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Abstract

Estimation of signal-to-noise ratios (SNR) and residual variances in high-dimensional lin-
ear models has numerous important applications, including selecting tuning parameters for
predictive models and estimating heritability in genomics. This dissertation investigates the
consistency and asymptotic distribution of two widely used SNR estimators under various
model assumptions.

Chapter 2 presents my work [18], supervised by Professor Xiaodong Li, in which we study
the restricted maximum likelihood (REML) estimator based on the likelihood formulation
of the random effects model. Although the true model assumes an i.i.d. Gaussian priors
for both the regression coefficients and the noise variables, we establish consistency and
asymptotic normality of the REML estimator under model misspecification, where the true
coefficient vector is fixed and noise components may be heterogeneous. In particular, the
resulting asymptotic variance has a tractable form, allowing standard error estimation via a
measure of noise heterogeneity.

Chapter 3 discusses my joint work [28] with Zhentao Li and Professor Xiaodong Li. While the
method-of-moments estimator is commonly used in SNR estimation in single-response set-
tings, we extend this framework to multivariate linear models under both fixed and random
effects formulations. In this study, we establish and compare the asymptotic distributions of
the proposed estimators. Furthermore, we extend our approach to accommodate cases with
residual heteroskedasticity and derive asymptotic inference procedures based on standard
error estimation.

In both Chapter 2 and Chapter 3, we validate our theoretical results through extensive
numerical simulations. Further discussions and directions for future work are provided in

Chapter 4.
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CHAPTER 1

Introduction

1.1. Overview

Estimation and inference for signal-to-noise ratios (SNR) and residual variances in high-
dimensional linear models are fundamental problems in statistics, with wide-ranging ap-
plications. A prominent application is heritability estimation in genome-wide association
studies (GWAS), where the goal is to quantify the proportion of phenotypic variance that
can be attributed to genetic variation [11]. Another important application is regarding how
to select tuning parameters in regularized regression such as Lasso and Ridge regression
([7,8,10,20,37]).

Significant theoretical and methodological developments have been made for SNR estimation
under both fixed effects models [7,8,18,20,35,41] and random effects models [9, 13, 24,

,31,43]. Among the various approaches proposed for SNR estimation and inference, two

of the most widely used are the method-of-moments (MM) estimators [7,13,31,41] and
likelihood-based estimators under random effects models [6,15,29,36,43,45]. In addition
to these, other methods have been developed, including the EigenPrism procedure [20], and

approaches based on sparsity and penalized regression such as the Lasso [3,12,37].

This dissertation consists of two main contributions. First, we investigate the asymptotic
behavior of restricted maximum likelihood (REML) estimators under model misspecifica-
tion. Second, motivated by the fact that most existing work on SNR estimation focuses on
univariate responses, we propose a definition of multivariate SNR and show how to perform

inference for multivariate SNR using method-of-moments estimators under both fixed effects

and random effects models.



1.2. Maximum Likelihood Estimation: Analysis under High-Dimensional

Linear Fixed-effects Model

Asymptotic analysis of REML under linear mixed effects models is a well-established topic
in the statistical literature; see, for example, [16], [21], [32], and [22]. In recent years, a
growing body of work has focused on the behavior of random effects likelihood estimators
under model misspecification—specifically, when the true coefficient vector does not follow
the commonly assumed i.i.d. Gaussian distribution. As early as [21], it was shown that
Gaussian random effects likelihood estimators can be consistent and asymptotically normal
even when the true coefficients are i.i.d. but non-Gaussian.

A particularly notable contribution is [24], which demonstrates that such estimators retain
consistency and asymptotic normality even when the true model is under sparse random
effects. The analysis of REML under model misspecification has also been extended to the
case where the coefficient vector is fixed but arbitrary, provided the design matrix has i.i.d.
Gaussian entries [8]. That line of analysis relies critically on the rotational invariance of the
Gaussian design and utilizes normal approximation tools developed in [9].

In this work, we further investigate the consistency and asymptotic distribution of the
SNR estimator under significant model misspecification. Specifically, we consider high-
dimensional linear models with heteroscedastic and correlated noise, where the true coef-
ficient vector 3 is fixed and deviates substantially from the assumed i.i.d. Gaussian prior.
Our main results show that the asymptotic variance of y/n%y depends only on the aspect
ratio 1/7, the true SNR 7y, and a parameter s that captures both the heterogeneity and
correlation structure of the noise. The resulting expression for the asymptotic variance is
sufficiently tractable to allow estimation of the standard error via consistent estimation of
the noise heterogeneity.

In the final section of this chapter, we outline an approach for extending the REML estimator
to the group-wise setting, motivated by the problem of partitioning heritability as discussed

in [29]. The task of estimating group-specific SNRs is also closely related to group-regularized



ridge regression, as explored in [19]. However, due to technical challenges in extending the
normal approximation results from [4], a complete asymptotic analysis of the group SNR
estimator 4 is left for future work.

The main context of this chapter is adapted from my joint work with Professor Xiaodong Li

and the preprint was posted on ArXiv [18].

1.3. Method of Moments Estimation: Analysis under Multivariate

High-Dimensional Linear Models

The goal of this section is to develop inference procedures for the signal-to-noise ratio (SNR)
under both multivariate fixed effects and random effects models. While SNR estimation
and inference have been extensively studied in the univariate setting, the multivariate case
remains comparatively underexplored. Existing works in the multivariate domain are often
application-driven. For instance, [13] proposed a definition of multivariate heritability based
on a multivariate random effects model, developed a method-of-moments (MM) estimator
for it, and applied their approach to estimate the heritability of brain shape using MRI data.
Our work builds on the framework introduced in [13], but with substantially broader scope.
We not only extend the analysis to fixed effects models—an area that, to our knowledge, has
not been studied in the high-dimensional multivariate SNR estimation—but also consider
general noise structures in the random effects case, where asymptotic analysis is significantly
more challenging. We note that alternative definitions of multivariate SNR have been pro-
posed in the literature (e.g., [47]); however, our formulation for the multivariate fixed effects
model is novel in the literature to our knowledge.

The MM estimator we develop under the fixed effects model can be viewed as a extension
in multivariate case of the estimator in univariate proposed by [7]. For the random effects
model, our approach is most related to that of [13], but their analysis is limited to standard
Gaussian noise. We emphasize that these extensions are far from straightforward. In this

work, we rigorously establish the asymptotic distributions of the proposed SNR estimators
3



and demonstrate how they can be used to perform valid statistical inference in both model
settings.
This chapter is adapted from my joint work with Zhentao Li and Professor Xiaodong Li.

The corresponding preprint was posted on ArXiv [28].



CHAPTER 2

Maximum Likelihood Estimation: Analysis under

High-Dimensional Linear Fixed-effects Model

2.1. Problem Statement and Method

We focus on the following high-dimensional linear model in this chapter:
(2.1) y=12ZpB+e,

where Z is an n X p design matrix with p being allowed to be greater than n, 3 is the vector
of regression coefficients, and y is the response vector. For the noise vector €, we assume it
satisfies € ~ N, (0,X.), where 3. is a positive definite matrix. This implies that we allow
for correlated and heteroscedastic noise in the linear model. In particular, we denote the
diagonal entries of . as of,...,02. Also denote the average noise level as 0§ = = > | 07.

Our goal is to make inference about the signal-to-noise ratio (SNR) parameter

% = [1B1*/o5.

2.1.1. REML Based on Homogeneous and Gaussian Random Effects. In this
chapter, we are interested in the SNR estimator based on the likelihood of the Gaussian
random effects model, in which the coefficient vector is modeled as p~'/2cr, where a is
assumed to consist of i.i.d. N(0,02) variables. In addition, the noise terms are assumed
to be independent and follow the same distribution A(0,02). Comparing the true model
and the postulated model, it is clear that o2 corresponds to o2, ||3]|* corresponds to o2,
and vy = ||B]|?/a? corresponds to v := o2 /0% Based on this postulated homogeneous and
Gaussian random effects model, REML estimation, i.e. maximum likelihood estimation, can

be derived for the variance components 2 and o2 [22]. In fact, under the above Gaussian
5



random effects model, there holds y ~ N, (0, ), where

e« e

2
Q=002 0%) =0T, + 22227 = V.
p
and
(2.2) V,=1,+122z".
p

Then, the log-likelihood function for (o2, o2

2,02) is given as below:

€17

1 1
l(0?,0%) =c— 3 log det (2) — EyTQ_ly,

where ¢ is a constant. By taking the partial derivatives of the log-likelihood with respect to

o2 and o2 to obtain the score functions, we got the following likelihood equations:

Sp2(02,02) = %yTQ_Qy — %trace QH=0

503(02 02) = %yTQ_léZZTQ_ly — %traee (Q‘%ZZT> =0.

E) T«

By the fact that I%Z AR %(VW —I,,), the above set of equations can yield a single equation

about the SNR v = 02 /0%

(2.3) A(y) =y B,y =0.
where

V—l V—2
24 B, =1 — 7 .
(24) K n trace(V, 1)

Let 4 be a solution to (2.3), which is referred to the (misspecified) REML estimator of the
trne SNR g = [|B]2/0?.

2.1.2. Misspecification Analysis of REML. We study the consistency and asymp-

totic distribution of 4 when the Gaussian random-effects model is significantly misspecified.
6



In particular, the actual coefficient vector 3 is a general fixed one, and the noise € is both
heteroskedastic and correlated. Naturally, there is a trade-off between the misspecification
of B and e, and the assumptions placed on the design matrix Z.

Our main results, presented in the next section, show that the consistency and asymptotic
distribution of 4 can be rigorously established as long as the entries of Z are independent,
symmetric, and sub-Gaussian standardized random variables. The skew-free assumption is
imposed primarily for technical reasons, and we will employ numerical simulations indicating
that it may be relaxed. All analyses are conducted under the asymptotically proportional
setting n,p — oo with n/p — 7 > 0, where 1/7 is commonly referred to as the limiting
aspect ratio.

In our main results in Section 2.2, we will show that the asymptotic variance of \/n% depends
only on the aspect ratio 1/7, the true SNR =y, and a parameter s that characterizes both
the heterogeneity and correlation of the noise terms. To estimate this variance and thereby
make inferences about the true SNR 7y, we also need to estimate the average noise level
o2 and the parameter . In fact, using the SNR estimate 4 from the postulated Gaussian

random-effects model, we can then estimate o2 through

. 1 _
(2.5) 6% = EyT‘@ ly.

One intuition of this estimator is the following identity based on the postulated (and mis-

specified) Gaussian and homogeneous random effects model

Ely V. 'y] =E[V, 'yy"] = E[V,'Q] = no?

e

In heteroscedastic case the estimation of x is in general difficult under the case of correlated
noise. However, when the noise is heterogeneous but uncorrelated, there is a natural approach

to estimating k. In this case, k can be simply referred to as the heterogeneity parameter,



since

1 1 &
2.6 = — B % = — E 4
( ) K noé” a—:HF naé — Uz

Under our assumptions on the design matrix, it is easy to get

Elyf] = (Elz4] — 3) 8! +3]18]5 + 6]|8]1307 + 307

j=1

~ 3|8l + 6118307 + 307,

which implies (1/n) > E[y}] ~ 3|83 + 6||3]|302 + 3rogy. By this heuristic, we give the

following estimate for the heterogeneity parameter

(2.7) Ro= g > ui = (G + 23)-
We also show the consistency of 62 and & Section 2.2.

2.2. Main Results

We first introduce our result on the consistency of 4 and 62

THEOREM 2.2.1. Consider the linear model (2.1) with the asymptotic setting n,p — 0o such

that \/n

matrix Z are independent, symmetric, sub-Gaussian, and unit-variance random variables,

% — 7| = 0, where 7 > 0 is a fized constant. Assume that the entries of the design

and their mazimum sub-Gaussian norm is uniformly upper bounded by some numerical con-
stant Cy. Let € be the vector of correlated and heteroscedastic Gaussian noise: € ~ N,(0,X.)

with variances (diagonal entries) o3, ... 02, so that

(1) max;ep, 07 is uniformly bounded by Co;

(2) 2370 07 = 05, where 0§ is set to be fiwed for all n;

(3) [|1Zellr = o(n).
Let B be the coefficient vector with fired two-norm ||B||* > 0 for all n, which implies the
SNR ~o = ||B]|?/0? is fized for all n.



Under the above conditions, there is a sequence of estimates 4, as solutions to (2.3) satisfying
. P : : . . ,
Y — Yo as n — 00. Moreover, the corresponding sequence of noise variance estimate in

(2.5) satisfies 6> N o8,

Before we state our next result regarding the asymptotic distribution of %4, we need to
introduce the following probability density function of the Marcenko-Pastur law with the

parameter 7 > 0:

fr(z) = ! V(b (T) — @) (2 = b (7)) Lo (r)<aby ()}

2T

where by (7) = (14 /7). Note that the Marcenko-Pastur law also has a point mass 1 — 77!
at the origin when 7 > 1. With f,(x), and any 7, > 0, we define the following quantities
based on the Marc¢enko-Pastur law for any positive integer k:

by () 1 1
(2.8) hi(7,7) :/b(T) mff(l") + (1 - ;) Lirs1y
With these quantities determined as integrals based on the Marcenko-Pastur law, we are
able to obtain the following result on the asymptotic distribution of 4 by imposing additional

assumptions on the infinity norm of 3, and both the Frobenius and operator norms of X.:

THEOREM 2.2.2. In addition to the assumptions in Theorem 2.2.1, we further assume
18llee = o(p~*). For the noise €, we make the following additional assumptions on its

covariance matrix:

(1) [|X.]| is uniformly bounded;

(2) k = n%gHEEH% is fized for all n.
Then, with hy(y0,7) as in (2.8), as n — oo,

(2.9) Vv (% = 70) :>./\/'<0,2’y§ <h2(’)/0,7')ih%(”}/0,7') + k=T - 1)) .

Note that the asymptotic variance of 4 given in Theorem 2.2.2 relies solely on the limiting

aspect ratio 1/7, true SNR 79, and the parameter £ that is determined by the correlation
9



and heterogeneity of the noise €. vy can be consistently estimated by 4 and the following

result gurantees the consistency of #:

PROPOSITION 2.2.1. Under the assumptions in Theorem 2.2.2, if € consists of independent
heteroscedastic variables, the estimate of the heterogeneity parameter given in (2.7) satisfies
i k.

REMARK 2.2.1. (Asymptotic variance) It is worth emphasizing that when the noise variables
are independent and homogeneous, which implies that k = 1, the asymptotic distribution
given in (2.9) is consistent with the result derived from i.i.d. Gaussian design in [8]. In
fact, an explicit formula can be derived for the asymptotic variance based essentially on the
Stieltjes transform of the Marcenko-Pastur distribution, see e.q. Lemma 3.11 in [1]. Define

) — /bb+(T) 1 Fo(x)da + % (1 - %) 1oy = (T—2=D+/(T—2-1)2+ 4zt

() Ttz 221

Then we can obtain

_ 1 (1):(77_1_7)"'\/(77—1—’)/)2—1-477
2Ty ’

and

2 T

1 1 (TW—T+’7+1)(—7—1+\/(T’7—1—7)2+4T’y>
ho(y,7) = ——m! <—) = — )
ol v 29272/ (17 — 1 — )% + 47y
We illustrate the asymptotic variance in Figure 2.1 with kK = 1 and n = 100. From this
figure, fixing the aspect ratio 1/, the variance of 4 increases in the true SNR ~yo; while

fixing o, the variance of 4 first decreases and then increases in the aspect ratio 1/7.

2.3. Simulations

In this section, we conduct numerical experiments. Throughout our numerical experiments,
we use the Minorization-Maximization (MM) algorithm given in [46] to maximize (2.1.1)

and hence obtain the random effects likelihood estimate 4 and 62.
10



variance of

FIGURE 2.1. Asymptotic variance of 4 with x = 1 and n = 100.

2.3.1. Consistency of 4, 6% and &. In this subsection, we consider the linear model
with heterogeneous but uncorrelated noise, and then demonstrate the consistency of REML
4 and 62, as well as & defined in (2.7). Here we only consider uncorrelated noise since we need
to show the behavior of £. For the case of correlated noise, we will illustrate the sampling
distribution of 4 in the next subsection.

We assume that the coefficient vector 3 is generated in the form of
(2.10) Boc (1,279,379, p9),

where g > 0 determines the rate of decay for the coefficients, and the norm of 3 is determined
by o2 and the SNR 7 by [|B|3 = yo0?.
For heteroscedastic independent noise, we generate o? by the geometric sequence by first

generating (07,03 -+ ,02,) in the form of

(2.11) (03,05 -+ ,0%) (1,q, @, - ,q") ,

11
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g 1/7 True SNR
(g) # of Simulation (i) (h) & of Simulation (ii) (i) R of Simulation (iii)

FIGURE 2.2. Estimates of SNR and noise level for simulations (i)(ii)(iii) under
the t5 design. Each simulation is conducted over 100 independent Monte Carlo
samples. The true SNR ~y,02 and k¢ are marked in dash line. The black
diamonds represent average estimates by 4,62 and &

where ¢ > 0 and >} | 0% = noj. Next, (03,05 -+ ,02,) is shuffled randomly to generate
(02,02--- ,02). Throughout this section, we chose ¢ = 0.95 and o2 = 0.5, which also gives

rk = 30.7692 by fixing n = 1200.
We consider the following settings on the key parameters to investigate and illustrate how

the performance of 4 relies on the magnitude decay in 3, the aspect ratio p/n, and the SNR

Yo-
12



(i) (Varying magnitude decay in B): Fix n = 1200, p = 2000, = 2. Let g be varied
from 0 to 2.
(ii) (Varying aspect ratio): Fix n = 1200, ¢ = 0.5, 79 = 2. Let the aspect ratio
1/7 = p/n be varied from 2/3 to 3.
(iii) (Varying SNR): Fix n = 1200, p = 2000, g = 0.5. Let v be varied from 0.5 to 5.

Each simulation consists of 100 independent Monte Carlo samples. The performances of 4,
62 and & under simulation settings (i)(ii)(iii) are shown in Figure 2.2 for design matrices with
i.i.d. t5 entries. All of these estimators appear to be consistent under various circumstances.
In particular, we can see that the variance of estimators 4 keeps more or less the same over
different magnitude decays in 3, while increases with the aspect ratio 1/7 € [2/3, 3], and also
increases with the true SNR vy € [1/2,5]. These observations are in line with the asymptotic

variance presented in (2.9), which has also been illustrated in Figure 2.1.

2.3.2. Distribution of 4. Now let’s study the sampling distribution of 4 empirically
for heterogeneous and correlated noise. Here we consider the setting n = 1200, p = 2000,
o2 = 0.5, and 7y = 2. For the coefficient vector, assume 3y generated from (2.10) with
g = 0.5. For the heterogeneous and correlated noise, in addition to the variances generated
according to (2.11) with ¢ = 0.95, we impose the pairwise covariances as ¥;; = pl*™ - 0,0
with p = 0.1. The resulting x defined in Theorem 2.2.2 is k = ||X||%/(nog) = 30.8188.
We conduct Monte Carlo simulations with 1000 independent samples under the following

settings of design matrices:

(i) The entries of Z are i.i.d. Rademacher random variables.
(ii) The entries of Z are i.i.d. standardized t5 random variables.
(iii) The standardized genotype model proposed in [24]: First, let the allele frequencies
for SNPs be generated from f; ~ Unif[0.05,0.5] for i = 1,...,p. Next, generate the
entries of the genotype matrix U by following a discrete distribution over {0, 1,2}

with assigned probabilities (1 — f;)?, 2f;(1 — f;), and f, respectively. Finally,
13
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FIGURE 2.3. Probability density of the estimated SNR 4 and the normal Q-Q
plot of corresponding 7 sets. In the probability density graph, the purple curve
shows the pdf of normal distribution with sample mean and sample variance
and the red curve shows the pdf of our theoretical normal distribution when
the features are independent.
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FIGURE 2.4. Plug-in 95% CI for 200 independent datasets for REML, ad-
justed REML (with heterogeneous) and eigenPrism when x = 30.77. The

estimates h are marked as circles and the true SNRs hg are marked by the red
line. The purple bars indicate the cases when the 95% CI does not cover hy.

standardize each column of U to have zero mean and unit variance to obtain the

design matrix Z.
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justed REML (with heterogeneous) and eigenPrism when x = 2.54. The es-

timates h are marked as circles and the true SNRs hy are marked by the red
line. The purple bars indicate the cases when the 95% CI does not cover hy.

2.3.3. Compare REML, adjusted REML and eigenPrism ~,. The heritability h

1
h=——,
v+1
16



then we define the estimator of heritability to be

1

h= .
y+1

To compare REML(without considering k), adjusted REML and eigenPrism, we consider
the signal setting (2.10), and set the parameters n = 1200, p = 2000, vy = 2, o4 = 0.5 and
g ~ Unif[0, 2]. The entries of design matrix Z are i.i.d standard normal. We just change the
noise variance setting (2.11) with parameters ¢ = 0.95 in case 1 and ¢ = 0.995 in case 2, the

correspondingly are ko = 30.77 and ko = 2.54. Results are shown in Figure 2.4 and 2.5.

2.4. Proof of Main Results

In this section, we give proof for Theorems in Section 2.2. In Section 2.4.1, we will present
some useful supporting lemmas; in Section 2.4.2, we present a new representation based on
rademacher sequences which will be useful in our proof; in Section 2.4.3, we present a proof
for our main result Theorem 3.2.4; in Section 2.4.4, we present a proof for our main result
Theorem 2.2.2; in Section 2.4.5 we present a proof for 2.2.1; we leave proof of lemmas used

in former subsections to the appendix.

2.4.1. Supporting Lemmas.
LEMMA 2.4.0.1. Under the assumptions of Theorem 3.2.4, we have

(2.12) maxe? = Op (logn)

i€[n]

and

n

1
~Y el
n

i=1

(2.13) = op(1).

Moreover, under the assumptions of Theorem 2.2.2, there holds

(2.14) % ((é 63) — naé) = N(0,2k07).

17



LEMMA 2.4.0.2 (Theorem 9.10 of [1]). Under the assumptions of Theorem 3.2.4, for V,

defined in (2.2) and any integer k > 0, it is obvious that |V, || < 1. Moreover, we have

— Op (%)

! trace (V:{_k) — hy(vy,T)

n

where hy(7y,T) is defined in (2.8).

A key technique in proving Theorem 3.2.4 is the “leave-k-out” argument developed in [24].

Here we list some useful notations.
DEFINITION 2.4.1. Denote Z = [z1,...,2,| as a concatenation of column vectors. For any
subset C' C {1,...,p}, denote V,, _c =V, — %Zkec zrz . For example, for any i # j,
. g T T
Viciy = Vi =V = o (zizi +z%) ).

Furthermore, for 1 <1,7 <p, define
2.15 ON— TV—Z )
(2.15) Nijc = %i Vo _—cZj-
Finally, in the case C = (), simply denote

O ._ Tyl
(2.16) Ny =2V, %

The proofs of the following five results, Lemma 2.4.1.1 to Lemma 2.4.1.5, essentially follow the
arguments or ideas in [24], though there might be some small differences. For completeness,
we provide self-contained proofs for these results in the appendix except for Lemma 2.4.1.4,

which has been explicitly given in the supplement of [24] (See Proposition S.1 therein).

LEMMA 2.4.1.1. Under the conditions of Theorem 3.2./, we have

(2.17) max ‘trace (V_l) — trace (Vv_ik)} <2t—1, 1=1,23,4,

ke|p] 7

18



and for 77,5},2,6 defined in (2.15),

1 0] 1 -1
max |— — —trace (V
ke[p] nnk’“”“ n g ( )

Y

1
— 0y (,/ Og”), 1=1,2.
n

LEMMA 2.4.1.2. Under the conditions of Theorem 3.2.4, for fixzed v > 0, we have

1 1 trace(V, 1) flogn
218 — val _ Y — O
(2.18) 1hep [0 kT BT T Ltrace(V,!) g n )’
1 1 t V2 1
(2.19) max _zl;er2Zk L race(V,?) 1-on < Ogn) |
ke " (1 + %trace(V;U) n
L o1y 1 -1 T logn
(2.20) max (—z, V. 'z, — —trace (V,'ZZ")| = Op S 1=1,2,
1<k<p |m np n

(2.21) max

1<k<p

l
(z,;erzk)l — (% trace (BVZZT)>

_Op (\/log”> L l=1.2,
n

] 1 trace(V, 1) 1
( ) np race ( ~ ) nl T %trace(V;l) P (n) 9
and
] 1 trace(V. 2 1
(223) 1 trace (VY_QZZT) - T ( Yy ) — OP (_> .
n

2
np " (1 + %trace(V;U)

LEMMA 2.4.1.3. Under the conditions of Theorem 3.2.4, for fized v > 0, we have
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1 1
—z,;erflzk — — trace (V:Y’lZZT)

max
1<k<p |n np
1 1 1 1
(2.24) - 5 (—n,(ﬁ?k — —trace(Vv_l)) ' =0Op ( ogn) ,
- n "t n n
(1 + 2 trace(V 1))
and
1 1
max —z,;rVW_2zk — — trace (K{_QZZT)
1<k<p|n np

+

trace(V.?) 2y (1 ¢ 1 _
T (—nék),k — —trace(V] 1))
(1 + %trace(V{U) p

n

1 1 1 _ logn

(b ) o (2).
(1 + %trace(V;U)

LEMMA 2.4.1.4. Under the conditions of Theorem 3.2.4, for fixed v > 0 and |l = 1,2, we

have
1 g 1 s e
- _ = =l < Z
glgéxpE (nnkk’k ntrace(\/,%k)) —n’
and
Lo 1 0 Lo 1 4 c
Joax E (5772“ - trace(V, ";) Ul R trace(V, ") < pox

where C' is a constant independent of n.

LEMMA 2.4.1.5. Under the conditions of Theorem 3.2.4, for fixed v > 0 and l = 1,2, we

have

_ logn
(2.25) ri%}dz,;r% 'z;]* = Op(nlogn) and 1}912;<|z,;rBsz|2 =0Op ( " ) .

20



Further, under the assumptions of Theorem 2.2.2, we have

p(pl— 1) Z”(szvzjf = 01(y,7) + 0p(1)
(2.26) 7 2 .

> Bi8n (= Bz)) — 181181 (v,7) + (1),

i#]

where 01(y,7) > 0 is a constant only depending on v and 7.

The above lemmas rely crucially on the “leave-k-column-out” argument in [24]. Given we
are dealing with heteroscedastic and correlated noises, we also need the following results,

which rely on a similar “leave-k-row-out” argument.

LEMMA 2.4.1.6. For any fixed v > 0, under the assumptions of Theorem 3.2.4, we have

1
:OP< Ogn)7 [=1,2,3,4,
n

(V_l)ii — l trace (V_l)

2.27
(2.27) max | (V] "

1€[n]

which implies

(2.28) max |(

and

(2.29) max

i€[n]

<Bwi—($wwa3w)2

logn
n

LEMMA 2.4.1.7. For any fixed v > 0, under the assumptions of Theorem 3.2.4, we have

(2.30) max |(B,)y] _0P< 10g”>

1<i<j<n n3

and under the assumptions of Theorem 2.2.2
21



nz = 0a(v,7) + op(1)

i#£]

n 2 (B,), = a7, 7)ak + op(L),

i#]

(2.31)

where 0y(y,7) > 0 is a constant only depending on v and T.

LEMMA 2.4.1.8. For any fized v > 0, under the assumptions of Theorem 3.2.4, we have

1
— Op (,/ Ogn), 1=1,2,3,4.
n

2.4.2. New Representation based on Rademacher Sequences. Since the entries

oy L -l
(2.32) lgé?;](%%( (‘/7714)” ntrace (v, ")

of Z are independent and symmetric, we can replace the original design matrix Z with

é = A¢Z A with the diagonal matrices

A =diag(Cr, ..., Cn), Ae =diag(&y, ..., &),

with ¢;’s and §;’s are i.i.d. Rademacher random variables that are also independent of Z,

since Z and Z have the same distribution. We also denote

E=(&,....&)" and ¢(=(G,....G)"

Under this new representation of the design matrix, the linear model (2.1) becomes

We want to emphasize that under this new representation, we still define V, and B, as

before:
—1 —2
Y T Vv Vv
v,.=1,+-ZZ , d B, = — )
K * p o K n trace(V, 1)

However, the representation of the estimating equation (2.3) should be changed. In fact, the

original ZZ'" is replaced with A¢ZZ " A;. Therefore, the original V,, defined in (2.2) should
22



be replaced with

V,=I,+ AZZ A; = A; (In + zZZT) A=AV A,
p p
Also, it is easy to see that the original B., should be replaced with 1%’7 = A¢B,A. Therefore,

the estimating equation (2.3) should be rewritten as

A('V) = yTB'yy
= (AcZAB +¢€) AcB,A: (A(ZAP +€)
=€ AsZ " B, ZAg€E + 26" AgZ"B,AC +(TAB, AL

(2.34) e i
AB,ZA;  AB.A. | |¢

where

Ag = diag(p,...,0,) and A, =diag(ey,..., ).

Note that now A(7) is a random variable about Z, €, & and ¢. Straightforward calculation

gives the conditional mean of A(y) on Z and e:

(2.35) A.(y) =E [A()|Z,e] = Z Biz, Bz, + trace (A2B,) .
k=1

Furthermore, the conditional variance of v/n(A(7)) on Z and & can also derived as in the

following lemma, the proof of which is deferred to the appendix.

LEMMA 2.4.1.9. The conditional variance of A(~y) given Z and € has the formula

Var [vn(A(7))|Z €]

P
(2.36) =2n Z Bi: (z,;erzj)Q +4n Z Biz, B,A2B. z; +2n Z eres(B,)i; -
1<k#j<p k=1 ) 1<k#j<n

N 7
~~ hd ~~

%1 Va V3
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2.4.3. Proof of Theorem 3.2.4. With A, () defined in (2.35) and for any fixed y > 0,

we first aim at showing
(2.37) A(y) — Ax(y) — 0.

First, by (2.25) in Lemma 2.4.1.5, we have

logn
S0 (1 B.)” < (= Bs ) 1 = Op (257

ki

Second, since z;’s are sub-Gaussian vectors, it is obvious that

max ||z/" = Op(n).

Also, a simple consequence of Lemma 2.4.0.2 gives | B,|| = Op(1/n), and Lemma 2.4.0.1
implies ||AZ%]] < O(logn). Therefore,

logn
Zﬂ LB B, < BB (s ) ) = 0n (57,

Third, by (2.12) in Lemma 2.4.0.1 and (2.30) in Lemma 2.4.1.7,

log®n
3 gigg.(Bv)zj:op( . )

1<k#j<n

Plug the above bounds to (2.36), for any 6 > 0, by the conditional Chebyshev’s inequality,

we have
P{‘A(y) - E*(v)’ > 5‘2,5} < Yar [Ag”Z’E] L0
Then, by the dominated convergence theorem, we have proved (2.37).
Now, define
(2.38) A,.(v) =0f trace (B, V,,) = og trace <B7 (In + %ZZT)> :
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By (2.21) in Lemma 2.4.1.2, we can easily obtain

~ o (T 18117 .
Zﬁi (24 Byzi) — Ttraee(BvZZ )

k=1

(2.39)

_ 0, ( logn> ‘
n
On the other hand, by Lemma 2.4.0.1 and (2.28) in Lemma 2.4.1.6, we have

3

1 1
trace (AZB,) — — trace (A2) trace (B,)| = Op °s T
n n
Furthermore, by Lemmas 2.4.0.1 and 2.4.0.2, we have
1
— trace (A?) trace (B,) — o trace (B,)| = op(1).
n

Combine the above two inequalities,
(2.40) |trace (A2B,) — o trace (B,)| = op(1).

Then, by (2.35), (2.38), (2.39), and (2.40), we have

Combined with (2.37), we have
n—00
Finally, we have the following result that characterizes the limit of A,,(v) for any v > 0.
LEMMA 2.4.1.10 ( [24]). Under the assumption of Theorem 3.2.4, we have
Awe(y) =2 ¢y,
where ¢y, > 0 for v <, ¢y, =0, and c, <0 for v > 7.

This result is basically given in [24], and we give a detailed proof in the appendix for self-

containedness.
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Then, for any v > 0, there holds A(~) L ¢+, which is positive, zero, or negative, depending
on whether ~ is smaller than, equal to, or greater than . Then by the argument of Theorem
3.7 in [26], with probability tending to one, the equation A(vy) = 0 has a root 4, such that
it converges to 7y in probability.

Consistency of 6. Let’s turn to show 62 N o2, where the noise variance estimate
is defined in (2.5). Let s,(y) = 2y'V'y. The noise variance estimate is then 6% =
$n(%). From the previous sections, we know s, () converges to a continuous function 3(7)
in probability. For example, if 7 < 1, we have

+(7)
o) =at | b ()

_(7) 1 + yr

which gives 5(g) = o?.
An important observation is that s,() is decreasing. For any small 6 > 0 and € > 0, we

know

Sn(y—0)<3(y—9)+e and s,(y+9)>5(y+0)—¢

with probability tending to 1. On the other hand, %4, — 7o in probability implies that

Yo — 0 < An < Yo + 0 with probability tending to 1. Therefore, we have
5(70 —6) + €2 su(70 —0) = Su(¥n) = 50 +6) 2 5(70+0) —€

with probability tending to 1. Since J an € can be arbitrarily small, we have

. N P
6% = su(¥) — () = 5.

2.4.4. Proof of Theorem 2.2.2. Through the analysis of asymptotic distribution, we
use the shorthand hy = hg(vo, 7) for k = 1,2, 3,4, where hy (70, 7) is defined in (2.8).

26



2.4.4.1. Decomposition of A(~y). The following lemma essentially given in [24] (without
a detailed proof) reduces the asymptotic distribution of 4 to that of A(7g). For the sake of

completeness, we give a detailed proof for it in Appendix:

LEMMA 2.4.1.11. Under the conditions of Theorem 3.2.4, assume ¥, 1S a Sequence of roots

of A(y) = 0, which converges to vy in probability. Then

(2.41) Va6 =) = =5 4 on)

where AL_(yo) is the limit of A'(7y) as v = v and has the formula

2 h2 —h
A _ %o T e
oo(fyo) Y hl

To investigate the asymptotic distribution of y/nA(vp), consider the following orthogonal

decomposition:

A(v0) = (A() — As(70)) + As(70)-

In other words, the expectation is taken with respect to Rademacher random variables &;’s

and (;’s. We aim to derive the asymptotic joint distribution of

(VA(a (o) = B.(30)): VrB.(0))

2.4.4.2. Conditional Variance of A(vyy) — ﬁ*(v) In order to derive the asymptotic joint
distribution of <\/H(A(%) —A.(7)), \/ﬁz*(v)) we first need to study the conditional dis-
tribution of A(yo) — A,(v) given Z and e. This consists of two steps: conditional variance

and conditional normality. Let’s first study its conditional variance. Note we have
Var [Vit(A (o) = Au(1)|Z,¢] = Var [Vir(A(0)) | Z ]
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LEMMA 2.4.1.12. Under the condition of Theorem 2.2.2, with Vi, V5 and V3 defined in (2.36),

we have

2.492 VLQOA 1 —2h;+h +4h2_2h3+h2_2h3+h4_7_ ho 2
) 1 0 1 2 ,

hy h?

hy —hs hs—h
(2.43) Vo 2o dod ((hy — hy) —22—2 4 5871
hy h?
P 2hs  hy o\
Consequently,

Var [\/ﬁ(A(%))lZ,s] £, 20, <h2h_%h% —(r+1) <h1 — Z—j) ) )

Limit of Vi. Since Y°., 5767 = [1B]* — >_7—, B¢ and Y=} _; B = o(1) (by the assumption
18lse = o(p~'/%)), by (2.26) in Lemma 2.4.1.5, we have

1 2
Zﬁfﬁ? — Zn (2{ Byyzj)” — 03] = op(1),
i plp—1) 57
and
> 8280 (2] Byyz;)” — 118110 = 0p(1).
i#i

These bounds imply that

p
2%26126]2 (zz‘TB'onj)Q —2n <”IBH4 - Zﬁé> p(pl_ 1) Z (ziTB’Yozj)Q -
k=1

J#i

(2.45)

Then for 37, (ziTB%zj)z, since

1 2\ 1 -
trace ((BVZSZZT) ) = o (Z (ziTszj)Z + (z,;erzkf) ,

i#j k=1
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by (2.21) in Lemma 2.4.1.2, we can have that

t B 1ZZT 2 ! t B 1ZZT 2
I‘ —_— —_—— I‘ —_—
7 trace o 7 | trace | By,

1
B Z (ZZ'TB’YOZJ')Q

pp—1) <=
1 1 - T 2 1 T 2
= p— ]—); (z) Byzi) — (trace (B,YO];ZZ ))
046) < — max |(57Byz)” — (Ltrace (B,227)) | = op (n°)
) S gll?écp z, Bz, ’ race (B, =op(n ).

Finally, combining (2.45) and (2.46), we can have

P 2 2
2n (HﬂHA‘ — ;Bﬁ) (pf . trace <(BWO%ZZT> ) — p%l (trace (BWO%ZZT)) )

(2.47)

—20 " 3262 () B,yz)’
J#i

= Op (1)

Further, Lemma 2.4.0.2 implies

n trace ((BWO—ZZT) > IR ((_1 — 2y + hy) — th hs + hs n hy — 2hs +h4) |
p

ol hy h3

1 ? 1 (h3—hy\?
(trace (B%—ZZT)) N — (h1 h2) .
p "o h

Combine these limits, the bound in (2.47), the fact vy = ||B||*/03, and the fact > ¥_, B¢ =

o(1), we finish the proof of (2.42).

Limit of V5. For any fixed v > 0, straightforward calculation gives

1, Ty —1A2Y -2 1, Ty —2A2Y -2
2, VALV 2z 22 VIPAZV 22

5 trace(Vi1) (£ trace(‘/:/gl))Q '

1
(m&nﬁaﬁmazﬁﬁﬁﬁw%r2
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Then using Sherman-Morrison-Woodbury formula (Theorem A.1.3), we can have
V A2V _k”k
(1 + 7771221@)

Ty —1A2y -1
z, V. ALV zk—

Ty —1A2Yy/ 2
z, V. ALV zk—

3
1 1
(1 + an(ck)k> (1 + 77715:121:)
V A2V z 277] z V WAV 2 2
ZJVY_QAEV{_QZk _ 1 —k k: kk,E<k 1 —k
(1 + 7771(c1c)k> <1 + an(ck)k>

<77](ck)k> ZI;FV AQV —k”k

(1+30k)

(2.49)

By Lemma 2.4.0.1, we have
IV, LAZV T < (IAZ]] = Op (log )

and hence
IV, A2V, e = Op (Vi logn) .

Then, by Hanson-Wright inequality and taking the uniform bound, we can easily get

(2.50) max
ke[p]

1 —(t+m
V A2V M Zp — —trace (szy—(lk_‘— )>‘ = op(1).
By Lemma 2.4.1.8 and Lemma 2.4.0.1, we have

(2.51) max
kelp]

1 m 1
— trace (AZV ay )> — — trace (A2) trace (Vﬁy(l*m))‘ =op(1).

By Lemma 2.4.0.1 again, we have

1 1
(2.52) max | trace (AZ) trace (V™)) — Jgﬁ trace (VW_(Hm))‘ = op(1).
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Combining (2.50), (2.51) and (2.52) gives

L 13,-1 p2v,-m o 1 —(l+m)
(2.53) Iglez%;]( — % VLAV ez — % trace (V )| =op(1).

Combining (2.53), (2.49), (2.48), Lemma 2.4.1.1 and Lemma 2.4.0.2, there exists some con-

stant C'(y, 7), such that
%12[1;]( nz, ByA2B,z, — C(v,7)| = op(1).
S
This further implies both

1
'C’(’y, T) — ntrace (BVAgBV];ZZT) ’

p
C(y,7) — g Z z) B,A’B, z,

k=1

<

< max |C(y,7) — nz,;erAszzﬂ =op(1),

kelp]

and

p
n Z BﬁngvAiszk —IBII*C (v, )
k=1
< 18* max|C(7,7) - nz B,AZBzi| = or(1).
€lp
Combining the above inequalities, there holds

P
1
(2.54) 7125;32237-/\?37% — n||B||? trace (A?BA,]—DZZTBV> =op(1).

k=1
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Finally, note that

1 1V ! 2 1
B,-ZZ'B, = —< T ( + —> |
p gl

n? ntrace(V,t) = n?

2 1 -3 1 —4
+ (ntrace(Vvl) * (trace(%‘l))2> v (trace(vfl)fvv )

By (2.27) in Lemma 2.4.1.6, there holds
logn
n

1 1
ntrace ( A’B,-ZZ"B., | —noitrace | B?—~ZZ" || = op(1).
€ "/p v 0 fyp

max
1€[n]

1 1
n (B,Y—ZZTBv) — trace <B§-ZZT>
p i p

Similar to (2.40), we have

(2.55)

Combining (2.54) and (2.55) and letting v = o, we have

(2.56) = op(1).

p
1
4n Z Bz, B, A2B., 2z, — 40 B*n trace (B%];ZZT)
k=1

Notice that

1
403 B||*n trace (BgO—ZZT)
p

o387
= Oﬂy—ontrace (Bz/o (Vyo - In))
-1 -2 ~2 -3 —3 -4
= 4oin trace VVO B Vvo -9 V'yo — V70 VVO _ VVO
0 n2 ntrace(V, ;1) = (trace(V, 1))

Therefore, we got (2.43) by Lemma 2.4.0.2.
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Limit of V3 By (2.31) in Lemma 2.4.1.7, (2.29) in Lemma 2.4.1.6, and Lemma 2.4.0.2, we

have

Vs = (2n) ) ele}(By)};
i#]

= 2 , T UO+OP(1)

0(
= (2712 o Z]) +op(1)
i#j
(Qntrace - an 0 ) +op(1)

= 0, (2ntrace (B2)) — 2 (trace (B%))Z) + op(1)

0

2
P 4 2h3 h4 hz
— 2 hy——+—=|—|h—— .
UO((Q h1+h%> (1 ha

2.4.4.3. Conditional Distribution of A(vo) — A,(70). Recall from (2.34) that

AsZ'B, ZAs AsZ B, A.| (¢
AB,ZA;  AB,A. | \¢

-

\/EA(%) = (fT CT) \/ﬁ

Q
Note that we can represent Q as
Ag 0 zZ" Ag 0
Q= 1 VvnB.,, (Z +/nl,) 1
0 \/—ﬁAE vnl, 0 \/—ﬁAE
Since A, (70) = E[A(10)|Z, €], we have
X T AT (€
V(A() = Aun)) = (€7 ¢) (Q - Q) )

where Q is a diagonal matrix that maintains the diagonal part of Q. In other words,

conditional on Z and e, v/n(A(7) — A(70)) is a quadratic form about &€ and ¢.
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Here we aim to use Theorem A.1.4 in the appendix to establish a normal approximation

of the conditional distribution of v/n(A (7o) — A,(7)) given Z and e. In other words, we
intend to show
Q-4

2.57 -
(250 Q- Qllr

Op(l).

To establish a lower bound ||Q — Q||, consider the block v/nAzZ T B,,ZAs of Q, there
holds

1Q ~ Ol > \/nZﬁEﬁ?(zI B,z

i#]
the right-hand side of which converges to some nonvanishing limit based on (2.42).

Let’s now establish an upper bound of ||Q — QH First, we have

lQ-Ql < QI+l <2|Ql.

where the last inequality is due to the fact that all diagonal entries are bounded by the

operator norm in magnitude. On the other hand,

2

A2 0 A
Ql<| ™" VB, ||
0 1AZ vnl,
1
S pepex {5 5 } (121 + vn)® - [|[VaB,||.

By the assumption ||3]|%, = op(n~'/?) as well as the bound given in (2.12), we have

kelp], i€ln]

1
max {5137 553} = op(n~'?).
Note that we have ||Z| = Op(y/n) by Theorem A.1.6. Also, Lemma 2.4.0.2 implies

|lvnB, || = Op(n~'/?). Combining the above, we have ||Q|| = op(1). This completes
the proof of (2.57).
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Therefore, by Theorem A.1.4, we have

\/ﬁ(A(%) - &*(%)) c P
(2.58) ]P){\/Var NOCOIA < t’Z, } — D(1),

where ®(t) is the c.d.f of standard normal distribution.

2.4.4.4. Asymptotic Distribution of \/ﬁg*(%). This subsection is intended to show the
following result that characterizes the asymptotic distribution of A, (70) defined in (2.35).

Note that by the definition of B.,, we always have trace(B,V,) = 0. Therefore,
1
18||* trace (BVO—ZZT) + op trace (B,,) = o trace (B,, V) = 0.
p
Then, we can represent A, (7o) as

p
1
0) =Y _ Biz! Bz — || B trace <B%Z_)ZZT>
k=1

+ trace (AZB,,)) — o trace (B,,)

= trace ((AZ — 001,)B,,)
p 1 .
+ Z /Blzg <z;‘@;1zk — trace (VWEI]_?ZZT)>
k=1
1
- TV.22, —trace ( V.2-227 ) ).
( : trace Z B (zk o Zk — trace ( i

By Lemma 2.4.1.3 and Lemma 2.4.1.1, we have
- 2 1 Tv—l t V—l 1 ZZT
Zﬁkﬁ z, V., 2z — trace ( V| p
k=1
1 1 1 logn
(2.60) = Z 32 nkk o= trace (V;_k) +Op "

(1 + I trace(V- )>
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and
"ol 1
Z 5135 (z,IVVOsz — trace (VVOQI—?ZZT)>
k=1
27 trace(V, 1
- 3 Zﬁk ( kkk - —trace (Vvlk)>

p<1+ trace(V )

(2.61) n ! Zﬁk ( 2, — ltrace (V%_Qk)> +O0p <loi") .

(1 +  trace(V )

Then, for [ =1, 2,
1 1 i
(Z 52 ( == ~ trace (Vv_lk))>
1 2
= Z B E ( kk kT trace (Vy_ik>) ]
2 2 1 —1 ]. (l) 1 —1
+ Z BB E nm - trace (V;_Z) Mg trace (‘Q_ﬂ

i#£]

C C 1
' < = 4 Y 4 _ +
@) <Sisli+ Slsl=o(5).

for which we have used Lemma 2.4.1.4 as well as the fact ||3|l4 = o(1) (by the assumption
18]lse = o(p~'/*)). Then by (2.60), (2.61), and (2.62), in connection with Lemma 2.4.0.2,
there holds

p
1 1 1
§ : 2 Ty,—l1 —1 T
(263) 2 6kﬁ (Zk ‘/;/O zj, — trace (VYO 2—9ZZ )) = Oop (%) , [ = 1, 2.

Then, equation (2.59) implies

(2.64) A, () = trace (A2 —031,)B,,) +op (%) :

Before deriving the asymptotic distribution of E*(%), we first introduce a lemma, which is

essentially an analogy to (2.63):
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LEMMA 2.4.1.13. Under the conditions of Theorem 2.2.2, for any fized v > 0, there holds
(2.65) Zn:@? —o2) ((B)is — S trace (B,) ) = op [ —=) .

. 7 8l n v \/ﬁ

=1
With this lemma, equation (2.64) gives

Buou) = 32 - 03) (B, +or (%)

=2 <Z< - oé>) trace (By,) + o (%) |

Recall that Lemma 2.4.0.2 implies trace (B.,) iy Z—f Moreover, (2.14) in Lemma

Then, by the Slutsky’s theorem, we get

2.4.0.1 gives

(2.66) ViR (0) = VAEIA(0)|Z. €] —> A (0, 21! <% _ h1> ) |

2.4.4.5. Asymptotic Distribution of 4. Denote

2
V] = 2/103 (@ - h1>

hy

(2.67) - ,
VQZZO'SL( thl —<T+1)<h1—z—f) ),

which are the asymptotic variances given in (2.66) and Lemma 2.4.1.12.

To establish the asymptotic distribution of 4, we only need to find that of /nA(yy) by

Lemma 2.4.1.11. Furthermore, it suffices to find the asymptotic joint distribution of

(Vaa (o) = A1) vid.())
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For any (t,s) € R?, we have

b { VA () _, VAA() — Vidi(o) }
Vi TN [ViA ()| Ze] T

_klp {ﬁ&wo) <y VTG0 — VAR.(0) _

- Vi T/ Var [/nA ()| Z, €]

o

\/HA(%) - \/EE*WO)

=K _l{ﬁg*(wo)/\/zq} { \/Var NI <s Z,s}] )
Note that
nA(vg) — nﬁ* 0
E L ma. o)y <nl { \\//_Vag\}ﬁ A\(/’Y_o)‘ Z(Fys]) < S'Z € } —E [l{ﬁﬁ*(vo)/ﬁlﬁt}q)(t)]
[ n/A o) — TZA* 0
< B Lak.ovmsy |F { \\//_Va?[\;ﬁ A\(/7_0)| Z(L]) <s|Z 76} — ®(s) ]
. "P { VA (o) = Vil _ Z@} _a(s) ] o
| | VVar[ynA(0)|Z, €]

where the last inequality is due to (2.58). By (2.66), we have

E (1. 0oyymren ()] =P {% < t} B(s) = (t)P(s).

Thus we can have

P {M <1, YPAG) — VRA-(o)
N v/ Var [\/nA(70)|Z, €]

} — O()P(s),
which implies that

(ﬁﬁ* () VIA(Y) — VAL ()
Vi Var VA ()| Z, €

where [X7, Xo] ~ N5(0, I5). By Lemma 2.4.1.12, we have

) = (X1, Xy),

Var [v/nA(v)|Z, €] L5 0.
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Then, the Slutsky’s theorem implies

\/ﬁz*b’o) VnA(yo) — \/_A Y0)
< NG \/Var NI \/Var VnA(v)| Z, s]) — (Xl,XQ,\/%)'

Letting g(z, vy, z) = \/v1x + yz, by the continuous mapping theorem, we can have

ViA.(10) | VnA(r) = vVA. (1)
nA 0) = V" Var A 0 ZE
VA = VIt + e e\ Var [VAA ()| 2. ]

— \/l/_le + \/I/_QXQ

Finally, by Lemma 2.4.1.11 and the Slutsky’s theorem, we have

\/ﬁ(?—%)j/\/’(&&;(%)

By AL () = % hi=h2 a0 the expressions in (2.67), simplifying the formula, we have
Y Boo 0 h

\/ﬁ(’?—%):w\f(o,zfyg (ﬁ—i—ﬁ—T—l))).

2.4.5. Proof of Propostion 2.2.1. Straightforward calculation gives

p
(2.68) =Y (Bl - 3) 5] + 318l + 6[181507 + 307

J=1
Then, when the noise is uncorrelated,

n n p

1 <& A 1 . ) 1 \ )
" ot 2271 T Elyi] - 2 E[z4] - 3) B
. mg;a, ] 2 B = (0 + 30+ gt 20 O (BLES] ~3) 5

i=1 j=1

By the assumption ||3]|o = o(p~/*) and z;; is sub-Gaussian, it is obvious that

n p

SHJOZZ §'m.a'x ‘ 300254_0

o1 =1 i€[nl;j€lp] ey
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Furthermore, similar to (2.68), straightforward calculation implies max E[yf] = O(1), which

implies

Var

P3| = S < 3= (7).

Then we can have 1 > Efyf] = 23" ¢! + Op(n~'/%). Combining the above, we have

P
423/1 70+2f70) — K.

3noy =

In Theorem 3.2.4 we have already shown that 52 N og and 4, L vYo- By the Slutsky’s

theorem, we obtain & = 7 >°1 yi — (32 + 29,) L k.

2.5. Extention to Group SNR Estimation

Let’s consider an extension of the standard linear model (2.1) to the case in which the design
matrix is partitioned according to several groups of features. In other works, let’s assume

that the linear model can be represented as
(2.69) y=> ZfBi+e
i=1

where Z; € R™?i is the design matrix corresponding to the i-th feature group, and 3; € R?:
is the corresponding vector of regression coefficients, so the design matrix Z = [Z, ..., Zj]
is partitioned into s feature groups. In this case, besides estimating o2, we are interested in
estimating the group SNRs 7y, := ||3:]|?/od for i = 1,...,s. This model is motivated by the
problem of partitioning heritability discussed in [29]. Also, the problem of estimating group
SNR is closely connected to group regularized ridge regression [19].

As with the standard case, we consider a linear random effects model corresponding to (2.69).
Assume the i.i.d. noise follows N(0,02), and replace B; with p; %ai, where «; consists of

i.i.d. Gaussian random variables with distribution N (0,02 ) for ¢ = 1,...,s. Then, the
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linear model with feature groups (2.69) corresponds to a random effects model

Y= ip[éZiai +e.

i=1

As with the standard case, the true values of the parameters o2, 02 and ; = 02 /o2 are o,
183:]1? and ~o; = ||3i]|* /o2 respectively.
Linear random effects models with feature groups have been well studied in the literature;

see also [21]. The log-likelihood function is

1 1
(2.70) (02,02 ,...,00)=c— 5 log det (€2) — inQ_ly,
where
5 o2
(2.71) Q=Q(,02,...,00) =01, + Z fZZ-ZiT =02V,
i=1 *°
and
—~
(2.72) V,=I,+Y ~Z2Z

im1 i
Taking the partial derivatives with respect to the variance parameters, we obtain the score

functions and the likelihood equations:

Sy2(02,02,,...,05 ) =y %y — Ltrace (Q71) =0

»

Sy2(02,02,,...,02) =3y Q! <$ZiZiT> Q 'y — Ltrace (Qfll%ZiZiT> =0, 1<:<

ISR oS

Similar to the estimating equation of SNR estimation (2.3), the above set of equations lead

to the following set of likelihood equations for the vector of group SNRs v = (71, -+ ,7s) '

vV (R22) VY vy

v

trace (V*liZ-ZT) ~ trace (V:fl)
vop T

(2.73) A (y) = =0, 1<i<s.

Our analysis of 4 as a solution of (2.3) in the standard case cannot be extended to (2.73)

due to several technical difficulties. For example, the calculation of the asymptotic variance
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of 4 in the standard case relies on the leave-two-out analysis in random matrix theory that
has been derived in [24], but this is difficult to be extended to analyzing the solution to
(2.73). Thus, we here only present a preliminary result: we show that the true vector of
)T

group SNRs vo = (Yo1,---,%s) 18 asymptotically a root of the likelihood functions defined

in (2.73) under certain conditions, i.e., A® () L5 0 fori = 1,...,s.

THEOREM 2.5.1. Consider the linear fized effects model with feature groups (2.69), where
Z = 1[Z1,Zy, - ,Z,] is an n X (p1 + pa + -+ + ps) design matriz whose entries are in-
dependent, symmetric, sub-Gaussian, and variance-one random variables, and their mazi-
mum sub-Gaussian norm is uniformly upper bounded by some numerical constant Cy. Let
B=18],....,8]1" be the (p1 +---+ps) x 1 vector of regression parameters, and let € be the
n x 1 vector of independent noise with mean zero and variance o3. Fori=1,...,s, denote
the i-th group SNR as vo; == ||Bi||*/0d fori=1,...,s.

Consider the asymptotic setting n,p1,ps, - ,ps — 00 such that n/p; — 7 > 0 for i =
1,...,s. Also, assume that o2 > 0 and o1, .. .,%s > 0 are fized constants for all n. Then
the likelihood functions of the group SNRs defined in (2.73) satisfy A® (o) N 0, fori =

1,...,s.

2.5.0.1. Simulations. In this part, we present some preliminary empirical investigations
on the properties of the random effects likelihood estimators 4 discussed in Section 2.5. We
will not provide extensive simulation results on its asymptotic distribution, since that has
not been addressed in Theorem 2.5.1. Instead, we focus on demonstrating the consistency

of 4. For simplicity, we only consider the linear model (2.69) with two feature groups
y=2101+ 20 +¢€.

We apply the MM algorithm proposed in [46] to estimate the variance parameters. A detailed

summary of this algorithm is given in Algorithm 1.
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Algorithm 1 MM algorithm for the random effects MLE of the fixed effects model (2.69).

Require: The design matrix Z;(i = 1,...,s) and the vector of responses y;
Ensure: Maximum likelihood estimates 4, - - - 4, and &2

1: Initialize 0\ > 0,i=0,1,--- , s;

2: repeat

3:

i=1
4:
To,(t+1) < %0
5:
To-1 17 7TO-1
2 2 Y Q(t)pi ZiZ; Q(t)y 1..
Oi(t+1) <~ 04 ) 1 N =1, N
trace (Q(t)pi Z,Z, )
6: until the log-likelihood function satisfies
}l<08,(t+1)’0%,(t+1)7 T ,Ui(tﬂ)) - l(Ug,(t)an(t)» T 705,(t))| <1074
7: Set the final maximum likelihood estimates as
(AI? <_O-g7(t)’ '/5/2 <_0-12,(t)/0-(2),(t)7 /L: 1,...,3.

o
o

o 4
4
— N
he D:S
P4 =z
w3 @]
el o
> 22
© ]
£2 E
7] k7]
L L

-

o
o

1 2 3 4 5 1 2 3 4 5
p1/p2 p1/p2
(&) i (b) 2

FiGURE 2.6. Estimates of the SNR ~;, 72 from 100 independent datasets.
Structured Z; and Z, simulated from i.i.d. Rademacher distribution. The

true SNR 791, 702 are marked in dash line and the black diamonds represent
the averages.
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We fix n = 1000, p = p; + p2 = 2100, Y01 = Y02 = 2, 04 = 0.5. Both 3; and (3, are generated
according to the magnitude-decay model (2.10) with g; = go = 0.5. The design matrices Z;
and Z, are assumed to follow the i.i.d. Rademacher model.
We are particularly interested in understanding the empirical properties of 4; and 45 with
varying balancedness between the two groups, which is characterized by the ratio p;/ps.
Simulation results shown in Figure 2.6 suggests that the balancedness between the groups
may not have significant impact on the performance of 4; and As.

2.5.0.2. Proof of Theorem 2.5.1. The proof is technically more involved but has a similar

roadmap with the standard case. In particular, for e = 1,..., s, we define

Al (y) = o (1 70i> trace (V.53 Z2])  trace (v,
Y) =00\ LT o - -
Vi trace (Vy_ll%ZiZiT) trace (Vfy 1)

o)

r#i

-11 Ty -11 T 91 T
(’YOT ’Yoz) trace (Vv EZrZr Vy p—iZiZ,- ) trace (VV p_TZTZT )

Tr N i trace <Vy_1l%ZiZiT> a trace (Vv—l)

It is obvious that A (o) = 0. Then, it suffices to show A® () — AD () 5 0. Again,
we can introduce A (7o), which is the mean of A®(~;) conditional on Z, as a intermediate
step to establish A® (o) ~ A (7).

For the linear model with a partitioned design (2.69), the likelihood functions with respect

to the vector of SNR ~ have been given in (2.73), i.e.,

1, Ty -1 (1 T\ y-1
A (p—izizi ) iy vy
L trace (V;lpiiZiZiT>  trace (V1)

(2.74) AD(y) =

Our goal is to show that the asymptotic limit of A®(~,) is 0. Following the proof ideas for
Theorem 3.2.4, we also use the trick of Rademacher sequences, which means the response
vector can be represented as

Y= Z (Z Bikfikzik> + €.
k=1

=1 =
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The the conditional expectation of the likelihood functions can be written as

AV () =E[AD(v)|Z]

(2.75)
5 (B[AY]Z] +2E[BY|Z] + E[CY|Z]) | (E[A"|Z] +2E[B"|Z] + E[C"|Z])

1 -
L trace (V{liZiZiT)  trace (V)

Recall that we have also defined

-21 T
All() = (1 - 7—°> trace (V; % 2,2] ) _ trace (VI7?)
ok Yi trace (V{lpliZiZiT> trace (ijfl)

‘|—0'OZ

-11 Ty —11 T 91 T
(ﬂ _ ﬂ) trace (V”/ o, V. -2 Z; > trace <V7 ~Z,Z, >
r#i

Vi trace (V;lpiiZiZiT> trace (V'y_l)

Then we can follow a similar argument for the standard linear model in Section 2.4 to show
AD(y) = AP () L5 0 and AP (7) — AU (7) 5 0.
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CHAPTER 3

Method of Moments Estimation: Analysis under Multivariate

High-dimensional Linear Models

3.1. Problem Statement and Method

In this chapter, we consider the following multiple response high-dimensional linear model:

(3.1) Y =XB+E,

where Y = [y1,...,y,]" € R™? is the response matrix, X = [z,...,x,]" € R is the
design matrix, E = [ey,...,e,]" € R™ is the noise matrix, and B = [by,...,b,|" € RP*?
is the coefficient matrix. We assume the rows of the noise matrix F satisfies eq,..., e, i

N(0,X,), which is also represented as vec(E) ~ N (0,3, @ I,).

We consider both the fixed and random effects models in this chapter.

e (Fixed effects model) Assume B corresponds to fixed effects. In this case, we assume
X = [xy,...,x,]" is a random design whose rows are independently drawn from
N (0, I,). This assumption is common in univariate high-dimensional statistics fixed
effects models, see, e.g. [7,8,18,20].

e (Random effects model) Assume B corresponds to random effects. More specif-
ically, assume the rows of B satisfies by,...,b, N (0, %Eb), or equivalently
vec(B) ~ N(O0, %Eb ® I,). Correspondingly, we assume the rows of X, i.e. @;’s,
are independently drawn from a population with mean zero and covariance 3. In

comparison to the fixed effects models, we allow the population covariance of the

predictors to be correlated, and do not require the normality.
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The goal of this paper is to make inferences about the signal-to-noise ratio (SNR) under the

two models, which are defined as below.

o (Fixed Effects Models) Denote p* = ¢ tr(B' B).
e (Random Effects Models) Denote p* = %tr(Zb).

For both models, denote 0% = %tr(Ee), and define the signal-to-noise ratio (SNR) as r? =
0*/(p* + 02). Our definition of SNR under the multivariate random effects model is similar
to that defined in [13], while that under the multivariate fixed effects model is novel in the

literature to our knowledge.

3.1.1. Method-of-Moments Estimators. we introduce method-of-moments estima-
tors of the SNR r? under both the fixed and random effects models. Under the fixed effects
model, our estimator can be viewed as an extension of [7] to the multivariate case; under
the random effects model, our estimator is similar to [13].

Fized Effects Model. Denote W, = B' B. By the Wishart moments results summarized

in [7], it is straightforward to obtain

1
E [—YTY] =W,+ .
n

+n+1
n

1
and E [—ZYTXXTY} _ 2 W, + L%,
n n

which result in the following unbiased method-of-moments estimators of W, and X,

A7 p T 1 T T
2 Wy=——Y Y+—Y XX'Y
(3:2) ’ n(n+1) * n(n+1)
and
(3.3) .-t tlyry D yixxTy
n(n+1) n(n+1)

As a consequence, our method-of-moments estimators of p? and o? are

1 = 1 -~
(3.4) P = gtr(Wb) and 6% = &tr(Ee).
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Random Effects Model. Under the random effects model, denote
]_ T ~ ]_ k
S,=—-X'X and gp=-tr(S;) fork=1,23,...
n p
Straightforward calculation under the random effects model gives
1+ )
E|-Y Y‘X Y40,
n
L ot T D . A
and E|SYTXX Y)X _ P 3,
n n

These equations result in the method-of-moments estimators of 3, and 3.

S 1 P <, T I T T
. Sp=—— (-PyTy 4 —yTXXTY
39 (R
and
~ 1 0 0
(3.6) S ——— (@YTY - g—;YTXXTY> .
g2 — ;91 \ 1 n

Again, our method-of-moments estimators of p? and o? are
o 1 o 1o
(3.7) p°=—tr(¥,) and o°=—tr(%,.).

The corresponding SNR estimator is

A p
3.8 o —
( ) r ﬁ2+62

3.2. Main Results

In this section, we introduce our main asymptotic results on the asymptotic distributions of

the aforementioned method-of-moments estimators of SNR under both fixed effects model

and random effects model.Under random effects model, we consider homoskedastic and het-

eroskedastic cases. In addition, we will also discuss two scenarios of heteroskedasticity, under

which consistent estimators of the variances of these estimators are proposed. Our goal is
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to make inferences about the SNR r? := p?/(p? 4+ 02), which relies on the derivation of the

asymptotic distribution of (p?, 52).

3.2.1. Fixed Effects Model. First, we specify the following conditions on the distri-
butions of the random design matrix X, the coefficient matrix B, and the noise matrix

E.

AssuMPTION 3.2.1 (high-dimensional asymptotics). The following conditions are assumed

to hold:

e The sample size n — oo while the dimensionality p(n) — oo as well, such that the
aspect ratio p(n)/n — 7 > 0. The number of responses q is fized.

e The design matriz X is generated with x;; ~ N (0,1), 1 <i<n,1<j<p.

ASSUMPTION 3.2.2. The matrix B is assumed to be a p X q deterministic coefficient matrix.

Also, p* = %tr(BTB) 15 assumed to be fized over all instances of n.

ASSUMPTION 3.2.3. The random noise matriz E is assumed to satisfy E ~ N (0,1, @ X.),

where X, and thereby o = tr(X.)/q are fized over all instances of n.

We are now ready to introduce our asymptotic distribution results for (p2,62) under the

above assumptions for the homoskedastic cases.

THEOREM 3.2.1. Under Assumptions 3.2.1, 3.2.2 and 3.2.3, we have

A2 9

p2v-uz |70 w0, 1),
;52—/)2

where the 2 X 2 symmitric matrix V' s defined by

Vi = m {(n2 + np) |BTB||% + 2pntr (ZEBTB) + (n2 + np) tr(Eg)}
Voo = m {(4n® + np) |B"B|% + (2n* + 2pn) tr (EEBTB) + pntr(X2)}
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and

e Lo ) [BTBIE + 200t (5,87 B) + pn(22))

Vio —
Y2

Consequently, we have

n'2(72 = r?) /o, = N(0,1),

where
(3.9) o = pt/(p* + 0*) Vi + 0t (pP + 0°) Vay — 20°0% [ (p + 0°) Via.

We now highlight several important aspects of Theorem 3.2.1 that underscore our contribu-

tions:

REMARK 3.2.1 (Asymptotic distribution). Qur results extend the method-of-moments esti-
mator for the linear fized effects model developed in [7] to the multivariate setting described
in (3.1). When the number of responses ¢ = 1, our asymptotic result for 4 exactly recovers

the univariate result established in [7].

REMARK 3.2.2 (Inference). Theorem 3.2.1 shows that the true SNR r* can be consistently
estimated by 72. To construct confidence intervals for r?, we note that the asymptotic variance
of 72, as characterized in Theorem 3.2.1, depends on n, p, q, the variance components (o2, p?),
the coefficient matriz B, and the noise covariance matriz 3. Although it’s hard to estimate
B directly, we can estimate BT B. Then the variance components (o2, p?) defined in Section
3.1.1 can be consistently estimated using (62, p%) from (3.4), while BT B and X, can be

estimated via Wy, and 3., as given in (3.2) and (3.3), respectively.

REMARK 3.2.3 (Gaussian design matrix). Although assumption 3.2.1 requires that the design
matriz X has i.i.d. standard Gaussian entries, which is in agreement with the setting of [7].
However, simulation results in Tables 3.1 and 3.2 indicate that the estimator also performs

well when the entries of X are i.i.d. sub-Gaussian (e.g., drawn from a SNP-like distribution).
50



Extending the condition of Gaussian entries in the above result to sub-Gaussian ones would

be an interesting direction for future work.

REMARK 3.2.4 (Assumptions on the coefficient matrix). Our results impose no sparsity as-
sumptions on the coefficient matriz B. Sitmulation results in Tables 3.1 and 3.2 demonstrate
that the estimator remains effective in both sparse and dense regimes, highlighting the ro-

bustness of our approach.
3.2.2. Random Effects Model.

AssuMPTION 3.2.4 (high-dimensional asymptotics). The following conditions are assumed

to hold:

e The sample size n — oo while the dimensionality p(n) — oo as well, such that the
aspect ratio p(n)/n — 7 > 0. Also, q is allowed to diverge.

o The design matriz X is generated as X = ZX'? for an n x p matriz Z with i.i.d.
sub-Gaussian entries satisfying E[Z;;] = 0, Var [Z;;] = 1, and || Zij||y, < Co for all
1<i<nand1<j <p.

e The eigenvalues of the p X p positive semidefinite covariance matriz 3 are assumed
to have uniformly bounded eigenvalues: 0 < C" < X\;(X) < C for 1 < j < p, where
C" and C are uniform over all instances of n.

o The spectral distribution Fs of 3 converges to a limit probability distribution H sup-

ported on [0,00), which is referred to as the population spectral distribution (PSD).

ASSUMPTION 3.2.5. The random coefficient matriz B is assumed to satisfy B ~ N (0, %Ip ®

), where ||y| is uniformly bounded, and p* = tr(2y)/q is fized over all instances of n.

ASSUMPTION 3.2.6. The random noise matriz E is assumed to satisfy E ~ N (0,1, @ X.),

where || X.|| is uniformly bounded, and o* = tr(3.)/q is fived over all instances of n.

Here we assume the spectral distribution of the predictor for the covariance matrix X has

a limiting distribution, which is commonly assumed in the literature of high-dimensional
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statistics, e.g., in the analysis of asymptotic risks for ridge regression [10]. This assump-
tion facilitates the asymptotic analysis of (p?, 52), particularly for the heteroskedastic cases.
Specifically, based on some basic results in random matrix theory [30, 34], the spectral
distribution of S,, = %X TX, denoted by Fg,, converges weakly to some limiting empirical
spectral distribution F', supported on [0, 0o) with probability one. An important consequence

is that for £k = 1,2, ..

*)

1 o0
(3.10) e = ;tr (SF) = gn :—/ *dF(1).
l

=0
We are now ready to introduce our asymptotic distribution results for (52, 62) under the

above assumptions for the homoskedastic cases.

THEOREM 3.2.2. Under Assumptions 3.2.4, 3.2.5 and 3.2.06, we have
5.2 _ 0.2
nt/2y-1/2 = N(0, L),
pm=p

where the 2 X 2 symmitric matrix V' is defined by

Vig= ———— (262 = 2702,) |21 + (46295 — 4g,62) tr (.2
11 (92 — 79222 (( 92 7'9192) [P +( 9193 9192) I ( b)
2., 2, 4 )
z ZPg— = >
+ (792 + 919 7_919293) 13| 7
Vir = o ((2rgs — 2027 |52
(92 — 797)%q

and
= ((—279192 + 2726} IZell% + (—4g195 + 4g3) tr (X.2)
1

2 2
+ (—29193 ~ 9194 + 9293 + 29%93) HEbH%) :
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Recall that gy.’s are defined in (3.10). Consequently, we have
n2(#* —r?) /o, = N(0,1),
where
(3.11) o = p*/(0* + o) Vir + 0!/ (p* + 07)Vay — 20%0° [ (p* + 07)Via.

REMARK 3.2.5. Similar to the fized effects case, to apply Theorem 3.2.2 and construct a
confidence interval for the true SNR 12, we estimate the quantities g using their empirical
counterparts i as defined in (3.10). The covariance matrices Xy, and X, are estimated using

the method-of-moments estimators given in (3.5) and (3.6), respectively.

3.2.2.1. Extension to Heteroskedastic Random Effects Models. In this section, we address
the problem of estimating the SNR in multivariate linear models in the presence of het-
eroskedasticity. Specifically, we extend the previous random effects model to accommodate
heterogeneous Gaussian noise, where e; N (0,%;) for i = 1,...,n. In other words, each
observation has an individual noise covariance ;. Note that this general heteroskedastic

model effectively encompasses several non-Gaussian noise settings.

e Consider the heavy-tailed multivariate noise model e; = ;€;, where €; ik N(0,%,),
and &’s are i.i.d. heavy-tailed random variables with E[¢2] = 1. This model in-
cludes some commonly-used multivariate heavy-tailed models, such as multivariate
Student-t distributions. Conditional on the values of &;’s, we have e; ~ N'(0,£23,),
which is a specific case of our heterogeneous Gaussian noise model.

e Consider the Gaussian mixture model e; "< M 6 N(0,2%). Conditional on
the group labels, there holds e; ~ N (0, X% ), where m is the group label of the i-th
observation.

e Combine the above two cases together, our generic heterogeneous model also cov-
ers some mixtures of multivariate heavy-tailed distributions, such as mutivariate

Student-t mixture models. In this case, conditional on the labels and heavy-tailed
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scalar random variables, we have e; ~ N(0,£2X* ), where m is the label of ¢ and ¢;

is defined the same as above.

The SNR under the homoskedastic multivariate random effects model given in Section 3.1 can
be naturally extended to the heteroskedastic case. First, define the average noise covariance
as ¥, = £33, Denote p* = tr(3)/q and o = tr(X.)/q, we define the SNR as
12 = p?/(p*+0?) = tr(%,)/ tr(Xp+X.). We consider the same method-of-moments estimator
of the SNR defined in (3.5), (3.6) and (3.7). In order to establish the asymptotic result
under the above heteroskedastic setting, we replace Assumption 3.2.6 with the following

assumption.

ASSUMPTION 3.2.7. Assume E = [ey,...,e,]" € R™P where e; ~ N(0,%;) fori=1,...,n
and X; = (05 k1) 1<ki<q € R Assume maxi<i<p || 2] is uniformly bounded over all in-

stances. In addition, we make the following notations

o Ay =diag(oy g, - o) € RV 1<k 1 <gq;
® Ty = %(quz +tonm);

o X, = 1B+ +20) = (Fr)ickicys

® Ky = %Z?ﬂ (Oigl — Ekl)z;

® Kot = Zlgk,lgq Kkl-

Theorem 3.2.2 is then generalized to the following result for the heteroskedastic random

effects models.

THEOREM 3.2.3. Under Assumptions 3.2.4, 3.2.5 and 3.2.7, we have

6.2 _ 0.2
n'Py oLz — N(0, Ip),
p* =P’
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where Vis and Voo are the same as those in Theorem 3.2.2 by replacing 3. with Ee, while

(3.12) Vin = — (203 — 2797 92) IZell 7 + (203 + 27791 — 4793 92) Kot

(92 — 79%)%q

— 2 2 4
(3.13) + (49195 — 49195) tr (B.5) + <;9§ + ;9%94 — ;919293) ”EbHQF) :

Here gi’s are defined in (3.10) and Ky is defined in Assumption 3.2.7. Again, we have
n'/2(72 — r?) /o, = N(0,1), where o, has the same form as in (3.11) with the new Vi,

defined above.

REMARK 3.2.6. (Heteroskedasticity) When X, is replaced by 3., the expression for Viy in
Theorem 3.2.3 includes an additional term, (293 + 2729} — ATg%gs) Kior, compared to that in
Theorem 3.2.2. In the homogeneous noise case, we have ki = 0, in which case Theo-

rem 3.2.3 reduces exactly to the result in Theorem 3.2.2.

REMARK 3.2.7. (Inference) Similar to Remark 3.2.5, to construct a confidence interval for
r?, we estimate the standard error by plugging n, p, q, G, %e, f]b, and the estimated variance
components (62, p?) into the asymptotic variance formula of 7. An additional parameter re-
quired for standard error estimation is kioy. Although this quantity is difficult to estimate for
general heteroskedasticity, it is estimable under certain structured noise models. In partic-

ular, we propose consistent estimators of kit for both the scalar heterogeneity noise model

and the subgroup noise model. Details are given in Section 3.5.2.

To justify the asymptotic inference based on plugging . and ib into the asymptotic variance
formula of 72, we establish the operator norm consistency of these two covariance matrix

estimators under additional conditions on q.

THEOREM 3.2.4. Under Assumptions 3.2.4, 3.2.5 and 3.2.7, assuming further that ¢ = o(n),

we have

=op(1), and Hib—EbH =op(1),

where 8y and B, are estimated as in (3.5) and (3.6), respectively.
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REMARK 3.2.8. In the above result, requiring ¢ = o(n) is equivalent to demanding that the
dimensionality of these covariance matrices grows strictly slower than the sample size. In
fact, under our framework, the plug-in estimators (%e, f]b) are within estimation error that
scales in Op(q/n), which vanishes in probability when q/n — 0. By contrast, the asymptotic

normality in Theorem 3.2.3 does not require the condition ¢ = o(n).

3.3. Simulations

In this section, we aim to demonstrate the empirical properties of 72 and its uncertainty
quantification under both fixed effects and random effects models, based on the asymptotic
results established in Theorems 3.2.1, 3.2.2 and 3.2.3. All computations are carried out on

an Intel Xeon 72-core CPU server.

3.3.1. Fixed Effects Models. To estimate the standard error of #2 given in Theorem
3.2.1, we need to estimate W, X, p* and o2, whose estimators are given in (3.2), (3.3) and
(3.4).

We consider the following two ways to generate the n x p design matrix X:
(1) The entries of X are i.i.d. standard Gaussian variables.
(2) (SNP design) The standardized genotype model proposed in [24]: First generate
f; ~ Unif[0.05,0.5] for j = 1,...,p independently. Then, generate a n X p matrix
U € {0,1,2}"? with independent entries, such that each entry in the j-th column
follows a discrete distribution over {0,1,2} with assigned probabilities (1 — f;)?,
2f; (1 - f;) and fj2, respectively. Finally, the n x p matrix X is generated by

standardizing each column of U.
We also consider two different cases for the coefficient matrix B:

(1) (Sparse Case) We generate B based on B;; o 0.8/,
(2) (Dense Case) We generate B from the distribution A/(0, %Ip ® ), where ¥), =
(0b.ij)qxg = (0.8 .. We then rescale B to ensure that p? fixed. We keep this

B fixed across all 500 Monte Carlo simulations.
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The noise matrix is generated based on (X.);; oc T/2(0.5/=71) . T2 where the diagonal
matrix T' consists of diagonal entries being a random permutation of (1,279 ... ¢=%9).

In all simulation settings, we fix p> = tr(B'B)/q = 1 and ¢* = tr(X.)/q = 0.5, which
implies a true signal-to-noise ratio of 7> = 0.667. We conduct separate simulations for
sparse and dense coefficient matrices B, varying the sample size n from 200 to 5000 and
the dimension p from 100 to 1000, while keeping ¢ = 20 fixed. The results are reported in
Table 3.1 and Table 3.2. For each configuration, we perform 500 Monte Carlo replications.
The simulation results demonstrate that the estimator 72, defined in (3.8), is consistent
and that the nominal 95% confidence intervals achieve satisfactory coverage of the true r?
value when n is sufficiently large and n and p grow proportionally. Furthermore, although
the theoretical guarantees in Theorem 3.2.1 assume a standard Gaussian design for X, the
estimator also performs well when the entries of X follow an SNP-like distribution. These

findings suggest that it may be possible to extend our theoretical framework to accommodate

sub-Gaussian design matrices.

3.3.2. Random Effects Models. For our simulations under the random effects models
with either homoskedastic or heteroskedastic noise, the design matrix X is generated as
X = ZXY?, where the n x p matrix Z either follows the previously mentioned SNP design
or has i.i.d. standardized t; entries. We always set X = (o) = (0.5/""7)p x p. The random
coefficient matrix B is generated with covariance X, = (0.8/71) ...

The above setting implies that p? = tr(X;)/¢ = 1. In all subsequent noise generation settings,
we fix 02 = 0.5, which further implies 2 = 0.667. Simulated experiments are conducted for
various values of n and p, as shown in Tables 3.3, 3.4, and 3.5, with ¢ = 20 held fixed. For
each simulation configuration, we perform 500 Monte Carlo replications.

In following three subsections, we will present results of homogeneity model, scalar hetero-
geneity and subgroup models, and details of estimating the asymptotic variance of 72 as
in (3.11) and (3.12), especially the estimator of ky in scalar heterogeneity and subgroup

models.
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TABLE 3.1. SNR estimation under fixed effects model and sparse B. We fix
g = 20. The columns provide: (1) the sample size n and dimension p for
each setting, (2) the average of SNR estimates 7%, (3) the empirical standard
error of 7%, (4) the average of estimated standard errors of 7%, and (5) the
coverage probability of the nominal 95% confidence intervals for r2. Results
are shown for the design matrix generated using standard Gaussian and SNP
distributions across various n and p configurations.

Emp.se  Ave.se
n,p Mean (10-2) (10-2) Coverage

Gaussian 200,100  0.663 6.80 7.20 96.8%
400,100  0.664 4.80 4.71 94.2%

100,1000  0.654 23.9 25.5 97.4%
500,1000  0.665 5.82 6.07 95.6%
1000,1000 0.667 3.67 3.60 96.0%
2000,1000 0.667 2.15 2.26 95.2%
5000,1000 0.666 1.27 1.31 94.2%

SNP 200,100  0.650 6.78 7.16 95.2%
400,100  0.657 4.36 4.70 96.6%

100,1000  0.597 25.3 254 95.2%

500,1000  0.654 6.07 6.06 94.4%
1000,1000 0.662 3.54 3.59 95.4%
2000,1000 0.667 2.15 2.26 96.6%
5000,1000 0.667 1.19 1.31 96.4%

TABLE 3.2. SNR estimation under fixed effects model and dense B.

Emp.se  Ave.se
n,p Mean (10-2) (10-2) Coverage

Gaussian 200,100  0.642 5.47 5.51 94.4%
400,100  0.668 3.12 3.12 95.6%

100,1000  0.653 20.0 19.9 95.6%
200,1000  0.666 4.31 4.43 95.4%
1000,1000 0.668 2.46 2.57 96.4%
2000,1000 0.666 1.52 1.58 96.4%
5000,1000 0.666  0.944 0.903 93.8%

SNP 200,100  0.653 4.36 491 96.6%
400,100  0.669 297 3.10 95.0%

100,1000  0.608 19.0 19.8 94.2%

500,1000  0.662 4.37 4.44 96.2%
1000,1000 0.663 2.54 2.56 95.4%
2000,1000 0.665 1.65 1.58 95.0%

5000,1000 0.667  0.937 0.905 93.6%
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3.3.2.1. Homoskedastic Random FEffects Models. In the homoskedastic random effects
models, the noise is generated in essentially the same way as in Section 3.3.1, with an
additional scaling to ensure that ¢ = tr(X.)/q = 0.5.
Table 3.3 evaluates the performance of the SNR estimator 72 under the random effects model
with homogeneous noise for design matrices drawn from SNP and ¢, distributions. Across all
(n,p) configurations, the average 2 is nearly unbiased (maximum deviation < 0.005). The
empirical standard error of 72 contracts from approximately 0.051 at (200, 100) to 0.010 at
(5000, 1000), closely matching the average estimated standard error in every setting. Nominal
95% confidence intervals achieve coverage between 95.0% and 96.2% for SNP designs, and
between 93.2% and 96.8% for t; designs, with slight undercoverage (=~ 94%) only at the

largest sample sizes under heavy-tailed covariates.

TABLE 3.3. SNR estimation under random effects model with homogeneous
noise.

Emp.se  Ave.se
n,p Mean (10-2) (10-2) Coverage

SNP 200,100 0.662 5.10 5.45 96.0%
400,100  0.665 3.54 3.66 96.2%
500,1000  0.663 4.26 4.44 95.2 %
1000,1000 0.666 2.54 2.60 95.4%

2000,1000 0.666 1.63 1.64 95.0%
5000,1000 0.666 1.01 1.01 95.4%

7 200,100  0.665 6.90 7.83 96.8%
400,100  0.666 5.96 6.29 95.6%
500,1000  0.663 4.72 4.45 94.4 %
1000,1000 0.667 2.94 2.99 95.2%
2000,1000 0.665 2.24 2.22 93.2%
5000,1000 0.666 1.80 1.74 93.8%

3.3.2.2. Scalar Heterogeneity Model. Recall that in the heteroskedastic cases, we assume
the individual noise satisfies e; ~ N (0, X;) fori = 1,...,n. However, it is difficult or perhaps
impossible to estimate k;,; for such a generic setting of heterogeneity. Here we consider a

particular case, where there is a simple moment estimator for k;,. On the other hand, this
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particular model of heterogeneity is related to some important examples of non-Gaussian
noise, such as multivariate ¢-distributions.

In the scalar heterogeneity model, we assume that the individual noise covariance matrices
satisfy ¥; = v;3,, where X, = (0k)1<ki<q 1S generated in the same way as before. Let
V, = diag(v1,va, ..., vy), where v; = 0|w;| and w; - N(0,9). The scaling factor 6 is chosen
such that tr(V,) = n, which implies that X, = ..

It turns out that the total degree heterogeneity has a simple form under this model. If we
denote the heteroskedasticity parameter as = % Sor (v — 1), straightforward calculation
yields kyp = Zlgmgq % S (viow — ow)? = n||Ze||7. Given X, = 3. can be estimated as
n (3.6), the estimation of k, reduces to the estimation of 7.

We now introduce an estimator of 1 based on a method of moments. It is easy to obtain

n

1 9 2
EZ(yfyi) |X] = (2||Ee||%+q204)(n+1)+n—p22||willélllzbl|%
=1

=1

E

4 T
+ " tr (XX'V,) tr(5,%.)

n

1
+WZH%H%Q%4+ tr (XX 'V,) ¢*c*p”.

From Lemma 3.5.0.1 in the Appendix, We actually have the approximation tr (X X TVn) =
tr (X X T), which implies the following method-of-moments estimator of heteroskedasticity
parameter 7

n

. 1 1
== (nZ(ylyz ——Zuwm AR

2Bl +q*0* \" =

(3.14) —nip tr (XXT) r(S,3,) Z zi|3g%p" — —tr (XX T) q202,62> 1.

Based on the proofs of Theorems 3.2.3 and 3.2.4, it is easy to show that under certain mild

assumptions, 77 is a consistent estimator of 1. Consequently, we estimate ki by Rior 1=

7lZe| 7
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Table 3.4 examines the SNR estimator 7% under the scalar heterogeneity model (with ¢ = 20),

2 remains essentially un-

using SNP and ¢; design matrices across varying (n,p). The mean 7
biased—ranging from 0.662 at (200, 100) to 0.666 at (5000, 1000) under SNP and similarly
under t;. The empirical standard error of 72 decreases from about 0.050 at (200, 100) to
approximately 0.018 at (5000, 1000), and in each setting the average plug-in standard error
tracks the empirical value closely. Nominal 95% confidence intervals achieve coverage be-
tween 95.2% and 96.8% under SNP, and between 94.6% and 96.6% under ¢, with only minor
undercoverage (around 94%) in the largest heavy-tailed scenarios. In addition, relative to

Table 3.3, the empirical standard error under the scalar heterogeneity model is uniformly

larger, reflecting the extra heteroskedasticity contribution ki, identified in Remark 3.2.6.

TABLE 3.4. SNR estimation under scalar heterogeneity model.

Emp.se  Ave.se
n,p Mean (10-2) (10-2) Coverage

SNP 200,100 0.662 5.24 5.46 95.8%
400,100  0.664 3.57 3.67 96.2%
500,1000  0.664 4.30 4.43 95.2 %
1000,1000 0.666 2.50 2.60 95.4%
2000,1000 0.666 1.59 1.64 95.0%
5000,1000 0.666 1.00 1.00 95.2%

7 200,100  0.664 6.76 7.85 97.0%
400,100  0.663 5.62 6.28 96.8%
500,1000  0.662 0.473 4.45 93.8 %
1000,1000 0.666 2.83 2.99 95.6%
2000,1000 0.665 2.23 2.22 94.0%
5000,1000 0.666 1.81 1.74 94.0%

3.3.2.3. Subgroup Model. In the second example of heterogeneous noise, we assume that
all individuals fall into M distinct groups. Subgroup structures are very common in high-
dimensional data analysis. In genomic studies, for example, the environmental noise may
exhibit different covariance structures across different locations, based on which the individ-

uals can be grouped.
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To be specific, assume there are n,, individuals in the m-th group, which implies Z%zl Ny, =

n. The model in each group is represented as
Y™ =XM™B 4+ E™ form=1,.., M.

Moreover, in each subgroup, we assume the the noise satisfies the scalar heterogeneity model
discussed in Section 3.3.2.2, i.e. E™ ~ N(0, V™ g 2&’”’), with the corresponding hetero-
geneity parameter denoted as 7.

By denoting r,, = n,,/n, this model implies 3. = EM rmZg"’), and further

m=1

M M
ot = 3 1 [ 20 = S+ S ) |02
m=1 m=1

Note that in each subgroup, the relevant parameters can be estimated by the method for

the scalar heterogeneity model. Therefore, we get the estimator of x;, as

M
"%tot = Z T'm Higm) — Ee

m=

2
. .

9 M
5(m) H§;<m>
F+mzl7"mn ¢

We can also show the consistency of Ay, under certain mild assumptions including fixed
M and fixed r,, for m = 1,...,M. Here we omit the proof. Specifically, assume the
observations are evenly divided into M = 10 groups. For the m-th group, the noise matrix is
generated as E™ ~ N(0,I® EEm)), i.e., each group satisfies residual homoskedasticity. Set
»m = GI‘l/z(gbﬂ_j‘)quI‘l/Q, where T is generated in the same way as it in Section 3.3.2.2,
b Unif[0.2,0.6], and 6 is chosen such that 0% = tr(X.)/q = 0.5.

Table 3.5 evaluates the SNR estimator 72 under the subgroup heterogeneity model (with
q = 20), again comparing SNP and ¢; design matrices across various (n,p). The average 7
remains essentially unbiased in all regimes—deviations stay below 0.005, for instance from
0.664 at (2000, 100) to 0.666 at (20000, 1000) under SNP. Coverage of nominal 95% confidence
intervals lies between 94.0% and 96.6% under SNP, and between 93.4% and 95.6% under ¢,

with only slight undercoverage (around 94%) in the largest heavy-tailed configurations.
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TABLE 3.5. SNR estimation under subgroup model.

n,p Mean ]?ir(l)pés)e ‘?1%62‘;“ Coverage
SNP  2000,100 0.664 1.87 1.99 96.6%
4000,100  0.666 1.77 1.73 94.0%
10000,1000 0.666 0.772 0.758 94.0%
20000,1000 0.666 0.601 0.616 94.6%

7 2000,100  0.665 4.70 5.02 95.6%
4000,100  0.663 4.66 4.84 94.8%
10000,1000 0.666 1.66 1.57 93.4%
20000,1000 0.665 1.52 1.49 94.2%

3.3.3. Performance. In all the above data generation setups, we consistently have
p? =1 and 02 = 0.5, which means the true SNR is always set as r?> = 0.667. Simulated
experiments are carried out for various values of n and p as shown in Table 3.1 to 3.5, while
q = 20 is fixed. In every simulation configuration, we perform 500 Monte Carlo simulations.
We report the empirical means and standard errors of 72, the average estimated standard
errors based on the proposed methods given in Section 3.2, and the empirical coverage results
for the asymptotic 95% confidence intervals.
From our simulation results, we observe that 72 is in general a consistent estimator of the
true SNR. Further, the average estimated standard errors align with the empirical standard
errors over most configurations of n and p, unless p is much greater than n, such as n = 100
and p = 1000 in the Scalar Heterogeneity model. Similarly, the nominal 95% confidence

intervals exhibit desirable empirical properties for most cases.

3.4. Proof of Theorem 3.2.1

In this section, we give a proof for Theorem 3.2.1 and the proofs of Lemma 3.4.0.2 and Lemma
3.4.0.3 are deferred to the Appendix. Let § = (62, p%) and let S = (L tr(YTY), L tr(Y TXXTY)),
then § = AS where

ptn+l __n
(315) A _ q(n+1) q(n+1)
s =y
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It follows that cov(d) = Acov(S)AT. To compute the covariance of 62 and 2, we could

compute the covariance of S first, which will use the following lemma

LEMMA 3.4.0.1. Suppose that X is an n X p matriz with @d entris x;; ~ N(0,1), then
W = X" X is a Wishart(n, I,) random matriz. Let a, 3 € RP, then we have

(3.16)
E[a"WaB"Wa] =2n(a’8)* + n?| ol 8]

(3.17)
E[a'WaB W2 = (2n+ 2np + 4n?)(a’ B)* + (4n + n? + n?p + n?) || al?| 8]

E [a'W?aB"W?B] = (2np” + 10n°p + 8n® + 8np + 4n® 4 20n)(a' B)*

(3.18) + (n®p* + n* +2n°p + 2n%p + 2n® + 27n* + 8np + 10n) |||)?|| B>

The covariance result of S is given in the next lemma

LEMMA 3.4.0.2. We have

1 2 4 2
(3.19) Var (— tr(YTY)) =Z||B"B|% + = Z ol Bill* + = tr(X2).
n n n i1 n
Var (L (Y TXXTY) ) = 2 (£>2+9+£ r(22) + =L (%)
n? n \\n n 2 € n?
2 2 bp p* 4p 10 T on2
+E(4+E+g+—2 —2—|—ﬁ ||B B”F
2 (13 4p 5 A
+- (ngﬁJrﬁ) IBll%
2 p>  6p 6p 6 8 d 2 2
2+ T4+ L 42424 = 21 3;
+n( 2t P TR ) LAl
2 (4p 4 4
(3.20) —FE (_2_‘_5_‘__2) ||B||%wt (X.)
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1 2

1 2 (/1 p
Cov|=tr(Y'Y), =tr(Y' XX'Y))==3|—+=+2)||B'B|;+-|Bl;
oo (Y, N =2(Ee22) BB+ 2B
2
n

p
1
2 2 2
r2+2) DRI + LB ()

(3.21) + (tr(Ee))Q}

The detailed proof of Lemma 3.4.0.1 and Lemma 3.4.0.2 are shown in the Supplementary

A~

Material. Asymptotic result for the entries of cov(#) follow directly from Lemma 3.4.0.1 and

Lemma 3.4.0.2.
LEMMA 3.4.0.3.
R 2

p
+(2pn +2p+ 20+ 6) Y oR[IBl* + (20 + 2p + 2) | B[ tr(S.)

=1

+(n®+np+2n+p+1)tr(E2) +ptr’(B)}

2
A2\ 2 T 2 4
Var(p?) = RSV {(4n* + np+2n+2p+10) | B' B||% + (13n+5) | B||

p
+(20% + 2pn+ 6n +2p+8) > o [IBi[1” + (4n + 2p + 4) || B[ tr(.)

i=1

+(pn +p) tr(22) + ptr?(Se) }

o . 2

p
+ (2np + 2n + 2p + 6) Z o||Bill* + (3n 4+ 2p + 3) | B||F tr(X)
i=1

+ (pn+ p) tx(E2) + ptr* (Xe) }
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By the assumption that p(n)/n — 7, we can have the asymptotic approximation

{2+O( )

P+ 1 } {(n +np) | B'B||% 4 2pntr (8B B) + (n* +np) tr(X2)},

Var(6?) =
Var(p®) = {2(225 2)73 {(4n® +np) | B' B3 + (20 + 2pn) tr (S B B) +pntr(22)}

(3.22)

Cov(62, p*) = {2(225 2)n} {(2n* + np) | B"B|% + 2nptr (2.B'B) +pntr(X2)} .

By a similar argument used to prove Theorem 1 in [7], we can know that the asymptotic
behavior of the upper bound of the total variation distance dry (h(S), w) where h : R — Risa
function with continuous second order partial derivatives, S = (n ' tr(Y'Y),n 2 tr(Y T XX 'Y))
and w is the standard normal variable, is determined by the function h. For the function

h considered in this paper, similar to [7], when p(n)/n — 7 we can have dry(h(S),w) =
O(n=1/?%).

Therefore, by (3.22) and the asymptotic normality, Theorem 3.2.1 is proved.

3.5. Proof of Theorem 3.2.2

In this section, We give important lemmas used in this paper and the proof of Theorem
3.2.3. The proofs of these key lemmas are deferred to [28]. Note that Theorem 3.2.2 is a

direct corollary of Theorem 3.2.3, so we omit its proof.

3.5.1. Supporting Lemmas. To dicuss the cases with heteroskedastic noise, we denote
T, = diag(vy,...,v,) as a n x n diagonal matrix, where all v;’s are assumed to be positive

and maxjy<i<n Vi = 0(1) Denote

where 7 = % >, vi. We further assume that « is fixed. Then we introduce the key lemma

that will be used repeatedly in the proof of Theorem 3.2.3.
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LEMMA 3.5.0.1. Under Assumption 5.2./, we have

(1)

s o((evn)) (b)) - (o) -
(2)

s een) () <o ((3)
(3)

(3.25) %tr ((%XXT)an> - Ztr ((%XXT)k> =0, (%) , for k=23

~

Then as far as the consistency of method-of-moments estimators gb and X, is concerned,

we need the following Lemmas (Lemma 3.5.0.2 to Lemma 3.5.0.3) to prove Theorem 3.2.4.

LEMMA 3.5.0.2. Under Assumptions 3.2.4, 3.2.5 and 3.2.7, there hold

1 - 1
E [—YTY|X] =3, + —tr(S,) X,
n p

1<k,<q

1 1
E {EYTXXTY|X] = — (tr (XX Ap))

n2

1
ot (82) =,

Recall that Ay, = diag(oy g, -+, 0np) as defined in Assumption 3.2.7.

LEMMA 3.5.0.3. Under Assumption 3.2./, we have

E E r(S2) — niptrQ(Sn)} _ %u(z?) +0 (%) ,

and




With probability at least 1 — c¢(n* + p*)/n?,

1 1
—tr(S?) — —tr¥(S,) > C.
_r(S) = = 0%(S,)

3.5.2. Proof of Theorem 3.2.2. By definition, 52 and p? are linear combinations of

tr (YTY) and tr (YTX X TY). Therefore we first aim to introduce asymptotic results on

tr (YTY) and tr (YTXXTY). We define the block matrix A = (Ay)1<ki<4 With
(3-26) Ay = diag(al,kla T ,Un,kz)

where (X;); = o;x. This definition implies that vec(E) ~ N(0,A). By vec(B) ~
N0, %Ip ® ), there exist some z ~ N(0, Iy(,4y) such that

vec(B) \%22/2 ®I, 0
= z;

vec(E) 0 Al/?

We have
tr (YY) = 2'Q:2, where z ~ N(0, I(n4p)),

and

0. - » el 0| [LeX'X LLeXT| |5 0L, 0
L=

0 AV [ LLeXx Lol 0 AV
izb ® XTX \/Lﬁ (E;/Q ® XT> A1/2
LAV (2@ X) A

Similarly we have

tr (YTXXTY) =2'Qyz, where z~ N(0, Iynip)),
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and

£ e, 0| | JLeXXP SLeoX XX |8 el 0

Q> =
0 AP Lo XXTX IeXX' 0 A2
[ 2 1/2
- 15, ® (XTX) L (Z e XTXXT) A

1/2
A (e XXTX) AV (I©XXT)AV

Conditional Mean Analysis. To get the conditional mean of tr (Y 'Y) and tr (Y T XX TY),

we will introduce the useful lemma:

LEMMA 3.5.0.4 (Lemma S8 in [9]). Let z € R? be a random vector with i.i.d. entries with
finite fourth moments satisfying E[z;] = 0 and varlz] = 1, and let € = X%z for a fived

positive definite matriz 3. Assume A € RP*P to be a fized symmetric matriz. We have
E[z'Az] = tr(AX),

p

E[(z'Az)’] = (E[z]] - 3) ) (Z'/2AD'?)} 4+ 2tr(AZAS) + tr°(AX),

)
=1

and

p
var(z" Az) = (E[z]] - 3) Y (Z/2AD'?)} 4+ 2tr(ATAY).

=1

Here (B2 AXY/?),; is the i-th diagonal entry of /2 AXY2,

By Lemma 3.5.0.4 we can have

E[tr(Y'Y)|X]=tr(Q)=tr (%Eb ® XTX) +tr(A) = %tr (X" X) qp* + ngo?,
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and
Eftr (V' XX'Y|X)]
=tr(Q2) = tr (%zb ® (XTX)Q) +tr (AY? (I, XX T) AY?).
By properties of Kronecker product and the definition of p?, we have that

1 T v 2 *lr T w2 2
tr(};Eb@(X X) ) L (XTXP) ap

By the fact
ZAkk diag (tr(3%1), ..., tr(Xy)) ,

we have that

tr (AY? (I, ® XX ) A'?)

=tr (I, XXT)A)
XX"Ay - XXTAlq
=tr :
XXTAql XXTAqq
q
= tI(XXTAkk)
k=1

= tr (XXTDn) qo?
where D,, = diag (tr(2,), ..., tr(X,)) /(go?). Therefore

Eltr(Y'XX'Y|X)] = %tr (XTX)*) qp* + tr (XX " D,) qo?
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In fact, since 62, and p* are taking linear combination of tr (YY) and tr (YT XX 'Y,

the corresponding conditional expectation follows as

1 1 1 1 1
E o2 X| = 2 _ _ = _XXTD 2
[0 X] =0+ %tr(S%) — niptrz(Sn)ptr(Sn) (n tr(.S,) ntr(n n)) o
E [p*|X] = p* + ! ltr(s ) — lt]r( XX'D,)
%tr(Sﬁ) — niptrz(Sn) n )

By (3.10), we have

1 1 1
—t1(S,) = 0,(1) and =tr(S?) — —tr*(S,) = O,(1).
5 () = Op(1) 5 1(80) = o t7(Sn) = Op(1)

Combining Lemma 3.5.0.1, we have

E[62X] = 0% + 0,(2)
(3.27)

E[p*|X] = p* + Oy(3).

Conditional Variance Analysis. Denote
D, = diag (tr(21 %), ..., tr(2, %)) / tr (T

and X, = (0pk)1<ki1<q- For the conditional variance, based on Lemma 3.5.0.4, since Q; is

symmetric, we have
var (tr (YY) |X) = 2tr (QF) =2 Q|5 -
By the form of @, we have that

2
Ell;/2 ®XT> A1/2

1
Q2 H + H—
P= il ,
2
A1/2 1/2 ®X + ||A||2 ‘
o e x)| viar
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By the property of Kronecker product, we have

= L (XTX)) (52

1
H—2b®XTX
p F p

By the definition of A, we have

2

|2 (s xy
p

F

1
=—tr((Zy®@XX")A)

p

ZZ:I O'b’lkXXTAkl *

= —tr

p

* Z%:l O-b,quXTAkq

1 T
=—tr| XX Z O—b,lkAkl

p 1<k,l<q

~ Ly (XXTD,) tr (5e3).
p

The last line is due to the fact that

> onrAn = diag (tr(S1 %), ..., tr(Z, %)) -

1<k,l<q

We have

A% = En:tr (%) =ntr (Ei) +n Z Kki-
i=1

1<k,l<q

Due to

2 2

bl

H% (E;/Q ®XT) AL/2 )

1
- | (e x)

F
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we have

var (tr (YY) |X)
(3.28)
= 2 (XTX)?) 1 (32) + %tr (XXTD, ) tr (5em) + 2ntr (50) +20 Y ke

p 1<k,1<q

Based on Lemma 3.5.0.4, since Q5 is symmetric, we have
var (tr (YT XXTY) | X) =2t (Q3) =2Q: %
By the form of @2, we have

2
1Qu 2 = H l5 o (XTX) S e XTXXT) AV

e

F
2
H A2 (2 XXTX) + A2 (I, @ XXT) AV
VP F
By the property of Kronecker product, we have
1 Ty )2 ’ 1 T x4 2
-3, (X'X)'|| =5t (X' X)) tr (%) .
p r D

2
It is similar with the part of H\/Lﬁ (E;ﬂ ® XT) AY2||" | to show that
F

2
22 XTXXT> A2

1
|5
_ ]%tr ((ze (xx7)) A)

F

_ %tr ((XXT)3 Dn> tr (Eezb) .
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Due to the form of the matrix ((Iq ® XXT) A)2 and Ay = Ay, we have

||A1/2

o

=tr

Lo XXT) A2}

(
(I ® XX ") A)*)

ZZ:l XXTAIkXXTAkl *

*x Zzzl XXTAquXTAkq

Since
2
_A1/2 <Ei/2®XXTX> 7

F

F

we have

var (tr (Y'XX'Y) |X)

_ 2y (XTX)Y) tr () + %tr ((XXT)3Dn> tr (Z.Xy)

p2
(3.29) +2 > tr (X TAuX)?).

1<k,1<q

For the covariance term, we use the following lemma:

LEMMA 3.5.0.5. Let * € R* and y € R! be two independent random vectors satisfying
x ~N(0,%,) and y ~ N(0,%,). Let Ay, By € R** and Ay, By € R be fized matrices.
Then we have

cov(x' Ajz,x' Bizx) = 2tr(A, 2, B, X,)

and

cov(xz' Apy, z" Boy) = tr(2, 423, B, ).
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By Lemma 3.5.0.5 in the appendix, we have that
cov (tr (YY), tr(Y ' XX'Y) | X) =2tr (Q:1Q>).
By the form of Q; and Q-, we have
tr(Q1Q,) = ]%22 ®(XTx)" + }9 (2;/2 ® XT) A (2;/2 ® XXTX)
i %Al/Q (22/2 2 XT) (E;m 2 XXTX> AL/2 4 A3/ (I, ® XXT) AL/2

By the property of Kronecker product, we have

]%25 ®(XTX) = Z%tr (XTX)?) tr(22).

2
It is similar with the part of H\%} (E;ﬂ ® XT> Al/QH , to show that
F
1
tr (- (= exT)A(z) e XXTX>)
p
1 T\ 2
— (Do (XX7)’) A)
p
1 - _
= (XXT)' D, ) tr (5e%).
p
Since Ak:l = Alk: and

Z A3, = diag tr(E ), - ,tr(Ei)),

1<k,l1<q
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we have
tr (A*? (I, @ XX ) A'?)
=tr ((I,® XX ) A?)

XXT 2221 Alk:Akl *

* XX > ket AgpAig

= tr (XX " diag (tr(2}), ..., tr(X2))) -
By the fact that

1
tr (- (= exT)A (2 e XXTX>>
p

1
~tr (—AW (2;/2 ® XT> (2;/2 ® XXTX> AW) ,

p
we have
cov (tr (Y'Y),tr (Y XX'Y) |X)
2 T 3) tp(32 ‘_1 r T\2 77 r (s
=S (XTX)*)t <2b)+pt ((XX >Dn)t (Ze2s)
(3.30) +2tr (XX ' diag (tr(Z7), ..., tr(X2))) -

Let wy, ws be tr (YTY) ,tr (YTXXTY) after being centered and standardized, defined as

1 1
wy, = n1/2q (ZTle — tI‘(Ql)) and Wy = n3/2q (ZTQQZ — tI‘(Qg)) .
and denote w = (w;,wy)". Combining equation (3.28) and Leave-One-Out analysis in

Lemma 3.5.0.1, under Assumptions 3.2.4, 3.2.5, and 3.2.7, one could approximate traces
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containing D, and Ay to obtain approximation on var (w;|X) as

var (wq] X)) = % tr ((X'X)%) tr (Z}) + iz tr (X7 X) tr (Z.%)

np-q npq
2
+ — tr ( > Z Kil + op
q 1<k 1<q

Based on (3.10), as p/n — 7, we have
p 4 _ 9 p »
(3.31)  var (w|X) — <T—q2g2|yzb\|§ At (Tex) + ?Hzeufp +5 Y Hk,> = 0.
1<k,<q

By (3.29) and Leave-One-Out analysis in Lemma 3.5.0.1, under Assumptions 3.2.4, 3.2.5,

and 3.2.7, it is similar to have

var (wq] X) = PR tr ((XTX)Y) tr (23) + ez r (XX tr (%)
+ nf Str ((XTX)?) tr (2 ) + it 2(XTX) ) kutol
q 1<k,l<q

Based on (3.10), as p/n — 7, we have
(3.32)

2 4 2 2 »
var (wz| X') — (T—q294||2b||% + 2% tr (3e3) + ?792”2@”% + ?729% > kal) — 0.

1<k,l<q

By (3.30) and Leave-One-Out analysis in Lemma 3.5.0.1, under Assumptions 3.2.4, 3.2.5,

and 3.2.7, one could approximate cov (w, wy| X)) by

cov (wy, wy| X)) =
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Based on (3.10), as p/n — T, we have
(3.33)

2 4 — 2 2 »
COoVv (wl,wg\X) — (T—ngg”EbH%—v + ?gg tr (EeEb) + ?TngEeH%‘ + ?Tgl Z /ikl> = 0.

1<k,l<q

Asymptotic Distribution. By the definition of A, one could obtain that A and diag(Xy, ..., %)

are similar. Due to the assumption that maxi<;<, [|2;|l2 = O(1), we have
[A]l2 < max [|X]l2 = O(1).
1<i<n

Then we introduce the following lemma:

LEMMA 3.5.0.6 (Theorem 6.5 in [42]). Let X be an n X p matriz whose rows x; are i.i.d.
sub-gaussian random vectors in R", |z;|,, = C, and cov(z;) = 3. There are universal

constants {c;}3_y such that, the sample covariance matriz S, = LXTX satisfies the bounds

P (é IS, — || > ¢ (\/E—l— 2) + 5) < ¢y exp{—csnmin{d, 6°}}, V> 0.
n n

LEMMA 3.5.0.7 (Theorem 6.6.1 in [38]). Let Xi,..., X, be mean-zero, symmetric, d x d

random matrices such that || X;|| < C almost surely for alli € {1,...,n}. Then for allt >0,

n _tg
]P’{ > x| = t} < 2dexp{m},

i=1
where o = |31 | E[X?]|| is the norm of the matriz variance of the sum.

Therefore by Lemma 3.5.0.6 and the assumption ||X||s = O(1), we have

1 1/2 1
@l < 1/2 (20 + 1arey) (H—XTX\H 1/2HXH+1)

2 . 1
< e (1=l I (XX + 200 +1) = O ().
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The second line is due to Cauchy-Schwarz inequality. It is simlar to have that
1
W”Qz”

ez (i) (e x| + 5

XXX + HXTXH)

vz (=l 10 (o] +

n
1
=Or (n”?q) '

Then we introduce the following lemma to establish the normality:

XXX + ||XTX\|>

1/2

LEMMA 3.5.0.8 ( [9]). Let (1,...,(q be i.i.d sub-Gaussian random wvariables with mean 0,
variance 1, and sub-Gaussian parameter bounded by Cy. Let ¢ = ((1,...,¢a)" and Qy be
an d x d positive semidefinite matriz, for k = 1,..., K. Define wy = (' Q¢ — tr(Qy), and
w = (wy,..,wg) . Let z ~ N(0,Ig) and V = cov(w). There is an absolute constant

0 < C; < oo such that

[E[f(w)] — E[f(V'22)]| <Ci(Co+ 1)PK*2d"2|fls( max [|Qul)’

-----

.....

for all three-times differentiable functions f : R — R.

By Lemma 3.5.0.8, for all three-times differentiable functions f : R?> — R, and U, =

cov(w|X) € R*?, we have
E[f(w)|X] ~ E [f(U20) X]|
< G+ 12 aln + )1l (max { -, n%%uczgu})Q
+Ci(Co+ 1 Patn -+ )l (max { @, ng%qnczgu})g

(3.34) — 0p (711/2;@/2) — op(1).
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where t ~ N (0, I,). Based on former calculations on cov(w|X) in equations (3.31), (3.32)
and (3.33), we have U, ;; — Umj 5 0, where
- 2 4 — 2 = 2
Uni1 = =502/ Z6ll7 + 501t (BeZ) + S 1Zell7 + 5 Z Kkl
Tq q q q 1<k1<q

- 2 4 — 2 — 2
Unpz = =593l Z6ll5 + S 92t0 (BeZ) + 5701127 + 5701 Z Kkl
Tq q q 1<k1<q

i 2 4 — 2 2
UMWZEwm&ﬁﬁgwﬁﬂﬂﬁo+?ﬂmmﬂé+3#ﬁ > k.

1<k,l<q

Denote ®(¢, s) as the c.d.f. of N(0, I). Based on the expressions (3.31), (3.32) and (3.33), as
well as Assumptions 2.1 and 2.4, we can see U, satisfies ||U,|| = Op(1) and |U, || = Op(1).
In fact, Assumption 2.1 guarantees gogs — g3, ¢193 — g5 and go — g3 are lower bounded
by quantities determined by the limit spectral distribution H of the predictor population
covariance matrix and the aspect ratio 7. Also, the boundedness of ||3;|| for i = 1,...,n

actually implies -, o, 51 = O(q). Therefore by (3.34), we have
P{Uglﬂw € (—00,t] X (—o0, s]| X } 5 (t, 5).
By DCT,
U, *w = N(0,L,).
By Slutsky Theorem, we have

U;Vw = N(0, L).
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By definition, 5% and p? are linear combinations of tr (YTY) and tr (YTX X TY). Com-

bining the forms of wy, ws, we have

% — E[0?| X]
p° — E[p*|X]
1 Lgp(S? —Ltr(S, w
— n*l/? (1 tr(sfb) . itrQ(Sn)) P ( n) P ( ) 1
p np —+ tr(S?) 1 W

Combining with (3.27), by equation (3.10) and Slutsky Theorem we obtain the asymptotic

distribution for 2 and p? as following:

g g
nt/2v-1/2 = N(0, I).

T

where

;

Vol = m ((293 - 279%92) ||§eHQF + (29% + 2729% - 47'9%92) Z1§k,lgq Kk

+ (49395 — 4g193) tr (BeZ) + (205 + 20794 — 2019293) | Z|3)

Vn,22 = ﬁ ((27’92 — 2T2g%> ||§€H% + (4T2g% + 4g3 — 8Tglg2) tr (Eezb)

92—79%7)%¢>
+ (279792 + 291 — 49193) | Zo|%:)

Vaie = Vior = . ErE ((—27'9192 +27263) || 2e]|% + (—4g195 + 493) tr (Eezb)

(92—793

\ + (—29193 - %9194 + %9293 + 29%93) ”ZbH%) :
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CHAPTER 4

Conclusion and Discussion

This dissertation focuses on signal-to-noise ratio (SNR) estimation in high-dimensional linear
models, covering both the univariate and multivariate cases. In Chapter 2, we study high-
dimensional linear models with heteroscedastic and correlated noise (model (2.1)). We derive
consistency and asymptotic distributions for the REML estimator of the SNR under a general
fixed coefficient vector, without assuming i.i.d. Gaussian priors, and in the presence of
heteroscedastic and correlated errors. These theoretical findings are supported by extensive
numerical simulations.

In Chapter 3, we consider the multiple-response high-dimensional linear model (3.1) under
both fixed and random effects settings. For the random effects model, we further extend
our framework to accommodate residual heteroskedasticity. We propose definitions of SNR
tailored to each model and establish the asymptotic distributions of the corresponding es-
timators. We also show how to make inference about SNR and demonstrate the practical
validity of our methods through extensive simulations.

There remain several avenues for future work. For instance, the simulation results in Section
2.3 suggest that the symmetry (skew-free) assumption on the design matrix entries—crucial
for the main results in Section 2.2—might be relaxed. This assumption enabled the use of
double Rademacher sequences and a leave-k-out analysis to derive asymptotic properties by
dealing with conditional mean and variance. However, given that skewness may occur in
real high-dimensional data, it would be of practical and theoretical interest to extend our
analysis to designs with asymmetric distributions.

Another promising direction is the estimation of group-wise SNR in models with grouped

features, which is especially relevant in GWAS applications where genes can be grouped
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naturally (e.g., by chromosome; see [44]). While asymptotic analysis for mixed effects models
with feature groups has been studied in the literature [21], extending our misspecification
framework to this setting is nontrivial. As discussed in Section 2.5, we have made preliminary
progress, but technical challenges remain.

Chapter 3 also opens the door to exploring likelihood-based methods for SNR estimation
in multivariate random effects models. While maximum likelihood estimation (MLE) is
statistically efficient, it becomes computationally prohibitive as the response dimension ¢
increases, due to the O(g?) parameters involved in estimating X, and X.. Since our primary
interest lies in estimating the SNR, a full MLE approach may be unnecessarily expensive.
Pseudo-likelihood or profile-likelihood methods offer a promising alternative by avoiding
direct estimation of large covariance matrices.

Furthermore, in Chapter 3, we examine two specific random effects models with heteroskedas-
ticity, under which the asymptotic variance of 72 can be consistently estimated. Several open
questions arise in this context: Can we extend these results to more general heteroskedastic
settings? For the two specific models considered, are there improved variance estimators
beyond those we have proposed?

Lastly, while our theoretical results for the fixed effects model require the design matrix to
have i.i.d. Gaussian entries, simulation results in Section 3.3.1 suggest that this assumption
could potentially be relaxed. Investigating the theoretical implications of such robustness

would also be a valuable direction for future research.
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APPENDIX A

Supporting Proofs of Chapter 2

In the appendix we give detailed proofs of the technical lemmas that appear in Section 2.4. As
mentioned earlier, the proofs of Lemmas 2.4.1.1, 2.4.1.2, 2.4.1.3, 2.4.1.5 and 2.4.1.10 basically
follow the proof ideas in [24], but we provide self-contained proofs here for completeness.

Interested readers are recommended to read [24] for deeper insights.

A.1. Preliminaries

Let’s first recall the famous Marcenko-Pastur law in random matrix theory.

THEOREM A.1.1 (Marcenko-Pastur law, [39]). Let Z be an n x p random matriz whose
entries are i.i.d. random variables with mean 0 and variance 1 in which n/p — 7 € (0, 00)
as n,p — oo. Then the empirical spectral distribution (ESD) of S = p*ZZ", which is

defined as FS, converges almost surely (a.s.) in distribution to F,, whose p.d.f. is given by

N L U Ch V) =2 (b (7)) b(r) <@ < be(r)

0 elsewhere

where by (1) = (1 & /7)? and o(z) is a point mass 71 at the origin.

Note that in our settings, the entries of the design matrix are not necessarily identically

distributed. To this end, we consider the following extension of Marcenko-Pastur law.

THEOREM A.1.2 ( [2], Theorem 2.8). Let Z be an n x p random matriz whose entries are
independent random variables with mean 0 and variance 1. Assume that n/p — 7 € (0, 00)

and that for any 6 > 0,

1 (n)2
52an]E ['Zij | Lgzopssym| = 0-

i?j
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Then F%, defined as in Theorem A.1.1, tends almost surely to the Mar¢enko-Pastur law with

ratio index T.

COROLLARY A.1.1. Under the assumption of Theorem A.1.1 or A.1.2, for any integer [, we

have

1 s b4(7)
— trace(S') &% / o' f(x)dz as n,p— oo.
n b_(7)

Define the sub-Gaussian norm of a random variable ( as

€Tk, = Sgg{Q‘l/z(Elflq)l/Q}

A random variable ¢ is sub-Gaussian if and only if its sub-Gaussian norm ||(]|y, < co. We

have the following equivalent characterizations on the sub-Gaussianity of a random variable:

LEMMA A.1.2.1 ( [40], Lemma 5.5). A random variable ¢ is sub-Gaussian if and only if

1) |[Cllgs < 007 or

2) P{|¢| >t} < exp(l — t?/K?) for some parameter K > 0 and all t > 0.

Part 2) actually implies that the design matrix under the setting of Theorem 3.2.4, in which
the entries have sub-Gaussian norms that are uniformly upper bounded, satisfies the condi-
tions in Theorem A.1.2. In fact, if  is sub-Gaussian random variable, then by the identity

E[X] = [;°P(X > t)dt for any nonnegative random variable X, we have

E [ICP I ieissvm] = /M]p{m > t)21dt + PnP{|C| > 0y}
< 2/ el_%tdt + 527161_%
NG
=(K*+ (5271)61_%.

This implies that for n x p random matrices Z whose entries have uniformly upper bounded

sub-Gaussian normes,
1 (n))2
52np ZE ['Zij | I(|z£?>|zm> =0,

i?j
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as n,p — oo, for any d > 0.

Our proof also relies crucially on the following fundamental concentration inequalities.

PROPOSITION A.1.1 (Hanson-Wright inequality, [33]). Let ¢ = (C1,- -+ ,Ca) ", where the (s
are independent random variables satisfying E(¢;) = 0 and |||y, < K < co. Let A be an

n X n deterministic matrix. Then we have for any t > 0,

T T I - t
P{[¢"A¢ —E(¢' AQ)| >t} < 2exp {—Cmm (K4||A||%’ K2||A||> } ’

where ¢ > 0 is an absolute constant. Here ||A| and ||A||r denote the operator and Frobenius

norms of A, respectively.

PROPOSITION A.1.2 (Hoeffding-type inequality, [40], Proposition 5.10). Let ¢ = (C1, -+ ,C) 'S
where the (;’s are independent centered sub-Gaussian random variables. Let K = maxi<i<p |G|y,

and a = (ay,- -+ ,ay)" € RY. Then we have for any t > 0,

t2
P{la"¢| > t} < coxp {——}
Klal

where ¢ > 0 is an absolute constant.

PROPOSITION A.1.3 (Bernstein-type inequality, [40], Proposition 5.16). Let ¢ = ((1, -+, )T,
where the (;’s are independent centered sub-exponential random variables. Let K = maxi<i<p |G|l

and a = (ay,--- ,an)" € RN, Then we have for anyt >0,

£ t
P{la'¢| >t}§2€xp{—cmin< : )},
K2|lall3” Klla]ls

where ¢ > 0 is an absolute constant.

The next result, the famous Sherman-Morrison-Woodbury formula in matrix analysis is

repeatedly used in our proofs, as the corner stone of leave-one-out analysis.
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THEOREM A.1.3 (Sherman-Morrison-Woodbury formula, [17], Page 19). Let P and Q be

n-dimensional non-singular matrices such that Q = P+ UV ", where U,V € R™™4. Then
Q'=P+UuvH'=pP'-PUI,+V'PU) 'V P

The following results, implied by [4] and [5], are conditions for the normality of quadratic

forms.

THEOREM A.1.4 ( [4], Proposition 3.1). Let X = (X,...,X,,) be i.i.d. Rademacher random

variables and A = (aij)l <1i,5 <n be a real symmetric matriz. Let W = XTAX and
2 1 2
o° = Var(W) = étrace(A ).

Let p be the law of (W —E(W))/\/ Var(W) and let v be the standard Gaussian law. We
define
dW = W(,ua V>7

where W is the Kantorovich—Wasserstein distance between two probability measures with

W(p,v) :sup{‘/hd,u—/hdu

3/2
trace(AH)\ 7?5 N | Al
< A — & < 2 .
s (M50) v (D) <ot

i=1 \j=1

: h Lipschitz, with ||| Lip < 1}

Then,

THEOREM A.1.5 ( [5]). Suppose x is a gaussian random vector with mean 0 and covariance
matriz 3. Take any g € C*(R) and let Vg and V%g denote the gradient and Hessian of g.
Let

a=EIVe@)), <= (EIV@)]").
7



Then let W = g(x) have a finite fourth moment and U be a normal random variable having

the same mean and variance as W,

25226162

drv(W.U) < =0

Here dpy s the total variation distance between random variables u and v,

dry(u,v) = sup |P(u€ B)—P(v € B)|,
BEB(R)

where B(R) denotes the collection of Borel sets in R.

Next, there is a famous result for the bounds of eigenvalues of the sub-gaussian random

matrix.

THEOREM A.1.6 (Theorem 5.39, [40]). Let Z be an n X p matriz whose rows are independent
sub-gaussian isotropic random vectors. Then for every t > 0, with probability at least 1 —

2exp(—ct?) one has

V= Cyp—t < Amin(Z) < Anax(Z) <V +C/p+t

Here C = Ck, ¢ = cx > 0 depend only on the subgaussian norm K of the rows.

A.2. Proofs of Lemmas in Section 2.4.1

A.2.1. Proof of Lemma 2.4.0.1. Since ¢; ~ N(0,0?), there holds (g;/0;)? ~ x3. By

the standard Laurent-Massart bound ( [25]), there holds that

]P’{@?/af — 1>Vt + 2t} < exp(—t) and P{1 — g?/af > 2\/%]» < exp(—t).

Taking t = 2logn, we can have for any i = 1,...,n,
1
(A.1) P{max |} /0] — 1| > 2y/2logn + 4logn} < —,
n
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which implies (2.12).
Since € ~ N,,(0,X.), we can rewrite >, &7 as €' e, then

E [e"e]| = trace (.) = Z o} = noy,

i=1

and
Var [e'e] = trace (22) = 2||%.[|3.
By the assumption that [|X.||r = o(n),

Var

Then we can have (2.13).

By applying Theorem A.1.5 directly, we can take

then

>R
dry (o(e), 1) < VOlIZelP06

pd | DA [N
where U ~ N (y/nog, £||2.]|%). Since
dg 2
= —=1;,
2
ag _ \/ﬁ Z_ja
8xi8.rj . .
0 i#y,
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by the assumption that || X.]|% = nkoj, it follows that

o = (E[Vg(e)]")F = E(Z(%)) -7 E<Z>

(Var [eTe] + (E [eTe})QY

B

S

(1),

and ¢ = (]EHV%(](&)H“)% = O(1/4/n).Then by the assumption that ||3.|| is uniformly

bounded, we can have that as n — oo

dry (9(e),U) = O(1/v/n) = o(1),

which implies (2.14).

A.2.2. Proof of Lemma 2.4.1.1. For convenience, define

(

1 _
Pk = nl(ck),k = zl—crvy,—lkzk’
2 _
(AQ) ¢k = nlg:k),k = Z];r‘/jyj_QkZ]ﬁ

8 Ty, -3
\@Z}k = nkk,k =z Vy,szk‘

First, there is a simple relationship: ¥, < ¢ < pi. In fact, since I, — V;_lk = 0, we know

that
p—dp =2l V. (I = V2V 2z > 0.
i.e., ¢p < pr. We can similarly obtain v < ¢.

Using Sherman-Morrison-Woodbury formula (Theorem A.1.3), we have

_ _ 7 v “1yr— _
(Ag) ‘/7 .= V%,lk - 5(1 + Z;Pk) 1Vy7,1kzk:z/;r‘/ty,,1ka
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and

2
V= (V71 — %(1 + %pk)lv e EhZ, V )

vy 7=k
_ v g 1 -1 v g 1 -2
=V 5 -0+ —p)” V. Sz, V) — (1 + —py V zZpz, V.2
7,kp(p) kk,kp(p) o2k Vo o
2
(A.4) (1) 1+ Lo 2Vl zez V!
. D ppk kVy k2R Vo

By (A.3) and (A.4), we can also have

_ - g
trace(V, ") = trace(V, 1) — p(l + pk) o

and
2
trace(V, %) = trace(V, %) = ~X(1+ 2 p0) M+ (CP (14 pe) 6
Then
_ _ Y g
(A.5) !tra(:e(V7 h - trace(Vm_lk)| = 5(1 + ppk) Lo < p(l + =pr) ok < 1,
and
2
(A.6) |trace(V,?) — trace(V{fk)‘ < %(1 + %pk)_lpk + (%)2(1 + %pk)_Qpi < 3.

Similarly, we can also prove that

|trace(V, %) — trace(V% )| <7 and [trace( V.~ - trace(V% )| < 15.

~

Since the entries of Z are independent sub-Gaussian and E(z;;) = 0, using Proposition A.1.1,

we have, for any 1 < k <pandt > 0:

t? t
P{|px — trace(V] Ol >V, 1} < 2exp{ —cmin - : — ,
{ & KV, L5 K2V
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where ¢ and K are positive constants. If we set

21o 21o
t:tk:szax( BV e, 2RV ku)

it follows that P{|py — trace(V, o> tk|V k} < 2/p* Thus

2
P — 1
{Ekai( et o trace(V > } >

By Lemma 2.4.0.2, |V, 1| <1, and |V}, |[r < v/n||V, || < +/n, we can obtain that

2 2
tr, < K?max (\/j\/nlog ,—logp> ,
c c

which implies

IP’{ max |py — trace(V. ') > Cy/nlogp } <2/p

1<k<p

for some constant C' > 0. Then, it follows that

(A.7) max |py, — trace(V 1) = Op(y/nlogn).

1<k<p

By a similar argument, we have

(A.8) max |¢y — trace(V 2| = Op(y/nlogn).

1<k<p

Combining (A.5), (A.7), (A.6) and (A.8), we have

(A.9) max |py — trace( 7_1)| = Op(y/nlogn), and

1<k<p
(A.10) max |¢p — trace( 7_2)| = Op(y/nlogn).
1<k<p

A.2.3. Proof of Lemma 2.4.1.2. Based on (A.3) and (A.4), there holds

_ 7 _
(A.11) z,va Lz, = (1+ E,Ok) lpk,

(A.12) 2V 2z = (1+ %pk)_Q(bk,
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where py, and ¢, are defined in (A.2).
Let’s now come back to find approximations of E[A;|Z] and E[As|Z]. We define the following

intermediate quantities

| trace(V-! 1 trace(V, 2
(Alg) 01:_1 I"Y ( 'y‘/)_l and92:— I ( vy ) 5-
n 1+ 2 trace(V, ) n (1 + %trace(V{U)

Then by (A.11) and (A.9), we can have

trace(V, ™) — pr

2V lz
(A.14) max Tk Ty TR

1<k<p

0, —

< max
1<k<p

n

which implies (2.18). Similarly, by (A.12) and (A.10), there holds

Ty —2 2 2
z, Vo "z 1 - gl g -1
_ kR Ty TR < - L _ L

= = | eV (14 o) = (1 ) ) o

< 1 max [trace(V, %) — ¢| + max 21/) |trace(V ) — ¢y

T on [1<k<p K fT ks p K g

+ max 2—7¢k |p,C — trace(V’l)’ + max pr ’trace(V’Q) — ¢k’
1<k<p p v 1<k<p p2 ' F g
oh 1 1

(A.15) + max p—2¢k (!pk — trace(V )‘ ‘pk + trace(V )})} .

It follows, by the facts trace(V,™') = Op(n), trace(V,?) = Op(n), pp = Op(n) and ¢ =
Op(n) (Lemma 2.4.0.2 and Lemma 2.4.1.1),(2.19) is true.

Then we can have for [ = 1, 2,

Tv—l
Ze¥y # 1 trace (VW’IZZT)

n np

Tyl p p
z, V. 2y 1 |
7—914—52 (91— E EZZVY zZi

=1 =1

(A.16) -

)

which implies (2.20). Then by the definition of B.,, when [ = 1 we can get (2.21) from (2.20).
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When [ = 2, for (z,;rB%Zk)Qa

T 2 I+
B = =z'V. —
(2 B, ) (nzk " T ace(V
2
L1, ) (%n}j)

I ? w2k v Mok
A17) - (—n( ) g nkkn .
( n ot ; trace(V,71) (£ trace(‘/:fl))2

Then by triangle inequality, for any [,m = 1, 2,

1 1 1 1 1
D) Zplm) _ Z trace (VVI—ZZT> — trace (V:Ym—ZZT>
n p b

1

7 ek Tk n
1 1 1y 1 1

< —trace (V,'=ZZ" —n;ik) — —trace (V. "-ZZ"
n T n n T

1 1 1
0 _ = trace (Vv_l—ZZT> ‘
n

1 1
~t V."_ZZ"
+nrace(” p )n’“’“ P

L 1 ml o\ Lo 1 S ——
+‘ﬁnkk — - trace (‘/7 ]—?ZZ My, — — trace | V] 5ZZ ,

By (A.16) and the fact that

1 1 1
— trace (VVI—ZZT> =0Op(1), —trace
n P n

<v;m%ZZT> = 0p(1),

we can have

(A.18)
1 () 1 (m) 1 1 1 7m1 logn
max |- T o trace ( V ZZ—QZZT - trace ( V, ]—QZZT =0Op ]
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Since

1 2
(trace <B7—ZZT> )
p

1 1
= | —trace (VI—ZZT> —
n p

2

Ltrace (‘Q_llZZT>
n P

L trace(V,1)

~

1 = trace V*%ZZT) %trace <V;*2%ZZT>
= | —trace -1 ZZT T
n - trace(V 1)

(% trace (V 2;ZZT)>
(1 trace(V,Y—l))2 7

then by (A.17) and (A.18), there holds that

2
(z,;erzk)Q — (trace (B,y;l)ZZT)) =0Op (\/ loin> )

Finally, as we can know from (2.18), (2.20) and Lemma 2.4.0.2 that (np)~* trace (V,'ZZT)

(A.19) max

1<k<p

converges to the same limit as

n~!trace(V, ')

1+ yp~ttrace(V, 1)’

which means

1 o hl(’VJT)
SA=mnT) =

And Lemma 2.4.0.2 shows that
1
n

“o(2)

Combine the above two inequalities, we can get (2.22). Similarly, by (2.19), (2.20) and

1 1
—t V1ZZ"Y-Z(1-h
” race( § ) ’y( 1(7,7))

and

1 trace(V{l) B hi(v,7)
nl+ %trace(V;l) L+~y7hi(7y,7)

Lemma 2.4.0.2 we can get (2.23).
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A.2.4. Proof of Lemma 2.4.1.3. By (2.22) and (A.11), we can know that

L o0 1 1T
-z, V. - —t V. ZZ
—2 Vi " race ( g )

max
1<k<p

1 1 1 _
— 5 —n,(jc),k E—— tmce(vW o)
)) "

(1 + L trace(V!

o1 mace(v
= ) il —1
iskspn 4 Ipl)on 1+ I trace(V; )
1 1 1 1
(A.20) - —pt) — —trace(V ) ) |+ 0p [ =),
3 \ 3 ek — ) o N
<1 + %trace(V{l))

and similarly by (2.23) and (A.12), there holds that

1 1
max |—z, V. %z, — — trace (V’2ZZT)
1<k<p|n 7 np K
trace(V. 2 2 1 1
+ ( 2 ) 3—7 (—n,(cz)k - = trace(Vv_l)>
<1 + %trace(Vw—l)) poAn "
1 1 1 _
- s (i 3 eV ‘
o -1
<1 + I trace(V] ))
nl(jc)k trace (V%)
e 7(1) 2 2
SRSp _
<1 + %nkk’k) (1 + %trace (V7 1))
trace(V. 2 2 1 1
+ ( T ) 3—7 (—77;(;2;‘; — — trace(Vv_1)>
(1 + %trace(V;U) poAn "

1 1 1 _
- (i~ o)
(1 + L trace(V, ))

cor(2)
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Define

x x
5(@) = g () =y,
S
By the Taylor series expansion, as %77,(6? ) — = trace (Vw_l)

! 1 1 1 1
Zy <Enlgc),k> = Zy (ﬁ trace (VY1)> + zfy <ﬁ trace (Vyl)) (ﬁnl(c}ﬁ),k - = trace (%1))
1 1 -
+ Ry (;77;22@ ~ trace (V, 1)) .

Here R; is the remainder term

1 1L 1 ?
" 1 _
Ry = 527 (ck) (ﬁnkkk - Etrace (V 1))

v

where ¢ is some constant between %n(l) and %trace (‘@_1). Then

ke, k
1 _
Nk g trace (V)
14 %nggk 1+ I trace (Vv_l)

L 1 -1
=z, (Enkkk> — 2y <ﬁ trace (‘Q )

1 (Lo 1 -1 1L 1 1
=z (ﬁ trace (V )) (ﬁnkhk — —trace (V. )+ R T - trace (v, 1)),

where
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By (A.20), this implies that

L oro 1 -1 T
-z, V. - —t V. ZZ
nzk 2k o race( . )

1 1 4 1 _
- 7 2 (Enl(ck)k: T trace(V7 1)) ‘
(1 + trace(VW— ))

max
1<k<p

= max
1<k<p

I q 1 1 1
— —t \Y4 —
Ry <nnkk’k’n race( ~ ) +Op o)

and by Lemma 2.4.1.1,

1 1 1 2
< — ma n ma <— k?k — —trace (Vlyl)>
21<k<p| p (1 e ) 1<k<p |\ n '®F n
n 1 (1) 1 1 2
< 2 112]?% (Enkk k trace (ny )
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Combine the above two inequalities, we can get (2.24).

Similarly, by the Taylor series expansion, as %77,(52 E %trace (Viy_z), we can have

1 - 1
2Vl - — 4 v2zz"
e O e race (V/ )

max
1<k<p

trace(V.2) 2y (1 1 _
+ s 5— (En,%)k - trace(V 1))
(1 + %trace(VJU) p

1 1 4 1 _
- 2 (Hnl(ck)k - ﬁtrace(Vv 2)) ‘
(1 + %trace(VgU)
(1 1 o1 1 _ 1
= 1%?%; Ry (En,ik)k, Etrace (V7 2) ’En’(“k)’k’ o trace (V7 1)) ‘ +Op (E) .
Since
0*w.,
5z () =0,
O*w, n 1 n
=|-2—— | <2— f >0
zay &Y <2 fory>0,

0w m 2 x n 2
‘ ay; (x,y) = (?) ( — <6 (z) x for T,y 2 O,
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by Lemma 2.4.1.1 we can have

(Ll @ 1 n 1w 1 |
—t L —t \ %

1121??(1 Ry < N, oo race ( ) nnkk oo race ( g )

0w 1 (9 1 1 1
< max (‘%87 (Ck1s Cr2) (En,gk),k - trace ( nnkkk - = trace (v, ™Y

2’11]

aaT; (Ckh Ck2) 1 (1) t

+ lréll?%(q —2 Mk — race
yn 1 (2) 1 1 (1) 1

< 2? 1121?”2% (ﬁnkk p — — trace ( 1121?2% ﬁnkk T trace (V )

2
n

+3 <l) CL1 max
p 1<k<q

_o, (logn) 7
n
(2)

where ¢ 1S some constant between %nkk x and %traee (VV_Q) and cpe 1S some constant be-

tween %n,ﬁ?k and + trace (V7).

1 ( ) 1 2
1 -1

— — —t ‘/

(nnkk,k; ,, race (v, ))

A.2.5. Proof of Lemma 2.4.1.5. Note that

_ Y _ 2
(zl—cr‘/y 1zj)2:(1+;pk) ( V kzj) S( V kzj)

and
(A.21) (2, V, *2))°
- J z; 2 Lok o 2
_((1+ppk) P V. 2z < p¢k(1+pl)) e Vol J>>
%(1 + 7pk) (2 V kz])2 + % (Z—ﬂ)k) (1+ %Pk‘> (2 V sz)2
(A.22) §2<( V.. kzj)2 + (2 V kZJ)2>

where the last inequality is due to 0 < ¢ < pi.
Denote Z_j, = |21, ..., Zk_1, Zk+1, - - -, Zp). Note that the components of z; are independent

mean-zero sub-Gaussian random variables, conditional on Z_j, by Proposition A.1.2, we
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have, for any k # j and t > 0,

t2
{\z vV, kz]>t‘Z }geexp ¢,
’ K2||V%71kzj||%

where ¢ and K are some positive constants. By letting ¢t = K @]\va_lkzjﬂg, it follows

} e
p 39

where C'is some positive constant. It further implies the unconditional probability inequality

P{I=lV; 2zl = CVlogpllV, L2l 2

e
(A.23) PRV sl > OViospl Vsl ) < 5

By the fact ||VV:1,€|| < 1, we have ||‘/7_5kz]|| < |lz;||. Note that 27, — 1,235, —1,..., 22, — 1 are

independent centered sub-exponential random variables, by the Proposition A.1.3, we have

ot
IP’{ Zt} §2exp{—cmin (E,E)},

where ¢ and K are some positive constants. Take ¢t = K+/3nlogp, then we get

(A:24) P {2~ n| > Cv/nlogp) < 2.

p?

n

>3-

=1

for some constant C'. Combining the above (A.23) and (A.24) together, with probability at
least 1 — (2 + €)/p?, there holds

(20 Vi '2))" < (2 V) }2)? < C(n + Cy/nlogp) log p.

By a similar argument with the fact that ”Vv_—2k|| < 1, we can have with probability at least

1—(24¢)/p’
(21 V;2)? <2 (2] V,%42)" + (2[V; 2)") <40+ Cv/nlogp) logp,

for some constant C.
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Above inequalities imply that with probability at least 1 — (2 + €)/p, there hold
max |z,;rV7’1zj]2 < C(n+ Cy/nlogp)logp, and
rilijdzk V%2> <4C(n+ C'/nlogp)log p.

Then, there follows that

riljx\z V. 'z|” = Op(nlogp) and riljx|z V. %2> = Op(nlogp).

Next, define
— fi12<%7') f<322(%7')
0 = — 2= :
1(7a7) "{1,1(777—) h1(’}/,7') h%(’y,T) )
where l
Hml 77 Z Z ) 77 )hqﬁ-qz (’77 T)a
@1=1g2=1
and
1 —277vho (v, T) 1
( )(77 ) 29 (2) (77 ) 2 3 (2) (77 ) 2°
(14 7vhi(7y, 7)) (1+77vh1(v,7)) (1 +7vhi(7, 7))

Recall that hy (7, 7) and ho(7, 7) are defined in (2.8). Now, by the definition of ni(]l.) in (2.16),

. 2
we can rewrite (zZT szj) as

2
1 LTV 22,
Tmy = (Larvs -

LT L trace(‘/ﬁy—l
(A.25) _ l M) _o wlis i nlij
. 771] l t (V_l) 1 1 R
n n racel v, (5 trace(V; ))
The following results are implied by [24] in the supplementary material.
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PROPOSITION A.2.1 ( [24]). For any i # j and i,5 > 1, we have

) _ 71 1)

771] as, zﬂ?z] RYE
) 1 —(2) (2
771(]) - gz)jnz(] )z] + aé;i)jnz(j;)ija

with

(1) _ 1

p liisi o ligiis
2 2
_(2) —%77@%';3 _1773(7';)@'9'
i = % o (1) m \*
X
(1 + %nii;i) (1 + %njj;z’j) (1 + p i z) (1 + %njj;z’j)

(2 _Q

aé;i)j :ag;i)j‘
And

1
max Imax max E((le).w —a, l) (v, T ’ = Op ( ng) :
1<i#j<p 1<I<21<q1 <1 ’ n
Furthermore,
7O =m0 (m) ’ _ [log p

(A.26) 1S <p 15hme2 1<q1 gt | e T G 07”0, 7] = Or ( n

PROPOSITION A.2.2 ( [24]). Foranyl>1 and 1 <i# j,

(A.27) % |trace (V') — trace (Vv_iw)| < %2”1.

Y

PROPOSITION A.2.3 ( [24]). For any 1 < q1,q2 < 2, define

d(»ql’[h) _ L @), (a2 _ ltrace (V—(q;+Q2)> .
n

vy nl] itj TIZJ itJ Y,—w

Then the following statements are true.

1) For some constant K; > 0,

1<i#5<p

max E [(d ‘“"12))2} < K.



2) For any i # j # 1,7 #i( either j = j' or not) and some constant Ky > 0,

F |:d§;11 (12)d q1, (I2)iH S &
vn

max
i i

By (A.25), let’s first show that for 1 <1,m < 2,

0 _(m ) (m) P
(A28 Z 771])77@(] —> Rm. l(’% 9 and Z B 52 771])775] — HﬁHZLF‘:mJ(Fy? 7—)'
z;éy i#]
Since 772(] Zgnzﬁg > 0 for any ¢q1,q2 = 1,2, ..., by Proposition A.2.1 we can have
1 l m
2 02 _ (1) = o 1 (g2)
Z 5% 5] ﬁ% 771] - Z Z (Z q1 ij QQ ZJB B 771] 2]771.721.7>
i#£] a1=1q2=1 \i#j
l m
(A.29) =33 al(y,r (Zﬂ B~ nfftjn” ”> +op(1),
q1=1g2=1 i#j
and
(A.30) Z —ni i Z al) (v, 7@ (v, Z mﬁimg 2+ op(1).

1753 q2=1 275J

We know that

B |3 s

1
= SRR [ ) - e (Vi) VA || <o,
i#j

i#]

and by Proposition A.2.3, we have that

(ZﬁQ j 3”2) =) BIGE {( ‘“‘”) ] +2 Y BABIE [( gl d(‘“%)ﬂ

1#£] 1#£] 18 £
+ Z ﬁ26252 ﬁ2 |:( 111 QQ)dZ(/q;/qQ))]
iFjFEV £

K, K,
< KBl + 22 |BILI8IE + ~ 21181

= Op(l).
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This implies that
S B s = 3 6 - trace (V25%) + on(1),
1#£] i#£]

where by Proposition A.2.2 and Lemma 2.4.0.2,

1
— trace (K/("f;;qQ)) — Ny 140 (v,7)| = op(1),

n

and Zi;ﬁj 6126jth1+q2 (’77 T) = ||18||4hQ1+Q2 (/77 T) + OP(l) since Zf:l B;l - OP(l)' Thus
1
(A.31) > B8 i = 181 b (v, 7) + 0p(1).
i#]
Thus by (A.29) and (A.32), we can have
ZB 62 771] /’7@] ||/8||4/€ml(77 ) + OP(l)‘
i#j

Similarly,

_ 1 Z nZJ 2J77@J ZJ] =0,

17&3

and

2
q2)
( —1) Z nZJZJn%JQ’LJ>

175]
S S
i i i
+ Z E [(d(fh q2)d(q1 q2)>]>
i A £
< m <p(p — 1)Ky +2p(p—1)(p — 2)% Fplp—1)(p—2)(p — 3>};2>
= op(1)
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Then by Proposition A.2.2 and Lemma 2.4.0.2, we can have that

' (42)

(A32> i =h q1+q2 (77 )7

which implies

771] - /im,l(’y, 7-) + OP(l)v

by (A.30).
Now we have proved (A.28), then by (A.25) and Lemma 2.4.0.2, there holds that

Y B =00 o)

—1
p(p oy

ny BB (2 Byz)" = B10:(v.7) +op(1).
i#£]

A.2.6. Proof of Lemma 2.4.1.6. Let 2;" be the ith row of Z. By Sherman-Morrison-

Woodbury formula, we have

-1 -1
(A.33) Vo= (In + ZZZT) —1,- 1z (Ip + zZTZ) ZT,
p p p
and
_ —_1\2
v,i=(V,)
~1 2 -1 2
(A34) =I,-21z (Iq + lsz) zZ + (1> (z (Ip + zZTZ) ZT) .
p p p p

Combining (A.33) and (A.34) gives
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and

-1
(V%) =1-2 2 T(I +;ZTZ> z

—1 -1
+ (1> 5 (Ip + zZTZ) AV (Ip + isz> z.
b p p

where Z; is the i-th column of ZT. Define

& gl
(A.35) V,=1I,+ EZTZ,

(A.36) vi=1,- —sz 1Z"
with

l
(A.37) (V) =1- % Z Voiz,

Similar to (2.20) in Lemma 2.4.1.1, combining the leave-one-out technique and Hanson-

Wright inequality, taking the uniform bound gives

1 1 ~ 1
(A.38) max |-z, V 1z; — — trace (‘Q_qZTZ>‘ =0Op (\/ 0gn> .
icln] |p np n

Together with (A.36) and (A.37) yields (2.27).
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Note that we have

1 LV )y
B,)i=—(V, )y — +2—"——,
(By) ( ) %traee(%‘l)
2

= (1) o 2 OO0, 04

(%traee(‘ﬁl—l))Q (% trace(Vv—l))

R

By (2.27), we have

1 1 _ 1 -
Ifé%f}( (B,)ii — - trace (B,)| < Izrel%z}]c - (Vv 1)“ - = trace (V D
maieg |3 (V;2),, = o trace (V,72)]
+

and consequently

2

1
B,);; — —trace (B,)

< max |(
n

i€[n]

(B~ (3 trce <ny>)2

1
(B,);; — — trace (B,)

1
2—|t B
+ n‘ race (B,) | max "

i€[n]

1 Jlogn
n n

which yield (2.28) and (2.29).

From (A.36), we have
l
(V)/_l)ij -1 Zig—‘z_kiﬂ”
Py

As with (2.25) in Lemma 2.4.1.5, we can have

max 2;‘77_'“2]- = Op(y/nlogn).

i#]
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Then (2.30) can be easily obtained by the fact

1 -2
1 1 n (Vw )ij
(Buo)iy =— (Vo) = Ltrace(V.o1)

A.2.7. Proof of Lemma 2.4.1.7. To prove (2.31), we can know that

2 — - 1 —2\2
s 1 _1\2 nZ (V'y 1)ij (Vw 2)1']' n2 (Vv 2)ij
<B7)ij - 2 (VY )ij o 1 V-1 1 Z1y)2
n , trace(V71) (+ trace(V,71))
2
~(1) ~(1) ~(2) ~(1) ~(1) ~(2) ~(2)
(A.39) 7?( “ ) T2 Lirace(V1) n? p? (+ trace(V—l))2 ’
n Y n v
where
iV
Define

0y = 721 (/%171(7,7') -2

Rl,l(% 7) + ’%1,2(% T) + ’%1,1(% T) + 2"%1,2(% T) + /%2,2(% T))

hi(7,7) (h(v,7))?
where

l m

@
/{ml ’77 Z Zath YT ’77 )hq1+q2(’7>7_)a

q1=1q2=1
and
- 1 ~(2) —27hy (7, 7 (2 1
&0, 7) = 5y, 7) = 2007) @ 1y =

(1 +7ﬁ1(%7)>2’ (1 +751(%7))3’ (1 +7B1(%7))2'

Similar to the definition of (v, 7), Bl(% 7) is the limit of %trace (‘N/{l)

Then similar to Proposition A.2.1, using the leave-two-out technique, there holds that

1) _ =) (1)

ij = Q1siiigigo

2) _ =(2) (1 =(2) ~(2
771(]) - lzjnz(])zj + 22]771(])2]7
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with

=(1 1
Wi T Y (14 2D Y
pnzzi p773] ]
~(2) ~(2)
512 _ —me Z 335
1] 20
~(1) (1) ~(1) (1)
(1 + ;7722 z) <1 + %njj;z’j) (1 + nm z) (1 + TI]] z])
=(2) _=(1
2ij — Q1565
And
=0 =0 _ logp
Furthermore,
=) =(m) =) =(m) _ logp
(A.40) 1Si<p 15hme2 1<qr st | 0500 T G 07, (%T>‘ OP( " >

Similar to (A.32) and (A.31) , we can have that

1 1 ~
n(n — 1 Z T]l(]ql”n” i = ]—Qtrace <V7—(q1+q2)> +op(1),
Z#J

and

A1 ~
3 St i) = ot trace (V7)) 4 0p(1),
i#£]

by (2.13) in Lemma 2.4.0.1. Then similar to the proof of Lemma 2.4.1.5, (2.31) can be
obtained from (A.39).

A.2.8. Proofof Lemma 2.4.1.8. Foranyk=1,--- ,p,denote Z_, = [z, - , Zx_1, Zks1, "

then
V%_k = Vy — Z—)Zkzl;r = In + %Z_kZTk.

Similar to the proof of (2.27) in Lemma 2.4.1.6, we can define

(A.41) Vo w=1I 1+ %ZTka,
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and z;_, is the i-th row of Z_;. Then we can have that

(A.42) (f/% k) _1——221 LV E

Again, similar to (2.20) in Lemma 2.4.1.1, combining the leave-one-out technique and Hanson-

Wright inequality (taking ¢ = @H‘ZTEMH r), taking the uniform bound gives
_ 0, ( logn> ‘
n
1
— Op (\/ Og”) o 1=1,2,3,4.
n

By (2.17) in Lemma 2.4.1.1 and (A.44) we can get (2.32).

1
(A.43) max max
kelp] i€[n]

1
WV - —t (V AN A )

Then (A.36) and (A.37) implies

(A.44) max max

kep] i€[n]

(V) — L trace (V. 1))

Y= 2 n

A.2.9. Proof of Lemma 2.4.1.9. In this section, we focus on the conditional variance

Var[A(v)|Z,e]. With y defined in (2.33), we have

A(v0) = €' ApZ B, ZAgE + 26" ApZ B, AL+ ABy, A,

My M» Ms
Then it is obvious that
(A.45) Var[A(y0)|Z,e] = E [A2(70)|Z, e] — Az(’yo),
where by (2.35)
» 2
(A.46) A2(y) = <Z B2z, B,z + trace (AEBVO)>
k=1

and we can have

E [A2(70)|Z,s} =E [Mf\z,g] +E [M22|Z,s] +E [ngz,s]
(A47> + 2 [MlMQ‘Z,E] + 2 [MlMg‘Z,E] +2E [M2M2|Z,€] .
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Define

Tjim = BiBiBiBméri&ilm (2L Booz;) (2] Boozm).

Since &;’s are i.i.d. Rademacher random variables , if (k, j,1,m) has an odd multiplicity, we

have E [£,£;£,&y] = 0. This implies that

E [M{|Z,e] =E [M{|Z]

p
= EGerikl 21+ D ElGiig12) + D E(Gijisl 2]+ Y E[Gis4 2],

k=1 i i i

E[M2|Z,e] =E [46 " ApZ B, Al A B ZAgE|Z, €]

p
=4 Z 513ZJIBV0A§BVOZ1~:’

k=1

E[M|Z.€] = E[¢TAB,,A(CTAB, AL| Z €] = trace ((A2B,,)°).

E[MM,|Z,e] =E 26" AgZ B, ZAgt€ AgZ ' B, A(|Z, €] =0,
p
E (M Ms|Z, €] = E (M| Z|E[M;|Z, €] = Y _ Biz) Byyzi - 0f trace (AZB,,) ,

k=1

E[M;M;|Z,e] =E [2¢"AgZ " B, A.(¢TAB,,AL] = 0.
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Combining these results with (A.47), we can have

E [A*(70)|Z €]

p
= ElGranrl 2]+ ElGiiil Z)+ Y Eldijil 2] + > ElGijil Z]
k=1 i i i
(A.48)
p 9 p
+4 Z Biz, B, A2B,, 2, + trace ((A?BWO) ) +2 Z Brzi Byyzy, - 0f trace (AZB,,)) .
k=1 k=1

Thus by (A.45), (A.47) and (A.48) we can have

Var [vVi(A(10))]Z, €]
o Y R (2T Boy) n Y e BALE, 20 Y B
i k=1 i
A.2.10. Proof of Lemma 2.4.1.10. Recall that A,.(7) is of the form (2.38), so we need
to study the asymptotics of trace (V) trace (V,72), trace (V, ' ZZ ") and trace (V,2ZZT).
Denoting by ) the eigenvalues of p™*ZZ ", by Corollary A.1.1 and the fact that vy =
8202 p 1 ZZT =41 (V, — L), we have

1 1 1 s [T £
— trace (V_l) = —Z —>/ deﬂL%:hl(’Yﬁ),
b

n v n £ 14+ v\ ) Ltz

n

1 1 1 a.s b+(T) T
— trace (VV_Q) = —Z(— —>/ de*’&):}w(%ﬂ,
b

n n k=1 L+ /yAk)Q —(7) (1 + ’71')2
2 2 2
%070 trace (‘@_IZZT) — Jo0 (trace (I,,) — trace (‘/7_1)) i 0% (1 = hi(y, 7)),
np ny ~y
0'27 - 0'27 — _ a.s. ) 0'2
o trace (V2Z27) = =52 (trace (V) = trace (V%)) =5 2 ((v,7) = ha(3, 7)),
np ny v
where
0, T<1,
0o =
1l——, 7>1
T
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Then, there holds

Au(v)

_ %, vi(r, +22zzT % v2(r, +2LzzT
_Erace ~ "+E _W race [ V, n—f—?

Y

= (B m) 4 autrn) = i (200 =) + )

hi(7)
(2o (Maen)

When 7 <1,
by (1) fr(x) _ ) fr(z)
hao(7,7) = B3(v,7) i) e ( b () mxd )
(A.49) (v 7) = ) T .
I\ f () 1+'yw

Since on [b_(7), b4 (7)], fr(z) > 0 for both 7 < 1and 7 > 1, (1+~x) ! are strictly decreasing

(v > 0), we have, by monotone function inequalities [ [23], pages 148-149],
by (7) ? by (7) b (7) by (7)
/ f>(2) de | < / de / fr(z)dz | = / de,
() 1+@ b (L+7z)? b_(7) b (L+7z)?

which implies
by(7) b (7) 2
b (1+72) bo(r) L+®

Similarly, when 7 > 1, since
by (7) 1
[ =
b

-(7) T

the inequality above becomes

by (1) fr(x) 2 by (1) fr(x) by (1) B 1 [+ fr(x)
(/b_(f) 1+7$dx> = (/b_(f) (1+7$)2dm /b_(T) frle)dz _;/b_(‘r) (1+7$)2dm
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Then

O () 1 ) fo(a) )
/b_ (7) Wd . (1_;> - (/b_(‘r) 1+7$dx+ (1_;>
+() () 2
= / dx — /b f(2) dz
b_(r (1 +7$ bo(r) L+
0 fo(x) 1
+<1 (1—2/})@ 1+de—(1—;))

(
[ )

1 b+( )

g (1 - ;) ( () (1+yx)? ) l+z T
1 +(7) ,721,2

- (1 ;) ( /. m“‘”“)

Also, for both 7 > 1 and 7 < 1, the denominator hy (7, 7) is positive obviously. Thus

h2<7> T) — h%(’}/, 7—)

> 0.
hfl (77 7—)

Then it is shown that for both 7 < 1 and 7 > 1, the limit of A,.(7) is ¢, = o] <E — ) dy

which is > 0,= 0 or < 0 depending on whether v is < vy, = 79 or > 7.

A.2.11. Proof of Lemma 2.4.1.11. Recall that A(y) = y' B,y and

Vfl Vf2
B =" — u )
K n trace(V, 1)
Since for [ =1,2,-- -,
d V—l lv—(l-i—l) 1zzT _ l V—l V—(l+1)
d_’y ¥ 1’_3 - _; ( v T Yy ) )
and
d _
atmce(v7 h = —;trace (v, ! \ 4 %),



we can have that

d _ 1 V{1 — V{2 —2V7_2 + 2V7_3 V;Q trace (Vv_l — V‘2)
vy oy

(A50) —B,=—— + + s
n trace(V;!) (trace(‘/'v—l))2
By a similar argument from the proof of Theorem 3.2.4, it can be checked that for every

fixed ~,

d
T_By

A’ =
('Y) Yy dy v

converges in probability to AL_(v), where A/_(~) is some constant only depends on 7 and 7,

ie. A'(v) = Al (7o) + op(1). More specifically, similar to the argument in Section 2.4, we

have that for any [ = 1,2, ...

1

(A.51) EyTV{ly — %03 trace (VV’IV%) 50,
and
103 trace (VW_ZVVO) = lUgﬁtrace (V;_(l_l)) — 0o (E — 1)
n n -y v
(A.52) i Ug%hl_l(’y, T) —0of (% — 1) hi(~y, 7).

Combining (A.51) and (A.52), we have when v =
Lory,1, P oo
(A.53) . V.'y — oghici(0, 7).

Therefore, by (A.50) and (A.53), as n — oo,

d P05 hi(70,7) — ha(0,7)
"B y— 2 1 L
Y dry d Yo hi(0,7)
which means
0 11(70,7) = ha(30, 7)
A.54 A/ (7o) = 20210 2007
( ) (%) Yo hi(Y0,7)
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By the Taylor series expansion, we have

1

A() = Aly) +A'(v) (5 —70) + 5 (4 = 70)" A (75)

where 75 is a number between 7o and 4. Since A(4) = 0, we can rewrite this as

\/HA(’YO)
A'(yo) + 3 (5 —70) A" (7s)

(A.55) Vi (§ =) = -

Since we have already shown that A'(vy) = A’ (v) + op(1l) and 4 — vy = op(1), once we
establish that

(A.56) A"(y5) = Op(1),

it follows that

1

(A.57) A(vo) +5 (7 = 70)° A (75) = Al (70) + op(1).

Since 4 — v = op(1), we can have 75 — 9 = op(1), then by (A.51) and (A.52)

1
(A.58) EyT‘@;ly BN aS%hl_l(%,T).

Then by (A.58) and some algebra, we can have

d2
A”(%) = yTWBvay

(A.59) L 2037—2 (_th(%) + ha(s) + th(%s) — h3(7s) h%(%)) ‘
s

ha(7s) hi(7e)
with Ay (vs) = hi(7s, 7). Thus A”(75) = Op(1), (A.57) is proved. Then by (A.55) we can

have

(A.60) Vil = = -5 s on)

where Al_(7p) is defined in (A.54).
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A.2.12. Proof of Lemma 2.4.1.13. Recall that

1 LV ),
B =—(V, "y — 82—,
(By) n( ) %trace(VV*)

and for [ = 1,2,

Then

> (et ) (B — e (5))

= _72 5% 2 <~TV z; — trace <V —ZTZ>)
; n
no_2
8@ o Tyr—ls ~—ll T
(A.61) R T trace ZZ (zi V. "z; — trace (V7 nZ Z))

7 =1 i=1

Since by Lemma 2.4.0.1

n 2 2\ 2

2 1
E (8Z UO) < —maxe; = op(1),
Y n N i€n]

similar to (2.63), we can have for [ = 1,2

2021 ~ ~ 1 1
Yy %o (%TV;lzi — trace (V;l—ZTZ)) — op <—> ,
n o p n n

i=1

which implies (2.65) by (A.61).
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APPENDIX B

Supporting Proofs of Chapter 3

In the beginning of this appendix, we list a useful preliminary result from [7].

LEMMA B.0.0.1 (Proposition S1. in [7]). Suppose that X is an n x p matriz with iid entris
zi; ~ N(0,1), then W = X "X is a Wishart(n, I,) random matriz. Let 3 € RP, then we

have

E[8"Wg]| =n| 8|
E [tr(W)B"WB] = (pn® + 2n)| 8|
E[B"W?B] = (pn+n”+ 1) 8|

E[BTW33] = (p*n + 3pn® + 2pn + n® + 3n® + 4n)|| B

B.1. Proof of Lemma 3.4.0.1

Let Sy denote the symmetric group on k elements. Then each permutation m € S; can be
uniquely expressed as a product of disjoint cycles m = Cy - - - Cpy(ry, where C = (cyj - - - cp;5),
ki+ -+ kney =k, and all of the ¢;; € {1,...,k} are distinct.

Let Hy, ..., Hy be d X d symmetric matrices and define the polynomial

m(m)

(B.1) re(S)(Hy, ... H tr HZH%

For a Wishart(n,X) random matrix W = X "X, Theorem 1 in [27] and Proposition 1

in [14] give the following formula:
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(B.2) E{te(WH;)- - tr(WHy)} = Y 28O (D)(Hy, ..., Hy).

TESk

in oue case X = I,,, and we can define corresponding

(B.3) r(H, ...

: Htr H

1=

Using this formula, we can have

E[a'WaB W3]

=E[tr (Waa') -tr (WBE')]

=2ntr (e’ BAT) +n*tr () tr (BAT)
=2n(a'B;)* + n*l|lal?| 8]

Now let uq,---,u, € R? be an orthonormal basis of R?.Then define the p X p symmetric
matrices
Hai

(au] +wa'), Hg == (Bu +u,B8'),

l\:JI)—l
N | =

and H,o = aa'. Since BTW?8 =" (8"Wu;)?, then
E[a'WaB W?3]

p
=E |tr (WHo,) Y tr* (W Hp)

i=1

Z [tr (W Hyo) tr (W Hg,) tr (W Hg,)]

=1
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where by (B.3)

E [t?“ (WHao) tr (WH&) tr (WH&)]

= Z 23_m(w)nm(ﬁ)rw(ﬂao, Hg,, Hg;)

TES3

= 8nr(123) + 4n°r(12)3) + 2n°r(1)@s) + 1P T)2)8)
= 8ntr (HooHpiHpg;) + 4n* tr (HooHpg;) tr (Hg;) + 2n* tr (Hop) tr (Hp Hg;)
-+ n3 tr (HaO) tr2 (H[B,L) .

Then by the definition of H,, and Hg;, we can have

p
> 8ntr(HaoHgHg) = 2n(p + 1)(a'8)” + 4n|a|?|8]"

=1

p
> 4n’ tr (HooHp) tr (Hp;) = 4n’(a' B)°
i=1
p
> o0 tr (L) tr (s i) = (14 p) | 2|81
i=1
> 20%n® tr (Hoo) t® (Hgs) = 1 || 8]
From all the equalities above, it follows that
E [aTWa,BTWQ,B] =(2n+2np + 4n2)(aT,3)2 + (4n + n* +n?p + n®)|||?|| B>

Similarly,

E[a"W?aB W8] =3 > Eftr(WHo) tr (WH,,) tr (W Hg;) tr (W Hp)],

i=1 j=1
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where by (B.3)

E [tI‘ (WHC”) tr (WHC”> tr (W_Hﬁ]) tr (WH,BJ)]
= 32m“(1234) + 16m“(1324) + 327@27’(1)(234) + 87127”(13)(24) + 4n27‘(12)(34) + 47137”(12)(3)(4)

+ 8n°raz) @) ) + 1@ @)@)@),
and

resy = tr (HZ,HE))
ras24) = tr (HoiHpgjHoHpj)
T1)234) = t1 (Hoi) tr (HoHp; Hpg;)
ras e = tr* (HoHpj)
raz)ey = tr (HZ;) tr (Hj))
raze) @ = tr (Hy;) tr (Hg;)
ras)e)@ = tr (HoiHg;) tr (Ho) tr (Hg;)

ray@ @)@ = tr’ (Ha) tr® (Hg;) .
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Then by the definition of H,y and Hg;, we can have

Ztr LHE) = (44304070 B+ (4+ 1) ol 8]°)

Ztr Hﬁj =

Ztr wi) tr (Ho Hg Hpgj) =

(6 +p)(a'B)* + [l]?[1BI°)

OO|H

(p(e" B)* + 3llall18])

FNH

1
Ztr (HoiHgy) = 7 (0 +2)(a"8)° + el *[18]*)
1
Ztr ) tr (HE;) = 1 (1+ 20+ p°) |18
1
Ztr e (Hyy) = 5 (1+p)l|ed1 8]

Z tr (HoiHg;) tr (Ho) tr (Hg;) = (e 8)°

Ztr o) tr? (Hgy) = || 8]

Therefore,
E [a'W?aB W3]
= (2np* 4 10n%*p + 8n® + 8np + 4n? + 20n)(a' B)?
+ (n?p? + n* + 20°p + 2n2p + 2n® + 270 + 8np + 10n)||a|?|| B
B.2. Proof of Lemma 3.4.0.2

Recall that
Y'Y=E'E+B'X'"XB+E'XB+B'X'E

and

Y'XX'Y-E'XX E+B" (X'X)’"B+E'XX XB+B X XX'E.
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Then,

B | u(r Y| =181 + (=)

IBI% + —tf(E )-

| 1
and E {— tr(YTXXTY)} prny
n

Also, we can have

(YY) = Z B/ XX +2 Z B XTe; + Z e e,

=1
(YT XXTY) = Z B XTXXTXS +2 Z B/ XTXX"e + Z e/ XXTe,.
B.2.1. Proof of (3.19). We have
tr* (YY)

- (;BI XTXLai) (;@TXTXB]-) +2 (Z 8l XTXﬂz) (; & éa‘)
) () o) ()

+4 (Z 8/ XTéi> (Z ngXTéj) + <Z éjéi) (Z éjTéj> ,
and
E [tr*(YY)]

=E|> B/ X"Xp B/ X"XpB;| +2E
i,

Z B/ XTXB;|E

o]

~T ~
J

+AE | (B X Te)’

A
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Since vec(E) ~ N (0, X, ® I,),

(s

=E [(vecT(E)Vec(E))ﬂ

E

= Var (vec' (E)vec(E)) + E? [vec (E)vec(E)]

= 2ntr(X?) + n® tr*(2,).

Let W = X T X, since E [3"W 3] = n|8|]> by Lemma B.0.0.1,

E E|> éjéj]
J

> BIXTXp;

7

- ZE (B8] X" X B3] E [vec" (E)vec(E)]

q
=n Y _[IBill’ntr(Z.) = n*| B} tr(Se).
i=1
Then

E|) (B'X"&)| =E|E

%

> B XTé»?lX” ,

)
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where

Z(ﬁTXT i) IX]

=E ZéiTX@ﬁ;XTéi | X]

XBBIXT 0
=E |vec(E)" : : vec(E)
0 X,BquTXT

Xﬁ151TXT 0
= tr : : (e I,)

0 . ngquXT
4 q
=N 2u(XB6]X7) =Y 28] X Xg..
=1 i=1

It follows that

7

E|> (B/X"é) ] Za B/ X"XB,] = nZa 1B:l*.
By Lemma 3.4.0.1, we can have
E 8] X'XB;-B; X' XB;| =2n(8/] B;)* +n°|1BilI*115;].

Therefore,

B> BIXTXB -8 X'XB;| = (2n(8/8;)” + n*lIBil*13;]%)

)

= 1’| Bl +2n|B' B}

126



From all the equalities above, we can have
E [t (Y"Y)] =n?||B||% + 2n||B" B||% + 2n?|| B||% tr(2.) + 4n Z a2 8ill?
+ 2ntr(X2) + n? tr*(2.).
Therefore,
1 T
Var [ —tr(Y'Y)
n
_lg [tr*(Y'Y)] — E? ltr(YTY)
n? n
4 T 2 2 2
= [IBlr + —HB B|; +2||B|f tx(S ZU 1Bl + 0% (Be) + — (%)
— (IB|IF + tr(2e))?
2 4 2
=-||B'B|% + - 21812 + = tr(Z2).
7’L|| ||F+ n ;0_11“16 || + n I‘( e)
B.2.2. Proof of (3.20). Now let’s focus on
1
cov( tr(YTY) (YTXXTY))

= %E (YY) tr(Y'XX'Y)] —E E tr(YTY)] E [% (YT XXTY)
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Since
(YY) tr(YTXXY)
S -
(ZBTXTX@) (Z e/ XX'é ) + <Zﬁ? XTXXTX@') (Z & éﬂ')
i J
oy ( ﬁTXTXBZ> (ZgTXTXXT ) +2 (ZﬂjXTXXTX@) (Z@XT%)
8

J

+2 (Zﬂ X“) Z@JXXT > +2 (;BJXTXXT@> (ZéTéﬂ>
+4 (Z B! XTéi> (Z B]TXTXXTéj)

i J
j
we can have
E[tr(Y'Y)tr(Y' XXY)]

- F Z B/ X'XBB X' XX"'XB;| +E

i,J

> é?éiéjTXXTéj]
Y]
E> éjéj]

J

E Z B/ X 'XBe XX e

i?j

+E

Y BIXTXXTXB

+4E

S B XTes XXX e,

Since

Elz" Azx' Bx] = 2tr(AXBY) + 4u' A Bu + (tr(AX) + p' Ap)(tr(BX) + pu' Bu),
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and vec(E) ~ N (0, X, ® I,,), then we can have
E|) & éé XX ég|X
2%

=E [vec' (E)vec(E)vec' (E)(I, ® XX ") vec(E)| X|
=2tr (Be @ L)L, @ XX )(Ze® I,)) + tr (. @ L) tr (I, ® XX ) (Z. ® I,,))
=2tr (B2 XX ") +ntr(Z)tr (B XX")

=2tr (Z2) tr (XX ) +ntr? (Te) tr (XX 7).
Therefore,

E|Y éée/ XX e

,J

=E[2tr () tr (XXT) +ntr? (T,) tr (XXT)]

=2nptr (22) 4+ pn® tr* (X,).
Then

E

ZBZTXTXBiéjTXXTéHX]

2

= Z@T X" XBE

> éjTXXTéj|X]
J

=D B/ XTXBE [vec (E)(I,® XX ) vee(E)| X]|

= BIXTXBitr (XX )tr(S.).
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By Lemma B.0.0.1 we have E [tr(W)BTW 3] = (pn® + 2n)|| 8%, then

E

Y BIXTXBe XX

i,J

=E tr (X,)

Z Bl XTXBitr (XXT)

= (pr’ +20) tx () 3 18]
= (pn® + 2n) tr (%) | B %

By Lemma B.0.0.1 E [3] W?8;] = (pn + n® + n)||Bi||?, then

E|> B X'XX'XB|E

7

Zé}éj] =n*(p+n+1)|B|Ftr(Z.).

J

Since

E

)

d B XTeB XXX & X]

=E|) & X868/ X" XX"é| X]
[ XBATXTXXT .. 0
=E |vec(E)" : : vec(E)
I 0 o XBBIXXTXT
X8/ XTXXT - 0
=tr (26®In>
0 o XBBIXTXXT

q q
=> ot (XBB XXX =) 2B (XTX)B;
=1

i=1
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by E [B] W?2B;] = (pn + n* + n)||Bi|?, it follows that

E

q
S B XTes XTXXT e] = (pn+n*+n)>_ alIBil*.
i =1

By Proposition (3.4.0.1), we can have

E|Y B X'XB8 X' XXX,

Z'7j

= (2n+2np + 4n2)HBTBH% + (4n +n? + n’p +n®) || B||%.

From all the equalities above,

Cov (1 tr(Y'Y), L tr(YTXXTY))
n

n2
1 1 1
= <Et(Y'Y) (Y XX'Y)] -E {— tr(YTY)] E {—2 tr(Y'XX'Y)
n n n

2 1 »p 2 D
=25+ Ea2) 1B B+ 21BIE + (a(z)y

n n
2 2\ — 1
S, S 21131 + = || B||% tr(X.) ¢ -
# (22 ) S tia + Bl >}
B.2.3. Proof of (3.21). Finally, we calculate Var (tr(Y "X X 'Y)). Similar to Var (tr(Y 'Y)),
we can have

E[tr*(Y'XX'Y)]

=FE +2E

> BI(XTX)8: B/ (X X)*;

Y BIXTX)Be] XX ¢

0]

+4E | (B XTXX e

%

2
+E (Z éZTXXTéZ)
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Since

E {(Z éZXXTéi>2 X]

—E [(VGCT(E)(Iq ® XXT)veC(E))Q}
= Var (vec' (E)(I, ® XX ")vec(E)) + E* [vec' (E)(I, ® X X ")vec(E)]
=2tr (2@ (XX 1))+t (B, 0 XX ")

=2tr () tr (XX 7)?) + 2 (Z) tr” (XX T),
by Lemma B.0.0.1, we can have
2
E [(Z éiTXXTéi> ] = 2p(np + n® + n)tr (£2) + (p°n® + 2pn) tr* (Xe) .
Then

E

> B (XTX)QﬁZ-éjTXXTé]-]X] => BI(XTX)BE [vec" (E)(I, ® X X ")vec(E)| X ]
i,j i=1
= BIXTX)PBit(XX ") tr(Se).
=1
By Lemma B.0.0.1,
q

Y BIXTX)Bit(XX ) ()

=1

E = (p’n® + pn(n® + n+4) + 4n(n + 1)) tx(X.) | B||7-

Since

E =E E

> (B/XTXXTe)?

%

dBIXTXX e X ] ]

)
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where

1

E|Y (B XTXXTé&)| X]

=E|) &/ XX"XBA X XX"¢ | X]
[ XXTXBAIXTXXT - 0
=E |vec(E)" : : vec(E)
I 0 - XXTXB,B8]XTXXT
XX"XBB/XTXXT ... 0
= tr (26®In)
0 - XXTXBB]XTXXT

q q
= oitr (XX'XBB/ X'XXT)=> B (X X)'B;

i=1 i=1

by Lemma B.0.0.1,

ED (B XTXX"e)

q
=> oE (B (XTX)'s]
i=1
q
= Z o (p*n + 3pn® + 2pn + n® + 3n® + 4n) || Bl
i=1

By Lemma 3.4.0.1,
E|> 6/ (XTX)°6;- B/ (XTX)’B;
.3

= (2np? + 10n>p + 8n® + 8np + 4n* + 20n)|| B' B|%

+ (n2p? + n* + 2n°p + 20%p + 2n® + 27n® + 8np + 10n)|| B|%.
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From all the equalities above, we can have
1
Var <—2tr(YTXXTY))
n
1 1
= —E[*(Y'XX'Y)] - E {— tr(YTXXTY)}
n n

2(0(p\N?> p, P o, 2D
=2 () + 5+ £ ) (@) + 2L (2.
((n) +n+n2) x e)+nn2 ()

2 2 5p p* 4p 10 Tone 2 (13 4p 5 4

Slap 42 2 P ) IB™B 2 2 2B
p2(1e 20 2y B DI BI 2 (24 24 2 ) 1B

2

n

n n?

2 p
p°  6p  Gp 6 8 2an2, 2 (4 4 4 2
oo (o e ) a2 (L ) IBE s

=1
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