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Abstract

We investigate the face structure and Ehrhart polynomials of several families of polytopes that

have been central to the author’s research journey throughout graduate study, including gener-

alized type A and type B permutohedra, hive polytopes associated with Littlewood–Richardson

coefficients, and parking function polytopes. In Chapter 1, we present essential background on the

foundational concepts that underpin the results of this dissertation. This includes an introduction

to polytopes, their face structures and normal fans, as well as an overview of Ehrhart theory, which

concerns the enumeration of lattice points in rational polytopes. Later in the chapter, we intro-

duce type A generalized and type B permutohedra, and provide existing formulas for their Ehrhart

polynomials. These core concepts and definitions provide the groundwork for the more specialized

constructions and results developed in the chapters that follow.

In Chapter 2, we derive a formula for the Ehrhart polynomials of type B generalized permu-

tohedra, providing a concise alternative to a recent formula obtained by Eur, Fink, Larson, and

Spink from a study of delta-matroids. Our approach builds on the techniques and tools introduced

by Postnikov around two decades ago in his work on type A generalized permutohedra—a rich

family of polytopes deeply connected to many mathematical concepts such as matroids, graphs,

and Weyl groups. Our approach suggests that many combinatorial models originally developed

for type A generalized permutohedra may be used directly or suitably adapted to investigate the

combinatoral properties of their type B analogues. We conclude the chapter by proposing several

questions for future work on how the combinatorial properties of type B generalized permutohedra

could be deduced from those of their type A counterparts.

In Chapter 3, we provide an alternative proof of the conjecture by King, Tollu, and Toumazet

that stretched Littlewood-Richardson coefficient ctνtλ,tµ is a polynomial function in t. Note that

the conjecture was shown to be true by Derksen and Weyman using semi-invariants of quivers.

Later, Rassart used Steinberg’s formula, the hive conditions, and the Kostant partition function

to show a stronger result that cνλ,µ is indeed a polynomial in variables ν, λ, µ provided they lie in

certain polyhedral cones. Motivated by Rassart’s approach, we give a short alternative proof of

the polynomiality of ctνtλ,tµ using Steinberg’s formula and a simple argument about the chamber

complex of the Kostant partition function. The main idea of our proof uses the hive conditions to
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realize ctνtλ,tµ as the number of lattice points in the t-dilation of a rational polytope, which implies,

by Ehrhart theory, that ctνtλ,tµ is a quasi-polynomial. We then employ Steinberg’s formula and

the chamber complex of the Kostant partition function to deduce that ctνtλ,tµ is a polynomial for

sufficiently large t, and hence must be a polynomial for t ≥ 0. Additionally, we discuss a connection

to flow polytopes and outline potential research problems for future work regarding the coefficients

of the polynomial ctνtλ,tµ.

In Chapter 4, we extended the concept of parking function polytopes and investigated their

normal fans, face posets, h-polynomials, and connections to other families of polytopes. This

extension broadens the family to encompass several additional combinatorial types of polytopes.

To describe their face structures and normal fans, we introduced generalized forms of ordered set

partitions, which we refer to as binary partitions and skewed binary partitions. Using properties

of preorder cones, we developed tools to characterize the family of skewed binary partitions that

correspond bijectively to the normal fan–and thus the face poset–of a parking function polytope.

This framework leads to several related findings, including the insight that the combinatorial type of

a parking function polytope depends solely on its defining multiplicity vector, and a characterization

of simple parking function polytopes.

Later in the chapter, we present a formula for the h-polynomials of simple parking function

polytopes in terms of generalized Eulerian polynomials, and further refine it to express the h-

polynomials as sums of products of classical Eulerian polynomials. At the end of the chapter,

we discuss how parking function polytopes can be realized as polymatroids, type B generalized

permutohedra, and type A generalized permutohedra. These connections allow us to derive formulas

for the volume and Ehrhart polynomials of parking function polytopes.
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CHAPTER 1

Introduction

Polytopes play a central role in many branches of mathematics, serving as a unifying framework

across various fields, due to their rich geometric, combinatorial, and algebraic structure. In geom-

etry and topolygy, for example, their boundary complexes often appear as simplicial complexes,

and their structure connects with important topological invariants [22,50]. In algebra, many toric

varieties, an important class of algebraic varieties, can be constructed from polytopes [12,20]. In

linear and integer programming, polytopes are fundamental to the study [33, 39]. The feasible

region of a linear program is a polytope, and understanding its structure is a key to optimization

algorithms.

In this dissertation, we focus on exploring the combinatorial aspects of polytopes by studying

their face structures and the enumeration of their lattice points. The face structure of a polytope

offers a rich source of combinatorial data. In many cases, trying to understand how to describe their

faces naturally leads to connections with other combinatorial objects, such as partially order sets

(posets), graphs, partitions, and matroids, allowing for a translation between geometric intuition

and discrete structures.

On the other hand, counting the number of lattice points contained in rational polytopes gives

rise to Ehrhart theory. The number of lattice points in every integral and some rational polytopes

can be computed using a polynomial called Ehrhart polynomial. Beyond enumeration, Ehrhart

polynomials is also a powerful invariants that encode both geometric and combinatorial information

about the underlying polytope, including its volume, boundary structure, and symmetry. Thus,

given a family of polytopes, it is common to seek a formula for the Ehrhart polynomials of the

family. In some occasion, Ehrhart theory also provides a tool for proving that a combinatorial

function is a polynomial: this can be done by interpreting the function as counting the number

of lattice points in a rational polytope. Taken together, the study of face structures and Ehrhart

polynomials offers deep insights into the interplay between discrete geometry and combinatorics.
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Later in the dissertation, we will investigate the face structures and Ehrhart polynomials of

several families of polytopes that have been central to the author’s research journey through-

out graduate study. These include type A and type B generalized permutohedra, hive polytopes

associated with Littlewood–Richardson coefficients, and parking function polytopes. To lay the

groundwork for these investigations, we begin this chapter by introducing the necessary notation

and preliminary concepts.

1.1. Polyhedra

A polyhedron P in Rn is the solution to a finite set of linear inequalities, that is,

P =
{
x = (x1, . . . , xd) ∈ Rn

∣∣∣ ai · x ≤ bi for i ∈ I
}

(1.1.1)

for some ai ∈ Rn and bi ∈ R, where the dot · is the usual dot product and I is a finite set of indices.

The dimension of P , denoted by dim(P ), is defined to be the dimension of aff(P ) the affine span

of P . We denote by P ◦ the relative interior of the polyhedra P .

A cone σ is a polyhedron defined by a system of homogeneous linear inequalities, i.e. inequalities

of the form a · x ≤ 0. If the only subspace of Rn contained in a cone σ is {0} the trivial subspace,

then σ is said to be a pointed cone. A d-dimensional pointed cone is said to be simplicial if it

can be spanned by d linearly independent rays, i.e., σ is a d-dimensional pointed cone of the form

{λ1v1 + · · ·+ λdvd | λi ∈ R≥0 for all i ∈ [d] and v1, . . . ,vd are linearly independent}.
A polytope P is a bounded polyhedron. By the Minkowski-Weyl Theorem [31, 49], we can

equivalently define a polytope in Rn as the convex hull of finitely many points in Rn, i.e.,

P = conv(x1, . . . ,xk) := {λ1x1 · · ·+ λkxk | λ1 + · · ·+ λk = 1, λi ≥ 0 for all i ∈ [k]}.

A 2-dimensional polytope is also called a polygon. We denote by Vol(P ) the volume of P with

respect to the lattice Zn∩aff(P ) in the affine span of P. The normalized volume of a d-dimensional

polytope is defined to be NVol(P ) := d!Vol(P ).

For two nonempty polytopes P1, P2 in Rn, the Minkowski sum of P1 and P2, denoted by

P1 + P2, is the set {x1 + x2 ∈ Rd |x1 ∈ P1,x2 ∈ P2}. If U and V are the set of vertices of P1

and P2, respectively, then P1 + P2 = conv(u + v | u ∈ U,v ∈ V ). This implies that a Minkowski
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sum of polytopes is a polytope. The Minkowski difference of P2 in P1, denoted by P1 − P2, is the

set {x ∈ Rd |x + P2 ⊆ P1}. Since the vectors that translate P2 to lie in P1 form a polytope, it

follows that a Minkowski difference of two polytopes is also a polytope. It is important to note

that, in general, the Minkowski difference on polytopes is neither a commutative nor an associative

operator. For example, while (P1 +P2)−P2 = P1 always holds, the expression (P1 −P2) +P2 may

not equal P1, or may even be undefined if the difference P1 − P2 is empty. Thus, it is crucial to

clearly specify the order of the sum (and difference). Given nonempty polytopes Pi in Rn and signs

δi ∈ {1,−1} for i ∈ [m], we define the Minkowski sum

m∑
i=1

δiPi := Q1 −Q2 where Q1 :=
∑
δi=1

Pi and Q2 :=
∑

δi=−1

Pi.

1.2. Faces and Normal Fans

A subset F of a polyhedron P ⊂ Rn is said to be a face of P if there exists a half-space H

defined by h ·x ≤ a where h ∈ Rn and a ∈ R, such that P ⊆ H and F = P ∩H. One sees that this

is equivalent to requiring h to satisfy

F = {x ∈ P | h · x ≥ h · y, for all y ∈ P}.

A face of dimension dim(P ) − 1 is called a facet, a face of dimension 1 is called an edge, and a

face of dimension 0 is called a vertex. The empty set is also considered by convention as a face

of P of dimension −1. We note that the (relative) interior of a face of P cannot intersect the

(relative) interior of any other faces of P . In fact, two faces of a polytope can only intersect at

their common face. The partially ordered set F(P ) of all nonempty faces of P ordered by inclusion

is called the face poset of P . When two polytopes have isomorphic face posets, we say that they

are combinatorially equivalent.

A facet-defining inequality of a polyhedron P is an inequality a · x ≤ b such that the set

{x ∈ P | a · x = b} is a facet of P. A minimal inequality description of P is a system of minimal

number of inequalities that defines P .

Let F be a nonempty face of a polytope P ⊂ Rn. The normal cone of P at F is the set

ncone(F, P ) := {c ∈ Rn | c · x ≥ c · y for all x ∈ F and all y ∈ P},
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that is, ncone(F, P ) is the set of all c ∈ Rn such that c · x attains maximum value at F over all

points in P .

The normal fan of P , denoted Σ(P ), is the set of normal cones of P at all of its nonempty

faces. We say that a polytope Q is a deformation of another polytope P if Σ(Q) is a coarsening of

Σ(P ), i.e., every cone in Σ(Q) is a union of cones in Σ(P ). A deformation Q of P can be obtained

by parallel translations of the facets of P . We denote by F(Σ(P )) the poset on Σ(P ) ordered by

inclusion. The following well-known lemma gives a correspondence between the nonempty faces of

polytope and the normal cones at the faces.

Lemma 1.2.1. Let P be a polytope. Then, the map F 7→ ncone(F, P ) for nonempty faces F is a

poset isomorphism from the dual poset of F(P ) to the poset F(Σ(P )).

The next result is a slight variation of [9, Lemma 2.4]. It provides a way to verify normal cones

at vertices of polytope. We omit the proof as it is very similar to the proof of the original result.

Lemma 1.2.2. Suppose that M = {σ1, . . . , σk} is a set of cones satisfying σ1 ∪ · · · ∪ σk = Rn and

that {v1, . . . ,vk} ⊆ Rn is a set of points in which for every i ∈ {1, . . . , k}

c · vi > c · vj for all c ∈ σ◦i and all j ̸= i.

Let P be a polytope defined by P := conv(v1, . . . ,vk). Then the set of vertices of P is {v1, . . . ,vk}.
In addition, we have that σi = ncone(vi, P ) for all i ∈ {1, . . . , k}. As a consequence, the set of

cones in M and their faces form the normal fan Σ(P ) of P .

A d-dimensional polytope is a simplex if it is a convex hull of d+1 affinely independent points.

When every facet of a polytope P is a simplex, we say that P is simplicial. A d-dimensional polytope

is said to be simple if all of its vertices are incident to exactly d edges. If P is full-dimensional,

that is, P is a d-dimensional polytope in Rd, then one can show that being simple is equivalent to

having the normal cone at every vertex being simplicial.

Given a d-dimensional polytope P, we let fi(P ) be the number of its i-dimensional faces. The

f -vector of P is defined to be the vector (f0(P ), . . . , fd(P )), and the f -polynomial of P is given by

fP (t) := f0(P ) + f1(P )t + · · · + fd(P )t
d. If a d-dimensional polytope P is also simple, we define
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its h-polynomial hP (t) := h0(P ) + h1(P )t + · · · + hd(P )t
d and its h-vector (h0(P ), . . . , hd(P )) to

satisfy the relation fP (t) = hP (t+ 1). This is equivalent to having

(1.2.1) fj(P ) =

d∑
i=j

(
i

j

)
hi(P ) for all j = 0, . . . , d.

It is well-known that the h-polynomial hP (t) of a simple polytope P has nonnegative coefficients

[50, Section 8.2] and is palindromic [14,40] as it satisfies the Dehn-Sommerville symmetry. That

is, 0 ≤ hi(P ) = hd−i(P ) for all i = 0, . . . , d. Thus, we only need to know half of the coefficients of

hP (t) to recover the f -vector using equation (1.2.1).

1.3. Ehrhart Theory

A lattice point or an integer point in Rn is a point whose coordinates are integers. A polytope

is said to be rational if all of its vertices have rational coordinates, and is said to be integral if all

of its vertices have integral coordinates. For a polytope P in Rn and a non-negative integer t, the

tth-dilation tP is the set {tx |x ∈ P}. We define

i(P, t) := |Zn ∩ tP |

to be the number of lattice points in the tth-dilation tP.

Recall that a quasi-polynomial is a function f : Z −→ R of the form f(t) = ad(t)t
d+ · · · a1(t)t+

a0(t) where each of ad(t), . . . , a0(t) is a periodic function in t ∈ Z. The period of f(t) is the least

common period of ad(t), . . . , a0(t). Clearly, a quasi-polynomial of period one is a polynomial.

We define the denominator of a rational polytope P to be the least positive integer m such

that the m-dilation mP is an integral polytope. It is easy to see that the denominator of P equals

the least common multiple of the denominators of the coordinates of its vertices (when the rational

coordinates are written in the lowest terms). The behavior of the function i(P, t) is described by

the following theorem due to Ehrhart [17].

Theorem 1.3.1 (Ehrhart Theory). If P is a rational polytope of dimension d, then i(P, t) is a quasi-

polynomial in t of degree d with rational coefficients. Moreover, the period of i(P, t) is a divisor of

the denominator of P. In particular, if P is an integral polytope, then i(P, t) is a polynomial in t.
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The polynomial (resp. quasi-polynomial) i(P, t) is called the Ehrhart polynomial of P (resp.

Ehrhart quasi-polynomial of P ). When P is integral, the Ehrhart polynomial i(P, t) of P encodes

its geometric and combinatorial properties. For instance, the leading coefficient of i(P, t) equals

the volume of P , the second coefficient is a half of its normalized surface area, and the constant

term is one. This means that these three coefficients of any Ehrhart polynomial are positive

numbers. However, other coefficients can be negative and their general simple interpretations are

less understood. When all of the coefficients are positive, we will say that the corresponding

polytope P is Ehrhart positive.

Two integral polytopes P,Q such that P ⊂ Rn and Q ⊂ Rm are said to be integrally equivalent

if there exists an invertible affine transformation from aff(P ) to aff(Q) that preserves the lattice

points in the two polytopes. When two integral polytopes are integrally equivalent, they have the

same face poset, volume, and Ehrhart polynomials.
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CHAPTER 2

Ehrhart Polynomials of Generalized Permutohehra From A to B

In this chapter, we derive a formula for the Ehrhart polynomials for type B generalized permu-

tohedra, providing a concise alternative to the formula obtained recently by Eur, Fink, Larson, and

Spink in [18, Theorem A] as a result from their study of delta-matroids. The approach presented

here builds upon the existing notions and techniques introduced by Postnikov in his work on type

A generalized permutohedra [35], a family of polytopes interconnected with many mathematical

concepts such as matroids, graphs, and Weyl groups. Postnikov employed the Cayley trick to sub-

divide polytopes in such a way that each cell in the subdivision corresponds bijectively to the lattice

points in the polytope. This method allowed Postnikov to enumerate the lattice points in type A

generalized permutohedra in terms of what are called G-draconian sequences. By viewing a type

B generalized permutohdron in each octant as a type A generalized permutohedron, we are able to

apply Postnikov’s approach to express its Ehrhart polynomial in terms of G-draconian sequences.

Chapter Organization. We begin by introducing type A and type B generalize permutohe-

dra, along with a review of existing techniques for enumerating lattice points in these polytopes.

We then develop a method for realizing part of type B generalized permutohedron as a type A

generalize permutohedron. Using this realization, we show how the number of lattice points in

type B generalized permutohedra can be computed in terms of G-draconian sequences. Lastly,

we propose questions for future work on how the combinatorial properties of type B generalized

permutohedra might be deduced from those of their type A counterparts.

2.1. Type A generalized Permutohedra

In this section, we introduce the family of polytopes known as type A generalized permutohedra,

following the notation and framework established by Postnikov in [35] around two decades ago.

For a more comprehensive treatment beyond what is presented here, we refer the reader to [35].

7



Let w = (w1, . . . , wn) ∈ Rn satisfy w1 > · · · > wn ≥ 0. The permutohedron Π(x) is the polytope

defined as the convex hull of all permutations of the coordinates of w. See Figure 2.1 for examples

of permutohedra in R2,R3, and R4.

Figure 2.1. Examples of permutohedra in R2,R3, and R4, respectively

The normal fan of Π(w1, . . . , wn), known as the braid fan and denoted by ΣAn−1 , is the fan

whose maximum cones are the chambers in the arrangement of the hyperplanes

Hi,j = {(c1, . . . , cn) ∈ Rn | ci − cj = 0} for all 1 ≤ i < j ≤ n,

which is known as the braid arrangement.

Definition 2.1.1. A type A generalized permutohedron P is a polytope that is a deformation of

the permutohedron Π(x).

Equivalently, one can defined a type A generalized permutohedron to be a polytope whose

edges are parallel to ei − ej for some 1 ≤ i < j ≤ n, where ei is the standard basis vector in Rn.

Every type A generalized permutohedron P ⊂ Rn lies on a hyperplane x1 + · · ·xn = a for some

real number a. For instance, Π(w1, . . . , wn) lies on the hyperplane x1 + · · · + xn = w1 + · · · + wn.

Thus, the dimension of P is at most n− 1.

Figure 2.2. Examples of type A generalized permutohedra in R3

8



We note that these polytopes are also known simply as generalized permutohedra. We include

“type A” in the name to emphasize the fact that the edge directions of these polytopes are parallel

to some vectors in the type A positive root system {ei − ej | 1 ≤ i < j ≤ n}. Type A generalized

permutohedra form a widely studied family of polytopes that interconnect with various combi-

natorial objects, such as matroids, graphs, and Weyl groups. Many well-known polytopes in the

literature can be realized as type A generalized permutohedra, including zonotopes, associahedra,

cyclohedra, and the Pitman-Stanley polytopes (see [35, Setion 8]).

For a nonempty subset I ⊆ [n], we define ∆I to be the simplex conv(ei | i ∈ I). Post-

nikov showed in [35, Section 6] that every type A generalized permutohedron can be written as a

Minkowski sum (and difference) of simplices. The following lemma states this more precisely.

Lemma 2.1.2. Every type A generalized permutohedron has the form

∑
I⊂[n],I ̸=∅

yI∆I for some yI ∈ R.(2.1.1)

Figure 2.3. Type-A generalized permutohedra as Minkowski sums of simplices

9



Thus, we may write every permutohedron P as P = P ({yI}). Note that if P ({yI}) is integral
(resp. rational), then yI can be chosen to be integers (resp. rational numbers) for all nonempty

subsets I ⊆ [n].

Example 2.1.3. In Firgure 2.3, Three examples of type-A generalized permutohedra in R3 are

written as Minkowski sums of simplies. One sees that

P1 = ∆[3] +∆[3] +∆{1,3}

P2 = ∆{1,2} +∆{2,3} +∆{1,3} +∆{1} +∆{2} +∆{3}

P3 = 2∆[3] +∆{1,3} −∆[3] = ∆[3] +∆{1,3}.

Lemma 2.1.4 (Proposition 6.3 of [35]). Let P ({yI}) be a type A generalized permutohedron where

yI are real numbers. Then, the point (x1, . . . , xn) lies in P ({yI}) if and only if

x1 + · · ·+ xn =
∑
I⊆[n]

yI and
∑
j∈J

xj ≥
∑
I⊆J

yI for all nonempty subset J ⊆ [n].

Given a bipartite graph G on m left vertices {ℓ1, . . . , ℓm} and n right vertices {r1, . . . , rn}, we
denote by N(v) the set of the vertices of G adjacent to the vertex v. We call N(v) the set of

neighbors of v. For i ∈ [m], we let

Ii := {j ∈ [n] | rj ∈ N(ℓi)}(2.1.2)

be the set of indices of the neighors of the left vertex ℓi. Then, one may define PG(y1, . . . , ym) to

be the type A generalized permutohedron y1∆I1 + · · ·+ ym∆Im .

Conversely, given P = y1∆I1 + · · ·+ ym∆Im ⊆ Rn, there is a bipartite graph G on m left and

n right vertices such that PG(y1, . . . , ym) = P. Thus, we may interchangeably write P ({yI}) as

PG(y1, . . . , ym) where G is a corresponding bipartite graph.

Remark 2.1.5. If PG(y1, . . . , ym) ⊆ Rn is (n− 1)-dimensional, then G is a connected graph.

We now aim to describe how Postnikov derives a formula for the Ehrhart polynomials of type

A generalized permutohedra. Thus, we only consider P ({yI}) where yI are integers throughout the

rest of this section.
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Definition 2.1.6. Given a bipartite graph G on m left vertices and n right vertices, we let Ii be

defined as in equation (2.1.2). A sequence (a1, . . . , am) of nonnegative integers is a G-draconian

sequence if it satisfies the following inequalities: for every nonempty subset J ⊆ [m]

∑
i∈J

ai ≤
∣∣ ⋃
i∈J

Ii
∣∣− 1, and a1 + · · · am = n− 1.

The set of all G-draconian sequences is denoted by D(G).

In [35, Theorem 11.3 and Remark 6.4], Postnikov gives the following formula for the number

of lattice points in integral type A generalized permutohedra.

Lemma 2.1.7. Let P := PG(y1, . . . , ym) = y1∆I1 + · · ·+ym∆Im where yi are integers for all i ∈ [m].

Then, the number of lattice points in PG −∆[n] is given by

|(PG −∆[n]) ∩ Zn| =
∑

a∈D(G)

(
y1 + a1 − 1

a1

)
· · ·
(
ym + am − 1

am

)
.(2.1.3)

Note that the Ehrhart polynomial of PG(y1, . . . , ym) is given by replacing PG in formula (2.1.3)

by PG(y1t, . . . , ymt) + ∆[n] := y1t∆I1 + · · ·+ ymt∆Im +∆[n].

The rest of this section is devoted to outlining how Postnikov comes up with formula (2.1.3).

Since every type A generalized permutohedron is a deformation of Π(wn, . . . , w1) for some w1 >

· · · > wn, it suffices by [35, Remark 6.4] to only show that the formula holds for PG(y1, . . . , ym) =

y1∆I1 + · · · + ym∆Im where yi are positive integers for all i ∈ [m]. Because every simplex y∆I

where y is a positive integer can be written as the Minkowski sum of y copies of the simplex ∆I ,

Postnikov first shows that the formula holds for PG(1, . . . , 1) = ∆I1 + · · ·+∆Im .

Example 2.1.8. Let G1, G2, G3, G4 be bipartite graphs shown in Figure 2.4. Then, we can write

the type-A generalized permutoheda P1, P2, and P3 in Figure 2.3 as

P1 = PG1(1, 1, 1)

P2 = PG2(1, 1, 1, 1, 1, 1)

P3 = PG3(2, 1,−1) = P1 −∆[3] = PG4(1, 1, 1,−1).

11



Figure 2.4. Bipartite graphs associated to polytopes in Figure 2.3

Postnikov uses the Cayley trick to obtain a polyhedral subdivision of PG(1, . . . , 1) into fine

mixed cells and use it as a key to counting lattice points in PG(1, . . . , 1). We refer the reader

to [35, Section ] for more details regarding the fine mixed subdivision of PG(1, . . . , 1).

Recall that a polyhedral subdivision of a polytope P is a subdivision of P into a union of cells

of the same dimension as dim(P ).

Definition 2.1.9. Let PG(1, . . . , 1) = ∆I1 + · · ·+∆Im . Then, a fine mix cell of PG is a polytope

Π of the form ∆J1 + · · · + ∆Jm where Ji ⊆ Ii for all i ∈ [m] and satisfies dim(∆J1) + · · · +
dim(∆Jm) = dim(PG(1, . . . , 1)). A fine mixed subdivision of PG(1, . . . , 1) is a polyhedral subdivision

of PG(1, . . . , 1) into fine mixed cells.

Example 2.1.10. Let P := PG(1, 1, 1) be the polytope shown in Figure 2.5 (also shown as P1 in

Figure 2.3). A fine mixed subdivision of P is drawn inside of P . One sees that there are five fine

mixed cells, labeled as Π1, . . . ,Π5 in the subdivision.

Figure 2.5. Fine mixed cells in a fine mixed subdivision of PG(1, 1, 1) and their
corresponding spanning trees

12



A lattice point in a fine mixed cell of PG(1, . . . , 1) has a simple form in the following sense.

Lemma 2.1.11. Let H be a bipartite graph on m left vertices and n right vertices. If H is a forest,

then every lattice point in the polytope Π := PH(1, . . . , 1) is a vertex of Π. Moreover, every lattice

point in Π has the form ej1 + · · ·+ ejm for some ji such that rji ∈ N(ℓi) for all i ∈ [m].

Remark 2.1.12. In other words, Lemma 2.1.11 states that every lattice point in Π corresponds to

a transversal {rj1 , . . . , rjm} of the sequence (N(ℓ1), . . . , N(ℓm)) the neighbors of the left vertices,

i.e., rji ∈ N(ℓi) for all i ∈ [m].

Definition 2.1.13. Given be a bipartite graph G on m left vertices {ℓ1, . . . , ℓ2} and n right vertices

{r1, . . . , rn}, we define the left degree LD(G) and the right degree RD(G) of G, respectively, as

LD(G) := (deg(ℓ1)− 1, . . . ,deg(ℓm)− 1) and RD(G) := (deg(r1)− 1, . . . ,deg(rn)− 1).

Fine mixed cells in a fine mixed subdivision PG(1, . . . , 1) and G-draconian sequences are shown

in [35, Lemma 12.6, Lemma 12.8, and Theorem 12.9] to correspond to spanning forests of G.

Lemma 2.1.14. Suppose that C = {Π1, . . . ,Πp} is the set of fine mixed cells in a subdivision of

PG(1, . . . , 1). Then, there exists a sequence of bipartite subgraphs H1, . . . ,Hp of G such that Hi are

spanning forests of G satisfying all of the following properties.

(1) If PG(1, . . . , 1) is (n− 1)−dimensional, then H1, . . . ,Hp are spanning trees of G.

(2) For all i ∈ [p], we have PHi(1, . . . , 1) = Πi

(3) For i, j ∈ [p] such that i ̸= j, we have LD(Hi) ̸= LD(Hj) and RD(Hi) ̸= RD(Hj)

(4) (PG(1, . . . , 1)−∆[n])∩Zn = {RD(H1), . . . , RD(Hp)} and D(G) = {LD(H1), . . . , LD(Hp)}.

Let P := PG(1, 1, 1) be the polytope shown in Figure 2.5. The fine mixed cells in the given

subdivision of P , labeled as Π1, . . . ,Π5, and their corresponding spanning trees H1, . . . ,H5 of G

are also shown in the figure.

Example 2.1.15. Let P := PG(1, 1, 1) be the polytope in Figure 2.5. Since P −∆[n] = P3 where

P3 is the polytope shown in Figure 2.3, one has

(PG(1, . . . , 1)−∆[n]) ∩ Zn = {(2, 0, 0), (1, 0, 1), (1, 1, 0), (0, 0, 2), (0, 1, 1)}.
13



One can also show that

D(G) = {(2, 0, 0), (1, 0, 1), (0, 1, 1), (1, 1, 0), (0, 2, 0)}.

Moreover, one sees that

(PG(1, . . . , 1)−∆[n]) ∩ Zn = {RD(H1), RD(H2), RD(H3), RD(H4), RD(H5)}

D(G) = {LD(H1), LD(H2), LD(H3), LD(H4), LD(H5)}.

We obtain the following result as an immediate consequence of Lemma 2.1.14.

Corollary 2.1.16. Let PG := PG(1, . . . , 1). Suppose that C is the set of fine mixed cells in a mixed

subdivision of PG. Then,

|(PG −∆[n]) ∩ Zn| = |C| = |D(G)|.

Corollary 2.1.16 implies that the number of lattice points in PG −∆[n] is given by

|(PG −∆[n]) ∩ Zn| =
∑

a∈D(G)

1 =
∑

a∈D(G)

(
1 + a1 − 1

a1

)
· · ·
(
1 + am − 1

am

)
(2.1.4)

Postnikov obtains formula (2.1.3) by expressing PG(y1, . . . , ym) as

PG′(1, . . . , 1) = ∆0
I1 + · · ·+∆0

I1︸ ︷︷ ︸
y1 terms

+ · · ·+∆0
Im + · · ·+∆0

Im︸ ︷︷ ︸
ym terms

for an appropriate G′, and then applying a simple binomial identity to the right-hand side of

equation (2.1.4).

2.2. Type B generalized Permutohedra

Recall that a type A generalized permutohedron can be defined as a polytope whose edges

are parallel to some vectors in a type A positive root system. It is then natural to generalize this

concept to root systems of other types.

Definition 2.2.1. A type B generalized permutohedron in Rn is a polytope whose edges are parallel

to ei + ej , ei − ej , or ei for some i, j ∈ [n] where ei denotes the standard basis vector in Rn.

14



Figure 2.6. Examples of type B generalized permutohedra in R2 and R3

The name “type B” comes from the fact that the edge directions of these polytopes are parallel

to some vectors in the type B positive root system {e1, . . . , en, ei ± ej | 1 ≤ i ≤ j ≤ n}. We note

that these polytopes are also known as generalized signed permtohedra (see [18]). By definition,

every type A generalized permutohedron is a type B generalized permutohedron.

One may equivalently define a type B generalized permutohedron in Rn as a polytope in which

its normal fan coarsens the fan whose full dimensional cones are defined by the chambers of the

arrangement of hyperplanes
H+

i,j := {(c1, . . . , cn) ∈ Rn | ci + cj = 0} for all i ̸= j ∈ [n],

H−
i,j := {(c1, . . . , cn) ∈ Rn | ci − cj = 0} for all i ̸= j ∈ [n], and

Hi := {(c1, . . . , cn) ∈ Rn | ci = 0} for all i ∈ [n].

(2.2.1)

The arrangement of hyperplanes in equation (2.2.1) is called the type B Coxeter arrangement. The

fan whose full dimensional cones are defined by the chambers of the type B Coxeter arrangement

is known as the Bn permutohedral fan and is denoted by ΣBn . Note that each chamber of the

arrangement in (2.2.1) is a cone of the form

{(c1, . . . , cn) ∈ Rn | 0 ≤ (−1)k1ci1 ≤ · · · ≤ (−1)kncin}(2.2.2)

where {i1, . . . , in} = [n], and kj ∈ {0, 1} for all j ∈ [n]. Thus, there are n!2n of such chambers. We

refer the reader to [3] and [18] for more details regarding type B generalized permutohedra beyond

what are presented here.

Let [n] := {1, . . . , n} and [n, n] := [n]⊔[n] = {1, . . . , n, 1, . . . , n}. For i ∈ [n], we define ei := −ei

where ei is a standard basis vector of Rn.
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Definition 2.2.2. The set AdS of admissible subsets of [n, n] is defined to be

AdS := {S ⊂ [n, n] |S ̸= ∅ and {i, i} ̸⊂ S for all i} and AdSn := {S ∈ AdS | |S| = n}.

Readers may view each T ∈ AdSn as an octant of Rn. For instance, T = {1, . . . , n} represents

Rn
≥0 the first octant, while {1, . . . , n} represents Rn

≤0 the opposite octant. More precisely, we have

the following definition.

Definition 2.2.3. Let T ∈ AdSn. We define RT := {x ∈ Rn | x · ei ≥ 0 for all i ∈ T} to be the

associated octant to T of Rn.

Definition 2.2.4. Let S ∈ AdS and T ∈ AdSn. We denote by

(1) ∆0
S the simplex conv(0, ei | i ∈ S).

(2) ∇S the simplex conv
(∑

i∈S ei,
∑

i∈J ei | J ⊂ S and |J | = |S| − 1
)
.

(3) □T the unit cube
∑

i∈T ∆0
{i} in the octant RT .

Bastidas showed from a study of Tits algebras in [3] that every type B generalized permutohe-

dron can be written as Minkowski sum (and difference) of the simplices ∆0
S . This result was also

established later in [18] by Eur, Fink, Larson, and Spink from a study of delta-matroids.

Lemma 2.2.5. Every type B generalized permutohedron in Rn can be expressed as

∑
S∈AdS

yS∆
0
S for some yS ∈ R.

One sees that Lemma 2.2.5 generalizes to type B the type A result by Postnikov in Lemma

2.1.2. Thus, one may write every type B generalized permutohedron as P ({yS}). If P ({yS}) is

integral (resp. rational), then yS may be chosen to be integers (resp. rational numbers) for all

S ∈ AdS.

Example 2.2.6. In Figure 2.7, type-B generalized permutohedra P1 and P2 are written as

P1 = ∆0
[2] +∆0

[2] +∆0
{1,2} +∆0

{2}

P2 = P1 −□[2] = 2∆0
[2] +∆0

{1,2} +∆0
{2} −∆0

{1} −∆0
{2}.
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Figure 2.7. Type-B generalized permutohedra as Minkowski sums of simplices

Definition 2.2.7. Let S1, . . . , Sn be admissible subsets of [n, n]. The signed transversal of (S1, . . . , Sn)

is an admissible subset T ∈ AdSn such that there exists a bijection g : [n] −→ T satisfying g(i) ∈ Si

for all i ∈ [n].

In [18], Eur, Fink, Larson, and Spink give formulas for the volume and the number of lattice

points of type B generalized permutohedra in terms of sign transversals as follows.

Lemma 2.2.8. Suppose that P ({yS}) =
∑

S∈AdS yS∆
0
S where yS are integers for all S ∈ AdS.

(1) The normalized volume of P is given by

NVol(P ({yS})) =
∑

(S1,...,Sn)

|sign transversals of (S1, . . . , Sn)| · yS1 · · · ySn .(2.2.3)

(2) The number of lattice point in P ({yS})−□[n] is given by

|(P ({yS})−□[n]) ∩ Zn| =
∑

(S1,...,Sn)

|sign transversals of (S1, . . . , Sn)| ·Ψ(yS1 · · · ySn)(2.2.4)

where Ψ is the linear operator on the set of polynomials that maps each monomial xa11 · · ·xamm
to a1!···am!

(a1+···+am)!

(
x1

a1

)
· · ·
(
xm

am

)
.

Note that one can compute the Ehrhart polynomial of the integral polytope P ({yS}) by plug-

ging the polytope P ({tyS}) + ∆0
{1} + · · ·+∆0

{n} into formula (2.2.4) in Lemma 2.2.8.
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The rest of this section is devoted to establishing basic properties of type B generalized per-

mutohedra necessarily for proving our results in the following two sections.

Definition 2.2.9. Let P = y1∆
0
S1

+ · · ·+ym∆0
Sm

where yi are positive real numbers and Si ∈ AdS

for all i ∈ [m]. For T ∈ AdSn, we define

PT :=

m∑
i=1

yi∆
0
Si∩T .

We highlight some basic properties of points in the simplex ∆0
S in the next two remarks.

Remark 2.2.10. Since V = {ej | j ∈ S} ∪ {0} is the set of all vertices of ∆0
S , we can write every

point in ∆0
S as a convex combination of the points in V. Thus, every point x in ∆0

S has the form

(2.2.5) x =
∑
j∈S

λjej where
∑
j∈S

λj ≤ 1 and 0 ≤ λj for all j ∈ S.

Remark 2.2.11. For S, T ∈ AdS, let x ∈ ∆0
S . It is easy to see from equation (2.2.5) that we can

write x = a + b for some a ∈ ∆0
S∩T and b ∈ ∆0

S\T . Thus, if y ∈ P = y1∆
0
S1

+ · · · + ym∆0
Sm

, then

we have y = u+ v where u ∈ y1∆
0
S1∩T + · · ·+ ym∆0

Sm∩T and v ∈ y1∆
0
S1\T + · · ·+ ym∆0

Sm\T .

Lemma 2.2.12. Let P = y1∆
0
S1

+ · · ·+ym∆0
Sm

where yi are positive real numbers and Si ∈ AdS for

all i ∈ [m]. If the point (x1, . . . , xn) lies in P , then, for every (r1, . . . , rn) ∈ Rn such that 0 ≤ rk ≤ 1

for all k ∈ [n], the point (r1x1, . . . , rnxn) also lies in P .

Proof. We first show that this property holds for the polytope Pi = yi∆
0
Si

for all i ∈ [m]. By

Remark 2.2.10, every point x = (x1, . . . , xn) in Pi has the form

x =
∑
j∈Si

λjyiej where
∑
j∈Si

λj ≤ 1 and 0 ≤ λj for all j ∈ Si.

We note that for k ∈ [n], the coordinate xk of x is zero if neither k nor k lies in Si. Let r =

(r1, . . . , rn) ∈ Rn satisfies 0 ≤ rk ≤ 1 for all k ∈ [k] and let λ′j = rkλj if j ∈ {k, k}, for all j ∈ Si.

Then,
∑

j∈Si
λ′j ≤ 1 and 0 ≤ λ′j for all j ∈ Si. Thus, the point

∑
j∈Si

λ′jyjej = (r1x1, . . . , rnxn) = r · x lies in Pi.
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Therefore, Pi has the desired property for all i ∈ [m].

Now consider x = (x1, . . . , xn) ∈ P. Since P = P1 + · · · + Pm, we have x = z1 + · · · + zm for

some zi ∈ Pi, i ∈ [m]. Since, for every r = (r1, . . . , rn) ∈ Rn such that 0 ≤ rk ≤ 1 for all k ∈ [n]

the points r · zi lie in Pi for all i ∈ [m], it follows that (r1x1, . . . , rnxn) = r · x = r · z1 + · · ·+ r · zm
also lies in P. □

Lemma 2.2.13. Let P = y1∆
0
S1

+ · · · + ym∆0
Sm

where yi are positive real numbers and Si ∈ AdS

for all i ∈ [m]. Then, for T ∈ AdSn, we have PT = P ∩ Rn
T . That is, PT equals the polytope P

intersecting with the octant associated to T.

Proof. Clearly, PT ⊆ P . Since yi∆
0
Si∩T ⊂ Rn

T for all i, it follows that PT ⊆ Rn
T . Thus,

PT ⊆ P ∩ Rn
T .

Next, we show that P ∩ Rn
T ⊆ PT . Due to symmetry, it suffices to only show this for T =

{1, . . . , n}. That is, we only need to consider P ∩ Rn
T = P ∩ Rn

≥0. Let x = (x1, . . . , xn) ∈ P ∩ Rn
≥0.

Then, by Remark 2.2.11, x = a+ b where a = (a1, . . . , an) ∈ PT and b = (b1, . . . , bn) ∈ y1∆
0
S1\T +

· · · + ym∆0
Sm\T = PT c where T c := [n, n]\T = {1, . . . , n}. This implies ai ≥ 0 and bi ≤ 0 for all

i ∈ [n]. Since x = a + b ∈ Rn
≥0, it follows that 0 ≤ xi = ai + bi ≤ ai for all i ∈ [n]. Thus,

x = (r1a1, . . . , rnan) for some (r1, . . . , rn) with 0 ≤ ri ≤ 1 for all i ∈ [n]. Therefore, by Lemma

2.2.12, x ∈ PT . This shows P ∩ Rn
T ⊆ PT as desired. □

Example 2.2.14. Let P = ∆0
[2] + ∆0

[2] + ∆0
{1,2} + ∆0

{2} ⊂ R2 be the generalized permutohedron

shown in Figure 2.8 (also shown as P1 in Figure 2.7). Then, PT for T ∈ AdS2 are also depicted in

the same figure. One has that

P{1,2} := ∆0
[2] +∆0

[2] +∆0
{2}

P{1,2} = ∆0
{1} +∆0

{1} +∆0
{2}

P{1,2} = ∆0
{2} +∆0

{2} +∆0
{1,2}

P{1,2} = ∆0
{1} +∆0

{2}.
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Figure 2.8. P and PT , the lattice points in P −□[n] and PT −□[n] (the orange
points), and fine mixed subdivisions of PT for T ∈ AdS2

2.3. Thinking of B from A

Definition 2.3.1. For i ∈ [n], we define |i| := |i| = i. Additionally, for S ∈ AdS, we define

||S|| := {|i| | i ∈ S}.

For T ∈ AdSn, we let φT : R[0,n] −→ Rn be the projection from R[0,n] onto Rn defined by

φT (x0, x1, . . . , xn) =
∑
i∈T

xei.(2.3.1)

That is, φT is the projection that projects the first octant of R[0,n] onto the octant RT of Rn.

It is easy to see that, for every S ∈ AdS, the projection φT is a bijection from the simplex

∆{0}∪||S|| ⊂ R[0,n] to the simplex ∆0
S ⊂ Rn.

Lemma 2.3.2. Let T ∈ AdSn and P = y1∆
0
S1

+ · · · + ym∆0
Sm

where yi are positive real numbers

and Si ∈ AdS for all i. Suppose that QT is the type A generalized permutohedron in R[0,n] defined

by QT = y1∆I1 + · · ·+ ym∆Im where Ii := {0}∪ ||Si ∩T ||. Then, the projection φ defined in (2.3.1)

is a bijection from PT to QT . Moreover, if P is integral, then PT is integrally equivalent to QT .
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Proof. By Lemma 2.1.4, the type A generalized permutohedron QT can be equivalently ex-

pressed as the set of all (x0, x1, . . . , xn) ∈ R[0,n]
≥0 satisfying

x0 + x1 + · · ·+ xn = y1 + · · ·+ yn and
∑
i∈I

xi ≤

 n∑
j=1

yj

−

 ∑
Ii⊆[0,n]\I

yi


for all nonempty proper subset I of [n]

Let φ : R[0,n] −→ Rn be the projection from R[0,n] onto Rn defined by φ(x0, x1, . . . , xn) =

(x1, . . . , xn). Then, the type B generalized permutohedron

RT := y1∆
0
||S1∩T || + · · ·+ ym∆0

||Sm∩T || ⊆ Rn
≥0

is given by the set of all (x1, . . . , xn) ∈ Rn
≥0 such that

x1 + · · ·+ xn ≤ n and
∑
i∈I

xi ≤

 n∑
j=1

yj

−

 ∑
Ii⊆[0,n]\I

yi


for all nonempty proper subset I of [n]. Hence, φ is a bijection from QT onto RT . Morevoer, we

see that if PT is integral (y1, . . . , ym are integers), then QT is integral and is integrally equivalent

to RT .

Let ϕT : Rn −→ Rn be the bijection on Rn defined by ϕT (x1, . . . , xn) =
∑

i∈T xiei. Then, ϕT

is the map that rotates the first octant of Rn to the octant RT . Hence, ϕT is a bijection from RT

to PT . Since φT = ϕT ◦ φ, it follows that φT is a bijection from QT onto PT . Furthermore, when

PT is integral, then QT is integrally equivalent to PT . □

Informally, Lemma 2.3.2 states that we can view the polytope obtained by intersecting P with

the octant RT as a type A generalized permutohedron. This is where we can apply some of the

techniques and tools introduced by Postnikov in [35] to type B generalized permutohedra. This

realization, in particular, allows us to associate a bipartite graph to PT as follows.

Definition 2.3.3. With the same assumptions as given in Lemma 2.3.2, we define the corresponding

bipartite graph G(PT ) of PT to be the bipartite graph G(QT ) of the type A permutohedron QT .

Example 2.3.4. Let P = ∆0
[2]+∆0

[2]+∆0
{1,2}+∆0

{2} ⊂ R2 be the type-B generalized permutohedron

shown in Figure 2.8. By setting T = {1, 2} ∈ AdS2, one sees from Figure 2.9 that P{1,2} is integrally
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equivalent to the type-A generalized permutohedron Q{1,2} ⊂ R[0,2] (also shown as P in Figure

2.5) through the projection φ{1,2}(x0, x1, x2) = (x1, x2). Moreover, the associated bipartite graph

G(P{1,2}) of P{1,2} (shown in Figure 2.9) is the graph G(Q{1,2}) = G where G is the bipartite graph

shown in Figure 2.5, except that the right vertices r1, r2, r3 are relabeled respectively as r0, r1, r2.

The fine mixed cells in P{1,2} are also obtained by projecting the fine mixed cells in Q{1,2}.

Figure 2.9. P{1,2} ⊂ R2 and Q{1,2} ⊂ R[0,2] are integrally equivalent

It is important to note that when we view PT as a type A generalized permutohedron, we

always set e0 = 0.

2.4. Counting Lattice Points from A to B

In similar fashion to how Postnikov obtains the Ehrhart polynomial of integral generalized

permutohedra, we only need to derive the Ehrhart polynomial of integral type B generalized per-

mutohedra P =
∑

S∈AdS yS∆
0
S that holds for nonnegative integers yS , for all S ∈ AdS. Once we

get a formula that works for all nonnegative integers yS , it will extend to hold for all integers yS .

Since every y∆0
S can be written as Minkowski sum of y copies of ∆0

S , we deduce the problem to

finding a formula for the number of lattice points in P = ∆0
S1

+ · · ·+∆0
Sm

where Si ∈ AdS for all

i ∈ [m].

Definition 2.4.1. Let P = y1∆
0
S1

+ · · · + ym∆0
Sm

where yi are nonzero integers and Si ∈ AdS

for all i ∈ [m]. For a given admissible set T ∈ AdSn, we define a G-draconian sequence of PT to

be a sequence (a1, . . . , am) of nonnegative integers satisfying the following inequalities: for every
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nonempty subset I ⊆ {1, . . . ,m}

∑
i∈I

ai ≤
∣∣⋃
i∈I

Si ∩ T
∣∣, and a1 + · · · am = n.

We denote by D(PT ) the set of all G-draconian sequences, and denote by D(PT ) ∩□[m] the set of

G-draconian sequences in which ai ≤ 1 for all i ∈ [m].

One observes that the definition of G-draconian sequence in Definition 2.4.1 is exactly the

definition of G(PT )-draconian sequence in Definiton 2.1.6. One also sees that that if PT is not

n-dimensional, G(PT ) must have a right vertice of degree zero. Consequently, a1 + · · · + am ≤∣∣⋃
i∈[m] Si ∩ T

∣∣ < n. Thus, D(PT ) = ∅ provided PT is not n-dimensional.

Recall that Postnikov utilized the Cayley trick to subdivide polytopes into fine mixed cells to

show that the lattice points in certain polytopes are in one-to-one correspondence with their asso-

ciated G-draconian sequences, which consequently led to formula (2.1.3) in Lemma 2.1.7. Adapting

Postnikov’s approach, we found a similar correspondence which gives the next theorem as a result.

Theorem 2.4.2 (Thawinrak). Suppose that P = ∆0
S1

+ · · ·+∆0
Sm

where Si ∈ AdS for all i ∈ [m].

Then, the number of lattice points in the polytope P −□[n] equals

|(P −□[n]) ∩ Zn| =
∑

T∈AdSn

|D(PT ) ∩□[m]|.(2.4.1)

The rest of this section is devoted to proving this theorem and its consequences.

Definition 2.4.3. Let T ∈ AdSn, and P = ∆0
S1

+ · · · + ∆0
Sm

where Si ∈ AdS for all i be a

type B generalized permutohedron. Let Π ∈ C be a fine mixed cell of PT , and H be the bipartite

subgraph of G(PT ) corresponding to Π, i.e., Π is integrally equivalent to the type A generalized

permutohedron PH(1, . . . , 1) ⊂ R[0,n]. Suppose that Π = ∆I1 + · · · + ∆Im where Ii ⊆ {0} ∪ Si for
all i. Let K = {Ii | i ∈ [m] and |Ii| ≥ 2}. Then, we define Π̂ to be the polytope

Π̂ :=
∑
J∈K

∆K

obtained by removing the translating factor from Π.We denote by Ĥ the induced bipartite subgraph

of H corresponding to Π̂.
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We highlight some of the basic properties of Π̂ in the following two Remarks.

Remark 2.4.4. Let K ′ = {Ii | i ∈ [m] and |Ii| = 1}. The fine mixed cell Π is the translation x+Π̂

of Π̂ where x is the integral vector (translating factor)

x =
∑
J∈K′

∆J lying in the octant RT .

Remark 2.4.5. If we assume further that PT is n-dimensional (G(PT ) is connected), then H is a

spanning tree of G(PT ) with m left and n + 1 right vertices. Consequently, we have that Ĥ is a

tree and a bipartite graph with n + 1 right vertices in which every left vertex has degree at least

two. Moreover, Ĥ has at most n left vertices. The tree Ĥ has exactly n left vertices if and only if

every left vertex of Ĥ has degree two.

Unless stated otherwise, we assume throughout the rest of this section that P = ∆0
S1
+· · ·+∆0

Sm

where Si ∈ AdS for all i. In addition, for T ∈ AdSn, we denote by G(PT ) the corresponding

bipartite graph of PT with m left vertices {ℓ1, . . . , ℓm} and n+ 1 right vertices {r0, r1, . . . , rn}.

Lemma 2.4.6. Suppose that PT is n-dimensional. Let C be the set of fine mixed cells in a fine mixed

subdivision of PT . If Π is a fine mixed cell in C, then Π and y + Π have no common interior for

all vectors y ∈ Zn\{0}.

Proof. Suppose that Π ∈ C is a fine mixed cell of the form Π = ∆I1 + · · · + ∆Im where

Ii ⊆ {0} ∪ Si for all i. Let K = {Ii | i ∈ [m] and |Ii| ≥ 2}. Then,

Π̂ :=
∑
J∈K

∆J .

For each J ∈ K, let us write J = {j1, . . . , j|J | | |ji| < |ji+1|, for all 1 ≤ i < |J |}, and define the

corresponding set of intervals
(
J
2

)∗
:= {[ej1 , ej2 ], [0, ej3 − ej1 ], . . . , [0, ej|J| − ej1 ] ⊂ Rn} where we

denote by [x,y] the line segment connecting x and y (the interval from x to y), and set e0 = 0 ∈ Rn.

In addition, we define

BK :=
⋃
J∈K

(
J

2

)∗
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to be the set of intervals in all
(
J
2

)∗
for J ∈ K. It is easy to see that every vertex of the simplex

∆J lies in the zonotope

3J :=
∑

∆∈(J2)
∗

∆

spanned by the intervals in
(
J
2

)∗
. This implies that ∆J ⊆ 3J for all J ∈ K. Thus, Π̂ lies in the

zonotope

3K :=
∑

∆∈BK

∆ =
∑
J∈K

3J .

Since PT is n-dimensional, by Remark 2.4.5, Ĥ is a tree and a bipartite graph with n left and n+1

right vertices. Because |
(
J
2

)∗| = |J | − 1, it follows that

∑
J∈K

∣∣∣(J
2

)∗∣∣∣ = n.

Moreover, one sees that the set B contains translations of integral vectors that form an integral

basis for Zn. Thus, the polytope 3 is the parallelepiped in Rn of volume one spanned by the

intervals ∆ ∈ B. Hence, 3 and y +3 have no common interior for all nonzero integral vectors y.

Since Π̂ ⊂ 3 and z+Π̂ ⊂ z+3 for all z ∈ Rn, it follows that Π has no common interior with y+Π

for all vectors y ∈ Zn\{0}. □

A zonotope in Rn is a polytope defined as a Minkowski sum of line segments (intervals) in Rn.

This means that a translation of a zonotope is also a zonotope. The next lemma characterize fine

mixed cells that are zonotopes.

Lemma 2.4.7. Suppose that PT is n-dimensional. Let C be the set of fine mixed cells in a fine

mixed subdivision of PT . Let Π be a fine mixed cell in C and x ∈ Zn be the integral vector satisfying

x+ Π̂ = Π. Then, the following statements are equivalent.

(1) The fine mixed cell Π satisfies ∇T ⊆ Π̂.

(2) x is the unique integral vector in (PT −□T ) ∩ Zn such that x+∇T ⊆ Π.

(3) The fine mixed cell Π is a zonotope.

To prove this lemma, we need the following result regarding the existence of a perfect matching

of a certain bipartite graph.
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Lemma 2.4.8. Let n be a positive integer. Suppose that B is a bipartite graph with n left vertices

and n right vertices satisfying the following two conditions.

(1) Every left and right vertex of B has degree at least one.

(2) Every left and right vertex of B is adjacent to at most one vertex of degree one.

Then, there is a perfect matching in B.

Proof. We will proceed by induction on n ≥ 1. When n = 1, there is a perfect matching in

B, since the left and right vertices are adjacent. This establishes the base case for induction. Now

suppose that the statement is true for some n ≥ 1. Consider a bipartite graph B with n + 1 left

vertices {ℓ1, . . . , ℓn+1} and n+1 right vertices {r1, . . . , rn+1} satisfying the two conditions. Without

loss of generality, we may assume that rn+1 is a right vertex of the least degree in B, and that the

left vertex ℓn+1 is adjacent to rn+1 and has the least degree among other left vertices adjacent to

rn+1.

Let B̂ be the induced bipartite subgraph of B obtained by removing the vertices ℓn+1 and rn+1

of B. Then, it is easy to see that B̂ is a bipartite graph on n left and n right vertices satisfying the

two conditions. Thus, by the induction hypothesis, there is a perfect matching in B̂.

By matching ℓn+1 with rn+1 and matching other vertices of B using a perfect matching in B̂,

we obtain a perfect matching in B. Therefore, by induction, the statement holds for all n ≥ 1. □

Proof of Lemma 2.4.7. Due to symmetry, we may assume for simplicity of notation without

loss of generality that T = [n]. Let x ∈ Zn
≥0 be the integral vector satisfying x+ Π̂ = Π.

Firstly, we show that (1) implies (2). Suppose that ∇[n] ⊆ Π̂. Then, x+∇[n] ⊂ x+ Π̂ = Π. In

particular, we have x+ e1 + · · ·+ en ∈ Π ⊆ P[n]. By Lemma 2.2.12, we must have x+□[n] ⊆ P[n].

Thus, x ∈ (P[n]−□[n])∩Zn. Hence, x ∈ (P[n]−□[n])∩Zn is an integral vector such that x+∇[n] ⊂ Π.

Suppose that y ∈ (P[n] − □[n]) ∩ Zn satisfies y + ∇[n] ⊂ Π. Since Π = x + Π̂, we have

∇[n] ⊆ x− y + Π̂. This implies that Π̂ has common interior with x− y + Π̂. By Lemma 2.4.6, we

must have x = y. This shows the uniqueness of the integral vector x ∈ (P[n] −□[n])∩Zn such that

x+∇[n] ⊂ Π. Thus, (1) implies (2).

Next, we show that (2) implies (3). Suppose that x ∈ (P[n] − □[n]) ∩ Zn and x + ∇[n] ⊆ Π.

We claim that Π is a zonotope. Assume for the sake of contradiction that Π is not a zonotope.
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Then, Π̂ is also not a zonotope. This implies that Ĥ is a bipartite graph that is also a tree with

at least one left vertex has degree at least three. Together with Remark 2.4.5, we conclude that

Ĥ must have less than n left vertices. Thus, the sequence of right vertices (r1, . . . , rn) cannot be a

transversal of the neighbors of the left vertices of Ĥ. Thus, By Lemma 2.1.11 and Remark 2.1.12,

e1 + · · · + en ̸∈ Π̂. In particular, we must have ∇[n] ̸⊆ Π̂. Therefore, x + ∇[n] ̸⊂ x + Π̂ = Π, a

contradiction. This shows that (2) implies (3).

Lastly, we show that (3) implies (1). Suppose that Π is a zonotope. Then, Π̂ is also a zonotope.

Thus, Ĥ is a bipartite graph that is also a tree with n+ 1 right vertices in which every left vertex

has degree two. Consequently, Ĥ must have exactly n left vertices. To see that ∇[n] ⊆ Π̂, it suffices

to show e1 + · · · + en ∈ Ĥ and e1 + · · · ei−1 + ei+1 + · · · + en ∈ Π̂ for all i ∈ [n]. For every

i ∈ {0, 1, . . . , , n}, let Ĥ(i) be the induced bipartite subgraph of Ĥ obtained by removing the right

vertex ri of Ĥ. Then, Ĥ(i) is a bipartite graph on n left and n right vertices satisfying the two

conditions in Lemma 2.4.8. Thus, there is a matching in Ĥ(i) for all i ∈ {0, 1, . . . , , n}. By Remark

2.1.12, a matching of Ĥ(0) implies that e1 + · · · + en ∈ Ĥ while a matching of Ĥ(i) implies that

e1 + · · · ei−1 + ei+1 + · · ·+ en ∈ Π̂ for all i ∈ [n]. This completes the proof. □

The next lemma gives an analog result to Corollary 2.1.16.

Lemma 2.4.9. Suppose that PT is n-dimensional. Let C∗ = {Π1, . . . ,Πq} be the subset of C consist-

ing of fine mixed cells that are zonotopes. Then,

|D(PT ) ∩□[m]| = |C∗| = |(PT −□T ) ∩ Zn|.

Proof. We first show that |D(PT )∩□[m]| = |C∗|. Since PT is n-dimensional, its corresponding

bipartite graph G(PT ) is connected. Moreover, because all fine mixed cells in C∗ are zonotopes,

each cell Πi ∈ C∗ corresponds to a spanning tree of G(PT ) whose left vertices have degree at most

two. By [35, Theorem 12.2], LD(Π1), . . . , LD(Πq) are distinct elements of D(PT ) ∩ □[m]. Thus,

|D(PT ) ∩ □[m] ≥ |C∗|. Moreover, for every a ∈ D(PT ) ∩ □[m], there exists a fine mixed cell Π ∈ C
such that a = LD(Π). This implies that the corresponding spanning tree of Π has left vertices of

degree at most two. Thus, Π is a zonotope, i.e., Π ∈ C∗. Therefore, |D(PT ) ∩ □[m]| ≤ |C∗|, which
implies |D(PT ) ∩□[m]| = |C∗|.
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Next, we show that |C∗| ≤ |(PT − □T ) ∩ Zn|. By Lemma 2.4.7/(2), the map Πi 7→ x where

x ∈ (PT − □T ) ∩ Zn satisfying x + ∇T ⊆ Πi is an injection from C∗ to (PT − □T ) ∩ Zn. Hence,

|C∗| ≤ |(PT −□T ) ∩ Zn|.
Lastly, we show that |C∗| ≥ |(PT −□T ) ∩ Zn|. Let x ∈ (PT −□T ) ∩ Zn. Due to symmetry, we

may assume for simplicity of notation without loss of generality that T = [n]. We claim that there

exists a unique fine mixed cell Π ∈ C∗ such that x+∇[n] ⊆ Π. Note that once the existence of such

a fine mixed cell Π ∈ C∗ is established, the uniqueness will automatically follows, since two distinct

cells in C have no common interior. Thus, we only need to show the existence of Π ∈ C∗ such that

x+∇[n] ⊆ Π. To see this, let Π ∈ C be a fine mixed cell that has a common interior interior with

x + ∇[n]. Note that such a fine mixed cell Π exists because x + ∇[n] ⊆ x + □[n] ⊆ PT . We now

proceed to show that x+∇[n] ⊆ Π by first establishing that Π is a zonotope.

Assume for the sake of contradiction that Π is not a zonotope. Then, Π̂ is also not a zonotope.

This implies that Ĥ is a bipartite graph that is also a tree with at least one left vertex has degree

at least three. Together with Remark 2.4.5, we conclude that Ĥ must have less than n left vertices.

Thus, the sequence of right vertices (ri1 , . . . , rin) cannot be a transversal of the neighbors of the

left vertices of Ĥ. By Lemma 2.1.11 and Remark 2.1.12, we deduce that Π̂ lies in the half-space

x1 + · · ·+ xn ≤ n− 1. Because Π̂ ⊆ Rn
≥0, it follows that Π̂ lies in the polytope Q given by

Q := {x | x1 + · · ·+ xn ≤ n− 1 and 0 ≤ xi for all i ∈ [n]}.

Note that

∇[n] := {x | x1 + · · ·+ xn ≥ n− 1 and xi ≤ 1 for all i ∈ [n]}.

For y = (y1, . . . , yn), z = (z1, . . . , zn) in Zn, the translations y +Q and z+∇[n] are given by

y +Q = {x | x1 + · · ·+ xn ≤ y1 + · · ·+ yn + n− 1 and yi ≤ xi for all i ∈ [n]}

z+∇[n] = {x | x1 + · · ·+ xn ≥ z1 + · · ·+ zn + n− 1 and xi ≤ zi + 1 for all i ∈ [n]}.

One sees that y +Q and z+∇[n] have no common interior for all x,y ∈ Zn. In fact, if y +Q and

z+∇[n] were to have a common interior, then we would have z1+· · ·+zn+n−1 < y1+· · ·+yn+n−1.
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This would imply that there exists j ∈ [n] such that zj + 1 ≤ yj . However, this would mean that

y+Q lies in the half-space zj+1 ≤ xj while z+∇[n] lies in the half-space xj ≤ zj+1. Hence, y+Q

and z+∇[n] would have no common interior, a contradiction. Thus, by setting z = x, we see that

y + Π̂ = Π lies in y +Q and has no common interior with x+∇[n], a contradiction. Therefore, Π

is a zonotope.

Suppose that y ∈ Zn is the integral vector such that y + Π̂ = Π. Since Π is a zonotope, by

Lemma 2.4.7/(2), y+∇[n] ⊆ Π. Thus, x+∇[n] ⊆ x−y+Π. This means that x−y+Π and Π have

a common interior. By Lemma 2.4.6, we must have x = y. Therefore, x+∇[n] ⊆ Π as claimed.

The map x 7→ Π where Π is the fine mixed cell such that x +∇[n] ⊆ Π is now seen to be an

injection from (PT −□T ) ∩ Zn to C∗. Therefore, |C∗| ≥ |(PT −□T ) ∩ Zn|. □

We are now ready to give a proof of Theorem 2.4.2.

Proof of Theorem 2.4.2. We first observe that

(P −□[n]) ∩ Zn =
⊔

T∈AdSn

(PT −□[n]) ∩ Zn.

Thus,

|(P −□[n]) ∩ Zn| =
∑

T∈AdSn

|(PT −□[n]) ∩ Zn|.

For T ∈ AdSn such that PT is not n-dimension, we have that |(PT−□T )∩Zn| = 0 = |D(PT )∩□[m]|.
Also, for T ∈ AdSn such that PT is n-dimensional, we have by Lemma 2.4.9 that |(PT −□T )∩Zn| =
|D(PT )∩□[m]|. This means |(PT −□T )∩Zn| = |D(PT )∩□[m]| for all T ∈ AdSn. Thus, to see that

|(P −□[n]) ∩ Zn| =
∑

T∈AdSn

|D(PT ) ∩□[m]|,(2.4.2)

it suffices to show that |(PT −□[n]) ∩ Zn| = |(PT −□T ) ∩ Zn| for all T ∈ AdSn.

For every T ∈ AdSn, we have □[n] = □T −∑i∈T\[n] ei. Thus,

|(PT −□[n]) ∩ Zn| =
∣∣∣
 ∑

i∈T\[n]

ei

+ (PT −□T ) ∩ Zn
∣∣∣ = ∣∣∣(PT −□T ) ∩ Zn

∣∣∣.
This gives (2.4.2) as desired. □
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Example 2.4.10. Figure 2.8 shows P = ∆0
[2] + ∆0

[2] + ∆0
{1,2} + ∆0

{2} ⊂ R2 together with PT for

T ∈ AdS2, and the lattice points in P −□[2] and PT −□[2] (the orange points). One sees that

(P −□[2]) ∩ Z2 =
∑

T∈AdS2

|(PT −□[2]) ∩ Z2|.

Moreover, one sees that, for every T ∈ AdS2, the number of lattice points in PT −□[2] equals the

number of fine mixed cells in a subdivision of PT that are zonotopes.

Theorem 2.4.2 implies that

(2.4.3) |(P −□[n]) ∩ Zn| =
∑

T∈AdSn

 ∑
a∈D(PT )

(
1

a1

)
· · ·
(

1

am

) ,

since only the G-draconian sequences a = (a1, . . . , am) with ai ≤ 1 make the summand in equation

(2.4.1) nonzero, and equal to one. Together with a simple binomial identity, we derive the following

key result as a consequence.

Corollary 2.4.11. Suppose that P = y1∆
0
S1

+ · · · + ym∆0
Sm

where yi are integers and Si ∈ AdS

for all i. Then,

(2.4.4) |(P −□[n]) ∩ Zn| =
∑

T∈AdSn

 ∑
a∈D(PT )

(
y1
a1

)
· · ·
(
ym
am

) .

Proof. As noted at the begining of the section, it suffices to show that the formula holds for

positive integers y1, . . . , yn. Clearly, we can write any y∆0
S where S ∈ AdS and y is a positive

integer as the Miknowski sum of y copies of ∆0
S . By writing

P = ∆0
S1

+ · · ·+∆0
S1︸ ︷︷ ︸

y1 terms

+ · · ·+∆0
Sm

+ · · ·+∆0
Sm︸ ︷︷ ︸

ym terms

and applying formula (2.4.3) to P , one can express the right-hand side of (2.4.3) as

∑
T∈AdSn

 ∑
a∈D(PT )

(
y1
a1

)
· · ·
(
ym
am

)
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using the binomial identity(
y

a

)
=

∑
b1+···+by=a
b1,..., by ∈Zn≥0

(
1

b1

)
· · ·
(
1

by

)
for all a, y ∈ Z≥0. □

Note that the Ehrhart polynomial of P = y1∆
0
S1

+ · · · + ym∆0
Sm

can be computed simply by

replacing it in formula (2.4.4) with tP +□[n] = ty1∆
0
S1

+ · · ·+ tym∆0
Sm

+∆0
{1} + · · ·+∆0

{n}.

Remark 2.4.12. Let

D(T ) =
⋃

T∈AdSn

D(PT ).

Then, formula (2.4.4) can also be expressed as

|(P −□[n]) ∩ Zn| =
∑

a∈D(P )

|{T ∈ AdSn | a ∈ D(PT )}|
(
y1
a1

)
· · ·
(
ym
am

)
.(2.4.5)

One observes that formula (2.4.5) bears a resemblance to formula (2.2.4) from Lemma 2.2.8 by

Eur, Fink, Larson, and Spink. However, (2.4.5) is written in a more compact form: each summand

|{T ∈ AdSn | a ∈ D(PT )}|
(
y1
a1

)
· · ·
(
ym
am

)
in (2.4.5) consolidates (a1+···+am)!

a1!···am! individual terms that

appear in (2.2.4).

Corollary 2.4.13. Suppose that P = y1∆
0
S1
+· · ·+ym∆0

Sm
where yi are real numbers and Si ∈ AdS

for all i. Then, the volume of P is given by

(2.4.6) Vol(P ) =
∑

T∈AdSn

 ∑
a∈D(PT )

ya11
a1!

· · · y
am
m

am!

 .

Proof. To see that formula (2.4.6) gives the volume of P , it suffices to show that the formula

holds for nonnegative integers y1, . . . , ym. Let

Q(t) := tP +□[n] = ty1∆
0
S1

+ · · ·+ tym∆0
Sm

+∆0
{1} + · · ·+∆0

{n}.

We note that D(Q
(t)
T ) ⊆ Zm+n

≥0 . Then, the Ehrhart polynomial of P is given by

i(t, P ) = |(Q(t) −□[n]) ∩ Zn| =
∑

T∈AdSn

 ∑
a∈D(Q

(t)
T )

(
y1t

a1

)
· · ·
(
ymt

am

)(
1

am+1

)
· · ·
(

1

an+m

) .
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Since the volume of P equals the leading coefficient of i(P, t), it follows that

Vol(P ) =
∑

T∈AdSn

 ∑
a∈D(Q

(t)
T )

ai=0, ∀ i >m

ya11
a1!

· · · y
am
m

am!

 .

One observes that a ∈ D(Q
(t)
T ) satisfies ai = 0 for all i > m if and only if (a1, . . . , am) ∈ D(PT ).

Thus, we arrive at the desired formula

Vol(P ) =
∑

T∈AdSn

 ∑
a∈D(PT )

ya11
a1!

· · · y
am
m

am!

 □

2.5. More Problems from A to B

Our approach for computing the Ehrhart polynomials suggests that there seem to be many

aspects of type B generalized permutohedra that can be explored using existing techniques and

tools from the study of their type A counterparts. The following questions highlight some potential

research directions.

Problem 2.5.1. In [35, Section 7], Postnikov introduces building sets and nested complexes to

describe the face posets of some type A generalized permutohedra. Can we give a combinatorial

description of the faces of type B generalized permutohedra using similar combinatorial models as

building sets and nested complexes?

Problem 2.5.2. In [36], Postnikov, Reiner, and Williams compute the f and h-polynomials of

a family of simple type A generalized permutohedra using building sets and the corresponding

preposets. Can we employ a similar approach to compute the f and h-polynomials of type B

generalized permutohedra?

Problem 2.5.3. Bastidas shows in [3] that every type B generalized permutohedron can also be

written as the Minkowski sum of the simplices ∆S and ∆0
S where S ∈ AdS are admissible subsets

such that min(|i| | i ∈ S) ∈ S. That is, the family of admissible subsets ∆S and ∆0
S where

min(|i| | i ∈ S) ∈ S is a “basis” for the type B generalized permutohedra. Find a formula for the
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Ehrhart polynomial of type B generalized permutohedra with respect to this basis (directly without

transforming this basis to the basis used in this chapter).

Problem 2.5.4. Postnikov’s formula (2.1.3) implies that every type A generalized permutohedron

of the form y1∆I1 + · · ·+ ym∆Im ⊂ Rn is Ehrhart positive provided yi are positive integers for all

i ∈ [m]. Our formula (2.4.4) in Corollary 2.4.11 does not make it immediately clear whether Ehrhart

positivity holds for type B generalized permutohedra in a similar situation. This leads to the natural

question: Is every type B generalized permutohedron of the form y1∆
0
S1
+ · · ·+ym∆0

Sm
⊂ Rn, where

each yi is a positive integer for all i ∈ [m], Ehrhart positive?
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CHAPTER 3

Polynomiality of Stretched Littlewood-Richardson Coefficients

The Littlewood-Richardson coefficients appear in many areas of mathematics [21,28,29,38,48].

An example comes from the study of symmetric functions. The set of Schur functions sλ, indexed

by partitions λ, is a linear basis for the ring of symmetric functions. Thus, for any partitions λ and

µ, the product of Schur functions sλ and sµ can be uniquely expressed as

sλ · sµ =
∑

ν:|ν|=|λ|+|µ|

cνλ,µsν(3.0.1)

for some real numbers cνλ,µ, where |λ| denotes the sum of the parts of λ. The coefficient cνλ,µ of sν

in (3.0.1) is called the Littlewood-Richardson coefficient.

There are several ways to compute cνλ,µ such as the Littlewood-Richardson rule [45], the

Littlewood-Richardson triangles [34], the Berenstein-Zelevinsky triangles [6], and the honeycombs

[26]. In this chapter, we employ the hive model that was first introduced by Knutson and Tao [26].

The hive model imposes certain inequalities that allow us to compute cνλ,µ as the number of integer

points in a rational polytope, which we call a hive polytope.

For fixed partitions λ, µ, ν such that |ν| = |λ| + |µ|, we define the stretched Littlewood-

Richardson coefficients to be the function ctνtλ,tµ for non-negative integers t. The hive model implies

that

ctνtλ,tµ = the number of integer points in the tth-dilation of the hive polytope.

By Ehrhart theory (see Thoerem 1.3.1), ctνtλ,tµ is a quasi-polynolmial in t ∈ Z, which means ctνtλ,tµ is

a function of the form ad(t)t
d+· · ·+a1(t)t+a0(t) where each of ad(t), . . . , a0(t) is a periodic function

in t with an integral period. The function ctνtλ,tµ was, however, observed and conjectured by King,

Tollu, and Toumazet [25] to be a polynomial function in t (as opposed to a quasi-polynomial). The

conjecture was then shown to be true by Derksen-Weyman [15], and Rassart [37]. More precisely,

they proved the following theorem.
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Theorem 3.0.1. Let µ, λ, ν be partitions with at most k part such that |ν| = |λ|+ |µ|. Then ctνtλ,tµ
is a polynomial in t of degree at most

(
k−1
2

)
.

The proof by Derksen and Weyman [15] makes use of semi-invariants of quivers. They proved

a result on the structure of a ring of quivers and then derived the polynomiality of ctνtλ,tµ as a

special case. Later, Rassart [37] proved a stronger result, which gives Theorem 3.0.1 as an easy

consequence, by showing that cνλ,µ is a polynomial in variables λ, µ, ν provided that they lie in

certain polyhedral cones of a chamber complex. The proof by Rassart employs Steinberg’s formula,

the hive conditions, and the Kostant partition function to give the chamber complex of cones in

which cνλ,µ is a polynomial in variables λ, µ, ν. A considerably large portion of Rassart’s paper was

devoted to describing this chamber complex and showing its desired property, resulting in a fairly

long justification. We note that although this chamber complex of cones was provided, it is in

practice computationally hard to work out the cones.

Inspired by Rassart’s approach, we ask if similar tools can be utilized to give a simple proof

of Theorem 3.0.1 directly. We found that Steinberg’s formula and a simple argument about the

chamber complex of the Kostant partition function are indeed sufficient. The main objective of

this chapter is to give a short alternative proof of Theorem 3.0.1 using this idea.

Chapter Organization. We begin by introducing necessary notations and describing the

hive model for computing cνλ,µ. The hive model will help us understand the behavior of stretched

Littlewood-Richardson coefficients through properties of associated polytopes. We then introduce

the Kostant partition functions and state Steinberg’s formula and related results that will later

be used for proving Theorem 3.0.1. Lastly, we describe a connection of stretched Littlewood-

Richardson coefficients and flow polytopes, and outline potential research problems and directions

for future work.

3.1. Littlewood-Richardson Coefficients

We say that λ = (λ1, . . . , λk) is a partition of a non-negative integer m if λ1 ≥ · · · ≥ λk are

positive integers such that λ1 + · · · + λk = m. For convenience, we will abuse the notation by

allowing λi to be zero. The positive numbers among λ1, . . . , λk are called parts of λ. For example,

λ = (2, 2, 1, 0) is a partition of 5 with 3 parts. We write |λ| to denote λ1 + · · ·+ λk.
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A hive ∆k of size k is an array of vertices hij arranged in a triangular grid consisting of k2 small

equilateral triangles as shown in Figure 3.1. Two adjacent equilateral triangles form a rhombus

with two equal obtuse angles and two equal acute angles. There are three types of these rhombi:

tilted to the right, left, and vertical as shown in Figure 3.1.

h0,4 h1,4 h2,4 h3,4 h4,4

h0,3
h1,3 h2,3

h3,3

h0,2
h1,2

h2,2

h0,1 h1,1

h0,0

Figure 3.1. Hive of size 4 (left), and the three types of rhombi in a hive (right)

Let λ = (λ1, . . . , λk), µ = (µ1, . . . , µk), ν = (ν1, . . . , νk) be partitions with at most k parts such

that |ν| = |λ|+ |µ|. A hive of type (ν, λ, µ) is a labelling (hi,j) of ∆k that satisfies the following hive

conditions.

(HC1) [Boundary condition] The labelings on the boundary are determined by λ, µ, ν in the

following ways.

h0,0 = 0, hj,j − hj−1,j−1 = νj , h0,j − h0,j−1 = λj , for 1 ≤ j ≤ k.

hi,k − hi−1,k = µi, for 1 ≤ i ≤ k.

(HC2) [Rhombi condition] For every rhombus, the sum of the labels at obtuse vertices is greater

than or equal to the sum of the labels at acute vertices. That is, for 1 ≤ i < j ≤ k,

hi,j − hi,j−1 ≥ hi−1,j − hi−1,j−1,

hi,j − hi−1,j ≥ hi+1,j+1 − hi,j+1, and

hi−1,j − hi−1,j−1 ≥ hi,j+1 − hi,j .

Let Hk(ν, λ, µ) denote the set of all hive of type (ν, λ, µ). Then the hive conditions (HC1) and

(HC2) imply that Hk(ν, λ, µ) is a rational polytope in Rn where n =
(
k+2
2

)
. Hence, we will call
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Hk(ν, λ, µ) the hive polytope of type (ν, λ, µ). Knutson-Tao [26] and Buch [7] showed that

cνλ,µ = the number of integer points in Hk(ν, λ, µ).

Example 3.1.1. Let k = 3, ν = (4, 3, 1), λ = (2, 1, 0), and µ = (3, 2, 0). Then, in the hive ∆3, we

have by the boundary condition

h0,0 = 0;h0,1 − h0,0 = 2;h0,2 − h0,1 = 1;h0,3 − h0,2 = 0

h1,3 − h0,3 = 3;h2,3 − h1,3 = 2;h3,3 − h2,3 = 0

h1,1 − h0,0 = 3;h2,2 − h1,1 = 3;h3,3 − h2,2 = 1

Solving these equations, we obtain the boundaries of ∆3 as shown in (one of) the hives in Figure

3.2. Thus, we only need to solve for h1,2. Using the rhombi condition, one sees that the following

two inequalities suffice for determining h1,2:

h1,2 ≥ h0,2 + h2,3 − h1,2 = 5 and h0,1 + h1,1 − h0,0 = 6 ≥ h1,2.

Thus, the only integers h1,2 satisfying the rhombi condition are 5 and 6. This implies that there

are two integer points in H3(ν, λ, µ), each corresponds to an integer label of ∆3 shown in Figure

3.2. Therefore, have that cνλ,µ = |H3(ν, λ, µ) ∩ R10| = 2.

3
6 8

8

3
5

7

2 4

0

3
6 8

8

3
6

7

2 4

0

ν = (4, 3, 1)

λ = (2, 1, 0)

µ = (3, 2, 0)

Figure 3.2. The only two integer points (integer labels) of H3(ν, λ, µ)

For fixed partitions λ, µ, ν with at most k parts such that |ν| = |λ| + |µ|, we define the the

stretched Littlewood-Richardson coefficient to be the function ctνtλ,tµ for non-negative integer t.
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Because Hk(tν, tλ, tµ) = tHk(ν, λ, µ), we have that

ctνtλ,tµ = i(Hk(ν, λ, µ), t).

Remark 3.1.2. Examples provided in [25] indicate that Hk(ν, λ, µ) is in general not an integral

polytope. Thus, by Ehrhart theory (Theorem 1.3.1), ctνtλ,tµ is a quasi-polynomial in t.

3.2. Kostant Partition Function and Steinberg’s Formula

We will show the polynomiality of ctνtλ,tµ by using Steinberg’s formula as derived in [37] by

Rassart and the chamber complex of the Kostant partition function. To this end, we state the

related notations and results for later reference.

Let e1, . . . , ek be the standard basis vectors in Rk, and let ∆+ = {ei − ej : 1 ≤ i < j ≤ k}
be the set of positive roots of the root system of type Ak−1. We define M to be the matrix whose

columns consist of the elements of ∆+. The Kostant partition function for the root system of type

Ak−1 is the function K : Zk −→ Z≥0 defined by

K(v) =
∣∣∣ {b ∈ Z(

k
2)

≥0 |Mb = v

} ∣∣∣.
That is, K(v) equals the number of ways to write v as nonnegative integer linear combinations of

the positive roots in ∆+.

An important property of the matrixM , when written in the basis of simple roots {ei−ei+1 | i =
1, . . . , k−1}, is that it is totally unimodular, i.e., the determinant of every square submatrix equals

−1, 0, or 1. Indeed, it is shown in [39] that a matrix A is totally unimodular if every column of A

only consists of 0’s and 1’s in a way that the 1’s come in a consecutive block. Let

cone(∆+) =
{∑

λvv | v ∈ ∆+, λv ≥ 0
}

be the cone spanned by the vectors in ∆+. The chamber complex is the polyhedral subdivision of

cone(∆+) that is obtained from the common refinement of cones cone(B) where B are the maximum

linearly independent subsets of ∆+. A maximum cell (a cone of maximum dimension) C in the

chamber complex is called a chamber. Since M is totally unimodular, the behavior of K(v) is given

by the following lemma as a special case of [47, Theorem 1] due to Sturmfels.
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Lemma 3.2.1. Let C be a chamber in the chamber complex of cone(∆+). Then the Kostant partition

function K(v) is a polynomial in v = (v1, . . . , vk) on C of degree at most
(
k−1
2

)
.

Steinberg’s formula [46] expresses the tensor product of two irreducible representations of

semisimple Lie algebras as the direct sum of other irreducible representations. When restricting

the formula to SLkC, we obtain the following version of Steinberg’s formula for computing cνλ,µ.

Lemma 3.2.2 (Steinberg’s Formula). Let µ, λ, ν be partitions with at most k parts such that |ν| =
|λ|+ |µ|. Then

cνλ,µ =
∑

σ,τ∈Sk

(−1)inv(στ)K(σ(λ+ δ) + τ(µ+ δ)− (ν + 2δ))

where inv(ψ) is the number of inversions of the permutation ψ and

δ =
1

2

∑
1≤i<j≤k

(ei − ej) =
1

2
(k − 1, k − 3, . . . ,−(k − 3),−(k − 1))

is the Weyl vector for type Ak−1.

Details of the derivation can be found in [37, section 1.1].

3.3. Proof of the Polynomiality

We are now ready to prove Theorem 3.0.1.

Proof of Theorem 3.0.1. The hive conditions imply that ctνtλ,tµ is a quasi-polynomial in t.

To see that ctνtλ,tµ is in fact a polynomial in t, it suffices to show that there exists an integer N such

that ctνtλ,tµ is a polynomial in t for t ≥ N.

For σ, τ ∈ Sk, let

rλ,µ,νσ,τ (t) := σ(tλ+ δ) + τ(tµ+ δ)− (tν + 2δ)

= t(σ(λ) + τ(µ)− ν) + σ(δ) + τ(δ)− 2δ.

Then rλ,µ,νσ,τ (t) is a ray (when allowing t to be a non-negative real number) emanating from σ(δ) +

τ(δ)− 2δ in the direction of σ(λ) + τ(µ)− ν.
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By Steinberg’s formula,

ctνtλ,tµ =
∑

σ,τ∈Sk

(−1)inv(στ)K(rλ,µ,νσ,τ (t)).

Lemma 3.2.1 states thatK(v) is a polynomial in v when v stays in one particular cone (chamber)

of the chamber complex of cone(∆+). Because there are only finitely many cones in the chamber

complex, we have that for every pair σ, τ ∈ Sk there exists an integer Nλ,µ,ν
σ,τ such that exactly one

of the following happens:

(1) The ray rλ,µ,νσ,τ (t) lies in one particular cone of the chamber complex for all t ≥ Nλ,µ,ν
σ,τ

(2) The ray rλ,µ,νσ,τ (t) lies outside cone(∆+) for all t ≥ Nλ,µ,ν
σ,τ .

If (1) is satisfied, then K(rλ,µ,νσ,τ (t)) is a polynomial in t for t ≥ Nλ,µ,ν
σ,τ . If (2) is satisfied, then

K(rλ,µ,νσ,τ (t)) is the zero polynomial for t ≥ Nλ,µ,ν
σ,τ . In either case, K(rλ,µ,νσ,τ (t)) is a polynomial in t

for t ≥ Nλ,µ,ν
σ,τ . Now let

N = max
σ,τ∈Sk

{Nλ,µ,ν
σ,τ }.

Then Steinberg’s formula implies that ctνtλ,tµ is a polynomial in t for t ≥ N. Therefore, ctνtλ,tµ is a

polynomial in t.

By Lemma 3.2.1, each polynomial piece of K(v) has degree at most
(
k−1
2

)
. Thus, for every σ, τ ,

we have that K(rλ,µ,νσ,τ (t)) is a polynomial in t of degree at most
(
k−1
2

)
for t ≥ Nλ,µ,ν

σ,τ . Hence, ctνtλ,tµ

is a polynomial in t of degree at most
(
k−1
2

)
. □

In the proof of Theorem 3.0.1, we showed that every K(rλ,µ,νσ,τ (t)) eventually becomes either

the zero polynomial or a non-zero polynomial in t. A characterization of those K(rλ,µ,νσ,τ (t)) that

eventually become non-zero polynomials will be given in Proposition 3.3.2. Its proof uses the

following characterization of non-zero K(v).

Lemma 3.3.1. Let v = (v1, . . . , vk) be a vector in Zk with v1 + · · ·+ vk = 0. Then K(v) is non-zero

if and only if v1 + · · ·+ vi ≥ 0 for all i = 1, . . . , k.

Proof. Let M∗ be the matrix M written using the simple roots e1 − e2, . . . , ek−1 − ek as a

basis. Then, the entries of M∗ are only 0 and 1. Moreover, because the simple roots themselves

are columns of M , we have that the identity matrix is a submatrix of M∗. Similarly, let v∗ be the
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vector v written using the simple roots as a basis. Then, v∗ = (v1, v1 + v2, . . . , v1 + · · · vk−1). The

desired result is obtained by observing that

K(v) =
∣∣∣ {b ∈ Z(

k
2)

≥0 |M∗b = v∗
} ∣∣∣.

□

Proposition 3.3.2. Let µ, λ, ν be partitions with at most k part such that |ν| = |λ| + |µ|. For
σ, τ ∈ Sk, let

rλ,µ,νσ,τ (t) = tβ + γ

where β = σ(λ) + τ(µ)− ν and γ = σ(δ) + τ(µ)− 2δ. Then there exists an integer Nλ,µ,ν
σ,τ such that

K(rλ,µ,νσ,τ (t)) is a non-zero polynomial in t for t ≥ Nλ,µ,ν
σ,τ if and only if for all i = 1, . . . , k we have

that

(1) β1 + β2 + · · ·+ βi is positive, or

(2) β1 + β2 + · · ·+ βi is zero and γ1 + γ2 + · · ·+ γi is non-negative.

Proof. Let rλ,µ,νσ,τ (t) = (r1(t), . . . , rk(t)). Then ri(t) = tβi + γi. In the proof of Theorem 3.0.1,

we showed that there exists a positive integer Nλ,µ,ν
σ,τ such that K(rλ,µ,νσ,τ (t)) is a polynomial in t

for t ≥ Nλ,µ,ν
σ,τ . For every i = 1, . . . , k, the partial sum r1(t) + · · · + ri(t) is non-negative for all

t ≥ Nλ,µ,ν
σ,τ precisely when one of the two conditions meets for all i = 1, . . . , k. Thus, by Lemma

3.3.1, K(rλ,µ,νσ,τ (t)) is a non-zero polynomial for t ≥ Nλ,µ,ν
σ,τ . □

3.4. Connection to Flow Polytopes and Other Problems

After having gained a deeper understanding of the Ehrhart polynomial ctνtλ,tµ, we now turn our

attention to its coefficients. In [24], King, Tollu, and Taumazet proposed the following conjecture,

which still remains unsolved.

Conjecture 3.4.1. For cνλ,µ > 0, every coefficient in the polynomial ctνtλ,tµ is positive, i.e., the hive

polytope Hk(ν, λ, µ) is Ehrhart positive.

One difficulty in solving this statement is the lack of a general formula for K(v) that allows us

to see the positivity in Steinberg’s formula. In fact, this is a common obstacle encountered when

attempting to show Ehrhart positivity of any polytope.
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The author’s effort to develop mathematical tools for tackling this problem has revealed the

connection of cνλ,µ to other families of polytopes. When plugging, for example, λ = µ = (k− 1, k−
2, . . . , 1) and ν = (2k− 3, 2(k− 2), 2(k− 3), . . . , 2, 1) into Steinberg’s formula, ctνtλ,tµ agrees with the

Ehrhart polynomial of a Chan-Robbins-Yuen (CRY) polytope, which will be denoted by CRYk. The

polytope CRYk is an example of a flow polytope, defined as the convex hull of the flows conserving

a specific net flow at every vertex of the directed complete graph on k vertices (see [30]). It stands

out as the simplest yet most significant example in the sense that other flow polytopes defined on

complete graphs are Minkowski sums of CRY polytopes. Morales [32] conjectured that

Conjecture 3.4.2. The polytope CRYk is Ehrhart positive for all k.

Note that there exist formulas of the Ehrhart polynomials for flow polytopes known as Bal-

doni–Vergne–Lidskii formulas [2]. However, they do not readily reveal the positivity, similar to the

difficulty encountered with Steinberg’s formula.

Beyond Ehrhart positivity, one can ultimately ask for combinatorial interpretations of Ehrhart

polynomials’ coefficients. It is known that the normalized volume of CRYk, which equals a multiple

of the leading coefficient of its Ehrhart polynomial, is a product of consecutive Catalan numbers

[11]. It is then natural to ask if a similar phenomena occurs with other coefficients.

Problem 3.4.3. Find combinatorial interpretations of the coefficients of CRY polytopes’ Ehrhart

polynomials.

Finally, we note that Steinberg’s formula in [46] provides a method for computing the mul-

tiplicities Cν
λ,µ, called the Clebsch-Gordan coefficients, of the tensor product of two irreducible

representations of semisimple Lie algebras, and that the formula given in Lemma 3.2.2 is a special

case where the formula in [46] is restricted to type Ak−1 Lie algebras. When restricted to other clas-

sical Lie algebras (types Bk, Ck, and Dk Lie algebras), Berenstein and Zelevinsky showed in [5] that

the stretched Clebsch-Gordan coefficient Ctν
tλ,tµ equals the Ehrhart quasi-polynomial of a rational

polytope, referred to as BZ-polytope. Based on computational evidence, De Loera and McAllister

later proposed a conjecture in [13] regarding the following property the quasi-polynomial Ctν
tλ,tµ .

Conjecture 3.4.4. Every coefficient of the stretched Clebsch-Gordan coefficient Ctν
tλ,tµ is nonneg-

ative.
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CHAPTER 4

Parking Function Polytopes

Suppose that u = (u1, . . . , un) ∈ Rn
≥0 is a vector satisfying 0 ≤ u1 ≤ · · · ≤ un. Let a =

(a1, . . . , an) ∈ Rn
≥0 and b1 ≤ b2 ≤ · · · ≤ bn be the non-decreasing rearrangement of a1, . . . , an.

We say that a is a u-parking function if bi ≤ ui for all i = 1, . . . , n. The parking function poly-

tope associated to u, denoted by PF(u), is defined to be the convex hull of all u-parking func-

tions. For a nonzero vector u, the polytope PF(u) contains n + 1 affinely independent points 0,

(un, 0, 0, . . . , 0), (0, un, 0, . . . , 0), . . . , (0, 0, . . . , 0, un). This means that PF(u) is n-dimensional for

all u ∈ Rn
≥0\{0}. Thus, for non-triviality, we will always assume that u is a nonzero vector.

Figure 4.1. Three examples of parking function polytopes

We note that a parking function (of length n) was originally defined as a sequence of positive

integers (a1, . . . , an) such that its non-decreasing rearrangement b1 ≤ · · · ≤ bn satisfies bi ≤ i for

all i ∈ [n] where [n] := {1, 2, . . . , n}. It is a fascinating combinatorial object closely connected to

other combinatorial models such as labeled trees [10], hyperplane arrangement, and non-crossing

partitions [41,42]. The name “parking function” originates from Konheim and Weiss [27], who

introduced it as a way to choose n spots for parking n cars. Stanley later defined parking function

polytopes to be the convex hull of all such parking functions in [44, Problem 12191], which corre-

sponds, in our notation, to PF(0, 1, . . . , n−1). He also posed questions regarding their faces, volume,

43



and number of lattice points, which were subsequently answered by Amanbayeva and Wang [1].

Recently, Hanada et al. [23], and Bayer et al. [4] examined a larger class of parking function poly-

topes PF(u) where u1, . . . , un are integers satisfying 0 ≤ u1 < · · · < un. Their work focused on

the combinatorial properties of these polytopes, providing formulas for volume and h-polynomials,

and exploring connections to other polytopes. One sees that our definition of parking function

polytopes further generalizes this notion by allowing 0 ≤ u1 ≤ · · · ≤ un to be any non-decreasing

real numbers, rather than strictly increasing integers.

Chapter organization. In this chapter, we aim to describe the normal fans, face posets, h-

polynomials, and Ehrhart polynomials of parking function polytopes, and present related findings.

We begin with an overview of fundamental concepts related to preposets, and preorder cones, and

then introduce binary partitions and skewed binary partitions as generalizations of ordered set

partitions. Following this, we develop tools to characterize the family of skewed binary partitions

that corresponds bijectively to the normal fan of a parking function polytope, and express the

h-polynomials of simple parking function polytopes in terms of generalized Eulerian polynomials.

In the last section, we describe connections between parking function polytopes and other families

of polytopes, and deduce several results from these connections, including the formulas for volumes

and Ehrhart polynomials.

4.1. Preposets and preorder cones

We introduce the notion of preposets which is, in a sense, a generalization of posets, and then

introduce their associated preorder cones. Readers are expected to be familiar with basic notations

regarding poset as appear, for example, in [43, Section 3.1].

A binary operator ⪯ on a finite set A is called a preorder if it is reflexive and transitive on A.

A preposet is an ordered pair (A,⪯) of a finite set A and a preorder ⪯ on it. We write i ≡ j if i ⪯ j

and j ⪯ i. The relation ≡ is an equivalence relation on A and thus partitions A into equivalence

classes. We denote by A/≡ the set of equivalence classes of A and i the equivalence class of i. One

sees we recover the definition of a poset if we require a preposet (A,⪯) satisfies that i ≡ j if and

only if i = j, i.e., the relation ≡ is antisymmetric.
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Note that the preorder ⪯ on A induces a partial order on A/≡ by letting i ⪯ j if i ⪯ j in A,

and thus defines a poset (A/≡,⪯) which is closely related to the preposet (A,⪯). This allows us

to define several concepts for the preposet (A,⪯) from the concepts for the poset (A/≡,⪯). For

instance, we say that j is a cover of i in the preposet (A,⪯), denoted i ⋖ j, if i is a cover of j

in the poset (A/≡,⪯). The Hasse diagram of a preposet (A,⪯) is the Hasse diagram of the poset

(A/≡,⪯) except that, when labeling each node by equivalence classes i, we remove the parentheses

about the set.

A preoder ⪯1 on A is said to be a contraction of another preorder ⪯2 on A if the Hasse diagram

of (A,⪯1) can be obtained by a sequence of edge contractions of the Hasse diagram and merges of

the vertex labels of (A,⪯2). If (A,⪯1) and (A,⪯2) are two distinct preposets on A, then (A,⪯1)

is a contraction of (A,⪯2) if and only if (A,⪯1) can be obtained by imposing additional relations

j ⪯1 i on (A,⪯1) for various i⋖1 j.

Example 4.1.1. We draw in Figure 4.2 Hasse diagrams of three different preposets on [0, 8], among

which ([0, 8],⪯1) is a poset. The preorder ⪯2 is a contraction of preorder ⪯1 by contracting the

edge 6− 8 and the edge 5− 7. The preorder ⪯3 is a contraction of the preorder ⪯2 by contracting

the edge 3− 0. As a result, the preorder ⪯3 is also a contraction of the preorder ⪯1.

6 3 4

1 8 5 0

7 2

([0, 8],⪯1)

6, 8 3 4

1 5, 7 0

2

([0, 8],⪯2)

6, 8 4

1 0, 3

5, 7

2

([0, 8],⪯3)

Figure 4.2. Both ⪯2 and ⪯3 are contractions of ⪯1
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A map f from a preposet (A1,⪯1) to another preposet (A2,⪯2) is order-preserving if for every

x, y ∈ A1 such that x ⪯1 y one has f(x) ⪯2 f(y). If an order-preserving map f is bijective and its

inverse is also order-preserving, we say that f is an isomorphism.

The dual of a preposet (A,⪯) is the preposet (A,⪯∗) such that i ⪯∗ j if and only if j ⪯ i.

Clearly, the Hasse diagram of the dual poset (A,⪯∗) is obtained by turning the Hasse diagram of

(A,⪯) upside down.

In [36, Section 3], Postnikov, Reiner, and Williams introduce a natural correspondence between

cones in quotient space Rn/(1, . . . , 1)R and preorders of the set [n] in the study of faces of generalized

permutahedra. Later, Castillo and Liu [9] call these cones preorder cones, indicating that they arise

from some preposets. They also introduce variations of preorder cones, including ones that are

defined in the first orththant of Rn. In this chapter, we start with a preposet on [0, n] and consider

preorder cones without quotienting out (1, . . . , 1)R. More precisely, given a preposet ([0, n],⪯), we

define its associated preorder cone to be the cone

σ⪯ := {(c0, c1, . . . , cn) ∈ Rn+1 | ci ≤ cj if i ⪯ j, i, j ∈ [0, n]}.(4.1.1)

We will utilize preorder cones to study the face structure of parking function polytopes. However,

it turns out that the slice of σ⪯ at c0 = 0 will mostly play an important role. This leads us to

introduce the following definition.

Definition 4.1.2. Let ⪯ be a preorder on [0, n]. The sliced preorder cone σ̃⪯ associated to ⪯ is

given by

σ̃⪯ := {(c1, . . . , cn) ∈ Rn | c0 = 0 and ci ≤ cj if i ⪯ j, i, j ∈ [0, n]}.(4.1.2)

Example 4.1.3. Let ⪯ be the third preorder ⪯3 on [0, 8] shown in Figure 4.2. Then

σ̃⪯ = {(c1, . . . , cn) ∈ Rn | c6 = c8 ≤ c1 and c4 < 0 = c3 < c5 = c7 < c2}.

A linear extension of the preposet ([0, n],⪯) is a bijective order-preserving map from the

preposet ([0, n],⪯) to the poset ([0, n],≤) where ≤ is the usual order of integers. We denote by

L(⪯) the set of all linear extensions of the preposet ([0, n],⪯).
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The next lemma contains a variation of results from [36, Proposition 3.5] and [9] regarding

sliced preorder cones.

Lemma 4.1.4. Let ⪯ and ⪯′ be preorders on [0, n]. We have that

(1) The sliced preorder cone σ̃⪯′ is a face of the sliced preorder cone σ̃⪯ if and only if ⪯′ is a

contraction of ⪯ .

(2) If a preposet ([0, n],⪯) is a poset, then the associated sliced preorder cone has the following

minimal inequality description:

σ̃⪯ = {(c1, . . . , cn) ∈ Rn | c0 = 0 and ci ≤ cj if i⋖ j, i, j ∈ [0, n]}

and, hence, the relative interior σ̃◦⪯ of σ̃⪯ is given by

σ̃◦⪯ = {(c1, . . . , cn) ∈ Rn | c0 = 0 and ci < cj if i⋖ j, i, j ∈ [0, n]}.

(3) The dimension of the sliced preorder cone σ̃⪯ is the number of equivalence classes in

([0, n],⪯) minus 1.

(4) The cone σ̃⪯ is pointed if and only if the Hasse diagram of ([0, n],⪯) is a connected graph.

(5) The sliced preorder cone σ̃⪯ is an n-dimensional simplicial cone if and only if ([0, n],⪯)

is a poset and its Hasse diagram is a tree (a connected graph with no cycles).

(6) If a preposet ([0, n],⪯) is a poset, then

σ̃⪯ =
⋃

π∈L[⪯]

σ̃(π)

where

(4.1.3) σ̃(π) := {(c1, . . . , cn) ∈ Rn | c0 = 0 and cπ(0) ≤ cπ(1) ≤ · · · ≤ cπ(n)}.

The proofs of these results can be obtained by setting c0 = 0 in the proofs of the original results

from [36, Proposition 3.5], and [9]. We provide their proofs here for completeness.

Proof. (1) A face of σ̃⪯ is obtained by replacing some inequalities ci ≤ cj , i, j ∈ [0, n], defining

σ̃⪯ with equalities ci = cj , or equivalently, by adding the opposite inequalities ci ≥ cj . Suppose

that i = i0⋖ i1⋖ · · ·⋖ ik = j be a maximal chain from i to j, i.e., it is a cover of it−1 for all t ∈ [k].

47



Then, by adding the inequality ci ≥ cj to σ̃⪯, the resulting sliced preorder cone corresponds to the

preorder on [0, n] that is obtained by contracting the edges of connecting it−1 and it for all i ∈ [k]

in the Hasse diagram of ([0, n],⪯). This implies that σ̃⪯′ is a face of σ̃⪯.

Conversely, suppose that σ̃⪯′ is a contraction of σ̃⪯. Then, ([0, n],⪯′) can be obtained by

imposing additional relations j ⪯1 i on ([0, n],⪯) for various i⋖ j. Thus, σ̃⪯′ is obtained by adding

the inequalities ci ≥ cj to σ̃⪯ for all such i ⪯ j. Thus, σ̃⪯′ is a face of σ̃⪯.

(2) Suppose that ([0, n],⪯) is a poset. That is, every equivalence class of (A/≡,⪯) is a singleton.

We note that a set of covering relations uniquely defines a poset. This implies that

σ̃⪯ = {(c1, . . . , cn) ∈ Rn | c0 = 0 and ci ≤ cj if i⋖ j, i, j ∈ [0, n]}

and that this is the least number of inequalities to define σ̃⪯. Thus, for every i, j such that i ⋖ j,

the inequality ci ≤ cj is facet-defining. Hence, the relative interior of σ̃⪯ is given by

σ̃◦⪯ = {(c1, . . . , cn) ∈ Rn | c0 = 0 and ci < cj if i⋖ j, i, j ∈ [0, n]}.

(3) We first show that if ([0, n],⪯) is a poset, then σ̃⪯ is (full) n-dimensional. For σ̃⪯ to be

full dimensional, its defining relations must not include any ci = cj for i ̸= j. This is equivalent to

requiring that every equivalence class of (A/≡,⪯) is a singleton, i.e., ([0, n],⪯) is a poset. Thus,

if ([0, n],⪯) is a poset, then the dimension of σ̃⪯ is the number of equivalence classes in ([0, n],⪯)

minus 1.

Now suppose that ([0, n],⪯) is not a poset. Let S ⊆ [0, n] be a set of representative of the

equivalence classes of (A/≡,⪯) such that 0 ∈ S. We define the (S,⪯S) to be the induced preposet

on S, i.e., i ⪯S j if and only if i ⪯ j. The sliced preorder cones σ̃⪯ and σ̃⪯S := {(ci)i∈S ∈ RS | c0 =
0 and ci ≤ cj if i ⪯S j, i, j ∈ S} ⊂ RS have the same dimension, since the map φ : Rn −→ RS be

given by φ(x1, . . . , xn) = (xi)i∈S ∈ RS is a linear bijection between σ̃σ and σ̃σS . By the construction,

(S,⪯S) is a poset and, hence, we must have

dim(σ⪯) = dim(σ⪯S ) = |S| − 1 = #( equivalence classes in ([0, n],⪯))− 1.

(4) The maximal subspace in the half-space H := {(c1, . . . , cn) | ci ≤ cj} is given by ci = cj .

Thus, the maximal subspace contained in the cone σ̃⪯ is the intersection of all subspaces defined
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by ci = cj for i ⪯ j. Suppose that the Hasse diagram of ([0, n],⪯) is a connected graph. Then,

the maximal subspace in σ̃⪯ is given by 0 = c0 = c1 = · · · = cn. That is, the only subspace of Rn

contained in σ̃⪯ is the trivial subspace. Hence, σ̃⪯ is pointed.

Conversely, suppose that Hasse diagram of ([0, n],⪯) is not a connected graph. Let S1, . . . , Sk,

where k ≥ 2, be its connected components, i.e., S1, . . . , Sk are disjoint nonempty subset of [0, n]

such that S1 ∪ · · · ∪ Sk = [0, n]. Then, the maximal subspace U contained in σ̃⪯ is the intersection

of the subspaces U1, . . . , Uk where Ut := {(c1, . . . , cn) ∈ Rn | c0 = 0 and ci = cj for i, j ∈ St}. Note
that, for t ∈ [k], the dimension of Ut equals n − |St| + 1 for all t ∈ [k]. Thus, the dimension of U

equals n− (|S1|+ · · · |Sk| − k) = k− 1 ≥ 1. Hence, σ̃ contains the subspace U of dimension at least

1, implying that σ̃ is not pointed.

(5) Suppose that σ̃⪯ is an n-dimensional simplicial cone. Then, σ̃⪯ is pointed. Thus, by (4),

the Hasse diagram of ([0, n],⪯) is a connected graph. Since the dimension of σ̃⪯ is n, it follows from

(3) that there are exactly n + 1 equivalence classes in ([0, n],⪯). This implies that ([0, n],⪯) is a

poset. We note that the simplicity of σ̃⪯ implies that σ̃⪯ can be described by exactly n inequalities.

Using (2), we see that the poset ([0, n],⪯) must have exactly n distinct covering relations. Hence,

the Hasse diagram of ([0, n],⪯) must be a tree. The converse of the statement also follows from a

similar argument.

(6) This follows from (2) and the definition of σ⪯.

□

4.2. Binary partition and contraction

In this section, we consider a special family of preorders on [0, n] that can be represented by

what we call binary partitions of [0, n]. We will then characterize the contractions of these preorders

in terms of binary partitions. In the next section, we will consider special cases of these partitions

that will be useful for describing the normal cones of parking function polytopes.

Recall that an ordered partition of a nonempty set S is a tuple B = (B1, . . . , Bk) of nonempty

disjoint subsets of S such that B1 ⊔ · · · ⊔ Bk = S. Each subset Bi is called a block. To represent a

special family of preorders on [0, n], we introduce an analogue of ordered partition called “binary
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partition” of the set S = [0, n] by separating blocks into two different types: homogeneous, and non-

homogeneous. These block types will be useful for expressing the inequality description of preorder

cones. A homogeneous block is marked with a superscript ⋆ for differentiation; for example, {1, 3}⋆

is a homogeneous block. We are allowed to apply usual set operations such as union and intersection

to homogeneous and non-homogeneous blocks as we normally do to regular sets.

Definition 4.2.1. Let k ∈ P. A binary partition of [0, n] into k blocks is an ordered tuple

(B1, . . . , Bk) of nonempty disjoint subsets of [0, n] such that B1 ⊔ · · · ⊔ Bk = [0, n] and satisfies

the following additional properties.

(1) Every block is either homogeneous or non-homogeneous.

(2) Every singleton block is non-homogeneous.

Remark 4.2.2. For a singleton block, it has the property of both homogenous and non-homogeneous

blocks. However, because we do not want to allow both kinds, we make a choice to make it always

non-homogenous. Hence, we have Condition (2) in the above definition.

Definition 4.2.3. For each binary partition B = (B1, . . . , Bk) of [0, n], we associate the preorder

⪯B on the set [0, n] by letting

p ⪯B q if p ∈ Bi and q ∈ Bj and i < j

p ≡B q if p, q ∈ Bi for some homogeneous block Bi.

If a preposet ([0, n],⪯) satisfies ([0, n],⪯) = ([0, n],⪯B) for some binary partition B, then we say

that the preorder ⪯ is representable.

A binary partition C is a contraction of another binary partition B, denoted by C ≤ B, if ⪯C is

a contraction of ⪯B .

Example 4.2.4. Figure 4.3 shows preorders ⪯B,⪯C and ⪯D associated to the binary paritions

B = ({0, 2, 3}, {1, 6, 7}, {8}, {4, 5}),

C = ({1, 2, 5}, {3, 6}⋆, {7}, {0, 4}⋆, {8}), and

D = ({2, 3}, {0, 7}⋆, {6}, {1, 8}⋆, {4, 5}), respectively.
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It is not difficult to see that ⪯D is a contraction of ⪯B and so D ≤ B.

0 2 3

1 6 7

8

4 5

([0, 8],⪯B)

1 2 5

3,6

0,4

7

8

([0, 8],⪯C)

2 3

0, 7

6

1, 8

4 5

([0, 8],⪯D)

Figure 4.3. The preorders associated to B, C, and D in Example 4.2.4

One sees that labeling a block as being homogeneous is simply a way to represent an equivalent

class of a preposet. Not every preorder on [0, n] is representable by a binary partition. In fact, a

preorder on [0, n] is representable by a binary partition if and only if it induces a graded poset with

the properties i ⪯ j if the rank of j is higher than the rank of i, and every equivalent class of size

at least two is comparable with all other equivalent classes.

Lemma 4.2.5. Every contraction of a representable preorder on [0, n] is representable.

Proof. Suppose that a preorder is representable by B = (B1, . . . , Bk). To prove the statement,

it suffices to show that contracting one edge of the Hasse diagram of ([0, n],⪯B) gives a preorder

([0, n],⪯C) for some binary partition C.
Recall that the nodes of the Hasse diagram of a preorder are equivalent classes. Consider the

preorder ([0, n],⪯) obtained by contracting an edge g−h of the Hasse diagram of (⪯B, [0, n]) where

g and h are two equivalent classes of [0, n]/≡B . As an edge is contracted, we see that g and h come

from two consecutive blocks of B, that is, there is a positive integer i such that g ⊆ Bi and h ⊆ Bi+1.

We note that Bi\g = ∅ (resp. Bi+1\h = ∅) if and only if Bi is a homogeneous or singleton block.
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If both Bi and Bi+1 are neither homogeneous nor singleton blocks, we let X = Bi\g be a block of

the same type as Bi, and Y = Bi+1\h be a block of the same type as Bi+1. We define a binary

partition C having (g ∪ h)⋆ as its homogeneous block as follows.

(4.2.1) C =



(B1, . . . , Bi−1, (g ∪ h)⋆, Bi+2, . . . , Bp) if Bi\g = Bi+1\h = ∅

(B1, . . . , Bi−1, X, (g ∪ h)⋆, Bi+2, . . . , Bp) if Bi\g ̸= ∅ and Bi+1\h = ∅

(B1, . . . , Bi−1, (g ∪ h)⋆, Y, Bi+2, . . . , Bp) if Bi\g = ∅ and Bi+1\h ̸= ∅

(B1, . . . , Bi−1, X, (g ∪ h)⋆, Y, Bi+2, . . . , Bp) if Bi\g ̸= ∅ and Bi+1\h ̸= ∅

It’s then easy to check that ([0, n],⪯) = ([0, n],⪯C). □

The set of all binary partitions of [0, n] becomes a poset when partially ordered by contraction.

We now aim to characterize contraction in terms of graphs defined by binary partitions.

Given two binary partitions B = (B1, . . . , Bp) and C = (C1, . . . , Cq) of [0, n], we associate

the bipartite graph G(B, C) whose two disjoint sets of vertices are V1 = {B1, . . . Bp} and V2 =

{C1, . . . , Cq} (written in this order), and a vertex Bi ∈ V1 is adjacent to a vertex Cj ∈ V2 if

Bi ∩Cj ̸= ∅. The vertices in V1 will be called left vertices and the vertices in V2 will be called right

vertices. A vertex of G(B, C) is said to be non-homogeneous (resp. homogeneous) if it corresponds

to a non-homogeneous (resp. homogeneous) block of either B or C. When the edges of G(B, C)
are not crossing, we say that G(B, C) is non-crossing. See Figure 4.4 for examples of crossing and

non-crossing bipartite graphs.

G(B, C)

{0, 2, 3}

{1, 6, 7}⋆

{8}

{4, 5}

{1, 2, 5}

{3, 6}⋆

{7}

{0, 4}⋆

{8}

G(B,D)

{0, 2, 3}

{1, 6, 7}⋆

{8}

{4, 5}

{2, 3}

{0, 7}⋆

{6}

{1, 8}⋆

{4, 5}

Figure 4.4. G(B, C) is crossing but G(B,D) is non-crossing
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When G(B, C) is non-crossing, it is not difficult to verify the following result regarding the

intersections of the blocks of B and C.

Lemma 4.2.6. Let B = (B1, . . . , Bp) and C = (C1, . . . , Cq) be two binary partitions of [0, n]. Suppose

that G(B, C) is non-crossing. Then, for i ∈ [p] and j ∈ [q], we have

(1) If |C1| + · · · |Cj | < |B1| + · · · + |Bi|, then there exist positive integers s and t such that

s ≤ i, t > j, and both Cj ∩Bs and Ct ∩Bi are non-empty.

(2) Ci ∩Bj is nonempty if and only if

|C1|+ |C2|+ · · ·+ |Cj−1| < |B1|+ |B2|+ · · ·+ |Bi|, and

|B1|+ |B2|+ · · ·+ |Bi−1| < |C1|+ |C2|+ · · ·+ |Cj |.

(3) Bi ⊆ Cj ̸= ∅ if and only if

|C1|+ |C2|+ · · ·+ |Ci−1| ≤ |B1|+ |B2|+ · · ·+ |Bj−1|, and

|B1|+ |B2|+ · · ·+ |Bi| ≤ |C1|+ |C2|+ · · ·+ |Cj |.

For a vertext v of G(B, C), we define

deg⋆(v) := #(homogeneous vertices adjacent to v),

deg∨(v) := #(non-homogeneous vertices adjacent to v).

Clearly, deg(v) = deg⋆(v) + deg∨(v).

The next theorem is the main result of this section. It provides a characterization of binary

partition contractions in terms of bipartite graphs and their vertex degrees. We will devote the

rest of this section to proving it.

Theorem 4.2.7. Let B and C be binary partitions of [0, n]. We have that C ≤ B if and only if

G(B, C) satisfies the following conditions.

(1) G(B, C) is non-crossing.

(2) Every left non-homogeneous vertex v satisfies deg∨(v) ≤ 1.

(3) Every left homogeneous vertex v satisfies deg⋆(v) = 1 and deg∨(v) = 0
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(4) Every right non-homogeneous vertex v satisfies deg⋆(v) = 0 and deg∨(v) = 1.

(5) If a right homogeneous vertex v satisfies deg(v) = 1, then deg∗(v) = 1.

To prove Theorem 4.2.7, we first need to develop several observations and lemmas. Let us

start by describing the covering relations C ⋖ B. Recall that the nodes of the Hasse diagram of a

preorder are equivalent classes. Lemma 4.2.5 implies that ([0, n],⪯C) is obtained by contracting an

edge g−h of the Hasse diagram of ([0, n],⪯B) where g and h are two equivalent classes of [0, n]/≡B .

As in the proof of Lemma 4.2.5, C can be written as in equation (4.2.1). We can describe this in

terms of G(B, C) as follows.

Lemma 4.2.8. We have that B = (B1, . . . , Bp) is a cover of C = (C1, . . . , Cq) if and only if G(B, C)
is a non-crossing bipartite graph with a unique right vertex Cj of degree two satisfying the following

properties.

(1) The vertex Cj is homogeneous.

(2) Every right vertex that is not Cj has degree one and is adjacent to a vertex of the same

type

(3) Every left non-homogeneous vertex Bi that is adjacent to Cj has degree at most two and

satisfies |Bi ∩ Cj | = 1.

(4) Every left vertex that is not a non-homogeneous vertex adjacent to Cj has degree one and

is adjacent to a vertex of the same type.

Proof. Suppose that C ⋖ B. Then, there are four possible cases of C to check as shown in

equation (4.2.1). We note that the unique right homogeneous vertex Cj of degree two in G(B, C)
corresponds to the block (g∪h)⋆ of C. It is easy to verify using these four cases that G(B, C) satisfies
the non-crossing property and the two conditions. Conversely, suppose that G(B, C) is non-crossing
and satisfies the four conditions. Then, it is also not difficult to check that C can only have the

form shown in equation (4.2.1). Thus, C ⋖ B. □

Lemma 4.2.9. If C ≤ B, then G(B, C) satisfies conditions (2)-(5) in Theorem 4.2.7

Proof. To prove this statement, we first establish the following two steps. The first step

is to show that the statement holds for every G(B, C) such that B is a cover of C. This is a
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straightforward application of Lemma 4.2.8 and is left to the reader to verify. The second step is to

show that for all B,B′, C such that G(B,B′) and G(B′, C) satisfy conditions (2)-(5), we must have

that G(B, C) also satisfy these conditions. To see this, suppose that B,B′, C are binary partitions

in which G(B,B′) and G(B′, C) satisfy conditions (2)-(5). Let Bi be a left homogeneous vertex of

G(B,B′). By condition (3), Bi is adjacent to exactly one homogeneous vertex B′
j . Thus, Bi ⊆ B′

j .

Similarly for G(B′, C), we have B′
j ⊆ Ck for some right homogeneous vertex Ck. Hence, Bi ⊆ Ck.

Therefore, in G(B, C), the left homogeneous vertex Bi has degree one and is adjacent to the right

homogeneous vertex Ck. This shows that condition (3) holds for G(B, C).
Now let Ck be a right non-homogeneous vertex of G(B′, C). Since G(B,B′) and G(B′, C) satisfy

condition (4), one can use a similar argument to show that, in G(B, C), the left non-homogeneous

vertex Ck has degree one and is adjacent to a non-homogeneous vertex. Thus, condition (4) holds

for G(B, C).
Assume for the sake of contradiction that G(B, C) doesn’t satisfy condition (2). Then, there are

a left non-homogeneous vertex Bi and two right non-homogeneous vertices Ck1 and Ck2 adjacent to

Bi in G(B, C). We deduce from conditions (4) and (2) for G(B′, C) that Ck1 ⊆ B′
j1

and Ck2 ⊆ B′
j2

for some distinct left non-homogeneous vertices B′
j1

and B′
j2

of G(B′, C). Since Bi ∩ Ck1 ̸= ∅ and

Bi ∩ Ck2 ̸= ∅, it follows that Bi ∩ B′
j1

̸= ∅ and Bi ∩ B′
j2

̸= ∅. Hence, in G(B,B′), the left non-

homogeneous Bi is adjacent to the two non-homogeneous vertices B′
j1

and B′
j2
, a contradiction to

condition (2) for G(B,B′).

Now assume for the sake of contradiction that G(B, C) doesn’t satisfy condition (5). Then, there

is a right homogeneous vertex Ck of degree one and a left non-homogeneous vertex Bi adjacent to

Ck. Thus, Ck ⊆ Bi. Consider the following two cases. Cases I: Ck is adjacent to a left homogeneous

vertex B′
j in G(B′, C). Applying condition (3) to G(B′, C), we have B′

j ⊆ Ck and hence B′
j ⊆ Bi.

Thus, in G(B,B′), the the right non-homogeneous vertex B′
j has degree one and is adjacent to

the non-homogeneous vertex Bi, a contradiction to condition (5) for G(B,B′). Case II: Ck is not

adjacent to any left homogeneous vertex in G(B′, C). By condition (5), we deduce that Ck must be

adjacent to two non-homogeneous B′
j1

and B′
j2

of G(B′, C). Consequently, by condition (4), both

B′
j1

and B′
j2

are vertices of G(B,B′) of degree one and are adjacent to Bi. Hence, B
′
j1

⊆ Bi and

B′
j2

⊆ Bi. In particular, this implies that, in G(B,B′), the left non-homogeneous vertex Bi is

55



adjacent to at least two non-homogeneous vertices, a contradiction to (2) for G(B,B′). Since both

cases lead to contradictions, we must have that G(B, C) satisfies condition (5).

Suppose that C ≤ B. Then, C = Bt ⋖ · · · ⋖ B1 ⋖ B for some B1, . . . ,Bt. The two steps we

established above implies that G(B, C) satisfies conditions (2)-(5) in Theorem 4.2.7. □

The proof of Lemma 4.2.9 shows that conditions (2)-(5) in Theorem 4.2.7 define a transitive

relation on the set of all binary partitions on [0, n]. That is, we can define a transitive relation ;

on the set of all binary partitions on [0, n] by letting B ; C if G(B, C) satisfies conditions (2)-(5)

in Theorem 4.2.7.

Lemma 4.2.10. Suppose that B, C = (C1, . . . , Cq), and D be binary partitions of [0, n] in which both

G(B, C) and G(C,D) are non-crossing. If G(B,D) is crossing, then there exists an integer j such

that Cj is a vertex of degree at least two in G(B, C) and a vertex of degree at least two in G(C,D).

Proof. Suppose that G(B,D) is crossing. Then there exists an i such that Bi is adjacent to

Dk1 and Bi+1 is adjacent to Dk2 for some k1 > k2. Moreover, because G(B, C) is non-crossing,

there must exists j1 ≤ j2 such that such that Bi is adjacent to Cj1 in G(B, C) and Cj1 is adjacent

to Dk1 in G(C,D), and Bi+1 is adjacent to Cj2 in G(B, C) and Cj2 is adjacent to Dk2 in G(C,D).

Since G(C,D) is non-crossing, we deduce that j1 ≥ j2. Thus, j1 = j2. Let j = j1 = j2. Then Cj is

adjacent to both Bi and Bi+1 in G(B, C) and is adjacent to both Dk1 and Dk2 in G(C,D). Hence,

we found an integer j with the desired property. □

We can now give a proof of the characterization in Theorem 4.2.7.

Proof of Theorem 4.2.7. Suppose that C ≤ B. Then by Lemma 4.2.9, G(B, C) must satisfy

conditions (2)-(5). Thus, it only remains to be shown that G(B, C) is non-crossing. Clearly, the

non-crossing condition is satisfied when C = B. Thus, we may assume that B ≠ C. Let C =

Bt ⋖ Bt−1 ⋖ · · · ⋖ B0 = B be a maximal chain of strictly decreasing binary partitions from B to

C, i.e., Bi−1 is a cover of Bi for all i ∈ [t]. To see that G(B, C) is non-crossing, we proceed by

induction on t. When t = 1, B0 is a cover of B1. Thus, by Lemma 4.2.8, G(B0,B1) is non-crossing.

This establishes the base case. Now suppose that G(B0,Bt) is non-crossing for a positive integer t.

Assume for the sake of contradiction G(B0,Bt+1) is crossing. Then by Lemma 4.2.10, there exists
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an integer j such that B1
j is a right vertex of degree at least two of G(B0,B1) and a left vertex of

degree at least two of G(B1,Bt+1). Because B1 is a cover of B0, it follows from Lemma 4.2.8 that

B1
j is a right homogeneous vertex of G(B0,B1). Condition 4.2.9/(3) then implies that the vertex

Bt
j in G(Bt,Bt+1) has degree one, a contradiction. Thus, G(B0,Bt+1) must be non-crossing. By

induction, G(B0,Bt) = G(B, C) is non-crossing.
Conversely, suppose that G(B, C) meets these conditions. Let us first consider G(B, C) without

any right vertex of G(B, C) of degree greater than one. We claim that in this case C = B, which
will automatically gives C ≤ B as desired. To see this, we show that every left vertex of G(B, C)
has degree one and is adjacent to a vertex of the same type. Assume that there is a left vertex, say

Bi, of degree at least two. Then by condition (3), the left vertex Bi must be non-homogeneous. By

condition (2), one of the right vertex adjacent to Bi, say Cj , has to be homogeneous. However, by

condition (5), Cj must have degree at least two, a contradiction to the assumption deg(Cj) = 1.

Hence, every left vertex of G(B, C) has degree one. From here, one can easily verify using conditions

(3) and (4) that every edge of G(B, C) connects two vertices of the same types. This implies C = B
as claimed.

Now we consider G(B, C) with at least one right vertex of degree at least two. To see that C ≤ B,
we will construct a maximal chain of strictly increasing binary partitions C = Bt⋖Bt−1⋖· · ·⋖B0 = B.

Let j be an integer such that Cj is a right vertex of degree at least two. We note that condition

(4) implies that Cj is a homogeneous vertex. Because G(B, C) is a non-crossing bipartite graph, Cj

is adjacent to two consecutive blocks, say Bi and Bi+1. This implies that there exist an equivalent

class g ⊆ Bi such that g ⊆ Bi ∩Cj and an equivalent class h ⊆ Bi+1 such that h ⊆ Bi+1 ∩Cj . Let

B1 be the binary partition corresponding to contracting the edge g−h in the Hasse diagram of the

preposet ([0, n],⪯B). Hence, by construction, B1 ⋖ B. One sees that g ∪ h is a homogeneous block

of B1 and that G(B1, C) has g ∪ h as a left vertex of degree one and adjacent Cj . It is then easy to

see by considering the four cases described in equation (4.2.1) that G(B1, C) meets all of the five

conditions. Now repeat the same construction with G(B1, C) to produce B2 such that B2 ⋖ B1. By

repeatedly applying this procedure, we can eventually produce Bt ⋖ Bt−1 ⋖ · · ·⋖ B0 = B such that

the every right vertex of G(Bt, C) has degree one. This implies C = Bt ≤ B as desired. □
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4.3. Skewed binary composition and skewed binary partition

We now introduce “skewed binary partition” which is a special case of binary partition, and

“skewed binary composition”. These two combinatorial objects will provide us with sufficient infor-

mation to describe the normal fans of parking function polytopes. Similarly to how a composition

records the sizes of blocks in an ordered partition, a skewed binary composition will be used for

storing information of the blocks of a skewed binary partition. We begin by describing the skewed

binary composition notation. First, the entries of our composition are nonzero integers (as opposed

to being positive integers). Additionally, we allow two different variations of the entries: i◦ and

i⋆. We consider these two variations to have the same numerical values as i, and use the absolute

value sign to take their numerical values. Hence, |i◦| = |i⋆| = i = |i|.
For convenience, we let N◦ := {i◦ | i ∈ N}, P := N>0 and P⋆

≥2 := {i⋆ | i ∈ P, i ≥ 2}.

Definition 4.3.1. Let n ∈ P and k ∈ N. A skewed binary composition of n into k + 2 parts is an

ordered tuple b = (b−1, b0, b1, . . . , bk) such that
∑k

i=−1 |bi| = n and the entries of b satisfy

(b−1, b0) ∈ (N× N◦) ∪ (P× {0}) and bi ∈ P ∪ P⋆
≥2 for all 1 ≤ i ≤ k.

Example 4.3.2. The following are all possible skewed binary compositions of n = 3.

(0, 0◦, 1, 1, 1), (0, 0◦, 1, 2), (0, 0◦, 1, 2⋆), (0, 0◦, 2, 1), (0, 0◦, 2⋆, 1), (0, 0◦, 3), (0, 0◦, 3⋆),

(0, 1◦, 1, 1), (0, 1◦, 2), (0, 1◦, 2⋆),

(1, 0◦, 1, 1), (1, 0◦, 2), (1, 0◦, 2⋆),

(1, 0, 1, 1), (1, 0, 2), (1, 0, 2⋆),

(0, 2◦, 1), (1, 1◦, 1), (2, 0◦, 1), (2, 0, 1)

(0, 3◦), (1, 2◦), (2, 1◦), (3, 0◦), (3, 0).

Next, we introduce a similar notion to binary partition called ordered skewed binary partition

of the set S = [0, n] by allowing empty blocks together with additional restrictions.
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ordered bi-weekly partition B type(B)
({0, 2, 3}, ∅, {1, 6, 7}, {8}, {4, 5}) (2, 0, 3, 1, 2)

({2, 3}, {0, 7}⋆, {6}, {1, 8}⋆, {4, 5}) (2, 1◦, 1, 2⋆, 2)
({1, 3, 4, 5, 8}, {0}, {2}, {6, 7}) (5, 0◦, 1, 2)

(∅, {0}, {2, 3, 8}, {1, 6, 7}⋆, {4, 5}) (0, 0◦, 3, 3⋆, 2)
({5, 7}, {0, 1, 3}⋆, {2, 4}⋆, {6, 8}⋆) (2, 2◦, 2⋆, 2⋆)

(∅, {0, 1, 2, 3, 4, 5, 6, 7, 8}⋆) (0, 8◦)

Table 4.1. Examples of skewed binary partitions and their types

Definition 4.3.3. Let n ∈ P and k ∈ N. An (ordered) skewed binary partition of [0, n] into k + 2

blocks is an ordered tuple (B−1, B0, . . . , Bk) of disjoint subsets of [0, n] such that

B−1 ⊔B0 ⊔B1 ⊔ · · · ⊔Bk = [0, n] satisfying the following conditions:

(1) B0 is homogeneous, provided |B0| ≥ 2, and B−1 is non-homogeneous.

(2) 0 ∈ B−1 or 0 ∈ B0. If 0 ∈ B−1, then B−1 contains at least another element and B0 = ∅.
Hence, if 0 ∈ B−1, then |B−1| ≥ 2 and |B0| = 0.

(3) For each 0 ≤ i ≤ k, if Bi is a singleton, then it is non-homogeneous.

(4) Bi ̸= ∅ for all 1 ≤ i ≤ k.

See the first column of Table 4.1 for examples of skewed binary partitions of [0, 8]. Comparing

Definition 4.3.3 to Definition 4.2.1, one sees that a skewed binary partition is simply a binary

partition with extra requirements (conditions (1) and (2)). In fact, removing empty blocks from a

skewed binary partition yields a binary partition. For instance, removing the empty block from the

skewed binary partition shown at the top of Table 4.1 gives a binary partition in Example 4.2.4.

Thus, properties of binary partitions extend naturally to skewed binary partitions when regarded

in this way.

Definition 4.3.4. For a skewed binary partition B of [0, n], let B̂ be the binary partition obtained

by removing the empty blocks from B. We define the associate preorder ⪯B on the set [0, n] to be

the preorder ⪯B̂ . We also say that a skewed binary partition C is a contraction of another skewed

binary partition B if ⪯C is a contraction of ⪯B .

One notices that we also include a column of “type(B)” on the right of Table 4.1. We introduce

this concept in the definition below.
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Definition 4.3.5. Let B = (B−1, B0, B1, . . . , Bk) be a skewed binary partition of [0, n]. We asso-

ciate a skewed binary composition b = (b−1, b0, . . . , bk) of n to it in the following way:

(1) For 1 ≤ i ≤ k, let bi = |Bi| if Bi is non-homogeneous, and bi = |Bi|⋆ if Bi is homogenous.

(2) If 0 ∈ B0, then let b0 = h◦, where h = |B0| − 1, and let b−1 = |B−1|.
(3) If 0 ∈ B−1, then let b0 = |B0| = 0 and let b−1 = |B−1| − 1.

We say this vector b is the type of B and denote it by type(B).

It is easy to see that two skewed binary partitions are of the same type if and only if they differ

from one another by a permutation of nonzero numbers between blocks.

Remark 4.3.6. Suppose B = (B−1, B0, B1, . . . , Bk) has type b = (b−1, b0, . . . , bk). It is easy to see

that for 1 ≤ i ≤ k, the number bi tells us the cardinality of Bi and whether Bi is homogeneous or

not. In particular, Condition (3) of Definition 4.3.3 implies that bi ̸= 1⋆, and thus bi ∈ P ∪ P⋆
≥2.

For i = −1 or 0, the number |bi| is the cardinality of Bi \ {0}. Furthermore, one checks that

0 ∈ B0 if and only if (b−1, b0) ∈ N× N◦, and(4.3.1)

0 ∈ B−1 if and only if (b−1, b0) ∈ P× {0}.(4.3.2)

Hence, the type of each skewed binary partition of [0, n] is a skewed binary composition of n.

By (4.3.1), we have that 0 ∈ B0 if and only if b0 ∈ N◦. Moreover, when b0 = h◦, we know that

B0 consists of h positive integers and 0. This is the reason we use the notation h◦ in which the

superscript ◦ indicates that 0 needs to be included.

Example 4.3.7. See Figure 4.6 for examples of three skewed binary partitions B, C and D of [0, 8]

together with their respective types and associated preorder cones. (Note that B and D are the

first two skewed binary partitions given in Table 4.1.)

Applying Lemma 4.1.4/(3), we can compute the dimension of the sliced preorder cone σ̃B using

its type vector type(B) as stated in the next proposition.
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Proposition 4.3.8. Suppose that B = (B−1, B0, B1, . . . , Bk) is a skewed binary partitions of [0, n]

with type(B) = (b−1, b0, . . . , bk). Then the dimension of the slice preorder cone σ̃B is

(4.3.3) dim(σ̃B) = b−1 +

∑
bi∈P

bi

+#(bi ∈ P⋆
≥2)

and the co-dimension of σ̃B (with respect to the space Rn) is

|b0|+
∑

bi∈P⋆
≥2

(|bi| − 1).

Proof. By Lemma 4.1.4/(3), the dimension of σ̃B equals the number of equivalence classes

of the preposet ([0, n],⪯B) minus one. One observes that for each nonempty homogeneous block

Bi, it gives arise one equivalence class of the preposet ([0, n],⪯B), and for each non-homogeneous

block Bi, each singleton subset of Bi is an equivalence class and hence it gives arise |Bi| equivalence
classes. Thus, the total number of equivalences classes of ([0, n],⪯B) arising from B1, . . . , Bk is∑

bi∈P
bi

+#(bi ∈ P⋆
≥2)

and the total number equivalence classes arising from B−1 and B0 is given by |B−1| + χB0 ̸=∅,

where χB0 ̸=∅ is 1 if B0 is not the empty block ∅, and is 0 otherwise. However, by Condition (2) of

Definition 4.3.3, we have that B0 = ∅ if and only if 0 ∈ B−1. Then it follows from Definition 4.3.5

that b−1 = |B−1| − (1− χB0 ̸=∅). One sees that (4.3.3) follows from all the discussion above.

Finally, the co-dimension formula for σ̃B follows from (4.3.3) and the fact that n =
∑k

i=−1 |bi|.
□

The following result is an immediate consequence of Lemma 4.1.4/(6).

Corollary 4.3.9. Let B be a skewed binary partition of [0, n] and σ̃B be the sliced preorder cone

associated to B. If the preorder ⪯B defines a poset on [0, n], then

σ̃B =
⋃

π∈L[⪯B]

σ̃(π),

where L[⪯B] is the set of linear extensions of the poset ([0, n],⪯B) and σ̃(π) is defined as in (4.1.3)
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4.4. Face Structure

Recall that we define the parking function polytope PF(u) as the convex hull of all u-parking

functions. Although named a polytope, it is not immediately evident that PF(u) qualifies as one,

since it is defined as the convex hull of infinitely many points. The following proposition justifies

its name.

Proposition 4.4.1. The parking function polytope PF(u) is indeed a polytope, that is, it is a convex

hull of finitely many points.

Definition 4.4.2. A point v = (v1, . . . , vn) ∈ Rn is u-extreme if it is a permutation of a point of

the form

(4.4.1) (0, . . . , 0︸ ︷︷ ︸
k

, uk+1, . . . , un)

for some 0 ≤ k ≤ n. We denote by X (u) the set of all u-extreme points.

Example 4.4.3. Let u = (0, 0, 4, 4, 4, 6, 8, 8). Then X (u) is the set of all permutations of the 7

points:

(0, 0, 4, 4, 4, 6, 8, 8), (0, 0, 0, 4, 4, 6, 8, 8), (0, 0, 0, 0, 4, 6, 8, 8), (0, 0, 0, 0, 0, 6, 8, 8),

(0, 0, 0, 0, 0, 0, 8, 8), (0, 0, 0, 0, 0, 0, 0, 8), and (0, 0, 0, 0, 0, 0, 0, 0).

Proof of Proposition 4.4.1. We claim that PF(u) = conv(X (u)) the convex hull of u-

extreme points. Since there are only finitely many u-extreme points, this will show that PF(u) is

indeed a polytope.

Since every u-extreme point is a u-parking function, we have that conv(X (u)) ⊆ PF(u). It

remains to be shown that PF(u) ⊆ conv(X (u)). To see this, it suffices to show that every u-

parking function is a convex combination of u-extreme points.

Suppose a = (a1, . . . , an) is a u-parking function and b1 ≤ · · · ≤ bn is the increasing rearrange-

ment of a1, . . . , an. Let Ia be the set of indices i such that 0 < bi < ui. If Ia is empty, we define

the inner width of a to be 0; otherwise, we let t = max(Ia) and s be the least integer such that

0 < us, and define the inner width of a to be t− s+1. One sees that the inner width of a is always
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nonnegative, and is 0 if and only if a is u-extreme. We will prove that a is a convex combination

of u-extreme points by induction on the inner width of a.

The base case when the inner width of a is 0 is true, since a itself is a u-extreme. Now suppose

that a has inner width t − s + 1 ≥ 1, and that every u-parking function of inner width less than

t + s − 1 is a convex combination of u-extreme points. Let τ ∈ Sn be a permutation such that

(aτ(1), . . . , aτn) = (b1, . . . , bn) and let τ(k) = t. Then

(a1, . . . , an) =
ut − ak
ut

(a1, . . . , ak−1, 0, ak+1, . . . , an) +
ak
ut

(a1, . . . , ak−1, ut, ak+1, . . . , an)

is a convex combination of u-parking functions a∗ := (a1, . . . , ak−1, 0, ak+1, . . . , an) and

a′ := (a1, . . . , ak−1, ut, ak+1, . . . , an). Notice that the inner width of both a∗ and a′ decrease from

the inner width of a by at least one. Thus, by our induction hypothesis, we have that both a∗

and a′ are convex combinations of u-extreme points. Hence, a is also a convex combination of

u-extreme points, completing the proof. □

It turns out that X (u) is also the set of all vertices of PF(u). Although one can apply Lemma

1.2.2 to compute the normal cones of PF(u) and get this as a consequence later in Theorem 4.4.14,

we give a direct proof of it here.

Proposition 4.4.4. The point v ∈ PF(u) is a vertex of PF(u) if and only if v ∈ X (u).

Proof. Since PF(u) = conv(X (u)), every vertex of PF(u) must be a u-extreme point. Con-

versely, suppose that v = (v1, . . . , vn) is a u-extreme point. For simplicity of notations, we may

assume without loss of generality due to symmetry that v1 ≤ · · · ≤ vn. Thus, v is in the form of

(4.4.1) for some 0 ≤ k ≤ n. Suppose

v = (0, . . . , 0, uk+1, . . . , un) =

r∑
i=1

λiai

for some u-extreme points ai = (ai,1, . . . , ai,n), i ∈ [r], and some nonnegative real numbers λi such

that λ1+ · · ·+λr = 1. To see that v is a vertex of PF(u), it suffices to show that v = a1 = · · · = ar.

Since 0 is the least value that the coordinates of a u-extreme point can be, it follows that the

first k coordinates of ai are zero for all i ∈ [r], i.e., ai,j = 0 for i ∈ [r] and j ∈ [k]. Thus, it is left

to show that the last n− k coordinates of ai agree with the last n− k coordinates of v. However,
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because un is the greatest value of a u-extreme point’s coordinates and
∑

i=1 λiai,n = vn = un, we

must have that ai,n = vn for all i ∈ [r]. Similarly, because vn−1 = un−1 is the greatest value after

un that the coordinates of a u-extreme point can be, we have ai,n−1 = vn−1 for all i ∈ [r]. We

continue this arguments and can show that ai,j = vj for all j ∈ {k+ 1, . . . , n− 2} and i ∈ [r]. This

completes the proof. □

Hence, the parking function polytope is integral (resp. rational) if and only if u is an integral

(resp. rational) vector in Rn.

Since permuting the coordinates of a u-parking function (a1, . . . , an) still gives a u-parking

function, the polytope PF(u) itself also inherits this symmetric property. The next proposition

restates this observation more precisely.

Proposition 4.4.5. For every parking function polytope PF(u), we have that

(1) If (a1, . . . , an) lies in PF(u), then so does every permutation of (a1, . . . , an).

(2) If F is a face of PF(u), then for every permutation τ ∈ Sn the set

Fτ := {(aτ(1), . . . , aτ(n)) | (a1, . . . , an) ∈ F}

is also a face of PF(u).

(3) If σ is a normal cone of PF(u) at a face F, then for every permutation τ ∈ Sn the set

στ := {(cτ(1), . . . , cτ(n)) | (c1, . . . , cn) ∈ σ} is the normal corne of PF(u) at the face Fτ .

4.4.1. Face Poset and Normal Fan. In this part, we study the face poset and the normal

fan of the parking polytope PF(u). By Lemma 1.2.1, for every polytope P , the dual poset of F(P )

is isomorphic to the poset F(Σ(P )). Therefore, rather than describing the face poset of parking

function polytopes, we can alternatively describe their normal fans. It turns out that these fans

only depend on the multiplicity vector of u.

Definition 4.4.6. Assume that there are ℓ positive integers appearing in u: d1 < d2 < · · · < dℓ.

We define m0(u) to be the number of 0’s in u, and mi(u) be the number of di’s in u for each

1 ≤ i ≤ ℓ. We then define the multiplicity vector of u to be m(u) = (m0(u),m1(u), . . . ,mℓ(u))

and the data vector of u to be d(u) = (d1, d2, . . . , dℓ). We call (m,d) the MD pair of u.
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Example 4.4.7. If u = (0, 0, 4, 4, 4, 6, 8, 8), then m(u) = (2, 3, 1, 2) and d(u) = (4, 6, 8).

We say that d = (d1, . . . , dℓ) is a data vector if it is a data vector of some u, and m =

(m0,m1, . . . ,mℓ) is a multiplicity vector of magnitude n = m0 +m1 + · · ·mℓ if it is a multiplicity

vector of some u. (Note that the magnitude is the length of u.) Clearly, m = (m0,m1, . . . ,mℓ) is

a multiplicity vector if and only if m0,m1, . . . ,mℓ are integers such that m0 ≥ 0 and mi ≥ 1 for

i = 1, . . . , ℓ. Finally, we say (m,d) is an MD pair if (m,d) is the MD pair of some u.

It is clear that starting with an MD pair (m,d), there exists a unique u such that (m,d) is its

MD pair. Hence, we may interchangeably use (m,d) for u and write PF(m,d) as PF(u). As we

mentioned above, the face poset and the normal fan of the parking polytope PF(m,d) only depend

on the multiplicity vector m. Therefore, we will mostly use the notation PF(m,d) in this section.

Definition 4.4.8. Suppose m = (m0,m1, . . . ,mℓ) is a multiplicity vector of magnitude n. Let

r = n−m0 = m1 + · · ·mℓ. We let b0, . . . ,br be the following r+ 1 skewed binary compositions of

n:

(1) We let

b0 :=


(m0, 0,m1, . . . ,mℓ) if m0 > 0

(0, 0◦,m1, . . . ,mℓ) if m0 = 0

.

(2) Suppose 1 ≤ k ≤ r. Let j be the unique integer in which m1 + · · · + mj−1 < k ≤
m1 + · · ·+mj . We define bk := (m0 + k, 0◦,m1 + · · ·+mj − k,mj+1, . . . ,mℓ).

We denote by Ωm the set of these r + 1 skewed binary compositions of n.

Example 4.4.9. Let m = (2, 3, 1, 2) and m′ = (0, 3, 5) be two multiplicity vectors of magnitude 8.

Then

Ωm = {(2, 0, 3, 1, 2), (3, 0◦, 2, 1, 2), (4, 0◦, 1, 1, 2), (5, 0◦, 1, 2), (6, 0◦, 2), (7, 0◦, 1), (8, 0◦)}

Ωm′ = {(0, 0◦, 3, 5), (1, 0◦, 2, 5), (2, 0◦, 1, 5), (3, 0◦, 5), (4, 0◦, 4), (5, 0◦, 3), (6, 0◦, 2),

(7, 0◦, 1), (8, 0◦)}.
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Remark 4.4.10. It is easy to see that every preposet ([0, n],⪯B) where type(B) ∈ Ωm is a poset

(every equivalent class in ([0, n],⪯B) is a singleton) whose Hasse diagram is a connected graph.

Hence, by Lemma 4.1.4/(3)–(4) that every sliced preorder cone σ̃B in which type(B) ∈ Ωm is an

n-dimensional pointed cone.

Proposition 4.4.11. Suppose that m = (m0,m1, . . . ,mℓ) is a multiplicity vector of magnitude n.

Let

M := {σ̃B ⊆ Rn
∣∣∣ type(B) ∈ Ωm}

be the collection of sliced preorder cones corresponding to skewed binary partitions whose types are

in Ωm. Then we have that ⋃
σ̃∈M

σ̃ = Rn.

Proof. Let w = (w1, . . . , wn) ∈ Rn. We need to show that there exists σ̃B ∈ M such that

w ∈ σ̃B. To see this, it suffices, due to symmetry, to only consider w1 ≤ · · · ≤ wn.

If wn ≤ 0, then w lies in the cone

{c ∈ Rn | c1, . . . , cn ≤ 0} = σ̃B

where B = ({1, . . . , n}, {0}). Since type(B) = (n, 0◦) ∈ Ωm, it follows that σ̃B ∈ M.

If wn > 0, we let i ∈ [n] be the least positive integer such that wi > 0. For s ∈ [0, ℓ], let

ts := m0 +m1 + · · ·+ms. If m0 < i, by letting j be the least integer such that i ≤ tj , we see that

j ≥ 1 and that w lies in the cone

{c ∈ Rn | c1, . . . , ci−1 ≤ 0 ≤ ci, ci+1, . . . , ctj ≤ ctj+1, . . . , ctj+1 ≤ · · · ≤ ctℓ−1+1, . . . , ctℓ} = σ̃B

where B = ({1, . . . , i − 1}, {0}, {i, i + 1, . . . , tj}, {tj + 1, . . . , tj+1}, . . . , {tℓ−1 + 1, . . . , tℓ}). Because
type(B) = (i− 1, 0◦,m1 + · · ·+mj − i,mj+1, . . . ,mℓ) ∈ Ωm, we see that σ̃B ∈ M. If i ≤ m0, then

0 < m0 = t0 and w lies in the cone

{c ∈ Rn | 0, c1, . . . , ct0 ≤ ct0+1, . . . , ct1 ≤ · · · ≤ ctℓ−1+1, . . . , ctℓ} = σ̃B

where B = ({0, 1, . . . , t0}, ∅, {t0+1, . . . , t1}, . . . , {tℓ−1+1, . . . , tℓ}). As type(B) = (m0, 0,m1, . . . ,mℓ)

∈ Ωm, we have σ̃B ∈ M. This shows that w lies in some σ̃ ∈ M. Hence,
⋃

σ̃∈M σ̃ = Rn. □
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Definition 4.4.12. Let (m,d) be an MD pair such that d = (d1, . . . , dℓ) and m = (m0,m1, . . . ,mℓ)

is a multiplicity vector of magnitude n. Suppose that B = (B−1, B0, B1, . . . , Bk) is a skewed binary

partition such that type(B) = (b−1, b0, b1, . . . , bk) ∈ Ωm. We define vB = (v1, . . . , vn) to be the

point in Rn given by

vi =


0 if i ∈ B−1

dℓ−k+j if i ∈ Bj for some j ∈ [ℓ]

.

It is easy to see that the set {vB | type(B) ∈ Ωm} is exactly the set of (m,d)-extreme

points in PF(m,d) (see Definition 4.4.2 where we replace u with (m,d)). Suppose that (m,d)

is the MD pair of u = (u1, . . . , un) and type(B) = (b−1, b0, b1, . . . , bk). Then, we can equiva-

lently define vB = (v1, . . . , vn) as the point that is the permutation of the point (w1, . . . , wn)

= (0, . . . , 0, ub−1+1, . . . , un) satisfying vi = wt if i ∈ Bj , where t = |b−1|+ · · ·+ |bj |.

Example 4.4.13. Consider the MD pair (m,d) where m = (2, 3, 1, 2) and d = (4, 6, 8). Let B, C
be the two skewed binary partitions given by

B = ({0, 2, 3}, ∅, {1, 6, 7}, {8}, {4, 5}) and C = ({1, 3, 4, 5, 8}, {0}, {2}, {6, 7}).

By Example 4.4.9, one has that type(B), type(C) ∈ Ωm and that

vB = (4, 0, 0, 8, 8, 4, 4, 6) and vC = (0, 6, 0, 0, 0, 8, 8, 0)

are two (m,d)-extreme points in PF(m,d). In fact, one sees the set of (m,d)-extreme points given

in Example 4.4.3 is exactly the set {vB | type(B) ∈ Ωm}.

The next theorem shows that {vB | type(B) ∈ Ωm} is precisely the set of vertices of PF(m,d)

and describes the normal cone at each vertex.

Theorem 4.4.14. Let (m,d) be an MD pair. Then, the map B 7→ vB defines a bijection between

the set {B | type(B) ∈ Ωm} and the set of the vertices of PF(m,d). Moreover, we have that

ncone(vB,PF(m,d)) = σ̃B.
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Proof. Suppose that B = (B−1, B0, B1, . . . , Bk) satisfies type(B) = (b−1, b0, . . . , bk) ∈ Ωm.

Since {vB | type(B) ∈ Ωm} equals the set of (m,d)-extreme points, it follows from Proposition

4.4.1 that PF(m,d) = conv(vB | type(B) ∈ Ωm). To prove the statement, we first show that vB

is a vertex of PF(m,d) and ncone(vB,PF(m,d)) = σ̃B. By Theorem 4.4.11 and Lemma 1.2.2, it

suffices to show that, for every B′ such that type(B′) ∈ Ωm and B′ ̸= B, one has

c · vB > c · vB′ for all c ∈ σ̃◦B.

Let c = (c1, . . . , cn) ∈ σ̃◦B. Then, by Theorem 4.1.4/(2), the vector c satisfies

cp < cq if p ∈ Bi and q ∈ Bj and i < j

where we set c0 = 0. Similarly, by definition, the point vB = (v1, . . . , vn) satisfies

vp = 0 if p ∈ B−1, and 0 < vp < vq if p ∈ Bi and q ∈ Bj and 1 ≤ i < j.

One sees that cp < cq provided vp < vq, and that 0 < cp provided 0 < vp. Moreover, the non-

decreasing rearrangement of v1, . . . , vn is given by the sequence

0, . . . , 0,︸ ︷︷ ︸
|b−1| terms

dℓ−k+1, . . . , dℓ−k+1︸ ︷︷ ︸
|b1| terms

, . . . , dℓ−k+k, . . . , dℓ−k+k︸ ︷︷ ︸
|bk| terms

.

Let B′ = (B′
−1, B

′
0, B

′
1, . . . , B

′
t) be a skewed binary partition satisfying type(B′) = (b′−1, b

′
0, . . . , b

′
t) ∈

Ωm and B′ ̸= B. Then, vB′ = (v′1, . . . , v
′
n) is a point such that vB ̸= vB′ and the non-decreasing

rearrangement of v′1, . . . , v
′
n is given by

0, . . . , 0,︸ ︷︷ ︸
|b′−1| terms

dℓ−t+1, . . . , dℓ−t+1︸ ︷︷ ︸
|b′−1| terms

, . . . , dℓ−t+t, . . . , dℓ−t+t︸ ︷︷ ︸
|b′t| terms

.

If |b−1| ≤ |b′−1|, then, by the definition of Ωm, the sequence

dℓ−k+1, . . . , dℓ−k+1︸ ︷︷ ︸
|b1| terms

, . . . , dℓ−k+k, . . . , dℓ−k+k︸ ︷︷ ︸
|bk| terms

(4.4.2)
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can be obtained by removing the first (|b′−1| − |b−1|) terms of the sequence

dℓ−t+1, . . . , dℓ−t+1︸ ︷︷ ︸
|b′1| terms

, . . . , dℓ−t+t, . . . , dℓ−t+t︸ ︷︷ ︸
|b′t| terms

.(4.4.3)

Thus, by applying the rearrangement inequality, one sees that c · vB > c · vB′ .

Similarly, if |b−1| > |b′−1|, then the sequence in (4.4.3) can be obtained by removing the first

(|b′−1|− |b−1|) terms of the sequence in (4.4.2). In this case, we must have that |b−1| > m0 and that

cp < 0 if p ∈ B−1\{0}, and 0 < cp if p ∈ Bj for some j ≥ 1.

Thus, the rearrangement inequality implies that c · vB > c · vB′ .

Therefore, by Theorem 4.4.11 and Lemma 1.2.2, the point vB is a vertex of PF(m,d) and

ncone(vB,PF(m,d)) = σ̃B. Consequently, the map B 7→ vB is a bijection between the set {B |
type(B) ∈ Ωm} and the set of the vertices of PF(m,d). □

It is apparent that every polytope of dimension at most 2 is simple. When a polytope has

dimension greater than 2, it becomes nontrivial to verify its simplicity. Theorem 4.4.14 allows us

to determine exactly when PF(m,d) is a simple polytope.

Corollary 4.4.15. Let (m,d) be an MD pair where m = (m0,m1, . . . ,mℓ). Then PF(m,d) is

simple if and only if either m = (0, n) or (n− 1, 1) or m1 = · · · = mℓ−1 = 1 for some ℓ ≥ 2.

Proof. Recall that an n-dimensional polytope in Rn is simple if and only if, for every vertex

of the polytope, the normal cone at the vertex is simplicial. Since {vB | type(B) ∈ Ωm} is the set

of vertices of PF(m,d) and ncone(vB,PF(m,d)) = σ̃B, it suffices by Lemma 4.1.4/(5) to show that

the preorder ⪯B defines a poset whose Hasse diagram is a tree for all B satisfying type(B) ∈ Ωm if

and only if either m = (0, n) or (n− 1, 1) or m1 = · · · = mℓ−1 = 1 for some ℓ ≥ 2.

If ℓ = 1, then it’s easy to check that ([0, n],⪯B) is a poset whose Hasse diagram is a tree

for all B with type(B) ∈ Ωm if and only if m = (0, n) or (n − 1, 1). Similarly, if ℓ ≥ 2, then

([0, n],⪯B) is a poset whose Hasse diagram is a tree for all B satisfying type(B) ∈ Ωm if and only

if m1 = · · · = mℓ−1 = 1. □
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Theorem 4.4.14 describes the full dimensional cones in Σ(PF(u)), the normal fan of PF(u).

Since the lower dimensional cones are faces of the full dimensional cones in Σ(PF(u)), it follows

from Lemma 4.1.4/(1) that they correspond to the contractions of the preorders ⪯B on [0, n] where

B is a skewed binary partition such that type(B) ∈ Ωm.

Definition 4.4.16. Let m be a multiplicity vector. We define BWP(m) to be the poset of all

skewed binary partitions B such that type(B) ∈ Ωm and their contractions, ordered by contraction,

i.e., C,B ∈ BWP(m) satisfty C ≤ B if C is a contraction of B.

The following result is then an immediate consequence of Theorem 4.4.14 and Lemma 4.1.4/(1).

Corollary 4.4.17. Let (m,d) be an MD pair. Then the posets BWP(m) and F(Σ(PF(m,d)))

are isomorphic. Moreover, if F is the face of PF(m,d) in which ncone(F,PF(m,d)) corresponds

to the skewed binary partition B, then ncone(F,PF(m,d)) = σ̃B.

Thus, the combinatorial types of parking function polytopes only depend on the multiplicity

vector, i.e., two parking functions polytopes PF(u1) and PF(u2) have isomorphic face posets if

m(u1) = m(u2). It is not difficult to see that there are 2n − 1 distinct multiplicity vectors m

of magnitude n such that PF(m,d) is n-dimensional. Figure 4.5 shows that there are exactly

three different combinatorial types of 2-dimensional parking function polytopes PF(m,d), and two

distinct multiplicity vectors correspond to different types.

Figure 4.5. Three different combinatorial types of 2-dimensional PF(m,d)

Remark 4.4.18. Corollary 4.4.17 implies that the normal fan of every parking function polytope

PF(u) is a coarsening of the normal fan of PF(1, 2, . . . , n), meaning PF(u) can be viewed as a

deformation of PF(1, 2, . . . , n).
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It is then natural to ask how we can describe skewed binary partitions in the correspondence.

Due to the symmetry of parking function polytope, we have that if a skewed binary partition B
corresponds to a normal cone in Σ(PF(m,d)), then every skewed binary partition of the same type

type(B) also corresponds to a normal cone in Σ(PF(m,d)). Thus, we can describe these skewed

binary partitions by their types. To have a better idea of how we can describe them, we present an

example first.

Example 4.4.19. Consider the MD pair (m,d) where m = (2, 3, 1, 2) and d = (4, 6, 8). The skewed

binary partition B = ({0, 2, 3}, ∅, {1, 6, 7}, {8}, {4, 5}) is from BWP(m). We saw in Example 4.3.7

and Example 4.4.13 that B corresponds to the sliced preorder cone

σ̃B = {(c1, . . . , c8) ∈ R8 | 0, c2, c3 ≤ c1, c6, c7 ≤ c8 ≤ c4, c5},

which is also the normal cone at the vertex vB = (4, 0, 0, 8, 8, 4, 4, 6). The table below shows

examples of skewed binary partitions in a maximal chain of BWP(m), each of which corresponds

to contractions of ⪯B . They also correspond to the normal cones in Σ(PF(m,d)) of dimensions 8

to 0 (in decreasing order of dimensions). The first three skewed binary partitions are also displayed

in Figure 4.6.

skewed binary partition type

({0, 2, 3}, ∅, {1, 6, 7}, {8}, {4, 5}) (2, 0, 3, 1, 2)

({0, 2, 3}, ∅, {6, 7}, {1, 8}⋆, {4, 5}) (2, 0, 2, 2⋆, 2)

({2, 3}, {0, 7}⋆, {6}, {1, 8}⋆, {4, 5}) (2, 1◦, 1, 2⋆, 2)

({3}, {0, 2, 7}⋆, {6}, {1, 8}⋆, {4, 5}) (1, 2◦, 1, 2⋆, 2)

({3}, {0, 2, 7}⋆, {1, 6, 8}⋆, {4, 5}) (1, 2◦, 3⋆, 2)

({3}, {0, 2, 7}⋆, {1, 5, 6, 8}⋆, {4}) (1, 2◦, 4⋆, 1)

({3}, {0, 1, 2, 5, 6, 7, 8}⋆, {4}) (1, 6◦, 1)

(∅, {0, 1, 2, 3, 5, 6, 7, 8}⋆, {4}) (0, 7◦, 1)

(∅, {0, 1, 2, 3, 4, 5, 6, 7, 8}⋆) (0, 8◦)

We characterize the types of the ordered skewed binary partitions corresponding to the normal

cones in Σ(PF(m,d)) in the following proposition.
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0 2 3

1 6 7

8

4 5

([0, 8],⪯B)

B = ({0, 2, 3}, ∅, {1, 6, 7}, {8}, {4, 5})
type(B) = (2, 0, 3, 1, 2)

σ̃B = {0, c2, c3 ≤ c1, c6, c7 ≤ c8 ≤ c4, c5}

contracting 1− 8

0 2 3

6 7

1, 8

4 5

([0, 8],⪯C)

C = ({0, 2, 3}, ∅, {6, 7}, {1, 8}⋆, {4, 5})
type(C) = (2, 0, 2, 2⋆, 2)

σ̃C = {0, c2, c3 ≤ c6, c7 ≤ c1 = c8 ≤ c4, c5}

contracting 0− 7

2 3

0, 7

6

1, 8

4 5

([0, 8],⪯D) D = ({2, 3}, {0, 7}⋆, {6}, {1, 8}⋆, {4, 5})
type(D) = (2, 1◦, 1, 2⋆, 2)

σ̃D = {c2, c3 ≤ 0 = c7 ≤ c6 ≤ c1 = c8 ≤ c4, c5}

Figure 4.6. Both ⪯C and ⪯D are contractions ⪯B
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Proposition 4.4.20. Suppose that m = (m0, . . . ,mℓ) is a multiplicity vector of magnitude n, and B
is a skewed binary partition of [0, n]. Then B is in BWP(m) if and only if type(B) = (b−1, b0, . . . , bp)

is a skewed binary composition satisfying the following conditions.

(1) 0 < |b−1|+ |b0| ≤ m0 if and only if b−1 ̸= 0 and b0 = 0.

(2) m0 < |b−1|+ |b0|+ |b1| and for every positive integer i ≤ ℓ, there exists at most one positive

integer j such that

m0 + · · ·+mi−1 ≤ |b−1|+ · · ·+ |bj−1| < |b−1|+ · · ·+ |bj | ≤ m0 + · · ·+mi.(4.4.4)

(3) If j is a positive integer such that there exists a positive integer i satisfying (4.4.4), then

bj ∈ P. Otherwise, bj ∈ P⋆ for 1 ≤ j ≤ p.

Before proving Proposition 4.4.20, we first establish a few auxiliary results.

Lemma 4.4.21. Let m = (m0, . . . ,mℓ) be a multiplicity vector, and A = (A−1, A0, . . . , Aq) be a

skew binary partition such that type(A) = (a−1, a0, . . . , aq) ∈ Ωm. If B = (B−1, B0, . . . , Bp) is a

contraction of A, then type(B) = (b−1, b0, . . . , bp) satisfies m0 < |b−1|+ |b0|+ |b1|.

Proof. Let us first consider the case where B = (B−1, B0). Then, B−1 ∪ B0 = [0, n] and so

n = |b−1| + |b0|. Since type(A) ∈ Ωm, we have m0 ≤ |a−1|. If m0 = |a−1|, then 0 < m0 and

type(A) = (m0, 0,m1, . . . ,mℓ) for some ℓ ≥ 1. Thus, we obtain m0 = |a−1| < n = |b−1| + |b0| as
desired. If m0 < |a−1|, then also have m0 < |a−1| ≤ n = |b−1|+ |b0|.

Now consider B = (B−1, B0, . . . , Bp) for some p ≥ 1. Note that since one of B−1 and B0 can

be empty, one of them may not be a vertex of G(Â, B̂). We claim that

A−1 is a proper subset of (B−1 ∪B0 ∪B1)\{0},(4.4.5)

which then givesm0 ≤ |a−1| < |b−1|+|b0|+|b1| as desired. To see this, it suffices by the non-crossing

property of G(Â, B̂) to show that the vertex B1 is adjacent to As for some positive integer s ∈ [p].

Since 0 ̸∈ B1 and A0 is either {0} or ∅, the vertex B1 of G(Â, B̂) is not adjacent to A0. Thus,

if A−1 = ∅, then clearly the vertex B1 must be adjacent to As for some positive integer s ∈ [p].

Hence, we may suppose that A−1 is nonempty. Assume for the sake of contradiction that the

vertex B1 of G(Â, B̂) is only adjacent to the non-homogeneous vertex A−1. Then, the non-crossing
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property of G(Â, B̂) implies that B−1 and B0 are only adjacent to A−1 as well. Thus, by Theorem

4.2.7/(5), the vertices B0 (if nonempty) and B1 are non-homogeneous. However, this means that

the left non-homogeneous vertex A−1 are adjacent to at least two non-homogeneous vertices in

{B−1, B0, B1}, a contradiction to Theorem 4.2.7/(2). Therefore, the claim must hold. □

Lemma 4.4.22. Let m = (m0, . . . ,mℓ) be a multiplicity vector, and A be a skew binary partition

such that type(A) ∈ Ωm. Suppose that p is a positive integer, and B = (B−1, B0, . . . , Bp) is a skew

binary partition that is a contraction of A. Let j ∈ [p] be a positive integer. Then, the right vertex

Bj of G(Â, B̂) has degree at least two if and only if there exists a nonnegative integer k ≤ ℓ such

that type(B) = (b−1, . . . , bp) satisfies

|b−1|+ |b0|+ · · ·+ |bj−1| < m0 + · · ·mk < |b−1|+ |b0|+ · · ·+ |bj |.

Proof. Let j ∈ [p] be a positive integer. Let us write A = (A−1, A0, . . . , Aq) and type(A) =

(a−1, a0, . . . , aq). Note that since type(A) ∈ Ωm, one has |a−1| ≥ m0, and A0 is either {0} or ∅.
(=⇒) Suppose that the right vertex Bj of G(Â, B̂) has degree at least two. Then, by (4.4.5) in

the proof of Lemma 4.4.21, one has that A−1 is a proper subset of (B−1 ∪B0 ∪B1)\{0}, and

|a−1| = |a−1|+ |a0| < |b−1|+ |b0|+ |b1| ≤ |b−1|+ |b0|+ · · ·+ |bj−1|.

By the non-crossing property of G(Â, B̂), the right vertex Bj must be adjacent to a vertex As for

some positive integer s ∈ [q]. Since Bj has degree at least two, we may let At where t ̸= s be

another left vertex of G(Â, B̂) adjacent to Bj . We first consider t ≥ 1. Then, we may assume

without loss of generality that 1 ≤ s < t. Since type(A) ∈ Ωm, we may write

(4.4.6) (a−1, a0, . . . , aq) = (a−1, a0,m0 + · · ·+mg − a−1,mg+1, . . . ,mℓ),

where a0 ∈ {0, 0◦} and g < ℓ is a positive integer such that m0+ · · ·+mg−1 ≤ a−1 < m0+ · · ·+mg.

Note that, for f ∈ [0, q] and h ∈ [0, p], one has

f∑
r=0

|Ar| = 1 +

f∑
r=0

|ar| and

h∑
r=−1

|Br| = 1 +

h∑
r=−1

|br|.(4.4.7)
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Since both G(Â, B̂) and G(B̂, Â) are non-crossing, and the intersections Bj ∩ As and At ∩ Bj are

nonempty, we deduce from (4.4.7) and Lemma 4.2.6/(2) that

j−1∑
r=−1

|br| <
s∑

r=−1

|ar| ≤
t−1∑
r=−1

|ar| <
j∑

r=−1

|br|.

Because g + s− 1 ≥ 1 and
∑s

r=−1 |ar| =
∑g+s−1

r=0 mr, we obtain as desired

|b−1|+ |b0|+ · · ·+ |bj−1| < m0 + · · ·mg+s−1 < |b−1|+ |b0|+ · · ·+ |bj |.

Now consider t ≤ 0. Since 0 ̸∈ Bj and A0 is either {0} or ∅, it follows that t = −1. By the

non-crossing property of G(Â, B̂), the vertices B−1, B0, . . . , Bj−1 have degree one and are adjacent

to A−1, and the block A0 = ∅. Thus, B−1 ∪ B0 ∪ · · · ∪ Bj−1 is a proper subset of A−1. As

type(A) ∈ Ωm, we must have m0 > 0 and type(A) = (m0, 0,m1, . . . ,mℓ). Moreover, by Theorem

4.2.7/(5), the right vertices B−1, B0, . . . , Bj−1 are non-homogeneous and are adjacent to the left

non-homogeneous vertex A−1. By Theorem 4.2.7/(2), we must have j = 1. Hence,

|b−1|+ |b0|+ · · ·+ |bj−1| = |b−1|+ |b0| < |a−1| = m0 < |b−1|+ |b0|+ · · ·+ |bj |.

(⇐=) Conversely, suppose that there exists a nonnegative integer k ≤ ℓ such that type(B) =
(b−1, . . . , bp) satisfies

|b−1|+ |b0|+ · · ·+ |bj−1| < m0 + · · ·mk < |b−1|+ |b0|+ · · ·+ |bj |.

If g ≤ k, then one sees from (4.4.7) together with the non-crossing property of G(Â, B̂) and Lemma

4.2.6/(1) that Bj is adjacent to Ak−g+1 and Ai for some i > k − g + 1. Thus, in this case, the

vertex Bj has degree at least two. On the other hand, if k < g, then the non-crossing property

of G(Â, B̂) implies that Bj is adjacent to A−1. Moreover, by (4.4.5) in the proof of Lemma 4.4.21

and the non-crossing property of G(Â, B̂), we must have that Bj is adjacent to a vertex As for

some positive integer s ∈ [q]. Hence, the vertex Bj also has degree at least two in this case. This

completes the proof. □

Definition 4.4.23. A skewed binary partition B = (B−1, B0, B1, . . . , Bp) is standard if for every

nonnegative integer i ≤ p every positive integer in Bi is greater than every positive integer in Bi−1.
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We make the following remarks of useful properties of standard skewed binary partition for

later reference.

Remark 4.4.24. If B = (B−1, B0, B1, . . . , Bp) is standard with type(B) = (b−1, · · · , bp), then

|b−1|+ · · ·+ |bi| = the maximum integer in Bi\{0}

for all i such that Bi\{0} ≠ ∅.

Proof of Proposition 4.4.20. Let B be a skewed binary partition of [0, n].

(=⇒) Suppose that B ∈ BWP(m) and type(B) = (b−1, b0, . . . , bp) is a skew binary composition.

Thus, B is a contraction of A = (A−1, . . . , Aq) for some A such that type(A) = (a−1, a0, . . . , aq) ∈
Ωm. Note that |a−1| ≥ m0, and A0 is either {0} or ∅.

We first show that (b−1, . . . , bp) satisfies condition (1). Suppose that 0 < |b−1| + |b0| ≤ m0.

Since |a−1| ≥ m0 > 0, the block A−1 is nonempty. Assume for the sake of contradiction that

b0 ̸= 0. Then 0 ∈ B0. Since 0 < |b−1| + |b0| = |(B−1 ∪ B0)\{0}|, there exists a positive integer

in B−1 or B0. If a positive integer is in B0, then B0 is homogeneous. By Theorem 4.2.7/(5),

the right homogeneous vertex B0 of G(Â, B̂) must be adjacent to a vertex other than A−1. The

non-crossing property of G(Â, B̂) then implies that A−1 can only be adjacent to B−1 or B0 (or

both). Thus, A−1 is a proper subset of B−1 ∪ B0. However, this is not possible, since it would

give |b−1| + |b0| = |b0| > |a−1| ≥ m0. Hence, we must have B0 = {0} and that B−1 contains a

positive integer. In particular, B−1 is a nonempty block and is a right non-homogeneous vertex

of G(Â, B̂) adjacent to A−1. Since, by 4.2.7/(2), the left non-homogeneous vertex A−1 of G(Â, B̂)
cannot be adjacent to both non-homogeneous vertices B−1 and B0, it follows that 0 ∈ A0. Because

type(A) ∈ Ωm, it follows that |a−1| > m0. Moreover, in G(Â, B̂), the vertices A0 and B0 are

adjacent. By the non-crossing property of G(Â, B̂), the vertex A−1 can only be adjacent to B−1

or B0 (or both). Thus, A−1 ⊆ B−1 ∪ B0. This means |b−1| + |b0| ≥ |a−1| > m0, a contradiction.

Therefore, we must have b0 = 0 as desired. It then follows from the definition of skew binary

partition that B0 = ∅, and B−1 contains 0 and another positive integer. Hence, we have b−1 ̸= 0.

Conversely, suppose that b−1 ̸= 0 and b0 = 0. Then, B0 = ∅, and B−1 contains 0 and another

positive integer. By Theorem 4.2.7/(4), the left non-homogeneous B−1 of G(Â, B̂) has degree one.
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This implies that B−1 is a subset of a block Aj for some j ∈ [−1, q]. In particular, we must have

that A0 ̸= {0}, since A0 = {0} would intersect but would not contain B−1. Because type(A) ∈ Ωm,

it follows that m0 > 0, A0 = ∅, and |a−1| = m0. By the non-crossing property of G(Â, B̂) and

Theorem 4.2.7/(4), the vertex B−1 is only adjacent to A−1. Hence, we have B−1 ⊆ A−1, which

then implies 0 < |b−1| = |b−1|+ |b0| ≤ |a−1| = m0 as desired.

Next, we show that type(B) satisfies condition (2). By Lemma 4.4.21, we have m0 < |b−1| +
|b0|+ |b1|. Assume by way of contradiction that there exists a positive integer i ≤ ℓ together with

two consecutive positive integers j, j+1 satisfying inequality (4.4.4). Let kt = |b−1|+ · · ·+ |bj+t−1|
for t = 0, 1, 2. The assumption implies that

(4.4.8) m0 + · · ·+mi−1 ≤ k0 < k1 < k2 ≤ m0 + · · ·+mi.

Then, by Lemma 4.4.22, both vertices Bj and Bj+1 of G(Â, B̂) must have degree one. Because

every left vertex of G(Â, B̂) is non-homogeneous, it follows from Theorem 4.2.7/(5) that both Bj

and Bj+1 are non-homogeneous. As shown in (4.4.5) in the proof of Lemma 4.4.21, one has that

A−1 is a proper subset of (B−1 ∪B0 ∪B1)\{0}, and

|a−1| = |a−1|+ |a0| < |b−1|+ |b0|+ |b1| ≤ |b−1|+ |b0|+ · · ·+ |bj−1|.

The non-crossing property of G(Â, B̂) then implies that the vertex Bj must be adjacent to As for

some positive integer s ∈ [q], and the vertex Bj+1 must be adjacent to At for some positive integer

t ∈ [q] such that s ≤ t. Thus, Bj ⊆ As and Bj+1 ⊆ At. Moreover, because both Bj and Bj+1

are non-homogeneous, Theorem 4.2.7/(3) implies that As ̸= At, i.e., 1 ≤ s ̸= t. Then, we have by

Lemma 4.2.6/(3)

k1 =

j∑
r=−1

|br| <
s∑

r=−1

|ar| =
g+s−1∑
r=0

mr ≤
t−1∑
r=−1

|ar| <
j+1∑
r=−1

|br| = k2,

a contradiction to the assumption (4.4.8). This shows that type(B) satisfies condition (2).

We now show that type(B) satisfies condition (3). Suppose that j is a positive integer such

that there exists a positive integer i satisfying inequality (4.4.4). Let us define k0, k1 as before and
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write (a−1, a0, . . . , aq) as in equation (4.4.6). Then,

m0 + · · ·+mi−1 ≤ k0 < k1 ≤ m0 · · ·+mi.

By Lemma 4.4.22, the vertex Bj of G(Â, B̂) has degree one. Since every left vertex of G(Â, B̂) is

non-homogeneous, we see from Theorem 4.2.7/(5) that Bj is non-homogeneous. Therefore, bj ∈ P.

Now suppose that j is a positive integer such that there is no positive integer i satisfying

inequality (4.4.4). As shown in (4.4.5) in the proof of Lemma 4.4.21, we have m0 ≤ |a−1|+ |a0| <
|b−1| + |b0| + |b1| ≤ k1, and the vertex Bj of G(Â, B̂) is adjacent to As for some positive integer

s ∈ [q]. This implies that there exists a nonnegative integer i ≤ ℓ such that

k0 < m0 + · · ·+mi < k1.

Thus, by Lemma 4.4.22, the vertex Bj of G(Â, B̂) also has at least degree two. Thus, by Theorem

4.2.7/(4), the block Bj is homogeneous. Hence, bj ∈ B⋆.

(⇐=) Conversely, suppose that B is a skew binary partition such that type(B) = (b−1, . . . , bp)

satisfies conditions (1) - (3). By symmetry, we may assume without loss of generality that B is

standard. To see that B ∈ BWP(m), we will construct A such that B ≤ A and type(A) ∈ Ωm.

Case 1: |b−1| = n. Then, |b−1|+ |b0| > m0. Thus, by condition (1), we have type(B) = (n, 0◦),

that is, B = ([n], {0}). Let A = B. Since type(A) = type(B) = (n, 0◦) ∈ Ωm, it follows that

B ∈ BWP(m).

Case 2: m0 < |b−1| < n. Let j be the unique positive integer in which m0+m1+ · · ·+mj−1 <

|b−1| ≤ m1 + · · ·+mj and define A to be the standard skewed binary partition such that

type(A) := (b−1, 0
◦,m0 +m1 + · · ·+mj − |b−1|,mj+1, . . . ,mℓ).

Case 3: |b−1| ≤ m0. Then we defined A to be the standard skewed binary partition with

type(A) =


(m0, 0,m1, . . . ,mℓ) if m0 ̸= 0

(m0, 0
◦,m1, . . . ,mℓ) if m0 = 0

.
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Clearly, in both Case 2 and Case 3, type(A) ∈ Ωm. To see that B ≤ A, we will show that

G(Â, B̂) satisfies all of the conditions in Theorem 4.2.7. As both cases can be shown using a similar

argument, we will only discuss the proof for case 2.

Suppose that m0 < |b−1| < n. Then, by condition (1), b0 ̸= 0, i.e., 0 ∈ B0. Note that Â = A
and B̂ = B, since there is no empty block. Because every block of A is non-homogeneous, G(Â, B̂)
automatically satisfies condition 4.2.7/(3). By construction, A−1 = B−1 and A0 = {0} ⊆ B0.

Because A and B are standard, it is then easy to see that G(Â, B̂) is non-crossing. Thus, condition
4.2.7/(1) is satisfied.

Let j be a positive integer. Suppose that Bj is a non-homogeneous block. Then Bj are not

adjacent to A−1 nor A0, since A−1 = B−1 and A0 = {0} are disjoint with Bj . Let Ak be the block

of A that contains m0 + · · · +mi. Together with conditions (2) and (3), we deduce that Bj is a

subset of Ak. This means, in G(Â, B̂), the right non-homogeneous vertex Bj has degree one and

is adjacent to the non-homogeneous block Ak. If B0 is non-homogeneous, i.e., B0 = {0}, then we

also see that, in G(Â, B̂), the vertex B0 has degree one and is adjacent to the non-homogeneous

vertex A0. Thus, G(Â, B̂) satisfies 4.2.7/(4). Moreover, condition (2) implies that for every positive

integer k the only possible non-homogeneous vertex that Ak can be adjacent to (if there is any) is

Bj . Hence, G(Â, B̂) also satisfies 4.2.7/(2).

It only remains to be shown that G(Â, B̂) satisfies 4.2.7/(5). To see this, let us suppose that j

is a positive integer in which Bj is a homogeneous block. Then conditions (2) and (3) imply that

there exists a nonnegative integer i such that

|b−1|+ · · ·+ |bj−1| < m0 + · · ·mi < |b−1|+ · · ·+ |bj |.

This means, in G(Â, B̂), the right homogeneous vertex Bj is adjacent to two left non-homogeneous

vertices whose corresponding blocks contain m0 + · · ·mi and m0 + · · ·mi + 1, respectively. If B0 is

homogeneous, then B0 must contain 0 and another positive integer. Thus, the right homogeneous

vertex B0 of G(Â, B̂) is adjacent to A0 = {0} and A1. This shows that G(Â, B̂) satisfies 4.2.7/(5).
Therefore, B ≤ A. □

By Proposition 4.3.8, we have that the one dimensional cones in Σ(PF(m,d)) (and hence the

facets of PF(m,d)) correspond to the skew binary partitions B ∈ BWP(m) such that type(B) =
79



(b−1, b0, . . . , bk) satisfies

1 = b−1 +

∑
bi∈P

bi

+#(bi ∈ P⋆
≥2).

This implies that

type(B) ∈ {(1, (n− 1)◦), (0, 0◦, n⋆), (0, 1◦, (n− 1)⋆), . . . , (0, (n− 2)◦, 2⋆), (0, (n− 1)◦, 1)}.(4.4.9)

Together with Proposition 4.4.20, we obtain the following characterization of the one-dimensional

cones in Σ(PF(m,d)).

Corollary 4.4.25. Let n ≥ 2 be a positive integer. Suppose that (m,d) is an MD pair where

m = (m0, . . . ,mℓ) is a multiplicity vector of magnitude n. Then, the cone σ ∈ Σ(PF(m,d)) has

dimension one if and only if σ = σ̃B for some skewed binary partition B of [0, n] such that type(B) =
(b−1, b0, . . . , bk) satisfies the following conditions.

(1) If ℓ = 1 and m1 = n, then type(B) ∈ {(1, (n− 1)◦), (0, (n− 1)◦, 1)}.
(2) If ℓ = 1 and m1 = 1 then type(B) ∈ {(1, (n− 1)◦), (0, 0◦, n⋆)}.
(3) If (ℓ = 1 and 2 ≤ m1 ≤ n− 1) or (ℓ = 2 and m1 = 1), then

type(B) ∈ {(1, (n− 1)◦), (0, (n− 1)◦, 1), (0, 0◦, n⋆)}.

(4) If ℓ ≥ 2 and (ℓ,m1) ̸= (2, 1), then type(B) ∈ X ∪ Y where

X := {(1, (n− 1)◦), (0, (n− 1)◦, 1), (0, 0◦, n⋆)}

Y := {(0, (n−mℓ − 1)◦, (mℓ + 1)⋆), . . . , (0, (m0 + 1)◦, (n−m0 − 1)⋆)}.

Utilizing (4.4.9) and Corollary 4.4.25 to describe the one dimensional cones in Σ(PF(u)), we

deduce the following inequality description for PF(u).

Corollary 4.4.26. A point x = (x1, . . . , xn) lies in the u-parking function polytope PF(u) if and

only if xi ≥ 0 for all i ∈ [n] and for every nonempty subset I ⊆ [n]

∑
i∈I

xi ≤
|I|−1∑
i=0

un−i.
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We will see later in Section 4.6 that the inequality description in Corollary 4.4.26 can also be

deduced by viewing PF(u) as a polymatroid.

Remark 4.4.27. By Corollary 4.4.25, for every multiplicity vector m ̸= (0, n) of magnitude n, the

skewed binary partition B = (∅, {0}, {1, . . . , n}⋆) is in BWP(m), since type(B) = (0, 0◦, n∗).

Note that every polytope of dimension at most two is simplicial. The next corollary provides

a characterization of the simplicial polytopes of dimension greater than two.

Corollary 4.4.28. Let n ≥ 3 be an integer. Suppose that m is a multiplicity vector of magnitude

n and (m,d) is an MD pair. Then, PF(m,d) is an n-dimensional simplicial polytope if and only

if m = (n− 1, 1), i.e., PF(m) is a simplex.

Proof. Let (m,d) be the MD pair of the vector u. Suppose that PF(m,d) is simplicial. When

m = (0, n), the parking function polytope PF(m,d) is an n-dimensional cube and is not simplicial

for n ≥ 3. Thus, m ̸= (0, n). For m ̸= (0, n), we have from Remark 4.4.27 that the skew binary

partition B = (∅, {0}, {1, . . . , n}⋆) is in BWP(m). Moreover, B = (∅, {0}, {1, . . . , n}⋆) corresponds
to the face FB = Sn(u) := conv(τ(u) | τ ∈ Sn) of PF(m,d). Thus, FB is a permutohedron, and

is a simplex if and only if m = (n − 1, 1). Conversely, if m = (n − 1, 1), then PF(m,d) is an

n-dimensional simplex and is simplicial. □

4.5. h-vectors

Given a poset (Q,≤Q) where Q ⊂ N, we say that the ordered pair (i, j) is a descent of (Q,≤Q)

if i⋖Q j and j < i, and say that (i, j) is an ascent if i⋖B j and j > i.

As noted in Corollary 4.4.15, PF(m,d) is simple if and only if either m = (0, n) or (n − 1, 1)

or m1 = · · · = mℓ−1 = 1 for some ℓ ≥ 2. This implies that for every B ∈ Ωm, the preorder ≤B

is a poset and its Hasse diagram is a tree. We will denote the number of descents and ascents of

the poset ([0, n],≤B) by des(B) and asc(B), respectively. The following lemma, which is a slight

variation of [36, Theorem 4.2], expresses the h-polynomials of simple parking function polytopes

in terms of descents and ascents.
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Lemma 4.5.1. If PF(m,d) is an n-dimensional simple polytope, then its h-polynomial equals

(4.5.1) h(t) =
∑

type(B)∈Ωm

tdes(B) =
∑

type(B)∈Ωm

tasc(B).

Corollary 4.5.2. Let m = (m0,m1, . . . ,mℓ) and r = m1 + · · · + mℓ. If PF(m,d) is an n-

dimensional simple polytope, then its h-polynomial equals

(4.5.2) h(t) =

r∑
i=0

 ∑
type(B)=bi

tdes(B)

 =

r∑
i=0

 ∑
type(B)=bi

tasc(B)


where bi is given as in Definition 4.4.8.

Let Q be a poset on [n]. We define Sn(Q) := {σ(Q) | σ ∈ Sn} to be the set of all posets on

[n] having the same Hasse diagram as Q.

Definition 4.5.3. For p, q ∈ N, let T (p, q) be the poset on [p+ q] defined by the covering relations

j ⋖ j + 1 for all j ∈ [p− 1] and p⋖ k for all k ∈ [p+ 1, q].

Definition 4.5.4. Let (Q,≤T ) be a poset on [n] whose Hasse diagram is a tree (a graph with no

cycle). We define the generalized Eulerian polynomial on Q to be

A(Q, t) :=
∑

T∈Sn(Q)

tasc(T ).

Let τ = n · · · 21 ∈ Sn. Then asc(τ(T )) = des(T ) for all T ∈ Sn(Q). Thus,

A(Q, t) :=
∑

T∈Sn(Q)

tasc(T ) =
∑

T∈Sn(Q)

tasc(τ(T )) =
∑

T∈Sn(Q)

tdes(T ).

The generalized Eulerian polynomial A(Q, t) has degree n−1 and is palindromic. We also have

that A(T (p, 1), t) is the (usual) Eulerian polynomial Ap+1(t) of degree p.

Remark 4.5.5. PF(m,d) is an n-cube if m = (0, n), and is an n-simplex if m = (n − 1, 1). In

these cases, their h-polynomials are known to be (1 + t)n and 1 + t+ · · · tn, respectively.

We now describe how to obtain a more explicitly formula for the h-polynomials of all other

simple parking function polytopes, i.e., PF(m,d) with m1 = · · · = mℓ−1 = 1 for some ℓ ≥ 2. Note
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that n = m0 + ℓ− 1 +mℓ and r = m1 + · · ·+mℓ = ℓ− 1 +mℓ. Thus, by Corollary 4.5.2, we may

write

h(t) =

ℓ−1+mℓ∑
i=0

gi(t) where gi(t) :=
∑

type(B)=bi

tasc(B).

For ℓ − 1 ≤ i ≤ ℓ − 1 +mℓ, the poset ([0, n],⪯B) with type(B) = bi is given on the right of

Figure 4.7. Thus,

gi(t) =

(
n

m0 + i

)
tℓ−1+mℓ−i for ℓ− 1 ≤ i ≤ ℓ− 1 +mℓ.(4.5.3)

For 1 ≤ i ≤ ℓ − 2, the poset ([0, n],⪯B) with type(B) = bi is given on the left of Figure 4.7.

Thus,

gi(t) =

(
n

m0 + i

)
tA(T (ℓ− i− 1,mℓ), t) for 1 ≤ i ≤ ℓ− 2.(4.5.4)

∗ · · · ∗

0

∗ · · · ∗

mℓ + ℓ− 1− i nodes

∗ · · · ∗

0

∗

...

∗

∗ · · · ∗

mℓ nodes

ℓ− 1− i nodes

Figure 4.7. ([0, n],⪯B) with type(B) = bi ∈ Ωm satisfying 1 ≤ i ≤ ℓ− 2 (left)
and ℓ− 1 ≤ i ≤ mℓ (right), where ∗ denotes an integer in [n]

The polynomial g0(t) = tA(Q, t) where Q is a poset on [n] depending on whether m satisfies

m0 = 0 or not. If m0 = 0, then the poset ([0, n],⪯B) with type(B) = b0 is given on the left of

Figure 4.8. Thus,

g0(t) = tA(T (ℓ− 1,mℓ), t) if m0 = 0.(4.5.5)
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If m0 ̸= 0, then the poset ([0, n],⪯B) with type(B) = b0 is given on the right of Figure 4.8.

Thus,

g0(t) = tA(Q, t) if m0 ̸= 0(4.5.6)

where Q is the induced poset [n] of the poset on the right of Figure 4.8.

0 ∗ · · · ∗

∗

∗

...

∗

∗ · · · ∗

mℓ nodes

ℓ− 1 nodes

0

∗

...

∗

∗ · · · ∗

mℓ nodes

Figure 4.8. ([0, n],⪯B) with type(B) = b0 ∈ Ωm satisfying m0 = 0 (left) and
m0 ̸= 0 (right), where ∗ denotes an integer in [n]

Consequently, by equations (4.5.4)–(4.5.6),

h(t) = g0(t) +

(
ℓ−2∑
i=1

gi(t)

)
+

ℓ−1+mℓ∑
i=ℓ−1

gi(t)

= tA(Q, t) +

(
ℓ−2∑
i=1

(
n

m0 + i

)
tA(T (ℓ− i− 1,mℓ), t)

)
+

ℓ−1+mℓ∑
i=ℓ−1

(
n

m0 + i

)
tℓ−1+mℓ−i

= tA(Q, t) +

(
ℓ−2∑
i=1

(
n

i+mℓ

)
tA(T (i,mℓ), t)

)
+

mℓ∑
i=0

(
n

i

)
ti.(4.5.7)
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Hence, if m0 = 0, then

h(t) = tA(Q, t) +

(
ℓ−2∑
i=1

(
n

i+mℓ

)
tA(T (i,mℓ), t)

)
+

mℓ∑
i=0

(
n

i

)
ti

= tA(T (ℓ− 1,mℓ), t) +

(
ℓ−2∑
i=1

(
n

i+mℓ

)
tA(T (i,mℓ), t)

)
+

mℓ∑
i=0

(
n

i

)
ti

=

(
mℓ∑
i=0

(
n

i

)
ti

)
+

ℓ−1∑
i=1

(
n

i+mℓ

)
tA(T (i,mℓ), t).(M0)

Since h-polynomials and generalized Eulerian polynomials are palindromic, we have

h(t) = tnh(t−1)(4.5.8)

A(Q, t) = tn−1A(Q, t−1)(4.5.9)

A(T (i,mℓ), t) = ti+mℓ−1A(T (i,mℓ), t
−1).(4.5.10)

Thus, by equations (4.5.7) and (4.5.8)–(4.5.10),

h(t) = tnh(t−1)

= tn

[
t−1A(Q, t−1) +

(
ℓ−2∑
i=1

(
n

i+mℓ

)
t−1A(T (i,mℓ), t

−1)

)
+

mℓ∑
i=0

(
n

i

)
t−i

]

= tn−1A(Q, t−1) +

(
ℓ−2∑
i=1

(
n

i+mℓ

)
tn−1A(T (i,mℓ), t

−1)

)
+

mℓ∑
i=0

(
n

i

)
tn−i

= A(Q, t) +

(
ℓ−2∑
i=1

(
n

i+mℓ

)
tm0+ℓ−i−1A(T (i,mℓ), t)

)
+

mℓ∑
i=0

(
n

i

)
tn−i(4.5.11)

Equations (4.5.7) and (4.5.11) allows us to express A(Q, t) as

A(Q, t) =
1

t− 1

[[
ℓ−2∑
i=1

(
n

i+mℓ

)
(tm0+ℓ−i−1 − t)A(T (i,mℓ), t)

]
+

mℓ∑
i=0

(
n

i

)
(tn−i − ti)

]
.

Hence, if m0 ̸= 0, then

h(t) = g(t) +

 mℓ∑
j=0

(
n

j

)
tj

+ t

ℓ−2∑
i=1

(
n

i+mℓ

)
A(T (i,mℓ), t),(M1)
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where

g(t) = g0(t) = tA(Q, t)

=

 z∑
i=0

(
n

i

) n−i∑
j=i+1

tj

+

ℓ−2∑
i=1

(
n

i+mℓ

)n−i−mℓ∑
j=2

tj

A(T (i,mℓ), t)(G0)

and z = min (mℓ, n−mℓ − 1) .

Theorem 4.5.6. Let (m,d) be an MD pair where m = (m0,m1, . . . ,mℓ) for some ℓ ≥ 2. Suppose

that PF(m,d) is n-dimensional and simple. Then its h-polynomial is given by

h(t) =



 mℓ∑
j=0

(
n

j

)
tj

+ t

ℓ−1∑
i=1

(
n

i+mℓ

)
A(T (i,mℓ), t) if m0 = 0

g(t) +

 mℓ∑
j=0

(
n

j

)
tj

+ t

ℓ−2∑
i=1

(
n

i+mℓ

)
A(T (i,mℓ), t) otherwise

(H)

where

g(t) =

 z∑
i=0

(
n

i

) n−i∑
j=i+1

tj

+
ℓ−2∑
i=1

(
n

i+mℓ

)n−i−mℓ∑
j=2

tj

A(T (i,mℓ), t)

and z = min (mℓ, n−mℓ − 1) .

We now aim to express A(T (p, q), t) in terms of Eulerian polynomials. This will allow us to

express equation (H) in Theorem 4.5.6 in terms of Eulerian polynomials. To do this, we first observe

that, by symmetry, A(Q, t) = A(Q∗, t) for all poset Q on [n] whose Hasse diagram is a tree, where

Q∗ denotes the dual poset of Q.

Let p, q, n ∈ P satisfy p + q = n. If p = 1, one can easily compute by a direct counting

argument that A(T (1, q), t) = 1 + t + · · · tn−1. If p ≥ 2, then T (p, q)∗ is the induced poset on [n]

of a poset (≤B, [0, n]) satisfying type(B) = b0 ∈ Ωm where m = (q, 1, . . . , 1). Thus, we can deduce
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A(T (p, q), t) by applying equation (G0) to m = (q, 1, . . . , 1) to get

A(T (p, q), t) = A(T (p, q)∗, t)

=
g(t)

t

=

 1∑
i=0

(
n

i

)n−i−1∑
j=i

tj

+

p−2∑
i=1

(
n

i+ 1

)n−i−2∑
j=1

tj

A(T (i, 1), t), if p ≥ 2.

Therefore, we have the following result.

Lemma 4.5.7. Let p, q, n ∈ P satisfy p+ q = n. Then

A(T (p, q), t) =

 y∑
i=0

(
n

i

)n−i−1∑
j=i

tj

+

p−2∑
i=1

(
n

i+ 1

)n−i−2∑
j=1

tj

Ai+1(t)(4.5.12)

where y = min(1, p− 1) and Ak(t) denotes the Eulerian polynomial of degree k − 1.

Using equation (4.5.12) to express A(T (i,mℓ), t) in equation (H) of Theorem 4.5.6, we can write

the h-polynomial of PF(m,d) in terms of Eulerian polynomials. Together with Remark 4.5.5, we

consequently have the following corollary.

Corollary 4.5.8. Suppose that PF(u) is n-dimensional and simple. Then its h-polynomial has

the form h(t) = r0(t) +
∑n

i=1 ri(t)Ai(t) where Ak(t) is the Eulerian polynomial of degree k− 1 and

rk(t) is a polynomial with nonnegative integral coefficients of degree ≤ n.

For instance, the h-polynomials of PF(1, . . . , n) and PF(0, . . . , n− 1) equal

1 +

n∑
k=1

(
n

k

)
tAk(t) and 1 + tAn(t) +

n−2∑
k=1

(
n

k

)
tAk(t), respectively.

4.6. Connection to other polytopes

Let Sn(u) := conv(τ(u) | τ is a permutation in Sn) be the Sn-permutohedron generated by

u, where τ(u) := (uτ(1), . . . , uτ(n)). It is not difficult to show that the parking function polytope
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PF(u) can be equivalently defined as

PF(u) = {x ∈ Rn
≥0 | ∃w ∈ Sn(u) such that w − x ∈ Rn

≥0}(4.6.1)

= (Rn
≤0 +Sn(u)) ∩ Rn

≥0.(4.6.2)

Viewed as polymatroid. Equations (4.6.1)–(4.6.2) allow us to see that every PF(u) is a

polymatroid introduced by Edmonds in [16]. We note that a polymatroid in Rn is also commonly

defined as the set of all (x1, . . . , xn) such that 0 ≤∑i∈I xi ≤ w(I) for all nonempty subset I of [n]

where w : 2[n] −→ R is a function defined on the power set of [n] satisfying the following conditions:

(1) (Nonnegative) 0 ≤ w(I) for all I ⊆ [n].

(2) (Non-decreasing) w(I1) ≤ w(I2) for all I1 ⊆ I2 ⊆ [n]

(3) (Submodular) w(A) + w(B) ≥ w(A ∪B) + w(A ∩B) for all A,B ⊆ [n].

The name “polymatroid” comes from its direct relation to matroids, the study concerning the

abstraction of independent sets. This means that each polymatroid encodes some information

about its corresponding matroid.

For a given u, let wu : 2[n] → R be the function defined by

wu(∅) = 0 and wu(I) =

|I|∑
i=0

un−i for all nonempty I ⊆ [n].

It is easy to verify that wu satisfies conditions (1)–(3). We can then define PF(u) to be the

polymatroid consisting of all (x1, . . . , xn) satisfying

0 ≤
∑
i∈I

xi ≤ wu(I) for all nonempty I ⊆ [n].

This inequality description of PF(u) is equivalent to what is given in Corollary 4.4.26.

When u = (1, 2, . . . , n) or any strictly increasing sequence of positive numbers, the polytope

PF(u) becomes a stellahedron, which is the graph associahedron of a star graph originally intro-

duced by Carr and Devadoss [8]. It follows from Remark 4.4.18 that the normal fan of every

parking function polytope is a coarsening of the normal fan of a stellahedron. Recent work by Eur,

Huh, and Larson [19] leverages the geometry of the stellahedral toric variety to study matroids and

explore the connections between deformations of PF(1, 2, . . . , n) and polymatroids.
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Viewed as type B generalized permutohedra. It is not difficult to see that every sliced

preorder cone defined by (skewed) binary partition that is full-dimensional is a union of cones the

Bn permutohedral fan ΣBn in (2.2.2). Hence, the normal fan of PF(u) coarsens the fan ΣBn . This

means that every parking function polytope is a type B generalized permutohedron. In particular,

we have that the edges of PF(u) are parallel to ei + ej , ei − ej , or ei for some i, j ∈ [n]. Using the

inequality description in Corollary 4.4.17, one sees further that every PF(u) has no edge parallel

to ei + ej for some i < j. Hence, we get the following proposition.

Proposition 4.6.1. Let PF(u) be a parking function polytope in Rn. Then, every edge of PF(u) is

either parallel to ei or ei − ej for some i, j ∈ [n] such that i < j.

Proof. Since every parking function polytope is a type B generalized permutohedron, it’s

edges are either parallel to ei + ej , ei − ej , or ei for some i, j ∈ [n]. Thus, it suffices to show that

PF(u) has no edge parallel to ei + ej for some i < j. Assume for the sake of contradiction that

PF(u) has an edge (a line segment) parallel to ei + ej for some i < j, connecting two vertices. Let

x,y be the two vertices of PF(u). Then, we may write y = x + r(ei + ej) for some r > 0. The

inequality description of PF(u) given in Corollary 4.4.17 implies that the points x+rei and x+rej

also lie in PF(u). One then sees that the line segment connecting x and y lies in the (relative)

interior of the convex hull conv(x,y,x+ rei,x+ rej). Since conv(x,y,x+ rei,x+ rej) is a subset

of PF(u) and a polytope of dimension two, the line segment connecting x and y cannot be an edge

of PF(u), a contradiction. □

Viewed as type A generalized permutohedra. Every parking function polytope can be

realized as a projection of a type A generalized permutohedron. Moreover, every integral parking

function polytope is integrally equivalent to an integral type A generalized permutohedron. This

realization was also pointed out in [4] for PF(m,d) wherem = (0, 1, . . . , 1) and (1, . . . , 1). Thus, the

properties of generalized permutohedra apply to parking function polytopes as well. In particular,

one can compute the Ehrhart polynomials and the volume of parking function polytopes using

existing formulas for type A generalized permutohedra.

89



Recall from Lemma 2.1.2 that every type A generalized permutohedron has the form

∑
I⊂[n],I ̸=∅

yI∆I for some yI ∈ R,(4.6.3)

where ∆I := conv(ei | i ∈ I). Moreover, in Sections 9 and 11 of [35], Postnikov gave formulas

for the volume and the Ehrhart polynomial of type A generalized permutohedron in (4.6.3). We

will apply Postnikov’s formulas to parking function polytopes to obtain their volume and Ehrhart

polynomials. To do this, we first write PF(u) as in (4.6.3).

Proposition 4.6.2. The parking polytope

PF(u) =
∑

I∈2[n]\{∅}

yI∆
0
I

where

yI =

|I|−1∑
j=0

(|I| − 1

j

)
(−1)ju|I|−j .(4.6.4)

Equation (4.6.4) implies that for I1, I2 ∈ 2[n]\{∅} such that |I1| = |I2|, one has yI1 = yI2 .

Moreover, if PF(u) is integral, then yI is an integer for all I ∈ 2[n]\{∅}.

Example 4.6.3. Let n ≥ 2 be an integer. Suppose that the entries of u form an arithmetic sequence

of nonnegative real numbers. That is, u = (p, p+ q, p+ 2q, . . . , p+ (n− 1)p) for some nonnegative

real numbers p, q. Then,

yI =


p if |I| = 1

q if |I| = 2

0 otherwise

.

Thus,

PF(u) =

n∑
i=1

p∆0
{i} +

∑
1≤i<j≤n

q∆0
{i,j}.
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Proof of Proposition 4.6.2. Consider the type A generalized permutohedron P ({yI}) in

R[0,n] defined by

P ({yI}) =
∑

I∈2[0,n]

yI∆I(4.6.5)

where

yI =


∑|I|−1

j=0

(|I|−1
j

)
(−1)ju|I|−j if 0 ∈ I

0 otherwise

.

Then, it’s not difficult to check that for every proper subset I of [n]

∑
J⊆[0,n]\I

yI =

n−|I|−1∑
j=1

uj .

Then, by Section 6 of [35], P ({yI}) can be equivalently expressed as the set of all (x0, x1, . . . , xn) ∈
R[0,n] satisfying

x0 + · · ·+ xn =
∑

I⊆[0,n]

yI = u1 + · · ·+ un, and

∑
i∈I

xi ≤

 ∑
J⊆[0,n]

yJ

−

 ∑
J⊆[0,n]\I

yJ

 =

|I|−1∑
j=0

un−j

for all nonempty proper subset I of [n]. Let π : R[0,n] −→ Rn be the linear projection of R[0,n] onto

Rn defined by π(x0, x1, . . . , xn) = (x1, . . . , xn). It is then easy to see that π(P ({yI})) is a polytope

in Rn defined by

0 ≤ xi for all i ∈ [n] and
∑
i∈I

xi ≤
|I|−1∑
j=0

un−j for all nonempty I ⊆ [n].

This is the inequality description for PF(u) given in Corollary 4.4.26. Thus, π(P ({yI})) = PF(u)

and so we have

PF(u) =
∑

I∈2[0,n]

π(yI∆I) =
∑

I∈2[n]\{∅}

yI∆
0
I

as desired. □
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The projection π defined in the proof of Proposition 4.6.2 is a linear bijection from P ({yI})
to PF(u). This means that every integral parking function polytope PF(u) is integrally equivalent

the type A generalized permutohedral P({yI}) defined in equation (4.6.5). In particular, their t-

dilations have the same number of lattice points for all nonnegative integers t. Hence, they have the

same Ehrhart polynomial. This allows us to compute the Ehrhart polynomials of parking function

polytopes using Postnikov’s formula in Theorem 11.3 of [35].

Corollary 4.6.4. Suppose that PF(u) = y1∆
0
I1
+· · · ym∆0

Im
where I1, . . . , Im are distinct nonempty

subsets of [n] such that y1, . . . , ym given in equation (4.6.4) are all nonzero integers. Then the

Ehrhart polynomial of PF(u) is given by

i(PF(u), t) =
∑

a∈D(PF(u))

(
ty1 + a1 − 1

a1

)
· · ·
(
tym + am − 1

am

)
(4.6.6)

where D(PF(u)) is the set of all a = (a1, . . . , am) ∈ Zm
≥0 satisfying

∑
j∈J aj ≤ |⋃j∈J Ij | for all

nonempty subsets J ⊆ [m].

Proof. The parking function polytope PF(u) ⊂ Rn and the type A generalized permutohedron

P ({yI}) ⊂ R[0,n] defined by

P ({yI}) = y1∆{0}∪I1 + · · · ym∆{0}∪Im

have the same Ehrhart polynomials. Let y0 = 1 and I0 = [n], and define

P+
t ({yI}) = y0∆{0}∪I0 + ty1∆{0}∪I1 + · · · tym∆{0}∪Im .

Applying Theorem 11.3 of [35] to P+
t ({yI}), we deduce that

i(PF(u), t) = i(P ({yI}), t)

=
∑

a∈D(P+
t ({yI}))

(
1 + a0 − 1

a0

)(
ty1 + a1 − 1

a1

)
· · ·
(
tym + am − 1

am

)
(4.6.7)

where D(P+
t ({yI})) is the set of “G-draconian sequences of P+

t ({yI})” a = (a0, a1, . . . , am) ∈ Zn
≥0

satisfying a0 + a1 + · · ·+ am = n and
∑

j∈J aj ≤ |⋃j∈J Ij | for all nonempty subsets J ⊆ [m]. Since
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(
1+a0−1

a0

)
= 1 for all nonnegative integer a0, we can rewrite equation (4.6.7) as

i(PF(u), t) =
∑

a∈D(P ({yI}))

(
ty1 + a1 − 1

a1

)
· · ·
(
tym + am − 1

am

)

where D(PF(u)) is the set of all a = (a1, . . . , am) ∈ Zm+1
≥0 satisfying

∑
j∈J aj ≤ |⋃j∈J Ij | for all

nonempty subsets J ⊆ [m]. This gives the formula in equation (4.6.6) as desired. □

We note that one can use Proposition 4.6.2 to derive another formula for the Ehrhart polyno-

mials of parking function polytopes by applying Theorem a/(c) in [18] given by Eur et al. for type

B generalized permutohedra. However, we find that Postnikov’s formula for type A generalized

permutohedra gives a more desirable expression in the sense that when all yI given in equation

(4.6.4) are nonnegative, one easily sees from formula (4.6.6) that all the coefficients of i(PF(u), t)

are positive. This positivity of coefficients is, however, not easily seen when expressing i(PF(u), t)

using the formula provided by Eur et al.

Next, we apply the volume formula provided by Postnikov in Theorem 9.3 of [35] to compute

the volume of parking function polytopes.

Corollary 4.6.5. Suppose that PF(u) is n-dimensional and that PF(u) = y1∆
0
I1
+· · · ym∆0

Im
where

I1, . . . , Im are distinct nonempty subsets of [n] such that yI1 , . . . , yIm given in equation (4.6.4) are

all nonzero. Then, the volume of PF(u) is given by

∑
a∈D(PF(u))
a1+···+am=n

ya11
a1!

· · · y
am
m

am!
.(4.6.8)

Proof. Suppose that PF(u) is n-dimensional. We apply Theorem 9.3 of [35] to P ({yI}) =

y1∆{0}∪I1 + · · · ym∆{0}∪Im to deduce the volume of PF(u) as

Vol(PF(u)) = Vol(P ({yI})) =
∑

a∈D(P ({yI}))

ya11
a1!

· · · y
am
m

am!

where D(P ({yI})) is the set of G-draconian sequences of P ({yI}), i.e., a = (a1, . . . , am) ∈ Zm
≥0

satisfying a1 + · · · + am = n and
∑

j∈J aj ≤ |⋃j∈J Ij | for all nonempty subsets J ⊆ [m]. This is

equivalent to what is given in (4.6.8). □
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