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Abstract

We investigate the face structure and Ehrhart polynomials of several families of polytopes that
have been central to the author’s research journey throughout graduate study, including gener-
alized type A and type B permutohedra, hive polytopes associated with Littlewood—Richardson
coefficients, and parking function polytopes. In Chapter 1, we present essential background on the
foundational concepts that underpin the results of this dissertation. This includes an introduction
to polytopes, their face structures and normal fans, as well as an overview of Ehrhart theory, which
concerns the enumeration of lattice points in rational polytopes. Later in the chapter, we intro-
duce type A generalized and type B permutohedra, and provide existing formulas for their Ehrhart
polynomials. These core concepts and definitions provide the groundwork for the more specialized
constructions and results developed in the chapters that follow.

In Chapter 2, we derive a formula for the Ehrhart polynomials of type B generalized permu-
tohedra, providing a concise alternative to a recent formula obtained by Eur, Fink, Larson, and
Spink from a study of delta-matroids. Our approach builds on the techniques and tools introduced
by Postnikov around two decades ago in his work on type A generalized permutohedra—a rich
family of polytopes deeply connected to many mathematical concepts such as matroids, graphs,
and Weyl groups. Our approach suggests that many combinatorial models originally developed
for type A generalized permutohedra may be used directly or suitably adapted to investigate the
combinatoral properties of their type B analogues. We conclude the chapter by proposing several
questions for future work on how the combinatorial properties of type B generalized permutohedra
could be deduced from those of their type A counterparts.

In Chapter 3, we provide an alternative proof of the conjecture by King, Tollu, and Toumazet

that stretched Littlewood-Richardson coefficient ¢t

taty 1S @ polynomial function in t. Note that

the conjecture was shown to be true by Derksen and Weyman using semi-invariants of quivers.
Later, Rassart used Steinberg’s formula, the hive conditions, and the Kostant partition function
to show a stronger result that ¢ 18 indeed a polynomial in variables v, A, u provided they lie in
certain polyhedral cones. Motivated by Rassart’s approach, we give a short alternative proof of
the polynomiality of Cii,tu using Steinberg’s formula and a simple argument about the chamber

complex of the Kostant partition function. The main idea of our proof uses the hive conditions to
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realize c&tu as the number of lattice points in the ¢-dilation of a rational polytope, which implies,
by Ehrhart theory, that Cg\,tu is a quasi-polynomial. We then employ Steinberg’s formula and
the chamber complex of the Kostant partition function to deduce that Cg,tu is a polynomial for
sufficiently large t, and hence must be a polynomial for ¢t > 0. Additionally, we discuss a connection
to flow polytopes and outline potential research problems for future work regarding the coefficients
of the polynomial cg\’t”.

In Chapter 4, we extended the concept of parking function polytopes and investigated their
normal fans, face posets, h-polynomials, and connections to other families of polytopes. This
extension broadens the family to encompass several additional combinatorial types of polytopes.
To describe their face structures and normal fans, we introduced generalized forms of ordered set
partitions, which we refer to as binary partitions and skewed binary partitions. Using properties
of preorder cones, we developed tools to characterize the family of skewed binary partitions that
correspond bijectively to the normal fan—and thus the face poset—of a parking function polytope.
This framework leads to several related findings, including the insight that the combinatorial type of
a parking function polytope depends solely on its defining multiplicity vector, and a characterization
of simple parking function polytopes.

Later in the chapter, we present a formula for the h-polynomials of simple parking function
polytopes in terms of generalized Eulerian polynomials, and further refine it to express the h-
polynomials as sums of products of classical Eulerian polynomials. At the end of the chapter,
we discuss how parking function polytopes can be realized as polymatroids, type B generalized
permutohedra, and type A generalized permutohedra. These connections allow us to derive formulas

for the volume and Ehrhart polynomials of parking function polytopes.
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CHAPTER 1

Introduction

Polytopes play a central role in many branches of mathematics, serving as a unifying framework
across various fields, due to their rich geometric, combinatorial, and algebraic structure. In geom-
etry and topolygy, for example, their boundary complexes often appear as simplicial complexes,
and their structure connects with important topological invariants [22,50]. In algebra, many toric
varieties, an important class of algebraic varieties, can be constructed from polytopes [12,20]. In
linear and integer programming, polytopes are fundamental to the study [33,39]. The feasible
region of a linear program is a polytope, and understanding its structure is a key to optimization
algorithms.

In this dissertation, we focus on exploring the combinatorial aspects of polytopes by studying
their face structures and the enumeration of their lattice points. The face structure of a polytope
offers a rich source of combinatorial data. In many cases, trying to understand how to describe their
faces naturally leads to connections with other combinatorial objects, such as partially order sets
(posets), graphs, partitions, and matroids, allowing for a translation between geometric intuition
and discrete structures.

On the other hand, counting the number of lattice points contained in rational polytopes gives
rise to Ehrhart theory. The number of lattice points in every integral and some rational polytopes
can be computed using a polynomial called Ehrhart polynomial. Beyond enumeration, Ehrhart
polynomials is also a powerful invariants that encode both geometric and combinatorial information
about the underlying polytope, including its volume, boundary structure, and symmetry. Thus,
given a family of polytopes, it is common to seek a formula for the Ehrhart polynomials of the
family. In some occasion, Ehrhart theory also provides a tool for proving that a combinatorial
function is a polynomial: this can be done by interpreting the function as counting the number
of lattice points in a rational polytope. Taken together, the study of face structures and Ehrhart

polynomials offers deep insights into the interplay between discrete geometry and combinatorics.
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Later in the dissertation, we will investigate the face structures and Ehrhart polynomials of
several families of polytopes that have been central to the author’s research journey through-
out graduate study. These include type A and type B generalized permutohedra, hive polytopes
associated with Littlewood—Richardson coefficients, and parking function polytopes. To lay the
groundwork for these investigations, we begin this chapter by introducing the necessary notation

and preliminary concepts.

1.1. Polyhedra

A polyhedron P in R™ is the solution to a finite set of linear inequalities, that is,
(1.1.1) P:{X:(acl,...,:):d)eR" ai-xgbiforiel}

for some a; € R™ and b; € R, where the dot - is the usual dot product and I is a finite set of indices.
The dimension of P, denoted by dim(P), is defined to be the dimension of aff(P) the affine span
of P. We denote by P° the relative interior of the polyhedra P.

A cone o is a polyhedron defined by a system of homogeneous linear inequalities, i.e. inequalities
of the form a-x < 0. If the only subspace of R contained in a cone o is {0} the trivial subspace,
then o is said to be a pointed cone. A d-dimensional pointed cone is said to be simplicial if it
can be spanned by d linearly independent rays, i.e., o is a d-dimensional pointed cone of the form
{Mvi+ -+ Agva | N € Ry for all ¢ € [d] and v, ..., vy are linearly independent}.

A polytope P is a bounded polyhedron. By the Minkowski-Weyl Theorem [31,49], we can

equivalently define a polytope in R™ as the convex hull of finitely many points in R", i.e.,
P =conv(xi,...,xg) = {\x1 -+ \eXg | AL+ -+ X = 1,0 >0 for all i € [k]}.

A 2-dimensional polytope is also called a polygon. We denote by Vol(P) the volume of P with
respect to the lattice Z™ Naff(P) in the affine span of P. The normalized volume of a d-dimensional
polytope is defined to be NVol(P) := d!Vol(P).

For two nonempty polytopes Pi, P, in R", the Minkowski sum of P; and P», denoted by
Py + P, is the set {x; + x2 € Rd|x1 € Pi,x9 € P»}. If U and V are the set of vertices of P;

and Py, respectively, then P; + P» = conv(u+ v | u € U,v € V). This implies that a Minkowski
2



sum of polytopes is a polytope. The Minkowski difference of P, in P;, denoted by P; — P, is the
set {x € RY|x + P, C P;}. Since the vectors that translate P, to lie in P; form a polytope, it
follows that a Minkowski difference of two polytopes is also a polytope. It is important to note
that, in general, the Minkowski difference on polytopes is neither a commutative nor an associative
operator. For example, while (P} + P») — P, = P; always holds, the expression (P} — P») + P, may
not equal P, or may even be undefined if the difference P| — P» is empty. Thus, it is crucial to
clearly specify the order of the sum (and difference). Given nonempty polytopes P; in R™ and signs

9; € {1,—1} for ¢ € [m], we define the Minkowski sum

zm:&-Pi = Q1 — Q2 where Q1 := Z P; and Qs := Z P
5i=—1

i=1 si=1

1.2. Faces and Normal Fans

A subset I’ of a polyhedron P C R" is said to be a face of P if there exists a half-space H
defined by h-x < a where h € R" and a € R, such that P C H and F' = PN H. One sees that this

is equivalent to requiring h to satisfy
F={xeP|h-x>h-y, forally € P}.

A face of dimension dim(P) — 1 is called a facet, a face of dimension 1 is called an edge, and a
face of dimension 0 is called a wvertex. The empty set is also considered by convention as a face
of P of dimension —1. We note that the (relative) interior of a face of P cannot intersect the
(relative) interior of any other faces of P. In fact, two faces of a polytope can only intersect at
their common face. The partially ordered set F(P) of all nonempty faces of P ordered by inclusion
is called the face poset of P. When two polytopes have isomorphic face posets, we say that they
are combinatorially equivalent.

A facet-defining inequality of a polyhedron P is an inequality a - x < b such that the set
{x € P|a-x=>b}is a facet of P. A minimal inequality description of P is a system of minimal
number of inequalities that defines P.

Let F' be a nonempty face of a polytope P C R™. The normal cone of P at F' is the set

ncone(F,P):={ceR" |c-x>c-yforall x € F and all y € P},
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that is, ncone(F, P) is the set of all ¢ € R™ such that c - x attains maximum value at F' over all
points in P.

The normal fan of P, denoted X(P), is the set of normal cones of P at all of its nonempty
faces. We say that a polytope @ is a deformation of another polytope P if ¥(Q) is a coarsening of
Y(P), i.e., every cone in 3(Q) is a union of cones in X(P). A deformation @ of P can be obtained
by parallel translations of the facets of P. We denote by F(X(P)) the poset on 3(P) ordered by
inclusion. The following well-known lemma gives a correspondence between the nonempty faces of

polytope and the normal cones at the faces.

LEMMA 1.2.1. Let P be a polytope. Then, the map F — ncone(F, P) for nonempty faces F is a
poset isomorphism from the dual poset of F(P) to the poset F(X(P)).

The next result is a slight variation of [9, Lemma 2.4]. It provides a way to verify normal cones

at vertices of polytope. We omit the proof as it is very similar to the proof of the original result.

LEMMA 1.2.2. Suppose that M = {o1,...,0k} is a set of cones satisfying o1 U---U o = R" and

that {v1,..., vk} CR"™ is a set of points in which for every i € {1,...,k}
c-v;>c-vj forallceoy and all j # 1.

Let P be a polytope defined by P := conv(vi,...,vy). Then the set of vertices of P is {vi,...,vg}.
In addition, we have that o; = ncone(vy, P) for alli € {1,...,k}. As a consequence, the set of

cones in M and their faces form the normal fan X(P) of P.

A d-dimensional polytope is a simplez if it is a convex hull of d+ 1 affinely independent points.
When every facet of a polytope P is a simplex, we say that P is simplicial. A d-dimensional polytope
is said to be simple if all of its vertices are incident to exactly d edges. If P is full-dimensional,
that is, P is a d-dimensional polytope in R?, then one can show that being simple is equivalent to
having the normal cone at every vertex being simplicial.

Given a d-dimensional polytope P, we let f;(P) be the number of its i-dimensional faces. The
f-vector of P is defined to be the vector (fo(P),..., fa(P)), and the f-polynomial of P is given by

fe(t) == fo(P) + fi(P)t + --- + fa(P)te. If a d-dimensional polytope P is also simple, we define
4



its h-polynomial hp(t) := ho(P) + h1(P)t + - + hg(P)t? and its h-vector (ho(P),...,hq(P)) to
satisfy the relation fp(t) = hp(t+ 1). This is equivalent to having

d

(1.2.1) £(P)y =Y <;> hi(P) forall j=0,...,d.

i=j

It is well-known that the h-polynomial hp(t) of a simple polytope P has nonnegative coefficients
[50, Section 8.2] and is palindromic [14,40] as it satisfies the Dehn-Sommerville symmetry. That
is, 0 < hi(P) = hg—i(P) for all i = 0,...,d. Thus, we only need to know half of the coefficients of

hp(t) to recover the f-vector using equation (1.2.1).

1.3. Ehrhart Theory

A lattice point or an integer point in R™ is a point whose coordinates are integers. A polytope
is said to be rational if all of its vertices have rational coordinates, and is said to be integral if all
of its vertices have integral coordinates. For a polytope P in R™ and a non-negative integer t, the

t'h_dilation tP is the set {tx |z € P}. We define
i(P,t) :=|Z" NtP]

to be the number of lattice points in the t*"-dilation ¢P.

Recall that a quasi-polynomial is a function f : Z — R of the form f(t) = aq(t)t?+---ay(t)t+
ap(t) where each of ay(t),...,ap(t) is a periodic function in ¢ € Z. The period of f(t) is the least
common period of a4(t),...,ag(t). Clearly, a quasi-polynomial of period one is a polynomial.

We define the denominator of a rational polytope P to be the least positive integer m such
that the m-dilation mP is an integral polytope. It is easy to see that the denominator of P equals
the least common multiple of the denominators of the coordinates of its vertices (when the rational
coordinates are written in the lowest terms). The behavior of the function (P, t) is described by

the following theorem due to Ehrhart [17].

THEOREM 1.3.1 (Ehrhart Theory). If P is a rational polytope of dimension d, then i(P,t) is a quasi-
polynomial in t of degree d with rational coefficients. Moreover, the period of i(P,t) is a divisor of

the denominator of P. In particular, if P is an integral polytope, then i(P,t) is a polynomial in t.
5



The polynomial (resp. quasi-polynomial) i(P,t) is called the FEhrhart polynomial of P (resp.
Ehrhart quasi-polynomial of P). When P is integral, the Ehrhart polynomial i(P,t) of P encodes
its geometric and combinatorial properties. For instance, the leading coefficient of i(P,t) equals
the volume of P, the second coefficient is a half of its normalized surface area, and the constant
term is one. This means that these three coefficients of any Ehrhart polynomial are positive
numbers. However, other coefficients can be negative and their general simple interpretations are
less understood. When all of the coefficients are positive, we will say that the corresponding
polytope P is Ehrhart positive.

Two integral polytopes P, Q such that P C R™ and @) C R are said to be integrally equivalent
if there exists an invertible affine transformation from aff(P) to aff(Q) that preserves the lattice
points in the two polytopes. When two integral polytopes are integrally equivalent, they have the

same face poset, volume, and Ehrhart polynomials.



CHAPTER 2

Ehrhart Polynomials of Generalized Permutohehra From A to B

In this chapter, we derive a formula for the Ehrhart polynomials for type B generalized permu-
tohedra, providing a concise alternative to the formula obtained recently by Eur, Fink, Larson, and
Spink in [18, Theorem A] as a result from their study of delta-matroids. The approach presented
here builds upon the existing notions and techniques introduced by Postnikov in his work on type
A generalized permutohedra [35], a family of polytopes interconnected with many mathematical
concepts such as matroids, graphs, and Weyl groups. Postnikov employed the Cayley trick to sub-
divide polytopes in such a way that each cell in the subdivision corresponds bijectively to the lattice
points in the polytope. This method allowed Postnikov to enumerate the lattice points in type A
generalized permutohedra in terms of what are called G-draconian sequences. By viewing a type
B generalized permutohdron in each octant as a type A generalized permutohedron, we are able to

apply Postnikov’s approach to express its Ehrhart polynomial in terms of G-draconian sequences.

Chapter Organization. We begin by introducing type A and type B generalize permutohe-
dra, along with a review of existing techniques for enumerating lattice points in these polytopes.
We then develop a method for realizing part of type B generalized permutohedron as a type A
generalize permutohedron. Using this realization, we show how the number of lattice points in
type B generalized permutohedra can be computed in terms of GG-draconian sequences. Lastly,
we propose questions for future work on how the combinatorial properties of type B generalized

permutohedra might be deduced from those of their type A counterparts.

2.1. Type A generalized Permutohedra

In this section, we introduce the family of polytopes known as type A generalized permutohedra,
following the notation and framework established by Postnikov in [35] around two decades ago.

For a more comprehensive treatment beyond what is presented here, we refer the reader to [35].

7



Let w = (wy,...,wy,) € R"satisfy wy > - -+ > w,, > 0. The permutohedron I1(x) is the polytope
defined as the convex hull of all permutations of the coordinates of w. See Figure 2.1 for examples

of permutohedra in R%,R3, and R*.

(1,3,2) (1,2,3)

(1,2)

(2,3,1) (2,1,3)
(2,1)
(3,2,1) 3,1,2)
(2, 1) 1(3,2,1) 1(4,3,2,1)
FIGURE 2.1. Examples of permutohedra in R?, R3, and R*, respectively
The normal fan of II(wi,...,w,), known as the braid fan and denoted by ¥4, _,, is the fan

whose maximum cones are the chambers in the arrangement of the hyperplanes
Hij={(c1,...,cn) €ER" | ¢ —¢c;j =0} forall1 <i<j<mn,
which is known as the braid arrangement.

DEFINITION 2.1.1. A type A generalized permutohedron P is a polytope that is a deformation of

the permutohedron II(x).

Equivalently, one can defined a type A generalized permutohedron to be a polytope whose
edges are parallel to e; — e; for some 1 < i < j < n, where e; is the standard basis vector in R".
Every type A generalized permutohedron P C R” lies on a hyperplane 1 + ---x, = a for some
real number a. For instance, II(wy,...,w,) lies on the hyperplane z1 + -+ + x, = wy + - -+ + wy,.

Thus, the dimension of P is at most n — 1.

(0,0,3) (0,0,1)

(0,2,1)
(3,0,0) (1,2,0) (1,0,0) (0,1,0)
FIGURE 2.2. Examples of type A generalized permutohedra in R?

8



We note that these polytopes are also known simply as generalized permutohedra. We include
“type A” in the name to emphasize the fact that the edge directions of these polytopes are parallel
to some vectors in the type A positive root system {e; —e; | 1 <i < j < n}. Type A generalized
permutohedra form a widely studied family of polytopes that interconnect with various combi-
natorial objects, such as matroids, graphs, and Weyl groups. Many well-known polytopes in the
literature can be realized as type A generalized permutohedra, including zonotopes, associahedra,
cyclohedra, and the Pitman-Stanley polytopes (see [35, Setion 8]).

For a nonempty subset I C [n]|, we define A; to be the simplex conv(e; | i@ € I). Post-
nikov showed in [35, Section 6] that every type A generalized permutohedron can be written as a

Minkowski sum (and difference) of simplices. The following lemma states this more precisely.

LEMMA 2.1.2. Every type A generalized permutohedron has the form

(2.1.1) Z yrAy for some yr € R.
IC[n],I#0

(0,0,3)

0,0,1)

47 O)

001 001 (
PR = A A +
100 010 100 010

(3,0,0) (1,2,0)

(1,3,2) (1,2,3)

0,0,1) (0,0,1
(1,0,0)
= e e + \ + + ° -l- ° + °
23,1) ®:1.3) (0,1,0)  (0,1,0) (1,0,0) (0.1,0)

(1,0,0) (0,0,1)
(3,2,1) (3,1,2)

(0,0,2)

(0,0,1) (0,0,1)

(0,1,1) (0,0,1)
= 2 A + / -
(1,0,0)

(2,0,0) (1,1,0) (1,0,0) 0,1,0) (1,0,0) (0,1,0)

FI1GURE 2.3. Type-A generalized permutohedra as Minkowski sums of simplices
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Thus, we may write every permutohedron P as P = P({ys}). Note that if P({ys}) is integral
(resp. rational), then y; can be chosen to be integers (resp. rational numbers) for all nonempty

subsets I C [n].

EXAMPLE 2.1.3. In Firgure 2.3, Three examples of type-A generalized permutohedra in R? are

written as Minkowski sums of simplies. One sees that

Pr=Ap 4+ Ap) 4+ Ap sy
Py=Apgy+Aps +Ans +Any +Apy + A

P = 2A[3] + A{1,3} - A[3] = A[3} + A{173}‘

LEMMA 2.1.4 (Proposition 6.3 of [35]). Let P({yr}) be a type A generalized permutohedron where

yr are real numbers. Then, the point (z1,...,xy,) lies in P({yr}) if and only if

1+ -ty = Z yr and Za:j > Zy; for all nonempty subset J C [n].
IC[n) jed 1CJ

Given a bipartite graph G on m left vertices {¢1,..., %, } and n right vertices {ry,...,r,}, we
denote by N(v) the set of the vertices of G adjacent to the vertex v. We call N(v) the set of

neighbors of v. For i € [m], we let
(2.1.2) I; := {] € [n} | Tj € N(&)}

be the set of indices of the neighors of the left vertex ¢;. Then, one may define Pg(y1,...,ym) to
be the type A generalized permutohedron y1Ar, + -+ - + ym Ay, .

Conversely, given P = y1Ap, + -+ + ymAyg,, € R", there is a bipartite graph G on m left and
n right vertices such that Pg(yi,...,ym) = P. Thus, we may interchangeably write P({ys}) as

Pg(y1,-..,ym) where G is a corresponding bipartite graph.
REMARK 2.1.5. If Pg(y1,...,ym) C R™ is (n — 1)-dimensional, then G is a connected graph.

We now aim to describe how Postnikov derives a formula for the Ehrhart polynomials of type
A generalized permutohedra. Thus, we only consider P({y;}) where y; are integers throughout the

rest of this section.

10



DEFINITION 2.1.6. Given a bipartite graph G on m left vertices and n right vertices, we let I; be
defined as in equation (2.1.2). A sequence (ai,...,a) of nonnegative integers is a G-draconian
sequence if it satisfies the following inequalities: for every nonempty subset J C [m]

Zai < ’ UIZ‘ —1,anda; + - am=n—1.

ieJ ieJ

The set of all G-draconian sequences is denoted by D(G).

In [35, Theorem 11.3 and Remark 6.4], Postnikov gives the following formula for the number

of lattice points in integral type A generalized permutohedra.

LEMMA 2.1.7. Let P := Pg(y1,--.,Ym) = 1A, +- -+ ymAyg,, wherey; are integers for all i € [m].
Then, the number of lattice points in Po — A, is given by
(2.1.3) (P —Ap) NZ' = > (yl +;‘11 B 1) <?~/m +G‘ZL - 1).

aceD(G)

Note that the Ehrhart polynomial of Pg(y1, ..., ¥m) is given by replacing Pg in formula (2.1.3)
by Pa(yit, ... Ymt) + Apy i= yitAp + -+ ymtAg, + Apy.-

The rest of this section is devoted to outlining how Postnikov comes up with formula (2.1.3).
Since every type A generalized permutohedron is a deformation of II(wy, ..., w;) for some w; >
-+ > wy, it suffices by [35, Remark 6.4] to only show that the formula holds for Pg(y1,...,ym) =
nAr + -+ ymAy,, where y; are positive integers for all i € [m]. Because every simplex yA;
where y is a positive integer can be written as the Minkowski sum of y copies of the simplex Ay,

Postnikov first shows that the formula holds for Pg(1,...,1) = A, +---+ Ay,

m

ExaMPLE 2.1.8. Let G1, G2, G3, G4 be bipartite graphs shown in Figure 2.4. Then, we can write
the type-A generalized permutoheda P;, P», and Ps in Figure 2.3 as

P, =Pg,(1,1,1)

Py, = Pg,(1,1,1,1,1,1)

Py = Pg,(2,1,-1) = P — A = Pg,(1,1,1,-1).

11
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FiGure 2.4. Bipartite graphs associated to polytopes in Figure 2.3

Postnikov uses the Cayley trick to obtain a polyhedral subdivision of Pg(1,...,1) into fine
mized cells and use it as a key to counting lattice points in Pg(1,...,1). We refer the reader
to [35, Section | for more details regarding the fine mixed subdivision of Pg(1,...,1).

Recall that a polyhedral subdivision of a polytope P is a subdivision of P into a union of cells

of the same dimension as dim(P).

DEFINITION 2.1.9. Let Pg(1,...,1) = A, +---+ Ay,,. Then, a fine miz cell of Pg is a polytope
IT of the form Ay + --- + Ay, where J; C I; for all i € [m] and satisfies dim(Ay,) + -+ +
dim(Ay, ) = dim(Pg(1,...,1)). A fine mized subdivision of Pg(1,...,1) is a polyhedral subdivision

of Pg(1,...,1) into fine mixed cells.

ExXAMPLE 2.1.10. Let P := Pg(1,1,1) be the polytope shown in Figure 2.5 (also shown as P; in
Figure 2.3). A fine mixed subdivision of P is drawn inside of P. One sees that there are five fine

mixed cells, labeled as Iy, ..., II5 in the subdivision.

(0,0,3) b 1 b - 0 -

P Uy T ly ) ly T2
(0,2,1) 0 B ls - A T3
H1 H‘Z H3
(3,0,0) (1,2,0)

0y o 0 T 4 r

1 o ) To ty P

ls r3 £ r3 l3 r3

G H4 H5

FIGURE 2.5. Fine mixed cells in a fine mixed subdivision of Pg(1,1,1) and their
corresponding spanning trees
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A lattice point in a fine mixed cell of Pg(1,...,1) has a simple form in the following sense.

LEMMA 2.1.11. Let H be a bipartite graph on m left vertices and n right vertices. If H is a forest,
then every lattice point in the polytope Il := Py (1,...,1) is a vertex of II. Moreover, every lattice

point in II has the form ej, + .-+ e, for some j; such that r;, € N(¢;) for all i € [m].

REMARK 2.1.12. In other words, Lemma 2.1.11 states that every lattice point in II corresponds to
a transversal {r;,,...,r;, } of the sequence (N(¢),...,N(¢y)) the neighbors of the left vertices,
ie., rj, € N(¢;) for all i € [m)].

DEFINITION 2.1.13. Given be a bipartite graph G on m left vertices {{1,...,¢2} and n right vertices

{r1,...,mn}, we define the left degree LD(G) and the right degree RD(G) of G, respectively, as
LD(G) := (deg(f1) — 1,...,deg(¢y) — 1) and RD(G) := (deg(r1) — 1, ...,deg(ry) — 1).

Fine mixed cells in a fine mixed subdivision Pg(1,...,1) and G-draconian sequences are shown

in [35, Lemma 12.6, Lemma 12.8, and Theorem 12.9] to correspond to spanning forests of G.

LeEMMA 2.1.14. Suppose that C = {II;,...,II,} is the set of fine mized cells in a subdivision of
Pg(1,...,1). Then, there erists a sequence of bipartite subgraphs Hy, . .. ,Hy, of G such that H; are
spanning forests of G satisfying all of the following properties.

(1) If Pc(1,...,1) is (n — 1)—dimensional, then Hy,..., Hy, are spanning trees of G.

(2) For alli € [p], we have Py, (1,...,1) =1I;

(3) Fori,j € [p| such that i # j, we have LD(H;) # LD(H;) and RD(H;) # RD(H,)

(4) (Pa(1,...,1)=Ap)NZ" = {RD(H,),..., RD(Hy,)} and D(G) = {LD(H1),..., LD(Hpy)}.

Let P := Pg(1,1,1) be the polytope shown in Figure 2.5. The fine mixed cells in the given
subdivision of P, labeled as IIy,...,II5, and their corresponding spanning trees Hi,..., Hs of G

are also shown in the figure.

ExampLE 2.1.15. Let P := Pg(1,1,1) be the polytope in Figure 2.5. Since P — Aj,; = P53 where

Pj5 is the polytope shown in Figure 2.3, one has

(Pa(1,...,1) — A[n]) Nnz" =1{(2,0,0),(1,0,1),(1,1,0),(0,0,2),(0,1,1)}.
13



One can also show that
D(G) ={(2,0,0),(1,0,1),(0,1,1),(1,1,0),(0,2,0)}.
Moreover, one sees that

(Pe(1,...,1) = Apy) N Z" = {RD(H:), RD(Hs), RD(Hs), RD(H,), RD(Hs)}

D(G) ={LD(H.),LD(Hz), LD(H3), LD(H4), LD(Hs)}.
We obtain the following result as an immediate consequence of Lemma 2.1.14.

COROLLARY 2.1.16. Let Pg := Pg(1,...,1). Suppose that C is the set of fine mixed cells in a mized

subdivision of Pg. Then,

|(Pe — Apy) N 27| = |C| = [D(G)].

Corollary 2.1.16 implies that the number of lattice points in P — Ay, is given by
14a;—1 l4+am,—1
(2.1.4) (Pa—Ap)NZ' = > 1= ). ( o )( am )
acD(G) acD(G) m

Postnikov obtains formula (2.1.3) by expressing Pg(y1,-- -, Ym) as

Por(l,...,1) =AY +- 4+ A +--+A) 4.+ A)
N—_————

y1 terms Ym terms

for an appropriate G’, and then applying a simple binomial identity to the right-hand side of

equation (2.1.4).

2.2. Type B generalized Permutohedra

Recall that a type A generalized permutohedron can be defined as a polytope whose edges
are parallel to some vectors in a type A positive root system. It is then natural to generalize this

concept to root systems of other types.

DEFINITION 2.2.1. A type B generalized permutohedron in R™ is a polytope whose edges are parallel

to e; + e;,e; — ej, or e; for some i,j € [n] where e; denotes the standard basis vector in R™.

14



0,3) (0,0, 1)
(-1,2) (0,1,0)

(0,0,0)

(—1,—1) (2,71) (17070)

FIGURE 2.6. Examples of type B generalized permutohedra in R? and R?

The name “type B” comes from the fact that the edge directions of these polytopes are parallel
to some vectors in the type B positive root system {ei,...,e,,e; +e; | 1 <i < j < n}. We note
that these polytopes are also known as generalized signed permtohedra (see [18]). By definition,
every type A generalized permutohedron is a type B generalized permutohedron.

One may equivalently define a type B generalized permutohedron in R™ as a polytope in which
its normal fan coarsens the fan whose full dimensional cones are defined by the chambers of the

arrangement of hyperplanes

H;FJ ={(c1,...,cn) ER" | ¢; +¢; =0} for all i # j € [n],

(2.2.1) H o ={(c1,....,cn) €ER" [ ¢; —¢; =0} for all i # j € [n], and
H;, ={(c1,...,¢n) €R" | ¢; =0} for all i € [n].

The arrangement of hyperplanes in equation (2.2.1) is called the type B Cozeter arrangement. The
fan whose full dimensional cones are defined by the chambers of the type B Coxeter arrangement
is known as the B, permutohedral fan and is denoted by X p,. Note that each chamber of the

arrangement in (2.2.1) is a cone of the form

(2.2.2) {(c1,. . en) ERM |0 < (=DM, <--- < (=1)Fney, }

where {i1,...,i,} = [n], and k; € {0,1} for all j € [n]. Thus, there are n!2" of such chambers. We
refer the reader to [3] and [18] for more details regarding type B generalized permutohedra beyond
what are presented here.

Let 7] :={1,...,n} and [n,7] := [n]U[R] = {1,...,n,1,...,7}. For i € [n], we define e; := —e;

where e; is a standard basis vector of R™.
15



DEFINITION 2.2.2. The set AdS of admissible subsets of [n,n] is defined to be
AdS :={S C[n,n]|S #0 and {i,i} ¢ S for all i} and AdS,, := {S € AdS||S| = n}.

Readers may view each T' € AdS,, as an octant of R™. For instance, T'= {1,...,n} represents
R, the first octant, while {1,...,m} represents RZ, the opposite octant. More precisely, we have

the following definition.

DEFINITION 2.2.3. Let T' € AdS,,. We define Ry := {x € R" | x-¢; > 0 for all i € T} to be the

associated octant to T of R".

DEFINITION 2.2.4. Let S € AdS and T € AdS,,. We denote by
(1) AY the simplex conv(0,e; | i € S).
(2) Vg the simplex conv (}_;cq€i, > ;e € | J C S and |J| =S| —1).
(3) Or the unit cube ), A?i} in the octant Rp.

Bastidas showed from a study of Tits algebras in [3] that every type B generalized permutohe-
dron can be written as Minkowski sum (and difference) of the simplices A%. This result was also

established later in [18] by Eur, Fink, Larson, and Spink from a study of delta-matroids.

LEMMA 2.2.5. Fvery type B generalized permutohedron in R™ can be expressed as

Z ySA% for some yg € R.
SeAdS

One sees that Lemma 2.2.5 generalizes to type B the type A result by Postnikov in Lemma
2.1.2. Thus, one may write every type B generalized permutohedron as P({ys}). If P({ys}) is
integral (resp. rational), then yg may be chosen to be integers (resp. rational numbers) for all
S € AdS.

ExaAMPLE 2.2.6. In Figure 2.7, type-B generalized permutohedra P; and P, are written as
_ A0 0 0 0
Pr=Ap 4+ Ap + Mgy + A
_ _ 9A0 0 0 0 0
Py =P —=DOp) =280 + Aprgy + 8y — Ay — Bpep
16



(0,3)

L:2) (0,1) (0.1) (0,1) (0,0)
(2,1)
= N+ N+ 4+ |
0.0) (1,0) 0,0) (1.0) (=1,0) (0,0) (0.-1)
(=1,-1) (2,-1)
Y (0,1) (0,1) (0,0) (0,1)

—
—
(==}

=

(1,0)
(N J+ A+ -1 -—
)/ - ) o

. (0,0) (1,0 1,0) (0,0) (0,1
(71771) (1_1)

FI1cURE 2.7. Type-B generalized permutohedra as Minkowski sums of simplices

DEFINITION 2.2.7. Let Sy, ..., S, be admissible subsets of [n, 72]. The signed transversal of (Sy,...,Sy)
is an admissible subset T' € AdS,, such that there exists a bijection g : [n] — T satisfying g(i) € S;

for all i € [n].

In [18], Eur, Fink, Larson, and Spink give formulas for the volume and the number of lattice

points of type B generalized permutohedra in terms of sign transversals as follows.

LEMMA 2.2.8. Suppose that P({ys}) = > gcaqs YsAL where yg are integers for all S € AdS.
(1) The normalized volume of P is given by
(2.2.3) NVol(P({ys})) = Z |sign transversals of (S1,...,5n)| - Ysy - Ys,-
(S1,,5n)
(2) The number of lattice point in P({ys}) — Oy is given by
(2.2.4) (P({ys}) —Op,) NZ2" = Z |sign transversals of (S1,...,50) -V (ys, - - ys,)
(S1,...,Sn)
where W is the linear operator on the set of polynomials that maps each monomial z* - - - x%m
to arlam! (acl) . (acm) )

(a1++am)! \ay am

Note that one can compute the Ehrhart polynomial of the integral polytope P({ys}) by plug-
ging the polytope P({tys}) + A?l} +-+ A?n} into formula (2.2.4) in Lemma 2.2.8.
17



The rest of this section is devoted to establishing basic properties of type B generalized per-

mutohedra necessarily for proving our results in the following two sections.

DEFINITION 2.2.9. Let P = y1A%1 +-- -—i—ymA%m where y; are positive real numbers and S; € AdS
for all i € [m]. For T € AdS,,, we define
m
PT = ZyzAOSmT
i=1

We highlight some basic properties of points in the simplex A% in the next two remarks.

REMARK 2.2.10. Since V = {e; | j € S} U {0} is the set of all vertices of A%, we can write every
point in A% as a convex combination of the points in V. Thus, every point x in AOS has the form
(2.2.5) X = Z)\jej where Z/\j <land 0 < Ajforall jesS.

jes jes
REMARK 2.2.11. For S,T € AdS, let x € AL. It is easy to see from equation (2.2.5) that we can
write X = a + b for some a € Ang and b € A%\T. Thus, ify € P = ylAgl + -4 ymA%m, then

we have y = u + v where u € ylA%mT 4+ 4 ymA%mmT and v € ylA%I\T 44 ymAgm\T.

LEMMA 2.2.12. Let P = ylAgl +--- —i—ymAgm where y; are positive real numbers and S; € AdS for
all i € [m]. If the point (x1,...,xzy,) lies in P, then, for every (r1,...,ry) € R™ such that 0 <rp <1

for all k € [n], the point (r1z1,...,rnxy) also lies in P.

ProOOF. We first show that this property holds for the polytope P; = yiA%i for all i € [m]. By

Remark 2.2.10, every point x = (z1,...,2,) in P; has the form

X = Z Ajy;e; where Z Aj <1land 0 < )\ forall j €S;.
JES; JES;
We note that for k € [n], the coordinate z of x is zero if neither k nor k lies in S;. Let r =
(ri,...,mn) € R satisfies 0 < 7, < 1 for all k € [k] and let X; = rA; if j € {k,k}, for all j € S;.
Then, Zjesi )\;. <land0< /\; for all j € S;. Thus, the point

Z )\;yjej = (rx1,...,rpxy) =1 -x lies in P;.
JES;
18



Therefore, P, has the desired property for all i € [m)].

Now consider x = (z1,...,%,) € P. Since P = P; + --- + P,,,, we have x = z1 + -+ + z,, for

some z; € P;, i € [m]. Since, for every r = (r1,...,7m,) € R" such that 0 < r; <1 for all k& € [n]
the points r - z; lie in P; for all i € [m], it follows that (r1z1,...,rpzy) =r-X =121+ +1-2Z),
also lies in P. O

LEMMA 2.2.13. Let P = ylAgl 4+ -+ ymAgm where y; are positive real numbers and S; € AdS
for all i € [m]. Then, for T € AdS,,, we have Pr = P N R7}.. That is, Pr equals the polytope P

intersecting with the octant associated to T.

Proor. Clearly, Pr C P. Since yiAgimT C R% for all ¢, it follows that Pr C R%. Thus,
Pr C PNRY.

Next, we show that P N R% C Pr. Due to symmetry, it suffices to only show this for 7' =
{1,...,n}. That is, we only need to consider P "R} = PNRY,. Let x = (z1,...,2,) € PNRY,.
Then, by Remark 2.2.11, x = a+ b where a = (a1,...,a,) € Prand b= (by,...,b,) € ylAgl\T +
et ymA%m\T = Pre where T¢ := [n,n]\T = {1,...,7n}. This implies a; > 0 and b; < 0 for all
i € [n]. Sincex =a+b € R%, it follows that 0 < 2; = a; +b; < a; for all i € [n]. Thus,
x = (rmai,...,rpay,) for some (ry,...,r,) with 0 < r; <1 for all i € [n]. Therefore, by Lemma

2.2.12, x € Pr. This shows P NRY}. C Pr as desired. O

EXAMPLE 2.2.14. Let P = A([)Q] + A([)2] + A%+ A% < R? be the generalized permutohedron

{1,2} {2}
shown in Figure 2.8 (also shown as P; in Figure 2.7). Then, Pr for T' € AdSs are also depicted in

the same figure. One has that

R 0 0 0
Puoy = Qg +Ap + Ay

_ 0 0 0
Pugy =Apy + AL + AR

_ 0 0 0
Prgy = Ay + A%y + Ay,

_ A0 0
19



(0,3)

(_17 2)

P (2,1)
(—170)| (0,0) (0,3) (0,0) (2,0)

Pi ! Pp gy
(_172) I
(2,1)
(-1,—-1) TR

(—=1,0) , (0,0) (0,0) , (2,0)
(—1,-1) l: (0,-1) (0,-1) I—— (2,-1)
Pgy P g

FIGURE 2.8. P and Pr, the lattice points in P — O, and Pr — Oy, (the orange
points), and fine mixed subdivisions of Pp for T € AdS,

2.3. Thinking of B from A

DEFINITION 2.3.1. For i € [n], we define || := |i| = i. Additionally, for S € AdS, we define
IS]l == {lil | i € S}

For T € AdS,,, we let o7 : RO — R™ be the projection from R onto R™ defined by

(2.3.1) or(To, 1, ... xn) = Z:pei.

That is, o is the projection that projects the first octant of R™ onto the octant RT of R”™.
It is easy to see that, for every S € AdS, the projection ¢ is a bijection from the simplex

Agoyys) C RO to the simplex A% C R™.

LEMMA 2.3.2. Let T € AdS,, and P = y1A%1 4+ 4 ymAOSm where y; are positive real numbers
and S; € AdS for alli. Suppose that Qr is the type A generalized permutohedron in RO™ defined
by Qr = yiAr, + -+ ymArg,, where I := {0} U||S;NT||. Then, the projection ¢ defined in (2.3.1)

s a bijection from Pp to Qr. Moreover, if P is integral, then Pr is integrally equivalent to Q.
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PRrOOF. By Lemma 2.1.4, the type A generalized permutohedron Q)7 can be equivalently ex-

pressed as the set of all (zg,z1,...,2,) € ]R[Obn] satisfying
n
o+ @it =yt tynand > m< DY oy |- DD w
i€l j=1 L,C[0,n)\I

for all nonempty proper subset I of [n]
Let ¢ : RO" — R™ be the projection from RI9™ onto R™ defined by (T, 1,y Tp) =

(z1,...,2y). Then, the type B generalized permutohedron
N 0 0
Ry = y18g,nr) + -+ YmBjs,, ) € RE0

is given by the set of all (z1,...,2,) € RY such that

n
r1+ -+ 2, <nand inﬁ Zyj - Z Yi
j=1

icl L,C[0,n)\I
for all nonempty proper subset I of [n]. Hence, ¢ is a bijection from Qp onto Rp. Morevoer, we
see that if Pr is integral (yi,...,yn are integers), then Qp is integral and is integrally equivalent
to Rr.
Let ¢7 : R® — R" be the bijection on R™ defined by ¢r(z1,...,2,) = >, xie;. Then, ¢r
is the map that rotates the first octant of R™ to the octant Rp. Hence, ¢ is a bijection from Ry
to Pp. Since o1 = ¢7 0 ¢, it follows that 7 is a bijection from Q7 onto Pr. Furthermore, when

Pr is integral, then Q7 is integrally equivalent to Pr. O

Informally, Lemma 2.3.2 states that we can view the polytope obtained by intersecting P with
the octant Ry as a type A generalized permutohedron. This is where we can apply some of the
techniques and tools introduced by Postnikov in [35] to type B generalized permutohedra. This

realization, in particular, allows us to associate a bipartite graph to Pr as follows.

DEFINITION 2.3.3. With the same assumptions as given in Lemma 2.3.2, we define the corresponding

bipartite graph G(Pr) of Pr to be the bipartite graph G(Q7) of the type A permutohedron Q7.

EXAMPLE 2.3.4. Let P = A[[)Q} +A?2] —i—A({]T 2) +A({)§} C R? be the type-B generalized permutohedron

shown in Figure 2.8. By setting 7' = {1,2} € AdSy, one sees from Figure 2.9 that P(; oy is integrally
21



equivalent to the type-A generalized permutohedron Q2 C RI[0:2] (also shown as P in Figure
2.5) through the projection ¢y 2y (0,71, 72) = (71, 22). Moreover, the associated bipartite graph
G(Pq1,2y) of Py 2y (shown in Figure 2.9) is the graph G(Qy;2)) = G where G is the bipartite graph
shown in Figure 2.5, except that the right vertices r1,r9,r3 are relabeled respectively as rg, r1, 2.

The fine mixed cells in Py 5y are also obtained by projecting the fine mixed cells in Q1 2}-

(0,3)
0 o (0,0,3)
ly 1
(2,1) (0.2.1)
€3 T2
(2,0) G(Pp,23) (3,0,0) (1,2,0)
Ppy 9y Q12

FIGURE 2.9. P19y C R? and Q12 C RI2 are integrally equivalent

It is important to note that when we view Pr as a type A generalized permutohedron, we

always set eg = 0.

2.4. Counting Lattice Points from A to B

In similar fashion to how Postnikov obtains the Ehrhart polynomial of integral generalized
permutohedra, we only need to derive the Ehrhart polynomial of integral type B generalized per-
mutohedra P = ) ¢ aqg ySA% that holds for nonnegative integers yg, for all S € AdS. Once we
get a formula that works for all nonnegative integers yg, it will extend to hold for all integers yg.
Since every yA% can be written as Minkowski sum of y copies of A%, we deduce the problem to
finding a formula for the number of lattice points in P = A%I 4+ Agm where S; € AdS for all

i€ [m].

DEFINITION 2.4.1. Let P = ylAgl + -4 ymAgm where y; are nonzero integers and S; € AdS
for all i € [m]. For a given admissible set T" € AdS,,, we define a G-draconian sequence of Pr to

be a sequence (aq,...,a,;) of nonnegative integers satisfying the following inequalities: for every
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nonempty subset I C {1,...,m}

Zaig ‘US}OT‘, and a1 + -y, = n.
iel iel

We denote by D(Pr) the set of all G-draconian sequences, and denote by D(Pr) Ny, the set of

G-draconian sequences in which a; <1 for all ¢ € [m)].

One observes that the definition of G-draconian sequence in Definition 2.4.1 is exactly the
definition of G(Pr)-draconian sequence in Definiton 2.1.6. One also sees that that if Pr is not
n-dimensional, G(Pr) must have a right vertice of degree zero. Consequently, a; + -+ + a,, <
| Uie[m] S;NT | < n. Thus, D(Pr) = 0 provided Pr is not n-dimensional.

Recall that Postnikov utilized the Cayley trick to subdivide polytopes into fine mixed cells to
show that the lattice points in certain polytopes are in one-to-one correspondence with their asso-
ciated G-draconian sequences, which consequently led to formula (2.1.3) in Lemma 2.1.7. Adapting

Postnikov’s approach, we found a similar correspondence which gives the next theorem as a result.

THEOREM 2.4.2 (Thawinrak). Suppose that P = Agl + -+ AL where S; € AdS for all i € [m].
Then, the number of lattice points in the polytope P — Uy, equals
(2.4.1) (P=D0p)NZ' = > [D(Pr)Nn Oyl

TcAdS,

The rest of this section is devoted to proving this theorem and its consequences.

DEFINITION 2.4.3. Let T € AdS,,, and P = Agl + -+ A%m where S; € AdS for all ¢ be a
type B generalized permutohedron. Let II € C be a fine mixed cell of Pr, and H be the bipartite
subgraph of G(Pr) corresponding to II, i.e., II is integrally equivalent to the type A generalized
permutohedron Py (1,...,1) € R, Suppose that IT = Ay, +--- + Ay, where I; C {0} U S; for
all i. Let K = {I; | i € [m] and |I;| > 2}. Then, we define II to be the polytope

f[::ZAK

obtained by removing the translating factor from II. We denote by H the induced bipartite subgraph

of H corresponding to I1.
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We highlight some of the basic properties of II in the following two Remarks.

REMARK 2.4.4. Let K’ = {I; | i € [m] and |I;| = 1}. The fine mixed cell IT is the translation x + II

of IT where x is the integral vector (translating factor)

X = Z A lying in the octant Ryp.
JeK’

REMARK 2.4.5. If we assume further that Pr is n-dimensional (G(Pr) is connected), then H is a
spanning tree of G(Pr) with m left and n + 1 right vertices. Consequently, we have that His a
tree and a bipartite graph with n + 1 right vertices in which every left vertex has degree at least
two. Moreover, H has at most n left vertices. The tree H has exactly n left vertices if and only if

every left vertex of H has degree two.

Unless stated otherwise, we assume throughout the rest of this section that P = Aosl +-- -—i—A%m
where S; € AdS for all i. In addition, for T € AdS,,, we denote by G(Pr) the corresponding

bipartite graph of Pr with m left vertices {/1,..., ¢y} and n + 1 right vertices {ro,r1,...,7n}.

LEMMA 2.4.6. Suppose that Pr is n-dimensional. Let C be the set of fine mized cells in a fine mized

subdivision of Pr. If Il is a fine mized cell in C, then II and y + 11 have no common interior for

all vectors y € Z™\{0}.

PROOF. Suppose that II € C is a fine mixed cell of the form II = Ay + --- + Ay, where
I; C{0}US; for all i. Let K = {I; | i € [m] and |I;| > 2}. Then,

ﬂ::ZAJ.

For each J € K, let us write J = {j1,...,45 | [7i] < |jis1], forall 1 <4 < [J|}, and define the
corresponding set of intervals (‘2])* = {lej,,e),],[0,ej, —e;,],...,[0,€j, —e;] C R"} where we

denote by [x, y] the line segment connecting x and y (the interval from x to y), and set eg = 0 € R™.

)

JeK
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to be the set of intervals in all (‘2])* for J € K. It is easy to see that every vertex of the simplex

A lies in the zonotope

Oy = Z A

Ac(y)”
spanned by the intervals in (‘2])* This implies that Ay C <y for all J € K. Thus, II lies in the

zonotope

Op= Y A=) 0,

A€EBgk JeK
Since Pr is n-dimensional, by Remark 2.4.5, H is a tree and a bipartite graph with n left and n+1

right vertices. Because \(‘2])*| = |J| — 1, it follows that

SI() =

Moreover, one sees that the set B contains translations of integral vectors that form an integral
basis for Z™. Thus, the polytope < is the parallelepiped in R™ of volume one spanned by the
intervals A € B. Hence, ¢ and y 4+ < have no common interior for all nonzero integral vectors y.
Since IT € © and z+1II C z+ < for all z € R™, it follows that II has no common interior with y—+1I
for all vectors y € Z™\{0}. O

A zonotope in R" is a polytope defined as a Minkowski sum of line segments (intervals) in R".
This means that a translation of a zonotope is also a zonotope. The next lemma characterize fine

mixed cells that are zonotopes.

LEMMA 2.4.7. Suppose that Pr is n-dimensional. Let C be the set of fine mixed cells in a fine
mized subdivision of Pr. Let 11 be a fine mized cell in C and x € Z™ be the integral vector satisfying

x + I =1II. Then, the following statements are equivalent.

(1) The fine mized cell 11 satisfies Vp C 11
(2) x is the unique integral vector in (Pp — Op) NZ"™ such that x + Vp C II.
(3) The fine mized cell I1 is a zonotope.

To prove this lemma, we need the following result regarding the existence of a perfect matching

of a certain bipartite graph.
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LEMMA 2.4.8. Let n be a positive integer. Suppose that B is a bipartite graph with n left vertices

and n right vertices satisfying the following two conditions.

(1) Every left and right vertex of B has degree at least one.

(2) Every left and right vertex of B is adjacent to at most one vertex of degree one.

Then, there is a perfect matching in B.

Proor. We will proceed by induction on n > 1. When n = 1, there is a perfect matching in
B, since the left and right vertices are adjacent. This establishes the base case for induction. Now
suppose that the statement is true for some n > 1. Consider a bipartite graph B with n 4+ 1 left
vertices {{1,...,¢n+1} and n+1 right vertices {71, ..., 41} satisfying the two conditions. Without
loss of generality, we may assume that r, 1 is a right vertex of the least degree in B, and that the
left vertex ¢,,4+1 is adjacent to r,+1 and has the least degree among other left vertices adjacent to
T4l

Let B be the induced bipartite subgraph of B obtained by removing the vertices £,,+1 and 7,1
of B. Then, it is easy to see that B is a bipartite graph on n left and n right vertices satisfying the
two conditions. Thus, by the induction hypothesis, there is a perfect matching in B.

By matching ¢, 11 with r,+; and matching other vertices of B using a perfect matching in B ,

we obtain a perfect matching in B. Therefore, by induction, the statement holds for all n > 1. [

PROOF OF LEMMA 2.4.7. Due to symmetry, we may assume for simplicity of notation without
loss of generality that T' = [n]. Let x € ZZ be the integral vector satisfying x + I =1L

Firstly, we show that (1) implies (2). Suppose that V,) C II. Then, x + Vi Cx+ =1 1In
particular, we have x +e; +---+ e, € Il C P,;). By Lemma 2.2.12, we must have x + U, C P},
Thus, x € (Py,;—0p,))NZ". Hence, x € (P, —0p,))NZ" is an integral vector such that x+ V) C II.

Suppose that y € (P, — Op,y) N Z" satisfies y + V) C II. Since IT = x + II, we have
VigSx—y+ I1. This implies that IT has common interior with x — y + II. By Lemma 2.4.6, we
must have x = y. This shows the uniqueness of the integral vector x € (P,,) — Op,) N Z" such that
X + Vi) C I Thus, (1) implies (2).

Next, we show that (2) implies (3). Suppose that x € (P, — Op,)) NZ" and x + Vi, C IL

We claim that IT is a zonotope. Assume for the sake of contradiction that IT is not a zonotope.
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Then, I1 is also not a zonotope. This implies that Hisa bipartite graph that is also a tree with
at least one left vertex has degree at least three. Together with Remark 2.4.5, we conclude that
H must have less than n left vertices. Thus, the sequence of right vertices (r1,...,r,) cannot be a
transversal of the neighbors of the left vertices of H. Thus, By Lemma 2.1.11 and Remark 2.1.12,
e +--+e, ¢ II. In particular, we must have Vi € II. Therefore, x + Vi € x+ =1 a
contradiction. This shows that (2) implies (3).

Lastly, we show that (3) implies (1). Suppose that II is a zonotope. Then, I1 is also a zonotope.
Thus, H is a bipartite graph that is also a tree with n 4 1 right vertices in which every left vertex
has degree two. Consequently, H must have exactly n left vertices. To see that Vi, C I1, it suffices
to show e; +---+ e, € H and e; + ---e;_1 +e41+-+e, € II for all i € [n]. For every
i€ {0,1,...,,n}, let H (i) be the induced bipartite subgraph of H obtained by removing the right
vertex r; of H. Then, ]fI(Z-) is a bipartite graph on n left and n right vertices satisfying the two
conditions in Lemma 2.4.8. Thus, there is a matching in ﬁ(i) foralli € {0,1,...,,n}. By Remark
2.1.12, a matching of fI(O) implies that ey +--- + e, € H while a matching of ﬁ(i) implies that

e +---e_1+e41+---+e, € II for all i € [n]. This completes the proof. ]

The next lemma gives an analog result to Corollary 2.1.16.

LEMMA 2.4.9. Suppose that Pr is n-dimensional. Let C* = {II;, ... ,II;} be the subset of C consist-

ing of fine mized cells that are zonotopes. Then,
ID(Pr) N Q| = [C7] = [(Pr — Or) NZ"|.

PrOOF. We first show that [D(Pr) Ny, | = |[C*|. Since Pr is n-dimensional, its corresponding
bipartite graph G(Pr) is connected. Moreover, because all fine mixed cells in C* are zonotopes,
each cell II; € C* corresponds to a spanning tree of G(Pr) whose left vertices have degree at most
two. By [35, Theorem 12.2], LD(IIy),..., LD(Il,) are distinct elements of D(Pr) N Oy, Thus,
ID(Pr) N Opy) > |C*|. Moreover, for every a € D(Pr) N Oy, there exists a fine mixed cell IT € C
such that a = LD(IT). This implies that the corresponding spanning tree of II has left vertices of
degree at most two. Thus, IT is a zonotope, i.e., Il € C*. Therefore, |D(Pr) N Oy, | < |C*|, which
implies [D(Pr) N Oyl = [C*].
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Next, we show that |C*| < |(Pr — Op) N Z"|. By Lemma 2.4.7/(2), the map II; — x where
x € (Pp — Op) NZ™ satisfying x + Vp C II; is an injection from C* to (Pr — Op) N Z™. Hence,
IC*| < [(Pr —Or)NZ"™.

Lastly, we show that |C*| > |(Pr — Or) NZ"|. Let x € (Pr — Op) NZ"™. Due to symmetry, we
may assume for simplicity of notation without loss of generality that 7" = [n]. We claim that there
exists a unique fine mixed cell II € C* such that x + V|,; C II. Note that once the existence of such
a fine mixed cell IT € C* is established, the uniqueness will automatically follows, since two distinct
cells in C have no common interior. Thus, we only need to show the existence of II € C* such that
x + V) C II. To see this, let I € C be a fine mixed cell that has a common interior interior with
X + V[n]. Note that such a fine mixed cell II exists because x + V[n] C x+ D[n] C Pr. We now
proceed to show that x 4+ Vy,,) C II by first establishing that II is a zonotope.

Assume for the sake of contradiction that II is not a zonotope. Then, II is also not a zonotope.
This implies that H is a bipartite graph that is also a tree with at least one left vertex has degree
at least three. Together with Remark 2.4.5, we conclude that H must have less than n left vertices.
Thus, the sequence of right vertices (7,,...,7;,) cannot be a transversal of the neighbors of the
left vertices of H. By Lemma 2.1.11 and Remark 2.1.12, we deduce that II lies in the half-space

z1+ -+, <n—1. Because II C R, it follows that II lies in the polytope @Q given by
Q={x|z1+ - +2z,<n—1 and 0 < z; for all i € [n]}.
Note that
Vi ={x|21+ - +z,2n—-1 and z; <1 for all i € [n]}.
Fory = (y1,---,Yn), 2 = (21,...,2,) in Z", the translations y + @ and z + V|, are given by

v+OQ={x|z1+ -+, <y1+--+y,+n—1 and y; < z; for all i € [n]}

z+Vp={x|lzi+ - +z,>2z21+ - +2z,+n—1 and 2; < z;+ 1 for all i € [n]}.

One sees that y + () and z + V|,;) have no common interior for all x,y € Z". In fact, if y + @ and

z+ V|, were to have a common interior, then we would have z1+- - -+2z,+n—1 < y1+---+yp+n—1.
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This would imply that there exists j € [n] such that z; + 1 < y;. However, this would mean that
y + @ lies in the half-space z; +1 < z; while z+ V|, lies in the half-space x; < z;+1. Hence, y +Q
and z + V|, would have no common interior, a contradiction. Thus, by setting z = x, we see that
y + I = II lies in y + Q and has no common interior with x + V[n); & contradiction. Therefore, II
is a zonotope.

Suppose that y € Z" is the integral vector such that y + II = II. Since ITis a zonotope, by
Lemma 2.4.7/(2), y + V) € II. Thus, x+ V,) € x —y +1II. This means that x —y +1II and II have
a common interior. By Lemma 2.4.6, we must have x = y. Therefore, x + V) C II as claimed.

The map x +— II where II is the fine mixed cell such that x + V|, C II is now seen to be an

injection from (Pr — Ogp) NZ"™ to C*. Therefore, |C*| > |(Pr — Or) NZ"|. O
We are now ready to give a proof of Theorem 2.4.2.

PROOF OF THEOREM 2.4.2. We first observe that

(P-DOp)nz'= || (Pr—0Op)nz"
TeAdS,

Thus,

(P=Op)NZ" = > |(Pr—0y)nz".
TeAdS,

For T' € AdS,, such that Pr is not n-dimension, we have that |(Pr—0O7)NZ"| = 0 = [D(Pr)N0yy|-
Also, for T' € AdS,, such that Pr is n-dimensional, we have by Lemma 2.4.9 that |(Pr—Or)NZ"| =
ID(Pr) N0y, |- This means [(Pr —Or) NZ"| = [D(Pr) N0y, | for all T € AdS,,. Thus, to see that
(24.2) (P=0p)NZ* = > [D(Pr) N DOyl

TeAdS,

it suffices to show that [(Pr — Oj,) NZ"| = |(Pr — Or) NZ"| for all T € AdS,,.

For every T' € AdS,,, we have ;) = Or — ZieT\[n] e;. Thus,

(Pr — Opy) N 27| = ‘ 3 e | +(Pr-Op)nz”
i€T\[n]

- ‘(PT—DT)OZ” .

This gives (2.4.2) as desired. O
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ExaMPLE 2.4.10. Figure 2.8 shows P = A?Q] + A?Q} + A% 2 + A({)ﬁ} C R? together with Pr for

T € AdS;, and the lattice points in P — [}y and Pr — Ojg) (the orange points). One sees that
(P-DOp)NnZ*= > |(Pr—D0Og) Nz
TeAdS,

Moreover, one sees that, for every T' € AdSs, the number of lattice points in Pr — Uy equals the

number of fine mixed cells in a subdivision of Pp that are zonotopes.

Theorem 2.4.2 implies that

(2.4.3) (P=Om)nZ' = ) 2 <1><ain> ’

a
TeAdS,, \aeD(Pr) !

since only the G-draconian sequences a = (ay, ..., ay) with a¢; < 1 make the summand in equation
(2.4.1) nonzero, and equal to one. Together with a simple binomial identity, we derive the following

key result as a consequence.

COROLLARY 2.4.11. Suppose that P = ylesl + -+ ymA%m where y; are integers and S; € AdS
for all i. Then,

n Yy Ym
(2.4.4) (P=DOp) Nzt = > > (ai) (a >
TeAdS, aED(PT) m

PROOF. As noted at the begining of the section, it suffices to show that the formula holds for
positive integers yi,...,y,. Clearly, we can write any yA% where S € AdS and y is a positive

integer as the Miknowski sum of y copies of A%. By writing

P=AY + -+ Ay 4+ Ay 4+ Ay

~
y1 terms Ym terms

and applying formula (2.4.3) to P, one can express the right-hand side of (2.4.3) as

> [ () ()

Tc€AdS, \aeD(Pr)
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using the binomial identity

Y 1 1
= E e for all Z>9. O
<a> <b1> <by> or Al Y € fz0

by++by=a
n
b1y by €22

Note that the Ehrhart polynomial of P = ylAgl + e+ ymA%m can be computed simply by
replacing it in formula (2.4.4) with tP + O, = tylA%I + 4 tymA%m + A?l} + -4 A?n}.

REMARK 2.4.12. Let

DTy = |J D).
TeAdS,,

Then, formula (2.4.4) can also be expressed as

(2.4.5) (P=DO,)NZ = ) KT ecAdS,|ac D(PT)H(Zi) (ym>

acD(P) Gm
One observes that formula (2.4.5) bears a resemblance to formula (2.2.4) from Lemma 2.2.8 by
Eur, Fink, Larson, and Spink. However, (2.4.5) is written in a more compact form: each summand
{T € AdS,, | a € D(PT)H(ZD e (gz) in (2.4.5) consolidates W individual terms that

appear in (2.2.4).

COROLLARY 2.4.13. Suppose that P = ylA%1+~ . -+ymA%m where y; are real numbers and S; € AdS

for all i. Then, the volume of P is given by

(2.4.6) Vol(P) = 3 3 f‘ - yg@":

Q!
TeAdSn aED(PT)

PRrROOF. To see that formula (2.4.6) gives the volume of P, it suffices to show that the formula

holds for nonnegative integers y1, ..., ym. Let
QW = tP + Oy =ty AY, + -+ + tymAg, + Ay + -+ AL

We note that D( gf)) C Z;”J . Then, the Ehrhart polynomial of P is given by

0P) = @0 - O T = 3 3 <y1t><ymt>< 1 )( 1 )

ai am Am+1 An+m
TeAdS, aeD(Q(qf))
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Since the volume of P equals the leading coefficient of i(P,t), it follows that

Vol(P) = 3 3 lelzgj

TeAdS, aED(ng))
a;=0, Vi>m

One observes that a € D(Qg)) satisfies a; = 0 for all @ > m if and only if (ai,...,amn) € D(Pr).

Thus, we arrive at the desired formula

Vol(P) = Z Z ﬁyaﬂm 0
© (11! am!

TeAdS, \aeD(Pr)

2.5. More Problems from A to B

Our approach for computing the Ehrhart polynomials suggests that there seem to be many
aspects of type B generalized permutohedra that can be explored using existing techniques and
tools from the study of their type A counterparts. The following questions highlight some potential

research directions.

PROBLEM 2.5.1. In [35, Section 7], Postnikov introduces building sets and nested complexes to
describe the face posets of some type A generalized permutohedra. Can we give a combinatorial
description of the faces of type B generalized permutohedra using similar combinatorial models as

building sets and nested complexes?

PROBLEM 2.5.2. In [36], Postnikov, Reiner, and Williams compute the f and h-polynomials of
a family of simple type A generalized permutohedra using building sets and the corresponding
preposets. Can we employ a similar approach to compute the f and h-polynomials of type B

generalized permutohedra?

PROBLEM 2.5.3. Bastidas shows in [3] that every type B generalized permutohedron can also be
written as the Minkowski sum of the simplices Ag and A% where S € AdS are admissible subsets
such that min(|i| | i € S) € S. That is, the family of admissible subsets Ag and A% where

min(|i| | i € S) € S is a “basis” for the type B generalized permutohedra. Find a formula for the
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Ehrhart polynomial of type B generalized permutohedra with respect to this basis (directly without

transforming this basis to the basis used in this chapter).

PROBLEM 2.5.4. Postnikov’s formula (2.1.3) implies that every type A generalized permutohedron
of the form y1 Ay, + -+ + ymAyg,, C R™ is Ehrhart positive provided y; are positive integers for all
i € [m]. Our formula (2.4.4) in Corollary 2.4.11 does not make it immediately clear whether Ehrhart
positivity holds for type B generalized permutohedra in a similar situation. This leads to the natural
question: Is every type B generalized permutohedron of the form ; A%1 4 -+ymA05m C R"™, where

each y; is a positive integer for all ¢ € [m], Ehrhart positive?
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CHAPTER 3

Polynomiality of Stretched Littlewood-Richardson Coefficients

The Littlewood-Richardson coefficients appear in many areas of mathematics [21,28,29, 38 48].
An example comes from the study of symmetric functions. The set of Schur functions s, indexed
by partitions A, is a linear basis for the ring of symmetric functions. Thus, for any partitions A and

i, the product of Schur functions sy and s, can be uniquely expressed as

(3.0.1) S-Sy = Z X puSv
vilv|=Al+ ]

for some real numbers ¢ ,, where |A| denotes the sum of the parts of . The coefficient cf§ , of s,
in (3.0.1) is called the Littlewood-Richardson coefficient.

There are several ways to compute cf , such as the Littlewood-Richardson rule [45], the
Littlewood-Richardson triangles [34], the Berenstein-Zelevinsky triangles [6], and the honeycombs
[26]. In this chapter, we employ the hive model that was first introduced by Knutson and Tao [26].
The hive model imposes certain inequalities that allow us to compute . . 88 the number of integer
points in a rational polytope, which we call a hive polytope.

For fixed partitions A, u,v such that |v| = |A| + |p|, we define the stretched Littlewood-
Richardson coefficients to be the function C&,tu for non-negative integers t. The hive model implies
that

cgw = the number of integer points in the ¢*"-dilation of the hive polytope.

By Ehrhart theory (see Thoerem 1.3.1), C?/(Ju is a quasi-polynolmial in ¢ € Z, which means C%,t 18
a function of the form aq(t)t?+- - -+ay (t)t+ao(t) where each of ag(t), ..., ag(t) is a periodic function
in t with an integral period. The function CiK,w was, however, observed and conjectured by King,
Tollu, and Toumazet [25] to be a polynomial function in ¢ (as opposed to a quasi-polynomial). The
conjecture was then shown to be true by Derksen-Weyman [15], and Rassart [37]. More precisely,

they proved the following theorem.
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THEOREM 3.0.1. Let u, A, v be partitions with at most k part such that [v| = [N + |u|. Then X,

s a polynomial in t of degree at most (kgl)

The proof by Derksen and Weyman [15] makes use of semi-invariants of quivers. They proved
a result on the structure of a ring of quivers and then derived the polynomiality of Cii,tu as a
special case. Later, Rassart [37] proved a stronger result, which gives Theorem 3.0.1 as an easy
consequence, by showing that CK# is a polynomial in variables A, u,v provided that they lie in
certain polyhedral cones of a chamber complex. The proof by Rassart employs Steinberg’s formula,
the hive conditions, and the Kostant partition function to give the chamber complex of cones in
which cK’ L is a polynomial in variables A, u,v. A considerably large portion of Rassart’s paper was
devoted to describing this chamber complex and showing its desired property, resulting in a fairly
long justification. We note that although this chamber complex of cones was provided, it is in
practice computationally hard to work out the cones.

Inspired by Rassart’s approach, we ask if similar tools can be utilized to give a simple proof
of Theorem 3.0.1 directly. We found that Steinberg’s formula and a simple argument about the
chamber complex of the Kostant partition function are indeed sufficient. The main objective of

this chapter is to give a short alternative proof of Theorem 3.0.1 using this idea.

Chapter Organization. We begin by introducing necessary notations and describing the
hive model for computing ¢ - The hive model will help us understand the behavior of stretched
Littlewood-Richardson coefficients through properties of associated polytopes. We then introduce
the Kostant partition functions and state Steinberg’s formula and related results that will later
be used for proving Theorem 3.0.1. Lastly, we describe a connection of stretched Littlewood-
Richardson coefficients and flow polytopes, and outline potential research problems and directions

for future work.

3.1. Littlewood-Richardson Coefficients

We say that A = (A1,..., k) is a partition of a non-negative integer m if \; > --- > \; are
positive integers such that A\; + --- + A\x = m. For convenience, we will abuse the notation by
allowing \; to be zero. The positive numbers among A1, ..., \; are called parts of . For example,

A =(2,2,1,0) is a partition of 5 with 3 parts. We write |A| to denote A\ + -- - + A.
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A hive Ay, of size k is an array of vertices h;; arranged in a triangular grid consisting of k2 small
equilateral triangles as shown in Figure 3.1. Two adjacent equilateral triangles form a rhombus
with two equal obtuse angles and two equal acute angles. There are three types of these rhombi:

tilted to the right, left, and vertical as shown in Figure 3.1.

hoa hia hoa hza haa

FIGURE 3.1. Hive of size 4 (left), and the three types of rhombi in a hive (right)

Let A= (M\,..., k) o = (@1, -+, i), v = (1, ..., %) be partitions with at most k parts such
that |v| = |A| + |p|. A hive of type (v, A, 1) is a labelling (h; ;) of Ay that satisfies the following hive

conditions.

(HC1) [Boundary condition] The labelings on the boundary are determined by A, u,v in the

following ways.

ho 0= 07 th‘ - hj_l,j_1 = Vj, hO,j - h()’j_l = )\j, for 1 < j < k.

)

hik — hi—1x = i, for 1 <i<k.

(HC2) [Rhombi condition| For every rhombus, the sum of the labels at obtuse vertices is greater

than or equal to the sum of the labels at acute vertices. That is, for 1 <i < 7 <k,

hij—hij—1 > hi—1; — hi—1;-1,
hij —hi-1j > hiy1j41 — hijy1, and

hi1j = hic1j-1 2 hijy1 — hij.

Let Hy(v, A, i) denote the set of all hive of type (v, A, ). Then the hive conditions (HC1) and

k+2

2 ) Hence, we will call

(HC2) imply that Hg(v, A, 1) is a rational polytope in R™ where n = (
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Hy (v, \, ) the hive polytope of type (v, A, ). Knutson-Tao [26] and Buch [7] showed that
cx, = the number of integer points in Hy (v, A, p).

ExAMPLE 3.1.1. Let k =3, v = (4,3,1),A = (2,1,0), and p = (3,2,0). Then, in the hive Ag, we
have by the boundary condition
ho,o = 05 ho1 — hoo = 2;ho2 — hop = 1;ho3 —ho2 =0
hi3 —hos =3;h23—hig=2;hg3—ha3=0
hi1—hoo=3;ha2 —h11=3h3g—hoo =1
Solving these equations, we obtain the boundaries of Ag as shown in (one of) the hives in Figure

3.2. Thus, we only need to solve for hj 5. Using the rhombi condition, one sees that the following

two inequalities suffice for determining hq o:
hi2 > hoo +ha3 —hi2=>5and hg1+ hi11 —hoo =6 2> hipa.

Thus, the only integers hi o satisfying the rhombi condition are 5 and 6. This implies that there
are two integer points in Hs(v, A, 1), each corresponds to an integer label of Az shown in Figure

3.2. Therefore, have that CKM = |Hs(v, \, pu) N Rm‘ =92

0 0
2e o4 2e o4 v=(4,31)
A=1(2,1,0)
3e ° o7 3e ° o7
5 6 p=(3,2,0)
A A R A

FIGURE 3.2. The only two integer points (integer labels) of Hs(v, A, i)

For fixed partitions A, p, v with at most k parts such that |v| = || + |u|, we define the the

stretched Littlewood-Richardson coefficient to be the function cix’t# for non-negative integer t.
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Because Hy(tv, t\, tu) = tHi(v, A, 1), we have that

CiK,t,u - Z(Hk(ya A, /UJ)a t)'

REMARK 3.1.2. Examples provided in [25] indicate that H(v, A\, 1) is in general not an integral

polytope. Thus, by Ehrhart theory (Theorem 1.3.1), Cii,tu is a quasi-polynomial in ¢.
3.2. Kostant Partition Function and Steinberg’s Formula

We will show the polynomiality of c&tu by using Steinberg’s formula as derived in [37] by
Rassart and the chamber complex of the Kostant partition function. To this end, we state the
related notations and results for later reference.

Let e1,...,e; be the standard basis vectors in R¥, and let A, = {e; — ej: 1 <i<j<k}
be the set of positive roots of the root system of type Ax_1. We define M to be the matrix whose
columns consist of the elements of A,. The Kostant partition function for the root system of type

Ay_q is the function K : ZF — Z>q defined by
_ (3) _
K(v) = beZZO|Mb—’u .

That is, K(v) equals the number of ways to write v as nonnegative integer linear combinations of
the positive roots in A.

An important property of the matrix M, when written in the basis of simple roots {e;—e; 11 |7 =
1,...,k—1}, is that it is totally unimodular, i.e., the determinant of every square submatrix equals
—1,0, or 1. Indeed, it is shown in [39] that a matrix A is totally unimodular if every column of A

only consists of 0’s and 1’s in a way that the 1’s come in a consecutive block. Let

cone(A;) = {Z AU v € AL A, > O}

be the cone spanned by the vectors in Ay. The chamber complex is the polyhedral subdivision of
cone(A) that is obtained from the common refinement of cones cone(B) where B are the maximum
linearly independent subsets of A;. A maximum cell (a cone of maximum dimension) C in the
chamber complex is called a chamber. Since M is totally unimodular, the behavior of K (v) is given

by the following lemma as a special case of [47, Theorem 1] due to Sturmfels.
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LEMMA 3.2.1. Let C be a chamber in the chamber complex of cone(AL ). Then the Kostant partition

function K (v) is a polynomial in v = (v1,...,v;) on C of degree at most (kgl)

Steinberg’s formula [46] expresses the tensor product of two irreducible representations of
semisimple Lie algebras as the direct sum of other irreducible representations. When restricting

the formula to SL;C, we obtain the following version of Steinberg’s formula for computing cf -

LEMMA 3.2.2 (Steinberg’s Formula). Let u, A\, v be partitions with at most k parts such that |v| =
|A| + |p|. Then
cK”u = Z (_1)inv(aT)K(0()\ + 5) + T(u + 5) — (1/ + 25))

o,7€EC

where inv (1)) is the number of inversions of the permutation ¢ and

5= 3 (ei—ej):%(k—1,k—3,...,—(/~c—3),—(k—1))

1<i<j<k

is the Weyl vector for type Ag_1.

Details of the derivation can be found in [37, section 1.1].

3.3. Proof of the Polynomiality

We are now ready to prove Theorem 3.0.1.

PROOF OF THEOREM 3.0.1. The hive conditions imply that CiK,tu is a quasi-polynomial in ¢.
To see that CK tu is in fact a polynomial in ¢, it suffices to show that there exists an integer N such
that cix tu is a polynomial in ¢ for ¢ > N.

For 0,7 € Gy, let

Tl () == o (tA + 8) + T(tp + 8) — (tv + 26)

=tlc\)+71(p) —v)+0(d) +7(5) — 26.

Then " (t) is a ray (when allowing ¢ to be a non-negative real number) emanating from o(8) +

7(8) — 29 in the direction of o(\) + () — v.
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By Steinberg’s formula,

Bap= Y (MUK @R(D).

0,76

Lemma 3.2.1 states that K (v) is a polynomial in v when v stays in one particular cone (chamber)
of the chamber complex of cone(A, ). Because there are only finitely many cones in the chamber

sHV

complex, we have that for every pair 0,7 € G}, there exists an integer N(i 7" such that exactly one

of the following happens:

(1) The ray 727" () lies in one particular cone of the chamber complex for all ¢ > No#”

(2) The ray ro " (t) lies outside cone(A L) for all ¢ > No#.

If (1) is satisfied, then K(ro"(t)) is a polynomial in t for t > N If (2) is satisfied, then
K (rp"(t)) is the zero polynomial for ¢ > No#”_ In either case, K (rg”(t)) is a polynomial in ¢
for t > Ng\,’#’”. Now let

N = N3
Jmax {Nor}

Then Steinberg’s formula implies that Cix,tu is a polynomial in ¢ for ¢ > N. Therefore, cg\’t# is a
polynomial in .

By Lemma 3.2.1, each polynomial piece of K (v) has degree at most (kgl) Thus, for every o, 7,
we have that K(r?}#’”(t)) is a polynomial in ¢ of degree at most (kgl) for t > Né’#’”. Hence, cix’tu

is a polynomial in t of degree at most (kgl) O

In the proof of Theorem 3.0.1, we showed that every K (r,),‘j’# "(t)) eventually becomes either

the zero polynomial or a non-zero polynomial in ¢. A characterization of those K (rg‘#’”(t)) that
eventually become non-zero polynomials will be given in Proposition 3.3.2. Its proof uses the

following characterization of non-zero K (v).

LEMMA 3.3.1. Let v = (v1,...,v) be a vector in ZF with vy + -+ -+ v = 0. Then K (v) is non-zero

if and only if vi +---+v; >0 foralli=1,... k.

PROOF. Let M* be the matrix M written using the simple roots e; — ea,...,ex_1 — € as a
basis. Then, the entries of M* are only 0 and 1. Moreover, because the simple roots themselves

are columns of M, we have that the identity matrix is a submatrix of M*. Similarly, let v* be the
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vector v written using the simple roots as a basis. Then, v* = (v1,v1 +v2,...,v1 + - vg_1). The

desired result is obtained by observing that
_ () | vy — o
K@) =|qb€Zy |Mb=0"|.

0

PROPOSITION 3.3.2. Let p, \,v be partitions with at most k part such that |v| = |\ + |u|. For
o, T € S, let

) = 1641

where B = o(N) +7(u) —v and v = 0(0) + 7() — 25. Then there exists an integer N;\,’T“’V such that
K(rg\jﬁ"’(t)) is a mon-zero polynomial in t for t > Né’ﬂ’” if and only if for alli =1,...,k we have
that

(1) B1+ B2+ -+ + Bi is positive, or

(2) B1+ B2+ -+ Bi is zero and 1 + 2 + - - - + 7; is non-negative.

PROOF. Let r{}#’”(t) = (ri(t),...,rx(t)). Then r;(t) = tB; + vi. In the proof of Theorem 3.0.1,
we showed that there exists a positive integer N such that K (ra”(t)) is a polynomial in ¢
for t > Nyi”. For every i = 1,...,k, the partial sum 71(t) + - - - + r4(t) is non-negative for all
t > N; £ precisely when one of the two conditions meets for all i = 1,...,k. Thus, by Lemma

3.3.1, K(r?}#’”(t)) is a non-zero polynomial for ¢ > Ng\#’y. O

3.4. Connection to Flow Polytopes and Other Problems

tv

it WE oW turn our
2

After having gained a deeper understanding of the Ehrhart polynomial ¢
attention to its coefficients. In [24], King, Tollu, and Taumazet proposed the following conjecture,

which still remains unsolved.

CONJECTURE 3.4.1. For CKW > 0, every coefficient in the polynomial Cg,tu is positive, i.e., the hive

polytope Hy (v, \, 1) is Ehrhart positive.

One difficulty in solving this statement is the lack of a general formula for K (v) that allows us
to see the positivity in Steinberg’s formula. In fact, this is a common obstacle encountered when

attempting to show Ehrhart positivity of any polytope.
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The author’s effort to develop mathematical tools for tackling this problem has revealed the
connection of e, u to other families of polytopes. When plugging, for example, A = p = (k— 1,k —
2,...,1)and v =(2k—3,2(k—2),2(k—3),...,2,1) into Steinberg’s formula, cg\’t# agrees with the
Ehrhart polynomial of a Chan-Robbins-Yuen (CRY) polytope, which will be denoted by CRY. The
polytope CRY}, is an example of a flow polytope, defined as the convex hull of the flows conserving
a specific net flow at every vertex of the directed complete graph on k vertices (see [30]). It stands
out as the simplest yet most significant example in the sense that other flow polytopes defined on

complete graphs are Minkowski sums of CRY polytopes. Morales [32] conjectured that
CONJECTURE 3.4.2. The polytope CRY, is Ehrhart positive for all k.

Note that there exist formulas of the Ehrhart polynomials for flow polytopes known as Bal-
doni—Vergne—Lidskii formulas [2]. However, they do not readily reveal the positivity, similar to the
difficulty encountered with Steinberg’s formula.

Beyond Ehrhart positivity, one can ultimately ask for combinatorial interpretations of Ehrhart
polynomials’ coefficients. It is known that the normalized volume of CRY, which equals a multiple
of the leading coefficient of its Ehrhart polynomial, is a product of consecutive Catalan numbers

[11]. It is then natural to ask if a similar phenomena occurs with other coefficients.

PROBLEM 3.4.3. Find combinatorial interpretations of the coefficients of CRY polytopes’ Ehrhart

polynomials.

Finally, we note that Steinberg’s formula in [46] provides a method for computing the mul-
tiplicities CY ,, called the Clebsch-Gordan coefficients, of the tensor product of two irreducible
representations of semisimple Lie algebras, and that the formula given in Lemma 3.2.2 is a special
case where the formula in [46] is restricted to type Ai_1 Lie algebras. When restricted to other clas-
sical Lie algebras (types By, Ck, and Dy, Lie algebras), Berenstein and Zelevinsky showed in [5] that
the stretched Clebsch-Gordan coeflicient C&tu equals the Ehrhart quasi-polynomial of a rational
polytope, referred to as BZ-polytope. Based on computational evidence, De Loera and McAllister

later proposed a conjecture in [13] regarding the following property the quasi-polynomial C&t# .

CONJECTURE 3.4.4. Every coefficient of the stretched Clebsch-Gordan coefficient C’f;\’ 1 1S monneg-

ative.
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CHAPTER 4

Parking Function Polytopes

Suppose that u = (u1,...,u,) € R%; is a vector satisfying 0 < u; < -+ < up. Let a =
(a1,...,a,) € R%, and by < by < -+ < by, be the non-decreasing rearrangement of ai, ..., an.
We say that a is a u-parking function if b; < w; for all i = 1,...,n. The parking function poly-
tope associated to u, denoted by PF(u), is defined to be the convex hull of all u-parking func-
tions. For a nonzero vector u, the polytope PF(u) contains n + 1 affinely independent points 0,
(un,0,0,...,0),(0,up,0,...,0),..., (0,0,...,0,u,). This means that PF(u) is n-dimensional for
all u € R%;\{0}. Thus, for non-triviality, we will always assume that u is a nonzero vector.

(0,0,2

(0,1)
l\ 000
(0,0) (1,0)

PF(0,1) PF(0,0,2) PF(0,1,2)

(0,2,0)
)

)
(2,0,0

FIGURE 4.1. Three examples of parking function polytopes

We note that a parking function (of length n) was originally defined as a sequence of positive
integers (aq,...,a,) such that its non-decreasing rearrangement by < --- < b, satisfies b; < i for
all i € [n] where [n] := {1,2,...,n}. It is a fascinating combinatorial object closely connected to
other combinatorial models such as labeled trees [10], hyperplane arrangement, and non-crossing
partitions [41,42]. The name “parking function” originates from Konheim and Weiss [27], who
introduced it as a way to choose n spots for parking n cars. Stanley later defined parking function
polytopes to be the convex hull of all such parking functions in [44, Problem 12191}, which corre-

sponds, in our notation, to PF(0, 1,...,n—1). He also posed questions regarding their faces, volume,
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and number of lattice points, which were subsequently answered by Amanbayeva and Wang [1].
Recently, Hanada et al. [23], and Bayer et al. [4] examined a larger class of parking function poly-
topes PF(u) where ug,...,u, are integers satisfying 0 < u; < --- < u,. Their work focused on
the combinatorial properties of these polytopes, providing formulas for volume and hA-polynomials,
and exploring connections to other polytopes. One sees that our definition of parking function
polytopes further generalizes this notion by allowing 0 < u; < --- < u, to be any non-decreasing

real numbers, rather than strictly increasing integers.

Chapter organization. In this chapter, we aim to describe the normal fans, face posets, h-
polynomials, and Ehrhart polynomials of parking function polytopes, and present related findings.
We begin with an overview of fundamental concepts related to preposets, and preorder cones, and
then introduce binary partitions and skewed binary partitions as generalizations of ordered set
partitions. Following this, we develop tools to characterize the family of skewed binary partitions
that corresponds bijectively to the normal fan of a parking function polytope, and express the
h-polynomials of simple parking function polytopes in terms of generalized Eulerian polynomials.
In the last section, we describe connections between parking function polytopes and other families
of polytopes, and deduce several results from these connections, including the formulas for volumes

and Ehrhart polynomials.

4.1. Preposets and preorder cones

We introduce the notion of preposets which is, in a sense, a generalization of posets, and then
introduce their associated preorder cones. Readers are expected to be familiar with basic notations
regarding poset as appear, for example, in [43, Section 3.1].

A binary operator < on a finite set A is called a preorder if it is reflexive and transitive on A.
A preposet is an ordered pair (A, <) of a finite set A and a preorder < on it. We write i = j if i < j
and j < i. The relation = is an equivalence relation on A and thus partitions A into equivalence
classes. We denote by A/= the set of equivalence classes of A and i the equivalence class of i. One
sees we recover the definition of a poset if we require a preposet (A, <) satisfies that i = j if and

only if ¢ = j, i.e., the relation = is antisymmetric.
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Note that the preorder < on A induces a partial order on A/= by letting 7 < j if i < j in A,
and thus defines a poset (A/=, <) which is closely related to the preposet (A, <). This allows us
to define several concepts for the preposet (A, =) from the concepts for the poset (A4/=,<). For
instance, we say that j is a cover of i in the preposet (A, <), denoted i < j, if 7 is a cover of j
in the poset (A/=,<X). The Hasse diagram of a preposet (A, =) is the Hasse diagram of the poset
(A/=, =) except that, when labeling each node by equivalence classes i, we remove the parentheses
about the set.

A preoder <1 on A is said to be a contraction of another preorder <5 on A if the Hasse diagram
of (A, <7) can be obtained by a sequence of edge contractions of the Hasse diagram and merges of
the vertex labels of (A, <2). If (A4, <1) and (A, <3) are two distinct preposets on A, then (A, =)
is a contraction of (A, <2) if and only if (A, <1) can be obtained by imposing additional relations

j =1ion (A, =) for various i < j.

EXAMPLE 4.1.1. We draw in Figure 4.2 Hasse diagrams of three different preposets on [0, 8], among
which ([0, 8],=1) is a poset. The preorder <3 is a contraction of preorder <; by contracting the
edge 6 — 8 and the edge 5 — 7. The preorder <3 is a contraction of the preorder <o by contracting

the edge 3 — 0. As a result, the preorder <3 is also a contraction of the preorder =<;.

@

© @ @ G,

/

o ® 6 O © 6D © © G

/

©® ® @ 6y ® O 6®» @

([078]751) ([078]7j2) ([078]753)

BN

FIGURE 4.2. Both <5 and <3 are contractions of <1
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A map f from a preposet (A;, =1) to another preposet (Ag, =2) is order-preserving if for every
x,y € Aj such that x <; y one has f(x) <2 f(y). If an order-preserving map f is bijective and its
inverse is also order-preserving, we say that f is an isomorphism.

The dual of a preposet (A, <) is the preposet (A, <*) such that ¢ <* j if and only if j < i.
Clearly, the Hasse diagram of the dual poset (A, =<*) is obtained by turning the Hasse diagram of
(A, <) upside down.

In [36, Section 3], Postnikov, Reiner, and Williams introduce a natural correspondence between
cones in quotient space R"/(1,...,1)R and preorders of the set [n] in the study of faces of generalized
permutahedra. Later, Castillo and Liu [9] call these cones preorder cones, indicating that they arise
from some preposets. They also introduce variations of preorder cones, including ones that are
defined in the first orththant of R™. In this chapter, we start with a preposet on [0, n] and consider
preorder cones without quotienting out (1,...,1)R. More precisely, given a preposet ([0, n], <), we

define its associated preorder cone to be the cone
(4.1.1) o< = {(co,c1,. .. cn) ER™ | ¢; < ¢ if i < 4,4, 5 € [0,n]}.

We will utilize preorder cones to study the face structure of parking function polytopes. However,
it turns out that the slice of o< at ¢op = 0 will mostly play an important role. This leads us to

introduce the following definition.

DEFINITION 4.1.2. Let < be a preorder on [0,n|. The sliced preorder cone G< associated to = is

given by

(4.1.2) G<:={(c1,...,cn) ER" | cg=0and ¢; <¢;ifi =j,i,5 €[0,n]}.

EXAMPLE 4.1.3. Let < be the third preorder <3 on [0, 8] shown in Figure 4.2. Then
g<={(c1,...,cn) ER" | cg=cg<ciand cs <0 =c3 < c5 =cy < ca}.

A linear extension of the preposet ([0,n], <) is a bijective order-preserving map from the
preposet ([0,n], <) to the poset ([0,n], <) where < is the usual order of integers. We denote by

L(=) the set of all linear extensions of the preposet ([0, n], <).
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The next lemma contains a variation of results from [36, Proposition 3.5] and [9] regarding

sliced preorder cones.

LEMMA 4.1.4. Let < and =<' be preorders on [0,n]. We have that
(1) The sliced preorder cone G</ is a face of the sliced preorder cone &< if and only if <" is a
contraction of <.
(2) If a preposet (|0, n], =) is a poset, then the associated sliced preorder cone has the following

minimal inequality description:

d<={(c1,...,cn) €ER" | co=0and ¢; < c¢j if i <j,i,j €[0,n]}
and, hence, the relative interior 6% of o< is given by

0% ={(c1,-.-,cn) ER" | g =0 and ¢; < ¢j if i <j,i,j € [0,n]}.

(3) The dimension of the sliced preorder cone G< is the number of equivalence classes in
([0, n], <) minus 1.

(4) The cone 6< is pointed if and only if the Hasse diagram of ([0,n], <) is a connected graph.

(5) The sliced preorder cone 6< is an n-dimensional simplicial cone if and only if (]0,n], <)
is a poset and its Hasse diagram is a tree (a connected graph with no cycles).

(6) If a preposet ([0,n], <) is a poset, then

<= J o(m

reL[<]

where
(4.1.3) o(m):={(c1,...,cn) ER" | cg =0 and Ca(0) S Cry <00 < Cr(n)}-

The proofs of these results can be obtained by setting ¢y = 0 in the proofs of the original results

from [36, Proposition 3.5], and [9]. We provide their proofs here for completeness.

ProOF. (1) A face of 6< is obtained by replacing some inequalities ¢; < ¢j, i,j € [0, n], defining
o< with equalities ¢; = ¢j, or equivalently, by adding the opposite inequalities ¢; > ¢;. Suppose

that i = ig <iy <--- <ip = j be a maximal chain from i to j, i.e., i is a cover of 4, for all t € [k].
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Then, by adding the inequality ¢; > ¢; to o<, the resulting sliced preorder cone corresponds to the
preorder on [0, n] that is obtained by contracting the edges of connecting i;—1 and i; for all i € [k]
in the Hasse diagram of ([0, n], <). This implies that 6« is a face of 5<.

Conversely, suppose that </ is a contraction of <. Then, ([0,n],<’) can be obtained by
imposing additional relations j <1 ¢ on ([0, n], <) for various ¢ < j. Thus, &</ is obtained by adding
the inequalities ¢; > ¢; to o< for all such 7 < j. Thus, 6</ is a face of 7<.

(2) Suppose that ([0, n], <) is a poset. That is, every equivalence class of (A/=, <) is a singleton.

We note that a set of covering relations uniquely defines a poset. This implies that
g<={(c1,...,cn) ER" | cog=0and ¢; <c¢jifi<yi,jel0,n]}

and that this is the least number of inequalities to define 6<. Thus, for every 4, j such that i < j,

the inequality ¢; < ¢; is facet-defining. Hence, the relative interior of o< is given by
0% ={(c1,...,cn) €ER" | co=0and ¢; < ¢ if i <j,4,5 € [0,n]}.

(3) We first show that if ([0,n], <) is a poset, then < is (full) n-dimensional. For 6< to be
full dimensional, its defining relations must not include any ¢; = ¢; for 7 # j. This is equivalent to
requiring that every equivalence class of (A/=, <) is a singleton, i.e., ([0,n], <) is a poset. Thus,
if ([0,n], <) is a poset, then the dimension of 5< is the number of equivalence classes in ([0, n], <)
minus 1.

Now suppose that ([0,n], <) is not a poset. Let S C [0,n] be a set of representative of the
equivalence classes of (A/=, <) such that 0 € S. We define the (S, =<g) to be the induced preposet
on S, i.e., i =g j if and only if i < j. The sliced preorder cones &< and <4 := {(c;)ics € R® | co =
Oand ¢; <¢j;ifi <gj,i,j €S} C RS have the same dimension, since the map ¢ : R* — R be
given by p(21,...,7n) = (7;);cs € RY is a linear bijection between &, and &,. By the construction,

(S, =<s) is a poset and, hence, we must have
dim(o<) = dim(o<g) = |S| — 1 = #( equivalence classes in ([0, n], %)) — 1.

(4) The maximal subspace in the half-space H := {(c1,...,¢,) | ¢; < ¢;} is given by ¢; = ¢;.
Thus, the maximal subspace contained in the cone o< is the intersection of all subspaces defined
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by ¢; = ¢; for i < j. Suppose that the Hasse diagram of ([0,n], <) is a connected graph. Then,
the maximal subspace in o< is given by 0 = ¢y = ¢; = --- = ¢,. That is, the only subspace of R"
contained in o< is the trivial subspace. Hence, o< is pointed.

Conversely, suppose that Hasse diagram of ([0, n], <) is not a connected graph. Let Si,..., Sk,
where k& > 2, be its connected components, i.e., Si,...,S; are disjoint nonempty subset of [0, n]
such that S; U---U Sy = [0,n]. Then, the maximal subspace U contained in &< is the intersection
of the subspaces Uy, ..., U, where Uy :== {(c1,...,¢,) € R" | ¢g = 0 and ¢; = ¢; for i,j € S;}. Note
that, for ¢ € [k], the dimension of U; equals n — |S¢| + 1 for all ¢ € [k]. Thus, the dimension of U
equals n — (|S1|+---|Sk| —k) = k—1 > 1. Hence, 6 contains the subspace U of dimension at least
1, implying that ¢ is not pointed.

(5) Suppose that < is an n-dimensional simplicial cone. Then, < is pointed. Thus, by (4),
the Hasse diagram of ([0, n], <) is a connected graph. Since the dimension of < is n, it follows from
(3) that there are exactly n + 1 equivalence classes in ([0, n], <). This implies that ([0,n], <) is a
poset. We note that the simplicity of 6« implies that o< can be described by exactly n inequalities.
Using (2), we see that the poset ([0, n], <) must have exactly n distinct covering relations. Hence,
the Hasse diagram of ([0,n], <) must be a tree. The converse of the statement also follows from a
similar argument.

(6) This follows from (2) and the definition of <.

4.2. Binary partition and contraction

In this section, we consider a special family of preorders on [0, n] that can be represented by
what we call binary partitions of [0,n]. We will then characterize the contractions of these preorders
in terms of binary partitions. In the next section, we will consider special cases of these partitions
that will be useful for describing the normal cones of parking function polytopes.

Recall that an ordered partition of a nonempty set S is a tuple B = (B4, ..., By) of nonempty
disjoint subsets of S such that By Ll --- U By = S. Each subset B; is called a block. To represent a

special family of preorders on [0, n], we introduce an analogue of ordered partition called “binary
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partition” of the set S = [0, n] by separating blocks into two different types: homogeneous, and non-
homogeneous. These block types will be useful for expressing the inequality description of preorder
cones. A homogeneous block is marked with a superscript * for differentiation; for example, {1,3}*
is a homogeneous block. We are allowed to apply usual set operations such as union and intersection

to homogeneous and non-homogeneous blocks as we normally do to regular sets.

DEFINITION 4.2.1. Let k& € P. A binary partition of [0,n] into k blocks is an ordered tuple
(Bi,...,By) of nonempty disjoint subsets of [0,n] such that By U --- U By = [0,n] and satisfies

the following additional properties.

(1) Every block is either homogeneous or non-homogeneous.

(2) Every singleton block is non-homogeneous.

REMARK 4.2.2. For a singleton block, it has the property of both homogenous and non-homogeneous
blocks. However, because we do not want to allow both kinds, we make a choice to make it always

non-homogenous. Hence, we have Condition (2) in the above definition.

DEFINITION 4.2.3. For each binary partition B = (B, ..., By) of [0,n], we associate the preorder
=g on the set [0,n] by letting

p=Bq ifpe B;and g€ Bjand i <j

P=5q if p,q € B; for some homogeneous block B;.
If a preposet ([0, n], <) satisfies ([0,n], %) = ([0, n], <p) for some binary partition B, then we say
that the preorder < is representable.

A binary partition C is a contraction of another binary partition B, denoted by C < B, if <¢ is

a contraction of <p .

EXAMPLE 4.2.4. Figure 4.3 shows preorders <p, <¢ and <Xp associated to the binary paritions

B = ({0, 2, 3}7 {17 6, 7}7 {8}7 {47 5})7
C=({1,2,5},{3,6}*,{7},{0,4}*,{8}), and
D = ({2,3},{0,7}*,{6},{1,8}*,{4,5}), respectively.
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It is not difficult to see that <p is a contraction of <5 and so D < B.

@ (5)
\/
@ @\(@ (3.6)

@7
AN

© ® o ® 6

([078]753) ([078]750) ([078]7517)

©)
S
©)

©

FIGURE 4.3. The preorders associated to B,C, and D in Example 4.2.4

One sees that labeling a block as being homogeneous is simply a way to represent an equivalent
class of a preposet. Not every preorder on [0,n] is representable by a binary partition. In fact, a
preorder on [0, n] is representable by a binary partition if and only if it induces a graded poset with
the properties i < j if the rank of j is higher than the rank of i, and every equivalent class of size

at least two is comparable with all other equivalent classes.
LEMMA 4.2.5. Every contraction of a representable preorder on [0,n] is representable.

PROOF. Suppose that a preorder is representable by B = (B, ..., By). To prove the statement,
it suffices to show that contracting one edge of the Hasse diagram of ([0,n], <p) gives a preorder
([0,n], =¢) for some binary partition C.

Recall that the nodes of the Hasse diagram of a preorder are equivalent classes. Consider the
preorder ([0, n], <) obtained by contracting an edge g — h of the Hasse diagram of (=g, [0, n]) where
g and h are two equivalent classes of [0,n]/ =5. As an edge is contracted, we see that g and h come
from two consecutive blocks of B, that is, there is a positive integer i such that § C B; and h C By 1.

We note that B;\g = 0 (resp. B;11\h = 0) if and only if B; is a homogeneous or singleton block.
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If both B; and B, are neither homogeneous nor singleton blocks, we let X = B;\g be a block of
the same type as B;, and Y = B;;1\h be a block of the same type as B;;1. We define a binary

partition C having (g U h)* as its homogeneous block as follows.

(B1,...,Bi1, (EUE)*, Biyo,...,Bp) if B;\g = Bi+1\ﬁ =10
(By, ..., Bi-1, X, (U R)*, Bita, ..., By) if Bi\g # 0 and B;11\h =0
(4.2.1) C=
(Bb SRR B’i*la (g U E)*7 Y7 Bi+27 ceey Bp) if Bl\g = @ and BiJrl\E 7& @
| (B1,-- . Bic1, X, (gUR)" Y, Biya,..., By)  if Bi\g# 0 and Biyy\h # 0
It’s then easy to check that ([0,n], <) = ([0, n], <¢). O

The set of all binary partitions of [0, n] becomes a poset when partially ordered by contraction.
We now aim to characterize contraction in terms of graphs defined by binary partitions.

Given two binary partitions B = (By,...,Bp) and C = (C1,...,Cy) of [0,n], we associate
the bipartite graph G(B,C) whose two disjoint sets of vertices are Vi = {By,...B,} and Vo =
{C4,...,Cq} (written in this order), and a vertex B; € Vi is adjacent to a vertex C; € Vy if
B; N C; # (). The vertices in V; will be called left vertices and the vertices in Vs will be called right
vertices. A vertex of G(B,C) is said to be non-homogeneous (resp. homogeneous) if it corresponds
to a non-homogeneous (resp. homogeneous) block of either B or C. When the edges of G(B,C)
are not crossing, we say that G(B,C) is non-crossing. See Figure 4.4 for examples of crossing and

non-crossing bipartite graphs.

G(B,C) G(B,D)
{1,2,5} {2,3}
{0,2,3} {0,2,3}
{3,61* {0, 7}*
{1,6,7}* {1,6,7}
{7} {6}
{8} {8} o
{0,4}* {1,8}

{4,5) « o

FIGURE 4.4. G(B,C) is crossing but G(B, D) is non-crossing
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When G(B,C) is non-crossing, it is not difficult to verify the following result regarding the

intersections of the blocks of B and C.

LEMMA 4.2.6. Let B= (By,...,By) andC = (C1,...,Cy) be two binary partitions of [0, n]. Suppose

that G(B,C) is non-crossing. Then, for i € [p] and j € [q], we have
(1) If |C1| + ---|Cj| < |Bi| + --- 4+ |Bil|, then there exist positive integers s and t such that
s <1, t > j, and both C; N By and Cy N B; are non-empty.
(2) C; N Bj is nonempty if and only if
|ICy| + |Co| + -+ + |Cj_1’ <|Bi|+ |Bs| +---+ |B;|, and

|Bi| + |Ba| + -+ -+ |Bi—1| < |C1] +|Co| + - - - +|C}].
(3) B; C Cj # 0 if and only if

|C1| 4+ |Co| + -+ +|Ciza| < |Bi|+ |Ba| + -+ -+ |Bj-1|, and

[ Bi| 4 [Ba| + -+ 4 [Bi| < |Ch] +[Ca| + -+ +|Cj].
For a vertext v of G(B,C), we define

deg*(v) := #(homogeneous vertices adjacent to v),

deg" (v) := #(non-homogeneous vertices adjacent to v).

Clearly, deg(v) = deg*(v) + deg" (v).
The next theorem is the main result of this section. It provides a characterization of binary
partition contractions in terms of bipartite graphs and their vertex degrees. We will devote the

rest of this section to proving it.

THEOREM 4.2.7. Let B and C be binary partitions of [0,n]. We have that C < B if and only if
G(B,C) satisfies the following conditions.

(1) G(B,C) is non-crossing.

(2) Every left non-homogeneous verter v satisfies deg” (v) < 1.

(3) Every left homogeneous vertex v satisfies deg*(v) = 1 and deg”(v) =0
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(4) Every right non-homogeneous vertex v satisfies deg*(v) = 0 and deg"(v) = 1.

(5) If a right homogeneous vertex v satisfies deg(v) = 1, then deg*(v) = 1.

To prove Theorem 4.2.7, we first need to develop several observations and lemmas. Let us
start by describing the covering relations C < B. Recall that the nodes of the Hasse diagram of a
preorder are equivalent classes. Lemma 4.2.5 implies that ([0, n], <¢) is obtained by contracting an
edge g— h of the Hasse diagram of ([0,n], <5) where g and h are two equivalent classes of [0, n]/=.
As in the proof of Lemma 4.2.5, C can be written as in equation (4.2.1). We can describe this in

terms of G(B,C) as follows.

LeEMMA 4.2.8. We have that B = (By,...,Bp) is a cover of C = (C1,...,Cy) if and only if G(B,C)
is a non-crossing bipartite graph with a unique right vertex C; of degree two satisfying the following

properties.

(1) The vertex C; is homogeneous.

(2) Every right vertex that is not C; has degree one and is adjacent to a vertex of the same
type

(3) Every left non-homogeneous vertex B; that is adjacent to C; has degree at most two and
satisfies |B; N C;| = 1.

(4) Every left vertex that is not a non-homogeneous vertex adjacent to C; has degree one and

s adjacent to a verter of the same type.

PROOF. Suppose that C < B. Then, there are four possible cases of C to check as shown in
equation (4.2.1). We note that the unique right homogeneous vertex C; of degree two in G(B,C)
corresponds to the block (gUR)* of C. It is easy to verify using these four cases that G (B, C) satisfies
the non-crossing property and the two conditions. Conversely, suppose that G(B,C) is non-crossing
and satisfies the four conditions. Then, it is also not difficult to check that C can only have the

form shown in equation (4.2.1). Thus, C < B. O
LEMMA 4.2.9. If C < B, then G(B,C) satisfies conditions (2)-(5) in Theorem 4.2.7

ProoOF. To prove this statement, we first establish the following two steps. The first step

is to show that the statement holds for every G(B,C) such that B is a cover of C. This is a
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straightforward application of Lemma 4.2.8 and is left to the reader to verify. The second step is to
show that for all B,B’,C such that G(B,B’) and G(B/,C) satisfy conditions (2)-(5), we must have
that G(B,C) also satisfy these conditions. To see this, suppose that B, B’,C are binary partitions
in which G(B,B’) and G(B/,C) satisfy conditions (2)-(5). Let B; be a left homogeneous vertex of
G(B,B'). By condition (3), B; is adjacent to exactly one homogeneous vertex B}. Thus, B; C B.
Similarly for G(B',C), we have B; C (O} for some right homogeneous vertex C). Hence, B; C Cj,.
Therefore, in G(B,C), the left homogeneous vertex B; has degree one and is adjacent to the right
homogeneous vertex Cj. This shows that condition (3) holds for G(B5,C).

Now let C, be a right non-homogeneous vertex of G(B’,C). Since G(B,B’) and G(B’,C) satisfy
condition (4), one can use a similar argument to show that, in G(B,C), the left non-homogeneous
vertex Cj has degree one and is adjacent to a non-homogeneous vertex. Thus, condition (4) holds
for G(B,C).

Assume for the sake of contradiction that G(B,C) doesn’t satisfy condition (2). Then, there are
a left non-homogeneous vertex B; and two right non-homogeneous vertices C, and C}, adjacent to
B; in G(B,C). We deduce from conditions (4) and (2) for G(B',C) that Cy, C B} and Cy, C Bj,
for some distinct left non-homogeneous vertices B} and B’ of G(B',C). Since B; N C, # ) and
B; N Cy, # 0, it follows that B; N B} # 0 and B; N B}, # (). Hence, in G(B,B'), the left non-
homogeneous B; is adjacent to the two non-homogeneous vertices B}l and B;Z, a contradiction to
condition (2) for G(B, B').

Now assume for the sake of contradiction that G(B, C) doesn’t satisfy condition (5). Then, there
is a right homogeneous vertex C}, of degree one and a left non-homogeneous vertex B; adjacent to
Cj. Thus, C C B;. Consider the following two cases. Cases I: C}, is adjacent to a left homogeneous
vertex B} in G(B',C). Applying condition (3) to G(B',C), we have B} C Cj, and hence B} C B;.
Thus, in G(B,B’), the the right non-homogeneous vertex B;. has degree one and is adjacent to
the non-homogeneous vertex B;, a contradiction to condition (5) for G(B,B’). Case II: Cf is not
adjacent to any left homogeneous vertex in G(B',C). By condition (5), we deduce that Cy must be
adjacent to two non-homogeneous B} and B}, of G(B',C). Consequently, by condition (4), both
B} and B}, are vertices of G(B,B’) of degree one and are adjacent to B;. Hence, B} C B; and

B!, C B;. In particular, this implies that, in G(B,8’), the left non-homogeneous vertex B; is
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adjacent to at least two non-homogeneous vertices, a contradiction to (2) for G(B, B'). Since both
cases lead to contradictions, we must have that G(B,C) satisfies condition (5).

Suppose that C < B. Then, C = B! < --- < B! < B for some B',...,B!. The two steps we
established above implies that G(B,C) satisfies conditions (2)-(5) in Theorem 4.2.7. O

The proof of Lemma 4.2.9 shows that conditions (2)-(5) in Theorem 4.2.7 define a transitive
relation on the set of all binary partitions on [0, n]. That is, we can define a transitive relation ~»
on the set of all binary partitions on [0,n] by letting B ~ C if G(B,C) satisfies conditions (2)-(5)
in Theorem 4.2.7.

LEMMA 4.2.10. Suppose that B, C = (Cy,...,Cy), and D be binary partitions of [0, n] in which both
G(B,C) and G(C,D) are non-crossing. If G(BB,D) is crossing, then there exists an integer j such

that C; is a vertex of degree at least two in G(B,C) and a vertex of degree at least two in G(C, D).

PROOF. Suppose that G(B, D) is crossing. Then there exists an i such that B; is adjacent to
Dy, and Bji; is adjacent to Dy, for some ki > ko. Moreover, because G(B,C) is non-crossing,
there must exists j; < ja such that such that B; is adjacent to C};, in G(B,C) and C}, is adjacent
to Dy, in G(C,D), and B4 is adjacent to C}, in G(B,C) and C}, is adjacent to Dy, in G(C,D).
Since G(C, D) is non-crossing, we deduce that j; > jo. Thus, ji = jo. Let j = ji = j2. Then C} is
adjacent to both B; and B;1 in G(B,C) and is adjacent to both Dy, and Dy, in G(C,D). Hence,

we found an integer j with the desired property. O
We can now give a proof of the characterization in Theorem 4.2.7.

PROOF OF THEOREM 4.2.7. Suppose that C < B. Then by Lemma 4.2.9, G(B,C) must satisfy
conditions (2)-(5). Thus, it only remains to be shown that G(B,C) is non-crossing. Clearly, the
non-crossing condition is satisfied when C = B. Thus, we may assume that B # C. Let C =
Bl < B! < ... < BY = B be a maximal chain of strictly decreasing binary partitions from B to
C, ie., B~ is a cover of B! for all i € [t]. To see that G(B,C) is non-crossing, we proceed by
induction on . When ¢ = 1, B? is a cover of B!. Thus, by Lemma 4.2.8, G(B°, B!) is non-crossing.
This establishes the base case. Now suppose that G(B°, B) is non-crossing for a positive integer .

Assume for the sake of contradiction G(B°, B!*1) is crossing. Then by Lemma 4.2.10, there exists
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an integer j such that le» is a right vertex of degree at least two of G(B°, B') and a left vertex of
degree at least two of G(B!, Bt*1). Because B! is a cover of B, it follows from Lemma 4.2.8 that
le. is a right homogeneous vertex of G(B°, B!). Condition 4.2.9/(3) then implies that the vertex
B in G(B!, Bt*1) has degree one, a contradiction. Thus, G(B°, B‘*!) must be non-crossing. By
induction, G(B°, B) = G(B3,C) is non-crossing.

Conversely, suppose that G(B,C) meets these conditions. Let us first consider G(B,C) without
any right vertex of G(B,C) of degree greater than one. We claim that in this case C = B, which
will automatically gives C < B as desired. To see this, we show that every left vertex of G(B,C)
has degree one and is adjacent to a vertex of the same type. Assume that there is a left vertex, say
B;, of degree at least two. Then by condition (3), the left vertex B; must be non-homogeneous. By
condition (2), one of the right vertex adjacent to B;, say Cj, has to be homogeneous. However, by
condition (5), C; must have degree at least two, a contradiction to the assumption deg(C;) = 1.
Hence, every left vertex of G(B,C) has degree one. From here, one can easily verify using conditions
(3) and (4) that every edge of G(B,C) connects two vertices of the same types. This implies C = B
as claimed.

Now we consider G(B,C) with at least one right vertex of degree at least two. To see that C < B,
we will construct a maximal chain of strictly increasing binary partitions C = B!<B!~!<...<B" = B.

Let 7 be an integer such that C; is a right vertex of degree at least two. We note that condition
(4) implies that C; is a homogeneous vertex. Because G(B,C) is a non-crossing bipartite graph, C;
is adjacent to two consecutive blocks, say B; and B;y1. This implies that there exist an equivalent
class g C B; such that g € B; N C; and an equivalent class h C Bit1 such that hC B;y1nCj. Let
B! be the binary partition corresponding to contracting the edge g — h in the Hasse diagram of the
preposet ([0,n], <5). Hence, by construction, B! < B. One sees that gU h is a homogeneous block
of B! and that G(B',C) has gU h as a left vertex of degree one and adjacent C;. It is then easy to
see by considering the four cases described in equation (4.2.1) that G(B',C) meets all of the five
conditions. Now repeat the same construction with G(B*,C) to produce B? such that B> < B!. By
repeatedly applying this procedure, we can eventually produce B! < B!~! < ... < B% = B such that

the every right vertex of G(B!,C) has degree one. This implies C = B' < B as desired. O
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4.3. Skewed binary composition and skewed binary partition

We now introduce “skewed binary partition” which is a special case of binary partition, and
“skewed binary composition”. These two combinatorial objects will provide us with sufficient infor-
mation to describe the normal fans of parking function polytopes. Similarly to how a composition
records the sizes of blocks in an ordered partition, a skewed binary composition will be used for
storing information of the blocks of a skewed binary partition. We begin by describing the skewed
binary composition notation. First, the entries of our composition are nonzero integers (as opposed
to being positive integers). Additionally, we allow two different variations of the entries: i°® and
1*. We consider these two variations to have the same numerical values as ¢, and use the absolute
value sign to take their numerical values. Hence, [i°| = |i*| =i = [i].

For convenience, we let N° := {i° | i € N}, P:= N5g and P%, := {i* | i € P,i > 2}.

DEFINITION 4.3.1. Let n € P and k € N. A skewed binary composition of n into k + 2 parts is an

ordered tuple b = (b_1,bg, b1, ..., bx) such that Zf:q |b;| = n and the entries of b satisfy
(b-1,b0) € (N x N°) U (P x {0}) and b; € PUP%, for all 1 <i < k.
ExaMPLE 4.3.2. The following are all possible skewed binary compositions of n = 3.
(0,0°,1,1,1),(0,0°1,2),(0,0°1,2%),(0,0°2,1), (0,0°2%,1),(0,0°3), (0,0°,3"),
(0,1°,1,1),(0,1°,2),(0,1°,2%),
(1,0%1,1),(1,0%2),(1,0%2%),
(1,0,1,1),(1,0,2),(1,0,2%),
(0,2°,1),(1,1°,1),(2,0°1),(2,0,1)
(0,3%),(1,2°),(2,1°),(3,0°), (3,0).

Next, we introduce a similar notion to binary partition called ordered skewed binary partition

of the set S = [0,n] by allowing empty blocks together with additional restrictions.
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ordered bi-weekly partition B | type(B)
({0,2,3},0,{1,6,7},{8},{4,5}) | (2,0,3,1,2)
({2,3},{0,7}*,{6},{1,8}*,{4,5}) | (2,1°,1,2*,2)
({1,3,4,5,8},{0},{2},{6,7}) | (5,0°,1,2)
(0,{0},{2,3,8},{1,6,7}*,{4,5}) | (0,0°,3,3*,2)
({5,7},{0,1,3}*,{2,4}*,{6,8}*) | (2,2°,2*%,2%)
(0,{0,1,2,3,4,5,6,7,8}*) | (0,8°)

TABLE 4.1. Examples of skewed binary partitions and their types

DEFINITION 4.3.3. Let n € P and k € N. An (ordered) skewed binary partition of [0,n] into k + 2
blocks is an ordered tuple (B_1,Bo,...,B;) of disjoint subsets of [0,n] such that
B_1UByU By U---LU By = [0,n] satisfying the following conditions:
(1) By is homogeneous, provided |By| > 2, and B_; is non-homogeneous.
(2) 0€ B_jor0€ By. If 0 € B_1, then B_; contains at least another element and By = 0.
Hence, if 0 € B_1, then |B_1| > 2 and |By| = 0.
(3) For each 0 < i <k, if B; is a singleton, then it is non-homogeneous.

(4) Bi# 0 forall 1 <i <k.

See the first column of Table 4.1 for examples of skewed binary partitions of [0,8]. Comparing
Definition 4.3.3 to Definition 4.2.1, one sees that a skewed binary partition is simply a binary
partition with extra requirements (conditions (1) and (2)). In fact, removing empty blocks from a
skewed binary partition yields a binary partition. For instance, removing the empty block from the
skewed binary partition shown at the top of Table 4.1 gives a binary partition in Example 4.2.4.
Thus, properties of binary partitions extend naturally to skewed binary partitions when regarded

in this way.

DEFINITION 4.3.4. For a skewed binary partition B of [0, n], let B be the binary partition obtained
by removing the empty blocks from B. We define the associate preorder <z on the set [0,n] to be
the preorder <5 . We also say that a skewed binary partition C is a contraction of another skewed

binary partition B if <¢ is a contraction of <z .

One notices that we also include a column of “type(B)” on the right of Table 4.1. We introduce

this concept in the definition below.
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DEFINITION 4.3.5. Let B = (B_1, By, B1, ..., Bx) be a skewed binary partition of [0,n]. We asso-

ciate a skewed binary composition b = (b_1, bg, ..., br) of n to it in the following way:
(1) For 1 <i <k, let b; = | B;| if B; is non-homogeneous, and b; = | B;|* if B; is homogenous.

(2) If 0 € By, then let by = h°, where h = |By| — 1, and let b_; = |B_1]|.
(3) If 0 € B_1, then let by = |By| = 0 and let b_; = |B_1| — 1.

We say this vector b is the type of B and denote it by type(B).

It is easy to see that two skewed binary partitions are of the same type if and only if they differ

from one another by a permutation of nonzero numbers between blocks.

REMARK 4.3.6. Suppose B = (B_1, By, B1, ..., By) has type b = (b_1,bo, ..., b;). It is easy to see
that for 1 < i < k, the number b; tells us the cardinality of B; and whether B; is homogeneous or
not. In particular, Condition (3) of Definition 4.3.3 implies that b; # 1*, and thus b; € PU P%,.

For ¢ = —1 or 0, the number |b;| is the cardinality of B; \ {0}. Furthermore, one checks that
(4.3.1) 0 € By ifandonlyif (b_1,bp) € NxN° and
(4.3.2) 0€ B_; ifandonlyif (b_1,by) € P x {0}.
Hence, the type of each skewed binary partition of [0, n] is a skewed binary composition of n.

By (4.3.1), we have that 0 € By if and only if by € N°. Moreover, when by = h°, we know that

By consists of h positive integers and 0. This is the reason we use the notation A° in which the

superscript o indicates that 0 needs to be included.

EXAMPLE 4.3.7. See Figure 4.6 for examples of three skewed binary partitions B,C and D of [0, 8]
together with their respective types and associated preorder cones. (Note that B and D are the

first two skewed binary partitions given in Table 4.1.)

Applying Lemma 4.1.4/(3), we can compute the dimension of the sliced preorder cone 65 using

its type vector type(B) as stated in the next proposition.
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PROPOSITION 4.3.8. Suppose that B = (B_1, By, B1, ..., By) is a skewed binary partitions of [0, n]

with type(B) = (b—1, by, ...,bx). Then the dimension of the slice preorder cone &5 is

(4.3.3) dim(Gg) =b_1+ | > bi | + #(b; € PLy)
b; P

and the co-dimension of o (with respect to the space R™) is

lbol + > (Ibi| = 1).

b; EPEQ

PrOOF. By Lemma 4.1.4/(3), the dimension of &5 equals the number of equivalence classes
of the preposet ([0,n], <) minus one. One observes that for each nonempty homogeneous block
B, it gives arise one equivalence class of the preposet ([0,n], <z), and for each non-homogeneous
block Bj;, each singleton subset of B; is an equivalence class and hence it gives arise | B;| equivalence

classes. Thus, the total number of equivalences classes of ([0, n], <g) arising from By, ..., By is

Z bi | + #(bi € P%y)

b;eP

and the total number equivalence classes arising from B_; and By is given by [B_1| 4+ xp,0,
where x g, is 1 if By is not the empty block (), and is 0 otherwise. However, by Condition (2) of
Definition 4.3.3, we have that By = () if and only if 0 € B_;. Then it follows from Definition 4.3.5
that b1 = [B_1| — (1 — xB,p)- One sees that (4.3.3) follows from all the discussion above.
Finally, the co-dimension formula for 65 follows from (4.3.3) and the fact that n = Zf:_l |bi].

0

The following result is an immediate consequence of Lemma 4.1.4/(6).

COROLLARY 4.3.9. Let B be a skewed binary partition of [0,n] and 65 be the sliced preorder cone

associated to B. If the preorder <p defines a poset on [0,n], then

meL[=<p]

where L[=g] is the set of linear extensions of the poset ([0,n], <5) and () is defined as in (4.1.3)
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4.4. Face Structure

Recall that we define the parking function polytope PF(u) as the convex hull of all u-parking
functions. Although named a polytope, it is not immediately evident that PF(u) qualifies as one,
since it is defined as the convex hull of infinitely many points. The following proposition justifies

its name.

PROPOSITION 4.4.1. The parking function polytope PF(u) is indeed a polytope, that is, it is a convex

hull of finitely many points.

DEFINITION 4.4.2. A point v = (v1,...,v,) € R™ is u-extreme if it is a permutation of a point of
the form
(4.4.1) (0,...,0, Ups1,-..,Up)

k

for some 0 < k < n. We denote by X(u) the set of all u-extreme points.

EXAMPLE 4.4.3. Let u = (0,0,4,4,4,6,8,8). Then X(u) is the set of all permutations of the 7

points:

(0,0,4,4,4,6,8,8), (0,0,0,4,4,6,8,8), (0,0,0,0,4,6,8,8), (0,0,0,0,0,6,8,8),
(0,0,0,0,0,0,8,8), (0,0,0,0,0,0,0,8), and (0,0,0,0,0,0,0,0).

PROOF OF PROPOSITION 4.4.1. We claim that PF(u) = conv(X(u)) the convex hull of u-
extreme points. Since there are only finitely many u-extreme points, this will show that PF(u) is
indeed a polytope.

Since every u-extreme point is a u-parking function, we have that conv(X'(u)) C PF(u). It
remains to be shown that PF(u) C conv(X(u)). To see this, it suffices to show that every u-
parking function is a convex combination of u-extreme points.

Suppose a = (ay, ..., ay) is a u-parking function and by < --- < by, is the increasing rearrange-
ment of ai,...,a,. Let I, be the set of indices ¢ such that 0 < b; < u;. If I, is empty, we define
the inner width of a to be 0; otherwise, we let t = max([,) and s be the least integer such that

0 < ug, and define the inner width of a to be t — s+ 1. One sees that the inner width of a is always
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nonnegative, and is 0 if and only if a is u-extreme. We will prove that a is a convex combination
of u-extreme points by induction on the inner width of a.

The base case when the inner width of a is 0 is true, since a itself is a u-extreme. Now suppose
that a has inner width ¢t — s+ 1 > 1, and that every u-parking function of inner width less than
t+ s — 1 is a convex combination of u-extreme points. Let 7 € &,, be a permutation such that

(aray--->arn) = (by,...,by) and let 7(k) = t. Then

U —ag ay

(alv"'aan)_ u (a17°"aak‘—lvovak‘-f—l?"'aan)+;(alv"'7a1€—1aut7ak+la"'7an)
t t
is a convex combination of u-parking functions a* := (a1, ...,ax-1,0,a541,...,a,) and
a’ :=(a1,...,ap_1,Ut, ags1,---,0y). Notice that the inner width of both a* and a’ decrease from

the inner width of a by at least one. Thus, by our induction hypothesis, we have that both a*
and a’ are convex combinations of u-extreme points. Hence, a is also a convex combination of

u-extreme points, completing the proof. O

It turns out that X(u) is also the set of all vertices of PF(u). Although one can apply Lemma
1.2.2 to compute the normal cones of PF(u) and get this as a consequence later in Theorem 4.4.14,

we give a direct proof of it here.
PROPOSITION 4.4.4. The point v € PF(u) is a vertex of PF(u) if and only if v.e X (u).

PRrROOF. Since PF(u) = conv(X(u)), every vertex of PF(u) must be a u-extreme point. Con-
versely, suppose that v = (v1,...,v,) is a u-extreme point. For simplicity of notations, we may
assume without loss of generality due to symmetry that v; < --- < wv,. Thus, v is in the form of

(4.4.1) for some 0 < k < n. Suppose
T
vV = (O,...,O,uk+1,...,un) = Z)\lal
i=1

for some u-extreme points a; = (a;1,...,ain), ¢ € [r], and some nonnegative real numbers \; such
that A1 +---+ A, = 1. To see that v is a vertex of PF(u), it suffices to show that v=a; =--- = a,.

Since 0 is the least value that the coordinates of a u-extreme point can be, it follows that the
first k coordinates of a; are zero for all i € [r], i.e., a;; = 0 for ¢ € [r] and j € [k]. Thus, it is left

to show that the last n — k coordinates of a; agree with the last n — k coordinates of v. However,
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because uy, is the greatest value of a u-extreme point’s coordinates and >, _; Xia; n = vy, = Uy, We
must have that a;, = v, for all ¢ € [r]. Similarly, because v,_1 = u,—_1 is the greatest value after
uy, that the coordinates of a u-extreme point can be, we have a;,—1 = v, for all i € [r]. We
continue this arguments and can show that a; ; = vj for all j € {k+1,...,n—2} and ¢ € [r]. This

completes the proof. O

Hence, the parking function polytope is integral (resp. rational) if and only if u is an integral
(resp. rational) vector in R™.

Since permuting the coordinates of a u-parking function (ay,...,ay) still gives a u-parking
function, the polytope PF(u) itself also inherits this symmetric property. The next proposition

restates this observation more precisely.

PROPOSITION 4.4.5. For every parking function polytope PF(u), we have that

(1) If (a1,...,an) lies in PF(u), then so does every permutation of (ay,...,an).

(2) If F is a face of PF(u), then for every permutation 7 € &,, the set

FT = {(aT(l),...,aT(n)) ‘ (ab' "1an) € F}

is also a face of PF(u).
(3) If o is a normal cone of PF(u) at a face F, then for every permutation T € &, the set

or = {(cr1ys -+ Crm)) | (c1,...,¢n) € o} is the normal corne of PF(u) at the face F.

4.4.1. Face Poset and Normal Fan. In this part, we study the face poset and the normal
fan of the parking polytope PF(u). By Lemma 1.2.1, for every polytope P, the dual poset of F(P)
is isomorphic to the poset F(X(P)). Therefore, rather than describing the face poset of parking
function polytopes, we can alternatively describe their normal fans. It turns out that these fans

only depend on the multiplicity vector of u.

DEFINITION 4.4.6. Assume that there are ¢ positive integers appearing in u: di < do < --- < dy.
We define mg(u) to be the number of 0’s in u, and m;(u) be the number of d;’s in u for each
1 < i < ¢. We then define the multiplicity vector of u to be m(u) = (mo(u), mi(u),...,me(u))

and the data vector of u to be d(u) = (di,da, ...,dy). We call (m,d) the MD pair of u.
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EXAMPLE 4.4.7. If u=(0,0,4,4,4,6,8,8), then m(u) = (2,3,1,2) and d(u) = (4,6,8).

We say that d = (di,...,dy) is a data vector if it is a data vector of some u, and m =
(mo,m1,...,my) is a multiplicity vector of magnitude n = mgy + mq + - --my if it is a multiplicity
vector of some u. (Note that the magnitude is the length of u.) Clearly, m = (mqg, m1,...,my) is
a multiplicity vector if and only if mg, mq, ..., my are integers such that mg > 0 and m; > 1 for
i=1,...,¢. Finally, we say (m,d) is an MD pair if (m,d) is the MD pair of some u.

It is clear that starting with an MD pair (m, d), there exists a unique u such that (m,d) is its
MD pair. Hence, we may interchangeably use (m,d) for u and write PF(m,d) as PF(u). As we
mentioned above, the face poset and the normal fan of the parking polytope PF(m,d) only depend

on the multiplicity vector m. Therefore, we will mostly use the notation PF(m,d) in this section.

DEFINITION 4.4.8. Suppose m = (mg,m1,...,my) is a multiplicity vector of magnitude n. Let
r=n—mgo=mi+---my. Welet bg,...,b, be the following r + 1 skewed binary compositions of
n:

(1) We let

(mg,0,mq,...,my) if mg >0
(0,0°,mqy,...,mg) ifmyg=0
(2) Suppose 1 < k < r. Let j be the unique integer in which mq + -+ + m;_1 < k <
my + - - +m;. We define by, := (mg + k,0°,mq + -+ - +mj —k,mjp1,...,my).

We denote by Q, the set of these r + 1 skewed binary compositions of n.

EXAMPLE 4.4.9. Let m = (2,3,1,2) and m’ = (0, 3,5) be two multiplicity vectors of magnitude 8.
Then

Qm = {(27 07 3’ ]" 2)7 (37 Oo’ 27 ]‘7 2)? (4’ OO? 17 ]‘7 2)’ (57 007 17 2)7 (67 Oo’ 2)7 (7? Oo’ ]‘)7 (87 Oo)}
Qm/ = {(07 007 37 5)? (1’ 007 27 5)7 (27 OO? 1? 5)’ (37 Oo? 5)7 (4? Oo’ 4)7 (57 007 3)7 (6? 007 2)?

(7,0°,1),(8,0°)}.
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REMARK 4.4.10. It is easy to see that every preposet ([0,7n],<g) where type(B) € Qm is a poset
(every equivalent class in ([0,n], <g) is a singleton) whose Hasse diagram is a connected graph.
Hence, by Lemma 4.1.4/(3)—(4) that every sliced preorder cone 3 in which type(B) € Qy, is an

n-dimensional pointed cone.

PROPOSITION 4.4.11. Suppose that m = (mg,mq,...,myg) is a multiplicity vector of magnitude n.
Let
M :={5 CR" ‘ type(B) € Qm}

be the collection of sliced preorder cones corresponding to skewed binary partitions whose types are

i Qm. Then we have that

U & =R"

GeEM
PROOF. Let w = (wi,...,w,) € R". We need to show that there exists 65 € M such that
w € gp. To see this, it suffices, due to symmetry, to only consider w; < --- < wy,.

If w, <0, then w lies in the cone
{ceR" |c1,...,cnp <0} =03

where B = ({1,...,n},{0}). Since type(B) = (n,0°) € Qp, it follows that 65 € M.
If w, > 0, we let i € [n] be the least positive integer such that w; > 0. For s € [0,¢], let
ts == mo+mi +---+ms If mg <4, by letting j be the least integer such that 7 < t;, we see that

j > 1 and that w lies in the cone

n ~
{CER |Cl,...,Ci_]_ SOSC’iaci-i-la"'aCtj Sctj+1)"'7ctj+1 < Sctz_l'i‘l?"wct[}:O-B

where B = ({1,...,: —1},{0}, {¢,e + 1,...,t;}, {t; + 1,.. ., tj4a}, .. {tem1 +1,..., ts}). Because
type(B) = (i —1,0°,mq + -+ - + mj — i, mjq1,...,my) € O, we see that 63 € M. If i < my, then

0 < mg = top and w lies in the cone
{ceR" | 0,c1,...,¢tg < CrogtyeonCty <o < Cty y415---,Ct,} = OB

where B = ({0, 1,... ,to},@, {tQ—I—l, e ,tl}, e {tg_l—l-l, R ,tg}). As type(B) = (mo,o,ml, o ,mg)
€ Qm, we have o € M. This shows that w lies in some & € M. Hence, U&eM o =R". O
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DEFINITION 4.4.12. Let (m,d) be an MD pair such that d = (dy,...,dy) and m = (mg, my, ..., my)
is a multiplicity vector of magnitude n. Suppose that B = (B_1, By, B1, ..., Bx) is a skewed binary
partition such that type(B) = (b-1,bo,b1,-..,br) € Qm. We define vz = (v1,...,v,) to be the
point in R™ given by

0 ifie By
V; =

do—p+j if i € B; for some j € [{]

It is easy to see that the set {vp | type(B) € Qm} is exactly the set of (m,d)-eztreme
points in PF(m,d) (see Definition 4.4.2 where we replace u with (m,d)). Suppose that (m,d)
is the MD pair of u = (uy,...,uy,) and type(B) = (b_1,bo,b1,...,br). Then, we can equiva-
lently define vg = (v1,...,v,) as the point that is the permutation of the point (wsq,...,wy)

=(0,...,0,up_,41,...,uy) satisfying v; = wy if i € Bj, where t = |b_1| + --- + |bj].
EXAMPLE 4.4.13. Consider the MD pair (m,d) where m = (2,3,1,2) and d = (4,6,8). Let B,C
be the two skewed binary partitions given by
B=({0,2,3},0,{1,6,7},{8},{4,5}) and C = ({1, 3,4,5,8},{0},{2},{6,7}).
By Example 4.4.9, one has that type(B), type(C) € Qy and that
vs = (4,0,0,8,8,4,4,6) and v¢ = (0,6,0,0,0,8,8,0)
are two (m, d)-extreme points in PF(m, d). In fact, one sees the set of (m, d)-extreme points given

in Example 4.4.3 is exactly the set {vg | type(B) € Om}.

The next theorem shows that {vg | type(B) € Qm} is precisely the set of vertices of PF(m, d)

and describes the normal cone at each vertex.

THEOREM 4.4.14. Let (m,d) be an MD pair. Then, the map B — v defines a bijection between
the set {B | type(B) € Qm} and the set of the vertices of PF(m,d). Moreover, we have that

ncone(vg, PF(m,d)) = 3.
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PROOF. Suppose that B = (B_1, By, B, ..., By) satisfies type(B) = (b_1,bg,...,br) € Qm.
Since {vg | type(B) € Qm} equals the set of (m,d)-extreme points, it follows from Proposition
4.4.1 that PF(m,d) = conv(vg | type(B) € Qm). To prove the statement, we first show that vz
is a vertex of PF(m,d) and ncone(vg, PF(m,d)) = 63. By Theorem 4.4.11 and Lemma 1.2.2, it

suffices to show that, for every B’ such that type(B’) € Qy, and B’ # B, one has
c-vg>c-vp forall c € 73.
Let ¢ = (c1,...,¢n) € 6. Then, by Theorem 4.1.4/(2), the vector c satisfies
cp<cgifpeBjand g€ Bjandi <j
where we set ¢y = 0. Similarly, by definition, the point vz = (v1,...,v,) satisfies
v,=0ifpe B_1, and 0 <wv, <y, if pe B; and ¢ € Bj and 1 <7 < j.

One sees that ¢, < ¢, provided v, < v, and that 0 < ¢, provided 0 < v,. Moreover, the non-

ecreasing rearrangement of vy, ..., v, is given e sequence

d g g tof vy, ..., given by the seq
0,...,0, de—pi1s oy do—kt1s -y Do—kiky s Ao—koik -
~——
[b_1] terms |b1] terms |b| terms

Let B’ = (B, B, B, ..., B{) be a skewed binary partition satisfying type(B’) = (b'_1,bp,...,b}) €

Qm and B # B. Then, vg = (v],...,v),) is a point such that vg # vp and the non-decreasing
rearrangement of v/, ..., v/, is given by

07 s 707 d@*tﬁ*l) s 7dfft+17 s 7d£7t+t7 teey df*?H’t .

———

[b”_ ;| terms [b’_,| terms |b}| terms

If |b_1| < [b' 4], then, by the definition of ,y,, the sequence

(4.4.2) Aoty -5 Dokt s Dok -+ it

P
|b1] terms |bg| terms
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can be obtained by removing the first (|6’ ;| — |b_1|) terms of the sequence

(443) d£7t+17 e 7d£7t+17 ey d@,t+t, P ,d[,t+t .

|b}| terms |b}| terms

Thus, by applying the rearrangement inequality, one sees that c-vg > c - vpr.
Similarly, if |b_1] > |b"_;], then the sequence in (4.4.3) can be obtained by removing the first

(|6"_1] —1b=1|) terms of the sequence in (4.4.2). In this case, we must have that [b_1| > mg and that
¢p <0if pe B_1\{0}, and 0 < ¢, if p € B; for some j > 1.

Thus, the rearrangement inequality implies that c-vg > c¢ - vpr.
Therefore, by Theorem 4.4.11 and Lemma 1.2.2, the point vg is a vertex of PF(m,d) and
ncone(vg, PF(m,d)) = 5. Consequently, the map B +— vp is a bijection between the set {8 |

type(B) € Qm} and the set of the vertices of PF(m, d). O

It is apparent that every polytope of dimension at most 2 is simple. When a polytope has
dimension greater than 2, it becomes nontrivial to verify its simplicity. Theorem 4.4.14 allows us

to determine exactly when PF(m,d) is a simple polytope.

COROLLARY 4.4.15. Let (m,d) be an MD pair where m = (mg,m1,...,my). Then PF(m,d) s

simple if and only if either m = (0,n) or (n—1,1) ormy =---=my_1 =1 for some £ > 2.

PROOF. Recall that an n-dimensional polytope in R™ is simple if and only if, for every vertex
of the polytope, the normal cone at the vertex is simplicial. Since {vg | type(B) € Qm} is the set
of vertices of PF(m, d) and ncone(vg, PF(m,d)) = 73, it suffices by Lemma 4.1.4/(5) to show that
the preorder <z defines a poset whose Hasse diagram is a tree for all B satisfying type(B) € Qu, if
and only if either m = (0,n) or (n —1,1) or my = --- = my_; = 1 for some ¢ > 2.

If ¢ = 1, then it’s easy to check that ([0,n],=<g) is a poset whose Hasse diagram is a tree
for all B with type(B) € Qu if and only if m = (0,n) or (n — 1,1). Similarly, if ¢ > 2, then
([0,n], =<p) is a poset whose Hasse diagram is a tree for all B satisfying type(B) € Q, if and only

ifmlz---:mg_lzl. ]
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Theorem 4.4.14 describes the full dimensional cones in X(PF(u)), the normal fan of PF(u).
Since the lower dimensional cones are faces of the full dimensional cones in ¥(PF(u)), it follows
from Lemma 4.1.4/(1) that they correspond to the contractions of the preorders <z on [0, n] where

B is a skewed binary partition such that type(B) € Q.

DEFINITION 4.4.16. Let m be a multiplicity vector. We define BWP(m) to be the poset of all
skewed binary partitions B such that type(B) € 2, and their contractions, ordered by contraction,

i.e., C,B € BWP(m) satisfty C < B if C is a contraction of B.
The following result is then an immediate consequence of Theorem 4.4.14 and Lemma 4.1.4/(1).

COROLLARY 4.4.17. Let (m,d) be an MD pair. Then the posets BWP(m) and F(X(PF(m,d)))
are isomorphic. Moreover, if F' is the face of PF(m,d) in which ncone(F,PF(m,d)) corresponds

to the skewed binary partition B, then ncone(F,PF(m,d)) = 5.

Thus, the combinatorial types of parking function polytopes only depend on the multiplicity
vector, i.e., two parking functions polytopes PF(u;) and PF(ug) have isomorphic face posets if
m(u;) = m(ug). It is not difficult to see that there are 2™ — 1 distinct multiplicity vectors m
of magnitude n such that PF(m,d) is n-dimensional. Figure 4.5 shows that there are exactly
three different combinatorial types of 2-dimensional parking function polytopes PF(m, d), and two

distinct multiplicity vectors correspond to different types.

m = (1,1) m = (0,1,1) m = (0,2)

FIGURE 4.5. Three different combinatorial types of 2-dimensional PF(m, d)

REMARK 4.4.18. Corollary 4.4.17 implies that the normal fan of every parking function polytope
PF(u) is a coarsening of the normal fan of PF(1,2,...,n), meaning PF(u) can be viewed as a

deformation of PF(1,2,...,n).
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It is then natural to ask how we can describe skewed binary partitions in the correspondence.
Due to the symmetry of parking function polytope, we have that if a skewed binary partition B
corresponds to a normal cone in X(PF(m,d)), then every skewed binary partition of the same type
type(B) also corresponds to a normal cone in X(PF(m,d)). Thus, we can describe these skewed
binary partitions by their types. To have a better idea of how we can describe them, we present an

example first.

EXAMPLE 4.4.19. Consider the MD pair (m,d) where m = (2,3,1,2) and d = (4, 6,8). The skewed
binary partition B = ({0,2,3},0,{1,6,7},{8},{4,5}) is from BWP(m). We saw in Example 4.3.7

and Example 4.4.13 that B corresponds to the sliced preorder cone
o5 ={(c1,...,c8) € R® | 0,c2,¢3 < c1,06,¢07 < g < ey, 05},

which is also the normal cone at the vertex vz = (4,0,0,8,8,4,4,6). The table below shows
examples of skewed binary partitions in a maximal chain of BWP(m), each of which corresponds
to contractions of <z . They also correspond to the normal cones in ¥(PF(m,d)) of dimensions 8
to 0 (in decreasing order of dimensions). The first three skewed binary partitions are also displayed

in Figure 4.6.
skewed binary partition | type

({0,2,3},0,{1,6,7}, {8}, {4,5})
({0,2,3},0,{6, 7}, {1,8}",{4,5})
({2,3}, {0, 737, {6}, {1, 8}, {4,5})
({3},{0,2, 737, {6}, {1, 8}, {4,5})
({3},{0,2,7}*,{1,6,8}", {4,5})
)

)

)

)

2,0,3,1,2)

2,0,2,2*,2)

2,1°,1,2%,2)

1,2°,1,2%,2)

({3},{0,2,7}*,{1,5,6,8}*,{4}
({3},{0,1,2,5,6,7,8}*, {4}

(0,{0,1,2,3,5,6,7,8}*, {4}

(0,{0,1,2,3,4,5,6,7,8}*

We characterize the types of the ordered skewed binary partitions corresponding to the normal

cones in X(PF(m, d)) in the following proposition.
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o I iy
@ ® @ o5 = {0,c2,c3 < c1,¢6,¢7 < cg < ¢4, 05}
P

“ contracting 1 — 8
@\ /@
€ = ({0.2,3}.0,{6, 7}, {L.8}*. {4.5)

([0, 8], =¢) — type(C) = (2,0,2,2*,2)

@/ \@ oc ={0,co,c3 < cg,07 <1 =cg < g, 05}
LA
o ©

“ contracting 0 — 7

@\ /@
(0,8, %p) © D = ({2,3},{0, 7}, {6}, {1,8}*,{4,5})
— type(D) = (2,1°,1,2*%,2)
op ={c2,c3<0=c; <cs<c1=cg<cy,cs5}
@ ©

FIGURE 4.6. Both <¢ and <p are contractions <p
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PROPOSITION 4.4.20. Suppose that m = (my, ..., my) is a multiplicity vector of magnitude n, and B
is a skewed binary partition of [0,n]. Then B is in BWP(m) if and only if type(B) = (b1, bo, ..., bp)
is a skewed binary composition satisfying the following conditions.

(1) 0 < |b_1| + |bo| < mo if and only if b_1 # 0 and by = 0.

(2) mo < |b—1|+|bo|+|b1| and for every positive integer i < ¢, there exists at most one positive

integer j such that
(4.4.4) mo+ - +mi—1 < |b_1‘—|-'~-+‘bj_1’ < ’b_l‘—i-"'—i-’bj‘ <mg-+---+m;.

(8) If j is a positive integer such that there exists a positive integer i satisfying (4.4.4), then

b;j € P. Otherwise, b; € P* for 1 < j <p.
Before proving Proposition 4.4.20, we first establish a few auxiliary results.

LEMMA 4.4.21. Let m = (my,...,my) be a multiplicity vector, and A = (A_1,Ao,...,Aq) be a
skew binary partition such that type(A) = (a—1,a0,...,aq) € Qm. If B = (B-1,By,...,B)) is a
contraction of A, then type(B) = (b_1,bo,...,by) satisfies mg < |b_1| + |bo| + |b1].

PROOF. Let us first consider the case where B = (B_1, By). Then, B_; U By = [0,n] and so
n = |b_1| + |bo|. Since type(A) € Qum, we have my < |a—1|. If mg = |a_1|, then 0 < my and
type(A) = (mg,0,m1,...,my) for some ¢ > 1. Thus, we obtain mg = |a—1| < n = |b_1| + |bo| as
desired. If mg < |a—_1], then also have my < |a_1| < n = |b_1| + |bo].

Now consider B = (B_1, By, ..., B)) for some p > 1. Note that since one of B_; and By can

be empty, one of them may not be a vertex of G (/l, B) We claim that
(4.4.5) A_j is a proper subset of (B_; U By U B1)\{0},

which then gives mg < |a_1| < |b_1|+|bo|+|b1| as desired. To see this, it suffices by the non-crossing
property of G(/l, Z’S’) to show that the vertex B; is adjacent to A, for some positive integer s € [p].
Since 0 ¢ By and Ag is either {0} or (), the vertex B; of G(A, B) is not adjacent to Ag. Thus,
if A_; =0, then clearly the vertex B; must be adjacent to As for some positive integer s € [p].
Hence, we may suppose that A_; is nonempty. Assume for the sake of contradiction that the

vertex By of G(A, B) is only adjacent to the non-homogeneous vertex A_j. Then, the non-crossing
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property of G(.,Zl, 5’) implies that B_; and By are only adjacent to A_; as well. Thus, by Theorem
4.2.7/(5), the vertices By (if nonempty) and B; are non-homogeneous. However, this means that
the left non-homogeneous vertex A_; are adjacent to at least two non-homogeneous vertices in

{B_1, By, B1}, a contradiction to Theorem 4.2.7/(2). Therefore, the claim must hold. O

LEMMA 4.4.22. Let m = (my,...,my) be a multiplicity vector, and A be a skew binary partition
such that type(A) € Qm. Suppose that p is a positive integer, and B = (B_1, By, ..., Bp) is a skew
binary partition that is a contraction of A. Let j € [p] be a positive integer. Then, the right vertex
Bj of G(/l, l';’) has degree at least two if and only if there exists a nonnegative integer k < £ such
that type(B) = (b_1,...,b,) satisfies

|b_1‘ —|—’bo’+"'+‘bj_1| <mg4--omp < ’b_1|+|bo|+"'—|—|bj|.

PROOF. Let j € [p] be a positive integer. Let us write A = (A_1, Ao, ..., A,) and type(A) =
(a—1,ap,...,aq). Note that since type(A) € Qm, one has |a_1| > mg, and Ay is either {0} or (.

(=) Suppose that the right vertex B; of G(A, B) has degree at least two. Then, by (4.4.5) in
the proof of Lemma 4.4.21, one has that A_; is a proper subset of (B_; U By U B;1)\{0}, and

la—1| = la—1| + |ao| < |b-1] + |bo| + [b1] < [b-1| + |bo| + -+ + [bj—1].

By the non-crossing property of G (fl, B), the right vertex B; must be adjacent to a vertex A, for
some positive integer s € [¢]. Since B; has degree at least two, we may let A; where t # s be
another left vertex of G(A, B) adjacent to Bj. We first consider ¢ > 1. Then, we may assume

without loss of generality that 1 < s < t. Since type(A) € Qy, we may write
(4.4.6) (a—1,a0,...,aq) = (a—1,a0, Mo + -+ + Mg — G_1,Mg41,...,My),

where ag € {0,0°} and g < £ is a positive integer such that mo+---4+mg_1 <a_y <mo+---+my.
Note that, for f € [0,¢] and h € [0, p], one has

f f h h
(4.4.7) S Al=1+ o] and > [B =1+ Y |b,l.
r=0 r=0

r=—1 r=—1
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Since both G(A, B) and G(B, A) are non-crossing, and the intersections B;jN As and A; N B; are
nonempty, we deduce from (4.4.7) and Lemma 4.2.6/(2) that

j—1 s t—1 J
Z b, < Z lar| < Z lar| < Z by

r=—1 r=—1 r=—1 r=—1

Because g+s—1>1and > ) _ | |a| = Zfig_l m,, we obtain as desired

[b—1]| + [bo| + -+ |bj—1] <mo + -+ mgys—1 < [b-1| + [bo| + - + [bj].

Now consider ¢t < 0. Since 0 ¢ B; and Ay is either {0} or 0, it follows that ¢ = —1. By the
non-crossing property of G (.,Zt, B), the vertices B_1, By, ..., Bj_1 have degree one and are adjacent
to A_q, and the block Ay = (. Thus, B_; U By U --- U Bj_; is a proper subset of A_j. As
type(A) € Qm, we must have mg > 0 and type(A) = (mo,0,m1,...,my). Moreover, by Theorem
4.2.7/(5), the right vertices B_1, By, ..., Bj_1 are non-homogeneous and are adjacent to the left

non-homogeneous vertex A_;. By Theorem 4.2.7/(2), we must have j = 1. Hence,
|b_1| + |bo| + - -+ [bj—1| = |b=1] + |bo| < |a—1| =m0 < [b—1]| + |bo| + - - + |bj].

(«<=) Conversely, suppose that there exists a nonnegative integer k < ¢ such that type(B) =

(b_1,...,by) satisfies
|b,1’ + |bo’ + -+ |bj,1| <mo+--omp < |b,1| + |b0| + -+ |bj|.

If g < k, then one sees from (4.4.7) together with the non-crossing property of G (/l, 3) and Lemma
4.2.6/(1) that Bj; is adjacent to Ay_g11 and A; for some ¢ > k — g + 1. Thus, in this case, the
vertex B; has degree at least two. On the other hand, if ¥ < g, then the non-crossing property
of G(/l, B) implies that B; is adjacent to A_;. Moreover, by (4.4.5) in the proof of Lemma 4.4.21
and the non-crossing property of G(./l, B), we must have that B; is adjacent to a vertex A, for
some positive integer s € [g]. Hence, the vertex B; also has degree at least two in this case. This

completes the proof. O

DEFINITION 4.4.23. A skewed binary partition B = (B_1, By, Bi, ..., B,) is standard if for every

nonnegative integer ¢ < p every positive integer in B; is greater than every positive integer in B;_1.
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We make the following remarks of useful properties of standard skewed binary partition for

later reference.

REMARK 4.4.24. If B = (B_1, By, B1,. .., Bp) is standard with type(B) = (b—1,--- ,b,), then
|b_1] 4+ -+ + |b;j] = the maximum integer in B;\{0}

for all i such that B;\{0} # 0.

PROOF OF PROPOSITION 4.4.20. Let B be a skewed binary partition of [0, n].

(=) Suppose that B € BWP(m) and type(B) = (b_1, b, . . ., bp) is a skew binary composition.
Thus, B is a contraction of A = (A_q,..., A,) for some A such that type(A) = (a_1,a0,...,aq) €
Qm. Note that |a_1| > mg, and Ay is either {0} or 0.

We first show that (b_1,...,b,) satisfies condition (1). Suppose that 0 < |b_i| + |bg| < my.
Since |a—1| > mg > 0, the block A_; is nonempty. Assume for the sake of contradiction that
bp # 0. Then 0 € By. Since 0 < [b_1| + |bo| = |(B-1 U By)\{0}|, there exists a positive integer
in B_1 or By. If a positive integer is in By, then By is homogeneous. By Theorem 4.2.7/(5),
the right homogeneous vertex By of G(/l, B) must be adjacent to a vertex other than A_;1. The
non-crossing property of G(A, B) then implies that A_; can only be adjacent to B_; or By (or
both). Thus, A_; is a proper subset of B_; U By. However, this is not possible, since it would
give [b_1| + |bo| = |bo| > |a—1] > mo. Hence, we must have By = {0} and that B_; contains a
positive integer. In particular, B_; is a nonempty block and is a right non-homogeneous vertex
of G(A, B) adjacent to A_;. Since, by 4.2.7/(2), the left non-homogeneous vertex A_; of G(A, B)
cannot be adjacent to both non-homogeneous vertices B_1 and By, it follows that 0 € Ay. Because
type(A) € Qm, it follows that |a_;| > mg. Moreover, in G(A,B), the vertices Ay and By are
adjacent. By the non-crossing property of G(fl, [5’), the vertex A_; can only be adjacent to B_1
or By (or both). Thus, A_; C B_; U By. This means |b_1| + |bo| > |a—1| > mo, a contradiction.
Therefore, we must have by = 0 as desired. It then follows from the definition of skew binary
partition that By = (), and B_; contains 0 and another positive integer. Hence, we have b_1 # 0.

Conversely, suppose that b_1 # 0 and by = 0. Then, By = (), and B_; contains 0 and another

positive integer. By Theorem 4.2.7/(4), the left non-homogeneous B_; of G(A, B) has degree one.
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This implies that B_; is a subset of a block A; for some j € [—1,¢]. In particular, we must have
that Ag # {0}, since Ag = {0} would intersect but would not contain B_;. Because type(A) € Oy,
it follows that mg > 0, Ag = 0, and |a_1| = mg. By the non-crossing property of G(/l, l’;’) and
Theorem 4.2.7/(4), the vertex B_; is only adjacent to A_;. Hence, we have B_; C A_;, which
then implies 0 < |b_1| = [b—1| + |bo| < |a—1| = mg as desired.

Next, we show that type(B) satisfies condition (2). By Lemma 4.4.21, we have mg < [b_1| +
|bo| + |b1]. Assume by way of contradiction that there exists a positive integer i < ¢ together with
two consecutive positive integers j, j 4 1 satisfying inequality (4.4.4). Let ky = [b—1| 4+ - - - + |bjr1—1]

for t = 0,1,2. The assumption implies that
(4.4.8) mo+---+mii1 < kg <kl <ks<mg+---+m,.

Then, by Lemma 4.4.22, both vertices B; and Bj;q of G(/l, B) must have degree one. Because
every left vertex of G(A, B) is non-homogeneous, it follows from Theorem 4.2.7/(5) that both Bj;
and Bji; are non-homogeneous. As shown in (4.4.5) in the proof of Lemma 4.4.21, one has that

A_; is a proper subset of (B_; U By U B;1)\{0}, and
la1] = la—1] + laol < [b—1] + [bo| + [ba] < [b-1] 4 [bo] + - - + |bj 1.

The non-crossing property of G(fl, B) then implies that the vertex B; must be adjacent to A, for
some positive integer s € [g], and the vertex Bj;; must be adjacent to A; for some positive integer
t € [g] such that s < t. Thus, B; C A, and Bj; C A;. Moreover, because both B and Bj;
are non-homogeneous, Theorem 4.2.7/(3) implies that As # Ay, i.e., 1 < s # t. Then, we have by
Lemma 4.2.6/(3)

J g+s—1 j+1
kl:Z|b|<Z‘ar|—Zmr§2|ar|<2|br|:k’2’
r=—1 r=—1 r=—1 r=—

a contradiction to the assumption (4.4.8). This shows that type(B) satisfies condition (2).
We now show that type(B) satisfies condition (3). Suppose that j is a positive integer such

that there exists a positive integer i satisfying inequality (4.4.4). Let us define kg, k1 as before and
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write (a—1,ao,...,aq) as in equation (4.4.6). Then,
mo+ -+ mim1 < kg <k <mg---+m;.

By Lemma 4.4.22, the vertex B; of G(A, B) has degree one. Since every left vertex of G(A, B) is
non-homogeneous, we see from Theorem 4.2.7/(5) that B; is non-homogeneous. Therefore, b; € P.

Now suppose that j is a positive integer such that there is no positive integer i satisfying
inequality (4.4.4). As shown in (4.4.5) in the proof of Lemma 4.4.21, we have mg < |a_1| + |ap| <
[b_1| + |bo| + |b1] < k1, and the vertex B; of G(A, B) is adjacent to A for some positive integer

s € [g]. This implies that there exists a nonnegative integer i < ¢ such that
ko <mo+---+my; < k.

Thus, by Lemma 4.4.22, the vertex B; of G(/l, B) also has at least degree two. Thus, by Theorem
4.2.7/(4), the block B; is homogeneous. Hence, b; € B*.

(«<=) Conversely, suppose that B is a skew binary partition such that type(B) = (b—1,...,bp)
satisfies conditions (1) - (3). By symmetry, we may assume without loss of generality that B is
standard. To see that B € BWP(m), we will construct A such that B < A and type(A) € Qm.

Case 1: |b_1| = n. Then, |b_1| + |bo| > mo. Thus, by condition (1), we have type(B) = (n,0°),
that is, B = ([n],{0}). Let A = B. Since type(A) = type(B) = (n,0°) € O, it follows that
B € BWP(m).

Case 2: mp < |b_1]| < n. Let j be the unique positive integer in which mg+mi+---+m;_; <

|b_i| <mq + -+ m; and define A to be the standard skewed binary partition such that
type(A) = (b—lv Oo7m0 +mi+-+ mj; — |b—1|)mj+17 s 7mf)'
Case 3: |b_1| < mg. Then we defined A to be the standard skewed binary partition with

(mg,0,m1,...,my) if mg#0
type(A) = -
(mo,OO,ml,...,mg) ime:O
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Clearly, in both Case 2 and Case 3, type(A) € Qm. To see that B < A, we will show that
G(/Al, l’;’) satisfies all of the conditions in Theorem 4.2.7. As both cases can be shown using a similar
argument, we will only discuss the proof for case 2.

Suppose that my < |b—_1| < n. Then, by condition (1), by # 0, i.e., 0 € By. Note that A=A
and B = B, since there is no empty block. Because every block of A is non-homogeneous, G(/l, l’;’)
automatically satisfies condition 4.2.7/(3). By construction, A_; = B_; and Ag = {0} C By.
Because A and B are standard, it is then easy to see that G(/l, [5’) is non-crossing. Thus, condition
4.2.7/(1) is satisfied.

Let j be a positive integer. Suppose that B; is a non-homogeneous block. Then B; are not
adjacent to A_; nor Ay, since A_; = B_; and Ay = {0} are disjoint with B;. Let Ay be the block
of A that contains mg + - -- + m;. Together with conditions (2) and (3), we deduce that B; is a
subset of Ag. This means, in G(A, B), the right non-homogeneous vertex B; has degree one and
is adjacent to the non-homogeneous block Ag. If By is non-homogeneous, i.e., By = {0}, then we
also see that, in G(/l, B), the vertex By has degree one and is adjacent to the non-homogeneous
vertex Ag. Thus, G(A, B) satisfies 4.2.7/(4). Moreover, condition (2) implies that for every positive
integer k the only possible non-homogeneous vertex that Ay can be adjacent to (if there is any) is
B;. Hence, G(A, B) also satisfies 4.2.7/(2).

It only remains to be shown that G(A, B) satisfies 4.2.7/(5). To see this, let us suppose that j
is a positive integer in which B; is a homogeneous block. Then conditions (2) and (3) imply that

there exists a nonnegative integer ¢ such that
lb_1]+ -+ |bjo1] <mo+ - my < b_1| + -+ b.

This means, in G(./Zl, B), the right homogeneous vertex B; is adjacent to two left non-homogeneous
vertices whose corresponding blocks contain mg + - - - m; and mg + - - - m; + 1, respectively. If By is
homogeneous, then By must contain 0 and another positive integer. Thus, the right homogeneous
vertex By of G(A, B) is adjacent to Ay = {0} and A;. This shows that G(A, B) satisfies 4.2.7/(5).
Therefore, B < A. O

By Proposition 4.3.8, we have that the one dimensional cones in X(PF(m,d)) (and hence the

facets of PF(m,d)) correspond to the skew binary partitions B € BW?P(m) such that type(B) =
79



(b—1,bo, ..., bg) satisfies

L=boy+ | Y bi | +#(bi € PLy).
b;eP

This implies that
(4.4.9) type(B) € {(1,(n —1)°),(0,0°,n%),(0,1°, (n — 1)*),...,(0,(n —2)°,2%),(0, (n — 1)°,1)}.

Together with Proposition 4.4.20, we obtain the following characterization of the one-dimensional

cones in X(PF(m,d)).

COROLLARY 4.4.25. Let n > 2 be a positive integer. Suppose that (m,d) is an MD pair where
m = (my,...,my) is a multiplicity vector of magnitude n. Then, the cone o € X(PF(m,d)) has
dimension one if and only if o = & for some skewed binary partition B of [0,n| such that type(B) =

(b—1,bo,...,by) satisfies the following conditions.
(1) If £ =1 and my = n, then type(B) € {(1,(n —1)°),(0,(n —1)°,1)}.
(2) If £ =1 and my =1 then type(B) € {(1,(n — 1)°),(0,0°,n*)}.
(3) If {=1and2<m; <n-—1) or ({ =2 and my = 1), then

type(B) € {(17 (n - 1)0)7 (07 (n - 1)07 1)7 (07007n*)}'
(4) If £ > 2 and (£,my) # (2,1), then type(B) € X UY where

X = {(17 (n - 1)0)7 (Oa (n - 1)07 1)7 (0,00,71*)}

Y :={(0,(n —mg—1)° (mg+1)),...,(0,(mo+1)°, (n —mo — 1)) }.

Utilizing (4.4.9) and Corollary 4.4.25 to describe the one dimensional cones in ¥(PF(u)), we

deduce the following inequality description for PF(u).

COROLLARY 4.4.26. A point x = (z1,...,xy) lies in the u-parking function polytope PF(u) if and
only if x; > 0 for all i € [n] and for every nonempty subset I C [n]

[]-1

=0

il
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We will see later in Section 4.6 that the inequality description in Corollary 4.4.26 can also be

deduced by viewing PF(u) as a polymatroid.

REMARK 4.4.27. By Corollary 4.4.25, for every multiplicity vector m # (0,n) of magnitude n, the
skewed binary partition B = (0, {0},{1,...,n}*) is in BWP(m), since type(B) = (0,0°,n*).

Note that every polytope of dimension at most two is simplicial. The next corollary provides

a characterization of the simplicial polytopes of dimension greater than two.

COROLLARY 4.4.28. Let n > 3 be an integer. Suppose that m is a multiplicity vector of magnitude
n and (m,d) is an MD pair. Then, PF(m,d) is an n-dimensional simplicial polytope if and only

ifm=(n—1,1), i.e., PF(m) is a simplez.

PROOF. Let (m,d) be the MD pair of the vector u. Suppose that PF(m, d) is simplicial. When
m = (0,n), the parking function polytope PF(m,d) is an n-dimensional cube and is not simplicial
for n > 3. Thus, m # (0,n). For m # (0,n), we have from Remark 4.4.27 that the skew binary
partition B = (0, {0},{1,...,n}*) is in BWP(m). Moreover, B = (0,{0},{1,...,n}*) corresponds
to the face Fz = S, (u) := conv(r(u) | 7 € &,,) of PF(m,d). Thus, Fj is a permutohedron, and
is a simplex if and only if m = (n — 1,1). Conversely, if m = (n — 1,1), then PF(m,d) is an

n-dimensional simplex and is simplicial. ]

4.5. h-vectors

Given a poset (@, <g) where Q C N, we say that the ordered pair (4, j) is a descent of (Q, <g)
if i <@ j and j < i, and say that (i, j) is an ascent if i <g j and j > 1.

As noted in Corollary 4.4.15, PF(m, d) is simple if and only if either m = (0,n) or (n — 1,1)
or mj = --- = my_1 = 1 for some ¢ > 2. This implies that for every B € (), the preorder <p
is a poset and its Hasse diagram is a tree. We will denote the number of descents and ascents of
the poset ([0,n], <g) by des(B) and asc(B), respectively. The following lemma, which is a slight
variation of [36, Theorem 4.2], expresses the h-polynomials of simple parking function polytopes

in terms of descents and ascents.
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LEMMA 4.5.1. If PF(m,d) is an n-dimensional simple polytope, then its h-polynomial equals
(45.1) W= Y He® o Y )

type(B)EQm type(B)E€Qm
COROLLARY 4.5.2. Let m = (mg,m1,...,my) and r = my + --- + my. If PF(m,d) is an n-
dimensional simple polytope, then its h-polynomial equals

T s

(4.5.2) h(t)zz Z 4des(B) :Z Z 4ase(B)

1=0 \ type(B)=b; =0 \type(B)=b;

where by is given as in Definition 4.4.8.

Let @ be a poset on [n]. We define 6,,(Q) := {0(Q) | 0 € &,} to be the set of all posets on

[n] having the same Hasse diagram as Q.

DEFINITION 4.5.3. For p,q € N, let T'(p, q) be the poset on [p+ ¢] defined by the covering relations
j<j+lforalljep—1and p<kforall k €[p+1,q.

DEFINITION 4.5.4. Let (@, <r) be a poset on [n] whose Hasse diagram is a tree (a graph with no

cycle). We define the generalized Eulerian polynomial on @ to be
AQ )= Y. gase(T)
Te6,(Q)
Let T =n---21 € &,,. Then asc(7(T")) = des(T) for all T' € &,,(Q). Thus,
A(Q,t) — Z 75asc(T) — Z 7fasc(’r(T)) — Z tdes(T)'
T€G,L(Q) TEG,L(Q) TEG,L(Q)

The generalized Eulerian polynomial A(Q,t) has degree n— 1 and is palindromic. We also have

that A(T(p,1),t) is the (usual) Eulerian polynomial A,;(t) of degree p.

REMARK 4.5.5. PF(m,d) is an n-cube if m = (0,n), and is an n-simplex if m = (n — 1,1). In

these cases, their h-polynomials are known to be (14 ¢)™ and 1+ ¢ + - - - t", respectively.

We now describe how to obtain a more explicitly formula for the h-polynomials of all other

simple parking function polytopes, i.e., PF(m,d) with m; = --- = my_; = 1 for some ¢ > 2. Note
82



that n=mog+£€—1+my and r =mq1 +---+my =€ — 1+ my. Thus, by Corollary 4.5.2, we may

write
f—l—‘,—mé
h(t) = Z gi(t) where g;(t) := Z asc(B)
=0 type(B)=b;

For £ —1 < i < {—1+ my, the poset ([0,n], <g) with type(B) = b; is given on the right of
Figure 4.7. Thus,

(4.5.3) gi(t) = ( ”+ ) Ml for f — 1 < i <0 —1+my.
mo + 1

For 1 <i < ¢ — 2, the poset ([0,n],=<g) with type(B) = b; is given on the left of Figure 4.7.
Thus,

n
5. (1) = — - <i<l-—2.
(4.5.4) gi(t) (mo N Z,)tA(T(E i—1,my),t) for 1 <i</{-—2

my nodes

{9

¢ — 1 — 7 nodes my + £ — 1 — 4 nodes

CRCEe

AN @/
AN RN
FIGURE 4.7. (]0,n], <) with type(B) = b; € Q, satisfying 1 < i < £ — 2 (left)

and £ — 1 < i < my (right), where * denotes an integer in [n]

The polynomial go(t) = tA(Q,t) where @ is a poset on [n] depending on whether m satisfies
mo = 0 or not. If mg = 0, then the poset (][0,n], <) with type(B) = by is given on the left of
Figure 4.8. Thus,

(4.5.5) go(t) = tA(T(L — 1,my), t) if mo = 0.
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If mp # 0, then the poset ([0,n], <p) with type(B) = by is given on the right of Figure 4.8.
Thus,

(4.5.6) go(t) = tA(Q, 1) if mo # 0

where @ is the induced poset [n] of the poset on the right of Figure 4.8.

my nodes my nodes

L L

¢ — 1 nodes

vE o

FIGURE 4.8. ([0,n], <) with type(B) = by € O, satisfying mo = 0 (left) and
mo # 0 (right), where * denotes an integer in [n]

Consequently, by equations (4.5.4)—(4.5.6),

0—2 l—1+my
h(t) = go(t) + <Z gi(t)> + Z gi(t)

i=1 i=0—1

~1AQu) + (@ (s AT =i = 1m0 t>> " e;ﬁ (0 eremes
(45.7) =tAQ,t) + (Z_j (Z +nm€>tA(T(i,mg),t)> +§§ <7Z> .



Hence, if mg = 0, then

(MO)

1=

h(t) = tA(Q, 1) + <K_j (Z +"mé> tA(T(i,mg),t)> + §_§ (:‘) ¢

-2 myp

LA(T (0 —1,my),t) + (2 <Z +nmé)tA(T(i,mg),t)> +y (’Z) ¢

=0

(35(2)¢)

/—

1

1=0

: i (z +nmz>tA(T(i,me),t).

Since h-polynomials and generalized Eulerian polynomials are palindromic, we have

(4.5.8)
(4.5.9)

(4.5.10)

h(t) = t"h(t™)

AQ,t) =t"TAQ, 1T

A(T(3,my),t) = ™=V A(T (i, my), t ).

Thus, by equations (4.5.7) and (4.5.8)—(4.5.10),

(4.5.11)

h(t) = t"h(t™h)

TAQ, Y +<§<Z+W> t AT (i, me) £ 1>+Z(> ]

t?’L

=" AQ, 1) (

=1

§<Z+me> "L A(T (i, me) £~ 1>+Z< >tn i

= A(Q,1) + <§ <Z +”m£>tm0+f—i—1A( i,me), ) +Z < )tn—z‘

i=1

Equations (4.5.7) and (4.5.11) allows us to express A(Q,t) as

A(Q,t) =

=il

Hence, if mg # 0, then

(M1)

=2

i=1

S (), ) A0
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where

z n n—i -2 n n—i—my
_ j i ~
(GO) > <> IS ( ! W) S 8| ATGme). 1
1=0 J=i+1 =1 =
and z = min (mg,n —my —1).
THEOREM 4.5.6. Let (m,d) be an MD pair where m = (mg, my,...,mg) for some £ > 2. Suppose

that PF(m, d) is n-dimensional and simple. Then its h-polynomial is given by

i (7)#’ + tfé <Z +"me> A(T(i,my), t) if mo =0

— \J
(H) moy =9 V7" .
g(t) + Z <j>tj + t; <7, n mZ>A(T(Z’, mye),t)  otherwise

Jj=0

where

and z = min (mg,n —my — 1).

We now aim to express A(T(p,q),t) in terms of Eulerian polynomials. This will allow us to
express equation (H) in Theorem 4.5.6 in terms of Eulerian polynomials. To do this, we first observe
that, by symmetry, A(Q,t) = A(Q*,t) for all poset @ on [n] whose Hasse diagram is a tree, where
Q* denotes the dual poset of Q.

Let p,q,n € P satisfy p+ ¢ = n. If p = 1, one can easily compute by a direct counting
argument that A(T(1,q),t) = 1+t +---t"" L If p > 2, then T(p,q)* is the induced poset on [n]

of a poset (<p,[0,n]) satisfying type(B) = by € Qpy where m = (¢, 1,...,1). Thus, we can deduce
86



A(T(p,q),t) by applying equation (GO) to m = (¢, 1,...,1) to get

A(T(p,q),t) = A(T(p, )", )

o
t
1 n n—i—1 p—2 n—i—2
= t7 tI t), if p > 2.
SO 200) 0.0 1>
=0 Jj=t =1 j=1
Therefore, we have the following result.
LEMMA 4.5.7. Let p,q,n € P satisfy p+ q =n. Then
Y n n—i—1 . p—2 n n—i—2 .
usi Ao - Y ()X e[+ ()X ¢ ) Ao
i=0 j=i i=1 j=1

where y = min(1,p — 1) and Ag(t) denotes the Eulerian polynomial of degree k — 1.

Using equation (4.5.12) to express A(T'(i,my),t) in equation (H) of Theorem 4.5.6, we can write

the h-polynomial of PF(m,d) in terms of Eulerian polynomials. Together with Remark 4.5.5, we

consequently have the following corollary.

COROLLARY 4.5.8. Suppose that PF(u) is n-dimensional and simple. Then its h-polynomial has

the form h(t) = ro(t) + > iy 1i(t)Ai(t) where Ak(t) is the Eulerian polynomial of degree k —1 and

ri(t) is a polynomial with nonnegative integral coefficients of degree < n.

For instance, the h-polynomials of PF(1,...,n) and PF(0,...,n — 1) equal

1+ Z ( )tAk )and 1+ tA,( Z ( )tAk , respectively.

4.6. Connection to other polytopes

Let &, (u) := conv(7(u) | 7 is a permutation in &,,) be the &,-permutohedron generated by

u, where 7(u) := (ur(1),.--,Ur(n))- It is not difficult to show that the parking function polytope

87



PF(u) can be equivalently defined as

(4.6.1) PF(u) = {x € R, | 3w € &, (u) such that w —x € RY,}

(4.6.2) = (RZy + &, (u)) NRE,,.

Viewed as polymatroid. Equations (4.6.1)—(4.6.2) allow us to see that every PF(u) is a
polymatroid introduced by Edmonds in [16]. We note that a polymatroid in R" is also commonly
defined as the set of all (z1,...,2,) such that 0 <> . ; x; < w(I) for all nonempty subset I of [n]

where w : 2" — R is a function defined on the power set of [n] satisfying the following conditions:

(1) (Nonnegative) 0 < w([I) for all I C [n].
(2) (Non-decreasing) w(I1) < w(Ilz) for all I C Iy C [n]
(3) (Submodular) w(A) +w(B) > w(AU B) +w(AN B) for all A, B C [n].

The name “polymatroid” comes from its direct relation to matroids, the study concerning the
abstraction of independent sets. This means that each polymatroid encodes some information
about its corresponding matroid.

For a given u, let wy : 2" — R be the function defined by

1]
wy(0) =0 and wy(I) = Zu"—i for all nonempty I C [n].
i=0

It is easy to verify that w, satisfies conditions (1)—(3). We can then define PF(u) to be the

polymatroid consisting of all (x1,...,z,) satisfying

0< Z z; < wy(I) for all nonempty I C [n].
iel

This inequality description of PF(u) is equivalent to what is given in Corollary 4.4.26.

When u = (1,2,...,n) or any strictly increasing sequence of positive numbers, the polytope
PF(u) becomes a stellahedron, which is the graph associahedron of a star graph originally intro-
duced by Carr and Devadoss [8]. It follows from Remark 4.4.18 that the normal fan of every
parking function polytope is a coarsening of the normal fan of a stellahedron. Recent work by Eur,
Huh, and Larson [19] leverages the geometry of the stellahedral toric variety to study matroids and

explore the connections between deformations of PF(1,2,...,n) and polymatroids.
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Viewed as type B generalized permutohedra. It is not difficult to see that every sliced
preorder cone defined by (skewed) binary partition that is full-dimensional is a union of cones the
B, permutohedral fan ¥p, in (2.2.2). Hence, the normal fan of PF(u) coarsens the fan ¥p, . This
means that every parking function polytope is a type B generalized permutohedron. In particular,
we have that the edges of PF(u) are parallel to e; + e;,e; — e;, or e; for some 4, j € [n]. Using the
inequality description in Corollary 4.4.17, one sees further that every PF(u) has no edge parallel

to e; + e; for some 7 < j. Hence, we get the following proposition.

PROPOSITION 4.6.1. Let PF(u) be a parking function polytope in R™. Then, every edge of PF(u) is

either parallel to e; or €; — e; for some i,j € [n] such that i < j.

PROOF. Since every parking function polytope is a type B generalized permutohedron, it’s
edges are either parallel to e; + e;,e; — e;, or ; for some ¢,j € [n]. Thus, it suffices to show that
PF(u) has no edge parallel to e; + e; for some i < j. Assume for the sake of contradiction that
PF(u) has an edge (a line segment) parallel to e; + e; for some i < j, connecting two vertices. Let
X,y be the two vertices of PF(u). Then, we may write y = x + r(e; + e;) for some r > 0. The
inequality description of PF(u) given in Corollary 4.4.17 implies that the points x+re; and x+re;
also lie in PF(u). One then sees that the line segment connecting x and y lies in the (relative)
interior of the convex hull conv(x,y,x + re;, x + re;). Since conv(x,y,x + re;, x +re;) is a subset
of PF(u) and a polytope of dimension two, the line segment connecting x and y cannot be an edge

of PF(u), a contradiction. O

Viewed as type A generalized permutohedra. Every parking function polytope can be
realized as a projection of a type A generalized permutohedron. Moreover, every integral parking
function polytope is integrally equivalent to an integral type A generalized permutohedron. This
realization was also pointed out in [4] for PF(m, d) where m = (0,1,...,1) and (1,...,1). Thus, the
properties of generalized permutohedra apply to parking function polytopes as well. In particular,
one can compute the Ehrhart polynomials and the volume of parking function polytopes using

existing formulas for type A generalized permutohedra.
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Recall from Lemma 2.1.2 that every type A generalized permutohedron has the form

(4.6.3) Z yrAj for some y; € R,
IC[n],I#0
where A7 := conv(e; | i € I). Moreover, in Sections 9 and 11 of [35], Postnikov gave formulas

for the volume and the Ehrhart polynomial of type A generalized permutohedron in (4.6.3). We
will apply Postnikov’s formulas to parking function polytopes to obtain their volume and Ehrhart

polynomials. To do this, we first write PF(u) as in (4.6.3).

PROPOSITION 4.6.2. The parking polytope

PRw) = 3. A

T2\ {0}
where
17]-1
Il —1 »
(4.6.4) yr= > ( ’j >(_1)Ju1|—j'
§=0

Equation (4.6.4) implies that for Iy, I, € 2"\{(} such that |I;| = |I2|, one has y;, = yz,.

Moreover, if PF(u) is integral, then y; is an integer for all I € 2"\ {p}.

EXAMPLE 4.6.3. Let n > 2 be an integer. Suppose that the entries of u form an arithmetic sequence
of nonnegative real numbers. That is, u= (p,p+q,p+2q,...,p+ (n — 1)p) for some nonnegative

real numbers p, q. Then,

p if|I|=1
Yyr=4q if|I|=2
0 otherwise

Thus,

n

PF(u) = > pAly+ Y. qAl )

i=1 1<i<j<n
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PROOF OF PROPOSITION 4.6.2. Consider the type A generalized permutohedron P({yr}) in

RIO7 defined by

(4.6.5) P({yr}) = Z yrAr

Ie2(0n]

where

I|— — ] .
Z|]-2|01 (mj 1)(—1)Ju‘1|,j ifoel

0 otherwise

yr

Then, it’s not difficult to check that for every proper subset I of [n]

n—|I|—1
2, v= )
JC[0,n)\] j=1
Then, by Section 6 of [35], P({yr}) can be equivalently expressed as the set of all (zg,x1,...,2y) €

RO satisfying

IC[0,n]
11]-1
doms | dow| = D w| =Dy
iel JC[o,n] JC[0,n)\I j=0

for all nonempty proper subset I of [n]. Let 7 : R%" — R™ be the linear projection of RI%™ onto
R™ defined by 7(zo, x1,...,2n) = (21,...,2y). It is then easy to see that m(P({yr})) is a polytope
in R™ defined by

17]-1
0 < z; for all ¢ € [n] and sz < Z upn—; for all nonempty I C [n].
icl j=0

This is the inequality description for PF(u) given in Corollary 4.4.26. Thus, 7(P({yr})) = PF(u)

and so we have

PR(u)= Y 7w(yA)= Y wuAf

Ie2(0.n] Ie2[\{p}
as desired. O
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The projection 7 defined in the proof of Proposition 4.6.2 is a linear bijection from P({yr})
to PF(u). This means that every integral parking function polytope PF(u) is integrally equivalent
the type A generalized permutohedral P({y;}) defined in equation (4.6.5). In particular, their ¢-
dilations have the same number of lattice points for all nonnegative integers t. Hence, they have the
same Ehrhart polynomial. This allows us to compute the Ehrhart polynomials of parking function

polytopes using Postnikov’s formula in Theorem 11.3 of [35].

COROLLARY 4.6.4. Suppose that PF(u) = ylA(}1+~ - ymAgm where Iy, ..., I, are distinct nonempty
subsets of [n] such that yi,...,ym given in equation (4.6.4) are all nonzero integers. Then the

Ehrhart polynomial of PF(u) is given by

(4.6.6) i(PF(u),t) = ) (tyl T 1) o (tym o 1)

al Qo
a€D(PF(u))

where D(PF(u)) is the set of all a = (a1,...,am) € ZZ satisfying 3 ;c;a; < [Ujey L] for all

nonempty subsets J C [m].

ProOF. The parking function polytope PF(u) C R™ and the type A generalized permutohedron
P({yr}) c RO defined by

P({yr}) = idqoyun, + - ymAgoyur,,

have the same Ehrhart polynomials. Let yo = 1 and Iy = [n], and define

P ({yr}) = woloyun, + th1lqoyun + - - tYmAqoyur, -

Applying Theorem 11.3 of [35] to P} ({y;}), we deduce that

i(PF(u), 1) = i(P({yr}), 1)

(4.6.7) _ ¥ (1+Zz—1><ty1+a1—1>m(tym+am_1)

_ ay am
aeD(P;" ({yr}))

where D(P;t({y1})) is the set of “G-draconian sequences of P;"({y;})” a = (ag,a1,...,am) € Z%,

satisfying ap + a1 + -~ +am =n and ), ;a; < [U;e; ;| for all nonempty subsets J C [m]. Since
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(1+a0—1

g ) =1 for all nonnegative integer ag, we can rewrite equation (4.6.7) as

i(PF(u),t) = > (tyl +ac11 — 1) N (tym J;im - 1)

acD(P({yr}))

where D(PF(u)) is the set of all a = (a1,...,am) € Z’;OH satisfying >, ;a; < |U e, L] for all

nonempty subsets J C [m]. This gives the formula in equation (4.6.6) as desired. O

We note that one can use Proposition 4.6.2 to derive another formula for the Ehrhart polyno-
mials of parking function polytopes by applying Theorem a/(c) in [18] given by Eur et al. for type
B generalized permutohedra. However, we find that Postnikov’s formula for type A generalized
permutohedra gives a more desirable expression in the sense that when all y; given in equation
(4.6.4) are nonnegative, one easily sees from formula (4.6.6) that all the coefficients of i(PF(u), )
are positive. This positivity of coefficients is, however, not easily seen when expressing i(PF(u), )
using the formula provided by Eur et al.

Next, we apply the volume formula provided by Postnikov in Theorem 9.3 of [35] to compute

the volume of parking function polytopes.

COROLLARY 4.6.5. Suppose that PF(u) is n-dimensional and that PF(u) = y1A] +- -y, AY where
L, ..., Iy, are distinct nonempty subsets of [n] such that yi,,...,yr,, given in equation (4.6.4) are
all nonzero. Then, the volume of PF(u) is given by

ytlll yam
§ : m
(4.6.8) a71' A am! .
aeD(PF(u))
a1t+-+am=n

PROOF. Suppose that PF(u) is n-dimensional. We apply Theorem 9.3 of [35] to P({ys}) =

1Aopur + - YmAoyur, to deduce the volume of PF(u) as

Yty
Vol(PF(u)) = Vol(P({ys}) = > ﬁa !
acD(P({yr})) "

where D(P({ys})) is the set of G-draconian sequences of P({yr}), i.e., a = (a1,...,am) € Z%,
satisfying a1 + -+ + ap = n and ), ya; < |U;e; L;] for all nonempty subsets J C [m]. This is

equivalent to what is given in (4.6.8). O
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