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Abstract

Estimation of signal-to-noise ratios (SNR) and residual variances in high-dimensional lin-

ear models has numerous important applications, including selecting tuning parameters for

predictive models and estimating heritability in genomics. This dissertation investigates the

consistency and asymptotic distribution of two widely used SNR estimators under various

model assumptions.

Chapter 2 presents my work [18], supervised by Professor Xiaodong Li, in which we study

the restricted maximum likelihood (REML) estimator based on the likelihood formulation

of the random effects model. Although the true model assumes an i.i.d. Gaussian priors

for both the regression coefficients and the noise variables, we establish consistency and

asymptotic normality of the REML estimator under model misspecification, where the true

coefficient vector is fixed and noise components may be heterogeneous. In particular, the

resulting asymptotic variance has a tractable form, allowing standard error estimation via a

measure of noise heterogeneity.

Chapter 3 discusses my joint work [28] with Zhentao Li and Professor Xiaodong Li. While the

method-of-moments estimator is commonly used in SNR estimation in single-response set-

tings, we extend this framework to multivariate linear models under both fixed and random

effects formulations. In this study, we establish and compare the asymptotic distributions of

the proposed estimators. Furthermore, we extend our approach to accommodate cases with

residual heteroskedasticity and derive asymptotic inference procedures based on standard

error estimation.

In both Chapter 2 and Chapter 3, we validate our theoretical results through extensive

numerical simulations. Further discussions and directions for future work are provided in

Chapter 4.
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CHAPTER 1

Introduction

1.1. Overview

Estimation and inference for signal-to-noise ratios (SNR) and residual variances in high-

dimensional linear models are fundamental problems in statistics, with wide-ranging ap-

plications. A prominent application is heritability estimation in genome-wide association

studies (GWAS), where the goal is to quantify the proportion of phenotypic variance that

can be attributed to genetic variation [11]. Another important application is regarding how

to select tuning parameters in regularized regression such as Lasso and Ridge regression

( [7,8,10,20,37]).

Significant theoretical and methodological developments have been made for SNR estimation

under both fixed effects models [7, 8, 18, 20, 35, 41] and random effects models [9, 13, 24,

29,31,43]. Among the various approaches proposed for SNR estimation and inference, two

of the most widely used are the method-of-moments (MM) estimators [7, 13, 31, 41] and

likelihood-based estimators under random effects models [6,15,29,36,43,45]. In addition

to these, other methods have been developed, including the EigenPrism procedure [20], and

approaches based on sparsity and penalized regression such as the Lasso [3,12,37].

This dissertation consists of two main contributions. First, we investigate the asymptotic

behavior of restricted maximum likelihood (REML) estimators under model misspecifica-

tion. Second, motivated by the fact that most existing work on SNR estimation focuses on

univariate responses, we propose a definition of multivariate SNR and show how to perform

inference for multivariate SNR using method-of-moments estimators under both fixed effects

and random effects models.
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1.2. Maximum Likelihood Estimation: Analysis under High-Dimensional

Linear Fixed-effects Model

Asymptotic analysis of REML under linear mixed effects models is a well-established topic

in the statistical literature; see, for example, [16], [21], [32], and [22]. In recent years, a

growing body of work has focused on the behavior of random effects likelihood estimators

under model misspecification—specifically, when the true coefficient vector does not follow

the commonly assumed i.i.d. Gaussian distribution. As early as [21], it was shown that

Gaussian random effects likelihood estimators can be consistent and asymptotically normal

even when the true coefficients are i.i.d. but non-Gaussian.

A particularly notable contribution is [24], which demonstrates that such estimators retain

consistency and asymptotic normality even when the true model is under sparse random

effects. The analysis of REML under model misspecification has also been extended to the

case where the coefficient vector is fixed but arbitrary, provided the design matrix has i.i.d.

Gaussian entries [8]. That line of analysis relies critically on the rotational invariance of the

Gaussian design and utilizes normal approximation tools developed in [9].

In this work, we further investigate the consistency and asymptotic distribution of the

SNR estimator under significant model misspecification. Specifically, we consider high-

dimensional linear models with heteroscedastic and correlated noise, where the true coef-

ficient vector β is fixed and deviates substantially from the assumed i.i.d. Gaussian prior.

Our main results show that the asymptotic variance of
√
nγ̂ depends only on the aspect

ratio 1/τ , the true SNR γ0, and a parameter κ that captures both the heterogeneity and

correlation structure of the noise. The resulting expression for the asymptotic variance is

sufficiently tractable to allow estimation of the standard error via consistent estimation of

the noise heterogeneity.

In the final section of this chapter, we outline an approach for extending the REML estimator

to the group-wise setting, motivated by the problem of partitioning heritability as discussed

in [29]. The task of estimating group-specific SNRs is also closely related to group-regularized
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ridge regression, as explored in [19]. However, due to technical challenges in extending the

normal approximation results from [4], a complete asymptotic analysis of the group SNR

estimator γ̂ is left for future work.

The main context of this chapter is adapted from my joint work with Professor Xiaodong Li

and the preprint was posted on ArXiv [18].

1.3. Method of Moments Estimation: Analysis under Multivariate

High-Dimensional Linear Models

The goal of this section is to develop inference procedures for the signal-to-noise ratio (SNR)

under both multivariate fixed effects and random effects models. While SNR estimation

and inference have been extensively studied in the univariate setting, the multivariate case

remains comparatively underexplored. Existing works in the multivariate domain are often

application-driven. For instance, [13] proposed a definition of multivariate heritability based

on a multivariate random effects model, developed a method-of-moments (MM) estimator

for it, and applied their approach to estimate the heritability of brain shape using MRI data.

Our work builds on the framework introduced in [13], but with substantially broader scope.

We not only extend the analysis to fixed effects models—an area that, to our knowledge, has

not been studied in the high-dimensional multivariate SNR estimation—but also consider

general noise structures in the random effects case, where asymptotic analysis is significantly

more challenging. We note that alternative definitions of multivariate SNR have been pro-

posed in the literature (e.g., [47]); however, our formulation for the multivariate fixed effects

model is novel in the literature to our knowledge.

The MM estimator we develop under the fixed effects model can be viewed as a extension

in multivariate case of the estimator in univariate proposed by [7]. For the random effects

model, our approach is most related to that of [13], but their analysis is limited to standard

Gaussian noise. We emphasize that these extensions are far from straightforward. In this

work, we rigorously establish the asymptotic distributions of the proposed SNR estimators
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and demonstrate how they can be used to perform valid statistical inference in both model

settings.

This chapter is adapted from my joint work with Zhentao Li and Professor Xiaodong Li.

The corresponding preprint was posted on ArXiv [28].
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CHAPTER 2

Maximum Likelihood Estimation: Analysis under

High-Dimensional Linear Fixed-effects Model

2.1. Problem Statement and Method

We focus on the following high-dimensional linear model in this chapter:

(2.1) y = Zβ + ε,

where Z is an n× p design matrix with p being allowed to be greater than n, β is the vector

of regression coefficients, and y is the response vector. For the noise vector ε, we assume it

satisfies ε ∼ Nn(0,Σε), where Σε is a positive definite matrix. This implies that we allow

for correlated and heteroscedastic noise in the linear model. In particular, we denote the

diagonal entries of Σε as σ
2
1, . . . , σ

2
n. Also denote the average noise level as σ2

0 = 1
n

∑n
i=1 σ

2
i .

Our goal is to make inference about the signal-to-noise ratio (SNR) parameter

γ0 := ∥β∥2/σ2
0.

2.1.1. REML Based on Homogeneous and Gaussian Random Effects. In this

chapter, we are interested in the SNR estimator based on the likelihood of the Gaussian

random effects model, in which the coefficient vector is modeled as p−1/2α, where α is

assumed to consist of i.i.d. N (0, σ2
α) variables. In addition, the noise terms are assumed

to be independent and follow the same distribution N (0, σ2
ε). Comparing the true model

and the postulated model, it is clear that σ2
0 corresponds to σ2

ε , ∥β∥2 corresponds to σ2
α,

and γ0 = ∥β∥2/σ2
0 corresponds to γ := σ2

α/σ
2
ε . Based on this postulated homogeneous and

Gaussian random effects model, REML estimation, i.e. maximum likelihood estimation, can

be derived for the variance components σ2
α and σ2

ε [22]. In fact, under the above Gaussian
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random effects model, there holds y ∼ Nn(0,Ω), where

Ω = Ω(σ2
ε , σ

2
α) := σ2

εIn +
σ2
α

p
ZZ⊤ := σ2

εVγ,

and

(2.2) Vγ = In +
γ

p
ZZ⊤.

Then, the log-likelihood function for (σ2
ε , σ

2
α) is given as below:

l(σ2
ε , σ

2
α) = c− 1

2
log det (Ω)− 1

2
y⊤Ω−1y,

where c is a constant. By taking the partial derivatives of the log-likelihood with respect to

σ2
ε and σ2

α to obtain the score functions, we got the following likelihood equations:
Sσ2

ε
(σ2

ε , σ
2
α) :=

1
2
y⊤Ω−2y − 1

2
trace (Ω−1) = 0

Sσ2
α
(σ2

ε , σ
2
α) :=

1
2
y⊤Ω−1 1

p
ZZ⊤Ω−1y − 1

2
trace

(
Ω−1 1

p
ZZ⊤

)
= 0.

By the fact that 1
p
ZZ⊤ = 1

γ
(Vγ − In), the above set of equations can yield a single equation

about the SNR γ = σ2
α/σ

2
ε :

(2.3) ∆(γ) := y⊤Bγy = 0.

where

(2.4) Bγ =
V −1
γ

n
−

V −2
γ

trace(V −1
γ )

.

Let γ̂ be a solution to (2.3), which is referred to the (misspecified) REML estimator of the

true SNR γ0 = ∥β∥2/σ2
0.

2.1.2. Misspecification Analysis of REML. We study the consistency and asymp-

totic distribution of γ̂ when the Gaussian random-effects model is significantly misspecified.
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In particular, the actual coefficient vector β is a general fixed one, and the noise ε is both

heteroskedastic and correlated. Naturally, there is a trade-off between the misspecification

of β and ε, and the assumptions placed on the design matrix Z.

Our main results, presented in the next section, show that the consistency and asymptotic

distribution of γ̂ can be rigorously established as long as the entries of Z are independent,

symmetric, and sub-Gaussian standardized random variables. The skew-free assumption is

imposed primarily for technical reasons, and we will employ numerical simulations indicating

that it may be relaxed. All analyses are conducted under the asymptotically proportional

setting n, p → ∞ with n/p → τ > 0, where 1/τ is commonly referred to as the limiting

aspect ratio.

In our main results in Section 2.2, we will show that the asymptotic variance of
√
nγ̂ depends

only on the aspect ratio 1/τ , the true SNR γ0, and a parameter κ that characterizes both

the heterogeneity and correlation of the noise terms. To estimate this variance and thereby

make inferences about the true SNR γ0, we also need to estimate the average noise level

σ2
0 and the parameter κ. In fact, using the SNR estimate γ̂ from the postulated Gaussian

random-effects model, we can then estimate σ2
0 through

(2.5) σ̂2 =
1

n
y⊤V −1

γ̂ y.

One intuition of this estimator is the following identity based on the postulated (and mis-

specified) Gaussian and homogeneous random effects model

E[y⊤V −1
γ y] = E[V −1

γ yy⊤] = E[V −1
γ Ω] = nσ2

ε .

In heteroscedastic case the estimation of κ is in general difficult under the case of correlated

noise. However, when the noise is heterogeneous but uncorrelated, there is a natural approach

to estimating κ. In this case, κ can be simply referred to as the heterogeneity parameter,
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since

(2.6) κ =
1

nσ4
0

∥Σε∥2F =
1

nσ4
0

n∑
i=1

σ4
i .

Under our assumptions on the design matrix, it is easy to get

E[y4i ] =
p∑
j=1

(
E[z4ij]− 3

)
β4
j + 3∥β∥42 + 6∥β∥22σ2

i + 3σ4
i

≈ 3∥β∥42 + 6∥β∥22σ2
i + 3σ4

i ,

which implies (1/n)
∑n

i=1 E[y4i ] ≈ 3∥β∥42 + 6∥β∥22σ2
0 + 3κσ4

0. By this heuristic, we give the

following estimate for the heterogeneity parameter

(2.7) κ̂ :=
1

3nσ̂4

n∑
i=1

y4i − (γ̂2n + 2γ̂n).

We also show the consistency of σ̂2 and κ̂ Section 2.2.

2.2. Main Results

We first introduce our result on the consistency of γ̂ and σ̂2:

Theorem 2.2.1. Consider the linear model (2.1) with the asymptotic setting n, p→∞ such

that
√
n
∣∣∣np − τ ∣∣∣→ 0, where τ > 0 is a fixed constant. Assume that the entries of the design

matrix Z are independent, symmetric, sub-Gaussian, and unit-variance random variables,

and their maximum sub-Gaussian norm is uniformly upper bounded by some numerical con-

stant C0. Let ε be the vector of correlated and heteroscedastic Gaussian noise: ε ∼ Nn(0,Σε)

with variances (diagonal entries) σ2
1, . . . , σ

2
n, so that

(1) maxi∈[n] σ
2
i is uniformly bounded by C0;

(2) 1
n

∑n
i=1 σ

2
i = σ2

0, where σ
2
0 is set to be fixed for all n;

(3) ∥Σϵ∥F = o(n).

Let β be the coefficient vector with fixed two-norm ∥β∥2 > 0 for all n, which implies the

SNR γ0 := ∥β∥2/σ2
0 is fixed for all n.
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Under the above conditions, there is a sequence of estimates γ̂n as solutions to (2.3) satisfying

γ̂n
P−→ γ0 as n → ∞. Moreover, the corresponding sequence of noise variance estimate in

(2.5) satisfies σ̂2 P−→ σ2
0.

Before we state our next result regarding the asymptotic distribution of γ̂, we need to

introduce the following probability density function of the Marčenko-Pastur law with the

parameter τ > 0:

fτ (x) =
1

2πτx

√
(b+(τ)− x) (x− b−(τ))1{b−(τ)≤x≤b+(τ)},

where b±(τ) = (1±
√
τ)2. Note that the Marčenko-Pastur law also has a point mass 1− τ−1

at the origin when τ > 1. With fτ (x), and any τ, γ > 0, we define the following quantities

based on the Marčenko-Pastur law for any positive integer k:

hk(γ, τ) =

∫ b+(τ)

b−(τ)

1

(1 + γx)k
fτ (x) +

(
1− 1

τ

)
1{τ>1}.(2.8)

With these quantities determined as integrals based on the Marčenko-Pastur law, we are

able to obtain the following result on the asymptotic distribution of γ̂ by imposing additional

assumptions on the infinity norm of β, and both the Frobenius and operator norms of Σε:

Theorem 2.2.2. In addition to the assumptions in Theorem 2.2.1, we further assume

∥β∥∞ = o(p−1/4). For the noise ε, we make the following additional assumptions on its

covariance matrix:

(1) ∥Σε∥ is uniformly bounded;

(2) κ = 1
nσ4

0
∥Σε∥2F is fixed for all n.

Then, with hk(γ0, τ) as in (2.8), as n→∞,

(2.9)
√
n (γ̂ − γ0) =⇒ N

(
0, 2γ20

(
1

h2(γ0, τ)− h21(γ0, τ)
+ κ− τ − 1

))
.

Note that the asymptotic variance of γ̂ given in Theorem 2.2.2 relies solely on the limiting

aspect ratio 1/τ , true SNR γ0, and the parameter κ that is determined by the correlation

9



and heterogeneity of the noise ε. γ0 can be consistently estimated by γ̂ and the following

result gurantees the consistency of κ̂:

Proposition 2.2.1. Under the assumptions in Theorem 2.2.2, if ε consists of independent

heteroscedastic variables, the estimate of the heterogeneity parameter given in (2.7) satisfies

κ̂
P−→ κ.

Remark 2.2.1. (Asymptotic variance) It is worth emphasizing that when the noise variables

are independent and homogeneous, which implies that κ = 1, the asymptotic distribution

given in (2.9) is consistent with the result derived from i.i.d. Gaussian design in [8]. In

fact, an explicit formula can be derived for the asymptotic variance based essentially on the

Stieltjes transform of the Marčenko-Pastur distribution, see e.g. Lemma 3.11 in [1]. Define

mτ (z) =

∫ b+(τ)

b−(τ)

1

x+ z
fτ (x)dx+

1

z

(
1− 1

τ

)
1{τ>1} =

(τ − z − 1) +
√
(τ − z − 1)2 + 4zτ

2zτ
.

Then we can obtain

h1(γ, τ) =
1

γ
mτ

(
1

γ

)
=

(τγ − 1− γ) +
√

(τγ − 1− γ)2 + 4τγ

2τγ
,

and

h2(γ, τ) = −
1

γ2
m′
τ

(
1

γ

)
= −

(τγ − τ + γ + 1)
(
−γ − 1 +

√
(τγ − 1− γ)2 + 4τγ

)
2γ2τ 2

√
(τγ − 1− γ)2 + 4τγ

.

We illustrate the asymptotic variance in Figure 2.1 with κ = 1 and n = 100. From this

figure, fixing the aspect ratio 1/τ , the variance of γ̂ increases in the true SNR γ0; while

fixing γ0, the variance of γ̂ first decreases and then increases in the aspect ratio 1/τ .

2.3. Simulations

In this section, we conduct numerical experiments. Throughout our numerical experiments,

we use the Minorization-Maximization (MM) algorithm given in [46] to maximize (2.1.1)

and hence obtain the random effects likelihood estimate γ̂ and σ̂2.
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Figure 2.1. Asymptotic variance of γ̂ with κ = 1 and n = 100.

2.3.1. Consistency of γ̂, σ̂2 and κ̂. In this subsection, we consider the linear model

with heterogeneous but uncorrelated noise, and then demonstrate the consistency of REML

γ̂ and σ̂2, as well as κ̂ defined in (2.7). Here we only consider uncorrelated noise since we need

to show the behavior of κ̂. For the case of correlated noise, we will illustrate the sampling

distribution of γ̂ in the next subsection.

We assume that the coefficient vector β is generated in the form of

β ∝
(
1, 2−g, 3−g, · · · , p−g

)⊤
,(2.10)

where g ≥ 0 determines the rate of decay for the coefficients, and the norm of β is determined

by σ2
0 and the SNR γ0 by ∥β∥22 = γ0σ

2
0.

For heteroscedastic independent noise, we generate σ2
i by the geometric sequence by first

generating (σ2
1′ , σ

2
2′ · · · , σ2

n′) in the form of

(σ2
1′ , σ

2
2′ · · · , σ2

n′) ∝
(
1, q, q2, · · · , qn

)
,(2.11)

11



(a) γ̂ of Simulation (i) (b) γ̂ of Simulation (ii) (c) γ̂ of Simulation (iii)

(d) σ̂2 of Simulation (i) (e) σ̂2 of Simulation (ii) (f) σ̂2 of Simulation (iii)

(g) κ̂ of Simulation (i) (h) κ̂ of Simulation (ii) (i) κ̂ of Simulation (iii)

Figure 2.2. Estimates of SNR and noise level for simulations (i)(ii)(iii) under
the t5 design. Each simulation is conducted over 100 independent Monte Carlo
samples. The true SNR γ0, σ

2
0 and κ0 are marked in dash line. The black

diamonds represent average estimates by γ̂, σ̂2
0 and κ̂

where q > 0 and
∑n

i=1 σ
2
i′ = nσ2

0. Next, (σ2
1′ , σ

2
2′ · · · , σ2

n′) is shuffled randomly to generate

(σ2
1, σ

2
2 · · · , σ2

n). Throughout this section, we chose q = 0.95 and σ2
0 = 0.5, which also gives

κ = 30.7692 by fixing n = 1200.

We consider the following settings on the key parameters to investigate and illustrate how

the performance of γ̂ relies on the magnitude decay in β, the aspect ratio p/n, and the SNR

γ0.

12



(i) (Varying magnitude decay in β): Fix n = 1200, p = 2000, γ0 = 2. Let g be varied

from 0 to 2.

(ii) (Varying aspect ratio): Fix n = 1200, g = 0.5, γ0 = 2. Let the aspect ratio

1/τ = p/n be varied from 2/3 to 3.

(iii) (Varying SNR): Fix n = 1200, p = 2000, g = 0.5. Let γ0 be varied from 0.5 to 5.

Each simulation consists of 100 independent Monte Carlo samples. The performances of γ̂,

σ̂2 and κ̂ under simulation settings (i)(ii)(iii) are shown in Figure 2.2 for design matrices with

i.i.d. t5 entries. All of these estimators appear to be consistent under various circumstances.

In particular, we can see that the variance of estimators γ̂ keeps more or less the same over

different magnitude decays in β, while increases with the aspect ratio 1/τ ∈ [2/3, 3], and also

increases with the true SNR γ0 ∈ [1/2, 5]. These observations are in line with the asymptotic

variance presented in (2.9), which has also been illustrated in Figure 2.1.

2.3.2. Distribution of γ̂. Now let’s study the sampling distribution of γ̂ empirically

for heterogeneous and correlated noise. Here we consider the setting n = 1200, p = 2000,

σ2
0 = 0.5, and γ0 = 2. For the coefficient vector, assume β0 generated from (2.10) with

g = 0.5. For the heterogeneous and correlated noise, in addition to the variances generated

according to (2.11) with q = 0.95, we impose the pairwise covariances as Σij = ρ|i−j| · σiσj

with ρ = 0.1. The resulting κ defined in Theorem 2.2.2 is κ = ∥Σ∥2F/(nσ4
0) = 30.8188.

We conduct Monte Carlo simulations with 1000 independent samples under the following

settings of design matrices:

(i) The entries of Z are i.i.d. Rademacher random variables.

(ii) The entries of Z are i.i.d. standardized t5 random variables.

(iii) The standardized genotype model proposed in [24]: First, let the allele frequencies

for SNPs be generated from fi ∼ Unif[0.05, 0.5] for i = 1, . . . , p. Next, generate the

entries of the genotype matrix U by following a discrete distribution over {0, 1, 2}

with assigned probabilities (1 − fj)
2, 2fj(1 − fj), and f 2

j , respectively. Finally,

13



(a) Rademacher design

(b) Standardized t5 design

(c) Standardized genotype design

Figure 2.3. Probability density of the estimated SNR γ̂ and the normal Q–Q
plot of corresponding γ̂ sets. In the probability density graph, the purple curve
shows the pdf of normal distribution with sample mean and sample variance
and the red curve shows the pdf of our theoretical normal distribution when
the features are independent.
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(a) REML

(b) Adjusted REML

(c) EigenPrism

Figure 2.4. Plug-in 95% CI for 200 independent datasets for REML, ad-
justed REML (with heterogeneous) and eigenPrism when κ = 30.77. The

estimates ĥ are marked as circles and the true SNRs h0 are marked by the red
line. The purple bars indicate the cases when the 95% CI does not cover h0.

standardize each column of U to have zero mean and unit variance to obtain the

design matrix Z.

15



(a) REML

(b) Adjusted REML

(c) EigenPrism

Figure 2.5. Plug-in 95% CI for 200 independent datasets for REML, ad-
justed REML (with heterogeneous) and eigenPrism when κ = 2.54. The es-

timates ĥ are marked as circles and the true SNRs h0 are marked by the red
line. The purple bars indicate the cases when the 95% CI does not cover h0.

2.3.3. Compare REML, adjusted REML and eigenPrism γ0. The heritability h

is

h =
1

γ + 1
,

16



then we define the estimator of heritability to be

ĥ =
1

γ̂ + 1
.

To compare REML(without considering κ), adjusted REML and eigenPrism, we consider

the signal setting (2.10), and set the parameters n = 1200, p = 2000, γ0 = 2, σ2
0 = 0.5 and

g ∼ Unif[0, 2]. The entries of design matrix Z are i.i.d standard normal. We just change the

noise variance setting (2.11) with parameters q = 0.95 in case 1 and q = 0.995 in case 2, the

correspondingly are κ0 = 30.77 and κ0 = 2.54. Results are shown in Figure 2.4 and 2.5.

2.4. Proof of Main Results

In this section, we give proof for Theorems in Section 2.2. In Section 2.4.1, we will present

some useful supporting lemmas; in Section 2.4.2, we present a new representation based on

rademacher sequences which will be useful in our proof; in Section 2.4.3, we present a proof

for our main result Theorem 3.2.4; in Section 2.4.4, we present a proof for our main result

Theorem 2.2.2; in Section 2.4.5 we present a proof for 2.2.1; we leave proof of lemmas used

in former subsections to the appendix.

2.4.1. Supporting Lemmas.

Lemma 2.4.0.1. Under the assumptions of Theorem 3.2.4, we have

max
i∈[n]

ε2i = OP (log n)(2.12)

and ∣∣∣∣∣ 1n
n∑
i=1

ε2i − σ2
0

∣∣∣∣∣ = oP (1).(2.13)

Moreover, under the assumptions of Theorem 2.2.2, there holds

(2.14)
1√
n

((
n∑
i=1

ε2i

)
− nσ2

0

)
=⇒ N (0, 2κσ4

0).
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Lemma 2.4.0.2 (Theorem 9.10 of [1]). Under the assumptions of Theorem 3.2.4, for Vγ

defined in (2.2) and any integer k > 0, it is obvious that ∥V −k
γ ∥ ≤ 1. Moreover, we have∣∣∣∣ 1n trace

(
V −k
γ

)
− hk(γ, τ)

∣∣∣∣ = OP

(
1

n

)
,

where hk(γ, τ) is defined in (2.8).

A key technique in proving Theorem 3.2.4 is the “leave-k-out” argument developed in [24].

Here we list some useful notations.

Definition 2.4.1. Denote Z = [z1, . . . ,zp] as a concatenation of column vectors. For any

subset C ⊂ {1, . . . , p}, denote Vγ,−C := Vγ − γ
p

∑
k∈C zkz

⊤
k . For example, for any i ̸= j,

Vγ,−ij := Vγ,−{ij} = Vγ −
γ

p

(
ziz

⊤
i + zjz

⊤
j

)
.

Furthermore, for 1 ≤ i, j ≤ p, define

η
(l)
ij,C := z⊤

i V
−l
γ,−Czj.(2.15)

Finally, in the case C = ∅, simply denote

η
(l)
ij := z⊤

i V
−l
γ zj.(2.16)

The proofs of the following five results, Lemma 2.4.1.1 to Lemma 2.4.1.5, essentially follow the

arguments or ideas in [24], though there might be some small differences. For completeness,

we provide self-contained proofs for these results in the appendix except for Lemma 2.4.1.4,

which has been explicitly given in the supplement of [24] (See Proposition S.1 therein).

Lemma 2.4.1.1. Under the conditions of Theorem 3.2.4, we have

max
k∈[p]

∣∣trace (V −l
γ

)
− trace

(
V −l
γ,−k
)∣∣ ≤ 2l − 1, l = 1, 2, 3, 4,(2.17)
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and for η
(l)
kk,k defined in (2.15),

max
k∈[p]

∣∣∣∣ 1nη(l)kk,k − 1

n
trace

(
V −l
γ

)∣∣∣∣ = OP

(√
log n

n

)
, l = 1, 2.

Lemma 2.4.1.2. Under the conditions of Theorem 3.2.4, for fixed γ > 0, we have

max
1≤k≤p

∣∣∣∣∣ 1nz⊤
k V

−1
γ zk −

1

n

trace(V −1
γ )

1 + γ
p
trace(V −1

γ )

∣∣∣∣∣ = OP

(√
log n

n

)
,(2.18)

max
1≤k≤p

∣∣∣∣∣∣∣
1

n
z⊤
k V

−2
γ zk −

1

n

trace(V −2
γ )(

1 + γ
p
trace(V −1

γ )
)2
∣∣∣∣∣∣∣ = OP

(√
log n

n

)
,(2.19)

max
1≤k≤p

∣∣∣∣ 1nz⊤
k V

−l
γ zk −

1

np
trace

(
V −l
γ ZZ⊤)∣∣∣∣ = OP

(√
log n

n

)
, l = 1, 2,(2.20)

max
1≤k≤p

∣∣∣∣∣(z⊤
k Bγzk

)l − (1

p
trace

(
BγZZ⊤))l∣∣∣∣∣ = OP

(√
log n

n

)
, l = 1, 2,(2.21)

∣∣∣∣∣ 1np trace (V −1
γ ZZ⊤)− 1

n

trace(V −1
γ )

1 + γ
p
trace(V −1

γ )

∣∣∣∣∣ = OP

(
1

n

)
,(2.22)

and ∣∣∣∣∣∣∣
1

np
trace

(
V −2
γ ZZ⊤)− 1

n

trace(V −2
γ )(

1 + γ
p
trace(V −1

γ )
)2
∣∣∣∣∣∣∣ = OP

(
1

n

)
.(2.23)

Lemma 2.4.1.3. Under the conditions of Theorem 3.2.4, for fixed γ > 0, we have
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max
1≤k≤p

∣∣∣∣∣ 1nz⊤
k V

−1
γ zk −

1

np
trace

(
V −1
γ ZZ⊤)

− 1(
1 + γ

p
trace(V −1

γ )
)2 ( 1

n
η
(1)
kk,k −

1

n
trace(V −1

γ )

) ∣∣∣∣∣ = OP

(
log n

n

)
,(2.24)

and

max
1≤k≤p

∣∣∣∣∣ 1nz⊤
k V

−2
γ zk −

1

np
trace

(
V −2
γ ZZ⊤)

+
trace(V −2

γ )(
1 + γ

p
trace(V −1

γ )
)3 2γp

(
1

n
η
(1)
kk,k −

1

n
trace(V −1

γ )

)

− 1(
1 + γ

p
trace(V −1

γ )
)2 ( 1

n
η
(2)
kk,k −

1

n
trace(V −2

γ )

) ∣∣∣∣∣ = OP

(
log n

n

)
.

Lemma 2.4.1.4. Under the conditions of Theorem 3.2.4, for fixed γ > 0 and l = 1, 2, we

have

max
1≤k≤p

E

[(
1

n
η
(l)
kk,k −

1

n
trace(V −l

γ,−k)

)2
]
≤ C

n
,

and

max
1≤i<j≤p

∣∣∣∣∣E
[(

1

n
η
(l)
ii,i −

1

n
trace(V −l

γ,−i)

)(
1

n
η
(l)
jj,j −

1

n
trace(V −l

γ,−j)

)]∣∣∣∣∣ ≤ C

n2
,

where C is a constant independent of n.

Lemma 2.4.1.5. Under the conditions of Theorem 3.2.4, for fixed γ > 0 and l = 1, 2, we

have

max
k ̸=j
|z⊤
k V

−l
γ zj|2 = OP (n log n) and max

k ̸=j
|z⊤
k Bγzj|2 = OP

(
log n

n

)
.(2.25)
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Further, under the assumptions of Theorem 2.2.2, we have
1

p(p− 1)

∑
i ̸=j

n
(
z⊤
i Bγzj

)2
= θ1(γ, τ) + oP (1)

∑
i ̸=j

β2
i β

2
jn
(
z⊤
i Bγzj

)2
= ∥β∥4θ1(γ, τ) + oP (1),

(2.26)

where θ1(γ, τ) > 0 is a constant only depending on γ and τ .

The above lemmas rely crucially on the “leave-k-column-out” argument in [24]. Given we

are dealing with heteroscedastic and correlated noises, we also need the following results,

which rely on a similar “leave-k-row-out” argument.

Lemma 2.4.1.6. For any fixed γ > 0, under the assumptions of Theorem 3.2.4, we have

(2.27) max
i∈[n]

∣∣∣∣(V −l
γ

)
ii
− 1

n
trace

(
V −l
γ

)∣∣∣∣ = OP

(√
log n

n

)
, l = 1, 2, 3, 4,

which implies

(2.28) max
i∈[n]

∣∣∣∣(Bγ)ii −
1

n
trace (Bγ)

∣∣∣∣ = OP

(√
log n

n3

)

and

(2.29) max
i∈[n]

∣∣∣∣∣(Bγ)
2
ii −

(
1

n
trace (Bγ)

)2
∣∣∣∣∣ = OP

(√
log n

n5

)
.

Lemma 2.4.1.7. For any fixed γ > 0, under the assumptions of Theorem 3.2.4, we have

(2.30) max
1≤i<j≤n

|(Bγ)ij| = OP

(√
log n

n3

)

and under the assumptions of Theorem 2.2.2
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(2.31)


n
∑
i ̸=j

(Bγ)
2
ij = θ2(γ, τ) + oP (1)

n
∑
i ̸=j

ε2i ε
2
j (Bγ)

2
ij = θ2(γ, τ)σ

4
0 + oP (1),

where θ2(γ, τ) > 0 is a constant only depending on γ and τ .

Lemma 2.4.1.8. For any fixed γ > 0, under the assumptions of Theorem 3.2.4, we have

(2.32) max
k∈[p]

max
i∈[n]

∣∣∣∣(V −l
γ,−k
)
ii
− 1

n
trace

(
V −l
γ

)∣∣∣∣ = OP

(√
log n

n

)
, l = 1, 2, 3, 4.

2.4.2. New Representation based on Rademacher Sequences. Since the entries

of Z are independent and symmetric, we can replace the original design matrix Z with

˜̃Z = ΛζZΛξ with the diagonal matrices

Λζ = diag(ζ1, . . . , ζn), Λξ = diag(ξ1, . . . , ξp),

with ζi’s and ξj’s are i.i.d. Rademacher random variables that are also independent of Z,

since Z and ˜̃Z have the same distribution. We also denote

ξ = (ξ1, . . . , ξn)
⊤ and ζ = (ζ1, . . . , ζn)

⊤.

Under this new representation of the design matrix, the linear model (2.1) becomes

(2.33) y = ΛζZΛξβ + ε.

We want to emphasize that under this new representation, we still define Vγ and Bγ as

before:

Vγ = In +
γ

p
ZZ⊤, and Bγ =

V −1
γ

n
−

V −2
γ

trace(V −1
γ )

.

However, the representation of the estimating equation (2.3) should be changed. In fact, the

original ZZ⊤ is replaced with ΛζZZ⊤Λζ . Therefore, the original Vγ defined in (2.2) should
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be replaced with

˜̃Vγ = In +
γ

p
ΛζZZ⊤Λζ = Λζ

(
In +

γ

p
ZZ⊤

)
Λζ = ΛζVγΛζ .

Also, it is easy to see that the originalBγ should be replaced with ˜̃Bγ = ΛζBγΛζ . Therefore,

the estimating equation (2.3) should be rewritten as

∆(γ) := y⊤ ˜̃Bγy

= (ΛζZΛξβ + ε)⊤ΛζBγΛζ (ΛζZΛξβ + ε)

= ξ⊤ΛβZ
⊤BγZΛβξ + 2ξ⊤ΛβZ

⊤BγΛεζ + ζ⊤ΛεBγΛεζ

= [ξ⊤, ζ⊤]

ΛβZ
⊤BγZΛβ ΛβZ

⊤BγΛϵ

ΛϵBγZΛβ ΛϵBγΛϵ

ξ
ζ

 ,(2.34)

where

Λβ = diag(β1, . . . , βn) and Λε = diag(ε1, . . . , εn).

Note that now ∆(γ) is a random variable about Z, ε, ξ and ζ. Straightforward calculation

gives the conditional mean of ∆(γ) on Z and ε:

∆̃∗(γ) := E
[
∆(γ)

∣∣Z, ε] = p∑
k=1

β2
kz

⊤
k Bγzk + trace

(
Λ2
εBγ

)
.(2.35)

Furthermore, the conditional variance of
√
n(∆(γ)) on Z and ε can also derived as in the

following lemma, the proof of which is deferred to the appendix.

Lemma 2.4.1.9. The conditional variance of ∆(γ) given Z and ε has the formula

Var
[√
n(∆(γ))|Z, ε

]
= 2n

∑
1≤k ̸=j≤p

β2
kβ

2
j

(
z⊤
k Bγzj

)2
︸ ︷︷ ︸

V 1

+4n

p∑
k=1

β2
kz

⊤
k BγΛ

2
εBγzk︸ ︷︷ ︸

V2

+2n
∑

1≤k ̸=j≤n

ε2kε
2
j(Bγ)

2
kj︸ ︷︷ ︸

V3

.(2.36)
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2.4.3. Proof of Theorem 3.2.4. With ∆̃∗(γ) defined in (2.35) and for any fixed γ > 0,

we first aim at showing

(2.37) ∆(γ)− ∆̃∗(γ)
P−−−→

n→∞
0.

First, by (2.25) in Lemma 2.4.1.5, we have

∑
k ̸=j

β2
kβ

2
j

(
z⊤
k Bγzj

)2 ≤ (max
k ̸=j
|z⊤
k Bγzj|2

)
∥β∥42 = OP

(
log n

n

)
.

Second, since zk’s are sub-Gaussian vectors, it is obvious that

max
1≤k≤p

∥zk∥2 = OP (n).

Also, a simple consequence of Lemma 2.4.0.2 gives ∥Bγ∥ = OP (1/n), and Lemma 2.4.0.1

implies ∥Λ2
ε∥ ≤ O(log n). Therefore,

p∑
k=1

β2
kz

⊤
k BγΛ

2
εBγzk ≤ ∥β∥22∥Bγ∥2∥Λ2

ε∥
(
max
1≤k≤p

∥zk∥2
)

= OP

(
log n

n

)
.

Third, by (2.12) in Lemma 2.4.0.1 and (2.30) in Lemma 2.4.1.7,

∑
1≤k ̸=j≤n

ε2kε
2
j(Bγ)

2
kj = OP

(
log3 n

n

)
.

Plug the above bounds to (2.36), for any δ > 0, by the conditional Chebyshev’s inequality,

we have

P
{∣∣∣∆(γ)− ∆̃∗(γ)

∣∣∣ > δ
∣∣∣Z, ε} ≤ Var [∆(γ)|Z, ε]

δ2
P−−−→

n→∞
0.

Then, by the dominated convergence theorem, we have proved (2.37).

Now, define

∆∗∗(γ) =σ
2
0 trace (BγVγ0) = σ2

0 trace

(
Bγ

(
In +

γ0
p
ZZ⊤

))
.(2.38)
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By (2.21) in Lemma 2.4.1.2, we can easily obtain

(2.39)

∣∣∣∣∣
p∑

k=1

β2
k

(
z⊤
k Bγzk

)
− ∥β∥

2

p
trace(BγZZ⊤)

∣∣∣∣∣ = OP

(√
log n

n

)
.

On the other hand, by Lemma 2.4.0.1 and (2.28) in Lemma 2.4.1.6, we have

∣∣∣∣trace (Λ2
εBγ

)
− 1

n
trace

(
Λ2
ε

)
trace (Bγ)

∣∣∣∣ = OP

√ log3 n

n

 .

Furthermore, by Lemmas 2.4.0.1 and 2.4.0.2, we have∣∣∣∣ 1n trace
(
Λ2
ε

)
trace (Bγ)− σ2

0 trace (Bγ)

∣∣∣∣ = oP (1).

Combine the above two inequalities,

(2.40)
∣∣trace (Λ2

εBγ

)
− σ2

0 trace (Bγ)
∣∣ = oP (1).

Then, by (2.35), (2.38), (2.39), and (2.40), we have

∣∣∣∆̃∗(γ)−∆∗∗(γ)
∣∣∣ = oP (1).

Combined with (2.37), we have

∆(γ)−∆∗∗(γ)
P−−−→

n→∞
0.

Finally, we have the following result that characterizes the limit of ∆∗∗(γ) for any γ > 0.

Lemma 2.4.1.10 ( [24]). Under the assumption of Theorem 3.2.4, we have

∆∗∗(γ)
a.s.−→ cγ,

where cγ > 0 for γ < γ0, cγ0 = 0, and cγ < 0 for γ > γ0.

This result is basically given in [24], and we give a detailed proof in the appendix for self-

containedness.
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Then, for any γ > 0, there holds ∆(γ)
P−→ cγ, which is positive, zero, or negative, depending

on whether γ is smaller than, equal to, or greater than γ0. Then by the argument of Theorem

3.7 in [26], with probability tending to one, the equation ∆(γ) = 0 has a root γ̂n such that

it converges to γ0 in probability.

Consistency of σ̂2. Let’s turn to show σ̂2
ε

P−→ σ2
0, where the noise variance estimate

is defined in (2.5). Let sn(γ) = 1
n
y⊤V −1

γ y. The noise variance estimate is then σ̂2 =

sn(γ̂). From the previous sections, we know sn(γ) converges to a continuous function s(γ)

in probability. For example, if τ < 1, we have

s(γ) = σ2
0

∫ b+(τ)

b−(τ)

(
1 + γ0x

1 + γx

)
fτ (x)dx,

which gives s(γ0) = σ2
0.

An important observation is that sn(γ) is decreasing. For any small δ > 0 and ϵ > 0, we

know

sn(γ − δ) ≤ s(γ − δ) + ϵ and sn(γ + δ) ≥ s(γ + δ)− ϵ

with probability tending to 1. On the other hand, γ̂n → γ0 in probability implies that

γ0 − δ < γ̂n < γ0 + δ with probability tending to 1. Therefore, we have

s(γ0 − δ) + ϵ ≥ sn(γ0 − δ) ≥ sn(γ̂n) ≥ sn(γ0 + δ) ≥ s(γ0 + δ)− ϵ

with probability tending to 1. Since δ an ϵ can be arbitrarily small, we have

σ̂2 = sn(γ̂)
P−→ s(γ0) = σ2

0.

2.4.4. Proof of Theorem 2.2.2. Through the analysis of asymptotic distribution, we

use the shorthand hk = hk(γ0, τ) for k = 1, 2, 3, 4, where hk(γ0, τ) is defined in (2.8).

26



2.4.4.1. Decomposition of ∆(γ0). The following lemma essentially given in [24] (without

a detailed proof) reduces the asymptotic distribution of γ̂ to that of ∆(γ0). For the sake of

completeness, we give a detailed proof for it in Appendix:

Lemma 2.4.1.11. Under the conditions of Theorem 3.2.4, assume γ̂n is a sequence of roots

of ∆(γ) = 0, which converges to γ0 in probability. Then

√
n (γ̂ − γ0) = −

√
n∆(γ0)

∆′
∞(γ0)

+ oP (1),(2.41)

where ∆′
∞(γ0) is the limit of ∆′(γ) as γ = γ0 and has the formula

∆′
∞(γ0) =

σ2
0

γ0

h21 − h2
h1

.

To investigate the asymptotic distribution of
√
n∆(γ0), consider the following orthogonal

decomposition:

∆(γ0) = (∆(γ0)− ∆̃∗(γ0)) + ∆̃∗(γ0).

In other words, the expectation is taken with respect to Rademacher random variables ξi’s

and ζi’s. We aim to derive the asymptotic joint distribution of

(√
n(∆(γ0)− ∆̃∗(γ0)),

√
n∆̃∗(γ0)

)
.

2.4.4.2. Conditional Variance of ∆(γ0)− ∆̃∗(γ). In order to derive the asymptotic joint

distribution of
(√

n(∆(γ0)− ∆̃∗(γ)),
√
n∆̃∗(γ)

)
, we first need to study the conditional dis-

tribution of ∆(γ0)− ∆̃∗(γ) given Z and ε. This consists of two steps: conditional variance

and conditional normality. Let’s first study its conditional variance. Note we have

Var
[√

n(∆(γ0)− ∆̃∗(γ))
∣∣∣Z, ε] = Var

[√
n(∆(γ0))

∣∣∣Z, ε] .
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Lemma 2.4.1.12. Under the condition of Theorem 2.2.2, with V1, V2 and V3 defined in (2.36),

we have

(2.42) V1
P−→ 2σ4

0

(
(1− 2h1 + h2) +

4h2 − 2h3
h1

+
h2 − 2h3 + h4

h21
− τ

(
h1 −

h2
h1

)2
)
,

(2.43) V2
P−→ 4σ4

0

(
(h1 − h2)− 2

h2 − h3
h1

+
h3 − h4
h21

)
,

(2.44) V3
P−→ 2σ4

0

(
h2 −

2h3
h1

+
h4
h21
−
(
h1 −

h2
h1

)2
)
.

Consequently,

Var
[√
n(∆(γ0))|Z, ε

] P−→ 2σ4
0

(
h2 − h21
h21

− (τ + 1)

(
h1 −

h2
h1

)2
)
.

Limit of V1. Since
∑

j ̸=i β
2
i β

2
j = ∥β∥4 −

∑p
k=1 β

4
k and

∑p
k=1 β

4
k = o(1) (by the assumption

∥β∥∞ = o(p−1/4)), by (2.26) in Lemma 2.4.1.5, we have

∑
j ̸=i

β2
i β

2
j

∣∣∣∣∣ 1

p(p− 1)

∑
j ̸=i

n
(
z⊤
i Bγ0zj

)2 − θ3
∣∣∣∣∣ = oP (1),

and ∣∣∣∣∣∑
j ̸=i

β2
i β

2
jn
(
z⊤
i Bγ0zj

)2 − ∥β∥4θ3
∣∣∣∣∣ = oP (1).

These bounds imply that∣∣∣∣∣2n∑
j ̸=i

β2
i β

2
j

(
z⊤
i Bγ0zj

)2 − 2n

(
∥β∥4 −

p∑
k=1

β4
k

)
1

p(p− 1)

∑
j ̸=i

(
z⊤
i Bγ0zj

)2∣∣∣∣∣ = oP (1) .(2.45)

Then for
∑

j ̸=i
(
z⊤
i Bγ0zj

)2
, since

trace

((
Bγ

1

p
ZZ⊤

)2
)

=
1

p2

(∑
i ̸=j

(
z⊤
i Bγzj

)2
+
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,
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by (2.21) in Lemma 2.4.1.2, we can have that∣∣∣∣∣
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p
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Finally, combining (2.45) and (2.46), we can have∣∣∣∣∣2n
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Further, Lemma 2.4.0.2 implies
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.

Combine these limits, the bound in (2.47), the fact γ0 = ∥β∥2/σ2
0, and the fact

∑p
k=1 β

4
k =

o(1), we finish the proof of (2.42).

Limit of V2. For any fixed γ > 0, straightforward calculation gives
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Then using Sherman-Morrison-Woodbury formula (Theorem A.1.3), we can have
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By Lemma 2.4.0.1, we have
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and hence
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Then, by Hanson-Wright inequality and taking the uniform bound, we can easily get
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By Lemma 2.4.1.8 and Lemma 2.4.0.1, we have
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By Lemma 2.4.0.1 again, we have
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Combining (2.50), (2.51) and (2.52) gives
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Combining (2.53), (2.49), (2.48), Lemma 2.4.1.1 and Lemma 2.4.0.2, there exists some con-

stant C(γ, τ), such that
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Combining the above inequalities, there holds
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Finally, note that
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By (2.27) in Lemma 2.4.1.6, there holds
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Similar to (2.40), we have
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Combining (2.54) and (2.55) and letting γ = γ0, we have∣∣∣∣∣4n
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Notice that
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Therefore, we got (2.43) by Lemma 2.4.0.2.
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Limit of V3 By (2.31) in Lemma 2.4.1.7, (2.29) in Lemma 2.4.1.6, and Lemma 2.4.0.2, we

have
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2.4.4.3. Conditional Distribution of ∆(γ0)− ∆̃∗(γ0). Recall from (2.34) that

√
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Since ∆̃∗(γ0) = E[∆(γ0)|Z, ε], we have

√
n(∆(γ0)− ∆̃∗(γ0)) =

(
ξ⊤ ζ⊤) (Q− Q̆)

ξ

ζ

 .

where Q̆ is a diagonal matrix that maintains the diagonal part of Q. In other words,

conditional on Z and ε,
√
n(∆(γ0)− ∆̃∗(γ0)) is a quadratic form about ξ and ζ.
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Here we aim to use Theorem A.1.4 in the appendix to establish a normal approximation

of the conditional distribution of
√
n(∆(γ0) − ∆̃∗(γ0)) given Z and ε. In other words, we

intend to show

(2.57)
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the right-hand side of which converges to some nonvanishing limit based on (2.42).

Let’s now establish an upper bound of ∥Q− Q̆∥. First, we have
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∥
√
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the proof of (2.57).
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Therefore, by Theorem A.1.4, we have
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where Φ(t) is the c.d.f of standard normal distribution.

2.4.4.4. Asymptotic Distribution of
√
n∆̃∗(γ0). This subsection is intended to show the

following result that characterizes the asymptotic distribution of ∆̃∗(γ0) defined in (2.35).
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By Lemma 2.4.1.3 and Lemma 2.4.1.1, we have
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Then, for l = 1, 2,
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for which we have used Lemma 2.4.1.4 as well as the fact ∥β∥4 = o(1) (by the assumption

∥β∥∞ = o(p−1/4)). Then by (2.60), (2.61), and (2.62), in connection with Lemma 2.4.0.2,

there holds
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Before deriving the asymptotic distribution of ∆̃∗(γ0), we first introduce a lemma, which is

essentially an analogy to (2.63):
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Lemma 2.4.1.13. Under the conditions of Theorem 2.2.2, for any fixed γ > 0, there holds
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With this lemma, equation (2.64) gives
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Recall that Lemma 2.4.0.2 implies trace (Bγ0)
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2.4.4.5. Asymptotic Distribution of γ̂. Denote

(2.67)
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which are the asymptotic variances given in (2.66) and Lemma 2.4.1.12.

To establish the asymptotic distribution of γ̂, we only need to find that of
√
n∆(γ0) by

Lemma 2.4.1.11. Furthermore, it suffices to find the asymptotic joint distribution of

(√
n(∆(γ0)− ∆̃∗(γ)),

√
n∆̃∗(γ)

)
.
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For any (t, s) ∈ R2, we have
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where the last inequality is due to (2.58). By (2.66), we have

E
[
1{

√
n∆̃∗(γ0)/

√
ν1≤t}Φ(s)

]
= P

{√
n∆̃∗(γ0)√

ν1
≤ t

}
Φ(s)→ Φ(t)Φ(s).

Thus we can have

P

{√
n∆̃∗(γ0)√

ν1
≤ t,

√
n∆(γ0)−

√
n∆̃∗(γ0)√

Var [
√
n∆(γ0)|Z, ε]

≤ s

}
→ Φ(t)Φ(s),

which implies that (√
n∆̃∗(γ0)√

ν1
,

√
n∆(γ0)−

√
n∆̃∗(γ0)√

Var [
√
n∆(γ0)|Z, ε]

)
=⇒ (X1, X2) ,

where [X1, X2] ∼ N2(0, I2). By Lemma 2.4.1.12, we have

Var
[√
n∆(γ0)|Z, ε

] P−→ ν2.
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Then, the Slutsky’s theorem implies(√
n∆̃∗(γ0)√

ν1
,

√
n∆(γ0)−

√
n∆̃∗(γ0)√

Var [
√
n∆(γ0)|Z, ε]

,
√
Var

[√
n∆(γ0)|Z, ε

])
=⇒

(
X1, X2,

√
ν2
)
.

Letting g(x, y, z) =
√
ν1x+ yz, by the continuous mapping theorem, we can have

√
n∆(γ0) =

√
ν1

√
n∆̃∗(γ0)√

ν1
+

√
n∆(γ0)−

√
n∆̃∗(γ0)√

Var [
√
n∆(γ0)|Z, ε]

·
√
Var

[√
n∆(γ0)|Z, ε

]
=⇒
√
ν1X1 +

√
ν2X2.

Finally, by Lemma 2.4.1.11 and the Slutsky’s theorem, we have

√
n (γ̂ − γ0) =⇒ N

(
0,

ν1 + ν2
(∆′

∞(γ0))2

)
By ∆′

∞(γ0) =
σ2
0

γ0

h21−h2
h1

and the expressions in (2.67), simplifying the formula, we have

√
n (γ̂ − γ0) =⇒ N

(
0, 2γ20

(
1

h2 − h21
+ κ− τ − 1)

))
.

2.4.5. Proof of Propostion 2.2.1. Straightforward calculation gives

E[y4i ] =
p∑
j=1

(
E[z4ij]− 3

)
β4
j + 3∥β∥42 + 6∥β∥22σ2

i + 3σ4
i .(2.68)

Then, when the noise is uncorrelated,

κ =
1

nσ4
0

n∑
i=1

σ4
i =

1

3nσ4
0

n∑
i=1

E[y4i ]− (γ20 + 2γ0) +
1

3nσ4
0

n∑
i=1

p∑
j=1

(
E[z4ij]− 3

)
β4
j .

By the assumption ∥β∥∞ = o(p−1/4) and zij is sub-Gaussian, it is obvious that

1

3nσ4
0

n∑
i=1

p∑
j=1

(
E[z4ij]− 3

)
β4
j ≤ max

i∈[n];j∈[p]

∣∣E[z4ij]− 3
∣∣ 1

3σ4
0

p∑
j=1

β4
j = o(1).
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Furthermore, similar to (2.68), straightforward calculation implies max
1≤i≤n

E[y8i ] = O(1), which

implies

Var

[
1

n

n∑
i=1

y4i

]
=

1

n2

n∑
i=1

Var[y4i ] ≤
1

n2

n∑
i=1

E[y8i ] = O

(
1

n

)
,

Then we can have 1
n

∑n
i=1 E[y4i ] =

1
n

∑n
i=1 y

4
i +OP (n

−1/2). Combining the above, we have

1

3nσ4
0

n∑
i=1

y4i − (γ20 + 2γ0)
P−→ κ.

In Theorem 3.2.4 we have already shown that σ̂2 P−→ σ2
0 and γ̂n

P−→ γ0. By the Slutsky’s

theorem, we obtain κ̂ := 1
3nσ̂4

∑n
i=1 y

4
i − (γ̂2n + 2γ̂n)

P−→ κ.

2.5. Extention to Group SNR Estimation

Let’s consider an extension of the standard linear model (2.1) to the case in which the design

matrix is partitioned according to several groups of features. In other works, let’s assume

that the linear model can be represented as

(2.69) y =
s∑
i=1

Ziβi + ε

where Zi ∈ Rn×pi is the design matrix corresponding to the i-th feature group, and βi ∈ Rpi

is the corresponding vector of regression coefficients, so the design matrix Z = [Z1, . . . ,Zs]

is partitioned into s feature groups. In this case, besides estimating σ2
0, we are interested in

estimating the group SNRs γ0i := ∥βi∥2/σ2
0 for i = 1, . . . , s. This model is motivated by the

problem of partitioning heritability discussed in [29]. Also, the problem of estimating group

SNR is closely connected to group regularized ridge regression [19].

As with the standard case, we consider a linear random effects model corresponding to (2.69).

Assume the i.i.d. noise follows N (0, σ2
ε), and replace βi with p

− 1
2

i αi, where αi consists of

i.i.d. Gaussian random variables with distribution N(0, σ2
αi
) for i = 1, . . . , s. Then, the
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linear model with feature groups (2.69) corresponds to a random effects model

y =
s∑
i=1

p
− 1

2
i Ziαi + ε.

As with the standard case, the true values of the parameters σ2
ε , σ

2
αi

and γi = σ2
αi
/σ2

ε are σ
2
0,

∥βi∥2 and γ0i = ∥βi∥2/σ2
0 respectively.

Linear random effects models with feature groups have been well studied in the literature;

see also [21]. The log-likelihood function is

(2.70) l(σ2
ε , σ

2
α1
, . . . , σ2

αs
) = c− 1

2
log det (Ω)− 1

2
y⊤Ω−1y,

where

(2.71) Ω = Ω(σ2
ε , σ

2
α1
, . . . , σ2

αs
) := σ2

εIn +
s∑
i=1

σ2
αi

pi
ZiZ

⊤
i := σ2

εVγ,

and

(2.72) Vγ = In +
s∑
i=1

γi
pi
ZiZ

⊤
i .

Taking the partial derivatives with respect to the variance parameters, we obtain the score

functions and the likelihood equations:
Sσ2

ε
(σ2

ε , σ
2
α1
, . . . , σ2

αs
) := 1

2
y⊤Ω−2y − 1

2
trace (Ω−1) = 0

Sσ2
α
(σ2

ε , σ
2
α1
, . . . , σ2

αs
) := 1

2
y⊤Ω−1

(
1
pi
ZiZ

⊤
i

)
Ω−1y − 1

2
trace

(
Ω−1 1

pi
ZiZ

⊤
i

)
= 0, 1 ≤ i ≤ s.

Similar to the estimating equation of SNR estimation (2.3), the above set of equations lead

to the following set of likelihood equations for the vector of group SNRs γ = (γ1, · · · , γs)⊤:

(2.73) ∆(i)(γ) =
y⊤V −1

γ

(
1
pi
ZiZ

⊤
i

)
V −1
γ y

trace
(
V −1
γ

1
pi
ZiZ⊤

i

) −
y⊤V −2

γ y

trace
(
V −1
γ

) = 0, 1 ≤ i ≤ s.

Our analysis of γ̂ as a solution of (2.3) in the standard case cannot be extended to (2.73)

due to several technical difficulties. For example, the calculation of the asymptotic variance
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of γ̂ in the standard case relies on the leave-two-out analysis in random matrix theory that

has been derived in [24], but this is difficult to be extended to analyzing the solution to

(2.73). Thus, we here only present a preliminary result: we show that the true vector of

group SNRs γ0 = (γ01, . . . , γ0s)
⊤ is asymptotically a root of the likelihood functions defined

in (2.73) under certain conditions, i.e., ∆(i)(γ0)
P−→ 0 for i = 1, . . . , s.

Theorem 2.5.1. Consider the linear fixed effects model with feature groups (2.69), where

Z = [Z1,Z2, · · · ,Zs] is an n × (p1 + p2 + · · · + ps) design matrix whose entries are in-

dependent, symmetric, sub-Gaussian, and variance-one random variables, and their maxi-

mum sub-Gaussian norm is uniformly upper bounded by some numerical constant C0. Let

β = [β⊤
1 , . . . ,β

⊤
s ]

⊤ be the (p1 + · · ·+ ps)× 1 vector of regression parameters, and let ε be the

n× 1 vector of independent noise with mean zero and variance σ2
0. For i = 1, . . . , s, denote

the i-th group SNR as γ0i := ∥βi∥2/σ2
0 for i = 1, . . . , s.

Consider the asymptotic setting n, p1, p2, · · · , ps → ∞ such that n/pi → τi > 0 for i =

1, . . . , s. Also, assume that σ2
0 > 0 and γ01, . . . , γ0s > 0 are fixed constants for all n. Then

the likelihood functions of the group SNRs defined in (2.73) satisfy ∆(i)(γ0)
P−→ 0, for i =

1, . . . , s.

2.5.0.1. Simulations. In this part, we present some preliminary empirical investigations

on the properties of the random effects likelihood estimators γ̂ discussed in Section 2.5. We

will not provide extensive simulation results on its asymptotic distribution, since that has

not been addressed in Theorem 2.5.1. Instead, we focus on demonstrating the consistency

of γ̂. For simplicity, we only consider the linear model (2.69) with two feature groups

y = Z1β1 +Z2β2 + ε.

We apply the MM algorithm proposed in [46] to estimate the variance parameters. A detailed

summary of this algorithm is given in Algorithm 1.
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Algorithm 1 MM algorithm for the random effects MLE of the fixed effects model (2.69).

Require: The design matrix Zi(i = 1, . . . , s) and the vector of responses y;
Ensure: Maximum likelihood estimates γ̂1, · · · γ̂s and σ̂2

ε

1: Initialize σ
(0)
i > 0, i = 0, 1, · · · , s;

2: repeat
3:

Ω(t) ← σ2
0,(t) +

s∑
i=1

(σ2
i,(t)/pi)ZiZ

⊤
i ;

4:

σ2
0,(t+1) ← σ2

0,(t)

√√√√ y⊤Ω−2
(t)y

trace
(
Ω−1

(t)

) ;
5:

σ2
i,(t+1) ← σ2

i,(t)

√√√√y⊤Ω−1
(t)p

−1
i ZiZ⊤

i Ω
−1
(t)y

trace
(
Ω−1

(t)p
−1
i ZiZ⊤

i

) , i = 1, · · · , s;

6: until the log-likelihood function satisfies∣∣l(σ2
0,(t+1), σ

2
1,(t+1), · · · , σ2

s,(t+1))− l(σ2
0,(t), σ

2
1,(t), · · · , σ2

s,(t))
∣∣ < 10−4;

7: Set the final maximum likelihood estimates as

σ̂2
ε ← σ2

0,(t), γ̂i ← σ2
i,(t)/σ

2
0,(t), i = 1, . . . , s.

(a) γ̂1 (b) γ̂2

Figure 2.6. Estimates of the SNR γ1, γ2 from 100 independent datasets.
Structured Z1 and Z2 simulated from i.i.d. Rademacher distribution. The
true SNR γ01, γ02 are marked in dash line and the black diamonds represent
the averages.
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We fix n = 1000, p = p1+ p2 = 2100, γ01 = γ02 = 2, σ2
0 = 0.5. Both β1 and β2 are generated

according to the magnitude-decay model (2.10) with g1 = g2 = 0.5. The design matrices Z1

and Z2 are assumed to follow the i.i.d. Rademacher model.

We are particularly interested in understanding the empirical properties of γ̂1 and γ̂2 with

varying balancedness between the two groups, which is characterized by the ratio p1/p2.

Simulation results shown in Figure 2.6 suggests that the balancedness between the groups

may not have significant impact on the performance of γ̂1 and γ̂2.

2.5.0.2. Proof of Theorem 2.5.1. The proof is technically more involved but has a similar

roadmap with the standard case. In particular, for i = 1, . . . , s, we define

∆(i)
∗∗ (γ) = σ2

0

(
1− γ0i

γi

)trace
(
V −2
γ

1
pi
ZiZ

⊤
i

)
trace

(
V −1
γ

1
pi
ZiZ⊤

i

) − trace
(
V −2
γ

)
trace

(
V −1
γ

)


+ σ2
0

∑
r ̸=i

γr

(
γ0r
γr
− γ0i

γi

)trace
(
V −1
γ

1
pr
ZrZ

⊤
r V

−1
γ

1
pi
ZiZ

⊤
i

)
trace

(
V −1
γ

1
pi
ZiZ⊤

i

) −
trace

(
V −2
γ

1
pr
ZrZ

⊤
r

)
trace

(
V −1
γ

)
 .

It is obvious that ∆
(i)
∗∗ (γ0) = 0. Then, it suffices to show ∆(i)(γ0) −∆

(i)
∗∗ (γ0)

P−→ 0. Again,

we can introduce ∆
(i)
∗ (γ0), which is the mean of ∆(i)(γ0) conditional on Z, as a intermediate

step to establish ∆(i)(γ0) ≈ ∆
(i)
∗∗ (γ0).

For the linear model with a partitioned design (2.69), the likelihood functions with respect

to the vector of SNR γ have been given in (2.73), i.e.,

∆(i)(γ) =

1
n
y⊤V −1

γ

(
1
pi
ZiZ

⊤
i

)
V −1
γ y

1
n
trace

(
V −1
γ

1
pi
ZiZ⊤

i

) −
1
n
y⊤V −2

γ y
1
n
trace

(
V −1
γ

) .(2.74)

Our goal is to show that the asymptotic limit of ∆(i)(γ0) is 0. Following the proof ideas for

Theorem 3.2.4, we also use the trick of Rademacher sequences, which means the response

vector can be represented as

y =
s∑
i=1

(
pi∑
k=1

βikξikzik

)
+ ε.
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For i = 1, . . . , s, let

A(i) :=

(
s∑
r=1

(
pr∑
k=1

βrkξrkzrk

))⊤

V −1
γ (

1

pi
ZiZ

⊤
i )V

−1
γ

(
s∑
r=1

(
pr∑
k=1

βrkξrkzrk

))
,

B(i) :=

(
s∑
r=1

(
pr∑
k=1

βrkξrkzrk

))⊤

V −1
γ (

1

pi
ZiZ

⊤
i )V

−1
γ ε,

C(i) := ε⊤V −1
γ (

1

pi
ZiZ

⊤
i )V

−1
γ ε,

and

A(0) :=

(
s∑
r=1

(
pr∑
k=1

βrkξrkzrk

))⊤

V −2
γ

(
s∑
r=1

(
pr∑
k=1

βrkξrkzrk

))
,

B(0) :=

(
s∑
r=1

(
pr∑
k=1

βrkξrkzrk

))⊤

V −2
γ ε,

C(0) := ε⊤V −2
γ ε.

The the conditional expectation of the likelihood functions can be written as

∆(i)
∗ (γ) := E[∆(i)(γ)|Z]

=
1
n

(
E[A(i)|Z] + 2E[B(i)|Z] + E[C(i)|Z]

)
1
n
trace

(
V −1
γ

1
pi
ZiZ⊤

i

) −
1
n

(
E[A(0)|Z] + 2E[B(0)|Z] + E[C(0)|Z]

)
1
n
trace

(
V −1
γ

) .

(2.75)

Recall that we have also defined

∆(i)
∗∗ (γ) = σ2

0

(
1− γ0i

γi

)trace
(
V −2
γ

1
pi
ZiZ

⊤
i

)
trace

(
V −1
γ

1
pi
ZiZ⊤

i

) − trace
(
V −2
γ

)
trace

(
V −1
γ

)


+ σ2
0

∑
r ̸=i

γr

(
γ0r
γr
− γ0i

γi

)trace
(
V −1
γ

1
pr
ZrZ

⊤
r V

−1
γ

1
pi
ZiZ

⊤
i

)
trace

(
V −1
γ

1
pi
ZiZ⊤

i

) −
trace

(
V −2
γ

1
pr
ZrZ

⊤
r

)
trace

(
V −1
γ

)
 .

Then we can follow a similar argument for the standard linear model in Section 2.4 to show

∆(i)(γ)−∆
(i)
∗ (γ)

P−→ 0 and ∆
(i)
∗ (γ)−∆

(i)
∗∗ (γ)

P−→ 0.
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CHAPTER 3

Method of Moments Estimation: Analysis under Multivariate

High-dimensional Linear Models

3.1. Problem Statement and Method

In this chapter, we consider the following multiple response high-dimensional linear model:

(3.1) Y = XB +E,

where Y = [y1, . . . ,yn]
⊤ ∈ Rn×q is the response matrix, X = [x1, . . . ,xn]

⊤ ∈ Rn×p is the

design matrix, E = [e1, . . . , en]
⊤ ∈ Rn×q is the noise matrix, and B = [b1, . . . , bp]

⊤ ∈ Rp×q

is the coefficient matrix. We assume the rows of the noise matrix E satisfies e1, . . . , en
i.i.d.∼

N (0,Σe), which is also represented as vec(E) ∼ N (0,Σe ⊗ In).

We consider both the fixed and random effects models in this chapter.

• (Fixed effects model) AssumeB corresponds to fixed effects. In this case, we assume

X = [x1, . . . ,xn]
⊤ is a random design whose rows are independently drawn from

N (0, Ip). This assumption is common in univariate high-dimensional statistics fixed

effects models, see, e.g. [7,8,18,20].

• (Random effects model) Assume B corresponds to random effects. More specif-

ically, assume the rows of B satisfies b1, . . . , bp
i.i.d.∼ N (0, 1

p
Σb), or equivalently

vec(B) ∼ N (0, 1
p
Σb ⊗ Ip). Correspondingly, we assume the rows of X, i.e. xi’s,

are independently drawn from a population with mean zero and covariance Σ. In

comparison to the fixed effects models, we allow the population covariance of the

predictors to be correlated, and do not require the normality.
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The goal of this paper is to make inferences about the signal-to-noise ratio (SNR) under the

two models, which are defined as below.

• (Fixed Effects Models) Denote ρ2 = 1
q
tr(B⊤B).

• (Random Effects Models) Denote ρ2 = 1
q
tr(Σb).

For both models, denote σ2 = 1
q
tr(Σe), and define the signal-to-noise ratio (SNR) as r2 =

ρ2/(ρ2 + σ2). Our definition of SNR under the multivariate random effects model is similar

to that defined in [13], while that under the multivariate fixed effects model is novel in the

literature to our knowledge.

3.1.1. Method-of-Moments Estimators. we introduce method-of-moments estima-

tors of the SNR r2 under both the fixed and random effects models. Under the fixed effects

model, our estimator can be viewed as an extension of [7] to the multivariate case; under

the random effects model, our estimator is similar to [13].

Fixed Effects Model. Denote Wb = B⊤B. By the Wishart moments results summarized

in [7], it is straightforward to obtain

E
[
1

n
Y ⊤Y

]
= Wb +Σe

and E
[
1

n2
Y ⊤XX⊤Y

]
=
p+ n+ 1

n
Wb +

p

n
Σe

which result in the following unbiased method-of-moments estimators of Wb and Σe

(3.2) Ŵb := −
p

n(n+ 1)
Y ⊤Y +

1

n(n+ 1)
Y ⊤XX⊤Y

and

(3.3) Σ̂e :=
p+ n+ 1

n(n+ 1)
Y ⊤Y − 1

n(n+ 1)
Y ⊤XX⊤Y .

As a consequence, our method-of-moments estimators of ρ2 and σ2 are

(3.4) ρ̂2 =
1

q
tr(Ŵb) and σ̂2 =

1

q
tr(Σ̂e).
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Random Effects Model. Under the random effects model, denote

Sn =
1

n
X⊤X and ĝk =

1

p
tr(Sk

n) for k = 1, 2, 3, ....

Straightforward calculation under the random effects model gives

E
[
1

n
Y ⊤Y

∣∣∣X] = Σe + ĝ1Σb

and E
[
1

n2
Y ⊤XX⊤Y

∣∣∣X] = p

n
ĝ1Σe − ĝ2Σb.

These equations result in the method-of-moments estimators of Σb and Σe

(3.5) Σ̂b :=
1

ĝ2 − p
n
ĝ21

(
−pĝ1
n2

Y ⊤Y +
1

n2
Y ⊤XX⊤Y

)
and

(3.6) Σ̂e :=
1

ĝ2 − p
n
ĝ21

(
ĝ2
n
Y ⊤Y − ĝ1

n2
Y ⊤XX⊤Y

)
.

Again, our method-of-moments estimators of ρ2 and σ2 are

(3.7) ρ̂2 =
1

q
tr(Σ̂b) and σ̂2 =

1

q
tr(Σ̂e).

The corresponding SNR estimator is

(3.8) r̂2 =
ρ̂2

ρ̂2 + σ̂2
.

3.2. Main Results

In this section, we introduce our main asymptotic results on the asymptotic distributions of

the aforementioned method-of-moments estimators of SNR under both fixed effects model

and random effects model.Under random effects model, we consider homoskedastic and het-

eroskedastic cases. In addition, we will also discuss two scenarios of heteroskedasticity, under

which consistent estimators of the variances of these estimators are proposed. Our goal is
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to make inferences about the SNR r2 := ρ2/(ρ2 + σ2), which relies on the derivation of the

asymptotic distribution of (ρ̂2, σ̂2).

3.2.1. Fixed Effects Model. First, we specify the following conditions on the distri-

butions of the random design matrix X, the coefficient matrix B, and the noise matrix

E.

Assumption 3.2.1 (high-dimensional asymptotics). The following conditions are assumed

to hold:

• The sample size n → ∞ while the dimensionality p(n) → ∞ as well, such that the

aspect ratio p(n)/n→ τ > 0. The number of responses q is fixed.

• The design matrix X is generated with xij ∼ N (0, 1), 1 ≤ i ≤ n, 1 ≤ j ≤ p.

Assumption 3.2.2. The matrix B is assumed to be a p× q deterministic coefficient matrix.

Also, ρ2 = 1
q
tr(B⊤B) is assumed to be fixed over all instances of n.

Assumption 3.2.3. The random noise matrix E is assumed to satisfy E ∼ N (0, In ⊗Σe),

where Σe and thereby σ2 = tr(Σe)/q are fixed over all instances of n.

We are now ready to introduce our asymptotic distribution results for (ρ̂2, σ̂2) under the

above assumptions for the homoskedastic cases.

Theorem 3.2.1. Under Assumptions 3.2.1, 3.2.2 and 3.2.3, we have

n1/2V −1/2

σ̂2 − σ2

ρ̂2 − ρ2

 =⇒ N (0, I2),

where the 2× 2 symmtric matrix V is defined by

V11 =
2

q2(n+ 1)2
{(
n2 + np

)
∥B⊤B∥2F + 2pn tr

(
ΣeB

⊤B
)
+
(
n2 + np

)
tr(Σ2

e)
}

V22 =
2

q2(n+ 1)2
{(

4n2 + np
)
∥B⊤B∥2F +

(
2n2 + 2pn

)
tr
(
ΣeB

⊤B
)
+ pn tr(Σ2

e)
}
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and

V12 = −
2

q2(n+ 1)2
{(

2n2 + np
)
∥B⊤B∥2F + 2np tr

(
ΣeB

⊤B
)
+ pn tr(Σ2

e)
}

Consequently, we have

n1/2(r̂2 − r2)/σr ⇒ N (0, 1),

where

σ2
r = ρ4/(ρ2 + σ2)4V11 + σ4/(ρ2 + σ2)4V22 − 2ρ2σ2/(ρ2 + σ2)4V12.(3.9)

We now highlight several important aspects of Theorem 3.2.1 that underscore our contribu-

tions:

Remark 3.2.1 (Asymptotic distribution). Our results extend the method-of-moments esti-

mator for the linear fixed effects model developed in [7] to the multivariate setting described

in (3.1). When the number of responses q = 1, our asymptotic result for γ̂ exactly recovers

the univariate result established in [7].

Remark 3.2.2 (Inference). Theorem 3.2.1 shows that the true SNR r2 can be consistently

estimated by r̂2. To construct confidence intervals for r2, we note that the asymptotic variance

of r̂2, as characterized in Theorem 3.2.1, depends on n, p, q, the variance components (σ2, ρ2),

the coefficient matrix B, and the noise covariance matrix Σe. Although it’s hard to estimate

B directly, we can estimate B⊤B. Then the variance components (σ2, ρ2) defined in Section

3.1.1 can be consistently estimated using (σ̂2, ρ̂2) from (3.4), while B⊤B and Σe can be

estimated via Ŵb and Σ̂e, as given in (3.2) and (3.3), respectively.

Remark 3.2.3 (Gaussian design matrix). Although assumption 3.2.1 requires that the design

matrix X has i.i.d. standard Gaussian entries, which is in agreement with the setting of [7].

However, simulation results in Tables 3.1 and 3.2 indicate that the estimator also performs

well when the entries of X are i.i.d. sub-Gaussian (e.g., drawn from a SNP-like distribution).
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Extending the condition of Gaussian entries in the above result to sub-Gaussian ones would

be an interesting direction for future work.

Remark 3.2.4 (Assumptions on the coefficient matrix). Our results impose no sparsity as-

sumptions on the coefficient matrix B. Simulation results in Tables 3.1 and 3.2 demonstrate

that the estimator remains effective in both sparse and dense regimes, highlighting the ro-

bustness of our approach.

3.2.2. Random Effects Model.

Assumption 3.2.4 (high-dimensional asymptotics). The following conditions are assumed

to hold:

• The sample size n → ∞ while the dimensionality p(n) → ∞ as well, such that the

aspect ratio p(n)/n→ τ > 0. Also, q is allowed to diverge.

• The design matrix X is generated as X = ZΣ1/2 for an n× p matrix Z with i.i.d.

sub-Gaussian entries satisfying E [Zij] = 0, Var [Zij] = 1, and ∥Zij∥ψ2 ≤ C0 for all

1 ≤ i ≤ n and 1 ≤ j ≤ p.

• The eigenvalues of the p× p positive semidefinite covariance matrix Σ are assumed

to have uniformly bounded eigenvalues: 0 < C ′ ≤ λj(Σ) ≤ C for 1 ≤ j ≤ p, where

C ′ and C are uniform over all instances of n.

• The spectral distribution FΣ of Σ converges to a limit probability distribution H sup-

ported on [0,∞), which is referred to as the population spectral distribution (PSD).

Assumption 3.2.5. The random coefficient matrix B is assumed to satisfy B ∼ N (0, 1
p
Ip⊗

Σb), where ∥Σb∥ is uniformly bounded, and ρ2 = tr(Σb)/q is fixed over all instances of n.

Assumption 3.2.6. The random noise matrix E is assumed to satisfy E ∼ N (0, In ⊗Σe),

where ∥Σe∥ is uniformly bounded, and σ2 = tr(Σe)/q is fixed over all instances of n.

Here we assume the spectral distribution of the predictor for the covariance matrix Σ has

a limiting distribution, which is commonly assumed in the literature of high-dimensional
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statistics, e.g., in the analysis of asymptotic risks for ridge regression [10]. This assump-

tion facilitates the asymptotic analysis of (ρ̂2, σ̂2), particularly for the heteroskedastic cases.

Specifically, based on some basic results in random matrix theory [30, 34], the spectral

distribution of Sn = 1
n
X⊤X, denoted by FSn , converges weakly to some limiting empirical

spectral distribution F , supported on [0,∞) with probability one. An important consequence

is that for k = 1, 2, ...,

(3.10) ĝk =
1

p
tr
(
Sk
n

) p−→ gk :=

∫ ∞

l=0

lkdF (l).

We are now ready to introduce our asymptotic distribution results for (ρ̂2, σ̂2) under the

above assumptions for the homoskedastic cases.

Theorem 3.2.2. Under Assumptions 3.2.4, 3.2.5 and 3.2.6, we have

n1/2V −1/2

σ̂2 − σ2

ρ̂2 − ρ2

 =⇒ N (0, I2),

where the 2× 2 symmtric matrix V is defined by

V11 =
1

(g2 − τg21)2q2
((
2g22 − 2τg21g2

)
∥Σe∥2F +

(
4g21g3 − 4g1g

2
2

)
tr (ΣeΣb)

+

(
2

τ
g32 +

2

τ
g21g4 −

4

τ
g1g2g3

)
∥Σb∥2F

)

V22 =
1

(g2 − τg21)2q2
((
2τg2 − 2τ 2g21

)
∥Σe∥2F

+
(
4τ 2g31 + 4g3 − 8τg1g2

)
tr (ΣeΣb) +

(
2τg21g2 +

2

τ
g4 − 4g1g3

)
∥Σb∥2F

)
and

V12 =
1

(g2 − τg21)2q2
((
−2τg1g2 + 2τ 2g31

)
∥Σe∥2F +

(
−4g1g3 + 4g22

)
tr (ΣeΣb)

+

(
−2g1g22 −

2

τ
g1g4 +

2

τ
g2g3 + 2g21g3

)
∥Σb∥2F

)
.
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Recall that gk’s are defined in (3.10). Consequently, we have

n1/2(r̂2 − r2)/σr ⇒ N (0, 1),

where

σ2
r = ρ4/(ρ2 + σ2)4V11 + σ4/(ρ2 + σ2)4V22 − 2ρ2σ2/(ρ2 + σ2)4V12.(3.11)

Remark 3.2.5. Similar to the fixed effects case, to apply Theorem 3.2.2 and construct a

confidence interval for the true SNR r2, we estimate the quantities gk using their empirical

counterparts ĝk as defined in (3.10). The covariance matrices Σb and Σe are estimated using

the method-of-moments estimators given in (3.5) and (3.6), respectively.

3.2.2.1. Extension to Heteroskedastic Random Effects Models. In this section, we address

the problem of estimating the SNR in multivariate linear models in the presence of het-

eroskedasticity. Specifically, we extend the previous random effects model to accommodate

heterogeneous Gaussian noise, where ei
ind∼ N (0,Σi) for i = 1, . . . , n. In other words, each

observation has an individual noise covariance Σi. Note that this general heteroskedastic

model effectively encompasses several non-Gaussian noise settings.

• Consider the heavy-tailed multivariate noise model ei = ξiẽi, where ẽi
i.i.d.∼ N (0,Σe),

and ξi’s are i.i.d. heavy-tailed random variables with E[ξ2i ] = 1. This model in-

cludes some commonly-used multivariate heavy-tailed models, such as multivariate

Student-t distributions. Conditional on the values of ξi’s, we have ei ∼ N (0, ξ2iΣe),

which is a specific case of our heterogeneous Gaussian noise model.

• Consider the Gaussian mixture model ei
i.i.d.∼

∑M
m=1 ϕmN (0,Σ∗

m). Conditional on

the group labels, there holds ei ∼ N (0,Σ∗
m), where m is the group label of the i-th

observation.

• Combine the above two cases together, our generic heterogeneous model also cov-

ers some mixtures of multivariate heavy-tailed distributions, such as mutivariate

Student-t mixture models. In this case, conditional on the labels and heavy-tailed
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scalar random variables, we have ei ∼ N (0, ξ2iΣ
∗
m), where m is the label of i and ξi

is defined the same as above.

The SNR under the homoskedastic multivariate random effects model given in Section 3.1 can

be naturally extended to the heteroskedastic case. First, define the average noise covariance

as Σe := 1
n

∑n
i=1Σi. Denote ρ2 = tr(Σb)/q and σ2 = tr(Σe)/q, we define the SNR as

r2 := ρ2/(ρ2+σ2) = tr(Σb)/ tr(Σb+Σe). We consider the same method-of-moments estimator

of the SNR defined in (3.5), (3.6) and (3.7). In order to establish the asymptotic result

under the above heteroskedastic setting, we replace Assumption 3.2.6 with the following

assumption.

Assumption 3.2.7. Assume E = [e1, . . . , en]
⊤ ∈ Rn×p where ei ∼ N (0,Σi) for i = 1, . . . , n

and Σi = (σi,kl)1≤k,l,≤q ∈ Rq×q. Assume max1≤i≤n ∥Σi∥ is uniformly bounded over all in-

stances. In addition, we make the following notations

• Λkl = diag(σ1,kl, · · · , σn,kl) ∈ Rn×n, 1 ≤ k, l ≤ q;

• σkl = 1
n
(σ1,kl + · · ·+ σn,kl);

• Σe =
1
n
(Σ1 + · · ·+Σn) = (σkl)1≤k,l≤q;

• κkl = 1
n

∑n
i=1 (σi,kl − σkl)

2;

• κtot =
∑

1≤k,l≤q κkl.

Theorem 3.2.2 is then generalized to the following result for the heteroskedastic random

effects models.

Theorem 3.2.3. Under Assumptions 3.2.4, 3.2.5 and 3.2.7, we have

n1/2V −1/2

σ̂2 − σ2

ρ̂2 − ρ2

 =⇒ N (0, I2),
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where V12 and V22 are the same as those in Theorem 3.2.2 by replacing Σe with Σe, while

V11 =
1

(g2 − τg21)2q2
((
2g22 − 2τg21g2

)
∥Σe∥2F +

(
2g22 + 2τ 2g41 − 4τg21g2

)
κtot(3.12)

+
(
4g21g3 − 4g1g

2
2

)
tr
(
ΣeΣb

)
+

(
2

τ
g32 +

2

τ
g21g4 −

4

τ
g1g2g3

)
∥Σb∥2F

)
.(3.13)

Here gk’s are defined in (3.10) and κtot is defined in Assumption 3.2.7. Again, we have

n1/2(r̂2 − r2)/σr ⇒ N (0, 1), where σr has the same form as in (3.11) with the new V11

defined above.

Remark 3.2.6. (Heteroskedasticity) When Σe is replaced by Σe, the expression for V11 in

Theorem 3.2.3 includes an additional term, (2g22 + 2τ 2g41 − 4τg21g2)κtot, compared to that in

Theorem 3.2.2. In the homogeneous noise case, we have κtot = 0, in which case Theo-

rem 3.2.3 reduces exactly to the result in Theorem 3.2.2.

Remark 3.2.7. (Inference) Similar to Remark 3.2.5, to construct a confidence interval for

r2, we estimate the standard error by plugging n, p, q, ĝk, Σ̂e, Σ̂b, and the estimated variance

components (σ̂2, ρ̂2) into the asymptotic variance formula of r̂2. An additional parameter re-

quired for standard error estimation is κtot. Although this quantity is difficult to estimate for

general heteroskedasticity, it is estimable under certain structured noise models. In partic-

ular, we propose consistent estimators of κtot for both the scalar heterogeneity noise model

and the subgroup noise model. Details are given in Section 3.3.2.

To justify the asymptotic inference based on plugging Σ̂e and Σ̂b into the asymptotic variance

formula of r̂2, we establish the operator norm consistency of these two covariance matrix

estimators under additional conditions on q.

Theorem 3.2.4. Under Assumptions 3.2.4, 3.2.5 and 3.2.7, assuming further that q = o(n),

we have ∥∥∥Σ̂e −Σe

∥∥∥ = oP (1), and
∥∥∥Σ̂b −Σb

∥∥∥ = oP (1),

where Σ̂b and Σ̂e are estimated as in (3.5) and (3.6), respectively.
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Remark 3.2.8. In the above result, requiring q = o(n) is equivalent to demanding that the

dimensionality of these covariance matrices grows strictly slower than the sample size. In

fact, under our framework, the plug-in estimators (Σ̂e, Σ̂b) are within estimation error that

scales in OP (q/n), which vanishes in probability when q/n→ 0. By contrast, the asymptotic

normality in Theorem 3.2.3 does not require the condition q = o(n).

3.3. Simulations

In this section, we aim to demonstrate the empirical properties of r̂2 and its uncertainty

quantification under both fixed effects and random effects models, based on the asymptotic

results established in Theorems 3.2.1, 3.2.2 and 3.2.3. All computations are carried out on

an Intel Xeon 72-core CPU server.

3.3.1. Fixed Effects Models. To estimate the standard error of r̂2 given in Theorem

3.2.1, we need to estimate Wb, Σe, ρ
2 and σ2, whose estimators are given in (3.2), (3.3) and

(3.4).

We consider the following two ways to generate the n× p design matrix X:

(1) The entries of X are i.i.d. standard Gaussian variables.

(2) (SNP design) The standardized genotype model proposed in [24]: First generate

fj ∼ Unif[0.05, 0.5] for j = 1, . . . , p independently. Then, generate a n × p matrix

U ∈ {0, 1, 2}n×p with independent entries, such that each entry in the j-th column

follows a discrete distribution over {0, 1, 2} with assigned probabilities (1− fj)2,

2fj (1− fj) and f 2
j , respectively. Finally, the n × p matrix X is generated by

standardizing each column of U .

We also consider two different cases for the coefficient matrix B:

(1) (Sparse Case) We generate B based on Bij ∝ 0.8|i−j|.

(2) (Dense Case) We generate B from the distribution N (0, 1
p
Ip ⊗ Σb), where Σb =

(σb,ij)q×q = (0.8|i−j|)q×q. We then rescale B to ensure that ρ2 fixed. We keep this

B fixed across all 500 Monte Carlo simulations.
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The noise matrix is generated based on (Σe)ij ∝ Γ1/2(0.5|i−j|)q×qΓ
1/2, where the diagonal

matrix Γ consists of diagonal entries being a random permutation of (1, 2−0.5, . . . , q−0.5).

In all simulation settings, we fix ρ2 = tr(B⊤B)/q = 1 and σ2 = tr(Σe)/q = 0.5, which

implies a true signal-to-noise ratio of r2 = 0.667. We conduct separate simulations for

sparse and dense coefficient matrices B, varying the sample size n from 200 to 5000 and

the dimension p from 100 to 1000, while keeping q = 20 fixed. The results are reported in

Table 3.1 and Table 3.2. For each configuration, we perform 500 Monte Carlo replications.

The simulation results demonstrate that the estimator r̂2, defined in (3.8), is consistent

and that the nominal 95% confidence intervals achieve satisfactory coverage of the true r2

value when n is sufficiently large and n and p grow proportionally. Furthermore, although

the theoretical guarantees in Theorem 3.2.1 assume a standard Gaussian design for X, the

estimator also performs well when the entries of X follow an SNP-like distribution. These

findings suggest that it may be possible to extend our theoretical framework to accommodate

sub-Gaussian design matrices.

3.3.2. Random Effects Models. For our simulations under the random effects models

with either homoskedastic or heteroskedastic noise, the design matrix X is generated as

X = ZΣ1/2, where the n× p matrix Z either follows the previously mentioned SNP design

or has i.i.d. standardized t7 entries. We always set Σ = (σij) = (0.5|i−j|)p× p. The random

coefficient matrix B is generated with covariance Σb = (0.8|i−j|)q×q.

The above setting implies that ρ2 = tr(Σb)/q = 1. In all subsequent noise generation settings,

we fix σ2 = 0.5, which further implies r2 = 0.667. Simulated experiments are conducted for

various values of n and p, as shown in Tables 3.3, 3.4, and 3.5, with q = 20 held fixed. For

each simulation configuration, we perform 500 Monte Carlo replications.

In following three subsections, we will present results of homogeneity model, scalar hetero-

geneity and subgroup models, and details of estimating the asymptotic variance of r̂2 as

in (3.11) and (3.12), especially the estimator of κtot in scalar heterogeneity and subgroup

models.
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Table 3.1. SNR estimation under fixed effects model and sparse B. We fix
q = 20. The columns provide: (1) the sample size n and dimension p for
each setting, (2) the average of SNR estimates r̂2, (3) the empirical standard
error of r̂2, (4) the average of estimated standard errors of r̂2, and (5) the
coverage probability of the nominal 95% confidence intervals for r2. Results
are shown for the design matrix generated using standard Gaussian and SNP
distributions across various n and p configurations.

n, p Mean
Emp.se
(10−2)

Ave.ŝe
(10−2)

Coverage

Gaussian 200,100 0.663 6.80 7.20 96.8%
400,100 0.664 4.80 4.71 94.2%
100,1000 0.654 23.9 25.5 97.4%
500,1000 0.665 5.82 6.07 95.6%
1000,1000 0.667 3.67 3.60 96.0%
2000,1000 0.667 2.15 2.26 95.2%
5000,1000 0.666 1.27 1.31 94.2%

SNP 200,100 0.650 6.78 7.16 95.2%
400,100 0.657 4.36 4.70 96.6%
100,1000 0.597 25.3 25.4 95.2%
500,1000 0.654 6.07 6.06 94.4%
1000,1000 0.662 3.54 3.59 95.4%
2000,1000 0.667 2.15 2.26 96.6%
5000,1000 0.667 1.19 1.31 96.4%

Table 3.2. SNR estimation under fixed effects model and dense B.

n, p Mean
Emp.se
(10−2)

Ave.ŝe
(10−2)

Coverage

Gaussian 200,100 0.642 5.47 5.51 94.4%
400,100 0.668 3.12 3.12 95.6%
100,1000 0.653 20.0 19.9 95.6%
500,1000 0.666 4.31 4.43 95.4%
1000,1000 0.668 2.46 2.57 96.4%
2000,1000 0.666 1.52 1.58 96.4%
5000,1000 0.666 0.944 0.903 93.8%

SNP 200,100 0.653 4.36 4.91 96.6%
400,100 0.669 2.97 3.10 95.0%
100,1000 0.608 19.0 19.8 94.2%
500,1000 0.662 4.37 4.44 96.2%
1000,1000 0.663 2.54 2.56 95.4%
2000,1000 0.665 1.65 1.58 95.0%
5000,1000 0.667 0.937 0.905 93.6%
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3.3.2.1. Homoskedastic Random Effects Models. In the homoskedastic random effects

models, the noise is generated in essentially the same way as in Section 3.3.1, with an

additional scaling to ensure that σ2 = tr(Σe)/q = 0.5.

Table 3.3 evaluates the performance of the SNR estimator r̂2 under the random effects model

with homogeneous noise for design matrices drawn from SNP and t7 distributions. Across all

(n, p) configurations, the average r̂2 is nearly unbiased (maximum deviation < 0.005). The

empirical standard error of r̂2 contracts from approximately 0.051 at (200, 100) to 0.010 at

(5000, 1000), closely matching the average estimated standard error in every setting. Nominal

95% confidence intervals achieve coverage between 95.0% and 96.2% for SNP designs, and

between 93.2% and 96.8% for t7 designs, with slight undercoverage (≈ 94%) only at the

largest sample sizes under heavy-tailed covariates.

Table 3.3. SNR estimation under random effects model with homogeneous
noise.

n, p Mean
Emp.se
(10−2)

Ave.ŝe
(10−2)

Coverage

SNP 200,100 0.662 5.10 5.45 96.0%
400,100 0.665 3.54 3.66 96.2%
500,1000 0.663 4.26 4.44 95.2 %
1000,1000 0.666 2.54 2.60 95.4%
2000,1000 0.666 1.63 1.64 95.0%
5000,1000 0.666 1.01 1.01 95.4%

t7 200,100 0.665 6.90 7.83 96.8%
400,100 0.666 5.96 6.29 95.6%
500,1000 0.663 4.72 4.45 94.4 %
1000,1000 0.667 2.94 2.99 95.2%
2000,1000 0.665 2.24 2.22 93.2%
5000,1000 0.666 1.80 1.74 93.8%

3.3.2.2. Scalar Heterogeneity Model. Recall that in the heteroskedastic cases, we assume

the individual noise satisfies ei ∼ N (0,Σi) for i = 1, . . . , n. However, it is difficult or perhaps

impossible to estimate κtot for such a generic setting of heterogeneity. Here we consider a

particular case, where there is a simple moment estimator for κtot. On the other hand, this
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particular model of heterogeneity is related to some important examples of non-Gaussian

noise, such as multivariate t-distributions.

In the scalar heterogeneity model, we assume that the individual noise covariance matrices

satisfy Σi = νiΣe, where Σe = (σkl)1≤k,l≤q is generated in the same way as before. Let

Vn = diag(ν1, ν2, . . . , νn), where νi = θ|wi| and wi
i.i.d.∼ N (0, 9). The scaling factor θ is chosen

such that tr(Vn) = n, which implies that Σe = Σe.

It turns out that the total degree heterogeneity has a simple form under this model. If we

denote the heteroskedasticity parameter as η = 1
n

∑n
i=1(νi − 1)2, straightforward calculation

yields κtot =
∑

1≤k,l≤q
1
n

∑n
i=1(νiσkl − σkl)2 = η∥Σe∥2F . Given Σe = Σe can be estimated as

in (3.6), the estimation of κtot reduces to the estimation of η.

We now introduce an estimator of η based on a method of moments. It is easy to obtain

E

[
1

n

n∑
i=1

(
y⊤
i yi
)2 |X] = (2∥Σe∥2F + q2σ4)(η + 1) +

2

np2

n∑
i=1

∥xi∥42∥Σb∥2F

+
4

np
tr
(
XX⊤Vn

)
tr(ΣbΣe)

+
1

np2

n∑
i=1

∥xi∥42q2ρ4 +
2

np
tr
(
XX⊤Vn

)
q2σ2ρ2.

From Lemma 3.5.0.1 in the Appendix, We actually have the approximation tr
(
XX⊤Vn

)
≈

tr
(
XX⊤), which implies the following method-of-moments estimator of heteroskedasticity

parameter η

η̂ :=
1

2∥Σ̂e∥2F + q2σ̂4

(
1

n

n∑
i=1

(
y⊤
i yi
)2 − 2

np2

n∑
i=1

∥xi∥42∥Σ̂b∥2F

− 4

np
tr
(
XX⊤) tr(Σ̂bΣ̂e)−

1

np2

n∑
i=1

∥xi∥42q2ρ̂4 −
2

np
tr
(
XX⊤) q2σ̂2ρ̂2

)
− 1.(3.14)

Based on the proofs of Theorems 3.2.3 and 3.2.4, it is easy to show that under certain mild

assumptions, η̂ is a consistent estimator of η. Consequently, we estimate κtot by κ̂tot :=

η̂∥Σ̂e∥2F .
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Table 3.4 examines the SNR estimator r̂2 under the scalar heterogeneity model (with q = 20),

using SNP and t7 design matrices across varying (n, p). The mean r̂2 remains essentially un-

biased—ranging from 0.662 at (200, 100) to 0.666 at (5000, 1000) under SNP and similarly

under t7. The empirical standard error of r̂2 decreases from about 0.050 at (200, 100) to

approximately 0.018 at (5000, 1000), and in each setting the average plug-in standard error

tracks the empirical value closely. Nominal 95% confidence intervals achieve coverage be-

tween 95.2% and 96.8% under SNP, and between 94.6% and 96.6% under t7, with only minor

undercoverage (around 94%) in the largest heavy-tailed scenarios. In addition, relative to

Table 3.3, the empirical standard error under the scalar heterogeneity model is uniformly

larger, reflecting the extra heteroskedasticity contribution κtot identified in Remark 3.2.6.

Table 3.4. SNR estimation under scalar heterogeneity model.

n, p Mean
Emp.se
(10−2)

Ave.ŝe
(10−2)

Coverage

SNP 200,100 0.662 5.24 5.46 95.8%
400,100 0.664 3.57 3.67 96.2%
500,1000 0.664 4.30 4.43 95.2 %
1000,1000 0.666 2.50 2.60 95.4%
2000,1000 0.666 1.59 1.64 95.0%
5000,1000 0.666 1.00 1.00 95.2%

t7 200,100 0.664 6.76 7.85 97.0%
400,100 0.663 5.62 6.28 96.8%
500,1000 0.662 0.473 4.45 93.8 %
1000,1000 0.666 2.83 2.99 95.6%
2000,1000 0.665 2.23 2.22 94.0%
5000,1000 0.666 1.81 1.74 94.0%

3.3.2.3. Subgroup Model. In the second example of heterogeneous noise, we assume that

all individuals fall into M distinct groups. Subgroup structures are very common in high-

dimensional data analysis. In genomic studies, for example, the environmental noise may

exhibit different covariance structures across different locations, based on which the individ-

uals can be grouped.
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To be specific, assume there are nm individuals in the m-th group, which implies
∑M

m=1 nm =

n. The model in each group is represented as

Y (m) = X(m)B +E(m), for m = 1, ...,M.

Moreover, in each subgroup, we assume the the noise satisfies the scalar heterogeneity model

discussed in Section 3.3.2.2, i.e. E(m) ∼ N (0,V
(m)
n ⊗Σ

(m)
e ), with the corresponding hetero-

geneity parameter denoted as η(m).

By denoting rm = nm/n, this model implies Σe =
∑M

m=1 rmΣ
(m)
e , and further

κtot =
M∑
m=1

rm
∥∥Σ(m)

e −Σe

∥∥2
F
+

M∑
m=1

rmη
(m)
∥∥Σ(m)

e

∥∥2
F
.

Note that in each subgroup, the relevant parameters can be estimated by the method for

the scalar heterogeneity model. Therefore, we get the estimator of κtot as

κ̂tot :=
M∑
m=1

rm

∥∥∥Σ̂(m)
e − Σ̂e

∥∥∥2
F
+

M∑
m=1

rmη̂
(m)
∥∥∥Σ̂(m)

e

∥∥∥2
F
.

We can also show the consistency of κ̂tot under certain mild assumptions including fixed

M and fixed rm for m = 1, . . . ,M . Here we omit the proof. Specifically, assume the

observations are evenly divided intoM = 10 groups. For the m-th group, the noise matrix is

generated as E(m) ∼ N (0, I⊗Σ
(m)
e ), i.e., each group satisfies residual homoskedasticity. Set

Σ
(m)
e = θΓ1/2(ϕ

|i−j|
m )q×qΓ

1/2, where Γ is generated in the same way as it in Section 3.3.2.2,

ϕm
i.i.d.∼ Unif[0.2, 0.6], and θ is chosen such that σ2 = tr(Σe)/q = 0.5.

Table 3.5 evaluates the SNR estimator r̂2 under the subgroup heterogeneity model (with

q = 20), again comparing SNP and t7 design matrices across various (n, p). The average r̂2

remains essentially unbiased in all regimes—deviations stay below 0.005, for instance from

0.664 at (2000, 100) to 0.666 at (20000, 1000) under SNP. Coverage of nominal 95% confidence

intervals lies between 94.0% and 96.6% under SNP, and between 93.4% and 95.6% under t7,

with only slight undercoverage (around 94%) in the largest heavy-tailed configurations.
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Table 3.5. SNR estimation under subgroup model.

n, p Mean
Emp.se
(10−2)

Ave.ŝe
(10−2)

Coverage

SNP 2000,100 0.664 1.87 1.99 96.6%
4000,100 0.666 1.77 1.73 94.0%
10000,1000 0.666 0.772 0.758 94.0%
20000,1000 0.666 0.601 0.616 94.6%

t7 2000,100 0.665 4.70 5.02 95.6%
4000,100 0.663 4.66 4.84 94.8%
10000,1000 0.666 1.66 1.57 93.4%
20000,1000 0.665 1.52 1.49 94.2%

3.3.3. Performance. In all the above data generation setups, we consistently have

ρ2 = 1 and σ2 = 0.5, which means the true SNR is always set as r2 = 0.667. Simulated

experiments are carried out for various values of n and p as shown in Table 3.1 to 3.5, while

q = 20 is fixed. In every simulation configuration, we perform 500 Monte Carlo simulations.

We report the empirical means and standard errors of r̂2, the average estimated standard

errors based on the proposed methods given in Section 3.2, and the empirical coverage results

for the asymptotic 95% confidence intervals.

From our simulation results, we observe that r̂2 is in general a consistent estimator of the

true SNR. Further, the average estimated standard errors align with the empirical standard

errors over most configurations of n and p, unless p is much greater than n, such as n = 100

and p = 1000 in the Scalar Heterogeneity model. Similarly, the nominal 95% confidence

intervals exhibit desirable empirical properties for most cases.

3.4. Proof of Theorem 3.2.1

In this section, we give a proof for Theorem 3.2.1 and the proofs of Lemma 3.4.0.2 and Lemma

3.4.0.3 are deferred to the Appendix. Let θ̂ = (σ̂2, ρ̂2) and let S =
(
1
n
tr(Y ⊤Y ), 1

n2 tr(Y
⊤XX⊤Y )

)
,

then θ̂ = AS where

(3.15) A =

 p+n+1
q(n+1)

− n
q(n+1)

− p
q(n+1)

n
q(n+1)

 .
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It follows that cov(θ̂) = A cov(S)A⊤. To compute the covariance of σ̂2 and ρ̂2, we could

compute the covariance of S first, which will use the following lemma

Lemma 3.4.0.1. Suppose that X is an n × p matrix with iid entris xij ∼ N (0, 1), then

W = X⊤X is a Wishart(n, Ip) random matrix. Let α,β ∈ Rp, then we have

E
[
α⊤Wαβ⊤Wβ

]
= 2n(α⊤β)2 + n2∥α∥2∥β∥2

(3.16)

E
[
α⊤Wαβ⊤W 2β

]
= (2n+ 2np+ 4n2)(α⊤β)2 + (4n+ n2 + n2p+ n3)∥α∥2∥β∥2

(3.17)

E
[
α⊤W 2αβ⊤W 2β

]
= (2np2 + 10n2p+ 8n3 + 8np+ 4n2 + 20n)(α⊤β)2

+ (n2p2 + n4 + 2n3p+ 2n2p+ 2n3 + 27n2 + 8np+ 10n)∥α∥2∥β∥2.(3.18)

The covariance result of S is given in the next lemma

Lemma 3.4.0.2. We have

Var

(
1

n
tr(Y ⊤Y )

)
=

2

n
∥B⊤B∥2F +

4

n

q∑
i=1

σ2
ii∥βi∥2 +

2

n
tr(Σ2

e).(3.19)

Var

(
1

n2
tr(Y ⊤XX⊤Y )

)
=

2

n

((p
n

)2
+
p

n
+

p

n2

)
tr(Σ2

e) +
2

n

p

n2
tr2(Σe)

+
2

n

(
4 +

2

n
+

5p

n
+
p2

n2
+

4p

n2
+

10

n2

)
∥B⊤B∥2F

+
2

n

(
13

n
+

4p

n2
+

5

n2

)
∥B∥4F

+
2

n

(
2
p2

n2
+

6p

n
+

6p

n2
+ 2 +

6

n
+

8

n2

) p∑
i=1

σ2
ii∥βi∥2

+
2

n

(
4p

n2
+

4

n
+

4

n2

)
∥B∥2F tr(Σe)(3.20)
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Cov

(
1

n
tr(Y ⊤Y ),

1

n2
tr(Y ⊤XX⊤Y )

)
=

2

n

{(
1

n
+
p

n
+ 2

)
∥B⊤B∥2F +

2

n
∥B∥4F

+

(
2

n
+ 2 +

2p

n

) p∑
i=1

σ2
ii∥βi∥2 +

1

n
∥B∥2F tr(Σe)

+
p

n
(tr(Σe))

2
}

(3.21)

The detailed proof of Lemma 3.4.0.1 and Lemma 3.4.0.2 are shown in the Supplementary

Material. Asymptotic result for the entries of cov(θ̂) follow directly from Lemma 3.4.0.1 and

Lemma 3.4.0.2.

Lemma 3.4.0.3.

Var(σ̂2) =
2

q2(n+ 1)2n

{(
n2 + np− 2n+ 2p+ 9

)
∥B⊤B∥2F + (9n+ 1) ∥B∥4F

+(2pn+ 2p+ 2n+ 6)

p∑
i=1

σ2
ii∥βi∥2 + (2n+ 2p+ 2) ∥B∥2F tr(Σe)

+
(
n2 + np+ 2n+ p+ 1

)
tr(Σ2

e) + p tr2(Σe)
}

Var(ρ̂2) =
2

q2(n+ 1)2n

{(
4n2 + np+ 2n+ 2p+ 10

)
∥B⊤B∥2F + (13n+ 5) ∥B∥4F

+
(
2n2 + 2pn+ 6n+ 2p+ 8

) p∑
i=1

σ2
ii∥βi∥2 + (4n+ 2p+ 4) ∥B∥2F tr(Σe)

+ (pn+ p) tr(Σ2
e) + p tr2(Σe)

}

Cov(σ̂2, ρ̂2) = − 2

q2(n+ 1)2n

{(
2n2 + np− n+ 2p+ 9

)
∥B⊤B∥2F + (11n+ 3) ∥B∥4F

+(2np+ 2n+ 2p+ 6)

p∑
i=1

σ2
ii∥βi∥2 + (3n+ 2p+ 3) ∥B∥2F tr(Σe)

+ (pn+ p) tr(Σ2
e) + p tr2(Σe)

}
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By the assumption that p(n)/n→ τ , we can have the asymptotic approximation

Var(σ̂2) =

{
2 +O

(
1
n

)}
q2(n+ 1)2n

{(
n2 + np

)
∥B⊤B∥2F + 2pn tr

(
ΣeB

⊤B
)
+
(
n2 + np

)
tr(Σ2

e)
}
,

Var(ρ̂2) =

{
2 +O

(
1
n

)}
q2(n+ 1)2n

{(
4n2 + np

)
∥B⊤B∥2F +

(
2n2 + 2pn

)
tr
(
ΣeB

⊤B
)
+ pn tr(Σ2

e)
}
,

Cov(σ̂2, ρ̂2) = −
{
2 +O

(
1
n

)}
q2(n+ 1)2n

{(
2n2 + np

)
∥B⊤B∥2F + 2np tr

(
ΣeB

⊤B
)
+ pn tr(Σ2

e)
}
.

(3.22)

By a similar argument used to prove Theorem 1 in [7], we can know that the asymptotic

behavior of the upper bound of the total variation distance dTV (h(S), w) where h : R→ R is a

function with continuous second order partial derivatives, S = (n−1 tr(Y ⊤Y ), n−2 tr(Y ⊤XX⊤Y ))

and w is the standard normal variable, is determined by the function h. For the function

h considered in this paper, similar to [7], when p(n)/n → τ we can have dTV (h(S), w) =

O(n−1/2).

Therefore, by (3.22) and the asymptotic normality, Theorem 3.2.1 is proved.

3.5. Proof of Theorem 3.2.2

In this section, We give important lemmas used in this paper and the proof of Theorem

3.2.3. The proofs of these key lemmas are deferred to [28]. Note that Theorem 3.2.2 is a

direct corollary of Theorem 3.2.3, so we omit its proof.

3.5.1. Supporting Lemmas. To dicuss the cases with heteroskedastic noise, we denote

Tn = diag(ν1, ..., νn) as a n × n diagonal matrix, where all νi’s are assumed to be positive

and max1≤i≤n νi = O(1). Denote

κ =
1

n

n∑
i=1

(νi − ν)2,

where ν = 1
n

∑n
i=1 νi. We further assume that κ is fixed. Then we introduce the key lemma

that will be used repeatedly in the proof of Theorem 3.2.3.
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Lemma 3.5.0.1. Under Assumption 3.2.4, we have

(1)

(3.23)
1

n
tr

((
1

n
XX⊤Tn

)2
)
− ν2

n
tr

((
1

n
XX⊤

)2
)
− κ

n2
tr2
(
1

n
XX⊤

)
= op (1) .

(2)

(3.24)
1

n
tr

(
1

n
XX⊤Tn

)
− ν

n
tr

(
1

n
XX⊤

)
= Op

(√
1

n2

)
.

(3)

(3.25)
1

n
tr

((
1

n
XX⊤

)k
Tn

)
− ν

n
tr

((
1

n
XX⊤

)k)
= Op

(
1√
n

)
, for k = 2, 3.

Then as far as the consistency of method-of-moments estimators Σ̂b and Σ̂e is concerned,

we need the following Lemmas (Lemma 3.5.0.2 to Lemma 3.5.0.3) to prove Theorem 3.2.4.

Lemma 3.5.0.2. Under Assumptions 3.2.4, 3.2.5 and 3.2.7, there hold

E
[
1

n
Y ⊤Y |X

]
= Σe +

1

p
tr (Sn)Σb,

E
[
1

n2
Y ⊤XX⊤Y |X

]
=

1

n2

(
tr
(
XX⊤Λkl

))
1≤k,l≤q +

1

p
tr
(
S2
n

)
Σb.

Recall that Λkl = diag(σ1,kl, · · · , σn,kl) as defined in Assumption 3.2.7.

Lemma 3.5.0.3. Under Assumption 3.2.4, we have

E
[
1

p
tr(S2

n)−
1

np
tr2(Sn)

]
=

1

p
tr(Σ2) +O

(
1

n

)
,

and

var

(
1

p
tr(S2

n)−
1

np
tr2(Sn)

)
= O

(
n2 + p2

n3

)
.
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With probability at least 1− c(n2 + p2)/n3,

1

p
tr(S2

n)−
1

np
tr2(Sn) ≥ C.

3.5.2. Proof of Theorem 3.2.2. By definition, σ̂2 and ρ̂2 are linear combinations of

tr
(
Y ⊤Y

)
and tr

(
Y ⊤XX⊤Y

)
. Therefore we first aim to introduce asymptotic results on

tr
(
Y ⊤Y

)
and tr

(
Y ⊤XX⊤Y

)
. We define the block matrix Λ = (Λkl)1≤k,l≤q with

Λkl = diag(σ1,kl, · · · , σn,kl)(3.26)

where (Σi)kl = σi,kl. This definition implies that vec(E) ∼ N (0,Λ). By vec(B) ∼

N (0, 1
p
Ip ⊗Σb), there exist some z ∼ N (0, Iq(p+n)) such thatvec(B)

vec(E)

 =

 1√
p
Σ

1/2
b ⊗ Ip 0

0 Λ1/2

 z.

We have

tr
(
Y ⊤Y

)
= z⊤Q1z, where z ∼ N (0, Iq(n+p)),

and

Q1 =

Σ1/2
b ⊗ Ip 0

0 Λ1/2

1
p
Iq ⊗X⊤X 1√

p
Iq ⊗X⊤

1√
p
Iq ⊗X Iq ⊗ In

Σ1/2
b ⊗ Ip 0

0 Λ1/2



=

 1
p
Σb ⊗X⊤X 1√

p

(
Σ

1/2
b ⊗X⊤

)
Λ1/2

1√
p
Λ1/2

(
Σ

1/2
b ⊗X

)
Λ

 .
Similarly we have

tr
(
Y ⊤XX⊤Y

)
= z⊤Q2z, where z ∼ N (0, Iq(n+p)),
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and

Q2 =

Σ1/2
b ⊗ Ip 0

0 Λ1/2

 1
p
Iq ⊗ (X⊤X)2 1√

p
Iq ⊗X⊤XX⊤

1√
p
Iq ⊗XX⊤X Iq ⊗XX⊤

Σ1/2
b ⊗ Ip 0

0 Λ1/2



=

 1
p
Σb ⊗

(
X⊤X

)2 1√
p

(
Σ

1/2
b ⊗X⊤XX⊤

)
Λ1/2

1√
p
Λ1/2

(
Σ

1/2
b ⊗XX⊤X

)
Λ1/2

(
Iq ⊗XX⊤)Λ1/2

 .
Conditional Mean Analysis. To get the conditional mean of tr

(
Y ⊤Y

)
and tr

(
Y ⊤XX⊤Y

)
,

we will introduce the useful lemma:

Lemma 3.5.0.4 (Lemma S8 in [9]). Let z ∈ Rp be a random vector with i.i.d. entries with

finite fourth moments satisfying E[zi] = 0 and var[zi] = 1, and let x = Σ1/2z for a fixed

positive definite matrix Σ. Assume A ∈ Rp×p to be a fixed symmetric matrix. We have

E
[
x⊤Ax

]
= tr(AΣ),

E
[
(x⊤Ax)2

]
= (E[z4i ]− 3)

p∑
i=1

(Σ1/2AΣ1/2)2ii + 2 tr(AΣAΣ) + tr2(AΣ),

and

var(x⊤Ax) = (E[z4i ]− 3)

p∑
i=1

(Σ1/2AΣ1/2)2ii + 2 tr(AΣAΣ).

Here (Σ1/2AΣ1/2)ii is the i-th diagonal entry of Σ1/2AΣ1/2.

By Lemma 3.5.0.4 we can have

E
[
tr
(
Y ⊤Y

)
|X
]
= tr (Q1) = tr

(
1

p
Σb ⊗X⊤X

)
+ tr (Λ) =

1

p
tr
(
X⊤X

)
qρ2 + nqσ2,

69



and

E
[
tr
(
Y ⊤XX⊤Y |X

)]
= tr (Q2) = tr

(
1

p
Σb ⊗

(
X⊤X

)2)
+ tr

(
Λ1/2

(
Iq ⊗XX⊤)Λ1/2

)
.

By properties of Kronecker product and the definition of ρ2, we have that

tr

(
1

p
Σb ⊗

(
X⊤X

)2)
=

1

p
tr
(
(X⊤X)2

)
qρ2.

By the fact
q∑

k=1

Λkk = diag (tr(Σ1), ..., tr(Σn)) ,

we have that

tr
(
Λ1/2

(
Iq ⊗XX⊤)Λ1/2

)
= tr

((
Iq ⊗XX⊤)Λ)

= tr



XX⊤Λ11 · · · XX⊤Λ1q

...
. . .

...

XX⊤Λq1 · · · XX⊤Λqq




=

q∑
k=1

tr
(
XX⊤Λkk

)
= tr

(
XX⊤Dn

)
qσ2,

where Dn = diag (tr(Σ1), ..., tr(Σn)) /(qσ
2). Therefore

E
[
tr
(
Y ⊤XX⊤Y |X

)]
=

1

p
tr
(
(X⊤X)2

)
qρ2 + tr

(
XX⊤Dn

)
qσ2.
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In fact, since σ̂2, and ρ̂2 are taking linear combination of tr
(
Y ⊤Y

)
and tr

(
Y ⊤XX⊤Y

)
,

the corresponding conditional expectation follows as

E
[
σ̂2|X

]
= σ2 +

1
1
p
tr(S2

n)− 1
np

tr2(Sn)

1

p
tr(Sn)

(
1

n
tr(Sn)−

1

n
tr(

1

n
XX⊤Dn)

)
σ2,

E
[
ρ̂2|X

]
= ρ2 +

1
1
p
tr(S2

n)− 1
np

tr2(Sn)

(
1

n
tr(Sn)−

1

n
tr(

1

n
XX⊤Dn)

)
σ2.

By (3.10), we have

1

p
tr(Sn) = Op(1) and

1

p
tr(S2

n)−
1

np
tr2(Sn) = Op(1).

Combining Lemma 3.5.0.1, we have

(3.27)


E [σ̂2|X] = σ2 +Op(

1
n
)

E [ρ̂2|X] = ρ2 +Op(
1
n
).

Conditional Variance Analysis. Denote

D̃n = diag (tr(Σ1Σb), ..., tr(ΣnΣb)) / tr
(
ΣeΣb

)
,

and Σb = (σb,kl)1≤k,l≤q. For the conditional variance, based on Lemma 3.5.0.4, since Q1 is

symmetric, we have

var
(
tr
(
Y ⊤Y

)
|X
)
= 2 tr

(
Q2

1

)
= 2 ∥Q1∥2F .

By the form of Q1, we have that

∥Q1∥2F =

∥∥∥∥1pΣb ⊗X⊤X

∥∥∥∥2
F

+

∥∥∥∥ 1
√
p

(
Σ

1/2
b ⊗X⊤

)
Λ1/2

∥∥∥∥2
F

+

∥∥∥∥ 1
√
p
Λ1/2

(
Σ

1/2
b ⊗X

)∥∥∥∥2
F

+ ∥Λ∥2F .
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By the property of Kronecker product, we have∥∥∥∥1pΣb ⊗X⊤X

∥∥∥∥2
F

=
1

p2
tr
(
(X⊤X)2

)
tr
(
Σ2
b

)
.

By the definition of Λ, we have∥∥∥∥ 1
√
p

(
Σ

1/2
b ⊗X⊤

)
Λ1/2

∥∥∥∥2
F

=
1

p
tr
((
Σb ⊗XX⊤)Λ)

=
1

p
tr



∑q

k=1 σb,1kXX⊤Λk1 ∗
. . .

∗
∑q

k=1 σb,qkXX⊤Λkq




=
1

p
tr

(
XX⊤

∑
1≤k,l≤q

σb,lkΛkl

)

=
1

p
tr
(
XX⊤D̃n

)
tr
(
ΣeΣb

)
.

The last line is due to the fact that

∑
1≤k,l≤q

σb,lkΛkl = diag (tr(Σ1Σb), ..., tr(ΣnΣb)) .

We have

∥Λ∥2F =
n∑
i=1

tr
(
Σ2
i

)
= n tr

(
Σ

2

e

)
+ n

∑
1≤k,l≤q

κkl.

Due to ∥∥∥∥ 1
√
p

(
Σ

1/2
b ⊗X⊤

)
Λ1/2

∥∥∥∥2
F

=

∥∥∥∥ 1
√
p
Λ1/2

(
Σ

1/2
b ⊗X

)∥∥∥∥2
F

,
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we have

var
(
tr
(
Y ⊤Y

)
|X
)

=
2

p2
tr
(
(X⊤X)2

)
tr
(
Σ2
b

)
+

4

p
tr
(
XX⊤D̃n

)
tr
(
ΣeΣb

)
+ 2n tr

(
Σ

2

e

)
+ 2n

∑
1≤k,l≤q

κkl.

(3.28)

Based on Lemma 3.5.0.4, since Q2 is symmetric, we have

var
(
tr
(
Y ⊤XX⊤Y

)
|X
)
= 2 tr

(
Q2

2

)
= 2 ∥Q2∥2F .

By the form of Q2, we have

∥Q2∥2F =

∥∥∥∥1pΣb ⊗
(
X⊤X

)2∥∥∥∥2
F

+

∥∥∥∥ 1
√
p

(
Σ

1/2
b ⊗X⊤XX⊤

)
Λ1/2

∥∥∥∥2
F

+

∥∥∥∥ 1
√
p
Λ1/2

(
Σ

1/2
b ⊗XX⊤X

)∥∥∥∥2
F

+
∥∥Λ1/2

(
Iq ⊗XX⊤)Λ1/2

∥∥2
F
.

By the property of Kronecker product, we have∥∥∥∥1pΣb ⊗
(
X⊤X

)2∥∥∥∥2
F

=
1

p2
tr
(
(X⊤X)4

)
tr
(
Σ2
b

)
.

It is similar with the part of
∥∥∥ 1√

p

(
Σ

1/2
b ⊗X⊤

)
Λ1/2

∥∥∥2
F
, to show that

∥∥∥∥ 1
√
p

(
Σ

1/2
b ⊗X⊤XX⊤

)
Λ1/2

∥∥∥∥2
F

=
1

p
tr
((

Σb ⊗
(
XX⊤)3)Λ)

=
1

p
tr
((

XX⊤)3 D̃n

)
tr
(
ΣeΣb

)
.
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Due to the form of the matrix
((
Iq ⊗XX⊤)Λ)2 and Λkl = Λlk, we have

∥∥Λ1/2
(
Iq ⊗XX⊤)Λ1/2

∥∥2
F

= tr
(((

Iq ⊗XX⊤)Λ)2)

= tr



∑q

k=1XX⊤Λ1kXX⊤Λk1 ∗
. . .

∗
∑q

k=1XX⊤ΛqkXX⊤Λkq




=
∑

1≤k,l≤q

tr
(
(X⊤ΛklX)2

)
.

Since ∥∥∥∥ 1
√
p

(
Σ

1/2
b ⊗X⊤XX⊤

)
Λ1/2

∥∥∥∥2
F

=

∥∥∥∥ 1
√
p
Λ1/2

(
Σ

1/2
b ⊗XX⊤X

)∥∥∥∥2
F

,

we have

var
(
tr
(
Y ⊤XX⊤Y

)
|X
)

=
2

p2
tr
(
(X⊤X)4

)
tr
(
Σ2
b

)
+

4

p
tr
(
(XX⊤)3D̃n

)
tr
(
ΣeΣb

)
+ 2

∑
1≤k,l≤q

tr
(
(X⊤ΛklX)2

)
.(3.29)

For the covariance term, we use the following lemma:

Lemma 3.5.0.5. Let x ∈ Rk and y ∈ Rl be two independent random vectors satisfying

x ∼ N (0,Σx) and y ∼ N (0,Σy). Let A1,B1 ∈ Rk×k and A2,B2 ∈ Rk×l be fixed matrices.

Then we have

cov(x⊤A1x,x
⊤B1x) = 2 tr(A1ΣxB1Σx)

and

cov(x⊤A2y,x
⊤B2y) = tr(ΣxA2ΣyB

⊤
2 ).
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By Lemma 3.5.0.5 in the appendix, we have that

cov
(
tr
(
Y ⊤Y ), tr(Y ⊤XX⊤Y

)
|X
)
= 2 tr (Q1Q2) .

By the form of Q1 and Q2, we have

tr(Q1Q2) =
1

p2
Σ2
b ⊗

(
X⊤X

)3
+

1

p

(
Σ

1/2
b ⊗X⊤

)
Λ
(
Σ

1/2
b ⊗XX⊤X

)
+

1

p
Λ1/2

(
Σ

1/2
b ⊗X⊤

)(
Σ

1/2
b ⊗XX⊤X

)
Λ1/2 +Λ3/2

(
Iq ⊗XX⊤)Λ1/2

By the property of Kronecker product, we have

1

p2
Σ2
b ⊗

(
X⊤X

)3
=

1

p2
tr
(
(X⊤X)3

)
tr(Σ2

b).

It is similar with the part of
∥∥∥ 1√

p

(
Σ

1/2
b ⊗X⊤

)
Λ1/2

∥∥∥2
F
, to show that

tr

(
1

p

(
Σ

1/2
b ⊗X⊤

)
Λ
(
Σ

1/2
b ⊗XX⊤X

))
=

1

p
tr
((

Σb ⊗
(
XX⊤)2)Λ)

=
1

p
tr
((

XX⊤)2 D̃n

)
tr
(
ΣeΣb

)
.

Since Λkl = Λlk and ∑
1≤k,l≤q

Λ2
kl = diag

(
tr(Σ2

1), ..., tr(Σ
2
n)
)
,
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we have

tr
(
Λ3/2

(
Iq ⊗XX⊤)Λ1/2

)
= tr

((
Iq ⊗XX⊤)Λ2

)

= tr



XX⊤∑q

k=1Λ1kΛk1 ∗
. . .

∗ XX⊤∑q
k=1ΛqkΛkq




= tr
(
XX⊤ diag

(
tr(Σ2

1), ..., tr(Σ
2
n)
))
.

By the fact that

tr

(
1

p

(
Σ

1/2
b ⊗X⊤

)
Λ
(
Σ

1/2
b ⊗XX⊤X

))
= tr

(
1

p
Λ1/2

(
Σ

1/2
b ⊗X⊤

)(
Σ

1/2
b ⊗XX⊤X

)
Λ1/2

)
,

we have

cov
(
tr
(
Y ⊤Y

)
, tr
(
Y ⊤XX⊤Y

)
|X
)

=
2

p2
tr
(
(X⊤X)3

)
tr(Σ2

b) +
4

p
tr
(
(XX⊤)2D̃n

)
tr
(
ΣeΣb

)
+ 2 tr

(
XX⊤ diag

(
tr(Σ2

1), ..., tr(Σ
2
n)
))
.(3.30)

Let w1, w2 be tr
(
Y ⊤Y

)
, tr
(
Y ⊤XX⊤Y

)
after being centered and standardized, defined as

w1 =
1

n1/2q

(
z⊤Q1z − tr(Q1)

)
and w2 =

1

n3/2q

(
z⊤Q2z − tr(Q2)

)
.

and denote w = (w1, w2)
⊤. Combining equation (3.28) and Leave-One-Out analysis in

Lemma 3.5.0.1, under Assumptions 3.2.4, 3.2.5, and 3.2.7, one could approximate traces
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containing D̃n and Λkl to obtain approximation on var (w1|X) as

var (w1|X) =
2

np2q2
tr
(
(X⊤X)2

)
tr
(
Σ2
b

)
+

4

npq2
tr
(
X⊤X

)
tr
(
ΣeΣb

)
+

2

q2
tr
(
Σ

2

e

)
+

2

q2

∑
1≤k,l≤q

κkl + op(1).

Based on (3.10), as p/n→ τ , we have

var (w1|X)−

(
2

τq2
g2∥Σb∥2F +

4

q2
g1 tr

(
ΣeΣb

)
+

2

q2
∥Σe∥2F +

2

q2

∑
1≤k,l≤q

κkl

)
P→ 0.(3.31)

By (3.29) and Leave-One-Out analysis in Lemma 3.5.0.1, under Assumptions 3.2.4, 3.2.5,

and 3.2.7, it is similar to have

var (w2|X) =
2

n3p2q2
tr
(
(X⊤X)4

)
tr
(
Σ2
b

)
+

4

n3pq2
tr
(
(XX⊤)3

)
tr
(
ΣeΣb

)
+

2

n3q2
tr
(
(X⊤X)2

)
tr
(
Σ

2

e

)
+

2

n3q2
tr2
(
X⊤X

) ∑
1≤k,l≤q

κkl + op(1).

Based on (3.10), as p/n→ τ , we have

var (w2|X)−

(
2

τq2
g4∥Σb∥2F +

4

q2
g3 tr

(
ΣeΣb

)
+

2

q2
τg2∥Σe∥2F +

2

q2
τ 2g21

∑
1≤k,l≤q

κkl

)
P→ 0.

(3.32)

By (3.30) and Leave-One-Out analysis in Lemma 3.5.0.1, under Assumptions 3.2.4, 3.2.5,

and 3.2.7, one could approximate cov (w1, w2|X) by

cov (w1, w2|X) =
2

n2p2q2
tr
(
(X⊤X)3

)
tr(Σ2

b) +
4

n2pq2
tr
(
(XX⊤)2

)
tr
(
ΣeΣb

)
+

2

n2q2
tr
(
XX⊤) tr(Σ2

e

)
+

2

n2q2
tr
(
XX⊤) ∑

1≤k,l≤q

κkl + op(1).
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Based on (3.10), as p/n→ τ , we have

cov (w1, w2|X)−

(
2

τq2
g3∥Σb∥2F +

4

q2
g2 tr

(
ΣeΣb

)
+

2

q2
τg1∥Σe∥2F +

2

q2
τg1

∑
1≤k,l≤q

κkl

)
P→ 0.

(3.33)

Asymptotic Distribution. By the definition ofΛ, one could obtain thatΛ and diag(Σ1, ...,Σn)

are similar. Due to the assumption that max1≤i≤n ∥Σi∥2 = O(1), we have

∥Λ∥2 ≤ max
1≤i≤n

∥Σi∥2 = O(1).

Then we introduce the following lemma:

Lemma 3.5.0.6 (Theorem 6.5 in [42]). Let X be an n × p matrix whose rows xi are i.i.d.

sub-gaussian random vectors in Rn, ∥xi∥ψ2
= C, and cov(xi) = Σ. There are universal

constants {cj}3j=0 such that, the sample covariance matrix Sn = 1
n
X⊤X satisfies the bounds

P
(
1

C
∥Sn −Σ∥ ≥ c1

(√
p

n
+
p

n

)
+ δ

)
≤ c2 exp{−c3nmin{δ, δ2}}, ∀δ ≥ 0.

Lemma 3.5.0.7 (Theorem 6.6.1 in [38]). Let X1, . . . , Xn be mean-zero, symmetric, d × d

random matrices such that ∥Xi∥ ≤ C almost surely for all i ∈ {1, . . . , n}. Then for all t ≥ 0,

P

{∥∥∥∥∥
n∑
i=1

Xi

∥∥∥∥∥ ≥ t

}
≤ 2d exp

{
−t2

2 (σ2 + Ct/3)

}
,

where σ2 = ∥
∑n

i=1 E [X2
i ]∥ is the norm of the matrix variance of the sum.

Therefore by Lemma 3.5.0.6 and the assumption ∥Σ∥2 = O(1), we have

1

n1/2q
∥Q1∥ ≤

1

n1/2q

(
∥Σ1/2

b ∥+ ∥Λ
1/2∥

)2(
∥1
p
X⊤X∥+ 2

p1/2
∥X∥+ 1

)
≤ 2

n1/2q
(∥Σb∥+ ∥Λ∥)

(
∥1
p
X⊤X∥+ 2

p1/2
∥X∥+ 1

)
= OP

(
1

n1/2q

)
.

78



The second line is due to Cauchy-Schwarz inequality. It is simlar to have that

1

n3/2q
∥Q2∥

≤ 1

n3/2q

(
∥Σ1/2

b ∥+ ∥Λ
1/2∥

)2(∥∥∥∥1p(X⊤X)2
∥∥∥∥+ 2

p1/2
∥X∥∥X⊤X∥+ ∥X⊤X∥

)
≤ 2

n3/2q
(∥Σb∥+ ∥Λ∥)

(∥∥∥∥1p(X⊤X)2
∥∥∥∥+ 2

p1/2
∥X∥∥X⊤X∥+ ∥X⊤X∥

)
= OP

(
1

n1/2q

)
.

Then we introduce the following lemma to establish the normality:

Lemma 3.5.0.8 ( [9]). Let ζ1, ..., ζd be i.i.d sub-Gaussian random variables with mean 0,

variance 1, and sub-Gaussian parameter bounded by C0. Let ζ = (ζ1, ..., ζd)
⊤ and Qk be

an d × d positive semidefinite matrix, for k = 1, ..., K. Define wk = ζ⊤Qkζ − tr(Qk), and

w = (w1, ..., wK)
⊤. Let z ∼ N (0, IK) and V = cov(w). There is an absolute constant

0 < C1 <∞ such that

∣∣E[f(w)]− E[f(V 1/2z)]
∣∣ ≤C1(C0 + 1)8K3/2d1/2|f |2( max

k=1,...,K
∥Qk∥)2

+ C1(C0 + 1)8K3d|f |3( max
k=1,...,K

∥Qk∥)3,

for all three-times differentiable functions f : RK → R.

By Lemma 3.5.0.8, for all three-times differentiable functions f : R2 → R, and Un =

cov(w|X) ∈ R2×2, we have

∣∣E [f(w)|X]− E
[
f(U 1/2

n t)|X
]∣∣

≤ C1(C0 + 1)823/2 (q(n+ p))1/2 |f |2
(
max

{
1

n1/2q
∥Q1∥,

1

n3/2q
∥Q2∥

})2

+ C1(C0 + 1)823q(n+ p)|f |3
(
max

{
1

n1/2q
∥Q1∥,

1

n3/2q
∥Q2∥

})3

= OP

(
1

n1/2q3/2

)
= oP (1).(3.34)
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where t ∼ N (0, I2). Based on former calculations on cov(w|X) in equations (3.31), (3.32)

and (3.33), we have Un,ij − Ũn,ij
P→ 0, where

Ũn,11 =
2

τq2
g2∥Σb∥2F +

4

q2
g1 tr

(
ΣeΣb

)
+

2

q2
∥Σe∥2F +

2

q2

∑
1≤k,l≤q

κkl

Ũn,12 =
2

τq2
g3∥Σb∥2F +

4

q2
g2 tr

(
ΣeΣb

)
+

2

q2
τg1∥Σe∥2F +

2

q2
τg1

∑
1≤k,l≤q

κkl

Ũn,22 =
2

τq2
g4∥Σb∥2F +

4

q2
g3 tr

(
ΣeΣb

)
+

2

q2
τg2∥Σe∥2F +

2

q2
τ 2g21

∑
1≤k,l≤q

κkl.

Denote Φ(t, s) as the c.d.f. of N (0, I2). Based on the expressions (3.31), (3.32) and (3.33), as

well as Assumptions 2.1 and 2.4, we can see Un satisfies ∥Un∥ = OP (1) and ∥U−1
n ∥ = OP (1).

In fact, Assumption 2.1 guarantees g2g4 − g23, g1g3 − g22 and g2 − g21 are lower bounded

by quantities determined by the limit spectral distribution H of the predictor population

covariance matrix and the aspect ratio τ . Also, the boundedness of ∥Σi∥ for i = 1, . . . , n

actually implies
∑

1≤k,l≤q κkl = O(q). Therefore by (3.34), we have

P
{
U−1/2
n w ∈ (−∞, t]× (−∞, s]|X

} p→ Φ(t, s).

By DCT,

U−1/2
n w ⇒ N (0, I2).

By Slutsky Theorem, we have

Ũ−1/2
n w ⇒ N (0, I2).
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By definition, σ̂2 and ρ̂2 are linear combinations of tr
(
Y ⊤Y

)
and tr

(
Y ⊤XX⊤Y

)
. Com-

bining the forms of w1, w2, we haveσ̂2 − E[σ̂2|X]

ρ̂2 − E[ρ̂2|X]


= n−1/2

(
1

p
tr(S2

n)−
1

np
tr2(Sn)

)−1
 1

p
tr(S2

n) −1
p
tr(Sn)

− 1
n
tr(S2

n) 1

w1

w2

 .
Combining with (3.27), by equation (3.10) and Slutsky Theorem we obtain the asymptotic

distribution for σ̂2 and ρ̂2 as following:

n1/2V −1/2
n

σ̂2 − σ2

ρ̂2 − ρ2

 =⇒ N (0, I2).

Here Vn ∈ R2×2 is the asymptotic covariance matrix of σ̂2, ρ̂2 as

Vn =
(
g2 − τg21

)−2

 g2 −g1

−τg2 1

 Ũn

 g2 −g1

−τg2 1

⊤

,

where

Vn,11 =
1

(g2−τg21)2q2

(
(2g22 − 2τg21g2) ∥Σe∥2F + (2g22 + 2τ 2g41 − 4τg21g2)

∑
1≤k,l≤q κkl

+(4g21g3 − 4g1g
2
2) tr

(
ΣeΣb

)
+
(
2
τ
g32 +

2
τ
g21g4 − 4

τ
g1g2g3

)
∥Σb∥2F

)
Vn,22 =

1
(g2−τg21)2q2

(
(2τg2 − 2τ 2g21) ∥Σe∥2F + (4τ 2g31 + 4g3 − 8τg1g2) tr

(
ΣeΣb

)
+
(
2τg21g2 +

2
τ
g4 − 4g1g3

)
∥Σb∥2F

)
Vn,12 = Vn,21 =

1
(g2−τg21)2q2

(
(−2τg1g2 + 2τ 2g31) ∥Σe∥2F + (−4g1g3 + 4g22) tr

(
ΣeΣb

)
+
(
−2g1g22 − 2

τ
g1g4 +

2
τ
g2g3 + 2g21g3

)
∥Σb∥2F

)
.
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CHAPTER 4

Conclusion and Discussion

This dissertation focuses on signal-to-noise ratio (SNR) estimation in high-dimensional linear

models, covering both the univariate and multivariate cases. In Chapter 2, we study high-

dimensional linear models with heteroscedastic and correlated noise (model (2.1)). We derive

consistency and asymptotic distributions for the REML estimator of the SNR under a general

fixed coefficient vector, without assuming i.i.d. Gaussian priors, and in the presence of

heteroscedastic and correlated errors. These theoretical findings are supported by extensive

numerical simulations.

In Chapter 3, we consider the multiple-response high-dimensional linear model (3.1) under

both fixed and random effects settings. For the random effects model, we further extend

our framework to accommodate residual heteroskedasticity. We propose definitions of SNR

tailored to each model and establish the asymptotic distributions of the corresponding es-

timators. We also show how to make inference about SNR and demonstrate the practical

validity of our methods through extensive simulations.

There remain several avenues for future work. For instance, the simulation results in Section

2.3 suggest that the symmetry (skew-free) assumption on the design matrix entries—crucial

for the main results in Section 2.2—might be relaxed. This assumption enabled the use of

double Rademacher sequences and a leave-k-out analysis to derive asymptotic properties by

dealing with conditional mean and variance. However, given that skewness may occur in

real high-dimensional data, it would be of practical and theoretical interest to extend our

analysis to designs with asymmetric distributions.

Another promising direction is the estimation of group-wise SNR in models with grouped

features, which is especially relevant in GWAS applications where genes can be grouped
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naturally (e.g., by chromosome; see [44]). While asymptotic analysis for mixed effects models

with feature groups has been studied in the literature [21], extending our misspecification

framework to this setting is nontrivial. As discussed in Section 2.5, we have made preliminary

progress, but technical challenges remain.

Chapter 3 also opens the door to exploring likelihood-based methods for SNR estimation

in multivariate random effects models. While maximum likelihood estimation (MLE) is

statistically efficient, it becomes computationally prohibitive as the response dimension q

increases, due to the O(q2) parameters involved in estimating Σb and Σe. Since our primary

interest lies in estimating the SNR, a full MLE approach may be unnecessarily expensive.

Pseudo-likelihood or profile-likelihood methods offer a promising alternative by avoiding

direct estimation of large covariance matrices.

Furthermore, in Chapter 3, we examine two specific random effects models with heteroskedas-

ticity, under which the asymptotic variance of r̂2 can be consistently estimated. Several open

questions arise in this context: Can we extend these results to more general heteroskedastic

settings? For the two specific models considered, are there improved variance estimators

beyond those we have proposed?

Lastly, while our theoretical results for the fixed effects model require the design matrix to

have i.i.d. Gaussian entries, simulation results in Section 3.3.1 suggest that this assumption

could potentially be relaxed. Investigating the theoretical implications of such robustness

would also be a valuable direction for future research.
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APPENDIX A

Supporting Proofs of Chapter 2

In the appendix we give detailed proofs of the technical lemmas that appear in Section 2.4. As

mentioned earlier, the proofs of Lemmas 2.4.1.1, 2.4.1.2, 2.4.1.3, 2.4.1.5 and 2.4.1.10 basically

follow the proof ideas in [24], but we provide self-contained proofs here for completeness.

Interested readers are recommended to read [24] for deeper insights.

A.1. Preliminaries

Let’s first recall the famous Marčenko-Pastur law in random matrix theory.

Theorem A.1.1 (Marčenko-Pastur law, [39]). Let Z be an n × p random matrix whose

entries are i.i.d. random variables with mean 0 and variance 1 in which n/p → τ ∈ (0,∞)

as n, p → ∞. Then the empirical spectral distribution (ESD) of S = p−1ZZ⊤, which is

defined as FS, converges almost surely (a.s.) in distribution to Fτ , whose p.d.f. is given by

fτ (x) =


max{τ − 1, 0}δ0(x) +

1

2πτx

√
(b+(τ)− x) (x− b−(τ)) b−(τ) ≤ x ≤ b+(τ)

0 elsewhere

where b±(τ) = (1±
√
τ)2 and δ0(x) is a point mass τ−1 at the origin.

Note that in our settings, the entries of the design matrix are not necessarily identically

distributed. To this end, we consider the following extension of Marčenko-Pastur law.

Theorem A.1.2 ( [2], Theorem 2.8). Let Z be an n × p random matrix whose entries are

independent random variables with mean 0 and variance 1. Assume that n/p → τ ∈ (0,∞)

and that for any δ > 0,

1

δ2np

∑
i,j

E
[
|z(n)ij |2I(|z(n)

ij |≥δ
√
n)

]
→ 0.
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Then FS, defined as in Theorem A.1.1, tends almost surely to the Marčenko-Pastur law with

ratio index τ .

Corollary A.1.1. Under the assumption of Theorem A.1.1 or A.1.2, for any integer l, we

have

1

n
trace(Sl)

a.s.−→
∫ b+(τ)

b−(τ)

xlfτ (x)dx as n, p→∞.

Define the sub-Gaussian norm of a random variable ζ as

∥ζ∥ψ2 ≡ sup
q≥1
{q−1/2(E|ζ|q)1/q}.

A random variable ζ is sub-Gaussian if and only if its sub-Gaussian norm ∥ζ∥ψ2 < ∞. We

have the following equivalent characterizations on the sub-Gaussianity of a random variable:

Lemma A.1.2.1 ( [40], Lemma 5.5). A random variable ζ is sub-Gaussian if and only if

1) ∥ζ∥ψ2 <∞; or

2) P{|ζ| > t} ≤ exp(1− t2/K2) for some parameter K > 0 and all t > 0.

Part 2) actually implies that the design matrix under the setting of Theorem 3.2.4, in which

the entries have sub-Gaussian norms that are uniformly upper bounded, satisfies the condi-

tions in Theorem A.1.2. In fact, if ζ is sub-Gaussian random variable, then by the identity

E[X] =
∫∞
0

P(X > t)dt for any nonnegative random variable X, we have

E
[
|ζ|2I(|ζ|≥δ√n)

]
=

∫ ∞

δ
√
n

P{|ζ| > t}2tdt+ δ2nP{|ζ| > δ
√
n}

≤ 2

∫ ∞

δ
√
n

e1−
t2

K2 tdt+ δ2ne1−
δ2n
K2

= (K2 + δ2n)e1−
δ2n
K2 .

This implies that for n× p random matrices Z whose entries have uniformly upper bounded

sub-Gaussian norms,

1

δ2np

∑
i,j

E
[
|z(n)ij |2I(|z(n)

ij |≥δ
√
n)

]
→ 0,
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as n, p→∞, for any δ > 0.

Our proof also relies crucially on the following fundamental concentration inequalities.

Proposition A.1.1 (Hanson–Wright inequality, [33]). Let ζ = (ζ1, · · · , ζn)⊤, where the ζi’s

are independent random variables satisfying E(ζi) = 0 and ∥ζi∥ψ2 ≤ K < ∞. Let A be an

n× n deterministic matrix. Then we have for any t > 0,

P{|ζ⊤Aζ − E(ζ⊤Aζ)| > t} ≤ 2 exp

{
−cmin

(
t2

K4∥A∥2F
,

t

K2∥A∥

)}
,

where c > 0 is an absolute constant. Here ∥A∥ and ∥A∥F denote the operator and Frobenius

norms of A, respectively.

Proposition A.1.2 (Hoeffding-type inequality, [40], Proposition 5.10). Let ζ = (ζ1, · · · , ζn)⊤,

where the ζi’s are independent centered sub-Gaussian random variables. LetK = max1≤i≤n ∥ζi∥ψ2

and a = (a1, · · · , aN)⊤ ∈ RN . Then we have for any t ≥ 0,

P{|a⊤ζ| > t} ≤ e exp

{
−c t2

K2∥a∥22

}
,

where c > 0 is an absolute constant.

Proposition A.1.3 (Bernstein-type inequality, [40], Proposition 5.16). Let ζ = (ζ1, · · · , ζn)⊤,

where the ζi’s are independent centered sub-exponential random variables. LetK = max1≤i≤n ∥ζi∥ψ2

and a = (a1, · · · , aN)⊤ ∈ RN . Then we have for any t ≥ 0,

P{|a⊤ζ| > t} ≤ 2 exp

{
−cmin

(
t2

K2∥a∥22
,

t

K∥a∥∞

)}
,

where c > 0 is an absolute constant.

The next result, the famous Sherman-Morrison-Woodbury formula in matrix analysis is

repeatedly used in our proofs, as the corner stone of leave-one-out analysis.
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Theorem A.1.3 (Sherman-Morrison-Woodbury formula, [17], Page 19). Let P and Q be

n-dimensional non-singular matrices such that Q = P +UV ⊤, where U ,V ∈ Rn×q. Then

Q−1 = (P +UV ⊤)−1 = P−1 − P−1U(Iq + V ⊤P−1U)−1V ⊤P−1.

The following results, implied by [4] and [5], are conditions for the normality of quadratic

forms.

Theorem A.1.4 ( [4], Proposition 3.1). Let X = (X1, . . . , Xn) be i.i.d. Rademacher random

variables and A = (aij)1 ≤ i, j ≤ n be a real symmetric matrix. Let W = X⊤AX and

σ2 = Var(W ) =
1

2
trace(A2).

Let µ be the law of (W − E(W ))/
√

Var(W ) and let ν be the standard Gaussian law. We

define

dW :=W(µ, ν),

where W is the Kantorovich–Wasserstein distance between two probability measures with

W(µ, ν) = sup

{∣∣∣∣∫ hdµ−
∫
hdν

∣∣∣∣ : h Lipschitz, with ∥h∥Lip ≤ 1

}
Then,

dW ≤
(
trace(A4)

2σ4

)1/2

+
5

2σ3

n∑
i=1

(
n∑
j=1

a2ij

)3/2

≤ 6
√
2
∥A∥2

∥A∥2F
.

Theorem A.1.5 ( [5]). Suppose x is a gaussian random vector with mean 0 and covariance

matrix Σ. Take any g ∈ C2(R) and let ∇g and ∇2g denote the gradient and Hessian of g.

Let

ς1 =
(
E ∥∇g(x)∥4

) 1
4 , ς2 =

(
E ∥∇2g(x)∥4

) 1
4 .
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Then let W = g(x) have a finite fourth moment and U be a normal random variable having

the same mean and variance as W ,

dTV (W,U) ≤
2
√
5∥Σ∥ 3

2 ς1ς2
Var [W ]

.

Here dTV is the total variation distance between random variables u and v,

dTV (u, v) = sup
B∈B(R)

|P(u ∈ B)− P(v ∈ B)|,

where B(R) denotes the collection of Borel sets in R.

Next, there is a famous result for the bounds of eigenvalues of the sub-gaussian random

matrix.

Theorem A.1.6 (Theorem 5.39, [40]). Let Z be an n×p matrix whose rows are independent

sub-gaussian isotropic random vectors. Then for every t ≥ 0, with probability at least 1 −

2 exp(−ct2) one has

√
n− C√p− t ≤ λmin(Z) ≤ λmax(Z) ≤

√
n+ C

√
p+ t

Here C = CK, c = cK > 0 depend only on the subgaussian norm K of the rows.

A.2. Proofs of Lemmas in Section 2.4.1

A.2.1. Proof of Lemma 2.4.0.1. Since εi ∼ N (0, σ2
i ), there holds (εi/σi)

2 ∼ χ2
1. By

the standard Laurent-Massart bound ( [25]), there holds that

P{ε2i /σ2
i − 1 ≥ 2

√
t+ 2t} ≤ exp(−t) and P{1− ε2i /σ2

i ≥ 2
√
t} ≤ exp(−t).

Taking t = 2 log n, we can have for any i = 1, . . . , n,

P{max
∣∣ε2i /σ2

i − 1
∣∣ ≥ 2

√
2 log n+ 4 log n} ≤ 1

n
,(A.1)

88



which implies (2.12).

Since ε ∼ Nn(0,Σε), we can rewrite
∑n

i=1 ε
2
i as ε

⊤ε, then

E
[
ε⊤ε

]
= trace (Σε) =

n∑
i=1

σ2
i = nσ4

0,

and

Var
[
ε⊤ε

]
= trace

(
Σ2
ε

)
= 2∥Σε∥2F .

By the assumption that ∥Σε∥F = o(n),

Var

[
1

n

n∑
i=1

ε2i

]
= o (1) .

Then we can have (2.13).

By applying Theorem A.1.5 directly, we can take

g(x) =
1√
n

n∑
i=1

x2i ,

then

dTV (g(ε), U) ≤
√
5∥Σε∥

3
2 ς1ς2

1
n
∥Σε∥2F

,

where U ∼ N (
√
nσ2

0,
1
n
∥Σε∥2F ). Since

∂g

∂xi
=

2√
n
xi,

∂g

∂xi∂xj
=


2√
n

i = j,

0 i ̸= j,
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by the assumption that ∥Σε∥2F = nκσ4
0, it follows that

ς1 =
(
E ∥∇g(ε)∥4

) 1
4 =

E

(
n∑
i=1

(
2√
n
εi

)2
)2
 1

4

=
2√
n

E

(
n∑
i=1

ε2i

)2
 1

4

=
2√
n

(
Var

[
ε⊤ε

]
+
(
E
[
ε⊤ε

])2) 1
4

= O(1),

and ς2 = (E ∥∇2g(ε)∥4)
1
4 = O(1/

√
n).Then by the assumption that ∥Σε∥ is uniformly

bounded, we can have that as n→∞

dTV (g(ε), U) = O(1/
√
n) = o(1),

which implies (2.14).

A.2.2. Proof of Lemma 2.4.1.1. For convenience, define

(A.2)


ρk := η

(1)
kk,k := z⊤

k V
−1
γ,−kzk,

ϕk := η
(2)
kk,k := z⊤

k V
−2
γ,−kzk,

ψk := η
(3)
kk,k := z⊤

k V
−3
γ,−kzk.

First, there is a simple relationship: ψk ≤ ϕk ≤ ρk. In fact, since In − V −1
γ,−k ⪰ 0, we know

that

ρk − ϕk = z⊤
k V

−1/2
γ,−k (I − V −1

γ,−k)V
−1/2
γ,−k zk ≥ 0.

i.e., ϕk ≤ ρk. We can similarly obtain ψk ≤ ϕk.

Using Sherman-Morrison-Woodbury formula (Theorem A.1.3), we have

(A.3) V −1
γ = V −1

γ,−k −
γ

p
(1 +

γ

p
ρk)

−1V −1
γ,−kzkz

⊤
k V

−1
γ,−k,
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and

V −2
γ =

(
V −1
γ,−k −

γ

p
(1 +

γ

p
ρk)

−1V −1
γ,−kzkz

⊤
k V

−1
γ,−k

)2

= V −2
γ,−k −

γ

p
(1 +

γ

p
ρk)

−1V −2
γ,−kzkz

⊤
k V

−1
γ,−k −

γ

p
(1 +

γ

p
ρk)

−1V −1
γ,−kzkz

⊤
k V

−2
γ,−k

+

(
γ

p

)2

(1 +
γ

p
ρk)

−2ϕkV
−1
γ,−kzkz

⊤
k V

−1
γ,−k.(A.4)

By (A.3) and (A.4), we can also have

trace(V −1
γ ) = trace(V −1

γ,−k)−
γ

p
(1 +

γ

p
ρk)

−1ϕk,

and

trace(V −2
γ ) = trace(V −2

γ,−k)−
2γ

p
(1 +

γ

p
ρk)

−1ψk + (
γ

p
)2(1 +

γ

p
ρk)

−2ϕ2
k.

Then

∣∣trace(V −1
γ )− trace(V −1

γ,−k)
∣∣ = γ

p
(1 +

γ

p
ρk)

−1ϕk ≤
γ

p
(1 +

γ

p
ρk)

−1ρk < 1,(A.5)

and

∣∣trace(V −2
γ )− trace(V −2

γ,−k)
∣∣ ≤ 2γ

p
(1 +

γ

p
ρk)

−1ρk + (
γ

p
)2(1 +

γ

p
ρk)

−2ρ2k < 3.(A.6)

Similarly, we can also prove that

∣∣trace(V −3
γ )− trace(V −3

γ,−k)
∣∣ ≤ 7 and

∣∣trace(V −4
γ )− trace(V −4

γ,−k)
∣∣ ≤ 15.

Since the entries of Z are independent sub-Gaussian and E(zik) = 0, using Proposition A.1.1,

we have, for any 1 ≤ k ≤ p and t > 0:

P
{
|ρk − trace(V −1

γ,−k)| > t|Vγ,−k
}
≤ 2 exp

{
−cmin

(
t2

K4∥V −1
γ,−k∥2F

,
t

K2∥V −1
γ,−k∥

)}
,
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where c and K are positive constants. If we set

t = tk = K2max

(√
2 log p

c
∥V −1

γ,−k∥F ,
2 log p

c
∥V −1

γ,−k∥

)
,

it follows that P
{
|ρk − trace(V −1

γ,−k)| > tk|V −1
γ,−k
}
≤ 2/p2. Thus

P
{
max
1≤k≤p

t−1
k |ρk − trace(V −1

γ,−k)| > 1

}
≤ 2

p
.

By Lemma 2.4.0.2, ∥V −1
γ,−k∥ ≤ 1, and ∥V −1

γ,−k∥F ≤
√
n∥V −1

γ,−k∥ ≤
√
n, we can obtain that

tk ≤ K2max

(√
2

c

√
n log p,

2

c
log p

)
,

which implies

P
{
max
1≤k≤p

|ρk − trace(V −1
γ,−k)| > C

√
n log p

}
≤ 2/p

for some constant C > 0. Then, it follows that

max
1≤k≤p

|ρk − trace(V −1
γ,−k)| = OP (

√
n log n).(A.7)

By a similar argument, we have

max
1≤k≤p

|ϕk − trace(V −2
γ,−k)| = OP (

√
n log n).(A.8)

Combining (A.5), (A.7), (A.6) and (A.8), we have

max
1≤k≤p

|ρk − trace(V −1
γ )| = OP (

√
n log n), and(A.9)

max
1≤k≤p

|ϕk − trace(V −2
γ )| = OP (

√
n log n).(A.10)

A.2.3. Proof of Lemma 2.4.1.2. Based on (A.3) and (A.4), there holds

z⊤
k V

−1
γ zk = (1 +

γ

p
ρk)

−1ρk,(A.11)

z⊤
k V

−2
γ zk = (1 +

γ

p
ρk)

−2ϕk,(A.12)
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where ρk and ϕk are defined in (A.2).

Let’s now come back to find approximations of E[A1|Z] and E[A2|Z]. We define the following

intermediate quantities

θ1 =
1

n

trace(V −1
γ )

1 + γ
p
trace(V −1

γ )
and θ2 =

1

n

trace(V −2
γ )(

1 + γ
p
trace(V −1

γ )
)2 .(A.13)

Then by (A.11) and (A.9), we can have

max
1≤k≤p

∣∣∣∣∣θ1 − z⊤
k V

−1
γ zk

n

∣∣∣∣∣ ≤ max
1≤k≤p

∣∣∣∣trace(V −1
γ )− ρk
n

∣∣∣∣ = OP

(√
log n

n

)
,(A.14)

which implies (2.18). Similarly, by (A.12) and (A.10), there holds

max
1≤k≤p

∣∣∣∣∣θ2 − z⊤
k V

−2
γ zk

n

∣∣∣∣∣ ≤ max
1≤k≤p

1

n

∣∣∣∣∣trace(V −2
γ )

(
1 +

γ

p
ρk

)2

−
(
1 +

γ

p
trace(V −1

γ )

)2

ϕk

∣∣∣∣∣
≤ 1

n

[
max
1≤k≤p

∣∣trace(V −2
γ )− ϕk

∣∣+ max
1≤k≤p

2γ

p
ρk
∣∣trace(V −2

γ )− ϕk
∣∣

+ max
1≤k≤p

2γ

p
ϕk
∣∣ρk − trace(V −1

γ )
∣∣+ max

1≤k≤p

γ2

p2
ρ2k
∣∣trace(V −2

γ )− ϕk
∣∣

+ max
1≤k≤p

γ2

p2
ϕk
(∣∣ρk − trace(V −1

γ )
∣∣ ∣∣ρk + trace(V −1

γ )
∣∣)] .(A.15)

It follows, by the facts trace(V −1
γ ) = OP (n), trace(V

−2
γ ) = OP (n), ρk = OP (n) and ϕk =

OP (n) (Lemma 2.4.0.2 and Lemma 2.4.1.1),(2.19) is true.

Then we can have for l = 1, 2,∣∣∣∣∣z⊤
k V

−l
γ zk

n
− 1

np
trace

(
V −1
γ ZZ⊤)∣∣∣∣∣

=

∣∣∣∣∣z⊤
k V

−l
γ zk

n
− θ1 +

1

p

p∑
i=1

(
θ1 −

p∑
i=1

1

n
z⊤
i V

−1
γ zi

)∣∣∣∣∣ = OP

(√
log n

n

)
,(A.16)

which implies (2.20). Then by the definition of Bγ, when l = 1 we can get (2.21) from (2.20).
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When l = 2, for
(
z⊤
k Bγ0zk

)2
,

(
z⊤
k Bγzk

)2
=

(
1

n
z⊤
k V

−1
γ zk −

1
n
z⊤
k V

−2
γ zk

1
n
trace(V −1

γ )

)2

=

(
1

n
η
(1)
kk

)2

− 2
1
n
η
(1)
kk

1
n
η
(2)
kk

1
n
trace(V −1

γ )
+

(
1
n
η
(2)
kk

)2
(
1
n
trace(V −1

γ )
)2 .(A.17)

Then by triangle inequality, for any l,m = 1, 2,

1

n
η
(l)
kk

1

n
η
(m)
kk −

1

n
trace

(
V −l
γ

1

p
ZZ⊤

)
1

n
trace

(
V −m
γ

1

p
ZZ⊤

)
≤ 1

n
trace

(
V −l
γ

1

p
ZZ⊤

) ∣∣∣∣ 1nη(m)
kk −

1

n
trace

(
V −m
γ

1

p
ZZ⊤

)∣∣∣∣
+

1

n
trace

(
V −m
γ

1

p
ZZ⊤

) ∣∣∣∣ 1nη(l)kk − 1

n
trace

(
V −l
γ

1

p
ZZ⊤

)∣∣∣∣
+

∣∣∣∣ 1nη(m)
kk −

1

n
trace

(
V −m
γ

1

p
ZZ⊤

)∣∣∣∣ ∣∣∣∣ 1nη(l)kk − 1

n
trace

(
V −l
γ

1

p
ZZ⊤

)∣∣∣∣ .
By (A.16) and the fact that

1

n
trace

(
V −l
γ

1

p
ZZ⊤

)
= OP (1),

1

n
trace

(
V −m
γ

1

p
ZZ⊤

)
= OP (1),

we can have

max
1≤k≤p

∣∣∣∣ 1nη(l)kk 1nη(m)
kk −

1

n
trace

(
V −l
γ

1

p
ZZ⊤

)
1

n
trace

(
V −m
γ

1

p
ZZ⊤

)∣∣∣∣ = OP

(√
log n

n

)
.

(A.18)
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Since (
trace

(
Bγ

1

p
ZZ⊤

))2

=

 1

n
trace

(
V −1
γ

1

p
ZZ⊤

)
−

1
n
trace

(
V −1
γ

1
p
ZZ⊤

)
1
n
trace(V −1

γ )

2

=

(
1

n
trace

(
V −1
γ

1

p
ZZ⊤

))2

− 2

1
n
trace

(
V −1
γ

1
p
ZZ⊤

)
1
n
trace

(
V −2
γ

1
p
ZZ⊤

)
1
n
trace(V −1

γ )

+

(
1
n
trace

(
V −2
γ

1
p
ZZ⊤

))2
(
1
n
trace(V −1

γ )
)2 ,

then by (A.17) and (A.18), there holds that

max
1≤k≤p

∣∣∣∣∣(z⊤
k Bγzk

)2 − (trace(Bγ
1

p
ZZ⊤

))2
∣∣∣∣∣ = OP

(√
log n

n

)
.(A.19)

Finally, as we can know from (2.18), (2.20) and Lemma 2.4.0.2 that (np)−1 trace
(
V −1
γ ZZ⊤)

converges to the same limit as
n−1 trace(V −1

γ )

1 + γp−1 trace(V −1
γ )

,

which means

1

γ
(1− h1(γ, τ)) =

h1(γ, τ)

1 + γτh1(γ, τ)
.

And Lemma 2.4.0.2 shows that∣∣∣∣ 1np trace (V −1
γ ZZ⊤)− 1

γ
(1− h1(γ, τ))

∣∣∣∣ = OP

(
1

n

)
,

and ∣∣∣∣∣ 1n trace(V −1
γ )

1 + γ
p
trace(V −1

γ )
− h1(γ, τ)

1 + γτh1(γ, τ)

∣∣∣∣∣ = OP

(
1

n

)
.

Combine the above two inequalities, we can get (2.22). Similarly, by (2.19), (2.20) and

Lemma 2.4.0.2 we can get (2.23).
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A.2.4. Proof of Lemma 2.4.1.3. By (2.22) and (A.11), we can know that

max
1≤k≤p

∣∣∣∣∣ 1nz⊤
k V

−1
γ zk −

1

np
trace

(
V −1
γ ZZ⊤)

− 1(
1 + γ

p
trace(V −1

γ )
)2 ( 1

n
η
(1)
kk,k −

1

n
trace(V −1

γ )

) ∣∣∣∣∣
= max

1≤k≤p

∣∣∣∣∣ 1n η
(1)
kk,k

1 + γ
p
η
(1)
kk,k

− 1

n

trace(V −1
γ )

1 + γ
p
trace(V −1

γ )

− 1(
1 + γ

p
trace(V −1

γ )
)2 ( 1

n
η
(1)
kk,k −

1

n
trace(V −1

γ )

) ∣∣∣∣∣+OP

(
1

n

)
,(A.20)

and similarly by (2.23) and (A.12), there holds that

max
1≤k≤p

∣∣∣∣∣ 1nz⊤
k V

−2
γ zk −

1

np
trace

(
V −2
γ ZZ⊤)

+
trace(V −2

γ )(
1 + γ

p
trace(V −1

γ )
)3 2γp

(
1

n
η
(1)
kk,k −

1

n
trace(V −1

γ )

)

− 1(
1 + γ

p
trace(V −1

γ )
)2 ( 1

n
η
(2)
kk,k −

1

n
trace(V −2

γ )

) ∣∣∣∣∣
= max

1≤k≤p

∣∣∣∣∣ η
(2)
kk,k(

1 + γ
p
η
(1)
kk,k

)2 − trace
(
V −2
γ

)(
1 + γ

p
trace

(
V −1
γ

))2

+
trace(V −2

γ )(
1 + γ

p
trace(V −1

γ )
)3 2γp

(
1

n
η
(1)
kk,k −

1

n
trace(V −1

γ )

)

− 1(
1 + γ

p
trace(V −1

γ )
)2 ( 1

n
η
(2)
kk,k −

1

n
trace(V −2

γ )

) ∣∣∣∣∣+OP

(
1

n

)
.
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Define

zγ(x) =
x

1 + γ n
p
x
, wγ(x, y) =

x(
1 + γ n

p
y
)2 .

By the Taylor series expansion, as 1
n
η
(1)
kk,k → 1

n
trace

(
V −1
γ

)
zγ

(
1

n
η
(1)
kk,k

)
= zγ

(
1

n
trace

(
V −1
γ

))
+ z′γ

(
1

n
trace

(
V −1
γ

))( 1

n
η
(1)
kk,k −

1

n
trace

(
V −1
γ

))
+R1

(
1

n
η
(1)
kk,k,

1

n
trace

(
V −1
γ

))
.

Here R1 is the remainder term

R1 =
1

2
z
′′

γ (ck)

(
1

n
η
(1)
kk,k −

1

n
trace

(
V −1
γ

))2

where ck is some constant between 1
n
η
(1)
kk,k and 1

n
trace

(
V −1
γ

)
. Then

1
n
η
(1)
kk,k

1 + γ
p
η
(1)
kk,k

−
1
n
trace

(
V −1
γ

)
1 + γ

p
trace

(
V −1
γ

)
= zγ

(
1

n
η
(1)
kk,k

)
− zγ

(
1

n
trace

(
V −1
γ

))
= z′γ

(
1

n
trace

(
V −1
γ

))( 1

n
η
(1)
kk,k −

1

n
trace

(
V −1
γ

))
+R1

(
1

n
η
(1)
kk,k,

1

n
trace

(
V −1
γ

))
,

where

z′γ (x) =
1(

1 + γn
p
x
)2 , z′′γ (x) =

γn

p

1(
1 + γn

p
x
)3 .
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By (A.20), this implies that

max
1≤k≤p

∣∣∣∣∣ 1nz⊤
k V

−1
γ zk −

1

np
trace

(
V −1
γ ZZ⊤)

− 1(
1 + γ

p
trace(V −1

γ )
)2 ( 1

n
η
(1)
kk,k −

1

n
trace(V −1

γ )

) ∣∣∣∣∣
= max

1≤k≤p

∣∣∣∣R1

(
1

n
η
(1)
kk,k,

1

n
trace

(
V −1
γ

))∣∣∣∣+OP

(
1

n

)
,

and by Lemma 2.4.1.1,

max
1≤k≤p

∣∣∣∣R1

(
1

n
η
(1)
kk,k,

1

n
trace

(
V −1
γ

))∣∣∣∣
= max

1≤k≤p

∣∣∣∣∣12z′′

γ (ck)

(
1

n
η
(1)
kk,k −

1

n
trace

(
V −1
γ

))2
∣∣∣∣∣

≤ 1

2
max
1≤k≤p

∣∣∣∣∣∣∣
γn

p

1(
1 + γn

p
ck

)3
∣∣∣∣∣∣∣ max
1≤k≤p

∣∣∣∣∣
(
1

n
η
(1)
kk,k −

1

n
trace

(
V −1
γ

))2
∣∣∣∣∣

≤ γn

2p
max
1≤k≤p

∣∣∣∣∣
(
1

n
η
(1)
kk,k −

1

n
trace

(
V −1
γ

))2
∣∣∣∣∣

= OP

(
log n

n

)
.
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Combine the above two inequalities, we can get (2.24).

Similarly, by the Taylor series expansion, as 1
n
η
(2)
kk,k → 1

n
trace

(
V −2
γ

)
, we can have

max
1≤k≤p

∣∣∣∣∣ 1nz⊤
k V

−2
γ zk −

1

np
trace

(
V −2
γ ZZ⊤)

+
trace(V −2

γ )(
1 + γ

p
trace(V −1

γ )
)3 2γp

(
1

n
η
(1)
kk,k −

1

n
trace(V −1

γ )

)

− 1(
1 + γ

p
trace(V −1

γ )
)2 ( 1

n
η
(2)
kk,k −

1

n
trace(V −2

γ )

) ∣∣∣∣∣
= max

1≤k≤p

∣∣∣∣R̃1

(
1

n
η
(2)
kk,k,

1

n
trace

(
V −2
γ

)
,
1

n
η
(1)
kk,k,

1

n
trace

(
V −1
γ

))∣∣∣∣+OP

(
1

n

)
.

Since

∂2wγ
∂x2

(x, y) = 0,

∣∣∣∣∂2wγ∂x∂y
(x, y)

∣∣∣∣ =
∣∣∣∣∣∣∣−2

γn

p

1(
1 + γ n

p
y
)3
∣∣∣∣∣∣∣ ≤ 2

γn

p
for y ≥ 0,

∣∣∣∣∂2wγ∂y2
(x, y)

∣∣∣∣ = 6

(
γn

p

)2
x(

1 + γ n
p
y
)3 ≤ 6

(
γn

p

)2

x for x, y ≥ 0,
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by Lemma 2.4.1.1 we can have

max
1≤k≤q

∣∣∣∣R̃1

(
1

n
η
(2)
kk,k,

1

n
trace

(
V −2
γ

)
,
1

n
η
(1)
kk,k,

1

n
trace

(
V −1
γ

))∣∣∣∣
≤ max

1≤k≤q

∣∣∣∣∂2wγ∂x∂y
(ck1, ck2)

(
1

n
η
(2)
kk,k −

1

n
trace

(
V −2
γ

))( 1

n
η
(1)
kk,k −

1

n
trace

(
V −1
γ

))∣∣∣∣
+ max

1≤k≤q

∣∣∣∣∣
∂2wγ

∂y2
(ck1, ck2)

2

(
1

n
η
(1)
kk,k −

1

n
trace

(
V −1
γ

))2
∣∣∣∣∣

≤ 2
γn

p
max
1≤k≤q

∣∣∣∣( 1

n
η
(2)
kk,k −

1

n
trace

(
V −2
γ

))∣∣∣∣ max
1≤k≤q

∣∣∣∣( 1

n
η
(1)
kk,k −

1

n
trace

(
V −1
γ

))∣∣∣∣
+ 3

(
γn

p

)2

ck1 max
1≤k≤q

∣∣∣∣∣
(
1

n
η
(1)
kk,k −

1

n
trace

(
V −1
γ

))2
∣∣∣∣∣

= OP

(
log n

n

)
,

where ck1 is some constant between 1
n
η
(2)
kk,k and 1

n
trace

(
V −2
γ

)
and ck2 is some constant be-

tween 1
n
η
(1)
kk,k and 1

n
trace

(
V −1
γ

)
.

A.2.5. Proof of Lemma 2.4.1.5. Note that

(z⊤
k V

−1
γ zj)

2 = (1 +
γ

p
ρk)

−2(z⊤
k V

−1
γ,−kzj)

2 ≤
(
z⊤
k V

−1
γ,−kzj

)2
and

(z⊤
k V

−2
γ zj)

2(A.21)

=

(
(1 +

γ

p
ρk)

−1z⊤
k V

−2
γ,−kzj +

(
−γ
p
ϕk(1 +

γ

p
ρk)

−2z⊤
k V

−1
γ,−kzj

))2

≤ 1

2
(1 +

γ

p
ρk)

−2
(
z⊤
k V

−2
γ,−kzj

)2
+

1

2

(
γ

p
ϕk

)2

(1 +
γ

p
ρk)

−4
(
z⊤
k V

−1
γ,−kzj

)2
≤ 2

((
z⊤
k V

−2
γ,−kzj

)2
+
(
z⊤
k V

−1
γ,−kzj

)2)
(A.22)

where the last inequality is due to 0 < ϕk ≤ ρk.

Denote Z−k = [z1, . . . ,zk−1, zk+1, . . . ,zp]. Note that the components of zk are independent

mean-zero sub-Gaussian random variables, conditional on Z−k, by Proposition A.1.2, we
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have, for any k ̸= j and t ≥ 0,

P
{
|z⊤
k V

−1
γ,−kzj| ≥ t

∣∣∣Z−k

}
≤ e exp

{
−c t2

K2∥V −1
γ,−kzj∥22

}
,

where c and K are some positive constants. By letting t = K
√

3 log p
c
∥V −1

γ,−kzj∥2, it follows

P
{
|z⊤
k V

−1
γ,−kzj| ≥ C

√
log p∥V −1

γ,−kzj∥
∣∣∣Z−k

}
≤ e

p3
,

where C is some positive constant. It further implies the unconditional probability inequality

P
{
|z⊤
k V

−1
γ,−kzj| ≥ C

√
log p∥V −1

γ,−kzj∥
}
≤ e

p3
.(A.23)

By the fact ∥V −1
γ,−k∥ ≤ 1, we have ∥V −1

γ,−kzj∥ ≤ ∥zj∥. Note that z21j−1, z22j−1, . . . , z2nj−1 are

independent centered sub-exponential random variables, by the Proposition A.1.3, we have

P

{∣∣∣∣∣
n∑
i=1

(z2ij − 1)

∣∣∣∣∣ ≥ t

}
≤ 2 exp

{
−cmin

(
t2

K2n
,
t

K

)}
,

where c and K are some positive constants. Take t = K
√
3n log p, then we get

P
{∣∣∥zj∥2 − n∣∣ ≥ C

√
n log p

}
≤ 2

p3
,(A.24)

for some constant C. Combining the above (A.23) and (A.24) together, with probability at

least 1− (2 + e)/p3, there holds

(z⊤
k V

−1
γ zj)

2 ≤ (z⊤
k V

−1
γ,−kzj)

2 ≤ C(n+ C
√
n log p) log p.

By a similar argument with the fact that ∥V −2
γ,−k∥ ≤ 1, we can have with probability at least

1− (2 + e)/p3

(z⊤
k V

−2
γ zj)

2 ≤ 2
((

z⊤
k V

−2
γ,−kzj

)2
+
(
z⊤
k V

−1
γ,−kzj

)2) ≤ 4C(n+ C
√
n log p) log p,

for some constant C.
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Above inequalities imply that with probability at least 1− (2 + e)/p, there hold

max
k ̸=j
|z⊤
k V

−1
γ zj|2 ≤ C(n+ C

√
n log p) log p, and

max
k ̸=j
|z⊤
k V

−2
γ zj|2 ≤ 4C(n+ C

√
n log p) log p.

Then, there follows that

max
k ̸=j
|z⊤
k V

−1
γ zj|2 = OP (n log p) and max

k ̸=j
|z⊤
k V

−2
γ zj|2 = OP (n log p).

Next, define

θ1(γ, τ) = κ1,1(γ, τ)− 2
κ1,2(γ, τ)

h1(γ, τ)
+
κ2,2(γ, τ)

h21(γ, τ)
,

where

κm,l(γ, τ) =
l∑

q1=1

m∑
q2=1

a(l)q1 (γ, τ)a
(m)
q2

(γ, τ)hq1+q2(γ, τ),

and

a
(1)
1 (γ, τ) =

1

(1 + τγh1(γ, τ))
2 , a

(2)
1 (γ, τ) =

−2τγh2(γ, τ)
(1 + τγh1(γ, τ))

3 , a
(2)
2 (γ, τ) =

1

(1 + τγh1(γ, τ))
2 .

Recall that h1(γ, τ) and h2(γ, τ) are defined in (2.8). Now, by the definition of η
(l)
ij in (2.16),

we can rewrite
(
z⊤
i Bγzj

)2
as

(
z⊤
i Bγzj

)2
=

(
1

n
z⊤
i V

−1
γ zj −

1
n
z⊤
i V

−2
γ zj

1
n
trace(V −1

γ )

)2

=

(
1

n
η
(1)
ij

)2

− 2
1
n
η
(1)
ij

1
n
η
(2)
ij

1
n
trace(V −1

γ )
+

(
1
n
η
(2)
ij

)2
(
1
n
trace(V −1

γ )
)2 .(A.25)

The following results are implied by [24] in the supplementary material.
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Proposition A.2.1 ( [24]). For any i ̸= j and i, j ≥ 1, we have

η
(1)
ij = a

(1)
1;ijη

(1)
ij;ij,

η
(2)
ij = a

(2)
1;ijη

(1)
ij;ij + a

(2)
2;ijη

(2)
ij;ij,

with

a
(1)
1;ij =

1(
1 + γ

p
η
(1)
ii;i

)(
1 + γ

p
η
(1)
jj;ij

) ,
a
(2)
1;ij =

−γ
p
η
(2)
ii;i(

1 + γ
p
η
(1)
ii;i

)2 (
1 + γ

p
η
(1)
jj;ij

) +
−γ
p
η
(2)
jj;ij(

1 + γ
p
η
(1)
ii;i

)(
1 + γ

p
η
(1)
jj;ij

)2 ,
a
(2)
2;ij =a

(1)
1;ij.

And

max
1≤i ̸=j≤p

max
1≤l≤2

max
1≤q1≤l

∣∣∣a(l)q1;ij − a(l)q1 (γ, τ)∣∣∣ = OP

(√
log p

n

)
.

Furthermore,

max
1≤i ̸=j≤p

max
1≤l,m≤2

max
1≤q1,q2≤l

∣∣∣a(l)q1;ija(m)
q2;ij
− a(l)q1 (γ, τ)a

(m)
q2

(γ, τ)
∣∣∣ = OP

(√
log p

n

)
(A.26)

Proposition A.2.2 ( [24]). For any l ≥ 1 and 1 ≤ i ̸= j,

1

n

∣∣trace (V −l
γ

)
− trace

(
V −l
γ,−ij

)∣∣ ≤ 1

n
2l+1.(A.27)

Proposition A.2.3 ( [24]). For any 1 ≤ q1, q2 ≤ 2, define

d
(q1,q2)
ij :=

1

n
η
(q1)
ij;ijη

(q2)
ij;ij −

1

n
trace

(
V

−(q1+q2)
γ,−ij

)
.

Then the following statements are true.

1) For some constant K1 > 0,

max
1≤i ̸=j≤p

E
[(
d
(q1,q2)
ij

)2]
≤ K1.
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2) For any i ̸= j ̸= i′, j′ ̸= i′( either j = j′ or not) and some constant K2 > 0,

max
i ̸=j ̸=i,j′ ̸=i′

∣∣∣E [d(q1,q2)ij d
(q1,q2)
i′j′

]∣∣∣ ≤ K2√
n
.

By (A.25), let’s first show that for 1 ≤ l,m ≤ 2,

1

p(p− 1)

∑
i ̸=j

1

n
η
(l)
ij η

(m)
ij

P−→ κm.l(γ, τ), and
∑
i ̸=j

β2
i β

2
j

1

n
η
(l)
ij η

(m)
ij

P−→ ∥β∥4κm.l(γ, τ).(A.28)

Since η
(q1)
ij;ijη

(q2)
ij;ij > 0 for any q1, q2 = 1, 2, . . ., by Proposition A.2.1 we can have

∑
i ̸=j

β2
i β

2
j

1

n
η
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ij η
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ij =

l∑
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i ̸=j
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q2;ij
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i β

2
j
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)

=
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(m)
q2
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(∑
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i β

2
j

1

n
η
(q1)
ij;ijη

(q2)
ij;ij

)
+ oP (1),(A.29)

and

1

p(p− 1)

∑
i ̸=j

1

n
η
(l)
ij η

(m)
ij =

m∑
q2=1

a(l)q1 (γ, τ)a
(m)
q2

(γ, τ)
1

p(p− 1)

∑
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1

n
η
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ij;ijη

(q2)
ij;ij + oP (1).(A.30)

We know that

E

[∑
i ̸=j

β2
i β

2
j d

(q1,q2)
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]
=
∑
i ̸=j

β2
i β

2
j E
[
E
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η
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(q2)
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n
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)
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]]
= 0,

and by Proposition A.2.3, we have that

E

(∑
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β2
i β

2
j d
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)2

=
∑
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β4
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4
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+ 2

∑
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2
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4
j E
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≤ K1∥β∥84 + 2

K2
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∥β∥42∥β∥44 +

K2
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∥β∥82

= oP (1).
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This implies that

∑
i ̸=j

β2
i β

2
j

1

n
η
(q1)
ij;ijη

(q2)
ij;ij =

∑
i ̸=j

β2
i β

2
j

1

n
trace

(
V

(q1+q2)
γ,−ij

)
+ oP (1),

where by Proposition A.2.2 and Lemma 2.4.0.2,∣∣∣∣ 1n trace
(
V

(q1+q2)
γ,−ij

)
− hq1+q2(γ, τ)

∣∣∣∣ = oP (1),

and
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i ̸=j β
2
i β

2
jhq1+q2(γ, τ) = ∥β∥4hq1+q2(γ, τ) + oP (1) since

∑p
i=1 β

4
i = oP (1). Thus

∑
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i β

2
j
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n
η
(q1)
ij;ijη

(q2)
ij;ij = ∥β∥4hq1+q2(γ, τ) + oP (1).(A.31)

Thus by (A.29) and (A.32), we can have

∑
i ̸=j

β2
i β

2
j

1
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(l)
ij η
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Then by Proposition A.2.2 and Lemma 2.4.0.2, we can have that

1

p(p− 1)

∑
i ̸=j

1

n
η
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ij;ijη

(q2)
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which implies
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(q2)
ij = κm,l(γ, τ) + oP (1),

by (A.30).

Now we have proved (A.28), then by (A.25) and Lemma 2.4.0.2, there holds that
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A.2.6. Proof of Lemma 2.4.1.6. Let z̃i
⊤ be the ith row of Z. By Sherman-Morrison-

Woodbury formula, we have
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and
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Combining (A.33) and (A.34) gives

(
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γ

)
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p
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i

(
Ip +

γ

p
Z⊤Z

)−1

z̃i,
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and

(
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)
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γ
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where z̃i is the i-th column of Z⊤. Define
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p
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)
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Furthermore, by a similar argument, it can be shown that for l = 1, 2, . . .
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Similar to (2.20) in Lemma 2.4.1.1, combining the leave-one-out technique and Hanson-

Wright inequality, taking the uniform bound gives
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Together with (A.36) and (A.37) yields (2.27).
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Note that we have
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−
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By (2.27), we have

max
i∈[n]

∣∣∣∣(Bγ)ii −
1

n
trace (Bγ)

∣∣∣∣ ≤ max
i∈[n]

∣∣∣∣ 1n (V −1
γ

)
ii
− 1

n2
trace

(
V −1
γ

)∣∣∣∣
+

maxi∈[n]

∣∣∣ 1n (V −2
γ

)
ii
− 1

n2 trace
(
V −2
γ

)∣∣∣
1
n
trace(V −1

γ )

= OP

(
1

n

√
log n

n

)
,

and consequently

max
i∈[n]

∣∣∣∣∣(Bγ)
2
ii −

(
1

n
trace (Bγ)

)2
∣∣∣∣∣ ≤ max

i∈[n]

∣∣∣∣(Bγ)ii −
1

n
trace (Bγ)

∣∣∣∣2
+ 2

1

n
| trace (Bγ) |max

i∈[n]

∣∣∣∣(Bγ)ii −
1

n
trace (Bγ)

∣∣∣∣
= OP

(
1

n2

√
log n

n

)
,

which yield (2.28) and (2.29).

From (A.36), we have (
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)
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−k
γ z̃j.

As with (2.25) in Lemma 2.4.1.5, we can have
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Then (2.30) can be easily obtained by the fact
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A.2.7. Proof of Lemma 2.4.1.7. To prove (2.31), we can know that
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−
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+

1
n2

(
V −2
γ

)2
ij(

1
n
trace(V −1

γ )
)2

=
γ2

n2

1

p2

(
η̃
(1)
ij

)2
− 2

γ2

n2

1

p2

(
η̃
(1)
ij

)2
+ η̃

(1)
ij η̃

(2)
ij

1
n
trace(V −1

γ )
+
γ2

n2

1

p2

(
η̃
(1)
ij

)2
+ 2η̃

(1)
ij η̃

(2)
ij +

(
η̃
(2)
ij

)2
(
1
n
trace(V −1

γ )
)2 ,(A.39)

where

η̃
(k)
ij := z̃⊤

i Ṽ
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γ z̃j.
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Then similar to Proposition A.2.1, using the leave-two-out technique, there holds that
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with
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Similar to (A.32) and (A.31) , we can have that
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Ṽ −(q1+q2)
γ

)
+ oP (1),

and

1

n2

∑
i ̸=j

ε2i ε
2
j

1

p
η̃
(q1)
ij;ij η̃

(q2)
ij;ij = σ4

0

1

p
trace

(
Ṽ −(q1+q2)
γ

)
+ oP (1),

by (2.13) in Lemma 2.4.0.1. Then similar to the proof of Lemma 2.4.1.5, (2.31) can be

obtained from (A.39).

A.2.8. Proof of Lemma 2.4.1.8. For any k = 1, · · · , p, denoteZ−k = [z1, · · · , zk−1, zk+1, · · · ],

then

Vγ,−k = Vγ −
γ

p
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⊤
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γ

p
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⊤
−k.

Similar to the proof of (2.27) in Lemma 2.4.1.6, we can define
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γ

p
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−kZ−k,(A.41)
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and z̃⊤
i,−k is the i-th row of Z−k. Then we can have that
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Again, similar to (2.20) in Lemma 2.4.1.1, combining the leave-one-out technique and Hanson-

Wright inequality (taking t =
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c
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Then (A.36) and (A.37) implies
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)
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By (2.17) in Lemma 2.4.1.1 and (A.44) we can get (2.32).

A.2.9. Proof of Lemma 2.4.1.9. In this section, we focus on the conditional variance

Var[∆(γ0)|Z, ε]. With y defined in (2.33), we have
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where by (2.35)

∆̃2
∗(γ0) =

(
p∑

k=1

β2
kz

⊤
k Bγ0zk + trace

(
Λ2
εBγ0

))2

(A.46)

and we can have
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Combining these results with (A.47), we can have
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(A.48)

Thus by (A.45), (A.47) and (A.48) we can have
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A.2.10. Proof of Lemma 2.4.1.10. Recall that ∆∗∗(γ) is of the form (2.38), so we need

to study the asymptotics of trace
(
V −1
γ

)
, trace

(
V −2
γ

)
, trace

(
V −1
γ ZZ⊤) and trace

(
V −2
γ ZZ⊤).

Denoting by λk the eigenvalues of p−1ZZ⊤, by Corollary A.1.1 and the fact that γ0 =

∥β∥2/σ2
0, p

−1ZZ⊤ = γ−1 (Vγ − In), we have

1

n
trace

(
V −1
γ

)
=

1

n

n∑
k=1

1

1 + γλk

a.s.−→
∫ b+(τ)

b−(τ)

fτ (x)

1 + γx
dx+ δ0 = h1(γ, τ),

1

n
trace

(
V −2
γ

)
=

1

n

n∑
k=1

1

(1 + γλk)2
a.s.−→

∫ b+(τ)

b−(τ)

fτ (x)

(1 + γx)2
dx+ δ0 = h2(γ, τ),

σ2
0γ0
np

trace
(
V −1
γ ZZ⊤) = σ2

0γ0
nγ

(
trace (In)− trace

(
V −1
γ

)) a.s.−→ γ0σ
2
0

γ
(1− h1(γ, τ)),

σ2
0γ0
np

trace
(
V −2
γ ZZ⊤) = σ2

0γ0
nγ

(
trace

(
V −1
γ

)
− trace

(
V −2
γ

)) a.s.−→ γ0σ
2
0

γ
(h1(γ, τ)− h2(γ, τ)),

where

δ0 =


0, τ ≤ 1,

1− 1

τ
, τ > 1.

113



Then, there holds
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Since on [b−(τ), b+(τ)], fτ (x) > 0 for both τ ≤ 1 and τ > 1, (1+γx)−1 are strictly decreasing

(γ > 0), we have, by monotone function inequalities [ [23], pages 148-149],(∫ b+(τ)
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dx−

(∫ b+(τ)

b−(τ)

fτ (x)

1 + γx
dx

)2

+

(
1− 1

τ

)(
1− 2

∫ b+(τ)

b−(τ)

fτ (x)

1 + γx
dx−

(
1− 1

τ

))

>

(
1− 1

τ

)(∫ b+(τ)

b−(τ)

fτ (x)

(1 + γx)2
dx− 2

∫ b+(τ)

b−(τ)

fτ (x)

1 + γx
dx+

1

τ

)

=

(
1− 1

τ

)(∫ b+(τ)

b−(τ)

γ2x2

(1 + γx)2
fτ (x)dx

)

> 0.

Also, for both τ > 1 and τ ≤ 1, the denominator h1(γ, τ) is positive obviously. Thus

h2(γ, τ)− h21(γ, τ)
h1(γ, τ)

> 0.

Then it is shown that for both τ ≤ 1 and τ > 1, the limit of ∆∗∗(γ) is cγ = σ2
0

(
γ0
γ
− 1
)
dγ,τ ,

which is > 0,= 0 or < 0 depending on whether γ is < γ0,= γ0 or > γ0.

A.2.11. Proof of Lemma 2.4.1.11. Recall that ∆(γ) = y⊤Bγy and

Bγ =
V −1
γ

n
−

V −2
γ

trace(V −1
γ )

.

Since for l = 1, 2, · · · ,

d

dγ
V −l
γ = −lV −(l+1)

γ

(
1

p
ZZ⊤

)
= − l

γ

(
V −l
γ − V −(l+1)

γ

)
,

and

d

dγ
trace(V −1

γ ) = −1

γ
trace

(
V −1
γ − V −2

γ

)
,
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we can have that

d

dγ
Bγ = −

1

γ

(
V −1
γ − V −2

γ

n
+
−2V −2

γ + 2V −3
γ

trace(V −1
γ )

+
V −2
γ trace

(
V −1
γ − V −2

γ

)(
trace(V −1

γ )
)2

)
.(A.50)

By a similar argument from the proof of Theorem 3.2.4, it can be checked that for every

fixed γ,

∆′(γ) = y⊤ d

dγ
Bγy

converges in probability to ∆′
∞(γ), where ∆′

∞(γ) is some constant only depends on γ and τ ,

i.e. ∆′(γ0) = ∆′
∞(γ0) + oP (1). More specifically, similar to the argument in Section 2.4, we

have that for any l = 1, 2, . . .∣∣∣∣ 1ny⊤V −l
γ y − 1

n
σ2
0 trace

(
V −l
γ Vγ0

)∣∣∣∣ P−→ 0,(A.51)

and

1

n
σ2
0 trace

(
V −l
γ Vγ0

)
=

1

n
σ2
0

γ0
γ
trace

(
V −(l−1)
γ

)
− σ2

0

(
γ0
γ
− 1

)
a.s.−→ σ2

0

γ0
γ
hl−1(γ, τ)− σ2

0

(
γ0
γ
− 1

)
hl(γ, τ).(A.52)

Combining (A.51) and (A.52), we have when γ = γ0

1

n
y⊤V −l

γ0
y

P−→ σ2
0hl−1(γ0, τ).(A.53)

Therefore, by (A.50) and (A.53), as n→∞,

y⊤ d

dγ
Bγ0y

P−→ σ2
0

γ0

h21(γ0, τ)− h2(γ0, τ)
h1(γ0, τ)

,

which means

∆′
∞(γ0) =

σ2
0

γ0

h21(γ0, τ)− h2(γ0, τ)
h1(γ0, τ)

.(A.54)
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By the Taylor series expansion, we have

∆(γ̂) = ∆(γ0) + ∆′(γ0) (γ̂ − γ0) +
1

2
(γ̂ − γ0)2∆′′(γδ)

where γδ is a number between γ0 and γ̂. Since ∆(γ̂) = 0, we can rewrite this as

√
n (γ̂ − γ0) = −

√
n∆(γ0)

∆′(γ0) +
1
2
(γ̂ − γ0)∆′′(γδ)

.(A.55)

Since we have already shown that ∆′(γ0) = ∆′
∞(γ0) + oP (1) and γ̂ − γ0 = oP (1), once we

establish that

∆′′(γδ) = OP (1),(A.56)

it follows that

∆′(γ0) +
1

2
(γ̂ − γ0)2∆′′(γδ) = ∆′

∞(γ0) + oP (1).(A.57)

Since γ̂ − γ0 = oP (1), we can have γδ − γ0 = oP (1), then by (A.51) and (A.52)

1

n
y⊤V −l

γδ
y

P−→ σ2
0

γ0
γδ
hl−1(γδ, τ).(A.58)

Then by (A.58) and some algebra, we can have

∆′′(γδ) = y⊤ d2

dγ2
Bγδy

P−→ 2σ2
0

γ0
γ3δ

(
−2h1(γδ) + h2(γδ) + 2

h2(γδ)− h3(γδ)
h1(γδ)

+
h22(γδ)

h21(γδ)

)
.(A.59)

with hl(γδ) = hl(γδ, τ). Thus ∆′′(γ̂δ) = OP (1), (A.57) is proved. Then by (A.55) we can

have

√
n (γ̂ − γ0) = −

√
n∆(γ0)

∆′
∞(γ0)

+ oP (1),(A.60)

where ∆′
∞(γ0) is defined in (A.54).

117



A.2.12. Proof of Lemma 2.4.1.13. Recall that

(Bγ)ii =
1

n
(V −1

γ )ii −
1
n
(V −2

γ )ii
1
n
trace(V −1

γ )
,

and for l = 1, 2,

(V −l
γ )ii = 1− γ

p

l∑
k=1

z̃⊤
i Ṽ

−k
γ z̃i.

Then

n∑
i=1

(ε2i − σ2
0)

(
(Bγ)ii −

1

n
trace (Bγ)

)

= −γ
n∑
i=1

ε2i − σ2
0

n

1

p

(
z̃⊤
i Ṽ

−1
γ z̃i − trace

(
Ṽ −1
γ

1

n
Z⊤Z

))

+
γ

1
n
trace(V −1

γ )

2∑
l=1

n∑
i=1

ε2i − σ2
0

n

1

p

(
z̃⊤
i Ṽ

−l
γ z̃i − trace

(
Ṽ −l
γ

1

n
Z⊤Z

))
.(A.61)

Since by Lemma 2.4.0.1

n∑
i=1

(
ε2i − σ2

0

n

)2

≤ 1

n
max
i∈[n]

ε4i = oP (1),

similar to (2.63), we can have for l = 1, 2

n∑
i=1

ε2i − σ2
0

n

1

p

(
z̃⊤
i Ṽ

−1
γ z̃i − trace

(
Ṽ −1
γ

1

n
Z⊤Z

))
= oP

(
1√
n

)
,

which implies (2.65) by (A.61).
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APPENDIX B

Supporting Proofs of Chapter 3

In the beginning of this appendix, we list a useful preliminary result from [7].

Lemma B.0.0.1 (Proposition S1. in [7]). Suppose that X is an n× p matrix with iid entris

xij ∼ N (0, 1), then W = X⊤X is a Wishart(n, Ip) random matrix. Let β ∈ Rp, then we

have

E
[
β⊤Wβ

]
= n∥β∥2

E
[
tr(W )β⊤Wβ

]
= (pn2 + 2n)∥β∥2

E
[
β⊤W 2β

]
= (pn+ n2 + 1)∥β∥2

E
[
β⊤W 3β

]
= (p2n+ 3pn2 + 2pn+ n3 + 3n2 + 4n)∥β∥2

B.1. Proof of Lemma 3.4.0.1

Let Sk denote the symmetric group on k elements. Then each permutation π ∈ Sk can be

uniquely expressed as a product of disjoint cycles π = C1 · · ·Cm(π), where Cj = (c1j · · · ckjj),

k1 + · · ·+ km(π) = k, and all of the cij ∈ {1, . . . , k} are distinct.

Let H1, . . . , Hk be d× d symmetric matrices and define the polynomial

(B.1) rπ(Σ)(H1, . . . , Hk) =

m(π)∏
j=1

tr

 kj∏
i=1

ΣHcij

 .

For a Wishart(n,Σ) random matrix W = X⊤X, Theorem 1 in [27] and Proposition 1

in [14] give the following formula:
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(B.2) E {tr(WH1) · · · tr(WHk)} =
∑
π∈Sk

2k−m(π)nm(π)rπ(Σ)(H1, . . . , Hk).

in oue case Σ = Ip, and we can define corresponding

rπ(H1, . . . , Hk) =

m(π)∏
j=1

tr

 kj∏
i=1

Hcij

(B.3)

Using this formula, we can have

E
[
α⊤Wαβ⊤Wβ

]
= E

[
tr
(
Wαα⊤) · tr (Wββ⊤)]

= 2n tr
(
αα⊤ββ⊤)+ n2 tr

(
αα⊤) tr (ββ⊤)

= 2n(α⊤βj)
2 + n2∥α∥2∥β∥2.

Now let u1, · · · ,up ∈ Rp be an orthonormal basis of Rp.Then define the p × p symmetric

matrices

Hαi =
1

2

(
αu⊤

i + uiα
⊤) , Hβi =

1

2

(
βu⊤

i + uiβ
⊤) ,

and Hα0 = αα⊤. Since β⊤W 2β =
∑p

i=1(β
⊤Wui)

2, then

E
[
α⊤Wαβ⊤W 2β

]
= E

[
tr (WHα0)

p∑
i=1

tr2 (WHβi)

]

=

p∑
i=1

E [tr (WHα0) tr (WHβi) tr (WHβi)] ,
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where by (B.3)

E [tr (WHα0) tr (WHβi) tr (WHβi)]

=
∑
π∈S3

23−m(π)nm(π)rπ(Hα0,Hβi,Hβi)

= 8nr(123) + 4n2r(12)(3) + 2n2r(1)(23) + n3r(1)(2)(3)

= 8n tr (Hα0HβiHβi) + 4n2 tr (Hα0Hβi) tr (Hβi) + 2n2 tr (Hα0) tr (HβiHβi)

+ n3 tr (Hα0) tr
2 (Hβi) .

Then by the definition of Hα0 and Hβi, we can have

p∑
i=1

8n tr (Hα0HβiHβi) = 2n(p+ 1)(α⊤β)2 + 4n∥α∥2∥β∥2

p∑
i=1

4n2 tr (Hα0Hβi) tr (Hβi) = 4n2(α⊤β)2

p∑
i=1

2n2 tr (Hα0) tr (HβiHβi) = n2(1 + p)∥α∥2∥β∥2

p∑
i=1

2n2n3 tr (Hα0) tr
2 (Hβi) = n3∥α∥2∥β∥2.

From all the equalities above, it follows that

E
[
α⊤Wαβ⊤W 2β

]
= (2n+ 2np+ 4n2)(α⊤β)2 + (4n+ n2 + n2p+ n3)∥α∥2∥β∥2.

Similarly,

E
[
α⊤W 2αβ⊤W 2β

]
=

p∑
i=1

p∑
j=1

E [tr (WHαi) tr (WHαi) tr (WHβj) tr (WHβj)] ,
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where by (B.3)

E [tr (WHαi) tr (WHαi) tr (WHβj) tr (WHβj)]

= 32nr(1234) + 16nr(1324) + 32n2r(1)(234) + 8n2r(13)(24) + 4n2r(12)(34) + 4n3r(12)(3)(4)

+ 8n3r(13)(2)(4) + n4r(1)(2)(3)(4),

and

r(1234) = tr
(
H2

αiH
2
βj

)
r(1324) = tr (HαiHβjHαiHβj)

r(1)(234) = tr (Hαi) tr (HαiHβjHβj)

r(13)(24) = tr2 (HαiHβj)

r(12)(34) = tr
(
H2

αi

)
tr
(
H2

βj

)
r(12)(3)(4) = tr

(
H2

αi

)
tr2 (Hβj)

r(13)(2)(4) = tr (HαiHβj) tr (Hαi) tr (Hβj)

r(1)(2)(3)(4) = tr2 (Hαi) tr
2 (Hβj) .

122



Then by the definition of Hα0 and Hβi, we can have

p∑
i=1

tr
(
H2

αiH
2
βj

)
=

1

16

(
(4 + 3p+ p2)(α⊤β)2 + (4 + 4p)∥α∥2∥β∥2

)
p∑
i=1

tr
(
H2

αiH
2
βj

)
=

1

8

(
(6 + p)(α⊤β)2 + ∥α∥2∥β∥2

)
p∑
i=1

tr (Hαi) tr (HαiHβjHβj) =
1

4

(
p(α⊤β)2 + 3∥α∥2∥β∥2

)
p∑
i=1

tr2 (HαiHβj) =
1

4

(
(p+ 2)(α⊤β)2 + ∥α∥2∥β∥2

)
p∑
i=1

tr
(
H2

αi

)
tr
(
H2

βj

)
=

1

4
(1 + 2p+ p2)∥α∥2∥β∥2

p∑
i=1

tr
(
H2

αi

)
tr2 (Hβj) =

1

2
(1 + p)∥α∥2∥β∥2

p∑
i=1

tr (HαiHβj) tr (Hαi) tr (Hβj) = (α⊤β)2

p∑
i=1

tr2 (Hαi) tr
2 (Hβj) = ∥α∥2∥β∥2

Therefore,

E
[
α⊤W 2αβ⊤W 2β

]
= (2np2 + 10n2p+ 8n3 + 8np+ 4n2 + 20n)(α⊤β)2

+ (n2p2 + n4 + 2n3p+ 2n2p+ 2n3 + 27n2 + 8np+ 10n)∥α∥2∥β∥2.

B.2. Proof of Lemma 3.4.0.2

Recall that

Y ⊤Y = E⊤E +B⊤X⊤XB +E⊤XB +B⊤X⊤E

and

Y ⊤XX⊤Y = E⊤XX⊤E +B⊤ (X⊤X
)2

B +E⊤XX⊤XB +B⊤X⊤XX⊤E.
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Then,

E
[
1

n
tr(Y ⊤Y )

]
= ∥B∥2F + tr(Σe),

and E
[
1

n2
tr(Y ⊤XX⊤Y )

]
=
p+ n+ 1

n
∥B∥2F +

p

n
tr(Σe).

Also, we can have

tr(Y ⊤Y ) =

q∑
i=1

β⊤
i X

⊤Xβi + 2

q∑
i=1

β⊤
i X

⊤ẽi +

q∑
i=1

ẽ⊤
i ẽi,

tr(Y ⊤XX⊤Y ) =

q∑
i=1

β⊤
i X

⊤XX⊤Xβi + 2

q∑
i=1

β⊤
i X

⊤XX⊤ẽi +

q∑
i=1

ẽ⊤
i XX⊤ẽi.

B.2.1. Proof of (3.19). We have

tr2(Y ⊤Y )

=

(∑
i

β⊤
i X

⊤Xβi

)(∑
j

β⊤
j X

⊤Xβj

)
+ 2

(∑
i

β⊤
i X

⊤Xβi

)(∑
j

ẽ⊤
j ẽj

)

+ 4

(∑
i

β⊤
i X

⊤Xβi

)(∑
j

β⊤
j X

⊤ẽj

)
+ 4

(∑
i

β⊤
i X

⊤ẽi

)(∑
j

ẽ⊤
j ẽj

)

+ 4

(∑
i

β⊤
i X

⊤ẽi

)(∑
j

β⊤
j X

⊤ẽj

)
+

(∑
i

ẽ⊤
i ẽi

)(∑
j

ẽ⊤
j ẽj

)
,

and

E
[
tr2(Y ⊤Y )

]
= E

[∑
i,j

β⊤
i X

⊤Xβi · β⊤
j X

⊤Xβj

]
+ 2E

[∑
i

β⊤
i X

⊤Xβi

]
E

[∑
j

ẽ⊤
j ẽj

]

+ 4E

[∑
i

(β⊤
i X

⊤ẽi)
2

]
+ E

(∑
i

ẽ⊤
i ẽi

)2
 .
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Since vec(E) ∼ N (0,Σe ⊗ In),

E

(∑
i

ẽ⊤
i ẽi

)2


= E
[(
vec⊤(E)vec(E)

)2]
= Var

(
vec⊤(E)vec(E)

)
+ E2

[
vec⊤(E)vec(E)

]
= 2n tr(Σ2

e) + n2 tr2(Σe).

Let W = X⊤X, since E
[
β⊤Wβ

]
= n∥β∥2 by Lemma B.0.0.1,

E

[∑
i

β⊤
i X

⊤Xβi

]
E

[∑
j

ẽ⊤
j ẽj

]

=

q∑
i=1

E
[
β⊤
i X

⊤Xβi
]
E
[
vec⊤(E)vec(E)

]
= n

q∑
i=1

∥βi∥2n tr(Σe) = n2∥B∥2F tr(Σe).

Then

E

[∑
i

(β⊤
i X

⊤ẽi)
2

]
= E

[
E

[∑
i

(β⊤
i X

⊤ẽi)
2|X

]]
,
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where

E

[∑
i

(β⊤
i X

⊤ẽi)
2 |X

]

= E

[∑
i

ẽ⊤
i Xβiβ

⊤
i X

⊤ẽi |X

]

= E

vec(E)⊤


Xβ1β

⊤
1 X

⊤ · · · 0

...
. . .

...

0 · · · Xβqβ
⊤
q X

⊤

 vec(E)



= tr



Xβ1β

⊤
1 X

⊤ · · · 0

...
. . .

...

0 · · · Xβqβ
⊤
q X

⊤

 · (Σe ⊗ In)


=

q∑
i=1

σ2
ii tr

(
Xβiβ

⊤
i X

⊤) = q∑
i=1

σ2
iiβ

⊤
i X

⊤Xβi.

It follows that

E

[∑
i

(β⊤
i X

⊤ẽi)
2

]
=

q∑
i=1

σ2
iiE
[
β⊤
i X

⊤Xβi
]
= n

q∑
i=1

σ2
ii∥βi∥2.

By Lemma 3.4.0.1, we can have

E
[
β⊤
i X

⊤Xβi · β⊤
j X

⊤Xβj
]
= 2n(β⊤

i βj)
2 + n2∥βi∥2∥βj∥2.

Therefore,

E

[∑
i,j

β⊤
i X

⊤Xβi · β⊤
j X

⊤Xβj

]
=
∑
i,j

(
2n(β⊤

i βj)
2 + n2∥βi∥2∥βj∥2

)
= n2∥B∥4F + 2n∥B⊤B∥2F .

126



From all the equalities above, we can have

E
[
tr2(Y ⊤Y )

]
=n2∥B∥4F + 2n∥B⊤B∥2F + 2n2∥B∥2F tr(Σe) + 4n

q∑
i=1

σ2
ii∥βi∥2

+ 2n tr(Σ2
e) + n2 tr2(Σe).

Therefore,

Var

(
1

n
tr(Y ⊤Y )

)
=

1

n2
E
[
tr2(Y ⊤Y )

]
− E2

[
1

n
tr(Y ⊤Y )

]
= ∥B∥4F +

2

n
∥B⊤B∥2F + 2∥B∥2F tr(Σe) +

4

n

q∑
i=1

σ2
ii∥βi∥2 + tr2(Σe) +

2

n
tr(Σ2

e)

− (∥B∥2F + tr(Σe))
2

=
2

n
∥B⊤B∥2F +

4

n

q∑
i=1

σ2
ii∥βi∥2 +

2

n
tr(Σ2

e).

B.2.2. Proof of (3.20). Now let’s focus on

Cov

(
1

n
tr(Y ⊤Y ),

1

n2
tr(Y ⊤XX⊤Y )

)
=

1

n3
E
[
tr(Y ⊤Y ) tr(Y ⊤XX⊤Y )

]
− E

[
1

n
tr(Y ⊤Y )

]
E
[
1

n2
tr(Y ⊤XX⊤Y )

]
.
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Since

tr(Y ⊤Y ) tr(Y ⊤XX⊤Y )

=

(∑
i

β⊤
i X

⊤Xβi

)(∑
j

β⊤
j X

⊤XX⊤Xβj

)

+

(∑
i

β⊤
i X

⊤Xβi

)(∑
j

ẽ⊤
j XX⊤ẽj

)
+

(∑
i

β⊤
i X

⊤XX⊤Xβi

)(∑
j

ẽ⊤
j ẽj

)

+ 2

(∑
i

β⊤
i X

⊤Xβi

)(∑
j

β⊤
j X

⊤XX⊤ẽj

)
+ 2

(∑
i

β⊤
i X

⊤XX⊤Xβi

)(∑
j

β⊤
j X

⊤ẽj

)

+ 2

(∑
i

β⊤
i X

⊤ẽi

)(∑
j

ẽ⊤
j XX⊤ẽj

)
+ 2

(∑
i

β⊤
i X

⊤XX⊤ẽi

)(∑
j

ẽ⊤
j ẽj

)

+ 4

(∑
i

β⊤
i X

⊤ẽi

)(∑
j

β⊤
j X

⊤XX⊤ẽj

)

+

(∑
i

ẽ⊤
i ẽi

)(∑
j

ẽ⊤
j XX⊤ẽj

)
,

we can have

E
[
tr(Y ⊤Y ) tr(Y ⊤XX⊤Y )

]
= E

[∑
i,j

β⊤
i X

⊤Xβiβ
⊤
j X

⊤XX⊤Xβj

]
+ E

[∑
i,j

ẽ⊤
i ẽiẽ

⊤
j XX⊤ẽj

]

+ E

[∑
i,j

β⊤
i X

⊤Xβiẽ
⊤
j XX⊤ẽj

]
+ E

[∑
i

β⊤
i X

⊤XX⊤Xβi

]
E

[∑
j

ẽ⊤
j ẽj

]

+ 4E

[∑
i

β⊤
i X

⊤ẽiβ
⊤
i X

⊤XX⊤ẽi

]
.

Since

E[x⊤Axx⊤Bx] = 2 tr(AΣBΣ) + 4µ⊤AΣBµ+ (tr(AΣ) + µ⊤Aµ)(tr(BΣ) + µ⊤Bµ),
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and vec(E) ∼ N (0,Σe ⊗ In), then we can have

E

[∑
i,j

ẽ⊤
i ẽiẽ

⊤
j XX⊤ẽj|X

]

= E
[
vec⊤(E) vec(E) vec⊤(E)(Iq ⊗XX⊤) vec(E)|X

]
= 2 tr

(
(Σe ⊗ In)(Iq ⊗XX⊤)(Σe ⊗ In)

)
+ tr (Σe ⊗ In) tr

(
(Iq ⊗XX⊤)(Σe ⊗ In)

)
= 2 tr

(
Σ2
e ⊗XX⊤)+ n tr (Σe) tr

(
Σe ⊗XX⊤)

= 2 tr
(
Σ2
e

)
tr
(
XX⊤)+ n tr2 (Σe) tr

(
XX⊤) .

Therefore,

E

[∑
i,j

ẽ⊤
i ẽiẽ

⊤
j XX⊤ẽj

]
= E

[
2 tr

(
Σ2
e

)
tr
(
XX⊤)+ n tr2 (Σe) tr

(
XX⊤)]

= 2np tr
(
Σ2
e

)
+ pn2 tr2 (Σe) .

Then

E

[∑
i,j

β⊤
i X

⊤Xβiẽ
⊤
j XX⊤ẽj|X

]

=
∑
i

β⊤
i X

⊤XβiE

[∑
j

ẽ⊤
j XX⊤ẽj|X

]

=
∑
i

β⊤
i X

⊤XβiE
[
vec⊤(E)(Iq ⊗XX⊤) vec(E)|X

]
=
∑
i

β⊤
i X

⊤Xβi tr
(
XX⊤) tr (Σe) .
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By Lemma B.0.0.1 we have E
[
tr(W )β⊤Wβ

]
= (pn2 + 2n)∥β∥2, then

E

[∑
i,j

β⊤
i X

⊤Xβiẽ
⊤
j XX⊤ẽj

]

= E

[∑
i

β⊤
i X

⊤Xβi tr
(
XX⊤)] tr (Σe)

= (pn2 + 2n) tr (Σe)
∑
i

∥β∥i

= (pn2 + 2n) tr (Σe) ∥B∥2F

By Lemma B.0.0.1 E
[
β⊤
i W

2βi
]
= (pn+ n2 + n)∥βi∥2, then

E

[∑
i

β⊤
i X

⊤XX⊤Xβi

]
E

[∑
j

ẽ⊤
j ẽj

]
= n2(p+ n+ 1)∥B∥2F tr (Σe) .

Since

E

[∑
i

β⊤
i X

⊤ẽiβ
⊤
i X

⊤XX⊤ ẽi |X

]

= E

[∑
i

ẽ⊤
i Xβiβ

⊤
i X

⊤XX⊤ẽi |X

]

= E

vec(E)⊤


Xβ1β

⊤
1 X

⊤XX⊤ · · · 0

...
. . .

...

0 · · · Xβqβ
⊤
q XX⊤X⊤

 vec(E)



= tr



Xβ1β

⊤
1 X

⊤XX⊤ · · · 0

...
. . .

...

0 · · · Xβqβ
⊤
q X

⊤XX⊤

 · (Σe ⊗ In)


=

q∑
i=1

σ2
ii tr

(
Xβiβ

⊤
i X

⊤XX⊤) = q∑
i=1

σ2
iiβ

⊤
i (X

⊤X)2βi
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by E
[
β⊤
i W

2βi
]
= (pn+ n2 + n)∥βi∥2, it follows that

E

[∑
i

β⊤
i X

⊤ẽiβ
⊤
i X

⊤XX⊤ ẽi

]
= (pn+ n2 + n)

q∑
i=1

σ2
ii∥βi∥2.

By Proposition (3.4.0.1), we can have

E

[∑
i,j

β⊤
i X

⊤Xβiβ
⊤
j X

⊤XX⊤Xβj

]

= (2n+ 2np+ 4n2)∥B⊤B∥2F + (4n+ n2 + n2p+ n3)∥B∥4F .

From all the equalities above,

Cov

(
1

n
tr(Y ⊤Y ),

1

n2
tr(Y ⊤XX⊤Y )

)
=

1

n3
E
[
tr(Y ⊤Y ) tr(Y ⊤XX⊤Y )

]
− E

[
1

n
tr(Y ⊤Y )

]
E
[
1

n2
tr(Y ⊤XX⊤Y )

]
=

2

n

{(
1

n
+
p

n
+ 2

)
∥B⊤B∥2F +

2

n
∥B∥4F +

p

n
(tr(Σe))

2

+

(
2

n
+ 2 +

2p

n

) p∑
i=1

σ2
ii∥βi∥2 +

1

n
∥B∥2F tr(Σe)

}
.

B.2.3. Proof of (3.21). Finally, we calculate Var
(
tr(Y ⊤XX⊤Y )

)
. Similar to Var

(
tr(Y ⊤Y )

)
,

we can have

E
[
tr2(Y ⊤XX⊤Y )

]
= E

[∑
i,j

β⊤
i (X

⊤X)2βi · β⊤
j (X

⊤X)2βj

]
+ 2E

[∑
i,j

β⊤
i (X

⊤X)2βiẽ
⊤
j XX⊤ẽj

]

+ 4E

[∑
i

(β⊤
i X

⊤XX⊤ẽi)
2

]
+ E

(∑
i

ẽ⊤
i XX⊤ẽi

)2
 .
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Since

E

(∑
i

ẽ⊤
i XX⊤ẽi

)2

|X


= E

[(
vec⊤(E)(Iq ⊗XX⊤)vec(E)

)2]
= Var

(
vec⊤(E)(Iq ⊗XX⊤)vec(E)

)
+ E2

[
vec⊤(E)(Iq ⊗XX⊤)vec(E)

]
= 2 tr

(
Σ2
e ⊗ (XX⊤)2

)
+ tr2

(
Σe ⊗XX⊤)

= 2 tr
(
Σ2
e

)
tr
(
(XX⊤)2

)
+ tr2 (Σe) tr

2
(
XX⊤) ,

by Lemma B.0.0.1, we can have

E

(∑
i

ẽ⊤
i XX⊤ẽi

)2
 = 2p(np+ n2 + n) tr

(
Σ2
e

)
+ (p2n2 + 2pn) tr2 (Σe) .

Then

E

[∑
i,j

β⊤
i (X

⊤X)2βiẽ
⊤
j XX⊤ẽj|X

]
=

q∑
i=1

β⊤
i (X

⊤X)2βiE
[
vec⊤(E)(Iq ⊗XX⊤)vec(E)|X

]
=

q∑
i=1

β⊤
i (X

⊤X)2βi tr(XX⊤) tr(Σe).

By Lemma B.0.0.1,

E

[
q∑
i=1

β⊤
i (X

⊤X)2βi tr(XX⊤) tr(Σe)

]
=
(
p2n2 + pn(n2 + n+ 4) + 4n(n+ 1)

)
tr(Σe)∥B∥2F .

Since

E

[∑
i

(β⊤
i X

⊤XX⊤ẽi)
2

]
= E

[
E

[∑
i

(β⊤
i X

⊤XX⊤ẽi)
2|X

]]
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where

E

[∑
i

(β⊤
i X

⊤XX⊤ẽi)
2 |X

]

= E

[∑
i

ẽ⊤
i XX⊤Xβiβ

⊤
i X

⊤XX⊤ẽi |X

]

= E

vec(E)⊤


XX⊤Xβ1β

⊤
1 X

⊤XX⊤ · · · 0

...
. . .

...

0 · · · XX⊤Xβqβ
⊤
q X

⊤XX⊤

 vec(E)



= tr



XX⊤Xβ1β

⊤
1 X

⊤XX⊤ · · · 0

...
. . .

...

0 · · · XX⊤Xβqβ
⊤
q X

⊤XX⊤

 · (Σe ⊗ In)


=

q∑
i=1

σ2
ii tr

(
XX⊤Xβiβ

⊤
i X

⊤XX⊤) = q∑
i=1

σ2
iiβ

⊤
i (X

⊤X)3βi

by Lemma B.0.0.1,

E

[∑
i

(β⊤
i X

⊤XX⊤ẽi)
2

]

=

q∑
i=1

σ2
iiE
[
β⊤
i (X

⊤X)3βi
]

=

q∑
i=1

σ2
ii(p

2n+ 3pn2 + 2pn+ n3 + 3n2 + 4n)∥βi∥2.

By Lemma 3.4.0.1,

E

[∑
i,j

β⊤
i (X

⊤X)2βi · β⊤
j (X

⊤X)2βj

]

= (2np2 + 10n2p+ 8n3 + 8np+ 4n2 + 20n)∥B⊤B∥2F

+ (n2p2 + n4 + 2n3p+ 2n2p+ 2n3 + 27n2 + 8np+ 10n)∥B∥4F .
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From all the equalities above, we can have

Var

(
1

n2
tr(Y ⊤XX⊤Y )

)
=

1

n4
E
[
tr2(Y ⊤XX⊤Y )

]
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1
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]
=

2

n
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n
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+
p

n
+

p

n2

)
tr(Σ2
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2

n

p
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2

n

(
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2

n
+

5p

n
+
p2

n2
+

4p

n2
+

10

n2

)
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2

n

(
13

n
+

4p

n2
+

5

n2
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∥B∥4F

+
2

n

(
2
p2
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+

6p

n
+
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6

n
+

8
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+

4

n
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4
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