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Abstract

This dissertation investigates the structure of superselection sectors in quantum lattice systems,
with an emphasis on the role of symmetry and fermionic degrees of freedom. First, I consider sys-
tems with an on-site unitary action of a compact abelian group G, and show that when the reference
representation is a G-invariant product representation, the superselection sectors are classified by
the Pontryagin dual of G. Second, I extend a construction by Ogata of a braided monoidal C*-tensor
category to lattice systems with fermionic degrees of freedom by introducing a twisted version of
approximate Haag duality. This allows for the construction of a braided monoidal C*-tensor super-
category that captures anyonic excitations in such systems. Finally, in joint work with Martin Fraas,
Sven Bachmann, and Yoshiko Ogata, we analyze the quantization of Hall conductance in infinite
lattice systems and show that its denominator is bounded above by the number of isomorphism

classes of simple objects in an associated braided tensor category.
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CHAPTER 1

Introduction

Informal Summary of Results. This dissertation explores properties of anyons and super-
selection sectors of quantum lattice systems. The work is motivated by questions arising in the
study of topological phases of matter, especially the fractional quantum Hall effect (FQHE), but
many of the results apply more broadly. The overall approach is in the spirit of the Doplicher—
Haag—Roberts (DHR) framework, in which sectors are described as representations of a quasi-local
observable algebra, and their composition gives rise to a tensor category.

The first main result concerns how requiring an on-site symmetry to be respected affects the classi-
fication of superselection sectors. In particular, I considered systems with a unitary on-site action
symmetry by a compact abelian group G, and modified the superselection criterion and equivalence
relation to require compatibility with this G-action. I showed that in this case, if the reference
representation comes from a G-invariant product state, the superselection sectors are classified by
the Pontryagin dual of G. This generalizes a result of Naaijkens and Ogata which showed that,
when no symmetry is imposed, the sector theory for such a product state is trivial.

The second result extends a construction by Ogata of a braided monoidal C*-tensor category from
a quantum spin system satisfying approximate Haag duality. I generalize this to quantum lattice
systems with fermionic degrees of freedom, satisfying approximate twisted Haag duality. The twist
in approximate twisted Haag duality, as well as in the modification of the superselection criterion,
serves to account for the anticommutation of odd operators with disjoint support. The result is
a construction of a braided monoidal C*-tensor supercategory, capturing anyonic excitations in a
quantum lattice system with fermionic degrees of freedom.

The third result, joint work with Martin Fraas, Sven Bachmann, and Yoshiko Ogata, concerns the
quantization of Hall conductance in certain infinite lattice systems. We showed that the denominator
of the Hall conductance is bounded above by the number of inequivalent anyon types - that is, by
the number of isomorphism classes of simple objects in an associated braided tensor category. This
replaces the role of the ground state degeneracy in the case of the FQHE on a finite torus.
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Prior work. The DHR approach, developed by Doplicher, Haag, and Roberts [16,22], offers
a rigorous method for analyzing superselection sectors in relativistic quantum field theory. It intro-
duces a superselection criterion to identify localized excitation sectors and shows that these sectors
carry the structure of a braided C*-tensor category. In this framework, elementary excitations cor-
respond to objects in the category, and their braiding corresponds to a natural braiding structure
€. The original DHR papers [16] also introduced the twisted commutant and what has come to be
known as twisted Haag duality to deal with fermionic charges, and addresses models with a unitary
action of a compact gauge group.
More recently, the DHR framework has been adapted to quantum lattice systems [37], extending
its applicability beyond relativistic settings. A full mathematical formalization of the resulting
structure in lattice systems was provided by Ogata [41], who formulated a C*-algebraic setting for
describing anyonic excitations. For an overview of other theoretical approaches to anyons, see the
review [33].
Naaijkens and Ogata proved in [4] that for interactions are necessary for nontrivial superselection
sectors to occur. They showed that if the reference representation used in the superselection criterion
is a product representation, then any representation satisfying the criterion is equivalent to the
reference representation.
Various definitions of monoidal supercategories — and their relationships — have been discussed in [1].
The fractional quantum Hall effect (FQHE) has been studied from several perspectives. A micro-
scopic approach for systems with a finite number of electrons was developed by Avron and Seiler [3],
and it was shown that this can lead to a rational Hall conductance [26]. A topological field theory
description of quantum Hall fluids in the bulk, capturing features such as fractional quantization
and anyonic excitations, was developed by Frohlich and collaborators [18,19,20].
In lattice systems, Hastings and Michalakis introduced a setting for the Quantum Hall Effect in-
volving interacting particles with a U(1) symmetry on a finite torus, governed by a gapped local
Hamiltonian [24]. Building on this, Bachmann, Bols, De Roeck, and Fraas established rigorous
quantization results under the assumption that the Hamiltonian has p locally indistinguishable
ground states (along with additional technical conditions) [6,7]. In particular, they showed that
the Hall conductance « satisfies

2mk = 4+ O(L™)
p
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where ¢ € Z and L is the linear size of the torus. This implies rational quantization of conductance
in the thermodynamic limit, assuming that the ground state in the plane arises as a limit of ground
states on large tori. The local indistinguishability condition, known as local topological quantum
order (LTQO), was introduced in [13,34] and is widely believed to hold in standard quantum Hall
models, though it has proven challenging to prove. Recent progress in this direction was made
in [32].

The connection between Hall conductance and the charge and statistics of excitations has its origins
in the seminal works of Laughlin [30,31] and Arovas, Schrieffer, and Wilczek |1]. Laughlin showed
that inserting a 27 flux through the system leads to a localized excitation carrying fractional charge
27k, while Arovas, Schrieffer, and Wilczek showed that transporting another such excitation around
i(2m)2

it results in a statistical phase of e % — characteristic of Abelian anyons. In a finite volume

setting, this was proved in [8], and this was extended to infinite volume in [25].

Outline. Chapter 2 introduces the background needed for the rest of this dissertation. It covers
foundational concepts from category theory, including braided and symmetric monoidal categories,
as well as the algebra of quasilocal observables for quantum spin systems, GNS representations, the
superselection criterion, and superalgebras.

Chapter 3 analyzes the consequences of modifying the superselection criterion, and the notion of
equivalence of representations, by requiring compatibility with an on-site unitary action of a compact
abelian symmetry group G.

Chapter 4 extends Ogata’s construction [6] from quantum spin systems satisfying approximate Haag
duality to quantum lattice systems with fermionic degrees of freedom satisfying approximate twisted
Haag duality. In this setting, the resulting structure is a braided C*-tensor supercategory rather
than an ordinary braided C*-tensor category. The chapter also introduces the definitions of braided
C*-tensor supercategories and approximate twisted Haag duality.

Chapter 5 is about a category associated with the anyons in the Fractional Quantum Hall Effect
in certain infinite lattice systems, and proves the result about the quantization of Hall conductance

where the number of simple objects up to isomorphisms is finite.

Motivation. In the study of the fractional quantum Hall effect (FQHE), the fraction % has

never been observed as the coefficient % in the quantized Hall conductance < - 277%, even though

p
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many other fractional values — mostly with odd denominators — have been seen, and some even-
denominator fractions appear in special circumstances. Notably, % does occur in the bosonic version
of the FQHE, suggesting that its absence in fermionic systems is tied to the role of fermions. While
several explanations have been given for why the fraction % does not occur as the coefficient, this
work was motivated by the goal of giving a new explanation based on symmetry and categorical
structure.

In particular, Chapter 5 shows that, under certain assumptions, the coefficient % can be interpreted
categorically: the denominator p corresponds to the number of simple superselection sectors gener-
ated (under the monoidal product) by a particular representation. Although this result is currently
limited to a bosonic setting, Chapter 4 develops the technical framework needed to extend it to
fermionic systems. By then combining this with the symmetry-based analysis of Chapter 3, the
goal is to show that in fermionic systems with a U (1) symmetry compatible with the Z/2Z-grading,

% ; specifically,

the coefficient % — when expressed via this categorical construction — cannot equal
when p = 2, the corresponding ¢ must be even. This would offer a structural, symmetry-based
explanation for the absence of % in fermionic FQHE systems.

The results in these three chapters provide a solid foundation for completing such a symmetry-based

explanation in future work.



CHAPTER 2

Setup and Background

2.1. braided monoidal categories

A category C is a collection ob(C) of "objects" and for each pair of objects A, B € ob(C), a collection
Home¢ (A, B) of "morphisms from A to B", and for any A, B,C € ob(C), a map ("composition")
o4,8,c : Hom¢(B,C) x Hom¢(A, B) — Hom¢(A, C) (or simply o rather than o4 g ¢ when there is

no ambiguity) satisfying the following conditions:

(1) For all objects A € ob(C) there exists a morphism ("the identity morphism on A") 14 €
Home¢ (A, A) such that for all objects B € ob(C) and all morphisms f € Hom¢(A, B),
foaapla = f, and for all morphisms g € Home(B,A), 1laopaag = g. (It can
immediately be seen that from the existence of such an 14 that it is unique.)

(2) The composition is associative, in the following sense: For all objects A, B, C, D € ob(C),
and all morphism f € Hom¢ (A, B), all morphisms g € Home(B,C'), and all morphism

h € Home(C, D), (hogcp g)oanp f=hoacp(goascf)

For f € Hom¢ (A, B), A is called the domain of f and B is called the codomain of f. The collections
Home (A, B) are called "hom-spaces" or "hom-sets". When we know what the domain and codomain
of f and g are, specifying these in the composition is unnecessary, and so, for f € Hom¢(A, B) and
g € Home (B, C), goa,p,c f will be written as simply g o f.

A category C is called "locally small" if for any two objects of the category, A, B, the collection
Hom¢ (A, B) is a set (rather than a proper class). Let us be concerned only with locally small
categories.

For two categories C, D, a covariant functor F : C — D consists of:

e a map from the objects of C, ob(C), to the objects of D, ob(D); we write F(A) for the
image in ob(D) of an object A € ob(C).
5



e for each pair of objects A, B € ob(C), a map from Hom¢(A, B) to Homp(F(A), F(B))
sending f : A — B to F(A) : F(A) — F(B) where these maps satisfy the following
properties:

(1) Identity morphisms are preserved : For any A € ob(C), F'(14) = 1p(a)
(2) Composition is preserved: For any A, B,C € ob(C), and any f € Hom¢(A, B) and
g € Home(B,C), F(go f) = F(g) o F(f).

A contravariant functor is defined similarly, except that rather than maps from Hom¢(A, B) to
Homp(F(A), F(B)), it has maps from Hom¢ (A, B) to Homp(F(B), F(A)), and satisfies F(go f) =
F(f)o F(g) (it "reverses the arrows" /reverses the direction of the morphisms).

If we say "functor" and don’t specify "contravariant functor", then we will mean a covariant functor.
Given two categories C, D, we can define a product category C x D whose objects ob(C xD) = ob(C) x
ob(D), and where for (A, B), (C, D) € ob(C) x ob(D), Hom¢xp((A, B), (C, D)) = Hom¢ (A, C) x
Homp(B, D), and where, for f; : C — C',g1 : D — D', fo : C' — C",go : D' — D" we have
(f2,92) oc,p),(c",D",(c, 0y (f1,91) = (f2 oc,cr,cm f1,92 oD, D7D 91).-

A functor whose domain is a product of two categories in this way is called a "bifunctor".

Given two categories C, D, and two functors F' : C — D and G : C — D, a natural transformation
n : F = G consists of, for every object € ob(C), a morphism 7, : F(xz) — G(x), such that for

every x,y € ob(C) and f : z — y, the following diagram commutes:

ie. m, 0 F(f) = G(f) ons.
A natural isomorphism n : F' = G is a natural transformation such that each n, : F(z) — G(z)
is an isomorphism. For a natural isomorphism 71 : F' = G, we have its inverse n~! : G = F (with
(1Y = (nz)~!) which is also a natural isomorphism.

A monoidal category consists of a category C along with some extra decoration, where together
they satisfy certain properties. Specifically, it is equipped with a distinguished object I € ob(C)
(the "identity object"), a bifunctor (— ® —) : C x C — C and, for all A, B,C € ob(C), natural

isomorphisms a4 ¢ ("the associator"), L4 (the "left unitor"), and R4 (the "right unitor"), where
6



these natural isomorphisms are o : (- ® —)® —) =2 (- ® (-® —)), L : (I ® —) = Ide, and

R:(—®1I) =1de, and which satisfy the following identities:

(1) "The pentagon identity" : For all A, B,C, D € ob(C), the following diagram commutes:

(A® B)® (C® D)
(A®B)®C)® D A® (B® (C® D))
OlA,B,C®ile TldA ®ap,c,D

(A (B (C))®D » AR (BeC)® D)

QA,BRC,D

(2) "The triangle identity" : For all A, B € ob(C) the following diagram commutes:

A®B
R4®idp idy ®Lpg

&AIB

(A®I)® B y A® (I ® B)

Let Vect denote the category whose objects are vector spaces over the complex numbers and whose
morphisms are linear maps between those vector spaces.

Then Vect, equipped with the usual tensor product on vector spaces, C as the identity object, and
aapc((u®v)@w) :=v® (u®w) for any vectors u, v, w in the vector spaces A, B, C respectively,
is an example of a monoidal category.

A braided monoidal category consists of a monoidal category (C,®,I) equipped with a natural
transformation 7 : (— ® —) = (— ® —) o (swap) where "(— ® —) o (swap)" denotes the bifunctor
(— ® —) with the order of the two inputs switched, and which satisfies the hexagon identities and

the triangle identities. That is to say:

e naturality: for all A, A", B, B’ € ob(C), and all f € Hom¢(A, A’) and g € Home (B, B') the

following diagram commutes:

BoA 2 oA

7'A',B/T TTA,B

A@B’WA@B

e hexagon identities: for all A, B, C € C, the following diagrams commute:
7



QA B,C AB®C(

(A®B)@C —= A®(Be(C) — (B(C)® A
TA,B®idcl laB,C,A
(B®A)@C 573 BR(ARC); o B®(C®A)
AR (B®C) —— (A®B)®C - C® (A® B)
idA(EZ;TBC B aC,A,Bl

A®(C®B) — (A8C)®B — (CoA)® B

aACB

e the triangle identity: for A € ob(C) the following diagram commutes:

/\

T@A —2% s Ag]

There is a standard way to equip category Vect with a braiding to make it into a braided monoidal
category: for any A, B € ob(Vect), and any u € A and v € B, define 74 p(u ® v) := v ® u, and
extend linearly to obtain 74 : Homyect (A @ B, B ® A). Because this braiding 7 is such that
TB,A © Ta,p = idagp for all A, B € ob(Vect), Vect is what is known as a "symmetric monoidal

category".

A category C is said to be "enriched in Vect" if for each pair of objects A, B € ob(C), the hom-space
Home (A, B) is equipped with structure that makes it an object of the category Vect, in such a way
that each o4 p ¢ : Home(B,C') x Home (A, B) — Home (A, C) is bilinear.

There is a more general notion in category theory of a category C enriched in some given monoidal
category V, where instead of Hom¢ (A, B) necessarily being a set, it is instead an object in V, and
composition is given by a morphism Hom¢ (B, C) ® Home (A, B) — Home(A, C) in V rather than a
function between sets, and where conditions analogous to the requirements on the composition map
in the definition of a category are imposed on this composition morphism. However, in this text we
will only consider enrichment in a couple monoidal categories (Vect and SVect) where the objects
have underlying sets and have their monoidal products fit nicely with the cartesian product of sets -
e.g. bilinear maps from a product of two vector spaces corresponding to linear maps from the tensor

product of those vector spaces - and as such we will not need the general theory of enrichment, and
8



can instead treat enriched categories as ordinary categories whose hom-sets carry extra structure
and where the composition is compatible with these extra properties. So, rather than giving the
general definition of enrichment in an abitrary monoidal category, we just define enrichment in the

particular monoidal categories we are concerned with, Vect and (later) SVect.

A monoidal category (C,®,I) is "enriched in Vect" if, in addition to the category C being enriched
in Vect, the bifunctor (— ® —) : C x C — C has the property that for any A, B,C, D € ob(C), the
map Home (A, B) x Home (C, D) — Home(A®C, B® D) is bilinear. (This definition comes from the
enriched version of the definition of a monoidal category, where instead of having (—® —) a bifunctor
from C x C to C, instead having (—® —) be a bifunctor from CXC, where Homexe ((4, B), (C, D)) =
Home (A, C) ® Home (B, D), and the bifunctor, being enriched in Vect, is required to be a linear
map from Home (A, C) ® Home (B, D) to Home(A ® B,C ® D), therefore, restricting to a bilinear
map from Hom¢ (A, C) x Home(B, D) to Home(A ® B,C ® D).)

2.2. Super vector spaces and Superalgebras

Let SVect be the symmetric monoidal category of "super vector spaces (over C) with even mor-

phisms", defined as:

e ob(SVect) is the set of super vector spaces, i.e. (Z/2Z)-graded vector spaces (over C),
where for A € ob(SVect), A is Ay @ A; for some Ay, A € ob(Vect)

e for A, B € ob(SVect), the morphisms from A to B are the even linear maps from A to B, i.e.
Homgveet (A, B) = Homvect (Ao, Bo) ® Homvect (A1, B1), so for every f € Homgyect (A, B)
there are some g € Homvysect (Ao, Bo) and h € Homyect (A1, B1) with f =g® h

e the identity morphism for A = Ay ® A; is id4 = id4, Pida,

e for A;B € ob(SVect), A ® B is defined as (A ® B) := (A® B)y ® (A ® B); where
(A® B)g := (Ao ® Bp) ® (A1 ® By) and (A® B); := (Ao ® B1) @ (A1 ® By) where the &
and ® in the right hand sides of these equations are the @& and ® of Vect

o for f = g® h € Homgvect (A4, B) and j = k @ [ € Homgyeet (C; D), f ® j € Homgyect (A @
C,B® D) is defined as (g @ k) ® (h®1)) & ((g®1) & (h®k)) with (@ k) & (h®1) €
Homvect ((A ® C)o, (B ® D)o) and (g ®1) ® (h ® k) € Homyect (A ® C)1, (B ® D))

e the identity object is C& 0



e the associator and unitor morphisms are obtained from the associator and unitor morphisms
of Vect in a straightforward way

e for A, B € ob(SVect), the braiding morphism is 74, 5 € Homgyect(4A ® B, B ® A) defined

as (749,8y ® (—1) - Ta,,,) ® (swap o (40,8, ® Ta,,B,)) With (74,8, ® (=1) - Ta,,B,) €
Homvect ((A® B)o, (B® A)g) and swap o (T4,,B, © Ta,,B,) € Homyeet ((A® B)1, (B® A)1),
where, for s5,s" = 0,1, 74, B, € Homvet(As ® By, By ® Ag) are the braiding morphisms
from Vect, and where swap : (B1 ® Ag) @ (By ® A1) = (By ® A1) @ (B1 ® Ap) is given by
0 id

the block matrix (Br®4o)

In particular, if v € A and v € B and both are homogeneous, then 74 p(u ® v) =

(=)l (v @ u) where |u], |v| are the grades of u,v respectively.

(There is a "forgetful functor" from SVect to Vect which forgets the grading and the braiding

structure, but preserves the monoidal structure, and in this sense SVect without its braiding can be
seen as a subcategory of Vect without its braiding.)

In a way that will be elaborated on shortly, superalgebras relate to SVect in a way that corresponds
directly to how algebras relate to Vect.

Similar to how categories can be enriched in Vect, they can also be enriched in SVect. A category
C is said to be enriched in SVect if each hom space Hom¢ (A, B) is given the structure of a super
vector space (a Z/2Z-graded vector space), so that is is an object of SVect, and the composition is
both bilinear and even, in the sense that the extension of the bilinear map o4 g ¢ : Home(B, C) X
Hom¢ (A, B) — Home (A, C) to the linear map o4 g ¢ : Home(B, C') @ Home (A, B) — Home (A, C),
is an even (grade preserving) linear map (and so, a morphism in SVect). A category enriched in
SVect is called a "supercategory".

There is also a definition for what it means for something to be a monoidal supercategory, i.e. a
monoidal category enriched in SVect, analogous to the definition of a monoidal category enriched in
Vect, with both being instances of a more general definition of a monoidal category being enriched
in another monoidal category. However, unlike a monoidal category enriched in Vect, a monoidal
category enriched in SVect is not in general a monoidal category when considered as an ordinary
category rather than as an enriched category. The definition of a (strict) monoidal category enriched

in SVect, i.e. of a (strict) monoidal supercategory, is given later in Definition 105.

10



One example of a category enriched in SVect is the category SVect, whose objects are the same
as those of SVect, but where its hom spaces are, rather than the vector spaces of all even linear
maps from the domain to the codomain, instead, the super vector space of all linear maps from the

domain to the codomain.

A superalgebra is, concretely, a Z/2Z-graded algebra, meaning a super vector space 24 = 2y & 2y
equipped with an (associative) bilinear multiplication that respects the grading, i.e. for z € ; and
y e, xy €Ay

However, in the same way that super vector spaces are distinguished from mere Z/2Z-graded vector
spaces, superalgebras are distinguished from Z/2Z-graded algebras by the introduction of signs
when swapping odd components.

For example, instead of the usual commutator
[A,B] := AB — BA,
superalgebras use the supercommutator
[A,B]+ := AB — (—1)AIIBIBA,

(for homogeneous elements A, B € 2 of degrees |A|, |B| € Z/27Z, and extended bilinearly for general
elements). When the supercommutator of two elements is zero, we say that the two elements
supercommute. Two homogeneous elements supercommute when one of the two is even and they
commute, or if both are odd and they anticommute.

Similarly, the tensor product of superalgebras is defined so that elements of the two tensor factors
supercommute. Given superalgebras 2; and 2, their tensor product 201 ® s is the superalgebra
whose underlying super vector space is the tensor product of the super vector spaces underlying the

respective superalgebras, and where the multiplication is defined such that
(A®B)-(C® D) :=(-1)PI%UA.C)e (B- D))

for all homogeneous A,C € ; and B, D € s, where |B|, |C| are the grades of B, C respectively,
and where the multiplication for general elements is defined by extending this bilinearly. (The ¢ for

the tensor product is defined by the tensor product of the + maps for the two superalgebras.)
11



In particular, this means that, for A € 2y and B € 205
(1eB)(A®1) = (-1)Pl(Ae B)=(-1)MBlAe 1)1 B),

ie, (1® B) and (A ® 1) supercommute.

In terms of category theory, the analogy is this: (unital) algebras (over C) are monoid objects
in the monoidal category Vect, while superalgebras are monoid objects in the monoidal category
SVect. What it means to say that an algebra (respectively superalgebra) is a monoid object in
Vect (respectively SVect) is that an algebra (respectively superalgebra) is an object 2 of Vect
(respectively SVect) equipped with morphisms p : A®2 — 2 and ¢ : I — 2 such that the following

diagrams commute:

ARAYRIA ————— AR (AR A)

Q9,91

#®id2(J/ lidgl Qu
AR A m A m AR A
AR T I®A

idgy ®L\L \ / l“@idﬂ
R

AR A L= A+ A A
where R, L, a are the unitors and associator for Vect (respectively SVect) and I is the identity object
of Vect (respectively SVect), i.e. C. These same diagrams define a monoid object in any monoidal

category.

In any braided monoidal category, there is a definition of a kind of product of two monoid objects,
and this gives the definition of the tensor product of two algebras or two superalgebras:
Given two monoid objects (X, ux : XX - X,ux: I - X)and (Y,uy : Y QY =Yy : I = Y)

the product of these monoid objects is X ® Y equipped with

pxey = (tx ® py) o (idx @7xy ®idy)

(where the necessary associators are left implicit, and 7xy : X ® Y — Y ® X is the braiding) and

txgy = (Lx @ ty)o Ry (where Ry = Ly : I — I ® I is the unitor isomorphism for I).
12



This defines the tensor product both for algebras (when the monoid objects are monoid objects in
Vect) and for superalgebras (when the monoid objects are monoid objects in SVect). When the
category is SVect, the braiding 7x y introduces the sign that appears in the multiplication in the
earlier concrete definition.

(One may view a (super)algebra as the space of endomorphisms of an object in a one-object category
enriched in Vect (respectively SVect), and (super)algebra endomorphisms as (super)endofunctors.
Likewise with monoid objects in any monoidal category. This partially motivates some notation in

Chapter 4.)

2.3. Lattice Spin Systems

Let (I'yd : T' x I' — R) be a discrete metric space. For the purposes here, (I',d) will generally be
a Delone set in R?, especially a lattice. For each 2 € T, let H ;) be a finite-dimensional Hilbert
space, and let A,y := B(H,}), the algebra of (bounded) operators on Hy,,, considered as a C*-
algebra, where the norm is the operator norm. For any finite subset A of I', define the C*-algebra
Ap = Q Agyy and Hp == @ H{y). For such finite A, Ay = B(H,). For infinite subsets A C T,
define jleAAto be direct limit g(c)efAAA/ over finite subsets A’ of A.

More specifically, consider Py(A), the set of finite subsets of A, with Py(A) considered as an upwards-
directed set under the order of set inclusions. For finite subsets A1, Ay € Py(A), if Ay C Ao
there is an inclusion ta; p, @ Ax, <> An, defined by ta;4,(A) := A® 13, ,, - These inclusions
are compatible, in that for Ay, A9, Az € Po(A) with Ay € Ay € As, LAy A © LA A = UALAs-
({AN|A € Po(A)}, {ea ns]A1 € Ax € Po(A)}) is then a directed system in the category of C*-
algebras, and it has a direct limit, a C*-algebra which is to be called Ajy.

The specific construction of this limiting C* algebra is essentially by taking a union |J Ay
where for Ay C Ap € Py(A), Ap, is identified with its image under ¢, A, in Ap,, andAtiqu(/.\:lA is
finally obtained by taking the Cauchy completion (with distance given by the norm), of this union.
Identify each A,/ with its image in this Aj. Define Ap ;o to be the subset of A, given by the union
of the Ay/ for A € Py(A).

Set A := -AF and Aloc = AF,IOC'

DEFINITION 1. A state on a unital C*-algebra 2l is a linear map w : 2 — C which is "positive" in

that for all A € A, w(A*A) > 0, and such that w(1) = 1.
13



The definition of a state on a not-necessarily-unital C*-algebra is similar, but non-unital C*-algebras

will not be relevant here.

DEFINITION 2. A Gelfand-Naimark-Segal (GNS) representation for state w on a C*-algebra 2 is
a triple (H,, Q) such that H is a Hilbert space, 7 : 2 — B(H) a x-representation, and ) € H
a unit vector such that VA € A, w(A) = (Qr(A)Q) and such that Q is "cyclic", meaning that
{m(A)Q]A € A} is norm-dense in H.

The GNS construction, for any C*-algebra 2l and any state w on 2(, constructs a GNS representation
of w. GNS representations of a given state are unique up to unitary equivalence, in that if w is a
state on a C*-algebra 2 and (H, m, ) and (7:[, T, Q) are both GNS representations of w, there exists
a unitary linear map U : H — H such that # = Ad(U) o7 and Q = UQ.

DEFINITION 3. With our A and given a reference representation (H,, 7 : A — B(H)) of A, another
representation (H,, p : A — B(H,)) of A satisfies the superselection criterion with respect to (Hr, )

if, for all cones A, there exists a unitary V), p : H, — Hr such that Ad(V, a) o pla,c = 7| A,

This definition can be interpreted as saying that, for any cone A, there is some unitary V), 5 that
localizes the ways that p differs from the reference representation to within A, so that for any
observable supported outside of A, i.e. for any A € Ape, Ad(V,a) o p agrees with the reference

representation 7 on A.

14



CHAPTER 3

Symmetry-Compatible Superselection Sectors in Quantum Spin

Systems with Compact Abelian Symmetry

3.1. Setup

In this chapter we will modify the setting for lattice spin systems (Section 2.3) by equipping the

algebra with a unitary on-site action of a locally compact abelian group.

DEFINITION 4. For any topological group G, a system of on-site unitary G actions consists of a a

collection of group homomorphisms ((g € G) = (Ugsy,g € U(Hay))zer-

In this chapter we will almost entirely stick with one system of on-site unitary G actions, with one
exception where we will deal with two. As such, the phrasing will be with the system and group
being fixed. So:

Let G be a locally compact abelian group, and let G denote its Pontryagin dual; that is, the group
G:= Hom(G, U(1)) of continuous group homomorphisms from G to U(1), equipped with pointwise
multiplication.

Recall the set of sites I' and for each = € I' the finite-dimensional Hilbert space H,;.

For each x € I, let Uy, 4 : G — U(H{y)) C A,y be a unitary representation of G on H,,—that
is, a continuous group homomorphism from G to the unitary elements of A{x}. Le. fix a system of
on-site unitary G-actions (Uggzy e : G — U(H{z}))zer-

Define the induced automorphism g,y 4 : G — Aut(Ay,y) by

Ck{x}jg = Ad(U{ng)

For any finite subset A C I, define

Upg = H Uatgs @y = Ad(Upy).
xEA
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Then these are group homomorphisms from G into Uy and Aut(Ay), respectively:
(9= Uprg) € Hom(G,Un), (g+— apg) € Hom(G, Aut(An)).

For infinite A C I, define the action on A € A, via the limit

This limit exists for A € Aj loc, and more generally in Ajoc, because the sequence is eventually
constant. From this, by density and continuity, the definition extends to all of Ax, and more

generally to all of A.

DEFINITION 5. A state w: A — C is called G-invariant if
woayg=w forallgedG.

The following lemma is well-known:

LEMMA 6. Let w be a G-invariant state, and let (H,m,2) be a GNS representation of w. Then there

exists a continuous group homomorphism
U™ = (g U™): G —UH)

such that for oll g € G,
moag=AdU)or,  UMQ=q.

This is a standard result; see, e.g., |[Bratteli & Robinson, Operator Algebras and Quantum Statistical
Mechanics I, Corollary 2.3.17 and the start of section 4.3.1].

DEFINITION 7. Let oo : G — Aut(A) be a group action. A G-covariant representation of (A, a) is a
pair ((Hr, ), U.(W)) consisting of a representation 7 : A — B(H,) and a strongly continuous unitary

representation ui™ .G —u (Hr) such that for all g € G,
Toog = Ad(Ug(”)) om.

REMARK 8. Lemma 6 shows that every GNS representation of a G-invariant state naturally gives

rise to a (G-covariant representation.
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DEFINITION 9. For two G-covariant representations ((Hnx,,71), .(m)),((’}-[m,wz),U.(m)), a con-
tinuous linear map T : Hn, — Hnr, is a G-equivariant map if VA € A, Tni(A) = m2(A)T and
Vg € G, TU™ = U™,

We now define a version of the superselection criterion (Definition 3) suitable for G-covariant rep-

resentations:

DEFINITION 10. With our A and the on-site action g — ay4, and a G-covariant representation
(Hepym : A — B(’HW),U.(K) : G — U(Hr)) to serve as the reference representation , another G-
covariant representation (H,,p: A — B(H,), vl G —u (H,p)) satisfies the G-equivariant version
of the superselection criterion with respect to (Hr, 7, U.(W)) if, for all cones A, there exists a unitary
Von : Hp — Hy that is a G-equivariant map (i.e. such that for all g € G, vaAU;p) = g(W)vaA) and

such that Ad(V,a) o pla,e = 7] A,e-

3.2. (A;-grading

In this section, we show that when G is compact and abelian, the various G-actions—on finite-
volume Hilbert spaces Hp, algebras Ay, the global algebra A, and Hilbert spaces H, associated
with G-covariant representations—induce a natural é—grading on each of these spaces.

We also construct, for each character ¢ € CA?, a continuous projection operator Py onto the grade-¢
component, for each space viewed as a Banach space. When the space is an algebra, the grading is
compatible with the multiplication; when it’s a Hilbert space, the grade components are orthogonal.
These projections arise as the Fourier coefficients of the group action, treating the action as a
function from G to the space of bounded linear operators.

The following lemma is well-known and will be useful:

LEMMA 11. For any compact abelian group G, for any ¢ € G, fgeG ¢(g)du(g) = 6,5 where p is the

normalized Haar measure for G and 1 is the identity element of G.

PROOF. First, the integral ngG ?(g)du(g) is well-defined because G is compact and ¢(g) is
measurable (it is continuous) and |p(g)| =1 for all g € G.

For any go € G,

og2) | Blo)dulg) = / _dla)o(o)dnts) = /

geG 929€92G

&(929)du(g29) = / 6(9)dulg)

geG
17



by the translation-invariance of the Haar measure. Therefore, (¢(g2) — 1) - fgeG #(g)du(g) = 0. So,
as C is a field, either ¢(g2) —1 =0 or f cc #(9)du(g) = 0. If ¢ is not the identity element of G,
then there is some gy € G such that ¢(g2) # 1(92) = 1 and so the first factor isn’t zero, and so
Jyec #(9)du(g) = 0. On the other hand, if ¢ is the identity element of G, then Jycc 9(9)dulg) =

Jyeq 1dulg) = 1. So, [, d(g9)du(g) =6, 5, as claimed. O

First, as a simpler test case that avoids any issues of convergence and interchanging orders of

integration, suppose that the group G is finite.

THEOREM 12. Let B € {Hp, Ax, Hr,B(Hr)}, G a finite abelian group, and f : G — Aut(B) C
End(B) one of the aforementioned G actions and a group homomorphism, and u(S) := ||g|‘ be the
normalized Haar measure on G. Then, for ¢ € CAT’,
Poi= [ o)t dule) = 7 X 10
(a) For all g € G, f(g)o Py = ¢(g) - Py
(b) Py is a projection, and for ¢1,ps € é, Py, 0 Py, = 06,,6,Pp1 = 061,60 Ppo
(c) f(g) = ZAqb(g)qu. In particular, idp = f(lg) = ZAP¢'

PG ¢eG

PROOF. First, part (a):

f(g) © P¢ |G‘ Z ¢
g2€G
Z o(g o f(g2)
g 2€G
Z ¢(9)8((992) ") f (992)
92€G

Z ¢((992) ") f(992) = d(9) Py.

992 €9G
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Now for part (b): For ¢1,¢2 € G (not necessarily distinct),

Py 0 Py = ( / e (@) dut) o P
=/ o1(97") f(91) © Py,dp(gr)
g1€G
— / O )onlon) - Pradulon)

—( / (67 62)(01)du(91)) s,
g1€G

5(;51 o2, 1P¢>2 01,02 P

The fifth equality in the above is due to lemma 11, and the third is by part (a).

For part (c):

> b9)Ps = olg Z d(g

PG ¢eG ngG

|G\ D> 6297 ") (92971 0 fl9)

¢ec 92€G

Z Z¢ 929~ ) "N f (92971 © £(9)

g2€G ¢€G

= () bg0f(9207 ")) © f(9)

g2€G

=idgo f(g9) = f(9)

The fourth equality is by the same reasoning as Lemma 11, except with G and G switched, using
the normalized Haar measure on G instead of on G. Note that these measures are only both

normalizable when G is finite as it is here. OJ

For each of these spaces, if # € B is such that (f(g))(z) = ¢(g) - for all g € G, then x = Py(x), i.e
is homogeneous of grade ¢. If for some finite A C T, v € H, is homogeneous of grade ¢1 and A € Ay
is homogeneous of grade ¢z, then Uy gAv = Up,gAUR JUn gv = b2(9)Ad1(g)v = (p261)(g)Av, so
Av has grade ¢o¢1. The same applies for v € H, and A € B(H,) for a G-covariant representation
(r: A — B(H,), U™).
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PROPOSITION 13. For G just compact abelian rather than finite and abelian, with p the normalized

Haar measure for G, Py := ngG é(g~ 1) f(g)dulg) exists. In addition:

(a) For all g € G, f(g)o Py = ¢(g)- Py
(b) Py is a projection, and for ¢1,ps € é, Py, 0 Pyy = 8¢y ,02Pp, = 01,60 Py

H 1, and ¢(g ') f(g) is measurable, so the Bochner

integral P, := fgeG qb(g_l)f(g)d,u(g) exists, and

1Pl =

o) (o))

geG

= /ge(; lo(a™") £ (9)| dialg) = 1.

To show (a):

As composition on the left with f(g) is a continuous linear map from B(B) to B(B),

f(g)o Py = f(g)o / 693 1) f (92) du(ge)

g2€G

- / 951 9) o f(g2)in(s2)
- / 0l0)9((9m) ™) (og2)in(s2)
=¢(g)- P,

To show (b):

Composition on the right with Py is also a continuous linear map from B(B) to B(B), and so

P¢1 OP¢>2 = < ¢1(g_1)f(g)dﬂ(9)) OP¢2

geG

= d1(9™ ) f(g) o Psydp(g)

= d1(9~ ") p2(9) Poydi(g)

-( / G )@uto)) P,

= 5¢>17¢>2 Py,

where that last equality is by Lemma 11. O
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PROPOSITION 14. For any finite subset A of I there is a @-gmdmg on Ap such that for any ¢ € (A?,
A € Ay is homogeneous of degree ¢ iff Vg € G, ap 4(A) = ¢(g) - A.

PrOOF. As A, is a matrix algebra over C, it can be made into a finite-dimensional Hilbert
space by equipping it with the Hilbert-Schmidt inner product, (A|B) := Tr(A*B).
For each g € G, and each A, B € Ay, as ap g := Ad(Ua ),

(ang(A)|anyg(B)) = Tr(an,g(A) an4(B))

— Te(Up4A*BU} ) = Te(A*B) = (A|B),

So ap 4 acts unitarily with respect to the Hilbert-Schmidt inner product.

Since G is abelian, the automorphisms {aj ¢}4ec form a commuting family of unitaries on the
finite-dimensional Hilbert space Aj. Any such family can be simultaneously diagonalized, so there
exists an orthonormal basis of Aj consisting of simultaneous eigenvectors for all ay 4.

For each such basis eigenvector 4, let A4, € S! be the eigenvalue satisfying ap 4(A) = Ag 4A. One

verifies that g — A4 4 is a group homomorphism into S L
192 (A) = an gy (n,g5(A)) = Aagoin g (A) = Aa g A9, 4,

SO Ad,gigs = AA,g1 AA,gs-

This homomorphism is continuous as it is the composition of the continuous map g — ap 4(A) with
the continuous functional B — (A|B) on Ax. Thus, each eigenvector A is homogeneous of some
grade ¢ € é, defined by ¢(g) := Aag.

For each ¢ € CA}, let us write A;’i for the subspace of Aj consisting of all vectors homogeneous of
degree ¢. Since the simultaneous eigenspaces of a family of commuting normal operators form a

direct sum decomposition of the space, we have

Ay =P AL
el
where G A C G is the (finite) set of characters that appear as eigenvalues in the decomposition of

Ax. Because A, is finite dimensional, there are only finitely many ¢ such that Ai has a non-zero

element.
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To see that this direct sum decomposition defines a @—grading, note that for A € Ai and B € Aw,

ang(AB) = apg(A)an4(B) = ¢(9)A-¥(9)B = (¢)(9)AB,

so AB € Aiw.

Lastly, note that since the ¢-graded subspaces are pairwise orthogonal:

For Ay € AR, By € AY, (Ag|By) = (ang(Ag)lang(By)) = (6719)(g) - (Ag|By) either ¢ = 4 or
(Ag|By) = 0. So, the decomposition is unique and canonical.

Therefore, this defines a @—grading on Ay, and A € Ay is homogeneous of degree ¢ if and only if
apg(A) = ¢(g)A for all g € G. O

REMARK 15. This @—grading on Ay for finite regions A C T" extends to a @—grading on Ay (for
finite subsets Ay, Ao C I' such that A; C Ag, the inclusion of Ay, into Ay, is compatible with the
é—grading on each, so Ajo gets such a grading as well).

It at least largely extends to A as a whole as well (Proposition 13 still applies of course), but there

may be issues with convergence (analogous to those if Fourier series) if one wishes to represent

AeAas zd;e@Pd’(A)'

DEFINITION 16. An on-site unitary G-action consists consists of such a system of a unitary repre-

sentation (g € G) > (Uyyy 4 € Uyyy) for each = € T

3.2.1. @—grading on Hilbert spaces. To define a @—grading on the infinite-dimensional
Hilbert spaces associated with G-covariant representations of (A, «), we begin with standard results
from the theory of unitary representations.

By the Peter—Weyl theorem |[3], for any compact group G and any continuous unitary representation
U :G — U(H) on a separable Hilbert space H, there is a decomposition of H into a direct sum of
finite-dimensional irreducible subrepresentations. In particular, when G is abelian, each irreducible

subrepresentation is one-dimensional. Thus,

H = @7—%, where Hy :={veH |Vge G, U(g)v = ¢(g)v}.
e
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For each ¢ € @, let py denote the orthogonal projection onto Hg. These subspaces are mutually

orthogonal, and every vector v € H can be written as

v = Zpd)v?

$e@

with unconditional convergence. These projections pg can also be written in integral form as:

pov = /G b(g™Y) Uyv dpg),

where p is the normalized Haar measure on G.

Now define, for each ¢ € @, the projection Py : B(H) — B(H) by

Py(4) = /G 6(g~1) Ad(U,)(A) diu(g)

LEMMA 17. Let ¢1,¢9 € G, A € B(H) and v € H. Then:

Py, (A) - Ppv = Py gy AP0

PROOF.

Pod) poo = | orle™) AW (A)dn(o)pe

= /G $1(g™") UgAU; pg,v dp(g)

- / o6 U A Ulpoyo  dulg)
G ~——

=p2(g7 1 )pgyv

- /c:¢1(g‘1)¢2(9_1) UgApg,v dpu(g)
B /c(¢1¢2)(g_1) UgApg,v dp(g)
= Po1¢o Ap¢21).

0

DEFINITION 18. For (H1, UM : G — U(H;1)) and (Ho, UP) : G — U(Hs2)) two Hilbert spaces
equipped with a continuous unitary G-action, a bounded linear map 7' : ‘H; — Hs is said to be
homogeneous of grade ¢ € G if Ug(Q)T(UéI))* = ¢(g)T for all g € G.
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Note that when (H1,UM) = (Ha, U?) this is equivalent to Py(T) = T.

Projecting onto the ¢-graded components for these maps between distinct Hilbert spaces equipped
with unitary G-actions also works the same (mutatis mutandis) as for bounded operators from one

such Hilbert space to itself, but we will not need that here.

LEMMA 19. Fori=1,2,3 let (H;, U : G — U(H;)) be Hilbert spaces equipped with a continuous
unitary G-action. Let T : Hi — Ho be a bounded linear map which is homogeneous of grade ¢ € @,
and let S : Ha — Hs be a bounded linear map which is homogeneous of grade 1) € G.

Then, SoT : Hi — Hs is homogeneous of grade Y.

ProoF. For all g € G,

O

Now specialize to the case where (7 : A — B(H), U™ : G — U(Hr)) is a G-covariant representa-

tion of (A, a), with U := U™,

LEMMA 20. Let A € B(Hz). If A#0, then:

(1) There exists ¢ € G such that P,(A) #0.

(2) For every such ¢, there exists a non-zero vector u € Hy and ¢1 € G such that:
e u is homogeneous of grade ¢y (i.e., u = py,u),
o Au #0,
o Py(A)u#0.

PROOF. Let A € B(H,) be non-zero. Then there exists some v € H, such that Av # 0.

As H, decomposes as @¢1€§(Hﬂ)¢l, we can write:

v = Z D¢, v, with unconditional convergence.
$1€G
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Then,

Av = Z Apg,v.
#1€G

Since Av # 0, at least one term in the sum is non-zero, say Apg, v # 0 for some ¢; € G.

Now decompose Apg, v into its graded components. There exists ¢ € G such that:
Py ADgp v # 0.

Set ¢ := ¢y ', s0 that dg = pb1.

By Lemma 17, we have:

Py(A) - pg,v = Doy APpy v = Py APy v # 0.

Therefore, Py(A) # 0.
Set u := pg,v. Then u is homogeneous of grade ¢1, Au # 0, and Py(A)u # 0.
For the second part: let ¢ € G be such that P4(A) # 0. Then apply the above argument to Pg(A)

in place of A to find such a homogeneous vector wu.

LEMMA 21. If A € B(H,) and there is exactly one ¢ € G such that P4(A) # 0, then Py(A) = A,

i.e. A is homogeneous of grade ¢.

PRrROOF. For all ¢ € é, if there is v € H; such that Apy, v # pye, Apg, v, then with Apg v =
Z@e@ Dy AP, v must have py, Apy, v # 0 for some ¢ # ¢p1. Set ¢/ = ¢2¢1_1 so that ¢'¢d1 = ¢a.
Then, Py (A)p1v = pyg, Apg,v # 0 (by Lemma 17), and therefore Py (A) # 0, with ¢/ = pagpy "t #
(¢P1)g1 " = ¢
But, we are given that for ¢' # ¢ that Py(A) = 0. Therefore, it must be that for all ¢; € G that
for all v € Hy that Apy, v = peg, Apg, v.

So, Apg, = Doy, Apg, for all ¢ € G.
For any v € Hy, v =) 61 Ppr U, (which converges unconditionally, so as, A is bounded,) therefore
Av =73, Apg v (also converging unconditionally).
And, as for all ¢; € G, Aps, = Doy APy, , therefore Av = Z¢E@ P AD g .
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By Lemma 17, Pg(A)pg,v = ppg, Apgs,v- So,

Av="3" Py(A)pg,v = Py(A) Y psv = Py(A)w.
$1€G $1€G

SO, A:P¢(A) ]

3.3. Refining the @—grading

The goal of this section is to conclude, under certain additional conditions, that if a product of
two operators with disjoint support is homogeneous of grade 1 € @, then both of the factors are

themselves homogeneous (possibly of nontrivial grade).

DEFINITION 22. Let ((9 € G) = (Ugay,g € U(H{z}))zer be a system of on-site unitary G-actions,
and let A C I'. Then, for each x € I, define

U{:r:},gl ifxzeA

o) (g1.92) =
Ufzy,g, if T € A°
This defines a system ((g1,92) — U{a)},(g1,gz))$er of on-site unitary G x G-actions.
(More generally, this can be extended to any partition of I', with one copy of G for each part. Here,
we consider only the case of a region and its complement.)
From this, for each finite region Ay € Py(I"), define the maps (g1, g2) — UAl,(gth) and (g1,92) —
QA4 (g1,92) @S for any system of on-site unitary group actions, and likewise define (91,92) — Q(g1,g2)-

Note that for all g € G and for all finite Ay € Py(I"), that ﬁAl,(g,g) = Ux, 4- Also note that for all

g€ G, dgq) = ag.

The Pontryagin dual of G x G is (isomorphic to) the group G x G.

With this system of on-site unitary G x G actions, an element of A, which has grade ¢ € G with
respect to the grading obtained from the system of on-site unitary G actions, has grade (¢, i) € GxG
with respect to the grading obtained from this system of on-site unitary G' x G-actions. Likewise,
an element of Ape of grade ¢ € G with respect to the grading from the G action, has grade
(i, ®) € G x G with respect to the grading from this G x G action.

This is because the G x G action acts on Ax only by the first copy of G, and acts on Apc only by

the second copy of G. So, d(g,l)’AA = ayl4, and 54(1,9)’AAc = ayla,e.-
26



The purpose of the next few lemmas is largely in order to circumvent issues of convergence that
may arise when trying to express operators A € B(H ) as sums of their homogeneous components,
either with respect to the é—grading or the (@ X @)—grading. (These issues do not arise when G is
finite.)

LEMMA 23. Let (1 : A — B(Hz), U™ : G = U(Hx)) be a G-covariant representation of (A, o) and
(m: A= B(Hz), U™ : G x G = U(Hy)) be a G x G-covariant representation of (A, &). Suppose

that Vg € G, ﬁ((;;) = Ug(ﬁ). Then, for all ¢1,¢o € @,

Po1gaP(p1,02) = P(d1,¢2) = P(¢1,62)Pp12 >

where the projections p(g, ¢,) for (¢1,¢2) € G x G are the projections onto the (¢1,¢2) € GxG

grade components of Hr, defined using U™ just as the projections pe are defined using U,

PROOF. First to show that pg, ¢, D(¢1,¢0) = P(¢1,2):

PorsP(61.0) = / _6r0a)(g™ Ut pi

- / (019250 6,0 (0
(6162) (g™ )T P ) A11(9)
($102) (9~ ") (D1, 92)(9, 9)P(61,60)11(9)
(6162)(97)61(9)62(9)P(61 ) d1(9)

p(¢1,¢2)dﬂ( ) P(¢1,¢2)-

Showing that p(g, ¢,) = P(¢1,62)Pe1e, 1S essentially the same, except that instead of using

U0 o Plorin) = (01:62)(91,92)P(gy,0,) to conclude that U™ p(s, ) = (61,62)(9: 9P, r)» it

uses p(¢>1,¢2)U((gl) 5) = (01,02)(91,92)P(4,,6,) to conclude that pg, 4, Ug = (01, 902)(9: 9)P(1,60)-

(One concludes that p(¢1’¢2)U((gl)92 (¢1a¢2)(91792)p(¢1 $2) from the fact that U((gl)gQ) D(b1.g0) =

()
(61, 62)(91, 92)P(61.62) A P61, U5, )0 = P16 U0 ga) Sion )i Pog p? for all v € Hr)
O
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LEMMA 24. Let (1: A — B(Hy), U™ : G — U(Hx)) be a G-covariant representation of (A, a) and
(r: A= B(H:), U™ : G x G — U(Hy)) be a G x G-covariant representation of (A, &). Suppose
that Vg € G, ﬁ((;;) = U™ Let ¢1,¢5 € G and A € B(Hy).
Then, if P, ¢,)(A) # 0, then Py, 4,(A) # 0.

PROOF. Suppose P, 4,)(A) # 0. Then, by Lemma 20 there exists a vector v € H, which is
homogeneous with respect to the GxG grading, of some grade (¢1,12) € G x CA?, and such that
Plg1,62) (A)0 = Pigy 60) (A)Pr )0 7# 0-

By Lemma 17, Pg, g,) (AP 2)0 = Plr2) (or 02) AP 2) V-

By Lemma 23, p(y, )V = PyripoP(apn ai2) Vs 505 (USING U = Py ) 0) We have v = py,y,v.

Therefore,

P(g1.02) (0 62) Lo162 (A)0 = D(61,60) (01 ,02) Ppr 62 (AP0
= P(61,92) ($1,82) Pbr dorn o APy U
= P(6141,6202) P datbr o APiprpp ¥
= P(611,2v2) AP (1 102) V

= P(¢17¢2)(A)p(¢1,1/12)v # 0.

(The fourth equality is using Lemma 23 on the left part of the expression and py,y,v = v = Py, )V
on the right part of the expression.)
So, as p(¢1,¢2)(¢1,¢2)P¢1¢2 (A)v # 0, therefore Py, 4, (A)v # 0, and so Py, 4, (A) #0. O

LEMMA 25. Let (1: A — B(Hy), U™ : G — UHx)) be a G-covariant representation of (A, a) and
(r: A= B(Hy), U™ : G x G — U(Hy)) be a G x G-covariant representation of (A, &). Suppose
that ﬁ((;;) = Ug(ﬁ) forall g € G.

Let A € w(Ap)" and B € w(Ape)”. Then:

For all (g1, 92) € G x G, Ad(UY | )(A) = Ad(Ug) and Ad(T[) | )(B) = Ad(Ug}).
Furthermore, P(¢,i)(‘4) = P4(A) and P(i,qs)(B) = P4(B).

PROOF. The arguments about A € m(Ay)” (involving the first copy of G and @) and about

B € w(Ape)” (involving the second copies) are symmetric, so we give the proof only for A.
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Since for all g € G,

ATV (m(a)) = (G (1 g)(a)) = m(a) for all a € Ay,
it follows that U((fz]) € 1(Ap)" = (n(Ap)")". (Here, 1 denotes the identity element of G.)
Thus, for g € G, and A € w(Ayp)”, Ad(U((f;))(A) = A.

So, for (g1,92) € G X G and A € w(Ap)",

AdT™

) ) A) =A@ T (A)

For the grading projections, we compute, for A € m(Ay)" and ¢ € G:
PAAz/ 6.1)(91,92) Ad(T" )(A) dpcxc (i, g
@ = [ oD AT, 4) dicclon o)
-/ Hlar™) AdUS)(A) ducrc (a1, 92
(91,92)€EGXG

:/ 9lar ) AUTLT) () dnglor) = PofA).
g1€

since the integral over go contributes nothing (the integrand is constant in gs).

The argument for Pj )(B) = Py(B) is the same, with the roles of A and A° reversed. O

LEMMA 26. Let (1: A — B(H,), U™ : G — UHx)) be a G-covariant representation of (A, a) and
(m: A= BHqy), U™ : G x G = UHy)) be a G x G-covariant representation of (A, &).

Then, for all ¢ € G and all (¢1,¢2) € G x G, for all regions Ay C T, for all X € 7(Aa,)",
Py(X), Pigy 00)(X) € m(An,)". (In particular one can apply this to Ay = A or to Ay = A°.)

PROOF. Let A; CT.
As a and & are on-site and U™ and U™ represent them for , for all g € G and all (g1, g2) € G x G,
AU (7(An,)) = m(Ax,) and AT ) (r(An,)) = w(Axy).

(91,92)

For any set S of operators and any unitary U, (Ad(U)(S))” = Ad(U)(S").
Therefore, for X € m(Ayp,)”, Ad(Ug(Tr))(X), Ad(U((;)QQ))(X) € w(Ax,)".
What remains then is that the Bochner integrals defining Py(A) = fgeG #(g™) Ad(Uéﬂ))(X)dug(g)

and P(¢17¢2)(A) = f(gl,gg)GGxG((;Sl’¢2)((91’92)_1)Ad(U((;rl),gg))(X)duGXG(gl’92) of functions with
values in 7(Ap,)”, are still in 7(Ap,)".
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Since 7(Ap,)” is a von Neumann algebra, it is a Banach space, and so is closed under (converging)
Bochner integrals of operator-valued functions taking values in it. So these absolutely convergent
Bochner integrals in 7(Ax,)"” converge to values in mw(Ay,)".

Le. Py(X), Py 40 (X) € m(An,)".

LEMMA 27. Let (1: A — B(Hz), U™ : G — U(Hx)) be a G-covariant representation of (A, a) and
(r: A= B(Hz), U™ : G x G — U(Hy)) be a G x G-covariant representation of (A, &). Suppose
that Yg € G, U((;;) = U™,
Suppose also that w has the property that if X € n(Ap)" and Y € w(Ape)” and X, Y are non-zero,
then XY # 0, where A is the region in terms of which the (G x G)-action is defined.

Let A € w(Ap)" and B € m(Ane)".

Then, if AB is non-zero and is homogeneous of grade 1 € CA}', then A and B are each homogeneous

with respect to the @—gmding, and their grades are inverses of each-other.

PrOOF. As AB #0, A# 0 and B # 0. So, by Lemma 20, as A and B are non-zero, there is at
least one ¢4 € G such that P,,(A) #0, and at least one ¢p € G such that P,,(B) #0.
By Lemma 25, because the (G x G)-action acts only by the first copy of G on w(Ay)” and only by the
second copy of G on m(Ape)”, for such ¢4, b5 € G, Py,(A) = Py 1)(A) and Py, (B) = P ,,\(B).
For any X € B(Hx), Ad(U§™)(Pigy 40)(A)) = AdT ) (P, 50 (A)) = (61, 62)(9,9) Py ) (A) =
(#102)(9) P(4,,62)(A). So, if an operator has grade (¢1, ¢2) with respect to the (G x G)-grading, it
therefore has grade ¢1¢2 with respect to the @—grading. So, if P, ¢,)(X) # 0, then Py, 4,(X) #0
For sake of contradiction, suppose that there are some ¢4, dp € G such that badp # 1 and such
that Py, (A) # 0 and Py, (B) # 0. For (g1,92) € G x G,

7 () _ 7 () 7 ()
Ad(U(ngQ))(AB) = Ad(U(glm))(A) Ad(U(ngQ))(B)

= Ad(U{)(A) Ad(U)(B),

SO

Py 4 05)(AB) = / (64, 08) (91, 92) Ad(U) Y (AB)dpcinc(on, 92)
(91,92)€EGXG
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dalgr Dos(gy ") AdUS)(A) Ad(U)(B)dpaxa(gr, 92)

Il
~—

(91,92)€EGXG

(g ) AU )(A) d(g5 1) AU (B)dpcxc (91 92)

Il
~—

(91,92)EGXG

/ / 1 AAU)A) 65(05") AdUSD) (B)dpuc (92) duc(ar)

g1€G Jg2€G

_ / balort) Ad(UIM)(4) / 65(05") Ad(U)(B)duc(g2)duc(gr)
g1€G g2€G
/g

$algr ) AU (A)dpc (1) / . ¢5(92 ") AU (B)duc(g2)
g2€

P¢A(A)P¢B (B).

By Lemma 26, as A € w(Ap)” and B € w(Ane)”, therefore Py, (A) € n(Apx)” and Py, (B) €
m(Ape)”.

Because Py, (A) € m(Ap)" and Py, (B) € m(Ape)” are non-zero, by the property of 7 that the
product of a any pair of non-zero operators from w(Ap)", 7(Apc)” respectively is non-zero, their
product is non-zero.

Therefore, Py, ¢,)(AB) = Py, (A)Py,(B) # 0.

By Lemma 24, as Py, 4,)(A) # 0, therefore Py, 4, (A) # 0.

But, we said that ¢pa¢p # 1 and we are given that AB is homogeneous of grade 1. Therefore, we
have a contradiction, so the assumption that there are ¢4, ¢ such that ¢4-¢p # 1 and Py, (A)#0
and Py, (B) # 0 must have been false.

Therefore, for all ¢4, ¢p such that Py, (A) # 0 and Py, (B) # 0, we must have that ¢pa¢p = 1.
So, for any ¢4 € é, if Py, (A) # 0, the only ¢p € G such that P,,(B) can be non-zero, is
op = qbzl, and so B must be homogeneous of grade ¢ = qSATl. By the same reasoning, A must also
be homogeneous. So, there is exactly one ¢4 € G such that P, ,(A) # 0 and exactly one ¢p € G
such that Py, (B) # 0, and ¢pa¢p = 1.

Therefore, by Lemma 21 we have that Py,(A) = A and P,,(B) = B, i.e. that A and B are

homogeneous of grades ¢4 and ¢p (with ¢pa¢p = 1) as desired. O

3.4. Classification of Superselection sectors with respect to a Product Representation

From Theorem 4.5 of [4] we have
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THEOREM 28 (Theorem 4.5 from [4]). Let A C T be a cone. Let mp : Ay — B(Ha) and mpe :
Ape = B(Hae) be irreducible representations of Ay and Ape respectively. Let mp := mp @ Tac.
Then, if any irreducible representation o : A — B(Hy) satisfies the superselection criterion (Def-

inition 3) with respect to my, then o is unitarily equivalent to mo, i.e. there exists a unitary

U:He — Hp @ Hpe such that Ad(U) o o = .

REMARK 29. Let A € I'. Let (my,U™)) and (mpe, U™)) be G-covariant representations of
(A, ap) and (Ape, ape) respectively. Set my = mp ® mae and UM™) = (g — Ué“) ® Ué“c)).
Then (7, U(™)) is a G-covariant representation of (A, ). In addition, if one defines the map
Um) = ((g1,92) — Ug(f[‘) ®Ug(§AC)) :GX G = U(Hy, @Hr,.) then (mo, U™)) is a G x G-covariant

representation of (A, &), such that Vg € G, U((;Tg)) = éﬂo).

THEOREM 30. Let A C T be a cone. Let (my, U.(M)) and (Tpe, U.(WAC)) be G-covariant representations
of (Ap,ap) and (Ape,ape) respectively, with mp @ An — B(Ha) and mpae © Ape — B(Hpe) being
irreducible representations. Let (mo, .(WO)) be the G-covariant representation of (A, ) obtained as
o 1= A ® mae and U™ = !SWA) ® Ué“c.

Let (0 : A = B(H,), U.(U)) be a G-covariant representation of A which satisfies the G-symmetry
respecting version of the superselection criterion with respect to (o, U.(WO)) and let o be an irreducible
representation.

Then, there exists a unique ¢ € G such that there is a unitary U @ He = Hry = Ha @ Hpe of
grade ¢ (in the sense defined in Definition 18) such that Ad(U) o 0 = m. (There are also no
non-homogeneous U : Hy — Hr, that satisfy Ad(U) oo = mg.)

In this sense, the irreducible G-covariant representations of (A, «) satisfying the G-equivariant ver-

sion of the superselection criterion with respect to (o, U(”O)) are classified by G up to G-equivariant

unitary equivalence.

PROOF. As (o, U.(a)) satisfies the G-symmetry respecting version of the superselection criterion
with respect to (o, U.(WO)), o satisfies the superselection criterion (the version not dealing with a
G-action, Definition 3) with respect to 7.

Therefore, by Theorem 28, there exists a unitary U : Hy — Hy, such that Ad(U) o o = mp.
Because (o, U.(U)) satisfies the the G-equivariant version of the superselection criterion (Defini-

tion 10) with respect to (WQ,U.(WO)), there exist G-equivariant unitaries Vo a, Vopae © Ho — Hag
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such that Ad(Vya) 0 o|a,e = mola,e and Ad(Voac) 0 0|4, = mola,- So Ad(V}y) o Mol aye = olae
and Ad(V; \c) o mola, = ola,, and therefore Ad(UV;,) o mola,e = Ad(U) 0 0]a,c = mola,. and
Ad(UV;AC)o7r0|AA = 7|4, . Now, using mp = TA®@mpe 80 mo| 4y = 13y, @Tac and mola, = TAR1yy,.
we have Ad(UV;)) o (13, @ mae) = (1, ® mac) and Ad(UVxe) o (A @ Lggye) = (7 @ 1ayy).
Therefore, UV}) € (13, @ mac(Ane)) = (B(Ha) @ 131,c). Let Vi € U(Ha) be the unitary such
that UV;A = VA ® 13, and let Vje € U(Hae) be the unitary such that UV, pe = 19, @ Vie.
Then, (V3 ® Vae) = (Va ® L30,0)" - (I3 © Vae) = UV 0)* (UViae) = Vo a V2 g

As VoAV ae  Hry = Hr, 1s & composition of two G-equivariant maps, it is also equivariant.

At this point, we wish to apply Lemma 27 to (VA ® 13,.)" - (13, ® Vac) having grade 1. Apply the
refining of the G grading in Section 3.3 where the region A C I" chosen is the cone A. As described
in Remark 29, for U((;ﬁ)gg) = g(f") ® Ug(;r AC), (mo, U™)) is a G x G-covariant representation of (A, &)

such that Vg € G, U((;r(;)) = g(m)). In addition, as m9 = mA ® mae, To(Ap)" = mA(AN)" @ 14, and

" and non-zero Y € mo(Apc)”

mo(Ape)” = 1g, ® mae(Ape)”, and so for any non-zero X € mo(Ap)
we have XY # 0. Therefore, the conditions of Lemma 27 are satisfied, so for A = (V) ® 19,.)*
and B = (13, ® Vac), and AB = VoAV, pe being G-equivariant, i.e. having grade 1e é, we
conclude that A = (VA ® 1y,.)* and B = (13, ® Vic) are each homogeneous with respect to the
é—grading, with grades inverses of each-other. Say ¢ is the grade of (17, ® Vac), so ¢! is the grade
of (VA ® 19,.)".

For all g € G, AdUS™)((Va ® i,.)") = ¢ (9)(Va ® Lyg,o)*, so Ad(US™)(Va @ L,.)) =
(7 Hg)(Va @ 13,.)")* = ¢(9)(Va @ 13, ), s0 (VA ® 14,.) is homogeneous of grade ¢ as well.

So, with (VA®1y,.) = (UV;,) and (13, ®Vje) = UV; ac both homogeneous of grade ¢, multiplying
either by Vi A or Vi ac respectively on the right, we get that U is homogeneous of grade ¢ as well
(by Lemma 19), because Vo and V, pc are G-equivariant, i.e. of grade 1, and ¢1 = ¢.

Finally, if for some unitary Us : He — Hr, is satisfies Ad(Uz)oo = 7, then, because 19 = Ad(U)oo,
we have Ad(U*Usz) o 0 = o, and so U*Us € o(A)’, and therefore because o is irreducible, U*U; €
o(A) = Cly, and so Us is just U multiplied by a phase factor, and so has the same grade ¢.
Hence, the irreducible G-covariant representations of (A, «) satisfying the G-equivariant version of
the superselection criterion (relative to (my, U.(WO))), are classified by G up to G-equivariant unitary

equivalence. I
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In particular, if w = wp ® wpe where wy : Ay — C and wpe are pure G-invariant states, then for
(Ha,7a + Ax — B(Ha), Quy) and (Hpe, mae @ Ape = B(Hae), Qw,.) the GNS representations of
wp and wpe respectively, by Lemma 6, there exist U(™) : G — U(Hp) and U™) : G — U(Hae)
such that (mp,U(™)) and (mac, U(™°)) are G-covariant representations of (Ax, ap) and (Ape, apc)
respectively. And, with Hr, := Ha @ Hae, mo 1= TA @ Tac, Qo 1= Quy @ Qoo (Hag, m0, Q) 18
a GNS representation of w, and for U(™) := (g (Uém) ® Ug(WAC)), (0, U™)) is a G-covariant
representation of (A,«). So, the conditions of Theorem 30 hold. So, (using the fact that GNS
representations are unique up to unitary equivalence) for (Hr,, 7o, {2») a GNS representation of such
a G-invariant product state w = wp ®wpe and U(m0) the unitary G-action on H, that fixes 2, and
makes (mo, U (“0)) a G-covariant representation of (A, «), the irreducible G-covariant representations
that satisfy the G-equivariant version of the superselection criterion with respect to (g, U (”0)) are

classified by G up to G-equivariant unitary equivalence.
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CHAPTER 4

Braided C*-Tensor Supercategories from Fermionic Lattice Systems

with Approximate Twisted Haag Duality

4.1. Introduction

The goal of this chapter is to extend a construction [6] introduced by Ogata for extracting braided
C*-tensor categories from gapped quantum spin systems. This construction, building on the Do-
plicher-Haag—Roberts (DHR) approach to superselection sectors, applies to bosonic spin systems
satisfying approximate Haag duality. Here, we generalize it to the fermionic case by assuming a

modified form of duality, which we call approximate twisted Haag duality.

4.1.1. High-Level Overview of Approach. In [6], after picking a reference representation,
a subalgebra of the algebra of bounded operators on the Hilbert space for that representation
is selected. Given an algebra, the endomorphisms of that algebra as objects and intertwiners
between those endomorphisms, forms a strict monoidal category. For the particular algebra chosen,
there are endomorphisms corresponding to different representations satisfying the superselection
criterion. This sub-collection of endomorphisms is closed under composition, and includes the
identity endomorphism, so the full subcategory of the category of endomorphisms of the algebra,
with just the objects that correspond to the representations satisfying the superselection criterion,
is also a strict monoidal category. In addition to this, a braiding morphisms is constructed and
shown to be a braiding morphism, and the category is shown to have subobjects and direct sums,
and to be independent of certain choices. Therefore, it is found to be a braided C*-tensor category.
The approach here is similar. However, many things are instead Z/2Z-graded. In particular, the
algebra of bounded operators on the (Z/2Z-graded) Hilbert space for the representation, is regarded
as a superalgebra, as is the subalgebra of it which is selected. The endomorphisms of this subalgebra
which correspond to the representations of the algebra satisfying the version of the superselection
criterion under consideration, are all grade-preserving. Given a superalgebra, the grade-preserving

endomorphisms (as objects), together with intertwiners defined in the graded (or "super") sense,
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form a monoidal supercategory. A number of key properties must then be verified to ensure the

analogous versions of them still hold in this graded setting.

4.1.2. Main Result. The main result of this chapter is the following theorem. For the more

precise statement and proof, see Theorem 108.

THEOREM 31. Let A be the quasilocal algebra of a quantum lattice system with fermionic degrees
of freedom. Let my be an irreducible grade-preserving representation that satisfies the approximate
twisted Haag duality, and where mo(Ap) en and (7o(Ane)!) even are properly infinite factors.

Then the representations satisfying the superselection criterion with respect to mg, and which are

localized to a chosen fized cone Ag, form a braided strict C*-tensor supercategory (Definition 107).

"

M on and (70(Apc)?)even are properly infinite factors is something which

The assumption that my(Ax)
I believe should follow under assumptions of my being a GNS representation of a pure gapped
ground state for a uniformly bounded finite range even interaction along with some other reasonable
assumptions, but I have not yet managed to prove this, and therefore I make the assumption about

the factors. The place this assumption is used is in order to show that the category has direct sums

and subobjects. The other parts of the result do not depend on this assumption.

4.2. Setup and Assumptions

4.2.1. Two-Dimensional Quantum Lattice Systems. Let I be a lattice in R?. Technically
it does not need to be a lattice in the strict sense, only a Delone set: that is, there exist constants
r, R > 0 such that for all z,2’ € I with 2 # 2/, we have d(x,z') > r, and such that for all p € R?
there exists an = € I" such that d(z,p) < R .

However, we will call it a "lattice" even though we really mean Delone set. The reader may think
of I' as being Z? throughout.
For each z € T' let Hyy = Hizyeven © Hiz}oda be a Z/2Z-graded finite-dimensional (and not

O-dimensional) Hilbert space. We also impose the following condition:
ASSUMPTION 4.2.1 (to guarantee existence of odd local unitaries in large enough regions). The set
{:ZZ S F’ dim(H{x},even) = dim(H{z},odd) = 1}

1s also a Delone set.
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The reader may wish to suppose that this set is all of I'. Nothing essential will be lost by doing so.
For x € T let Ay, := B(H{,}) which, viewed not only as a C*-algebra, but also as a superalgebra,
where the even (resp. odd) part consists of the grade-preserving (resp. grade-reversing) operators.

Let UaFy{x} = 1H{z},even - 1H{z},odd € A{x}veven. For A = AO + Al € A{x}7
Ad(UaF,{x})(AO + Al) = Ay — A;.

Here and throughout, A = Ay + A1 means that Ay is the even part of A and A; is the odd part.
Fix a total order on I'. The particular order will not matter as long as it is kept consistent.

For finite A C T, Ap := ®),cp A} Where this tensor product is taken in the order induced by the
total ordering chosen on I', and refers to the tensor product for superalgebras. (The tensor product
for superalgebras is such that, if A, B,C, D are each homogeneous, then (A ® B) - (C ® D) =
(-1)!BICI(AC) @ (BD) where | B|,|C| are the grades of B, C' respectively.)

For finite subsets Aj, Ay C I satisfying A; C Ay there is an inclusion Aj, — A, by taking the
tensor product with the identity operator from Ay,\4,. These form a directed system.

For infinite A C T', define Ay := Al/iLnA Aps where this is the direct limit of the directed system
consisting of the C*-algebras Ay for finite A’ C A, and the inclusions between them.

In particular Ar is defined this way. Set A := Ar.

Throughout, for A C R?, A will often be identified with ANT when the context is such that a subset
of I' is required.

Define ap € Aut(A) as, for A= Ao+ A1 € A, ap(Ag + A1) :== Ag — A;.

For finite A C I, define Uy p := [[,cn Uap{z}, and define app := Ad(Uqp.n). Note that ap(A) =
[ng ap(A) where the limit is over finite A C T'.

Let H = Heven @ Hoda be a Z/27Z-graded Hilbert space, and 7y : A — B(H) be an irreducible
grade-preserving *-representation of the C*-algebra A.

Let Unp = 1een — ogy- Ad(Uay)omg = mpoap. For A= Ag+ Ay € B(H), Ad(Uq,)(Ao+ A1) =
Ao — Ay

So, for a: Z/27 — Aut(.A) a group homomorphism which sends the identity element to the identity
and the non-identity element to ap, and for U, : Z/2Z — U(H) the group homomorphism which

sends the non-identity element of Z/2Z to Uy, (m0,Uy) is a (Z/2Z)-covariant representation of
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(A, a). Because a is entirely determined by ap, and likewise U, is entirely determined by U,,., we

will describe this as (7, Ua,.) being a (Z/2Z)-covariant representation of (A, ar).

DEFINITION 32. Given a representation p : A — B(#,) and a unitary U, € U(H,), we say that

(p,Up) is a (Z/2Z)-covariant representation of (A, ar) if Ad(U,) o p = poar and Ug =1.
LEMMA 33. For any cone A, there exists an odd unitary By € Ap joc-

PROOF. By assumption 4.2.1 there is some radius such that for any ball in R? of that radius,
there is a site x € I in that ball such that dim(H ;) ecven) = dim(H4},0a4) = 1. And, for such a site
, there is an odd unitary in Ayg,;. (One can take an orthonormal basis of H .} even and of Hy) odds
and then map each basis element of the former to a different basis element of the latter, and visa
versa, and extend linearly.)

For any cone A C R?, and any positive radius, there is a ball of that radius that is a subset of A.

Therefore, there exists a site z € ANI" such that there exists an odd unitary By € A,y C Apjoe- O

REMARK 34. Conversely, for any finite subset R of I, if there is an odd unitary in Ag, there must
be a site * € R such that dim(H ;) even) = dim(H ;) o0aq) > 1. This is because for such a unitary
to exist implies dim(Hpg even) = dim(Hpg,odd), and the tensor product of two Z/2Z-graded finite
dimensional vector spaces only has the dimensions of the even and odd parts equal if at least one

of the two tensor factors has the dimensions of the even and odd parts equal.
4.2.2. Approximate Twisted Haag Duality. Following Equation 4.7 of [2]:

DEFINITION 35. For any C* subalgebra A of B(#H) such that Ad(U,,)(2() = 2, define the twist of
2 to be Al := {Ag + Ua, A1|Ao + A1 € A} (where subscripts indicate parity).

Define "the twisted commutant" to be the commutant of the twist,

e A = (A

Also define the linear map tw : B(H) — B(H) as tw(Ag + A1) := Ao + Ua, A1

Note that At = 2A.

DEFINITION 36. Twisted locality is the condition on 7 that for any two disjoint cones A1, A, that

W(Afh) - 7T<AA2 )t/'
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Twisted locality is obtained automatically, just as the usual locality, 7(Ap,) C m(Ap, )" is obtained
automatically for spin systems.

Following Definition 4.3 of [2],

DEFINITION 37. A representation 7 of A satisfies Twisted Haag duality if, for all cones A,
7(Ape)" = m(Ap)".

Combining that definition with the definition of Approximate Haag duality given in [6],

DEFINITION 38. A irreducible representation 7 : A — B(H) of A satisfies Approximate Twisted
Haag duality if: Vo € (0,27), Ve > 0 such that ¢ + 4e < 27, there exists R, . > 0 and for § > 0

exists decreasing functions f,. s : [0,00) — [0,00) such that lim; . f, . 5(t) = 0 such that

(i) for all cones A such that |arg A| = ¢, there exists an even graded unitary Up. € U(H)

such that
t) "
o (Anc)” C Ad(Up ) (7‘(‘0 (A(A—R%eel\)g> )

(il) V6 > 0,Vt > 0 there exists an even graded unitary UA@M € m(A(a—p)., ;)" such that

HUA,E - UA,e,é,tH < foes(t).

For cones A, let Rp . denote Rjaq ). Also, for ¢ € R, let A + ¢ denote A + tep.
While in [6] often 7o(Axc)” appears for various cones A, in almost all of those cases the analogous

result here will have m(Axc)? in its place. As such, for all cones A we define A(A) := mo(Apc)?.

DEFINITION 39. For a € Aut(A), « is approximately-factorizable if:
(i): for each cone A and each § > 0, there exist automorphism Ba,Ba € Aut(Ay), Bac, Bre €
Aut(Apc) and Ep 5, éAﬁ € Aut(Ap;n(ac),) and unitaries vy s,05,6 € A such that
a = Ad(vas) 0 Eps 0 (Ba @ Bac),
a™t = Ad(9as) 0 Ens 0 (Ba © Bac).

(ii): For each 4,0’ > 0 and ¢ € (0,27), there exists a decreating function g, 55 (t) with domain
R>¢ such that tlim 9p.55'(t) = 0 and such that for any cone A such that |arg A| = ¢, for
= —00
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all t > 0, there exist unitaries v 55 ,, 0\ 554 € A-1),, , satistying

HUA,J - Uj\,&,é’,t‘ ) Hf’A,é - 55\,5,6’,t } < gso,éﬁ’(t)

for unitaries va 5,056 in (i).

DEFINITION 40. For a € Aut(A), a is approximately-factorizable in a grade-preserving way if it is
approximately-factorizable and the automorphisms
BA,BA,ﬁAc,BAc,EA,[;,EA’g and the unitaries va 5, Ta.5, V) 55 4> U 590 Can be chosen such that all

those automorphisms are grade-preserving and all those unitaries are even.

An automorphism « which is approximately-factorizable in a grade-preserving way will of course
itself be grade-preserving.

Following Proposition 1.3 of [6]:

PROPOSITION 41. Let (H,mo) be an irreducible grade-preserving representation of A which satisfies
approzimate twisted Haag duality. Then for any automorphism o € Aut(A) that is approximately-

factorizable in a grade-preserving way, (H,m o «) also satisfies approzimate twisted Haag duality.

PROOF. The proof is very similar to the proof of Proposition 1.3 of [6], and the length of the
changes that need to be made is much smaller than the length of the overall proof, so only the
changes will be described.

After mo(Any)e) € Ad(mo(a(vas,5)))(m0 © a(Axc)) is obtained, rather than taking the commutant

of this, take the twisted commutant, yielding

(Ad(mo((T4,,6))) (0 © a(Ane)))"" € o (A(age)""

As mo(a(Oaz,5)) is even, Ad(mo(a(Dass)))((mo 0 a(Aae))?) € mo(Aa,)e)”, and applying the ap-
proximate twisted Haag duality in place of the application of approximate Haag duality, we get

Ad(mo(a(ta,.5)))((m0 0 a(Ape))) € Ad(Upys - mo © a(ﬁ;&z’m))((ﬂo oa(Aj,,))") and so
(m0 0 a(Ape))” € Ad(mo(a(a,,8))" - Uny s - molo(Bg, , 5)) ) (w0 0 a(Az)")-

With this, along with other details included in the proof of Proposition 1.3 of [6], defining U /(\12 =
To(@(a4,6))" - Uny,s - mo(a(ty, , 5)) (and noting that it is even) is seen to show that (H,mo o «)
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satisfies part (i) of Definition 38 (approximate twisted Haag duality). The part of the proof in [6]
that shows that part (ii) of approximate Haag duality holds for the (H,mp o «) in that setting,
carries over to this setting to show that the (H, 7y o «) of this setting satisfies part (ii) of Definition
38 (approximate twisted Haag duality), with no changes being made. (The reason no changes need
to be made here is essentially due to the fact that this part of the proof and statement only makes

reference to double commutants, never to single commutants or to two operators commuting). [

4.2.3. Superselection Criterion for Lattice Systems with Fermionic Degrees of Free-
dom. Recall our fixed reference representation of A, my : A — B(H), which is irreducible and

grade-preserving.

To account for the anticommutation of odd operators with disjoint support, we define a variation

on the superselection criterion (see Definition 3) as follows:

DEFINITION 42. A (Z/27Z)-covariant representation (p : A — B(H),U, € U(H)) of (A, ar) satisfies

the superselection criterion with respect to (m, Ua,.) if:
for all cones A, there exists an even unitary V), o € U(H) such that:
for all Ag € Anc even, Ad(Vpa) 0 p(Ag) = mo(Ao),

and for all A; € AAC,odd7 Ad(VpJQ(Up,O(Al)) = UaFWO(Al)-

Let Og be the set of grade-preserving representations of A on A which satisfy the superselection
criterion with respect to mg.

For p € Op, and A a cone, let V, x be the set of even unitaries V), x which satisfy the two conditions
at the end of the above definition.

Vp,a Will always be non-empty by virtue of p € Op.

For p € Oy, define the superselection sector [p] to be the set of all o € Oy such that there exists an
even unitary U € U(H) such that Ad(U) oo = p.

For any cone A, define

On :={(p,Up) € Oof plase = ol }-

41



DEFINITION 43. For (p : A — B(H),U,) a representation of A equipped with an implementation
of ap, define the function p' : A — B(H) as p'(Ayg + A1) := p(Ao) + Upp(A1), for all Ay € Acyen
and A; € Aodd-

Note that p' is not an algebra homomorphism!

DEFINITION 44. For (p : A — B(H),U,) and (¢ : A — B(H),Us,) two representations of A each
equipped with their respective implementations of o, define R to be an intertwiner from (p,U,)
to (0,U,) if VA € A, Rp'(A) = ¢*(A)R (i.e. R- (p(Ao) + Uyp(A1)) = (c(Ao) + Uso(A1)) - R). Let
R:(p,U,) = (0,U,) denote that R is an intertwiner from (p,U,) to (o, Us).

We will often write p in place of (p,U,), leaving U, implicit.

It can readily be seen that if Ry : p;1 — p2 and Ry : p2 — p3, then RoRy : p1 — p3

PROPOSITION 45. For p € Og be an irreducible grade-preserving representation of A. Then U, is

either Uy, or —Uq, .

Proof of this is at 109. It can be seen that both values are possibilities, because for any p € Oy, it

can be seen that Ujon, = —U,.

LEMMA 46. For p € Oy, then,

if Up = Uqp, then for all cones A, for all V, x € Vya, for all A € Ape, have that Ad(V, 2) o p(A) =
mo(A),

and, if U, = —Uqy, then for all cones A, for all V, A € V,a, for all A € Ape, have that Ad(V, A) o
p(A) =mooar(A)

Proof of this is at 110.
(If p is irreducible, then by the result before this one, one of the two cases in this result will apply.

But, even if p is not irreducible, if U, is as described, one can still apply this.)

4.3. Analogous Results for Defining the Category

This section presents statements and definitions that are closely analogous to those in 6], which

are used in constructing the braided monoidal C*-supercategory.
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Throughout, assume that my, in addition to being irreducible, also satisfies approximate twisted
Haag duality.

As defined in equation A.7 of 6], define C(@, ) to be the set of cones for which no ray contained in
that cone has an angle in the interval [0 —¢, 6+ ¢] (where a ray of the form Z+ {t(cos(3),sin(B))|t €
[0,00)} is said to have angle §). A pair (6, ) is said to "label a forbidden direction" if # € R and
¢ € (0,7), so that the image [0 — ¢, 8+ ¢], under the usual map from R to S is a proper non-empty
subset of S!. It is called a "forbidden direction" because it is the range of angles that the cones
used aren’t allowed to include.

The category constructed will be as follows: We fix a forbidden direction (6, ) and a cone Ay €

C(0,¢). The objects of the category will be the representations in

Opg s = {p € Og ‘ p|AA8 = 7T(]|AA8 and U, = UaF},

i.e. those representations satisfying the superselection criterion (Definition 42), which are localized
in Ag, and which have the same implementation of the parity operator.

We will define a sub-superalgebra B(6, ¢) C B(H) (Definition 48) using the reference representation
mo. For each p € Oy, « there is a unique corresponding grade preserving endomorphism nge’W)’AO’l
of B(0,¢), given by Definition 57. The hom spaces of the category are defined as the spaces of
intertwiners between these corresponding endomorphisms (Definition 74), in a sense that matches
with the definition of the hom spaces for the monoidal supercategory of the category of grade-

preserving endomorphisms of the superalgebra B(6, ). In fact, our category will be, up to relabeling

the objects, a full subcategory of that category. The supermonoidal product of the category is

7AO71 9790)7A071 T(97¢)7A071 _ T(0750)7A071 o
=1p

o Té Py

defined on objects as p® 0 = TP(G’SD) o m and is such that

T ée’@)’AO’l, and the supermonoidal product on the morphisms (Definition 81) is defined in a way
that is equivalent to how the monoidal product for morphisms in the category of grade-preserving
endomorphisms of a superalgebra is defined. The braiding morphisms are defined by taking a limit of
some products of morphisms that transport where the representations are localized to relative to the
reference representation, to different cones that are far from each-other, described in Definition 92.

The direct sums and subobjects (so that even projections split) are constructed using isometries

obtained using some factors being properly infinite, in Lemma 99 and Lemma 100 respectively.

4.3.1. Superselection sectors and their extensions. Following Lemma 2.2 from [6]:
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LEMMA 47. Let Ai,Ay be cones, p,o € Oy, Von, € Vor,,Vonr, € Von,, and R € B(H) an

intertwiner from p to o. Then Vo p, RV € T(Aaung)e)”
PRrROOF. Let A € A(Alqu)c.

Von, RV A, 7 (A) = Vo a, Rp(A) = Vor, 0 (ARV; \, = 7' (A)Vep, RV 4,

*
p7A1

Using that Ad(Vp,Al)OPt\AA(I; = Wt\AA? and likewise for V; z, and that A, up,)e = AasNAxg. So, for
all 7(A) = w(Ao) + Uapm(A1) € (m(Aa,unn)e)’ Vo0, RV, commutes with it, i.e. Vor, RV, €

7-(-("4(A/\1L,|A2)C)t/' D

Based on the Definition 2.3 of [6]:

DEFINITION 48. For 6§ € R, ¢ € (0,7), define B(6, ) := Ujcc(g,4) To(Ane)"-
Also define By (8, ) := UAGC(G,cp) mo(An)”.

By twisted locality, for all cones A, mo(Ap) C mo(Anc)Y, so mo(An)” C mo(Ape)?. Therefore

Bo(0,¢) C B(6,¢) and By(0, )” | C B(0,¢). Under the assumption of (full, not approximate)
I

twisted Haag duality, it immediately follows that B(6, ) = Unec(o,e) WO(AA)”M =By(0,p) . It
also follows withough this stronger assumption, as seen in the next lemma.

Entirely following Lemma 2.4 of [6]:

LEMMA 49. Assuming approximate twisted Haag duality, the unitary Uy € B(0,¢) (where Uy .
is from the definition of approximate twisted Haag duality, Definition 38) and the norm closure of

By(0, ) is B(0, p).

The proof is essentially the same as the proof of Lemma 2.4 of [6]:

PROOF. As B(0,¢) is the norm closure of (Jxce(g,p) 7o(Apc)?, to show that the norm closure
of By(0, ) is B(0, ¢) it suffices to show that VA € C(6, ), mo(Aac)? C By(0, )” |
For all A € C(6,), pick ¢ > 0 such that Ay. € C(6,¢). For all t > 0 and § > 0, Up.5(t) €
7T0(A(A_t)g+6)//. For § small enough that A.15 € C(6, ), we then have UA,E,M € mo(An—p) -
Bo(6,¢) C B(6, ), and that HUA,E,M — U

s+6)

< flarg Al e,5(t). Therefore, as ﬁA’E,g’t — Up, with

respect to the norm topology, and ﬁA,a@t € By(0,¢), we have that Uy . is in the norm closure of

80(97 80)
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As mo(Apxe)! € Ad(Upe)(mo(A_p, .).)"), and mo(An—r,).)" € Bo(0,¢) C Bo(o, B0 )" and
Ure € Bo(b, )” H, and so mo(Ane) C Bo(b, )H I
that mo(Axe)! C Bo (o, )H I So UAGC(ng To(Ape)t C Bo(0, )” ||’ so B(0,¢) C Bo(0, )II I %o
Bo0,) = B9, ). .

So, we have that for all cones A € C(0, )

Following Lemma 2.5 of [6]:

LEMMA 50. For any cone A and any unitary upn € A(A),e,0 > 0 with |argA\| + 4e < 27 and
t > Rjarg Al e, there is a unitary un € mo(Aa—y)_,4)" such that [[uy — Gpll < 2fjarg ale,5(t), namely,

Up = Ad(UA@g’tUl’{’E)(uA), In addition, if ua is homogeneous, Up will have the same parity.

Proor. This follows directly from the definition of approximate twisted Haag duality, Defini-
tion 38. ]

Following Definition 2.6 of [6], except that R, is for us the R, . that appears in Definition 38 the
definition of approximate twisted Haag duality rather than the one in the definition of approximate

Haag duality. These definitions are as follows:

DEFINITION 51. We say that a set of cones &7 is distal from a set of cones Sy if there are cones
Ay, Ay and e > O such that |J A; C Ay, | Ag C Ag, and (A) — Rz, ) € As.
AeS A2eSs

We also say that a cone A; is distal from a cone Ay if {A;} is distal from {As}. If A; is distal
from Ag, then the two are disjoint. Let (0, ) label a forbidden direction. We of two sets of
cones 81,8y C C(0, ) that S is distal from Sy with forbidden direction (6, ) if S; is distal from
Sy and the cones A1, Ay and € > 0 above can be chosen such that (]\1)5,([\2)6 € C(0,¢) and
arg((A1)2) N arg((A)z) = 0.

Finally, we say that Sp Lo,0) Sy if & is distal from Sy and Ss is distal from &7 both with forbidden

direction (0, gO) And, we say that A1 J‘(9a<ﬁ) A2 if {Al} J_(g#,) {Ag}
Analogy of Lemma 2.8 of [6]:

LEMMA 52. Let A1, Ay be cones such that Ay is distal from Ay. Fori=1,2, let X¥t € W(A(Ai_‘_ti)c)t/

for each t; >

lim [[[X5", X22]L ] =0

t1,ta—00
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PROOF. Since A; is distal from Ao, there exist cones A1, Ay and € > 0 such that
At CAyc (A —Ry, - CAS, A CAs.
For t1,ts > 0, we have
A+t CACAC (A — Ry, ) C AS C A C (Ag +to)°.
By approximate twisted Haag duality we have

W(AAlthl )t/ - Ad(UA1+t1,% ) (W(A(A+t1*RA1 7%)5)//)

and for t; > RAL%, we have (A +t; — RAl,g) C (A1)e C (A2 +t2)¢, and so

£ £
2 2

T(An+)" S AUy 41,2 (T (Aagt2)e)")-
Now, as X1 € w(Ap,4¢,)", we have that Ad(Uj{l_‘_tl’%)(Xl’tl) € T(Apgtta)e)”-

Decomposing into even and odd parts, Ad(UA1+t17%)(X1’t1) = Ap + Ay, we have Ag + Uy, A1 €

(T (A(pgttn)e)”)!. Since X2 € m(Aaytty)e)” = (T(A(pgttn)e)”)")’, we therefore have
[X2’t2, Ag + UaFAl] =0.

Let ﬁtl = UA1+t1,g,g,t1/2 S W(A(A1+t1—t1/2)6)" C 7T(A(A2+t2)c)”. It is even, so it is also in
(7(<‘A(A2+t2)c)//)t7 50!
[X2’t2, Utl] =0.

Now write:
(X2 Unyy,5) = X220y + (Uny 1,5 — Un))]
= [X27t27 Utl] + [X27t27 UAl—‘y—tl,% - 0t1]
— [)(271527 UAl-‘y—tl,% —_ Utl]'
So,

t

H[X2,t27 UA1+t1,%] S 2 HXZ’tQ H f|argA1|,%,%(§1)'

<2 HXZtQH ’ )‘UAl+t1,§ - Utl
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Now, for U := UA1+t1,§a estimate the graded commutator:

[0, X)L = [JAdU) (X, X2]L )|
= AU (XH1), Ad(U)(X>"2))4
= [[[Ad(U*)(X ), X2 + U X352 U] ||
< [[AdU*)(xB9), X220 || + [JAdU) (X)), U (X2, U |
<A@ (), X2 | 4 3] X00 |- [ 1X3, )]

t
< [[[Ad@ (X)X 43 X80 2| X2 flarga5,5(5):

From X' € (A, 14,)e)", it follows that its even and odd parts, (X"1)g, (X1"1); belong to

7T(./4(A1+t1)c)t/ as well. Therefore, applying the conclusion that

X212, (Ad(Ua+00)5) (X))o + Uy - (Ad(Uay ), 5) (X)) = 0

£
’2

to each of (X1%)g, (X1!); individually, we get that [X2’t2,Ad(U(AIHI)é)((Xl’tl)o)] = 0 and
(X212 U, ~Ad(U(Althl)’%)((Xl’tl)1)] = 0. These are equivalent to

(02, (Ad(Un 1005 (X)) + [(X242)1 (Ad (U, ), 5) (X)) = 0

and

UCYF[(XZQ)Ov (Ad(U(A1+t1) )((Xl’tl)l))] - UCYF{(XZD)M (Ad(U(Al-‘rh),%)((XLtl)1))} =0,

€
2

which, by both of these sums having the form of an even expression plus an odd expression, and both
being zero, is equivalent t0 [(X242)o, Ad(Ugx, +1,),5) (X1)0)], [(X22)1, Ad(Ugn, 1, 5)((X)o)],
[(X?%2)0, Add(U(a, 14,),2) (X )1)] and {(X>%2)1, Ad(Ua, 14,),£) (X "1)1)} each being 0, which im-

plies

[AA(U(a, 140),£)(XH1), X22]L =0
Therefore, [[[X1, X22 o || < 6 [ X [ X2 ]| flarg aa15,5 ()
and so lim ||[Xf, X2E2]L|| = 0.

t1,t0—00

47



Starting with the usual (counterclockwise) cyclic order on S*, if we remove the interval associated
with the forbidden direction, (§ — ¢, 0 + ¢) then the remaining subset of S* inherits a linear order

from the cyclic order on S*.

DEFINITION 53. Let (6, ) label a forbidden direction.

For A1, Ay € C(0, ), define Ao (g\) A4 to mean that all directions for Ay are counterclockwise, with
7(p

respect to cutting the cyclic order on the space of directions at the forbidden direction (6, ¢) to get

a linear order, from all directions for As. That is, for i = 1,2, there are 6; € R, ¢; € (0, 7) such that

(0; — @i, 0; + i) is the range of angles for A; and such that
0+g0<91—901<¢91+<,01<92—<,02<92+g02<277—|—0—g0.
DEFINITION 54. For a given forbidden direction (6, ¢) and a cone A € C(6, ¢), define

Kae,p = {KA €C(0,¢)|A (9{;) Kj and K, distal from A with forbidden direction (6, ¢)} .

Following lemma 2.12 of |6]

PROPOSITION 55. Let € R, ¢ € (0,7),p € Op, and V, A € V, x. Then, for all cones A € C(6,p)

(1) For all cones K € kngp and all V, ik, € V, Kk,, there exists a cone Cp € C(0,¢) such

that Ad(Vp,AOVp*:KA)(WO(AAC)“) C mo(Acg)” € B(6,w), and for all A € Ay,
Ad(VP,AoV;K,\) 0 WS(A) = Ad(vp,/\o) o Pt(A)

(ii) For all cones Kz Ky € kg and all Vi, i, € Vy kg, and ij{A € fo(/\’
Ad(‘/p,/\ovprA”wo(AA)” = Ad(vp,l\ov;t[}A)’Wo(AA)” and
Ad(Vp,AOV;KA)Lro(AA)”t - Ad(VonV;f(A)‘wo(AA)”t'

PROOF. To prove part (i), no non-obvious changes need to be made to the proof for part (i) of
Lemma 2.12 of [6].
For part (ii),
the reasoning which obtains a cone 1~\1 € C(0,p) and Ll,il > 0 such that {K, + Ll,KA + f/l} is
distal from A with forbidden direction (6, ) applies with no changes.
By 47,

Vo Ka+L V;:KA € TFU(-AK,”\)U
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VP,KA+E1Vp*,KA+L1 € WO(AM)“
~ * B t1
VP’KAV/JKAJrL € WD(AK&) .
As A C K5 N (A)° N (B4, for Ag + UapAr € mo(Aa)* C mo(Akg)' N mo(Ag, )’ N mo(A g, e)

* _ - * - * . .
vaKA+L1Vp,KAa Vp,KA+L1Vp,KA+L1’ and Vp,KA Vp,f(A+i1 each commute with it. So, as

Vp,f(A V;)nyx = (Vp,KA fof(A-yil ) (Vp,f{,\—i—il VPiKA+L1 ) (VP,KA+L1 V;:KA)v

therefore

Ad(vp,KAVP,K;{)(AO + UaFAl) = Ag + UaFAl-

In particular, for even Ag € (mo(AA))even = (T0(AA))even, We have Ad(Vp KAprKX)(AO) = Ay, and
for odd A; € (mo(Ap))oaqa We have Ad(V, g Vox3)(UapAr) = Uap As.

As U, commutes with all even operators, and Vp7 i Vo k% is even, we have

Uap A1 = Ad(V, & Vit)Uap A1) = Uy Ad(V, 2 Vi) (A1)

and so Ad(V, z, V, k1) (A1) = Ay for odd Ay € mo(Ay).
Therefore, for Ag + A; € mo(An), Ad(Vp f(AVmK}{)(AO + A;) = Ap + A;. Therefore, by continuity,

the same is true for Ao + A1 € mo(An)", so Ad(V, g, Vo k) lmo(an)” = 1l mg(an)-

Therefore,
Ad(VP,AOfoKA”m)(AA)" = Ad(VPaAOX/;f(A) © Ad(vp,RAvaKX)‘”O(AA)”
= Ad(vvaOV;f(A) o id|7ro(.AA)”
— Ad(vva()V:f{A)’WO(-AA)”'
Similarly, Ad(vpyAOfoKA”?To(AA)"t = Ad(vﬂvAOV/:f(AHWo(AA)”t' ]

Following Definition 2.13 in [6]:

DEFINITION 56. For (6, ) labeling a forbidden direction, and Ag, A € C(6,¢), and p € Oy and
(9790)7A07Vp,/\0

Voag € Voo, define T :mo(Ap)" — B(6,¢) by
(0,9),M0,V,, *
T, = Ad(Vao Ve, ) o (an )

(By 55, this homomorphism is independent of the choice of Ky € rp g, and of V, g, € V, i, )

Following Lemma 2.14 in [6]:
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DEFINITION 57. Let (0, ¢) specify a forbidden direction. Let Ay € C(0,¢). Let p € Op. Let
Voho € VoAo-
Define Té%w)’AO’VP’AO : Bo(0,0) — B(6, ) as

T(g’sa)’AO’Vp’A0 () := Téiw)’Ao’vp’Ao (z) for x € mo(Ap)” with A € C(0, ¢).

p,0
Define ’_]’p(e’go)’AO’V‘)’A‘J : B(#,p) — B(0,¢) to be the unique (norm-continuous) linear extension of
T’E?O’GD)’AO’VP’AO to the domain of B(6, p).
PROPOSITION 58. T\ 3?0V . g (g B(o defined above is well-defined, and. i
- T,o : Bo(0,0) — B(0,p) as defined above is well-defined, and is a

(0790)>A07Vp,A0

x-homomorphism, as is its extension T), B0, ) = B(6, ).

The proof of this is no different than the proof of the corresponding part of lemma 2.14 of [6]. The

following lemma corresponds to said 2.14 of [6]:

LEMMA 59. Let (6, @) specify a forbidden direction. Let Ag € C(0,¢). Let p € Op. Let V,ay € Vpo-

(9790) 7A07Vp,A0

T, : B(0,0) — B(6,¢) has the following properties:

(i): For all A € C(6, ), Tp(e’gp)’AO’Vp’AO is ultraweak-continuous on mo(Ap)".

(if): For all A € A, twoT #0080 6 o (4) = Ad(V,0,) 0 p'(A).
In addition, it also satisfies

(a): It is unique in the sense that if X, : B(0,p) — B(H) is a x-homomorphism which is, for all

A € C(8, ), ultraweak-continuous on mo(An)”, and if for all A € A, twoX, omy(A) =

Ad(Vpao) 0 p'(A), then X, = T)" 7 0Vo,

0,0),Mo0,V,
(b): For all cones A, and all V, A1 € Va7, T,S PhhoVoso 70la e = Ad(VonoVyiar) © Tol 4y -

(9790)7/\0 7Vp,A0

And, for p =T, oo, (p,Us = Uap) satisfies the superselection criterion wrt m,

and for any Vpar € Voar, VoaVya, € Vo

p
(d): Tée’w)’Ao’Vp’AO 0 70|y e = T0l Ay, e and T,EH’W)’AO’VP’AO omy € Oy,-
(e): For A € C(0,p) there exists Cp € C(0,¢) such that T;SG’¢)’AO’VP’A° (mo(Aa)") C mo(Acg)” =

A(Cy).

. 0,¢),M0,V, 6,¢),Mo,V, c 1.
PRrOOF. For (i), ng #):Ro:Vo o |70 (An)” = T;A(p) Yoo — Ad(Vp,00V, iy )lmo( 4,y Which is ultra-
weak continuous.
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To see that it satisfies (ii):

For any A € Aj,, there exists A € C(0, ) s.t. A € Ay, and so such that

0,0),A 0,¢),Mo0,V, 0,0),A
tw o020 0 o (4) = TR0 o g (Ag) + U TR M0 0 mo(41)

= Ad(Vy.00V 1,) (m0(A0)) + Uap Ad(Vp A0V, 1, ) (0 (A1)
= Ad(Vp20 Vi, ) (M0 (Ao + A1)
= Ad(V,.a0) 0 p'(4)

where the last equality is using A € Ay and Lemma 55. So for all A € Ajye, tw oTlge’w)’Ao’Vp‘AO o

mo(A) = Ad(V,a,) © p'(A). For A € A and (A,)nen a sequence in Ay, and A, — A with

0,¢),Mo0,V,
respect to the norm on the C* algebra, as tw oTp( o Vom0 mo and Ad(V,a,) © p' are norm-

continuous, tw oT,Se’(P)’AO’V”’AO omp(A) = lim,, tw oTp(e’SD)’AO’Vp‘AO omo(Ay) = limy, Ad(V,a,) 0p'(Ay) =

Ad(V,a,) 0 p'(A), so for all A € A, tw oT,E‘g’SQ)’AO’Vp’AO omo(A) = Ad(V,.a,) © p'(A).

To prove (a), the only change needed compared to the proof of the analogous statement in [6]

is to show that for A € C(6,¢) that X, and T,Se’@)’AO’V”’AO coincide on mp(Ap). As for A € A,

JhoVoso mo(Ao) + UO,FTp(e’(p)’Ao’v”’AO o mo(Ar) and X,(Ag) + UapX,(A1) are both equal to

Ad(V, a,)op"(A), they are equal. In particular, for even Ay € A, T,Ee’so)’Ao’V”’AO om(Ag) = X,0mp(Ap)
and for odd A, € A, Ua, T ?202%0 6 0(A) = Ua, X, 0 mo(Ar) and so T P20 %0 6 oi4,) =

Xp OWO(Al), and so T[EQ’L’D)’AO’VPaAo

7%

omp(Ao+ A1) = X, 0mg(Ag+ A1), so they coincide on my(A), and
so in particular on my(Ap) for all A € C(6, ). The remainder of the argument that they coincide
on their domain B(#, ) (i.e. are equal) is unchanged from the argument for this in Lemma 2.14
of |6].

To prove (b):

Let A’ be a cone, not necessarily in C(0, ). Let A = Ag + Ay € Apnye. By (ii) tw oTp(g’sD)’AO’V"’A0 o
mo(A) = Ad(Vj,a,)0p"(A) . By p € Op there exists V), or such that Ad(V, a7)op" |4 /e = 7|4, and

therefore such that pt|A(A,>C =Ad(V) )0 7T(t)|A(A/>c- So, Ad(Vp,a,) © p'(A) = Ad(V),a, Vi ar) 0 TG(A).
(0799)7A0’Vp,A0

So tw o7}, omo(A) = Ad(Vp A,V ar) © 7 (A) . Because V), 5, V> pr is even, it follows that
8.9).A0,V, . 0.0),A0,Vp, .
7, 0my (Ag) = Ad(Vy a V) omo( o) and T, 7020 0my (A1) = Ad(V, 0V, )omo(Ar).

)80,V

0, - 0,0),MAo,V,
and so T,E v 7o O7TO|A(A,)C = Ad(VpﬁAOVp*’A,) 07T0|A(A/)c- So, for p = Té #)-0: Vom0 omy and U =
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Uap, we have that ,5t|A(A,)C = Ad(Vp,00V /) owé]A(A,)c, and so Ad(V, AV y) oﬁt]A(A,)c = 776|A<A/)c7
ie. V,ar ‘/;;on € V; o This holds for all cones A’, and so this shows that p = nge’w)’AO’Vp’AO omy € Og.
The proof for part (d) is no different from the proof in lemma 2.14 of [6] ( (d) follows immediately
from part (b) when choosing A’ = Ag and choosing V), o, as the value for V), y», which can be done
due to choosing A’ = Ay).

To prove (e): For A € C(,¢), by lemma 55, for Ky € kpp, and V), i, there exists a cone
Ci € C(0, ) such that Ad(V),a,V; g, ) (mo(Asc)") € mo(Acg)"

(Le. such that Ad(V, AV, k, ) (A(A)) € A(Ch).)

And, by twisted locality, mo(Ap)” C mo(Ape)?, therefore
10T (m (A = TN (o (An)')
= Ad(Vpa0 Vi, ) (m0(An)")
C Ad(Voao Vi, ) (mo(Aae)”)

C mo(Acg )" = A(Ch).
(|

As an immediate corollary, we have the following, which is also analogous to part (ii) of Lemma

2.14 of [6]:

LEMMA 60. If U, = £Uq,.,

(ii) for all Ag+ Ay € A,
(97<)0)7A07Vp,A0

T, (m0(Ao) + mo(A1)) = Ad(Vp,a,)(p(Ao) £ p(A1))
(So, if Uy = Uap, then To0 P 0220 o o = Ad(V,0,) 0 p
and if U, = —U,,. then T/EG’W)’AO’VP’AO omg = Ad(V,a,)0opoar.) Tée’w)’Ao’Vp’AO ool Ape =

Ad(Vy,aq Vp*,A) 0 ol Ape

Following Lemma 2.15 of [6]:

LEMMA 61. (1) Let (0,¢) label a forbidden direction, Ao € C(0,¢), and (p1,U,,), (p2,Up,,) €
Oy such that there is an even unitary W € U(H) such that pb = Ad(W) o p}. Then, for
any Vi, Ao € Vo Ao Jori=1,2, ngf’w)AO’Vpl’AO = Ad(V,, A, W™ ;27/\0) o T,o(zew)’AO’va’Ao
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(ii) For (0;,¢;) for i = 1,2 labeling forbidden directions such that (01 — 1,61 + 1) C (62 —

2,02 + p2), B(b2,p2) C B(61,¢1) and C(02,02) C C(01,¢1). For any Ag € C(02,p2), any

T(917s01),1\07 62,02),A0,V) A
o )

Vo, (
p € Og, and any V, ay € V) A,, we have ? O|B(92,Lp2) =T,

(iii) Let (6,¢) label a forbidden direction. Let Ao, A1 € C(0,¢), p € Oo, Voay € Vpr, and

0,0),Mo0,V, 0,0),A1,V,
Voas € Voare Then Ty 9 80V%0 — Aq(v, \ Ve ) o 1090V

PROOF. For part (i), For any A € C(0, ) and any Vi €V ko

Ad(V,, iW) 0 pila;. = Ad(V,, ) © pslaz, = mola;.

and this, combined with the fact that Vpg,]\W is even, means that Vp27/~\W € Vpl,fX' For A € C(0, ¢)

apply that in the case of A = K for some K € KA,0,0, By Definitions 56 and 57,

(97(»0)7A0’Vp

TPI Lo ’WO(AA)” = Ad(vpl,/\o(VPQ,KAW)*HWO(AA)”

= Ad(Vm,AoW* p*Q,Ao) © Ad(sz,Ao sz,KA)|ﬂo(AA)"

(9790)7A07V JA
= Ad(vphAOW* ;27/\0) (¢] Tp2 220 |7T0(.AA)”‘

(07@)1A07Vp2,A0

So, as Ad(V,, A W'V £,) 0 Tp, is norm-continuous on B(6, ¢) and ultraweak-continuous

(evtp) 7A0 7Vp1 Ao
1

on mo(Ap)" for each A € C(0,), and as it coincides with T}, on each mo(Ap)” for

A €C(0, ), it coincides on all of By(f, ¢) and then by continuity on all of B(6, ¢).

. 0a 7A 7V 0a 7A ’V
That is to say, Ad(Vy,a WV, o) 0 Tpy 707200 = g bRt

, as desired.
The proof for part (ii) is essentially unchanged from the proof of part (ii) of lemma 2.15 of [6]; one
need only replace "X, 0wy = Ad(Va,) 0 p" with twoX, o1y = Ad(V,a,) o p".
For part (iii), For X, := Ad(V, a, pfAl)oT,ga’(P)’Al’V”’Al : B(6,p) — B(H), a x-homomorphism which

is ultraweak-continuous on my(Ax)” for all A € C(0, ¢). And,

Ad(V,00) 0 p' = Ad(V,0,Via,) © Ad(Vpa, ) 0 pf

0,0),A1,V,
= Ad(Vya Vi) © twoTy 4010 o

(67410)7A17V A
= two Ad(VpaVya,) 0 Tp "o

= twoX, om.

(The second equality is by Lemma 59(ii), and the third equality is because tw o Ad(U) = Ad(U)otw

T(9,<P)7A0 7Vp,A0

for even unitaries U.) Therefore, by Lemma 59(a), X, = T), , as desired. O
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The proof of Lemma 2.16 of [6] goes through essentially without modification (One need only switch
out which lemmas are used to the corresponding ones here, as well as the definition of 2(A) to the

one used here, etc.):

LEMMA 62. Let (0, ) label a forbidden direction. Let Ag € C(0,¢). Then, for anye >0, A € C(6, )

such that Ag C A, any p € O and any V, x, € Vy Ay,
0,0),A0,V,
Tp( ¥),Ao P AQ (WO(AA)”) g QL(AE) — WO(A(AE)C)“~

Lemma 2.17 of |6] works in this setting when 2A(A) := mo(Ape)" rather than mo(Axc)” as in [6],
with no change to the proof other than referring to approximate twisted Haag duality rather than

to approximate Haag duality:

LEMMA 63. Let (0, ) label a forbidden direction. Then, for any Ao, A € C(0, ), and p € Oy, and

(9790)7A07Vp,/\0

any Ve, Tp is ultraweak-continuous on A(A) = mo(Ape)?.

Lemma 2.18 of [6] states:

LEMMA 64. Let (6, ) label a forbidden direction. Let p € Oy, A1, Ao € C(8,p), t >0, £,6 > 0 with
(A1)ets, (A2)eys € C(0, ) and |arg Ag|+4e < 2. Let V, p, € VA, Recall from definition 38 what

Uhaye and flarg ps)c,5(t) Tefer to. Suppose (A —t).15 € Af. Then we have
(97¢)7A 7V 5 *
HTP b (UA275)UA2,8 - 1” < 2f|argA2|7a,5(t)

The proof of this lemma given there works in this modified setting without modification.

REMARK 65. (7, Uq) is of course in O, and for every cone A, 1 € Vy, a. As such, for each A,

if we choose 1 for V;, x, when constructing T/S%’\@)’AO’I, we can see that each is the identity, and so

Tp(evsp)r/\(hl — idB(97¢)

4.3.2. Like section 3 (the composition).

DEFINITION 66. Let (6, ) label a forbidden direction. Let Ag € C(,¢). Let {V Ay € Vi a0 tneos
be a choice of a V;, a, € VA, for each n € Op. Let D = ((68, ), Ao, {Vi,a0 € Vipho tne0y)-
For p,o € Oy define

pop o= Tﬁg@#’),/\o,vp,/\o ° Téeﬁo)vAOyVo-,Ao o : A — B0, ).
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For such a D, for each n € Oy define Tf = Tée’@)’Ao’V" " where those parameters of (6, ¢), Ag and

ViAo come from D. So, pop o = TpD o T(P o mo.
The proof of Lemma 3.2 of |6] applies here to obtain the following:

LEMMA 67. Let D, D’ be as in Definition 66, and let p,o € Oy. Then there exists an even unitary

U such that pop o = Ad(U) o (popr o).
Closely following Lemma 3.3 of [6]:

LEMMA 68. Let D = ((6,¢), Mo, {Vy,a tneo,) as in Definition 66. Then, for any p,o € Oq, for

T=popo and Uy = Uy, (1,Ur) € Oy, and in particular, (1,Ur = Uyp) € Opg «-

PROOF. Let D = ((0,¢), Ao, {Vi),a0 }neoy), and let p,o € Op. Let 7 = pop 0.
For each cone A:
Let D' = ((¢/,¢'), A, {V).A}nco,) as in Definition 66 (choosing (#',¢’) such that A € C(¢',¢’)). By
Lemma 67 there exists an even unitary U, o such that Ad(U,r) o7 = Ad(Urp) 0 (pop o) = popro.

By Lemma 59 part (b), for all A € Ape,

Ad(Ura) 0 Tlaye = Ad(Ura) o (pop 0)| 4

= pPop U\AAC

(0’,30’),/\7‘/ A (glchl)vA:VU,A
14 "o dh © WO‘.AAC

= T FIAVeA o Ad(V, AV L) 0 70l 4y
= Ad(V,AV,'p) 0 Ad(1) o mo| 4,
= 70| A e -
For U, = U,,., 7" = twor, and as U 5 is even, Ad(U, p)o7! = Ad(U, p)otwor = two Ad(Urp)oT,
and therefore
Ad(Urp) o7 aye = two Ad(Urp) o 7| 4,
= twomp|aye = 7)laes

so, VoA = Ura € Vra. So, as for all A there is an even unitary V. x € V;, we have that

(7,Ur) = ((pop 0), Uay) € Oo.
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In particular, for A = Ag, we can choose D’ = D which then gives us Ad(1) o 7%|4,, = 7| 4,, and
0 0

so (1,U;) = ((pop 0),Uap) € Opg - O
Following Lemma 3.4 of [6]:

LEMMA 69. Let D = ((6,¢), Ao, {Vi,a¢tneo,) as in Definition 66. Let p1,pa2, 01,00 € Op. Let
W, : p1 = p1 and W, : o1 — o9 be even unitaries (so, Ad(W,) o p = ph and Ad(W,) o o} = d}).

Then there is an even unitary U € U(H) such that
P1O°p 01 = Ad(U) o (p2 op 0'2).
PRrROOF. By Lemma 61(i),

0,0),A0, V), I 0,0),M0,V),, [
ij:l) - Tﬁgl rhoVorto Ad(VpLAo )o Tﬂ(2 Phhotonso _ Ad(Vpy,n )o TPDQ

p ' p2,M0 p V' p2,M0
and
D (0)§0)7A0>V01,A0 _ *Y 7% (07@)7/\01‘/0'2,1\0 _ *Y 7k D
TO’1 - To'l - Ad(Val,AO [ea 0'2,/\0) o TO'Q - Ad(VUI:AO o CTQ,AU) © TO’Q'

As W, : p1 — po and W, : 01 — 02, by Lemma 47, W, W, € mo(Aa,un)e)” = A(Ao) € B(0, ¢).
So,

D D
ploDalszloTloﬂ'O

= (Ad(Vou a W Vi ay) © Tp2) © (Ad(Vory 4, W Vigy ) © T) © 70

o X1 7% D ERVAS D D
- Ad(VPLAO P pg,AoTpg (VUl,AO o O’Q,Ao)) o Tpg © Tag O o

= Ad(vp17A0 /;k [Z,AOTPDQ(Vo'l,AO ;V:27Ao)) ° (102 °D 02)'

So, there is an even unitary U € U(H) (specifically U =V}, A, W, pz,AoT;g(VGhAo Vi a,)) such

that p; op o1 = Ad(U) o (p2 0 02), as desired. O

REMARK 70. When expressed in the notation for the monoidal product of intertwiners for the T" en-

domorphisms, which will be introduced in the next section, this V,, A, WV A0T£ (Vor,00 W Vi, Ao)

. kY% K * Yk . D D * Yk .

18 (Vp17A0 P pQ,AO) ® (VUI,AO o 0'2,1\0) Where ‘/Pl)AO p "V p2,Ao sz - Tp1 and V017A0 O'VO'Q,A() :
D D

Ty, — T,
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Lemma 3.5 of [6] applies in this setting as well when 2((A) is defined as we have defined it here, with
the proof going through without modification other than citing Lemmas 59 and 63 as the analogies

to lemmas 2.14 and 2.17 of [6]:

LEMMA 71. Let (0,¢) label a forbidden direction. For i = 1,2, let A; € C(6,¢), pi € Op, and

Then Tée,w)vAlprl,Al T(0790)7A27Vp2,/\2
b

Voihi € Voi A 1 oTp, is ultraweak-continuous on A(N).

Following Lemma 3.6 of [6]:

LEMMA 72. Let D = ((8,¢),Ao € C(0,¢),{Vyrg € ViAo tneo,) be as in Definition 66. Let p,o €
Op.
Set (v,Uy) = (pop o, Uay) € Op. Then

T,f) = Ad(V;a,) oT[f) oT(P,

and 1 € Vy 5, and V5, € A(Ag) C B(0, ¢).

PROOF. This proof is essentially the same as the proof of Lemma 3.6 of [6].

For X := Ad(Vya,) 0 TP o TP : B(0,¢) — B(H) is a *-homomorphism. By Lemma 71, X is
ultraweak-continuous on my( Ay )" for each A € C(6, ). Furthermore, X o mg = (Ad(V;,a,) © Tf o
TP) o my = Ad(Vy ) © (TPD o TP omy) = Ad(Vya,) © 7. So twoX omy = twoAd(Vya,) 0y =
Ad(V ) 0 twoy = Ad(V, a,) 07" (as Uy = Uy, ). Therefore, by the uniqueness in Lemma 59(a),
X = Tf, SO T$ = Ad(V, a,) onf) o TP, as desired.

As shown in Lemma 68, 1 € V(,,11.).a, and (7,Uy) € Opgx. S0, as Vya, 1 € V(5,0,),00, by Lemma
A7, Vyng = Von, - 1 € A(Ag), as desired. O

Following Lemma 3.7 of [6], we have associativity up to an even unitary of this kind of composition.

The proof is essentially unchanged from the one in [6].:

LEMMA 73. Let ((6,¢), Ao € C(0,9),{Vi.Ao € Vin,aotnco,) as in Definition 66.

Let p,o,v € Og. Then, there exists an even unitary Up o~ € U(H) such that

(popa)opy=Ad({Uppey)o(pop (dop7)).
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PROOF. Let 11 = pop o and 7 = 0 op v. By Lemma 72,

(poDU)oD'y:Tlony:TgoT,YDoWO

= (Ad(V7 ay) © TPD oTy)o T,YD omp = Ad(Vy a,) © TpD o (Ad(V: ) o Tg o )

72,0

= Ad(Ve po TP (Vi a,)) © TP 0 TE o 7

72,0

= Ad(Vry a0 T, (Vi) © (p oD 72) = Ad(Vey 8, T, (Vi a,)) © (p oD (00D 7).

In the fifth equality, using that V , =€ B(f,¢) by Lemma 72. Note that Vﬁ,AoT,P (Vx \ ) is

72,0

even. O
4.3.3. Like section 4 (The Intertwiners).

DEFINITION 74. For grade-preserving endomorphisms 77, T of B(6, ), define (17,7%) to be
(T1,Ts) :={R € B(H)|Vz € B(0,¢), R - twoT(x) = twoTs(x) - R},

the intertwiners from 7 to Ty. R € (11, T3) will also be denoted R : Ty — T5.

REMARK 75. The set of grade-preserving endomorphisms of B(6, ¢), along with these sets of inter-

twiners as hom spaces, forms a monoidal supercategory.

LEMMA 76. If T1,T5 : End(B(0, ¢)) are grade-preserving endomorphisms , and if R € (11,T»), then
its even and odd parts Ry, Ry are elements of (T1,Ts) as well.

In addition, for R = Ry + Ry € B(H), R € (T1,1%) iff for all x = xo + x1 € B(0,¢), Ro-T1(x0) =
Ts(zg) - Ro , Ry - Ti(xo) = To(xo) - R1, Ro-Th(x1) = Ta(z1) - Ro and Ry - Ti(x1) = —Ta(x1) - Ry.

PROOF. Let Ry + Ry = R € (T1,T3). For even xy € B(#,p) we have R - Ti(xg) = R -
(twoT(zp)) = (twoTa(zg))- R = Ta(zp)- R and so as the even and odd parts of the LHS are equal to
the even and odd parts of the RHS respectively, Ry-T1(zo) = Ta(xo)-Ro and Ry -T1(xo) = To(xo)-R1.
For odd z; € B(0,¢) we have R-U,,, -T1(x1) = R- (twoT1(z1)) = (twoTa(x1)) - R = Uy, To(21) - R.
Again the even and odd components of the LHS are equal to the corresponding components of the
RHS, so Ry Ua, - Ti(x1) = Usy - Ta(x1) - Ro, and Ry - Uy, - T1(21) = Uq, - To(x1) - Ry Equivalently,
Ry -Ti(z1) =Ta(x1) - Rop and Ry - Ty (x1) = —T1(z1) - Ry.

Therefore, for general x = zo+x1 € B(0,¢), Ro- (twoTi(zo+ 1)) = Ro - (T1(20) + Uap - Th(z1)) =

Ry - Ti(x0) + Ro - UapTo(21)
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= Ty(xg) - Ro + Uap - To(x1) - Ry = (twoT(zg + 1)) - Ro, and likewise R; - (twoTi(xo + x1)) =
(twoTy(xo + 1)) - R1.

We already have that for R = Ry + Ry € (T1,T3) that for all z = z¢ + z1 € B(0,¢), Ro - T1(xg) =
To(xo) - Ro , R1-Ti(zg) = To(xo) - R1, Ro - Th(x1) = To(x1) - Ry and Ry - Th(z1) = —T1(z1) - Ry.
Now for the reverse direction.

Let R = Ry + Ry € B(H) be such that for all x = xy + 21 € B(6, ), those four equalities hold.
Then for all x = zg + 1 € B(0, ¢),

R- (tonl(ac)) =Ry - Tl(xo) + Ry - Uap . Tl(xl) + Ry - Tl(l'()) + Ry - UQF . Tl(l'l)
= Ro . Tl(xo) + chp . Ro . Tl(-%'l) + Ry - Tl(l'()) — UQF - Ry - Tl(xl)
= Tg(xo) - Ro + UaF . Tg(xl) - Ro + TQ(Q?[)) R+ UaF . Tg(afl) - Ry

= TQ(JI()) . (R() + Rl) + UaF -T2(:IZ1) . (Ro + Rl) = (tWOTQ(:IZ)) - R.

Ie. Re (Tl,TQ). O

REMARK 77. In particular, for R € B(H)even, we have R € (T1,Ts) iff Vo € B(0,¢), R-Ti(z) =

As an analogy to lemma 4.1 of [6]:

LEMMA 78. Let (0,¢) name a forbidden direction. Let Ai,Aa € C(0,¢), p € Op, and V,, €

(0:0),A1,Vo01 (050),82,V A
Vori: Voho € Vony- Then (Vya, pfAl) € (Tp LT, 772).

0,0),Ai,Vy.A.
PROOF. By lemma 59 part (ii), tw OT[E 2)Ai VoA,

omy =Ad(Vya,)0p fori=1,2.
Ad(Vpa,Vya,) 0 Ad(Vpa,) 0 p' = Ad(Va,) 0 p".

* (9’¢)7A17VP7A1 * * (97W)7A2’VP»A2
Forall A€ A, (Vpa,V,p,) - (twoT) omo(A)) (VpasVoa,)* = (twoT) omy(A)),
so, for all A € A, (Vya, Vi )-(tw oy DY 0M o (4)) = (tw oI5 0% o0 (A)). (Va, Vi )-
As this holds for all A € A, in particular, for all A € C(6, ), it holds for all A € Ax. So, for

A e C(0,p), we have

% 0,0),A 7V7 6,p),A ,V, %
Vo € mo(Ax), (Vo Vin,) - (bw oy M 00 (ay) — (o200 () (v, V0 ).

A A
As T£9’¢)’ 1’VP‘A1,T,§0’¢)’ Q’VP’A2,tW are each ultraweak-continuous on my(Ap)” (for A € C(0,¢), by

Lemma 59 part (i)), we therefore have that this is also true for x € mo(Axp)".
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(Specifically, take z — (Vpa,V 'y ) - (tw ofl’p(e’@’/\l’vp’A1 (x)) — (tw oT,Se’(P)’AQ’Vp’A2 () - (Vo0 Vyip,)-

Because, with domain m(A,)" it is a continuous function with respect to the ultraweak-topology,
so its kernel is closed.) Therefore, it is true for Bo(6, ) = Unec(o,) mo(An)”.
Then, as these functions are also continuous with respect to the norm topology, we also get that it

is true for all x € By(6, cp)”.H = B(0, ). So,

% 6,0),A ,V, 0,p0),A ,Vy *
Wz € B(0,9), (Vya,Via,) - (bwoTy Mo 0y — (g 022 002 (0y) (v, v, ),

: (0730)7‘/\17‘/ WA (0790)7A27V A
e (Von,Viya,) € (Tp N ] O

As an analogy to lemma 4.2 of [6]:

LEMMA 79. Let (0,¢) name a forbidden direction. Let Ai,Ay € C(0,¢), p,o € Oy, and V,, €

0,0),A1,V, 0,0),A2,Vo
Vp7A17Vg,A2 e VU7A2- Then (Tp( 90) 1 p,A17TO(_ 90) 2 ,Ag) g TrO(A(AlLJAQ)C)t, g 8(0780)

PROOF. By Lemma 59 part (d), we have Té@w),Al,Vp,Al

(6750)7A27V0,A2 _
TO’ o 7TO|A(A2>C - WO‘A(AQ)C'

0’ 7A ’V 0, 7A )Vo'
Let R e (T, 7" Vers pl0@)AaVonsy

o WO‘A(AI)C = 71—0’./4(/\1)0 and alSO that

Let A € A(AluAl)C - .AAf N AA%' Then

R (twomg(A)) = R- (twoTL P VeM o o 4))

) A2, Vo A,

= (tw oTée’w omy(A)) R

= (twomp(A)) - R.

(Where the first and last equalities are by the conclusion drawn from Lemma 59 part (d), and the
middle inequality is by the definition of R € (T,EGWLAI’VP A Tée’(p)’AQ’VU’Az )
So, for A € A(a,un,)e We have that R commutes with tw omg(A),

i.e. that R € mo(A,ung)e)”-

So, (Té9789)7A17Vp,A1’Tg(e,sﬂ)aAz,Va,Az) C WO(A(Alqu)C)t, C 8(9, (P), as desired. 0

LEMMA 80. Let (6, ) specify a forbidden direction. Let Ay, Ao, Ny € C(0,p). Let p,o,0" € Op. Let

Vp,AI,Vc,,AQ,VmA/2 be from VP7A1,VU7A2,VU7A/2 respectively.
0,0),A2,V, (0:):A%: Vo a1
Let § - T\"PA2Vene 2.

!
0,0),A1,V, 0,0),A1,V, 0,0),A2,V, 0,0),A1,V, (0,0),A5, Vs a1
Then, Ty *" Vot (g) oA Voas o 0 heVons _ pl0lhVons o ) :

(o
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PROOF. First note that, by Lemma 79, S € B(0, ¢) and so Tp(e’(p)’Al’V”’Al (S) is a valid expression.

) (0,0),A2,V5 A,

. . . . . 67 7A 7V
As abbreviations within this proof, let 7}, denote T,E #hite A et T, denote T, and let

(6,(,0),/\/2,‘/ ! Al
T, denote T 70

0—/

Now, first let 29 € B(6, ¢) be even. Then

T,(S) - (twoT, 0 Ty (xg)) = T,(S) - (T, 0 Ti(20))
= Ty(S - T, (xp))
= T,(S - (tw o, (0)))
— T, ((tw oL (a0)) - S)
= (T, 0 Ty(w0)) - Ty(S)

= (twoT), 0 Tor (x0)) - T,(S5).
Now, let x; € B(6, ) be odd. Then

T,(S) - (twoT, 0 Tp(z1)) = Tp(S) - (Uny - T 0 Ty (1))
= —T,(8) - (Tp 0 Ts(x1)) - Uay
= —T,(S-Ty(21)) - Uap
= — —Tp(S  Uay  To(21) - Uay) * Uay
=T,(S - (twoTy(x1)) - Uap) - Unp
= T,((twoTor(21)) - S - Unp) - Unp
p((Uap - Tor(21)) - S - Uap) - Uap
= —Tp(To (21) - Uap - S - Uag) - Uag
=-T,0T, (1) Tp(Uap - S Uap) - Uap
= (tw 0T}, 0 Tpr (1)) - Ad(Uay )(Tp(Ad(Ua, )(S)))

— (tw oTp oTy (:L'l)) : Tp(S)'
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So, for an arbitrary zo + x1 € B(6, ¢),

T,(S) - (twoT, o Ty (zo + 1)) = T,(S) - (twoT), 0 Ty (o)) + T(S) - (twoT), 0 Ti (1))
= (tW OTp o TU/(.%'())) . Tp(S) + (tW OTp o1, (1‘1)) . TP(S)

= (tw 0T, 0 Ty (o + 21)) - T,(S).

0,0),A1,V, 0,0),A1,V, 0,0),A2,V, 0,0),A1,V, (0,9),A5,V 1 a1 )
So T,E e) P18 :ng )ALV oTé #)A2,Vong —>TF(, )ALV oT 2 as desired. O

UI

DEFINITION 81. Let (6, ¢) specify a forbidden direction. Let A1, Aj, A2, A} € C(6, ¢).

Let p,p',0,0" € Op. Let Vj, a,, Vi ars Vonss Vony be from Voais Vo A Vo ass Vo, ay Tespectively.

(0’¢)7A’ 7V ! A (07@))/\/ 7V0-/ /!
Let R: Ty Ve Ly PRI g g g0 Ve g TR
Deﬁne R ® S — R . Tp(@:ﬁo)vAlyvpyAl (S)

As the analogy to Lemma 4.3 of [6]:

LEMMA 82. Let (0, ¢) specify a forbidden direction. Let A1, A}, Ao, Ay, € C(0, ). Letp,p',0,0" € Op.

Let Vi Ay, Vp’,A/17VO',A2’ V07A/2 be from VP7A1,Vp/7A/1,VU7A2, VU,A/2 respectively.
6 AV 0 ALV
(0:0)M1, V0 g (0,0):A2,Vir 1 R T( 2p)s A, a/,A’Q'

0,0),A1,V,
LetR:Tp( )AL Voay —>Tp, and S : T, "
0,0),A1,V, 0,0),A2,V, (0,0),A1, V0 Az (0,0),A5, Vo1 a1
Then, R® 8 : Ty OV o pfohielons ) Mo Az
(0,0),A7, Vs (0,0),A2,V5 A

s 0,0),A1,V]
PROOF. As abbreviations, let T, = Tﬁs ehha o1 Ty =T,
(97¢)7A57V0/7Aé

!

VT, =T, and
Ty =T,
The lower square of the following diagram commutes for all € B(6, ¢) by Lemma 80. The upper
square commutes for all x € B(0,¢) by the definition of R : T, — T, applied in the case of
T, (x) € B(H), so that R - (tw oT,(T5/(x)) = (tw ol (T, (x)) - R. Therefore, for all x € B(6, ¢), the

entire diagram commutes.

(tw 0T} 0T /) ()

|

R
(twoT,oT, /) (x)

R

Tp(S) p1(S5)

e —H o0 —r @

i

(tw oTpoT,) ()
The statement that the rectangle comprised of those two squares commutes, is the statement that
(R-T,(S)) ((twoT,oTy)(x)) = ((twoT,y 0Ty )(x))- (R-T,(S)), and this holding for all z € B(6, ¢)
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is what it is for R-T,(S) : T, 0T, — Ty o Tty

0,0),A1,V, 0,0),A2,V, (0,9):A1, V0 ar (0,0),A5, V1 a1 .
SOR@S:TP( P p‘AloTé ©),A2 ’A2—>Tp/ ? 'oT, 2. as desired. OJ

The analogy to lemma 4.5 of [6]:

LEMMA 83. Let (6,¢) label a forbidden direction. Let p,p',p" 0,0, 0" € Oy. For 7 € {p,p,p",

0.0',0"} let Ay € C(0,¢) and Vop, € V., and let T, = TPV Lt g2 T, — T,

R : Tpl — Tp//, S:T, =Ty and S’ Tyr — Tyn.
Then, (R'© S")(R® S) = (R'Ro) ® (S4S) + (R'Ro) @ (S,.9) + (R'R1) ® (S,S) — (R'Ry) ® (S.9).

In other words, for S’ and R are homogeneous, then
(R ®S)R®S)=(—1)¥IIF(R'R) (5'9)

(where |S'| and |R| are the grades of S’ and R respectively) and if they are not homogeneous, this

applies component-wise.

PRrROOF. This can be seen by Lemma 76 and the definition of the monoidal product ® on these
intertwiners.
First, suppose R, S’ are homogeneous.
By Lemma 76, As R: T, = Ty, Ty(S') - R = (—1)I¥'IIFIR . T,(8"). So,
(R'®S8")(R® S) = (R'T,y(S)(RT)(S5))
=R (T,y(5) - R) - T,(5)
= ()RR (R T,(5) - T,(5)
= (-)¥IF(R'R)T,(5'S)
= (-D¥IE(RRY @ (5'S).
Now we address the case where R = Ry + Rp, and S’ = S, + S| are not homogeneous. By Lemma
76, Ro, Ry : Tp — Tp/ and 56, Si Ty — Ty,
(R'@S)(R®S) = (R'@ (S +51))((Ro+ Fi) ®5)
= (R'® Sp) + (R @ 51))(Ro® §) + (R1 ® 5))

=(R@S)(Ry®@S)+ (R ®S))(R1®S)+ (R ®S51)(Ry®S)+ (R ®S)) (R ®S)
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= (R'Ry) ® (S)9) + (R'R1) ® (S)9) + (R'Rp) ® (519) — (R'Ry) ® (519),

where this is by ® being bilinear along with applying the homogeneous case.

LEMMA 84. As in Lemma 82, Let (0, ) specify a forbidden direction. Let Ay, A}, Ao, Ay € C(0,¢).

Let p,p',0,0" € Op. Let V,,, Vi nrs Vonss Vony, be from Vohis Vo AL Vohas Vo ny, Tespectively. Let

0,0),A1,V, (0,0), A1,V ar 0,0),A2,V, (0,0), A5, V,r a1
RN O and § T e 3

g

Then for R and S homogeneous,
(R@9)* = (-1 (R*) ® (57),

and this extends bilinearly for the non-homogeneous case.

PROOF. First, we will show that this holds for the special case of R ® id, and id, ®S (where
(0,0), AL,V 1 a1 (0,0), AL,V 1 ar
idy =1:T, R I 20 and id, =1: Téa’w)’Al’Vp’Al — nge’@)’Al’Vp’Al), and then

o

show that it therefore applies in general.

First,
(R®idy)* = (R T Yed (1))
= R*
L (0.9).M
=R-T, (1)
Second,

(id, @) = (11,77 (g))r = ("M ()

i 5

= 1. 7PN g
—id, ®(5%) = (id}) ® (S7).

By Lemma 83, (R ® id,) - (id, ®9) = (=1)lidlidl(R . id,) ® (id,s -S) = R® S.
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Therefore,

(R® S)* = (R®idy) - (id, ®5))*
= (id, ®5)* - (R ® idy)*
= (id, ®(5")) - (R*) ® idy)
= (~D)FIFI((id, -R") ® (5" - idy))

= (117 (R") ® (57),

(where the fourth equality is again by Lemma 83)
as desired.

The non-homogeneous case is covered by conjugate-linearity of (—)* and bilinearity of (—® —). O

DEFINITION 85. For T4, Ty, T5,Ty € End(B(0, ¢)),
each of the form TIO(QQ’SD)’A’V"’A for some p € Oy some A € C(6, ) and some V, 5 € V, A, each for some
common choice of forbidden direction (6, ¢) for all four of them,

and A : Ty — Ty and B : T3 — T where A, B € B(0, ¢), define
[A,Blg+ =A®B — (_1)\A|-\B\B ® A

when A, B are homogeneous, and componentwise if they are not.

(So, [Ag + A1, Bo + Bi]g,+ = [Ao, Bolg,+ + [Ao, Bi]e,+ + [A1, Bole,+ + [A1, Bi]g,+.)
The analogy to lemma 4.6 of [6]:

LEMMA 86. Let (0,¢) label a forbidden direction. Let p,p',o,0" € Oy (not necessarily distinct).
For each label 7 € {p,p/,0,0'} let A € C(0,¢) and for t; > 0, Voa, 11, € Ve, 4t,. Also set
TtT — T(97<P)’Ar+tT:V7—,A7—+t-,—

T T .

The labels p, p', 0,0’ are used to index associated data (e.g., cones and operators), and these data

may differ even when the actual representations are equal.

Suppose that {Ay, Ay} Lg o) {Ao, Aor}. Fort,,ty >0, let Rl ¢ (T;”,T;/’J/) with HRtP’tP’

<1
and R''%'" homogeneous, and for ty,ty >0, let Stote’ € (Tgf’,Tti") with || Stete' | < 1 and Stote

g
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homogeneous. Then

tp.t

/ to,t
o “Rtmtw@stmt«r'—(—1)'3 PHS e  Glotar @ Rlety || = 0,

tp,tpl,tg,tal—)oo

i.e.

lim ||[[R"", 8" g 1 || = 0.
tp7tp/7to'7tg/_>oo ’

PROOF. This proof is following the proof in [6].
First it will demonstrate that R @ Stoter — Reler . Stoster and Stote’ @ Riele — Stoster . Rlesty
both go to 0 as t,,t,,ts,t;s — 00 by showing that T;p(St”’tv’) — Stotsr and Tle (R'ee') — Rlete
both go to 0 as t,,t,,ts,te — 00. This first part is not much different from the proof of Lemma
4.6 of [6]. The last bit however changes a little due to how the conclusion of Lemma 52 differs from
Lemma 2.8 of [6].
By the definition of {A,, Ay} Lig,) {As, Asr} there exists € > 0 and A, A, €C(6, ) such that for

T,v € {p,o} with v # 7, (Ar — Ra, 2)e € (A)S, (A7) € C(6, ), and arg((A,).) Narg((A,):) = 0.

Choose § > 0 small enough that (A,)-4s, (As)ers € C(0, @) and arg((Ap)ets) Narg((Ag)ets) =0

For any ¢ > 0, by Lemma A.2 of [6], for sufficiently large (depending on t¢) (¢;) so that

Te{p,p’,0,0'}>
for 7,v € {p,0} with v # 7, Ay +t;, A+t C Ay +t and (A, + %)€+6 C (A + ty)".

By Lemma 79, we have S''' € mo(Aqa,+t,)u(, +,)))" < WO(A(AUH)C)U, and likewise that
Rleto' € g (A((A,,+tp)u(Ap,+tp/))C)t/ C WO(A(]\;)-H)C)H' Applying approximate twisted Haag duality to

this, Ad(UFAg+t),s)(Sta’t”/) < FO(A(AUH—R;\J,E)S)H and Ad(U:]\ert),g)(Rtp’tp') < WO(A(Ap+t—RM5)5)”~
As

(]\o + (t - R[\mg))s - (]\a - R[\a,g)s - (]\p)c - (]\p + t)c - (Ap + tp)c

and

(AP + (t - R]\p,a>)€ - (Ap - R]\ 5)8 - (AU)C (AU + t>c C (AJ + tp)c

P

N

therefore we have Ad(U* )’6)(St"’t0/) € 770(.'4(]\04_(15—]{]\0’5))8),/ C mo(A(a,+¢,)¢)" and similarly

(Ag+t
Ad(U(*i\ert),s)(Rtmtp/) € WO(A(AprRAP,S)s)H C mo( A, +,)e)"- Now,

Tptp(Sta,tg/) — T;p (Ad(U(AU+t)7E)(Ad(U(*Aa—i_t)’e)(Stth/)))

= AT (U3, 40 ) © T (AA(U_,, )(S™')).
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Recall Lemma 59 parts (i) and (d). By part (d), T;p|7r0(v4(/\p+tp)6) = id|7ro(A(Ap+tp>c)' Because
(Ay + (t — R&ﬂg))€ C (A, +t,)¢, further restricting to WU(A(AUJr(t—RA ))6) C mo( A, +1,)) we

have that Tpt”\m( ). As (Ay + (t — Ry ))e € C(0, ) we have

i = id|poa -
Aoy, ) = Wm0, g

(by part (i) of Lemma 59) that T;” is ultraweak-continuous on WO(A(AUJr(t—R,—\ ))E)”, we have that
tp y ’
TP |7T0(.A(Ao+(t7R[\U’E))S)// = Zd|7TO(A(/~\g+(t—R~U 5))5)//.

A
Therefore, as Ad(U*

(Aa+t)7€)(5t”’t”’) € WO(A(AUHFR;\ms)) )" we have that

£

T;;P (Ad(U(*AGH)’E)(StU,tU/ )) = Ad(U:Ag+t),g)(StU7tal ).

So, from T,* (St te) = Ad(T;;p(U(Aa+t),a))(Tptp(Ad(U(*AGH)’E)(St‘”t"/))) we get
Ty (Stter) = Ad(Tptp(U(Aa+t),a)UFAg+t),s)(Stmt(’/)‘

Similarly, Tj"(Rt”’t”’) = Ad(Téa(U([\p-H),e)U

(s D)

Applying [6, Lemma 2.18|/ Lemma 64 with A, +¢,, Ay +t, % as the respective values for Ay, Ao, t
from that lemma, we get HT;" (UAUH,E)U;\JH,& = 1H < 2f|arg/~\0|,575(%). To apply this lemma we use
that ((Ag +1) — ets € (Ap+1t,)° as well as that (A, +1t))eys, (A +1t)oys € C(6, ). This is for all
t >0 and (tT)TE{ p.pl 0.0y 1arge enough to satisfy the previously stated conditions, depending on .

For any & > 0, choose t > 0 such that 4f\arg Ao‘|7876(%) < ¢’. Then, for this ¢ and corresponding large

enough (t;);c(pp 0,0y We have

HTptp(Stg,ta/) _ Glodty

= HAd(Tptp(U(A“+t)’E)U(*/~\g+t),s)(Stmtdl) _ Glodty

t * oty
= H[Tpp(U(A(,th),e)U(]\ath),s’St ! ]

<2 HStg,t(,/

HT;” (U(Ad-s-t),a)U(*f\gH),E -1 H

t
<2:1-2f 05 105(5) <€

5
Therefore,

lim HT;p(Stmt"/) . Stg,ta/ = 0.

tp,tp/7to-,tal*>00

Similarly,
lim HTot'U (Rtp’tﬂl) _ Rtp,tp/

tp,tp/,tg,tU/ —00

=0.

Now the proof slightly diverges from the corresponding proof in [6].
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Let s = |R'"'||Stt'| where |R'''|,|St | are the parities of R Stols’ respectively, i.e.

s = 1 if both are odd and s = 0 otherwise.

HRtp,tp/ ® _(_1)SStg,tol ® Rtp,tp/

_ HRtp,tp, 'T;p(Sto—,tU/) —(—1)3§tete . Tta (Rt

S HRtp,tp/ . Stg7to./ _ (_1)SStU,t01 X Rtp,tp/ + HTS—U (Rtp,tp/) _ Rtp,tp/

n HTptp(Stg,tg/) _ Glostor

)

and the last two terms both go to 0 in the limit. So,

HRtp,tp/ ® Sto'7ta,/ _ (_1)3St07t0/ ® Rtp,tp/

} . H[Rtp,tp,7sto,t0/]i}|

goes to 0. We have that S'='e’ € WO(A(]\OH)C)“, and that R'»' ¢ Wo(A(ApH)C)t’. and that A, is

distal from A, and so by Lemma 52,

lim ||[R'", Stote'] .| =0,

t—o00

where the (t,) 1y are large enough relative to ¢ to satisfy the conditions. And so, as desired,

Te{p,p’ 0,0

lim ‘Rtp,tp/ ® Sto—,tol o (71)|Rtp’tl’l|-‘st‘7’to"Stg,tar ® Rtp,tp/ —=0.

tp,tp/,tg,to/ﬁoo

O

If Rt ¢ (Tpt",T;f") and S'ote' € (Tl T'') have mixed degree, this can still be applied by

splitting them each into their even and odd components.

DEFINITION 87. Let (6, ¢) label a forbidden direction.
For two cones A1, Ay € C(6, p) we say Ao (ef\ A1 to mean the range of angles arg Ay is counterclock-
wise from the range of angles arg A1 when the forbidden direction (6, ) is taken into account. More

precisely, if there are some basepoints p; € R? and 6; € R and ¢; € (0,7) where A; has basepoint 7;

and range of angles [0; — ¢;,0; + ¢;] for i = 1,2 and such that

O+ <01 —p1 <014+ @1 <Oy —pa <o+ o <2m+0— .
The proof of Lemma 4.8 of [6] goes through without modification. Here we restate the lemma:
LEMMA 88. Let (6,¢) label a forbidden direction. Let A1,Aa, A}, Ay € C(0,¢). Suppose that

A1 _L(gﬂp) AQ, that AQ A Al, and that All J_(gjg,) A/Q, and A/2 N A/l
(6,) (0,)
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Then, for i = 1,2 there are {Agj) ?:0, {A’Z(j) ?:0 C C(0,¢) such that

AP =, MO =L =12

(AP ATTDY Lo (AT AT, P AT L) (A AT =0,1,2,3

4
(AW APy 1 (A, A5y,

So, for each of Ai,N'1,Aa, N5 there is a sequence of 5 cones starting with the one the sequence
corresponds to, where for a sequential pair in this sequence, the two of them together are mutually
distal (with forbidden direction (6,y)) from the corresponding pair from the cone with the other
index from ¢ = 1,2, and where at the end the ones from i = 1 are together mutually distal from the

ones from i = 2, with forbidden direction (0, p).

This is a bit like saying that four cones starting at Ay, Ay, Ag, A’ respectively can be moved around
so that the ones that started out at As, A’s end up counterclockwise and sufficently separate from
the ones that started at Ay, A’y , without the ones that started at Ay and As getting too close to
each-other, and also without getting too close to where the other had just been, and likewise for

the ones starting at A} and at A.

LEMMA 89. Let I be an upward-directed set. Fort € I andi=1,2 let T}, T}, T} € End(B(0,¢)) be
endomorphisms of the form required in definition 85. Suppose that Rt : T} — th, and Rﬁ, (T — Tf//
with RY, RL € B(6, o) as well, that gien}l[Rﬁ, Rl)g+ =0, and that ltierrIl[Rtl,, Rb)o+ = 0. Also suppose
that for some C > 0 that ||R||, ||RY,

Then, ltierrll[R‘i,R’j, RYRb)e s =0, and for allt € I, |

<C foralli=1,2andtel.
[RY,RY, Ry Rbg || <27C*

PROOF. First suppose that the RY, Rl, are homogeneous.
By Lemma 83,
t t
(Ri, RY) ® (Ry Ry) = (—1)/FIMI(RY, @ RY)(RY @ RY)
(RyRb) @ (R RY) = ()Pl (R, @ RY,)(Rb @ RY).
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For homogenous A, B of the right type for the expression to be well defined, as [4,Blg+ = A®
B — (-1)MIBIB ® A, therefore also B® A = (—1)4IBl(A® B — [A, Blg +). Applying this,
(Ré/ & Ri/) = (—1)‘R;,”R§II(R§/ X R;/ - [Rti/, R%/]@d:) and

t t
(R ® RY) = (—1)"IBl(Rl @ RY — [RY, Rb]e 1)
So,

(R RY) @ (R} RY)
(=) IR (RS, & R, — (R, Ryle.)(RL © RS — [R], Rilo.+)
=(-—1)\ M I SR (RS, o RY, — (R, Rllo,+) (R © RS — (R, Rils.x)
=(=1)! IR 11 IR (RY, @ Ry ) (RY @ RY) + X7)
=(= 1) I BI(((RY RY) @ (Ry RBY) + (-1 IXY)
where X' = (R, Ry Jo s [R], Rilo. — (Rl RJos (R{© RS — (R}, @ Ry) - [R], R]s, 2. Because

the ||RL]|, ||RY

easily seen that for all t € I,

< . t t . t’ t/ . t — ) . .
< C and 1t1€r51[R1,R2]®¢, and ltleHIl[Rl , RY]o,+ are both 0, ltleI?X 0. Also, it is

X' <(2-CH*+(2-C?) - (C?) + (C?) - (2C?) = 8C*.

Therefore,

t

t t t
[RiRY, Ry RhJe e = (RURY) @ (RYy Ry) — (—1) " I RRI(RY RY) @ (RYRY)
= (R /1) ® (RyRy) — (RyRY) ® (Ry R) + (-1)° X"

=0+ (~1)*X"

where s = Ry R} [| Ry R + | RS | Ry|. So,

li t/ t t/ t =i -1 th:
tIGHIl[Rl Ry, Ry Ro)o =+ tlenfl( ) 0

as desired. And, for all t € I, ||[R,RY, Rl Ry + | = || X']| < 8C*.
If the Rﬁ,Rf, are not homogeneous, the result can be applied to their even and odd parts, and
therefore imply the result for them as well. In this case where they are not homogeneous, to get

an upper bound on H R} RE, RE,RQ]&iH, after splitting it up into the even and odd components of
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each of R} Rl,, R RQ,, there are 2% terms which each have norm at most 8C*, and so we have an

(R, RY, Rl R 2| < 27C* O

As an analogy to Lemma 4.9 of [6]:

LEMMA 90. Let (0,¢) label a forbidden direction. Let Ay, Ao, A, A, € C(0,¢). Suppose that
Ay Lgy) Ao, that Ay~ Ay, and that Ay L, A5, and Ay o~ Af.

(0.¢) (0.¢)
Fori=1,2, let p;, pj € O, and for each t;,t; > 0 let Vi, nt; € Vo, Artss Vir aray € Vi argrs let
0,0),Ai+t;,V, ’ ) (9, ) A+t V LAt ! .
Tl abbreviate T( AR T;} abbreviate T N and Rt“t’ e (Th,T /’) with
] < | 1

/
t17

Then, for R ot homogeneous and s = |R; t1| \th’t2| (i.e. 1 if both are odd and O otherwise),

lim HRtl’tl ® R (“1) R @ R4 = 0.
t1,t’1,t2,t’2—>oo
In the general (not necessarily homogeneous) case, we have
lim H[R“’ Ry o H —0.
tl,t’l,tg,t’2~>oo
PROOF. First, assume that both Rtl’ and th’ 2 are homogeneous for all t1,t), to, t).

By Lemma 4.8 of [6] ( Lemma 88) there are {A(])}] —0» {A/Z(j)}?:o C C(#, ) for i = 1,2 satistying

AO — A, MO AL =12
(AP AGD) L (0D AGD), D NG L (VL NG) 201,23

(A5, N 0Y Lo {057, MDY

Fori=1,2,j=0,...,4 and t;, 1 i >0, lett—(tw, ”\z 1,2and j =0,...,4),

and let £ — oo mean that ¢; ;,t, - — oo for each i, j.

1,35 Y5
/

Pick for each i, j, for each t; ; > 0 a V“Amﬂ € VP%AEJ-)H and for each tij = 0a V, A - S
Vo iy -

PN+
For each t and for each i = 1,2 and j =0, ..., 4, as abbreviations, set

() 0 A/(J)th/ v )

T'J f B T(ev‘ﬂ) A +t4,5,V pi A§”+tm 4 ,jt (0,¢), 0,57 {i’A//L(J)th;,j

oy i an T = T

For each t and each i = 1,2 and j = 0,...,3 deﬁne
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).t (])7 *
Wit = v Ve o and WO = v V* . . By Lemma 78
i pi,A£J+1)+ti,j+l Pi,/\z(»])-‘rti,j o A/(J+1)+tl o P:;yA,EJ)"‘t;,j y )
NT R L. - N7 oo
m(.])7 . Tl’.]’t — T;;J+1,t and W/Z(J): . T;,"]’t — Tp 3J+1t

As the {A J 0 {A'Ej) ?:0 C C(6, ) were chosen according to 88 and ”W/i(j)’{“ =1= HW’Ej)’F ,

applying lemma 86 we get that, for j =0,...,3,

lim WL W o =0 and  Jim (WD) (WP gL =0

00 t—o00 ’

For ¢ = 1,2 define

0—4),t 3), 1y 1(2), 151 (1), x5 7 (0),E i’ ,0,F i A
L R L U L R e o

W'(O—>4):F — W-(g)’FW-(Q)’FW-(I)’FWZ-(O)’F1 TZ;O’F—> T;;4,f

(2 (2 (2 (2

S W,(0—>4) Rrh ti0,t; O(W'(0—>4),t”)* : T;;“ N Tz 'AY

7 2

where these being intertwiners with the stated domains and codomains follows from composition,
along with the adjoint of an intertwiner being an intertwiner in the opposite direction. Note also
that as W', O=9:8 and Wi(0_>4)’ are even, the grade of St is the same as the grade of R, oty 0 and
t1,0,} t2,0,t!
sos = |R,"OL Ry = [T - |SE).
As {A, A Y L (A5, 4759, by Lemma 86, Jim ST, SE)p+ = 0.
o0

By iteratively applying Lemma 89, and using the fact that

for j =0,...,3  lim (W), (W5) ez =0,

b
t—o00

we get that
Tim [/ (W70 e s = 0,

b
t—o0

Similarly, we obtain

t—o0
from limz [W(J) Wit ] =0
t—o0 1 2 ®,+ :

As the W(0H4) W (0947 sed to define St in terms of R, oo are unitaries,

Rti,Oat;o — (WI,EO_>4)7{)*S§W7;(O_>4)7F

(]
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So, by two more applications of Lemma 89, we get that

hm [Ril O,tl 0 th O,t2 0]®’:|: _ Jlm [(W/(0—>4) t) StW(O—)4) (Wl(0—>4) t) StW(0—>4) ]® n

i—00 t—o00 ’

=0

as desired.

Now we treat the case where the Rzi’t" are not assumed to be homogeneous. By Lemma 76, we

tl: tz 7t tu tl,t;

have that R;' (., R;'oda € (T}, Tt;) and by Lemma 112(ii), we also have that HRZ even || [ o dd ) <
HRt“t . So, from the condition that HR“ ‘Il <1 we have that HRfli,en , Rfi’féd < 1. So, the

conditions of this lemma apply to the even and odd components of the Ri“ti, and we have already

shown the lemma in the homogeneous case. Therefore, we have

. t,th ot
lim [leal,R2?52]®¢ =0, fora,pS € {even,odd}.
t—o00
So,
t,t] pta,ty . t1,t] t2,th t1,t] t2,th
hm [R R ]®,i = _hm ([Rl ,even’ R2 even]® + + [Rl ,even’ R2 odd]® £t
t—00 t—o00
t1,t) ta,th t1,t) to,th,
[ odas Boevenl@,t + (R odas Boodalet)
= 0.
This completes the proof in the general case. ]

The above proof could alternatively have been done using Lemma 83 more directly in place of using
Lemma 89 , by using the fact that the Wi( 28 W’( 28 are all even to avoid the sign terms in the
compositions, but this way was easier to phrase.

The conclusion of Lemma 4.10 of [6] applies here as well with no changes, and very little changes

in the proof:

LEMMA 91. Let (0, ) label a forbidden direction.

let p=11 =71, 0 =19 =79 € Op.

Fori=1,2 letty =t be two notations for the same number. Likewise, let Ay = A} be two notations
for the same cone.

Forie€{0,1,1',2,2'} let A; € C(0, ). Forie {1,1',2,2'}, fort; >0, let Vo, a,+t, € Vi, Aytt,- FOT
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T €{p,o} let Vrino € Vrio-
Set F: (ti)izl 2, E, = (t;)izl’g.
FOTi S {1,2} set W 5, Ao, Ay VTi7Ai+tiV7::,AO and WT A(),A/- = VT,L,A;+25;V7::,AO

Suppose Ay Lg o) A1 and Ag (9{\) Ay, and that Ay L o) A} and A (ef\) A). Then we have
P P

. ind ind g * g
lim H(W;AOAQ ®@W, A0A1) (Winon, © W, AOAQ) (W;AOA’Z ® WtA A7) (WtAOA’l oW oAoh,

TP —00 #

‘:0.

oy
PROOF. For i =1,2set W/ := Ve N Vi At

Tis

Set these abbreviations:

A
FOI’ Z — 1’ 2 1et T}é}o — T(,L 750) 0 TZ,AO
For i € {1,1/,2,2'} let T;;ti _ Tg»@)vf\i-l—ti,vn,/xﬁti.
From Lemma 78, for i = 1, 2:

it

WEyoa T s Tt Wi o Tt and WY TR S T

Do, 1,AZ,A‘

As all of these W intertwiners are even, by Lemma 83,

L it t
(WTl,Al,All WTz,Az,Aé)(WTIaA()yAl ® W7—27A07A2)

= WL A Whaon) @ (WED W a )
T1,A1,A/1 71,A0,A1 TQ,AQ,A/Q 72,M0,A2

T2,

t
=W 71,M0,A] ® W Aog,A%

and likewise

i iy t
(I/VTz,Az,A’2 ® WT1,A1,A’1)(WT27AOaA2 ® WT1,A0,A1)

o
=W AO,A/2®W Ao A

T2, T1,

SO

(4.1)

W 1% “(w? 1%

(Wi, agay © 1,AoA')( 1,A0,05 @ rz,AmAg)
(4.2)

_(wt N i &y st o o
- (W7'27A07A2 ® WTLAOvAl) (WTQ,AQ,A’2 ® WTl,Al,A,l) (WTl,Al,All ® WTQ,AQ,AIQ)(WleA()vAl ® WTQ,A07A2)'
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. ]
Applying Lemma 90 with p; = p} = 7; and R:“t" = W:_’tA‘ y (for i =1,2) we get

ot &t . . oy . .
ttlllm [Wl,Al,A”Wm,AQ,A']@»i = 0, which, because the WTiA_A,_ are all even, is equivalent to

. &t &t e ¢ . . T .
{tlflinoo(WTl’Al’A/ ® WTQ,A%A, - WTQ,AQ,A' ® er,Al,A’) = 0, which as these are unitaries is equiv-

alent to _lim (Wi A, ® Wit A Wit A ® Wi a;) —1) = 0 and, substituting this into
s ,%OO b b b b b y b b
equation 4.1 above, we get the desired result. [l

With this, the definition of the braiding morphism (Definition 4.11 in [6]) works without modifica-

tion:

DEFINITION 92. Let (6, ) label a forbidden direction.

Let p=11,0 =1 € Op. Let Ag € C(0,¢). Let V, ay € Vo ngs Vg € Vo ng-
Define e(+ )(p, o) as follows:

Pick any A1, As € C(0, ¢) such that Ay Ly ) A1 and Az (9{7;) Aq.

For i € {1,2}, for each t; > 0, pick any Vi, o, 4+, € Vi, Ay +4:-

Set t = (t;)i=1 2. For i € {1,2} set W. Ao A= Ve hi+ Vi Ay

Define

A ) P 7
fgr 0)(/)7 o) := lim (WiAOAQ @ W, AOAl) (W;;AOAl ® W, AOAQ)

t—o00

By Lemma 91, this limit exists and is independent of the choices of Ay, A and of the choices of

ViiAitts € Vrihit;:

Lemma 4.12 from [6] goes through in this setting with essentially no modification to the proof (other
than which lemmas are cited to reach the same conclusions, and using Remark 77). It is restated

here:

LEMMA 93. Let (0,¢) specify a forbidden direction. Let Ag € C(6,p). Let p,o € Oy. Let V, 5, €
0 A 0 A
Voo and Vo ng € Vo n,. Let T, and T;, abbreviate T,S 0):R0:V5. 0 and Té )80, Vo0 respectively.

Then, G(AO)(p, o)e (T,0T,,Ty01T),).

PROOF. Let A1, Az € C(6,¢) which satisfy Ay Ly ) A1 and Ay (;ﬂ) A;. Use the notation and
P

abbreviations from Lemma 91. Note that (Wt AoAy, @ WZ;,AO,AZ) € (TZ\O o T;X(),T,)l’t1 o T2') and
that (WEAO Ay ® wt phoA) € (T2" o Tf}’tl,TﬁO o Té\‘)). For any A € A, for sufficiently large i,
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A € Ap, 41, for i = 1,2, and so, by Lemma 59 (d),
T/}’tl o T(J,Q’t2 omy(A) = Tl}’tl omy(A) =m(A) = Tg’tQ omy(A) = Tg’tQ o Tpl’lt1 omo(A).
As the W operators are all even, by Remark 77, for all = € B(6,¢) and for all .,

t t A A 1 2 t t
(Wi aony @ Wengn) To0 0 T2 () = T)" o T3P (2) (W) 5, 4, © Wi p,,) and

A A t t t t 2 1
T,°0T,°(z) (W;AO,AQ ® W;,Ao,Al)* = (Wé,AO,AQ ® W;,Ao,Al)* T7" o Tp’t1 (7).

g

Therefore, for A € Ajqe,

(‘/V;AOA2 ® W A0A1> (W;AOAl ® W AOAQ)TAO OTAO 071’0(14)

T2 0 T o mo(A) (Wip,a, ® W, AOAl) (Winor, @ Wenon,)

—

(Weron, @ W, AOAl) Ty o T2 o mo(A) (Wigoa, ® WE A0A2)

(Weron, @ W, AOA1> T2% o Ty o mo(A) (Wigoa, ® Wi AOAQ)

p

and for sufficiently large t, this is zero. Taking the limit of both sides as ¢ — oo, and applying the

definition of ei 9)(p, ), we get that
690)(,0, o) T/ﬁx(’ o T2 o mo(A) — T 0 T o mo(A) 65?0)(p, o) =0.

Then, as T,0T, and T, 0T, are each ultraweak-continuous on m(Ax ) for A € C(6, ) (by Lemma 71),
and are norm continuous, we get that x (ei )(,0 o) TAO o Tho(z) — Thoo Té\o( ) (AO)( p,0)) is
zero on the norm closure of By(6, ¢), which by Lemma 49 is all of B(6, ¢).

So, for x € B(0,¢), € (p,0) T 0 T2 0 my(A) = T 0 T2 0 70(4) €2 (p, 0),

ie. e(+ )(p, o) € (TAO oTho Thoo TAO) as desired. O

Following Lemma 4.13 of [6]:
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LEMMA 94. Let (6,¢) specify a forbidden direction. Let Ao € C(6,¢). Let p,p',0,0" € Oy.
) 1A 7V/
For each 7 € {p,p/,0,0'} let Vor, € Vrn,- Let R € (Tp( #)A0. Voo T( #)ho 7Y and let

S e (T

97 7A 7Vo' 9750 7A 7Vo'
#)ho ’AO,Ti, JAo /’AO). For R, S each homogeneous, for s = |R||S]|,

(0B ® 9) = (-1 (S @ R (p,0)
and otherwise by components.

PROOF. Let A1, A2 € C(0, ) which satisfy Aa L) A1 and Az (9{\) A1. Use the notation and
P

abbreviations from Lemma 91, but note that now that there is p’, 0’ to deal with, and there is no

A} and A} to deal with, the primes here are indicating something wholly separate. For example,
(9790)7A1+t1vvp’,A1+t1

/

. 1

Vo A+t € Vor A 4+, may be different from V), o, 44, € VA, 44,, and Tp,’t2 = Tp
titi . Tt Lt lta tats . Ti/t

Set and note that R L .= Wp/,Ao,AlRW Ao, A1 (Tp ,Tp/ ) and S 22 .= WU/,AQ,AQSW Ao, A2

(1342, 72)

As Ay J_(g ) Ay and Ay (ch\p A+, by Lemma 90, t]im [Rt1,t1 St27t2] =0
) oo
As WE 2 Ao,Ap? Wg, Ao, Ay Wé,AO,AQ? W’5,7A A, are all even, by Lemma 83,
(W ", Ao,A2 ®Wt’ Ao, A1)(S®R)(WG Ao,A2 Wp AO,Al) = <St2’t2 ®Rt1’tl) and (WZ’,A07A1 ®W§’,A07A2)(R®
S)(WPAO Aq WUAO A2) = (Rthh ®St27t2)'

(S R)(WiAO,AQ QW) Ao,Al) (W,f,AO,Al ® WiAo,Ag)
= (szAo,Az ® W;;,Ao,/\l)*(StQ’t2 ® Rtl’tl)(Wt Ag,Ay @ Wt AoAs)
= (Wf’,Ao,Ag ® W;,AO,AJ*(—WRHS‘((Rtl’tl ® S*212) — [Rhh G2t )(Wp Ao, Ay © Wi Ag.As)
= (D)W pp 0, @ Wi aga, ) (R @ S2) (W) p, x, © W 0,)
- (chf,Ao,Ag ® W;f;,Ag,Al) [RIvh, St 0] (Wp Ao,Ar © Wi/\o,m))
= (=D (W x5 © Wi aoa) (W g @ Warag 0,) (R® S)

— (W;’,Ao,/\g & WélyAO,Al)*[Rthtlv St27t2]®,:|:(Wpt,Ao,A1 & W;’AO7A2)),
and so

A . ng ng * nd ng
(S @ R)e™ (p,0) = lim (S @ RYWE 0, @ WEaoa ) (Whaon, ® WEpa,)

t—o00

= (—1)/FIS! Jim ( (W agrs @Wh aon) W pony @ Wht o ,) (R®S)

t—o00
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- (Wé’,Ao,Az ® W;',Ao,Al)*[RthtlvStz’t2]®vi(W;,A0’A1 ® Wé,/\o,/b) )

A
= (-DIEISIER) (5 ) (R ® S).
For R, S not homogeneous, R = Ry + R1,S = Sy + 51,

(S @ R)eM (p,0) = (So ® Ro + S0 ® R + 81 ® Ry + 51 ® R1)el™ (p, o)

= ﬁgrAO)(PI,O’/)(RO ® S+ R1 ®So+ Ry ®S1 — R ® 51).

Following Lemma 4.14 of [6]:

LEMMA 95. Let (0,¢) label a forbidden direction. Let p,o € Oy. Fori = 0,1 let A; € C(0,¢)
and let D; = ((8,9),Ai, {Vyni bneo,) be as in Definition 66. Set Wyaon, = VP7A1V:,AO and
WU7A07A1 = Vo'zAlVZ',Ao' The'rl,,

Wphots @ Wong A € Vipop,o)Ars

1€ Vipopyo).a
PROOF. By Lemma 78, Wyaga, : TP° — TPV and Wopga, : TP — TP So, Wyaga, @
Wonors = Wpno s TP (Wopgn,) : TR0 0 TR0 — TP o TP
Ad(Wyp0,0, @ Wong,a,) © (p oD, 0) = Ad(Wy a0, T (Wonga,)) 0 (TF0 0 TFO o mp)
= Ad(Wpapa,) 0 TF° 0 Ad(Wongn,) 0 TP 0 g
:Tle oTUD1 0Ty = pop, O0.
The third equality is by Lemma 61(iii). By Lemma 68, ((p op, 0),Us,) € Oa,, and therefore

(pop, U)t’AAg = 7T(tJ|AA§' So, for Upop, o) = Uay and Uy Usp)

PODlg) =

Ad(Wyagn, @ Wonga,) o (poD, J)”AAg = Ad(Wp a0, @ Wonga,) 0 tWO(pop, U)|AA§
= two Ad(Wp7AO7A1 ® Wo‘,Ao,Al) o (P ©Dy J)’AAf
= tw O(p op, OU)’AAg = (P °D; Oa)t’AAg

= 7T6|AA‘13 .
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Therefore (also using the fact that Wy A, a; @ Wo ag,a, is even) Wy, ao a; @ Wonga, € V(pODoa),Ar

Also by Lemma 68, ((pop, 0), Uaz) € Ongxs 50 1 € Vigop, o), -

REMARK 96. We will apply this to the definition 92 for eg\o)((p opo),-) and ES_AO)(', (pop a)).

Recall Wi, o) noar = Vipopo)hitts Vipopo.a, 08 any choice of Vipo o) a1+ € Vipopa) A+t and
for V(poDU),Ao S V(pODJ)7AO.
Now apply the above lemma in the case of A; and Ag in the above lemma being A; + ¢; and Ag

respectively of definition 92. Then, As 1 € V(,0,,0),a, We can choose V| = 1. And, as

popo),Ao
Wonohitti @ Wopo,n,+t; € V(pODOO'),Ai-‘rti'

Then WF

— *
(popa),Ao,Ai+t; " (Won0,Ai4+t; @ Wonoitts) - (1) = W noAitts @ Wono,Aitt;

Following Lemma 4.16 of [6]:

LEMMA 97 (Hexagon Identities). Let D = ((0,¢), Ao, {V .0 }neo,) be as in Definition 66. For any

p,0,7 € Oy,
A A A
M ((pop ), 7) = (1 (p,7) @ 15p) (1gp © € (0, 7)),
8 (p, (0 0p 7)) = (1gp @ L (0, 7)) (L (0, 0) @ 11p).

PROOF. This proof is nearly the same as the proof of Lemma 4.16 in [6], as, because all the
operators involved are even, almost nothing needs to change in the proof (other than citing analogous
lemmas/definitions in place of the lemmas/definitions cited).

In applying Definition 92, take A1, As € C(0, ) satisfying Ag (;ﬂ) A1, and As L such that there

P
exist A1, Ay € C(6, ) such that

(A1)e, Ao C Ay, Ay C Ay

arg(A1)28+5+61+82 N arg(A2)2€+5+€1+€2 = ®7

(Al - R|arg/~\1|75)€ C [\57 (AQ - Rlargj\Ql’g)E C A??

(A1)2(5+21+52+6)7 (A2)2(a+81+82+6) € 6(07 @)7

for some 4, > 0 and €1,e2 > 0 small enough. So, in particular, A2 L) A1. These conditions
are essentially the condition that {(A1)e, Ao} L(g) {A2}, along with the extra conditions that the

¢ in that (A1): be the one used in Definition 51 for the disjointness part, and that A1, As can be
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widened by a bit more than the required ¢ (instead by 2(e + &1 + d + £2) ) while still remaining in
C(0, p) and with disjoint ranges of angles.

For i = 1,2 and t; > 0, pick Da,4¢; = ((0,9), Ai + ti, {ViA, 44 fnco,) as in Definition 66. Let
t = (t1,t2). Fori,j = 1,2 and t > 0, and for n € {p, 0,7} define W:;Ai,Aj = Vot Vo airs
TN )N and W= Ve Vi, s TP — Ty N

By the preceding remark, set

t Tt i _ it D it
W(PODU)7A07A1 . WPJ\O,Al ® W07A0,A1 - WPJ\O,AlTP (Wm/\o,/\l)

i it t _ D rrt
W(O'ODT):AO,A2 T W07A07A2 ® WT,AO,Az = Wono,0:15 (WT,AO,AQ)

wi . (9780)71\071_) (9’90)’1\1+t1’W(tp0Do),Ao’A1
(popo),Ao,A1 * ~ (popo) (popo)

TP. As1eV,

. By Lemma 72, T?

(popo

) = Ad(Vipoo)a0) 0 T 0

),Ags By Lemma 61(iii),

popo

T = AQ Vo 0) Ty 27 = AV s0,0,) 0 Topi

(popo) popa (popo) popo

= Ad(Vioopoy.n0) © Ad(Vipooy ap) 0 Ty 0 T =T o TP .

popo

nd (0,),A1+t1,W ¥
t . D D (popo),Ag,Ag
50, Wipopoynons * 1o 015" = Lo o o
nd (0)@)7A2+t27” ¢
; ; t . D D (popo),hg:A2
Likewise, M/(UODT),A(),AQ Ty oTr — T(UODT) .

We need to show that

-

t t
Dy Dy D Dy r
2 1+t (7t Aty A t
TT oTp ( 0,407/,1) Tp oTT ([/[/0'7/\07/\1)

lim
t—o00

-0

To this end, we will show that

— —

. Da Da D
Jim ([T (L) 0 0) = T (g )
oo

B

and that

—

. Dag+tty 11/t T
llm HTT (WO',Ao,Al) - WO’,A07A1
t—00

=0,

implying that lim HTpD MET R (WE L 0) =T (W)
—00

g g

‘:0.

For each €5 > 0, choose s > R(| R|arg Rale such that

arg A1 |+2(6+5+61)),%62 ’

2 (jarg Ra | +2(e+5+e0), hea,ben (8) < €3 A0 20 7 5(5) <es.
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As I/I/f’/\w\1 € mo(A((As+1)ung)e)” S (A1), by Lemma 50, there exists an even unitary operator

it - "o T 1t
W ,A(),Al 6 WO(A(A175)6+6) EuCh that HWO',A(),Al WO’,AQ,Al

ag

< 2fjarg Ayl (8) < 3.
By femma 0% TPDAIHI (WiAO’Al) € A((As — S)eto+e,). Applying Lemma 50 again, we get that

. . ts B "o ~ "
there is an even unitary X\ € WO(A((A1_8)5+5+51_S)62) = WO(A(A1—25)5+5+51+52) such that

is DAy +ty 158
HXJ,AO,Al - TP (WJ,AO,Al)

‘ < 2f(|arg/~\1|+2(6+5+61))7%€2,%52 (S) < €3.

xbs

a,Ao,

DA1+t1 i
So, AT T, (Wa,Ao,Al)

Dag+tty /vt _ vbs
so T (Xohopy) = X5 Ag.A, - Therefore,

’ < 2e3. For sufficiently large to, (/N\l —28)etstes e © (A2+12)C,

: Dag+ts Day+ty T Day+ty T
lim [|777772 0 T, (WE 1) = T 0 (Wi )| < 425
t—o00
and this holds for all e3 > 0, so
. Dpg+ty DAy +ty T DAy 414 T
Jim [ o TN (W) = TN (W) =01
— 00

Similarly, for sufficiently large t2, (A1 — 8)ets C (Ag 4 t2)¢ s0

Wg,AO,Al S 7TO(J‘l(]\l—s)EJH;)” - WO(A(AQHQ)C)" S0

|

-

Dagttq t t
17 (Wm/\o,/\l) B WJJ\O,IM

Dag+ty t f Dag+ts (157t T
= HTT (WO'A()Al - WO'A()Al) + TT (WO'A()Al) - WO'A()Al

Dag+ty (137t o t it
= HTT (WU,Ao,Al - WO‘,AQ,Al) - (WO',Ao,Al - WO’,AQ,Al)

S 2537

SO

— —

. DA1+t1 DA2+t2 £ DA1+t1 t
{hm HTp oT, (WO',AO,Al) -1, (Wa,AO,Al)
— 00

‘:0.

Combining these, we get the desired

D2 D ; D D2
Ag A+t t A+t Ag t
TT © Tp (WO',AQ,Al) - TP o TT (WO',A(),Al)

lim
t—o0

o
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- - 7 Da. 4t
In the next bit, to save space, let W:;,Ai denote Wé,A(hAi and let Té\“t denote T;, Attty

By Definition 92:

¢ ((pop o), 7)

= tlij)lo((w ® W(poDo') a) Woopoyan ® Win,)

= tlgilo TD((W(;ODU) A IWS AQW(;ODU) nIy OTD(WEAz)

= lim TP (T (W WEA WE WA T WA )T o TP (WEy,)

= i WE T AW T W I W WA T 0 TP (W a,)

= lim W, T WS T o T VTN W W0 T 0 TP(VE,)

=l W TN W TN o T AW T WL WA, T o TP (WE )

= lim W T W )TN T W WA ) WA T o TP (W] ,)

- tligoTD(W OWEL WA TP (WE\ TP (WE WE WEA)TP o TP(WE )

= Tim (W TP (W))W, T (W) T (TP (W )W, Woa, TP (W7 )

= lim (W, @ Wl A )"(Why, @ WEL,) - TP(WEy, @ WEL ) (WEy, @ WEL,))
t—o0

= 8, 7) - TP (L (7))
= (™ (p,7) @ 170) (170 ® € (0, 7).
Throughout the above chain of equalities, Definition 74 in the case that the input is even so that

the twist doesn’t do anything (R - tw o7} (xg) = twoT)(x¢) - R <= R -Ti(z9) = T1(x0) - R for xg

even and T, T, grade preserving) is applied. The 6th equality uses

. Dpgtty Dpq+4q & Dy +tq Dagts t
t_hm HTT o T (WO' AQ,Al) TP © T (Wa' Ao, A1
)

)| =o.

The proof for the other relation, eSrAO)(p, (copT)) = (1pp ®e(+ 0)( ,T)) (€ (AO)(p, 0)®1yrp), is entirely

analogous.
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One first picks A1, Ao, A1, Ay in analogous way (this time where A; C Ay and (Ag)e, Ao C AQ) and
with this choice (and corresponding choices of Dy, 4+,) shows that

— —

: Daq+ty Dag+ty t Dag+ty Day+tq t
t_llm HTP ° TO' (WT,A(),AQ) - TU 0 TP (WT,A(),AQ)
—00

=0
and then does the last part analogously as well. O

4.3.4. Like section 5 (Direct Sums, Subobjects, and putting the category together).

The statement of Lemma 5.6 of [6] holds here without modification, and the proof is very similar:
LEMMA 98. Let (0, ) label a forbidden direction, and Ay € C(0, ¢).
For p,o € Oy,,

(7,p) = (T{ML TR0 € B(G, ).

o

PROOF. By Lemma 59 (ii), for all A € A, tw oT,Se’“D)’AO’1 omo(A) = Ad(1) o p'(A) = p*(A) and

likewise tw 0Ty A0 o mo(A) = o?(A). So, for any R € (p,0),

R twoT\"?)A0l(my(A)) = R+ p'(A) = 0'(A) - R = tw oT\¥)20 Y (my(A)) - R.

So, the linear map A — (R-tw onSQ*")’AO’l(A) —tw oTée’“D)’AO’l(A) ‘R) : B(6,¢) — B(H) is 0 on m(A)
and therefore on my(Ap). By Lemma 59 part (i) it is ultraweak-continuous on mo(Ap)” for A €
C(0, ), and therefore this map sends all of By(¢, ¢) to 0, and, by norm continuity, as WHIH =
B(0,p), it sends all of B(#,p) to 0 as well. So, for all A € B(#,¢), R - ton,Se"p)’Ao’l(A) =
tw o T A0 (A) . R ie. R e (TS0 pfelholy

So,

(0,p) C (TPl T C B(6, )

where the second inclusion is by Lemma 79.

Conversely, for any R : (T,Se"p)’A(”l, T§9’¢)’A0’1), R - tw oT,Se"p)’A(“1 omy(A) = tw o leltol mo(A) -
R. And, again by Lemma 59 (ii), tw oTp(e“p)’AO’1 omy(A) = p'(A) and tw o 0@l Aol mo(A) =
ol(A), so R - p'(A) = o'(A) - R, which is the definition (Definition 44) of R € (p,0). So,
(TP AL TPy C (. 0). So,

)

[
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as desired. O

Following Lemma 5.7 of [6]:

LEMMA 99 (Existence of Direct Sums). Assume that for all cones A that the von Neumann algebra
70 (AN) L yen i properly infinite.

Let p,o € Op,. Then there exists (1,U;) € Op, and even isometries u € (p,T),v € (0,T) such that
uu* +vv* = 1.

So, in this sense, there exists a T € Op, such that T =p @ 0.

In addition, if Uy = U, = Usp itf p,o € Opgx then Ur = Uy, de. if 0,p € Opg s, then 7 € Opg 4.

PROOF. As for all cones A, mo(Ap)Y o, is properly infinite, by Proposition 1.36 of chapter

even

"
even

V of |7], there exist isometries up,vn € mo(An) such that py = uau} and gn = wvpv} are
each orthogonal projections and py + ga = 1. Choose such a pair of isometries for each cone A,

((UA, UA))AE{cones} .

Within this proof, for each pair of cones Ao, A1, for any A, B € B(H) define
(A B)py,a, i= un, Auy, + va, Buy, .
Note that

(A B)py0,(C i D)py p, = (AC : BD)pg 4,
((A: B)ag,ar)" = (A" 1 B )asn;
(A:B)p,a, +{C :D)a,n, =(A+C: B+ D)p,a,
(A B)ayA up, = up,A

(A: B>A2,A1UA1 = up, B.

Also note that, as ux,va € mo(Ap)dven € mo(Ap)” that if X € mo(Ap)’ then (X : X)p 4 = uaXuj +
vAX v} = X (uau} +vavy) = X. Because each of the pairs (ua, va) have up, va € mo(AN)dyen, these
pairings are grade preserving in the sense that the even and odd parts of ((Ag+ A1) : (Bo+B1))As.A,
are (Ao : Bo)a,,A, and (Aq @ Bi)a, A, respectively.

Define 7: A — B(H) by



Note that it is grade preserving as p and o are, and as the pairing is. Also note that it is a

representation by

= (p(A)p(B) : 0(A)a(B)) o1
= (p(AB) : 0(AB))n.0, = T(AB),

and by the analogous reasoning for 7(A) + 7(B) = 7(A+ B) and 7(A)* = 7(A*).
Define also Uy := (U, : Us)Ay,n,- Then

T (Ag 4+ Ay) = 7(Ag) + U.m(4Ay)
= (p(4o) : U(A0)>A0,A0 + <U,0 : U0>A0,Ao<p(A1) : U(A1)>A0,A0
= (p(Ao) : 7(A0))ao.0 + (Upp(A1) : Uso (A1) 0,0

= (p' (Ao + A1) : 0" (Ao + A1) rg,A0-

Note that U2 = (U2 : UZ)gno = (1 : 1)ag,A, = 1 and that Uy is unitary.
Also note that, as up,va are even, that (Ua, @ Uap)ag,ng = Uap - (quuf\O + UAOUXO) = Uq,p, so if
U, =Uar = Us, then U; = U,,. as well.

As p,o € Opy, 1 € Vyp, and 1 € V, 5. For every cone A pick a V, A € V, A and a VoA € Vo,
and in particular for Ag choose V, o, =1 and V; 5, = 1. Now, for each cone A define W := (V4 :
Vo A)A Ao As the VA and V;; o are even and the pairing is grade preserving, these W) are also even.
To see that Wy is a unitary, note that WAWj; = (V4 : V07A>A7AO<‘/;‘:A : V;,A>A0,A =(1:Drar=1
and likewise W{Wx = (1: 1)ag 0, = 1.

For all A € Ape,

Ad(Wa) o 7H(A) = Ad((Vy,a = Vaa)a,n0) ({1 (A) 1 0 (A)) Ag,00)
= (Ad(V,a) 0 p'(4) : Ad(Vn) 0 0" (A))aa

= (mo(A) : m(A))aa

= 7o (A).
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(That last equality is by 75 (A) € mo(Ane)' C mo(Ane)?” C mo(An) from twisted locality mo(Ap)” C
mo(Axe)")

Therefore, as for all cones A, W, is an even unitary such that Ad(Wy) o 7|4, = 70|,

»n

o
Wa € Vra, and so 7 € Op. In particular, Wx, =1 € V; 5., s0 7 € Oy,.

Note that, as for all A € A, 7(A)up, = (p(A) : 0(A))rg,A0tA, = ur,p(A) and likewise 7(A)vp, =
vp,0(A), we therefore have u = up, € (p,7) and v = vy, € (0, 7) as the even isometries that were

promised. ]

Following Lemma 5.12 of [6], with a small change to handle the parity:

LEMMA 100. Let Ny M, R be von Neumann algebras acting on a separable (Z/2Z)-graded Hilbert
space H = Heven © Hodd, such that N, M C R and N C M. Suppose that M is an infinite factor
and R is a factor. Let w be an even unitary on H, and u € N be an even isometry such that
w*uu*w € N. Suppose in addition that all elements of R are even (i.e. they preserve the 7. /27

grading on H ). Then there is an even unitary W on H such that
Ve e R, AdWu")(z) = Ad(u*w)(z).

PROOF. The proof of this is the same as the proof of Lemma 5.12 in [6], except that, due to the
assumptions that u and w are even, and the assumption that everything in R is even, and therefore

the a € R obtained in said proof is even, therefore, the obtained W := v*wa*u is even. O

Following Lemma 5.8 of [6]:

LEMMA 101 (Existence of Subobjects). Suppose that for all cones A that both wo(Ap)2,., and
(70 (Ape)) even are infinite factors.

Then, for any o € Oy, and a non-zero even projection p : 0 — o such that pU, = U,p, there exists
a (1,U;) € Op, and an isometry v : 7 — o such that vv* = p.

In particular, if Uy = Uy (ie. if 0 € Opgw, not just in Oy, ), then pU, = Usp is satisfied

automatically and Uy = Uy, (i.e. T € Opyx as well).
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PROOF. To obtain a representation (7,U;) satisfying the superselection criterion and an even
isometry v : 7 — ¢ such that vv* = p, we will produce a family of even isometries Y for each cone

A, such that:

L YAYK =D,
o Yy Y), is unitary for all cones Ay, Ag,

e Ad(Y))o at\AAC = 7r6|AAC.

Given such a family (YA)ac{cones}, We define a new representation 7 := Ad(Yy ) o o and set Uy :=
Ad(Yy,)(Us). We will see that Yy, serves as the desired isometry v : 7 — o. First we will show
that this 7 (equipped with this U;) is in Oy,, and that Y, indeed serves as the desired isometry
v:T — o. Afterwards, we will show that such a family (Yj)a exists.
To see that 7 is indeed a representation, note first that it is of course linear and that 7(A4)* = 7(A*).
What remains to check is that it is compatible with products:
T(A)7(B) = Yx,0(A)Ya, Y3,0(B)Ya,
= Y,0(A)po(B)Yx,
=Yy, 0(A)o(B)pYa,
= YKOU(AB)YAO =T1(AB),
where the po(B) = o(B)p used in the third equality is because p : ¢ — o and [U,, p] = 0, and where
the pYy, = Y, used in the fourth equality is due to Y, being an isometry such that Y)Y = p.
To see that U, has the desired properties for the superselection criterion, note U’ = U, and that
UrUF = YR UsYn YR UsYay = Y3 UspUs Yo, = Y5 pU,Us YA, = 1, by [p,Us] = 0.
Forall A=Ay+ A1 € A, 7(Ao) + Ur7(41) = Ad(YKO)(Ut(A)), by:
7(Ao) + Ur7(A1) = Ad(Yy, ) (9(Ao)) + Ad(Y}, ) (Us) Ad(Yy, ) (o (A1)))
= YXOO'(A())YAO + YKO UJYAOYXOU(Al)YAO
= YXOU(AO)YAO + Y/{"O Uspo(A1)Ya,
= YKOO'(AO)YAO + YKUPUUU(Al)YAO
= Y5,0(A0)Ya, + Y3, Uso(A1)Yr, = Yy, (0(A0) + Usa(A1))Ya,.
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(The fourth equality is by the assumption that U,p = pUs,.)
For all cones A, set X := Y;Y),. By the second property of the family (Y3 )a, each X, is a unitary.
Now we show that Xy € V. For all cones A and all A = Ay + Ay € Ay,
Ad(Xp)(T(Ao) + Urr(A1)) = Ad(X2)(Yy, (0(Ao) + Uso(A1))Ya,)
= Ad(YR YA, YR, )(0"(A)) = Y po' (A)pYa
= Ad(Yy)(0"(4)) = m(A),
where the last equality is by the third property of the family (Y3)x and A € Aje.
So, (1,U,) satisfies the superselection criterion, and so 7 € Op. In particular, X, = Yi Ya, =1,

so 1 € Vr ., so 7 € Op, (equipped with Us).
Finally, for all A € A,

YAO ’ Tt(A) = YAO ’ (Y/;ko ’ Ut(A) ’ YAO)

so Yp, : 7 — o0, and so v = Y}, is the promised isometry v : 7 — o such that vv* = p.
Now, what remains is to show there exists such a family of isometries (YA )a.
For each cone A pick a V; A € Vs a, and, as 0 € Oy, for A = Ag pick V5 o, = 1. Note that, for each

cone A,
VA€ Axe, p-(Ad(V]y) omh(A)) =p-0'(A) = 0'(4) - p = (Ad(V;y) o mh(A)) - p

Applying Ad(V,a) to both sides of p - (Ad(V,y) o m5(A)) = (Ad(V;,) o mh(A)) - p we obtain
Ad(Voa)(p) - wh(A) = 7§ (A) - Ad(Va)(p), for all A € Aje. So, for all cones A,

PA = Ad(VJ,A)(p) € WQ(AAc)t/ = A(A).
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Let § > 0 be the number given in Lemma 5.10 of [6]. For each ¢ € (0,27),e > 0 such that
@ + 8 < 2m, fix some t,. > R, . such that f,..(t,.) < 0 (Recall the definition of approximate

twisted Haag duality, Definition 38 .) For each cone A fix some ep € (0, % min(|arg Al |arg A€|) ).
Set t/A = t(|argA|785A),5A-

Set I'p == (A + t/A)_45A.

Note |arg x| = [arg A| — 8en, 50 ) = t(jarg A|=8en)sen = ljargTalien = RlargTalieas 50 Ly — Rryep > 0.

Choose a cone Dy such that Dy C (I'y — Rr, ¢, )e, NI'{. Note that
Dy C(TA—Rryen)en © A+t — Rrycy)—3e4 © Ase,-
By the approximate twisted Haag duality, there is a unitary Ur, ., € U(#H) such that
mo(Arg )" € Ad(Ury e )(mo(Ary—rr, . )-,)"):
and another unitary

I "o__ "no__ "
Un = Ury epenty, € T(ATs—1)5c,)" = To(A(A+8)) 4y —t))2,) = T0(Ars.,)

such that

F '
HUFA:EA - UFA@A,EAJZ\ < flargTalen en (ta) = flargTalen en (t|argFA|75A) <0.

(So, H(AJAU;A’EA . 1” <6)
As

Ad(UF, ., ) (m0(Arg)") € mo(Arr, )" C mo(An s, )" € mo(Ar )"

_RFAvEA)SA -

and as U, € 7r0(.AA725A ), we have Ad(UAUImeA)(WO(AFZ)“) C TF()(AA72EA)/’.

As Dy C T, m0(Apy)even S T0(Ars Jeven = m0(Ars )oven € mo(Arg)"”, so by taking commutants,
WO(AFX)“ € (m0(Apy Jeven) = (T0(ADy Joven)”-

‘H is separable because it is a GNS Hilbert space of a state on .A. Apply Lemma 5.10 of [6] to

o H

o the infinite factors N' = 7mo(Ap, Jeven © M = m0(AA ., Joven

the projection pr, € mo(Ars)" C (m0(Ap, Javen) =N’

the unitary u = wp = UAUFA e
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(Note that it applies here because we have that [Jway — 1| < d, and that as pr, € mo(Arg)" that
Ad(UAUFAﬁA)(pFA) € Ad(UAUli‘meA)(Wo(Api)t') C mo(An_,., )", and so as pr, is even,
Ad(ﬁAUf‘kA,aA)(pFA) S 7-‘-0("4/\7251\ )gven = M)

Therefore, there exists an isometry uy € M = 7T0(.AA_25A e

even

such that upuy = Ad(wya)(pr,) for
WA = UAUFA@\.

Choose a cone Cy C (A_g-, )¢ NA.

Apply Lemma 100 in the case of N = (WO(A(A_QEA)C)“)QVQH, M = 19(Acy ) ens R = (mo(Apre) )even,

where the unitary is wa and the isometry is up, noting that

up € 71—0("4/\—25/\ ),elven - 7T0<AA—25A )// - 7TO(“4(/\—251\)6))”

and is even so therefore up € (WO(A(A_QEA)C)U)GVQH = N and that wiupsujwa = pr, € WO(AFX)t/ C

WO(A(A_QEA)C)” and is even therefore wiupujwa = pr, € (WO(A(A_QEA)C)“)GVQH. Then, by said

lemma, there exists an even unitary W € U(H) such that for all z € R’ = mp(Ape)?”,
Ad(Wpuy)(z) = Ad(ujwp)(x).
We now have enough to define our family of isometries. For each cone A define

Y\ = V*:FAw}‘\uAWA.

g

Now we show that they satisfy the properties needed. As each of these Y, is a product of some
even unitaries and an even isometry, each Y, is an even isometry.

For any A € Ape,
Ad(WRupwaVor,) © O't(A) = Ad(WJ}) o Ad(ujwy) o 7r6(A) = Ad(W}) o Ad(Wpu}) o 7r6(A)
= ujmy(A)un = ujuamg(A) = m(A).

The first equality is from V,r, € V,r, and A° C I'§. The second equality is by m(A) € mo(Ane)! C
7o(Apxe)t” C ((mo(Ane))even)” and applying the property that W, was obtained as satisfying. The
fourth equality is as up € 7T0(.AA72EA Y on C 71'0(./4/\725/\ ) C WO(A(A%EA)C)“ C mo(Ape)?.

So, we have that for each cone A, Ad(Y) o of| a4, = Tl ae-
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YAYS = V*FAw}‘quu*AwAVJ,pA = p. For any two cones Aj, As, Y YA, is a unitary, by

g
(Yil YA2 ) (Y/; YAz ) t = Y/; YA2 Yj\kz YAl = Y/ikleA1
= Wi, ujy, wa, VmFAlpV;,FAl wi, upn, Wa,
= Wlil u;k\l Ad(w/h ) (pFAl )uA1 WAI
= Wltl uj(\l (uAl uj\l )UA1 WAI

= WA*1 (u*AluAl)(u}k\luAl)WAl = 17

and identical reasoning shows (Y3 Ya,)* (Y3 Ya,) = (Y5, YA, ) (Y5, YA,)" = 1.

Therefore, the family of isometries (Y3 ) satisfies the required properties, and so we have that for
7= Ad(Yy ) oo and U; := Ad(Y} )(Us), that (7,U;) € Oy, and that Yj, serves as the desired
isometry v : 7 — 0.

0

4.3.5. Putting it together. Now we will build up to the definition we chose for a braided
strict C*-tensor supercategory so that we can properly state the main result. There are various
choices for how to define the Z/2Z-graded ("super-") versions of things (see [1]), and we have made
a choice suiting the results.

Following [1],

DEFINITION 102. A supercategory is a category C enriched in SVect, the symmetric monoidal cat-
egory whose objects are super vector spaces (over C) and whose morphisms are even linear maps.
That is to say, for A, B € ob(C), Hom¢ (A, B) is a super vector space, and for A, B,C € ob(C) the
composition map o : Hom¢ (B, C) x Hom¢ (A, B) — Home (A, C) is bilinear and even.

A superfunctor is a SVect-enriched functor F' : C — D between two supercategories, i.e. a functor
such that for A, B € ob(C) the function F(A, B) : Hom¢ (A, B) — Homp(F(A), F(B)) is an even

linear map.
Also following [1],

DEFINITION 103. A strict monoidal supercategory is a supercategory C equipped with an identity

object I € ob(C) and a function (— ® —) : C x C — C which sends (A4, B) € ob(C) x ob(C) to
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(A® B) € ob(C) and sends (f,g) € Hom¢(A, B) x Home(C, D) to f ® g € home(A® C,B ® D)

such that:

(a) (ob(C),I,®) is a monoid, in that for any A,B € ob(C), A ® B € ob(C), and for any
A, B,C € ob(0),

(A9B)®C=A® (BoC), I®A=A=AI.
(b) For any A, B,C, D € ob(C),
(— ® —) : Home(A, B) x Home(C, D) — Home((A® C), (B ® D))
is a bilinear map, and is even in the sense that the corresponding linear map
Home (A, B) ® Home(C, D) — Home((A ® C), (B @ D))

is even.
(¢) The super interchange law holds : For morphisms f: A - C,g: B— D, h:C — E, and

j: D — F with f and j homogeneous,

(h@j)o(f®g)=(-1)W(hof)® (jog)

and this extends bilinearly to cover general morphisms.
(d) Associativity on morphisms :

For f:A— A,g:B—-B . h:C—=C, (fRg)h=f®(gh)
(e) For f: A= B, feid;=f=1id;af.
(f) For A, B € ob(C), idy ®idp = idagn

REMARK 104. The function (— ® —) in the above definition has the same datatype as a bifunctor,
but is not actually a bifunctor from the category C x C (because it satisfies the super interchange
law rather than the interchange law). If one defines the supercategory C X C, the function (— ® —)

can be described as a superfunctor with domain C X C.
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DEFINITION 105. A braided strict monoidal supercategory is a strict monoidal supercategory (C, ®, I)

equipped with, for each pair of objects A, B € ob(C), an even isomorphism
TAB:A®B =+ B®A

called the braiding morphism, such that:

(a) For all morphisms f: A — A’ and g : B — B’, with f and g homogeneous,

T o (feg) =)W (ge f)orap,

and this extends bilinearly to general morphisms.

(b) The hexagon identities hold:

TA,Boc = (idp ®74,c) 0 (Ta,p ®ide),

TagB,c = (Tac ®idg) o (ida ®7 ).

(Here the associators of the hexagon identities have been omitted, leaving these as com-
mutative triangles rather than hexagons, because, as (C,®,I) is a strict supermonoidal

category, the associators are each the identity morphism.)

While the above definitions are given in their strict forms and with a more concrete presentation,
they arise naturally from a more conceptual setting: the monoidal product can be viewed as a bi-
functor that is a superfunctor ® : CKC — C, and the braiding 7 arises as a supernatural isomorphism
between this functor and its composition with the symmetry functor on C X C. These structures
ensure that the coherence conditions and sign rules follow naturally from the categorical formalism,
even though we work here with a "compiled down" version suited for explicit computations. (See [1]
Definitions 1.1 and 1.4, for this approach.)

Following Definition 2.1.1 of [5] for the definition of a C*-category,

DEFINITION 106. A category C is called a C*-category if

(a) For A, B € ob(C), the hom-set Hom¢ (A, B) is a Banach space, and for all A, B, C' € ob(C),

the composition map

o: Home(B, C) x Hom¢ (A, B) — Home (A4, C)
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is bilinear, and for f : A — Band g: B — C, |lgo f|| < |\gll - || f]

(b) It is equipped with an anti-linear contravariant functor (—)* : C — C (which is grade

preserving if C is enriched in SVect) such that for any A, B € ob(C) and any f: A — B,
(a) [ =f

(b) IF*fIl = IIf]I* (in particular, Ende(A) is a C*-algebra)

(¢) f*f € End¢(A) is positive as an element of the C*-algebra that is End¢(A).

Combining the definition of a monoidal C*-category in Definition 2.1.1 of [5], with the above defi-

nition of a braided strict monoidal category,

DEFINITION 107. A braided strict C*-tensor supercategory (or, as another name, a braided strict
monoidal C*-supercategory) is a supercategory C equipped with an identity object I € ob(C), a
function with the datatype of a bifunctor —® — : C xC — C, a braiding 7, and an anti-linear, grade-
preserving, contravariant functor (—)* : C — C such that (C,®, I, 7) is a braided strict monoidal

supercategory, (C, x) is a C*-category, and the following conditions hold:

(a) The identity object I is simple : Home¢(1,I) = C -id;

(b) C has direct sums : For any two objects A, B € ob(C), there exists an object A ® B and
even isometries 14 : A =+ A® B,.p: B — A® B, such that (514 = id4, 1zt = idp, and
LA’y + 1ty = idagB

(¢) C has subobjects: for any object A € ob(C), and any even projection p : A — A, there
exists an object B € ob(C) and an even isometry ¢, : B — A such that 1, =p: A — A

(d) The category is small, i.e. the class ob(C) is a set

(e) The involution (—)* and (— ® —) are compatible, in that for any homogeneous morphisms
fr9, (f @ g)* = (=1)l9l f* @ g* (non-homogeneous morphisms addressed by bilinearity of

(= ® —) and conjugate-linearity of (—)*).

THEOREM 108. Let mp : A — B(H) be an irreducible representation equipped with a unitary Uy, €
U(H) that implements the automorphism ap of A, i.e. such that Ad(U,, ) o mo = mp o ap. Suppose
that mo satisfies approzimate twisted Haag duality (Definition 38).

Suppose also that for all cones A, that the von Neumann algebras mo(Ap)2pen and (7o(Axc)?) even
are properly infinite factors.
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Let (8,¢) € R x (0,7) define a forbidden direction and let Ag € C(6,p). Define:

OAO = {(pv Up) € OO P‘AAS = WO‘AA(C]}a OAQ,* = {(pa Up) c OAO ‘ Up - aF} .

Then, there exists a braided strict C*-tensor supercategory (Definition 107) M given by the data:

o objects : Opy«

e morphisms : for any (p,U,), (0,Us) € Opg ;s
Homu((p,U,), (0,Us)) := {R € B(H) | Vx € A, Rp'(z) = o'(z)R},

as in Definition 44

e monoidal product : defined on objects as in Definition 66, picking D = ((0,¢), Ao, {Via, €
ViAo Jnc0o) such that for (1,Uy) € Ongw Vyne = 1, and p&o := popo := TP TP omy and
Upgo = Uqp, and defined on morphisms as The (super)monoidal product on morphisms
is defined by Definition 81(Using Lemma 98), so for R € Homm((p,Uay), (p/,Uay)) and
S € Homp((0, Uay), (0, Uay)), R® S := R-TP(S)

e identity object : (mo, Uy )

e braiding : morphisms 6+A°)(p,a) defined in Definitions 92

e the involution endofunctor (—)* : the adjoint operation of B(H)

Following Proof of Theorem 5.1 of 6]

PROOF. As for (p,U,) € Opyv, U, = Uqy, we can omit the U, here when for (p,U,) € Op, «.
For any p,o € Op,«, Homp(p, o) is a linear subspace of B(H). It is a closed subspace by virtue
of being the intersection of the kernels of a family of continuous linear maps. Therefore, as it is a
closed linear subspace of the Banach space B(H), it is a Banach space, and inherits the operator
norm. By Lemma 76 the even and odd parts of each element of this subspace is also an element of
this subspace, so this sub-vector-space is in fact a sub-super-vector-space.

For any p,o,v € Op, «, the map

HOIHM(U,’)/,) X HomM(pv U) 3 (R7 S) — RS € Hom (P, ’Y)
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is of course bilinear, and is even in the sense that the induced linear map

Hom (o, y) ® Hompg(p, o) — Hompq(p, )

is even. So, the category is indeed a supercategory.
As the norm on it is the operator norm, ||RS| < ||R|||S]-
For any R € Homp(p,0,), R* € Homp (o, p), and R*™* = R.
For R € Homu(p,0) and S € Hompaq(p, o) (RS)* = S*R*, so (—)* is a contravariant functor.
|R*R|| = ||R||* (because this (—)* is the (=)* of B(#), which the norm also comes from).
Homp(p, p) = p(A)Y is a C*-algebra, and R*R is a positive element of it (it is an element of
Hom(p, p), and it is a positive element of B(#), so it is a positive element of Hom(p, p)).
(—)* is anti-linear because it is on the Hermitian adjoint on B(#) which is anti-linear.
(—)* preserves the grade of homogeneous elements because (Uy,2Uqs.)* = (Uspx*Uyy), so for
Ad(Un, )(2) = £, (Ad(Ua,)(2%)) = (Ad(Uny ) (2))" = (2)".
Therefore, (M, (—)*) is a C*-(super)category.
Now to see that (M, ®, (79, Us,)) forms a monoidal supercategory.
To do that, first let us see that (M, 7y, ®) is a monoid.
First, by Lemma 68, for p,o € Opy« € Op, pR0 := popo € Op, ., by Ag being the cone specified
in D, so Oy, « is closed under ®.
Second, in Lemma 73 it is seen that for p,o,v € Oy, that (popo)opy = Ad(U)opop (cop~) for
some unitary U, and as p, 0,7, popo,00py € Op, «, said unitary, U = Vv(PODO')yAOTPD(Vv(ZOD’y),AO)’ is
seen to be 1 due to V,; o, = 1 for each ) € Oy, « for our choice of D, and so (popo)opy = pop(oopy).
So, our ® is associative on the nose for objects.
Thirdly, to see that 7w is an identity element for this monoid, note that ng = idgg,p) (by Defini-
tion 56, Tig:i)’/\o’l = Ad(1 - 1%)|y(a,)» for any A € C(8,¢), and so TR = idp(,,))-
Recall Definition 81: For p, p/, 0,0’ € O, «, R € Homa(p, p/) = (TPD,T/?) and S : Homp(o,0’) =
(TP, 1),

R®5S:=R-T)(S).
Then, as R® S : (TP o TP, Tp? oTh) = (p® o, p @0’) we have (— ® —) defined on morphisms.
Note that this is bilinear, and that it is even in the same sense that composition is even.
By Lemma 82, R®S:TpDoT£ —>Tp?oTGD,.
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The super interchange law holds by Lemma 83.
To see that (— ® —) is associative on morphisms, let R : p — p/,S : 0 = ¢/,G : v = + for

Ps ,0/7 g, OJ> s 7/ S OAQ,*' Then,

R®(S®G)=R-T)(S®G)
=R-T,(S-T,(G))
=R-TP(S)- TP o TP(G)
= (R-T,(5))  Tpao(G)

=(R®S)®aG,

where the third equality is by T/P being an algebra endomorphism, and the fourth is by Lemma 72
and the choice of D having V,g5,4, = 1. So, it is associative on morphisms as well as on objects.
For R:p— p/ and idq, = 1: 79 — mo, idg, ®R =1-TR(R) = Rand R®idy, = R-TP(1) = R.
Of course, for 1 =id,:p = pand 1 =id, : 0 = 0, id,®id, = 1-TPD(1) =1=idygs.
Therefore, (M, ®, m) is a strict monoidal supercategory (Definition 103).

Now to see that the morphisms eSrAO)(p, o) for p,o € Oy (Definition 92) make (M, ®,7T0,63_A0))

into a braided strict monoidal supercategory. Lemma 94 shows that it satisfies
A A
(0, 0) - (R 5) = () @ R) - 1) (p,0)

for R:p— p and S : 0 — ¢’. And, by Lemma 97 it satisfies the hexagon identities. Also, as
egf\o)(p, 0):p®0c — o ® pis an even unitary, it is an even isomorphism.

So, (M, ®, o, e&AO)) is a braided strict monoidal supercategory.

So, we have that (M, (—)*) is a C*-(super)category, and that (M, ®, o, 65:\0)) is a braided strict
monoidal supercategory, so there are only five things left to check.

First, let us see that the identity object my is simple, i.e. Enda(mg) = Cidy,. For R € B(H),
R :my — mo iff, for all z € A, R-7§(z) = nf(z) - R, i.e. iff R € mo(A)Y. As mp is irreducible,
mo(A) = C-1. By Lemma 111, as Ad(U,,.)(m0(A)) = mo(A), we have mo(A)Y = (mo(A)).
Therefore, mo(A)Y = (mo(A))! = (C1)! = C1. Therefore, Endpq(mg) = Cidy,, i.e. the identity

object g is simple.
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Second, using the assumption that for every cone A, mo(Ap)Y e, is a properly infinite factor, and

therefore a properly infinite von Neumann algebra, by Lemma 99, M has direct sums, in that for
any (p,U, = Uap),(0,Us = Uay) € Ong«, there is an object (p @ 0,Upgs = Uap) € Opyx and
even isometries v, : p = p@ 0, Lo 1 0 — pD o, such that 1, =idy, = 1, 1516 = idy = 1, and
Loty t+ toty = 1dpse = 1.

"
even

Third, using the assumption that for every cone A, 7o (.Ax) and (mo(Axc)" )even are both properly
infinite factors, by Lemma 101, for any o = (0,U,) € Oy, and any projection p : ¢ — o which
satisfies U,p = pU,, there exists a (7,U;) € Oy, and an even isometry ¢, : 7 — o such that ¢yt = p.
And, because for (0,Uy) € Oy, « we have that U, = U,,,, for any even projection p : ¢ — ¢ we have
that Usp = Unpp = pUap = pUs, so the lemma applies, and additionally gives us that U, = U,,
so (1,Ur) € Opg -

Fourth, as each (p,U, = Ua,) € Op,« is a pair of a representation p : A — B(H) and a unitary
Uy, € U(H), ob(M) = Opyx C ((A — B(H)) x U(H)), and is therefore a set, so the category is
small.

Finally, for homogeneous R: p — p' and S : 0 — o', (R® S)* = (-1)EISIR* © S$* by Lemma 84.

Therefore, (M, ®, o, 690), (—)*) is a braided strict C*-tensor supercategory, as desired. O

4.4. Some delayed proofs

PROPOSITION 109. For p € Og be an irreducible grade-preserving representation of A. Then U, is

either Uy, or —Uq,,.

PROOF. Let A be a cone. By Lemma 33, for any cone there is an odd local unitary in that
cone, so let By € Ape, and be an odd unitary. Let Ag € Axc, and be even. As p € Oy, there exists
Voa € Voa. Then, Ad(V, A)(Upp(AoB1)) = Uapmo(AoBi) = Uapmo(Ao)mo(Br)
= m0(A0)Uapmo(B1) = Ad(Vp,a)(p(Ao)) - Ad(Vp,a) (Upp(B1)) = Ad(Vp,a)(p(A0)Upp(B1)).

S0, Ad(V0) (Upp(Ao)p(B1)) = Ad(Vy ) (p(A0)Upp(B1)),

and so U,p(Ao)p(B1) = p(Ao)Upp(B1).

As By is invertible, multiplying on the right by p(B;') we get U,p(Ag) = p(Ao)U,.
Therefore, we have that for all even Ay € Ape, that U, commutes with p(Ay).
And, this holds for any cone A.

Therefore, for any even Ag € Ajoe, there will be some cone A such that Ay € Ape. and so we have
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that U, commutes with p(Ap).

So, U, € p(Aoc,even)’-

Ajoc is dense in A, and Ajoc even is dense in Aeven.

Because p is continuous, (A € A) — [U,, p(A)] is therefore continuous, and its image on Ajoc even 18
0, and therefore as Ajc even is dense in Aeyen, its image on Aeyen is also 0, and so U, € p(Aeven)’-
Because p is irreducible, p(.A) is dense in B(H), i.e. p(A)” = B(H).

Because p is grade-preserving, p(A)even = p(Aeven)-

As any limit (with respect to the weak topology) of even operators is even,

(P(A)even)” = (p(A)")even = B(H)even-

S0, p(Aeven)” = B(H)even-

S0, p(Aeven)’ = p(Aeven)” = (p(Aeven)”) = (B(H)even)' = Clprpyen © Clpyyy-

So, U, € Cly,,,, ® Cly,,,-

As Up2 = 1, therefore U, is of the form £13, . + +1y
Le. U, € {1,-1,Uqp, —Uap}-

odd*

Now to rule out the first two of these.

For any cone A and any odd A; € Ajec, and any odd invertible B; € Apc

Ad(V,a)(p(A1B1)) = mo(A1B1) = mo(A1)mo(B1)

= —Uapm0(A1)Uapmo(B1) = — Ad(V)A) (Upp(A1)Upp(B1))

S0
p(A1)p(B1) = =Upp(A1)Upp(B1) -

As By is invertible, we then get p(A41) = —U,p(A1)U,.

This cannot be true if U, is +1, and so it must be either U, or —U,,,, as desired. O]

It can be seen that both values are possibilities, because for any p € Oy, it can be seen that

Upoap = —U,.

LEMMA 110. Let p € Oq, and suppose U, = £U,,.. Then, for all cones A, all V,x € V, A, and all
A € Ape, we have:

(a) If U, = U,,., then Ad(V, A) o p(A) = mo(A).
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(b) If U, = —Uq,, then Ad(V,p) 0 p(A) = mp 0 ap(A).
PROOF. Let A be a cone, V, A € V,z, and A € Ape, with A = Ag + A;.

Ad(V,4)(p(Ao) + p(A1)) = Ad(V,, 1) (p(Ao) + UpU,p(Ar))
= 7To(A()) + Ad(Vp,A)(Up) Ad(VP,A)(UPIO(Al))
=7(Ao) + Uy - (Uapmo(Ar))

= 70(Ao) + (UpUa )0 (A1)

The third equality uses that U, = +U,, € (B(H)even) and that V), a is even, to conclude that
Ad(V,A)(U,) = Up,. The last expression in this chain of equations is equal to mo(Ag + A1) = mo(A)
if U, = Uay, and is mo(Ag — A1) = mo o ap(A) if U, = —U,,. Therefore, the we have the
desired conclusion, that if U, = U,, that Ad(V,a) o p(A) = mo(A), and if U, = —U,,. then
Ad(V,,4) 0 p(A) =m0 0 aup(A). O

LEMMA 111. Let A be a C* subalgebra of B(H). The following are equivalent:

(1) Ad(UaF)(Ql) =2
(2) For X = Xo+ X1 € B(H), X € 2 if and only if Xo, X7 € 2
(3) Ad(Ua,) (24 =2

In addition, they imply:

(a) Ad(Ua, )(2) = 2
(b) 9125/ — Ql/t

PrOOF. For (1) = (2):
Suppose Ad(Uqy, ) (2A) = 2.
For X = Xo+X,if X € A, then Ad(Ua,. ) (Xo+X1) = Xo— X1 € 2, so by 2 being a linear subspace
of B(H), (X +Ad(Ua,) (X)) = 3((Xo + X1) + (Xo — X1)) = Xo € A and (X — Ad(Ua, ) (X)) =
%((XO + X1) — (Xo — X1)) = X3 € A. Conversely, if X, X1 € 2, then of course X = X+ X; € 2.
For (2) = (1):
Suppose that for all X = Xo+ X; € B(H) that X € 20 iff Xy, X7 € A. Then, for X = Xy+ X; € «,

we have that Xy, X7 € 2, and therefore, as 2 is a vector space, Xg — X1 € /. So, Xo + X7 € A iff
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Xo— X1 €U Le. X € 2iff Ad(Uy,)(X) € 2 So, X € A iff X € Ad(U, )(A) = Ad(Ua, ) (). ie.
A =Ad(Uq,) ().

For (1) = (3):

Suppose Ad(Uy,)(A) = 2A. For X = Xo+ X1 € B(H), Xo + Uap X1 € A iff Xo+ X7 € 2A.

X0+ Unp X1 € Ad(Ua,.) (1) iff Ad(UZ, ) (X0 + Unp X1) = Ad(Ua ) (Xo + Uayp X1) € 2L, OF course,
Ad(Uap)(Xo + Uap X1) = Xo — Uap X1. S0 Xo + Unp X1 € Ad(Un, ) () iff Xo — Uap X1 € A iff
Xo— X1 €90 And, as Ad(Ua, ) () = 2, Xo — X; € Aiff Xo+ X1 € 2. So, by Xo + Uap X1 € A
i Xo + X1 € A, Xo+ Unp X1 € Ad(Ua, ) (A iff Xo + Unp X1 € AL, ie. Ad(Uy,)(21F) = 2L,

That (3) = (1) follows from applying (1) = (3) to the case of 2! in place of 2, to get that
Ad(Uy,, ) (") = A" implies that Ad(Uy, )(2A") = A, and applying the fact that A" = 2.

For (1) = (a): Suppose Ad(U,,)(2) = A. Then Ad(Uy,)(A') = (Ad(U,,)(A)) =2,
For (1) = (b):
Suppose Ad(Uy,,)(2) = A. By (1) = (a) and (1) = (3), we have that Ad(Uy,,)(2") = A"
and that Ad(U,, )(AY) = AV,

X=Xo+X; eV <= Xp,X; "
— X0, Upp X1 €2
= VY =Y+ Y €U [X0,Y]=0=[Usp, X1,Y]
—= VW =Y+Y €2
[Xo, Yo] = [Xo, Y1] = [Uay X1, Y0] = [Ua, X1, Y1] = 0)
= VW =Y+Y € (

[Xo, Yo] = [Xo, V1] = [X3, Vo] = {X1, Y1} = 0)

— VY =Yy+Y €2

[XOaYO] = [X07Uapyl] = [X]_,}/O] = [X]-?UOCFY]-] = O)
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— VW =Yy+Y e (

[Xo0, Y0 + Uap Y1] = 0 = [X1, Y0 + Ua,p Y1)
= VY =Yy + Uy, Y1 €U (

[Xo0, Yo + UapY1] = 0 = [X1, Yy + Uap Y1])
— Xo, X; eqV

— Xo+ X; e A",

So, At =AY as desired. O

4.5. U,, is not in B(0, ¢)

LEMMA 112. (1) For any homogeneous A € B(H), ||All = max(||Alx.ponll s [[Al2,4,]]) and there
is a sequence (v;);en of vectors in H which are either all in Hepen or are all in Hoqq, and

which are all unit vectors, such that lim || Av;|| = ||A]|.
1—00

(ii) For any B = By+ By € B(H), | B|| = max(|Bo| . | B1l).

PROOF. For part (i):

Let A € B(H) be homogeneous (either even or odd). Let Ay, .. : Heven — H and Aly_,, : Hodd —

H be the restrictions of A to the domains of Heyen and Hodd: [|A|Hevenll = sup || Avo|
'U()EHevenyH'UO”:l
and [|Alz,. | = sup  [JAvi[l. For v = vo+ v € H with [[o]| = 1, [Jvol?® + [Jur]® = 1,
v1€Hoda, [lv1]|=1
and [|A(vo 4+ v1)||* = ||Avo|® + ||Av1|* (because A is homogeneous, and therefore Avg and Aw

have opposite grades, and are therefore orthogonal). So. [|A(vo+ v1)||* = ||Avol® + ||Av|* <
1ALt I 00]12 + | Al |2 0112 Therefore, |l = max(|Alptusnll, | Alstoqqll), and whichever of
the two is larger, a choice of a sequence of unit vectors (v;);en in H such that ||Av;|| tends to ||A]|,
can be chosen such that vectors in the sequence are either all even or are all odd.

For part (ii):

Now, let B = By+ B; € B(H). Consider whichever of || By|| , || B1|| is larger, or if they are equal pick
one of them arbitrarily. Let s € {0,1} be the subscript associated with whichever one is chosen.
Then, as in part (i) of this lemma, let (v;);en be a sequence of homogeneous unit vectors in H

such that || Bsv|| = ||Bs||. Then, |[(Bo 4+ B1)vil|> = || Bsvs||* + HB(l_S)viHZ (again because Bsv; and
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B _gyv; are orthogonal). ||(Bo + B1)vi|| < [|Bo + Bil| [|vi]| = || Bo + Bul|. So,

|Bo + Bi||* > [|(Bo + By)vil?
2
= || Bsvil* + || Bu_svil|

> || Bywill?,

and || Bsvi|| = || Bs|| = max([|Bo| , [| Bul]) as i = 00, so || By + Bi|| = max(||Bol, || B1]), as desired.
O

LEMMA 113. Let w : A — B(H) be a grade-preserving representation of A. Let Uy, = 194,y —
1y,,, € U(H) (as usual).
Then, for any cone A and any A € w(Ap)", ||[Uap — 4| > 1.

PROOF. Let A be a cone and let A = Ay + A; € w(Ap)". As U,, is even, we have that
A—Uyp =(A—=Usp)o+ (A—Uap)i = (Ao — Uay) + A1 So, by Lemma 112,

1A = Uap || = max([[(A = Uap)oll, (A = Uap)ill) = |40 = Uagpll -

Therefore, it will suffice to show that ||Ag — Uy, | > 1.
A € m(Ap)Len Because for every B € B(H), ||[Ao — Uap, Blll < 2|40 — Uap || | B||, for B # 0,

even-
M. So, it suffices to find some B € B(H) such that |[[Ag — Ua,, B]|| >

Ao — Up, | > Mo e
2B

Pick B to be any non-zero odd B € m(Apc)oqq- (There exists such a B in any cone by Lemma 33.)
By the triangle inequality, ||[Ao — Uap, Bl|| > ||[[Uap, B]l| — [|[[A0, B]||. And, because B is odd, we
have ||[Uap, B]|| = [|[UapB — BUqp || = ||2Ua, B|| = 2||B||. So, as B is odd and non-zero,

1[40 = Uag, Bl
4o = U | = F20
|[Uag, Blll = 1o, B]|
= 2[B]
_20Bl— |40, Bl _, _ 40, Bl
2]B] 2]B]

By twisted locality, m(Ap)”" C 7(Apc)Y. Now, as B € m(Axc)odd, therefore U, B € m(Axc)t, and
as Ag € m(Ap)" C mo(Ane)Y, [Ag,UapB] = 0. As Ag is even, then [Ag, U, B| = U,,[Ao, B], so
[Ag, B] = 0.
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So, [| 40 = Uagll > 1= Ll = 1, and so, as A = U, || > [|4o = Uagll, we get A= Ua,|l > 1,

as desired. O

LEMMA 114. For any choice of forbidden direction (0,¢), U, & B(0, ).

PROOF. Let (0, ¢) name a forbidden direction. If U,, were in B(6,¢) = U WQ(AA)”“.”,
AeC(0,p)
there would be a sequence (A, )neny where each A, € |J 7o(Aa)”, and such that it satisfies
AeC(0,9)

li_}In |A, — Uqpll = 0. For each A, € |J mo(Ap)”, there exists a cone A, € C(6, ) such that
oo AEC(0,0)

A, € mo(An,)". By Lemma 113, as A, € mo(Aa,,)", ||An — Uay|| > 1. Therefore, || A, — Uq, || does
not converge to 0. So, as no sequence (A,)neny where each A, € |J 7(Ap)" has [|An — Ua, ||

AeC(0,9)
converge to 0, therefore Uy, ¢ B(6, ), as desired.

4.6. On combining with the constructions in the symmetry chapter

We now briefly mention how the construction in this chapter and those in Chapter 3 combine when
the compact abelian group G has the Z/2Z corresponding to action by ap, as a subgroup.

Let G be a compact abelian group equipped with an injective inclusion of Z/27Z into G. Let F € G
be the image in G of the non-identity element of Z/2Z. Through Pontryagin duality, this inclusion
7/2Z < G induces a surjection G — Z/2Z = 7,/2Z.

If, in addition to the on-site unitary Z/2Z action {U,, (4} }zer, there is an a system of on-site
unitary G-actions (Definition 4) ((g € G) = (Utay,g € U(H{a})))zer such that Uy p = Uy, fay for
all x € I, then the constructions and definitions in this chapter and in Chapter 3, are compatible.
Because G is abelian, Uy , commutes with Uy p = Ugp (2}, and so Uggy 4 is even. Any G-
covariant representation (p, U(®)) then has (p, U, = U }p )) as a Z/2Z-covariant representation. And,
again by G being abelian, Ug(p ) commutes with Ul(;p ) = Up, so Ué’o ) is even in that sense (and if
U, = U, then it is also even in terms of commuting with U,,.). For two G-covariant representations
(p, UP), (o, U, if U, = Uy, and U, = Uy, then any G-covariant map from (p, U®) to (o, U))
will also be even.

The definitions Definition 10 and Definition 42 can then be combined straightforwardly as:
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DEFINITION 115. With our A and the on-site action g — oy, and a G-covariant representation
(Hey,m 0 A = B(Hr), ™a 5 U(Hr)) to serve as the reference representation , another G-
covariant representation (H,,p : A — B(H,), vl G U (H,)) satisfies the G-equivariant ver-
sion of the superselection criterion for systems with fermionic degrees of freedom with respect to
(Hr,m, U(”)) if for all cones A, there exists a unitary V, z : H, — H, that is a G-equivariant map
(i.e. such that for all g € G, Vp7AUg(p) = UéW)Vp’A) and such that:

for all Ag € Anc even, Ad(Vpa) 0 p(Ao) = mo(Ao),

and for all Ay € Ape gaq, Ad(V, A) (U p(A1)) = U mo(Ay).

In the case that H, = H, and U I(;p ) = gr) = U, , anything representation satisfying this definition
will satisfy both Definition 10 and Definition 42 (when the former is interpreted to apply in this
setting). That all the results in this chapter continues to go through is immediate (under the
assumptions of mg irreducible, U I(JWO) = Ua,, and 7o satisfying approximate twisted Haag duality) as
going from satisfying Definition 42 to satisfying this definition, only adds additional assumptions.
That everything in Chapter 3 still works out is also straightforward. The @—gradings on algebras
and vectors spaces are then refinements of the grading into even and odd parts, in accordance with

the surjection G —» Z//\QZ = 7/27.
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CHAPTER 5

Tensor category describing anyons in the quantum Hall effect and

quantization of conductance
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Dedicated to the memory of Professor Huzihiro Araki

ABSTRACT. In this study, we examine the quantization of Hall conductance in an infinite plane
geometry. We consider a microscopic charge-conserving system with a pure, gapped infinite-volume
ground state. While Hall conductance is well-defined in this scenario, existing proofs of its quanti-
zation have relied on assumptions of either weak interactions, or properties of finite volume ground
state spaces, or invertibility. Here, we assume that the conditions necessary to construct the braided
C™*-tensor category (aka braided monoidal C*-category) which describes anyonic excitations are sat-
isfied, and we demonstrate that the Hall conductance is rational if the tensor category is finite.
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5.1. Introduction

For an effectively two-dimensional system, such as a metal plate or a single graphene layer, the
applied electric field and the induced current are two-component vectors. According to Ohm’s law,
for small fields, the current is proportional to the applied field. The matrix that relates them is
called the conductance matrix. In an insulator, the current can only flow in the direction transversal
to the applied field. The corresponding conductance matrix is antisymmetric, and Ohm’s law takes

the form

- 0 k\ .
(5.1) J = \%4

—x 0

where we call the off-diagonal conductance x the Hall conductance.

The quantum Hall effect refers to the behaviour of x at low temperatures. As observed by Kitzling
[29] and Tsui, Stormer and Gossard [45], whenever the material is insulating, i.e., the conductance
matrix is as in (5.1), the Hall conductance is a fractional multiple of a universal constant.! The
effect is called integer quantum Hall effect if the Hall conductance is a whole number and fractional
quantum Hall effect if the Hall conductance is a non-integer rational number.

The integer quantum Hall effect is well modelled by non-interacting electrons in disordered media.
The fact that k is integer-valued in this case is now reasonably well understood, and it is beyond
the scope of this article to review the extensive body of literature on this topic. Let us mention that
integer quantization remains true in the case of weak interactions [21| and under the additional
assumption that the ground state is invertible [25]. As a consequence, electron-electron interactions
must be included to obtain a non-integer Hall conductance, which introduces significant analytical
challenges. Consequently, the fractional quantum Hall effect is mathematically much less under-
stood. A microscopic framework for a finite number of interacting electrons was already developed
by Avron and Seiler in [3], resulting in a possibly rational Hall conductance [26]. A topological field
theory of quantum Hall fluids in the bulk, which yields fractional quantization and anyonic excita-
tions, was developed in the early 90’s by Frohlich and collaborators, [18,20] and again later [19].
An interacting microscopic framework with a well-defined thermodynamic limit was only provided

twenty years later in the work of Hastings and Michalakis [24].

1We will use units in which this constant is equal to (27) 7!, and consequently, 27k is a rational number.
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The setting of Hastings and Michalakis and of subsequent works [6,7,35] involves a gapped Hamil-
tonian for interacting particles with a U(1) symmetry on a finite torus of linear size L. Assuming
that the Hamiltonian has p locally indistinguishable ground states (along with some further technical
assumptions), it is proved that

ok = L 4 O(L™),
p

i.e. there exists ¢ € Z such that |27k — ¢/p| vanishes faster than any inverse power of L as L — co.
This implies, see [6], quantization of conductance in the plane, provided we assume that the ground
state in the plane is a limit of ground states of embedded tori. Since they are locally indistinguishable

it does not matter in the limit which torus ground states are used. This plausible assumption, often

referred to as LTQO for Local Topological Quantum Order and introduced in [13,34], is likely
satisfied in all standard quantum Hall models (in fact, it was forseen already in [46]) but it is
currently difficult to prove, see however [32] for recent progress in this direction.

In this article, we will show that Hall conductance is quantized in the infinite plane geometry
without assuming LTQO. We want to avoid this assumption not due to the lack of proof — we will
anyway have to assume analytical properties we can’t prove in any concrete model — but because
not having it leads to an intriguing intellectual puzzle: What replaces the ground states degeneracy
on the finite torus in the denominator p of the quantum Hall conductance fraction? We will show
here that p is upper bounded by the rank of the braided C*-tensor category associated with the
ground state [41], which describes the anyonic excitations in the system. A parallel approach was
taken in [25,43], where the infinite volume assumption is the invertibility of the state.

The connection between rational Hall conductance and the properties of low-energy excitations was
first described in the works of Laughlin |30, 31|, and Arovas, Schrieffer, Wilczek |1]. Laughlin
demonstrated that insertion of a 27 flux produces an excitation with a fractional charge 27wk at
the point of insertion. Arovas, Schrieffer, and Wilczek then showed that if a second excitation is
adiabatically moved around the first, it acquires phase ¢i(2m)”% This means that the excitation is an
Abelian anyon. In a finite volume setting that is very close to the present one, this was proved in [&],
and was extended to the infinite volume in [25]. The connection exemplifies the interplay between

macroscopic properties of a system, such as Hall conductance, and its microscopic properties, like

the statistics of elementary excitations.
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In this work, we use the theory developed by Doplicher, Haag and Roberts [16,22] for relativistic
quantum field theories, recently adapted to lattice systems [37], to describe anyon excitations. See
the review |33] for other approaches to describing anyons. The DHR approach uses a superselection
criterion to define excitation sectors, and proceeds to show that there is a natural braided C*-tensor
category structure associated with these sectors. In particular, physical elementary excitations
correspond to objects in this category, and the physical braiding of two excitations corresponds to
the braiding structure € in the category. A complete mathematical setting in the context of quantum
lattice systems was first described by Ogata |41], and we will use this particular framework here.

As mentioned above, the way how to construct Abelian anyons in fractional quantum Hall effect was
introduced in [8] and later expanded on and used to prove quantization for invertible systems in [25].
Neither of these works construct the anyons as objects of a braided C*-tensor category. Firstly no
exact framework existed at that time, and secondly (speaking for authors of [8]) it seemed at the
time that technical details associated with the precise construction might obscure the relatively
simple idea behind the construction. We now feel that this has changed and that there is a need
for uniform setting and precise definitions. The main technical part of this work, see Section 5.5, is
the construction of some objects in the braided C*-tensor category M associated with the ground
state. Echoing [1] and [18], the braiding properties of these objects will be connected to the Hall
conductance. In Section 5.6, we then prove that under the assumption that there is finite number

of superselection sectors, Hall conductance k is indeed a rational number.

5.2. Setting and results

We follow the setting and notation of [41], which expands on the usual framework of 2-dimensional
lattice spin systems. We consider a lattice Z? and to each point x € Z? we associate an algebra
Az isomorphic to the algebra of d X d matrices for some fixed d > 1. For a finite subset Z of 72 we
define Az = ®uezA(yy. For Z1 C Zy, the algebra Az, is canonically embedded in Az, by tensoring
operators in Ay, with the identity. For infinite Z C Z2, the algebra Ay is defined as an inductive
limit of algebras associated with finite subsets of Z. We denote A = Ay2. For each Z C Z2?, we
fix the conditional expectation E; : A — Az onto Az preserving the trace. The algebra of local

observables is denoted by Ajqc.
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We will use notation, definitions and some results about interactions and dynamics that are sum-
marized in Appendix 5.A. While most of what we use should be standard for an expert in the field,
the notion of an anchored interaction which was introduced in [9] might be an exception.

We consider an interaction h € J, here J is a class of interactions that are sufficiently local and
uniformly bounded (see the appendix for the exact definition), and assume that it has a finite range,
i.e. there exists 7 > 0 such that diam(S) > r implies hg = 0. We denote {7 : ¢t € R} the dynamics,

namely the one parameter group of automorphisms, generated by h.
ASSUMPTION 5.2.1. The dynamics 7" has a unique gapped ground state w.

Precisely, this means that there is a unique state w satisfying

w(A*[h, A])

5.2 _— > 0
(5:2) w(Aa) 97
for all local A such that w(A) = 0. It is then automatically a ground state, i.e., w(A*[h, A]) > 0 for
all local observables A, and is pure [44|. We denote the GNS representation of w by (H, 7, Q).
Note that we do not assume that w is the unique state satisfying the condition w(A*[h, A]) > 0,

namely there may in general be other such ‘algebraic ground states’.

5.2.1. Braided C*-tensor category associated with . In this section we recall, to the
extent that we will need in this work, the construction of braided C*-tensor category described
in [41]. It requires the approximate Haag duality. We do not present the full definition here and

refer reader to [41, Definition 1.1] (c.f. 38).
ASSUMPTION 5.2.2. The GNS representation (H,m,2) of w satisfies the approximate Haag duality.

We denote eg := (cos 3,sin 3) and set
(5.3) Aaop:={a+teg|t>0,8€(0—¢,0+p)}

for € R, a € R?, and ¢ € (0, 7). We call a subset of this shape a cone and use the same notation
for the subset Aq g, N 72 of the lattice. It is important that the empty set and R? are not cones.
Strict Haag duality is the statement that w(Axc) = 7(Ap)” for all cones A while the approximate

version allows for ‘tails’ on the outside of the cones.
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We now define superselection sectors with respect to the GNS representation (H, m, ) of the gapped
ground state w, see Assumption 5.2.1. We note that the representation is irreducible because the
ground state w is pure.

Recalling Definition 3:

DEFINITION 116. We say that a representation o of A on H satisfies the superselection criterion

with respect to 7 if
U|AAC =~ 7T|AAC7

for any cone A. Here, ~ denotes unitary equivalence.

We denote by Oy all representations of A on H that satisfy the superselection criterion. Equivalence

of representations splits Oy into equivalence classes, which are called superselection sectors.

THEOREM ( [41], Theorems 5.2 & 6.1). Given Assumptions 5.2.1, 5.2.2, the superselection sectors

form a braided C*-tensor category.

We call this category M and refer to [41] for precise definitions. We will recall the construction in
Section 5.3. For the moment we only note that objects in the category are representations satisfying
the superselection criteria, and morphisms are their intertwiners. The braiding, €(p, o) of objects
p, o, encodes the exchange statistics of the anyons corresponding to p,o. We will also introduce a
braiding statistics (p, o) which will be the phase obtained by moving o counterclockwise around

p, see (5.6).

5.2.2. Charge conservation. We consider an on-site U(1) symmetry generated by an inter-
action ¢ € J such that operators g,y € A{x} have integer spectrum for all € Z?, and g5 = 0 if S
is not a singleton. The operator gy, encodes physical charge at site z, and for any finite region Z

we denote
Rz = Z iz}
x€EZ

and refer to it as the charge in the set Z. By assumption, Spec(Qz) C Z. For any (finite or not)
subset Z, let 6% be the derivation associated with ¢|z, the restriction of ¢ to Z — see Appen-

dix 5.A.6 for the notion of restriction of an interaction — and let a? be the corresponding family

q

of automorphisms. Note that a_ = id, justifying the name U(1) symmetry. We denote §9 = 0y2,

2
and a = o,
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We assume that our system is U(1) invariant in the following sense.

ASSUMPTION 5.2.3. For any finite S, Z C 72 such that S C Z,

(5:4) [hs,@z] = 0.

We immediately note that in conjunction with Assumption 5.2.1, this implies the U (1)-invariance
of the state, namely w o oy, = w for all ¢ € R.

Assumptions 5.2.1, 5.2.3 allow to construct a self-adjoint operator J € A whose expectation value
(5.5) k= w(J)

is the Hall conductance of the system [5,24]. We provide details of this construction in Section 5.4.
An alternative construction of an observable corresponding to Hall conductance is given in [43]

using the framework of higher Berry curvature [2].

5.2.3. Results. The first theorem that we will prove makes an explicit connection between
the braided C*-tensor category, specifically the braiding statistics 6(p, p) briefly introduced at the
end of Section 5.2.1 and defined in (5.6) below, and the Hall conductance . As discussed in the

introduction, versions of this theorem are in [8,25].

THEOREM 117 (Existence of Anyons). Given Assumptions 5.2.1 — 5.2.3, there exists a simple object
p € M such that

0(p, p) = e ™",

The second theorem that we prove addresses quantization of the Hall conductance.

THEOREM 118 (Quantization of Hall conductance). Suppose Assumptions 5.2.1 — 5.2.8 hold, and
assume that there is a finite number p’, of equivalence class of simple objects in M. Then there
exists an integer p < p’ such that

2k € Z/p.

5.2.4. Outline. In the following section we provide details about construction of the braided
C*-tensor category. In Section 5.4 we define the Hall conductance. In Section 5.5 we prove Theo-

rem 117, and in Section 5.6 we prove Theorem 118. Finally, Appendix A contains all we need about
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interactions and their associated objects, and Appendix B has some technical parts related to the

definition of the braiding statistics 6 on the braided tensor category.

5.3. Construction of braided C*-tensor category

The idea to use superselection sectors to describe anyon ground state excitations was first described
in the context of algebraic quantum field theory in [14]. It was recently adapted to quantum spin
systems [15,36,37,41]|. A representation ¢ that is quasi-equivalent to m, without any restriction,
corresponds to local excitations of the ground state. A representation o that satisfies the superse-
lection criteria but is not quasi-equivalent to m corresponds to anyon excitation: We often visualize
them as excitations created by an endomorphism acting along a string going from the point of the
excitations to infinity, which is, in particular, localized inside a cone. This is the case in some
exactly solvable models [27, 28], see [36,37].

In order to construct the braided C*-tensor category, we shall now make various choices but the
resulting category is independent of these choices [41]|. Let C be the set of all cones (5.3) such that
[0—,0+¢] N[ -2 30+ 21 =( mod 2r. This makes a choice for what is called the forbidden
direction, see Figure 5.1. Let

B = Unecm (Ar)",

where the overline indicates the norm closure. For each cone A and o € Oy, we set
Vor = {Vor €UMH) | Ad(Voa) 0 0fape = Tlaye },

which is a nonempty set by the very definition of Oy. We also denote by Op the set of all o € Oy
with I € V, . O represents anyonic excitations supported in A.

We fix a cone Ag := Ao,g,%” € C, the objects in the category M are the elements of Op,. In order
to introduce a tensor product of objects (and later braiding), we first pull o € Op, to a map on the

algebra B. There exists a unique *~homomorphism 7T, of B such that
T,om=o0

and T, is weakly continuous on 7 (A,)", for every A € C.
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For two objects 01,02 € Oy, their tensor product is defined as
01® 09 : =T, oly, om.
The morphisms of M are the intertwiners
Hom(oy,02) :={V € B(H) | Vo1 = 02V'}.

To define braiding we fix the following two cones Ag := AO’W%,Al = AO,% . For p € Op, and

™
8

o € Op, the braiding €(p, o), of p, o is defined as the norm limit

e(p,o) = lim V7T (Vonats))

Here and later, we use a notation Ag g ,(s) = Aqg6,,+5es. The braiding is independent of the choice
of unitaries V, x,(s) € Vi p,(s), and it intertwines p ® o with o ® p, i.e. €(p,0) € Hom(p® 0,0 ® p).

If p =, then T, = id and hence ¢(7,0) =1 for all o.

REMARK 119. As shown in Lemma 147, this definition is a special case of Definition 4.11 in [6], c.f.

Definition 92.

As(t)

FIGURE 5.1. The various cones used in the construction of the category M. For-
bidden directions are represented by the arc in the lower half plane.
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We will also need the braiding statistics, 6(p, o), associated with winding of the anyon ¢ around p.

We fix another cone Az = AO,O%, and for p € Oy, and o € Oy, we define
(56) 0(/), U) = tllglo 6(p7 Ad Vo,Ag(t) © U)‘

The limit is well defined, see (i) of the next lemma. In this article we will only encounter Abelian
anyons in which case the braiding statistics is proportional to identity: This is reflected in the
assumptions and statements of the following lemma. While a ‘braiding statistics’ or ‘statistical
phase’ has been defined in many different ways in the mathematical literature and expresses the
same phenomenology (among the close analogs, see Section 2 in [17], Section 2 in [42] or Section 8.5

in [23]), the authors are not aware of Definition (5.6) having appeared before.

LEMMA 120. Suppose that Assumptions 5.2.1, 5.2.2 hold. Let p,o € Op,. Suppose that o is of the

form o =mod& for some & € Aut(A) such that 5|4, =ida,.. Then
1 1

(i) O(p, o) is well defined, and independent of the choice of Vi, ),

(it) 0(p,o) € Hom(p, p).
Suppose in addition that p = wo p for some automorphism p. Then

(iii) 0(p, ) = €?id, for some 6 € R,

(iv) For p) = Ady op € Op, and 0/ = Adw oo € Oy,
H(plvgl) =0(p,0),

(v) 0(p1 ® p2,0) = 0(p1,0)0(p2,0).

PROOF. The proof of (i) is quite technical and similar to the proofs of existence of €¢(p, o) in [41].
We postpone it to Appendix 5.B. Since similar techniques are required for the proof of part (ii), we
similarly postpone it, see Lemma 145.
Since p is irreducible by the additional assumption, the point (ii) implies that 6(p, o) is proportional
to identity. Because T}, is a unital x-endomorphism, 6(p, ) is a unitary as the norm limit of a family

of unitaries. It follows that 6(p, o) is a phase. This proves (iii).
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Manifestly, 6(p,c’) = 6(p,0). So to prove (iv), it remains to compute 6(p/, o). To this end, let

oy = Ad(Vy py5) 0 0. Pick Vi ay) = Vo,Ag(t)V;A3(s)'

0(p',0) = lim e(Ad(V) o p,Ad(VmAS(S)) o0)

S§—00

= lim lim [V, ). VI AA(V)(e(p, 0})

§—00 t—00

= lim lim [V, () Ve an(eyr VI AA(V)(e(p, 7).

§—00 t—00 o

where we used Lemma 146 in the second equality and denote [[Uy, Us]] = UyUxU;U; for the com-

mutator of unitaries. For A € Axe, we have that
m(A) = p/(A) = Ad(V)(p(4)) = Ad(V)(7(4)),
namely V' € 7(Ape)’". Hence lim, limt_>oo[[V07A3(5)VC:A2(t), V]] =1 by Lemma 139 and we get
0(p',0) = Ad(V)(0(p, ).

With this, Part (iv) follows from (iii).

To prove (v), we recall [41] that for o1, 02,03 € Oy,
€ (01 ® 09,03) = €(01,03)Ty, (e(02,03)) .

From the definition of 8, we then get

0(p1 ® p2,0) = 0(p1,0)T), (B(p2,0)),

and claim then follows again from (iii). O

5.4. Definition of Hall conductance

There are various, equivalent, formulas for Hall conductance. These formulas fall into two classes,
the first class expresses Hall conductance as the adiabatic curvature of a certain ground state bundle.
The second class expresses Hall conductance as a charge pumped upon insertion of a 27 flux. The
formulas can be proved from the Kubo formula [11], so the starting point is a matter of taste. We

decided to start with a formula from the first class because it is most naturally formulated in the
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infinite volume limit. However, in the process of proving our main theorems we will need a formula
from the second class which we will establish as a lemma below.

To define Hall conductance, we use a partition of space in four quadrants,

(x,y) EZQ\ng,OSy},

(z,y) € 2% |2 < —1,y < —1,},

A={
B:={(z,y) €Z? |z < 1,0 <y},
C:=A
D:={(z,y) €Z*|0< z,y < —1},

see Figure 5.2. We will use the notation Z1Zs = Z1 U Z5 for any two sets Z1, Zo. For example, AB

is the upper half plane. In addition, for a set Z, we set Zy := Z N [~N, N|*2.

.B [ ] [ ] ® [ [ ] A.
.C [ ] L] [ ] [ ] [ ] D.

F1GURE 5.2. The four quadrants used to define the Hall conductance

For a region Z C 72, we define

(5.7) v =~ [aw o m).

with W (t) a super-polynomially decaying function such that iv/27W (k) = 1/k for |k| > g. Here,
we use the specific definition of an interaction given in (5.28), and so kZ is a bonafide interaction.
Next lemma gives basic properties of this interaction. We recall that the Hamiltonian has finite

range 7, and let 07 := {x € Zy : dist(z, Z) < r,dist(z, Z¢) < r}.

LEMMA 121. Suppose that Assumptions 5.2.1 and 5.2.8 hold. Then for any Z C 72,
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(i) k% is anchored in 0Z,
(ii) 81(k%) =0,
(iii) k% = —k?°.

PROOF. The statement (i) follows from Lemma 133. Note the non-trivial definition of time

0

A consequence of (i) and Lemma 132 is that i[k4?, k4P| is summable. With this, we can define the

Hall conductance via (5.5) with
(5.8) J=> ik kP
S

It is in no way apparent that expectation value of J is adiabatic curvature of some ground state
bundle, we refer reader to [5] for the details about this bundle.

As announced in the first paragraph, we will need to connect this definition to a different formula
that we will use later. We are going to do this in the remaining part of this section.

For a region Z we define an interaction g7 = ¢|z — kZ, and denote 3Z the associated family of
automorphisms. ﬁf corresponds to threading flux ¢ through the boundary of Z, see [8]. The

function W in (5.7) is chosen so that the state w is invariant, namely
(5.9) wod” =0, wofl=w

for all regions Z, see [10]. For finite Z, the operator Kz = > ¢ kZ is well-defined and the invariance

above can be phrased as

(5.10) w([Qz, A4]) =

for all A € A, where Q, := Qz — Kz.

We claim that the interaction i[g4%, k4P] is also summable and that

w(>_ig*?, k*Ps) = 0.
S
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To establish this, we start by recalling that k4 is anchored in d(AD), see Lemma 121(i). We now
split the sum to two parts. First of all, if S C AB, we have that
e R D e S R D
S1US2=S S1US2=S
by Lemma 121(ii). By Lemma 132, the sum ZSIUS2cAB[kﬁlB,k§QD] is absolutely convergent, in
particular, we can write it as

-3 S wEPREPI= YOS @dP kA,

SoCAB S1CAB SoCAB S1CAB

where we used that for all Sy C AB, ZschB[QSukéQD] = 5q(k‘§ZD) = 0. It might be worth noting
that the double sum on the RHS is not absolutely convergent anymore. Second of all, we consider
those sets S that intersect (AB)¢. In fact, the anchoring of kAP implies that we are considering
only those that intersect both 9(AD) and (AB)¢. On the one hand, the sum
> (k5 k5,
51,52:(S1US2)NA(AD)N(AB)<#£)D
is absolutely convergent by Lemma 132. On the other hand, since the interaction ¢ is strictly on

site,

Z [qABa kAD]S = Z [qnga k.ézD]
S:SNO(AD)N(AB)c#£D S51,52:52NI(AD)N(AB)c#£0

and the sum on the RHS is absolutely convergent. Altogether, we have now established that the
commutator is summable. The above argument also yields that if the two sums are put added to
each other, we obtain a convergent sum,
(5.11) S ifgh? kAP)s = > 67 (k4P),

S Sa
It follows that the expectation vanishes since w(éqAB (k:?QD )) = 0 for every Sa. By the same argument,

the equality also holds with AB and AD exchanged. So we established two new expressions for Hall

conductance,

w(O kAP kAP)g) = w(D [g*P, k2Ps) = w(D kAP, ¢*P)s).

S S S
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Adding the last two, and subtracting the first and a zero > S[qAB, ¢*P]s we then get

(5.12) zz 78, ¢4P]s

with J defined in (5.8). To avoid any confusion, we remark that the expectation on the RHS looks
formally zero by (5.9). However, the double sum g o, [qng,q?QD ] is not convergent so (5.9) is not
applicable.

So far, the Hall conductance has been connected to adiabatic curvature. We now show that the
definition above can also be related to charge transport. We start with a formal calculation (which,

to be clear, is wrong!). By differentiating under the integral,
AD\—1/-AB AB AT AD\-1 AB
B @)~ = = [ (B a0 (@),

however LHS and RHS are not equal as interactions based on our definitions (5.26,5.28) of manipu-
lating interactions. Continuing with formal calculations (which ignore that sums are not absolutely
convergent), we conclude that
Z <( AD)=1(GAB) _qAB)S _ /0 (ZZ 748, g4 )d¢,

S S
and the expectation of the RHS is —27x by (5.12). This way, we obtained a formal connection
between change of charge under the action of BQL‘FD and Hall conductance.
It likely won’t be any surprise to the reader that to make the calculation correctly we need to
regularize the expression. There are many ways how to do that, our regularization resembles [&]

(see also Lemma 125). To this end, for r > 0, we decompose

(5.13) (B37) " =10

where v are automorphisms such that

(1) A%" (resp. v7) is generated by TDI go, (vesp. g1,) anchored in d(AD) N {xg < r} (resp.
J(AD) N {x2 > r}), moreover (g1,)s = 0 unless S C AB,

(ii) there exists function f € F and a constant C' such that ||g;,| s < C holds for j = 0,1 and
all r > 0,

(ili) the TDIs are charge conserving, i.e. [(gjr)s,@s] =0 for j = 0,1, 7 > 0 and all finite S.
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For conceptual clarity, the existence of this decomposition is assumed here, with a choice of %"

being given explicitly when the lemma will be used in the proof of Theorem 117.

LEMMA 122. Let
2
Jo= [0 (10  )s ) o
S
Then
w(Jo) = —2mw(J),

and

lim lim 7°"(Qap)y) — Qran)y = o,

r—00 N—00

where the limits are in the uniform topology of the C*-algebra.

PrOOF. Since [¢45,g4P] is summable, the equality w(Jo) = —2nw(J) follows immediately

from (5.12) and the invariance of w under the action of 4P.
It remains to prove the last statement. We split the limit into two parts using Q(AB)N = QAB)y —
K(ap)y- We first consider the charge contribution. We fix r > 0, and we are going to show that

the limit of WO’T(Q(AB)N) — QaB)y as N — oo exists. For M > N,
QAB)y — QaB)y = Z -
$€(AB)]L1\(AB)N

Using Lemma 134 we have for |z| > r,

17" (g2) = aall < f(l2]/2),

and

16 (@eamy) = Quamp) = 0 Quamyy) = Quam)ll < 32 F(lal/2)

|z|>N
Since f(|z|/2) is summable, the sum is going to zero as N — co. Hence the sequence is Cauchy and
therefore it has a limit.

The decomposition (5.13) yields that

Y (Qapyy) — Quanyy = (V) H(( %D)_I(Q(AB)N) — QaB)y)

+ (YN Qs y) — Quan)y-
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Since Q(4p), 1s a bonafide element of the algebra, we can differentiate under the integral sign to
get
2m
(Bs2) M (Q(aB)y) — Quan)y = _/o (B5P) 6540 (Qap)y )do-

Now

56‘“7 Z ilq (AB)Nv g

S
ZZ AB 7AD Zi[q(AB) ,@AD]
S S

where the convergence of these sums was established in the paragraphs preceding the lemma. Hence,

21
Y (QaB)y) — QaB)y (YI’T)_1</O (BQD)_l(ZZ[qAB 7*P]s )d¢>+JN7

S

where

27
I =-— / (BAPY TS ifqUBIN g P)sds + (v'7) N (Qamyn) — QaB)n-

0
S
The automorphism (y!")~! is generated by a TDI, let’s call it g, that is charge conserving and

supported in AB. Then we can write the last term as

YN Qupyy) — Quany = D / [(95)s, QaB)y])ds,

S:SN(AB)%,

which gives a decomposition Jy = > ¢(jn)s with jn anchored in (AB)%,. We established above
that Jy has a limit, and since it is anchored on the complement of a square that eventually covers
all of Z?2, the limit is a multiple of the identity. But Jy is traceless for all N and hence the limit is

zero. In conclusion, we obtained

27r
Jim A2(Quap)y) — Quas)y = (W)*( /O (it T d¢>
S
As (W) 7HA) — A for all A € A we get
2m
(5.14) Jim lim 5% (Qap)y) — Qap)y = /O B2 (D ila™?,qP)s) do.
S

Regarding the second part associated with K(4p),, Lemma 134 gives that the contribution of

(KABN) 5 to 'yO’T(K(AB)N) — K(4p), decays with the distance of S from the origin. This means
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that we can directly take the limit to get

]\}E)HW(VO’T(K(AB)N) — Kupyy) = 7" (k57) - k57,
S

Using the same lemma, we have that the sum on the RHS is uniformly convergent in r (we assumed
that TDIs g% are uniformly bounded) so we can also take the limit in 7 to get

lim lim ("7 (K(ap)y) — Kapyy) = »_(Ba) 7 (k") — kg®.

r—00 N—00 S

Finally, we can now differentiate term by term under the integral to get

2
lim hm (WO’T(K(AB)N) — K(AB)N) - —Z/(; (5£D>_1i[qADykéB]d¢
S

r—00 N—00

27
(5.15) _ /O (B4P)1(i S [g4P, k4B ) do,

S

where in the second line we used that [g47, k4P]g is absolutely summable so even though the lines
are not equal for each S, they have the same sum. (Recall (5.11).)

Adding now (5.14,5.15) back together finishes the proof. O

We end this section by proving that Jy commutes with the ground state. We recall an elementary

lemma.

LEMMA 123. Let M € A be such that w([M, A]) =0 for all A € A. Then
w(MA) =w(M)w(A)

for any A € A.

PROOF. In the GNS representation (#, 7, §2) of w, we let P be the orthogonal projection onto
the space spanned by 2. Since w is pure, 7 is irreducible and so 7(A)” = (C- 1)’ = B(H), namely

m(A) is weakly dense in B(H). For B € B(H), let (Aa)q be a net in A converging weakly to B.
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Then

Tr([P,m(M)]B) = (Qm (M) BQ) — (2| Br(M)Q)

= lim (Qr(MAa)Q) — (Qr(AaM)Q)

a—0o0
= lim w([M, A,]) =0
by the assumption. Since this is true for any B € B(H), we conclude that [P, 7(M)] = 0, and hence

w(MA) =Te(Pr(M)n(A)) = Tr(Pr(M)Pr(A)) = w(M)w(A)

because P is a one-dimensional projection. O

For any finite Z, the conditions of the lemma are satisfied for @, by (5.10) and we get
(5.16) w(QzA) = w(Qz)w(4) = w(Qz)w(A).
To get the second equality we noted that because Z is finite,

Kz = [ W@z

Since w is a ground state of 7/, it is in particular invariant and w o &, = 0 so that w(Kyz) = 0 by
the formula above. It then follows from the definition of Q, that w(Q,) = w(Qz).

We note for later purposes that

(5.17) (@) = w(Q2)%.

This follows immediately by applying both sides of the identity 7(Q,)P = Pr(Q) to Q:
m(Qz)2 = (Qm(Qz))Q.

LEMMA 124. Suppose that Assumptions 5.2.1 and 5.2.3 hold. Then

(5.18) w(JoA) = w(Jo)w(A)

holds for all A € A.
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PRrROOF. By (5.27), we have
w([z 745,340, A]) — W(8,a88,a0(A) = 61an8,45 (A)),
S
for any local A € A and the RHS is equal to zero by (5.9). Using the second part of (5.9) we then

get
w([Jo, A]) =0,

for all A € A and the statement follows from Lemma 123. O

5.5. Construction of an object in M associated with the U(1) symmetry

Having defined the current observable Jy, we now turn to the explicit construction of the repre-
sentation p € M whose existence was announced in Theorem 117 and prove that it has statistical
properties stated therein.

First of all, we note that while the TDI g that generates 65 is anchored in Z, the automorphism
Bzzﬂ has a trivial action far away from 9Z because g, have integer spectrum and k? is anchored in

0Z. Concretely, 52Z7r can be obtained from a TDI that is anchored in 02:

LEMMA 125. Fiz Z C 7Z2. There exists a TDI, IE:Z, anchored in 0Z such that
1.Z
B = Tix

PRrROOF. Recall that ozg is the family of automorphisms associated with the charge ¢|z. Since

A o
as . = id, we have

27

8= o of) ™ = id+ [0, (87 0 (o)) o

Computing the derivative, we have

0g (ﬂf o (ag)fl) = Bf o (562 - (5qz) o (ag)fl.

Using ¢Z — ¢ = —k% we get

05 (B3 o (ag)™') = (B o (ag) ™) e g 08 gz o (ag) ™,

and the lemma holds with TDI k% (¢) = —ag(kzz). The TDI is anchored in 0Z by Lemma 121 and

Lemma 133. 0
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When an arbitrary TDI A is acted upon by the U(1) automorphism, and only in the case, we will

make an exception to (5.28)and define

(ap(h))s = ag(hs).

This is more convenient and o manifestly respects anchoring because it acts on-site.

To a cone A = Aq g, We associate the half space Zp := {x € R? : fy -2 > 0}, where fy is the unit
vector obtained by rotating ey clockwise by 90 degrees, see Figure 5.3. Then by Lemma 125, ﬁZZWA
is generated by TDI k45, Let p2 be the family of automorphisms generated by TDI kZa |o. Finally

we put pt 1= pé\ﬂ.

€0

Jo
I'a

FIGURE 5.3. The half plane Z, associated with the cone A

Since k4 is anchored on 8Z,, the automorphism p" is generated by a TDI anchored on the axis of
the cone A, which will be useful when we do perturbation theory. It is also possible to express p*
using the interaction g. Since restrictions commute with the on-site automorphism a?A, we have

that kZr |y = —aZa(k%sy), and we see that

s(ps 0 )" 7) = (pf 0 ag"N) 0 (=Gyzy |, + 8;N) = (p 0 ) M) 062y,

Since 7 is a constant interaction, this implies that p2 = exp (55§ZA|A> o(a2M%2)~1 "and in particular

(5.19) P = exp (2m5§ZA|A) .

This expression will be more useful for algebraic manipulations.
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The next lemma states that, for any A, the representation mo p® satisfies the super-selection criteria

and that in addition, all these automorphisms belong to the same super-selection sector.

LEMMA 126. For all cones A, A" C Ay,

(i) mo p € Oy,

(ii) o ph ~moph.

Moreover there exists unitaries V;; € A such that
58 0 Ad[Vy] = p2() o (ps(0) 7L,

ProoF. We start with the last part of the lemma. Recalling the definiton of the cones, Fig-
ure 5.1, we see that Zy,;) = CD for all ¢ and so Pt = exp (27756013“3(0) by (5.19). Using
Lemma 121(iii), we have

TP |as) = dlase) — TP las ey
and we conclude that

(pA3(t))—1 — exp (27T56AB|A3(15)> .

Moreover, p2(") = exp (27T56AB|A ( )) and since the cones Ay(r), A3(t) are disjoint, we get
2 s

Aa(r) Asz(t)y—1 _
ph? r o(p 3 ) = exp <2W56AB|A2(T)A3(1S)>'

Equivalently, this is an automorphism generated by the TDI /NCAB] As(r)As(t)- On the other hand,
58 is generated by TDI k4B, The claim then follows from Lemma 136, used for X = (AB) and

Z = Ao(r)As(t), and Lemma 135.

We now turn to the claim (ii). By the same reasoning that we used for the specific cones above, we

get that for any non-overlapping cones A, A’ there exists a region Z and a unitary V) as such that
Bar 0 Ad[Van] = pt o (p™) 7,

see Figure 5.4.
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FIGURE 5.4. The region Z corresponding to the disjoint cones A, A’. The unitary
Vi as is almost localized along the thicker grey line.

The invariance (5.9) implies that ﬁg is unitarily implementable in the GNS representation, namely

there are unitaries fug such that fug Q = and
(5.20) moBf =Ad[v]]om.
It follows that
mopto(pV) Tt = Ad [vZ] oo Ad[Vaa] = Ad [vZm(Vaa)] o7

which is (ii). If A, A’ overlap, we find a cone A”, possibly ignoring the forbidden direction, that does
not overlap with either. Then by the above, 7o p* ~ 7o pA" ~ o pA,, concluding the proof.

Finally, (i) holds by construction. O

We note that the proof provides an explicit intertwiner VpAS(t) Aa(r):

LEMMA 127. The unitary VpA3(t)’A2(,’,) = Uf‘wBﬁ

(Vit) € U(H) is such that

(W o ph2(r) (A)) Vors® ap(r) = Vors ay(r) (W ° PA3(t)(A)) . AeA
In fact, more can be said. Indeed, the proof of Lemma 135 gives

[ kAP AL () Ag (1) 7 AB
(5.21) Vg =Tei | Gyds, G =15 > kGP ).
S:8N(Az(r)As(t))e£0

Since 0y, acts trivially on the terms that are completely supported on the complement of

ABlas(mas )
Ao(r)As(t), we have that
Gy = > k4P + G,
S:SC(A2(r)As(t))e
130



where G is an observable that is almost localized at the apexes, as(r),a3(t), of Aa(r) and Asz(t).
Specifically, there exists f € F and a constant C, both independent of 7, ¢, such that HGSH F<C
and [|Gs(S)|| < f(dist(S, {az(r), as(t)}).

LEMMA 128. Let ¢y = e2miw(QaBy ). Then

AB N —
Vo = ]S\.[—ng CNT (EQWZQABN)

PROOF. First we note that (5.17) implies that m(e2miQ 4, ) = cx€2. Then for any A € A,
enm (2miQ 4, ) T(A)Q =7 (Ad [e27iQ 45, | (4))

while

0B r(A)Q =7 (845 (A)) @

by (5.20). Hence

enT (e2miQ g, ) T(A)Q  — ViBr(A)0 = 7 (Ad [e2miQ 4, | (4) — %B(A)) Q

and the claim follows from the strong limit

A - iQ
4B — ]SV—EIO% Ad [e27iQ 5, |

and the cyclicity of © with respect to 7(A). O

REMARK 129. Note from (5.20) that v4Z can be arbitrarily well approximated by elements in
Upaecm(Ape)’. In particular, by the approximate Haag duality, vé“FB belongs to B. More precisely,
for each ¢ > 0, we may choose a cone A. € C and a unitary U. € A such that 7(U.)viP € w (.AAg)’
and ||U. —I|| < e. Note also that we may further choose a sequence of unitaries UV € A such that

T (UENEQﬂ'i@ABN) em (.AAg), and HUgN — UEH — 0, N — co. Hence we obtain
(5.22) m(U.)vaB = ]S\.[—EIO%ENTF(UEN)W (2miQ R, )

in (AAg)I.
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We are now ready to prove our first main result, namely that the braiding statistics 6(p, p) is
nothing but the exponential of the Hall conductance, which in turn was defined via (5.5,5.8) as the

expectation value of the adiabatic curvature.

PROOF OF THEOREM 117. We claim that p := mop™! has the stated properties. By Lemma 126,
p € M, and it is simple because 7 is irreducible. So it remains to prove the braiding relation
0(p, p) = e2miw(Jp).
Using item (iv) in Lemma 120 and Lemma 126, we have for any > 0, 8(p, p) = 6(w 0 p™1("), p). In

particular,
0(p, p) = lim 6 (7r o pAl(r),p> .
We now ple Vp,A3(t) such that Ad ‘/‘07/\3@) op=mo ,0A3(t) to get
0 <7T o pAl(T)’p> _ tlggo e(m OpAl(T),ﬂ' o ,OAS(t)).

By Lemma 127,

e(mo p™ @ mo phaW) = lim w(Vy) (057) Tyns o (v (V).

us
§—00

Now
Ty (V32T (Var)) = Ty (w52 (Ve Juin?) = m(p™ ) BB (Ve )T py 0 (037)

and the explicit expression (5.21) implies that lim, o ph(r) B%B (Vip) = ﬂéﬁTB (Vi) uniformly in

s,t. Hence,

e(pvp) = Tli_g.lo(U?WB)*TpAl(T) (UfwB) = lim <Q

r—00

(032) Ty (502
where we used that 6(p, p) is a scalar in the last equality. With this, the weak continuity of TpAl(r)
on each 7 (Axc), A € C, Remark 129 and Lemma 128, we get

0(p,p) = lim lim w(e—2miQ4p, ™" (€2miQ ap)y))-

r—00 N—00
Now we consider the automorphism 6, := (85:2)~1 0 pA1(") of A, which is such that

(5.23) lim [[(B221) " 0 pM)(A) — (B21)"H(A)] = 0

T—00
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holds for all all A € A. Using (5.16), we have that

(5.24) 0(p,p) = lim lim w(e—2miQap)\0r(€27iQ ap),))-

r—00 N—o00

Let now v, n(¢) = e—igb@(AB)NHr(eiqS@(AB)N) and v(¢) = lim, o impy_y00 vy, N (¢) uniformly in ¢,
which are such that v, x(0) = 1 and therefore v(0) = 1. Note that v%" = 6, is a possible choice in

the decomposition (5.13), so by Lemma 122 we have that

(5.25) lim lim (0,(Qap)y) — Quan)y) = Jo,

r—00 N—00

and since

Dp(e=i9Qap)yOr(€idQap)y)) = 1€=i0Qap)y (0r(Qan)y) — Qan)y )0r(€i0Q ap) )

we conclude from (5.25 ) that
(9¢U¢ = Zﬁéf (Jo) Vep-

the proof of Lemma 124 now implies that dgw(vg) = iw(Jo)w(ve) and therefore

0(p, p) = w(var) = *T0)

)

which is the equation that we aimed to prove. ]

5.6. Quantization of Hall conductance

We finally prove Theorem 118. We start with a Lemma that is a corollary of Lemma 120.
LEMMA 130. Suppose that p ~ 7, then 6(p,0) =1 for any o € Oy,.
PROOF. By point (iv) in Lemma 120 we have
O(p,0) =0(m, o).

The right hand side is manifestly equal to the unity. ([l
Now we are ready for the proof of the theorem.

PRrROOF OF THEOREM 118. Consider the object p constructed in Theorem 117. For any n € N,

@™ is an irreducible object in M. By the assumption that there are finite number p’ of simple
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objects, there exists p < p/ such that p®P ~ 7. By the previous lemma we then have
0(p“P, p) = 1.
On the other hand by Theorem 117 and Lemma 120(v),
0(p%", p) = 6(p, p)? = ™0,

The two equations and the definition (5.5) then imply the stated quantization of the Hall conduc-

tance k. O

5.A Manipulating interactions

We use one of the standard setups to manipulate interactions. We follow [9]. We consider the
[*®°-norm on Z2. For z € Z? and r > 0, B,(z) indicates the ball in Z? centered at x with radius r
with respect to this norm. The diameter of a subset S C Z? with respect to this norm is denoted

by diam(.S).

5.A.1 Interactions. Let F be a class of strictly positive, non-decreasing functions f : Nt —
R* that decay faster than any power, i.e. lim, o f(r)r? = 0 for all p > 0. An interaction
h:S €Z®— hg € Ag is a map associating a finite subset of Z? with an operator in Ag. We will

only consider interactions for which

[hsl
h —
Ihlly = 390 3 5575 diam(s))

is finite for some f € F, we will call the set of all such interactions by J. We will denote interactions

with lower case letters and use upper case letter for their quadratures. For a set X we put

whenever the sum converges in the norm topology. The sum, in particular, converges for X finite,
provided h € J. If the sum exists for X = Z2, we call the interaction summable. A derivation 6%,

associated with h and a region X, acts as

5?((‘4) = Z i[hSH A]7 Ac Aloc-
S:SNX#()
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For X = Z?, we omit X and write 8". If §" is inner, we will call the interaction h an inner interaction.
Summable interactions are inner, but there are inner interactions that are not summable. If Hx

exists then 6% (A4) = i[Hx, A].

5.A.2 Anchored interactions. We say that an interaction h is anchored in a set X C Z? if
he J and SN X = () implies that hg = 0. If an interaction is anchored in a finite region X then
Hx = Hy2 exists.

Anchoring can be readily connected to more standard forms of locality.

LEMMA 131. Suppose that h is anchored in X and A € Ay. Then
16 (A)]] < 2 (dist(X, Y))[Y[[[2][ £ ]| Al
holds for any f € F.

Proor. We have

Sn(A)= > ilhs, Al
S:SNXA),
SNY £

So we get

(A <2 > lhsllAl

yeY S:wyes,
SNX#D
|hs] .
<23 % S f(1 + diam(8)) A
55T, f(1 + diam(95))
SNX#D

< 2[Y[|pllp £ (1 + dist(X, Y)) || Al

which is what we were supposed to prove. We note that the RHS might be infinite in which case

the inequality is trivial. O

5.A.3 Commutators. For interactions h,h’ we define their commutator [h, h'] as

(5.26) [h,h/]s = Z [hsl7h’i§2]’
51,52:51US2=S,
5105275(2)
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If h,h € J then [h,h'] € J, and
(5.27) i8]y = OnOhr — OO

Furthermore, if h is anchored in X then [h, h/] is anchored in X.
It would be convenient if [h, h'] was anchored in the intersection of the anchors of h,h’. Alas, this
is not the case. As a partial substitute, we will use the following criteria to decide if a commutator

is inner.

LEMMA 132. Let h (resp. h') be interactions anchored in X (resp. X'). Assume that for all f € F,

YNz =) < 0.

zeX z’eX’

Then [h, '] is summable.

Note that the assumption above is to be understood as a constraint on the sets and not on the

family F. It is satisfied in particular whenever X, X’ are two non-parallel strips of finite width.

PROOF. By the definition (5.26) of the commutator of interactions, it suffices to show that

S= > > Insllingl

SNX#D S'NX'#D
SNS’#0

is convergent. Let f be such that 17l 7 < oo, Hh’||]; < oo and let

g(r) == max f(r1)f(ra).

ri+ro=r+1

Then g € F and we write

s [l | _ o
o= f £ 2 4 diam(S) + diam(S")).
zeZX SKEESZ,w’eS/ f(1+diam(S)) f(1+ diam(S/))g( (S) (S")

z€X’ SNS'AD
By the geometry of S, S’ in the above sum, diam(S) + diam(S’) > |z — 2’| so we get
S<IplgIR N> > gllz =),
zeX xzeX/’

which is finite by assumption. 0
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5.A.4 Time-evolution. For A € A and a site « € Z?, we define a decomposition of A

A= io: Az,na
n=0

where
Ay = EBTL(I) [A] - EBn_l(oc) [A]’

for n > 1 and A, := Ep(;)[A]. For an automorphism (3, and an interaction h anchored in X, we

define the time evolved interaction as

1
(5.28) Bpw) = Y, o Bz,
S:weSnX ‘S M X‘
for z € X and k > 0. We define 8(h)g = 0 for any other S.

For an interaction h, we denote 7/ the group of automorphisms generated by §". We will repeatedly

use

LEMMA 133. Suppose that h € J and that b’ is anchored in X. Then TI(') is anchored in X for

all s > 0.

The proof is in [9, Lemma 5.2.].

5.A.5 Quadratures. For a series of interactions h;, we define

Zhj = (hy)s,

S J

provided the sum exists in norm sense. Likewise, provided that the integral on the RHS exists in

( / mw(t)dt)s — [ (m)su(t,

for a family of interactions h; and weight function w(t).

the Bochner sense, we put

5.A.6 Restrictions. For an interaction i and a region Z we define

0 SNnZzc#10)
(hlz)s =
hs SCZ.

hlz

The automorphisms, 757, associated with h|z act strictly in Z.
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5.A.7 Time dependent interactions. Time dependent interaction (TDI)isamap s € I C

R — hs € J, with I an interval of R. Furthermore we require that

(i) the map s € I — (hs)g is continuous for all S C Z?,
(ii) there exist f € F such that

sup ||hs|| f < oc.
sel

Operations on interactions extend point-wise to TDIs. The role of TDI’s is to generate time evolu-

tion, to a TDI h we associate a family of automorphisms 7/ that satisfies the equation
(937';1(14) - Tsh(dhs (A))7 A€ Aloc-

Anchored interactions generate an automorphism that acts trivially far away from the anchoring

region. This is quantified by the following lemma.

LEMMA 134. Let h be a TDI anchored in X, 7! the associated automorphism, and A € Ay,

I (A) — Al < 2[Y] e [[hs ¢ f (dist (X, Y))[[ Al
se|0,

holds for any f € F.

PRrooOF. By differentiating under integral we get

1
) - A= [ b ()i
0
and the statement follows from Lemma 131. O

5.A.8 Perturbation theory.

LEMMA 135. Let h,h' be two TDIs, and Tsh, Tshl the associated automorphisms. Suppose that h — h'/

is inner, i.e. there exists a family Ds € A such that

(5.29) Ony(A) = 6pr (A) = i[Ds, A,

holds for all A € A. Then there exists a unitary Vs € A such that
Vst (A) = 73 (A)Vs.

holds for all A € A.
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Proor. We have
(77 © (17) T (A)) = 75 (O, — O ) (7)) T (A) = 7 o (750) i (Ds), Al

by the assumption. In other words, the family of automorphisms 73 o (Tﬁ,)_l is generated by the
family of self-adjoint elements 7}, (D) € A. It follows immediately that 75 o (7;,) ™! = Ad[Vf] where

Vs is the time-ordered exponential of 7/,(Dy). O

The lemma will be mainly used in the context of localizing interactions.

LEMMA 136. Let h be a TDI anchored in a region X. Suppose that Z C Z? is a region such that

there exists constants C1,Cy so that
dist(Z¢, X N B&n) > Ch1 + Con

holds for all integers n with By, := Bo(n). Then the TDI h — h|z is inner.

PROOF. Since, by definition,

hg otherwise,

we get
D olth=hlz)sl = D lbsl.
S SNZec£()

Since h is anchored in X we can add a condition S N X # () to the last sum. Then we bound it as

S <Y sl

SNZc£0 n=0z€B,NX S>z
SNX#D SNZ¢#D
SNXNBE_,#0
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Any set S in the last sum is such that includes points in both Z¢ and X N Bf,,_;. The diameter of

such set is bigger than Cy + Ca(n — 1) by assumption. If f is such that ||A||; < oo, then

h
Sl - sl <> Y el ot 1)

n=0zeB,NX S>x

SNZc#D
SNBE_,#0
o
<Rl @2n+1)2f(1+ Cy+ Cay(n — 1)),
n=0
and the series is convergent since f decays faster than any inverse power. ([l

5.B Braiding statistics associated with winding

The goal of this appendix is to finish the proof of Lemma 120. Throughout the appendix we assume
that assumptions 5.2.1, 5.2.2 hold.
A technical tool that we will use is a Lemma that follows from approximate Haag duality, see |

)

Lemma 2.5]. We will use the notation (Aqg.p)e = Aa,g,pte-

LEMMA 137. Let ¢ > 0, and 6 > 0, and let A be a cone such that |arg A| + 4e < 27. Let A €
w(Ape) . Then, under the assumption of approzimate Haag duality, for all r > Rjarg A| ¢ there exists
Ay € T(A(=r)).ys)" such that |A — ALl < 2fjagales(r) [|All. Here f.(r) is a decreasing function
that vanishes in the limit r — oo.

Specifically, there exists a unitary, Uy, depending on A, e, 8, such that Al = Ad(Ur)A satisfies these

conditions.

LEMMA 138. Let 0 € Op,. Then

lim H[Va,Ag(S)V;M(U’A]H =0

s,t—00

holds for all A € w(A).

PROOF. First, suppose that A € m(Aj,.). Then, there is some finite set on which A is supported.
So, as U,,en A1(—n) = R?, there exists some n € N such that A is supported in Ay(—n), ie., A €
T(Ap,(—n)) € T(Ap, (—n))"- For s,t > ntan(g), Ai(—n) C (Az(s) U A2(t))", and so m(Ap, (—n))” C
(m(A(as(s)una(e))e)’)’s and therefore A € m(Ap, (—p))" C (T(Aaz(s)ura(e))e)’)’- By [41, Lemma 2.2],
Vors(s)Vanat) € T(A@s(s)uns()e)’s and s0 [A, Vo ay )V p, )] = 0.
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We conclude that for all A € 7(Ajpe), ?Ln H Vons(s) Vg e H = 0. For A € m(A), the statement
follows by density of 7(Ajye) in 7(A). O

LEMMA 139. Let o € Op,. Then

lim | [V ) Vataagey: 41| = 0

8,t—00

holds for all A € w(Ape)".

PROOF. Let A € m(Ape). Pick € > 0 and 6 > 0 such that [arg A1| 4+ 4e < 27. For con-
creteness, pick ¢ = 6 = 1073, Then, by Lemma 137, for all r > Riarg A, |, there exists A; €
W(A(Al(—r))s+5)// such that ||[A — AL | < 2 flarg A |,e,6 (1) I (A1(=7))eqs C (A3(s)UA2(t))¢, then Al e

T(AAs (=r)ers)” S (T(AMs(s)uA(1))e)) By [41, Lemma 2.2], Vi ay6) Vi p, 1) € T(A(as(s)una(ee)”
Therefore, A commutes with Vora(s)Von () S0, Whenever (A1(=7))ers C (As(s) U Aa(t))C,

Vo s Ve ator Al = [| Vo0 Voot 4 + (4 = 0]

= [VU,A3(S) :,Ag(t)’ A;] + [VU,A3(S)V;A2(1§)7 (A — A;)]

Vo rs(s) Vorna(eyr (A — A7)
Vo ha(9)Vona(t) H |44

< 4f\arg Av),e,0 (’l“) :

< [Va,Ag(s) VU*,AQ (t)» A

|

§0+2‘

Therefore, pick 7 = max(R|ag4,|,c0t(g + € +6) - min(t, s) — 1), so that for sufficiently large s, t,
(A1(=7))exs C (A3(s)UA2(t))€ and also so that » — oo as min(s,t) — 0o, so that this upper bound of

4 farg Ay)e,6(T) on H[Va,l\s(S)V;Ag(t)vA]) goes to 0 as t,s — 00. So, Shﬁrgotlgglo H o 03(5) Vo Aot H =
0.

LEMMA 140. Let 0 € Op,. For i = a,b let A; be a cone, and V, 5, € V,a,. Then, V:AmeAa €

o(A,ung)e)

PROOF. This proof is very similar to that of [41, Lemma 2.2]. Let A € Ay, un,)e = Aag N Ane.
Then
Ad(V5a,Von,) 0 o(A) = Ad(Vy

g

A,) 0m(A) =0o(A).

So, for all A € Aa,uny)es [Voa,Vora, 0(A)] =0, 1e. Viy Von, € o(Apn,unye) O
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LEMMA 141. Let A be a cone such that A C Ag, and such that A is disjoint from As. Let 6 €
Aut(A) and assume that 6|4,. = ida,.. Let 0 = moG € Op. Then for all s1,s0 > s > 0 and

Va,Ag(sl) € VO’,A3(81) and VO’,A3(82) € Va,Ag(sg); V(:’AS(SQ)VO',A{g(Sl) € W(AAg(S)C)/'

PROOF. By Lemma 140, V;Ag(sg)vo,/\s(&) € o(Ay(s1)Uhs(s2))e) S T(Any(s)e). As 7 is an
automorphism which is the identity when restricted to Ajec, it is also an automorphism when

restricted to Ax. And, as A3(s)¢ 2 A, & is also an automorphism when restricted to A, (s)c. As such,

U(AAg(s)C) = Tr(a-(AAg(s)c)) - 71—('AAg(s)c)' 807 V;A3(52)V0,A3(51) € U(AAg(s)c)/ = Tr(AAg(s)c)/' U

LEMMA 142. Let Ay, Ay € C be disjoint subsets of Ao, and let o, € Op, and o, € Op,. Let

R € Hom(o, ® 03,04 ® 04). Then R € m(Aa,un,)e)-

PrOOF. This proof is essentially the same as that of [41, Lemma 4.2]. For A € A(y,un,)e
0a @ op(A) = T(A) = 0p ® 04(A). Asforall A € A R (04, ® 0p)(A) = (0p ® 04)(A4) - R, in
particular, for all A € Ay, up,)e; B-7m(A) = R+ (04 ® 0p)(A) = (0p ® 04)(A) - R = 7(A) - R. So,
R e m(An,un,)e) O

In particular, €(oq,03) € T(A@n,un,)e)"

LEMMA 143. Suppose p € Op, and o € Op,, and V € U(H) such that o’ = Ad(V) oo € Op, as
well. Then, e(p,0’) = Ad(V)(e(p,0)) -V - T,(V*).

PrROOF. Picking VO-I7A2(t) = VU7A2(t)V*,

E(p, OJ) = lim V;,Az(t)TP(VglvAZ(t))

t—o00

= lim VV*AQ(t)Tp(VO',AQ(t))TP(V*)

t—o00 95

= Jim Ad(V)(V; p, 0 To(Vono)) - V- Tp(V7)

= Ad(V)(e(p,0)) - V- T, (V7).

That V, p, ),V € B follows from Vi, A2(t) € T(Aa,yung)e) = m(Aag) and V€ m(Apgung)e) =
m(Apg)" and m(Axg)” C B, so the second equation splitting T (Vi a,qr)) into Tp(Vian@))T,(V*) is

legitimate. ([l

LEMMA 144. Let A C Ag be disjoint from (Az(sa))a.10-3 for some sp. Let p € Op, and o € Oy.

Let o be of the form 0 = mwo & for some & € Aut(A) such that 6|4,, = ida,.. For s > 0, let
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Vors(s) € Vans(s): Let oays) = Ad(Vyay(s)) 00 Then, slg]go €(p, Opy(s)) exists, and is independent

of the choice of Vi, a4 (s) € Vaas(s)-

ProoF. We start by showing that the limit exists. This will be done by showing that the se-
quence is Cauchy. By Lemma 143 , €(p, 0 (s)) = Vi a5(5)€(Ps U)TP(V;Ag(S))' Using that TP(V:,Ag(s))

is unitary, for s1,s9 > s > 0,

He(pv UAg(sg)) - E(pv UAg(sl)) ”
= VO’,Ag(Sz)ﬁ(p7 U)TP(V:,Ag(SQ)) - V07A3(51)6(p’ J)TP(V;AS(SI))H

= | Vona(en) Vours(s2) €0 O)To (Vi g (5)) To(Vons (1)) — €(p, U)H

= V:,A3(51)V07A3(52)6(p¢ O’)TP(V;A:;(SQ)VO',Ag(Sl)) - 6(p7 O-)H .

Let Vi g0 = V;A3(52)VU7A3(51) so the above becomes

)

(o, o6562)) = €lps Tng 1) | = Va1 (0 ) Tp (Vorsans) = €l o) -

By Lemma 141, Vo, s, € m(Ap,(s)e)’. By Lemma 142, €(p,0) € 7(A(a,up)e)’- By Lemma 137,

for s > 2R|apg ay|er Setting Visy 51 = Ad(Uy)(Vosy,s1), we obtain Voo, s € W(A(As(s,ﬁ))€+6)”,

2
and ||[Vosy.s1 = Vosausisll < 2flargAs)e,6(5)- For concreteness, pick e = § = 1073, Then, for
5 > max(2sa, 2Rjarg A4),10-3), (A3(5))2.10-3 € (A3(s4))2.10-3 and is therefore disjoint from A, and
(A3(5))2.10-3 € (A3)2.10-3 and is therefore disjoint from Ay, and so (A3(5))2.10-3 is disjoint from

Ay UA. Therefore [V}

o s9.51.50 €(p,0)] = 0, and we decompose

*

VG,SQ,sle(p7 U) = €(p7 O-)V:,sz,sl,s + (VU,S2781 - VU,82,5175)* 6(07 U)'

As (A3(3))2.10-3 € C, T is weak-continuous on 7(A(a,(s))

3 2.10—3)//7 and as (A3(%))2-10*3 C AT, T, is

the identity on (A, ), so together we get that it is also the identity on m(A(ay(s)), . )/,

%))2410*3

and so TP(V0'73275173) = Vo,s5,51,5- We get,

Tp(VU,SQ,Sl) = Tp(VU,SQ,Sl,S + (VU,SQ,Sl - VO’,SQ,Sl,S))

= Vo,50,51,s + TP(VU7S2,81 - VU,Sz,SLS)'
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Therefore, using again that [Vf e(p,0)] =0,

0,52,51,S7

VJ*,SQ,sle(Pa U)TP(VU,Szm) = e(p,o) + (e(p, U)V;8275178)TP(VUa32731 - VU,827S178)

+ (V0,82,S1 - VU,S2,81,S)* E(p, U)TP(VU,S2,81)'
So
|V 53,51 €(0, ) Tp (Vo sn0) — €(p, ) || < [|e(p 0)Voiy 1 s NI (Vors,sr = Vorsa,sns)l

1 (Vorsas1 = Vosa,s,s) [ €00 0)Tp (Vo250 )

<2 ||6(p,0’)|| ||V0'752,31 - VU,Sz,SLSH

»

<2 2f|argA3|,10*3,10*3(§)7

which goes to 0 as s — oo. Therefore, the sequence (e(p, o,(s)))sen is Cauchy, and the sequence
converges, i.e.,

e(pa U) = Slig.lo 6(p7 UAg(S))
exists.

Inspecting the proof, we showed that for any choice of V; x, (), we have

»

He(pv U) - 6(/)7 UA3(S))|| < 4:f|argA3|,10—3,10—3(5)'

We will use this to show that the limit is independent of the choice of V, r,(s) € Voa;(s)-
Let V(,’As(s), %

o Ag(s): Where for each s, Vo As(s)s Ve

7 hs(s) € VoA3(s)» be two choices. Now consider

a third choice, a sequence Vo/'ng(s) which for s < s has Vo/'ng(s) = V;}As(s), but for s > s’ has
VU’fAS(s) = V,A5(s)- By the above bound the limit point of the sequence, which is O(p,0), has a
distance bounded by 4 f|ag A4),10-3,10-3(5) from the limit point of the sequence corresponding to the

: !
choice Vm As(s)"

So, the limit exists and is independent of the choice of V 5, (), as desired. O

LEMMA 145. Let p € Op, and o € Op,. Suppose that o be of the form o = mo ¢ for some

G € Aut(A) such that 6|, =ida,.. Then, 6(p,o) € Hom(p, p).

PROOF. The task is to show that for all A € A, 0(p,0)p(A) = p(A)é(p,0). In fact, by density,

it is enough to show it for A € Aje. Let op,p) = Ad(Vyp,4)) 0 0. For all &, e(p,0p,4)) €
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Hom(p®a x4 (1), Taqt)®p)- Pick r € Nsuch that A € Ay (. Fort > cot(5—g)r, Ai(—r) C A3(t)S,

and so T0A3<t)’7f(AA1(—r)) = id. Therefore, p ® opy4)(A) = T 0 Ty, 0 W(A) = T, o m(A) = p(A),
and we get
(P ong()) - P(A) = €(p,op,(1)) - (P @ Tpg1))(A)
= (oay0) @ P)(A) - €(p, 0p5(1))
= (Topy 0 Tpom(A)) - €(p onyr))
= Top, 0 (P(A)) - €(p, 05(1))
And so,

0(p,0) - p(A) = lim €(p, o5,)) - p(A)

== tli)lglo TO'A3(,§) (IO(A)) : €(p7 O-AJ(t))

As for all t, €(p,0p,()) is a unitary, and 0(p,0) = limy e €(p, oa,()), We conclude that 6(p, o) -

p(A)-0(p,0)" = lim¢ 0 T,

IA3(t)

(p(A)), and in particular that the limit on the right hand side exists.
Now to conclude the proof we need to show that this limit is equal to p(A4). We will use many
cones below, and we summarize their position in Figure 5.5. As A € Ay, (), p(A) = Tpom(A) =

Ad(V?

K ))(W(A)), where K, (_,) can be chosen to be any cone in C which is
’ 1 -T

(i) distal from A;(—r) with forbidden direction that of C (for the definition of distal see [41],
we will only use that such a cone exists) and
(ii) clockwise between Aj(—r) and the forbidden direction.
For Cr = Ay (=r) VA1V Ky (—py = A1(=7) V Ky, (—p) (the smallest cone including both A;(—7) and
K (=) ), T(Ap (=) € T(Ag,) € m(Ace)’, we have V> | € W(A(AluKA1(77.))c)/ C (Ace)’, and

vaAl(fr
S0 p(A) = Tp,A1(fr) (W(A» = Ad(V*

K ))(F(A)) € m(Ace). Now we want to use approximate
’ 1 —-Tr T

Haag duality to find elements of B which approximate this and on which T, acts as the identity

Ag(t)

) = idg( So, we want to pick K, () so that we can find expanded versions

Topy |7T(AA3<t>c Ang)e)

of the corresponding C, to get arbitrarily good (as ¢ — oo) approximations to p(A) there, and
where these expanded versions of C, are both elements of C and subsets of Az(t)¢. So, we want to
pick an interval of directions which is a little bit clockwise of the interval of directions for Aq(—r),

and a basepoint, so that even after moving it back and widening it a little, it will still be disjoint
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from Aj(—r) = A_re%%,r7%. Choose the interval of directions for it to be (%—g T g’zr + 35)-

Then, for the basepoint, start with the basepoint of Aj(—r) (where the only intersection would be

the common basepoint), and move it forwards from there by enough to make K, .y distal from

Ai1(—r). Specifically, let Z, = (—r)ez + (R2312’5+2)€%, for e = gz, and let Ky, () = Ay on x To

check that K, () is distal from Ai(—r), pick e = & and see that as & < (5 — %) — (35 + 75), that

the range of directions for (A, on %)E and Aq(—r) = A_, are disjoint, and so (A B0
T‘73 73

v T
€z:208

R23L2,€é'egl) is disjoint from Aj(—r). From this, and that (K, () and

== A 97 =w
3z Je (—re%+2e%),§,3—2+5

(A1(=7))e are disjoint element of C, we have that K, _, is distal from Aj(—r) with forbidden

direction (3 — Z, 3% + 7). It is also clockwise from Aj(—r) with respect to the forbidden direction.

Therefore it is a valid choice for Ky, (_).

FIGURE 5.5. The cones used in the proof of Lemma 145

With this choice of Ky, (), Cr = A1(=7) V Kp () = A—re«,ig,‘*{g'
2

As p(A) € T(Ace), by Lemma 137 , for X3, = Ad(Us,)(p(A)) we have that, for o > Riarg €, ler Xta €

(A, rs—trec,)” and [|[ Xy, — p(A)|| < 2[|p(A]] flarg ¢y l,e5(t2). Fore+d < 5, ((Cr)ers—t2ec,) €C,
and so T,

oaq 18 strongly continuous on 7(A(c,). s—tsec, )" To have ((Cy)ets — t2ec,) C Az(t),

we need £ + 6 < Z, and ¢t > cot(X — (g +6)) - (r + t2 - (sin(¥%)) — t2 - cos(IT) (this condition is
obtained from the base point of Ag(¢) being to the right of the line which extends the right edge
of the cone ((Cy)cys — t2ec,)). So, it suffices that ¢ +6 < § and t > cot(g) - (r + t2). So, we can
set to = ttan(g) — r. Now having ((C;)-15 — taec,) C A3z(t)¢, we have that T

TAs(0) is the identity
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on 7(A(c,) and so by the weak continuity is the identity on 7(A((c,)

s+5*t2ec,«))’ r)e+s—t2ec,

)", and

so T, (Xt,) = Xi,. Because both p(A) and X;, are elements of B, we have

TAz(t)
Topy)(P(A)) = T5,, ) (Xiy + (p(A) — X4,))
= p(A) = (p(4) = Xp,) + Lo, ) (p(A) = Xi,)
Therefore,
[7ory 0 (00 = ()| < 10A) = Xl + || T (004) = Xo)
< Ap(A) flarg cr.e,8(t2),
which goes to 0 as ¢, and therefore t5, goes to infinity. O

LEMMA 146. Suppose p € Op,, 0 € Op,, and V € U(H) is such that p' = Ad(V) o p € Op,. Then,
(0, 0) = iV y, 00 V1] - AV (e, 7).

PROOF.

c0) = Jim Vi p, o) Ty (Vo)
= tli)I{.lo V;Ag(t) Ad(V) o Tp(VU7A2(t))

= lim V;AQ(t)VTp<VO',A2(t))V*

t—o00

= hm (V;A2(t)VVCT,AQ(t)V*)V(V*’A2(t)Tp(VU,A2(t)))V*

t—o00 g

= lim [[V:,Ag(t)’ V]] Ad(V)( ;Az(t)Tp(Va,Az(t)))

t—o00

= lim [[VZ\, 4y, V]I - Ad(V)(e(p, o))

t—o00

0

LEMMA 147. Let p € Op, and o € Op, such that definition 5.5 applies. Then, the resulting

morphism €(p, o) coincides with that defined in Definition 4.11 of [6] for (0,¢) = (3F, %).

PROOF. First, let us recall Definition 4.11 of [6], in the case that (6, ¢) = (25, Z):
To avoid ambiguity with the cones Ay := Ay = 52, A1 := Ag z x, and As := Ag . =, we add add
1918 R )1ty

primes to the variable names in the definition. Let A}, € C (we take Aj = Ag) and p, o € Op, and pick
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any two cones A}, A} € C such that A is counterclockwise from A} (in the sense applicable for cones

in C) and such that A} is distal from A, with forbidden direction (2%, Z), and vice versa. Then pick
a V Ay € v oAl & VU:A6 € VQA/ and for all ¢1,t9 > 0 a Vp,/\’l(tl) S VP7A'1(t1) and VO‘,AIQ(tQ) S VO’,A/Q(tQ)7

and set W

PAHA = VP’A/l (tl)vpon and W oA)A) = VU7A'2(t2)V:7A{)' Then define:
ey (p,0) := lim ( oAy @ A’A’) ( phyA; & A’A’)
t—o0
where £ = (t1,t5) and lim means lim

00 t1—00,t2—00

Now we will show that for p € O, and o € Oy, that this reduces to Definition 5.3.

Observe that Ay 1= Ao,n,g and Aq := AO%% are such that Ay is counterclockwise from A;. More-
over, for sufficiently large s, in addition to A2(s) and A; satisfying the condition that As(s) be
counterclockwise from Aj, the pair also satisfies the condition in [6, Definition 4.11] that the two
are distal from each other with forbidden direction (2, %), so Aa(s) and A; can be the A} and A
of [6, Definition 4.11]. So, we set A] = A; and A}, = Ag (the requirement of the s in order for As(s)
and A; to be distal will not matter because of the limits that are taken in both definitions, so we
take A}, = Ay rather than setting A}, = Aa(sp) for some sufficiently large sp, in order to simplify
notation).

Because p € Op, C Op, (as A1 C Ap) and 0 € Oy, we can choose the unitaries V,r, =1 € V,a,

and V5 Ay =1 € Vs a,, so that W pAoA; = Vp7A1(t1) and W oAohy = VU,AQ(tQ).

—

(W;’AOAQ ® W A()Al) (W;A()/\l Y W A()Ag) TU((W;A()Al)*)(W;A()Ag)*(W;A()Al)TP(WOt'A()Ag)

By Lemma 4.1 of [6], W AoA1 € (T,, T( 204) A1+t1’Vp’A1“1) and WtAOAQ (TU,T( 204) A2+t2’V0’A2+t2).

Therefore, Ty (Wiy o)) Wiy 0, )" = (Wiy, o, ) T8 3 2V ohas (9 86 we have

(WﬁAOAQ @ W, AOAl) (W;;AoAl ® W AOAQ)

(37r uy

* 777)7A +t 7Vo', * t t
(WtAoAQ) TC" 2 o fettz ((WtAoAl) )(W;AoAl)TP(WéAQAz) .

Because p € Op,, 1 € V), so by [41, Lemma 2.2|, W AoA1 = Vor 01" € m(Anua +)e) =

m(Ape). As Ag + Lo is counterclockwise from Ay, by [6, Lemma 2.19], we have that

lim =0
to—00

(3F7W)A2+t27 UA +t .
H o P rang)y — Mdmayg )y
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(371-

3% T) Nptta,V
. 5 1) N2 t2, Vo Ao tig 14
and therefore t211_r>rcl>o Ty ( py

in t1. Therefore,

)(Vo.A1+,) = 1 where this convergence is uniform

hm (W;Ao/\g ® W;AQA1)*(W;A0A1 ® W;’Ao/\g) = tzli_r>n00<VU,A2(t2))*TP(VO',AQ(tQ))’

to—00

which is our definition of €(p, o).
Therefore under the conditions of definition 5.3, the morphism €(p,o) applies coincides with |6,
Definition 4.11], as desired.
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