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Abstract

This dissertation investigates the structure of superselection sectors in quantum lattice systems,

with an emphasis on the role of symmetry and fermionic degrees of freedom. First, I consider sys-

tems with an on-site unitary action of a compact abelian group G, and show that when the reference

representation is a G-invariant product representation, the superselection sectors are classified by

the Pontryagin dual of G. Second, I extend a construction by Ogata of a braided monoidal C∗-tensor

category to lattice systems with fermionic degrees of freedom by introducing a twisted version of

approximate Haag duality. This allows for the construction of a braided monoidal C∗-tensor super-

category that captures anyonic excitations in such systems. Finally, in joint work with Martin Fraas,

Sven Bachmann, and Yoshiko Ogata, we analyze the quantization of Hall conductance in infinite

lattice systems and show that its denominator is bounded above by the number of isomorphism

classes of simple objects in an associated braided tensor category.
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CHAPTER 1

Introduction

Informal Summary of Results. This dissertation explores properties of anyons and super-

selection sectors of quantum lattice systems. The work is motivated by questions arising in the

study of topological phases of matter, especially the fractional quantum Hall effect (FQHE), but

many of the results apply more broadly. The overall approach is in the spirit of the Doplicher–

Haag–Roberts (DHR) framework, in which sectors are described as representations of a quasi-local

observable algebra, and their composition gives rise to a tensor category.

The first main result concerns how requiring an on-site symmetry to be respected affects the classi-

fication of superselection sectors. In particular, I considered systems with a unitary on-site action

symmetry by a compact abelian group G, and modified the superselection criterion and equivalence

relation to require compatibility with this G-action. I showed that in this case, if the reference

representation comes from a G-invariant product state, the superselection sectors are classified by

the Pontryagin dual of G. This generalizes a result of Naaijkens and Ogata which showed that,

when no symmetry is imposed, the sector theory for such a product state is trivial.

The second result extends a construction by Ogata of a braided monoidal C∗-tensor category from

a quantum spin system satisfying approximate Haag duality. I generalize this to quantum lattice

systems with fermionic degrees of freedom, satisfying approximate twisted Haag duality. The twist

in approximate twisted Haag duality, as well as in the modification of the superselection criterion,

serves to account for the anticommutation of odd operators with disjoint support. The result is

a construction of a braided monoidal C∗-tensor supercategory, capturing anyonic excitations in a

quantum lattice system with fermionic degrees of freedom.

The third result, joint work with Martin Fraas, Sven Bachmann, and Yoshiko Ogata, concerns the

quantization of Hall conductance in certain infinite lattice systems. We showed that the denominator

of the Hall conductance is bounded above by the number of inequivalent anyon types - that is, by

the number of isomorphism classes of simple objects in an associated braided tensor category. This

replaces the role of the ground state degeneracy in the case of the FQHE on a finite torus.
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Prior work. The DHR approach, developed by Doplicher, Haag, and Roberts [16,22], offers

a rigorous method for analyzing superselection sectors in relativistic quantum field theory. It intro-

duces a superselection criterion to identify localized excitation sectors and shows that these sectors

carry the structure of a braided C∗-tensor category. In this framework, elementary excitations cor-

respond to objects in the category, and their braiding corresponds to a natural braiding structure

ϵ. The original DHR papers [16] also introduced the twisted commutant and what has come to be

known as twisted Haag duality to deal with fermionic charges, and addresses models with a unitary

action of a compact gauge group.

More recently, the DHR framework has been adapted to quantum lattice systems [37], extending

its applicability beyond relativistic settings. A full mathematical formalization of the resulting

structure in lattice systems was provided by Ogata [41], who formulated a C∗-algebraic setting for

describing anyonic excitations. For an overview of other theoretical approaches to anyons, see the

review [33].

Naaijkens and Ogata proved in [4] that for interactions are necessary for nontrivial superselection

sectors to occur. They showed that if the reference representation used in the superselection criterion

is a product representation, then any representation satisfying the criterion is equivalent to the

reference representation.

Various definitions of monoidal supercategories – and their relationships – have been discussed in [1].

The fractional quantum Hall effect (FQHE) has been studied from several perspectives. A micro-

scopic approach for systems with a finite number of electrons was developed by Avron and Seiler [3],

and it was shown that this can lead to a rational Hall conductance [26]. A topological field theory

description of quantum Hall fluids in the bulk, capturing features such as fractional quantization

and anyonic excitations, was developed by Fröhlich and collaborators [18,19,20].

In lattice systems, Hastings and Michalakis introduced a setting for the Quantum Hall Effect in-

volving interacting particles with a U(1) symmetry on a finite torus, governed by a gapped local

Hamiltonian [24]. Building on this, Bachmann, Bols, De Roeck, and Fraas established rigorous

quantization results under the assumption that the Hamiltonian has p locally indistinguishable

ground states (along with additional technical conditions) [6,7]. In particular, they showed that

the Hall conductance κ satisfies

2πκ =
q

p
+O(L−∞)
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where q ∈ Z and L is the linear size of the torus. This implies rational quantization of conductance

in the thermodynamic limit, assuming that the ground state in the plane arises as a limit of ground

states on large tori. The local indistinguishability condition, known as local topological quantum

order (LTQO), was introduced in [13,34] and is widely believed to hold in standard quantum Hall

models, though it has proven challenging to prove. Recent progress in this direction was made

in [32].

The connection between Hall conductance and the charge and statistics of excitations has its origins

in the seminal works of Laughlin [30,31] and Arovas, Schrieffer, and Wilczek [1]. Laughlin showed

that inserting a 2π flux through the system leads to a localized excitation carrying fractional charge

2πκ, while Arovas, Schrieffer, and Wilczek showed that transporting another such excitation around

it results in a statistical phase of ei(2π)2κ – characteristic of Abelian anyons. In a finite volume

setting, this was proved in [8], and this was extended to infinite volume in [25].

Outline. Chapter 2 introduces the background needed for the rest of this dissertation. It covers

foundational concepts from category theory, including braided and symmetric monoidal categories,

as well as the algebra of quasilocal observables for quantum spin systems, GNS representations, the

superselection criterion, and superalgebras.

Chapter 3 analyzes the consequences of modifying the superselection criterion, and the notion of

equivalence of representations, by requiring compatibility with an on-site unitary action of a compact

abelian symmetry group G.

Chapter 4 extends Ogata’s construction [6] from quantum spin systems satisfying approximate Haag

duality to quantum lattice systems with fermionic degrees of freedom satisfying approximate twisted

Haag duality. In this setting, the resulting structure is a braided C∗-tensor supercategory rather

than an ordinary braided C∗-tensor category. The chapter also introduces the definitions of braided

C∗-tensor supercategories and approximate twisted Haag duality.

Chapter 5 is about a category associated with the anyons in the Fractional Quantum Hall Effect

in certain infinite lattice systems, and proves the result about the quantization of Hall conductance

where the number of simple objects up to isomorphisms is finite.

Motivation. In the study of the fractional quantum Hall effect (FQHE), the fraction 1
2 has

never been observed as the coefficient q
p in the quantized Hall conductance q

p · 2π e2ℏ , even though
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many other fractional values – mostly with odd denominators – have been seen, and some even-

denominator fractions appear in special circumstances. Notably, 1
2 does occur in the bosonic version

of the FQHE, suggesting that its absence in fermionic systems is tied to the role of fermions. While

several explanations have been given for why the fraction 1
2 does not occur as the coefficient, this

work was motivated by the goal of giving a new explanation based on symmetry and categorical

structure.

In particular, Chapter 5 shows that, under certain assumptions, the coefficient q
p can be interpreted

categorically: the denominator p corresponds to the number of simple superselection sectors gener-

ated (under the monoidal product) by a particular representation. Although this result is currently

limited to a bosonic setting, Chapter 4 develops the technical framework needed to extend it to

fermionic systems. By then combining this with the symmetry-based analysis of Chapter 3, the

goal is to show that in fermionic systems with a U(1) symmetry compatible with the Z/2Z-grading,

the coefficient q
p – when expressed via this categorical construction – cannot equal 1

2 ; specifically,

when p = 2, the corresponding q must be even. This would offer a structural, symmetry-based

explanation for the absence of 1
2 in fermionic FQHE systems.

The results in these three chapters provide a solid foundation for completing such a symmetry-based

explanation in future work.
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CHAPTER 2

Setup and Background

2.1. braided monoidal categories

A category C is a collection ob(C) of "objects" and for each pair of objects A,B ∈ ob(C), a collection

HomC(A,B) of "morphisms from A to B", and for any A,B,C ∈ ob(C), a map ("composition")

◦A,B,C : HomC(B,C)× HomC(A,B) → HomC(A,C) (or simply ◦ rather than ◦A,B,C when there is

no ambiguity) satisfying the following conditions:

(1) For all objects A ∈ ob(C) there exists a morphism ("the identity morphism on A") 1A ∈
HomC(A,A) such that for all objects B ∈ ob(C) and all morphisms f ∈ HomC(A,B),

f ◦A,A,B 1A = f , and for all morphisms g ∈ HomC(B,A), 1A ◦B,A,A g = g. (It can

immediately be seen that from the existence of such an 1A that it is unique.)

(2) The composition is associative, in the following sense: For all objects A,B,C,D ∈ ob(C),
and all morphism f ∈ HomC(A,B), all morphisms g ∈ HomC(B,C), and all morphism

h ∈ HomC(C,D), (h ◦B,C,D g) ◦A,B,D f = h ◦A,C,D (g ◦A,B,C f).

For f ∈ HomC(A,B), A is called the domain of f and B is called the codomain of f . The collections

HomC(A,B) are called "hom-spaces" or "hom-sets". When we know what the domain and codomain

of f and g are, specifying these in the composition is unnecessary, and so, for f ∈ HomC(A,B) and

g ∈ HomC(B,C), g ◦A,B,C f will be written as simply g ◦ f .

A category C is called "locally small" if for any two objects of the category, A,B, the collection

HomC(A,B) is a set (rather than a proper class). Let us be concerned only with locally small

categories.

For two categories C,D, a covariant functor F : C → D consists of:

• a map from the objects of C, ob(C), to the objects of D, ob(D); we write F (A) for the

image in ob(D) of an object A ∈ ob(C).
5



• for each pair of objects A,B ∈ ob(C), a map from HomC(A,B) to HomD(F (A), F (B))

sending f : A → B to F (A) : F (A) → F (B) where these maps satisfy the following

properties:

(1) Identity morphisms are preserved : For any A ∈ ob(C), F (1A) = 1F (A)

(2) Composition is preserved: For any A,B,C ∈ ob(C), and any f ∈ HomC(A,B) and

g ∈ HomC(B,C), F (g ◦ f) = F (g) ◦ F (f).

A contravariant functor is defined similarly, except that rather than maps from HomC(A,B) to

HomD(F (A), F (B)), it has maps from HomC(A,B) to HomD(F (B), F (A)), and satisfies F (g ◦ f) =
F (f) ◦ F (g) (it "reverses the arrows"/reverses the direction of the morphisms).

If we say "functor" and don’t specify "contravariant functor", then we will mean a covariant functor.

Given two categories C,D, we can define a product category C×D whose objects ob(C×D) = ob(C)×
ob(D), and where for (A,B), (C,D) ∈ ob(C) × ob(D), HomC×D((A,B), (C,D)) = HomC(A,C) ×
HomD(B,D), and where, for f1 : C → C ′, g1 : D → D′, f2 : C ′ → C ′′, g2 : D′ → D′′ we have

(f2, g2) ◦(C,D),(C′,D′),(C′′,D′′) (f1, g1) = (f2 ◦C,C′,C′′ f1, g2 ◦D,D′,D′′ g1).

A functor whose domain is a product of two categories in this way is called a "bifunctor".

Given two categories C,D, and two functors F : C → D and G : C → D, a natural transformation

η : F ⇒ G consists of, for every object x ∈ ob(C), a morphism ηx : F (x) → G(x), such that for

every x, y ∈ ob(C) and f : x→ y, the following diagram commutes:

G(y) G(x)

F (y) F (x)

G(f)

ηy ηx

F (f)

i.e. ηy ◦ F (f) = G(f) ◦ ηx.
A natural isomorphism η : F ⇒ G is a natural transformation such that each ηx : F (x) → G(x)

is an isomorphism. For a natural isomorphism η : F ⇒ G, we have its inverse η−1 : G ⇒ F (with

(η−1)x = (ηx)
−1) which is also a natural isomorphism.

A monoidal category consists of a category C along with some extra decoration, where together

they satisfy certain properties. Specifically, it is equipped with a distinguished object I ∈ ob(C)
(the "identity object"), a bifunctor (− ⊗ −) : C × C → C and, for all A,B,C ∈ ob(C), natural

isomorphisms αA,B,C ("the associator"), LA (the "left unitor"), and RA (the "right unitor"), where
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these natural isomorphisms are α : ((− ⊗ −) ⊗ −) ∼= (− ⊗ (− ⊗ −)), L : (I ⊗ −) ∼= IdC , and

R : (−⊗ I) ∼= IdC , and which satisfy the following identities:

(1) "The pentagon identity" : For all A,B,C,D ∈ ob(C), the following diagram commutes:

(A⊗B)⊗ (C ⊗D)

((A⊗B)⊗ C)⊗D A⊗ (B ⊗ (C ⊗D))

(A⊗ (B ⊗ C))⊗D A⊗ ((B ⊗ C)⊗D)

αA,B,C⊗DαA⊗B,C,D

αA,B,C⊗idD

αA,B⊗C,D

idA ⊗αB,C,D

(2) "The triangle identity" : For all A,B ∈ ob(C) the following diagram commutes:

A⊗B

(A⊗ I)⊗B A⊗ (I ⊗B)

RA⊗idB idA ⊗LB

αA,I,B

Let Vect denote the category whose objects are vector spaces over the complex numbers and whose

morphisms are linear maps between those vector spaces.

Then Vect, equipped with the usual tensor product on vector spaces, C as the identity object, and

αA,B,C((u⊗ v)⊗w) := v⊗ (u⊗w) for any vectors u, v, w in the vector spaces A,B,C respectively,

is an example of a monoidal category.

A braided monoidal category consists of a monoidal category (C,⊗, I) equipped with a natural

transformation τ : (− ⊗ −) ⇒ (− ⊗ −) ◦ (swap) where "(− ⊗ −) ◦ (swap)" denotes the bifunctor

(− ⊗ −) with the order of the two inputs switched, and which satisfies the hexagon identities and

the triangle identities. That is to say:

• naturality: for all A,A′, B,B′ ∈ ob(C), and all f ∈ HomC(A,A
′) and g ∈ HomC(B,B

′) the

following diagram commutes:

B′ ⊗A′ B ⊗A

A′ ⊗B′ A⊗B

g⊗f

τA′,B′ τA,B

f⊗g

• hexagon identities: for all A,B,C ∈ C, the following diagrams commute:

7



(A⊗B)⊗ C A⊗ (B ⊗ C) (B ⊗ C)⊗A

(B ⊗A)⊗ C B ⊗ (A⊗ C) B ⊗ (C ⊗A)

A⊗ (B ⊗ C) (A⊗B)⊗ C C ⊗ (A⊗B)

A⊗ (C ⊗B) (A⊗ C)⊗B (C ⊗A)⊗B

αA,B,C

τA,B⊗idC

τA,B⊗C

αB,C,A

αB,A,C idB ⊗τA,C

α−1
A,B,C

idA ⊗τB,C

τA⊗B,C

α−1
C,A,B

α−1
A,C,B

τA,C⊗idB

• the triangle identity: for A ∈ ob(C) the following diagram commutes:

A

I ⊗A A⊗ I

LA RA
τI,A

.

There is a standard way to equip category Vect with a braiding to make it into a braided monoidal

category: for any A,B ∈ ob(Vect), and any u ∈ A and v ∈ B, define τA,B(u ⊗ v) := v ⊗ u, and

extend linearly to obtain τA,B : HomVect(A ⊗ B,B ⊗ A). Because this braiding τ is such that

τB,A ◦ τA,B = idA⊗B for all A,B ∈ ob(Vect), Vect is what is known as a "symmetric monoidal

category".

A category C is said to be "enriched in Vect" if for each pair of objects A,B ∈ ob(C), the hom-space

HomC(A,B) is equipped with structure that makes it an object of the category Vect, in such a way

that each ◦A,B,C : HomC(B,C)×HomC(A,B) → HomC(A,C) is bilinear.

There is a more general notion in category theory of a category C enriched in some given monoidal

category V, where instead of HomC(A,B) necessarily being a set, it is instead an object in V, and

composition is given by a morphism HomC(B,C)⊗HomC(A,B) → HomC(A,C) in V rather than a

function between sets, and where conditions analogous to the requirements on the composition map

in the definition of a category are imposed on this composition morphism. However, in this text we

will only consider enrichment in a couple monoidal categories (Vect and SVect) where the objects

have underlying sets and have their monoidal products fit nicely with the cartesian product of sets -

e.g. bilinear maps from a product of two vector spaces corresponding to linear maps from the tensor

product of those vector spaces - and as such we will not need the general theory of enrichment, and

8



can instead treat enriched categories as ordinary categories whose hom-sets carry extra structure

and where the composition is compatible with these extra properties. So, rather than giving the

general definition of enrichment in an abitrary monoidal category, we just define enrichment in the

particular monoidal categories we are concerned with, Vect and (later) SVect.

A monoidal category (C,⊗, I) is "enriched in Vect" if, in addition to the category C being enriched

in Vect, the bifunctor (− ⊗ −) : C × C → C has the property that for any A,B,C,D ∈ ob(C), the

map HomC(A,B)×HomC(C,D) → HomC(A⊗C,B⊗D) is bilinear. (This definition comes from the

enriched version of the definition of a monoidal category, where instead of having (−⊗−) a bifunctor

from C×C to C, instead having (−⊗−) be a bifunctor from C⊠C, where HomC⊠C((A,B), (C,D)) =

HomC(A,C) ⊗ HomC(B,D), and the bifunctor, being enriched in Vect, is required to be a linear

map from HomC(A,C)⊗ HomC(B,D) to HomC(A⊗ B,C ⊗D), therefore, restricting to a bilinear

map from HomC(A,C)×HomC(B,D) to HomC(A⊗B,C ⊗D).)

2.2. Super vector spaces and Superalgebras

Let SVect be the symmetric monoidal category of "super vector spaces (over C) with even mor-

phisms", defined as:

• ob(SVect) is the set of super vector spaces, i.e. (Z/2Z)-graded vector spaces (over C),

where for A ∈ ob(SVect), A is A0 ⊕A1 for some A0, A1 ∈ ob(Vect)

• for A,B ∈ ob(SVect), the morphisms from A to B are the even linear maps from A to B, i.e.

HomSVect(A,B) = HomVect(A0, B0) ⊕ HomVect(A1, B1), so for every f ∈ HomSVect(A,B)

there are some g ∈ HomVect(A0, B0) and h ∈ HomVect(A1, B1) with f = g ⊕ h

• the identity morphism for A = A0 ⊕A1 is idA = idA0 ⊕ idA1

• for A,B ∈ ob(SVect), A ⊗ B is defined as (A ⊗ B) := (A ⊗ B)0 ⊕ (A ⊗ B)1 where

(A⊗B)0 := (A0 ⊗B0)⊕ (A1 ⊗B1) and (A⊗B)1 := (A0 ⊗B1)⊕ (A1 ⊗B0) where the ⊕
and ⊗ in the right hand sides of these equations are the ⊕ and ⊗ of Vect

• for f = g ⊕ h ∈ HomSVect(A,B) and j = k ⊕ l ∈ HomSVect(C,D), f ⊗ j ∈ HomSVect(A ⊗
C,B ⊗D) is defined as ((g ⊗ k) ⊕ (h ⊗ l)) ⊕ ((g ⊗ l) ⊕ (h ⊗ k)) with (g ⊗ k) ⊕ (h ⊗ l) ∈
HomVect((A⊗ C)0, (B ⊗D)0) and (g ⊗ l)⊕ (h⊗ k) ∈ HomVect((A⊗ C)1, (B ⊗D)1)

• the identity object is C⊕ 0

9



• the associator and unitor morphisms are obtained from the associator and unitor morphisms

of Vect in a straightforward way

• for A,B ∈ ob(SVect), the braiding morphism is τA,B ∈ HomSVect(A ⊗ B,B ⊗ A) defined

as (τA0,B0 ⊕ (−1) · τA1,B1) ⊕ (swap ◦ (τA0,B1 ⊕ τA1,B0)) with (τA0,B0 ⊕ (−1) · τA1,B1) ∈
HomVect((A⊗B)0, (B⊗A)0) and swap ◦ (τA0,B1 ⊕ τA1,B0) ∈ HomVect((A⊗B)1, (B⊗A)1),

where, for s, s′ = 0, 1, τAs,Bs′ ∈ HomVect(As ⊗ Bs′ , Bs′ ⊗ As) are the braiding morphisms

from Vect, and where swap : (B1 ⊗A0)⊕ (B0 ⊗A1) → (B0 ⊗A1)⊕ (B1 ⊗A0) is given by

the block matrix


 0 id(B1⊗A0)

id(B0⊗A1) 0


.

In particular, if u ∈ A and v ∈ B and both are homogeneous, then τA,B(u ⊗ v) =

(−1)|u||v|(v ⊗ u) where |u|, |v| are the grades of u, v respectively.

(There is a "forgetful functor" from SVect to Vect which forgets the grading and the braiding

structure, but preserves the monoidal structure, and in this sense SVect without its braiding can be

seen as a subcategory of Vect without its braiding.)

In a way that will be elaborated on shortly, superalgebras relate to SVect in a way that corresponds

directly to how algebras relate to Vect.

Similar to how categories can be enriched in Vect, they can also be enriched in SVect. A category

C is said to be enriched in SVect if each hom space HomC(A,B) is given the structure of a super

vector space (a Z/2Z-graded vector space), so that is is an object of SVect, and the composition is

both bilinear and even, in the sense that the extension of the bilinear map ◦A,B,C : HomC(B,C)×
HomC(A,B) → HomC(A,C) to the linear map ◦A,B,C : HomC(B,C)⊗HomC(A,B) → HomC(A,C),

is an even (grade preserving) linear map (and so, a morphism in SVect). A category enriched in

SVect is called a "supercategory".

There is also a definition for what it means for something to be a monoidal supercategory, i.e. a

monoidal category enriched in SVect, analogous to the definition of a monoidal category enriched in

Vect, with both being instances of a more general definition of a monoidal category being enriched

in another monoidal category. However, unlike a monoidal category enriched in Vect, a monoidal

category enriched in SVect is not in general a monoidal category when considered as an ordinary

category rather than as an enriched category. The definition of a (strict) monoidal category enriched

in SVect, i.e. of a (strict) monoidal supercategory, is given later in Definition 105.
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One example of a category enriched in SVect is the category SVect, whose objects are the same

as those of SVect, but where its hom spaces are, rather than the vector spaces of all even linear

maps from the domain to the codomain, instead, the super vector space of all linear maps from the

domain to the codomain.

A superalgebra is, concretely, a Z/2Z-graded algebra, meaning a super vector space A = A0 ⊕ A1

equipped with an (associative) bilinear multiplication that respects the grading, i.e. for x ∈ Ai and

y ∈ Aj , xy ∈ Ai+j .

However, in the same way that super vector spaces are distinguished from mere Z/2Z-graded vector

spaces, superalgebras are distinguished from Z/2Z-graded algebras by the introduction of signs

when swapping odd components.

For example, instead of the usual commutator

[A,B] := AB −BA,

superalgebras use the supercommutator

[A,B]± := AB − (−1)|A||B|BA,

(for homogeneous elements A,B ∈ A of degrees |A|, |B| ∈ Z/2Z, and extended bilinearly for general

elements). When the supercommutator of two elements is zero, we say that the two elements

supercommute. Two homogeneous elements supercommute when one of the two is even and they

commute, or if both are odd and they anticommute.

Similarly, the tensor product of superalgebras is defined so that elements of the two tensor factors

supercommute. Given superalgebras A1 and A2, their tensor product A1 ⊗ A2 is the superalgebra

whose underlying super vector space is the tensor product of the super vector spaces underlying the

respective superalgebras, and where the multiplication is defined such that

(A⊗B) · (C ⊗D) := (−1)|B||C|((A · C)⊗ (B ·D))

for all homogeneous A,C ∈ A1 and B,D ∈ A2, where |B|, |C| are the grades of B,C respectively,

and where the multiplication for general elements is defined by extending this bilinearly. (The ι for

the tensor product is defined by the tensor product of the ι maps for the two superalgebras.)
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In particular, this means that, for A ∈ A1 and B ∈ A2

(1⊗B)(A⊗ 1) = (−1)|A||B|(A⊗B) = (−1)|A||B|(A⊗ 1)(1⊗B),

i.e., (1⊗B) and (A⊗ 1) supercommute.

In terms of category theory, the analogy is this: (unital) algebras (over C) are monoid objects

in the monoidal category Vect, while superalgebras are monoid objects in the monoidal category

SVect. What it means to say that an algebra (respectively superalgebra) is a monoid object in

Vect (respectively SVect) is that an algebra (respectively superalgebra) is an object A of Vect

(respectively SVect) equipped with morphisms µ : A⊗A → A and ι : I → A such that the following

diagrams commute:

(A⊗ A)⊗ A A⊗ (A⊗ A)

A⊗ A A A⊗ A

µ⊗idA

αA,A,A

idA ⊗µ

µ µ

A⊗ I I ⊗ A

A⊗ A A A⊗ A

idA ⊗ι ι⊗idA

µ
R

L

µ

where R,L, α are the unitors and associator for Vect (respectively SVect) and I is the identity object

of Vect (respectively SVect), i.e. C. These same diagrams define a monoid object in any monoidal

category.

In any braided monoidal category, there is a definition of a kind of product of two monoid objects,

and this gives the definition of the tensor product of two algebras or two superalgebras:

Given two monoid objects (X,µX : X ⊗X → X, ιX : I → X) and (Y, µY : Y ⊗ Y → Y, ιY : I → Y )

the product of these monoid objects is X ⊗ Y equipped with

µX⊗Y := (µX ⊗ µY ) ◦ (idX ⊗τX,Y ⊗ idY )

(where the necessary associators are left implicit, and τX,Y : X ⊗ Y → Y ⊗X is the braiding) and

ιX⊗Y := (ιX ⊗ ιY ) ◦RI (where RI = LI : I → I ⊗ I is the unitor isomorphism for I).
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This defines the tensor product both for algebras (when the monoid objects are monoid objects in

Vect) and for superalgebras (when the monoid objects are monoid objects in SVect). When the

category is SVect, the braiding τX,Y introduces the sign that appears in the multiplication in the

earlier concrete definition.

(One may view a (super)algebra as the space of endomorphisms of an object in a one-object category

enriched in Vect (respectively SVect), and (super)algebra endomorphisms as (super)endofunctors.

Likewise with monoid objects in any monoidal category. This partially motivates some notation in

Chapter 4.)

2.3. Lattice Spin Systems

Let (Γ, d : Γ × Γ → R) be a discrete metric space. For the purposes here, (Γ, d) will generally be

a Delone set in R2, especially a lattice. For each x ∈ Γ, let H{x} be a finite-dimensional Hilbert

space, and let A{x} := B(H{x}), the algebra of (bounded) operators on H{x}, considered as a C∗-

algebra, where the norm is the operator norm. For any finite subset Λ of Γ, define the C∗-algebra

AΛ :=
⊗
x∈Λ

A{x} and HΛ :=
⊗
x∈Λ

H{x}. For such finite Λ, AΛ = B(HΛ). For infinite subsets Λ ⊆ Γ,

define AΛ to be direct limit of AΛ′ over finite subsets Λ′ of Λ.

More specifically, consider P0(Λ), the set of finite subsets of Λ, with P0(Λ) considered as an upwards-

directed set under the order of set inclusions. For finite subsets Λ1,Λ2 ∈ P0(Λ), if Λ1 ⊆ Λ2

there is an inclusion ιΛ1,Λ2 : AΛ1 ↪→ AΛ2 defined by ιΛ1,Λ2(A) := A ⊗ 1HΛ2\Λ1
. These inclusions

are compatible, in that for Λ1,Λ2,Λ3 ∈ P0(Λ) with Λ1 ⊆ Λ2 ⊆ Λ3, ιΛ2,Λ3 ◦ ιΛ1,Λ2 = ιΛ1,Λ3 .

({AΛ′ |Λ′ ∈ P0(Λ)}, {ιΛ1,Λ2 |Λ1 ⊆ Λ2 ∈ P0(Λ)}) is then a directed system in the category of C∗-

algebras, and it has a direct limit, a C∗-algebra which is to be called AΛ.

The specific construction of this limiting C∗ algebra is essentially by taking a union
⋃

Λ′∈P0(Λ)

AΛ′

where for Λ1 ⊆ Λ2 ∈ P0(Λ), AΛ1 is identified with its image under ιΛ1,Λ2 in AΛ2 , and then AΛ is

finally obtained by taking the Cauchy completion (with distance given by the norm), of this union.

Identify each AΛ′ with its image in this AΛ. Define AΛ,loc to be the subset of AΛ given by the union

of the AΛ′ for Λ′ ∈ P0(Λ).

Set A := AΓ and Aloc := AΓ,loc.

Definition 1. A state on a unital C∗-algebra A is a linear map ω : A → C which is "positive" in

that for all A ∈ A, ω(A∗A) ≥ 0, and such that ω(1) = 1.
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The definition of a state on a not-necessarily-unital C∗-algebra is similar, but non-unital C∗-algebras

will not be relevant here.

Definition 2. A Gelfand-Naimark-Segal (GNS) representation for state ω on a C∗-algebra A is

a triple (H, π,Ω) such that H is a Hilbert space, π : A → B(H) a ∗-representation, and Ω ∈ H
a unit vector such that ∀A ∈ A, ω(A) = ⟨Ω|π(A)Ω⟩ and such that Ω is "cyclic", meaning that

{π(A)Ω|A ∈ A} is norm-dense in H.

The GNS construction, for any C∗-algebra A and any state ω on A, constructs a GNS representation

of ω. GNS representations of a given state are unique up to unitary equivalence, in that if ω is a

state on a C∗-algebra A and (H, π,Ω) and (H̃, π̃, Ω̃) are both GNS representations of ω, there exists

a unitary linear map U : H → H̃ such that π̃ = Ad(U) ◦ π and Ω̃ = UΩ.

Definition 3. With our A and given a reference representation (Hπ, π : A → B(Hπ)) of A, another

representation (Hρ, ρ : A → B(Hρ)) of A satisfies the superselection criterion with respect to (Hπ, π)

if, for all cones Λ, there exists a unitary Vρ,Λ : Hρ → Hπ such that Ad(Vρ,Λ) ◦ ρ|AΛc = π|AΛc .

This definition can be interpreted as saying that, for any cone Λ, there is some unitary Vρ,Λ that

localizes the ways that ρ differs from the reference representation to within Λ, so that for any

observable supported outside of Λ, i.e. for any A ∈ AΛc , Ad(Vρ,Λ) ◦ ρ agrees with the reference

representation π on A.
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CHAPTER 3

Symmetry-Compatible Superselection Sectors in Quantum Spin

Systems with Compact Abelian Symmetry

3.1. Setup

In this chapter we will modify the setting for lattice spin systems (Section 2.3) by equipping the

algebra with a unitary on-site action of a locally compact abelian group.

Definition 4. For any topological group G, a system of on-site unitary G actions consists of a a

collection of group homomorphisms ((g ∈ G) 7→ (U{x},g ∈ U(H{x}))x∈Γ.

In this chapter we will almost entirely stick with one system of on-site unitary G actions, with one

exception where we will deal with two. As such, the phrasing will be with the system and group

being fixed. So:

Let G be a locally compact abelian group, and let Ĝ denote its Pontryagin dual; that is, the group

Ĝ := Hom(G,U(1)) of continuous group homomorphisms from G to U(1), equipped with pointwise

multiplication.

Recall the set of sites Γ and for each x ∈ Γ the finite-dimensional Hilbert space H{x}.

For each x ∈ Γ, let U{x},• : G → U(H{x}) ⊂ A{x} be a unitary representation of G on H{x}—that

is, a continuous group homomorphism from G to the unitary elements of A{x}. I.e. fix a system of

on-site unitary G-actions (U{x},• : G→ U(H{x}))x∈Γ.

Define the induced automorphism α{x},• : G→ Aut(A{x}) by

α{x},g := Ad(U{x},g).

For any finite subset Λ ⊂ Γ, define

UΛ,g :=
∏

x∈Λ
U{x},g, αΛ,g := Ad(UΛ,g).
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Then these are group homomorphisms from G into UΛ and Aut(AΛ), respectively:

(g 7→ UΛ,g) ∈ Hom(G,UΛ), (g 7→ αΛ,g) ∈ Hom(G,Aut(AΛ)).

For infinite Λ ⊆ Γ, define the action on A ∈ AΛ via the limit

αΛ,g(A) := lim
Λ′↗Λ
finite

αΛ′,g(A).

This limit exists for A ∈ AΛ,loc, and more generally in Aloc, because the sequence is eventually

constant. From this, by density and continuity, the definition extends to all of AΛ, and more

generally to all of A.

Definition 5. A state ω : A → C is called G-invariant if

ω ◦ αg = ω for all g ∈ G.

The following lemma is well-known:

Lemma 6. Let ω be a G-invariant state, and let (H, π,Ω) be a GNS representation of ω. Then there

exists a continuous group homomorphism

U (π) = (g 7→ U (π)
g ) : G→ U(H)

such that for all g ∈ G,

π ◦ αg = Ad(U (π)
g ) ◦ π, U (π)

g Ω = Ω.

This is a standard result; see, e.g., [Bratteli & Robinson, Operator Algebras and Quantum Statistical

Mechanics I, Corollary 2.3.17 and the start of section 4.3.1].

Definition 7. Let α : G→ Aut(A) be a group action. A G-covariant representation of (A, α) is a

pair ((Hπ, π), U
(π)
• ) consisting of a representation π : A → B(Hπ) and a strongly continuous unitary

representation U (π)
• : G→ U(Hπ) such that for all g ∈ G,

π ◦ αg = Ad(U (π)
g ) ◦ π.

Remark 8. Lemma 6 shows that every GNS representation of a G-invariant state naturally gives

rise to a G-covariant representation.
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Definition 9. For two G-covariant representations ((Hπ1 , π1), U
(π1)
• ), ((Hπ2 , π2), U

(π2)
• ), a con-

tinuous linear map T : Hπ1 → Hπ2 is a G-equivariant map if ∀A ∈ A, Tπ1(A) = π2(A)T and

∀g ∈ G,TU
(π1)
g = U

(π2)
g T .

We now define a version of the superselection criterion (Definition 3) suitable for G-covariant rep-

resentations:

Definition 10. With our A and the on-site action g 7→ αg, and a G-covariant representation

(Hπ, π : A → B(Hπ), U
(π)
• : G → U(Hπ)) to serve as the reference representation , another G-

covariant representation (Hρ, ρ : A → B(Hρ), U
(ρ)
• : G→ U(Hρ)) satisfies the G-equivariant version

of the superselection criterion with respect to (Hπ, π, U
(π)
• ) if, for all cones Λ, there exists a unitary

Vρ,Λ : Hρ → Hπ that is a G-equivariant map (i.e. such that for all g ∈ G, Vρ,ΛU
(ρ)
g = U

(π)
g Vρ,Λ) and

such that Ad(Vρ,Λ) ◦ ρ|AΛc = π|AΛc .

3.2. Ĝ-grading

In this section, we show that when G is compact and abelian, the various G-actions—on finite-

volume Hilbert spaces HΛ, algebras AΛ, the global algebra A, and Hilbert spaces Hπ associated

with G-covariant representations—induce a natural Ĝ-grading on each of these spaces.

We also construct, for each character ϕ ∈ Ĝ, a continuous projection operator Pϕ onto the grade-ϕ

component, for each space viewed as a Banach space. When the space is an algebra, the grading is

compatible with the multiplication; when it’s a Hilbert space, the grade components are orthogonal.

These projections arise as the Fourier coefficients of the group action, treating the action as a

function from G to the space of bounded linear operators.

The following lemma is well-known and will be useful:

Lemma 11. For any compact abelian group G, for any ϕ ∈ Ĝ,
∫
g∈G ϕ(g)dµ(g) = δϕ,1̂ where µ is the

normalized Haar measure for G and 1̂ is the identity element of Ĝ.

Proof. First, the integral
∫
g∈G ϕ(g)dµ(g) is well-defined because G is compact and ϕ(g) is

measurable (it is continuous) and |ϕ(g)| = 1 for all g ∈ G.

For any g2 ∈ G,

ϕ(g2) ·
∫

g∈G
ϕ(g)dµ(g) =

∫

g∈G
ϕ(g2)ϕ(g)dµ(g) =

∫

g2g∈g2G
ϕ(g2g)dµ(g2g) =

∫

g∈G
ϕ(g)dµ(g)
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by the translation-invariance of the Haar measure. Therefore, (ϕ(g2)− 1) ·
∫
g∈G ϕ(g)dµ(g) = 0. So,

as C is a field, either ϕ(g2) − 1 = 0 or
∫
g∈G ϕ(g)dµ(g) = 0. If ϕ is not the identity element of Ĝ,

then there is some g2 ∈ G such that ϕ(g2) ̸= 1̂(g2) = 1 and so the first factor isn’t zero, and so
∫
g∈G ϕ(g)dµ(g) = 0. On the other hand, if ϕ is the identity element of Ĝ, then

∫
g∈G ϕ(g)dµ(g) =∫

g∈G 1dµ(g) = 1. So,
∫
g∈G ϕ(g)dµ(g) = δϕ,1̂, as claimed. □

First, as a simpler test case that avoids any issues of convergence and interchanging orders of

integration, suppose that the group G is finite.

Theorem 12. Let B ∈ {HΛ,AΛ,Hπ,B(Hπ)}, G a finite abelian group, and f : G → Aut(B) ⊆
End(B) one of the aforementioned G actions and a group homomorphism, and µ(S) := |S|

|G| be the

normalized Haar measure on G. Then, for ϕ ∈ Ĝ,

Pϕ :=

∫

g∈G
f(g)ϕ(g−1)dµ(g) =

1

|G|
∑

g∈G
f(g)ϕ(g−1)

(a) For all g ∈ G, f(g) ◦ Pϕ = ϕ(g) · Pϕ
(b) Pϕ is a projection, and for ϕ1, ϕ2 ∈ Ĝ, Pϕ1 ◦ Pϕ2 = δϕ1,ϕ2Pϕ1 = δϕ1,ϕ2Pϕ2

(c) f(g) =
∑
ϕ∈Ĝ

ϕ(g)Pϕ. In particular, idB = f(1G) =
∑
ϕ∈Ĝ

Pϕ.

Proof. First, part (a):

f(g) ◦ Pϕ = f(g) ◦ ( 1

|G|
∑

g2∈G
ϕ(g−1

2 )f(g2))

=
1

|G|
∑

g2∈G
ϕ(g−1

2 )f(g) ◦ f(g2)

=
1

|G|
∑

g2∈G
ϕ(g)ϕ((gg2)

−1)f(gg2)

= ϕ(g)
1

|G|
∑

gg2∈gG
ϕ((gg2)

−1)f(gg2) = ϕ(g)Pϕ.

18



Now for part (b): For ϕ1, ϕ2 ∈ Ĝ (not necessarily distinct),

Pϕ1 ◦ Pϕ2 = (

∫

g1∈G
ϕ1(g

−1
1 )f(g1)dµ(g1)) ◦ Pϕ2

=

∫

g1∈G
ϕ1(g

−1
1 )f(g1) ◦ Pϕ2dµ(g1)

=

∫

g1∈G
ϕ1(g

−1
1 )ϕ2(g1) · Pϕ2dµ(g1)

= (

∫

g1∈G
(ϕ−1

1 ϕ2)(g1)dµ(g1))Pϕ2

= δϕ−1
1 ϕ2,1̂

Pϕ2 = δϕ1,ϕ2Pϕ2 .

The fifth equality in the above is due to lemma 11, and the third is by part (a).

For part (c):

∑

ϕ∈Ĝ

ϕ(g)Pϕ =
∑

ϕ∈Ĝ

ϕ(g)
1

|G|
∑

g2∈G
ϕ(g−1

2 )f(g2)

=
1

|G|
∑

ϕ∈Ĝ

∑

g2∈G
ϕ((g2g

−1)−1)f(g2g
−1) ◦ f(g)

=
∑

g2∈G
(
1

|G|
∑

ϕ∈Ĝ

ϕ((g2g
−1)−1))f(g2g

−1) ◦ f(g)

= (
∑

g2∈G
δg2,gf(g2g

−1)) ◦ f(g)

= idB ◦ f(g) = f(g).

The fourth equality is by the same reasoning as Lemma 11, except with G and Ĝ switched, using

the normalized Haar measure on Ĝ instead of on G. Note that these measures are only both

normalizable when G is finite as it is here. □

For each of these spaces, if x ∈ B is such that (f(g))(x) = ϕ(g) ·x for all g ∈ G, then x = Pϕ(x), i.e.

is homogeneous of grade ϕ. If for some finite Λ ⊂ Γ, v ∈ HΛ is homogeneous of grade ϕ1 and A ∈ AΛ

is homogeneous of grade ϕ2, then UΛ,gAv = UΛ,gAU
∗
Λ,gUΛ,gv = ϕ2(g)Aϕ1(g)v = (ϕ2ϕ1)(g)Av, so

Av has grade ϕ2ϕ1. The same applies for v ∈ Hπ and A ∈ B(Hπ) for a G-covariant representation

(π : A → B(Hπ), U
(π)
• ).
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Proposition 13. For G just compact abelian rather than finite and abelian, with µ the normalized

Haar measure for G, Pϕ :=
∫
g∈G ϕ(g

−1)f(g)dµ(g) exists. In addition:

(a) For all g ∈ G, f(g) ◦ Pϕ = ϕ(g) · Pϕ
(b) Pϕ is a projection, and for ϕ1, ϕ2 ∈ Ĝ, Pϕ1 ◦ Pϕ2 = δϕ1,ϕ2Pϕ1 = δϕ1,ϕ2Pϕ2

Proof. For each ϕ ∈ Ĝ,
∥∥ϕ(g−1)f(g)

∥∥ = 1, and ϕ(g−1)f(g) is measurable, so the Bochner

integral Pϕ :=
∫
g∈G ϕ(g

−1)f(g)dµ(g) exists, and

∥Pϕ∥ =

∥∥∥∥
∫

g∈G
ϕ(g−1)f(g)dµ(g)

∥∥∥∥

≤
∫

g∈G

∥∥ϕ(g−1)f(g)
∥∥ dµ(g) = 1.

To show (a):

As composition on the left with f(g) is a continuous linear map from B(B) to B(B),

f(g) ◦ Pϕ = f(g) ◦
∫

g2∈G
ϕ(g−1

2 )f(g2)dµ(g2)

=

∫

g2∈G
ϕ(g−1

2 )f(g) ◦ f(g2)dµ(g2)

=

∫

g2∈G
ϕ(g)ϕ((gg2)

−1)f(gg2)dµ(g2)

= ϕ(g) · Pϕ.

To show (b):

Composition on the right with Pϕ is also a continuous linear map from B(B) to B(B), and so

Pϕ1 ◦ Pϕ2 =

(∫

g∈G
ϕ1(g

−1)f(g)dµ(g)

)
◦ Pϕ2

=

∫

g∈G
ϕ1(g

−1)f(g) ◦ Pϕ2dµ(g)

=

∫

g∈G
ϕ1(g

−1)ϕ2(g)Pϕ2dµ(g)

=

(∫

g∈G
(ϕ−1

1 ϕ2)(g)dµ(g)

)
Pϕ2

= δϕ1,ϕ2Pϕ2

where that last equality is by Lemma 11. □
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Proposition 14. For any finite subset Λ of Γ there is a Ĝ-grading on AΛ such that for any ϕ ∈ Ĝ,

A ∈ AΛ is homogeneous of degree ϕ iff ∀g ∈ G, αΛ,g(A) = ϕ(g) ·A.

Proof. As AΛ is a matrix algebra over C, it can be made into a finite-dimensional Hilbert

space by equipping it with the Hilbert-Schmidt inner product, ⟨A|B⟩ := Tr(A∗B).

For each g ∈ G, and each A,B ∈ AΛ, as αΛ,g := Ad(UΛ,g),

⟨αΛ,g(A)|αΛ,g(B)⟩ = Tr(αΛ,g(A)
∗αΛ,g(B))

= Tr(UΛ,gA
∗BU∗

Λ,g) = Tr(A∗B) = ⟨A|B⟩,

So αΛ,g acts unitarily with respect to the Hilbert-Schmidt inner product.

Since G is abelian, the automorphisms {αΛ,g}g∈G form a commuting family of unitaries on the

finite-dimensional Hilbert space AΛ. Any such family can be simultaneously diagonalized, so there

exists an orthonormal basis of AΛ consisting of simultaneous eigenvectors for all αΛ,g.

For each such basis eigenvector A, let λA,g ∈ S1 be the eigenvalue satisfying αΛ,g(A) = λA,gA. One

verifies that g 7→ λA,g is a group homomorphism into S1:

αΛ,g1g2(A) = αΛ,g1(αΛ,g2(A)) = λA,g2αΛ,g1(A) = λA,g1λA,g2A,

so λA,g1g2 = λA,g1λA,g2 .

This homomorphism is continuous as it is the composition of the continuous map g 7→ αΛ,g(A) with

the continuous functional B 7→ ⟨A|B⟩ on AΛ. Thus, each eigenvector A is homogeneous of some

grade ϕ ∈ Ĝ, defined by ϕ(g) := λA,g.

For each ϕ ∈ Ĝ, let us write Aϕ
Λ for the subspace of AΛ consisting of all vectors homogeneous of

degree ϕ. Since the simultaneous eigenspaces of a family of commuting normal operators form a

direct sum decomposition of the space, we have

AΛ =
⊕

ϕ∈ĜΛ

Aϕ
Λ,

where ĜΛ ⊆ Ĝ is the (finite) set of characters that appear as eigenvalues in the decomposition of

AΛ. Because AΛ is finite dimensional, there are only finitely many ϕ such that Aϕ
Λ has a non-zero

element.
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To see that this direct sum decomposition defines a Ĝ-grading, note that for A ∈ Aϕ
Λ and B ∈ Aψ

Λ,

αΛ,g(AB) = αΛ,g(A)αΛ,g(B) = ϕ(g)A · ψ(g)B = (ϕψ)(g)AB,

so AB ∈ Aϕψ
Λ .

Lastly, note that since the ϕ-graded subspaces are pairwise orthogonal:

For Aϕ ∈ Aϕ
Λ, Bψ ∈ Aψ

Λ, ⟨Aϕ|Bψ⟩ = ⟨αΛ,g(Aϕ)|αΛ,g(Bψ)⟩ = (ϕ−1ψ)(g) · ⟨Aϕ|Bψ⟩ either ϕ = ψ or

⟨Aϕ|Bψ⟩ = 0. So, the decomposition is unique and canonical.

Therefore, this defines a Ĝ-grading on AΛ, and A ∈ AΛ is homogeneous of degree ϕ if and only if

αΛ,g(A) = ϕ(g)A for all g ∈ G. □

Remark 15. This Ĝ-grading on AΛ for finite regions Λ ⊂ Γ extends to a Ĝ-grading on Aloc (for

finite subsets Λ1,Λ2 ⊂ Γ such that Λ1 ⊆ Λ2, the inclusion of AΛ1 into AΛ2 is compatible with the

Ĝ-grading on each, so Aloc gets such a grading as well).

It at least largely extends to A as a whole as well (Proposition 13 still applies of course), but there

may be issues with convergence (analogous to those if Fourier series) if one wishes to represent

A ∈ A as
∑

ϕ∈Ĝ Pϕ(A).

Definition 16. An on-site unitary G-action consists consists of such a system of a unitary repre-

sentation (g ∈ G) 7→ (U{x},g ∈ U{x}) for each x ∈ Γ.

3.2.1. Ĝ-grading on Hilbert spaces. To define a Ĝ-grading on the infinite-dimensional

Hilbert spaces associated with G-covariant representations of (A, α), we begin with standard results

from the theory of unitary representations.

By the Peter–Weyl theorem [3], for any compact group G and any continuous unitary representation

U : G → U(H) on a separable Hilbert space H, there is a decomposition of H into a direct sum of

finite-dimensional irreducible subrepresentations. In particular, when G is abelian, each irreducible

subrepresentation is one-dimensional. Thus,

H =
⊕

ϕ∈Ĝ

Hϕ, where Hϕ := {v ∈ H | ∀g ∈ G, U(g)v = ϕ(g)v}.
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For each ϕ ∈ Ĝ, let pϕ denote the orthogonal projection onto Hϕ. These subspaces are mutually

orthogonal, and every vector v ∈ H can be written as

v =
∑

ϕ∈Ĝ

pϕv,

with unconditional convergence. These projections pϕ can also be written in integral form as:

pϕv =

∫

G
ϕ(g−1)Ugv dµ(g),

where µ is the normalized Haar measure on G.

Now define, for each ϕ ∈ Ĝ, the projection Pϕ : B(H) → B(H) by

Pϕ(A) :=

∫

G
ϕ(g−1)Ad(Ug)(A) dµ(g) .

Lemma 17. Let ϕ1, ϕ2 ∈ Ĝ, A ∈ B(H) and v ∈ H. Then:

Pϕ1(A) · pϕ2v = pϕ1ϕ2 Apϕ2v.

Proof.

Pϕ1(A) · pϕ2v =

∫

g∈G
ϕ1(g

−1)Ad(Ug)(A)dµ(g)pϕ2v

=

∫

G
ϕ1(g

−1)UgAU
∗
g pϕ2v dµ(g)

=

∫

G
ϕ1(g

−1)UgA U∗
g pϕ2v︸ ︷︷ ︸

=ϕ2(g−1)pϕ2v

dµ(g)

=

∫

G
ϕ1(g

−1)ϕ2(g
−1)UgApϕ2v dµ(g)

=

∫

G
(ϕ1ϕ2)(g

−1)UgApϕ2v dµ(g)

= pϕ1ϕ2 Apϕ2v.

□

Definition 18. For (H1, U
(1) : G → U(H1)) and (H2, U

(2) : G → U(H2)) two Hilbert spaces

equipped with a continuous unitary G-action, a bounded linear map T : H1 → H2 is said to be

homogeneous of grade ϕ ∈ Ĝ if U (2)
g T (U

(1)
g )∗ = ϕ(g)T for all g ∈ G.

23



Note that when (H1, U
(1)) = (H2, U

(2)) this is equivalent to Pϕ(T ) = T .

Projecting onto the ϕ-graded components for these maps between distinct Hilbert spaces equipped

with unitary G-actions also works the same (mutatis mutandis) as for bounded operators from one

such Hilbert space to itself, but we will not need that here.

Lemma 19. For i = 1, 2, 3 let (Hi, U
(i) : G → U(Hi)) be Hilbert spaces equipped with a continuous

unitary G-action. Let T : H1 → H2 be a bounded linear map which is homogeneous of grade ϕ ∈ Ĝ,

and let S : H2 → H3 be a bounded linear map which is homogeneous of grade ψ ∈ Ĝ.

Then, S ◦ T : H1 → H3 is homogeneous of grade ψϕ.

Proof. For all g ∈ G,

U (3)
g ST · (U (1)

g )∗ = (U (3)
g S · (U (2)

g )∗) (U (2)
g T · (U (1)

g )∗)

= (ψ(g)S)(ϕ(g)T )

= ψ(g)ϕ(g)ST = (ψϕ)(g)ST.

□

Now specialize to the case where (π : A → B(Hπ), U
(π) : G → U(Hπ)) is a G-covariant representa-

tion of (A, α), with U := U (π).

Lemma 20. Let A ∈ B(Hπ). If A ̸= 0, then:

(1) There exists ϕ ∈ Ĝ such that Pϕ(A) ̸= 0.

(2) For every such ϕ, there exists a non-zero vector u ∈ Hπ and ϕ1 ∈ Ĝ such that:

• u is homogeneous of grade ϕ1 (i.e., u = pϕ1u),

• Au ̸= 0,

• Pϕ(A)u ̸= 0.

Proof. Let A ∈ B(Hπ) be non-zero. Then there exists some v ∈ Hπ such that Av ̸= 0.

As Hπ decomposes as
⊕

ϕ1∈Ĝ(Hπ)ϕ1 , we can write:

v =
∑

ϕ1∈Ĝ

pϕ1v, with unconditional convergence.
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Then,

Av =
∑

ϕ1∈Ĝ

Apϕ1v.

Since Av ̸= 0, at least one term in the sum is non-zero, say Apϕ1v ̸= 0 for some ϕ1 ∈ Ĝ.

Now decompose Apϕ1v into its graded components. There exists ϕ2 ∈ Ĝ such that:

pϕ2Apϕ1v ̸= 0.

Set ϕ := ϕ2ϕ
−1
1 , so that ϕ2 = ϕϕ1.

By Lemma 17, we have:

Pϕ(A) · pϕ1v = pϕϕ1Apϕ1v = pϕ2Apϕ1v ̸= 0.

Therefore, Pϕ(A) ̸= 0.

Set u := pϕ1v. Then u is homogeneous of grade ϕ1, Au ̸= 0, and Pϕ(A)u ̸= 0.

For the second part: let ϕ ∈ Ĝ be such that Pϕ(A) ̸= 0. Then apply the above argument to Pϕ(A)

in place of A to find such a homogeneous vector u.

□

Lemma 21. If A ∈ B(Hπ) and there is exactly one ϕ ∈ Ĝ such that Pϕ(A) ̸= 0, then Pϕ(A) = A,

i.e. A is homogeneous of grade ϕ.

Proof. For all ϕ1 ∈ Ĝ, if there is v ∈ Hπ such that Apϕ1v ̸= pϕϕ1Apϕ1v, then with Apϕ1v =
∑

ϕ2∈Ĝ pϕ2Apϕ1v must have pϕ2Apϕ1v ̸= 0 for some ϕ2 ̸= ϕϕ1. Set ϕ′ = ϕ2ϕ
−1
1 so that ϕ′ϕ1 = ϕ2.

Then, Pϕ′(A)ϕ1v = pϕ′ϕ1Apϕ1v ̸= 0 (by Lemma 17), and therefore Pϕ′(A) ̸= 0, with ϕ′ = ϕ2ϕ
−1
1 ̸=

(ϕϕ1)ϕ
−1
1 = ϕ.

But, we are given that for ϕ′ ̸= ϕ that Pϕ′(A) = 0. Therefore, it must be that for all ϕ1 ∈ Ĝ that

for all v ∈ Hπ that Apϕ1v = pϕϕ1Apϕ1v.

So, Apϕ1 = pϕϕ1Apϕ1 for all ϕ1 ∈ Ĝ.

For any v ∈ Hπ, v =
∑

ϕ1
pϕ1v, (which converges unconditionally, so as, A is bounded,) therefore

Av =
∑

ϕ1
Apϕ1v ( also converging unconditionally).

And, as for all ϕ1 ∈ Ĝ, Apϕ1 = pϕϕ1Apϕ1 , therefore Av =
∑

ϕ∈Ĝ pϕϕ1Apϕ1v.
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By Lemma 17, Pϕ(A)pϕ1v = pϕϕ1Apϕ1v. So,

Av =
∑

ϕ1∈Ĝ

Pϕ(A)pϕ1v = Pϕ(A)
∑

ϕ1∈Ĝ

pϕ1v = Pϕ(A)v.

So, A = Pϕ(A). □

3.3. Refining the Ĝ-grading

The goal of this section is to conclude, under certain additional conditions, that if a product of

two operators with disjoint support is homogeneous of grade 1̂ ∈ Ĝ, then both of the factors are

themselves homogeneous (possibly of nontrivial grade).

Definition 22. Let ((g ∈ G) 7→ (U{x},g ∈ U(H{x}))x∈Γ be a system of on-site unitary G-actions,

and let Λ ⊂ Γ. Then, for each x ∈ Γ, define

Ũ{x},(g1,g2) :=




U{x},g1 if x ∈ Λ

U{x},g2 if x ∈ Λc.

This defines a system ((g1, g2) 7→ Ũ{x},(g1,g2))x∈Γ of on-site unitary G×G-actions.

(More generally, this can be extended to any partition of Γ, with one copy of G for each part. Here,

we consider only the case of a region and its complement.)

From this, for each finite region Λ1 ∈ P0(Γ), define the maps (g1, g2) 7→ ŨΛ1,(g1,g2) and (g1, g2) 7→
α̃Λ1,(g1,g2) as for any system of on-site unitary group actions, and likewise define (g1, g2) 7→ α̃(g1,g2).

Note that for all g ∈ G and for all finite Λ1 ∈ P0(Γ), that ŨΛ1,(g,g) = UΛ1,g. Also note that for all

g ∈ G, α̃(g,g) = αg.

The Pontryagin dual of G×G is (isomorphic to) the group Ĝ× Ĝ.

With this system of on-site unitary G ×G actions, an element of AΛ which has grade ϕ ∈ Ĝ with

respect to the grading obtained from the system of on-site unitaryG actions, has grade (ϕ, 1̂) ∈ Ĝ×Ĝ
with respect to the grading obtained from this system of on-site unitary G × G-actions. Likewise,

an element of AΛc of grade ϕ ∈ Ĝ with respect to the grading from the G action, has grade

(1̂, ϕ) ∈ Ĝ× Ĝ with respect to the grading from this G×G action.

This is because the G×G action acts on AΛ only by the first copy of G, and acts on AΛc only by

the second copy of G. So, α̃(g,1)|AΛ
= αg|AΛ

and α̃(1,g)|AΛc = αg|AΛc .
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The purpose of the next few lemmas is largely in order to circumvent issues of convergence that

may arise when trying to express operators A ∈ B(Hπ) as sums of their homogeneous components,

either with respect to the Ĝ-grading or the (Ĝ× Ĝ)-grading. (These issues do not arise when G is

finite.)

Lemma 23. Let (π : A → B(Hπ), U
(π) : G→ U(Hπ)) be a G-covariant representation of (A, α) and

(π : A → B(Hπ), Ũ
(π) : G × G → U(Hπ)) be a G × G-covariant representation of (A, α̃). Suppose

that ∀g ∈ G, Ũ
(π)
(g,g) = U

(π)
g . Then, for all ϕ1, ϕ2 ∈ Ĝ,

pϕ1ϕ2p(ϕ1,ϕ2) = p(ϕ1,ϕ2) = p(ϕ1,ϕ2)pϕ1ϕ2 ,

where the projections p(ϕ1,ϕ2) for (ϕ1, ϕ2) ∈ Ĝ × Ĝ are the projections onto the (ϕ1, ϕ2) ∈ Ĝ × Ĝ

grade components of Hπ, defined using Ũ (π) just as the projections pϕ are defined using U (π).

Proof. First to show that pϕ1ϕ2p(ϕ1,ϕ2) = p(ϕ1,ϕ2):

pϕ1ϕ2p(ϕ1,ϕ2) =

∫

g∈G
(ϕ1ϕ2)(g

−1)U (π)
g dµ(g) p(ϕ1,ϕ2)

=

∫

g∈G
(ϕ1ϕ2)(g

−1)U (π)
g p(ϕ1,ϕ2)dµ(g)

=

∫

g∈G
(ϕ1ϕ2)(g

−1)Ũ
(π)
(g,g)p(ϕ1,ϕ2)dµ(g)

=

∫

g∈G
(ϕ1ϕ2)(g

−1)(ϕ1, ϕ2)(g, g)p(ϕ1,ϕ2)dµ(g)

=

∫

g∈G
(ϕ1ϕ2)(g

−1)ϕ1(g)ϕ2(g)p(ϕ1,ϕ2)dµ(g)

=

∫

g∈G
p(ϕ1,ϕ2)dµ(g) = p(ϕ1,ϕ2).

Showing that p(ϕ1,ϕ2) = p(ϕ1,ϕ2)pϕ1ϕ2 is essentially the same, except that instead of using

Ũ
(π)
(g1,g2)

p(ϕ1,ϕ2) = (ϕ1, ϕ2)(g1, g2)p(ϕ1,ϕ2) to conclude that U
(π)
g p(ϕ1,ϕ2) = (ϕ1, ϕ2)(g, g)p(ϕ1,ϕ2), it

uses p(ϕ1,ϕ2)Ũ
(π)
(g1,g2)

= (ϕ1, ϕ2)(g1, g2)p(ϕ1,ϕ2) to conclude that p(ϕ1,ϕ2)U
(π)
g = (ϕ1, ϕ2)(g, g)p(ϕ1,ϕ2).

(One concludes that p(ϕ1,ϕ2)Ũ
(π)
(g1,g2)

= (ϕ1, ϕ2)(g1, g2)p(ϕ1,ϕ2) from the fact that Ũ (π)
(g1,g2)

p(ϕ1,ϕ2) =

(ϕ1, ϕ2)(g1, g2)p(ϕ1,ϕ2) and p(ϕ1,ϕ2)Ũ
(π)
(g1,g2)

v = p(ϕ1,ϕ2)Ũ
(π)
(g1,g2)

∑
(ϕ′1,ϕ

′
2)∈Ĝ×Ĝ p(ϕ′1,ϕ′2)v for all v ∈ Hπ.)

□
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Lemma 24. Let (π : A → B(Hπ), U
(π) : G→ U(Hπ)) be a G-covariant representation of (A, α) and

(π : A → B(Hπ), Ũ
(π) : G × G → U(Hπ)) be a G × G-covariant representation of (A, α̃). Suppose

that ∀g ∈ G, Ũ
(π)
(g,g) = U

(π)
g . Let ϕ1, ϕ2 ∈ Ĝ and A ∈ B(Hπ).

Then, if P(ϕ1,ϕ2)(A) ̸= 0, then Pϕ1ϕ2(A) ̸= 0.

Proof. Suppose P(ϕ1,ϕ2)(A) ̸= 0. Then, by Lemma 20 there exists a vector v ∈ Hπ which is

homogeneous with respect to the Ĝ × Ĝ grading, of some grade (ψ1, ψ2) ∈ Ĝ × Ĝ, and such that

P(ϕ1,ϕ2)(A)v = P(ϕ1,ϕ2)(A)p(ψ1,ψ2)v ̸= 0.

By Lemma 17, P(ϕ1,ϕ2)(A)p(ψ1,ψ2)v = p(ϕ1,ϕ2)(ψ1,ψ2)Ap(ψ1,ψ2)v.

By Lemma 23, p(ψ1,ψ2)v = pψ1ψ2p(ψ1,ψ2)v, so, (using v = p(ψ1,ψ2)v) we have v = pψ1ψ2v.

Therefore,

p(ϕ1,ϕ2)(ψ1,ψ2)Pϕ1ϕ2(A)v = p(ϕ1,ϕ2)(ψ1,ψ2)Pϕ1ϕ2(A)pψ1ψ2v

= p(ϕ1,ϕ2)(ψ1,ψ2)pϕ1ϕ2ψ1ψ2Apψ1ψ2v

= p(ϕ1ψ1,ϕ2ψ2)pϕ1ϕ2ψ1ψ2Apψ1ψ2v

= p(ϕ1ψ1,ϕ2ψ2)Ap(ψ1,ψ2)v

= P(ϕ1,ϕ2)(A)p(ψ1,ψ2)v ̸= 0.

(The fourth equality is using Lemma 23 on the left part of the expression and pψ1ψ2v = v = p(ψ1,ψ2)v

on the right part of the expression.)

So, as p(ϕ1,ϕ2)(ψ1,ψ2)Pϕ1ϕ2(A)v ̸= 0, therefore Pϕ1ϕ2(A)v ̸= 0, and so Pϕ1ϕ2(A) ̸= 0. □

Lemma 25. Let (π : A → B(Hπ), U
(π) : G→ U(Hπ)) be a G-covariant representation of (A, α) and

(π : A → B(Hπ), Ũ
(π) : G × G → U(Hπ)) be a G × G-covariant representation of (A, α̃). Suppose

that Ũ (π)
(g,g) = U

(π)
g for all g ∈ G.

Let A ∈ π(AΛ)
′′ and B ∈ π(AΛc)′′. Then:

For all (g1, g2) ∈ G×G, Ad(Ũ (π)
(g1,g2)

)(A) = Ad(U
(π)
g1 ) and Ad(Ũ

(π)
(g1,g2)

)(B) = Ad(U
(π)
g2 ).

Furthermore, P(ϕ,1̂)(A) = Pϕ(A) and P(1̂,ϕ)(B) = Pϕ(B).

Proof. The arguments about A ∈ π(AΛ)
′′ (involving the first copy of G and Ĝ) and about

B ∈ π(AΛc)′′ (involving the second copies) are symmetric, so we give the proof only for A.
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Since for all g ∈ G,

Ad(Ũ
(π)
(1,g))(π(a)) = π(α̃(1,g)(a)) = π(a) for all a ∈ AΛ,

it follows that Ũ (π)
(1,g) ∈ π(AΛ)

′ = (π(AΛ)
′′)′. (Here, 1 denotes the identity element of G.)

Thus, for g ∈ G, and A ∈ π(AΛ)
′′, Ad(Ũ (π)

(1,g))(A) = A.

So, for (g1, g2) ∈ G×G and A ∈ π(AΛ)
′′,

Ad(Ũ
(π)
(g1,g2)

)(A) = Ad(Ũ
(π)
(g1,g1)

· Ũ (π)

(1,g−1
1 g2)

)(A)

= Ad(Ũ
(π)
(g1,g1)

)(A) = Ad(U (π)
g1 )(A) .

For the grading projections, we compute, for A ∈ π(AΛ)
′′ and ϕ ∈ Ĝ:

P(ϕ,1̂)(A) =

∫

(g1,g2)∈G×G
(ϕ, 1̂)(g1, g2)Ad(Ũ

(π)
(g1,g2)

)(A) dµG×G(g1, g2)

=

∫

(g1,g2)∈G×G
ϕ(g−1

1 )Ad(U (π)
g1 )(A) dµG×G(g1, g2)

=

∫

g1∈G
ϕ(g−1

1 )Ad(U (π)
g1 )(A) dµG(g1) = Pϕ(A),

since the integral over g2 contributes nothing (the integrand is constant in g2).

The argument for P(1̂,ϕ)(B) = Pϕ(B) is the same, with the roles of Λ and Λc reversed. □

Lemma 26. Let (π : A → B(Hπ), U
(π) : G→ U(Hπ)) be a G-covariant representation of (A, α) and

(π : A → B(Hπ), Ũ
(π) : G×G→ U(Hπ)) be a G×G-covariant representation of (A, α̃).

Then, for all ϕ ∈ Ĝ and all (ϕ1, ϕ2) ∈ Ĝ × Ĝ, for all regions Λ1 ⊆ Γ, for all X ∈ π(AΛ1)
′′,

Pϕ(X), P(ϕ1,ϕ2)(X) ∈ π(AΛ1)
′′. (In particular one can apply this to Λ1 = Λ or to Λ1 = Λc.)

Proof. Let Λ1 ⊆ Γ.

As α and α̃ are on-site and U (π) and Ũ (π) represent them for π, for all g ∈ G and all (g1, g2) ∈ G×G,

Ad(U
(π)
g )(π(AΛ1)) = π(AΛ1) and Ad(Ũ

(π)
(g1,g2)

)(π(AΛ1)) = π(AΛ1).

For any set S of operators and any unitary U , (Ad(U)(S))′′ = Ad(U)(S′′).

Therefore, for X ∈ π(AΛ1)
′′, Ad(U (π)

g )(X),Ad(Ũ
(π)
(g1,g2)

)(X) ∈ π(AΛ1)
′′.

What remains then is that the Bochner integrals defining Pϕ(A) =
∫
g∈G ϕ(g

−1)Ad(U
(π)
g )(X)dµG(g)

and P(ϕ1,ϕ2)(A) =
∫
(g1,g2)∈G×G(ϕ1, ϕ2)((g1, g2)

−1)Ad(Ũ
(π)
(g1,g2)

)(X)dµG×G(g1, g2) of functions with

values in π(AΛ1)
′′, are still in π(AΛ1)

′′.
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Since π(AΛ1)
′′ is a von Neumann algebra, it is a Banach space, and so is closed under (converging)

Bochner integrals of operator-valued functions taking values in it. So these absolutely convergent

Bochner integrals in π(AΛ1)
′′ converge to values in π(AΛ1)

′′.

I.e. Pϕ(X), P(ϕ1,ϕ2)(X) ∈ π(AΛ1)
′′.

□

Lemma 27. Let (π : A → B(Hπ), U
(π) : G→ U(Hπ)) be a G-covariant representation of (A, α) and

(π : A → B(Hπ), Ũ
(π) : G × G → U(Hπ)) be a G × G-covariant representation of (A, α̃). Suppose

that ∀g ∈ G, Ũ
(π)
(g,g) = U

(π)
g .

Suppose also that π has the property that if X ∈ π(AΛ)
′′ and Y ∈ π(AΛc)′′ and X,Y are non-zero,

then XY ̸= 0, where Λ is the region in terms of which the (G×G)-action is defined.

Let A ∈ π(AΛ)
′′ and B ∈ π(AΛc)′′.

Then, if AB is non-zero and is homogeneous of grade 1̂ ∈ Ĝ, then A and B are each homogeneous

with respect to the Ĝ-grading, and their grades are inverses of each-other.

Proof. As AB ̸= 0, A ̸= 0 and B ̸= 0. So, by Lemma 20, as A and B are non-zero, there is at

least one ϕA ∈ Ĝ such that PϕA(A) ̸= 0, and at least one ϕB ∈ Ĝ such that PϕB (B) ̸= 0.

By Lemma 25, because the (G×G)-action acts only by the first copy of G on π(AΛ)
′′ and only by the

second copy of G on π(AΛc)′′, for such ϕA, ϕB ∈ Ĝ, PϕA(A) = P(ϕ,1̂)(A) and PϕB (B) = P(1̂,ϕB)(B).

For any X ∈ B(Hπ), Ad(U
(π)
g )(P(ϕ1,ϕ2)(A)) = Ad(Ũ

(π)
(g,g))(P(ϕ1,ϕ2)(A)) = (ϕ1, ϕ2)(g, g)P(ϕ1,ϕ2)(A) =

(ϕ1ϕ2)(g)P(ϕ1,ϕ2)(A). So, if an operator has grade (ϕ1, ϕ2) with respect to the (Ĝ× Ĝ)-grading, it

therefore has grade ϕ1ϕ2 with respect to the Ĝ-grading. So, if P(ϕ1,ϕ2)(X) ̸= 0, then Pϕ1ϕ2(X) ̸= 0

For sake of contradiction, suppose that there are some ϕA, ϕB ∈ Ĝ such that ϕAϕB ̸= 1̂ and such

that PϕA(A) ̸= 0 and PϕB (B) ̸= 0. For (g1, g2) ∈ G×G,

Ad(Ũ
(π)
(g1,g2)

)(AB) = Ad(Ũ
(π)
(g1,g2)

)(A) Ad(Ũ
(π)
(g1,g2)

)(B)

= Ad(U (π)
g1 )(A) Ad(U (π)

g2 )(B),

so

P(ϕA,ϕB)(AB) =

∫

(g1,g2)∈G×G
(ϕA, ϕB)(g1, g2)Ad(Ũ

(π)
(g1,g2)

)(AB)dµG×G(g1, g2)
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=

∫

(g1,g2)∈G×G
ϕA(g

−1
1 )ϕB(g

−1
2 )Ad(U (π)

g1 )(A) Ad(U (π)
g2 )(B)dµG×G(g1, g2)

=

∫

(g1,g2)∈G×G
ϕA(g

−1
1 )Ad(U (π)

g1 )(A)ϕB(g
−1
2 )Ad(U (π)

g2 )(B)dµG×G(g1, g2)

=

∫

g1∈G

∫

g2∈G
ϕA(g

−1
1 )Ad(U (π)

g1 )(A)ϕB(g
−1
2 )Ad(U (π)

g2 )(B)dµG(g2)dµG(g1)

=

∫

g1∈G
ϕA(g

−1
1 )Ad(U (π)

g1 )(A)

∫

g2∈G
ϕB(g

−1
2 )Ad(U (π)

g2 )(B)dµG(g2)dµG(g1)

=

∫

g1∈G
ϕA(g

−1
1 )Ad(U (π)

g1 )(A)dµG(g1)

∫

g2∈G
ϕB(g

−1
2 )Ad(U (π)

g2 )(B)dµG(g2)

= PϕA(A)PϕB (B).

By Lemma 26, as A ∈ π(AΛ)
′′ and B ∈ π(AΛc)′′, therefore PϕA(A) ∈ π(AΛ)

′′ and PϕB (B) ∈
π(AΛc)′′.

Because PϕA(A) ∈ π(AΛ)
′′ and PϕB (B) ∈ π(AΛc)′′ are non-zero, by the property of π that the

product of a any pair of non-zero operators from π(AΛ)
′′, π(AΛc)′′ respectively is non-zero, their

product is non-zero.

Therefore, P(ϕA,ϕB)(AB) = PϕA(A)PϕB (B) ̸= 0.

By Lemma 24, as P(ϕA,ϕB)(A) ̸= 0, therefore PϕAϕB (A) ̸= 0.

But, we said that ϕAϕB ̸= 1̂ and we are given that AB is homogeneous of grade 1̂. Therefore, we

have a contradiction, so the assumption that there are ϕA, ϕB such that ϕA ·ϕB ̸= 1̂ and PϕA(A) ̸= 0

and PϕB (B) ̸= 0 must have been false.

Therefore, for all ϕA, ϕB such that PϕA(A) ̸= 0 and PϕB (B) ̸= 0, we must have that ϕAϕB = 1̂.

So, for any ϕA ∈ Ĝ, if PϕA(A) ̸= 0, the only ϕB ∈ Ĝ such that PϕB (B) can be non-zero, is

ϕB = ϕ−1
A , and so B must be homogeneous of grade ϕB = ϕ−1

A . By the same reasoning, A must also

be homogeneous. So, there is exactly one ϕA ∈ Ĝ such that PϕA(A) ̸= 0 and exactly one ϕB ∈ Ĝ

such that PϕB (B) ̸= 0, and ϕAϕB = 1̂.

Therefore, by Lemma 21 we have that PϕA(A) = A and PϕB (B) = B, i.e. that A and B are

homogeneous of grades ϕA and ϕB (with ϕAϕB = 1̂) as desired. □

3.4. Classification of Superselection sectors with respect to a Product Representation

From Theorem 4.5 of [4] we have
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Theorem 28 (Theorem 4.5 from [4]). Let Λ ⊂ Γ be a cone. Let πΛ : AΛ → B(HΛ) and πΛc :

AΛc → B(HΛc) be irreducible representations of AΛ and AΛc respectively. Let π0 := πΛ ⊗ πΛc .

Then, if any irreducible representation σ : A → B(Hσ) satisfies the superselection criterion (Def-

inition 3) with respect to π0, then σ is unitarily equivalent to π0, i.e. there exists a unitary

U : Hσ → HΛ ⊗HΛc such that Ad(U) ◦ σ = π0.

Remark 29. Let Λ ⊂ Γ. Let (πΛ, U
(πΛ)) and (πΛc , U (πΛc )) be G-covariant representations of

(AΛ, αΛ) and (AΛc , αΛc) respectively. Set π0 := πΛ ⊗ πΛc and U (π0) := (g 7→ U
(πΛ)
g ⊗ U

(πΛc )
g ).

Then (π0, U
(π0)) is a G-covariant representation of (A, α). In addition, if one defines the map

Ũ (π0) := ((g1, g2) 7→ U
(πΛ)
g1 ⊗U (πΛc )

g2 ) : G×G→ U(HπΛ ⊗HπΛc ) then (π0, Ũ
(π0)) is a G×G-covariant

representation of (A, α̃), such that ∀g ∈ G, Ũ
(π0)
(g,g) = U

(π0)
g .

Theorem 30. Let Λ ⊂ Γ be a cone. Let (πΛ, U
(πΛ)
• ) and (πΛc , U

(πΛc )
• ) be G-covariant representations

of (AΛ, αΛ) and (AΛc , αΛc) respectively, with πΛ : AΛ → B(HΛ) and πΛc : AΛc → B(HΛc) being

irreducible representations. Let (π0, U
(π0)
• ) be the G-covariant representation of (A, α) obtained as

π0 := πΛ ⊗ πΛc and U (π0)
g := U

(πΛ)
g ⊗ U

(πΛc
g .

Let (σ : A → B(Hσ), U
(σ)
• ) be a G-covariant representation of A which satisfies the G-symmetry

respecting version of the superselection criterion with respect to (π0, U
(π0)
• ) and let σ be an irreducible

representation.

Then, there exists a unique ϕ ∈ Ĝ such that there is a unitary U : Hσ → Hπ0 = HΛ ⊗ HΛc of

grade ϕ (in the sense defined in Definition 18) such that Ad(U) ◦ σ = π0. (There are also no

non-homogeneous U : Hσ → Hπ0 that satisfy Ad(U) ◦ σ = π0.)

In this sense, the irreducible G-covariant representations of (A, α) satisfying the G-equivariant ver-

sion of the superselection criterion with respect to (π0, U
(π0)) are classified by Ĝ up to G-equivariant

unitary equivalence.

Proof. As (σ, U (σ)
• ) satisfies the G-symmetry respecting version of the superselection criterion

with respect to (π0, U
(π0)
• ), σ satisfies the superselection criterion (the version not dealing with a

G-action, Definition 3) with respect to π0.

Therefore, by Theorem 28, there exists a unitary U : Hσ → Hπ0 such that Ad(U) ◦ σ = π0.

Because (σ, U
(σ)
• ) satisfies the the G-equivariant version of the superselection criterion (Defini-

tion 10) with respect to (π0, U
(π0)
• ), there exist G-equivariant unitaries Vσ,Λ, Vσ,Λc : Hσ → Hπ0
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such that Ad(Vσ,Λ) ◦ σ|AΛc = π0|AΛc and Ad(Vσ,Λc) ◦ σ|AΛ
= π0|AΛ

. So Ad(V ∗
σ,Λ) ◦ π0|AΛc = σ|AΛc

and Ad(V ∗
σ,Λc) ◦ π0|AΛ

= σ|AΛ
, and therefore Ad(UV ∗

σ,Λ) ◦ π0|AΛc = Ad(U) ◦ σ|AΛc = π0|AΛc and

Ad(UV ∗
σ,Λc)◦π0|AΛ

= π0|AΛ
. Now, using π0 = πΛ⊗πΛc so π0|AΛc = 1HΛ

⊗πΛc and π0|AΛ
= πΛ⊗1HΛc

we have Ad(UV ∗
σ,Λ) ◦ (1HΛ

⊗ πΛc) = (1HΛ
⊗ πΛc) and Ad(UV ∗

σ,Λc) ◦ (πΛ ⊗ 1HΛc ) = (πΛ ⊗ 1HΛc ).

Therefore, UV ∗
σ,Λ ∈ (1HΛ

⊗ πΛc(AΛc))′ = (B(HΛ) ⊗ 1HΛc ). Let VΛ ∈ U(HΛ) be the unitary such

that UV ∗
σ,Λ = VΛ ⊗ 1HΛc and let VΛc ∈ U(HΛc) be the unitary such that UVσ,Λc = 1HΛ

⊗ VΛc .

Then, (V ∗
Λ ⊗ VΛc) = (VΛ ⊗ 1HΛc )

∗ · (1HΛ
⊗ VΛc) = (UV ∗

σ,Λ)
∗(UVσ,Λc) = Vσ,ΛV

∗
σ,Λc .

As Vσ,ΛV ∗
σ,Λc : Hπ0 → Hπ0 is a composition of two G-equivariant maps, it is also equivariant.

At this point, we wish to apply Lemma 27 to (VΛ ⊗ 1HΛc )
∗ · (1HΛ

⊗ VΛc) having grade 1̂. Apply the

refining of the Ĝ grading in Section 3.3 where the region Λ ⊂ Γ chosen is the cone Λ. As described

in Remark 29, for Ũ (π0)
(g1,g2)

:= U
(πΛ)
g1 ⊗U (πΛc )

g2 , (π0, Ũ (π0)) is a G×G-covariant representation of (A, α̃)
such that ∀g ∈ G, Ũ

(π0)
(g,g) = U

(π0)
g . In addition, as π0 = πΛ ⊗ πΛc , π0(AΛ)

′′ = πΛ(AΛ)
′′ ⊗ 1HΛc and

π0(AΛc)′′ = 1HΛ
⊗ πΛc(AΛc)′′, and so for any non-zero X ∈ π0(AΛ)

′′ and non-zero Y ∈ π0(AΛc)′′

we have XY ̸= 0. Therefore, the conditions of Lemma 27 are satisfied, so for A = (VΛ ⊗ 1HΛc )
∗

and B = (1HΛ
⊗ VΛc), and AB = Vσ,ΛV

∗
σ,Λc being G-equivariant, i.e. having grade 1̂ ∈ Ĝ, we

conclude that A = (VΛ ⊗ 1HΛc )
∗ and B = (1HΛ

⊗ VΛc) are each homogeneous with respect to the

Ĝ-grading, with grades inverses of each-other. Say ϕ is the grade of (1HΛ
⊗VΛc), so ϕ−1 is the grade

of (VΛ ⊗ 1HΛc )
∗.

For all g ∈ G, Ad(U
(π0)
g )((VΛ ⊗ 1HΛc )

∗) = ϕ−1(g)(VΛ ⊗ 1HΛc )
∗, so Ad(U

(π0)
g )((VΛ ⊗ 1HΛc )) =

(ϕ−1(g)(VΛ ⊗ 1HΛc )
∗)∗ = ϕ(g)(VΛ ⊗ 1HΛc ), so (VΛ ⊗ 1HΛc ) is homogeneous of grade ϕ as well.

So, with (VΛ⊗1HΛc ) = (UV ∗
σ,Λ) and (1HΛ

⊗VΛc) = UVσ,Λc both homogeneous of grade ϕ, multiplying

either by Vσ,Λ or Vσ,Λc respectively on the right, we get that U is homogeneous of grade ϕ as well

(by Lemma 19), because Vσ,Λ and Vσ,Λc are G-equivariant, i.e. of grade 1̂, and ϕ1̂ = ϕ.

Finally, if for some unitary U2 : Hσ → Hπ0 is satisfies Ad(U2)◦σ = π0, then, because π0 = Ad(U)◦σ,

we have Ad(U∗U2) ◦ σ = σ, and so U∗U2 ∈ σ(A)′, and therefore because σ is irreducible, U∗U2 ∈
σ(A)′ = C1Hσ and so U2 is just U multiplied by a phase factor, and so has the same grade ϕ.

Hence, the irreducible G-covariant representations of (A, α) satisfying the G-equivariant version of

the superselection criterion (relative to (π0, U
(π0)
• )), are classified by Ĝ up to G-equivariant unitary

equivalence. □
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In particular, if ω = ωΛ ⊗ ωΛc where ωΛ : AΛ → C and ωΛc are pure G-invariant states, then for

(HΛ, πΛ : AΛ → B(HΛ),ΩωΛ) and (HΛc , πΛc : AΛc → B(HΛc), ΩωΛc ) the GNS representations of

ωΛ and ωΛc respectively, by Lemma 6, there exist U (πΛ) : G → U(HΛ) and U (πΛc ) : G → U(HΛc)

such that (πΛ, U
(πΛ)) and (πΛc , U (πΛc )) are G-covariant representations of (AΛ, αΛ) and (AΛc , αΛc)

respectively. And, with Hπ0 := HΛ ⊗ HΛc , π0 := πΛ ⊗ πΛc , Ωω := ΩωΛ ⊗ ΩωΛc , (Hπ0 , π0,Ωω) is

a GNS representation of ω, and for U (π0) := (g 7→ (U
(πΛ)
g ⊗ U

(πΛc
g )), (π0, U (π0)) is a G-covariant

representation of (A, α). So, the conditions of Theorem 30 hold. So, (using the fact that GNS

representations are unique up to unitary equivalence) for (Hπ0 , π0,Ωω) a GNS representation of such

a G-invariant product state ω = ωΛ⊗ωΛc and U (π0) the unitary G-action on Hπ0 that fixes Ωω, and

makes (π0, U (π0)) a G-covariant representation of (A, α), the irreducible G-covariant representations

that satisfy the G-equivariant version of the superselection criterion with respect to (π0, U
(π0)) are

classified by Ĝ up to G-equivariant unitary equivalence.
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CHAPTER 4

Braided C∗-Tensor Supercategories from Fermionic Lattice Systems

with Approximate Twisted Haag Duality

4.1. Introduction

The goal of this chapter is to extend a construction [6] introduced by Ogata for extracting braided

C∗-tensor categories from gapped quantum spin systems. This construction, building on the Do-

plicher–Haag–Roberts (DHR) approach to superselection sectors, applies to bosonic spin systems

satisfying approximate Haag duality. Here, we generalize it to the fermionic case by assuming a

modified form of duality, which we call approximate twisted Haag duality.

4.1.1. High-Level Overview of Approach. In [6], after picking a reference representation,

a subalgebra of the algebra of bounded operators on the Hilbert space for that representation

is selected. Given an algebra, the endomorphisms of that algebra as objects and intertwiners

between those endomorphisms, forms a strict monoidal category. For the particular algebra chosen,

there are endomorphisms corresponding to different representations satisfying the superselection

criterion. This sub-collection of endomorphisms is closed under composition, and includes the

identity endomorphism, so the full subcategory of the category of endomorphisms of the algebra,

with just the objects that correspond to the representations satisfying the superselection criterion,

is also a strict monoidal category. In addition to this, a braiding morphisms is constructed and

shown to be a braiding morphism, and the category is shown to have subobjects and direct sums,

and to be independent of certain choices. Therefore, it is found to be a braided C∗-tensor category.

The approach here is similar. However, many things are instead Z/2Z-graded. In particular, the

algebra of bounded operators on the (Z/2Z-graded) Hilbert space for the representation, is regarded

as a superalgebra, as is the subalgebra of it which is selected. The endomorphisms of this subalgebra

which correspond to the representations of the algebra satisfying the version of the superselection

criterion under consideration, are all grade-preserving. Given a superalgebra, the grade-preserving

endomorphisms (as objects), together with intertwiners defined in the graded (or "super") sense,
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form a monoidal supercategory. A number of key properties must then be verified to ensure the

analogous versions of them still hold in this graded setting.

4.1.2. Main Result. The main result of this chapter is the following theorem. For the more

precise statement and proof, see Theorem 108.

Theorem 31. Let A be the quasilocal algebra of a quantum lattice system with fermionic degrees

of freedom. Let π0 be an irreducible grade-preserving representation that satisfies the approximate

twisted Haag duality, and where π0(AΛ)
′′
even and (π0(AΛc)t′)even are properly infinite factors.

Then the representations satisfying the superselection criterion with respect to π0, and which are

localized to a chosen fixed cone Λ0, form a braided strict C∗-tensor supercategory (Definition 107).

The assumption that π0(AΛ)
′′
even and (π0(AΛc)t′)even are properly infinite factors is something which

I believe should follow under assumptions of π0 being a GNS representation of a pure gapped

ground state for a uniformly bounded finite range even interaction along with some other reasonable

assumptions, but I have not yet managed to prove this, and therefore I make the assumption about

the factors. The place this assumption is used is in order to show that the category has direct sums

and subobjects. The other parts of the result do not depend on this assumption.

4.2. Setup and Assumptions

4.2.1. Two-Dimensional Quantum Lattice Systems. Let Γ be a lattice in R2. Technically

it does not need to be a lattice in the strict sense, only a Delone set: that is, there exist constants

r,R > 0 such that for all x, x′ ∈ Γ with x ̸= x′, we have d(x, x′) > r, and such that for all p ∈ R2

there exists an x ∈ Γ such that d(x, p) < R .

However, we will call it a "lattice" even though we really mean Delone set. The reader may think

of Γ as being Z2 throughout.

For each x ∈ Γ let H{x} = H{x},even ⊕ H{x},odd be a Z/2Z-graded finite-dimensional (and not

0-dimensional) Hilbert space. We also impose the following condition:

Assumption 4.2.1 (to guarantee existence of odd local unitaries in large enough regions). The set

{x ∈ Γ|dim(H{x},even) = dim(H{x},odd) ≥ 1}

is also a Delone set.
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The reader may wish to suppose that this set is all of Γ. Nothing essential will be lost by doing so.

For x ∈ Γ let A{x} := B(H{x}) which, viewed not only as a C∗-algebra, but also as a superalgebra,

where the even (resp. odd) part consists of the grade-preserving (resp. grade-reversing) operators.

Let UαF ,{x} := 1H{x},even − 1H{x},odd ∈ A{x},even. For A = A0 +A1 ∈ A{x},

Ad(UαF ,{x})(A0 +A1) = A0 −A1.

Here and throughout, A = A0 +A1 means that A0 is the even part of A and A1 is the odd part.

Fix a total order on Γ. The particular order will not matter as long as it is kept consistent.

For finite Λ ⊂ Γ, AΛ :=
⊗

x∈ΛA{x} where this tensor product is taken in the order induced by the

total ordering chosen on Γ, and refers to the tensor product for superalgebras. (The tensor product

for superalgebras is such that, if A,B,C,D are each homogeneous, then (A ⊗ B) · (C ⊗ D) =

(−1)|B||C|(AC)⊗ (BD) where |B|, |C| are the grades of B,C respectively.)

For finite subsets Λ1,Λ2 ⊂ Γ satisfying Λ1 ⊆ Λ2 there is an inclusion AΛ1 ↪→ AΛ2 by taking the

tensor product with the identity operator from AΛ2\Λ1
. These form a directed system.

For infinite Λ ⊆ Γ, define AΛ := lim
Λ′→Λ

AΛ′ where this is the direct limit of the directed system

consisting of the C∗-algebras AΛ′ for finite Λ′ ⊂ Λ, and the inclusions between them.

In particular AΓ is defined this way. Set A := AΓ.

Throughout, for Λ ⊆ R2, Λ will often be identified with Λ∩Γ when the context is such that a subset

of Γ is required.

Define αF ∈ Aut(A) as, for A = A0 +A1 ∈ A, αF (A0 +A1) := A0 −A1.

For finite Λ ⊂ Γ, define UαF ,Λ :=
∏
x∈Λ UαF ,{x}, and define αF,Λ := Ad(UαF ,Λ). Note that αF (A) =

lim
Λ→Γ

αΛ(A) where the limit is over finite Λ ⊂ Γ.

Let H = Heven ⊕ Hodd be a Z/2Z-graded Hilbert space, and π0 : A → B(H) be an irreducible

grade-preserving ∗-representation of the C∗-algebra A.

Let UαF := 1Heven −1Hodd . Ad(UαF )◦π0 = π0 ◦αF . For A = A0+A1 ∈ B(H), Ad(UαF )(A0+A1) =

A0 −A1.

So, for α : Z/2Z → Aut(A) a group homomorphism which sends the identity element to the identity

and the non-identity element to αF , and for Uα : Z/2Z → U(H) the group homomorphism which

sends the non-identity element of Z/2Z to UαF , (π0, Uα) is a (Z/2Z)-covariant representation of
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(A, α). Because α is entirely determined by αF , and likewise Uα is entirely determined by UαF , we

will describe this as (π0, UαF ) being a (Z/2Z)-covariant representation of (A, αF ).

Definition 32. Given a representation ρ : A → B(Hρ) and a unitary Uρ ∈ U(Hρ), we say that

(ρ, Uρ) is a (Z/2Z)-covariant representation of (A, αF ) if Ad(Uρ) ◦ ρ = ρ ◦ αF and U2
ρ = 1.

Lemma 33. For any cone Λ, there exists an odd unitary B1 ∈ AΛ,loc.

Proof. By assumption 4.2.1 there is some radius such that for any ball in R2 of that radius,

there is a site x ∈ Γ in that ball such that dim(H{x},even) = dim(H{x},odd) ≥ 1. And, for such a site

x, there is an odd unitary in A{x}. (One can take an orthonormal basis of H{x},even and of H{x},odd,

and then map each basis element of the former to a different basis element of the latter, and visa

versa, and extend linearly.)

For any cone Λ ⊂ R2, and any positive radius, there is a ball of that radius that is a subset of Λ.

Therefore, there exists a site x ∈ Λ∩Γ such that there exists an odd unitary B1 ∈ A{x} ⊂ AΛ,loc. □

Remark 34. Conversely, for any finite subset R of Γ, if there is an odd unitary in AR, there must

be a site x ∈ R such that dim(H{x},even) = dim(H{x},odd) ≥ 1. This is because for such a unitary

to exist implies dim(HR,even) = dim(HR,odd), and the tensor product of two Z/2Z-graded finite

dimensional vector spaces only has the dimensions of the even and odd parts equal if at least one

of the two tensor factors has the dimensions of the even and odd parts equal.

4.2.2. Approximate Twisted Haag Duality. Following Equation 4.7 of [2]:

Definition 35. For any C∗ subalgebra A of B(H) such that Ad(UαF )(A) = A, define the twist of

A to be At := {A0 + UαFA1|A0 +A1 ∈ A}(where subscripts indicate parity).

Define "the twisted commutant" to be the commutant of the twist,

i.e. At′ = (At)′.

Also define the linear map tw : B(H) → B(H) as tw(A0 +A1) := A0 + UαFA1.

Note that Att = A.

Definition 36. Twisted locality is the condition on π that for any two disjoint cones Λ1,Λ2, that

π(AΛ1) ⊆ π(AΛ2)
t′.
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Twisted locality is obtained automatically, just as the usual locality, π(AΛ1) ⊆ π(AΛ2)
′ is obtained

automatically for spin systems.

Following Definition 4.3 of [2],

Definition 37. A representation π of A satisfies Twisted Haag duality if, for all cones Λ,

π(AΛc)t′ = π(AΛ)
′′.

Combining that definition with the definition of Approximate Haag duality given in [6],

Definition 38. A irreducible representation π : A → B(H) of A satisfies Approximate Twisted

Haag duality if: ∀φ ∈ (0, 2π), ∀ε > 0 such that φ + 4ε < 2π, there exists Rφ,ε > 0 and for δ > 0

exists decreasing functions fφ,ε,δ : [0,∞) → [0,∞) such that limt→∞ fφ,ε,δ(t) = 0 such that

(i) for all cones Λ such that |arg Λ| = φ, there exists an even graded unitary UΛ,ε ∈ U(H)

such that

π0 (AΛc)t ′ ⊆ Ad(UΛ,ε)

(
π0

(
A(Λ−Rφ,εeΛ)ε

)′′
)

(ii) ∀δ > 0, ∀t ≥ 0 there exists an even graded unitary ŨΛ,ε,δ,t ∈ π(A(Λ−t)ε+δ
)′′ such that

∥∥∥UΛ,ε − ŨΛ,ε,δ,t

∥∥∥ ≤ fφ,ε,δ(t).

For cones Λ, let RΛ,ε denote R|arg Λ|,ε. Also, for t ∈ R, let Λ + t denote Λ + teΛ.

While in [6] often π0(AΛc)′ appears for various cones Λ, in almost all of those cases the analogous

result here will have π0(AΛc)t′ in its place. As such, for all cones Λ we define A(Λ) := π0(AΛc)t′.

Definition 39. For α ∈ Aut(A), α is approximately-factorizable if:

(i): for each cone Λ and each δ > 0, there exist automorphism βΛ, β̃Λ ∈ Aut(AΛ), βΛc , β̃Λc ∈
Aut(AΛc) and ΞΛ,δ, Ξ̃Λ,δ ∈ Aut(AΛδ∩(Λc)δ) and unitaries vΛ,δ, ṽΛ,δ ∈ A such that

α = Ad(vΛδ) ◦ ΞΛ,δ ◦ (βΛ ⊗ βΛc),

α−1 = Ad(ṽΛδ) ◦ Ξ̃Λ,δ ◦ (β̃Λ ⊗ β̃Λc).

(ii): For each δ, δ′ > 0 and φ ∈ (0, 2π), there exists a decreating function gφ,δ,δ′(t) with domain

R≥0 such that lim
t→∞

gφ,δ,δ′(t) = 0 and such that for any cone Λ such that |arg Λ| = φ, for
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all t ≥ 0, there exist unitaries v′Λ,δ,δ′,t, ṽ
′
Λ,δ,δ′,t ∈ A(Λ−t)δ+δ′

satisfying

∥∥vΛ,δ − v′Λ,δ,δ′,t
∥∥ ,

∥∥ṽΛ,δ − ṽ′Λ,δ,δ′,t
∥∥ ≤ gφ,δ,δ′(t)

for unitaries vΛ,δ, ṽΛ,δ in (i).

Definition 40. For α ∈ Aut(A), α is approximately-factorizable in a grade-preserving way if it is

approximately-factorizable and the automorphisms

βΛ, β̃Λ, βΛc , β̃Λc ,ΞΛ,δ, Ξ̃Λ,δ and the unitaries vΛ,δ, ṽΛ,δ, v′Λ,δ,δ′,t, ṽ
′
Λ,δ,δ′,t can be chosen such that all

those automorphisms are grade-preserving and all those unitaries are even.

An automorphism α which is approximately-factorizable in a grade-preserving way will of course

itself be grade-preserving.

Following Proposition 1.3 of [6]:

Proposition 41. Let (H, π0) be an irreducible grade-preserving representation of A which satisfies

approximate twisted Haag duality. Then for any automorphism α ∈ Aut(A) that is approximately-

factorizable in a grade-preserving way, (H, π0 ◦ α) also satisfies approximate twisted Haag duality.

Proof. The proof is very similar to the proof of Proposition 1.3 of [6], and the length of the

changes that need to be made is much smaller than the length of the overall proof, so only the

changes will be described.

After π0(A(Λδ)c) ⊆ Ad(π0(α(ṽΛδ,δ)))(π0 ◦ α(AΛc)) is obtained, rather than taking the commutant

of this, take the twisted commutant, yielding

(Ad(π0(α(ṽΛδ,δ)))(π0 ◦ α(AΛc)))t′ ⊆ π0(A(Λδ)c)
t′.

As π0(α(ṽΛδ,δ)) is even, Ad(π0(α(ṽΛδ,δ)))((π0 ◦ α(AΛc))t′) ⊆ π0(A(Λδ)c)
t′, and applying the ap-

proximate twisted Haag duality in place of the application of approximate Haag duality, we get

Ad(π0(α(ṽΛδ,δ)))((π0 ◦ α(AΛc))t′) ⊆ Ad(UΛδ,δ · π0 ◦ α(ṽΛ̃2,δ,δ
))((π0 ◦ α(AΛ̃3δ

))′′) and so

(π0 ◦ α(AΛc))t′ ⊆ Ad(π0(α(ṽΛδ,δ))
∗ · UΛδ,δ · π0(α(ṽΛ̃2,δ,δ

)) )((π0 ◦ α(AΛ̃3δ
))′′).

With this, along with other details included in the proof of Proposition 1.3 of [6], defining U (1)
Λ,ε :=

π0(α(ṽΛδ,δ))
∗ · UΛδ,δ · π0(α(ṽΛ̃2,δ,δ

)) (and noting that it is even) is seen to show that (H, π0 ◦ α)
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satisfies part (i) of Definition 38 (approximate twisted Haag duality). The part of the proof in [6]

that shows that part (ii) of approximate Haag duality holds for the (H, π0 ◦ α) in that setting,

carries over to this setting to show that the (H, π0 ◦α) of this setting satisfies part (ii) of Definition

38 (approximate twisted Haag duality), with no changes being made. (The reason no changes need

to be made here is essentially due to the fact that this part of the proof and statement only makes

reference to double commutants, never to single commutants or to two operators commuting). □

4.2.3. Superselection Criterion for Lattice Systems with Fermionic Degrees of Free-

dom. Recall our fixed reference representation of A, π0 : A → B(H), which is irreducible and

grade-preserving.

To account for the anticommutation of odd operators with disjoint support, we define a variation

on the superselection criterion (see Definition 3) as follows:

Definition 42. A (Z/2Z)-covariant representation (ρ : A → B(H), Uρ ∈ U(H)) of (A, αF ) satisfies

the superselection criterion with respect to (π0, UαF ) if:

for all cones Λ, there exists an even unitary Vρ,Λ ∈ U(H) such that:

for all A0 ∈ AΛc,even, Ad(Vρ,Λ) ◦ ρ(A0) = π0(A0),

and for all A1 ∈ AΛc,odd, Ad(Vρ,Λ)(Uρρ(A1)) = UαF π0(A1).

Let O0 be the set of grade-preserving representations of A on H which satisfy the superselection

criterion with respect to π0.

For ρ ∈ O0, and Λ a cone, let Vρ,Λ be the set of even unitaries Vρ,Λ which satisfy the two conditions

at the end of the above definition.

Vρ,Λ will always be non-empty by virtue of ρ ∈ O0.

For ρ ∈ O0, define the superselection sector [ρ] to be the set of all σ ∈ O0 such that there exists an

even unitary U ∈ U(H) such that Ad(U) ◦ σ = ρ.

For any cone Λ, define

OΛ := {(ρ, Uρ) ∈ O0| ρ|AΛc = π0|AΛc} .
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Definition 43. For (ρ : A → B(H), Uρ) a representation of A equipped with an implementation

of αF , define the function ρt : A → B(H) as ρt(A0 + A1) := ρ(A0) + Uρρ(A1), for all A0 ∈ Aeven

and A1 ∈ Aodd.

Note that ρt is not an algebra homomorphism!

Definition 44. For (ρ : A → B(H), Uρ) and (σ : A → B(H), Uσ) two representations of A each

equipped with their respective implementations of αF , define R to be an intertwiner from (ρ, Uρ)

to (σ, Uσ) if ∀A ∈ A, Rρt(A) = σt(A)R (i.e. R · (ρ(A0) + Uρρ(A1)) = (σ(A0) + Uσσ(A1)) ·R). Let

R : (ρ, Uρ) → (σ, Uσ) denote that R is an intertwiner from (ρ, Uρ) to (σ, Uσ).

We will often write ρ in place of (ρ, Uρ), leaving Uρ implicit.

It can readily be seen that if R1 : ρ1 → ρ2 and R2 : ρ2 → ρ3, then R2R1 : ρ1 → ρ3

Proposition 45. For ρ ∈ O0 be an irreducible grade-preserving representation of A. Then Uρ is

either UαF or −UαF .

Proof of this is at 109. It can be seen that both values are possibilities, because for any ρ ∈ O0, it

can be seen that Uρ◦αF = −Uρ.

Lemma 46. For ρ ∈ O0, then,

if Uρ = UαF , then for all cones Λ, for all Vρ,Λ ∈ Vρ,Λ, for all A ∈ AΛc , have that Ad(Vρ,Λ) ◦ ρ(A) =
π0(A),

and, if Uρ = −UαF , then for all cones Λ, for all Vρ,Λ ∈ Vρ,Λ, for all A ∈ AΛc , have that Ad(Vρ,Λ) ◦
ρ(A) = π0 ◦ αF (A)

Proof of this is at 110.

(If ρ is irreducible, then by the result before this one, one of the two cases in this result will apply.

But, even if ρ is not irreducible, if Uρ is as described, one can still apply this.)

4.3. Analogous Results for Defining the Category

This section presents statements and definitions that are closely analogous to those in [6], which

are used in constructing the braided monoidal C∗-supercategory.
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Throughout, assume that π0, in addition to being irreducible, also satisfies approximate twisted

Haag duality.

As defined in equation A.7 of [6], define C(θ, φ) to be the set of cones for which no ray contained in

that cone has an angle in the interval [θ−φ, θ+φ] (where a ray of the form x⃗+{t(cos(β), sin(β))|t ∈
[0,∞)} is said to have angle β). A pair (θ, φ) is said to "label a forbidden direction" if θ ∈ R and

φ ∈ (0, π), so that the image [θ−φ, θ+φ], under the usual map from R to S1 is a proper non-empty

subset of S1. It is called a "forbidden direction" because it is the range of angles that the cones

used aren’t allowed to include.

The category constructed will be as follows: We fix a forbidden direction (θ, φ) and a cone Λ0 ∈
C(θ, φ). The objects of the category will be the representations in

OΛ0,∗ :=
{
ρ ∈ O0

∣∣∣ ρ|AΛc
0
= π0|AΛc

0
and Uρ = UαF

}
,

i.e. those representations satisfying the superselection criterion (Definition 42), which are localized

in Λ0, and which have the same implementation of the parity operator.

We will define a sub-superalgebra B(θ, φ) ⊆ B(H) (Definition 48) using the reference representation

π0. For each ρ ∈ OΛ0,∗ there is a unique corresponding grade preserving endomorphism T
(θ,φ),Λ0,1
ρ

of B(θ, φ), given by Definition 57. The hom spaces of the category are defined as the spaces of

intertwiners between these corresponding endomorphisms (Definition 74), in a sense that matches

with the definition of the hom spaces for the monoidal supercategory of the category of grade-

preserving endomorphisms of the superalgebra B(θ, φ). In fact, our category will be, up to relabeling

the objects, a full subcategory of that category. The supermonoidal product of the category is

defined on objects as ρ⊗ σ = T
(θ,φ),Λ0,1
ρ ◦ T (θ,φ),Λ0,1

σ ◦ π0 and is such that T (θ,φ),Λ0,1
ρ⊗σ = T

(θ,φ),Λ0,1
ρ ◦

T
(θ,φ),Λ0,1
σ , and the supermonoidal product on the morphisms (Definition 81) is defined in a way

that is equivalent to how the monoidal product for morphisms in the category of grade-preserving

endomorphisms of a superalgebra is defined. The braiding morphisms are defined by taking a limit of

some products of morphisms that transport where the representations are localized to relative to the

reference representation, to different cones that are far from each-other, described in Definition 92.

The direct sums and subobjects (so that even projections split) are constructed using isometries

obtained using some factors being properly infinite, in Lemma 99 and Lemma 100 respectively.

4.3.1. Superselection sectors and their extensions. Following Lemma 2.2 from [6]:
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Lemma 47. Let Λ1,Λ2 be cones, ρ, σ ∈ O0, Vρ,Λ1 ∈ Vρ,Λ1 , Vσ,Λ2 ∈ Vσ,Λ2, and R ∈ B(H) an

intertwiner from ρ to σ. Then Vσ,Λ2RV
∗
ρ,Λ1

∈ π(A(Λ1∪Λ2)c)
t′

Proof. Let A ∈ A(Λ1∪Λ2)c .

Vσ,Λ2RV
∗
ρ,Λ1

πt(A) = Vσ,Λ2Rρ
t(A)V ∗

ρ,Λ1
= Vσ,Λ2σ

t(A)RV ∗
ρ,Λ1

= πt(A)Vσ,Λ2RV
∗
ρ,Λ1

Using that Ad(Vρ,Λ1)◦ρt|AΛc
1
= πt|AΛc

1
and likewise for Vσ,Λ2 and that A(Λ1∪Λ2)c = AΛc

1
∩AΛc

2
. So, for

all πt(A) = π(A0) + UαF π(A1) ∈ (π(A(Λ1∪Λ2)c)
t, Vσ,Λ2RV

∗
ρ,Λ1

commutes with it, i.e. Vσ,Λ2RV
∗
ρ,Λ1

∈
π(A(Λ1∪Λ2)c)

t′. □

Based on the Definition 2.3 of [6]:

Definition 48. For θ ∈ R, φ ∈ (0, π), define B(θ, φ) := ⋃
Λ∈C(θ,φ) π0(AΛc)t′.

Also define B0(θ, φ) :=
⋃

Λ∈C(θ,φ) π0(AΛ)
′′.

By twisted locality, for all cones Λ, π0(AΛ) ⊆ π0(AΛc)t′, so π0(AΛ)
′′ ⊆ π0(AΛc)t′. Therefore

B0(θ, φ) ⊆ B(θ, φ) and B0(θ, φ)
∥·∥ ⊆ B(θ, φ). Under the assumption of (full, not approximate)

twisted Haag duality, it immediately follows that B(θ, φ) = ⋃
Λ∈C(θ,φ) π0(AΛ)′′

∥·∥
= B0(θ, φ)

∥·∥
. It

also follows withough this stronger assumption, as seen in the next lemma.

Entirely following Lemma 2.4 of [6]:

Lemma 49. Assuming approximate twisted Haag duality, the unitary UΛ,ε ∈ B(θ, φ) (where UΛ,ε

is from the definition of approximate twisted Haag duality, Definition 38) and the norm closure of

B0(θ, φ) is B(θ, φ).

The proof is essentially the same as the proof of Lemma 2.4 of [6]:

Proof. As B(θ, φ) is the norm closure of
⋃

Λ∈C(θ,φ) π0(AΛc)t′, to show that the norm closure

of B0(θ, φ) is B(θ, φ) it suffices to show that ∀Λ ∈ C(θ, φ), π0(AΛc)t′ ⊆ B0(θ, φ)
∥·∥

.

For all Λ ∈ C(θ, φ), pick ε > 0 such that Λ4ε ∈ C(θ, φ). For all t ≥ 0 and δ > 0, ŨΛ,ε,δ(t) ∈
π0(A(Λ−t)ε+δ

)′′. For δ small enough that Λε+δ ∈ C(θ, φ), we then have ŨΛ,ε,δ,t ∈ π0(A(Λ−t)ε+δ
)′′ ⊆

B0(θ, φ) ⊆ B(θ, φ), and that
∥∥∥ŨΛ,ε,δ,t − UΛ,ε

∥∥∥ ≤ f|arg Λ|,ε,δ(t). Therefore, as ŨΛ,ε,δ,t → UΛ,ε with

respect to the norm topology, and ŨΛ,ε,δ,t ∈ B0(θ, φ), we have that UΛ,ε is in the norm closure of

B0(θ, φ).
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As π0(AΛc)t′ ⊆ Ad(UΛ,ε)(π0(A(Λ−RΛ,ε)ε)
′′), and π0(A(Λ−RΛ,ε)ε)

′′ ⊆ B0(θ, φ) ⊆ B0(θ, φ)
∥·∥

and

UΛ,ε ∈ B0(θ, φ)
∥·∥

, and so π0(AΛc)t′ ⊆ B0(θ, φ)
∥·∥

. So, we have that for all cones Λ ∈ C(θ, φ)
that π0(AΛc)t′ ⊆ B0(θ, φ)

∥·∥
. So

⋃
Λ∈C(θ,φ) π0(AΛc)t′ ⊆ B0(θ, φ)

∥·∥
, so B(θ, φ) ⊆ B0(θ, φ)

∥·∥
. So

B0(θ, φ)
∥·∥

= B(θ, φ). □

Following Lemma 2.5 of [6]:

Lemma 50. For any cone Λ and any unitary uΛ ∈ A(Λ), ε, δ > 0 with |arg λ| + 4ε < 2π and

t ≥ R|arg Λ|,ε, there is a unitary ũΛ ∈ π0(A(Λ−t)ε+δ
)′′ such that ∥uΛ − ũΛ∥ ≤ 2f|arg Λ|,ε,δ(t), namely,

ũΛ := Ad(ŨΛ,ε,δ,tU
∗
Λ,ε)(uΛ). In addition, if uΛ is homogeneous, ũΛ will have the same parity.

Proof. This follows directly from the definition of approximate twisted Haag duality, Defini-

tion 38. □

Following Definition 2.6 of [6], except that Rφ,ε is for us the Rφ,ε that appears in Definition 38 the

definition of approximate twisted Haag duality rather than the one in the definition of approximate

Haag duality. These definitions are as follows:

Definition 51. We say that a set of cones S1 is distal from a set of cones S2 if there are cones

Λ̃1, Λ̃2 and ε > 0 such that
⋃

Λ1∈S1

Λ1 ⊆ Λ̃1,
⋃

Λ2∈S2

Λ2 ⊆ Λ̃2, and (Λ̃1 −RΛ̃1,ε
)ε ⊆ Λ̃c2.

We also say that a cone Λ1 is distal from a cone Λ2 if {Λ1} is distal from {Λ2}. If Λ1 is distal

from Λ2, then the two are disjoint. Let (θ, φ) label a forbidden direction. We of two sets of

cones S1,S2 ⊂ C(θ, φ) that S1 is distal from S2 with forbidden direction (θ, φ) if S1 is distal from

S2 and the cones Λ̃1, Λ̃2 and ε > 0 above can be chosen such that (Λ̃1)ε, (Λ̃2)ε ∈ C(θ, φ) and

arg((Λ̃1)ε) ∩ arg((Λ̃2)ε) = ∅.
Finally, we say that S1 ⊥(θ,φ) S2 if S1 is distal from S2 and S2 is distal from S1 both with forbidden

direction (θ, φ). And, we say that Λ1 ⊥(θ,φ) Λ2 if {Λ1} ⊥(θ,φ) {Λ2}.

Analogy of Lemma 2.8 of [6]:

Lemma 52. Let Λ1,Λ2 be cones such that Λ1 is distal from Λ2. For i = 1, 2, let Xi,ti ∈ π(A(Λi+ti)c)
t′

for each ti ≥ 0, such that supti≥0

∥∥Xi,ti
∥∥ <∞. Then

lim
t1,t2→∞

∥∥[X1,t1 , X2,t2 ]±
∥∥ = 0
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Proof. Since Λ1 is distal from Λ2, there exist cones Λ̃1, Λ̃2 and ε > 0 such that

Λ1 ⊂ Λ̃1 ⊂ (Λ̃1 −RΛ̃1,ε
)ε ⊂ Λ̃c2, Λ2 ⊂ Λ̃2.

For t1, t2 ≥ 0, we have

Λ1 + t1 ⊆ Λ1 ⊆ Λ̃1 ⊆ (Λ̃1 −RΛ̃1,ε
)ε ⊆ Λ̃c2 ⊆ Λc2 ⊆ (Λ2 + t2)

c.

By approximate twisted Haag duality we have

π(AΛ1+t1)
t′ ⊆ Ad(UΛ1+t1,

ε
2
)(π(A(Λ+t1−RΛ1,

ε
2
)ε)

′′)

and for t1 ≥ RΛ1,
ε
2
, we have (Λ1 + t1 −RΛ1,

ε
2
) ε
2
⊆ (Λ1) ε

2
⊆ (Λ2 + t2)

c, and so

π(AΛ1+t1)
t′ ⊆ Ad(UΛ1+t1,

ε
2
)(π(A(Λ2+t2)c)

′′).

Now, as X1,t1 ∈ π(AΛ1+t1)
t′, we have that Ad(U∗

Λ1+t1,
ε
2
)(X1,t1) ∈ π(A(Λ2+t2)c)

′′.

Decomposing into even and odd parts, Ad(UΛ1+t1,
ε
2
)(X1,t1) = A0 + A1, we have A0 + UαFA1 ∈

(π(A(Λ2+t2)c)
′′)t. Since X2,t2 ∈ π(A(Λ2+t2)c)

t′ = ((π(A(Λ2+t2)c)
′′)t)′, we therefore have

[X2,t2 , A0 + UαFA1] = 0.

Let Ũt1 := ŨΛ1+t1,
ε
2
, ε
2
,t1/2 ∈ π(A(Λ1+t1−t1/2)ε)

′′ ⊆ π(A(Λ2+t2)c)
′′. It is even, so it is also in

(π(A(Λ2+t2)c)
′′)t, so:

[X2,t2 , Ũt1 ] = 0.

Now write:

[X2,t2 , UΛ1+t1,
ε
2
] = [X2,t2 , Ũt1 + (UΛ1+t1,

ε
2
− Ũt1)]

= [X2,t2 , Ũt1 ] + [X2,t2 , UΛ1+t1,
ε
2
− Ũt1 ]

= [X2,t2 , UΛ1+t1,
ε
2
− Ũt1 ].

So, ∥∥∥[X2,t2 , UΛ1+t1,
ε
2
]
∥∥∥ ≤ 2

∥∥X2,t2
∥∥ ·

∥∥∥UΛ1+t1,
ε
2
− Ũt1

∥∥∥ ≤ 2
∥∥X2,t2

∥∥ f|arg Λ1|, ε2 ,
ε
2
(
t1
2
).
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Now, for U := UΛ1+t1,
ε
2
, estimate the graded commutator:

∥∥[X1,t1 , X2,t2 ]±
∥∥ =

∥∥Ad(U∗)([X1,t1 , X2,t2 ]±)
∥∥

=
∥∥[Ad(U∗)(X1,t1),Ad(U∗)(X2,t2)]±

∥∥

=
∥∥[Ad(U∗)(X1,t1), X2,t2 + U∗[X2,t2 , U ]]±

∥∥

≤
∥∥[Ad(U∗)(X1,t1), X2,t2 ]±

∥∥+
∥∥[Ad(U∗)(X1,t1), U∗[X2,t2 , U ]]±

∥∥

≤
∥∥[Ad(U∗)(X1,t1), X2,t2 ]±

∥∥+ 3
∥∥X1,t1

∥∥ ·
∥∥[X2,t2 , U ]

∥∥

≤
∥∥[Ad(U∗)(X1,t1), X2,t2 ]±

∥∥+ 3
∥∥X1,t1

∥∥ · 2
∥∥X2,t2

∥∥ f|arg Λ1|, ε2 ,
ε
2
(
t1
2
),

From X1,t1 ∈ π(A(Λ1+t1)c)
t′, it follows that its even and odd parts, (X1,t1)0, (X

1,t1)1 belong to

π(A(Λ1+t1)c)
t′ as well. Therefore, applying the conclusion that

[X2,t2 , (Ad(U(Λ1+t1),
ε
2
)(X1,t1))0 + UαF · (Ad(U(Λ1+t1),

ε
2
)(X1,t1))1] = 0

to each of (X1,t1)0, (X
1,t1)1 individually, we get that [X2,t2 ,Ad(U(Λ1+t1),

ε
2
)((X1,t1)0)] = 0 and

[X2,t2 , UαF ·Ad(U(Λ1+t1),
ε
2
)((X1,t1)1)] = 0. These are equivalent to

[(X2,t2)0, (Ad(U(Λ1+t1),
ε
2
)((X1,t1)0))] + [(X2,t2)1, (Ad(U(Λ1+t1),

ε
2
)((X1,t1)0))] = 0

and

UαF [(X
2,t2)0, (Ad(U(Λ1+t1),

ε
2
)((X1,t1)1))]− UαF {(X2,t2)1, (Ad(U(Λ1+t1),

ε
2
)((X1,t1)1))} = 0,

which, by both of these sums having the form of an even expression plus an odd expression, and both

being zero, is equivalent to [(X2,t2)0,Ad(U(Λ1+t1),
ε
2
)((X1,t1)0)], [(X2,t2)1,Ad(U(Λ1+t1),

ε
2
)((X1,t1)0)],

[(X2,t2)0,Ad(U(Λ1+t1),
ε
2
)((X1,t1)1)] and {(X2,t2)1,Ad(U(Λ1+t1),

ε
2
)((X1,t1)1)} each being 0, which im-

plies

[Ad(U(Λ1+t1),
ε
2
)(X1,t1), X2,t2 ]± = 0

Therefore,
∥∥[X1,t1 , X2,t2 ]±

∥∥ ≤ 6
∥∥X1,t1

∥∥ ∥∥X2,t2
∥∥ f|arg Λ1|, ε2 ,

ε
2
( t12 ),

and so lim
t1,t2→∞

∥∥[X1,t1 , X2,t2 ]±
∥∥ = 0.

□

47



Starting with the usual (counterclockwise) cyclic order on S1, if we remove the interval associated

with the forbidden direction, (θ − φ, θ + φ) then the remaining subset of S1 inherits a linear order

from the cyclic order on S1.

Definition 53. Let (θ, φ) label a forbidden direction.

For Λ1,Λ2 ∈ C(θ, φ), define Λ2 ↶
(θ,φ)

Λ1 to mean that all directions for Λ1 are counterclockwise, with

respect to cutting the cyclic order on the space of directions at the forbidden direction (θ, φ) to get

a linear order, from all directions for Λ2. That is, for i = 1, 2, there are θi ∈ R, φi ∈ (0, π) such that

(θi − φi, θi + φi) is the range of angles for Λi and such that

θ + φ < θ1 − φ1 < θ1 + φ1 < θ2 − φ2 < θ2 + φ2 < 2π + θ − φ.

Definition 54. For a given forbidden direction (θ, φ) and a cone Λ ∈ C(θ, φ), define

κΛ,θ,φ := {KΛ ∈ C(θ, φ)|Λ ↶
(θ,φ)

KΛ and KΛ distal from Λ with forbidden direction (θ, φ)} .

Following lemma 2.12 of [6]

Proposition 55. Let θ ∈ R, φ ∈ (0, π), ρ ∈ O0, and Vρ,Λ ∈ Vρ,Λ. Then, for all cones Λ ∈ C(θ, φ)

(i) For all cones KΛ ∈ κΛ,θ,φ and all Vρ,KΛ
∈ Vρ,KΛ

, there exists a cone CΛ ∈ C(θ, φ) such

that Ad(Vρ,Λ0V
∗
ρ,KΛ

)(π0(AΛc)t′) ⊆ π0(ACc
Λ
)t′ ⊆ B(θ, φ), and for all A ∈ AΛ,

Ad(Vρ,Λ0V
∗
ρ,KΛ

) ◦ πt0(A) = Ad(Vρ,Λ0) ◦ ρt(A)

(ii) For all cones KΛ, K̃Λ ∈ κΛ,θ,φ and all Vρ,KΛ
∈ Vρ,KΛ

and Vρ,K̃Λ
∈ Vρ,K̃Λ

,

Ad(Vρ,Λ0V
∗
ρ,KΛ

)|π0(AΛ)′′ = Ad(Vρ,Λ0V
∗
ρ,K̃Λ

)|π0(AΛ)′′ and

Ad(Vρ,Λ0V
∗
ρ,KΛ

)|π0(AΛ)′′t = Ad(Vρ,Λ0V
∗
ρ,K̃Λ

)|π0(AΛ)′′t.

Proof. To prove part (i), no non-obvious changes need to be made to the proof for part (i) of

Lemma 2.12 of [6].

For part (ii),

the reasoning which obtains a cone Λ̃1 ∈ C(θ, φ) and L1, L̃1 ≥ 0 such that {KΛ + L1, K̃Λ + L̃1} is

distal from Λ with forbidden direction (θ, φ) applies with no changes.

By 47,

Vρ,KΛ+L1V
∗
ρ,KΛ

∈ π0(AKc
Λ
)t′
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Vρ,K̃Λ+L̃1
V ∗
ρ,KΛ+L1

∈ π0(AΛ̃c
1
)t′

Vρ,K̃Λ
V ∗
ρ,K̃Λ+L̃1

∈ π0(AK̃c
Λ
)t′.

As Λ ⊆ Kc
Λ ∩ (Λ̃1)

c ∩ (K̃Λ)
c, for A0 + UαFA1 ∈ π0(AΛ)

t ⊆ π0(AKc
Λ
)t ∩ π0(A(Λ̃1)c

)t ∩ π0(A(K̃Λ)c
)t,

Vρ,KΛ+L1V
∗
ρ,KΛ

, Vρ,K̃Λ+L̃1
V ∗
ρ,KΛ+L1

, and Vρ,K̃Λ
V ∗
ρ,K̃Λ+L̃1

each commute with it. So, as

Vρ,K̃Λ
Vρ,K∗

Λ
= (Vρ,K̃Λ

V ∗
ρ,K̃Λ+L̃1

)(Vρ,K̃Λ+L̃1
V ∗
ρ,KΛ+L1

)(Vρ,KΛ+L1V
∗
ρ,KΛ

),

therefore

Ad(Vρ,K̃Λ
Vρ,K∗

Λ
)(A0 + UαFA1) = A0 + UαFA1.

In particular, for even A0 ∈ (π0(AΛ)
t)even = (π0(AΛ))even, we have Ad(Vρ,K̃Λ

Vρ,K∗
Λ
)(A0) = A0, and

for odd A1 ∈ (π0(AΛ)
t)odd we have Ad(Vρ,K̃Λ

Vρ,K∗
Λ
)(UαFA1) = UαFA1.

As UαF commutes with all even operators, and Vρ,K̃Λ
Vρ,K∗

Λ
is even, we have

UαFA1 = Ad(Vρ,K̃Λ
Vρ,K∗

Λ
)(UαFA1) = UαF Ad(Vρ,K̃Λ

Vρ,K∗
Λ
)(A1)

and so Ad(Vρ,K̃Λ
Vρ,K∗

Λ
)(A1) = A1 for odd A1 ∈ π0(AΛ).

Therefore, for A0 + A1 ∈ π0(AΛ), Ad(Vρ,K̃Λ
Vρ,K∗

Λ
)(A0 + A1) = A0 + A1. Therefore, by continuity,

the same is true for A0 +A1 ∈ π0(AΛ)
′′, so Ad(Vρ,K̃Λ

Vρ,K∗
Λ
)|π0(AΛ)′′ = id|π0(AΛ)′′ .

Therefore,

Ad(Vρ,Λ0V
∗
ρ,KΛ

)|π0(AΛ)′′ = Ad(Vρ,Λ0V
∗
ρ,K̃Λ

) ◦Ad(Vρ,K̃Λ
Vρ,K∗

Λ
)|π0(AΛ)′′

= Ad(Vρ,Λ0V
∗
ρ,K̃Λ

) ◦ id|π0(AΛ)′′

= Ad(Vρ,Λ0V
∗
ρ,K̃Λ

)|π0(AΛ)′′ .

Similarly, Ad(Vρ,Λ0V
∗
ρ,KΛ

)|π0(AΛ)′′t = Ad(Vρ,Λ0V
∗
ρ,K̃Λ

)|π0(AΛ)′′t . □

Following Definition 2.13 in [6]:

Definition 56. For (θ, φ) labeling a forbidden direction, and Λ0,Λ ∈ C(θ, φ), and ρ ∈ O0 and

Vρ,Λ0 ∈ Vρ,Λ0 , define T
(θ,φ),Λ0,Vρ,Λ0
ρ,Λ : π0(AΛ)

′′ → B(θ, φ) by

T
(θ,φ),Λ0,Vρ,Λ0
ρ,Λ := Ad(Vρ,Λ0V

∗
ρ,KΛ

)|π0(AΛ)′′

(By 55, this homomorphism is independent of the choice of KΛ ∈ κΛ,θ,φ and of Vρ,KΛ
∈ Vρ,KΛ

)

Following Lemma 2.14 in [6]:
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Definition 57. Let (θ, φ) specify a forbidden direction. Let Λ0 ∈ C(θ, φ). Let ρ ∈ O0. Let

Vρ,Λ0 ∈ Vρ,Λ0 .

Define T
(θ,φ),Λ0,Vρ,Λ0
ρ,0 : B0(θ, φ) → B(θ, φ) as

T
(θ,φ),Λ0,Vρ,Λ0
ρ,0 (x) := T

(θ,φ),Λ0,Vρ,Λ0
ρ,Λ (x) for x ∈ π0(AΛ)

′′ with Λ ∈ C(θ, φ).
Define T

(θ,φ),Λ0,Vρ,Λ0
ρ : B(θ, φ) → B(θ, φ) to be the unique (norm-continuous) linear extension of

T
(θ,φ),Λ0,Vρ,Λ0
ρ,0 to the domain of B(θ, φ).

Proposition 58. T
(θ,φ),Λ0,Vρ,Λ0
ρ,0 : B0(θ, φ) → B(θ, φ) as defined above is well-defined, and is a

∗-homomorphism, as is its extension T
(θ,φ),Λ0,Vρ,Λ0
ρ : B(θ, φ) → B(θ, φ).

The proof of this is no different than the proof of the corresponding part of lemma 2.14 of [6]. The

following lemma corresponds to said 2.14 of [6]:

Lemma 59. Let (θ, φ) specify a forbidden direction. Let Λ0 ∈ C(θ, φ). Let ρ ∈ O0. Let Vρ,Λ0 ∈ Vρ,Λ0.

T
(θ,φ),Λ0,Vρ,Λ0
ρ : B(θ, φ) → B(θ, φ) has the following properties:

(i): For all Λ ∈ C(θ, φ), T (θ,φ),Λ0,Vρ,Λ0
ρ is ultraweak-continuous on π0(AΛ)

′′.

(ii): For all A ∈ A, tw ◦T (θ,φ),Λ0,Vρ,Λ0
ρ ◦ π0(A) = Ad(Vρ,Λ0) ◦ ρt(A).

In addition, it also satisfies

(a): It is unique in the sense that if Xρ : B(θ, φ) → B(H) is a ∗-homomorphism which is, for all

Λ ∈ C(θ, φ), ultraweak-continuous on π0(AΛ)
′′, and if for all A ∈ A, tw ◦Xρ ◦ π0(A) =

Ad(Vρ,Λ0) ◦ ρt(A), then Xρ = T
(θ,φ),Λ0,Vρ,Λ0
ρ .

(b): For all cones Λ′, and all Vρ,Λ′ ∈ Vρ,Λ′, T
(θ,φ),Λ0,Vρ,Λ0
ρ ◦ π0|A(Λ′)c = Ad(Vρ,Λ0V

∗
ρ,Λ′) ◦ π0|A(Λ′)c .

And, for ρ̃ = T
(θ,φ),Λ0,Vρ,Λ0
ρ ◦π0, (ρ̃, Uρ̃ = UαF ) satisfies the superselection criterion wrt π0,

and for any Vρ,Λ′ ∈ Vρ,Λ′ , Vρ,Λ′V ∗
ρ,Λ0

∈ Vρ̃,Λ′ .

(d): T
(θ,φ),Λ0,Vρ,Λ0
ρ ◦ π0|A(Λ0)

c = π0|A(Λ0)
c and T

(θ,φ),Λ0,Vρ,Λ0
ρ ◦ π0 ∈ OΛ0.

(e): For Λ ∈ C(θ, φ) there exists CΛ ∈ C(θ, φ) such that T
(θ,φ),Λ0,Vρ,Λ0
ρ (π0(AΛ)

′′) ⊆ π0(ACc
Λ
)t′ =

A(CΛ).

Proof. For (i), T
(θ,φ),Λ0,Vρ,Λ0
ρ |π0(AΛ)′′ = T

(θ,φ),Λ0,Vρ,Λ0
ρ,Λ = Ad(Vρ,Λ0V

∗
ρ,KΛ

)|π0(AΛ)′′ which is ultra-

weak continuous.
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To see that it satisfies (ii):

For any A ∈ Aloc, there exists Λ ∈ C(θ, φ) s.t. A ∈ AΛ, and so such that

tw ◦T (θ,φ),Λ0,Vρ,Λ0
ρ ◦ π0(A) = T

(θ,φ),Λ0,Vρ,Λ0
ρ,Λ ◦ π0(A0) + UαF T

(θ,φ),Λ0,Vρ,Λ0
ρ,Λ ◦ π0(A1)

= Ad(Vρ,Λ0V
∗
ρ,KΛ

)(π0(A0)) + UαF Ad(Vρ,Λ0V
∗
ρ,KΛ

)(π0(A1))

= Ad(Vρ,Λ0V
∗
ρ,KΛ

)(πt0(A0 +A1))

= Ad(Vρ,Λ0) ◦ ρt(A)

where the last equality is using A ∈ AΛ and Lemma 55. So for all A ∈ Aloc, tw ◦T (θ,φ),Λ0,Vρ,Λ0
ρ ◦

π0(A) = Ad(Vρ,Λ0) ◦ ρt(A). For A ∈ A and (An)n∈N a sequence in Aloc and An → A with

respect to the norm on the C∗ algebra, as tw ◦T (θ,φ),Λ0,Vρ,Λ0
ρ ◦ π0 and Ad(Vρ,Λ0) ◦ ρt are norm-

continuous, tw ◦T (θ,φ),Λ0,Vρ,Λ0
ρ ◦π0(A) = limn tw ◦T (θ,φ),Λ0,Vρ,Λ0

ρ ◦π0(An) = limnAd(Vρ,Λ0)◦ρt(An) =
Ad(Vρ,Λ0) ◦ ρt(A), so for all A ∈ A, tw ◦T (θ,φ),Λ0,Vρ,Λ0

ρ ◦ π0(A) = Ad(Vρ,Λ0) ◦ ρt(A).
To prove (a), the only change needed compared to the proof of the analogous statement in [6]

is to show that for Λ ∈ C(θ, φ) that Xρ and T
(θ,φ),Λ0,Vρ,Λ0
ρ coincide on π0(AΛ). As for A ∈ A,

T
(θ,φ),Λ0,Vρ,Λ0
ρ ◦ π0(A0) + UαF T

(θ,φ),Λ0,Vρ,Λ0
ρ ◦ π0(A1) and Xρ(A0) + UαFXρ(A1) are both equal to

Ad(Vρ,Λ0)◦ρt(A), they are equal. In particular, for even A0 ∈ A, T
(θ,φ),Λ0,Vρ,Λ0
ρ ◦π0(A0) = Xρ◦π0(A0)

and for odd A1 ∈ A, UαF T
(θ,φ),Λ0,Vρ,Λ0
ρ ◦ π0(A1) = UαFXρ ◦ π0(A1) and so T

(θ,φ),Λ0,Vρ,Λ0
ρ ◦ π0(A1) =

Xρ ◦π0(A1), and so T
(θ,φ),Λ0,Vρ,Λ0
ρ ◦π0(A0+A1) = Xρ ◦π0(A0+A1), so they coincide on π0(A), and

so in particular on π0(AΛ) for all Λ ∈ C(θ, φ). The remainder of the argument that they coincide

on their domain B(θ, φ) (i.e. are equal) is unchanged from the argument for this in Lemma 2.14

of [6].

To prove (b):

Let Λ′ be a cone, not necessarily in C(θ, φ). Let A = A0 + A1 ∈ A(Λ′)c . By (ii) tw ◦T (θ,φ),Λ0,Vρ,Λ0
ρ ◦

π0(A) = Ad(Vρ,Λ0)◦ρt(A) . By ρ ∈ O0 there exists Vρ,Λ′ such that Ad(Vρ,Λ′)◦ρt|A(Λ′)c = πt0|A(Λ′)c and

therefore such that ρt|A(Λ′)c = Ad(V ∗
ρ,Λ′) ◦ πt0|A(Λ′)c . So, Ad(Vρ,Λ0) ◦ ρt(A) = Ad(Vρ,Λ0V

∗
ρ,Λ′) ◦ πt0(A).

So tw ◦T (θ,φ),Λ0,Vρ,Λ0
ρ ◦ π0(A) = Ad(Vρ,Λ0V

∗
ρ,Λ′) ◦ πt0(A) . Because Vρ,Λ0V

∗
ρ,Λ′ is even, it follows that

T
(θ,φ),Λ0,Vρ,Λ0
ρ ◦π0(A0) = Ad(Vρ,Λ0V

∗
ρ,Λ′)◦π0(A0) and T

(θ,φ),Λ0,Vρ,Λ0
ρ ◦π0(A1) = Ad(Vρ,Λ0V

∗
ρ,Λ′)◦π0(A1),

and so T
(θ,φ),Λ0,Vρ,Λ0
ρ ◦π0|A(Λ′)c = Ad(Vρ,Λ0V

∗
ρ,Λ′) ◦π0|A(Λ′)c . So, for ρ̃ = T

(θ,φ),Λ0,Vρ,Λ0
ρ ◦π0 and Uρ̃ =
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UαF , we have that ρ̃t|A(Λ′)c = Ad(Vρ,Λ0V
∗
ρ,Λ′) ◦πt0|A(Λ′)c , and so Ad(Vρ,Λ′V ∗

ρ,Λ0
) ◦ ρ̃t|A(Λ′)c = πt0|A(Λ′)c ,

i.e. Vρ,Λ′V ∗
ρ,Λ0

∈ Vρ̃,Λ′ . This holds for all cones Λ′, and so this shows that ρ̃ = T
(θ,φ),Λ0,Vρ,Λ0
ρ ◦π0 ∈ O0.

The proof for part (d) is no different from the proof in lemma 2.14 of [6] ( (d) follows immediately

from part (b) when choosing Λ′ = Λ0 and choosing Vρ,Λ0 as the value for Vρ,Λ′ , which can be done

due to choosing Λ′ = Λ0).

To prove (e): For Λ ∈ C(θ, φ), by lemma 55, for KΛ ∈ κΛ,θ,φ and Vρ,KΛ
there exists a cone

CΛ ∈ C(θ, φ) such that Ad(Vρ,Λ0V
∗
ρ,KΛ

)(π0(AΛc)t′) ⊆ π0(ACc
Λ
)t′.

(I.e. such that Ad(Vρ,Λ0V
∗
ρ,KΛ

)(A(Λ)) ⊆ A(CΛ).)

And, by twisted locality, π0(AΛ)
′′ ⊆ π0(AΛc)t′, therefore

T
(θ,φ),Λ0,Vρ,Λ0
ρ (π0(AΛ)

′′) = T
(θ,φ),Λ0,Vρ,Λ0
ρ,Λ (π0(AΛ)

′′)

= Ad(Vρ,Λ0V
∗
ρ,KΛ

)(π0(AΛ)
′′)

⊆ Ad(Vρ,Λ0V
∗
ρ,KΛ

)(π0(AΛc)t′)

⊆ π0(ACc
Λ
)t′ = A(CΛ).

□

As an immediate corollary, we have the following, which is also analogous to part (ii) of Lemma

2.14 of [6]:

Lemma 60. If Uρ = ±UαF ,

(ii) for all A0 +A1 ∈ A,

T
(θ,φ),Λ0,Vρ,Λ0
ρ (π0(A0) + π0(A1)) = Ad(Vρ,Λ0)(ρ(A0)± ρ(A1))

(So, if Uρ = UαF , then T
(θ,φ),Λ0,Vρ,Λ0
ρ ◦ π0 = Ad(Vρ,Λ0) ◦ ρ

and if Uρ = −UαF then T
(θ,φ),Λ0,Vρ,Λ0
ρ ◦ π0 = Ad(Vρ,Λ0) ◦ ρ ◦ αF .) T

(θ,φ),Λ0,Vρ,Λ0
ρ ◦ π0|AΛc =

Ad(Vρ,Λ0V
∗
ρ,Λ) ◦ π0|AΛc

Following Lemma 2.15 of [6]:

Lemma 61. (i) Let (θ, φ) label a forbidden direction, Λ0 ∈ C(θ, φ), and (ρ1, Uρ1), (ρ2, Uρ2) ∈
O0 such that there is an even unitary W ∈ U(H) such that ρt2 = Ad(W ) ◦ ρt1. Then, for

any Vρi,Λ0 ∈ Vρi,Λ0 for i = 1, 2, T
(θ,φ),Λ0,Vρ1,Λ0
ρ1 = Ad(Vρ1,Λ0W

∗V ∗
ρ2,Λ0

) ◦ T (θ,φ),Λ0,Vρ2,Λ0
ρ2
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(ii) For (θi, φi) for i = 1, 2 labeling forbidden directions such that (θ1 − φ1, θ1 + φ1) ⊆ (θ2 −
φ2, θ2 + φ2), B(θ2, φ2) ⊆ B(θ1, φ1) and C(θ2, φ2) ⊆ C(θ1, φ1). For any Λ0 ∈ C(θ2, φ2), any

ρ ∈ O0, and any Vρ,Λ0 ∈ Vρ,Λ0, we have T
(θ1,φ1),Λ0,Vρ,Λ0
ρ |B(θ2,φ2) = T

(θ2,φ2),Λ0,Vρ,Λ0
ρ .

(iii) Let (θ, φ) label a forbidden direction. Let Λ0,Λ1 ∈ C(θ, φ), ρ ∈ O0, Vρ,Λ0 ∈ Vρ,Λ0 and

Vρ,Λ1 ∈ Vρ,Λ1. Then T
(θ,φ),Λ0,Vρ,Λ0
ρ = Ad(Vρ,Λ0V

∗
ρ,Λ1

) ◦ T (θ,φ),Λ1,Vρ,Λ1
ρ .

Proof. For part (i), For any Λ̃ ∈ C(θ, φ) and any Vρ2,Λ̃ ∈ Vρ2,Λ̃,

Ad(Vρ2,Λ̃W ) ◦ ρt1|AΛ̃c = Ad(Vρ2,Λ̃) ◦ ρ
t
2|AΛ̃c = πt0|AΛ̃c

and this, combined with the fact that Vρ2,Λ̃W is even, means that Vρ2,Λ̃W ∈ Vρ1,Λ̃. For Λ ∈ C(θ, φ)
apply that in the case of Λ̃ = KΛ for some KΛ ∈ κΛ,θ,φ, By Definitions 56 and 57,

T
(θ,φ),Λ0,Vρ1,Λ0
ρ1 |π0(AΛ)′′ = Ad(Vρ1,Λ0(Vρ2,KΛ

W )∗)|π0(AΛ)′′

= Ad(Vρ1,Λ0W
∗V ∗

ρ2,Λ0
) ◦Ad(Vρ2,Λ0V

∗
ρ2,KΛ

)|π0(AΛ)′′

= Ad(Vρ1,Λ0W
∗V ∗

ρ2,Λ0
) ◦ T (θ,φ),Λ0,Vρ2,Λ0

ρ2 |π0(AΛ)′′ .

So, as Ad(Vρ1,Λ0W
∗V ∗

ρ2,Λ0
)◦T (θ,φ),Λ0,Vρ2,Λ0

ρ2 is norm-continuous on B(θ, φ) and ultraweak-continuous

on π0(AΛ)
′′ for each Λ ∈ C(θ, φ), and as it coincides with T

(θ,φ),Λ0,Vρ1,Λ0
ρ1 on each π0(AΛ)

′′ for

Λ ∈ C(θ, φ), it coincides on all of B0(θ, φ) and then by continuity on all of B(θ, φ).
That is to say, Ad(Vρ1,Λ0W

∗V ∗
ρ2,Λ0

) ◦ T (θ,φ),Λ0,Vρ2,Λ0
ρ2 = T

(θ,φ),Λ0,Vρ1,Λ0
ρ1 , as desired.

The proof for part (ii) is essentially unchanged from the proof of part (ii) of lemma 2.15 of [6]; one

need only replace "Xρ ◦ π0 = Ad(V ρ,Λ0) ◦ ρ" with tw ◦Xρ ◦ π0 = Ad(Vρ,Λ0) ◦ ρt.
For part (iii), For Xρ := Ad(Vρ,Λ0V

∗
ρ,Λ1

)◦T (θ,φ),Λ1,Vρ,Λ1
ρ : B(θ, φ) → B(H), a ∗-homomorphism which

is ultraweak-continuous on π0(AΛ)
′′ for all Λ ∈ C(θ, φ). And,

Ad(Vρ,Λ0) ◦ ρt = Ad(Vρ,Λ0V
∗
ρ,Λ1

) ◦Ad(Vρ,Λ1) ◦ ρt

= Ad(Vρ,Λ0V
∗
ρ,Λ1

) ◦ tw ◦T (θ,φ),Λ1,Vρ,Λ1
ρ ◦ π0

= tw ◦Ad(Vρ,Λ0V
∗
ρ,Λ1

) ◦ T (θ,φ),Λ1,Vρ,Λ1
ρ ◦ π0

= tw ◦Xρ ◦ π0.

(The second equality is by Lemma 59(ii), and the third equality is because tw ◦Ad(U) = Ad(U)◦tw
for even unitaries U .) Therefore, by Lemma 59(a), Xρ = T

(θ,φ),Λ0,Vρ,Λ0
ρ , as desired. □
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The proof of Lemma 2.16 of [6] goes through essentially without modification (One need only switch

out which lemmas are used to the corresponding ones here, as well as the definition of A(Λ) to the

one used here, etc.):

Lemma 62. Let (θ, φ) label a forbidden direction. Let Λ0 ∈ C(θ, φ). Then, for any ε > 0, Λ ∈ C(θ, φ)
such that Λ0 ⊆ Λ, any ρ ∈ O0 and any Vρ,Λ0 ∈ Vρ,Λ0,

T
(θ,φ),Λ0,Vρ,Λ0
ρ (π0(AΛ)

′′) ⊆ A(Λε) = π0(A(Λε)c)
t′.

Lemma 2.17 of [6] works in this setting when A(Λ) := π0(AΛc)t′ rather than π0(AΛc)′ as in [6],

with no change to the proof other than referring to approximate twisted Haag duality rather than

to approximate Haag duality:

Lemma 63. Let (θ, φ) label a forbidden direction. Then, for any Λ0,Λ ∈ C(θ, φ), and ρ ∈ O0, and

any Vρ,Λ0, T
(θ,φ),Λ0,Vρ,Λ0
ρ is ultraweak-continuous on A(Λ) = π0(AΛc)t′.

Lemma 2.18 of [6] states:

Lemma 64. Let (θ, φ) label a forbidden direction. Let ρ ∈ O0, Λ1,Λ2 ∈ C(θ, φ), t ≥ 0, ε, δ > 0 with

(Λ1)ε+δ, (Λ2)ε+δ ∈ C(θ, φ) and |arg Λ2|+4ε < 2π. Let Vρ,Λ1 ∈ Vρ,Λ1. Recall from definition 38 what

UΛ2,ε and f|arg Λ2|,ε,δ(t) refer to. Suppose (Λ2 − t)ε+δ ⊆ Λc1. Then we have

∥∥∥T (θ,φ),Λ1,Vρ,Λ1
ρ (UΛ2,ε)U

∗
Λ2,ε − 1

∥∥∥ ≤ 2f|arg Λ2|,ε,δ(t)

The proof of this lemma given there works in this modified setting without modification.

Remark 65. (π0, UαF ) is of course in O0, and for every cone Λ, 1 ∈ Vπ0,Λ. As such, for each Λ,

if we choose 1 for Vπ0,KΛ
when constructing T (θ,φ),Λ0,1

ρ,Λ , we can see that each is the identity, and so

T
(θ,φ),Λ0,1
ρ = idB(θ,φ).

4.3.2. Like section 3 (the composition).

Definition 66. Let (θ, φ) label a forbidden direction. Let Λ0 ∈ C(θ, φ). Let {Vη,Λ0 ∈ Vη,Λ0}η∈O0

be a choice of a Vη,Λ0 ∈ Vη,Λ0 for each η ∈ O0. Let D = ((θ, φ),Λ0, {Vη,Λ0 ∈ Vη,Λ0}η∈O0).

For ρ, σ ∈ O0 define

ρ ◦D σ := T
(θ,φ),Λ0,Vρ,Λ0
ρ ◦ T (θ,φ),Λ0,Vσ,Λ0

σ ◦ π0 : A → B(θ, φ).
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For such a D, for each η ∈ O0 define TDη := T
(θ,φ),Λ0,Vη,Λ0
η where those parameters of (θ, φ), Λ0 and

Vη,Λ0 come from D. So, ρ ◦D σ = TDρ ◦ TDσ ◦ π0.

The proof of Lemma 3.2 of [6] applies here to obtain the following:

Lemma 67. Let D,D′ be as in Definition 66, and let ρ, σ ∈ O0. Then there exists an even unitary

U such that ρ ◦D σ = Ad(U) ◦ (ρ ◦D′ σ).

Closely following Lemma 3.3 of [6]:

Lemma 68. Let D = ((θ, φ),Λ0, {Vη,Λ0}η∈O0) as in Definition 66. Then, for any ρ, σ ∈ O0, for

τ = ρ ◦D σ and Uτ = UαF , (τ, Uτ ) ∈ O0, and in particular, (τ, Uτ = UαF ) ∈ OΛ0,∗.

Proof. Let D = ((θ, φ),Λ0, {Vη,Λ0}η∈O0), and let ρ, σ ∈ O0. Let τ = ρ ◦D σ.

For each cone Λ:

Let D′ = ((θ′, φ′),Λ, {Vη,Λ}η∈O0) as in Definition 66 (choosing (θ′, φ′) such that Λ ∈ C(θ′, φ′)). By

Lemma 67 there exists an even unitary Uτ,Λ such that Ad(Uτ,Λ) ◦ τ = Ad(Uτ,Λ) ◦ (ρ ◦D σ) = ρ ◦D′ σ.

By Lemma 59 part (b), for all A ∈ AΛc ,

Ad(Uτ,Λ) ◦ τ |AΛc = Ad(Uτ,Λ) ◦ (ρ ◦D σ)|AΛc

= ρ ◦D′ σ|AΛc

= T
(θ′,φ′),Λ,Vρ,Λ
ρ ◦ T (θ′,φ′),Λ,Vσ,Λ

σ ◦ π0|AΛc

= T
(θ′,φ′),Λ,Vρ,Λ
ρ ◦Ad(Vσ,ΛV ∗

σ,Λ) ◦ π0|AΛc

= Ad(Vρ,ΛV
∗
ρ,Λ) ◦Ad(1) ◦ π0|AΛc

= π0|AΛc .

For Uτ = UαF , τ t = tw ◦τ , and as Uτ,Λ is even, Ad(Uτ,Λ)◦τ t = Ad(Uτ,Λ)◦tw ◦τ = tw ◦Ad(Uτ,Λ)◦τ ,
and therefore

Ad(Uτ,Λ) ◦ τ t|AΛc = tw ◦Ad(Uτ,Λ) ◦ τ |AΛc

= tw ◦π0|AΛc = πt0|AΛc ,

so, Vτ,Λ = Uτ,Λ ∈ Vτ,Λ. So, as for all Λ there is an even unitary Vτ,Λ ∈ Vτ,Λ, we have that

(τ, Uτ ) = ((ρ ◦D σ), UαF ) ∈ O0.
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In particular, for Λ = Λ0, we can choose D′ = D which then gives us Ad(1) ◦ τ t|AΛc
0
= πt0|AΛc

0
and

so (τ, Uτ ) = ((ρ ◦D σ), UαF ) ∈ OΛ0,∗. □

Following Lemma 3.4 of [6]:

Lemma 69. Let D = ((θ, φ),Λ0, {Vη,Λ0}η∈O0) as in Definition 66. Let ρ1, ρ2, σ1, σ2 ∈ O0. Let

Wρ : ρ1 → ρ1 and Wσ : σ1 → σ2 be even unitaries (so, Ad(Wρ) ◦ ρt1 = ρt2 and Ad(Wσ) ◦ σt1 = σt2).

Then there is an even unitary U ∈ U(H) such that

ρ1 ◦D σ1 = Ad(U) ◦ (ρ2 ◦D σ2).

Proof. By Lemma 61(i),

TDρ1 = T
(θ,φ),Λ0,Vρ1,Λ0
ρ1 = Ad(Vρ1,Λ0W

∗
ρ V

∗
ρ2,Λ0

) ◦ T (θ,φ),Λ0,Vρ2,Λ0
ρ2 = Ad(Vρ1,Λ0W

∗
ρ V

∗
ρ2,Λ0

) ◦ TDρ2

and

TDσ1 = T
(θ,φ),Λ0,Vσ1,Λ0
σ1 = Ad(Vσ1,Λ0W

∗
σV

∗
σ2,Λ0

) ◦ T (θ,φ),Λ0,Vσ2,Λ0
σ2 = Ad(Vσ1,Λ0W

∗
σV

∗
σ2,Λ0

) ◦ TDσ2 .

As Wρ : ρ1 → ρ2 and Wσ : σ1 → σ2, by Lemma 47, Wρ,Wσ ∈ π0(A(Λ0∪Λ0)c)
t′ = A(Λ0) ⊆ B(θ, φ).

So,

ρ1 ◦D σ1 = TDρ1 ◦ TDσ1 ◦ π0

= (Ad(Vρ1,Λ0W
∗
ρ V

∗
ρ2,Λ0

) ◦ TDρ2) ◦ (Ad(Vσ1,Λ0W
∗
σV

∗
σ2,Λ0

) ◦ TDσ2) ◦ π0

= Ad(Vρ1,Λ0W
∗
ρ V

∗
ρ2,Λ0

TDρ2(Vσ1,Λ0W
∗
σV

∗
σ2,Λ0

)) ◦ TDρ2 ◦ TDσ2 ◦ π0

= Ad(Vρ1,Λ0W
∗
ρ V

∗
ρ2,Λ0

TDρ2(Vσ1,Λ0W
∗
σV

∗
σ2,Λ0

)) ◦ (ρ2 ◦D σ2).

So, there is an even unitary U ∈ U(H) (specifically U = Vρ1,Λ0W
∗
ρ V

∗
ρ2,Λ0

TDρ2(Vσ1,Λ0W
∗
σV

∗
σ2,Λ0

)) such

that ρ1 ◦D σ1 = Ad(U) ◦ (ρ2 ◦ σ2), as desired. □

Remark 70. When expressed in the notation for the monoidal product of intertwiners for the T en-

domorphisms, which will be introduced in the next section, this Vρ1,Λ0W
∗
ρ V

∗
ρ2,Λ0

TDρ2(Vσ1,Λ0W
∗
σV

∗
σ2,Λ0

)

is (Vρ1,Λ0W
∗
ρ V

∗
ρ2,Λ0

) ⊗ (Vσ1,Λ0W
∗
σV

∗
σ2,Λ0

) where Vρ1,Λ0W
∗
ρ V

∗
ρ2,Λ0

: TDρ2 → TDρ1 and Vσ1,Λ0W
∗
σV

∗
σ2,Λ0

:

TDσ2 → TDσ1 .
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Lemma 3.5 of [6] applies in this setting as well when A(Λ) is defined as we have defined it here, with

the proof going through without modification other than citing Lemmas 59 and 63 as the analogies

to lemmas 2.14 and 2.17 of [6]:

Lemma 71. Let (θ, φ) label a forbidden direction. For i = 1, 2, let Λi ∈ C(θ, φ), ρi ∈ O0, and

Vρi,Λi ∈ Vρi,Λi . Then, T
(θ,φ),Λ1,Vρ1,Λ1
ρ1 ◦ T (θ,φ),Λ2,Vρ2,Λ2

ρ2 is ultraweak-continuous on A(Λ).

Following Lemma 3.6 of [6]:

Lemma 72. Let D = ((θ, φ),Λ0 ∈ C(θ, φ), {Vη,Λ0 ∈ Vη,Λ0}η∈O0) be as in Definition 66. Let ρ, σ ∈
O0.

Set (γ, Uγ) = (ρ ◦D σ, UαF ) ∈ O0. Then

TDγ = Ad(Vγ,Λ0) ◦ TDρ ◦ TDσ ,

and 1 ∈ Vγ,Λ0 and Vγ,Λ0 ∈ A(Λ0) ⊆ B(θ, φ).

Proof. This proof is essentially the same as the proof of Lemma 3.6 of [6].

For X := Ad(Vγ,Λ0) ◦ TDρ ◦ TDσ : B(θ, φ) → B(H) is a ∗-homomorphism. By Lemma 71, X is

ultraweak-continuous on π0(AΛ)
′′ for each Λ ∈ C(θ, φ). Furthermore, X ◦ π0 = (Ad(Vγ,Λ0) ◦ TDρ ◦

TDσ ) ◦ π0 = Ad(Vγ,Λ0) ◦ (TDρ ◦ TDσ ◦ π0) = Ad(Vγ,Λ0) ◦ γ. So tw ◦X ◦ π0 = tw ◦Ad(Vγ,Λ0) ◦ γ =

Ad(Vγ,Λ0) ◦ tw ◦γ = Ad(Vγ,Λ0) ◦ γt (as Uγ = UαF ). Therefore, by the uniqueness in Lemma 59(a),

X = TDγ , so TDγ = Ad(Vγ,Λ0) ◦ TDρ ◦ TDσ , as desired.

As shown in Lemma 68, 1 ∈ V(γ,Uγ),Λ0
and (γ, Uγ) ∈ OΛ0,∗. So, as Vγ,Λ0 , 1 ∈ V(γ,Uγ),Λ0

, by Lemma

47, Vγ,Λ0 = Vγ,Λ0 · 1∗ ∈ A(Λ0), as desired. □

Following Lemma 3.7 of [6], we have associativity up to an even unitary of this kind of composition.

The proof is essentially unchanged from the one in [6].:

Lemma 73. Let ((θ, φ),Λ0 ∈ C(θ, φ), {Vη,Λ0 ∈ Vη,Λ0}η∈O0) as in Definition 66.

Let ρ, σ, γ ∈ O0. Then, there exists an even unitary UD,ρ,σ,γ ∈ U(H) such that

(ρ ◦D σ) ◦D γ = Ad(UD,ρ,σ,γ) ◦ (ρ ◦D (σ ◦D γ)).
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Proof. Let τ1 = ρ ◦D σ and τ2 = σ ◦D γ. By Lemma 72,

(ρ ◦D σ) ◦D γ = τ1 ◦D γ = TDτ1 ◦ TDγ ◦ π0

= (Ad(Vτ1,Λ0) ◦ TDρ ◦ Tσ) ◦ TDγ ◦ π0 = Ad(Vτ1,Λ0) ◦ TDρ ◦ (Ad(V ∗
τ2,Λ0

) ◦ TDτ2 ◦ π0)

= Ad(Vτ1,Λ0T
D
ρ (V ∗

τ2,Λ0
)) ◦ TDρ ◦ TDτ2 ◦ π0

= Ad(Vτ1,Λ0T
D
ρ (V ∗

τ2,Λ0
)) ◦ (ρ ◦D τ2) = Ad(Vτ1,Λ0T

D
ρ (V ∗

τ2,Λ0
)) ◦ (ρ ◦D (σ ◦D γ)).

In the fifth equality, using that V ∗
τ2,Λ0

∈ B(θ, φ) by Lemma 72. Note that Vτ1,Λ0T
D
ρ (V ∗

τ2,Λ0
) is

even. □

4.3.3. Like section 4 (The Intertwiners).

Definition 74. For grade-preserving endomorphisms T1, T2 of B(θ, φ), define (T1, T2) to be

(T1, T2) := {R ∈ B(H)|∀x ∈ B(θ, φ), R · tw ◦T1(x) = tw ◦T2(x) ·R},

the intertwiners from T1 to T2. R ∈ (T1, T2) will also be denoted R : T1 → T2.

Remark 75. The set of grade-preserving endomorphisms of B(θ, φ), along with these sets of inter-

twiners as hom spaces, forms a monoidal supercategory.

Lemma 76. If T1, T2 : End(B(θ, φ)) are grade-preserving endomorphisms , and if R ∈ (T1, T2), then

its even and odd parts R0, R1 are elements of (T1, T2) as well.

In addition, for R = R0 +R1 ∈ B(H), R ∈ (T1, T2) iff for all x = x0 + x1 ∈ B(θ, φ), R0 · T1(x0) =
T2(x0) ·R0 , R1 · T1(x0) = T2(x0) ·R1, R0 · T1(x1) = T2(x1) ·R0 and R1 · T1(x1) = −T2(x1) ·R1.

Proof. Let R0 + R1 = R ∈ (T1, T2). For even x0 ∈ B(θ, φ) we have R · T1(x0) = R ·
(tw ◦T1(x0)) = (tw ◦T2(x0))·R = T2(x0)·R and so as the even and odd parts of the LHS are equal to

the even and odd parts of the RHS respectively, R0 ·T1(x0) = T2(x0)·R0 and R1 ·T1(x0) = T2(x0)·R1.

For odd x1 ∈ B(θ, φ) we have R ·UαF ·T1(x1) = R · (tw ◦T1(x1)) = (tw ◦T2(x1)) ·R = UαF T2(x1) ·R.

Again the even and odd components of the LHS are equal to the corresponding components of the

RHS, so R0 ·UαF ·T1(x1) = UαF ·T2(x1) ·R0, and R1 ·UαF ·T1(x1) = UαF ·T2(x1) ·R1. Equivalently,

R0 · T1(x1) = T2(x1) ·R0 and R1 · T1(x1) = −T1(x1) ·R1.

Therefore, for general x = x0+x1 ∈ B(θ, φ), R0 · (tw ◦T1(x0+x1)) = R0 · (T1(x0)+UαF ·T1(x1)) =
R0 · T1(x0) +R0 · UαF T2(x1)
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= T2(x0) · R0 + UαF · T2(x1) · R0 = (tw ◦T2(x0 + x1)) · R0, and likewise R1 · (tw ◦T1(x0 + x1)) =

(tw ◦T2(x0 + x1)) ·R1.

We already have that for R = R0 + R1 ∈ (T1, T2) that for all x = x0 + x1 ∈ B(θ, φ), R0 · T1(x0) =
T2(x0) · R0 , R1 · T1(x0) = T2(x0) · R1, R0 · T1(x1) = T2(x1) · R0 and R1 · T1(x1) = −T1(x1) · R1.

Now for the reverse direction.

Let R = R0 + R1 ∈ B(H) be such that for all x = x0 + x1 ∈ B(θ, φ), those four equalities hold.

Then for all x = x0 + x1 ∈ B(θ, φ),

R · (tw ◦T1(x)) = R0 · T1(x0) +R0 · UαF · T1(x1) +R1 · T1(x0) +R1 · UαF · T1(x1)

= R0 · T1(x0) + UαF ·R0 · T1(x1) +R1 · T1(x0)− UαF ·R1 · T1(x1)

= T2(x0) ·R0 + UαF · T2(x1) ·R0 + T2(x0) ·R1 + UαF · T2(x1) ·R1

= T2(x0) · (R0 +R1) + UαF · T2(x1) · (R0 +R1) = (tw ◦T2(x)) ·R.

I.e. R ∈ (T1, T2). □

Remark 77. In particular, for R ∈ B(H)even, we have R ∈ (T1, T2) iff ∀x ∈ B(θ, φ), R · T1(x) =

T2(x) ·R.

As an analogy to lemma 4.1 of [6]:

Lemma 78. Let (θ, φ) name a forbidden direction. Let Λ1,Λ2 ∈ C(θ, φ), ρ ∈ O0, and Vρ,Λ1 ∈
Vρ,Λ1 , Vρ,Λ2 ∈ Vρ,Λ2. Then (Vρ,Λ2V

∗
ρ,Λ1

) ∈ (T
(θ,φ),Λ1,Vρ,Λ1
ρ , T

(θ,φ),Λ2,Vρ,Λ2
ρ ).

Proof. By lemma 59 part (ii), tw ◦T (θ,φ),Λi,Vρ,Λi
ρ ◦ π0 = Ad(Vρ,Λi) ◦ ρt for i = 1, 2.

Ad(Vρ,Λ2V
∗
ρ,Λ1

) ◦Ad(Vρ,Λ1) ◦ ρt = Ad(Vρ,Λ2) ◦ ρt.
For all A ∈ A, (Vρ,Λ2V

∗
ρ,Λ1

) · (tw ◦T (θ,φ),Λ1,Vρ,Λ1
ρ ◦π0(A)) · (Vρ,Λ2V

∗
ρ,Λ1

)∗ = (tw ◦T (θ,φ),Λ2,Vρ,Λ2
ρ ◦π0(A)),

so, for all A ∈ A, (Vρ,Λ2V
∗
ρ,Λ1

)·(tw ◦T (θ,φ),Λ1,Vρ,Λ1
ρ ◦π0(A)) = (tw ◦T (θ,φ),Λ2,Vρ,Λ2

ρ ◦π0(A))·(Vρ,Λ2V
∗
ρ,Λ1

).

As this holds for all A ∈ A, in particular, for all Λ ∈ C(θ, φ), it holds for all A ∈ AΛ. So, for

Λ ∈ C(θ, φ), we have

∀x ∈ π0(AΛ), (Vρ,Λ2V
∗
ρ,Λ1

) · (tw ◦T (θ,φ),Λ1,Vρ,Λ1
ρ (x)) = (tw ◦T (θ,φ),Λ2,Vρ,Λ2

ρ (x)) · (Vρ,Λ2V
∗
ρ,Λ1

).

As T
(θ,φ),Λ1,Vρ,Λ1
ρ , T

(θ,φ),Λ2,Vρ,Λ2
ρ , tw are each ultraweak-continuous on π0(AΛ)

′′ (for Λ ∈ C(θ, φ), by

Lemma 59 part (i)), we therefore have that this is also true for x ∈ π0(AΛ)
′′.
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(Specifically, take x 7→ (Vρ,Λ2V
∗
ρ,Λ1

) · (tw ◦T (θ,φ),Λ1,Vρ,Λ1
ρ (x)) − (tw ◦T (θ,φ),Λ2,Vρ,Λ2

ρ (x)) · (Vρ,Λ2V
∗
ρ,Λ1

).

Because, with domain π0(AΛ)
′′ it is a continuous function with respect to the ultraweak-topology,

so its kernel is closed.) Therefore, it is true for B0(θ, φ) =
⋃

Λ∈C(θ,φ) π0(AΛ)
′′.

Then, as these functions are also continuous with respect to the norm topology, we also get that it

is true for all x ∈ B0(θ, φ)
∥·∥

= B(θ, φ). So,

∀x ∈ B(θ, φ), (Vρ,Λ2V
∗
ρ,Λ1

) · (tw ◦T (θ,φ),Λ1,Vρ,Λ1
ρ (x)) = (tw ◦T (θ,φ),Λ2,Vρ,Λ2

ρ (x)) · (Vρ,Λ2V
∗
ρ,Λ1

),

i.e. (Vρ,Λ2V
∗
ρ,Λ1

) ∈ (T
(θ,φ),Λ1,Vρ,Λ1
ρ , T

(θ,φ),Λ2,Vρ,Λ2
ρ ). □

As an analogy to lemma 4.2 of [6]:

Lemma 79. Let (θ, φ) name a forbidden direction. Let Λ1,Λ2 ∈ C(θ, φ), ρ, σ ∈ O0, and Vρ,Λ1 ∈
Vρ,Λ1 , Vσ,Λ2 ∈ Vσ,Λ2. Then (T

(θ,φ),Λ1,Vρ,Λ1
ρ , T

(θ,φ),Λ2,Vσ,Λ2
σ ) ⊆ π0(A(Λ1∪Λ2)c)

t′ ⊆ B(θ, φ).

Proof. By Lemma 59 part (d), we have T
(θ,φ),Λ1,Vρ,Λ1
ρ ◦ π0|A(Λ1)

c = π0|A(Λ1)
c and also that

T
(θ,φ),Λ2,Vσ,Λ2
σ ◦ π0|A(Λ2)

c = π0|A(Λ2)
c .

Let R ∈ (T
(θ,φ),Λ1,Vρ,Λ1
ρ , T

(θ,φ),Λ2,Vσ,Λ2
σ ).

Let A ∈ A(Λ1∪Λ1)c ⊆ AΛc
1
∩ AΛc

2
. Then

R · (tw ◦π0(A)) = R · (tw ◦T (θ,φ),Λ1,Vρ,Λ1
ρ ◦ π0(A))

= (tw ◦T (θ,φ),Λ2,Vσ,Λ2
σ ◦ π0(A)) ·R

= (tw ◦π0(A)) ·R.

(Where the first and last equalities are by the conclusion drawn from Lemma 59 part (d), and the

middle inequality is by the definition of R ∈ (T
(θ,φ),Λ1,Vρ,Λ1
ρ , T

(θ,φ),Λ2,Vσ,Λ2
σ ))

So, for A ∈ A(Λ1∪Λ2)c we have that R commutes with tw ◦π0(A),
i.e. that R ∈ π0(A(Λ1∪Λ2)c)

t′.

So, (T
(θ,φ),Λ1,Vρ,Λ1
ρ , T

(θ,φ),Λ2,Vσ,Λ2
σ ) ⊆ π0(A(Λ1∪Λ2)c)

t′ ⊆ B(θ, φ), as desired. □

Lemma 80. Let (θ, φ) specify a forbidden direction. Let Λ1,Λ2,Λ
′
2 ∈ C(θ, φ). Let ρ, σ, σ′ ∈ O0. Let

Vρ,Λ1 , Vσ,Λ2 , Vσ,Λ′
2

be from Vρ,Λ1 ,Vσ,Λ2 ,Vσ,Λ′
2

respectively.

Let S : T
(θ,φ),Λ2,Vσ,Λ2
σ → T

(θ,φ),Λ′
2,Vσ′,Λ′

2
σ′ .

Then, T
(θ,φ),Λ1,Vρ,Λ1
ρ (S) : T

(θ,φ),Λ1,Vρ,Λ1
ρ ◦ T (θ,φ),Λ2,Vσ,Λ2

σ → T
(θ,φ),Λ1,Vρ,Λ1
ρ ◦ T

(θ,φ),Λ′
2,Vσ′,Λ′

2
σ′
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Proof. First note that, by Lemma 79, S ∈ B(θ, φ) and so T
(θ,φ),Λ1,Vρ,Λ1
ρ (S) is a valid expression.

As abbreviations within this proof, let Tρ denote T
(θ,φ),Λ1,Vρ,Λ1
ρ , let Tσ denote T

(θ,φ),Λ2,Vσ,Λ2
σ and let

Tσ′ denote T
(θ,φ),Λ′

2,Vσ′,Λ′
2

σ′ .

Now, first let x0 ∈ B(θ, φ) be even. Then

Tρ(S) · (tw ◦Tρ ◦ Tσ(x0)) = Tρ(S) · (Tρ ◦ Tσ(x0))

= Tρ(S · Tσ(x0))

= Tρ(S · (tw ◦Tσ(x0)))

= Tρ((tw ◦Tσ′(x0)) · S)

= (Tρ ◦ Tσ′(x0)) · Tρ(S)

= (tw ◦Tρ ◦ Tσ′(x0)) · Tρ(S).

Now, let x1 ∈ B(θ, φ) be odd. Then

Tρ(S) · (tw ◦Tρ ◦ Tσ(x1)) = Tρ(S) · (UαF · Tρ ◦ Tσ(x1))

= −Tρ(S) · (Tρ ◦ Tσ(x1)) · UαF

= −Tρ(S · Tσ(x1)) · UαF

= −− Tρ(S · UαF · Tσ(x1) · UαF ) · UαF

= Tρ(S · (tw ◦Tσ(x1)) · UαF ) · UαF

= Tρ((tw ◦Tσ′(x1)) · S · UαF ) · UαF

= Tρ((UαF · Tσ′(x1)) · S · UαF ) · UαF

= −Tρ(Tσ′(x1) · UαF · S · UαF ) · UαF

= −Tρ ◦ Tσ′(x1) · Tρ(UαF · S · UαF ) · UαF

= (tw ◦Tρ ◦ Tσ′(x1)) ·Ad(UαF )(Tρ(Ad(UαF )(S)))

= (tw ◦Tρ ◦ Tσ′(x1)) · Tρ(S).
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So, for an arbitrary x0 + x1 ∈ B(θ, φ),

Tρ(S) · (tw ◦Tρ ◦ Tσ(x0 + x1)) = Tρ(S) · (tw ◦Tρ ◦ Tσ(x0)) + Tρ(S) · (tw ◦Tρ ◦ Tσ(x1))

= (tw ◦Tρ ◦ Tσ′(x0)) · Tρ(S) + (tw ◦Tρ ◦ Tσ′(x1)) · Tρ(S)

= (tw ◦Tρ ◦ Tσ(x0 + x1)) · Tρ(S).

So T
(θ,φ),Λ1,Vρ,Λ1
ρ (S) : T

(θ,φ),Λ1,Vρ,Λ1
ρ ◦ T (θ,φ),Λ2,Vσ,Λ2

σ → T
(θ,φ),Λ1,Vρ,Λ1
ρ ◦ T

(θ,φ),Λ′
2,Vσ′,Λ′

2
σ′ , as desired. □

Definition 81. Let (θ, φ) specify a forbidden direction. Let Λ1,Λ
′
1,Λ2,Λ

′
2 ∈ C(θ, φ).

Let ρ, ρ′, σ, σ′ ∈ O0. Let Vρ,Λ1 , Vρ′,Λ′
1
, Vσ,Λ2 , Vσ,Λ′

2
be from Vρ,Λ1 ,Vρ′,Λ′

1
,Vσ,Λ2 ,Vσ,Λ′

2
respectively.

Let R : T
(θ,φ),Λ1,Vρ,Λ1
ρ → T

(θ,φ),Λ′
1,Vρ′,Λ′

1
ρ′ and S : T

(θ,φ),Λ2,Vσ,Λ2
σ → T

(θ,φ),Λ′
2,Vσ′,Λ′

2
σ′ .

Define R⊗ S := R · T (θ,φ),Λ1,Vρ,Λ1
ρ (S)

As the analogy to Lemma 4.3 of [6]:

Lemma 82. Let (θ, φ) specify a forbidden direction. Let Λ1,Λ
′
1,Λ2,Λ

′
2 ∈ C(θ, φ). Let ρ, ρ′, σ, σ′ ∈ O0.

Let Vρ,Λ1 , Vρ′,Λ′
1
, Vσ,Λ2 , Vσ,Λ′

2
be from Vρ,Λ1 ,Vρ′,Λ′

1
,Vσ,Λ2 ,Vσ,Λ′

2
respectively.

Let R : T
(θ,φ),Λ1,Vρ,Λ1
ρ → T

(θ,φ),Λ′
1,Vρ′,Λ′

1
ρ′ and S : T

(θ,φ),Λ2,Vσ,Λ2
σ → T

(θ,φ),Λ′
2,Vσ′,Λ′

2
σ′ .

Then, R⊗ S : T
(θ,φ),Λ1,Vρ,Λ1
ρ ◦ T (θ,φ),Λ2,Vσ,Λ2

σ → T
(θ,φ),Λ′

1,Vρ′,Λ′
1

ρ′ ◦ T
(θ,φ),Λ′

2,Vσ′,Λ′
2

σ′ .

Proof. As abbreviations, let Tρ = T
(θ,φ),Λ1,Vρ,Λ1
ρ , Tρ′ = T

(θ,φ),Λ′
1,Vρ′,Λ′

1
ρ′ , Tσ = T

(θ,φ),Λ2,Vσ,Λ2
σ and

Tσ′ = T
(θ,φ),Λ′

2,Vσ′,Λ′
2

σ′ .

The lower square of the following diagram commutes for all x ∈ B(θ, φ) by Lemma 80. The upper

square commutes for all x ∈ B(θ, φ) by the definition of R : Tρ → Tρ′ , applied in the case of

Tσ′(x) ∈ B(H), so that R · (tw ◦Tρ(Tσ′(x)) = (tw ◦Tρ′(Tσ′(x)) ·R. Therefore, for all x ∈ B(θ, φ), the

entire diagram commutes.

• •

• •

• •

(tw ◦Tρ′◦Tσ′ )(x)

R R
(tw ◦Tρ◦Tσ′ )(x)

Tρ(S) ρ1(S)

(tw ◦Tρ◦Tσ)(x)

The statement that the rectangle comprised of those two squares commutes, is the statement that

(R ·Tρ(S)) · ((tw ◦Tρ ◦Tσ)(x)) = ((tw ◦Tρ′ ◦Tσ′)(x)) · (R ·Tρ(S)), and this holding for all x ∈ B(θ, φ)
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is what it is for R · Tρ(S) : Tρ ◦ Tσ → Tρ′ ◦ Tσ′ .

So R⊗ S : T
(θ,φ),Λ1,Vρ,Λ1
ρ ◦ T (θ,φ),Λ2,Vσ,Λ2

σ → T
(θ,φ),Λ′

1,Vρ′,Λ′
1

ρ′ ◦ T
(θ,φ),Λ′

2,Vσ′,Λ′
2

σ′ , as desired. □

The analogy to lemma 4.5 of [6]:

Lemma 83. Let (θ, φ) label a forbidden direction. Let ρ, ρ′, ρ′′, σ, σ′, σ′′ ∈ O0. For τ ∈ {ρ, ρ′, ρ′′,
σ, σ′, σ′′} let Λτ ∈ C(θ, φ) and Vτ,Λτ ∈ Vτ,Λτ , and let Tτ = T

(θ,φ),Λτ ,Vτ,Λτ
τ . Let R : Tρ → Tρ′ ,

R′ : Tρ′ → Tρ′′, S : Tσ → Tσ′ and S′ : Tσ′ → Tσ′′ .

Then, (R′ ⊗ S′)(R⊗ S) = (R′R0)⊗ (S′
0S) + (R′R0)⊗ (S′

1S) + (R′R1)⊗ (S′
0S)− (R′R1)⊗ (S′

1S).

In other words, for S′ and R are homogeneous, then

(R′ ⊗ S′)(R⊗ S) = (−1)|S
′||R|(R′R)⊗ (S′S)

(where |S′| and |R| are the grades of S′ and R respectively) and if they are not homogeneous, this

applies component-wise.

Proof. This can be seen by Lemma 76 and the definition of the monoidal product ⊗ on these

intertwiners.

First, suppose R,S′ are homogeneous.

By Lemma 76, As R : Tρ → Tρ′ , Tρ′(S′) ·R = (−1)|S
′||R|R · Tρ(S′). So,

(R′ ⊗ S′)(R⊗ S) = (R′Tρ′(S
′))(RTρ(S))

= R′ · (Tρ′(S) ·R) · Tρ(S)

= (−1)|S
′||R|R′ · (R · Tρ(S′)) · Tρ(S)

= (−1)|S
′||R|(R′R)Tρ(S

′S)

= (−1)|S
′||R|(RR′)⊗ (S′S).

Now we address the case where R = R0 +R1, and S′ = S′
0 + S′

1 are not homogeneous. By Lemma

76, R0, R1 : Tρ → Tρ′ and S′
0, S

′
1 : Tσ′ → Tσ′′ .

(R′ ⊗ S′)(R⊗ S) = (R′ ⊗ (S′
0 + S′

1))((R0 +R1)⊗ S)

= ((R′ ⊗ S′
0) + (R′ ⊗ S′

1))((R0 ⊗ S) + (R1 ⊗ S))

= (R′ ⊗ S′
0)(R0 ⊗ S) + (R′ ⊗ S′

0)(R1 ⊗ S) + (R′ ⊗ S′
1)(R0 ⊗ S) + (R′ ⊗ S′

1)(R1 ⊗ S)
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= (R′R0)⊗ (S′
0S) + (R′R1)⊗ (S′

0S) + (R′R0)⊗ (S′
1S)− (R′R1)⊗ (S′

1S),

where this is by ⊗ being bilinear along with applying the homogeneous case.

□

Lemma 84. As in Lemma 82, Let (θ, φ) specify a forbidden direction. Let Λ1,Λ
′
1,Λ2,Λ

′
2 ∈ C(θ, φ).

Let ρ, ρ′, σ, σ′ ∈ O0. Let Vρ,Λ1 , Vρ′,Λ′
1
, Vσ,Λ2 , Vσ,Λ′

2
be from Vρ,Λ1 ,Vρ′,Λ′

1
,Vσ,Λ2 ,Vσ,Λ′

2
respectively. Let

R : T
(θ,φ),Λ1,Vρ,Λ1
ρ → T

(θ,φ),Λ′
1,Vρ′,Λ′

1
ρ′ and S : T

(θ,φ),Λ2,Vσ,Λ2
σ → T

(θ,φ),Λ′
2,Vσ′,Λ′

2
σ′ .

Then for R and S homogeneous,

(R⊗ S)∗ = (−1)|R||S| (R∗)⊗ (S∗),

and this extends bilinearly for the non-homogeneous case.

Proof. First, we will show that this holds for the special case of R ⊗ idσ′ and idρ⊗S (where

idσ′ = 1 : T
(θ,φ),Λ′

2,Vσ′,Λ′
2

σ′ → T
(θ,φ),Λ′

2,Vσ′,Λ′
2

σ′ and idρ = 1 : T
(θ,φ),Λ1,Vρ,Λ1
ρ → T

(θ,φ),Λ1,Vρ,Λ1
ρ ), and then

show that it therefore applies in general.

First,

(R⊗ idσ′)∗ = (R · T (θ,φ),Λ1,Vρ,Λ1
ρ (1))∗

= R∗

= R∗ · T
(θ,φ),Λ′

1,Vρ′,Λ′
1

ρ′ (1)

= R∗ ⊗ 1σ′ = R∗ ⊗ (1∗σ′).

Second,

(idρ⊗S)∗ = (1 · T (θ,φ),Λ1,Vρ,Λ1
ρ (S))∗ = (T

(θ,φ),Λ1,Vρ,Λ1
ρ (S))∗

= T
(θ,φ),Λ1,Vρ,Λ1
ρ (S∗)

= 1 · T (θ,φ),Λ1,Vρ,Λ1
ρ (S∗)

= idρ⊗(S∗) = (id∗ρ)⊗ (S∗).

By Lemma 83, (R⊗ idσ′) · (idρ⊗S) = (−1)|idσ′ ||idρ|(R · idρ)⊗ (idσ′ ·S) = R⊗ S.
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Therefore,

(R⊗ S)∗ = ((R⊗ idσ′) · (idρ⊗S))∗

= (idρ⊗S)∗ · (R⊗ idσ′)∗

= (idρ⊗(S∗)) · ((R∗)⊗ idσ′)

= (−1)|S
∗||R∗|((idρ ·R∗)⊗ (S∗ · idσ′))

= (−1)|S||R| (R∗)⊗ (S∗),

(where the fourth equality is again by Lemma 83)

as desired.

The non-homogeneous case is covered by conjugate-linearity of (−)∗ and bilinearity of (−⊗−). □

Definition 85. For T1, T2, T3, T4 ∈ End(B(θ, φ)),
each of the form T

(θ,φ),Λ,Vρ,Λ
ρ for some ρ ∈ O0 some Λ ∈ C(θ, φ) and some Vρ,Λ ∈ Vρ,Λ, each for some

common choice of forbidden direction (θ, φ) for all four of them,

and A : T1 → T2 and B : T3 → T4 where A,B ∈ B(θ, φ), define

[A,B]⊗,± := A⊗B − (−1)|A|·|B|B ⊗A

when A,B are homogeneous, and componentwise if they are not.

(So, [A0 +A1, B0 +B1]⊗,± = [A0, B0]⊗,± + [A0, B1]⊗,± + [A1, B0]⊗,± + [A1, B1]⊗,±.)

The analogy to lemma 4.6 of [6]:

Lemma 86. Let (θ, φ) label a forbidden direction. Let ρ, ρ′, σ, σ′ ∈ O0 (not necessarily distinct).

For each label τ ∈ {ρ, ρ′, σ, σ′} let Λτ ∈ C(θ, φ) and for tτ ≥ 0, Vτ,Λτ+tτ ∈ Vτ,Λτ+tτ . Also set

T tττ = T
(θ,φ),Λτ+tτ ,Vτ,Λτ+tτ
τ .

The labels ρ, ρ′, σ, σ′ are used to index associated data (e.g., cones and operators), and these data

may differ even when the actual representations are equal.

Suppose that {Λρ,Λρ′} ⊥(θ,φ) {Λσ,Λσ′}. For tρ, tρ′ ≥ 0, let Rtρ,tρ′ ∈ (T
tρ
ρ , T

tρ′

ρ′ ) with
∥∥Rtρ,tρ′

∥∥ ≤ 1

and Rtρ,tρ′ homogeneous, and for tσ, tσ′ ≥ 0, let Stσ ,tσ′ ∈ (T tσσ , T
tσ′
σ′ ) with

∥∥Stσ ,tσ′
∥∥ ≤ 1 and Stσ ,tσ′
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homogeneous. Then

lim
tρ,tρ′ ,tσ ,tσ′→∞

∥∥∥Rtρ,tρ′ ⊗ Stσ ,tσ′ − (−1)|R
tρ,tρ′ |·|Stσ,tσ′ |Stσ ,tσ′ ⊗Rtρ,tρ′

∥∥∥ = 0,

i.e.

lim
tρ,tρ′ ,tσ ,tσ′→∞

∥∥[Rtρ,tρ′ , Stσ ,tσ′ ]⊗,±
∥∥ = 0.

Proof. This proof is following the proof in [6].

First it will demonstrate that Rtρ,tρ′ ⊗ Stσ ,tσ′ −Rtρ,tρ′ · Stσ ,tσ′ and Stσ ,tσ′ ⊗Rtρ,tρ′ − Stσ ,tσ′ ·Rtρ,tρ′

both go to 0 as tρ, tρ′ , tσ, tσ′ → ∞ by showing that T tρρ (Stσ ,tσ′ ) − Stσ ,tσ′ and T tσσ (Rtρ,tρ′ ) − Rtρ,tρ′

both go to 0 as tρ, tρ′ , tσ, tσ′ → ∞. This first part is not much different from the proof of Lemma

4.6 of [6]. The last bit however changes a little due to how the conclusion of Lemma 52 differs from

Lemma 2.8 of [6].

By the definition of {Λρ,Λρ′} ⊥(θ,φ) {Λσ,Λσ′} there exists ε > 0 and Λ̃ρ, Λ̃σ ∈ C(θ, φ) such that for

τ, υ ∈ {ρ, σ} with υ ̸= τ , (Λ̃τ − RΛτ ,ε)ε ⊆ (Λ̃υ)
c, (Λ̃τ )ε ∈ C(θ, φ), and arg((Λ̃ρ)ε) ∩ arg((Λ̃σ)ε) = ∅.

Choose δ > 0 small enough that (Λ̃ρ)ε+δ, (Λ̃σ)ε+δ ∈ C(θ, φ) and arg((Λ̃ρ)ε+δ) ∩ arg((Λ̃σ)ε+δ) = ∅
For any t ≥ 0, by Lemma A.2 of [6], for sufficiently large (depending on t) (tτ )τ∈{ρ,ρ′,σ,σ′}, so that

for τ, υ ∈ {ρ, σ} with υ ̸= τ , Λτ + tτ ,Λτ ′ + tτ ′ ⊆ Λ̃τ + t and (Λ̃τ +
t
2)ε+δ ⊆ (Λυ + tυ)

c.

By Lemma 79, we have Stσ ,tσ′ ∈ π0(A((Λσ+tσ)∪(Λσ′+tσ′ ))c)
t′ ⊆ π0(A(Λ̃σ+t)c

)t′, and likewise that

Rtρ,tρ′ ∈ π0(A((Λρ+tρ)∪(Λρ′+tρ′ ))
c)t′ ⊆ π0(A(Λ̃ρ+t)c

)t′. Applying approximate twisted Haag duality to

this, Ad(U∗
(Λ̃σ+t),ε

)(Stσ ,tσ′ ) ⊆ π0(A(Λ̃σ+t−RΛ̃σ,ε)ε
)′′ and Ad(U∗

(Λ̃ρ+t),ε
)(Rtρ,tρ′ ) ⊆ π0(A(Λ̃ρ+t−RΛ̃ρ,ε

)ε
)′′.

As

(Λ̃σ + (t−RΛ̃σ ,ε
))ε ⊆ (Λ̃σ −RΛ̃σ ,ε

)ε ⊆ (Λ̃ρ)
c ⊆ (Λ̃ρ + t)c ⊆ (Λρ + tρ)

c

and

(Λ̃ρ + (t−RΛ̃ρ,ε
))ε ⊆ (Λ̃ρ −RΛ̃ρ,ε

)ε ⊆ (Λ̃σ)
c ⊆ (Λ̃σ + t)c ⊆ (Λσ + tρ)

c

therefore we have Ad(U∗
(Λ̃σ+t),ε

)(Stσ ,tσ′ ) ∈ π0(A(Λ̃σ+(t−RΛ̃σ,ε))ε
)′′ ⊆ π0(A(Λρ+tρ)c)

′′ and similarly

Ad(U∗
(Λ̃ρ+t),ε

)(Rtρ,tρ′ ) ∈ π0(A(Λ̃ρ+t−RΛ̃ρ,ε
)ε
)′′ ⊆ π0(A(Λσ+tσ)c)

′′. Now,

T
tρ
ρ (Stσ ,tσ′ ) = T

tρ
ρ (Ad(U(Λ̃σ+t),ε

)(Ad(U∗
(Λ̃σ+t),ε

)(Stσ ,tσ′ )))

= Ad(T
tρ
ρ (U(Λ̃σ+t),ε

)) ◦ T tρρ (Ad(U∗
(Λ̃σ+t),ε

)(Stσ ,tσ′ )).
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Recall Lemma 59 parts (i) and (d). By part (d), T tρρ |π0(A(Λρ+tρ)c )
= id|π0(A(Λρ+tρ)c )

. Because

(Λ̃σ + (t − RΛ̃σ ,ε
))ε ⊆ (Λρ + tρ)

c, further restricting to π0(A(Λ̃σ+(t−RΛ̃σ,ε))ε
) ⊆ π0(A(Λρ+tρ)c) we

have that T tρρ |π0(A(Λ̃σ+(t−R
Λ̃σ,ε

))ε
) = id|π0(A(Λ̃σ+(t−R

Λ̃σ,ε
))ε

). As (Λ̃σ + (t− RΛ̃σ ,ε
))ε ∈ C(θ, φ) we have

(by part (i) of Lemma 59) that T tρρ is ultraweak-continuous on π0(A(Λ̃σ+(t−RΛ̃σ,ε))ε
)′′, we have that

T
tρ
ρ |π0(A(Λ̃σ+(t−R

Λ̃σ,ε
))ε

)′′ = id|π0(A(Λ̃σ+(t−R
Λ̃σ,ε

))ε
)′′ .

Therefore, as Ad(U∗
(Λ̃σ+t),ε

)(Stσ ,tσ′ ) ∈ π0(A(Λ̃σ+(t−RΛ̃σ,ε))ε
)′′ we have that

T
tρ
ρ (Ad(U∗

(Λ̃σ+t),ε
)(Stσ ,tσ′ )) = Ad(U∗

(Λ̃σ+t),ε
)(Stσ ,tσ′ ).

So, from T
tρ
ρ (Stσ ,tσ′ ) = Ad(T

tρ
ρ (U(Λ̃σ+t),ε

))(T
tρ
ρ (Ad(U∗

(Λ̃σ+t),ε
)(Stσ ,tσ′ ))) we get

T
tρ
ρ (Stσ ,tσ′ ) = Ad(T

tρ
ρ (U(Λ̃σ+t),ε

)U∗
(Λ̃σ+t),ε

)(Stσ ,tσ′ ).

Similarly, T tσσ (Rtρ,tρ′ ) = Ad(T tσσ (U(Λ̃ρ+t),ε
)U∗

(Λ̃ρ+t),ε
)(Rtρ,tρ′ ).

Applying [6, Lemma 2.18]/ Lemma 64 with Λρ + tρ, Λ̃σ + t, t2 as the respective values for Λ1,Λ2, t

from that lemma, we get
∥∥∥T tρρ (UΛ̃σ+t,ε

)U∗
Λ̃σ+t,ε

− 1
∥∥∥ ≤ 2f|arg Λ̃σ |,ε,δ(

t
2). To apply this lemma we use

that ((Λ̃σ + t)− t
2)ε+δ ⊆ (Λρ+ tρ)

c as well as that (Λρ+ tρ)ε+δ, (Λ̃σ + t)ε+δ ∈ C(θ, φ). This is for all

t ≥ 0 and (tτ )τ∈{ρ,ρ′,σ,σ′} large enough to satisfy the previously stated conditions, depending on t.

For any ε′ > 0, choose t > 0 such that 4f|arg Λ̃σ |,ε,δ(
t
2) < ε′. Then, for this t and corresponding large

enough (tτ )τ∈{ρ,ρ′,σ,σ′} we have

∥∥∥T tρρ (Stσ ,tσ′ )− Stσ ,tσ′
∥∥∥ =

∥∥∥Ad(T tρρ (U(Λ̃σ+t),ε
)U∗

(Λ̃σ+t),ε
)(Stσ ,tσ′ )− Stσ ,tσ′

∥∥∥

=
∥∥∥[T tρρ (U(Λ̃σ+t),ε

)U∗
(Λ̃σ+t),ε

, Stσ ,tσ′ ]
∥∥∥

≤ 2
∥∥Stσ ,tσ′

∥∥
∥∥∥T tρρ (U(Λ̃σ+t),ε

)U∗
(Λ̃σ+t),ε

− 1
∥∥∥

≤ 2 · 1 · 2f|arg Λ̃σ |,ε,δ(
t

2
) < ε′.

Therefore,

lim
tρ,tρ′ ,tσ ,tσ′→∞

∥∥∥T tρρ (Stσ ,tσ′ )− Stσ ,tσ′
∥∥∥ = 0.

Similarly,

lim
tρ,tρ′ ,tσ ,tσ′→∞

∥∥T tσσ (Rtρ,tρ′ )−Rtρ,tρ′
∥∥ = 0.

Now the proof slightly diverges from the corresponding proof in [6].
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Let s = |Rtρ,tρ′ ||Stσ ,tσ′ | where |Rtρ,tρ′ |, |Stσ ,tσ′ | are the parities of Rtρ,tρ′ , Stσ ,tσ′ respectively, i.e.

s = 1 if both are odd and s = 0 otherwise.

∥∥Rtρ,tρ′ ⊗−(−1)sStσ ,tσ′ ⊗Rtρ,tρ′
∥∥ =

∥∥∥Rtρ,tρ′ · T tρρ (Stσ ,tσ′ )− (−1)sStσ ,tσ′ · T tσσ (Rtρ,tρ′ )
∥∥∥

≤
∥∥Rtρ,tρ′ · Stσ ,tσ′ − (−1)sStσ ,tσ′ ·Rtρ,tρ′

∥∥+
∥∥∥T tρρ (Stσ ,tσ′ )− Stσ ,tσ′

∥∥∥+
∥∥T tσσ (Rtρ,tρ′ )−Rtρ,tρ′

∥∥ ,

and the last two terms both go to 0 in the limit. So,

∥∥Rtρ,tρ′ ⊗ Stσ ,tσ′ − (−1)sStσ ,tσ′ ⊗Rtρ,tρ′
∥∥−

∥∥[Rtρ,tρ′ , Stσ ,tσ′ ]±
∥∥

goes to 0. We have that Stσ ,tσ′ ∈ π0(A(Λ̃σ+t)c
)t′, and that Rtρ,tρ′ ∈ π0(A(Λ̃ρ+t)c

)t′. and that Λ̃ρ is

distal from Λ̃σ, and so by Lemma 52,

lim
t→∞

∥∥[Rtρ,tρ′ , Stσ ,tσ′ ]±
∥∥ = 0,

where the (tτ )τ∈{ρ,ρ′,σ,σ′} are large enough relative to t to satisfy the conditions. And so, as desired,

lim
tρ,tρ′ ,tσ ,tσ′→∞

∥∥∥Rtρ,tρ′ ⊗ Stσ ,tσ′ − (−1)|R
tρ,tρ′ |·|Stσ,tσ′ |Stσ ,tσ′ ⊗Rtρ,tρ′

∥∥∥ = 0.

□

If Rtρ,tρ′ ∈ (T
tρ
ρ , T

tρ′

ρ′ ) and Stσ ,tσ′ ∈ (T tσσ , T
tσ′
σ′ ) have mixed degree, this can still be applied by

splitting them each into their even and odd components.

Definition 87. Let (θ, φ) label a forbidden direction.

For two cones Λ1,Λ2 ∈ C(θ, φ) we say Λ2 ↶
(θ,φ)

Λ1 to mean the range of angles arg Λ2 is counterclock-

wise from the range of angles arg Λ1 when the forbidden direction (θ, φ) is taken into account. More

precisely, if there are some basepoints p⃗i ∈ R2 and θi ∈ R and ϕi ∈ (0, π) where Λi has basepoint p⃗i

and range of angles [θi − φi, θi + φi] for i = 1, 2 and such that

θ + φ < θ1 − φ1 < θ1 + φ1 < θ2 − φ2 < θ2 + φ2 < 2π + θ − φ.

The proof of Lemma 4.8 of [6] goes through without modification. Here we restate the lemma:

Lemma 88. Let (θ, φ) label a forbidden direction. Let Λ1,Λ2,Λ
′
1,Λ

′
2 ∈ C(θ, φ). Suppose that

Λ1 ⊥(θ,φ) Λ2, that Λ2 ↶
(θ,φ)

Λ1, and that Λ′
1 ⊥(θ,φ) Λ

′
2, and Λ′

2 ↶
(θ,φ)

Λ′
1.
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Then, for i = 1, 2 there are {Λ(j)
i }4j=0, {Λ′(j)

i }4j=0 ⊆ C(θ, φ) such that

Λ
(0)
i = Λi, Λ′(0)

i = Λ′
i, i = 1, 2

{Λ(j)
1 ,Λ

(j+1)
1 } ⊥(θ,φ) {Λ(j)

2 ,Λ
(j+1)
2 }, {Λ′(j)

1 ,Λ′(j+1)
1 } ⊥(θ,φ) {Λ′(j)

2 ,Λ′(j+1)
2 }, j = 0, 1, 2, 3

{Λ(4)
1 ,Λ′(4)

1 } ⊥(θ,φ) {Λ(4)
2 ,Λ′(4)

2 }.

So, for each of Λ1,Λ
′
1,Λ2,Λ

′
2 there is a sequence of 5 cones starting with the one the sequence

corresponds to, where for a sequential pair in this sequence, the two of them together are mutually

distal (with forbidden direction (θ, φ)) from the corresponding pair from the cone with the other

index from i = 1, 2, and where at the end the ones from i = 1 are together mutually distal from the

ones from i = 2, with forbidden direction (θ, φ).

This is a bit like saying that four cones starting at Λ1,Λ
′
1,Λ2,Λ

′
2 respectively can be moved around

so that the ones that started out at Λ2,Λ
′
2 end up counterclockwise and sufficently separate from

the ones that started at Λ1,Λ
′
1 , without the ones that started at Λ1 and Λ2 getting too close to

each-other, and also without getting too close to where the other had just been, and likewise for

the ones starting at Λ′
1 and at Λ′

2.

Lemma 89. Let I be an upward-directed set. For t ∈ I and i = 1, 2 let T ti , T
t
i′ , T

t
i′′ ∈ End(B(θ, φ)) be

endomorphisms of the form required in definition 85. Suppose that Rti : T
t
i → T ti′ and Rti′ : T

t
i′ → T ti′′

with Rti, R
t
i′ ∈ B(θ, φ) as well, that lim

t∈I
[Rt1, R

t
2]⊗,± = 0, and that lim

t∈I
[Rt1′ , R

t
2′ ]⊗,± = 0. Also suppose

that for some C > 0 that
∥∥Rti

∥∥ ,
∥∥Rti′

∥∥ ≤ C for all i = 1, 2 and t ∈ I.

Then, lim
t∈I

[Rt1′R
t
1, R

t
2′R

t
2]⊗,± = 0, and for all t ∈ I,

∥∥[Rt1′Rt1, Rt2′Rt2]⊗,±
∥∥ ≤ 27C4

Proof. First suppose that the Rti, R
t
i′ are homogeneous.

By Lemma 83,

(Rt1′R
t
1)⊗ (Rt2′R

t
2) = (−1)|R

t
2′ ||R

t
1|(Rt1′ ⊗Rt2′)(R

t
1 ⊗Rt2)

(Rt2′R
t
2)⊗ (Rt1′R

t
1) = (−1)|R

t
1′ ||R

t
2|(Rt2′ ⊗Rt1′)(R

t
2 ⊗Rt1).
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For homogenous A,B of the right type for the expression to be well defined, as [A,B]⊗,± = A ⊗
B − (−1)|A||B|B ⊗A, therefore also B ⊗A = (−1)|A||B|(A⊗B − [A,B]⊗,±). Applying this,

(Rt2′ ⊗Rt1′) = (−1)|R
t
2′ ||R

t
1′ |(Rt1′ ⊗Rt2′ − [Rt1′ , R

t
2′ ]⊗,±) and

(Rt2 ⊗Rt1) = (−1)|R
t
2||Rt

1|(Rt1 ⊗Rt2 − [Rt1, R
t
2]⊗,±).

So,

(Rt2′R
t
2)⊗ (Rt1′R

t
1)

=(−1)|R
t
1′ ||R

t
2|+|Rt

2′ ||R
t
1′ |+|Rt

2||Rt
1|(Rt1′ ⊗Rt2′ − [Rt1′ , R

t
2′ ]⊗,±)(R

t
1 ⊗Rt2 − [Rt1, R

t
2]⊗,±)

=(−1)|R
t
1′R

t
1||Rt

2′R
t
2|−|Rt

1||Rt
2′ |(Rt1′ ⊗Rt2′ − [Rt1′ , R

t
2′ ]⊗,±)(R

t
1 ⊗Rt2 − [Rt1, R

t
2]⊗,±)

=(−1)|R
t
1′R

t
1||Rt

2′R
t
2|(−1)|R

t
1||Rt

2′ |((Rt1′ ⊗Rt2′)(R
t
1 ⊗Rt2) +Xt)

=(−1)|R
t
1′R

t
1||Rt

2′R
t
2|(((Rt1′R

t
1)⊗ (Rt2′R

t
2) + (−1)|R

t
1||Rt

2′ |Xt)

where Xt = [Rt1′ , R
t
2′ ]⊗,± · [Rt1, Rt2]⊗,±− [Rt1′ , R

t
2′ ]⊗,± · (Rt1⊗Rt2)− (Rt1′ ⊗Rt2′) · [Rt1, Rt2]⊗,±. Because

the
∥∥Rti

∥∥ ,
∥∥Rti′

∥∥ ≤ C and lim
t∈I

[Rt1, R
t
2]⊗,±, and lim

t∈I
[Rt1′ , R

t
2′ ]⊗,± are both 0, lim

t∈I
Xt = 0. Also, it is

easily seen that for all t ∈ I,
∥∥Xt

∥∥ ≤ (2 · C2)2 + (2 · C2) · (C2) + (C2) · (2C2) = 8C4.

Therefore,

[Rt1′R
t
1, R

t
2′R

t
2]⊗,± = (Rt1′R

t
1)⊗ (Rt2′R

t
2)− (−1)|R

t
1′R

t
1||Rt

2′R
t
2|(Rt2′R

t
2)⊗ (Rt1′R

t
1)

= (Rt1′R
t
1)⊗ (Rt2′R

t
2)− (Rt1′R

t
1)⊗ (Rt2′R

t
2) + (−1)sXt

= 0 + (−1)sXt

where s = |Rt1′Rt1||Rt2′Rt2|+ |Rt1||Rt2′ |. So,

lim
t∈I

[Rt1′R
t
1, R

t
2′R

t
2]⊗,± = lim

t∈I
(−1)sXt = 0

as desired. And, for all t ∈ I,
∥∥[Rt1′Rt1, Rt2′Rt2]⊗,±

∥∥ =
∥∥Xt

∥∥ ≤ 8C4.

If the Rti, R
t
i′ are not homogeneous, the result can be applied to their even and odd parts, and

therefore imply the result for them as well. In this case where they are not homogeneous, to get

an upper bound on
∥∥[Rt1′Rt1, Rt2′Rt2]⊗,±

∥∥, after splitting it up into the even and odd components of
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each of Rt1, Rt1′ , R
t
2, R

t
2′ , there are 24 terms which each have norm at most 8C4, and so we have an

upper bound of, for all t ∈ I,
∥∥[Rt1′Rt1, Rt2′Rt2]⊗,±

∥∥ ≤ 27C4. □

As an analogy to Lemma 4.9 of [6]:

Lemma 90. Let (θ, φ) label a forbidden direction. Let Λ1,Λ2,Λ
′
1,Λ

′
2 ∈ C(θ, φ). Suppose that

Λ1 ⊥(θ,φ) Λ2, that Λ2 ↶
(θ,φ)

Λ1, and that Λ′
1 ⊥(θ,φ) Λ

′
2, and Λ′

2 ↶
(θ,φ)

Λ′
1.

For i = 1, 2, let ρi, ρ′i ∈ O0, and for each ti, t′i ≥ 0 let Vρi,Λi+ti ∈ Vρi,Λi+ti , Vρ′i,Λ′
i+t

′
i
∈ Vρ′i,Λ′

i+t
′
i
, let

T tiρi abbreviate T
(θ,φ),Λi+ti,Vρi,Λi+ti
ρi and T t

′
i

ρ′i
abbreviate T

(θ,φ),Λ′
i+t

′
i,Vρ′

i
,Λ′

i
+t′

i

ρ′i
, and Rti,t

′
i

i ∈ (T tiρi , T
t′i
ρ′i
) with∥∥∥Rti,t

′
i

i

∥∥∥ ≤ 1.

Then, for Rti,t
′
i

i homogeneous and s = |Rt1,t
′
1

1 | |Rt2,t
′
2

2 | (i.e. 1 if both are odd and 0 otherwise),

lim
t1,t′1,t2,t

′
2→∞

∥∥∥Rt1,t
′
1

1 ⊗R
t2,t′2
2 − (−1)sR

t2,t′2
2 ⊗R

t1,t′1
1

∥∥∥ = 0.

In the general (not necessarily homogeneous) case, we have

lim
t1,t′1,t2,t

′
2→∞

∥∥∥[Rt1,t
′
1

1 , R
t2,t′2
2 ]⊗,±

∥∥∥ = 0.

Proof. First, assume that both Rt1,t
′
1

1 and Rt2,t
′
2

2 are homogeneous for all t1, t′1, t2, t′2.

By Lemma 4.8 of [6] ( Lemma 88) there are {Λ(j)
i }4j=0, {Λ′(j)

i }4j=0 ⊆ C(θ, φ) for i = 1, 2 satisfying

Λ
(0)
i = Λi, Λ′(0)

i = Λ′
i, i = 1, 2

{Λ(j)
1 ,Λ

(j+1)
1 } ⊥(θ,φ) {Λ(j)

2 ,Λ
(j+1)
2 }, {Λ′(j)

1 ,Λ′(j+1)
1 } ⊥(θ,φ) {Λ′(j)

2 ,Λ′(j+1)
2 }, j = 0, 1, 2, 3

{Λ(4)
1 ,Λ′(4)

1 } ⊥(θ,φ) {Λ(4)
2 ,Λ′(4)

2 }.

For i = 1, 2, j = 0, . . . , 4 and ti,j , t′i,j ≥ 0, let t⃗ = (ti,j , t
′
i,j |i = 1, 2 and j = 0, . . . , 4),

and let t⃗→ ∞ mean that ti,j , t′i,j → ∞ for each i, j.

Pick for each i, j, for each ti,j ≥ 0 a V
ρi,Λ

(j)
i +ti,j

∈ V
ρi,Λ

(j)
i +ti,j

, and for each t′i,j ≥ 0 a V
ρ′i,Λ

′(j)
i +t′i,j

∈
V
ρ′i,Λ

′(j)
i +t′i,j

.

For each t⃗ and for each i = 1, 2 and j = 0, . . . , 4, as abbreviations, set

T i,j,⃗tρi := T
(θ,φ),Λ

(j)
i +ti,j ,V

ρi,Λ
(j)
i

+ti,j
ρi and T i

′,j,⃗t
ρ′i

:= T
(θ,φ),Λ′(j)

i +t′i,j ,Vρ′
i
,Λ′(j)

i
+t′

i,j

ρ′i
.

For each t⃗ and each i = 1, 2 and j = 0, . . . , 3 define
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W
(j),⃗t
i := V

ρi,Λ
(j+1)
i +ti,j+1

V ∗
ρi,Λ

(j)
i +ti,j

and W ′(j),⃗t
i := V

ρ′i,Λ
′(j+1)
i +t′i,j+1

V ∗
ρ′i,Λ

′(j)
i +t′i,j

. By Lemma 78,

W
(j),⃗t
i : T i,j,⃗tρi → T i,j+1,⃗t

ρi and W ′(j),⃗t
i : T i

′,j,⃗t
ρ′i

→ T i
′,j+1,⃗t
ρ′i

.

As the {Λ(j)
i }4j=0, {Λ′(j)

i }4j=0 ⊆ C(θ, φ) were chosen according to 88 and
∥∥∥W (j),⃗t

i

∥∥∥ = 1 =
∥∥∥W ′(j),⃗t

i

∥∥∥,

applying lemma 86 we get that, for j = 0, . . . , 3,

lim
t⃗→∞

[W
(j),⃗t
1 ,W

(j),⃗t
2 ]⊗,± = 0 and lim

t⃗→∞
[(W ′(j),⃗t

1 )∗, (W ′(j),⃗t
2 )∗]⊗,± = 0 .

For i = 1, 2 define

W ′(0→4),⃗t
i :=W ′(3),⃗t

i W ′(2),⃗t
i W ′(1),⃗t

i W ′(0),⃗t
i : T i

′,0,⃗t
ρ′i

→ T i
′,4,⃗t
ρ′i

W
(0→4),⃗t
i :=W

(3),⃗t
i W

(2),⃗t
i W

(1),⃗t
i W

(0),⃗t
i : T i,0,⃗tρi → T i,4,⃗tρi

S t⃗i :=W ′(0→4),⃗t
i R

ti,0,t
′
i,0

i (W
(0→4),⃗t
i )∗ : T i,4,⃗tρi → T i

′,4,⃗t
ρ′i

where these being intertwiners with the stated domains and codomains follows from composition,

along with the adjoint of an intertwiner being an intertwiner in the opposite direction. Note also

that as W ′(0→4),⃗t
i and W

(0→4),⃗t
i are even, the grade of S t⃗i is the same as the grade of R

ti,0,t
′
i,0

i , and

so s = |Rt1,0,t
′
1,0

1 | · |Rt2,0,t
′
2,0

2 | = |S t⃗1| · |S t⃗2|.
As {Λ(4)

1 ,Λ′(4)
1 } ⊥(θ,φ) {Λ(4)

2 ,Λ′(4)
2 }, by Lemma 86, lim

t⃗→∞
[S t⃗1, S

t⃗
2]⊗,± = 0.

By iteratively applying Lemma 89, and using the fact that

for j = 0, . . . , 3 lim
t⃗→∞

[(W ′(j),⃗t
1 )∗, (W ′(j),⃗t

2 )∗]⊗,± = 0,

we get that

lim
t⃗→∞

[(W ′(0→4),⃗t
1 )∗, (W ′(0→4),⃗t

2 )∗]⊗,± = 0.

Similarly, we obtain

lim
t⃗→∞

[W
(0→4),⃗t
1 ,W

(0→4),⃗t
2 ]⊗,± = 0

from limt⃗→∞[W
(j),⃗t
1 ,W

(j),⃗t
2 ]⊗,± = 0.

As the W (0→4),⃗t
i ,W ′(0→4),⃗t

i used to define S t⃗i in terms of R
ti,0,t

′
i,0

i are unitaries,

R
ti,0,t

′
i,0

i = (W ′(0→4),⃗t
i )∗S t⃗iW

(0→4),⃗t
i .
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So, by two more applications of Lemma 89, we get that

lim
t⃗→∞

[R
t1,0,t′1,0
1 , R

t2,0,t′2,0
2 ]⊗,± = lim

t⃗→∞
[(W ′(0→4),⃗t

1 )∗S t⃗1W
(0→4),⃗t
1 , (W ′(0→4),⃗t

2 )∗S t⃗2W
(0→4),⃗t
2 ]⊗,±

= 0

as desired.

Now we treat the case where the Rti,t
′
i

i are not assumed to be homogeneous. By Lemma 76, we

have that Rti,t
′
i

i,even, R
ti,t

′
i

i,odd ∈ (T tiρi , T
t′i
ρ′i
), and by Lemma 112(ii), we also have that

∥∥∥Rti,t
′
i

i,even

∥∥∥ ,
∥∥∥Rti,t

′
i

i,odd

∥∥∥ ≤∥∥∥Rti,t
′
i

i

∥∥∥. So, from the condition that
∥∥∥Rti,t

′
i

i

∥∥∥ ≤ 1 we have that
∥∥∥Rti,t

′
i

i,even

∥∥∥ ,
∥∥∥Rti,t

′
i

i,odd

∥∥∥ ≤ 1. So, the

conditions of this lemma apply to the even and odd components of the Rti,t
′
i

i , and we have already

shown the lemma in the homogeneous case. Therefore, we have

lim
t⃗→∞

[R
t1,t′1
1,α , R

t2,t′2
2,β ]⊗,± = 0, for α, β ∈ {even, odd}.

So,

lim
t⃗→∞

[R
t1,t′1
1 , R

t2,t′2
2 ]⊗,± = lim

t⃗→∞
([R

t1,t′1
1,even, R

t2,t′2
2,even]⊗,± + [R

t1,t′1
1,even, R

t2,t′2
2,odd]⊗,± +

[R
t1,t′1
1,odd, R

t2,t′2
2,even]⊗,± + [R

t1,t′1
1,odd, R

t2,t′2
2,odd]⊗,±)

= 0.

This completes the proof in the general case. □

The above proof could alternatively have been done using Lemma 83 more directly in place of using

Lemma 89 , by using the fact that the W (j),⃗t
i ,W ′(j),⃗t

i are all even to avoid the sign terms in the

compositions, but this way was easier to phrase.

The conclusion of Lemma 4.10 of [6] applies here as well with no changes, and very little changes

in the proof:

Lemma 91. Let (θ, φ) label a forbidden direction.

let ρ = τ1 = τ1′ , σ = τ2 = τ2′ ∈ O0.

For i = 1, 2 let ti′ = t′i be two notations for the same number. Likewise, let Λi′ = Λ′
i be two notations

for the same cone.

For i ∈ {0, 1, 1′, 2, 2′} let Λi ∈ C(θ, φ). For i ∈ {1, 1′, 2, 2′}, for ti ≥ 0 , let Vτi,Λi+ti ∈ Vτi,Λi+ti . For
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τ ∈ {ρ, σ} let Vτ,Λ0 ∈ Vτ,Λ0 .

Set t⃗ = (ti)i=1,2, t⃗′ = (t′i)i=1,2.

For i ∈ {1, 2} set W t⃗
τi,Λ0,Λi

:= Vτi,Λi+tiV
∗
τi,Λ0

and W t⃗′

τi,Λ0,Λ′
i
:= Vτi,Λ′

i+t
′
i
V ∗
τi,Λ0

.

Suppose Λ2 ⊥(θ,φ) Λ1 and Λ2 ↶
(θ,φ)

Λ1, and that Λ′
2 ⊥(θ,φ) Λ

′
1 and Λ′

2 ↶
(θ,φ)

Λ′
1. Then we have

lim
t⃗,⃗t′→∞

∥∥∥(W t⃗
σΛ0Λ2

⊗W t⃗
ρΛ0Λ1

)∗(W t⃗
ρΛ0Λ1

⊗W t⃗
σΛ0Λ2

)− (W t⃗′

σΛ0Λ′
2
⊗W t⃗′

ρΛ0Λ′
1
)∗(W t⃗′

ρΛ0Λ′
1
⊗W t⃗′

σΛ0Λ′
2
)
∥∥∥ = 0.

Proof. For i = 1, 2 set W t⃗,⃗t′

τi,Λi,Λ′
i
:= Vτi,Λ′

i+t
′
i
V ∗
τi,Λi+ti

.

Set these abbreviations:

For i = 1, 2 let TΛ0
ρi = T

(θ,φ),Λ0,Vτi,Λ0
ρi .

For i ∈ {1, 1′, 2, 2′} let T i,tiτi = T
(θ,φ),Λi+ti,Vτi,Λi+ti
τi .

From Lemma 78, for i = 1, 2:

W t⃗
τi,Λ0,Λi

: TΛ0
τi → T i,tiτi , W t⃗′

τi,Λ0,Λ′
i
: TΛ0

τi → T
i′,t′i
τi , and W t⃗,⃗t′

τi,Λi,Λ′
i
: T i,tiτi → T

i′,t′i
τi .

As all of these W intertwiners are even, by Lemma 83,

(W t⃗,⃗t′

τ1,Λ1,Λ′
1
⊗W t⃗,⃗t′

τ2,Λ2,Λ′
2
)(W t⃗

τ1,Λ0,Λ1
⊗W t⃗

τ2,Λ0,Λ2
)

= (W t⃗,⃗t′

τ1,Λ1,Λ′
1
W t⃗
τ1,Λ0,Λ1

)⊗ (W t⃗,⃗t′

τ2,Λ2,Λ′
2
W t⃗
τ2,Λ0,Λ2

)

=W t⃗′

τ1,Λ0,Λ′
1
⊗W t⃗′

τ2,Λ0,Λ′
2

and likewise

(W t⃗,⃗t′

τ2,Λ2,Λ′
2
⊗W t⃗,⃗t′

τ1,Λ1,Λ′
1
)(W t⃗

τ2,Λ0,Λ2
⊗W t⃗

τ1,Λ0,Λ1
)

=W t⃗′

τ2,Λ0,Λ′
2
⊗W t⃗′

τ1,Λ0,Λ′
1
,

so

(W t⃗′

τ2,Λ0,Λ′
2
⊗W t⃗′

τ1,Λ0,Λ′
1
)∗(W t⃗′

τ1,Λ0,Λ′
1
⊗W t⃗′

τ2,Λ0,Λ′
2
)

(4.1)

= (W t⃗
τ2,Λ0,Λ2

⊗W t⃗
τ1,Λ0,Λ1

)∗(W t⃗,⃗t′

τ2,Λ2,Λ′
2
⊗W t⃗,⃗t′

τ1,Λ1,Λ′
1
)∗(W t⃗,⃗t′

τ1,Λ1,Λ′
1
⊗W t⃗,⃗t′

τ2,Λ2,Λ′
2
)(W t⃗

τ1,Λ0,Λ1
⊗W t⃗

τ2,Λ0,Λ2
).

(4.2)
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Applying Lemma 90 with ρi = ρ′i = τi and Rti,t
′
i

i =W t⃗,⃗t′

τi,Λi,Λ′
i

(for i = 1, 2) we get

lim
t⃗,⃗t′→∞

[W t⃗,⃗t′

τ1,Λ1,Λ′
1
,W t⃗,⃗t′

τ2,Λ2,Λ′
2
]⊗,± = 0, which, because the W t⃗,⃗t′

τi,Λi,Λ′
i

are all even, is equivalent to

lim
t⃗,⃗t′→∞

(W t⃗,⃗t′

τ1,Λ1,Λ′
1
⊗ W t⃗,⃗t′

τ2,Λ2,Λ′
2
− W t⃗,⃗t′

τ2,Λ2,Λ′
2
⊗ W t⃗,⃗t′

τ1,Λ1,Λ′
1
) = 0, which as these are unitaries is equiv-

alent to lim
t⃗,⃗t′→∞

((W t⃗,⃗t′

τ2,Λ2,Λ′
2
⊗W t⃗,⃗t′

τ1,Λ1,Λ′
1
)∗(W t⃗,⃗t′

τ1,Λ1,Λ′
1
⊗W t⃗,⃗t′

τ2,Λ2,Λ′
2
) − 1) = 0 and, substituting this into

equation 4.1 above, we get the desired result. □

With this, the definition of the braiding morphism (Definition 4.11 in [6]) works without modifica-

tion:

Definition 92. Let (θ, φ) label a forbidden direction.

Let ρ = τ1, σ = τ2 ∈ O0. Let Λ0 ∈ C(θ, φ). Let Vρ,Λ0 ∈ Vρ,Λ0 , Vσ,Λ0 ∈ Vσ,Λ0 .

Define ϵ(Λ0)
+ (ρ, σ) as follows:

Pick any Λ1,Λ2 ∈ C(θ, φ) such that Λ1 ⊥(θ,φ) Λ1 and Λ2 ↶
(θ,φ)

Λ1.

For i ∈ {1, 2}, for each ti ≥ 0 , pick any Vτi,Λi+ti ∈ Vτi,Λi+ti .

Set t⃗ = (ti)i=1,2. For i ∈ {1, 2} set W t⃗
τi,Λ0,Λi

:= Vτi,Λi+tiV
∗
τi,Λ0

.

Define

ϵ
(Λ0)
+ (ρ, σ) := lim

t⃗→∞
(W t⃗

σΛ0Λ2
⊗W t⃗

ρΛ0Λ1
)∗(W t⃗

ρΛ0Λ1
⊗W t⃗

σΛ0Λ2
).

By Lemma 91, this limit exists and is independent of the choices of Λ1,Λ2 and of the choices of

Vτi,Λi+ti ∈ Vτi,Λi+ti .

Lemma 4.12 from [6] goes through in this setting with essentially no modification to the proof (other

than which lemmas are cited to reach the same conclusions, and using Remark 77). It is restated

here:

Lemma 93. Let (θ, φ) specify a forbidden direction. Let Λ0 ∈ C(θ, φ). Let ρ, σ ∈ O0. Let Vρ,Λ0 ∈
Vρ,Λ0 and Vσ,Λ0 ∈ Vσ,Λ0. Let Tρ and Tσ abbreviate T

(θ,φ),Λ0,Vρ,Λ0
ρ and T

(θ,φ),Λ0,Vσ,Λ0
σ respectively.

Then, ϵ(Λ0)
+ (ρ, σ) ∈ (Tρ ◦ Tσ, Tσ ◦ Tρ).

Proof. Let Λ1,Λ2 ∈ C(θ, φ) which satisfy Λ2 ⊥(θ,φ) Λ1 and Λ2 ↶
(θ,φ)

Λ1. Use the notation and

abbreviations from Lemma 91. Note that (W t⃗
ρ,Λ0,Λ1

⊗ W t⃗
σ,Λ0,Λ2

) ∈ (TΛ0
ρ ◦ TΛ0

σ , T 1,t1
ρ ◦ T 2,t2

σ ) and

that (W t⃗
σ,Λ0,Λ2

⊗W t⃗
ρ,Λ0,Λ1

)∗ ∈ (T 2,t2
σ ◦ T 1,t1

ρ , TΛ0
σ ◦ TΛ0

ρ ). For any A ∈ Aloc, for sufficiently large t⃗,
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A ∈ A(Λi+ti)c for i = 1, 2, and so, by Lemma 59 (d),

T 1,t1
ρ ◦ T 2,t2

σ ◦ π0(A) = T 1,t1
ρ ◦ π0(A) = π0(A) = T 2,t2

σ ◦ π0(A) = T 2,t2
σ ◦ T 1,t1

ρ ◦ π0(A).

As the W operators are all even, by Remark 77, for all x ∈ B(θ, φ) and for all t⃗,

(W t⃗
ρ,Λ0,Λ1

⊗W t⃗
σ,Λ0,Λ2

)TΛ0
ρ ◦ TΛ0

σ (x) = T 1,t1
ρ ◦ T 2,t2

σ (x) (W t⃗
ρ,Λ0,Λ1

⊗W t⃗
σ,Λ0,Λ2

) and

TΛ0
σ ◦ TΛ0

ρ (x) (W t⃗
σ,Λ0,Λ2

⊗W t⃗
ρ,Λ0,Λ1

)∗ = (W t⃗
σ,Λ0,Λ2

⊗W t⃗
ρ,Λ0,Λ1

)∗ T 2,t2
σ ◦ T 1,t1

ρ (x).

Therefore, for A ∈ Aloc,

(W t⃗
σΛ0Λ2

⊗W t⃗
ρΛ0Λ1

)∗(W t⃗
ρΛ0Λ1

⊗W t⃗
σΛ0Λ2

)TΛ0
ρ ◦ TΛ0

σ ◦ π0(A)

−

TΛ0
σ ◦ TΛ0

ρ ◦ π0(A) (W t⃗
σΛ0Λ2

⊗W t⃗
ρΛ0Λ1

)∗(W t⃗
ρΛ0Λ1

⊗W t⃗
σΛ0Λ2

)

=

(W t⃗
σΛ0Λ2

⊗W t⃗
ρΛ0Λ1

)∗ T 1,t1
ρ ◦ T 2,t2

σ ◦ π0(A) (W t⃗
ρΛ0Λ1

⊗W t⃗
σΛ0Λ2

)

−

(W t⃗
σΛ0Λ2

⊗W t⃗
ρΛ0Λ1

)∗ T 2,t2
σ ◦ T 1,t1

ρ ◦ π0(A) (W t⃗
ρΛ0Λ1

⊗W t⃗
σΛ0Λ2

),

and for sufficiently large t⃗, this is zero. Taking the limit of both sides as t⃗ → ∞, and applying the

definition of ϵ(Λ0)
+ (ρ, σ), we get that

ϵ
(Λ0)
+ (ρ, σ)TΛ0

ρ ◦ TΛ0
σ ◦ π0(A)− TΛ0

σ ◦ TΛ0
ρ ◦ π0(A) ϵ(Λ0)

+ (ρ, σ) = 0.

Then, as Tρ◦Tσ and Tσ◦Tρ are each ultraweak-continuous on π0(AΛ) for Λ ∈ C(θ, φ) (by Lemma 71),

and are norm continuous, we get that x 7→ (ϵ
(Λ0)
+ (ρ, σ)TΛ0

ρ ◦ TΛ0
σ (x) − TΛ0

σ ◦ TΛ0
ρ (x) ϵ

(Λ0)
+ (ρ, σ)) is

zero on the norm closure of B0(θ, φ), which by Lemma 49 is all of B(θ, φ).
So, for x ∈ B(θ, φ), ϵ(Λ0)

+ (ρ, σ)TΛ0
ρ ◦ TΛ0

σ ◦ π0(A) = TΛ0
σ ◦ TΛ0

ρ ◦ π0(A) ϵ(Λ0)
+ (ρ, σ),

i.e. ϵ(Λ0)
+ (ρ, σ) ∈ (TΛ0

ρ ◦ TΛ0
σ , TΛ0

σ ◦ TΛ0
ρ ), as desired. □

Following Lemma 4.13 of [6]:
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Lemma 94. Let (θ, φ) specify a forbidden direction. Let Λ0 ∈ C(θ, φ). Let ρ, ρ′, σ, σ′ ∈ O0.

For each τ ∈ {ρ, ρ′, σ, σ′} let Vτ,Λ0 ∈ Vτ,Λ0 . Let R ∈ (T
(θ,φ),Λ0,Vρ,Λ0
ρ , T

(θ,φ),Λ0,Vρ′,Λ0
ρ′ ) and let

S ∈ (T
(θ,φ),Λ0,Vσ,Λ0
σ , T

(θ,φ),Λ0,Vσ′,Λ0
σ′ ). For R,S each homogeneous, for s = |R||S|,

ϵ
(Λ0)
+ (ρ′, σ′)(R⊗ S) = (−1)s(S ⊗R)ϵ

(Λ0)
+ (ρ, σ)

and otherwise by components.

Proof. Let Λ1,Λ2 ∈ C(θ, φ) which satisfy Λ2 ⊥(θ,φ) Λ1 and Λ2 ↶
(θ,φ)

Λ1. Use the notation and

abbreviations from Lemma 91, but note that now that there is ρ′, σ′ to deal with, and there is no

Λ′
1 and Λ′

2 to deal with, the primes here are indicating something wholly separate. For example,

Vρ′,Λ1+t1 ∈ Vρ′,Λ1+t1 may be different from Vρ,Λ1+t1 ∈ Vρ,Λ1+t1 , and T 1,t2
ρ′ = T

(θ,φ),Λ1+t1,Vρ′,Λ1+t1
ρ′ .

Set and note that Rt1,t1 := W t⃗
ρ′,Λ0,Λ1

RW t⃗ ∗
ρ,Λ0,Λ1

∈ (T 1,t1
ρ , T 1,t1

ρ′ ) and St2,t2 := W t⃗
σ′,Λ0,Λ2

SW t⃗ ∗
σ,Λ0,Λ2

∈
(T 2,t2
σ , T 2,t2

σ′ )

As Λ2 ⊥(θ,φ) Λ1 and Λ2 ↶
(θ,φ)

Λ1, by Lemma 90, lim
t⃗→∞

[Rt1,t1 , St2,t2 ]⊗,± = 0

As W t⃗
ρ,Λ0,Λ1

,W t⃗
ρ′,Λ0,Λ1

,W t⃗
σ,Λ0,Λ2

,W t⃗
σ′,Λ0,Λ2

are all even, by Lemma 83,

(W t⃗
σ′,Λ0,Λ2

⊗W t⃗
ρ′,Λ0,Λ1

)(S⊗R)(W t⃗ ∗
σ,Λ0,Λ2

⊗W t⃗ ∗
ρ,Λ0,Λ1

) = (St2,t2⊗Rt1,t1) and (W t⃗
ρ′,Λ0,Λ1

⊗W t⃗
σ′,Λ0,Λ2

)(R⊗
S)(W t⃗ ∗

ρ,Λ0,Λ1
⊗W t⃗ ∗

σ,Λ0,Λ2
) = (Rt1,t1 ⊗ St2,t2).

(S ⊗R)(W t⃗
σ,Λ0,Λ2

⊗W t⃗
ρ,Λ0,Λ1

)∗(W t⃗
ρ,Λ0,Λ1

⊗W t⃗
σ,Λ0,Λ2

)

= (W t⃗
σ′,Λ0,Λ2

⊗W t⃗
ρ′,Λ0,Λ1

)∗(St2,t2 ⊗Rt1,t1)(W t⃗
ρ,Λ0,Λ1

⊗W t⃗
σ,Λ0,Λ2

)

= (W t⃗
σ′,Λ0,Λ2

⊗W t⃗
ρ′,Λ0,Λ1

)∗(−1)|R||S|((Rt1,t1 ⊗ St2,t2)− [Rt1,t1 , St2,t2 ]⊗,±)(W
t⃗
ρ,Λ0,Λ1

⊗W t⃗
σ,Λ0,Λ2

)

= (−1)|R||S|(((W t⃗
σ′,Λ0,Λ2

⊗W t⃗
ρ′,Λ0,Λ1

)∗(Rt1,t1 ⊗ St2,t2)(W t⃗
ρ,Λ0,Λ1

⊗W t⃗
σ,Λ0,Λ2

)

− (W t⃗
σ′,Λ0,Λ2

⊗W t⃗
ρ′,Λ0,Λ1

)∗[Rt1,t1 , St2,t2 ]⊗,±(W
t⃗
ρ,Λ0,Λ1

⊗W t⃗
σ,Λ0,Λ2

))

= (−1)|R||S|(((W t⃗
σ′,Λ0,Λ2

⊗W t⃗
ρ′,Λ0,Λ1

)∗(W t⃗
ρ′,Λ0,Λ1

⊗W t⃗
σ′,Λ0,Λ2

)(R⊗ S)

− (W t⃗
σ′,Λ0,Λ2

⊗W t⃗
ρ′,Λ0,Λ1

)∗[Rt1,t1 , St2,t2 ]⊗,±(W
t⃗
ρ,Λ0,Λ1

⊗W t⃗
σ,Λ0,Λ2

)),

and so

(S ⊗R)ϵ
(Λ0)
+ (ρ, σ) = lim

t⃗→∞
(S ⊗R)(W t⃗

σ,Λ0,Λ2
⊗W t⃗

ρ,Λ0,Λ1
)∗(W t⃗

ρ,Λ0,Λ1
⊗W t⃗

σ,Λ0,Λ2
)

= (−1)|R||S| lim
t⃗→∞

( ((W t⃗
σ′,Λ0,Λ2

⊗W t⃗
ρ′,Λ0,Λ1

)∗(W t⃗
ρ′,Λ0,Λ1

⊗W t⃗
σ′,Λ0,Λ2

)(R⊗ S)
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− (W t⃗
σ′,Λ0,Λ2

⊗W t⃗
ρ′,Λ0,Λ1

)∗[Rt1,t1 , St2,t2 ]⊗,±(W
t⃗
ρ,Λ0,Λ1

⊗W t⃗
σ,Λ0,Λ2

) )

= (−1)|R||S|ϵ
(Λ0)
+ (ρ′, σ′)(R⊗ S).

For R,S not homogeneous, R = R0 +R1, S = S0 + S1,

(S ⊗R)ϵ
(Λ0)
+ (ρ, σ) = (S0 ⊗R0 + S0 ⊗R1 + S1 ⊗R0 + S1 ⊗R1)ϵ

(Λ0)
+ (ρ, σ)

= ϵ
(Λ0)
+ (ρ′, σ′)(R0 ⊗ S0 +R1 ⊗ S0 +R0 ⊗ S1 −R1 ⊗ S1).

□

Following Lemma 4.14 of [6]:

Lemma 95. Let (θ, φ) label a forbidden direction. Let ρ, σ ∈ O0. For i = 0, 1 let Λi ∈ C(θ, φ)
and let Di = ((θ, φ),Λi, {V η,Λi}η∈O0) be as in Definition 66. Set Wρ,Λ0,Λ1 := V ρ,Λ1V

∗
ρ,Λ0

and

Wσ,Λ0,Λ1 := V σ,Λ1V
∗
σ,Λ0

. Then,

Wρ,Λ0,Λ1 ⊗Wσ,Λ0,Λ1 ∈ V(ρ◦D0
σ),Λ1

,

1 ∈ V(ρ◦D0
σ),Λ0

Proof. By Lemma 78, Wρ,Λ0,Λ1 : TD0
ρ → TD1

ρ and Wσ,Λ0,Λ1 : TD0
σ → TD1

σ . So, Wρ,Λ0,Λ1 ⊗
Wσ,Λ0,Λ1 =Wρ,Λ0,Λ1T

D0
ρ (Wσ,Λ0,Λ1) : T

D0
ρ ◦ TD0

σ → TD1
ρ ◦ TD1

σ .

Ad(Wρ,Λ0,Λ1 ⊗Wσ,Λ0,Λ1) ◦ (ρ ◦D0 σ) = Ad(Wρ,Λ0,Λ1T
D0
ρ (Wσ,Λ0,Λ1)) ◦ (TD0

ρ ◦ TD0
σ ◦ π0)

= Ad(Wρ,Λ0,Λ1) ◦ TD0
ρ ◦Ad(Wσ,Λ0,Λ1) ◦ TD0

σ ◦ π0

= TD1
ρ ◦ TD1

σ ◦ π0 = ρ ◦D1 ◦σ.

The third equality is by Lemma 61(iii). By Lemma 68, ((ρ ◦D1 σ), UαF ) ∈ OΛ1 , and therefore

(ρ ◦D1 σ)
t|AΛc

1
= πt0|AΛc

1
. So, for U(ρ◦D0

σ) = UαF and U(ρ◦D1
σ) = UαF ,

Ad(Wρ,Λ0,Λ1 ⊗Wσ,Λ0,Λ1) ◦ (ρ ◦D0 σ)
t|AΛc

1
= Ad(Wρ,Λ0,Λ1 ⊗Wσ,Λ0,Λ1) ◦ tw ◦(ρ ◦D0 σ)|AΛc

1

= tw ◦Ad(Wρ,Λ0,Λ1 ⊗Wσ,Λ0,Λ1) ◦ (ρ ◦D0 σ)|AΛc
1

= tw ◦(ρ ◦D1 ◦σ)|AΛc
1
= (ρ ◦D1 ◦σ)t|AΛc

1

= πt0|AΛc
1
.
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Therefore (also using the fact that Wρ,Λ0,Λ1 ⊗Wσ,Λ0,Λ1 is even) Wρ,Λ0,Λ1 ⊗Wσ,Λ0,Λ1 ∈ V(ρ◦D0
σ),Λ1

.

Also by Lemma 68, ((ρ ◦D0 σ), UαF ) ∈ OΛ0,∗, so 1 ∈ V(ρ◦D0
σ),Λ0

.

□

Remark 96. We will apply this to the definition 92 for ϵ(Λ0)
+ ((ρ ◦D σ), ·) and ϵ(Λ0)

+ (·, (ρ ◦D σ)).
Recall W t⃗

(ρ◦Dσ),Λ0,Λ1
:= V(ρ◦Dσ),Λ1+t1V

∗
(ρ◦Dσ),Λ0

for any choice of V(ρ◦Dσ),Λ1+t1 ∈ V(ρ◦Dσ),Λ1+t1 and

for V(ρ◦Dσ),Λ0
∈ V(ρ◦Dσ),Λ0

.

Now apply the above lemma in the case of Λ1 and Λ0 in the above lemma being Λi + ti and Λ0

respectively of definition 92. Then, As 1 ∈ V(ρ◦Dσ),Λ0
we can choose V(ρ◦Dσ),Λ0

= 1. And, as

Wρ,Λ0,Λi+ti ⊗Wσ,Λ0,Λi+ti ∈ V(ρ◦D0
σ),Λi+ti .

Then W t⃗
(ρ◦Dσ),Λ0,Λi+ti

:= (Wρ,Λ0,Λi+ti ⊗Wσ,Λ0,Λi+ti) · (1)∗ =Wρ,Λ0,Λi+ti ⊗Wσ,Λ0,Λi+ti

Following Lemma 4.16 of [6]:

Lemma 97 (Hexagon Identities). Let D = ((θ, φ),Λ0, {V η,Λ0}η∈O0) be as in Definition 66. For any

ρ, σ, τ ∈ O0,

ϵ
(Λ0)
+ ((ρ ◦D σ), τ) = (ϵ

(Λ0)
+ (ρ, τ)⊗ 1TD

σ
)(1TD

ρ
⊗ ϵ

(Λ0)
+ (σ, τ)),

ϵ
(Λ0)
+ (ρ, (σ ◦D τ)) = (1TD

σ
⊗ ϵ

(Λ0)
+ (ρ, τ))(ϵ

(Λ0)
+ (ρ, σ)⊗ 1TD

τ
).

Proof. This proof is nearly the same as the proof of Lemma 4.16 in [6], as, because all the

operators involved are even, almost nothing needs to change in the proof (other than citing analogous

lemmas/definitions in place of the lemmas/definitions cited).

In applying Definition 92, take Λ1,Λ2 ∈ C(θ, φ) satisfying Λ2 ↶
(θ,φ)

Λ1, and Λ2 ⊥ such that there

exist Λ̃1, Λ̃2 ∈ C(θ, φ) such that

(Λ1)ε,Λ0 ⊂ Λ̃1, Λ2 ⊂ Λ̃2

arg(Λ̃1)2ε+δ+ε1+ε2 ∩ arg(Λ̃2)2ε+δ+ε1+ε2 = ∅,

(Λ̃1 −R|arg Λ̃1|,ε)ε ⊂ Λ̃c2, (Λ̃2 −R|arg Λ̃2|,ε)ε ⊂ Λ̃c1,

(Λ̃1)2(ε+ε1+ε2+δ), (Λ̃2)2(ε+ε1+ε2+δ) ∈ C(θ, φ),

for some δ, ε > 0 and ε1, ε2 > 0 small enough. So, in particular, Λ2 ⊥(θ,φ) Λ1. These conditions

are essentially the condition that {(Λ1)ε,Λ0} ⊥(θ,φ) {Λ2}, along with the extra conditions that the

ε in that (Λ1)ε be the one used in Definition 51 for the disjointness part, and that Λ̃1, Λ̃2 can be
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widened by a bit more than the required ε (instead by 2(ε+ ε1 + δ + ε2) ) while still remaining in

C(θ, φ) and with disjoint ranges of angles.

For i = 1, 2 and ti ≥ 0, pick DΛi+ti = ((θ, φ),Λi + ti, {Vη,Λi+ti}η∈O0) as in Definition 66. Let

t⃗ = (t1, t2). For i, j = 1, 2 and t⃗ ≥ 0, and for η ∈ {ρ, σ, τ} define W t⃗
η,Λi,Λj

:= Vη,Λj+tjV
∗
η,Λi+ti

:

T
DΛi+ti
η → T

DΛj+tj
η and W t⃗

η,Λ0,Λi
:= Vη,Λi+tiV

∗
η,Λ0

: TDη → T
DΛi+ti
η .

By the preceding remark, set

W t⃗
(ρ◦Dσ),Λ0,Λ1

:=W t⃗
ρ,Λ0,Λ1

⊗W t⃗
σ,Λ0,Λ1

=W t⃗
ρ,Λ0,Λ1

TDρ (W t⃗
σ,Λ0,Λ1

)

W t⃗
(σ◦Dτ),Λ0,Λ2

:=W t⃗
σ,Λ0,Λ2

⊗W t⃗
τ,Λ0,Λ2

=Wσ,Λ0,Λ2T
D
σ (W t⃗

τ,Λ0,Λ2
)

W t⃗
(ρ◦Dσ),Λ0,Λ1

: T
(θ,φ),Λ0,1
(ρ◦Dσ) → T

(θ,φ),Λ1+t1,W t⃗
(ρ◦Dσ),Λ0,Λ1

(ρ◦Dσ) . By Lemma 72, TD(ρ◦Dσ) = Ad(V(ρ◦σ),Λ0
) ◦TDρ ◦

TDσ . As 1 ∈ V(ρ◦Dσ),Λ0
, By Lemma 61(iii),

T
(θ,φ),Λ0,1
(ρ◦Dσ) = Ad(1 · V ∗

(ρ◦Dσ),Λ0
) ◦ T (θ,φ),Λ0,V(ρ◦Dσ),Λ0

(ρ◦Dσ) = Ad(V ∗
(ρ◦Dσ),Λ0

) ◦ TD(ρ◦Dσ)

= Ad(V ∗
(ρ◦Dσ),Λ0

) ◦Ad(V(ρ◦σ),Λ0
) ◦ TDρ ◦ TDσ = TDρ ◦ TDσ .

So, W t⃗
(ρ◦Dσ),Λ0,Λ1

: TDρ ◦ TDσ → T
(θ,φ),Λ1+t1,W t⃗

(ρ◦Dσ),Λ0,Λ1

(ρ◦Dσ) .

Likewise, W t⃗
(σ◦Dτ),Λ0,Λ2

: TDσ ◦ TDτ → T
(θ,φ),Λ2+t2,W t⃗

(ρ◦Dσ),Λ0,Λ2

(σ◦Dτ) .

We need to show that

lim
t⃗→∞

∥∥∥∥T
D

t2
Λ2

τ ◦ TDΛ1+t1
ρ (W t⃗

σ,Λ0,Λ1
)− T

DΛ1+t1
ρ ◦ TD

t2
Λ2

τ (W t⃗
σ,Λ0,Λ1

)

∥∥∥∥ = 0.

To this end, we will show that

lim
t⃗→∞

∥∥∥TDΛ2+t2
τ (T

DΛ1+t1
ρ (W t⃗

σ,Λ0,Λ1
))− T

DΛ1+t1
ρ (W t⃗

σ,Λ0,Λ1
)
∥∥∥ = 0

and that

lim
t⃗→∞

∥∥∥TDΛ2+t2
τ (W t⃗

σ,Λ0,Λ1
)−W t⃗

σ,Λ0,Λ1

∥∥∥ = 0,

implying that lim
t⃗→∞

∥∥∥TDΛ1+t1
ρ (T

DΛ2+t2
τ (W t⃗

σ,Λ0,Λ1
))− T

DΛ1+t1
ρ (W t⃗

σ,Λ0,Λ1
)
∥∥∥ = 0.

For each ε3 > 0, choose s ≥ R(|arg Λ̃1|+2(ε+δ+ε1)),
1
2
ε2
, R|arg Λ̃1|,ε such that

2f(|arg Λ̃1|+2(ε+δ+ε1)),
1
2
ε2,

1
2
ε2
(s) < ε3 and 2f|arg Λ̃1|,ε,δ(s) < ε3.
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As W t⃗
σ,Λ0,Λ1

∈ π0(A((Λ1+t1)∪Λ0)c)
t′ ⊆ A(Λ̃1), by Lemma 50, there exists an even unitary operator

W̃ t⃗
σ,Λ0,Λ1

∈ π0(A(Λ̃1−s)ε+δ
)′′ such that

∥∥∥W t⃗
σ,Λ0,Λ1

− W̃ t⃗
σ,Λ0,Λ1

∥∥∥ ≤ 2f|arg Λ̃1|,ε,δ(s) < ε3.

By Lemma 62, T
DΛ1+t1
ρ (W̃ t⃗

σ,Λ0,Λ1
) ∈ A((Λ̃1 − s)ε+δ+ε1). Applying Lemma 50 again, we get that

there is an even unitary X t⃗,s
σ,Λ0,Λ1

∈ π0(A((Λ̃1−s)ε+δ+ε1
−s)ε2

)′′ = π0(A(Λ̃1−2s)ε+δ+ε1+ε2
)′′ such that

∥∥∥X t⃗,s
σ,Λ0,Λ1

− T
DΛ1+t1
ρ (W̃ t⃗

σ,Λ0,Λ1
)
∥∥∥ ≤ 2f(|arg Λ̃1|+2(ε+δ+ε1)),

1
2
ε2,

1
2
ε2
(s) < ε3.

So,
∥∥∥X t⃗,s

σ,Λ0,Λ1
− T

DΛ1+t1
ρ (W t⃗

σ,Λ0,Λ1
)
∥∥∥ < 2ε3. For sufficiently large t2, (Λ̃1−2s)ε+δ+ε1+ε2 ⊆ (Λ2+ t2)

c,

so T
DΛ2+t2
τ (X t⃗,s

σ,Λ0,Λ1
) = X t⃗,s

σ,Λ0,Λ1
. Therefore,

lim
t⃗→∞

∥∥∥TDΛ2+t2
τ ◦ TDΛ1+t1

ρ (W t⃗
σ,Λ0,Λ1

)− T
DΛ1+t1
ρ (W t⃗

σ,Λ0,Λ1
)
∥∥∥ < 4ε3

and this holds for all ε3 > 0, so

lim
t⃗→∞

∥∥∥TDΛ2+t2
τ ◦ TDΛ1+t1

ρ (W t⃗
σ,Λ0,Λ1

)− T
DΛ1+t1
ρ (W t⃗

σ,Λ0,Λ1
)
∥∥∥ = 0.

Similarly, for sufficiently large t2, (Λ̃1 − s)ε+δ ⊆ (Λ2 + t2)
c so

W̃ t⃗
σ,Λ0,Λ1

∈ π0(A(Λ̃1−s)ε+δ
)′′ ⊆ π0(A(Λ2+t2)c)

′′ so

∥∥∥TDΛ2+t2
τ (W t⃗

σ,Λ0,Λ1
)−W t⃗

σ,Λ0,Λ1

∥∥∥ =
∥∥∥TDΛ2+t2

τ (W t⃗
σΛ0Λ1

− W̃ t⃗
σΛ0Λ1

) + T
DΛ2+t2
τ (W̃ t⃗

σΛ0Λ1
)−W t⃗

σΛ0Λ1

∥∥∥

=
∥∥∥TDΛ2+t2

τ (W t⃗
σ,Λ0,Λ1

− W̃ t⃗
σ,Λ0,Λ1

)− (W t⃗
σ,Λ0,Λ1

− W̃ t⃗
σ,Λ0,Λ1

)
∥∥∥

≤ 2ε3,

so

lim
t⃗→∞

∥∥∥TDΛ1+t1
ρ ◦ TDΛ2+t2

τ (W t⃗
σ,Λ0,Λ1

)− T
DΛ1+t1
ρ (W t⃗

σ,Λ0,Λ1
)
∥∥∥ = 0.

Combining these, we get the desired

lim
t⃗→∞

∥∥∥∥T
D

t2
Λ2

τ ◦ TDΛ1+t1
ρ (W t⃗

σ,Λ0,Λ1
)− T

DΛ1+t1
ρ ◦ TD

t2
Λ2

τ (W t⃗
σ,Λ0,Λ1

)

∥∥∥∥ = 0.
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In the next bit, to save space, let W t⃗
η,Λi

denote W t⃗
η,Λ0,Λi

and let TΛi ,⃗t
η denote T

DΛi+ti
η .

By Definition 92:

ϵ
(Λ0)
+ ((ρ ◦D σ), τ)

= lim
t⃗→∞

((W t⃗
τ,Λ2

⊗W t⃗
(ρ◦Dσ),Λ1

)∗(W t⃗
(ρ◦Dσ),Λ1

⊗W t⃗
τ,Λ2

))

= lim
t⃗→∞

TDτ ((W t⃗
(ρ◦Dσ),Λ1

)∗)W t⃗∗
τ,Λ2

W t⃗
(ρ◦Dσ),Λ1

TDρ ◦ TDσ (W t⃗
τ,Λ2

)

= lim
t⃗→∞

TDτ (TDρ (W t⃗∗
σ,Λ1

)W t⃗∗
ρ,Λ1

)W t⃗∗
τ,Λ2

W t⃗
ρ,Λ1

TDρ (W t⃗
σ,Λ1

)TDρ ◦ TDσ (W t⃗
τ,Λ2

)

= lim
t⃗→∞

W t⃗∗
τ,Λ2

TΛ2 ,⃗t
τ (W t⃗∗

ρ,Λ1
TΛ1 ,⃗t
ρ (W t⃗∗

σ,Λ1
))TΛ1 ,⃗t

ρ (W t⃗
σ,Λ1

)W t⃗
ρ,Λ1

TDρ ◦ TDσ (W t⃗
τ,Λ2

)

= lim
t⃗→∞

W t⃗∗
τ,Λ2

TΛ2 ,⃗t
τ (W t⃗∗

ρ,Λ1
)TΛ2 ,⃗t
τ ◦ TΛ1 ,⃗t

ρ (W t⃗∗
σ,Λ1

)TΛ1 ,⃗t
ρ (W t⃗

σ,Λ1
)W t⃗

ρ,Λ1
TDρ ◦ TDσ (W t⃗

τ,Λ2
)

= lim
t⃗→∞

W t⃗∗
τ,Λ2

TΛ2 ,⃗t
τ (W t⃗∗

ρ,Λ1
)TΛ1 ,⃗t
ρ ◦ TΛ2 ,⃗t

τ (W t⃗∗
σ,Λ1

)TΛ1 ,⃗t
ρ (W t⃗

σ,Λ1
)W t⃗

ρ,Λ1
TDρ ◦ TDσ (W t⃗

τ,Λ2
)

= lim
t⃗→∞

W t⃗∗
τ,Λ2

TΛ2 ,⃗t
τ (W t⃗∗

ρ,Λ1
)TΛ1 ,⃗t
ρ (TΛ2 ,⃗t

τ (W t⃗∗
σ,Λ1

)W t⃗
σ,Λ1

)W t⃗
ρ,Λ1

TDρ ◦ TDσ (W t⃗
τ,Λ2

)

= lim
t⃗→∞

TDτ (W t⃗∗
ρ,Λ1

)W t⃗∗
τ,Λ2

W t⃗
ρ,Λ1

TDρ (W t⃗
τ,Λ2

TDτ (W t⃗∗
σ,Λ1

)W t⃗∗
τ,Λ2

W t⃗
σ,Λ1

)TDρ ◦ TDσ (W t⃗
τ,Λ2

)

= lim
t⃗→∞

(W t⃗
τΛ2

TDτ (W t⃗
ρ,Λ1

))∗W t⃗
ρ,Λ1

TDρ (W t⃗
τ,Λ2

)TDρ (TDτ (W t⃗∗
σ,Λ1

)W t⃗∗
τ,Λ2

W t⃗
σ,Λ1

TDσ (W t⃗
τ,Λ2

))

= lim
t⃗→∞

((W t⃗
τ,Λ2

⊗W t⃗
ρ,Λ1

)∗(W t⃗
ρ,Λ1

⊗W t⃗
τ,Λ2

) · TDρ ((W t⃗
τ,Λ2

⊗W t⃗
σ,Λ1

)∗(W t⃗
σ,Λ1

⊗W t⃗
τ,Λ2

)))

= ϵ
(Λ0)
+ (ρ, τ) · TDρ (ϵ

(Λ0)
+ (σ, τ))

= (ϵ
(Λ0)
+ (ρ, τ)⊗ 1TD

σ
)(1TD

ρ
⊗ ϵ

(Λ0)
+ (σ, τ)).

Throughout the above chain of equalities, Definition 74 in the case that the input is even so that

the twist doesn’t do anything (R · tw ◦T1(x0) = tw ◦T1(x0) ·R ⇐⇒ R · T1(x0) = T1(x0) ·R for x0

even and T1, T2 grade preserving) is applied. The 6th equality uses

lim
t⃗→∞

∥∥∥TDΛ2+t2
τ ◦ TDΛ1+t1

ρ (W t⃗
σ,Λ0,Λ1

)− T
DΛ1+t1
ρ ◦ TDΛ2+t2

τ (W t⃗
σ,Λ0,Λ1

)
∥∥∥ = 0.

The proof for the other relation, ϵ(Λ0)
+ (ρ, (σ ◦D τ)) = (1TD

σ
⊗ϵ(Λ0)

+ (ρ, τ))(ϵ
(Λ0)
+ (ρ, σ)⊗1TD

τ
), is entirely

analogous.
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One first picks Λ1,Λ2, Λ̃1, Λ̃2 in analogous way (this time where Λ1 ⊆ Λ̃1 and (Λ2)ε,Λ0 ⊆ Λ̃2) and

with this choice (and corresponding choices of DΛi+ti) shows that

lim
t⃗→∞

∥∥∥TDΛ1+t1
ρ ◦ TDΛ2+t2

σ (W t⃗
τ,Λ0,Λ2

)− T
DΛ2+t2
σ ◦ TDΛ1+t1

ρ (W t⃗
τ,Λ0,Λ2

)
∥∥∥ = 0,

and then does the last part analogously as well. □

4.3.4. Like section 5 (Direct Sums, Subobjects, and putting the category together).

The statement of Lemma 5.6 of [6] holds here without modification, and the proof is very similar:

Lemma 98. Let (θ, φ) label a forbidden direction, and Λ0 ∈ C(θ, φ).
For ρ, σ ∈ OΛ0,

(σ, ρ) = (T (θ,φ),Λ0,1
ρ , T (θ,φ),Λ0,1

σ ) ⊆ B(θ, φ).

Proof. By Lemma 59 (ii), for all A ∈ A, tw ◦T (θ,φ),Λ0,1
ρ ◦ π0(A) = Ad(1) ◦ ρt(A) = ρt(A) and

likewise tw ◦T (θ,φ),Λ0,1
σ ◦ π0(A) = σt(A). So, for any R ∈ (ρ, σ),

R · tw ◦T (θ,φ),Λ0,1
ρ (π0(A)) = R · ρt(A) = σt(A) ·R = tw ◦T (θ,φ),Λ0,1

σ (π0(A)) ·R.

So, the linear map A 7→ (R·tw ◦T (θ,φ),Λ0,1
ρ (A)−tw ◦T (θ,φ),Λ0,1

σ (A)·R) : B(θ, φ) → B(H) is 0 on π0(A)

and therefore on π0(AΛ). By Lemma 59 part (i) it is ultraweak-continuous on π0(AΛ)
′′ for Λ ∈

C(θ, φ), and therefore this map sends all of B0(θ, φ) to 0, and, by norm continuity, as B0(θ, φ)
∥·∥

=

B(θ, φ), it sends all of B(θ, φ) to 0 as well. So, for all A ∈ B(θ, φ), R · tw ◦T (θ,φ),Λ0,1
ρ (A) =

tw ◦T (θ,φ),Λ0,1
σ (A) ·R, i.e. R ∈ (T

(θ,φ),Λ0,1
ρ , T

(θ,φ),Λ0,1
σ ).

So,

(σ, ρ) ⊆ (T (θ,φ),Λ0,1
ρ , T (θ,φ),Λ0,1

σ ) ⊆ B(θ, φ)

where the second inclusion is by Lemma 79.

Conversely, for any R : (T
(θ,φ),Λ0,1
ρ , T

(θ,φ),Λ0,1
σ ), R · tw ◦T (θ,φ),Λ0,1

ρ ◦ π0(A) = tw ◦T (θ,φ),Λ0,1
σ ◦ π0(A) ·

R. And, again by Lemma 59 (ii), tw ◦T (θ,φ),Λ0,1
ρ ◦ π0(A) = ρt(A) and tw ◦T (θ,φ),Λ0,1

σ ◦ π0(A) =

σt(A), so R · ρt(A) = σt(A) · R, which is the definition (Definition 44) of R ∈ (ρ, σ). So,

(T
(θ,φ),Λ0,1
ρ , T

(θ,φ),Λ0,1
σ ) ⊆ (ρ, σ). So,

(σ, ρ) = (T (θ,φ),Λ0,1
ρ , T (θ,φ),Λ0,1

σ ) ⊆ B(θ, φ),
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as desired. □

Following Lemma 5.7 of [6]:

Lemma 99 (Existence of Direct Sums). Assume that for all cones Λ that the von Neumann algebra

π0(AΛ)
′′
even is properly infinite.

Let ρ, σ ∈ OΛ0. Then there exists (τ, Uτ ) ∈ OΛ0 and even isometries u ∈ (ρ, τ), v ∈ (σ, τ) such that

uu∗ + vv∗ = 1.

So, in this sense, there exists a τ ∈ OΛ0 such that τ = ρ⊕ σ.

In addition, if Uσ = Uρ = UαF if ρ, σ ∈ OΛ0,∗ then Uτ = UαF , i.e. if σ, ρ ∈ OΛ0,∗, then τ ∈ OΛ0,∗.

Proof. As for all cones Λ, π0(AΛ)
′′
even is properly infinite, by Proposition 1.36 of chapter

V of [7], there exist isometries uΛ, vΛ ∈ π0(AΛ)
′′
even such that pΛ = uΛu

∗
Λ and qΛ = vΛv

∗
Λ are

each orthogonal projections and pΛ + qΛ = 1. Choose such a pair of isometries for each cone Λ,

((uΛ, vΛ))Λ∈{cones}.

Within this proof, for each pair of cones Λ2,Λ1, for any A,B ∈ B(H) define

⟨A : B⟩Λ2,Λ1 := uΛ2Au
∗
Λ1

+ vΛ2Bv
∗
Λ1
.

Note that

⟨A : B⟩Λ3,Λ2⟨C : D⟩Λ2,Λ1 = ⟨AC : BD⟩Λ3,Λ1

(⟨A : B⟩Λ2,Λ1)
∗ = ⟨A∗ : B∗⟩Λ1,Λ2

⟨A : B⟩Λ2,Λ1 + ⟨C : D⟩Λ2,Λ1 = ⟨A+ C : B +D⟩Λ2,Λ1

⟨A : B⟩Λ2,Λ1uΛ1 = uΛ2A

⟨A : B⟩Λ2,Λ1vΛ1 = vΛ2B.

Also note that, as uΛ, vΛ ∈ π0(AΛ)
′′
even ⊆ π0(AΛ)

′′ that if X ∈ π0(AΛ)
′ then ⟨X : X⟩Λ,Λ = uΛXu

∗
Λ+

vΛXv
∗
Λ = X(uΛu

∗
Λ+vΛv

∗
Λ) = X. Because each of the pairs (uΛ, vΛ) have uΛ, vΛ ∈ π0(AΛ)

′′
even, these

pairings are grade preserving in the sense that the even and odd parts of ⟨(A0+A1) : (B0+B1)⟩Λ2,Λ1

are ⟨A0 : B0⟩Λ2,Λ1 and ⟨A1 : B1⟩Λ2,Λ1 respectively.

Define τ : A → B(H) by

τ(A) := ⟨ρ(A) : σ(A)⟩Λ0,Λ0 .
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Note that it is grade preserving as ρ and σ are, and as the pairing is. Also note that it is a

representation by

τ(A)τ(B) = ⟨ρ(A) : σ(A)⟩Λ0,Λ0⟨ρ(B) : σ(B)⟩Λ0,Λ0

= ⟨ρ(A)ρ(B) : σ(A)σ(B)⟩Λ0,Λ0

= ⟨ρ(AB) : σ(AB)⟩Λ0,Λ0 = τ(AB),

and by the analogous reasoning for τ(A) + τ(B) = τ(A+B) and τ(A)∗ = τ(A∗).

Define also Uτ := ⟨Uρ : Uσ⟩Λ0,Λ0 . Then

τ t(A0 +A1) = τ(A0) + Uττ(A1)

= ⟨ρ(A0) : σ(A0)⟩Λ0,Λ0 + ⟨Uρ : Uσ⟩Λ0,Λ0⟨ρ(A1) : σ(A1)⟩Λ0,Λ0

= ⟨ρ(A0) : σ(A0)⟩Λ0,Λ0 + ⟨Uρρ(A1) : Uσσ(A1)⟩Λ0,Λ0

= ⟨ρt(A0 +A1) : σ
t(A0 +A1)⟩Λ0,Λ0 .

Note that U2
τ = ⟨U2

ρ : U2
σ⟩Λ0,Λ0 = ⟨1 : 1⟩Λ0,Λ0 = 1 and that Uτ is unitary.

Also note that, as uΛ, vΛ are even, that ⟨UαF : UαF ⟩Λ0,Λ0 = UαF · (uΛ0u
∗
Λ0

+ vΛ0v
∗
Λ0
) = UαF , so if

Uρ = UαF = Uσ, then Uτ = UαF as well.

As ρ, σ ∈ OΛ0 , 1 ∈ Vρ,Λ0 and 1 ∈ Vσ,Λ0 . For every cone Λ pick a Vρ,Λ ∈ Vρ,Λ and a Vσ,Λ ∈ Vσ,Λ,

and in particular for Λ0 choose Vρ,Λ0 = 1 and Vσ,Λ0 = 1. Now, for each cone Λ define WΛ := ⟨Vρ,Λ :

Vσ,Λ⟩Λ,Λ0 . As the Vρ,Λ and Vσ,Λ are even and the pairing is grade preserving, these WΛ are also even.

To see that WΛ is a unitary, note that WΛW
∗
Λ = ⟨Vρ,Λ : Vσ,Λ⟩Λ,Λ0⟨V ∗

ρ,Λ : V ∗
σ,Λ⟩Λ0,Λ = ⟨1 : 1⟩Λ,Λ = 1

and likewise W ∗
ΛWΛ = ⟨1 : 1⟩Λ0,Λ0 = 1.

For all A ∈ AΛc ,

Ad(WΛ) ◦ τ t(A) = Ad(⟨Vρ,Λ : Vσ,Λ⟩Λ,Λ0)(⟨ρt(A) : σt(A)⟩Λ0,Λ0)

= ⟨Ad(Vρ,Λ) ◦ ρt(A) : Ad(Vσ,Λ) ◦ σt(A)⟩Λ,Λ

= ⟨πt0(A) : πt0(A)⟩Λ,Λ

= πt0(A).
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(That last equality is by πt0(A) ∈ π0(AΛc)t ⊆ π0(AΛc)t′′ ⊆ π0(AΛ)
′ from twisted locality π0(AΛ)

′′ ⊆
π0(AΛc)t′.)

Therefore, as for all cones Λ, WΛ is an even unitary such that Ad(WΛ) ◦ τ t|AΛc = π0|AΛc , so

WΛ ∈ Vτ,Λ, and so τ ∈ O0. In particular, WΛ0 = 1 ∈ Vτ,Λ0 , so τ ∈ OΛ0 .

Note that, as for all A ∈ A, τ(A)uΛ0 = ⟨ρ(A) : σ(A)⟩Λ0,Λ0uΛ0 = uΛ0ρ(A) and likewise τ(A)vΛ0 =

vΛ0σ(A), we therefore have u = uΛ0 ∈ (ρ, τ) and v = vΛ0 ∈ (σ, τ) as the even isometries that were

promised. □

Following Lemma 5.12 of [6], with a small change to handle the parity:

Lemma 100. Let N ,M,R be von Neumann algebras acting on a separable (Z/2Z)-graded Hilbert

space H = Heven ⊕Hodd, such that N ,M ⊆ R and N ⊆ M′. Suppose that M is an infinite factor

and R is a factor. Let w be an even unitary on H, and u ∈ N be an even isometry such that

w∗uu∗w ∈ N . Suppose in addition that all elements of R are even (i.e. they preserve the Z/2Z

grading on H). Then there is an even unitary W on H such that

∀x ∈ R′, Ad(Wu∗)(x) = Ad(u∗w)(x).

Proof. The proof of this is the same as the proof of Lemma 5.12 in [6], except that, due to the

assumptions that u and w are even, and the assumption that everything in R is even, and therefore

the a ∈ R obtained in said proof is even, therefore, the obtained W := u∗wa∗u is even. □

Following Lemma 5.8 of [6]:

Lemma 101 (Existence of Subobjects). Suppose that for all cones Λ that both π0(AΛ)
′′
even and

(π0(AΛc)t′)even are infinite factors.

Then, for any σ ∈ OΛ0 and a non-zero even projection p : σ → σ such that pUσ = Uσp, there exists

a (τ, Uτ ) ∈ OΛ0 and an isometry v : τ → σ such that vv∗ = p.

In particular, if Uσ = UαF (i.e. if σ ∈ OΛ0,∗, not just in OΛ0), then pUσ = Uσp is satisfied

automatically and Uτ = UαF (i.e. τ ∈ OΛ0,∗ as well).
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Proof. To obtain a representation (τ, Uτ ) satisfying the superselection criterion and an even

isometry v : τ → σ such that vv∗ = p, we will produce a family of even isometries YΛ for each cone

Λ, such that:

• YΛY
∗
Λ = p,

• Y ∗
Λ1
YΛ2 is unitary for all cones Λ1,Λ2,

• Ad(Y ∗
Λ ) ◦ σt|AΛc = πt0|AΛc .

Given such a family (YΛ)Λ∈{cones}, we define a new representation τ := Ad(Y ∗
Λ0
) ◦ σ and set Uτ :=

Ad(Y ∗
Λ0
)(Uσ). We will see that YΛ0 serves as the desired isometry v : τ → σ. First we will show

that this τ (equipped with this Uτ ) is in OΛ0 , and that YΛ0 indeed serves as the desired isometry

v : τ → σ. Afterwards, we will show that such a family (YΛ)Λ exists.

To see that τ is indeed a representation, note first that it is of course linear and that τ(A)∗ = τ(A∗).

What remains to check is that it is compatible with products:

τ(A)τ(B) = Y ∗
Λ0
σ(A)YΛ0Y

∗
Λ0
σ(B)YΛ0

= Y ∗
Λ0
σ(A)pσ(B)YΛ0

= Y ∗
Λ0
σ(A)σ(B)pYΛ0

= Y ∗
Λ0
σ(AB)YΛ0 = τ(AB),

where the pσ(B) = σ(B)p used in the third equality is because p : σ → σ and [Uσ, p] = 0, and where

the pYΛ0 = YΛ0 used in the fourth equality is due to YΛ0 being an isometry such that YΛ0Y
∗
Λ0

= p.

To see that Uτ has the desired properties for the superselection criterion, note U∗
τ = Uτ and that

UτU
∗
τ = Y ∗

Λ0
UσYΛ0Y

∗
Λ0
U∗
σYΛ0 = Y ∗

Λ0
UσpU

∗
σYΛ0 = Y ∗

Λ0
pUσU

∗
σYΛ0 = 1, by [p, Uσ] = 0.

For all A = A0 +A1 ∈ A, τ(A0) + Uττ(A1) = Ad(Y ∗
Λ0
)(σt(A)), by:

τ(A0) + Uττ(A1) = Ad(Y ∗
Λ0
)(σ(A0)) + Ad(Y ∗

Λ0
)(Uσ)Ad(Y

∗
Λ0
)(σ(A1)))

= Y ∗
Λ0
σ(A0)YΛ0 + Y ∗

Λ0
UσYΛ0Y

∗
Λ0
σ(A1)YΛ0

= Y ∗
Λ0
σ(A0)YΛ0 + Y ∗

Λ0
Uσpσ(A1)YΛ0

= Y ∗
Λ0
σ(A0)YΛ0 + Y ∗

Λ0
pUσσ(A1)YΛ0

= Y ∗
Λ0
σ(A0)YΛ0 + Y ∗

Λ0
Uσσ(A1)YΛ0 = Y ∗

Λ0
(σ(A0) + Uσσ(A1))YΛ0 .
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(The fourth equality is by the assumption that Uσp = pUσ.)

For all cones Λ, set XΛ := Y ∗
ΛYΛ0 . By the second property of the family (YΛ)Λ, each XΛ is a unitary.

Now we show that XΛ ∈ Vτ,Λ. For all cones Λ and all A = A0 +A1 ∈ AΛc ,

Ad(XΛ)(τ(A0) + Uττ(A1)) = Ad(XΛ)(Y
∗
Λ0
(σ(A0) + Uσσ(A1))YΛ0)

= Ad(Y ∗
ΛYΛ0Y

∗
Λ0
)(σt(A)) = Y ∗

Λpσ
t(A)pYΛ

= Ad(Y ∗
Λ )(σ

t(A)) = πt0(A),

where the last equality is by the third property of the family (YΛ)Λ and A ∈ AΛc .

So, (τ, Uτ ) satisfies the superselection criterion, and so τ ∈ O0. In particular, XΛ0 = Y ∗
Λ0
YΛ0 = 1,

so 1 ∈ Vτ,Λ0 , so τ ∈ OΛ0 (equipped with Uτ ).

Finally, for all A ∈ A,

YΛ0 · τ t(A) = YΛ0 · (Y ∗
Λ0

· σt(A) · YΛ0)

= (YΛ0Y
∗
Λ0
)σt(A) · YΛ0

= p · σt(A) · YΛ0

= σt(A) · p · YΛ0

= σt(A) · YΛ0 ,

so YΛ0 : τ → σ, and so v = YΛ0 is the promised isometry v : τ → σ such that vv∗ = p.

Now, what remains is to show there exists such a family of isometries (YΛ)Λ.

For each cone Λ pick a Vσ,Λ ∈ Vσ,Λ, and, as σ ∈ OΛ0 , for Λ = Λ0 pick Vσ,Λ0 = 1. Note that, for each

cone Λ,

∀A ∈ AΛc , p · (Ad(V ∗
σ,Λ) ◦ πt0(A)) = p · σt(A) = σt(A) · p = (Ad(V ∗

σ,Λ) ◦ πt0(A)) · p

Applying Ad(Vσ,Λ) to both sides of p · (Ad(V ∗
σ,Λ) ◦ πt0(A)) = (Ad(V ∗

σ,Λ) ◦ πt0(A)) · p we obtain

Ad(Vσ,Λ)(p) · πt0(A) = πt0(A) ·Ad(Vσ,Λ)(p), for all A ∈ AΛc . So, for all cones Λ,

pΛ := Ad(Vσ,Λ)(p) ∈ π0(AΛc)t′ = A(Λ).
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Let δ > 0 be the number given in Lemma 5.10 of [6]. For each φ ∈ (0, 2π), ε > 0 such that

φ + 8ε < 2π, fix some tφ,ε ≥ Rφ,ε such that fφ,ε,ε(tφ,ε) < δ (Recall the definition of approximate

twisted Haag duality, Definition 38 .) For each cone Λ fix some εΛ ∈ (0, 1
16 min(|arg Λ|, |arg Λc|) ).

Set t′Λ := t(|arg Λ|−8εΛ),εΛ .

Set ΓΛ := (Λ + t′Λ)−4εΛ .

Note |arg ΓΛ| = |arg Λ| − 8εΛ, so t′Λ = t(|arg Λ|−8εΛ),εΛ = t|arg ΓΛ|,εΛ ≥ R|arg ΓΛ|,εΛ , so t′Λ −RΓΛ,εΛ ≥ 0.

Choose a cone DΛ such that DΛ ⊆ (ΓΛ −RΓΛ,εΛ)εΛ ∩ ΓcΛ. Note that

DΛ ⊆ (ΓΛ −RΓΛ,εΛ)εΛ ⊆ (Λ + t′Λ −RΓΛ,εΛ)−3εΛ ⊆ Λ−3εΛ .

By the approximate twisted Haag duality, there is a unitary UΓΛ,εΛ ∈ U(H) such that

π0(AΓc
Λ
)t′ ⊆ Ad(UΓΛ,εΛ)(π0(A(ΓΛ−RΓΛ,εΛ

)εΛ
)′′),

and another unitary

ÛΛ := ŨΓΛ,εΛ,εΛ,t
′
Λ
∈ π0(A(ΓΛ−t′Λ)2εΛ )

′′ = π0(A((Λ+t′Λ)−4εΛ
−t′Λ)2εΛ )

′′ = π0(AΛ−2εΛ
)′′

such that

∥∥∥UΓΛ,εΛ − ŨΓΛ,εΛ,εΛ,t
′
Λ

∥∥∥ ≤ f|arg ΓΛ|,εΛ,εΛ(t
′
Λ) = f|arg ΓΛ|,εΛ,εΛ(t|arg ΓΛ|,εΛ) < δ.

(So,
∥∥∥ÛΛU

∗
ΓΛ,εΛ

− 1
∥∥∥ < δ.)

As

Ad(U∗
ΓΛ,εΛ

)(π0(AΓc
Λ
)t′) ⊆ π0(A(ΓΛ−RΓΛ,εΛ

)εΛ
)′′ ⊆ π0(AΛ−3εΛ

)′′ ⊆ π0(AΛ−2εΛ
)′′

and as ÛΛ ∈ π0(AΛ−2εΛ
)′′, we have Ad(ÛΛU

∗
ΓΛ,εΛ

)(π0(AΓc
Λ
)t′) ⊆ π0(AΛ−2εΛ

)′′.

As DΛ ⊆ ΓcΛ, π0(ADΛ
)even ⊆ π0(AΓc

Λ
)even = π0(AΓc

Λ
)teven ⊆ π0(AΓc

Λ
)t′′, so by taking commutants,

π0(AΓc
Λ
)t′ ⊆ (π0(ADΛ

)even)
′ = (π0(ADΛ

)′′even)
′.

H is separable because it is a GNS Hilbert space of a state on A. Apply Lemma 5.10 of [6] to

• H
• the infinite factors N = π0(ADΛ

)′′even ⊆ M = π0(AΛ−2εΛ
)′′even

• the projection pΓΛ
∈ π0(AΓc

Λ
)t′ ⊆ (π0(ADΛ

)′′even)
′ = N ′

• the unitary u = wΛ := ÛΛU
∗
ΓΛ,εΛ

.
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(Note that it applies here because we have that ∥wΛ − 1∥ < δ, and that as pΓΛ
∈ π0(AΓc

Λ
)t′ that

Ad(ÛΛU
∗
ΓΛ,εΛ

)(pΓΛ
) ∈ Ad(ÛΛU

∗
ΓΛ,εΛ

)(π0(AΓc
Λ
)t′) ⊆ π0(AΛ−2εΛ

)′′, and so as pΓΛ
is even,

Ad(ÛΛU
∗
ΓΛ,εΛ

)(pΓΛ
) ∈ π0(AΛ−2εΛ

)′′even = M.)

Therefore, there exists an isometry uΛ ∈ M = π0(AΛ−2εΛ
)′′even such that uΛu∗Λ = Ad(wΛ)(pΓΛ

) for

wΛ := ÛΛU
∗
ΓΛ,εΛ

.

Choose a cone CΛ ⊂ (Λ−2εΛ)
c ∩ Λ.

Apply Lemma 100 in the case of N = (π0(A(Λ−2εΛ
)c)

t′)even, M = π0(ACΛ
)′′even, R = (π0(AΛc)t′)even,

where the unitary is wΛ and the isometry is uΛ, noting that

uΛ ∈ π0(AΛ−2εΛ
)′′even ⊆ π0(AΛ−2εΛ

)′′ ⊆ π0(A(Λ−2εΛ
)c)

t′

and is even so therefore uΛ ∈ (π0(A(Λ−2εΛ
)c)

t′)even = N and that w∗
ΛuΛu

∗
ΛwΛ = pΓΛ

∈ π0(AΓc
Λ
)t′ ⊆

π0(A(Λ−2εΛ
)c)

t′ and is even therefore w∗
ΛuΛu

∗
ΛwΛ = pΓΛ

∈ (π0(A(Λ−2εΛ
)c)

t′)even. Then, by said

lemma, there exists an even unitary WΛ ∈ U(H) such that for all x ∈ R′ = π0(AΛc)t′′,

Ad(WΛu
∗
Λ)(x) = Ad(u∗ΛwΛ)(x).

We now have enough to define our family of isometries. For each cone Λ define

YΛ := V ∗
σ,ΓΛ

w∗
ΛuΛWΛ.

Now we show that they satisfy the properties needed. As each of these YΛ is a product of some

even unitaries and an even isometry, each YΛ is an even isometry.

For any A ∈ AΛc ,

Ad(W ∗
Λu

∗
ΛwΛVσ,ΓΛ

) ◦ σt(A) = Ad(W ∗
Λ) ◦Ad(u∗ΛwΛ) ◦ πt0(A) = Ad(W ∗

Λ) ◦Ad(WΛu
∗
Λ) ◦ πt0(A)

= u∗Λπ
t
0(A)uΛ = u∗ΛuΛπ

t
0(A) = πt0(A).

The first equality is from Vσ,ΓΛ
∈ Vσ,ΓΛ

and Λc ⊆ ΓcΛ. The second equality is by πt0(A) ∈ π0(AΛc)t ⊆
π0(AΛc)t′′ ⊆ ((π0(AΛc)t′)even)

′ and applying the property that WΛ was obtained as satisfying. The

fourth equality is as uΛ ∈ π0(AΛ−2εΛ
)′′even ⊆ π0(AΛ−2εΛ

)′′ ⊆ π0(A(Λ−2εΛ
)c)

t′ ⊆ π0(AΛc)t′.

So, we have that for each cone Λ, Ad(Y ∗
Λ ) ◦ σt|AΛc = πt0|AΛc .
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YΛY
∗
Λ = V ∗

σ,ΓΛ
w∗
ΛuΛu

∗
ΛwΛVσ,ΓΛ

= p. For any two cones Λ1,Λ2, Y ∗
Λ1
YΛ2 is a unitary, by

(Y ∗
Λ1
YΛ2)(Y

∗
Λ1
YΛ2)

∗ = Y ∗
Λ1
YΛ2Y

∗
Λ2
YΛ1 = Y ∗

Λ1
pYΛ1

=W ∗
Λ1
u∗Λ1

wΛ1Vσ,ΓΛ1
pV ∗

σ,ΓΛ1
w∗
Λ1
uΛ1WΛ1

=W ∗
Λ1
u∗Λ1

Ad(wΛ1)(pΓΛ1
)uΛ1WΛ1

=W ∗
Λ1
u∗Λ1

(uΛ1u
∗
Λ1
)uΛ1WΛ1

=W ∗
Λ1
(u∗Λ1

uΛ1)(u
∗
Λ1
uΛ1)WΛ1 = 1,

and identical reasoning shows (Y ∗
Λ1
YΛ2)

∗(Y ∗
Λ1
YΛ2) = (Y ∗

Λ2
YΛ1)(Y

∗
Λ2
YΛ1)

∗ = 1.

Therefore, the family of isometries (YΛ)Λ satisfies the required properties, and so we have that for

τ := Ad(Y ∗
Λ0
) ◦ σ and Uτ := Ad(Y ∗

Λ0
)(Uσ), that (τ, Uτ ) ∈ OΛ0 and that YΛ0 serves as the desired

isometry v : τ → σ.

□

4.3.5. Putting it together. Now we will build up to the definition we chose for a braided

strict C∗-tensor supercategory so that we can properly state the main result. There are various

choices for how to define the Z/2Z-graded ("super-") versions of things (see [1]), and we have made

a choice suiting the results.

Following [1],

Definition 102. A supercategory is a category C enriched in SVect, the symmetric monoidal cat-

egory whose objects are super vector spaces (over C) and whose morphisms are even linear maps.

That is to say, for A,B ∈ ob(C), HomC(A,B) is a super vector space, and for A,B,C ∈ ob(C) the

composition map ◦ : HomC(B,C)×HomC(A,B) → HomC(A,C) is bilinear and even.

A superfunctor is a SVect-enriched functor F : C → D between two supercategories, i.e. a functor

such that for A,B ∈ ob(C) the function F (A,B) : HomC(A,B) → HomD(F (A), F (B)) is an even

linear map.

Also following [1],

Definition 103. A strict monoidal supercategory is a supercategory C equipped with an identity

object I ∈ ob(C) and a function (− ⊗ −) : C × C → C which sends (A,B) ∈ ob(C) × ob(C) to
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(A ⊗ B) ∈ ob(C) and sends (f, g) ∈ HomC(A,B) × HomC(C,D) to f ⊗ g ∈ homC(A ⊗ C,B ⊗ D)

such that:

(a) (ob(C), I,⊗) is a monoid, in that for any A,B ∈ ob(C), A ⊗ B ∈ ob(C), and for any

A,B,C ∈ ob(C),

(A⊗B)⊗ C = A⊗ (B ⊗ C), I ⊗A = A = A⊗ I.

(b) For any A,B,C,D ∈ ob(C),

(−⊗−) : HomC(A,B)×HomC(C,D) → HomC((A⊗ C), (B ⊗D))

is a bilinear map, and is even in the sense that the corresponding linear map

HomC(A,B)⊗HomC(C,D) → HomC((A⊗ C), (B ⊗D))

is even.

(c) The super interchange law holds : For morphisms f : A→ C, g : B → D, h : C → E, and

j : D → F with f and j homogeneous,

(h⊗ j) ◦ (f ⊗ g) = (−1)|j||f |(h ◦ f)⊗ (j ◦ g)

and this extends bilinearly to cover general morphisms.

(d) Associativity on morphisms :

For f : A→ A′, g : B → B′, h : C → C ′, (f ⊗ g)⊗ h = f ⊗ (g ⊗ h)

(e) For f : A→ B, f ⊗ idI = f = idI ⊗f .

(f) For A,B ∈ ob(C), idA⊗ idB = idA⊗B

Remark 104. The function (−⊗−) in the above definition has the same datatype as a bifunctor,

but is not actually a bifunctor from the category C × C (because it satisfies the super interchange

law rather than the interchange law). If one defines the supercategory C ⊠ C, the function (−⊗−)

can be described as a superfunctor with domain C ⊠ C.
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Definition 105. A braided strict monoidal supercategory is a strict monoidal supercategory (C,⊗, I)
equipped with, for each pair of objects A,B ∈ ob(C), an even isomorphism

τA,B : A⊗B → B ⊗A

called the braiding morphism, such that:

(a) For all morphisms f : A→ A′ and g : B → B′, with f and g homogeneous,

τA′,B′ ◦ (f ⊗ g) = (−1)|f ||g|(g ⊗ f) ◦ τA,B,

and this extends bilinearly to general morphisms.

(b) The hexagon identities hold:

τA,B⊗C = (idB ⊗τA,C) ◦ (τA,B ⊗ idC),

τA⊗B,C = (τA,C ⊗ idB) ◦ (idA⊗τB,C).

(Here the associators of the hexagon identities have been omitted, leaving these as com-

mutative triangles rather than hexagons, because, as (C,⊗, I) is a strict supermonoidal

category, the associators are each the identity morphism.)

While the above definitions are given in their strict forms and with a more concrete presentation,

they arise naturally from a more conceptual setting: the monoidal product can be viewed as a bi-

functor that is a superfunctor ⊗ : C⊠C → C, and the braiding τ arises as a supernatural isomorphism

between this functor and its composition with the symmetry functor on C ⊠ C. These structures

ensure that the coherence conditions and sign rules follow naturally from the categorical formalism,

even though we work here with a "compiled down" version suited for explicit computations. (See [1]

Definitions 1.1 and 1.4, for this approach.)

Following Definition 2.1.1 of [5] for the definition of a C∗-category,

Definition 106. A category C is called a C∗-category if

(a) For A,B ∈ ob(C), the hom-set HomC(A,B) is a Banach space, and for all A,B,C ∈ ob(C),
the composition map

◦ : HomC(B,C)×HomC(A,B) → HomC(A,C)
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is bilinear, and for f : A→ B and g : B → C, ∥g ◦ f∥ ≤ ∥g∥ · ∥f∥
(b) It is equipped with an anti-linear contravariant functor (−)∗ : C → C (which is grade

preserving if C is enriched in SVect) such that for any A,B ∈ ob(C) and any f : A→ B,

(a) f∗∗ = f

(b) ∥f∗f∥ = ∥f∥2 (in particular, EndC(A) is a C∗-algebra)

(c) f∗f ∈ EndC(A) is positive as an element of the C∗-algebra that is EndC(A).

Combining the definition of a monoidal C∗-category in Definition 2.1.1 of [5], with the above defi-

nition of a braided strict monoidal category,

Definition 107. A braided strict C∗-tensor supercategory (or, as another name, a braided strict

monoidal C∗-supercategory) is a supercategory C equipped with an identity object I ∈ ob(C), a

function with the datatype of a bifunctor −⊗− : C×C → C, a braiding τ , and an anti-linear, grade-

preserving, contravariant functor (−)∗ : C → C such that (C,⊗, I, τ) is a braided strict monoidal

supercategory, (C, ∗) is a C∗-category, and the following conditions hold:

(a) The identity object I is simple : HomC(I, I) = C · idI
(b) C has direct sums : For any two objects A,B ∈ ob(C), there exists an object A ⊕ B and

even isometries ιA : A → A⊕ B, ιB : B → A⊕ B, such that ι∗AιA = idA, ι∗BιB = idB, and

ιAι
∗
A + ιBι

∗
B = idA⊕B

(c) C has subobjects: for any object A ∈ ob(C), and any even projection p : A → A, there

exists an object B ∈ ob(C) and an even isometry ιp : B → A such that ιpι∗p = p : A→ A

(d) The category is small, i.e. the class ob(C) is a set

(e) The involution (−)∗ and (−⊗−) are compatible, in that for any homogeneous morphisms

f, g, (f ⊗ g)∗ = (−1)|f ||g|f∗ ⊗ g∗ (non-homogeneous morphisms addressed by bilinearity of

(−⊗−) and conjugate-linearity of (−)∗).

Theorem 108. Let π0 : A → B(H) be an irreducible representation equipped with a unitary UαF ∈
U(H) that implements the automorphism αF of A, i.e. such that Ad(UαF ) ◦ π0 = π0 ◦ αF . Suppose

that π0 satisfies approximate twisted Haag duality (Definition 38).

Suppose also that for all cones Λ, that the von Neumann algebras π0(AΛ)
′′
even and (π0(AΛc)t′)even

are properly infinite factors.
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Let (θ, φ) ∈ R× (0, π) define a forbidden direction and let Λ0 ∈ C(θ, φ). Define:

OΛ0 :=
{
(ρ, Uρ) ∈ O0

∣∣∣ ρ|AΛc
0
= π0|AΛc

0

}
, OΛ0,∗ := {(ρ, Uρ) ∈ OΛ0 |Uρ = UαF } .

Then, there exists a braided strict C∗-tensor supercategory (Definition 107) M given by the data:

• objects : OΛ0,∗

• morphisms : for any (ρ, Uρ), (σ, Uσ) ∈ OΛ0,∗,

HomM((ρ, Uρ), (σ, Uσ)) :=
{
R ∈ B(H)

∣∣ ∀x ∈ A, Rρt(x) = σt(x)R
}
,

as in Definition 44

• monoidal product : defined on objects as in Definition 66, picking D = ((θ, φ),Λ0, {Vη,Λ0 ∈
Vη,Λ0}η∈O0) such that for (η, Uη) ∈ OΛ0,∗ Vη,Λ0 = 1, and ρ⊗σ := ρ◦Dσ := TDρ ◦TDσ ◦π0 and

Uρ⊗σ := UαF , and defined on morphisms as The (super)monoidal product on morphisms

is defined by Definition 81(Using Lemma 98), so for R ∈ HomM((ρ, UαF ), (ρ
′, UαF )) and

S ∈ HomM((σ, UαF ), (σ
′, UαF )), R⊗ S := R · TDρ (S)

• identity object : (π0, UαF )

• braiding : morphisms ϵ(Λ0)
+ (ρ, σ) defined in Definitions 92

• the involution endofunctor (−)∗ : the adjoint operation of B(H)

Following Proof of Theorem 5.1 of [6]

Proof. As for (ρ, Uρ) ∈ OΛ0,∗, Uρ = UαF , we can omit the Uρ here when for (ρ, Uρ) ∈ OΛ0,∗.

For any ρ, σ ∈ OΛ0,∗, HomM(ρ, σ) is a linear subspace of B(H). It is a closed subspace by virtue

of being the intersection of the kernels of a family of continuous linear maps. Therefore, as it is a

closed linear subspace of the Banach space B(H), it is a Banach space, and inherits the operator

norm. By Lemma 76 the even and odd parts of each element of this subspace is also an element of

this subspace, so this sub-vector-space is in fact a sub-super-vector-space.

For any ρ, σ, γ ∈ OΛ0,∗, the map

HomM(σ, γ, )×HomM(ρ, σ) ∋ (R,S) 7→ RS ∈ HomM(ρ, γ)
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is of course bilinear, and is even in the sense that the induced linear map

HomM(σ, γ)⊗HomM(ρ, σ) → HomM(ρ, γ)

is even. So, the category is indeed a supercategory.

As the norm on it is the operator norm, ∥RS∥ ≤ ∥R∥ ∥S∥.
For any R ∈ HomM(ρ, σ, ), R∗ ∈ HomM(σ, ρ), and R∗∗ = R.

For R ∈ HomM(ρ, σ) and S ∈ HomM(ρ, σ) (RS)∗ = S∗R∗, so (−)∗ is a contravariant functor.

∥R∗R∥ = ∥R∥2 (because this (−)∗ is the (−)∗ of B(H), which the norm also comes from).

HomM(ρ, ρ) = ρ(A)t′ is a C∗-algebra, and R∗R is a positive element of it (it is an element of

HomM(ρ, ρ), and it is a positive element of B(H), so it is a positive element of HomM(ρ, ρ)).

(−)∗ is anti-linear because it is on the Hermitian adjoint on B(H) which is anti-linear.

(−)∗ preserves the grade of homogeneous elements because (UαF xUαF )
∗ = (UαF x

∗UαF ), so for

Ad(UαF )(x) = ±x, (Ad(UαF )(x
∗)) = (Ad(UαF )(x))

∗ = (±x)∗.
Therefore, (M, (−)∗) is a C∗-(super)category.

Now to see that (M,⊗, (π0, UαF )) forms a monoidal supercategory.

To do that, first let us see that (M, π0,⊗) is a monoid.

First, by Lemma 68, for ρ, σ ∈ OΛ0,∗ ⊆ OΛ0 , ρ⊗σ := ρ◦D σ ∈ OΛ0,∗, by Λ0 being the cone specified

in D, so OΛ0,∗ is closed under ⊗.

Second, in Lemma 73 it is seen that for ρ, σ, γ ∈ OΛ0 , that (ρ ◦D σ) ◦D γ = Ad(U) ◦ρ ◦D (σ ◦D γ) for

some unitary U , and as ρ, σ, γ, ρ◦D σ, σ ◦D γ ∈ OΛ0,∗, said unitary, U = V(ρ◦Dσ),Λ0
TDρ (V ∗

(σ◦Dγ),Λ0
), is

seen to be 1 due to Vη,Λ0 = 1 for each η ∈ OΛ0,∗ for our choice ofD, and so (ρ◦Dσ)◦Dγ = ρ◦D(σ◦Dγ).
So, our ⊗ is associative on the nose for objects.

Thirdly, to see that π0 is an identity element for this monoid, note that TDπ0 = idB(θ,φ) (by Defini-

tion 56, T (θ,φ),Λ0,1
π0,Λ

= Ad(1 · 1∗)|π0(AΛ)′′ , for any Λ ∈ C(θ, φ), and so TDπ0 = idB(θ,φ)).

Recall Definition 81: For ρ, ρ′, σ, σ′ ∈ OΛ0,∗, R ∈ HomM(ρ, ρ′) = (TDρ , T
D
ρ′ ) and S : HomM(σ, σ′) =

(TDσ , T
D
σ′ ),

R⊗ S := R · TDρ (S).

Then, as R⊗ S : (TDρ ◦ TDσ , TDρ′ ◦ TDσ′ ) = (ρ⊗ σ, ρ′ ⊗ σ′) we have (−⊗−) defined on morphisms.

Note that this is bilinear, and that it is even in the same sense that composition is even.

By Lemma 82, R⊗ S : TDρ ◦ TDσ → TDρ′ ◦ TDσ′ .

96



The super interchange law holds by Lemma 83.

To see that (− ⊗ −) is associative on morphisms, let R : ρ → ρ′, S : σ → σ′, G : γ → γ′ for

ρ, ρ′, σ, σ′, γ, γ′ ∈ OΛ0,∗. Then,

R⊗ (S ⊗G) = R · TDρ (S ⊗G)

= R · TDρ (S · TDσ (G))

= R · TDρ (S) · TDρ ◦ TDσ (G)

= (R · TDρ (S)) · Tρ⊗σ(G)

= (R⊗ S)⊗G,

where the third equality is by TDρ being an algebra endomorphism, and the fourth is by Lemma 72

and the choice of D having Vρ⊗σ,Λ0 = 1. So, it is associative on morphisms as well as on objects.

For R : ρ→ ρ′ and idπ0 = 1 : π0 → π0, idπ0 ⊗R = 1 · TDπ0(R) = R and R⊗ idπ0 = R · TDρ (1) = R.

Of course, for 1 = idρ : ρ→ ρ and 1 = idσ : σ → σ, idρ⊗ idσ = 1 · TDρ (1) = 1 = idρ⊗σ.

Therefore, (M,⊗, π0) is a strict monoidal supercategory (Definition 103).

Now to see that the morphisms ϵ(Λ0)
+ (ρ, σ) for ρ, σ ∈ OΛ0,∗ (Definition 92) make (M,⊗, π0, ϵ(Λ0)

+ )

into a braided strict monoidal supercategory. Lemma 94 shows that it satisfies

ϵ
(Λ0)
+ (ρ′, σ′) · (R⊗ S) = (−1)|R||S|(S ⊗R) · ϵ(Λ0)

+ (ρ, σ)

for R : ρ → ρ′ and S : σ → σ′. And, by Lemma 97 it satisfies the hexagon identities. Also, as

ϵ
(Λ0)
+ (ρ, σ) : ρ⊗ σ → σ ⊗ ρ is an even unitary, it is an even isomorphism.

So, (M,⊗, π0, ϵ(Λ0)
+ ) is a braided strict monoidal supercategory.

So, we have that (M, (−)∗) is a C∗-(super)category, and that (M,⊗, π0, ϵ(Λ0)
+ ) is a braided strict

monoidal supercategory, so there are only five things left to check.

First, let us see that the identity object π0 is simple, i.e. EndM(π0) = C idπ0 . For R ∈ B(H),

R : π0 → π0 iff, for all x ∈ A, R · πt0(x) = πt0(x) · R, i.e. iff R ∈ π0(A)t′. As π0 is irreducible,

π0(A)′ = C · 1. By Lemma 111, as Ad(UαF )(π0(A)) = π0(A), we have π0(A)t′ = (π0(A)′)t.

Therefore, π0(A)t′ = (π0(A)′)t = (C1)t = C1. Therefore, EndM(π0) = C idπ0 , i.e. the identity

object π0 is simple.
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Second, using the assumption that for every cone Λ, π0(AΛ)
′′
even is a properly infinite factor, and

therefore a properly infinite von Neumann algebra, by Lemma 99, M has direct sums, in that for

any (ρ, Uρ = UαF ), (σ, Uσ = UαF ) ∈ OΛ0,∗, there is an object (ρ ⊕ σ, Uρ⊕σ = UαF ) ∈ OΛ0,∗ and

even isometries ιρ : ρ → ρ ⊕ σ, ισ : σ → ρ ⊕ σ, such that ι∗ριρ = idρ = 1, ι∗σισ = idσ = 1, and

ιρι
∗
ρ + ισι

∗
σ = idρ⊕σ = 1.

Third, using the assumption that for every cone Λ, π0(AΛ)
′′
even and (π0(AΛc)t′)even are both properly

infinite factors, by Lemma 101, for any σ = (σ, Uσ) ∈ OΛ0 and any projection p : σ → σ which

satisfies Uσp = pUσ, there exists a (τ, Uτ ) ∈ OΛ0 and an even isometry ιp : τ → σ such that ιpι∗p = p.

And, because for (σ, Uσ) ∈ OΛ0,∗ we have that Uσ = UαF , for any even projection p : σ → σ we have

that Uσp = UαF p = pUαF = pUσ, so the lemma applies, and additionally gives us that Uτ = UαF ,

so (τ, Uτ ) ∈ OΛ0,∗.

Fourth, as each (ρ, Uρ = UαF ) ∈ OΛ0,∗ is a pair of a representation ρ : A → B(H) and a unitary

Uρ ∈ U(H), ob(M) = OΛ0,∗ ⊂ ((A → B(H)) × U(H)), and is therefore a set, so the category is

small.

Finally, for homogeneous R : ρ→ ρ′ and S : σ → σ′, (R⊗ S)∗ = (−1)|R||S|R∗ ⊗ S∗ by Lemma 84.

Therefore, (M,⊗, π0, ϵ(Λ0)
+ , (−)∗) is a braided strict C∗-tensor supercategory, as desired. □

4.4. Some delayed proofs

Proposition 109. For ρ ∈ O0 be an irreducible grade-preserving representation of A. Then Uρ is

either UαF or −UαF .

Proof. Let Λ be a cone. By Lemma 33, for any cone there is an odd local unitary in that

cone, so let B1 ∈ AΛc , and be an odd unitary. Let A0 ∈ AΛc , and be even. As ρ ∈ O0, there exists

Vρ,Λ ∈ Vρ,Λ. Then, Ad(Vρ,Λ)(Uρρ(A0B1)) = UαF π0(A0B1) = UαF π0(A0)π0(B1)

= π0(A0)UαF π0(B1) = Ad(Vρ,Λ)(ρ(A0)) ·Ad(Vρ,Λ)(Uρρ(B1)) = Ad(Vρ,Λ)(ρ(A0)Uρρ(B1)).

So, Ad(Vρ,Λ)(Uρρ(A0)ρ(B1)) = Ad(Vρ,Λ)(ρ(A0)Uρρ(B1)),

and so Uρρ(A0)ρ(B1) = ρ(A0)Uρρ(B1).

As B1 is invertible, multiplying on the right by ρ(B−1
1 ) we get Uρρ(A0) = ρ(A0)Uρ.

Therefore, we have that for all even A0 ∈ AΛc , that Uρ commutes with ρ(A0).

And, this holds for any cone Λ.

Therefore, for any even A0 ∈ Aloc, there will be some cone Λ such that A0 ∈ AΛc . and so we have
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that Uρ commutes with ρ(A0).

So, Uρ ∈ ρ(Aloc,even)
′.

Aloc is dense in A, and Aloc,even is dense in Aeven.

Because ρ is continuous, (A ∈ A) 7→ [Uρ, ρ(A)] is therefore continuous, and its image on Aloc,even is

0, and therefore as Aloc,even is dense in Aeven, its image on Aeven is also 0, and so Uρ ∈ ρ(Aeven)
′.

Because ρ is irreducible, ρ(A) is dense in B(H), i.e. ρ(A)′′ = B(H).

Because ρ is grade-preserving, ρ(A)even = ρ(Aeven).

As any limit (with respect to the weak topology) of even operators is even,

(ρ(A)even)
′′ = (ρ(A)′′)even = B(H)even.

So, ρ(Aeven)
′′ = B(H)even.

So, ρ(Aeven)
′ = ρ(Aeven)

′′′ = (ρ(Aeven)
′′)′ = (B(H)even)

′ = CIHeven ⊕ CIHodd .

So, Uρ ∈ CIHeven ⊕ CIHodd .

As U2
ρ = 1, therefore Uρ is of the form ±IHeven +±IHodd .

I.e. Uρ ∈ {1,−1, UαF ,−UαF }.
Now to rule out the first two of these.

For any cone Λ and any odd A1 ∈ AΛc , and any odd invertible B1 ∈ AΛc

Ad(Vρ,Λ)(ρ(A1B1)) = π0(A1B1) = π0(A1)π0(B1)

= −UαF π0(A1)UαF π0(B1) = −Ad(Vρ,Λ)(Uρρ(A1)Uρρ(B1))

so

ρ(A1)ρ(B1) = −Uρρ(A1)Uρρ(B1) .

As B1 is invertible, we then get ρ(A1) = −Uρρ(A1)Uρ.

This cannot be true if Uρ is ±1, and so it must be either UαF or −UαF , as desired. □

It can be seen that both values are possibilities, because for any ρ ∈ O0, it can be seen that

Uρ◦αF = −Uρ.

Lemma 110. Let ρ ∈ O0, and suppose Uρ = ±UαF . Then, for all cones Λ, all Vρ,Λ ∈ Vρ,Λ, and all

A ∈ AΛc, we have:

(a) If Uρ = UαF , then Ad(Vρ,Λ) ◦ ρ(A) = π0(A).
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(b) If Uρ = −UαF , then Ad(Vρ,Λ) ◦ ρ(A) = π0 ◦ αF (A).

Proof. Let Λ be a cone, Vρ,Λ ∈ Vρ,Λ, and A ∈ AΛc , with A = A0 +A1.

Ad(Vρ,Λ)(ρ(A0) + ρ(A1)) = Ad(Vρ,Λ)(ρ(A0) + UρUρρ(A1))

= π0(A0) + Ad(Vρ,Λ)(Uρ)Ad(Vρ,Λ)(Uρρ(A1))

= π0(A0) + Uρ · (UαF π0(A1))

= π0(A0) + (UρUαF )π0(A1)

The third equality uses that Uρ = ±UαF ∈ (B(H)even)
′ and that Vρ,Λ is even, to conclude that

Ad(Vρ,Λ)(Uρ) = Uρ. The last expression in this chain of equations is equal to π0(A0 +A1) = π0(A)

if Uρ = UαF , and is π0(A0 − A1) = π0 ◦ αF (A) if Uρ = −UαF . Therefore, the we have the

desired conclusion, that if Uρ = UαF that Ad(Vρ,Λ) ◦ ρ(A) = π0(A), and if Uρ = −UαF then

Ad(Vρ,Λ) ◦ ρ(A) = π0 ◦ αF (A). □

Lemma 111. Let A be a C∗ subalgebra of B(H). The following are equivalent:

(1) Ad(UαF )(A) = A

(2) For X = X0 +X1 ∈ B(H), X ∈ A if and only if X0, X1 ∈ A

(3) Ad(UαF )(A
t) = At

In addition, they imply:

(a) Ad(UαF )(A
′) = A′

(b) At′ = A′t

Proof. For (1) =⇒ (2):

Suppose Ad(UαF )(A) = A.

For X = X0+X1, if X ∈ A, then Ad(UαF )(X0+X1) = X0−X1 ∈ A, so by A being a linear subspace

of B(H), 1
2(X +Ad(UαF )(X)) = 1

2((X0 +X1) + (X0 −X1)) = X0 ∈ A and 1
2(X −Ad(UαF )(X)) =

1
2((X0 +X1)− (X0 −X1)) = X1 ∈ A. Conversely, if X0, X1 ∈ A, then of course X = X0 +X1 ∈ A.

For (2) =⇒ (1):

Suppose that for all X = X0+X1 ∈ B(H) that X ∈ A iff X0, X1 ∈ A. Then, for X = X0+X1 ∈ A,

we have that X0, X1 ∈ A, and therefore, as A is a vector space, X0 −X1 ∈ A. So, X0 +X1 ∈ A iff

100



X0 −X1 ∈ A. I.e. X ∈ A iff Ad(UαF )(X) ∈ A. So, X ∈ A iff X ∈ Ad(U∗
αF

)(A) = Ad(UαF )(A). i.e.

A = Ad(UαF )(A).

For (1) =⇒ (3):

Suppose Ad(UαF )(A) = A. For X = X0 +X1 ∈ B(H), X0 + UαFX1 ∈ At iff X0 +X1 ∈ A.

X0 +UαFX1 ∈ Ad(UαF )(A
t) iff Ad(U∗

αF
)(X0 +UαFX1) = Ad(UαF )(X0 +UαFX1) ∈ At. Of course,

Ad(UαF )(X0 + UαFX1) = X0 − UαFX1. So X0 + UαFX1 ∈ Ad(UαF )(A
t) iff X0 − UαFX1 ∈ At iff

X0 −X1 ∈ A. And, as Ad(UαF )(A) = A, X0 −X1 ∈ A iff X0 +X1 ∈ A. So, by X0 + UαFX1 ∈ At

iff X0 +X1 ∈ A, X0 + UαFX1 ∈ Ad(UαF )(A
t) iff X0 + UαFX1 ∈ At, i.e. Ad(UαF )(A

t) = At.

That (3) =⇒ (1) follows from applying (1) =⇒ (3) to the case of At in place of A, to get that

Ad(UαF )(A
t) = At implies that Ad(UαF )(A

tt) = Att, and applying the fact that Att = A.

For (1) =⇒ (a): Suppose Ad(UαF )(A) = A. Then Ad(UαF )(A
′) = (Ad(UαF )(A))

′ = A′.

For (1) =⇒ (b):

Suppose Ad(UαF )(A) = A. By (1) =⇒ (a) and (1) =⇒ (3), we have that Ad(UαF )(A
′t) = A′t

and that Ad(UαF )(A
t′) = At′.

X = X0 +X1 ∈ A′t ⇐⇒ X0, X1 ∈ A′t

⇐⇒ X0, UαFX1 ∈ A′

⇐⇒ ∀Y = Y0 + Y1 ∈ A, [X0, Y ] = 0 = [UαFX1, Y ]

⇐⇒ ∀Y = Y0 + Y1 ∈ A, (

[X0, Y0] = [X0, Y1] = [UαFX1, Y0] = [UαFX1, Y1] = 0)

⇐⇒ ∀Y = Y0 + Y1 ∈ A, (

[X0, Y0] = [X0, Y1] = [X1, Y0] = {X1, Y1} = 0)

⇐⇒ ∀Y = Y0 + Y1 ∈ A, (

[X0, Y0] = [X0, UαF Y1] = [X1, Y0] = [X1, UαF Y1] = 0)
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⇐⇒ ∀Y = Y0 + Y1 ∈ A, (

[X0, Y0 + UαF Y1] = 0 = [X1, Y0 + UαF Y1])

⇐⇒ ∀Y = Y0 + UαF Y1 ∈ At, (

[X0, Y0 + UαF Y1] = 0 = [X1, Y0 + UαF Y1])

⇐⇒ X0, X1 ∈ At′

⇐⇒ X0 +X1 ∈ At′.

So, A′t = At′, as desired. □

4.5. UαF is not in B(θ, φ)

Lemma 112. (i) For any homogeneous A ∈ B(H), ∥A∥ = max(∥A|Heven∥ , ∥A|Hodd∥) and there

is a sequence (vi)i∈N of vectors in H which are either all in Heven or are all in Hodd, and

which are all unit vectors, such that lim
i→∞

∥Avi∥ = ∥A∥.
(ii) For any B = B0 +B1 ∈ B(H), ∥B∥ ≥ max(∥B0∥ , ∥B1∥).

Proof. For part (i):

Let A ∈ B(H) be homogeneous (either even or odd). Let A|Heven : Heven → H and A|Hodd : Hodd →
H be the restrictions of A to the domains of Heven and Hodd. ∥A|Heven∥ = sup

v0∈Heven,∥v0∥=1
∥Av0∥

and ∥A|Hodd∥ = sup
v1∈Hodd,∥v1∥=1

∥Av1∥. For v = v0 + v1 ∈ H with ∥v∥ = 1, ∥v0∥2 + ∥v1∥2 = 1,

and ∥A(v0 + v1)∥2 = ∥Av0∥2 + ∥Av1∥2 (because A is homogeneous, and therefore Av0 and Av1

have opposite grades, and are therefore orthogonal). So. ∥A(v0 + v1)∥2 = ∥Av0∥2 + ∥Av1∥2 ≤
∥A|Heven∥2 ∥v0∥2 + ∥A|Hodd∥2 ∥v1∥2. Therefore, ∥A∥ = max(∥A|Heven∥ , ∥A|Hodd∥), and whichever of

the two is larger, a choice of a sequence of unit vectors (vi)i∈N in H such that ∥Avi∥ tends to ∥A∥,
can be chosen such that vectors in the sequence are either all even or are all odd.

For part (ii):

Now, let B = B0+B1 ∈ B(H). Consider whichever of ∥B0∥ , ∥B1∥ is larger, or if they are equal pick

one of them arbitrarily. Let s ∈ {0, 1} be the subscript associated with whichever one is chosen.

Then, as in part (i) of this lemma, let (vi)i∈N be a sequence of homogeneous unit vectors in H
such that ∥Bsvi∥ → ∥Bs∥. Then, ∥(B0 +B1)vi∥2 = ∥Bsvi∥2+

∥∥B(1−s)vi
∥∥2 (again because Bsvi and
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B(1−s)vi are orthogonal). ∥(B0 +B1)vi∥ ≤ ∥B0 +B1∥ ∥vi∥ = ∥B0 +B1∥. So,

∥B0 +B1∥2 ≥ ∥(B0 +B1)vi∥2

= ∥Bsvi∥2 +
∥∥B(1−s)vi

∥∥2

≥ ∥Bsvi∥2 ,

and ∥Bsvi∥ → ∥Bs∥ = max(∥B0∥ , ∥B1∥) as i → ∞, so ∥B0 +B1∥ ≥ max(∥B0∥ , ∥B1∥), as desired.

□

Lemma 113. Let π : A → B(H) be a grade-preserving representation of A. Let UαF = 1Heven −
1Hodd ∈ U(H) (as usual).

Then, for any cone Λ and any A ∈ π(AΛ)
′′, ∥UαF −A∥ ≥ 1.

Proof. Let Λ be a cone and let A = A0 + A1 ∈ π(AΛ)
′′. As UαF is even, we have that

A− UαF = (A− UαF )0 + (A− UαF )1 = (A0 − UαF ) +A1. So, by Lemma 112,

∥A− UαF ∥ ≥ max(∥(A− UαF )0∥ , ∥(A− UαF )1∥) ≥ ∥A0 − UαF ∥ .

Therefore, it will suffice to show that ∥A0 − UαF ∥ ≥ 1.

A0 ∈ π(AΛ)
′′
even. Because for every B ∈ B(H), ∥[A0 − UαF , B]∥ ≤ 2 ∥A0 − UαF ∥ ∥B∥, for B ̸= 0,

∥A0 − UαF ∥ ≥ ∥[A0−UαF
,B]∥

2∥B∥ . So, it suffices to find some B ∈ B(H) such that ∥[A0 − UαF , B]∥ ≥
2 ∥B∥.
Pick B to be any non-zero odd B ∈ π(AΛc)odd. (There exists such a B in any cone by Lemma 33.)

By the triangle inequality, ∥[A0 − UαF , B]∥ ≥ ∥[UαF , B]∥ − ∥[A0, B]∥. And, because B is odd, we

have ∥[UαF , B]∥ = ∥UαFB −BUαF ∥ = ∥2UαFB∥ = 2 ∥B∥. So, as B is odd and non-zero,

∥A0 − UαF ∥ ≥ ∥[A0 − UαF , B]∥
2 ∥B∥

≥ ∥[UαF , B]∥ − ∥[A0, B]∥
2 ∥B∥

=
2 ∥B∥ − ∥[A0, B]∥

2 ∥B∥ = 1− ∥[A0, B]∥
2 ∥B∥ .

By twisted locality, π(AΛ)
′′ ⊆ π(AΛc)t′. Now, as B ∈ π(AΛc)odd, therefore UαFB ∈ π(AΛc)t, and

as A0 ∈ π(AΛ)
′′ ⊆ π0(AΛc)t′, [A0, UαFB] = 0. As A0 is even, then [A0, UαFB] = UαF [A0, B], so

[A0, B] = 0.
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So, ∥A0 − UαF ∥ ≥ 1 − ∥[A0,B]∥
2∥B∥ = 1, and so, as ∥A− UαF ∥ ≥ ∥A0 − UαF ∥, we get ∥A− UαF ∥ ≥ 1,

as desired. □

Lemma 114. For any choice of forbidden direction (θ, φ), UαF ̸∈ B(θ, φ).

Proof. Let (θ, φ) name a forbidden direction. If UαF were in B(θ, φ) =
⋃

Λ∈C(θ,φ)
π0(AΛ)′′

∥·∥
,

there would be a sequence (An)n∈N where each An ∈ ⋃
Λ∈C(θ,φ)

π0(AΛ)
′′, and such that it satisfies

lim
n→∞

∥An − UαF ∥ = 0. For each An ∈ ⋃
Λ∈C(θ,φ)

π0(AΛ)
′′, there exists a cone Λn ∈ C(θ, φ) such that

An ∈ π0(AΛn)
′′. By Lemma 113, as An ∈ π0(AΛn)

′′, ∥An − UαF ∥ ≥ 1. Therefore, ∥An − UαF ∥ does

not converge to 0. So, as no sequence (An)n∈N where each An ∈ ⋃
Λ∈C(θ,φ)

π(AΛ)
′′ has ∥An − UαF ∥

converge to 0, therefore UαF /∈ B(θ, φ), as desired.

□

4.6. On combining with the constructions in the symmetry chapter

We now briefly mention how the construction in this chapter and those in Chapter 3 combine when

the compact abelian group G has the Z/2Z corresponding to action by αF , as a subgroup.

Let G be a compact abelian group equipped with an injective inclusion of Z/2Z into G. Let F ∈ G

be the image in G of the non-identity element of Z/2Z. Through Pontryagin duality, this inclusion

Z/2Z ↪→ G induces a surjection Ĝ↠ Ẑ/2Z ∼= Z/2Z.

If, in addition to the on-site unitary Z/2Z action {UαF ,{x}}x∈Γ, there is an a system of on-site

unitary G-actions (Definition 4) ((g ∈ G) 7→ (U{x},g ∈ U(H{x})))x∈Γ such that U{x},F = UαF ,{x} for

all x ∈ Γ, then the constructions and definitions in this chapter and in Chapter 3, are compatible.

Because G is abelian, U{x},g commutes with U{x},F = UαF ,{x}, and so U{x},g is even. Any G-

covariant representation (ρ, U (ρ)) then has (ρ, Uρ = U
(ρ)
F ) as a Z/2Z-covariant representation. And,

again by G being abelian, U (ρ)
g commutes with U

(ρ)
F = Uρ, so U

(ρ)
g is even in that sense (and if

Uρ = UαF then it is also even in terms of commuting with UαF ). For two G-covariant representations

(ρ, U (ρ)), (σ, U (σ)), if Uρ = UαF and Uσ = UαF , then any G-covariant map from (ρ, U (ρ)) to (σ, U (σ))

will also be even.

The definitions Definition 10 and Definition 42 can then be combined straightforwardly as:
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Definition 115. With our A and the on-site action g 7→ αg, and a G-covariant representation

(Hπ, π : A → B(Hπ), U
(π)
• : G → U(Hπ)) to serve as the reference representation , another G-

covariant representation (Hρ, ρ : A → B(Hρ), U
(ρ)
• : G → U(Hρ)) satisfies the G-equivariant ver-

sion of the superselection criterion for systems with fermionic degrees of freedom with respect to

(Hπ, π, U
(π)) if for all cones Λ, there exists a unitary Vρ,Λ : Hρ → Hπ that is a G-equivariant map

(i.e. such that for all g ∈ G, Vρ,ΛU
(ρ)
g = U

(π)
g Vρ,Λ) and such that:

for all A0 ∈ AΛc,even, Ad(Vρ,Λ) ◦ ρ(A0) = π0(A0),

and for all A1 ∈ AΛc,odd, Ad(Vρ,Λ)(U
(ρ)
F ρ(A1)) = U

(π)
F π0(A1).

In the case that Hρ = Hπ and U (ρ)
F = U

(π)
F = UαF , anything representation satisfying this definition

will satisfy both Definition 10 and Definition 42 (when the former is interpreted to apply in this

setting). That all the results in this chapter continues to go through is immediate (under the

assumptions of π0 irreducible, U (π0)
F = UαF , and π0 satisfying approximate twisted Haag duality) as

going from satisfying Definition 42 to satisfying this definition, only adds additional assumptions.

That everything in Chapter 3 still works out is also straightforward. The Ĝ-gradings on algebras

and vectors spaces are then refinements of the grading into even and odd parts, in accordance with

the surjection Ĝ↠ Ẑ/2Z ∼= Z/2Z.
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CHAPTER 5

Tensor category describing anyons in the quantum Hall effect and

quantization of conductance
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Dedicated to the memory of Professor Huzihiro Araki

Abstract. In this study, we examine the quantization of Hall conductance in an infinite plane

geometry. We consider a microscopic charge-conserving system with a pure, gapped infinite-volume

ground state. While Hall conductance is well-defined in this scenario, existing proofs of its quanti-

zation have relied on assumptions of either weak interactions, or properties of finite volume ground

state spaces, or invertibility. Here, we assume that the conditions necessary to construct the braided

C∗-tensor category (aka braided monoidal C∗-category) which describes anyonic excitations are sat-

isfied, and we demonstrate that the Hall conductance is rational if the tensor category is finite.
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5.1. Introduction

For an effectively two-dimensional system, such as a metal plate or a single graphene layer, the

applied electric field and the induced current are two-component vectors. According to Ohm’s law,

for small fields, the current is proportional to the applied field. The matrix that relates them is

called the conductance matrix. In an insulator, the current can only flow in the direction transversal

to the applied field. The corresponding conductance matrix is antisymmetric, and Ohm’s law takes

the form

(5.1) J⃗ =


 0 κ

−κ 0


 V⃗

where we call the off-diagonal conductance κ the Hall conductance.

The quantum Hall effect refers to the behaviour of κ at low temperatures. As observed by Kitzling

[29] and Tsui, Störmer and Gossard [45], whenever the material is insulating, i.e., the conductance

matrix is as in (5.1), the Hall conductance is a fractional multiple of a universal constant.1 The

effect is called integer quantum Hall effect if the Hall conductance is a whole number and fractional

quantum Hall effect if the Hall conductance is a non-integer rational number.

The integer quantum Hall effect is well modelled by non-interacting electrons in disordered media.

The fact that κ is integer-valued in this case is now reasonably well understood, and it is beyond

the scope of this article to review the extensive body of literature on this topic. Let us mention that

integer quantization remains true in the case of weak interactions [21] and under the additional

assumption that the ground state is invertible [25]. As a consequence, electron-electron interactions

must be included to obtain a non-integer Hall conductance, which introduces significant analytical

challenges. Consequently, the fractional quantum Hall effect is mathematically much less under-

stood. A microscopic framework for a finite number of interacting electrons was already developed

by Avron and Seiler in [3], resulting in a possibly rational Hall conductance [26]. A topological field

theory of quantum Hall fluids in the bulk, which yields fractional quantization and anyonic excita-

tions, was developed in the early 90’s by Fröhlich and collaborators, [18,20] and again later [19].

An interacting microscopic framework with a well-defined thermodynamic limit was only provided

twenty years later in the work of Hastings and Michalakis [24].

1We will use units in which this constant is equal to (2π)−1, and consequently, 2πκ is a rational number.
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The setting of Hastings and Michalakis and of subsequent works [6,7,35] involves a gapped Hamil-

tonian for interacting particles with a U(1) symmetry on a finite torus of linear size L. Assuming

that the Hamiltonian has p locally indistinguishable ground states (along with some further technical

assumptions), it is proved that

2πκ =
q

p
+O(L−∞),

i.e. there exists q ∈ Z such that |2πκ− q/p| vanishes faster than any inverse power of L as L→ ∞.

This implies, see [6], quantization of conductance in the plane, provided we assume that the ground

state in the plane is a limit of ground states of embedded tori. Since they are locally indistinguishable

it does not matter in the limit which torus ground states are used. This plausible assumption, often

referred to as LTQO for Local Topological Quantum Order and introduced in [13, 34], is likely

satisfied in all standard quantum Hall models (in fact, it was forseen already in [46]) but it is

currently difficult to prove, see however [32] for recent progress in this direction.

In this article, we will show that Hall conductance is quantized in the infinite plane geometry

without assuming LTQO. We want to avoid this assumption not due to the lack of proof – we will

anyway have to assume analytical properties we can’t prove in any concrete model – but because

not having it leads to an intriguing intellectual puzzle: What replaces the ground states degeneracy

on the finite torus in the denominator p of the quantum Hall conductance fraction? We will show

here that p is upper bounded by the rank of the braided C∗-tensor category associated with the

ground state [41], which describes the anyonic excitations in the system. A parallel approach was

taken in [25,43], where the infinite volume assumption is the invertibility of the state.

The connection between rational Hall conductance and the properties of low-energy excitations was

first described in the works of Laughlin [30, 31], and Arovas, Schrieffer, Wilczek [1]. Laughlin

demonstrated that insertion of a 2π flux produces an excitation with a fractional charge 2πκ at

the point of insertion. Arovas, Schrieffer, and Wilczek then showed that if a second excitation is

adiabatically moved around the first, it acquires phase ei(2π)2κ. This means that the excitation is an

Abelian anyon. In a finite volume setting that is very close to the present one, this was proved in [8],

and was extended to the infinite volume in [25]. The connection exemplifies the interplay between

macroscopic properties of a system, such as Hall conductance, and its microscopic properties, like

the statistics of elementary excitations.
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In this work, we use the theory developed by Doplicher, Haag and Roberts [16,22] for relativistic

quantum field theories, recently adapted to lattice systems [37], to describe anyon excitations. See

the review [33] for other approaches to describing anyons. The DHR approach uses a superselection

criterion to define excitation sectors, and proceeds to show that there is a natural braided C∗-tensor

category structure associated with these sectors. In particular, physical elementary excitations

correspond to objects in this category, and the physical braiding of two excitations corresponds to

the braiding structure ϵ in the category. A complete mathematical setting in the context of quantum

lattice systems was first described by Ogata [41], and we will use this particular framework here.

As mentioned above, the way how to construct Abelian anyons in fractional quantum Hall effect was

introduced in [8] and later expanded on and used to prove quantization for invertible systems in [25].

Neither of these works construct the anyons as objects of a braided C∗-tensor category. Firstly no

exact framework existed at that time, and secondly (speaking for authors of [8]) it seemed at the

time that technical details associated with the precise construction might obscure the relatively

simple idea behind the construction. We now feel that this has changed and that there is a need

for uniform setting and precise definitions. The main technical part of this work, see Section 5.5, is

the construction of some objects in the braided C∗-tensor category M associated with the ground

state. Echoing [1] and [18], the braiding properties of these objects will be connected to the Hall

conductance. In Section 5.6, we then prove that under the assumption that there is finite number

of superselection sectors, Hall conductance κ is indeed a rational number.

5.2. Setting and results

We follow the setting and notation of [41], which expands on the usual framework of 2-dimensional

lattice spin systems. We consider a lattice Z2 and to each point x ∈ Z2 we associate an algebra

A{x} isomorphic to the algebra of d×d matrices for some fixed d > 1. For a finite subset Z of Z2 we

define AZ = ⊗x∈ZA{x}. For Z1 ⊂ Z2, the algebra AZ1 is canonically embedded in AZ2 by tensoring

operators in AZ1 with the identity. For infinite Z ⊂ Z2, the algebra AZ is defined as an inductive

limit of algebras associated with finite subsets of Z. We denote A = AZ2 . For each Z ⊂ Z2, we

fix the conditional expectation EZ : A → AZ onto AZ preserving the trace. The algebra of local

observables is denoted by Aloc.
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We will use notation, definitions and some results about interactions and dynamics that are sum-

marized in Appendix 5.A. While most of what we use should be standard for an expert in the field,

the notion of an anchored interaction which was introduced in [9] might be an exception.

We consider an interaction h ∈ J , here J is a class of interactions that are sufficiently local and

uniformly bounded (see the appendix for the exact definition), and assume that it has a finite range,

i.e. there exists r > 0 such that diam(S) > r implies hS = 0. We denote {τht : t ∈ R} the dynamics,

namely the one parameter group of automorphisms, generated by h.

Assumption 5.2.1. The dynamics τh has a unique gapped ground state ω.

Precisely, this means that there is a unique state ω satisfying

(5.2)
ω(A∗[h,A])

ω(A∗A)
≥ g > 0

for all local A such that ω(A) = 0. It is then automatically a ground state, i.e., ω(A∗[h,A]) ≥ 0 for

all local observables A, and is pure [44]. We denote the GNS representation of ω by (H, π,Ω).
Note that we do not assume that ω is the unique state satisfying the condition ω(A∗[h,A]) ≥ 0,

namely there may in general be other such ‘algebraic ground states’.

5.2.1. Braided C∗-tensor category associated with π. In this section we recall, to the

extent that we will need in this work, the construction of braided C∗-tensor category described

in [41]. It requires the approximate Haag duality. We do not present the full definition here and

refer reader to [41, Definition 1.1] (c.f. 38).

Assumption 5.2.2. The GNS representation (H, π,Ω) of ω satisfies the approximate Haag duality.

We denote eβ := (cosβ, sinβ) and set

Λa,θ,φ := {a+ teβ | t > 0, β ∈ (θ − φ, θ + φ)}(5.3)

for θ ∈ R, a ∈ R2, and φ ∈ (0, π). We call a subset of this shape a cone and use the same notation

for the subset Λa,θ,φ ∩ Z2 of the lattice. It is important that the empty set and R2 are not cones.

Strict Haag duality is the statement that π(AΛc)′ = π(AΛ)
′′ for all cones Λ while the approximate

version allows for ‘tails’ on the outside of the cones.
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We now define superselection sectors with respect to the GNS representation (H, π,Ω) of the gapped

ground state ω, see Assumption 5.2.1. We note that the representation is irreducible because the

ground state ω is pure.

Recalling Definition 3:

Definition 116. We say that a representation σ of A on H satisfies the superselection criterion

with respect to π if

σ|AΛc ≃ π|AΛc ,

for any cone Λ. Here, ≃ denotes unitary equivalence.

We denote by O0 all representations of A on H that satisfy the superselection criterion. Equivalence

of representations splits O0 into equivalence classes, which are called superselection sectors.

Theorem ( [41], Theorems 5.2 & 6.1). Given Assumptions 5.2.1, 5.2.2, the superselection sectors

form a braided C∗-tensor category.

We call this category M and refer to [41] for precise definitions. We will recall the construction in

Section 5.3. For the moment we only note that objects in the category are representations satisfying

the superselection criteria, and morphisms are their intertwiners. The braiding, ϵ(ρ, σ) of objects

ρ, σ, encodes the exchange statistics of the anyons corresponding to ρ, σ. We will also introduce a

braiding statistics θ(ρ, σ) which will be the phase obtained by moving σ counterclockwise around

ρ, see (5.6).

5.2.2. Charge conservation. We consider an on-site U(1) symmetry generated by an inter-

action q ∈ J such that operators q{x} ∈ A{x} have integer spectrum for all x ∈ Z2, and qS = 0 if S

is not a singleton. The operator q{x} encodes physical charge at site x, and for any finite region Z

we denote

QZ :=
∑

x∈Z
q{x},

and refer to it as the charge in the set Z. By assumption, Spec(QZ) ⊂ Z. For any (finite or not)

subset Z, let δqZ be the derivation associated with q|Z , the restriction of q to Z — see Appen-

dix 5.A.6 for the notion of restriction of an interaction — and let αZ be the corresponding family

of automorphisms. Note that αZ2π = id, justifying the name U(1) symmetry. We denote δq = δqZ2 ,

and α = αZ2 .
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We assume that our system is U(1) invariant in the following sense.

Assumption 5.2.3. For any finite S,Z ⊂ Z2 such that S ⊂ Z,

(5.4) [hS , QZ ] = 0.

We immediately note that in conjunction with Assumption 5.2.1, this implies the U(1)-invariance

of the state, namely ω ◦ αϕ = ω for all ϕ ∈ R.

Assumptions 5.2.1, 5.2.3 allow to construct a self-adjoint operator J ∈ A whose expectation value

(5.5) κ := ω(J)

is the Hall conductance of the system [5,24]. We provide details of this construction in Section 5.4.

An alternative construction of an observable corresponding to Hall conductance is given in [43]

using the framework of higher Berry curvature [2].

5.2.3. Results. The first theorem that we will prove makes an explicit connection between

the braided C∗-tensor category, specifically the braiding statistics θ(ρ, ρ) briefly introduced at the

end of Section 5.2.1 and defined in (5.6) below, and the Hall conductance κ. As discussed in the

introduction, versions of this theorem are in [8,25].

Theorem 117 (Existence of Anyons). Given Assumptions 5.2.1 – 5.2.3, there exists a simple object

ρ ∈ M such that

θ(ρ, ρ) = e−i(2π)
2κ.

The second theorem that we prove addresses quantization of the Hall conductance.

Theorem 118 (Quantization of Hall conductance). Suppose Assumptions 5.2.1 – 5.2.3 hold, and

assume that there is a finite number p′, of equivalence class of simple objects in M. Then there

exists an integer p ≤ p′ such that

2πκ ∈ Z/p.

5.2.4. Outline. In the following section we provide details about construction of the braided

C∗-tensor category. In Section 5.4 we define the Hall conductance. In Section 5.5 we prove Theo-

rem 117, and in Section 5.6 we prove Theorem 118. Finally, Appendix A contains all we need about
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interactions and their associated objects, and Appendix B has some technical parts related to the

definition of the braiding statistics θ on the braided tensor category.

5.3. Construction of braided C∗-tensor category

The idea to use superselection sectors to describe anyon ground state excitations was first described

in the context of algebraic quantum field theory in [14]. It was recently adapted to quantum spin

systems [15,36,37,41]. A representation σ that is quasi-equivalent to π, without any restriction,

corresponds to local excitations of the ground state. A representation σ that satisfies the superse-

lection criteria but is not quasi-equivalent to π corresponds to anyon excitation: We often visualize

them as excitations created by an endomorphism acting along a string going from the point of the

excitations to infinity, which is, in particular, localized inside a cone. This is the case in some

exactly solvable models [27,28], see [36,37].

In order to construct the braided C∗-tensor category, we shall now make various choices but the

resulting category is independent of these choices [41]. Let C be the set of all cones (5.3) such that

[θ−φ, θ+φ]∩ [3π2 − π
4 ,

3π
2 + π

4 ] = ∅ mod 2π. This makes a choice for what is called the forbidden

direction, see Figure 5.1. Let

B := ∪Λ∈Cπ (AΛ)
′′,

where the overline indicates the norm closure. For each cone Λ and σ ∈ O0, we set

Vσ,Λ := {Vσ,Λ ∈ U(H) | Ad(Vσ,Λ) ◦ σ|AΛc = π|AΛc},

which is a nonempty set by the very definition of O0. We also denote by OΛ the set of all σ ∈ O0

with I ∈ Vσ,Λ. OΛ represents anyonic excitations supported in Λ.

We fix a cone Λ0 := Λ0,π
2
, 5π
8
∈ C, the objects in the category M are the elements of OΛ0 . In order

to introduce a tensor product of objects (and later braiding), we first pull σ ∈ OΛ0 to a map on the

algebra B. There exists a unique *-homomorphism Tσ of B such that

Tσ ◦ π = σ

and Tσ is weakly continuous on π (AΛ)
′′, for every Λ ∈ C.
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For two objects σ1, σ2 ∈ OΛ0 , their tensor product is defined as

σ1 ⊗ σ2 := Tσ1 ◦ Tσ2 ◦ π.

The morphisms of M are the intertwiners

Hom(σ1, σ2) := {V ∈ B(H) | V σ1 = σ2V }.

To define braiding we fix the following two cones Λ2 := Λ0,π,π
8
,Λ1 := Λ0,π

2
,π
8
. For ρ ∈ OΛ1 and

σ ∈ OΛ0 the braiding ϵ(ρ, σ), of ρ, σ is defined as the norm limit

ϵ(ρ, σ) := lim
s→∞

V ∗
σ,Λ2(s)

Tρ
(
Vσ,Λ2(s)

)
.

Here and later, we use a notation Λa,θ,φ(s) = Λa,θ,φ+seθ. The braiding is independent of the choice

of unitaries Vσ,Λ2(s) ∈ Vσ,Λ2(s), and it intertwines ρ⊗ σ with σ⊗ ρ, i.e. ϵ(ρ, σ) ∈ Hom(ρ⊗ σ, σ⊗ ρ).

If ρ = π, then Tρ = id and hence ϵ(π, σ) = 1 for all σ.

Remark 119. As shown in Lemma 147, this definition is a special case of Definition 4.11 in [6], c.f.

Definition 92.

Λ0

Λ2(t)

Λ1

Λ3(s)
−t

s

Figure 5.1. The various cones used in the construction of the category M. For-
bidden directions are represented by the arc in the lower half plane.
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We will also need the braiding statistics, θ(ρ, σ), associated with winding of the anyon σ around ρ.

We fix another cone Λ3 = Λ0,0,π
8
, and for ρ ∈ OΛ1 and σ ∈ OΛ0 , we define

(5.6) θ(ρ, σ) = lim
t→∞

ϵ(ρ,AdVσ,Λ3(t) ◦ σ).

The limit is well defined, see (i) of the next lemma. In this article we will only encounter Abelian

anyons in which case the braiding statistics is proportional to identity: This is reflected in the

assumptions and statements of the following lemma. While a ‘braiding statistics’ or ‘statistical

phase’ has been defined in many different ways in the mathematical literature and expresses the

same phenomenology (among the close analogs, see Section 2 in [17], Section 2 in [42] or Section 8.5

in [23]), the authors are not aware of Definition (5.6) having appeared before.

Lemma 120. Suppose that Assumptions 5.2.1, 5.2.2 hold. Let ρ, σ ∈ OΛ1 . Suppose that σ is of the

form σ = π ◦ σ̃ for some σ̃ ∈ Aut(A) such that σ̃|AΛc
1
= idAΛc

1
. Then

(i) θ(ρ, σ) is well defined, and independent of the choice of Vσ,Λ3(t),

(ii) θ(ρ, σ) ∈ Hom(ρ, ρ).

Suppose in addition that ρ = π ◦ ρ̃ for some automorphism ρ̃. Then

(iii) θ(ρ, σ) = eiθ id, for some θ ∈ R,

(iv) For ρ′ = AdV ◦ ρ ∈ OΛ1 and σ′ = AdW ◦ σ ∈ OΛ0

θ(ρ′, σ′) = θ(ρ, σ),

(v) θ(ρ1 ⊗ ρ2, σ) = θ(ρ1, σ)θ(ρ2, σ).

Proof. The proof of (i) is quite technical and similar to the proofs of existence of ϵ(ρ, σ) in [41].

We postpone it to Appendix 5.B. Since similar techniques are required for the proof of part (ii), we

similarly postpone it, see Lemma 145.

Since ρ is irreducible by the additional assumption, the point (ii) implies that θ(ρ, σ) is proportional

to identity. Because Tρ is a unital ∗-endomorphism, θ(ρ, σ) is a unitary as the norm limit of a family

of unitaries. It follows that θ(ρ, σ) is a phase. This proves (iii).
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Manifestly, θ(ρ, σ′) = θ(ρ, σ). So to prove (iv), it remains to compute θ(ρ′, σ). To this end, let

σ′s = Ad(Vσ,Λ3(s)) ◦ σ. Pick Vσ′
s,Λ2(t) = Vσ,Λ2(t)V

∗
σ,Λ3(s)

.

θ(ρ′, σ) = lim
s→∞

ϵ(Ad(V ) ◦ ρ,Ad(Vσ,Λ3(s)) ◦ σ)

= lim
s→∞

lim
t→∞

[[V ∗
σ′
s,Λ2(t)

, V ]] Ad(V )(ϵ(ρ, σ′s))

= lim
s→∞

lim
t→∞

[[Vσ,Λ3(s)V
∗
σ,Λ2(t)

, V ]] Ad(V )(ϵ(ρ, σ′s)).

where we used Lemma 146 in the second equality and denote [[U1, U2]] = U1U2U
∗
1U

∗
2 for the com-

mutator of unitaries. For A ∈ AΛc
1
, we have that

π(A) = ρ′(A) = Ad(V )(ρ(A)) = Ad(V )(π(A)),

namely V ∈ π(AΛc
1
)′. Hence lims→∞ limt→∞[[Vσ,Λ3(s)V

∗
σ,Λ2(t)

, V ]] = 1 by Lemma 139 and we get

θ(ρ′, σ) = Ad(V )(θ(ρ, σ)).

With this, Part (iv) follows from (iii).

To prove (v), we recall [41] that for σ1, σ2, σ3 ∈ OΛ0 ,

ϵ (σ1 ⊗ σ2, σ3) = ϵ(σ1, σ3)Tσ1 (ϵ(σ2, σ3)) .

From the definition of θ, we then get

θ(ρ1 ⊗ ρ2, σ) = θ(ρ1, σ)Tρ1 (θ(ρ2, σ)) ,

and claim then follows again from (iii). □

5.4. Definition of Hall conductance

There are various, equivalent, formulas for Hall conductance. These formulas fall into two classes,

the first class expresses Hall conductance as the adiabatic curvature of a certain ground state bundle.

The second class expresses Hall conductance as a charge pumped upon insertion of a 2π flux. The

formulas can be proved from the Kubo formula [11], so the starting point is a matter of taste. We

decided to start with a formula from the first class because it is most naturally formulated in the
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infinite volume limit. However, in the process of proving our main theorems we will need a formula

from the second class which we will establish as a lemma below.

To define Hall conductance, we use a partition of space in four quadrants,

A := {(x, y) ∈ Z2 | 0 ≤ x, 0 ≤ y},

B := {(x, y) ∈ Z2 | x ≤ −1, 0 ≤ y},

C := {(x, y) ∈ Z2 | x ≤ −1, y ≤ −1, },

D := {(x, y) ∈ Z2 | 0 ≤ x, y ≤ −1},

see Figure 5.2. We will use the notation Z1Z2 = Z1 ∪Z2 for any two sets Z1, Z2. For example, AB

is the upper half plane. In addition, for a set Z, we set ZN := Z ∩ [−N,N ]×2.

b b b b b b b

b b b b b b b

b b b b b b b

b b b b b b b

b b b b b b b

b b b b b b b

b b b b b b b

B A

DC

Figure 5.2. The four quadrants used to define the Hall conductance

For a region Z ⊂ Z2, we define

(5.7) kZ = −
∫
dtW (t)τht (δ

q
Z(h)),

with W (t) a super-polynomially decaying function such that i
√
2πŴ (k) = 1/k for |k| ≥ g. Here,

we use the specific definition of an interaction given in (5.28), and so kZ is a bonafide interaction.

Next lemma gives basic properties of this interaction. We recall that the Hamiltonian has finite

range r, and let ∂Z := {x ∈ Z2 : dist(x, Z) ≤ r, dist(x, Zc) ≤ r}.

Lemma 121. Suppose that Assumptions 5.2.1 and 5.2.3 hold. Then for any Z ⊂ Z2,
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(i) kZ is anchored in ∂Z,

(ii) δq(kZS ) = 0,

(iii) kZ = −kZc .

Proof. The statement (i) follows from Lemma 133. Note the non-trivial definition of time

evolution of an interaction given in (5.28). Charge conservation, Assumption 5.2.3, implies (ii,iii).

□

A consequence of (i) and Lemma 132 is that i[kAB, kAD] is summable. With this, we can define the

Hall conductance via (5.5) with

(5.8) J =
∑

S

i[kAB, kAD]S .

It is in no way apparent that expectation value of J is adiabatic curvature of some ground state

bundle, we refer reader to [5] for the details about this bundle.

As announced in the first paragraph, we will need to connect this definition to a different formula

that we will use later. We are going to do this in the remaining part of this section.

For a region Z we define an interaction qZ = q|Z − kZ , and denote βZ the associated family of

automorphisms. βZϕ corresponds to threading flux ϕ through the boundary of Z, see [8]. The

function W in (5.7) is chosen so that the state ω is invariant, namely

(5.9) ω ◦ δqZ = 0, ω ◦ βZϕ = ω

for all regions Z, see [10]. For finite Z, the operator KZ =
∑

S k
Z
S is well-defined and the invariance

above can be phrased as

(5.10) ω([QZ , A]) = 0

for all A ∈ A, where QZ := QZ −KZ .

We claim that the interaction i[qAB, kAD] is also summable and that

ω(
∑

S

i[qAB, kAD]S) = 0.
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To establish this, we start by recalling that kAD is anchored in ∂(AD), see Lemma 121(i). We now

split the sum to two parts. First of all, if S ⊂ AB, we have that

[qAB, kAD]S =
∑

S1∪S2=S

[qABS1
, kADS2

] = −
∑

S1∪S2=S

[kABS1
, kADS2

],

by Lemma 121(ii). By Lemma 132, the sum
∑

S1∪S2⊂AB[k
AB
S1
, kADS2

] is absolutely convergent, in

particular, we can write it as

−
∑

S2⊂AB

∑

S1⊂AB
[kABS1

, kADS2
] =

∑

S2⊂AB

∑

S1⊂AB
[qABS1

, kADS2
],

where we used that for all S2 ⊂ AB,
∑

S1⊂AB[qS1 , k
AD
S2

] = δq(kADS2
) = 0. It might be worth noting

that the double sum on the RHS is not absolutely convergent anymore. Second of all, we consider

those sets S that intersect (AB)c. In fact, the anchoring of kAD implies that we are considering

only those that intersect both ∂(AD) and (AB)c. On the one hand, the sum

∑

S1,S2:(S1∪S2)∩∂(AD)∩(AB)c ̸=∅

[kABS1
, kADS2

]

is absolutely convergent by Lemma 132. On the other hand, since the interaction q is strictly on

site,
∑

S:S∩∂(AD)∩(AB)c ̸=∅

[qAB, kAD]S =
∑

S1,S2:S2∩∂(AD)∩(AB)c ̸=∅

[qABS1
, kADS2

]

and the sum on the RHS is absolutely convergent. Altogether, we have now established that the

commutator is summable. The above argument also yields that if the two sums are put added to

each other, we obtain a convergent sum,

∑

S

i[qAB, kAD]S =
∑

S2

δq
AB

(kADS2
).(5.11)

It follows that the expectation vanishes since ω(δqAB
(kADS2

)) = 0 for every S2. By the same argument,

the equality also holds with AB and AD exchanged. So we established two new expressions for Hall

conductance,

ω(
∑

S

[kAB, kAD]S) = ω(
∑

S

[qAB, kAD]S) = ω(
∑

S

[kAB, qAD]S).
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Adding the last two, and subtracting the first and a zero
∑

S [q
AB, qAD]S we then get

(5.12) ω(J) = ω(−i
∑

S

[qAB, qAD]S),

with J defined in (5.8). To avoid any confusion, we remark that the expectation on the RHS looks

formally zero by (5.9). However, the double sum
∑

S1,S2
[qABS1

, qADS2
] is not convergent so (5.9) is not

applicable.

So far, the Hall conductance has been connected to adiabatic curvature. We now show that the

definition above can also be related to charge transport. We start with a formal calculation (which,

to be clear, is wrong!). By differentiating under the integral,

(βAD2π )−1(qAB)− qAB = −
∫ 2π

0
(βADϕ )−1δqAD(qAB)dϕ,

however LHS and RHS are not equal as interactions based on our definitions (5.26,5.28) of manipu-

lating interactions. Continuing with formal calculations (which ignore that sums are not absolutely

convergent), we conclude that

∑

S

(
(βAD2π )−1(qAB)− qAB

)
S
=

∫ 2π

0
(βADϕ )−1

(∑

S

i[qAB, qAD]S

)
dϕ,

and the expectation of the RHS is −2πκ by (5.12). This way, we obtained a formal connection

between change of charge under the action of βAD2π and Hall conductance.

It likely won’t be any surprise to the reader that to make the calculation correctly we need to

regularize the expression. There are many ways how to do that, our regularization resembles [8]

(see also Lemma 125). To this end, for r > 0, we decompose

(5.13) (βAD2π )−1 = γ1,rγ0,r,

where γ are automorphisms such that

(i) γ0,r (resp. γ1,r) is generated by TDI g0,r (resp. g1,r) anchored in ∂(AD) ∩ {x2 ≤ r} (resp.

∂(AD) ∩ {x2 ≥ r}), moreover (g1,r)S = 0 unless S ⊂ AB,

(ii) there exists function f ∈ F and a constant C such that ∥gj,r∥f ≤ C holds for j = 0, 1 and

all r ≥ 0,

(iii) the TDIs are charge conserving, i.e. [(gj,r)S , QS ] = 0 for j = 0, 1, r ≥ 0 and all finite S.
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For conceptual clarity, the existence of this decomposition is assumed here, with a choice of γ0,r

being given explicitly when the lemma will be used in the proof of Theorem 117.

Lemma 122. Let

J0 =

∫ 2π

0
(βADϕ )−1

(
i
∑

S

[qAB, qAD]S

)
dϕ.

Then

ω(J0) = −2πω(J),

and

lim
r→∞

lim
N→∞

γ0,r(Q(AB)N )−Q(AB)N = J0,

where the limits are in the uniform topology of the C*-algebra.

Proof. Since [qAB, qAD] is summable, the equality ω(J0) = −2πω(J) follows immediately

from (5.12) and the invariance of ω under the action of βADs .

It remains to prove the last statement. We split the limit into two parts using Q(AB)N = Q(AB)N −
K(AB)N . We first consider the charge contribution. We fix r > 0, and we are going to show that

the limit of γ0,r(Q(AB)N )−Q(AB)N as N → ∞ exists. For M > N ,

Q(AB)M −Q(AB)N =
∑

x∈(AB)M\(AB)N

qx.

Using Lemma 134 we have for |x| ≫ r,

∥γ0,r(qx)− qx∥ ≤ f(|x|/2),

and

∥(γ0,r(Q(AB)M )−Q(AB)M )− (γ0,r(Q(AB)N )−Q(AB)N )∥ ≤
∑

|x|≥N

f(|x|/2).

Since f(|x|/2) is summable, the sum is going to zero as N → ∞. Hence the sequence is Cauchy and

therefore it has a limit.

The decomposition (5.13) yields that

γ0,r(Q(AB)N )−Q(AB)N = (γ1,r)−1((βAD2π )−1(Q(AB)N )−Q(AB)N )

+ (γ1,r)−1(Q(AB)N )−Q(AB)N .
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Since Q(AB)N is a bonafide element of the algebra, we can differentiate under the integral sign to

get

(βAD2π )−1(Q(AB)N )−Q(AB)N = −
∫ 2π

0
(βADϕ )−1δqAD(Q(AB)N )dϕ.

Now

δqAD(Q(AB)N ) = −
∑

S

i[q(AB)N , qAD]S

= −
∑

S

i[qAB, qAD]S +
∑

S

i[q(AB)cN , qAD]S ,

where the convergence of these sums was established in the paragraphs preceding the lemma. Hence,

γ0,r(Q(AB)N )−Q(AB)N = (γ1,r)−1

(∫ 2π

0
(βADϕ )−1

(∑

S

i[qAB, qAD]S

)
dϕ

)
+ JN ,

where

JN = −
∫ 2π

0
(βADs )−1

∑

S

i[q(AB)cN , qAD]Sds+ (γ1,r)−1(Q(AB)N )−Q(AB)N .

The automorphism (γ1,r)−1 is generated by a TDI, let’s call it g, that is charge conserving and

supported in AB. Then we can write the last term as

(γ1,r)−1(Q(AB)N )−Q(AB)N =
∑

S:S∩(AB)cN ̸=∅

∫ 1

0
τ gs (i[(gs)S , Q(AB)N ])ds,

which gives a decomposition JN =
∑

S(jN )S with jN anchored in (AB)cN . We established above

that JN has a limit, and since it is anchored on the complement of a square that eventually covers

all of Z2, the limit is a multiple of the identity. But JN is traceless for all N and hence the limit is

zero. In conclusion, we obtained

lim
N→∞

γ0,r(Q(AB)N )−Q(AB)N = (γ1,r)−1

(∫ 2π

0
(βADϕ )−1

(∑

S

i[qAB, qAD]S
)
dϕ

)
.

As (γ1,r)−1(A) → A for all A ∈ A we get

(5.14) lim
r→∞

lim
N→∞

γ0,r(Q(AB)N )−Q(AB)N =

∫ 2π

0
(βADϕ )−1

(∑

S

i[qAB, qAD]S
)
dϕ.

Regarding the second part associated with K(AB)N , Lemma 134 gives that the contribution of

(k(AB)N )S to γ0,r(K(AB)N ) − K(AB)N decays with the distance of S from the origin. This means
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that we can directly take the limit to get

lim
N→∞

(γ0,r(K(AB)N )−K(AB)N ) =
∑

S

γ0,r(kABS )− kABS .

Using the same lemma, we have that the sum on the RHS is uniformly convergent in r (we assumed

that TDIs g0,r are uniformly bounded) so we can also take the limit in r to get

lim
r→∞

lim
N→∞

(γ0,r(K(AB)N )−K(AB)N ) =
∑

S

(βAD2π )−1(kABS )− kABS .

Finally, we can now differentiate term by term under the integral to get

lim
r→∞

lim
N→∞

(γ0,r(K(AB)N )−K(AB)N ) = −
∑

S

∫ 2π

0
(βADϕ )−1i[qAD, kABS ]dϕ

= −
∫ 2π

0
(βADϕ )−1

(
i
∑

S

[qAD, kAB]S
)
dϕ,(5.15)

where in the second line we used that [qAD, kAB]S is absolutely summable so even though the lines

are not equal for each S, they have the same sum. (Recall (5.11).)

Adding now (5.14,5.15) back together finishes the proof. □

We end this section by proving that J0 commutes with the ground state. We recall an elementary

lemma.

Lemma 123. Let M ∈ A be such that ω([M,A]) = 0 for all A ∈ A. Then

ω(MA) = ω(M)ω(A)

for any A ∈ A.

Proof. In the GNS representation (H, π,Ω) of ω, we let P be the orthogonal projection onto

the space spanned by Ω. Since ω is pure, π is irreducible and so π(A)′′ = (C · 1)′ = B(H), namely

π(A) is weakly dense in B(H). For B ∈ B(H), let (Aα)α be a net in A converging weakly to B.
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Then

Tr([P, π(M)]B) = ⟨Ω|π(M)BΩ⟩ − ⟨Ω|Bπ(M)Ω⟩

= lim
α→∞

⟨Ω|π(MAα)Ω⟩ − ⟨Ω|π(AαM)Ω⟩

= lim
α→∞

ω([M,Aα]) = 0

by the assumption. Since this is true for any B ∈ B(H), we conclude that [P, π(M)] = 0, and hence

ω(MA) = Tr(Pπ(M)π(A)) = Tr(Pπ(M)Pπ(A)) = ω(M)ω(A)

because P is a one-dimensional projection. □

For any finite Z, the conditions of the lemma are satisfied for QZ by (5.10) and we get

(5.16) ω(QZA) = ω(QZ)ω(A) = ω(QZ)ω(A).

To get the second equality we noted that because Z is finite,

KZ =

∫
W (t)τht (δh(QZ))dt.

Since ω is a ground state of τht , it is in particular invariant and ω ◦ δh = 0 so that ω(KZ) = 0 by

the formula above. It then follows from the definition of QZ that ω(QZ) = ω(QZ).

We note for later purposes that

(5.17) π(QZ)Ω = ω(QZ)Ω.

This follows immediately by applying both sides of the identity π(QZ)P = Pπ(QZ) to Ω:

π(QZ)Ω = ⟨Ω|π(QZ)Ω⟩Ω.

Lemma 124. Suppose that Assumptions 5.2.1 and 5.2.3 hold. Then

(5.18) ω(J0A) = ω(J0)ω(A)

holds for all A ∈ A.
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Proof. By (5.27), we have

ω
(
[
∑

S

[qAB, qAD]S , A]
)
= ω(δqABδqAD(A)− δqADδqAB (A)),

for any local A ∈ A and the RHS is equal to zero by (5.9). Using the second part of (5.9) we then

get

ω([J0, A]) = 0,

for all A ∈ A and the statement follows from Lemma 123. □

5.5. Construction of an object in M associated with the U(1) symmetry

Having defined the current observable J0, we now turn to the explicit construction of the repre-

sentation ρ ∈ M whose existence was announced in Theorem 117 and prove that it has statistical

properties stated therein.

First of all, we note that while the TDI qZ that generates βZϕ is anchored in Z, the automorphism

βZ2π has a trivial action far away from ∂Z because qx have integer spectrum and kZ is anchored in

∂Z. Concretely, βZ2π can be obtained from a TDI that is anchored in ∂Z:

Lemma 125. Fix Z ⊂ Z2. There exists a TDI, k̃Z , anchored in ∂Z such that

βZ2π = τ k̃
Z

2π

Proof. Recall that αZϕ is the family of automorphisms associated with the charge q|Z . Since

αZ2π = id, we have

βZ2π = βZ2π ◦ (αZ2π)−1 = id+

∫ 2π

0
∂ϕ

(
βZϕ ◦ (αZϕ )−1

)
dϕ.

Computing the derivative, we have

∂ϕ
(
βZϕ ◦ (αZϕ )−1

)
= βZϕ ◦

(
δqZ − δqZ

)
◦ (αZϕ )−1.

Using qZ − qZ = −kZ we get

∂ϕ
(
βZϕ ◦ (αZϕ )−1

)
=

(
βZϕ ◦ (αZϕ )−1

)
◦ αZϕ ◦ δ−kZ ◦ (αZϕ )−1,

and the lemma holds with TDI k̃Z(ϕ) = −αZϕ (kZ). The TDI is anchored in ∂Z by Lemma 121 and

Lemma 133. □
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When an arbitrary TDI h is acted upon by the U(1) automorphism, and only in the case, we will

make an exception to (5.28)and define

(αϕ(h))S := αϕ(hS).

This is more convenient and α manifestly respects anchoring because it acts on-site.

To a cone Λ = Λa,θ,φ we associate the half space ZΛ := {x ∈ R2 : fθ · x ≥ 0}, where fθ is the unit

vector obtained by rotating eθ clockwise by 90 degrees, see Figure 5.3. Then by Lemma 125, βZΛ
2π

is generated by TDI k̃ZΛ . Let ρΛs be the family of automorphisms generated by TDI k̃ZΛ |Λ. Finally

we put ρΛ := ρΛ2π.

eθ

fθ

a

ΓΛ

Λ

Figure 5.3. The half plane ZΛ associated with the cone Λ

Since k̃ZΛ is anchored on ∂ZΛ, the automorphism ρΛ is generated by a TDI anchored on the axis of

the cone Λ, which will be useful when we do perturbation theory. It is also possible to express ρΛ

using the interaction q. Since restrictions commute with the on-site automorphism αZΛ
s , we have

that k̃ZΛ
s |Λ = −αΛ∩ZΛ

s (kZΛ |Λ), and we see that

∂s(ρ
Λ
s ◦ αΛ∩ZΛ

s ) = (ρΛs ◦ αΛ∩ZΛ
s ) ◦ (−δkZΛ |Λ + δΛ∩ZΛ

q ) = (ρΛs ◦ αΛ∩ZΛ
s ) ◦ δqZΛ |Λ .

Since q is a constant interaction, this implies that ρΛs = exp
(
sδqZΛ |Λ

)
◦(αΛ∩ZΛ

s )−1, and in particular

(5.19) ρΛ = exp
(
2πδqZΛ |Λ

)
.

This expression will be more useful for algebraic manipulations.
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The next lemma states that, for any Λ, the representation π ◦ρΛ satisfies the super-selection criteria

and that in addition, all these automorphisms belong to the same super-selection sector.

Lemma 126. For all cones Λ,Λ′ ⊂ Λ0,

(i) π ◦ ρΛ ∈ OΛ0,

(ii) π ◦ ρΛ ≃ π ◦ ρΛ′ .

Moreover there exists unitaries Vr,t ∈ A such that

βAB2π ◦Ad[Vr,t] = ρΛ2(r) ◦ (ρΛ3(t))−1.

Proof. We start with the last part of the lemma. Recalling the definiton of the cones, Fig-

ure 5.1, we see that ZΛ3(t) = CD for all t and so ρΛ3(t) = exp
(
2πδqCD|Λ3(t)

)
by (5.19). Using

Lemma 121(iii), we have

qCD|Λ3(t) = q|Λ3(t) − qAB|Λ3(t),

and we conclude that

(ρΛ3(t))−1 = exp
(
2πδqAB |Λ3(t)

)
.

Moreover, ρΛ2(r) = exp
(
2πδqAB |Λ2(r)

)
and since the cones Λ2(r),Λ3(t) are disjoint, we get

ρΛ2(r) ◦ (ρΛ3(t))−1 = exp
(
2πδqAB |Λ2(r)Λ3(t)

)
.

Equivalently, this is an automorphism generated by the TDI k̃AB|Λ2(r)Λ3(t). On the other hand,

βAB2π is generated by TDI k̃AB. The claim then follows from Lemma 136, used for X = ∂(AB) and

Z = Λ2(r)Λ3(t), and Lemma 135.

We now turn to the claim (ii). By the same reasoning that we used for the specific cones above, we

get that for any non-overlapping cones Λ,Λ′ there exists a region Z and a unitary VΛ,Λ′ such that

βZ2π ◦Ad[VΛ,Λ′ ] = ρΛ ◦ (ρΛ′
)−1,

see Figure 5.4.

129



Λ Λ′
Γ

Figure 5.4. The region Z corresponding to the disjoint cones Λ,Λ′. The unitary
VΛ,Λ′ is almost localized along the thicker grey line.

The invariance (5.9) implies that βZϕ is unitarily implementable in the GNS representation, namely

there are unitaries vZϕ such that vZϕΩ = Ω and

(5.20) π ◦ βZϕ = Ad
[
vZϕ

]
◦ π.

It follows that

π ◦ ρΛ ◦ (ρΛ′
)−1 = Ad

[
vZϕ

]
◦ π ◦Ad[VΛ,Λ′ ] = Ad

[
vZϕ π(VΛ,Λ′)

]
◦ π

which is (ii). If Λ,Λ′ overlap, we find a cone Λ′′, possibly ignoring the forbidden direction, that does

not overlap with either. Then by the above, π ◦ ρΛ ≃ π ◦ ρΛ′′ ≃ π ◦ ρΛ′ , concluding the proof.

Finally, (i) holds by construction. □

We note that the proof provides an explicit intertwiner VρΛ3(t),Λ2(r)
:

Lemma 127. The unitary VρΛ3(t),Λ2(r)
:= vAB2π π(Vr,t) ∈ U(H) is such that

(
π ◦ ρΛ2(r)(A)

)
VρΛ3(t),Λ2(r)

= VρΛ3(t),Λ2(r)

(
π ◦ ρΛ3(t)(A)

)
, A ∈ A.

In fact, more can be said. Indeed, the proof of Lemma 135 gives

(5.21) Vr,t = Tϵi

∫ 2π

0
Gsds, Gs = τ

k̃AB |Λ2(r)Λ3(t)
s

( ∑

S:S∩(Λ2(r)Λ3(t))c ̸=∅

k̃ABS

)
.

Since δk̃AB |Λ2(r)Λ3(t)
acts trivially on the terms that are completely supported on the complement of

Λ2(r)Λ3(t), we have that

Gs =
∑

S:S⊂(Λ2(r)Λ3(t))c

k̃ABS + G̃s

130



where G̃s is an observable that is almost localized at the apexes, a2(r), a3(t), of Λ2(r) and Λ3(t).

Specifically, there exists f ∈ F and a constant C, both independent of r, t, such that ∥G̃s∥f ≤ C

and ∥G̃s(S)∥ ≤ f(dist(S, {a2(r), a3(t)}).

Lemma 128. Let cN = ϵ2πiω(QABN
). Then

vAB2π = s-lim
N→∞

cNπ
(
ϵ2πiQABN

)

Proof. First we note that (5.17) implies that π(ϵ2πiQABN
)Ω = cNΩ. Then for any A ∈ A,

cNπ
(
ϵ2πiQABN

)
π(A)Ω = π

(
Ad

[
ϵ2πiQABN

]
(A)

)
Ω

while

vAB2π π(A)Ω = π
(
βAB2π (A)

)
Ω

by (5.20). Hence

cNπ
(
ϵ2πiQABN

)
π(A)Ω − vAB2π π(A)Ω = π

(
Ad

[
ϵ2πiQABN

]
(A)− βAB2π (A)

)
Ω

and the claim follows from the strong limit

βAB2π = s-lim
N→∞

Ad
[
ϵ2πiQABN

]

and the cyclicity of Ω with respect to π(A). □

Remark 129. Note from (5.20) that vAB2π can be arbitrarily well approximated by elements in

∪Λ∈Cπ(AΛc)′. In particular, by the approximate Haag duality, vAB2π belongs to B. More precisely,

for each ε > 0, we may choose a cone Λε ∈ C and a unitary Uε ∈ A such that π(Uε)vAB2π ∈ π
(
AΛc

ε

)′

and ∥Uε − I∥ < ε. Note also that we may further choose a sequence of unitaries UNε ∈ A such that

π
(
UNε ϵ2πiQABN

)
∈ π

(
AΛc

ε

)′ and
∥∥UNε − Uε

∥∥ → 0, N → ∞. Hence we obtain

π(Uε)v
AB
2π = s-lim

N→∞
cNπ(U

N
ε )π

(
ϵ2πiQABN

)
(5.22)

in π
(
AΛc

ε

)′.
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We are now ready to prove our first main result, namely that the braiding statistics θ(ρ, ρ) is

nothing but the exponential of the Hall conductance, which in turn was defined via (5.5,5.8) as the

expectation value of the adiabatic curvature.

Proof of Theorem 117. We claim that ρ := π◦ρΛ1 has the stated properties. By Lemma 126,

ρ ∈ M, and it is simple because π is irreducible. So it remains to prove the braiding relation

θ(ρ, ρ) = ϵ2πiω(J0).

Using item (iv) in Lemma 120 and Lemma 126, we have for any r ≥ 0, θ(ρ, ρ) = θ(π ◦ ρΛ1(r), ρ). In

particular,

θ(ρ, ρ) = lim
r→∞

θ
(
π ◦ ρΛ1(r), ρ

)
.

We now pick Vρ,Λ3(t) such that AdVρ,Λ3(t) ◦ ρ = π ◦ ρΛ3(t) to get

θ
(
π ◦ ρΛ1(r), ρ

)
= lim

t→∞
ϵ(π ◦ ρΛ1(r), π ◦ ρΛ3(t)).

By Lemma 127,

ϵ(π ◦ ρΛ1(r), π ◦ ρΛ3(t)) = lim
s→∞

π(V ∗
s,t)(v

AB
2π )∗TρΛ1(r)(v

AB
2π π(Vs,t)).

Now

TρΛ1(r)(v
AB
2π π(Vs,t)) = TρΛ1(r)(πβ

AB
2π (Vs,t)v

AB
2π ) = π(ρΛ1(r)βAB2π (Vs,t))TρΛ1(r)(v

AB
2π )

and the explicit expression (5.21) implies that limr→∞ ρΛ1(r)βAB2π (Vs,t) = βAB2π (Vs,t) uniformly in

s, t. Hence,

θ(ρ, ρ) = lim
r→∞

(vAB2π )∗TρΛ1(r)(v
AB
2π ) = lim

r→∞

〈
Ω
∣∣∣(vAB2π )∗TρΛ1(r)(v

AB
2π )Ω

〉
,

where we used that θ(ρ, ρ) is a scalar in the last equality. With this, the weak continuity of TρΛ1(r)

on each π (AΛc)′, Λ ∈ C, Remark 129 and Lemma 128, we get

θ(ρ, ρ) = lim
r→∞

lim
N→∞

ω(ϵ−2πiQ(AB)Nρ
Λ1(r)(ϵ2πiQ(AB)N )).

Now we consider the automorphism θr := (βAD2π )−1 ◦ ρΛ1(r) of A, which is such that

(5.23) lim
r→∞

∥(βZΛ1
2π )−1 ◦ ρΛ1(r)(A)− (β

ZΛ1
2π )−1(A)∥ = 0
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holds for all all A ∈ A. Using (5.16), we have that

(5.24) θ(ρ, ρ) = lim
r→∞

lim
N→∞

ω(ϵ−2πiQ(AB)N θr(ϵ2πiQ(AB)N )).

Let now vr,N (ϕ) = ϵ−iϕQ(AB)N θr(ϵiϕQ(AB)N ) and v(ϕ) = limr→∞ limN→∞ vr,N (ϕ) uniformly in ϕ,

which are such that vr,N (0) = 1 and therefore v(0) = 1. Note that γ0,r = θr is a possible choice in

the decomposition (5.13), so by Lemma 122 we have that

(5.25) lim
r→∞

lim
N→∞

(θr(Q(AB)N )−Q(AB)N ) = J0,

and since

∂ϕ(ϵ−iϕQ(AB)N θr(ϵiϕQ(AB)N )) = iϵ−iϕQ(AB)N (θr(Q(AB)N )−Q(AB)N )θr(ϵiϕQ(AB)N ).

we conclude from (5.25 ) that

∂ϕvϕ = iβAB−ϕ (J0) vϕ.

the proof of Lemma 124 now implies that ∂ϕω(vϕ) = iω(J0)ω(vϕ) and therefore

θ(ρ, ρ) = ω(v2π) = e2πiω(J0),

which is the equation that we aimed to prove. □

5.6. Quantization of Hall conductance

We finally prove Theorem 118. We start with a Lemma that is a corollary of Lemma 120.

Lemma 130. Suppose that ρ ≃ π, then θ(ρ, σ) = 1 for any σ ∈ OΛ0.

Proof. By point (iv) in Lemma 120 we have

θ(ρ, σ) = θ(π, σ).

The right hand side is manifestly equal to the unity. □

Now we are ready for the proof of the theorem.

Proof of Theorem 118. Consider the object ρ constructed in Theorem 117. For any n ∈ N,

ρ⊗n is an irreducible object in M. By the assumption that there are finite number p′ of simple
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objects, there exists p ≤ p′ such that ρ⊗p ≃ π. By the previous lemma we then have

θ(ρ⊗p, ρ) = 1.

On the other hand by Theorem 117 and Lemma 120(v),

θ(ρ⊗p, ρ) = θ(ρ, ρ)p = e2πiω(J0)p.

The two equations and the definition (5.5) then imply the stated quantization of the Hall conduc-

tance κ. □

5.A Manipulating interactions

We use one of the standard setups to manipulate interactions. We follow [9]. We consider the

l∞-norm on Z2. For x ∈ Z2 and r > 0, Br(x) indicates the ball in Z2 centered at x with radius r

with respect to this norm. The diameter of a subset S ⊂ Z2 with respect to this norm is denoted

by diam(S).

5.A.1 Interactions. Let F be a class of strictly positive, non-decreasing functions f : N+ →
R+ that decay faster than any power, i.e. limr→∞ f(r)rp = 0 for all p > 0. An interaction

h : S ⋐ Z2 → hS ∈ AS is a map associating a finite subset of Z2 with an operator in AS . We will

only consider interactions for which

∥h∥f = sup
x∈Z2

∑

S∋x

∥hS∥
f(1 + diam(S))

is finite for some f ∈ F , we will call the set of all such interactions by J . We will denote interactions

with lower case letters and use upper case letter for their quadratures. For a set X we put

HX =
∑

S:S∩X ̸=∅

hS ,

whenever the sum converges in the norm topology. The sum, in particular, converges for X finite,

provided h ∈ J . If the sum exists for X = Z2, we call the interaction summable. A derivation δhX ,

associated with h and a region X, acts as

δhX(A) =
∑

S:S∩X ̸=∅

i[hS , A], A ∈ Aloc.
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ForX = Z2, we omitX and write δh. If δh is inner, we will call the interaction h an inner interaction.

Summable interactions are inner, but there are inner interactions that are not summable. If HX

exists then δhX(A) = i[HX , A].

5.A.2 Anchored interactions. We say that an interaction h is anchored in a set X ⊂ Z2 if

h ∈ J and S ∩X = ∅ implies that hS = 0. If an interaction is anchored in a finite region X then

HX = HZ2 exists.

Anchoring can be readily connected to more standard forms of locality.

Lemma 131. Suppose that h is anchored in X and A ∈ AY . Then

∥δh(A)∥ ≤ 2f(dist(X,Y ))|Y |∥h∥f∥A∥,

holds for any f ∈ F .

Proof. We have

δh(A) =
∑

S:S∩X ̸=∅,
S∩Y ̸=∅

i[hS , A].

So we get

∥δh(A)∥ ≤ 2
∑

y∈Y

∑

S:y∈S,
S∩X ̸=∅

∥hS∥∥A∥

≤ 2
∑

y∈Y

∑

S:y∈S,
S∩X ̸=∅

∥hS∥
f(1 + diam(S))

f(1 + diam(S))∥A∥

≤ 2|Y |∥h∥ff(1 + dist(X,Y ))∥A∥,

which is what we were supposed to prove. We note that the RHS might be infinite in which case

the inequality is trivial. □

5.A.3 Commutators. For interactions h, h′ we define their commutator [h, h′] as

(5.26) [h, h′]S =
∑

S1,S2:S1∪S2=S,
S1∩S2 ̸=∅

[hS1 , h
′
S2
].
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If h, h′ ∈ J then [h, h′] ∈ J , and

(5.27) −iδ[h,h′] = δhδh′ − δh′δh.

Furthermore, if h is anchored in X then [h, h′] is anchored in X.

It would be convenient if [h, h′] was anchored in the intersection of the anchors of h, h′. Alas, this

is not the case. As a partial substitute, we will use the following criteria to decide if a commutator

is inner.

Lemma 132. Let h (resp. h′) be interactions anchored in X (resp. X ′). Assume that for all f ∈ F ,

∑

x∈X

∑

x′∈X′

f(|x− x′|) <∞.

Then [h, h′] is summable.

Note that the assumption above is to be understood as a constraint on the sets and not on the

family F . It is satisfied in particular whenever X,X ′ are two non-parallel strips of finite width.

Proof. By the definition (5.26) of the commutator of interactions, it suffices to show that

S =
∑

S∩X ̸=∅

∑

S′∩X′ ̸=∅
S∩S′ ̸=∅

∥hS∥∥h′S′∥

is convergent. Let f̃ be such that ∥h∥f̃ <∞, ∥h′∥f̃ <∞ and let

g(r) := max
r1+r2=r+1

f̃(r1)f̃(r2).

Then g ∈ F and we write

S ≤
∑

x∈X
x∈X′

∑

S:x∈S,x′∈S′

S∩S′ ̸=∅

∥hS∥
f̃(1 + diam(S))

∥h′S′∥
f̃(1 + diam(S′))

g(2 + diam(S) + diam(S′)).

By the geometry of S, S′ in the above sum, diam(S) + diam(S′) ≥ |x− x′| so we get

S ≤ ∥h∥f̃∥h′∥f̃
∑

x∈X

∑

x∈X′

g(|x− x′|),

which is finite by assumption. □
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5.A.4 Time-evolution. For A ∈ A and a site x ∈ Z2, we define a decomposition of A

A =
∞∑

n=0

Ax,n,

where

Ax,n := EBn(x)[A]− EBn−1(x)[A],

for n ≥ 1 and Ax,0 := EB0(x)[A]. For an automorphism β, and an interaction h anchored in X, we

define the time evolved interaction as

(5.28) β(h)Bk(x) :=
∑

S:x∈S∩X

1

|S ∩X|β(hS)x,k,

for x ∈ X and k ≥ 0. We define β(h)S = 0 for any other S.

For an interaction h, we denote τhs the group of automorphisms generated by δh. We will repeatedly

use

Lemma 133. Suppose that h ∈ J and that h′ is anchored in X. Then τhs (h
′) is anchored in X for

all s ≥ 0.

The proof is in [9, Lemma 5.2.].

5.A.5 Quadratures. For a series of interactions hj , we define

∑

j

hj



S

:=
∑

j

(hj)S ,

provided the sum exists in norm sense. Likewise, provided that the integral on the RHS exists in

the Bochner sense, we put (∫
htw(t)dt

)

S

=

∫
(ht)Sw(t)dt,

for a family of interactions ht and weight function w(t).

5.A.6 Restrictions. For an interaction h and a region Z we define

(h|Z)S =




0 S ∩ Zc ̸= ∅

hS S ⊂ Z.

The automorphisms, τh|Zs , associated with h|Z act strictly in Z.
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5.A.7 Time dependent interactions. Time dependent interaction (TDI) is a map s ∈ I ⊂
R → hs ∈ J , with I an interval of R. Furthermore we require that

(i) the map s ∈ I → (hs)S is continuous for all S ⊂ Z2,

(ii) there exist f ∈ F such that

sup
s∈I

∥hs∥f <∞.

Operations on interactions extend point-wise to TDIs. The role of TDI’s is to generate time evolu-

tion, to a TDI h we associate a family of automorphisms τhs that satisfies the equation

∂sτ
h
s (A) = τhs (δhs(A)), A ∈ Aloc.

Anchored interactions generate an automorphism that acts trivially far away from the anchoring

region. This is quantified by the following lemma.

Lemma 134. Let h be a TDI anchored in X, τhs the associated automorphism, and A ∈ AY ,

∥τh1 (A)−A∥ ≤ 2|Y | sup
s∈[0,1]

∥hs∥ff(dist(X,Y ))∥A∥,

holds for any f ∈ F .

Proof. By differentiating under integral we get

τh1 (A)−A =

∫ 1

0
τhs (δhs(A))ds,

and the statement follows from Lemma 131. □

5.A.8 Perturbation theory.

Lemma 135. Let h, h′ be two TDIs, and τhs , τh′s the associated automorphisms. Suppose that h− h′

is inner, i.e. there exists a family Ds ∈ A such that

(5.29) δhs(A)− δh′s(A) = i[Ds, A],

holds for all A ∈ A. Then there exists a unitary Vs ∈ A such that

Vsτ
s
h(A) = τ sh′(A)Vs.

holds for all A ∈ A.
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Proof. We have

∂s(τ
s
h ◦ (τ sh′)−1(A)) = τ sh(δhs − δh′s)(τ

s
h′)

−1(A) = τ sh ◦ (τ sh′)−1[iτ sh′(Ds), A],

by the assumption. In other words, the family of automorphisms τ sh ◦ (τ sh′)
−1 is generated by the

family of self-adjoint elements τ sh′(Ds) ∈ A. It follows immediately that τ sh ◦(τ sh′)−1 = Ad[V ∗
s ] where

Vs is the time-ordered exponential of τ th′(Dt). □

The lemma will be mainly used in the context of localizing interactions.

Lemma 136. Let h be a TDI anchored in a region X. Suppose that Z ⊂ Z2 is a region such that

there exists constants C1, C2 so that

dist(Zc, X ∩Bc
0,n) ≥ C1 + C2n

holds for all integers n with B0,n := B0(n). Then the TDI h− h|Z is inner.

Proof. Since, by definition,

(h− h|Z)S =




0 S ⊂ Z,

hS otherwise,

we get
∑

S

∥(h− h|Z)S∥ =
∑

S∩Zc ̸=∅

∥hS∥.

Since h is anchored in X we can add a condition S ∩X ̸= ∅ to the last sum. Then we bound it as

∑

S∩Zc ̸=∅
S∩X ̸=∅

∥hS∥ ≤
∞∑

n=0

∑

x∈Bn∩X

∑

S∋x
S∩Zc ̸=∅

S∩X∩Bc
n−1 ̸=∅

∥hS∥.
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Any set S in the last sum is such that includes points in both Zc and X ∩Bc
0,n−1. The diameter of

such set is bigger than C1 + C2(n− 1) by assumption. If f is such that ∥h∥f <∞, then

∑

S

∥(h− h|Z)S∥ ≤
∞∑

n=0

∑

x∈Bn∩X

∑

S∋x
S∩Zc ̸=∅
S∩Bc

n−1 ̸=∅

∥hS∥
f(1 + diam(S))

f(1 + C1 + C2(n− 1))

≤ ∥h∥f
∞∑

n=0

(2n+ 1)2f(1 + C1 + C2(n− 1)),

and the series is convergent since f decays faster than any inverse power. □

5.B Braiding statistics associated with winding

The goal of this appendix is to finish the proof of Lemma 120. Throughout the appendix we assume

that assumptions 5.2.1, 5.2.2 hold.

A technical tool that we will use is a Lemma that follows from approximate Haag duality, see [41,

Lemma 2.5]. We will use the notation (Λa,θ,φ)ϵ := Λa,θ,φ+ϵ.

Lemma 137. Let ε > 0, and δ > 0, and let Λ be a cone such that |arg Λ| + 4ε < 2π. Let A ∈
π(AΛc)′. Then, under the assumption of approximate Haag duality, for all r > R|arg Λ|,ε there exists

A′
r ∈ π(A(Λ(−r))ε+δ

)′′ such that ∥A−A′
r∥ ≤ 2f|arg Λ|,ε,δ(r) ∥A∥. Here f·(r) is a decreasing function

that vanishes in the limit r → ∞.

Specifically, there exists a unitary, Ũr, depending on Λ, ε, δ, such that A′
r = Ad(Ũr)A satisfies these

conditions.

Lemma 138. Let σ ∈ OΛ0. Then

lim
s,t→∞

∥∥∥[Vσ,Λ3(s)V
∗
σ,Λ2(t)

, A]
∥∥∥ = 0

holds for all A ∈ π(A).

Proof. First, suppose that A ∈ π(Aloc). Then, there is some finite set on which A is supported.

So, as
⋃
n∈N Λ1(−n) = R2, there exists some n ∈ N such that A is supported in Λ1(−n), i.e., A ∈

π(AΛ1(−n)) ⊆ π(AΛ1(−n))
′′. For s, t > n tan(π8 ), Λ1(−n) ⊂ (Λ3(s) ∪ Λ2(t))

c, and so π(AΛ1(−n))
′′ ⊂

(π(A(Λ3(s)∪Λ2(t))c)
′)′, and therefore A ∈ π(AΛ1(−n))

′′ ⊂ (π(A(Λ3(s)∪Λ2(t))c)
′)′. By [41, Lemma 2.2],

Vσ,Λ3(s)V
∗
σ,Λ2(t)

∈ π(A(Λ3(s)∪Λ2(t))c)
′, and so [A, Vσ,Λ3(s)V

∗
σ,Λ2(t)

] = 0.
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We conclude that for all A ∈ π(Aloc), lim
s,t→∞

∥∥∥[Vσ,Λ3(s)V
∗
σ,Λ2(t)

, A]
∥∥∥ = 0. For A ∈ π(A), the statement

follows by density of π(Aloc) in π(A). □

Lemma 139. Let σ ∈ OΛ0. Then

lim
s,t→∞

∥∥∥[Vσ,Λ3(s)V
∗
σ,Λ2(t)

, A]
∥∥∥ = 0

holds for all A ∈ π(AΛc
1
)′.

Proof. Let A ∈ π(AΛc
1
)′. Pick ε > 0 and δ > 0 such that |arg Λ1| + 4ε < 2π. For con-

creteness, pick ε = δ = 10−3. Then, by Lemma 137, for all r > R|arg Λ1|,ε there exists A′
r ∈

π(A(Λ1(−r))ε+δ
)′′ such that ∥A−A′

r∥ ≤ 2f|arg Λ1|,ε,δ(r). If (Λ1(−r))ε+δ ⊂ (Λ3(s)∪Λ2(t))
c, then A′

r ∈
π(A(Λ1(−r))ε+δ

)′′ ⊆ (π(A(Λ3(s)∪Λ2(t))c)
′)′. By [41, Lemma 2.2], Vσ,Λ3(s)V

∗
σ,Λ2(t)

∈ π(A(Λ3(s)∪Λ2(t))c)
′.

Therefore, A′
r commutes with Vσ,Λ3(s)V

∗
σ,Λ2(t)

. So, whenever (Λ1(−r))ε+δ ⊂ (Λ3(s) ∪ Λ2(t))
c,

∥∥∥[Vσ,Λ3(s)V
∗
σ,Λ2(t)

, A]
∥∥∥ =

∥∥∥[Vσ,Λ3(s)V
∗
σ,Λ2(t)

, A′
r + (A−A′

r)]
∥∥∥

=
∥∥∥[Vσ,Λ3(s)V

∗
σ,Λ2(t)

, A′
r] + [Vσ,Λ3(s)V

∗
σ,Λ2(t)

, (A−A′
r)]

∥∥∥

≤
∥∥∥[Vσ,Λ3(s)V

∗
σ,Λ2(t)

, A′
r]
∥∥∥+

∥∥∥[Vσ,Λ3(s)V
∗
σ,Λ2(t)

, (A−A′
r)]

∥∥∥

≤ 0 + 2
∥∥∥Vσ,Λ3(s)V

∗
σ,Λ2(t)

∥∥∥
∥∥A−A′

r

∥∥

≤ 4f|arg Λ1|,ε,δ(r).

Therefore, pick r = max(R|arg Λ1|, cot(
π
8 + ε + δ) · min(t, s) − 1), so that for sufficiently large s, t,

(Λ1(−r))ε+δ ⊂ (Λ3(s)∪Λ2(t))
c and also so that r → ∞ as min(s, t) → ∞, so that this upper bound of

4f|arg Λ1|,ε,δ(r) on
∥∥∥[Vσ,Λ3(s)V

∗
σ,Λ2(t)

, A]
∥∥∥ goes to 0 as t, s→ ∞. So, lim

s→∞
lim
t→∞

∥∥∥[Vσ,Λ3(s)V
∗
σ,Λ2(t)

, A]
∥∥∥ =

0. □

Lemma 140. Let σ ∈ OΛ0. For i = a, b let Λi be a cone, and Vσ,Λi ∈ Vσ,Λi . Then, V ∗
σ,Λb

Vσ,Λa ∈
σ(A(Λa∪Λb)c)

′.

Proof. This proof is very similar to that of [41, Lemma 2.2]. Let A ∈ A(Λa∪Λb)c = AΛc
a
∩AΛc

b
.

Then

Ad(V ∗
σ,Λb

Vσ,Λa) ◦ σ(A) = Ad(V ∗
σ,Λb

) ◦ π(A) = σ(A).

So, for all A ∈ A(Λa∪Λb)c , [V
∗
σ,Λb

Vσ,Λa , σ(A)] = 0, i.e. V ∗
σ,Λb

Vσ,Λa ∈ σ(A(Λa∪Λb)c)
′. □
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Lemma 141. Let Λ be a cone such that Λ ⊆ Λ0, and such that Λ is disjoint from Λ3. Let σ̃ ∈
Aut(A) and assume that σ̃|AΛc = idAΛc . Let σ = π ◦ σ̃ ∈ OΛ. Then for all s1, s2 ≥ s ≥ 0 and

Vσ,Λ3(s1) ∈ Vσ,Λ3(s1) and Vσ,Λ3(s2) ∈ Vσ,Λ3(s2), V
∗
σ,Λ3(s2)

Vσ,Λ3(s1) ∈ π(AΛ3(s)c)
′.

Proof. By Lemma 140, V ∗
σ,Λ3(s2)

Vσ,Λ3(s1) ∈ σ(A(Λ3(s1)∪Λ3(s2))c)
′ ⊆ σ(AΛ3(s)c)

′. As σ̃ is an

automorphism which is the identity when restricted to AΛc , it is also an automorphism when

restricted to AΛ. And, as Λ3(s)
c ⊇ Λ, σ̃ is also an automorphism when restricted to AΛ3(s)c . As such,

σ(AΛ3(s)c) = π(σ̃(AΛ3(s)c)) = π(AΛ3(s)c). So, V ∗
σ,Λ3(s2)

Vσ,Λ3(s1) ∈ σ(AΛ3(s)c)
′ = π(AΛ3(s)c)

′. □

Lemma 142. Let Λa,Λb ∈ C be disjoint subsets of Λ0, and let σa ∈ OΛa and σb ∈ OΛb
. Let

R ∈ Hom(σa ⊗ σb, σb ⊗ σa). Then R ∈ π(A(Λa∪Λb)c)
′.

Proof. This proof is essentially the same as that of [41, Lemma 4.2]. For A ∈ A(Λa∪Λb)c ,

σa ⊗ σb(A) = π(A) = σb ⊗ σa(A). As for all A ∈ A, R · (σa ⊗ σb)(A) = (σb ⊗ σa)(A) · R, in

particular, for all A ∈ A(Λa∪Λb)c , R · π(A) = R · (σa ⊗ σb)(A) = (σb ⊗ σa)(A) · R = π(A) · R. So,

R ∈ π(A(Λa∪Λb)c)
′. □

In particular, ϵ(σa, σb) ∈ π(A(Λa∪Λb)c)
′.

Lemma 143. Suppose ρ ∈ OΛ1 and σ ∈ OΛ0, and V ∈ U(H) such that σ′ = Ad(V ) ◦ σ ∈ OΛ0 as

well. Then, ϵ(ρ, σ′) = Ad(V )(ϵ(ρ, σ)) · V · Tρ(V ∗).

Proof. Picking Vσ′,Λ2(t) = Vσ,Λ2(t)V
∗,

ϵ(ρ, σ′) = lim
t→∞

V ∗
σ′,Λ2(t)

Tρ(Vσ′,Λ2(t))

= lim
t→∞

V V ∗
σ,Λ2(t)

Tρ(Vσ,Λ2(t))Tρ(V
∗)

= lim
t→∞

Ad(V )(V ∗
σ,Λ2(t)

Tρ(Vσ,Λ2(t))) · V · Tρ(V ∗)

= Ad(V )(ϵ(ρ, σ)) · V · Tρ(V ∗).

That Vσ,Λ2(t), V ∈ B follows from Vσ,Λ2(t) ∈ π(A(Λ2(t)∪Λ0)c)
′ = π(AΛc

0
)′ and V ∈ π(A(Λ0∪Λ0)c)

′ =

π(AΛc
0
)′ and π(AΛc

0
)′ ⊆ B, so the second equation splitting Tρ(Vσ′,Λ2(t)) into Tρ(Vσ,Λ2(t))Tρ(V

∗) is

legitimate. □

Lemma 144. Let Λ ⊂ Λ0 be disjoint from (Λ3(sΛ))2·10−3 for some sΛ. Let ρ ∈ OΛ1 and σ ∈ OΛ.

Let σ be of the form σ = π ◦ σ̃ for some σ̃ ∈ Aut(A) such that σ̃|AΛc = idAΛc . For s > 0, let
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Vσ,Λ3(s) ∈ Vσ,Λ3(s). Let σΛ3(s) := Ad(Vσ,Λ3(s)) ◦ σ. Then, lim
s→∞

ϵ(ρ, σΛ3(s)) exists, and is independent

of the choice of Vσ,Λ3(s) ∈ Vσ,Λ3(s).

Proof. We start by showing that the limit exists. This will be done by showing that the se-

quence is Cauchy. By Lemma 143 , ϵ(ρ, σΛ3(s)) = Vσ,Λ3(s)ϵ(ρ, σ)Tρ(V
∗
σ,Λ3(s)

). Using that Tρ(V ∗
σ,Λ3(s)

)

is unitary, for s1, s2 > s > 0,

∥ϵ(ρ, σΛ3(s2))− ϵ(ρ, σΛ3(s1))∥

=
∥∥∥Vσ,Λ3(s2)ϵ(ρ, σ)Tρ(V

∗
σ,Λ3(s2)

)− Vσ,Λ3(s1)ϵ(ρ, σ)Tρ(V
∗
σ,Λ3(s1)

)
∥∥∥

=
∥∥∥V ∗

σ,Λ3(s1)
Vσ,Λ3(s2)ϵ(ρ, σ)Tρ(V

∗
σ,Λ3(s2)

)Tρ(Vσ,Λ3(s1))− ϵ(ρ, σ)
∥∥∥

=
∥∥∥V ∗

σ,Λ3(s1)
Vσ,Λ3(s2)ϵ(ρ, σ)Tρ(V

∗
σ,Λ3(s2)

Vσ,Λ3(s1))− ϵ(ρ, σ)
∥∥∥ .

Let Vσ,s2,s1 = V ∗
σ,Λ3(s2)

Vσ,Λ3(s1) so the above becomes

∥∥ϵ(ρ, σΛ3(s2))− ϵ(ρ, σΛ3(s1))
∥∥ =

∥∥V ∗
σ,s2,s1ϵ(ρ, σ)Tρ(Vσ,s2,s1)− ϵ(ρ, σ)

∥∥ .

By Lemma 141, Vσ,s2,s1 ∈ π(AΛ3(s)c)
′. By Lemma 142, ϵ(ρ, σ) ∈ π(A(Λ1∪Λ)c)

′. By Lemma 137,

for s > 2R|arg Λ3|,ε, setting Vσ,s2,s1,s = Ad(Ũr)(Vσ,s2,s1), we obtain Vσ,s2,s1,s ∈ π(A(Λ3(s− s
2
))ε+δ

)′′,

and ∥Vσ,s2,s1 − Vσ,s2,s1,s∥ ≤ 2f|arg Λ3|,ε,δ(
s
2). For concreteness, pick ε = δ = 10−3. Then, for

s > max(2sΛ, 2R|arg Λ3|,10−3), (Λ3(
s
2))2·10−3 ⊆ (Λ3(sΛ))2·10−3 and is therefore disjoint from Λ, and

(Λ3(
s
2))2·10−3 ⊆ (Λ3)2·10−3 and is therefore disjoint from Λ1, and so (Λ3(

s
2))2·10−3 is disjoint from

Λ1 ∪ Λ. Therefore [V ∗
σ,s2,s1,s, ϵ(ρ, σ)] = 0, and we decompose

V ∗
σ,s2,s1ϵ(ρ, σ) = ϵ(ρ, σ)V ∗

σ,s2,s1,s + (Vσ,s2,s1 − Vσ,s2,s1,s)
∗ ϵ(ρ, σ).

As (Λ3(
s
2))2·10−3 ∈ C, Tρ is weak-continuous on π(A(Λ3(

s
2
))2·10−3

)′′, and as (Λ3(
s
2))2·10−3 ⊆ Λc1, Tρ is

the identity on π(A(Λ3(
s
2
))2·10−3

), so together we get that it is also the identity on π(A(Λ3(
s
2
))2·10−3

)′′,

and so Tρ(Vσ,s2,s1,s) = Vσ,s2,s1,s. We get,

Tρ(Vσ,s2,s1) = Tρ(Vσ,s2,s1,s + (Vσ,s2,s1 − Vσ,s2,s1,s))

= Vσ,s2,s1,s + Tρ(Vσ,s2,s1 − Vσ,s2,s1,s).
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Therefore, using again that [V ∗
σ,s2,s1,s, ϵ(ρ, σ)] = 0,

V ∗
σ,s2,s1ϵ(ρ, σ)Tρ(Vσ,s2,s1) = ϵ(ρ, σ) + (ϵ(ρ, σ)V ∗

σ,s2,s1,s)Tρ(Vσ,s2,s1 − Vσ,s2,s1,s)

+ (Vσ,s2,s1 − Vσ,s2,s1,s)
∗ ϵ(ρ, σ)Tρ(Vσ,s2,s1).

So

∥∥V ∗
σ,s2,s1ϵ(ρ, σ)Tρ(Vσ,s2,s1)− ϵ(ρ, σ)

∥∥ ≤
∥∥ϵ(ρ, σ)V ∗

σ,s2,s1,s

∥∥ ∥Tρ(Vσ,s2,s1 − Vσ,s2,s1,s)∥

+ ∥(Vσ,s2,s1 − Vσ,s2,s1,s)
∗∥ ∥ϵ(ρ, σ)Tρ(Vσ,s2,s1)∥

≤ 2 ∥ϵ(ρ, σ)∥ ∥Vσ,s2,s1 − Vσ,s2,s1,s∥

≤ 2 · 2f|arg Λ3|,10−3,10−3(
s

2
),

which goes to 0 as s → ∞. Therefore, the sequence (ϵ(ρ, σΛ3(s)))s∈N is Cauchy, and the sequence

converges, i.e.,

θ(ρ, σ) = lim
s→∞

ϵ(ρ, σΛ3(s))

exists.

Inspecting the proof, we showed that for any choice of Vσ,Λ3(s), we have

∥θ(ρ, σ)− ϵ(ρ, σΛ3(s))∥ ≤ 4f|arg Λ3|,10−3,10−3(
s

2
).

We will use this to show that the limit is independent of the choice of Vσ,Λ3(s) ∈ Vσ,Λ3(s).

Let Vσ,Λ3(s), V
′
σ,Λ3(s)

, where for each s, Vσ,Λ3(s), V
′
σ,Λ3(s)

∈ Vσ,Λ3(s), be two choices. Now consider

a third choice, a sequence V ′′
σ,Λ3(s)

which for s < s′ has V ′′
σ,Λ3(s)

= V ′
σ,Λ3(s)

, but for s ≥ s′ has

V ′′
σ,Λ3(s)

= Vσ,Λ3(s). By the above bound the limit point of the sequence, which is θ(ρ, σ), has a

distance bounded by 4f|arg Λ3|,10−3,10−3( s2) from the limit point of the sequence corresponding to the

choice V ′
σ,Λ3(s)

.

So, the limit exists and is independent of the choice of Vσ,Λ3(s), as desired. □

Lemma 145. Let ρ ∈ OΛ1 and σ ∈ OΛ0. Suppose that σ be of the form σ = π ◦ σ̃ for some

σ̃ ∈ Aut(A) such that σ̃|AΛc = idAΛc . Then, θ(ρ, σ) ∈ Hom(ρ, ρ).

Proof. The task is to show that for all A ∈ A, θ(ρ, σ)ρ(A) = ρ(A)θ(ρ, σ). In fact, by density,

it is enough to show it for A ∈ Aloc. Let σΛ3(t) := Ad(Vσ,Λ3(t)) ◦ σ. For all t, ϵ(ρ, σΛ3(t)) ∈
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Hom(ρ⊗σΛ3(t), σΛ3(t)⊗ρ). Pick r ∈ N such that A ∈ AΛ1(−r). For t > cot(π2− π
8 )r, Λ1(−r) ⊂ Λ3(t)

c,

and so TσΛ3(t)
|π(AΛ1(−r)) = id. Therefore, ρ ⊗ σΛ3(t)(A) = Tρ ◦ TσΛ3(t)

◦ π(A) = Tρ ◦ π(A) = ρ(A),

and we get

ϵ(ρ, σΛ3(t)) · ρ(A) = ϵ(ρ, σΛ3(t)) · (ρ⊗ σΛ3(t))(A)

= (σΛ3(t) ⊗ ρ)(A) · ϵ(ρ, σΛ3(t))

= (TσΛ3(t)
◦ Tρ ◦ π(A)) · ϵ(ρ, σΛ3(t))

= TσΛ3(t)
(ρ(A)) · ϵ(ρ, σΛ3(t)).

And so,

θ(ρ, σ) · ρ(A) = lim
t→∞

ϵ(ρ, σΛ3(t)) · ρ(A)

= lim
t→∞

TσΛ3(t)
(ρ(A)) · ϵ(ρ, σΛ3(t)).

As for all t, ϵ(ρ, σΛ3(t)) is a unitary, and θ(ρ, σ) = limt→∞ ϵ(ρ, σΛ3(t)), we conclude that θ(ρ, σ) ·
ρ(A) ·θ(ρ, σ)∗ = limt→∞ TσΛ3(t)

(ρ(A)), and in particular that the limit on the right hand side exists.

Now to conclude the proof we need to show that this limit is equal to ρ(A). We will use many

cones below, and we summarize their position in Figure 5.5. As A ∈ AΛ1(−r), ρ(A) = Tρ ◦ π(A) =
Ad(V ∗

ρ,KΛ1(−r)
)(π(A)), where KΛ1(−r) can be chosen to be any cone in C which is

(i) distal from Λ1(−r) with forbidden direction that of C (for the definition of distal see [41],

we will only use that such a cone exists) and

(ii) clockwise between Λ1(−r) and the forbidden direction.

For Cr = Λ1(−r)∨Λ1 ∨KΛ1(−r) = Λ1(−r)∨KΛ1(−r) (the smallest cone including both Λ1(−r) and

KΛ1(−r) ), π(AΛ1(−r)) ⊆ π(ACr) ⊆ π(ACc
r
)′, we have V ∗

ρ,KΛ1(−r)
∈ π(A(Λ1∪KΛ1(−r))

c)′ ⊆ π(ACc
r
)′, and

so ρ(A) = Tρ,Λ1(−r)(π(A)) = Ad(V ∗
ρ,KΛ1(−r)

)(π(A)) ∈ π(ACc
r
)′. Now we want to use approximate

Haag duality to find elements of B which approximate this and on which TσΛ3(t)
acts as the identity

TσΛ3(t)
|π(AΛ3(t)

c ) = idπ(AΛ3(t)
c ). So, we want to pick KΛ1(−r) so that we can find expanded versions

of the corresponding Cr, to get arbitrarily good (as t → ∞) approximations to ρ(A) there, and

where these expanded versions of Cr are both elements of C and subsets of Λ3(t)
c. So, we want to

pick an interval of directions which is a little bit clockwise of the interval of directions for Λ1(−r),
and a basepoint, so that even after moving it back and widening it a little, it will still be disjoint

145



from Λ1(−r) = Λ−reπ
2
, 16π
32
, 4π
32

. Choose the interval of directions for it to be (9π32 − π
32 ,

9π
32 + π

32).

Then, for the basepoint, start with the basepoint of Λ1(−r) (where the only intersection would be

the common basepoint), and move it forwards from there by enough to make KΛ1(−r) distal from

Λ1(−r). Specifically, let x⃗r = (−r)eπ
2
+(R2 π

32
,ε+2)e 9π

32
, for ε = π

64 , and let KΛ1(−r) = Λx⃗r, 9π32 ,
π
32

. To

check that KΛ1(−r) is distal from Λ1(−r), pick ε = π
64 and see that as π

64 < (π2 − π
8 )− (9π32 +

π
32), that

the range of directions for (Λx⃗r, 9π32 ,
π
32
)ε and Λ1(−r) = Λ−reπ

2
,π
2
,π
8

are disjoint, and so (Λx⃗r, 9π32 ,
π
32

−
R2 π

32
,εe⃗e 9π

32
)ε = Λ(−reπ

2
+2e 9π

32
), 9π

32
, π
32

+ε is disjoint from Λ1(−r). From this, and that (KΛ1(−r))ε and

(Λ1(−r))ε are disjoint element of C, we have that KΛ1(−r) is distal from Λ1(−r) with forbidden

direction (3π2 − π
4 ,

3π
2 + π

4 ). It is also clockwise from Λ1(−r) with respect to the forbidden direction.

Therefore it is a valid choice for KΛ1(−r).

b

Λ1(−r)

(0, 0) Λ3(t)

KΛ1(−r)

Λ(
−r~eπ

2
+2~e 9π

32
, 9π32 ,

π
32

)

b ~xr
t

r

Figure 5.5. The cones used in the proof of Lemma 145

With this choice of KΛ1(−r), Cr = Λ1(−r) ∨KΛ1(−r) = Λ−reπ
2
, 7π
16
, 3π
16

.

As ρ(A) ∈ π(ACc
r
)′, by Lemma 137 , forXt2 = Ad(Ũt2)(ρ(A)) we have that, for t2 > R|argCr|,ε, Xt2 ∈

π(A(Cr)ε+δ−t2eCr
)′′ and ∥Xt2 − ρ(A)∥ < 2 ∥ρ(A)∥ f|argCr|,ε,δ(t2). For ε+δ < π

2 , ((Cr)ε+δ−t2eCr) ∈ C,

and so TσΛ3(t)
is strongly continuous on π(A((Cr)ε+δ−t2eCr )

)′′. To have ((Cr)ε+δ − t2eCr) ⊂ Λ3(t)
c,

we need ε + δ < π
8 , and t > cot(π4 − (ε + δ)) · (r + t2 · (sin(7π16 )) − t2 · cos(7π16 ) (this condition is

obtained from the base point of Λ3(t) being to the right of the line which extends the right edge

of the cone ((Cr)ε+δ − t2eCr)). So, it suffices that ε + δ < π
8 and t ≥ cot(π8 ) · (r + t2). So, we can

set t2 = t tan(π8 ) − r. Now having ((Cr)ε+δ − t2eCr) ⊂ Λ3(t)
c, we have that TσΛ3(t)

is the identity
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on π(A((Cr)ε+δ−t2eCr )
), and so by the weak continuity is the identity on π(A((Cr)ε+δ−t2eCr )

)′′, and

so TσΛ3(t)
(Xt2) = Xt2 . Because both ρ(A) and Xt2 are elements of B, we have

TσΛ3(t)
(ρ(A)) = TσΛ3(t)

(Xt2 + (ρ(A)−Xt2))

= ρ(A)− (ρ(A)−Xt2) + TσΛ3(t)
(ρ(A)−Xt2).

Therefore,

∥∥∥TσΛ3(t)
(ρ(A))− ρ(A)

∥∥∥ ≤ ∥(ρ(A)−Xt2∥+
∥∥∥TσΛ3(t)

(ρ(A)−Xt2)
∥∥∥

≤ 4 ∥ρ(A)∥ f|argCr|,ε,δ(t2),

which goes to 0 as t, and therefore t2, goes to infinity. □

Lemma 146. Suppose ρ ∈ OΛ1 , σ ∈ OΛ0, and V ∈ U(H) is such that ρ′ = Ad(V ) ◦ ρ ∈ OΛ1 . Then,

ϵ(ρ′, σ) = limt→∞[[V ∗
σ,Λ2(t)

, V ]] ·Ad(V )(ϵ(ρ, σ)).

Proof.

ϵ(ρ′, σ) = lim
t→∞

V ∗
σ,Λ2(t)

Tρ′(Vσ,Λ2(t))

= lim
t→∞

V ∗
σ,Λ2(t)

Ad(V ) ◦ Tρ(Vσ,Λ2(t))

= lim
t→∞

V ∗
σ,Λ2(t)

V Tρ(Vσ,Λ2(t))V
∗

= lim
t→∞

(V ∗
σ,Λ2(t)

V Vσ,Λ2(t)V
∗)V (V ∗

σ,Λ2(t)
Tρ(Vσ,Λ2(t)))V

∗

= lim
t→∞

[[V ∗
σ,Λ2(t)

, V ]] Ad(V )(V ∗
σ,Λ2(t)

Tρ(Vσ,Λ2(t)))

= lim
t→∞

[[V ∗
σ,Λ2(t)

, V ]] ·Ad(V )(ϵ(ρ, σ))

□

Lemma 147. Let ρ ∈ OΛ1 and σ ∈ OΛ0 such that definition 5.3 applies. Then, the resulting

morphism ϵ(ρ, σ) coincides with that defined in Definition 4.11 of [6] for (θ, φ) = (3π2 ,
π
4 ).

Proof. First, let us recall Definition 4.11 of [6], in the case that (θ, φ) = (3π2 ,
π
4 ):

To avoid ambiguity with the cones Λ0 := Λ0,π
2
, 5π
8

, Λ1 := Λ0,π
2
,π
8
, and Λ2 := Λ0,π,π

8
, we add add

primes to the variable names in the definition. Let Λ′
0 ∈ C (we take Λ′

0 = Λ0) and ρ, σ ∈ O0, and pick
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any two cones Λ′
1,Λ

′
2 ∈ C such that Λ′

2 is counterclockwise from Λ′
1 (in the sense applicable for cones

in C) and such that Λ′
1 is distal from Λ′

2 with forbidden direction (3π2 ,
π
4 ), and vice versa. Then pick

a Vρ,Λ′
0
∈ Vρ,Λ′

0
, a Vσ,Λ′

0
∈ Vσ,Λ′

0
, and for all t1, t2 ≥ 0 a Vρ,Λ′

1(t1)
∈ Vρ,Λ′

1(t1)
and Vσ,Λ′

2(t2)
∈ Vσ,Λ′

2(t2)
,

and set W t⃗
ρΛ′

0Λ
′
1
= Vρ,Λ′

1(t1)
V ∗
ρ,Λ0

and W t⃗
σΛ′

0Λ
′
2
= Vσ,Λ′

2(t2)
V ∗
σ,Λ′

0
. Then define:

ϵ
(Λ′

0)
+ (ρ, σ) := lim

t⃗→∞
(W t⃗

σΛ′
0Λ

′
2
⊗W t⃗

ρΛ′
0Λ

′
1
)∗(W t⃗

ρΛ′
0Λ

′
1
⊗W t⃗

σΛ′
0Λ

′
2
),

where t⃗ = (t1, t2) and lim
t⃗→∞

means lim
t1→∞,t2→∞

.

Now we will show that for ρ ∈ OΛ1 and σ ∈ OΛ0 , that this reduces to Definition 5.3.

Observe that Λ2 := Λ0,π,π
8

and Λ1 := Λ0,π
2
,π
8

are such that Λ2 is counterclockwise from Λ1. More-

over, for sufficiently large s, in addition to Λ2(s) and Λ1 satisfying the condition that Λ2(s) be

counterclockwise from Λ1, the pair also satisfies the condition in [6, Definition 4.11] that the two

are distal from each other with forbidden direction (3π2 ,
π
4 ), so Λ2(s) and Λ1 can be the Λ′

2 and Λ′
1

of [6, Definition 4.11]. So, we set Λ′
1 = Λ1 and Λ′

2 = Λ2 (the requirement of the s in order for Λ2(s)

and Λ1 to be distal will not matter because of the limits that are taken in both definitions, so we

take Λ′
2 = Λ2 rather than setting Λ′

2 = Λ2(s0) for some sufficiently large s0, in order to simplify

notation).

Because ρ ∈ OΛ1 ⊂ OΛ0 (as Λ1 ⊂ Λ0) and σ ∈ OΛ0 we can choose the unitaries Vρ,Λ0 = 1 ∈ Vρ,Λ0

and Vσ,Λ0 = 1 ∈ Vσ,Λ0 , so that W t⃗
ρΛ0Λ1

= Vρ,Λ1(t1) and W t⃗
σΛ0Λ2

= Vσ,Λ2(t2).

(W t⃗
σΛ0Λ2

⊗W t⃗
ρΛ0Λ1

)∗(W t⃗
ρΛ0Λ1

⊗W t⃗
σΛ0Λ2

) = Tσ((W
t⃗
ρΛ0Λ1

)∗)(W t⃗
σΛ0Λ2

)∗(W t⃗
ρΛ0Λ1

)Tρ(W
t⃗
σΛ0Λ2

)

By Lemma 4.1 of [6], W t⃗
ρΛ0Λ1

∈ (Tρ, T
( 3π

2
,π
4
),Λ1+t1,Vρ,Λ1+t1

ρ ) and W t⃗
σΛ0Λ2

∈ (Tσ, T
( 3π

2
,π
4
),Λ2+t2,Vσ,Λ2+t2

σ ).

Therefore, Tσ((W t⃗
ρΛ0Λ1

)∗)(W t⃗
σΛ0Λ2

)∗ = (W t⃗
σΛ0Λ2

)∗T
( 3π

2
,π
4
),Λ2+t2,Vσ,Λ2+t2

σ ((W t⃗
ρΛ0Λ1

)∗). So, we have

(W t⃗
σΛ0Λ2

⊗W t⃗
ρΛ0Λ1

)∗(W t⃗
ρΛ0Λ1

⊗W t⃗
σΛ0Λ2

)

= (W t⃗
σΛ0Λ2

)∗T
( 3π

2
,π
4
),Λ2+t2,Vσ,Λ2+t2

σ

(
(W t⃗

ρΛ0Λ1
)∗
)
(W t⃗

ρΛ0Λ1
)Tρ(W

t⃗
σΛ0Λ2

) .

Because ρ ∈ OΛ1 , 1 ∈ Vρ,Λ1 , so by [41, Lemma 2.2], W t⃗
ρΛ0Λ1

= Vρ,Λ1+t11
∗ ∈ π(A(Λ1∪Λ1+t1)c)

′ =

π(AΛc
1
)′. As Λ2 + t2 is counterclockwise from Λ1, by [6, Lemma 2.19], we have that

lim
t2→∞

∥∥∥∥T
( 3π

2
,π
4
),Λ2+t2,Vσ,Λ2+t2

σ |π(AΛc
1
)′ − idπ(AΛc

1
)′

∥∥∥∥ = 0
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and therefore lim
t2→∞

T
( 3π

2
,π
4
),Λ2+t2,Vσ,Λ2+t2

σ (V ∗
ρ,Λ1+t1

)(Vρ,Λ1+t1) = 1 where this convergence is uniform

in t1. Therefore,

lim
t2→∞

(W t⃗
σΛ0Λ2

⊗W t⃗
ρΛ0Λ1

)∗(W t⃗
ρΛ0Λ1

⊗W t⃗
σΛ0Λ2

) = lim
t2→∞

(Vσ,Λ2(t2))
∗Tρ(Vσ,Λ2(t2)),

which is our definition of ϵ(ρ, σ).

Therefore under the conditions of definition 5.3, the morphism ϵ(ρ, σ) applies coincides with [6,

Definition 4.11], as desired.

□
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