obtained from J'(dy,...,d,) by localization in (z1---x,).
In Section 3.1.1, we define two rational functions, H(dy,...,d,) and F(dy,...,d,). The function

F(dy,...,dy) is also known as the generalized (g¢,t)-Catalan number, see [13].

CONJECTURE 1.2.1. a) The Hilbert series of the ideal J'(dy,...,dy) equals H(dy,...,dy).
b) The Hilbert series of the generating set J'(dy, ... ,dy)/mJ (dy,...,dy) equals F(dy,...,dy,), where

m is the mazimal ideal m = (t1,...,tp,T1,...,Tp).

In particular, Conjecture 1.2.1 implies that F'(dy,...,d,) is a polynomial in ¢ and ¢ with nonnegative
coefficients (see [13, Conjecture 1.3]) and provides an explicit algebraic interpretation of these
coefficients. Similarly, the conjecture implies that H(dy,...,d,) is a power series in ¢ and ¢ with

nonnegative coefficients. In Theorem 3.1.10, we show that this Conjecture holds for n = 3.
THEOREM 1.2.2. Conjecture 1.2.1 holds for n = 3.
If d; = d for all i, we will say that the ideal J' is equivalued. In [9], Haiman shows the following.

THEOREM 1.2.3 (Haiman [9]). For any n,
(1) The ideal J'(d,...,d) is free as a C[t]-module.
(2) The ideal J'(d,...,d) is equal to a product,

J'(d,....d)y=J'(1,...,1)%
It is easy to see that in general
J'(dy,...,dp)-J(dy,...d,) €T (dy +di,....dp+d)).

We conjecture that Theorem 1.2.3 can be generalized to the non-equivalued case, and that the

above inclusion is always an equality.



CONJECTURE 1.2.4. For any n, assume di; < ds <---<d,. Then,

(1) The ideal J'(d1,...,dy) is free as a C[t]-module.
(2) The ideal J'(dy,...,d,) can be written as the product

J'(dy,. .. dy)=J' (1., )% J0,1,..., )2 h g0, .. ,0,1)dnm 1742

Statement (1) immediately follows in any cases where Sp, is known to be equivariantly formal, in

particular for n < 4. In Corollary 3.1.5 we show that statement (2) holds in the n = 3 case.

THEOREM 1.2.5. The ideal J'(dy,d3) can be written as a product
J'(dy,dz) = J'(1,1)" - J'(0,1) ="

1.3. Khovanov-Rozansky homology of Coxeter braids

Khovanov-Rozansky homology, also called HHH, is a triply-graded link homology theory that cat-
egorifies the HOMFLY-PT polynomial, which is itself a generalization of the Jones and Alexander
polynomials. It is a powerful but often difficult to compute invariant.

In Chapter 4, we use a recursive process of Hogancamp and Elias [8] to compute HHH(L,) for
closures of Coxeter braids on 3 and 4 strands and show that they are parity (see Definition 1.3.1).
Previously, this method has been used by Hogancamp to compute HHH for T'(n,dn) torus links
in [19], and by Hogancamp and Mellit to compute HHH for all torus links in [20].

Given integers 0 < dy < ds < --- < d,,, we define the n-stranded braid

B(di,...,dy) = FTHFT®R 4. g1t
d d dn—
= IM® JM® | JME

where FT} and JMj represent a full twist and a Jucys-Murphy element on the first k strands
respectively. These braids are part of the family of Coxeter braids defined in [30]. For the sake of
comparison to the ideal J'(dy,...,d,), we focus on pure Coxeter braids, whose closures have the
maximum number of components. We expect that our calculations of HHH can be extended to all

Coxeter braids as defined in [30].



The three gradings of HHH(S) are typically denoted @, T, and A. However, in line with [8], we

use the change of variables

q=Q% t=T°Q2 a=AQ2

DEFINITION 1.3.1. For any braid (3, we say that HHH(3) is parity if it is supported in only even

homological (T') degrees. We will also say § itself is parity if HHH(f) is parity.
CONJECTURE 1.3.2. The Cozeter braid 5(dy,...,d,) is parity for all n and for all 0 < dy < - < dp,.

If Conjecture 1.3.2 holds, the following theorem of Gorsky and Hogancamp gives a description of

the a = 0 piece of HHH, using the y-ified Khovanov-Rozansky homology HY as defined in [14].

THEOREM 1.3.3 (Gorsky, Hogancamp [14]). Assume that [ = JMrdL1 _..JMgn—l and HHHa=0(5) 18
parity. Then

(1) BY®0(5) = HHH(8) & Cl11..... 1] and HHH'(3) = HY*0(3)/(y)

(2) HY*(8) = J'(d,.. dn).

In particular, this also implies that the ideal J'(dy,...,dy) is free over C[ty,... ,t,].

Putting this together with the conjectures and results from Section 1.1, we get the following spe-

cialization of the ORS Conjecture (Conjecture 1.0.2).

CONJECTURE 1.3.4. For v as in 1.1 and J = J(d1,...,d,), we have the following isomorphism of
C[x*,t]-modules:
HY (L) ®cpx C[x*] = J = AH] (Sp,)

and

HHH"(L,) @cpx) Clx*] 2 /()T 2 Hu(Sp,).
This conjecture has been shown in the equivalued case due to work from Hogancamp [19] and
Kivinen [24]. In fact we use the computation of HHH(FT%) = HHH(T'(k,4k)) from [19] as a base

case for our recursion (which corresponds to dy = dy = d3 = d4 = k), rather than re-derive it.
In Section 4.1, we show that Coxeter braids on 3 strands are parity, and explicitly computes
HHH*?(B). In Section 4.2, we show that Coxeter braids on 4 strands are also parity. Thus we

show the following result.



THEOREM 1.3.5. Conjecture 1.53.4 holds for n < 4.

This description doesn’t guarantee that we can write out HHH“:O(B) explicitly, as finding the
bigraded Hilbert series for J'(dy,...,d,) is difficult in general. However, the recursive method we
use to show that a braid is parity in Chapter 4 simultaneously gives a recursive way to compute

HHH®Y(3) as a rational function in ¢ and t.

COROLLARY 1.3.6. For n < 4, the ideal J' = J'(dy,...,dy) is free as a module over C[ty,..., t,],
and its bigraded Hilbert series is given by

1

- t)4HHHa:0(ﬂ).

For n = 3, the bigraded Hilbert series for J'(d1,dz,ds) is explicitly computed in general in Section
3.2.2. For n =4 there is no similar explicit calculation but the recursions in Section 4.2 can be used

to compute this series explicitly for any particular dy, do,ds, dy.

REMARK 1.3.7. Note that Conjecture 3.1.8 predicts a closed formula for the Hilbert series as a
sum of certain rational functions over 10 standard Young tableaux of size 4. We plan to verify this

conjecture in a future work.

We are optimistic that Theorem 1.3.3 can be generalized to arbitrary n using the same recursive
process, proving one side of Conjecture 1.3.4. This would confirm that the ideal J'(d1,...,d,) is
free over y’s and give a recursive formula for its bigraded Hilbert series. We would also expect
that understanding this ideal and therefore H,(Sp,) better would help to find affine cells for Sp,

in general.

1.4. The fundamental domain of affine Springer fibers

Finally, in Chapter 5 we discuss the cells of the fundamental domain of Sp,,, as described by Chen
in [6], and relate this to the combinatorics of J' for n = 3. We show that there is a bijection between
half of the cells in the fundamental domain and the generators of the ideal J'(d;,ds2). We expect
that this bijection indicates a stronger relationship between the cells of Sp,, and the combinatorics

of J" and of generalized (g, t)-Catalan numbers.



CHAPTER 2

Affine Springer Fibers

This chapter is based on work from [32] published in IMRN.

2.1. Background

First, some notation. Let K = C((t)) be the field of Laurent power series in ¢, and O = C[[t]]
be the ring of power series in ¢t. For nonzero f € K, let v(f) denote the order of f, which is the
degree of the smallest nonzero term. Throughout, HI (X) will refer to the equivariant Borel-Moore
homology of X, and H,.(X) refers to regular Borel-Moore homology. All tensor products are over

C unless otherwise indicated.

DEFINITION 2.1.1. A lattice A € K" is a free O-submodule of K" of rank n such that A ®p K = K™.

In other words, it is the O-span of a basis of K" over K.

DEFINITION 2.1.2. The affine Grassmanian Grgr, (C) of GL,, over C is an ind-scheme defined as

the space of all lattices A ¢ K".

We will always be working over C, so we will use Gr(GL,,) or Gr(SL,,) for the affine Grassmanian,

or just Gr when the group is clear. We can equivalently define the affine Grassmanian for GL,, as
GL,(K)/GLn(0),

as GL,,(K) acts transitively on the space of lattices, and the stabilizer of the standard lattice O™
is precisely GL,(O). We will often conflate a matrix g € GL, (K) with its coset representative in
Gr(GLy,).

We define Gr(SL,,) similarly, either as SL, (K)/SL,,(O), or as the space of lattices of SL,, type. We

say that a lattice A is of SL,, type if it can be written as A = gO" for some g € SL, (K).

DEFINITION 2.1.3 ( [21]). The affine Springer fiber Sp. of an element v € gl,(K) is a sub ind-

scheme of the affine Grassmanian, defined accordingly as the space of lattices A € Grgy,, such that

yA € A, or as the space of g € GL,(K)/GL,(O) such that g 'vg € gl,(O).
9



Fact 2.1.4 ( [34]). If v is regular, semi-simple, and topologically nilpotent, then Sp,, is finite
dimensional, although it can still have infinitely many irreducible components. In our cases, these
conditions essentially are that v is diagonalizable, has distinct eigenvalues ); (over ), and that

v(A;) >0 for all 7.

EXAMPLE 2.1.5 ( [34]). Consider the matrix

")/:
0 -t

in sl3(K). Then Sp., looks like an infinite chain of P!’s connected at 0 and co. There is a C* action

that scales each P', and a Z action that translates them.

There is a natural action of the centralizer C'(7y) on Sp- In the case where 7 is diagonal, this gives
a torus action of 7' = (C*)" and lattice action of A = Z" on Sp,, over GL,, (or (C*)™! and Z" 1

over SLj,,) that can be respectively seen as multiplication by the matrices in C(7y):

A1

and

In general for a T-ind-scheme X, HX(X) is naturally a module over H}(pt) via the cap product.

DEFINITION 2.1.6. We will say that X is equivariantly formal if HF (X) is free as a module over

Hr(pt).
Fact 2.1.7. (GKM [12]) If X is equivariantly formal, then
H.(X) 2 H (X)/()H, (X)),
as modules over H7 (pt). Here (t) ¢ H}.(pt) = C[t] is the maximal ideal generated by t1,...,t,.

We will need the following localization lemma as stated by Brion.
10



LEMMA 2.1.8 (Brion [5]). Let X be a T-ind-scheme and T' € T a subtorus. If i : X7 — X is the

inclusion of T'-fixed points, then the induced map
i BT (XT) > HT(X)

is an isomorphism after inverting finitely many characters of T that restrict nontrivially to T'.
Further, if X is equivariantly formal, then the induced map i, is injective, and we have that
[T xHI(X) e HI(XT)
X>X7r#0

where we take the product over all characters of T that restrict nontrivially to T".

We will also make frequent use of the Iwasawa decomposition for Gr(GL,, ), which tells us that all

g € Gr(GL,,) can be represented by a product DU of a diagonal matrix

tm
(2.1) D=

tmn

with a unipotent matrix U with 1’s on the diagonal and entries x;; above the diagonal [34]. Further,
these ;;’s are unique up to O, so we can choose them to have all coefficients of nonnegative powers

of ¢t be 0, so that each matrix DU represents a unique element g € Gr.

LEMMA 2.1.9. The T-fized points of Gr(GL,) can be uniquely represented by diagonal matrices D

as in the Iwasawa decomposition.

PROOF. Let A € T and g = DU be as in the Iwasawa decomposition. Since A™' € GL, (O), up

to multiplication on the right by GL, (O), we get
Ag = g\t = DU,

where D is as above, and U’ is unipotent with % Xi; above the diagonal. If g is a fixed point under
J
the action of T, we must have :\\—;Xij = xi; for all 4,7 and for all A € T. This can only happen if

Xij = 0 for all 7,7, so g = D is diagonal as desired. O

Since the T-action on Sp, comes from the action on Gr, the T-fixed points of Sp,, are simply the

T-fixed points of Gr that are contained in Sp,,.
11



LEMMA 2.1.10. If v is diagonal and the orders of its eigenvalues are all nonnegative, then
Spg = Grl.
PROOF. For any 7, sz c Gr” as stated above. If g € Gr”, then

tm

M

by Lemma 2.1.9. As g and « are diagonal, g~*yg =, and v € gl,,(©), since the eigenvalues of 7 are
all in O. So Gr” ¢ Sp?. m

In particular, this means that the T-fixed points of Sp,, are discrete and isomorphic to the integer

lattice A =7Z", so can view H.(Sp,) as a module over

Hi(SpT)  Hi(pt) ® C[A) 2 Clt, .. tn, 5, 2],

an

@n corresponds to the fixed

Here, the ¢;’s are our equivariant parameters, and a monomial z7"---x

point diag(t®,...,t*"). The lattice A acts on sz and on Sp, by translation.

LEMMA 2.1.11. Fizi<j. If T' ¢ T is a codimension 1 subtorus cut out by t; = t;, then the T"-fized
points of Gr(GLy,) are of the form DU, where D is as in (2.1) and

with all x’s zero except for xi;.

PROOF. As before, up to equivalence,

Ag = g\t = DU,

where U’ has /;—';Xkl above the diagonal. If g is a fixed point for 7', since A; = A;, x;j can be arbitrary,

but xx; =0 for all (k,1) # (i,7). So the fixed points are as described. O
12



COROLLARY 2.1.12. If T" is a codimension 1 subtorus of T cut out by t; =t;, then
Gr(GL,)" = Gr(GLy) x Z"2.

PROOF. Each of the T” fixed points is represented by DU above. Looking at the 2x2 submatrix
of DU in rows and columns 14, j, we see a copy of Gr(GLz). The rest of the m; are free integers,

and there are n — 2 of them. OJ

2.2. Homology of unramified affine Springer fibers

We want to find the equivariant Borel-Moore homology H! (Spv) of the class of affine Springer

fibers with
9%t 0 2th 0

0 Yn 0 zntd"

Here z; € C* are pairwise distinct and d; > 0. We can assume up to a change of basis that
dy <--- < dp.

It is known that for v as above, Sp., is equivariantly formal (see Definition 2.1.6) over GLj, for n <4
(see [27] for n =3 and [7] for n = 4), and it is known to be equivariantly formal for all n if d; = d
for all ¢ [11]. But it is not known over GL,, in general. It would be sufficient to know that the
homology of Sp, is supported in even degrees, and we conjecture that this is the case for all n. We
will need to assume that Sp, is equivariantly formal in order to calculate its homology.

We consider HY (Sp,) as a module over
H7(pt)® C[Z"] = Clt1,... tn,2],..., 7] = R.
THEOREM 2.2.1. Consider v as in (1.1). Define the ideal
JcR

J =t~ tj, i~ ;)™

i<j

with d;; = min(d;, d;). If Sp. is equivariantly formal, then as R-modules,

AHT(Sp,) 2 J,
13



where A = [1;<;(t; - t)di.

Note that multiplication by A is injective, so
H!(Sp,) = AH](Sp,) = J

as R-modules. It can be useful to keep track of A if we want to retain the localization information
of H:;F(Spv), but we can omit A when we only care about H::F(Spv) as an R-module.

The rough outline of the proof of Theorem 2.2.1 is as follows:

(1) Take a codimension one subtorus 7' ¢ T. The T'-fixed points of Sp,, are essentially
isomorphic to an affine Springer fiber Sp i with S e gly whose homology is known.
(2) Relate the homology of Sp; to that of Sp, using Lemma 2.1.8.

(3) Take enough subtori 77 and piece together their homologies to find the homology of Sp,.

Step 3 will require the assumption that Sp, is equivariantly formal.

LEMMA 2.2.2. If T’ ¢ T is the subtorus cut out by t; = t;, then up to Z"2, the T'-fized points of
Sp

 are isomorphic to an affine Springer fiber over GLag,

sz, = Spg,; X 72
where

0 thdj

PROOF. In Lemma 2.1.11 we’ve already characterized the T'-fixed points of Gr as DU, where
U is unipotent with only a single nonzero x;;. We just need to check which of those fixed points

are in Sp,,. If g€ Gr(GLy,)"™, then

thdl Xij(zitdi - thdj)

0 2t

14



Again looking at the 2 x 2 i, j submatrix, we see a matrix identical to g~* Bijg. So a T'-fixed point

g is in Sp,, if and only if the 2 x 2 matrix

t" X
0 "

is in Spg, , i.e. Sp, = Spg,, x Zn2. O

LEMMA 2.2.3. Given (3;; € gly as in Theorem 1, we have Spﬁij ~ Spéij, where

~ zit%i 0
Bij =
0 z j td”

and dij = mz’n(di, dj).

PRrROOF. Again using the Iwasawa decomposition, write g = DU, where

- T x5
0 1
Then,
1 Yi Xij(%’ - ’Yj)
g 9=
0 Vj

By definition, g € Spﬁij if and only if x;;(vi —7;) € O. Since we assume that the z; are distinct,
v(vi = ;) = min(v(%),v(y;)) = min(d;, d;) = dij. So g € Spg,; if and only if x;; has order at least

—d;j. This is the same as the condition for g to be in Spﬁij’ since

Zitdij (ZZ' — Zj )Xij tdij

9 Bijg =
0 thdij

O

REMARK 2.2.4. The one-dimensional quotient torus T'/T" naturally acts on Spgl. On the other
hand, T/T" is isomorphic to the one-dimensional torus (C*)?/C* which acts on Sps,; and on Spgij.

The isomorphisms constructed in Lemmas 2.2.2 and 2.2.3 are T'/T’-equivariant.

The homology for the affine Springer fiber of matrices like BNZ-]- with all powers the same is known.

It is found using GKM theory by Kivinen in [24].
15



THEOREM 2.2.5 (Kivinen [24]). If

then AH*T(Sp,Y) injects into

Hi(pt) ® C[Z"] 2 C[t1,. .., tn, 2T, ., 25 ],

rrn

where A = [1;;(t;i - tj)d. As a submodule, there is a canonical isomorphism
AH?(Spw) = H(tl - tj, XTi— l’j)d.
1<J

COROLLARY 2.2.6. We have the following canonical isomorphism of C[t; — tj,xl-i,azj]-modules:

o TIT! iy
(ti —tj)d”H,r/ (Spﬁ””) = (ti —tj,ﬂii —.%‘j)d” c (C[tl —tj,IEE,QZ;].

Here T|T' acts on SpBU as in Remark 2.2.4.
Now in order to piece together these homologies of Sp 5,,» We use the following fact:
ij

LEMMA 2.2.7 (Algebraic Hartogs’ lemma). If A is an integrally closed Noetherian integral domain,

then

A= ﬂ AP’

p codimension 1

where we take the intersection of A, over all codimension 1 prime ideals of A inside the fraction
field Frac(A). If M is a free A-module, then we also have
M = ﬂ My,
p codimension 1

where the intersection is taken inside M ® 4 Frac(A).

Since we assumed that Sp, is equivariantly formal, H I Sp,) is free over Hy(pt). Now we can prove

Theorem 2.2.1.
16



PROOF OF THEOREM 2.2.1. By Lemma 2.1.8, we have that, up to localization away from

(ti —t5),

/ /T’ 4 * T|T' n— *
HI(Sp,) 2i0c B (807 ) 2 BT (Sp1") @ His(pt) = H!'" (Spg, < 277%) @ His(pt).

Here %, indicates an isomorphism after localization. Note that after localization, A = (¢; — tj)d”'

up to an invertible factor, so by Lemma 2.2.3 we get
AH!(Sp,) Zioe (1~ ;)" HI'T (Spg, ) ® Hix(pt) ® C[Z"7] = (t;  tj,; - 2;)% € C[t,x*].

We have inclusion map
Sp?yﬁ — Sp,
and by Lemma 2.1.8

[T (tx-t)HI(Sp,) ci.HI (SpL).
(k,£)%(3,3)

We also have that

AH[(Sp,) e T  (te—te)(t:—t;)™ H] (Sp,).
(k,0)%(i,5)

By the above, this is contained in
bt = ;)W H (Sp) ) = (6 — by, — ;)™
We conclude that
AH?(SPV) C(ti—tj,x - :L"j)d“.

This holds for all codimension-1 subtori 7" = (t; - t;) € T with i < j, so we have

AHz(Spv) c M\t —tj, i — ;)™

i<J
In fact we have already seen that (t; — t;,2; — x;)% is exactly the localization HI (Sp,)p where
D= (ti - tj).

So by Lemma 2.2.7 we conclude that

AHL(Sp,) = (Mt =ty w = x5) 5.

i<J

17



This proof required the assumption that Sp,, is equivariantly formal. If d; = d for all 4, then it is

known to be equivariantly formal [11] and we recover the homology result of Theorem 2.2.5 from
Kivinen [24].
CONJECTURE 2.2.8. Sp, is equivariantly formal for all d,...,dy, and all n.

18



CHAPTER 3

Generalized Haiman Ideals

This chapter is based on work from [32] published in IMRN.

3.1. Generators and basis for n =3

When n = 3, it is known that Sp,, is equivariantly formal, so by Theorem 2.2.1, up to denominators
(A), its equivariant Borel-Moore homology is isomorphic to the ideal J ¢ C[t1,t2,t3, 27,25, 25|

defined as
j = j(dl,dg) = (tl — tg,xl - .CCQ)dl n (tl - tg,ajl - wg)dl n (tg - t3,a?2 — 1173)d2

seen as a module over C[ty,t2,t3,27,25,25]. Here we are assuming that d; < da < ds, so that

dy,dy,ds are equal to the pairwise minima d;;.

We consider a similar ideal J' c C[t1,to,t3, 21,22, T3]
J' = J(dy,d2) = (t1 - to, 1 — x2)™ N (ty — t3, 21 — x3)M N (tg — t3, 29 — 23)™

It is easy to see that J = J' ®c[x] C[x*], so the generators for J over C[t,x*] will be the same as

generators of J' over the polynomial ring C[t,x]. Next we will do a change of variables:
a=ty—ty, b=x1— 29, c=t3—19, d=23— 22
and consider the ideal
J = J(d1,d2) = (a,b)" n (c,d)2 0 (a-c,b-d)™
over R =C[a,b,c,d]. Clearly, we get
J'(d1,d2) = J(dy1,d2) ®c C[x1 + 29 + 3,11 +to + 3],

so again all three ideals have the same generators up to this change of variables.
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We can also consider these as bigraded ideals, where the t;’s (or a and ¢) have bidegree ¢, and the
x;’s (b and d) have bidegree t.

We will frequently use the polynomial
ad-bc=d(a-c)-c(b-d) e (a,b)n(c,d)n(a-c,b-d).

THEOREM 3.1.1. The ideal J = (a,b)" n(c,d)*2n(a-c,b-d)™ over R = C[a, b, c,d] has the following

families of generators (0<j <dy):

(1) A;j=abc27(a-c)(b—d)1 7 (ad~bc)?, 1 <i <dy-j. These generators have bidegree
qhirde=ivigdi=i - and there are di — j of these for a fived j. They are characterized by
deg; < dj.

(2) Bij = a7 7bia%2 =3 (b - d)h7I(ad - be)?,1 < i < dy —j. Such generators have bidegree
ghithrd2=ivi - and there are di — j of these for a fized j. They are characterized by
deg, < dj.

(8) Cij = ah7ctd®2=371(b — d)1~I(ad - be)?,1 < i < dy — j. Such generators have bidegree
ghrighird2=i=i - und there are do — j of these for a fized j. They are characterized by
deg, > dy,deg; > d;.

(4) Dj = a©73d%73 (b - d)17I (ad - be)? has bidegree q¥t1+9277  there is one such generator

for each j. They are characterized by deg, = dy.

REMARK 3.1.2. For j = di, the generators A; ; and B; ; are not defined, while C; 4, = ciddQ_dl‘i(ad—

be)h for 1<i<dy—dy and Dy, = d® % (ad - bc)®.

In particular, it is easy to see that there is at most one generator in each (g,t)-bidegree, see
also Proposition 3.1.12. Also notice that we chose the generators in Theorem 3.1.1 such that the
monomial factor in A;; does not contain b or d, and the monomial factors in B; ;,C; j, D; do not
contain be (unless j = dy).

Theorem 3.1.1 follows from Proposition 3.1.3, which we prove in Section 3.2.1.

PROPOSITION 3.1.3. The ideal J(d1,dz2) has the following basis (over C):

m(a,c)A; j,m(a,b,d)B; j,m(a,c,d)C;j,m(a,d)Dy (j <di—1)
20



where m are arbitrary monomials in the corresponding variables. For j = di we have to add all

polynomials of the form

a®bPd® (ad - be), v+ > dy - dy.
EXAMPLE 3.1.4. For dy = dy =1 we get the following 5 generators of J(1,1):
A1p=ac(a-c), Bio=bd(b-d), Cio=ac(b-d), Dy=ad(b-d), D= (ad-bc).
We can change the variables back to see that the generators of J over C[t,t2, 3,27, 25, 25] are
A= (t1 —t2)(tz —t2)(t1 —t3), Bio = (1 — x2) (23 — x2) (21 — x3),

C10 = (t1 —t2)(t3 — t2) (21 — x3), Do = (t1—t2)(v3 - 22)(21 - 23),

and
1 1 1

D1:det r1 T2 I3

COROLLARY 3.1.5. We have that
J(dy,dy) = J(1,1)% . J(0,1)%%,

J'(dy,dy) = J'(1,1)4 . J'(0,1)= %

and

j(dlde) = \7(17 1)d1 : \7(07 1)d2_d1'

PRrOOF. We prove the first equation, and the other two equations follow immediately.
The containment J(1,1)% - .J(0,1)%"% ¢ J(dy,ds) is clear, so it is sufficient to show that any
generator of J(di,d2) can be written as a product of d; generators of J(1,1) (listed in Example

3.1.4) and dz — d; generators of J(0,1) = (¢,d). Indeed:

Aii=a® e (g - ) (b—d)M T (ad - be)? = (ac(a-c))t- (ac(b—d)) 7 (ad - be)? - 27N

1,5 —
Bij = a7 d% 7 (b - d)" 7 (ad - be)! = (ad(b-d))™ 77 (bd(b - d))"(ad - be)’d™™",

Cij=a™ e d® 7 (b~ d)" ™ (ad - be)’ =
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(ac(b-d))*(ad(b - d))" 77" (ad - be)! ¢ d® N7,

where z = max(0,i + d; —dz). Note that i <ds — 7, so i +d; —ds < dj — j and hence x < dj — j. Also,

di <dg, so i +dy —ds <1 and z <i. Therefore all exponents are indeed nonnegative. Finally,

Dj =a™7d%7 (b~ d)" 7 (ad - be)’ = (ad(b-d))™ ™ (ad ~ be)Td® 4.

REMARK 3.1.6. Note that by Remark 3.1.2 the polynomials aabﬁcvd‘s(ad— be)B, y+6>dy—dy are

either multiples of C; 4, or of Dy, .

In [15], Gorsky, Kivinen, and Oblomkov define a graded algebra Ag = @37, A4, depending only on
a reductive group G, with some specific properties. One of the key properties is that for any ~ € g,

the direct sum of homologies of affine Springer fibers

F, = @ H.(Spy,)
k=0
is a graded module over Ag, or equivalently, that there is a corresponding quasi-coherent sheaf F,
on Proj @7’ Aq. They conjecture that F, is finitely generated and that this sheaf is coherent [15,
Conjecture 8.1]. In the case where G = GL,,, they show that this graded algebra is generated in
degrees 0 and 1, and that Proj@®3,.Aq = Hilb"(C* x C). A special case of this conjecture follows
from Theorem 3.1.1 and its corollaries.
+

Indeed, it is proved in [15] that Ay is the space of symmetric polynomials in C[¢1,...,t,, 27, ..., 25],

and A; is the space of antisymmetric polynomials.

THEOREM 3.1.7. In the case of G = GL3 and~y as in (1.1), the graded module F is finitely generated

over Ag, and defines a coherent sheaf on Hilb?’((C* x C), i.e. Congecture 8.1 holds in this case.

ProOF. By Corollary 3.8.3 in [9], the ideal generated by A; is exactly J(1,1). There is a

natural inclusion of ideals

j(dl,dg) 'j(l,l) - j(dl + 1,d2 + 1).
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It follows from Corollary 3.1.5 that this map is actually surjective as well. Since H *(Sptkv) corre-
sponds to the ideal J(dy + k,da + k), this shows that the module F, is generated in degree 0, and

therefore finitely generated by the generators of J(dy,ds2). O

3.1.1. Hilbert Series. Let us introduce two rational functions

Zf"...zdl n 1

H(dy,....dp) =) n I a0 [Tw(zi/z)

7 (L-g)"(1-)" i i<j

and

n 1
Fdy,....d,) = Zn__.zgl w(zifz5)-
(dy ) ; ! s (1=27) (1 - qtzia/2) g Gil)

Here the sums are over standard tableaux T with n boxes, z; is the (g,t)-content ¢ '¢"~! of the

(1-z)(1-gtz)
(1-qz)(1-tx) "

of the form (1 -1) in the above products (either in the numerator or in denominator) should be

box labeled by ¢ in row 7 and column ¢ in 7', and w(z) = By convention, all the factors
ignored.
The function F(di,...,d,) is also known as generalized (g¢,t)-Catalan number, see [13] for more

details and context. Note that the order of the d; is reversed here compared to [13].

CONJECTURE 3.1.8. We have that:
a) The Hilbert series of the ideal J'(dy,...,d,) equals H(dy,...,d,).
b) The Hilbert series of the generating set J'(d,...,d,)/mJ' (d1,...,d,) equals F(dy,...,dy,). Here

m is the mazimal ideal m = (t1,. .., tp, X1, .., Tp).

In particular, this conjecture implies that F'(dy,...,d,) is a polynomial in ¢ and ¢ with nonnegative
coefficients (see [13, Conjecture 1.3]) and provides an explicit algebraic interpretation of these
coefficients. Similarly, the conjecture implies that H(d1,...,d,) is a power series in ¢ and ¢ with

nonnnegative coefficients.

EXAMPLE 3.1.9. For n =2 we get J(dy,d2) = (1 —x2,t1 —tg)dl. We change coordinates to 21 — 9 =
a,t; —ty =band T = x1 + o, = t1 + tg, then J(dy,ds) has generating set a®,a®™1b,...,b%, so the
Hilbert series for the generating set equals
di tdl
4 +
1-t/qg 1-qft
23
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Similarly, J(d1,ds) is free over C[Z,] with basis a®b®,a + > dy, so by Lemma 3.2.6 below we get
the Hilbert series

1 d1 dl

Z ¢’ = 2 : + t 2 :

(1-a)(1=1) oi52a (1-¢)?(1-t)(1-t/q) (1-q)(1-1)*(1-q/t)

THEOREM 3.1.10. Conjectures 3.1.8(a) and 3.1.8(b) hold for n =3 for all dy,ds,ds.

The statement of (a) follows from the Hilbert series calculation in Section 3.2.2, and the proof of

(b) will be in Section 3.1.2.

3.1.2. Combinatorics of J. We've already seen in Example 3.1.4 that J(1,1) has 5 genera-
tors, and that in general the generators of J each have a unique (g, t)-bidegree. We can plot the

bidegrees of these generators as below.

ExXAMPLE 3.1.11. Here is an example where dy = ds = 3:

deg, o
8 ®
. .
Dy,
[ ] ]
B Cik
[ ] [ [ ]
4 (] (] ]
[ ] [ ] L L
2 ] ° °
L] [ ]
Aig
.
0 2 4 6 8

deg,

Each dot represents the ¢,¢ degree of a generator of J(3,3). Although the ideal is symmetric in =

and t, we break the generators into families in a non-symmetric way.
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Every generator lies on a diagonal corresponding to k, which is the degree of (ad - bc) that appears
in its definition in Theorem 3.1.1. We see here that the diagonals have 10, 7, 4, and 1 point

respectively. Summing all of their degrees gives the generalized ¢, t-Catalan number
F(3,3,3) = [10]g¢ + qt[T]ge + ¢t [4]q, t + @3 [1] g,

where [n+ 1]y = q" + ¢ H+ -+ qt" L+ 17

PRrOPOSITION 3.1.12. The generators of J are in bijection with the integer lattice points inside the

trapezoid bounded by the following inequalities:
2di +do>x+y>dy +da, T+2y>2dy +ds, 20 +y > 2dy + ds.

PROOF. It is easy to check that all of the generators of J satisfy these inequalities on their
bidegrees (z,y) = (deg,,deg;). Since the generators all have unique (g,t)-bidegree, it is sufficient
to count the number of points in the integer lattice and check that it is the same as the number of
generators.

We will count the lattice points going by diagonals, starting with the top diagonal = +y = 2d; + ds.
On this diagonal, = + 2y > 2d; + d2 and 2x + y > 2d; + ds are trivially satisfied, since z,y > 0. So z
and y can both range from 0 to 2d; + ds, and there are 2d; + ds + 1 points on this diagonal.

On the next diagonal, z+y = 2d; +do—1, we have that x+2y = 2dy+ds—1+y and 2z+y = 2d; +do—1+x

are both at least 2d; + do. This implies that =,y > 1 so we have points
(1, 2d1 + dg - 2), (2, 2d1 + d2 - 1), - (2d1 + d2 - 2, 1),

which amounts to 3 less points than the first diagonal. If we keep going, each diagonal will have 3
less points than the last, until the final diagonal x + y = d1 + d2, which will have dy — d; + 1 points.
If we index the diagonal x +y = 2d; + do — j by j, j will range from 0 to d;. So in total the number
of points in the lattice is

dy

> [2dy +dy + 1 -35].

§=0
If we count the generators of J as laid out in Theorem 3.1.1, we get
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dy dy dy dy
Aij: > (di-j), Bij:Y>.(di-j), Cij:)y (d-j7), Dj:) 1,
j=0 7=0 j=0 =0

and combining the sums, we get the same count. So we have shown the desired bijection.

PROOF OF THEOREM 3.1.10(B). In Example 1.2 in [13], the authors show that
F(dy,da,d3) = [2dy + dy + 1]y + qt[2d1 + dg — 2] g s + -+ ¢t [dg — dy + 1] 44,

where [n+1]g4:=q" +¢" 't +-- + qt" L + 1™

We can see from the proof of Proposition 3.1.12 that this exactly matches up with the coordinates
of the lattice points, grouped by diagonals, and therefore by Proposition 3.1.12, this is in bijection
with the generators of J’ and their (g,t) degrees.

Any choice of basis of J'(dy,...,d,)/mJ'(d1,...,dy,) lifts to a set of generators of J' by Nakayama’s
lemma. So the Hilbert series of J'(dy,...,d,)/mJ'(dy,...,d,) is precisely the degree count of the
generators of J'; so indeed it is F(dy,ds,ds). O

3.2. Proofs

3.2.1. Proof of Theorem 3.1.1. After doing the change of variables to C[a,b,c,d], the

upshot is that we’ve reduced the number of variables, and we can use the fact that J = M n(a -
c,b—d), where M = (a,b)% n (c,d)? is a monomial ideal. In this section we will find a basis for
J over C by characterizing when elements of (a — ¢,b—d)? are in the monomial ideal M, proving
Proposition 3.1.3 and by extension Theorem 3.1.1. First, we will need a few key lemmas.
Since M is a monomial ideal, a polynomial f is in M if and only if all monomials m of f that
have nonzero coefficients are in M. If m is a monomial, then let deg;(m) be the combined (a,b)
degree of m, i.e. the sum of its a and b degrees, and similarly let deg,(m) be its combined (¢, d)
degree. Then the monomial m is in M if and only deg;(m) > di, and degy(m) > da2. Note that
these degrees should not be confused with deg, and deg; defined above.

Consider some f € R of the form

f=p-d)+v¢(ad-bc)e M
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for some ¢, € R. Notice that for any v € R, we can modify the coefficients ¢, by simultaneously

substituting:

(3.1) p—>p+y(ad-bc),  ¢Y—>¢-y(b-d)
without changing f.

LEmma 3.2.1. If
f=eb-d)+1¢(ad—bc)e M

for some @, € R, then up to the relation (3.1), we can assume that p € M.

PROOF. Since M is a monomial ideal, (b —d) + 1(ad - bc) € M if and only if every monomial
term of p(b—d) +v(ad-be) is in M. If m is a monomial in the expansion of this expression, either
m is in M, or m cancels with some other monomial.

When we expand, all monomials come in pairs from distributing b —d or ad — be. These pairs
look like m (%) —morm (Z—g) —m, where each term is appropriately divisible so that there are no
denominators. If one of these monomials cancels with another monomial, that other monomial also

must be part of a pair like the above. For example,

st 50-0-0 () 3) n(2) () e () )

We can continue to follow a chain of cancellation until either we get two terminal monomials that
do not cancel with anything, or we eventually reach a monomial that cancels with the starting
monomial m, creating a cycle. We can visualize these chains of cancellations by oriented paths in
a 2 dimensional lattice. Vertices represent monomials, vertical edges represent a difference of two
monomials of the form m (g) —m, and horizontal edges represent a difference of the form m (Z—f) -m.
The full path represents the sum of all the pairs of monomials represented by each edge, and the

end vertices of the path are the terminal monomials. For example, the above cancellation can be

represented by the path:

3
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Cycles in these paths correspond exactly to the equivalence

p(b=d)+¢(ad-bc) = (@ +~(ad-bc))(b-d) + (¢ —~y(b-d))(ad - be).

To see this, let m be a monomial. A cycle looks like this:

This corresponds to the identity
m m ma m
—(b-d)+ —(ad-bc) - —(b-d) - —(ad-bc) = 0.
7 (b-d)+ —(ad~bc) - -~ (b~d) - ;~(ad - bc)

For all of these terms to be monomials, b, c,d must all divide m. Multiplying through by bcd and

grouping, we get

-m(ad—-be)(b-d) + m(b-d)(ad -bec) = 0.
Adding this cycle corresponds to using the above equivalence with v = m. Adding any number of
these cycles along our path corresponds to modifying the coefficients ¢ and v with relation (3.1)
without changing the overall sum f.
We can add and subtract this square loop to any path in order to both eliminate any loops, and
to reorder cancellation. For example:

m($)——m () (@) m@——m(5) () m (52) (2)

ISHIS)

3

So up to relation (3.1), we can make any path into one with vertical edges first and horizontal edges

after, going from m to m (g) tom (g) (%)], with k and j possibly negative or 0.
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This reduced path corresponds to ¢(b—d) + ¥ (ad — bc), where

m(®) w8 -m ()

d =
pog  dv ad - be

90:

Notice for any monomial m, m (Z—‘j)j € M if and only if m € M, as multiplying by ¢ does not change

the combined (a,b) degree of a monomial, and the same for %.

Given a reduced path as above, we know that the terminal monomials m and m (s) (Z—‘Ci)] are in
M. But since m(g) (‘Z—‘j)j € M, by the above, m(g) is in M. Now we want to show that ¢ € M.

Since m (g)k € M, it follows that ¢ € (c, d)?2 | since multiplying by b¥ does not change the (c,d)

degree. Since m is in (a,b)®, it follows that o € (a, )%, since it has the same (a,b) degree as m.

So 7t € M, and therefore indeed

m b* - d*
_m M.
YR boaq ©

For a general ¢(b—d)+1(ad—bc), we can break the terms into a sum of discrete cancellation chains,

Z [Cpl’i(b - d) + (,0271'((1d - bC)] .

)

For each cancellation chain, we have shown that up to equivalence, ¢1; € M, and therefore

@ZZ%,iGM-
(A

LEMMA 3.2.2. We have that p(b—d) € M if and only if ¢ € M, and p(a—c) € M if and only if
pelM.

ProOF. This is essentially what the final argument of the above proof shows. If we expand
the expression ¢(b— d) into monomials, then as in the proof of Lemma 3.2.1, we will get chains of

cancellations with two terminal monomials that do not cancel, which looks like the path:
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3
—~
SHISY
N—"

el

This chain corresponds to
b\k
m (E) -m

Y= b_d )

and as before, m,m (%)]c € M together imply that ¢ € M. Any general ¢(b - d) can be split into
the sum of distinct cancellation chains, and thus ¢ € M.

The same argument applies to ¢(a —¢) since M is symmetric in (b,d), (a,c). O

Next, we characterize how we can best express f € (a —c¢,b—d)™ in order to see when f e M.
LEMMA 3.2.3. Any f € (a-c,b—d) can be written as
f=ai(a-c)+a(b-d)+as(ad -be),
where o; € R and aq is a polynomial in a and ¢ only.
PRrOOF. If f € (a-c¢,b—d), then

f=m(a-c)+2(b-d)
for some 71,72 € R. Observe that
b(a—-c)=a(b-d)+ (ad-bc),
and
d(a-c)=c(b-d)+ (ad-bc).

So by applying this to any term in ~; with a factor of b or d, we can ensure that v; only depends

on a and c. i

LEMMA 3.2.4. If f e (a—c,b—d)™ n M, we can write f = Y; f;, where

di—i ) o )
fi= Y aijla-c)(b-d)" " (ad - be)
=0
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and each f; e M.

PrOOF. Consider f € (a —c¢,b—d)?. Following Lemma 3.2.3, we can express f as a linear

combination of products of (a - c¢),(b-d), and (ad - bc),

f=> aijla- ¢)i(b-d)H (ad - be) .
i,J

Further, we can assume that every coefficient of a term with a factor of (a — ¢) depends only on a

and ¢, because for any term with coefficient o with 7 > 0, we can write
ala—-c)i(b-d)M " (ad - be)?

=[a(a-c)](a-c) " (b-d)1 " (ad - be)’
= [ai(a-c) +az(b-d) +as(ad - be)] (a— )7L (b-d) ™ (ad - be)’

where «; only depends on a and ¢ by Lemma 3.2.3. We can continue this process by induction
until all the modified coefficients «; ; only depend on a and c.
Now we will group terms of f by their combined (b, d) degree. For all i > 0, since «; ; depends only

on a and ¢, we know that the combined b, d degree of every monomial of
a;j(a-c)(b-d)" " (ad - bc)’

is k = deg,(m) = d; —i. If any monomial from this term cancels, it must cancel with another term
with the same (b, d) degree. So in fact, every monomial with deg,(m) = k must come from the sum

fi = Zo%-(a — )i (b-d)* (ad - be)?
=

. k . .
=(a-¢)" Y a;j(b-d)* (ad - be)?
=0

with fixed 7. In other words, monomials can cancel within each f;, but not between them. This
implies that for all ¢ > 0, each f; € M, since after internal cancellation, each f; is a sum of monomials
in M.
Since f =Y, fi isin M and f; € M for all 7 > 0,
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fo = dzl ;i (b-d)* 7 (ad - be)

j=0

must also be in M.

By Corollary 3.2.2, we know that

fi=(a-c) Zk: a; j(b— A (ad-be) e M
=0

implies that
k : .
(3.2) > @i j(b-d)* (ad - bc) e M.
§=0
Now we fix i and look at a single f;, which we will call f to avoid unnecessary indices. Also let

k =dy — 1 as before.

ProrosiTION 3.2.5. If
k

Z (b-d)* I (ad-be) e M,
Jj=

for some o € R, then there exists a; € R such that
f=>a5(b-d)*(ad-be)
J

and each term aj(b - d)*I (ad - be)? of the sum is in M.

PROOF. We can rewrite f as
k-1
(3.3) f= 3 [pi(b=d) +j(ad~be)] (b~ d)* 7 (ad - be)’,
j=0

where initially ¢; = a; for all 0 < j <k -1, 9p_1 = az, and the rest of the v;’s are 0. Essentially
we have taken the previous sum for f and added some redundant terms; in particular, 1; and ;1
are coefficients for like terms for 0 < j < k—1. So we have two relations we can use to modify the

coefficients of (3.3) without changing the sum:

(3.4) pj =i+, Qi+l = Pjr1— Y

(3.5) @j = pj+y(ad=bc), Y= —y(b-d).
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The first comes from the redundant coefficients, and the second is the same relation (3.1) used in
Lemma 3.2.1.
We will induct on k = dy—i. If k = 0, then i = dy, and our sum (3.2) is just the single term ag(a—c)%,
which is in M by assumption. Now assume by induction that if

k-1

S a(b-d)" ' (ad - be)!

§=0
is in M, then we can modify the coefficients using only (3.5) to get all terms
a;(b—d)*1I(ad - be)? in M. We can apply this to (3.3) with a; = ¢;(b—d) +vj(ad - be). Using
(3.5) on the «;’s actually just amounts to using (3.4) on the ¢;’s and 1;’s, as adding y(ad - bc) to
a; is the same as adding v to 1;, and subtracting (b - d) from «; is the same as subtracting

from ¢;. So the inductive hypothesis implies that up to (3.4), we can get
[pj(b=d) + ;(ad —be)] (b= d)* " (ad - be)’

in M for all j. By Corollary 3.2.2, this implies that

(3.6) [;(b—d) +1;(ad-be)] (ad - be)’ € M.

Notice that multiplying a monomial (polynomial) by (ad - bc) raises its combined (a,b) degree and
(¢c,d) degree each by one. So (3.6) isin M = (a,b)™ n(c,d)® if and only if [¢; (b~ d) + ¢, (ad - bc)] €
N = (a,b)%177 n (¢,d)®77. Now we apply Lemma 3.2.1 on N to get both ¢;(b~d) and 1;(ad - bc)
in N, and then when multiply by (ad - bc)?, we get that both terms of (3.6) are in M.

So we have shown that if
k-1 . .
f=3 [pj(b-d) +v;(ad-be)] (b )" (ad - be)?,
=0

up to relations (3.4) and (3.5), we can get all terms of this sum to be in M. Now simply recombine

like terms to get
f=>a;(b-d)" " (ad - be)!
J

with all terms in M as desired.

Now we can lay out a basis for the ideal
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J(dr,dg) = (a,0)" 0 (¢,d)™ n (a-c,b-d)™

over C.

PROOF OF PROPOSITION 3.1.3. We know by Proposition 3.2.5 that J(di,ds2) is generated by

polynomials of the form

a;j(a—c) (b—d)* I (ad - be),

where o; ;j only depends on a,c for ¢ > 0. Here 0 < j <dy and 0 <7 <d; —j. So as a vector space,
J(dy,ds) is generated by
a®b?d’ (a - ) (b-d)P 7 (ad - be)’

with the conditions that a+8+j >dy, y+d+j >dz, and § =9 =0if ¢ >0. Among these generators,
the only kind of relations remaining are those that come from the fact that be = ad — (ad — bc).

If ¢ > 0, then this relation is irrelevant, and we get linearly independent generators of the form
m(a,c)A; ;.
If i=0 and 8,7 > 0, then we can write
a®bPd = a® PO 1+ 0D (ad - be).

Continue reducing bc this way until we end up in one of the following situations:

(1) ¥=0, B #0, in which case we are left with
m(a,b,d)Bg.;

with 0<j<dyand 1<f8<dy - 5.

(2) =0,y +#0, in which case we are left with
m(a,c,d)C, ;

with 0<j<dyand 1 <y<ds—j.

(3) B=0, v =0, in which case we are left with

m(a,d)D;
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with 0 < j <dy.
(4) The exponent of (ad —bc) is greater than or equal to dj, in which case we are left with a

linear combination of terms of the form

m(a,b,c,d)(ad - be)™.
O

Theorem 3.1.1 immediately follows from Proposition 3.1.3.
3.2.2. Hilbert Series Calculation. Let us compute the Hilbert series using the basis in

Proposition 3.1.3.

LEMMA 3.2.6. We have
S S
Z qatﬂ = d + t .
a+Bos (1-¢)(1-t/q) (1-t)(1-qft)
ProOOF. We have
s—1 S—ﬁtﬁ [oe) tﬁ
B_Nv 4 _
RRAEDY ) =
a+f2s B=0 (1-9) e ]
qs _ ts ts

(I-(-tg)  (-0-t)

Now we can use the identity
1 1

1
(-(-1) (-q(-tlg) (-)(1-g/t)

THEOREM 3.2.7. The bigraded Hilbert series of J(di,d2) is equal to
t2d1+d2

q2d1+d2
(1-)?(1-t/) (- t/g®) (1 -t2(1-gft)(1-g/2) "

gMt®2(1+1) . 21 (1+¢q)
(1-g)(1-t)(1-q/t)A-t*/q) (1-1)(1-q)(1-t/q)(1-¢/t)
PrROOF. We compute the contribution of various basis elements.

1. The contribution of m(a,c)A; ;, j <di -1 equals
di-1d1—j
1 i 123 glrdamivigdhi=i
(1-¢g)? §=0 =1
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1 di-1 d1+d2fj+1td1f1_ 2d1+d2f2j+1tjf1

q q
(1-9)? = (I-q/t)
d2+1td1—1

d1+d2+1td1_1 _ 2d1+d2+1t_1 d2+1td1_1

q q _q -q
(1-9)*(A-g (1 -g/t) (1-9)*(1-q/t)(1-1t/q?)
2. The set m(a,b,d)B; jum(a,d)D;, j<di -1 consists of elements

ao‘bﬁdv(b - d)dl_j(ad —be), a+B>di—j, y>dy -7,
so by Lemma 3.2.6 we get the Hilbert series

dlz—:l [ qdl—j N td1-J ] qjtd1+d2—j
0 lA-9-t/g) (A-)A-q/t)] (1-1)
d11[ qdltd1+d2—j qjt2d1+d2_2j ] _

-0)0-q)(1-t/q)  (1-02(1-q/t)

dy tdg

§=0
ghrpdirda _ gy {2dirda _ o
It DA-00 -1 -ta)  (1-a/B)(1-t)°(1-qft)

3. Similarly, for m(a,c,d)C; jum(a,d)Dj, j<di -1 we get

a®Pd(b-d) " (ad-be), a>di—j, B+v>ds—j,

so the Hilbert series equals

d1z—:1 ng—j . tdQ_j qd1 tdl ~
o La-g-t/q) (1-t)(1-q/t) [ (1-q)
qd1+d2td1 _ ngtd1 qdltdl+d2 _ qdltd2

+ :
(1-¢H(A-¢*(A-t/q) (A-tH)(1-q)(1-1)(1-q/t)
4. We overcount by m(a,d)D;, j <dy -1 which contribute

1 dlz—l qd1 td1+d2—j ) qd1 td1+d2 _ qd1 tdQ
(1-g)(1-%) ;5 (1-tH(1-g)(1-1)

5. For j = d; we have special terms
a®bPd (ad —be)™, v+ 6> dy —dy,

WhiCh cont ribul €
1 do—d tdg—d
q ! dy 4dy

(-00-0|[(0-90-t/)  a-na-gn] T
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6. Finally, we collect the coefficients at similar terms:

-1
qdl +d2 td2 [ qt 1

(-2 -aD(1-a/)  T-g D021 -t/g)] "

1 . 1 )
1020090 -2 g —t/a)

1 . 1 ] ¢t (1 +q) |
A aN0-020 0 -0 D000 0-D0-00 /g1 -&/)
S [_ gt ] . f2d1+ds _

- 02—t | T T A - 02— a0)

2d1 +do t2d1+d2

d2td1 [_

q

q

q .
(- 2(L-t/)(-t/¢®) "~ (A-£2(1-g/t)(1-q/t2)’
1 1
I-tO)A-H(1-1-t/g)  (1-tD)(A-g)(1-t)(1-qft)
1
A-eha-ga-n "
p— t_l p— qt_2 p—
A=t )(A-0)(1-q)(A-tlg) (1-g/2)(A-1)2(1-q/t)
1 N ¢! . 1
(-t O)(A--t)(1-g/t) (-t HA-q)1-1) (1-g)(1-t)(1-t)(1-q/t)
qht2 (1 +1)

(1-q)(1-t)(1-q/t)(1-1t2/q)

d1 tdl +d2 |:

q

et |

]=
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CHAPTER 4

Coxeter Braid Recursions

This chapter is based on work from [32] and [33] for 3 and 4 strands respectively.

Here we compute Khovanov-Rozansky homology of pure Coxeter braids on 3 and 4 strands. For
our purposes, we think of Khovanov-Rozansky homology HHH as a certain functor from complexes
of Soergel bimodules to triply graded vector spaces over C. To each crossing o; in the braid group,
we associate a 2-term complex called a Roquier complex. To any braid 3, we associate to it a
complex of Soergel bimodules by taking the tensor product of Roquier complex for each crossing
in the diagram of 8 from bottom to top. We define HHH(3) to be HHH of the complex associated
to its braid diagram. We refer to [16] and references therein for all details.

For some braids, we can use the recursions for triply graded Khovanov-Rozansky homology from [8],
as described in [16] to compute HHH. Starting with a braid diagram, we insert certain auxiliary
complexes of Soergel bimodules K,, and apply the properties below until all strands are closed up.

Figure 4.1 below shows the properties of K, that we will use in our recursions.

i

(@ 1 K] =] O [K]=[K]=[K] ( !Kn+@:<t"+a>!f(n\

d) || Ko |=t"] [Kon] — 4| [ Ky ]

FIGURE 4.1. Recursions for HHH

Essentially, Figure 4.1(a) says that we can insert a K; anywhere up to a grading shift. Figure

4.1(b) says that K,, absorbs crossings within the n strands that it spans. Figure 4.1(c) allows us to
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‘close up’ a strand passing through a K, as long as there are no crossings in the way, and Figure
4.1(d) is the main recursive step that allows K, to grow if there is a strand wrapping around it.
The three gradings of HHH(S) are typically denoted @,T, and A. However, in line with [8], we

use the change of variables

q=Q% t=T2Q2 a=AQ?2

DEFINITION 4.0.1. For any braid or braid-like diagram [, we say that HHH(/) is parity if it is

supported in only even homological (T') degrees, where T2 = 2.
Note that HHH() is parity if and only if its graded Hilbert series is rational in terms of (q,a,t).

REMARK 4.0.2 ( [16]). If both diagrams on the right-hand side of Figure 4.1(d) are parity, then so
is the left-hand side, and we can replace the map with addition on the level of rational functions
(or a direct sum on the level of complexes). This implies that if we use Figure 4.1(d) repeatedly to
break down a braid § into complexes that are known to be parity, then every complex along the

way, including g itself, is parity.

We generally restrict our attention to positive braids, as a negative braids are almost never parity.
To make the calculation simpler, we translate the braid diagrams into equations where multiplica-
tion represents vertical stacking from bottom to top (or equivalently a tensor product of Soergel

bimodules). So for example, 4.1(d) translates to
K- IMpiy = " Ky + gt K.
We will regularly use the Jucys-Murphy braids
IM,, = 0y 1-01010n1

and the full twist on n strands

FT,, = JMaJM3z---JM,, .

All Jucys-Murphy braids JM,, and full twists FT,, are assumed to be on the first n strands unless
otherwise indicated. We will also make regular use of the fact that o; commutes with FT,, for all

1 <i < n, o; commutes with JM,, for 1 <i < n, and that JM,,, and JM,, commute with each other
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for any m,n. In other words, the full twist commutes with all crossings on its strands, the Jucys-
Murphy braid commutes with internal crossings, and all Jucys-Murphy’s (on the initial strands)
commute with each other.

Since K, absorbs crossings by Figure 4.1(b), for n < m, we have that
K, FT,, = K, JMy,1 - JM,, .

We will also use the conjugation invariance of HHH:

(4.1) HHH(a5) = HHH(B«)

for any braids a and 8. We will denote the conjugate braids by a8 ~ Sa. We will additionally use
the result from Hogancamp [19] that HHH(FTF) is parity for all n, k > 0.

Finally, note that Figure 4.1(a), (b), and (d) are local, i.e. they hold on the level of homotopy
equivalences of chain complexes. Braid conjugation and the closing up step (c) are non-local, and

only hold on the level of HHH.

4.1. Computations on 3 strands

In this section we show that the link L. associated to v as in (1.1) is parity for n = 3, and compute

its Khovanov-Rozansky homology. It is the closure of the braid
By = (FT2)" " (FTg)™ = IMg2 IMg! .

THEOREM 4.1.1. For all dy > di HHH*"(By, 4,) is parity.

PROOF. We can resolve the first FTy by the process:
FTy=K,-FTy=K;-JMy =t Ky +qt 1 K.
Since Ky absorbs any crossings on the first two strands, this leaves us with

Bdl,dz = t_1K2 : (FT?:)dl + qt_lﬁd17d2—l-
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Now we resolve ag, = Ko - (FT3)™ by first writing FT3 as the product JMy-JMsz. The JMy gets

absorbed by Ks, so we get

K- (FT3)dl = KQ.JM3.(FT3)d171 2K, +qt’2K2(FT3)d1’1,

where the K3 has absorbed the rest of the FT3’s. When we close up K3, we get 3, and ag = K>

closes up to 1%(;' So we get a simple recursion:
HHH™ (g, ) = t + gt " HHH* (a4, 1),

with HHH* (o) = 1—fq. We can write this in a closed form as

HHH(ay, ) = t[l ~(at ) (@)" ] .

1-qt2 qg-1
So overall we have the recursive relation

1- (gt (at*)"
1-qt2 g-1

(4.2) HHH"(B4, 4,) = [ ] +qt "HHH" (B4, d4-1),

with B4, 0 = (FT3)% = T(3dy,3), which is parity (with known homology) by [8].

O

To compare this to H*(Spv), it can be checked by direct computation that the Hilbert series

H(dy,dy) of Sp, satisfies essentially the same recursion (4.2). But we can also apply a theorem

of Gorsky and Hogancamp (Proposition 5.5 in [14]). Here HY is the y-ified Khovanov Rozansky

homology defined in [14].

THEOREM 4.1.2 ( [14]). Assume that ( = JMf” L IMM dy > dyy 22 dy, and HHHO(B) s

parity. Then:

(1) HY*°(8) = HHH**(8) ® C[y1, ..., yn] and HHH*?(3) = HY*(8)/(y)
(2) I(dy,...,d,) SHYY(B) c J'(dy,...,dy), where I is the product

I(dy,...,dy)=J'(1,..., )" J(0,1,...,1)2 4. .J0,...,0,1)%-17dn-2,

In our case 8 can be expressed exactly as above, and Theorem 4.1.1 along with Corollary 3.1.5

implies that for n = 3:
HY* (L) = J'(d1,d2).
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Note the analogy between the relationship of HY to HHH in statement (1) of Theorem 1.3.3, and
the relationship of HY (Sp,) to H.(Sp,) due to Fact 2.1.7. The result is the following weaker

version of Conjecture 1.0.2.

THEOREM 4.1.3. Forn=3 and v as in 1.1,
HY™™(L,) @cpx) Clx, x*] = AHT (Sp,)

and

HHH™(L,) ®c(x] C[x,x*] = H.(Sp,).

In order to show Theorem 4.1.3, we used Corollary 3.1.5, but one could instead show that the link
splitting map defined in [14] is canonical for 5 as above, analogous to Proposition 6.11 in [14].
This means that Theorem 4.1.3 can be generalized to higher n solely by showing that [ is parity,

such as with this same recursive method.

4.2. Computations on 4 strands

Here we compute Khovanov-Rozansky homology of Coxeter braids on 4 strands. Let
B =B(dy,da,ds, ds) = (FT2)® % - (FT3)="" - (FTy)™.

DEFINITION 4.2.1. Let

o A(n,m,l) = KyFTLFTTFTY,
e B(n,m) = KoFT5'FTY,
o O(n) = K3FT}.

In this notation,

K18(d1,ds,d3,dy) = A(dy,da — dy,d3 — da).

Assuming that all braids are parity, we can write Figure 4.1(d) in the form
Kn JM,—H.l = tinK,H.l + qtinKn.

By Figure 4.1(b), K, JM,+1 = K, FT,11, so we immediately get the following recursions:
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(4.3) A(n,m,1) =t 'B(n,m) + gt ' A(n,m,1-1)

(4.4) B(n,m) =t"2C(n) +qt 2B(n,m - 1)

(4.5) C(n)=t3Ky+qt™3C(n-1)

These recursions let us proceed by induction, as every application either decreases m,m, or [ or
shifts us from A to B or B to C. Also note that they don’t involve any closing up or conjugation,
so they are all local. The majority of the work lies in the ‘base cases’, when one or more of I, m,n

are 0.

4.2.1. Recursion for C(n). Here we calculate HHH recursively for the braids C(n) and for

a twisted version 02*C(n) that we will need in Section 4.2.2.

LEMMA 4.2.2. The braid C(n) is parity for alln >0, and

31— (qgt™?)"

(¢t™)"(£? + a)(t +a)(1 + a)?
1-qt3 )

(1-9)

PROOF. The braid C(0) has K3 on the first 3 strands and an empty fourth strand. We can

HHH(C(n)) =t HHH(K,) +

close up the K3 using Figure 4.1(c) and introduce a K to close up the last strand, so
HHH(C(0)) = (t* + a)(t + a) (1 + a)?*/(1 - q).

We also have that
HHH(K) = (£ +a)(t* +a)(t +a)(1 +a).

So by induction, both terms on the right hand side of recursion (4.5) are parity. Therefore C'(n) is

parity, and can be computed recursively. O
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LEMMA 4.2.3. The braid o2*C(n) is parity for all k,n >0, and

31— (qt™?)"

e HHH(K,) + (¢t™)"(t* + a) (t + a)(1 - ¢)HHH(FTY).

(4.6)  HHH(02*C(n)) =t

PROOF. For 2*C(0), we can close up (using Figure 4.1(c)) the first two strands running
through K3, and then we are left with exactly k full twists on the remaining two strands along with
a Kq. So

HHH(02*C(0)) = (£? + a)(t + a)(1 - ¢) HHH(FT%).

For 03*C(n)), we apply recursion (4.5) locally to get
o2k C(n) =t 302 Ky + gt 302*C(n - 1).

The o3 crossings get absorbed by K4 (using Figure 4.1(b)), so by induction on n, we conclude that

o2kC(n) is parity with the desired formula for HHH. O

4.2.2. Recursions for B(n,m). Here we calculate HHH recursively for the braids B(n,m)

and for the twisted braids o3 B(n, m) that we will need in Section 4.2.3.

LEMMA 4.2.4. The braid o2*B(0,0) is parity for all k>0, and
HHH(02*B(0,0)) = (t +a)(1 + «)HHH(FTE).

PRrROOF. Recall that B(0,0) consists only of a K2 on the left two strands, which does not overlap
with o2F. We close up the two strands running through K, (Figure 4.1(c)) and are left with & full

twists on two strands. O
Now we consider the case B(n,0).

LEMMA 4.2.5. The braid ang(n,O) is parity for all m,k >0, and
HHH [03* B(n,0)] = t *HHH [03"C(n)] + ¢t *HHH [03"*B(n - 1,1)]

= t?HHH [03"C(n)] + ¢t *HHH [03"*2C(n - 1)] + ¢*t*HHH [03"*2B(n - 1,0)].

In particular we have that B(n,0) is parity for all n > 0.
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ProoF. We have that locally,
B(n,0) = Ko JM3 JM, FT} !

=t 2 K3 M FT} ! + gt 2 Ko My FTY !

(4.7) =t72C(n) + qt 2Ky My FT L.

Here we used Figure 4.1(d) for K2 JMs3, and the identity K3 JMy = K3FT, which follows from
Figure 4.1(b). Now note that JMy = 03 JMs3 03, so

o Ky IMgFTT ! = 02 Koo IM3 03FTY ! = 02803 Ky IM3 FTY L3,

where we use the fact that o3 commutes with both FT4 and K. By conjugation invariance (4.1)

we have that
HHH(02% 03Ky M3 FT} Lo3) ~ HHH(02F 2 Ko IMs FT7 1) = HHH (02 2B(n - 1,1)).
Finally, a local application of recursion (4.4) tells us that
o2 B(n-1,1)=t"2 [U§k+20(n = 1)] +qt™? [ng”B(n -1, 0)] .
We know that o2*2C(n — 1) is parity by Lemma 4.2.3, and we know that o2¥*2"B(0,0) is parity
by Lemma 4.2.9. So by induction on n, we can conclude that ngB (n,0) is parity. O

COROLLARY 4.2.6. The braid B(n,m) is parity for all n,m > 0.

PRrROOF. We know that B(n,0) is parity by Lemma 4.2.5 and that C(n) is parity by Lemma

4.2.2. So we use recursion (4.4) and induction on m to conclude that B(n,m) is parity. O

Now we show that a twisted version U%B (n,m) is also parity. We start with the step that requires

the most caution to keep all braids parity.

LEMMA 4.2.7. If the right hand side is parity, then

(4.8) HHH[0303"2B(n,0)] =t *HHH [¢3"2C(n)] +
gt *HHH [IM303" 2C(n - 1)] + ¢*t *HHH [0303" B(n - 1,0)],
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where JMs = 0'30%03 indicates the Jucys-Murphy element on the final 3 strands rather than the first

& strands.

PROOF. Since the equation (4.7) holds locally, we can multiply both sides on the left by o3 a% 2,

For the first term in (4.7), if we include the additional crossings, note that
2 [GQng 2C’(n)] 2 [o3 2k 2K3FT402] =t2 [ng_2K305FTZ] =12 [ng_zC(n)] .
Here we conjugate a% and pass it through FT until it is absorbed by K3. Therefore
t"2HHH [0303"2C(n)] = t *HHH [03"2C(n)].

For the second term in (4.7), we can again write JMy = 03 JM3 03, so

030 2 Ky IM FTY ! = 02028 2 Ko03 IM3 03F T ! = 02021 Ky IM3 03F T
Applying recursion (4.4) gives
(4.9) 72 [0505" K303 F T} | + gt 2 [0503"  Kaos FTY 7.

Now we slide o3 through FT4 and conjugate by it in the first term in (4.9), and slide it past K in

the second term in (4.9), which gives
t72 (030505 L KGFTY ] + gt 72 [0305" KoF Ty ]
=12 [mgagk_QC(n -]+ qt™? [O'QngB(TL 1,0)].

0

So in order to fully resolve 0202 "2B(n,0), we need still to resolve the cases JM302*C(n) and

o202¥B(0,0).
LEMMA 4.2.8. The braid JM302FC(n) is parity.

PRrOOF. Consider n =0 first. We close up the first strand (apply Figure 4.1(c)), so

HHH(JM302%C/(0)) = HHH(JM302* K3) = (1* + a)HHH(JM3 03" K>).
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Note that the first two braids here are on 4 strands, while the last is on 3 strands after the first

strand was closed up. Now conjugate by JM3 and apply Figure 4.1(d) to get
IM3 05 Ky ~ 03" Ko IM3 = t 72 [03" K3 ] + gt 2 [03" K] .

The K3 in the first term absorbs the extra crossings (Figure 4.1(b)), and we can close up the first

strand of the second term (Figure 4.1(d)). So
2 [U%ng] +qt™? [angg] =t 2 [K3]+qt 2(t +a) [KlFTS] ,
where the final term is now on two strands. So we conclude that m3a§k0 (0) is parity, and

HHH(JM303°C(0)) = t2(t* + a) [(1* + a) (¢t + a) (1 +a) + q(t + a)(1 - ) HHH(FT%)].

To resolve mgagkC’(n), again we apply recursion (4.5). All extra crossings will be absorbed by

K4, so by induction on n and the above base case, mgagkC (n) is parity. ]

LEMMA 4.2.9. The braid 03028 B(0,0) is parity, and
HHH(0202"B(0,0)) = (t + a)t ' [(t + a)(1 - q) + ¢(1 + ) |HHH(FT%).

PROOF. By definition, U%O’%kB (0,0) = agangg. First, we close up one strand passing through

K5 on the left to obtain
(t+a)oio" K ~ (t+a)os" Ko7 = (t+a)os" Ky IM,.
on three strands. Then we use Figure 4.1(d) to get
oK IMy =t Ho2F Ko + gt o3P K],

For both terms, we can close up the first strand and have k full twists remaining on the last two
strands, getting

-1 k k

t ' [(t+a)(1-q)FT5 +q(1+a)FT5].

LEMMA 4.2.10. The braid o3B(n,m) is parity.
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ProOF. We can see that agang(n, 0) is parity by Lemma 4.2.7, as all terms on the right hand
side of (4.8) are parity by Lemma 4.2.8 and Lemma 4.2.7.
It follows that o3 B(n,m) is parity from induction on recursion (4.4) and the above, as once again

the extra crossings are absorbed by K3. g

4.2.3. Recursions for A(n,m,l). Now we know how to fully resolve all of the B’s and C’s,

so the only thing left is A.
LEMMA 4.2.11. If the right hand side is parity, then
A(n,m,0) = t_lB(n, m) +qt™* [USA(n,m -1, 1)]
=t B(n,m) + qt > [ogB(n, m-— 1)] +*t3B(n,m-1) + >t 3 A(n,m-1,0).
ProoF. First, use Figure 4.1(d) to get that

A(n,m,0) = KyFTPFT} = Ky JMy IMs FT ' FT}

(4.10) =t 'Ky IMs FTY 'R T} + gt LK IM3 FTS 1R T,

Since K3 JM3 = KoFTs3, the first term in (4.10) is just ¢'B(n, m). For the second term in (4.10),
note that JM3 = 09 JMy 09 and that o9 commutes with FTs, FT4, and K;. Sliding one o9 to the

top and conjugating by it and moving the other o9 down past K1, we get that
K1 IM3 FTYFT) = Kyo9 IMp 0o FT5 ' FTY = 09 Ky My FTS ' FTY 0

~ 03 K1 IMg FTYFTY = 03 A(m,n - 1,1).

Overall we have that
HHH[A(n,m,0)] =t "HHH(B(n,m)) + ¢t "HHH [03 A(n,m - 1,1)].
If we apply recursion (4.3) again, we get that
o2 A(n,m-1,1)=t" [U%B(n,m -]+ gt 'o2A(n,m -1,0)

=¢ ! [agB(n,m - 1)] +qt ' A(n,m-1,1),
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noticing that
03 A(n,m-1,0) = o2 K \FTP'FT} = (0109) K10 FTF ' FT (0102) ™"

~ K1oiFTP ' FTY = A(n,m - 1,1).

Here we used that oo = (0102)01(0102)7! and the conjugating braid (o102) commutes with K, FT3
and FT4. Finally, we apply recursion (4.3) one more time to A(n,m —1,1) to get the desired

result. OJ

We have already shown that most of the terms on the right hand side of the equation in Lemma
4.2.11 are parity. For the final base case, we refer to the work of Hogancamp in [19], noting that

the torus link T(4,4n) is the closure of the braid FT7.

LEMMA 4.2.12. (Hogancamp [19]) The braid A(n,0,0) = (1-q)FT} is parity and HHH(A(n,0,0))

can be computed recursively.
COROLLARY 4.2.13. The braid A(n,m,0) is parity for all n,m > 0.

Proor. This follows by induction from Lemma 4.2.11, as we have shown that every B term
on the right hand side is parity (Lemma 4.2.6 and Lemma 4.2.10) and that the base case is parity
(Lemma 4.2.12). O

THEOREM 4.2.14. Assume that 0 < dy <do < d3. Then the braid
B =B(dr,da,d3, dy) = (FT2)™ % - (FT3)® " - (FT)™
is parity, and HHH(B) can be computed using the recursive process laid out above.

Proor. We write HHH(S) = l—quHH(A(dl,dg —dy,ds —d2)), so it is sufficient to prove that
A(n,m,l) is parity for all n,m,l > 0. Apply recursion (4.3) repeatedly, reducing to terms of the
form B(n,m) and A(n,m,0). These are parity by Corollary 4.2.6 and Corollary 4.2.13 respectively,

and we can continue following the recursions laid out above to compute HHH(S). O
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CHAPTER 5

Generalized (¢,t)-Catalan numbers and the fundamental domain

for n=3

This chapter is based on joint work with Eugene Gorsky from [32].

In [6] Zongbin Chen introduced a notion of the fundamental domain for an unramified affine
Springer fiber, which captures the behavior of cells in Sp, under translations by the lattice A.
More precisely, for n <4 (and conjecturally in general) Sp, admits a cell decomposition with cells
parametrized by the lattice A. There is one torus fixed point in each cell. In general, the dimension
of a cell is a complicated piecewise-linear function on A which stabilizes outside of the fundamental
domain P. The cells corresponding to points in A outside P can be obtained by translation of cells
corresponding to points in P.

At the same time, by Theorem 1.1.2 the (non-equivariant) homology of Sp., as a module over A
is captured by J/(y)J as a module over C[z7,..., 2], so the cells in P should correspond to
the generators of J, and (following Conjecture 1.2.1) to the generalized (g¢,t)-Catalan numbers
F(dy,...,dy1).

In this appendix we explore the definition and some general properties of P and establish its precise

relation with the generalized (g,t)-Catalan numbers for n = 3. We hope to generalize this to higher

n in future work.

5.0.1. The Fundamental Domain. We define the action of S,, on R" by o(x1,...,2,) =
(To(1) -1 To(n))- Note that for the basis vectors e; we have oe; = e,-1(;).
We start with the matrix v = diag(v1,...,7,) as in (1.1), where 7; are pairwise distinct monomials
with order d;. We will always assume that dy < ... < d,. Define d;; = min(d;, d;) for i # j, noting

that d;; is the order of ; — ;.
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DEFINITION 5.0.1. (Compare with [6, Proposition 2.8]) We define the polytope P(d1, ...

the convex hull of the points p, = o(b1,0, .

.., bp o) where:

biﬂ = Zda—l(i)yg—l(j), o € Sn

ExXAMPLE 5.0.2. For n =2 we get two points p. = (0,d1) and p(; 9 = (d1,0), and P is the segment

connecting them.

J<i

ExaMPLE 5.0.3. For n =3 we get 6 points shown in the following table

ag

(bl,o'7 b2,0'7 b3,a)

Do

e

(O,dl,dl + dg)

(O,dl,dl + dg)

(12)

(O,dl,dl + dg)

(dl,O,dl + dg)

(13)

(Oa d27 2d1)

(2d1,d2,0)

(23)

(0,dy,dy +d2)

(Oa dl + d?, dl)

(123)

(0,dy,dy +da)

(di,dy +d2,0)

(132)

(Oa d27 2d1)

(2d1)0) d2)

(d1,d1 +d2,0)

(0,d1 +d2,d1)

FIGURE 5.1. Fundamental domain for (d,ds) = (3,5)

(0,d1,d1 +d2)

(2d1,d2,0)

(d1,0,d1 +d2)

EXAMPLE 5.0.4. Suppose that d; = d for all . Then b; , = d(i - 1),

po = (d(o(1) =1),...,d(a(n) - 1)),

o1



and P is the standard (n - 1)-dimensional permutahedron dilated d times.
We now establish some general properties of P.
LEMMA 5.0.5. The polytope P(dy,...,d,) is contained in the hyperplane ¥ x; = ¥, ; dij.
PROOF. For any o we have ;b0 = X< do-1(3) 0-1(j) = Zi<j dij- (|

PROPOSITION 5.0.6. Let €; denote the i-th basis vector. Then P(dy,...,dy) is the Minkowski sum

of (g) segments connecting d;je; and d;je;.

PRrOOF. Let P'(dy,...,d,) denote the above Minkowski sum. We can write
Po =0 (Zdo‘l(i),o‘l(j)ei) - Zda‘l(i)ﬂ‘l(j)eo‘l(i) = )2 dyes
i<j i<j o (i)<o(4)

Given a permutation o and i < j, we can choose one end of the segment connecting d;;e; and d;je;

as follows: if (i) < o(j), we choose e;, otherwise we choose e;. Clearly, the sum of these points

equals py, so p, € P'(dy,...,dy). Therefore P(dy,...,d,) S P'(dy,...,dy).

On the other hand, P'(dy,...,d,) is a zonotope with edges parallel to the edges of the standard

permutahedron P(1,...,1). It follows e.g. from [2, Section 9] that the vertices of P'(dy,...,d,) are

in bijection with the vertices of P(1,...,1), and are given by p,. So P'(d1,...,d,) c P(dy,...,dy).
O

ExXAMPLE 5.0.7. For n = 3 we get three segments [(d1,0,0),(0,d1,0)], [(d1,0,0),(0,0,d;)] and
[(07d270)7(0707d2)]'

REMARK 5.0.8. Quite surprisingly, a similar polytope appeared in a recent work of Alishahi, Gorsky,

and Liu on Heegaard Floer homology [1].

5.0.2. Generalized (g,t)-Catalans for n = 3. Given d; < do, we can consider the Young
diagram Ag, 4, = (di + d2,d1). We will draw Young diagrams in French notation, with the corner

at (0,0), see Figure 5.2. We also consider the line
Zdth = {.1‘ + dgy =di +2dy + 6}

where ¢ is a small positive number. The following lemma shows that Ay, 4, is a triangular partition

in the sense of [3].
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LEMMA 5.0.9. The diagram g, a4, 5 the largest Young diagram below the line £q, q,. If a diagram

18 strictly below £y, 4,, then pc Ay, 4, .

PROOF. Let us describe all integer points (x,y) satisfying = + doy < di +2dy +¢. For y = 1
we get x < dy+dy+e,s0x<d+do. Fory=2 weget z<d;+¢,s0x<d. Fory>3 we get

x <di1+(2-y)da+e <0, so there are no integer points (here we used d; < ds). The result follows. [

\

\

FIGURE 5.2. The line ¢4, 4, and the diagram Ag, 4, for (di,d2) = (3,5).

Following [3], we define two statistics on subdiagrams of A\g, 4,

DEFINITION 5.0.10. Given p c Ag, 4,, we define area(p) = [Ag, d,| — || and

a(O) cdy< a(D) + 1}

dinv(u)z{ue,u:m_ o)

Here a(O) and ¢(0) are respectively the arm and the leg of a box O in p.
Note that dp in the definition of dinv is negative reciprocal to the slope of the line /4, 4,.

THEOREM 5.0.11. The map ¢ : o~ (area(p),dinv(p)) yields a bijection between the subdiagrams

I C Ay do and the integer points in the trapezoid
(51) {dl +do <x+y<2dy +dy, 2x+y < 2dy + da, x+2y£2d1+d2}.

As a consequence, we get the generalized (q,t)-Catalan number

(5.2) Z greatm)pdinv(p) F(dy,ds).

HCXdy ,do
Equation (5.2) is a special case of the main result of [4], but we give a more direct proof here
generalizing [17, Theorem 4.1].
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PROOF. Let us write u = (a+b,a), then 0 <a <dj and 0 <b < dy +dy—a. We have the following
cases (see Figure 5.3):

(a) If a+ b < dy then dinv(p) = a+b, so
o(p) =(2dy +dy —2a—-b,a+b) = (z,y).

We have a =2d; +ds —x —y,b = 2y + x — 2d; — da, so the inequalities 0 < a,a < d1,0<band a+b < dy
respectively translate to the inequalities x +y < 2dy + do, z+y > dy + do, 2y + x > 2d1 + do and y < ds.

(b) If a+b>d2,b < dg then dinv(u) = 2a + 2b - da, so
o(p) =(2dy +da —2a-b,2a+2b—ds) = (x,y).

We have y = dy mod 2, and

4d1+d2—
a =

I —
5 a: y,b:x+y—2d1

The inequalities 0 < a,a < d;,0<b,b < ds and a + b > dg respectively translate to the inequalities
2r +y <4ddi +do, 20 +y>2di +do, T+y22d1, x+y<2dy+da, y>do.

The second, fourth and fifth inequalities define a triangle T with vertices (0, 2d; +d2), (d1,d2) and
(2d1,d2) with the bottom side removed. The other two inequalities are satisfied on this triangle.
In other words, in this case the image of ¢ is the set of all integer points in the triangle T satisfying
y =do mod 2.

(c) If b> dy then dinv(p) = 2a +ds + 1, so

qb(#) = (2d1 +d2—2a—b,2a+d2+1) = (:L"y)

We have y =do +1 mod 2, and

y—d2—1
a=————

5 ,b=2d1+2d2+1—1‘—y.

The inequalities 0 < a,a < dy,b > ds and a + b < d; + dy respectively translate to the inequalities

y>2do+1, y<2di+do+1, z+y<2di+do+1, 20 +y >2dy +da + 1.
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Similarly to (b), the image of ¢ in this case is the set of all integer points in the triangle T satisfying
y=do+1 mod 2. U

17d2) 2d1,d2)

(@)  (da-di)

0 dq a 2d1 +ds X

F1cURE 5.3. The bijection ¢

Finally, we compare the above combinatorial results with the fundamental domain. Observe that
for n = 3 the fundamental domain P(dy,ds) is a hexagon with an axis of symmetry, which cuts it

into two equal halves (see Figure 5.1).

THEOREM 5.0.12. The integer points in a half of P(d1,d2) (including boundary) are in bijection
with the generators of the ideal J(dy,d3).

PrROOF. We construct the desired bijection in several steps:
1) The integer points in a half of P(di,d2) are in bijection with the subdiagrams of A\g, 4,. Indeed,
we can write such points as (dy,0,d; +dz) +a(1,0,-1) +b(0,1,-1). It is easy to see by comparing
Figures 5.1 and 5.3 that 0 < a < d; and 0 < b < dy +ds — a, and hence (a,b) define a subdiagram
w=(a+b,a).
2) By Theorem 5.0.11, we have a bijection ¢ between the subdiagrams of Ag, 4, and the points in

the trapezoid (5.1).
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3) By Proposition 3.1.12, there is a bijection between the generators of 7 (d;,ds) and the points in
the trapezoid (5.1). O

We expect that the bijection in Theorem 5.0.12 is far more than a combinatorial coincidence. In
particular, by tracing through the bijections we see that dinv defines a piecewise linear function on
the fundamental domain P(d;,d2), and we expect this function to be closely related to the dimen-
sion of cells in an appropriately chosen cell decomposition of Sp.,. The corresponding (equivariant)
homology classes of the cells would then correspond to some elements of 7 (d1,ds), and we expect
that these would indeed generate the ideal. We plan to study these questions and generalize them

to n > 3 in future work.
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