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Abstract

This dissertation investigates the geometry and topology of braid varieties, a class of smooth affine algebraic
varieties arising from positive braids, through the novel perspective of splicing maps. These varieties have
connections to a wide array of mathematical structures including positroid varieties, cluster algebras, and

Legendrian link invariants.

We begin by defining braid varieties both algebraically, via products of braid matrices, and geometrically, as
sequences of flags satisfying certain position conditions. These two descriptions are shown to be equivalent,
connecting braid varieties to classical and modern geometric objects. Special attention is given to two-

stranded braid varieties, which serve as an illustrative and computable model throughout the thesis.

The next step is to view two-stranded braid varieties as special cases of open positroid varieties, providing a
concrete realization of these spaces inside Grassmannians. Through this identification, we introduce standard
form matrices and describe these varieties in terms of Pliicker coordinates, enabling explicit computation

and a bridge to cluster algebra structures.

We then construct cluster structures on open positroid varieties associated with braid varieties, making use
of triangulations of polygons and the combinatorics of Pliicker coordinates. A key insight is the realization
of the Ug,y, chart, an explicit cluster chart for two-stranded braid varieties. These structures allow us to link

braid varieties to cluster algebras.

The central innovation of the thesis lies in the development of a splicing map, a geometric and algebraic tool
inspired by braid composition. We show that the splicing map is a quasi-cluster isomorphism preserving the
cluster structure. In particular, we describe how the splicing map reflects the combinatorics of torus link

multiplication and how it acts on positroid varieties via transformations of Pliicker coordinates.

Finally, we compute the cohomology of braid varieties using a combination of Alexander duality, de Rham
theory, and recursive polynomial identities arising from braid matrix factorizations. The cohomology ring is
presented explicitly in terms of generators and relations derived from the recursive polynomials defining the

varieties, shedding light on their topological invariants.

This work provides a framework for studying braid varieties through tools from cluster algebras, positroid
geometry, and cohomological methods. The splicing map construction offers a practical way to build and

understand more complex braid varieties from simpler ones, while the cohomology calculations give a clearer
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picture of their topological structure. These results suggest a number of potential connections to other areas

like representation theory and low-dimensional topology, and open the door for future exploration.
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CHAPTER 1

Introduction

Braid varieties are a class of smooth affine algebraic varieties associated with positive braids. These varieties
emerge from the study of braid groups, which have deep connections to various branches of mathematics,

from topology and algebraic geometry to representation theory and combinatorics.

Although braid varieties have become an important area of study, their historical development and origins are
not as clearly established as those of other algebraic varieties. This is due to the fact that braid matrices, used
in the definition of braid varieties, have appeared in a variety of mathematical contexts over the centuries.
The earliest notable appearances trace back to L. Euler’s work on continuants in the 18" century [12], which
generalize determinants and describe recursive structures on matrices. These continuants, which are closely
linked to continued fractions, can be viewed as precursors to braid matrices. Continued fractions encode
recursive relationships and transformations, providing a foundation for the combinatorial representation of
braid transformations in braid matrices. In the 19" century, G. Stokes studied solutions to linear differential
equations near irregular singularities [33]. The Stokes phenomenon describes how the asymptotic solutions
change as one crosses Stokes lines near singularities. This phenomenon is related to braid varieties through
the study of how configurations interact as you travel along a path. Braid groups, which govern the algebraic
structure of braids, can be viewed as geometric generalizations of this phenomenon. This connection between
differential equations and braid groups laid the groundwork for developments in the study of wild character
varieties, particularly in the work of P. Boalch [1, [2], who established explicit links between moduli spaces

and braid group actions.

Further connections to braid varieties emerge in representation theory through the work of M. Broué and J.
Michel [3], who investigated algebraic varieties associated to finite groups of Lie type, called Deligne-Lusztig
varieties, using techniques that reflect the structure of braid groups and their associated flag varieties. These
ideas are closely tied to the geometry of Bruhat decompositions and double coset representatives, themes
that also appear in the structure of braid varieties. P. Deligne [9] studied braid group actions in the setting

of algebraic and arithmetic geometry, focusing on their role in the structure of fundamental groups and their
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representations. Similar structures arise in the study of braid varieties, where monodromy and flag-based

descriptions play a central role.

In the context of low-dimensional topology and contact geometry, braid varieties are closely related to
augmentation varieties of Legendrian links. T. Kélmén [24] gave a combinatorial model for the Legendrian
contact differential graded algebra (DGA), where the algebraic data of positive braids encode invariants
of Legendrian knots. These Legendrian invariants turn out to have deep connections with the geometry
of braid varieties, particularly in their interpretation as moduli spaces of augmentations or constructible
sheaves. Similarly, A. Mellit’s work [27] on the curious Lefschetz property in the cohomology of character
varieties shows that the topology of such moduli spaces is often governed by recursive algebraic patterns

reminiscent of those that define braid varieties.

Braid varieties play a central role in bridging concepts in algebraic geometry, representation theory, low-
dimensional topology, and symplectic geometry. They appear not merely as isolated geometric objects but
as rich intersections of ideas from many mathematical disciplines. This thesis builds on these perspectives
by developing new tools to understand how braid varieties decompose, interact with cluster structures, and

how their cohomology rings, particularly in the two-stranded case, can be described explicitly.

Organization. Chapters [2]- [d are generally preparatory. Chapter [2] focuses on defining braid varieties,
discussing their properties, and delivering an explicit, recursive formula for two-stranded braid varieties
[Lemma. The recursive formula proves to be a useful tool for simplifying the process of computing the
singular cohomology of two-stranded braid varieties, as compared to the approach in [26]. Chapter [3|focuses
on positroid varieties, with the main goal of connecting braid varieties to open positroid varieties. Here, we
define an explicit map between two-stranded braid varieties and big cells in Gr(2,n), i.e., the top dimen-
sional positroid variety in Gr(2,n). Chapter [4] defines cluster algebras and provides explicit constructions
for cluster structures on open positroids varieties associated to torus braids including two-stranded braid

varieties.

Chapter [5| is the main focus of this paper, where we define the splicing map for maximal dimension open
positroid varieties associated with torus links (Theorem and provide an explicit splicing map for
two-stranded braid varieties (Theorem [5.4.1]). We demonstrate that the splicing map is a quasi-cluster iso-
morphism (Theorem and investigate various properties of the map, including its geometric connection

to the decomposition of braid varieties, as well as the quasi-associativity of the splicing map for two-stranded
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braid varieties (Theorems and [5.4.5)). In Chapter[6] we compute the cohomology of two-stranded braid
varieties (Theorem [6.1.3) and describe its ring structure using generators and relations (Theorem [6.2.5)).
Finally, in Section [6.2.4] we examine the effects of the two-stranded splicing map on the cohomology and its

ring structure.



CHAPTER 2

Braid varieties

Consider the positive braid monoid on n strands, Brfl7 defined as

+_ . _ . _ . . .
Brn = <(71,...,O'n,1 L 00410 = 044100441, 1 = 1,...,’11— 2, 0,05 = 0504, if |Z —j| > 1>

where o; is the positive crossing between the ¢ and 7 + 1 strand.

Let 8 =0y, ... 0, be a positive braid on n strands. We define the braid variety associated to 5 in two ways:
algebraically in terms of braid matrices or geometrically as a sequence of flags. Refer to [6] [7), [5, 18] for

more information and context on braid varieties.

We begin by defining the braid variety X (/) algebraically. For the positive braid g, we assign a complex

variable z (see Figure and an n X n matrix B;(z) at each crossing ;. We define the matrix B;(z)

as
1 0
0 z -1 0
0 1 0 0
0 .- e 1

where the non-trivial 2 x 2 embedded matrix is at the ¢ and 7 + 1 row and column. We define the braid

matrix associated to f =0y, ...0;, as

£

B[}(Zl, .. .,Zg) = Bil (21) . "Biz(Zg) S SL(TL,(C[Zl, .. .,Z[]).

One can check that braid matrices satisfy the braid relations up to a change of variables, given by

(21) Bz(zl)BHl(zg)Bz(z?,) = B¢+1(23)Bi(2123 — ZZ)Bi+1(Zl)7 for all 7 € [l,n - 2]

(22) B»L(Zl)B](ZQ) = B](ZQ)Bl(Zl), for |Z —j| > 1.



DEFINITION 2.0.1. The braid variety X () is defined by

X(B) =14 (z1,...,20) € Ct: - 7 | Bg(z1,...,2) is upper-triangular.

From Equations (2.1) and (2.2), we see that under braid moves the resulting braid varieties up to a change

of variables are equivalent and conclude that:

THEOREM 2.0.2. Braid varieties are braid invariants.

Note that there is a surjective homomorphism 7 : Br;f — Sy, given by 7w(o;) = s; where s1,...,8,-1 are
simple transpositions of i and i + 1 in S,,. The Demazure product § : Br;, — S, is defined inductively
by:

6(B)si ifd(B)s; > 6(B)

5(8)  else,

Unlike 7, the Demazure product ¢ is not a morphism of monoids. As an abuse of notation, we will denote

d(e) =e, 0(Bo;) =

by wo the longest element in both S, and Br;.

Now, we define braid varieties geometrically, consider the variety of complete flags

Fl, ={0=FyC Fy--- C F, =C"}, dim F; =i.

We say that two flags F and JF” are in position s;, denoted F =5 F', if F; = Fj for j #iand F; # F.

DEFINITION 2.0.3. The braid variety X (8) is defined as the space of sequences of flags

Siq

FO) S, p) | T p(e-1) T (o)

such that F(©) is the standard flag and F() is the antistandard flag in C":
]:(0) = <61, ey €i>, ]_-l(é) = <€j,i+1, ey €n>.

We will often use the abbreviation F(® 2, FO,

THEOREM 2.0.4. Definitions and [2-0.3 for braid varieties are equivalent.
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PROOF. Suppose that X (3) is defined as in Definition for some braid g = oy, ...0;,. For each
crossing o;; where j € 1,...,/, we have (0;;) = s;;. Fix F() as the standard flag. We see that multiplication

by B, (21) gives FO = £V for m # i1 and .7-'1-(10) + fi(ll), therefore, F(©) and F(!) are in position s;,, i.e.,
FO 21 7O Conversely, if F© 22 F(1)| then there exists a unique z; such that Bi (21)F© = F),
Sil

By induction, we have that By, (21)...Bo,, (2¢) = Bg(z1,...,2¢) describes the sequence of flags FO) 2
F) S pe-n) ey 20

Multiplication of the antidiagonal matrix with 1s along the antidiagonal corresponds to a half twist, therefore,

we see that F® is the antistandard flag in C”. Therefore, describing Definition (]

As a consequence of Escobar’s work on brick manifolds [10],

THEOREM 2.0.5 (Casals-Gorsky-Gorsky-Le-Shen-Simental[5]). The braid variety X(58) is a smooth, irre-
ducible affine algebraic variety of dimension () —l(wo), where wg is the lift of the longest word. The variety

X (B) is nonempty if and only if the Demazure product §(8) = wo.

2.1. Two-stranded braid varieties

In this section we focus on the case n = 2 and 3 € Brj. Given that there is only one possible crossing, we
then refer to the two-stranded braid with £ crossings as of. The braid matrices on two strands are given as

a product of the matrices

DEFINITION 2.1.1. The two-stranded braid variety X (o) is defined by the equation

0 -1
X% =14 (21,...,2) €C": B(z1) - - - B(z¢) is upper-triangular.
1 0

If 8 and ' are related by braid moves then X () ~ X (3’), this isomorphism arises from the invariance of

braid matrices.

REMARK 2.1.2. The modification of —1 in Definition [2.1.1] compared to Definition [2.0.1] is made solely to
guarantee that the product of braid matrices lies in SL(2,C), thereby ensuring total positivity and does not

alter the braid variety.



EXAMPLE 2.1.3. Let B =o' € Br2+, the braid matrix is given by

Therefore, the braid variety is defined as
X(o')=<{z€C: is upper-triangular.

=¢(z €C: is upper triangular ) = {z; = 0}.

More precisely, X (o!) is a point.

EXAMPLE 2.1.4. Let 8 = 0% € Bry with braid matrix

21729 — 1 —Z1

Bﬁ (Zl’ 22) =
Z9 —1
then the braid variety associated to ( is
2 2 0 -1 Z129 — 1 —ZzZ1 . .
X(0%) = q (21,22) € C*: is upper-triangular.
1 0 Z2 -1

:{(zl,ZQ)6((32:2122—1:0}%{216((3:217&0}

It is important to note that the choice of coordinate z; on X(0?) = {z; # 0} is not unique in this case,
we may have also chosen X (0?) = {z3 # 0}. However, the choice of X (0?) = {21 # 0} is helpful when

developing an inductive way to describe the braid variety in order to compute its cohomology.

EXAMPLE 2.1.5. Let 8 = o3 € Bry, see Figure with braid matrix

Z179223 — 23 — %1 1-— zZ122
Bﬁ(zla'ZQuZB) =

Z923 — 1 —Z9



X

Z9 zZ3

FIGURE 2.1. The braid 8 = o3, where each crossing is assigned a complex variable z,
belongs to the positive braid monoid. Therefore, we can omit crossing information since all
crossings are positive.

then the braid variety associated to 3 is

0 -1 212223 — 23 — 21 1—2’12’2
X(0%) =< (21,22,23) € C*: is upper-triangular.
1 0 Z923 — 1 —Z2

= {(z1,22,23) € C3: 212923 — 23 — 21 = 0} = {(z1,22) € C%:z129— 14 0}

There is an inductive relationship between X (of) and X (o®~'), we explore this concept further by first
establishing general formulas for the braid matrices then extending these results to the polynomials defining

the braid varieties. Moreover, with these results we show that the braid variety X (o) is smooth.

LEMMA 2.1.6 (Hughes[23], Chantraine-Ng-Sivek[8]). One can express the braid matriz for 8 = o* as

F[(Z]7...,Z,€) —F[71(2’17...,Z[71)
Bﬁ(zl,...,Zg) =

Ff*l(z27"'7zf) _F[72(227~"7Z[71)
where
(2.1) Fy(ziy- ooy i) = zigeFo—1(2iy o Zigo—1) — Fo—a(2i5 -+, Zigi—2)

with initial values Fy(z;) = 2z, Fo =1 and F_1 = 0.

PRrROOF. We proceed with induction on ¢. Clearly,

By = |7 T 2 [P RO
Lo Fo(0)  —F1(0)
Suppose
B )= | 20 P i)

Froi(za,...,20) —Fp_o(22,...,20-1)



Then

Bo’£+1 (Zla sy Rl ZZ-‘rl) = Bae (Z17 EREE) ZZ)BO-(ZZJ'_]_)
| Fela, ez —Fea(a,zeen) | [z -1
Fz,1(227...,24) _F(72(227...,Z[71) 1 0
_ Zz+1Fg(Zl,...,Zg)—Fgfl(zl,..ng,l —Fgfl(zl,...,ngl)
Zg+1Fg_1(Zg, e ,Zg) — FZ_Q(ZQ, ey Zg) 7F2_1(Zg, ey Z[)
| Fera(zseze1) —Fi(z, e 20)
Fg(Zg,...,Z@) —Fg_l(ZQ,...,Zg)

THEOREM 2.1.7 (Hughes [23]). The braid variety X (o) is defined in C* by the equation Fy(z1,...,2;) =0
where Fy is given by the recursion (2.1)).

Fpo(z1,...,20-2)

Moreover, if Fo(z1,...,2¢) =0, then Fy_1(z1,...,20-1) # 0 and z = )
Fg_l(zl, e ,Zg)

Proor. By Lemma we express the braid matrix as
Fz(zh...,Zg) —F[,1(217...,Z[,1)
Fo_1(z2,...,20) —Fi_a(z2,...,20-1)

Using the definition for a braid variety, we find that

0 -1
X(0*) =S (z1,...,2) €C": Bg(z1,...,2) is upper-triangular
1 0

={(21,...,20) € C*: Fy(z1,...,2) =0}

Given that Fy(z1,...,2¢) =0 and Fy = zpFy_1 — Fy_o. If Fy_1 # 0, then we can solve the equation Fy = 0
for zy:

Fo=z2F; 1 —F =0, z=

9



Suppose instead that Fy_1(21,...,2_1) = 0 and given that Fy(z1, ..., 2;) = 0 by the definition of X (¢*), then
Fy_o(21,...,20—2) = 0. By proceeding with downward induction on ¢, we conclude that Fy(z1,...,2¢) =0

for all ¢, contradicting Fy = 1. Therefore, Fy_1(21,...,20-1) # 0.

COROLLARY 2.1.8. We have X (0%) ~ {(21,...,20-1) € C*7V 1 Fy_1(21,...,20-1) # 0}.

COROLLARY 2.1.9. The braid variety X (o*) is smooth of complex dimension £ — 1.

Proor. By Corollary[2.1.8] X (o) = {(21,...,20-1) € C*71 1 Fy_1(21,...,20-1) # 0}. Since {(21,...,201) €

C*': Fyq(21,...,20-1) # 0} is an open subset in C*~!, then X (o) is a smooth manifold. O

10



CHAPTER 3

Positroid varieties

The Grassmannian Gr(k,n) is a fundamental object in algebraic geometry, representation theory, combina-
torics and physics with deep connections to flag varieties and cluster algebras. The Grassmannian Gr(k,n)
is the space of all k-dimensional subspaces of an n-dimensional vector space K". Alternate notations for
the Grassmannian include Gr}, Gri(n). For our purposes, we let K = C, however, the Grassmannian may
be defined over a different ring or field, for example it may be defined over R, Q, Z, or F¢. The choice of
ring or field for the Grassmannian will reveal various properties in its geometrical, topological, and analytic

structures.

Given a k-dimensional subspace V' we chose a basis and write the basis vectors as rows of the full rank k& xn
matrix. We say that two matrices are equivalent, i.e, they represent the same subspace, if they are related
by left multiplication by an element in GLy(K). In other words, points in Gr(k, n) are described as full rank

k X m matrices up to row operations.

The Grassmannian is a smooth manifold that can be endowed with the structure of a projective smooth
algebraic variety using the Pliicker embedding. The Pliicker embedding maps a k-dimensional subspace given
by a matrix V to the set of Pliicker coordinates, i.e., determinants of all possible k x k minors. Under this

embedding Gr(k,n) is realized as a subvariety of projective space p()-1,

To explicitly define the map, let V' € Gr(k,n) and vy, ..., v, be the columns of V' where v; are k-dimensional
vectors. Given an ordered subset I € ([Z]), the Pliicker coordinate Ap(V') is the minor of k x k submatrix
of V in column set I. We will sometimes consider the exterior algebra A*C*, and identify A;(V) with

vi, Ao A, € AF(CF) ~ C for I = {iy,..., i}

The row operations have the effect of changing V to AV for an invertible k& x k matrix A. This implies
v; — Av; and Ay — det(A)Ag for all I. In particular, A; can be considered as projective coordinates on

Gr(k, n), or as affine coordinates on the affine cone Gr(k, n).

11



3.1. Open positroid varieties

Positroid varieties are interesting subvarieties of the Grassmannian that can be thought of as juggling pat-
terns. These varieties can be described as intersections of n cyclically shifted Schubert cells and in some

cases, as projections of Richardson varieties.

DEFINITION 3.1.1. Let V = (v; vy ... wy,) € Gr(k,n) where v; € C*, v;y,, = v; and define fy : Z — 7Z
as
fv (i) =min{j > i:v; € span(vit1,...,v;)}.
We say that fy is a bounded affine permutation associated to V if it satisfies the following conditions:
(a) fv(i+n)=f@)+n,

(c) Y (fvli) —i) = kn.

i=1

1 3 001
ExXaMPLE 3.1.2. Let V = . The bounded affine permutation fy is given by

011 2 1

i‘12345

fv(i)‘3 546 7

where vg = v1,v7 = v
DEFINITION 3.1.3. We define the open positroid variety as
$ =1V e Gr(k,n): fv = f}.

REMARK 3.1.4. We define a positroid variety Iy as the Zariski closure of an open positroid variety %, It
is important to note that II; is generally not a smooth variety. Therefore, for the purposes of this paper,

when we refer to a positroid variety, we mean the open positroid variety 5.

Knutson-Lam-Speyer [25] constructed the stratification

Gr(k,n) = |_| 113
feBk,n

12



where H;’c are open positroid varieties indexed by a finite set By, of bounded affine permutations, see [16,
Section 4.1] for more information. This positroid stratification contains a unique open stratum, the top
dimensional positroid variety, defined such that cyclically consecutive Pliicker coordinates are non-

vanishing, i.e.,
(3.1) Hz,n = {V S GI‘(I{?, n) : ALQ’“.’]@(V), Ag,gﬁm,k+1(v>7 ey An,1,27...,k71(v) 75 0} .

REMARK 3.1.5. We sometimes call the unique open stratum the maximal dimension positroid variety or
the big cell in the Grassmannian. We note that this variety is defined by the bounded affine permutation

f@)=i+kforalliel,... n.

More generally, in [21] we define a class of skew shaped positroid varieties associated to skew shaped Young

diagrams.

3.2. Positroids as braid varieties

Casals-Gao found an explicit construction [4] Section 4] relating 11}, ,, to the braid variety X (Bk,n) where

n—k(

5k,n = (0'1~«~ka1) g1 ...Jk,l)...(agal)al = (01...0k,1)n_k’w0

(see also [32]). Here T'(k,n—k) = (o1 ...0,_1)" " is the (k,n —k) torus braid and o1 (o201) -+ - (0k_1 -+~ 01)

is the specific braid word for the half-twist braid denoted wy.

Define I(a,i) to be the ordered subsets

(3.1) I(a,i) ={a,a+1,...;a+i—1,n—k+i+1,...,n},
where l <i<kanda=n—-k—j+1for1<j<n-—k Given amatrix V = (vq,...,v,), we can fill in the
bottom row of the braid diagram for g, by the vectors vy,...,v,. This uniquely determines the subspaces

for all other regions as spans (v;,...,v;) for appropriate i,j, see Figures and The conditions
Ara,k)(V) # 0 are equivalent to the relative position conditions for each crossing of 3. The conditions

A, (V) # 0 are equivalent to the fact that two flags

FO) — {0 C {(v1) C (v1,v2) C...(v1,...,0k)}

13



(o102)5 wo

FIGURE 3.1. The braid B35 = (0102)°w associated to IT3';.

and
FN) =10 C (vn) C (0n-1,0) C .. (Un—s1,.- - Un)}
are in position wg. Therefore there is a unique matrix M such that MF© is the standard flag and M F®)

is the antistandard flag.

Finally, the flags constructed as above determine the vectors v; only up to scalars. This can be fixed either

by rescaling v;, or by considering framed flags as in [4]. As a result, we obtain the following.

THEOREM 3.2.1 (Casals-Gao[4], Shende-Treumann-Williams-Zaslow[32]). Let HZ; be the subset of I}
defined by

Ab,b+1,...,b+k—l = Al(b,k) = ]., fOT 1 < b <n-— k.

Then X (Br.n) =~ Hz’)l

n-
3.2.1. Two-stranded braid varieties as positroids.

DEFINITION 3.2.2. Let H;rll be the subset of the the open positroid variety II3 ,, such that each A; ;11 =1

forall 1 <i<n-—1and Ay, #0.

LEMMA 3.2.3. Suppose that vy, . ..,ves1 is a collection of vectors in C? such that vy = (1,0) and det(v;, viy1) =
1. Then there exists a unique collection of parameters z1,. .., zy such that B(z1) -+ B(z;) = (vi41  —wv;) for
all 7.

PROOF. Let v; = (v},v?), we prove the statement by induction in i. For i = 1 we have v; = (1,0)

and vy = (z,1) since det(v;,v;+1) = 1. For i > 1 the vectors v;_1,v; form a basis of C2, so we can write

Vi1 = QV;—1 + B’Ui. Now

det (v, vip1) = adet(vi, v;—1) + Bdet(v;, v;) = —adet(vi—1,v;) + 0 = —«
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so a = —1 and we can denote z; = § and write

(3.2) Vg1 = —Vi—1 + 2;v;.
Now
1 1 1 1 o
Vigr v | [vi T Ui Z; 1
2 2 2 2
Vi, — U v =y 1 0

and by assumption of induction we have

1
REMARK 3.2.4. Note that B(Zl) s B(Zz) = Vj41-
0

LEMMA 3.2.5. Let II5 ,.4 and H;’%_H be as described in Equation and Definition then
a) H;’lh_1 is isomorphic to X (o).

b) 115 4, is isomorphic to X(o%) x (C*)*.

PROOF. a) We package the vectors vy in a 2 x (¢ + 1) matrix V. Since Aq 2 = 1, we use row operations

to ensure that the first column of V is (1,0), so we get

1 v o v}
_ £+1 0,1
V= € I3y, ;.

0 v3 -+ V7.
By Lemma [3:2.3] we can uniquely find the variables z1, ...,z such that

1 Fl(Zl) Fg(Zl,...,Zg)
0 F - Fra(z,...,20)

Note that det B;(z) = 1, so det Bg(z1,...,%;) = 1 for any braid g and

(33) Fi(Zl, ey Zi)Fi(ZQ, ey zi-i—l) — Fi+1(21, ey Zi+l)Fi—1(227 ey Zi) = 1,

15



7Z£> 7é

,z¢) = 0 (we subtract from the first row

so the matrix V indeed satisfies A; ;11(V) = 1. The matrix V belongs to H;’} if and only if Fy_1(z9, ...
0. In this case, we can use row operations to ensure that Fy(zy,...
72[)/F£_1(227 e

Fo(z,. .. , z¢) times the second row).

The braid variety X (o) is cut out by the equation {(z1,...,2) € C’: Fy(z1,...,2/) = 0}, so we get a map

from H;’é to X (cof). To construct the inverse, observe that Fy(z1,...,z,) = 0 and (3.3) implies that

Foa(z1,. . 20-1)Foi(z1, ..., 20) = 1,

s0 Fy_1(z9,...,2¢) # 0. Therefore H;:; ~ X (o).

b) Similarly to the above, we can use row operations to ensure any matrix in 13 441 has the first column

1,0). Now we define a map 137, x (C*)¢ — 113 by rescaling all other columns:
2,0+1 2,041

@ (v, 02,0005 v011) (A1, Ad)] = (U1, A, o Avegr).
The inverse map is clear, since we get
det(Ni—1vi, Aivig1) = Ni—1 i,
and the scalars A; can recovered from the minors A; ;11 for the image of .
O
ExXAMPLE 3.2.6. We have
Z1 -1 zZ9 -1 Z129 — 1 —2Z1
B(21)B(22) = =
1 0 1 0 29 -1
Z129 — 1 —Z1 z3 -1 2129223 — 21 — 23 1-— Z1%2
B(21)B(22)B(23) = =
z9 -1 1 O Z923 — 1 —Z9

This means that X (03) is associated to a point in H;:i by packaging v; in the matrix

(?11 V2 Vs

1
’U4) =
0

Z1

1

Z1R2 — 1
22

16

212223 —Z1 — 23

Zo23 — 1.



3.2.2. Standard form for two-stranded positroids. Throughout this section, we have studied var-
ious maps between braid varieties and positroid varieties. To work with such maps, it is useful to fix a

specific isomorphism between X (o¢) and H;’; 41 which is given by lemmas below.

LEMMA 3.2.7. Let M = (v1 wve ... wv,)€II§ . Thereis a unique matriz A € GL(2,C) such that
1 % ... 0
AM = =V
0 1 *
A (M
where det A = AT (M) and Aij(V) = Ay (M) - det A = M
A1 (M)
Proor. If M = (v1 wa ... wvy,),then acting on the left with the matrix S = (v; vn)fl, we obtain
S-M:A 1 v —ol vl vl vk _ 1 = 0
1n(M) v v vi v v2 0 « 1
A (M 1 0
where a = det(S)A12(M) = ﬁ Now, if we act on the left by T' = , we obtain
Aln(M) 0 0171
0 ot 0 « 1 0 1 a!
sion) (s~
Let A=T -5, then det A = (det T")(det S) = = AL (M). ]
@er)ders) = (3200 ) (5 ) = A0
LEMMA 3.2.8. Given the standard form matriz
1 % 0
(3.4) V=
0 1 *
where A i1 # 0, A1y, # 0, we may rescale the vectors (vs,...,vy,) to (Vh,...,v)) = (Asvs,..., A\pvy) such
that A}, = 1. Furthermore, such \; are unique.
PrROOF. Let
U3 vy - Agg fomcs (=1t
vy = ——, V) = s e =on || AL
3 by A Ass 11;12 LI+1

17



Note that with the above rescaling A, remains nonzero, whereas for A;Z 11 the rescaling gives the desired

result:

i—1 g
_qyi-l _qyiti-t
A;’iJrl = det <’U; ’l);+1> = det (’UZ' H A§7l+)1 Vi41 H Al(,l+)1 )

1=2 =2

=AaAD =1
O

COROLLARY 3.2.9. Given a matric M € 113 ,,, we can use Lemmas and [3.2.8 to change M to the

matric
1 =

o

V' =
0O 1 ... =

such that V' € H;}l Furthermore, if M € H;; then A;; (V') = Ay (M).

PROOF. We only need to prove the last equation. If M € H;:L with each A; ;41 = 1, using Lemma
there exists a unique V' = AM, and A;;(V') = Ayj(M)/A12(M) = Ay;(M). In particular, A; ;11 (V') =1

for all 7 and we do not require the use of Lemma [3.2.8] to rescale the vectors. O
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CHAPTER 4

Cluster algebras

Cluster algebras are a class of commutative rings which were formally introduced by Sergey Fomin and Andrei
Zelevinsky in the early 2000s. These algebras were initially motivated by the study of total positivity and
Lie algebras. Since their inception, they have emerged as central objects in various branches of mathematics
and mathematical physics including representation theory, algebraic geometry, and combinatorics. Cluster
algebras are defined by a seed ¥ consisting of a quiver, or exchange matrix, and cluster variables, which are
a finite collection of algebraically independent elements of the algebra. This seed along with a concept of

mutation generates a subring of a field 7. For more details on cluster algebras, see [?].

A cluster algebra A is defined by a skew-symmetric integer matrix B of size (n+m) x n called the extended

exchange matriz, the top n x n part B is a skew shaped integer matrix where

a  if there are a arrows from vertex i to vertex j;

Bij = —a if there are a arrows from vertex j to vertex i;
0 otherwise
Alternatively, we can consider the ice quiver () associated to B as a finite directed graph with no 1- or

2-cycles such that the number of vertices |Qp| = n + m. We can specify that the vertices are either frozen

x; € Qg, or mutable z; € Qp \ Q{;. Note that |Q£| =m.

Let F be a field with transcendence degree n + m over C, i.e., F = C(Z) where T = (z1,...,Zntm) is the

transcendence basis for F and are defined as cluster variables. We say that ¥ = (Q,) is a seed of

A.

DEFINITION 4.0.1. For each mutable vertex xj, we define the mutation of a seed ¥ as ux(X) = (ux(Q),T')

where ' = (21,...,),,,,) is given by
(4.1) g = Bis ~Bs C—wy Ak
: xR = T ; ; z,=ux; ifi#k.
Bri>0 Bi; <0
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When performing a mutation, we modify the quiver @ according to the following rules to obtain Q' = ux(Q):
(1) If there is a path of the vertices i — k — j, then we add an arrow from i to j.
(2) Any arrows incident to k& change orientation.

(3) Remove a maximal disjoint collection of 2-cycles produced in Steps (1) and (2).

We say that two seeds X, ¥/ are mutation equivalent in the cluster algebra if they are related by a finite

sequence of mutations 14, and note that uy is an involution.
The cluster algebra A C F is generated by all cluster variables in all seeds under mutation.

The geometric interpretation of a cluster algebra is a cluster variety. Define the cluster variety X =
Spec(A) as an affine algebraic variety given by a collection of open charts U ~ (C*)"*™ where each chart
U is parametrized by cluster coordinates zi,...,Zn4+, which are invertible on U and extend to regular
functions on X. If the coordinate extends to a non-vanishing regular function on X then we call it frozen,
otherwise we call the coordinate mutable. Given the condition of mutation as described above, the ring of

functions on X is generated by all cluster variables in all charts.

ExaMPLE 4.0.2. We demonstrate the process of mutation by mutating the following quiver at x,, following

the procedure detailed in Definition m Here, the variables z1, 23, x4 remain unchanged, whereas z, =
T4 + x%

T2
IND @ N @ [N @ [N
O ° O ° d . O °
T3 T4 T3 Tq T3 T4 T3 T4

4.1. Quasi-cluster homomorphisms

It is possible for a cluster algebra A to be defined by two non-mutation equivalent seeds 3,%'; i.e., A(X) &
A= AY) yet ¥ # p(X') for all p. In general, cluster structures for a commutative algebra A is not

unique.

ExXAMPLE 4.1.1. Let ¥ = (Q,T) be the seed described by

Ty —> T1 — Tp
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where the blue vertices are frozen. The associated cluster algebra is defined as

A(X) = Clay, o, aEt o) /(12 = 240 + 23).

a

Now, consider the seed X' = (Q’,7) described by

Ya — Y1 Yb

where the blue vertices are frozen. The associated cluster algebra is defined as

A = Clys, vt v vl iyl = ya + 1)

We can define an isomorphism between the two cluster algebras given by y; +— xlxljl, Ya xaxgl, Yp — Tp

and y; — x); however, the two seeds X, ¥’ are not mutation equivalent.

This particular property is defined as a quasi-equivalence between cluster algebras. We use the notion of
exchange ratios, given a mutable vertex xy in a seed ¥ the exchange ratio g is defined:
B
(4.1) 7 = HEZ—O:C_E
5,<07
DEFINITION 4.1.2. (Fraser[14], Fraser-Sherman-Bennett[I5]) Let A(X), A(X’) be cluster algebras of rank
n + m, each with m frozen variables. Let T = {z1,...,%Tntm} be the cluster variables of ¥, and 7' =

T, ... x be the cluster variables of ¥'. A quasi-cluster isomorphism is an algebra isomorphism
1 n+m

[ A(E) — A(Y') satistying the following conditions:
(1) For each frozen variable z; € T, f(z;) is a Laurent monomial in the frozen variables of Z’.

(2) For each mutable variable x; € T, f(z;) coincides with x}, up to multiplication by a Laurent

monomial in the frozen variables of 7.

(3) The exchange ratios are preserved, i.e., for each mutable variable x; of ¥, f(¥;) = Uj.

By the main result of [14], it is sufficient to check the conditions of quasi-equivalence in one cluster, and

they will automatically hold in every other cluster.
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4.2. Cluster structures on open positroids

In 2003, Scott [29] established that the homogeneous coordinate ring of Gr(k,n) denoted (C[C/ﬁr(k, n)| has a
cluster structure using Postnikov arrangements. In this paper, will we use a different construction using the
rectangles seed X, ,, which generates the cluster structure for the Pliicker ring Ry, ,, isomorphic to (C[é\r(k, n))
as detailed in [I3] Section 6.7]. The cluster structure in the Pliicker ring Ry, ,, is generated from the mutations
on the rectangular seed X ,,. Unlike [29], we always assume that the frozen variables are invertible, in fact,

we are considering a cluster structure on C[II} , ].

We first construct the quiver @y , where vertices are labeled by rectangles r contained in the k x (n — k)
rectangle R along with the empty rectangle @. The frozen vertices are defined as rectangles of size k x j for
1<j<n-—ksizeix (n—k)forl <i<k, and ). The arrows connect from the 7 X j rectangle to the
i x (j+1) rectangle, the (i+ 1) x j rectangle, and the (i — 1) x (j — 1) rectangle with the conditions that the
rectangle has nonzero dimension, fits inside of R and does not connect two frozens. There is also an arrow

from the @ rectangle to the 1 x 1 rectangle, see Figure

Each rectangle r contained in the k x (n—k) rectangle R corresponds to a k-element subset of [n] representing
a Pliicker coordinate. This correspondence is determined by positioning r in R such that the upper left corner
coincides with the upper left corner of R. There exists a path from the upper right corner to the lower left
corners of R which traces out the smaller rectangle r, with steps from 1 to n, where the map from r to I(r)

is given by the vertical steps of the path, see Figure Define
"™ = {Ap(y @ 7 rectangle contained in k x (n — k) rectangle}
We may now define the rectangles seed Xy, = (757, E(an))

We can summarize (and slightly rephrase) the above constructions as follows. We define ordered sub-

sets
(4.1) I(a,i) ={a,a+1,...,a+i—1,n—k+i+1,...,n}

wherea =n—k —j+ 1.

THEOREM 4.2.1 (Scott [29]). The cluster variables in the initial seed are given by the minors Ajp.q for

1<a<n—Fkandl<i<k, and an additional frozen variable Ap_p41,... n. Furthermore:
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FIGURE 4.1. The quiver ()33. Vertices are labeled by rectangles contained in a 3 x 5
rectangle. The grid is arranged such that the rectangles width increases from left to right
and the heights increase from top to bottom.

a
7 a+1
a+i—1 k
n—k+i+1
n—1 R
n
n—k

FIGURE 4.2. The Pliicker coordinate Ay, corresponding to a rectangle r is given by the
vertical steps in the path from the upper right corner to the lower left corner of the rectangle
R of size k x (n — k) that cuts out the rectangle r positioned in the upper left corner of R.

1) The variables Ay, are frozen for a =1 and i = k, and mutable otherwise.

2) The quiver Q. consists of the following arrows:

AI(a,i) —— Al(a—l,i)

(4.2) l \ l

AI(a,i+1) — AI(a—l,i+1)

3) There is an additional arrow Ay _g41,.. . — Artn—k,1)-
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Agrg — Ayrg Azrg Agrg — | Aqrsg
Aseg — Aysg Asyg Agzg — | Aqgg

N N N AN

| Aser | | Aus | | Asus | | Agsd |

FIGURE 4.3. Cluster variables in Gr(3,8) corresponding to the rectangles seed.

See Figure H for the ﬁ§,8 example and Figure for the general case.

Below we will also use the cluster structure on II} . The corresponding quiver can be obtained from Qy,,, by
deleting the vertex (), and the cluster variables in the initial seed are given by the ratios Al(a,i)/Anfkhkl,..qn-

More precisely, we have the following:
PROPOSITION 4.2.2. We have a quasi-equivalence of cluster varieties
(4.3) 0y, ~C* x I},
and the corresponding quasi-equivalence of cluster algebras
C[} ) = CIAY 4iy,..] ® CIIR ).

PROOF. This result is well known, but we provide a proof for the sake of completeness.

Define the map f : ﬁzn — C*xIIy ,, by sending each Pliicker coordinate Ay(, 4 to ﬁl(w) = Arai)/Dn—kt1,..n-
We note that this map is well defined since Ay, _g11,..n = Ar(n—k41,k) i nonzero by definition of ﬁzn We
show that this map defines a quasi-equivalence by verifying that it preserves exchange ratios in the cases

illustrated in Figure [1.4]

(a) Left corner: In (C[ﬁzn], the mutable variable Aj(,_j 1) in the left corner has a total of two incoming
arrows and two outgoing arrows. However, under the map f the cluster variable Ay, _j41 ) is mapped to
1, and therefore, the arrow from ﬁl(n,k+17k) to El(nfk,l) vanishes. We now have that the mutable variable

A I(n—k,1) i (C[Hz,n] has one incoming arrow and two outgoing arrows. However, we see that the exchange
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. AI(n—k,,l) —_ Al(n—k—l,l) —l—> AI(n—k—Z,l) — Al(n—k—fi,l) 3 AI(.‘S,l) —— AI(Z,I) e

T N i St BN NN

AI(n—k,?) —— Al(n—k—l,2) —= AI(n—k—Z,Z) — Al(n,—k—.‘i,2) 13 AI(:;,z) —— AI(2,2) e

R U SN N

Arn-k3) — ADrm—k-1,3) —> Arm-k—-23) — Arn-k-33) Arag — Arez —— A,

N N N
‘ 3 Arigay — Apea) —

AI(n—k,zl) — AI(n—k—lA) e Al(n—k—2,4) e Al(n,—k—.‘i,él)

Artnokk-2) — Drtnk—1k-2) —> Dfn—k-2k-2) — Dr(nk-3k-2) - Arar2) — Drr-2) —>
[ N A N N (R N N

Artnokk-1) — Drtnk—1k-1) — Dfn—k-2k-1) — Drn-k—3k-1) - Arar-1) — Drp-1) —>
[ N A N N (R N N

‘Al(n—k.k) ‘ ‘Al(n—k—l,k) ‘ ‘Al(n—k—z.k) ‘ ‘Al(n—k—&k) ‘ ‘AI(B,k) ‘ ‘Amz,m ‘ ‘Al(l.k) ‘

FIGURE 4.4. Cluster variables in ﬁ,‘;n in the rectangle seed.

ratios under the map f are equivalent:

Arn—k—1,2)
Ar(n—k+1,k) _ Al(n—k—1,2)AI(n—k+1,k) —n
- - I(n—k,1)"°

yzl(n—k,l) T A (m—k—1,1) Ar(n—k,2)
Ar(n—k+1,k) DI(n—k+1,k)

Artn—k—1,1)A1(n—k2)

(b) Boundary: Either 2<a<n—k—landi=1,ora=n—kand2<i<k-—1.In (C[ﬁz’nL the mutable
variable Ay, ;) has two incoming arrows and two outgoing arrows. Under the map f, the mutable variable
A I(ay) 0 (C[Hzm] still has two incoming and outgoing arrows where each of the corresponding variables have

a factor of (AI(n_k+17k))’1 which cancels in the computation of the exchange ratio Y

(c) Interior: Similarly to the boundary case, the mutable variable Ay, ;) in (C[ﬁzn] and KI(W) in C[II ,,]
both have three incoming arrows and three outgoing arrows. Therefore, the factor (A 1(n—k+1,k))71 cancels

out in the computation of the exchange ratio Y

Thanks to Proposition we will freely translate various results and computations between the cluster

[e]

structures on ﬁzn and on II} . In particular, we will always compute the exchange ratios in ﬁk,m since they
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FIGURE 4.5. Section of the triangulation of Ug,,,, see Figure between the vertices 1, ¢ —
1,/ and £+ 1

coincide with the ones in II} . If we apply the additional condition that the Pliicker coordinate associated
to @ is equal to 1, we can neglect that particular cluster variable and obtain a cluster structure for (C[Hgﬁn].
In [21I] we generalize this cluster structure to skew shaped positroid varieties which are described by skew
Young diagrams contained in the k x (n — k) rectangle R. Which is consistent with previous results. See
[16] for a complete description of the construction of cluster structures for general positroid varieties using

Postnikov diagrams.

THEOREM 4.2.3 (Scott[29], Galashin-Lam[16], Serhiyenko-Sherman-Bennett-Williams[31]). Any open positroid

variety has a cluster structure.

4.3. Cluster structure for two-stranded braid varieties

For positroid varieties II5 ,,; we obtain a cluster variety of type A,—» with £+ 1 frozen variables. We assign
the vectors v; from Lemma to the vertices of a regular polygon P. The cluster charts in 13 44q are
determined by triangulations of P. Given a triangulation, the edges between the vertices i and j correspond

to cluster variables determined by the Pliicker coordinates A; ; = det(v;, v;).

LEMMA 4.3.1 (Hughes[23]). In H;:;H for all i < j we have
A

ij = Fj—ic1(Zig1, - 2j-1).

In particular, A; iyo = Ziy1.
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Proor. Using the results from Lemma we have the following relations
B(Zl)B(ZZ) = (Ui+1 —’Ui)
B(Zl)B(Z]) = (Uj-‘rl —Uj)
Given that i < j, we then rewrite
B(Zl)B(ZZ)B(ZZ+1)B(Z]) = (’Uj+1 —Uj)
(1)1'_;'_1 — ’Uz‘)B(ZH_l) N B(Zj) = (Uj+1 — Uj)
From Theorem the product of the braid matrices from i 4+ 1 to j can be expressed as

Fi_i(zig1s--25)  —Fj—im1(Ziv1, ..o, 25-1)
B(Zi+1) e B(Zj) =

Fj i 1(zit2,---,25) —Fj_ia(ziyo,...,25-1)

Which allows us to rewrite the previous equation as

Fi_i(zig1,---,25) —Fj_i1(zig1,...,2j-1)
(vigr  — i) =(j1 —vj)
Fij_io1(zive, -, 25) —Fjoia(ziga, ..., 25-1)
Here we obtain the equation
—v; = —Fj,i,1(2i+1, ey ijl)viJrl + Fj7i72(zl'+2, ey ijl)vi

By finding an expression for v;, we may now determine A,;, since determinants are linear, we find that

Aij = det (’Ui ’Uj)
=Fj_i-1(2it1, - zj—1)det (v; vig1) — Fjoi—o(ziq2,..., 2zj—1) det (v; ;)

=Fj_ic1(zit1, -5 2j-1)(1) = Fj_i—a(zit2, .-, 2j-1)(0) = Fj_i—1(Zig1,-- - Zj—1)

To see that A; ;12 = 2i41, we see that Ayj = Fii9)—i—1(2i+1) = F1(2i41) = 2zi41 as desired.

For a < b < ¢ < d we have the Plucker relation

(4.1) AgeApg = AapAca + AgqgApe.
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A special case of (4.1)) is
AVIYAVISWARIE WAV AR VAV YR IS WAVY SRVAVARY)

. . o,1 .
which in HN 41 translates to
Ajpze =D -1+ D o4

For 7 =1 it is indeed equivalent to our recursion ([2.1)), see Figure

Outer edges of P correspond to frozen variables, while diagonals correspond to mutable variables. In partic-
ular, 115, ; has {4+ 1 frozen variables, while in H;:} 41 we specialize ¢ frozen Pliicker coordinates, A; ;11 =1
for 1 <4 </ and therefore can be neglected. Thus H;:; 41 has one frozen variable Ay ¢ 1 which we denote by
w. To generate the quiver, in each triangle of the triangulation we connect the cluster variables by arrows

in clockwise order. Mutations correspond to flips of triangulations due to the Plucker relation.

Consider the special chart Ug,, in Hg’l} 41 corresponding to the “fan” triangulation where the /-2 diagonals are

defined by A, ; for 2 < ¢ < ¢, as seen in Figure Equivalently, the chart Uy, is given by inequalities

Uan = {Fi—1(22,...,2) #0,1 <i <A} C X(O’e)-

In this chart, the quiver is precisely Ay_o with one frozen variable w. From Lemma 7?7 the mutable cluster

variables are precisely w; = F;(z2,...,2+1) and the frozen variable is w = wy_o = Fp(22, ..., 2¢+1)-

REMARK 4.3.2. In order to obtain the cluster structure as in Section we triangulate the (¢4 1)-gon with
all £ — 2 diagonals are defined by A; 41 for 2 <i <0 —1.
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o

-3
Al
(A
I
! : L—2
4 / \ -
// l
) 1
) 1
/ 1
/ — — —
w3  We—5
3 L—1
w2 Wp—4
w1 Wy_3 /
2 \ We—o ¢
1 w L+ 1

FIGURE 4.6. The special chart Ug,, € H;:;H where each of the /—2 diagonals are have fixed
endpoint at v;. The Plucker coordinates, or cluster variables, correspond to the weights of
the edges given by either a blue square (frozen vertices) or a green circle (mutable vertices).
The quiver of the cluster chart is generated by clockwise orientation of the colored arrows in
each triangle of the triangulation. This procedure produces the quiver Ay_1, seen in purple,

with w as the singular frozen variable. In the terminology of [5], this chart is given by the
right inductive weave.
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CHAPTER 5

Splicing map

In earlier chapters, we explored braid varieties from both algebraic and geometric perspectives, established
their relationship with positroid varieties, and examined their cluster structures. These results help us
have a detailed understanding of individual braid varieties, in particular two stranded braid varieties, and
they also raise natural questions about how more complex braid varieties can be constructed from simpler

components.

This chapter introduces a splicing map, a construction that formalizes how braid varieties can be “glued”
together in a way that reflects the combinatorics of braid composition. The idea is motivated by the operation
of multiplying braids, such as composing torus braids T'(k, s) - T'(k,t) — T(k, s+t), which gives rise to larger
braid diagrams from smaller ones. This multiplicative structure has a geometric counterpart in the world of

braid and positroid varieties, and the splicing map aims to capture that structure explicitly.

From the perspective of positroid varieties, the splicing map provides a map between open positroid strata:

o [} o
IR s X M pr = g gy st

and we show that this map preserves the expected dimension. The construction involves manipulating Pliicker
coordinates in a controlled way and reassembling flags or vector configurations across overlapping coordinate
charts. To make this concrete, we define local charts U, C I}, ,, where the splicing map is well-behaved, and

we carefully analyze how the map acts on vector columns in the associated matrices.

We also study the map from the point of view of the cluster structure. Although the splicing operation
is not a cluster morphism in general, it interacts well with cluster coordinates and provides insight into
how cluster variables behave under such gluings. In some cases, we can explicitly track how splicing affects
frozen and mutable variables in cluster charts, especially those modeled on triangulations in the context of

surfaces.
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Throughout the chapter, we work through examples to illustrate the splicing map and the geometric intuition
behind the map. They also serve to demonstrate the utility of the splicing map as a tool for constructing new
varieties and for studying the recursive structure of braid varieties. This map will prove useful in Chapter 6

in studying the cohomological structure of braid varieties.

5.1. Splicing map for torus links

Let II} ,, be the open positroid variety in the Grassmannian Gr(k,n).

DEFINITION 5.1.1. Given 2 < a < n — k, we define an open subset U, C II} , by the inequalities

(5.1) Us={V e, : Apaiy(V)#0, 1 <i <k —1}.

For0<s<i—1and 0 <t <k —17—1 we define ordered subsets
I'(a,s,i) ={a,...,a+s—1l,a+i,a+s+1,...,a+i—1,n—k+i+1,...,n},

Il (a,s,1)={a,...,a+s—1l,a+s+1,...,.a+i—l,a+in—k+i+1,...,n},
and
I"(a,t,i) ={a,....,.a+i—1,n—k+i+1,....n—t—1l,a+i,n—t+1,...,n},
I’ (a,t,i)={a,...,a+i—l,a+in—k+i+1,....n—t—1,n—t+1,...,n},
Note that I'(a, s, ) is obtained from I(a,%) by replacing a + s by a + i (without changing the order), while

I"(a,t,i) is obtained from I(a,4) by replacing n — ¢ by a + 4. Also, I'(a, s,4) and I

sort

(a, s,4) are related by

an (i — s)-cycle while I”(a, t,4) and I ,(a,t, i) are related by a (k —i — 1 — t)-cycle.

LEMMA 5.1.2. Given a matriz V € U, for all 1 <i < k — 2 we have an identity

AI (a,s,?) e 1AI”atl)
Va+i = Va+s + n—t
g AI(a ) Z
k—i—1

Z z s—1 au!t(a‘s 1) st i k‘ i—t au!'t(a’7t7i)v .

- U. S n—

AI(a 1) Al(a,i)
PROOF. Since Aj,4)(V) # 0, the vectors vq, ..., Vati—1,VUn—ktitl,---,VUn SPan C*. We can uniquely

write v,4; as linear combination of these:

Va+i = ToVq + -+« + Ti—1Vati—1 + Yk—i—1Vn—k+it+1 + - -« + YoUn.
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Now the coefficients zg, y; are determined by Cramer’s Rule:

Brasd) _ (_qyis—t Dlianlasi) - A1) _gye-ice Bl (atd)

Ty= ———— = ,
Af(asi) Af(ai) Af(as) Af(asi)

EXAMPLE 5.1.3. For a = 3 the open subset Us C II3g is defined by Asss, Azzs # 0, indicating that the
vectors vs, v7,vg span C3 and the vectors vz, vy, vg span C3. Using Cramer’s rule we may express the vector

vy as
Ayrg ; Asysg y Asry ; Ayrg y Asyg ; A347
= 3 7 g = 3 7 —
Azrg Azrg Azrg Azrg Azrg A378

EXAMPLE 5.1.4. The open subset Us C II5 ;, is defined by
Us={V ellg 10: A378910(V),A348910(V),A345910(V), Az45610(V) # 0}
From this collection of nonvanishing Pliicker coordinates we have
C° = (vs, vr,vs,v9,v10) = (v3,4, Vs, Ve, V10) = (U3, Vs, Us, Vg, V10).

By Cramer’s Rule, we can expand vy, vs, vg in the respective bases:

oy — A4 789,10 A34.89,10 A3 479,10 A3 47810 A3z 47,89 ;
L= - - 10
As37.8910 As378910 As37809.10 As37809.10 As7.89.10
Ay 589,10 A3538910 As3.45910 As3.45810 A3 4589
Vs = — vs + vg + vg — vg + V10
A3 489,10 A3 489,10 A3 489,10 A3 489,10 A3 489,10
Ay56,9,10 A3.56.9,10 As3.46.9.10 A3.4.5.6,10 As3456,9
v = vg — v4 + vs + - V10
A3 459,10 A3 459,10 A3 459,10 A3 459,10 A3459.10
DEFINITION 5.1.5. Given a matrix V = (v1,...,v,) in U,, we define two matrices V1, V5 as follows:
(5.2) Vi=a, - ytn), Vo= (1, .. ,Vay U1 ..., Uk—2,Vp)
where
b—io1
AI (a,s,i) AI” 21 (ast,i)
(5.3) = Vgti — g N g A, Un—t
—_ I(a,?) =0 I(a,i)

The second equation in (5.3)) follows from Lemma
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ExaMmpLE 5.1.6. Continuing Example [5.1.3] we decompose the matrix
V:(Ul (%) V3 Vg4 Vs Vg Uy ’Ug)
into
Vi=(vs va vs vs6 vr wg), Va=(v1 v2 vz u ug)
where

Ayrs ; Asyg ; Asyr ;
3 = 7 — 8-
Asrg Asrg Asrg

LEMMA 5.1.7. Assume that V € U,. Then for 1 <i < k — 2 the intersection of two subspaces

<Uaa Va41y--- 7'Ua+i> N <Un—k+i+1a Un—k+i+2y- - - 7'Un>-

is one-dimensional and spanned by the vector u;.

PROOF. By (5.3) and Lemmal5.1.2|the vector u; is indeed contained in this intersection. Since Ay, 41y #

0, the vectors vg,...,v.4; are linearly independent and hence w; # 0. Since Ay ;) # 0, the vectors
Un—ktitls- - Upn are linearly independent as well and altogether the two subspaces span C*. Now
dim(Vg, Vat1s -« -5 Vati) N (Un—ktitl, Un—ktit2s -, Un) = G+ 1)+ (k—i) —k=1.
|

LEMMA 5.1.8. a) We have

Vo ANUL AN - AU = Vg N Vgg1 N N Vg

b) We have
Af(ak—1)
Uy N NUgp—o NV = Tvn,kﬂ-ﬂ N ANUp_1 N\ Up.
I(a,i)
PRrROOF. a) By (5.3) we have
Ui € Vati + (Vas -+, Vario1),

SO

Vo ANUL Ao Aty = 0g A (Va1 + o)A (Vapi ++00) = 0a AVggp1 A A Ui
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b) Similarly, by the second equation in (5.3) we have

Aprak—i—1,4)

u; € Un—ktitl + (Vn—kyite, -, Un).

Al(a,i)

Note that I”(a,k —i — 1,4) is obtained from I(a,i) = {a,...,a —i—1,n —k+ i+ 1,...,n} by replacing

n—k+i+ 1 with a + 4, so in fact I"'(a,k —i—1,i) = I(a,i + 1). Now

Ariai AN T
Ui A ANUp_g AUy, = <Mvnk+i+1+~-~> A A (I(*kl)vnl_|_“_) A vy =
Ar(a,) Ar(a,k-2)

Af(ait) Arai+2)  Al(ak-1)

: Un—k4i+1 N - A Up.
Ari)  Ari+)  Arak-2) A

The factors in the coefficient cancel pairwise except for Az x—1)/Ar(a,i)- O

LEMMA 5.1.9. IfV € U, then Vi €115,y and Vo € 115 .

PROOF. The first statement is clear by the definition of U,. To prove the second one, we need to compute

the following minors:
1) Ay, p+k—1(V2), b+ k —1 < a. This minor does not change, so Ay pyr—1(V2) = Ay prx—1(V) # 0.
2) Ay, pyk—1(Va),b<a<b+k—1 Leti=b+k—1—a, then by Lemma [5.1.8(a) we get

Ap prk1(Va) =vp Ao Avg Aug A+ Ay =

Vp N ANUg ANVgg1 N NUgqs = Ab,.“,b-',-k—l(v) # 0.

3) Aq,.atk—1(Va) =g Aur A+ - Aug—a AUy = Ug A -+ AVgqi—2 A vy # 0 by definition of U,.

4) Finally, we need to consider the minor u; A -+ A ug—o A v, A vy ---v; which by Lemma b) equals

Ar(ak-1)
Ar(a,i)

AV T

Un—ktitl N AUy AV 05 = N
I(a,i

Ap_ktit1,.n,1,0 7 0.

THEOREM 5.1.10. The map ®, : V — (V1,Va) defined by (5.2) is an isomorphism between U, C I, and
the product 11y |, < I ) 4.
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REMARK 5.1.11. We have dim U, = dimII} , = k(n — k) while

dimIIy g +dimIly 4y =k(n—a+1—-k)+k(a—1)=k(n—k).

Proor. By Lemma the map ¢, : U, — Hz,n—a+1 X Hz7a+k_1 is well defined. We need to construct
the inverse map, reconstructing V' from V; and V5. Since V; and V5 are both defined up to row operations,
we need to choose appropriate representatives in their equivalence classes and make sure that they glue

correctly to V.

For V7, choose a representative in the equivalence class arbitrarily and label the column vectors by (vg, ..., vy).
Since V1 € II} |, 14, we have Ay, ;) # 0. By Lemma we can define the vectors uq, ..., ug—o by (5.3)).
Applying row operations to V; is equivalent to the multiplication by an invertible (k x k) matrix A on the

left. It transforms v; to Av;, multiplies all the minors of V; by det A, and transforms u; to

i—1 i—1
Ap(q,j,5) det(A) Ari(ai)
5.4 i Avgpi — Y L (Avgyy) = A ai—gi’}'a‘zfli.
( ) u; — AV + = Al(ayi) det(A) ( v +j) Va+ ot AI(@J’) v, +J u

By Lemma a) we get Vg AUq « -+ Up—2 AUy = Vg AVqt1 * * * Ugtk—2/\Up,. This is nonzero since V; € U} a1
so the vectors vq,u, ..., u,_2,v, form a basis of C¥. Therefore we can uniquely find a representative for
V of the form Vo = (v1,...,0a—1,Va, U1, .., Up—2,V,). Indeed, if Vi = (v},...,v, ;. _;) is some other
representative then
/ / —1y,7
Vo = (Vas 1y .oy Uk—2,00) (Vg - Vg 1) V.
By (5.4), row operations V; — AV; also change Vo — AV,. Now we can define V= (v1,...,04—1,0q,..,Up)

where the vectors vy,...,v,_1 are the first (a — 1) columns of V5 and (vg,...,v,) = Vi. By the above, this

is well defined up to row operations.

Similarly to the proof of Lemma[5.1.9} one can check that V € II} ,, and V1 € IT} ,_, |, immediately implies

that V € U,. This completes the proof. O

5.2. Cluster algebra interpretation

We would like to compare the quivers and cluster coordinates (4.2) for the matrices V, Vi and Va, which
we denote by Qv,Qv, and Qv,. By construction, the empty rectangle in both Qv and @y, corresponds
to Ap_k+1,...n(V). On the other hand, by Lemma a) the empty rectangle in Qy, corresponds to the
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minor
Arar—1)(Va) =va Aur A+ tp_o ANvp = Vg AVag1 A Vagp—2 ANUn = Dpap—1)(V) = Ara k—1)(V1)
which is connected to Ag_1,1(V2).

Clearly, the open subset U, C II} ,, is defined by freezing the cluster variables Aj(,4) (V) in Qv, which are

identified with Az ;)(V1). We need to analyze the behavior of all other minors in Qy under ®,.

LEMMA 5.2.1.
(a) If b > a, then Arpi)(V) = Arp—at1,i)(V1)-

AI a,k—1
(b) If b < a, then ﬁAI(b,i)(V) = A1p,i)(V2)-

PRrOOF. Part (a) is clear from (5.2). For part (b), we first assume b+ ¢ — 1 > a and write
Ar,iy(Va) =vp Ao vg A(ur A At (q—pg1)) A (wi A= ANug—o A vy).
By Lemma [5.1.§ we get

Ug AUL A AU (a—b+1) = Va N Vat1 A A Upgi—1

and
A _
ui/\"'/\uk72/\vn = Mfl},r7(7]€<‘r7;+1/\.../\7_}”’71/\1)7747
Ar(ai)
S0
A ak— A ak—
Arp,iy(Va) = %(vb A Vi) A (Une kit 1 A  AVp—1 Avp) = %Al(b,i)(v)
I(a,) I(a,i)
Similarly, if b+ ¢ — 1 < a then
A](bﬂ;)(‘/g) =Vp A Vpgic1t A (U A Aug—o Avy) =
Ara Aria
I(a,k—1) (o A+ Upgri1) A (Un—ppigt Ao AVp_1 Avy) = MAI(M)(V)
Ar(ai) Ar(ai)
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EXAMPLE 5.2.2. For a = 3, k = 3,n = 8 we get Asrsg, Agsg # 0, as in Example We have V; =

(vs, v4, V5, Vg, U7, v8) and Vo = (v1,v9,v3,u,vs). The quiver Qv after freezing Agzs and Agyg has the form:

Agrg — Ayrg —— A378 — Aorg —— [ Aqrs

N NN

Aggg —— Aysg — | Azyg | — Aozg —— | Aqgg

N NN AN

| Aser | | Ayso | | Asus | | Agsy |

while the quivers @y, and Qy, have the form

Agrg — Ayrg —— A378 Agyg ——

N N

Aggg — Aysg — | Aszgg Agzg — | Aqgg

NN N

| Aser | | Aus | | Asus | | Aoz |

Note that we identified Az,s = Aszys. We claim that the two cluster structures are related by a quasi-
equivalence. Indeed,

Asyg

Asug = Azag, Aogy = Aozg, Agyg = alarg, Ay = alq7g where a = o
378

and all other cluster variables are unchanged. Therefore all cluster variables are the same up to monomials

in frozen. We need to check the exchange ratios:

yous(Va) = As348A198 ! A128Az43 _ Aq28A37s — yors(V)
“ ANPEVADLT Aj7gAozs Aq7gAass '

while

yoss(Va) = AgysAizz QA278A123 ~ Ao7sAizAgys Yoz
238(V2) = = = =
JANPYYACEW A1ogAozs AqogAo3sAsrg

(V).
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Since the exchange ratios agree, we indeed get a quasi-equivalence.

We are ready to state and prove our main result.

THEOREM 5.2.3. The map @, : V +— (V1,Va) defined by (5.2) is a cluster quasi-isomorphism between

U C H and the product Hk n—ag1 X ﬁz’aﬂcil with identified frozen variables Ag(qx)(Va) = A1 r—1)(V1)-

s

As a consequence, @, yields a cluster quasi-isomorphism between U, and the product 113 . X 11} 1y 4.

PROOF. The second statement follows from the first by Proposition so we focus on (7; By Lemma

5.2.1(a) Scott minors Ay (V1) are the same as the minors in the left half of Qv .

We need to analyze the right half of Q. By Lemma b) all minors in the right half are multiplied by
some monomials in Ay, ;) which are frozen on U,. It remains to compute the exchange ratios. We have the

following cases:

(a) Interior: b < a, i > 1. The piece of the quiver Qv around Ay, ;) has the form

Ap I(b+1,i—1) %Al(bz 1) 4>Al(b 1,i—1)

Lo~ ™~

Arpt1,) — Drwi) —— Drop-1,)

I N

Arpy1itny — Aty — Arp-1,i+1)
The exchange ratios are equal to

Arri—1)Arb41,0) A1(b—1,i+1)

Y1(bi) =
Tb.) Al(bfl,i)AI(b’iJrl)AI(b‘Hﬂ-*l)

so by Lemma we get
yI(b,i)(V) AI(a i—1) AI (a Z)AI (a,i+1)

=1.
Yrony (V) DrainDi(a,isn)Dr(a,i-1)

and yr(.4)(V) = y1(s,:(V2). Note that Ay, 1) cancels out.

(b) Top boundary i = 1:
Arepyr,y) — A1) — Are-1,1)

s b >~ |

Arpr12) — D1 — Arp-12)
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The exchange ratios are equal to
Arpr1,)A10-1,2)
Arp—1,0A1(0,2)

Yrv,1) =

so by Lemma we get
yl(b,1)(V) o AI(a,l)AI(a,2)

= =1.
i, (Ve)  AranAre2)

and Y7, (V) = yr(v,5)(V2). Note that Ay, —1) cancels again.

(c) Left boundary, b =a — 1:
Al(a—l,i—l) — AI(a—Z,i—l)

-

Ara—1,) — Ara-2,)

-

Ara—t1i41) — Ara—2,i11)

The exchange ratios are equal to

Aga—1,i-1)(V2)Ara—2,i41)(V2)
Ara—2,i(Va)Ara—1,i4+1)(V2)

Yr(a—1,5)(V2) =

so by Lemma [5.2.1| we get

Aty (V) A1y (V)] CAra-1,i-1)(V)Ara—241)(V)
At(ai(V)Ar@a,ir (V) Aga—2,0)(V)Ara-1,i41)(V)

_ At(a,iy(V)Ara—1,i-1)(V)Ar(a—2,i+1) (V)
AI(a,i—l) (V)Al(a—2,i) (V)Al(a—l,i—i-l) (V)

(d) Corner, b=a—1,i=1:

Yr(a—1,5)(V2) =

= yl(aq,i)(v)-

Ara-11) — Ara-2,1)

S

Af(ak—1) Ara-12) — Arwa-22)

Here we identify Az p—1)(Va) with Azqx—1)(V) = Ar,k—1)(V1) as above. The exchange ratio is equal to

Atak—1)(V)Ara—2,2)(V2)
Ara—2,1)(V2)Ara—1,2)(V2)

Yra—1,1) (Vo) =

so by Lemma we get

Agtar_1(V) - Ara—22)(V)Arar-1)(V) _ Arany(V) _ Ara,2)(V)
((l, - ) AI(CL,Q)(V) AI(E*Q,I)(V)AI(a,kfl)(V) AI(G*I,Q)(V)AI(a’kfl)(V)

39




_ A2 (V)Aran(V) — (V)
AI(a—Q,l)(V)AI(G_LQ)(V) (a—1,1)

5.3. Relation to braid varieties

In this section, we describe the map ® in terms of braid varieties. Recall from Section that g =
(01 ...0%_1)" Fwy is the braid associated to X (8) ~ HZ% Then the process of freezing Ay, corresponds
to severing the braid 8 at flags () and FV) where A = (a—1)(k—1)+1and N = (n—k)(k—1)+ (g) +1.

Upon severing the braid at the given flags, we disassemble the braid into two separate braids decorated by

the flags

(5.1) FA) 2y p(A+D) | p(N-1) 51 7(N)

and

(5.2) FO 21, pO). L FlAD) Bt p(A) oy FAG) 2y FAT() 1 5y p (),

The first braid is decorated by the flags between F(4) and F) and is associated to X (f;) where 3, =

n—k—atly, Note that the conditions defining the open subset U, guarantee that the flags F(4)

(0’1 oo Uk—l)
and FW) are in position wy, so as above there is a unique matrix M such that MF(Y) is the standard flag

and MFW) is the antistandard flag.

For the second braid, we “splice” together the flags F(4) and FN) by adding the sequences of flags F
associated with the half twist on k strands. See Figure 7?7 for an example of the decomposition of the braid
B into its two separate components, and Figure [5.2] for a depiction of the local splicing effect on the flags.
Stitching the flags F(4) and FV) together with the half twist fills the bottom row of the braid with k — 2
vectors uy, . .., ug—2, and the intermediate flags F(A+9) are uniquely determined by F(4) and F). Through

)a—l

this process the resulting braid is 82 = (o1 -+ 0k—1 w.

Finally, we can compare the cluster structures on braid varieties. The cluster structure on HZ}L is obtained

from (4.2) by removing the frozen variables Ay ) from Qy .

THEOREM 5.3.1. The map ®, : V — (V1, Va),

— Up,
Vlz(vaa"'7vn)a %:(Ulw"»vavulv"'vuk27A>
I(a,k—1)
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(vs)

]_-Eo) FA) FW)

(A) The braid associated to Hgé We select the flag F) given by 0 C (vs3) C (vs,v4) C C® to sever the braid for
the splicing map since the cluster variables which intersect F 4 are Asys, Asrs.

(vs)

F(A) FWV)

(B) The braid corresponding to Vi = (’03 V4 Vs Vg U7 Us) e Hg:é under the splicing map ®s.

(U8>§

F(0) FA) FN)
(¢) The braid corresponding to Vo = (Ul v2 U3 U ﬁ%) S Hgé given (u) = (v3,v4) N (v7,vs) under the
splicing map ®s.

FIGURE 5.1. Freezing Asys, Agrs in the braid associated to X (f53g) ~ Hgé

<U37U4)v5av6> <U77'U87U97'U10>

1
' (vs,vg,05) (vs,v9,v10)
1

<’U97 'U10>

FIGURE 5.2. Braid diagram and flags for Example Here (u1) = (vs,vq) N
(v7, V8,9, v10), (u2) = (v3,va,v5) N (vs, V9, v10) and (us) = (vs, va, vs,v6) N (vg, V10)-
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o,1

defines a quasi-cluster isomorphism between Ul = U, N HZ’; and HZ’;_GH X I k-

Note that we do not need to change the matrix V; since all of its consecutive minors are still equal to 1.

Also note that by (??) we get dim U} = dim HZ; = (k—1)(n — k) while

dim T, oy + 105 = (k=D —a+1—k)+(k—1)(a—1)= (k= 1)(n—k).

5.4. Splicing two-stranded braid varieties

We now describe the splicing map for the case £ = 2. Since k — 2 = 0, no wu;’s are required in the splicing

map. We refer to the two-stranded splicing map as a (diagonal) cut map.

Let P be the (£+1)-gon corresponding to the braid variety X (¢*). We can choose a diagonal D;; which cuts
the polygon P in two pieces, a (j —i+ 1)-gon Py(4,j) and a (£ — j + i+ 2)-gon Pa(4,j). These correspond to
braid varieties X (¢77%) and X (a*=7+*1) respectively. We will refer to this procedure as a diagonal cut. If
we denote a = j —iand b=/¢ —j+i+1 then a+b= ¢+ 1. See Figure [5.3] for an example of the cut map

on Uy
THEOREM 5.4.1. Performing one diagonal cut on P along D;; defines an injective map
-1 . a b a+b—1
P X(0") x X(07) — X(o )
and its image is the open subset {A;; # 0} in X (ooT071).

PRrROOF. We use the isomorphism H;:l} g =X (c*) from Theorem @ We first describe the inverse
map

(I)ij : {AU 7& O} — X(O'a) X X(O’b).

Let V € H;’;H be a 2 x (£+1) matrix, choose some i, j such that 1 < i < j < ¢+1 where (i,j) # (1,£+1), to
perform the diagonal cut of the (¢+ 1)-gon resulting in two polygons P, and P, where P, is a (j —i+ 1)-gon
and Py, is a (€ — j + ¢ + 2)-gon. Assume that A;;(V) # 0. Then we can decompose the matrix V into two

matrices:

Vi=(v; ... v;)€Mat(2,a+1)
Vo = (’Ul 7 B ’Ug_,.l) S Mat(2, b+ 1)
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j+1

j+2

—1
A28y,

FIGURE 5.3. Triangulation of (¢+ 1)-gon corresponding to the braid variety X (o) with its
associated quiver. A cut A;; is depicted between vertices ¢ and j. The cluster variables from
the particular triangulation are the written in black and the rescaling factor of the cluster
variables from the cut A;; are written in red.

Let us prove that V; € H;:}H_l. As it happens Ay, 41 (Vi) = Apyicimi(V) = 1 for 1 < m < a, and
Ay 441(V1) = Ay;(V) # 0. We use the isomorphism H;:;_H ~ X (c?%) from Theorem to obtain a point

in X(o%) from V4.
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Next, we study the matrix V5. We have

Am’m+1 (V) =1 ifm <1
Am,m+1(‘/2) = Alj(V) ifm=1
Am+j7i71,m+j7i(v) =1 ifi<m</{l-— Jj+i+1.

Furthermore, Ay p11(V2) = A1 41(V) # 0, 50 Vo € 115, ;. We would like to use Lemmas and to

change V3 to a different matrix V3 € H;’; +1- We have two cases:

Case 1: If i = 1, then we first apply Lemma Since S = (v1 veq1)~! is diagonal, we simply rescale the
second row of V5 by Al_jl to get Va to the form (3.4). Next, we apply Lemma to rescale the vectors,

and get V5 = (v1,v3,...,v,,,) where

1 2 —1 . .
(Up g s Uiy j—2y; ) if m is even

1 2 . .
(Vg j—2D1js Vo) if m is odd.

Case 2: If i > 2, then we do not need to apply Lemma [3.2.7 we rescale the vectors vy, for m > j. As a

result, we get a matrix Vg = (vi,...,v;, 05,05, ..., vp,,) Where
r (_1)7n—j+1
U = A U,

Now we can describe the desired map <I>;j1 : X(0%) x X(0b) — {A; # 0} as follows. Given two matrices
Vi e H;:}Hl, Vy € H;’;H, we can read off A;;(V') = Ay 441(V1) which is nonzero by assumption. The matrix
V, was obtained from V, above using multiplication by Aiijl, and hence is invertible, so given V5 and A,;;
we can reconstruct V5.

Now we can reconstruct V' by simply inserting V; into V5. Note that if the vectors v; and v; from Vi do

not agree with the ones from Va, we can always use row operations to make them agree since det(v; v;) =

Ay # 0.

]

THEOREM 5.4.2. The map ®;; defines a quasi-equivalence of cluster varietes {A;; # 0} C X (0%t*~1) and
X(0%) x X(o%). The latter has a cluster structure obtained by freezing A;; in the cluster structure from
X(O’a+b_1).
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PRrOOF. We use the clusters in X (0¢), X (¢”) and X (¢27°~1) defined by the triangulation in Figure

In particular, we get fan triangulations for X (%), X (o?).

By construction, all cluster variables corresponding to diagonals are multiplied by monomials in A;;, but we
still need to check that the exchange ratios (as in Equation are preserved. All diagonals above A;; are
unchanged, so we need to verify that the exchange ratios do not change for diagonals A; ,,,. For m < i, this
is clear. For m = i, the exchange ratio is

Ay AuAy
NAy o1 1Ay

For m = j, the exchange ratio is
AijArjr1 _ 1 (A1)

A1i Ali

Finally, for m > j we get
m+1—75+1

A1 Al,m+1Az('j_1)
A=t App ALY

m—1—j+1

since m + 1 — 5 and m — 1 — j have the same parity. O

5.4.1. Quasi-associativity of splicing two-stranded braid varieties. Suppose a +b+c—2 = /.
We will study the associativity properties of our cuts along two non-intersecting diagonals D;; and Dy, see
Figure[5.4] There are two general cases to consider when performing two cuts which we label as Type A or
Type B. The two cuts occur at D;; and Dy ;s and will be denoted ®;; and ®;;/, respectively. Type A cuts
are diagonal cuts of the form 1 <4’ <i < j < j/ < £+1 given that the cuts do not degenerate to the one cut

case, whereas, Type B cuts are diagonal cuts of the form 1 <i < j <4’ < j </ +1, see Figure [5.4

THEOREM 5.4.3. For Type A cuts we have a commutative diagram

@, xId
X(0%) x X(0%) x X(0¢) —Z—— X(09tP71) x X(0°)
Idx®7E, o5t
(3] K}
X(O’a) X X(O.b—i-c—l) = X(O.a+b+c—2)

ij

PrROOF. Let V € H;:Lrl by Theorem V corresponds to a point in X (o).

For Type A cuts, choose some i, 5,4, 5’ such that 1 <4’ <14 < j < 7/ < £. Similar to Theorem involving

a single diagonal cut, we describe the inverse maps then produce the desired map. Here a = j — i,b =
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1 {+1 1 +1

FIGURE 5.4. The possible cuts when performing two diagonal cuts, the dashed lines indicate
these potential cuts. The polygon on the left depicts cuts of Type A and the polygon on
the right depicts cuts of Type B.

j—j+i—4i+1and ¢c=/¢—j +4 + 1. Define the matrix V € H;’}H associated to X (c*) as
VZ(Ul (1 V; Uj (%1 Ug+1)

We will be dealing with minors in several different matrices, as such we will include the matrices in the

notations.

(i) First, we consider the case where we cut at along A;;(V) then A; (V) which is described in Figure

by

IdX@i/j/
—

X (0o+tHe2) 29y ¥ (59) x X (g0 X(0%) x X(0") x X(0°)

By performing the initial cut A;;(V), given by ®;; : X (02+t*+=2) — X (0%) x X (c**°~1), we decompose the

matrix V into the two following matrices
Vi=( ... v;)eMat(2,a+1)
Vo=(nn ... vy ... v v; ... vy ... vUgp1) € Mat(2,b+4c¢)

Similar to the argument in Theorem A;;(V) # 0 and we find that Vi € H;:iﬂ ~ X (o®). Here, the

rescaling of vectors v, for m > j in

/ /
V3:(v1 B R I T T, W-H)
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is given by

m—j+1

(5.1) Uy = vm Ay (V)Y

Therefore, V5 € IIg,,, ~ X(o®*7!) and ®;; is well-defined. Note that during the rescaling of the
matrix V5 into V3 the minors of V5 also experience rescaling by a factor of A;;(V'), hence given that

’U/., = Uj’Aij (V)(*l)j/7j+1

J
(52) Ai’j’(‘/S) = Ai,j,<v)Aij(V)(_1)Jl*j+l

-1
LS

1d
Now we perform the second cut Ay ;/(V) given by the map X (o) x X (o¥t¢71) ———5 X (0?) x X(o?) x

X (0°). The matrix V5 remains unchanged whereas V3 decomposes into

V4:(vir Ly v} v;»,)eMat(Q,b—Fl)
Vo= (o1 ... vy 0 ... wvpy)€Mat(2,c+1)

By the rescaling of matrix V3 in the previous cutting and A;;/(V3) # 0, then V, € H;:;H ~ X (ob). After
performing the second cut there is again a rescaling, this time of the matrix V5 which is given by the new

matrix

V6=(v1 U TR S A vé’_,_l)

where for m > j' the vectors are

m—j'+1

ol = U (Va) 0T = 0 A (V) DT A (V) D

Given that

m—j'+1 m—j’ 1 ,7‘/—.7‘+1(,1)m—j’+1

Ay (V3) D = Ay (V)Y Ay (V)Y

m—j'+1

= Ay (V) A ()0

and (—1)m=7+1 4 (=1)™~J = 0 we conclude that

m—j

(5.3) V" = oAy (V) A (V)ED T AL (V) DT = g A (VYD

As such Vg € H;i 41 =~ X (0¢). This concludes the construction of the inverse map.
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To construct the desired map
Pt o(Idx ®;1): X(0%) x X(0%) x X(0°) = X (cF0T¢72)

We reconstruct V' by taking V; € H;:(11+1> Vi€ H;:;_H, Vs € H;:iﬂ. We can read off Ay (V) = Ay py1(Va)
which is nonzero by assumption. The matrix V5 is obtained from Vg by multiplication of Ai/j/(V)il to
the vectors v; for | > i’ 4+ 1, which is well-defined since A;;/(V) is invertible. We reconstruct the matrix
V3 € Mat(2, b+ c) by inserting the matrix V; into V5 in the appropriate location. Furthermore, V3 € H;:;+C ~

X (o%*+¢~1) by construction. This concludes the construction of the map

Idx@;},

X(0%) x X(0%) x X(0°) — X(0%) x X(a¥T¢71)

Continuing the construction of the desired map, we read off A;;(V) = Ay q41(V1) which is again nonzero by
assumption. The matrix V5 is obtained from V3 by multiplication of AZ-J-(V)il to the vectors v; for [ > i+ 1.
We reconstruct V' by inserting V; into Vo at the appropriate location, completing the construction of the

map
-1

P
X(O’a) % X(0b+671) ij X(o_aerJrcfQ)

and producing the desired map.

(ii) Now, for the case where we cut along Ay (V') then A;;(V), described in Figure by

—1 1
@ xId

v
X(0%) x X(0%) x X(0°) /L X (097071) x X (0°) —L— X (0%10Fe72),

Perform the initial cut A;/;(V'), to decompose V' into the matrices
Wi = (’Ul A T ’Ug+1) S Mat(2, c+ 1)
Wy = (’Uz'/ R Uj/) € Mat(Q,aer)
By the same argument as in Theorem Ayyr # 0 and Wy € H;’}H_b ~ X (0%t*=1). Now, the matrix W;
requires rescaling of the vectors v,, for m > j’, producing the matrix

W3:(Ul oL Uy Vs .. v2+1)
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here

U;n — ,UmAilj/(V)(fl)m__],-Fl

which is in agreement with (5.3]). Hence, W5 € H;:i+1 ~ X (c°).
We perform the second cut A;;(V'), which separates W5 into
Wi= vy ... v vj ... wvy)€Mat(2,b+1)

Ws = (U'L ”Uj) 6Mat(2,a+1)

In this case, W5 € H;}l 41~ X(0), whereas the matrix Wy € I3, ; requires a rescaling for the vectors v,

for j <m < j'. Let

Wﬁ = (Uil “e V; U;/ ce U;ll)

with the vectors

'U,Ir;l = 'UmAij (V)m_j+1

which agrees with (5.1]). Therefore, W5 € H;’; 41~ X(0?), completing the construction of the inverse maps.

Finally, we construct the desired map

;L 0 (® xId) : X(0%) x X(0%) x X(0°) = X (o0T0F2)

] )

We reconstruct V' by taking Ws € I3, ,, Ws € H;:;H, Wi € TI3'. 1. We read off Ajj(V) = Ay aq1(Ws)
which is nonzero by assumption. The matrix Wy is recovered from Wy by multiplication of Afjl to the vectors
v for [ >4 — 4’ + 1, which is well-defined since A;; is invertible. We reconstruct Wy € H;:i+b ~ X (og@th—1)
by inserting the matrix W5 into Wy in the appropriate position. Concluding the construction of the map
X(0%) x X(0%) x X(c°) ﬁ X (o) x X (0°)

To complete the construction, we read off A/ (v) = Ay o41(W3) which is also nonzero by construction. The
matrix Wy € 17, ~ X(0°) is recovered from the matrix W3 by multiplication of Ay (V)*! to the vectors
v for I > i’ + 1. We reconstruct V' by inserting W; into Ws at the appropriate location, concluding the

construction of the map

—1
il il

P
X(O’a+b71) X X(O’C) i X(O_a+b+cf2)

which produces the desired map showing associativity of Type A cuts.
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LEMMA 5.4.4. For A, A’ € TIS . we define the map Ty for some fized j and X # 0 as

2,n
_qym—j
Tn:A— A ap— a0,
Then Ty preserves H;’; and defines C* actions on 115 ,, and H;’,ll.

PROOF. Let a,,al, be column vectors of A, A’ € 115 ,,, respectively. Since A € 113 ,,, we have

det (ay,  am+1) # 0; therefore, under the map Ty, we have
det (a,, aj,,,) = det (amA(*l)m_j am+1)\(71)m_j+1) — ACEDTTTANEDTTT gt (@m  Qmy1)
=det (am amt1)-
In addition, if A, A’ € I3, , then
det (al, ap,,q,) = det (am)\(*l)mﬂ‘ am+1)\(*1)mﬁ+1> — ACDTTAEDTT et (@m  amy1) =1,

therefore, preserving H;:L Moreover, the maps T define a C* action since Ty, 0T, = Th,», and 73 =1d. O

THEOREM 5.4.5. For Type B cuts we have a commutative diagram

Idx®,?}, oyt
X(0%) x X(0%) x X(0¢) ———2— X(0%) x X(oPte™) ——2 — X(gotbte=2)
IdxIdxTa,, L
@ xId
X(0%) x X(o%) x X(0°) X (o9t x X (0°)

Here Th,; is defined as in Lemma with A = Ay;. Informally, we can say that the gluing P from smaller

polygons is associative only up to the additional transformation Th,; .

PROOF. Let V € IIg;, | by Theorem

For Type B cuts, choose some 4, 7,4, j’ such that 1 <14 < j <4 < j' < £+ 1. Similar to Theorem we
describe the inverse maps then produce the desired map. Herea = j—4, b=4— 5" +i —j+i+2, c=j —i'.

Define the matrix V € H;%H associated to X (o) as

VZ(Ul Vi Uy (1 (%1 Ug+1)

50



(D) Type B: Initial cut at A,/ ;s followed by A;.

F1GURE 5.5. All possible variations of Type A and B cuts.
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Similar to Theorem [5.4.3| we will be dealing with minors in several different matrices and will include the

matrices in the notations.

(i) We first consider the case where we cut along A;;(V') then A;;/(V), see Figure given by the map

IdX(Pi/j/
—_—

X(ov0+e=2) 29y x5y x X (g¥He 1) X(0%) x X(0%) x X(0°)

Performing the initial cut A;;(V), given by ®;; : X(c2T0¢=2) — X (o) x X (¢¥T¢71), decomposes V into
the two matrices
Vi=( ... vj)eMat(2,a+1)
Vo = (’Ul B A N A ’U(_A,_l) GMat(Q,b—l—c)

By the same argument as in Theorem Vie H;; +1 =~ X(0?) whereas V € II5 ;. . and requires rescaling

by A;;(V) for the vectors v, for m > j, resulting in the matrix

V3:(U1 .Y v; v;/ 11;/ 112_,_1)
where
(5.4) v = oAy (V)T

gy =i+t
Note that A, ;/(V3) experiences a rescaling by factor of A;;(V), given that v, = VifAl(-j D and vl =

_1)d —i+1
’Uj/AEj b’ , the rescaled determinant is given by

i —j4+1

_ _1yi -+
Ay (V) = Dy (V) Ay (V) Ay (V)Y

B S SR A L R
(5.5) = Ny jr (V) Aij ()Y +(-1)

This completes the construction of the map ®;; : X(0asptc—2) = X(0%) x X(cT°~1). Applying the second

cut Ay (V) to the matrix Vs produces the two matrices

Vi=(vi ... vj)eMat(2,c+1)
Vo=(v1 ... v v ... vy v ... wvyy)€Mat(2,b+1)



Here, V, € H;:iﬂ ~ X (o). Since V5 € I3, we applying a rescaling of the vectors vy, for m > j’ into the

matrix
/ / 1 1
‘/6:(111 A A W+1)
where
./
no__ . (—=1m=a+t
(5.6) U = U Dy (V)T

Using (5.5) we find that

(~pm'H

1V iy il ym—i 1
Airjr(Vs) = Ay (V)A; (V)Y +H=1) )=

(_1)7n7jl+1 (_l)ilfj#»l(_1)7n—j'+1+(_1)j/7j+1(_1)1n7j’+1

= Ay (V) Ai(V)

v

and (—1)7 —IH1(—1)ym—d"+1 4 (—1)7 —F+1(—1)ym—i'+1 = (—1)ym=3"+~7 4 (—1)™~F, Therefore

_q1ym—j+1 _1ym—i’+1 _1ym—i' i+ _1)ym—J
= vm Ay (V)Y Airyr (V)Y Ay(V)Y AV

S
Il

(—1)m—d'+i'=i

_qym—i’+1
(57) :’UmAi/]'/(V)( 1 Aw(V)

Now, Vi € H;:;H ~ X(o®). This concludes the construction of the inverse map, now we proceed to the

construction of the desired map

Idxq>;;, i
ety

X(0%) x X(0%) x X(c°) X(0%) x X(obteml) L X (gaThFe=2)

Given Vi € M3, ,, Vo € Ty, ,, Vi € T3, we reconstruct the matrix V. First, we determine that

Ayj/ (V) = At er1(Va) # 0.The matrix Vs is found by multiplication of A (V)*! to the vectors v; for

o,1

[ > i+ —j+2 in matrix V5. We then reconstruct V3 € II
2,b+c

~ X (o"t°~1) by inserting the matrix Vj into
the appropriate position in the matrix V5. This completes the map Id x (D;;, X (0%) x X(0%) x X(0°) —
X (0%) x X(obte=1). Now we continue our construction of the matrix V' by reading off A;;(V) = A1 441 (V1)
which is nonzero by assumption. We rescale the vectors v; for [ > 7 + 1 in the matrix V3 by multiplication

of Aij(V)jEl which is invertible, to obtain the matrix V5. Finally, we insert the matrix V; into V5 to obtain

V. Therefore, giving us the desired map above.
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(ii) Now, we consider the case were we first cut along A,/ (V') followed by the cut A;;(V) and subsequently,

a rescaling of X (0¢) by the torus action Ty, illustrated in Figure given by

<I>i,j, P x1d Id><Id><TAij
E— _— _—

X (o@tbte=2) X (0N x X (o) X(0%) x X (%) x X(c°) X(0%) x X(6%) x X(c°)

We perform the initial cut Ay (V) to V resulting in the matrices
Wy = (’Ui/ R Uj/) S Mat(2, c+ 1)

Wy = (”Ul S 7 V) VA 'UZ+1) S Mat(2,a+b)
By the same argument in Theorem [5.4.1) V} € I o1 =~ X (0¢), whereas the matrix V5 € II§ ,,, requires as
rescaling of the vectors v,, for m > j’ to obtain the matrix

W3 = (1)1 . (7 . Uy . Uiy Uy . U@+1)

given by

(_1)nl—j/+1

(5.8) Um, = Um A

Z’/j/
Now, W3 € et ~x (0%*tP=1), completing the construction the first map.

2,a+b

We now perform the second cut A;;(V) = A;;(Ws) by decomposing the matrix W3 into the matrices
Wy = (’Ui Uj) EMat(Q,a—l—l)

Wy = (’Ul A VT V) 6g+1) S Mat(2,b+1)

Given that Wy € H;:}Hl ~ X (o) and W5 € II3 |, the matrix vectors vy, for m > j in Wy are rescaled into

the matrix
Wﬁ = (’U1 (Y U;- 1}2, ”J;/ 52+1)
where for j <m <7/
_ym—it1
(5.9) v, = vaZ(-j )

and for m > j'

ﬁin =7, Aij(v)(,l)m_j/ﬂ/_j
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(5.10) — UmAilj/(V)(—l)mfjurl Ai]‘(v)(_l)nkj,+i/7j

Now, Wg € H;:;H ~ X(o?). Note that for the vectors v/, for j <m < i’ agrees with (5.9), for j/ <m
agrees with . However, the vectors v, found in Wj for 7/ < m < j' do not agree with
and differ by a factor of Aij(V)(’l)m_Hl. Since A;; # 0, we can then apply a torus action to the matrix
W1 € H;:iﬂ ~ X (0°) using Lemma Let W1, W7 € H;:iﬂ, define the torus action by the map

T&}J Wy — Wy
ym—i—1

-1
U, — vagj

Thus concluding the construction of the inverse maps.

Now, we construct the suitable map to establish associativity up to an additional transformation Tx,;, given

by

-1

il il

IdxIdxTa, ; @' xId @
J J X(O,a+b+c72)

X (o) x X(0%) x X (0°) X(0")x X (0®) x X(6°) —2— X (¢ 1) x X (¢°)

We reconstruct the matrix V using Wy € 113, ;, Ws € H;’;H, Wy € 1131 ,. First, we read off Ay (V) =
A1,a11(Wy) # 0 by assumption. We apply the toric action Ta,;(W7) = W) € H;:i+1~ Now, we rescale the
matrix Wg by multiplication of Aiijl to the vectors v; for [ > j, producing the matrix W5. We then reinsert
the matrix Wy into W5 at the appropriate location, arriving at the matrix W3 € H;:ClH_b ~ X (oot0=1). We
then read of Ay (V') = Ay c41(Wh) # 0 and multiply W3 by a factor of Ai/j/(V)il for vectors v; for I > 5 to
produce W5. We then reinsert the matrix W into Wy arriving at the desired matrix V. Thereby, completing

the construction of the desired map. O

REMARK 5.4.6. We can also study the composition of splicing maps on higher-strand braid varieties, and we
expect a similar quasi-associative behavior, where the resulting subvarieties will differ by explicit monomials

in frozen cluster variables.
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CHAPTER 6

Cohomology

In this final chapter, we turn to the topological aspects of braid varieties and focus our attention on two-
stranded braid varieties, more specifically, on the computation of their singular cohomology and give an

explicit presentation of its cohomology ring in terms of generators and relations.

One of the main motivations for studying the homologies of braid varieties is their relation to the Khovanov-
Rozansky homology of the corresponding link. The Khovanov-Rozansky homology, denoted HHH, is a triply
graded link homology that generalizes the HOMFLY-PT polynomial which is relatively difficult to compute.
Refer to [22] for additional details. The relation between braid varieties and HHH was established by

Trinh.
THEOREM 6.0.1 (Trinh[34]). For all r-strand braids 3 € Bry;, we have

i, o ow 1,G
HHH" 8 (Bwo)” o= grfy o ny B2 ey (X (8)).

Equivalently, by Gorsky-Hogancamp-Mellit-Nakagane [11], H*(X (8)) ~ HHH"**(Bw; )V where wy is the
half-twist (aka longest word). Here gr denotes the associated graded with respect to the weight filtration in

cohomology.

In particular, the work of Galashin-Lam [17] related the equivariant cohomology of the open positroid variety
I1;, ,, to the Khovanov-Rozansky homology of the torus link T'(k,n — k). On two strands this equivalence
simplifies to

H*(X(0%)) ~ HHH"** (¢’ 1)
where the braid o/~ closes up to the torus link 7(2,¢ — 1).
Our approach combines techniques from algebraic topology, algebraic geometry, and cluster algebras. We

first utilize the recursive structure of the braid variety defined in Corollary We then apply Alexander

duality to relate the cohomology of a braid variety to the homology of its complement. Finally, we apply
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Poincaré duality to relate the cohomology of the compactification to the homology of the original noncompact
space. For two-stranded braid varieties, this yields a concrete description of their cohomology groups in
terms of complements of hypersurfaces in affine space. Our computation agrees with that of Lam-Speyer
in [26]. We then use algebraic de Rham theory to compute the ring structure, expressing cohomology
classes as differential forms and leveraging the defining equations of the varieties to identify relations among

them.

We also make use of the splicing construction to understand how the cohomology of more complicated braid
varieties relates to the cohomology of simpler ones. This viewpoint reveals how topological invariants behave
under gluing operations and provides insight into the recursive structure observed in earlier chapters. We
expect that the splicing map and techniques from previous chapters may lead to a deeper understanding of

higher strand braid varieties.

Altogether, this chapter serves as a topological complement to the algebraic and geometric structures ex-
plored earlier in the thesis. The cohomology ring of a braid variety encodes rich information about its
global structure, and these computations serve as a foundation for future work connecting braid varieties to

representation theory, link homology, and mirror symmetry.

6.1. Cohomology using Alexander and Poincaré duality

Given the inductive definition of the two strand braid variety X(5) we may determine the homology in
terms of the vector space with Alexander and Poincaré duality. Our varieties are non-compact, so we have
to be careful and sometimes use cohomology with compact support, for further information see [28], Section

3.3).

THEOREM 6.1.1. (Alexander Duality) If K is a locally contractible, nonempty, proper subspace of R™, then
H;(R" — K;C) ~ H"~Y(K;C) for all i.

THEOREM 6.1.2. (Poincaré Duality) If M is an orientable n-manifold then we have an isomorphism H*(M;C)

H,_,(M;C) for all k.

The cohomology of two-strand braid varieties was computed in [26, Section 6.2, Proposition 9.13] using
cluster algebra methods (compare with Theorem below). Here we give a simpler inductive proof using

Poincaré and Alexander dualities.
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THEOREM 6.1.3. Let 5 = o™, then the homology of the two-strand braid variety is given by:

. C for0<i<n-—1
H'(X(B)) =

0 otherwise.

PROOF. We proceed by induction on n. Given Corollary then
H'(X(0%) = H'({z122 — 1 = 0}) = H'({z1 # 0}) = H'(C")

Since H*(C*) = C for i = 0, 1, then the theorem is true for n = 2. Supposing the statement holds for n = ¢

we determine that

Hy(X (o)) = H;({Fup1 = 0}) = Hi({F, # 0}) (by Corollary
= H*'7I({F,=0}) (by Theorem = H* 171X (oY)
= Har—o—(3-1-(X(0")) (by Theorem [.1.2) = H;_1(X(o")).

_ C 1<i</t+1 C 0<i</t+1
Since H;(X (o'*1)) = , we obtain H;(X (o'*1)) = O

0 otherwise 0 otherwise.

6.2. Ring structure on cohomology using (algebraic) deRham cohomology

6.2.1. Constructing the forms. Define the one-form o = %" where w = Ay ¢4 is the frozen cluster

variable. Since w # 0 everywhere, « is regular everywhere.

Define the two-form as

~ dw; dw;

w; w;

on some cluster chart with extended exchange matrix B. By [19, Section 2.3] (sce also [26]) the form w is
well-defined in any other cluster chart and is given by a similar equation (6.1]) for the mutated quiver. The
cluster charts cover X (¢*) up to codimension 2 and X (c*) is smooth, so w extends to a regular form on

X(ab).
For the special chart Ug,, we get

-3
d dwy_ dw; dw;
(6.2) w= S0 2 o S B
w " wes

W w;
i—1 1+1 1
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where w; = Al’i_._g.

We can also write the forms o and w explicitly in the coordinates z;. Thus far, we have expressed X (o¢) as
an open subset in the affine space with coordinates z1,..., zo_1 with 2z, expressed as some function of these.
Similarly, we may also have expressed X (o* ) is an open subset in the affine space with coordinates zs, ..., 2
with z; expressed as some function of these, i.e., Fy(z1,...,2¢) = 21Fp—1(22,...,20) — Fy—a(z3,...,2¢) where

F 1=0,F=1,and Fi(z2) = z2. We will use 2, ...,2; as a coordinate system on X (c*) below.

LEMMA 6.2.1. Forall2 <1</l and2<n<{+1 we have

0A
azin = A1 Aip
ProOF. We have the matrix identity
Fn(Zl,...7Zn) —Fn,l(zl,...,zn,l) _C Z; -1 (Aj'
anl(ZQ,...,Zn) _Fn72(2}2,...,2n71) 1 0
where
o= Fiq(z1,.00,2i01) —Fica(z1,...,2i22) & Foi(Zig1,-o oy 2n) —Fooic1(Zig2, - 2n—1)
Fio(z2,...,2i01) —Fioz(z2,...,2i2) Foic1(zigo, - 2n) —Faoi—2(Zig2, o5 Zn—1)
which implies
Fo_o(z2, ... 2n—1) =(Fi—2(22, ..., zi—1)2i — Fi_3(22, ..., 2i—2)) Fr—i—1(Zit2, - - -, Zn—1)
—Fi_o(22,...,2i—1)Fr—i—2(2it2, ..., Zn—1)
and
JOF, —2(Z2,...,2n—
B ( 2 = 1) = Fi72(227 cee Zifl)anifl(ZH»Z; ceey Zn71)~
1

Now by Lemma we have Ay, = Fj,_o(22,...,2,—1) and

0A;

o Fi_o(z2, ... zic1)Fic1(Zigo, oy 2n—1) = A1,iAi
7
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COROLLARY 6.2.2. We have

¢
AA1 041 1
= : = Al YA Y2 1dZ‘.
Aq 41 A1 41 ; AT
LEMMA 6.2.3. For i < { we have
1 1 A;
- 44 e
A1 A i A A AiAre

Proor. We prove it by induction in ¢, for £ = i the statement is clear since A; ;41 = 1. For the step of

induction, suppose that it is true for £ — 1, then

L Ay,
AiAiiir T DD AvgDiepn AiDag o A Ay e

DA e A A e
ANRYASWIASWAR|

which by Pliicker relation simplifies to

AreAierr A
A iDL AL 1 A1 AL

LEMMA 6.2.4. We have
1

ANIAS)

w A1 D A ip1dz A dzj.

2<i< <L
Proor. By Lemma we can write

dA; s NdA; 541 = Z (A0 A1 A o1 — A1iA o101 ;A )z Ndzj =

1<j<s
Z Al,iAl,j(Ai,sAj,s+1 — Ai’SJ’,lAJ’,S)dZi AN dZJ
i<j<s
By Pliicker relation we have

AVIVAV IS IEAVINIS VAV INE AV S

hence
dAl,s A\ dA1)5+1 = Z Al,iAl,in,dei N de.
i<j<s
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The coefficient at dz; A dz; does not depend on ¢, so we get

/4

dA1 s NdA s+1 ( 1 1 )
w = _ = A1 AN dzi Ndzy | —o— A ———— .
Zﬁ NN Z. LTI T\ALA L1 NN
s=1 1<

) s

By Lemma this simplifies to

Z A17iA1,in7jAj7g+1dZi A de _ Z A17iAi7jAj’g+1dZi A de

Al,jAl,lH A1,e+1

i<j i<j

O

In particular, Lemma m gives a direct proof that w is regular everywhere on X (o). See Section for

explicit examples and computations.

6.2.2. de Rham cohomology. By construction, daw = dw = 0, so they represent some de Rham
cohomology classes. The following theorem shows that these are in fact nonzero in cohomology and generate

H*(X(c")) as an algebra.

THEOREM 6.2.5. The forms a and w generate H*(X (c%)) as an algebra, modulo the following relations:

L
2

1) If ¢ is even, the only relation is wz = 0. The basis in cohomology is given by:

(6.3) 1,a7w,aw,...,w§*1,aw§*1.
2) If € is odd, the relations are aw T =ws =0. The basis in cohomology is given by:
(6.4) l,a,w,aw,...,aw%,w%.

PrOOF. We work in the chart Ug,,, there is a natural inclusion map i : Ugy — X (0f) and the corre-

sponding restriction map in cohomology: i* : H*(X (0*)) — H*(Ugay).

We want to first prove that the restrictions of all the forms (6.3)) and (6.4) to H*(Utan) do not vanish, this
would imply that these forms do not vanish in H*(X(c%)). Recall that Ug, ~ (C*)*~! with coordinates
Wiy, We—o2, W = wy—1, 50 H*(Ut,y,) is isomorphic to an exterior algebra in

dwi
wi :

Suppose ¢ is odd then
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dwg— dw
A # N —
w1 Wp—2 w

and

-3 dw (dwg A dw; T d7w A dw£_2>(é—3)/2

aw?z = —N|[——N—

w wao w1 w Wp—2

d d d dwe_s  dwe_s\ /2
:wA<wAw+._.+wwAwu>

w wo w1 Wy—2 We—3

(¢=5)/2 —

d d dws; dw—
= A(e-3)2r Y T S TS

w s w1 W25+1 We—3

In particular, these are nonzero. Suppose £ is even, then similarly

£/2—2 —

dw dw dwoy; dwg_ dw
w%_lz Z 71/\72/\.../\%/\.../\#/\7.
=0 w1 w2 W2541 We—2 w
and
o—c dw dw dwg_ dwg_ dw
awTS :<(£_1)/2)!71/\72/\.../\$/\#/\7
w1 w2 Wy—3 We—2 w

This implies that all the forms in (6.3) and (6.4) are nonzero in H*(Ut,,) and hence nonzero in H*(X (c*)).
On the other hand, by Theorem the corresponding cohomology groups of X (cf) are one-dimensional

in each degree; therefore, we obtain a basis. (]

6.2.3. Examples.

EXAMPLE 6.2.6. Braid variety associated to 8 = o3

X(O’B) = {z12023 — 23 — 21 = 0}

:{2122717&0}

Using row operations and scaling the columns, we can transform any matrix in II5 , to the form
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1 Z1 2122 — 1 217923 — 21 — 23
1
V= €Iy,
0 1 Z92 Zo23 — 1.

Using the correspondence of cluster algebras and Grassmannians, we obtain two cluster charts, as seen in

Figure [6.1}

1 1
Vo v3 Vo v3
- - - -
4\L T«Zs
1w N 1 1 < ] 1
v i V4 v i V4
zoz3 — 1 2923 — 1

FIGURE 6.1. The two cluster charts for the braid variety X (o®). On the left is chart Uy
where the vectors v; € H;j for 1 <4 < 4 correspond to the vertices of the polygon. The
purple arrow depicts the Dynkin diagram A; with a frozen. On the right is chart Us which
corresponds to the mutation of chart Uj.

Uy = {22 # 0} with coordinates (wq = 29, w = 2923 — 1)

Uz = {z3 # 0} with coordinates (w] = z3, w = 2223 — 1)

We compute the cohomology of X () using the (algebraic) de Rham cohomology on chart 1. Let U; =
{wy; = 290 #0, w = 2923 — 1 # 0}. Then all possible forms

H*(Uy) = H*((C*)?) = <1,dw1’ dw dw dw1>

wy | w w wy

To determine the cohomology, it suffices to determine which of the above forms extend to X (¢). The forms

which extend are

o 1
dw  z9dz3 + 23d2o
[ ] = -
w 2923 — 1

dw/\@_ dzz N\ dzo

w w1 B 2ozg — 1
The 2-form can be deduced from the quiver shown in Figure which agrees with [26]. Therefore,
H°(X(0%)) = HY(X(0?)) = H?(X(0?)) = C, which agrees with Theorem
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In addition, on the chart Us = {w] = 23 # 0, w = 2923 — 1 # 0}, with possible forms

/ !
H*(Ug) — H*((C*>2) — <17 dujl ’ d7w7 dﬂ A dUi1>

wy ww wy
the forms which extend are

o 1

dw  zodz3 + z3dzo
° £2e3 T =30e2
w zoz3 — 1

dw A dfw’l dzo A dzs

w w} 2923 — 1

Indeed, the cohomology of X (03) is independent from the choice of a chart.
EXAMPLE 6.2.7. The braid variety associated to 3 = o4
X(0%) = {21202324 — 2120 — 2124 — 2324 + 1 = 0}
= {z12023 — 23 — 21 # 0}
with open positroid variety of the form

1 21 2120 — 1 212023 — 21 — 23 21222324 — 2122 — 2124 — 2324 + 1 o1
V= c Il
0 1 29 2ozg3 — 1 292324 — Zo — Z4

Using the correspondence of cluster algebras and Grassmannians, we obtain one of five cluster charts, see

Figure [6.2} Here
U= {w1 = Alg = Z9 7£ O,UJQ = A14 — Z9Z3 — 1 #O,UJ = A15 — Z9Z23Z4 — R4 — 22 #0}
Using the de Rham cohomology

H*(U) = H*((C)*)

dw; dwsy dw dw; dwy dw; dw dwy dw dw dws dw;
= 137777777/\737/\777/\ 9 A A
w1 w2 w w1 wa w1 w wa w w (%] w1

The forms which extend to X (o) are:

dw (2324 — 1)dzy + 2024d23 4 (2023 — 1)dzy
w R223%4 — 24 — 22
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ZQZ3Z4 — Z2 — 24

FIGURE 6.2. The cluster chart U; of X(o%). One of the five possible charts given by the
triangulation of the pentagon.

dw A dws n dwo A dwy  z4dzg Ndzg + z3dzg Ndzp + 22d24 N d2s

w w2o w2 w1 292324 — 24 — 29

dw/\dwg/\%_ dzy Ndzg N\ dzy

w wWo w1 292324 — R4 — Z9

Therefore, H*(X (o)) = H (X (o)) = H?(X(0*)) = H3*(X(0*)) = C which agrees with Theorem

6.2.4. Cuts, forms and cohomology. Now we can study the effect of the cuts on the forms o and w.
More precisely, we use the map ®;;' : X (077") x X (¢/77+"+1) — X(0*) to compute the pullbacks (@;jl)* a
and ®7;w. The forms a and w are equivalent under cluster mutation by [26]; hence, we choose an arbitrary

cluster chart, see Figure and determine the how the forms interact with cuts.

We will denote the forms from X (¢7~%) by a; and wi, and the forms from X (o/~7++1) by as and ws.

As an abuse of notation we use the labeling from the larger positroid H;’(ll +p_1 identified with X (go071).

Technically, under the isomorphism Aq ;_;41 = (<I>;j1)>k (A;j), therefore, a1 = (q);jl)* (dlog A;j), similarly,
(1)t
ij

Qg = (@;jl)* (dlog A Aq ¢4+1) with similar considerations made to w; and ws.

LEMMA 6.2.8. We have

(@;jl)* a=aqay+ (—l)e_jal.

PROOF. Recall that o = dlog(Aq ¢41). By [26] let aq = dlog(A;;) be the 1-form associated to X (07 ~7)
and ag = leg(A§;1)27j+1w) = dlog(Al(-j_l)ZiHlAMH) be the 1-form associated to X (o*=7++1). Given
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these conditions we find that

L—j+1

az + (1) ay = dlog(ALY T Ay ) + (-1) T dlog(Ay)
_1ye—j+1 .
= dlog(AL V) 4 dlog(Aresr) + (—1) T dlog(Ay)
= (—1)" 7t dlog(A;) + dlog(Ay p41) + (—1) 7 dlog(Ay)

=dlog(Ay41) =

LEMMA 6.2.9. We have

(") w=w +wr + (1) Ty A

ProOF. Consider the quiver associated to the triangulation of X (c*) in Figure prior to the rescaling

given by the cut A;j, by , the two-form w is described as
w=dlog A g41 Ndlog Ay ¢+ dlog Ay ¢ Adlog Ay g—1
+ -+ dlog Ay j+1 Adlog Ay j + dlog Ay j Adlog Ay
+dlogAq; Ndlog Ay ;1 +dlogA; ;1 ANdlog Ay ;o
+ -+ dlog As Adlog Arg + dlog A1 ; A dlog Ay
+dlog Ajj ANdlog Ay j +dlog Ay j—1 ANdlog A; j_o
+dlogA;j_o NdlogA; j_3+ -+ dlogA; i13 Adlog A iyo

Let aj, ay be the 1-form and wy, wo be the 2-form associated to X (¢7~7) and X (o*=7+*1) respectively. By

Figure we define the forms associated to X (07 ~%) and X (¢*~7T%*+1) directly from quivers as follows:

(65) ] = dlog Aij

(-1)tit?

(66) Qo = dlog(Al,e-FlAij ) = leg A17g+1 + (71)eij+2d10g Aij

wr =dlogA; j_1 NdlogA; j_o +dlog A; j_o NdlogA; j_3
+---+dlog A ip3 ANdlog Aq i1
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While a1, a2, w; can be easily read from the cluster chart seen in Figure[5.3] the 2-form ws requires a bit more
finesse. We notice that there is a triangle formed between the vertices 1,1, j, to simplify the computation
of wsy, which agrees with , we decompose the form into parts and call them pre-triangle ws p,. for
vertices between 1 and ¢, triangle wy 4; for the special vertices 1,4,7 and post-triangle wy post for vertices
between j and £+ 1. By Theorem in the rescaled braid variety X (o‘~7T"*1) the Plucker coordinate
Al = Aiin_jl = 1 resulting in dlog A}; = dlog1 = 0, whereas A;; shall remain the nonzero polynomial w

describing X (077%). Using this decomposition, we = wa pre + W tri + w2, post is defined by

w pre = dlog A1; Adlog Ay ;-1 +dlog Ay ;-1 Adlog Ay ;—o+ -+ dlog A Adlog Arz

wa tri = dlog (Ale;jl) Adlog Ay; +dlog Ay Adlog Aj; + dlog Aj; A dlog (Alefjl)
= (d log Alj —dlog A”) A dlog Aq;

= leg Alj N leg Ah' - leg Aij N dlog Ali

_1)£*]‘+2
J

_1)¢—i+1
w2 post = d1og A1,4+1A§ A dlog AMA% D
+ dlogA17EA7(;;1)[7j+l A dlog Al7£_lA§;1)£7j

+ e+ leg Al,j+2A;j1 A leg Al’j+1Aij + leg Al,j+1Aij A leg Al’jA;jl

= (dlog Ay ¢41 + (—1)€_j+2dlog Aij) A (dlog Ay e+ (—1)é_j+1dlog Asj)
+ (leg Al’g + (—l)é_j-i_ldlog AU) A (dlog Allfl + (—1>é_jd10g A”)
+ -4 (dlog Al,j_;,_g — dlog Aij) N (dlog Al,j-i-l + dlog AU)

-+ (leg A17j+1 + leg AU) A (dlog ALJ — leg Az])

=dlog Ay 41 Ndlog Ay p + (fl)e*jﬂdlog Aq 41 Ndlog Ay
+ (—1)€*j+2d10g A Ndlog Ay g+ dlog Ay Adlog Ay g1
+ (—l)é_jdlog A ANdlog Ay + (—1)Z_j+1dlog Ajj Ndlog Ay gy

+---+dlog A17j+2 A dlog A17j+1 + dlog A17j+2 A dlog Aij
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—dlog Ai,j A dlog A17j+1 + dlog A17j+1 A dlog ALJ

—dlog A17j+1 A dlog Aij + dlog Aij A dlog Al,j

=dlog Ay 11 ANdlog Ay + dlog Ay g Adlog Ay
+---+dlog ALJ‘JFQ A dlog A17j+1 + dlog Al,j+1 A dlog ALJ

+ (1) dlog A1 41 A dlog Ay

Note that from (6.5 and , a1 A ag = dlog Ayj A dlog Ay ¢41. Therefore, the additional term
(—1)7+1dlog Aq 41 A dlog Asj from wy post may be negated by (—=1)*7ay A ag, providing the necessary

adjustment to acquire (@;jl)* w as stated. O
THEOREM 6.2.10. The pullback map

;1) : H*(X (%) — H*(X(077) @ H*(X (o' 7Hi+1))

1]

is injective and can be described by Lemmas[6.2.8 and [6.2.9

PrOOF. Similar to Theorem we want to prove that the restrictions of all forms in (6.3)) and (6.4))
do not vanish in H*(X(077%)) @ H*(X(c*~7T"*1)), here we use the formulas from Lemmas and

Suppose ¢ is odd, then we want to show that (@;jl)* [QWFTS] and (q);jl)* [wz%] are both nonzero. Since

£=a+b—1is odd, then either a,b are both even or both odd.

. . a1 21 L1 21 "
(i) Suppose @ and b are both even. Given that w? , cqw? *, w3 ~, agwsd = are nonzero by definition, then

£—3 £—3

((I)i_jl)* [O‘WT] = (ag+ (=D Jay)(wi +wa + (1) Ty Aeg) =

at+b—4

= (042 =+ (—1)273.011)(&11 —+ wo + (—l)zij()él A 042) 2

ll7 l2a l3
li+la+l3=

a+b—4
. aTo—= . 1
= (g + (—1)€_7a1) E ( 2 )wilwlf ((—1)5_704 A 0[2) ?
at+b—4
2

. o I | 1\ * =37 . S
with aows ~, wi ~ # 0, then ((I>l-j1) [aw P ] is nonvanishing. Furthermore,

£—1

(fl)fl)* [w%} =(wi4w+ (Do Aag) T
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Il
(]

G2 ¢ !
2 1, ,l2 o —7 3
(l o )W1 wy? ((=1)" Va1 A ag)
. . . ~ atb—2 1502503

1+l +izs="F5—

atb—2 , el by
(T ) et
2 2 )

a_q b_q 1\ * =11 . c 1
where aqw; 7, aswsy — # 0. Then (@ijl) [w z } is nonvanishing.
a—3 a—1 b—3 b—1

(ii) Suppose a and b are both odd. Given that ajw;? , wy? , aowy? , wy?  are nonzero, then

(05" [aw ] = (@2 + (-1 Far) Y ( ; )wlllwéz((—l)“amm)“

Li+lotlz=2tb=4

a+b—4 _ _
:(a2+(—1)€ja1)< 2 )w QwaTl—f—
a3 b )¥1" “2
2 5 20

)
|
[

0 atb—4 a—3 b1
(-1) j( . >a1w12 we? +...
2 0 2 ’0

a—3 b—1
. - - 1\ K e—37 . ..
Given ajw; ? , wy? # 0, then (CIJi y ) {awT is nonvanishing. Furthermore,

—~
ha
S
—
SN—
*
—
&
~
N‘\
-
| S
Il

a+b—2 . . . s

S ()bl () e na)
at+b—2
2

11712713
i+l +Hlz="5—=
Lb—? a—1 b—1
— 2 2 2
= (al b—1 0)“’1 R R
)

a
Pl

Since wy ? , wy® # 0, then (@;jl)* {w%} is nonvanishing.

—1 b—1

Now, suppose ¢ is even, then we want to show that (fbi_jl)* [wéfl} and (fbfjl)* {aw%”} are both nonzero.

Since £ = a + b — 1 is even, without loss of generality a is even and b is odd. Since a is even and b is odd,

a_ b—3 b—1

a
a_q b3
then wi ~, cqwy ~, aswy® , wy? are nonzero, then

(03" [F7] = 1t e+ () T napt

a+b—3

= (w1 +wo+ (=) Ty Aay) 2

a+b—3 Lo o s
= Z ( 2 >w11w22 ((71) Jag A ag)

l1,12,13
Lt Hlz=2t5=2 VT

Lb_'?’ a_q b—1

—_ 2 2 2

= (al b—1 0)(}.)1 W2 +...
2 ’ 20
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. g1 21 _ . o
Since wi *, wy? # 0, then (@ijl)* [w%,l] is nonvanishing. Next,

(25")" [awg_l} = (a2 + (=1) ) (w1 +wo + (1) Ty Aag) !

= (g4 (=) Ty (wy + w2 + (=1)Tag A QQ)"'+3_3

a+b—3
. aTo—3 . 1
()T Y ( )w?wé?((—l)f-ﬂamazf
atb=3
2

llyl2313
li+l2+l3=
atb—3 a_q bl
_ l—j 2 2 2
— o+ (0P (, Ay JeE e
2 T2
a+b—3 w b_1
_ 27 2
<a b—1 0>0‘2W1 Wyt F
2 ’2 00

b

. 2_1 1 1y e_1] . L.
Since wy 7, aswy? # 0, then (@ijl) [awz 1} is nonvanishing.

This implies that all the forms in (6.3]) and (6.4) are nonzero in H*(X (¢7~%)) @ H*(X (¢*~77%*+1)) and hence
nonzero in H*(X(c")). O

(N I .
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