
Ane Springer bers and triply-graded link homology

By

Joshua P. Turner
DISSERTATION

Submitted in partial satisfaction of the requirements for the degree of

DOCTOR OF PHILOSOPHY

in

MATHEMATICS

in the

OFFICE OF GRADUATE STUDIES

of the

UNIVERSITY OF CALIFORNIA

DAVIS

Approved:

Evgeny Gorskiy, Chair

Monica Vazirani

Erik Carlsson

Committee in Charge

2025

i

Mobile User



© Joshua P. Turner, 2025. All rights reserved.



To all my friends and family.

ii



Contents

Abstract iv

Acknowledgments v

Chapter 1. Introduction 1

1.1. Affine Springer fibers 2

1.2. Generalized Haiman ideals 5

1.3. Khovanov-Rozansky homology of Coxeter braids 6

1.4. The fundamental domain of affine Springer fibers 8

Chapter 2. Affine Springer Fibers 9

2.1. Background 9

2.2. Homology of unramified affine Springer fibers 13

Chapter 3. Generalized Haiman Ideals 19

3.1. Generators and basis for n = 3 19

3.2. Proofs 26

Chapter 4. Coxeter Braid Recursions 38

4.1. Computations on 3 strands 40

4.2. Computations on 4 strands 42

Chapter 5. Generalized (q, t)-Catalan numbers and the fundamental domain for n = 3

50

Bibliography 57

iii



Abstract

We find the Borel-Moore homology of unramified affine Springer fibers for GLn under the assump-

tion that they are equivariantly formal and relate them to generalized Haiman ideals. For n = 3,

we give an explicit description of these ideals, compute their Hilbert series, generators and rela-

tions, and compare them to generalized (q, t)-Catalan numbers. We also compute the triply-graded

Khovanov-Rozansky homology for Coxeter braids on up to 4 strands and compare the result, prov-

ing a version of a conjecture of Oblomkov, Rasmussen, and Shende in this case.
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CHAPTER 1

Introduction

In this thesis, we study the relationship between affine Springer fibers and Khovanov-Rozansky

homology of links using geometric, algebraic, and combinatorial techniques. In addition to link

homology, affine Springer fibers are related to the Langlands program [25], Hilbert schemes of

singular curves [28, 29], and to coherent sheaves on the Hilbert scheme of C2 [18]. Sometimes

these relationships are discussed in terms of compactified Jacobians, which are equivalent to affine

Springer fibers [26].

Given a matrix γ ∈ gln((t)) (or sln((t))), the affine Springer fiber Spγ is a certain ind-subvariety

of the affine Grassmanian, see Definition 2.1.3. Its characteristic polynomial p(λ, t) = det(γ − λI)

defines a singular curve Cγ in C2, called the spectral curve of γ. As long as Cγ is reduced, Spγ

depends only on its spectral curve Cγ , in particular on its completion at the origin (Cγ ,0). In this

paper we will work with γ with distinct eigenvalues so that Cγ will be reduced.

Fact 1.0.1 ( [34]). If (Cγ ,0) is irreducible, then Spγ is a projective variety, but if (Cγ ,0) is not

irreducible, Spγ is an ind-variety with infinitely many irreducible components.

Intersecting the Cγ with a small sphere around the origin (where Cγ is often singular) gives a link

Lγ in S3. Each irreducible component of (Cγ ,0) corresponds to a component of the link, and the

intersection numbers of irreducible components are the linking numbers of the corresponding link

components. Any smooth components of the curve correspond to unknots. The class of links that

can be realized from an algebraic curve in this way are called algebraic links.

Oblomkov, Rasmussen, and Shende [31] have conjectured that for all algebraic links, the homology

of Spγ is closely related to the triply-graded Khovanov-Rozansky homology [22, 23] (also called

HHH) of Lγ . This relationship has previously been shown for all torus knots, and for (n,nd)-torus

links by Kivinen in [24].
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Conjecture 1.0.2 (ORS [31]). If Lγ is the link associated to γ, we have

grPH∗(Spγ) ⊗C[x] ≅ HHHa=0
(Lγ)

where grP is a certain perverse filtration on H∗(Spγ).

Example 1.0.3. For the matrix

γ =
⎛
⎜
⎝

0 t2

t 0

⎞
⎟
⎠
,

the characteristic polynomial is given by p(λ, t) = λ2 − t3. The associated link to this curve in C2 is

a trefoil. The affine Springer fiber Spγ is isomorphic to P1, and the reduced HHH homology of the

trefoil is isomorphic to H∗(P1).

In this thesis, we calculate the homology for a large class of affine Springer fibers with γ of the form

(1.1) γ =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

z1t
d1 0

⋱

0 znt
dn

⎞
⎟
⎟
⎟
⎟
⎟
⎠

,

with zi ∈ C∗ pairwise distinct and di > 0, under the assumption that Spγ is equivariantly formal

(see Definition 2.1.6).

The characteristic polynomial of this γ is ∏i(λ− zit
di). The corresponding curve Cγ has n smooth

irreducible components with pairwise intersection numbers dij =min(di, dj). So the corresponding

link Lγ is a link of n unknots with pairwise linking numbers dij . These are part of a class of links

called Coxeter links, which can be expressed as the closure of a Coxeter braid.

In Chapter 4, we calculate HHH of Coxeter braids Lγ for n = 3 and n = 4, and explicitly compare

the result to H∗(Spγ) for n = 3.

1.1. Affine Springer fibers

In Chapter 2, we focus on computing the equivariant Borel-Moore homology HT
∗ (Spγ) with respect

to the natural torus action of T = (C∗)n on Spγ (explained in Section 2.1). Given the assump-

tion that Spγ is equivariantly formal with respect to T , we can recover the ordinary Borel-Moore

homology of Spγ by quotienting out by the equivariant parameters, see Fact 2.1.7.
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In order to calculate HT
∗ (Spγ), we view it as a module over

R =H∗T (pt) ⊗C[Λ] ≅ C[t1, . . . , tn, x±1 , . . . , x
±
n].

Here, the ti’s are our equivariant parameters, and the xi’s parametrize the integer lattice Λ which

acts on Spγ by translations.

In [10], Goresky, Kottwitz, and MacPherson (GKM) conjectured that Spγ is pure for all unramified

(i.e. diagonal) γ. The following is a more narrow conjecture that is what we will rely on in this

paper.

Conjecture 1.1.1 ( [10]). For γ as above, Spγ is equivariantly formal, as defined in Definition

2.1.6.

Assuming that Spγ is equivariantly formal, we can calculate its equivariant Borel-Moore homology.

Theorem 1.1.2. Consider γ as in (1.1). Define the ideal

J = Jγ = ⋂
i<j
(ti − tj , xi − xj)

dij ⊆ R

with dij = min(di, dj). If Spγ is equivariantly formal, then as R-modules,

∆HT
∗ (Spγ) ≅ J where ∆ =∏

i<j
(ti − tj)

dij .

These J ideals are a generalization of ideals considered by Haiman in his work on the Hilbert

schemes of points [9], so we refer to them as generalized Haiman ideals, or just Haiman ideals.

Since R is a domain, multiplication by ∆ is injective, and

HT
∗ (Spγ) ≅∆H

T
∗ (Spγ) ≅ J

as modules over R = C[t1, . . . , tn, x±1 , . . . , x±n]. It is still useful to keep track of ∆ if we want to retain

the localization information of HT
∗ (Spγ), but we can omit ∆ when we only care about HT

∗ (Spγ) as

an R-module. Given the assumption that Spγ is equivariantly formal, we can recover the ordinary

Borel-Moore homology of Spγ as well by simply quotienting by the action of t’s.
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Corollary 1.1.3. For γ as in (1.1), if Spγ is equivariantly formal, then

H∗(Spγ) ≅ J /(t)J .

Here (t) ⊆H∗T (pt) ≅ C[t] is the maximal ideal generated by t1, . . . , tn.

If n = 3,4, it is known that Spγ is equivariantly formal, shown in [27] and [7] respectively. It is also

known for the equivalued case, when di = d for all i, due to GKM [10].

Corollary 1.1.4. If n ≤ 4, or if di = d for all i, then

∆HT
∗ (Spγ) ≅ J = ⋂

i<j
(ti − tj , xi − xj)

dij .

The equivalued case of 1.1.4 was previously shown by Kivinen in [24] using GKM theory as defined

in [12]. The proof of Theorem 1.1.2 relies on this result by Kivinen.

1.1.1. The Coulomb branch algebra. In [15] Gorsky, Kivinen and Oblomkov define a

graded algebra with some specific properties called the graded Coulomb branch algebra AG =

⊕
∞
d=0Ad. Here we consider the case G = GLn. One of the key properties is that for any γ ∈ g, the

direct sum of homologies of affine Springer fibers

Fγ =
∞
⊕
k=0

H∗(Sptkγ)

is a graded module over AG or, equivalently, that there is a corresponding quasi-coherent sheaf Fγ

on Proj ⊕∞d=0Ad. They conjecture the following.

Conjecture 1.1.5 ( [15]). The module Fγ is finitely generated and the sheaf Fγ is coherent.

Theorem 1.1.6. Conjecture 1.1.5 holds for G = GL3 and γ as in (1.1).

This result and many of the results in Section 1.2 rely on the specific combinatorics of the ideal J

when n = 3, which is covered in detail in Chapter 3.
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1.2. Generalized Haiman ideals

For the rest of the introduction we assume that the di’s are ordered: d1 ≤ . . . ≤ dn. We will consider

a similar ideal to J defined above,

J ′(d1, . . . , dn) = ⋂
i<j
(ti − tj , xi − xj)

dij ⊆ C[t1, . . . , tn, x1, . . . , xn].

The ideal J is obtained from J ′(d1, . . . , dn) by localization in (x1⋯xn).

In Section 3.1.1, we define two rational functions, H(d1, . . . , dn) and F (d1, . . . , dn). The function

F (d1, . . . , dn) is also known as the generalized (q, t)-Catalan number, see [13].

Conjecture 1.2.1. a) The Hilbert series of the ideal J ′(d1, . . . , dn) equals H(d1, . . . , dn).

b) The Hilbert series of the generating set J ′(d1, . . . , dn)/mJ
′(d1, . . . , dn) equals F (d1, . . . , dn), where

m is the maximal ideal m = (t1, . . . , tn, x1, . . . , xn).

In particular, Conjecture 1.2.1 implies that F (d1, . . . , dn) is a polynomial in q and t with nonnegative

coefficients (see [13, Conjecture 1.3]) and provides an explicit algebraic interpretation of these

coefficients. Similarly, the conjecture implies that H(d1, . . . , dn) is a power series in q and t with

nonnegative coefficients. In Theorem 3.1.10, we show that this Conjecture holds for n = 3.

Theorem 1.2.2. Conjecture 1.2.1 holds for n = 3.

If di = d for all i, we will say that the ideal J ′ is equivalued. In [9], Haiman shows the following.

Theorem 1.2.3 (Haiman [9]). For any n,

(1) The ideal J ′(d, . . . , d) is free as a C[t]-module.

(2) The ideal J ′(d, . . . , d) is equal to a product,

J ′(d, . . . , d) = J ′(1, . . . ,1)d.

It is easy to see that in general

J ′(d1, . . . , dn) ⋅ J
′
(d′1, . . . d

′
n) ⊆ J

′
(d1 + d

′
1, . . . , dn + d

′
n).

We conjecture that Theorem 1.2.3 can be generalized to the non-equivalued case, and that the

above inclusion is always an equality.
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Conjecture 1.2.4. For any n, assume d1 ≤ d2 ≤ ⋯ ≤ dn. Then,

(1) The ideal J ′(d1, . . . , dn) is free as a C[t]-module.

(2) The ideal J ′(d1, . . . , dn) can be written as the product

J ′(d1, . . . , dn) = J
′
(1, . . . ,1)d1 ⋅ J ′(0,1, . . . ,1)d2−d1 ⋅ . . . ⋅ J ′(0, . . . ,0,1)dn−1−dn−2 .

Statement (1) immediately follows in any cases where Spγ is known to be equivariantly formal, in

particular for n ≤ 4. In Corollary 3.1.5 we show that statement (2) holds in the n = 3 case.

Theorem 1.2.5. The ideal J ′(d1, d2) can be written as a product

J ′(d1, d2) = J
′
(1,1)d1 ⋅ J ′(0,1)d2−d1

1.3. Khovanov-Rozansky homology of Coxeter braids

Khovanov-Rozansky homology, also called HHH, is a triply-graded link homology theory that cat-

egorifies the HOMFLY-PT polynomial, which is itself a generalization of the Jones and Alexander

polynomials. It is a powerful but often difficult to compute invariant.

In Chapter 4, we use a recursive process of Hogancamp and Elias [8] to compute HHH(Lγ) for

closures of Coxeter braids on 3 and 4 strands and show that they are parity (see Definition 1.3.1).

Previously, this method has been used by Hogancamp to compute HHH for T (n, dn) torus links

in [19], and by Hogancamp and Mellit to compute HHH for all torus links in [20].

Given integers 0 ≤ d1 ≤ d2 ≤ ⋯ ≤ dn, we define the n-stranded braid

β(d1, . . . , dn) = FT
d1
n FTd2−d1

n−1 ⋯FT
dn−1−dn−2
2

= JMd1
n JMd2

n−1⋯JMdn−1
2 ,

where FTk and JMk represent a full twist and a Jucys-Murphy element on the first k strands

respectively. These braids are part of the family of Coxeter braids defined in [30]. For the sake of

comparison to the ideal J ′(d1, . . . , dn), we focus on pure Coxeter braids, whose closures have the

maximum number of components. We expect that our calculations of HHH can be extended to all

Coxeter braids as defined in [30].
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The three gradings of HHH(β) are typically denoted Q,T, and A. However, in line with [8], we

use the change of variables

q = Q2, t = T 2Q−2, a = AQ−2.

Definition 1.3.1. For any braid β, we say that HHH(β) is parity if it is supported in only even

homological (T ) degrees. We will also say β itself is parity if HHH(β) is parity.

Conjecture 1.3.2. The Coxeter braid β(d1, . . . , dn) is parity for all n and for all 0 ≤ d1 ≤ ⋯ ≤ dn.

If Conjecture 1.3.2 holds, the following theorem of Gorsky and Hogancamp gives a description of

the a = 0 piece of HHH, using the y-ified Khovanov-Rozansky homology HY as defined in [14].

Theorem 1.3.3 (Gorsky, Hogancamp [14]). Assume that β = JMd1
n . . .JMdn−1

2 and HHHa=0(β) is

parity. Then

(1) HYa=0(β) = HHHa=0(β) ⊗C[t1, . . . , tn] and HHHa=0(β) = HYa=0(β)/(y)

(2) HYa=0(β) = J ′(d1, . . . , dn).

In particular, this also implies that the ideal J ′(d1, . . . , dn) is free over C[t1, . . . , tn].

Putting this together with the conjectures and results from Section 1.1, we get the following spe-

cialization of the ORS Conjecture (Conjecture 1.0.2).

Conjecture 1.3.4. For γ as in 1.1 and J = J (d1, . . . , dn), we have the following isomorphism of

C[x±, t]-modules:

HYa=0
(Lγ) ⊗C[x] C[x±] ≅ J ≅∆HT

∗ (Spγ)

and

HHHa=0
(Lγ) ⊗C[x] C[x±] ≅ J /(y)J ≅H∗(Spγ).

This conjecture has been shown in the equivalued case due to work from Hogancamp [19] and

Kivinen [24]. In fact we use the computation of HHH(FTk
4) = HHH(T (k,4k)) from [19] as a base

case for our recursion (which corresponds to d1 = d2 = d3 = d4 = k), rather than re-derive it.

In Section 4.1, we show that Coxeter braids on 3 strands are parity, and explicitly computes

HHHa=0(β). In Section 4.2, we show that Coxeter braids on 4 strands are also parity. Thus we

show the following result.
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Theorem 1.3.5. Conjecture 1.3.4 holds for n ≤ 4.

This description doesn’t guarantee that we can write out HHHa=0(β) explicitly, as finding the

bigraded Hilbert series for J ′(d1, . . . , dn) is difficult in general. However, the recursive method we

use to show that a braid is parity in Chapter 4 simultaneously gives a recursive way to compute

HHHa=0(β) as a rational function in q and t.

Corollary 1.3.6. For n ≤ 4, the ideal J ′ = J ′(d1, . . . , dn) is free as a module over C[t1, . . . , tn],

and its bigraded Hilbert series is given by

1

(1 − t)4
HHHa=0

(β).

For n = 3, the bigraded Hilbert series for J ′(d1, d2, d3) is explicitly computed in general in Section

3.2.2. For n = 4 there is no similar explicit calculation but the recursions in Section 4.2 can be used

to compute this series explicitly for any particular d1, d2, d3, d4.

Remark 1.3.7. Note that Conjecture 3.1.8 predicts a closed formula for the Hilbert series as a

sum of certain rational functions over 10 standard Young tableaux of size 4. We plan to verify this

conjecture in a future work.

We are optimistic that Theorem 1.3.3 can be generalized to arbitrary n using the same recursive

process, proving one side of Conjecture 1.3.4. This would confirm that the ideal J ′(d1, . . . , dn) is

free over y’s and give a recursive formula for its bigraded Hilbert series. We would also expect

that understanding this ideal and therefore H∗(Spγ) better would help to find affine cells for Spγ

in general.

1.4. The fundamental domain of affine Springer fibers

Finally, in Chapter 5 we discuss the cells of the fundamental domain of Spγ , as described by Chen

in [6], and relate this to the combinatorics of J ′ for n = 3. We show that there is a bijection between

half of the cells in the fundamental domain and the generators of the ideal J ′(d1, d2). We expect

that this bijection indicates a stronger relationship between the cells of Spγ and the combinatorics

of J ′ and of generalized (q, t)-Catalan numbers.
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CHAPTER 2

Affine Springer Fibers

This chapter is based on work from [32] published in IMRN.

2.1. Background

First, some notation. Let K = C((t)) be the field of Laurent power series in t, and O = C[[t]]

be the ring of power series in t. For nonzero f ∈ K, let ν(f) denote the order of f , which is the

degree of the smallest nonzero term. Throughout, HT
∗ (X) will refer to the equivariant Borel-Moore

homology of X, and H∗(X) refers to regular Borel-Moore homology. All tensor products are over

C unless otherwise indicated.

Definition 2.1.1. A lattice Λ ⊆ Kn is a free O-submodule of Kn of rank n such that Λ⊗OK = K
n.

In other words, it is the O-span of a basis of Kn over K.

Definition 2.1.2. The affine Grassmanian GrGLn(C) of GLn over C is an ind-scheme defined as

the space of all lattices Λ ⊆ Kn.

We will always be working over C, so we will use Gr(GLn) or Gr(SLn) for the affine Grassmanian,

or just Gr when the group is clear. We can equivalently define the affine Grassmanian for GLn as

GLn(K)/GLn(O),

as GLn(K) acts transitively on the space of lattices, and the stabilizer of the standard lattice On

is precisely GLn(O). We will often conflate a matrix g ∈ GLn(K) with its coset representative in

Gr(GLn).

We define Gr(SLn) similarly, either as SLn(K)/SLn(O), or as the space of lattices of SLn type. We

say that a lattice Λ is of SLn type if it can be written as Λ = gOn for some g ∈ SLn(K).

Definition 2.1.3 ( [21]). The affine Springer fiber Spγ of an element γ ∈ gln(K) is a sub ind-

scheme of the affine Grassmanian, defined accordingly as the space of lattices Λ ∈ GrGLn such that

γΛ ⊆ Λ, or as the space of g ∈ GLn(K)/GLn(O) such that g−1γg ∈ gln(O).
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Fact 2.1.4 ( [34]). If γ is regular, semi-simple, and topologically nilpotent, then Spγ is finite

dimensional, although it can still have infinitely many irreducible components. In our cases, these

conditions essentially are that γ is diagonalizable, has distinct eigenvalues λi (over K), and that

ν(λi) > 0 for all i.

Example 2.1.5 ( [34]). Consider the matrix

γ =
⎛
⎜
⎝

t 0

0 −t

⎞
⎟
⎠

in sl2(K). Then Spγ looks like an infinite chain of P1’s connected at 0 and ∞. There is a C∗ action

that scales each P1, and a Z action that translates them.

There is a natural action of the centralizer C(γ) on Spγ . In the case where γ is diagonal, this gives

a torus action of T = (C∗)n and lattice action of Λ = Zn on Spγ over GLn (or (C∗)n−1 and Zn−1

over SLn) that can be respectively seen as multiplication by the matrices in C(γ):

λ =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

λ1

⋱

λn

⎞
⎟
⎟
⎟
⎟
⎟
⎠

and

Z =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

tm1

⋱

tmn

⎞
⎟
⎟
⎟
⎟
⎟
⎠

.

In general for a T -ind-scheme X, HT
∗ (X) is naturally a module over H∗T (pt) via the cap product.

Definition 2.1.6. We will say that X is equivariantly formal if HT
∗ (X) is free as a module over

H∗T (pt).

Fact 2.1.7. (GKM [12]) If X is equivariantly formal, then

H∗(X) ≅H
T
∗ (X)/(t)H

T
∗ (X),

as modules over H∗T (pt). Here (t) ⊆H
∗
T (pt) ≅ C[t] is the maximal ideal generated by t1, . . . , tn.

We will need the following localization lemma as stated by Brion.

10



Lemma 2.1.8 (Brion [5]). Let X be a T -ind-scheme and T ′ ⊆ T a subtorus. If i ∶ XT ′ → X is the

inclusion of T ′-fixed points, then the induced map

i∗ ∶H
T
∗ (X

T ′
) →HT

∗ (X)

is an isomorphism after inverting finitely many characters of T that restrict nontrivially to T ′.

Further, if X is equivariantly formal, then the induced map i∗ is injective, and we have that

∏
χ,χT ′≠0

χHT
∗ (X) ⊆H

T
∗ (X

T ′
)

where we take the product over all characters of T that restrict nontrivially to T ′.

We will also make frequent use of the Iwasawa decomposition for Gr(GLn), which tells us that all

g ∈ Gr(GLn) can be represented by a product DU of a diagonal matrix

(2.1) D =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

tm1

⋱

tmn

⎞
⎟
⎟
⎟
⎟
⎟
⎠

with a unipotent matrix U with 1’s on the diagonal and entries χij above the diagonal [34]. Further,

these χij ’s are unique up to O, so we can choose them to have all coefficients of nonnegative powers

of t be 0, so that each matrix DU represents a unique element g ∈ Gr.

Lemma 2.1.9. The T -fixed points of Gr(GLn) can be uniquely represented by diagonal matrices D

as in the Iwasawa decomposition.

Proof. Let λ ∈ T and g = DU be as in the Iwasawa decomposition. Since λ−1 ∈ GLn(O), up

to multiplication on the right by GLn(O), we get

λg = λgλ−1 =DU ′,

where D is as above, and U ′ is unipotent with λi

λj
χij above the diagonal. If g is a fixed point under

the action of T , we must have λi

λj
χij = χij for all i, j and for all λ ∈ T . This can only happen if

χij = 0 for all i, j, so g =D is diagonal as desired. □

Since the T -action on Spγ comes from the action on Gr, the T -fixed points of Spγ are simply the

T -fixed points of Gr that are contained in Spγ .
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Lemma 2.1.10. If γ is diagonal and the orders of its eigenvalues are all nonnegative, then

SpTγ = GrT .

Proof. For any γ, SpTγ ⊆ GrT as stated above. If g ∈ GrT , then

g =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

tm1

⋱

tmn

⎞
⎟
⎟
⎟
⎟
⎟
⎠

by Lemma 2.1.9. As g and γ are diagonal, g−1γg = γ, and γ ∈ gln(O), since the eigenvalues of γ are

all in O. So GrT ⊆ SpTγ . □

In particular, this means that the T -fixed points of Spγ are discrete and isomorphic to the integer

lattice Λ = Zn, so can view H∗(Spγ) as a module over

H∗T (Sp
T
γ ) ≅H

∗
T (pt) ⊗C[Λ] ≅ C[t1, . . . , tn, x±1 , . . . , x

±
n].

Here, the ti’s are our equivariant parameters, and a monomial xa11 ⋯x
an
n corresponds to the fixed

point diag(ta1 , . . . , tan). The lattice Λ acts on SpTγ and on Spγ by translation.

Lemma 2.1.11. Fix i < j. If T ′ ⊆ T is a codimension 1 subtorus cut out by ti = tj, then the T ′-fixed

points of Gr(GLn) are of the form DU , where D is as in (2.1) and

U =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

1 χij

⋱

1

⎞
⎟
⎟
⎟
⎟
⎟
⎠

with all χ’s zero except for χij.

Proof. As before, up to equivalence,

λg = λgλ−1 =DU ′,

where U ′ has λk

λl
χkl above the diagonal. If g is a fixed point for T , since λi = λj , χij can be arbitrary,

but χkl = 0 for all (k, l) ≠ (i, j). So the fixed points are as described. □
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Corollary 2.1.12. If T ′ is a codimension 1 subtorus of T cut out by ti = tj, then

Gr(GLn)
T ′
≅ Gr(GL2) ×Zn−2.

Proof. Each of the T ′ fixed points is represented by DU above. Looking at the 2×2 submatrix

of DU in rows and columns i, j, we see a copy of Gr(GL2). The rest of the mi are free integers,

and there are n − 2 of them. □

2.2. Homology of unramified affine Springer fibers

We want to find the equivariant Borel-Moore homology HT
∗ (Spγ) of the class of affine Springer

fibers with

γ =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

γ1 0

⋱

0 γn

⎞
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛
⎜
⎜
⎜
⎜
⎜
⎝

z1t
d1 0

⋱

0 znt
dn

⎞
⎟
⎟
⎟
⎟
⎟
⎠

.

Here zi ∈ C∗ are pairwise distinct and di ≥ 0. We can assume up to a change of basis that

d1 ≤ ⋅ ⋅ ⋅ ≤ dn.

It is known that for γ as above, Spγ is equivariantly formal (see Definition 2.1.6) over GLn for n ≤ 4

(see [27] for n = 3 and [7] for n = 4), and it is known to be equivariantly formal for all n if di = d

for all i [11]. But it is not known over GLn in general. It would be sufficient to know that the

homology of Spγ is supported in even degrees, and we conjecture that this is the case for all n. We

will need to assume that Spγ is equivariantly formal in order to calculate its homology.

We consider HT
∗ (Spγ) as a module over

H∗T (pt) ⊗C[Zn
] ≅ C[t1, . . . , tn, x±1 , . . . , x

±
n] = R.

Theorem 2.2.1. Consider γ as in (1.1). Define the ideal

J ⊆ R

J = ⋂
i<j
(ti − tj , xi − xj)

dij

with dij = min(di, dj). If Spγ is equivariantly formal, then as R-modules,

∆HT
∗ (Spγ) ≅ J ,

13



where ∆ = ∏i<j(ti − tj)
dij .

Note that multiplication by ∆ is injective, so

HT
∗ (Spγ) ≅∆H

T
∗ (Spγ) ≅ J

as R-modules. It can be useful to keep track of ∆ if we want to retain the localization information

of HT
∗ (Spγ), but we can omit ∆ when we only care about HT

∗ (Spγ) as an R-module.

The rough outline of the proof of Theorem 2.2.1 is as follows:

(1) Take a codimension one subtorus T ′ ⊆ T . The T ′-fixed points of Spγ are essentially

isomorphic to an affine Springer fiber Spβ̃ with β̃ ∈ gl2 whose homology is known.

(2) Relate the homology of Spβ̃ to that of Spγ using Lemma 2.1.8.

(3) Take enough subtori T ′ and piece together their homologies to find the homology of Spγ .

Step 3 will require the assumption that Spγ is equivariantly formal.

Lemma 2.2.2. If T ′ ⊆ T is the subtorus cut out by ti = tj, then up to Zn−2, the T ′-fixed points of

Spγ are isomorphic to an affine Springer fiber over GL2,

SpT
′

γ ≅ Spβij
×Zn−2,

where

βij =
⎛
⎜
⎝

zit
di 0

0 zjt
dj

⎞
⎟
⎠
.

Proof. In Lemma 2.1.11 we’ve already characterized the T ′-fixed points of Gr as DU , where

U is unipotent with only a single nonzero χij . We just need to check which of those fixed points

are in Spγ . If g ∈ Gr(GLn)
T ′ , then

g−1γg =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

z1t
d1 χij(zit

di − zjt
dj)

⋱

0 znt
dn

⎞
⎟
⎟
⎟
⎟
⎟
⎠

.
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Again looking at the 2 × 2 i, j submatrix, we see a matrix identical to g−1βijg. So a T ′-fixed point

g is in Spγ if and only if the 2 × 2 matrix

⎛
⎜
⎝

tmi χij

0 tmj

⎞
⎟
⎠

is in Spβij
, i.e. Spγ ≅ Spβij

×Zn−2. □

Lemma 2.2.3. Given βij ∈ gl2 as in Theorem 1, we have Spβij
≅ Spβ̃ij

, where

β̃ij =
⎛
⎜
⎝

zit
dij 0

0 zjt
dij

⎞
⎟
⎠

and dij = min(di, dj).

Proof. Again using the Iwasawa decomposition, write g =DU , where

U =
⎛
⎜
⎝

1 χij

0 1

⎞
⎟
⎠
.

Then,

g−1γg =
⎛
⎜
⎝

γi χij(γi − γj)

0 γj

⎞
⎟
⎠
.

By definition, g ∈ Spβij
if and only if χij(γi − γj) ∈ O. Since we assume that the zi are distinct,

ν(γi − γj) = min(ν(γi), ν(γj)) = min(di, dj) = dij . So g ∈ Spβij
if and only if χij has order at least

−dij . This is the same as the condition for g to be in Spβ̃ij
, since

g−1β̃ijg =
⎛
⎜
⎝

zit
dij (zi − zj)χijt

dij

0 zjt
dij

⎞
⎟
⎠
.

□

Remark 2.2.4. The one-dimensional quotient torus T /T ′ naturally acts on SpT
′

γ . On the other

hand, T /T ′ is isomorphic to the one-dimensional torus (C∗)2/C∗ which acts on Spβij
and on Spβ̃ij

.

The isomorphisms constructed in Lemmas 2.2.2 and 2.2.3 are T /T ′-equivariant.

The homology for the affine Springer fiber of matrices like β̃ij with all powers the same is known.

It is found using GKM theory by Kivinen in [24].
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Theorem 2.2.5 (Kivinen [24]). If

γ =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

z1t
d 0

⋱

0 znt
d

⎞
⎟
⎟
⎟
⎟
⎟
⎠

,

then ∆HT
∗ (Spγ) injects into

H∗T (pt) ⊗C[Zn
] ≅ C[t1, . . . , tn, x±1 , . . . , x

±
n],

where ∆ = ∏i<j(ti − tj)
d. As a submodule, there is a canonical isomorphism

∆HT
∗ (Spγ) ≅∏

i<j
(ti − tj , xi − xj)

d.

Corollary 2.2.6. We have the following canonical isomorphism of C[ti − tj , x±i , x±j ]-modules:

(ti − tj)
dijH

T /T ′
∗ (Spβ̃ij

) ≅ (ti − tj , xi − xj)
dij ⊆ C[ti − tj , x±i , x

±
j ].

Here T /T ′ acts on Spβ̃ij
as in Remark 2.2.4.

Now in order to piece together these homologies of Spβ̃ij
, we use the following fact:

Lemma 2.2.7 (Algebraic Hartogs’ lemma). If A is an integrally closed Noetherian integral domain,

then

A = ⋂
p codimension 1

Ap,

where we take the intersection of Ap over all codimension 1 prime ideals of A inside the fraction

field Frac(A). If M is a free A-module, then we also have

M = ⋂
p codimension 1

Mp,

where the intersection is taken inside M ⊗A Frac(A).

Since we assumed that Spγ is equivariantly formal, HT
∗ (Spγ) is free over H

∗
T (pt). Now we can prove

Theorem 2.2.1.
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Proof of Theorem 2.2.1. By Lemma 2.1.8, we have that, up to localization away from

(ti − tj),

HT
∗ (Spγ) ≅loc H

T
∗ (Sp

T ′

γ ) ≅H
T /T ′
∗ (SpT

′

γ ) ⊗H
∗
T ′(pt) =H

T /T ′
∗ (Spβ̃ij

×Zn−2
) ⊗H∗T ′(pt).

Here ≅loc indicates an isomorphism after localization. Note that after localization, ∆ = (ti − tj)
dij

up to an invertible factor, so by Lemma 2.2.3 we get

∆HT
∗ (Spγ) ≅loc (ti − tj)

dijH
T /T ′
∗ (Spβ̃i,j

) ⊗H∗T ′(pt) ⊗C[Zn−2
] = (ti − tj , xi − xj)

dij ⊆ C[t,x±].

We have inclusion map

SpT
′

γ
i
Ð→ Spγ

and by Lemma 2.1.8

∏
(k,ℓ)≠(i,j)

(tk − tℓ)H
T
∗ (Spγ) ⊆ i∗H

T
∗ (Sp

T ′

γ ).

We also have that

∆HT
∗ (Spγ) ⊆ ∏

(k,ℓ)≠(i,j)
(tk − tℓ)(ti − tj)

dijHT
∗ (Spγ).

By the above, this is contained in

i∗(ti − tj)
dijHT

∗ (Sp
T ′

γ ) = (ti − tj , xi − xj)
dij .

We conclude that

∆HT
∗ (Spγ) ⊆ (ti − tj , xi − xj)

dij .

This holds for all codimension-1 subtori T ′ = (ti − tj) ⊆ T with i < j, so we have

∆HT
∗ (Spγ) ⊆ ⋂

i<j
(ti − tj , xi − xj)

dij .

In fact we have already seen that (ti − tj , xi − xj)
dij is exactly the localization HT

∗ (Spγ)p where

p = (ti − tj).

So by Lemma 2.2.7 we conclude that

∆HT
∗ (Spγ) ≅ ⋂

i<j
(ti − tj , xi − xj)

dij .

□
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This proof required the assumption that Spγ is equivariantly formal. If di = d for all i, then it is

known to be equivariantly formal [11] and we recover the homology result of Theorem 2.2.5 from

Kivinen [24].

Conjecture 2.2.8. Spγ is equivariantly formal for all d1, . . . , dn and all n.
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CHAPTER 3

Generalized Haiman Ideals

This chapter is based on work from [32] published in IMRN.

3.1. Generators and basis for n = 3

When n = 3, it is known that Spγ is equivariantly formal, so by Theorem 2.2.1, up to denominators

(∆), its equivariant Borel-Moore homology is isomorphic to the ideal J ⊆ C[t1, t2, t3, x±1 , x±2 , x±3 ]

defined as

J = J (d1, d2) = (t1 − t2, x1 − x2)
d1 ∩ (t1 − t3, x1 − x3)

d1 ∩ (t2 − t3, x2 − x3)
d2

seen as a module over C[t1, t2, t3, x±1 , x±2 , x±3 ]. Here we are assuming that d1 ≤ d2 ≤ d3, so that

d1, d1, d2 are equal to the pairwise minima dij .

We consider a similar ideal J ′ ⊂ C[t1, t2, t3, x1, x2, x3]

J ′ = J ′(d1, d2) = (t1 − t2, x1 − x2)
d1 ∩ (t1 − t3, x1 − x3)

d1 ∩ (t2 − t3, x2 − x3)
d2

It is easy to see that J = J ′ ⊗C[x] C[x±], so the generators for J over C[t,x±] will be the same as

generators of J ′ over the polynomial ring C[t,x]. Next we will do a change of variables:

a = t1 − t2, b = x1 − x2, c = t3 − t2, d = x3 − x2

and consider the ideal

J = J(d1, d2) = (a, b)
d1 ∩ (c, d)d2 ∩ (a − c, b − d)d1

over R = C[a, b, c, d]. Clearly, we get

J ′(d1, d2) = J(d1, d2) ⊗C C[x1 + x2 + x3, t1 + t2 + t3],

so again all three ideals have the same generators up to this change of variables.
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We can also consider these as bigraded ideals, where the ti’s (or a and c) have bidegree q, and the

xi’s (b and d) have bidegree t.

We will frequently use the polynomial

ad − bc = d(a − c) − c(b − d) ∈ (a, b) ∩ (c, d) ∩ (a − c, b − d).

Theorem 3.1.1. The ideal J = (a, b)d1∩(c, d)d2∩(a−c, b−d)d1 over R = C[a, b, c, d] has the following

families of generators (0 ≤ j ≤ d1):

(1) Ai,j = a
d1−jcd2−j(a− c)i(b−d)d1−j−i(ad− bc)j ,1 ≤ i ≤ d1 − j. These generators have bidegree

qd1+d2−j+itd1−i, and there are d1 − j of these for a fixed j. They are characterized by

degt < d1.

(2) Bi,j = a
d1−j−ibidd2−j(b − d)d1−j(ad − bc)j ,1 ≤ i ≤ d1 − j. Such generators have bidegree

qd1−itd1+d2−j+i, and there are d1 − j of these for a fixed j. They are characterized by

degq < d1.

(3) Ci,j = a
d1−jcidd2−j−i(b − d)d1−j(ad − bc)j ,1 ≤ i ≤ d2 − j. Such generators have bidegree

qd1+itd1+d2−j−i, and there are d2 − j of these for a fixed j. They are characterized by

degq > d1,degt ≥ d1.

(4) Dj = a
d1−jdd2−j(b − d)d1−j(ad − bc)j has bidegree qd1td1+d2−j, there is one such generator

for each j. They are characterized by degq = d1.

Remark 3.1.2. For j = d1, the generators Ai,j and Bi,j are not defined, while Ci,d1 = c
idd2−d1−i(ad−

bc)d1 for 1 ≤ i ≤ d2 − d1 and Dd1 = d
d2−d1(ad − bc)d1 .

In particular, it is easy to see that there is at most one generator in each (q, t)-bidegree, see

also Proposition 3.1.12. Also notice that we chose the generators in Theorem 3.1.1 such that the

monomial factor in Ai,j does not contain b or d, and the monomial factors in Bi,j ,Ci,j ,Dj do not

contain bc (unless j = d1).

Theorem 3.1.1 follows from Proposition 3.1.3, which we prove in Section 3.2.1.

Proposition 3.1.3. The ideal J(d1, d2) has the following basis (over C):

m(a, c)Ai,j ,m(a, b, d)Bi,j ,m(a, c, d)Ci,j ,m(a, d)Dk (j ≤ d1 − 1)
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where m are arbitrary monomials in the corresponding variables. For j = d1 we have to add all

polynomials of the form

aαbβcγdδ(ad − bc)d1 , γ + δ ≥ d2 − d1.

Example 3.1.4. For d1 = d2 = 1 we get the following 5 generators of J(1,1):

A1,0 = ac(a − c), B1,0 = bd(b − d), C1,0 = ac(b − d), D0 = ad(b − d), D1 = (ad − bc).

We can change the variables back to see that the generators of J over C[t1, t2, t3, x±1 , x±2 , x±3 ] are

A1,0 = (t1 − t2)(t3 − t2)(t1 − t3), B1,0 = (x1 − x2)(x3 − x2)(x1 − x3),

C1,0 = (t1 − t2)(t3 − t2)(x1 − x3), D0 = (t1 − t2)(x3 − x2)(x1 − x3),

and

D1 = det

⎛
⎜
⎜
⎜
⎜
⎜
⎝

1 1 1

x1 x2 x3

t1 t2 t3

⎞
⎟
⎟
⎟
⎟
⎟
⎠

Corollary 3.1.5. We have that

J(d1, d2) = J(1,1)
d1 ⋅ J(0,1)d2−d1 ,

J ′(d1, d2) = J
′
(1,1)d1 ⋅ J ′(0,1)d2−d1

and

J (d1, d2) = J (1,1)
d1 ⋅ J (0,1)d2−d1 .

Proof. We prove the first equation, and the other two equations follow immediately.

The containment J(1,1)d1 ⋅ J(0,1)d2−d1 ⊆ J(d1, d2) is clear, so it is sufficient to show that any

generator of J(d1, d2) can be written as a product of d1 generators of J(1,1) (listed in Example

3.1.4) and d2 − d1 generators of J(0,1) = (c, d). Indeed:

Ai,j = a
d1−jcd2−j(a − c)i(b − d)d1−j−i(ad − bc)j = (ac(a − c))i ⋅ (ac(b − d))d1−j−i ⋅ (ad − bc)j ⋅ cd2−d1 ,

Bi,j = a
d1−j−ibidd2−j(b − d)d1−j(ad − bc)j = (ad(b − d))d1−j−i(bd(b − d))i(ad − bc)jdd2−d1 ,

Ci,j = a
d1−jcidd2−j−i(b − d)d1−j(ad − bc)j =
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(ac(b − d))x(ad(b − d))d1−j−x(ad − bc)jci−xdd2−d1−i+x,

where x =max(0, i + d1 − d2). Note that i ≤ d2 − j, so i + d1 − d2 ≤ d1 − j and hence x ≤ d1 − j. Also,

d1 ≤ d2, so i + d1 − d2 ≤ i and x ≤ i. Therefore all exponents are indeed nonnegative. Finally,

Dj = a
d1−jdd2−j(b − d)d1−j(ad − bc)j = (ad(b − d))d1−j(ad − bc)jdd2−d1 .

□

Remark 3.1.6. Note that by Remark 3.1.2 the polynomials aαbβcγdδ(ad− bc)d1 , γ + δ ≥ d2 −d1 are

either multiples of Ci,d1 or of Dd1 .

In [15], Gorsky, Kivinen, and Oblomkov define a graded algebra AG = ⊕
∞
d=0Ad, depending only on

a reductive group G, with some specific properties. One of the key properties is that for any γ ∈ g,

the direct sum of homologies of affine Springer fibers

Fγ =
∞
⊕
k=0

H∗(Sptkγ)

is a graded module over AG, or equivalently, that there is a corresponding quasi-coherent sheaf Fγ

on Proj⊕∞d=0Ad. They conjecture that Fγ is finitely generated and that this sheaf is coherent [15,

Conjecture 8.1]. In the case where G = GLn, they show that this graded algebra is generated in

degrees 0 and 1, and that Proj⊕∞d=0Ad = Hilb
n(C∗ ×C). A special case of this conjecture follows

from Theorem 3.1.1 and its corollaries.

Indeed, it is proved in [15] that A0 is the space of symmetric polynomials in C[t1, . . . , tn, x±1 , . . . , x±n],

and A1 is the space of antisymmetric polynomials.

Theorem 3.1.7. In the case of G = GL3 and γ as in (1.1), the graded module Fγ is finitely generated

over AG, and defines a coherent sheaf on Hilb3(C∗ ×C), i.e. Conjecture 8.1 holds in this case.

Proof. By Corollary 3.8.3 in [9], the ideal generated by A1 is exactly J (1,1). There is a

natural inclusion of ideals

J (d1, d2) ⋅ J (1,1) → J (d1 + 1, d2 + 1).
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It follows from Corollary 3.1.5 that this map is actually surjective as well. Since H∗(Sptkγ) corre-

sponds to the ideal J (d1 + k, d2 + k), this shows that the module Fγ is generated in degree 0, and

therefore finitely generated by the generators of J (d1, d2). □

3.1.1. Hilbert Series. Let us introduce two rational functions

H(d1, . . . , dn) = ∑
T

zdn1 ⋯z
d1
n

(1 − q)n(1 − t)n

n

∏
i=2

1

(1 − z−1i )
∏
i<j
ω(zi/zj)

and

F (d1, . . . , dn) = ∑
T

zdn1 ⋯z
d1
n

n

∏
i=2

1

(1 − z−1i )(1 − qtzi−1/zi)
∏
i<j
ω(zi/zj).

Here the sums are over standard tableaux T with n boxes, zi is the (q, t)-content qc−1tr−1 of the

box labeled by i in row r and column c in T , and ω(x) =
(1−x)(1−qtx)
(1−qx)(1−tx) . By convention, all the factors

of the form (1 − 1) in the above products (either in the numerator or in denominator) should be

ignored.

The function F (d1, . . . , dn) is also known as generalized (q, t)-Catalan number, see [13] for more

details and context. Note that the order of the di is reversed here compared to [13].

Conjecture 3.1.8. We have that:

a) The Hilbert series of the ideal J ′(d1, . . . , dn) equals H(d1, . . . , dn).

b) The Hilbert series of the generating set J ′(d1, . . . , dn)/mJ
′(d1, . . . , dn) equals F (d1, . . . , dn). Here

m is the maximal ideal m = (t1, . . . , tn, x1, . . . , xn).

In particular, this conjecture implies that F (d1, . . . , dn) is a polynomial in q and t with nonnegative

coefficients (see [13, Conjecture 1.3]) and provides an explicit algebraic interpretation of these

coefficients. Similarly, the conjecture implies that H(d1, . . . , dn) is a power series in q and t with

nonnnegative coefficients.

Example 3.1.9. For n = 2 we get J(d1, d2) = (x1−x2, t1− t2)
d1 . We change coordinates to x1−x2 =

a, t1 − t2 = b and x = x1 + x2, t = t1 + t2, then J(d1, d2) has generating set ad1 , ad1−1b, . . . , bd1 , so the

Hilbert series for the generating set equals

qd1 + qd1−1t + . . . + td1 =
qd1

1 − t/q
+

td1

1 − q/t
= F (d1, d2).
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Similarly, J(d1, d2) is free over C[x, t] with basis aαbβ, α+ β ≥ d1, so by Lemma 3.2.6 below we get

the Hilbert series

1

(1 − q)(1 − t)
∑

α+β≥d1
qαtβ =

qd1

(1 − q)2(1 − t)(1 − t/q)
+

td1

(1 − q)(1 − t)2(1 − q/t)
.

Theorem 3.1.10. Conjectures 3.1.8(a) and 3.1.8(b) hold for n = 3 for all d1, d2, d3.

The statement of (a) follows from the Hilbert series calculation in Section 3.2.2, and the proof of

(b) will be in Section 3.1.2.

3.1.2. Combinatorics of J . We’ve already seen in Example 3.1.4 that J(1,1) has 5 genera-

tors, and that in general the generators of J each have a unique (q, t)-bidegree. We can plot the

bidegrees of these generators as below.

Example 3.1.11. Here is an example where d1 = d2 = 3:

●
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●

●

●
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●

●

●
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●

●

●
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●

●

●

degq

degt

0

2

4

6

8

2 4 6 8

Ai,k

Bi,k Ci,k

Dk

Each dot represents the q, t degree of a generator of J(3,3). Although the ideal is symmetric in x

and t, we break the generators into families in a non-symmetric way.

24



Every generator lies on a diagonal corresponding to k, which is the degree of (ad− bc) that appears

in its definition in Theorem 3.1.1. We see here that the diagonals have 10, 7, 4, and 1 point

respectively. Summing all of their degrees gives the generalized q, t-Catalan number

F (3,3,3) = [10]q,t + qt[7]q,t + q
2t2[4]q, t + q3t3[1]q,t,

where [n + 1]q,t ∶= q
n + qn−1t + ⋅ ⋅ ⋅ + qtn−1 + tn.

Proposition 3.1.12. The generators of J are in bijection with the integer lattice points inside the

trapezoid bounded by the following inequalities:

2d1 + d2 ≥ x + y ≥ d1 + d2, x + 2y ≥ 2d1 + d2, 2x + y ≥ 2d1 + d2.

Proof. It is easy to check that all of the generators of J satisfy these inequalities on their

bidegrees (x, y) = (degq,degt). Since the generators all have unique (q, t)-bidegree, it is sufficient

to count the number of points in the integer lattice and check that it is the same as the number of

generators.

We will count the lattice points going by diagonals, starting with the top diagonal x+ y = 2d1 + d2.

On this diagonal, x + 2y ≥ 2d1 + d2 and 2x + y ≥ 2d1 + d2 are trivially satisfied, since x, y ≥ 0. So x

and y can both range from 0 to 2d1 + d2, and there are 2d1 + d2 + 1 points on this diagonal.

On the next diagonal, x+y = 2d1+d2−1, we have that x+2y = 2d1+d2−1+y and 2x+y = 2d1+d2−1+x

are both at least 2d1 + d2. This implies that x, y ≥ 1 so we have points

(1,2d1 + d2 − 2), (2,2d1 + d2 − 1), . . . (2d1 + d2 − 2,1),

which amounts to 3 less points than the first diagonal. If we keep going, each diagonal will have 3

less points than the last, until the final diagonal x + y = d1 + d2, which will have d2 − d1 + 1 points.

If we index the diagonal x + y = 2d1 + d2 − j by j, j will range from 0 to d1. So in total the number

of points in the lattice is

d1

∑
j=0
[2d1 + d2 + 1 − 3j].

If we count the generators of J as laid out in Theorem 3.1.1, we get
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Ai,j ∶
d1

∑
j=0
(d1 − j), Bi,j ∶

d1

∑
j=0
(d1 − j), Ci,j ∶

d1

∑
j=0
(d2 − j), Dj ∶

d1

∑
j=0

1,

and combining the sums, we get the same count. So we have shown the desired bijection.

□

Proof of Theorem 3.1.10(b). In Example 1.2 in [13], the authors show that

F (d1, d2, d3) = [2d1 + d2 + 1]q,t + qt[2d1 + d2 − 2]q,t + ⋅ ⋅ ⋅ + q
d1td1[d2 − d1 + 1]q,t,

where [n + 1]q,t ∶= q
n + qn−1t + ⋅ ⋅ ⋅ + qtn−1 + tn.

We can see from the proof of Proposition 3.1.12 that this exactly matches up with the coordinates

of the lattice points, grouped by diagonals, and therefore by Proposition 3.1.12, this is in bijection

with the generators of J ′ and their (q, t) degrees.

Any choice of basis of J ′(d1, . . . , dn)/mJ
′(d1, . . . , dn) lifts to a set of generators of J ′ by Nakayama’s

lemma. So the Hilbert series of J ′(d1, . . . , dn)/mJ
′(d1, . . . , dn) is precisely the degree count of the

generators of J ′, so indeed it is F (d1, d2, d3). □

3.2. Proofs

3.2.1. Proof of Theorem 3.1.1. After doing the change of variables to C[a, b, c, d], the

upshot is that we’ve reduced the number of variables, and we can use the fact that J = M ∩ (a −

c, b − d)d1 , where M = (a, b)d1 ∩ (c, d)d2 is a monomial ideal. In this section we will find a basis for

J over C by characterizing when elements of (a − c, b − d)d1 are in the monomial ideal M , proving

Proposition 3.1.3 and by extension Theorem 3.1.1. First, we will need a few key lemmas.

Since M is a monomial ideal, a polynomial f is in M if and only if all monomials m of f that

have nonzero coefficients are in M . If m is a monomial, then let deg1(m) be the combined (a, b)

degree of m, i.e. the sum of its a and b degrees, and similarly let deg2(m) be its combined (c, d)

degree. Then the monomial m is in M if and only deg1(m) ≥ d1, and deg2(m) ≥ d2. Note that

these degrees should not be confused with degq and degt defined above.

Consider some f ∈ R of the form

f = φ(b − d) + ψ(ad − bc) ∈M
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for some φ,ψ ∈ R. Notice that for any γ ∈ R, we can modify the coefficients φ,ψ by simultaneously

substituting:

(3.1) φ→ φ + γ(ad − bc), ψ → ψ − γ(b − d)

without changing f .

Lemma 3.2.1. If

f = φ(b − d) + ψ(ad − bc) ∈M

for some φ,ψ ∈ R, then up to the relation (3.1), we can assume that φ ∈M .

Proof. Since M is a monomial ideal, φ(b − d) + ψ(ad − bc) ∈M if and only if every monomial

term of φ(b−d)+ψ(ad− bc) is in M . If m is a monomial in the expansion of this expression, either

m is in M , or m cancels with some other monomial.

When we expand, all monomials come in pairs from distributing b − d or ad − bc. These pairs

look like m ( bd) −m or m (adbc ) −m, where each term is appropriately divisible so that there are no

denominators. If one of these monomials cancels with another monomial, that other monomial also

must be part of a pair like the above. For example,

m

cd
(ad − bc) +

m

d
(b − d) =m(

b

d
)(

ad

bc
) −m(

b

d
) +m(

b

d
) −m =m(

b

d
)(

ad

bc
) −m.

We can continue to follow a chain of cancellation until either we get two terminal monomials that

do not cancel with anything, or we eventually reach a monomial that cancels with the starting

monomial m, creating a cycle. We can visualize these chains of cancellations by oriented paths in

a 2 dimensional lattice. Vertices represent monomials, vertical edges represent a difference of two

monomials of the formm ( bd)−m, and horizontal edges represent a difference of the formm (adbc )−m.

The full path represents the sum of all the pairs of monomials represented by each edge, and the

end vertices of the path are the terminal monomials. For example, the above cancellation can be

represented by the path:

m

m ( bd) m (adbc ) (
b
d
)
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Cycles in these paths correspond exactly to the equivalence

φ(b − d) + ψ(ad − bc) = (φ + γ(ad − bc))(b − d) + (ψ − γ(b − d))(ad − bc).

To see this, let m be a monomial. A cycle looks like this:

m

m ( bd) m (adbc ) (
b
d
)

m (adbc )

This corresponds to the identity

m

d
(b − d) +

m

cd
(ad − bc) −

ma

bc
(b − d) −

m

bc
(ad − bc) = 0.

For all of these terms to be monomials, b, c, d must all divide m. Multiplying through by bcd and

grouping, we get

−m(ad − bc)(b − d) +m(b − d)(ad − bc) = 0.

Adding this cycle corresponds to using the above equivalence with γ = m. Adding any number of

these cycles along our path corresponds to modifying the coefficients φ and ψ with relation (3.1)

without changing the overall sum f .

We can add and subtract this square loop to any path in order to both eliminate any loops, and

to reorder cancellation. For example:

m

m ( bd) m (adbc ) (
b
d
)

=
m

m ( bd) m (adbc ) (
b
d
)

m (adbc )

+
m m (adbc )

m (adbc ) (
b
d
)

So up to relation (3.1), we can make any path into one with vertical edges first and horizontal edges

after, going from m to m ( bd)
k
to m ( bd)

k
(ad
bc
)
j
, with k and j possibly negative or 0.
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m

m ( bd)
k

m (adbc )
j
( b
d
)
k

This reduced path corresponds to φ(b − d) + ψ(ad − bc), where

φ =
m ( bd)

k
−m

b − d
and ψ =

m ( bd)
k
(ad
bc
)
j
−m ( bd)

k

ad − bc
.

Notice for any monomial m, m (adbc )
j
∈M if and only if m ∈M , as multiplying by a

b does not change

the combined (a, b) degree of a monomial, and the same for c
d .

Given a reduced path as above, we know that the terminal monomials m and m ( bd)
k
(ad
bc
)
j
are in

M . But since m ( bd)
k
(ad
bc
)
j
∈M , by the above, m ( bd)

k
is in M . Now we want to show that φ ∈M .

Since m ( bd)
k
∈ M , it follows that m

dk
∈ (c, d)d2 , since multiplying by bk does not change the (c, d)

degree. Since m is in (a, b)d1 , it follows that m
dk
∈ (a, b)d1 , since it has the same (a, b) degree as m.

So m
dk
∈M , and therefore indeed

φ =
m

dk
bk − dk

b − d
∈M.

For a general φ(b−d)+ψ(ad−bc), we can break the terms into a sum of discrete cancellation chains,

∑
i

[φ1,i(b − d) + φ2,i(ad − bc)] .

For each cancellation chain, we have shown that up to equivalence, φ1,i ∈M , and therefore

φ = ∑
i

φ1,i ∈M.

□

Lemma 3.2.2. We have that φ(b − d) ∈ M if and only if φ ∈ M , and φ(a − c) ∈ M if and only if

φ ∈M .

Proof. This is essentially what the final argument of the above proof shows. If we expand

the expression φ(b − d) into monomials, then as in the proof of Lemma 3.2.1, we will get chains of

cancellations with two terminal monomials that do not cancel, which looks like the path:
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m

m ( bd)
k

This chain corresponds to

φ =
m ( bd)

k
−m

b − d
,

and as before, m,m ( bd)
k
∈ M together imply that φ ∈ M . Any general φ(b − d) can be split into

the sum of distinct cancellation chains, and thus φ ∈M .

The same argument applies to φ(a − c) since M is symmetric in (b, d), (a, c). □

Next, we characterize how we can best express f ∈ (a − c, b − d)d1 in order to see when f ∈M .

Lemma 3.2.3. Any f ∈ (a − c, b − d) can be written as

f = α1(a − c) + α2(b − d) + α3(ad − bc),

where αi ∈ R and α1 is a polynomial in a and c only.

Proof. If f ∈ (a − c, b − d), then

f = γ1(a − c) + γ2(b − d)

for some γ1, γ2 ∈ R. Observe that

b(a − c) = a(b − d) + (ad − bc),

and

d(a − c) = c(b − d) + (ad − bc).

So by applying this to any term in γ1 with a factor of b or d, we can ensure that γ1 only depends

on a and c. □

Lemma 3.2.4. If f ∈ (a − c, b − d)d1 ∩M , we can write f = ∑i fi, where

fi =
d1−i
∑
j=0

αi,j(a − c)
i
(b − d)d1−i−j(ad − bc)j
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and each fi ∈M .

Proof. Consider f ∈ (a − c, b − d)d1 . Following Lemma 3.2.3, we can express f as a linear

combination of products of (a − c), (b − d), and (ad − bc),

f = ∑
i,j

αi,j(a − c)
i
(b − d)d1−i−j(ad − bc)j .

Further, we can assume that every coefficient of a term with a factor of (a − c) depends only on a

and c, because for any term with coefficient α with i > 0, we can write

α(a − c)i(b − d)d1−i−j(ad − bc)j

= [α(a − c)] (a − c)i−1(b − d)d1−i−j(ad − bc)j

= [α1(a − c) + α2(b − d) + α3(ad − bc)] (a − c)
i−1
(b − d)d1−i−j(ad − bc)j

where α1 only depends on a and c by Lemma 3.2.3. We can continue this process by induction

until all the modified coefficients αi,j only depend on a and c.

Now we will group terms of f by their combined (b, d) degree. For all i > 0, since αi,j depends only

on a and c, we know that the combined b, d degree of every monomial of

αi,j(a − c)
i
(b − d)d1−i−j(ad − bc)j

is k = degt(m) = d1 − i. If any monomial from this term cancels, it must cancel with another term

with the same (b, d) degree. So in fact, every monomial with degt(m) = k must come from the sum

fi =
k

∑
j=0

αi,j(a − c)
i
(b − d)k−j(ad − bc)j

= (a − c)i
k

∑
j=0

αi,j(b − d)
k−j
(ad − bc)j

with fixed i. In other words, monomials can cancel within each fi, but not between them. This

implies that for all i > 0, each fi ∈M , since after internal cancellation, each fi is a sum of monomials

in M .

Since f = ∑i fi is in M and fi ∈M for all i > 0,
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f0 =
d1

∑
j=0

αi,j(b − d)
k−j
(ad − bc)j

must also be in M .

□

By Corollary 3.2.2, we know that

fi = (a − c)
i

k

∑
j=0

αi,j(b − d)
k−j
(ad − bc)j ∈M

implies that

(3.2)
k

∑
j=0

αi,j(b − d)
k−j
(ad − bc)j ∈M.

Now we fix i and look at a single fi, which we will call f to avoid unnecessary indices. Also let

k = d1 − i as before.

Proposition 3.2.5. If

f =
k

∑
j=0

αj(b − d)
k−j
(ad − bc)j ∈M,

for some αj ∈ R, then there exists α′j ∈ R such that

f = ∑
j

α′j(b − d)
k−j
(ad − bc)j

and each term α′j(b − d)
k−j(ad − bc)j of the sum is in M .

Proof. We can rewrite f as

(3.3) f =
k−1
∑
j=0
[φj(b − d) + ψj(ad − bc)] (b − d)

k−1−j
(ad − bc)j ,

where initially φj = αj for all 0 ≤ j ≤ k − 1, ψk−1 = αk, and the rest of the ψj ’s are 0. Essentially

we have taken the previous sum for f and added some redundant terms; in particular, ψj and φj+1

are coefficients for like terms for 0 ≤ j ≤ k − 1. So we have two relations we can use to modify the

coefficients of (3.3) without changing the sum:

ψj → ψj + γ, φj+1 → φj+1 − γ(3.4)

φj → φj + γ(ad − bc), ψj → ψj − γ(b − d).(3.5)
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The first comes from the redundant coefficients, and the second is the same relation (3.1) used in

Lemma 3.2.1.

We will induct on k = d1−i. If k = 0, then i = d1, and our sum (3.2) is just the single term α0(a−c)
d1 ,

which is in M by assumption. Now assume by induction that if

k−1
∑
j=0

αj(b − d)
k−1−j

(ad − bc)j

is in M , then we can modify the coefficients using only (3.5) to get all terms

αj(b − d)
k−1−j(ad − bc)j in M . We can apply this to (3.3) with αj = φj(b − d) + ψj(ad − bc). Using

(3.5) on the αj ’s actually just amounts to using (3.4) on the φj ’s and ψj ’s, as adding γ(ad− bc) to

αj is the same as adding γ to ψj , and subtracting γ(b − d) from αj is the same as subtracting γ

from φj . So the inductive hypothesis implies that up to (3.4), we can get

[φj(b − d) + ψj(ad − bc)] (b − d)
k−1−j

(ad − bc)j

in M for all j. By Corollary 3.2.2, this implies that

(3.6) [φj(b − d) + ψj(ad − bc)] (ad − bc)
j
∈M.

Notice that multiplying a monomial (polynomial) by (ad− bc) raises its combined (a, b) degree and

(c, d) degree each by one. So (3.6) is inM = (a, b)d1∩(c, d)d2 if and only if [φj(b − d) + ψj(ad − bc)] ∈

N = (a, b)d1−j ∩ (c, d)d2−j . Now we apply Lemma 3.2.1 on N to get both φj(b − d) and ψj(ad − bc)

in N , and then when multiply by (ad − bc)j , we get that both terms of (3.6) are in M .

So we have shown that if

f =
k−1
∑
j=0
[φj(b − d) + ψj(ad − bc)] (b − d)

k−1−j
(ad − bc)j ,

up to relations (3.4) and (3.5), we can get all terms of this sum to be in M . Now simply recombine

like terms to get

f = ∑
j

αj(b − d)
d1−i−j(ad − bc)j

with all terms in M as desired.

□

Now we can lay out a basis for the ideal
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J(d1, d2) = (a, b)
d1 ∩ (c, d)d2 ∩ (a − c, b − d)d1

over C.

Proof of Proposition 3.1.3. We know by Proposition 3.2.5 that J(d1, d2) is generated by

polynomials of the form

αi,j(a − c)
i
(b − d)d1−i−j(ad − bc)j ,

where αi,j only depends on a, c for i > 0. Here 0 ≤ j ≤ d1 and 0 ≤ i ≤ d1 − j. So as a vector space,

J(d1, d2) is generated by

aαbβcγdδ(a − c)i(b − d)d1−i−j(ad − bc)j

with the conditions that α+β + j ≥ d1, γ + δ+ j ≥ d2, and β = δ = 0 if i > 0. Among these generators,

the only kind of relations remaining are those that come from the fact that bc = ad − (ad − bc).

If i > 0, then this relation is irrelevant, and we get linearly independent generators of the form

m(a, c)Ai,j .

If i = 0 and β, γ > 0, then we can write

aαbβcγdδ = aα+1bβ−1cγ−1dδ+1 + aαbβ−1cγ−1dδ(ad − bc).

Continue reducing bc this way until we end up in one of the following situations:

(1) γ = 0, β ≠ 0, in which case we are left with

m(a, b, d)Bβ,j

with 0 ≤ j ≤ d1 and 1 ≤ β ≤ d1 − j.

(2) β = 0, γ ≠ 0, in which case we are left with

m(a, c, d)Cγ,j

with 0 ≤ j ≤ d1 and 1 ≤ γ ≤ d2 − j.

(3) β = 0, γ = 0, in which case we are left with

m(a, d)Dj
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with 0 ≤ j ≤ d1.

(4) The exponent of (ad − bc) is greater than or equal to d1, in which case we are left with a

linear combination of terms of the form

m(a, b, c, d)(ad − bc)d1 .

□

Theorem 3.1.1 immediately follows from Proposition 3.1.3.

3.2.2. Hilbert Series Calculation. Let us compute the Hilbert series using the basis in

Proposition 3.1.3.

Lemma 3.2.6. We have

∑
α+β≥s

qαtβ =
qs

(1 − q)(1 − t/q)
+

ts

(1 − t)(1 − q/t)
.

Proof. We have

∑
α+β≥s

qαtβ =
s−1
∑
β=0

qs−βtβ

(1 − q)
+
∞
∑
β=s

tβ

1 − q
=

qs − ts

(1 − q)(1 − t/q)
+

ts

(1 − q)(1 − t)
.

Now we can use the identity

1

(1 − q)(1 − t)
−

1

(1 − q)(1 − t/q)
=

1

(1 − t)(1 − q/t)
.

□

Theorem 3.2.7. The bigraded Hilbert series of J(d1, d2) is equal to

q2d1+d2

(1 − q)2(1 − t/q)(1 − t/q2)
+

t2d1+d2

(1 − t)2(1 − q/t)(1 − q/t2)
+

qd1td2(1 + t)

(1 − q)(1 − t)(1 − q/t)(1 − t2/q)
+

qd2td1(1 + q)

(1 − t)(1 − q)(1 − t/q)(1 − q2/t)
.

Proof. We compute the contribution of various basis elements.

1. The contribution of m(a, c)Ai,j , j ≤ d1 − 1 equals

1

(1 − q)2

d1−1
∑
j=0

d1−j
∑
i=1

qd1+d2−j+itd1−i =
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1

(1 − q)2

d1−1
∑
j=0

qd1+d2−j+1td1−1 − q2d1+d2−2j+1tj−1

(1 − q/t)
=

qd1+d2+1td1−1 − qd2+1td1−1

(1 − q)2(1 − q−1)(1 − q/t)
−
q2d1+d2+1t−1 − qd2+1td1−1

(1 − q)2(1 − q/t)(1 − t/q2)
.

2. The set m(a, b, d)Bi,j ∪m(a, d)Dj , j ≤ d1 − 1 consists of elements

aαbβdγ(b − d)d1−j(ad − bc)j , α + β ≥ d1 − j, γ ≥ d2 − j,

so by Lemma 3.2.6 we get the Hilbert series

d1−1
∑
j=0
[

qd1−j

(1 − q)(1 − t/q)
+

td1−j

(1 − t)(1 − q/t)
]
qjtd1+d2−j

(1 − t)
=

d1−1
∑
j=0
[

qd1td1+d2−j

(1 − t)(1 − q)(1 − t/q)
+

qjt2d1+d2−2j

(1 − t)2(1 − q/t)
] =

qd1td1+d2 − qd1td2

(1 − t−1)(1 − t)(1 − q)(1 − t/q)
+

t2d1+d2 − qd1td2

(1 − q/t2)(1 − t)2(1 − q/t)

3. Similarly, for m(a, c, d)Ci,j ∪m(a, d)Dj , j ≤ d1 − 1 we get

aαcβdγ(b − d)d1−j(ad − bc)j , α ≥ d1 − j, β + γ ≥ d2 − j,

so the Hilbert series equals

d1−1
∑
j=0
[

qd2−j

(1 − q)(1 − t/q)
+

td2−j

(1 − t)(1 − q/t)
]
qd1td1

(1 − q)
=

qd1+d2td1 − qd2td1

(1 − q−1)(1 − q)2(1 − t/q)
+

qd1td1+d2 − qd1td2

(1 − t−1)(1 − q)(1 − t)(1 − q/t)
.

4. We overcount by m(a, d)Dj , j ≤ d1 − 1 which contribute

1

(1 − q)(1 − t)

d1−1
∑
j=0

qd1td1+d2−j =
qd1td1+d2 − qd1td2

(1 − t−1)(1 − q)(1 − t)

5. For j = d1 we have special terms

aαbβcγdδ(ad − bc)d1 , γ + δ ≥ d2 − d1,

which contribute
1

(1 − q)(1 − t)
[

qd2−d1

(1 − q)(1 − t/q)
+

td2−d1

(1 − t)(1 − q/t)
] qd1td1 .
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6. Finally, we collect the coefficients at similar terms:

qd1+d2td2 [
qt−1

(1 − q)2(1 − q−1)(1 − q/t)
+

1

(1 − q−1)(1 − q)2(1 − t/q)
] = 0;

qd2td1[−
1

(1 − q)2(1 − q−1)(1 − q/t)
+

1

(1 − q)2(1 − q/t)(1 − t/q2)
−

1

(1 − q−1)(1 − q)2(1 − t/q)
+

1

(1 − q)(1 − t)(1 − q)(1 − t/q)
] =

qd2td1(1 + q)

(1 − t)(1 − q)(1 − t/q)(1 − q2/t)
.

q2d1+d2 [−
qt−1

(1 − q)2(1 − q/t)(1 − t/q2)
] +

t2d1+d2

(1 − q/t2)(1 − t)2(1 − q/t)
=

q2d1+d2

(1 − q)2(1 − t/q)(1 − t/q2)
+

t2d1+d2

(1 − t)2(1 − q/t)(1 − q/t2)
;

qd1td1+d2[
1

(1 − t−1)(1 − t)(1 − q)(1 − t/q)
+

1

(1 − t−1)(1 − q)(1 − t)(1 − q/t)
−

1

(1 − t−1)(1 − q)(1 − t)
] = 0;

qd1td2[−
t−1

(1 − t−1)(1 − t)(1 − q)(1 − t/q)
−

qt−2

(1 − q/t2)(1 − t)2(1 − q/t)
−

t−1

(1 − t−1)(1 − q)(1 − t)(1 − q/t)
+

t−1

(1 − t−1)(1 − q)(1 − t)
+

1

(1 − q)(1 − t)(1 − t)(1 − q/t)
] =

qd1td2(1 + t)

(1 − q)(1 − t)(1 − q/t)(1 − t2/q)
.

□
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CHAPTER 4

Coxeter Braid Recursions

This chapter is based on work from [32] and [33] for 3 and 4 strands respectively.

Here we compute Khovanov-Rozansky homology of pure Coxeter braids on 3 and 4 strands. For

our purposes, we think of Khovanov-Rozansky homology HHH as a certain functor from complexes

of Soergel bimodules to triply graded vector spaces over C. To each crossing σi in the braid group,

we associate a 2-term complex called a Roquier complex. To any braid β, we associate to it a

complex of Soergel bimodules by taking the tensor product of Roquier complex for each crossing

in the diagram of β from bottom to top. We define HHH(β) to be HHH of the complex associated

to its braid diagram. We refer to [16] and references therein for all details.

For some braids, we can use the recursions for triply graded Khovanov-Rozansky homology from [8],

as described in [16] to compute HHH. Starting with a braid diagram, we insert certain auxiliary

complexes of Soergel bimodules Kn and apply the properties below until all strands are closed up.

Figure 4.1 below shows the properties of Kn that we will use in our recursions.

(a)
1

1−q K1 = (b)

⋯

Kn =

⋯

Kn

⋯

=

⋯

Kn (c)

⋯

⋯

Kn+1 = (tn + a)

⋯

⋯

Kn

(d) Kn = t−n Kn+1 q Kn

Figure 4.1. Recursions for HHH

Essentially, Figure 4.1(a) says that we can insert a K1 anywhere up to a grading shift. Figure

4.1(b) says that Kn absorbs crossings within the n strands that it spans. Figure 4.1(c) allows us to
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’close up’ a strand passing through a Kn as long as there are no crossings in the way, and Figure

4.1(d) is the main recursive step that allows Kn to grow if there is a strand wrapping around it.

The three gradings of HHH(β) are typically denoted Q,T, and A. However, in line with [8], we

use the change of variables

q = Q2, t = T 2Q−2, a = AQ−2.

Definition 4.0.1. For any braid or braid-like diagram β, we say that HHH(β) is parity if it is

supported in only even homological (T ) degrees, where T 2 = t
q .

Note that HHH(β) is parity if and only if its graded Hilbert series is rational in terms of (q, a, t).

Remark 4.0.2 ( [16]). If both diagrams on the right-hand side of Figure 4.1(d) are parity, then so

is the left-hand side, and we can replace the map with addition on the level of rational functions

(or a direct sum on the level of complexes). This implies that if we use Figure 4.1(d) repeatedly to

break down a braid β into complexes that are known to be parity, then every complex along the

way, including β itself, is parity.

We generally restrict our attention to positive braids, as a negative braids are almost never parity.

To make the calculation simpler, we translate the braid diagrams into equations where multiplica-

tion represents vertical stacking from bottom to top (or equivalently a tensor product of Soergel

bimodules). So for example, 4.1(d) translates to

Kn ⋅ JMn+1 = t
−nKn+1 + qt

−nKn.

We will regularly use the Jucys-Murphy braids

JMn = σn−1⋯σ1σ1⋯σn−1

and the full twist on n strands

FTn = JM2 JM3⋯JMn .

All Jucys-Murphy braids JMn and full twists FTn are assumed to be on the first n strands unless

otherwise indicated. We will also make regular use of the fact that σi commutes with FTn for all

1 ≤ i ≤ n, σi commutes with JMn for 1 < i < n, and that JMm and JMn commute with each other
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for any m,n. In other words, the full twist commutes with all crossings on its strands, the Jucys-

Murphy braid commutes with internal crossings, and all Jucys-Murphy’s (on the initial strands)

commute with each other.

Since Kn absorbs crossings by Figure 4.1(b), for n ≤m, we have that

KnFTm =Kn JMn+1⋯JMm .

We will also use the conjugation invariance of HHH:

(4.1) HHH(αβ) = HHH(βα)

for any braids α and β. We will denote the conjugate braids by αβ ∼ βα. We will additionally use

the result from Hogancamp [19] that HHH(FTk
n) is parity for all n, k ≥ 0.

Finally, note that Figure 4.1(a), (b), and (d) are local, i.e. they hold on the level of homotopy

equivalences of chain complexes. Braid conjugation and the closing up step (c) are non-local, and

only hold on the level of HHH.

4.1. Computations on 3 strands

In this section we show that the link Lγ associated to γ as in (1.1) is parity for n = 3, and compute

its Khovanov-Rozansky homology. It is the closure of the braid

βd1,d2 = (FT2)
d2−d1(FT3)

d1 = JMd2
2 JMd1

3 .

Theorem 4.1.1. For all d2 ≥ d1 HHHa=0(βd1,d2) is parity.

Proof. We can resolve the first FT2 by the process:

FT2 =K1 ⋅ FT2 =K1 ⋅ JM2 = t
−1K2 + qt

−1K1.

Since K2 absorbs any crossings on the first two strands, this leaves us with

βd1,d2 = t
−1K2 ⋅ (FT3)

d1 + qt−1βd1,d2−1.
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Now we resolve αd1 = K2 ⋅ (FT3)
d1 by first writing FT3 as the product JM2 ⋅JM3. The JM2 gets

absorbed by K2, so we get

K2 ⋅ (FT3)
d1 =K2 ⋅ JM3 ⋅(FT3)

d1−1 = t−2K3 + qt
−2K2(FT3)

d1−1,

where the K3 has absorbed the rest of the FT3’s. When we close up K3, we get t3, and α0 = K2

closes up to t
1−q . So we get a simple recursion:

HHHa=0
(αd1) = t + qt

−2HHHa=0
(αd1−1),

with HHHa=0(α0) =
t

1−q . We can write this in a closed form as

HHHa=0
(αd1) = t [

1 − (qt−2)d1

1 − qt−2
+
(qt−2)d1

q − 1
] .

So overall we have the recursive relation

(4.2) HHHa=0
(βd1,d2) = [

1 − (qt−2)d1

1 − qt−2
+
(qt−2)d1

q − 1
] + qt−1HHHa=0

(βd1,d2−1),

with βd1,0 = (FT3)
d1 = T (3d1,3), which is parity (with known homology) by [8]. □

To compare this to H∗(Spγ), it can be checked by direct computation that the Hilbert series

H(d1, d2) of Spγ satisfies essentially the same recursion (4.2). But we can also apply a theorem

of Gorsky and Hogancamp (Proposition 5.5 in [14]). Here HY is the y-ified Khovanov Rozansky

homology defined in [14].

Theorem 4.1.2 ( [14]). Assume that β = JMdn
1 . . . JMd1

n , dn ≥ dn−1 ≥ ⋯ ≥ d1, and HHHa=0(β) is

parity. Then:

(1) HYa=0(β) = HHHa=0(β) ⊗C[y1, . . . , yn] and HHHa=0(β) = HYa=0(β)/(y)

(2) I(d1, . . . , dn) ⊆ HY
a=0(β) ⊆ J ′(d1, . . . , dn), where I is the product

I(d1, . . . , dn) = J
′
(1, . . . ,1)d1 ⋅ J ′(0,1, . . . ,1)d2−d1 ⋅ . . . ⋅ J ′(0, . . . ,0,1)dn−1−dn−2 .

In our case β can be expressed exactly as above, and Theorem 4.1.1 along with Corollary 3.1.5

implies that for n = 3:

HYa=0
(Lγ) = J

′
(d1, d2).
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Note the analogy between the relationship of HY to HHH in statement (1) of Theorem 1.3.3, and

the relationship of HT
∗ (Spγ) to H∗(Spγ) due to Fact 2.1.7. The result is the following weaker

version of Conjecture 1.0.2.

Theorem 4.1.3. For n = 3 and γ as in 1.1,

HYa=0
(Lγ) ⊗C[x] C[x,x±] =∆HT

∗ (Spγ)

and

HHHa=0
(Lγ) ⊗C[x] C[x,x±] =H∗(Spγ).

In order to show Theorem 4.1.3, we used Corollary 3.1.5, but one could instead show that the link

splitting map defined in [14] is canonical for β as above, analogous to Proposition 6.11 in [14].

This means that Theorem 4.1.3 can be generalized to higher n solely by showing that β is parity,

such as with this same recursive method.

4.2. Computations on 4 strands

Here we compute Khovanov-Rozansky homology of Coxeter braids on 4 strands. Let

β = β(d1, d2, d3, d4) = (FT2)
d3−d2 ⋅ (FT3)

d2−d1 ⋅ (FT4)
d1 .

Definition 4.2.1. Let

● A(n,m, l) =K1FT
l
2FT

m
3 FTn

4 ,

● B(n,m) =K2FT
m
3 FTn

4 ,

● C(n) =K3FT
n
4 .

In this notation,

K1β(d1, d2, d3, d4) = A(d1, d2 − d1, d3 − d2).

Assuming that all braids are parity, we can write Figure 4.1(d) in the form

Kn JMn+1 = t
−nKn+1 + qt

−nKn.

By Figure 4.1(b), Kn JMn+1 =KnFTn+1, so we immediately get the following recursions:
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(4.3) A(n,m, l) = t−1B(n,m) + qt−1A(n,m, l − 1)

(4.4) B(n,m) = t−2C(n) + qt−2B(n,m − 1)

(4.5) C(n) = t−3K4 + qt
−3C(n − 1)

These recursions let us proceed by induction, as every application either decreases n,m, or l or

shifts us from A to B or B to C. Also note that they don’t involve any closing up or conjugation,

so they are all local. The majority of the work lies in the ‘base cases’, when one or more of l,m,n

are 0.

4.2.1. Recursion for C(n). Here we calculate HHH recursively for the braids C(n) and for

a twisted version σ2k3 C(n) that we will need in Section 4.2.2.

Lemma 4.2.2. The braid C(n) is parity for all n ≥ 0, and

HHH(C(n)) = t−3
1 − (qt−3)n

1 − qt−3
HHH(K4) +

(qt−3)n(t2 + a)(t + a)(1 + a)2

(1 − q)
.

Proof. The braid C(0) has K3 on the first 3 strands and an empty fourth strand. We can

close up the K3 using Figure 4.1(c) and introduce a K1 to close up the last strand, so

HHH(C(0)) = (t2 + a)(t + a)(1 + a)2/(1 − q).

We also have that

HHH(K4) = (t
3
+ a)(t2 + a)(t + a)(1 + a).

So by induction, both terms on the right hand side of recursion (4.5) are parity. Therefore C(n) is

parity, and can be computed recursively. □
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Lemma 4.2.3. The braid σ2k3 C(n) is parity for all k,n ≥ 0, and

(4.6) HHH(σ2k3 C(n)) = t
−3 1 − (qt

−3)n

1 − qt−3
HHH(K4) + (qt

−3
)
n
(t2 + a)(t + a)(1 − q)HHH(FTk

2).

Proof. For σ2k3 C(0), we can close up (using Figure 4.1(c)) the first two strands running

through K3, and then we are left with exactly k full twists on the remaining two strands along with

a K1. So

HHH(σ2k3 C(0)) = (t
2
+ a)(t + a)(1 − q)HHH(FTk

2).

For σ2k3 C(n), we apply recursion (4.5) locally to get

σ2k3 C(n) = t
−3σ2k3 K4 + qt

−3σ2k3 C(n − 1).

The σ3 crossings get absorbed by K4 (using Figure 4.1(b)), so by induction on n, we conclude that

σ2k3 C(n) is parity with the desired formula for HHH. □

4.2.2. Recursions for B(n,m). Here we calculate HHH recursively for the braids B(n,m)

and for the twisted braids σ22B(n,m) that we will need in Section 4.2.3.

Lemma 4.2.4. The braid σ2k3 B(0,0) is parity for all k ≥ 0, and

HHH(σ2k3 B(0,0)) = (t + a)(1 + a)HHH(FT
k
2).

Proof. Recall that B(0,0) consists only of aK2 on the left two strands, which does not overlap

with σ2k3 . We close up the two strands running through K2 (Figure 4.1(c)) and are left with k full

twists on two strands. □

Now we consider the case B(n,0).

Lemma 4.2.5. The braid σ2k3 B(n,0) is parity for all n, k ≥ 0, and

HHH [σ2k3 B(n,0)] = t
−2HHH [σ2k3 C(n)] + qt

−2HHH [σ2k+23 B(n − 1,1)]

= t−2HHH [σ2k3 C(n)] + qt
−4HHH [σ2k+23 C(n − 1)] + q2t−4HHH [σ2k+23 B(n − 1,0)] .

In particular we have that B(n,0) is parity for all n ≥ 0.
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Proof. We have that locally,

B(n,0) =K2 JM3 JM4FT
n−1
4

= t−2K3 JM4FT
n−1
4 + qt−2K2 JM4FT

n−1
4

(4.7) = t−2C(n) + qt−2K2 JM4FT
n−1
4 .

Here we used Figure 4.1(d) for K2 JM3, and the identity K3 JM4 = K3FT4 which follows from

Figure 4.1(b). Now note that JM4 = σ3 JM3 σ3, so

σ2k3 K2 JM4FT
n−1
4 = σ2k3 K2σ3 JM3 σ3FT

n−1
4 = σ2k3 σ3K2 JM3FT

n−1
4 σ3,

where we use the fact that σ3 commutes with both FT4 and K2. By conjugation invariance (4.1)

we have that

HHH(σ2k3 σ3K2 JM3FT
n−1
4 σ3) ≃ HHH(σ

2k+2
3 K2 JM3FT

n−1
4 ) = HHH(σ2k+23 B(n − 1,1)).

Finally, a local application of recursion (4.4) tells us that

σ2k+23 B(n − 1,1) = t−2 [σ2k+23 C(n − 1)] + qt−2 [σ2k+23 B(n − 1,0)] .

We know that σ2k+23 C(n − 1) is parity by Lemma 4.2.3, and we know that σ2k+2n3 B(0,0) is parity

by Lemma 4.2.9. So by induction on n, we can conclude that σ2k3 B(n,0) is parity. □

Corollary 4.2.6. The braid B(n,m) is parity for all n,m ≥ 0.

Proof. We know that B(n,0) is parity by Lemma 4.2.5 and that C(n) is parity by Lemma

4.2.2. So we use recursion (4.4) and induction on m to conclude that B(n,m) is parity. □

Now we show that a twisted version σ22B(n,m) is also parity. We start with the step that requires

the most caution to keep all braids parity.

Lemma 4.2.7. If the right hand side is parity, then

(4.8) HHH [σ22σ
2k−2
3 B(n,0)] = t−2HHH [σ2k−23 C(n)]+

qt−4HHH [J̃M3σ
2k−2
3 C(n − 1)] + q2t−4HHH [σ22σ

2k
3 B(n − 1,0)] ,
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where J̃M3 = σ3σ
2
2σ3 indicates the Jucys-Murphy element on the final 3 strands rather than the first

3 strands.

Proof. Since the equation (4.7) holds locally, we can multiply both sides on the left by σ22σ
2k−2
3 .

For the first term in (4.7), if we include the additional crossings, note that

t−2 [σ22σ
2k−2
3 C(n)] ∼ t−2 [σ2k−23 K3FT

n
4σ

2
2] = t

−2 [σ2k−23 K3σ
2
2FT

n
4 ] = t

−2 [σ2k−23 C(n)] .

Here we conjugate σ22 and pass it through FTn
4 until it is absorbed by K3. Therefore

t−2HHH [σ22σ
2k−2
3 C(n)] = t−2HHH [σ2k−23 C(n)] .

For the second term in (4.7), we can again write JM4 = σ3 JM3 σ3, so

σ22σ
2k−2
3 K2 JM4FT

n−1
4 = σ22σ

2k−2
3 K2σ3 JM3 σ3FT

n−1
4 = σ22σ

2k−1
3 K2 JM3 σ3FT

n−1
4 .

Applying recursion (4.4) gives

(4.9) t−2 [σ22σ
2k−1
3 K3σ3FT

n−1
4 ] + qt−2 [σ22σ

2k−1
3 K2σ3FT

n−1
4 ] .

Now we slide σ3 through FT4 and conjugate by it in the first term in (4.9), and slide it past K2 in

the second term in (4.9), which gives

t−2 [σ3σ
2
2σ

2k−1
3 K3FT

n−1
4 ] + qt−2 [σ22σ

2k
3 K2FT

n−1
4 ]

= t−2 [J̃M3σ
2k−2
3 C(n − 1)] + qt−2 [σ22σ

2k
3 B(n − 1,0)] .

□

So in order to fully resolve σ22σ
2k−2
3 B(n,0), we need still to resolve the cases J̃M3σ

2k
3 C(n) and

σ22σ
2k
3 B(0,0).

Lemma 4.2.8. The braid J̃M3σ
2k
3 C(n) is parity.

Proof. Consider n = 0 first. We close up the first strand (apply Figure 4.1(c)), so

HHH(J̃M3σ
2k
3 C(0)) = HHH(J̃M3σ

2k
3 K3) = (t

2
+ a)HHH(JM3 σ

2k
2 K2).

46



Note that the first two braids here are on 4 strands, while the last is on 3 strands after the first

strand was closed up. Now conjugate by JM3 and apply Figure 4.1(d) to get

JM3 σ
2k
2 K2 ∼ σ

2k
2 K2 JM3 = t

−2 [σ2k2 K3] + qt
−2 [σ2k2 K2] .

The K3 in the first term absorbs the extra crossings (Figure 4.1(b)), and we can close up the first

strand of the second term (Figure 4.1(d)). So

t−2 [σ2k2 K3] + qt
−2 [σ2k2 K2] = t

−2
[K3] + qt

−2
(t + a) [K1FT

k
2] ,

where the final term is now on two strands. So we conclude that J̃M3σ
2k
3 C(0) is parity, and

HHH(J̃M3σ
2k
3 C(0)) = t

−2
(t2 + a) [(t2 + a)(t + a)(1 + a) + q(t + a)(1 − q)HHH(FTk

2)] .

To resolve J̃M3σ
2k
3 C(n), again we apply recursion (4.5). All extra crossings will be absorbed by

K4, so by induction on n and the above base case, J̃M3σ
2k
3 C(n) is parity. □

Lemma 4.2.9. The braid σ22σ
2k
3 B(0,0) is parity, and

HHH(σ22σ
2k
3 B(0,0)) = (t + a)t

−1
[(t + a)(1 − q) + q(1 + a)]HHH(FTk

2).

Proof. By definition, σ22σ
2k
3 B(0,0) = σ

2
2σ

2k
3 K2. First, we close up one strand passing through

K2 on the left to obtain

(t + a)σ21σ
2k
2 K1 ∼ (t + a)σ

2k
2 K1σ

2
1 = (t + a)σ

2k
2 K1 JM2 .

on three strands. Then we use Figure 4.1(d) to get

σ2k2 K1 JM2 = t
−1
[σ2k2 K2] + qt

−1
[σ2k2 K1].

For both terms, we can close up the first strand and have k full twists remaining on the last two

strands, getting

t−1 [(t + a)(1 − q)FTk
2 + q(1 + a)FT

k
2] .

□

Lemma 4.2.10. The braid σ22B(n,m) is parity.
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Proof. We can see that σ22σ
2k
3 B(n,0) is parity by Lemma 4.2.7, as all terms on the right hand

side of (4.8) are parity by Lemma 4.2.8 and Lemma 4.2.7.

It follows that σ22B(n,m) is parity from induction on recursion (4.4) and the above, as once again

the extra crossings are absorbed by K3. □

4.2.3. Recursions for A(n,m, l). Now we know how to fully resolve all of the B’s and C’s,

so the only thing left is A.

Lemma 4.2.11. If the right hand side is parity, then

A(n,m,0) = t−1B(n,m) + qt−1 [σ22A(n,m − 1,1)]

= t−1B(n,m) + qt−2 [σ22B(n,m − 1)] + q
2t−3B(n,m − 1) + q3t−3A(n,m − 1,0).

Proof. First, use Figure 4.1(d) to get that

A(n,m,0) =K1FT
m
3 FTn

4 =K1 JM2 JM3FT
m−1
3 FTn

4

(4.10) = t−1K2 JM3FT
m−1
3 FTn

4 + qt
−1K1 JM3FT

m−1
3 FTn

4 .

Since K2 JM3 = K2FT3, the first term in (4.10) is just t−1B(n,m). For the second term in (4.10),

note that JM3 = σ2 JM2 σ2 and that σ2 commutes with FT3, FT4, and K1. Sliding one σ2 to the

top and conjugating by it and moving the other σ2 down past K1, we get that

K1 JM3FT
m−1
3 FTn

4 =K1σ2 JM2 σ2FT
m−1
3 FTn

4 = σ2K1 JM2FT
m−1
3 FTn

4σ2

∼ σ22K1 JM2FT
m−1
3 FTn

4 = σ
2
2A(m,n − 1,1).

Overall we have that

HHH[A(n,m,0)] = t−1HHH(B(n,m)) + qt−1HHH [σ22A(n,m − 1,1)] .

If we apply recursion (4.3) again, we get that

σ22A(n,m − 1,1) = t
−1 [σ22B(n,m − 1)] + qt

−1σ22A(n,m − 1,0)

= t−1 [σ22B(n,m − 1)] + qt
−1A(n,m − 1,1),
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noticing that

σ22A(n,m − 1,0) = σ
2
2K1FT

m−1
3 FTn

4 = (σ1σ2)K1σ
2
1FT

m−1
3 FTn

4(σ1σ2)
−1

∼K1σ
2
1FT

m−1
3 FTn

4 = A(n,m − 1,1).

Here we used that σ2 = (σ1σ2)σ1(σ1σ2)
−1 and the conjugating braid (σ1σ2) commutes with K1,FT3

and FT4. Finally, we apply recursion (4.3) one more time to A(n,m − 1,1) to get the desired

result. □

We have already shown that most of the terms on the right hand side of the equation in Lemma

4.2.11 are parity. For the final base case, we refer to the work of Hogancamp in [19], noting that

the torus link T(4,4n) is the closure of the braid FTn
4 .

Lemma 4.2.12. (Hogancamp [19]) The braid A(n,0,0) = (1− q)FTn
4 is parity and HHH(A(n,0,0))

can be computed recursively.

Corollary 4.2.13. The braid A(n,m,0) is parity for all n,m ≥ 0.

Proof. This follows by induction from Lemma 4.2.11, as we have shown that every B term

on the right hand side is parity (Lemma 4.2.6 and Lemma 4.2.10) and that the base case is parity

(Lemma 4.2.12). □

Theorem 4.2.14. Assume that 0 ≤ d1 ≤ d2 ≤ d3. Then the braid

β = β(d1, d2, d3, d4) = (FT2)
d3−d2 ⋅ (FT3)

d2−d1 ⋅ (FT4)
d1

is parity, and HHH(β) can be computed using the recursive process laid out above.

Proof. We write HHH(β) = 1
1−qHHH(A(d1, d2 − d1, d3 − d2)), so it is sufficient to prove that

A(n,m, l) is parity for all n,m, l ≥ 0. Apply recursion (4.3) repeatedly, reducing to terms of the

form B(n,m) and A(n,m,0). These are parity by Corollary 4.2.6 and Corollary 4.2.13 respectively,

and we can continue following the recursions laid out above to compute HHH(β). □
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CHAPTER 5

Generalized (q, t)-Catalan numbers and the fundamental domain

for n = 3

This chapter is based on joint work with Eugene Gorsky from [32].

In [6] Zongbin Chen introduced a notion of the fundamental domain for an unramified affine

Springer fiber, which captures the behavior of cells in Spγ under translations by the lattice Λ.

More precisely, for n ≤ 4 (and conjecturally in general) Spγ admits a cell decomposition with cells

parametrized by the lattice Λ. There is one torus fixed point in each cell. In general, the dimension

of a cell is a complicated piecewise-linear function on Λ which stabilizes outside of the fundamental

domain P. The cells corresponding to points in Λ outside P can be obtained by translation of cells

corresponding to points in P.

At the same time, by Theorem 1.1.2 the (non-equivariant) homology of Spγ as a module over Λ

is captured by J /(y)J as a module over C[x±1 , . . . , x±n], so the cells in P should correspond to

the generators of J , and (following Conjecture 1.2.1) to the generalized (q, t)-Catalan numbers

F (dn, . . . , d1).

In this appendix we explore the definition and some general properties of P and establish its precise

relation with the generalized (q, t)-Catalan numbers for n = 3. We hope to generalize this to higher

n in future work.

5.0.1. The Fundamental Domain. We define the action of Sn on Rn by σ(x1, . . . , xn) =

(xσ(1), . . . , xσ(n)). Note that for the basis vectors ei we have σei = eσ−1(i).

We start with the matrix γ = diag(γ1, . . . , γn) as in (1.1), where γi are pairwise distinct monomials

with order di. We will always assume that d1 ≤ . . . ≤ dn. Define dij = min(di, dj) for i ≠ j, noting

that dij is the order of γi − γj .
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Definition 5.0.1. (Compare with [6, Proposition 2.8]) We define the polytope P(d1, . . . , dn) as

the convex hull of the points pσ = σ(b1,σ, . . . , bn,σ) where:

bi,σ = ∑
j<i
dσ−1(i),σ−1(j), σ ∈ Sn.

Example 5.0.2. For n = 2 we get two points pe = (0, d1) and p(1 2) = (d1,0), and P is the segment

connecting them.

Example 5.0.3. For n = 3 we get 6 points shown in the following table

σ (b1,σ, b2,σ, b3,σ) pσ

e (0, d1, d1 + d2) (0, d1, d1 + d2)

(1 2) (0, d1, d1 + d2) (d1,0, d1 + d2)

(1 3) (0, d2,2d1) (2d1, d2,0)

(2 3) (0, d1, d1 + d2) (0, d1 + d2, d1)

(1 2 3) (0, d1, d1 + d2) (d1, d1 + d2,0)

(1 3 2) (0, d2,2d1) (2d1,0, d2)

● ● ● ●

● ● ● ● ●

● ● ● ● ● ●

● ● ● ● ● ● ●

● ● ● ● ● ● ●

● ● ● ● ● ● ●

● ● ● ● ● ●

● ● ● ● ●

● ● ● ●

(0, d1, d1 + d2) (d1,0, d1 + d2)

(0, d1 + d2, d1)

(d1, d1 + d2,0) (2d1, d2,0)

(2d1,0, d2)

Figure 5.1. Fundamental domain for (d1, d2) = (3,5)

Example 5.0.4. Suppose that di = d for all i. Then bi,σ = d(i − 1),

pσ = (d(σ(1) − 1), . . . , d(σ(n) − 1)),
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and P is the standard (n − 1)-dimensional permutahedron dilated d times.

We now establish some general properties of P.

Lemma 5.0.5. The polytope P(d1, . . . , dn) is contained in the hyperplane ∑xi = ∑i<j dij.

Proof. For any σ we have ∑i bi,σ = ∑j<i dσ−1(i),σ−1(j) = ∑i<j dij . □

Proposition 5.0.6. Let ei denote the i-th basis vector. Then P(d1, . . . , dn) is the Minkowski sum

of (n2) segments connecting dijei and dijej.

Proof. Let P ′(d1, . . . , dn) denote the above Minkowski sum. We can write

pσ = σ
⎛

⎝
∑
i<j
dσ−1(i),σ−1(j)ei

⎞

⎠
= ∑

i<j
dσ−1(i),σ−1(j)eσ−1(i) = ∑

σ(i)<σ(j)
dijei.

Given a permutation σ and i < j, we can choose one end of the segment connecting dijei and dijej

as follows: if σ(i) < σ(j), we choose ei, otherwise we choose ej . Clearly, the sum of these points

equals pσ, so pσ ∈ P
′(d1, . . . , dn). Therefore P(d1, . . . , dn) ⊆ P

′(d1, . . . , dn).

On the other hand, P ′(d1, . . . , dn) is a zonotope with edges parallel to the edges of the standard

permutahedron P(1, . . . ,1). It follows e.g. from [2, Section 9] that the vertices of P ′(d1, . . . , dn) are

in bijection with the vertices of P(1, . . . ,1), and are given by pσ. So P
′(d1, . . . , dn) ⊂ P(d1, . . . , dn).

□

Example 5.0.7. For n = 3 we get three segments [(d1,0,0), (0, d1,0)], [(d1,0,0), (0,0, d1)] and

[(0, d2,0), (0,0, d2)].

Remark 5.0.8. Quite surprisingly, a similar polytope appeared in a recent work of Alishahi, Gorsky,

and Liu on Heegaard Floer homology [1].

5.0.2. Generalized (q, t)-Catalans for n = 3. Given d1 ≤ d2, we can consider the Young

diagram λd1,d2 = (d1 + d2, d1). We will draw Young diagrams in French notation, with the corner

at (0,0), see Figure 5.2. We also consider the line

ℓd1,d2 = {x + d2y = d1 + 2d2 + ε}

where ε is a small positive number. The following lemma shows that λd1,d2 is a triangular partition

in the sense of [3].
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Lemma 5.0.9. The diagram λd1,d2 is the largest Young diagram below the line ℓd1,d2. If a diagram

µ is strictly below ℓd1,d2, then µ ⊂ λd1,d2.

Proof. Let us describe all integer points (x, y) satisfying x + d2y < d1 + 2d2 + ε. For y = 1

we get x < d1 + d2 + ε, so x ≤ d1 + d2. For y = 2 we get x < d1 + ε, so x ≤ d1. For y ≥ 3 we get

x < d1+(2−y)d2+ε < 0, so there are no integer points (here we used d1 ≤ d2). The result follows. □

Figure 5.2. The line ℓd1,d2 and the diagram λd1,d2 for (d1, d2) = (3,5).

Following [3], we define two statistics on subdiagrams of λd1,d2 .

Definition 5.0.10. Given µ ⊂ λd1,d2 , we define area(µ) = ∣λd1,d2 ∣ − ∣µ∣ and

dinv(µ) = {◻ ∈ µ ∶
a(◻)

ℓ(◻) + 1
≤ d2 <

a(◻) + 1

ℓ(◻)
}

Here a(◻) and ℓ(◻) are respectively the arm and the leg of a box ◻ in µ.

Note that d2 in the definition of dinv is negative reciprocal to the slope of the line ℓd1,d2 .

Theorem 5.0.11. The map ϕ ∶ µ ↦ (area(µ),dinv(µ)) yields a bijection between the subdiagrams

µ ⊂ λd1,d2 and the integer points in the trapezoid

(5.1) {d1 + d2 ≤ x + y ≤ 2d1 + d2, 2x + y ≤ 2d1 + d2, x + 2y ≤ 2d1 + d2}.

As a consequence, we get the generalized (q, t)-Catalan number

(5.2) ∑
µ⊂λd1,d2

qarea(µ)tdinv(µ) = F (d1, d2).

Equation (5.2) is a special case of the main result of [4], but we give a more direct proof here

generalizing [17, Theorem 4.1].
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Proof. Let us write µ = (a+ b, a), then 0 ≤ a ≤ d1 and 0 ≤ b ≤ d1+d2−a. We have the following

cases (see Figure 5.3):

(a) If a + b ≤ d2 then dinv(µ) = a + b, so

ϕ(µ) = (2d1 + d2 − 2a − b, a + b) = (x, y).

We have a = 2d1 + d2 −x− y, b = 2y +x− 2d1 − d2, so the inequalities 0 ≤ a, a ≤ d1,0 ≤ b and a+ b ≤ d2

respectively translate to the inequalities x+ y ≤ 2d1 + d2, x+ y ≥ d1 + d2,2y +x ≥ 2d1 + d2 and y ≤ d2.

(b) If a + b > d2, b ≤ d2 then dinv(µ) = 2a + 2b − d2, so

ϕ(µ) = (2d1 + d2 − 2a − b,2a + 2b − d2) = (x, y).

We have y = d2 mod 2, and

a =
4d1 + d2 − 2x − y

2
, b = x + y − 2d1

The inequalities 0 ≤ a, a ≤ d1,0 ≤ b, b ≤ d2 and a + b > d2 respectively translate to the inequalities

2x + y ≤ 4d1 + d2, 2x + y ≥ 2d1 + d2, x + y ≥ 2d1, x + y ≤ 2d1 + d2, y > d2.

The second, fourth and fifth inequalities define a triangle T with vertices (0,2d1 + d2), (d1, d2) and

(2d1, d2) with the bottom side removed. The other two inequalities are satisfied on this triangle.

In other words, in this case the image of ϕ is the set of all integer points in the triangle T satisfying

y = d2 mod 2.

(c) If b > d2 then dinv(µ) = 2a + d2 + 1, so

ϕ(µ) = (2d1 + d2 − 2a − b,2a + d2 + 1) = (x, y).

We have y = d2 + 1 mod 2, and

a =
y − d2 − 1

2
, b = 2d1 + 2d2 + 1 − x − y.

The inequalities 0 ≤ a, a ≤ d1, b > d2 and a + b ≤ d1 + d2 respectively translate to the inequalities

y ≥ d2 + 1, y ≤ 2d1 + d2 + 1, x + y < 2d1 + d2 + 1, 2x + y ≥ 2d1 + d2 + 1.
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Similarly to (b), the image of ϕ in this case is the set of all integer points in the triangle T satisfying

y = d2 + 1 mod 2. □

a

b

d1 + d2

d1

(d1, d2)d2

(d1, d2 − d1)

0

(a)

(b)

(c)

y

x

2d1 + d2

2d1 + d2

(d1, d2)

(d2, d1)

(2d1, d2)

(a)

T

(b),(c)

Figure 5.3. The bijection ϕ

Finally, we compare the above combinatorial results with the fundamental domain. Observe that

for n = 3 the fundamental domain P(d1, d2) is a hexagon with an axis of symmetry, which cuts it

into two equal halves (see Figure 5.1).

Theorem 5.0.12. The integer points in a half of P(d1, d2) (including boundary) are in bijection

with the generators of the ideal J (d1, d2).

Proof. We construct the desired bijection in several steps:

1) The integer points in a half of P(d1, d2) are in bijection with the subdiagrams of λd1,d2 . Indeed,

we can write such points as (d1,0, d1 + d2) + a(1,0,−1) + b(0,1,−1). It is easy to see by comparing

Figures 5.1 and 5.3 that 0 ≤ a ≤ d1 and 0 ≤ b ≤ d1 + d2 − a, and hence (a, b) define a subdiagram

µ = (a + b, a).

2) By Theorem 5.0.11, we have a bijection ϕ between the subdiagrams of λd1,d2 and the points in

the trapezoid (5.1).
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3) By Proposition 3.1.12, there is a bijection between the generators of J (d1, d2) and the points in

the trapezoid (5.1). □

We expect that the bijection in Theorem 5.0.12 is far more than a combinatorial coincidence. In

particular, by tracing through the bijections we see that dinv defines a piecewise linear function on

the fundamental domain P(d1, d2), and we expect this function to be closely related to the dimen-

sion of cells in an appropriately chosen cell decomposition of Spγ . The corresponding (equivariant)

homology classes of the cells would then correspond to some elements of J (d1, d2), and we expect

that these would indeed generate the ideal. We plan to study these questions and generalize them

to n > 3 in future work.

56



Bibliography

[1] A. Alishahi, E. Gorsky, B. Liu. Splitting maps in link Floer homology and integer points in permutahedra. arXiv:2307.07741

[2] M. Beck, S. Robins. Computing the continuous discretely. Undergrad. Texts Math. Springer, New York, 2015, xx+285 pp.

[3] F. Bergeron, M. Mazin. Combinatorics of triangular partitions. Enumer. Comb. Appl. 3 (2023), no. 1, Paper No. S2R1, 20

pp.

[4] J. Blasiak, M. Haiman, J. Morse, A. Pun, G. H. Seelinger. A shuffle theorem for paths under any line Forum Math. Pi 11

(2023), Paper No. e5, 38 pp.
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