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6.2. Ring structure on cohomology using (algebraic) deRham cohomology 58

Bibliography 71

iii



Abstract

This dissertation investigates the geometry and topology of braid varieties, a class of smooth affine algebraic

varieties arising from positive braids, through the novel perspective of splicing maps. These varieties have

connections to a wide array of mathematical structures including positroid varieties, cluster algebras, and

Legendrian link invariants.

We begin by defining braid varieties both algebraically, via products of braid matrices, and geometrically, as

sequences of flags satisfying certain position conditions. These two descriptions are shown to be equivalent,

connecting braid varieties to classical and modern geometric objects. Special attention is given to two-

stranded braid varieties, which serve as an illustrative and computable model throughout the thesis.

The next step is to view two-stranded braid varieties as special cases of open positroid varieties, providing a

concrete realization of these spaces inside Grassmannians. Through this identification, we introduce standard

form matrices and describe these varieties in terms of Plücker coordinates, enabling explicit computation

and a bridge to cluster algebra structures.

We then construct cluster structures on open positroid varieties associated with braid varieties, making use

of triangulations of polygons and the combinatorics of Plücker coordinates. A key insight is the realization

of the Ufan chart, an explicit cluster chart for two-stranded braid varieties. These structures allow us to link

braid varieties to cluster algebras.

The central innovation of the thesis lies in the development of a splicing map, a geometric and algebraic tool

inspired by braid composition. We show that the splicing map is a quasi-cluster isomorphism preserving the

cluster structure. In particular, we describe how the splicing map reflects the combinatorics of torus link

multiplication and how it acts on positroid varieties via transformations of Plücker coordinates.

Finally, we compute the cohomology of braid varieties using a combination of Alexander duality, de Rham

theory, and recursive polynomial identities arising from braid matrix factorizations. The cohomology ring is

presented explicitly in terms of generators and relations derived from the recursive polynomials defining the

varieties, shedding light on their topological invariants.

This work provides a framework for studying braid varieties through tools from cluster algebras, positroid

geometry, and cohomological methods. The splicing map construction offers a practical way to build and

understand more complex braid varieties from simpler ones, while the cohomology calculations give a clearer
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picture of their topological structure. These results suggest a number of potential connections to other areas

like representation theory and low-dimensional topology, and open the door for future exploration.
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CHAPTER 1

Introduction

Braid varieties are a class of smooth affine algebraic varieties associated with positive braids. These varieties

emerge from the study of braid groups, which have deep connections to various branches of mathematics,

from topology and algebraic geometry to representation theory and combinatorics.

Although braid varieties have become an important area of study, their historical development and origins are

not as clearly established as those of other algebraic varieties. This is due to the fact that braid matrices, used

in the definition of braid varieties, have appeared in a variety of mathematical contexts over the centuries.

The earliest notable appearances trace back to L. Euler’s work on continuants in the 18th century [12], which

generalize determinants and describe recursive structures on matrices. These continuants, which are closely

linked to continued fractions, can be viewed as precursors to braid matrices. Continued fractions encode

recursive relationships and transformations, providing a foundation for the combinatorial representation of

braid transformations in braid matrices. In the 19th century, G. Stokes studied solutions to linear differential

equations near irregular singularities [33]. The Stokes phenomenon describes how the asymptotic solutions

change as one crosses Stokes lines near singularities. This phenomenon is related to braid varieties through

the study of how configurations interact as you travel along a path. Braid groups, which govern the algebraic

structure of braids, can be viewed as geometric generalizations of this phenomenon. This connection between

differential equations and braid groups laid the groundwork for developments in the study of wild character

varieties, particularly in the work of P. Boalch [1, 2], who established explicit links between moduli spaces

and braid group actions.

Further connections to braid varieties emerge in representation theory through the work of M. Broué and J.

Michel [3], who investigated algebraic varieties associated to finite groups of Lie type, called Deligne-Lusztig

varieties, using techniques that reflect the structure of braid groups and their associated flag varieties. These

ideas are closely tied to the geometry of Bruhat decompositions and double coset representatives, themes

that also appear in the structure of braid varieties. P. Deligne [9] studied braid group actions in the setting

of algebraic and arithmetic geometry, focusing on their role in the structure of fundamental groups and their

1



representations. Similar structures arise in the study of braid varieties, where monodromy and flag-based

descriptions play a central role.

In the context of low-dimensional topology and contact geometry, braid varieties are closely related to

augmentation varieties of Legendrian links. T. Kálmán [24] gave a combinatorial model for the Legendrian

contact differential graded algebra (DGA), where the algebraic data of positive braids encode invariants

of Legendrian knots. These Legendrian invariants turn out to have deep connections with the geometry

of braid varieties, particularly in their interpretation as moduli spaces of augmentations or constructible

sheaves. Similarly, A. Mellit’s work [27] on the curious Lefschetz property in the cohomology of character

varieties shows that the topology of such moduli spaces is often governed by recursive algebraic patterns

reminiscent of those that define braid varieties.

Braid varieties play a central role in bridging concepts in algebraic geometry, representation theory, low-

dimensional topology, and symplectic geometry. They appear not merely as isolated geometric objects but

as rich intersections of ideas from many mathematical disciplines. This thesis builds on these perspectives

by developing new tools to understand how braid varieties decompose, interact with cluster structures, and

how their cohomology rings, particularly in the two-stranded case, can be described explicitly.

Organization. Chapters 2 - 4 are generally preparatory. Chapter 2 focuses on defining braid varieties,

discussing their properties, and delivering an explicit, recursive formula for two-stranded braid varieties

[Lemma 2.1.6]. The recursive formula proves to be a useful tool for simplifying the process of computing the

singular cohomology of two-stranded braid varieties, as compared to the approach in [26]. Chapter 3 focuses

on positroid varieties, with the main goal of connecting braid varieties to open positroid varieties. Here, we

define an explicit map between two-stranded braid varieties and big cells in Gr(2, n), i.e., the top dimen-

sional positroid variety in Gr(2, n). Chapter 4 defines cluster algebras and provides explicit constructions

for cluster structures on open positroids varieties associated to torus braids including two-stranded braid

varieties.

Chapter 5 is the main focus of this paper, where we define the splicing map for maximal dimension open

positroid varieties associated with torus links (Theorem 5.1.10) and provide an explicit splicing map for

two-stranded braid varieties (Theorem 5.4.1). We demonstrate that the splicing map is a quasi-cluster iso-

morphism (Theorem 5.2.3) and investigate various properties of the map, including its geometric connection

to the decomposition of braid varieties, as well as the quasi-associativity of the splicing map for two-stranded

2



braid varieties (Theorems 5.4.3 and 5.4.5). In Chapter 6, we compute the cohomology of two-stranded braid

varieties (Theorem 6.1.3) and describe its ring structure using generators and relations (Theorem 6.2.5).

Finally, in Section 6.2.4, we examine the effects of the two-stranded splicing map on the cohomology and its

ring structure.
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CHAPTER 2

Braid varieties

Consider the positive braid monoid on n strands, Br+n , defined as

Br+n = ⟨σ1, . . . , σn−1 : σiσi+1σi = σi+1σiσi+1, i = 1, . . . , n− 2, σiσj = σjσi, if |i− j| > 1⟩

where σi is the positive crossing between the i and i+ 1 strand.

Let β = σi1 . . . σiℓ be a positive braid on n strands. We define the braid variety associated to β in two ways:

algebraically in terms of braid matrices or geometrically as a sequence of flags. Refer to [6, 7, 5, 18] for

more information and context on braid varieties.

We begin by defining the braid variety X(β) algebraically. For the positive braid β, we assign a complex

variable z (see Figure 2.1) and an n × n matrix Bi(z) at each crossing σi. We define the matrix Bi(z)

as

Bi(z) :=



1 · · · . . . 0

...
. . .

...

0 · · · z −1 · · · 0

0 · · · 1 0 · · · 0

...
. . .

...

0 · · · · · · 1


where the non-trivial 2 × 2 embedded matrix is at the i and i + 1 row and column. We define the braid

matrix associated to β = σi1 . . . σiℓ as

Bβ(z1, . . . , zℓ) = Bi1(z1) · · ·Biℓ(zℓ) ∈ SL(n,C[z1, . . . , zℓ]).

One can check that braid matrices satisfy the braid relations up to a change of variables, given by

Bi(z1)Bi+1(z2)Bi(z3) = Bi+1(z3)Bi(z1z3 − z2)Bi+1(z1), for all i ∈ [1, n− 2](2.1)

Bi(z1)Bj(z2) = Bj(z2)Bi(z1), for |i− j| > 1.(2.2)
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Definition 2.0.1. The braid variety X(β) is defined by

X(β) :=

(z1, . . . , zℓ) ∈ Cℓ :


0 . . . 1

...
...

...

1 . . . 0

Bβ(z1, . . . , zℓ) is upper-triangular.


From Equations (2.1) and (2.2), we see that under braid moves the resulting braid varieties up to a change

of variables are equivalent and conclude that:

Theorem 2.0.2. Braid varieties are braid invariants.

Note that there is a surjective homomorphism π : Br+n → Sn, given by π(σi) = si where s1, . . . , sn−1 are

simple transpositions of i and i + 1 in Sn. The Demazure product δ : Br+n → Sn is defined inductively

by:

δ(e) = e, δ(βσi) =


δ(β)si if δ(β)si > δ(β)

δ(β) else,

Unlike π, the Demazure product δ is not a morphism of monoids. As an abuse of notation, we will denote

by w0 the longest element in both Sn and Br+n .

Now, we define braid varieties geometrically, consider the variety of complete flags

Fln = {0 = F0 ⊂ F1 · · · ⊂ Fn = Cn}, dimFi = i.

We say that two flags F and F ′ are in position si, denoted F si−→ F ′, if Fj = F ′
j for j ̸= i and Fi ̸= F ′

i .

Definition 2.0.3. The braid variety X(β) is defined as the space of sequences of flags

F (0) si1−−→ F (1) · · ·
siℓ−1−−−→ F (ℓ−1) siℓ−−→ F (ℓ)

such that F (0) is the standard flag and F (ℓ) is the antistandard flag in Cn:

F (0)
i = ⟨e1, . . . , ei⟩, F (ℓ)

i = ⟨ej−i+1, . . . , en⟩.

We will often use the abbreviation F (0) β
99K F (ℓ).

Theorem 2.0.4. Definitions 2.0.1 and 2.0.3 for braid varieties are equivalent.
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Proof. Suppose that X(β) is defined as in Definition 2.0.1 for some braid β = σi1 . . . σiℓ . For each

crossing σij where j ∈ 1, . . . , ℓ, we have π(σij ) = sij . Fix F (0) as the standard flag. We see that multiplication

by Bσi1
(z1) gives F (0)

m = F (1)
m for m ̸= i1 and F (0)

i1
̸= F (1)

i1
, therefore, F (0) and F (1) are in position si1 , i.e.,

F (0)
si1−−→ F (1). Conversely, if F (0)

si1−−→ F (1), then there exists a unique z1 such that Bi1(z1)F (0) = F (1).

By induction, we have that Bσi1
(z1) . . . Bσiℓ

(zℓ) = Bβ(z1, . . . , zℓ) describes the sequence of flags F (0)
si1−−→

F (1) · · ·
siℓ−1−−−→ F (ℓ−1)

siℓ−−→ F (ℓ).

Multiplication of the antidiagonal matrix with 1s along the antidiagonal corresponds to a half twist, therefore,

we see that F (ℓ) is the antistandard flag in Cn. Therefore, describing Definition 2.0.3. □

As a consequence of Escobar’s work on brick manifolds [10],

Theorem 2.0.5 (Casals-Gorsky-Gorsky-Le-Shen-Simental[5]). The braid variety X(β) is a smooth, irre-

ducible affine algebraic variety of dimension l(β)− l(ω0), where ω0 is the lift of the longest word. The variety

X(β) is nonempty if and only if the Demazure product δ(β) = w0.

2.1. Two-stranded braid varieties

In this section we focus on the case n = 2 and β ∈ Br+2 . Given that there is only one possible crossing, we

then refer to the two-stranded braid with ℓ crossings as σℓ. The braid matrices on two strands are given as

a product of the matrices

B(z) =

z −1

1 0

 .

Definition 2.1.1. The two-stranded braid variety X(σℓ) is defined by the equation

X(σℓ) :=

(z1, . . . , zℓ) ∈ Cℓ :

0 −1

1 0

B(z1) · · ·B(zℓ) is upper-triangular.


If β and β′ are related by braid moves then X(β) ≃ X(β′), this isomorphism arises from the invariance of

braid matrices.

Remark 2.1.2. The modification of −1 in Definition 2.1.1 compared to Definition 2.0.1 is made solely to

guarantee that the product of braid matrices lies in SL(2,C), thereby ensuring total positivity and does not

alter the braid variety.
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Example 2.1.3. Let β = σ1 ∈ Br+2 , the braid matrix is given by

Bβ(z1) =

z1 −1

1 0


Therefore, the braid variety is defined as

X(σ1) =

z1 ∈ C :

0 −1

1 0


z1 −1

1 0

 is upper-triangular.


=

z1 ∈ C :

−1 0

z1 −1

 is upper triangular

 = {z1 = 0}.

More precisely, X(σ1) is a point.

Example 2.1.4. Let β = σ2 ∈ Br+2 with braid matrix

Bβ(z1, z2) =

z1z2 − 1 −z1

z2 −1


then the braid variety associated to β is

X(σ2) =

(z1, z2) ∈ C2 :

0 −1

1 0


z1z2 − 1 −z1

z2 −1

 is upper-triangular.


= {(z1, z2) ∈ C2 : z1z2 − 1 = 0} ∼= {z1 ∈ C : z1 ̸= 0}

It is important to note that the choice of coordinate z1 on X(σ2) = {z1 ̸= 0} is not unique in this case,

we may have also chosen X(σ2) = {z2 ̸= 0}. However, the choice of X(σ2) = {z1 ̸= 0} is helpful when

developing an inductive way to describe the braid variety in order to compute its cohomology.

Example 2.1.5. Let β = σ3 ∈ Br+2 , see Figure 2.1, with braid matrix

Bβ(z1, z2, z3) =

z1z2z3 − z3 − z1 1− z1z2

z2z3 − 1 −z2


7



z1 z2 z3

Figure 2.1. The braid β = σ3, where each crossing is assigned a complex variable z,
belongs to the positive braid monoid. Therefore, we can omit crossing information since all
crossings are positive.

then the braid variety associated to β is

X(σ3) =

(z1, z2, z3) ∈ C3 :

0 −1

1 0


z1z2z3 − z3 − z1 1− z1z2

z2z3 − 1 −z2

 is upper-triangular.


= {(z1, z2, z3) ∈ C3 : z1z2z3 − z3 − z1 = 0} ∼= {(z1, z2) ∈ C2 : z1z2 − 1 ̸= 0}

There is an inductive relationship between X(σℓ) and X(σℓ−1), we explore this concept further by first

establishing general formulas for the braid matrices then extending these results to the polynomials defining

the braid varieties. Moreover, with these results we show that the braid variety X(σℓ) is smooth.

Lemma 2.1.6 (Hughes[23], Chantraine-Ng-Sivek[8]). One can express the braid matrix for β = σk as

Bβ(z1, . . . , zℓ) =

 Fℓ(z1, . . . , zℓ) −Fℓ−1(z1, . . . , zℓ−1)

Fℓ−1(z2, . . . , zℓ) −Fℓ−2(z2, . . . , zℓ−1)


where

(2.1) Fℓ(zi, . . . , zi+ℓ) = zi+ℓFℓ−1(zi, . . . , zi+ℓ−1)− Fℓ−2(zi, . . . , zi+ℓ−2)

with initial values F1(zi) = zi, F0 ≡ 1 and F−1 ≡ 0.

Proof. We proceed with induction on ℓ. Clearly,

Bσ1(z1) =

z1 −1

1 0

 =

F1(z1) −F0(∅)

F0(∅) −F−1(∅)


Suppose

Bσℓ(z1, . . . , zℓ) =

 Fℓ(z1, . . . , zℓ) −Fℓ−1(z1, . . . , zℓ−1)

Fℓ−1(z2, . . . , zℓ) −Fℓ−2(z2, . . . , zℓ−1)


8



Then

Bσℓ+1(z1, . . . , zℓ, zℓ+1) = Bσℓ(z1, . . . , zℓ)Bσ(zℓ+1)

=

 Fℓ(z1, . . . , zℓ −Fℓ−1(z1, . . . , zℓ−1)

Fℓ−1(z2, . . . , zℓ) −Fℓ−2(z2, . . . , zℓ−1)


zℓ+1 −1

1 0



=

 zℓ+1Fℓ(z1, . . . , zℓ)− Fℓ−1(z1, . . . , zℓ−1 −Fℓ−1(z1, . . . , zℓ−1)

zℓ+1Fℓ−1(z2, . . . , zℓ)− Fℓ−2(z2, . . . , zℓ) −Fℓ−1(z2, . . . , zℓ)



=

Fℓ+1(z1, . . . , zℓ+1) −Fℓ(z1, . . . , zℓ)

Fℓ(z2, . . . , zℓ) −Fℓ−1(z2, . . . , zℓ)


□

Theorem 2.1.7 (Hughes [23]). The braid variety X(σℓ) is defined in Cℓ by the equation Fℓ(z1, . . . , zℓ) = 0

where Fℓ is given by the recursion (2.1).

Moreover, if Fℓ(z1, . . . , zℓ) = 0, then Fℓ−1(z1, . . . , zℓ−1) ̸= 0 and zℓ =
Fℓ−2(z1, . . . , zℓ−2)

Fℓ−1(z1, . . . , zℓ)
.

Proof. By Lemma 2.1.6, we express the braid matrix as

Bβ(z1, . . . , zℓ) =

 Fℓ(z1, . . . , zℓ) −Fℓ−1(z1, . . . , zℓ−1)

Fℓ−1(z2, . . . , zℓ) −Fℓ−2(z2, . . . , zℓ−1)


Using the definition for a braid variety, we find that

X(σℓ) =

(z1, . . . , zℓ) ∈ Cℓ :

0 −1

1 0

Bβ(z1, . . . , zℓ) is upper-triangular


= {(z1, . . . , zℓ) ∈ Cℓ : Fℓ(z1, . . . , zℓ) = 0}

Given that Fℓ(z1, . . . , zℓ) = 0 and Fℓ = zℓFℓ−1 − Fℓ−2. If Fℓ−1 ̸= 0, then we can solve the equation Fℓ = 0

for zℓ:

Fℓ = zℓFℓ−1 − Fℓ−2 = 0, zℓ =
Fℓ−2

Fℓ−1
.

9



Suppose instead that Fℓ−1(z1, . . . , zℓ−1) = 0 and given that Fℓ(z1, . . . , zℓ) = 0 by the definition ofX(σℓ), then

Fℓ−2(z1, . . . , zℓ−2) = 0. By proceeding with downward induction on ℓ, we conclude that Fℓ(z1, . . . , zℓ) = 0

for all ℓ, contradicting F0 = 1. Therefore, Fℓ−1(z1, . . . , zℓ−1) ̸= 0.

□

Corollary 2.1.8. We have X(σℓ) ≃ {(z1, . . . , zℓ−1) ∈ Cℓ−1 : Fℓ−1(z1, . . . , zℓ−1) ̸= 0}.

Corollary 2.1.9. The braid variety X(σℓ) is smooth of complex dimension ℓ− 1.

Proof. By Corollary 2.1.8,X(σℓ) = {(z1, . . . , zℓ−1) ∈ Cℓ−1 : Fℓ−1(z1, . . . , zℓ−1) ̸= 0}. Since {(z1, . . . , zℓ−1) ∈

Cℓ−1 : Fℓ−1(z1, . . . , zℓ−1) ̸= 0} is an open subset in Cℓ−1, then X(σℓ) is a smooth manifold. □
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CHAPTER 3

Positroid varieties

The Grassmannian Gr(k, n) is a fundamental object in algebraic geometry, representation theory, combina-

torics and physics with deep connections to flag varieties and cluster algebras. The Grassmannian Gr(k, n)

is the space of all k-dimensional subspaces of an n-dimensional vector space Kn. Alternate notations for

the Grassmannian include Grnk , Grk(n). For our purposes, we let K = C, however, the Grassmannian may

be defined over a different ring or field, for example it may be defined over R, Q, Z, or Fq. The choice of

ring or field for the Grassmannian will reveal various properties in its geometrical, topological, and analytic

structures.

Given a k-dimensional subspace V we chose a basis and write the basis vectors as rows of the full rank k×n

matrix. We say that two matrices are equivalent, i.e, they represent the same subspace, if they are related

by left multiplication by an element in GLk(K). In other words, points in Gr(k, n) are described as full rank

k × n matrices up to row operations.

The Grassmannian is a smooth manifold that can be endowed with the structure of a projective smooth

algebraic variety using the Plücker embedding. The Plücker embedding maps a k-dimensional subspace given

by a matrix V to the set of Plücker coordinates, i.e., determinants of all possible k × k minors. Under this

embedding Gr(k, n) is realized as a subvariety of projective space P(
n
k)−1.

To explicitly define the map, let V ∈ Gr(k, n) and v1, . . . , vn be the columns of V where vi are k-dimensional

vectors. Given an ordered subset I ∈
(
[n]
k

)
, the Plücker coordinate ∆I(V ) is the minor of k × k submatrix

of V in column set I. We will sometimes consider the exterior algebra ∧•Ck, and identify ∆I(V ) with

vi1 ∧ · · · ∧ vik ∈ ∧k(Ck) ≃ C for I = {i1, . . . , ik}.

The row operations have the effect of changing V to AV for an invertible k × k matrix A. This implies

vi 7→ Avi and ∆I 7→ det(A)∆I for all I. In particular, ∆I can be considered as projective coordinates on

Gr(k, n), or as affine coordinates on the affine cone Ĝr(k, n).
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3.1. Open positroid varieties

Positroid varieties are interesting subvarieties of the Grassmannian that can be thought of as juggling pat-

terns. These varieties can be described as intersections of n cyclically shifted Schubert cells and in some

cases, as projections of Richardson varieties.

Definition 3.1.1. Let V = (v1 v2 . . . vn) ∈ Gr(k, n) where vi ∈ Ck, vi+n = vi and define fV : Z → Z

as

fV (i) = min{j ≥ i : vi ∈ span(vi+1, . . . , vj)}.

We say that fV is a bounded affine permutation associated to V if it satisfies the following conditions:

(a) fV (i+ n) = f(i) + n,

(b) i ≤ fV (i) ≤ i+ n,

(c)

n∑
i=1

(
fV (i)− i

)
= kn.

Example 3.1.2. Let V =

1 3 0 0 1

0 1 1 2 1

. The bounded affine permutation fV is given by

i 1 2 3 4 5

fV (i) 3 5 4 6 7

where v6 = v1, v7 = v2

Definition 3.1.3. We define the open positroid variety as

Π◦
f = {V ∈ Gr(k, n) : fV = f}.

Remark 3.1.4. We define a positroid variety Πf as the Zariski closure of an open positroid variety Π◦
f . It

is important to note that Πf is generally not a smooth variety. Therefore, for the purposes of this paper,

when we refer to a positroid variety, we mean the open positroid variety Π◦
f .

Knutson-Lam-Speyer [25] constructed the stratification

Gr(k, n) =
⊔

f∈Bk,n

Π◦
f

12



where Π◦
f are open positroid varieties indexed by a finite set Bk,n of bounded affine permutations, see [16,

Section 4.1] for more information. This positroid stratification contains a unique open stratum, the top

dimensional positroid variety , defined such that cyclically consecutive Plücker coordinates are non-

vanishing, i.e.,

(3.1) Π◦
k,n := {V ∈ Gr(k, n) : ∆1,2,...,k(V ),∆2,3,...,k+1(V ), . . . ,∆n,1,2,...,k−1(V ) ̸= 0} .

Remark 3.1.5. We sometimes call the unique open stratum the maximal dimension positroid variety or

the big cell in the Grassmannian. We note that this variety is defined by the bounded affine permutation

f(i) = i+ k for all i ∈ 1, . . . , n.

More generally, in [21] we define a class of skew shaped positroid varieties associated to skew shaped Young

diagrams.

3.2. Positroids as braid varieties

Casals-Gao found an explicit construction [4, Section 4] relating Π◦
k,n to the braid varietyX(βk,n) where

βk,n = (σ1 . . . σk−1)
n−k(σ1 . . . σk−1) . . . (σ2σ1)σ1 = (σ1 . . . σk−1)

n−kw0

(see also [32]). Here T (k, n−k) = (σ1 . . . σk−1)
n−k is the (k, n−k) torus braid and σ1(σ2σ1) · · · (σk−1 · · ·σ1)

is the specific braid word for the half-twist braid denoted w0.

Define I(a, i) to be the ordered subsets

(3.1) I(a, i) = {a, a+ 1, . . . , a+ i− 1, n− k + i+ 1, . . . , n},

where 1 ≤ i ≤ k and a = n− k− j +1 for 1 ≤ j ≤ n− k. Given a matrix V = (v1, . . . , vn), we can fill in the

bottom row of the braid diagram for βk,n by the vectors v1, . . . , vn. This uniquely determines the subspaces

for all other regions as spans ⟨vi, . . . , vj⟩ for appropriate i, j, see Figures 3.1, 5.1 and 5.2. The conditions

∆I(a,k)(V ) ̸= 0 are equivalent to the relative position conditions for each crossing of β. The conditions

∆I(1,i)(V ) ̸= 0 are equivalent to the fact that two flags

F (0) = {0 ⊂ ⟨v1⟩ ⊂ ⟨v1, v2⟩ ⊂ . . . ⟨v1, . . . , vk⟩}

13



⟨v1⟩ ⟨v2⟩ ⟨v3⟩ ⟨v4⟩ ⟨v5⟩ ⟨v6⟩ ⟨v7⟩ ⟨v8⟩

⟨v1, v2⟩ ⟨v2, v3⟩ ⟨v3, v4⟩ ⟨v4, v5⟩ ⟨v5, v6⟩ ⟨v6, v7⟩ ⟨v7, v8⟩

F (0) F (N)

︸ ︷︷ ︸
(σ1σ2)5

︸ ︷︷ ︸
w0

Figure 3.1. The braid β3,8 = (σ1σ2)
5w0 associated to Π◦,1

3,8.

and

F (N) = {0 ⊂ ⟨vn⟩ ⊂ ⟨vn−1, vn⟩ ⊂ . . . ⟨vn−k+1, . . . , vn⟩}

are in position w0. Therefore there is a unique matrix M such that MF (0) is the standard flag and MF (N)

is the antistandard flag.

Finally, the flags constructed as above determine the vectors vi only up to scalars. This can be fixed either

by rescaling vi, or by considering framed flags as in [4]. As a result, we obtain the following.

Theorem 3.2.1 (Casals-Gao[4], Shende-Treumann-Williams-Zaslow[32]). Let Π◦,1
k,n be the subset of Π◦

k,n

defined by

∆b,b+1,...,b+k−1 = ∆I(b,k) = 1, for 1 ≤ b ≤ n− k.

Then X(βk,n) ≃ Π◦,1
k,n.

3.2.1. Two-stranded braid varieties as positroids.

Definition 3.2.2. Let Π◦,1
2,n be the subset of the the open positroid variety Π◦

2,n such that each ∆i,i+1 = 1

for all 1 ≤ i ≤ n− 1 and ∆1,n ̸= 0.

Lemma 3.2.3. Suppose that v1, . . . , vℓ+1 is a collection of vectors in C2 such that v1 = (1, 0) and det(vi, vi+1) =

1. Then there exists a unique collection of parameters z1, . . . , zℓ such that B(z1) · · ·B(zi) = (vi+1 − vi) for

all i.

Proof. Let vi = (v1i , v
2
i ), we prove the statement by induction in i. For i = 1 we have v1 = (1, 0)

and v2 = (z, 1) since det(vi, vi+1) = 1. For i > 1 the vectors vi−1, vi form a basis of C2, so we can write

vi+1 = αvi−1 + βvi. Now

det(vi, vi+1) = α det(vi, vi−1) + β det(vi, vi) = −α det(vi−1, vi) + 0 = −α

14



so α = −1 and we can denote zi = β and write

(3.2) vi+1 = −vi−1 + zivi.

Now v1i+1 − v1i

v2i+1 − v2i

 =

v1i − v1i−1

v2i − v2i−1


zi −1

1 0


and by assumption of induction we have

B(z1) · · ·B(zi−1) =

v1i − v1i−1

v2i − v2i−1

 .

□

Remark 3.2.4. Note that B(z1) · · ·B(zi)

1

0

 = vi+1.

Lemma 3.2.5. Let Πo
2,ℓ+1 and Πo,1

2,ℓ+1 be as described in Equation 3.1 and Definition 3.2.2, then

a) Π◦,1
2,ℓ+1 is isomorphic to X(σℓ).

b) Π◦
2,ℓ+1 is isomorphic to X(σℓ)× (C∗)ℓ.

Proof. a) We package the vectors vℓ in a 2× (ℓ+ 1) matrix V . Since ∆1,2 = 1, we use row operations

to ensure that the first column of V is (1, 0), so we get

V =

1 v12 · · · v1ℓ+1

0 v22 · · · v2ℓ+1.

 ∈ Π◦,1
2,ℓ+1.

By Lemma 3.2.3 we can uniquely find the variables z1, . . . , zℓ such that

V =

1 F1(z1) · · · Fℓ(z1, . . . , zℓ)

0 F0 · · · Fℓ−1(z2, . . . , zℓ)


Note that detBi(z) = 1, so detBβ(z1, . . . , zi) = 1 for any braid β and

(3.3) Fi(z1, . . . , zi)Fi(z2, . . . , zi+1)− Fi+1(z1, . . . , zi+1)Fi−1(z2, . . . , zi) = 1,
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so the matrix V indeed satisfies ∆i,i+1(V ) = 1. The matrix V belongs to Π◦,1
2,ℓ if and only if Fℓ−1(z2, . . . , zℓ) ̸=

0. In this case, we can use row operations to ensure that Fℓ(z1, . . . , zℓ) = 0 (we subtract from the first row

Fℓ(z1, . . . , zℓ)/Fℓ−1(z2, . . . , zℓ) times the second row).

The braid variety X(σℓ) is cut out by the equation {(z1, . . . , zℓ) ∈ Cℓ : Fℓ(z1, . . . , zℓ) = 0}, so we get a map

from Π◦,1
2,ℓ to X(σℓ). To construct the inverse, observe that Fℓ(z1, . . . , zℓ) = 0 and (3.3) implies that

Fℓ−1(z1, . . . , zℓ−1)Fℓ−1(z1, . . . , zℓ) = 1,

so Fℓ−1(z2, . . . , zℓ) ̸= 0. Therefore Π◦,1
2,ℓ ≃ X(σℓ).

b) Similarly to the above, we can use row operations to ensure any matrix in Π◦
2,ℓ+1 has the first column

(1, 0). Now we define a map Π◦,1
2,ℓ+1 × (C∗)ℓ → Π◦

2,ℓ+1 by rescaling all other columns:

φ : [(v1, v2, . . . , vℓ+1), (λ1, . . . , λℓ)] 7→ (v1, λ1v2, . . . , λℓvℓ+1).

The inverse map is clear, since we get

det(λi−1vi, λivi+1) = λi−1λi,

and the scalars λi can recovered from the minors ∆i,i+1 for the image of φ.

□

Example 3.2.6. We have

B(z1)B(z2) =

z1 −1

1 0


z2 −1

1 0

 =

z1z2 − 1 −z1

z2 −1



B(z1)B(z2)B(z3) =

z1z2 − 1 −z1

z2 −1


z3 −1

1 0

 =

z1z2z3 − z1 − z3 1− z1z2

z2z3 − 1 −z2

 .

This means that X(σ3) is associated to a point in Π◦,1
2,4 by packaging vi in the matrix

(v1 v2 v3 v4) =

1 z1 z1z2 − 1 z1z2z3 − z1 − z3

0 1 z2 z2z3 − 1.


16



3.2.2. Standard form for two-stranded positroids. Throughout this section, we have studied var-

ious maps between braid varieties and positroid varieties. To work with such maps, it is useful to fix a

specific isomorphism between X(σℓ) and Π◦,1
2,ℓ+1 which is given by lemmas below.

Lemma 3.2.7. Let M = (v1 v2 . . . vn) ∈ Π◦
2,n. There is a unique matrix A ∈ GL(2,C) such that

AM =

1 ∗ . . . 0

0 1 . . . ∗

 = V

where detA = ∆−1
12 (M) and ∆ij(V ) = ∆ij(M) · detA =

∆ij(M)

∆12(M)
.

Proof. If M = (v1 v2 . . . vn), then acting on the left with the matrix S = (v1 vn)
−1

, we obtain

S ·M =
1

∆1n(M)

 v2n −v1n

−v21 v11


v11 v12 . . . v1n

v21 v22 . . . v2n

 =

1 ∗ . . . 0

0 α . . . 1



where α = det(S)∆12(M) =
∆12(M)

∆1n(M)
. Now, if we act on the left by T =

1 0

0 α−1

, we obtain

T · (S ·M) =

1 0

0 α−1


1 ∗ . . . 0

0 α . . . 1

 =

1 ∗ . . . 0

0 1 . . . α−1


Let A = T · S, then detA = (detT )(detS) =

(
∆1n(M)

∆12(M)

)(
1

∆1n(M)

)
= ∆−1

12 (M). □

Lemma 3.2.8. Given the standard form matrix

(3.4) V =

1 ∗ . . . 0

0 1 . . . ∗


where ∆i,i+1 ̸= 0, ∆1n ̸= 0, we may rescale the vectors (v3, . . . , vn) to (v′3, . . . , v

′
n) = (λ3v3, . . . , λnvn) such

that ∆′
i,i+1 = 1. Furthermore, such λi are unique.

Proof. Let

v′3 =
v3
∆23

, v′4 =
v4 ·∆23

∆34
, . . . , v′n = vn

n−1∏
l=2

∆
(−1)n−l

l,l+1
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Note that with the above rescaling ∆′
1n remains nonzero, whereas for ∆′

i,i+1 the rescaling gives the desired

result:

∆′
i,i+1 = det

(
v′i v′i+1

)
= det

(
vi

i−1∏
l=2

∆
(−1)i−l

l,l+1 vi+1

i∏
l=2

∆
(−1)i+1−l

l,l+1

)

= ∆i,i+1∆
(−1)
i,i+1 = 1.

□

Corollary 3.2.9. Given a matrix M ∈ Π◦
2,n, we can use Lemmas 3.2.7 and 3.2.8 to change M to the

matrix

V ′ =

1 ∗ . . . 0

0 1 . . . ∗


such that V ′ ∈ Π◦,1

2,n. Furthermore, if M ∈ Π◦,1
2,n then ∆ij(V

′) = ∆ij(M).

Proof. We only need to prove the last equation. If M ∈ Π◦,1
2,n with each ∆i,i+1 = 1, using Lemma 3.2.7

there exists a unique V ′ = AM , and ∆ij(V
′) = ∆ij(M)/∆12(M) = ∆ij(M). In particular, ∆i,i+1(V

′) = 1

for all i and we do not require the use of Lemma 3.2.8 to rescale the vectors. □
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CHAPTER 4

Cluster algebras

Cluster algebras are a class of commutative rings which were formally introduced by Sergey Fomin and Andrei

Zelevinsky in the early 2000s. These algebras were initially motivated by the study of total positivity and

Lie algebras. Since their inception, they have emerged as central objects in various branches of mathematics

and mathematical physics including representation theory, algebraic geometry, and combinatorics. Cluster

algebras are defined by a seed Σ consisting of a quiver, or exchange matrix, and cluster variables, which are

a finite collection of algebraically independent elements of the algebra. This seed along with a concept of

mutation generates a subring of a field F . For more details on cluster algebras, see [?].

A cluster algebra A is defined by a skew-symmetric integer matrix B̃ of size (n+m)×n called the extended

exchange matrix , the top n× n part B is a skew shaped integer matrix where

B̃ij =


a if there are a arrows from vertex i to vertex j;

−a if there are a arrows from vertex j to vertex i;

0 otherwise

Alternatively, we can consider the ice quiver Q associated to B̃ as a finite directed graph with no 1- or

2-cycles such that the number of vertices |Q0| = n +m. We can specify that the vertices are either frozen

xi ∈ Qf
0 , or mutable xi ∈ Q0 \Qf

0 . Note that |Qf
0 | = m.

Let F be a field with transcendence degree n +m over C, i.e., F ∼= C(x) where x = (x1, . . . , xn+m) is the

transcendence basis for F and are defined as cluster variables. We say that Σ = (Q, x) is a seed of

A.

Definition 4.0.1. For each mutable vertex xk, we define the mutation of a seed Σ as µk(Σ) = (µk(Q), x′)

where x′ = (x′
1, . . . , x

′
n+m) is given by

(4.1) x′
kxk =

 ∏
B̃ki≥0

xB̃ki
i +

∏
B̃kj≤0

x
−B̃kj

j

 , x′
i = xi if i ̸= k.

19



When performing a mutation, we modify the quiver Q according to the following rules to obtain Q′ = µk(Q):

(1) If there is a path of the vertices i → k → j, then we add an arrow from i to j.

(2) Any arrows incident to k change orientation.

(3) Remove a maximal disjoint collection of 2-cycles produced in Steps (1) and (2).

We say that two seeds Σ,Σ′ are mutation equivalent in the cluster algebra if they are related by a finite

sequence of mutations µ, and note that µk is an involution.

The cluster algebra A ⊂ F is generated by all cluster variables in all seeds under mutation.

The geometric interpretation of a cluster algebra is a cluster variety. Define the cluster variety X =

Spec(A) as an affine algebraic variety given by a collection of open charts U ≃ (C∗)n+m where each chart

U is parametrized by cluster coordinates x1, . . . , xn+m which are invertible on U and extend to regular

functions on X. If the coordinate extends to a non-vanishing regular function on X then we call it frozen,

otherwise we call the coordinate mutable. Given the condition of mutation as described above, the ring of

functions on X is generated by all cluster variables in all charts.

Example 4.0.2. We demonstrate the process of mutation by mutating the following quiver at x2, following

the procedure detailed in Definition 4.0.1. Here, the variables x1, x3, x4 remain unchanged, whereas x′
2 =

x4 + x2
1

x2
.

x1 x2

x3 x4

(1)−−→

x1 x′
2

x3 x4

(2)−−→

x1 x′
2

x3 x4

(3)−−→

x1 x′
2

x3 x4

4.1. Quasi-cluster homomorphisms

It is possible for a cluster algebra A to be defined by two non-mutation equivalent seeds Σ,Σ′, i.e., A(Σ) ∼=

A ∼= A(Σ′) yet Σ ̸= µ(Σ′) for all µ. In general, cluster structures for a commutative algebra A is not

unique.

Example 4.1.1. Let Σ = (Q, x) be the seed described by

xa → x1 → xb
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where the blue vertices are frozen. The associated cluster algebra is defined as

A(Σ) = C[x1, x
′
1, x

±1
a , x±1

b ]/(x1x
′
1 = xa + xb).

Now, consider the seed Σ′ = (Q′, y) described by

ya → y1 yb

where the blue vertices are frozen. The associated cluster algebra is defined as

A(Σ′) = C[y1, y′1, y±1
a , y±1

b ]/(y1y
′
1 = ya + 1).

We can define an isomorphism between the two cluster algebras given by y1 7→ x1x
−1
b , ya 7→ xax

−1
b , yb 7→ xb

and y′1 7→ x′
1; however, the two seeds Σ,Σ′ are not mutation equivalent.

This particular property is defined as a quasi-equivalence between cluster algebras. We use the notion of

exchange ratios, given a mutable vertex xk in a seed Σ the exchange ratio ŷk is defined:

(4.1) ŷi =

∏
B̃ki≥0 x

B̃ki
i∏

B̃kj≤0 x
−B̃kj

j

.

Definition 4.1.2. (Fraser[14], Fraser–Sherman-Bennett[15]) Let A(Σ), A(Σ′) be cluster algebras of rank

n + m, each with m frozen variables. Let x = {x1, . . . , xn+m} be the cluster variables of Σ, and x′ =

{x′
1, . . . x

′
n+m} be the cluster variables of Σ′. A quasi-cluster isomorphism is an algebra isomorphism

f : A(Σ) → A(Σ′) satisfying the following conditions:

(1) For each frozen variable xj ∈ x, f(xj) is a Laurent monomial in the frozen variables of x′.

(2) For each mutable variable xi ∈ x, f(xi) coincides with x′
i, up to multiplication by a Laurent

monomial in the frozen variables of x′.

(3) The exchange ratios are preserved, i.e., for each mutable variable xi of Σ, f(ŷi) = ŷ′i.

By the main result of [14], it is sufficient to check the conditions of quasi-equivalence in one cluster, and

they will automatically hold in every other cluster.
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4.2. Cluster structures on open positroids

In 2003, Scott [29] established that the homogeneous coordinate ring of Gr(k, n) denoted C[Ĝr(k, n)] has a

cluster structure using Postnikov arrangements. In this paper, will we use a different construction using the

rectangles seed Σk,n which generates the cluster structure for the Plücker ring Rk,n isomorphic to C[Ĝr(k, n)]

as detailed in [13, Section 6.7]. The cluster structure in the Plücker ring Rk,n is generated from the mutations

on the rectangular seed Σk,n. Unlike [29], we always assume that the frozen variables are invertible, in fact,

we are considering a cluster structure on C[Π̂◦
k,n].

We first construct the quiver Qk,n where vertices are labeled by rectangles r contained in the k × (n − k)

rectangle R along with the empty rectangle ∅. The frozen vertices are defined as rectangles of size k× j for

1 ≤ j ≤ n − k, size i × (n − k) for 1 ≤ i ≤ k, and ∅. The arrows connect from the i × j rectangle to the

i× (j+1) rectangle, the (i+1)× j rectangle, and the (i− 1)× (j− 1) rectangle with the conditions that the

rectangle has nonzero dimension, fits inside of R and does not connect two frozens. There is also an arrow

from the ∅ rectangle to the 1× 1 rectangle, see Figure 4.1.

Each rectangle r contained in the k×(n−k) rectangle R corresponds to a k-element subset of [n] representing

a Plücker coordinate. This correspondence is determined by positioning r in R such that the upper left corner

coincides with the upper left corner of R. There exists a path from the upper right corner to the lower left

corners of R which traces out the smaller rectangle r, with steps from 1 to n, where the map from r to I(r)

is given by the vertical steps of the path, see Figure 4.2. Define

x̃k,n = {∆I(r) : r rectangle contained in k × (n− k) rectangle}

We may now define the rectangles seed Σk,n = (x̃k,n, B̃(Qk,n)).

We can summarize (and slightly rephrase) the above constructions as follows. We define ordered sub-

sets

(4.1) I(a, i) = {a, a+ 1, . . . , a+ i− 1, n− k + i+ 1, . . . , n},

where a = n− k − j + 1.

Theorem 4.2.1 (Scott [29]). The cluster variables in the initial seed are given by the minors ∆I(a,i) for

1 ≤ a ≤ n− k and 1 ≤ i ≤ k, and an additional frozen variable ∆n−k+1,...,n. Furthermore:
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∅

Figure 4.1. The quiver Q3,8. Vertices are labeled by rectangles contained in a 3 × 5
rectangle. The grid is arranged such that the rectangles width increases from left to right
and the heights increase from top to bottom.

a

...

a + i − 1

a + 1

n − k + i + 1

...
n − 1

n ︸ ︷︷ ︸
n−k

︸
︷︷

︸
k

︸ ︷︷ ︸
a−1 steps

︸ ︷︷ ︸
n−k−a+1 steps

r

R

Figure 4.2. The Plücker coordinate ∆I(r) corresponding to a rectangle r is given by the
vertical steps in the path from the upper right corner to the lower left corner of the rectangle
R of size k × (n− k) that cuts out the rectangle r positioned in the upper left corner of R.

1) The variables ∆I(a,i) are frozen for a = 1 and i = k, and mutable otherwise.

2) The quiver Qk,n consists of the following arrows:

(4.2)

∆I(a,i) ∆I(a−1,i)

∆I(a,i+1) ∆I(a−1,i+1)

3) There is an additional arrow ∆n−k+1,...,n → ∆I(n−k,1).
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∆678

∆578 ∆478 ∆378 ∆278 ∆178

∆568 ∆458 ∆348 ∆238 ∆128

∆567 ∆456 ∆345 ∆234 ∆123

Figure 4.3. Cluster variables in Gr(3, 8) corresponding to the rectangles seed.

See Figure 4.3 for the Π̂◦
3,8 example and Figure 4.4 for the general case.

Below we will also use the cluster structure on Π◦
k,n. The corresponding quiver can be obtained from Qk,n by

deleting the vertex ∅, and the cluster variables in the initial seed are given by the ratios ∆I(a,i)/∆n−k+1,...,n.

More precisely, we have the following:

Proposition 4.2.2. We have a quasi-equivalence of cluster varieties

(4.3) Π̂◦
k,n ≃ C∗ ×Π◦

k,n

and the corresponding quasi-equivalence of cluster algebras

C[Π̂◦
k,n] ≃ C[∆±

n−k+1,...,n]⊗ C[Π◦
k,n].

Proof. This result is well known, but we provide a proof for the sake of completeness.

Define the map f : Π̂◦
k,n → C∗×Π◦

k,n by sending each Plücker coordinate ∆I(a,i) to ∆̃I(a,i) := ∆I(a,i)/∆n−k+1,...,n.

We note that this map is well defined since ∆n−k+1,...,n = ∆I(n−k+1,k) is nonzero by definition of Π̂◦
k,n. We

show that this map defines a quasi-equivalence by verifying that it preserves exchange ratios in the cases

illustrated in Figure 4.4.

(a) Left corner: In C[Π̂◦
k,n], the mutable variable ∆I(n−k,1) in the left corner has a total of two incoming

arrows and two outgoing arrows. However, under the map f the cluster variable ∆I(n−k+1,k) is mapped to

1, and therefore, the arrow from ∆̃I(n−k+1,k) to ∆̃I(n−k,1) vanishes. We now have that the mutable variable

∆̃I(n−k,1) in C[Π◦
k,n] has one incoming arrow and two outgoing arrows. However, we see that the exchange
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∆I(n−k+1,k)

∆I(n−k,1) ∆I(n−k−1,1) ∆I(n−k−2,1) ∆I(n−k−3,1) . . . ∆I(3,1) ∆I(2,1) ∆I(1,1)

∆I(n−k,2) ∆I(n−k−1,2) ∆I(n−k−2,2) ∆I(n−k−3,2) . . . ∆I(3,2) ∆I(2,2) ∆I(1,2)

∆I(n−k,3) ∆I(n−k−1,3) ∆I(n−k−2,3) ∆I(n−k−3,3) . . . ∆I(3,3) ∆I(2,3) ∆I(1,3)

∆I(n−k,4) ∆I(n−k−1,4) ∆I(n−k−2,4) ∆I(n−k−3,4) . . . ∆I(3,4) ∆I(2,4) ∆I(1,4)

...
...

...
...

. . .
...

...
...

∆I(n−k,k−2) ∆I(n−k−1,k−2) ∆I(n−k−2,k−2) ∆I(n−k−3,k−2) . . . ∆I(3,k−2) ∆I(2,k−2) ∆I(1,k−2)

∆I(n−k,k−1) ∆I(n−k−1,k−1) ∆I(n−k−2,k−1) ∆I(n−k−3,k−1) . . . ∆I(3,k−1) ∆I(2,k−1) ∆I(1,k−1)

∆I(n−k,k) ∆I(n−k−1,k) ∆I(n−k−2,k) ∆I(n−k−3,k) . . . ∆I(3,k) ∆I(2,k) ∆I(1,k)

(a)

(b)

(c)

Figure 4.4. Cluster variables in Π̂◦
k,n in the rectangle seed.

ratios under the map f are equivalent:

ŷ∆̃I(n−k,1)
=

∆I(n−k−1,2)

∆I(n−k+1,k)

∆I(n−k−1,1)

∆I(n−k+1,k)

∆I(n−k,2)

∆I(n−k+1,k)

=
∆I(n−k−1,2)∆I(n−k+1,k)

∆I(n−k−1,1)∆I(n−k,2)
= ŷ∆I(n−k,1)

.

(b) Boundary: Either 2 ≤ a ≤ n− k − 1 and i = 1, or a = n− k and 2 ≤ i ≤ k − 1. In C[Π̂◦
k,n], the mutable

variable ∆I(a,i) has two incoming arrows and two outgoing arrows. Under the map f , the mutable variable

∆̃I(a,i) in C[Π◦
k,n] still has two incoming and outgoing arrows where each of the corresponding variables have

a factor of (∆I(n−k+1,k))
−1 which cancels in the computation of the exchange ratio y∆̃I(a,i)

.

(c) Interior: Similarly to the boundary case, the mutable variable ∆I(a,i) in C[Π̂◦
k,n] and ∆̃I(a,i) in C[Π◦

k,n]

both have three incoming arrows and three outgoing arrows. Therefore, the factor (∆I(n−k+1,k))
−1 cancels

out in the computation of the exchange ratio y∆̃I(a,i)
.

□

Thanks to Proposition 4.2.2, we will freely translate various results and computations between the cluster

structures on Π̂◦
k,n and on Π◦

k,n. In particular, we will always compute the exchange ratios in Π̂◦
k,n, since they
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1

ℓ

ℓ + 1

ℓ − 1

1

1

Fℓ−1

Fℓ+1

Fℓ

zℓ

Figure 4.5. Section of the triangulation of Ufan, see Figure 4.6, between the vertices 1, ℓ−
1, ℓ and ℓ+ 1

coincide with the ones in Π◦
k,n. If we apply the additional condition that the Plücker coordinate associated

to ∅ is equal to 1, we can neglect that particular cluster variable and obtain a cluster structure for C[Π◦
k,n].

In [21] we generalize this cluster structure to skew shaped positroid varieties which are described by skew

Young diagrams contained in the k × (n − k) rectangle R. Which is consistent with previous results. See

[16] for a complete description of the construction of cluster structures for general positroid varieties using

Postnikov diagrams.

Theorem 4.2.3 (Scott[29], Galashin–Lam[16], Serhiyenko–Sherman-Bennett–Williams[31]). Any open positroid

variety has a cluster structure.

4.3. Cluster structure for two-stranded braid varieties

For positroid varieties Π◦
2,ℓ+1 we obtain a cluster variety of type Aℓ−2 with ℓ+1 frozen variables. We assign

the vectors vi from Lemma 3.2.5 to the vertices of a regular polygon P. The cluster charts in Π◦
2,ℓ+1 are

determined by triangulations of P. Given a triangulation, the edges between the vertices i and j correspond

to cluster variables determined by the Plücker coordinates ∆i,j = det(vi, vj).

Lemma 4.3.1 (Hughes[23]). In Π◦,1
2,ℓ+1 for all i < j we have

∆i,j = Fj−i−1(zi+1, . . . , zj−1).

In particular, ∆i,i+2 = zi+1.
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Proof. Using the results from Lemma 3.2.3, we have the following relations

B(z1) . . . B(zi) =
(
vi+1 − vi

)
B(z1) . . . B(zj) =

(
vj+1 − vj

)
Given that i < j, we then rewrite

B(z1) . . . B(zi)B(zi+1) . . . B(zj) =
(
vj+1 − vj

)
(
vi+1 − vi

)
B(zi+1) . . . B(zj) =

(
vj+1 − vj

)
From Theorem 2.1.6, the product of the braid matrices from i+ 1 to j can be expressed as

B(zi+1) . . . B(zj) =

 Fj−i(zi+1, . . . , zj) −Fj−i−1(zi+1, . . . , zj−1)

Fj−i−1(zi+2, . . . , zj) −Fj−i−2(zi+2, . . . , zj−1)


Which allows us to rewrite the previous equation as

(vi+1 − vi)

 Fj−i(zi+1, . . . , zj) −Fj−i−1(zi+1, . . . , zj−1)

Fj−i−1(zi+2, . . . , zj) −Fj−i−2(zi+2, . . . , zj−1)

 = (vj+1 − vj)

Here we obtain the equation

−vj = −Fj−i−1(zi+1, . . . , zj−1)vi+1 + Fj−i−2(zi+2, . . . , zj−1)vi

By finding an expression for vj , we may now determine ∆ij , since determinants are linear, we find that

∆ij = det
(
vi vj

)
= Fj−i−1(zi+1, . . . , zj−1) det

(
vi vi+1

)
− Fj−i−2(zi+2, . . . , zj−1) det

(
vi vi

)
= Fj−i−1(zi+1, . . . , zj−1)(1)− Fj−i−2(zi+2, . . . , zj−1)(0) = Fj−i−1(zi+1, . . . , zj−1)

To see that ∆i,i+2 = zi+1, we see that ∆ij = F(i+2)−i−1(zi+1) = F1(zi+1) = zi+1 as desired. □

For a < b < c < d we have the Plücker relation

(4.1) ∆ac∆bd = ∆ab∆cd +∆ad∆bc.
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A special case of (4.1) is

∆i,ℓ∆ℓ−1,ℓ+1 = ∆i,ℓ−1∆ℓ,ℓ+1 +∆i,ℓ+1∆ℓ−1,ℓ

which in Π◦,1
2,ℓ+1 translates to

∆i,ℓzℓ = ∆i,ℓ−1 +∆i,ℓ+1

For i = 1 it is indeed equivalent to our recursion (2.1), see Figure 4.5

Outer edges of P correspond to frozen variables, while diagonals correspond to mutable variables. In partic-

ular, Π◦
2,ℓ+1 has ℓ+1 frozen variables, while in Π◦,1

2,ℓ+1 we specialize ℓ frozen Plücker coordinates, ∆i,i+1 = 1

for 1 ≤ i ≤ ℓ and therefore can be neglected. Thus Π◦,1
2,ℓ+1 has one frozen variable ∆1,ℓ+1 which we denote by

w. To generate the quiver, in each triangle of the triangulation we connect the cluster variables by arrows

in clockwise order. Mutations correspond to flips of triangulations due to the Plucker relation.

Consider the special chart Ufan in Π◦,1
2,ℓ+1 corresponding to the “fan” triangulation where the ℓ−2 diagonals are

defined by ∆1,i for 2 ≤ i ≤ ℓ, as seen in Figure 4.6. Equivalently, the chart Ufan is given by inequalities

Ufan = {Fi−1(z2, . . . , zi) ̸= 0, 1 ≤ i ≤ ℓ} ⊂ X(σℓ).

In this chart, the quiver is precisely Aℓ−2 with one frozen variable w. From Lemma ?? the mutable cluster

variables are precisely wi = Fi(z2, . . . , zi+1) and the frozen variable is w = wℓ−2 = Fℓ(z2, . . . , zℓ+1).

Remark 4.3.2. In order to obtain the cluster structure as in Section 4.2, we triangulate the (ℓ+1)-gon with

all ℓ− 2 diagonals are defined by ∆i,ℓ+1 for 2 ≤ i ≤ ℓ− 1.
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1

2

3

4

5 ℓ − 3

ℓ − 2

ℓ − 1

ℓ

ℓ + 1

...

w

w1 wℓ−3

wℓ−4

wℓ−5w3

w2

wℓ−2

Figure 4.6. The special chart Ufan ∈ Π◦,1
2,ℓ+1 where each of the ℓ−2 diagonals are have fixed

endpoint at v1. The Pluc̈ker coordinates, or cluster variables, correspond to the weights of
the edges given by either a blue square (frozen vertices) or a green circle (mutable vertices).
The quiver of the cluster chart is generated by clockwise orientation of the colored arrows in
each triangle of the triangulation. This procedure produces the quiver Aℓ−1, seen in purple,
with w as the singular frozen variable. In the terminology of [5], this chart is given by the
right inductive weave.
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CHAPTER 5

Splicing map

In earlier chapters, we explored braid varieties from both algebraic and geometric perspectives, established

their relationship with positroid varieties, and examined their cluster structures. These results help us

have a detailed understanding of individual braid varieties, in particular two stranded braid varieties, and

they also raise natural questions about how more complex braid varieties can be constructed from simpler

components.

This chapter introduces a splicing map, a construction that formalizes how braid varieties can be “glued”

together in a way that reflects the combinatorics of braid composition. The idea is motivated by the operation

of multiplying braids, such as composing torus braids T (k, s) ·T (k, t) → T (k, s+ t), which gives rise to larger

braid diagrams from smaller ones. This multiplicative structure has a geometric counterpart in the world of

braid and positroid varieties, and the splicing map aims to capture that structure explicitly.

From the perspective of positroid varieties, the splicing map provides a map between open positroid strata:

Π◦
k,k+s ×Π◦

k,k+t → Π◦
k,k+s+t,

and we show that this map preserves the expected dimension. The construction involves manipulating Plücker

coordinates in a controlled way and reassembling flags or vector configurations across overlapping coordinate

charts. To make this concrete, we define local charts Ua ⊂ Π◦
k,n where the splicing map is well-behaved, and

we carefully analyze how the map acts on vector columns in the associated matrices.

We also study the map from the point of view of the cluster structure. Although the splicing operation

is not a cluster morphism in general, it interacts well with cluster coordinates and provides insight into

how cluster variables behave under such gluings. In some cases, we can explicitly track how splicing affects

frozen and mutable variables in cluster charts, especially those modeled on triangulations in the context of

surfaces.
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Throughout the chapter, we work through examples to illustrate the splicing map and the geometric intuition

behind the map. They also serve to demonstrate the utility of the splicing map as a tool for constructing new

varieties and for studying the recursive structure of braid varieties. This map will prove useful in Chapter 6

in studying the cohomological structure of braid varieties.

5.1. Splicing map for torus links

Let Π◦
k,n be the open positroid variety in the Grassmannian Gr(k, n).

Definition 5.1.1. Given 2 ≤ a ≤ n− k, we define an open subset Ua ⊂ Π◦
k,n by the inequalities

(5.1) Ua = {V ∈ Π◦
k,n : ∆I(a,i)(V ) ̸= 0, 1 ≤ i ≤ k − 1}.

For 0 ≤ s ≤ i− 1 and 0 ≤ t ≤ k − i− 1 we define ordered subsets

I ′(a, s, i) = {a, . . . , a+ s− 1, a+ i, a+ s+ 1, . . . , a+ i− 1, n− k + i+ 1, . . . , n},

I ′sort(a, s, i) = {a, . . . , a+ s− 1, a+ s+ 1, . . . , a+ i− 1, a+ i, n− k + i+ 1, . . . , n},

and

I ′′(a, t, i) = {a, . . . , a+ i− 1, n− k + i+ 1, . . . , n− t− 1, a+ i, n− t+ 1, . . . , n},

I ′′sort(a, t, i) = {a, . . . , a+ i− 1, a+ i, n− k + i+ 1, . . . , n− t− 1, n− t+ 1, . . . , n},

Note that I ′(a, s, i) is obtained from I(a, i) by replacing a+ s by a+ i (without changing the order), while

I ′′(a, t, i) is obtained from I(a, i) by replacing n− t by a+ i. Also, I ′(a, s, i) and I ′sort(a, s, i) are related by

an (i− s)-cycle while I ′′(a, t, i) and I ′′sort(a, t, i) are related by a (k − i− 1− t)-cycle.

Lemma 5.1.2. Given a matrix V ∈ Ua, for all 1 ≤ i ≤ k − 2 we have an identity

va+i =

i−1∑
s=0

∆I′(a,s,i)

∆I(a,i)
va+s +

k−i−1∑
t=0

∆I′′(a,t,i)

∆I(a,i)
vn−t

=

i−1∑
s=0

(−1)i−s−1
∆I′

sort(a,s,i)

∆I(a,i)
va+s +

k−i−1∑
t=0

(−1)k−i−t
∆I′′

sort(a,t,i)

∆I(a,i)
vn−t

Proof. Since ∆I(a,i)(V ) ̸= 0, the vectors va, . . . , va+i−1, vn−k+i+1, . . . , vn span Ck. We can uniquely

write va+i as linear combination of these:

va+i = x0va + . . .+ xi−1va+i−1 + yk−i−1vn−k+i+1 + . . .+ y0vn.
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Now the coefficients xs, yt are determined by Cramer’s Rule:

xs =
∆I′(a,s,i)

∆I(a,i)
= (−1)i−s−1

∆I′
sort(a,s,i)

∆I(a,i)
, yt =

∆I′′(a,t,i)

∆I(a,i)
= (−1)k−i−t

∆I′′
sort(a,t,i)

∆I(a,i)
.

□

Example 5.1.3. For a = 3 the open subset U3 ⊂ Π◦
3,8 is defined by ∆348,∆378 ̸= 0, indicating that the

vectors v3, v7, v8 span C3 and the vectors v3, v4, v8 span C3. Using Cramer’s rule we may express the vector

v4 as

v4 =
∆478

∆378
v3 +

∆348

∆378
v7 +

∆374

∆378
v8 =

∆478

∆378
v3 +

∆348

∆378
v7 −

∆347

∆378
v8

Example 5.1.4. The open subset U3 ⊂ Π◦
5,10 is defined by

U3 = {V ∈ Π◦
5,10 : ∆3,7,8,9,10(V ),∆3,4,8,9,10(V ),∆3,4,5,9,10(V ),∆3,4,5,6,10(V ) ̸= 0}.

From this collection of nonvanishing Plücker coordinates we have

C5 = ⟨v3, v7, v8, v9, v10⟩ = ⟨v3, v4, v8, v9, v10⟩ = ⟨v3, v4, v5, v9, v10⟩.

By Cramer’s Rule, we can expand v4, v5, v6 in the respective bases:

v4 =
∆4,7,8,9,10

∆3,7,8,9,10
v3 +

∆3,4,8,9,10

∆3,7,8,9,10
v7 −

∆3,4,7,9,10

∆3,7,8,9,10
v8 +

∆3,4,7,8,10

∆3,7,8,9,10
v9 −

∆3,4,7,8,9

∆3,7,8,9,10
v10

v5 = −∆4,5,8,9,10

∆3,4,8,9,10
v3 +

∆3,5,8,9,10

∆3,4,8,9,10
v4 +

∆3,4,5,9,10

∆3,4,8,9,10
v8 −

∆3,4,5,8,10

∆3,4,8,9,10
v9 +

∆3,4,5,8,9

∆3,4,8,9,10
v10

v6 =
∆4,5,6,9,10

∆3,4,5,9,10
v3 −

∆3,5,6,9,10

∆3,4,5,9,10
v4 +

∆3,4,6,9,10

∆3,4,5,9,10
v5 +

∆3,4,5,6,10

∆3,4,5,9,10
v9 −

∆3,4,5,6,9

∆3,4,5,9,10
v10

Definition 5.1.5. Given a matrix V = (v1, . . . , vn) in Ua, we define two matrices V1, V2 as follows:

(5.2) V1 = (va, . . . , vn), V2 = (v1, . . . , va, u1 . . . , uk−2, vn)

where

(5.3) ui = va+i −
i−1∑
s=0

∆I′(a,s,i)

∆I(a,i)
va+s =

k−i−1∑
t=0

∆I′′(a,t,i)

∆I(a,i)
vn−t.

The second equation in (5.3) follows from Lemma 5.1.2.
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Example 5.1.6. Continuing Example 5.1.3, we decompose the matrix

V = (v1 v2 v3 v4 v5 v6 v7 v8)

into

V1 = (v3 v4 v5 v6 v7 v8) , V2 = (v1 v2 v3 u v8)

where

u = v4 −
∆478

∆378
v3 =

∆348

∆378
v7 −

∆347

∆378
v8.

Lemma 5.1.7. Assume that V ∈ Ua. Then for 1 ≤ i ≤ k − 2 the intersection of two subspaces

⟨va, va+1, . . . , va+i⟩ ∩ ⟨vn−k+i+1, vn−k+i+2, . . . , vn⟩.

is one-dimensional and spanned by the vector ui.

Proof. By (5.3) and Lemma 5.1.2 the vector ui is indeed contained in this intersection. Since ∆I(a,i+1) ̸=

0, the vectors va, . . . , va+i are linearly independent and hence ui ̸= 0. Since ∆I(a,i) ̸= 0, the vectors

vn−k+i+1, . . . , vn are linearly independent as well and altogether the two subspaces span Ck. Now

dim⟨va, va+1, . . . , va+i⟩ ∩ ⟨vn−k+i+1, vn−k+i+2, . . . , vn⟩ = (i+ 1) + (k − i)− k = 1.

□

Lemma 5.1.8. a) We have

va ∧ u1 ∧ · · · ∧ ui = va ∧ va+1 ∧ · · · ∧ va+i.

b) We have

ui ∧ · · · ∧ uk−2 ∧ vn =
∆I(a,k−1)

∆I(a,i)
vn−k+i+1 ∧ · · · ∧ vn−1 ∧ vn.

Proof. a) By (5.3) we have

ui ∈ va+i + ⟨va, . . . , va+i−1⟩,

so

va ∧ u1 ∧ · · · ∧ ui = va ∧ (va+1 + . . .) ∧ · · · (va+i + . . .) = va ∧ va+1 ∧ · · · ∧ va+i.
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b) Similarly, by the second equation in (5.3) we have

ui ∈
∆I′′(a,k−i−1,i)

∆I(a,i)
vn−k+i+1 + ⟨vn−k+i+2, . . . , vn⟩.

Note that I ′′(a, k − i − 1, i) is obtained from I(a, i) = {a, . . . , a − i − 1, n − k + i + 1, . . . , n} by replacing

n− k + i+ 1 with a+ i, so in fact I ′′(a, k − i− 1, i) = I(a, i+ 1). Now

ui ∧ · · · ∧ uk−2 ∧ vn =

(
∆I(a,i+1)

∆I(a,i)
vn−k+i+1 + . . .

)
∧ · · · ∧

(
∆I(a,k−1)

∆I(a,k−2)
vn−1 + . . .

)
∧ vn =

∆I(a,i+1)

∆I(a,i)
·
∆I(a,i+2)

∆I(a,i+1)
· · ·

∆I(a,k−1)

∆I(a,k−2)
vn−k+i+1 ∧ · · · ∧ vn.

The factors in the coefficient cancel pairwise except for ∆I(a,k−1)/∆I(a,i). □

Lemma 5.1.9. If V ∈ Ua then V1 ∈ Π◦
k,n−a+1 and V2 ∈ Π◦

k,a+k−1.

Proof. The first statement is clear by the definition of Ua. To prove the second one, we need to compute

the following minors:

1) ∆b,...,b+k−1(V2), b+ k − 1 ≤ a. This minor does not change, so ∆b,...,b+k−1(V2) = ∆b,...,b+k−1(V ) ̸= 0.

2) ∆b,...,b+k−1(V2), b < a < b+ k − 1. Let i = b+ k − 1− a, then by Lemma 5.1.8(a) we get

∆b,...,b+k−1(V2) = vb ∧ · · · ∧ va ∧ u1 ∧ · · · ∧ ui =

vb ∧ · · · ∧ va ∧ va+1 ∧ · · · ∧ va+i = ∆b,...,b+k−1(V ) ̸= 0.

3) ∆a,...,a+k−1(V2) = va ∧ u1 ∧ · · · ∧ uk−2 ∧ vn = va ∧ · · · ∧ va+k−2 ∧ vn ̸= 0 by definition of Ua.

4) Finally, we need to consider the minor ui ∧ · · · ∧ uk−2 ∧ vn ∧ v1 · · · vi which by Lemma 5.1.8(b) equals

∆I(a,k−1)

∆I(a,i)
vn−k+i+1 ∧ · · · ∧ vn ∧ v1 · · · vi =

∆I(a,k−1)

∆I(a,i)
∆n−k+i+1,...,n,1,...,i ̸= 0.

□

Theorem 5.1.10. The map Φa : V 7→ (V1, V2) defined by (5.2) is an isomorphism between Ua ⊂ Π◦
k,n and

the product Π◦
k,n−a+1 ×Π◦

k,a+k−1.
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Remark 5.1.11. We have dimUa = dimΠ◦
k,n = k(n− k) while

dimΠ◦
k,n−a+1 + dimΠ◦

k,a+k−1 = k(n− a+ 1− k) + k(a− 1) = k(n− k).

Proof. By Lemma 5.1.9 the map Φa : Ua → Π◦
k,n−a+1×Π◦

k,a+k−1 is well defined. We need to construct

the inverse map, reconstructing V from V1 and V2. Since V1 and V2 are both defined up to row operations,

we need to choose appropriate representatives in their equivalence classes and make sure that they glue

correctly to V .

For V1, choose a representative in the equivalence class arbitrarily and label the column vectors by (va, . . . , vn).

Since V1 ∈ Π◦
k,n−a+1, we have ∆I(a,i) ̸= 0. By Lemma 5.1.2, we can define the vectors u1, . . . , uk−2 by (5.3).

Applying row operations to V1 is equivalent to the multiplication by an invertible (k × k) matrix A on the

left. It transforms vi to Avi, multiplies all the minors of V1 by detA, and transforms ui to

(5.4) ui → Ava+i −
i−1∑
j=0

∆I′(a,j,i) det(A)

∆I(a,i) det(A)
(Ava+j) = A

va+i −
i−1∑
j=0

∆I′(a,j,i)

∆I(a,i)
va+j

 = Aui.

By Lemma 5.1.8(a) we get va∧u1 · · ·uk−2∧vn = va∧va+1 · · · va+k−2∧vn. This is nonzero since V1 ∈ Π◦
k,n−a+1,

so the vectors va, u1, . . . , uk−2, vn form a basis of Ck. Therefore we can uniquely find a representative for

V2 of the form V2 = (v1, . . . , va−1, va, u1, . . . , uk−2, vn). Indeed, if V ′
2 = (v′1, . . . , v

′
a+k−1) is some other

representative then

V2 = (va, u1, . . . , uk−2, vn)(v
′
a, . . . , v

′
a+k−1)

−1V ′
2 .

By (5.4), row operations V1 7→ AV1 also change V2 → AV2. Now we can define V = (v1, . . . , va−1, va, . . . , vn)

where the vectors v1, . . . , va−1 are the first (a− 1) columns of V2 and (va, . . . , vn) = V1. By the above, this

is well defined up to row operations.

Similarly to the proof of Lemma 5.1.9, one can check that V ∈ Π◦
k,n, and V1 ∈ Π◦

k,n−a+1 immediately implies

that V ∈ Ua. This completes the proof. □

5.2. Cluster algebra interpretation

We would like to compare the quivers and cluster coordinates (4.2) for the matrices V , V1 and V2, which

we denote by QV , QV1
and QV2

. By construction, the empty rectangle in both QV and QV1
corresponds

to ∆n−k+1,...,n(V ). On the other hand, by Lemma 5.1.8(a) the empty rectangle in QV2
corresponds to the
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minor

∆I(a,k−1)(V2) = va ∧ u1 ∧ · · ·uk−2 ∧ vn = va ∧ va+1 ∧ · · · va+k−2 ∧ vn = ∆I(a,k−1)(V ) = ∆I(1,k−1)(V1)

which is connected to ∆a−1,1(V2).

Clearly, the open subset Ua ⊂ Π◦
k,n is defined by freezing the cluster variables ∆I(a,i)(V ) in QV , which are

identified with ∆I(1,i)(V1). We need to analyze the behavior of all other minors in QV under Φa.

Lemma 5.2.1.

(a) If b ≥ a, then ∆I(b,i)(V ) = ∆I(b−a+1,i)(V1).

(b) If b < a, then
∆I(a,k−1)

∆I(a,i)
∆I(b,i)(V ) = ∆I(b,i)(V2).

Proof. Part (a) is clear from (5.2). For part (b), we first assume b+ i− 1 ≥ a and write

∆I(b,i)(V2) = vb ∧ · · · va ∧ (u1 ∧ · · · ∧ ui−(a−b+1)) ∧ (ui ∧ · · · ∧ uk−2 ∧ vn).

By Lemma 5.1.8 we get

va ∧ u1 ∧ · · · ∧ ui−(a−b+1) = va ∧ va+1 ∧ · · · ∧ vb+i−1

and

ui ∧ · · · ∧ uk−2 ∧ vn =
∆I(a,k−1)

∆I(a,i)
vn−k+i+1 ∧ · · · ∧ vn−1 ∧ vn,

so

∆I(b,i)(V2) =
∆I(a,k−1)

∆I(a,i)
(vb ∧ · · · vb+i−1) ∧ (vn−k+i+1 ∧ · · · ∧ vn−1 ∧ vn) =

∆I(a,k−1)

∆I(a,i)
∆I(b,i)(V )

Similarly, if b+ i− 1 < a then

∆I(b,i)(V2) = vb ∧ · · · vb+i−1 ∧ (ui ∧ · · · ∧ uk−2 ∧ vn) =

∆I(a,k−1)

∆I(a,i)
(vb ∧ · · · vb+i−1) ∧ (vn−k+i+1 ∧ · · · ∧ vn−1 ∧ vn) =

∆I(a,k−1)

∆I(a,i)
∆I(b,i)(V )

□
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Example 5.2.2. For a = 3, k = 3, n = 8 we get ∆378,∆348 ̸= 0, as in Example 5.1.6. We have V1 =

(v3, v4, v5, v6, v7, v8) and V2 = (v1, v2, v3, u, v8). The quiver QV after freezing ∆378 and ∆348 has the form:

∆678

∆578 ∆478 ∆378 ∆278 ∆178

∆568 ∆458 ∆348 ∆238 ∆128

∆567 ∆456 ∆345 ∆234 ∆123

while the quivers QV1 and QV2 have the form

∆678

∆578 ∆478 ∆378 ∆2u8 ∆1u8

∆568 ∆458 ∆348 ∆238 ∆128

∆567 ∆456 ∆345 ∆23u ∆123

Note that we identified ∆3u8 = ∆348. We claim that the two cluster structures are related by a quasi-

equivalence. Indeed,

∆3u8 = ∆348, ∆23u = ∆234, ∆2u8 = α∆278, ∆1u8 = α∆178 where α =
∆348

∆378
,

and all other cluster variables are unchanged. Therefore all cluster variables are the same up to monomials

in frozen. We need to check the exchange ratios:

y2u8(V2) =
∆348∆128

∆1u8∆238
= α−1∆128∆348

∆178∆238
=

∆128∆378

∆178∆238
= y278(V ).

while

y238(V2) =
∆2u8∆123

∆128∆23u
= α

∆278∆123

∆128∆234
=

∆278∆123∆348

∆128∆234∆378
= y238(V ).
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Since the exchange ratios agree, we indeed get a quasi-equivalence.

We are ready to state and prove our main result.

Theorem 5.2.3. The map Φa : V 7→ (V1, V2) defined by (5.2) is a cluster quasi-isomorphism between

Ûa ⊂ Π̂◦
k,n and the product Π̂◦

k,n−a+1× Π̂◦
k,a+k−1 with identified frozen variables ∆I(a,k)(V2) = ∆I(1,k−1)(V1).

As a consequence, Φa yields a cluster quasi-isomorphism between Ua and the product Π◦
k,n−a+1 ×Π◦

k,a+k−1.

Proof. The second statement follows from the first by Proposition 4.2.2, so we focus on Ûa. By Lemma

5.2.1(a) Scott minors ∆I(b,i)(V1) are the same as the minors in the left half of QV .

We need to analyze the right half of QV . By Lemma 5.2.1(b) all minors in the right half are multiplied by

some monomials in ∆I(a,i) which are frozen on Ua. It remains to compute the exchange ratios. We have the

following cases:

(a) Interior: b < a, i > 1. The piece of the quiver QV around ∆I(b,i) has the form

∆I(b+1,i−1) ∆I(b,i−1) ∆I(b−1,i−1)

∆I(b+1,i) ∆I(b,i) ∆I(b−1,i)

∆I(b+1,i+1) ∆I(b,i+1) ∆I(b−1,i+1)

The exchange ratios are equal to

yI(b,i) =
∆I(b,i−1)∆I(b+1,i)∆I(b−1,i+1)

∆I(b−1,i)∆I(b,i+1)∆I(b+1,i−1)

so by Lemma 5.2.1 we get

yI(b,i)(V )

yI(b,i)(V2)
=

∆I(a,i−1)∆I(a,i)∆I(a,i+1)

∆I(a,i)∆I(a,i+1)∆I(a,i−1)
= 1.

and yI(b,i)(V ) = yI(b,i)(V2). Note that ∆I(a,k−1) cancels out.

(b) Top boundary i = 1:

∆I(b+1,1) ∆I(b,1) ∆I(b−1,1)

∆I(b+1,2) ∆I(b,2) ∆I(b−1,2)
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The exchange ratios are equal to

yI(b,1) =
∆I(b+1,1)∆I(b−1,2)

∆I(b−1,1)∆I(b,2)

so by Lemma 5.2.1 we get

yI(b,1)(V )

yI(b,1)(V2)
=

∆I(a,1)∆I(a,2)

∆I(a,1)∆I(a,2)
= 1.

and yI(b,i)(V ) = yI(b,i)(V2). Note that ∆I(a,k−1) cancels again.

(c) Left boundary, b = a− 1:

∆I(a−1,i−1) ∆I(a−2,i−1)

∆I(a−1,i) ∆I(a−2,i)

∆I(a−1,i+1) ∆I(a−2,i+1)

The exchange ratios are equal to

yI(a−1,i)(V2) =
∆I(a−1,i−1)(V2)∆I(a−2,i+1)(V2)

∆I(a−2,i)(V2)∆I(a−1,i+1)(V2)

so by Lemma 5.2.1 we get

yI(a−1,i)(V2) =

[
∆I(a,i−1)(V )∆I(a,i+1)(V )

∆I(a,i)(V )∆I(a,i+1)(V )

]−1

·
∆I(a−1,i−1)(V )∆I(a−2,i+1)(V )

∆I(a−2,i)(V )∆I(a−1,i+1)(V )

=
∆I(a,i)(V )∆I(a−1,i−1)(V )∆I(a−2,i+1)(V )

∆I(a,i−1)(V )∆I(a−2,i)(V )∆I(a−1,i+1)(V )
= yI(a−1,i)(V ).

(d) Corner, b = a− 1, i = 1:

∆I(a−1,1) ∆I(a−2,1)

∆I(a,k−1) ∆I(a−1,2) ∆I(a−2,2)

Here we identify ∆I(a,k−1)(V2) with ∆I(a,k−1)(V ) = ∆I(1,k−1)(V1) as above. The exchange ratio is equal to

yI(a−1,1)(V2) =
∆I(a,k−1)(V )∆I(a−2,2)(V2)

∆I(a−2,1)(V2)∆I(a−1,2)(V2)

so by Lemma 5.2.1 we get

∆I(a,k−1)(V ) ·
∆I(a−2,2)(V )∆I(a,k−1)(V )

∆I(a,2)(V )
·

∆I(a,1)(V )

∆I(a−2,1)(V )∆I(a,k−1)(V )
·

∆I(a,2)(V )

∆I(a−1,2)(V )∆I(a,k−1)(V )
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=
∆I(a−2,2)(V )∆I(a,1)(V )

∆I(a−2,1)(V )∆I(a−1,2)(V )
= yI(a−1,1)(V ).

□

5.3. Relation to braid varieties

In this section, we describe the map Φ in terms of braid varieties. Recall from Section 3.2 that β =

(σ1 . . . σk−1)
n−kw0 is the braid associated to X(β) ≃ Π◦,1

k,n. Then the process of freezing ∆I(a) corresponds

to severing the braid β at flags F (A) and F (N) where A = (a−1)(k−1)+1 and N = (n−k)(k−1)+
(
k
2

)
+1.

Upon severing the braid at the given flags, we disassemble the braid into two separate braids decorated by

the flags

(5.1) F (A) s1−→ F (A+1) · · · F (N−1) s1−→ F (N)

and

(5.2) F (0) s1−→ F (1) · · · F (A−1) sk−1−−−→ F (A) s1−→ F̃ (A+1) ···−→ F̃A+(k2)−1 s1−→ F (N).

The first braid is decorated by the flags between F (A) and F (N) and is associated to X(β1) where β1 =

(σ1 · · ·σk−1)
n−k−a+1w0. Note that the conditions defining the open subset Ua guarantee that the flags F (A)

and F (N) are in position w0, so as above there is a unique matrix M such that MF (A) is the standard flag

and MF (N) is the antistandard flag.

For the second braid, we “splice” together the flags F (A) and F (N) by adding the sequences of flags F̃

associated with the half twist on k strands. See Figure ?? for an example of the decomposition of the braid

β into its two separate components, and Figure 5.2 for a depiction of the local splicing effect on the flags.

Stitching the flags F (A) and F (N) together with the half twist fills the bottom row of the braid with k − 2

vectors u1, . . . , uk−2, and the intermediate flags F̃ (A+j) are uniquely determined by F (A) and F (N). Through

this process the resulting braid is β2 = (σ1 · · ·σk−1)
a−1w0.

Finally, we can compare the cluster structures on braid varieties. The cluster structure on Π◦,1
k,n is obtained

from (4.2) by removing the frozen variables ∆I(b,k) from QV .

Theorem 5.3.1. The map Φa : V 7→ (V1, V2),

V1 = (va, . . . , vn), V2 =

(
v1, . . . , va, u1, . . . , uk−2,

vn
∆I(a,k−1)

)
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⟨v1⟩ ⟨v2⟩ ⟨v3⟩ ⟨v4⟩ ⟨v5⟩ ⟨v6⟩ ⟨v7⟩ ⟨v8⟩

⟨v1, v2⟩ ⟨v2, v3⟩ ⟨v3, v4⟩ ⟨v4, v5⟩ ⟨v5, v6⟩ ⟨v6, v7⟩ ⟨v7, v8⟩

F (0) F (A) F (N)

(a) The braid associated to Π◦,1
3,8. We select the flag F (A) given by 0 ⊂ ⟨v3⟩ ⊂ ⟨v3, v4⟩ ⊂ C3 to sever the braid for

the splicing map since the cluster variables which intersect F (A) are ∆348,∆378.

⟨v3⟩ ⟨v4⟩ ⟨v5⟩ ⟨v6⟩ ⟨v7⟩ ⟨v8⟩

⟨v3, v4⟩ ⟨v4, v5⟩ ⟨v5, v6⟩ ⟨v6, v7⟩ ⟨v7, v8⟩

F (A) F (N)

(b) The braid corresponding to V1 =
(
v3 v4 v5 v6 v7 v8

)
∈ Π◦,1

3,6 under the splicing map Φ3.

⟨v1⟩ ⟨v2⟩ ⟨v3⟩ ⟨u⟩ ⟨v8⟩

⟨v1, v2⟩ ⟨v2, v3⟩ ⟨v3, u⟩ ⟨u, v8⟩

F (0) F (A) F (N)

(c) The braid corresponding to V2 =
(
v1 v2 v3 u v8

∆378(V )

)
∈ Π◦,1

3,5 given ⟨u⟩ = ⟨v3, v4⟩ ∩ ⟨v7, v8⟩ under the

splicing map Φ3.

Figure 5.1. Freezing ∆348,∆378 in the braid associated to X(β3,8) ≃ Π◦,1
3,8.

⟨v3⟩ ⟨u1⟩ ⟨u2⟩ ⟨u3⟩ ⟨v10⟩

⟨v3, v4⟩ ⟨u1, u2⟩ ⟨u2, u3⟩ ⟨v9, v10⟩

⟨v3, v4, v5⟩ ⟨u1, u2, u3⟩ ⟨v8, v9, v10⟩

⟨v3, v4, v5, v6⟩ ⟨v7, v8, v9, v10⟩

F (A) F (N)

Figure 5.2. Braid diagram and flags for Example 5.1.4. Here ⟨u1⟩ = ⟨v3, v4⟩ ∩
⟨v7, v8, v9, v10⟩, ⟨u2⟩ = ⟨v3, v4, v5⟩ ∩ ⟨v8, v9, v10⟩ and ⟨u3⟩ = ⟨v3, v4, v5, v6⟩ ∩ ⟨v9, v10⟩.
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defines a quasi-cluster isomorphism between U1
a = Ua ∩Π◦,1

k,n and Π◦,1
k,n−a+1 ×Π◦,1

k,a+k−1.

Note that we do not need to change the matrix V1 since all of its consecutive minors are still equal to 1.

Also note that by (??) we get dimU1
a = dimΠ◦,1

k,n = (k − 1)(n− k) while

dimΠ◦,1
k,n−a+1 +Π◦,1

k,a+k−1 = (k − 1)(n− a+ 1− k) + (k − 1)(a− 1) = (k − 1)(n− k).

5.4. Splicing two-stranded braid varieties

We now describe the splicing map for the case k = 2. Since k − 2 = 0, no ui’s are required in the splicing

map. We refer to the two-stranded splicing map as a (diagonal) cut map.

Let P be the (ℓ+1)-gon corresponding to the braid variety X(σℓ). We can choose a diagonal Dij which cuts

the polygon P in two pieces, a (j− i+1)-gon P1(i, j) and a (ℓ− j+ i+2)-gon P2(i, j). These correspond to

braid varieties X(σj−i) and X(σℓ−j+i+1), respectively. We will refer to this procedure as a diagonal cut. If

we denote a = j − i and b = ℓ− j + i+ 1 then a+ b = ℓ+ 1. See Figure 5.3 for an example of the cut map

on Ufan.

Theorem 5.4.1. Performing one diagonal cut on P along Dij defines an injective map

Φ−1
ij : X(σa)×X(σb) −→ X(σa+b−1)

and its image is the open subset {∆ij ̸= 0} in X(σa+b−1).

Proof. We use the isomorphism Π◦,1
2,ℓ+1 ≃ X(σℓ) from Theorem 3.2.5. We first describe the inverse

map

Φij : {∆ij ̸= 0} → X(σa)×X(σb).

Let V ∈ Π◦,1
2,ℓ+1 be a 2×(ℓ+1) matrix, choose some i, j such that 1 ≤ i < j ≤ ℓ+1 where (i, j) ̸= (1, ℓ+1), to

perform the diagonal cut of the (ℓ+1)-gon resulting in two polygons Pa and Pb where Pa is a (j− i+1)-gon

and Pb is a (ℓ − j + i + 2)-gon. Assume that ∆ij(V ) ̸= 0. Then we can decompose the matrix V into two

matrices:

V1 =
(
vi . . . vj

)
∈ Mat(2, a+ 1)

V2 =
(
v1 . . . vi vj . . . vℓ+1

)
∈ Mat(2, b+ 1)
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1 ℓ + 1

i

j

...

...

...

...

. . .

. . .

2

3

i + 1

i + 2 j − 1

j + 1

j + 2

ℓ

∆13

∆1i

∆ij

∆1j∆
−1
ij

∆1,ℓ∆
(−1)ℓ−j+1

ij

∆i,i+2

∆i,j−1

1

∆1,j+1∆ij

∆1,j+2∆
−1
ij

∆1,ℓ+1∆
(−1)ℓ−j+2

ij

Figure 5.3. Triangulation of (ℓ+1)-gon corresponding to the braid variety X(σℓ) with its
associated quiver. A cut ∆ij is depicted between vertices i and j. The cluster variables from
the particular triangulation are the written in black and the rescaling factor of the cluster
variables from the cut ∆ij are written in red.

Let us prove that V1 ∈ Π◦,1
2,a+1. As it happens ∆m,m+1(V1) = ∆m+i−1,m+i(V ) = 1 for 1 ≤ m ≤ a, and

∆1,a+1(V1) = ∆ij(V ) ̸= 0. We use the isomorphism Π◦,1
2,a+1 ≃ X(σa) from Theorem 3.2.5 to obtain a point

in X(σa) from V1.
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Next, we study the matrix V2. We have

∆m,m+1(V2) =


∆m,m+1(V ) = 1 if m < i

∆ij(V ) if m = i

∆m+j−i−1,m+j−i(V ) = 1 if i < m ≤ ℓ− j + i+ 1.

Furthermore, ∆1,b+1(V2) = ∆1,ℓ+1(V ) ̸= 0, so V2 ∈ Π◦
2,b+1. We would like to use Lemmas 3.2.7 and 3.2.8 to

change V2 to a different matrix V ′
2 ∈ Π◦,1

2,b+1. We have two cases:

Case 1: If i = 1, then we first apply Lemma 3.2.7. Since S = (v1 vℓ+1)
−1 is diagonal, we simply rescale the

second row of V2 by ∆−1
1j to get V2 to the form (3.4). Next, we apply Lemma 3.2.8 to rescale the vectors,

and get V ′
2 = (v1, v

′
2, . . . , v

′
b+1) where

v′m =


(v1m+j−2, v

2
m+j−2∆

−1
1j ) if m is even

(v1m+j−2∆1j , v
2
m+j−2) if m is odd.

Case 2: If i ≥ 2, then we do not need to apply Lemma 3.2.7, we rescale the vectors vm for m ≥ j. As a

result, we get a matrix V ′
2 = (v1, . . . , vi, v

′
j , v

′
j+1, . . . , v

′
ℓ+1) where

v′m = ∆
(−1)m−j+1

ij vm.

Now we can describe the desired map Φ−1
ij : X(σa) × X(σb) → {∆ij ̸= 0} as follows. Given two matrices

V1 ∈ Π◦,1
2,a+1, V

′
2 ∈ Π◦,1

2,b+1, we can read off ∆ij(V ) = ∆1,a+1(V1) which is nonzero by assumption. The matrix

V ′
2 was obtained from V2 above using multiplication by ∆±1

ij , and hence is invertible, so given V ′
2 and ∆ij

we can reconstruct V2.

Now we can reconstruct V by simply inserting V1 into V2. Note that if the vectors vi and vj from V1 do

not agree with the ones from V2, we can always use row operations to make them agree since det(vi vj) =

∆ij ̸= 0.

□

Theorem 5.4.2. The map Φij defines a quasi-equivalence of cluster varietes {∆ij ̸= 0} ⊂ X(σa+b−1) and

X(σa) × X(σb). The latter has a cluster structure obtained by freezing ∆ij in the cluster structure from

X(σa+b−1).
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Proof. We use the clusters in X(σa), X(σb) and X(σa+b−1) defined by the triangulation in Figure 5.3.

In particular, we get fan triangulations for X(σa), X(σb).

By construction, all cluster variables corresponding to diagonals are multiplied by monomials in ∆ij , but we

still need to check that the exchange ratios (as in Equation 4.1) are preserved. All diagonals above ∆ij are

unchanged, so we need to verify that the exchange ratios do not change for diagonals ∆1,m. For m < i, this

is clear. For m = i, the exchange ratio is

∆1j

∆ij∆1,j−1
=

∆1j∆
−1
ij

1 ·∆1,j−1
.

For m = j, the exchange ratio is

∆ij∆1,j+1

∆1i
=

1 · (∆1,j+1∆ij)

∆1i
.

Finally, for m > j we get

∆1,m+1

∆1,m−1
=

∆1,m+1∆
(−1)m+1−j+1

ij

∆1,m−1∆
(−1)m−1−j+1

ij

since m+ 1− j and m− 1− j have the same parity. □

5.4.1. Quasi-associativity of splicing two-stranded braid varieties. Suppose a+ b+ c− 2 = ℓ.

We will study the associativity properties of our cuts along two non-intersecting diagonals Dij and Di′j′ , see

Figure 5.4. There are two general cases to consider when performing two cuts which we label as Type A or

Type B. The two cuts occur at Dij and Di′j′ and will be denoted Φij and Φi′j′ , respectively. Type A cuts

are diagonal cuts of the form 1 ≤ i′ ≤ i < j ≤ j′ ≤ ℓ+1 given that the cuts do not degenerate to the one cut

case, whereas, Type B cuts are diagonal cuts of the form 1 ≤ i < j ≤ i′ < j′ ≤ ℓ+ 1, see Figure 5.4.

Theorem 5.4.3. For Type A cuts we have a commutative diagram

X(σa)×X(σb)×X(σc) X(σa+b−1)×X(σc)

X(σa)×X(σb+c−1) X(σa+b+c−2)

Φ−1
ij ×Id

Id×Φ−1

i′j′

Φ−1
ij

Φ−1

i′j′

Proof. Let V ∈ Π◦,1
2,ℓ+1 by Theorem 3.2.5 V corresponds to a point in X(σℓ).

For Type A cuts, choose some i, j, i′, j′ such that 1 ≤ i′ ≤ i < j < j′ ≤ ℓ. Similar to Theorem 5.4.1 involving

a single diagonal cut, we describe the inverse maps then produce the desired map. Here a = j − i, b =
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i′

i

j

j′

1 ℓ+ 1

∆ij

∆i′j′

i

j i′

j′

1 ℓ+ 1

∆ij ∆i′j′

Figure 5.4. The possible cuts when performing two diagonal cuts, the dashed lines indicate
these potential cuts. The polygon on the left depicts cuts of Type A and the polygon on
the right depicts cuts of Type B.

j′ − j + i− i′ + 1 and c = ℓ− j′ + i′ + 1. Define the matrix V ∈ Π◦,1
2,ℓ+1 associated to X(σℓ) as

V = (v1 . . . vi′ . . . vi . . . vj . . . vj′ . . . vℓ+1)

We will be dealing with minors in several different matrices, as such we will include the matrices in the

notations.

(i) First, we consider the case where we cut at along ∆ij(V ) then ∆i′j′(V ) which is described in Figure 5.5a

by

X(σa+b+c−2)
Φij−−→ X(σa)×X(σb+c−1)

Id×Φi′j′−−−−−→ X(σa)×X(σb)×X(σc)

By performing the initial cut ∆ij(V ), given by Φij : X(σa+b+c−2) → X(σa)×X(σb+c−1), we decompose the

matrix V into the two following matrices

V1 = (vi . . . vj) ∈ Mat(2, a+ 1)

V2 = (v1 . . . vi′ . . . vi vj . . . vj′ . . . vℓ+1) ∈ Mat(2, b+ c)

Similar to the argument in Theorem 5.4.1, ∆ij(V ) ̸= 0 and we find that V1 ∈ Π◦,1
2,a+1 ≃ X(σa). Here, the

rescaling of vectors vm for m ≥ j in

V3 =
(
v1 . . . vi′ . . . vi v′j . . . v′j′ . . . v′ℓ+1

)
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is given by

(5.1) v′m = vm∆ij(V )(−1)m−j+1

Therefore, V3 ∈ Π◦,1
2,b+c ≃ X(σb+c−1) and Φij is well-defined. Note that during the rescaling of the

matrix V2 into V3 the minors of V3 also experience rescaling by a factor of ∆ij(V ), hence given that

v′j′ = vj′∆ij(V )(−1)j
′−j+1

(5.2) ∆i′j′(V3) = ∆i′j′(V )∆ij(V )(−1)j
′−j+1

Now we perform the second cut ∆i′j′(V ) given by the map X(σa)×X(σb+c−1)
Id×Φ−1

i′j′−−−−−→ X(σa)×X(σb)×

X(σc). The matrix V1 remains unchanged whereas V3 decomposes into

V4 =
(
vi′ . . . vi v′j . . . v′j′

)
∈ Mat(2, b+ 1)

V5 =
(
v1 . . . vi′ v′j′ . . . v′ℓ+1

)
∈ Mat(2, c+ 1)

By the rescaling of matrix V3 in the previous cutting and ∆i′j′(V3) ̸= 0, then V4 ∈ Π◦,1
2,b+1 ≃ X(σb). After

performing the second cut there is again a rescaling, this time of the matrix V5 which is given by the new

matrix

V6 =
(
v1 . . . vi′ v′′j′ . . . v′′ℓ+1

)
where for m ≥ j′ the vectors are

v′′m = v′m∆i′j′(V3)
(−1)m−j′+1

= vm∆ij(V )(−1)m−j+1

∆i′j′(V3)
(−1)m−j′+1

.

Given that

∆i′j′(V3)
(−1)m−j′+1

= ∆i′j′(V )(−1)m−j′+1

∆ij(V )(−1)j
′−j+1(−1)m−j′+1

= ∆i′j′(V )(−1)m−j′+1

∆ij(V )(−1)m−j

and (−1)m−j+1 + (−1)m−j = 0 we conclude that

(5.3) v′′m = vm∆ij(V )(−1)m−j+1

∆i′j′(V )(−1)m−j′+1

∆ij(V )(−1)m−j

= vm∆i′j′(V )(−1)m−j′+1

.

As such V6 ∈ Π◦,1
2,c+1 ≃ X(σc). This concludes the construction of the inverse map.
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To construct the desired map

Φ−1
ij ◦ (Id× Φ−1

i′j′) : X(σa)×X(σb)×X(σc) → X(σa+b+c−2)

We reconstruct V by taking V1 ∈ Π◦,1
2,a+1, V4 ∈ Π◦,1

2,b+1, V6 ∈ Π◦,1
2,c+1. We can read off ∆i′j′(V ) = ∆1,b+1(V4)

which is nonzero by assumption. The matrix V5 is obtained from V6 by multiplication of ∆i′j′(V )±1 to

the vectors vl for l ≥ i′ + 1, which is well-defined since ∆i′j′(V ) is invertible. We reconstruct the matrix

V3 ∈ Mat(2, b+c) by inserting the matrix V4 into V5 in the appropriate location. Furthermore, V3 ∈ Π◦,1
2,b+c ≃

X(σb+c−1) by construction. This concludes the construction of the map

X(σa)×X(σb)×X(σc)
Id×Φ−1

i′j′−−−−−→ X(σa)×X(σb+c−1)

Continuing the construction of the desired map, we read off ∆ij(V ) = ∆1,a+1(V1) which is again nonzero by

assumption. The matrix V2 is obtained from V3 by multiplication of ∆ij(V )±1 to the vectors vl for l ≥ i+1.

We reconstruct V by inserting V1 into V2 at the appropriate location, completing the construction of the

map

X(σa)×X(σb+c−1)
Φ−1

ij−−−→ X(σa+b+c−2)

and producing the desired map.

(ii) Now, for the case where we cut along ∆i′j′(V ) then ∆ij(V ), described in Figure 5.5b by

X(σa)×X(σb)×X(σc)
Φ−1

i′j′−−−→ X(σa+b−1)×X(σc)
Φ−1

ij ×Id
−−−−−→ X(σa+b+c−2).

Perform the initial cut ∆i′j′(V ), to decompose V into the matrices

W1 = (v1 . . . vi′ vj′ . . . vℓ+1) ∈ Mat(2, c+ 1)

W2 = (vi′ . . . vi . . . vj . . . vj′) ∈ Mat(2, a+ b)

By the same argument as in Theorem 5.4.1 ∆i′j′ ̸= 0 and W2 ∈ Π◦,1
2,a+b ≃ X(σa+b−1). Now, the matrix W1

requires rescaling of the vectors vm for m ≥ j′, producing the matrix

W3 =
(
v1 . . . vi′ v′j′ . . . v′ℓ+1

)
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here

v′m = vm∆i′j′(V )(−1)m−j′+1

which is in agreement with (5.3). Hence, W3 ∈ Π◦,1
2,c+1 ≃ X(σc).

We perform the second cut ∆ij(V ), which separates W2 into

W4 = (vi′ . . . vi vj . . . vj′) ∈ Mat(2, b+ 1)

W5 = (vi . . . vj) ∈ Mat(2, a+ 1)

In this case, W5 ∈ Π◦,1
2,a+1 ≃ X(σa), whereas the matrix W4 ∈ Π◦

2,b+1 requires a rescaling for the vectors vm

for j ≤ m ≤ j′. Let

W6 =
(
vi′ . . . vi v′′j . . . v′′j′

)
with the vectors

v′′m = vm∆ij(V )m−j+1

which agrees with (5.1). Therefore, W6 ∈ Π◦,1
2,b+1 ≃ X(σb), completing the construction of the inverse maps.

Finally, we construct the desired map

Φ−1
i′j′ ◦ (Φ

−1
ij × Id) : X(σa)×X(σb)×X(σc) → X(σa+b+c−2)

We reconstruct V by taking W5 ∈ Π◦,1
2,a+1, W6 ∈ Π◦,1

2,b+1, W3 ∈ Π◦,1
2,c+1. We read off ∆ij(V ) = ∆1,a+1(W5)

which is nonzero by assumption. The matrix W4 is recovered from W6 by multiplication of ∆±1
ij to the vectors

vl for l ≥ i− i′ + 1, which is well-defined since ∆ij is invertible. We reconstruct W2 ∈ Π◦,1
2,a+b ≃ X(σa+b−1)

by inserting the matrix W5 into W4 in the appropriate position. Concluding the construction of the map

X(σa)×X(σb)×X(σc)
Φ−1

ij ×Id
−−−−−→ X(σa+b−1)×X(σc)

To complete the construction, we read off ∆i′j′(v) = ∆1,c+1(W3) which is also nonzero by construction. The

matrix W1 ∈ Π◦,1
1,c+1 ≃ X(σc) is recovered from the matrix W3 by multiplication of ∆i′j′(V )±1 to the vectors

vl for l ≥ i′ + 1. We reconstruct V by inserting W1 into W2 at the appropriate location, concluding the

construction of the map

X(σa+b−1)×X(σc)
Φ−1

i′j′−−−→ X(σa+b+c−2)

which produces the desired map showing associativity of Type A cuts.
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□

Lemma 5.4.4. For A,A′ ∈ Π◦
2,n we define the map Tλ for some fixed j and λ ̸= 0 as

Tλ : A → A′, am 7→ amλ(−1)m−j

.

Then Tλ preserves Π◦,1
2,n and defines C∗ actions on Π◦

2,n and Π◦,1
2,n.

Proof. Let am, a′m be column vectors of A,A′ ∈ Π◦
2,n, respectively. Since A ∈ Π◦

2,n, we have

det (am am+1) ̸= 0; therefore, under the map Tλ, we have

det
(
a′m a′m+1

)
= det

(
amλ(−1)m−j

am+1λ
(−1)m−j+1

)
= λ(−1)m−j

λ(−1)m−j+1

det (am am+1)

= det (am am+1) .

In addition, if A,A′ ∈ Π◦,1
2,n, then

det
(
a′m a′m+1

)
= det

(
amλ(−1)m−j

am+1λ
(−1)m−j+1

)
= λ(−1)m−j

λ(−1)m−j+1

det (am am+1) = 1,

therefore, preserving Π◦,1
2,n. Moreover, the maps Tλ define a C∗ action since Tλ1

◦Tλ2
= Tλ1λ2

and T1 = Id. □

Theorem 5.4.5. For Type B cuts we have a commutative diagram

X(σa)×X(σb)×X(σc) X(σa)×X(σb+c−1) X(σa+b+c−2)

X(σa)×X(σb)×X(σc) X(σa+b−1)×X(σc)

Id×Id×T∆ij

Id×Φ−1

i′j′ Φ−1
ij

Φ−1
ij ×Id

Φ−1

i′j′

Here T∆ij is defined as in Lemma 5.4.4 with λ = ∆ij. Informally, we can say that the gluing P from smaller

polygons is associative only up to the additional transformation T∆ij
.

Proof. Let V ∈ Π◦,1
2,ℓ+1 by Theorem 3.2.5.

For Type B cuts, choose some i, j, i′, j′ such that 1 ≤ i < j ≤ i′ < j′ ≤ ℓ+ 1. Similar to Theorem 5.4.3, we

describe the inverse maps then produce the desired map. Here a = j− i, b = ℓ− j′+ i′− j+ i+2, c = j′− i′.

Define the matrix V ∈ Π◦,1
2,ℓ+1 associated to X(σℓ) as

V = (v1 . . . vi . . . vj . . . vi′ . . . vj′ . . . vℓ+1)
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Figure 5.5. All possible variations of Type A and B cuts.

51



Similar to Theorem 5.4.3 we will be dealing with minors in several different matrices and will include the

matrices in the notations.

(i) We first consider the case where we cut along ∆ij(V ) then ∆i′j′(V ), see Figure 5.5c, given by the map

X(σa+b+c−2)
Φij−−→ X(σa)×X(σb+c−1)

Id×Φi′j′−−−−−→ X(σa)×X(σb)×X(σc)

Performing the initial cut ∆ij(V ), given by Φij : X(σa+b+c−2) → X(σa) ×X(σb+c−1), decomposes V into

the two matrices

V1 = (vi . . . vj) ∈ Mat(2, a+ 1)

V2 = (v1 . . . vi vj . . . vi′ . . . vj′ . . . vℓ+1) ∈ Mat(2, b+ c)

By the same argument as in Theorem 5.4.1, V1 ∈ Π◦,1
2,a+1 ≃ X(σa) whereas V2 ∈ Π◦

2,b+c and requires rescaling

by ∆ij(V ) for the vectors vm for m ≥ j, resulting in the matrix

V3 =
(
v1 . . . vi v′j . . . v′i′ . . . v′j′ . . . v′ℓ+1

)
where

(5.4) v′m = vm∆ij(V )(−1)m−j+1

Note that ∆i′j′(V3) experiences a rescaling by factor of ∆ij(V ), given that v′i′ = Vi′∆
(−1)i

′−j+1

ij and v′j′ =

vj′∆
(−1)j

′−j+1

ij , the rescaled determinant is given by

∆i′j′(V3) = ∆i′j′(V )∆ij(V )(−1)i
′−j+1

∆ij(V )(−1)j
′−j+1

= ∆i′j′(V )∆ij(v)
(−1)i

′−j+1+(−1)j
′−j+1

(5.5)

This completes the construction of the map Φij : X(σa+b+c−2) → X(σa)×X(σb+c−1). Applying the second

cut ∆i′j′(V ) to the matrix V3 produces the two matrices

V4 =
(
v′i′ . . . v′j′

)
∈ Mat(2, c+ 1)

V5 =
(
v1 . . . vi v′j . . . v′i′ v′j′ . . . v′ℓ+1

)
∈ Mat(2, b+ 1)
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Here, V4 ∈ Π◦,1
2,c+1 ≃ X(σc). Since V5 ∈ Π◦

2,b+1 we applying a rescaling of the vectors v′m for m ≥ j′ into the

matrix

V6 =
(
v1 . . . vi v′j . . . v′i′ v′′j′ . . . v′′ℓ+1

)
where

(5.6) v′′m = v′m∆i′j′(V3)
(−1)m−j′+1

Using (5.5) we find that

∆i′j′(V3)
(−1)m−j′+1

= (∆i′j′(V )∆ij(V )(−1)i
′−j+1+(−1)j

′−j+1

)(−1)m−j′+1

= ∆i′j′(V )(−1)m−j′+1

∆ij(V )(−1)i
′−j+1(−1)m−j′+1+(−1)j

′−j+1(−1)m−j′+1

and (−1)i
′−j+1(−1)m−j′+1 + (−1)j

′−j+1(−1)m−j′+1 = (−1)m−j′+i′−j + (−1)m−j . Therefore

v′′m = vm∆ij(V )(−1)m−j+1

∆i′j′(V )(−1)m−j′+1

∆ij(V )(−1)m−j′+i′+j

∆
(−1)m−j

ij

= vm∆i′j′(V )(−1)m−j′+1

∆ij(V )(−1)m−j′+i′−j

(5.7)

Now, V6 ∈ Π◦,1
2,b+1 ≃ X(σb). This concludes the construction of the inverse map, now we proceed to the

construction of the desired map

X(σa)×X(σb)×X(σc)
Id×Φ−1

i′j′−−−−−→ X(σa)×X(σb+c−1)
Φ−1

ij−−−→ X(σa+b+c−2)

Given V1 ∈ Π◦,1
2,a+1, V6 ∈ Π◦,1

2,b+1, V4 ∈ Π◦,1
2,c+1 we reconstruct the matrix V . First, we determine that

∆i′j′(V ) = ∆1,c+1(V4) ̸= 0.The matrix V5 is found by multiplication of ∆i′j′(V )±1 to the vectors vl for

l ≥ i+ i′− j+2 in matrix V6. We then reconstruct V3 ∈ Π◦,1
2,b+c ≃ X(σb+c−1) by inserting the matrix V4 into

the appropriate position in the matrix V5. This completes the map Id × Φ−1
i′j′ : X(σa) ×X(σb) ×X(σc) →

X(σa)×X(σb+c−1). Now we continue our construction of the matrix V by reading off ∆ij(V ) = ∆1,a+1(V1)

which is nonzero by assumption. We rescale the vectors vl for l ≥ i + 1 in the matrix V3 by multiplication

of ∆ij(V )±1 which is invertible, to obtain the matrix V2. Finally, we insert the matrix V1 into V2 to obtain

V . Therefore, giving us the desired map above.
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(ii) Now, we consider the case were we first cut along ∆i′j′(V ) followed by the cut ∆ij(V ) and subsequently,

a rescaling of X(σc) by the torus action T∆ij , illustrated in Figure 5.5d, given by

X(σa+b+c−2)
Φi′j′−−−→ X(σa+b−1)×X(σc)

Φij×Id−−−−→ X(σa)×X(σb)×X(σc)
Id×Id×T∆ij−−−−−−−−→ X(σa)×X(σb)×X(σc)

We perform the initial cut ∆i′j′(V ) to V resulting in the matrices

W1 = (vi′ . . . vj′) ∈ Mat(2, c+ 1)

W2 = (v1 . . . vi . . . vj . . . vi′ vj′ . . . vℓ+1) ∈ Mat(2, a+ b)

By the same argument in Theorem 5.4.1, V1 ∈ Π2,c+1 ≃ X(σc), whereas the matrix V2 ∈ Π◦
2,a+b requires as

rescaling of the vectors vm for m ≥ j′ to obtain the matrix

W3 = (v1 . . . vi . . . vj . . . vi′ ṽj′ . . . ṽℓ+1)

given by

(5.8) ṽm = vm∆
(−1)m−j′+1

i′j′

Now, W3 ∈ Π◦,1
2,a+b ≃ X(σa+b−1), completing the construction the first map.

We now perform the second cut ∆ij(V ) = ∆ij(W2) by decomposing the matrix W3 into the matrices

W4 = (vi . . . vj) ∈ Mat(2, a+ 1)

W5 = (v1 . . . vi vj . . . vi′ ṽj′ . . . ṽℓ+1) ∈ Mat(2, b+ 1)

Given that W4 ∈ Π◦,1
2,a+1 ≃ X(σa) and W5 ∈ Π◦

2,b+1, the matrix vectors vm for m ≥ j in W5 are rescaled into

the matrix

W6 =
(
v1 . . . vi v′j . . . v′i′ ṽ′j′ . . . ṽ′ℓ+1

)
where for j ≤ m ≤ i′

(5.9) v′m = vm∆
(−1)m−j+1

ij

and for m ≥ j′

ṽ′m = ṽm∆ij(V )(−1)m−j′+i′−j
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= vm∆i′j′(V )(−1)m−j′+1

∆ij(V )(−1)m−j′+i′−j

(5.10)

Now, W6 ∈ Π◦,1
2,b+1 ≃ X(σb). Note that for the vectors v′m for j ≤ m ≤ i′ (5.4) agrees with (5.9), for j′ ≤ m

(5.7) agrees with (5.10). However, the vectors vm found in W1 for i′ < m < j′ do not agree with (5.4)

and differ by a factor of ∆ij(V )(−1)m−j+1

. Since ∆ij ̸= 0, we can then apply a torus action to the matrix

W1 ∈ Π◦,1
2,c+1 ≃ X(σc) using Lemma 3.2.8. Let W1,W7 ∈ Π◦,1

2,c+1, define the torus action by the map

T−1
∆ij

: W1 −→ W7

vm 7−→ vm∆
(−1)m−j−1

ij

Thus concluding the construction of the inverse maps.

Now, we construct the suitable map to establish associativity up to an additional transformation T∆ij , given

by

X(σa)×X(σb)×X(σc)
Id×Id×T∆ij−−−−−−−−→ X(σa)×X(σb)×X(σc)

Φ−1
ij ×Id

−−−−−→ X(σa+b−1)×X(σc)
Φ−1

i′j′−−−→ X(σa+b+c−2)

We reconstruct the matrix V using W4 ∈ Π◦,1
2,a+1, W6 ∈ Π◦,1

2,b+1, W7 ∈ Π◦,1
2,c+1. First, we read off ∆ij(V ) =

∆1,a+1(W4) ̸= 0 by assumption. We apply the toric action T∆ij (W7) = W1 ∈ Π◦,1
2,c+1. Now, we rescale the

matrix W6 by multiplication of ∆±1
ij to the vectors vl for l ≥ j, producing the matrix W5. We then reinsert

the matrix W4 into W5 at the appropriate location, arriving at the matrix W3 ∈ Π◦,1
2,a+b ≃ X(σa+b−1). We

then read of ∆i′j′(V ) = ∆1,c+1(W1) ̸= 0 and multiply W3 by a factor of ∆i′j′(V )±1 for vectors vl for l ≥ j′ to

produce W2. We then reinsert the matrix W1 into W2 arriving at the desired matrix V . Thereby, completing

the construction of the desired map. □

Remark 5.4.6. We can also study the composition of splicing maps on higher-strand braid varieties, and we

expect a similar quasi-associative behavior, where the resulting subvarieties will differ by explicit monomials

in frozen cluster variables.
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CHAPTER 6

Cohomology

In this final chapter, we turn to the topological aspects of braid varieties and focus our attention on two-

stranded braid varieties, more specifically, on the computation of their singular cohomology and give an

explicit presentation of its cohomology ring in terms of generators and relations.

One of the main motivations for studying the homologies of braid varieties is their relation to the Khovanov-

Rozansky homology of the corresponding link. The Khovanov-Rozansky homology, denoted HHH, is a triply

graded link homology that generalizes the HOMFLY-PT polynomial which is relatively difficult to compute.

Refer to [22] for additional details. The relation between braid varieties and HHH was established by

Trinh.

Theorem 6.0.1 (Trinh[34]). For all r-strand braids β ∈ Br+W we have

HHHr,r+j,k(βw0)
∨ ≃ grwj+2(r−N)H

!,G
−(j+k+2(r−N))(X(β)).

Equivalently, by Gorsky-Hogancamp-Mellit-Nakagane [11], H∗(X(β)) ≃ HHH0,∗,∗(βw−1
o )∨ where w0 is the

half-twist (aka longest word). Here grw denotes the associated graded with respect to the weight filtration in

cohomology.

In particular, the work of Galashin-Lam [17] related the equivariant cohomology of the open positroid variety

Πk,n to the Khovanov-Rozansky homology of the torus link T (k, n − k). On two strands this equivalence

simplifies to

H∗(X(σℓ)) ≃ HHH0,∗,∗(σℓ−1)

where the braid σℓ−1 closes up to the torus link T (2, ℓ− 1).

Our approach combines techniques from algebraic topology, algebraic geometry, and cluster algebras. We

first utilize the recursive structure of the braid variety defined in Corollary 2.1.8. We then apply Alexander

duality to relate the cohomology of a braid variety to the homology of its complement. Finally, we apply
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Poincaré duality to relate the cohomology of the compactification to the homology of the original noncompact

space. For two-stranded braid varieties, this yields a concrete description of their cohomology groups in

terms of complements of hypersurfaces in affine space. Our computation agrees with that of Lam-Speyer

in [26]. We then use algebraic de Rham theory to compute the ring structure, expressing cohomology

classes as differential forms and leveraging the defining equations of the varieties to identify relations among

them.

We also make use of the splicing construction to understand how the cohomology of more complicated braid

varieties relates to the cohomology of simpler ones. This viewpoint reveals how topological invariants behave

under gluing operations and provides insight into the recursive structure observed in earlier chapters. We

expect that the splicing map and techniques from previous chapters may lead to a deeper understanding of

higher strand braid varieties.

Altogether, this chapter serves as a topological complement to the algebraic and geometric structures ex-

plored earlier in the thesis. The cohomology ring of a braid variety encodes rich information about its

global structure, and these computations serve as a foundation for future work connecting braid varieties to

representation theory, link homology, and mirror symmetry.

6.1. Cohomology using Alexander and Poincaré duality

Given the inductive definition of the two strand braid variety X(β) we may determine the homology in

terms of the vector space with Alexander and Poincaré duality. Our varieties are non-compact, so we have

to be careful and sometimes use cohomology with compact support, for further information see [28, Section

3.3].

Theorem 6.1.1. (Alexander Duality) If K is a locally contractible, nonempty, proper subspace of Rn, then

H̃i(Rn −K;C) ≃ H̃n−i−1
c (K;C) for all i.

Theorem 6.1.2. (Poincaré Duality) If M is an orientable n-manifold then we have an isomorphism H̃k
c (M ;C) ≃

H̃n−k(M ;C) for all k.

The cohomology of two-strand braid varieties was computed in [26, Section 6.2, Proposition 9.13] using

cluster algebra methods (compare with Theorem 6.2.5 below). Here we give a simpler inductive proof using

Poincaré and Alexander dualities.
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Theorem 6.1.3. Let β = σn, then the homology of the two-strand braid variety is given by:

Hi(X(β)) =


C for 0 ≤ i ≤ n− 1

0 otherwise.

Proof. We proceed by induction on n. Given Corollary 2.1.8, then

Hi(X(σ2)) = Hi({z1z2 − 1 = 0}) = Hi({z1 ̸= 0}) = Hi(C∗)

Since Hi(C∗) = C for i = 0, 1, then the theorem is true for n = 2. Supposing the statement holds for n = ℓ

we determine that

H̃i(X(σℓ+1)) = H̃i({Fℓ+1 = 0}) = H̃i({Fℓ ̸= 0}) (by Corollary 2.1.8)

= H̃2ℓ−1−i
c ({Fℓ = 0}) (by Theorem 6.1.1) = H̃2ℓ−1−i

c (X(σℓ))

= H̃2ℓ−2−(2ℓ−1−i)(X(σℓ)) (by Theorem 6.1.2) = H̃i−1(X(σℓ)).

Since H̃i(X(σℓ+1)) =


C 1 ≤ i ≤ ℓ+ 1

0 otherwise

, we obtain Hi(X(σℓ+1)) =


C 0 ≤ i ≤ ℓ+ 1

0 otherwise.

□

6.2. Ring structure on cohomology using (algebraic) deRham cohomology

6.2.1. Constructing the forms. Define the one-form α = dw
w where w = ∆1,ℓ+1 is the frozen cluster

variable. Since w ̸= 0 everywhere, α is regular everywhere.

Define the two-form as

(6.1) ω =
∑

B̃ij
dwi

wi
∧ dwj

wj

on some cluster chart with extended exchange matrix B̃. By [19, Section 2.3] (see also [26]) the form ω is

well-defined in any other cluster chart and is given by a similar equation (6.1) for the mutated quiver. The

cluster charts cover X(σℓ) up to codimension 2 and X(σℓ) is smooth, so ω extends to a regular form on

X(σℓ).

For the special chart Ufan we get

(6.2) ω =
dw

w
∧ dwℓ−2

wℓ−2
+

ℓ−3∑
i=1

dwi+1

wi+1
∧ dwi

wi
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where wi = ∆1,i+2.

We can also write the forms α and ω explicitly in the coordinates zi. Thus far, we have expressed X(σℓ) as

an open subset in the affine space with coordinates z1, . . . , zℓ−1 with zℓ expressed as some function of these.

Similarly, we may also have expressed X(σℓ) is an open subset in the affine space with coordinates z2, . . . , zℓ

with z1 expressed as some function of these, i.e., Fℓ(z1, . . . , zℓ) = z1Fℓ−1(z2, . . . , zℓ)−Fℓ−2(z3, . . . , zℓ) where

F−1 ≡ 0, F0 ≡ 1, and F1(z2) = z2. We will use z2, . . . , zk as a coordinate system on X(σℓ) below.

Lemma 6.2.1. For all 2 ≤ i ≤ ℓ and 2 ≤ n ≤ ℓ+ 1 we have

∂∆1n

∂zi
= ∆1i∆in.

Proof. We have the matrix identity Fn(z1, . . . , zn) −Fn−1(z1, . . . , zn−1)

Fn−1(z2, . . . , zn) −Fn−2(z2, . . . , zn−1)

 = C

zi −1

1 0

 C̃

where

C =

Fi−1(z1, . . . , zi−1) −Fi−2(z1, . . . , zi−2)

Fi−2(z2, . . . , zi−1) −Fi−3(z2, . . . , zi−2)

 , C̃ =

 Fn−i(zi+1, . . . , zn) −Fn−i−1(zi+2, . . . , zn−1)

Fn−i−1(zi+2, . . . , zn) −Fn−i−2(zi+2, . . . , zn−1)

 ,

which implies

Fn−2(z2, . . . , zn−1) =(Fi−2(z2, . . . , zi−1)zi − Fi−3(z2, . . . , zi−2))Fn−i−1(zi+2, . . . , zn−1)

− Fi−2(z2, . . . , zi−1)Fn−i−2(zi+2, . . . , zn−1)

and

∂Fn−2(z2, . . . , zn−1)

∂zi
= Fi−2(z2, . . . , zi−1)Fn−i−1(zi+2, . . . , zn−1).

Now by Lemma 4.3.1 we have ∆1,n = Fn−2(z2, . . . , zn−1) and

∂∆1,n

∂zi
= Fi−2(z2, . . . , zi−1)Fn−i−1(zi+2, . . . , zn−1) = ∆1,i∆i,n.

□
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Corollary 6.2.2. We have

α =
d∆1,ℓ+1

∆1,ℓ+1
=

1

∆1,ℓ+1

ℓ∑
i=2

∆1,i∆i,ℓ+1dzi.

Lemma 6.2.3. For i ≤ ℓ we have

1

∆1,i∆1,i+1
+ . . .+

1

∆1,ℓ∆1,ℓ+1
=

∆i,ℓ+1

∆1,i∆1,ℓ+1
.

Proof. We prove it by induction in ℓ, for ℓ = i the statement is clear since ∆i,i+1 = 1. For the step of

induction, suppose that it is true for ℓ− 1, then

1

∆1,i∆1,i+1
+ . . .+

1

∆1,ℓ−1∆1,ℓ
+

1

∆1,ℓ∆1,ℓ+1
=

∆i,ℓ

∆1,i∆1,ℓ
+

1

∆1,ℓ∆1,ℓ+1

=
∆i,ℓ∆1,ℓ+1 +∆1,i∆ℓ,ℓ+1

∆1,i∆1,ℓ∆1,ℓ+1
,

which by Plücker relation simplifies to

∆1,ℓ∆i,ℓ+1

∆1,i∆1,ℓ∆1,ℓ+1
=

∆i,ℓ+1

∆1,i∆1,ℓ+1
.

□

Lemma 6.2.4. We have

ω =
1

∆1,ℓ+1

∑
2≤i<j≤ℓ

∆1,i∆i,j∆j,ℓ+1dzi ∧ dzj .

Proof. By Lemma 6.2.1 we can write

d∆1,s ∧ d∆1,s+1 =
∑

i<j≤s

(∆1,i∆i,s∆1,j∆j,s+1 −∆1,i∆i,s+1∆1,j∆j,s)dzi ∧ dzj =

∑
i<j≤s

∆1,i∆1,j(∆i,s∆j,s+1 −∆i,s+1∆j,s)dzi ∧ dzj .

By Plücker relation we have

∆i,s∆j,s+1 −∆i,s+1∆j,s = ∆ij ,

hence

d∆1,s ∧ d∆1,s+1 =
∑

i<j≤s

∆1,i∆1,j∆i,jdzi ∧ dzj .
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The coefficient at dzi ∧ dzj does not depend on ℓ, so we get

ω =

ℓ∑
s=1

d∆1,s ∧ d∆1,s+1

∆1,s∆1,s+1
=
∑
i<j

∆1,i∆1,j∆i,jdzi ∧ dzj

(
1

∆1,j∆1,j+1
+ . . .+

1

∆1,k∆1,ℓ+1

)
.

By Lemma 6.2.3 this simplifies to

∑
i<j

∆1,i∆1,j∆i,j∆j,ℓ+1dzi ∧ dzj
∆1,j∆1,ℓ+1

=
∑
i<j

∆1,i∆i,j∆j,ℓ+1dzi ∧ dzj
∆1,ℓ+1

.

□

In particular, Lemma 6.2.4 gives a direct proof that ω is regular everywhere on X(σℓ). See Section 6.2.3 for

explicit examples and computations.

6.2.2. de Rham cohomology. By construction, dα = dω = 0, so they represent some de Rham

cohomology classes. The following theorem shows that these are in fact nonzero in cohomology and generate

H∗(X(σℓ)) as an algebra.

Theorem 6.2.5. The forms α and ω generate H∗(X(σℓ)) as an algebra, modulo the following relations:

1) If ℓ is even, the only relation is ω
ℓ
2 = 0. The basis in cohomology is given by:

(6.3) 1, α, ω, αω, . . . , ω
ℓ
2−1, αω

ℓ
2−1.

2) If ℓ is odd, the relations are αω
ℓ−1
2 = ω

ℓ+1
2 = 0. The basis in cohomology is given by:

(6.4) 1, α, ω, αω, . . . , αω
ℓ−3
2 , ω

ℓ−1
2 .

Proof. We work in the chart Ufan, there is a natural inclusion map i : Ufan → X(σℓ) and the corre-

sponding restriction map in cohomology: i∗ : H∗(X(σℓ)) → H∗(Ufan).

We want to first prove that the restrictions of all the forms (6.3) and (6.4) to H∗(Ufan) do not vanish, this

would imply that these forms do not vanish in H∗(X(σℓ)). Recall that Ufan ≃ (C∗)ℓ−1 with coordinates

w1, . . . , wℓ−2, w = wℓ−1, so H∗(Ufan) is isomorphic to an exterior algebra in dwi

wi
.

Suppose ℓ is odd then

ω
ℓ−1
2 =

(
dw2

w2
∧ dw1

w1
+ . . .+

dw

w
∧ dwℓ−2

wℓ−2

)(ℓ−1)/2
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= (ℓ− 1)/2)!
dw1

w1
∧ · · · ∧ dwℓ−2

wℓ−2
∧ dw

w

and

αω
ℓ−3
2 =

dw

w
∧
(
dw2

w2
∧ dw1

w1
+ . . .+

dw

w
∧ dwℓ−2

wℓ−2

)(ℓ−3)/2

=
dw

w
∧
(
dw2

w2
∧ dw1

w1
+ . . .+

dwℓ−2

wℓ−2
∧ dwℓ−3

wℓ−3

)(ℓ−3)/2

=
dw

w
∧ ((ℓ− 3)/2)!

(ℓ−5)/2∑
j=0

dw1

w1
∧ . . .

d̂w2j+1

w2j+1
· · · ∧ dwℓ−3

wℓ−3

In particular, these are nonzero. Suppose ℓ is even, then similarly

ω
ℓ
2−1 =

ℓ/2−2∑
j=0

dw1

w1
∧ dw2

w2
∧ · · · ∧ d̂w2j+1

w2j+1
∧ · · · ∧ dwℓ−2

wℓ−2
∧ dw

w
.

and

αω
ℓ−3
2 = ((ℓ− 1)/2)!

dw1

w1
∧ dw2

w2
∧ · · · ∧ dwℓ−3

wℓ−3
∧ dwℓ−2

wℓ−2
∧ dw

w

This implies that all the forms in (6.3) and (6.4) are nonzero in H∗(Ufan) and hence nonzero in H∗(X(σℓ)).

On the other hand, by Theorem 6.1.3 the corresponding cohomology groups of X(σℓ) are one-dimensional

in each degree; therefore, we obtain a basis. □

6.2.3. Examples.

Example 6.2.6. Braid variety associated to β = σ3

X(σ3) = {z1z2z3 − z3 − z1 = 0}

= {z1z2 − 1 ̸= 0}

Using row operations and scaling the columns, we can transform any matrix in Π◦
2,4 to the form
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V =

1 z1 z1z2 − 1 z1z2z3 − z1 − z3

0 1 z2 z2z3 − 1.

 ∈ Π◦,1
2,4

Using the correspondence of cluster algebras and Grassmannians, we obtain two cluster charts, as seen in

Figure 6.1:

v1

v2 v3

v4

1

11
z2

z2z3 − 1
v1

v2 v3
1

1

z2z3 − 1
v4

1
z3

Figure 6.1. The two cluster charts for the braid variety X(σ3). On the left is chart U1

where the vectors vi ∈ Π◦,1
2,4 for 1 ≤ i ≤ 4 correspond to the vertices of the polygon. The

purple arrow depicts the Dynkin diagram A1 with a frozen. On the right is chart U2 which
corresponds to the mutation of chart U1.

U1 = {z2 ̸= 0} with coordinates (w1 = z2, w = z2z3 − 1)

U2 = {z3 ̸= 0} with coordinates (w′
1 = z3, w = z2z3 − 1)

We compute the cohomology of X(β) using the (algebraic) de Rham cohomology on chart 1. Let U1 =

{w1 = z2 ̸= 0, w = z2z3 − 1 ̸= 0}. Then all possible forms

H∗(U1) = H∗((C∗)2
)
=

〈
1,

dw1

w1
,
dw

w
,
dw

w
∧ dw1

w1

〉
To determine the cohomology, it suffices to determine which of the above forms extend to X(σ3). The forms

which extend are

• 1

• dw

w
=

z2dz3 + z3dz2
z2z3 − 1

• dw

w
∧ dw1

w1
=

dz3 ∧ dz2
z2z3 − 1

The 2-form can be deduced from the quiver shown in Figure 6.1 which agrees with [26]. Therefore,

H0(X(σ3)) = H1(X(σ3)) = H2(X(σ3)) = C, which agrees with Theorem 6.1.3.
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In addition, on the chart U2 = {w′
1 = z3 ̸= 0, w = z2z3 − 1 ̸= 0}, with possible forms

H∗(U2) = H∗((C∗)2
)
=

〈
1,

dw′
1

w′
1

,
dw

w
,
dw

w
∧ dw′

1

w′
1

〉
the forms which extend are

• 1

• dw

w
=

z2dz3 + z3dz2
z2z3 − 1

• dw

w
∧ dw′

1

w′
1

=
dz2 ∧ dz3
z2z3 − 1

Indeed, the cohomology of X(σ3) is independent from the choice of a chart.

Example 6.2.7. The braid variety associated to β = σ4

X(σ4) = {z1z2z3z4 − z1z2 − z1z4 − z3z4 + 1 = 0}

= {z1z2z3 − z3 − z1 ̸= 0}

with open positroid variety of the form

V =

1 z1 z1z2 − 1 z1z2z3 − z1 − z3 z1z2z3z4 − z1z2 − z1z4 − z3z4 + 1

0 1 z2 z2z3 − 1 z2z3z4 − z2 − z4

 ∈ Π◦,1
2,5

Using the correspondence of cluster algebras and Grassmannians, we obtain one of five cluster charts, see

Figure 6.2: Here

U = {w1 := ∆13 = z2 ̸= 0, w2 := ∆14 = z2z3 − 1 ̸= 0, w := ∆15 = z2z3z4 − z4 − z2 ̸= 0}

Using the de Rham cohomology

H∗(U) = H∗((C∗)3)

=

〈
1,

dw1

w1
,
dw2

w2
,
dw

w
,
dw1

w1
∧ dw2

w2
,
dw1

w1
∧ dw

w
,
dw2

w2
∧ dw

w
,
dw

w
∧ dw2

w2
∧ dw1

w1

〉
The forms which extend to X(σ4) are:

• 1

• dw

w
=

(z3z4 − 1)dz2 + z2z4dz3 + (z2z3 − 1)dz4
z2z3z4 − z4 − z2
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11

11

z2

z2z3 − 1

z2z3z4 − z2 − z4
v1 v5

v4

v3

v2

Figure 6.2. The cluster chart U1 of X(σ4). One of the five possible charts given by the
triangulation of the pentagon.

• dw

w
∧ dw2

w2
+

dw2

w2
∧ dw1

w1
=

z4dz3 ∧ dz2 + z3dz4 ∧ dz2 + z2dz4 ∧ dz3
z2z3z4 − z4 − z2

• dw

w
∧ dw2

w2
∧ dw1

w1
=

dz4 ∧ dz3 ∧ dz2
z2z3z4 − z4 − z2

Therefore, H0(X(σ4)) = H1(X(σ4)) = H2(X(σ4)) = H3(X(σ4)) = C which agrees with Theorem 6.1.3.

6.2.4. Cuts, forms and cohomology. Now we can study the effect of the cuts on the forms α and ω.

More precisely, we use the map Φ−1
ij : X(σj−i)×X(σℓ−j+i+1) −→ X(σℓ) to compute the pullbacks

(
Φ−1

ij

)∗
α

and Φ∗
ijω. The forms α and ω are equivalent under cluster mutation by [26]; hence, we choose an arbitrary

cluster chart, see Figure 5.3, and determine the how the forms interact with cuts.

We will denote the forms from X(σj−i) by α1 and ω1, and the forms from X(σℓ−j+i+1) by α2 and ω2.

As an abuse of notation we use the labeling from the larger positroid Πo,1
2,a+b−1 identified with X(σa+b−1).

Technically, under the isomorphism ∆1,j−i+1 =
(
Φ−1

ij

)∗
(∆ij), therefore, α1 =

(
Φ−1

ij

)∗
(d log∆ij), similarly,

α2 =
(
Φ−1

ij

)∗
(d log∆

(−1)ℓ−j+1

ij ∆1,ℓ+1) with similar considerations made to ω1 and ω2.

Lemma 6.2.8. We have (
Φ−1

ij

)∗
α = α2 + (−1)ℓ−jα1.

Proof. Recall that α = d log(∆1,ℓ+1). By [26] let α1 = d log(∆ij) be the 1-form associated to X(σj−i)

and α2 = d log(∆
(−1)ℓ−j+1

ij w) = d log(∆
(−1)ℓ−j+1

ij ∆1,ℓ+1) be the 1-form associated to X(σℓ−j+i+1). Given
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these conditions we find that

α2 + (−1)ℓ−jα1 = d log(∆
(−1)ℓ−j+1

ij ∆1,ℓ+1) + (−1)ℓ−jd log(∆ij)

= d log(∆
(−1)ℓ−j+1

ij ) + d log(∆1,ℓ+1) + (−1)ℓ−jd log(∆ij)

= (−1)ℓ−j+1d log(∆ij) + d log(∆1,ℓ+1) + (−1)ℓ−jd log(∆ij)

= d log(∆1,ℓ+1) = α

□

Lemma 6.2.9. We have (
Φ−1

ij

)∗
ω = ω1 + ω2 + (−1)ℓ−jα1 ∧ α2.

Proof. Consider the quiver associated to the triangulation of X(σℓ) in Figure 5.3 prior to the rescaling

given by the cut ∆ij , by (6.1), the two-form ω is described as

ω = d log∆1,ℓ+1 ∧ d log∆1,ℓ + d log∆1,ℓ ∧ d log∆1,ℓ−1

+ · · ·+ d log∆1,j+1 ∧ d log∆1,j + d log∆1,j ∧ d log∆1,i

+ d log∆1,i ∧ d log∆1,i−1 + d log∆1,i−1 ∧ d log∆1,i−2

+ · · ·+ d log∆14 ∧ d log∆13 + d log∆1,i ∧ d log∆ij

+ d log∆ij ∧ d log∆1,j + d log∆i,j−1 ∧ d log∆i,j−2

+ d log∆i,j−2 ∧ d log∆i,j−3 + · · ·+ d log∆i,i+3 ∧ d log∆i,i+2

Let α1, α2 be the 1-form and ω1, ω2 be the 2-form associated to X(σj−i) and X(σℓ−j+i+1), respectively. By

Figure 5.3, we define the forms associated to X(σj−i) and X(σℓ−j+i+1) directly from quivers as follows:

α1 = d log∆ij(6.5)

α2 = d log(∆1,ℓ+1∆
(−1)ℓ−j+2

ij ) = d log∆1,ℓ+1 + (−1)ℓ−j+2d log∆ij(6.6)

ω1 = d log∆i,j−1 ∧ d log∆i,j−2 + d log∆i,j−2 ∧ d log∆i,j−3

+ · · ·+ d log∆i,i+3 ∧ d log∆i,i+2
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While α1, α2, ω1 can be easily read from the cluster chart seen in Figure 5.3, the 2-form ω2 requires a bit more

finesse. We notice that there is a triangle formed between the vertices 1, i, j, to simplify the computation

of ω2, which agrees with (6.1), we decompose the form into parts and call them pre-triangle ω2,pre for

vertices between 1 and i, triangle ω2,tri for the special vertices 1, i, j and post-triangle ω2,post for vertices

between j and ℓ + 1. By Theorem 5.4.1 in the rescaled braid variety X(σℓ−j+i+1) the Pluc̈ker coordinate

∆′
ij = ∆ij∆

−1
ij = 1 resulting in d log∆′

ij = d log 1 = 0, whereas ∆ij shall remain the nonzero polynomial w

describing X(σj−i). Using this decomposition, ω2 = ω2,pre + ω2,tri + ω2,post is defined by

ω2,pre = d log∆1i ∧ d log∆1,i−1 + d log∆1,i−1 ∧ d log∆1,i−2 + · · ·+ d log∆14 ∧ d log∆13

ω2,tri = d log
(
∆1j∆

−1
ij

)
∧ d log∆1i + d log∆1i ∧ d log∆′

ij + d log∆′
ij ∧ d log

(
∆1j∆

−1
ij

)
= (d log∆1j − d log∆ij) ∧ d log∆1i

= d log∆1j ∧ d log∆1i − d log∆ij ∧ d log∆1i

ω2,post = d log∆1,ℓ+1∆
(−1)ℓ−j+2

ij ∧ d log∆1,ℓ∆
(−1)ℓ−j+1

ij

+ d log∆1,ℓ∆
(−1)ℓ−j+1

ij ∧ d log∆1,ℓ−1∆
(−1)ℓ−j

ij

+ · · ·+ d log∆1,j+2∆
−1
ij ∧ d log∆1,j+1∆ij + d log∆1,j+1∆ij ∧ d log∆1,j∆

−1
ij

= (d log∆1,ℓ+1 + (−1)ℓ−j+2d log∆ij) ∧ (d log∆1,ℓ + (−1)ℓ−j+1d log∆ij)

+ (d log∆1,ℓ + (−1)ℓ−j+1d log∆ij) ∧ (d log∆1,ℓ−1 + (−1)ℓ−jd log∆ij)

+ · · ·+ (d log∆1,j+2 − d log∆ij) ∧ (d log∆1,j+1 + d log∆ij)

+ (d log∆1,j+1 + d log∆ij) ∧ (d log∆1,j − d log∆ij)

= d log∆1,ℓ+1 ∧ d log∆1,ℓ + (−1)ℓ−j+1d log∆1,ℓ+1 ∧ d log∆ij

+ (−1)ℓ−j+2d log∆ij ∧ d log∆1,ℓ + d log∆1,ℓ ∧ d log∆1,ℓ−1

+ (−1)ℓ−jd log∆1,ℓ ∧ d log∆ij + (−1)ℓ−j+1d log∆ij ∧ d log∆1,ℓ−1

+ · · ·+ d log∆1,j+2 ∧ d log∆1,j+1 + d log∆1,j+2 ∧ d log∆ij
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− d log∆i,j ∧ d log∆1,j+1 + d log∆1,j+1 ∧ d log∆1,j

− d log∆1,j+1 ∧ d log∆ij + d log∆ij ∧ d log∆1,j

= d log∆1,ℓ+1 ∧ d log∆1,ℓ + d log∆1,ℓ ∧ d log∆1ℓ−1

+ · · ·+ d log∆1,j+2 ∧ d log∆1,j+1 + d log∆1,j+1 ∧ d log∆1,j

+ (−1)ℓ−j+1d log∆1,ℓ+1 ∧ d log∆ij

Note that from (6.5) and (6.6), α1 ∧ α2 = d log∆ij ∧ d log∆1,ℓ+1. Therefore, the additional term

(−1)ℓ−j+1d log∆1,ℓ+1 ∧ d log∆ij from ω2,post may be negated by (−1)ℓ−jα1 ∧ α2, providing the necessary

adjustment to acquire
(
Φ−1

ij

)∗
ω as stated. □

Theorem 6.2.10. The pullback map

(
Φ−1

ij

)∗
: H∗(X(σℓ)) → H∗(X(σj−i))⊗H∗(X(σℓ−j+i+1))

is injective and can be described by Lemmas 6.2.8 and 6.2.9

Proof. Similar to Theorem 6.2.5, we want to prove that the restrictions of all forms in (6.3) and (6.4)

do not vanish in H∗(X(σj−i))⊗H∗(X(σℓ−j+i+1)), here we use the formulas from Lemmas 6.2.8 and 6.2.9.

Suppose ℓ is odd, then we want to show that
(
Φ−1

ij

)∗ [
αω

ℓ−3
2

]
and

(
Φ−1

ij

)∗ [
ω

ℓ−1
2

]
are both nonzero. Since

ℓ = a+ b− 1 is odd, then either a, b are both even or both odd.

(i) Suppose a and b are both even. Given that ω
a
2−1
1 , α1ω

a
2−1
1 , ω

b
2−1
2 , α2ω

b
2−1
2 are nonzero by definition, then

(
Φ−1

ij

)∗ [
αω

ℓ−3
2

]
= (α2 + (−1)ℓ−jα1)(ω1 + ω2 + (−1)ℓ−jα1 ∧ α2)

ℓ−3
2

= (α2 + (−1)ℓ−jα1)(ω1 + ω2 + (−1)ℓ−jα1 ∧ α2)
a+b−4

2

= (α2 + (−1)ℓ−jα1)
∑

l1+l2+l3=
a+b−4

2

( a+b−4
2

l1, l2, l3

)
ωl1
1 ωl2

2

(
(−1)ℓ−jα1 ∧ α2

)l3
=

( a+b−4
2

a
2 − 1, b

2 − 1, 0

)
α2ω

a
2−1
1 ω

b
2−1
2 + . . .

with α2ω
b
2−1
2 , ω

a
2−1
1 ̸= 0, then

(
Φ−1

ij

)∗ [
αω

ℓ−3
2

]
is nonvanishing. Furthermore,

(
Φ−1

ij

)∗ [
ω

ℓ−1
2

]
= (ω1 + ω2 + (−1)ℓ−jα1 ∧ α2)

ℓ−1
2
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= (ω1 + ω2 + (−1)ℓ−jα1 ∧ α2)
a+b−2

2

=
∑

l1+l2+l3=
a+b−2

2

( a+b−2
2

l1, l2, l3

)
ωl1
1 ωl2

2

(
(−1)ℓ−jα1 ∧ α2

)l3
=

( a+b−2
2

a
2 − 1, b

2 − 1, 1

)(
(−1)ℓ−jα1 ∧ α2

)
ω

a
2−1
1 ω

b
2−1
2 + . . .

where α1ω
a
2−1
1 , α2ω

b
2−1
2 ̸= 0. Then

(
Φ−1

ij

)∗ [
ω

ℓ−1
2

]
is nonvanishing.

(ii) Suppose a and b are both odd. Given that α1ω
a−3
2

1 , ω
a−1
2

1 , α2ω
b−3
2

2 , ω
b−1
2

2 are nonzero, then

(
Φ−1

ij

)∗ [
αω

ℓ−3
2

]
= (α2 + (−1)ℓ−jα1)

∑
l1+l2+l3=

a+b−4
2

( a+b−4
2

l1, l2, l3

)
ωl1
1 ωl2

2

(
(−1)ℓ−jα1 ∧ α2

)l3
= (α2 + (−1)ℓ−jα1)

( a+b−4
2

a−3
2 , b−

2 , 0

)
ω

a−3
2

1 ω
b−1
2

2 + . . .

= (−1)ℓ−j

( a+b−4
2

a−3
2 , b−

2 , 0

)
α1ω

a−3
2

1 ω
b−1
2

2 + . . .

Given α1ω
a−3
2

1 , ω
b−1
2

2 ̸= 0, then
(
Φ−1

ij

)∗ [
αω

ℓ−3
2

]
is nonvanishing. Furthermore,

(
Φ−1

ij

)∗ [
ω

ℓ−1
2

]
=

∑
l1+l2+l3=

a+b−2
2

( a+b−2
2

l1, l2, l3

)
ωl1
1 ωl2

2

(
(−1)ℓ−jα1 ∧ α2

)l3
=

( a+b−2
2

a−1
2 , b−1

2 , 0

)
ω

a−1
2

1 ω
b−1
2

2 + . . .

Since ω
a−1
2

1 , ω
b−1
2

2 ̸= 0, then
(
Φ−1

ij

)∗ [
ω

ℓ−1
2

]
is nonvanishing.

Now, suppose ℓ is even, then we want to show that
(
Φ−1

ij

)∗ [
ω

ℓ
2−1
]
and

(
Φ−1

ij

)∗ [
αω

ℓ
2−1
]
are both nonzero.

Since ℓ = a + b − 1 is even, without loss of generality a is even and b is odd. Since a is even and b is odd,

then ω
a
2−1
1 , α1ω

a
2−1
1 , α2ω

b−3
2

2 , ω
b−1
2

2 are nonzero, then

(
Φ−1

ij

)∗ [
ω

ℓ
2−1
]
= (ω1 + ω2 + (−1)ℓ−jα1 ∧ α2)

ℓ
2−1

= (ω1 + ω2 + (−1)ℓ−jα1 ∧ α2)
a+b−3

2

=
∑

l1+l2+l3=
a+b−3

2

( a+b−3
2

l1, l2, l3

)
ωl1
1 ωl2

2

(
(−1)ℓ−jα1 ∧ α2

)l3
=

( a+b−3
2

a
2 − 1, b−1

2 , 0

)
ω

a
2−1
1 ω

b−1
2

2 + . . .
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Since ω
a
2−1
1 , ω

b−1
2

2 ̸= 0, then
(
Φ−1

ij

)∗ [
ω

ℓ
2−1
]
is nonvanishing. Next,

(
Φ−1

ij

)∗ [
αω

ℓ
2−1
]
= (α2 + (−1)ℓ−jα1)(ω1 + ω2 + (−1)ℓ−jα1 ∧ α2)

ℓ
2−1

= (α2 + (−1)ℓ−jα1)(ω1 + ω2 + (−1)ℓ−jα1 ∧ α2)
a+b−3

2

= (α2 + (−1)ℓ−jα1)
∑

l1+l2+l3=
a+b−3

2

( a+b−3
2

l1, l2, l3

)
ωl1
1 ωl2

2

(
(−1)ℓ−jα1 ∧ α2

)l3
= (α2 + (−1)ℓ−jα1)

( a+b−3
2

a
2 − 1, b−1

2 , 0

)
ω

a
2−1
1 ω

b−1
2

2 + . . .

=

( a+b−3
2

a
2 − 1, b−1

2 , 0

)
α2ω

a
2−1
1 ω

b−1
2

2 + . . .

Since ω
a
2−1
1 , α2ω

b−1
2

2 ̸= 0, then
(
Φ−1

ij

)∗ [
αω

ℓ
2−1
]
is nonvanishing.

This implies that all the forms in (6.3) and (6.4) are nonzero in H∗(X(σj−i))⊗H∗(X(σℓ−j+i+1)) and hence

nonzero in H∗(X(σℓ)). □

[30, 21, 20]
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[22] Eugene Gorsky, Oscar Kivinen, and José Simental. Algebra and geometry of link homology: Lecture notes from the ihes

2021 summer school. Bulletin of the London Mathematical Society, 55, 2021.

[23] James Hughes. Lagrangian fillings in $a$-type and their kálmán loop orbits. Revista Matemática Iberoamericana, 2021.
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